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Preface 

In June of 1990, a conference was held on Probablity Models and Statisti­
cal Analyses for Ranking Data, under the joint auspices of the American 
Mathematical Society, the Institute for Mathematical Statistics, and the 
Society of Industrial and Applied Mathematicians. The conference took 
place at the University of Massachusetts, Amherst, and was attended by 
36 participants, including statisticians, mathematicians, psychologists and 
sociologists from the United States, Canada, Israel, Italy, and The Nether­
lands. 

There were 18 presentations on a wide variety of topics involving ranking 
data. This volume is a collection of 14 of these presentations, as well as 5 
miscellaneous papers that were contributed by conference participants. 

We would like to thank Carole Kohanski, summer program coordinator 
for the American Mathematical Society, for her assistance in arranging the 
conference; M. Steigerwald for preparing the manuscripts for publication; 
Martin Gilchrist at Springer-Verlag for editorial advice; and Persi Diaconis 
for contributing the Foreword. Special thanks go to the anonymous referees 
for their careful readings and constructive comments. Finally, we thank the 
National Science Foundation for their sponsorship of the AMS-IMS-SIAM 
Joint Summer Programs. 
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Foreword 

This book represents a coming of age for the statistical analysis of per­
mutations. I would like to recapture some of the excitement and sheer 
amazement at the Amherst meeting as the participants realized that there 
were other people seriously working on the same problems with good new 
ideas. I'll also chronical an attempt to justify two models (The Luce Model 
and the Mallows Model through the Cayley distance) and suggest some 
open problems. 

Over the years, there have been sporadic efforts to develop models and 
data analytic techniques for permutations. Noteworthy lines begin with 
psychological working models and the paired comparisons literature. Math­
ematical Statisticians have contributed a line through their work on rank 
tests. These lines formed smallish spirals with little interaction. 

I began my work in this subject by realizing that most standard rank 
correlation methods could be restated as the computation of distances be­
tween permutations with naturally defined metrics. This led to a study of 
metrics on groups and a number of data analytic suggestions summarized 
in my book. 

These metric ideas have been brilliantly developed in a series of papers by 
Critchlow, Fligner and Verducci. Complete references are included in their 
articles in this volume. Fresh work along these lines appears here for the 
first time in the papers of Marden and McCullagh with their co-authors. 
Paul Feigin explores the natural direction of two sample problems. The 
development, starting from Mallows' basic work to the present high-tech 
version, makes a lovely study in statistical evolution. They offer a developed 
set of tools for day-to-day problems. 

One bottom line question: is it just "us" writing about these models or 
is someone actually using them? Laurie Beckett has been out there getting 
doctors to use them in Alzheimers studies. In my opinion, the single most 
important step to making our subject mainstream involves getting out in 
the world and applying the techniques in real problems. 

In keeping with the new realism of statistics, I found some real ranked 
data sets. Honest analysis of real data can lead in all sorts of strange direc-
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tions. One of these, Fourier analysis of ranked data, was developed following 
thesis work of Joe Verducci at Stanford. It formed the basis of my talk at 
Amherst and is published in Diaconis (1989). 

Hal Stern's contribution to the present volume begins with one of these 
examples and runs with it, making the connection to voting paradoxes and 
completing the analysis in ways I wish I had done. The data are "data an­
alyzed" by Georgia Thompson who has introduced much needed graphical 
techniques in her paper here and a more extensive account in Thompson 
(1992). 

The conference had welcome representations of the paired comparison 
world in the work presented by Crow, by David and Andrews, and by Joe 
and Verducci. There has been too little interaction between this world and 
the current swirl of activity. Alvo and Cabilio provided our main link to 
rank tests in statistics. This is a rich source of possible applications and 
the frontier seems will open. 

I think most of the statisticians present were surprised and delighted at 
how advanced the work of mathematical psychologists has become. Starting 
with primitives such as Thurstone latent parameter ranking models and 
Coombs unfolding hypothesis, these workers have developed versatile pack­
ages with associated interpretive languages. These are more than compet­
itive with current versions of statisticians' models due to years of experi­
ence and available software. The papers by Bockenholt, Colonius, Croon 
and Luijkx, Marley, and van Blokland are wonderful introductions to what 
is available. I hope these authors were as favorably impressed with the 
statisticians efforts as I was with theirs. 

These brief mentions are no substitute for a hands-on experience. Fortu­
nately, the papers lie in wait beyond! 

A Brief Study of Two Models 

By now we realize it is easy to make up models. To understand and justify 
them is the next challenge. I want to record two efforts along these lines. 
Each concerns a family Pe(-lr) of probability measures on the permutation 
group. Each family is shown to be the stationary distribution of a simple 
Markov chain. 

These characterizations suggest natural mechanisms underlying the mod­
els. Such representations are also useful in using Stein's Method to study 
large n limits. For each family a sequential scheme exists for choosing 71" 
according to Pe(7I"). This gives a second possible generating mechanism. 
These two generating mechanisms are used to study simple properties such 
as what is the chance that 71"(1) = i ? How many cycles, fixed points, etc., 
can be expected? 

I. The Luce Model. Let Wi, 1 ::; i ::; n be positive weights adding to 1. Use 
these to choose a permutation by assigning 71"(1) = j with probability Wj; 

given 71"(1) = j, set 71"(2) = h with probability l~~j. Continue, sampling 
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from the weights without replacement until a complete permutation has 
been formed. Here, the parameter space is e+ is the open standard n 
simplex, and for 

() = (Wi, ... , Wn ) E e+ , 
the Luce model is 

n-1 

Pe(-;r) = II W7r(i) 

i=l 

This sequential generating mechanism is plausible - each item being ranked 
has a popularity. This was close to Luce's original motivation. On the other 
hand, people sometimes choose rankings by voting for popular items and 
against unpopular items. The reader who tries to calculate Pe {n : n( n) = i} 
will see the difficulty of trying to use the Luce model for data with these 
characteristics. 

It is possible to derive integral expressions for the probability of specified 
final places n( n )n( n - 1) using the representation of the Luce Model as the 
relative order of n independent exponential variables (See Yellott (1977)). 

The Luce Model arises in a widely-used computer science algorithm for 
list management. This gives a Markovian description. Suppose you had 
n folders and used them with different frequencies. You want to arrange 
them so the most popular folder is on top, the next most popular folder 
next, and so on. If you don't know the popularity of the folders, it is 
natural to rearrange them by leaving the last used folder on top each time. 
If the frequency of use of folders i is Wi, this gives a Markov chain on 
the symmetric group with the Luce Model as its stationary probability. In 
Diaconis and Hanlon (1992b) a careful study of the rate of convergence of 
this chain to its stationary distribution is given. Phataford (1991) gives the 
eigenvalues and references to the computer science literature. 

As a start to studying properties of this model, we note that for k :S n, 
the chance that n begins n(1), n(2), ... , n(k) is clearly 

This can be used to show that for large n, the first few coordinates are 
approximately independent with Pe { n( i) = j} = Wj. This assumes the 
weights are "not too wild." Rosen (1972) continues a careful development 
of asymptotic properties. His work was developed for problems in weighted 
survey sampling. 

It is also possible to show that the Pe chance that items i l , i2, ... , ik 
appear in the order i l before i2 before ... before ik is the stationary distri­
bution restricted to this list, namely 
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For example, the chance that i1 appears before i2 is Wi'/( Wi l + WiJ; the 
chance of i1 before i2 before ia is Wi l Wi 2 / (Wil + Wi 2 + WiJ( Wi 2 + Wi3)' 

It is easy to show that Fe is monotone in the weak Bruhat order. This is 
a partial order on permutations which has "Ir >- (T if"lr can be moved to (T by 
interchanging pairwise adjacent items which are out of order. See Bjorner 
(1982). As far as I know even simple functional properties such as number 
of fixed points, cycles, or the average distance to the identity in various 
metrics is unknown. 

The computer science literature on dynamic list management contains 
other material of interest. For example, Rivest (1976) modified the move 
to top heuristic to the following: at each time, an item is chosen with prob­
ability Wi and transposed with the item above it. If the top item is chosen, 
nothing changes. Rivest's work implies that the stationary distribution of 
"Ir is proportional to rr=1 w;7r(i). This gives a Markov chain method for 
generating from densities proportional to ef/'7r for 'TJ E ~n. In particular, 
choosing 'TJ = (1,2,3 ... , n), it gives a stochastic interpretation of the Mal­
lows model through the squared Spearman's rho distance. Van Leeuwen 
(1990) gives an up-to-date overview of the computer science literature. 

II. The Mallows Model. Define a metric on permutations by d("Ir, (T) = 
minimum number of transpositions required to bring "Ir to (T. This Cayley 
distance seems to be the only reasonable distance invariant under rela­
belling on both sides d("Ir, (T) = d("Ir'TJ, (T'TJ) = d('TJ"Ir, 'TJ(T) for all "Ir, (T, 'TJ. It is 
easy to calculate because of a relation discovered by Cayley: d("Ir, (T) = 
n - c( "Ir(T-1) with c( "Ir) the number of cycles in "Ir. 

Following Mallows (1957), a metric can be used to define a family of 
probabilities Fe ("Ir) on permutations by 

with c(O) = TI7;/ (Oi + 1)-1 and "Ira a location parameter. This probability 
is largest when "Ir = "Ira and falls off exponentially. When 0 = 1 it is the 
uniform distribution. These models are easy to write down and picture. In 
what follows, take "Ira = identity without essential loss. 

One mechanism that gives rise to Fe is the Chinese Restaurant story. 
Picture a Chinese restaurant containing n large circular tables labelled 
1,2, ... , n. People arrive at the restaurant and choose a table according 
to the following scheme: The first person to arrive sits at table 1. The 
second person to arrive sits to the right of the first person or at table 
2 with respective probabilities 0/(1 + 0) and 1/(1 + 0). If j people have 
been seated, the j + 1st chooses to sit at an empty table with probability 
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I/(jO + 1) and to the immediate right of a randomly chosen one of the 
previous j people with equal probability. This final arrangement around 
the tables is interpreted as a permutation in cycle notation. For example, 
if reading clockwise, the first table contains (1,3,5) and the second table 
contains (2,4) this is the permutation ;~~~~. 

The partition given by the cycles in this Mallows Model arises in Mathe­
matical population genetics as the Ewens sampling formula. Aldous (1985) 
gives a splendid treatment. 

Some properties of the family of probabilities are easy to derive from 
the restaurant description. For example PO{1T(i) = i} = 1/[1 + (n - 1)0], 
Pe {1T( i) = j} = 01[1 + (n - 1 )0] for j =1= i. For a second set of properties, let 
ai( 1T) be the number of cycles oflength i. Many properties of permutations 
can be described using the ai, 1 :::; i :::; n. For example, the number of fixed 
points in 1T is a1 (1T). The number of cycles in 1T is a1 (1T) + ... + an (1T). The 
order of 1T is the smallest k so 1Tk = identity. This is the least common 
multiple of the i such that ai > O. Define a generating function as 

f, ( ) - E II ai(7I") 
n Xl,···, Xn - 0 Xi' 

Then, an easy variant of Polya's cycle index theorem shows that 

~ t n f, = 1- 0 it IIOO 
eXiS'/iO(t _ s)(1-20)/Ods 

L.J n Ot(1-e)/e . 
n=O 0 i=l 

From this, it is a straight forward matter to approximate the moments of 
ai and move the following result. 

Theorem. As n tends to infinity, the joint distribution of a1, a2, ... , ak 
under Pe tends to independent Poisson (l/iOi). 

A second line of development for this Mallows model is very generally 
applicable. This sees the Mallows model as the stationary distribution of 
a Markov chain on permutations. The Markov chain will be taken as the 
result of thinning down the chain resulting from random transposition by 
the Metropolis algorithm. The chain has a simple description: suppose the 
chain is currently at 1T. Randomly transpose two places. If this brings 1T 
closer to the identity, make the change. If it brings 1T further from the 
identity, flip a () coin. If the coin comes up heads, make the change. If the 
coin comes up tails the chain stops at 1T. This chain has Po as its stationary 
distribution. The eigenvalues and rate of convergence to stationary are 
derived in Diaconis and Hanlon (1992a). There is a curious connection to 
the zonal polynomials of multivariate analysis. 
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Closing Remark 

N one of the justifications discussed above seems terribly natural. I men­
tion them in the hope that they may trigger someone to do better. The 
program of developing these ideas for the other standard models seems 
substantial and worthwhile. 

I am grateful to the organizers for making this conference take off. 
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Ranking Models with Item 
Covariates 

Douglas E. Critchlow1 

Michael A. Fligner 2 

ABSTRACT Two parametric classes of ranking models are investigated: 
the Thurstone order statistics models and the Babington Smith models. 
Both families are natural extensions of commonly used paired comparison 
models. The concept of an "item parameter" is introduced and studied in 
the context of each of these classes of models. This distinction between the 
item parameters and the remaining parameters in a ranking model is useful 
not only for the general interpretation of model parameters, but also for 
the specific problem of introducing covariates in these models. Estimation 
schemes are described for these models, both with and without covariates, 
and are implemented in an example. 

]( ey Words and Phrases: Permutation data, paired comparisons, order 
statistics model, iteratively reweighted least squares, item parameter. 

1.1 Introduction 

Probability models for the subjective comparison of several items are used 
in a variety of applications. The most widely studied class of such models 
has been developed for the paired comparison experiment. In the most 
basic paired comparison experiment, each judge considers several pairs of 
items, and states a preference for one item within each pair. Excellent 
introductions to the paired comparison literature are provided in Bradley 
[1,2] and the monograph by David [10]. 

In this paper, the focus is on the simultaneous comparison of all of the 
items, which results in a complete ranking of the k items by each judge. 
However, for the case in which the number k of items is large, it may be 
necessary to rank the items within smaller subsets, yielding triple compar­
isons, quadruple comparisons, and so on. In either case, probability models 
for rankings of more than two items are needed. We consider two classes 

1 Department of Statistics, The Ohio State University 
2 Department of Statistics, The Ohio State University 
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of probability models for rankings that are natural extensions of some of 
the basic paired comparison models. The necessary background on paired 
comparison models is presented in the remainder of this section. 

Suppose that the paired comparison experiment involves k items, and 
that nij independent comparisons are made for the pair of items (i, j). The 
basic parameters are then the k(k -1)/2 quantities Pij, where for i < j, Pij 
denotes the probability that i is preferred to j in a comparison of these two 
items. In the simplest paired comparison models, it is assumed that ties 
are not permitted, and that the order of item presentation is unimportant. 

The paired comparison models most commonly used in practice are the 
Thurstone [31] -Mosteller [22] model and the Bradley-Terry [3] model. 
Both of these models assume specific functional forms for the Pij. For the 
Thurstone-Mosteller model, Pij = P(Xi < Xj), where Xi and Xj are inde­
pendent normal random variables with common standard deviation (j and 
means J1i and J1j, respectively. The random variables Xi and Xj represent 
a random judge's perceptions of the merits of items i and j, and it is these 
unobservable random variables that determine the ordering of the items. 

In the usual formulation of the Bradley-Terry model, 

Pij = p;j(pi + pj), (1) 

where Pi is a non-negative parameter associated with item i, for i = 1, ... , t. 
Equivalently, Pij = P(Xi < Xj), where Xi has a Gumbel distribution 
F(x) = 1- exp(-exp(x - J1i))' and J1i = -logpi. Both of these forms of 
the Bradley-Terry model will be used in the extensions to ranking models. 

The next section discusses two methods of generalizing paired compari­
son models to rankings, along with a framework for interpreting the "item 
parameters" in these models. In Section 1.3 we extend these models to in­
clude covariates, and Section 1.4 considers estimation and other inferential 
procedures for the models. The paper concludes with an example in Section 
1.5, and a discussion in Section 1.6. 

1.2 Basic Ranking Models and Their Parameters 

The two parametric families of ranking models discussed in this section 
are the Thurstone order statistics models and the Babington Smith mod­
els. The necessary notation for rankings is as follows. Once the k items 
are labelled arbitrarily as item 1 to item k, a ranking of the k items cor-
responds to a permutation function 71" = (71"( 1), ... , 7I"(k)) from {I, ... , k} 
onto {I, ... , k}, where 71"( i) is the rank assigned to item i, i = 1, ... , k, 
and smaller ranks correspond to the more preferred items. An alternative 
description of any ranking 71" is given by the associated ordering of the k 
items, denoted by the bracketed vector < i1 , i2, ... , ik >, where ir is the 
item assigned rank r, r = 1, ... , k. For example, < 2 3 1 > denotes the 
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ordering in which item 2 is ranked as best, item 3 is ranked as second best, 
and item 1 is ranked as worst. The composition of two rankings is defined 
by (1I"ocr)(i) = 1I"[cr(i)]. A probability mass function P(1I") represents a prob­
ability model on rankings - or, more briefly, a ranking model - usually 
indexed by a finite set of parameters. 

Before defining the two classes of ranking models, the concept of an "item 
parameter" is introduced. In any ranking model, certain parameters may 
reflec.t solely properties of the individual items being ranked, while other 
parameters may not be direc.tly associated with individual items, but rather 
contain different types of information about the distribution of rankings. 
This distinction between item parameters and the remaining parameters 
is useful not only for the general interpretation of model parameters, but 
also for the specific problem of introducing covariates in these models, as 
described in Section 1.3. 

The idea behind the formal definition of the item parameters VI, V2, ... , 

Vk is that the probability distribution of the rankings should possess a 
natural invariance, with respec.t to these parameters, under an arbitrary 
relabeling of the k items. On the other hand, the remaining "non-item" 
parameters 1]1, 1]2, ... , 1]t will not exhibit this invariance. Specifically, as­
sume that the probability distribution P8( 11") is indexed by the vector of 
t + k parameters 8 = (1]1, 1]2, •.. , 1]t, VI, V2, ... , Vk)' Suppose the k items 
1, ... , k are now relabeled as 0'( 1), ... , 0'( k), so that 0'( i) is the new label 
for item i. If this implies that the induced probability model P 8* (11") has the 

parameter vector 8* = (7}1, 7]2,··., 1]t, Va-l(l), Va-1(2)"'" Va-l(k))' where 
(0'-1 0 0')( i) == i, then the parameters Vl, V2, ... , Vk are said to be item 
parameters. Intuitively, when the items are relabeled, their correspond­
ing parameters must be relabeled accordingly. Further interpretations and 
properties of item parameters will be given later in this section, and will 
be illustrated in the context of the two classes of ranking models now in­
troduced. 

Daniels [9] suggests the following ranking model as a natural extension 
of the Thurstone paired comparison model. Suppose that the random vari­
ables Xl, ... , Xk represent a random judge's perceptions of the merits of 
the k items, and that the relative ordering of these random variables deter­
mines his ordering of the items. Formally, let Xi be independent random 
variables with distributions Fi(X) = F(x - 11-;), where i = 1, ... , k indexes 
items and F is a fixed but arbitrary continuous c.dJ. A random ranking 11" 

is defined by setting 1I"(i) equal to the rank, from smallest to largest, of Xi 
among {Xl, .. . , Xd. Thus, the ranking 11" with ordering < i l , ... , ik > is 
assigned the probability 

(2) 

The probability model on rankings defined by (2) is referred 
to as a Thurstone order statistics model (see, for example, Yellott [33]). 
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The parameters JL1, JL2, ... , JLk are clearly item parameters according to 
the above definition. Since smaller ranks correspond to the more preferred 
items, note that for a Thurstone order statistics model, those items with 
the smaller values of JLi are the "best" items. This convention is maintained 
for the item parameters in the remaining classes of models. 

Two well-studied cases of the Thurstone model are the Thurstone [31] -
Mosteller [22] - Daniels [9] model (TMD modeO where F is the standard 
normal distribution, and the Luce model [16], where F is Gumbel. Brook 
and Upton [5] use the TMD model to analyze voters' rankings of candidates 
for public office. The Luce model has a simple expression for the ranking 
probabilities given in (2) (see, for example, Plackett [23]). Further proper­
ties and references for these models can be found in Yellott [33], Stern [30], 
and Critchlow, Fligner, and Verducci [8]. 

The second class of ranking models is suggested by Babington Smith 
[10]. He uses a conditioning argument for inducing a probability model 
on rankings from a set of arbitrary paired comparison probabilities. For 
each pair of items i < j, let Pij be the probability that item i is preferred 
to item j(i -+ j) in a paired comparison of these two items. Imagine a 
tournament in which all of the k(k - 1)/2 possible paired comparisons are 
made independently. If the results of this tournament contain no circular 
triads (h -+ i -+ j -+ h), then the tournament corresponds to a unique 
ranking 7r of the items; otherwise the entire tournament is repeated until a 
unique ranking is obtained. The probability of any resulting 7r is thus given 
by 

P(7r) = constant IT Pij, (3) 
Hi ,j):7r( i)< 7r(j)} 

where Pij for i > j is defined by Pij == 1 - Pji, and the constant is chosen 
to make the probabilities sum to 1. Although the Babington Smith model 
is indexed by k( k - 1)/2 parameters, constraints on the {pij} proposed by 
Mallows [17] lead to three important subclasses of the general Babington 
Smith model (3), that are called the Mallows-Bradley-Terry model, the 
rho-based model, and the ¢-model, respectively. 

The general Babington Smith model does not contain item parameters. 
Mallows [17] suggests a way of both reducing the number of parameters in 
(3) and introducing item parameters. He assumes that the paired compar­
ison probabilities have the Bradley-Terry form: 

logit Pij = Ij - Ii 

for some nonnegative parameters 11, ... , Ik, where Ii = -In Pi in (1). This 
leads to the Mallows-Bradley-Terry (MBT) ranking model 

k-1 

P(7r) = C(,) IT exp( -(k - rhi r ), (4) 
r=l 



Ranking Models with Item Covariates 5 

for any ranking 7r with associated ordering < i 1, ... , ik >, where "y 

('Yl, ... , 'n), and C("'() is chosen to make the probabilities sum to 1. The 
parameters /1, ... ,/k satisfy the defining condition for item parameters. 
Moreover, for the parameterization used, smaller values of /i correspond 
to more preferred items, just as for the Thurstone order statistics model. 

Mallows [17] suggests a further simplification of the MBT model, which 
assumes that there is a modal ranking 7ro = (7ro(1), ... , 7ro(k)). This modal 
ranking corresponds to a vector of parameters (7ro(1), ... , 7ro(k)) , where 
7ro(i) is the rank assigned to item i by the modal ranking. Fixing B E (0,1) 
and letting /i = -27ro(i) InB in (4) then gives Mallows' rho-based model 

(5) 

where 
k 

R2(7r, 7ro) = L)7r(i) - 7ro(iW 
i=1 

is the Spearman's rho-distance between the rankings 7r and 7ro, and is re­
lated to Spearman's [28] correlation coefficient. The rho-based model has 
the interpretation that the probability P(7r) decreases geometrically, as the 
R2 distance from 7r to 7ro increases. According to the item parameter defi­
nition, the components 7ro(I), ... , 7ro(k) of 7ro are item parameters. On the 
other hand, B is a dispersion parameter: as B -> 1, the rho-based mod­
el approaches the uniform distribution on all k! possible rankings, whereas 
when B -> 0, the model becomes increasingly concentrated about the modal 
ranking 7ro. 

For this model, the item parameters 7ro(I), ... , 7ro(k) have an important 
distinction from the item parameters of both the Thurstone order statistics 
model and the general MBT model. Namely, the item parameters take their 
values in the discrete parameter space consisting of all k! permutations of 
the integers 1, ... , k. This distinction will be important in the covariate 
models of Section 1.3, since covariates are more easily incorporated into 
models that have continuous item parameters. 

Suppose that 7ro is not restricted to be an actual ranking, but rather 
that its components are allowed to be arbitrary real numbers in (5). It has 
been noted by McCullagh [18], among others, that the resulting model is 
equivalent to the MBT model of (4). 

The final simplification of the general Babington Smith model is Mallows' 
well-known c/J-model. Unlike the rho-based model, the c/J-model is not an 
MBT model. To describe the c/J-model, fix c/J E (0,1), and suppose that in 
(3) the corresponding paired comparison probabilities have the simple form 
Pij = (c/J + 1)-1 > .5 for 7ro(i) < 7ro(j) , so that the probability that item i 
is preferred to item j depends only upon their relative order in the modal 
ranking. Then the resulting ranking model is 

(6) 
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where 
T(7I',7I'0) = LI{[7I'(i) -7I'(j)][7I'0(i) -7I'0(j)] < O} 

i<j 

is the Kendall's tau-distance between the rankings 71' and 71'0, and 1(.) is 
the indicator function: I(A) = 1 if the event A occurs, and = 0 otherwise. 
The ¢>-model has the interpretation that the probability P(7I') decreases 
geometrically according to increasing tau-distance from 71' to the modal 
ranking 71'0. The components 71'0(1), ... , 71'o(k) of 71'0 are again discrete item 
parameters, and ¢> is a dispersion parameter. 

