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Preface

The practical power of a statistical test is the product of its statistical power times
the probability that one will use it.

J. W. Tukey, 1959

Theory into Practice

Chairman Mao Zedong, The Little Red Book

This book aims to provide a practically oriented, in-depth treatment of modern graphical
methods and visualization techniques for categorical data—discrete response data and fre-
quency data. It describes the underlying statistical theory and methods, and presents nearly
40 general-purpose SAS macros and programs to perform these specialized analyses and
produce insightful visual displays.

The application of these techniques to a large number of substantive problems and
datasets is another focus: how to analyze the data, produce the graphs, and understand
what they have to say about the problem at hand. A number of these examples are re-
viewed from several different perspectives.

In a real sense, this book continues where SAS System for Statistical Graphics, First
Edition leaves off. That book ends with a chapter titled “Displaying Categorical Data.”
It surveys some of the few graphical methods that were available for discrete data at the
time of its publication, saying “while graphical display techniques are common adjuncts to
analysis of variance and regression, methods for plotting contingency table data are not as
widely used” (p. 499).

Not many graphical methods were available; many of those in the literature were de-
signed for specialized situations (2-way tables, or simply 2 × 2 tables) and, except for cor-
respondence analysis, very few were available in standard statistical software. Of the meth-
ods I had encountered, association plots and mosaic displays seemed sufficiently promising
to include in that chapter with simple SAS programs and examples.

The disparity between availability and use of graphical methods for quantitative data,
on the one hand, and analogous methods for categorical data, on the other, seemed particu-
larly curious—almost paradoxical. The statistical methods for the later (log-linear models,
logistic regression) are such close analogs of the standard method for the former (ANOVA,
regression) that I found the contrast in visualization methods puzzling.

Since that time, I and others have worked actively on the development of new graphical
methods for categorical data, with the goals of (a) providing visualization techniques for
data exploration and model fitting comparable in scope to those used for quantitative data,
(b) implementing these methods in readily available software, and (c) illustrating how these
methods may be used in understanding real data—theory into practice.

Beginning somewhat earlier, the development of the generalized linear model (e.g.,
McCullagh and Nelder, 1989) created the statistical machinery to integrate many aspects
of classical linear models for quantitative data with similar linear models for discrete re-
sponses and frequency data within a common framework. As a result, many of the com-
monly used diagnostic displays (normal probability plots of residuals, added-variable plots,
influence plots, etc.) described in SAS System for Statistical Graphics, First Edition could
be adapted and extended to categorical data.
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Altogether, what seemed to deserve only a skeleton chapter in 1991 has progressed to
meat on the bones, perhaps worthy of an extended treatment, to which you are now invited.

How to Use This Book

This book was written to make graphical methods for categorical data available and ac-
cessible.

Available methods should be conveniently collected, described, and illustrated.
Available means that I try to show how graphs, some old and some quite novel, can be
used to expose or summarize important features of categorical data. I try to collect and
describe methods I consider useful all together here. In part, this is done by example. Quite
a few examples are treated several times throughout the text from different perspectives or
to illustrate different views of the same data. If you are looking for a graphical method to
help you understand some particular type of data, the examples in this book may help you
find some useful candidates. Use the Example Index to track the various analyses applied
to a given dataset.

Accessible methods should be easy to use. Accessible reflects the opening quotations
of this Preface. A technique may be well-described somewhere but is inaccessible because
it is hard for you to use with your own data. I try to provide general tools, conceptual and
computational, for thinking about and doing categorical data analysis guided by visualiza-
tion. The statistical theory for the methods described is, of necessity, somewhat abbreviated
but oriented toward understanding how to apply these methods. You may wish to refer to
cited references for more detail. The programs developed for this book (described in Ap-
pendix A) reflect my aim to make it easy for you to use these methods with your own data.
If you are not familiar with the use of SAS macros, it will take you a bit of effort to begin
to use these programs, but I strongly believe that small effort will empower you greatly and
help you convert theory into practice.

Beyond the information provided, I also tried to make the structure of this information
available and accessible within the confines of a printed (and therefore linear) work. The
following subsection provides a synopsis of the contents of each chapter of this book. Each
chapter begins with thumbnail images of some of the graphical methods that are described
within it, and a capsule summary. Each chapter ends with a summary of the main points
and methods.

Overview

Chapter 1: “Introduction” introduces some aspects of categorical data, distinctions
among different types of data, and different strategies for analysis of frequency data and
discrete response data. I discuss the implications of these features of categorical data for
visualization techniques and outline a strategy of data analysis focused on visualization.

Chapter 2: “Fitting and Graphing Discrete Distributions” describes the well-known
discrete frequency distributions: the binomial, Poisson, negative binomial, geometric, and
logarithmic series distributions, along with methods for fitting these to empirical data.
Graphic displays are used to visualize goodness of fit, to diagnose an appropriate model,
and determine the impact of individual observations on estimated parameters.

Chapter 3: “2-way Contingency Tables” presents methods of analysis designed
mainly for 2-way tables of frequencies (contingency tables), along with graphical tech-
niques for understanding the patterns of associations between variables. Different special-
ized displays are focused on visualizing an odds ratio (a fourfold display of 2 × 2 tables),
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or the general pattern of association (sieve diagrams), the agreement between row and
column categories (agreement charts), and relations in n × 3 tables (trilinear plots).

Chapter 4: “Mosaic Displays for n-Way Tables” introduces the mosaic display, a gen-
eral method for visualizing the pattern of associations among variables in 2-way and larger
tables. Extensions of this technique can reveal partial associations, marginal associations,
and shed light on the structure of log-linear models themselves.

Chapter 5: “Correspondence Analysis” discusses correspondence analysis, a tech-
nique designed to provide visualization of associations in a 2-way contingency table in
a small number of dimensions. Multiple correspondence analysis extends this technique
to n-way tables. Other graphical methods, including mosaic matrices and biplots, provide
complementary views of log-linear models for 2-way and n-way contingency tables.

Chapter 6: “Logistic Regression” introduces the model-building approach of logistic
regression, designed to describe the relation between a discrete response, often binary, and
a set of explanatory variables. Smoothing techniques are often crucial in visualizations for
such discrete data. The fitted model provides both inference and prediction, accompanied
by measures of uncertainty. Diagnostic plots help us to detect influential observations that
may distort our results.

Chapter 7: “Log-linear and Logit Models” extends the model building approach to
log-linear and logit models. These are most easily interpreted through visualizations, in-
cluding mosaic displays and plots of associated logit models. As with logistic regression,
diagnostic plots and influence plots help to assure that the fitted model is an adequate sum-
mary of associations among variables.

Appendix A: “SAS Programs and Macros” documents all the SAS macros and pro-
grams illustrated in the book.

Appendix B: “Datasets” lists the DATA steps used to create the principal datasets used
in the book.

Appendix C: “Tables” lists two tables of the values of the χ2 distribution, along with a
SAS program that may be customized to provide similar information in any desired format.
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Categorical data consists of variables whose values comprise a set of discrete categories. Such data requires
different statistical and graphical methods from those commonly used for quantitative data. The focus of
this book is on visualization techniques and graphical methods designed to reveal patterns of relationships
among categorical variables.

1.1 Data Visualization and Categorical Data . . . . . . . . . . . . . . . . . . 1
1.2 What Is Categorical Data? . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Strategies for Categorical Data Analysis . . . . . . . . . . . . . . . . . . 5
1.4 Graphical Methods for Categorical Data . . . . . . . . . . . . . . . . . . 8
1.5 Visualization = Graphing + Fitting + Graphing . . . . . . . . . . . . . . . 13

1.1 Data Visualization and Categorical Data

Beauty is truth, truth beauty. — that is all
Ye know on earth, and all ye need to know.

John Keats, “Ode on a Grecian Urn”

“Data visualization” is an approach to data analysis that focuses on insighful graphical
display. We can display the raw data, some summary statistics, or some indicators of the
quality or adequacy of a fitted model. The word “insightful” suggests that the goal is (we
hope) to reveal some aspects of the data that might not be perceived, appreciated, or ab-
sorbed by other means. The overall aims include both beauty and truth, though each of
these is only as perceived by the beholder.
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Methods for visualizing quantitative data have a long history. These methods are now
widely used in both data analysis and data presentation, and in both popular and scientific
media. However, graphical methods for categorical data have only recently developed and,
consequently, are not as widely used. The goal of this book is to show, concretely, how
data visualization can be usefully applied to categorical data.

“Categorical data” means different things in different contexts. The topic is introduced
in Section 1.2, which contains some examples illustrating (a) types of categorical vari-
ables: binary, nominal, and ordinal; (b) data in case form vs. frequency form; (c) frequency
data vs. count data; (d) univariate, bivariate, and multivariate data; and (e) the distinction
between explanatory and response variables.

Methods for the analysis of categorical data also fall into two quite different categories,
which are described and illustrated in Section 1.3. In the first category are the simple
randomization-based methods typified by the classical Pearson χ2, Fisher’s exact test,
and Cochran-Mantel-Haenszel tests. In the second category are the model-based meth-
ods represented by logistic regression, loglinear, and generalized linear models. Chapters 2
through 5 are mostly related to the randomization-based methods. Chapters 6 and 7 illus-
trate the model-based methods.

In Section 1.4, some important similarities and differences between categorical data
and quantitative data are described, and the implications of these differences for visualiza-
tion techniques are discussed. Section 1.5 outlines a strategy of data analysis focused on
visualization.

1.2 What Is Categorical Data?

A categorical variable is a variable for which the possible measured or assigned values
consist of a discrete set of categories. Here are some typical examples:

• Gender — Male, Female
• Marital Status — Never Married, Married, Separated, Divorced, Widowed
• Fielding Position (in baseball) — Pitcher, Catcher, 1st base, 2nd base,. . . , Left field
• Side Effects (in a pharmacological study) — None, Skin Rash, Sleep Disorder,

Anxiety,. . .
• Political Preference — Left, Center, Right
• Treatment Outcome — No Improvement, Some Improvement, Marked Improvement
• Age — 0-9, 10-19, 20-29, 30-39,. . .
• Number of Children — 0, 1, 2, . . .

As these examples suggest, categorical variables differ in the number of categories:
binary variables, such as Gender, are distinguished from those that have more than two
categories (called polytomous). For example, Table 1.1 gives data about 4526 applicants to
graduate departments at the University of California at Berkeley in 1973, classified by two
binary variables, gender and admission status.

Table 1.1 Admissions to Berkeley graduate programs

Admitted Rejected Total

Males 1198 1493 2691
Females 557 1278 1835

Total 1755 2771 4526
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Some categorical variables, such as Political Preference and Treatment Outcome, may
have ordered categories and are called ordinal; other variables, such as Marital Status, have
unordered categories and are called nominal.1 For example, Table 1.2 shows a 2 × 2 × 3
table of ordered outcomes (None, Some, or Marked Improvement) to an active treatment
for rheumatoid arthritis in men and women compared to treatment with a placebo.

Table 1.2 Arthritis treatment data

Improvement

Treatment Sex None Some Marked Total

Active Female 6 5 16 27
Male 7 2 5 14

Placebo Female 19 7 6 32
Male 10 0 1 11

Total 42 14 28 84

Finally, such variables differ in the fineness or level to which some underlying observa-
tion has been categorized for a particular purpose. From one point of view, all data may be
considered categorical because the precision of measurement is necessarily finite, or an in-
herently continuous variable may be recorded only to limited precision. But this view is not
helpful for the applied researcher because it neglects the phrase “for a particular purpose.”
Age, for example, might be treated as a quantitative variable in a study of native language
vocabulary, or as an ordered categorical variable in terms of the efficacy or side-effects of
treatment for depression, or even as a binary variable (Child vs. Adult) in an analysis of
survival following an epidemic or a natural disaster.

1.2.1 Case Form vs. Frequency Form

In many circumstances, data is recorded about each individual or experimental unit. Data
in this form is called case data or data in case form. For example, the data in Table 1.2 was
derived from the individual data listed in Appendix B.1. Whether or not the data variables
and the questions we ask call for categorical or quantitative data analysis, we can always
trace any observation back to its individual identifier or data record when the data is in case
form.

Data in frequency form, such as that shown in Table 1.2, has already been tabulated, by
counting over the categories of the table variables. Data in frequency form may be analyzed
by methods for quantitative data if there is a quantitative response variable (weighting each
group by the cell frequency by using a WEIGHT or a FREQ statement). Otherwise, such data
is generally best analyzed by methods for categorical data. In either case, however, an
observation in a dataset in frequency form refers to all cases in the cell collectively, and
it cannot be identified individually. Data in case form can always be reduced to frequency
form, but the reverse is rarely possible.

1An ordinal variable may be defined as one whose categories are unambiguously ordered along a single underlying
dimension. Both marital status and fielding position may be weakly ordered, but not on a single dimension, and
not unambiguously.
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1.2.2 Frequency Data vs. Count Data

In many cases, the observations that represent the classifications of events or variables
are recorded from operationally independent experimental units or individuals, typically,
a sample from some population. The tabulated data may be called frequency data. The
data in Tables 1.1 and 1.2 are examples of frequency data because each observation that is
tabulated comes from a different person.

However, if several events or variables are observed for the same units or individuals,
those events are not operationally independent, and it is useful to use the term count data
in this situation. These terms (following Lindsey, 1995) are by no means standard, but
the distinction is often important, especially in statistical models for categorical data. In
a tabulation of the number of male children within families (Table 1.3), for example, the
number of male children in a specific family would be a count variable, taking values
0, 1, 2, . . .. The number of independent families with a specific number of male children
is a frequency variable. Count data also arises when a sequence of events is tabulated over
time or, under different circumstances, in a number of individuals.

1.2.3 Univariate, Bivariate, and Multivariate Data

Table 1.1 is an example of a bivariate (two-way) contingency table, and Table 1.2 classi-
fies the observations by three variables. Yet, the Berkeley admisssions data also recorded
the department to which potential students applied (giving a three-way table), and in the
arthritis data, the age of subjects was also recorded.

Therefore, any contingency table records the marginal totals, summed over all variables
not represented in the table. For data in case form, this means simply ignoring (or not
recording) one or more variables; the observations remain the same. However, data in fre-
quency form results in smaller tables when any variable is ignored; the observations are
the cells of the contingency table.

In the limiting case, only one table variable may be recorded or available, giving the
categorical equivalent of univariate data. For example, Table 1.3 gives data about the dis-
tribution of the number of male children in families that have 12 children, as discussed in
Example 2.10. This data was part of a large tabulation of the sex distribution of families in
Saxony in the nineteenth century, but the data in Table 1.3 has only one discrete classifica-
tion variable, that is, the number of males. Without further information, the only statistical
questions concern the form of the distribution. The methods for fitting and graphing such
discrete distributions are discussed in Chapter 2. The remaining chapters relate to bivariate
and multivariate data.

Table 1.3 Number of Males in 6115 Saxony Families That Have 12 Children

Males 0 1 2 3 4 5 6 7 8 9 10 11 12
Families 3 24 104 286 670 1033 1343 1112 829 478 181 45 7

1.2.4 Explanatory vs. Response Variables

Many statistical models make a distinction between response (or dependent, or criterion)
variables and explanatory (or independent, or predictor) variables. In the standard (classi-
cal) linear models for regression and analysis of variance (ANOVA), for instance, we treat
one (or more) variables as responses, to be explained by the other, explanatory variables.
The explanatory variables may be quantitative or categorical (e.g., CLASS variables), but
this affects only the details of how the model is specified for PROC GLM or PROC REG. For
example, the response variable, treatment outcome, must be considered quantitative, and



Chapter 1 Introduction 5

the model attempts to describe how the mean of the distribution of responses changes with
the values or levels of the explanatory variables, such as age or gender.

However, when the response variable is categorical, the standard linear models do not
apply because they assume a normal (Gaussian) distribution for the model residuals. For
example, in Table 1.2 the response is Improvement, and even if numerical scores were as-
signed to the categories None, Some, and Marked, it may be unlikely that the assumptions
of the classical linear models could be met.

Hence, a categorical response variable generally requires analysis using methods for
categorical data, but categorical explanatory variables may be readily handled by either
method.

1.3 Strategies for Categorical Data Analysis

Methods of analysis for categorical data can be classified into two broad categories: those
concerned with hypothesis testing per se, and those concerned with model building.

1.3.1 Hypothesis-Testing Approaches

In many studies, the questions of substantive interest translate readily into questions con-
cerning hypotheses about association between variables. If a non-zero association exists,
we may want to characterize the strength of the association numerically and understand
the pattern or nature of the association. For example, in Table 1.1, the question “Is there
evidence of gender-bias in admission to graduate school?” may be expressed in terms of an
association between gender and admission status in a 2×2 contingency table of applicants
who are classified by these two variables. If so, we can assess the strength of the associa-
tion by a variety of measures, including the difference in proportions admitted for men and
women or the ratio of the odds of admission for men compared to women, as described in
Section 3.2.2.

Similarly, in Table 1.2, questions about the efficacy of the treatment for rheumatoid
arthritis can be answered in terms of hypotheses about the associations among the table
variables: Treatment, Sex, and the Improvement categories. Although the main concern
might be focused on the overall association between Treatment and Improvement, one
would also want to know if this association is the same for men and women. A stratified
analysis (Section 3.3) controls for the effects of background variables, such as Sex, and
tests for homogeneity of association help determine if these associations are equal.

Questions involving tests of such hypotheses are answered most easily using the
randomization-based methods provided by PROC FREQ. These include the familiar Pear-
son chi-square, the Cochran-Mantel-Haenszel test statistics, Fisher’s exact test, and a wide
variety of measures of strength of association. These tests make minimal assumptions,
principally requiring that subjects or experimental units have been randomly assigned to
the categories of experimental factors. The hypothesis testing approach is illustrated in
Chapters 3 through 5, though the emphasis is on graphical methods that help to understand
the nature of association between variables.

EXAMPLE 1.1 Hair color and eye color

Two graphical methods related to the hypothesis-testing approach are shown in Figure 1.1.
The data concerns the relationship between hair color and eye color in a sample of nearly
600 students (see Table 3.2 and Appendix B.3). The standard analysis with PROC FREQ
gives a Pearson χ2 of 138.3 with 9 degrees of freedom (df), indicating substantial departure
from independence. How do we understand the nature of this association between hair and
eye color?
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Figure 1.1 Graphical displays for hair color and eye color data.
Left: mosaic display; right: correspondence analysis 2-D solution.
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The left panel of Figure 1.1 is a mosaic display (Chapter 4) constructed so that the
size of each rectangle is proportional to the observed cell frequency. The shading reflects
the cell contribution to the χ2 statistic: shades of blue, when the observed frequency is
substantially greater than the expected frequency under independence; shades of red, when
the observed freqency is substantially less, as shown in the legend.

The right panel of this figure shows the results of a correspondence analysis (Chapter 5),
where the deviations of the hair-color and eye-color points from the origin account for as
much of the χ2 as possible in two dimensions.

We observe that both the hair colors and the eye colors are ordered from dark-to-light
in the mosaic display and along Dimension 1 in the correspondence analysis plot. The
deviations between observed and expected frequencies have an opposite-corner pattern in
the mosaic display, except for the combination of red hair and green eyes, which also stand
out as the largest values on Dimension 2 in the correspondence analysis plot. Displays such
as these provide a means to understand how the variables are related.

1.3.2 Model-Building Approaches

In other situations, model-based methods provide tests of equivalent hypotheses about as-
sociations, but (at the cost of additional assumptions) offer additional advantages not pro-
vided by the simpler hypotheses-testing approaches. As in the analysis of quantitative data,
linear statistical models relate the expected value of a response to a linear function of the
table variables, and also assume that residuals or deviations from the model follow a known
parametric form.

For a dichotomous response variable, for example, it is convenient to construct a model
relating a function of the probability, π , of one event to a linear combination of the ex-
planatory variables. Logistic regression uses the logit function,

logit(π) = loge
π

1 − π

which may be interpreted as the log odds of the given event.
Statistical inferences from model-based methods also provide tests of hypotheses, but

they provide estimates of parameters in the model and associated confidence intervals and
prediction intervals for the response as well. A particular advantage of the logit represen-
tation in the logistic regression model is that estimates of odds ratios (Section 3.2.2) may
be obtained directly from the parameter estimates.
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EXAMPLE 1.2 Challenger disaster

To illustrate, the graph in Figure 1.2 is based on a logistic regression model predicting the
probability of a failure in one of the O-ring seals used in the NASA space shuttles prior to
the disasterous launch of the Challenger in January, 1986.2 The explanatory variable is the
ambient temperature at the time of the flight. The sad story behind this data and the lessons
to be learned for graphical data display are related in Example 6.5.

Here, we simply note that the fitted model, shown by the solid line in Figure 1.2, corre-
sponds to the prediction equation (with standard errors shown in parentheses),

logit(Failure) = 5.09
(3.06)

− 0.116
(0.047)

Temp

An hypothesis test that failure probability is unassociated with temperature is equivalent to
the test that the coefficient for temperature in this model equals 0; this test has a p-value
of 0.014, which is convincing evidence for rejection. However, the parameter estimate for
temperature, −0.116, gives more information. Each 1◦ increase in temperature decreases
the log odds of failure by 0.116, with 95% confidence interval (−0.208, −0.0235). The
equivalent odds ratio is exp(−0.116) = 0.891 (0.812–0.977). Equivalently, a 10◦ decrease
in temperature corresponds to an odds ratio of a failure of exp(10 × 0.116) = 3.18, more
than tripling the odds of a failure.

When the Challenger was launched, the temperature was only 31◦. The dashed lines
(red) in Figure 1.2 show 95% prediction intervals for failure probability. All previous shut-
tles (shown by the points in the figure) had been launched at much warmer temperatures, so
the prediction interval (the dashed vertical line at the left of the graph) at 31◦ represents a
considerable extrapolation beyond the available data. Nonetheless, the model-building ap-
proach does provide such predictions along with measures of their uncertainty. Figure 1.2
is a graph that might have saved lives.

Figure 1.2 NASA Space Shuttle O-ring Failure, observed and predicted probabilities
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2“Risk Analysis of the Space Shuttle: Pre-Challenger Prediction of Failure,” vol. 84, no. 408, by Siddhartha R.
Dalal, Edward B. Fowlkes, and Bruce Hoadley. Copyright c© 1989 by Journal of the American Statistical Asso-
ciation. Reprinted by permission of Journal of the American Statistical Association via the Copyright Clearance
Center.
Reprinted by permission, Visual Explanations: Images and Quantities, Evidence and Narrative, by Edward Tufte,
Graphics Press 1997.
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An additional advantage of the model-building approach is that it often provides greater
flexibility and allows more detailed or specialized descriptions of the relations among vari-
ables to be tested. For instance, in square, two-way tables (such as those classifying the
occupations of fathers and sons or attitudes of husbands and wives) specialized models
that deal with symmetry or forms of lack of symmetry may be fit and tested. Such models
are usually of much greater substantive interest than the hypothesis of general association.
Similarly, specialized models for ordinal variables allow more detailed tests of the nature of
association to be examined. Chapter 4, 6, and 7 illustrate many forms of these specialized
models.

1.4 Graphical Methods for Categorical Data

You can see a lot, just by looking.

Yogi Berra

The graphical methods for categorical data described in this book are in some cases
straightforward adaptations of more familiar visualization techniques developed for quan-
titative data. The graphical principles and strategies, and the relations between the vi-
sualization approach and traditional statistical methods are described in SAS System for
Statistical Graphics, First Edition, Chapter 1, and Cleveland (1993b). Another perspective
on visual data display is presented in Section 1.4.1. However, the discrete nature of cat-
egorical data implies that some familiar graphical methods need to be adapted, while in
other cases, we require a new graphic metaphor for data display. These issues are illustrated
in Section 1.4.2.

1.4.1 Goals and Design Principles for Visual Data Display

Designing good graphics is surely an art, but as surely, it is one that ought to be informed
by science. In constructing a graph, quantitative and qualitative information is encoded
by visual features, such as position, size, texture, symbols, and color. This translation is
reversed when a person studies a graph. The representation of numerical magnitude and
categorical grouping, and the perception of patterns and their meanings must be extracted
from the visual display.

There are many views of graphs, of graphical perception, and of the roles of data vi-
sualization in discovering and communicating information. On the one hand, a graphical
display may be regarded as a “stimulus” — a package of information to be conveyed to an
idealized observer. From this perspective, certain questions are of interest: Which form or
graphic aspect promotes greater accuracy or speed of judgment (for a specific task or ques-
tion)? What aspects lead to greatest memorability or impact? Cleveland (Cleveland and
McGill, 1984, 1985; Cleveland, 1993a), and Lewandowsky and Spence (Lewandowsky
and Spence, 1989; Spence, 1990) have made important contributions to our understanding
of these aspects of graphical display.

An alternative view regards a graphical display as an act of communication — like a
narrative, or even a poetic text or work of art. This perspective places the greatest empha-
sis on the selected communication goal to be achieved, and judges the effectiveness of a
graphical display in how well it meets that goal. Kosslyn (1985, 1989) and Tufte (1983,
1990, 1997) have articulated this perspective most clearly.

In this view, an effective graphical display, like good writing, requires an understanding
of its purpose — what aspects of the data are to be communicated to the viewer. In writing,
we communicate most effectively when we know our audience and tailor the message
appropriately. So too, we may construct a graph in different ways: for personal use, to
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present at a conference or a meeting of our colleagues, or to publish in a research report or
in a communication to a general audience (Friendly, 1991, Chapter 1).

Figure 1.3 shows one type of organization of visualization methods in terms of the
primary use or intended communication goal, the functional presentation goal, and the
suggested corresponding design principles that are applicable.

Figure 1.3 A taxonomy of the basic functions of data display by intended use and presentation goal

Presentation

Exploration

Reconnaisance

Diagnosis

to Persuade

to Inform

to Stimulate

Display
Data

Primary Use Presentation Goal

Analysis

Aesthetics

Rhetoric

Exposition

Design

Principles

Perception

Detection

Comparison

Model building

Basic Functions of  Data Display

The first distinction identifies Analysis or Presentation as the primary use of a data
graphic (with the understanding that a specific graph may serve both purposes — or, sadly,
neither).
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Analysis Graphs

Graphs used for data analysis should clearly show the data, but they should also “force us
to notice what we never expected to see” (Tukey, 1977, p. vi).

Among graphical methods designed to help study or understand a body of data, it is
possible to distinguish those methods designed for different purposes. As suggested in
Figure 1.3, each presentation goal is associated with somewhat different design principles.

• reconnaissance — a preliminary examination or an overview of a possibly complex ter-
rain. For this goal, we may be willing to sacrifice detail for a wider field of view. For
example, with a large, multi-way contingency table, we might want to examine the col-
lection of one-way and two-way marginal subtables visually.

• exploration — graphs designed to help detect patterns or unusual circumstances, or to
suggest hypotheses, analyses, or models. For a binary response and a number of cate-
gorical or quantitative predictors, a collection of smoothed plots of the response against
each predictor may suggest important variables that should be included in a model or
extreme observations that should be examined.

• diagnosis — graphs designed to summarize or critique a numerical statistical summary.

Presentation Graphs

Presentation graphics have different goals. You may want to stimulate, or to persuade, or
simply to inform. As in writing, it is usually a good idea to know what it is you want to say
with a graph, and to tailor its message to that goal.

It is often the case that a graph originally prepared as an aid to data analysis can be
transformed to a graph intended for presentation by a simple re-design. Sometimes this
entails removing detail useful for the analyst but which may detract from the major mes-
sage; sometimes this may involve adding titles or annotation to make the message more
immediately apparent. In still other cases, we may decide to change the graphic format to
make visual comparisons easier for the intended audience.

For example, Figure 1.4 shows two views of the results of fitting a logistic regression
model to the arthritis treatment data (described in Section 6.4). The left panel shows the
observed (points) and predicted probabilities of improvement (±1 standard error, giving
approximate 67% confidence intervals) in the form of a line graph. The right panel shows
a possible re-design of this graph for presentation purposes.

Figure 1.4 Two graphical displays for arthritis treatment data.
Left: initial analysis graph; right: re-design for presentation.
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The line graph might be preferred for analysis purposes because it shows (a) the ob-
served and fitted probabilities are quite similar, (b) there is a large effect of both treatment
and sex, and (c) the effect of treatment is about the same for both men and women. The
presentation version contains the same predicted probabilities and error bars as the original
graph, but, for simplicity, omits the observed probabilities. The title explicitly announces
the conclusion to be drawn from the graph.

1.4.2 Categorical Data Requires Different Graphical Methods

We will see in Chapters 6 and 7 that statistical models for discrete response data and for
frequency data are close analogs of the linear regression and ANOVA models that are used
for quantitative data. These analogies suggest that the graphical methods commonly used
for quantitative data may be adapted directly to categorical data.

Happily, it turns out that many of the analysis graphs and diagnostic displays (e.g., in-
fluence plots, added variable and partial residual plots, etc.), which have become common
adjuncts in the analysis of quantitative data, have been extended to generalized linear mod-
els including logistic regression and log-linear models.

Unhappily, the familiar techniques for displaying raw data are often disappointing when
applied to categorical data. For example, the simple scatterplot is widely used, together
with the fitted linear model, to show the relation between quantitative response and predic-
tors. For the arthritis data in case form (Appendix B.1), the analogous plot for a logistic
regression model (predicting Pr(Some or Marked) improvement from Age) shown in the
left panel of Figure 1.5, is, well, underwhelming. First, the response Improve takes on only
the values 0 and 1, and Age (in years) is also discrete, so, many points overplot in this
graph.3 Second, although this graph is enhanced with the curve of predicted probabilities
under the fitted model (solid line) and 95% confidence bands (dashed lines), it is hard to
appreciate how the data points relate to the fitted model. (Can you see that the probability
of improvement increases with age?)

These problems may be reduced to some degree by smoothing and by jiggling the points
to avoid overplotting. The right panel of Figure 1.5 shows a modest improvement. Here, the
raw observations were offset by stacking down from 1 and up from 0 wherever duplicate
observations occurred. In addition, the observations were grouped into tenths by age; the
lower boundaries of the age categories are shown by the tick marks on the horizontal scale.
The proportion of Improved responses in each age group is then plotted (squares), and

Figure 1.5 Graphical displays for Arthritis treatment data.
Left: raw data with logistic regression on age; right: stacked raw data, logistic regression,
and smoothed lowess curve.
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a non-parametric (lowess) smoothed curve is added to the plot. Although the smoothed
curve is somewhat jagged, we now have a clearer visual impression that the probability of
improvement increases with age, and we can see the large number of 1 responses among
older people.

In Figure 1.5, the quantitative variable Age supports the use of the scatterplot as the
graphic format for visual display. A more essential difference between quantitative data
and categorical data arises when all variables are categorical, as in a contingency table like
Table 1.2. Then, we find that a different visual representation is more natural and useful
(Friendly, 1995, 1997).

For quantitative data, magnitude can be represented by length (in a bar chart) or by
position along a scale (dotplots, scatterplots). When the data is purely categorical, design
principles of perception, detection, and comparison (Friendly, 1999b) suggest that frequen-
cies are most usefully represented as areas. In spite of the fact that (in magnitude estima-
tion tasks) judgments of area are known to be less accurate than those of length (e.g.,
Cleveland and McGill, 1984), here are two fundamental reasons why area is a preferred
visual representation for count data:

• multiplicative relations of probabilities and expected frequencies translate readily into
height and width of rectangles, whose area then depicts a cell value.

• a concrete, physical model for categorical data (Friendly, 1995) based on count ∼ area
yields a surprising range of correct, but novel, interpretations for statistical principles
(maximum likelihood), estimation techniques (iterative proportional fitting, Newton–
Raphson) and statistical concepts (power, why components of likelihood-ratio G2 can
be negative).

The first reason is illustrated in Figure 1.6, a sieve diagram (Section 3.5) for the Berke-
ley admissions data, broken down by department. In this display, each box has a height

Figure 1.6 Sieve diagram for Berkeley admissions data. Each box has area proportional to its expected
frequency and is cross-ruled with boxes equal to the observed frequency.
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Figure 1.7 Conceptual model for categorical data
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proportional to the marginal total for the corresponding department and a width propor-
tional to the column marginal total, so the area is proportional to the expected frequency
under independence. The observed frequency in each cell is shown by the number of cross-
ruled boxes, so departures from independence are shown visually as variations in shading
density.

The second point is illustrated in Figure 1.7, using data (see Table 3.2) on n = 592
individuals classified by hair color. In the conceptual model (Friendly, 1995, Sall, 1991),
categorical observations are likened to molecules of an ideal gas confined to chambers
separated by movable partitions. In both panels of the figure, the number of symbols in
each box exactly equals the number of observations in each hair-color category.

When the location of the partitions are unconstrained, as shown in the left panel of
Figure 1.7, the forces balance in each chamber by moving to the positions of minimum
potential energy, so that the height of each chamber is pi = ni/n, which is the maximum
likelihood estimate of the probability πi in each cell.

To test the hypothesis that all hair colors are equally likely, imagine forcing the par-
titions to move to the positions where πi = 1

4 , as shown in the right panel. The change
in energy in each compartment is then −(log pi − logπi ) = − log(pi/πi ), the change in
negative log-likelihood. Sum these and multiply by 2 to get the likelihood ratio G2. This
gives a concrete interpretation of G2 as a measure of the effort to maintain belief in the
hypothesis in the face of the data.

This concrete model supplies neat explanations of many other results for categorical
data, extends readily to multiway tables, and provides a rationale for the graphic repre-
sentation of counts by area or by visual density. It also serves as the basis for the mosaic
display described in Chapter 4.

1.5 Visualization = Graphing + Fitting + Graphing

Look here, upon this picture, and on this.

William Shakespeare, Hamlet

Statistical summaries, hypothesis tests, and the numerical parameters derived in fitted mod-
els are designed to capture a particular feature of the data. An analysis of the data from
Table 1.1, for example, shows that 44.5% of male applicants were admitted to Berkeley,
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compared to 30.4% of female applicants, giving a Pearson chi-square of 92.2 with 1 degree
of freedom for association between admission and gender (p < 0.001). Expressed in terms
of the odds ratio, males were apparently 1.84 times as likely to be admitted as females, with
99% confidence bounds 1.562–2.170. Each of these numbers expresses some part of the
relationship between gender and admission in the Berkeley data.

Numerical summaries, even for such a small dataset as this, are designed to compress
the information in the data. In contrast, the visualization approach to data analysis is de-
signed to (a) expose information and structure in the data, (b) supplement the information
available from numerical summaries, and (c) suggest more adequate models. In general,
the visualization approach seeks to serve the needs of both summarization and exposure.

This approach recognizes that both data analysis and graphing are iterative processes.
You should not expect that any one model captures all features of the data, any more than
you should expect that a single graph shows all that may be seen. In most cases, the initial
steps should include some graphical display guided by understanding of the subject matter
of the data. What you learn from a graph may then help suggest features of the data to be
incorporated into a fitted model. Your desire to ensure that the fitted model is an adequate
summary may then lead to additional graphs.

EXAMPLE 1.3 Lifeboats on the Titanic

One example is shown in Figure 1.8, described in more detail in Example 3.18. The left
panel shows a trilinear plot of the composition of lifeboats on the Titanic. Each point in
the plot shows the relative proportions of male passengers and identifies the lifeboats that
have 10% or more men, women and children, and men-of-crew reported in each of the 18
lifeboats launched from the port and starboard sides of that ill-fated vessel. Trilinear plots
are described in Section 3.8, but essentially, the points near the top apex represent boats
that are almost all filled with women and children.

Figure 1.8 Two graphical displays for Titanic lifeboat data.
Left: trilinear plot, right: logistic regression.
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That graph suggested that the procedures for loading the lifeboats might have differed
for the port and starboard side of the ship. This led to fitting a logistic regression model to
predict the proportion of women and children loaded over a period of time, with separate
slopes and intercepts for the port and starboard sides. The panel on the right of Figure 1.8
shows predicted proportions from this model, with simple linear regression lines for the
two sides. Even without further details about the data or the analysis, the graph clearly
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shows that passengers on the two sides of the Titanic were subject to different regimes for
loading the lifeboats.

This interplay between graphing and fitting can be expressed as

Visualization = Graphing + Fitting + Graphing + · · · ,
where the ellipsis (· · ·) reminds us that there are often additional steps.

Sometimes a visualization is sufficiently strong (as, perhaps in Figure 1.4 or in the
panel on the right side of Figure 1.8), that hypothesis tests and model parameters serve an
ancillary role in understanding the effects in the data. p-values are useful in the conventions
of scientific communication, but perhaps less convincing evidence than a graph whose
conclusions hit you between the eyes (sometimes called the Intraocular Traumatic Test).

In other cases, graphing serves as a supporting member of the data-analytic cast. Model-
based methods rely on assumptions about the data. Diagnostic plots for logistic regression
(Section 6.6) and log-linear models (Section 7.7) may provide comfort that the assumptions
on which these inferences depend are reasonable for the data at hand, or the plots may
suggest that some modification of the model would help us to rest more easily.

In any event, it is well to remember that data analysis requires both summarization and
exposure, and the needs of both are served by the combination of graphing and fitting.

1.5.1 Static vs. Dynamic Graphics

The confines of a book and of the software that are described here for visualizing categori-
cal data limit this presentation to static displays that are produced by SAS programs. Many
of these static graphics are made considerably easier to use and more flexible when you
use SAS macros as illustrated in the following chapters and described in Appendix A.

The most productive use of these methods requires the addition of two aspects of inter-
active graphics that presently are being developed by me (Friendly, 1996) and by others
(Theus and Lauer, 1999; Young, 1994).

• The first aspect relates to interactive methods for choosing variables, parameters, and
options for analysis and graphical displays. The development tools for this form of in-
teractivity are provided in SAS/AF and most of the macro programs described here may
be easily wrapped in an interactive front-end.

• A second aspect of dynamic graphics is related to the ability to interact with multiple,
linked views of a dataset, so that, for example, selecting a subset of cases in one view
highlights them in all other views. SAS/INSIGHT is a prototype for this type of interac-
tion in SAS software. JMP software provides another route.

I look forward to the possible development of more interactive methods and the ex-
tension of multiple, linked data views for categorical data to be used with SAS software.
Nevertheless, it is necessary to understand the various forms of graphic displays that are
particularly useful for discrete data before learning how to employ them interactively.
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Discrete data often follows various theoretical probability models. Graphic displays are used to visualize
goodness-of-fit, to diagnose an appropriate model, and to determine the impact of individual observations
on estimated parameters.

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Discrete Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Fitting Discrete Distributions . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Diagnosing Discrete Distributions: Ord Plots . . . . . . . . . . . . . . . 46
2.5 Poissonness Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.1 Introduction

Not everything that counts can be counted, and not everything that
can be counted counts.

Albert Einstein

Discrete frequency distributions often involve counts of occurrences, such as accident fa-
talities, words in passages of text, births of twins, events of terrorism or suicide, or blood
cells with a specific characteristic. Typically, such data consists of a table that records that
the nk of the observations pertain to the basic outcome value k, k = 0, 1, . . . . For such data,
you often want to understand the process that gives rise to these numbers, or to estimate
frequencies for outcome values k that you did not observe. Both goals can be approached
by examining how closely the data follows a specific discrete probability distribution, such
as the Poisson, the binomial, or the geometric distribution.
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The properties of some of the most widely used discrete distributions are briefly de-
scribed in Section 2.2, along with SAS techniques for calculating and visualizing these
distributions. Section 2.3 presents theory and visualization techniques related to fitting
these distributions to empirical data. In some cases, you may not know which discrete dis-
tribution should be fit to a specific dataset. Section 2.4 describes a simple graphical method
designed to determine an appropriate distribution type. A more robust graphical method for
diagnosing whether a specific dataset follows the Poisson distribution is illustrated in Sec-
tion 2.5. Because the discrete distributions described here are members of a more general,
parametric family, the power series, these techniques can be applied to all of them. Sev-
eral SAS macros to simplify the fitting and graphing of discrete distributions are presented
throughout this chapter.

The tables described in Example 2.1 through Example 2.5 illustrate several discrete
datasets. For data such as this, various discrete distributions can be fit and you can test
hypotheses that the fit is reasonably close. However, rather than simply summarizing the
goodness-of-fit in a single number, we learn more from well-chosen graphical displays.

EXAMPLE 2.1 Deaths by horse kicks

One of the oldest and best known examples of a Poisson distribution is the data from von
Bortkiewicz (1898) about deaths of soldiers in the Prussian army from kicks by horses and
mules, as shown in Table 2.1.1 von Bortkiewicz tabulated the number of soldiers in each
of 14 army corps during the 20 years from 1875 to 1894 who died after being kicked by a
horse (Andrews and Herzberg, 1985, p. 18). Table 2.1 shows the data used by Fisher (1925)
for 10 of these army corps, summed over 20 years, giving 200 ‘corps-years’ observations.
In 109 corps-years, no deaths occurred; 65 corps-years had 1 death, etc. The dataset is
given more fully in Appendix B.14. The distribution is plotted in Figure 2.1.

Table 2.1 Deaths by horse kicks

Number of Number of
Deaths (k) Corps-Years (nk)

0 109
1 65
2 22
3 3
4 1

N = 200

Figure 2.1 von Bortkiewicz’s data
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1D. J. Andrews and A. M. Herzberg, Data: A Collection of Problems from Many Fields, p. 18, copyright c© 1985
by Springer-Verlag. Reprinted by permission of Springer-Verlag.
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EXAMPLE 2.2 Federalist Papers

In 1787–88, Alexander Hamilton, John Jay, and James Madison wrote a series of newspa-
per essays to persuade the voters of New York State to ratify the U.S. Constitution. The
essays were titled the Federalist Papers and all were signed with the pseudonym “Publius.”
Of the 77 papers published, the author(s) of 65 are known, but both Hamilton and Madison
later claimed sole authorship of the remaining 12 papers. Mosteller and Wallace (1984)
investigated the use of statistical methods to identify authors of disputed works based on
the frequency distributions of certain key function words. They concluded that Madison
had authored the 12 disputed papers.

Table 2.2 shows the distribution of the occurrence of one of these “marker” words. The
word may occurs in 262 blocks of text (each about 200 words long) in the Federalist Papers
and in other essays known to be written by James Madison. In 156 blocks, the word may
did not occur; it occurred once in 63 blocks, etc. The distribution is plotted in Figure 2.2.

Table 2.2 Number of Occurrences
of the word may in
Federalist Papers and
essays written by James
Madison2

Number of Blocks of
Occurrences (k) Text (nk)

0 156
1 63
2 29
3 8
4 4
5 1
6 1

N = 262

Figure 2.2 Mosteller & Wallace data
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Note that the distributions of these datasets in Figure 2.1 and Figure 2.2 are superficially
similar in shape: both have their modes at k = 0 and frequencies nk that steadily decline as
k increases. Nevertheless, it turns out, the Horse Kicks data is reasonably well-described
by a Poisson distribution, but the Madison data is not (Mosteller and Wallace concluded
that a negative binomial distribution provides a better fit).

Several other discrete distributions are illustrated by Examples 2.3, 2.4, and 2.5.

EXAMPLE 2.3 Women in queues

Jinkinson and Slater (1981) and Hoaglin and Tukey (1985) give the frequency distribution
of the number of females observed in queues of length 10 in a London Underground sta-
tion. If it is assumed that people line up independently, and that men and women are equally
likely to be found in a queue (not necessarily reasonable assumptions), then the number of
women out of 10 would have a (symmetric) binomial distribution with parameters N = 10

2Exploring Data Tables, Trends, and Shapes, David C. Hoaglin, Frederick Mosteller, and John W. Tukey, Copy-
right c© 1985 John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.
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and p = 1
2 . The frequency distribution shown in Table 2.3 appears systematically asym-

metric, as you can see more clearly in the histogram (Figure 2.3). However, there is no real
reason to expect that males and females are equally likely to be found in queues in the Lon-
don underground, so you may be interested in estimating p from the data and determining
if a binomial distribution fits.

Table 2.3 Number of women in
100 queues of length
103

Number of Number of
women (k) queues (nk)

0 1
1 3
2 4
3 23
4 25
5 19
6 18
7 5
8 1
9 1

10 0
N=100

Figure 2.3 Women in queues of length 10
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EXAMPLE 2.4 Weldon’s dice

Common examples of binomial distributions involve tossing coins or dice. Perhaps the
most industrious dice-tosser of all times, Weldon tallied the results of throwing 12 dice
26,306 times (a task that presumably required a good amount of leisure time). He re-
ported his results in a letter to Francis Galton dated February 2, 1894, in order “to judge
whether the differences between a series of group frequencies and a theoretical law . . .were
more than might be attributed to the chance fluctuations of random sampling” (Kemp and
Kemp, 1991). In his seminal paper, Pearson (1900) used Weldon’s data to illustrate the χ2

goodness-of-fit test, as did Kendall and Stuart (1963, Table 5.1, p. 121). This data is shown
here as Table 2.4, in terms of the number of occurrences of either a 5 or a 6 in the throw
of 12 dice. If the dice were all identical and perfectly fair (balanced), you would expect
that p = Pr{5 or 6} = 1

3 and the distribution of the numbers 5 or 6 would be binomial. A
peculiar feature of this data, as presented by Kendall and Stuart, (not uncommon in dis-
crete distributions) is that the frequencies of 10 to 12 successes are grouped together. This
grouping must be taken into account in fitting the distribution. The distribution is shown in
Figure 2.4.

3Exploring Data Tables, Trends, and Shapes, David C. Hoaglin, Frederick Mosteller, and John W. Tukey, copy-
right c© 1985 John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.
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Table 2.4 Frequencies of a 5
or a 6 in throws of
12 dice4

Number of Frequency
5s or 6s (k) (nk)

0 185
1 1149
2 3265
3 5475
4 6114
5 5194
6 3067
7 1331
8 403
9 105

10+ 18
N=26306

Figure 2.4 Weldon’s dice data
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EXAMPLE 2.5 Butterfly species in Malaya

In studies of the diversity of animal species, tokens (individuals) are collected and classified
by species. The distribution of the number of species (types), where k = 1, 2, . . . tokens
were collected, forms a kind of type-token distribution. An early example of this kind of
distribution was presented by Fisher, et al. (1943). Table 2.5 lists the number of tokens of
each of 501 species of butterfly collected in Malaya. There were 118 species for which
just a single instance was found, 74 species for which two tokens were found, down to 3
species for which 24 tokens were collected. However, Fisher et al. note that the distribution
was truncated at k = 24. Type-token distributions are often J-shaped and have a long upper
tail, as shown in Figure 2.5.

Table 2.5 Number of butterfly species for which k tokens were collected5

Number of Number of Number of Number of
Tokens (k) Species (nk) Tokens (k) Species (nk)

1 118 13 6
2 74 14 12
3 44 15 6
4 24 16 9
5 29 17 9
6 22 18 6
7 20 19 10
8 19 20 10
9 20 21 11

10 15 22 5
11 12 23 3
12 14 24 3

N = 501

4Reprinted with permission from The American Statistician. Copyright c© 1991 by the American Statistical As-
sociation. All rights reserved.
5Exploring Data Tables, Trends, and Shapes, David C. Hoaglin, Frederick Mosteller, and John W. Tukey, copy-
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Figure 2.5 Butterfly species in Malaya

2.2 Discrete Distributions

This section briefly reviews the characteristics of some of the important discrete distribu-
tions encountered in practice. For each distribution, properties and generating mechanisms
are described, and you see how the distribution parameters can be estimated and how to
plot the frequency distribution. For more detailed information about these and other dis-
crete distributions, Johnson, et al. (1992) present the most comprehensive treatment and
Zelterman (1999, Chapter 2) gives a concise summary.

2.2.1 The Binomial Distribution

The binomial distribution arises as the distribution of the number of events-of-interest that
occur in n independent trials when the probability of the event on any one trial is the
constant value p = Pr(event). For example, if 15% of the population has red hair, the
number of red-heads in randomly sampled groups of n = 10 might follow a binomial
distribution, Bin(10, 0.15). Over n independent trials, the number of events k may range
from 0 to n; if X is a random variable that has a binomial distribution, the probability that
X = k is given by

Bin(n, p) : Pr{X = k} ≡ p(k) =
(

n

k

)
pk(1 − p)n−k k = 0, 1, . . . , n , (2.1)

where
(n

k

) = n!/k!(n − k)! is the number of ways of choosing k out of n. The first three
(central) moments of the binomial distribution are (letting q = 1 − p),

Mean[X ] = np

Var[X ] = npq

Skew[X ] = npq(q − p) ,

so, when p = .5, the binomial distribution has its maximum variance and is symmetric.

right c© 1985 John Wiley & Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.
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If you have data in the form of a discrete (binomial) distribution (and n is known), then
the maximum likelihood estimator of p can be obtained as

p̂ = x̄

n
= (

∑
k k × nk)/

∑
k nk

n
,

with sampling variance pq/n.

Calculation and Visualization

In SAS, you can calculate binomial probabilities (Equation 2.1) by using the PROBBNML
function and generate random data from a binomial distribution with the RANBIN func-
tion or the CALL RANBIN routine. The PROBBNML function, probbnml(p,n,m), calculates
the cumulative probabilities,

∑k=m
k=0 p(k). Therefore, to find individual probability den-

sities, you must subtract successive values for k and k − 1. In SAS Release 6.12 and
more-current versions, the general PDF function directly calculates probability densities
for the binomial and most other distributions. For the binomial distribution, it is called as
pdf(’binomial’,m,p,n).

Discrete distributions are easily visualized by plotting the probability density (or ex-
pected frequencies in a total sample of a specified size) against the random variable (k), for
specific values of the distribution parameters.

For example, assume that 15% of the population has red hair and 35% has brown hair.
What are the probabilities that in groups of n = 10 people, k = 0, 1, . . . , 10 have red
hair or brown hair, respectively? You can calculate these probabilities (and the expected
frequencies in 1000 repetitions) in a DATA step as shown in the program that follows this
paragraph. The results are shown in Output 2.1. I use macro variables for n and p (in the
form of a DO list) so that the same program can be used for any binomial distributions. A
complete distribution is generated for each combination of n and p.

%let N=10;
%let p=.15, .35;
title "Binomial distributions, N=&N, p=&p";
data binomial;

reps = 1000;
drop reps;
N=&N;
do p=&p;

do k=0 to N;
if k=0

then prob = probbnml(p, N, 0);
else prob = probbnml(p, N, k) - probbnml(p, N, k-1);

freq = reps * prob;
output;
end;

end;
label freq=’Frequency’

k = ’k’;
proc print;

id p;
by p;

run;

proc means data=binomial mean var max vardef=weight;
var k;
weight prob;
by p;
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Output 2.1 Binomial probabilities

Binomial distributions, N=10, p=.15, .35

P N K PROB FREQ

0.15 10 0 0.19687 196.874
10 1 0.34743 347.425
10 2 0.27590 275.897
10 3 0.12983 129.834
10 4 0.04010 40.096
10 5 0.00849 8.491
10 6 0.00125 1.249
10 7 0.00013 0.126
10 8 0.00001 0.008
10 9 0.00000 0.000
10 10 0.00000 0.000

0.35 10 0 0.01346 13.463
10 1 0.07249 72.492
10 2 0.17565 175.653
10 3 0.25222 252.220
10 4 0.23767 237.668
10 5 0.15357 153.570
10 6 0.06891 68.910
10 7 0.02120 21.203
10 8 0.00428 4.281
10 9 0.00051 0.512
10 10 0.00003 0.028

Output 2.2 Means and variances for binomial probabilities

Binomial distributions, N=10, p=.15, .35

Analysis Variable : K k

------------------------------- P=0.15 ---------------------

Mean Maximum Variance
----------------------------------------

1.5000000 10.0000000 1.2750000
----------------------------------------

------------------------------- P=0.35 ---------------------

Mean Maximum Variance
----------------------------------------

3.5000000 10.0000000 2.2750000
----------------------------------------
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Notice that in the PROC MEANS step the option VARDEF=WEIGHT is used to correctly
calculate the variance from a grouped frequency distribution, producing the output in Out-
put 2.2. These distributions are shown side-by-side in Figure 2.6. They are plotted by using
PROC GCHART with p as a group variable.

proc gchart data=binomial;
vbar k /sumvar=freq group=p midpoints=0 to 10

coutline=black frame raxis=axis1;
pattern1 v=solid c=grayc0;
axis1 order=(0 to 350 by 50);

run; quit;

Figure 2.6 Binomial distributions for n = 10 trials

Alternatively, you may prefer to plot such distributions as frequency polygons or as
needle graphs by using PROC GPLOT. For example, Figure 2.7 shows frequency polygons
for the binomial distributions Bin(10, p) with p = 0.15(0.20)0.75, obtained by running
the binomial DATA step with

%let p=.15 to .75 by .20;

The PROC GPLOT step (excluding statements for symbols, axes, and the legend) is

proc gplot data=binomial;
plot freq * k = p / frame vminor=1 hminor=0 ... ;
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Figure 2.7 Binomial distributions for n = 10 trials, as frequency polygons
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2.2.2 The Poisson Distribution

The Poisson distribution gives the probability of an event occurring k = 0, 1, 2, . . . times
over a large number of “trials”, when the probability, p, that the event occurs on any one
trial is very small and constant; hence, the Poisson distribution is usually applied to the
study of rare events, such as highway accidents at a specific location, deaths from horse
kicks, or defects in a well-controlled manufacturing process.

For the Poisson distribution, the probability function is

Pois(λ) : Pr{X = k} ≡ p(k) = e−λ λk

k! k = 0, 1, . . . (2.2)

where the parameter λ turns out to be the mean of the distribution. The first three (central)
moments of the Poisson distribution are, in fact, all equal to λ.

Mean[X ] = λ

Var[X ] = λ

Skew[X ] = λ

So, the mean and variance of the Poisson distribution are always the same. This property
is sometimes used to identify a distribution as Poisson. For the binomial distribution, the
mean (N p) is always greater than the variance (N pq); for other distributions (negative
binomial and geometric), the mean is less than the variance.

The maximum likelihood estimator of the parameter λ in Equation 2.2 is the mean of
the distribution

λ̂ = x̄ =
∑

k k nk∑
k nk

.
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Therefore, the expected frequencies can be estimated by substituting the sample mean
into Equation 2.2. Moreover, Poisson variables have a nice reproductive property: if
X1, X2, . . . Xm are independent Poisson variables with the same parameter λ, then their
sum,

∑
Xi is a Poisson variate with parameter mλ; if the Poisson parameters differ, the

sum is still Poisson with parameter
∑
λi .

EXAMPLE 2.6 UK soccer scores

Table 2.6 shows the distributions of goals scored by the 20 teams in the 1995/96 season of
the Premier League of the UK Football Association as presented by Lee (1997).6 Over a
season, each team plays each other team exactly one time, so the total number of games is
20 × 19 = 380. Because there may be an advantage for the home team, the goals scored
have been classified in the table as Home-Team goals and Away-Team goals.

Table 2.6 Goals scored by Home and Away teams in 380 games in the Premier Football League,
1995/96 season

Home- Away-Team Goals
Team 0 1 2 3 4+ Total
Goals

0 27 29 10 8 2 76
1 59 53 14 12 4 142
2 28 32 14 12 4 90
3 19 14 7 4 1 45

4+ 7 8 10 2 0 27

Total 140 136 55 38 11 380

If we assume that in any small interval of time there is a small, constant probability that
the Home team or the Away team may score a goal, the distributions of the goals scored by
Home teams (the row totals in Table 2.6) may be modeled as Pois(λH ), and the distribution
of the goals scored by Away teams (the column totals) may be modeled as Pois(λA).

If the number of goals scored by the Home and Away teams are independent7, you
would expect that the total number of goals scored in any game would be distributed as
Pois(λH + λA). These totals are shown in Table 2.7. As a preliminary check of the distri-
butions for the Home-Team and Away-Team goals, you can determine if the means and
variances are reasonably close to each other. If so, then the TOTAL (goals) variable should
also have a mean and variance equal to the sum of those statistics for the Home-Team and
Away-Team goals.

Table 2.7 Total goals scored in 380 games in the Premier Football League, 1995/96 season

Total goals 0 1 2 3 4 5 6 7

Number of games 27 88 91 73 49 31 18 3

6Lee (1997, p. 16) apparently has the Home and Away labels reversed in his table. The row and column labels in
Table 2.6 show the means 1.48 for Home teams and 1.06 for Away teams. The raw data was verified from data
listed at http://users.aol.com/mabstabs/soccer.html
7This question is examined visually in Chapter 4 (Example 4.2) and Chapter 5 (Example 5.10), where we find
that the answer is “basically, yes.”
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The following statements read the data from Table 2.6, calculate the TOTAL goals, and
find the distribution of TOTAL goals shown in Table 2.7. The PROC MEANS step produces
the mean and variance of each variable, as shown in Output 2.3.

title ’UK Soccer scores 95/96 season’;
data soccer;

input away @;
do home = 0 to 4;

total = home+away;
input freq @;
output;
end;

datalines;
0 27 29 10 8 2
1 59 53 14 12 4
2 28 32 14 12 4
3 19 14 7 4 1
4 7 8 10 2 0
;
proc freq;

weight freq;
tables total;

run;

proc means mean var vardef=weight;
var away home total;
weight freq;

Output 2.3 UK Soccer data, assessing Poissonness

UK Soccer scores 95/96 season 2

Variable Mean Variance
------------------------------------
AWAY 1.0631579 1.1696953
HOME 1.4868421 1.3129848
TOTAL 2.5500000 2.6106579
------------------------------------

The means are all approximately equal to the corresponding variances. More to the
point, the variance of the TOTAL score is approximately equal to the sum of the individual
variances. Also, note that there does appear to be an advantage for the Home team of nearly
half a goal.

Calculation and Visualization

Poisson probabilities may be calculated by using the POISSON function, which is called as
poisson(lambda, m) for a distribution that has the mean lambda. This also returns cu-
mulative probabilities,

∑k=m
k=0 p(k), which must be differenced to calculate the probability

of exactly m events. The PDF function, called as pdf(’poisson’, m, lambda), calcu-
lates these densities directly. Random data from a Poisson distribution may be obtained by
using the CALL RANPOI routine.
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The following DATA step illustrates the use of the PDF function to calculate Poisson
frequencies for the distributions with means (λ) 2 and 5, for k = 0, 1, . . . , 12.

%let N=12;
%let lambda = 2, 5;
title "Poisson distributions, lambda=&lambda, k=0..&N";
data poisson;

reps = 1000;
drop reps;
N=&N;
do lambda=&lambda;

do k=0 to N;
prob = pdf(’poisson’, k, lambda);
freq = reps * prob;
output;
end;

end;
label freq=’Frequency’

lambda=’Lambda’
k = ’k’;

These distributions are shown in Figure 2.8. They are plotted by using PROC GCHART as
shown earlier for the binomial distribution.

Figure 2.8 Poisson distributions with λ = 2 and 5. The vertical lines show the mean of each
distribution; the horizontal lines show the standard deviation.
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2.2.3 The Negative Binomial Distribution

The negative binomial distribution is a type of waiting-time distribution. One form of the
negative binomial distribution (also called the Pascal distribution) arises when a series of
Bernoulli trials is observed with the constant probability p of some event, and you ask
how many trials it takes to observe n events. The probability function with parameters n
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(an integer, 0 < n < ∞) and p (0 < p < 1) gives the probability that k non-events
(failures) are observed before the nth event (success), and can be written

NBin(n, p) : Pr{X = k} ≡ p(k) =
(

n + k − 1

k

)
pn(1 − p)k k = 0, 1, . . . ,∞ (2.3)

The moments of the negative binomial distribution are

Mean[X ] = nq/p

Var[X ] = nq/p2

Skew[X ] = 2 − p√
nq

,

where q = 1 − p.
A more general form of the negative binomial distribution allows n to take non-integer

values and to be an unknown parameter. In this case, the combinatorial coefficient,
(n+k−1

k

)
in Equation 2.3 is calculated by using the gamma function, 	(•), a generalization of the
factorial for non-integer values, defined so that 	(x + 1) = x ! when x is an integer. Then
the probability function in Equation 2.3 becomes

Pr{X = k} ≡ p(k) = 	(n + k)

	(n)	(k + 1)
pn(1 − p)k k = 0, 1, . . . ,∞ . (2.4)

In this form, the negative binomial distribution is frequently used as an alternative to
the Poisson distribution when the assumptions of the Poisson (constant probability and
independence) are not satisfied, or when the variance of the distribution is greater than
the mean (termed overdispersion). Greenwood and Yule (1920) developed the negative
binomial distribution as a model for accident proneness or susceptibility of individuals to
repeated attacks of disease. They assumed that, for any individual, the number of accidents
or disease occurrences has a Poisson distribution with parameter λi . If individuals vary
in proneness, so that the λi have a gamma distribution, the resulting distribution is the
negative binomial.

When both n and p are treated as unknown parameters, maximum likelihood estimators
are available but involve complex non-linear equations. The simpler method of moments
estimators are

p̂ = x̄/s2

n̂ = x̄2/(s2 − x̄) ,

where x̄ and s2 are the sample mean and variance of the observed distribution. Note that
if s2 < x̄ , the estimate of n will be negative and that of p will be greater than 1, so the
negative binomial distribution should be considered inappropriate.

Calculation and Visualization

The SAS PROBNEGB function calculates negative binomial cumulative probabilities for in-
teger values of the number-of-successes parameter, n. To calculate probabilities for in-
dividual values of k, it is necessary to compute the difference between successive values
k−1 and k, as with the binomial and Poisson distribution functions; or use the PDF function,
called as pdf(’negbinomial’, k, p, n). For non-integer values of n, it is necessary to
calculate the probabilities directly by using Equation 2.4. Random values from a negative
binomial distribution may be obtained by calculating the probabilities, p(k), k = 0, 1, . . .
and using these with the RANTBL function.

Figure 2.9 shows negative binomial distributions for the number of trials to observe
n = 2 or n = 4 successes with p = .2, .3, .4, and with values of k from 0 to 20. The
vertical line in each panel marks the location of the mean; the horizontal line shows the
range of one standard deviation about the mean.
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Figure 2.9 Negative binomial distributions for the number of trials to observe n = 2 or n = 4 successes
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2.2.4 The Geometric Distribution

The special case of the negative binomial distribution when n = 1 is a geometric distribu-
tion. A series of independent trials are observed and the number of non-events (failures)
preceding the first successful event are counted. The probability that there will be k failures
before the first success is given by

Geom(p) : Pr{X = k} ≡ p(k) = p(1 − p)k k = 0, 1, . . . . (2.5)

For this distribution the central moments are

Mean[X ] = 1/p

Var[X ] = (1 − p)/p2

Skew[X ] = (2 − p)/
√

1 − p
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2.2.5 The Logarithmic Series Distribution

The logarithmic series distribution is a long-tailed distribution introduced by Fisher, et al.
(1943) in connection with data on the abundance of tokens classified by species, of the type
shown for the distribution of butterfly species in Table 2.5.

The probability distribution function with parameter θ is given by

LogSer(θ) : Pr{X = k} ≡ p(k) = θ k

−(k log(1 − θ))
= αθ k/k k = 1, 2, . . . ,∞ ,

(2.6)

where α = −1/ log(1 − θ) and 0 < θ < 1. Fisher derived the logarithmic series distri-
bution by assuming that, for a given species, the number of tokens trapped has a Poisson
distribution with parameter λ = γ t , where γ is a parameter of the species (susceptibility
to entrapment) and t is a parameter of the trap. If different species vary so that the param-
eter γ has a gamma distribution, then the number of representatives of each species that
is trapped will have a negative binomial distribution. However, the observed distribution is
necessarily truncated on the left because the number of species never caught (where k = 0)
cannot be observed. The logarithmic series distribution thus occurs as a limiting form of
the zero-truncated negative binomial.

From Equation 2.6,

p(k + 1)

p(k)
= kθ

k + 1
< 1 ,

for all k, because θ < 1. Therefore, the maximum probability occurs at k = 1 and p(k)
decreases steadily as k increases.

The mean and variance of the distribution are

Mean[X ] = αθ/(1 − θ) ≡ µ (2.7)

Var[X ] = αθ(1 − αθ)/(1 − θ)2 = µ(
1

1 − θ
− µ)

In fitting this distribution to data, both the method of moments and maximum likelihood
involve equating the sample mean to the population mean in Equation 2.7, a non-linear
equation that must be solved numerically for θ . When x̄ < 25, an approximation given by
Birch (1963),

θ̂ ≈ 1 − 1

1 + [( 5
3 − 1

16 log x̄)(x̄ − 1)+ 2] log x̄
.

Another useful unbiased approximation is based on the proportion of observations at
k = 1.

θ̂ ≈ 1 − n1/N

x̄

2.2.6 Power Series Family

I mentioned earlier that the Poisson distribution was unique among all discrete (one param-
eter) distributions, in that it is the only one whose mean and variance are equal (Kosambi,
1949). The relation between mean and variance of discrete distributions also provides the
basis for integrating them into a general family. All of the discrete distributions described
in this section are, in fact, special cases of a family of discrete distributions called the
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Power Series distributions by Noack (1950) and defined by

p(k) = a(k)θ k/ f (θ) k = 0, 1, . . . ,

with parameter θ > 0, where a(k) is a coefficient function that depends only on k, and
f (θ) = ∑

k a(k)θ k is called the series function. The definitions of these functions are
shown in Table 2.8.

Table 2.8 The Power Series family of discrete distributions

Discrete Probability Series Series Series
Distributions function, p(k) parameter, θ function, f (θ) coefficient, a(k)

Poisson e−λλk/k! θ = λ eθ 1/k!
Binomial

(n
k

)
pk(1 − p)n−k θ = p/(1 − p) (1 + θ)n

(n
k

)
Negative binomial

(n+k−1
k

)
pn(1 − p)k θ = (1 − p) (1 − θ)−k

(n+k−1
k

)
Geometric p(1 − p)k θ = (1 − p) (1 − θ)−k 1

Logarithmic series θ k/[−k log(1 − θ)] θ = θ − log(1 − θ) 1/k

These relations among the discrete distributions provide the basis for graphical tech-
niques for diagnosing the form of discrete data described later in this chapter (see Sec-
tion 2.5.5).

2.3 Fitting Discrete Distributions

Often, interest is focused on how closely such data follows a specific distribution, such
as the Poisson, binomial, or geometric distribution. Usually, this is examined by using a
classical (Pearson) goodness-of-fit chi-square test,

χ2 =
K∑

k=1

(nk − N p̂k)
2

N p̂k
∼ χ2

(K−s−1) , (2.8)

where there are K frequency classes, s parameters have been estimated from the data,
and p̂k is the estimated probability of each basic count, under the null hypothesis that the
data follows the chosen distribution. An alternative test statistic is the likelihood-ratio G2

statistic

G2 =
K∑

k=1

nk log(nk/N p̂k) , (2.9)

when the p̂k are estimated by maximum likelihood, which also has an asymptotic χ2
(K−s−1)

distribution. Asymptotic means that these are large sample tests. A common rule-of-thumb
is that all expected frequencies should exceed 1 and that fewer than 20% should be less
than 5.

For the Horse-Kicks data, the mean is 122/200 = .610. The calculation of Poisson prob-
abilities (PHAT), expected frequencies, and contributions to χ2 (Equation 2.8) are shown
next.
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k nk p phat exp chisq

0 109 0.545 0.54335 108.670 0.00100
1 65 0.325 0.33144 66.289 0.02506
2 22 0.110 0.10109 20.218 0.15705
3 3 0.015 0.02056 4.111 0.30025
4 1 0.005 0.00313 0.627 0.22201

=== ======= =======
200 199.915 0.70537 ∼ χ2 (3)

In this case, the χ2 shows an exceptionally good (perhaps unreasonably good?) fit. In the
word-frequency example (Example 2.2), the fit of the Poisson is not close at all. However,
even a close fit may show something interesting, if we know how to look at it; conversely,
it is useful to know why or where the data differs from a chosen model.

2.3.1 The GOODFIT Macro

The GOODFIT macro (Appendix A.9) carries out Pearson χ2 and likelihood-ratio goodness-
of-fit tests for the uniform, binomial, Poisson, negative binomial, logarithmic series, and
geometric distributions, as well as any discrete (multinomial) distribution whose probabil-
ities you can specify. The data may consist of individual observations on a single variable
or of a grouped frequency distribution in the form shown in Table 2.1. The parameter(s) of
the distribution can be specified as constants or can be estimated from the data.

The macro parameters are described in Appendix A.9. We illustrate its use in Ex-
ample 2.7 and Example 2.8.

EXAMPLE 2.7 Weldon’s dice

The data from Table 2.4 can be fit to a binomial distribution as shown in the program that
follows. Note that, because the frequencies have been grouped for 10–12 successes, it is
necessary to (a) input frequencies for all values of k = 0, . . . , 12 by using missing values
for the frequencies beyond k = 10; (b) specify sumat=10 in the macro call.

title "Weldon’s dice data";
data dice;

do k=0 to 12;
input freq @@;
output;
end;

label k=’Number of 5s and 6s’
freq=’Frequency’;

datalines;
185 1149 3265 5475 6114 5194 3067 1331 403 105 18 . .
;
proc print;

id k;
sum freq;

run;

title2 ’Fit Binomial(12,1/3)’;
%goodfit(data=dice, var=k, freq=freq, dist=binomial, sumat=10,

parm=.333333);

title2 ’Fit Binomial(12,p)’;
%goodfit(data=dice, var=k, freq=freq, dist=binomial, sumat=10);
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The first call to the GOODFIT macro fits the binomial distribution with parameter p = 1
3

(assuming the dice to be fair) and produces the results shown in Output 2.4 and Output 2.5.
The χ2 statistics indicate that the fit is poor, and the pattern of residuals suggests that
p > 1

3 (the observed frequencies for larger values of k are all greater than the expected
frequencies).

Output 2.4 Fitting Binomial(12, 1
3 ) to Weldon’s dice data: Observed and fitted frequencies (rounded)

Weldon’s dice data
Fit Binomial(12,1/3)

K FREQ PHAT EXP CHI DEV

0 185 0.00771 202.75 -1.24662 -5.8224
1 1149 0.04624 1216.50 -1.93536 -11.4537
2 3265 0.12717 3345.38 -1.38965 -12.6018
3 5475 0.21195 5575.62 -1.34751 -14.1213
4 6114 0.23845 6272.56 -2.00205 -17.6941
5 5194 0.19076 5018.04 2.48395 18.9213
6 3067 0.11127 2927.19 2.58419 16.9175
7 1331 0.04769 1254.51 2.15967 12.5522
8 403 0.01490 392.03 0.55391 4.7158
9 105 0.00331 87.12 1.91582 6.2614

10 18 0.00054 14.31 0.97689 2.8759
===== ======= ========
26306 1.00000 26306.00

Output 2.5 Fitting Binomial(12, 1
3 ) to Weldon’s dice data: Goodness-of-fit tests

Weldon’s dice data
Fit Binomial(12,1/3)

Goodness-of-fit test for data set DICE

Analysis variable: K Number of 5s and 6s
Distribution: BINOMIAL
Specified Parameters: p = .333333

Pearson chi-square = 35.498479274
Prob > chi-square = 0.0001026185

Likelihood ratio G2 = 35.10741191
Prob > chi-square = 0.000119703

Degrees of freedom = 10
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The second call to the GOODFIT macro allows the parameter p to be estimated from
the data, giving p̂ = .3377, and produces the results shown in Output 2.6 and Output 2.7.
The fit is much better — in fact, it is quite satisfactory. So, Weldon’s dice differed minutely
from being absolutely fair, but with over 26,000 tosses, it is easy to detect the difference.

Output 2.6 Fitting Binomial(12,p) to Weldon’s dice data: Observed and fitted frequencies (rounded)

Weldon’s dice data
Fit Binomial(12,p)

K FREQ PHAT EXP CHI DEV

0 185 0.00712 187.42 -0.17697 -2.1941
1 1149 0.04359 1146.71 0.06770 2.1423
2 3265 0.12224 3215.62 0.87084 9.9759
3 5475 0.20775 5465.03 0.13493 4.4685
4 6114 0.23832 6269.37 -1.96222 -17.5172
5 5194 0.19442 5114.38 1.11338 12.6680
6 3067 0.11565 3042.21 0.44953 7.0562
7 1331 0.05054 1329.51 0.04093 1.7282
8 403 0.01611 423.66 -1.00385 -6.3482
9 105 0.00365 96.00 0.91820 4.3372
10 18 0.00061 16.10 0.47259 2.0020

===== ======= ========
26306 1.00000 26306.00

Output 2.7 Fitting Binomial(12,p) to Weldon’s dice data: Goodness-of-fit tests

Weldon’s dice data
Fit Binomial(12,p)

Goodness-of-fit test for data set DICE

Analysis variable: K Number of 5s and 6s
Distribution: BINOMIAL
Estimated Parameters: p = 0.3377

Pearson chi-square = 8.1803084987
Prob > chi-square = 0.5160827001

Likelihood ratio G2 = 8.1851945733
Prob > chi-square = 0.5155963302

Degrees of freedom = 9
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EXAMPLE 2.8 Federalist Papers

The data on the occurrences of the word may in Madison’s Federalist Papers (Table 2.2)
is fit to both the Poisson and Negative binomial distributions, as shown in Output 2.8 and
Output 2.9. In each case, the parameters are estimated from the data. The results for the
Poisson distribution appear in Output 2.8 and Output 2.9. The results for the Negative
binomial distribution appear in Output 2.10 and Output 2.11.

%include catdata(madison);
%goodfit(data=madison, var=count, freq=blocks, dist=poisson);

%goodfit(data=madison, var=count, freq=blocks, dist=negbin);

Output 2.8 Fitting the Poisson(λ) to the Federalist Papers data: Observed and fitted frequencies
(rounded)

Instances of ’may’ in Federalist papers

COUNT BLOCKS PHAT EXP CHI DEV

0 156 0.51867 135.891 1.72499 6.56171
1 63 0.34050 89.211 -2.77509 -6.62056
2 29 0.11177 29.283 -0.05231 -0.75056
3 8 0.02446 6.408 0.62890 1.88423
4 4 0.00401 1.052 2.87493 3.26912
5 1 0.00053 0.138 2.31948 1.98992
6 1 0.00006 0.015 8.01267 2.89568

====== ======= =======
262 0.99999 261.998

Output 2.9 Fitting the Poisson(λ) to the Federalist Papers data: Goodness-of-fit tests

Instances of ’may’ in Federalist papers

Goodness-of-fit test for data set MADISON

Analysis variable: COUNT Number of Occurrences
Distribution: POISSON
Estimated Parameters: lambda = 0.6565

Pearson chi-square = 88.92304707
Prob > chi-square = 0

Likelihood ratio G2 = 25.243121314
Prob > chi-square = 0.0001250511

Degrees of freedom = 5
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Output 2.10 Fitting the Negative binomial(n, p) to the Federalist Papers data: Observed and fitted
frequencies

COUNT BLOCKS PHAT EXP CHI DEV

0 156 0.59047 154.702 0.10434 1.61446
1 63 0.25343 66.398 -0.41706 -2.57290
2 29 0.09826 25.743 0.64188 2.62853
3 8 0.03674 9.625 -0.52374 -1.72003
4 4 0.01348 3.532 0.24905 0.99777
5 1 0.00489 1.281 -0.24862 -0.70425
6 1 0.00176 0.461 0.79297 1.24381

====== ======= =======
262 0.99902 261.743

Output 2.11 Fitting the Negative binomial(n, p) to the Federalist Papers data: Goodness-of-fit tests

Goodness-of-fit test for data set MADISON

Analysis variable: COUNT Number of Occurrences
Distribution: NEGBIN
Estimated Parameters: n, p = 1.2397, 0.6538

Pearson chi-square = 1.6237622915
Prob > chi-square = 0.8045151082

Likelihood ratio G2 = 1.9839511084
Prob > chi-square = 0.7387108792

Degrees of freedom = 4

2.3.2 Plots of Observed and Fitted Frequencies

Plots of the observed and fitted frequencies can help to show both the shape of the theo-
retical distribution we have fitted and the pattern of any deviations between our data and
theory.

Figure 2.10(a) shows the fit of the Poisson distribution to the Federalist Papers data,
using one common form of plot that is sometimes used for this purpose. In this plot, ob-
served frequencies are shown by bars, and fitted frequencies are shown by points that are
connected by a smooth (spline) curve.

Such a plot, however, is dominated by the largest frequencies, making it hard to as-
sess the deviations among the smaller frequencies. To make the smaller frequencies more
visible, Tukey (1977) suggests plotting the frequencies on a square-root scale, which he
calls a rootogram, as shown in Figure 2.10(b). An additional improvement is to move
the rootogram bars so their tops are at the expected frequencies, which gives a hang-
ing rootogram, Figure 2.10(c). This has the advantage of making it easier to judge the
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pattern of departures against the horizontal reference line at 0, instead of against the curve.
A final variation is to emphasize the differences between the observed and fitted frequen-
cies by drawing the bars to show the gaps between the 0 line and the (observed-expected)
difference, as shown in Figure 2.10(d).

These plots are produced by the ROOTGRAM macro using the (default) OUT=FIT dataset
from the GOODFIT macro, as shown in the following statements:

title "Instances of ’may’ in Federalist papers" ;
%include catdata(madison);
%goodfit(data=madison, var=count, freq=blocks, dist=poisson, out=fit);

title;
%rootgram(data=fit, var=count, obs=blocks, btype=0, func=none); /* a */
%rootgram(data=fit, var=count, obs=blocks, btype=0); /* b */
%rootgram(data=fit, var=count, obs=blocks); /* c */
%rootgram(data=fit, var=count, obs=blocks, btype=dev); /* d */

Figure 2.10 Plots of observed and fitted frequencies for the Federalist Papers data, Poisson model.
Each panel shows the fitted frequencies as a smooth curve and observed frequencies
as a bar. Panel (a), raw frequencies; panels (b), (c), and (d), on a square-root scale to
emphasize smaller frequencies. Panel (c) is a hanging rootogram in which observed,
fitted differences can be judged relative to the horizontal line. Panel (d) shows only the
difference between the observed and fitted frequencies.
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(c) Hanging rootogram

S
q

r
t(

fr
e

q
u

e
n

c
y
)

-2

0

2

4

6

8

10

12

Number of Occurrences
0 1 2 3 4 5 6

(d) Deviation rootogram



40 Visualizing Categorical Data

2.3.3 The ROOTGRAM Macro

The ROOTGRAM macro (Appendix A.26) displays observed and fitted frequencies for a
dataset in any of the forms shown in Figure 2.10. The input dataset is usually of the form
of the output OUT= dataset produced by the GOODFIT macro.

EXAMPLE 2.9 Federalist Papers

We have seen that the negative binomial produces a better fit to the Federalist Papers data.
The hanging rootogram (Figure 2.11), produced by the following statements, is character-
istic of a decent fit.

%include catdata(madison);
%goodfit(data=madison, var=count, freq=blocks, dist=negbin, out=fit2);
%rootgram(data=fit2, var=count, obs=blocks, btype=dev);

Figure 2.11 Hanging rootogram for the data in the Federalist Papers, Negative binomial model
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EXAMPLE 2.10 Families in Saxony

Geissler, cited in Sokal and Rholf (1969) and Lindsey (1995), tabulated a huge dataset on
sex distributions in families in Saxony in the nineteenth century. Included were N = 6115
families with n = 12 children, which might reasonably be expected to follow a Bin(12,p)
distribution. The data is input and fit as shown in the following statements:



Chapter 2 Fitting and Graphing Discrete Distributions 41

title ’Number of males in 6115 families in Saxony’;
data saxony;

do males = 0 to 12;
input families @;
output;
end;

label males=’Number of males’
families=’Number of families’;

datalines;
3 24 104 286 670 1033 1343 1112 829 478 181 45 7
;

%goodfit(data=saxony, var=males, freq=families, dist=binomial);

title;
%rootgram(data=fit, var=males, obs=families, exp=exp);

The fitted distribution, using the estimated proportion of males, p = .5192 is shown
in Output 2.12; the goodness-of-fit tests shown in Output 2.13 indicate that the fit of the
Binomial is not good. The hanging rootogram in Figure 2.12 shows why — there is a sys-
tematic pattern of deviations from the Binomial, which produces fitted frequencies too high
in the middle and too small in the tails. The lack of fit might be ascribed to violations of
the assumptions — a constant probability of a male birth over a long time span is a good
possibility.8

Output 2.12 Fit of the Binomial(12, p) to the Families in Saxony data: Observed and fitted frequencies
(rounded)

Number of males in 6115 families in Saxony 1

MALES FAMILIES PHAT EXP CHI DEV

0 3 0.00015 0.93 2.14028 2.6474
1 24 0.00198 12.09 3.42580 5.7373
2 104 0.01174 71.80 3.79963 8.7782
3 286 0.04227 258.48 1.71205 7.6080
4 670 0.10271 628.06 1.67371 9.3076
5 1033 0.17747 1085.21 -1.58490 -10.0930
6 1343 0.22359 1367.28 -0.65661 -6.9372
7 1112 0.20697 1265.63 -4.31841 -16.9649
8 829 0.13970 854.25 -0.86380 -7.0526
9 478 0.06705 410.01 3.35761 12.1108
10 181 0.02172 132.84 4.17896 10.5829
11 45 0.00427 26.08 3.70417 7.0061
12 7 0.00038 2.35 3.03687 3.9112

======== ======= =======
6115 1.00000 6115.00

8Lindsey (1995, p. 131) fits a double binomial model with one extra parameter and achieves a much better fit, but
this too shows significant lack of fit—not surprising considering the enormous sample size.
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Output 2.13 Fit of the Binomial(12, p) to the Families in Saxony data: Goodness-of-fit tests

Number of males in 6115 families in Saxony 2

Goodness-of-fit test for data set SAXONY

Analysis variable: MALES Number of males
Distribution: BINOMIAL
Estimated Parameters: p = 0.5192

Pearson chi-square = 110.50495839
Prob > chi-square = 0

Likelihood ratio G2 = 97.006501626
Prob > chi-square = 6.661338E-16

Degrees of freedom = 11

Figure 2.12 Hanging rootogram for Saxony families, Binomial(12, p) model. The systematic pattern
of deviations shows that the Binomial model is not completely adequate for this data.
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2.3.4 Maximum Likelihood Estimation

Section 2.2 describes the common discrete distributions, their probability functions, and
sample estimates. Here, we consider the general case. Suppose we have a multinomial
sample of K groups, with frequencies of nk in group k, and

∑
k nk = N . Suppose, further,
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that we have a probability model that specifies the probability, πk(θ), k = 1, 2, . . . , K , of
an observation in group k, where θ is a vector of s ≥ 0 parameters of the distribution and∑

k πk(θ) = 1.
The likelihood L is the probability of the data as a function of the parameters,

L(θ) = n!
K∏

k=1

πk(θ)
nk

nk !

We can determine the value(s) of θ that maximize L by maximizing the log-likelihood,

�(θ) ≡ log L(θ) = log n! +
K∑

k=1

nk logπk(θ)−
K∑

k=1

log nk ! (2.10)

The maximum likelihood estimate (MLE) of θ will be the value θ̂, which is the solution of
the estimating equations

∂ log L(θ)
∂θi

= 0 i = 1, 2, . . . s

For example, for the geometric distribution with probability function (Equation 2.5), the
log-likelihood is

�(θ) = n log θ +
K∑

k=1

(nk − 1) log(1 − θ)

which gives the estimating equation

∂�(θ)

∂θ
= (

∑
k nk)− n

1 − θ
+ n

θ
= 0

whose solution is θ̂ = 1/k̄. The fitted probabilities under the geometric model are then
πk(θ̂ ) = (1 − θ̂ )k−1θ̂ .

Having found the maximum likelihood estimate of the parameters, the likelihood ra-
tio goodness-of-fit G2 statistic compares the maximized value of the log-likelihood to the
maximized log-likelihood of an unrestricted model where the probabilities are only con-
strained so that

∑
k πk = 1. In this case, there are s = 0 parameters, and we symbolize the

log-likelihood by �(θ0) ≡ �(π). For a multinomial sample, this is

�(θ0) = log n! +
K∑

k=1

nk logπk −
K∑

k=1

log nk ! (2.11)

Maximizing Equation 2.11 subject to
∑

k πk = 1 gives π̂k = nk/N . The likelihood ratio
statistic is

G2 = −2 log

[L(θ0)

L(θ)

]
= 2[�(θ)− �(θ0)] = 2

K∑
k=1

nk log

(
nk

Nπk(θ̂ )

)
(2.12)

which follows an asymptotic chi-square distribution with K − 1 − s df.

2.3.5 Fitting Discrete Distributions as Loglinear Models

In Section 2.2.6, I describe how the common discrete distributions are all members of
the general Power Series family. Another general family of distributions, the exponential
family, includes most of the common continuous distributions: the normal, gamma, expo-
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nential, and others, and is the basis of the class of generalized linear models fit by PROC
GENMOD.

Lindsey and Mersch (1992) and Lindsey (1995, 6.1) have shown how various discrete
(and continuous) distributions can be fit to frequency data by using Poisson log-linear mod-
els available in PROC GENMOD. The uniform, geometric, binomial, and Poisson distributions
can all be fit easily in this way. A clear advantage is that this method gives estimated stan-
dard errors for the distribution parameters, as well as estimated confidence intervals for
fitted probabilities.

The essential idea is that, for frequency data, any distribution in the exponential family
can be represented by a linear model for the logarithm of the cell frequency, with a Poisson
distribution for errors, which is known as a “Poisson log-linear regression model”. These
models have the form

log(Nπk) = offset + β0 + βTS(k) ,

where S(k) is a vector of 0 or more sufficient statistics for the canonical parameters of the
exponential family distribution, and the offset term is a value that does not depend on the
parameters. Table 2.9 shows the sufficient statistics and offsets for several discrete distri-
butions. See Lindsey and Mersch (1992) for more details and definitions for the double-
binomial distribution.

Table 2.9 Poisson log-linear representations for some discrete distributions

Distribution Sufficient statistics Offset

Geometric k
Poisson k − log(k!)
Binomial k log

(n
k

)
Double binomial k,−k log(k/n − k) log

(n
k

)

EXAMPLE 2.11 Families in Saxony

The binomial distribution and the double binomial can both be fit to frequency data as a
Poisson regression by using log

(n
k

)
as an offset. Only results for the binomial model are

shown here.

*-- calculate offset variables for binomial and double binomial;
data saxony;

set saxony;
logkn = log( gamma(12+1) / (gamma(males+1) * gamma(12-males+1)) );
if 0 < males < 12

then ylogity = -males * log(males/(12-males));
else ylogity = 0;

*-- fit binomial (12,p);
proc genmod data=saxony;

model families = males /
dist=poisson offset=logkn obstats ;

*-- fit double binomial (12,p, psi);
proc genmod data=saxony;

model families = males ylogity /
dist=poisson offset=logkn obstats ;
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The goodness-of-fit tests shown in Output 2.14 are equivalent to the same tests calculated
directly by the GOODFIT macro and shown in Output 2.13. The parameter estimate for
MALES, β1 = 0.0769 is actually estimating the logit of p, log p/(1 − p), so the inverse
transformation gives p̂ = exp(β1)

1+exp(β1)
= 0.5192, as before. The fitted frequencies shown in

Output 2.15, which are specified by the OBSTATS option in the MODEL statement, are the
same as those shown in Output 2.12. The standard error for MALES, sβ1 = 0.0074, could
also be transformed back to the probability scale in the same way.

Output 2.14 Fit of the Binomial(12, p) to the Families in Saxony data: Goodness-of-fit tests

Number of males in 6115 families in Saxony

The GENMOD Procedure

Model Information

Description Value Label

Data Set WORK.SAXONY
Distribution POISSON
Link Function LOG
Dependent Variable FAMILIES Number of families
Offset Variable LOGYN
Observations Used 13

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 11 97.0065 8.8188
Scaled Deviance 11 97.0065 8.8188
Pearson Chi-Square 11 110.5050 10.0459
Scaled Pearson X2 11 110.5050 10.0459
Log Likelihood . 34664.4556 .

Analysis Of Parameter Estimates

Parameter DF Estimate Std Err ChiSquare Pr>Chi

INTERCEPT 1 -0.0695 0.0478 2.1173 0.1456
MALES 1 0.0769 0.0074 108.3195 0.0001
SCALE 0 1.0000 0.0000 . .

NOTE: The scale parameter was held fixed.
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Output 2.15 Fit of the Binomial(12, p) to the Families in Saxony data: Observed and fitted frequencies

Number of males in 6115 families in Saxony

MALES FAMILIES PRED STD LOWER UPPER RESCHI

0 3 0.93 0.047778 0.85 1.02 2.14028
1 24 12.09 0.040707 11.16 13.09 3.42580
2 104 71.80 0.033773 67.20 76.72 3.79963
3 286 258.48 0.027079 245.11 272.56 1.71205
4 670 628.06 0.020860 602.89 654.27 1.67371
5 1033 1085.21 0.015691 1052.34 1119.10 -1.58490
6 1343 1367.28 0.012901 1333.14 1402.29 -0.65661
7 1112 1265.63 0.013995 1231.39 1300.83 -4.31841
8 829 854.25 0.018288 824.17 885.42 -0.86380
9 478 410.01 0.024129 391.07 429.87 3.35761
10 181 132.84 0.030646 125.09 141.06 4.17896
11 45 26.08 0.037488 24.23 28.07 3.70417
12 7 2.35 0.044505 2.15 2.56 3.03687

2.4 Diagnosing Discrete Distributions: Ord Plots

Ideally, the general form chosen for a discrete distribution should be dictated by substantive
knowledge of a plausible mechanism for generating the data. When such knowledge is
lacking, however, you may not know which distribution is most appropriate for a specific
set of data. In these cases, the question is often turned around, so that a distribution that
fits well is looked for, and then you try to understand the mechanism in terms of aspects
of the underlying probability theory (independent trials, rare events, waiting-time to an
occurrence, and so forth).

Although it is possible to fit each of several possibilities, the summary goodness-of-fit
statistics can easily be influenced by one or two disparate cells or additional (ignored or
unknown) factors. One simple alternative is a plot suggested by Ord (1967) that may be
used to diagnose the form of the discrete distribution. Ord shows that a linear relationship
of the form

k p(k)

p(k − 1)
= a + b k , (2.13)

holds for each of the Poisson, binomial, negative binomial, and logarithmic series distribu-
tions, and these distributions are distinguished by the signs of the intercept a and slope b,
as shown in Table 2.10. The slope b in Equation 2.13 is 0 for the Poisson, negative for the
binomial, and positive for the negative binomial and logarithmic series distributions; the
latter two are distinguished by their intercepts.

Thus, a plot of k nk/nk−1 against k, if linear, is suggested as a means to determine
which of these distributions to apply. The values of the slope and intercept provide rough
estimates of the distribution parameters.
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Table 2.10 Diagnostic slope and intercept for four discrete distributions. The ratios knk /nk−1
plotted against k should appear as a straight line, whose slope and intercept determine
the specific distribution.

Slope Intercept Distribution Parameter
(b) (a) (parameter) estimate

0 + Poisson (λ) λ = a
− + Binomial (n, p) p = b/(b − 1)
+ + Negative binomial (n,p) p = 1 − b
+ − Log. series (θ ) θ = b

θ = −a

Fitting the Line

One difficulty in applying this technique is that the number of points (distinct values of k) in
the Ord plot is often small, and the sampling variances of k nk/nk−1 can vary enormously.
A little reflection indicates that points where nk is small should be given less weight in
determining the slope of the line (and, therefore, determining the form of the distribution).
In the small number of cases I’ve tried, I have found that using a weighted least squares fit
of k nk/nk−1 on k, using weights of wk = √

nk − 1, produces reasonably good9 automatic
diagnosis of the form of a probability distribution, but this choice is surely open to further
study.

EXAMPLE 2.12 Deaths by horse kicks

The table below shows the calculations for the horse kicks data, with the ratio k nk/nk−1

labeled y. The weighted least squares line, with weights wk , has a slope close to zero,
indicating the Poisson distribution. The estimate λ = a = .656 compares favorably with
the MLE, λ = 0.610 and the value from the Poissonness plot, shown in the following
section.

Ord Plot: Deaths by Horse Kicks

k nk nk−1 wk y

0 109 . 10.3923 . -- Weighted LS --
1 65 109 8.0000 0.5963 slope = -0.034
2 22 65 4.5826 0.6769 inter = 0.656
3 3 22 1.4142 0.4091
4 1 3 0.0000 1.3333

EXAMPLE 2.13 Federalist Papers

For the word-frequency data, the slope is positive, so, either the negative binomial or the
log series is possible. The intercept is essentially 0, which is ambiguous. However, the
logarithmic series requires b ≈ −a, so the negative binomial is a better choice. Mosteller
and Wallace did, in fact, find a reasonably good fit to this distribution.

9This definition implies that frequencies of nk = 1 are ignored in fitting the line.
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Instances of ’may’ in Federalist Papers

k nk nk−1 wk y

0 156 . 12.4499 . -- Weighted LS --
1 63 156 7.8740 0.4038 slope = 0.424
2 29 63 5.2915 0.9206 inter = -0.023
3 8 29 2.6458 0.8276
4 4 8 1.7321 2.0000
5 1 4 0.0000 1.2500
6 1 1 0.0000 6.0000

Plots of data fitting four different discrete distributions are shown in Figure 2.13, using
the data previously examined in this chapter. In each case, the slope and intercept of the
weighted least squares line correctly identify the distribution.

Figure 2.13 Ord plots for four discrete distributions. Each panel shows the least squares line (dotted,
black) and the weighted least squares line (solid, red). The slope and intercept of the
weighted least squares line are used to identify the type of the distribution.
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Drawbacks

Using a single plot to determine one of four common discrete distributions is advantageous,
but our enthusiasm should be limited by several weaknesses in this method:

• The Ord plot lacks resistance because a single discrepant frequency affects the points
for both k and k + 1.

• The sampling variance of k nk/nk−1 fluctuates widely (Hoaglin and Tukey, 1985; Jink-
inson and Slater, 1981). The use of weights wk helps but is purely a heuristic device.

ORDPLOT Macro

These plots are produced by the ORDPLOT macro (Appendix A.19). For the horse kicks
data, the plot in Figure 2.13 is produced by using the macro call

%ordplot(data=horskick,
count=Deaths, freq=corpsyrs);

The FREQ parameter specifies the name of the basic frequency variable (k), and the COUNT
parameter specifies the associated count, nk .

2.5 Poissonness Plot

The Poissonness plot (Hoaglin, 1980) is designed as a plot of some quantity against k, so
that the result will be points along a straight line when the data follows a Poisson distri-
bution. When the data deviates from a Poisson, the points are curved. Hoaglin and Tukey
(1985) develop similar plots for other discrete distributions, including the binomial, nega-
tive binomial, and logarithmic series distributions.

2.5.1 Features of the Poissonness Plot

The Poissonness plot has the following advantages:

• Resistance: a single discrepant value of nk affects only the point at value k. (In the Ord
plot it affects each of its neighbors.)

• Comparison standard: An approximate confidence interval can be found for each point,
which indicates its inherent variability and helps to judge whether each point is dis-
crepant.

• Influence: Extensions of the method result in plots that show the effect of each point on
the estimate of the main parameter of the distribution (λ in the Poisson).

2.5.2 Plot Construction

Assume, for some fixed λ, each observed frequency, nk , equals the expected frequency,
mk = N pk . Then, setting nk = N pk = Ne−λ λk/k! and taking logs of both sides gives

log(nk) = log N − λ+ k log λ− log k!
which can be rearranged to

log

(
k! nk

N

)
= −λ+ (log λ) k . (2.14)
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The left side of Equation 2.14 is called the count metameter and is denoted φ (nk) =
loge(k! nk/N ). Hence, plotting φ(nk) against k should give a line φ(nk) = a + bk that has

• slope = log λ
• intercept = −λ

when the observed frequencies follow a Poisson distribution. If the points in this plot are
close enough to a straight line, then an estimate of λ may be obtained from the slope b of
the line, and λ̂ = eb should be reasonably close in value to the MLE of λ, λ̂ = x̄ . In this
case, we might as well use the MLE as our estimate.

Leveled Plot

If we have a preliminary estimate λ0 of λ, we can use this to give a new plot where the
reference line is horizontal, which makes comparison of the points with the line easier. In
this leveled plot the vertical coordinate φ(nk) is modified to

φ′(nk) = φ(nk)+ λ0 − k logλ0 .

When the data follows a Poisson distribution with parameter λ, the modified plot will have

• slope = log λ− logλ0 = log(λ/λ0)

• intercept = λ0 − λ

In the ideal case, where our estimate of λ0 is close to the true λ, the line will be horizontal at
φ′ = 0. The modified plot is especially useful in conjunction with the confidence intervals
for individual points, as described in the next section.

Confidence Intervals

When 1 or 2 points deviate from an otherwise nearly linear relation, it is helpful to deter-
mine whether the discrepancy is consistent with chance variation. Also, we must recognize
that classes that have small frequencies nk are less precise than classes that have large fre-
quencies. Hoaglin and Tukey (1985) develop approximate confidence intervals for log mk

for each point in the Poissonness plot. These confidence intervals are calculated as

φ
(
n∗

k

)± hk

where the count metameter function is calculated by using a modified frequency n∗
k defined

as

n∗
k =




nk − .8nk − .67 n ≥ 2
1/e n = 1
undefined n = 0

and hk is the half-width of the 95% confidence interval,

hk = 1.96

√
1 − p̂k

[nk − (.25 p̂k + .47)
√

nk]1/2

and p̂k = nk/N .
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2.5.3 The POISPLOT Macro

The POISPLOT macro (Appendix A.21) performs the calculations and produces the plots
for all examples shown in this section. The input data should contain a basic count variable
(corresponding to k) and a frequency variable (corresponding to nk) of the form shown in
Table 2.1 on page 18.

EXAMPLE 2.14 Deaths by horse kicks

A Poissonness plot is produced for the Horse Kicks data by using the POISPLOT macro
with the following statements:

title ’Poissoness Plot: Deaths by Horsekicks’ ;
data horskick;

input deaths corpsyrs;
label deaths=’Number of Deaths’

corpsyrs=’Number of Corps-Years’;
datalines;
0 109
1 65
2 22
3 3
4 1

;
%poisplot(data=horskick, count=Deaths,freq=corpsyrs);

The calculations for the Poissonness plot, including confidence intervals, are shown below
for the Horse Kicks data. The macro produces the plot shown in Figure 2.14. The fitted least
squares line has a slope of −0.431, which indicates λ = e−0.431 = 0.65. This compares
well with the MLE, λ = x̄ = 0.61.

Figure 2.14 Poissonness plots for the Horse Kicks data. The data fits the Poisson distribution rea-
sonably well.

slope =   -0.431
intercept=-0.693

lambda:  mean = 0.610
       exp(slope) = 0.650
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φ(nk) CI CI Confidence Int
k nk Y center width lower upper

0 109 -0.607 -0.617 0.130 -0.748 -0.487
1 65 -1.124 -1.138 0.207 -1.345 -0.931
2 22 -1.514 -1.549 0.417 -1.966 -1.132
3 3 -2.408 -2.666 1.318 -3.984 -1.348
4 1 -2.120 -3.120 2.689 -5.809 -0.432

The leveled Poissonness plot shown in Figure 2.15 is produced by the following
%POISPLOT statement that specifies LAMBDA=.610:

title;
%poisplot(data=horskick, count=Deaths, freq=corpsyrs,

lambda=.610, plot=dist);
run;

Figure 2.15 Leveled Poissonness Plot for the Horse Kicks data.
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In both plots, the fitted line is within the confidence intervals; the widths of the intervals
for k > 2 are graphic reminders that these observations have relatively low precision.

For comparison, Figure 2.16 shows the Poissonness plot for the occurrences of may in
the Federalist Papers (Table 2.2). The systematic curvature in the plot, judged relative to
the confidence intervals, indicates that this data does not follow a Poisson distribution.
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Figure 2.16 Poissonness plot for the data from the Federalist Papers. The systematic curvature in
the plot indicates that this data does not follow a Poisson distribution.

slope =    0.228
intercept=-1.530

lambda:  mean = 0.656
       exp(slope) = 1.256
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2.5.4 Leverage and Influence

In standard models for quantitative data, common diagnostic techniques attempt to esti-
mate the effect that each observation has upon the parameter estimates. For linear models,
these techniques include measures of leverage, the potential that an observation has to in-
fluence our results (due to its location on the predictors); and influence, the actual effect
this observation has on parameter estimates and fitted values.

For discrete distributions, Hoaglin and Tukey (1985) derive measures, which are similar
in spirit. However, these measures are based on the change in the estimate of λ at each value
of k that would be required to make the observed count metameter φ(n∗

k) equal to its fitted
value φ(mk(λ0)), which is calculated by using a contemplated or an estimated λ0.

For the Poisson distribution, analysis by Hoaglin and Tukey leads to the relation

log
φ(n∗

k)

φ(mk(λ0))
= (λ− λ0)

(
k

λ0
− 1

)
. (2.15)

Equation 2.15 is a line through the origin that has the slope equal to (λ − λ0). By anal-
ogy with least squares regression through the origin (where leverage is proportional to x),
Hoaglin and Tukey refer to (k/λ0)− 1 as the leverage of point k.

Their parameter-change plot shows each observation in the discrete distribution as a
point that has a vertical coordinate proportional to log[φ(n∗

k)/φ(mk(λ0))] = log(φ(n∗
k))−

logφ(mk(λ0)) and a horizontal coordinate proportional to k/λ0 − 1. In this plot (see Fig-
ure 2.17), the slope of a line from the origin to a point shows the change in the Poisson
parameter λ−λ0, which is indicated by that point. The horizontal coordinate is proportional
to the potential of that observation to affect the Poisson parameter λ.

An alternative version of this plot, more in the spirit of the influence plots for log-linear
models and logistic regression, which are described later in this book, plots the parameter
change λ− λ0 directly on the vertical axis against the same horizontal leverage value, and
uses a bubble whose size represents influence as the plotting symbol.
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The parameter-change plot and the influence plot are produced by using the POISPLOT
macro and including the keyword INFL in the PLOT= parameter (i.e., PLOT=DIST INFL
gives all plots). For the Horse Kicks data, these plots are shown in Figure 2.17 and Fig-
ure 2.18.

Figure 2.17 Parameter-change plot for the Poisson parameter, fitting the Horse Kicks data. The
horizontal coordinate of each point is proportional to the potential of that observation
to affect the value of λ. The slope of the line through the origin is proportional to the
change in the count metameter.
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Figure 2.18 Influence plot for the Poisson parameter, fitting the Horse Kicks data. The ordinate shows
the indicated change in λ directly, and the bubble size is proportional to influence.
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Figure 2.17 shows that the point that corresponds to k = 0 has the greatest leverage
but influences λ very little. The point for k = 3 has only moderate leverage, but it has
the greatest impact on the Poisson parameter. Figure 2.15 shows that the circle symbol for
φ(n∗

k) at k = 3 is furthest from the line. Figure 2.18 shows that this point indicates a λ
value about 0.15 smaller than the estimated value.