In the remainder of this section, several properties of the item parameters 
VI, ... , Vk in a ranking model are considered. Specifically, for many models, 
both the ordering and the spacing of the Vi contain useful information 
regarding the items. With regard to the ordering of the Vi, suppose that 
the Vi are distinct, and consider two items i and j for which Vi < Vj. For 
the given ranking model, suppose that P[7I'( i) < 71'(j)], the probability that 
item i is preferred to item j, exceeds .5. If this probability continues to 
exceed .5 given any fixed assignment of ranks to the other k - 2 items, then 
item i is strongly preferred to item j. If item i is strongly preferred to item 
j for every pair of items i and j with Vi < Vj, then the ranking model is 
said to have a complete consensus, with consensus ordering determined by 
the ordering of the Vi. 

To formally define complete consensus, let the transposition permutation 
lij be defined by lij(i) = j,/ij(j) = i, and lij(m) = m for all m =F i,j. 
Note that 71' O/ij is the ranking that agrees with 71' except that the ranks 
assigned to items i and j are exchanged. A model has the property of 
complete consensus, with consensus ordering determined by the Vi, if for 
every pair of items i and j such that Vi < Vj, and any permutation 71' such 
that 71'( i) < 71'(j), P( 71') > P( 71' 0 lij). The notion of complete consensus is 
discussed by Henery [13] and Fligner and Verducci [11]. 

Although complete consensus is a property that orders the items in a 
fairly strong sense, it is satisfied by many ranking models. For a Thurstone 
order statistics model, ifthe J.li are distinct and the likelihood ratio ;:fl)-/-li~ 

X-/-Ij 

is a non-increasing function of x for J.li < J.lj, Henery [13] shows that the 
model has complete consensus (see also Savage [24, 25]). Moreover, the 
complete consensus property is also shared by the three subclasses of the 
Babington Smith model that have item parameters: the MBT model, the 
rho-based model, and the ¢>-model (see Critchlow, Fligner, and Verducci 
[8]). 

A consequence of the complete consensus property is that the items are 
ordered in expectation: Vi < Vj implies E[7I'(i)] < E[7I'(j)] (Fligner and 
Verducci [11]). In fact, the ordered in expectation property holds for all 
Thurstone order statistics models, not just those with a monotone likeli­
hood ratio density. 

The complete consensus and ordered in expectation properties are ordi-
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nal properties; that is, they continue to hold under an arbitrary, strictly 
increasing reparameterization of the Vi. A final property of the item pa­
rameters in a ranking model involves the spacing of the Vi as well as their 
ordering. The idea is that for any items i and j, the probability that i is 
ranked ahead of j depends only on the parameters Vi and Vj associated 
with these two items, and further is a strictly increasing function of the 
signed interval length Vj - Vi. 

Formally, a model is said to be interval scaled if P( 7r( i) < 7r(j)) = 
f(vj - Vi)' for some strictly increasing function f that may depend up­
on the other "non-item" parameters in the model. Note that the interval 
scaled property depends not just on the ranking probabilities, but also on 
the particular choice of parameterization of the model in terms of its item 
parameters Vi. Thus, if a model is not interval scaled under a particular 
parameterization, this suggests finding a strictly increasing reparameteriza­
tion ei = g( Vi) for which it is interval scaled, i.e. P ( 7r( i) < 7r(j)) = f( ej -e;). 
For models having continuous item parameters, if there exists such a repa­
rameterization function g, it is uniquely determined up to an affine trans­
formation. 

Both the Thurstone order statistics models and the </I-model are interval 
scaled, under the parameterizations given. For the Thurstone models, this 
follows from the relation P( 7r( i) < 7r(j)) = P(Xi < X j ) = D(Jlj - Jli), 
where D is the c.dJ. of Zl - Z2, and Zl and Z2 are i.i.d. with c.dJ. F. The 
interval scaled property of the ¢-model is proved by Mallows [17], Section 
9. 

It is now shown that the MBT model is not interval scaled under the 
gi ven parameterization (4), and in fact is not interval scaled under any 
reparameterization. The proofis by contradiction: suppose that it is interval 
scaled under the strictly increasing reparameterization ei = 9(1i). Fix e1 = 
g(1d and 6 = g(12) such that e1 < 6 (and therefore 11 < 12). We show 
that the probability P(7T(l) < 7T(2)) depends not only on 6 and 6, but 
also on 6, ... , ek, contradicting the interval scaled property. First, it is easy 
to check that as 6, ... ,ek increase in such a way that the corresponding 
13, ... , Ik -+ 00, then 

since in the limit, the probability that item 1 is preferred to item 2 in 
the full ranking is the same as the probability that 1 beats 2 in a paired 
comparison. On the other hand, suppose 6 is such that 13 = (-r1 + 12)/2, 
and suppose that e4, ... , 6 are still increasing so that 14, ... , 1k -+ 00. 

Then a straightforward calculation yields 
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where A = exp(("Y2 - "Yd/2) > 1. Thus the odds that item 1 precedes item 
2 in the ranking have increased, showing that the probability that item 1 
is preferred to 2 depends upon the other parameters. 

Finally, the rho-based model (with item parameters 7I"o(i)) is interval 
scaled for k = 3, but for k = 4 a direct calculation shows that when 
71"0 =< 1,2,3,4>, 

contradicting the interval scaled property. 

1.3 Ranking Models with Covariates 

The models of Section 1.2 allow for a comparison of the items through 
the values of their item parameters. However, in many instances additional 
measurements about the items are available, corresponding to the values 
of one or more independent variables, or item covariates. In the example 
of Section 1.5, the items are four formulations of a salad dressing that 
are ranked according to tartness. Item covariates are available since the 
formulations differ with respect to the amounts of acetic and gluconic acid 
present. It is of primary interest to determine how these variables affect 
perceived tartness. To analyze the data fully, it is necessary to develop 
ranking models that incorporate the effects of such item covariates, and to 
study the associated inferential techniques. 

For ranking models with continuous item parameters Vi, we will assume 
a specific functional relationship between the Vi and the item covariates. 
This introduces a more restrictive model, and allows us to determine the 
extent to which the value of each item parameter Vi can be modelled in 
terms of its item covariates. 

A linear model for the Vi in terms of item covariates is given by 

v = C{3, (7) 

where v = (VI,"" Vk)', C is a k x p matrix whose i-th row is a vector of 
covariates associated with item i, and {3 is a p x 1 vector of parameters. 
For example, in ranking the four formulations of salad dressing, the two 
covariates of interest are C1, the concentration of acetic acid, and C2, the 
concentration of gluconic acid. An initial model which incorporates these 
item covariates is Vi = Q' + (31cH + (32ci2, where Cil and Ci2 are the con­
centrations of acetic acid and gluconic acid, respectively, associated with 
the i-th formulation. However, for the models considered in this paper, Q' 

can be omitted, since all values of Q' give the same ranking probabilities. 
Thus, for this example, model (7) has {3 = ((31, (32), and C is a 4 x 2 ma­
trix with i-th row (Cil' Ci2), i = 1, ... ,4. In Sections 1.4 and 1.5, inferential 
procedures are described to investigate the adequacy of the model, as well 
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as the necessity of including both covariates to explain the differences in 
perceived tartness. 

The idea of using a response surface model such as (7) in modelling pref­
erences is considered, among others, by Springall [29] and Kousgaard [15] 
for paired comparison experiments, and by Hausman and Wise [12], McFad­
den [20], and Kamakura and Srivastava [14] for probabilistic choice models. 
However, its application to modelling the continuous item parameters in 
a ranking model appears to be new. An interesting problem, not treated 
in this paper, is to develop useful methods for including item covariates in 
models having discrete item parameters, such as (5) and (6). 

1.4 Estimation 

In this section, procedures are described for the estimation of the model 
parameters, for both the MBT and the Thurstone order statistics rank­
ing models. Since both of these models have continuous item parameters, 
item covariates can be easily included in the models, as in (7). Thus, the 
associated parameter estimation procedures will be considered for model­
s both with and without item covariates. In brief, the MBT model is a 
generalized linear model (GLM), and maximum likelihood estimates can 
often be obtained using existing statistical packages. On the other hand, 
maximum likelihood estimation for the Thurstone order statistics models 
requires direct evaluation of the log likelihood, usually via a multivariate 
integration procedure. The subsequent maximization of the log likelihood 
utilizes a k - 1 dimensional search algorithm. A simple alternative to maxi­
mum likelihood estimation for the Thurstone order statistics models is also 
described. 

In any ranking model, suppose that the k! possible rankings are listed 
in some definite order, and that 7rj = (7rj(I), ... , 7rj(k)) corresponds to the 
j-th ranking in this list. If n judges independently rank the k items, the 
data vector is then Y = (Y1, ... , Yk!), where Yj is the number of times the 
j-th ranking 7rj occurs in the data set. The probability distribution of Y 
is multinomial with n trials. Different ranking models then place varying 
structures on the multinomial cell probabilities. 

First consider the MBT model. The logarithms of the multinomial cell 
probabilities are linear in the item parameters, so that the MBT model 
is a GLM (see McCullagh and Nelder [19]). Specifically, 10g(E(Y In)) = 
X,+aI, where a is a scalar normalizing constant, I is a vector of l's, and 
by (4), the j-th row ofthe matrix X has entries 7rj(l) - k, ... ,7rj(k) - k, for 
j = 1, ... , k!. In the case of the item covariate model (7), 10g(E(Y In)) = 
XCf3 + aI, and the model is again a GLM. Thus the MBT model, both 
with and without covariates, can be fitted easily for small to moderate 
values of k, using the GLIM or S-plus statistical packages, for example. 
Parameter estimates and their standard errors are included in the output 
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for these packages, as well as likelihood ratio test statistics for hypotheses 
of interest. In the example of the next section, the numerical results for 
the MBT model were obtained using GLIM. Further details are provided 
in Critchlow and Fligner [11]. 

For the Thurstone order statistics models, two estimation schemes are 
considered. The first is based on decomposing each observed ranking into 
its k(k - 1 )/2 induced paired comparisons. The resulting estimators are 
very simple to compute, and have good efficiency relative to the maximum 
likelihood estimators. The second scheme utilizes maximum likelihood es­
timation. 

To begin with, note that adding a fixed constant to each of the Ili does 
not change the ranking probabilities in a Thurstone order statistics mod­
el. Thus, the model actually has only k - 1 estimable parameters, which 
can be taken as the linear contrasts III - Jlk,.·., Ilk-l - Ilk. Without loss 
of generality, we set ftk = 0 and estimate the components of the vector 
JL = (Ill, ... , Ilk-I)' For both parameter estimation schemes, it can be 
checked that the resulting estimates are suitably invariant under an arbi­
trary reparameterization of the k - 1 contrasts. 

The estimation scheme based on paired comparisons is a large sample 
method which proceeds as follows. For i < j, let Nij count the number of 
times that item i is ranked before item j in the set of n observed rankings, 
and let Pij = ~ be the corresponding sample proportion. As in Section 1.2, 
let F be the c.dJ. of each Xi - Ili, and let D be the c.dJ. of Zl - Z2, where 
Zl and Z2 are i.i.d. with c.d.f. F. Since Pij is asymptotically normal with 
mean D(llj - Ili), the 8-method shows that D- l (Pij) has a limiting normal 
distribution with mean Ilj - Ili. The estimation procedure utilizes the vec­
tor V = (D- l (P12), D- l (P13), ... , D-l(Plk), D- l (P23),.'" D-l(Pk_l,k))', 
which has an approximate (n --+ 00) multivariate normal distribution with 
mean vector X JL, and covariance matrix .1 ~, where ~ also depends on the n 
Ili. The expression for ~ = ~(JL) is given in the Appendix, and the form 
of the X matrix in the limiting mean vector is as follows. Note that since 
the entries of V are actually indexed by pairs (i,j), so are the rows of X. 
The matrix X has k(k -1)/2 rows and k -1 columns, and the m-th entry 
in the (i, j)-th row of X is -1 if m = i, 1 if m = j, and 0 otherwise. 

Thus, the asymptotic distribution of the random vector V is a linear 
model in JL, whose covariance structure also depends on JL. The JL vector can 
therefore be estimated by iteratively reweighted least squares. Specifically, 
to implement the (s + 1 )-th stage of the iteratively reweighted least squares 
procedure, suppose that parameter estimates jI,(s) are available from the 

s-th stage, and let E(s+l) = ~(jI,(s)) be the covariance matrix determined 
by jI,(s), as described in the Appendix. The new estimate jI,(s+l) of JL is then 

obtained by substituting E(S+l) into the standard weighted least squares 
equation: 

, ,,-1 _1/,-1 
JL(s+l) = (X ~(s+1)X) X ~(s+l) V. (8) 
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In the case of the item covariate model (7), the limiting mean vector 
is just XC (3, and iteratively reweighted least squares can again be used 
to estimate the f3i, by replacing it(8+1) with /3(8+1) and X with XC in 
(8). Preliminary work indicates that this estimation technique has good 
efficiency relative to maximum likelihood estimation. 

Brady [4] uses the estimates Pij of the binary choice probabilities directly, 
rather than the D- 1(Pij), to estimate the parameters in the TMD model. 
This results in a nonlinear least squares problem, instead of the simpler 
linear approach considered here. The Pij are also utilized by Cohen and 
Mallows [6], but for the problem of assessing the goodness of fit of a ranking 
model. 

Finally, the second estimation scheme described for Thurstone order 
statistics models is maximum likelihood estimation. The log likelihood is 

k' 

A + 2:)'J log(P(7Tj)), 
j=l 

where A does not depend on the parameter vector 1-'. This requires eval­
uation of each P( 7Tj), usually by a numerical multiple integration tech­
nique. Note that for any ranking 7T with ordering < iI, ... , ik >, the prob­
ability P(7T) = P{Xil < ... < Xik} can be thought of as the proba­
bility that all the components of the k - 1 dimensional random vector 
(Xi2 - Xi" Xi3 - X i2 , ... , X ik - Xik_l) are positive. When F is normal this 
can be computed using specialized integration routines. For example, the 
Fortran program by Schervish [26] evaluates multivariate normal probabil­
ities for an arbitrary correlation structure. Note that for small values of k, 
or for distributions F other than the normal, general multiple integration 
routines can be employed, such as those in IMSL. Finally, for the Luce 
model where F is Gumbel, the log likelihood can be expressed in closed 
form. 

The maximization of the likelihood requires a k - 1 dimensional search, 
which can be carried out using the quasi-Newton method and a finite differ­
ence gradient. Such algorithms are widely available in IMSL, for example, 
and do not require an evaluation of derivatives. 

The overall performance of this estimation scheme for large values of 
k needs further investigation, especially with regard to its accuracy and 
required CPU time. In the next section, an example with k = 4 items and 
covariates is presented, that illustrates all of the above procedures. 

1.5 Example 

The TMD model (the Thurstone order statistics model with F the standard 
normal distribution), and also the MBT model, are now used to analyze 
a set of ranking data collected by Vargo [32]. Each of thirty-two judges 
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was asked to rank four salad dressing preparations according to tartness, 
with a rank of 1 being assigned to the formulation judged to be the least 
tart. The raw data are given in the first two columns of Table 1, where the 
observed rank vector 'Trj in column 1 contains the ranks given to the four 
salad dressing preparations. Column 2 gives the observed frequencies Yj, 
while columns 3 and 4 give the fitted Y values for the MBT and the TMD 
models, respectively, when the models are fitted using maximum likeli­
hood estimation. (Column 5 gives the fitted Y values under the iteratively 
reweighted least squares (IRLS) estimation scheme for the TMD model, 
which is discussed later.) 

TABLE 1 
Salad dressing rankings with observed and fitted frequencies 

}j for 
x 

}j for Observed 'Trj Frequency Yj for 
(Yi) MBT TMD (MLE) TMD (IRLS) 

(4,3,2,1) 2 0.292 0.256 0.230 
(3,4,2,1) 1 1.658 1.601 1.576 
(3,4,1,2) 2 1.137 1.124 1.089 
(3,2,4,1) 1 0.332 0.324 0.290 
(2,4,3,1 ) 2 4.213 4.043 4.144 
(2,4,1,3) 1 1.980 1.863 1.832 
(2,1,3,4) 1 0.121 0.126 0.107 
(1,4,3,2) 11 7.337 8.010 8.400 
(1,4,2,3) 6 5.030 5.339 5.469 
(1,3,4,2) 3 3.281 3.108 3.083 
(1,2,4,3) 1 1.006 1.035 0.966 
(1,2,3,4) 1 0.689 0.738 0.680 

32 27.076 27.567 27.866 

For both the TMD and MBT models, hypothesis testing can be done 
using likelihood ratio test statistics. For each model fitted under maximum 
likelihood, the deviance is reported in Table 2. The deviance is just the 
likelihood ratio test statistic -2log A, where A is the likelihood ratio for 
testing a particular model against the general multinomial model with k!-l 
parameters. Thus, the deviance equals 

Ie 

2 L Yj log(Yj /}j), 
j=l 

where Yj is the fitted count for the j-th ranking under a particular mod­
el. As illustrated below, differences in deviances give likelihood ratio test 
statistics for hypotheses of interest. 

The first question of interest concerns the overall fit of the models. The 
deviances for both the TMD and MBT models, with arbitrary item param­
eters, are given in the second column of Table 2. To discuss these models 
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simultaneously, both the item parameters Pi for the TMD model, as well as 
the item parameters Ii for the MBT model, will be denoted by the generic 
symbols 1/1, ... , I/k for item parameters. 

Model 

TMD 
MBT 

TABLE 2 
Deviances for various TMD and MBT models 

1/1,1/2,1/3 

arbitrary 
20.634(20 df) 
22.249(20 df) 

I/i = {31 Cil 

+(32 ci2 
21.026(21 df) 
22.247(21 df) 

68.730(22 df) 
68.333(22 df) 

59.390(22 df) 
59.642(22 df) 

The deviances in the first column show that either of the two models 
adequately explains the data. Due to the sparseness of the data, the de­
viances may need to be interpreted with caution. However, the fitted values 
in Table 1 also suggest a satisfactory fit of each of the models, which can 
be confirmed by an examination of the standardized residuals. Since the 
TMD and MBT models are not nested, they cannot be compared easily, 
although the TMD model appears to fit slightly better. 

The deviance for the uniform model, corresponding to 1/1 = ... = I/k, is 
70.753. Thus, for the TMD model, the likelihood ratio statistic for testing 
Ho : 1/1 = ... = I/k versus HI : I/i arbitrary is 70.753 - 20.634 = 50.119, 
with 23 - 20 = 3 df. This indicates that the formulations are perceived 
differently by the judges with regard to their tartness (p < .001). The same 
conclusion is reached in the context of the MBT model. 

In this example, the differences among the four salad dressing formula­
tions are actually due to varying concentrations of acetic and gluconic acid. 
The acetic and gluconic acid concentrations for the four salad dressings are 
(.5,0), (.5, 10.0), (1.0,0), and (0,10.0), respectively, where the first number 
in each pair is the percentage of acetic acid and the second is the percent­
age of gluconic acid. The deviances for the models incorporating both of 
these covariates as in (7) are given in the second column of Table 2, while 
the last two columns correspond to models with only one covariate. 

The TMD model including both covariates has a deviance of 21.026 with 
21 df. Hence, the likelihood ratio test statistic for testing the more restric­
tive model with covariates versus the model without covariates is 21.026 
- 20.634 = 0.392 with 21 - 20 = 1 df. Therefore, the model with both 
covariates is not significantly worse than the model with arbitrary item 
parameters, and provides a suitable model for the data. As can be seen 
from the deviances for each of the models with a single covariate, neither 
covariate can be dropped from the model. Using the last line in Table 2, 
similar conclusions are reached for the MBT model. 

The remainder of this section compares the two estimation schemes that 
were proposed in Section 1.4 for the TMD model. Table 3 provides the 
parameter estimates using both schemes, for the TMD model with the 
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Vi arbitrary, as well as for the model containing both covariates. The pa­
rameter estimates in Table 3 appear quite similar. Moreover, the resulting 
models are also very close, as can be seen from a comparison of the fitted 
Y values under both schemes, given in the last two columns of Table 1. 

TABLE 3 
Parameter estimates for two TMD models, using two estimation schemes 

(VI, V2, V3) when 
Vi arbitrary 

({3l, {32) when 
Vi = f31 Cil + f32 ci2 

Maximum 
likelihood 
estimates 

(-0.755, 1.527,0.498) 

(2.773,0.228) 

IRLS estimates 
using 

paired comparisons 
(-0.774,1.599,0.521) 

(2.913, 0.238) 

For the TMD model, the equation obtained from fitting the covariate 
model (7), via maximum likelihood estimation, is 

Vi = 2.773Ai + 0.228G j , (9) 

where Ai and G i are the concentrations of acetic and gluconic acid for the 
i-th formulation. Similar results are obtained using the MBT model, as 
described in Critchlow and Fligner [7]. 

1.6 Discussion 

Although the experimental situation described in this paper results in data 
in the form of rankings, the approach is parametric; specific probability 
models are developed for the ranking process. The classical "nonparamet­
ric" approach for the comparison of items in such a ranking experiment 
utilizes the average of the ranks received by each item. These two points 
of view are now compared, and some advantages of the more complicated 
parametric approach are discussed. 

Let 1i"(i) denote the average rank received by the i-th item, and let 
1i" = (1i"(1), ... , 1i"(k)) be the vector of average ranks. For the MBT model, 
the vector 1i" is a sufficient statistic. Moreover, there is an interesting rela­
tionship between the average rank vector and i, the vector of maximum 
likelihood estimates of the item parameters - namely, the ordering of the 
items according to 1i" and i is the same. Indeed, for the MBT model, the 

k 

log likelihood = B('"'/1, ... , 'Yk) + n L 1i"(ihi, 
j=1 

where Ben, ... , 'Yk) is a symmetric function of 1'1, ... ,'Yk, from which it 
follows directly that the MLE's i'i and the 1i"(i) must be in the same order. 
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On the other hand, for the TMD model, 1i" is not a sufficient statistic, 
and for small samples, the previous correspondence between the MLE's of 
the item parameters and the vector of average ranks does not necessarily 
hold. However, this correspondence does hold asymptotically. This is an 
easy consequence of the complete consensus property of the TMD model, 
which, as mentioned in Section 1.2, ensures that the items are ordered in 
expectation, i.e. the ordering of the Vi agrees with that of the E[1r(i)]. 

For either the TMD or MBT models, in order to achieve a direct nu­
merical comparison of the average rank vector and the vector of parameter 
estimates, it is best to have these vectors satisfy the same linear restric­
tion. Such a linear constraint can be imposed, because for either model, 
the ranking probabilities do not change when a fixed constant is added to 
each of the item parameters. Since 2:;=1 1i"(i) = k(k + 1)/2, it is assumed 
that the item parameters also sum to this constant. For example, imposing 
this constraint in (9) yields 

Vi = 2.773A + 0.228Gi - .027. 

The vector of average ranks and vector of estimated Vi are then (1.56, 3.56, 
2.69,2.19) and (1.36,3.64,2.75,2.25), respectively. 

Although the two vectors are quite close, it is difficult to use the average 
rank vector in a nonparametric manner to make suitable inferences about 
the items. Standard nonparametric theory would declare two items differ­
ent whenever 11i"(i) - 1i"(j)1 > k (see, for example, Miller [21], page 174). 
However, the classical distribution theory for avera.ge ranks is developed 
under the uniform distribution, namely the constant k is chosen so that 
P(I1i"(i) - 1i"(j)1 :::; k for all i and j) = 1 - ct. In contrast, the inferences de­
veloped under the parametric approach, although requiring specific model 
assumptions, allow for inferences away from the uniform. This type of in­
ference is necessary in the covariate model, when deciding whether a term 
should be dropped from the model. Such a question cannot be answered 
easily using the classical nonparametric approach. 

1.7 Appendix 

In this appendix, the limiting (n --+ 00) covariance matrix ~ E of the vector 
V is computed explicitly, in terms of the parameters J-li of the underlying 
Thurstone order statistics model. As described in Section 1.4, V is the 
k(k - 1)/2 dimensional vector consisting of the D- 1 (Pij), where D is the 
c.d.f. of Zl - Z2, and Zl and Z2 are i.i.d. with c.dJ. F. Since the entries 
of V are indexed by pairs (i,j), so are both the rows and columns of its 
limiting covariance matrix ~ E. 

By the 6-method, the (i,j), (m,q) element of E is 

Eij mq = lim n Cov(Pij,Pmq)/[D'(D- 1(Pij»D'(D- 1 (Pmq»]. 
J n---+oo 
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The denominator of the right hand side is just d(J.Lj - J.Ld d(J.Lq - J.Lm), where 
d = D' is the density corresponding to D. To evaluate the numerator, 
let D2 be the bivariate distribution function defined by D2(h, t2) = 
P(Zl - Z2 :::; t 1 ,Z2 - Z3 :::; t2), where Zl,Z2,Z3 are i.i.d. with c.d.f. F. 
Then a straightforward calculation shows: 

lim n Var(Pij) = D(J.Lj - J.Li)[l - D(J.Lj - J.L;)] if i i= j, n--+oo 
lim n COV(Pij, Pmq) = 0 ifi, j, m, and q are distinct, 

n--+oo 

and 

lim n COV(Pij, Pjm) = - lim n COV(Pij, Pmj) = lim n COV(Pji, Pmj) 
n-+oo n-+oo n-+oo 

= - lim n COV(Pji,Pjm) n--+oo 
= D2(Jlj - J.Li,Jlm - J.Lj) - D(J.Lj - J.Li)D(J.Lm - J.Lj) 

if i, j, and m are distinct. The details of the calculation of 
liffin--+oo n COV(Pij, Pjm) with i, j, and m distinct are as follows: 

lim n COV(Pij,Pjm) = P(X; < Xj,Xj < Xm)-P(X; < Xj)P(Xj < Xm) n--+oo 

P(Z; + J.Li < Zj + J.Lj, Zj + J.Lj < Zm + J.Lm) 

-P(Zi + J.Li < Zj + J.Lj)P(Zj + J.Lj < Zm + J.Lm) 

P(Z; - Zj < J.Lj - Jli,Zj - Zm < J.Lm - J.Lj) 

-P(Zi - Zj < J.Lj - J.Li)P(Zj - Zm < J.Lm - J.Lj) 

D2(J.Lj - J.Li, J.Lm - J.Lj) - D(J.Lj - J.Li)D(J.Lm - J.Lj), 

where Zi, Zj, Zm are i.i.d. with c.dJ. F. 
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Nonparametric Methods of 
Ranking from Paired 
Comparisons 
H. A. David 1 

D. M. Andrews 2 

ABSTRACT Ranking by row-sum scores in the case of balanced 
paired-comparison experiments was generalized to unbalanced experiments 
in David [7]. Statistical properties of the proposed scores and associated 
tests of significance are developed in Andrews and David [2], where exten­
sions to unbalanced ranked data are also treated. A brief account of this 
work is given and a possible generalization is introduced and examined. 
The simple methods here advanced make no assumptions on the pairwise 
preference probabilities. A secondary aim of this paper is to provide a crit­
ical review of competing methods also involving no such assumptions as 
well as of related methods requiring only mild assumptions. Many of the 
procedures discussed are illustrated on a worked example. 

2.1 Introduction and Literature Review 

BASIC CONSIDERATIONS 

Suppose that t objects C1 , ... , Ct are judged in pairs, nij (~ 0) comparisons 
being made of Cj and Cj(i, j = 1, ... , t, i # j). We are concerned with 
nonparametric methods for obtaining scores, and hence a ranking, of the 
t objects from such paired comparisons and more generally from partial 
rankings in subsets of two or more. 

It will be convenient in this paper to use the language of sports. If 
Cj -+ Cj (player Co defeats player Cj), then ordinarily we allot 1 point 
to Cj and zero to Cj • As will be seen, our estimation procedure works 
equally well for more general methods of splitting the point (e.g., example 
in Section 2.2); in particular, a draw can be treated as half a win plus half 
a loss. The distribution theory to be developed does, however, require a 

1 Iowa State University, Ames, Iowa 
2Wittenberg University, Springfield, Ohio 
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1:0 or 0:1 outcome, with no draws permitted. We assume that in each of 
their nij encounters Pr{ C i ~ Cj } = 7rij, thus ruling out any replication or 
judge effect. Then 7rji = 1 - 7rij, so that there are (;) free parameters. 

Much ofthe paired-comparison literature is based on (paired-comparison) 
linear models that express 7rij in terms of parameters (h, ... , (}t denoting 
the strength or merit of the players. In fact, since the location of the (}'s is 
irrelevant, the number of parameters is reduced to t - 1. Such "paramet­
ric" models have been studied thoroughly and will not be considered here. 
Instead, we focus on a method that makes no assumptions on the 7rij and 
is nonparametric in this sense. This approach provides a simple estimation 
procedure (David [7]) and permits the development of distribution theory 
and tests of significance (Andrews and David [2]). Apart from an integrated 
account of these two papers, we present a new generalization (equation (9) 
and sequel). 

A secondary purpose of this paper is to survey the literature on methods 
of ranking from paired comparisons that make weaker than linear model 
assumptions on the 7rij, with special emphasis on those making no assump­
tions. In some instances more details are given in David [8] and Andrews 
[1]. A worked example illustrates many of the procedures discussed. 

BALANCED DATA 

The results of a paired-comparison experiment can be recorded in a tour­
nament or preference matrix A = ((Xij), where (Xij is the number of wins 
of Ci over Cj, and (Xii = O. In a balanced tournament or round robin, 
(nij = n ~ 1 Vi,j i i= j) it is natural to estimate the players' strengths 
or merits by the row-sum score vector or vector of wins w = AI, where 
I is a column vector of t 1 's. But suppose that there are tied scores. One 
simple procedure for separating them, long used in chess tournaments, is 
to replace Wi by the sum of the scores of players defeated by Ci. This is 
given by the column headed w(2) for the small tournament of Table 2.1, 
where, e.g., the score w~2) of C1 at this second stage is 3 + 2 + 1 = 6. 
Alternatively, w(2) = Aw = A 21. 
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Table 2.1. Various score vectors for the tournament with matrix A 

A W w(2) w(3) w(4) v 

G1 o 1 1 1 0 3 6 7 13 .6382 

G2 00111 3 4 6 13 .5400 

G3 00011 2 2 4 9 .3415 

G4 0000 1 1 1 3 6 .2159 

G5 1 0000 1 3 6 7 .3712 

Note that not only have all ties been broken at this stage but G5 has 
moved ahead of G3 although W5 < W3. Neither of these events (breaking 
of all ties, reversal of some rankings) need happen and one may wish to 
continue the reallocation process to obtain w(3) = A 31, etc. This is a slight 
simplification (Moon [13]) of the Kendall-Wei procedure (Kendall [12]) in 
which B = A + ~ I rather than A is powered, where I is the identity 
matrix. The above tournament is strong, meaning that for any two players 
Ci, Gj either Gi ---+ Gj or there exist other players Gil' Gi 2 , ••• such that 
Ci ---+ Gil ---+ Gi2 ··· ---+ Gj . For strong tournaments (with t > 3) it follows 
from Perron-Frobenius theory (e.g., Seneta [19]) that 

lim (AI >.r 1 = v, 
r-oo 

where>. is the unique positive eigenvalue of A with the largest absolute 
value and v is a vector of positive terms. In Table 2.1 v has been obtained 
from Av = >.v, with v'v = 1, and happens to give the same ranking as 
w(2). 

Interesting related methods have been put forward by Daniels [6) and 
Moon and Pullman [14). However, it is dubious whether the resulting rank­
ing as well as those corresponding to w(2) and v are really an improvement 
over the simple row-sum score w. The common feature of the more elabo­
rate methods is to give more credit to a player for defeating a high scoring 
than a low scoring opponent, but this means, of course, that a loss to the 
latter is punished less than a loss to the former. Also it is easy to show 
that an interchange of all wins and losses does not necessarily reverse a 
ranking. Thus use of these methods is perhaps best reserved for breaking 
ties among high row-sum scores. 

Another major but very different area of research has resulted from 
Slater's [20) principle of seeking a ranking that minimizes the number of 
inconsistencies, i.e., individual-comparison results opposite to what would 
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be expected from the ranking. Slater's premise of giving equal weight to 
mild and gross inconsistencies is debatable. However, it has been shown 
by Thompson and Remage [22] that for n;j :::; 1 Slater's ranking results 
if weak stochastic transitivity of the 7r;j is assumed, i.e., if for any triple 
(G;, Gj, Gk) 

1 1. I 1 
7r;J' > - 7rJ'k> - Imp y 7r,'k >- -2' - 2' - 2' 

Such a restriction on the 7r;j takes us outside the methods considered here. 
However, it is worth noting that the approach is applicable for unbalanced 
data although difficult to implement except in fairly small tournaments. 
Further references and a very brief review of Slater's and related methods 
are given in David ([8], pp. 23-25). 

UNBALANCED DATA 

Suppose now that the n;j are not all equal. This includes the case when 
some of the nij are zero, corresponding to empty cells in the preference ma­
trix. Clearly, row-sum scores are no longer satisfactory. The basic problems 
are to take into account (a) the varied caliber ofthe opposition encountered 
by each player, and (b) possibly different numbers of matches played by 
the contestants. 

The first approach to handling unbalanced data seems to have been 
through unweighted least squares (Gulliksen [10)). Let 0; (i = 1, ... , t) de­
note the merit or worth of Gi. Then the estimated merits Oi are the values 
of the Oi minimizing E* (dij - 0; + OJ)2, where E* ranges over all pairs (i, j) 
for which n;j 2: 1, d;j = H- I (Pij), H is the cdf of a rv symmetric about 
zero, and Pij = Cijj / njj. This approach corresponds to a paired-comparison 
linear model for which 7rij = H(Oj-Oj) and gives estimates 7T;j = H(Oi-Oj). 
With the reduction in parameters it is outside our scope. However, Kaiser 
and Serlin [11] note that the essential property of the d;j for a sensible 
analysis is merely that dji = -dij; it is not necessary to relate the djj to an 
H -function. For example, for an incomplete tournament with nij :::; 1 they 
simply take dij = 1 if Gi -> Gj, dij = -1 if Gj -> Gj, and djj = 0 in case 
of a draw. The 0; can then be estimated provided that the tournament is 
connected (every player meets every other player either directly or through 
intermediaries) . 

Conceptually closer to the Kendall-Wei method is Cowden [4] proposing 
the following iterative procedure for arriving at a set of scores p(k): 

(1) 

where A', the transpose of A, is the matrix of "losses" and 

(k) _ p~k) (k) _ (k). _ 
u j - (k) (k)' Vi - 1 - Ui ,Z - 1, ... , t. 

Pi + qi 
(2) 
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With u~O) = v~O) = ! the rankings usually stabilize within a few itera­
tions and the scores themselves shortly thereafter (provided A is a strong 
matrix). The method usually gives fairly sensible results, although even in 
the balanced case it often breaks tied row-sum scores in favor of the play­
er(s) whose wins were over weaker opposition. Consider, for example, the 
following balanced tournament: 

A 

6 
5 
o 
1 

Row-sum Cowden's score Kendall-Wei 

At u 

( 
.576 ) 
.584 
.584 
.257 

( 
252 ) 216 
216 
108 

Note that half of the wins of C2 and C3 come at the expense of the inferior 
player C4 , whereas C1 has won 6 of 10 from each of the others; yet Cowden's 
scores rank C1 below C2 and C3 . 

Nishisato [15] shows that his dual scaling procedure can be applied to 
unbalanced paired-comparison data. However, his approach is inappropri­
ate in our situation since it depends fundamentally on the presence of a 
judge effect which we have excluded. 

In a recent paper Chebotariov [3] notes that any tournament can be 
thought of as an aggregation of m, say, possibly incomplete sub tournaments 
or rounds in which any pair of players meet at most once. If Ci meets 
Cj in the k-th round, the result may be denoted by d~;), with the only 

requirement that d;7) = -d~;). The simple row-sum for Ci is then 

m (i:k) 

Ui = I: I: d~?, (3) 
k=l j 

where the inner sum is over all Cj that have met Ci in the k-th round. 
Chebotariov seeks a score Xi for Ci which reduces to Ui under complete 
balance, and which takes the general form 

(4) 

where iij is a reward function for Ci from its encounter with Cj in round 
k, viz., 

(k) (k) (k) 
iij = dij + t(Xi - Xj + mtdij ), (5) 
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where the constant { 2: 0 determines the extent to which the xi-scores 
depend on the relative strengths of the players. 

Scores are calculated by solving the linear system (4) of t equations in 
t unknowns. Although the reward function (5) seems a reasonable way of 
taking the strength of a player's opponents into account, little guidance is 
provided on the choice of {. 

We may also mention here a review paper of research in the U.S.S.R. on 
paired comparisons by Prigarina, Chebotariov, and Schmerling [17]. 

Another recent addition to the literature is Crow [5], although its origins 
go back to Thompson [21]. Thompson makes the simplifying assumption 
that 7rij is a function solely of the difference Dij in the ranks of Ci and Cj. 

Crow is led to seeking the ranking that maximizes what he terms the net 
difference in ranks (NDR), viz., 

L Dij ((¥ij - (¥ji). 

i<j 

In so far as the 7rij are restricted by the simplifying assumption, this ap­
proach is, strictly speaking, outside our scope. 

2.2 The Proposed Method of Scoring 

BASIC PROPERTIES 

In dealing with balanced data Ramanujacharyulu [18] considers powering 
B' rather than B = A + ~ I to obtain the "iterated weakness" vector 
(B'tl. The best player is now the one with the fewest iterated losses and 
not necessarily with the largest number of iterated wins. A balance between 
rewarding beating strong players and punishing losing to weak players is 
struck by the difference vector (David [7]) 

(6) 

Consider now an incomplete tournament in which each pair of players has 
met at most once. It is seen immediately from (6) that 

t 

L s~r) = I' .~(r) = 0 
i=1 

and that s(r) becomes _s(r) when wins and losses are interchanged (i.e., 
B is replaced by B'). We recommend s(2) (henceforth just s) for general 
use since it is equivalent to row-sum scoring in the case of a balanced 
tournament (David [7]). In other words, s (unlike s(r) for r > 2) cannot 
serve as a tie breaker for a balanced tournament, which makes it more 
attractive in the absence of balance. 
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For r = 2, (6) gives 

s = A21 - (A')21 + Al - A'l (7) 

or, in obvious notation, 

(8) 

In words, Si is the total number of (a) wins of players defeated by Ci 
minus losses of players to whom Ci lost, plus (b) Ci'S wins minus Ci'S 

losses. Clearly, (b) could be omitted without changing any of the preceding 
properties. However, in its absence, Ci after beating an opponent with no 
wins would be worse off than before, since the win adds nothing to part 
(a) of C/s score but adds 1 to the score of each player who defeated Ci. 

We now give a new, purely algebraic, proof of the equivalence of sand 
w for unbalanced tournaments. Since B + B' = J, where J is the txt 
matrix of 1 's, we have 

s B21 - (B')21 

B21- J2 1 + JB1 + BJ1- B21 

-J21 + JA1 + AJ1 + J1 
1 

-t2 1 +"2 t(t - 1)1 + tw + t1 

1 
t(w - "2 (t - 1)1). 

For numerical examples illustrating the proposed method, see David [7], 
Andrews and David [2]), and Section 2.5 of this paper. 

Formula (8) may also be used in larger tournaments when the number of 
encounters nij of Ai and Aj is unrestricted. The most obvious procedure 
is to take A = (aij) as the matrix of the number of wins of Ci over Cj. 
But this is often inappropriate since too much weight may then be given to 
players involved in (relatively) large numbers of comparisons. Indeed, when 
some nij are much greater than 1, the effects of the indirect wins and losses 
w(2) and £(2) swamp the effects of wand £ (Andrews [1]). To avoid this 
effect one may take A = (Pij), where Pij = aij / nij for nij > 0 and Pij = 0 
for nij = O. This choice, briefly suggested in David [7], is investigated in 
detail in Andrews and David [2]. More generally, one can take A = (a~j)' 
where for nij ~ 1 

a:j = c( llij) aij, (9) 

C(llij) being a known function of nij, with c(l) = 1. Then, 

a:j + aji = c(nij) (aij + aji) = C(llij) nij = n:j(say). (10) 

Important special cases are the previous choices c( llij) = 1 and c( nij) = 
1/ nij. An intermediate function is c( llij) = 1/..;n;;. If nij = 0, we set 
a:j = aji = n:j = O. 
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FURTHER PROPERTIES 

We now explore the consequences of (9) following closely the develop­
ment given in Andrews and David [2] for O:~j = P;j. In preparation for 
dealing with the distribution of s, we express S; as a linear function of 
0:~2'···' O:~_l,n· We have 

(i) (;) (i) (i) 

W; = L O:~j' f; = L o:ji' wJ2) = L O:~jWj, fJ2) = L o:j;fj, (11) 
j j j j 

where Lyi} denotes the sum over all players Cj that have met C;. Then 
from (10) and (11) 

and 

where 

(i) 

W; - f; = L (20:~j - n~j) 
j 

(i) 

wF) - ff) = L [O:~jWj - (n~j - O:~j)(mj - Wj)] 

j 

(i) 

= L [n~jWj - mj(n~j - O:~j)], 
j 

(n 
mj = Wj + fj = L nj k· 

k 

(12) 

(13) 

(14) 

The only quantities in (13) depending on the experimental outcome are 
Wj and O:~j. Thus (12) and (13) show that S; in (8) is a linear function of 
0:', 0:~2'···' 0:~_1 n· 

Next, we expr~ss Si as a linear function of independent elements O:~h' 
i.e., O:~h and O:~g do not both occur in this form of Si. Whenever C; and 
Cj have met, we have 

(j) 

Wj = (n~j - O:~j) + L o:jk' 
kt; 

where L~~i denotes the sum over all players Ck (excluding C;) that have 
met Cj. Substituting this in (13) and adding the result to (12) gives 

~) (j) 

S; = L [(mj + 2 - n~j) O:~j + n~j L o:jk 
j 

(15) 
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Both O:~h and O:~g occur in (15) whenever Gg and Gh have met both G; 
and each other. To consolidate these complementary quantities, write 

(i) (j) (i) (i,j) (i) (~i,j) 

L: L: o:jk = L: L: o:jk + L: L: o:jb (16) 

where L-~ij/ denotes the sum over the mij, say, players Gk that have met 

both G; and Gj , and L-~ti/) denotes the sum over those Gk (excluding G;) 
that have met Gj but not Gi. The first term, 7il on RHS of (16) always 
includes both O:~h and O:~g or neither, and hence does not depend on the 
experimental outcome. It may be written E n~h' where the sum extends 

over ~ L-?) mij terms, corresponding to those pairs Gg and Gh that have 
met Gi and each other. The second term, 7i2, consists of elements involving 
players other than Gi, exactly one of whom has met Gi, and thus contains 
at most one of O:~h and O:~g. Thus, from (15), Si has been expressed as 
required. 

CASE OF No EMPTY CELLS AND DISCUSSION 

If all n;j > 0, then T;2 = 0 since all players have met G;. It follows that 

Si = L: (mj + 2 - n~j) O:~j + [(i, 

it; 
(17) 

where by (14) mj = L-ktj njk' and [(; does not involve any o:Vs. For the 
special case O:~j = P;j, we have n~j = 1 and mj = t - 1, giving 

Si = t L: (p;j -~) = trw; - ~(t -1)]. 
j# 2 2 

(18) 

This relation between Si and w; is known for designs that are balanced, 
which is not a requirement here. 

Now E L-~::1 Pij = L- jt::1 "ij = 'Tri. (say) is the probability that Gi defeats 
a player drawn at random from Gi'S opponents. Clearly 'Tr;. is a measure of 
strength and is (essentially) estimated by Si when O:~j = Pij. We take this 
as support for concentrating on this special case in Andrews and David [2] 
and in the remainder of this paper. Nevertheless, if, e.g., a Bradley-Terry 
model is appropriate, a different choice of O:~j may give results closer to a 
Bradley Terry analysis. In a rather special no empty cell situation Groen­
eveld [9] finds that O:~j = O:ij gives rankings closer to the Bradley Terry 
rankings than does O:~j = P;j. Of course, as Groeneveld notes, if a Bradley 
Terry model holds, the only point in using the present approach is its sim­
plicity and ready comprehensibility. If there is wide variation between the 
(nonzero) n;j, then the choice O:~j = Pij, which ignores this, is inadvisable. 
Instead the compromise o:ij = O:ij / vn;; is recommended. 
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FURTHER RESULTS FOR a:j = Pij( WITH nij 20). 

The basic result {l5) reduces in this case to 

(i) 1 (~i,j) 

Si = L [(mj + l)Pij - mj + '2mij + L Pjk] 
j kti 

(i) 1 (~i,j) 1 

= L [(mj + 1)(Pij - '2) + L (Pjk - '2)], 
j kti 

where mj is the number of players met by Cj . 

29 

(19) 

An interesting result can be obtained in an important tournament ar­
rangement when not all matches can be held. If the players are arranged in 
a group divisible design of m distinct groups of size a = tim, where each 
player meets once (or an equal number oftimes) all the players in the other 
groups only, then (Andrews and David [2]) 

1 1 
Si = (t - a + 2)(Wi - '2(t - a)) - E(Wk - '2(t - a)), 

where the sum extends over the players in Ci'S group. Thus Si is a multiple 
of C;'s number of wins minus a correction for the strength of Ci'S group. 

2.3 Distribution Theory and Tests of Significance 
for a~j = Pij 

MOMENTS 

From (19) we have at once 

(20) 

var(Si) = L (mj + 1)27rij 7rji + L 7rjk7rkj . 
~) [ (~iJ) 1 
j nij kti njk 

(21 ) 

For the more complex cov( Si, Sj) see Andrews and David [2]. When there 
are no empty cells these expressions become simply 

(22) 
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Note that under the "hypothesis of randomness" 

Ho: 1rij = ~ V(i,j),i:/; j 

(20) gives E(Si) = 0, as it should. 

ASYMPTOTICS 

Little can be said about the asymptotic distribution of the scores if the nij 

are allowed to grow in an uncontrolled manner. Let nij / 2::1i ) nik ~ Cij as 
the nij ~ 00, for all i :/; j, where Cij is some constant in (0,1). Since the 
proportions comprising Si in (19) are independent, it follows that the stan­
dardized score di = lSi - E(s;)] Jvar(s;) has an asymptotic N(O, 1) distri­
bution. Similarly, we can show that any linear function of the standardized 
scores has a (limiting) normal distribution, and hence that the asymptotic 
joint distribution of the scores themselves is multivariate normal. Andrews 
[1] uses this last result to generalize several tests of hypotheses from David 
[8] for balanced experiments. 

TESTS FOR THE EQUALITY OF THE PLAYERS 

It is also of interest to test whether the players are of equal merit. First 
note that the covariance matrix E ofthe scores Si is singular, since s'l = 0 
and hence El = O. We therefore focus on the covariance matrix iJ of any 
set 8 of t - 1 scores, since iJ will be of full rank whenever the tournament 
is connected. In light of the joint asymptotic multivariate normality of s, it 

can be shown that the test statistics Q = 8' iJ- 1 8 has an asymptotic X;-l 

distribution with noncentrality parameter A = iJ,' iJ- 1 iJ" where iJ, = E(8). 
When nij = n Vi:/; j, our statistic Q reduces to QBa/ = 4nt-3 2::;=1 sl, 

with (asymptotic) noncentrality parameter ABa/ = 4nr 3 2:::=1 Ill. An im­
portant special case of ABa/ is the following 'one outlier' model: 

{ 
1r> 1 

1rij = 1 2' 

2 ' 

for i = t and j :/; t 
for i, j :/; t and i :/; j. 

In this case the noncentrality parameter reduces to ABa/ = 4n(t-l)(1r-~)2. 
Specific results for group divisible designs are also given in Andrews and 

David [2]. 
In all cases we can test H 0 approximately by referring Q to tables of 

percentage points of xL l' For small tournaments the exact null distribution 
of Q can be generated by an exhaustive listing of all possible outcomes of 
the experiment (given the nij). This involves calculating the value of Q 
from each outcome and tabulating the probabilities with which Q takes 
on each of these values. There are indications that the X2 approximation 
provides a very conservative test (Andrews and David [2]). 
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2.4 Ranking Methods 

Suppose now that the objects are ranked in 'blocks', where k j (? 2) of the 
t(? 3) objects are ranked in block Bj , for j = 1( 1 )b. Such ranked data may 
be regarded as constrained paired-comparison data, since a ranking of k 
objects implies (~) paired comparisons, with no circularities possible. This 
forced within block transitivity is the main distinction between rankings 
and paired comparisons. Nevertheless, we have found it useful to handle 
ranked data by replacing it by its constituent paired comparisons. 