2.5.5 Plots for Other Distributions

As described in Section 2.2.6, the binomial, Poisson, negative binomial, geometric, and
log series distributions are all members of the general Power Series family of discrete
distributions. For this family, Hoaglin and Tukey (1985) develop similar plots of a count
metameter against k, which appear as a straight line when a data distribution follows a
specified family member.

The distributions that can be analyzed in this way are shown in Table 2.11, with the
interpretation given to the slope and intercept for each case. For example, for the Binomial
distribution, a “binomialness” plot is constructed by plotting log n∗

k/N
(n

k

)
against k. If the

points in this plot approximate a straight line, the slope is interpreted as log(p/(1 − p)),
so the binomial parameter p may be estimated as p = eb/(1 + eb).

Table 2.11 Plot parameters for five discrete distributions. In each case the count metameter, φ(n∗
k ) is plotted against k , yielding a

straight line when the data follows the given distribution.

Probability Count Theoretical Theoretical
Distribution function, p(k) metameter, φ(n∗

k) Slope (b) Intercept (a)

Poisson e−λλk/k! log(k!n∗
k/N ) log(λ) -λ

Binomial
(n

k

)
pk(1 − p)n−k log

(
n∗

k/N
(n

k

))
log

(
p

1−p

)
n log(1 − p)

Negative binomial
(n+k−1

k

)
pn(1 − p)k log

(
n∗

k/N
(n+k−1

k

))
log(1 − p) n log(p)

Geometric p(1 − p)k log
(
n∗

k/N
)

log(1 − p) log(p)

Logarithmic series θ k/[−k log(1 − θ)] log
(
kn∗

k/N
)

log(θ) − log (− log(1 − θ))

Source: adapted from Hoaglin and Tukey (1985), Table 9-15.

Unlike the Ord plot, a different plot is required for each distribution because the count
metameter φ(nk) differs from distribution-to-distribution. Moreover, systematic deviation
from a linear relationship does not indicate which distribution provides a better fit. How-
ever, the attention to robustness, and the availability of confidence intervals and influence
diagnostics make this a highly useful tool for visualizing discrete distributions.

2.5.6 DISTPLOT Macro

The DISTPLOT macro (Appendix A.6) carries out the analysis and produces overall distri-
bution plots and influence plots for the members of the Power Series distributions shown in
Table 2.11. As with the GOODFIT macro, values for parameters for a specified distribution
may be supplied in the PARM parameter.

When the value of the distribution parameter is not supplied, the macro produces the
overall distribution plot whose slope b (and intercept a) are used to find graphical estimates
of the parameter. For most distributions, the available MLE or moments estimates given in
Section 2.2 are also calculated and displayed in the plot. When the value of the distribution
parameter is supplied, a leveled plot is produced that has graphical parameter estimates
adjusted for the leveling.



56 Visualizing Categorical Data

EXAMPLE 2.15 Families in Saxony

The analysis in Example 2.10 and Example 2.11 of the Saxony data shows that the distri-
bution of male children had slightly heavier tails than the binomial. You can see this even
more clearly in the distribution diagnostic plot produced by the DISTPLOT macro. For a
binomial distribution, we might call this a “binomialness plot”.

Figure 2.19 is produced by using the statement

%distplot(data=saxony, count=males, freq=families, dist=binomial);

Again, the systematic curvature of the points indicates the inadequacy of the binomial,
and the widths of the intervals around the points show that the two extreme points are
of limited reliability. Comparing this plot with the hanging rootogram (Figure 2.12), you
see that heavy-tailed distributions tend to curve upwards. You also see that the estimate of
p = exp(b)/[1 + exp(b)] from the slope of the fitted line is quite close to the maximum
likelihood estimate.

Figure 2.19 Binomialness plot for the distribution of males in Saxony families
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2.6 Chapter Summary

• Discrete distributions typically involve basic counts of occurrences of some event that
occurs with varying frequencies.

• The most commonly used discrete distributions include the binomial, Poisson, negative
binomial, geometric, and logarithmic series distributions. Happily, these are all members
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of a family called the Power Series distributions. Methods of fitting an observed dataset
to any of these distributions are described and implemented in the GOODFIT macro.

• After fitting an observed distribution, it is useful to plot the observed and fitted fre-
quencies. Several ways of making these plots are described and implemented in the
ROOTGRAM macro.

• A graphical method for identifying which discrete distribution is most appropriate for
a specific set of data involves plotting ratios knk/nk−1 against k. These plots are con-
structed by the ORDPLOT macro.

• A more robust plot for a Poisson distribution involves plotting the count metameter
φ(nk) against k, which gives a straight line (whose slope estimates the Poisson param-
eter) when the data follows a Poisson distribution. This plot provides robust confidence
intervals for individual points and provides a means to assess the influence of individual
points on the Poisson parameter. These plots are provided by the POISPLOT macro.

• The ideas behind the Poissonness plot can be applied to the other discrete distributions,
as implemented in the DISTPLOT macro.
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Agreement Chart: Husband’s and Wife’s Sexual Fun

The analysis of two-way frequency tables concerns the association between two variables. Different spe-
cialized displays are focused on visualizing an odds ratio (2×2 tables), or the general pattern of association,
or the agreement between row and column categories.

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Tests of Association for 2-Way Tables . . . . . . . . . . . . . . . . . . . 62
3.3 Stratified Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 Fourfold Display for 2 × 2 Tables . . . . . . . . . . . . . . . . . . . . . 74

3.1 Introduction

If you choose to represent the various parts in life by holes upon a table, of dif-
ferent shapes, some circular, some triangular, some square, some oblong, and the
persons acting these parts by bits of wood of similar shapes, we shall generally
find that the triangular person has got into the square hole, the oblong into the
triangular, and a square person has squeezed himself into the round hole.

Sydney Smith, 1771–1845, Sketches of Moral Philosophy

Most methods of statistical analysis are concerned with understanding relationships among
variables. With categorical variables, these relationships are usually studied from data that
has been summarized by a contingency table, giving the frequencies of observations cross-
classified by two or more such variables.

This chapter presents methods for understanding the association between two categor-
ical variables. Some simple examples are also presented that involve a third, stratifying
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variable, when you want to determine if the relationship between two primary variables is
the same or different for all levels of the stratifying variable. Methods for fitting models
and displaying associations for 3-way and larger tables are described in Chapter 4.

In Section 3.2, I describe briefly some methods for testing whether an association exists
between two variables, and some methods for quantifying the strength of this association.
In Section 3.3, I extend these ideas to situations where the relationship between two vari-
ables is of primary interest, but there are one or more background variables to be controlled.

The main emphasis, however, is on graphical methods that help to describe the nature
of an association between variables. Section 3.4 presents the fourfold display, designed to
portray the odds ratio in 2 × 2 tables or a set of k such tables. Sieve diagrams (Section 3.5)
and association plots (Section 3.6) are more general methods for depicting the pattern
of associations in any 2-way tables. When the row and column variables represent the
classifications of different raters, specialized measures and visual displays for inter-rater
agreement (Section 3.7) are particularly useful. Another specialized display, the trilinear
plot (Section 3.8) is designed for three-column frequency tables or compositional data. In
order to clarify some of the distinctions that occur in contingency table analysis, I begin
with several examples.

EXAMPLE 3.1 Berkeley admissions

Table 3.1 shows aggregate data about applicants to graduate school in 1973 for the six
largest departments at Berkeley. The applicants are classified by admission status and gen-
der (Bickel et al., 1975). See Appendix B.2 for the complete data set. For such data, you
might want to study whether there is an association between admission and gender. Are
male (or female) applicants more likely to be admitted? The presence of an association
might be considered as evidence of sex bias in admission practices.

Table 3.1 is an example of the simplest kind of contingency table, a 2×2 classification of
individuals according to two dichotomous (binary) variables. For such a table, the question
of whether there is an association between admission and gender is equivalent to asking if
the proportions of males and females who are admitted to graduate school are the same, or
whether the difference in proportions of males and females admitted is 0.

Table 3.1 Admissions to Berkeley graduate programs

Admitted Rejected Total

Males 1198 1493 2691
Females 557 1278 1835

Total 1755 2771 4526

Although the methods for quantifying association in larger tables can be used for 2 × 2
tables, there are specialized measures (described in Section 3.2) and graphical methods for
these simpler tables.

It is frequently useful to make a distinction between outcome (or response) variables
and possible explanatory (or predictor) variables. In Table 3.1, it is natural to consider ad-
mission as the outcome, and gender as the explanatory variable. In other tables, no variable
may be clearly identified as the outcome, or there may be several response variables.



Chapter 3 2-Way Contingency Tables 61

EXAMPLE 3.2 Hair color and eye color

Table 3.2 shows data collected by Snee (1974) on the relationship between hair color and
eye color among 592 students in a statistics course (Appendix B.3). Neither hair color nor
eye color is considered to be a response in relation to the other; the interest here is whether
an association exists between them. Hair color and eye color have each been classified
into four categories. Although the categories used are among the most common, they are
not the only categories possible.1 Everyday observation suggests that there probably is an
association between hair color and eye color. Tests and measures of associations for larger
tables are described in Section 3.2.3.

Table 3.2 Hair-color and Eye-color data2

Hair Color
Eye
Color Black Brown Red Blond Total

Green 5 29 14 16 64
Hazel 15 54 14 10 93
Blue 20 84 17 94 215
Brown 68 119 26 7 220

Total 108 286 71 127 592

Table variables can be treated simply as unordered nominal variables or as ordinal
variables, where the categories are ordered according to some underlying dimension. For
example, the categories of hair color or eye color are typically considered to be nominal
categories; however, they might arguably be considered to be ordered from light to dark.
When the variables are ordinal, more sensitive and therefore more powerful tests of asso-
ciation can be used.

If, as is suspected, hair color and eye color are associated, it would be interesting to
understand how they are associated. The graphical methods described later in this chapter
help reveal the pattern of associations present.

EXAMPLE 3.3 Arthritis treatment

The data in Table 3.3 compares the results of an active treatment for rheumatoid arthritis
to the results of a placebo (Koch and Edwards, 1988). The outcome reflects whether indi-
viduals showed no improvement, some improvement, or marked improvement. Here, the
outcome variable is an ordinal one, and it is probably important to determine if the relation
between treatment and outcome is the same for males and females. The complete dataset
is given in Appendix B.1.

Table 3.3 Arthritis treatment data

Improvement

Treatment Sex None Some Marked Total

Active Female 6 5 16 27
Male 7 2 5 14

Placebo Female 19 7 6 32
Male 10 0 1 11

Total 42 14 28 84

1If students had been asked to write down their hair and eye colors, it is likely that many more than four categories
of each would appear in a sample of nearly 600.
2Reprinted with permission from The American Statistician. Copyright c© 1974 by the American Statistical As-
sociation. All rights reserved.
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Table 3.3 is, of course, a 3-way table that contains the variables Treatment, Sex, and
Improvement. If the relation between treatment and outcome is the same for both genders,
an analysis of a Treatment-by-Improvement table (collapsed over sex) could be carried
out. Otherwise, you could perform separate analyses for men and women, or treat the
combinations of Treatment and Sex as four levels of a “population” variable that give a
4 × 3 2-way table. These simplified approaches ignore certain information that is available
in an analysis of the full 3-way table.

3.2 Tests of Association for 2-Way Tables

3.2.1 Notation and Terminology

To establish notation, let N = {ni j } be the observed frequency table of variables A and B
with r rows and c columns, as shown in Table 3.4. In the table that follows, a subscript
is replaced by a plus sign (+) when it is summed over the corresponding variable, so
ni+ = ∑

j ni j gives the total frequency in row i , n+ j = ∑
i ni j gives the total frequency

in column j , and n++ = ∑
i

∑
j ni j is the grand total; for convenience, n++ can also be

symbolized by n.

Table 3.4 The r × c contingency table

Row Column category
Category 1 2 · · · c Total

1 n11 n12 · · · n1c n1+
2 n21 n22 · · · n2c n2+
...

...
... · · · ...

...

r nr1 nr2 · · · nrc nr+
Total n+1 n+2 · · · n+c n++

When each observation is randomly sampled from a population and classified into two
categorical variables, A and B, you refer to the joint distribution of these variables, and let
πi j = Pr(A = i, B = j) denote the probability that an observation is classified in row i ,
column j (or cell (i j)) in the table. Corresponding to these population joint probabilities,
the cell proportions pi j = ni j/n give the sample joint distribution.

The row totals ni+ and column totals n+ j are called marginal frequencies for variables
A and B, respectively. These totals describe the distribution of each variable and ignore the
other. For the population probabilities, the marginal distributions are defined analogously
as the row-and-column totals of the joint probabilities, πi+ = ∑

j πi j , and π+ j = ∑
i πi j .

The sample marginal proportions are, correspondingly, pi+ = ∑
j pi j = ni+/n, and

p+ j = ∑
i pi j = n+ j/n.

When one variable (the column variable B, for example) is a response variable, and the
other (A) is an explanatory variable, it is most often useful to examine the distribution of
the response B for each level of A separately. These distributions define the conditional
distributions of B, given the level of A, and are defined for the population as π j | i =
πi j/πi+.

These definitions are illustrated in Output 3.1. For the Berkeley data, Table 3.1 shows
the joint frequencies, ni j , and the joint sample percentages, 100 × pi j , in the first two
rows within each table cell. The third row in each cell (Row pct) gives the conditional
percentage of admission or rejection, 100 × p j | i , for males and females separately. The
row and the column labeled Total give the marginal frequencies, ni+ and n+ j , and the
marginal percentages, pi+ and p+ j .
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Output 3.1 Admission to Berkeley graduate programs: joint, marginal, and conditional percents

TABLE OF GENDER BY ADMIT

GENDER ADMIT

Frequency|
Percent |
Row Pct |Admitted|Rejected| Total
---------+--------+--------+
Male | 1198 | 1493 | 2691

| 26.47 | 32.99 | 59.46
| 44.52 | 55.48 |

---------+--------+--------+
Female | 557 | 1278 | 1835

| 12.31 | 28.24 | 40.54
| 30.35 | 69.65 |

---------+--------+--------+
Total 1755 2771 4526

38.78 61.22 100.00

3.2.2 2 × 2 Tables

The 2 × 2 contingency table of applicants to Berkeley graduate programs in Table 3.1 may
be regarded as an example of a cross-sectional study. The total of n = 4,526 applicants in
1973 has been classified by both gender and admission status. Here, you would probably
consider the total n to be fixed, and the cell frequencies ni j , i = 1, 2; j = 1, 2 would then
represent a single multinomial sample for the cross-classification by two binary variables,
with probabilities cell pi j , i = 1, 2; j = 1, 2 such that

p11 + p12 + p21 + p22 = 1 .

The basic null hypothesis of interest for a multinomial sample is that of independence. Are
admission and gender independent of each other?

Alternatively, if you consider admission to be the response variable and gender to be
an explanatory variable, you would treat the numbers of male and female applicants as
fixed and consider the cell frequencies to represent two independent binomial samples for
a binary response. In this case, the null hypothesis is described as that of homogeneity of
the response proportions across the levels of the explanatory variable.

Odds and Odds Ratios

Measures of association are used to quantify the strength of association between variables.
Among the many measures of association for contingency tables, the odds ratio is partic-
ularly useful for 2 × 2 tables and is a fundamental parameter in several graphical displays
and models that are described later. Other measures of strength of association for 2 × 2
tables are described in Stokes et al. (1995, Chapter 2) and Agresti (1996, Section 2.2).

For a binary response, where the probability of a “success” is π , define the odds for a
success as

odds = π

1 − π
.
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Hence, odds = 1 corresponds to π = 0.5; success and failure are equally likely. When suc-
cess is more likely than failure, π > 0.5, and the odds > 1 (for instance, when π = 0.75,
odds = .75/.25 = 3), so a success is three times as likely as a failure. When failure is more
likely, π < 0.5, and the odds < 1 (for instance, when π = 0.25, odds = .25/.75 = 1

3 ).
The odds of success thus vary multiplicatively around 1. Taking logarithms gives an

equivalent measure that varies additively around 0, called the log odds or logit:

logit(π) ≡ log(odds) = log

(
π

1 − π

)
.

The logit is symmetric about π = 0.5, in that logit(π) = − logit(1 − π).
A binary response for two groups gives a 2 × 2 table, with Group as the row variable,

for example. Let π1 and π2 be the success probabilities for Group 1 and Group 2. The odds
ratio is just the ratio of the odds for the two groups:

odds ratio ≡ θ = odds1

odds2
= π1/(1 − π1)

π2/(1 − π2)
.

Like the odds itself, the odds ratio is always non-negative, between 0 and ∞. When
θ = 1, the distributions of success and failure are the same for both groups (so π1 = π2);
there is no association between row and column variables, or the response is independent
of group. When θ > 1, Group 1 has a greater success probability; when θ < 1, Group 2
has a greater success probability.

Similarly, the odds ratio may be transformed to a log scale in order to give a measure
that is symmetric about 0. The log odds ratio, symbolized by ψ , is just the difference
between the logits for Groups 1 and 2:

log odds ratio ≡ ψ = log(θ) = log

[
π1/(1 − π1)

π2/(1 − π2)

]
= logit(π1)− logit(π2) .

Independence corresponds toψ = 0, and reversing the rows or columns of the table merely
changes the sign of ψ .

For sample data, the sample odds ratio is the ratio of the sample odds for the two groups:

θ̂ = p1/(1 − p1)

p2/(1 − p2)
= n11/n12

n21/n22
= n11n22

n12n21
. (3.1)

I described the odds ratio for a sampling context of independent binomial samples, but
actually, the odds ratio is an appropriate measure of strength of association for all the
standard sampling schemes because it treats the variables symmetrically. It does not matter
whether the row or column variable is the response, or whether both variables are treated
as responses. Other measures of strength of association, not described here, do distinguish
between explanatory and response variables.

The sample estimate θ̂ in Equation 3.1 is the maximum likelihood estimator of the true
θ . The sampling distribution of θ̂ is asymptotically normal as n → ∞, but may be highly
skewed in small to moderate samples. Consequently, inference for the odds ratio is more
conveniently carried out in terms of the log odds ratio, whose sampling distribution is more
closely normal, with mean ψ = log(θ), and asymptotic standard error (ASE):

ASE log(θ) ≡ ŝ(ψ̂) =
{

1

n11
+ 1

n12
+ 1

n21
+ 1

n22

}1/2

=
{∑∑

n−1
i j

}1/2
(3.2)

A large-sample 100(1 −α)% confidence interval for log(θ)may therefore be calculated as
log(θ) ± z1−α/2 ASE log(θ), where z1−α/2 is the cumulative normal quantile with 1 − α/2
in the lower tail. Confidence intervals for θ itself are obtained by exponentiating the end
points of the interval for log(θ).

However, θ̂ is 0 or ∞ if any ni j = 0. Haldane (1955) and Gart and Zweiful (1967)
showed that improved estimators of θ and ψ = log(θ) are obtained by replacing each ni j
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with [ni j + 1
2 ] in Equations 3.1 and 3.2. This adjustment is preferred in small samples, and

it is required if any zero cells occur. In large samples, the effect of adding 0.5 to each cell
becomes negligible.

EXAMPLE 3.4 Berkeley admissions

Odds ratios and many other measures of association that are not described here are pro-
duced with PROC FREQ when you specify the MEASURES option in the TABLES statement.
For the Berkeley admissions data, the frequency table in Output 3.1 and the various mea-
sures of association are produced by these statements:

%include catdata(berkeley);

proc freq data=berkeley order=data;
weight freq;
tables gender*admit / nocol measures;
format admit admit. gender $sex.;

The odds ratio is displayed, in a section of the output labeled “Estimates of the Relative
Risk”, as the value associated with a Case-Control study. This portion of the output is
shown in Output 3.2. The value θ̂ = 1.84 = (1198 × 1278)/(557 × 1493) indicates
that males are nearly twice as likely to be admitted as females. I describe a visualization
method for odds ratios in 2 × 2 tables in Section 3.4 and return to the Berkeley data in
Example 3.8. See Stokes et al. (1995, Sections 2.4 and 2.5) for discussion of relative risk
and other measures of association in 2 × 2 tables.

Output 3.2 Admission to Berkeley graduate programs: Odds ratio and relative risk

Estimates of the Relative Risk (Row1/Row2)

95%
Type of Study Value Confidence Bounds
------------------------------------------------------
Case-Control 1.841 1.624 2.087
Cohort (Col1 Risk) 1.467 1.352 1.591
Cohort (Col2 Risk) 0.797 0.761 0.834

3.2.3 Larger Tables: Overall Analysis

For two-way tables, overall tests of association can be carried out using PROC FREQ. If the
table has more than two factors (as in the Arthritis Treatment data), the other factors are
ignored (and collapsed) if not included in the TABLES statement. This simplified analysis
may be misleading if the excluded factors interact with the factors used in the analysis.

EXAMPLE 3.5 Arthritis treatment

Because the main interest is in the relation between Treatment and Outcome, an overall
analysis (which ignores Sex) could be carried out using PROC FREQ as shown in the next
program.
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title ’Arthritis Treatment: PROC FREQ Analysis’;
data arth;

input sex$ treat$ @;
do improve = ’None ’, ’Some’, ’Marked’;

input count @;
output;
end;

datalines;
Female Active 6 5 16
Female Placebo 19 7 6
Male Active 7 2 5
Male Placebo 10 0 1
;
*-- Ignoring sex;
proc freq data=arth order=data;

weight count;
tables treat * improve / cmh chisq nocol nopercent;
run;

Output 3.3 Arthritis treatment data, overall analysis

Arthritis Treatment: PROC FREQ Analysis 1

TABLE OF TREAT BY IMPROVE

TREAT IMPROVE

Frequency|
Row Pct |None |Some |Marked | Total
---------+--------+--------+--------+
Active | 13 | 7 | 21 | 41

| 31.71 | 17.07 | 51.22 |
---------+--------+--------+--------+
Placebo | 29 | 7 | 7 | 43

| 67.44 | 16.28 | 16.28 |
---------+--------+--------+--------+
Total 42 14 28 84

STATISTICS FOR TABLE OF TREAT BY IMPROVE

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 2 13.055 0.001
Likelihood Ratio Chi-Square 2 13.530 0.001
Mantel-Haenszel Chi-Square 1 12.859 0.000
Phi Coefficient 0.394
Contingency Coefficient 0.367
Cramer’s V 0.394

Sample Size = 84
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In this analysis, note that

• TREAT and IMPROVE are both character variables, which PROC FREQ orders alpha-
betically (i.e., Marked, None, Some) by default. Because I want to treat the IMPROVE
variable as ordinal, I used ORDER=DATA in the PROC FREQ statement to have the levels
of IMPROVE ordered by their order of appearance in the dataset.

• The CHISQ option gives the usual χ2 tests (Pearson, Fisher’s, etc.). The CMH option
requests the Cochran-Mantel-Haenszel tests, including specialized tests for ordinal vari-
ables.

The output, shown in Output 3.3, begins with the frequency table and includes row per-
centages. The row percentages show a clear effect of treatment: for people given the Ac-
tive treatment, 51% showed Marked improvement; among those given the Placebo, 67%
showed no improvement.

The results for the CHISQ option are also shown in Output 3.3. All tests show a signifi-
cant association between Treatment and Outcome.

3.2.4 Tests for Ordinal Variables

For r × c tables, different tests are applicable depending on whether either or both of the
row and column variables are ordinal. Tests that take the ordinal nature of a variable into
account are provided by the CMH option in the TABLES statement. These tests are based on
assigning numerical scores to the table categories; the default (table) scores treat the levels
as equally spaced. They generally have higher power when the pattern of association is
determined by the order of an ordinal variable.

For the arthritis data, these tests (CMH option) give the output shown in Output 3.4.

Output 3.4 Arthritis treatment data, overall analysis

Arthritis Treatment: PROC FREQ Analysis 2

SUMMARY STATISTICS FOR TREAT BY IMPROVE

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
--------------------------------------------------------------

1 Nonzero Correlation 1 12.859 0.000
2 Row Mean Scores Differ 1 12.859 0.000
3 General Association 2 12.900 0.002

Total Sample Size = 84
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The three types of tests differ in the types of departure from independence that they are
sensitive to:

• General Association. When both the row and column variables are nominal (unordered),
the only alternative hypothesis of interest is that there is some association between the
row and column variables. The CMH test statistic is similar to the (Pearson) Chi-Square
and to the Likelihood Ratio Chi-Square in the Statistics table; all have (r − 1)(c − 1) df.

• Row Mean Scores Differ. If the column variable is ordinal, assigning scores to the col-
umn variable produces a mean for each row. The association between row and column
variables can be expressed as a test of whether these means differ over the rows of the
table, with r −1 df. This is analogous to the Kruskal-Wallis nonparametric test (ANOVA
based on rank scores).

• Nonzero Correlation (Linear association). When both the row and column variables
are ordinal, we could assign scores to both variables and compute the correlation (r ).
The Mantel-Haenszel χ2 is equal to (N − 1)r2, where N is the total sample size. The
test is most sensitive to a pattern where the row mean score changes linearly over the
rows.

Notes:

• Different kinds of scores can be assigned using the SCORES option in the TABLES state-
ment, but only the relative spacing of the scores is important. The default, SCORES=
TABLE uses integer row and column numbers for character variables, and numeric levels
(or formatted equivalents) for numeric variables.

• When only one variable is ordinal, make it the last one in the TABLES statement because
PROC FREQ only computes means across the column variable.

• When there are only r = 2 rows (as there are here), the nonzero correlation and the row
means tests are equivalent. In a 2 × 2 table, all three tests are identical.

3.2.5 Sample CMH Profiles

Two contrived examples may make the differences among these tests more apparent. Vi-
sualizations of the patterns of association reinforce the aspects to which the tests are most
sensitive.

General Association

Table 3.5 exhibits a general association between variables A and B, but no difference in
row means or linear association. The row means are calculated by assigning integer scores,
bi = i , to the column categories. Figure 3.1(A) shows the pattern of association in this
table graphically, as a sieve diagram (described in Section 3.5).

Table 3.5 General pattern of association

b1 b2 b3 b4 b5 Total Mean

a1 0 15 25 15 0 55 3.0
a2 5 20 5 20 5 55 3.0
a3 20 5 5 5 20 55 3.0

Total 25 40 35 40 25 165 3.0
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Figure 3.1 Sieve diagrams for two patterns of association: (a) General Association and (b) Linear
Association. In each figure, cells with greater than expected frequency are shown with
solid, blue cross hatching, and the number of boxes is proportional to the observed
frequency.
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Linear Association

This is reflected in the PROC FREQ output shown in Output 3.5. The chi-square values
for nonzero correlation and different row mean scores are exactly zero because the row
means are all equal. Only the general association test shows that A and B are associated.

Output 3.5 General Association example: CMH tests

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
--------------------------------------------------------------

1 Nonzero Correlation 1 0.000 1.000
2 Row Mean Scores Differ 2 0.000 1.000
3 General Association 8 91.797 0.000

Linear Association

Table 3.6 contains a weak, non-significant general association, but significant row mean
differences and linear associations. Therefore, the unstructured test of general association
would lead to the conclusion that no association exists, while the tests that take ordinal
factors into account would conclude otherwise. Note that the largest frequencies shift to-
wards lower levels of B as the level of variable A increases. See Figure 3.1(B) for a visual
representation of this pattern.

Table 3.6 Linear pattern of association

b1 b2 b3 b4 b5 Total Mean

a1 2 5 8 8 8 31 3.48
a2 2 8 8 8 5 31 3.19
a3 5 8 8 8 2 31 2.81
a4 8 8 8 5 2 31 2.52

Total 17 29 32 29 17 124 3.00
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Note that the χ2 values for the row means and nonzero correlation tests in Output 3.6
are very similar, but the correlation test is more highly significant because it is based on
just one degree of freedom.

Output 3.6 Linear Association example: CMH tests

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
--------------------------------------------------------------

1 Nonzero Correlation 1 10.639 0.001
2 Row Mean Scores Differ 3 10.676 0.014
3 General Association 12 13.400 0.341

The differences in sensitivity and power among these tests is analogous to the difference
between general ANOVA tests and tests for linear trends in experimental designs with
quantitative factors: the more specific test has greater power, but it is sensitive to a narrower
range of departure from the null hypothesis.

3.3 Stratified Analysis

An overall analysis ignores other variables (like Sex) by collapsing over them. It is possible
that the treatment is effective only for one gender, or even that the treatment has opposite
effects for men and women.

A stratified analysis:

• controls for the effects of one or more background variables. This is similar to the use
of a blocking variable in an ANOVA design.

• is obtained by including more than two variables in the TABLES statement. List the strat-
ification variables first. To examine the association between TREAT and IMPROVE,
controlling for both Sex and Age (if available):

tables

stratify by︷ ︸︸ ︷
age * sex *

explanatory︷ ︸︸ ︷
treat *

response︷ ︸︸ ︷
improve;

EXAMPLE 3.6 Arthritis treatment

The statements below request a stratified analysis of the arthritis treatment data with CMH
tests, controlling for Sex.

*-- Stratified analysis, controlling for sex;
proc freq data=arth order=data;

weight count;
tables sex * treat * improve / cmh chisq nocol nopercent;
run;

PROC FREQ gives a separate table for each level of the stratification variables (Out-
put 3.7 and Output 3.8), plus overall (partial) tests controlling for the stratification variables
(Output 3.9).
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Output 3.7 Arthritis treatment data, stratified analysis

Arthritis Treatment: PROC FREQ Analysis 3
Stratified analysis, controlling for sex

TABLE 1 OF TREAT BY IMPROVE
CONTROLLING FOR SEX=Female

TREAT IMPROVE

Frequency|
Row Pct |None |Some |Marked | Total
---------+--------+--------+--------+
Active | 6 | 5 | 16 | 27

| 22.22 | 18.52 | 59.26 |
---------+--------+--------+--------+
Placebo | 19 | 7 | 6 | 32

| 59.38 | 21.88 | 18.75 |
---------+--------+--------+--------+
Total 25 12 22 59

STATISTICS FOR TABLE 1 OF TREAT BY IMPROVE
CONTROLLING FOR SEX=Female

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 2 11.296 0.004
Likelihood Ratio Chi-Square 2 11.731 0.003
Mantel-Haenszel Chi-Square 1 10.935 0.001
Phi Coefficient 0.438
Contingency Coefficient 0.401
Cramer’s V 0.438

Sample Size = 59

Note that the strength of association between Treatment and Outcome is quite strong
for females (Output 3.7). In contrast, the results for males (Output 3.8) show a not quite
significant association, even by the more powerful Mantel-Haenszel test. However, note
that there are too few males for the general association χ2 tests to be reliable (the statistic
does not follow the theoretical χ2 distribution).

The individual tables are followed by the (overall) partial tests of association controlling
for Sex, as shown in Output 3.9. Unlike the tests for each stratum, these tests do not require
large sample size in the individual strata—just a large total sample size. Note that the χ2

values here are slightly larger than those from the initial analysis that ignored Sex.
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Output 3.8 Arthritis treatment data, stratified analysis

Arthritis Treatment: PROC FREQ Analysis 4
Stratified analysis, controlling for sex

TABLE 2 OF TREAT BY IMPROVE
CONTROLLING FOR SEX=Male

TREAT IMPROVE

Frequency|
Row Pct |None |Some |Marked | Total
---------+--------+--------+--------+
Active | 7 | 2 | 5 | 14

| 50.00 | 14.29 | 35.71 |
---------+--------+--------+--------+
Placebo | 10 | 0 | 1 | 11

| 90.91 | 0.00 | 9.09 |
---------+--------+--------+--------+
Total 17 2 6 25
STATISTICS FOR TABLE 2 OF TREAT BY IMPROVE

CONTROLLING FOR SEX=Male

Statistic DF Value Prob
------------------------------------------------------
Chi-Square 2 4.907 0.086
Likelihood Ratio Chi-Square 2 5.855 0.054
Mantel-Haenszel Chi-Square 1 3.713 0.054
Phi Coefficient 0.443
Contingency Coefficient 0.405
Cramer’s V 0.443

Sample Size = 25
WARNING: 67% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Output 3.9 Arthritis treatment data, stratified analysis

Arthritis Treatment: PROC FREQ Analysis 5
Stratified analysis, controlling for sex

SUMMARY STATISTICS FOR TREAT BY IMPROVE
CONTROLLING FOR SEX

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob
--------------------------------------------------------------

1 Nonzero Correlation 1 14.632 0.000
2 Row Mean Scores Differ 1 14.632 0.000
3 General Association 2 14.632 0.001

Total Sample Size = 84
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3.3.1 Assessing Homogeneity of Association

In a stratified analysis, it is often of interest to know if the association between the primary
table variables is the same over all strata. For 2 × 2 × k tables, this question reduces to
whether the odds ratio is the same in all k strata, and PROC FREQ computes the Breslow-
Day test for homogeneity of odds ratios when you use the measures option in the TABLES
statement. PROC FREQ cannot perform tests of homogeneity for larger tables, but these
tests can be easily done with the CATMOD procedure.

EXAMPLE 3.7 Arthritis treatment

For the arthritis data, homogeneity means that there is no 3-way Sex * Treatment * Out-
come association. That is, the association between Treatment and Outcome (IMPROVE) is
the same for both men and women. This hypothesis can be stated as the log-linear model,

[SexTreat] [SexOutcome] [TreatOutcome] . (3.3)

This notation (described in Section 7.2) lists only the high-order association terms in a lin-
ear model for log frequency. Thus, the model in Equation 3.3 allows associations between
Sex and Treatment (e.g., more males get the active treatment), between Sex and Outcome
(e.g., females are more likely to show marked improvement), and between Treatment and
Outcome, but no 3-way association. In the PROC CATMOD step below, the LOGLIN state-
ment specifies this log-linear model as SEX|TREAT|IMPROVE@2 (where IMPROVE is the
Outcome variable), which means “all terms up to 2-way associations.”

title2 ’Test homogeneity of treat*improve association’;
data arth;

set arth;
if count=0 then count=1E-20;

proc catmod order=data;
weight count;
model sex * treat * improve = _response_ /

ml noiter noresponse nodesign nogls ;
loglin sex|treat|improve@2 / title=’No 3-way association’;

run;
loglin sex treat|improve / title=’No Sex Associations’;

(Frequencies of 0 can be regarded either as “structural 0s”—a cell that could not occur,
or as “sampling 0s”—a cell that simply did not occur. PROC CATMOD treats 0 frequencies
as “structural 0s,” which means that cells with count = 0 are excluded from the analysis.
The DATA step above replaces the one 0 frequency by a small number.)

In the output from PROC CATMOD, shown in Output 3.10, the likelihood ratio χ2 (the
badness-of-fit for the No 3-Way model) is the test for homogeneity across Sex. This is
clearly non-significant, so the Treatment-Outcome association can be considered to be the
same for men and women.

Note that the associations of Sex with Treatment and Sex with Outcome are both small
and of borderline significance. This suggests a stronger form of homogeneity than the log-
linear model [Sex] [TreatOutcome], which says that the only association is that between
Treatment and Outcome. This model is tested by the second LOGLIN statement given in the
previous program, which produced the results shown in Output 3.11. The likelihood ratio
test indicates that this model might provide a reasonable fit.
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Output 3.10 Arthritis treatment data, testing homogeneity

Arthritis Treatment: PROC FREQ Analysis 7
Test homogeneity of treat*improve association

No 3-way association

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob
--------------------------------------------------
SEX 1 8.02 0.0046
TREAT 1 0.42 0.5157
SEX*TREAT 1 1.62 0.2036
IMPROVE 2 9.04 0.0109
SEX*IMPROVE 2 4.12 0.1276
TREAT*IMPROVE 2 12.85 0.0016

LIKELIHOOD RATIO 1 0.01 0.9038

Output 3.11 Arthritis treatment data, testing homogeneity

Arthritis Treatment: PROC FREQ Analysis 8
Test homogeneity of treat*improve association

No Sex Associations

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob
--------------------------------------------------
SEX 1 9.06 0.0026
TREAT 1 0.02 0.9006
IMPROVE 2 7.61 0.0223
TREAT*IMPROVE 2 12.21 0.0022

LIKELIHOOD RATIO 4 4.60 0.3314

3.4 Fourfold Display for 2 × 2 Tables

The fourfold display is a relative of the pie chart, designed for the display of 2 × 2 (or
2 × 2 × k) tables (Fienberg, 1975; Friendly, 1994a,c). In this display, the frequency ni j in
each cell of a fourfold table is shown by a quarter circle, whose radius is proportional to√

ni j , so the area is proportional to the cell count. The fourfold display is similar to a pie
chart in using segments of a circle to show frequencies. It differs from a pie chart in that
it keeps the angles of the segments constant and varies the radius, whereas the pie chart
varies the angles and keeps the radius constant.
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The main purpose of this display is to depict the sample odds ratio,

θ̂ = (n11/n12)÷ (n21/n22).

An association between the variables (θ �= 1) is shown by the tendency of diagonally
opposite cells in one direction to differ in size from those in the opposite direction, and the
display uses color or shading to show this direction. Confidence rings for the observed θ
allow a visual test of the hypothesis of independence, H0 : θ = 1. They have the property
that (in a standardized display) the rings for adjacent quadrants overlap if the observed
counts are consistent with the null hypothesis.

EXAMPLE 3.8 Berkeley admissions

Figure 3.2 shows the basic fourfold display for the Berkeley admissions data (Table 3.1).
Here, the area of each quadrant is proportional to the cell frequency, shown numerically in
each corner. The odds ratio is proportional to the product of the areas shaded dark, divided
by the product of the areas shaded light. The sample odds ratio, Odds (Admit|Male) / Odds
(Admit|Female), is 1.84 (see Example 3.4), indicating that males were nearly twice as
likely to be admitted.

Figure 3.2 Fourfold display for Berkeley admission data, unstandardized
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However, it is difficult to make these visual comparisons because there are more men
than women, and because the proportions admitted and rejected are unequal. In the unstan-
dardized display the confidence bands have no interpretation as a test of H0 : θ = 1.

The data in a 2 × 2 table can be standardized to make these visual comparisons easier.
Table 3.7 shows the Berkeley data with the addition of row percentages (which equate for
the number of men and women applicants), indicating the proportion of each gender that
was accepted and rejected. The table indicates that 44.52% of males were admitted, while
only 30.35% of females were admitted. Moreover, the row percentages have the same odds
ratio as the raw data: 44.52 × 69.65/30.35 × 55.48 = 1.84. Figure 3.3 shows the fourfold
display, where the area of each quarter circle is proportional to these row percentages.



76 Visualizing Categorical Data

Table 3.7 Admissions to Berkeley graduate programs, frequencies and row percentages

Frequencies Row Percents
Admitted Rejected Admitted Rejected

Males 1198 1493 44.52 55.48
Females 557 1278 30.35 69.65

Figure 3.3 Fourfold display for Berkeley admission data, genders equated
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With this standardization, the confidence rings have the property that the confidence
rings for each upper quadrant will overlap with those for the quadrant below it if the odds
ratio does not differ from 1.0. However, no similar statement can be made about the cor-
responding left and right quadrants because the overall rate of admission has not been
standardized.

As a final step, we can standardize the data so that both table margins are equal, while
preserving the odds ratio. Each quarter circle is then drawn to have an area proportional
to this standardized cell frequency. This makes it easier to see the association between
admission and sex without being influenced by the overall admission rate or by the differ-
ential tendency of males and females to apply. With this standardization, the four quad-
rants will align (overlap) horizontally and vertically when the odds ratio is 1, regardless of
the marginal frequencies. The fully standardized display, which is usually the most useful
form, is shown in Figure 3.4.

The quadrants in Figure 3.4 do not align and the 99% confidence rings around each
quadrant do not overlap, indicating that the odds ratio differs significantly from 1—putative
evidence of gender bias. The very narrow width of the confidence rings gives a visual
indication of the precision of the data—if we stopped here, we might feel quite confident
of this conclusion.
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Figure 3.4 Fourfold display for Berkeley admission data, genders and admission equated. The area
of each quadrant shows the frequency, standardized to equate the margins for sex and
admission. Circular arcs show the limits of a 99% confidence interval for the odds ratio.
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3.4.1 Confidence Rings for Odds Ratio

Confidence rings for the fourfold display are computed from a confidence interval for θ ,
whose endpoints can each be mapped into a 2 × 2 table. Each table is then drawn in the
same way as the data.

The interval for θ is most easily found by considering the distribution of ψ̂ = log θ̂ ,
whose standard error may be estimated by using Equation 3.2. Then an approximate 1 − α
confidence interval for ψ is given by

ψ̂ ± ŝ(ψ̂) z1−α/2 = {ψ̂l , ψ̂u} ,

as described in Section 3.2.2. The corresponding limits for the odds ratio θ are {exp(ψ̂l),

exp(ψ̂u)}. For the data shown in Figure 3.4, ψ̂ = log θ̂ = .6104, and ŝ(ψ̂) = 0.0639, so
the 99% confidence limits for θ are {1.5617, 2.1704}.

Now consider how to find a 2 × 2 table whose frequencies correspond to the odds ratios
at the limits of the confidence interval. A table standardized to have equal row and column
margins can be represented by the 2 × 2 matrix with entries[

p (1 − p)
(1 − p) p

]
,

whose odds ratio is θ = p2/(1 − p)2. Solving for p gives p = √
θ/(1 + √

θ). The
corresponding frequencies can then be found by adjusting the standardized table to have
the same row and column margins as the data. The results of these computations, which
generate the confidence rings shown in Figure 3.4, are shown in Table 3.8.
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Table 3.8 Odds ratios and equivalent tables for confidence rings

Odds Standardized
Ratio Table Frequencies

Lower 1.562 0.555 0.445 1157.2 1533.8
limit 0.445 0.555 597.8 1237.2

Data 1.841 0.576 0.424 1198.0 1493.0
0.424 0.576 557.0 1278.0

Upper 2.170 0.596 0.404 1237.8 1453.2
limit 0.404 0.596 517.2 1317.8

3.4.2 The FOURFOLD Program

Fourfold displays have been implemented by using SAS/IML. The program is described in
detail in an article in Observations (Friendly, 1994c) and is documented in Appendix A.8
of this book.

FOURFOLD is a SAS/IML module that is called as follows:

run fourfold(dim, table, vnames, lnames);

where TABLE is the 2×2 (or 2×2×k) frequency table whose dimensions are given by DIM,
VNAMES is a character vector that contains the names of the table variables, and LNAMES is
a character matrix of the category levels. A variety of options for standardization, shading
patterns and colors, confidence rings, etc. are controlled by global variables, as described
in Appendix A.8.

To use the program, %INCLUDE the FOURFOLD program within a PROC IML step. Then,
enter the observed frequencies in the array TABLE; create the character vector VNAMES,
which contains the row and column variable names; and create the two-row character ma-
trix LNAMES, which contains the category labels.

For example, the plots in Figure 3.2 and Figure 3.4 are produced by the statements
shown in the following program:

goptions hsize=7in vsize=7in; *-- make plot square;
filename fourfold ’path/to/fourfold.sas’;
proc iml;

%include fourfold;

*-- Berkeley Admissions data;
dim = {2 2};
vnames = {"Admit?" "Sex"};
lnames = {"Yes" "No",

"Male" "Female"};

/* Admit Not */
table = {1198 1493,

557 1278};

patterns={solid solid};
colors={grayd0 gray80};

std=’MAX’; /* Figure 3.2 */
run fourfold(dim, table, vnames, lnames);
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std=’MARG’; /* Figure 3.4 */
run fourfold(dim, table, vnames, lnames);

quit;

The global variable STD determines the way the table is standardized. STD=’MAX’ scales
the frequencies so that the largest value is 100; STD=’MARG’ is used to equate the marginal
frequencies for the row variable, the column variable, or both (the default). The variable(s)
equated are controlled by the global CONFIG variable. For example, to equate the second
variable, as in Figure 3.3, specify CONFIG={2}:

std=’MARG’;
config={2}; /* Figure 3.3 (equate gender) */
run fourfold(dim, table, vnames, lnames);

3.4.3 Stratified Analysis for 2 × 2 × k Tables

In a 2 × 2 × k table, the last dimension often corresponds to “strata” or populations, and it
is typically of interest to see if the association between the first two variables is homoge-
neous across strata. For such tables, simply make one fourfold panel for each stratum. The
standardization of marginal frequencies is designed to allow easy visual comparison of the
pattern of association when the marginal frequencies vary across two or more populations.

The admissions data shown in Figures 3.2, 3.3, and 3.4 were actually obtained from
six departments—the six largest at Berkeley (Bickel et al., 1975). To determine the source
of the apparent sex bias in favor of males, we make a new plot (Figure 3.5) stratified by
department.

Surprisingly, Figure 3.5 shows that, for five of the six departments, the odds of ad-
mission are approximately the same for both men and women applicants. Department A
appears to differ from the others, with women approximately 2.86 (= (313/19)/(512/89))
times as likely to gain admission. This apparent difference is confirmed by the confidence
rings, which in Figure 3.5 are joint 99% intervals for θc, c = 1, . . . , k.

This result, which contradicts the display for the aggregate data shown in Figure 3.4,
is a nice example of Simpson’s paradox3, and it illustrates clearly why an overall analysis
of a 3- (or higher-) way table can be misleading. The resolution of this contradiction can
be found in the large differences in admission rates among departments. Men and women
apply to different departments differentially, and, in this data, women happen to apply in
larger numbers to departments that have a low acceptance rate. The aggregate results are
misleading because they falsely assume that men and women are equally likely to apply in
each field.4

A final enhancement of the fourfold display is shown in Figure 3.6. Here, small tick
marks are drawn to show the direction of association (positive residuals), and the intensity
of the shading colors is varied to distinguish those strata for which the odds ratio differs
significantly from 1 at α = .01.5

3Simpson’s paradox (Simpson, 1951) occurs in a 3-way table, [A, B,C], when the marginal association between
two variables, A, B collapsing over C , differs in direction from the partial association A, B|C = ck at the separate
levels of C . Strictly speaking, Simpson’s paradox would require that for all departments separately the odds ratio,
θk , is less than 1 (which occurs for Departments A, B, D, and F in Figure 3.5), while in the aggregate data, θ is
greater than 1.
4This explanation ignores the possibility of structural bias against women, e.g., lack of resources allocated to
departments that attract women applicants.
5The FOURFOLD program allows these tests to be done either individually or jointly (using a Bonferroni adjust-
ment).
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Figure 3.5 Fourfold display of Berkeley admissions, by department. In each panel the confidence
rings for adjacent quadrants overlap if the odds ratio for admission and sex does not
differ significantly from 1. The data in each panel has been standardized as shown in
Figure 3.4.
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Figure 3.6 Fourfold display of Berkeley admissions, by department, enhanced. Each panel is shaded
according to whether or not the odds ratio for admission and sex differs significantly
from 1.
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Visualization Principles

An important principle in the display of large, complex datasets is controlled compari-
son—making comparisons against a clear standard, with other things held constant. The
fourfold display differs from a pie chart in that it holds the angles of the segments constant
and varies the radius. An important consequence is that we can quite easily compare a
series of fourfold displays for different strata because corresponding cells of the table are
always in the same position. As a result, an array of fourfold displays serves the goals of
comparison and detection better than an array of pie charts. Moreover, it allows the ob-
served frequencies to be standardized by equating either the row or column totals, while
preserving the odds ratio. In Figure 3.5, for example, the proportion of men and women
and the proportion of accepted applicants in each department were equated visually. This
provides a clear standard, which also greatly facilitates controlled comparison.

Another principle is visual impact—distinguishing the important features of the display
from the less important (Tukey, 1993). Figure 3.6 distinguishes the one department for
which the odds ratio differs significantly from 1 by shading intensity, even though the
same information can be found by inspection of the confidence rings.

EXAMPLE 3.9 Breathlessness and wheeze in coal miners

Standardizing a collection of 2 × 2 tables allows visualizing relations with different fac-
tors (row percentages, column percentages, strata totals). Different graphs can speak more
eloquently to different questions.

Agresti (1990, Table 7.11) cites data from Ashford and Snowden (1970) on the associ-
ation between two pulmonary conditions, breathlessness and wheeze, in a large sample
of coal miners. The miners are classified into age groups, and the question treated by
Agresti is whether the association between these two symptoms is homogeneous across
age groups.6 This question is addressed by displaying the odds ratio in the 2 × 2 tables
with the margins of breathlessness and wheeze equated (i.e., with the default STD=’MARG’
option), which gives the graph shown in Figure 3.7. Although the panels for all age groups
show an overwhelmingly positive association between these two symptoms, one can also
see that the strength of this association declines with increasing age.

Figure 3.7 Fourfold display for coal miners data, both margins equated
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6A ninth group, aged 20–24, has been omitted from these analyses.
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Note that the pattern of change with increasing age is somewhat subtle compared to the
dominant positive association within each panel. When the goal is to display how the odds
ratio varies with a quantitative factor such as age, it is often better to simply plot the odds
ratio directly, as shown in Figure 3.8.

Figure 3.8 Breathlessness and wheeze in coal miners, log odds plot. The smooth curve is a quadratic
fit. Vertical bars give individual 95% confidence intervals.
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The FOURFOLD program also provides the relevant test statistics, shown in Output 3.12.
The test of whether the association is the same over age is a test of the log-linear model
[BW][BA][WA] of no 3-way association among the variables Breathlessness, Wheeze, and
Age, which is soundly rejected, G2(7) = 26.13.

A more poignant question, however, concerns the prevalence of these two respiratory
symptoms among miners and how these change as age increases. The answer is concealed
in Figure 3.7 because the proportion of miners with each symptom is equated in each
age group. This question can be addressed by standardizing the frequencies to equate the
numbers in each stratum (STD=’MAX’;), which gives the graph shown in Figure 3.9. If age
is regarded as reflecting the number of years spent working in coal mines, this figure shows
the sad result of such employment: the relative frequency of miners with both symptoms
steadily increasing over age. We return to this data in Example 7.14, where we consider a
variety of specific logit models for the prevalence of each symptom simultaneously with
models for their log odds ratio.
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Output 3.12 Odds ratios and tests of homogeneity of association for coal miners data

Odds (B|Wheeze) / (B|No Wheeze)

Odds Ratio Log Odds SE(Log) Z Pr>|Z|

25-29 40.2561 3.6953 0.4059 9.1049 0.0000
30-34 29.9144 3.3983 0.2781 12.2201 0.0000
35-39 23.1191 3.1407 0.1828 17.1815 0.0000
40-44 20.3827 3.0147 0.1693 17.8072 0.0000
45-49 16.1521 2.7820 0.1369 20.3163 0.0000
50-54 18.6602 2.9264 0.1259 23.2377 0.0000
55-59 11.4796 2.4406 0.1205 20.2535 0.0000
60-64 13.9846 2.6380 0.1470 17.9494 0.0000

Test of Homogeneity of Odds Ratios (no 3-Way Association)

TEST CHISQ DF PROB
Homogeneity of Odds Ratios 26.132 7 0.0005

Conditional Independence of Breathlessness and Wheeze | Age
(assuming Homogeneity)

TEST CHISQ DF PROB
Likelihood-Ratio 2993.411 1 0.0000
Cochran-Mantel-Haenszel 3266.222 1 0.0000

Figure 3.9 Fourfold display for coal miners data, strata equated
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3.5 Sieve Diagrams

They consider me to have sharp and penetrating vision
because I see them through the mesh of a sieve.

Kahlil Gibran

For 2- (and higher-) way contingency tables, the design principles of perception, detection,
and comparison (see Chapter 1) suggest that we should try to show the observed frequen-
cies in relation to what we would expect those frequencies to be under a reasonable null
model—for example, the hypothesis that the row and column variables are unassociated.

To this end, several schemes for graphically representing contingency tables are based
on the fact that when the row and column variables are independent, the estimated expected
frequencies, mi j , are products of the row and column totals (divided by the grand total).

mi j = ni+n+ j

n++
.

Then, each cell can be represented by a rectangle whose area shows the cell frequency, ni j ,
or deviation from independence.

For example, for any 2-way table, the expected frequencies under independence can
be represented by rectangles whose widths are proportional to the total frequency in each
column, n+ j , and whose heights are proportional to the total frequency in each row, ni+;
the area of each rectangle is then proportional to mi j . Figure 3.10 shows the expected
frequencies for the hair- and eye-color data (Table 3.2).

Figure 3.10 Expected frequencies under independence. Each box has an area equal to its expected
frequency, and is cross-ruled proportionally to the expected frequency.
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This display simply represents the model (what the frequencies would be if hair color
and eye color were independent), not the data. Note, however, that the rectangles are cross-
ruled so that the number of boxes in each (counting up the fractional bits) equals the ex-
pected frequency with which the cell is labeled, and moreover, the rulings are equally
spaced in all cells. Hence, cross-ruling the cells to show the observed frequency would
give a data display that implicitly compares observed and expected frequencies.

Riedwyl and Schüpbach (1983, 1994) proposed a sieve diagram (later called a parquet
diagram) based on this principle. In this display, the area of each rectangle is proportional
to expected frequency, as shown in Figure 3.10, but observed frequency is shown by the
number of squares in each rectangle. Hence, the difference between observed and expected
frequency appears as variations in the density of shading. Cells whose observed frequency
ni j exceeds the expected mi j appear denser than average. The pattern of positive and neg-
ative deviations from independence can be more easily seen by using color—say, red for
negative deviations, and blue for positive.7

EXAMPLE 3.10 Hair color and eye color

The sieve diagram for hair color and eye color (Table 3.2) is shown in Figure 3.11. The
pattern of color and shading shows the high frequency of blue-eyed blonds and people
with brown eyes and dark hair. People with hazel eyes are also more likely to have red or
brown hair, and those with green eyes more likely to have red or blond hair, than would be
observed under independence.

Figure 3.11 Sieve diagram for hair-color and eye-color data. Observed frequencies are equal to the
number of squares in each cell, so departure from independence appears as variations
in shading density.
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7Positive residuals are also shown by solid lines and negative residuals by broken lines, so they may still be
distinguished in monochrome versions.
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EXAMPLE 3.11 Visual acuity

Figure 3.12 shows the sieve diagram for data on visual acuity in a large sample of women
(n = 7477), aged 30 through 39, who worked in the U.K. Royal Ordnance factories during
World War II (Kendall and Stuart (1961, Table 33.5), Bishop et al. (1975, p. 284)). For
each person, unaided distance vision of each eye was measured and categorized into four
ordered grades. The data is listed in Appendix B.13.

Figure 3.12 Vision classification data for 7477 women
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The diagonal cells show the obvious: people tend to have the same visual acuity in both
eyes, and there is a strong lack of independence. The off-diagonal cells show a more sub-
tle pattern that suggests symmetry: the cells below the diagonal are approximately equally
dense as the corresponding cells above the diagonal. Moreover, the relatively consistent
pattern on the diagonals (±1,±2, . . . ,) away from the main diagonals suggests that the as-
sociation may be explained in terms of the difference in visual acuity between the two eyes.
These suggestions can be tested by fitting intermediate models between the null model of
independence (which fits terribly) and the saturated model (which fits perfectly), as we
shall see later in this book. For example, a model of quasi-independence (Example 4.3)
ignores the diagonal cells and tests whether independence holds for the remainder of the
table.

3.5.1 The SIEVE Program

Sieve diagrams are implemented as a general module in SAS/IML, because the calculations
and graphics are most easily handled by using matrices. The program is documented in
Appendix A.27.

To use the program, %INCLUDE the SIEVE program within a PROC IML step. Then enter
the observed frequencies in array F; create the character vector VNAMES, which contains the
row and column variable names; and create the two-row character matrix LNAMES, which
contains the category labels. The sieve diagram is produced with the SIEVE module,

run sieve( f, vnames, lnames, title );
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For example, the sieve diagram in Figure 3.11 for the hair-color and eye-color data is
produced by the statements in the program that follows. Note that the graphics options
HSIZE and VSIZE should be set to make the plot square.

goptions hsize=7in vsize=7in;

filename iml ’~/sasuser/iml’;
proc iml;

%include iml(sieve);
f = { 5 29 14 16 , /* green */

15 54 14 10 , /* hazel */
20 84 17 94 , /* blue */
68 119 26 7 }; /* brown */

vnames = {’Eye Color’ ’Hair Color’};
lnames = {’Green’ ’Hazel’ ’Blue’ ’Brown’ ,

’Black’ ’Brown’ ’Red’ ’Blond’};
title = ’Sieve diagram: Hair Eye Color Data’;
font=’hwpsl011’;
run sieve(f, vnames, lnames, title );

quit;

3.5.2 Larger Tables

Sieve diagrams are strictly applicable to 2-way tables. However, larger tables may be dis-
played by representing two or more table variables interactively along either of the di-
mensions of a 2-way table. Associations among the variables represented along the rows
(or columns) are not displayed; however, associations between the row variable(s) and the
column variable(s) are displayed.8

EXAMPLE 3.12 Berkeley admissions

A sieve diagram may be used to determine if the association between gender and depart-
ment is the same across departments by structuring the 3-way table as [Department] by
[Admission-Sex], which gives the plot shown in Figure 3.13. In terms of the log-linear
models discussed in the next chapter, this is equivalent to fitting the model of joint inde-
pendence, [D][AG].

8The program fits a model where the row variable(s) are independent of the column variable(s).
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Figure 3.13 Sieve diagram for Berkeley admissions data. The display fits a model (homogeneity) in
which the combinations of Sex and Admit are jointly independent of Department.
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This sieve diagram is produced using the sieve module as follows:

proc iml;
%include iml(sieve);

vnames = {"Department" "Sex:Admit" };
lnames = { "A" "B" "C" "D" "E" "F",

"M:Yes" "M:No" "F:Yes" "F:No" " " " "};
/* Males Females */

table = { 512 313 89 19,
353 207 17 8,
120 205 202 391,
138 279 131 244,
53 138 94 299,
22 351 24 317};

font=’hwpsl009’;
title = ’Berkeley Admissions Data’;
run sieve(table, vnames, lnames, title );

quit;

In this display, the widths of the columns show the greater number of male applicants than
female; the greater overall admission rate for males can be seen by comparing the ratios of
widths (M:Yes / M:No) to that of (F:Yes / F:No). The marginal frequencies of all applicants
to the various departments are shown by the heights of the rectangles in each row. Cells
with many small squares (in blue) correspond to those whose observed frequencies are
greater than expected under independence. Figure 3.13 shows greater numbers of male
applicants in departments A and B (whose overall rate of admission is high) and greater
numbers of female applicants in the remaining departments (where the admission rate is
low).
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3.6 Association Plots

In the sieve diagram the foreground (rectangles) shows expected frequencies; deviations
from independence are shown by color and density of shading. The association plot (Co-
hen, 1980; Friendly, 1991) puts deviations from independence in the foreground: the area
of each box is made proportional to observed − expected frequency. This graphical method
is described in more detail in Friendly (1991), Section 10.2.1, which also lists the program
used to produce the association plot.

For a 2-way contingency table, the signed contribution to Pearson χ2 for cell i, j is

di j = ni j − mi j√
mi j

= std. residual, χ2 =
∑

i j

(di j )
2

In the association plot, each cell is shown by a rectangle:

• (signed) height ∼ di j

• width =
√

mi j

so the area of each cell is proportional to the raw residual, ni j −mi j . The rectangles for each
row in the table are positioned relative to a baseline representing independence (di j = 0)
and shown by a dotted line. Cells with observed > expected frequency rise above the line
(and are colored black); cells that contain less than the expected frequency fall below it
(and are shaded gray).

Figure 3.14 shows the association plot for the hair-color and eye-color data. Note that
the residuals in each row tend to increase or decrease systematically in each row, except in
the row for hazel eyes.

One virtue of the association plot is that it is quite simple to interpret. Bertin (1981)
uses similar graphics to display large complex contingency tables. Like the sieve diagram,
however, patterns of association are most apparent when the rows and columns of the
display are ordered in a sensible way.

Figure 3.14 Association plot for hair-color and eye-color data
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3.7 Observer Agreement

Inter-observer agreement is often used as a method of assessing the reliability of a sub-
jective classification or assessment procedure. For example, two (or more) clinical psy-
chologists might classify patients on a scale with categories of normal, mildly impaired,
or severely impaired. Ethologists might classify the behavior of animals in categories of
cooperation, dominance, etc.

A contingency table is formed in which the observations represent all individuals who
have been rated or classified. The rows of the table refer to the categories used by one
observer, and the columns refer to the categories used by another observer. In most cases,
the same categories are used by both raters, so the contingency table is square, and the
entries in the diagonal cells are the cases where the raters agree.

EXAMPLE 3.13 Sex is fun

Table 3.9 (Agresti (1990, Table 2.10) from Hout et al. (1987)) summarizes the responses
of 91 married couples to the questionnaire item

Sex is fun for me and my partner: (a) never or occasionally, (b) fairly often, (c) very often,
(d) almost always.

In each row, the diagonal entry is not always the largest, though it appears that the partners
tend to agree more often when either responds “almost always.”

Table 3.9 Ratings of the questionnaire item “Sex is fun” by husbands and wives.
Source: Agresti (1990, Table 2.10) from Hout et al.

Wife’s Rating
Husband’s Never Fairly Very Almost
Rating Fun Often Often Always Total

Never Fun 7 7 2 3 19
Fairly Often 2 8 3 7 20
Very Often 1 5 4 9 19
Almost Always 2 8 9 14 33

Total 12 28 18 33 91

EXAMPLE 3.14 Diagnosis of MS patients

Landis and Koch (1977) gave data on the diagnostic classification of multiple sclerosis
(MS) patients by two neurologists, one from Winnipeg and one from New Orleans, who
each classified patients from Winnipeg and New Orleans into one of four categories: (a)
certain MS, (b) probable MS, (c) possible MS, (d) doubtful, unlikely, or definitely not
MS. The data from the 69 patients in the New Orleans sample is shown in Table 3.10.

Table 3.10 Ratings of 69 patients by two neurologists

New Orleans Winnipeg Neurologist
Neurologist Certain Probable Possible Doubtful Total

Certain MS 5 3 0 0 8
Probable MS 3 11 4 0 18
Possible MS 2 13 3 4 22
Doubtful MS 1 2 4 14 21

Total 11 29 11 18 69
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There appears to be highest agreement in the Doubtful category, followed by the Probable
category.

3.7.1 Measuring Agreement

When assessing the strength of agreement, we usually have a more stringent criterion than
when measuring the strength of association, because observers ratings can be strongly
associated without strong agreement. For example, one rater could use a more stringent
criterion and thus consistently rate subjects one category lower (on an ordinal scale) than
another rater. More generally, measures of agreement must take into account the marginal
frequencies with which two raters use the categories. If observers tend to use the categories
with different frequency, this will affect measures of agreement.

Intraclass Correlation

An analysis of variance framework leads to the intraclass correlation as a measure of
inter-rater reliability, particularly when there are more than two raters. This approach is
not covered here, but various applications are described by Shrout and Fleiss (1979).

Cohen’s Kappa

A commonly used measure of agreement, Cohen’s kappa (κ) (Cohen, 1960, 1968) com-
pares the observed agreement with the agreement expected by chance if the two observers’
ratings were independent. If pi j is the probability that a randomly selected subject is rated
in category i by the first observer and in category j by the other, then the observed agree-
ment is the sum of the diagonal entries, Po = ∑

i pii . If the ratings were independent, this
probability of agreement (by chance) would be Pc = ∑

i pi+ p+i . Cohen’s κ is then the
ratio of the difference between actual agreement and chance agreement, Po − Pc, to the
maximum value this difference could obtain:

κ = Po − Pc

1 − Pc
. (3.4)

When agreement is perfect, κ = 1; when agreement is no better than would be obtained
from statistically independent ratings, κ = 0. κ could conceivably be negative, but this
rarely occurs in practice. The minimum possible value depends on the marginal totals.

For large samples (n++), κ has an approximate normal distribution when H0 : κ = 0 is
true and its standard error (Fleiss, 1973; Fleiss et al., 1969) is given by

σ̂ (κ) = Pc + P2
c −∑

i pi+ p+i (pi+ + p+i )

n++(1 − Pc)2
.

Hence, it is common to conduct a test of H0 : κ = 0 by referring z = κ/σ̂ (κ) to a unit
normal distribution. The hypothesis of agreement no better than chance is rarely of much
interest, however. It is preferable to estimate and report a confidence interval for κ .

Weighted Kappa

The original (unweighted) κ counts strict agreement only (the same category is assigned
by both observers). A weighted version of κ (Cohen, 1968) may be used when you want to
allow for partial agreement. For example, exact agreements might be given full weight, but
one-category difference might be given a weight of 1/2. This typically makes sense only
when the categories are ordered, as in severity of diagnosis.
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Weighted κ uses weights 0 ≤ wi j ≤ 1 for each cell in the table, with wi i = 1 for the
diagonal cells. In this case, Po and Pc are defined as weighted sums

Po =
∑

i

∑
j

wi j pi j

Pc =
∑

i

∑
j

wi j pi+ p+ j

and these weighted sums are used in Equation 3.4.
For an r×r table, two commonly used patterns of weights are those based on equal spac-

ing of weights (Cicchetti and Allison, 1971) for a near-match, and Fleiss-Cohen weights
(Fleiss and Cohen, 1972), based on an inverse-square spacing:

wi j = 1 − |i− j |
r−1 equal spacing

wi j =1 − |i− j |2
(r−1)2

Fleiss-Cohen

By default, PROC FREQ uses the integer (equal) spacing weights. The Fleiss-Cohen weights
attach greater importance to near disagreements, as you can see in the 4 × 4 table that
follows. These weights also provide a measure equivalent to the intraclass correlation.

Integer Spacing Fleiss-Cohen Weights
1 2/3 1/3 0 1 8/9 5/9 0

2/3 1 2/3 1/3 8/9 1 8/9 5/9
1/3 2/3 1 2/3 5/9 8/9 1 8/9
0 1/3 2/3 1 0 5/9 8/9 1

Computing Kappa with SAS

In SAS Release 6.10 and later, PROC FREQ provides the κ statistic when you use the AGREE
option, as shown in the following example:9

title ’Kappa for Agreement’;
data fun;

label husband = ’Husband rating’
wife = ’Wife Rating’;

do husband = 1 to 4;
do wife = 1 to 4;

input count @@;
output;
end; end;

datalines;
7 7 2 3
2 8 3 7
1 5 4 9
2 8 9 14
;
proc freq;

weight count;
tables husband * wife / noprint agree;

run;

9In SAS Version 7 and later PROC FREQ provides the TEST statement using the syntax TEST KAPPA; to test
the hypothesis that κ = 0. You can also request Fleiss-Cohen weights by using the option AGREE (WT=FC) in
the TABLES statement. Standard errors, confidence intervals, and test statistics are large-sample (asymptotic) by
default. Exact tests are provided by the EXACT AGREE statement in SAS Version 7 and later.
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The preceding program produces the output shown in Output 3.1. Simple kappa gives
the unweighted value; you can see there is little evidence of agreement beyond chance
in husbands’ and wives’ ratings of their sexual fun. Weighted kappa uses the equal spac-
ing weights, taking into account ratings that “nearly” agree. The weighted sample κ is
larger, and the confidence interval does not include 0, so the weighted agreement is sig-
nificantly greater than chance, though again you see that agreement is relatively small.
The test of symmetry (Bowker’s test) shown in Output 3.1 tests the null hypothesis that
non-agreements are symmetric.

Output 3.1 Sex-is-fun data, agreement analysis

Kappa for Agreement
STATISTICS FOR TABLE OF HUSBAND BY WIFE

Test of Symmetry
----------------

Statistic = 3.878 DF = 6 Prob = 0.693

Kappa Coefficients
Statistic Value ASE 95% Confidence Bounds
------------------------------------------------------
Simple Kappa 0.129 0.069 -0.005 0.264
Weighted Kappa 0.237 0.078 0.084 0.391

Sample Size = 91

3.7.2 Bangdiwala’s Observer Agreement Chart

The observer agreement chart by Bangdiwala (1987) provides a simple graphic represen-
tation of the strength of agreement in a contingency table and a measure of strength of
agreement with an intuitive interpretation.

The agreement chart is constructed as an n × n square, where n is the total sample
size. Black squares, each of size nii × nii , show observed agreement. These are positioned
within larger rectangles, each of size ni+ × n+i , as shown in Figure 3.15. The large rect-
angle shows the maximum possible agreement, given the marginal totals. Thus, a visual
impression of the strength of agreement is given by

BN = area of dark squares

area of rectangles
=

∑k
i n2

i i∑k
i ni+ n+i

(3.5)

Partial Agreement

Partial agreement is allowed by including a weighted contribution from off-diagonal cells,
b steps from the main diagonal. For a given cell frequency, ni j , a pattern of weights,
w1, w2, . . . , wb is applied to the cell frequencies, as shown here schematically:

ni−b,i
...

ni,i−b · · · ni,i · · · ni,i+b
...

ni−b,i

wb
...

wb · · · 1 · · · wb
...

wb
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Figure 3.15 Agreement chart for husbands’ and wives’ sexual fun. The BN measure (Equation 3.5)
is the ratio of the areas of the dark squares to their enclosing rectangles, counting only
exact agreement. BN = 0.146 for this data.

Never fun       

N
e
v
e
r 

fu
n
  
  
  
 

Fairly Often    

F
a
ir
ly

 O
ft
e
n
  
  

Very Often      

V
e
ry

 O
ft
e
n
  
  
  

Always fun      

A
lw

a
y
s
 f
u
n
  
  
  

Husband’s Rating

W
if
e
’s

 r
a
ti
n
g
  
 

Agreement Chart: Husband’s and Wife’s Sexual Fun

These weights are incorporated in the agreement chart (Figure 3.16) by successively
lighter shaded rectangles whose size is proportional to the sum of the cell frequencies,
denoted Abi , as shown in Figure 3.15. A1i allows 1-step disagreements, using weights

Figure 3.16 Weighted agreement chart. The Bw
N measure is the ratio of the areas of the dark squares

to their enclosing rectangles, weighting cells 1 step removed from exact agreement with
w1 = 8/9 = .889. Bw

N = 0.628 for these data.
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1 and w1; A2i includes 2-step disagreements, etc. From this, you can define a weighted
measure of agreement, analogous to weighted κ .

BwN = weighted sum of areas of agreement

area of rectangles
= 1 −

∑k
i [ni+n+i − n2

i i −∑q
b=1 wb Abi ]∑k

i ni+ n+i

where wb is the weight for Abi , the shaded area b steps away from the main diagonal, and
q is the furthest level of partial disagreement to be considered.

3.7.3 Observer Bias

With an ordered scale, it may happen that one observer consistently tends to classify the
objects into higher or lower categories than the other. This produces differences in the
marginal totals, ni+ and n+i . While special tests exist for marginal homogeneity, the ob-
server agreement chart shows this directly by the relation of the dark squares to the diagonal
line: when the marginal totals are the same, the squares fall along the diagonal.

EXAMPLE 3.15 Diagnosis of MS patients

Table 3.10 shows the classification of 69 New Orleans patients regarding multiple sclerosis
diagnosis by neurologists in New Orleans and Winnipeg. The complete dataset, listed in
Appendix B.8, also includes 149 Winnipeg patients who were assessed by both neurolo-
gists.

It is instructive to compare the agreement charts (Figure 3.17) for the two samples of
patients. For both groups of patients, the two intermediate categories lie largely above the
line, indicating that the Winnipeg neurologist tends to classify patients into more severe
diagnostic categories. The departure from the diagonal is greater for the Winnipeg patients
for whom the Winnipeg neurologist very often uses the two most severe diagnostic cate-
gories.

Figure 3.17 Weighted agreement chart for the MS data. Departure of the middle squares from the
diagonal indicates lack of marginal homogeneity.
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3.7.4 The AGREE Program

The observer agreement charts are produced by the AGREE program, which is listed and
described in Appendix A.2. It is written in SAS/IML and is used like the SIEVE program:

run agree(table,w, vnames, lnames, title);

In addition to the TABLE, VNAMES, and LNAMES arguments, the AGREE module takes
a vector W of one or more weights to specify the number of steps of disagreement and
the weight to be applied to each. The following statements produce Figure 3.15 and Fig-
ure 3.16. In the first call to AGREE, w=1, so only exact agreement is considered; in the
second call, w={1 .889}, so 1-step disagreements are given weights of 8

9 .

title "Observer Agreement Chart";
proc iml;

%include iml(agree);
table =

{ 7 7 2 3,
2 8 3 7,
1 5 4 9,
2 8 9 14 };

title = "Agreement Chart: Husband’s and Wife’s Sexual Fun";
vnames = {"Husband’s Rating" "Wife’s rating"};
lnames = {’Never fun’ ’Fairly Often’ ’Very Often’ ’Always fun’} ;
font = ’hwpsl009’;

w=1; /* Figure 3.15 */
run agree(table, w, vnames, lnames, title);
w = w || (8/9); /* Figure 3.16 */
run agree(table, w, vnames, lnames, title);
end;

quit;

3.8 Trilinear Plots

The trilinear plot (also called a ternary diagram or trinomial plot) is a specialized display
for a 3-column contingency table or for three variables whose relative proportions are to
be displayed. This display is useful for both frequencies and proportions. For example,
individuals might be assigned to one of three diagnostic categories, or a chemical process
might yield three constituents in varying proportions, or the division of votes among three
parties in a parliamentary election might be examined. Trilinear plots are featured promi-
nently in Aitchison (1986), who describes statistical models for this type of compositional
data. Upton (1976, 1994) uses them in detailed analyses of spatial and temporal changes
in British general elections. Wainer (1996) reviews a variety of other uses of trilinear plots
and applies them to aid in understanding the distributions of students’ achievement in the
National Assessment of Educational Progress, making some aesthetic improvements to the
traditional form of these plots along the way.

A trilinear plot displays each observation as a point inside an equilateral triangle whose
coordinate corresponds to the relative proportions in each column. The three vertices repre-
sent the three extremes when 100% occurs in one of the three columns; a point in the exact
center corresponds to equal proportions of 1

3 in all three columns. For instance, Figure 3.18
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shows how three points whose compositions of the three variables A, B, and C are shown
as annotations. Note that each apex corresponds to 100% of the labeled variable, and the
percentage of this variable decreases linearly along a line to the midpoint of the opposite
baseline. The grid lines in the figure show the percentage value along each axis.

Figure 3.18 An illustrative trilinear plot
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The construction of trilinear plots is described in detail by Fedenczuk and Bercov
(1991). In summary, let P(a, b, c) represent the three components normalized so that
a + b + c = 1.0. If the apex corresponding to Point A in Figure 3.18 is given (x, y)
coordinates of (xA, yA) = (0, 0), and those at apex B are (xB, yB) = (100, 0), then the
coordinates of apex C are (xC , yC) = (50, 50

√
3). The coordinates (xP , yP) of P are then

calculated as

yP = c yC

xP = yP

(
yC − yB

xC − xB

)
+

√
3

2
yC(1 − a)

The figures shown here are produced using the TRIPLOT macro, which is described in
Appendix A.30.

EXAMPLE 3.16 Arthritis treatment

In the Arthritis treatment data, our interest is focused on the relative numbers of individ-
uals in the three outcome categories for the four groups defined by the combinations of
Treatment and Sex.

Figure 3.19 shows clearly that in both groups given the Active treatment there was a
greater proportion of successful outcomes (Some improvement or Marked improvement)
than in the Placebo groups. In addition, regardless of treatment, females show greater pro-
portions of successful outcomes than males do.
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Figure 3.19 Trilinear plot for Arthritis treatment data
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Figure 3.19 is produced by using the TRIPLOT macro as follows. For convenience in
identifying the Treatment-Sex combinations, these two variables are combined into a single
GROUP variable, used as the value of the CLASS= parameter in the macro call.

title ’Arthritis Treatment Data’;
data arth;

input sex $ treat $ @;
input none some marked;
length group $10;
sex = substr(sex,1,1);
group = trim(sex) || ’: ’ || treat;
label group=’Group’;

datalines;
Female Active 6 5 16
Female Placebo 19 7 6
Male Active 7 2 5
Male Placebo 10 0 1
;
%triplot(data=arth,

var=None Some Marked, class=group,
symht=4,
symbols=dot circle dot circle,
colors=red red blue blue,
backclr=grayd0, backpat=solid,
gridclr=white, gridby=25);

EXAMPLE 3.17 Baseball fielding

The Baseball dataset from SAS System for Statistical Graphics, First Edition, Section A2.3
(Friendly, 1991), includes data on the salaries and batting-and-fielding performance of 322
Major League players during the 1986 baseball season. Fielding performance includes the
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number of Errors, Putouts, and Assists made by each player. (Putouts occur when a fielder
causes an opposing player to be tagged or forced out; assists are credited to other fielders
involved in making that putout.)

Figure 3.20 shows a triplot for this data. Because of the large number of observations in
the dataset, the mean number of putouts, assists, and errors was calculated for each team
and for each position, giving a reduced dataset of 169 observations.10 These observations
are graphed in Figure 3.20, coding the player’s position by the plotting symbol.

Figure 3.20 Trilinear plot for baseball fielding data
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Two main types of players can be distinguished by their relative proportions of putouts
and assists: outfielders, catchers, and first basemen contribute to defense primarily in mak-
ing putouts; other infielders primarily make assists. The utility players (UT) play in a va-
riety of positions and are scattered throughout the plot. Beyond this main observation, you
can also see that outfielders and third basemen tend to make more errors than players in
other positions.

EXAMPLE 3.18 Lifeboats on the Titanic

We examine the question of who survived and why in the sinking of the RMS Titanic in
Section 4.3 (Example 4.5), where we analyze a 4-way table of the 2201 people on board
(1316 passengers and 885 crew), classified by Class, Sex, Age, and Survival. A different
dataset that sheds some light on the same issues is appropriate here.

After the disaster, the British Board of Trade launched several inquiries, the most com-
prehensive of which resulted in the Report on the Loss of the “Titanic” (S.S.) by Lord
Mersey (Mersey, 1912). Section 4 of this document contains a detailed account of the sav-

10Putouts and assists also occur far more often than errors, so the values of each variable were also first scaled to
a common range.
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ing and rescue of the passengers and crew who survived. The Titanic was outfitted with 20
boats, half on each of the port and starboard sides, of which 14 were large lifeboats with a
capacity of 65, two were emergency boats designed for 40 persons, and the remaining four
were collapsible boats capable of holding 47—a total capacity of 1178 (considered ade-
quate at that time). Two of the collapsible boats, lashed to the roof of the officers’ quarters,
were ineffectively launched and utilized as rafts after the ship sank. The report lists the time
of launch and the composition of the remaining 18 boats categorized as male passengers,
women and children, and “men of crew,” as reported by witnesses. The dataset LIFEBOAT
(see Appendix B.5) contains the data listed on page 38 of that report.11

Of interest here is the composition of the boats by these three categories, and by whether
the boats were launched from the port or starboard side. The data is represented in a trilin-
ear display using the statements shown in the following program. The parameter IDSUBSET
= MEN>.1 is used to label only boats in which the proportion of male passengers exceeded
10%. (The values of variables have been scaled to sum to 1.0 for each observation at the
time the IDSUBSET parameter is used.) The LABLOC=0 parameter is used to label the axes
at the value corresponding to 0% rather than at the vertex (LABLOC=100) as in the earlier
plots.

legend1 position=(top right inside) across=1
offset=(0,-25pct) mode=share frame;

%triplot(data=lifeboat,
var=Crew Men Women,
id=boat, class=side,
legend=legend1, labloc=0,
idht=1.7, symht=1.7,
idsubset=men>.1,
symbols= circle dot, colors=red blue);

Figure 3.21 Lifeboats on the Titanic, showing the composition of each boat. Boats with more than
10% male passengers are labeled.
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11The data lists a total of 854 in 18 boats, although only 712 were, in fact, saved. Mersey notes “it is obvious that
these figures are quite unreliable.” Allowing for 60 people rescued from the water, only 652 could have left in
the boats (Mersey, 1912, p. 39). An alternative dataset, LIFEBOA2, is presented in Appendix B.5, based on more
conservative and historically accurate information.
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The result (shown in Figure 3.21) makes it immediately apparent that the composition
of many of the boats launched from the port side differed substantially from that of the
remaining boats, whose passengers were almost entirely women and children. Boat 1 had
only 20% (2 out of 10) women and children, and the percentage for boat 3 was only 50%
(25 out of 50).

The triplot scales the numbers for each observation to sum to 1.0, so differences in
the total number of people on each boat cannot be seen in Figure 3.21. The total number
of people reported loaded is plotted against launch time in Figure 3.22, with a separate
regression line fit to the data for the port and starboard sides. It seems clear that the rescue
effort began in panic on the port side, with relatively small numbers of people loaded,
and, from Figure 3.21, small proportions of women and children. But the loading regime
improved steadily over time. The procedures began more efficiently on the starboard side
and the number of people loaded increased only slightly, though still with large variability
from boat to boat.

Figure 3.22 Lifeboats on the Titanic, showing the number of people loaded on each boat. Regression
lines for each side indicate a difference in regimes for the port and starboard sides.

7

5

3

1

9

11

13

15
C

6

8

10

12

14

16

2

4

D

Lifeboats on the Titanic

SIDE Port Starboard

T
o

ta
l 
lo

a
d

e
d

10

20

30

40

50

60

70

80

Launch Time
0:30 1:00 1:30 2:00 2:30

3.9 Chapter Summary

• A contingency table gives the frequencies of observations cross-classified by two or
more categorical variables. Different types of variables may be distinguished, such as
response, explanatory, and stratifying variables. With such data, we are typically inter-
ested in testing whether associations exist, quantifying the strength of association, and
understanding the nature of the association among these variables.

• 2 × 2 tables may be easily summarized in terms of the odds ratio or its logarithm.
• Tests of general association between two categorical variables are most typically carried

out using the Pearson’s chi-square or likelihood-ratio tests provided by PROC FREQ.
Stratified tests controlling for one or more background variables, and tests for ordinal
categories are provided by the Cochran-Mantel-Haenszel tests.
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• For 2 × 2 tables, the fourfold display provides a visualization of the association between
variables in terms of the odds ratio. Confidence rings provide a visual test of whether
the odds ratio differs significantly from 1. Stratified plots for 2 × 2 × k tables are also
provided by the FOURFOLD program.

• Sieve diagrams and association plots provide other useful displays of the pattern of as-
sociation in r × c tables.

• When the row and column variables represent different observers rating the same sub-
jects, interest is focused on agreement rather than mere association. Cohen’s κ is one
measure of strength of agreement. The observer agreement chart provides a visual dis-
play of how the observers agree and disagree.

• Another specialized display, the trilinear plot, is useful for three-column frequency
tables or compositional data.
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Chapter

4 Mosaic Displays for n-Way Tables
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Mosaic displays help to visualize the pattern of associations among variables in 2-way and larger tables.
Extensions of this technique can reveal partial associations and marginal associations and shed light on the
structure of log-linear models themselves.

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2 2-Way Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
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4.5 Showing the Structure of Log-linear Models . . . . . . . . . . . . . . 134
4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.1 Introduction

Little boxes, little boxes, little boxes made of ticky-tacky;
Little boxes, little boxes, little boxes all the same.
There are red ones, and blue ones, and green ones, and yellow ones;
Little boxes, little boxes, and they all look just the same.

Pete Seeger

In Chapter 3, I describe a variety of graphical techniques for visualizing the pattern of as-
sociation in simple contingency tables. These methods tend to be specialized, however, for
specific shapes and sizes of tables: 2-way (sieve diagram), 2 × 2 tables (fourfold display),
r × 3 tables (trilinear plots), and so on.
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This chapter describes the mosaic display, a graphical method that displays the fre-
quencies in a contingency table by a collection of rectangular “tiles” whose size (area) is
proportional to the cell frequency. In this respect, the mosaic display is similar to the sieve
diagram. However, the mosaic display

• generalizes readily to n-way tables. One can usefully examine 3-way, 4-way, and even
larger tables, subject, of course, to the limitations of resolution in any graph.

• displays the deviations (residuals) from a given log-linear model that has been fit to the
table.

• provides a method for fitting a series of sequential log-linear models to the various
marginal totals of an n-way table.

• can be used to illustrate the relations among variables that are fitted by various log-linear
models.

4.2 2-Way Tables

The mosaic display (Friendly, 1992, 1994b, 1997, 1999a; Hartigan and Kleiner, 1981,
1984) is similar to a grouped bar chart, where the widths of the bars show the relative
frequencies of one variable, and the heights of the sections in each bar show the relative
frequencies of the second variable, as shown in Figure 4.1. The construction of the mosaic
display and what it reveals are most easily understood for 2-way tables.

Figure 4.1 Basic mosaic display for Hair-color and Eye-color data. The area of each rectangle is
proportional to the observed frequency in that cell.
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EXAMPLE 4.1 Hair color and Eye color

Consider the data in Table 3.2, which shows the relation between Hair color and Eye color
among students in a statistics course. For such a 2-way table, the mosaic display is con-
structed by first dividing a unit square in proportion to the marginal totals of one variable,
for example, Hair color.

For this data, the marginal frequencies and proportions are

Black Brown Red Blond TOTAL
Frequencies 108 286 71 127 592
Proportions 0.1824 0.4831 0.1199 0.2145 1.000

These can be shown as the mosaic for the first variable (Hair color), as in Figure 4.2.
The rectangular tiles are shaded to show the residuals (deviations) from a particular model,
as follows:

• The 1-way table of marginal totals can be fit to a model, in this case, the model that all
hair colors are equally probable. This model has expected frequencies mi = 592/4.

Fitted frequencies
Black Brown Red Blond
148.00 148.00 148.00 148.00

• The Pearson residuals from this model, di = (ni − mi )/
√

mi , are

Standardized Pearson residuals
Black Brown Red Blond
-3.29 11.34 -6.33 -1.73

and these values are shown by color and shading, as shown in the legend for Figure 4.2.
The high positive value for Brown hair indicates that people who have brown hair are
much more frequent in this sample than the Equiprobability model would predict.

Figure 4.2 First step in the mosaic display
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Next, the rectangle for each Hair color is subdivided in proportion to the relative (condi-
tional) frequencies of the second variable, Eye color. This gives the following conditional
proportions:

Marginal proportions
Brown Blue Hazel Green TOTAL

Black 0.6296 0.1852 0.1389 0.0463 1.0
Brown 0.4161 0.2937 0.1888 0.1014 1.0
Red 0.3662 0.2394 0.1972 0.1972 1.0
Blond 0.0551 0.7402 0.0787 0.1260 1.0

The proportions in each row determine the heights of the tiles in the second mosaic display,
as shown in Figure 4.3.

Figure 4.3 Second step in the mosaic display. Each rectangle for hair color is subdivided in proportion
to the frequencies of eye color.
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• Again, the cells are shaded in relation to standardized residuals, di j = (ni j −mi j )/
√

mi j ,
from a model. For a 2-way table, the model shows that Hair color and Eye color are
independent in the population from which this sample was drawn.

Standardized Pearson residuals
Brown Blue Hazel Green

Black 4.40 -3.07 -0.48 -1.95
Brown 1.23 -1.95 1.35 -0.35
Red -0.07 -1.73 0.85 2.28
Blond -5.85 7.05 -2.23 0.61
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• Thus, the two tiles that are deep blue in color correspond to the two cells (Black, Brown)
and (Blond, Blue) whose residuals are greater than +4. This indicates a much greater
frequency in those cells than would be found if Hair color and Eye color were indepen-
dent. The tile that is deep red in color (Blond, Brown) corresponds to the largest residual,
−5.85, which indicates that this combination is extremely rare under the hypothesis of
independence.

• The overall Pearson χ2 statistic is just the sum of squares of the residuals.

Shading Levels

The default shading patterns for the tiles are based on standardized residuals that exceed
the values 2 and 4 in absolute value.1 Because the standardized residuals are approximately
unit-normal N (0, 1) values, this corresponds to highlighting cells whose residuals are in-
dividually significant at approximately the .05 and .0001 levels, respectively. The purpose
of highlighting cells, however, is not to provide tests of significance, but to draw attention
to the pattern of departures of the data from the assumed model. In any case, the number
and values of these cutoffs can be easily set by the user by using the SHADE parameter.

To provide some redundancy when color figures are reproduced in black and white,
cells with positive residuals are outlined with solid (blue) lines, while cells with negative
residuals are outlined with broken (red) lines. Cells whose absolute residuals are less than
the smallest shading level are unfilled. For good-fitting models, it is sometimes useful to
distinguish between near-0 residuals and small, non-significant residuals. In color figures,
near-0 cells are outlined in solid black; the threshold is determined by the FUZZ parameter.

Interpretation

To interpret the association between Hair color and Eye color, consider the pattern of pos-
itive (blue) and negative (red) tiles in the mosaic display. Positive values indicate cells
whose observed frequency is substantially greater than would be found under indepen-
dence; negative values indicate cells that occur less often than under independence.

This interpretation is enhanced by re-ordering the rows or columns of the 2-way table
so that the residuals have an opposite-corner pattern of signs. This usually helps interpret
any systematic patterns of association in terms of the ordering of the row and column cate-
gories. For this data, this is achieved by re-ordering the Eye colors, as shown in Figure 4.4.
Note that, in this re-arrangement, both Hair color and Eye color are ordered from dark to
light. (In general, the levels of a factor may be re-ordered by arranging them according
to their scores on the first (largest) correspondence analysis dimension (Friendly, 1994b)).
The re-ordered residuals are

Standardized Pearson residuals

Brown Hazel Green Blue

Black 4.40 -0.48 -1.95 -3.07
Brown 1.23 1.35 -0.35 -1.95
Red -0.07 0.85 2.28 -1.73
Blond -5.85 -2.23 0.61 7.05

1In datasets that have very large total frequency, most models may fit poorly and have large residuals. In such cases
(e.g., Example 5.5), it is often useful to define more shading levels to make finer distinctions. In Example 5.5, we
use SHADE={2 4 8} to set three levels of shading.
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Figure 4.4 Two-way mosaic, re-ordered. Deviations from independence are shown by color and
shading. The two levels of shading density correspond to standardized deviations greater
than 2 and 4 in absolute value. This form of the display generalizes readily to multi-way
tables.
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Thus, the mosaic shows that the association between Hair color and Eye color is essentially
that

• people with dark hair tend to have dark eyes
• those with light hair tend to have light eyes
• people with red hair do not quite fit this pattern.

4.2.1 Software for Mosaic Displays

Mosaic displays are implemented as a collection of modules (the MOSAICS.SAS program)
written in SAS/IML that are used within a PROC IML step, as described in Appendix A.16.
The program is designed so that the frequency table and its associated factor levels and vari-
able names may be entered directly by using SAS/IML statements, or (using the READTAB
module) may be input from a SAS dataset in the form produced by PROC FREQ. Using
the MOSAICS.SAS program within a PROC IML step is most flexible, because you can use
SAS/IML statements and modules within MOSAICS.SAS to manipulate the frequency table
(selecting or re-ordering rows or columns), to specify structural 0s, or to fit specialized
models that cannot be fit by other means.

In addition, several SAS macros are provided to simplify the use of the MOSAICS.SAS
program. The MOSAIC macro (Appendix A.17) may be used with any SAS dataset in fre-
quency form (e.g., the output from PROC FREQ). It reads the data into SAS/IML and pro-
vides basic mosaic displays, mosaics for externally calculated residuals, and partial mosaic
displays (Section 4.3.3). The TABLE macro (Appendix A.29) may be used to construct the
frequency table, and to collapse or re-code variables. The MOSMAT macro (Appendix A.18)
provides mosaic matrices (Section 4.4), an analog of the scatterplot matrix for categorical
data.
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The following examples illustrate the use of SAS/IML for basic mosaic displays. Ex-
ample 4.2 uses the MOSAIC macro, and Example 4.3 uses PROC IML statements to construct
and manipulate the frequency table.

EXAMPLE 4.2 UK Soccer scores

In Example 2.6, we examined the distribution of goals scored by the Home team and the
Away team in 380 games in the 1995/96 season by the 20 teams in the UK Football Asso-
ciation, Premier League. The analysis there focused on the distribution of the total goals
scored, under the assumption that the number of goals scored by the Home team and the
Away team were independent.

Here, that assumption is tested and the simple use of the MOSAIC macro to construct
the mosaic display is illustrated. It turns out that independence does, in fact, hold. The
resulting graph also illustrates a typical pattern shown under independence.

In the following program, the DATA step SOCCER reads the data from Table 2.6 in the
same way as in Example 2.6, producing a dataset that has the frequency variable FREQ and
the factor variables HOME and AWAY. The MOSAIC macro reads this dataset into SAS/IML
and runs the MOSAICS.SASmodule. The PLOTS=2 parameter causes the program to display
only the mosaic plot for the 2-way table.

title ’UK Soccer scores 95/96 season’;
data soccer;

input home @;
do away = 0 to 4;

total = home+away;
input freq @;
output;
end;

datalines;
0 27 29 10 8 2
1 59 53 14 12 4
2 28 32 14 12 4
3 19 14 7 4 1
4 7 8 10 2 0
;
%mosaic(data=soccer, var=Home Away, count=freq, plots=2, htext=2);

The printed output (not shown) gives the Pearson χ2 as 18.7 with 16 df, indicating that
Home and Away goals are independent. Figure 4.5 shows the mosaic display. The tiles in
each row are approximately the same height, and all the tiles except one are unshaded.

The one exception is for the situation where the Home team scores 4 or more goals,
and the Away team scores 2 goals, which occurs more often than you would expect under
independence. This residual (d42 = 3.08) accounts for nearly half of the overall χ2. It
may or may not be unusual to find one moderately large residual in a 5 × 5 table. A
half-normal plot of the residuals (described in Section 7.7.2), plots the absolute values of
residuals against expected values of normal order statistics, with a simulated 95% envelope
for residuals from a good-fitting model. This plot (shown in Figure 4.6) suggests that the
residual in the (4, 2) cell is large, but not unduly so.
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Figure 4.5 Mosaic display for UK Soccer scores
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Figure 4.6 Half-normal plot for UK Soccer scores

4:2

UK Soccer scores 95/96 season

A
bs

ol
ut

e 
P

ea
rs

on
 R

es
id

ua
l

0

1

2

3

4

Expected value of half normal quantile

0 1 2 3



Chapter 4 Mosaic Displays for n-Way Tables 113

EXAMPLE 4.3 Repeat victimization

Fienberg (1980, Table 2-8) gives the data in Table 4.1 (from Reiss, 1980) about instances
of repeat victimization for households in the U.S. National Crime Survey. In this survey,
respondents reported all occurrences during the period in question. If a given household re-
ported n such incidents, these led to n−1 tallies in the table, one for each pair of successive
victimizations.2

Table 4.1 Repeat Victimization Data

First Victimization
Second Pick- Personal Household Auto
Victimization Rape Assault Robbery pocket Larceny Burglary Larceny Theft

Rape 26 65 12 3 75 52 42 3
Assault 50 2997 279 102 2628 1117 1251 221
Robbery 11 238 197 40 413 191 206 51
Pickpocket 6 85 36 61 329 102 117 24
Personal Larceny 82 2553 459 243 12137 2649 3757 678
Burglary 39 1083 197 115 2658 3210 1962 301
Household Larceny 48 1349 221 101 3689 1973 4646 367
Auto Theft 11 216 47 38 687 301 391 269

Figure 4.7 shows the 2-way mosaic for a subset of 5 of these crimes (excluding pick-
pocket, personal larceny, and household larceny). The χ2 for independence is 3720.2 with

Figure 4.7 Mosaic display for repeat victimization data
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Repeat Victimization Data

2The observations are, therefore, not all operationally independent whenever n > 2. More detailed analysis would
incorporate households in a mixed model; however, that information is unavailable here.
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16 df. The association is so strong that three levels of shading were used (|di j | ≥ 2, 4, 8).
It is at once apparent that individuals tend to be victimized repeatedly in the same way, as
shown by the large blocks of positive residuals along the main diagonal.

The following program produces Figure 4.7. The statements in the VICTIMS module
define the frequencies in the 8 × 8 matrix TABLE. The names of the table variables and the
names of the factor levels are defined in VNAMES and LNAMES, respectively.

goptions vsize=7 in hsize=7 in;
proc iml;

start victims;
crime = {’Rape’ ’Assault’ ’Robbery’ ’PickPock’ ’Pers.Larceny’

’Burglary’ ’Hous.Larceny’ ’Auto’};
levels = {8 8};
vnames = {’First Victimization’ ’Second Victimization’};
lnames = crime // crime ;
title = ’Repeat Victimization Data’;
table = { 26 50 11 6 82 39 48 11,

65 2997 238 85 2553 1083 1349 216,
12 279 197 36 459 197 221 47,
3 102 40 61 243 115 101 38,
75 2628 413 329 12137 2658 3689 687,
52 1117 191 102 2649 3210 1973 301,
42 1251 206 117 3757 1962 4646 391,
3 221 51 24 678 301 367 269}‘;

finish;
run victims;

*-- load mosaic modules;
reset storage=mosaic;
load module=_all_;

*-- select subset of rows/cols;
keep = {1 2 3 6 8};
table = table[keep,keep];
lnames = lnames[,keep];
levels = {5 5};

*-- set mosaic global options;
htext = 1.4;
font = ’hwpsl009’;
shade = {2 4 8};

plots = {2};
run mosaic(levels, table, vnames, lnames, plots, title);

There is more to this story, but it is difficult to see in Figure 4.7, owing to the large
differences in the marginal frequencies of the various crimes. Of the crimes shown, Assault
and Burglary occur far more often than any others, and they tend to dominate the display.
You might ask what the associations would look like if all of these crimes occurred equally
often. As in the fourfold display, it is possible to calculate an adjusted table (using iterative
proportional fitting) in which both sets of marginal frequencies are equally probable.

In the following program, the statements first re-arrange the rows and columns of TABLE
in an order that accounts for the maximum association and gives an opposite-corner pattern
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to the residuals.3 The row totals for the crimes are used to construct the ADJUSTED table
that has equal marginal frequencies.

*-- rearrange rows/cols by CA dim1;
keep = {2 3 1 5 4};
table = table[keep,keep];
lnames = lnames[,keep];

*-- standardize table to equal margins;
avg = table[,+] / levels[1];
newtab = repeat(avg,1,5);
config = {1 2};
call ipf(adjusted, status, levels, newtab, config, table);
title = ’Repeat Victimization Data, Adjusted to Equal Margins’;
lab = crime[keep];
print title, adjusted[r=lab c=lab f=8.2];
plots = 2;
run mosaic(levels, adjusted, vnames, lnames, plots, title);

*-- fit quasi-independence (ignore diagonal cells);
title = ’Repeat Victimization Data, Quasi Independence’;
zeros = J(5,5) - I(5);
run mosaic(levels, adjusted, vnames, lnames, plots, title);

quit;

Figure 4.8 shows the mosaic for this adjusted table. Now you see that the association
among the crimes is consistent with an ordering along a dimension of crimes of violence

Figure 4.8 Mosaic display for the Repeat Victimization Data, margins equated
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Repeat Victimization Data, Adjusted to Equal Margins

3This order is found from a correspondence analysis of residuals, using the order of the scores on the dimension
that accounts for the largest portion of the association.
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vs. crimes against property. Given that someone has been a victim of one type of crime,
they are quite unlikely to be a victim of the other type of crime subsequently.

Figure 4.8 is still dominated by the large positive residuals on the diagonal representing
the tendency for a person to be victimized twice in the same way. One way to deal with
this is to fit a model of quasi-independence that ignores the diagonal cells. This is carried
out in the last call to MOSAICS. The ZEROS matrix defines a 5 × 5 matrix whose values are
0 on the diagonal and 1 elsewhere; the value 0 indicates that the corresponding value in
TABLE is to be ignored.4 The resulting mosaic is shown in Figure 4.9.

Figure 4.9 Repeat victimization data, Quasi Independence
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4.3 3-Way Tables

The mosaic display can be extended to 3- and higher-way tables. The relative frequencies
of a third variable are used to subdivide each 2-way cell, and so on, recursively.

Imagine that each cell of the 2-way table for Hair color and Eye color is further classified
by one or more additional variables—Sex and Level of Education, for example. Then each
rectangle can be subdivided horizontally to show the proportion of males and females in
that cell, and each of those horizontal portions can be subdivided vertically to show the
proportions of people at each educational level in the Hair-Eye-Sex group.

Figure 4.10 shows the mosaic for the 3-way table, with Hair-color and Eye-color groups
divided according to the proportions of Males and Females: You see that there is no sys-
tematic association between Sex and the combinations of Hair color and Eye color—except
among blue-eyed blonds, where there is an overabundance of females.

4Zero entries cause the corresponding cell frequency to be fitted exactly; 1 degree of freedom is subtracted for
each 0. The corresponding tile in the mosaic display is outlined in black.
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Figure 4.10 Three-way mosaic display for Hair color, Eye color, and Sex. The categories of Sex are
crossed with those of Hair color, but only the first occurrence is labeled. Residuals from
the model of joint independence, [HE ] [S] are shown by shading. G2 = 19.86 on 15 df.
The only lack of fit is an overabundance of females among blue-eyed blonds.
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4.3.1 Fitting Models

When three or more variables are represented in the mosaic, you can fit several different
models of “independence” and display the residuals from each model. These models are
treated as null or baseline models, which may not fit the data particularly well. The de-
viations of observed frequencies from expected ones, displayed by shading, often suggest
terms to be added to an explanatory model that achieves a better fit.

For a 3-way table that contains the variables A, B, and C , some of the hypothesized
models that can be fit are described in the sections that follow and are summarized in
Table 4.2. Here, I use [ ] notation to list the high-order terms in a hierarchical log-linear
model; these correspond to the margins of the table that are fitted exactly. The notation
[AB][AC], for example, is shorthand for the model

log mi jk = µ+ λA
i + λB

j + λC
k + λAB

i j + λAC
ik ,

(as described in Section 7.2) and reproduces the {AB} and {AC} marginal subtables. Here,
A ⊥ B is read, “A is independent of B.” Table 4.2 also depicts the relations among vari-
ables as an association graph, where associated variables are connected by an edge.

Each model fits certain table margins exactly, as shown in Table 4.2; other associations
that are present in the data appear in the pattern of residuals.

H1: Complete independence. The model of complete (mutual) independence, symbol-
ized A ⊥ B ⊥ C , asserts that all joint probabilities are products of the 1-way marginal
probabilities:

πi jk = πi++ π+ j+ π++k ,
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for all i, j, k in a 3-way table. This corresponds to the log-linear model [A][B][C].
Fitting this model puts all higher terms, and, hence, all association among the variables,
into the residuals.