We confine ourselves here to a summary of the main results obtained 
in Andrews and David [2]. Let rjj be the rank of object Cj in block Bj 

and let ri = ~j rjj, where the sum is over all blocks in which Cj appears 
(rjj = 1 for C j poorest ). For a balanced incomplete block (BIB) design in 
which each object occurs in m(::; t) blocks of size k, our score Sj, calculated 
from the resulting paired-comparison table, is a linear function of rj and 
also of the score proposed by Prentice [16] for ranked data. Correspondingly, 
the test statistic Q of Section 2.3, which reduces to 

4 ~ k+1 2 
QBIB = nt ~ (rj - m-2-) , 

z=1 

where n = m(k - 1)/(t - 1), is related to Prentice's test statistic C by 

k+l 
QBIB = -3-CBIB' 

This means that asymptotically QBIB is distributed as xLI or !.:pxLl 
according as the data are originally in paired-comparison or ranked format. 

For a BIB design the resulting paired-comparison table is completely 
balanced. In the absence of such balance our score Sj is not in general 
equivalent to Prentice's. However, our score takes into account the caliber 
of the competitors encountered by Cj. An illustration for a group divisible 
design is given in Andrews and David [2]. For a discussion inter alia of 
the merits of Prentice's score versus other proposals made for unbalanced 
ranked data, see Wittkowski [23, 24], references overlooked in our earlier 
paper. 

2.5 Numerical Example 

Consider the following data comparing several graders of student writing. 
Each of the students in the junior class at Wittenberg University is required 
to take a writing proficiency exam, and each student's paper is then read 
and marked by two members of a panel of graders. There was concern 
that some graders were considerably more lenient than others. To compare 
the graders, we examine the number of papers on which each grader gave 
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a higher or lower mark than the other grader who read the paper. The 
graders are then the objects, and each paper provides a comparison of two 
graders. Let O'.ij = 1 and O'.ji = 0 if grader Ci gave the higher mark on 
a paper also marked by grader Cj. If Ci and Cj gave the same mark, we 
take O'.ij = O'.ji = ~. Given below is a matrix of such 'comparisons' among 
a subset of seven of the graders. 

1.5 4.5 0.5 * 3.5 1.0 
0.5 4.0 4.0 * 1.5 * 3.5 3.0 2.5 2.5 0.0 2.5 
0.5 3.0 5.5 * 4.5 1.0 

* * 0.5 * 0.5 4.5 
2.5 1.5 1.0 3.5 0.5 1.0 
2.0 * 2.5 2.0 6.5 1.0 

The dashes along the diagonal denote that no object was compared with 
itself, i.e., no grader gave both marks for a given paper. The asterisks denote 
pairs of graders for which there were no papers; note that there are 4 such 
pairs among the 21 distinct pairs of graders. The data are quite unbalanced, 
in that the number of papers marked by each pair varies greatly, ranging 
from 0 to 11. 

GULLIKSEN'S METHOD 

For the least squares approach we need data in the form of observed 
'differences' {dij } for all the pairs which have been compared. For sim­
plicity, take as the observed difference between Ci and Cj the difference 
dij = Pij - Pji· Note that dij = -dji , as Kaiser and Serlin require. 

To minimize the sum of squared discrepancies ~* (dij -Oi -OJ)2, Gulliksen 
iteratively updates each score Oi by adding the average of the discrepancies 
for that score: 

(i) 
O~k) = O~k-l) + _1_ "'[d,. - (0· - 0.)] , , m+ 1 ~ 'J , J 

J 

If we begin the procedure with a null initial score vector 8(0) = 0, the final 
score vector, after six iterations, is 

,I 

8 = (.106, -.034, -.151, .033, -.259, .090, .134). 

COWDEN'S METHOD 

We focus on the uk of (1) and (2), the vector of 'win scores'. These 
scores, beginning with u(O) = v(O) = ~ 1, stabilize to three decimal places 
only after 11 iterations: 

u ' = (.543, .528, .456, .538, .380, .502, .530). 
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Cowden suggests taking as u;+1 the mean of u~k) and u~k-l) "whenever 
it seems useful". But if this is done at every stage, the scores converge to 
three decimals only after 12 iterations, with slightly different final values: 

u' = (.542, .528, .456, .537, .382, .502, .531). 

CHEBOTARIOV'S METHOD 

We set the d~;) of (3) equal to ±1. It is evident from Chebotariov's 
calculations that he takes the number of rounds to be m = max nij, which 
would be 1157 = 11 for our data. Andrews [1] shows that the system of 
equations (4) has solution 

( [N' 
-n12 -nIt 

If'' -1121 N2 -112t 

X = (I + mtE) I + E : 

-ntl -11t2 Nt 

20 -2 -8 -1 0 -6 -3 
-1 

-2 19 -7 -7 0 -3 0 
-8 -7 32 -8 -3 -1 -5 

= (1 + 77 E) I+E -1 -7 -8 27 0 -8 -3 
0 0 -3 0 15 -1 -11 

-6 -3 -1 -8 -1 21 -2 
-3 0 -5 -3 -11 -2 24 

Chebotariov's scores change considerably as E varies: 

E : 

0.10 
5.02 
2.88 

-6.12 
4.44 

-11.91 
-0.59 

6.28 

0.00 
2.00 
1.00 

-4.00 
2.00 

-4.00 
-1.00 

4.00 

0.25 
5.95 
3.74 

-6.19 
5.23 

-14.60 
-0.05 

5.92 

0.01 0.05 
2.74 4.21 
1.37 2.25 

-4.91 -5.90 
2.62 3.79 

-5.81 -9.66 
-1.12 -0.92 

5.11 6.24 

0.50 1.00 
6.42 6.72 
4.24 4.57 

-6.16 -6.13 
5.65 5.92 

-16.04 -16.93 
0.28 0.50 
5.60 5.36 

2 
1 

-4 
2 

-4 
-1 

4 
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DAVID'S METHOD 

To illustrate David's method, we choose CY;j = CYij /...;n;;. The various 

components w, £, w(2), and £(2) of his score vector s are then, respectively, 
the row-sums of A, A', A 2 , and (A')2: 

1.06 1.59 0.50 * 1.43 0.58 
0.35 1.51 1.51 * 0.87 * 
1.24 1.13 0.88 1.44 0.00 1.12 

A= 0.50 1.13 1.94 * 1..59 0.58 

* * 0.29 * 0.50 1.36 
1.02 0.87 1.00 1.24 0.50 0.71 
1.15 * 1.12 1.15 1.96 0.71 

w(2) s 
27.76 5.10 
23.92 0.59 
26.18 -9.93 
30.70 4.79 
12.61 -10.95 
27.25 4.33 
27.07 6.08 

£' = [4.27 4.19 7.45 5.29 3.90 5.09 4.34] 

£(2), = [23.56 23.38 34.48 26.37 21.80 23.16 22.75] 

'W 

5.16 
4,24 
5,82 
5,75 
2.15 
5.:33 
6.09 

In contrast to the two iterative methods, these scores are calculated in a 
few short steps. 

COMPARISON OF THE METHODS 

Since direct comparison of the various methods is rather awkward be­
cause of the different scales used, it is helpful to standardize each set of 
scores by subtracting the mean and dividing by the standard deviation of 
each set: 

grader 
C1 

C2 

C3 

C4 

C5 

C6 

C7 

Cowden 
0.77 1 
0.54 4 

-0,68 6 
0,69 2 

-1.96 7 
0.09 5 
0.56 3 

Gulliksen 
0.80 2 

-0.15 5 
-0.95 6 
0.31 4 

-1.69 7 
0.69 3 
0,99 1 

Chebotariov 
0.76 1 
0.48 4 

-0,79 6 
0.67 3 

-1.88 7 
-0.01 5 
0.76 2 

David 
0.69 2 
0.08 5 

-1.35 6 
0.65 3 

-1.49 7 
0.59 4 
0.83 1 

(For Chebotariov's scores we have used f = 0.25, a value which he favors 
in his examples.) Given beside each set of scores are the objects' ranks 
induced by those scores. Agreement between the different methods is good, 
especially in finding the two harshest graders, C5 and C3 . 



Ranking from Paired Comparisons 35 

Acknowledgements: 

This work was supported by the U. S. Army Research Office. The authors 
are grateful to the referees for suggestions leading to an improved presen­
tation. 

2.6 REFERENCES 

[1] D. M. Andrews. Nonparametric Analysis of Unbalanced Paired­
Comparison or Ranked Data. Ph.D. Thesis, Iowa State Universi­
ty, Ames. 1989. 

[2] D. M. Andrews and H. A. David. Nonparametric Analysis of Un­
balanced Paired-Comparison or Ranked Data. 1. Amer. Statist. 
Ass., 85:1140-1146, 1990. 

[3] P. Y. Chebotariov. Generalization of the Row Sum Method for 
Incomplete Paired Comparisons (Russian). Avtomat. i Telemekh. 
50, No.8, 125-137. (English) Automation and Remote Control 
50, 1103-1113. 1989. 

[4] D. J. Cowden. A Method of Evaluating Contestants. The Amer­
ican Statistician, 29:82-84, 1974. 

[5] E. 1. Crow. Ranking Paired Contestants. Comm. Statist. - Sim­
ula., 19:749-769, 1990. 

[6] H. E. Daniels. Round-Robin Tournament Scores. Biometrika, 
56:295-299, 1969. 

[7] H. A. David. Ranking from Unbalanced Paired-Comparison 
Data. Biometrika, 74:432-436, 1987. 

[8] H. A. David. The Method of Paired Comparisons. Oxford Univer­
sity Press, New York, Second Edition, 1988 and Charles Griffin 
and Company, London, First edition, 1963. 

[9] R. A. Groeneveld. Ranking Teams in a League with Two Divi­
sions of t Teams. Amer. Statist., 44:277-281, 1990. 

[10] H. Gulliksen. A Least Squares Solution for Paired Comparisons 
with Incomplete Data. Psychometrika, 21:125-134, 1956. 

[11] H. F. Kaiser and R. C. Serlin. Contributions to the Method of 
Paired Comparisons. Applied Psychological Measurement, 2:421-
430, 1978. 



36 H. A. David and D. M. Andrews 

[12] M. G. Kendall. Further Contributions to the Theory of Paired 
Comparisons. Biometrics, 11:43-62, 1955. 

[13] J. W. Moon. Topics on Tournaments. Holt, Rinehart and Win­
ston, New York. 1968 

[14] J. W. Moon and N. J. Pullman. On Generalized Tournament 
Matrices. SIAM Rev., 12:384-399, 1970. 

[15] S. Nishisato. Analysis of Categorical Data: Dual Scaling and its 
Applications. University of Toronto Press. Toronto, 1980. 

[16] M. J. Prentice. On the Problem of m Incomplete Rankings. 
Biometrika, 66:167-170, 1979. 

[17] T. A. Prigarina, P. Y. Chebotariov and D. S. Schmerling. A Re­
view of Some Papers on Paired Comparisons in the U.S.S.R. Un­
published manuscript. 1991. 

[18] C. Ramanujacharyulu. Analysis of Preferential Experiments. 
Psychometrika, 29:257-261, 1964. 

[19] E. Seneta. Non-Negative Matrices. Wiley, New York, 1973. 

[20] P. Slater. Inconsistencies in a Schedule of Paired Comparisons. 
Biometrika, 48:303-312, 1961. 

[21] M. Thompson. On any Given Sunday: Fair Competition Order­
ings with Maximum Likelihood Methods. J. Amer. Statist. Ass., 
70:739-747,1975. 

[22] W. A. Thompson, Jr. and R. Remage, Jr. Rankings from Paired 
Comparisons. Ann. Math. Statist., 35: 1964. 

[23] K. M. Wittkowski. Small Sample Properties of Rank Tests for 
Incomplete Unbalanced Designs. Biometric Journal, 30:799-808, 
1988a. 

[24] K. M. Wittkowski. Friedman-Type Statistics and Consistent Mul­
tiple Comparisons for Unbalanced Designs with Missing Data. J. 
Amer. Statist. Ass., 83:1163-1170, 1988b. 



3 

On the Babington Smith Class 
of Models for Rankings 
Harry Joe 1 

Joseph s. Verducci 2 

ABSTRACT In 1950, Babington Smith proposed a general family of prob­
ability models for rankings based on a paired comparisons idea. Mallows [9] 
studied several simple subclasses of the Babington Smith models, but the 
full class was considered computationaly intractible for practical applica­
tion at that time. With modern computers, the models are simple to use. 
With this incentive, we investigate various properties of the Babington 
Smith models, including their characterization as maximum entropy mod­
els, the relationships among different parametrizations of the models, and 
the conditions under which various forms of stochastic transitivity, uni­
modality and consensus are obtained. The maximum entropy characteriza­
tion suggests models that are nested within the Babington Smith models 
and models that are more general. Computational details for the models are 
briefly discussed. The models are illustrated with examples where words 
are ranked in accordance to their perceived degree of association with a 
target word. 

3.1 Introduction 

Consider the situation in which k items are to be independently ranked by 
a sample of judges. For example the judges might be graduate students in 
statistics, the items career options, and the criterion for ranking the order 
of personal preference. 

A popular method for analyzing preferences is the method of paired 
comparisons (see David, [3], for a detailed introduction to this topic). The 
basic format of this method is to present each judge with all possible pairs 
{i,j} of items from the set {I, ... , k} of items, and, for each i < j, record 
Iij = 1 if item i is preferred to item j and Iij = 0 otherwise. For each judge 
J , let PJ(i,j) = P(Iij = IIJ) be the probability that judge J will prefer 
item i to item j. The model of paired comparisons assumes that, for judge 

1 Department of Statistics, University of British Columbia, Canada 
2Department of Statistics, Ohio State University, Columbus, Ohio 
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J, the {Iij} are independent Bernoulli trials with parameters PJ ( i, j). Very 
often it is also assumed that the population of judges is homogeneous in 
the sense that the probabilities PJ (i, j) = (Xij are the same for all judges. 

In making paired comparisons, a judge mayor may not be consistent 
with a particular ranking of the items. Define a ranking of items to be a 
one-to-one mapping of {l, ... , k} to {l, ... , k}, where 7I"(i) = a if item i is 
given rank a. In accordance with popular convention, we think of rank 1 as 
"best" , etc. A set {Iij : 1 ::; i < j ::; k} of paired comparisons is consistent 
with a ranking 71" if Iij = 1 whenever 71"( i) < 7I"(j). 

Associated with any homogeneous paired comparison model {(Xij}, 
Babington Smith [10] suggested the ranking model whose probabilities 
P( 71") are proportional to 

II[(Xijfij (1r)[I- (Xij]l-lij(rr), 

i<j 
(1) 

where Iij (71") = 1 if 71"( i) < 7I"(j) and 0 otherwise. In words, the probability 
of any ranking 71" is the probability that a judge produces a set of paired 
comparisons consistent with the ranking 71", conditional on the judge pro­
ducing a set of paired comparisons consistent with some ranking. Under 
the transformation eij = (Xij / (1- (Xij), i < j, the model may be written in 
the form 

P(7I") = II(eij)lij(rr)/C(o), (2) 
i<j 

where 0 < eij < 00 for each i < j, e = (eij , i < j), and 

C(O) = 2:II(eij l'j(v), 
v i<j 

is a normalizing constant, the sum being taken over all k! possible rank­
ings. The model thus has the form of an exponential family with canonical 
parameters log( eij ) and sufficient statistics {Iij}. We will call this model, 
defined by either (1) or (2), the B-S model. 

Let Tij denote the transposition of items i and j, so that for any ranking 
71",71"0 Tij(i) = 7I"(j), 71" 0 Tij(j) = 7I"(i), and 71" 0 Tij(m) = 7I"(m) for m =I i 
or j. If 71" is such that 7I"(j) = 71"( i) + 1, then model (2) implies that eij = 
P( 71")/ P( 71" 0 Tij). Thus eij may be interpreted as the odds that item i is 
preferred to item j when these items are ranked adjacently. Note that these 
odds do not depend on the ranks given to the other items. This property, 
called independence of irrelevant alternatives was studied by Luce [8]. 

The class of B-S models has two other appealing properties, label invari­
ance and reversibility. That is, if P( 71") satisfies (2) and T is any permutation 
of {I, ... , k} representing a change of labels, then P( 71" 0 T) satisfies (2) with 
eij replaced by eT(i),T(j). Also, if'Y is the permutation 'Y(i) = (k + 1) - i 
and P(7I") satisfies (2), then P("!07l") also has the form (2) with eij replaced 
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by Bji = l/Bij. Thus reversing the meaning of the ranks, so that a rank of 
1 indicates the "worst" item, also leads to a B-S model. 

In addition to the above properties, the B-S model is a maximum entropy 
model. For i =f. j, let Mij denote the marginal probability P( 7r( i) < 7r(j)). 
Then the model (2) maximizes the (Shannon) entropy - Lv P(v) 
10g[P(v)] among all distributions of rankings with fixed margins {Mij}. 
This maximum entropy characterization suggests models that are submod­
els of (2), and also models that are more general. These are mentioned 
in Section 3.2, which includes computational details for the models. The 
natural derivation from paired comparisons and its appealing properties 
make the B-S model potentially very useful. However, because of previous 
computational difficulties, most past studies have focused on special simple 
forms of the B-S model. 

In Section 3.3, we identify various subclasses of B-S models (equiva­
lently, constraints on the parameters) that conform to notions of stochastic 
transitivity, unimodality and consensus. Some of this work was suggested 
by Critchlow, Fligner and Verducci [2]. Finally, examples and data anal­
yses are presented in Section 3.4; in the examples, words are ranked in 
accordance to their perceived degree of association with a target word. 

3.2 Alternative Parametrizations and Related 
Models 

As is well known (see, for example, Brown, [1], p. 74) an exponential family 
may be parametrized by either the set of expectation parameters ( {Mij } for 
B-S model) or the set of canonical parameters {log(Bij n. The expectation 
parameters are easily estimated from the data, but most properties of the 
model depend explicitly upon the canonical parameters. In this section, we 
make some connections between the two sets of parameters that are specific 
to the B-S model. Then we go on to define models that are nested in the 
B-S model and models that include the B-S model. 

Although the B-S model is full in the sense that the canonical param­
eters {loge Bij )} are unconstrained, the marginal probabilities {Mij} are 
nevertheless constrained by the fact that all implied paired comparisons 
are consistent with rankings. The following theorem makes the constraints 
explicit. 

Theorem 3.2.1. For any items i,j, m, 

(3) 

Proof. Mij = P[7r(i) < 7r(j)] 2': P[7r(i) < 7r(m) < 7r(j)] = Mim + Mmj -
P[{7r(i) < 7r(mn U {7r(m) < 7r(j)}] 2': Mim + Mmj - 1. Similarly, Mji 2': 
Mjm + Mmi - 1 implies that 1 - Mij 2': (1 - Mmj) + (1 - Mim) - 1 or 
Mij ~ Mim + Mmj. U 
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Of course the marginal probabilities are also constrained by 0 ::; Mij ::; 1, 
so that the inequality (3) is nontrivial whenever Mim+ Mmj =/; 1. Let M 
be the set of {Mij} that are consistent with a probability distribution 
on rankings. It follows from standard exponential family theory that the 
maximal entropy distribution P on rankings, subject to the constraints 
that P[11"(i) < 11"(j)] = Mij for each i < j, is given by (2) whenever 
{Mij} E interior{M). In this case, also, there is a one-to-one correspon­
dence between the marginal probabilities {Mij} and the conditional proba­
bilities {(Xij}. Although this relationship is fairly complicated, the following 
theorem, which is intuitively correct, is valid. 

Theorem 3.2.2. For i < j, 8Mij/8Bij > O. 

Proof. Let C' = 8C(B)/8Bij . Note that C' does not depend on Bij and 
Mij = BijC' /C(B). Hence, 

u 
A statistical property of model (2), which follows from exponential family 

theory is given below, but we consider it in the following more general 
context. For a data set ofrankings with a sample of size n, let n(11") be the 
(observed) frequency of 11". The exponential family model (for a distribution 
of rankings) with the minimal sufficient statistic (dimension t), 

IS 
t 

exp{ -r + L: AlSl (11")}, (4) 
l=1 

where r = r(Al, ... , At)= 10g(L1I" exp{Ll AlSl(11")}). Let C = C{Al,"" At) 
= exp(r)· 

The B-S model has the t = k( k - 1)/2 dimensional minimal sufficient 
statistic {n- 1 L1I" n (11") Iij (11"), i < j}. The Mallows-Bradley-Terry (MBT) 
model (see Mallows, [9]) has the sufficient statistic, {n- 1 L1I" n(11")11"(i) , i = 
1, ... ,k}, which is the vector of average ranks. Since Ijj {11") = 1- Iij{11") 
and 11"( i) = k - Liti Iij (11"), the MBT model is a special case of (2). Since 
Li 11"(i) = k(k + 1)/2 for all rankings 11", the dimension of the minimal 
sufficient statistic is k -1 for the MBT model, and the MBT model can be 
written as 

k-1 

exp{ -r + L: Ai[k - 11"(i)]} (5) 
i=1 
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(cf. Critchlow, Fligner and Verducci, [2]), or the more symmetric form 

k 

II O~-lr(i) . , (6) 
i=1 

with the OJ chosen so that 2:11' I1~=1 O~-lr(i) = 1. In this latter parametriza­
tion, a better (lower) ranked item has a larger value of o. 

Models that are nested between (6) and (2) have a minimal sufficient 
statistic with components being either pairwise preference proportions or 
average rankings within a subset of {1, ... , k}. For example, let A be a 
subset of {1, ... , k} with cardinality at least 3; then an exponential family 
model exists with minimal sufficient statistic 

An example with data is given in Section 3.4. 
If the model (2) does not provide a good fit, then one could try an 

exponential family model having a minimal sufficient statistic with some 
components of the form n- 1 2:11' n(7r)I[7r(i) < 7r(m) < 7r(j)] and other 
components of the form n- 1 2:11' n(7r)Iij(7r). 