H2: Joint independence. Another possibility is to fit the model in which variable C is
jointly independent of variables A and B, (A, B ⊥ C), where

πi jk = πi j+ π++k .

This corresponds to the log-linear model [AB][C]. Residuals from this model show the
extent to which variable C is related to the combinations of variables A and B, but they
do not show any association between A and B because that association is fitted exactly.
For this model, variable C is also independent of A and B in the marginal {AC} table
(collapsing over B) and in the marginal {BC}.

H3: Conditional independence. Two variables, for example, A and B are conditionally
independent given the third (C) if A and B are independent when you control for C ,
symbolized as A ⊥ B | C . This means that conditional probabilities, πi j |k obey

πi j |k = πi+|k π+ j |k ,

where πi j |k = πi jk/πi j+, πi+|k = πi+k/πi++, and π+ j |k = π+ jk/π+ j+. The correspond-
ing log-linear model is denoted [AC][BC]. When this model is fit, the mosaic display
shows the conditional associations between variables A and B, controlling for C , but
does not show the associations between A and C , or B and C .

H4: No 3-way interaction. For this model, no pair is marginally or conditionally indepen-
dent, so there is no independence interpretation. Nor is there a closed-form expression
for the cell probabilities. However, the association between any two variables is the
same at each level of the third variable. The corresponding log-linear model formula is
[AB][AC][BC], indicating that all 2-way margins are fit exactly and, therefore, are not
shown in the mosaic residuals.

Table 4.2 Fitted margins, model symbols, and interpretations for some hypotheses for a 3-way table

Fitted Model Independence Association
Hypothesis Margins Symbol Interpretation Graph

H1 ni++, n+ j+, n++k [A][B][C] A ⊥ B ⊥ C A B

C

H2 ni j+, n++k [AB][C] (A, B) ⊥ C A B

C

H3 ni+k, n+ jk [AC][BC] A ⊥ B | C A B

C

H4 ni j+, ni+k, n+ jk [AB][AC][BC] - A B

C
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For example, with the data from Table 3.2 broken down by sex, fitting the joint-
independence model [HairEye][Sex] allows us to see the extent to which the joint distribu-
tion of Hair color and Eye color is associated with Sex. For this model, the likelihood-ratio
G2 is 19.86 on 15 d f (p = .178), indicating an acceptable overall fit. The 3-way mosaic
for this model is shown in Figure 4.10. Any other model fit to this table will have the
same size tiles in the mosaic because the areas depend on the observed frequencies; the
residuals, and, hence, the shading of the tiles will differ. Thus, fitting a conditional inde-
pendence model, [HairSex][EyeSex] would test whether, given Sex, Hair color and Eye
color are independent (probably not a meaningful hypothesis here). This model fits very
poorly (G2(18) = 156.68). The mosaic display (Figure 4.11) has a pattern similar to that
in the 2-way display (Figure 4.4).

Figure 4.11 Mosaic display for Hair color, Eye color, and Sex. This display shows residuals from the
model of conditional independence, [HS] [ES], G2 = 156.68 on 18 df.
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Sequential Plots and Models

The mosaic display is constructed in stages, with the variables listed in a specified order. At
each stage, the procedure fits a (sub)model to the marginal subtable defined by summing
overall variables not yet entered. For example, for a 3-way table {ABC}, the marginal sub-
tables {A} and {AB} are calculated in the process of constructing the 3-way mosaic. The
{A} marginal table can be fit to a model where the categories of variable A are equiprob-
able (or some other discrete distribution); the independence model can be fit to the {AB}
subtable, and so forth.

The series of plots can give greater insight into the relationships among all the variables
than a single plot. Moreover, the series of mosaic plots, which fit submodels of joint inde-
pendence to the marginal subtables, have the special property that they can be viewed as
partitioning the hypothesis of mutual independence in the full table.
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For example, for the Hair- and Eye-color data, the mosaic displays for the [Hair] [Eye]
marginal table (Figure 4.4) and the [HairEye] [Sex] table (Figure 4.10) can be viewed as
representing the partition of G2, as shown here:

Model df G2

[Hair] [Eye] 9 146.44
[Hair, Eye] [Sex] 15 19.86

[Hair] [Eye] [Sex] 24 155.20

This partitioning scheme for sequential models of joint independence extends directly
to higher-way tables. The MOSAICS program implements a variety of schemes for fitting a
sequential series of submodels, including mutual independence, joint independence, con-
ditional independence, partial independence, and Markov chain models.

Marginal Subtables and Simpson’s Paradox

The sequential plots of marginal subtables assume that the (unconditional) relationship
among earlier variables in the ordering, ignoring later variables, is the same as the (con-
ditional) relationship among these variables controlling for later ones. For example, you
assume that Hair color and Eye color have the same relation in the marginal subtable as
they do in the subtable for each sex separately.

It is possible, however, for the marginal relations among variables to differ in magnitude,
or even in direction, from the relations among those variables controlling for additional
variables. The peculiar result that a pair of variables can have a marginal association in a
different direction than their partial associations is called Simpson’s paradox.

One way to determine if the marginal relations are representative is to fit models of
conditional association and compare them with the marginal models. For the Hair-color and
Eye-color data, the appropriate model is the model [Hair, Sex] [Eye, Sex], which examines
the relation between Hair color and Eye color controlling for Sex. The fit statistic is nearly
the same as for the unconditional marginal model:

Model df G2

[Hair] [Eye] 9 146.44
[Hair, Sex] [Eye, Sex] 15 156.68

And, the pattern of residuals is quite similar to that of the [Hair] [Eye] marginal model,
so, you can conclude there is no such problem here.

In this section, I describe a variety of models that can be fit to higher-way tables, some
relations among those models, and the aspects of lack-of-fit that are revealed in the mosaic
displays. The following sections illustrate the process of model fitting, using the mosaic as
an interpretive guide to the nature of associations among the variables. In general, you start
with a minimal baseline model.5 The pattern of residuals in the mosaic suggests associa-
tions to be added to an adequate explanatory model. As the model achieves better fit to the
data, the degree of shading decreases, so you might think of the process of model fitting as
“cleaning the mosaic.”

4.3.2 Causal Models

This sequence of models of joint independence has another interpretation when the order-
ing of the variables is based on a set of ordered hypotheses involving causal relationships

5When the variable R is a response, this normally is the model of joint independence [E1 E2 . . .] [R], where
E1, E2, . . . are the explanatory variables.
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among variables (Goodman (1973), Fienberg (1980, Section 7.2)). Suppose, for example,
that the causal ordering of four variables is A → B → C → D, where the arrow means
“is antecedent to.” Goodman suggests that the conditional joint probabilities of B, C , and
D, given A, can be characterized by a set of recursive logit models that treat (a) B as a
response to A, (b) C as a response to A and B jointly, and (c) D as a response to A, B,
and C . These are equivalent to the log-linear models that we fit as the sequential baseline
models of joint independence, namely [A][B], [AB][C], and [ABC][D]. The combination
of these models with the marginal probabilities of A gives a characterization of the joint
probabilities of all four variables.

EXAMPLE 4.4 Marital status and pre- and extramarital sex

A study of divorce patterns by Thornes and Collard (1979) reported the 24 table shown in
Table 4.3 (see Appendix B.6 for the SAS dataset). This data was analyzed by Agresti (1990,
Section 7.2.4) and by Friendly (1994b), from which this account draws. A sample of about
500 people who had petitioned for divorce and a similar number of married people were
asked two questions regarding their pre- and extramarital sexual experience: (1) “Before
you married your (former) husband/wife, had you ever made love with anyone else?,”
(2) “During your (former) marriage (did you) have you had any affairs or brief sexual
encounters with another man/woman?” Thus, the table variables are gender (G), reported
premarital (P) and extramarital (E) sex, and current marital status (M).

Table 4.3 Marital Status in Relation to Gender and Reported Premarital and Extramarital Sex

Extramarital Premarital Marital Status
Sex Sex Gender Divorced Married

Yes Yes Women 17 4
No 54 25

Yes No 36 4
No 214 322

Yes Yes Men 28 11
No 60 42

Yes No 17 4
No 68 130

Total 494 542

In this analysis, the variables are considered in the order G, P , E , and M . That is, the
first stage treats P as a response to G and examines the [Gender][Pre] mosaic to assess
whether gender has an effect on premarital sex. The second stage treats E as a response
to G and P jointly; the mosaic for [Gender, Pre] [Extra] shows whether extramarital sex
is related to either gender or premarital sex. Finally, the mosaic for [Gender, Pre, Extra]
[Marital] is examined for evidence of the dependence of marital status on the three previous
variables jointly. As noted above, these models are equivalent to the recursive logit models
whose path diagram is G → P → E → M .6 The G2 values for these models are shown

6Agresti (1990, Section 7.2.4) considers a slightly more complex, but more realistic model, in which premarital
sex affects both the propensity to have extramarital sex and subsequent marital status.
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next. Here is a breakdown of the G2 for the model of complete independence fit to the full
table.

Model df G2

[G] [P] 1 75.259
[GP] [E] 3 48.929

[GPE] [M] 7 107.956

[G] [P] [E] [M] 11 232.142

The [Gender] [Pre] mosaic is shown in Figure 4.12. The mosaic shows that men are
much more likely to report premarital sex than are women; the sample odds ratio is 3.7.
We also see that the number of women is about twice as prevalent as the number of men in
this sample.

For the second stage, the [Gender, Pre][Extra] mosaic is shown in Figure 4.13. G2 for
the model [GP][E] is 48.93 on 3 d f , indicating that extramarital sex depends on gender
and premarital sex, jointly.

Figure 4.12 Mosaic display for gender and
premarital sexual experience.
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Figure 4.13 Mosaic display for the model of
joint independence, [GP] [E].

Men          Women        

P
re

 S
e

x
: 

N
o

  
Y

e
s
  

  
  

  
  

Extra Sex: No Yes          

Model (GenderPre)(Extra)

From the pattern of residuals in Figure 4.13, you see that men and women who have re-
ported premarital sex are also far more likely to report extramarital sex. From the marginal
totals for the [GP] [E] table, the conditional odds ratio of extramarital sex is 3.61 for men
and 3.56 for women. Thus, extramarital sex depends on premarital sex but not on gender.

Figure 4.14 shows the mosaic for the final stage, fitting the model [Gender, Pre, Extra]
[Marital]. It shows that marital status depends strongly on gender and premarital and extra-
marital sex, jointly. Among those reporting no premarital sex (bottom part of Figure 4.14),
there is a similar pattern of cell sizes and deviations for marital status in relation to gen-
der and extramarital sex. People who did not report premarital sexual experience are more
likely to remain married if they report no extramarital sex and more likely to be divorced
if they did. Among those who do report premarital sex (top part of Figure 4.14), there is
also a similar pattern of sign of deviations: positive for those who are divorced, negative
for those who are married.

The four 2 × 2 blocks in Figure 4.14 show the conditional relation of extramarital sex
to marital status. Comparing these, you see that the odds ratios of divorce in relation to
reported extramarital sex are considerably larger for men and women who also reported
premarital sex. These observations imply the need to incorporate associations [PM] and
[EM] of premarital and extramarital sex with marital status, and probably the 3-way asso-
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Figure 4.14 Four-way mosaic for the model
[GPE] [M]. The pattern of residu-
als suggests terms to be included
in an explanatory model.
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Figure 4.15 Four-way mosaic for the model
[GPE] [PEM].
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ciation [PEM] into an explanatory model. Because this stage considers marital status as a
response to gender, premarital sex, and extramarital sex, you would usually fit the {G P E}
marginal table exactly and consider the models [GEP][PM][EM] or [GPE][PEM] for the
complete table.

The model [GPE][PM][EM] does not fit particularly well (this mosaic is not shown
here), producing G2 = 18.16 on 5 d f (p = .0028). The model [GPE][PEM], however,
does fit quite well, G2 = 5.25 with 4 d f (p = .26). The term [PEM] indicates that
premarital sex and extramarital sex interact in their effects on marital status: i.e., the effect
of extramarital sex on divorce is much greater for those who had no premarital sex than for
those who did! The final mosaic for this model (shown in Figure 4.15) still shows some
slight structure in the pattern of signs of residuals (compare the blocks for men with those
for women), but all residuals are quite small.

EXAMPLE 4.5 Survival on the Titanic

There have been few marine disasters resulting in the staggering loss of life that occurred
in the sinking of the Titanic on April 15, 1912 and (perhaps as a result) few that are so
widely known by the public. It is surprising, therefore, that neither the exact death toll
from this disaster nor the distributions of death among the passengers and crew is widely
agreed upon. Dawson (1995, Table 2) presents the cross-classification of 2201 passengers
and crew on the Titanic by Gender, Age, Survival, and Class (1st, 2nd, 3rd, Crew) as

Table 4.4 Survival on the Titanic

Class
Gender Age Survival 1st 2nd 3rd Crew

Male Adult Died 118 154 387 670
Female 4 13 89 3

Male Child 0 0 35 0
Female 0 0 17 0

Male Adult Survived 57 14 75 192
Female 140 80 76 20

Male Child 5 11 13 0
Female 1 13 14 0
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shown in Table 4.4 (see also Appendix B.11) and describes his efforts to reconcile various
historical sources.7 Let us see what can be learned from this dataset.

Figure 4.16(a) and Figure 4.16(b) show the 2-way and 3-way plots among the back-
ground variables. Figure 4.16(a) shows that the proportion of males decreases with in-
creasing economic class, and that the crew was almost entirely male. The 3-way plot
(Figure 4.16(b)) shows the distribution of adults and children among the Class-Gender
groups. The residuals display the fit of a model in which Age is jointly independent of the
Class-Gender categories. Note that there were no children among the crew, and the overall
proportion of children was quite small (about 5%). Among the passengers, the proportion
of children is smallest in 1st class, largest in 3rd class. The only large positive residu-
als correspond to a greater number of children among the 3rd-class passengers, perhaps
representing families traveling or immigrating together.

Figure 4.16 Titanic data: Background variables
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(b) Class, Gender, Age

Examining the series of mosaics for the variables, ordered by Class, Gender, Age, and
Survival, shows the relationships among the background variables and how these are re-
lated to survival. The letters C,G, A, S, respectively, are used in Figure 4.17 to refer to
these variables.

The 4-way mosaic, shown in Figure 4.17(a), fits the model [CG A][S], which asserts that
survival is independent of Class, Gender, and Age. This is the minimal null model when the
first three variables are explanatory. It is clear that greater proportions of women survived
than men in all classes, but with greater proportions of women surviving in the upper two
classes. Among males, the proportion who survived also increases with economic class
(towards 1st class). However, this model fits very poorly (G2(15) = 671.96). You can try
to fit a more adequate model by adding associations between survival and the explanatory
variables.

Adding an association of each of Class, Gender, and Age with Survival amounts to
fitting the model [CGA][CS][GS][AS]. That is, each of the three variables (C, G, A) is
associated with survival, but they have independent, additive effects. The mosaic for this
model is shown in Figure 4.17(b). The fit of this model is much improved (�G2(5) =
559.4) but still does not represent an adequate fit (G2(10) = 112.56). There are obviously
interactions among Class, Gender, and Age that impact Survival (some of which we have
already noted).

7Robert J. MacG. Dawson, “The ‘Unusual Episode’ Data Revisited,” Journal of Statistical Education, volume 3,
number 3. Copyright c© 1995. Reprinted by permission of Robert J. MacG. Dawson.
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Figure 4.17 Titanic data: Class, Gender, Age, and Survival
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(a) Joint independence: [CGA][S]
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(b) Effects of Age, Gender and Class on Sur-
vival: [CGA][CS][GS][AS]

Taking the rubric of “women and children first,” you next fit the model [CGA][CS][GAS]
in which Age and Gender interact in their influence on Survival. The mosaic for this model
is shown in Figure 4.18(a). Adding the association of Age and Gender with Survival
has improved the model slightly; however, the fit is still not good (G2(9) = 94.54). If
you add the interaction of Class and Gender to this (the model [CGA][CGS][GAS]) the
likelihood-ratio chi-square is reduced substantially (G2(6) = 37.26), but the lack of fit is
still significant.

Finally, you can try a model in which Class interacts with both Age and Gender to
give the model [CGA][CGS][CAS], whose residuals are shown in Figure 4.18(b). The
likelihood-ratio chi-square is now 1.69 with 4 df—a very good fit, indeed.

Figure 4.18 Titanic data: Models with interactions
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(a) Model [CGA][CS][GAS]
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(b) Model [CGA][CGS][CAS]

The implication of these figures is clear. Regardless of Age and Gender, lower economic
status was associated with increased mortality; the differences due to Class were moder-
ated, however, by both Age and Gender. Although women on the Titanic were, overall,
more likely to survive than men, the interaction of Class and Gender shows that women
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in 3rd class did not have a significant advantage; while men in 1st class did, compared to
men in other classes. The interaction of Class and Age is explained by the observation that,
while no children in 1st or 2nd class died, nearly two-thirds in 3rd class died; for adults,
mortality increases progressively as economic class declines. Hence, although the phrase
“women and children first” is mellifluous and appeals to our sense of Edwardian chivalry,
a more adequate description might be “women and children (according to class), then 1st-
class men.”

4.3.3 Partial Association

In a 3-way table, it might be that two variables, e.g., A and B, are associated at some levels
of the third variable, C , but not at other levels of C . More generally, you might want to
explore whether and how the association among two (or more) variables in a contingency
table varies over the levels of the remaining variables. The term partial association refers
to the association among some variables within the levels of the other variables.

Consider, for example, the model of conditional independence, A ⊥ B | C for a 3-way
table. This model asserts that A and B are independent within each level of C . Denote the
hypothesis that A and B are independent at level C(k) by A ⊥ B | C(k). Then one can
show (Anderson, 1991) that

G2
A⊥B | C =

K∑
k

G2
A⊥B | C(k) (4.1)

That is, the overall G2 for the conditional independence model with (I − 1)(J − 1)K df
is the sum of the values for the ordinary association between A and B over the levels of C
(each with (I − 1)(J − 1) df). Thus, (a) the overall G2 can be broken down into portions
attributable to the AB association in the layers of C , and (b) the collection of mosaic
displays for the dependence of A and B for each of the levels of C provides a natural
visualization of this classification. These displays provide an analog, for categorical data,
of the conditioning plot, or co-plot, that Cleveland (1993b) has shown to be an effective
display for quantitative data. See Friendly (1999a) for further details.

Mosaic displays for partial association are produced by using the SAS/IML module
MOSPART, which is called in a PROC IML step, as follows:

run mospart(dim, table, vnames, lnames, title, byvar);

where BYVAR specifies the variables that are used to stratify the data. One mosaic is pro-
duced for each combination of the levels of BYVAR. In addition, the MOSAIC macro may be
used with a BY parameter for the same purpose. The separate plots may be combined into
one figure with the PANELS macro, as illustrated in Example 4.6.

EXAMPLE 4.6 Employment status data

Data from a 1974 Danish study of 1314 employees who had been laid off is given in
Table 4.5 (from Anderson (1991, Table 5.12)). The workers are classified by (a) their em-
ployment status on January 1, 1975 (new job or still unemployed) (b) the cause of their
layoff (closure, etc. or replacement) (c) the length of their employment at the time they
were laid off.

If employment status (variable A) is the response and cause of layoff (B) and length
of employment (C) are explanatory, the minimal baseline model is [A] [BC], in which
employment status is independent of both cause and length of employment. This model
fits quite poorly (G2(11) = 172.27). The residuals, shown in Figure 4.19, indicate that
workers who were laid off as a result of a closure are more likely to be unemployed,
regardless of length of time they were employed. Workers who were replaced, however,
apparently are more likely to be employed, particularly if they were employed for three
months or more.
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Table 4.5 Employment Status Data. Employment status on Jan. 1, 1975, by cause of layoff and
length of previous employment at time of layoff for 1314 employees who lost their jobs in
Fall 1974 in Denmark (Andersen, 1991).

Employment Cause of Length of Employment
Status Layoff <1 Mo 1-3 Mo 3-12 Mo 1-2 Yr 2-5 Yr >5 Yr

NewJob Closure 8 35 70 62 56 38
Unemployed 10 42 86 80 67 35

NewJob Replaced 40 85 181 85 118 56
Unemployed 24 42 41 16 27 10

Figure 4.19 Mosaic display for the employment status data, fitting the model of joint independence,
[A] [BC], G2(11) = 172.27
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Employment Status: Model (A,BC)

The model of conditional independence, [AB] [BC] is interpreted as A ⊥ C | B; that is,
given the cause of layoff, employment status is independent of length of employment. This
model fits far better (G2(10) = 24.63), but the lack of fit is still significant. The residuals,
shown in Figure 4.20, suggest that the pattern of association between employment in a new
job and length of employment in the previous job is different for replaced workers than for
those laid off due to closure.
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Figure 4.20 Mosaic display for the employment status data, fitting the model of conditional indepen-
dence, [AB][BC], G2(10) = 24.63
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In order to test this notion, we fit the model [A] [C] (employment status independent of
length) to each subtable separately for the causes of layoff. The mosaic displays for closure
and for replacement are shown in Figure 4.21. These are produced with the MOSAICSmacro
as shown in the program that follows. Using BY=Layoff gives a separate 2-way plot for
each cause of layoff.

Figure 4.21 Partial mosaic plots for employment status data. Each panel fits a model of independence
between employment status and length of previous job.
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title ’Employment status data’;
data employ;

length employed $10;
input length $ @;
do layoff =’Closure ’, ’Replaced’;

do employed = ’NewJob ’, ’Unemployed’;
input count @;
output;
end;

end;
input;

datalines;
<1M 8 10 40 24
1-3M 35 42 85 42
3-12M 70 86 181 41
1-2Yr 62 80 85 16
2-5Yr 56 67 118 27
>5Yr 38 35 56 10
;
%gdispla(OFF);
%mosaic(data=employ, vorder=Employed Length Layoff, sort=no,

by=Layoff, shade=1 2 4, split=H V, fuzz=0.1, htext=2);

%gdispla(ON);
%panels(rows=1, cols=2);

The residuals are all quite small when the cause of layoff is a closure, and the
G2(5) = 1.44, indicating that the chances of getting a new job are independent of length
of employment in this case. On the other hand, when the cause of layoff is a replacement,
the G2(5) = 23.19 and the residuals are large, particularly for the first two length-
of-employment categories. These two subfigures represent the partition of the G2 in
Equation 4.1.

Model df G2

A ⊥ C | B1 5 1.44
A ⊥ C | B2 5 23.19

A ⊥ C | B 10 24.63

The partial mosaic plots in Figure 4.21 show clearly that there is no association between
employment status and length of job among workers laid off due to closure. Among re-
placed workers, those who had been employed less than or equal to three months are likely
to remain unemployed, while those with longer job tenure are more likely to have found a
new job.

4.4 Mosaic Matrices for Categorical Data

One reason for the wide usefulness of graphs of quantitative data has been the development
of effective, general techniques for dealing with high-dimensional datasets. The scatterplot
matrix (Friendly (1991), Section 8.3.2) shows all pairwise (marginal) views of a set of
variables in a coherent display, whose design goal is to show the interdependence among
the collection of variables as a whole. It combines multiple views of the data into a single
display, which allows detection of patterns that could not readily be discerned from a series
of separate graphs. In effect, a multivariate dataset in p dimensions (variables) is shown
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as a collection of p(p − 1) two-dimensional scatterplots, each of which is the projection
of the cloud of points on two of the variable axes. These ideas can be extended readily to
categorical data.

A multi-way contingency table of p categorical variables, A, B,C, . . ., also contains
the interdependence among the collection of variables as a whole. The saturated log-linear
model, [ABC . . .] fits this interdependence perfectly but is often too complex to describe or
understand. By summing the table over all variables except two, A and B, for example, you
obtain a two-variable (marginal) table that shows the bivariate relationship between A and
B, which is also a projection of the p-variable relation into the space of two (categorical)
variables. If you do this for all p(p−1) unordered pairs of categorical variables and display
each two-variable table as a mosaic, you have a categorical analog of the scatterplot matrix,
called a mosaic matrix. Like the scatterplot matrix, the mosaic matrix can accommodate
any number of variables in principle, but, in practice, the mosaic matrix is limited by the
resolution of the display to three or four variables.

Mosaic matrices are produced by using the SAS/IML module MOSMAT, which is called
in a PROC IML step, as follows:

run mosmat(dim, table, vnames, lnames, plots, title);

When there are p variables in TABLE, a set of p2 plots are produced; these plots include
the p(p − 1) pairwise mosaics and a set of p panels that contain the variable names (from
VNAMES). After the SAS/IML step, the separate plots may be combined into one figure by
using the PANELS macro. The MOSMAT macro provides a simple interface to these steps.

EXAMPLE 4.7 Marital status and pre- and extramarital sex

In Example 4.4, you examined a series of models relating marital status to reported pre-
marital and extramarital sexual activity and gender. Figure 4.22 shows the mosaic matrix
for this data, produced by using the following MOSMAT macro:

%include catdata(marital);
%mosmat(data=marital, var=Gender Pre Extra Marital,

vorder=Marital Extra Pre Gender, devtype=LR ADJ);

If you view gender, premarital sex, and extramarital sex as explanatory and marital sta-
tus (divorced vs. still married) as the response, then the mosaics in row 1 (and in column 1)8

show how marital status depends on each predictor, marginally. The remaining panels show
the relations within the set of explanatory variables.

Thus, you see in row 1 and column 4 (1,4) that marital status is independent of gender
(all residuals equal 0, here) by design of the data collection. In the (1, 3) panel, we see
that reported premarital sex is more often followed by divorce, while non-report is more
prevalent among those still married. The (1, 2) panel shows a similar, but stronger relation,
between extramarital sex and marriage stability. These effects pertain to the associations
of P and E with marital status—the terms [PM] and [EM] in the log-linear model. Earlier,
you saw that an interaction of P and E (the term [PEM]) is required to fully account for
this data. This effect is not displayed in Figure 4.22.

Among the background variables (the log-linear term [GPE]), the (2, 3) panel shows
a strong relation between premarital sex and subsequent extramarital sex, and the (2, 4)
and (3, 4) panels show that men are far more likely than women, in this sample, to report
premarital sex. Men are also more likely to report extramarital sex.

8Rows and columns in the mosaic matrix are identified as in a table or numerical matrix, with row 1, column 1 in
the upper-left corner.
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Figure 4.22 Mosaic matrix for marital status data. Each panel shows the marginal relation, fitting
an independence model between the row and column variable, collapsed over other
variable(s).
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EXAMPLE 4.8 Berkeley admissions

Figure 4.23 shows the pairwise marginal relations among the variables Admit, Gender, and
Department in the Berkeley data, which was examined earlier (Example 3.1) in fourfold
displays (Figure 3.4 and Figure 3.5). Figure 4.23 is produced by using the MOSMAT macro
as shown below. The TABLE macro is first used to re-code the factor variables to more
meaningful character labels.

%include goptions;
goptions hsize=7 in vsize=7 in;
libname mosaic ’~/sasuser/mosaics’;

%include catdata(berkeley);
proc format;

value admit 1="Admit" 0="Reject" ;
value dept 1="A" 2="B" 3="C" 4="D" 5="E" 6="F";
value $sex ’M’=’Male’ ’F’=’Female’;

%table(data=berkeley, var=Admit Gender Dept, weight=freq, char=Y,
format=admit admit. gender $sex. dept dept.,
order=data, out=berkeley);

%mosmat(data=berkeley, vorder=Admit Gender Dept, sort=no, htext=3.5);
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Figure 4.23 Mosaic matrix of Berkeley admissions, showing bivariate marginal relations.
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The (2, 1) panel shows that Admit and Gender are strongly associated marginally, as
is seen in Figure 3.4, and overall, males are more often admitted. The diagonally-opposite
(1, 2) panel shows the same relation, splitting first by Gender.9

The (3, 3) panels illuminate the explanation for the paradoxical result (Figure 3.5) that,
within all except Department A, the likelihood of admission is equal for men and women,
yet, overall, there appears to be a bias in favor of admitting men (Figure 3.4). The (1, 3)
and (3, 1) panels show the marginal relation between Admit and Dept; Departments A and
B have the greatest overall admission rate, Departments E and F, the least. The (2, 3) panel
shows that men apply in much greater numbers to Departments A and B, while women
apply in greater numbers to the departments that have the lowest overall rate of admission.

9Note that this is different than just the transpose or interchange of horizontal and vertical dimensions as in the
scatterplot matrix, because the mosaic display splits the total frequency, first, by the horizontal variable and,
then (conditionally), by the vertical variable. However, the areas of all corresponding tiles are the same in each
diagonally opposite pair, as are the residuals shown by color and shading.
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4.4.1 Conditional Mosaic Matrices

The marginal relation between each pair of variables in the mosaic matrix need not be
shown. A conditional mosaic matrix fits a model of conditional independence between
each row and column, controlling for one or more of the other variables. Friendly (1999a)
gives further details and describes analogous displays for quantitative data.

EXAMPLE 4.9 Berkeley admissions

For example, Figure 4.24 shows all pairwise conditional relations among the variables
Gender, Dept, and Admit in the Berkeley data. All panels show the same observed fre-
quencies in the 3-way table by the areas of the tiles, but each fits a model of conditional in-
dependence between the row-and-column variable, with the remaining variable controlled.
Thus, the shading in the (1, 2) and (2, 1) panels shows the fit of the model [Admit, Dept]
[Gender, Dept], which asserts that Admit and Gender are independent, given (controlling
for) Dept. Except for Department A, this model fits quite well, again indicating lack of
gender bias. The (1, 3) and (3, 1) panels show the relation between Admit and Dept con-
trolling for Gender, highlighting the differential admission rates across departments.

Figure 4.24 Conditional mosaic matrix of Berkeley admissions. Each panel shows the conditional re-
lation, fitting a model of conditional independence between the row-and-column variable,
controlling for other variable(s).
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Conditional mosaic matrices are produced with the MOSMAT macro by specifying
CONDIT as the FITTYPE parameter. The parameter PLOTS=3 specifies that each panel
in the display contains the 3-way mosaic plot for the data.

%mosmat(data=berkeley, vorder=Admit Gender Dept, sort=no, htext=3.5,
plots=3, fittype=CONDIT);

4.5 Showing the Structure of Log-linear Models

The mosaic display can also be used to illuminate the relations among variables in a con-
tingency table that are represented in various log-linear models, a point described by Theus
and Lauer (1999). Each of the model types depicted in Table 4.2 has, in fact, a character-
istic shape and structure in a mosaic display. This, in turn, leads to a clearer understanding
of the structure that appears in real data when a given model fits, the relations among the
models, and the use of mosaic displays.

To show this, we use artificial data for a 2 × 2 × 2 table (Table 4.6). You can force
such a table to conform to any log-linear model (e.g., H1 − H4) simply by finding the
expected frequencies under that model and constructing a mosaic depicting the expected
frequencies.

Table 4.6 A 2 × 2 × 2 table (artificial data)

B1 B2

C A1 A2 A1 A2 Total

C1 6 10 312 44 372
C2 37 31 192 76 336

Total 43 41 504 120 708

4.5.1 Mutual Independence

For example, to show the structure of a table that fits mutual independence, H1, use the
IPF function to find the fitted values, FIT, as follows:

proc iml;
table = { ... };
dim= {2 2 2};
vnames={A B C};
lnames = {’A1’ ’A2’, ’B1’ ’B2’, ’C1’ ’C2’};

config = {1 2 3};
call ipf(fit,status,dim,table,config);
fittype=’MUTUAL’;
print fittype config[f=4.] fit[f=7.2];

The fitted frequencies then have the same 1-way margins as the data shown in Table 4.6, but
have no 2-way or higher associations. You then display a mosaic for the fitted frequencies
to see what mutual independence looks like in a 3-way table.
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FITTYPE CONFIG FIT
MUTUAL 1 2 3 34.10 10.04 253.31 74.56

30.80 9.07 228.79 67.34

What you see in a mosaic display depends, in large measure, on the order in which the
table variables are entered. For three variables there are 3! = 6 possible orders; conve-
niently, they are all shown in the mosaic matrix. In this display, you see the 3-way mosaic
(PLOTS=3;) for each pair of variables, using the fitted values as the “data.” The following
statements produce Figure 4.25:

plots=3;
title=fittype+’&MODEL’;
space={12 5};
run mosmat(dim, fit, vnames, lnames, plots, title);

quit;
%panels(rows=3, cols=3, equate=Y, order=down);

In this figure, the same data is shown in all the off-diagonal panels and the mutual
independence model was fitted in each case, but with the table variables permuted. All
residuals are exactly 0 in all cells, by construction. We see that in each view, the four large
tiles (corresponding to the first two variables) align, indicating that these two variables
are marginally independent. For example, in the (1, 2) panel, A and B are independent,
collapsed over variable C .

Figure 4.25 Mosaic matrix for mutual independence. All panels show marginal and conditional inde-
pendence among all three pairs of variables.
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Moreover, comparing the top half to the bottom half in any panel, you see that the
divisions by the third variable are the same for both levels of the second variable. In the
(1, 2) panel, for example, A and C are independent at B1 and also independent at B2.
This means that A and B are conditionally independent given C (A ⊥ B | C). Because
this holds in all six panels, we see that mutual independence is equivalent to all pairs of
variables being conditionally independent, given the remaining one (X ⊥ Y | Z ) for all
permutations of variables. Figure 4.25 shows what mutual independence means!

4.5.2 Joint Independence

The model of joint independence, H2 : (A, B) ⊥ C , or equivalently, the log-linear model
[AB][C] may be visualized similarly by the mosaic matrix in Figure 4.26, in which the
data was replaced by fitted values, under this model.

...
config = t({1 2, 3 0});
call ipf(fit,status,dim,table,config);
fittype=’JOINT2’;
...

This model gives these fitted frequencies.

FITTYPE CONFIG FIT
JOINT2 1 3 22.59 21.54 264.81 63.05

2 0 20.41 19.46 239.19 56.95

Figure 4.26 Mosaic matrix for joint independence. The bottom row shows that A and B are each
independent of C, and also conditionally independent of C
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The FITTYPE=’JOINT2’; statement specifies that in each panel the fitted model is the
model wherein the first and third variable are independent of the second. Now, in Fig-
ure 4.26, the same model is fit in both panels in each row, but the second, distinguished
variable differs from row to row.

You see in row 3, where C is the second variable, that C is independent of A, and
also independent of B, and that these models have residuals equal to 0. The models fit
in the other four panels have non-0 residuals. However, the (1, 2) and (2, 1) panels show
B ⊥ C | A and A ⊥ C | B, respectively, because the top and bottom portions are both
divided equally by the third table variable. This relation does not hold, however, in the
(1, 3) and (2, 3) panels. Thus, joint independence implies that conditional independence
hold as well, but only for the two variables that enter jointly.

The appearance (in the bottom row of Figure 4.26) that A and B are marginally inde-
pendent is misleading because the AB association is fit exactly in these models. To see
the marginal relations under [AB][C] explicitly, you can simply change the PLOTS value
to PLOTS=2;, so that the model of (marginal) independence is fit to the first two variables
in each panel and only this pair of variables is shown in each panel. This plot appears in
Figure 4.27 and clearly shows that A and B are each marginally independent of C , but not
of each other.

Figure 4.27 Marginal relations under joint independence. A and B are each marginally independent
of C
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4.5.3 Conditional Independence

For conditional independence, H3 : A ⊥ B | C , or [AC][BC], you can proceed similarly,
using

config = t({1 2, 2 3});
call ipf(fit,status,dim,table,config);
fittype=’CONDIT1’;
...

to obtain frequencies that fit this model exactly. The resulting 3-way mosaic matrix is
shown in Figure 4.28. Now, you see the characteristic signature of conditional indepen-
dence in the (1, 3) and (2, 3) panels, where A and B are independent at each level of C .
But no independence relations appear in the four large blocks of the first two variables in
any panel, so no pair of variables is marginally independent.10

Figure 4.28 Mosaic matrix for conditional independence
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10In this data, A and B have quite a weak association, as may be seen in the (1, 2) and (2, 1) panels, where the
large blocks nearly align.
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4.6 Chapter Summary

• The mosaic display depicts the frequencies in a contingency table by a collection of
rectangular “tiles” whose area is proportional to the cell frequency. The residual from a
specified model is portrayed by shading the tile to show the sign and magnitude of the
deviation from the model.

• For 2-way tables, the tiles for the second variable align at each level of the first variable
when the two variables are independent (see Figure 4.5).

• The perception and understanding of patterns of association (deviations from inde-
pendence) are enhanced by re-ordering the rows or columns to give the residuals an
opposite-corner pattern.

• For 3-way and larger tables, a variety of models can be fit and visualized. Starting with
a minimal baseline model, the pattern of residuals often suggests additional terms which
must be added to “clean the mosaic.”

• It is often useful to examine the sequential mosaic displays for the marginal subtables
that have the variables in a given order. Sequential models of joint independence provide
a breakdown of the total association in the full table. They are particularly appropriate
when the last variable is a response.

• Partial association, which refers to the associations among a subset of variables within
the levels of other variables, may be easily studied by constructing separate mosaics for
the subset variables for the levels of the other, “given” variables. These displays provide
a breakdown of a model of conditional association for the whole table and serve as an
analog of coplots for quantitative data.

• Mosaic matrices, consisting of all pairwise plots of an n-way table, provide a way to
visualize all marginal, joint, or conditional relations, simultaneously.

• The structural relations among model terms in various log-linear models themselves
can also be visualized by mosaic matrices showing the expected, rather than observed,
frequencies under different models.
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Correspondence analysis (CA) provides visualizations of associations in a 2-way contingency table in a
small number of dimensions. Multiple correspondence analysis extends this technique to n-way tables.
Other graphical methods, including mosaic matrices and biplots, provide complementary views of log-linear
models for 2-way and n-way contingency tables.
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5.1 Introduction

Whenever a large sample of chaotic elements are taken in hand and marshaled in
the order of their magnitude, an unsuspected and most beautiful form of regular-
ity proves to have been latent all along.

Sir Francis Galton (1822–1911)
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CA is an exploratory technique that displays the row and column categories in a 2-way
contingency table as points in a graph, so that the positions of the points represent the as-
sociations in the table. Mathematically, CA is related to the biplot, to canonical correlation,
and to principal components analysis (see Friendly, 1991, Sections 8.7, 9.4, 10.3.) CA finds
scores for the row and column categories on a small number of dimensions, which account
for the greatest proportion of the χ2 for association between the row and column cate-
gories, just as principal components account for maximum variance. These scores provide
a quantification of the categories and have the property that they maximize the correlation
between the row-and-column variables. For graphical display, two or three dimensions are
typically used to give a reduced rank approximation to the data.

CA has an extensive, multi-national literature. It was re-discovered several times in
different fields and different countries. The method, in slightly different forms, is also dis-
cussed under the names dual scaling, optimal scaling, reciprocal averaging, homogeneity
analysis, and canonical analysis of categorical data.

See Greenacre (1984), Nishisato (1980), Gifi (1981), or Lebart, et al. (1977, 1984) for
a detailed treatment of CA and its applications. Greenacre and Hastie (1987) provide an
excellent discussion of the geometric interpretation, while van der Heijden and de Leeuw
(1985) and van der Heijden, et al. (1989) develop some of the relations between CA and
log-linear methods for 3-way and larger tables. CA is usually carried out in an exploratory,
graphical way; however, Goodman (1981, 1985, 1986) has developed related inferential
models with close links to CA: the RC model and the canonical correlation model.

For a 2-way table, the scores for the row categories X = {xim} and the column categories
Y = {y jm} on dimension m = 1, . . . , M are derived from a (generalized) singular value
decomposition of residuals from independence, expressed as di j/

√
n, to account for the

largest proportion of the χ2 in a small number of dimensions. This decomposition may be
expressed as

di j√
n

= ni j − mi j√
n mi j

=
M∑

m=1

λm xim y jm , (5.1)

where λ1 ≥ λ2 ≥ · · · ≥ λM , and M = min(I − 1, J − 1). In M dimensions, the decom-
position, as shown in Equation 5.1, is exact. For example, an I × 3 table can be depicted
exactly in two dimensions when I ≥ 3. A rank-d approximation in d dimensions is ob-
tained from the first d terms on the right side of Equation 5.1; the proportion of the Pearson
χ2 accounted for by this approximation is

n
d∑
m

λ2
m

/
χ2 .

The quantity χ2/n = ∑
i

∑
j d2

i j/n is called the total inertia and is identical to the mea-
sure of association known as Pearson’s mean-square contingency, the square of the φ co-
efficient.

Thus, CA is designed to show how the data deviates from expectation when the row and
column variables are independent, as in the association plot and mosaic display. However,
the association plot and mosaic display depict every cell in the table, and for large tables, it
may be difficult to see patterns. CA shows only row and column categories in the two (or
three) dimensions that account for the greatest proportion of deviation from independence.
The pattern of the associations is inferred from the positions of the row and column points.
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5.2 Simple Correspondence Analysis

5.2.1 Notation and Terminology

Because correspondence analysis grew up in so many homes, the notation, formulae, and
terms used to describe the method vary considerably. The notation used here generally
follows Greenacre (1984, 1997), as does the documentation in the SAS/STAT User’s Guide,
Version 6, First Edition, Chapter 19, “The CORRESP Procedure.”

The descriptions here use the following matrix and vector definitions:

• N = {ni j } is the I × J contingency table with row and column totals ni+ and n+ j ,
respectively. The grand total n++ is also denoted by n for simplicity.

• P = {pi j } = N/n is the matrix of joint cell probabilities or the correspondence matrix.
• r = ∑

j pi j = P1 is the row margin of P; c = ∑
i pi j = PT1 is the column margin.

r and c are called the row masses and column masses.
• Dr and Dc are diagonal matrices (used as weights) with r and c on their diagonals.
• R = D−1

r P = {ni j/n+ j } is the matrix of row conditional probabilities or row profiles.
Similarly, C = D−1

c PT = {ni j/ni+} is the matrix of column conditional probabilities or
column profiles.

Two types of coordinates, X and Y , for the row and column categories are defined,
based on the generalized singular value decomposition of P,

P = ADλBT

where Dλ is the diagonal matrix of singular values λ1 ≥ λ2 ≥ · · · ≥ λM ; A is the I × M
matrix of left singular vectors, normalized so that AD−1

r AT = I; and B is the J × M matrix
of right singular vectors, normalized so that BD−1

c BT = I. Thus, the columns of A and B
are orthogonal in the weighted metrics defined by the row and column margins D−1

r and
D−1

c , respectively. The two types of coordinates are

principal coordinates The coordinates of the row F and the column G profiles with re-
spect to their own principal axes are defined so that the inertia along each axis is the
corresponding singular value λi ,

F = D−1
r ADλ so that FTDr F = Dλ (5.2)

G = D−1
c BDλ so that GTDcG = Dλ (5.3)

standard coordinates The standard coordinates Φ and Γ are a re-scaling of the principal
coordinates to unit inertia along each axis,

Φ = D−1
r A so that ΦTDrΦ = I (5.4)

Γ = D−1
c B so that ΓTDcΓ = I (5.5)

These coordinates differ from the principal coordinates in Equations 5.2 and 5.3 simply
by the absence of the scaling factors Dλ.

Thus, the weighted average of the squared principal coordinates for the rows or columns
on a principal axis equals the squared singular value, λ, for that axis, whereas the weighted
average of the squared standard coordinates equals 1. The relative positions of the row or
column points along any axis are the same under either scaling, but the distances between
points differ because the axes are weighted differentially in the two scalings.
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5.2.2 Geometric and Statistical Properties

The following summarizes some geometric and statistical properties of the CA solutions,
which are useful in interpretation.

nested solutions Because they use successive terms of the SVD (Equation 5.1), CA solu-
tions are nested, meaning that the first two dimensions of a three-dimensional solution
are identical to the two-dimensional solution.

centroids at the origin In both principal coordinates and standard coordinates, the points
representing the row and column profiles have their centroids (weighted averages) at the
origin. Thus, in CA plots, the origin represents the (weighted) average row profile and
column profile.

reciprocal averages The column scores are proportional to the weighted averages of the
row scores, and vice-versa.

chi-square distances In principal coordinates, the row coordinates can be shown equal
to the row profiles D−1

r P, rescaled inversely by the square-root of the column masses
D−1/2

c . Distances between two row profiles, Ri and Ri ′ , are most sensibly defined as χ2

distances, where the squared difference [Ri j −Ri ′ j ]2 is inversely weighted by the column
frequency, to account for the different relative frequency of the column categories. The
rescaling by D−1/2

c transforms this weighted χ2 metric into ordinary Euclidean distance.
The same is true of the column principal coordinates.

interpretation of distances In principal coordinates, the distance between two row points
can be interpreted as described under “chi-square distances” and so can the distance
between two column points. The distance between a row and column point, however,
does not have a clear distance interpretation.

residuals from independence The distance between a row and column point has a rough
interpretation in terms of residuals or in terms of the difference between observed and
expected frequencies, ni j −mi j . Two row (or column) points deviate from the origin (the
average profile) when their profile frequencies have similar values. A row point appears
near a column point when ni j − mi j > 0 and away from that column point when the
residual is negative.

Because of these differences in interpretations of distances, there are different possibili-
ties for graphical display. A joint display of principal coordinates for the rows and standard
coordinates for the columns (or vice-versa), sometimes called an asymmetric map, is sug-
gested by Greenacre and Hastie (1987) and by Greenacre (1989) as the plot with the most
coherent geometric interpretation (for the points in principal coordinates) and is widely
used in the French literature. The options PROFILE=ROW and PROFILE=COLUMN in PROC
CORRESP generate the asymmetric map.

Another common joint display is the symmetric map of the principal coordinates in the
same plot, produced with the option PROFILE=BOTH. In my opinion, this produces better
graphical displays, because both sets of coordinates are scaled with the same weights for
each axis. Symmetric plots are used exclusively in this book, but that should not imply
that these plots are universally preferred. Another popular choice is to avoid the possibility
of misinterpretation by making separate plots of the row and column coordinates. The
different scalings and the valid distance interpretations for each are described in detail in
the Algorithms section in Chapter 19 of the SAS/STAT User’s Guide.
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5.2.3 The CORRESP Procedure

CA is performed by using PROC CORRESP in SAS/STAT. PROC CORRESP can read the
following kinds of input:

• 2-way contingency tables (contingency table form) in which the columns are dataset
variables (specified in a VAR statement), and the rows are observations (labeled by an ID
variable). In this case, the column variables contain the frequencies in the corresponding
cells.

• raw category responses (case form) or cell frequencies (frequency form) that are classi-
fied by two (or more) table variables. In these two cases, the table variables are specified
in a TABLES statement. When the observations are cell frequencies, the frequency vari-
able can be specified in the WEIGHT statement.

In addition to printed output, the OUTC= option in PROC CORRESP produces an output
dataset that contains the row and column coordinates and other information. In order to
understand the relationships among the row and column categories, you can plot the co-
ordinates with PROC PLOT or PROC GPLOT. PROC CORRESP has many options for scaling
row and column coordinates and for printing various statistics, which aid interpretation.
Example 5.1 illustrates the basic use of PROC CORRESP. A macro program CORRESP, de-
scribed in Section 5.2.4, simplifies the analysis and plotting steps.

EXAMPLE 5.1 Hair color and Eye color

The program that follows reads the hair-color and eye-color data into the dataset HAIREYE
and calls PROC CORRESP. This example also illustrates the use of PROC PLOT and the
Annotate facility with PROC GPLOT to produce a labeled display of the CA solution. To
input a contingency table in the CORRESP step, the hair colors (columns) are specified by
the variables in the VAR statement, and the eye colors (rows) are specified by the variable
EYE in the ID statement.

data haireye;
input EYE $ BLACK BROWN RED BLOND ;

datalines;
Brown 68 119 26 7
Blue 20 84 17 94
Hazel 15 54 14 10
Green 5 29 14 16

;
proc corresp data=haireye outc=coord short;

var black brown red blond;
id eye;

proc print data=coord;
var _type_ eye dim1 dim2 quality;

The printed output from PROC CORRESP is shown in Output 5.1. The section labeled
“Inertia and Chi-Square Decomposition” indicates that over 98% of the Pearson χ2 for
association is accounted for by two dimensions, with most of that attributed to the first
dimension.

A plot of the row and column points can be constructed from the OUTC= dataset COORD
specified in the PROC CORRESP statement. The variables of interest in this example are
shown in Output 5.2. Note that row and column points are distinguished by the variable
_TYPE_. In this example, the labels for the points are stored in the variable EYE.
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Output 5.1 Hair-color and Eye-color data, PROC CORRESP printed output

The Correspondence Analysis Procedure

Inertia and Chi-Square Decomposition

Singular Principal Chi-
Values Inertias Squares Percents 18 36 54 72 90

----+----+----+----+----+---
0.45692 0.20877 123.593 89.37% *************************
0.14909 0.02223 13.158 9.51% ***
0.05097 0.00260 1.538 1.11%

------- -------
0.23360 138.29 (Degrees of Freedom = 9)

Row Coordinates

Dim1 Dim2

Brown -.492158 -.088322
Blue 0.547414 -.082954
Hazel -.212597 0.167391
Green 0.161753 0.339040

Column Coordinates

Dim1 Dim2

BLACK -.504562 -.214820
BROWN -.148253 0.032666
RED -.129523 0.319642
BLOND 0.835348 -.069579

Output 5.2 Hair-color and Eye-color data, OUTC=coord dataset

OBS _TYPE_ EYE DIM1 DIM2 QUALITY

1 INERTIA . . .
2 OBS Brown -0.49216 -0.08832 0.99814
3 OBS Blue 0.54741 -0.08295 0.99993
4 OBS Hazel -0.21260 0.16739 0.87874
5 OBS Green 0.16175 0.33904 0.94843
6 VAR BLACK -0.50456 -0.21482 0.98986
7 VAR BROWN -0.14825 0.03267 0.90633
8 VAR RED -0.12952 0.31964 0.94507
9 VAR BLOND 0.83535 -0.06958 0.99963
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The interpretation of the CA results is facilitated by a labeled plot of the row-and-
column points. Beginning with Release 6.08, points can be labeled in PROC PLOT. The
statements below produce a labeled plot. The plot should be scaled so that the number of
data units/inch are the same for both dimensions. Otherwise, the distances (and angles) in
this plot would not be represented accurately. In PROC PLOT, this is done with the VTOH
option, which specifies the aspect ratio (vertical to horizontal) of your printer, together with
the HAXIS and VAXIS options.

The VTOH option tries to equate distances between tick marks, so you should specify the
same tick increment (e.g., HAXIS=BY XX, VAXIS=BY XX) for both axes. For example, this
PROC PLOT step produces the printer plot shown in Output 5.3.

proc plot data=coord vtoh=2;
plot dim2 * dim1 = ’*’$ eye / box haxis=by .1 vaxis=by .1;

run;

Output 5.3 Labeled printer plot for the Hair-color and Eye-color CA solution

Plot of DIM2*DIM1$EYE. Symbol used is ’*’.
-+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-

DIM2 | |
| |

0.4 + +
| * Green |

0.3 + * RED +
| |

0.2 + +
| * Hazel |

0.1 + +
| * BROWN |

0.0 + +
| BLOND * |

-0.1 +* Brown * Blue +
| |

-0.2 +* BLACK +
| |

-0.3 + +
| |
-+----+----+----+----+----+----+----+----+----+----+----+----+----+----+-

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DIM1

A labeled high-resolution display of the CA solution (Figure 5.1) is constructed with
PROC GPLOT by using a DATA step to produce the Annotate dataset LABEL from the COORD
dataset. In the PROC GPLOT step, axes are equated with the AXIS statements: the AXIS1
statement specifies a length and a range that are twice the length and range specified in the
AXIS2 statement, so that the ratio of data units to plot units is the same in both dimensions.
That is, the LENGTH options are set so that

xmax − xmin

xlength
= ymax − ymin

ylength
.

Alternatively, you may use the EQUATE macro from the SAS Sample Library (see the
SAS/STAT User’s Guide, Chapter 19, Example 3), which calculates the specified lengths
from the coordinates, or simply scale the aspect ratio of the plot by using the options
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Figure 5.1 CA solution for Hair-color and Eye-color data
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HSIZE= and VSIZE= in the GOPTIONS statement.1 The CORRESP macro, illustrated in Sec-
tion 5.2.4, uses a version of the EQUATE macro (Appendix A.31.2) that is modified to scale
the plot automatically.

data label;
set coord;
xsys=’2’; ysys=’2’;
x = dim1; y = dim2;
text = eye;
size = 1.3;
function=’LABEL’;
if _type_=’VAR’ then color=’RED ’; else color=’BLUE’;

data key;
xsys=’5’; ysys=’5’;
length text $12;
x = 25; y = 77;
size = 1.4;
color = ’BLUE ’;
function = ’LABEL ’; text = ’* Eye color ’ ; output;
x = 55;
color = ’RED ’;
function = ’LABEL ’; text = ’* HAIR COLOR’ ; output;

data label;
set key label;

proc gplot data=coord;
plot dim2 * dim1

/ anno=label frame
href=0 vref=0 lvref=3 lhref=3
vaxis=axis2 haxis=axis1
vminor=1 hminor=1;

axis1 length=6 in order=(-1. to 1. by .5)
label=(h=1.5 ’Dimension 1’);

1The HSIZE= and VSIZE= options control the entire plot size, including axis labels, titles, and footnotes, so setting
these options, while easier, is less exact than setting the axis lengths.
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axis2 length=3 in order=(-.5 to .5 by .5)
label=(h=1.5 a=90 r=0 ’Dimension 2’);

symbol v=none;
run;

5.2.4 The CORRESP Macro

The steps illustrated in Example 5.1 are not difficult, but it is somewhat tedious to do them
repeatedly. The CORRESP macro (documented in Appendix A.5) makes it easy to produce
reasonable plots for CA results.

The CORRESP macro

• is designed as a simple macro interface to the CORRESP procedure.
• handles input in either contingency table form (columns specified by the VAR= param-

eter and rows specified by the ID= parameter), or in frequency or case form (using the
TABLES= parameter).

• allows 3-way and larger tables to be analyzed by the “stacking” approach to multi-way
tables (as described in Section 5.4) or by the MCA approach.

• optionally produces a labeled printer plot and a high-resolution graphics plot and has
many options for controlling the appearance of graphics plots. Axes for high-resolution
plots may be equated automatically.

• produces an output dataset (which contains the point coordinates) and an Annotate
dataset (which contains point labels) for further plotting or customization.

EXAMPLE 5.2 Mental impairment and parents’ SES

Srole, et al. (1978, p. 289) give the data, which is contained in the program that follows,
on the mental health status of a sample of 1660 young New York residents in midtown
Manhattan, classified by their parents’ socio-economic status (SES) (see Appendix B.7).
There are five categories of SES, and mental health is classified in the four categories: Well,
Mild symptom formation, Moderate symptom formation, and Impaired. This data has also
been analyzed by many authors, including Agresti (1990, Section 8.5.2), Goodman (1979),
and Haberman (1979, p. 375).

The statements in the following program read the data in contingency table form with
rows identified by the variable SES and the column variables: WELL MILD MODERATE
IMPAIRED. These variables are used in the %CORRESP call as the ID= and VAR= param-
eters, respectively. The graphics output is shown in Figure 5.2.

title h=1.5 lspace=3.8in ’Mental Impairment and SES’;
data mental;

input ses $ well mild moderate impaired;
datalines;
High 64 94 58 46
2 57 94 54 40
3 57 105 65 60
4 72 141 77 94
5 36 97 54 78
Low 21 71 54 71
;
axis1 length=3 in order=(-.15 to .15 by .10)

label=(h=1.5 a=90 r=0);
axis2 length=6 in order=(-.30 to .30 by .10)

label=(h=1.5) offset=(1);
%corresp (data=mental, id=ses, var=Well Mild Moderate Impaired,

vaxis=axis1, haxis=axis2, htext=1.3, pos=-, interp=join,
symbols=triangle square);
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Figure 5.2 CORRESP macro plot for Mental Health data
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Some of the graphics options for the CORRESP macro are illustrated by the HTEXT= (height
of text labels), POS= (position of text labels), INTERP= (point marker interpolation), and
SYMBOLS= (point symbols) options. In particular, the option POS=- causes the macro to
position the text labels centered above or below the point, depending on whether the y
position is positive or negative, as specified by the LABEL macro (see Appendix A.31.6).

The cross at the origin in Figure 5.2 is drawn with equal data units in the x and y
direction, and it serves as a guide to whether the axes have been equated. The LENGTH and
ORDER values in the AXIS statements shown earlier were determined by inspection after an
initial plot.

The plot shows that the association between mental health and parents’ SES is almost
entirely 1-dimensional, with 94% of the χ2 ( 45.98, with 15 df) accounted for by Dimen-
sion 1. The diagnostic categories are well-aligned with this dimension and the two inter-
mediate categories are closer on this dimension than the extremes, indicating that their
profiles differ little. The SES categories are also aligned with Dimension 1 and approxi-
mately equally spaced, with the exception of the highest two categories. Because both row
and column categories have the same pattern on Dimension 1, we may interpret the plot as
showing that the profiles of both variables are ordered, and their relation can be explained
as a positive association between parents’ SES and higher mental health status of children.

From a modeling perspective, you might ask how strong is the evidence for the spacing
of categories. For example, we might ask whether assigning integer scores to the levels of
SES and mental impairment provides a simpler, but satisfactory account of their associa-
tion. This question is explored in a later chapter (see Example 7.6).

EXAMPLE 5.3 Repeat victimization

Example 4.3 presented mosaic displays for the data about repeat victimization. In this ex-
ample, the CA results are examined and customizing the displays created by the CORRESP
macro is illustrated. The following lines create the dataset VICTIMS in contingency table
form, where the columns represent the first victimization and the rows represent the second
victimization.
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data victims;
input crime $ Rape Assault Robbery PickPock PLarceny

Burglary HLarceny AutoThft;
datalines;
Rape 26 50 11 6 82 39 48 11
Assault 65 2997 238 85 2553 1083 1349 216
Robbery 12 279 197 36 459 197 221 47
PickPock 3 102 40 61 243 115 101 38
PLarceny 75 2628 413 329 12137 2658 3689 687
Burglary 52 1117 191 102 2649 3210 1973 301
Hlarceny 42 1251 206 117 3757 1962 4646 391
AutoThft 3 221 51 24 678 301 367 269
;

Because the rows and columns refer to the same crimes (and because the points for the
same crime occupy similar positions in the CA map), you might label each crime just once
and connect the two points for each crime by a line, as shown in Figure 5.3.

Figure 5.3 2-D CA display for repeat victimization data
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The following program uses the CORRESP macro with the GPLOT=NO parameter, so that
no plot is produced; however, the macro still creates the output dataset COORD and the
Annotate dataset LABEL used in the GPLOT procedure to produce a customized plot. Lines
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joining points for the same crime are created from the COORD dataset, after sorting by
upcase(_name_). The (properly equated) AXIS statements are constructed automatically
by the EQUATE macro.2

%corresp(data=victims, id=crime,
var=Rape Assault Robbery PickPock PLarceny Burglary HLarceny AutoThft,
pos=8, gplot=NO);

*-- Sort crimes by upcase(_name_);
data coord;

set coord;
_name_ = upcase(_name_);

proc sort data=coord;
where (_type_ ^= ’INERTIA’);
by _name_ _type_;

*-- Join first/second occurrence;
data lines;

set coord(keep=_name_ _type_ dim1 dim2);
by _name_ _type_;
xsys=’2’; ysys=’2’;
x = dim1; y = dim2;
if first._name_

then function=’MOVE’;
else function=’DRAW’;

*-- Remove _type_=’VAR’ labels, and add lines;
data label;

set label(where=(_type_^=’VAR’)) lines;

%equate(data=coord, x=dim1, y=dim2, plot=no, vaxis=axis98, haxis=axis99,
xmextra=1, ymextra=1);

proc gplot data=coord;
plot dim2 * dim1 = _type_

/ anno=label frame legend=legend1
vaxis=axis98 haxis=axis99 vminor=1 hminor=1;

symbol1 h=1.2 v=dot c=blue;
symbol2 h=1.2 v=circle c=red;
legend1 position=(bottom inside left) offset=(1,2)

mode=share cborder=blue
across=1 shape=symbol(6,1.5)
label=(’Occurrence’) value=(’First’ ’Second’);

run;

In Figure 5.3, it may be seen that most of the points are extremely close for the first and
second occurrence of a crime, indicating that the row profile for a crime is very similar
to its corresponding column profile, with Rape and Pick Pocket as exceptions. The first
dimension appears to contrast crimes against the person (left) with crimes against property
(right), and it may be that the second dimension represents degree of violence associated
with each crime. The latter interpretation is consistent with the movement of Rape towards
a higher position and Pick Pocket towards a lower one on this dimension.

2The EQUATE macro is called by %CORRESP when the HAXIS parameter and the VAXIS parameter are not specified
in the macro call.
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5.2.5 Quasi-Independence and Structural Zeros

Incomplete tables can result when particular cells are simply not observed (sampling ze-
ros, e.g., insufficient data collected) or when some combinations of levels cannot logically
occur (structural zeros, e.g., pregnant males). Alternatively, in some cases you might want
to ignore the data in some cells and fit a quasi-independence model to the remaining cells.
This is commonly done with square tables having the same row and column categories,
where the dominant diagonal cells cause a global independence model to fail.

Because CA decomposes departures from independence, many of these cases can be
handled simply by estimating the expected frequencies that would occur in these cells if the
row and column variables were independent, and by replacing the zero, missing, or dom-
inant observed frequencies by their expected values.3 More general, iterative procedures
are discussed by Greenacre (1984, Section 8.5) and by van der Heijden (1987, Chapter 3).

EXAMPLE 5.4 Repeat victimization

Example 4.3 also shows a mosaic display (Figure 4.9) for the model of quasi-independence
that ignores the diagonal cells in the repeat victimization data. The analysis below gives
another view of this model.

The elements in the diagonal cells of the VICTIMS dataset can be replaced by their
expected frequencies under independence in the following PROC IML step:

proc iml;
use victims;
read all var _num_ into table[r=crime c=vars];
read all var crime into crime;
close victims;

exp = table[,+] * table[+,] / table[+,+];
table = table + diag(vecdiag(exp - table));

create victims from table[r=crime c=vars];
append from table[r=crime c=vars];

Using the same %CORRESP step and plotting steps, as in Example 5.3 (with a different
LEGEND statement), gives the 2-D plot shown in Figure 5.4.

Note that the 2-D solution now accounts for 92% of the remaining association, which
now concerns only the cells where the crime differs from the first to the second occurrence.
For these cells, the differences between first and second incident are magnified.

3This does not account properly for the loss in degrees of freedom, but significance tests in CA are usually not
treated formally. Indeed, the method would be of little interest for data in which independence holds.
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Figure 5.4 2-D CA display for repeat victimization data, quasi-independence model, ignoring diagonal
cells
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5.3 Properties of Category Scores

This section illustrates several properties of the CA scores by using calculation and visual-
ization.

5.3.1 Optimal Category Scores

The singular values shown in Output 5.1 are the λi , in Equation 5.1. They are also the
(canonical) correlations between the optimally scaled categories. Thus, if the DIM1 scores
for Hair color and Eye color are assigned to the 592 observations in the table, the corre-
lation of these variables would be 0.4569—the largest possible correlation for any assign-
ment of scores. The DIM2 scores give a second, orthogonal scaling of these two categorical
variables, whose correlation would be 0.1491.

In this sense, CA scores provide an optimal way of transforming categorical water into
quantitative wine, hence the name “optimal scaling.”

We can illustrate this numerically and visually as follows. If the row scores on Dimen-
sion 1 are in the r × 1 vector x1 and the column scores are in the c × 1 vector y1, then these
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scores can be expanded to conform with the r × c table by forming the appropriate outer
product with a unit vector:

X1 = x1 1T and Y1 = 1 yT
1 .

The program that follows uses the SAS/IML PROC IML statement to perform this op-
eration on the COORD dataset and then merges these scores with a reshaped copy of the
Hair-color and Eye-color data. The resulting HAIREYE dataset is shown in Output 5.4.

*-- Attach X, Y values to eye color, hair color and reshape;
proc iml;

use coord;
read all var{dim1 dim2} where (_type_=’VAR’) into var[r=eye]; hair=eye;
read all var{dim1 dim2} where (_type_=’OBS’) into obs[r=eye];

r = nrow(obs);
c = nrow(var);
x1 = obs[,1] * j(1, c);
x2 = obs[,2] * j(1, c);
y1 = j(r,1) * t(var[,1]);
y2 = j(r,1) * t(var[,2]);

hair = repeat( hair, r, 1);
eye = shape(repeat( eye, 1,c),r*c, 1);

create scores var{eye hair x1 y1 x2 y2};
append;
quit;

*-- Reshape data to frequency form and merge with scores;
proc transpose data=haireye out=haireye2;

var BLACK BROWN RED BLOND;
by eye notsorted;

data haireye2;
set haireye2;
rename _name_=hair col1=count;

data scores;
merge haireye2 scores;

proc print data=scores;
format x1 x2 y1 y2 7.4;
id eye hair;

*-- Correlations of scores = singular values;
proc corr data=scores nosimple;

freq count;
var x1 x2;
with y1 y2;

The CA scores then serve to quantify the Hair-color and Eye-color categories, producing
the maximum possible correlations of (X1, Y 1) and (X2, Y 2), while all other pairs are
uncorrelated. These correlations are shown in Output 5.5. A plot of the optimal scores,
using cell frequencies as weights (Figure 5.6), is developed in the next subsection.
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Output 5.4 Hair-color and Eye-color data, DIM1, DIM2 scores assigned to Hair-color and Eye-color
categories

EYE HAIR COUNT X1 Y1 X2 Y2

Brown BLACK 68 -0.4922 -0.5046 -0.0883 -0.2148
Brown BROWN 119 -0.4922 -0.1483 -0.0883 0.0327
Brown RED 26 -0.4922 -0.1295 -0.0883 0.3196
Brown BLOND 7 -0.4922 0.8353 -0.0883 -0.0696
Blue BLACK 20 0.5474 -0.5046 -0.0830 -0.2148
Blue BROWN 84 0.5474 -0.1483 -0.0830 0.0327
Blue RED 17 0.5474 -0.1295 -0.0830 0.3196
Blue BLOND 94 0.5474 0.8353 -0.0830 -0.0696
Hazel BLACK 15 -0.2126 -0.5046 0.1674 -0.2148
Hazel BROWN 54 -0.2126 -0.1483 0.1674 0.0327
Hazel RED 14 -0.2126 -0.1295 0.1674 0.3196
Hazel BLOND 10 -0.2126 0.8353 0.1674 -0.0696
Green BLACK 5 0.1618 -0.5046 0.3390 -0.2148
Green BROWN 29 0.1618 -0.1483 0.3390 0.0327
Green RED 14 0.1618 -0.1295 0.3390 0.3196
Green BLOND 16 0.1618 0.8353 0.3390 -0.0696

Output 5.5 Hair-color and Eye-color data, correlations between X1, X2 and Y1 Y2

Correlation Analysis

2 ’WITH’ Variables: Y1 Y2
2 ’VAR’ Variables: X1 X2

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0
/ N = 592 / FREQ Var = COUNT

X1 X2

Y1 0.45692 0.00000
0.0001 1.0000

Y2 0.00000 0.14909
1.0000 0.0003

5.3.2 Simultaneous Linear Regressions

The correlations among the CA scores have yet another interpretation, which gave rise to
the first algebraic derivation of the technique (Hirschfeld, 1935) and which today provides
an important concept in the Gifi (1990) system of homogeneity analysis.

Consider an arbitrary assignment of scores X1 (Y 1) to the Hair-color and Eye-color
categories; for example, X1 (Y 1) = 1, 2, 3, 4 for the categories in alphabetical order. Instead
of plotting these scores along a dimension as in Figure 5.1, you plot Y 1 against X1 for all
n = 592 cases and show the frequency at each discrete point by the area of a bubble
symbol, as in Figure 5.5.
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Figure 5.5 Plot of arbitrary scores for the row and column categories. The bubble symbols and
numbers show the frequency at each point. The red points (solid line) show the means of
Y 1 | X 1; blue points (dashed line) show the means of X 1 | Y 1.
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If you carried out a least squares regression of Y 1 on X1, this would be equivalent to
finding the weighted mean of Y 1 for each value of X1 and fitting a straight line to these
means. Similarly, you could fit a regression of X1 on Y 1, which would be determined by
the weighted means of X1 for each Y 1. For the arbitrary scores, the conditional means of
Y 1 | X1 have a nonlinear relation to X1, and the same is true for the inverse regression of
X1 | Y 1, as we see in Figure 5.5.

The question posed by Hirschfeld (1935) was this: Can we find scores a and b for
the row and column variables such that both regressions are linear? The answer is “Yes!”
Indeed, there is one solution for each pair of correspondence analysis scores, ai and bi ,
associated with the singular value λi . For a given set of scores, ai and bi , the weighted
means of the columns are D−1

c PTai , and the linear regression on bi has intercept 0 and
slope λi ,

(D−1
c PT)ai = λi bi

Similarly, the inverse regression on ai has intercept 0 and slope 1/λi

(D−1
r P)bi = (1/λi )ai

The choice of the scores associated with the largest singular value, λ1, makes the slope
(equivalently, the correlation) of the regression of Y 1 on X1 as large as possible. More-
over, this choice makes the angle between the two regression lines as small as possible,
i.e., the regressions are most collinear (Greenacre, 1984). So, instead of complex, nonlin-
ear relations between the scaled Hair-color and Eye-color variables using arbitrary scores
(Figure 5.5), you arrive at simple, linear relations by use of a nonlinear transformation of
the arbitrary scores.
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You can show these regressions for the first CA dimension in the following program
steps, which continue from those shown in Section 5.3.1. Most of the program steps are
used to find the means of Y 1 | X1 and X1 | Y 1, and to annotate them on the plot, together
with the category labels and the regression line. The plot with both regression lines is
shown in Figure 5.6.

*-- Annotate the row and column means;
proc means data=scores nway noprint;

var y1;
class x1;
freq count;
output out=ymeans mean=y1bar;

data ymeans;
set ymeans;
retain xsys ysys ’2’ size 2;
x = x1; y = y1bar;
function = ’symbol’; text=’dot’; color=’red’; output;

proc means data=scores nway noprint;
var x1;
class y1;
freq count;
output out=xmeans mean=x1bar;

data xmeans;
set xmeans;
retain xsys ysys ’2’ size 2 line 4;
x = x1bar; y = y1;
function = ’symbol’; text=’dot’; color=’blue’; output;
if _n_=1 then function=’move’;

else function=’draw’;
output;

*-- Annotate the row and column labels;
data label1;

set scores(keep=eye hair x1 y1);
where eye=’Brown’;
retain xsys ysys ’2’ color ’red ’ function ’label ’;
if hair=’BROWN’ then position=’9’;

else position=’6’;
x = -.78; y = y1; text = hair;

data label2;
set scores(keep=eye hair x1 y1);
where hair=’BLACK’;
retain xsys ysys ’2’ position ’5’ color ’blue’ function ’label ’;
x = x1; y = -.58; text = eye;

*-- Get slope and intercept of (weighted) regression line;
proc reg data=scores outest=parms noprint;

model y1 = x1;
weight count;

data line;
set parms (keep=x1 intercep);
drop x1 intercep;
length text $20;
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*-- Draw (weighted) regression line;
xsys=’2’; ysys=’2’; color=’red ’;
x=-0.65; y = intercep + x1 * x; function=’MOVE ’; output;
x= 0.65; y = intercep + x1 * x; function=’DRAW ’; output;
x= 0.35; y = intercep + x1 * x; function=’LABEL ’; color=’black’;
angle = atan(x1) * (45/atan(1)); position=’2’;
text = ’Y1 = 0 + ’ || put(x1,6.3) || ’ X1’; output;

*-- Combine the annotate data sets;
data labels;

length text $20;
set label1 label2 line ymeans xmeans;

proc gplot data=scores;
bubble y1 * x1 = count /

blabel bsize=8 bscale=area
vaxis=axis1 haxis=axis2 hm=2 vm=2 anno=labels;

axis1 order=(-.6 to .9 by .3) label=(h=1.8 a=90 ’Y1 (Hair Color)’);
axis2 order=(-.8 to .7 by .3) label=(h=1.8 ’X1 (Eye Color)’);

Note that the slope of the line for Y 1 | X1 in Figure 5.6 is 0.457, the largest singular value
and the largest canonical correlation. If you were to repeat these steps using the CA scores
X2 and Y 2 on Dimension 2, you would find another pair of linear regressions with a slope
of 0.149 for Y 2 | X2, the second singular value.

Figure 5.6 Simultaneous linear regressions of correspondence analysis scores for Dimension 1.
Using the optimal scores makes both regressions linear; choosing the scores associated
with the largest singular value makes the two regressions most collinear.
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5.4 Multi-Way Tables

A 3- or higher-way table can be analyzed by correspondence analysis in several ways.
Multiple correspondence analysis (MCA), described in Section 5.5, is an extension of sim-
ple correspondence analysis which analyzes simultaneously all possible 2-way tables con-
tained within a multi-way table. Another approach, described here, is called stacking. A
3-way table, of size I × J × K can be sliced into I 2-way tables, each J × K . If the
slices are concatenated vertically, the result is one 2-way table, of size (I × J )× K . In ef-
fect, the first two variables are treated as a single composite variable with I J levels, which
represents the main effects and the interaction between the original variables that were
combined. Van der Heijden and de Leeuw (1985) discuss this use of CA for multi-way
tables and show how each way of slicing and stacking a contingency table corresponds to
the analysis of a specified log-linear model. Like the mosaic display, this provides another
way to visualize the relations in a log-linear model.

In particular, for the 3-way table that is reshaped as a table of size (I × J ) × K , the
CA solution analyzes residuals from the log-linear model [AB] [C]. That is, for such a
table, the I × J rows represent the joint combinations of variables A and B. The expected
frequencies under independence for this table are

m[i j ]k = n[i j ]+ n[+]k
n

= ni j+ n++k

n
(5.6)

which are the ML estimates of expected frequencies for the log-linear model [AB] [C].
The χ2 that is decomposed by CA is the Pearson χ2 for this log-linear model. When the
table is stacked as I × (J × K ) or J × (I × K ), correspondence analysis decomposes the
residuals from the log-linear models [A] [BC] and [B] [AC], respectively. Van der Heijden
and de Leeuw (1985) also show how a generalized form of correspondence analysis can be
interpreted as decomposing the difference between two specific log-linear models, so their
approach is more general than is illustrated here.

This approach to the CA of multi-way tables is easily carried out with PROC CORRESP
and the CORRESP macro. With the procedure, use the TABLES statement and list the vari-
ables to be combined interactively as either the row or column variables (separated by a
comma). For example, the CA of residuals from the model [A B][C] of joint independence
(Equation 5.6) is specified by

proc corresp cross=row;
tables A B, C;
weight count;

The CROSS= option specifies that all combinations of the levels of A and B define the rows
of the contingency table.4

For the CORRESP macro, the variables in the TABLES= parameter are separated by a slash
(/),5 and CROSS=BOTH|ROW|COL is included in the OPTIONS= parameter. The following
statement is equivalent to the preceding PROC CORRESP step:

%corresp(options=cross=row,
tables=A B/ C, weight=count);

4If this option is omitted, the separate levels of each of A and B define the table rows.
5You can also use a comma, but then the TABLES= parameter must be protected with the %STR() macro function,
e.g., TABLES=%STR(A B, C).
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EXAMPLE 5.5 Suicide rates in Germany

In this section, the use of CA for the analysis for 3-way tables is illustrated by using data
on suicide rates in West Germany (presented in Table 5.1). The data is classified by Age,
Sex, and Method of suicide used. The data from Heuer (1979, Table 1) has been discussed
by Friendly (1991, 1994b), van der Heijden and de Leeuw (1985)6 and others. The original
2×17×9 table (Appendix B.10) contains 17 age groups from 10 to 90 in 5-year increments
and 9 categories of suicide method. To avoid extremely small cell counts and cluttered
displays this example uses a reduced table in which age groups are combined into 10-year
intervals except for the last interval, which includes ages 70 to 90; the methods “toxic
gas” and “cooking gas” were collapsed and the methods “knife” and “other” were deleted,
giving the 2 × 5 × 6 table shown in Table 5.1. These changes do not affect the general
nature of the data or conclusions drawn from it.

Table 5.1 Suicide data: frequencies of suicide by Age, Sex, and Method (Heuer, 1979)

Method

Sex Age Poison Gas Hang Drown Gun Jump

M 10-20 1160 335 1524 67 512 189
M 25-35 2823 883 2751 213 852 366
M 40-50 2465 625 3936 247 875 244
M 55-65 1531 201 3581 207 477 273
M 70-90 938 45 2948 212 229 268

F 10-20 921 40 212 30 25 131
F 25-35 1672 113 575 139 64 276
F 40-50 2224 91 1481 354 52 327
F 55-65 2283 45 2014 679 29 388
F 70-90 1548 29 1355 501 3 383

Table 5.2 shows the results of all possible hierarchical log-linear models for the suicide
data. It is apparent that none of these models has an acceptable fit to the data. However,
given the enormous sample size (n = 48,177), even relatively small departures from ex-
pected frequencies under any model would appear significant.

Table 5.2 Goodness-of-fit for hierarchical log-linear models for the suicide data

Model df L.R. G2 G.F. χ2

[M][A][S] 49 10119.60 9908.24

[M][AS] 45 8632.0 8371.3
[A][M S] 44 4719.0 4387.7
[S][M A] 29 7029.2 6485.5

[M S][AS] 40 3231.5 3030.5
[M A][AS] 25 5541.6 5135.0
[M A][M S] 24 1628.6 1592.4

[M A][M S][AS] 20 242.0 237.0

The decision about which variables to combine interactively depends more on which
associations are to be displayed and which are to be ignored, rather than on which is the
best-fitting model. For example, CA applied to the [AS] by [M] table helps to show the

6“Correspondence Analysis Used Complementary to Loglinear Analysis,” Peter G. M. van der Heijden, Psy-
chometrika, Volume 50, Number 4, pp. 429–447. Copyright c© 1985 by The Psychometric Society. Reprinted by
permission of The Psychometric Society.
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nature of the association between Method of suicide and the joint Age-Sex combinations
and decomposes the χ2 = 8371 for the log-linear model [AS] [M]. However, this analysis
would ignore the Age-Sex association.

To carry out this analysis with the data in the form of a frequency dataset (with variables
AGE, SEX, METHOD, and COUNT), call PROC CORRESP with the following statements:

proc corresp data=suicide cross=row short;
table age sex, method;
weight count;

run;

Or, to perform this analysis and produce the graphical display in Figure 5.7, call the
CORRESP procedure as follows:

axis1 order=(-.7 to .7 by .7) length=6.5 in label=(a=90 r=0);
axis2 order=(-.7 to .7 by .7) length=6.5 in;
%corresp(data=suicide, tables=%str(age sex, method), weight=count,

options=cross=row short, vaxis=axis1, haxis=axis2);

Figure 5.7 2-D CA solution for the [AS] [M] multiple table of the suicide data
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The printed results, shown partially in Output 5.6, indicate that over 93% of the asso-
ciation between the Age-Sex categories and Method of suicide can be represented well in
two dimensions.
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Output 5.6 Chi-Square decomposition for suicide data

Inertia and Chi-Square Decomposition

Singular Principal Chi-
Values Inertias Squares Percents 12 24 36 48 60

----+----+----+----+----+---
0.32138 0.10328 5056.91 60.41% *************************
0.23736 0.05634 2758.41 32.95% **************
0.09378 0.00879 430.55 5.14% **
0.04171 0.00174 85.17 1.02%
0.02867 0.00082 40.24 0.48%

------- -------
0.17098 8371.28 (Degrees of Freedom = 45)

The plot of the CA scores for the rows (Sex-Age combinations) and columns (Methods)
in Figure 5.7 shows residuals from the log-linear model [AS] [M]. Thus, it shows the 2-
way associations of Sex × Method, Age × Method, and the 3-way association, Sex × Age
× Method that are set to zero in the model [AS] [M]. The possible association between
Sex and Age is not shown in this plot.

Dimension 1 in the plot separates males and females. This dimension indicates a strong
difference between suicide profiles of males and females. The second dimension is mostly
ordered by Age with younger groups at the top and older groups at the bottom. Note also
that the positions of the age groups are approximately parallel for the two sexes. Such a
pattern indicates that Sex and Age do not interact in this analysis. The relation between the
Age-Sex groups and Methods of suicide can be interpreted in terms of similar distance and

Figure 5.8 Mosaic display showing deviations from model [AS] [M]. The methods have been re-
ordered according to their positions on Dimension 1 of the CA solution for the [AS] [M]
table.
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direction from the origin, which represents the marginal row and column profiles. Young
males are more likely to commit suicide by using gas or a gun; older males, by hanging;
while young females are more likely to ingest some toxic agent and older females, by
jumping or drowning.

For comparison, the mosaic display for the [AS] [M] table is shown in Figure 5.8. The
methods have been arranged in order of the method scores on the first dimension of the CA
solution of Figure 5.7. Figure 5.8 again shows the prevailing use of GUN and GAS among
younger males, and their use decreasing with age, whereas the use of HANG increases
with age. For females, GUN, GAS, and HANG are used less frequently than would be the
case if method were independent of age and sex, whereas, POISON, JUMP, and DROWN
occur more often.

5.4.1 Marginal Tables and Supplementary Variables

An n-way table in frequency form or case form is automatically collapsed over factors that
are not listed in the TABLES statement (or in the macro TABLES= parameter). The analysis
gives a marginal model for the categorical variables that are listed.

The positions of the categories of the omitted variables may nevertheless be recovered,
by treating them as supplementary variables. A supplementary variable is ignored in find-
ing the CA solution, but its categories are then projected into that space.

To illustrate, the statement below lists only the AGE and METHOD variables, and therefore,
produces an analysis collapsed over SEX. This ignores not only the effect of Sex itself, but
also all associations of Age and Method with Sex, which (from Table 5.2) are substantial.

%corresp(data=suicide, tables=%str(age, method), weight=count);

This analysis and the graph that is produced do not include category points for SEX, but
we may re-do the same analysis including SEX as a supplementary variable as shown next.

%corresp(data=suicide, tables=%str(age sex, method), sup=sex,
weight=count, inc=0.2 0.1, dimlab=Dim);

Note that SEX must also be listed among the TABLES= variables.
This analysis produces a χ2(20) = 2917.83, the same as the Pearson chi-square for

the [A] [M] marginal table. The plot (Figure 5.9) is essentially one-dimensional, where
Dimension 1 reflects Age most prominently. Comparing this graph with Figure 5.7, you
may see that ignoring Sex has collapsed the differences between males and females that

Figure 5.9 Two-dimensional CA solution for the [A] [M] marginal table. Category points for Sex are
shown as supplementary points.
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were the dominant feature of the analysis including Sex. However, as in Figure 5.7, the
supplementary points for Sex show a greater tendency for females to use JUMP and for
males to use HANG or GUN.

5.5 Multiple Correspondence Analysis

Multiple correspondence analysis (MCA) is designed to display the relationships of the
categories of two or more discrete variables. Again, there are several complementary ways
of defining MCA as an optimal scaling of categorical data. The most typical analysis starts
by defining indicator (“dummy”) variables for each category and re-expresses the n-way
contingency table in the form of a cases-by-variables indicator matrix, Z. Simple corre-
spondence analysis for a 2-way table can, in fact, be derived as the canonical correlation
analysis of the indicator matrix. Unfortunately, the generalization to more than two vari-
ables follows a somewhat different path, so that simple CA does not turn out to be pre-
cisely a special case of MCA in some respects, particularly in the decomposition of an
interpretable χ2 over the dimensions in the visual representation.

Nevertheless, MCA does provide a useful graphic portrayal of the bivariate relations
among any number of categorical variables, and has close relations to the mosaic matrix
(Section 4.4). If its limitations are understood, it may also be helpful in understanding
large, multivariate categorical datasets.

5.5.1 Bivariate MCA

For the Hair-color and Eye-color data, the indicator matrix Z has 592 rows and 4 + 4 = 8
columns. The columns refer to the eight categories of hair color and eye color and the rows
to the students in Snee’s 1974 sample. The indicator matrix is shown in Table 5.3, where
to save space each combination of hair color and eye color actually corresponds to the

Table 5.3 Indicator matrix for Hair-color and Eye-color data (grouped)

Hair Eye
Hair Eye ni j h1 h2 h3 h4 e1 e2 e3 e4

BLACK Brown 68 1 0 0 0 1 0 0 0
BROWN Brown 119 0 1 0 0 1 0 0 0
RED Brown 26 0 0 1 0 1 0 0 0
BLOND Brown 7 0 0 0 1 1 0 0 0

BLACK Hazel 15 1 0 0 0 0 1 0 0
BROWN Hazel 54 0 1 0 0 0 1 0 0
RED Hazel 14 0 0 1 0 0 1 0 0
BLOND Hazel 10 0 0 0 1 0 1 0 0

BLACK Green 5 1 0 0 0 0 0 1 0
BROWN Green 29 0 1 0 0 0 0 1 0
RED Green 14 0 0 1 0 0 0 1 0
BLOND Green 16 0 0 0 1 0 0 1 0

BLACK Blue 20 1 0 0 0 0 0 0 1
BROWN Blue 84 0 1 0 0 0 0 0 1
RED Blue 17 0 0 1 0 0 0 0 1
BLOND Blue 94 0 0 0 1 0 0 0 1

(Totals) 592 220 215 93 64 108 286 71 127
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number of repeated rows that are represented by the ni j column. Variable h1 represents the
hair category Black, and Variable e1 represents the eye category Brown, so the first row of
table Table 5.3 corresponds to the 68 people with black hair and brown eyes. The indicator
matrix Z thus has 68 identical rows with that response pattern.

Each row of the indicator matrix sums to 2, the number of variables represented, and
each category column sums to the marginal total for that category. Note that appropriate
subsets of the rows are in a sense synonymous with the column categories. For example,
the first four rows of the table are all those with brown eyes, so these rows represent e1.

If the indicator matrix is partitioned as Z = [Z1,Z2], corresponding to the two sets
of categories, then the contingency table is given by N = ZT

1 Z2. In this case, MCA can
be described as the application of the simple correspondence analysis algorithm to the
indicator matrix Z. This analysis would yield scores for the rows of Z (the cases) and for
the columns (the categories). As in simple CA, each row point is the weighted average of
the scores for the column categories, and each column point is the weighted average of the
scores for the row observations.

Consequently, the point for any category is the centroid of all the observations with a
response in that category, and all observations with the same response pattern coincide.
As well, the origin reflects the weighted average of the categories for each variable. As
a result, category points with low marginal frequencies will be located further away from
the origin, while categories with high marginal frequencies will be closer to the origin. For
a binary variable, the two category points will appear on a line through the origin, with
distances inversely proportional to their marginal frequencies.

EXAMPLE 5.6 Hair color and eye color

The analysis of the indicator matrix is provided below for the Hair-color and Eye-color
data. MCA is usually carried out more simply through analysis of the “Burt matrix,” de-
scribed in the following subsection.

The indicator matrix may be constructed from the dataset in contingency table form as
shown next, using PROC TRANSPOSE and a DATA step to calculate the dummy variables
from the original row and column variables.7

data haireye;
input EYE $ BLACK BROWN RED BLOND ;

datalines;
Brown 68 119 26 7
Hazel 15 54 14 10
Green 5 29 14 16
Blue 20 84 17 94

;
*-- Reshape data to frequency form;
proc transpose data=haireye out=haireye2;

var BLACK BROWN RED BLOND;
by eye notsorted;

*-- Create dummy variables;
data haireye2;

set haireye2 (rename= (_name_=hair col1=count));
h1 = (hair=’BLACK’); h2 = (hair=’BROWN’);
h3 = (hair=’RED’); h4 = (hair=’BLOND’);
e1 = (eye =’Brown’); e2 = (eye =’Hazel’);
e3 = (eye =’Green’); e4 = (eye =’Blue’);

7These steps actually create a design matrix, with one observation per category, with the frequencies, ni j , as
shown in Table 5.3. In the %CORRESP step, the COUNT variable is used as a weight to reproduce the indicator
matrix.
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Analysis of the indicator matrix (the dataset HAIREYE2) is conveniently carried out with
the CORRESP macro.

axis1 length=6.5 IN order=(-1.2 to 2 by 0.4) label=(a=90);
axis2 length=6.5 IN order=(-1.2 to 2 by 0.4);

%corresp(data=haireye2, id=id, var=h1-h4 e1-e4, weight=count,
symbols=none dot, pos=5 -, vaxis=axis1, haxis=axis2, anno=labels, gplot=no);

Some additional Annotation steps (not shown) to add some lines to the Annotate dataset
LABELS produces Figure 5.10, in which the row and column points are shown in princi-
pal coordinates. Compared with Figure 5.1, the pattern of the hair color and eye color
categories is the same in the analysis of the contingency table (Figure 5.1) and the anal-
ysis of the indicator matrix (Figure 5.10), except that the axes are scaled differently—the
display has been stretched along the second (vertical) dimension. Indeed, it may be shown
(Greenacre, 1984) that the two displays are identical, except for changes in scales along the
axes. There is no difference at all between the displays in standard coordinates. Greenacre
(1984, pp. 130–134) describes the precise relations between the geometries of the two
analyses.

Figure 5.10 Correspondence analysis of the indicator matrix Z for the Hair-color and Eye-color data.
The category points are joined for the Hair-color and Eye-color categories. Observation
(row) points are labeled by the subscripts of h, e. The dotted line connects those with
blond hair.
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Figure 5.10 also plots the row points (corresponding to the observations) from this anal-
ysis. Each point is labeled by the subscripts, i j , of hi e j , and actually represents ni j rows
from the indicator matrix plotted at the point. For example, the points labeled ‘41’–‘44’
represent all the observations with blond hair. There are actually 94 observations at the
point ‘44’, representing the blue-eyed blonds.

A major difference between analysis of the contingency table and analysis of the in-
dicator matrix is in the decomposition of inertia and χ2 for the dimensions. The inertias
for the analysis of the indicator matrix are shown in Output 5.7. Comparing these values
with Output 5.1, we see that 6 dimensions are shown in the analysis of the indicator ma-
trix, while only 3 are shown in the analysis of the contingency table. The inertias and χ2

values differ less dramatically than in Output 5.1, and the inertias sum to exactly 3.0 in the
indicator matrix analysis.

Output 5.7 Correspondence analysis output for the indicator matrix of the Hair-color and Eye-color
data

The Correspondence Analysis Procedure

Inertia and Chi-Square Decomposition

Singular Principal Chi-
Values Inertias Squares Percents 5 10 15 20 25

----+----+----+----+----+---
0.85350 0.72846 862.495 24.28% ************************
0.75799 0.57454 680.259 19.15% *******************
0.72491 0.52549 622.177 17.52% ******************
0.68885 0.47451 561.823 15.82% ****************
0.65227 0.42546 503.741 14.18% **************
0.52110 0.27154 321.505 9.05% *********

------- -------
3.00000 3552 (Degrees of Freedom = 105)

For a 2-way table of size (J1 × J2), CA of the indicator matrix produces J1 + J2 −
2 dimensions, but it turns out that half of these dimensions are artifacts that should be
disregarded, and these dimensions correspond to principal inertias λ2 < 1

2 . The total inertia
depends not on the χ2 for association as in simple CA of the contingency table, but is
simply (J1 + J2 − 2)/2. The singular values of the nontrivial dimensions in the analysis of
Z (symbolized as λZ

i ) are related to those (λi ) of the analysis of the contingency table by

λZ
i = {1

2
[1 + λi ]}1/2 .

We can recover the singular values from the analysis of the contingency table by inverting
this relation, which gives

λi = 2(λZ
i )

2 − 1 . (5.7)

For example, using the first singular value, λZ
1 = 0.8535 from Output 5.7 (in Equation 5.7)

gives λ1 = 2(0.85352)− 1 = 0.4569, the value in Output 5.1.
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5.5.2 The Burt Matrix

The same solution for the category points as in the analysis of the indicator matrix may be
obtained more simply from the so-called “Burt matrix” (Burt, 1950),

B = ZTZ =
[

N1 N
NT N2

]
,

where N1 and N2 are diagonal matrices containing the marginal frequencies of the two
variables (the column sums of Z1 and Z2).

The standard coordinates from an analysis of the Burt matrix B are identical to those of
Z. The singular values of B are the squares of those of Z; however, the CORRESP procedure
compensates by taking the square root, so the same values are printed.

The CORRESP procedure and the CORRESP macro calculate the Burt matrix when the
MCA option is used, and the category variables are given in the TABLES= statement. For the
Hair-color and Eye-color data, the same category points and inertias found in Example 5.6
are obtained with the following statement, using the table variables HAIR and EYE rather
than the indicator variables H1-H4 E1-E4.

%corresp(data=haireye2, tables=hair eye, weight=count, options=short mca,
inc=0.4, xextra=0 1, pos=-, symbols=dot, colors=red);

The Burt matrix is symmetric and the rows and columns both refer to the hair, eye cate-
gories. Only the column (category) points appear in the output and the plot.

5.5.3 Multivariate MCA

The coding of categorical variables in an indicator matrix provides a direct and natural way
to extend this analysis to more than two variables. If there are Q categorical variables, and
variable q has Jq categories, then the Q-way contingency table, of size J = ∏Q

q=1 Jq =
J1 × J2 × · · · × JQ , with a total of n = n++··· observations, may be represented by the
partitioned (n × J ) indicator matrix [Z1 Z2 . . . ZQ].

Then the Burt matrix is the symmetric partitioned matrix

B = ZTZ =




N[1] N[12] · · · N[1Q]
N[21] N[2] · · · N[2Q]
...

...
. . .

...

N[Q1] N[Q2] · · · N[Q]


 ,

where again the diagonal blocks N[i ] contain the one-way marginal frequencies.
Classical MCA (see, e.g., Greenacre (1984), Gower and Hand (1996)) can then be de-

fined as a singular value decomposition of the matrix B, which produces scores for the
categories of all variables so that the greatest proportion of the bivariate, pairwise asso-
ciations in all off-diagonal blocks is accounted for in a small number of dimensions. In
this respect, MCA resembles multivariate methods for quantitative data based on the joint
bivariate correlation or covariance matrix (Σ), and there is some justification to regard the
Burt matrix as the categorical analog of Σ.8

There is a close connection between this analysis and the bivariate mosaic matrix de-
scribed in Section 4.4: The mosaic matrix displays the residuals from independence for
each pair of variables, and thus provides a visual representation of the Burt matrix. (The
representation would be complete if the one-way margins were drawn in the diagonal cells.)

8For multivariate normal data, however, the mean vector and covariance matrix are sufficient statistics, so all
higher-way relations are captured in the covariance matrix. This is not true of the Burt matrix.
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The total amount of shading in all the individual mosaics portrays the total pairwise asso-
ciations that have been broken down by MCA. See Friendly (1999a) for details.

In Section 5.5.1 the analysis of the indicator matrix or the Burt matrix with Q = 2
categorical variables produces twice as many dimensions as the analysis of the equivalent
contingency table; but only those whose principal inertias, (λZ )2, exceed 1

2 are interesting,
the remaining dimensions being artifacts. When there are Q > 2 variables represented in
the Burt matrix, it may be argued (Greenacre, 1984, 1990) that the interesting dimensions
correspond to those with principal inertia > 1/Q.

A more serious problem lies in the calculation of total inertia and, therefore, in the chi-
square values and corresponding percentages of association accounted for in some number
of dimensions. In simple CA, the total inertia is χ2/n, and it, therefore, makes sense to
talk of percentage of association accounted for by each dimension. But in MCA of the Burt
matrix (with the square-root fixup provided by the CORRESP procedure), the total inertia
is simply (J − Q)/Q = J/Q − 1, because that is what the analysis of the equivalent
indicator matrix would give. The consequence is that the χ2 percentages reported by PROC
CORRESP are somewhat misleading, and give a rather pessimistic view of the association
accounted for in the two (or three) dimensions usually plotted.

To more adequately reflect the percentage of association in MCA, Benzécri (1977) sug-
gested the calculation of

(λ�i )
2 =

[
Q

Q − 1
(λZ

i − (1/Q))

]2

as the principal inertia due to the dimensions with (λZ )2 > 1/2. Benzécri then expresses
the contribution of each dimension as (λ�i )

2/
∑
(λ�i )

2, with the summation over only those
dimensions with (λZ )2 > 1/2.

Although this is an improvement, it is somewhat ad hoc and not totally satisfactory.
Greenacre (1988) develops an alternative analysis called joint correspondence analysis
(JCA) which fits only the Q × (Q −1)/2 off-diagonal blocks of the Burt matrix. Greenacre
(1990) then proposed to define the total inertia as the average inertia in these off-diagonal
blocks.9

For the interpretation of MCA plots, note the following relations (Greenacre, 1984,
Section 5.2):

• The centroid of the categories for each discrete variable is at the origin of the display.
• The inertia that is contributed by a given variable increases with the number of response

categories.
• For a particular variable, the inertia that is contributed by a given category increases as

the marginal frequency in that category decreases.
• The category points for a binary variable lie on a line through the origin. The distance

from each point to the origin is inversely related to the marginal frequency.

EXAMPLE 5.7 Survival on the Titanic

An MCA analysis of the Titanic data is carried out using the MCA option of PROC CORRESP
as follows:

%include catdata(titanic);
proc corresp data=titanic short mca outc=coords;

weight count;
tables age sex class survive;
run;

9In SAS Release 8, the CORRESP procedure provides the BENZECRI and GREENACRE options, which give more
reasonable and useful inertia contributions. One of these options should be used for MCA in the OPTIONS
parameter with the CORRESP macro.
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Output 5.8 Chi-Square decomposition for Titanic MCA

Inertia and Chi-Square Decomposition

Singular Principal Chi-
Values Inertias Squares Percents 6 12 18 24 30

----+----+----+----+----+---
0.66714 0.44508 4609.06 29.67% *************************
0.55231 0.30504 3158.90 20.34% *****************
0.50001 0.25001 2588.96 16.67% **************
0.45281 0.20504 2123.28 13.67% ***********
0.42251 0.17852 1848.63 11.90% **********
0.34105 0.11632 1204.54 7.75% ******

------- -------
1.50000 15533.4 (Degrees of Freedom = 81)

Output 5.9 Correspondence analysis coordinates for Titanic MCA

_NAME_ QUALITY DIM1 DIM2 DIST FACTOR

Adult 0.53947 -0.06783 -0.15332 0.16765 Age
Child 0.53947 1.30180 2.94265 3.21774 Age
1st 0.49259 1.15194 -1.23142 1.68623 Class
2nd 0.07257 0.65126 0.25252 0.69850 Class
3rd 0.54877 0.13060 1.07005 1.07799 Class
crew 0.52193 -0.73694 -0.48273 0.88097 Class
Female 0.67338 1.57479 0.00893 1.57482 Sex
Male 0.67338 -0.42759 -0.00242 0.42759 Sex
Died 0.61980 -0.50948 0.19024 0.54384 Survive
Survived 0.61980 1.06768 -0.39867 1.13968 Survive

The printed output, shown partially in Output 5.8–5.9, suggests that two dimensions
accounts for 50% of the total association (χ2(81) = 15533.4), representing all pairwise
interactions among the four factors. As noted earlier, this assessment is highly pessimistic
because of the artificial dimensions induced in the MCA solution by the diagonal blocks
of the Burt matrix. The suggestion (Greenacre, 1984, p. 145) that we only consider di-
mensions whose principal inertias exceed 1/Q = 0.25 suggests that two dimensions are
sufficient here.

Figure 5.11 shows the two-dimensional solution. The points for each factor have the
property that the sum of coordinates on each dimension, weighted inversely by the marginal
proportions, equals zero, so that high frequency categories (e.g., Adult) are close to the
origin. The first dimension is perfectly aligned with the Gender factor, and also strongly
aligned with Survival. The second dimension pertains mainly to Class and Age effects. If
you consider those points that differ the most from the origin, and with similar distance
and direction from the origin to the point for Survived, you could conclude that survival
was associated with being female or upper class or (to a lesser degree) being a child.
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Figure 5.11 Titanic data: MCA analysis
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data coords;
set coords;
where (_type_) = ’VAR’;
keep _name_ factor dim1-dim2 quality dist;
dist = sqrt(dim1**2 + dim2**2);
select;

when (_name_ in (’Adult’, ’Child’)) factor = ’Age ’;
when (_name_ in (’Female’, ’Male’)) factor = ’Sex ’;
when (_name_ in (’Died’, ’Survived’)) factor = ’Survive’;
otherwise factor = ’Class’;
end;

proc sort;
by factor;

proc print;
id _name_;

%label(data=coords, x=dim2, y=dim1, text=_name_,
pos=-, out=labels);

data labels;
set labels;
if text=’Male’ then do;

x = x-.3;
y = y+.2;
end;
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*-- join pairs of points representing the same variable;
data join;

set coords;
by factor;
length function $8;
xsys=’2’; ysys=’2’;
colors=’green blue magenta red ’;
if first.factor then g+1;
color = trim(scan(colors,g));
x = dim2; y = dim1;
if first.factor

then function=’move’;
else function=’draw’;

output;
*-- circle proportional to quality;
size = .5 + 3*quality;
text = ’circle’;
function = ’symbol’;
output;

data labels; /* Concatenate the annotate data sets */
set labels join;

title lspace=3.2in ’Survival on the Titanic’;
proc gplot data=coords;

plot dim1 * dim2
/ frame href=0 vref=0 lvref=34 lhref=34
vaxis=axis1 haxis=axis2 hm=1 vm=1
anno=labels;

symbol1 v=dot h=1;
axis1 length=4.6in order=(-1 to 2) label=(a=90) ;
axis2 length=7.65in order=(-2 to 3) offset=(,.35in);
label dim1 = ’Dimension 1 (29.7%)’

dim2 = ’Dimension 2 (20.3%)’;
run;

The mosaic matrix in Figure 5.12 may be compared with the results of an MCA analysis
of the Titanic data. The mosaics in the last row and column show the associations of Class,
Age, and Gender with Survival.
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Figure 5.12 Mosaic matrix of Titanic data. Each panel shows the marginal relation, fitting an inde-
pendence model between the row and column variable, collapsed over other variables.
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EXAMPLE 5.8 Marital status and pre- and extramarital sex

The data on the relation between marital status and reported premarital and extramarital
sex was explored earlier using mosaic displays in Example 4.4 and Example 4.7.