The exponential family form (4) is the simplest computational form 
for all of the models mentioned here. The log-likelihood is L = -n, + 
n 2:~=1 AtSt. The likelihood equations are 

oL 0, 
OAv = -n OAv + nSv = 0, v = 1, ... , t, (7) 

are 
02 L 02 , 
~~~=-n~~~ 
OAvOAw OAvOAw 

= nC- 2 L sv(7r)exp{L At St(7r)}· L S w(7r) exp{L At St(7r)} 
11' t 11' t 

(8) 

Note that (7) are also moment or maximum entropy equations. Numerical 
solving of (7) is straightforward using (8) in Newton-Raphson iterations. 

Once the maximum likelihood estimates At are obtained, the parameters 
can be converted to a form of the model that is more interpretable. For 
example, consider the B-S model in form (2). The special case of the MBT 
model arises when Oij = 'TJ;jr/j for some constants 'TJ1, ... , 17k. A model 
nested between the B-S model and the MBT model arises when Ojj = 'TJ;j'TJj, 
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i,j E A, for some constants 1}i, i E A C {l, ... ,k}. The form (5) of the 
MBT model can be converted to the form (6) with (}k = D = C-2/ k(k-1) = 
exp{-2//k(k -1)}, (}i = Dai = Dexp{A;}, i = 1, ... ,k-1. With 1}i = 
(}J/2, the MBT model can be written in the form B- 1 I1i;ej(1};!1}j)I;j('/I") 

to compare with (2). That is, one way of determining the closeness of the 
B-S and MBT models for some data is by comparing Oij with (0i/Oj)1/2, 

where Oij are maximum likelihood estimates for (2) and 0; are maximum 
likelihood estimates for (6). An example of this is given in Section 3.4. 

3.3 Stochastic Transitivity and Item Preference 

In this section, we apply stochastic transitivity concepts from paired com­
parisons (see David, [3]) to the B-S model. Relations are obtained between 
transitivity conditions on the Mij and the (}ij. Various ideas of item pref­
erence and consensus are discussed and related to parametric restrictions 
in either the {Mij} or {(}ij} parametrization of model (2). We start with 
some definitions. 

Definitions. (Transitivity.) Let {Pij, i ::p j}, be a set of "paired com­
parisons" probabilities. The set {Pij} is weakly stochastically transitive 
if Pij > 1/2 and Pjm > 1/2 imply that Pim > 1/2. The set {Pij} is 
strongly stochastically transitive if Pij ;::: 1/2 and Pjm ;::: 1/2 imply that 
Pim ;::: max{Pij,Pjm}. 

One application of the above definitions is to the {Mij}. They could 
also be applied to the {aij} or the {(}ij}, with (}ii = 1 and (}ji = l/(}ij 

for i < j. Note that the (}ii'S in (2) were defined only for i < j, but its 
interpretation as the odds of the event {71"( i) < 7I"(j)} conditioned on the 
event {17I"( i) - 7I"(j) 1 = 1} suggests this extended definition of (}ij. With this 
definition, weak stochastic transitivity in the {(}ij} holds if (}ij > 1 and 
(}jm > 1 imply that (}im > 1. Similarly, strong stochastic transitivity in the 
{(}ij} holds if (}ij ;::: 1 and (}jm ;::: 1 imply that (};m ;::: max{ (}ij, (}j m}. 

A link between strong stochastic transitivity in {aij} and {Mij} is given 
in the Theorem 3.3.3 below. First the following results are needed. 

The next lemma relates the (} parameters to the odds that item i is 
preferred to item j, conditional on each of the other items receiving a fixed 
rank. This lemma is used in Theorem 3.3.2 to relate the (} parameters to 
the a parameters within a special subfamily of the B-S model. 

Lemma 3.2.2. Let 71" be any ranking such that 7I"(i) < 7I"(j), then under 
model (2), 

where 
c'/l" = II «(}jm/(}im)I;mj('/I") 

m;ei,j 

(9) 

(10) 
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with Iimj being the indicator of the event {11"( i) < 11"( m) < 1I"(j)}. 

Proof. Without loss of generality, assume that i = 1 and j = 2, and let 11" 
be any ranking such that 11"(1) < 11"(2). From (2) it follows that 

k-1 k 

P(1I")/ P(1I" 0 712) = II II (Orm)[Irm (rr)-Irm (rroT12)] 

r=l m=r+1 

2 k 

= 012 II II (Orm)[Irm(rr)-I rm (rrOT12)] 
r=l m=3 

since 11"0712(1') = 11"(1') for l' = 3, ... , k, Ir2(1I") = 1 and Ir2(1I"0712) = O. Also 
note that Irm(1I") differs from Irm(1I" 0712) only when 11"(1) < 1I"(m) < 11"(2), 
in which case Irm(1I") = 1 while Irm(1I" 0 712) = O. A similar observation for 
l' = 2 leads to 

k 

P(1I")/ P(1I" 0712) = 012 II (01m/ 02m)hm2(rr) 
m=3 

which has the form (9) for i = 1 and j = 2. u 

Definition. Let T consist of the family of probability functions of the form 
(2) where for each i = 1, ... , k, Oij is increasing (non decreasing) in j. 

Note that Oij increasing in j for all i is equivalent to the constraint that 
Oij is decreasing in i for all j. Intuitively, this constraint implies that items 
are ordered according to their numerical labels in that i < j implies that 
the conditional odds that item i is preferred to item j are greater than or 
equal to 1, and that these odds increase as item i is compared with items 
having successively larger indices. 

The next theorem shows that, within the family T, conditioning on the 
event {11I"( i) - 1I"(j) I = I} attenuates the marginal probabilities of {11"( i) < 
1I"(j)} . 

Theorem 3.3.2. If PET, then 1/2 ::; Cl:ij ::; Mij whenever i < j. If 
1/2 < Cl:ij, then Cl:ij < M ij . 

Proof. The increasing pattern ofthe Oij over j together with Oii = 1 implies 
that Oij 2: 1 for i < j. Thus Cl:ij = Oij/(Oij + 1) 2: 1/2. 

For i < j, let Sij = {11" : 1I"(i) < 1I"(j)}, Tij = {11" : 11I"(i) - 1I"(j)1 = I}, 
A = Sij n T;j and B = Sij \A. Then 

'" '" 2:A P(1r) + 2:B P(1r) 
Mij/(I- Mij) = L....,.. P(1r)/L....,.P(1I"07ij)=ll .. " P() ll .. " P()' 

5 . 5.· uJ'L..A 11" + uJ' L..B err 11" 
'J 1-) 

where err is given by (10). By assumption, Oij is increasing in j, and thus 
decreasing in i since Oji = 1/0ij. Hence err ::; 1 and equation (3) then 
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implies that Mij/(1 - Mij) ~ ()ij = (Xij/(l- (Xij) or (Xij ~ Mij . All the 
inequalities are strict if (Xij > 1/2. U 

Theorem 3.3.3. Strong stochastic transitivity of {(Xij} in the B-S model 
implies that {Mij} is also strongly stochastically transitive. 

Proof. Without loss of generality, assume the natural ordering for the 
stochastic transitivity of {(Xij}, that is, (Xij ~ 1/2 if i < j and PET. Fix 
i < m < j. By Theorem 3.3.2, Mim ~ 1/2 and Mmj ~ 1/2. The conclusion 
follows once we show Mij ~ Mim and Mij ~ Mmj. By symmetry, we prove 
only the former. Note that Mij = P[7r(m) < 7r(i) < 7r(j)] + P[7r(i) < 
7r(m) < 7r(j)] + P[7r(i) < 7r(j) < 7r(m)] ~ Mim = P[7r(j) < 7r(i) < 7r(m)] + 
P[7r(i) < 7r(m) < 7r(j)] + P[7r(i) < 7r(j) < 7r(m)] if and only if P[7r(m) < 
7r(i) < 7r(j)] ~ P[7r(j) < 7r(i) < 7r(m)]. 

Let v be any ranking such that v(m) < v(j). By Lemma 3.2.2, 

P(v)/P(VOTmj) = ()mj/Cv , and Cv = TIr;t!m,j (()jr/()mrlmrj (7r) ~ 1 follows 
from the definition ofT. Since ()mj ~ 1, it follows that P(v) ~ P(VOTmj). 
By summing over v such that v( m) < v(i) < v(j), P( 7r( m) < 7r( i) < 
7r(j)) ~ P( 7r(j) < 7r( i) < 7r( m)). U 

We now go on to concepts involving item preference and consensus. The 
idea of consensus should be distinguished from the more familiar concept 
of concordance. Kendall [7] proposed the well known 23 W statistic as 
an index of concordance or agreement among judges in a sample. This 
and other measures of concordance are related to the average correlation 
between randomly sampled pairs of judges (see Fligner and Verducci [5] for 
a review of concordance measures from this point of view). Unfortunately, a 
population may display a high degree of concordance even though distinct 
subpopulations tend to disagree. 

On the other hand, the notion of consensus, defined formally below, im­
plies that the probability function is unimodal in terms of a certain metric 
on the set of all rankings. Further homogeneity is also implied in that any 
subpopulation defined in terms of its ranking pattern on a subset of items, 
will also make the same majority choices as the whole population regard­
ing the relative ranking of the other items. Lack of consensus suggests that 
the population may be better modeled as a mixture of more homogeneous 
subpopulations. 

The following definitions follow David [3] and Fligner and Verducci [6]. 

Definitions. (Item preference). Item i is weakly preferred to item j, written 
i >-w j, if P[7r(i) < 7r(j)] > 1/2. Item i is preferred in expectation to item j, 
written i >-e j, if E[7r(i)] < E[7r(j)]. Item i is strongly preferred to item j, 
written i >-. j, if for any ranking 7r such that 7r( i) < 7r(j), P( 7r) ~ P( 7rOTij), 
with strict inequality for at least one ranking 7r. 

It is easily verified that neither weak preference nor preference in ex­
pectation implies the other, but that strong preference implies both weak 
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preference and preference in expectation. In terms of model (2), weak pref­
erence and preference in expectation are easily characterized in terms of 
the expectation parameters {Mij}, whereas strong preference is more eas­
ily characterized by the canonical parameters. By definition i >-w j if and 
only if Mij > 1/2. Almost as directly, i >-e j if and only if Emti Mim > 
Emtj Mjm. If {Mij} is weakly stochastic transitive, the induced prefer­
ence ordering of the items is the same as the ordering by weak preference 
but not necessary the same as ordering by preference in expectation. If 
{Mij} is strongly stochastic transitive (and no Mij is equal to 1/2), the 
induced preference ordering of the items is the same as the ordering by 
weak preference and preference in expectation. 

The strong preference ordering requires stronger conditions. The follow­
ing theorem gives necessary and sufficient conditions on the parameters of 
the B-S model for item i to be strongly preferred to item j. 

Theorem 3.3.4. For the B-S model, item i is strongly preferred to item j 
if and only if 

(}ij ~ II ((}jm/(}im) (11) 
mES 

for all subsets S of {1, ... , k} \ {i, j}, with strict inequality for some subset 
S. For S empty, the right hand side of (11) is interpreted as 1. 

Proof. Let 7r be a ranking such that 7r(i) < 7r(j), and express 
P(7r)/P(7rOTij) = (}ij/C7r as in Lemma 3.2.2. For any subset S, there exists 
7r such that S = {m : 7r( i) < 7r( m) < 7r(j)}; for this 7r, it follows that 
P( 7r) / P( 7r 0 Tij) ~ 1 if and only if (11) holds. Strict inequality holds for 
some 7r if and only if (11) holds with strict inequality for some subset S. U 

The relationship of weak preference does not necessarily provide a linear 
ordering of the items 1, ... , k, because weak preference may include circu­
larities such as i >-w j, j >-w m, and m >-w i. On the other hand, preference 
in expectation is necessarily transitive in the sense that i >-e j and j >-e m 
imply that i >-e m. Finally, strong preference need not be transitive (see 
Fligner and Verducci, [6], for an example), but does preclude circularities, 
since it implies preference in expectation. 

The following definitions lead to a geometrical characterization of weak 
stochastic transitivity of the {aij}. 

Definitions. (Unimodality). The tau-distance between any two rankings 
7r and 1/, is defined as the number of discordances 

d( 7r, 1/) = L I([7r( i) - 7r(j)][I/( i) - I/(j)] < 0) 
i<j 

between pairs of items, where I(A) = 1 or 0, is the indicator of event A. A 
probability function P( 7r) on rankings is said to be strongly unimodal with 
mode 7ro if d(7ro, 7r) < d(7ro, 1/) implies P(7r) ~ P(I/) whenever d(7r, 1/) = 1, 
with strict inequality in the case that 7r = 7ro. 
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Theorem 3.3.5. For the B-S model, P( 7r) is strongly unimodal with modal 
ranking e :::;: [12 ... k] if and only if 8ij ~ 1 when i < j, with strict inequality 
when j :;: i + 1. 

Proof. Let i < j and choose any 7r such that 7r( i) :::;: 7r(j) - 1. Then 
d(7r, 7r 0 Tij) :::;: 1 and 

(12) 

so that 8ij ~ 1 is necessary for strong unimodality. For 7r = e, d( 7r, 7rOTij) = 
1 when j = i + 1 shows that 8i ,i+1 > 1 is also necessary. 

Conversely, suppose that the conditions on the 8ij are satisfied. First 
suppose that 7r and v are two rankings with d( 7r, v) = 1 and d( e, 7r) < 
d(e, v). These conditions imply that II = 7r 0 Tij for some items i < j with 
7r(i) = 7r(j) - 1. It then follows from (12) that P(7r) ~ P(II) whenever 
8ij ~ 1. For 7r = e, d(e, v) = 1 implies that v = Tij for j = i + 1, whence 
(12) and 8j,i+l > 1 imply that P(e) > P(v). U 

The following corollary, whose prooffollows directly from Theorem 3.3.5, 
was proved through a somewhat different argument in Critchlow, Fligner 
and Verducci [2]. 

Corollary. For the B-S model, suppose that none of the Mij are equal to 
1/2. Then the set {(¥ij} is weakly stochastically transitive if and only if P 
is strongly unimodal. 

Thusfar we have exhibited the relationships among the four subfamilies 
B-S models defined by weak and strong stochastic transitivity of the {(¥ij} 
and {Mij} parameters. We conclude this section by relating these subfam­
ilies to the following notions of consensus from Fligner and Verducci [6]. 

Definitions. (Consensus). A population is said to have a simple consensus 
with consensus ranking v if i >-$ j for v(j) = v(i) + 1. A population is 
said to have complete consensus with consensus ranking II if i >-$ j for 
v(i) < v(j). 

Simple consensus does not imply complete consensus, even within the 
context of the B-S model. An example with k = 4 and II = [1234] is for the 
B-S model with 812 = 1.2, 813 = 814 = 823 = 1.1, 824 = 834 = 1.05. It is 
easy to check that the inequalities in (11) are valid for (i,j) = (1,2), (2,3) 
and (3,4) but not for (2,4) because 824 is less than 841/821 . 

The following theorem on complete consensus, proved in a different de­
velopment by Critchlow, Fligner and Verducci [2] follows directly from The­
orem 3.3.4 and the definition of T. 

Theorem 3.3.6. Let PET be such that 8ij is strictly increasing in j for 
each i = 1, ... , k. Then P has complete consensus with consensus ranking 
e = [12 .. . k]. 

There are induced item preference orderings from the concepts in this 
section. The relationships are summarized in the following diagram. In the 
diagram, SST stands for strong stochastic transitivity and WST stands for 
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weak stochastic transitivity. Enough of the Oij are assumed to be not equal 
to 1 in order that a complete ordering exists. A similar remark holds for 
the Mij. 

SST(Oij) 
.lJ. 

complete con census 
.lJ. 

SST(Mij) 
.lJ. 

>-e ordering 

~ WST(Oij) 

~ 
strong unimodality 

~ WST(Mij) 

Note that for the MBT model, the identities OijOjm = Oim are satisfied 
and {Oij} is strongly stochastic transitive. It is not hard to show that 
there are no other implications in the above diagram. A strongly unimodal 
distribution which satisfies SST(Mij) can have a mode different from the 
ordering induced by the strong stochastic transitivity. An example with 
k = 3 is with 012 = 013 = 1.01 and 023 = 2; this is strongly unimodal with 
mode [123] but M21 = .552, M13 = .559, M23 = .667. 

3.4 Examples and Data Analysis 

The Graduate Record Examination Board have samples of college students, 
where the students were asked to rank five words according to strength 
of association with a target word. We have used two such samples for 
illustration here. The log-likelihoods and maximum likelihood estimates 
given below were obtained computationally using the exponential family 
form (4) and then transformed. 

In the first example, the target word is "skunk", and the five choices 
were labeled (1) camel, (2) porcupine, (3) lion, (4) cat, (5) hound. In the 
rankings, 1 means the least associated with the target word. The sample 
size was n = 124. The observed and expected frequencies from three models 
are given in Table 1; only rankings with non-zero observed frequency are 
listed. The average ranks for the items are (1.52, 4.26, 2.61, 3.77, 2.84). 
The maximum likelihood estimates for the MBT model in the form (6) are 
(01 , ... , ( 5 ) = (1.36,0.24,0.63,0.34,0.56) and the log-likelihood is -456.6. 
The log-likelihood for the B-S model is -439.5. The matrices of !VIij and 
Oij are respectively 

[~~ 
.92 .84 .88 .84] [ 1.00 

1.27 5.48 1.25 365] .15 .35 .16 0.79 1.00 0.38 0.58 0.30 
.16 .85 .81 .56 , 0.18 2.62 1.00 4.05 1.23 
.12 .65 .19 .27 0.80 1.73 0.25 1.00 0.53 
.16 .84 .44 .73 0.27 3.34 0.81 1.89 1.00 
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With 6 extra degrees offreedom and twice the difference in log-likelihood 
being 34.2, the B-S model fits the data much better than the MBT model. 
This is confirmed by looking at the expected frequencies for the 2 models 
(columns 3 and 4 of Table 1). The modal observed frequency is 22 for 
the ranking [15243]; the corresponding expected frequencies for the MBT 
model and B-S model are 11.2 and 17.4 respectively. 

The observed preference proportion matrix (Mij) is strongly stochastic 
transitive with the induced ordering of items being 1,3,5,4,2 (this agrees 
with the ordering of the mode). The (Bij) matrix is weakly stochastic tran­
sitive and is not close to being strongly stochastic transitive. However the 
submatrix based on items 3,5,4,2 is almost strongly stochastic transitive 
and the model with sufficient statistic based on 

is suggested. 
For this model with 7 parameters, the log-likelihood is -441.0, which 

compares well with the log-likelihood for the B-S model. The jt's (with 
index order according to (13)) are 1.69, 1.29, .306, .150, 1.37, 1.12, .370 
and C = 1.97 X 105 . The expected frequencies for this model are in the 
last column of Table 1, and the modal expected frequency is 16.6. The 
comparison of the Bij'S for the 3 models (respectively MBT, B-S, (13)) can 
be made from the following matrices. In the matrices, the ordering is item 
1, item 3, item 5, item 4, item 2. 

[LOO 1.46 1.55 2.01 237] [LOO 5.48 3.65 1.25 L27] 0.68 1.00 1.06 1.37 1.62 0.18 1.00 1.23 4.05 2.62 
0.64 0.94 1.00 1.29 1.52 , 0.27 0.81 1.00 1.89 3.34 , 
0.50 0.73 0.78 1.00 1.18 0.80 0.25 0.53 1.00 1.73 
0.42 0.62 0.66 0.85 1.00 0.79 0.38 0.30 0.58 1.00 

[LOO 5.44 3.63 1.36 L16] 0.18 1.00 1.28 2.74 3.95 
0.28 0.78 1.00 2.12 3.08 
0.74 0.37 0.47 1.00 1.45 
0.86 0.25 0.32 0.69 1.00 

We now go on to the second example. The target word is "song" , and the 
five choices were labeled (1) score, (2) instrument, (3) solo, (4) benediction, 
(5) suit. In the rankings, again 1 means the least associated with the target 
word. The sample size was n = 129. The observed and expected frequencies 
for the B-S model are given in Table 2. The average ranks for the items 
are (2.~0, 3.81, 4.64,2.43,1.32). The maximum likelihood estimates for the 
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MBT model in the form (5) are (81 , ... ,85 ) = (0.48,0.23,0.097,0.63, l.93) 
and the log-likelihood is -380.7. The log-likelihood for the B-S model is 
-351.7. The matrices of Mij and 8ij are given below; in the matrices, the 
order is item 5, item 4, item 1, item 2, item 3. 

.91 .80 .98 

991 [LOO 9.89 1.38 8.74 4.18 
.09 .59 .91 .98 0.10 1.00 1.37 7.56 9.95 
.20 .41 .74 .84 , 0.72 0.73 1.00 2.16 1.38 
.02 .09 .26 .83 0.11 0.13 0.46 1.00 5.30 
.01 .02 .16 .18 0.24 0.10 0.72 0.19 1.00 

(Mij) is weakly stochastic transitive and almost strongly stochastic tran­
sitive, and (8ij ) is weakly stochastic transitive. No submodel of (2) com­
pared favorably here. The modal observed frequency is 34 for the ranking 
[35421]. The expected frequency for the B-S model is 28.3; the comparison 
of other expected frequencies to observed frequencies is quite good. 

In both examples, the B-S model underestimates the size of the mode. 
However the comparison of the expected to observed marginal frequencies 
of triples, P[7l"(i) < 7l"(m) < 7l"(j)], is quite good. The only other rank­
ing model that fit the two data sets as well, in terms of log-likelihood, is 
the multistage ranking model of Fligner and Verducci [6] having the same 
number of parameters as the B-S model. 
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Table 1. Observed and expected frequencies (under 3 models) 
for skunk association data. 

ranking observed freq. expected freq. 
MBT B-S (13 ) 

1.5243 22 1l.2 17.4 16.6 
15342 15 9.9 14.2 12.9 
14253 11 8.0 10.1 1l.5 
13452 10 2.7 3.1 2.3 
15234 10 6.7 9.2 7.8 
14352 5 7.1 8.2 8.9 
13245 4 2.1 1.6 1.8 
15423 4 3.2 1.9 2.2 
2.5143 4 5.2 3.2 3.1 
13254 3 3.5 3.0 3.7 
15432 3 5.2 3.5 4.7 
25341 3 4.1 3.9 3.6 
14235 2 2.9 2.8 2.5 
14325 2 1.5 0.7 0.9 
35421 2 0.5 0.8 1.0 
53214 2 0.0 0.0 0.0 
12543 0.6 0.2 0.3 
15324 1 3.6 2.3 2.9 
21453 1 0.2 0.7 0.6 
23154 1 1.6 0.5 0.7 
23451 1 1.1 0.9 0.6 
24351 1 2.9 2.2 2.5 
25134 1 3.1 1.7 1.4 
25431 1 2.2 1.0 1.3 
32451 0.2 0.7 0.5 
34125 1 0.3 0.4 0.3 
34215 1 0.2 0.1 0.1 
34251 1.4 0.4 0.5 
34512 1 0.1 0.2 0.1 
35124 1 0.8 1.4 1.1 
35214 1 0.4 0.3 0.4 
4:3251 1 0.2 0.3 0.4 
4.5132 1 0.5 0.7 0.6 
51324 0.0 0.0 0.0 
52314 1 0.0 0.0 0.0 
52431 1 0.0 0.0 0.0 
53241 1 0.1 0.3 0.3 
54312 1 0.0 0.0 0.1 
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Table 2. Observed and expected frequencies for song association data. 

ranking observed freq. expected freq. (B-S) 
34521 34 28.3 
24531 21 20.7 
14532 15 14.9 
43521 9 13.1 
35421 8 5.3 

53421 8 9.5 
54321 6 1.8 
23541 4 2.7 
14523 3 1.5 
13542 2 2.0 

15432 2 2.8 
24513 2 2.1 
25431 2 3.9 
42531 2 1.7 
53412 2 1.0 

15423 1 0.3 
32145 1 0.0 
32451 1 0.1 
32541 1 1.3 
34512 1 2.9 

43512 1 1.3 
45321 1 3.9 
52413 1 0.1 
54231 1 0.2 
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Latent Structure Models for 
Ranking Data 

M. A. Croon and R. Luijkx 1 

ABSTRACT In this paper several latent structure models for analyzing 
data that consist of complete or incomplete rankings are discussed. First, 
attention is given to some latent class extensions of the Bradley-Terry­
Luce model for ranking data. Next, various latent class models based on 
log-linear modeling of ranking data are described. Within this latter family 
of latent class models, a main distinction is made between models based on 
the assumption of quasi-independence within the latent classes, and models 
in which some form of association between the ranking positions is allowed 
to exist within the classes. All models are applied to a real data set from a 
large scale cross-national survey on political values. 

4.1 Introduction 

Latent Structure Models 

Latent structure models are extensively used in the social and behavioral 
sciences, and their popularity in these circles is easily explained. One of 
the main problems with which empirical research in these sciences has to 
cope pertains to the imperfect and unreliable way in which theoretically 
important constructs are 'measured' or operationalized. Concepts such as 
'intelligence' 'neuroticism', 'group cohesiveness' ,or 'political trust' simply 
elude direct measurement, and variation among respondents on such the­
oretical constructs can only be assessed by means of imperfect indicator 
variables. These indicator variables hopefully reflect variation on the un­
derlying theoretical concept, but are probably also influenced by a host 
of other irrelevant disturbing factors. As a consequence, empirical investi­
gators in the social and behavorial sciences have long been interested in 
methods by means of which the relation between underlying unobservable 
latent variables and observable manifest variables can be described and 
analyzed, and that is exactly what latent structure models do. 

Depending upon the nature of the manifest and latent variables, many 

1 Faculty of Social Sciences, Tilburg University, Tilburg, The Netherlands 
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different forms of latent structure models may be formulated. By way of 
factor analysis (or by means ofthe related technique of covariance structure 
analysis) one may analyze the correlation or covariance structure among 
a large number of quantitative manifest variables in terms of a relative­
ly small number of quantitative latent variables. Latent trait models, on 
the other hand, aim at the analysis of categorical (mostly dichotomous) 
responses to aptitude or attitude items in terms of underlying continuous 
latent traits. Finally, latent class analysis was developed to analyze the 
association between qualitative variables. 

Although in social and behavioral research respondents are quite often 
asked to rank a given set of alternatives on a particular evaluation criterion, 
no special attention has yet been paid to the problem of developing latent 
structure models for ranking data. In this paper, we will describe several 
latent structure models for ranking data and illustrate the usefulness of 
these methods. The basic idea behind all models that we will discuss is that 
a heterogeneous population of respondents may be partitioned into a small 
number of homogeneous subpopulations, within each of which the choice 
or ranking processes are assumed to satisfy a relatively simple model. Seen 
in this way, these latent structure models are instances of finite mixture 
models. 

Ranking Tasks: Some Notation and Terminology 

Assume that a set of n stimuli is presented to the subjects who are instruct­
ed to select and rank the m alternatives which, in their view, score highest 
on the evaluation criterion defined by the investigator. Such a ranking task 
will be called a 'rank m out of n' task. If m = n - 1, we obtain complete 
rankings of the stimuli; for m < n - 1, the rankings are incomplete. In this 
paper we assume that ties are not allowed in the rankings. If we denote the 
alternatives by the first n integers, and arbitrary alternatives by either sub­
scripted or unsubscripted symbols as i, j, k and I, the respondents' rankings 
can be represented by ordered m-tuples (iI, i2,···, im ). In this m-tuple, i1 
represents the alternative that occupies the first position in the ranking, i2 
represents the alternative that occupies the second position in the ranking, 
etc. In general, ir represents the alternative that occupies position r in the 
ranking, with 1 ::; r ::; m. 

The Data for Illustration 

All the models described in this paper will be illustrated on data ob­
tained from the cross-national survey Political Action (See [1]). In this sur­
vey respondents from five different western countries (West-Germany, The 
Netherlands, the United States, Great-Britain and Austria) were asked to 
select and rank their three most preferred alternatives from the following 
set of eight political goals: 

1. Maintain a high rate of economic growth. 



Latent Structure Models for Ranking Data 55 

2. Make sure that this country has strong defense forces. 

3. Give people more say in how things are decided at work and in their 
country. 

4. Try to make our cities and countryside more beautiful. 

5. Maintain a stable economy. 

6. Fight against crime. 

7. Move toward a friendlier, less impersonal society. 

8. Move toward a society where ideas are more important than money. 

In this paper only the U.S. data will be used. 
The selection of these eight political goals was based on Inglehart's the­

ory of value orientations in which a clear distinction is drawn between a 
materialistic and a post-materialistic value orientation (See [8]). The mate­
rialistic value orientation is characterized by a strong concern for social and 
economic stability, while the post-materialistic value orientation is mainly 
cOIl('.erned with the more humane, ecological and spiritual aspects of social 
life. In this respect, it is clear that the political goals 1,2,5 and 6 tap the 
materialistic value orientation, whereas the remaining goals 3,4,7 and 8 tap 
the post-materialistic value orientation. 

The ranking in which alternative i is in the first, alternative j in the 
second and alternative k in the third position will be denoted by the or­
dered triple (i, j, k). Its observed frequency will be denoted by !ij k, and its 
theoretical probability by Pijk. 

For all models discussed in this paper specific FORTRAN computer pro­
grams were developed since none of the available standard packages for log­
linear and latent class analysis seemed capable of dealing in an efficient way 
with the particular features shown by ranking data. As we shall see, the 
fact that particular patterns of structural zeros emerge if one summarizes 
ranking data in the form of a contingency table has to be taken into account 
in a log-linear and latent class analysis of ranking data. Upon request these 
program codes are available from the first author. 

4.2 Latent Class Analyses Based on the 
Bradley-Terry-Luce Model 

The BTL choice model 

Although the Bradley-Terry-Luce model (in what follows, the BTL- mod­
el, for short) was first introduced by Bradley and Terry [4] in 1952 as a 
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statistical model for analyzing choices between pairs of stimuli, its histo­
ry seems to date back to at least 1929, when the set-theoretician Zermelo 
[16] arrived at basically the same model in an attempt to develop a math­
ematically sound way to rank chess masters on the basis of the results 
of round-robin tournaments. As a model for individual choice behavior, 
the BTL-model was thoroughly investigated by Luce [9] in his monograph 
'Individual Choice Behavior'. Luce showed how the BTL-model may be 
derived from an Axiom of Choice. 

Let S denote the set of alternatives used in a choice experiment and let 
R be a subset of S: R ~ S. Let i be an arbitrary element of R, and hence 
of S. Let PR(i) and ps(i) denote the probabilities of selecting item i from 
either R or S, and let Ps(R) represents the probability that one of the 
elements of R is selected when the entire set S of alternatives is presented. 
Then, Luce's choice axiom states that the choice probabilities satisfy the 
following condition: 

ps(i) = PS(R).PR(i) 

Luce [9] showed that if a subject's choices satisfy this choice axiom, there 
exists a scale on which each alternative i has a (positive) scale value Ui 

such that: 

Ui 

L:jER Uj 

The scale values Ui are uniquely defined up to multiplication by a positive 
c.onstant. In the case of a pairwise choice between alternatives i and j, we 
have R = {i, j}, and, hence, if Pij denotes the probability of choosing i over 
j, we have: 

Ui 
Pij 

The BTL-model can be parametrized in another way. By defining 

ai = In Ui, 

we obtain: 

PR(i) 

with -00 < ai < +00. For pairwise choices, we have: 

exp ai 
Pij 

exp ai + exp aj 

We will now discuss two different extensions of the BTL-model which have 
been proposed in the past for the analysis of rankings. 
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The BTL-model as a random utility model 

The first adaptation starts from the well known fact that the BTL-model 
is compatible with a particular random utility model as defined in [2] or 
[10]. This point has been thoroughly investigated by Yellott [12, 13], but 
was already signaled by Bradley [3]. The basic assumptions of random 
utility models may be stated in the following way. Every time a stimulus 
is presented to a subject, it elicits a subjective impression of worth or 
value. The magnitude of this subjective impression may be represented by 
a real number. Instead of assuming that a stimulus always elicits the same 
subjective impression, one assumes that the magnitude of the subjective 
impression is a random variable. Let Ui represent the random variable that 
corresponds to the fluctuating subjective impressions elicited by stimulus 
i. Then, the probability that alternative i will be chosen from set R is given 
by 

PR(i) 

For pairwise choices we obtain 

The BTL-model is compatible with the random utility model in which 
the random variables Ui are independently distributed as extreme value 
distributions with constant scale parameters, but with possibly different 
location parameters. Without loss of generality, we may set the constant 
scale parameter equal to one, and obtain the following expression for the 
density function of the extreme value distribution for the random variable 
Ui: 

f(Ui) = exp [- (Ui - ai) - exp (Ui - ai)] 

for -00 < Ui < +00, and in which ai is the location parameter of the 
distribution. 

Under this interpretation of the BTL-model, one easily derives expres­
sions for the ranking probabilities in a ranking task. The probability Pi" i 2 , 

... ,i m that in a 'm out of n' ranking task the incomplete ranking (iI, i2, ••• , 

im ) is observed is given by: 

Let I = {I, 2,···, m} and define 

for a given ordering (i 1 , i2 ,···, im ). Note that .11 = I. 
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If the random variables Ui follow independent extreme value distribu­
tions, one may prove 

For a 'rank three out ofn' task, the expressions for the ranking probabilities 
simplify to: 

Pijk 
_______ e_x~p_a~i _______ X ____ e_x~p_a~j __ __ 

exp ai + exp aj + exp ak exp aj + exp ak 

This expression shows that under this random utility BTL ranking model 
the probability of obtaining a particular ranking such as (i, j, k) is given by 
the product of the probability of selecting i from {i, j, k} and the probability 
of selecting j from the set that remains after the first selection has been 
made, i.e. the probability of selecting j from {j, k}. A similar interpretation 
of ranking probabilities as products of successive selection probabilities also 
applies in the general case of a 'rank Tn out of n' task. 

The Pendergrass-Bradley approach 

Pendergrass and Bradley [11] proposed a different extension of the BTL­
model to the analysis of rankings. In the case the subjects are required to 
rank three alternatives {i, j, k}, these authors assume that the probability 
of obtaining the complete ranking (i, j, k) is proportional to the product of 
the three paired comparison probabilities which are induced by the ranking: 

Pijk = C'Pij'Pik'Pjk 

The proportionality constant C is chosen so that the sum of all ranking 
probabilities Pij k is equal to one. 

If the paired comparison probabilities satisfy the BTL-model, one may 
derive 

2:r,s;tr exp(2ar + as) 
Pijk 

exp(2ai + aj) 

By applying the basic principle of this approach, we obtain for the proba­
bility that the incomplete ranking (i1 , ..• , im ) is observed in a 'rank m out 
of n' task the following expression: 

exp (2:;:"1 (n - r)aiJ 

Q 

in which Q is the sum of terms like exp (2:~=1 (n - r)ai r ) over all possible 
incomplete rankings . 
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Latent class models for the analysis of ranking data based on the BTL 
model 
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For a discussion on how to obtain the maximum likelihood estimates of the 
scale parameters ai under both models, and on how to test their statistical 
fit, we refer to [5]. Unfortunately, application ofthese methods to data from 
large surveys seldom results in an acceptable fit. The main reason for this 
consistent negative result probably lies in the fact that these models are 
unable to capture 'differences of opinion' in large populations, which are 
usually quite heterogeneous with respect to social and political attitudes. 

In an attempt to extend the applicability of the BTL-model to the anal­
ysis of rankings in large samples from heterogeneous populations, Croon 
[5, 6] eveloped finite mixture models in which the BTL ranking models are 
coupled with the basic assumptions of latent class models. The point of de­
parture of this approach is the assumption that the original heterogeneous 
population from which the respondents were sampled can be partitioned 
into a relatively small number of homogeneous subpopulations, the latent 
classes. Each respondent is assumed to belong to exactly one of these 
latent classes, but latent class membership is an unobserved variable. As­
sume that T latent classes are needed in a particular analysis and let t 
denote an arbitrary class. The scale values of alternative i in latent class 
t will be denoted by ait. Let p = (i1 ,···, im ) be an arbitrary incomplete 
ranking. If we denote the probability of obtaining ranking p in latent class 
t by Pp,t, we obtain for the random utility ranking model: 

Pp,t 

If 71't denotes the proportion of subjects belonging to latent class t, we derive 

T 

Pp L: Pp,t . 71't 
t=l 

for the probability Pp of obtaining ranking p in a random sample from the 
entire population. 

Similar expressions hold for the PB ranking models. For more informa­
tion on these latent class models, and on the way in which the model 
parameters can be estimated by means of an E-M algorithm, we refer to 
[5]. 

An illustration 

We give here the results of some analyses on the incomplete rankings of the 
eight political goals in the US sample (N=2090). These analyses were based 
on the random utility adaptation of the BTL-model. (We will not discuss 
the results of the analysis using the Pendergrass-Bradley approach, which 
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gave very similar results.) The number of latent classes was systematically 
varied from 1 to 6. In the following table we give for each latent class num­
ber the log likelihood ratio statistic and the associated number of degrees 
of freedom. By means of the log likelihood ratio one tests the hypothesis 
that the model with a particular number of classes provides an accept­
able description of the data against the general alternative that the set of 
ranking frequencies are multinomially distributed. This log likelihood ra­
tio statistics is asymptotically distributed as a chi square distribution with 
the corresponding number of degrees of freedom. The general formula for 
computing the degrees of freedom is: n(n - 1)(n - 2) - nT, with n being 
the number of alternatives and T the number of latent classes. 

t L df 

1 1073.31 328 
2 573.64 320 
3 488.08 312 
4 429.74 304 
5 401.78 296 
6 377.51 288 

From this table we see that the value of the log likelihood statistic drasti­
cally decreases when the number of classes is increased, but, unfortunately, 
even the solution with six classes fails to provide a statistically acceptable 
fit to the data. Presumably, the latent class model based on this adaptation 
of the BTL model still remains a much too simple model to capture the 
diversity of political attitudes in the U.S. sample. Although we have cer­
tainly to reject the two-classes solution, it may be of some interest to take 
a closer look at it. If Inglehart's theory on value orientations is correct, one 
expects that one of the latent classes would represent the 'materialistic' 
respondents while the other would represent the 'post-materialists'. The 
following table gives the scale values of the eight political goals in the two 
classes. 

i Class 1 Class 2 

1 -.05 -1.49 
2 .77 -1.17 
3 .00 .70 
4 -1.08 -.31 
5 1.33 .45 
6 1.07 .15 
7 -1.64 .56 
8 -.40 1.12 
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In latent class 1, the materialistic alternatives 2, 5 and 6 score relative­
ly high, while the post-materialistic items 4,7, and to a lesser extent also 
alternative 8, score low. The first latent class seems to represent the ma­
terialistic respondents. The interpretation of the second latent class as the 
subpopulation of post-materialistic respondents is probably also quite ade­
quate since in this class the post-materialistic items 3, 7 and 8 score high, 
while the materialistic items 1, 2, and to a lesser extent alternative 6, score 
low. However, note that not all items conform to the expected pattern: 

• In class 1 item 1 scores too low, whereas item 3 scores too high . 

• In class 2 item 4 scores too low, whereas item 5 scores too high. 

4.3 Latent Class Analyses Based on a 
Quasi-independence Model 

Log-linear models for ranking probabilities. 

In search for more flexible latent class models, a study of the log-linear 
analysis of ranking data was made. For more information on the log-linear 
analysis of 'rank 3 out of n' data, we refer to [7], but see also [12, 13] for 
similar ideas. 

In the case of 'rank 3 out of n' data, the saturated log-linear model for 
the theoretical ranking probabilities Pijk > 0 (with i :/; j, i :/; k, j :/; k ) 
may be stated in the following way: 

lnpijk = U + Ul(i) + U2(j) + U3(k) + Ul2(ij) + Ul3(ik) + U23(jk) + Ul23(ijk) 

In this model, U is a normalizing constant; the terms Ul, U2 and U3 represent 
the main effects of the various alternatives corresponding to the first, second 
and third position in the ranking; the terms Ul2, Ul3 and U23 represent 
the first-order interaction effects between the ranking positions; finally, 
the term Ul23 represents the second- order interaction between all ranking 
positions. The first- and second- order interaction terms are only defined 
for pairs and triples of distinct subscripts. Moreover, in order to obtain 
an identified log-linear model, some AN OVA-like restrictions have to be 
imposed on the main and interaction effects. The basic idea behind this 
log-linear model for 'rank 3 out of n' data is that the ranking frequencies 
can be inscribed in a n x n x n contingency table whose three successive 
dimensions correspond to the three positions in the incomplete rankings. 
Since an alternative cannot occupy two or more different positions in the 
same ranking, only the n( n - 1) (n - 2) cells that correspond to the possible 
rankings may contain a non-zero frequency. The remaining n3 -n(n-1)(n-
2) = n(3n - 2) cells necessarily contain structural zeros. 
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The quasi-independence log-linear model 

The quasi-independence log-linear model is obtained by assuming that all 
first- and second-order interaction effects are zero. We then have 

In Pijk U + Ul(i) + U2(j) + U3(k) 

for any triple (i, j, k) of different subscripts. As identifying constraints we 
Impose 

n n n 

I: Ul(i) = I: U2(i) = I: U3(i) = 0 
i=1 i=1 ;=1 

This model may also be written multiplicatively: 

Pijk = V· VI (i) . V2(j) . V3(k) 

with, as identifying constraints, 

n n n 

I: Vl(i) = I: V2(i) = I: V3(i) = 1 
;=1 i=1 

The concept of quasi-independence is an adaptation of the usual concept 
of independence to the case of contingency tables with structurally empty 
cells. 

In the general case of a 'rank m out of n' task, we may write in terms of 
the multiplicative model 

m 

V· II Vr(i r ) 

r=1 

with 
n 

I: Vr (;) 1 
;=1 

for all r = 1, ... , m. The parameter v is a normalizing factor, which is 
needed to ensure that the sum of the ranking probabilities over all feasible 
rankings is equal to one. 

It may be of some interest to note here that the Pendergrass-Bradley 
model for ranking probabilities is a submodel of the quasi-independence 
model introduced above. Under the Pendergrass-Bradley model, there exist 
scale values Vi such that we have Vr(i) = vf-r for all r = 1,···, m. The 
random utility variant of the BTL-model for ranking data, on the other 
hand, is a submodel of the log-linear model in which the m-th position is 
independent of the configuration of the first m - 1 positions, i.e. of the 
model in which all interaction terms in which the m-th position is involved 
are equal to zero. 
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The latent class model based on the quasi-independence model 

The quasi-independence model can easily be incorporated in a latent class 
model. Assume T latent classes are needed, and let an arbitrary class be 
denoted by t. The parameters Vr are assumed to be specific for each class; 
they will be denoted by Vr(i)t. As identifying constraints we impose for all 
r and all t: 

n 

L Vr(i)t 1 
i=1 

Then, we may write for the probability of obtaining ranking (il' ... ,im ) in 
latent class t: 

m 

Vt II Vr(ir)t 

r=1 

in which Vt is the normalizing factor for latent class t. If 1I"t represents the 
latent proportion of class t, we finally have: 

Pi1,···,i m 

T 

L PiI,···,irn,t . 1I"t 

t=1 

The E.M. algorithm for estimating the quasi-independence latent class 
model 

The maximum likelihood estimates of the model parameters can be ob­
tained by means of an E.M-algorithm. We will restrict ourselves to the 
case of 'rank 3 out of n' data in our discussion of this algorithm. 

The iterations of the E.M. algorithm consist of two steps: 
an E( expectation )-step and a M (aximization )-step. 

1. During the E-step the observed ranking frequencies fij k are dis­
tributed over the T classes in the following way: 

fij kt fij k x Ptlij k 

in which the conditional probability Ptlij k is given by 

Ptlij k 
Pij kt . 1I"t 

2:t Pij kt . 1I"t 

This conditional probability is computed on the basis of the provisory 
values of the model parameters. 

2. During the M-step, the quasi-independence model is fitted, sepa­
rately in each class, to the 'completed' set of ranking frequencies 
fijkt. This is done by using the Iterative Proportional Fitting Algo­
rithm. Let eijkt denote the expected frequency corresponding to the 
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observed frequency !;jkt under the quasi-independence model. These 
expected frequencies are obtained by means of the following iterative 
computing algorithm: 

Step 1 

(a) (a-I) !;++t 
eij kt eijkt X (.-1) 

ei++t 

Step 2 

($+1) 
eijkt 

(3) f+Ht 
eijkt X Ts) 

e+Ht 

Step 3 

($+2) 
eij kt 

(3+1) f++kt 
eijkt X ($+1) 

e++kt 

We use here, and also in what follows, the + subscript to denote 
summation over the corresponding subscript. So, for instance, 

fi++t L: L: fij kt 
iti kti,j 

That we have to use the Iterative Proportional Fitting Algorithm in 
fitting the quasi-independence model is due to the fact that this model 
does not allow for an analytic solution of the maximum likelihood 
optimization problem. 

During each M-step, the latent proportions are also estimated again: 

An example 

The following table contains the global results of some latent class analyses 
based on the quasi- independence model. We have used once again the U.S. 
data. 

t L df p 

1 920.36 314 0 
2 385.70 292 0.0002 
3 318.43 270 0.0228 
4 269.86 248 0.1625 
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From a statistical point of view, only the solution with four classes is 
acceptable; the solutions with a smaller number of classes all result in a 
statistically unacceptable fit. In order to see in which respects these four 
classes differ among themselves, we report the first-choice parameters Vl(i)t 

in the following table: 

Class 1 Class 2 Class 3 Class 4 

1 .113 .012 .007 .025 
2 .131 .175 .023 .038 
3 .063 .023 .005 .230 
4 .009 .000 .005 .024 
5 .404 .620 .068 .158 
6 .241 .141 .878 .000 
7 .008 .000 .006 .127 
8 .030 .029 .009 .399 

7rt .318 .229 .163 .289 

The second- and third choice parameters V2(i)t and V3(i)t showed a pat­
tern similar to that of the first-choice parameters. These results indicate 
that under the quasi-independence model three slightly different 'materi­
alistic' classes seem to exists in the U.S.A. The first three classes are all 
characterized by a strong preference of some 'materialistic' items, and by a 
resolute rejection of the 'post-materialistic' political goals. The differences 
between the three 'materialistic' classes are more difficult to interpret, and 
seem to be rather item-specific. Seventy-one percent of the American sam­
ple is estimated to belong to one of the materialistic classes. The fourth 
class probably represents the 'post-materialistic' subpopulation, although 
some of the alternatives do not conform to the pattern that could be ex­
pected here: In this class the alternative item 4, which is a very unpopular 
item in the U.S., scores too low, while the materialistic item 5, which is the 
most popular item in this sample, scores too high. 

4.4 Models that Allow for Association Between 
Choices within the Classes 

A GENERAL MODEL ALLOWING FOR ASSOCIATION 

BETWEEN CHOICES 

Latent class models based on a quasi-independence model do not always 
lead to satisfactory results. Often models of this kind only provide a sta­
tistically acceptable fit to the data if the number of latent classes is made 
large enough. 
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In a search for alternative latent class models, which possibly could ex­
plain the data in terms of a smaller number of latent classes, we first consid­
ered the log-linear model which includes all first-order, but not the second­
and higher-order interaction effects. This first-order interaction model is 
in some sense the most simple extension of the quasi-independent model. 
In this section we restrict ourselves to a discussion of ranking data from a 
'rank 3 out of n' task. 

For the case of 'rank 3 out of n' data, the latent class model with first­
order interactions can be written as 

In Pij kt Ut + UI(i)t + U2(j)t + U3(k)t + UI2(ij)t + UI3(ik)t + U23(jk)t 

In this model, which we refer to as the Ao-model, latent classes differ 
with respect to the main effects as well as with respect to the first-order 
interaction terms. It is interesting to note that, for T = 1, we simply obtain 
the hierarchical submodel ofthe saturated log-linear from which all second­
order interaction terms are removed. Our limited experiences with this very 
general Ao-model, however, have been quite negative for T?:: 2 . 

We observed quite often that the final solutions under this model had 
many of their parameter estimates on the boundary of the parameter space. 
This was especially the case for the estimates of the first-order interaction 
terms. Some rather difficult identification problems are probably involved 
here. 

THREE SUBMODELS WITH INVARIANT FIRST-ORDER 

INTERACTION EFFECTS 

Since the general Ao-model did not provide an acceptable alternative to the 
quasi-independence model considered earlier, we have investigated some 
submodels of it. In particular, we have considered models in which the 
first-order interaction terms are assumed to be the same in the various 
latent classes, which may still differ with respect to main effects. In these 
models the latent classes may differ with respect to the 'popularity' of the 
items, but the pattern of association between the choices (as described by 
first-order interaction terms) is assumed to be invariant over the different 
classes. We first consider the most general model of this kind, the AI-model 
before discussing two interesting submodels of it. 

Model Al 

For the most general model within this class, we may write for 'rank 3 out 
of n' data: 

In Pijkt Ut + UI(i)t + U2(j)t + U3(k)t + UI2(ij) + UI3(ik) + U23(jk) 

In the following this model will be referred to as Model AI. Note that for 
T = 1 this model too is equivalent to the 'no second-order interactions' 
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submodel of the saturated log-linear model, and, hence, to Model Ao with 
T = 1 as described above. 

Next, we consider two submodels of AI' 

Model A2 

As a first interesting submodel of Al we will consider the model for which 

UI2(ij) = UI3(ij) = U23(ij) = Uij 

holds for all i,j. Under this model, which will be referred to as model A 2 , 

one may write 

In Pijkt Ut + UI(i)t + U2(j)t + U3(k)t + Uij + Uik + Ujk 

In this model only one set of invariant first-order interaction terms remains 
to be estimated. 

Model A3 

A second interesting submodel of Al is the model in which the First by Sec­
ond Choice, and the Second by Third Choice first-order interaction terms 
are included, but not the First by Third Choice interaction terms. Hence, 
for this model A3 , we may write: 

In Pijkt = Ut + UI(i)t + U2(j)t + U3(k)t + UI2(ij) + U23(jk) 

In this model only interaction terms for pairs of consecutive positions in 
the ranking are included. Note that models A2 and A3 are both submodels 
of model AI, but are themselves not hierarchically related to each other. 

Estimating the Parameters by Means of an E.M. Algorithm. Let fijk be 
the observed frequency of ranking (i,j, k) and assume that T latent classes 
are needed for an analysis based either on model AI, model A 2 , or model 
A3 . Let N denote the sample size. The maximum likelihood estimates of 
the parameters of the three models can be obtained by means of an E.M. 
algorithm. 

Each iteration of this algorthim consists of two steps: 

• An Expectation step during which the frequencies fijkt with which 
ranking (ij k) occurs in latent class t is estimated again: 

with 

Pijk LPijkt . 7rt 

t 
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The probability Pij kt of observing ranking (ij k) in latent class t is 
computed on the basis of the provisory values of the parameter esti­
mates. The way in which these probabilities are computed depends 
on the model under consideration . 

• A Maximization Step during which the maximum likelihood esti­