The 2 × 2 × 2 × 2 table in frequency form can be analyzed as shown below, where the
classification variables are GENDER, PRE, EXTRA, and MARITAL.

data marital;
input gender $ pre $ extra $ @;
pre = ’Pre:’ || pre;
extra = ’X:’ || extra;
marital=’Divorced’; input freq @; output;
marital=’Married’; input freq @; output;

datalines;
Women Yes Yes 17 4
Women Yes No 54 25
Women No Yes 36 4
Women No No 214 322
Men Yes Yes 28 11
Men Yes No 60 42
Men No Yes 17 4
Men No No 68 130
;
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proc corresp data=marital mca outc=coords;
weight freq;
tables gender pre extra marital;

run;

The same analysis, with the addition of the 2-D plot of category scores, would be produced
by the CORRESP macro,

%corresp(data=marital, tables=gender pre extra marital, weight=freq,
options=mca short, interp=vec, inc=1, pos=-, symbols=dot);

Output 5.10 Chi-Square decomposition for marital status MCA

Inertia and Chi-Square Decomposition

Singular Principal Chi-
Values Inertias Squares Percents 8 16 24 32 40

----+----+----+----+----+---
0.62226 0.38721 1796.45 38.72% ************************
0.50915 0.25923 1202.70 25.92% ****************
0.43375 0.18814 872.86 18.81% ************
0.40672 0.16542 767.47 16.54% **********

------- -------
1.00000 4639.48 (Degrees of Freedom = 49)

An enhanced version10 of this plot is shown in Figure 5.13. The principal inertias, listed
in Output 5.10, again suggest that two dimensions are sufficient for this dataset. The posi-
tions of the category points on Dimension 1 suggest that women are less likely to have had
premarital and extramarital sex and that still being married is associated with the absence
of pre- and extramarital sex.

Although two dimensions are probably sufficient for interpreting this data, three-
dimensional plots can also be used. When you specify the parameter DIM=3, the CORRESP
macro produces a coordinates dataset and an Annotate dataset with three dimensions.11 It
also produces a labeled PROC G3D scatter plot. However, the G3D procedure does not allow
axes to be equated, and it is usually necessary to experiment with the ROTATE and TILT
options to produce a reasonable display. Therefore, the plot generated by the macro should
be considered simply a first approximation.

A three-dimensional MCA solution for the Marital-status data is produced with this
statement:

%corresp(data=marital, tables=gender pre extra marital, weight=freq, dim=3,
plotreq=dim1 * dim2 = dim3,
options=mca short, interp=vec, symbols=dot,
out=coord, anno=label);

10The size of the bubble symbol surrounding each point is proportional to the quality of the representation in two
dimensions.
11The first two dimensions are identical to the 2-D solution because of the nested nature of CA and MCA solu-
tions.
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Figure 5.13 2-D multiple correspondence analysis display for Marital-status data
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To roughly equate the axes, the initial plot (not shown) was modified by extending
the plotting range for all dimensions as shown next. Some additional annotation steps are
required (not shown) to produce Figure 5.14. Note that the projections of the points on the
Dim1–Dim2 plane is identical to the solution shown in Figure 5.13.

data xtra; /* Add dummy points to extend X, Y range */
input dim1-dim3 shapevar $;

datalines;
2 1 -.6 POINT
-1 -1 -.6 POINT
data coord;

Set coord xtra;

goptions vsize=6in hsize=8in;
proc g3d data=coord;

scatter dim1 * dim2 = dim3
/ shape=’point’ color=’green’

zmin=-0.6 tilt=80 rotate=75 caxis=gray60
xticknum=2 yticknum=2 zticknum=2 grid
annotate=label;
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Figure 5.14 3-D MCA display for marital status data
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5.6 Extended MCA: Showing Interactions in 2Q Tables

Earlier in this chapter MCA was explained as a way to depict the relationships among
the categories of multiple categorical variables, and the derivation of the method based on
the Burt matrix implies that only the relations in the bivariate marginal tables are repre-
sented in the displays. This is based on the assumption (Gifi, 1990, Greenacre, 1988) that,
as with multivariate normal data, the structural relations among variables are adequately
captured by bivariate associations.12 These developments, and usual practice, have led to
the mistaken beliefs that, (a) MCA can only represent bivariate (first-order) interactions,
(b) MCA can only portray the category points of the variables (not their combinations),
and (c) associations must be inferred from the relative positions of the category points.

A recent paper by Meulman and Heiser (1997) demonstrates, however, that none of
these are necessary consequences of MCA itself. Moreover, for the case of binary variables
(a 2Q table), an odds interpretation of distances between category points leads to simple
geometrical patterns in MCA plots.

Their method for including higher-order effects involves adding all cross-terms, up to
a given order, to the set of variables in frequency form, which are analyzed by MCA. For

12Another concern is that higher-way contingency tables may become sparse, resulting in instability in solutions
(van der Heijden, 1987).



178 Visualizing Categorical Data

example, three variables, A, B, and C , generate all interaction terms (using the | syntax of
PROC GLM or PROC CATMOD),

A | B | C ⇐⇒ A B C A*B A*C B*C A*B*C

Similarly, the @ syntax specifies all terms up to a given order; for example,

A | B | C | D@2 ⇐⇒ A B C D A*B A*C A*D B*C B*D C*D

generates all terms up to order 2. To illustrate, Table 5.4 shows all terms for the 3-way
model (A | B | C). Like any CLASS variables, it is only necessary for the variable values
to be discrete. However, it is strictly necessary to include all terms at the same interaction
level, up to the given order.

Table 5.4 Extended factor matrix for a 2 × 2 × 2 table, including all possible cross-classifications

A B C AB AC BC ABC

a1 b1 c1 1 1 1 1 1 1 1
c2 1 1 2 1 2 2 2

b2 c1 1 2 1 2 1 3 3
c2 1 2 2 2 2 4 4

a2 b1 c1 2 1 1 3 3 1 5
c2 2 1 2 3 4 2 6

b2 c1 2 2 1 4 3 3 7
c2 2 2 2 4 4 4 8

The indicator matrix will then consist of the dummy variables for these terms so that
for Table 5.4 Z = [ZAZBZC ZABZAC ZBC ZABC ]. Forming the Burt matrix, B = ZTZ, we
see that the off-diagonal blocks now contain all contingency tables, which can be formed
from the original variables (up to the specified order), not just the pairwise bivariate tables.
The category points for an MCA solution that is based on this extended Z matrix will then
contain, in addition to the usual one-way “main effect” points of the variables themselves,
sets of interaction points ((ab)i j , (ac)ik , and so on) for the various combinations of factors
included.

What happens to the category points for these interaction terms in the MCA solution?
Meulman and Heiser (1997) demonstrate the remarkable results:

• Distance ratios between sets of interaction points correspond to odds ratios in the higher-
order table

• The various independence structures discussed earlier in Table 4.2 give rise to simple
configurations of points in the category space.

For simplicity, consider a 2×2 table with cell probabilities pi j . Let zi j refer to the profile
coordinate points for the (ab)i j combinations, and let zi•, z• j be the coordinate points for
the one-way A and B effects, respectively. Then, the zi j defines a quadrilateral, and the
zi• and z• j are the centroids (weighted by pi j ) of the corresponding corners, as shown in
Figure 5.15. In this figure, the mass, pi j of each cell point is indicated by its size, and the
z points are labeled by their subscripts.

The centroid points are related to the interaction points as (weighted) linear combina-
tions:

zi• = pi1

pi+
zi1 + pi2

pi+
zi2

z• j = p1 j

p+ j
z1 j + p2 j

p+ j
z2 j
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Figure 5.15 Category points (zij ) and profile points (zi•, z•j ) in extended MCA representation. Under
independence, the lines connecting the profile points are parallel to those connecting
corresponding category points.
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For any edge of the quadrilateral, e.g., zi1, zi2, their centroid is now located on the line
between them, so the distances must be additive,

d(zi1, zi2) = d(zi1, zi•)+ d(zi•, zi2)

From these relations, Meulman and Heiser (1997) show that:

• Given A = i (or B = j), the odds of being in category 1 vs. category 2 of B (or A) are
shown in the display by the inverse ratio of their distances to their centroid. For example,

pi1

pi2
= d(zi2, zi•)

d(zi1, zi•)

• The odds ratio θ has a simple multiplicative relation to these distances among the four
corner points and their centroids.

θ = p11 p22

p12 p21
= d(z12, z•2) d(z21, z•1)

d(z11, z•1) d(z22, z•2)
(5.8)

• Under independence, θ = 1, and Equation 5.8 implies that (a) the corner points form
a parallelogram, and (b) the lines connecting the centroids of the same variable (e.g.,
(z•1, z•2)) are parallel to those of their respective category points. These relations of
parallelism and additivity are shown in Figure 5.15.

Although this discussion was presented in terms of a 2 × 2 table, the geometrical rela-
tions extend directly to any number of binary variables. For a 2×2×2 table, the models of
various types of independence shown in Table 4.2 can all be characterized in terms of the
three odds ratios for all pairs of variables and, therefore, in terms of parallelism and addi-
tivity of the corresponding pairwise quadrilaterals in the spatial representation. Essentially,
each independence relation corresponds to one odds ratio θ = 1, which in turn is shown
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as one 2-way term whose profile points form a parallelogram, as shown in the following
table:

Independence Number of parallel
Hypothesis relations Odds ratios 2-way profile sets

H1 A ⊥ B ⊥ C θAB = θAC = θBC = 1 3
H2 A, B ⊥ C θAC = θBC = 1 2
H3 A ⊥ B | C θAB = 1 1
H4 none all θ �= 1 0

The following example demonstrates these ideas with a 23 table, where one 2-way term
is independent by design. It also illustrates how to generate the interaction variables, and
provides some special techniques for displaying the extended MCA solution.

EXAMPLE 5.9 Bartlett’s data

In a classic paper that extended the notion of interaction to 3-way tables, Bartlett (1935)
gave the data shown in Table 5.5, which was derived from an experiment investigating the
propagation of plum root stocks from cuttings.13 In the 2 × 2 × 2 table, time of planting
(T) and length of cutting (L) are factors; whether the cutting was alive or dead (A) was the
response. Note that the column totals for the factors are all equal, these having been fixed
by the experimental design. Thus, there can be no T × L marginal association, and interest
naturally is focused on the [AT] and [AL] associations. Does time or length affect survival?

Table 5.5 Bartlett’s data on propagation of plum root stocks

Time of planting

Now Spring

Length of cutting
Alive? Long Short Long Short Total

Alive 156 107 84 31 378
Dead 84 133 156 209 582

Total 240 240 240 240 960

The marginal relations are easily seen in a mosaic matrix, shown in Figure 5.16. Time
and Length are independent, but there is a strong [AT] association, with planting now more
likely to be successful, and a weaker [AL] association, so that long cuttings are more likely
to survive.

13Reprinted by permission from Journal of the Royal Statistical Society, Supplement, Series B. Copyright c© 1935
by the Royal Statistical Society.
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Figure 5.16 Mosaic matrix for marginal associations in Bartlett’s data
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The standard MCA analysis is carried out with the statements below. In the call to the
CORRESP macro, the INTERP=VEC parameter draws vectors from the origin to each main
category point. The macro produces the graph of the 2D solution shown in Figure 5.17; the
principal inertias are shown in Output 5.11.

data bartlett;
do alive=’Alive’, ’Dead’;

do time=’Now ’, ’Spring’;
do Length = ’Long ’, ’Short’;

input count @;
output;
end;

end;
end;

datalines;
156 107 84 31
84 133 156 209

;
*-- Ordinary MCA of the three variables;
%corresp(data=bartlett, tables=Alive Time Length, weight=count,

options=mca short, interp=vec, inc=0.2, pos=-,
symbols=dot, colors=black, m0=0);
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Figure 5.17 2-D MCA solution for Bartlett’s data
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Output 5.11 Chi-Square decomposition for Bartlett’s data, MCA

Inertia and Chi-Square Decomposition

Singular Principal Chi-
Values Inertias Squares Percents 9 18 27 36 45

----+----+----+----+----+---
0.67902 0.46107 1457.90 46.11% **************************
0.57735 0.33333 1053.99 33.33% *******************
0.45342 0.20559 650.08 20.56% ***********

------- -------
1.00000 3161.97 (Degrees of Freedom = 25)

The interpretation of Figure 5.17 is quite simple. Dimension 1 is perfectly aligned with
the Alive response variable. The associations [AT] and [AL] of Time and Length are shown
by their projections (coordinates) on this axis. Time has a stronger association, so its pro-
jection on this axis is larger, and planting long cuttings now leads to increased survival.
The independence of Time and Length is shown by the nearly right angle between their
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vectors.14 Because the second principal inertia in Output 5.11 equals 1/Q = 1/3 it is not
necessary to interpret the second dimension. Note also how the odds are shown by distance
ratios in the plot. Both Time and Length have equal marginal frequencies for their two
levels (odds = 1), and the ratio of distances to the origin for the levels of both variables
equals 1.0. The ratio of distances to the origin for Alive and Dead is inversely related to
their marginal frequencies.

The statements shown next illustrate one way to construct the interaction variables rep-
resenting the first-order associations [AT], [AL], and [TL] and the second-order interaction,
[ATL]. Each of the character variables ALIVE, TIME, and LENGTH is used to create a dummy
(0/1) variable (A, T, and L, respectively). The interaction terms are then created with binary
arithmetic in the DATA step COMBO. A PROC FORMAT step is used to create short character
labels for the combinations, to be used in the plots that follow. These labels use an upper-
case letter to refer to the first level of each main variable, and a lowercase letter to refer to
the second level.

The dataset COMBO that results is shown in Output 5.12. Note that the variables A--ATL
are actually numeric, but are printed using their formatted values.15

Output 5.12 Dataset COMBO: interactive coding for Bartlett’s data, Extended MCA

LENGTH TIME ALIVE COUNT A T L AT AL TL ATL

Long Now Alive 156 A T L AT AL TL ATL
Long Now Dead 84 a T L aT aL TL aTL
Long Spring Alive 84 A t L At AL tL AtL
Long Spring Dead 156 a t L at aL tL atL
Short Now Alive 107 A T l AT Al Tl ATl
Short Now Dead 133 a T l aT al Tl aTl
Short Spring Alive 31 A t l At Al tl Atl
Short Spring Dead 209 a t l at al tl atl

*-- Formats for higher-order effects;
proc format;

value a 0=’a’ 1=’A’;
value t 0=’t’ 1=’T’;
value l 0=’l’ 1=’L’;

value at 0=’at’ 1=’aT’ 2=’At’ 3=’AT’;
value al 0=’al’ 1=’aL’ 2=’Al’ 3=’AL’;
value tl 0=’tl’ 1=’tL’ 2=’Tl’ 3=’TL’;
value atl 0=’atl’ 1=’atL’ 2=’aTl’ 3=’aTL’ 4=’Atl’ 5=’AtL’ 6=’ATl’ 7=’ATL’;

*-- Code combinations of variables;
data combo;

set bartlett;

a = (alive=’Alive’);
t = (time=’Now’);
l = (length=’Long’);

14In an equated 3-D representation, they are orthogonal.
15Because the interaction variables need only be discrete, they could be created more easily, simply by concate-
nating the main variables, (e.g., AT = ALIVE || TIME;, and so forth). This would produce cluttered displays,
however, because each combination is plotted and labeled.
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at = 2*a + t;
al = 2*a + l;
tl = 2*t + l;

atl = 4*a + 2*t + l;
format a a. t t. l l. at at. al al. tl tl. atl atl.;

proc print noobs;

Applying MCA to this dataset using the main effect variables A T L would produce
results identical to Figure 5.17. Adding the three 2-way variables, AT AL TL will add 3×4
category points for the pairwise combinations of these factors. The 3-way variable, ATL,
adds an additional 8 category points, representing the individual cells in the table.

The analysis shown below excludes the 3-way ATL terms for simplicity. As long as the
terms are added in a balanced way (including all terms of a given order), the positions of
points tend to be very similar, whether or not terms of higher-order are included.

proc corresp data=combo mca outc=coords short;
weight count;
tables a t l at al tl;* atl;

*-- Identify the size and name of each effect;
data coords;

set coords;
where (_type_) = ’VAR’;
drop _type_ inertia contr1--best;
terms=length(_name_);
effect = upcase(_name_);
label dim1 = ’Dimension 1’

dim2 = ’Dimension 2’;
proc sort;

by terms effect _name_;
proc print;

id _name_ effect terms;
var dim1 dim2 mass;

Figure 5.18 2-D interaction display for Bartlett’s data. Both panels show the same 2-D solution
for the MCA analysis, including pairwise interaction effects. In the left panel, points
corresponding to the TL association are connected; lines joining the 1-way points are
parallel to the sides, showing independence. In the right panel, points for both the AT
and AL associations are connected.
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The output dataset COORDS is used to produce the plots shown in Figure 5.18. In order to
draw the vectors for the main effect points, and to draw the quadrilaterals for the 2-way
terms as in Figure 5.15, variables TERMS and EFFECT are added to the COORDS dataset as
shown above.

The following steps construct an Annotate dataset to draw a quadrilateral for each of
the AT, AL and TL effects. To do this, it is necessary to extract the DIM1 and DIM2 of the
four points for each effect and transpose these to a single observation with variables X1-X4
and Y1-Y4 respectively. The dataset QUADS created here is shown in Output 5.13.

*-- Extract x,y coordinates of two-way effects;
proc transpose data=coords(drop=_name_) out=quadx prefix=x;

where (terms=2);
var dim1;
by effect;

proc transpose data=coords(drop=_name_) out=quady prefix=y;
where (terms=2);
var dim2;
by effect;

data quads;
merge quadx quady;
drop _name_ _label_;

proc print data=quads;
format _numeric_ 5.2;
var x1 y1 x2 y2 x3 y3 x4 y4;
id effect;

*-- Draw quadrilaterals, connecting points in order 1, 2, 4, 3;
data quads;

set quads;
drop x1-x4 y1-y4 i;
retain xsys ysys ’2’;
array xx{*} x1 x2 x4 x3;;
array yy{*} y1 y2 y4 y3;
color = scan(’blue red green’, _n_);
do i=1 to 4;

x = xx[i]; y=yy[i];
if i=1 then function=’poly ’;

else function=’polycont’;
output;
end;

Output 5.13 Dataset QUADS, containing the coordinates of the quadrilateral for each 2-way effect

EFFECT X1 Y1 X2 Y2 X3 Y3 X4 Y4

AL 1.22 0.70 0.74 -1.11 -0.32 0.95 -0.93 -0.71
AT 1.31 -0.40 0.43 1.03 -0.07 -0.77 -1.04 0.42
TL 1.12 0.26 0.25 -1.39 -0.23 1.39 -1.15 -0.26

The following steps complete the custom programming to display the TL effect, with
point labels and vectors for the main effects, in the left panel of Figure 5.18.
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%label(data=coords, out=label, x=dim1, y=dim2, text=_name_, pos=-);

data lines;
set coords end=eof;
by terms effect notsorted;
drop dim1 dim2 quality mass;
x = dim1;
y = dim2;
xsys = ’2’; ysys=’2’;

if terms = 1 then do;
color = ’black’;
if mod(_n_,2) = 1

then do; function=’MOVE ’; output; end;
else do; function=’DRAW ’; output; end;

end;

if eof then do;
color=’gray’; line=3;
x=-.5; y=0; function=’MOVE’; output;
x=+.5; y=0; function=’DRAW’; output;
x= 0 ; y=-.5; function=’MOVE’; output;
x= 0 ; y=+.5; function=’DRAW’; output;
end;

run;

*-- Show the Time X Length effect;
data anotes;

set label lines quads(where=(effect in (’TL’)));

proc gplot data=coords;
plot dim2 * dim1

/ frame vaxis=axis1 haxis=axis2 hm=1 vm=1
anno=anotes;

symbol1 v=dot h=1;
axis1 length=6in order=(-1.6 to 1.6 by .4) label=(a=90);
axis2 length=6in order=(-1.6 to 1.6 by .4);

run;

The right panel of Figure 5.18 is produced using the same PROC GPLOT step, but the An-
notate dataset ANOTES is assembled using just the lines to connect the AT and AL points:

*-- Show effects on Alive;
data anotes;

set label lines quads(where=(effect in (’AL’ ’AT’)));
proc gplot data=coords;

...

Thus, we see that the independence of Time and Length (by design of the data collec-
tion) is characterized by a parallelogram shape for the 2-way points, and by lines joining
the A and T 1-way points being parallel to those connecting the 2-way points. Note also that
the 1-way points are in essentially the same positions as in Figure 5.17. The quadrilaterals
for the AT and AL effects shown in the right panel are not quite parallelograms, however;
we could approximate the odds ratio for each of these effects from the cross-product of
distances as in Equation 5.8. Finally, because one of the three quadrilaterals shows paral-
lelism, we conclude from Figure 5.18 that the conditional independence model, [AT][AL],
holds.
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An alternative representation enables us to show the cells instead, corresponding to the
ATL terms that were not displayed in Figure 5.18. We form the indicator matrix for the
main effects, Z = [ZAZT ZL ], and multiply by a diagonal matrix of the cell frequencies, to
give the following:

ID ALIVE TIME LENGTH COUNT A1 A2 T1 T2 L1 L2

ATL Alive Now Long 156 156 0 156 0 156 0
aTL Dead Now Long 84 0 84 84 0 84 0
AtL Alive Spring Long 84 84 0 0 84 84 0
atL Dead Spring Long 156 0 156 0 156 156 0
ATl Alive Now Short 107 107 0 107 0 0 107
aTl Dead Now Short 133 0 133 133 0 0 133
Atl Alive Spring Short 31 31 0 0 31 0 31
atl Dead Spring Short 209 0 209 0 209 0 209

Then, a simple correspondence analysis of the variables A1--L2 will have row points cor-
responding to the cells, and columns for the main effects, which are nearly identical to
those from the extended MCA. This analysis produces Figure 5.19 (program steps are not
shown to conserve space), where the size of the circle at each point represents the mass
(pi jk) of each cell, whose label is the ID variable above. The 2-way points can be added to
this representation by including the 2-way indicator matrices, so the matrix diag is analyzed
as (n)[ZAZT ZLZAT ZALZT L ].

Figure 5.19 2-D representation of the cell points in the 2 × 2 × 2 design. The mass (cell proportion)
of each point is shown by the size of the circle.
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5.7 Biplots for Contingency Tables

Like correspondence analysis, the biplot (Bradu and Gabriel, 1978, Gabriel, 1971, 1980,
1981) is a visualization method that uses the SVD to display a matrix in a low-dimensional
(usually two-dimensional) space. They differ in the relationships in the data that is por-
trayed, however. In correspondence analysis, the distances between row points and the dis-
tances between column points are designed to reflect differences between the row profiles
and column profiles. In the biplot, on the other hand, row and column points are repre-
sented by vectors from the origin, such that the projection (inner product) of the vector ai

for row i on b j for column j approximates the data element yi j ,

Y ≈ ABT ⇐⇒ yi j ≈ aT
i b j . (5.9)

Geometrically, Equation 5.9 may be described as approximating the data value yi j by the
projection of the end point of vector ai on b j (and vice-versa).

For quantitative data, Bradu and Gabriel (1978) show how the biplot can be used to
diagnose additive relations among rows and columns. For example, when a 2-way table is
well described by a two-factor ANOVA model with no interaction,

yi j = µ+ αi + β j + εi j

then, the row points, ai , and the column points, b j , will fall on two straight lines at right an-
gles to each other in the biplot. For a contingency table, the multiplicative relations among
frequencies under independence become additive relations in terms of log frequency, and
Gabriel et al. (1997) illustrate how biplots of log frequency can be used to explore associ-
ations in 2-way and 3-way tables.

Several other biplot representations for contingency tables are described by Gabriel
(1995a,b), and in a wider context by Gower and Hand (1996). Greenacre (1993) discusses
the relations between biplots and both CA and MCA, and shows some conditions under
which a correspondence analysis plot may be interpreted as a biplot. More general models,
with relations to both CA and biplots, are discussed by Goodman (1986, 1991).

5.7.1 Biplots for 2-Way Tables

For a 2-way table, independence implies that ratios of frequencies should be proportional
for any two rows, i, i ′ and any two columns, j, j ′.

A ⊥ B ⇐⇒ ni j

ni ′ j
= ni j ′

ni ′ j ′

Equivalently, the log odds ratio for all such sets of cells should be zero:

A ⊥ B ⇐⇒ log θi i ′, j j ′ = log

(
ni j ni ′ j ′

ni ′ j ni j ′

)
= 0

Gabriel et al. (1997) show that if the log frequencies have been centered by subtracting the
grand mean, log θi i ′, j j ′ is approximated in the biplot (of log(ni j )− log(ni j ))

log θi i ′, j j ′ ≈ aT
i b j − aT

i ′b j − aT
i b j ′ + aT

i b j ′ = (ai − ai ′)
T(bi − bi ′).

Therefore, the biplot criterion for independence in a 2-way table is whether (ai −
ai ′)T(bi − bi ′) ≈ 0 for all pairs of rows, i, i ′, and all pairs of columns, j, j ′. But (ai − ai ′)
is the vector connecting ai to ai ′ and (b j − b j ′) is the vector connecting b j to b j ′ , as shown
in Figure 5.20, and the inner product of any two vectors equals zero if they are orthogonal.
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Figure 5.20 Independence implies orthogonal vector differences in a biplot of log frequency. The line
joining a1 to a2 represents (a1 − a2). This line is perpendicular to the line (b1 − b2)

under independence.

a1

a2

b1

b2

Hence, this criterion implies that all lines connecting pairs of row points are orthogonal to
lines connecting pairs of column points, as illustrated in the figure.

Thus, when the entire table exhibits independence, the row points and column points
will lie close to two perpendicular lines. Moreover, a two-dimensional biplot will account
for nearly all of the variance of the centered log frequencies. When only a subset of the
rows and/or columns are independent, the points corresponding to those rows and columns
will still lie in orthogonal subspaces, which will be lines or planes depending on whether
a 2D or 3D biplot provides an adequate fit. An advantage of this method is that it provides
a visual indication of the subsets of rows and columns for which independence does and
does not hold.

EXAMPLE 5.10 UK soccer scores

We examined the data on UK soccer scores in Example 4.2 and saw that the number of
goals scored by the home and away teams were largely independent (cf. Figure 4.5). This
dataset provides a good test of the ability of the biplot to diagnose independence.

The biplot analysis is carried out with an enhanced version of the BIPLOT macro pre-
sented in SAS System for Statistical Graphics, First Edition, Section 8.7, A1.2. The en-
hanced version, described in Appendix A.3, provides automatic equating of the axes and
labeled plots with a variety of interpolation options.

The statements below read the dataset SOCCER and call the BIPLOTmacro. The POWER=0
parameter specifies a log10 transformation of the frequencies contained in the input vari-
ables A0-A4. By default, the BIPLOT macro always standardizes the data (after transforma-
tion, if any) by removing the grand mean, so the STD=NONE parameter indicates no further
standardization is required.

title ’UK Soccer scores: Biplot’;
data soccer;

input home $ a0-a4;
datalines;
H0 27 29 10 8 2
H1 59 53 14 12 4
H2 28 32 14 12 4
H3 19 14 7 4 1
H4 7 8 10 2 0
;
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%biplot(data=soccer, var=_num_, id=home,
std=none, power=0,
out=biplot, anno=bianno,
symbols=circle dot, interp=none);

By default, the macro produces a plot of the first two biplot dimensions. As with the
CORRESP macro, the axes are equated in this plot by default (when the HAXIS and VAXIS
parameters are not specified). Sometimes, you may wish to inspect an initial plot and then
rescale it, as illustrated in Examples 5.1 and 5.2. The macro also produces an output dataset
of coordinates (OUT=BIPLOT parameter) and an Annotate dataset (ANNO=BIANNO parame-
ter) containing category labels, which may be used for further customization.

The default plot showed that all of the category points, except for A2 and H2, fell along
separate orthogonal straight lines parallel to the coordinate axes. The two biplot dimensions
account for 99.8% of the variance. The statements that follow are used to find the locations
of these lines from the means of the DIM1 and DIM2 coordinates, and to append Annotate
instructions to draw them to the BIANNO Annotate dataset. The PROC GPLOT step produces
Figure 5.21.

*-- Find mean coordinates (except A2, H2);
proc means data=biplot noprint;

where (_name_ not in (’A2’, ’H2’));
var dim1 dim2;
by _type_;
output out=means mean=;

*-- Draw lines passing thru the means, parallel to axes;
data lines;

set means;
xsys=’2’; ysys=’2’;
length function color $8;
if _type_ = ’OBS’ then do;

x = dim1; color=’blue’;
y = -1.5; function=’move’; output;
y = +1.0; function=’draw’; output;
end;

else do;
y = dim2; color=’red’;
x = -1.8; function=’move’; output;
x = +1.5; function=’draw’; output;
end;

*-- Append to annotate data set;
data bianno;

set bianno lines;

title;
proc gplot data=biplot;

plot dim2 * dim1 = _type_ /
anno=bianno frame nolegend
href=0 vref=0 lvref=34 lhref=34
vaxis=axis1 haxis=axis2
vminor=1 hminor=1
name="soccer3" des="Biplot of log(freq)";

axis1 order=(-2 to 1) length=4.5in label=(a=90) ;
axis2 order=(-2 to 2) length=6in;
symbol1 v=circle c=blue i=none;
symbol2 v=dot c=red i=none;

run;
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Figure 5.21 Biplot of UK Soccer scores. Independence is shown when the row and column points lie
on orthogonal lines.
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We see that all the A points (except for A2) and all the H points (except for H2) lie along
straight lines, and these lines are indeed at right angles, signifying independence. The fact
that these straight lines are parallel to the coordinate axes is incidental, and unrelated to the
independence interpretation.

5.7.2 Biplots for 3-Way Tables

Biplot displays for 3-way tables may be constructed by means of the “stacking” approach
that is used in correspondence analysis, described in Section 5.4. That is, a 3-way table,
I × J × K , can be represented (in several ways) as a 2-way table, with two variables
combined interactively.

As before, consider a 3-way ABC table structured as I J × K so that variables A and
B define the rows and variable C defines the columns. (Equivalent results obtain for any
permutation of the variables.) Then, a biplot will have row points, ai j and column points
bk that approximate

log(n[i j ]k)− log(n[i j ]k) ≈ aT
i j bk

According to the arguments presented in Section 5.7.1, when {A, B} ⊥ C (that is, when
the model of joint independence, [AB][C] holds), then the ai j row points will fall on one
straight line, and the bk will fall on another line, perpendicular to the first.

Other configurations of points along lines serve as tests for other models of indepen-
dence. For example, if, for a given level j� of variable B, the points ai j� are collinear
and orthogonal to the line formed by the bk of variable C , then partial independence,
A ⊥ C | Bj� holds for level j�. If this is true for all levels of variable B, then A is condi-
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tionally independent of C , given B, {A ⊥ C} | B, or the log-linear model [AB][C B]. Thus,
for conditional (respectively, partial) independence, the ai j� points fall on separate straight
lines orthogonal to the bk for all (respectively, some) levels of variable B, while for joint
independence, they all fall on the same straight line.

Therefore, for suitable re-arrangement of the variables into a 2-way table, the biplot can
be used to identify the major models of independence.

EXAMPLE 5.11 Employment status data

Example 4.6 examined questions of partial and conditional independence in the Danish
employment status data. We saw in Figure 4.21 that whether a worker was re-employed
(E) was independent of length (L) of previous employment for those workers that were
laid off due to closure, but re-employment was strongly associated for workers who were
replaced.

The statements below read the data (see Table 4.5) in frequency form and reshape the
COUNT variable as a 12 × 2 matrix with the variables CAUSE and LENGTH defining the rows
and the two levels of EMPLOYED as columns. The levels of length of previous employment
are identified by the digits 0 to 6, and the levels of CAUSE by ‘C’ (closure) and ‘R’ (replace-
ment), which are combined in the ID variable for the matrix rows. The column variables
E1 and E2 are the two levels of employment in sorted order, ‘No’ and ‘Yes’.

data employ;
input length $ @;
do cause =’Close ’, ’Replace’;

do employed = ’Yes’, ’No’;
input count @;
output;
end;

end;
input;

datalines;
0 8 10 40 24
1 35 42 85 42
2 70 86 181 41
3 62 80 85 16
4 56 67 118 27
5 38 35 56 10
;
*-- Reshape as two column matrix ([CL][E]);
proc sort data=employ;

by cause length employed ;
proc transpose prefix=e out=employ2;

var count;
by cause length;

data employ2;
set employ2;
drop _name_;
id = substr(cause,1,1) || length;

axis1 order=(-2 to 1) length=4.875in
label=(a=90);

axis2 order=(-2 to 2) length=6.5in;
%biplot(data=employ2, id=id, var=e1 e2,

std=none, power=0,
out=biplot, anno=bianno, vaxis=axis1, haxis=axis2,
symbols=plus triangle, interp=none join);
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Figure 5.22 Biplot for Employment status data
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The call to the BIPLOT macro produces Figure 5.22. The line joining E1 and E3 was pro-
duced by the INTERP=NONE JOIN parameter. The dotted lines were drawn manually (and
therefore approximately) in the Graphics Editor.

We see that the points for closure lie approximately along a line perpendicular to the line
for E1-E2, indicating partial independence of employment status and length for the closure
workers (points C0-C5). The R points for replaced workers do not all fall on one line,
so there is no overall partial independence for these workers; however, for those workers
previously employed for three months or more (R2-R5), the points are nearly collinear and
orthogonal to E1-E2.

5.8 Chapter Summary

• CA is an exploratory technique, designed to show the row and column categories in a 2-
(or 3-) dimensional space. These graphical displays, and the various extensions provide
ways to interpret the patterns of association and visually explore the adequacy of certain
log-linear models.

• The scores assigned to the categories of each variable are optimal in several equivalent
ways. Among other properties, they maximize the (canonical) correlations between the
quantified variables (weighted by cell frequencies), and make the regressions of each
variable on the other variable that is most nearly linear, for each CA dimension.

• Multi-way tables can be analyzed in several ways. In the stacking approach, two or
more variables are combined interactively in the rows and/or columns of an n-way table.
Simple CA of the re-structured table reveals associations between the row and column
categories but hides associations between the variables that are combined interactively.
Each way of stacking corresponds to a specific log-linear model for the full table.
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• Multiple correspondence analysis is a generalization of CA to two or more variables
based on representing the data as an indicator matrix. The usual MCA provides an anal-
ysis of the joint, bivariate relations between all pairs of variables.

• An extended form of MCA provides a means to display higher-order associations among
multiple categorical variables. For 2Q tables composed of Q binary variables, this anal-
ysis yields simple geometric relations that may be interpreted in terms of odds ratios.

• The biplot is a related technique for visualizing the elements of a data array by points
or vectors in a joint display of their row and column categories. An application of the
biplot to contingency table data is described, based on analysis of log frequency. This
analysis also serves to diagnose patterns of independence and partial independence in
2-way and larger tables.
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Logistic regression describes the relation between a discrete response, often binary, and a set of explanatory
variables. Smoothing techniques are often crucial in visualizations for such discrete data. The fitted model
provides both inference and prediction, accompanied by measures of uncertainty. Diagnostic plots help us
to detect influential observations that may distort our results.
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6.1 Introduction

In scientific thought we adopt the simplest theory which will explain all the facts
under consideration and enable us to predict new facts of the same kind. The
catch in this criterion lies in the world “simplest.”

J. B. S. Haldane, Possible Worlds, 1927.
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Previous chapters dealt primarily with simple, exploratory methods for studying the re-
lations among categorical variables and with testing hypotheses about their associations
through non-parametric tests and with overall goodness-of-fit statistics.

This chapter begins our study of model-based methods for the analysis of discrete data.
These models differ from the models examined earlier, primarily in that they consider
explicitly an assumed probability distribution for the observations, and they make clear
distinctions between the systematic component, which is explained by the model, and the
random component, which is not. In this chapter, models are considered for a binary re-
sponse, such as “success” or “failure”, or the number of “successes” in a fixed number
of “trials”, where you might reasonably assume a binomial distribution for the random
component.

This model-fitting approach has several advantages. Inferences for the model param-
eters include both hypothesis tests and confidence intervals. Hypothesis tests help assess
which explanatory variables affect the outcome; the size of the estimated parameters and
the widths of their confidence intervals help assess the strength and importance of these ef-
fects. Finally, the predicted values obtained from the model smooth the discrete responses,
allow predictions for unobserved values of the explanatory variables, and provide impor-
tant means to interpret the fitted relationship, graphically.

Section 6.2 discusses models for a binary response, of which the most widely used is
the logistic regression model. Section 6.3 illustrates these models for a quantitative pre-
dictor and describes the construction and use of graphical displays. Section 6.4 extends
these models to qualitative predictors, and the general, multiple logistic regression model
is discussed in Section 6.5. For interpreting and understanding the results of a fitted model,
I emphasize plotting predicted probabilities and predicted log odds. Individual observa-
tions sometimes exert great influence on a fitted model. Some measures of influence and
diagnostic plots are illustrated in Section 6.6. In Section 6.7, I develop several approaches
to modeling a multi-category (polytomous) response, and Section 6.8 shows how a classic
model for paired comparisons data can be handled by logistic regression. The final section
(Section 6.9) illustrates how to calculate and graph statistical power in relation to sample
size for two simple cases of logistic regression.

The logistic regression model is also discussed and illustrated using SAS computations
in Logistic Regression Examples Using the SAS System, Stokes et al. (1995, Chapter 8–9),
Allison (1999), and Zelterman (1999, Chapter 3), all of which are useful companions to
this book. Agresti (1990), Collett (1991), and Fox (1997) provide a more detailed treatment
of the statistical background than I do in this book.

6.2 The Logistic Regression Model

The logistic regression model describes the relationship between a categorical outcome
variable, the “response”, and a set of explanatory variables. The response variable is of-
ten dichotomous, although extensions to the model allow multi-category, polytomous out-
comes, which are discussed in Section 6.7. The explanatory variables may be continuous
or (with dummy variables) discrete.

For a binary response, Y , and a continuous explanatory variable, X , you might be
interested in modeling the probability of a successful outcome, which is denoted
π(x) ≡ Pr(Y = 1 | X = x). That is, at a given value X = x , you imagine that there
is a binomial distribution of the responses, Bin(π(x), nx).

You might contemplate a simple linear regression model for π(x),

E(Y ) = π(x) = α + βx ,

which you could fit by ordinary least squares (PROC REG, for example). However, such a
model (called the linear probability model), has the serious defect that it yields predicted
probabilities π̂(x) < 0 for sufficiently small x and π̂(x) > 1 for sufficiently large x
(assuming β > 0).
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One way around this difficulty is to re-specify the model so that a transformation of
π has a linear relation to x , and that transformation keeps π̂ between 0 and 1 for all x .
A particularly convenient choice gives the linear logistic regression model, which posits a
linear relation between the log odds or logit of this probability and X ,

logit[π(x)] ≡ log

(
π(x)

1 − π(x)

)
= α + βx . (6.1)

When β > 0, π(x) and the log odds increase as X increases; when β < 0, the log odds
decrease as X decreases. From Equation 6.1, you see that the odds of a favorable response
can be expressed as

odds(Y = 1) ≡ π(x)

1 − π(x)
= exp(α + βx) = eα(eβ)x , (6.2)

a multiplicative model for the odds. So, under the logistic model,

• β is the change in the log odds associated with a unit increase in x . The odds are multi-
plied by eβ for each unit increase in x .

• α is the log odds at x = 0; eα is the odds of a favorable response at this x-value (which
may not have a reasonable interpretation if X = 0 is far from the range of the data).

Re-arranging terms in Equation 6.2, the logistic regression model can also be formulated
as a direct relationship for the probability of success,

π(x) = exp(α + βx)

1 + exp(α + βx)
. (6.3)

This expression may look complex, but the numerical results are easy to interpret. You
will find that it is most convenient for plotting and understanding results from logistic
regression to express fitted values on the scale of probabilities.

It might also help to know that, on the scale of probabilities, the slope of the relationship
between π(x) and x is βπ(1 − π), so you can also interpret the slope in Equation 6.1 as a
change in probability of success for a unit change in x . But the numerical value depends on
the probability itself. When π = 0.5 this expression is at its maximum. However, it doesn’t
change very much within the range 0.2 < π < 0.8, as you will see in Example 6.1.

EXAMPLE 6.1 Arthritis treatment

In Chapter 3, the data on treatment for rheumatoid arthritis was examined. In addition to
Sex and Treatment, the data (see Appendix B.1) contains the age of each patient in this
study. Although the response has three categories (None, Some, or Marked improvement),
for now, consider whether the patient showed any improvement at all, defining the event
Better to mean Some or Marked improvement.

Because Age is continuous, it is difficult to see how the probability of a better response
varies with age. Table 6.1 summarizes this data by dividing the patients into 10 decile
groups based on age.1 You see that, for those in the youngest Age Group, the observed
Pr{Better} = 2/8 = 0.25, so the odds of a Better response is 0.25/0.75 = 1

3 ; for those in
the 62–63 age range, half improved, so the odds = 1. The log odds has the value 0 here.
Thus, positive (negative) logits correspond to probabilities greater than (less than) 1

2 .
You can see that the probabilities of a Better response and the Logits tend to increase

with age. Thus, we would expect to find β > 0 in Equation 6.1. Also note that, when the
probability is defined as the Observed number divided by the Total in a group, the logit is
undefined when the Observed probability is 0 or 1. You can improve on this, as shown in
Figure 6.1.

1The numbers under Total are unequal because of ties.
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Table 6.1 Probabilities, Odds, and Logits for the Arthritis Treatment Data

Age Number Observed Odds Observed
Group Better Total Pr{Better} Better Logit

23 – 31 2 8 0.250 0.333 -1.099
32 – 41 4 9 0.444 0.800 -0.223
44 – 48 2 8 0.250 0.333 -1.099
49 – 53 0 7 0.000 0.000 .
54 – 57 9 12 0.750 3.000 1.099
58 – 58 2 3 0.667 2.000 0.693
59 – 61 7 11 0.636 1.750 0.560
62 – 63 4 8 0.500 1.000 0.000
64 – 67 5 9 0.556 1.250 0.223
68 – 74 7 9 0.778 3.500 1.253

Figure 6.1 shows a plot of the (0/1) variable BETTER against Age. (The programming
for such plots is described in Section 6.3.2.) Also shown is the predicted probability from
a logistic regression (solid blue curve) and the upper and lower 95% confidence band for
this predicted probability (dashed blue curves). For comparison, we also show the result of
a linear regression of the (0/1) variable on age (red line) and its 95% confidence band. The
two sets of curves are fairly similar, except in the extremes.

Figure 6.1 Arthritis treatment data, linear and logit regressions on age. The curves on this plot show
predicted probabilities of improvement and 95% confidence bands. The points on this
plot show the observations. Except in the extremes, the linear and logistic models give
very similar predicted values; the confidence bounds differ more.
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The relevant portion of the output is shown next. The parameter estimates are α =
−2.642 and β = 0.0492. So, the estimated odds of a Better response are multiplied by
eβ = exp(0.0492) = 1.05 for each one year increase in age. Equivalently, you can think of
this as a 5% increase per year (using 100(eβ − 1) to convert). Over ten years, the odds are
multiplied by exp(10 × 0.0492) = 1.64, a 64% increase.

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized Odds
Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio

INTERCPT 1 -2.6421 1.0732 6.0611 0.0138 . .
AGE 1 0.0492 0.0194 6.4733 0.0110 0.346714 1.050

6.2.1 Plotting a Discrete Response: The LOGODDS Macro

It is sometimes difficult to understand how a binary response can give rise to a smooth, con-
tinuous relationship between the predicted response and an explanatory variable, particu-
larly when the predictor is continuous. Thus, in Figure 6.1 you can see the (0/1) responses
and the fitted relation, but it takes some effort to see that the observation points determine
that relation. Another problem is that the Age variable is not strictly continuous—it was
recorded in whole years—so there may be considerable overplotting of the observation
points in such a graph.

It is helpful, therefore, to plot the observed sample logits or sample probabilities against
X , together with the observations (in a way that avoids overplotting), and the fitted rela-
tionships, as is done in Figure 6.2. You can group the observations into multiple intervals,
as in Table 6.1, and let ni denote the number of observations in the i th interval, of which yi

are successful events.
Then, the observed probability is pi = yi/ni in interval i , and the sample logit is

log[pi/(1 − pi )] = log[yi/(ni − yi )]. But as you see in Table 6.1, the logit is not defined
when yi = 0 or when yi = ni . You get around this difficulty by substituting the empirical
logit,

log

(
yi + 1

2

ni − yi + 1
2

)
,

which is also a less biased estimator of the true logit. Analogously, in a plot of probabilities
against X , use the adjusted value (yi + 1

2 )/(ni − yi + 1
2 ).

An alternative to grouping the observations into fixed intervals is to imagine a sliding
window, wide enough to contain a given fraction, f of the points, moving from left to right
across the plot. At each position of the window, calculate a smoothed, locally weighted av-
erage of the binary y values within the window by using the lowess scatterplot smoothing
algorithm (Cleveland, 1979) (without robustness iterations). This gives a smooth, nonpara-
metric regression for p̂i , advocated by Landwehr, et al. (1984) and Fowlkes (1987). Copas
(1983) discusses methods based on kernel density estimation for smoothing binary data.

These plots are produced by the LOGODDS macro documented in Appendix A.15. Both
plots in Figure 6.2 are produced by the following program:

%include data(arthrit);
data arthrit;

set arthrit;
format better outcome.;

%logodds(data=arthrit, x=age, y=Better, ncat=10, smooth=0.5);
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Figure 6.2 Empirical log odds and probability plots for Arthritis Treatment Data. The observed re-
sponses are plotted as stacked points at the top and bottom of the figures. The squares
show the empirical sample logits and the analogous adjusted sample probabilities.
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The LOGODDS macro assumes a quantitative predictor and groups the observations into
the number of intervals specified by the NCAT= parameter. The lower limits of the intervals
are shown by the short vertical lines above the horizontal axis. When the SMOOTH= param-
eter is specified, the LOWESS macro (Friendly, 1991, Appendix A1.9) uses that value as the
smoothing parameter f , and the smoothed nonparametric curve is drawn on the probability
plot. With moderate sample sizes, as we have here, the lowess curve can be quite variable,
and, of course, ignores other explanatory variables.

Note that the fitted regression relation is linear on the scale of log odds (Equation 6.1)
but (slightly) non-linear on the scale of probabilities (Equation 6.3). Because most people
find it easier to interpret probabilities than log odds, it is often useful to make a single plot
showing both scales.

6.2.2 Plotting a Discrete Response: Easy Smoothing
with PROC GPLOT

For large datasets, extensive computations are required to calculate the lowess curve be-
cause a weighted least squares regression is performed for each observation.2 A simple
alternative, which is often sufficient, is to use the SMnn spline smoother provided by the
INTERPOL option in the SYMBOL statement. Example 6.2 illustrates this technique and the
importance of smoothing.

EXAMPLE 6.2 Survival on the Titanic

The Titanic data, discussed in Example 4.5, included all passengers and crew, but catego-
rized AGE as either child or adult. The data used here lists 1313 passengers by name and
includes the actual age for 633 of them. This data was derived from the “Encyclopedia
Titanica” Web site (Hind, 1997). The data is based on the Passenger List of the Titanic,
originally published by Findlay (1986) and updated by members of various Titanic histor-
ical societies and internet collaborators who study the sinking of the Titanic. We examine
here the relation of sex and class to the actual age for the passengers.

The dataset TITANIC2 contains the variables SEX, CLASS, AGE, BOAT, NAME, and the
0/1 variable SURVIVED. A simple, but effective plot of survival probability against age

2In SAS software Version 7 and higher, the LOWESS macro uses the LOESS procedure to perform the calculations
and avoids this difficulty. In earlier versions of SAS, use the STEP= parameter for large datasets. The STEP=
parameter sets a step size for successive x values. When STEP>1, the macro performs the regression at every
STEPth value of x and uses predicted values from that regression for intermediate points.
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for men and women is produced simply by plotting SURVIVED * AGE = SEX, using
INTERPOL=SM70 in the SYMBOL statement. The numeric value in SMnn establishes the rel-
ative weighting of criteria for approximating the points vs. smoothness, with larger values
giving a smoother curve. For binary responses, values in the range 50–90 appear to work
reasonably well.

The following statements produce the left panel in Figure 6.3. (The DATA step LABEL,
which produces labels for the curves, is not shown to conserve space.) Similar statements
that plot SURVIVED * AGE = CLASS produce the graph shown in the right panel of Fig-
ure 6.3.

proc sort data=titanic2;
by age;

proc gplot data=titanic2;
where (age^=.);
plot survived * age = sex /

anno=label vm=1 hm=1 vaxis=axis1 haxis=axis2 nolegend frame;
symbol1 i=sm70 v=square h=1.9 c=red;
symbol2 i=sm70 v=triangle h=1.9 c=blue;
axis1 order=(0 to 1 by .2) label=(a=90) offset=(3) value=(h=1.6);
axis2 offset=(3) value=(h=1.6);

Figure 6.3 Survival probability vs. age by sex, and by class for passengers on the Titanic whose age
is recorded. Plot symbols show the individual observations. These graphs are misleading
because the effects of sex vary with class.
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The actual binary responses, shown by the plotting symbols at 0 and 1, are not very
informative here because age is also discrete (recorded to the nearest year) and many points
are overplotted. Jittering the points would help somewhat but would introduce some bias
in the smoothing. The smoothed curves are highly suggestive, however, and give a much
more detailed view than our earlier analyses based on the binary age classification.

For females, probability of survival increases steadily with age. For males, however, the
probability of survival drops precipitously with age, levels off through middle age, then
declines again for the oldest men. The smoothed curves in the right panel show similar
cubic trends with age for passengers in 2nd and 3rd class.

It is tempting to speculate that these cubic curves reflect preferential treatment toward
boys and greater chivalry, or perhaps decreased will to survive, on the part of older men.
Such speculations would be dead wrong, however, because they falsely assume that sex
and class do not interact, and that the distributions of age (as recorded in this data) are
roughly the same for all sex–class groups.
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You can see that both assumptions are wrong by making separate graphs for men and
women. These graphs, shown in Figure 6.4, are drawn using a BY statement and smoothing
with the SM interpolation method.

goptions hby=0;
proc gplot data=titanic2 uniform;

where (age^=.);
plot survived * age = class /

anno=label vm=1 hm=1 vaxis=axis1 haxis=axis2 nolegend frame;
by sex;
symbol1 i=sm70 v=square h=1.9 c=blue;
symbol2 i=sm70 v=triangle h=1.9 c=red;
symbol3 i=sm70 v=star h=1.9 c=black;

Figure 6.4 Survival probability vs. age by SEX–CLASS, for passengers on the Titanic
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From Figure 6.4, it appears that survival of women actually decreases with age in 2nd and
3rd class; the increasing overall curve for women in Figure 6.3 is due to the greater preva-
lence of older women in 1st class, who were more likely to survive. Among men, it now
appears that survival decreases approximately linearly in 1st class and much more sharply
in the other classes. However, you must remember that you are simply smoothing raw data
here; an adequate fitted model generally provides better smoothing and simplification.

6.3 Models for Quantitative Predictors

Logistic regression models may use quantitative predictors or discrete predictors, or a mix-
ture of both, just as in ordinary regression models. Here, I describe the basic theory and
visualization steps for quantitative predictors, and extend these ideas to discrete explana-
tory variables in Section 6.4.

6.3.1 Fitting Logistic Regression Models

The parameters in logistic regression models are usually estimated by maximum likeli-
hood. Because the response variable, Y , takes on only two values, you can take these values
as 1 and 0 with probabilities π and 1 − π , respectively. Then the probability distribution
for case i can be represented simply as

p(yi ) ≡ Pr(Yi = yi ) = πi
yi (1 − πi )

1−yi .
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Assuming the cases are independent, the joint probability of the n observations
y1, y2, . . . , yn is the product of these probabilities over all cases,

p(y1, y2, . . . , yn) =
n∏

i=1

πi
yi (1 − πi )

1−yi =
n∏

i=1

(
πi

1 − πi

)yi

(1 − πi ) .

Substituting for πi from Equation 6.3, you can express the likelihood of the data as a
function of the model parameters,

L(α, β) =
n∏

i=1

[exp(α + βXi )]yi [1 + exp(α + βXi )]−1 . (6.4)

The maximum likelihood estimates are the values of α and β, which maximize L(α, β),
but it is simpler to maximize log L, which has its maximum at the same values. Taking
derivatives of log L with respect to α and β gives the estimating equations (in matrix form)

XTy = XT p̂ , (6.5)

where X = [1, x], and p̂i = exp(α̂ + β̂xi )/(1 + exp(α̂ + β̂xi ). This is analogous to the
linear model estimating equations in ordinary least squares regression, XTy = XTŷ, where
ŷ = Xβ̂, and β̂ = (XTX)−1XTy. The two equations expressed by Equation 6.5 have no
analytic solution, but they may be solved numerically or by iteratively reweighted least
squares.

EXAMPLE 6.3 Arthritis treatment

It is also straightforward to calculate the values of log L in Equation 6.4 for a grid of values
of (α , β) and plot the log likelihood surface as a contour plot or 3-D plot. For example,
the DATA step in the next program calculates the log likelihoods over all observations in
the arthritis data for a range of α (B0) and β (B1) determined from the parameter estimates
± two standard errors found in Example 6.4 (see Output 6.1). The contour plot, shown in
Figure 6.5, has its maximum value log L = −54.58 at the value (α̂, β̂) = (−2.64, 0.05).
From this, −2 log L = 109.16 is the value displayed for -2 LOG L in Output 6.1 for the
intercept and covariates.

Figure 6.5 Contour plot of log likelihood for the Arthritis data
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data maxlike;
keep b0 b1 loglike;
do b0=(-2.64 - 2*1.07) to (-2.64 + 2*1.07) by (1.07/50);

do b1=(0.05 - 2*0.02) to (0.05 + 2*0.02) by (0.02/50);
loglike=0;
do i=1 to n;

set arthrit point=i nobs=n;
phat = exp(b0+b1*age)/(1+exp(b0+b1*age));
loglike = loglike + (better * log(phat))

+ ((1-better) * log(1-phat));
end;

output;
end;

end;
stop;

This contour plot of the log likelihood function shows something that is not apparent from
the usual printed output: The contours of equal log likelihood have a pronounced negative
slope, so an increase in β may be compensated for by a decrease in α without changing
the value of log L appreciably. Also, the innermost ellipse (corresponding to the largest
absolute contour value) is relatively wide along its major axis, reflecting the fact that the
precision of these estimates is not extremely high. Increasing the sample size would re-
sult in tighter estimates of the slope and intercept. This is the visual representation of the
information presented in the covariance matrix of the parameter estimates.

Logistic regression models can be fit using PROC LOGISTIC, PROC CATMOD, PROC
GENMOD and SAS/INSIGHT. The examples in this chapter mainly illustrate the use of PROC
LOGISTIC because it provides the widest range of diagnostics and other facilities for these
models.

The input dataset for PROC LOGISTIC can be in one of three forms:

frequency form is used with grouped data, as in a contingency table. For a binary re-
sponse, there are two observations per group, which correspond to the levels of the
response and a variable that contains the frequency for that group. A FREQ statement is
used to provide the frequency variable.

events/trial form is also used with grouped binomial data. There is one observation per
group: one variable gives the number of events, and a second variable gives the number
of trials. A FREQ statement is also used in this situation.

case form is used when there is one observation per case. This form is usually required
when there are quantitative predictors.

6.3.2 Plotting Predicted Probabilities

PROC LOGISTIC calculates predicted logits (Equation 6.1) and predicted probabilities
(Equation 6.3) for each observation. These results may be saved in an output dataset from
which plots can be made. The plots, often supplemented by standard errors or confidence
bands for these predictions, provide a visual means to interpret the prediction equations.

EXAMPLE 6.4 Arthritis treatment

This example illustrates the use of PROC LOGISTIC to fit a logistic regression model with
a quantitative predictor. It also describes the steps required to plot the observed binary re-
sponse together with fitted probabilities and confidence intervals. I use the Arthritis Treat-
ment Data and describe how Figure 6.1 was produced.
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The following DATA step creates the dataset ARTHRIT in case form. The dichotomous
response BETTER is created from the actual outcome variable IMPROVE, which has values
0, 1, 2 corresponding to None, Some, or Marked improvement.

data arthrit;
input id treat$ sex$ age improve @@ ;
better = (improve > 0); /* Dichotomous response */
_treat_ = (treat =’Treated’) ; /* Dummy var for treatment */
_sex_ = (sex = ’Female’); /* and sex */
datalines ;

57 Treated Male 27 1 9 Placebo Male 37 0
46 Treated Male 29 0 14 Placebo Male 44 0
77 Treated Male 30 0 73 Placebo Male 50 0
... (observations omitted)

56 Treated Female 69 1 42 Placebo Female 66 0
43 Treated Female 70 1 15 Placebo Female 66 1

71 Placebo Female 68 1
1 Placebo Female 74 2

;

By default, PROC LOGISTIC orders the response values in increasing order and
sets up the model so that it is predicting the probability of the smallest ordered value
Pr{better=0}. This means it would be modeling the probability of No improvement here.
The DESCENDING option (available in SAS beginning with Release 6.08) reverses this
order so that predicted results will be for Pr{better=1}.

proc logistic nosimple descending;
model better = age / lackfit;
output out=results p=predict l=lower u=upper;

Alternatively, you can use the ORDER option, or, with the default ORDER=FORMATTED, you
can create a user-format for the 0/1 values of the response, so that the first (smallest) for-
matted value corresponds to the event that you want. In the format OUTCOME created with
PROC FORMAT, the value IMPROVED conveniently comes first alphabetically and, there-
fore, is the predicted event.

proc format;
value outcome 0 = ’not improved’

1 = ’improved’;
proc logistic nosimple;

format better outcome.;
model better = age / lackfit;
output out=results p=predict l=lower u=upper;

In the printed output (Output 6.1), the Response Profiles show that the response values are
ordered as specified.

The OUTPUT statement shown in the preceding PROC LOGISTIC step produces the out-
put dataset RESULTS, which contains the predicted probability of improvement (PREDICT)
and the 95% confidence limits (LOWER, UPPER) for these observations. The first few obser-
vations from the dataset RESULTS are shown in Output 6.2. There is one observation per
case because the input data is in case form.

The plot shown in Figure 6.1 is produced as an overlay plot by the PROC GPLOT step
shown in the following program. Three SYMBOL statements are used to plot point symbols
for the observed response BETTER and interpolated lines for the predicted probabilities of
improvement and confidence limits. The linear regression lines (and its confidence limits)
in the figure are produced using the INTERP=RLCLM on the SYMBOL1 statement.
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Output 6.1 Arthritis treatment data: Logistic regression on age

The LOGISTIC Procedure

Data Set: WORK.ARTHRIT
Response Variable: BETTER
Response Levels: 2
Number of Observations: 84
Link Function: Logit

Response Profile

Ordered
Value BETTER Count

1 improved 42
2 not improved 42

Model Fitting Information and Testing Global Null Hypothesis BETA=0

Intercept
Intercept and

Criterion Only Covariates Chi-Square for Covariates

AIC 118.449 113.164 .
SC 120.880 118.025 .
-2 LOG L 116.449 109.164 7.285 with 1 DF (p=0.0070)
Score . . 7.010 with 1 DF (p=0.0081)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized Odds
Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio

INTERCPT 1 -2.6421 1.0732 6.0611 0.0138 . .
AGE 1 0.0492 0.0194 6.4733 0.0110 0.346714 1.050

Output 6.2 Arthritis treatment data: RESULTS dataset (partial)

Arthritis treatment data

ID AGE IMPROVE BETTER PREDICT LOWER UPPER

57 27 1 improved 0.21209 0.08047 0.45297
9 37 0 not improved 0.30579 0.16660 0.49256
46 29 0 not improved 0.22902 0.09378 0.46024
14 44 0 not improved 0.38341 0.25624 0.52881
77 30 0 not improved 0.23783 0.10112 0.46397
73 50 0 not improved 0.45522 0.34216 0.57308
17 32 2 improved 0.25615 0.11725 0.47166

....
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proc sort data=results;
by age;

proc gplot data=results;
plot better * age = 1

predict * age = 2
upper * age = 3
lower * age = 3
/ frame overlay vaxis=axis1 vm=1 hm=1;

axis1 label=(a=90) offset=(3) order=(0 to 1 by .2);
symbol1 v=dot h=1.4 i=rlclm l=2 c=green ci=red;
symbol2 v=none i=join l=1 w=3 c=blue;
symbol3 v=none i=join l=20 w=3 c=blue;
label better=’Probability (Improved)’;
format better 4.1;
title2 c=red ’Linear’ c=black ’ and ’ c=blue ’Logit ’

c=black ’Regressions on Age’;
run;

The model fitting tests in Output 6.1 (Chi-Square for Covariates and the Wald test for AGE)
test whether age adds significantly to predicting the outcome. This is a different question
than whether the model is adequate—usually provided by a lack-of-fit test, which com-
pares the given model to the saturated model. However, with binary data in case form, the
usual lack-of-fit tests do not apply. The LACKFIT option in the MODEL statement requests a
lack-of-fit test proposed by Hosmer and Lemeshow (1989). This test divides subjects into
10ths, based on their ordered predicted probabilities. Then, it computes a χ2 from the ob-
served and expected frequencies in these ten groups. The results from this test (shown in
Output 6.3) do not reject the fit of the simple one-variable model; however, the relatively
small p-value suggests that the model might be improved.

Output 6.3 Arthritis treatment data: Goodness-of-fit test

Hosmer and Lemeshow Goodness-of-Fit Test
BETTER = not

BETTER = improved improved
-------------------- --------------------

Group Total Observed Expected Observed Expected

1 8 2 1.76 6 6.24
2 9 4 2.65 5 6.35
3 8 2 3.27 6 4.73
4 10 1 4.81 9 5.19
5 9 8 4.78 1 4.22
6 11 7 6.18 4 4.82
7 7 4 4.16 3 2.84
8 8 4 4.96 4 3.04
9 8 6 5.26 2 2.74

10 6 4 4.16 2 1.84

Goodness-of-fit Statistic = 13.354 with 8 DF (p=0.1002)
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EXAMPLE 6.5 Challenger disaster

The space shuttle Challenger exploded 73 seconds after take-off on January 28, 1986.
Subsequent investigation determined that the cause was failure of the O-ring seals used
to isolate the fuel supply from burning gases. The story behind the Challenger disaster
is, perhaps, the most poignant missed opportunity in the history of statistical graphics. It
may be heartbreaking to find out that some important information was there, but the graph
maker missed it.

Engineers from Morton Thiokol, manufacturers of the rocket motors, had been worried
about the effects of unseasonably cold weather on the O-ring seals and recommended abort-
ing the flight. NASA staff analyzed the data on the relation between ambient temperature
and the number of O-ring failures (out of 6), but they had excluded observations where no
O-rings failed, believing that they were uninformative. Unfortunately, those observations
had occurred when the launch temperature was relatively warm (between 65◦ and 80◦F.)
and were indeed informative. The coldest temperature at any previous launch was 53◦F;
when Challenger was launched on January 28, 1986, the temperature was a frigid 31◦F.

The data relating O-ring failures to temperature was depicted as shown in Figure 6.6,
my candidate for the most misleading graph in history. Examination of this graph seemed
to indicate that there was no relation between ambient temperature and failure. Thus, the
decision to launch the Challenger was made, in spite of the initial concerns of the Morton
Thiokol engineers.

Figure 6.6 NASA Space Shuttle pre-launch graph
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This data has been analyzed extensively (Dalal, et al., 1989; Lavine, 1991). Tufte (1997)
gives a thorough and convincing visual analysis of the evidence available prior to the
launch. The main goal here is to illustrate predictions from the model for the Challenger
launch and the graphical display. But, what if the engineers had simply made a better
graph? At the least, that would entail (a) drawing a smoothed curve to fit the points (to
show the trend), and (b) removing the background grid lines (which obscure the data).
Figure 6.7 shows a revised version of the same graph, which should have caused any en-
gineer to conclude that either (a) the data was wrong, or (b) there were excessive risks
associated with both high and low temperatures. But it is well known that brittleness of
the rubber used in the O-rings is inversely proportional to (temp)3, so prudent interest
might have focused on the first possibility.
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Figure 6.7 NASA Space Shuttle pre-launch graph, revised
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Now, return to the problem of predicting the likelihood of failures at low temperatures.
The DATA step in the next program reads the data about the number of O-ring failures
and the temperature for the 23 flights for which information was available before the Chal-
lenger launch. A more detailed dataset, from Dalal, et al. (1989) and Tufte (1997), is given
in Appendix B.9.

title ’NASA Space Shuttle O-Ring Failures’;
data nasa;

input failures temp @@;
orings = 6;
label failures = ’Number of O-ring failures’

temp = ’Temperature (deg F)’;
datalines;
2 53 1 57 1 58 1 63
0 66 0 67 0 67 0 67
0 68 0 69 0 70 0 70
1 70 1 70 0 72 0 73
0 75 2 75 0 76 0 76
0 78 0 79 0 80

;

To obtain predicted probabilities for observations not contained in the original sample,
create an additional dataset that contains values for the independent variables in the ex-
trapolation sample, and join these observations to the actual dataset. The response variable
FAILURES will be missing for the extrapolation sample.

*-- Obtain predicted values for 30-80 degrees;
data temp;

input temp @@;
datalines;
31 30 35 40 45 50 55 60 65 70 75 80
;
data nasa2;

set nasa temp;

In the PROC LOGISTIC step, I use the events/trials syntax to indicate the number of failures
and number of trials. (This assumes that O-rings on the same flight fail independently.) The
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observations in the extrapolation sample are not used in fitting the model, yet the procedure
produces predicted probabilities and logits (if the independent variable(s) are non-missing).

proc logistic data=nasa2 nosimple;
model failures/orings = temp ;
output out=results p=predict l=lower u=upper;

proc print;

Output 6.4 indicates that the 12 new observations were not used in the analysis. The odds
ratio, 0.891, is interpreted to mean that each increase of 1◦ in temperature decreases the
odds of one O-ring failure by 11%!

Output 6.4 Logistic regression for NASA O-ring data

NASA Space Shuttle O-Ring Failures 1

The LOGISTIC Procedure

Data Set: WORK.NASA2
Response Variable (Events): FAILURES Number of O-ring failures
Response Variable (Trials): ORINGS
Number of Observations: 23
Link Function: Logit

Response Profile

Ordered Binary
Value Outcome Count

1 EVENT 9
2 NO EVENT 129

WARNING: 12 observation(s) were deleted due to missing values for
the response or explanatory variables.

Model Fitting Information and Testing Global Null Hypothesis BETA=0

Intercept
Intercept and

Criterion Only Covariates Chi-Square for Covariates

AIC 68.540 64.416 .
SC 71.468 70.271 .
-2 LOG L 66.540 60.416 6.124 with 1 DF (p=0.0133)
Score . . 6.804 with 1 DF (p=0.0091)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized Odds
Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio

INTERCPT 1 5.0940 3.0552 2.7798 0.0955 . .
TEMP 1 -0.1158 0.0471 6.0491 0.0139 -0.437656 0.891
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The output dataset RESULTS contains the predicted probability of the failure of a single
O-ring at each temperature and upper- and lower-confidence 95% limits for this probability.
You can plot the predicted and observed values as shown next. A vertical reference line at
31◦F is used to highlight the conditions at the Challenger launch.

proc sort data=results;
by predict;

data results;
set results;
obs = failures / orings;

proc gplot data=results;
plot (obs predict lower upper) * temp /

href=31 lhref=33
overlay frame vaxis=axis1 vminor=1;

symbol1 v=dot i=none c=blue h=2;
symbol2 v=none i=spline c=black w=5;
symbol3 v=none i=spline c=red l=33 r=2 w=3;
axis1 label=(a=90 ’Estimated Failure probability’) offset=(3);

The graph is shown in Figure 6.8. There is hardly any data at low temperatures and the
width of the confidence band provides an important visual cue to this uncertainty. Never-
theless, the predicted probability of failure per O-ring is uncomfortably high at all temper-
atures below the range of data from previous flights. Would you take a ride on Challenger
when the weather is cold?

Figure 6.8 NASA Space Shuttle O-ring Failure, Observed and Predicted probabilities
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6.4 Logit Models for Qualitative Predictors

Logistic regression can be generalized to include discrete explanatory variables, and such
models are often called logit models. The main differences (using PROC LOGISTIC) are
listed here:

• The data is often entered in frequency form, with one observation per “group”, defined
by the value(s) of the discrete predictors. With quantitative predictors, the data must be
entered in case form.

• The discrete predictors must be represented by dummy (0/1) variables for PROC
LOGISTIC, so explanatory variables often need to be re-coded.3

• The statistics for goodness-of-fit are computed differently.
• The output dataset used for plotting contains one observation per group when the data is

in frequency form.

When all predictors are discrete, the data actually comprises a contingency table, and
there is a close connection between logit models and log-linear models, discussed in Chap-
ter 7. In this case, the methods discussed in that chapter may also be used to analyze the
data presented here.

Consider the data that follows, which represents the contingency table for the Arthritis
data (Example 3.3) classified by Sex and Treatment, ignoring the Age variable for the
moment. For each group, the observed probabilities and logits may be found, as displayed
in Table 6.2.

Improvement
Sex Treatment None Some/Marked Total

F Active 6 21 27
F Placebo 19 13 32

M Active 7 7 14
M Placebo 10 1 11

Table 6.2 Arthritis data, by Sex and Treatment

Number Observed Odds Observed
Sex Treatment Better Total Pr{better} Better Logit

Female Active 21 27 0.7778 3.50 1.2529
Female Placebo 13 32 0.4062 0.68 -0.3797
Male Active 7 14 0.5000 1.00 0.0000
Male Placebo 1 11 0.0909 0.10 -2.3026

A simple model might assume additive (“main”) effects for Sex and Treatment on the
log odds of improvement of the same form as model Equation 6.1.

logit (πi j ) = α + β1 x1 + β2 x2 . (6.6)

3The GENMOD procedure provides a CLASS statement, so no re-coding is necessary. In Version 8, PROC LOGISTIC
now supports CLASS variables. The DUMMY macro (Appendix A.7) can be used to create the dummy variables for
PROC LOGISTIC in earlier releases.
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In this model,

• x1 and x2 are dummy (0/1) variables representing Sex and Treatment, respectively. They
are defined as

x1 =
{

0 if male
1 if female

x2 =
{

0 if placebo
1 if active

• α is the log odds of improvement for the baseline group with x1 = 0 and x2 = 0—males
who receive the placebo.

• β1 is the increment in log odds for being female as opposed to male. Therefore, eβ1 gives
the odds of improvement for females relative to males.

• β2 is the increment in log odds for being in the active treatment group. eβ2 gives the odds
of improvement for the active treatment group relative to placebo.

Thus, the parameters defined here are incremental effects. The intercept corresponds to
a baseline group (males given the placebo); the other parameters are incremental effects
for the other groups compared to the baseline group. Thus, when α, β1, and β2 have been
estimated, the fitted logits and predicted odds are as follows:

Sex Treatment Logit Odds Improved

Female Active α + β1 + β2 eα+β1+β2

Female Placebo α + β1 eα+β1

Male Active α + β2 eα+β2

Male Placebo α eα

In general, there may be multiple explanatory variables, as in multiple regression. A
discrete predictor with c categories can be represented by c − 1 dummy variables. Interac-
tions between predictors can be included in the model by defining interaction variables as
products of the main effect variables, as with PROC REG. For example, the interaction of
Sex and Treatment could be included in the model (Equation 6.6) by adding a term β3x3,
where x3 = x1 × x2.4

EXAMPLE 6.6 Arthritis treatment

The following DATA step creates a dataset in frequency form named ARTHRIT. The
dummy variables _SEX_ and _TREAT_ corresponding to x1 and x2 are created with log-
ical assignment statements, as is the dichotomous response variable BETTER.

The first logistic regression model includes effects for Sex and Treatment, specified by
the dummy variables in the MODEL statement. Again, the DESCENDING option is used so
that predicted results will be for Pr{better=1}.

data arthrits;
input sex$ trtment$ improve$ count;
_treat_ = (trtment=’Active’);
_sex_ = (sex=’F’);
better = (improve=’some’);

datalines;
F Active none 6
M Active none 7
F Active some 21

4In the current example, this would give a saturated model, which would necessarily fit perfectly. We usually try
to obtain the simplest model with an adequate fit.
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M Active some 7
F Placebo none 19
M Placebo none 10
F Placebo some 13
M Placebo some 1
;
proc logistic data=arthrits descending;

freq count;
model better = _sex_ _treat_ / scale=none aggregate;

The options SCALE=NONE and AGGREGATE provide goodness-of-fit tests for the model. The
goodness-of-fit tests are based on the difference between the actual model fitted and the
saturated model (containing an interaction of Sex and Treatment, in this example), which
would fit perfectly. The results shown in Output 6.5 are produced.

Output 6.5 Arthritis treatment data: Overall tests

Deviance and Pearson Goodness-of-Fit Statistics
Pr >

Criterion DF Value Value/DF Chi-Square

Deviance 1 0.2776 0.2776 0.5983
Pearson 1 0.2637 0.2637 0.6076

Number of unique profiles: 4

Testing Global Null Hypothesis: BETA=0

Intercept
Intercept and

Criterion Only Covariates Chi-Square for Covariates

AIC 118.449 104.222 .
SC 118.528 104.460 .
-2 LOG L 116.449 98.222 18.227 with 2 DF (p=0.0001)
Score . . 16.797 with 2 DF (p=0.0002)

The chi-square tests for BETA=0 in Output 6.5 test the joint effect of Sex and Treatment.
Individual effects in the model are tested by Wald χ2s, the squared ratio of each param-
eter divided by its standard error. These tests, in Output 6.6, indicate that both Sex and
Treatment effects are highly significant.

Output 6.6 Arthritis treatment data: Parameter estimates

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized Odds
Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio

INTERCPT 1 -1.9037 0.5982 10.1286 0.0015 . .
_SEX_ 1 1.4687 0.5756 6.5092 0.0107 0.372433 4.343
_TREAT_ 1 1.7817 0.5188 11.7961 0.0006 0.493956 5.940
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The fitted model,

logit(πi j ) = −1.90 + 1.47 sex + 1.78 treat (6.7)

is most easily interpreted by considering the odds ratios corresponding to the parameters:

• 1.47 is the increment to log odds of a better outcome for females; the odds ratio e1.47 =
4.34 indicates that females are 4.3 times as likely to achieve a better outcome than males.

• 1.78 is the increment to log odds for the treatment group; the odds ratio e1.78 = 5.94
indicates that the treated group is nearly 6 times as likely to achieve a better outcome
than the placebo group.

6.4.1 Plotting Results from PROC LOGISTIC

As we saw in Section 6.3.2, you can save predicted probabilities and fitted logits in an
output dataset that can be used for plotting and visualizing the results.

EXAMPLE 6.7 Arthritis treatment

Adding an OUTPUT statement to the PROC LOGISTIC step produces a dataset containing
estimated logit values for each group, and corresponding predicted probabilities of im-
provement and confidence limits (UPPER, LOWER) for these probabilities.

proc logistic data=arthrits;
freq count;
format better outcome.;
model better = _sex_ _treat_;
output out=results p=predict l=lower u=upper xbeta=logit;

proc print data=results;
id sex trtment; var improve count predict lower upper logit;
format predict lower upper logit 7.3;

The output dataset RESULTS is shown in Output 6.7. There are two observations for each
group (for None and Some improvement). The PREDICT variable gives the predicted prob-
ability of an improved outcome according to model (Equation 6.7), using the inverse trans-
formation (Equation 6.3) of logit to probability. Note that the fitted statistics are the same
for both observations corresponding to each Sex-Treatment combination.

Output 6.7 Arthritis treatment data: RESULTS dataset

SEX TRTMENT IMPROVE COUNT PREDICT LOWER UPPER LOGIT

F Active none 6 0.794 0.620 0.900 1.347
M Active none 7 0.470 0.257 0.694 -0.122
F Active some 21 0.794 0.620 0.900 1.347
M Active some 7 0.470 0.257 0.694 -0.122
F Placebo none 19 0.393 0.248 0.560 -0.435
M Placebo none 10 0.130 0.044 0.325 -1.904
F Placebo some 13 0.393 0.248 0.560 -0.435
M Placebo some 1 0.130 0.044 0.325 -1.904



216 Visualizing Categorical Data

To plot the predicted probabilities of improvement and confidence limits from the
RESULTS dataset, select the observations for IMPROVE=’SOME’. A plot can be created as
a bar chart by using PROC GCHART or as a line graph by using PROC GPLOT. Confidence
limits can be added to either by using the SAS/GRAPH Annotate facility. The statements
that follow show how a grouped horizontal bar chart (see Figure 6.9) is constructed.

data results;
set results;
if improve=’some’;
label predict=’Prob. Improved’;

data limits;
set results;
xsys=’2’; ysys=’2’;
midpoint=trtment;
group=sex; when=’A’; position=’+’;
x = lower; function=’MOVE ’; output;
text=’|’; function=’LABEL ’; output;
x = upper; function=’DRAW ’; output;
text=’|’; function=’LABEL ’; output;

proc gchart data=results;
hbar trtment / sumvar=predict group=sex gspace=3

patternid=midpoint
anno=limits
raxis=axis1
maxis=axis2
gaxis=axis3;

axis1 order=(0 to 1 by .2) minor=none
label=(h=1.5) value=(h=1.3);

axis2 label=(h=1.3 ’Treat’) value=(h=1.1);
axis3 label=(h=1.3) value=(h=1.2);
pattern1 v=solid c=cyan;
pattern2 v=solid c=rose;

Figure 6.9 Predicted probabilities of improvement

Arthritis Data: Predicted Effects of Sex and Treatment
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Alternatively, you may prefer a line graph to a bar chart. Figure 6.10 shows one ex-
ample that has separate lines for the two treatment groups. The observed probabilities of
improvement are shown by dots; these values were calculated from the COUNT variable in
the RESULTS dataset. The plotting steps are not shown here to conserve space.

Figure 6.10 Line graph of observed and predicted probabilities
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6.5 Multiple Logistic Regression Models

The logistic regression model can be generalized to include an arbitrary number of ex-
planatory variables,

logit(πi ) = α + xT
i β (6.8)

= α + β1xi1 + β2xi2 + · · · + βpxip

The xs can include any of the following sorts of regressors, as in the general linear model:

• quantitative variables (e.g., AGE, INCOME)
• polynomial powers of quantitative variables (e.g., AGE, AGE2, AGE3)
• transformations of quantitative variables (e.g., log SALARY)
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• dummy variables, representing qualitative predictors (e.g., P1, P2, P3 for four political
party affiliations)

• interaction terms (e.g., SEX × AGE, or AGE × INCOME)

Again, all the regressors in the model must be created explicitly in a DATA step for PROC
LOGISTIC.

EXAMPLE 6.8 Arthritis treatment

I now combine the analysis of Age (Example 6.4) with that of Sex and Treatment (Ex-
ample 6.6) in the Arthritis data.

The DATA step that follows creates a SAS dataset named ARTHRIT in case form. As be-
fore, programming statements are used to create the dummy variables _SEX_ and _TREAT_.
Variables for testing interactions among Sex, Treatment, and Age are also created. A pre-
liminary analysis (described in Example 6.10) is used to test whether any of these variables
interact. That test shows that all interactions can safely be ignored in this example. That
test also serves as a goodness-of-fit test for the main effects model treated here.

data arthrit;
length treat$7. sex$6. ;
input id treat$ sex$ age improve @@ ;
better = (improve > 0); /* Dichotomous response */
_treat_ = (treat =’Treated’) ; /* Dummy var for Treatment */
_sex_ = (sex = ’Female’); /* and Sex */
agesex = age*_sex_ ; /* Dummy var for testing */
agetrt = age*_treat_; /* interactions */
sextrt = _sex_*_treat_;
age2 = age*age ;

datalines ;
57 Treated Male 27 1 9 Placebo Male 37 0
46 Treated Male 29 0 14 Placebo Male 44 0
77 Treated Male 30 0 73 Placebo Male 50 0
... (observations omitted)

56 Treated Female 69 1 42 Placebo Female 66 0
43 Treated Female 70 1 15 Placebo Female 66 1

71 Placebo Female 68 1
1 Placebo Female 74 2

The next logistic model includes (main) effects for Age, Sex, and Treatment. In this ex-
ample, both a confidence interval for Pr{Improved} and for the logit ±1s.e. are plotted. To
make these intervals roughly comparable, we choose α = .33 to give a 67% confidence
interval.

title2 ’Estimated Effects of Age, Treatment and Sex’;
proc logistic data=arthrit;

format better outcome.;
model better = _sex_ _treat_ age / lackfit;
output out=results p=predict l=lower u=upper

xbeta=logit stdxbeta=selogit / alpha=.33;

The printed results are shown in Output 6.8. The parameter values are similar to those in
the earlier examples and have the same interpretations. For example, for AGE, the odds
ratio of 1.050 means that the odds of improvement increases 5% per year. Over 10 years,
the odds of improvement would be multiplied by e.487 = 1.63, a 63% increase.
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Output 6.8 Arthritis data: Overall tests and parameter estimates

Testing Global Null Hypothesis: BETA=0
Intercept

Intercept and
Criterion Only Covariates Chi-Square for Covariates

AIC 118.449 100.063 .
SC 120.880 109.786 .
-2 LOG L 116.449 92.063 24.386 with 3 DF (p=0.0001)
Score . . 22.005 with 3 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates
Parameter Standard Wald Pr > Standardized Odds

Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio
INTERCPT 1 -4.5033 1.3074 11.8649 0.0006 . .
_SEX_ 1 1.4878 0.5948 6.2576 0.0124 0.377296 4.427
_TREAT_ 1 1.7598 0.5365 10.7596 0.0010 0.487891 5.811
AGE 1 0.0487 0.0207 5.5655 0.0183 0.343176 1.050

Plots are constructed from the dataset RESULTS. Here are the first few observations.

ID TREAT AGE SEX IMPROVE PREDICT LOWER UPPER LOGIT SELOGIT

57 Treated 27 Male 1 0.194 0.103 0.334 -1.427 0.758
9 Placebo 37 Male 0 0.063 0.032 0.120 -2.700 0.725
46 Treated 29 Male 0 0.209 0.115 0.350 -1.330 0.728
14 Placebo 44 Male 0 0.086 0.047 0.152 -2.358 0.658
...

Predicted probabilities and confidence limits are contained in the variables PREDICT,
UPPER, and LOWER. Corresponding logit values and their standard errors are contained in
the variables LOGIT and SELOGIT. The predicted relations are linear and additive on the
logit (log odds) scale according to the model (Equation 6.9), but perhaps more interpretable
on the probability scale. One reasonable compromise is to plot the predicted log odds along
with an auxiliary scale showing the equivalent probability values.

To show the effects of Sex, Treatment, and Age on improvement (Pr{Better}), separate
plots are drawn for each sex, using the statement BY SEX; in a PROC GPLOT step. These
plots are shown side by side in Figure 6.11, facilitating their comparison.

Figure 6.11 Estimated logits for Sex, Treatment, and Age. Corresponding probabilities of a “better”
response are shown on the scale on the right side.
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Most of the work consists of drawing the confidence limits with the Annotate facility,
but this is worthwhile because it shows the locations and bounds for individual observa-
tions. Plots of the predicted probabilities can be made in a similar way using the variables
PREDICT, UPPER, and LOWER.

proc sort data=results;
by sex treat age;

data bars;
set results(keep=sex treat age logit selogit);
by sex treat;
length text $8;
xsys=’2’; ysys=’2’;
if treat=’Placebo’ then color=’BLACK’;

else color=’RED’;
x = age; line=33;
y = logit+selogit; function=’MOVE ’; output;
y = logit-selogit;
y = max(-3,y); function=’DRAW ’; output;
if last.treat then do;

y = logit;
x = age+1; position=’6’;
text = treat; function=’LABEL’; output;
end;

if first.sex then do;
ysys =’1’; y=90;
xsys =’1’; x=10;
text = sex; function=’LABEL’; output;
end;

The probability scale is constructed using the PSCALE macro (Appendix A.31.8), which
produces an Annotate dataset to draw the tick marks and probability values along the right
axis. The axis label is drawn by using a TITLE statement that specifies ANGLE=-90.

%pscale(anno=pscale);
data pscale;

set pscale;
sex = ’Female’; output;
sex = ’Male ’; output;

proc sort;
by sex;

data bars;
set bars pscale;
by sex;

title ’ ’
h=1.5 a=-90 ’Probability Improved’
h=3.5 a=-90 ’ ’;

goptions hby=0;
proc gplot data=results;

plot logit * age = treat / vaxis=axis1 haxis=axis2 hm=1 vm=1
nolegend anno=bars frame;

by sex;
axis1 label=(a=90 ’Log Odds Improved (+/- 1 SE)’)

order=(-3 to 3);
axis2 order=(20 to 80 by 10) offset=(2,6);
symbol1 v=+ i=join l=3 c=black;
symbol2 v=$ i=join l=1 c=red;

run;
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Figure 6.11 provides a clear interpretation for the predicted effects of Age combined with
those of Treatment and Sex that you saw earlier. On the logit scale, improvement increases
linearly with age. The probability scale enables us to understand the predicted values more
readily. For instance, you can see that a 50-year-old woman given the active treatment has
a predicted probability of improvement around 0.80, but she has a probability less than
0.40 if given the placebo.

Because the model includes no interaction terms, the fitted lines are parallel for all
Treatment–Sex groups, and the effects of all variables are large compared to their stan-
dard errors. However, you are only plotting fitted values here and should be cautious until
you have tested for interactions among these variables. This interaction is shown in Sec-
tion 6.5.1 (Example 6.10).

EXAMPLE 6.9 Survival in the ICU

In this example, some aspects of logistic regression related to model selection and graphical
display with a mixture of quantitative and discrete variables are examined. The data is
from a study by Lemeshow, et al. (1988) of patients admitted to an intensive care unit
at Baystate Medical Center in Springfield, Massachusetts.5 The goal of this study was to
develop a model to predict the probability of survival (up until hospital discharge) of these
patients and to study the risk factors associated with ICU mortality. Data for a sample of
200 subjects from this study is given in Hosmer and Lemeshow (1989, Appendix 2), and
reproduced in Appendix B.4 in this book.

There are 19 explanatory variables, of which three are quantitative (Age, Systolic blood
pressure, and Heart rate), one variable is categorical (Race), and the remaining 15 are
binary (many having been dichotomized). Initial model screening was carried out by us-
ing the Forward, Backward, and Stepwise procedures using the SELECTION option in the
MODEL statement. As in other model selection procedures, it is prudent to regard these sim-
ply as “candidate” models, nominated for further attention. The results for the full model
with all 19 predictors and for the final selection models are also shown.

Selection AIC SC G2 Score df Variables in Model

Full model 160.78 226.74 79.38 74.74 19 All
Stepwise 149.14 165.63 61.03 62.67 4 Age Cancer Admit Uncons
Forward 149.14 165.63 61.03 62.67 4 Age Cancer Admit Uncons
Backward 144.44 170.83 71.72 70.52 7 Age Cancer Admit Uncons Systolic

pH PCO

For the moment, focus on the variables Age, Cancer, Admit (elective vs. emergency ad-
mission) and Uncons (stupor or coma at admission). These were nominated by all three
procedures and constitute the best model according to the Forward and Stepwise pro-
cedures. Estimated coefficients and odds ratios for this model are shown in Output 6.9,
which were fit using the statements that follow. The lack-of-fit test (output not shown)
gives χ2(8) = 5.081, p = 0.74, showing no evidence of need for a more complex model.

%include data(icu);
proc logistic data=icu nosimple order=data;

model died = age cancer uncons admit /
scale=none aggregate lackfit;

output out=results p=predict l=lower u=upper / alpha=.33;

5Applied Logistic Regression, David W. Hosmer, Jr. and Stanley Lemeshow, Copyright c© 1989 John Wiley &
Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.
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Output 6.9 ICU data: Parameter estimates

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized Odds
Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio

INTERCPT 1 -6.8698 1.3188 27.1341 0.0001 . .
AGE 1 0.0372 0.0128 8.4751 0.0036 0.411049 1.038
CANCER 1 2.0971 0.8385 6.2555 0.0124 0.347729 8.143
UNCONS 1 3.7055 0.8765 17.8734 0.0001 0.539440 40.669
ADMIT 1 3.1022 0.9186 11.4047 0.0007 0.756716 22.246

Because age is continuous, it is sensible to plot predicted results against age, and to
construct separate curves according to the combinations of the other risk factors that are
present for each case. A composite variable RISK is created combining the values of Can-
cer, Admit, and Uncons, which all correspond to increased risk of death.

data results;
set results;
length risk $16;
if cancer then risk = ’Can’;
if admit then risk = trim(risk) ||’ Emerg’;
if uncons then risk = trim(risk) ||’ Uncon’;
if risk =’ ’ then risk=’None’;
risk = left(risk);
label predict=’Estimated Probability of Death’;

proc sort;
by risk age;

The following steps create Annotate labels for the risk factors and plot predicted probability
of death for each combination, producing the graph in Figure 6.12:

data label;
set results;
by risk;
retain xsys ysys ’2’;
position =’3’;
if predict>.9 then position=’2’;
if last.risk then do;

x = age; y=predict;
function = ’label ’;
text=risk;
output;
end;

proc gplot data=results;
plot predict * age = risk /

frame anno=label vaxis=axis1 haxis=axis2 vm=1 hm=1 nolegend;
axis1 label=(a=90);
axis2 offset=(,4);
symbol1 i=join v=square c=red ci=black;
symbol2 i=join v=triangle c=red ci=blue;
symbol3 i=join v=circle c=red ci=black;
symbol4 i=join v=dot c=red ci=blue;
symbol5 i=join v=plus c=black;
symbol6 i=join v=diamond c=blue ci=blue;

run; quit;
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Figure 6.12 ICU Survival data: Predicted probabilities for combinations of risk factors vs. AGE
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From the graph, it is apparent that mortality increases with age when any of these risk
factors are present, particularly when the patient is admitted to Emergency; it is highest
when the patient is also unconscious at admission. From the odds ratios (see Output 6.9),
notice that the odds of death are increased 40-fold when the patient is unconscious. The
graph, however, shows the effects of these risk factors in combination; the points also
indicate the number and age distribution of cases that have these combinations.

Before concluding that this model provides an adequate description of the data, you
should examine whether any individual cases are unduly influencing the predicted results,
and more importantly, the choice of variables in the model. This question is examined in
Section 6.6, where this data is used again (Example 6.12).

6.5.1 Models with Interaction

The examples for the arthritis data have involved only main effects of Sex, Age, and Treat-
ment. I first illustrate tests for interactions and powers of quantitative variables. Whether
interactions are present or not, the plotting of estimated logits or predicted probabilities
from PROC LOGISTIC is no more complicated.

In fact, since the predicted probabilities and logits are calculated by the procedure and
output to the dataset RESULTS, the results plotted depend purely on the MODEL statement.
The plotting steps remain the same as used in Figure 6.11, assuming you want to make sep-
arate plots for males and females of the Age by Treatment effects. For more complex mod-
els, or situations where you want to plot predicted results averaged over some variables, a
method for plotting effects from the model coefficients is described in Section 6.5.2.
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EXAMPLE 6.10 Arthritis treatment

The interaction effects were defined in the DATA step ARTHRIT in Example 6.8 as the
dummy variables AGESEX, AGETRT, and SEXTRT. The variable AGE2 = AGE**2 can be
used to test whether the relationship between age and logit(better) is quadratic rather than
linear.

A simple way to test for the need to include any of these more complex terms is il-
lustrated here. The PROC LOGISTIC step below requests a forward-selection procedure.
Setting START=3 requests that the model-building begin with the first three variables (the
main effects) listed in the MODEL statement. The option SLENTRY=1 (significance level
to enter) forces all variables to enter the model eventually.

proc logistic data=arthrit;
format better outcome.;
model better = _sex_ _treat_ age /* main effects */

agesex agetrt sextrt /* interactions */
age2 /* quadratic age */

/ selection=forward
start=3 /* start with main effects */
slentry=1; /* force all terms to enter */

The variables included in each model for the selection procedure are listed in a note at
the beginning of each set of results:

Step 0. The following variables were entered:
INTERCPT _SEX_ _TREAT_ AGE

Results for this step are identical to those of the main effects model given earlier. Near
the end of this step, the residual χ2 is printed, which corresponds to a joint test for the other
four variables. This test is an appropriate test of goodness of fit of the main effects model.

Residual Chi-Square = 4.0268 with 4 DF (p=0.4024)

Other tests printed show none of the interaction terms is significant individually.

6.5.2 Effect Plots from Coefficients

You can also construct plots for a fitted model by calculating the predicted logit values
directly from the coefficients for the variables in the model. This method can be used
when raw data is not available, or when you want to average over certain effects to present
simplified views of a complex model. To illustrate, for the arthritis main effect model, the
fitted relationship is

logit(p) = −4.5033 + 1.4878 sex + 1.7598 treat + 0.0487 age .

With this method, the logit is calculated for each independent variable varied over its
range in all possible combinations. Fixing an explanatory variable at its average gives an
effects plot for the remaining variables, which is particularly useful when that variable does
not interact with others. Fox (1987) explains how this method can be used to construct ad-
justed effects plots for particular interactions, adjusting for other variables not represented
in the plot.
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The response can also be graphed on the probability scale by transforming the logit
via p = exp(logit)/(1 + exp(logit)). For example, the fitted logits and corresponding
probabilities for the arthritis data can be calculated in this DATA step:

data fitted;
do _sex_ = 0 to 1;

do _treat_ = 0 to 1;
do age = 25 to 75 by 5;

logit= -4.5033 + 1.4878*_sex_ + 1.7598*_treat_ + 0.0487*age;
prob = exp(logit) / (1 + exp(logit));
output;
end;

end;
end;

Replacing the outer DO-loop with _sex_ = PrFemale = 59/84 = .702 would give fitted
values at the average over sex; using _sex_ = 1/2 would give fitted values for a population
with an equal sex distribution.

EXAMPLE 6.11 Volunteering for a psychological experiment

Fox (1987) illustrated this method using data from a study by Cowles and Davis (1987) on
the personality factors that predispose people to volunteer for a psychological experiment.
In this study, 1,421 university students completed a personality inventory, which contained
a 24-item scale of Introversion-Extroversion and a 24-item scale of Stability-Neuroticism,
among other measures. They were also asked to indicate their willingness in principle to
volunteer for a psychological experiment, which was the response to be explained by the
personality variables.

Fox reports the results of a logistic regression fit to this data as

logit(πv) = −2.605 + 0.2472 Sex + 0.1668E + 0.1108N − 0.0088552E × N ,

where πv is the probability of volunteering, Sex is a dummy variable coded 0 for males
and 1 for females, E is the Introversion-Extroversion score on a scale of 0–24, and N is
the Stability-Neuroticism score, also on a scale of 0–24.

In this model, the positive coefficient for Sex implies that women are more likely to
volunteer than men at each combination of extroversion and neuroticism. Because Sex
does not interact with either extroversion or neuroticism, you can focus on the relation
between the probability of volunteering and the two personality variables. Setting SEX=.5
in the DATA step below generates observations for the adjusted effects in a population
equally composed of men and women.6

data predict;
array b{0:4} _temporary_ (-2.605 0.2472 0.1668 0.1108 -0.008552);
do sex = 0 to 1 by .5;

do neurot = 0 to 24 by 6;
do extra = 0 to 24 by 6;

logit = b[0] + b[1]*sex + b[2]*extra + b[3]*neurot
+ b[4]*extra*neurot;

prob = exp(logit) / ( 1 + exp(logit) );
output;
end;

end;
end;

6Alternatively, we could set SEX=0.55, the proportion of women in the sample.
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At a given level of Sex, we may graph the fitted probability of volunteering (PROB)
against one predictor (extroversion) with separate curves for each level of the other predic-
tor (neuroticism). The graph for the average over Sex is shown in Figure 6.13.

Figure 6.13 Fitted probability of volunteering, controlling for Sex. The effect of Sex is shown at the
point where the curves intersect. The vertical lines at other selected combinations of
extroversion and neuroticism show individual 50% confidence intervals.
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First, you can find the average probability of volunteering by averaging the logits and
transforming the average values to the probability scale.

proc summary nway data=predict;
class sex;
var logit ;
output out=means mean=;

data means;
set means;
drop _type_ _freq_;
prob = exp(logit) / (1 + exp(logit));

proc print;

which produces

OBS SEX LOGIT PROB

1 0.0 -0.50587 0.37616
2 0.5 -0.38230 0.40557
3 1.0 -0.25872 0.43568
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The statements below create an Annotate dataset that supplies the labels for the levels of
neuroticism in Figure 6.13. The effect of Sex is shown by drawing a vertical line showing
the average probability of volunteering for men and for women at the center of the graph.

proc format;
value sex 0=’Male’

.5=’ ’ /* average */
1=’Female’;

data anno;
set predict;
by sex neurot;
xsys=’2’; ysys=’2’;
length text $22 function color $8;
position=’5’;
if last.neurot then do;

x=extra+1;
y=prob;
text = put(neurot,3.0); function=’LABEL’; output;
end;

if first.sex then do;
y=.90;
x=24; text=’Stability-Neuroticism’;
function=’LABEL’; output;
x=2; text=put(sex,sex.);
function=’LABEL’; output;
if text =’ ’ then do;

color = ’red’;
x = 12.956; * intersection of curves;
y = 0.43568; * average prob for females;
function = ’MOVE ’; output;
text = ’F’; position = ’2’;
function = ’LABEL’ ; output;
y = 0.37616; * average prob for males;
function = ’DRAW ’ ; output;
text = ’M’; position = ’8’;
function = ’LABEL’ ; output;
end;

end;

The graph in Figure 6.13 is the second of three panels (for SEX=0.5) drawn by the PROC
GPLOT step below. The other two graphs have the same form, shifted up for females and
down for males, as indicated by the vertical bar at the intersection of the curves in Fig-
ure 6.13.

goptions hby=0;
proc gplot data=predict;

plot prob * extra = neurot /
vaxis=axis1 haxis=axis2 hminor=0
frame nolegend anno=anno;

by sex;
axis1 label=(a=90) order=(0 to 1 by .2);
axis2 label=(h=1.5 ’Introversion-Extroversion’)

order=(0 to 30 by 6) offset=(3,0);
symbol1 v=+ i=spline l=1 c=black;
symbol2 v=* i=spline l=3 c=black;
symbol3 v=$ i=spline l=5 c=black;
symbol4 v=- i=spline l=7 c=black;
symbol5 v=# i=spline l=9 c=black;
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The interpretation of these results is quite clear from the graph. At low levels of neuroti-
cism, probability of volunteering increases with extroversion, but the slope of this relation
decreases as neuroticism increases. (If you want a lot of volunteers in a psychological ex-
periment, look for extroverted non-neurotics.) At the highest levels of neuroticism, proba-
bility of volunteering decreases with extroversion.

The error bars shown in Figure 6.13 require the estimated variance-covariance matrix of
the coefficients, V̂(b) = (XTVX)−1, in addition to the coefficients themselves. Because the
fitted value, logit(πi ) = xT

i b, is a linear combination of the parameters, its standard error
may be calculated as

s.e. logit(πi ) = [xT
i V̂(b)xi ]1/2

An approximate 50% confidence interval for the fitted logit may then be calculated as
logit(πi ) ± 0.67 × s.e. logit(πi ), and the end points transformed back to the probability
scale.

For example, the DATA step below inputs the coefficients and the estimated variance-
covariance matrix in the form it would be produced by PROC LOGISTIC with the options
OUTEST=PARMS COVOUT on the PROC statement.

data parms;
input _type_ $ _name_ $ intercep sex extra neurot extneu;

datalines;
PARMS ESTIMATE -2.60551 0.24715 0.16682 0.11078 -.0085525
COV INTERCPT 0.27504 -0.01839 -0.01819 -0.01726 0.0012943
COV SEX -0.01839 0.01246 0.00013 -0.00007 -.0000134
COV INTEXT -0.01819 0.00013 0.00142 0.00127 -.0001023
COV NEUROT -0.01726 -0.00007 0.00127 0.00142 -.0001052
COV EXTNEU 0.00129 -0.00001 -0.00010 -0.00011 0.0000086
;

(If this analysis was carried out using raw data, the OUTEST=PARMS dataset could be used
directly.) Calculation of the standard errors and confidence intervals is then done most
easily with SAS/IML, as follows:

proc iml;
use parms;
read var{intercep sex extra neurot extneu} into b where(_type_=’PARMS’);
read all var{intercep sex extra neurot extneu} into cov

where(_type_=’COV’);
b = t(b);
do sex = 0 to 1 by .5;

do neurot = 0 to 24 by 6;
do extra = 0 to 24 by 6;

x = 1 || sex || extra || neurot || extra#neurot;
logit = x * b;
selogit = sqrt( x * cov * t(x) );
prob = exp(logit) / ( 1 + exp(logit) );
result = result || ( x[,2:4] || logit || selogit || prob );
end;

end;
end;

ul = result[,4] + .67#result[,5];
ll = result[,4] - .67#result[,5];
lower = exp(ll) / ( 1 + exp(ll) );
upper = exp(ul) / ( 1 + exp(ul) );
var = {sex extra neurot logit selogit prob lower upper};
result = result || lower || upper;
create predict from result[c=var];
append from result;

quit;
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The error bars in Figure 6.13 serve notice that the predicted probabilities are most precise
for those with average levels of the explanatory variables, as is usual with linear models.

6.6 Influence and Diagnostic Plots

In ordinary least-squares (OLS) regression, measures of influence (leverage, Cook’s D,
DFBETAs, etc.) help you to determine whether individual cases (or cells in grouped data)
have undue impact on the fitted regression model and the coefficients of individual pre-
dictors. Analogs of most of these measures have been suggested for logistic regression.
Pregibon (1981) provided the theoretical basis for these methods, exploiting the relation-
ship between logistic models and weighted least squares. Some additional problems occur
in practical applications to logistic regression because the response is discrete, and because
the leave-one-out diagnostics are more difficult to compute.

6.6.1 Residuals and Leverage

As in ordinary least-squares regression, the influence (actual impact) of an observation
in logistic models depends multiplicatively on its residual (disagreement between yi and
ŷi ) and its leverage (how unusual xi is in the space of the explanatory variables). The
multiplicative definitions imply that a case is influential to the extent that it is poorly fit
and has unusual values of the predictors.

In logistic regression, the simple raw residual is just ei ≡ yi − p̂i , where p̂i =
exp(xT

i b)/[1 + exp(xT
i b)]. The Pearson and deviance residuals are more useful for identi-

fying poorly fitted observations, and are components of overall goodness-of-fit statistics.
The Pearson residual is defined as

ri ≡ ei√
pi (1 − pi )

(6.9)

and the Pearson chi-square is χ2 = ∑
r2

i . The deviance residual is

gi ≡ ±−2[yi log pi + (1 − yi ) log(1 − pi )]1/2 (6.10)

where the sign of gi is the same as that of ei . Likewise, the sum of squares of the deviance
residuals gives the overall deviance, G2 = −2 log L(b) = ∑

g2
i .