mates of the model are determined again on the basis of the completed 
set of frequencies fij kt. The expression for the latent proportions 7rt 
is extremely simple: 

7rt 

The estimation of the parameters of the log-linear model is more 
involved, since one has to rely on a subordinate iterative process, such 
as the Iterative Proportional Fitting Algorithm. More information on 
these estimation procedures are given in the next paragraph. 

The Iterative Proportional Fitting Algorithm for Models AI, A2 and A3 with 
Complete Data. We assume that the frequency fijkt with which ranking 
(ij k) occurs in class t is observed. The corresponding expected frequency 
will be denoted by eijkt. 

For model Al the iterations of Iterative Proportional Fitting Algorithm 
consist of the following 6 steps: 

l. 

(8+1) (s) fi++t 
eijkt eijkt x ~ 

ei++t 

2. 

(8+2) (8+1) f+j+t eijkt eijkt x (8+1) 
e+j+t 

3. 

(8+3) (0+2) f++kt eijkt eij kt x (8+2) 
e++kt 

4. 

(8+4) (8+3) fii++ eijkt eij kt x (8+3) 
eij++ 

5. 

(8+5) (8+4) f+jk+ eijkt eij kt x (8+4) 
e+jk+ 
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6. 

For Model A 2 , the iterations of the Iterative Proportional Fitting Algo­
rithm consist of 4 steps, the first three being identical with the correspond­
ing steps of the algorithm for the Al model. The fourth step itself consists 
of n( n - 1) substeps, each one corresponding to a pair (i, j) of distinct sub­
scripts. During the substep that corresponds to the pair (i, j), the following 
computations take place for all k = 1, ... , n (with k # i and k # j) and for 
all t: 

(new) (old) S'ij 
eijkt e ij kt X U(~ld) 

I) 

(new) (old) S'ij 
eikjt e ikjt x--

U(old) 
I) 

(new) (old) S'ij 
e kijt e kijt x--

U~~ld) 
I) 

with 

S'ij fiH+ + fi+H + f +iH 

and 

uold 
I) 

(old) + (old) + (old) 
eij++ ei+H e+ij+ 

For Model A3 , the iterations of the Iterative Proportional Fitting Algo­
rithm consist of five steps, which are identical to the first five steps of the 
algorithm for fitting Model AI. 

In order to guarantee that the Iterative Proportional Fitting Algorithms 
converge to the maximum of the likelihood function, the starting values 
of the expected frequencies should satisfy the model under consideration. 
The easiest way out of this problem is to set all expected frequencies eij kt 

initially equal to 1. 
After convergence of the Iterative Proportional Fitting Algorithm, the 

model parameters, such as UI(i)t, U2(i)t, U3(i)t, UI2(ij),···, can be determined 
by solving appropriate systems of linear equations in these unknowns. This 
system of linear equations expresses the model parameters as functions of 
the natural logarithms of the expected frequencies eijkt. 

Testing model fit. When the E.M. algorithm has converged, the hypothesis 
that the model under consideration applies to the data may be tested 
against the general multinomial hypothesis by means of a log likelihood 
ratio test. Let Pij k be the estimate of the theoretical ranking probability 
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under the particular model under consideration, and let Jijk = N . Pijk 

denote the corresponding expected frequency. Then, the log likelihood ratio 
statistic L is defined as: 

where the summation runs over all triples of distinct subscripts. 
If the model under consideration is true, then the log likelihood statistic is 

asymptotically distributed as a chi square variate with degrees of freedom 
equal to the difference between the number of independent parameters 
under both models. 

In the context of latent class analysis, model tests of this kind can be 
used to the test the hypothesis that the latent class model with a specified 
number T of classes is true against the general multinomial hypothesis. Let 
LT denote the value of log likelihood statistic obtained by a latent class 
analysis with T classes. For Model Al the observed value of the statistic 
LT should, for n ~ 5, be located under a chi square distribution with 
(n3 - 6n2 + Un - 3) - (3n - 2)T degrees of freedom; for Model A 2 , the 
number of the degrees of freedom is given by (n3 - 4n2 + 5n -1) - (3n - 2)T 
if n ~ 5; for Model A3 , the number of degrees is n3 - 5n2 + 8n - (3n - 2)T. 

SOME RESULTS 

The Results of the A2 Analyses on the U.S. Data. The U.S. ranking data 
were analyzed on the basis of model A2 with T = 1 and T = 2. The global 
results are shown in the next table. 

T L d.f. p 

1 325.523 273 .016 
2 248.833 251 .527 

Hence, we see that the solution with two latent classes provides an ac­
ceptable fit to the U.S. data. The next table contains the estimates of the 
main effects parameters in both classes. 
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Class 1 Class 2 

1 .11 .29 .05 -1.25 -2.01 -1.33 
2 .90 .69 -.09 -.60 -.42 -.10 
3 -1.29 -.91 -.12 1.48 1.51 1.14 
4 -1.95 -1.67 -1.43 -1.29 -.18 .30 
5 2.23 1.49 .68 .59 .58 .33 
6 2.37 2.57 2.20 -.09 -.73 -.78 
7 -1.59 -1.15 -.48 -.21 .01 -.68 
8 -.79 -1.31 -.82 1.38 1.24 1.13 

Umat 1.40 1.26 .71 I -.34 -.65 -.47 
Upmat -1.40 -1.26 -.71 .34 .65 .47 

The estimates of the latent proportions were 7fl = .613 and 7f2 = .387. 
The interpretation of these results is rather straightforward: 

• The first latent class is a relatively pure 'materialistic' class in which 
the four materialistic alternatives are rated higher than the four post­
materialistic ones. The clear opposition between the two groups of 
alternatives occurs at all three ranking positions, but it diminishes 
slightly when going from the first to the third position . 

• When looking at the average scale values of the materialistic and 
post-materialistic alternatives in the second class, it should be clear 
that this class cannot be considered as a pure 'post-materialistic' 
class. A few rather striking exceptions make such an interpretation 
implausible: In this class, the post-materialistic items 4 and 7 score 
much too low, while the materialistic alternative 5 scores too high. 
It is probably safer to characterize this class as the class of persons 
who value the humane and spiritual aspects of life. 

A Further Analysis of the First-Order Interaction Terms. Next, we turn to 
the interpretation of the interaction terms. Instead of giving the complete 
8 x 8 matrix with estimated first-order interaction terms, we will report 
on the results of a bilinear decomposition analysis of these terms. Assume 
the first-order interaction terms U;j are inscribed in a n x n matrix U. 
Since the terms U;j are undefined for the case i = j, the main diagonal of 
this matrix is structurally empty. We say that the matrix U allows for a 
'Bilinear Decomposition of Rank s' if there exist two n x s matrices X, the 
left factor matrix, and Y, the right factor matrix, such that 

s 

U;j LX;qYjq 
q=l 
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holds for all i, j = 1, .. " n with j :f:. i. In practice, we are interested in the 
bilinear decomposition of the lowest rank which still provides an acceptable 
fit to the incomplete matrix. To this end, we determine, for successive values 
of s, the decomposition of U which minimizes the following least squares 
loss function: 

For more information on the bilinear decomposition model and on the tech­
nical details of the estimation procedure, we refer to [7]. 

In the present example, the rank 1 decomposition left 50.3 % percent of 
the variance of the interaction terms unexplained. For the rank 2 decom­
position, this figure decreased to 23.2 %. The next table gives the result of 
the latter decomposition. 

XiI Xi2 Yil Yi2 

1 -.60 -.32 .23 -.56 
2 -.34 -.43 -.50 -.53 
3 .67 -.66 -.47 .07 
4 .39 .18 -.56 .67 
5 -.23 -.19 .07 -.42 
6 -.65 .46 .65 -.03 
7 .27 .88 .87 .57 
8 .73 .07 -.37 .48 

From the information in these coordinate matrices, one may conclude 
that, to a large extent, the pattern of the first-order interaction terms is 
dominated or determined by the contrast between the two types of alter­
natives. An interesting feature of this bilinear decomposition is that the 
contrast between materialistic and post-materialistic alternatives shows it­
self most distinctively in the first component of the left factor matrix X, 
and in the second component of the right factor matrix Y. It is not clear 
why different components from the left and right factor matrix should be 
involved in this way. 

A Comparison with the A3 analyses. The U.S. data were also analyzed by 
means of the A3-model. The next table gives some global results. 

T L df df 

1 375.673 230 0 
2 242.987 208 .0485 
3 191.608 186 .3736 
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Since models A2 and A3 are not related to each other in a hierarchical 
way, it is difficult to compare the relative fits of both models to the same 
data. However, it is probably safe to conclude that the two-class solution of 
the A2 analysis represents the data better than the two-class solution of the 
A3 analysis. This is remarkable since fewer parameters are estimated under 
the A 2-model than under the A3 . This result seems to indicate that all three 
kinds of first-order interaction terms (First by Second Choice, Second by 
Third Choice, and First by Third Choice) are needed in a comprehensive 
latent class model of this type. Removing one set of these interaction terms 
has more detrimental effects than setting corresponding terms in the three 
sets equal to each other. 
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Modelling and Analysing 
Paired Ranking Data 

Paul D. Feigin1 

ABSTRACT Two models for paired rankings are presented. They describe 
two different ways in which a post-ranking is related to its pre-ranking for 
each case (or subject). These models are compared to regression models 
in order to help motivate their forms. Analysis of paired ranking data is 
considered in the light of testing for that type of departure from a null 
model that corresponds to either of the proposed models. The procedure 
suggested uses a bootstrap method to ascertain the strength of the departure 
from the null model, and helps one to decide which departure is more 
strongly indicated. Some analyses of simulated test data sets are described, 
as well as the analysis of data due to Rogers [7] which is also analysed in 
Critchlow and Verducci [3]. 

J{ ey Words and Phrases: Rankings, permutation metrics, bootstrap, hy­
pothesis testing. 

5.1 Introduction 

When analysing ranking data which results from a particular experimental 
design, one approach is to try to mimic the corresponding analysis for 
ordinary Euclidean data. In order to do so, one seeks appropriate mappings 
from r2 = r2k, the set of permutations of k letters, into a Euclidean space 
R!, and then does the relevant MANOVA analysis in this range space. 
This approach is described in the paper of Feigin and Alvo [6], and is also 
applied to the case of paired rankings in Feigin [5] 

In the special case of a matched pairs design, an alternative approach 
is to consider paired ranking models that describe how a post-ranking (v) 
may be generated given the pre-ranking (11'). Such models are often based on 
distances (see Critchlow, Fligner and Verducci [2] for a discussion of models 
based on distances). We will discuss two such paired ranking models in the 
sequel. 

In another paper, Critchlow and Verducci [3] suggest how to test whether 
the post-ranking has been drawn towards a pre-determined idealised rank-

lTECHNION ~ Israel Institute of Technology, Haifa, Israel 



76 P. D. Feigin 

ing (say, .\). One of the models we consider deals with this type of departure 
from a null model. A method is suggested for both estimating this ranking 
.\ as well as testing if its effect is significant. 

On applying the methods to the same data set as used by Critchlow and 
Verducci [3], the results indicate that an alternative departure from the 
null model may provide a better explanation of the data. This alternative 
departure corresponds to the second type of model presented in this paper. 
The different alternative models correspond to different mechanisms for the 
systematic deviation of post-rankings from pre-rankings. 

The models are presented in Section 5.2, and an estimation procedure for 
each is discussed in Section 5.3, as well as a bootstrap method for evaluating 
the strength (significance) of departure from the null model. In Section 5.4 
we show the results of applying the procedures to some simulated test data 
sets in which data were generated according to the models of Section 5.2. In 
Section 5.5 we apply the procedure and discuss the meaning of the results 
for the Rogers [7] data set reported in Critchlow and Verducci [3]. 

5.2 Two Models 

MODEL I 

Consider the problem of ranking four colours in the order they would be 
preferred for a particular object, say a car. The choice may be made based 
on looking at colour cards in the office (call this the 7r ranking), or by 
looking at four appropriately painted cars in the showroom (call this the v 
ranking). A person may choose a different ranking under the two conditions 
because the environment (lighting, background) may actually change the 
way the four colours are ordered on the dimensions that influence the choice 
of colours. 

In terms of permutations, the environment is actually changing the labels 
of the four colours. For example, in the office's yellow light, the yellow edour 
looks very bright; while in the showroom's natural light, the red looks very 
bright and the yellow looks duller. If brightness was an issue, then the 
yellow and red colours would change roles. A judge who preferred bright 
colours would rank red high in the post situation, whereas someone who 
preferred duller colours would choose yellow in this situation. The opposite 
would hold in the pre situation. 

In mathematical terms, if there were no random variation, 

v=7r017 (1) 

where the notation 7r 0 77 denotes (permutation) group multiplication and 
TJ denotes the permutation which changes the labels. 

In other contexts, we can often think of the post-ranking as being in­
fluenced by new (or other) "light" being shed on the items being ranked, 
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as compared to the pre-ranking situation. This "light" could correspond to 
the course that the students studied between the pre- and post-rankings, 
for the example to be discussed in Section .5.5. 

In order to formulate the model, we need a distance d(JI, w) between two 
members Jl and w of n. Such distances are discussed in Diaconis [4] and 
also in Critchlow, Fligner and Verducci [2] and Critchlow [1]. We do not 
need to specify which distance is to be used at this stage. 

The model for the post-ranking v given the pre-ranking 7r is 

P(vl7r) = C(8) exp{ -8d(v, 7r 0 1J)} (2) 

where 1J is some fixed (label-changing) permutation, 8 ~ 0, and (;(8) is a 
normalising constant. 

The null model corresponds to the case when 1J = e, where e denotes the 
identity permutation. In this situation the post-ranking is centered about 
the pre-ranking. 

In the corresponding situation of Euclidean data (x, y), the model corre­
sponds to saying that y is centered about x + a, the null model pertaining 
when a = O. This latter case corresponds to the situation in which the 
ordinary paired i-test is used - where one uses the normal model for the 
difference y - x . Explicitly, 

(3) 

where c; is a N(0,(T2) random error; or 

(4) 

where in this case ~(8, t) = (8 - t)2 . We will call this the shift model. 
In the next section we will pursue this analogy further when we look at 

the estimation of 1J and the testing of whether 1) = e . 

MODEL II 

Another approach to paired rankings treats the items as having fixed prop­
erties, but the judges who do the rankings have had their preference func­
tions changed between the pre and post situations. In this context, it is 
natural to consider the post ranking v as having moved closer to some 
idealised or given ranking A, and away from the pre-ranking 7r. 

This situation can be modelled in many different ways, but it is easiest 
to do so if we again use distance functions. The model we consider has the 
form: 

P(vl7r) = C(8, ¢;; A, 7r) exp{ -8d(v, 7r) - ¢;d(v, A)} (5) 

where 8, ¢; ~ O. The value of ¢; gives the strength of the attraction of v to 
A; whereas the value of 8 gives the strength of the attraction of v to the 
pre- ranking 7r. It is both their absolute and relative values that seem to 
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be important in being able to detect deviations from the null model - see 
Section 5.4. 

The null model corresponds to the case when ¢ = 0, whereupon we 
return to the same null model described for Model I (2). It is in this sense 
that the two models correspond to different deviations from the same null 
model. In the data analysis that we discuss in the sequel we will try to 
discern which departure is appropriate for a given data set. 

In ordinary Euclidean space a corresponding model to Model II would 
have y centered about some convex combination of a value b and the given 
x. We might use the regression formulation: 

y = ab + (1 - a)x + € ; (6) 

where 0 ::; a < 1 and € is some random error with zero mean. 
Another way of writing this equation is 

(y-b)=(1-a)(x-b)+€ ; (7) 

so that if a > 0 then, on average, y should be closer to b than x is. In other 
words ~(y, b) < ~(x, b) on average. This fact, when applied to the distance 
d on 0 x 0, forms the basis of our estimation and testing procedure. 

In order to compute the constants C(O, ¢; A, 71") for given 0 and ¢ it ap­
pears that we have to do the computation for each pair of permutations 
(A and 71") separately. However, this is often not necessary, as we explain 
below. 

We define the notion of right invariance of a distance d as follows: 

d(Jt,w) = d(jt 0 '7,W 0 1]) for all jt,w, 1] EO. (8) 

Lemma 5.2.1 If d is right invariant then the constant C(O, ¢; A, 71") of 
(5) can be written C(O, ¢; A 0 71"-1). 

Proof: The proof follows straightforwardly from the right invariance rela­
tion: 

L exp{ -Od(lI, 71") - ¢d(lI, An (9) 
vEn 

vEn 

L exp{ -Od(1], e) - ¢d(1], A 0 71"-1 n (11 ) 
'lEn 

We note that the Kendall distance, as well as many others used in analysis 
of ranking data, is right invariant - see Critchlow [1] for example. 

Another property that would reduce the difficulty in computing C de­
pends on the geometry of 0 induced by d. Take permutations 71", A fixed. 
Define the set of permutations 

(12) 
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Call a distance measure doubly balanced if the cardinalities of the sets 8 
satisfy: 

From the definition of Model II (5), it is clear that the following is true. 

Lemma 5.2.2 If the distance d is doubly balanced then the constant C of 
the definition (5) can be written: 

C(B, ¢;; A, 11") = C((}, ¢;; d(A, 11")) (14) 

We can to use these lemmas to help simulate pairs of permutations ac­
cording to the non-null model of (5). 

The question remains as to which distances de·) are doubly balanced. 
From the "symmetry" of the symmetric group and its graphic representa­
tion as a polytope in n k-l, this property would depend on the relationship 
between the distance measure and the structure of the polytope. Despite 
a first impression to the contrary, it seems that this property will be quite 
rare. 

By looking at the polytope diagram of Thompson [8], we see that for 
k = 4 some of the faces are hexagonal and some are square. If we use the 
Kendall distance measure, then we are computing the minimum number 
of edges traversed moving between two orderings. Choosing two orderings 
(11"-1 and A-I) that are at Kendall distance d( 11", A) = 2, the size of the set 
8(1,1; 11", A) would depend on whether 11"-1 and A-I are at opposite corners 
of a square face, or at distance two on a hexagonal face! In other words, 
the Kendall distance is not doubly balanced. 

DISTINGUISHING BETWEEN THE MODELS 

One of the natural questions is what are the chances of distinguishing 
between the (non-null) models. The answer depends on what 1I"'S we are 
given. Again the regression analogy will help explain. Consider the model 
(6), rewritten slightly differently as: 

y=x+o:(b-x)+c ( 15) 

and compare it to the shift equation (3). We notice that if the x's do not 
vary much, we have little chance of deciding between the two alternatives. 

In terms of the paired rankings situation: if the pre-rankings (1I"'s) are 
concentrated in one part of the space 0, then it will be difficult to distin­
guish between the two models. In this case, the relabelling 17 will have a 
similar effect to that of attracting the v's towards some A in the vicinity of 
the 11" 0 17'S ! 
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5.3 Estinlation and Hypothesis Testing 

In our current analysis of the two models we will treat the () parameter as 
a nuisance parameter. Our goal is to estimate the 7] or A permutations, and 
to test whether the data support a departure from the null model (that is, 
if 1/ = e or if ¢; = 0 for the two models I and II, respectively). In the parallel 
Euclidean models, it is as if we are treating (72 as a nuisance parameter and 
testing whether a = 0 in the shift model, or whether Q' = 0 in the regression 
model (6). 

The approach will also be to treat the 1l"s as given, or fixed, as in the 
case of the usual regression analysis with fixed x's. 

In the following, we assume that we are given n paired rankings in 
the form {(1l';,vi);i = I, ... ,n}. This information may also be given by 
presenting the pairs of inverse (or bracket form) rankings : {( 1l'i 1, v;-1); i = 
1, ... , n}. Here 1l'-1 = < 1l'-1(1), .. . , 1l'-1(k) > for any ranking 1l', and 1l'-1(r) 
denotes the item that received rank r (out ofthe k ranks) under the ranking 
1l'. 

MODEL I 

From the (conditional) likelihood for Model I, we see that the maximum 
likelihood estimate 1} of the permutation 7] satisfies 

n n 

L d(Vi, 1l'; 017) = min L d(v;, 1l'; 0 7]) 
i=1 'lEn ;=1 

(16) 

The estimate 17 is related to the notion of p-median for the empirical dis­
tribution of the paired rankings; see Diaconis [4] (p. lOS). 

The value of the minimum sum in (16) should have some information on 
how significantly the true 7] differs from e. However, the expected value of 
this sum depends on the nuisance parameter () in the model. 

We proceed by pursuing the paired t-test paradigm a little further. Writ­
ing the differences as {Vi = Yi - Xi}, the test statistic for testing for zero 
difference can be written in its F -statistic form as: 

w = niP 
s; 

n(n - I)v2 

E .6.(Vi, v) 

(n -1) [E.6.(Vi,O) -1] 
E.6.(Vi,V) 

(17) 

(IS) 

(19) 

where, as earlier, we define the distance .6.(s,t) = (s - t)2. We note that 
v is the minimiser (over a) of E .6.( Vi, a). The null hypothesis of no shift 
in the paired t-test is rejected when W is large; and the critical value is 
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determined by the theoretic F1,n-l distribution, which is approximately 
the same as the XI distribution for n large. 

Based on the expression (19) we propose using the following test statistic 
for testing whether 1] is significantly different from e. Compute 

T(e) = "L d(Vi, 1fi O rl) 
"L d(Vi, 1fi 0 e) 

(20) 

where we have explicitly put the (identity permutation) argument e in 
the denominator although it does not need to appear in this partiwlar 
expression. Small values of T( e) indicate large deviations from the null 
hypothesis. 

The actual significance level is diffiwlt to ascertain. One ad-hoc approach 
is to compare n( l/T( e) - 1) with the xi distribution; pursuing the analogy 
with the scalar paired i-test. 

Another approach is based on bootstrapping the statistic T( e). Intuitively, 
we are seeking to determine how stable 1) is under resampling the original 
data set of paired rankings; and how the deviation of 1/ from e (as measured 
by T( e) compared to 1) compares to that of the 1)* from their theoretical 
value ij according to the bootstrap distribution. If 1/ was just a chance 
minimiser, then under resampling other minimisers will appear, and the 
ratio T( e) should be like any of the resampled or bootstrapped T* (1/) 's . A 
bootstrap p-value will tell us how extreme T( e) really is. In the situation 
of ranking data, because of the discrete nature of the space D, values of 
T( e) = 1 can of course occur. This value will correspond to W = 0 in the 
context of equation (19); that is, a zero deviation from the null model in 
the direction of Mode! I deviations. 

Formally, we generate bootstrap samples {( 1f1: , vt); iI, ... , n} and 
compute 

T*(1/) = "Ld(vi, 1f1: 01/*) 
"L d(vi, 1f1: 01/) 

(21) 

where 7)* denotes the maximum likelihood estimate of 77 for the bootstrap 
sample. If we produce B bootstrap samples then we will have statistics 
{Tb* (7/); b = 1, ... , B} and we define the bootstrap p-value by 

p* = [Hb : T(e) 2': Tb*(7/n] / B (22) 

MODEL II 

Estimating A of Model II by maximum likelihood is more problematic and 
so the following alternative heuristic is employed. 

Under the null model, for any A, the value of d(v, A) should be approxi­
mately equal to d( 1f, A). In other words, on average, v should be no closer 
or further from A than 1f is. Nothing can be said if 1f = A. As Critchlow and 
Verducci [:3] point out in their work, the way the distance d(v, A) relates 
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to d(7r, A) does also depend on where 7r is situated with respect to A -
our assumption that the ratio should approximate one in the null case will 
really only be valid if the the collection of 7r; 's are fairly well spread out. 
For the time being we treat this limitation as one treats the limitation of 
regression methods when the spread of the independent variable is small 
in the sample. We propose the following procedure. 

Define 

R(A) = ~ t d(v;, A) 1(7r # A) 
n. d(7r;, A) 

1=1 

(23) 

and suppose that 5. is the minimiser of R(A). If R(5.) is much smaller than 
1, then it would indicate that there is a departure from the null model in 
the direction of 5. in the sense of Model II. The test statistic we propose is 
of the form 

U(q) = R(5.) 
q 

(24) 

where we would naturally like to substitute an expected value of R(A) 
(under the null hypothesis) for q. The problem, as Critchlow (1990, private 