When yi is a binomial count based on ni trials (grouped data), the Pearson residuals
(Equation 6.9) then become

ri ≡ yi − ni pi√
ni pi (1 − pi )

with similar modifications made to Equation 6.10.
Leverage measures the potential impact of an individual case on the results, which is

directly proportional to how far an individual case is from the centroid in the space of the
predictors. Leverage is computed as the diagonal elements, hii , of the “Hat” matrix, H,

H = X(XTX)
−1

XT

where X = V1/2X, and V = diag [ p̂(1 − p̂)]. As in OLS regression, leverage values are
between 0 and 1, and a leverage value, hii > 2(k + 1)/n is considered “large”; here, k is
the number of predictors, and n is the number of cases. In OLS, however, the hat values
depend only on the X ’s; whereas in logistic regression, they also depend on the dependent



230 Visualizing Categorical Data

variable values and the fitted probabilities (through V). As a result, an observation may be
extremely unusual on the predictors, yet not have a large hat value, if the fitted probability
is near 0 or 1.

6.6.2 Influence Diagnostics

Influence measures assess the effect that deleting an observation has on the regression pa-
rameters, fitted values, or the goodness-of-fit statistics. In OLS regression, these measures
can be computed exactly from a single regression. In logistic regression, the exact effect
of deletion requires refitting the model with each observation deleted in turn (because the
estimating equations (Equation 6.5) are nonlinear), which is a time-intensive computation.
Consequently, Pregibon (1981) showed how analogous deletion diagnostics may be ap-
proximated by performing one additional step of the iterative procedure.

The simplest measure of influence of observation i is the standardized change in the
coefficient for each variable due to omitting that observation, termed DFBETAs. From the
relation (Pregibon, 1981, p. 716)

b − b(−i) = (XTVX)−1xi (yi − pi )/(1 − hii ) ,

the estimated standardized change in the coefficient for variable j is

DFBETAi j ≡ b(−i) j − b j

σ̂ (b j )
, (6.11)

where σ̂ (b j ) is the estimated standard error of b j . With k regressors, there are k + 1 sets
of DFBETAs, which makes their examination burdensome. Graphical displays ease this
burden, as do various summary measures considered below.

The overall influence of observation i on the estimated regression coefficients is as-
sessed by analogs of Cook’s distance, which measure the difference between b for all the
data and b(−i) estimated without observation i . One measure, Ci , is defined as

Ci ≡ (b − b(−i))
T XTVX (b − b(−i)) ,

and calculated as

Ci = r2
i hii

(1 − hii )2
. (6.12)

A second measure, Ci , is calculated as

Ci = r2
i hii

(1 − hii )
= (1 − hii )Ci . (6.13)

Because 0 ≤ hii ≤ 1, Ci will never be larger than Ci . These measures are referred to by
the keywords C and CBAR, respectively, in the OUTPUT statement. Both can be interpreted
as squared measures of the change in size of the confidence intervals for all regression co-
efficients. Rules of thumb for noticeably large values are necessarily only rough indicators,
but Johnson (1985) suggests comparing kCi to a χ2(k) distribution.

The Pearson and deviance residuals defined above do not have equal variance, but rather
have variance ≈ 1 − hii . Studentized versions of both that do have equal variance are ob-
tained by dividing by

√
1 − hii . For example, the studentized deviance residual (RESDEV) is

gi = gi/
√

1 − hii . These are most usefully expressed in squared form as the approximate
decrease in the deviance (DIFDEV) and Pearson (DIFCHISQ) χ2 associated with deleting
observation i :

�G2
(−i) = g2

i

1 − hii
,
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and

�χ2
(−i) = r2

i

1 − hii
.

These are both asymptotically distributed as χ2(1); so a value exceeding 3.84 (or the
rounded value, 4) is worth noticing. They may also be interpreted as indicating how poorly
the current model fits observation i .

As with OLS regression, influential observations signal something unusual: extreme (or
erroneous) predictor values combined with an ill-predicted response—e.g., someone who
died but should have survived (according to the model). They may also signal that some
important (perhaps unmeasured) predictor—a lurking variable—has been omitted from the
model (Joiner, 1981) or expressed on the wrong scale.

6.6.3 Influence Output from PROC LOGISTIC

All the influence statistics are printed when the INFLUENCE option is used in the MODEL
statement. The following example produces these diagnostics for the arthritis data:

proc logistic data=arthrit ;
model better = _sex_ _treat_ _age_ / influence;

This produces many pages of output, of the form in Output 6.10, shown for two of
the many diagnostic measures. With so much output, it is often difficult to spot unusual
observations. A more useful option, IPLOTS, produces index plots of each of the diagnos-
tic measures against the observation index, with the goal of showing which observations
stand out from the rest. It is even more useful, I believe, to plot certain diagnostics against
each other, including reference lines showing the nominal danger-level for each diagnostic,
because they help to pinpoint why certain observations are influential. Some examples of
these plots are described in the Section 6.6.4.
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Output 6.10 Regression diagnostics: Printed output (partial) for arthritis data

The LOGISTIC Procedure
Regression Diagnostics

Deviance Residual Hat Matrix Diagonal

Case (1 unit = 0.26) (1 unit = 0.01)
Number Value -8 -4 0 2 4 6 8 Value 0 2 4 6 8 12 16

1 1.812 | * | | 0.089 | * |
2 0.360 | |* | 0.031 | * |
3 0.685 | | * | 0.087 | * |
4 0.425 | | * | 0.034 | * |
5 0.700 | | * | 0.086 | * |
6 0.488 | | * | 0.038 | * |
7 1.703 | * | | 0.084 | * |
8 0.499 | | * | 0.039 | * |
9 1.396 | * | | 0.066 | * |
10 0.511 | | * | 0.040 | * |
11 1.142 | * | | 0.064 | * |
12 0.523 | | * | 0.041 | * |
13 1.234 | | * | 0.065 | * |
14 0.599 | | * | 0.051 | * |
15 1.121 | * | | 0.065 | * |
16 0.599 | | * | 0.051 | * |
17 1.319 | | * | 0.069 | * |
18 0.640 | | * | 0.058 | * |
19 1.319 | | * | 0.069 | * |
20 0.640 | | * | 0.058 | * |
21 1.340 | | * | 0.070 | * |
22 1.814 | * | | 0.061 | * |
23 1.022 | * | | 0.070 | * |
24 0.529 | | * | 0.060 | * |
25 1.449 | | * | 0.078 | * |
26 0.619 | | * | 0.053 | * |
27 0.909 | * | | 0.080 | * |
28 0.619 | | * | 0.053 | * |
29 1.120 | | * | 0.141 | *|
30 1.846 | * | | 0.052 | * |
31 1.309 | | * | 0.092 | * |
32 0.647 | | * | 0.050 | * |
33 0.955 | * | | 0.070 | * |
34 1.803 | * | | 0.049 | * |
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6.6.4 Diagnostic Plots of Influence Measures

Plots of the change in χ2 (DIFCHISQ or DIFDEV) against either leverage or predicted prob-
ability are particularly useful for detecting unduly influential cases. These are discrete
analogs of plots recommended for linear models by Fox (1991) and Friendly (1991). The
estimated overall influence of each case on the estimated coefficients (Ci or Ci ) can be
shown in a bubble plot where the plotting symbols are circles proportional to C or CBAR.

Such plots are produced by the INFLOGIS macro, described in Appendix A.12. For
example, these statements produce plots of DIFCHISQ against both the predicted proba-
bility, PRED (Figure 6.14), and leverage, HAT (Figure 6.15), using bubbles whose area is
proportional to C:

title ’Arthritis treatment data’;
title2 ’Bubble size: Influence on Coefficients (C)’;
goptions htext=1.6;
%include data(arthrit);
%inflogis(data=arthrit,

y=better, /* response */
x=_sex_ _treat_ age, /* predictors */
id=id, /* case label */
gy=DIFCHISQ, /* graph ordinate */
gx=PRED HAT, /* graph abscissas */
lcolor=RED, bsize=14
);

Figure 6.14 Influence plot for arthritis data. Cases with DIFCHISQ> 4 or leverage> (2k)/n = 0.095
are labeled as influential, as indicated by the size of the bubble symbol. The systematic
pattern shown is inherent in the discrete nature of logistic regression. The most influential
observations are usually those with very high or low predicted probabilities.
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Figure 6.15 Changes in chi-square vs. leverage. The same cases are labeled as in Figure 6.14.
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The printed output from the INFLOGIS macro includes a table identifying any observa-
tion of high leverage or high influence. These observations are also labeled in the graphs.
For example, case 29 is of high leverage because she is unusual in terms of the predictors:
a young woman given treatment; however, she is not influential in the fitted model. Case
77 is not of high leverage, but is poorly predicted by the model and has a large contribution
to χ2. Case 1, however, is most influential.

CASE BETTER _SEX_ _TREAT_ AGE HAT DIFCHISQ DIFDEV C

1 1 0 1 27 .09 4.5781 3.6953 0.4510
22 1 0 0 63 .06 4.4603 3.5649 0.2898
29 0 1 1 23 .14 1.0183 1.4005 0.1679
30 1 1 0 31 .05 4.7485 3.6573 0.2611
34 1 1 0 33 .05 4.2955 3.4644 0.2236
55 0 1 1 58 .03 4.9697 3.6759 0.1602
77 0 1 1 69 .03 8.4977 4.7122 0.2758

EXAMPLE 6.12 Survival in the ICU

The four-variable model from Example 6.9 (predicting survival in the ICU) was examined
for influential cases with the INFLOGIS macro. The following macro call produces an
influence plot of the DIFCHISQ statistic against hat values, shown in Figure 6.16:

%inflogis(data=icu, y=died, x=age cancer uncons admit,
id=id,
gy=difchisq,
gx=hat);
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Figure 6.16 ICU Survival data: Influence plot
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Details for the cases identified in the figure are shown in Output 6.11. None of the cases
are particularly influential on the model coefficients overall: the largest Ci is only 1.04.
Case 208, with the largest hat value, is unusual on the predictors in this sample: a 70-year-
old man without cancer who was admitted on an elective basis (who nonetheless died). On
the other hand, case 881, an 89-year-old male who was admitted unconscious as an emer-
gency case, is poorly predicted because he survived. Similarly, two other cases (127, 380)
with large �χ2

(−i) are poorly predicted because they died, although they were young, did
not have cancer, and were conscious at admission. From this evidence, we might conclude
that none of these cases greatly affects the model, its coefficients, or interpretation.

Output 6.11 ICU data: Influential cases

ID DIED AGE CANCER UNCONS ADMIT HAT DIFCHISQ DIFDEV C

127 Yes 19 No 0 Emergency .02 21.7188 6.57873 0.37094
380 Yes 20 No 0 Emergency .02 20.9247 6.49296 0.35586
285 Yes 40 No 0 Emergency .01 9.9104 4.88418 0.13012
671 Yes 49 No 0 Emergency .01 7.0743 4.23295 0.07478
208 Yes 70 No 1 Elective .30 2.4894 2.76148 1.04350
202 Yes 75 Yes 0 Elective .08 7.8664 4.81787 0.63948
84 No 59 No 1 Emergency .07 9.0385 5.09973 0.65745
881 No 89 No 1 Emergency .03 26.5189 7.38643 0.84292
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That conclusion might not be warranted without further study, particularly in terms of
influence on individual coefficients. The DFBETAs (Equation 6.11) may be obtained in an
output dataset as shown below:

proc logistic data=icu;
model died = age admit cancer uncons;
output out=stats dfbetas=dbint dbage dbadmit dbcancer dbuncons ;

Individual DFBETAs are often graphed as index plots—that is, for variable j , a plot
of DFBETA(i, j) against the case index i . In such plots, it is helpful to label points with
large absolute values when (as here) the case number is not meaningful. For example, the
following statements produce an index plot of the DFBETA for Age, shown in Figure 6.17.
The LABEL macro is used to label points by the patient ID, where the DFBETA value
exceeds 0.2 (an arbitrary value) in magnitude.

data stats;
set stats;
case = _n_;

%label(data=stats, x=case, y=dbage, text=put(id,3.), pos=-,
subset=abs(dbage)>.2, out=labs);

proc gplot data=stats;
plot dbage * case = died /

anno=labs frame nolegend vaxis=axis1 haxis=axis2 vm=1;
symbol1 i=needle v=dot c=black;
symbol2 i=needle v=dot c=red;
axis1 label=(a=90) length=4.5in;
axis2 offset=(2) ;

Figure 6.17 ICU data: DFBETA index plots for Age and Uncons
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An alternative display, which is often more informative (though possibly more complex),
is a scatterplot matrix of the DFBETAs, perhaps with other influence diagnostics as well.
The pairwise scatterplots help to highlight observations that are influential on both or only
one of each pair of measures. An example is shown in Figure 6.18, which was produced
with the SCATMAT macro:

%scatmat(data=stats,
var= dbAge dbAdmit dbCancer dbUncons, group=died,
symbols=star square,
plotopt=%str(href=-0.2 0.2 vref=-0.2 0.2 cvref=graya0 chref=graya0));
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Figure 6.18 ICU Survival data: Scatterplot matrix of DFBETAs. Those who lived are shown by stars,
and those who died are shown by squares. The reference lines indicate values of ±0.2
on each statistic.
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Most of the observations are in the central rectangle, corresponding to small values
(< ±0.2) on both measures, but several points stand out on the pairwise combinations.
For example, the bottom row and rightmost column (DFBETA for UNCONS) highlight two
observations for patients who lived (indicated by stars) whose omission would decrease
the coefficient for UNCONS considerably, and one who died whose omission would increase
it. Other observations outside the central rectangle might also be investigated.

6.6.5 Partial Residual and Added-Variable Plots

The graphical methods described in this section are relatively straightforward indicators of
the adequacy of a particular model, with a specified set of predictors, each expressed in
a given way. More sophisticated methods have also been proposed that focus on the need
to include a particular predictor and whether its relationship is linear. These include the
partial residual plot, added-variable plot, and the constructed variable plot, which are all
analogous to techniques developed in OLS.

Partial Residual Plots

The partial residual plot (Larsen and McCleary, 1972) is designed to show whether a given
variable, x j , included linearly in the model, actually shows a nonlinear relation requiring
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transformation. As adapted to logistic regression by Landwehr, et al. (1984), the partial
residual for variable x j is defined as

r = V−1r + β j x j = y − p
p(1 − p)

.

The partial residual plot is then a plot of r against x j , possibly with the addition of a
smoothed lowess curve (Fowlkes, 1987) and a linear regression line to aid interpretation. If
x j affects the binary response linearly, the plot should be approximately linear with a slope
approximately equal to β j . A nonlinear plot suggests that x j needs to be transformed, and
the shape of the relation gives a rough guide to the required transformation. For example,
a parabolic shape would suggest a term in x2

j .

Added-Variable Plots

The added-variable plot, developed for generalized linear models by Wang (1985), is a di-
agnostic plot designed to indicate whether some new regressor, z, should be added to the
model that includes other explanatory variables. An overall test could be based on the dif-
ference in G2 for the enlarged model logit(p) = Xβ + γ z, compared to the reduced model
logit(p) = Xβ. But the added-variable plot shows whether the evidence for including z is
spread throughout the sample or confined to a small subset of observations. The regressor
z may be a new explanatory variable or a higher power of a variable already in the model.

The added-variable plot may be constructed by following the logistic regression for the
reduced model with the variables in X with one weighted least-squares regression of z on
X to find the residual part, z, of z not predicted by the previous regressors. Let r be the
vector of Pearson residuals from the initial logistic fit of y on the variables in X, and let
H and V = diag [ p̂(1 − p̂)] be the hat matrix and V matrix from this analysis. Then, the
added variable plot is a scatterplot of the residuals r against the z-residuals,

z = (I − H)V1/2z .

The z-residuals are easily calculated as zi = (zi − ẑi )
√
vi i , where ẑi is the fitted value of

zi in a weighted least-squares regression of z on X using the vi i as weights.
A linear relation in this plot indicates that z should be included in the model, but obser-

vations with extreme z-residuals would be highly influential in this decision. A line fitted
to this plot should have an intercept approximately zero, and a slope approximating the co-
efficient γ of z in the full model. Added-variable plots are produced by the ADDVAR macro,
described in Appendix A.1 and illustrated in the following example.

EXAMPLE 6.13 Survival in the ICU

In Example 6.9 you saw that the backward selection method nominated three other vari-
ables, Systolic, pH, and PCO, in addition to the four variables that have been used through-
out. Here, first investigate whether Systolic (blood pressure) should be added to the model
that includes Age, Admit, Cancer, and Uncons.

The ADDVAR macro is called as follows to produce Figure 6.19. There is no evidence of a
strong linear relation, suggesting that Systolic blood pressure has only a weak relationship
to the residual in the current model. The smooth lowess curve suggests that any relationship
may be mildly quadratic (though partial residual plots are generally preferable for detecting
nonlinearity). The labeled points are those whose studentized Pearson residuals exceed 2
in absolute value.

%addvar(data=icu,
y=Died, /* response */
x=age admit cancer uncons, /* original predictors */
z=Systolic, /* added variable */
id=patient, /* id variable */
smooth=0.5); /* lowess smoothing fraction */
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Figure 6.19 ICU data: Added-variable plot for Systolic blood pressure. The solid line shows the
weighted least-squares regression of residuals on the Systolic residuals. The broken
curve is the lowess smooth.
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The added-variable plot may also be used to determine if a regressor should be included
with an additional polynomial term. For example, you might check to see if Age2 should
be included in the model. The following statements produce Figure 6.20:

Figure 6.20 ICU data: Added-variable plot for Age2
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data icu;
set icu;
age2 = .01 * (age-57.5)**2;

%addvar(data=icu, y=Died, x=age admit cancer uncons, z=Age2,
id=patient, smooth=0);

The slope of the line in Figure 6.20 is approximately zero, so you can conclude that the
squared term in Age is unnecessary.

Constructed Variable Plots

While the partial residual plot is designed to detect a nonlinear relation between the re-
sponse and an explanatory variable, it does not indicate the required transformation ex-
plicitly and sometimes fails to diagnose nonlinearity (Fienberg and Gong, 1984). The con-
structed variable plot, suggested for OLS regression by Atkinson (1981) and Cook and
Weisberg (1982, Section 2.4.4), is specifically designed to detect nonlinear dependence
and to suggest a power transformation of the explanatory variable that would make the
relation linear. This plot was extended to generalized linear models by Wang (1987).

Suppose that the variable x j is included in the model, and you are contemplating replac-
ing x j by a power x (λ)j , defined by the family (Box and Cox, 1964)

x (λ) =
{

xλ−1
λ
, λ �= 0

log(x), λ = 0
. (6.14)

To determine if a transformation is necessary, the constructed variable, z j = b j x j log x j

is calculated, where b j is the estimated coefficient for x j in the original model. Then the
constructed variable plot is just an added-variable plot for z j .

A linear trend, with a non-zero slope γ , in the constructed variable plot indicates that
a transformation of x j is necessary, and the estimate of the power transformation in Equa-
tion 6.14 is λ̂ = 1 + γ , usually rounded to the nearest half-integer. The absence of a linear
trend means that x j is linear in the model.

6.7 Polytomous Response Models

When the response, y, takes on m > 2 discrete values, there are several ways to model
the response probabilities. Let πi j ≡ π j (xi ) be the probability of response j for case or
group i , given the predictors xi . Because

∑
j πi j = 1, only m − 1 of these probabilities

are required.
The simplest approach uses the proportional odds model, described in Section 6.7.1.

This model applies only when the response is ordinal, and an additional assumption (the
proportional odds assumption) holds. However, if the response is purely nominal (e.g., vote
Tory, Liberal, Reform, NDP), or if the proportional odds assumption is untenable, another
particularly simple strategy is to fit separate models to a set of m − 1 nested dichotomies
derived from the polytomous response (Section 6.7.3). Both of these methods are handled
by PROC LOGISTIC.

A third strategy, described in Section 6.7.4, is to choose one response category (for
example, the last) as the “base category”, and model the generalized logits for each of
categories j = 1, 2, . . . , (m − 1) compared to category m. For example, for a 3-category
response, there are 2 generalized logits, logiti1 = log(πi1/πi3) and logiti1 = log(πi2/πi3).
These models can be fit using PROC CATMOD.
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6.7.1 Ordinal Response: Proportional Odds Model

The proportional odds model extends logistic regression to handle an ordinal response
variable. For example, the response variable IMPROVE in the arthritis data actually has 3
levels, corresponding to None, Some, or Marked improvement.

One way to model this data is to consider two logits for the dichotomies between adja-
cent categories:

L1 = log
πi j1

πi j2 + πi j3
= logit ( None vs. [Some or Marked] )

L2 = log
πi j1 + πi j2

πi j3
= logit ( [None or Some] vs. Marked)

Table 6.3 shows the data and the sample estimates of the adjacent category logits. For
example, for males given the active treatment, L1 = log(7/7) = 0, and L2 = log(9/5) =
0.588. Consider a linear logistic regression model for each logit:

L1 = α1 + xT
i j β1 (6.15)

L2 = α2 + xT
i j β2 (6.16)

Table 6.3 Arthritis data: Response frequencies and adjacent category logits

Improvement
Sex Treatment None Some Marked Total L1 L2

F Active 6 5 16 27 -1.253 -0.375
F Placebo 19 7 6 32 0.379 1.466

M Active 7 2 5 14 0.000 0.588
M Placebo 10 0 1 11 2.302 2.302

The proportional odds assumption is that the regression functions are parallel on the
logit scale, i.e., that β1 = β2, as illustrated in Figure 6.21 for a 4-category response.

For the arthritis example, with additive effects for sex and treatment on both log odds,
the proportional odds model is

L1 = α1 + β1 x1 + β2 x2 (6.17)

L2 = α2 + β1 x1 + β2 x2 (6.18)

where:

• x1 and x2 are dummy variables representing Sex and Treatment.
• α1 is the log odds of no improvement (vs. some or marked) for males receiving the

placebo.
• α2 is the log odds of no improvement or some improvement (vs. marked) for males

receiving the placebo.
• β1 is the increment to both log odds for being female. Therefore, eβ1 gives the odds of

improvement for females relative to males.
• β2 is the increment to both log odds for being in the active treatment group. eβ2 gives

the odds of improvement for the active treatment group relative to the placebo.
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Figure 6.21 Proportional odds model. The model assumes that the regression functions for different
response categories are parallel on the logit scale.
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The corresponding models including effects of age, as well as treatment and sex are
similar to Equations 6.17 and 6.18, with the addition of a term β3 age.

6.7.2 Plotting Results from PROC LOGISTIC

Plotting results for the proportional odds model is similar to the earlier examples (e.g., Sec-
tion 6.3.2) for a binary response variable. The main differences for a polytomous response
are listed here:

• The validity of the analysis depends on the correctness of the proportional odds assump-
tion. A test of this assumption appears in the output from PROC LOGISTIC.

• The results from PROC LOGISTIC are cast in terms of predicted probabilities and fitted
logits for response less than each of the cutpoints. To plot Pr{Improve}, you must reverse
the sense of the probabilities and logits.

EXAMPLE 6.14 Arthritis treatment

This example fits the effects of Treatment, Sex, and Age for the proportional odds model
with the arthritis data. Note that the dependent variable is IMPROVE, with values 0, 1, and 2.

*-- Proportional Odds Model: Effects of treat, sex and age;
proc logistic data=arthrit nosimple;

model improve = _sex_ _treat_ age ;
output out=results p=predict l=lower u=upper

xbeta=logit stdxbeta=selogit / alpha=.33;

The response profile, shown in Output 6.12, displays the ordering of the outcome vari-
able. Note that logits are formed from top to bottom, i.e., None vs. Some or Marked, None
or Some vs. Marked. The output (“Score test”) also shows the proportional odds assump-
tion is reasonable here.



Chapter 6 Logistic Regression 243

Output 6.12 Proportional odds model: Response profiles and score test

Response Profile
Ordered
Value IMPROVE Count

1 0 42
2 1 14
3 2 28

Score Test for the Proportional Odds Assumption

Chi-Square = 2.4917 with 3 DF (p=0.4768)

The parameter estimates for the model (Equations 6.17 and 6.18) appear in Output 6.13.
These values relate to the odds of a poorer response (they are all negative).

Output 6.13 Proportional odds model: Parameter estimates

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized
Variable Estimate Error Chi-Square Chi-Square Estimate

INTERCP1 3.7837 1.1530 10.7683 0.0010 .
INTERCP2 4.6827 1.1949 15.3569 0.0001 .
_SEX_ -1.2517 0.5321 5.5343 0.0186 -0.317412
_TREAT_ -1.7453 0.4772 13.3770 0.0003 -0.483871
AGE -0.0382 0.0185 4.2358 0.0396 -0.268666

The output dataset RESULTS contains, for each observation, the predicted probability,
Pr{Not Improved} and estimated logit for both types of odds. These are distinguished by
the variable _LEVEL_. To plot probabilities for both types of improvement in a single graph,
the values of TREAT and _LEVEL_ are combined in a single variable. To plot Pr{Improve},
you must reverse the direction of the variables in a DATA step:

data results;
set results;
treatl = treat||put(_level_,1.0);
if _level_=0 then better = (improve > 0);

else better = (improve > 1);
*-- Change direction of probabilities & logit;
predict = 1 - predict;
lower = 1 - lower;
upper = 1 - upper;
logit = -logit;
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Here are the first few observations in the dataset RESULTS showing these changes:

ID TREAT SEX IMPROVE _LEVEL_ PREDICT LOWER UPPER LOGIT

57 Treated Male 1 0 0.267 0.417 0.157 -1.008
57 Treated Male 1 1 0.129 0.229 0.069 -1.907
9 Placebo Male 0 0 0.085 0.149 0.048 -2.372
9 Placebo Male 0 1 0.037 0.069 0.019 -3.271
46 Treated Male 0 0 0.283 0.429 0.171 -0.932
46 Treated Male 0 1 0.138 0.238 0.076 -1.831
...

As in the earlier examples, an Annotate dataset is used to add more descriptive labels
and confidence intervals to the plots. (This adds somewhat more work, but I prefer the plots
labeled this way, rather than with legends at the bottom.)

proc sort data=results;
by sex treatl age;

data bars;
set results;
by sex treatl;
length text$8;
xsys=’2’; ysys=’2’;
if treat=’Placebo’ then color=’BLACK’;

else color=’RED’;
x = age; line=33;
*-- plot confidence limits ;
y = upper; function=’MOVE ’; output;
text=’-’; function=’LABEL ’; output;
y = lower; function=’DRAW ’; output;
text=’-’; function=’LABEL ’; output;
if last.treatl then do;

y = predict;
x = age+1; position=’C’; size=1.4;
text = treat; function=’LABEL’; output;
position=’F’;
if _level_ = 0

then text=’> None’;
else text=’> Some’;

output;
end;

if first.sex then do;
ysys =’1’; y=90;
xsys =’1’; x=10; size=1.5;
text = sex; function=’LABEL’; output;
end;

The PROC GPLOT step below gives the two plots shown side-by-side in Figure 6.22.
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goptions hby=0;
proc gplot;

plot predict * age = treatl / vaxis=axis1 haxis=axis2
nolegend anno=bars ;

by sex;
axis1 label=(h=1.4 a=90 ’Prob. Improvement (67% CI)’)

value=(h=1.2) order=(0 to 1 by .2);
axis2 label=(h=1.4)

value=(h=1.2) order=(20 to 80 by 10)
offset=(2,5);

symbol1 v=+ h=1.4 i=join l=3 c=black;
symbol2 v=+ h=1.4 i=join l=3 c=black;
symbol3 v=$ h=1.4 i=join l=1 c=red;
symbol4 v=$ h=1.4 i=join l=1 c=red;

Figure 6.22 Predicted probabilities for the proportional odds model. For each group, the curve labeled
>None gives predicted probabilities for a response of Some or Marked improvement;
the curve labeled >Some gives that for a response of Marked improvement.
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6.7.3 Nested Dichotomies

Nested dichotomies are successive binary partitions of the response categories into nested
sets. For the levels of a factor in an ANOVA design, nested dichotomies correspond to
orthogonal contrasts (assuming equal ns).

For example, the response categories {1,2,3,4} could be divided first as {1,2} vs. {3,4},
as shown in the left side of Figure 6.23. Then these two dichotomies could be divided as
{1} vs. {2}, and {3} vs. {4}. Alternatively, these response categories could be divided as
shown in the right side of Figure 6.23: first, {1} vs. {2,3,4}, then {2} vs {3,4}, and finally
{3} vs. {4}.

Then,

• Each dichotomy can be fit using the familiar binary-response logistic model.
• When the dichotomies are nested, the m − 1 models will be statistically independent, so

that likelihood-ratio G2 statistics for overall fit and Wald statistics for individual terms
will be additive.
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Figure 6.23 Nested dichotomies. The boxes show two different ways a 4-category response can be
represented as three nested dichotomies. Adapted from Fox (1997).7
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Thus, you can treat the set of m −1 models as a single model for the polytomous response,
although you fit them separately for computational purposes. This approach to polytomous
responses is described in more detail by Fox (1997).

EXAMPLE 6.15 Women’s labor-force participation

Fox (1984, 1997) presented survey data on women’s labor-force participation in Canada
in 1977.8 Women were classified as not working outside the home (n=155), working part-
time (n=42), or working full-time (n=66). Predictor variables were presence/absence of
children and husband’s income; a third variable, region of Canada, is not considered here.
For this data, it makes sense to model the log odds for two nested dichotomies:

• working vs. not working
• working full-time vs. working part-time.

The data is read in as shown below. See Appendix B.16 for the complete dataset. The 3-
level variable LABOR is used to define two dichotomous variables, WORKING and FULLTIME.
Note that FULLTIME is defined (has non-missing values) only for working women.

proc format;
value labor /* labor-force participation */

1 =’working full-time’ 2 =’working part-time’
3 =’not working’;

value kids /* presence of children in the household */
0 =’Children absent’ 1 =’Children present’;

data wlfpart;
input case labor husinc children region;
working = labor < 3;
if working then

fulltime = (labor = 1);
datalines;
1 3 15 1 3
2 3 13 1 3
3 3 45 1 3
4 3 23 1 3
5 3 19 1 3
... more data lines ...

An initial analysis attempts to fit the proportional odds model, with the 3-level LABOR
variable as the response:

proc logistic data=wlfpart nosimple;
model labor = husinc children ;
title2 ’Proportional Odds Model for Fulltime/Parttime/NotWorking’;

7John Fox, Applied Regression Analysis, Linear Models, and Related Methods, p. 472, copyright c© 1997 by Sage
Publications, Inc. Reprinted by permission of Sage Publications.
8John Fox, Applied Regression Analysis, Linear Models, and Related Methods, p. 451, copyright c© 1997 by Sage
Publications, Inc. Reprinted by permission of Sage Publications.
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However, the proportional odds assumption is rejected by the score test (see Out-
put 6.14).

Output 6.14 Test of the proportional odds assumption

Score Test for the Proportional Odds Assumption

Chi-Square = 18.5641 with 2 DF (p=0.0001)

Hence, you fit models for each of the WORKING and FULLTIME dichotomies. The
DESCENDING option is used so that in each case the probability of a 1 response (working
or full-time) will be the event modeled.

proc logistic data=wlfpart nosimple descending;
model working = husinc children ;
output out=resultw p=predict xbeta=logit;
title2 ’Nested Dichotomies’;

run;
proc logistic data=wlfpart nosimple descending;

model fulltime = husinc children ;
output out=resultf p=predict xbeta=logit;

The OUTPUT statements create the datasets RESULTW and RESULTF for plotting the pre-
dicted probabilities and logits. The printed output for the working dichotomy is shown
(partially) in Output 6.15.

Output 6.15 Women’s labor-force data: Analysis of the working/not working dichotomy

Response Profile
Ordered
Value WORKING Count

1 1 108
2 0 155

Testing Global Null Hypothesis: BETA=0
Intercept

Intercept and
Criterion Only Covariates Chi-Square for Covariates

AIC 358.151 325.733 .
SC 361.723 336.449 .
-2 LOG L 356.151 319.733 36.418 with 2 DF (p=0.0001)
Score . . 35.713 with 2 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized Odds
Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio

INTERCPT 1 1.3358 0.3838 12.1165 0.0005 . .
HUSINC 1 -0.0423 0.0198 4.5751 0.0324 -0.168541 0.959
CHILDREN 1 -1.5756 0.2923 29.0651 0.0001 -0.398992 0.207
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To interpret the parameter estimates, note that the odds ratio of 0.959 for husband’s in-
come means a 4% decrease in the odds of working with each $1,000 increase in husband’s
income; an additional $10,000 means a decrease in the odds of working by e−.423 = .655.
Similarly, the effect of having children corresponds to an odds of working of .207 com-
pared to those without children.

The output for the full-time vs. part-time dichotomy is shown in Output 6.16. Note that
nonworking women are excluded in this analysis.

Output 6.16 Women’s labor-force data: Analysis of the full-time/part-time dichotomy

Response Profile
Ordered

Value FULLTIME Count

1 1 66
2 0 42

WARNING: 155 observation(s) were deleted due to missing values for
the response or explanatory variables.

Testing Global Null Hypothesis: BETA=0
Intercept

Intercept and
Criterion Only Covariates Chi-Square for Covariates

AIC 146.342 110.495 .
SC 149.024 118.541 .
-2 LOG L 144.342 104.495 39.847 with 2 DF (p=0.0001)
Score . . 35.150 with 2 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized Odds
Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio

INTERCPT 1 3.4778 0.7671 20.5537 0.0001 . .
HUSINC 1 -0.1073 0.0392 7.5063 0.0061 -0.424867 0.898
CHILDREN 1 -2.6515 0.5411 24.0135 0.0001 -0.734194 0.071

Thus, the full 3-category response has been fitted by two models:

log

(
Pr(working)

Pr(not working)

)
= 1.336 − 0.042 H$ − 1.576 kids (6.19)

log

(
Pr(fulltime)

Pr(parttime)

)
= 3.478 − 0.107 H$ − 2.652 kids (6.20)

The second equation gives the predicted log odds for full-time vs. part-time work condi-
tional on working.

Because these models are nested, we can add the likelihood ratio or Wald tests across
the two models, so the overall test of the hypothesis that neither husband’s income nor
presence of children predicts working status (the 3-level response) has a G2 = 36.42 +
39.85 = 66.27 on 2+2=4 df (p < .0001). Similarly, the hypothesis that husband’s income
does not predict working status has a Wald-test G2 = 4.58 + 7.51 = 12.09 on 2 df
(p < .001).

Comparison of the regression coefficients in the two sub-models (in relation to the size
of their standard errors) indicates why the proportional odds model was not tenable. The
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proportional odds model requires that the coefficients for husband’s income and children
in analogous models of the form shown in Equations 6.15 and 6.16. We can see that both
variables have a greater effect on the odds of full-time vs. part-time work than on the odds
of working vs. not working.

As usual, these effects can be seen and interpreted more easily in a graph (Figure 6.24).
The odds of working outside the home decrease as husband’s income increases and when
there are children present. However, among working women, the odds of full-time vs. part-
time work decrease at a faster rate with husband’s income; women with children are less
likely to work full-time.

Figure 6.24 Predicted log odds of working vs. not working and of full-time work vs. part-time work
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To construct this graph, first join the separate results datasets into one.

*-- Merge the results to create one plot;
data both;

set resultw(in=inw)
resultf(in=inf);

if inw then do;
if children=1 then event=’Working, with Children ’;
else event=’Working, no Children ’;

end;
else do;

if children=1 then event=’Fulltime, with Children ’;
else event=’Fulltime, no Children ’;

end;

Then, you can plot the log odds (or predicted probability) against husband’s income,
using EVENT to determine the curves to be joined and labeled. (The probability scale is
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constructed with the PSCALE macro, and the labels with an Annotate dataset.) These steps
are not similar to those described in Example 6.8 and are shown here:

proc gplot data=both;
plot logit * husinc = event /

anno=lbl nolegend frame vaxis=axis1;
axis1 label=(a=90 ’Log Odds’) order=(-5 to 4);
title2 ’Working vs Not Working and Fulltime vs. Parttime’;
symbol1 v=dot h=1.5 i=join l=3 c=red;
symbol2 v=dot h=1.5 i=join l=1 c=black;
symbol3 v=circle h=1.5 i=join l=3 c=red;
symbol4 v=circle h=1.5 i=join l=1 c=black;

6.7.4 Generalized Logits

The generalized logit approach models the probabilities of the m response categories di-
rectly as a set of m − 1 logits. These compare each of the first m − 1 categories to the last
category, which serves as the baseline. The logits for any other pair of categories can be
retrieved from the m − 1 fitted ones.

When there are k predictors, x1, x2, . . . , xk , which may be quantitative or categorical,
the generalized logit model expresses the logits as

L jm ≡ log
πi j

πim
= β0 j + β1 j xi1 + β2 j xi2 + · · · + βk j xik j = 1, . . . ,m − 1

= β j
Txi (6.21)

Thus, there is one set of fitted coefficients, β j for each response category except the last.
Each coefficient, βhj , gives the effect, for a unit change in the predictor xh , on the log odds
that an observation belongs to category j , as opposed to category m.

The probabilities themselves are given by

πi j = exp(β j
Txi )∑m

i=1 exp(β j
Txi )

.

Parameters in the m −1 equations (Equation 6.21) can be used to determine the parameters
or the predicted log odds for any pair of response categories by subtraction. For instance,
for an arbitrary pair of categories, a and b, and two predictors, x1 and x2,

Lab = log
πia/πim

πib/πim

= log
πia

πim
− log

πib

πim

= (β0a − β0n)+ (β1a − β1b)x1i + (β2a − β2b)x2i

For example, the coefficient for x1i in Lab is just (β1a − β1b). Similarly, the predicted logit
for any pair of categories can be calculated as

L̂ab = L̂am − L̂bm .

The generalized logit model cannot be fit using PROC LOGISTIC, but it can be fit using
PROC CATMOD.9 An output dataset provides all predicted probabilities, and the fitted logits.

9When one or more of the predictor variables are continuous, however, you may have difficulty due to zero
cell frequencies, because PROC CATMOD treats the data as a contingency table. In this case, it may help to re-
order the response variable so that the response category with the highest frequency is the last, baseline category.
Alternatively, the continuous variable(s) can be collapsed into categories so that populations with zero frequencies
do not occur.
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EXAMPLE 6.16 Women’s labor-force participation

In this example, you fit the generalized logit model to the women’s labor force participation
data using the statements below. Husband’s income is treated as a quantitative variable
by declaring it in the DIRECT statement. PROC CATMOD does not provide an overall test
of the whole model; however, this can be carried out with a CONTRAST statement to test
H0 : β = 0.

proc catmod data=wlfpart;
direct husinc;
model labor = husinc children / noprofile noiter;
response logits / out=results;
contrast ’Husinc,Children=0’

husinc 1,
children 1;

The maximum-likelihood ANOVA table (Output 6.17) shows that there are two pa-
rameters fit for each regressor. With a continuous predictor, the likelihood-ratio test of
goodness-of-fit, which compares the current model to the saturated model, is unreliable
because the contingency table is very sparse.

Output 6.17 Women’s labor-force data: Generalized logit model tests

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob
--------------------------------------------------
INTERCEPT 2 15.91 0.0004
HUSINC 2 12.82 0.0016
CHILDREN 2 53.98 0.0000

LIKELIHOOD RATIO 86 138.67 0.0003

The table of parameter estimates, shown in Output 6.18, contains the coefficients for the
two fitted logits:

log

(
Pr(fulltime)

Pr(not working)

)
= 0.7035 − 0.0972 H$ + 1.2793 kids (6.22)

log

(
Pr(parttime)

Pr(not working)

)
= −1.4216 + 0.00689 H$ − 0.0107 kids (6.23)

The predicted log odds for working full-time as opposed to part-time are given by

log

(
Pr(fulltime)

Pr(not working)

)
= 2.1251 − 0.1041 H$ + 1.29 kids (6.24)

The coefficients in Equations 6.22–6.24 are not directly comparable to those in Equations
6.19 and 6.20 for the nested dichotomies models, because they pertain to different compar-
isons.



252 Visualizing Categorical Data

Output 6.18 Women’s labor-force data: Generalized logit model parameter estimates

ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES

Standard Chi-
Effect Parameter Estimate Error Square Prob
----------------------------------------------------------------
INTERCEPT 1 0.7035 0.4140 2.89 0.0892

2 -1.4216 0.4528 9.86 0.0017
HUSINC 3 -0.0972 0.0281 11.98 0.0005

4 0.00689 0.0235 0.09 0.7689
CHILDREN 5 1.2793 0.1811 49.90 0.0000

6 -0.0107 0.2345 0.00 0.9635

A plot of the predicted probabilities of the three categories of LABOR is easily obtained
from the RESULTS dataset produced by PROC CATMOD. This dataset contains both fitted
probabilities (_type_=’PROB’) and fitted logits (_type_=’FUNCTION’), so you can select
the _type_=’PROB’ observations with a WHERE statement.

proc gplot data=results;
where (_type_=’PROB’);
plot _pred_ * husinc = labor /

vaxis=axis1 hm=1 vm=1 anno=labels nolegend;
by children;
axis1 order=(0 to .9 by .1) label=(a=90);
symbol1 i=join v=circle c=black;
symbol2 i=join v=square c=red;
symbol3 i=join v=triangle c=blue;
label _pred_=’Fitted probability’;

The fitted probabilities are shown in Figure 6.25.

Figure 6.25 Fitted probabilities for the generalized logit model

Children absent

Full-time

Not working

Part-time

F
it
te

d
 p

ro
b

a
b

il
it
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Husband’s Income
0 10 20 30 40

Children present

Full-time

Not working

Part-time

F
it
te

d
 p

ro
b

a
b

il
it
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Husband’s Income
0 10 20 30 40 50

When there are no young children in the home, a woman’s probability of not work-
ing rises sharply with husband’s income, while her probability of working full-time
declines sharply, and her probability of working part-time increases modestly. With
children present, the direction of these relations with husband’s income are the same,
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but the levels of not working and full-time work are reversed. Plots similar to Fig-
ure 6.25 can be produced with the CATPLOT macro. These statements would plot predicted
probabilities (TYPE=PROB) in the RESULTS dataset with separate curves for each work-
ing category (CLASS=LABOR), and separate panels for those with and without children
(BYVAR=CHILDREN). These plots are not shown to conserve space.

axis1 order=(0 to .9 by .1) label=(a=90 ’Fitted probability’);
axis2 offset=(1,10pct);

%catplot(data=results, x=husinc, y=_pred_, type=PROB,
class=labor, clfmt=labor.,
byvar=children, byfmt=kids.);

To plot the predicted log odds corresponding to Equations 6.22–6.24 takes slightly more
work, because the output dataset from PROC CATMOD contains only the first two predicted
logits. The following steps calculate the logit for Equation 6.24 from the other two and
uses the CATPLOT macro to plot the results, as shown in Figure 6.26.

proc format;
value num 1=’FT/NW’ 2=’PT/NW’ 3=’FT/PT’;

data logits;
set results(rename=(_number_=logit));
by _sample_;
format logit num.;
where (_type_=’FUNCTION’);
retain logit1 logit2 se1 se2;
drop labor logit1 logit2 se1 se2;
if first._sample_

then do; logit1 = _pred_; se1=_sepred_; end;
else do; logit2 = _pred_; se2=_sepred_; end;

output;
logit=3;
_pred_ = logit1 - logit2;
_sepred_ = sqrt(se1**2 + se2**2);
if last._sample_ then output;

axis1 label=(a=90 ’Fitted Logit’) order=(-5 to 4);
%catplot(data=logits, x=husinc, y=_pred_, class=logit,

byvar=children, byfmt=kids.);

Figure 6.26 Fitted log odds for the generalized logit model
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6.8 The Bradley-Terry-Luce Model for Paired Comparisons

The basic methodology of logistic regression finds application in a surprising variety of
applications (Strauss, 1992). One example is a model for paired comparisons data proposed
by Bradley and Terry (1952), and by Luce (1959) in a more general context. In paired
comparisons, K objects are compared in a pairwise manner and the goal is to determine
scale values and a ranking of these objects. For example, a market researcher might want
to construct a preference ranking for soft drinks among consumers. In other contexts, the
objects might be teams or players in a sports league, or they might be sounds of varying
intensity or frequency to be judged in a psychophysical experiment.

The Bradley-Terry-Luce (BTL) model assumes that for each object there is a parameter,
θi , such that the probability of the event (i > j) that object i is preferred to object j is

Pr(i > j) = θi

θi + θ j
. (6.25)

Luce’s model is more general, and θi is interpreted as the probability that object i is ranked
first within any subset of objects. The BTL model (Equation 6.25) may be cast as a logit
model with parameters βi ,= log θi as follows. Substituting θi = exp(βi ) in Equation 6.25
gives

Pr(i > j) = exp(βi )

exp(βi )+ exp(β j )
= 1

1 + exp(βi/β j )
. (6.26)

But Equation 6.26 is just the inverse logit of θi/θ j . Hence,

logit[Pr(i > j)] = log

(
Pr(i > j)

Pr( j > i)

)
= βi − β j (6.27)

= xTβ

where, β = (β1, . . . , βK )
T and x = {xk} is a vector with xk = 1 if k = i , xk = −1 if

k = j , and 0 otherwise. Thus, Equation 6.27 is a logit model with no intercept, and with a
K (K − 1)/2 × K matrix X of explanatory variables whose rows give the items compared
in each paired comparison. For K = 4 objects, for example, the X matrix is

X =




1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1



.

The model assumes that all comparisons are independent. In particular, when items are
rated by different judges, the ratings of different pairs by the same judge must also be
independent, and all judges are assumed homogeneous. More general versions of the BTL
model, allowing subject-specific covariates, are described by Dittrich, et al. (1998).

EXAMPLE 6.17 1987 baseball standings

Table 6.4 (from Agresti (1990, p. 372)) shows the final results from the 1987 baseball
season for the teams in the Eastern Division of the American League. Each team played
every other team a total of ni j = 13 times, so (assuming that the outcome of each game
is independent) you can regard the values in the lower triangle as binomial observations,
Bin(πi j , 13).
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Table 6.4 1987 American League Baseball Results10

Losing TeamWinning
Team Mil Det Tor NY Bos Cle Bal

Milwaukee − 7 9 7 7 9 11
Detroit 6 − 7 5 11 9 9
Toronto 4 6 − 7 7 8 12
New York 6 8 6 − 6 7 10
Boston 6 2 6 7 − 7 12
Cleveland 4 4 5 6 6 − 6
Baltimore 2 4 1 3 1 7 −

This example concentrates on fitting the BTL model and graphical displays of the scale
values and model diagnostics. A similar example, without graphs, is given in Logistic Re-
gression Examples Using the SAS System, Example 19.

The first DATA step below reads the complete data from Table 6.4. In a second step,
variables in the array X are created, corresponding to the model matrix in Equation 6.27.
The resulting dataset, WINLOSS2, is shown in Output 6.19.

title ’Bradley-Terry-Luce Model, 1987 American League, East’;
data winloss;
input t1-t7;
games=13;

datalines;
. 7 9 7 7 9 11
6 . 7 5 11 9 9
4 6 . 7 7 8 12
6 8 6 . 6 7 10
6 2 6 7 . 7 12
4 4 5 6 6 . 6
2 4 1 3 1 7 .

;
data winloss2;

retain i 0 ;
array team{*} t1-t7;
array x{*} milwauke detroit toronto new_york boston clevelan baltimor;
retain milwauke detroit toronto new_york boston clevelan baltimor 0;
set winloss;
names=’Milwaukee Detroit Toronto New_York Boston Cleveland Baltimore’;
length winner loser $9;
i+1;
do j=1 to dim(team);

if team{j} ne . then do;
count=team{j};
x{i}=1;
x{j}=-1;
winner = scan(names,i);
loser = scan(names,j);
if i < j then output;
x{i}=0;
x{j}=0;

end;
end;
drop i j t1-t7 names;

10Reprinted by permission of Major League Baseball and Elias Sports Bureau.
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Output 6.19 Win-loss data: Set up for fitting BTL model with PROC LOGISTIC

M N C B
I D T E L A

W L E O W B E L
I L W T R _ O V T G C
N O A R O Y S E I A O
N S U O N O T L M M U
E E K I T R O A O E N
R R E T O K N N R S T

Milwaukee Detroit 1 -1 0 0 0 0 0 13 7
Milwaukee Toronto 1 0 -1 0 0 0 0 13 9
Milwaukee New_York 1 0 0 -1 0 0 0 13 7
Milwaukee Boston 1 0 0 0 -1 0 0 13 7
Milwaukee Cleveland 1 0 0 0 0 -1 0 13 9
Milwaukee Baltimore 1 0 0 0 0 0 -1 13 11
Detroit Toronto 0 1 -1 0 0 0 0 13 7
Detroit New_York 0 1 0 -1 0 0 0 13 5
Detroit Boston 0 1 0 0 -1 0 0 13 11
Detroit Cleveland 0 1 0 0 0 -1 0 13 9
Detroit Baltimore 0 1 0 0 0 0 -1 13 9
Toronto New_York 0 0 1 -1 0 0 0 13 7
Toronto Boston 0 0 1 0 -1 0 0 13 7
Toronto Cleveland 0 0 1 0 0 -1 0 13 8
Toronto Baltimore 0 0 1 0 0 0 -1 13 12
New_York Boston 0 0 0 1 -1 0 0 13 6
New_York Cleveland 0 0 0 1 0 -1 0 13 7
New_York Baltimore 0 0 0 1 0 0 -1 13 10
Boston Cleveland 0 0 0 0 1 -1 0 13 7
Boston Baltimore 0 0 0 0 1 0 -1 13 12
Cleveland Baltimore 0 0 0 0 0 1 -1 13 6

The BTL model is fit using the PROC LOGISTIC step below. The options OUTEST and
COVOUT create an output dataset containing the estimated βi parameters and their variance-
covariance matrix. A second output dataset containing fitted probabilities and model diag-
nostic measures is created with the OUTPUT statement. The parameters and their standard
errors are shown in Output 6.20. Thus, according to the BTL model (Equation 6.25), the
predicted probability that Toronto beats Cleveland would be exp(1.294)/(exp(1.294) +
exp(0.684)) = 0.648. The squared standard errors are contained along the diagonal of the
variance-covariance matrix in the PARM1 dataset. A small SAS/IML step is used to extract
the parameter estimates and standard errors.

proc logistic data=winloss2 nosimple out=parm1 covout;
model count/games=milwauke detroit toronto new_york

boston clevelan baltimor / noint;
output out=fit prob=prob resdev=resdev c=c;

run;

*-- Extract parameters and standard errors;
proc iml;

use parm1;
read all var {_name_} into name where(_type_=’COV’);
read all var {milwauke detroit toronto new_york

boston clevelan baltimor} into parm where(_type_=’PARMS’);
read all var {milwauke detroit toronto new_york

boston clevelan baltimor} into cov where(_type_=’COV’);
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stderr = exp(sqrt(vecdiag(cov)));
parm = exp(t(parm));
create parms var {name parm stderr};
append var {name parm stderr};

proc rank data=parms out=parms descending;
var parm;
ranks rank;
label parm=’Scale Value’

rank=’Team Rank’;

Output 6.20 Win-loss data: PROC LOGISTIC output

Model Fitting Information and Testing Global Null Hypothesis BETA=0

Without With
Criterion Covariates Covariates Chi-Square for Covariates

AIC 378.458 356.496 .
SC 378.458 378.153 .
-2 LOG L 378.458 344.496 33.962 with 6 DF (p=0.0001)
Score . . 32.176 with 6 DF (p=0.0001)

NOTE: The following parameters have been set to 0, since the variables are a
linear combination of other variables as shown.

BALTIMOR = -1 * MILWAUKE - 1 * DETROIT - 1 * TORONTO - 1 * NEW_YORK - 1 *
BOSTON - 1 * CLEVELAN

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized Odds
Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio

MILWAUKE 1 1.5814 0.3433 21.2239 0.0001 0.394584 4.862
DETROIT 1 1.4364 0.3396 17.8938 0.0001 0.396244 4.206
TORONTO 1 1.2945 0.3367 14.7839 0.0001 0.376067 3.649
NEW_YORK 1 1.2476 0.3359 13.7989 0.0002 0.368345 3.482
BOSTON 1 1.1077 0.3339 11.0070 0.0009 0.321803 3.027
CLEVELAN 1 0.6839 0.3319 4.2459 0.0393 0.188646 1.981
BALTIMOR 0 0 . . . . .

The plot of scale values and standard errors shown in Figure 6.27 is produced by the
first PROC GPLOT step below. The BARS macro instructs the Annotate dataset to draw the
standard error bars, and the LABEL macro produces the team label annotations.
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%bars(data=parms, var=parm, class=rank, barlen=stderr, baxis=x, barwidth=.1);
%label(data=parms, x=parm, y=rank, text=name, pos=2, yoff=.1, out=_lab_);
data _bars_;

set _bars_ _lab_;

proc gplot data=parms;
plot rank * parm /

anno=_bars_ vaxis=axis1 haxis=axis2 vm=0;
symbol v=dot color=black h=1.6;
axis1 label=(a=90) offset=(5);
axis2 order=(1 to 6) offset=(10,4);

run; quit;

%label(data=fit, x=prob, y=resdev, out=_lab_,
subset=%str(abs(resdev)>.9),
text = %str(substr(winner,1,3) || ’>’ || substr(loser,1,3)));

title;
proc gplot data=fit;

bubble resdev * prob = c /
anno=_lab_ bsize=20 bcolor=gray80 vaxis=axis1 vm=1;

axis1 label=(a=90);
label prob = ’Estimated Winning Probability’;

Figure 6.27 Scale values and standard errors for 1987 baseball data
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The diagnostic plot shown in Figure 6.28 plots the deviance residual against predicted
probabilities. The bubble size is proportional to Cook’s distance, Ci . Only one observation
has a residual (slightly) greater than 2, and no Ci are excessive, so the BTL model seems
to provide a reasonable fit.
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Figure 6.28 Diagnostic plot for 1987 baseball data
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6.9 Power and Sample Size for Logistic Regression

The goal of many studies is to determine if a given predictor X has an effect on a binary
outcome variable. In planning such studies it is often crucial to determine the sample size
required in order to have a reasonable chance to detect an effect of a given size. Alterna-
tively, if a study failed to detect a significant effect, you might want to determine if no real
effect is present, or if the sample size in the study was just insufficient to detect it.

In either case, power and sample size determination requires that you specify the Type I
error rate, α, of the test, and the effect size you want to detect. In the simple logistic model
with one predictor,

log
π

1 − π
= β0 + β1 X ,

the null hypothesis is H0 : β1 = 0, and the size of the effect depends directly on the
magnitude of the slope β1. That is, power increases with |β1|, and the sample size required
to detect an effect of given size (i.e., reject H0 at a given α-level) decreases with |β1|.

The difficulty in practice is that it is often difficult for the researcher to specify the size
of meaningful effect in terms of the slope β1 of the logistic model. The following section
describes two standard situations in which effect size of interest may be specified more
simply to determine approximate power or required sample size.

6.9.1 Binary Predictor: Comparing Two Proportions

When there is a single binary predictor (and a binary response), you can take X = 0 for
Group 1 and X = 1 for Group 2, so that β1 is the log odds of “success” response in Group
2 as compared to Group 1.
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But, in this case, the data comprises a 2 × 2 table, and the test of the logistic model is
analogous to a test of the difference of proportions in two independent samples. That is,
H0 : β1 = 0 is analogous to the test of H0 : π1 = π2. In this case, the sample difference
p1 − p1 has an approximate large-sample normal distribution, with variance

σ 2
p1−p2

= π1(1 − π1)

n1
+ π2(1 − π2)

n2
.

Assume that you are interested in being able to reject the null hypothesis when the true
difference |π1 − π2| = πd is at least some given value. π1 and π2 (or π1 and πd ) provide a
reasonable way to specify the size of the effect of interest in this situation.

For example, in planning the arthritis treatment experiment, the investigators might as-
sume that the probability of at least some improvement would be around π2 = 0.30 with
the placebo, and they may want to have a high probability of rejecting H0 when the proba-
bility of at least some improvement with the active treatment is π1 = 0.50 or greater. The
difference πd is usually the smallest difference of substantive interest. Also assume that
n1 = n2.

Then the power of a two-tailed α-level test of H0 : |π1 − π2| = 0 against the alternative
H1 : |π1 − π2| = πd is approximately

power = Pr

( |p1 − p2| − πd

σ(p1 − p2)

)
≥ z1−α/2

= Pr[z > z1−α/2 − πd σp1−p2 ] + Pr[z < zα/2 − πd σp1−p2 ]
= 1 −�[z1−α/2 − πd σp1−p2 ] +�[zα/2 − πd σp1−p2 ] (6.28)

where�(•) is the cumulative normal probability calculated by the PROBNORM function. For
example, with α = 0.05, π1 = 0.30, and π2 = 0.50, and a sample size of n = n1+n2 = 80,
Equation 6.28 gives power = 0.462 when π2 = 0.50 (πd = 0.20) and power = 0.807 when
π2 = 0.60 (πd = 0.30).

It is often more convenient to find the sample size required for a given power. Using
β = 1−power as the probability of a Type II error,11 the approximate sample size required
may be calculated as

n1 = n2 = (z1−α/2 + zβ)2[π1(1 − π1)+ π2(1 − π2)]
(π1 − π2)2

(6.29)

These calculations (Equations 6.28 and 6.29), along with tabular and graphical displays
of power vs. n, are performed by the POWER2X2 macro, described in Appendix A.24. The
tabular display is more useful for finding the exact calculated value, while the graphs, as
usual, show the overall behavior better.

EXAMPLE 6.18 Arthritis treatment

For the arthritis treatment data, you can perform a power analysis for π1 = 0.30 and
πd = 0.2 (0.1) 0.4 with the following statement:

%power2x2(p1=.30, diff=.2 to .4 by .1, plot=power * n=diff);

By default, the program calculates power for a range of sample sizes, typically 10–200,
though any range may be specified with the NMIN parameter and the NMAX parameter.

In addition to printed output (not shown), the macro produces a graph of power against
total sample size (n = n1 + n2) as shown in Figure 6.29. For a desired power of 1 − β =
0.80, the required total sample size is about 80–85 when πd = 0.3, but only about 45–50
when πd = 0.3. In the data, p1 = 28/41 = 0.683 and p2 = 14/43 = 0.325, so with
n = 83 there was adequate power.

11Don’t confuse β = 1 − power here with the slope, β1, and intercept, β0 of the logistic regression model. Both
uses are conventional, and there are only a limited number of Greek letters to go around.
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Figure 6.29 Power analysis for arthritis treatment data

Power for testing two independent proportions
Baseline: p1=.30; p1-p2=.2 to .4 by .1; alpha=.05

p1-p2 0.2 0.3 0.4

P
o
w

e
r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Total Sample Size
0 20 40 60 80 100 120 140 160 180 200

6.9.2 Quantitative Predictor

When the predictor is quantitative, a simple method to specify the size of the effect of
interest is given by Agresti (1996, p. 131) based on Hsieh (1989). The slope β1 under an
alternative hypothesis may be given in terms of the probabilities, π1 and π2 at two points,
corresponding to X = X̄ and X = X̄ + 1s.d. From these values, the effect size can be
specified in terms of the the odds ratio, θ = (p2/(1 − p2))÷ (p1/(1 − p1)).

Letting ψ = log(θ), Hseih provides the following formula for the approximate sample
size n required for a one-tailed test with Type I error rate α and power = 1 − β:

n = [zα + zβ exp(−ψ2/4)]2(1 + 2p1δ)

p1ψ2
(6.30)

where

δ = 1 + (1 + ψ2) exp(5ψ2/4)

1 + exp(−ψ2/4)

In multiple logistic regression, larger sample sizes are required to detect the partial
effect of one variable to the extent that this variable is correlated with other explanatory
variables (because holding the other variables fixed then removes some of the effect of the
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variable of interest). If R2 is the squared multiple correlation of the target predictor with
other predictors in the model, the unique variance of the target variable is 1 − R2. To use
Equation 6.30 in this situation, let p1 refer to the probability of the event at the mean level
of all predictors, and divide the result of Equation 6.30 by 1 − R2. A more comprehensive
approach to power analysis for logistic regression with multiple covariates is described by
Whittemore (1981).

These calculations are carried out by the POWERLOGmacro, described in Appendix A.22.
The values of the input parameters P1, P2, ALPHA, POWER, and RSQ, may be supplied as
macro arguments or as variable values in an input dataset. Output includes both a table and
a graphical display.

EXAMPLE 6.19 Power for one or more predictors

The following statement calculates the power of a test for X1 when the probability of the
event at X = X̄ is p1 = 0.50, and the probability of the event is expected to increase to
p1 = 0.75 when X increases to X = X̄ + 1s.d. By default, the macro calculates power for
values of R2 = 0(0.2)0.6.

%powerlog(p1=.5, p2=.75);

The printed output is shown in Output 6.21. By default, the program uses the statement
PLOT N * POWER=RSQ, producing the graph in Figure 6.30. For a given power, the sample
size to detect the effect of X1 is smallest when X1 is uncorrelated with other predictors.
For a given effect size, the sample size is also smallest when p1 = 0.50, as in this example.

Output 6.21 Power table from POWERLOG macro

One-tailed test, alpha=.05, p1=.5 p2=.75

--------------------------------------------
| |Pr(event) at X-mean+std|
| |-----------------------|
| | 0.75 |
| |-----------------------|
| | R**2 (X, other Xs) |
| |-----------------------|
| | 0 | 0.2 | 0.4 | 0.6 |
|------------------+-----+-----+-----+-----|
|Power | | | | |
|------------------| | | | |
|0.7 | 50| 63| 83| 125|
|------------------+-----+-----+-----+-----|
|0.75 | 56| 70| 93| 139|
|------------------+-----+-----+-----+-----|
|0.8 | 62| 78| 104| 156|
|------------------+-----+-----+-----+-----|
|0.85 | 70| 88| 117| 176|
|------------------+-----+-----+-----+-----|
|0.9 | 81| 102| 136| 204|
--------------------------------------------



Chapter 6 Logistic Regression 263

Figure 6.30 Sample size display from the POWERLOG macro
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6.10 Chapter Summary

• Model-based methods for categorical data provide confidence intervals for parameters
and predicted values for observed and unobserved values of the explanatory variables.
Graphical displays of predicted values help us to interpret the fitted relations and the
models.

• The logistic regression model describes the relationship between a categorical response
variable, usually dichotomous, and a set of one or more quantitative or discrete explana-
tory variables. It is conceptually convenient to specify this model as a linear model that
predicts the log odds (or logit) of the probability of a success from the explanatory vari-
ables.

• The relation between a discrete response and a quantitative predictor may be explored
graphically by plotting the binary observations and either the empirical log odds or
the equivalent probabilities against the predictor, together with a smoothed curve. The
LOGODDS macro provides some useful plots; the SMnn spline smoothers, which are avail-
able with the SYMBOL statement in PROC GPLOT, provide others.

• For both quantitative and discrete predictors, the results of a logistic regression are most
easily interpreted from plots of the predicted probabilities against the predictors (or of
log odds with an auxiliary scale of probabilities). Confidence intervals or standard error
bars provide a visual indication of the precision of the predicted results.

• When there are multiple predictors, effect plots (Section 6.5.2) provide one method for
constructing simplified displays.



264 Visualizing Categorical Data

• Influence diagnostics assess the impact of individual cases or groups on the fitted model,
the predicted values, and the coefficients of individual predictors. The INFLOGIS macro
and the ADDVAR macro produce a variety of useful plots designed to make these methods
available for routine use.

• Polytomous responses may be handled in several ways with logistic regression. The
proportional odds model is simple and convenient, but its validity depends on an as-
sumption of equal slopes for adjacent-category logits. Nested dichotomies among the
response categories give a set of models that might be regarded as a single, combined
model for the polytomous response. Generalized logits can be used to construct models
comparing any pair of categories.

• The basic logistic regression model can be applied in a wide variety of related situations.
We illustrate its use in fitting and graphing a model for paired comparisons.

• Power analysis is an important adjunct to any statistical hypothesis test, but power anal-
ysis depends on being able to specify a minimal effect size of substantive interest. For
the cases of a single binary predictor and a quantitative predictor (possibly along with
others), the calculation of power or required sample size is described, along with macro
programs to provide tabular and graphical displays.
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Log-linear models are most easily interpreted through visualizations, including mosaic displays and plots
of associated logit models. As with logistic regression, diagnostic plots and influence plots help to assure
that the fitted model is an adequate summary of associations among variables.

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
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7.1 Introduction

We share a philosophy about linear algebra: we think basis-free, we write basis-
free, but when the chips are down we close the office door and compute with
matrices like fury.

Irving Kaplansky, in Paul Halmos: Celebrating 50 Years of Mathematics

Log-linear models provide a comprehensive scheme to describe and understand the as-
sociations among two or more categorical variables. Whereas logit models focus on the
prediction of one response factor, log-linear models treat all variables symmetrically and
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attempt to model all important associations among them. In this sense, log-linear models
are analogous to a correlation analysis of continuous variables, where the goal is to deter-
mine the patterns of dependence and independence among a set of variables. Nonetheless,
when one variable is indeed a response and the others are explanatory, certain log-linear
models are equivalent to logit models for that response.

Chapter 4 and Chapter 5 introduced some aspects of log-linear models in connection
with mosaic displays and correspondence analysis. In this chapter, the focus is on fit-
ting and interpreting log-linear models. The usual analyses with PROC CATMOD and PROC
GENMOD present the results in terms of tables of parameter estimates. Particularly for larger
tables, it becomes difficult to understand the nature of these associations from tables of
parameter estimates. Instead, I emphasize plots of observed and predicted probabilities
or log odds (when there are one or more response variables), as well as mosaic and other
displays for interpreting a given model, and residual and influence plots for model diagnos-
tics. I also illustrate how mosaic displays and correspondence analysis plots may be used
in a complementary way to the usual numerical summaries, thereby providing additional
insights into the data.

Section 7.2 gives a brief overview of log-linear models in relation to the more familiar
ANOVA and regression models for quantitative data. Methods and software for fitting these
models are discussed in Section 7.3. When one variable is a response, logit models for that
response provide a simpler but equivalent means for interpreting and graphing results of
log-linear models, as described in Section 7.4. Another class of simplified models (Sec-
tion 7.5) occurs when one or more of the explanatory variables are ordinal, and discrete
levels might be replaced by numerical values. Section 7.6 presents an extended example
illustrating the interplay between model fitting and graphical displays. As in logistic regres-
sion models, there are analogs of model diagnostics for log-linear models. These statistics
and related visualizations are described in Section 7.7. The final section (Section 7.8) il-
lustrates some more comprehensive log-linear models for two or more response variables.

The models and methods described here attempt to go beyond the typical presentations
of log-linear models. That is, the topics and examples in this chapter encompass special-
ized forms of log-linear models for one response variable, for ordinal explanatory variables,
and for multiple response variables. This treatment is perhaps at the expense of more basic
models, which were examined in Chapter 4 and Chapter 5 from an exploratory perspective.
You may also want to consult Categorical Data Analysis Using the SAS System, Chapter
14; Allison (1999, Chapter 10); and Zelterman (1999, Chapters 4–5) for additional ex-
amples of fitting and interpretation of log-linear models using SAS, and Agresti (1990,
Chapters 6–8) or Christensen (1997) for additional theory and examples.

7.2 Log-linear Models for Counts

Log-linear models have been developed from two formally distinct but related perspectives.
The first is a discrete analog of ANOVA models for quantitative data, where the multiplica-
tive relations among joint and marginal probabilities are transformed into an additive one
by transforming the counts to logarithms. The second is a discrete analog of regression
models, where the log of the cell frequency is modeled as a linear function of predictors.

For a quantitative response variable, the ANOVA and regression approaches are melded
into a single general linear model by representing discrete predictors as dummy variables
or contrasts. The ANOVA and regression perspectives provide interchangeable points of
view. Equivalent models can be fit using PROC REG and PROC GLM, although each provides
different conveniences for expressing the model in a MODEL statement, for model search,
for obtaining separate tests of model terms, diagnostics, and so forth.
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Similarly, for contingency table data, log-linear models for nominal variables have a
direct relation to ANOVA models, but these models also have a regression interpretation
when discrete classification variables are represented by dummy variables. Because the
distribution of counts in a multinomial sample over the cells of the contingency table is
Poisson, another generalization of log-linear models is to Poisson regression. Here, the log
count is modeled as a linear combination of predictors, but with a Poisson distribution for
the errors.

The recognition that the general linear model for quantitative data, with normally dis-
tributed errors, and similar linear models—such as logistic regression (binomial error dis-
tributions), Poisson regression, and so forth—had similar structure led to the development
of the generalized linear model (McCullagh and Nelder, 1989), of which all are special
cases. Thus, we can fit log-linear models using PROC CATMOD, which follows the ANOVA
approach, or with PROC GENMOD, which follows the GLM approach; each offers somewhat
different conveniences for model expression, testing, and diagnostic output.

7.2.1 Log-linear Models as Discrete ANOVA Models

For two discrete variables, A and B, suppose that you have a multinomial sample of ni j

observations in each cell i, j of an I × J contingency table. Let πi j be the joint probabilities
in the table, and let mi j = n++πi j be the expected cell frequencies under any model.
Conditional on the observed total count, n++, each count has a Poisson distribution, with
mean mi j . Any log-linear model may be expressed as a linear model for the log mi j . For
example, the hypothesis of independence means that the expected frequencies, mi j , follow

mi j = mi+ m+ j

m++
.

This multiplicative model can be transformed to an additive (linear) model by taking
logarithms of both sides:

log(mi j ) = log(mi+)+ log(m+ j )− log(m++) ,

which is usually expressed in an equivalent form in terms of model parameters,

log(mi j ) = µ+ λA
i + λB

j (7.1)

where µ is a function of the total sample size; λA
i is the “main effect” for variable A,

λA
i = logπi+ − logπi+; and λB

j is the “main effect” for variable B, λB
j = logπ+ j −

logπ+ j . In Equation 7.1, there are 1 + I + J parameters, but only (I − 1) + (J − 1) are
separately estimable; hence, the same analysis of variance restrictions are usually applied
to the parameters:

∑I
i λ

A
i = ∑J

j λ
B
j = 0. The main effects in log-linear models pertain to

differences among the marginal probabilities of a variable (which are usually not of direct
interest).

These sum-to-zero constraints are one way to make the model (Equation 7.1) estimable,
but other equivalent restrictions are possible. Setting the last values, λA

I and λB
J , to zero (as

in PROC GENMOD) defines λA
i = logπi+ − logπi J and λB

j = logπ+ j − logπI j as deviations
from the last reference category, but these parameterizations are otherwise identical. 1

Except for differences in notation, the model (Equation 7.1) is formally identical to the
ANOVA main-effects model for a two-factor design:

E(yi j ) = µ+ αi + β j

1The actual parameter values differ under different parameterizations, but the difference between any pair of
parameters, e.g., λA

i − λA
i ′ , is the same for all parameterizations.
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For a 2-way table, a model that does allow an association between the variables is the
saturated model,

log(mi j ) = µ+ λA
i + λB

j + λAB
i j (7.2)

where, again, restrictions must be imposed for estimation:

I∑
i

λA
i = 0,

J∑
j

λB
j = 0,

I∑
i

λAB
i j =

J∑
j

λAB
i j = 0 . (7.3)

There are I − 1 linearly independent λA
i row parameters, J − 1 linearly independent λB

j

column parameters, and (I − 1)(J − 1) linearly independent λAB
i j association parameters.

Again, the model (Equation 7.2) is formally similar to the two-factor ANOVA model with
interaction:

E(yi j ) = µ+ αi + β j + (αβ)i j

Hence, associations between variables in log-linear models are analogous to interactions
in ANOVA models. The use of superscripted symbols (λA

i , λ
B
j , λ

AB
i j ) rather than separate

Greek letters is a convention in log-linear models, and useful mainly for multi-way tables.
Equations 7.1 and 7.2 are examples of hierarchical models. This means that the model

must contain all lower-order terms contained within any high-order term in the model.
Thus, the saturated model (Equation 7.2) contains λAB

i j , and, therefore, must contain λA
i

and λB
j . As a result, hierarchical models may be identified by the shorthand notation that

lists only the high-order terms: Equation 7.2 is denoted [AB], while Equation 7.1 is [A][B].

7.2.2 Log-linear Models as Discrete GLMs

In the GLM approach, a log-linear model may be cast in the form of a regression model for
log m. One advantage is that models for tables of any size and structure may be expressed
in a compact form.

For a contingency table of variables A, B,C, . . ., with N = I × J × K ×· · · cells, let n
denote a column vector of the observed counts arranged in standard order, and let m denote
a similar vector of the expected frequencies under some model. Then, any log-linear model
may be expressed in the form

log m = Xβ ,

where X is a known design or model matrix and β is a column vector containing the
unknown λ parameters. For example, for a 2 × 2 table, the saturated model (Equation 7.2)
with the usual zero-sum constraints (Equation 7.3) can be represented as


log m11

log m12

log m21

log m22


 =




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1






µ

λA
1
λB

1
λAB

11




Note that only the linearly independent parameters are represented. λA
2 = −λA

1 because
λA

1 + λA
2 = 0, and λB

2 = −λB
1 because λB

1 + λB
2 = 0, and so forth.

An additional advantage of the GLM formulation is that it makes it easier to express
models with ordinal or quantitative variables. PROC GENMOD constructs the model matrix
from the terms listed in the MODEL statement. A CLASS variable with K levels gives rise to
K −1 columns for its main effect and sets of K −1 columns in each interaction effect. PROC
CATMOD also constructs the model matrix from the effects listed on the MODEL statement
and LOGLIN statement, but quantitative variables are treated nominally in models specified
in the LOGLIN statement. Models that cannot be expressed using the standard syntax may
be represented by entering the model matrix directly.
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7.2.3 Log-linear Models for 3-Way Tables

Log-linear models for 3-way contingency tables were described briefly in Section 4.3.1.
Each type of model allows associations among different sets of variables, and each has a
different independence interpretation, as illustrated in Table 4.2.

For a 3-way table, the saturated model (denoted [ABC]) is

log mi jk = µ+ λA
i + λB

j + λC
k + λAB

i j + λAC
ik + λBC

jk + λABC
i jk . (7.4)

This has all variables associated; Equation 7.4 fits the data perfectly because the number
of independent parameters equals the number of table cells. Two-way terms, such as λAB

i j ,
pertain to the partial association between pairs of factors. The presence of the 3-way term,
λABC

i jk , means that the partial association (conditional odds ratio) between any pair varies
over the levels of the third variable.

Omitting the 3-way term gives the model [AB][AC][BC],
log mi jk = µ+ λA

i + λB
j + λC

k + λAB
i j + λAC

ik + λBC
jk , (7.5)

in which all pairs are conditionally dependent. However, for any pair, the conditional odds
ratios are the same at all levels of the remaining variable, so this model is often called the
homogeneous association model.

The interpretation of terms in this model may be illustrated using the Berkeley admis-
sions data (Example 3.8 and Example 3.12), for which the factors are Admit, Gender, and
Department, in a 2 × 2 × 6 table. In the homogeneous association model,

log mi jk = µ+ λA
i + λD

j + λG
k + λAD

i j + λAG
ik + λDG

jk , (7.6)

the λ-parameters have the following interpretations:

• The main effects λA
i , λD

j , and λG
k pertain to differences in the 1-way marginal probabil-

ities. Thus, λD
j relates to differences in the total number of applicants to these depart-

ments, while λG
k relates to the differences in the overall numbers of men and women

applicants.
• λAD

i j describes the partial association between admission and department, that is, differ-
ent admission rates across departments (controlling for gender).

• λAG
ik relates to the association between admission and gender, controlling for department.

This term, if significant, might be interpreted as indicating gender-bias in admissions.
• λDG

jk , the association between department and gender, indicates whether males and fe-
males apply differentially across departments.

7.3 Fitting Log-linear Models

Fitting a log-linear model is a process of deciding which association terms are significantly
different from zero; these terms are included in the model that is used to explain the ob-
served frequencies. Terms that are excluded from the model go into the residual or error
term, which reflects the overall badness-of-fit of the model. The usual goal of log-linear
modeling is to find a small model (few association terms) that nonetheless achieves a rea-
sonable fit (small residuals).
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7.3.1 Goodness-of-Fit Tests

For an n-way table, goodness-of-fit tests for a log-linear model attempt to answer the ques-
tion “How well does the model reproduce the observed frequencies?” To avoid multiple
subscripts, let n = n1, n2, . . . , nN denote the observed frequencies in a table with N cells
with corresponding fitted frequencies m̂ = m̂1, m̂2, . . . , m̂N according to a particular log-
linear model. The standard goodness-of-fit statistics are sums over the cells of measures
of the difference between the n and m̂. The most commonly used are the familiar Pearson
chi-square,

χ2 =
∑

i

(ni − m̂i )
2

m̂i
,

and the likelihood-ratio G2 or deviance statistic,

G2 = 2
∑

i

ni log(ni/m̂i ) . (7.7)

Both of these statistics have asymptotic χ2 distributions when all expected frequencies are
large.2 The (residual) degrees of freedom are the number of cells (N ) minus the number of
estimated parameters.

In practice, I often find that several models have an acceptable fit or, sadly, that none
do (usually because of a large sample size). It is helpful to compare competing models
statistically, and two strategies are particularly useful in these cases.

The likelihood-ratio G2 statistic is unique in that one can compare two nested models by
their difference in G2 statistics, which has a χ2 distribution on the difference in degrees of
freedom. Two models, M1 and M2, are nested when one (for example, M2) is a special case
of the other. That is, model M2 (with ν2 residual df) contains a subset of the parameters of
M1 (with ν1 residual df); the remaining ones are effectively set to zero. Therefore, model
M2 is more restrictive and cannot fit the data better than the more general model M1, i.e.,
G2(M2) ≥ G2(M2). The least restrictive of all models, with G2 = 0 and ν = 0 df, is the
saturated model for which m̂ = n.

Assuming that the less restrictive model M1 fits, the difference in G2,

G2 ≡ G2(M2 | M1) = G2(M2)− G2(M1) (7.8)

= 2
∑

i

ni log(m̂i1/m̂i2) (7.9)

has a chi-squared distribution with df = ν2 − ν1. The last equality (Equation 7.9) follows
from substituting in Equation 7.7.

Rearranging terms in Equation 7.8, we see that we can partition the G2(M2) into two
terms,

G2(M2) = G2(M1)+ G2(M2 | M1) .

The first term measures the difference between the data and the more general model M1.
If this model fits, the second term measures the additional lack-of-fit imposed by the more
restrictive model. In addition to providing a more focused test, G2(M2 | M1) also follows
the chi-squared distribution more closely when some {mi } are small (Agresti, 1990, Sec-
tion 7.7.6).

Alternatively, a second strategy uses other measures that combine goodness-of-fit with
model parsimony and may also be used to compare non-nested models. The statistics de-
scribed below are all cast in the form of badness-of-fit relative to degrees of freedom, so
that smaller values reflect “better” models.

2A wider class of test statistics including χ2 and G2 as special cases is described by Cressie and Read (1984)
and Read and Cressie (1988). Except in bizarre or borderline cases, all members of this class provide the same
conclusions when expected frequencies are at least moderate (all m̂ > 5).
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The simplest idea (Goodman, 1971) is to use G2/d f (or χ2/d f ), which has an expected
value of 1 for a good-fitting model. This type of measure is routinely reported by PROC
GENMOD.

The Akaike Information Criterion (AIC) statistic (Akaike, 1973) is a very general crite-
rion for model selection with maximum likelihood estimation, based on the idea of maxi-
mizing the information provided by a fitted model. AIC is defined generally as

AIC = −2 log L + 2k

where log L is the maximized log likelihood; and k is the number of parameters estimated
in the model; so better models correspond to smaller AIC. For log-linear models, minimiz-
ing AIC is equivalent to minimizing

AIC� = G2 − 2ν

where ν is the residual df. This form is easier to calculate by hand from the output of any
procedure if AIC is not reported. Christensen (1997, Section IV.8) shows that AIC is a close
analog of Mallows (1973) C p statistic, commonly used for model selection in regression.

A third statistic of this type is the BIC or Schwartz (1978) criterion

BIC = G2 − ν log(n)

where n is the total sample size. Both AIC and BIC penalize the fit statistic for increasing
number of parameters. BIC also penalizes the fit directly with sample size, so it expresses a
preference for less complex models than AIC as the sample size increases. But the sample
size is fixed for a given multi-way table, so the argument for BIC seems less clear for
log-linear models.

Finally, some users are comforted to know that there are analogs in log-linear models of
the familiar R2 and Adjusted R2 often used to assess the goodness-of-fit of regression and
ANOVA models. In these standard linear models, R2 is defined as

R2 = 1 − SSE(M1)

SSE(M0)
= SSE(M0)− SSE(M1)

SSE(M0)

where SSE(M1) is the error sum of squares for a model of interest, and SSE(M0) is the
error sum of squares for the smallest null model, usually the model with an intercept only.
Hence, R2 gives the proportion of the variation of the data explained by the model M1 or,
equivalently, the proportion of error removed by the model.

In log-linear models, the deviance G2 is analogous to the SSE in a classical linear model,
and you can define

R2 = 1 − G2(M1)

G2(M0)
= G2(M0)− G2(M1)

G2(M0)
(7.10)

For a log-linear model, it usually makes sense to take the null model M0 as the small-
est possible interesting model. For example, in models with one or more response vari-
ables, R1, . . ., and two or more explanatory variables E1, E2, . . ., the null model is usually
[E1 E2 . . .][R1] . . ., including the highest-order interaction of the explanatory variables.

As in linear models, the R2 defined in Equation 7.10 can never decrease as more param-
eters are fitted (so residual df, ν, decrease). An adjusted R2, taking model complexity into
account, is defined as

Adj. R2 = 1 − G2(M1)/ν1

G2(M0)/ν0
,

which is the same adjustment used in regression models. The largest value of the adjusted
R2 will occur for the model having the smallest value of G2/ν.
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7.3.2 Software

The SAS System offers a variety of facilities for fitting log-linear models. PROC CATMOD,
a very general procedure for categorical data modeling, provides a LOGLIN statement tai-
lored for log-linear models. PROC GENMOD includes log-linear models as a special case of
generalized linear models, as a model for log frequency, with a Poisson distribution for
errors. In SAS/INSIGHT, the Fit (Y X) menu also fits generalized linear models; for a log-
linear model, you select Poisson as the response distribution and Log as the link function
on the Method panel. Finally, SAS/IML provides the IPF function, which fits a log-linear
model by the method of iterative proportional fitting.

7.3.3 Using PROC CATMOD

For PROC CATMOD, all table variables are considered dependent variables and are treated as
discrete factors by default. Thus, for log-linear models, the MODEL statement should specify
all contingency table factors in the form A*B*C ... = _RESPONSE_. The _RESPONSE_
keyword indicates that the cell frequencies in the contingency table formed by the variables
A, B, C, ... are being modeled. The LOGLIN statement is used to specify the model to
be fit. When the data is in frequency form, as is typical, you use a WEIGHT statement to
specify the frequency variable giving the cell count.

EXAMPLE 7.1 Berkeley admissions

Data on admission to the six largest graduate departments at Berkeley was examined graph-
ically in Chapter 3 and in Chapter 4. The data is contained in the dataset BERKELEY, listed
in Appendix B.2. The log-linear model (Equation 7.6) can be fit to this data with PROC
CATMOD as shown here:

proc catmod order=data data=berkeley;
format dept dept. admit admit.;
weight freq;
model dept*gender*admit=_response_ /

ml noiter noresponse nodesign noprofile pred=freq ;
loglin admit|dept|gender @2 / title=’Model (AD,AG,DG)’;

run;

In the LOGLIN statement, the “bar” notation (ADMIT|DEPT|GENDER @2) means all terms
up to 2-way associations. The printed output includes the table-of-fit statistics shown in
Output 7.1, which indicates that only the 2-way terms DEPT*ADMIT and DEPT*GENDER are
significant. In particular, there is no association between Gender and Admission, control-
ling for Department.

Several models may be fit within one PROC CATMOD step. We drop the GENDER*ADMIT
term in the following model, giving the model fit statistics in Output 7.2.

loglin admit|dept dept|gender / title=’Model (AD,DG)’;
run;

The fit of the model [AD][DG] is not much worse than that of the model [AD][AG][DG].
Nevertheless, neither model fits very well, as judged by the likelihood-ratio G2 statistics.
We will see why in the next Example.
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Output 7.1 Berkeley admissions data: Model [AD] [AG] [DG], fit with PROC CATMOD

Model (AD,AG,DG)
MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob
--------------------------------------------------
ADMIT 1 262.45 0.0000
DEPT 5 276.37 0.0000
DEPT*ADMIT 5 534.71 0.0000
GENDER 1 197.99 0.0000
GENDER*ADMIT 1 1.53 0.2167
DEPT*GENDER 5 731.62 0.0000

LIKELIHOOD RATIO 5 20.20 0.0011

Output 7.2 Berkeley admissions data: Model [AD] [DG], fit with PROC CATMOD

Model (AD,DG)

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob
--------------------------------------------------
ADMIT 1 279.04 0.0000
DEPT 5 275.86 0.0000
DEPT*ADMIT 5 623.03 0.0000
GENDER 1 213.63 0.0000
DEPT*GENDER 5 763.69 0.0000

LIKELIHOOD RATIO 6 21.74 0.0014

7.3.4 Using PROC GENMOD

With PROC GENMOD, log-linear models are fit directly in the style of Equation 7.6, that
is, as a model for the log frequency with a Poisson distribution. Whereas PROC CATMOD
assumes that all factor variables are categorical (unless declared as quantitative in a DIRECT
statement), PROC GENMOD follows the scheme of PROC GLM, so variables are assumed to
be quantitative, unless declared categorical in a CLASS statement.

EXAMPLE 7.2 Berkeley admissions

The homogeneous association model [AD][G D][AG] (Equation 7.6) may be fit as a gen-
eralized linear model for log frequency with PROC GENMOD as shown below; this pro-
duces the model fit statistics shown in Output 7.3. The Deviance statistic is identical to
the likelihood-ratio G2 shown in Output 7.1. The keywords TYPE3 WALD give Type III
Wald tests of individual terms, similar to the maximum likelihood ANOVA table produced
by PROC CATMOD.
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proc genmod data=berkeley;
class dept gender admit;
model freq = dept|gender|admit@2 / dist=poisson link=log type3 wald;

Output 7.3 Berkeley admissions data: Model [AD] [AG] [DG], fit with PROC GENMOD

The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 5 20.2043 4.0409
Scaled Deviance 5 20.2043 4.0409
Pearson Chi-Square 5 18.8242 3.7648
Scaled Pearson X2 5 18.8242 3.7648
Log Likelihood . 20503.1035 .

Wald Statistics For Type 3 Analysis

Source DF ChiSquare Pr>Chi

DEPT 5 276.3530 0.0001
GENDER 1 197.9725 0.0001
DEPT*GENDER 5 731.5804 0.0001
ADMIT 1 262.4539 0.0001
DEPT*ADMIT 5 534.7075 0.0001
GENDER*ADMIT 1 1.5260 0.2167

Now fit the model [AD][G D] as shown below. This is the conditional independence
model, A ⊥ G | D. Because this model does not fit well, the residuals among the obser-
vation statistics are obtained with the statement MAKE ’OBSTATS’ OUT=OBSTATS;. The
factor variables DEPT, GENDER, and ADMIT are merged with the OBSTATS dataset and trans-
lated to more meaningful labels. A mosaic display is requested with the MOSAIC macro.

proc genmod data=berkeley;
class dept gender admit;
model freq = admit|dept gender|dept / dist=poisson obstats residuals;
make ’obstats’ out=obstats;

data obstats;
merge berkeley obstats;
D = put(dept, dept.);
if admit=1

then A=’Admitted’;
else A=’Rejected’;

if gender=’F’
then G = ’Female’;
else G = ’Male’;

%mosaic(data=obstats, var=A G D, vorder=A G D, count=freq,
resid=streschi, cellfill=dev, split=H V,
title=Model: [AdmitDept] [GenderDept]);
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Figure 7.1 Mosaic display for Berkeley admissions data
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Model: [AdmitDept], [GenderDept]

The mosaic display, shown in Figure 7.1, indicates that this model fits well (residuals are
small) except in Department A. This suggests a model that allows an association between
Admission and Gender in Department A only,

log mi jk = µ+ λA
i + λD

j + λG
k + λAD

i j + λDG
jk + δ j=1λ

AG
ik , (7.11)

where δ j=1 equals 1 for Department A ( j = 1) and is zero otherwise. This model as-
serts that Admission and Gender are conditionally independent, given Department, except
in Department A. It has one more parameter than the conditional independence model,
[AD][G D]. Equation 7.11 may be fit with PROC GENMOD by constructing a variable equal
to the interaction of GENDER and ADMIT with a dummy variable having the value 1 for
Department A and 0 for other departments.

data berkeley;
set berkeley;
dept1AG = (gender=’F’) * admit * (dept=1);

proc genmod data=berkeley;
class dept gender admit;
model freq = dept|gender dept|admit dept1AG / dist=poisson type3 wald;

The model fit statistics and Type III tests for Equation 7.11 are shown in Output 7.4. This
model fits very well indeed. The parameter estimate λ̂AG

ik = 1.052 may be interpreted as
the log odds ratio of admission for females as compared to males in Department A. The
odds ratio is exp(1.052) = 2.86, the same as the value calculated from the raw data (see
Section 3.4.3).
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Output 7.4 Berkeley admissions data: Model (Equation 7.11) fit with PROC GENMOD

The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 5 2.6815 0.5363
Scaled Deviance 5 2.6815 0.5363
Pearson Chi-Square 5 2.6904 0.5381
Scaled Pearson X2 5 2.6904 0.5381
Log Likelihood . 20511.8649 .

Wald Statistics For Type 3 Analysis

Source DF ChiSquare Pr>Chi

DEPT 5 288.4101 0.0001
GENDER 1 189.3882 0.0001
DEPT*GENDER 5 514.0723 0.0001
ADMIT 1 291.1886 0.0001
DEPT*ADMIT 5 571.3809 0.0001
DEPT1AG 1 16.0379 0.0001

7.3.5 Using SAS/INSIGHT Software

SAS/INSIGHT can be invoked either as a procedure (PROC INSIGHT) or interactively from
the Display Manager through menus (Globals->Analyze->Interactive data analysis3) or the
command line (insight). When you call SAS/INSIGHT as a procedure, you can specify a
log-linear model in a FIT statement and obtain printed output from the analysis. When you
invoke SAS/INSIGHT interactively, log-linear models may be fit from the Analyze-> Fit (Y
X) menu. In either case, you must specify the response distribution to be Poisson, and you
must specify the Log link function. In addition, SAS/INSIGHT treats numeric variables
as Interval (quantitative) and character variables as Nominal by default. For interactive
use, you can change the type of a numeric variable by clicking on the Int button in the
spreadsheet window. For procedure use, you must create an equivalent character variable
first.

The following statements illustrate the use of SAS/INSIGHT as a procedure, fitting
the model in Equation 7.11. First create character variables A, D, and G with DATA step
statements. SAS/INSIGHT does not understand “bar” notation, so the model terms must
be spelled out.

data berkeley;
set berkeley;
D = put(dept, dept.);
if admit=1

then A=’Admitted’;
else A=’Rejected’;

3In SAS software Version 7 and higher, the menu choices are Solutions->Analysis->Interactive data analysis.
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if gender=’F’
then G = ’Female’;
else G = ’Male’;

dept1AG = (gender=’F’) * admit * (dept=1);

%let _print_=on;
proc insight data=berkeley;

fit freq = A D A*D G G*D dept1AG / resp=Poisson link=log label=cell;
tables;

run;

SAS/INSIGHT offers far more opportunities for graphic output when used interactively. To
fit a log-linear model, you must select Poisson for the Response Dist. and Log for the Link
Function on the Method panel. A variety of output statistics and residual plots are available
from the Output panel.

Figure 7.2 shows a mosaic display for Admission and Department—obtained from the
menu choices Analyze->Box Plot/Mosiac Plot (Y)—that illustrates how the proportion of
applicants admitted declines across departments (the [AD] term). Figure 7.3 shows a plot

Figure 7.2 SAS/INSIGHT mosaic display for Admission and Department

Figure 7.3 SAS/INSIGHT residual plots for model (Equation 7.11)
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of raw residuals, (ni jk − m̂i jk) against fitted frequencies, and a normal QQ plot of these
residuals, with the largest absolute values identified interactively. These residual plots are
consistent with an adequate model.

7.4 Logit Models

Because log-linear models are formulated as models for the log (expected) frequency, they
make no distinction between response and explanatory variables. In effect, they treat all
variables as responses. Logit models, on the other hand, describe how the log odds for one
variable depends on other explanatory variables. There is a close connection between the
two: When there is a response variable, each logit model for that response is equivalent to
a log-linear model. This relationship often provides a simpler way to formulate and test the
model, and to plot and interpret the fitted results. The price paid for this simplicity is that
associations among the explanatory variables are not expressed in the model.

Consider, for example, the model of homogeneous association—Equation 7.5 for a 3-
way table—and let variable C be a binary response. Under this model, the logit for variable
C is

Li j = log

(
πi j |1
πi j |2

)
= log

(
mi j1

mi j2

)
= log(mi j1)− log(mi j2) .

Substituting from Equation 7.5, you find that all terms that do not involve variable C cancel,
and you are left with

Li j = log(mi j1/mi j2) = (λC
1 − λC

2 )+ (λAC
i1 − λAC

i2 )+ (λBC
j1 − λBC

j2 )

= 2λC
1 + 2λAC

i1 + 2λBC
j1 (7.12)

because all λ terms sum to zero. To see how these logits depend on A and B, you can
replace the λ parameters with new parameters, α = 2λC

1 , β A
i = 2λAC

i1 , etc., which express
this relation more directly,

Li j = α + β A
i + βB

j . (7.13)

In the logit model (Equation 7.13), the response, C , is affected by both A and B, which
have additive effects on the log odds of response category C1 compared to C2. The terms
β A

i and βB
j correspond directly to [AC] and [BC] in the log-linear model (Equation 7.5).

The association among the explanatory variables [AB] is assumed in the logit model, but
this model provides no explicit representation of that association. The logit model (Equa-
tion 7.12) is equivalent to the log-linear model [AB][AC][BC] in goodness-of-fit and fitted
values, and parameters in the two models correspond directly.

More generally, when there is a binary response variable, e.g., R, and one or more ex-
planatory variables, A, B,C, . . ., any logit model for R has an equivalent log-linear form.
Every term in the logit model, such as β AC

ik , corresponds to an association of those factors
with R, that is, [AC R] in the equivalent log-linear model. The log-linear model must also
include all associations among the explanatory factors, the term [ABC . . .]. Conversely,
any log-linear model that includes all associations among the explanatory variables has an
equivalent logit form. When the response factor has more than two categories, models for
generalized logits have equivalent log-linear form.
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EXAMPLE 7.3 Berkeley admissions

The homogeneous association model [AD][AG][DG] did not fit the Berkeley admissions
data very well, and we saw that the term [AG] was unnecessary. Nevertheless, it is instruc-
tive to consider the equivalent logit model. The features of the logit model that lead to the
same conclusions and simplified interpretation from graphical displays are illustrated.

Because Admission is a binary response variable, the model in Equation 7.6 is equiva-
lent to the logit model,

log

(
mAdmit(i j)

mReject(i j)

)
= α + β

Dept
i + βGender

j . (7.14)

That is, the logit model (Equation 7.14) asserts that Department and Gender have additive
effects on the odds of Admission. This model may be fit with PROC CATMOD as shown
below, using the variable ADMIT as the response and DEPT and GENDER as predictors. The
option ORDER=DATA is used so that PROC CATMOD will form the logit for ’Admitted’, the
category that appears first in the dataset. The RESPONSE statement is used to create an
output dataset containing observed and fitted logits, which are graphed (see Example 7.4)
in Figure 7.4.

proc catmod order=data
data=berkeley;

weight freq;
response / out=predict;
model admit = dept gender / ml noiter noprofile ;

Output 7.5 Berkeley admissions data: Fit statistics and parameter estimates for the logit model
(Equation 7.14)

CATMOD PROCEDURE

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob
--------------------------------------------------
INTERCEPT 1 262.49 0.0000
DEPT 5 534.78 0.0000
GENDER 1 1.53 0.2167

LIKELIHOOD RATIO 5 20.20 0.0011

ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES

Standard Chi-
Effect Parameter Estimate Error Square Prob
----------------------------------------------------------------
INTERCEPT 1 -0.6424 0.0397 262.49 0.0000
DEPT 2 1.2744 0.0723 310.82 0.0000

3 1.2310 0.0856 206.98 0.0000
4 0.0118 0.0714 0.03 0.8687
5 -0.0202 0.0729 0.08 0.7815
6 -0.4649 0.0898 26.79 0.0000

GENDER 7 -0.0499 0.0404 1.53 0.2167
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The model fit statistics and parameter estimates for the model (Equation 7.14) are shown
in Output 7.5. Note that the likelihood-ratio G2 for this model is the same as that for the
log-linear model [AD][AG][DG] shown in Output 7.1 and in Output 7.3. The Wald χ2

values for DEPT and GENDER in Output 7.5 are similar to the χ2 values for the association
of each of these with ADMIT in the log-linear model.

As in logistic regression models, parameter estimates may be interpreted as increments
in the log odds, or exp(β) may be interpreted as the multiple of the odds associated with
the explanatory categories. Because PROC CATMOD uses zero-sum constraints,

∑
β

Dept
i = 0

and
∑
βGender

j = 0, the parameters for the last level of any factor is found as the negative
of the sum of the parameters listed.

Thus, βGender
1 = −0.0499 is the increment to the log odds of Admission for men,4 and,

therefore, βGender
2 = +0.0499 for women. Overall, but controlling for Department, women

were exp(2 × 0.0499) = 1.105 times as likely to be admitted to graduate school than male
applicants in 1973. The logit parameters for DEPT in Output 7.5 decrease over Departments
A–E; the value for Department F is −(1.274 + 1.231 + · · · − 0.465) = −2.032. These
values correspond to the decline in the fitted logits over Department as shown in Figure 7.4.

Logit models are easier to interpret than the corresponding log-linear models because
there are fewer parameters, and because these parameters pertain to the odds of a response
category rather than to cell frequency. Nevertheless, interpretation is often easier from a
graph than from the parameter values.

7.4.1 Plotting Results for Logit Models

Logit models may also be interpreted through plots of observed and fitted values, either in
terms of the logit for one response category or in terms of the equivalent response proba-
bility. Plots of log odds generally have a simpler, additive form, such as the parallel curves
in Figure 7.4, but the effects may be easier to understand in terms of probabilities. As with
logistic regression models, both goals may often be achieved by plotting on the logit scale
and adding a second vertical axis showing the corresponding probabilities. These plots
are similar to those described in Section 6.3 and Section 6.4, but the plotting steps dif-
fer because the output information from PROC CATMOD is structured differently from that
provided by PROC LOGISTIC.

Such plots are facilitated by the CATPLOT macro (Appendix A.4). The macro uses the
output dataset produced with the OUT= option in the RESPONSE statement. This dataset
normally contains both logit values and probability values, and either type may be plotted
with observed and fitted values and optional confidence intervals. A utility macro, PSCALE
(Appendix A.31.8), may be used to add a probability scale to a plot of log odds.

EXAMPLE 7.4 Berkeley admissions

The output dataset PREDICT from the logit model, ADMIT = DEPT GENDER, for the Berke-
ley data is shown partially in Output 7.6. Each of the 2×6 samples defined by the explana-
tory factors DEPT and GENDER gives rise to three observations: two response probabilities
and one logit, distinguished by the variable _TYPE_.

4βGender
1 refers to men, the first level of GENDER to appear in the BERKELEY dataset, because ORDER=DATA was

used in the PROC CATMOD statement.
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Output 7.6 Output dataset PREDICT from the logit model for Berkeley admissions (partial)

DEPT GENDER ADMIT _TYPE_ _OBS_ _PRED_ _SEPRED_

A Male FUNCTION 0.492 0.582 0.069
A Male Admit PROB 0.621 0.642 0.016
A Male Reject PROB 0.379 0.358 0.016
A Female FUNCTION 1.544 0.682 0.099
A Female Admit PROB 0.824 0.664 0.022
A Female Reject PROB 0.176 0.336 0.022
B Male FUNCTION 0.534 0.539 0.086
B Male Admit PROB 0.630 0.631 0.020
B Male Reject PROB 0.370 0.369 0.020
B Female FUNCTION 0.754 0.639 0.116
B Female Admit PROB 0.680 0.654 0.026
B Female Reject PROB 0.320 0.346 0.026
....

The statements below draw the plot of observed and predicted logits (_type_=
’FUNCTION’) shown in Figure 7.4. The PSCALE macro constructs an Annotate dataset
that draws the probability values on the right vertical axis in the plot. The label for this
axis is specified in the TITLE statement, with an angle A=-90, meaning the right-hand
side and rotated 90◦. By default, the macro uses the AXIS and SYMBOL statements defined
before the macro call. Separate curves are drawn for each level of the CLASS=GENDER
variable. The values of the CLASS variable may be labeled in the plot or supplied in a
LEGEND statement. The parameter Z=1.96 specifies the multiple of the standard error of
the fitted logit (_SEPRED_) used to draw the error bars in the plot, giving (asymptotic) 95%
individual confidence intervals.

%pscale(lo=-4, hi=3, anno=pscale, prob=%str(0.05,.1,.25,.5,.75,.9));

title h=1.6 ’Model: logit(Admit) = Dept Gender’
a=-90 ’Probability (Admitted)’

h=3.5 a=-90 ’ ’;
legend1 position=(bottom inside left) offset=(4,3)

mode=share cborder=blue across=1
shape=symbol(6,1.5) label=(’Gender’)
value=(c=black ’Female’

c=red ’Male’);
axis1 order=(-3 to 2) offset=(4)

label=(a=90 ’Log Odds (Admitted)’);
axis2 label=(’Department’) offset=(4);
symbol1 i=none v=circle h=1.7 c=black;
symbol2 i=none v=dot h=1.7 c=red ;
%catplot(data=predict,

xc=dept, y=_obs_, class=gender,
type=FUNCTION,
z=1.96, anno=pscale, legend=legend1);

The effects seen in our earlier analyses (Examples 4.8 and 4.9) may all be observed in
this plot. The effect of Gender is shown by the constant separation between the two curves.
From the plot you can see that this effect is very small and nonsignificant (compared with
the error bars). If the gender effect were omitted from the model, the fitted logits would
be the same for men and women applying to each Department, and would plot as a curve
parallel to, but in between, the two shown in the graph. Most of the observed points are
quite close to their predicted values, except in Department A, where the probability of
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Figure 7.4 Observed (points) and fitted (lines) log odds of admission in the logit model corresponding
to [AD][AG][DG]. The error bars show individual 95% confidence intervals around each
fitted logit.
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admittance for women is substantially greater than that for men. Example 7.2 dealt with
this by allowing one extra parameter for an association between admission and gender in
Department A, giving the log-linear model (Equation 7.11).

You can see what this model “looks like” by recasting it in logit form. The log-linear
model (Equation 7.11) has an equivalent logit formulation, which also adds a 1 df term for
an effect of Gender in Department A,

Li j = α + β
Dept
i + δ j=1β

Gender . (7.15)

This model can be fit with PROC CATMOD as shown below. The association term be-
tween Admission and Gender for Department A (dept1AG) is fit as a DIRECT variable.
The GENDER variable is not included in the MODEL statement, so it must be listed in the
POPULATION statement. Because the CATPLOT macro uses the values in the output dataset,
the plotting step is unchanged.

data berkeley;
set berkeley;
dept1AG = (gender=’F’) * (dept=1);

proc catmod order=data
data=berkeley;

weight freq;
population dept gender;
direct dept1AG;
response / out=predict;
model admit = dept dept1AG / ml noiter noprofile ;

%catplot(data=predict, xc=dept, class=gender, type=FUNCTION,
z=1.96, legend=legend1);
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Figure 7.5 Observed and fitted logits for the model in Equation 7.11
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The resulting plot for this model is shown in Figure 7.5. The graph gives a visual in-
terpretation of the model (Equation 7.11) and its logit form (Equation 7.15): No effect of
Gender on Admission, except in Department A, where the extra parameter allows perfect
fit.

7.4.2 Zero Frequencies

Cells with frequencies of zero create problems for log-linear and logit models. For log-
linear models, most of the derivations of expected frequencies and other quantities assume
ni jk··· > 0. In logit models, the observed log odds (e.g., for a 3-way table), log(ni j1/ni j2),
will be undefined if either frequency is zero.

Zero frequencies may occur in contingency tables for two different reasons:

Structural zeros (also called fixed zeros) occur when it is impossible to observe values for
some combinations of the variables. For example, suppose that you have three differ-
ent methods of contacting people at risk for some obscure genetically inherited disease:
newspaper advertisement, telephone campaign, and radio appeal. If each person con-
tacted in any way is classified dichotomously by the three methods of contact, there can
never be a non-zero frequency in the ‘No-No-No’ cell.5

Sampling zeros (also called random zeros) occur when the total size of the sample is not
large enough in relation to the probabilities in each of the cells to assure that someone
will be observed in every cell. For example, in a European survey of religious affiliation
and occupation, you may not observe any Muslim vineyard-workers in France, although

5Yet, if you fit an unsaturated model, expected frequencies can be estimated for all cells and provide a means to
estimate the total number at risk in the population. See Lindsey (1995, Section 5.4).
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such individuals surely exist. Even when zero frequencies do not occur, tables with
many cells relative to the total frequency tend to produce small expected frequencies in
at least some cells, which tends to make the χ2 statistics for model fit and Wald statistics
for individual terms unreliable.

PROC CATMOD takes a simple approach to distinguishing these two cases: Cells with
zero frequency are simply deleted from the contingency table, and thus are treated as
structural zeros. To avoid this, some corrective action is needed. One solution (for sam-
pling zeros) is to collapse categories of some variables, but we are often loath to do this for
fear that we will lose information.

Other suggestions are: (a) Add a small positive quantity (0.5 is usually recommended) to
every cell in the contingency table (Goodman, 1970), as is done in calculating empirical log
odds (Section 6.2.1); PROC CATMOD provides the ADDCELL option in the MODEL statement
for this purpose, but this option is ignored for maximum likelihood estimation. (b) Replace
sampling zeros by some small number, typically 10−10 or smaller (Agresti, 1990). (c) Add
a small quantity, like 0.1, to all zero cells (Evers and Namboordiri., 1977).

EXAMPLE 7.5 Race and politics in the 1980 U.S. Presidential vote

Table 7.1 shows data (Agresti (1990, Table 4.12) from Clogg and Shockey (1988)) from
the 1982 General Social Survey on votes in the 1980 U.S. Presidential election for Reagan
or for Carter or other in relation to race and conservatism (1=most liberal, 7=most conser-
vative).6 The dataset VOTE, containing the variables RACE, CONS, VOTEFOR, and COUNT is
listed in Appendix B.15.

Table 7.1 1982 General Social Survey: Reagan vs. Carter, by Race and Conservatism

Race
White Non-White

Political
Conservatism Reagan Carter/other Reagan Carter/other

White Non-White

1 1 12 0 6
2 13 57 0 16
3 44 71 2 23
4 155 146 1 31
5 92 61 0 8
6 100 41 2 7
7 18 8 0 4

It is natural to treat Vote for Reagan vs. Carter/other as the response, and Race and
Conservatism as predictors in this 2 × 2 × 7 table, with variables VoteFor (V ), Race (R),
and Conservatism (C). Before fitting models, it is useful to take an exploratory look at
the data. The fourfold display shown in Figure 7.6 shows separate panels for each level of
conservatism. In order to focus on the tendency to vote for Reagan vs. Carter/other among
Whites compared to Non-Whites, the number of White and Non-White respondents were
equated in each panel in this figure. With this standardization, confidence rings will overlap
in the left and right quadrants ( Reagan vs. Carter or other) when the (conditional) odds
ratio does not differ significantly from 1.

Thus, among Whites, in the bottom half of each panel, you can compare the areas of
the left and right quadrants and see that the propensity to vote for Reagan increases with
conservatism. A similar trend is evident among Non-White respondents, but there are a
number of zero frequencies among Non-Whites who indicated they voted for Reagan.

6John R. Nesselroade and Raymond B. Cattell, editors, Handbook of Multivariate Experimental Psychology, Sec-
ond Edition, 1988, copyright c© Plenum Press. Reprinted by permission of Kluwer Academic/Plenum Publishers.
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Figure 7.6 Fourfold display for Vote, by Race and Conservatism, equating the number of White and
Non-White respondents at each level of Conservatism
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The conditional odds ratios for Vote and Race given Conservatism are all in the same
direction, indicating that Whites were more likely to vote for Reagan at any level of Con-
servatism. The fourfold program gives the test of homogeneity of odds ratios shown in
Output 7.7, which is equivalent to a test for lack-of-fit of the homogeneous association log-
linear model [RC][V R][V C]. The tests of conditional independence, V ⊥ R | C , suggest
that voting preference depends on race and possibly conservatism.

Output 7.7 Vote data: Test of Homogeneity of odds ratios

Test of Homogeneity of Odds Ratios (no 3-Way Association)

TEST CHISQ DF PROB
Homogeneity of Odds Ratios 4.961 6 0.5488

Conditional Independence of Vote and Race | Conservatism
(assuming Homogeneity)

TEST CHISQ DF PROB
Likelihood-Ratio 77.335 1 0.0000
Cochran-Mantel-Haenszel 61.969 1 0.0000

To illustrate the problem of zero cells, consider tests of fit of the saturated model,
[RCV ], and of the homogeneous association model, [RC][V R][V C], fit as log-linear
models under three conditions: (a) no adjustment for zeros, (b) replace zeros by 10−10,
and (c) add 0.5 to each cell. In each case, the models are fit with the statements below,
after possible adjustment to the COUNT variable. The results are summarized in Table 7.2.

proc catmod data=vote;
weight count;
model cons*race*votefor = _response_ / ml noiter noresponse noprofile;
loglin cons|race|votefor / title=’Saturated model’;
run;
loglin cons|race|votefor @2 / title=’No 3-way association’;
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Table 7.2 Effects of zero-cell actions on log-linear models for VOTE data

Model: [RCV ] [RC][V R][V C]
Action df G2 df G2

(a) None 0 . 2 1.89
(b) n = 0 → 10−10 1 0.00 6 4.96
(c) n → n + 1

2 0 . 6 3.45

In case (a), the four zero cells are treated as structural zeros and deleted, leaving only 2
df for the test of lack-of-fit in the no-3-way model. In case (b), the main effect parameter
for Race cannot be estimated and there is, paradoxically, 1 df for the test of the saturated
model. Case (c), adding 0.5 to each cell, has no anomalies, and this solution is used for this
example. In other cases, it is recommended to compare several approaches to determine if
any conclusions are affected by the presence of zero cells.

This example proceeds to fit a main effects logit model. Treating the Vote for Reagan
vs. Carter/other as the response, the logit model with nominal main effects for Race and
Conservatism is

logit(Reagan/Carter) = α + βRace
i + βCons

j . (7.16)

Equation 7.16 may be fit with PROC CATMOD as follows:

data vote;
set vote;
count = count + 0.5;

proc catmod data=vote order=data;
weight count;
response / out=predict;
model votefor = race cons / noiter noresponse noprofile;

The model fit statistics and parameter estimates for the logit model (Equation 7.16) are
shown in Output 7.8. The model fits quite well.

To interpret the model, plot the observed and predicted logits, with 90% confidence
intervals, as shown below. The CATPLOT macro produces Figure 7.7.

%pscale(lo=-5, hi=2.3, anno=pscale, prob=%str(0.01,.05,.1,.25,.5,.75,.9));

axis1 order=(-5 to 2) offset=(0,3)
label=(a=90 ’Logit (Reagan / Carter)’);

axis2 label=(’Conservatism’) offset=(2);
symbol1 i=none v=circle h=1.9 c=black;
symbol2 i=none v=square h=1.7 c=red ;
legend1 position=(bottom inside center) offset=(,2);
%catplot(data=predict, class=race, x=cons, z=1.65, anno=pscale,

legend=legend1);

Notice that for both Whites and Non-Whites, the log odds of voting for Reagan in-
creases with conservatism. This is also reflected in the parameter estimates for CONS in
Output 7.8, which increase in approximately equal steps. Equation 7.16 does not use the
ordinal nature of conservatism. A model that uses conservatism as a direct, quantitative
independent variable (c) can be expressed as

logit ( Reagan / Carter ) = α + βRace
i + βCons c (7.17)
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Output 7.8 Vote data: Fit of the nominal main effects model

Main Effects of Race and Conservatism
CATMOD PROCEDURE

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob
--------------------------------------------------
INTERCEPT 1 43.75 0.0000
RACE 1 41.37 0.0000
CONS 6 67.84 0.0000

LIKELIHOOD RATIO 6 3.45 0.7501

ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES

Standard Chi-
Effect Parameter Estimate Error Square Prob
----------------------------------------------------------------
INTERCEPT 1 -1.4324 0.2166 43.75 0.0000
RACE 2 1.1960 0.1859 41.37 0.0000
CONS 3 -1.6144 0.6551 6.07 0.0137

4 -1.2000 0.2857 17.64 0.0000
5 -0.1997 0.2083 0.92 0.3377
6 0.2779 0.1672 2.76 0.0965
7 0.6291 0.1941 10.51 0.0012
8 1.1433 0.2052 31.03 0.0000

Figure 7.7 Observed (points) and fitted (lines) logits for main effects model. Dotted lines show a
90% confidence interval around the predicted log odds.
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Note that there is just one parameter for conservatism, βCons, which is interpreted as an
increase in the log odds of a Vote for Reagan for each change of 1 unit in Conservatism.
Equation 7.17 may be fit with PROC CATMOD just by adding the statement DIRECT CONS;

proc catmod data=vote order=data;
direct cons;
weight count;
response / out=predict;
model votefor = race cons / noiter noresponse noprofile ;
title ’Linear Effect for Conservatism’ h=2.5 a=-90 ’ ’;

The likelihood-ratio G2 for this model is G2(11) = 9.58, and the difference in G2 for
Equations 7.17 and 7.16 is G2(5) = 6.13, so the linear model cannot be rejected, given
that the nominal model fits. The estimate β̂Cons = 0.472 indicates that the odds of voting
for Reagan increase by a factor of exp(0.472) = 1.60 (60%) for each step of increasing
conservatism.

The observed and fitted logits are plotted exactly as before, using the same CATPLOT
macro call with the new output dataset PREDICT. The plot is shown in Figure 7.8. Note
that the 90% confidence limits around predicted values are noticeably smaller than in Fig-
ure 7.7. This is just one advantage of models for ordinal variables, which are discussed in
the following section.

Figure 7.8 Observed (points) and fitted (lines) logits for linear effect of conservatism. Dotted lines
show a 90% confidence interval around the predicted log odds.
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7.5 Models for Ordinal Variables

Standard log-linear models treat all classification variables as nominal, unordered factors;
all statistical tests are identical and parameter estimates are equivalent if the categories of
any variable are re-ordered. Yet you have seen that the ordering of categories often provides
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important information about the nature of associations, and Section 3.2.4 showed that non-
parametric tests that take into account the ordered nature of a factor are more powerful.

In a mosaic display, an ordered associative effect is seen when the residuals have an
opposite-corner pattern of positive and negative signs and magnitudes (e.g., for the Hair-
color and Eye-color data, Figure 4.4, or the Titanic data, Figure 4.16(a)). In a correspon-
dence analysis plot, an association has an ordered effect when the points for two factors are
ordered similarly. In these cases, log-linear and logit models that use the ordered nature of
the factors offer several advantages.

• Because they are more focused, tests that use the ordinal structure of the table variables
are more powerful when the association varies systematically with the ordered values of
a factor.

• Because they consume fewer degrees of freedom, you can fit unsaturated models where
the corresponding model for nominal factors would be saturated. In a 2-way table, for
example, a variety of models for ordinal factors may be proposed that are intermediate
between the independence model and the saturated model.

• Parameter estimates from these models are fewer in number, are easier to interpret, and
quantify the nature of effects better than corresponding quantities in models for nominal
factors. Estimating fewer parameters typically gives smaller standard errors, as shown
in Example 7.5.

These advantages are analogous to the use of tests for trends or polynomial effects in
ANOVA models with quantitative factors.

Models for ordinal variables may be specified in log-linear form, as described in Sec-
tion 7.5.1. When there is an ordinal response variable, related models may be specified in
terms of logits for adjacent categories (Section 7.5.2) or cumulative logits (Section 7.5.3).
The descriptions here are brief. For further information, refer to Agresti (1984), Agresti
(1990, Chapter 9), and Goodman (1979, 1983).

7.5.1 Log-linear Models for Ordinal Variables

For a 2-way table, when either the row variable or the column variable, or both, are ordi-
nal, one simplification comes from assigning ordered scores {ai }, a1 ≤ a2 ≤ · · · aI and/or
{b j }, b1 ≤ b2 ≤ · · · bJ to the categories so that the ordinal relations are necessarily in-
cluded in the model. Typically, equally spaced scores are used, for example, integer scores,
{ai } = i , or the zero-sum equivalent, {ai } = i − (I + 1)/2 (e.g., {ai } = {−1, 0, 1} for
I = 3). These give simple interpretations of the association parameters in terms of local
odds ratios,

θi j = mi j mi+1, j+1

mi, j+1 mi+1, j
,

the odds ratio for adjacent rows and adjacent columns.
When both variables are assigned scores, this gives the linear-by-linear model,

log(mi j ) = µ+ λA
i + λB

j + γ ai b j . (7.18)

Because the scores are fixed, this model has only one extra parameter, γ , compared to
the independence model, which is the special case γ = 0. The terms γ ai b j describe a
pattern of association where deviations from independence increase linearly with ai and b j

in opposite directions towards the opposite corners of the table.
In the linear-by-linear association model, the local log odds ratios are

log θi j = γ (ai+1 − ai )(b j+1 − b j ) ,
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which reduces to

log θi j = γ

for integer-spaced scores, so γ is the common local log odds ratio. As a result, the linear-
by-linear model is sometimes called the model of uniform association (Goodman, 1979).

Generalizations of the linear-by-linear model result when only one variable is assigned
scores. In the row-effects model, the row variable (in this example, A) is treated as nominal,
while the column variable (B) is assigned ordered scores {b j }. The log-linear model is then

log(mi j ) = µ+ λA
i + λB

j + αi b j , (7.19)

where the αi parameters are the row effects. An additional constraint,
∑

i αi = 0 or αI = 0,
is imposed so that Equation 7.19 has (I −1)more parameters than the independence model.
The linear-by-linear model is the special case where the row effects are equally spaced, and
the independence model is the special case where all αi = 0.

The row-effects model (Equation 7.19) also has a simple odds ratio interpretation. The
local log odds ratio for adjacent pairs of rows and columns is

log θi j = αi+1 − αi ,

which is constant for all pairs of adjacent columns. Plots of the local log odds ratio against
i would appear as a set of parallel curves.

In the analogous column-effects model, (J − 1) linearly independent column effect
parameters β j are estimated for the column variable, while fixed scores {ai } are assigned
to the row variable.

The linear-by-linear model (Equation 7.18) and the row-effects model (Equation 7.19)
can be fit using PROC CATMOD, but to do so requires that you enter the complete model
matrix explicitly. With PROC GENMOD you only need to create a numeric variable with
score values in the input dataset, a much easier task.

EXAMPLE 7.6 Mental impairment and parents’ SES

In Example 5.2 correspondence analysis was used to explore the relationship between rat-
ings of the mental health status of young New Yorkers and their parents’ socioeconomic
status (SES). Figure 5.2 showed that most of the association in the table was accounted for
by a single dimension along which both factors were ordered, consistent with the view that
mental health increased in relation to parents’ SES.

For comparison, we first fit the independence model with both PROC CATMOD and PROC
GENMOD. As expected, this model fits quite badly, with G2 (15) = 47.418.

%include catdata(mental);
proc catmod data=mental;

weight count;
model mental*ses = _response_ / noiter noprofile noresponse;
loglin mental ses / title=’Independence’;
run;

For illustration, the standardized (adjusted) deviance residuals, gi/
√
(1 − hi ), are obtained

in the PROC GENMOD step (named STRESDEV in the OBSTATS dataset), and used with the
MOSAICmacro to produce the mosaic display shown in the left panel of Figure 7.9.7 The pa-
rameter CELLFILL=DEV 0.5 causes the program to write the value of all residuals greater
than 0.5 in absolute value in the corresponding tile.

7To ensure that the levels of both factors are ordered correctly, MENTAL and SES were entered as numeric variables
in the dataset MENTAL, and user formats were used to provide the character labels shown in Figure 7.9. Because
SAS/IML does not make use of formatted values, the TABLE macro was used to convert the numeric variables to
character.
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proc genmod data=mental;
class mental ses;
model count = mental ses / dist=poisson obstats residuals;
make ’obstats’ out=obstats noprint;

run;

%table(data=mental, var=Mental SES, weight=count, char=Y,
format=mental mental. ses ses., order=data, out=mental2);

data obstats;
merge mental2 obstats;

%mosaic(data=obstats, vorder=Mental SES, plots=2, split=H V, resid=stresdev,
title=Mental Impairment and SES: Independence, cellfill=dev 0.5);

Figure 7.9 Mental health and SES: Residuals from Independence (left) and Row Effects (right) Models
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Note that the residuals in Figure 7.9 for the independence model have the opposite-
corner pattern, which would arise if either the row-effects model (with ordered row effects)
or the linear-by-linear association model described the association between mental health
and SES.

To fit models in which the association terms for MENTAL and/or SES use quantitative
scores, create copies (M and S) of these variables. They are used as quantitative variables
when they appear in the MODEL statement, but are not listed as CLASS variables. The follow-
ing statements fit the row-effects model, using SES as a linear effect, and then the linear-
by-linear model. Goodness-of-fit statistics for all three models are shown in Table 7.3.

Table 7.3 Mental health data: Goodness-of-fit statistics for ordinal log-linear models

Model df χ2 G2 G2 AIC

Independence 15 45.985 47.418 . 17.42
Linear-by-linear 14 9.732 9.895 37.523 -18.18
Row-effects (Mental) 12 6.289 6.281 41.137 -17.72

data mental;
set mental;
m = mental; *-- copy m and s as quantitative, non-class;
s = ses;
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title ’Linear SES’;
proc genmod data=mental;

class mental ses;
model count = mental ses mental*s / dist=poisson obstats residuals;
make ’obstats’ out=obstats noprint;

run;
data obstats;

merge mental obstats;
%mosaic(data=obstats, var=Mental SES, resid=stresdev, split=H V,

title=Mental + SES + Mental x S-Linear, cellfill=dev 0.5);

title ’Linear x Linear’;
proc genmod data=mental;

class mental ses;
model count = mental ses m*s / dist=poisson obstats residuals;

run;

The G2 values in Table 7.3 each test whether the corresponding model results in a sig-
nificant reduction in the residual G2 compared to the independence model. Both are highly
significant.

Similarly, the difference in G2 between the linear-by-linear and row-effects model,
G2 (2) = 9.732−6.289 = 3.443, suggests that the row-effects model is not a significant
improvement over the linear-by-linear model. The AIC values suggest a slight preference
for the linear-by-linear model. The residuals for the row effects model are shown in the
right panel of Figure 7.9; residuals for the linear-by-linear model (not shown) have the
same signs, but are slightly smaller in some cells.

Output 7.9 Parameter estimates for the row-effects log-linear model, Mental health data

Linear SES

Analysis Of Parameter Estimates

Parameter DF Estimate Std Err ChiSquare Pr>Chi

INTERCEPT 1 4.2528 0.0968 1929.6528 0.0001
MENTAL 1 1 0.8256 0.1849 19.9359 0.0001
MENTAL 2 1 1.0266 0.1661 38.2085 0.0001
MENTAL 3 1 0.4545 0.1846 6.0579 0.0138
MENTAL 4 0 0.0000 0.0000 . .
SES 1 1 -0.5439 0.1695 10.2931 0.0013
SES 2 1 -0.4451 0.1438 9.5866 0.0020
SES 3 1 -0.1308 0.1194 1.2007 0.2732
SES 4 1 0.3068 0.0984 9.7211 0.0018
SES 5 1 0.0727 0.0945 0.5911 0.4420
SES 6 0 0.0000 0.0000 . .
S*MENTAL 1 1 -0.3068 0.0489 39.3076 0.0001
S*MENTAL 2 1 -0.1617 0.0413 15.3281 0.0001
S*MENTAL 3 1 -0.1434 0.0462 9.6370 0.0019
S*MENTAL 4 0 0.0000 0.0000 . .
SCALE 0 1.0000 0.0000 . .

NOTE: The scale parameter was held fixed.
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Under the linear-by-linear model, the estimate of the coefficient of M*S is γ̂ = 0.0907
(s.e.=0.015) with unit-spaced scores. This corresponds to a local odds ratio, θ̂i j =
exp(0.0907) = 1.095. This single number describes the association succinctly: each
step down the socioeconomic scale increases the odds of being classified one step poorer
in mental health by 9.5%.

Parameter estimates for the row-effects model are shown in Output 7.9. The row effects
are the values of the S*MENTAL terms. These values are ordered, consistent with mental
health status having ordinal associative effects, but (with integer scores for both variables)
they are not equally spaced, as the linear-by-linear model would imply. The spacing of
these parameter estimates is similar to what you saw in the correspondence analysis plot
(Figure 5.2), with the middle categories Mild Impairment and Moderate Impairment rela-
tively close together compared to the extreme categories.

These log-linear models and the associated mosaic displays do not provide a clear pref-
erence between the row-effects and linear-by-linear models here. The next examples pro-
vide other models and graphical displays that may distinguish them better.

7.5.2 Adjacent Category Logit Models

When there is a single response variable, logit models provide a simple way to model the
dependence of the response on the other explanatory variables. For an ordinal response,
models for the logits between adjacent response categories allow the ordered nature of the
response to be taken into account. For the model of independence, the adjacent category
logits are

A j |i ≡ log

(
π j+1|i
π j |i

)
= log

(
mi, j+1

mi j

)
= (µ+ λA

i + λB
j+1)− (µ+ λA

i + λB
j )

= λB
j+1 − λB

j (7.20)

which are constants—for example, β j = (λB
j+1 − λB

j )—not depending on the explanatory
variable(s). If an explanatory variable is also ordinal, you may use scores {ai } as before.
The analog of the linear-by-linear model with unit-spaced scores allows the value of A j |i
to vary linearly with the quantitative value,

A j |i = β j + γ ai (7.21)

The slope parameter γ has a similar log odds interpretation: the log odds of a response
in category j + 1 as opposed to category j increases by γ for each unit increase in the
explanatory variable.

In a similar way, the fixed scores ai may be replaced by row effect parameters αi to be
estimated (with the constraint

∑
i αi = 0 or αI = 0) to give the row-effects adjacent logit

model

A j |i = β j + αi (7.22)

A plot of the fitted logits against i for this model appears as parallel curves (rather than
parallel lines under the linear-by-linear model (Equation 7.21)).

Even less restrictive models, which are still unsaturated, may be fit if the row-effects
model fits poorly. For example, each adjacent logit may be linearly related to an assigned
score for an explanatory variable, but the slopes may differ over the adjacent response
categories (the linear-interaction model):

A j |i = β j + γ j si . (7.23)

Alternatively, a quadratic relation between the adjacent logits A j |i and the scores A j |i =
β j + γ1 ai + γ2a2

i may be fit. These possibilities are illustrated in the following example.
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EXAMPLE 7.7 Mental impairment and parents’ SES

This example considers adjacent category logit models for the Mental Health data, treating
MENTAL as an ordinal response. Adjacent logit models are easily fit with PROC CATMOD
using the RESPONSE ALOGIT; statement. Differences among the logits for adjacent cate-
gories (the intercepts, β j , in Equations 7.21 and 7.22) are specified by the _RESPONSE_
keyword in the MODEL statement. Nominal explanatory variables are included as main ef-
fects (and possibly, interactions) on the left-hand side of the MODEL statement. An explana-
tory variable is treated as quantitative when declared in a DIRECT statement.

The following statements fit a series of adjacent category logit models to the Mental
Health data. Model 0 has only a _RESPONSE_ effect, and is analogous to the independence
model. In Model 1, the adjacent logits for mental impairment are affected by SES, as a
nominal variable. Model 2 is the linear-by-linear model for adjacent logits, with SES as a
direct variable. Model 3 allows different slopes for each adjacent logit.

%include catdata(mental);

*-- Adjacent logit models;
proc catmod data=mental;

weight count;
population ses;
response alogit / out=pred0;
model mental = _response_ / noprofile noresponse title=’Model 0: _R_’;
run;
response alogit / out=pred1;
model mental = _response_ ses / noprofile noresponse title=’Model 1: _R_ SES’;
run;
direct ses;
response alogit / out=pred2;
model mental = _response_ ses / noprofile noresponse title=’Model 2: _R_ S’;
run;
direct ses;
response alogit / out=pred3;
model mental = _response_ | ses / noprofile noresponse title=’Model 3: _R_|S’;
run;

For each model, an output dataset, which contains the observed and fitted logits, is
requested with the OUT= option in the RESPONSE statement. Plotting the observed and
fitted logits makes it easy to see what relationships are implied by each model. The plots
for Model 1 and Model 2, shown in Figure 7.10, are produced with the CATPLOT macro
as shown below. The macro call requests a plot of the observed logit (_OBS_) against SES,
with separate curves for each adjacent logit (CLASS=_NUMBER_). By default, the macro
also draws curves connecting the predicted values (_PRED_ in the output dataset) and ±1
standard error bars around each fitted logit.

axis1 label=(a=90) order=(-1 to 1.5 by .5);
axis2 offset=(3,8);
proc format;

value cum 1=’1:2’ 2=’2:3’ 3=’3:4’;
title ’Model 1: Mental = _R_ SES’;
%catplot(data=pred1, x=ses, y=_obs_, class=_number_, clfmt=cum.,

type=FUNCTION, ylab=Adjacent Logit);

title ’Model 2: Mental = _R_ S’;
%catplot(data=pred2, x=ses, y=_obs_, class=_number_, clfmt=cum.,

type=FUNCTION, ylab=Adjacent Logit);
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Figure 7.10 Adjacent category logit models for Mental Health data: Model 1 and Model 2
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For illustration, we also fit less restrictive models, allowing a quadratic relation between
the adjacent logit and SES (Model 4). Model 5 adds a quadratic term to the unequal slopes
allowed in Model 3. Plots for Model 3 and Model 5 are shown in Figure 7.11.

proc catmod data=mental;
weight count;
population ses;
direct ses;
response alogit / out=pred4;
model mental = _response_ ses ses*ses /

noprofile noiter title=’Model 4: _R_ S S^2’;
run;
response alogit / out=pred5;
model mental = _response_|ses ses*ses /

noprofile noiter title=’Model 5: _R_|S S^2’;
run;

Figure 7.11 Adjacent category logit models for Mental Health data: Model 3 and Model 5
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What can you conclude from this? From Table 7.4, all models except the independence
model have acceptable fit according to the χ2 values; Models 2–5 all have smaller AIC val-
ues than Model 1; of these, Model 2, the linear-by-linear model, is the most parsimonious,
but Models 4 and 5 have slightly smaller AIC values.
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Table 7.4 Adjacent category logit models for Mental Health data

Model Formula Terms df χ2 p-value AIC

0 A j |i = β j _R_ 15 44.35 0.0001 14.35
1 A j |i = β j + αi _R_ SES 10 6.76 0.7478 -13.24
2 A j |i = β j + γ ai _R_ S 14 9.68 0.7849 -18.32
3 A j |i = β j + γ j ai _R_|S 12 6.26 0.9023 -17.74
4 A j |i = β j + γ1ai + γ2a2

i _R_ S S^2 13 7.39 0.8809 -18.61
5 A j |i = β j + γ j ai + δa2

i _R_|S S^2 11 3.69 0.9782 -18.69

One interpretation (from the plots in Figure 7.10 and Figure 7.11) is that there is ev-
idence that not both of SES and mental impairment can be considered linear with unit
spacing. The intercepts suggest that the gap between categories 1 and 2 (‘Well’, ’Mild im-
pairment’) is greatest on the mental health scale, and the gap between categories 2 and 3
(‘Mild’, ‘Moderate impairment’) is smallest. The evidence regarding the metric for SES is
more ambiguous: there is a suggestion of a mildly quadratic relationship with SES, partic-
ularly for the logit between response categories 1 and 2, but this may be due to the points
for (lowest) SES categories 5 and 6, where the large logit values imply a relatively larger
number of people classified as mildly impaired as opposed to well.

7.5.3 Cumulative Logit Models

When there is an ordinal response factor, cumulative logit models (Williams and Grizzle,
1972) provide an alternative way to take the ordinal nature of the response into account,
without assigning arbitrary scores to the response categories.

Let Fj be the cumulative probability of a response less than or equal to category j ,

Fj = π1 + π2 + · · · + π j =
h= j∑
h=1

πh .

Then the cumulative logit is defined as

C j ≡ logit(1 − Fj ) = log

(
1 − Fj

Fj

)
.

C j gives the log odds that the response is in a category greater than category j , as opposed
to a category less than or equal to j . By this definition, the cumulative logits are necessarily
monotone decreasing over the response categories: C1 ≥ C2 ≥ · · · ≥ CJ−1. Models for
the cumulative logit are particularly useful when the response may be considered a discrete
realization of an underlying continuous variable.

In terms of cumulative logits, the model of independence is

C j |i = β j ,

that is, the logit does not depend on explanatory variable(s) indexed by subscript i . Here,
the response category parameters β j refer to the cutpoints between adjacent categories,
rather than to the distances between adjacent ones as in the analogous adjacent category
logit model (Equation 7.20).

For quantitative scores, ai , assigned to an explanatory variable, the analog of the linear-
by-linear model is

C j |i = β j + γ ai . (7.24)
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which again has one more parameter than the independence model. For any two rows,
the difference in logits, C j |i − C j |i ′ , is the log odds ratio in the 2 × 2 table for those two
rows, with columns dichotomized following response category j . Under Equation 7.24,
C j |i − C j |i ′ = γ (ai − ai ′), so the log odds ratio is proportional to the difference in scale
values and is the same at all cutpoints. When unit-spaced scores {ai } = i are used, the logit
difference for adjacent rows is then constant:

C j |i − C j |i ′ = γ .

As with the adjacent category logits, a variety of models analogous to the row-effects
model (Equation 7.22) and the linear-interaction model (Equation 7.23) may be defined
for the cumulative logits. These are illustrated in the next example, primarily to look at the
shapes of plots of observed and fitted logits and to compare them with what you saw for
adjacent category logits.

EXAMPLE 7.8 Mental impairment and parents’ SES

Cumulative logit models may be fit using PROC CATMOD with the RESPONSE CLOGIT;
statement. The model is specified in the same way as for adjacent category logits, but now
the _RESPONSE_ keyword refers to differences among the cumulative response probabil-
ities. As before, an independent variable is treated as a quantitative variable, when it is
declared in a DIRECT statement.

The following statements fit the same models as in Example 7.7: first Models 0–3 in
which SES has no effect on mental health (Model 0), and then SES with a nominal effect
(Model 1), a constant linear effect (Model 2), and different linear effects for each cumula-
tive logit (Model 3).

%include catdata(mental);

*-- Cumulative logit models;
proc catmod data=mental;

weight count;
population ses;
response clogit / out=pred0;
model mental = _response_ / noprofile noresponse title=’Model 0: _R_’;
run;
response clogit / out=pred1;
model mental = _response_ ses /

noprofile noresponse title=’Model 1: _R_ SES’;
run;
direct ses;
response clogit / out=pred2;
model mental = _response_ ses /

noprofile noresponse title=’Model 2: _R_ S’;
run;
direct ses;
response clogit / out=pred3;
model mental = _response_ | ses /

noprofile noresponse title=’Model 3: _R_|S’;
run;

For comparison, you can also fit models with both linear and quadratic effects on the
cumulative logits, first with equal slopes and curvature for all response categories (Model
4), and second with separate slopes and equal curvatures (Model 5).

data mental;
set mental;
ses2 = ses**2;
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proc catmod data=mental;
weight count;
population ses;
direct ses ses2;
response clogit / out=pred4;
model mental = _response_ ses ses2 /

noprofile noiter title=’Model 4: _R_ S S^2’;
run;
response clogit / out=pred5;
model mental = _response_|ses ses2 /

noprofile noiter title=’Model 5: _R_|S S^2’;
run;

The model fit statistics for these models are shown in Table 7.5. The values are quite
similar to those for the adjacent category logits (Table 7.3).

Table 7.5 Cumulative logit models for Mental Health data

Model Terms df χ2 p-value AIC

0 _R_ 15 45.92 0.0001 15.92
1 _R_| SES 10 7.75 0.6536 -12.25
2 _R_ S 14 10.72 0.7080 -17.28
3 _R_|S 12 6.48 0.8897 -17.52
4 _R_ S S^2 13 8.36 0.8192 -17.64
5 _R_|S S^2 11 3.94 0.9716 -18.06

For any such model, the CATPLOT macro displays the observed and fitted cumulative
logits using the output dataset specified on the RESPONSE statement. The statements below
produce the graphs of the logits for Model 0 and Model 1, shown in Figure 7.12. Similar
statements, using the output datasets PRED2 and PRED4, give the graphs for Model 2 and
Model 4 in Figure 7.13.

axis1 label=(a=90);
axis2 offset=(3,6);
proc format;

value cum 1=’>1’ 2=’>2’ 3=’>3’;
title ’Model 0: Mental = _R_’;
%catplot(data=pred0, x=ses, y=_obs_, class=_number_, clfmt=cum.,

type=FUNCTION, ylab=Cumulative Logit);
title ’Model 1: Mental = _R_ SES’;
%catplot(data=pred1, x=ses, y=_obs_, class=_number_, clfmt=cum.,

type=FUNCTION, ylab=Cumulative Logit);

Figure 7.12 Cumulative logit models for Mental Health data: Model 0 and Model 1
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Figure 7.13 Cumulative logit models for Mental Health data: Model 2 and Model 4
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7.6 An Extended Example

Any model is a summary, and even a reasonably good-fitting model is not always sensible
or faithful to the details of the data. The interplay between graphing and fitting is important
in arriving at an understanding of the relationships among the variables and an adequate
descriptive model. This section describes the analysis of a moderately large 3-way table,
where we find that graphical displays play a crucial role in directing our understanding and
model representation.

EXAMPLE 7.9 Student opinion about the Vietnam war

In May 1967, a survey of student opinion on U.S. policies toward the war in Vietnam was
undertaken at the University of North Carolina at Chapel Hill. Students were asked which
of four policies they supported. The alternatives stated that the U.S. should

A defeat North Vietnam by widespread bombing and by land invasion.

B follow the present policy.

C de-escalate military activity, stop bombing, and intensify efforts to begin negotiations.

D withdraw military forces immediately.

The responses were classified by gender and by student status (undergraduate year or grad-
uate student), published in the student newspaper, and subsequently analyzed by Aitkin
et al. (1989).8 The data is shown in Table 7.6 and listed in the dataset VIETNAM in Ap-
pendix B.12.

The survey was not designed to yield a representative sample (survey ballots were
merely made available in the student council building), and the response rates, shown in
Table 7.6, were low overall and varied somewhat according to year and gender. You cannot,
therefore, draw conclusions about the attitudes of the whole student population. However,
you can study how the preferred policy varies with sex and year of study, among those who
responded. This means that the total numbers of each sex and year should be regarded as
fixed, and the [SexYear] term must be included in any model. Note that both the response
and year might reasonably be treated as ordinal variables.

8Murray Aitkin, Dorothy Anderson, Brian Francis, and John Hinde, Statistical Modeling in GLIM, 1989, copy-
right c© Murray Aitkin, Dorothy Anderson, Brian Francis, and John Hinde. Reprinted by permission of Oxford
University Press.
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Table 7.6 Student opinion on Vietnam war policy

Response

Sex Year A B C D Total Enroll % Resp

Male 1 175 116 131 17 439 1768 24.8
2 160 126 135 21 442 1792 24.7
3 132 120 154 29 435 1693 25.7
4 145 95 185 44 469 1522 30.8
Grad 118 176 345 141 780 3005 26.0

Female 1 13 19 40 5 77 487 15.8
2 5 9 33 3 50 326 15.3
3 22 29 110 6 167 772 21.6
4 12 21 58 10 101 608 16.6
Grad 19 27 128 13 187 1221 15.3

The dataset VIETNAM, listed in Appendix B.12, is created in frequency form with the
variables SEX, YEAR, RESPONSE, and COUNT. Both YEAR and RESPONSE are created as nu-
meric variables to allow them to be treated as ordinal (or interval) variables, and formats
are created to associate descriptive labels as needed.

Because response choice is the natural outcome variable, it is useful to begin with a
simple graph showing the proportions of choices for each Sex-Year group, shown in Fig-
ure 7.14.

Figure 7.14 Response probabilities for Vietnam data. Point labels indicate the response category.
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To create the graphs, find the total number of respondents in each group, merge this
with the data, and calculate the proportions.

%include catdata(vietnam);

*-- Get row totals for sex-year;
proc summary data=vietnam nway;

class sex year;
var count;
output out=totals sum=total;
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*-- Merge, compute proportions;
data vietnam;

merge vietnam totals(keep=sex year total);
by sex year;
p = count / total;
label p=’Proportion of responses’;

Then, plot P against YEAR for each SEX, producing the graphs shown in Figure 7.14:

goptions hby=0;
proc gplot data=vietnam;

plot p * year = response /
frame vaxis=axis1 haxis=axis2 hm=0 vm=1 nolegend anno=label;

by sex;
symbol1 v=A h=2 i=join c=red l=1;
symbol2 v=B h=2 i=join c=red l=20;
symbol3 v=C h=2 i=join c=blue l=41;
symbol4 v=D h=2 i=join c=blue l=21;
axis1 label=(a=90) order=(0 to .7 by .1);
axis2 offset=(3);

From these graphs, you can see that women choose response C, “begin negotiations,”
most often, and the ranking of their choices is relatively constant over years. For men,
however, the proportions choosing “dovish” responses C and D increase consistently over
years, while the proportions for A and B decrease. Keep these observations in mind as you
begin to search for a descriptive model.

Begin by fitting the baseline “null” model, [SY ][R], which includes the [SY ] associa-
tion but no association between RESPONSE and SEX or YEAR. This model implies that the
response curves in Figure 7.14 should all be flat (no year effect) and at the same levels in
the two panels (no sex effect). The model fit is very poor (G2 (27) = 361.72), and the pat-
terns in Figure 7.14 lead us to add sex and year effects, giving the model [SY ][RS][RY ].
These two models are fit using PROC CATMOD using the LOGLIN statement as follows:

*-- Fit as loglin models;
proc catmod data=vietnam;

weight count;
model response * sex * year = _response_ /

ml noiter noresponse nodesign nogls noprofile;
loglin response sex|year / title=’Null model’;

run;
loglin sex|year response|sex response|year / title=’Sex+Year’;

run;

The model summary statistics from this step are shown in Output 7.10. For the second
model, the [RS] and [RY ] terms are both large, and the model fit is dramatically improved.
Given the large sample size, you might accept this as an adequate model, particularly if
you had not plotted the data.

The likelihood-ratio G2 for the Sex+Year model, 19.19 on 12 df, corresponds to the
3-way term [RSY ]. Excluding it from the model means that the relationship between
RESPONSE and YEAR is the same for men and women, yet you have seen in Figure 7.14
that this is unlikely to be true. There is something wrong with the Sex+Year model.

You can confirm these suspicions by plotting predicted probabilities under the model
together with the observed response probabilities. For a log-linear model, PROC CATMOD
gives fitted frequencies, and you could divide these by the totals, as done in Figure 7.14.



302 Visualizing Categorical Data

Output 7.10 Model fit summaries for initial models: Vietnam war data

Null model

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob
--------------------------------------------------
RESPONSE 3 604.29 0.0000
SEX 1 953.57 0.0000
YEAR 4 187.96 0.0000
SEX*YEAR 4 59.36 0.0000

LIKELIHOOD RATIO 27 361.72 0.0000

Sex+Year

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob
--------------------------------------------------
SEX 1 754.01 0.0000
YEAR 4 152.19 0.0000
SEX*YEAR 4 50.55 0.0000
RESPONSE 3 519.19 0.0000
RESPONSE*SEX 3 124.76 0.0000
RESPONSE*YEAR 12 179.83 0.0000

LIKELIHOOD RATIO 12 19.19 0.0839

It is somewhat easier to fit the equivalent logit model for RESPONSE, for which the fitted
values (with _TYPE_=’PROB’ in the output dataset) are probabilities. The CATPLOT macro
produces Figure 7.15.

*-- Fit as logit models;
proc catmod data=vietnam;

weight count;
population sex year;
response logit;
model response = / ml noiter noprofile title=’Null model’;

run;
response logit / out=fit;
model response = sex year/ ml noiter noprofile title=’Sex+Year’;

run;

axis1 label=(a=90) order=(0 to .7 by .1);
axis2 offset=(3,5);
%catplot(data=fit,

x=year, y=_obs_,
type=PROB,
class=response, clfmt=letter.,
byvar=sex, byfmt=$sex.,
vaxis=axis1, haxis=axis2,
colors=red red blue blue,
ylab=Probability of Response);
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Figure 7.15 Observed and fitted probabilities for model [SY ][RS][RY ]
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The fitted probabilities are reasonably close for males, but quite poor for females. Per-
haps you need to fit different models for men and women. The saturated log-linear model,
[RSY ] corresponds to the logit model R = S|Y = S+Y +S∗Y . You can examine the pos-
sibility of different year effects for men and women within the logit formulation by nesting
the effect of YEAR within SEX. (This is equivalent to fitting separate models, R = Y , by
SEX.)

*-- Year within Sex;
proc catmod data=vietnam;

weight count;
population sex year;
model response = sex year(sex=’F’) year(sex=’M’)
/ ml noiter noprofile title=’Year within Sex’;

response logit ;

The output, shown in Output 7.11, indicates that the year effect for women is quite
small (G2(12) = 12.96) and can be dropped from the model. Removing the term
YEAR(SEX=’F’) from the MODEL statement gives an adequate model; the residual G2(12) =
12.96 in the revised model is (coincidently) just that for the term dropped.

Output 7.11 Vietnam war data: Nested year effect model

Year within Sex

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob
--------------------------------------------------
INTERCEPT 3 453.92 0.0000
SEX 3 102.66 0.0000
YEAR(SEX=F) 12 12.96 0.3718
YEAR(SEX=M) 12 182.12 0.0000

LIKELIHOOD RATIO 0 . .
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Remember that the response probabilities for men were consistently increasing or de-
creasing with year. Perhaps we can simplify the model by using year as a linear effect. To
do this, we just add the statement DIRECT YEAR;.

*-- Year-linear within Males;
proc catmod data=vietnam;

weight count;
population sex year;
direct year;
model response = sex year(sex=’M’)

/ ml noiter noprofile title=’Year-linear within Males’;
response / out=fit;

Output 7.12 Vietnam war data, Linear year effect for males

Year-linear within Males

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob
--------------------------------------------------
INTERCEPT 3 283.29 0.0000
SEX 3 218.11 0.0000
YEAR(SEX=M) 3 158.88 0.0000

LIKELIHOOD RATIO 21 38.10 0.0125

The model fit statistics for this model (Output 7.12) suggests there is some lack-of-
fit, however, with G2(21) = 38.10. To see why, plot the observed and fitted probabilities
again. Because the plot is determined completely by the output dataset FIT, you can use
exactly the same %CATPLOT call as for Figure 7.15. The result is shown in Figure 7.16.

Figure 7.16 Observed and fitted probabilities for model R = S + Ylin(M)
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Most of the observed points in Figure 7.16 are quite close to the fitted values (the error
bars show ±1 standard error around the predicted probability). However, there are a few
scattered points for females and a couple for males (4th year, responses A and B) which
appear poorly fit.
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You should examine residuals more closely to see if the lack-of-fit is localized to these
few cells or whether there is a more general way to improve the model. For example,
the two points for 4th-year men indicate a tendency for them to select response B less
than the model predicts, and to select response A more often. Aitkin et al. (1989) make
the reasonable suggestion that these draft-eligible men would eschew the “present policy”
under which their chances of being drafted would increase. But perhaps it is time to look
at this data from another perspective.

7.6.1 A Fresh Look

Plots of observed and fitted values can tell part of the story, but it is the comparison of
the two, in relation to the structure of the data, which is most effective in suggesting ways
to modify a given model. Probability plots or index plots of residuals can be useful, but
these do not relate to the structure of the contingency table or to the pattern of association.
Mosaic displays and correspondence analysis are more useful for understanding the nature
of associations, which they reveal in different ways.

EXAMPLE 7.10 Student opinion about the Vietnam war

Because the associations of RESPONSE with YEAR differ for men and women, it is natural to
examine partial mosaic plots for the two sexes. This is easily done with the MOSAIC macro,
using BY=SEX. First, a DATA step is used to create more meaningful labels for RESPONSE
and YEAR. These statements create the two graphs shown in Figure 7.17.

%include catdata(vietnam);
proc format;

value yr 1=’Fresh’ 2=’Soph’ 3=’Jr’ 4=’Sr’ 5=’Grad’;
data vietnam;

length sex $ 6;
set vietnam;
yr = put(year, yr.);
resp = put(response, letter.);
sex = put(sex, $sex.);

run;
%mosaic(data=vietnam, var=Sex Yr Resp, by=Sex,

sort=no, vorder=Yr Resp Sex, htext=2, cellfill=dev);

Figure 7.17 Partial mosaic plots, by SEX, for Vietnam war data
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With the variables in each mosaic ordered by Year and Response, recall that the height
of each bar shows the (conditional) proportion of students in each year who chose each
response. There is no systematic pattern for women, but the pattern of heights of the boxes
and of the residuals from independence for men is very systematic. The trend over years is
easiest to see for responses A and D; note that there is a large jump in proportion choosing
these responses between 4th-year students and graduate students. Perhaps our assumption
of a linear trend with year for males needs adjustment.

A correspondence analysis plot also displays residuals from a background model. Here
the null-response model of joint independence, [SY ][R], is used, so all associations be-
tween the response and the sex-year combinations will be shown. To do this, we first trans-
pose the data so that the responses are columns and the sex-year populations are rows.

%include catdata(vietnam);

*-- Reshape to two-way table, SexYr x Response;
proc transpose data=vietnam prefix=R out=viet2way;

var count;
by sex year;

data viet2way;
set viet2way;
rename r1=A r2=B r3=C r4=D;
sexyr = sex || put(year,1.);
drop _name_;

proc print;

%corresp(data=viet2way, var=A--D, id=sexyr, interp=none join);

The plot shown in Figure 7.18 is quite revealing. The response points, A–D, largely de-
fine the first dimension, which accounts for 73.6% of the association from the null-response

Figure 7.18 Correspondence analysis display for model [SY ][R]
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model. The year points for men, M1–M5, are also ordered along this dimension, but male
graduate students are far from the male undergraduates. The year points for women are
tightly clustered and aligned closest to response C, their most preferred alternative. The
second dimension seems largely to do with the contrast between the relatively high choice
for response D (“immediate withdrawal”) among male graduate students and general pref-
erence for response C (“de-escalate”) among most women.

Both Figure 7.17 and Figure 7.18 indicate that our assumption of linear spacing of year
for men is incorrect, particularly for graduate students. A simple approach is to replace
the variable YEAR with a new variable, YR, for which graduate students are some number
greater than 5. Varying the year for graduate students over the range 5–10 gives the residual
G2 values (with 21 df) in Table 7.7, and suggests that 7 years for graduate students gives
the best fit. The plot of fitted and observed values under the revised model is shown in
Figure 7.19.

%include catdata(vietnam);

data vietnam;
set vietnam;
yr = year + 2*(year=5);
label yr="Year + 2(Grad)";

*-- Yr-linear within Males;
proc catmod data=vietnam;

weight count;
population sex yr;
direct yr;
model response = sex yr(sex=’M’)

/ ml noiter noprofile title=’Yr-linear within Males’;
response / out=fit;

Table 7.7 Profile
deviance analysis of
Year for Graduate
Students

Grad
Year G2(21)

5 38.10
6 26.69
7 23.87
8 23.99
9 25.13

10 26.58

Figure 7.19 Observed and fitted probabilities for model R = S + Ylin(M), Graduate students=7
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This model fits quite well overall, but there are still several discrepant points. Ex-
ample 7.11 examines residuals and influence diagnostics for this model.
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7.7 Influence and Diagnostic Plots for Log-linear Models

Model diagnostic statistics provide important ancillary information regarding the adequacy
of a log-linear model as a true summary of the relationships among the variables captured
in the data. As in logistic regression models (see Section 6.6), there are analogs of lever-
age, Cook’s D, and the leave-one-out χ2 statistics for log-linear models, described in
Section 7.7.4. Half-normal plots (Section 7.7.2) are particularly useful for detecting outlier
cells.

Most of the basic diagnostic quantities are calculated by PROC GENMOD and made
available for plotting by use of the statement MAKE ’OBSTATS’ OUT=9 and the op-
tions OBSTATS RESIDUALS on the MODEL statement. A macro program, INFLGLIM (Sec-
tion 7.7.3), is provided for calculating additional diagnostics (hat values and Cook’s D) that
are not supplied by PROC GENMOD and for producing useful plots of these measures. For
models that can be fit using PROC GENMOD, the INFLGLIM macro makes model diagnosis
easy.

These diagnostic quantities are not computed by PROC CATMOD; however, with some
effort, they may also be obtained from the results of PROC CATMOD, as described in Sec-
tion 7.7.4.

7.7.1 Residuals and Diagnostics for Log-linear Models

For a log-linear model, the simple, raw residual in cell i is ei ≡ ni − m̂i . But this is of little
use; with ni distributed as Pois(mi ), the variance of ni is mi , so cells with larger expected
frequencies will have larger raw residuals. As a result, it is common to standardize by
dividing by

√
m̂i , giving the Pearson residual,

ri ≡ ni − m̂i√
m̂i

,

which again are components of the overall Pearson χ2, in the sense that χ2 = ∑
r2

i .
For a good-fitting model, one might expect these so-called “standardized” residuals

to have a normal distribution with mean 0 and variance 1, that is, e ∼ N (0, σ 2I). But
this expectation ignores the facts that parameters have been estimated, and the estimated
residuals have degrees of freedom equal to the residual df = (number of cells) − (number of
parameters).10 When the constraints on the residuals are taken into account (Agresti (1990,
Section 12.4), Christensen (1997, Section 10.7)), it turns out that the Pearson residuals for
a correct log-linear model are distributed asymptotically with standard errors

σ̂ (ri ) = √
1 − hii

where hii is the leverage or hat value defined in Equation 7.27 below.11 Consequently, one
may define adjusted residuals (Haberman, 1973, 1974),

r �i ≡ ni − m̂i√
m̂i (1 − hii )

, (7.25)

which are standardized to have unit asymptotic variance. Cells with large expected frequen-
cies tend to have large hat values and, hence, small standard errors. The effect of ignoring
the adjustment is to underestimate the magnitude of residuals in cells with large expected
frequency. This effect is illustrated in Example 7.12.

9SAS software Version 7 and higher uses the Output Delivery System with the ODS statement instead.
10Following Christensen (1997), a better term would be “crude standardized residuals.”
11This is similar to the situation in ordinary linear models, where the estimated residuals are distributed
N (0, σ 2(I − H), and so have standard errors equal to

√
1 − hii .
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From the perspective of maximum-likelihood estimation, deviance residuals may be
defined as

gi = sign(ei )
[
2|ni log(ni/m̂i )| + (ni − m̂i )

]1/2
, (7.26)

the signed square root of the contribution of cell i to the likelihood-ratio G2 (or deviance),
so that G2 = ∑

g2
i . Analogous adjusted deviance residuals, g�i , are defined by dividing

gi by
√

1 − hii .
For any generalized linear model, the hat value hii may be calculated as the i th diagonal

element of the matrix

H = W
1
2 X(XTWX)

−1
XTW

1
2 , (7.27)

where W is the diagonal matrix of weights used in computing the Hessian. For log-linear
models, W = diag (m).

Various measures of influence for logistic regression (Section 6.6.2) were defined to
measure the effect of deleting each observation on model fit statistics or estimated parame-
ters. Similar diagnostics for log-linear models may be defined for the contributions of each
cell.

Cook’s distance, Ci , is a squared measure of the impact the i th cell has on the esti-
mated parameters and, hence, on the fitted frequencies. For a log-linear model, imagine
that you drop each cell in turn, fit the model to the remaining cells, and estimate the ex-
pected frequency for the omitted cell. It would be computationally intensive to calculate
this by refitting the model for each cell, but a simple one-step approximation (Christensen,
1997, Section 10.7) may be calculated as

Ci = r2
i hii

k(1 − hii )
(7.28)

where k is the number of parameters estimated in the model. This measure is equivalent to
the statistic Ci defined for logistic regression (Equation 6.13) divided by k.

Similarly, one-step estimates of the change in deviance and Pearson χ2 associated with
deleting cell i may be calculated as

G2
(−i) = g2

i

1 − hii
= (g�i )

2 ,

and

χ2
(−i) = r2

i

1 − hii
= (r �i )

2 .

7.7.2 Half-Normal Probability Plots of Residuals

As you have just seen, the adjusted Pearson and deviance residuals have a standard normal
distribution (in large samples) when the fitted model is correct. This suggests that a plot
of the ordered residuals, r(i), against the corresponding approximate expected values of an
equal-sized sample (of N contingency table cells, here) would have in a normal distribution
z(i) = �−1{(i − 3

8 )/(N + 1
4 )}, where�−1(•) is the inverse normal or probit function. Such

plots, called normal quantile plots or normal QQ plots, are commonly used for GLMs with
a quantitative response variable. These plots are described in SAS System for Statistical
Graphics, First Edition, Section 3.5 and illustrated there in Section 5.4.2.

The graphical principle is that standardized residuals from a specified distribution
against quantiles from that distribution should plot along a line through the origin with
slope 1. The NQPLOT macro (see SAS System for Statistical Graphics, First Edition, Sec-
tion A.1.10) plots residuals against their normal quantiles with a 95% confidence envelope,
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which makes it easier to determine when residuals stray far enough from the line to be
considered worrisome.

For generalized linear models, several enhancements to these ideas have been suggested.
First, model departures and outliers are often easier to see for discrete data when the ab-
solute values of residuals are plotted because large positive and negative values are sorted
together. This gives the half-normal plot, in which the absolute values of residuals, ar-
ranged in increasing order, |r |(i), are plotted against |z|(i) = �−1{(N + i − 1

8 )/(2N + 1
2 )}.

All outliers will then appear in the upper-right corner of such a plot, as points separated
from the trend of the remaining cells.

Second, the normal-theory reference line |r |(i) = |z|(i) and the normal-theory confi-
dence envelope may not be appropriate for generalized linear models (or even ordinary
linear models with small sample size). Atkinson (1981) proposed replacing these with a
simulated envelope and reference line obtained by simulating residuals from the assumed
distribution. These reference quantities are calculated in the following way for a log-linear
model.

For each cell, 19 additional observations are generated from a Poisson distribution with
mean m̂i , the expected frequency in this cell under the fitted model. The same model fitted
to the actual data is then fit to each of these simulated datasets, giving a new set of resid-
uals for each simulation. For each set, sort the absolute residuals, and obtain the mean,
minimum, and maximum. In the half-normal plot, the curve for the mean absolute sim-
ulated residual serves as the data-based reference line instead of the normal-theory line
|r |(i) = |z|(i); similarly, curves for the minimum and maximum of the 19 simulated datasets
may replace the normal-theory confidence limits.

The HALFNORM macro (Appendix A.10) performs this simulation for any generalized
linear model fit with PROC GENMOD with the standard error distributions (normal, bino-
mial, Poisson, gamma) and produces a half-normal plot with the simulated mean and 95%
reference curves.12 These plots are illustrated in the examples that follow.

7.7.3 Model Diagnostics with PROC GENMOD

and the INFLGLIM Macro

The observation statistics calculated by PROC GENMOD include most of the residuals de-
scribed for logistic regression models in Section 6.6, but they do not include the “hat”
value measure of leverage or the influence measures, Cook’s D (Ci ), G2

(−i), and χ2
(−i).

In terms of the variables in the OBSTATS dataset, the hat values, hii , may be calculated as
HAT = HESSWGT * STD**2, where STD is the standard error of xT

i β. Cook’s D, as defined
in Equation 7.28, may be calculated as COOKD = HAT * STRESCHI**2 / (K*(1-HAT)),
where STRESCHI is the adjusted Pearson residual (r �i ), and K is the number of parameters
in the model. The value of K may be obtained from PROC GENMOD as the sum of the DF
values in the PARMEST dataset.

In addition, the OBSTATS dataset does not include the factor (CLASS) variables from the
input dataset, so these variables must be merged with the OBSTATS dataset to create plots
in which the observations (cells of the contingency table) are labeled meaningfully.

These calculations and a variety of plots are carried out by the INFLGLIM macro (see
Appendix A.11). The following example illustrates how to do these calculations directly
and the use of the INFLGLIM macro.

12Flores and Flack (1990) make the reasonable suggestion to replace the mean, minimum, and maximum by resis-
tant, but otherwise equivalent, values—namely, the median and median ±1.5IQR, where IQR is the interquartile
range. This suggestion is not yet implemented in the HALFNORM macro.
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EXAMPLE 7.11 Student opinion about the Vietnam war

The revised model, with linear effects of year on each logit and with graduate students
treated as YR=7 as shown in Figure 7.19, was fit using PROC CATMOD. However, influence
diagnostics are easier to obtain using PROC GENMOD. The same model can be fit using
PROC GENMOD by defining a dummy variable for women and an interaction between YR
and a dummy variable for men.

data vietnam;
set vietnam;
yr = year + 2*(year=5);
mlin = yr * (sex=’M’);
female = (sex=’F’);
cell = trim(sex)|| put(year,1.)|| trim(put(response,letter.));
label yr="Year + 2(Grad)";

proc genmod data=vietnam;
class year sex response;
model count = year|sex response|mlin response|female /

dist=poisson obstats residuals;
make ’obstats’ out=obstats;

Normally, one would need to merge the input dataset with the OBSTATS and calculate hat
values, Cook’s D, or other quantities for plotting:

%let k=8;
data obstats;

merge vietnam obstats;
h = hesswgt * std**2;
cookd = streschi**2 * h/((1-h) * &k);

where K=8 is the number of estimated parameters.
Instead, the INFLGLIM macro (Appendix A.11) automates these steps and gives various

influence plots of residuals from a given model. The macro plots all combinations of the
variables given by the GY parameter against the variables given by the GX parameter, using
a bubble symbol whose size is proportional to the BUBBLE parameter, usually Cook’s D.

This example plots the one-step estimates of change in deviance (G2
(−i), or DIFDEV)

due to deleting each cell against hat values, using bubble symbols with area proportional to
Cook’s D. The INFL parameter determines the criterion for labeling potentially influential
points.

%inflglim(data=vietnam, resp=count,
class=year sex response,
model= year|sex response|mlin response|female,
dist=poisson, id=cell,
infl=%str(difdev>4 or &bubble>1 or hat>1.5*&hcrit),
gy=difdev, gx=hat, bubble=cookd);

This plot (Figure 7.20) shows that there are still two large residuals: 4th-year men
choose response B substantially less often than predicted (accounting for over one-third
of the model deviance), and first-year women choose response C less than predicted. The
analysis is completed with a half-normal plot of these residuals, shown in Figure 7.21. Al-
though there is evidence of non-normality in the distribution of residuals, even the largest
values are within the simulated envelope.
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Figure 7.20 Influence plot for model R = S + Ylin(M), Graduate students=7
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Figure 7.21 Half-normal plot for model R = S + Ylin(M), Graduate students=7
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%halfnorm(data=vietnam, resp=count,
class=sex year response,
model=year|sex response|mlin response|female,
dist=poisson, id=cell);

EXAMPLE 7.12 Berkeley admissions

These diagnostic plots may also be illustrated with the Berkeley admissions data using the
log-linear model [AD][G D] or the equivalent logit model, logit(Admit) = α+βD

i . Recall
that this model fit well, except in Department A. To give useful labels for influential cells,
first combine the factor variables into a character identifier, CELL.

data berkeley;
set berkeley;
cell = trim(put(dept,dept.)) ||

gender ||
trim(put(admit,yn.));

Ask for an influence plot of adjusted Pearson residuals against hat values (showing Cook’s
D by bubble size, by default):

%inflglim(data=berkeley, class=dept gender admit,
resp=freq, model=admit|dept gender|dept, dist=poisson, id=cell,
gx=hat, gy=streschi);

The plot (Figure 7.22) clearly indicates that the only cells that do not fit (|ri | > 2) are
for Department A. Notice, also, that the cells for males applying to this department (with
high expected frequencies) have large leverage and, therefore, large influence (Cook’s D)
on this model.

Figure 7.22 Influence plot for Berkeley admissions data, Model [AD][GD]. Bubble areas are propor-
tional to Cook’s D.
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To illustrate why adjusted residuals are preferable to the (crudely standardized) resid-
uals, plot the estimated residual standard error,

√
1 − hii , against fitted cell frequency for

this model. This plot (Figure 7.23) is produced as follows:

%inflglim(data=berkeley, class=dept gender admit,
resp=freq, model=dept|gender dept|admit, dist=poisson, id=cell,
gx=pred, gy=seres);

Figure 7.23 Residual standard errors vs. fitted frequencies for Berkeley admissions data, Model
[AD][GD]
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You can see that the standard errors decrease nearly linearly with estimated expected
frequency, and the most influential cells (AM+ and AM- for males in Department A) have
small standard errors, so their unadjusted residuals are most severely underestimated. That
is, cells with large expected frequency are often highly influential, but their (unadjusted)
residuals are underestimated.

Finally, a half-normal plot for this model is shown in Figure 7.24, produced with the
HALFNORM macro.

%halfnorm(data=berkeley, class=dept gender admit,
resp=freq, model=dept|gender dept|admit, dist=poisson, id=cell);

By default, the cells with the largest 5 absolute residuals are labeled. This plot clearly
shows that the model fits well, except in Department A.
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Figure 7.24 Half-normal residual plot for Berkeley admissions data, Model [AD][GD]
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7.7.4 Model Diagnostics with PROC CATMOD

For situations where an equivalent model cannot be fit with PROC GENMOD, the hat val-
ues and Cook’s D can still be obtained from the output dataset from PROC CATMOD. The
technique described here is based on the idea (Christensen, 1997) that a log-linear model is
essentially a regression model for log frequency, which can be fit by weighted least-squares
regression. Here are the steps:

1. Fit the log-linear model, obtaining the cell frequencies ni and estimated expected fre-
quencies m̂i in a dataset (use the statement RESPONSE / OUT=datasetname, as illus-
trated in Example 7.9).

2. Use PROC REG to calculate a weighted regression and obtain the regression diagnostics
(e.g., H and COOKD) with an OUTPUT statement. Fit the regression with:

independent variables: Dummy variables for all marginals and association terms in
the log-linear model. (PROC REG does not provide a CLASS statement.)

dependent variable: The “working” response, yi = log(m̂i )+ (ni − m̂i )/m̂i

weights: m̂i

3. Leverages will be correctly reported in the output. The adjusted residuals, however,
will have been divided by

√
M SE , and the Cook’s D values will have been divided by

M SE . For a model with k parameters and N cells, the average leverage will be k/N , so
a value hii > 2k/N would be considered “large”.



316 Visualizing Categorical Data

EXAMPLE 7.13 Berkeley admissions

This example continues with the results from model [AD][G D] to illustrate the computa-
tions with the results from PROC CATMOD. The expected frequencies were obtained using
the option PRED=FREQ in the MODEL statement, as shown here:

proc catmod order=data data=berkeley;
weight freq;
model dept*gender*admit=_response_ /

ml noiter noresponse nodesign noprofile pred=freq ;
response / out=predict;
loglin admit|dept dept|gender / title=’Model (AD,DG)’;

In the PREDICT dataset, m̂i is named _PRED_, ni is _OBS_, and ei = ni − m̂i is _RESID_.
The working response may be calculated in a DATA step as follows:

data rdat;
set predict;
drop _sample_ _type_ _number_;
where (_type_=’FREQ’);
cell = trim(put(dept,dept.)) ||

gender ||
trim(put(admit,yn.));

*-- Working response;
y = log(_pred_) + _resid_/_pred_;

Fitting the regression model for the working response using PROC REG is conceptually sim-
ple, though tedious because PROC REG (like PROC LOGISTIC) cannot generate the dummy
variables itself. This may be done in a DATA step, or with PROC GLMMOD, or using the
DUMMY macro (Appendix A.7) and the INTERACT macro (Appendix A.13). This example
illustrates using the macro programs; by default, they append the new variables to the input
dataset.

%dummy(data=rdat, var=admit gender dept, prefix=a g d);
%interact(v1=a0, v2=d1 d2 d3 d4 d5, prefix=ad);
%interact(v1=gf, v2=d1 d2 d3 d4 d5, prefix=gd);

proc reg data=rdat outest=est;
id cell;
weight _pred_;
model y = a0 gf d1-d5 ad11-ad15 gd11-gd15;
output out=regdiag

h=hat cookd=cookd student=studres;

In the final step, the
√

M SE is obtained from the OUTEST dataset, and the adjusted residuals
and Cook’s D may be calculated.

data regdiag;
set regdiag;
retain _rmse_;
if _n_=1 then set est(keep=_rmse_ );
adjres = studres * _rmse_;
cookd = cookd * _rmse_**2;

These quantities, shown in Output 7.13, may then be plotted in the forms shown earlier
using the INFLGLIM macro.
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Output 7.13 Diagnostics for the model [AD][GD] calculated from PROC CATMOD output

Diagnostics by weighted regression

CELL _OBS_ _PRED_ _RESID_ COOKD HAT ADJRES

AM+ 512 531.431 -19.431 22.305 0.959 -4.153
AM- 313 293.569 19.431 11.893 0.925 4.153
AF+ 89 69.569 19.431 2.087 0.685 4.153
AF- 19 38.431 -19.431 0.724 0.430 -4.153
BM+ 353 354.188 -1.188 0.883 0.984 -0.504
BM- 207 205.812 1.188 0.507 0.973 0.504
BF+ 17 15.812 1.188 0.026 0.648 0.504
BF- 8 9.188 -1.188 0.009 0.395 -0.504
CM+ 120 113.998 6.002 0.058 0.581 0.868
CM- 205 211.002 -6.002 0.143 0.773 -0.868
CF+ 202 208.002 -6.002 0.140 0.770 -0.868
CF- 391 384.998 6.002 0.295 0.876 0.868
DM+ 138 141.633 -3.633 0.036 0.687 -0.546
DM- 279 275.367 3.633 0.086 0.839 0.546
DF+ 131 127.367 3.633 0.031 0.652 0.546
DF- 244 247.633 -3.633 0.076 0.821 -0.546
EM+ 53 48.077 4.923 0.055 0.496 1.001
EM- 138 142.923 -4.923 0.273 0.831 -1.001
EF+ 94 98.923 -4.923 0.172 0.755 -1.001
EF- 299 294.077 4.923 0.620 0.918 1.001
FM+ 22 24.031 -2.031 0.026 0.553 -0.620
FM- 351 348.969 2.031 0.672 0.969 0.620
FF+ 24 21.969 2.031 0.022 0.511 0.620
FF- 317 319.031 -2.031 0.613 0.966 -0.620

7.8 Multivariate Responses

In many studies, there may be several categorical responses observed along with one or
more explanatory variables. In a clinical trial, for example, the efficacy of a drug might
be the primary response, but the occurrence of side-effects might give rise to additional
response variables of substantive interest. Or, in a study of occupational health, the occur-
rence of two or more distinct symptoms might be treated as response variables.

If there are no explanatory variables, then the problem is simply to understand the joint
distribution of the response categories; and the log-linear models and graphical displays
described earlier are sufficient. Otherwise, in these cases, one usually wants to understand
how the various responses are affected by the explanatory variables. Moreover, it may also
be important to understand how the association between the categorical responses depends
on the explanatory variables, that is, how both the marginal distributions of the responses
and their joint distribution depends on the predictors.

Although the general log-linear model is often used in these situations, there are special
reparameterizations that may be used to separate the marginal dependence of each response
on the explanatory variables from the interdependence among the responses.

Suppose that categorical responses, R1, R2, . . . , have been observed, together with pos-
sible explanatory variables, E1, E2, . . ., and let πi j ··· be the joint probability of all the
responses and explanatory variables; also use x to refer to the values of E1, E2, . . ..

Note that the minimal model of independence of all responses from each other and
from the explanatory variables is the log-linear model [R1][R2] · · · [E1 E2 · · ·] (i.e., all as-
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sociations among the Ei must be included). A no-effect model in which the responses
do not depend on the explanatory variables, but may be associated among themselves,
is [R1 R2 · · ·][E1 E2 · · ·]. However, these models do not separate the individual (marginal)
effects of E1, E2 . . . on each Ri from their associative effects.

There are three useful general approaches which do separate these effects:

• Model the marginal dependence of each response, Ri separately on E1, E2, . . ., and, in
addition, model the interdependence among the responses.

• Model the joint dependence of all responses on E1, E2, . . ., parameterized so that
marginal and associative effects are delineated.

• Construct simultaneous models, estimated together, for the marginal and joint depen-
dence of the responses on the explanatory variables.

The first approach is the simplest, an informative starting place, and is satisfactory in
the (unlikely) case that the responses are not associated, or that the associations among
responses do not vary much over the explanatory variables (i.e., no terms like [R1 R2 E j ]
are required). In the clinical trial example, you would construct separate log-linear or logit
models for efficacy of the drug and for occurrence of side-effects, and supplement these
analyses with mosaic or other displays showing the relations between efficacy and side-
effects. This approach is carried out with PROC CATMOD by using the RESPONSE LOGITS
statement.

In the second approach, the joint probabilities, πi j ···, are recast to give separate infor-
mation regarding the dependence of the univariate marginal probabilities πi•, π• j , . . ., on
the explanatory variables and the dependence of the intra-response associations on the ex-
planatory variables. This approach is carried out by specifying a transformation of the joint
probabilities on the RESPONSE statement.

The third approach, exemplified by Lang and Agresti (1994), is the most general, but it
requires specialized software for model fitting.

Two related models are discussed by McCullagh and Nelder (1989, Section 6.5). This
example considers only the case of two binary responses. Let x refer to the values of the
explanatory variables and let πi j (x) be the joint probabilities in cell R1 = i, R2 = j .
The bivariate logistic model arises from a linear transformation of the cell probabilities to
probabilities γ, which include the univariate margins, given by

γ = Lπ (7.29)

where L is a matrix of 0s and 1s of the form of a factorial design matrix transposed. In the
2 × 2 case,

γ =




π1•
π2•
π•1

π•2

π11

π12

π21

π22




=




1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






π11

π12

π21

π22


 (7.30)

There are, of course, only three linearly independent probabilities because
∑∑

πi j =
1. The bivariate logistic model is formulated in terms of factorial contrasts on the elements
of γ, which express separate models for the two logits and the log odds ratio. The model is
expressed as

η = C log γ = C log Lπ ,
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where C is a matrix of contrasts. In the 2 × 2 case, the usual contrasts may be defined by

η =

 η1

η2

η12


 =


 logit π1•

logit π•1

θ


 =


 1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 −1 1







π1•
π2•
π•1

π•2

π11

π12

π21

π22




(7.31)

Thus, this is modeling the marginal odds of each response, together with the log odds ratio
θ simultaneously.

Specific models are then formulated for the dependence of η1 (x) , η2 (x) and η12 (x) on
the explanatory variables. For example, with one quantitative explanatory variable, x , the
model 

 η1

η2

η12


 =


 α1 + β1x
α2 + β2x

θ


 (7.32)

asserts that the log odds of each response changes linearly with x , while the odds ratio be-
tween the responses remains constant. In the general form given by McCullagh and Nelder
(1989), the submodels in Equation 7.32 may each depend on the explanatory variables in
different ways. For example, the logits η1 and η2 could both depend quadratically on x ,
while an intercept-only model could be posited for the log odds ratio η12.

In PROC CATMOD, such general models can be tested only by specifying the design ma-
trix directly in the MODEL statement. The matrices L and C in Equations 7.30 and 7.31 are
specified in the RESPONSE statement.

The second model is a bivariate log-linear model, obtained by taking L = I in Equa-
tion 7.29, so that γ = π. Then a log-linear model of the form

η(x) = C log π

expresses contrasts among log probabilities as linear functions of the explanatory variables.
For the 2 × 2 case, take the contrasts as

η =

 l1

l2

η12


 =


 1 1 −1 −1

1 −1 1 −1
1 −1 1 −1






log π11

log π12

log π21

log π22


 (7.33)

and models for the dependence of l1 (x) , l2 (x) and η12 (x) are expressed in the same way
as Equation 7.32. The estimates of the odds ratio η12 are the same under both models. The
marginal functions are parameterized differently, however, but lead to similar predicted
probabilities. The fitting and graphing of these models is illustrated in the next example.

EXAMPLE 7.14 Breathlessness and wheeze in coal miners

Example 3.9 examined the association between the occurrence of two pulmonary con-
ditions, breathlessness and wheeze, among coal miners, classified by age (Ashford and
Snowden, 1970). Figure 3.7 showed fourfold displays focused on the odds ratio for the
co-occurrence of these symptoms; and Figure 3.8 plotted these odds ratios against age di-
rectly. Here, consider models that examine the changes in prevalence of the two symptoms
over age, together with the changes in their association.
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As a first step, calculate the log odds for breathlessness and for wheeze, and calculate
the log odds ratio for their association in each 2 × 2 table. These values are shown in
Output 7.14. The log odds ratios are the same values plotted in Figure 3.8 (but the youngest
age group was not included in the earlier analysis).

data ashford;
input age @;
age2 = age**2;
do breath = 1, 0;

do wheeze = 1, 0;
input count @;
output;
end;

end;
label breath=’Breathlessness’

wheeze=’Wheeze’
age=’Age Group’;

datalines;
20 9 7 95 1841
25 23 9 105 1654
30 54 19 177 1863
35 121 48 257 2357
40 169 54 273 1778
45 269 88 324 1712
50 404 117 245 1324
55 406 152 225 967
60 372 106 132 526
;
proc transpose out=ashford1 prefix=r;

var count;
by age;

data ashford1;
set ashford1;
drop _name_;
logit1 = log( (r1 + r2 + .5) / (r3 + r4 + .5) );
logit2 = log( (r1 + r3 + .5) / (r2 + r4 + .5) );
logodds= log( ((r1+.5)*(r4+.5))/((r2+.5)*(r3+.5)) );
label logit1=’Logit(Breathlessness)’

logit2=’Logit(Wheeze)’;
proc print; id age;

Output 7.14 Empirical logits and log odds ratios for breathlessness and wheeze

AGE R1 R2 R3 R4 LOGIT1 LOGIT2 LOGODDS

20 9 7 95 1841 -4.76528 -2.87294 3.19560
25 23 9 105 1654 -3.99154 -2.56075 3.65825
30 54 19 177 1863 -3.32366 -2.09578 3.37903
35 121 48 257 2357 -2.73598 -1.84930 3.13269
40 169 54 273 1778 -2.21692 -1.42100 3.00688
45 269 88 324 1712 -1.73985 -1.10978 2.77699
50 404 117 245 1324 -1.10180 -0.79724 2.92171
55 406 152 225 967 -0.75855 -0.57254 2.43681
60 372 106 132 526 -0.31931 -0.22611 2.63176
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Figure 7.25 Empirical logits and log odds ratios for breathlessness and wheeze. The lines show
separate linear regressions for each function.
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Plotting both logits and the log odds against age gives the graph shown in Figure 7.25.
The plotting step is straight-forward and is not shown. Notice that both symptoms, while
quite rare among young miners, increase steadily with age (or years working in the mine).
There is a hint of curvilinearity, particularly in the logit for breathlessness. The decline
in the odds ratio with age reflects selection, as miners who had retired for health or other
reasons were excluded from the study.

You can fit ordinary log-linear models to this data as shown below, giving likelihood-
ratio goodness-of-fit G2 values shown in Table 7.8. Note that in Models 0–2, age is treated
as a 9-level factor. In Models 3–4, age is treated as a quantitative variable (symbolized
as x in the model terms) by declaring AGE and AGE2 (x2) in a DIRECT statement.13 PROC
CATMOD does not allow quantitative variables to appear on the left-hand side in a MODEL
statement. Consequently, these models are fit in a separate PROC CATMOD step, where they
are expressed as _RESPONSE_*AGE and _RESPONSE_*AGE2 on the right-hand side.

Table 7.8 Log-linear models fit to Ashford & Snowden data

Model Terms df G2 p-value G2/df

0 [B][W ][A] 25 6939.07 0.0000 277.56
1 [BW ][A] 24 2701.94 0.0000 112.58
2 [BW ][B A][W A] 8 26.69 0.0008 3.34
3 [BW ][Bx][W x] 21 41.46 0.0049 1.97
4 [BW ][Bx2][W x2] 18 17.60 0.4825 0.97

13In these model formulae, a term like [Bx2] refers to a quadratic model, η1 = α1+β11x+β11x2 in Equation 7.32.
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title ’Loglinear models for B and W’;
proc catmod order=data data=ashford;

weight count;
model breath*wheeze*age = _response_ /

ml noiter noresponse noprofile nodesign nogls;
loglin breath wheeze age / title=’0: Minimal model: [B] [W] [A]’;

run;
loglin breath|wheeze age / title=’1: Null age: [BW] [A]’;

run;
loglin breath|wheeze breath|age wheeze|age/ title=’2: [BW] [BA] [WA]’;

proc catmod order=data data=ashford;
weight count;
direct age age2;
model breath*wheeze = _response_ _response_*age/

ml noiter noresponse noprofile nodesign nogls;
loglin breath|wheeze / title=’3: [BW] [Bx] [Wx]’;

run;
model breath*wheeze = _response_ _response_*age _response_*age2/

ml noiter noresponse noprofile nodesign nogls;
loglin breath|wheeze / title=’4: [BW] [Bx^2] [Wx^2]’;

run;

Model 0 is the minimal model of mutual independence; Model 1 allows association
of breathlessness and wheeze, but independent of age. Neither of these makes any sense,
given what we have seen graphically. Model 2 allows both breathlessness and wheeze to
depend on age as a factor. The quantitative models for age, Models 3 and 4 correspond to
what is apparent in Figure 7.25. Model 3 is equivalent in goodness-of-fit to the bivariate
log-linear model (Equation 7.33), but is parameterized in terms of generalized logits

 l11,22

l12,22

l21,22


 =


 logπ11/π22

logπ12/π22

logπ21/π22


 =


 α1 + β1x

α2 + β2x
α12 + β12x


 .

Model 4 adds terms in x2 to each of these equations. From the G2 and G2/df values in
Table 7.8, it appears that only Model 4 is acceptable.

Log-linear models parameterized as in Equation 7.33 may be fit by specifying the logit
contrasts shown there in the RESPONSE statement. For instance, the following model has
the same G2 as Model 3, but the fitted function values are those of l̂1, l̂2 and the odds ratio
η̂12.

proc catmod order=data data=ashford;
direct age ;
weight count;
response 1 1 -1 -1,

1 -1 1 -1,
1 -1 -1 1 log / out=predict;

model breath*wheeze = age / noiter nogls prob noprofile;
title ’[BW] [Bx] [Wx], Loglinear, logit contrasts’;

The bivariate logit model is more complex because the RESPONSE statement must in-
clude both the L matrix and the C matrix (both from Equation 7.30). Nevertheless, the
fitted functions correspond exactly to what is plotted in Figure 7.25. Model fit statistics
and the parameter estimates for the linear model are shown in Output 7.15.
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proc catmod order=data data=ashford;
direct age ;
weight count;
response /* C matrix */
1 -1 0 0 0 0 0 0, /* logit1 */
0 0 1 -1 0 0 0 0, /* logit2 */
0 0 0 0 1 -1 -1 1 /* logodds */
log
1 1 0 0, /* L matrix */
0 0 1 1,
1 0 1 0,
0 1 0 1,
1 0 0 0,
0 1 0 0,
0 0 1 0,
0 0 0 1 / out=predict;

model breath*wheeze = age / noiter nogls;
title ’[BW] [Bx] [Wx], Bivariate logit model’;

Output 7.15 Model fit and parameter estimates for the linear bivariate logit model

[BW] [Bx] [Wx], Bivariate logit model

ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob
--------------------------------------------------
INTERCEPT 3 3957.55 0.0000
AGE 3 2145.10 0.0000

RESIDUAL 21 30.15 0.0890

ANALYSIS OF WEIGHTED-LEAST-SQUARES ESTIMATES

Standard Chi-
Effect Parameter Estimate Error Square Prob
----------------------------------------------------------------
INTERCEPT 1 -6.3543 0.1210 2757.08 0.0000

2 -4.0894 0.0815 2515.74 0.0000
3 4.0665 0.2879 199.55 0.0000

AGE 4 0.1025 0.00248 1703.20 0.0000
5 0.0651 0.00180 1310.15 0.0000
6 -0.0262 0.00594 19.41 0.0000

The observed and fitted function values (the logits and odds ratio) are plotted as shown
below, giving the graph in Figure 7.26. The fitted relations are very similar to those shown
in Figure 7.25, although the models for the marginal functions are parameterized quite
differently.
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proc sort data=predict;
where (_type_=’FUNCTION’);
by _number_;

%label(data=predict, x=age, y=_pred_,
color=scan(’red blue black’, _number_),
text=scan(’Breathlessness Wheeze Odds_Ratio’, _number_),
pos=scan(’9 1 3’, _number_), subset=(age=35), out=_lab_);

%points(data=predict, x=age, y=_obs_,
color=scan(’red blue black’, _number_),
symbol=scan(’square triangle dot’, _number_), size=2, out=_pts_);

data _anno_;
set _lab_ _pts_;

proc gplot data=predict;
plot _pred_ * age = _number_ /

vaxis=axis1 vm=1 hm=1 haxis=axis2 anno=_anno_ nolegend;
symbol1 v=none i=join c=red;
symbol2 v=none i=join c=blue;
symbol3 v=none i=join c=black;
axis1 label=(a=90) order=(-5 to 4) offset=(4);
axis2 offset=(3,5);
label _pred_ = ’Log Odds’;

Figure 7.26 Observed (points) and fitted (lines) logits and log odds ratios for the linear bivariate logit
model
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The quadratic model, corresponding to Model 4 may be fit and plotted exactly in the same
way, changing the MODEL statement in the lines above to

model breath*wheeze = age age2;

where AGE2 has also been declared in the DIRECT statement. The quadratic model is
graphed in Figure 7.27.
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Figure 7.27 Observed (points) and fitted (curves) logits and log odds ratios for quadratic bivariate
logit model
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The model fit statistics for these bivariate logit models (Table 7.9) indicate that both
models fit better than their log-linear counterparts. The table also shows an intermediate
model, Model 4m, which was fit by specifying the design matrix numerically in the MODEL
statement. In this model, the log odds ratio has only a linear term in age, while breathless-
ness and wheeze vary quadratically.

Table 7.9 Bivariate logit models fit to Ashford & Snowden data

Model Terms df χ2 p-value χ2/df

3 [BW x][Bx][W x] 21 30.15 0.0890 1.44
4m [BW x][Bx2][W x2] 19 17.07 0.5853 0.94
4 [BW x2][Bx2][W x2] 18 16.94 0.5270 0.94

On statistical grounds, you might be led to choose the quadratic model as the best fit,
but the graphical evidence suggests that the difference between them is slight. Figure 7.26
and Figure 7.27 are also both quite similar to the plot of the empirical logits in Figure 7.25,
but the fitted models give a simplified description. Thus, Model 3 may be summarized as

 ηB

ηW

ηBW


 =


 −6.354 + 0.102 age

−4.089 + 0.065 age
4.066 − 0.026 age




For each five years, the odds of a miner showing breathlessness are multiplied by exp(5 ×
0.102) = 1.67, a 67% increase; the odds of wheeze increase by exp(5 × 0.065) = 1.38,
a 38% increase. Whatever model we accept, the respiratory health of these miners clearly
decreases with age.
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7.8.1 Examining Relations

When there is more than one explanatory variable and several responses, it is useful to
begin with a more thorough visual examination of the relationships within and between
these sets. Some useful graphical displays include

• mosaic displays showing the marginal relationships among the response variables and
of the explanatory variables, each collapsed over the other set;

• partial mosaics or fourfold displays of the associations among the responses, stratified
by one or more of the explanatory variables;

• plots of empirical logits and log odds ratios, as in Figure 7.25.

These displays can, and should, inform our search for an adequate descriptive model.

EXAMPLE 7.15 Toxaemic symptoms in pregnancy

Brown, et al. (1983) gave the data in Table 7.1014 on the occurrence of signs of toxaemia
(hypertension and protein urea) among 13,384 expectant mothers in Bradford, England,
in their first pregnancy. The mothers are classified by social class and by the number of
cigarettes smoked per day. Thus, there are two response variables and two explanatory
variables in this 2 × 2 × 5 × 3 table.

Table 7.10 Toxaemic symptoms of mothers during pregnancy, from Brown et al. (1983)

Smoking 0 1-19 20+
Hypertension Yes No Yes No Yes No

Protein urea Yes No Yes No Yes No Yes No Yes No Yes No

Social Class

1 28 82 21 286 5 24 5 71 1 3 0 13
2 50 266 34 785 13 92 17 284 0 15 3 34
3 278 1101 164 3160 120 492 142 2300 16 92 32 383
4 63 213 52 656 35 129 46 649 7 40 12 163
5 20 78 23 245 22 74 34 321 7 14 4 65

The questions of main interest are how the occurrence of each symptom varies with
class and smoking, and how the association between them varies. It is useful, however, to
examine first the marginal relationship between the two responses and between the two
predictors. These are produced with the MOSAIC macro as shown below. The parameter
PLOTS=2 gives a plot of the first two variables, according to the order in which the data is
sorted. Re-sorting to make HYPER and UREA vary most rapidly gives the second plot. Both
plots are shown in Figure 7.28.

%include catdata(toxaemia);

data toxaemia;
set toxaemia;
sm = put(smoke, smoke.);

%mosaic(data=toxaemia, var=Class Sm Hyper Urea, plots=2, htext=2,
title=%str(Predictors: Class, Smoke));

proc sort data=toxaemia;
by class sm descending urea descending hyper;

%mosaic(data=toxaemia, var= Hyper Urea Sm Class, plots=2, sort=no, htext=2,
title=%str(Hypertension and Protein Urea));

14P. J. Brown, J. Stone, C. Ord-Smith, “Toxaemic Signs during Pregnancy,” Journal of the Royal Statistical
Society, Series C, Applied Statistics. Copyright c© 1983 by the Royal Statistical Society.
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Figure 7.28 Mosaic displays for toxaemia data: Predictor and Response associations
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Notice in Figure 7.28 that the majority of the mothers are in the third social class and that
Smoking is negatively related to Social Class, with the highest levels of Smoking in classes
4 and 5. Within the responses, the great majority of women exhibit neither symptom, but
showing one symptom makes it more likely to show the other. Marginally, Hypertension is
somewhat more prevalent than Protein Urea.

Next examine how the association between responses varies with Social Class and with
Smoking. Figure 7.29 shows a collection of partial mosaic plots of the association between
Hypertension and Urea, for each level of Smoking, collapsed over Social Class. Figure 7.30
is similar, but stratified by Social Class. These statements produce Figure 7.29:

proc freq data=toxaemia order=data;
tables hyper * urea * smoke / out=sum1;
weight count;

%mosaic(data=sum1, var= Hyper Urea Smoke, sort=no, by=Smoke, htext=3);

Figure 7.29 Toxaemia data: Response associations by Smoking

Urea -  Urea +  

H
y
p
e
r 

- 
H

y
p
e
r 

+
 Smoke: 1       

Urea -  Urea +  

H
y
p
e
r 

- 
H

y
p
e
r 

+
 Smoke: 2       

Urea -  Urea +

H
y
p
e
r 

- 
H

y
p
e
r 

+
 Smoke: 3       

Figure 7.30 Toxaemia data: Response associations by Social Class
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Ignoring Social Class, the association between Hypertension and Protein Urea decreases
with Smoking. Ignoring Smoking, the association is greatest in Social Class 3. However,
these two symptoms are positively associated in all cases.

Our initial overview of the data is completed by calculating and plotting the empirical
logit for each symptom and the log odds ratio, within each class-smoke population. This
is done in the same way as in Example 7.14, except that there are now two explanatory
factors. Consequently, it is most useful to make separate plots for each of the logits and the
log odds ratio; each plot shows the response measure against Class, with separated curves
for the levels of Smoking. The logits for Hypertension and for Protein Urea are shown in
Figure 7.31; the log odds ratio is shown in Figure 7.32.

Figure 7.31 Logits for Hypertension and for Protein Urea, by Social Class and Smoking
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From Figure 7.31 it may be seen that the prevalence of these symptoms has a possibly
complex relation to Social Class and Smoking. However, the mosaic for these predictors
in Figure 7.28 has shown that several of the class-smoking categories are quite small (par-
ticularly heavy smokers in Class 1), so the response effects for these classes will be poorly
estimated. Taking this into account, you may suspect that Protein Urea varies with Social
Class, but not with Smoking, while the prevalence of Hypertension may truly vary with
neither, just one, or both of these predictors.

The association between the response symptoms, shown in Figure 7.32, is clearer, once
you take the variation in sample sizes into account. Except for the heavy smokers, particu-
larly in social classes 1 and 2, the log odds ratio appears to be relatively constant.

When there are no quantitative predictors, and when the odds ratio is relatively constant,
it is easier to fit ordinary log-linear models than to use the bivariate logit formulation of
the previous example.

You can fit these models using the LOGLIN statement as shown below. There are two
zero cells in Table 7.10. In the log-linear formulation, PROC CATMOD treats these as struc-
tural zeros, so first replace the zeros with a small positive number. The minimal model
[C S][H ][U ] fits the marginal association of the numbers in each Class-Smoking category,
but asserts that the responses H and U are independent, which is contradicted by the data.
Take [C S][HU ] as the null model (Model 0), asserting no relationship between response
and predictor variables.
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Figure 7.32 Log odds ratio for Hypertension, given Protein Urea, by Social Class and Smoking
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%include catdata(toxaemia);
data toxaemia;

set toxaemia;
if count=0 then count=1E-10;

*-- Loglinear models;
proc catmod order=data

data=toxaemia;
weight count;
model hyper*urea*class*smoke = _response_ /

ml noiter noresponse noprofile nodesign;
loglin class|smoke hyper urea / title=’Model -1: CS H U’;

run;
loglin class|smoke hyper|urea / title=’Model 0: CS HU’;

run;
loglin class|smoke hyper|urea hyper|smoke urea|class /

title=’Model 1: CS HU SH CU’;
run;

loglin class|smoke|hyper|urea @2 /
title=’Model 2: CS CH CU HU SH CU’;

run;
loglin class|smoke|hyper class|urea hyper|urea /

title=’Model 3: CSH CU HU’;
run;

loglin class|smoke|hyper class|urea smoke|urea hyper|urea /
title=’Model 4: CSH CU SU HU’;

run;
loglin class|smoke|hyper class|smoke|urea hyper|urea /

title=’Model 5: CSH CSU HU’;
run;
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The fit statistics and some model selection criteria for these and other models are shown
in Table 7.11. The large residual G2 for Model 0 (179.03 on 42 df) indicates substantial
associations between the responses and explanatory variables. Model 1 adds the simple
dependence of Hypertension on Smoking ([SH ]) and that of Urea on Class ([CU ]); Model
2 includes all 2-way terms. In Model 3, Hypertension is allowed to depend on both Class
and Smoking jointly ([C SH ]). In Model 4, an additional dependence of Urea on Smoking
([SU ]) is included, while in Model 5, Urea depends on Class and Smoking jointly ([C SU ]).

Table 7.11 Log-linear models fit to Toxaemia data

Model Terms df χ2 p-value χ2/df AIC R2 Adj. R2

-1 CS H U 43 672.85 0.0000 15.65 586.85 . .
0 CS HU 42 179.03 0.0000 4.26 95.03 0.000 0.000
1 CS HU SH CU 36 46.12 0.1203 1.28 -25.88 0.742 0.699
2 CS CH CU HU SH CU 30 40.47 0.0960 1.35 -19.53 0.774 0.684
3 CSH CU HU 24 26.00 0.3529 1.08 -22.00 0.855 0.746
4 CSH CU SU HU 22 25.84 0.2588 1.17 -18.16 0.856 0.724
5 CSH CSU HU 14 22.29 0.0729 1.59 -5.71 0.875 0.626
6 CSH CSU SHU 12 15.65 0.2079 1.30 -8.35 0.913 0.694
7 CSH CSU CHU SHU 8 12.68 0.1233 1.59 -3.32 0.929 0.628
8 CSHU 0 0.00 . . 0.00 1.000 .

None of these models contain 3-way terms involving both H and U , so these models
assume that the log odds ratio for Hypertension given Urea is constant over the explanatory
variables. Recalling the partial mosaics (Figure 7.29 and Figure 7.30), Models 6 and 7 add
terms that allow the odds ratio to vary, first with Smoking ([SHU ]), and then with Class
([C HU ]) as well.

How do you choose among these models? Model 1 is the smallest whose deviance is
non-significant. Models 3 and 4 both have a smaller ratio of χ2df. For comparing nested
models, also examine the change in deviance as terms are added (or dropped). Thus, going
from Model 1 to Model 2 decreases the deviance by 5.65 on 6 df, while the step from
Model 2 to Model 3 gives a decrease of 14.47, also on 6 df. The AIC statistic, balancing
parsimony and goodness-of-fit, has its minimum value for Model 1, which is adopted here
for this example.

Whatever model is chosen, as a final step, it is important to determine what that model
implies about the original research questions. Because the focus here is on the prevalence
of each symptom and their association, it is helpful to graph the fitted logits and log odds
ratios implied by the model, as done in Figure 7.26 and Figure 7.27.

Example 7.14 fit the bivariate logit model, for which the response functions were the
desired logits and log odds. Here, where we have fit ordinary log-linear models, the fitted
logits can be calculated from the fitted frequencies. To obtain predicted frequencies under
Model 1, use the option PRED=FREQ in the MODEL statement.

proc catmod order=data data=toxaemia;
weight count;
response / out=predict;
model hyper*urea*class*smoke = _response_ / pred=freq

ml noiter noresponse noprofile nodesign;
loglin class|smoke hyper|urea hyper|smoke urea|class /

title=’Model 1: CS HU SH CU’;
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Then, the observed and fitted frequencies can be extracted from the output dataset and
rearranged so that logits and log odds may be calculated.

data predict;
set predict;
where (_type_=’FREQ’);
drop _sample_ _number_ _type_;

proc sort data=predict;
by class smoke hyper urea;

proc transpose data=predict out=fit(drop=_label_) prefix=fit;
by class smoke;
var _pred_;

proc transpose data=predict out=obs(drop=_label_) prefix=obs;
by class smoke;
var _obs_;

data pred;
merge fit obs;
drop _name_;
array f{4} fit1-fit4; *-- Fitted frequencies;
array o{4} obs1-obs4; *-- Observed frequencies;

fhyper = log( (f[1] + f[2] + .5) / (f[3] + f[4] + .5) );
furea = log( (f[1] + f[3] + .5) / (f[2] + f[4] + .5) );
fodds= log( ((f[1]+.5)*(f[4]+.5))/((f[2]+.5)*(f[3]+.5)) );

ohyper = log( (o[1] + o[2] + .5) / (o[3] + o[4] + .5) );
ourea = log( (o[1] + o[3] + .5) / (o[2] + o[4] + .5) );
oodds= log( ((o[1]+.5)*(o[4]+.5))/((o[2]+.5)*(o[3]+.5)) );

label fhyper = ’Logit (Hytertension)’
furea = ’Logit (Protein Urea)’
fodds = ’Log Odds (Hypertension | Urea)’;

format smoke smoke.;

Finally, each measure is plotted separately, showing the fitted values with curves and
the observed values with points. The statements below are repeated for Urea and for Log
Odds. The three graphs are shown in Figure 7.33.

%label(data=pred, x=class, y=fhyper, subset=(class=5),
text=put(smoke, smoke.), pos=6, xoff=.1, out=lab);

%points(data=pred, x=class, y=ohyper,
symbol=scan(’square triangle dot’,smoke),
color=scan(’red blue black’, smoke), size=2, out=_pts_);

data lab;
set lab _pts_;

proc gplot data=pred;
plot fhyper * class = smoke / anno=lab nolegend

vaxis=axis1 haxis=asix2 hm=0 vm=1;
symbol1 v=square h=1 i=join c=red;
symbol2 v=triangle h=1 i=join c=blue;
symbol3 v=dot h=1 i=join c=black;
axis1 label=(a=90) order=(-1.5 to -0.8 by .1);
axis2 offset=(3,9);
title ’Hypertension’;
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Figure 7.33 Toxaemia data: Observed and fitted logits and log odds ratios for Model 1:
[CS][HU][SH][CU]
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We can see from Figure 7.33 that the fitted log odds ratio is in fact nearly constant, while
the log odds for Hypertension depends mainly on Smoking, and that for Protein Urea
depends mainly on Social Class. Yet, the great variability of the observed points around the
fitted curves indicates that these relationships are not well-determined. Adding error bars
showing the standard error around each fitted point would indicate that the data conforms as
closely to the model as can be expected, given the widely different sample sizes. However,
this would make the plots more complex, so it was omitted here. In addition to showing the
pattern of the results according to the fitted model, such graphs also help us to appreciate
the model’s limitations.

7.9 Chapter Summary

• Log-linear models provide a comprehensive scheme to describe and understand the as-
sociations among two or more categorical variables. It is helpful to think of these as
discrete analogs of ANOVA models or of regression models, where the log of cell fre-
quency is modeled as a linear function of predictors.

• Log-linear models may be fit using PROC CATMOD, PROC GENMOD, SAS/INSIGHT, or
SAS/IML. Each of these offers certain advantages and disadvantages.

• Log-linear models typically make no distinction between response and explanatory vari-
ables. When one variable is a response, however, any logit model for that response has
an equivalent log-linear model. The logit form is usually simpler to formulate and test,
and plots of the observed and fitted logits are easier to interpret. Plotting the results of
logit models fit with PROC CATMOD is facilitated by the CATPLOT macro.

• Standard log-linear models treat all variables as unordered factors. When one or more
factors are ordinal, however, log-linear and logit models may be simplified by assign-
ing quantitative scores to the levels of an ordered factor. Such models are often more
sensitive and have greater power because they are more focused.

• The interplay between graphing and fitting is important in arriving at an understanding
of the relationships among variables and an adequate descriptive model that is faithful
to the details of the data.

• Model diagnostic statistics (adjusted residuals, leverage, Cook’s D, etc.) provide impor-
tant ancillary information regarding the adequacy of a log-linear model as a summary
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of the relationships in the data. Half-normal probability plots, tuned to the discrete na-
ture of categorical data, help to detect outlying cells and are provided by the HALFNORM
macro. A variety of diagnostic plots provided by the INFLGLIM macro aid in detecting
unduly influential cells.

• When there are several categorical responses, along with one or more explanatory vari-
ables, some special forms of log-linear and logit models can be used to separate the
marginal dependence of each response on the explanatory variables from the interde-
pendence among the responses.



334



Appendix

A SAS Programs and Macros

A.1 The ADDVAR Macro: Added Variable Plots for Logistic Regression . . 337
A.2 The AGREE Program: Observer Agreement Chart . . . . . . . . . . . 338
A.3 The BIPLOT Macro: Generalized Biplots . . . . . . . . . . . . . . . . 339
A.4 The CATPLOT Macro: Plot Results from PROC CATMOD . . . . . . . . 341
A.5 The CORRESP Macro: Plotting PROC CORRESP Results . . . . . . . . 343
A.6 The DISTPLOT Macro: Plots for Discrete Distributions . . . . . . . . . 346
A.7 The DUMMY Macro: Create Dummy Variables . . . . . . . . . . . . . 346
A.8 The FOURFOLD Program: Fourfold Displays for 2 × 2 × k Tables . . . 348
A.9 The GOODFIT Macro: Goodness-of-Fit for Discrete Distributions . . . . 349

A.10 The HALFNORM Macro: Half-Normal Plots for Generalized
Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

A.11 The INFLGLIM Macro: Influence Plots for Generalized Linear Models . 352
A.12 The INFLOGIS Macro: Influence Plots for Logistic Regression Models . 354
A.13 The INTERACT Macro: Create Interaction Variables . . . . . . . . . . 355
A.14 The LAGS Macro: Lagged Frequencies for Sequential Analysis . . . . . 355
A.15 The LOGODDS Macro: Plot Empirical Logits for Binary Data . . . . . . 358
A.16 The MOSAICS Program: SAS/IML Modules for Mosaic Displays . . . . 359
A.17 The MOSAIC Macro: Mosaic Displays . . . . . . . . . . . . . . . . . 363
A.18 The MOSMAT Macro: Mosaic Matrices . . . . . . . . . . . . . . . . 365
A.19 The ORDPLOT Macro: Ord Plot for Discrete Distributions . . . . . . . 366
A.20 The PANELS Macro: Arrange Multiple Plots in Panels . . . . . . . . . 367
A.21 The POISPLOT Macro: Poissonness Plot . . . . . . . . . . . . . . . 368
A.22 The POWERLOG Macro: Power Analysis for Logistic

Regression Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
A.23 The POWERRxC Macro: Power for 2-Way Frequency Tables . . . . . . 370
A.24 The POWER2x2 Macro: Power for 2 × 2 Frequency Tables . . . . . . 371
A.25 The ROBUST Macro: Robust Fitting for Linear Models . . . . . . . . . 373
A.26 The ROOTGRAM Macro: Hanging Rootograms . . . . . . . . . . . . 373
A.27 The SIEVE Program: Sieve Diagrams . . . . . . . . . . . . . . . . . 374
A.28 The SORT Macro: Sort a Dataset by the Value of a Statistic . . . . . . 375
A.29 The TABLE Macro: Construct a Grouped Frequency Table,

with Recoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
A.30 The TRIPLOT Macro: Trilinear Plots for n × 3 Tables . . . . . . . . . 378
A.31 Utility Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379



336 Visualizing Categorical Data

A.31.1 BARS: Create an Annotate Dataset to Draw Error Bars . . . . 379
A.31.2 EQUATE: Create AXIS Statements for a GPLOT

with Equated Axes . . . . . . . . . . . . . . . . . . . . . . 381
A.31.3 GDISPLA: Device-Independent DISPLAY/NODISPLAY

Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
A.31.4 GENSYM: Generate SYMBOL Statements for

Multiple Curves . . . . . . . . . . . . . . . . . . . . . . . 382
A.31.5 GSKIP: Device Independent Macro for Multiple Plots . . . . . 383
A.31.6 LABEL: Label Points on a Plot . . . . . . . . . . . . . . . . 385
A.31.7 POINTS: Create an Annotate Dataset to Draw Points in a Plot . 386
A.31.8 PSCALE: Construct an Annotate Dataset for a

Probability Scale . . . . . . . . . . . . . . . . . . . . . . . 387

Introduction

Programming graphics in X is like finding the square root of π using Roman
numerals.

Henry Spencer

Many of the programs used in the book were developed as general-purpose SAS macros or
SAS/IML modules that could be used for any set of data. This generality, however, makes
them more complex than is useful to describe completely in the body of the text. In most
cases, therefore, the text discusses the application and use of the program.

The SAS programs and macros listed in the contents above are documented in this
appendix. The program code is supplied in the archives.

General Usage Notes

Installing the Programs

The set of programs and macros for Visualizing Categorical Data is available in two forms:
vcdprog.tar.gz for Unix-like systems and vcdprog.zip for other systems. The distri-
bution archives contain the following directories:

catdata all the data sets listed in Appendix B
macros all the macro programs
mosaics the SAS/IML programs for mosaic displays
iml other SAS/IML programs
sample some example applications

For ease of use, you should copy these directories to similarly named directories under
your SASUSER directory. In a DOS or Windows environment, for example, this might be
C:\SAS\SASUSER\; under a Unix-like system, this might be ~/sasuser/ where ~ refers
to your home directory.

The macro programs are most easily used if you add the name of the macros directory
to the list of directories recognized by the SAS Autocall Facility. Then, SAS software will
search this directory automatically for macro programs that you invoke. You can do this by
adding a statement like the following to your AUTOEXEC.SAS file:

options sasautos=(’vcdmacros’, SASAUTOS);
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substituting for vcdmacros the directory to which you copied the macros.1 For further in-
formation, refer to the SAS Guide to Macro Processing, Version 6, Second Edition, Chapter
7, “The Autocall Facility,” and to the SAS documentation for your operating system.

Instructions for installing the SAS/IMLprograms for mosaic displays are given in the
INSTALL file in the mosaics directory.

Macro Parameters and Values

All of the macro programs (except for a few of the Graphics utility macros described in
A.31) use keywords for the required and optional parameters. Default values (if any) are
described in the Parameters section (and are given after the = sign in the parameter list
in the %macro statement in each program). Thus, it is only necessary to specify required
parameters and those parameters that differ from the default value, and these parameters
can be specified in any order in the macro call.

• Most of the macros use keywords as values of some of the macro parameters. All key-
word values are case insensitive; for example, using plot=dist infl in the DISTPLOT
macro gives both the distribution and influence plot for a discrete distribution.

• Some of the macros use the keywords YES and NO as values of some parameters. In all
cases, these keywords can be abbreviated to their initial letter.

A.1 The ADDVAR Macro: Added Variable Plots for Logistic Regression

The ADDVAR macro produces added variable plots (TYPE=AVP) for the effect of adding a
variable to a logistic regression model, or a constructed variable plot (TYPE=CVP) for the
effect of transforming a variable. The method is described in Section 6.6.5 and illustrated
in Example 6.13.

For a model with a binary response, Y, and predictors in the list X, an added variable
plot can be constructed for a new predictor, Z, by plotting the residuals of Y given X against
the residuals of Z given X. A linear relation in this plot indicates that Z should be included
in the model, but observations with extreme Z-residuals would be highly influential in this
decision. A line fitted to this plot should have an intercept approximately zero and a slope
approximating the coefficient of Z in the full model.

The constructed variable plot is designed to detect nonlinear dependence of Y on one of
the X variables, say X j . It is an added variable plot for the constructed variable, X j log X j .
A smoothed lowess curve (specified by the SMOOTH= parameter) will often show the form
of a nonlinear relation.

Usage

The ADDVAR macro is called with keyword parameters. The X=, Y=, and Z= parameters are
required. A TRIALS= variable can be specified if the data is in events/trials form. The ar-
guments can be listed within parentheses in any order, separated by commas. For example:

%addvar(data=icu, y=Died, x=age admit cancer uncons, z=Systolic,
id=patient, loptions=order=data noprint);

This gives an AVP for the variable Systolic when added to the X= variables in the
model predicting Y=DIED.

1If you are running SAS software from a networked installation, you may need to modify the -autoexec option
for SAS invocation so that your local AUTOEXEC.SAS is used, rather than the system-wide version.
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Parameters

DATA= Specifies the name of the input dataset to be analyzed.
[Default: DATA=_LAST_]

Y= Specifies the name of the binary response variable.
TRIALS= Name of a trials variable, for event/trials syntax.
X= Specifies the names of the predictor variables in the model. Any discrete,

classification variables with more than two levels must be represented by
dummy variables.

Z= Name of the added variable.
ID= Name of a character observation ID variable.
LOPTIONS= Any options for PROC LOGISTIC, such as ORDER=DATA.

[Default: LOPTIONS=NOPRINT]
SMOOTH= Lowess smoothing parameter. Use SMOOTH=0 to suppress the smoothed

lowess curve. [Default: SMOOTH=0.5]
SUBSET= A logical expression (which can involve any variables in the output dataset)

used to define the subset of points to label in the plot. SUBSET=0 means that
no points are labeled; SUBSET=1 means that all points are labeled.
[Default: SUBSET=ABS(STUDRES)>2]

OUT= Specifies the name of the output dataset. [Default: OUT=_RES_]
SYMBOL= Defines the plotting symbol for points. [Default: SYMBOL=DOT]
INTERP= Interpolation option(s) for points (used in the SYMBOL statement).

[Default: INTERP=RL CI=RED]
TYPE= Type of plot: AVP or CVP. [Default: TYPE=AVP]
NAME= Name of graph in graphic catalog. [Default: NAME=ADDVAR]
GOUT= Name of the graphics catalog.

A.2 The AGREE Program: Observer Agreement Chart

The AGREE program is a collection of SAS/IML modules for preparing observer agreement
charts that portray the agreement between two raters, as described in Section 3.7.

Usage

The modules are typically loaded into the SAS/IML workspace with the %include state-
ment. The required input parameters are specified with SAS/IML statements, and the
agree module is called as follows:

proc iml;
%include iml(agree);
*-- set global variables, if desired;
font = ’hwpsl009’;
htext=1.3;
*-- specify required parameters;
table = { ... }; *-- contingency table;
weight = { ... }; *-- disagreement weights;
vnames = { ... }; *-- variable names;
lnames = { ... }; *-- level names;
title = " ...";
run agree(table, weight, vnames, lnames, title);
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Parameters

The required parameters for the run agree statement are

table A square numeric matrix containing the contingency table to be analyzed.
weight A vector of one or more weights used to give “partial credit” for disagree-

ments by one or more categories. To ignore all but exact agreements, let
weight=1. To take into account agreements one step apart (with a weight of
5/6), let weight={1 5/6}.

vnames A character vector of two elements, containing the names of the row and
column variables.

lnames A character vector containing the names of the row and column categories.
If table is n × n, then lnames should contain n elements.

title A character string containing the title for the plot.

Global Input Variables

The program uses two global variables to determine the font and character height for text
in the agreement chart.

font A character string specifying the font used. The default is Helvetica
(font=’hwpsl009’) if a PostScript driver is being used, SWISS otherwise.

htext A numeric value specifying the height of text characters.

A.3 The BIPLOT Macro: Generalized Biplots

The BIPLOT macro produces generalized biplot displays for multivariate data, and for 2-
way and multi-way tables of either quantitative or frequency data. It also produces labeled
plots of the row and column points in two dimensions, with a variety of graphic options,
and the facility to equate the axes automatically.

Input Dataset

The macro takes input in one of two forms:
(a) A dataset in table form, where the columns are separate variables and the rows are

separate observations (identified by a row ID variable). In this arrangement, use the VAR=
argument to specify this list of variables and the ID= variable to specify an additional
variable whose values are labels for the rows.

Assume a dataset of reaction times to four topics in three experimental tasks, in a SAS
dataset like this:

TASK TOPIC1 TOPIC2 TOPIC3 TOPIC4
Easy 2.43 3.12 3.68 4.04
Medium 3.41 3.91 4.07 5.10
Hard 4.21 4.65 5.87 5.69

For this arrangment, the macro would be invoked as follows:

%biplot(var=topic1-topic4, id=task);
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(b) A contingency table in frequency form (e.g., the output from PROC FREQ), or multi-
way data in the univariate format used as input to PROC GLM. In this case, there will be two
or more factor (class) variables, and one response variable, with one observation per cell.
For this form, you must use the VAR= argument to specify the two (or more) factor (class)
variables and specify the name of the response variable as the RESPONSE= parameter. Do
not specify an ID= variable for this form.

For contingency table data, the response will be the cell frequency, and you will usually
use the POWER=0 parameter to perform an analysis of the log frequency.

The same data in this format would have 12 observations and look like this:

TASK TOPIC RT
Easy 1 2.43
Easy 2 3.12
Easy 3 3.68
...
Hard 4 5.69

For this arrangment, the macro would be invoked as follows:

%biplot(var=topic task, response=RT);

In this arrangement, the order of the VAR= variables does not matter. The columns of
the 2-way table are determined by the variable that varies most rapidly in the input dataset
(topic, in the example).

Usage

The BIPLOT macro is defined with keyword parameters. The VAR= parameter must be
specified, together with either one ID= variable or one RESPONSE= variable.

The arguments can be listed within parentheses in any order, separated by commas. For
example,

%biplot(var=topic task, response=RT);

The plot can be re-drawn or customized using the output OUT= dataset of coordinates
and the ANNO= Annotate dataset.

The graphical representation of biplots requires that the axes in the plot are equated,
so that equal distances on the ordinate and abscissa represent equal data units (to perserve
distances and angles in the plot). A ‘+’, whose vertical and horizontal lengths should be
equal, is drawn at the origin to indicate whether this has been achieved.

If you do not specifiy the HAXIS= and YAXIS= parameters, the EQUATE macro is called
to generate the AXIS statements to equate the axes. In this case the INC=, XEXTRA=, and
YEXTRA= parameters can be used to control the details of the generated AXIS statements.

By default, the macro produces and plots a two-dimensional solution.

Parameters

DATA= Specifies the name of the input dataset to be analyzed.
[Default: DATA=_LAST_]

VAR= Specifies the names of the column variables when the data is in table form,
or the names of the factor variables when the data is in frequency form or
GLM form. [Default: VAR=_NUM_]

ID= Observation ID variable when the data is in table form.
RESPONSE= Name of the response variable (for GLM form).
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DIM= Specifies the number of dimensions of the CA/MCA solution. Only two di-
mensions are plotted by the PPLOT and GPLOT options, however.
[Default: DIM=2]

FACTYPE= Biplot factor type: GH, SYM, JK or COV. [Default: FACTYPE=SYM]
VARDEF= Variance def for FACTYPE=COV: DF | N. [Default: VARDEF=DF]
SCALE= Scale factor for variable vectors. [Default: SCALE=1]
POWER= Power transform of response. [Default: POWER=1]
OUT= Specifies the name of the output dataset of coordinates.

[Default: OUT=BIPLOT]
ANNO= Specifies the name of the annotate dataset of labels produced by the macro.

[Default: ANNO=BIANNO]
STD= How to standardize columns: NONE | MEAN | STD. [Default: STD=MEAN]
COLORS= Colors for OBS and VARS. [Default: COLORS=BLUE RED]
SYMBOLS= Symbols for OBS and VARS. [Default: SYMBOLS=NONE NONE]
INTERP= Markers/interpolation for OBS and VARS. [Default: INTERP=NONE VEC]
LINES= Lines for OBS and VARS interpolation. [Default: LINES=33 20]
PPLOT= Produce a printer plot? [Default: PPLOT=NO]
VTOH= The vertical to horizontal aspect ratio (height of one character divided by

the width of one character) of the printer device, used to equate axes for a
printer plot, when PPLOT=YES. [Default: VTOH=2]

GPLOT= Produce a graphics plot? [Default: GPLOT=YES]
PLOTREQ= The dimensions to be plotted. [Default: PLOTREQ=DIM2*DIM1]
HAXIS= AXIS statement for horizontal axis. If both HAXIS= and VAXIS= are omitted,

the program calls the EQUATE macro to define suitable axis statements. This
creates the axis statements AXIS98 and AXIS99, whether or not a graph is
produced.

VAXIS= The name of an AXIS statement for the vertical axis.
INC= The length of X and Y axis tick increments, in data units (for the EQUATE

macro). Ignored if HAXIS= and VAXIS= are specified.
[Default: INC=0.5 0.5]

XEXTRA= Number of extra X axis tick marks at the left and right. Use to allow extra
space for labels. [Default: XEXTRA=0 0]

YEXTRA= Number of extra Y axis tick marks at the bottom and top.
[Default: YEXTRA=0 0]

M0= Length of origin marker, in data units. [Default: M0=0.5]
DIMLAB= Prefix for dimension labels. [Default: DIMLAB=Dimension]
NAME= Name of the graphics catalog entry. [Default: NAME=BIPLOT]

A.4 The CATPLOT Macro: Plot Results from PROC CATMOD

The CATPLOT macro is designed to plot observed and/or predicted values for logit mod-
els fit by the CATMOD procedure. The macro uses the output dataset produced with the
OUT= option on the RESPONSE statement. This dataset normally contains both logit val-
ues (_TYPE_=’FUNCTION’) and probability values (_TYPE_=’PROB’). Either set can be
plotted, as specified by the TYPE= parameter.

The horizontal variable can be character (XC=) or numeric (X=). A separate curve is
drawn for each value of the CLASS= variable, connecting predicted values with optional
standard error bars, and separate plots are drawn for each value of the BYVAR= variable.



342 Visualizing Categorical Data

Usage

The CATPLOT macro is called with keyword parameters. Either the X= or the XC= parameter
is required. Use the CLASS= parameter to give multiple curves in each plot for the levels of
the CLASS variable. Use the BYVAR= parameter to give multiple plots for the levels of the
BYVAR variable. The arguments can be listed within parentheses in any order, separated
by commas. For example,

proc catmod;
direct husinc;
response / out=logits;
model labour = husinc children;

%catplot(data=logits, x=husinc, y=_pred_, class=labor, byvar=children);

Parameters

DATA= The name of the SAS dataset to be plotted, which must be an output dataset
from PROC CATMOD. If DATA= is not specified, the most recently created
dataset is used.

X= Name of a numeric factor variable to be used as the horizontal variable in
plots. Use the XC= parameter to specify a character variable. You must spec-
ify either the X= or XC= variable.

XC= Name of a character factor variable used as the horizontal variable in plots.
Y= Name of the ordinate variable. Y=_PRED_ plots the predicted value; Y=_OBS_

plots the observed value. The default is Y=_OBS_, but the predicted values
are also drawn, connected by lines. [Default: Y=_OBS_]

CLASS= The name of a factor variable, used to define separate curves that are plotted
for each level of this variable.

BYVAR= The name(s) of one or more factor variables to be used to define multiple
panels in plots. A separate plot is produced for each combination of values
of the BYVAR= variables.

BYFMT= The name of a SAS format used to format the value of BYVARs for display
in one panel of the plot(s). [Default: BYFMT=$16.]

TYPE= The type of observations to be plotted. TYPE=FUNCTION (the default) gives
plots of the logit value; TYPE=PROB gives plots of the probability value.
[Default: TYPE=FUNCTION]

Z= Standard error multiple for confidence intervals around predicted values,
e.g., Z=1.96 gives 95% CI. To suppress error bars, use Z=0. The default
is Z=1, giving 67% CI.

CLFMT= Name of a SAS format used to format the value of the CLASS= variable for
display in each panel of the plot(s).

CLSIDE= Specifies whether the values of the CLASS= variable should be labeled by
annotation in the plot or by a legend. If CLSIDE=LEFT or CLSIDE=FIRST,
CLASS= values are written at the left side of each curve. If CLSIDE=RIGHT
or CLSIDE=LAST, CLASS= values are written at the right side of each curve.
If CLSIDE=NONE, or if a LEGEND= legend is specified, the CLASS= values
appear in the legend. You should then define a LEGEND statement and use
the LEGEND= parameter. [Default: CLSIDE=LAST]

XFMT= Name of a SAS format used to format the values of the horizontal variable.
POSFMT= Format to translate the value of the CLASS variable to a SAS/GRAPH an-

notate position. This will almost always be a user-specified format created
with PROC FORMAT.

ANNO= Name of an additional input annotate dataset. The graphic commands in this
dataset are performed for each plot.
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SYMBOLS= List of SAS/GRAPH symbols for the levels of the CLASS= variable. The
specified symbols are reused cyclically if the number of distinct values of
the CLASS= variable exceeds the number of symbols.
[Default: SYMBOLS=CIRCLE SQUARE TRIANGLE]

COLORS= List of SAS/GRAPH colors for the levels of the CLASS= variable. The spec-
ified colors are reused cyclically if the number of distinct values of the
CLASS= variable exceeds the number of colors.
[Default: COLORS=BLACK RED BLUE GREEN]

LINES= List of SAS/GRAPH line styles for the levels of the CLASS= variable. The
specified line styles are reused cyclically if the number of distinct values of
the CLASS= variable exceeds the number of line styles.
[Default: LINES=1 20 41 21 7 14 33 12]

VAXIS= Axis statement for custom response axis, e.g., VAXIS=AXIS1.
[Default: VAXIS=AXIS1]

HAXIS= Axis statement for custom horizontal axis, e.g., HAXIS=AXIS2.
[Default: HAXIS=AXIS2]

LEGEND= Legend statement for custom CLASS legend, e.g., LEGEND=LEGEND1.
PLOC= For multiple plots (with a BYVAR= variable), PLOC defines the X, Y position

of the panel label, in graph percentage units. [Default: PLOC=5 95]
PRINT= Print the summarized input dataset? [Default: PRINT=NO]
NAME= Name of graphic catalog entry. [Default: NAME=CATPLOT]

A.5 The CORRESP Macro: Plotting PROC CORRESP Results

The CORRESP macro carries out simple correspondence analysis of a 2-way contingency
table, correspondence analysis of stacked multi-way tables (when the CROSS option is in-
cluded in the OPTIONS= parameter), or multiple correspondence analysis (when the MCA
option is included in the OPTIONS= parameter). See Section 5.2.4 for further description
and examples.

The macro optionally produces labeled plot(s) of the category points with equated axes
and produces output datasets from which more customized plots (e.g., a 3-D plot) can be
constructed. It is a completely revised version of the CORRESP macro presented in SAS
System for Statistical Graphics, First Edition, Section A1.6, which uses PROC CORRESP
for the calculations, rather than SAS/IML.

Input Dataset

The macro takes an input dataset in one of two forms:

1. A dataset in contingency table form, where the columns are separate variables and
the rows are separate observations (identified by a row ID variable). That is, the input
dataset contains R observations and C variables (whose values are cell frequencies) for
an R × C table. Do not use the COUNT= parameter in this case, but you should specify:

ID=ROWVAR, VAR=C1 C2 C3 C4 C5
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2. A contingency table in frequency form (e.g., the output from PROC FREQ), or raw data,
where there is one variable for each factor. In frequency form, there will be one obser-
vation for each cell. For this form, specify the table variables in the TABLES= parameter:

TABLES=A B C

Include the WEIGHT= parameter when the observations are in frequency form.

Usage

The CORRESP macro is called with keyword parameters. Either the VAR= parameter or
the TABLES= parameter (but not both) must be specified, but other parameters or options
may be needed to carry out the analysis you want. The arguments can be listed within
parentheses in any order, separated by commas. For example,

%corresp(var=response, id=sex year);

The plot can be re-drawn or customized using the output OUT= dataset of coordinates
and the ANNO= Annotate dataset.

The graphical representation of correspondence analysis plots requires that the axes in
the plot are equated, so that equal distances on the ordinate and abscissa represent equal
data units (to perserve distances and angles in the plot). A large ‘+’, whose vertical and
horizontal lengths should be equal, is drawn at the origin to indicate whether this has been
achieved.

If you do not specifiy the HAXIS= and YAXIS= parameters, the EQUATEmacro (A.31.2) is
called to generate the AXIS statements to equate the axes. In this case the INC=, XEXTRA=,
and YEXTRA= parameters can be used to control the details of the generated AXIS state-
ments.

By default, the macro produces and plots a two-dimensional solution.

Parameters

DATA= Specifies the name of the input dataset to be analyzed.
[Default: DATA=_LAST_]

VAR= Specifies the names of the column variables for simple CA, when the data is
in contingency table form. Not used for MCA (use the TABLES= parameter
instead).

ID= Specifies the name(s) of the row variable(s) for simple CA. Not used for
MCA.

TABLES= Specifies the names of the factor variables used to create the rows and
columns of the contingency table. For a simple CA or stacked analysis, use
a ’,’ or ’/’ to separate the the row and column variables, but the TABLES=
value must be quoted with %str( ) if a ’,’ is used as the separator.

WEIGHT= Specifies the name of the frequency (WEIGHT) variable when the dataset is in
frequency form. If WEIGHT= is omitted, the observations in the input dataset
are not weighted.

SUP= Specifies the name(s) of any variables treated as supplementary. The cate-
gories of these variables are included in the output but not otherwise used in
the computations. These must be included among the variables in the VAR=
or TABLES= option.

DIM= Specifies the number of dimensions of the CA/MCA solution. Only two di-
mensions are plotted by the PPLOT option, however.

OPTIONS= Specifies options for PROC CORRESP. Include MCA for an MCA analysis,
CROSS=ROW|COL|BOTH for stacked analysis of multiway tables,
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PROFILE=BOTH|ROW|COLUMN for various coordinate scalings, etc.
[Default: OPTIONS=SHORT]

OUT= Specifies the name of the output dataset of coordinates.
[Default: OUT=COORD]

ANNO= Specifies the name of the annotate dataset of labels produced by the macro.
[Default: ANNO=LABEL]

PPLOT= Produce printer plot? [Default: PPLOT=NO]
GPLOT= Produce graphics plot? [Default: GPLOT=YES]
PLOTREQ= Specifies the dimensions to be plotted in a PLOT statement or SCATTER state-

ment. [Default: PLOTREQ=DIM2*DIM1 when DIM=2,
PLOTREQ=DIM2*DIM1=DIM3 when DIM=3]

HTEXT= Height for row/col labels. If not specified, the global HTEXT goption is
used. Otherwise, specify one or two numbers to be used as the height for
row and column labels. The HTEXT= option overrides the separate ROWHT=
and COLHT= parameters (maintained for backward compatibility).

ROWHT= Height for row labels, if HTEXT= is not specified.
COLHT= Height for column labels.
COLORS= Colors for row and column points, labels, and interpolations. In an MCA

analysis, only one color is used. [Default: COLORS=BLUE RED]
POS= Annotate positions for the row and column labels relative to the SYMBOL

points. In addition to the standard Annotate position values, the CORRESP
macro also understands the special characters “/”, “|”, or “-”. See the
LABEL macro (A.31.6) for a description of these special position values.
[Default: POS=5 5]

SYMBOLS= Symbols used for row and column points, as in a SYMBOL statement. Ordinar-
ily, no symbols are plotted because the point labels identify the locations and
symbols would often overplot the labels. [Default: SYMBOLS=NONE NONE]

INTERP= Interpolation options for row and column points. In addition to the stan-
dard interpolation options provided by the SYMBOL statement, the CORRESP
macro also understands the option VEC to mean a vector from the origin to
the row or column point. The option JOIN may be useful for an ordered
factor, and the option NEEDLE may be useful to focus on the positions of
the row/column points on the horizontal variable. [Default: INTERP=NONE
NONE, INTERP=VEC for MCA]

HAXIS= The name of an AXIS statement for the horizontal axis. If both HAXIS= and
VAXIS= are omitted, the program calls the EQUATE macro to define suit-
able axis statements. This creates the axis statements AXIS98 and AXIS99,
whether or not a graph is produced.

VAXIS= The name of an AXIS statement for the vertical axis.
VTOH= The vertical to horizontal aspect ratio (height of one character divided by

the width of one character) of the printer device, used to equate axes for a
printer plot, when PPLOT=YES. [Default: VTOH=2]

INC= The length of X and Y axis tick increments, in data units (for the EQUATE
macro). Ignored if HAXIS= and VAXIS= are specified.
[Default: INC=0.1 0.1]

XEXTRA= The number of extra X axis tick marks at the left and right. Use to allow
extra space for labels. [Default: XEXTRA=0 0]

YEXTRA= The number of extra Y axis tick marks at the bottom and top.
[Default: YEXTRA=0 0]

M0= Length of the origin (+) marker, in data units. [Default: M0=0.05]
DIMLAB= Prefix for dimension labels. [Default: DIMLAB=Dimension]
NAME= Name of graphic catalog entry. [Default: NAME=CORRESP]
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A.6 The DISTPLOT Macro: Plots for Discrete Distributions

The DISTPLOT macro constructs plots of a discrete distribution designed to diagnose
whether the data follows one of the standard distributions: the Poisson, Binomial, Negative
Binomial, Geometric, or Log Series. The type of distribution is specified by the DIST=
parameter.

The usual distribution diagnostic plot (PLOT=DIST) is constructed so that the points lie
along a straight line when the data follows that distribution. An influence plot (PLOT=INFL)
shows the influence of each observation on the choice of the distribution parameter(s). The
macro is illustrated in Section 2.5.5.

Usage

The DISTPLOT macro is called with keyword parameters. You must specify the distribution
to be fit (DIST=), and the COUNT= and FREQ= variables. The arguments can be listed within
parentheses in any order, separated by commas. For example,

%distplot(data=queues, count=women, freq=queues, dist=binomial,
parm=0.435);

Parameters

DATA= The name of the input dataset. [Default: DATA=_LAST_]
COUNT= The name of the basic count variable.
FREQ= The name of the variable giving the observed frequency (number of occur-

rences) associated with the COUNT= variable.
LABEL= Axis label for the horizontal (COUNT=) variable. If not specified, the label of

that variable in the input dataset is used.
DIST= Name of the distribution to be assessed, one of POISSON, BINOMIAL,

NEGBIN, GEOMETRIC, or LOGSERIES.
PARM= Trial value of the distribution parameter(s) to level the plot. For the Binomial

distribution, PARM=p, the binomial probability of success; for the Poisson,
PARM=λ, the Poisson mean. For the Geometric, PARM=p. For the Negative
binomial, one or two values can be supplied. The first is taken as n; a second
value is taken as p.

Z= Specifies the multiplier used for error bars in the PLOT=DIST plot.
[Default: Z=1.96]

PLOT= What to plot: DIST and/or INFL. [Default: PLOT=DIST]
HTEXT= Height of text labels in the plots. [Default: HTEXT=1.4]
OUT= The name of the output dataset. [Default: OUT=DISTPLOT]
NAME= Name of the graphics catalog entry. [Default: NAME=DISTPLT]

A.7 The DUMMY Macro: Create Dummy Variables

Given one or more character or discrete numerical variables, the DUMMY macro constructs
dummy (0/1) variables to represent the categories of a discrete variable in a regression
model with PROC LOGISTIC or PROC REG. If the original variable has c levels, c − 1 new
variables are produced.

The dummy variables can be named by appending numbers to a prefix or by appending
the value of the discrete variable to the prefix.
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Usage

The DUMMY macro is called with keyword parameters. The VAR= variable(s) must be spec-
ified. The arguments can be listed within parentheses in any order, separated by commas.
For example,

%dummy(var=region sex);

Parameters

DATA= The name of the input dataset. If not specified, the most recently created
dataset is used.

OUT= The name of the output dataset. If not specified, the new variables are ap-
pended to the input dataset.

VAR= The name of the input variable(s) to be dummy coded. Must be specified.
The variable(s) can be character or numeric.

PREFIX= Prefix used to create the names of dummy variables. Use an empty string to
suppress the prefix. The default is ’D_’.

NAME= Determines how the dummy variables are named. If NAME=VAL, the dummy
variables are named by appending the value of the VAR= variable to the pre-
fix. For example, with a character variable sex, taking on value ’M’ and
’F’, the dummy variable would be named ’D_M’. Otherwise, the dummy
variables are named by appending numbers, 1, 2, ... to the prefix. The result-
ing name must be 8 characters or fewer. [Default: NAME=VAL]

BASE= Indicates the level of the baseline category, which is given values of 0 on
all the dummy variables. BASE=_FIRST_ specifies that the lowest value of
the VAR= variable is the baseline group; BASE=_LAST_ specifies the highest
value of the variable. Otherwise, you can specify BASE=value to make a
different value the baseline group. [Default: BASE=_LAST_]
FULLRANK= Is either 0 or 1, where 1 indicates that the dummy variable
for the BASE= category is eliminated. [Default: FULLRANK=1]

Example

With the input dataset,

data test;
input y group $ @@;
datalines;
10 A 12 A 13 A 18 B 19 B 16 C 21 C 19 C
;
%dummy (data = test, var = group) ;

the DUMMY macro produces two new variables, ’D_A’ and ’D_B’. Group C is the baseline
category (corresponding to BASE=_LAST_).

OBS Y GROUP D_A D_B

1 10 A 1 0
2 12 A 1 0
3 13 A 1 0
4 18 B 0 1
5 19 B 0 1
6 16 C 0 0
7 21 C 0 0
8 19 C 0 0
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A.8 The FOURFOLD Program: Fourfold Displays for 2 × 2 × k Tables

The FOURFOLD program is a collection of SAS/IML modules for constructing fourfold
displays of a 2 × 2 table, or a collection of 2 × 2 tables for multiple strata or groups. This
graphical method is described and illustrated in Section 3.4.

Usage

The modules are typically loaded into the SAS/IML workspace with the %include state-
ment. The required inputs consist of the contingency table, its dimensions, the variable
names, and names for the variable levels. These are usually specified with SAS/IML state-
ments, and the fourfold module is called as follows:

proc iml;
%include iml(fourfold);
*-- specify required parameters;
dim = { ... }; *-- table dimensions;
table = { ... }; *-- contingency table;
vnames = { ... }; *-- variable names;
lnames = { ... }; *-- level names;
*-- specify desired global variables;
config = {1};
run fourfold( dim, table, vnames, lnames );

The FOURFOLD program also provides a variety of optional parameters to be specified as
global SAS/IML variables. All of these are given default values if not specified.

Required Parameters

The required parameters for the run fourfold statement are listed here. These are posi-
tional parameters and can be given any valid SAS name in the PROC IML step.

dim A numeric vector containing the dimensions of the contingency table. The
first two elements must be {2 2}.

table A numeric matrix containing dim[1]=2 columns and number of rows equal
to the product of the remaining elements of dim. The table must be entered
so that the first variable varies most quickly (row-major order) and the last
variable varies most slowly, in accord with the conventions for multi-way
tables used by the SAS/IML routines marg and ipf.

vnames A 1× ncol(dim) character vector, containing the names of the variables in
the order corresponding to dim.

lnames A character matrix containing the names of the categories (levels) of the
variables, whose rows correspond to dim and vnames. Any short rows must
be filled in with blank character strings, because matrices in SAS/IML must
have the same number of elements in each row. For example, for the 2×2×6
table for the Berkeley data, the dim, vnames and lnames can be entered as
follows:

dim = {2 2 6};
vnames = {"Admit?" "Sex" "Department"};
lnames = {"Yes" "No" " " " " " " " ",

"Male" "Female" " " " " " " " ",
"A" "B" "C" "D" "E" "F"};
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Global Input Variables

The following global variables are used by the program if they have been assigned val-
ues of the correct type (character or numeric). Because they all have default values, it is
necessary to specify only those you want to change. All character-valued variables are
case-insensitive.

std Specifies how the 2 × 2 tables are standardized. [Default: std=’MARG’]

MARG Standardizes each 2 × 2 table to equal margins, keeping the
odds ratio fixed. The config variable determines which mar-
gins are equated.

MAX Standardizes each table to a maximum cell frequency of 100.
This has the effect of equating the totals in each table.

MAXALL Standardizes all tables so that the maximum cell entry is 100.

config Specifies the margins to standardize, when std=’MARG’. config={1 2}
equates both the row and column variable in each table; config={1} equates
the margin only for the column variable in each table; config={2} equates
only the row variable.

down Specifies the number of fourfold panels down each page.
across Specifies the number of panels across each page.
sangle The angle for side labels (0|90). [Default: sangle=90]
colors The names of two colors to use for the smaller and larger diagonals of each

2 × 2 table. The positions of first color indicate the direction of association.
[Default: colors={BLUE RED}]

patterns The names of two fill patterns. For grayscale, use
patterns={SOLID SOLID} and colors={GRAYC0 GRAY80}.
[Default: patterns={SOLID SOLID}]

alpha The error rate used for confidence rings on the odds ratios. Use alpha=0;
to suppress the confidence rings.

conf The type of confidence rings, either ’Individual’ (for each 2×2 table) or
’Joint’ (for simultaneous confidence intervals covering all k 2 × 2 tables).
[Default: conf=’Individual’]

font A character string specifying the font used. The default is Helvetica
(font=’hwpsl009’) if a PostScript driver is being used, SWISS otherwise.

frame The line style for the boxed frame (0=none).

A.9 The GOODFIT Macro: Goodness-of-Fit for Discrete Distributions

The GOODFIT macro carries out chi-square goodness-of-fit tests for discrete distributions,
as described in Section 2.3. These include the uniform, binomial, Poisson, negative bi-
nomial, geometric, and logarithmic series distributions, as well as any discrete (multino-
mial) distribution whose probabilities you can specify. Both the Pearson chi-square and
likelihood-ratio chi-square are computed.

The data can consist either of individual observations on a single variable or a grouped
frequency distribution.

The parameter(s) of the distribution can be specified as constants or can be estimated
from the data.



350 Visualizing Categorical Data

Usage

The GOODFITmacro is called with keyword parameters. The arguments can be listed within
parentheses in any order, separated by commas. For example,

%goodfit(var=k, freq=freq, dist=binomial);

You must specify a VAR= analysis variable and the keyword for the distribution to be fit
with the DIST= parameter. All other parameters are optional.

Parameters

DATA= Specifies the name of the dataset to be analyzed. If not specified, the most
recently created dataset is used.

VAR= The name of the variable to be analyzed, the basic count variable.
FREQ= The name of a frequency variable for a grouped dataset. If no FREQ= vari-

able is specified, the program assumes the dataset is ungrouped and cal-
culates frequencies using PROC FREQ. In this case you can specify a SAS
format with the FORMAT= parameter to control the way the observations are
grouped.

DIST= Specifies the name of the discrete frequency distribution to be fit. The al-
lowable values are UNIFORM, DISCRETE, BINOMIAL, POISSON, NEGBIN,
GEOMETRIC, LOGSERIES.

PARM= Specifies fixed parameter(s) for the distribution. If PARM= is not specified,
the parameter(s) are estimated using maximum likelihood or method of mo-
ment estimators. For the Poisson distribution, you can specify parm=λ to
specify the rate parameter; otherwise, λ is estimated from the data (and an
extra degree of freedom is subtracted). Similarly, for the binomial distribu-
tion, specifying parm=p fits the distribution with that value of p. For the
general DIST=DISCRETE (multinomial) distribution PARM= a list of numbers
proportional to the theoretical cell probabilities. For example, for a multino-
mial distribution with probabilities 1

4 ,
1
2 ,

1
4 , you can specify

PARM=1 2 1.
SUMAT= For a distribution where the frequencies greater than or equal to some value

of k have been lumped into a single category, specifing SUMAT=value causes
the macro to sum the probabilities and expected frequencies for all values of
k greater than or equal to value.

FORMAT= The name of a SAS format used when no FREQ= variable has been speci-
fied.

OUT= The name of an output dataset containing the grouped frequency distribu-
tion, estimated expected frequencies, and residuals.

OUTSTAT= The name of an output dataset containing goodness-of-fit statistics.

A.10 The HALFNORM Macro: Half-Normal Plots for Generalized Linear
Models

The HALFNORM macro plots the ordered absolute values of residuals from a generalized
linear model against expected values of normal order statistics. A simulated envelope, cor-
reponding to an approximate 95% confidence interval, is added to the plot to aid assessment
of whether the distribution of residuals corresponds to a good-fitting model. The method is
described in Section 7.7.2 and illustrated in Example 7.11 and Example 7.12.
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Usage

The HALFNORM macro is called with keyword parameters. The RESP= (or Y=) and MODEL=
parameters are required. The DIST= must usually be specified for the analysis to be appro-
priate for your data. The arguments can be listed within parentheses in any order, separated
by commas. For example,

%halfnorm(resp=count, class=sex response, model=sex|year|response@2);

Parameters

DATA= Specifies the name of the input dataset to be analyzed.
[Default: DATA=_LAST_]

Y=
RESP= Either Y= or RESP= specifies the name of the response variable to be ana-

lyzed.
TRIALS= The name of a trials variable, for DIST=BINOMIAL, when the data is in

events/trials form.
MODEL= Specifies the model formula, the right-hand side of the MODEL statement.

You can use the | and @ shorthands for crossed effects. For example,
MODEL = A|B|C@2 specifies a model with all main effects and
2-way interactions.

CLASS= The names of any class variables used in the model. By default, all variables
are treated as continuous, as in PROC GENMOD.

DIST= Specifies the error distribution for a generalized linear model. Any of the
keywords NORMAL, BINOMIAL, POISSON, GAMMA, or IGAUSSIAN (or their
abbreviations) allowed in PROC GENMOD can be used. For frequency data,
DIST=POISSON should usually be specified. [Default: DIST=NORMAL]

LINK= Specifies the link function to be used in the generalized linear model. The
default is the canonical link for the DIST= error distribution.

OFFSET= The name(s) of any offset variables in the model.
MOPT= Other options for the MODEL statement (e.g., MOPT=NOINT to fit a model

without an intercept).
FREQ= The name of a frequency variable, when the data is in frequency (grouped)

form.
ID= The name of a character variable used as an observation identifier in the plot.

For contingency tables in frequency form, it is useful to combine abbrevia-
tions of the factor levels to produce an ID= variable for each cell.

OUT= Specifies the name of the output dataset. The output dataset contains the
input variables, absolute residuals (_ARES_), half-normal expected value
(_Z_). [Default: OUT=_RES_]

LABEL= Specifies whether and how to label observations in the plot. LABEL=ALL
means that all observations are labeled with the ID= variable value;
LABEL=NONE means that no observations are labeled; LABEL=ABOVE means
that observations above the mean of the simulations are labeled;
LABEL=TOP n means that the highest n observations are labeled.
[Default: LABEL=TOP 5]

SEED= Specifies the seed for the random number generators. SEED=0 uses the time-
of-day as the seed, so a different set of simulated observations is drawn
each time the program is run. Any positive integer causes the same set of
simulated observations to be drawn every time. [Default: SEED=0]

RES= Specifies the type of residual to plot. Possible values are STRESCHI (adjusted
Pearson residual) and STRESDEV (adjusted deviance residual). [Default:
RES=STRESDEV]
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NRES= Number of simulations used for the confidence envelope.
[Default: NRES=19]

SYMBOL= Plotting symbol used for residuals. [Default: SYMBOL=dot]
INTERP= Interpolation option used for residuals. [Default: INTERP=none]
COLOR= Color for plotting the residuals. [Default: COLOR=red]
NAME= Graph name in graphics catalog. [Default: NAME=halfnorm]
GOUT= The name of the graphics catalog. [Default: GOUT=GSEG]

A.11 The INFLGLIM Macro: Influence Plots for Generalized Linear Models

The INFLGLIM macro produces various influence plots for a generalized linear model fit
by PROC GENMOD, described and illustrated in Section 7.7.3. Each of these is a bubble plot
of one diagnostic measure (specified by the GY= parameter) against another (GX=), with the
bubble size proportional to a measure of influence (usually, BUBBLE=COOKD). One plot is
produced for each combination of the GY= and GX= variables.

Usage

The macro normally takes an input dataset of raw data and fits the GLM specified by the
RESP= and MODEL= parameters, using an error distribution given by the DIST= parameter.
It fits the model, obtains the OBSTATS and PARMEST datasets, and uses these to compute
some additional influence diagnostics (HAT, COOKD, DIFCHI, DIFDEV, SERES), any of
which can be used as the GY= and GX= parameters.

Alternatively, if you have fit a model with PROC GENMOD and saved the OBSTATS and
PARMEST datasets (e.g., using a MAKE statement), you can specify these with the OBSTATS=
and PARMEST= parameters. The same additional diagnostics are calculated and plotted.

The INFLGLIM macro is called with keyword parameters. The MODEL= and RESP= pa-
rameters are required, and you must supply the DIST= parameter for any model with non-
normal errors. The arguments can be listed within parentheses in any order, separated by
commas. For example,

%include catdata(berkeley);
%inflglim(data=berkeley,

class=dept gender admit,
resp=freq, model=dept|gender dept|admit,
dist=poisson,
id=cell,
gx=hat, gy=streschi);

Parameters

DATA= Name of input (raw data) dataset. [Default: DATA=_LAST_]
RESP= The name of the response variable. For a log-linear model, this is usually the

frequency or cell count variable when the data is in grouped form (specify
DIST=POISSON in this case).

MODEL= Gives the model specification, the right-hand side of the MODEL statement.
You can use the | and @ shorthands. For example, MODEL = A|B|C@2 spec-
ifies a model with all main effects and 2-way interactions.

CLASS= Specifies the names of any class variables used in the model.



SAS Programs and Macros 353

DIST= Specifies the error distribution for a generalized linear model. Any of the
keywords NORMAL, BINOMIAL, POISSON, GAMMA, or IGAUSSIAN (or their
abbreviations) allowed in PROC GENMOD can be used. For frequency data,
DIST=POISSON should usually be specified. If you don’t specify the error
distribution, PROC GENMOD uses DIST=NORMAL.

LINK= Specifies the link function to be used in the generalized linear model. The
default is the canonical link for the DIST= error distribution.

MOPT= Other options on the MODEL statement (e.g., MOPT=NOINT to fit a model
without an intercept).

FREQ= The name of a frequency variable when the data is in frequency (grouped)
form.

WEIGHT= The name of an observation weight (SCWGT) variable; used, for example,
to specify structural zeros in a log-linear model.

ID= Gives the name of a character observation ID variable that is used to label
influential observations in the plots. Usually you will want to construct a
character variable that combines the CLASS= variables into a compact cell
identifier.

GY= The names of variables in the OBSTATS dataset used as ordinates in the
plot(s). One plot is produced for each combination of the words in GY by
the words in GX. [Default: GY=DIFCHI STRESCHI]

GX= Abscissa(s) for the plot, usually PRED or HAT. [Default: GX=HAT]
OUT= Name of the output dataset containing the observation statistics. This is the

dataset that is plotted. [Default: OUT=COOKD]
OBSTATS= Specifies the name of the OBSTATS dataset (containing residuals and other

observation statistics) for a model already fitted.
PARMEST= Specifies the name of the PARMEST dataset (containing parameter estimates)

for a model already fitted,
BUBBLE= Gives the name of the variable to which the bubble size is proportional.

[Default: BUBBLE=COOKD]
LABEL= Determines which observations, if any, are labeled in the plots.

If LABEL=NONE, no observations are labeled; if LABEL=ALL, all are labeled;
if LABEL=INFL, only possibly influential points are labeled, as determined
by the INFL= parameter. [Default: LABEL=INFL]

INFL= A logical expression that specifies the criterion used to determine whether
an observation is influential (when used with LABEL=INFL). Any variables
in the OBSTAT dataset can be used. The value p/n is calculated and assigned
to the macro variable HCRIT, which can also be used.
[Default: INFL=%str(DIFCHI>4 OR HAT>&HCRIT OR &BUBBLE>1)]

LSIZE= Observation label size. The height of other text (e.g., axis labels) is con-
trolled by the HTEXT= graphics option. [Default: LSIZE=1.5]

LCOLOR= Observation label color. [Default: LCOLOR=BLACK]
LPOS= Observation label position. [Default: LPOS=5]
BSIZE= Bubble size scale factor. [Default: BSIZE=10]
BSCALE= Specifies whether the bubble size is proportional to AREA or RADIUS.

[Default: BSCALE=AREA]
BCOLOR= The color of the bubble symbol. [Default: BCOLOR=RED]
REFCOL= Color of reference lines. Reference lines are drawn at nominally ’large’ val-

ues for HAT values (HAT = &HCRIT) standardized residuals (0, ±2), and
change in chi square values (4). [Default: REFCOL=BLACK]

REFLIN= Line style for reference lines. Use REFLIN=0 to suppress these reference
lines. [Default: REFLIN=33]

NAME= Name of the graph in the graphic catalog. [Default: NAME=INFLGLIM]
GOUT= Name of the graphics catalog.
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A.12 The INFLOGIS Macro: Influence Plots for Logistic Regression Models

The INFLOGIS macro produces influence plots similar to the INFLGLIM macro but uses
PROC LOGISTIC for a logistic regression model. The diagnostic measures are described
in Section 6.6, and the macro is illustrated in Example 6.12. These plots show a mea-
sure of badness of fit for a given case (DIFDEV and/or DIFCHISQ, specified by the GY=
parameter) vs. the fitted probability (PRED) and/or leverage (HAT, specified by the GX=
parameter), using an influence measure (C or CBAR) as the size of a bubble symbol. One
plot is produced for each combination of the GY= and GX= variables.

Usage

The INFLOGIS macro is called with keyword parameters. The Y= and X= parameters are re-
quired. The arguments can be listed within parentheses in any order, separated by commas.
For example,

%include catdata(arthrit);
%inflogis(data=arthrit,

y=better,
x=_sex_ _treat_ age,
id=case);

Parameters

DATA= Specifies the name of the input dataset to be analyzed.
[Default: DATA=_LAST_]

Y= The name of the response variable.
TRIALS= The name of a trials variable (when the data is in event/trials form).
X= Names of the predictors in the model. All variables should be listed explic-

itly; the variable list shorthands (e.g., X1-X8) cannot be used.
ID= Name of an observation ID variable (character or numeric). If no ID= vari-

able is specified, the observation index number is used.
OUT= Name of the output dataset. [Default: OUT=_DIAG_]
GY= Ordinate(s) for plot: DIFDEV and/or DIFCHISQ. One plot is produced for

each combination of GY and GX. [Default: GY=DIFDEV]
GX= Abscissa(s) for plot: PRED and/or HAT. [Default: GX=PRED]
BUBBLE= Gives the name of the variable to which the bubble size is proportional, one

of C (Equation 6.12) or CBAR (Equation 6.13). [Default: BUBBLE=C]
LABEL= Determines which observations, if any, are labeled in the plots. If

LABEL=NONE, no observations are labeled; if LABEL=ALL, all are labeled;
if LABEL=INFL, only possibly influential points are labeled.
[Default: LABEL=INFL]

DEV= The value of the DIFDEV or DIFCHISQ criterion used to decide whether a
point is influential. [Default: DEV=4]

INFL= A logical expression that specifies the criterion used to determine whether
an observation is influential (when used with LABEL=INFL). Any variables
in the OBSTAT dataset can be used. The value p/n is calculated and assigned
to the dataset variable HCRIT, which can also be used.
[Default: INFL=%str(DIFCHISQ>4 OR &BUBBLE>1)]

LSIZE= Observation label size. The height of other text is controlled by the HTEXT=
goption. [Default: LSIZE=1.5]

LCOLOR= Observation label color. [Default: LCOLOR=BLACK]



SAS Programs and Macros 355

LPOS= Observation label position. [Default: LPOS=5]
BSIZE= Bubble size scale factor. [Default: BSIZE=10]
BSCALE= Bubble size proportional to AREA or RADIUS. [Default: BSCALE=AREA]
BCOLOR= Bubble color. [Default: BCOLOR=BLACK]
REFCOL= Color of reference lines. [Default: REFCOL=BLACK]
REFLIN= Line style for reference lines; 0 = NONE. [Default: REFLIN=33]
LOPTIONS= Options for PROC LOGISTIC. [Default: LOPTIONS=NOPRINT]
NAME= Name of the graph in the graphic catalog. [Default: NAME=INFLOGIS]
GOUT= Name of the graphics catalog.

A.13 The INTERACT Macro: Create Interaction Variables

The interact macro creates interaction variables, formed as the product of each of the vari-
ables given in one set (V1=) with each of the variables given in a second set (V2=).

Usage

The interact macro is called with keyword parameters. The arguments can be listed within
parentheses in any order, separated by commas. For example,

%interact(v1=age sex, v2=I1 I2 I3);

Parameters

DATA= The name of the input dataset. If not specified, the most recently created
dataset is used.

V1= Specifies the name(s) of the first set of variable(s).
V2= Specifies the name(s) of the second set of variable(s).
OUT= The name of the output dataset. If not specified, the new variables are ap-

pended to the input dataset.
PREFIX= Prefix(s) used to create the names of interaction variables. The default is I_.

The names are of the form I_11 I_12 ... I_1m I_21 I_22 ... I_nm,
where there are n variables in V1 and m variables in V2.

CENTER= If non-blank, the V1 and V2 variables are mean-centered prior to forming
their interaction products.

A.14 The LAGS Macro: Lagged Frequencies for Sequential Analysis

The LAGS macro tabulates joint frequencies of events at various lags for sequential analysis.
Given a variable containing event codes (character or numeric), this macro creates

• a dataset containing n + 1 lagged variables, _lag0–_lagN. (_lag0 is just a copy of the
input event variable).

• optionally, an (n + 1)-way contingency table containing frequencies of all combinations
of events at lag0–lagN.
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Either or both of these datasets can be used for subsequent analysis of sequential de-
pendencies. One or more BY= variables can be specified, in which case separate lags and
frequencies are produced for each value of the BY variables.

Usage

Exactly one event variable must be specified with the VAR= option. All other options have
default values. If one or more BY= variables are specified, lags and frequencies are calcu-
lated separately for each combination of values of the BY= variable(s).

The arguments can be listed within parentheses in any order, separated by commas. For
example,

%lags(data=codes, var=event, nlag=2);

Parameters

DATA= The name of the SAS dataset to be lagged. If DATA= is not specified, the
most recently created dataset is used.

VAR= The name of the event variable to be lagged. The variable can be either
character or numeric.

BY= The name(s) of one or more BY variables. Lags will be restarted for each
level of the BY variable(s). The BY variables can be character or numeric.

VARFMT= An optional format for the event VAR= variable. If the codes are numeric,
and a format specifying what each number means is used (e.g., 1=’Active’
2=’Passive’), the output lag variables will be given the character values.

NLAG= Specifies the number of lags to compute. [Default: NLAG=1]
OUTLAG= Name of the output dataset containing the lagged variables. This dataset

contains the original variables plus the lagged variables, named according to
the PREFIX= option.

PREFIX= Prefix for the name of the created lag variables. The default is PREFIX=_LAG,
so the variables created are named _LAG1, _LAG2, up to _LAG&nlag. For
convenience, a copy of the event variable is created as _LAG0.

FREQOPT= Options for the TABLES statement used in PROC FREQ for the frequen-
cies of each of lag1–lagN vs lag0 (the event variable). [Default: FREQOPT=
NOROW NOCOL NOPERCENT CHISQ]

Arguments pertaining to the n-way frequency table:

OUTFREQ= Name of the output dataset containing the n-way frequency table. The table
is not produced if this argument is not specified.

COMPLETE= NO or ALL specifies whether the n-way frequency table is to be made ’com-
plete’ by filling in 0 frequencies for lag combinations that do not occur in
the data. [Default: COMPLETE=ALL]

Example

Assume a series of 16 events have been coded with the three codes a, b, c, for two subjects,
as follows:

Sub1: c a a b a c a c b b a b a a b c
Sub2: c c b b a c a c c a c b c b c c
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and these have been entered as the two variables SEQ (subject) and CODE in the dataset
CODES:

SEQ CODE

1 c
1 a
1 a
1 b
....
2 c
2 c
2 b
2 b
....

Then, the macro call:

%lags(data=codes, var=code, by=seq, outfreq=freq);

produces the lags dataset _lags_ for NLAG=1 that looks like this:

SEQ CODE _LAG0 _LAG1

1 c c
a a c
a a a
b b a
a a b
....

2 c c
c c c
b b c
b b b
a a b
....

The output 2-way frequency table (outfreq=freq) is a 3 × 3 × 2 contingency table,
which looks like this:

SEQ _LAG0 _LAG1 COUNT

1 a a 2
b a 3
c a 2
a b 3
b b 1
c b 1
a c 2
b c 1
c c 0
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2 a a 0
b a 0
c a 3
a b 1
b b 1
c b 2
a c 2
b c 3
c c 3

A.15 The LOGODDS Macro: Plot Empirical Logits for Binary Data

For a binary response variable, Y , taking values 0 or 1, and a continuous independent
variable, X , the LOGODDS macro groups the X variable into some number of ordered,
non-overlapping intervals. It plots the empirical log-odds of Y = 1 (and/or Pr(Y = 1))
against X for each interval of X , together with the fitted linear logistic relation, an optional
smoothed curve (using the LOWESS macro), and the observed binary responses. These plots
are described and illustrated in Section 6.2.1.

Usage

The input data to be plotted must be in case form. The LOGODDS macro is called with
keyword parameters. The X= and Y= variables are required. The arguments can be listed
within parentheses in any order, separated by commas. For example,

%include catdata(icu);
%logodds(data=icu, x=age, y=died, smooth=0.25, ncat=16,

options=order=data);

Parameters

X= Name of the continuous independent variable.
Y= Name of the binary response variable.
EVENT= Value of Y for the event of interest. [Default: EVENT=1]
DATA= The name of the input dataset. [Default: DATA=_LAST_]
OPTIONS= Options for PROC LOGISTIC—for example, OPTIONS=DESCENDING.
NCAT= Number of categories of the X variable. For example, if deciles of X are

desired, use NCAT=10. [Default: NCAT=10]
PLOT= Scale(s) for the response. PLOT=LOGIT gives a plot on the logit scale,

PLOT=PROB on the probability scale. [Default: PLOT=LOGIT PROB]
SMOOTH= Smoothing parameter for a lowess smooth, in the interval (0−1). No smooth

curve is produced unless a SMOOTH= value is specified.
SHOW= Specifies whether to plot the binary observations. [Default: SHOW=OBS]
OBS= Specifies how to display the binary observations. If OBS=STACK, the obser-

vations are plotted in vertical columns at the top (Y=1) or bottom (Y=0) of the
plot. If OBS=JITTER, a small random quantity is added (Y=0) or subtracted
(Y=1) to the Y value. [Default: OBS=STACK]

NAME= The name of the graph in the graphic catalog. [Default: NAME=LOGODDS]
GOUT= The name of the graphic catalog. [Default: GOUT=GSEG]
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A.16 The MOSAICS Program: SAS/IML Modules for Mosaic Displays

The MOSAICS program contains the SAS/IML modules for constructing mosaic displays
for an n-way contingency table. This graphical method is described and illustrated exten-
sively in Chapter 4. The complete documentation and many examples are contained in
the distribution archive in the directory mosaics/doc/ in PDF and PostScript formats.
The latest version of the program and documentation are also available on the Web at
http://www.math.yorku.ca/SCS/mosaics/mosaics.html.

Usage

The modules are typically loaded into the SAS/IML workspace with the %include state-
ment, or with the load statement from a SAS/IML storage library. The SYMSIZE option in
PROC IML is often useful for efficiency because the program is quite large.

The required inputs include the contingency table dimensions, table frequencies, the
variable names, and names for the variable levels. These can be specified directly with
SAS/IML statements (or read in from a SAS dataset), and the mosaics module is called
as follows:

proc iml symsize=256;
reset storage=mosaic.mosaic;
load module=_all_; *-- or, %include mosaics(mosaics);
*-- specify data parameters;
levels = { ... }; *-- variable levels;
table = { ... }; *-- contingency table;
vnames = { ... }; *-- variable names;
lnames = { ... }; *-- level names;

*-- specify non-default global inputs;
fittype=’USER’;
config = { 1 1,

2 3 };

run mosaic(levels, table, vnames, lnames, plots, title);

The MOSAICS program also provides a large number of optional parameters, which are
specified as global SAS/IML variables. All of these are given default values if not specified.

Required Parameters

The required parameters for the run mosaics statement are listed below. These are posi-
tional parameters and can be given any valid SAS name in the PROC IML step.

levels A numeric vector that specifies the number of variables and the dimensions
of the contingency table. If levels is n × 1, then the table has n dimen-
sions, and the number of levels of variable i is levels[i]. The order of the
variables in levels is the order in which they are entered into the mosaic
display.

table A matrix or vector giving the frequency, ni j..., of observations in each cell
of the table. The table variables are arranged in accordance with the conven-
tions of the SAS/IML IPF and MARG functions, so the first variable varies
most rapidly across the columns of table and the last variable varies most
slowly down the rows. The table must be complete. If you use PROC FREQ
to sum a larger dataset, use the SPARSE option in the TABLES statement so
that all combinations are created.
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vnames A 1×n character vector of variable (factor) names, in an order corresponding
to levels.

lnames A character matrix of labels for the variable levels, one row for each variable.
The number of columns is the maximum value in levels. When the number
of levels is unequal, the rows for smaller factors must be padded with blank
entries.

plots A vector containing any of the integers 1 to n that specifies the list of
marginal tables to be plotted. If plots contains the value i , the marginal sub-
table for variables 1 to i will be displayed. For a 3-way table, plots={1 2
3} displays each sequential plot, showing the [A], [AB] and [ABC] marginal
tables; while plots=3 displays only the final 3-way [ABC] mosaic.

title A character string or vector of strings containing title(s) for the plots. If
title is a single character string, it is used as the title for all plots. Other-
wise, title can be a vector of up to max(plots) strings, and title[i] is
used as the tile for the plot produced when plots contains i. If the number
of strings is less than max(plots), the last string is used for all remaining
plots.

Global Input Variables

The following global variables are used by the program if they have been assigned val-
ues of the correct type (character or numeric). Because they all have default values, it is
necessary to specify only those you want to change. All character-valued variables are
case-insensitive.

Analysis Options

config A numeric or character matrix specifying which marginal totals to fit when
fittype=’USER’ is also specified. config is ignored for all other fit
types. Each column specifies a high-order marginal in the model, either by
the names of the variables or by their indices, according to their order in
vnames. For example, the log-linear model [AB][AC][BC] for a 3-way
table is specified by the 2 by 3 matrix,

config = { 1 1 2,
2 3 3};

or by variable names,

config = { A A B,
B C C};

The same model can be specified more easily row-wise, and then transposed:

config = t( 1 2, 1 3, 2 3 );

devtype A character string that specifies the type of deviations (residuals) to be repre-
sented by shading. devtype=’GF’ is the default. GF calculates components
of Pearson goodness-of-fit chi-square; LR calculates components of the like-
lihood ratio (deviance) chi-square Equation 7.26. FT calculates Freeman-
Tukey residuals.
Appending ADJ to one of the above options causes adjusted residuals (=
di/

√
(1 − hi ), where hi is the diagonal element of the “hat” matrix) to be

calculated, e.g., Equation 7.25. Because 0 < hi < 1, the adjusted residuals
are always larger in magnitude than the unadjusted values. The ADJ keyword
increases the computation time for each model, because the design matrix



SAS Programs and Macros 361

of the log-linear model must then be generated to find the h values. Never-
theless, the adjusted residuals are generally better indicants of unusual cells.

fittype A character string that specifies the type of sequential log-linear models to
fit. fittype=’JOINT’ is the default. For 2-way tables, (or 2-way margins
of larger tables), all fittypes fit the independence model.

JOINTk specifies sequential models of joint independence, [A][B],
[AB][C], [ABC][D],. . . These models specify that the last variable in a
given plot is independent of all previous variables jointly.
Optionally, the keyword JOINT can be followed by a digit, k, to specify
which of the n ordered variables is independent of the rest jointly.

MUTUAL specifies sequential models of mutual independence, [A][B],
[A][B][C], [A][B][C][D], ...

CONDITk specifies sequential models of conditional independence that hy-
pothesize that all previous variables are independent, given the last, i.e.,
[A][B], [AC][BC], [AD][B D][C D], ... For the 3-way model, A and B are
hypothesized to be conditionally independent, given C; for the 4-way model,
A, B, and C are conditionally independent, given D.
Optionally, the keyword CONDIT can be followed by a digit, k, to specify
which of the n ordered variables is conditioned upon.

PARTIAL specifies sequential models of partial independence of the first
pair of variables, conditioning on all remaining variables one at a time:
[A][B], [AC][BC], [AC D][BC D], ... For the 3-way model, A and B are
hypothesized to be conditionally independent, given C; for the 4-way model,
A and B are conditionally independent, given C and D.

MARKOVk specifies a sequential series of Markov chain models fit to the
table, whose dimensions are assumed to represent discrete ordered time
points, such as lags in a sequential analysis. The keyword MARKOV can be
optionally followed by a digit to specify the order of the Markov chains; e.g.,
fittype=’MARKOV2’; specifies a second-order Markov chain. First-order
is assumed if not specified. Such models assume that the table dimensions
are ordered in time, e.g., Lag0, Lag1, Lag2,. . .

MARKOV (or MARKOV1) fits the models [A][B], [AB][BC], [AB][BC][C D],
... where the categories at each lag are associated only with those at the
previous lag. MARKOV2 fits the models [A][B], [A][B][C], [ABC][BC D],
[ABC][BC D][C DE], ...

USER If fittype=’USER’, specify the hypothesized model in the global
matrix config. The models for plots of marginal tables are based on reduc-
ing the hypothesized configuration, eliminating all variables not participat-
ing in the current plot.

order Specifies whether and how to perform a correspondence analysis to assist in
reordering the levels of each factor variable as it is entered into the mosaic
display. This analysis is not performed if order=’NONE’. Otherwise, order
can be a character vector containing either ’DEV’ or ’JOINT’ to specify
that the CA is performed on residuals from the model for the current sub-
table (DEV) or on residuals from the model of joint independence for this
subtable (JOINT). In addition, order can contain either ’ROW’ or ’COL’
or both to specify which dimensions of the current subtable are considered
for reordering. The usual options for this reordering are order = {JOINT
COL};
At present this analysis merely produces printed output that suggests an or-
dering, but it does not actually reorder the table or the mosaic display.
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zeros A matrix of the same size and shape as the input table containing entries
of 0 or 1, where 0 indicates that the corresponding value in table is to be
ignored or treated as missing or a structural zero.
Zero entries cause the corresponding cell frequency to be fitted exactly; one
degree of freedom is subtracted for each such zero. The corresponding tile
in the mosaic display is outlined in black.
If an entry in any marginal subtable in the order [A], [AB], [ABC] ... corre-
sponds to an all-zero margin, that cell is treated similarly as a structural zero
in the model for the corresponding subtable. Note, however, that tables with
zero margins may not always have estimable models.
If the table contains zero frequencies that should be treated as structural
zeros, assign the zeros matrix like this:

zeros = table > 0;

For a square table, to fit a model of quasi-independence ignoring the diago-
nal entries, assign the zeros matrix like this (assuming a 4 × 4 table):

zeros = J(4,4) - I(4);

Display Options

abbrev If abbrev> 0, variable names are abbreviated to that many letters in the
model formula (and in the plot title if title=’&MODEL’).

cellfill Provides the ability to display a symbol in the cell representing the coded
value of large residuals. This is particularly useful for black-and-white out-
put, where it is difficult to portray both sign and magnitude distinctly.

NONE Nothing (default)

SIGN draws + or − symbols in the cell, whose number corresponds to the
shading density.

SIZE draws + or − symbols in the cell, whose size corresponds to the shad-
ing density.

DEV writes the value of the standardized residual in the cell, using format
6.1.

FREQ writes the value of the cell frequency in the cell, using format 6.0.

If a numeric value, min, is also specified (e.g., cellfill=’DEV 2’), then
only cells whose residual exceeds that value in magnitude are so identified.

colors A character vector of one or two elements specifying the colors used for pos-
itive and negative residuals. The default is {BLUE RED}. For a monochrome
display, specify colors=’BLACK’ and use two distinct fill patterns for the
fill type, such as filltype={M0 M45} or filltype={GRAY M45}.

filltype A character vector of one or two elements that specifies the type of fill
pattern to use for shading. filltype[1] is used for positive residuals;
filltype[2], if present, is used for negative residuals. If only one value
is specified, a complementary value for negative residuals is generated
internally. filltype={HLS HLS} is the default.

M45 uses SAS/GRAPH patterns MdN135 and Md45 with hatching at 45 and
135◦. d is the density value determined from the residual and the shade
parameter.

LR uses SAS/GRAPH patterns Ld and Rd .
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M0 uses SAS/GRAPH patterns MdN0 and MdN90 with hatching at 0 and 90◦.

GRAYstep uses solid, greyscale fill using the patterns GRAYnn starting from
GRAYF0 for density=1 and increasing darkness by step for each successive
density level. The default for step is 16, so ’GRAY’ gives GRAYF0, GRAYE0,
GRAYD0, and so forth.

HLS uses solid, color-varying fill based on the HLS color scheme. The
colors are selected attempting to vary the lightness in approximately equal
steps. For this option, the colors values must be selected from the follow-
ing hue names: RED GREEN BLUE MAGENTA CYAN YELLOW.

fuzz A numeric value that specifies the smallest absolute residual to be considered
equal to zero. Cells with |di j < fuzz are outlined in black. The default is
fuzz = 0.20.

htext A numeric value that specifies the height of text labels in character cells. The
default is htext=1.3. The program attempts to avoid overlap of category
labels, but this cannot always be achieved. Adjust htext (or make the labels
shorter) if they collide.

legend Orientation of legend for shading of residual values in mosaic tiles. ’V’ spec-
ifies a vertical legend at the right of the display; ’H’ specifies a horizontal
legend beneath the display. Default: ’NONE’.

shade A vector of up to 5 values of |di j |, which specify the boundaries between
shading levels. If shade={2 4} (the default), then the shading density num-
ber d is

d residuals
0 0 ≤ |di j | < 2
1 2 ≤ |di j | < 4
2 4 ≤ |di j |

Use shade= a big number to suppress all shading.
space A vector of two values that specify the x, y percent of the plotting area

reserved for spacing between the tiles of the mosaic. The default value is 10
times the number of variables allocated to each of the vertical and horizontal
directions in the plot.

split A character vector consisting of the letters V and H that specifies the direc-
tions in which the variables divide the unit square of the mosaic display.
If split={H V} (the default), the mosaic alternates between horizontal and
vertical splitting. If the number of elements in split is less than the maxi-
mum number in plots, the elements in split are reused cyclically.

vlabels An integer from 0 to the number of variables in the table. It specifies that
variable names (in addition to level names) are to be used to label the first
vlabels variables. The default is vlabels=2, meaning variable names are
used in plots of the first two variables only.

A.17 The MOSAIC Macro: Mosaic Displays

The MOSAIC macro provides an easily used macro interface to the SAS/IML modules
MOSAICS (mosaic displays, with model fitting via IPF), MOSAICD (mosaic displays, with
externally-calculated residuals) and MOSPART (partial mosaic displays) included in the MO-
SAICS package (A.16).
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Using the SAS/IML programs directly means that you must compose a PROC IML step
and invoke the mosaic module (or mospart). Instead, the MOSAIC macro can be used
with any SAS dataset in frequency form (e.g., the output from PROC FREQ or the TABLE
macro). The macro simply creates the PROC IML step, reads the input dataset, and runs
either the mosaic module, the mosaicd module, or the mospart module, depending
on the options specified. If your data is in case form, just use PROC FREQ first (or the
TABLE macro) to construct the contingency table.

Ordinarily, the program fits a model (specified by the FITTYPE= parameter) and displays
residuals from this model in the mosaic. A separate model and mosaic display are produced
for each marginal subtable specified by the PLOTS= parameter.

However, if you have already fit a model and calculated residuals some other way (e.g.,
using PROC CATMOD or PROC GENMOD), specify a RESID= variable in the macro call. The
macro will then produce the mosaic for that model (using the mosaicd module).

If a BY= variable is specified, the macro calls the mospart module, which produces
one (partial) mosaic plot for each level of the BY variable(s).

The MOSAIC macro is easier to use but is not as flexible as direct use of the SAS/IML
programs. The SORT macro (Appendix A.28) and the TABLE macro (Appendix A.29) were
designed to ease these limitations:

• Factor levels are labeled using the values of the factor variables in the input dataset. You
cannot simply attach a SAS format to a factor to convert numeric values to character la-
bels (because SAS/IML reads variables as-is and cannot access SAS formats). However,
you can use a DATA step to create character equivalents of numeric variables using the
put() function, or use the TABLE macro with your own formats.

• You cannot reorder the factors or the levels of a factor quite as flexibly as you can in
SAS/IML. If you use the SORT= parameter, take care that an ordered factor (‘Low’,
‘Medium’, ’High’) is not sorted alphabetically. However, you can use the SORT macro
to sort the dataset in any desired way.

Usage

Almost all of the parameters of the MOSAICS program have equivalents in the macro. The
parameters for the MOSAICmacro are like those of the SAS/IML MOSAICS program, except:

DATA= Specifies the name of the input dataset. The dataset should contain one ob-
servation per cell. The variables should include those listed in VAR= and
COUNT=, and possibly RESID= and BY=.

VAR= Specifies the names of the factor variables for the contingency table. Abbre-
viated variable lists (e.g., V1-V3) are not allowed. The levels of the factor
variables can be character or numeric, but they are used ‘as is’ in the in-
put data. You can omit the VAR= variables if variable names are used in the
VORDER= parameter.

BY= Specifies the names of one (or more) By variables. Partial mosaic plots are
produced for each combination of the levels of the BY= variables. The BY=
variable(s) must be listed among the VAR= variables.

COUNT= Specifies the name of the frequency variable in the dataset.
CONFIG= For a user-specified model, CONFIG= gives the terms in the model, separated

by ’/’. For example, to fit the model of no-3-way association, specify

config=1 2 / 1 3 / 2 3
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or (using variable names)

config = A B / A C / B C

Note that the numbers in the configuration refer to the variables after they
have been reordered, either by sorting the dataset or by specifying the
VORDER= parameter.

VORDER= Specifies either the names of the variables or their indices in the desired
order in the mosaic. Note that using the VORDER= parameter keeps the factor
levels in their order in the input dataset.

SORT= Specifies whether and how the input dataset is to be sorted to produce the de-
sired order of variables in the mosaic. SORT=YES sorts the data in the reverse
order that it is listed in the VAR= paraemter, so that the variables are entered
in the order given in the VAR= parameter. Otherwise, SORT= lists the variable
names, possibly with the DESENDING or NOTSORTED options, in the re-
verse of the desired order, e.g., SORT=C DESCENDING B DESCENDING A.
The default is SORT=YES, unless VORDER= has been specified; in the latter
case, the default is SORT=NO.

RESID= Specifies that a model has already been fit and that externally calculated
residuals are contained in the variable named by the RESID= parameter.

A.18 The MOSMAT Macro: Mosaic Matrices

The MOSMAT macro provides an easily used macro interface to the MOSAICS and MOSMAT
SAS/IML programs to create a scatterplot matrix of mosaic displays for all pairs of cate-
gorical variables, as illustrated in Section 4.4.

Each pairwise plot shows the marginal frequencies to the order specified by the PLOTS=
parameter. When PLOTS=2, these are the bivariate margins, and the residuals from marginal
independence are shown by shading. When PLOTS>2, the observed frequencies in a higher-
order marginal table are displayed, and the model fit to that marginal table is determined
by the FITTYPE= parameter.

Usage

The parameters for the MOSMAT macro are like those of the SAS/IML MOSAICS program,
except the following:

DATA= Specifies the name of the input dataset. This dataset should contain one
observation per cell, the variables listed in VAR= and COUNT=. [Default:
DATA=_LAST_]

VAR= Specifies the names of the factor variables for the contingency table. Abbre-
viated variable lists (e.g., V1-V3) are not allowed. The levels of the factor
variables can be character or numeric, but they are used as-is in the input
data. Upper/lower case in the variable names is respected in the diagonal
label panels. You can omit the VAR= variables if variable names are used in
the VORDER= parameter.

COUNT= Specifies the name of the frequency variable in the dataset. The COUNT=
variable must be specified.

PLOTS= The PLOTS= parameter determines the number of table variables displayed
in each pairwise mosaic. [Default: PLOTS=2]
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CONFIG= For a user-specified model, config= gives the terms in the model, sepa-
rated by ’/’. For example, to fit the model of no-3-way association, spec-
ify CONFIG=1 2 / 1 3 / 2 3, or (using variable names) CONFIG = A B
/ A C / B C. Note that the numbers refer to the variables after they have
been reordered, either by sorting the dataset or by specifying the VORDER=
parameter.

VORDER= Specifies either the names of the variables or their indices in the desired
order in the mosaic. Note that using the VORDER= parameter keeps the factor
levels in their order in the data.

SORT= Specifies whether and how the input dataset is to be sorted to produce the de-
sired order of variables in the mosaic. SORT=YES sorts the data in the reverse
order that it is listed in the VAR= parameter, so that the variables are entered
in the order given in the VAR= parameter. Otherwise, SORT= lists the variable
names, possibly with the DESCENDING or NOTSORTED option in the
reverse of the desired order. e.g., SORT=C DESCENDING B DESCENDING A.

A.19 The ORDPLOT Macro: Ord Plot for Discrete Distributions

The ORDPLOT macro constructs a plot whose slope and intercept can diagnose the form of
a discrete frequency distribution, as described in Section 2.4. This is a plot of knk/nk−1

against k, where k is the basic count and nk is the frequency of occurrence of k. The
macro displays both a weighted and unweighted least squares line and uses the slope and
intercept of the weighted line to determine the form of the distribution. Rough estimates of
the parameters of the distribution are also computed from the slope and intercept.

Usage

The ORDPLOT macro is called with keyword parameters. The COUNT= and FREQ= variables
are required. The arguments can be listed within parentheses in any order, separated by
commas. For example,

%include catdata(vonbort); *-- creates horskick data set;
%ordplot(data=horskick, count=Deaths, freq=corpsyrs);

Parameters

DATA= Name of the input dataset. [Default: DATA=_LAST_]
COUNT= The name of the basic count variable.
FREQ= The name of the variable giving the number of occurrences of the COUNT=

variable.
LABEL= Label for the horizontal (COUNT=) variable. If not specified the variable label

for the COUNT= variable in the input dataset is used.
LEGLOC= X, Y location (in screen percent) for interpretive legend.

[Default: LEGLOC=3 88]
LEGCLR= Legend color. [Default: LEGCLR=RED]
OUT= The name of the output dataset. [Default: OUT=ORDPLOT]
NAME= Name of the graphics catalog entry. [Default: NAME=ORDPLOT]
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A.20 The PANELS Macro: Arrange Multiple Plots in Panels

The PANELS macro constructs a template in which to replay a series of graphs, assumed all
the same size, in a rectangular array of R rows and C columns. By default, the panels are
displayed left-to-right across rows, starting either from the top (ORDER=DOWN) or bottom
(ORDER=UP). If the number of rows and columns are unequal, the aspect ratio of individ-
ual panels can be maintained by setting EQUATE=Y. It is assumed that all the plots have
already been created and stored in a graphics catalog (the default, WORK.GSEG, is used
automatically by SAS/GRAPH procedures).

For interactive use within the SAS Session Manager, you should be aware that all plots
are stored cumulatively in the graphics catalog throughout your session, unless explicitly
changed with the GOUT= option in graphics procedures or macros. To create multiple pan-
eled plots, you can use the FIRST= and LAST= parameters or a REPLAY= list to specify
which plots are used in a given call.

Usage

Call the PANELS macro after the steps that create the graphs in the graphics catalog. The
GDISPLA macro (A.31.3) can be used to suppress the display of the original full-sized
graphs as they are generated. The ROWS= and COLS= parameters must be specified. For
example,

goptions hsize=7in vsize=5in;
%gdispla(OFF);
proc gplot data=mydata;

plot y * x = group;
by sex;

%gdispla(ON);
%panels(rows=1, cols=2);

Parameters

ROWS=
COLS= The ROWS= and COLS= arguments are required, and they specify the size of

the array of plots to be displayed. These are the only required arguments.
PLOTS= If there are fewer than &ROWS*&COLS plots, specify the number as the

PLOTS= argument. Optionally, there can be an additional plot, which is dis-
played (as a GSLIDE title, for example) in the top nn% of the display, as
specified by the TOP= argument.

TOP= If TOP=nn is specified, the top nn% of the display is reserved for one addi-
tional panel (of width 100%), to serve as the plot title or annotation.

ORDER= The ORDER= argument specifies the order of the panels in the REPLAY= list
when REPLAY= is not specified. Typically, the panels are displayed across
the columns. ORDER=UP means that the panels in the bottom row are drawn
first and numbered 1, 2,. . . , &COLS. ORDER=DOWN means that the panels in
the top row are drawn first and numbered 1, 2,. . . , &COLS.
If you add the keyword BYROWS to ORDER=, the panels are displayed up
or down the rows. For example, when ROWS=3, and COLS=5, ORDER=DOWN
BYROWS generates the REPLAY= list as

replay=1:1 2:4 3:7 4:10 5:13
6:2 7:5 8:8 9:11 10:14
11:3 12:6 13:9 14:12 15:15
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EQUATE= The EQUATE= argument determines if the size of the panels is adjusted so that
the aspect ratio of the plots is preserved. If EQUATE=Y, the size of each plot
is adjusted to the maximum of &ROWS and &COLS. This is usually desired, as
long as the graphic options HSIZE and VSIZE are the same when the plots
are replayed in the panels template as when they were originally generated.
[Default: EQUATE=Y]

REPLAY= The REPLAY= argument specifies the list of plots to be replayed in the con-
structed template, in one of the forms used with the PROC GREPLAY
REPLAY statement, for example, REPLAY=1:1 2:3 3:2 4:4 or
REPLAY=1:plot1 2:plot3 3:plot2 4:plot4.

TEMPLATE= The name of the template constructed to display the plots.
[Default: TEMPLATE=PANEL&ROWS.&COLS]

TC= The name of the template catalog used to store the template. You can use a
two-part SAS dataset name to save the template permanently.

FIRST= By default, the REPLAY= argument is constructed to replay plot i in panel
i . If the REPLAY= argument is not specified, you can override this default
assignment by specifying FIRST= the sequential number of the first graph in
the graphics catalog to plot (default: FIRST=1), where:

> 0 A positive integer means the absolute number of the first graph in the
input catalog to be replayed. For example, FIRST=3 starts with the third
graph.

≤ 0 An integer less than 1 means the number of first graph relative to last
graph in the input catalog (i.e. FIRST=0 means last graph only, FIRST=-1
means the first is the one before last, etc.).

LAST= The LAST= parameter can be used to specify the number of the last graph
in the input graphics catalog to be replayed. The default is LAST=0, which
refers to the last plot in the graphics catalog. The LAST= value is interpreted
as follows:

> 0 A positive integer means the absolute number of last graph in the input
catalog to be replayed. For example, LAST=4 ends with the fourth graph.

≤ 0 An integer less than 1 means the number of last graph relative to last
graph in the input catalog (i.e. LAST=0 means last graph only, LAST=-1
means to end with the one before last, etc.).

GIN= Specifies the name of the input graphics catalog from which the plots to be
replayed are taken. [Default: GIN=WORK.GSEG]

GOUT= Specifies the name of the graphics catalog in which the paneled plot is
stored. [Default: GOUT=WORK.GSEG]

A.21 The POISPLOT Macro: Poissonness Plot

The POISPLOT macro constructs a “Poissonness plot” for determining if discrete data fol-
lows the Poisson distribution, as described and illustrated in Section 2.5. When the data
follows a Poisson distribution, the plot has a linear relation between the count metameter
n(k) and the basic count, k. An influence plot displays the effect of each observed frequency
on the choice of the Poisson parameter, λ. The DISTPLOT macro (A.6) generalizes these
displays to other discrete distributions.
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Usage

The POISPLOT macro is called with keyword parameters. The COUNT= and FREQ= param-
eters are required. The arguments can be listed within parentheses in any order, separated
by commas. For example,

data horskick;
input deaths corpsyrs;
label deaths=’Number of Deaths’

corpsyrs=’Number of Corps-Years’;
datalines;

0 109
1 65
2 22
3 3
4 1

;
%poisplot(count=Deaths,freq=corpsyrs, plot=dist);

Parameters

DATA= The name of the input dataset. [Default: DATA=_LAST_]
COUNT= The name of the basic count variable.
FREQ= The name of the variable giving the number of occurrences of COUNT.
LABEL= Label for the horizontal (COUNT=) variable. If not specified the variable label

for the COUNT= variable in the input dataset is used.
LAMBDA= Trial value of the Poisson parameter λ to level the plot. If LAMBDA=0 (the

default) the plot is not leveled.
Z= Multiplier for error bars. [Default: Z=1.96]
PLOT= What to plot: DIST and/or INFL. [Default: PLOT=DIST INFL]
HTEXT= Height of text labels. [Default: HTEXT=1.4]
OUT= The name of the output dataset. [Default: OUT=POISPLOT]
NAME= Name of the graphics catalog entry. [Default: NAME=POISPLT]

A.22 The POWERLOG Macro: Power Analysis for Logistic Regression Table

The POWERLOG macro calculates sample size required to achieve given power values for
a logistic regression model with one or more quantitative predictors, as described in Sec-
tion 6.9. Results are displayed as a table of sample sizes required for a range of power
values and as a graph.

Usage

The POWERLOG macro is called with keyword parameters. The arguments can be listed
within parentheses in any order, separated by commas. You must supply either

• an input dataset containing the variables P1, P2, ALPHA, POWER, and RSQ (one ob-
servation for each combination for which power is desired)

• the macro parameters P1= and P2=
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For example,

%powerlog(p1=.08, p2=%str(.16, .24));

Parameters

DATA= Specifies the name of an input dataset containing the variables P1, P2, AL-
PHA, POWER, and RSQ in all combinations for which power is desired. If
an input DATA= dataset is specified, the program ignores values for the P1=,
P2=, ALPHA=, POWER=, and RSQ= parameters.

P1= The estimated probability of the event at the mean value of the quantitative
predictor.

P2= The estimated probability of the event at an X-value equal to the X-mean
plus one standard deviation. You can specify a list of values separated by
commas, a range of the form x TO y BY z, or a combination of these. How-
ever, you must surround the P2= value with %STR() if any commas appear
in it. For example,

p2=.10 to .30 by .05
p2=%str(.10, .13, .20)

ALPHA= The desired Type I error probability for a one-sided test of H0 : β(x) = 0.
POWER= The desired power of the test.
RSQ= The squared multiple correlation of the predictor with all other predictors.

Use RSQ=0 for a 1-predictor model.
PLOT= A specification for plotting the results. The default is

PLOT=N * POWER=RSQ. No plots are produced if PLOT= is blank.
PLOTBY= Another variable in the OUT= dataset.
OUT= Specifies the name of the output dataset.

Example

Assume we are modeling the relation of the probability of heart disease on X = cholesterol.
If previous studies suggest that heart disease occurs with P1=0.08 at the mean level of
cholesterol, what is the sample size required to detect a 50% increase (P2 = 1.5∗.08 =
.12), or an 87.5% increase (P2 = 1.875∗.08 = .15) in the probability of heart disease, when
cholesterol increases by one standard deviation?

If age is another predictor, how does sample size vary with the RSQ between cholesterol
and age? These questions are answered with the following macro call:

%powerlog(p1=.08, p2=%str(.12, .15), rsq=%str(.2, .4) );

A.23 The POWERRxC Macro: Power for 2-Way Frequency Tables

The POWERRXC macro computes approximate power for Pearson and Likelihood Ratio χ2

tests of independence in 2-way tables. When power is calculated for a range of sample
sizes, the macro can produce a plot of power against sample size.
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Usage

The POWERRXC macro takes 10 keyword arguments. The ROW= and COL= variables must be
specified. You must also specify the COUNT= variable when the data is in frequency form.

Parameters

DATA= The name of the input dataset. [Default: DATA=_last_]
ROW= Specifies the variable defining the rows of the table.
COL= Specifies the variable defining the columns of the table.
COUNT= The variable of frequency counts, if the input data is cell counts of a contin-

gency table in frequency form. If not specified, the input data is considered
to be raw data in case form.

LEVEL= The significance level (α) of the test of independence.
[Default: LEVEL=.05]

ALPHA= Synonym for LEVEL. [Default: ALPHA=&LEVEL]
NRANGE= The sample size or range of sample sizes for which power is desired. If not

specified, the actual sample size is used. For example: nrange=20 to 200
by 20, or nrange=%str(20, 50 to 100 by 10). Note that %STR()
should be used when commas appear in your range specification.

PLOT= [Default: PLOT=POWERP * N]
FREQOPT= Specifies options for PROC FREQ.

[Default: FREQOPT=NOROW NOCOL NOPERCENT]
OUT= The name of the output dataset. [Default: OUT=_POWER_]

A.24 The POWER2x2 Macro: Power for 2 × 2 Frequency Tables

The POWER2X2 macro computes the power of a test comparing proportions from two equal-
sized, independent samples. Power is calculated for various sizes of the total sample, or the
required sample size is calculated for various power values, allowing you to pick the sample
size that achieves the desired power.

Usage

The POWER2X2 macro takes nine keyword arguments. You must supply the DIFF= param-
eter. By default the macro computes power for a range of sample sizes (given by NMIN=
and NMAX=). Alternatively, you can specify a range of power values (given by POWER=) for
which the required sample size is calculated.

Parameters

P1= Specifies an estimate of the “success” rate in one group, the baseline group.
[Default: P1=.50]

DIFF= Specifies the difference in the proportions that you want to detect. This is
the specification of the alternative hypothesis at which power is computed.
The difference must be specified; there is no default. You can specify a list
of values separated by commas, a range of the form x TO y BY z, or a
combination of these. However, you must surround the DIFF= value with
%STR() if any commas appear in it. For example,

diff=.10 to .30 by .05
diff=%str(.10, .13, .20)
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ALPHA= Specifies the significance level or size of the test. It is a decimal value less
that 1. For example, ALPHA=.05 sets the probability of a Type 1 error at 0.05.
You can specify a single value, or a list of values separated by commas, or a
range of the form x TO y by z. [Default: ALPHA=.05]

POWER= Values of power for sample size calculation. You can specify a list of values
separated by commas, a range of the form x TO y by z, or a combination
of these, as in a DO statement. However, you must surround the POWER=
value with %STR() if any commas appear in it.

NMIN= Specifies the minimum total sample size at which power will be computed.
[Default: NMIN=10]

NMAX=200 Specifies the minimum total sample size at which power will be computed.
[Default: NMAX=200] To get power for a single total sample size, set NMIN
and NMAX to half of the total sample size.

PLOT= A specification for plotting the results, in the form Y * X or Y * X = Z,
where X, Y, and Z can be any of the variables N, DIFF, P2, POWER or
OR. No plots are produced if PLOT= is blank. [Default: PLOT=POWER * N=
DIFF]

PLOTBY= Another variable in the OUT= dataset. Separate plots are drawn for each level
of the PLOTBY= variable.

OUT= The name of the output dataset. [Default: OUT=_POWER_]

Example

%power2x2( p1=.6, diff=.10 to .20 by .05, nmin=50);

With the settings above, the expected baseline success rate is 60%. Power for detecting
a difference of 10−20% in the two proportions will be computed for a .05 level test and
for sample sizes ranging from 50 to 200.

Details

Hypotheses in the test are

H0 : p1 = p2

Ha : p1 �= p2

where p1 and p2 are the success probabilities in the two populations. The Pearson chi-
square statistic tests the null hypothesis (H0) against the alternative hypothesis (Ha) and
is available in the FREQ procedure when the CHISQ option is specified on the TABLES
statement.

The power is the probability of rejecting H0 and is a function of the true difference in
proportions. Power is often computed assuming many different settings of the true propor-
tions. The type 2 error rate (denoted β) is the probability of accepting H0 for some non-zero
true difference and is equal to 1-power. The power and β are computed for a range of total
sample sizes at a particular alternative hypothesis that you specify. It is assumed that the
total sample size will be split equally between the two samples.
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A.25 The ROBUST Macro: Robust Fitting for Linear Models

The ROBUST macro uses iteratively reweighted least squares to fit linear models by M-
estimation. The weights are determined by the BISQUARE, HUBER, LAV or OLS func-
tion. The fitting procedure can be PROC REG, PROC GLM or PROC LOGISTIC.

Usage

The ROBUST macro is called with keyword parameters. The RESPONSE= and MODEL= pa-
rameters are required. The arguments can be listed within parentheses in any order, sepa-
rated by commas. For example,

%include catdata(icu);
%robust(data=icu, response=died, model=age cancer uncons admit,

proc=logistic, id=id, iter=3);

Parameters

DATA= The name of the input dataset. [Default: DATA=_LAST_]
RESPONSE= The name of the response variable in the model.
MODEL= The right-hand-side of the MODEL statement.
PROC= The name of the estimation procedure to be used, one of REG, GLM, or

LOGISTIC. [Default: PROC=LOGISTIC]
CLASS= The names of any CLASS variables in the MODEL (for GLM only).
ID= The names of any observation ID variables. These are simply copied to the

OUT= dataset.
OUT= The name of the output dataset of observation statistics.

[Default: OUT=RESIDS]
OUTPARM= The name of the output dataset of parameter estimates on the final iteration.
FUNCTION= Weight function, one of HUBER, LAV (least absolute value), BISQUARE, or

OLS. [Default: FUNCTION=BISQUARE]
TUNE= Tuning constant for BISQUARE or HUBER. The weighting function is ap-

plied to the value _RESID_ / (&TUNE * MAD) where MAD is the median
absolute value of the residuals. The default is TUNE=6 for the BISQUARE
function, and TUNE=2 for the HUBER function.

ITER= The maximum number of iterations. [Default: ITER=10]
CONVERGE= The maximum change in observation weights for convergence. The value

must have a leading 0. [Default: CONVERGE=0.05]
PRINT= Controls printing of intermediate and final results.

[Default: PRINT=NOPRINT]

A.26 The ROOTGRAM Macro: Hanging Rootograms

The ROOTGRAM macro produces histograms, rootograms, and hanging rootograms for the
distribution of a discrete variable compared with expected frequencies according to a the-
oretical distribution. The use of the macro is illustrated in Section 2.3.3.
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Usage

The VAR= and OBS= variables must be specified. The expected frequencies can be obtained
with the GOODFIT macro (A.9).

The ROOTGRAM macro is called with keyword parameters. The arguments can be listed
within parentheses in any order, separated by commas. For example,

%include catdata(madison);
%goodfit(data=madison, var=count, freq=blocks, dist=poisson);
%rootgram(data=fit, var=count, obs=blocks);

Parameters

DATA= Specifies the name of the input dataset. [Default: DATA=_LAST_]
VAR= Specifies the name of the analysis variable, used as the abscissa in the plot.
OBS= Specifies the name of the observed frequency variable.
EXP= Specifies the name of the expected or fitted frequency variable.

[Default: EXP=EXP]
FUNC= The name of the function applied to ordinate. Use FUNC=NONE to give a

plot on the scale of observed frequency, or FUNC=SQRT for a rootogram.
[Default: FUNC=SQRT]

BWIDTH= Bar width, in data units. [Default: BWIDTH=.5]
BCOLOR= Bar color. [Default: BCOLOR=GRAYB0]
BTYPE= Bar type: One of HANG (bars hanging from the fitted frequency curve), DEV

(bars showing observed−expected deviations), or NEEDLE (bars showing ob-
served frequencies). [Default: BTYPE=HANG]

ANNO= The name of an input Annotate dataset.
NAME= Name of the graphics catalog entry.

A.27 The SIEVE Program: Sieve Diagrams

The SIEVE program is a collection of SAS/IML modules for drawing sieve (or parquet)
diagrams for a 2-way contingency table, as described in Section 3.5.

Usage

The modules are typically loaded into the SAS/IML workspace with the %include state-
ment. The required input parameters are specified with SAS/IML statements, and the
sieve module is called as follows:

proc iml;
%include iml(sieve);
*-- specify required parameters;
table = { ... }; *-- contingency table;
vnames = { ... }; *-- variable names;
lnames = { ... }; *-- level names;
title = " ..."; *-- plot title
run sieve( table, vnames, lnames, title );

Several options can be specified through global input variables.
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Required Parameters

The required parameters for the run sieve statement are listed below. These are posi-
tional parameters and can be given any valid SAS name in the PROC IML step.

table A numeric matrix of r rows and c columns containing the contingency table
to be displayed.

vnames A character vector of two elements, containing the names of the row and
column variables.

lnames A character matrix of size 2 × max(r, c) containing the names of the row
categories in the first row and column categories in the second row. If r �= c,
the shorter row must be filled in with blank character strings.

title A character string containing the title for the plot.

Global Input Variables

The following global variables are used by the program if they have been assigned values
of the correct type (character or numeric). Because they all have default values, it is only
necessary to specify those you want to change. All character-valued variables are case-
insensitive.

filltype A character string that provides options for filling each cell in the sieve dia-
gram. Possible values are

OBS Fill cells in proportion to observed frequencies
OBSP Like OBS, but also write observed frequency in the cell
DEV Fill cells in proportion to the deviation from independence
EXL No fill, write expected frequency in cell
EXL Fills cells in proportion to the expected frequency, write expected fre-

quency in cell

margins A character string, which specifies whether the marginal totals for the row
and column variables are drawn in the sieve diagram.

’’ margins are not drawn

TOTALS the row/col totals in margins

font Font for text.
colors Names of two colors to use for the positive and negative residuals. [Default:

colors={BLUE RED}]

A.28 The SORT Macro: Sort a Dataset by the Value of a Statistic

The SORT macro generalizes the idea of sorting the observations in a dataset to include

• sorting according to the values of a user-specified format. With appropriate user-defined
formats, this can be used to arrange the observations in a dataset in any desired order.

• reordering according to the values of a summary statistic computed on the values in each
of several groups—for example, the mean or median of an analysis variable.
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Usage

You must specify one or more BY= variables. To sort by the value of a statistic, specify
the name of the statistic with the BYSTAT= parameter, and specify the analysis variable
with VAR=. To sort by formatted values, specify the variable names and associated formats
with BYFMT=. If neither the BYSTAT= or BYFMT= parameter is specified, an ordinary sort is
performed.

The SORT macro is called with keyword parameters. The arguments can be listed within
parentheses in any order, separated by commas. For example,

%sort(by=age sex, bystat=mean, var=income);

or

proc format;
value age 0=’Child’ 1=’Adult’;

%sort(by=age decending sex, byfmt=age:age.);

Parameters

DATA= Name of the input dataset to be sorted. The default is the most recently
created dataset.

VAR= Specifies the name of the analysis variable used for BYSTAT sorting.
OUT= Name of the output dataset. If not specified, the output dataset replaces the

input dataset.
BY= Names of one or more classification (factor, grouping) variables to be used in

sorting. The BY= argument can contain the keyword DESCENDING before a
variable name for ordinary or formatted-value sorting. For BYSTAT sorting,
use ORDER=DESCENDING. The BY= variables can be character or numeric.

BYFMT= A list of one or more terms, of the form, VAR:FMT or VAR=FMT, where VAR is
one of the BY= variables, and FMT is a SAS format. Do not specify BYSTAT=
when sorting by formatted values.

VAR= Name of the analysis variable to be used in determining the sorted order.
BYSTAT= Name of the statistic, calculated for the VAR= variable for each level of the

BY= variables. The BYSTAT= value can be the name of any statistic computed
by PROC UNIVARIATE.

FREQ= For BYSTAT sorting, specify the name of a frequency variable if the input
data consists of grouped frequency counts.

ORDER= Specify ORDER=DESCENDING to sort in descending order when sorting by a
BYSTAT. The ORDER= parameter applies to all BY= variables in this case.

Example

Given a frequency table of Faculty by Income, sort the faculties so they are arranged by
mean income:

%sort(data=salary, by=Faculty, bystat=mean, var=income, freq=count);
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A.29 The TABLE Macro: Construct a Grouped Frequency Table, with
Recoding

The TABLE macro constructs a grouped frequency table suitable for input to the MOSAIC
macro or the MOSMATmacro. The input data can be individual observations or a contingency
table, which can be collapsed to fewer variables. Numeric factor variables can be converted
to character using user-supplied formats.

Usage

The TABLE macro takes seven keyword arguments. The VAR= parameter is required. When
the input dataset is already in frequency form, you must also specify the WEIGHT= param-
eter.

Parameters

DATA= The name of the input dataset. [Default: DATA=_LAST_]
VAR= Names of all factor (classification) variables to be included in the output

dataset. The observations are summed over any other factors, weighted by
the WEIGHT= variable, if any.

CHAR= If WEIGHT is non-blank, this forces the VAR= variables to be converted to
character variables (using formatted values) in the output dataset. If CHAR=
a numeric value (e.g., CHAR=8), it specifies the length of each character vari-
able; otherwise, the character variables default to length 16.

WEIGHT= The name of a frequency variable, if the input dataset is already in frequency
form. If not specified, each observation is assumed to be one case.

ORDER= Specifies the order of the variable levels used in the PROC FREQ step. The
valid option values are INTERNAL, FREQ, DATA, and FORMATTED.

FORMAT= A list of variable(s), format pairs (suitable for a FORMAT statement). The
FORMAT= option can be used to recode the values of any of the VAR= vari-
ables.

OUT= The name of the output dataset. The variables in the output dataset are the
VAR= variables, plus COUNT, the frequency variable for each cell. [Default:
OUT=TABLE]

Limitations

None of the factor variables can be named COUNT.

Example

This example reads a 3-way frequency table (Gender x Admit x Dept), where admit and
dept are numeric variables, and collapses it (over Dept) to a 2-way table, with gender and
admit as character variables. The option order=data keeps the factor level values in the
order encountered in the input data.

%include catdata(berkeley);
%table(data=berkeley, var=gender admit, weight=freq, char=Y,

format=admit admit. gender $sex., order=data, out=berk2);
%mosaic(data=berk2, var=Gender Admit);
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The formats admit. and $sex. are created with PROC FORMAT:

proc format;
value admit 1="Admitted" 0="Rejected";
value $sex ’M’=’Male’ ’F’=’Female’;

A.30 The TRIPLOT Macro: Trilinear Plots for n × 3 Tables

The TRIPLOT macro plots three variables (rows of an n × 3 table) in an equilateral tri-
angle, so that each point represents the proportions of each variable to the total for that
observation. These plots are described and illustrated in Section 3.8.

Usage

The TRIPLOT macro is called with keyword parameters. The names of three variables must
be given in the VAR= parameter. The arguments can be listed within parentheses in any
order, separated by commas. For example, Figure 3.18 was produced using

data tridemo;
input A B C point $12.;
label point=’Point’;

datalines;
40 30 30 (40,30,30)
20 60 20 (20,60,20)
10 10 80 (10,10,80)
;
%triplot(var=A B C, class=Point, id=point, gridby=25,

symbols=dot dot dot, idht=1.6, axes=bot,
symht=4, gridclr=gray);

Parameters

DATA= The name of dataset to be plotted. [Default: DATA=_LAST_]
VAR= The names of three variables used as the axes in the plot. The values of each

observation are normally all non-negative. Missing values are treated as 0.
CLASS= The name of a class variable determining plotting symbol. Different values

of the CLASS= variable are represented by the values in the COLORS= and
SYMBOLS= lists, used sequentially.

ID= The name of an observation identifier (label) variable.
BY= The name of a BY variable. If specified, a separate plot is produced for each

level of the BY variable.
WHERE= A WHERE-clause to subset observations to be plotted.
IDHT= Height of ID label. [Default: IDHT=2]
IDCLR= Color of ID label. [Default: IDCLR=’BLACK’]
IDPOS= Position of ID label. [Default: IDPOS=8]
IDSUBSET= A SAS expression (which can use any dataset variables) used to subset ID

labels. If an ID= variable is given and the IDSUBSET= expression evaluates
to non-zero, the observation is labeled in the plot. [Default: IDSUBSET=1]
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INTERP= Interpolation between points, a SYMBOL statement option. If INTERP=JOIN,
points within the same CLASS= value are connected by lines. Most other
SYMBOL statement interpolation options would give bizare results.
[Default: INTERP=NONE]

SYMHT= Height of point symbols. [Default: SYMHT=2]
SYMBOLS= A list of one or more symbols for points, corresponding to the levels of the

CLASS= variable. The symbols are reused cyclically if there are more class
levels than symbols.
[Default: SYMBOLS=DOT CIRCLE SQUARE $ : TRIANGLE = X _ Y]

COLORS= A list of one or more colors for points, corresponding to the levels of the
CLASS= variable. The colors are also reused cyclically as required. [Default:
COLORS=BLACK RED BLUE GREEN BROWN ORANGE PURPLE YELLOW]

BACKCLR= Background color inside the trilinear plot. [Default: BACKCLR=WHITE]
BACKPAT= Background fill pattern. For a plot with a light gray background—for ex-

ample, specify BACKPAT=SOLID and BACKCLR=GRAYD0.
[Default: BACKPAT=EMPTY]

GRIDBY= Grid line interval. For grid lines at 25, 50, and 75%—for example, specify
GRIDBY=25. [Default: GRIDBY=20]

GRIDCLR= Grid line color. [Default: GRIDCLR=GRAY]
GRIDLINE= Style of grid lines. [Default: GRIDLINE=34]
AXES= Type of axes, one of NONE, FULL, TOP, or BOT. AXES=NONE draws no

coordinate axes; AXES=FULL draws a line from 0 to 100% for each of the
three coordinates; AXES=TOP draws a line from the apex to the centroid only;
AXES=BOT draws a line from the centroid to the base only.
[Default: AXES=NONE]

AXISCLR= Color of axis lines. [Default: AXISCLR=BLUE]
AXISLINE= Style of axis lines. [Default: AXISLINE=1]
XOFF= X offset, in %, for adjusting the plot. [Default: XOFF=2]
XSCALE= X scale factor for adjusting the plot. Before plotting the X coordinates are

adjusted by X = XOFF + XSCALE * X. [Default: XSCALE=.96]
YOFF= X offset, in %, for adjusting the plot. [Default: YOFF=2]
YSCALE= Y scale factor for adjusting the plot. Before plotting the Y coordinates are

adjusted by Y = YOFF + YSCALE * Y. [Default: YSCALE=.96]
LEGEND= The name of SAS/GRAPH legend statement or ’NONE’. If LEGEND= is not

specified and there is more than one group defined by a CLASS= variable,
a legend statement is constructed internally. If LEGEND=NONE, no legend is
drawn; otherwise, the LEGEND= value is used as the name of a legend state-
ment.

LABHT= Height of variable labels, in GUNITs. [Default: LABHT=2]
LABLOC= Location of variable label: 0 or 100. [Default: LABLOC=100]
NAME= Name of the graphics catalog entry. [Default: NAME=TRIPLT]

A.31 Utility Macros

A.31.1 BARS: Create an Annotate Dataset to Draw Error Bars

The BARS macro creates an Annotate dataset to draw vertical or horizontal error bars in
a plot produced with PROC GPLOT. That is, the error bars can be drawn for a response
variable displayed on the Y axis or on the X axis. The other (CLASS=) variable can be
character or numeric.
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Usage

The BARS macro is called with keyword parameters. The VAR= and CLASS= variables must
both be specified. The length of the error bars should be specified with either the BARLEN=
parameter or the LOWER= and UPPER= parameters.

The arguments can be listed within parentheses in any order, separated by commas. For
example,

%bars(class=age, var=logodds, lower=lower, upper=upper);
proc gplot data=mydata;

plot logodds * age / anno=_bars_;

Parameters

DATA= Name of the input dataset. [Default: DATA=_LAST_]
VAR= Name of the response variable, to be plotted on the axis given by the BAXIS=

parameter.
CLASS= Name of the independent variable, plotted on the other axis.
CVAR= Name of a curve variable, when PROC GPLOT is used with the statement

PLOT &VAR * &CLASS = &CVAR.
BY= Name of a BY variable for multiple plots, when PROC GPLOT is used with

the statement BY &BY;.
BAXIS= One of X or Y, indicating the response variable axis along which error bars

are drawn. [Default: BAXIS=Y]
BARLEN= The name of a numeric variable or a numeric constant giving the error bar

length. Use the name of a variable when the input dataset contains a stan-
dard error variable or multiple thereof. If BARLEN= is given, the LOWER=
and UPPER= values are ignored, and error bars are drawn at the values
&VAR +- &Z ∗ &BARLEN.

Z= A numeric value giving the multiplier of the BARLEN= value used to deter-
mine the lower and upper error bar values.

LOWER= A numeric variable or constant giving the lower error bar value. Use the
LOWER= and UPPER= parameters if the error bars are non-symmetric or if
the lower and upper values are contained as separate variables in the input
dataset.

UPPER= A numeric variable or constant giving the upper error bar value.
TYPE= Type of error bars to be drawn: one of UPPER, LOWER, or BOTH and pos-

sibly one of ALT or ALTBY. TYPE=LOWER draws only the lower error bars;
TYPE=UPPER draws only the upper error bars; TYPE=BOTH draws both upper
and lower error bars. Use TYPE=ALT BOTH to have the error bars alternate
(lower, upper) over observations in the input dataset; use TYPE=ALTBY BOTH
to have the error bars alternate over values of the BY= variable. [Default:
TYPE=BOTH]

SYMBOL= The plotting symbol, drawn at (&CLASS, &VAR). If not specified, no sym-
bols are drawn.

COLOR= Color for lines and symbols, a character constant (enclosed in quotes), or
variable name. [Default: COLOR=’BLACK’]

LINE= The Annotate line style used for error bars. [Default: LINE=1]
SIZE= Size of symbols and thickness of lines. [Default: SIZE=1]
BARWIDTH= The width of error bar tops, in data units. [Default: BARWIDTH=.5]
OUT= Name of the output dataset, to be used as an Annotate dataset with

PROC GPLOT. [Default: OUT=_BARS_]
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A.31.2 EQUATE: Create AXIS Statements for a GPLOT with Equated
Axes

The EQUATEmacro creates AXIS statements for a GPLOT with equated axes and optionally
produces a plot using point labels (supplied in an input Annotate dataset). It is a modified
version of the same macro appearing in the SAS Sample Library.

It creates an AXIS statement for the vertical variable Y and an AXIS statement for hori-
zontal variable X such that an inch on the vertical axis represents the same data range as an
inch on the horizontal axis. Equated axes are necessary whenever distances between points
or angles between vectors from the origin are to be interpreted.

Usage

The EQUATE macro takes 15 keyword arguments. The X= and Y= parameters are required.
You may want to reset the defaults below to be more suited to the graphic devices you

typically use. As well, you should use GOPTIONS HSIZE= VSIZE=; to allow the maxi-
mum plot size if you specify the XMAX= and YMAX= parameters as null values.

As an additional convenience (particularly for use within other macros) EQUATE will
calculate reasonable tick mark increments from the data, to give about 6 tick marks on an
axis (with a “nice number” increment) if the XINC= or YINC= parameters are specified as
null values.

Parameters

DATA= Name of the input dataset. [Default: DATA=_LAST_]
ANNO= Name of an Annotate dataset (used only if PLOT=YES).

[Default: ANNO=&DATA]
X= Name of the X variable. [Default: X=X]
Y= Name of the Y variable. [Default: Y=Y]
XMAX= Maximum X axis length (inches). If XMAX= (a null value) the macro queries

the device driver (using the DSGI) to determine the maximum axis length.
[Default: XMAX=6.5]

YMAX= Maximum Y axis length (inches). If YMAX= (a null value) the macro queries
the device driver (using the DSGI) to determine the maximum axis length.
[Default: YMAX=8.5]

XINC= X axis tick increment. If XINC= (a null value), the macro calculates an incre-
ment from the data that is 1, 2, 2.5, 4, or 5 times a power of 10 so that about
6 tick marks will appear on the X axis. [Default: XINC=0.1]

YINC= Y axis tick increment. If XINC= (a null value), the macro calculates an incre-
ment from the data that is 1, 2, 2.5, 4, or 5 times a power of 10 so that about
6 tick marks will appear on the X axis. [Default: YINC=0.1]

XPEXTRA= Number of extra X axis tick marks at the high end. Use the XPEXTRA= and
XMEXTRA= parameters to extend the range of the X variable beyond the data
values, e.g., to accommodate labels for points in a plot.
[Default: XPEXTRA=0]

XMEXTRA= Number of extra X axis tick marks at the low end. [Default: XMEXTRA=0]
YPEXTRA= Number of extra Y axis tick marks at the high end. Use the YPEYTRA= and

YMEYTRA= parameters to extend the range of the Y variable beyond the data
values, e.g., to accommodate additional annotations in a plot.
[Default: YPEXTRA=0]

YMEXTRA= Number of extra Y axis tick marks at the low end. [Default: XMEXTRA=0]
VAXIS= Name of the AXIS statement for Y axis. [Default: VAXIS=AXIS98]
HAXIS= Name of the AXIS statement for X axis. [Default: HAXIS=AXIS99]
PLOT= Draw the plot? [Default: PLOT=NO]
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A.31.3 GDISPLA: Device-Independent DISPLAY/NODISPLAY
Control

The GDISPLA macro is used to switch graphics display off or on in a device-independent
way. It is usually used with the PANELS macro (A.20) or the SCATMAT macro (SAS Sys-
tem for Statistical Graphics, First Edition Section A1.13) or other programs that produce
multiple plots and then join those plots in a template using PROC GREPLAY. Thus, one can
suppress the output of the initially separate graphs and display the final combined plot.

It also allows for the fact that for direct output to the display device, the required GOP-
TIONS are NODISPLAY or DISPLAY, whereas for output to a GSF, GIF, or EPS file, the
options are GSFMODE=NONE or GSFMODE=APPEND. With output to such graphic files, only
the combined plot is produced.

Usage

The GDISPLA macro is called with positional parameters. The first (SWITCH) parameter
must be specified (or nothing is done).

%let devtype=SCREEN;
%gdispla(OFF);
proc gplot;

plot y * x;
by group;

%gdispla(ON);
%panels(rows=1, cols=3);

Parameters

SWITCH A string value, either OFF or ON.
IML Specify any non-blank value as the second argument to use the GDISPLA

macro within SAS/IML.

Global Parameters

The macro uses one global macro parameter, DEVTYP, to determine the appropriate action.
This parameter is normally initialized either in the AUTOEXEC.SAS file or in device-specific
macros.

DEVTYP String value, the type of graphic device driver. The value DEVTYP=SCREEN
causes the macro to use the DISPLAY or NODISPLAY option. The values EPS,
GIF, CGM, and WMF cause the macro to use the GSMODE=REPLACE option
when %GDISPLA(ON) is called. All other values cause the macro to use the
GSMODE=APPEND option when %GDISPLA(ON) is called.

A.31.4 GENSYM: Generate SYMBOL Statements for Multiple
Curves

The GENSYM macro generates a series of SYMBOL statements for multiple group plots of the
form

proc gplot;
plot y * x = group;
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Separate plot symbols, colors, line styles and interpolation options can be generated for
each group.

Usage

The GENSYM macro is called with keyword parameters. All parameters have default values,
but the N= parameter must usually be specified to give the number of goups. The arguments
can be listed within parentheses in any order, separated by commas. For example,

%gensym(n=4);

The INTERP=, LINE=, SYMBOLS=, and COLORS= parameters are each lists of one or more
values. If fewer than N (blank delimited) values are given, the available values are reused
cyclically as needed.

Parameters

N= The number of groups. N= symbol statements are constructed, named SYM-
BOL1, SYMBOL2, ..., SYMBOLN.

H= The height of the plotting symbol. The same H= value is used for all SYM-
BOL statements. [Default: H=1.5]

INTERP= List of one or more interpolation options. [Default: INTERP=NONE]
LINE= List of one or more numbers in the range 1–46 giving SAS/GRAPH line

styles [Default: LINE=1]
SYMBOLS= A list of one or more names of SAS/GRAPH plotting symbols.

[Default: SYMBOLS=SQUARE TRIANGLE : $ = X _ Y]
COLORS= A list of one or more names of SAS/GRAPH colors.

[Default: COLORS=BLACK RED GREEN BLUE BROWN YELLOW ORANGE
PURPLE]

Example

To plot the four combinations of age group (old, young) and sex, with separate plotting
symbols (circle, dot) for old vs. young, and separate colors (red, blue) for females vs.
males, use the macro as follows:

proc gplot;
plot y * x = agesex;
%gensym(n=4, symbols=circle circle dot dot, colors=red blue,

interp=rl);

A.31.5 GSKIP: Device Independent Macro for Multiple Plots

The GSKIP macro is designed to handle difficulties in producing multiple plots in one SAS
job or session in a device-independent way. This makes it easier to change from one device
to another without modifying your program code.

For EPS, GIF, CGM, and WMF drivers, it assigns a new output filename for the next
plot. For FOILS (on continuous forms) it skips the normally blank non-foil separator page.
Otherwise, (e.g., for screen output) it has no effect.
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Usage

The GSKIP macro has one optional positional parameter but is usually called simply as

proc gplot;
plot y * x;

%gskip;

after a procedure or macro that produces only one plot.
It relies on global macro parameters, DISPLAY, DEVTYP, FIG, GSASFILE, and

GSASDIR. These parameters are normally initialized either in the AUTOEXEC.SAS file or
in device-specific macros. For example, for normal graphic output to the Graph Window,
assign DISPLAY and DEVTYP as

%let devtyp=SCREEN;
%let displa=ON;

For EPS file output, assign devtype=EPS, initialize fig to 1 before the first graph, and
assign the basename for graphic output files with the gsasfile macro variable.

%let devtyp=EPS;
%let fig=1;
%let gsasfile=myfig;

GSKIP is normally used after each graphic procedure or macro to advance the FIG
counter and open a new graphic output file. For example,

proc gplot;
plot y * x;

%gskip();

Parameters

INC The value by which the FIG counter is incremented, normally 1 (the default).
Use the INC parameter after a plot with a BY statement. For example,

proc gplot;
plot y * x; by sex;

%gskip(2);

Global Parameters

DISPLAY String value, ON or OFF, usually set by the GDISPLA macro. The GISKP
macro takes no action if DISPLAY=OFF.

DEVTYP String value, the type of graphic device driver. The values EPS, GIF, CGM,
and WMF cause FIG= to be incremented and a new output filename to be
assigned. If DEVTYP=FOILS, a blank graphic page is produced. All others
are ignored.

FIG A numeric value, the number of the current figure.
GSASFILE String value, the basename of the graphic output file(s). The output files are

named according to the macro expression

%scan(&gsasfile,1,.)&fig..%lowcase(&devtyp)

This gives, e.g., myfile1.eps, myfile2.eps, ....
GSASDIR String value, the output directory in which the graphic files are written. If

not specified, output goes to the current directory.
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A.31.6 LABEL: Label Points on a Plot

The LABEL macro creates an Annotate dataset used to label observations in a 2-D (PROC
GPLOT) or 3-D (PROC G3D) scatterplot. The points that are labeled can be selected by an
arbitrary logical expression from those in the input dataset. The macro offers flexible ways
to position the text label relative to either the data point or the center of the plot. The
resulting Annotate dataset would then be used with the ANNO= option of PROC GPLOT or
PROC G3D.

Usage

The LABEL macro is called with keyword parameters. Values must be supplied for the X=,
Y= and TEXT= parameters. For a PROC G3D plot, supply a value for the Z= parameter as
well. The arguments can be listed within parentheses in any order, separated by commas.
For example,

%label(x=age, y=response, text=name);

Parameters

DATA= The name of the input dataset. [Default: DATA=_LAST_]
X= The name of the X variable for the scatterplot.
Y= The name of the Y variable for the scatterplot.
Z= The name of the Z variable for a 3-D scatterplot.
BY= The name(s) of any BY variable(s) to be used for multiple plots.
XOFF= An X-offset for the text label. You can specify a numeric constant (e.g.,

XOFF=-1) in data units, or the name of a variable in the input dataset. Posi-
tive values move the label toward larger X values relative to the point; neg-
ative values move it toward smaller X values.

YOFF= A Y-offset for the text label. Positive values move the label towards larger Y
values.

ZOFF= A Z-offset for the text label, for a 3-D plot.
TEXT= The text used to label each point. TEXT= can be specified as a vari-

able in the dataset or a SAS expression involving dataset variables (e.g.,
TEXT=SCAN(MODEL,1)) and/or string constants. If you supply an expres-
sion, use the %str() macro function, e.g.,
TEXT=%str(trim(name || ’-’ || place)) to protect special charac-
ters.

LEN= Length of the TEXT variable. [Default: LEN=16]
POS= Specifies the position of the label relative to the data point. The POS= value

can be a character constant (one of the characters in 123456789ABCDE+-/|,
as used by the Annotate POSITION variable), an expression involving
dataset variables that evaluates to one of these characters
(e.g., POS=SCAN(’9 1 3’, _NUMBER_)), or one of the special characters,
”/”, ”|”, or ”−”. The special position values cause the point label to be
out-justified (moved outward toward the edges of the plot relative to the data
point) by comparing the coordinates of the point to the mean of X and Y (/),
or to the mean of X only (|), or to the mean of Y only (−).

SYS= Specifies the Annotate XSYS & YSYS value. [Default: SYS=2]
COLOR= Label color (the name of a dataset character variable or a string constant

enclosed in quotes). [Default: COLOR=’BLACK’]
SIZE= The size of label (in whatever units are given by the GUNIT goption). There

is no default, which means that the labels inherit the global HTEXT setting.
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FONT= The name of the font used for the label. There is no default, which means
that the labels inherit the global FTEXT setting.

ANGLE= Baseline angle for the text label.
ROTATE= Character rotate for the text label.
SUBSET= An expression (which can involve any dataset variables) to select points. A

point will be labeled if the expression evaluates to non-zero for the current
observation. [Default: SUBSET=1]

COPY= The names of any input variables to be copied to the output dataset.
IN= The name of an optional input annotate dataset. If specified, the IN= dataset

is concatenated with the OUT= dataset.
OUT= The name of the annotate dataset produced. [Default: OUT=_LABEL_]

Example

This example plots Weight against Price for American cars in the Auto data, labeling the
most expensive cars.

%label(data=auto, x=price, y=weight,
color=’red’, size=1.2,
subset=origin=’A’ and price>10000,
pos=1, text=scan(model,1));

proc gplot data=auto(where=(origin=’A’));
plot weight * price / frame anno=_label_;
symbol1 v=’+’ i=none color=black h=1.5;

A.31.7 POINTS: Create an Annotate Dataset to Draw Points in a
Plot

The POINTS macro creates an Annotate dataset to draw point symbols in a 2-D or 3-D
scatterplot. This is useful when you need to plot two variables (e.g, observed, predicted)
against a common X, with separate curves for the levels of a class variable. In PROC GPLOT,
for example, you cannot plot both observed and fitted values against a common X, stratified
by GROUP as,

proc gplot;
plot (obs fit) * X = group;

However, you can add the OBS points with the POINTS macro to a plot of fit * X =
group (drawing lines, but no points):

%points(x=X, y=obs, out=_pts_);
proc gplot;

plot fit * X = group / anno=_pts_;
symbol1 i=join v=none c=red;
symbol2 i=join v=none c=blue;
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Usage

The POINTS macro is called with keyword parameters. The X= and Y= parameters are
required. For a plot with PROC G3D, you must also give the Z= variable. The arguments
can be listed within parentheses in any order, separated by commas.

Parameters

DATA= The name of the input dataset. [Default: DATA=_LAST_]
X= The name of the X variable for the scatterplot.
Y= The name of the Y variable for the scatterplot.
Z= The name of the Z variable for a 3-D scatterplot.
BY= The name(s) of any BY variable(s) to be used for multiple plots.
CLASS= The name of a class variable to be used with PROC GPLOT in the PLOT

statement for multiple curves, in the form

plot Y * X = CLASS;

SYS= Specifies the Annotate XSYS and YSYS value. [Default: SYS=2]
COLOR= Point color(s): the name of a dataset character variable, or an expression that

evaluates to a SAS/GRAPH color, or a string constant enclosed in quotes.
[Default: COLOR=’BLACK’]

SYMBOL= Point symbol(s): the name of a dataset character variable, or an expres-
sion that evaluates to a SAS/GRAPH color, or a string constant enclosed
in quotes. [Default: SYMBOL=’DOT’]

SIZE= The size of the symbol (in GUNIT units). If not specified, the global graphics
option HTEXT value is used.

FONT= Font for symbol(s): the name of a dataset character variable, or an expres-
sion that evaluates to a SAS/GRAPH color, or a string constant enclosed in
quotes. Use for special symbols, e.g., FONT=’MARKER’. If not specified, the
standard symbol font is used.

SUBSET= An expression (which can involve any dataset variables) to select points. A
point will be plotted if the expression evaluates to non-zero for the current
observation. [Default: SUBSET=1]

COPY= The names of any variables to be copied to the output dataset.
IN= The name of an optional input annotate dataset. If specified, the IN= dataset

is concatenated with the OUT= dataset.
OUT= Name of the annotate dataset produced. [Default: OUT=_PTS_]

A.31.8 PSCALE: Construct an Annotate Dataset for a Probability
Scale

The PSCALE macro constructs an Annotate dataset to draw an unequally spaced scale of
probability values on the vertical axis of a plot (at either the left or right). The probabilities
are assumed to correspond to equally spaced values on a scale corresponding to Normal
quantiles (using the probit transformation) or Logistic quantiles (using the logit transfor-
mation).
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Usage

The PSCALE macro is called with keyword parameters. The arguments can be listed within
parentheses in any order, separated by commas.

When the probability scale is to be drawn as the right vertical axis, it is usually nec-
essary to reserve space at the right side of the plot and to draw an axis label. This can be
accomplished by using the option ANGLE=-90 on a TITLE statement. For example,

%pscale(out=pscale);
title h=1.5 a=-90 ’Probability’

h=3.0 a=-90 ’ ’; *-- extra space for tick labels;
proc gplot;

plot logit * X / anno=pscale;

Parameters

ANNO= Name of the output Annotate dataset. [Default: ANNO=PSCALE]
OUT= Synonym for ANNO=.
SCALE= Linear scale: LOGIT or PROBIT. [Default: SCALE=LOGIT]
LO= Low scale value. [Default: LO=-3]
HI= High scale value. [Default: HI=3]
PROB= List of probability values to be displayed on the axis, in the form of a list

acceptable in a DO statement. The macro calculates the linear scale transform
(as specified by the SCALE= parameter) of each probability to find the Y-axis
value for that probability.
[Default: PROB=\%str(.05, .1 to .9 by .1, .95)]

AT= X-axis percent for the axis. AT=100 plots the axis at the right; AT=0 plots the
axis at the left. [Default: AT=100]

TICKLEN= Length of tick marks. [Default: TICKLEN=1.3]
SIZE= Size of the axis value labels.
FONT= Font for the axis value labels.
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Overview

‘Data! data!’ he cried impatiently. I can’t make bricks without clay.

Arthur Conan-Doyle, The Adventures of Sherlock Holmes, “The Copper Beeches”

This appendix lists the DATA steps used to create the principal datasets used in the book.
We give references to the principal examples where the data is discussed (or see the Ex-
ample Index) and additional description and/or data in some cases.

Categorical variables, both factors and responses, often need to be re-ordered for anal-
ysis, either because they are intrinsically ordinal, or their effects are more sensible when
ordered in some fashion. For flexibility, we often define these as numeric variables, but
provide VALUE formats that may be used to display the numeric value as a character string
or to sort the factor levels according to the formatted value.

Where contingency tables are described, we list the factor variables in the order where
the first factor varies most rapidly over observations and the last variable named varies
least rapidly.

These datasets are contained in the catdata directory in the VCD distribution archives.
Some additional data sets, in SAS/IML format are provided in the mosaics directory.
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B.1 arthrit.sas: Arthritis Treatment Data

The arthritis treatment data comes from Koch and Edwards (1988) and is also used for
examples in Stokes et al. (1995). The data comes from a double-blind clinical trial investi-
gating a new treatment for rheumatoid arthritis. This dataset is introduced (in contingency
table form) in Example 3.3.

The predictors are treatment (TREAT), age (AGE) and sex (SEX). The response (IMPROVE)
records whether the patient experienced no improvement, some improvement or marked
improvement in symptoms; a binary variable (BETTER) is created to distinguish between
no improvement vs. improvement. Dummy variables for the character variables treatment
(_TREAT_) and sex (_SEX_) are also created to facilitate analysis with PROC LOGISTIC.

The DATA step below creates a dataset in case form with 84 observations and 9 vari-
ables. There are two observations on each dataline.

proc format;
value outcome 0 = ’not improved’

1 = ’improved’;
data arthrit;

length treat $7. sex $6. ;
input id treat $ sex $ age improve @@ ;
case = _n_;
better = (improve > 0);
_treat_ = (treat =’Treated’) ; /* dummy variables */
_sex_ = (sex = ’Female’);

datalines;
57 Treated Male 27 1 9 Placebo Male 37 0
46 Treated Male 29 0 14 Placebo Male 44 0
77 Treated Male 30 0 73 Placebo Male 50 0
17 Treated Male 32 2 74 Placebo Male 51 0
36 Treated Male 46 2 25 Placebo Male 52 0
23 Treated Male 58 2 18 Placebo Male 53 0
75 Treated Male 59 0 21 Placebo Male 59 0
39 Treated Male 59 2 52 Placebo Male 59 0
33 Treated Male 63 0 45 Placebo Male 62 0
55 Treated Male 63 0 41 Placebo Male 62 0
30 Treated Male 64 0 8 Placebo Male 63 2
5 Treated Male 64 1 80 Placebo Female 23 0
63 Treated Male 69 0 12 Placebo Female 30 0
83 Treated Male 70 2 29 Placebo Female 30 0
66 Treated Female 23 0 50 Placebo Female 31 1
40 Treated Female 32 0 38 Placebo Female 32 0
6 Treated Female 37 1 35 Placebo Female 33 2
7 Treated Female 41 0 51 Placebo Female 37 0
72 Treated Female 41 2 54 Placebo Female 44 0
37 Treated Female 48 0 76 Placebo Female 45 0
82 Treated Female 48 2 16 Placebo Female 46 0
53 Treated Female 55 2 69 Placebo Female 48 0
79 Treated Female 55 2 31 Placebo Female 49 0
26 Treated Female 56 2 20 Placebo Female 51 0
28 Treated Female 57 2 68 Placebo Female 53 0
60 Treated Female 57 2 81 Placebo Female 54 0
22 Treated Female 57 2 4 Placebo Female 54 0
27 Treated Female 58 0 78 Placebo Female 54 2
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2 Treated Female 59 2 70 Placebo Female 55 2
59 Treated Female 59 2 49 Placebo Female 57 0
62 Treated Female 60 2 10 Placebo Female 57 1
84 Treated Female 61 2 47 Placebo Female 58 1
64 Treated Female 62 1 44 Placebo Female 59 1
34 Treated Female 62 2 24 Placebo Female 59 2
58 Treated Female 66 2 48 Placebo Female 61 0
13 Treated Female 67 2 19 Placebo Female 63 1
61 Treated Female 68 1 3 Placebo Female 64 0
65 Treated Female 68 2 67 Placebo Female 65 2
11 Treated Female 69 0 32 Placebo Female 66 0
56 Treated Female 69 1 42 Placebo Female 66 0
43 Treated Female 70 1 15 Placebo Female 66 1

71 Placebo Female 68 1
1 Placebo Female 74 2

;

B.2 berkeley.sas: Berkeley Admissions Data

The Berkeley admission data was described and analyzed by Bickel et al. (1975). The data
we have used here reflects the six largest departments in 1971, as listed by Freedman,
et al. (1978). The departments are labeled A–F, in decreasing order of their overall rate of
admission.

The DATA step below creates a dataset in frequency form with 24 observations and 4
variables, representing a 2 × 2 × 6 contingency table, with factors ADMIT, GENDER, and
DEPT, and frequency variable FREQ.

title ’Berkeley Admissions data’;
proc format;

value admit 1="Admitted" 0="Rejected" ;
value yn 1="+" 0="-" ;
value dept 1="A" 2="B" 3="C" 4="D" 5="E" 6="F";

data berkeley;
do dept = 1 to 6;

do gender = ’M’, ’F’;
do admit = 1, 0;

input freq @@;
output;

end; end; end;
/* Admit Rej Admit Rej */
datalines;

512 313 89 19
353 207 17 8
120 205 202 391
138 279 131 244
53 138 94 299
22 351 24 317

;
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B.3 haireye.sas: Hair-color and Eye-color Data

The data on hair color and eye color came originally as a 2-way table from Snee (1974).
The division by sex is fictitious, created for didactic purposes.1

The DATA step below creates a dataset in frequency form with 32 observations and 4
variables, representing a 4×4×2 contingency table, with factors HAIR, EYE, and SEX, and
frequency variable COUNT.

title ’Hair - Eye color data’;
data haireye;

length hair $8 eye $6 sex $6;
drop c i black brown red blond;
array h{*} black brown red blond;
c=’Black Brown Red Blond’;
input sex $ eye $ black brown red blond;
do i=1 to dim(h);

count = h(i); hair=scan(c,i);
output;
end;

datalines;
M Brown 32 53 10 3
M Blue 11 50 10 30
M Hazel 10 25 7 5
M Green 3 15 7 8
F Brown 36 66 16 4
F Blue 9 34 7 64
F Hazel 5 29 7 5
F Green 2 14 7 8
;

B.4 icu.sas: ICU Data

This data comes from Hosmer and Lemeshow (1989, App. 2). The dataset consists of
a sample of 200 subjects who were part of a much larger study on survival of patients
following admission to an adult intensive care unit (Lemeshow, et al., 1988).

The response variable (DIED) records only whether the patient died before being dis-
charged; further longevity is unknown. Among the explanatory variables, a number of
originally continuous measures (those dealing with blood chemistry) was recorded dichoto-
mously, using arguably accepted standards for “low” vs. “high”.

The variables RACE and COMA are both trichotomous but have highly unbalanced fre-
qencies. Two binary variables, WHITE and UNCONS, are created to contrast the seemingly
important comparisons for these variables.

1The relation between hair color and eye color seems surprisingly murky in data such as this. Genetically, hair
color, eye color, and skin color are related to melanin, and it is known that there are (at least) two types of
melanin, one of which is reddish (fair), the other darkish. People with a lot of the darker form of melanin in
the skin presumably have it in the hair and eyes also. However, there are numerous racial characteristics that are
unrelated genetically but happen to occur together in a race. The students in Snee’s dataset were not classified by
race, so we shall never know. Whether there is any relation between hair color, eye color, and sex is even more of
a mystery.



Datasets 393

The DATA step below creates a dataset in case form with 200 observations and 23
variables. The data lines are abbreviated here to conserve space.

proc format;
value yn 0=’No’ 1=’Yes’;
value sex 0=’Male’ 1=’Female’;
value race 1=’White’ 2=’Black’ 3=’Other’;
value ser 0=’Medical’ 1=’Surgery’;
value admit 0=’Elective’ 1=’Emergency’;
value po 0=’>60’ 1=’<=60’;
value ph 0=’>=7.25’ 1=’<7.25’;
value pco 0=’<=45’ 1=’>45’;
value cre 0=’<=2’ 1=’>2’;

data icu;
input id died age sex race service cancer renal infect

cpr systolic hrtrate previcu admit fracture po2 ph pco bic
creatin coma;

label
id = ’Patient id code’
died = ’Died before discharge’ /* 0=No, 1=Yes */
age = ’Age’ /* years */
sex = ’Sex’ /* 0 = Male, 1 = Female */
race = ’Race’ /* 1 = White, 2=Black, 3 = Other */
service = ’Service at Admission’ /* 0 = Medical, 1 = Surgical */
cancer = ’Cancer Part of Problem’ /* 0=No, 1=Yes */
renal = ’History of Chronic Renal’ /* 0=No, 1=Yes */
infect = ’Infection Probable’ /* 0=No, 1=Yes */
cpr = ’CPR Prior to ICU Admission’ /* 0=No, 1=Yes */
systolic = ’Systolic Blood Pressure’ /* mm Hg */
hrtrate = ’Heart Rate at Admission’ /* beats/min */
previcu = ’Previous Admit to ICU’ /* 0=No, 1=Yes */
admit = ’Type of Admission’ /* 0=Elec 1=Emerg */
fracture = ’Fracture’ /* 0=No, 1=Yes */
po2 = ’PO2, inital Blood Gas’ /* 0=>60, 1=<=60 */
ph = ’PH, inital Blood Gas’ /* 0=7.25, 1= <7.25 */
pco = ’PCO2, inital Blood Gas’ /* 0=45, 1= >45 */
bic = ’Bicarbonate, inital Blood’ /* 0=18, 1= <18 */
creatin = ’Creatinine, inital Blood’ /* 0=2, 1= >2 */
coma = ’Consciousness at ICU’ /* 0=None 1=Stupor 2=Coma */
uncons = ’Stupor or coma at ICU’;

white = (race=1);
uncons= (coma>0);

format died cancer renal infect cpr previcu fracture yn.;
format sex sex. race race. admit admit. ph ph. pco pco. creatin cre.;

/*
D R C
I A S A S C C I C S H P T F P P B C O

I E G E C E A R N P Y R R Y R O P C I R M
D D E X E R N N F R S A E P A 2 H O C E A

*/
datalines;

8 0 27 1 1 0 0 0 1 0 142 88 0 1 0 0 0 0 0 0 0
12 0 59 0 1 0 0 0 0 0 112 80 1 1 0 0 0 0 0 0 0
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14 0 77 0 1 1 0 0 0 0 100 70 0 0 0 0 0 0 0 0 0
28 0 54 0 1 0 0 0 1 0 142 103 0 1 1 0 0 0 0 0 0
32 0 87 1 1 1 0 0 1 0 110 154 1 1 0 0 0 0 0 0 0
38 0 69 0 1 0 0 0 1 0 110 132 0 1 0 1 0 0 1 0 0
40 0 63 0 1 1 0 0 0 0 104 66 0 0 0 0 0 0 0 0 0
41 0 30 1 1 0 0 0 0 0 144 110 0 1 0 0 0 0 0 0 0
42 0 35 0 2 0 0 0 0 0 108 60 0 1 0 0 0 0 0 0 0
50 0 70 1 1 1 1 0 0 0 138 103 0 0 0 0 0 0 0 0 0
51 0 55 1 1 1 0 0 1 0 188 86 1 0 0 0 0 0 0 0 0
53 0 48 0 2 1 1 0 0 0 162 100 0 0 0 0 0 0 0 0 0
58 0 66 1 1 1 0 0 0 0 160 80 1 0 0 0 0 0 0 0 0
61 0 61 1 1 0 0 1 0 0 174 99 0 1 0 0 1 0 1 1 0
73 0 66 0 1 0 0 0 0 0 206 90 0 1 0 0 0 0 0 1 0
75 0 52 0 1 1 0 0 1 0 150 71 1 0 0 0 0 0 0 0 0
82 0 55 0 1 1 0 0 1 0 140 116 0 0 0 0 0 0 0 0 0
84 0 59 0 1 0 0 0 1 0 48 39 0 1 0 1 0 1 1 0 2
92 0 63 0 1 0 0 0 0 0 132 128 1 1 0 0 0 0 0 0 0
96 0 72 0 1 1 0 0 0 0 120 80 1 0 0 0 0 0 0 0 0
98 0 60 0 1 0 0 0 1 1 114 110 0 1 0 0 0 0 0 0 0
100 0 78 0 1 1 0 0 0 0 180 75 0 0 0 0 0 0 0 0 0
102 0 16 1 1 0 0 0 0 0 104 111 0 1 0 0 0 0 0 0 0
111 0 62 0 1 1 0 1 0 0 200 120 0 0 0 0 0 0 0 0 0
112 0 61 0 1 0 0 0 1 0 110 120 0 1 0 0 0 0 0 0 0
136 0 35 0 1 0 0 0 0 0 150 98 0 1 0 0 0 0 0 0 0
... more data lines ...
789 1 60 0 1 0 0 0 1 0 56 114 1 1 0 0 1 0 1 0 0
871 1 60 0 3 1 0 1 1 0 130 55 0 1 0 0 0 0 0 0 1
921 1 50 1 2 0 0 0 0 0 256 64 0 1 0 0 0 0 0 0 1

;
proc sort;

by descending died age;

B.5 lifeboat.sas: Lifeboats on the Titanic

The information in the dataset LIFEBOAT comes from the report by the British Board
of Trade (Mersey, 1912, p. 38) on the sinking of the S. S. Titanic, as described in Ex-
ample 3.18. A second dataset, LIFEBOA2, presents more accurate and detailed figures.

The table in Lord Mersey’s report lists the numbers of the male crew, male passengers,
and women (including female crew) and children who, according to the evidence presented
by survivors, left the ship in each of the 18 lifeboats launched (out of 20) before the ship
sank.

The report notes that “in three or four instances the number of women and children are
only arrived at by subtracting the numbers of crew and male passengers from the total said
to be in the boat.” The total of 854 listed here far exceeds the 712 actually saved, so the
report concludes that “it is obvious that these figures are quite unreliable,” and “the real
proportion of women to men saved was much less than the proportion appearing in the
evidence from the boats.” Similarly, this data also understates the number of male crew in
the boats (107 vs. the 189 actually saved).



Datasets 395

The DATA step shown next creates the dataset LIFEBOAT in table form with 18 obser-
vations (the lifeboats) and 10 variables. Information on launch times and boat capacity is
found elsewhere in the report. The variable SIDE is coded ’p’ for Port and ’s’ for Star-
board. A subsequent PROC RANK step is used to classify the launch times into three levels
for the boats launched from each side.

title ’Lifeboats on the Titanic’;
/* from the Board of Trade (1912)

"Report on the Loss of the S.S. Titanic", p, 38
*/
proc format;

value $side ’p’=’Port’ ’s’=’Starboard’;
value period 0=’Early’ 1=’Middle’ 2=’Late’;

data lifeboat;
input launch time5.2 side $ boat $ crew men women;
total = sum(crew, men, women);
format launch hhmm. side $side.;
port = (side=’p’);
int = launch * port;
select (boat);

when (’C’, ’D’) cap=47;
when (’1’, ’2’) cap=40;
otherwise cap=65;

end;
label launch=’Launch Time’

boat = ’Boat label’
crew = ’Men of crew’
men = ’Men passengers’
women = ’Women and Children’
cap = ’Boat capacity’
total = ’Total loaded’;

datalines;
0:45 p 7 3 4 20
0:55 p 5 5 6 30
1:00 p 3 15 10 25
1:10 p 1 7 3 2
1:20 p 9 8 6 42
1:25 p 11 9 1 60
1:35 p 13 5 0 59
1:35 p 15 13 4 53
1:40 p C 5 2 64
0:55 s 6 2 2 24
1:10 s 8 4 0 35
1:20 s 10 5 0 50
1:25 s 12 2 0 40
1:30 s 14 8 2 53
1:35 s 16 6 0 50
1:45 s 2 4 1 21
1:55 s 4 4 0 36
2:05 s D 2 2 40
;

proc rank out=lifeboat groups=3;
var launch;
ranks period;
by side;
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The LIFEBOA2 Data

The dataset LIFEBOA2 was constructed from information extracted from the Encyclopedia
Titanica Web site (Hind, 1997). This data has never previously been tabulated. This Web
site includes all available information about the occupants of the lifeboats (as far as can
be reconstructed from all historical records and accounts), each identified by name, and
classified in the categories “First class passengers”, “First class servants”, “Second class
passengers”, “Second class servants” (only one), “Third class passengers”, and Crew, bro-
ken down into “Deck crew”, “Engineering crew” and “Victualling crew”. The occupants
include those loaded onto the boats, as well as those who jumped to the boat or were pulled
from the water, and also indicates the few (10) who made their way onto boats, but died,
either in the boat or after arrival at the Carpathia.

This dataset LIFEBOA2 contains 20 observations (for all 20 lifeboats, including the
two never launched but used by those in the water) and 14 variables. The variables MEN
and WOMEN include only male and female passengers, excluding servants. The variables
CLASS1-CLASS3 include both passengers and servants. The OTHER variable includes those
who got into the boats by other means. It is of some interest that the other category in-
cludes five stowaways (four on boat C), as well as people who jumped onto the boats or
were pulled from the water. Two surviving canine pets (one named “Sun Yat Sen”) are
listed in the Web pages but are not included in the counts that follow. In this dataset, the
CLASS1-CLASS3 and CREW variables are non-overlapping, so the TOTAL is calculated as
their sum.

proc format;
value $side ’p’=’Port’ ’s’=’Starboard’;

data lifeboa2;
input boat $ order side $ men women class1-class3 crew other

launch time5.2;
format launch hhmm. side $side.;
total=sum(of class1-class3 crew);
label launch=’Launch Time’ order=’Launch order’

boat = ’Boat label’ side=’Side’
men = ’Men passengers’ women = ’Women and Children’
class1 = ’1st Class passengers’ class2=’2nd Class passengers’
class3 = ’3rd Class passengers’ other =’Other lifeboat occupants’
crew = ’Men of crew’
cap = ’Boat capacity’ total = ’Total loaded’;

port = (side=’p’);
select (boat);

when (’C’, ’D’) cap=47;
when (’1’, ’2’) cap=40;
otherwise cap=65;

end;
datalines;
1 5 s 3 1 5 0 0 7 0 1:10
2 15 p 3 9 8 0 6 4 0 1:45
3 4 s 11 8 26 0 0 13 0 1:00
4 16 p 3 16 24 2 0 12 9 1:50
5 2 s 13 14 27 0 0 8 2 0:55
6 3 p 2 16 19 0 1 4 1 0:55
7 1 s 13 12 24 1 0 3 0 0:45
8 5 p 0 17 23 0 0 4 0 1:10
9 10 s 9 16 6 17 3 15 0 1:30
10 7 p 5 28 9 18 6 4 0 1:20
11 12 s 7 16 6 14 5 26 0 1:35
12 10 . 1 18 0 17 2 3 1 1:30
13 13 s 15 24 1 12 26 24 2 1:40
14 8 p 10 23 5 21 7 9 4 1:25



Datasets 397

15 13 s 23 15 1 1 36 25 0 1:40
16 . p 2 23 0 3 22 12 0 1:35
A . s 9 2 3 0 8 5 0 .
B . p 10 0 3 1 6 18 0 .
C 17 s 13 25 2 0 36 6 4 1:40
D . s 6 13 8 2 9 5 3 2:05
;

B.6 marital.sas: Pre-marital Sex, Extra-marital Sex, and Divorce

This data comes from a study of divorce patterns by Thornes and Collard (1979; reported
in Gilbert, 1981), described in Example 4.4.

The dataset MARITAL is created in frequency form with 16 observations and 4 variables
to represent the 24 contingency table, with factors MARITAL, EXTRA, PRE, and GENDER, and
frequency variable COUNT.

data marital;
input gender $ pre $ extra $ @;
pre = ’Pre:’ || pre;
extra = ’X:’ || extra;
marital=’Divorced’; input count @; output;
marital=’Married’; input count @; output;

datalines;
Women Yes Yes 17 4
Women Yes No 54 25
Women No Yes 36 4
Women No No 214 322
Men Yes Yes 28 11
Men Yes No 60 42
Men No Yes 17 4
Men No No 68 130
;

B.7 mental.sas: Mental Impairment and Parents’ SES

This 2-way contingency table comes from The Midtown Manhattan Study (Srole, et al.,
1978, p. 289), and reports a classification of 1600 young people by their mental health
status and by their parents’ socioeconomic status (SES), as described in Example 5.2.

The DATA step MENTAL creates the 5 × 4 contingency table in frequency form, with
ordinal factors SES and MENTAL and frequency variable COUNT.

proc format;
value mental 1=’Well’ 2=’Mild’ 3=’Moderate’ 4=’Impaired’;
value ses 1=’High’ 2=’2’ 3=’3’ 4=’4’ 5=’5’ 6=’Low’;

data mental;
input ses mental count @@;
label ses="Parents SES"

mental=’Mental Impairment’;



398 Visualizing Categorical Data

datalines;
1 1 64 1 2 94 1 3 58 1 4 46
2 1 57 2 2 94 2 3 54 2 4 40
3 1 57 3 2 105 3 3 65 3 4 60
4 1 72 4 2 141 4 3 77 4 4 94
5 1 36 5 2 97 5 3 54 5 4 78
6 1 21 6 2 71 6 3 54 6 4 71
;

B.8 msdiag.sas: Diagnosis of Multiple Sclerosis

The data on diagnosis of multiple sclerosis came originally from a study by Westlund and
Kurland (1953). It was later used by Landis and Koch (1977), Agresti (1990, Table 10.13)
and others. The data is described in Example 3.14 and Example 3.15.

Two samples of patients, one from Winnipeg and one from New Orleans, were each
rated by two neurologists (one from each city) in four diagnostic categories for multiple
sclerosis. The dataset MSDIAG is thus a 4×4×2 contingency table, with factors W_RATING,
N_RATING, and PATIENTS and frequency variable COUNT.

proc format;
value rating 1="Certain MS" 2="Probable" 3="Possible" 4="Doubtful MS";

data msdiag;
do patients=’Winnipeg ’, ’New Orleans’;

do N_rating = 1 to 4;
do W_rating = 1 to 4;

input count @;
output;
end;

end;
end;

format N_rating W_rating rating.;
label N_rating = ’New Orleans neurologist’

W_rating = ’Winnipeg nurologist’;
datalines;
38 5 0 1
33 11 3 0
10 14 5 6
3 7 3 10
5 3 0 0
3 11 4 0
2 13 3 4
1 2 4 14
;

*-- Agreement, separately, and conrolling for Patients;
proc freq data=msdiag;

weight count;
tables patients * N_rating * W_rating / norow nocol nopct agree;

run;
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B.9 orings.sas: NASA Space Shuttle O-Ring Failures

The data on O-ring failures in the NASA space shuttle program comes from Dalal, et al.
(1989, Table 1). Tufte (1997) discusses this data at length and is the source of the “damage
index” variable. This data is discussed in Example 6.5 in this book.

The dataset ORINGS contains 24 observations (the launches before the Challenger) and
8 variables. For analysis purposes, we regard the data in events/trials form, with FAILURES
as the number of events and ORINGS=6 as the number of trials.

data orings;
flt_num = _n_;
input flight $ temp pressure fail failures damage;
orings = 6;
label temp=’Temperature’ pressure=’Leak check pressure’

fail = ’Any failure?’ failures=’Number of O-ring failures’
damage = ’Damage index’;

datalines;
1 66 50 0 0 0
2 70 50 1 1 4
3 69 50 0 0 0
4 80 50 . . .
5 68 50 0 0 0
6 67 50 0 0 0
7 72 50 0 0 0
8 73 50 0 0 0
9 70 100 0 0 0

41B 57 100 1 1 4
41C 63 200 1 1 2
41D 70 200 1 1 4
41G 78 200 0 0 0
51A 67 200 0 0 0
51C 53 200 1 2 11
51D 67 200 0 0 0
51B 75 200 0 0 0
51G 70 200 0 0 0
51F 81 200 0 0 0
51I 76 200 0 0 0
51J 79 200 0 0 0
61A 75 200 1 2 4
61C 58 200 1 1 4
61I 76 200 0 0 4
;

B.10 suicide.sas: Suicide Rates in Germany

The data on suicide rates in West Germany classified by age, sex, and method of suicide
used is from Heuer (1979, Table 1). The original 2 × 17 × 9 table contains 17 age groups
from 10 to 90 in 5-year steps and 9 categories of suicide method, in the dataset SUICIDE0.



400 Visualizing Categorical Data

title ’Suicide Rates by Age, Sex and Method’;
data suicide0;

input sex $1 age poison cookgas toxicgas hang drown gun knife
jump other;

length sexage $ 4;
sexage=trim(sex)||trim(left(put(age,2.)));

datalines;
M 10 4 0 0 247 1 17 1 6 0
M 15 348 7 67 578 22 179 11 74 175
M 20 808 32 229 699 44 316 35 109 289
M 25 789 26 243 648 52 268 38 109 226
M 30 916 17 257 825 74 291 52 123 281
M 35 1118 27 313 1278 87 293 49 134 268
M 40 926 13 250 1273 89 299 53 78 198
M 45 855 9 203 1381 71 347 68 103 190
M 50 684 14 136 1282 87 229 62 63 146
M 55 502 6 77 972 49 151 46 66 77
M 60 516 5 74 1249 83 162 52 92 122
M 65 513 8 31 1360 75 164 56 115 95
M 70 425 5 21 1268 90 121 44 119 82
M 75 266 4 9 866 63 78 30 79 34
M 80 159 2 2 479 39 18 18 46 19
M 85 70 1 0 259 16 10 9 18 10
M 90 18 0 1 76 4 2 4 6 2
F 10 28 0 3 20 0 1 0 10 6
F 15 353 2 11 81 6 15 2 43 47
F 20 540 4 20 111 24 9 9 78 47
F 25 454 6 27 125 33 26 7 86 75
F 30 530 2 29 178 42 14 20 92 78
F 35 688 5 44 272 64 24 14 98 110
F 40 566 4 24 343 76 18 22 103 86
F 45 716 6 24 447 94 13 21 95 88
F 50 942 7 26 691 184 21 37 129 131
F 55 723 3 14 527 163 14 30 92 92
F 60 820 8 8 702 245 11 35 140 114
F 65 740 8 4 785 271 4 38 156 90
F 70 624 6 4 610 244 1 27 129 46
F 75 495 8 1 420 161 2 29 129 35
F 80 292 3 2 223 78 0 10 84 23
F 85 113 4 0 83 14 0 6 34 2
F 90 24 1 0 19 4 0 2 7 0
;

For the purposes of this book, I have collapsed the age groups into five age ranges, amalga-
mated the two gas-related methods, and dropped the categories ‘knife’ and ‘other’, which
have rather small frequencies.

%include catdata(suicide0);
proc format;

value agegp 10-20 = ’10-20’
25-35 = ’25-35’
40-50 = ’40-50’
55-65 = ’55-65’
70-90 = ’70-90’;
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%let vars = poison gas hang drown gun jump;
data suicide0;

set suicide;
by sex notsorted;
drop cookgas toxicgas other;
gas = cookgas + toxicgas;
*-- collapse age groups;
cage= put(age,agegp.);
Sexage = sex || cage;

proc summary data=suicide nway idmin order=data;
id SexAge ;
class sex cage;
var &vars ;
output out=suicide(drop=_type_) sum=&vars;

With the equivalent of a PROC TRANSPOSE step, we get the dataset SUICIDE used in the
examples here:

data suicide;
input sex $ age $ @;
do method = ’Poison’, ’Gas’, ’Hang’, ’Drown’, ’Gun’, ’Jump’;

input count @;
output;
end;

input;
datalines;

M 10-20 1160 335 1524 67 512 189
M 25-35 2823 883 2751 213 852 366
M 40-50 2465 625 3936 247 875 244
M 55-65 1531 201 3581 207 477 273
M 70-90 938 45 2948 212 229 268

F 10-20 921 40 212 30 25 131
F 25-35 1672 113 575 139 64 276
F 40-50 2224 91 1481 354 52 327
F 55-65 2283 45 2014 679 29 388
F 70-90 1548 29 1355 501 3 383

;

B.11 titanic.sas: Survival on the Titanic

The Titanic data was presented by Dawson (1995) as a file of 2201 observations.2 The file
was processed with PROC FREQ and converted to the DATA step that follows.

The dataset TITANIC comprises a 4 × 2 × 2 × 2 contingency table in frequency form.
The factor variables are CLASS, SEX, AGE, and SURVIVE; the cell frequencies are in the
variable COUNT.

2URL: http://www.amstat.org/publications/jse/v3n3/datasets.dawson.html
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title ’Survival on the Titanic’;

proc format;
value class 1=’1st’ 2=’2nd’ 3=’3rd’ 4=’crew’;
value age 0=’Child’ 1=’Adult’;
value sex 0=’Female’ 1=’Male’;
value surv 1=’Survived’ 0=’Died’;

data titanic;
input survive age sex @;
format age age. class class. sex sex. survive surv.;
do class = 1 to 4;

input count @;
output;
end;

datalines;
0 1 1 118 154 387 670
0 1 0 4 13 89 3
0 0 1 0 0 35 0
0 0 0 0 0 17 0
1 1 1 57 14 75 192
1 1 0 140 80 76 20
1 0 1 5 11 13 0
1 0 0 1 13 14 0
;

B.12 vietnam.sas: Student Opinion about the Vietnam War

This data, given by Aitkin et al. (1989), comes from a survey of student opinion on U.S.
policies toward the war in Vietnam that was conducted in May 1967 at the University of
North Carolina at Chapel Hill. The survey is described in detail in Example 7.9.

The DATA step that follows creates the dataset VIETNAM, representing the 4 × 5 × 2
contingency table in frequency form, with 40 observations and four variables. The factors
are RESPONSE, YEAR, and SEX.

proc format;
value resp 1=’Defeat North Vietnam’ 2=’Present policy’

3=’Negotiate’ 4=’Immediate withdrawal’;
value letter 1=’A’ 2=’B’ 3=’C’ 4=’D’;
value yr 1=’Freshmen’ 2=’Sophomore’ 3=’Junior’

4=’Senior’ 5=’Grad student’;
value $sex ’M’=’Male’ ’F’=’Female’;

data vietnam;
do sex = ’F’, ’M’;

do year = 1 to 5;
do response = 1 to 4;

input count @;
output;
end;

end;
end;
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label year= ’Year of Study’
sex = ’Sex’;

datalines;
13 19 40 5
5 9 33 3
22 29 110 6
12 21 58 10
19 27 128 13
175 116 131 17
160 126 135 21
132 120 154 29
145 95 185 44
118 176 345 141
;

B.13 vision.sas: Visual Acuity in Left and Right Eyes

Kendall and Stuart (1961, Tables 33.2 and 33.5) gave the data below on unaided distance
vision among 3,242 men and 7,477 women, all aged 30–39 and employed in the U.K.
Royal Ordnance factories 1943–1946. For each person, unaided visual acuity of each eye
was measured and categorized into four grades. Example 3.11 presents a graphic analysis
of the data for women. See Bishop et al. (1975, p. 284) and Friendly (1992) for further
analyses of this data.

The DATA steps that follow create two 4 × 4 contingency tables: one for women and
one for men. These are combined to produce the dataset VISION, representing the 2×4×4
contingency table in frequency form. The factor variables are GENDER, LEFT, and RIGHT.

data women;
input right left count @@;

datalines;
1 1 1520 1 2 266 1 3 124 1 4 66
2 1 234 2 2 1512 2 3 432 2 4 78
3 1 117 3 2 362 3 3 1772 3 4 205
4 1 36 4 2 82 4 3 179 4 4 492
;

data men;
input right left count @@;

datalines;
1 1 821 1 2 112 1 3 85 1 4 35
2 1 116 2 2 494 2 3 145 2 4 27
3 1 72 3 2 151 3 3 583 4 4 87
4 1 43 4 2 34 4 3 106 4 4 331
;
*-- Join the two data sets;
data vision;

set women (in=w)
men (in=m);

if w then gender=’F’;
else gender=’M’;
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B.14 vonbort.sas: Deaths by Horse Kicks in the Prussian Army

The data from von Bortkiewicz (1898) is given by Andrews and Herzberg (1985, p. 18) in
the form of a 14 × 20 2-way table. The data is read in frequency form by the DATA step
VONBORT below. The frequency variable is DEATHS.

Four of the army corps, G, I, VI, and XI were noted as having a somewhat different
organization from the rest, and Fisher (1925) excluded these in his 1-way table, shown
in Table 2.1. The DATA step VONBORT2 selects the remaining army corps and uses PROC
FREQ to construct the frequency distribution analysed in Chapter 2.

title ’von Bortkiewicz data’;
data vonbort;

input year @;
do corps = 1 to 14;

input deaths @;
output;
end;

/* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 */
/* G I II III IV V VI VII VIII IX X XI XIV XV */
datalines;
75 0 0 0 0 0 0 0 1 1 0 0 0 1 0
76 2 0 0 0 1 0 0 0 0 0 0 0 1 1
77 2 0 0 0 0 0 1 1 0 0 1 0 2 0
78 1 2 2 1 1 0 0 0 0 0 1 0 1 0
79 0 0 0 1 1 2 2 0 1 0 0 2 1 0
80 0 3 2 1 1 1 0 0 0 2 1 4 3 0
81 1 0 0 2 1 0 0 1 0 1 0 0 0 0
82 1 2 0 0 0 0 1 0 1 1 2 1 4 1
83 0 0 1 2 0 1 2 1 0 1 0 3 0 0
84 3 0 1 0 0 0 0 1 0 0 2 0 1 1
85 0 0 0 0 0 0 1 0 0 2 0 1 0 1
86 2 1 0 0 1 1 1 0 0 1 0 1 3 0
87 1 1 2 1 0 0 3 2 1 1 0 1 2 0
88 0 1 1 0 0 1 1 0 0 0 0 1 1 0
89 0 0 1 1 0 1 1 0 0 1 2 2 0 2
90 1 2 0 2 0 1 1 2 0 2 1 1 2 2
91 0 0 0 1 1 1 0 1 1 0 3 3 1 0
92 1 3 2 0 1 1 3 0 1 1 0 1 1 0
93 0 1 0 0 0 1 0 2 0 0 1 3 0 0
94 1 0 0 0 0 0 0 0 1 0 1 1 0 0
;
data vonbort2;

set vonbort;
where corps not in (1,2,7,12);

proc freq data=vonbort2;
tables deaths / out=horskick;

B.15 vote.sas: Race and Politics in the 1980 U.S. Presidential Vote

This data, concerning votes in the 1980 U.S. Presidential election in relation to race and
conservatism (1=most liberal, 7=most conservative), comes from the 1982 General Social
Survey, as reported by Clogg and Shockey (1988). This dataset is analyzed in Example 7.5.
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The dataset VOTE contains 28 observations and four variables, representing a 2 × 7 × 2
contingency table in frequency form. The factor variables are VOTEFOR, CONS, and RACE;
the frequency variable is COUNT. Note that the VOTEFOR variable is categorized as “Reagan”
vs. “Carter or other”.

title ’Race and Politics in the 1980 Presidential vote’;
proc format;
value race 0=’NonWhite’

1=’White’;
data vote;

input @10 race cons @;
do votefor=’Reagan’, ’Carter’;

input count @;
output;
end;

datalines;
White 1 1 1 12
White 1 2 13 57
White 1 3 44 71
White 1 4 155 146
White 1 5 92 61
White 1 6 100 41
White 1 7 18 8
NonWhite 0 1 0 6
NonWhite 0 2 0 16
NonWhite 0 3 2 23
NonWhite 0 4 1 31
NonWhite 0 5 0 8
NonWhite 0 6 2 7
NonWhite 0 7 0 4
;

B.16 wlfdata.sas: Women’s Labor-force Participation

This data on Canadian women’s labor-force participation comes from a sample survey of
young married women (age 21–30), carried out by York Institute for Social Research, in
the Social Change in Canada Project, as given by Fox (1984, 1997). The data is described
in Example 6.15.

The dataset WLFPART contains 263 observations and 11 variables in case form. The re-
sponse variable, LABOR, is trichotomous. For analysis purposes, two nested dichotomies
are created: WORKING (full-time or part-time vs. not working) and FULLTIME (full-time vs.
part-time, missing for those not working). Explanatory variables include HUSINC (Hus-
band’s income, in $1000s), KIDS (one or more children in the household) and REGION (of
Canada, represented by four dummy variables, R1-R4).

proc format;
value labor /* labor-force participation */

1 =’working full-time’
2 =’working part-time’
3 =’not working’;

value kids /* presence of children in the household */
0 =’Children absent’
1 =’Children present’;



406 Visualizing Categorical Data

value region /* region of Canada */
1 =’Atlantic Canada’
2 =’Quebec’
3 =’Ontario’
4 =’Prairie provinces’
5 =’British Columbia’;

data wlfpart;
input case labor husinc children region @@;
working = labor < 3;
if working then

fulltime = (labor = 1);
/* dummy variables for region */
r1 = (region=1);
r2 = (region=2);
r3 = (region=3);
r4 = (region=4);
label husinc="Husband’s Income";

datalines;
1 3 15 1 3 2 3 13 1 3 3 3 45 1 3 4 3 23 1 3
5 3 19 1 3 6 3 7 1 3 7 3 15 1 3 8 1 7 1 3
9 3 15 1 3 10 3 23 1 3 11 3 23 1 3 12 1 13 1 3
13 3 9 1 4 14 3 9 1 4 15 3 45 1 1 16 3 15 1 1
17 3 5 1 3 18 3 9 1 3 19 3 13 1 3 20 3 13 0 3
21 2 19 0 3 22 3 23 1 4 23 1 10 0 4 24 1 11 0 3
25 3 23 1 3 26 3 23 1 3 27 3 19 1 3 28 3 19 1 3
29 3 17 1 4 30 1 14 1 4 31 3 13 1 3 32 3 13 1 3
33 3 15 1 3 34 3 9 0 3 35 3 9 0 3 36 3 19 0 3
37 3 15 1 3 38 1 20 0 3 39 3 9 1 1 40 2 6 0 1
41 3 9 1 5 42 2 4 1 3 43 2 28 0 3 44 3 23 1 3
45 2 5 1 3 46 3 28 1 3 47 3 7 1 3 48 3 7 1 3
49 3 23 1 4 50 1 15 0 4 51 2 10 1 4 52 2 10 1 4
53 3 9 0 3 54 3 9 0 3 55 2 9 1 1 56 3 17 0 1
57 3 23 1 1 58 3 23 1 1 59 3 9 1 3 60 3 9 1 3
61 1 9 0 3 62 1 28 0 3 63 2 10 1 3 64 2 23 0 4
65 3 11 1 4 66 3 15 1 3 67 3 15 1 3 68 3 19 1 3
69 3 19 1 3 70 3 23 1 3 71 3 17 1 3 72 3 17 1 3
73 3 17 1 3 74 3 17 1 3 75 3 17 1 3 76 2 38 1 3
77 2 38 1 3 78 3 7 1 1 79 3 19 1 4 80 2 19 1 5
81 1 13 0 3 82 2 15 1 3 83 1 17 1 3 84 1 17 1 3
85 2 23 1 3 86 1 27 0 5 87 1 16 1 5 88 1 27 0 3
89 3 35 0 3 90 3 35 0 3 91 3 35 0 3 92 2 9 1 3
93 2 9 1 3 94 2 9 1 3 95 3 13 1 3 96 3 17 1 3
97 3 17 1 3 98 1 15 0 3 99 1 15 0 3 100 3 15 1 3
101 1 11 0 1 102 3 23 1 1 103 3 15 1 1 104 3 15 0 5
105 2 12 0 5 106 2 12 0 5 107 3 13 1 4 108 3 19 1 3
109 3 19 1 1 110 3 3 1 1 111 3 9 1 1 112 1 17 1 1
113 3 1 1 1 114 3 1 1 1 115 2 13 1 4 116 3 13 1 4
117 3 19 0 5 118 3 19 0 5 119 1 15 0 5 120 2 30 1 3
121 3 9 1 1 122 3 23 1 1 123 1 9 0 3 124 1 9 0 3
125 3 13 1 4 126 2 13 1 3 127 3 17 1 1 128 2 13 1 4
129 2 13 1 4 130 2 19 1 3 131 2 19 1 3 132 3 3 1 3
133 1 14 0 3 134 1 14 0 3 135 1 11 1 3 136 1 11 1 3
137 2 14 1 3 138 3 13 1 3 139 3 28 1 3 140 3 28 1 3
141 3 14 1 3 142 3 14 1 3 143 3 11 1 4 144 3 13 1 4
145 3 13 1 4 146 2 11 1 1 147 2 11 1 1 148 3 19 1 5
149 1 6 0 5 150 3 28 0 5 151 1 13 0 5 152 1 13 0 5
153 3 5 0 5 154 2 28 1 5 155 2 11 1 5 156 3 23 1 5
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157 2 15 1 5 158 3 13 1 5 159 1 22 0 3 160 1 15 0 3
161 3 15 1 3 162 3 15 1 1 163 1 5 1 1 164 1 1 0 4
165 1 1 0 4 166 3 9 1 1 167 3 15 1 3 168 1 13 0 3
169 3 19 1 1 170 2 8 1 5 171 1 7 1 4 172 3 19 1 3
173 3 7 1 3 174 1 9 0 3 175 1 9 0 3 176 1 24 0 3
177 3 15 1 3 178 1 13 0 3 179 3 13 0 5 180 1 13 0 5
181 1 17 1 1 182 1 16 0 1 183 1 18 0 3 184 1 18 0 3
185 3 13 0 3 186 2 15 1 5 187 3 13 1 5 188 3 7 1 5
189 1 9 1 1 190 3 23 1 5 191 3 17 1 4 192 3 15 1 5
193 3 11 1 4 194 3 17 1 4 195 3 17 1 4 196 1 5 1 4
197 1 5 1 4 198 3 26 1 3 199 1 10 0 2 200 1 11 0 2
201 1 20 1 2 202 3 13 1 2 203 3 15 1 2 204 3 28 1 2
205 2 9 1 2 206 3 19 1 2 207 3 11 1 2 208 1 11 0 2
209 3 9 1 2 210 1 10 0 2 211 3 19 1 2 212 3 13 1 2
213 1 3 0 2 214 3 15 1 2 215 3 15 1 2 216 2 17 1 2
217 3 7 1 2 218 2 15 0 2 219 3 19 1 2 220 1 16 0 2
221 3 5 0 2 222 3 11 1 2 223 3 11 1 2 224 3 19 1 2
225 3 15 1 2 226 3 15 1 2 227 3 11 1 2 228 1 5 0 2
229 2 23 1 2 230 2 23 1 2 231 3 7 1 2 232 3 13 1 2
233 1 15 0 2 234 1 5 0 2 235 3 7 1 2 236 1 6 0 2
237 1 5 1 2 238 1 5 1 2 239 3 13 1 2 240 3 13 1 2
241 3 13 1 2 242 3 13 0 2 243 3 17 1 2 244 1 6 1 2
245 3 5 1 2 246 2 19 1 2 247 1 3 1 2 248 3 23 0 2
249 3 23 0 2 250 1 15 0 2 251 3 11 0 2 252 3 23 0 2
253 3 13 1 2 254 2 23 1 2 255 1 11 0 2 256 3 9 0 2
257 1 2 0 2 258 3 15 1 2 259 3 15 0 2 260 3 15 1 2
261 3 11 1 2 262 3 11 0 2 263 3 15 1 2
;
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Isolated facts, those that can only be obtained by rough estimate and that require
development, can only be presented in memoires; but those that can be presented
in a body, with details, and on whose accuracy one can rely, may be expounded
in tables.

E. Duvillard, Mémoire sur le travail du Bureau de statistique, 1806

The tables of percentage points of the Chi-Square distribution usually printed in texts rarely
have enough detail, in the range of degrees of freedom (df) or in the upper-tail probability
values, to meet the needs for everyone.

It is relatively easy to generate any table you want by using the CINV function in a DATA
step. Two such tables are provided here. A traditional table (Table C.1) gives the values of
χ2 for a wide range of upper-tail probabilities and df. A second table gives entries of χ2/d f
(Table C.2) whose values tend to be relatively constant and are provided by PROC GENMOD.
Both tables are printed to 4 significant digits.

Both tables were generated using the statements in the “CHI2TAB Program” in this
Appendix. If the printed versions are not adequate, you may change the %LET statements
or the CVALUE picture format to meet your needs. The DIVISOR macro variable determines
which table is printed. Plots of the values in the table may be produced easily from the
dataset CHISQ.
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C.1 CHI2TAB Program

options ls=110;
%let df= 1 to 20,

25 to 50 by 5,
60 to 100 by 10,
200 to 400 by 50;

%let np=12; %*-- Number of p-values;
%let pvalue=.25 .10 .09 .08 .07 .06 .05 .025 .01 .005 .0025 .001;
%let divisor = 1; *-- Chi-square values;
*let divisor = df; *-- Chi-square / df values;

data chisq;
array pr(*) p1-p&np (&pvalue);
keep df p c;
label p=’Upper Tail Prob’

df=’df’;
do k = 1 to dim(pr); /* for each P-value */

p = 100*pr(k);
do df = &df;

c = cinv(1-pr(k), df) / &divisor;
output;
end;

end;

proc sort;
by df;

proc transpose out=chi2tab;
by df; var c;

%*-- Generate variable labels;
%macro lab(k, prefix, values);

%do i=1 %to &k;
&&prefix.&i = "%scan(&values,&i,%str( ))"
%end;

%mend;

proc format;
picture cvalue low-<100 = ’00.00’

100-high = ’000.0’;
data chi2tab;

set chi2tab;
drop _name_;
format col1-col&np cvalue. df 4.;
label %lab(&np, COL, &pvalue);

proc print label;
id df;
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C.2 χ2 Values

Table C.1 Values of χ2 for Various Upper-Tail Probabilities

Upper-Tail Probability

df .25 .10 .09 .08 .07 .06 .05 .025 .01 .005 .0025 .001

1 1.32 2.70 2.87 3.06 3.28 3.53 3.84 5.02 6.63 7.87 9.14 10.82
2 2.77 4.60 4.81 5.05 5.31 5.62 5.99 7.37 9.21 10.59 11.98 13.81
3 4.10 6.25 6.49 6.75 7.06 7.40 7.81 9.34 11.34 12.83 14.32 16.26
4 5.38 7.77 8.04 8.33 8.66 9.04 9.48 11.14 13.27 14.86 16.42 18.46
5 6.62 9.23 9.52 9.83 10.19 10.59 11.07 12.83 15.08 16.74 18.38 20.51

6 7.84 10.64 10.94 11.28 11.65 12.08 12.59 14.44 16.81 18.54 20.24 22.45
7 9.03 12.01 12.33 12.69 13.08 13.53 14.06 16.01 18.47 20.27 22.04 24.32
8 10.21 13.36 13.69 14.06 14.48 14.95 15.50 17.53 20.09 21.95 23.77 26.12
9 11.38 14.68 15.03 15.42 15.85 16.34 16.91 19.02 21.66 23.58 25.46 27.87

10 12.54 15.98 16.35 16.75 17.20 17.71 18.30 20.48 23.20 25.18 27.11 29.58

11 13.70 17.27 17.65 18.06 18.53 19.06 19.67 21.92 24.72 26.75 28.72 31.26
12 14.84 18.54 18.93 19.36 19.84 20.39 21.02 23.33 26.21 28.29 30.31 32.90
13 15.98 19.81 20.21 20.65 21.15 21.71 22.36 24.73 27.68 29.81 31.88 34.52
14 17.11 21.06 21.47 21.93 22.44 23.01 23.68 26.11 29.14 31.31 33.42 36.12
15 18.24 22.30 22.73 23.19 23.72 24.31 24.99 27.48 30.57 32.80 34.94 37.69

16 19.36 23.54 23.97 24.45 24.99 25.59 26.29 28.84 31.99 34.26 36.45 39.25
17 20.48 24.76 25.21 25.70 26.25 26.87 27.58 30.19 33.40 35.71 37.94 40.79
18 21.60 25.98 26.44 26.94 27.50 28.13 28.86 31.52 34.80 37.15 39.42 42.31
19 22.71 27.20 27.66 28.18 28.75 29.39 30.14 32.85 36.19 38.58 40.88 43.82
20 23.82 28.41 28.88 29.40 29.99 30.64 31.41 34.16 37.56 39.99 42.33 45.31

25 29.33 34.38 34.90 35.47 36.10 36.82 37.65 40.64 44.31 46.92 49.43 52.61
30 34.79 40.25 40.81 41.43 42.11 42.88 43.77 46.97 50.89 53.67 56.33 59.70
35 40.22 46.05 46.65 47.31 48.03 48.85 49.80 53.20 57.34 60.27 63.07 66.61
40 45.61 51.80 52.43 53.12 53.89 54.76 55.75 59.34 63.69 66.76 69.69 73.40
45 50.98 57.50 58.16 58.89 59.70 60.60 61.65 65.41 69.95 73.16 76.22 80.07
50 56.33 63.16 63.86 64.62 65.46 66.41 67.50 71.42 76.15 79.48 82.66 86.66

60 66.98 74.39 75.14 75.96 76.87 77.90 79.08 83.29 88.37 91.95 95.34 99.60
70 77.57 85.52 86.32 87.20 88.17 89.27 90.53 95.02 100.4 104.2 107.8 112.3
80 88.13 96.57 97.42 98.35 99.38 100.5 101.8 106.6 112.3 116.3 120.1 124.8
90 98.64 107.5 108.4 109.4 110.5 111.7 113.1 118.1 124.1 128.2 132.2 137.2

100 109.1 118.4 119.4 120.4 121.5 122.8 124.3 129.5 135.8 140.1 144.2 149.4

200 213.1 226.0 227.3 228.7 230.2 232.0 233.9 241.0 249.4 255.2 260.7 267.5
250 264.6 279.0 280.4 282.0 283.7 285.6 287.8 295.6 304.9 311.3 317.3 324.8
300 316.1 331.7 333.3 335.0 336.9 338.9 341.3 349.8 359.9 366.8 373.3 381.4
350 367.4 384.3 385.9 387.7 389.8 392.0 394.6 403.7 414.4 421.9 428.8 437.4
400 418.6 436.6 438.4 440.3 442.4 444.8 447.6 457.3 468.7 476.6 483.9 493.1
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C.3 χ2/df Values

Table C.2 Values of χ2/df for Various Upper-Tail Probabilities

Upper-Tail Probability

df .25 .10 .09 .08 .07 .06 .05 .025 .01 .005 .0025 .001

1 1.323 2.706 2.874 3.065 3.283 3.537 3.841 5.024 6.635 7.879 9.141 10.828
2 1.386 2.303 2.408 2.526 2.659 2.813 2.996 3.689 4.605 5.298 5.991 6.908
3 1.369 2.084 2.164 2.253 2.353 2.469 2.605 3.116 3.782 4.279 4.773 5.422
4 1.346 1.945 2.011 2.084 2.167 2.261 2.372 2.786 3.319 3.715 4.106 4.617
5 1.325 1.847 1.904 1.967 2.038 2.119 2.214 2.567 3.017 3.350 3.677 4.103

6 1.307 1.774 1.825 1.881 1.943 2.015 2.099 2.408 2.802 3.091 3.375 3.743
7 1.291 1.717 1.762 1.813 1.870 1.934 2.010 2.288 2.639 2.897 3.149 3.475
8 1.277 1.670 1.712 1.759 1.810 1.870 1.938 2.192 2.511 2.744 2.972 3.266
9 1.265 1.632 1.670 1.713 1.762 1.816 1.880 2.114 2.407 2.621 2.829 3.097

10 1.255 1.599 1.635 1.675 1.720 1.771 1.831 2.048 2.321 2.519 2.711 2.959

11 1.246 1.570 1.605 1.643 1.685 1.733 1.789 1.993 2.248 2.432 2.612 2.842
12 1.237 1.546 1.578 1.614 1.654 1.699 1.752 1.945 2.185 2.358 2.527 2.742
13 1.230 1.524 1.555 1.589 1.627 1.670 1.720 1.903 2.130 2.294 2.453 2.656
14 1.223 1.505 1.534 1.567 1.603 1.644 1.692 1.866 2.082 2.237 2.388 2.580
15 1.216 1.487 1.515 1.547 1.581 1.621 1.666 1.833 2.039 2.187 2.330 2.513

16 1.211 1.471 1.499 1.529 1.562 1.600 1.644 1.803 2.000 2.142 2.278 2.453
17 1.205 1.457 1.483 1.512 1.544 1.581 1.623 1.776 1.965 2.101 2.232 2.399
18 1.200 1.444 1.469 1.497 1.528 1.563 1.604 1.751 1.934 2.064 2.190 2.351
19 1.196 1.432 1.456 1.483 1.513 1.547 1.587 1.729 1.905 2.031 2.152 2.306
20 1.191 1.421 1.444 1.470 1.500 1.532 1.571 1.708 1.878 2.000 2.117 2.266

25 1.174 1.375 1.396 1.419 1.444 1.473 1.506 1.626 1.773 1.877 1.977 2.105
30 1.160 1.342 1.361 1.381 1.404 1.429 1.459 1.566 1.696 1.789 1.878 1.990
35 1.149 1.316 1.333 1.352 1.372 1.396 1.423 1.520 1.638 1.722 1.802 1.903
40 1.140 1.295 1.311 1.328 1.347 1.369 1.394 1.484 1.592 1.669 1.742 1.835
45 1.133 1.278 1.293 1.309 1.327 1.347 1.370 1.454 1.555 1.626 1.694 1.779
50 1.127 1.263 1.277 1.292 1.309 1.328 1.350 1.428 1.523 1.590 1.653 1.733

60 1.116 1.240 1.252 1.266 1.281 1.298 1.318 1.388 1.473 1.533 1.589 1.660
70 1.108 1.222 1.233 1.246 1.260 1.275 1.293 1.357 1.435 1.489 1.540 1.605
80 1.102 1.207 1.218 1.229 1.242 1.257 1.273 1.333 1.404 1.454 1.501 1.560
90 1.096 1.195 1.205 1.216 1.228 1.242 1.257 1.313 1.379 1.426 1.470 1.525

100 1.091 1.185 1.194 1.205 1.216 1.229 1.243 1.296 1.358 1.402 1.443 1.494

200 1.066 1.130 1.137 1.144 1.151 1.160 1.170 1.205 1.247 1.276 1.304 1.338
250 1.059 1.116 1.122 1.128 1.135 1.143 1.152 1.183 1.220 1.245 1.269 1.299
300 1.054 1.106 1.111 1.117 1.123 1.130 1.138 1.166 1.200 1.223 1.245 1.271
350 1.050 1.098 1.103 1.108 1.114 1.120 1.128 1.153 1.184 1.205 1.225 1.250
400 1.047 1.092 1.096 1.101 1.106 1.112 1.119 1.143 1.172 1.192 1.210 1.233
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association plots  90
asymmetric map  144
asymptotic distributions  33
AXIS statement

GPLOT procedure  147, 381
PSCALE macro  281

B
Bangdiwala’s observer agreement chart  94–97
BARS macro  257, 379
Bartlett’s data (example)  180–187
baseball fielding dataset (example)  99
baseball standings (1987) (example)  254–259
Berkeley graduate admissions (example)  2, 391

conditional mosaic matrix  133
contingency tables  60
fitting log-linear model  272–276, 278
fourfold display  75–77
log-linear model diagnostics  313–315, 316
logit model  279–283
mosaic matrix  131–132

 odds ratio  65
sieve diagram  12, 88
stratified analysis  79–81
two-way contingency tables  62–63

BIC criterion  271
binary predictor  259–261
binary variables  2
binomial distributions  20, 22–26, 34–36, 37

negative 29–31, 40
binomial samples  63
binomialness plot  55, 56
BIPLOT macro  189–193, 339
biplots for contingency tables  188–193

2-way tables  188–191
3-way tables  191–193

bivariate data  4
bivariate log-linear model  319
bivariate logistic model  318
bivariate MCA  165–168
Bowker’s test  94
Bradley-Terry-Luce model  254–259
breathlessness in coal miners (example)

fourfold display  82–84
multivariate responses, log-linear model  319–325

Breslow-Day test  73
BTL model for paired comparisons  254–259
Burt matrix  169–170
butterfly species (example)  21
BY parameter, MOSAIC macro  128
BY statement, GPLOT procedure  219
BYVAR parameter, MOSPART module  126

C
C keyword, OUTPUT statement (LOGISTIC procedure)  230
CA

See correspondence analysis (CA)
canonical analysis of categorical data  142

See also correspondence analysis (CA)
case form  3

CORRESP procedure  145
LOGISTIC procedure  204

categorical data  2–5
canonical analysis  142
graphical methods  11–13
mosaic matrices  129–134

categorical variables  2
category scores, properties of  154–159
CATMOD procedure  73, 268, 301, 319

adjacent logit models  294–296
CONTRAST statement  251
cumulative logit model  297–299
DIRECT statement  251
fitting log-linear models  272
fitting logit models  279
generalized logits  240, 250–253
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log-linear model diagnostics  315–317
LOGLIN statement  73, 268, 272, 328
MODEL statement  282, 321
ORDER option  279
POPULATION statement  282
RESPONSE ALOGIT statement  294
RESPONSE CLOGIT statement  297
RESPONSE LOGITS statement  318
RESPONSE statement  279
WEIGHT statement  145, 272
zero frequencies  284

CATPLOT macro  253, 280, 286, 298, 302, 341
causal models  120–126
CBAR keyword, OUTPUT statement (LOGISTIC procedure)  230
centroids at the origin  144
Challenger disaster

See O-ring failures (example)
chi-square distances  144
CHI2TAB program  410
CHISQ option, FREQ procedure  67
CMH option

FREQ procedure  67
TABLE statement  67

CMH tests  67–70
co-plot  126
Cochran-Mantel-Haenszel (CMH) tests  67–70
Cohen’s kappa  92
column-effects model  290
column masses  143
column profiles  143
complete (mutual) independence, 3-way tables  117

structure, showing  134–136
compositional data  97
conditional distributions  62
conditional independence  118

structure, showing  138
conditional mosaic matrices  133
conditioning plot (co-plot)  126
confidence rings  77
constructed variable plots  237, 240
contingency table form, CORRESP procedure  145
contingency tables  60, 61

See also 3-way contingency tables
See also 2 x 2 contingency tables
See also 2-way contingency tables

biplots for  188–193
CONTRAST statement, CATMOD procedure  251
controlled comparison  82
Cook’s distance  230, 309
CORRESP macro  149–152, 160, 167, 175, 343

DIM parameter  175
EQUATE macro  148
GPLOT parameter  151
graphics options  150
ID parameter  149
INTERP parameter  150, 181
MCA option  169
POS option  150

  SYMBOLS option  150
  VAR parameter  149

  

CORRESP procedure  145–149, 160, 162
case form  145
contingency table form  145
CROSS option  160
frequency form  145
HTEXT option  150
OPTIONS parameter  160
OUTC option  145
PROFILE option  144
TABLES statement 65, 73, 145, 160

correspondence analysis (CA)  141–194, 305–307
biplots for contingency tables  188–193
extended multiple correspondence analysis  177–187
multi-way tables  160–165
multiple correspondence analysis (MCA)  165–177
quasi-independence  153
scores, properties of  154–159
simple  143–154
structural zeros and  153

correspondence matrix  143
count data  4
count metameter  50
COUNT parameter, ORDPLOT macro  49
COVOUT option, LOGISTIC procedure  228, 256
criterion variables

See response (outcome) variables
CROSS option, CORRESP procedure  160
cross-sectional studies  63
cumulative logit models  296–299

D
data visualization, defined  1
datasets, list of  389–407
deaths by horse kicks (example)  404

Ord plot  47
parameter-change plot for  53–55
Poisson distribution  18
Poisson parameter  53–55
Poissonness plot  51

dependent variables
See response (outcome) variables

DESCENDING option, LOGISTIC procedure  205, 213, 247
deviance residuals  229

log-linear models  309
DFBETAs  230

index plots  236
scatterplot matrix  236

diagnosis graphs  10
diagnostic plots  229, 233–237

log-linear models  308–317
dice tossing

See Weldon’s dice (example)
dichotomous response variables  196
DIM parameter, CORRESP macro  175
DIRECT statement, CATMOD procedure  251
discrete ANOVA models  266–268
discrete distributions  17–57

examples of  17–22
fitting  33–46
important types  22–33
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Ord plots  46–49
Poissonness plot  49–56

discrete GLMs  267
discrete response, plotting  200–202
DISTPLOT macro  55, 346

PARM parameter  55
dual scaling  142

See also correspondence analysis (CA)
DUMMY macro  346
dynamic graphics  15

E
effect plots from coefficients  224–229
effect size  259
empirical logit  199
employment status (example)

biplot representation  192
partial association  126–129

EQUATE macro  147, 381
error bars, drawing  379
events/trials form, LOGISTIC procedure  204, 209
explanatory variables  4, 60
exploration graphs  10
extended MCA  177–187
extramarital sex and marital status (example)  397

causal models  121–123
mosaic matrix  130
multivariate MCA  174–177

eye color
See hair and eye color (example)

F
Federalist Papers (example)  19

fitting to binomial distribution  37
negative binomial distribution  40
Ord plot  47
Poisson distribution  38–39
Poissonness plot  52–53

FIT statement, INSIGHT procedure  276
FITTYPE statement  137
fixed zeros  283
Fleiss-Cohen weights  93
FORMAT procedure  183
fourfold display  74–84

confidence rings  77
FOURFOLD module  78
FOURFOLD program  83, 348
FREQ parameter, ORDPLOT macro  49
FREQ procedure  5, 65, 70

AGREE option  93
CHISQ option  67
CMH option  67
MEASURES option  65
ORDER option  67

frequency data  4
frequency distribution  19
frequency form  3

CORRESP procedure  145
LOGISTIC procedure  204

FUZZ parameter  109

G
G3D procedure  175
gamma function  30
GCHART procedure  216

binomial distribution  25
GDISPLA macro  382
general association tests  68
general linear model  266
generalized linear model  267, 268
generalized logits  240, 250–253
GENMOD procedure  44, 268

fitting log-linear models  273–276
linear model diagnostics  310–315

GENSYM macro  382
geometric distribution  31
GOODFIT macro  34–38, 349
goodness-of-fit tests, log-linear models  270–278

CATMOD procedure  272
GENMOD procedure  273–276
INSIGHT procedure  276–278

GOPTIONS statement, HSIZE and VSIZE options  88, 148
GPLOT parameter, CORRESP macro  151
GPLOT procedure  145, 147, 190, 216, 244, 257

AXIS statement  147, 381
binomial distribution  25
BY statement  219
plotting discrete response  200–202
SYMBOL statement 200–202, 205, 382
WHERE statement  252

graphical methods  8–13
categorical data  11–13
effective visualization  13–15

GSKIP macro  383

H
hair and eye color (example)  392

association plot  90
binomial distribution  23
bivariate MCA  165–168
conceptual model  13
contingency table  61
correspondence analysis  145–149
expected frequencies and sieve diagram  85–86
hypothesis testing  5
mosaic display, 2-way table  106–109
mosaic display, 3-way table  116, 119–120
optima category scores  155
simultaneous linear regressions  156–159

half-normal plot  310, 311–315
half-normal probability plots of residuals  309
HALFNORM macro  310, 311, 350
hanging rootogram  38–42
hierarchical models  268
homogeneity analysis  142

See also correspondence analysis (CA)
homogeneity of association  73
homogeneous association model  269
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horse kicks
See deaths by horse kicks (example)

HSIZE option, GOPTIONS statement  88, 148
HTEXT option, CORRESP macro  150
hypothesis-testing strategies  5

I
ICU survival

See survival rates in ICU (example)
ID parameter, CORRESP macro  149
IDSUBSET parameter, TRIPLOT program  101
IML procedure  87, 155

MOSAICS program with  110
incremental effects  213
independent variables  4, 60
index plots  236
inertia  142
INFL keyword, PLOT parameter  54
INFLGLIM macro  310–315, 352
INFLOGIS macro  233–237, 354
influence  53–55, 213
influence measures, diagnostic plots of  233–237
INFLUENCE option, MODEL statement  231
influence plots  229–240

added-variable plots  237, 238–240
constructed variable plots  237, 240
DFBETAs  230
log-linear models  308–317
LOGISTIC procedure  213
partial residual plots  237

INSIGHT procedure  276–278
INTERACT macro  316, 355
interaction, logistic regression models with  223
interaction terms  218
INTERP parameter

BIPLOT macro  193
CORRESP macro  150, 181
SYMBOL statement  205

INTERPOL option, SYMBOL statement  200–202
interpretation of distances  144
intraclass correlation  92
IPF function  134
IPLOTS option, LOGISTIC procedure  213

J
joint distribution  62
joint independence

causal models  120–126
structure, showing  136–137
3-way tables  118

K
k (Cohen’s kappa)  92

L
LABEL macro  236, 257, 385
LABLOC parameter, TRIPLOT program  101
lack-of-fit test  207

LAGS macro  355
LEGEND statement, PSCALE macro  281
leveled plot  50
leverage  53–55
lifeboats on Titanic

See Titanic lifeboats and survival (example)
linear association tests  68–69
linear-by-linear model  289
linear-interaction model  293
linear probability model  196
linear regressions, simultaneous  156–159
local odds ratios  289
log-linear models  43–46, 265–333

as discrete ANOVA models  267
as discrete GLMs  267
bivariate  319
deviance residuals  309
extended graphing and fitting example  299–307
fitting  269–278
for 3-way tables  269
goodness-of-fit tests 270–278
influence and diagnostic plots  308–317
mosaic displays  134–138
multivariate responses  317–332
ordinal variables  288–299
Pearson residuals  308
Poisson log-linear models  43–46
residuals for  308
suicide data (example)  161
zero frequencies  283–288

log odds (logit)  64, 197
empirical logit  199
generalized  240, 250–253
predicted, calculating for model coefficients  224

log odds ratio  64
logarithmic series distribution  32
LOGISTIC procedure  204–207, 240

BTL model for paired comparisons  256
case form  204
COVOUT option  228, 256
DESCENDING option  205, 213, 247
events/trials form  204, 209
frequency form  204
influence output  213
IPLOTS option  213
models with interaction  223
ORDER option  205
OUTEST option  228, 256
OUTPUT statement  205, 215, 230, 247, 256
plotting results from  204–211, 215–217
proportional odds model  242–245

logistic regression models  195–264
See also LOGODDS macro
Bradley-Terry-Luce model  254–259
influence and diagnostic plots  229–240
multiple models  217–229
polytomous response models  240–253
power and sample size  259–263
quantitative predictors  202–211, 259–261
quantitative predictors, logit models for  212–217
sample size  259–263
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with interaction  223
logit function  6
logit models  212–215, 265, 278–288

adjacent category logits  293, 294–296
cumulative  296–299
extended graphing and fitting example  299–307
fitting  279
plotting results  280
qualitative predictors  212–217
zero frequencies  283–288

LOGLIN statement, CATMOD procedure  73, 268, 272, 328
LOGODDS macro  199, 358

NCAT parameter 200
LOWESS macro  200

M
macros

ADDVAR macro  238–240, 337
BARS macro  257, 379
BIPLOT macro  189–193, 339
CATPLOT macro  253, 280, 286, 298, 302, 341
CORRESP macro  148, 149–152, 160, 167, 169, 175, 181,

343
DISTPLOT macro  55, 346
DUMMY macro  346
EQUATE macro  147, 381
GDISPLA macro  382
GENSYM macro  382
GOODFIT macro  34–38, 349
GSKIP macro  383
HALFNORM macro  310, 311, 350
INFLGLIM macro  310–315, 352
INFLOGIS macro  233–237, 354
INTERACT macro  316, 355
LABEL macro  236, 257, 385
LAGS macro  355
LOGODDS macro  199, 200, 358
LOWESS macro  200
MOSAIC macro  110, 111, 128, 274, 326, 363
MOSMAT macro  110, 131, 365
NQPLOT macro  309
ORDPLOT macro  49, 366
PANELS macro  130, 367
POINTS macro  386
POISPLOT macro  51–53, 54, 368
POWER2x2 macro  260, 371
POWERLOG macro  262, 369
POWERRxC macro  370
PSCALE macro  220, 250, 280–281, 387
ROBUST macro  373
ROOTGRAM macro  39–42, 373
SCATMAT macro  236
SORT macro  375
TABLE macro  110, 131, 377
TRIPLOT macro  98, 378

Malaya butterfly species (example)  21
male children in Saxony families

See Saxony families, boys in (example)
marginal distributions  62
marginal homogeneity  96

marginal subtables, 3-way tables  119–120
marginal tables  164
marital status

See extramarital sex and marital status (example)
maximum likelihood estimation (MLE)  42
MCA (multiple correspondence analysis)  165–177

bivariate  165–168
Burt matrix  169
extended 177-187
multivariate  169–177

MCA option, CORRESP macro  169
MEANS procedure  28

VARDEF option  25
MEASURES option

FREQ procedure  65
TABLES statement  65, 73

mental impairment and parents’ SES (example)  397
adjacent category logit model  294–296
correspondence analysis  149
cumulative logit model  297–299
log-linear model for ordinal variables  290–293

MLE (maximum likelihood estimation)  42
model-building strategies  6–8
model of uniform association  290
MODEL statement  223, 268

ADDCELL option  284
AGGREGATE option  214
INFLUENCE option  231
OBSTATS option  45
PRED option  330
SCALE option  214
SELECTION option  221
SLENTRY option  224

MODEL statement, CATMOD procedure  282, 321
mosaic displays  105–139, 305–307

categorical data  129–134
log-linear models  134–138
shading patterns  109
software for  110
3-way tables  116–129
two-way contingency tables  106–116

MOSAIC macro  110, 128, 274, 363
PLOTS parameter  111, 326

mosaic matrices  130
categorical data  129–134
conditional  133

MOSAICS program  110, 119–120, 359
MOSAICS.SAS program  110
MOSMAT macro  110, 131, 365
MOSMAT module  130
MOSPART module  126
MS diagnosis (example)  91, 398

marginal homogeneity  96
multi-way tables  160–165

marginal, supplementary variables and  164
multinomial samples  63
multiple correspondence analysis

See MCA
multiple logistic regression models  217–229

effect plots from coefficients  224–229
with interaction  223
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multiple sclerosis diagnosis (example)  91
marginal homogeneity  96

multivariate data  4
multivariate MCA  169–177
multivariate responses, log-linear models  317–332
mutual (complete) independence, 3-way tables  117

structure, showing  134–136

N
NASA space shuttle O-ring failures

See O-ring failures (example)
NCAT parameter, LOGODDS macro  200
negative binomial distribution  29–31, 40
nested dichotomies  240, 245–250
nested models  270
nested solutions  144
1980 U.S. Presidential election (example)  284–288
NMAX parameter, POWER2X2 macro  260
NMIN parameter, POWER2X2 macro  260
nominal variables  3, 61
nonzero correlation tests  68–69
normal QQ plots  309
normal quantile plots  309
NQPLOT macro  309

O
O-ring failures (example)  7, 399

logistic regression model  208–211
observer agreement  91–97

Bangdiwala’s chart  94–97
observer bias  96
OBSTATS option, MODEL statement  45
odds  63
odds ratios  63–65, 83

confidence rings  77
2Q tables  179

operational independence  4
optimal category scores  154–156
optional scaling  142

See also correspondence analysis (CA)
OPTIONS parameter, CORRESP procedure  160
Ord plots  46–49
ORDER option

CATMOD procedure  279
FREQ procedure  67
LOGISTIC procedure  205

ordinal variables  3, 61
log-linear models  288–299
tests of association  67

ORDPLOT macro  49, 366
COUNT parameter  49
FREQ parameter  49

OUTC option, CORRESP procedure  145
outcome variables

See response (outcome) variables
OUTEST option, LOGISTIC procedure  228, 256
OUTPUT statement, LOGISTIC procedure  205, 215, 247, 256

C keyword  230
CBAR keyword  230

overall tests of association  65–67
overdispersion  30

P
P1 and P2 parameters, POWERLOG macro  262
paired comparisons, BTL model for  254–259
PANELS macro  130, 367
PARM parameter, DISTPLOT macro  55
parquet diagram

See sieve diagrams
partial agreement  94–96
partial association  126–129
partial residual plots  237
Pascal distribution  29
PDF function  28, 30
Pearson residuals  109, 229

log-linear models  308
PLOT parameter, POISPLOT macro  54
PLOT procedure  145

VTOH option  147
PLOTS parameter, MOSAIC macro  111, 326
plum root stocks (Bartlett’s data)  180–187
POINTS macro  386
POISPLOT macro  51–53, 368

PLOT parameter  54
Poisson distribution  18, 26–29, 38–39

leverage and influence  53–55
POISSON function  28
Poisson log-linear models  43–46
Poissonness plot  49–56
politics in 1980 U.S. Presidential election (example)  284–288
polynomial powers of quantitative variables  217
polytomous response models  240–253

generalized logits  240, 250–253
nested dichotomies  240, 245–250
proportional odds model  240, 241–245

polytomous response variables  196
polytomous variables  2
POPULATION statement, CATMOD procedure  282
POS option, CORRESP macro  150
POWER parameter, BIPLOT macro  189–193
POWER parameter, POWERLOG macro  262
power series distributions  32
power size for logistic regression  259–263

binary predictor  259–261
quantitative predictor  259–261

POWER2x2 macro  260, 371
POWERLOG macro  262, 369
POWERRxC macro  370
PRED option, MODEL statement  330
predictor variables  4, 60
pregnancy, toxaemic symptoms in (example)  326–332
premarital sex

See extramarital sex and marital status (example)
presentation graphs  10–12
principal coordinates  143
probability plots of residuals, half-normal  309
PROBBNML function  23
PROBNEGB function  30
PROFILE option, CORRESP procedure  144
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proportional odds model  240, 241–245
PSCALE macro  220, 250, 280–281, 387
psychological experiment volunteers (example)  225–229

Q
QQ plots  309
qualitative predictors, logit models  212–217
quantile plots  309
quantitative predictors

logistic regression models  202–211, 259–261
logit models for  212–217
power and sample size  259–263

quantitative variables  217
quasi-independence  116

correspondence analysis  153

R
r x 3 tables, trilinear plots  97–102
R2 statistic  271
race in 1980 U.S. Presidential election (example)  284–288, 404
RANBIN function  23
random zeros  283
RANPOT function  28
RANTBL function  30
READTAB module  110
reciprocal averages  142, 144

See also correspondence analysis (CA)
reconnaissance graphs  10
REG procedure  316
repeat victimization (example)

correspondence analysis  150–152
mosaic display  113–116
quasi-independence and structural zeros  153

residuals and leverage  229
absolute values of residuals  310
adjusted deviance residuals  309
deviance residuals  229, 309
half-normal probability plots of residuals  309
residuals for log-linear models  308
residuals from independence  144

RESPONSE statement, CATMOD procedure  279
RESPONSE ALOGIT statement  294
RESPONSE CLOGIT statement  297
RESPONSE LOGITS statement  318

response (outcome) variables  4, 60
dichotomous and polytomous  196

ROBUST macro  373
ROOTGRAM macro  39–42, 373
rootogram  38–42
ROTATE option, G3D procedure  175
row effects  290
row masses  143
row mean scores differ tests  68
row profiles  143
RSQ parameter, POWERLOG macro  262

S
sample odds ratio  64
sample size for logistic regression  259–263

binary predictor  259–261
quantitative predictor  259–261

sampling zeros  283
Saxony families, boys in (example)  4

binomialness plot  56
hanging rootogram  40–42
Poisson log-linear regression model  44–46

SCALE option, MODEL statement  214
scaling  142
SCATMAT macro  236
scatterplot matrix  129

DFBETAs  236
scatterplots  11
Schwartz criterion  271
scores, properties of  154–159
SCORES option, TABLE statement  68
SELECTION option, MODEL statement  221
“Sex is fun” (example)

agreement charts  95
observer agreement  91

SHADE parameter  109
shading patterns in mosaic displays  109
sieve diagrams  12, 85–89

larger tables  88
sieve module  89
SIEVE program  87, 374
simple correspondence analysis  143–154

CORRESP macro  149–152
CORRESP procedure  145–149
properties  144
quasi-independence and structural zeros  153

Simpson’s paradox  79, 120
simultaneous linear regressions  156–159
SLENTRY option, MODEL statement  224
SMOOTH parameter, LOWESS macro  200
soccer scores

See UK soccer scores (example)
software for mosaic displays  110
SORT macro  375
space shuttle O-ring failures

See O-ring failures (example)
stacking  160
standard coordinates  143
static graphics  15
STD parameter, BIPLOT macro  189–193
stratified analysis  70–74

2 x 2 x k tables  79–84
strength of agreement, measuring  92

observer agreement chart  94–97
partial agreement  94–96

structural zeros  283
correspondence analysis and  153

student opinion about Vietnam war (example)  299–307, 402
log-linear model diagnostic  311–313

suicide rates in Germany (example)  399
multi-way table CA  161–164
supplementary variables  164

supplementary variables, multi-way tables  164
survival on Titanic

See Titanic lifeboats and survival (example)
survival rates in ICU (example)  392
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added-variable plot  238–240
diagnostic plots of influence measures  234–237
logistic regression models  221–223

SYMBOL statement, GPLOT procedure
creating with GENSYM macro  382
INTERP parameter  205
INTERPOL option  200–202

SYMBOL statement, PSCALE macro  281
SYMBOLS option, CORRESP macro  150
symmetric map  144

T
TABLE macro  110, 131, 377
TABLE statement

CMH option  67
SCORES option  68

TABLES statement, CORRESP procedure  145, 160
MEASURES option  65, 73

tests of association  62
homogeneity of association  73
ordinal variables  67
overall  65–67

3-way contingency tables
biplots for  191–193
causal models  120–126
joint independence  118
log-linear models for  269
marginal subtables  119–120
mosaic displays  116–129
mutual independence  117, 134–136
partial association  126–129

TILT option, G3D procedure  175
Titanic lifeboats and survival (example)  14, 394, 401

causal model  123–126
multivariate MCA  170–174
plotting discrete response  200–202

trilinear plot  100–102
TITLE statement

ANGLE parameter  220
PSCALE macro  281

toxaemic symptoms in pregnancy (example)  326–332
transformations of quantitative variables  217
TRANSPOSE procedure  166
trilinear plots  97–102
TRIPLOT macro  98, 378
TRIPLOT program  101
 2 x 2 contingency tables  63–65

fourfold display  74–84
stratified analysis for 2 x 2 x k tables  79–84

2 x 2 k tables  79–84
2Q tables  177–187
2-way contingency tables  59–103

See also 2 x 2 contingency tables
association plots  90
biplots for  188–191
CORRESP procedure with  145
mosaic displays  106–116
observer agreement  91–97
overall tests of association  65–67

sieve diagrams  85–89
stratified analysis  70–74
tests of association  62
trilinear plots  97–102

type-token distributions  21

U
UK soccer scores (example)

biplot representation  189–191
mosaic display  111
Poisson distribution  27

uniform association model  290
univariate data  4

V
VAR parameter, CORRESP macro  149
VARDEF option, MEANS procedure  25
variables

binary variables  2
categorical variables  2
dichotomous response variables  196
explanatory variables  4, 60
independent variables  4, 60
nominal variables  3, 61
ordinal variables  3, 61, 67, 288–299
polytomous response variables  196
polytomous variables  2
predictor variables  4, 60
quantitative variables  217
response (outcome) variables  4, 60, 196
supplementary variables, multi-way tables  164

VICTIMS module  114
Vietnam War opinion

See student opinion about Vietnam war (example)
vision acuity data (example)  87, 403

sieve diagram  87
visual impact  82
volunteers for psychological experiment (example)  225–229
VSIZE option, GOPTIONS statement  88, 148
VTOH option, PLOT procedure  147

W
WEIGHT statement, CATMOD procedure  145, 272
weighted kappa  92
Weldon’s dice (example)  20

fitting to binomial distribution  34–36
wheeze in coal miners

See breathlessness in coal miners (example)
WHERE statement, GPLOT procedure  252
women in labor force (example)  405

generalized logit  251–253
nested dichotomies  246

women in queues (example)  19

X
x 2 and  x2/df values (tables)  411
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Z
zero frequencies  283–288
zeros

fixed  283
random  283
sampling  283
structural  153, 283
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