communication) has pointed out, is that this expected value depends on 
the nuisance parameter B in the null model. We are currently investigating 
a method based on estimating B first, and estimating the expected value 
of R(A) subsequently. Meanwhile, we propose using q = 1, which seems to 
lead to a conservative test statistic. 

In order to ascertain how significant the departure of U (1) is from its 
nominal value 1, we again propose a bootstrap approach. Intuitively, we 
wish to see if the departure of R(5.) from its (approximate) theoretical 
value 1 is significantly different from the departures of R*(5.*) from their 
theoretical (bootstrap) value R( 5.) . 

Formally, we compute 

U* = U*(R(5.)) = R*(~*) 
R(A) 

(25) 

for each bootstrap sample and compute a bootstrap p-value as defined in 
(22) with T replaced by U. 

COMPUTATIONAL ISSUES 

Computing the statistics T(e) or U(q) involves minimising a sum (over n 
paired rankings) with respect to the set of permutations. This calculation 
can be done approximately if a good guess for the minimiser is available 
and then a local minimiser is sought in the neighbourhood of the guess (see 
the "PINOUGHT" routine of Critchlow [1]). We chose to seek the global 
minimum by an exhaustive search procedure - the practical feasibility of 
this choice becomes unrealistic for k > 7. 
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The computational load is of course much more serious given the boot­
strap analysis which requires finding the minimiser for each bootstrap sam­
ple. For this reason bootstrap replicates were limited to B = 100. The boot­
strap samples were generated in the program by multinomial sampling with 
the aid of IMSL routine "RNUND" . 

We computed the Model I and II statistics based on three permutation 
metrics: Kendall's 1" distance (1); Spearman's rank correlation (8); and the 
Footrule (D). (The notation corresponds to Diaconis' [4] (p. 112) .) Hence, 
there are six candidate statistics: the T and the U statistics for each metric 
1,8, and D . 

5.4 Analysis of Simulated Data Sets 

In order to gain some experience with the methods proposed in the previous 
section, we generated data sets according to the two models described in 
Section 5.2. Each of the six test statistics was computed for each data set 
created, and the corresponding bootstrap p-value was computed. 

The pre-rankings were generated at random (subroutine "RNPERM" 
of IMSL) and for each pre-ranking the corresponding post-ranking was 
generated according to the appropriate model. The distance d used in the 
generation of the paired rankings was the Kendall metric I. Rankings of 
k = 5 items were generated, and the sample sizes were n = 50 for each 
test data set. As mentioned earlier, in the analysis of each test data set, 
bootstrap samples of size B = 100 were chosen. Such an analysis runs for 
about six minutes of CPU time on a CONVEX computer. However, paying 
greater attention to vectorization should reduce the time further. 

Note that the rankings are expressed in their inverse or bracket forms 
in the tables. In order to obtain some feeling for the non-uniformity of the 
distribution of 1/ given 7r we also note that for () = 0.1 the value of e- O.1 is 
0.90, so that for models I and II (with 1; fixed), for each unit of distance 
further away from 7r, the probability of obtaining such a 1/ drops by a ratio 
of 0.9. For the Kendall metric for k = 5, the range of values is 0 :::; I :::; 10. 

In Tables 1 and 2 we have analysed data generated for a null model 
with () = 0.1 and () = 0.2, respectively. The true 17 under Model I is the 
identity < 12345 >; and the true A under Model II is of course arbitrary, 
or undefined. We see that the p-values are all large, and that we would not 
suspect deviations from the null model if we were given these data sets. 
For the case of larger values of () (say () = 0.3), we have found that the 
estimated value of 17 is nearly always the identity ranking. 

In Tables 3, 4, and 5 we have analysed data sets generated from Model 
I, with () = 0.1, () = 0.2 and () = 0.3, respectively. In this simulation 
17 = < 25134 >. We see that the T test does not succeed for the first 
case. In this case, the post-rankings 1/ are not very tightly concentrated 
about the shifted pre-ranking 7r 017, and so the detection of the effect of 17 
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is difficult. For the cases (J = 0.2 and (J = 0.3 the T test has much better 
success, and in the latter case has little trouble in correctly estimating 'l, 
and in detecting its significant effect. For the three cases, the U tests show 
no significant deviations from the null model as is to be expected given 
that they are sensitive to different forms of deviation from the null model. 

Tables 6,7,8, and 9 are the results of analysing test data sets generated 
from Model II with various values of (J and ¢, for a given A = < 25134 >. 
(There is no connection between the role of '7 in Model I and A in Model 
II - we just arbitrarily chose the same permutation for generating the 
non-null test data sets.) 

There seems to be something a little strange about the behaviour of the 
test based on U. For (J = 0.1 it performs reasonably, as it does for the case 
(J = 0.3, ¢ = 0.3. However, for the case (J = 0.2, ¢ = 0.3 it fails (and does so 
on several repetitions ofthe simulation experiment). This anomaly could be 
connected with some of the limitations and reservations about the efficacy 
of the procedure which were mentioned in the previous section. Neverthe­
less, there is some room for optimism based on the tabulated results. 

As anticipated, the T test does not detect deviation in the Model II 
direction. In this sense, notwithstanding the problems concerning U, if the 
T test does come up significant it seems that we can be quite confident 
that something of a Model I departure is being picked up. 

It is clear that these test data sets do not provide a comprehensive jus­
tification for using the proposed test statistics. In particular, the U test 
for Model II type departures, being derived in a heuristic manner, needs a 
more extensive investigation of its properties. Nevertheless, these data sets 
do indicate that the procedures are potentially very useful for detecting 
two very different departures from null models for paired rankings. 

TABLE 1: 
Test Data - Null Model 

(k = 5, (J = 0.1, n = 50, B = 100) 

Statistic Metric Statistic Optimal Perm Bootstrap 
Value (1} or A) p-value 

Kendall 0.947 < 21543 > 0.56 
T Spearman 0.968 < 21543 > 0.59 

Footrule 0.972 < 12543 > 0.61 

Kendall 1.000 < 45213 > 1.00 
U Spearman 0.940 < 34512 > 0.62 

Footrule 0.972 < 34512 > 0.94 
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TABLE 2: 
Test Data - Null Model 

(k = 5, () = 0.2, n = 50, B = 100) 

Statistic Metric Statistic Optimal Perm Bootstrap 
Value (77 or A) p-value 

Kendall 0.936 < 13425 > 0.33 
T Spearman 0.928 < 13425 > 0.14 

Footrule 0.914 < 14325 > 0.16 

Kendall 1.007 < 23145 > 0.86 
U Spearman 0.967 < 25413 > 0.86 

Footrule 0.966 < 21435 > 0.86 

TABLE 3: 
Test Data - Model I 

(k = 5, TJ = < 25134 >, () = 0, n = 50, B = 100) 

Statistic Metric Statistic Optimal Perm Bootstrap 
Value (77 or A) p-value 

Kendall 0.889 < 25341 > 0.36 
T Spearman 0.934 < 25341 > 0.48 

Footrule 0.899 < 25341 > 0.18 

Kendall 1.025 < 25143 > 1.00 
U Spearman 0.953 < 53124 > 0.74 

Footrule 0.985 < 52314 > 0.99 
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TABLE 4: 
Test Data - Model I 

(k = 5,7] = < 25134 >, () = 0.2, n = 50, B = 100) 

Statistic Metric Statistic Optimal Perm Bootstrap 
Value (7] or A) p-value 

Kendall 0.796 < 21435 > 0.01 
T Spearman 0.873 < 25134 > 0.09 

Footrule 0.862 < 21435 > 0.09 

Kendall 1.03:3 < 23145 > 1.00 
U Spearman 0.979 < 15243 > 0.97 

Footrule 0.993 < 13254 > 0.99 

TABLE 5: 
Test Data - Model I 

(k = 5,7] = < 25134 >, () = 0.3, n = 50, B = 100) 

Statistic Metric Statistic Optimal Perm Bootstrap 
Value (7] or A) p-value 

Kendall 0.785 < 25134 > 0.00 
T Spearman 0.834 < 25134 > 0.00 

Footrule 0.792 < 25134 > 0.00 

Kendall 0.956 < 32415 > 0.86 
U Spearman 0.927 < 32415 > 0.45 

Footrule 0.954 < 43512 > 0.88 
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TABLE 6: 
Test Data - Model II 

(k = 5,'x = < 25134 >, B = 0.1, ¢ = 0.1, n = 50, B = 100) 

Statistic Metric Statistic Optimal Perm Bootstrap 
Value (17 or ,X) p-value 

Kendall 1.000 < 12345 > 1.00 
T Spearman 1.000 < 12345 > 1.00 

Footrule 0.989 < 15342 > 0.82 

Kendall 0.831 < 25134 > 0.07 
U Spearman 0.821 < 25134 > 0.00 

Footrule 0.823 < 25134 > 0.01 

TABLE 7: 
Test Data - Model II 

(k = 5,'x = < 25134 >, B = 0.1, ¢ = 0.3, n = 50, B = 100) 

Statistic Metric Statistic Optimal Perm Bootstrap 
Value (1] or ,X) p-value 

Kendall 0.939 < 12453 > 0.43 
T Spearman 0.951 < 12453 > 0.30 

Footrule 0.973 < 12453 > 0.39 

Kendall 0.835 < 21534 > 0.06 
U Spearman 0.856 < 21534 > 0.04 

Footrule 0.843 < 21534 > 0.02 



88 P. D. Feigin 

TABLE 8: 
Test Data - Model II 

(k = 5,..\ = < 25134 >, B = 0.2, ¢ = 0.3, n = 50, B = 100) 

Statistic Metric Statistic Optimal Perm Bootstrap 
Value (11 or ..\) p-value 

Kendall 1.000 < 12345 > 1.00 
T Spearman 1.000 < 12345 > 1.00 

Footrule 1.000 < 12345 > 1.00 

Kendall 0.951 < 25413 > 0.85 
U Spearman 0.917 < 25413 > 0.47 

Footrule 0.925 < 25431 > 0.64 

TABLE 9: 
Test Data - Model II 

(k = 5, ..\ = < 25134 >, B = 0.3, ¢ = 0.3, n = 50, B = 100) 

Statistic Metric Statistic Optimal Perm Bootstrap 
Value (1} or ..\) p-value 

Kendall 1.000 < 12345 > 1.00 
T Spearman 1.000 < 12345 > 1.00 

Footrule 1.000 < 12345 > 1.00 

Kendall 0.739 < 25143 > 0.01 
U Spearman 0.760 < 25143 > 0.00 

Footrule 0.757 < 25143 > 0.00 

5.5 Analysis of Rogers Data 

The data set due to Rogers [7] was reported in Critchlow and Verducci 
[3] and they discuss the meaning of the items being ranked. In brief, the 
rankings represent the ordering offour criticism styles (A,C,P,T) which are 
translated in Table 10 to styles (1,2,3,4) respectively. Thirty-eight students 
were asked to rank four passages, each of which corresponded to one of the 
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styles, before and after a literature course. The data is given in Critchlow 
and Verducci [3]. 

The analysis performed by Critchlow and Verducci [3] was centered on 
testing whether post-rankings were being attracted to a particular given 
ranking « 2134> = < PCAT » which was that of the course instructor. 
In terms of our models, their procedure tests for alternatives of the Model 
II type. 

We applied our method of analysis to the same data, and the results are 
presented in Table 10. 

TABLE 10: 
Rogers Data 

(k = 4, n = 38, B = 100) 

Statistic Metric Statistic Optimal Perm Bootstrap 
Value (17 or .A) p-value 

Kendall 0.647 < 4123 > 0.00 
T Spearman 0.709 < 4123 > 0.00 

Footrule 0.653 < 4123 > 0.00 

Kendall 0.817 < 2134 > 0.13 
U Spearman 0.796 < 2314 > 0.05 

Footrule 0.824 < 2143 > 0.21 

The results show that there is considerably stronger evidence that the 
deviation from the null model is towards Model I. The evidence of a devi­
ation from Model II is not as strong, although the bootstrap p-values for 
U may be conservative as discussed previously. 

If we accept the conclusion of a deviation towards Model I, then we are 
led to a different understanding of the effect of the course on the students' 
ranking. Rather than diverting the students' preferences to a particular 
ranking, the effect of the course is to change the perception of the four 
styles in the eyes of the students. 

The optimal 1] is < 4123 > which corresponds to (2341) in the direct 
ranking notation (17( 1 ), ... , 77( 4)) where 17( i) is the rank assigned to item i. 
In terms of the four styles, they are transformed as follows: 

ACPT 
CPTA (26) 

After the course, students are treating C as they did A before the course, 
and so on. 
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If we wish to consider the Model II test statistics U, then we see that 
the estimated A is < 2134 > = < CAPT >. This ranking is at Kendall 
distance two from the idealised ranking < PCAT > tested for by Critchlow 
and Verducci [3]. 

This discussion leads one to suggest that the tools presented here can 
help discriminate between different psychological interpretations of the way 
in which a teacher educates his students. Is the teacher causing his students 
to think like he does (Model II); or is he enlightening the subject matter, 
causing the students to label the issues differently (Model I)? In the latter 
case, the students are consistently ranking according to their pre-course 
preference function, but the items have been re-ordered with respect to 
that function. 
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Maximum Likelihood 
Estimation in Mallows's Model 
U sing Partially Ranked Data 
Laurel A. Beckett 1 

ABSTRACT Consider a sample from a population in which each indi­
vidual is characterized by a ranking on k items, but only partial informa­
tion about the ranking is available for the individuals in the sample. The 
problem is to estimate the population distribution of rankings, given the 
partially ranked data. This paper proposes use of an EM algorithm to ob­
tain maximum likelihood estimates of the parameters in Mallows's model 
for the distribution of rankings. Medical applications are discussed where 
the items are manifestations of a disease or a developmental process, the 
ranking is the sequence in which they first appear over time, and the par­
tial ranking results from observation of the subjects cross-sectionally or at 
a few specified times. The methods are illustrated for a longitudinal study 
of a community population aged 65 years and older, where the signs are 
self-reporting of impairment in different physical activities. 

6.1 Introduction 

This paper addresses the general situation in which each individual in a 
population has a specified sequence or ranking of k items, such as the 
order in which signs of a disease appear over time. Knowing the population 
distribution of rankings is important in clinical settings. For example, in 
AIDS research, the distribution of sequences in which the T lymphocytes' 
response to different antigens is lost could be used to stage asymptomatic 
patients or to monitor response to therapy. The sequence in which skills are 
acquired is of interest in developmental psychology in children. Conversely, 
in gerontology, physical or cognitive functions may be lost successively with 
age or disease. 

If a large sample of people could be monitored carefully over a long 
enough time period for all the signs to appear, the population distribution 
of rankings could be estimated directly. Obtaining complete data on the 

IHarvard University, Cambridge, MA 
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sequence of events is often difficult, however. Some signs may have appeared 
before the start of the study, and the order of appearance may not be 
known. Death, loss to follow-up, or termination of the study may prevent 
an individual from being followed until all signs have appeared. Finally, 
observations may be available only at a limited number of time points or 
even at a single time point, as in cross-sectional studies. The exact sequence 
of appearance of signs in an individual will then be unobservable. Such 
studies give rise to partial rankings of the items. 

This paper extends the results of Smith and Evans [13] for cross-sectional 
data (one occasion of measurement for each individual) to the general case 
with observations at V epochs or occasions. Section 6.2 reviews a para­
metric model for ranking distributions proposed by Mallows [11] and gives 
notation for the partial ranking setting. Section 6.3 presents a method for 
obtaining maximum likelihood estimates and states some of their proper­
ties. In Section 6.4, the methods are illustrated for items measuring physical 
function in a sample of persons aged 65 years and older. 

6.2 Notation 

Let the complete sequence of k items for an individual be denoted by R = 
R1, ... , Rk, where Rj is the rank of the ph item (in the clinical setting, 
the order of appearance of the ph sign). The distribution of the vector R 
on Sk, the set of all k! permutations of the integers 1, ... , k is given by 
f(r) = pr[R = r]. 

For many clinical examples, such as the signs or symptoms of a disease, 
the course of the disease is likely to follow similar, if not identical, patterns 
in different patients. Researchers in aging and in child development have 
suggested that there is a natural hierarchy of physical functions, so the 
sequence in which skills are acquired by children or lost in illness or aging 
is most likely to correspond to the natural ordering [10]. Deviations may 
occur but extreme changes of the ordering are unlikely. These theoretical 
considerations suggest a population distribution where most individuals 
have sequences which are near each other in some metric on Sk. 

Mallows [11] proposed a parametric model for f embodying this idea, 
having the form 

f(r) = C(k, A)e->"d(r,ro) (1) 

where ro is a location parameter, the most likely permutation, on Sk. The 
function d(r, ro) is a distance which measures how far the individual's se­
quence is from the most likely sequence, and A is a scale parameter, so that 
e>" is the proportional reduction in the likelihood when the distance from 
ro is increased by a single unit. The constant of summation C( k, A) is given 
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by 

C(k, A) = [ L: e-Ad(r,ro)] -1 (2) 
reSk 

Various choices are possible for the metric d. Diaconis [5] discussed sev­
eral choices. The example here uses Kendall's metric, which defines d(r, s) 
to be the minimum number of transpositions of adjacent items to go from 
r to s, but the methods and results can be generalized to other metrics. 

Feigin and Cohen [6] gave an algorithm for maximum likelihood esti­
mation when the complete ranking is available for an individual. Fligner 
and Verducci [7] have discussed generalizations of Mallows's model, and 
Critchlow [2] considered extensions to partially ranked data. In other work, 
Fligner and Verducci [7] have used the idea of a metric on ranks to test the 
hypothesis of uniformity over all rankings against an alternative reflecting 
a trend. 

In the clinical setting with observations at V epochs or occasions, only 
partial rankings are available. For each individual there is an unobservable 
complete ranking R and a vector T where the entry Tv denotes how many 
signs have appeared by the vth epoch of observation. The times of observa­
tion are assumed to be independent of the rankings. The observable data 
for individual i at epoch v are Tv and an unordered list of the signs which 
have appeared by that time; these can be summarized by a vector X which 
records for each sign j when it was first observed: 

if Rj ~ Tl , 

if Tv < Rj ~ Tv+l , 

if Tv < Rj. 
(3) 

Thus smaller values of Xj denote those signs observed earlier, which cor­
respond to those signs with lower ranks for that subject. 

The data X will generally provide information that the original ranking 
R could only be one of a small subset of the permutations Sk. For example, 
suppose that k = 4 and V = 2, with one symptom observed at the first time 
and two more at the second time. The representation Xl = 0, X 2 = X3 = 1, 
X 4 = 2 indicates that symptom 1 was already present at the first time of 
observation, symptoms 2 and 3 appeared between the first and second times 
of observation, and symptom 4 had not yet appeared at the second time 
of observation. This vector X could have arisen either from the ranking 
(1,2,3,4) or from (1,3,2,4). Thus a given pattern of censoring, T, partitions 
Sk into equivalence classes of rankings, each of which would give rise to the 
same partial ranking when the censoring pattern T prevails. 

Critchlow [2] noted that it is useful to represent the equivalence classes 
determined by the pattern of observation times, T, as right cosets. Let ST 
denote the subgroup of Sk formed of all permutations which give partial 
rankings equivalent to that obtained from (1,2, ... , k) under the observa­
tion pattern T. For each equivalence class of ran kings under the observation 
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pattern T, there corresponds a right coset of ST. Each partial ranking X 
can be identified with the set of all full rankings which induce it under 
this observation pattern, and this set is a right coset of ST, namely, STr, 
where r is any permutation which induces this partial ranking. We write 
this set as ST(X). The set of all such partial rankings for a given T can be 
identified with the set of all corresponding right cosets, denoted Sk 1ST. 

The next section discusses the use of the Xj to estimate the two pa­
rameters of the Mallows model, the location parameter ro and the scale 
parameter A. 

6.3 Maximum Likelihood Estimation Using the 
EM Algorithm 

When the rankings R are known for all the individuals in the sample, the 
maximum likelihood estimates can be obtained by a simple iterative pro­
cess, as described in Feigin and Cohen [6]. The likelihood becomes much 
more complex in the partial ranking setting. Critchlow [2] modified the 
Mallows model to permit metrics defining the distance between partial 
rankings. This approach is appealing when the goal is to describe the dis­
tribution of partial rankings under a fixed design for incomplete informa­
tion, T. The methods are computationally tractable as well. In the clinical 
setting, however, the goal is to estimate the population distribution of the 
complete sequences, and the times of observation T are random variables. 
Thus the approach used in Smith and Evans [13] for a single occasion of 
observation (V = 1) was to adapt the EM approach proposed by Dempster, 
Laird, and Rubin [3] and estimate the true frequencies of the full rankings 
in the sample, then maximize the resulting likelihood. In the present paper, 
this technique is extended to multiple occasions of measurement. 

The steps in the EM algorithm are: 

1. Initial step. Obtain initial estimates of the location parameter ro and 
the scale parameter A. 

2. E-step. Use the current parameter estimates to estimate the expected 
value of the sufficient statistics for the complete ranking data. 

3. M-step. Use the estimated sufficient statistics to obtain maximum 
likelihood estimates of the two parameters. 

The E-step and M-step are iterated until convergence is obtained. 
The initial estimates are determined by the marginal frequencies of the 

times of first occurrence of the k items. The mean times of first occurrence 
are calculated by 

n 

Xj = L:Xj(i) (4) 
;=1 
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where i indexes the subjects in a sample of size n. The initial rank of item 
j, RU), is one more than the number of items j' with Xjl < Xj. Thus 
the most frequently occurring symptom is estimated to have rank 1, and 
the least frequent to have rank k. A reasonable initial estimate for>. is 
to average (k - XRJ/(k - XRj+1 ) over j and take the logarithm of the 
average. This estimate is based on the property of Mallows's model that 
there is a constant reduction in the likelihood, eA , for every unit increase 
in the distance from the most likely permutation. In practice, convergence 
does not seem particularly sensitive to choice of the initial value for >.. 

Under the assumption that Rand T are independent, the (unobservable) 
counts n(r), the numbers of individuals with sequence r, are sufficient for 
the scale and location parameters. The E step of the EM algorithm requires 
estimation of these numbers using the current estimates of ro and >. and 
the observed counts with each partial ranking, m(X). For each person in 
the sample, the possible permutations which could have given rise to the 
observed data under the sampling pattern T are identified by using right 
cosets, noting that X and r are compatible if r belongs to the right coset 
determined by X under T, ST(X). A necessary and sufficient condition for 
r E ST(X) is: 

for all j, j'. (5) 

This condition guarantees that items ranked lower in R occur at earlier 
occasions of observation in X. 

The likelihood of each possible permutation r in ST(X) is found using 
equation (I), and the relative likelihood over all of permutations in ST(X) 
is given by 

e-Ad(r,ro) 

gx(r) = 2: -Ad(s r ). 
seST(X) e ' 0 

(6) 

The observed number of individuals with each partial ranking, m(X), is 
then distributed over the full rankings in ST(X) to give the E-step estimates 
of the number observed with each full ranking, n(R). Since r may give 
rise to different partial rankings under varying observation patterns, it is 
necessary to sum over all X, giving 

n(r) = L m(X)gx(r)I[resT(x)]. (7) 
X 

The M step then finds maximum likelihood estimates of the parameters 
ro and >., using the current estimates n(r) ofthe complete data on permuta­
tions for each individual in the sample. This part of the algorithm has been 
described in Smith and Evans [13], following Critchlow [2]. Maximizing the 
likelihood iteratively over all possible estimates of ro is usually unnecessary 
in practice, since the likelihood declines rapidly away from the initial guess, 
regardless of >.. A modified method has been implemented which estimates 
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). for the current estimates of the complete data and for the initial estimate 
of 7'0, then checks the rankings in the neighborhood of the initial estimate 
to see if re-estimating ). improves the likelihood. The E step and M step 
are iterated until convergence is obtained. 

Theorem 1. Tlle initial estimates feU) for 7'0, based on equation 
(4), are consistent estimates of the true parameters, provided tlJat 
p7'[Tv - Tv -1 < k] > 0 for at least one observation epoclJ v. 

PROOF: By the Strong Law of Large Numbers, the sample mean times 
of first occurrences Xj defined in equation (4) converge almost surely to 
their population means Ilj. Without loss of generality, let 7'0 = (1, ... , k). 
It now suffices to show that Pj < Pj I if j < j'. 

Fix a pair of items with j < j'. Partition the sample space of all possible 
rankings, ,'h, into (k - 2)! subsets corresponding to the possible choices of 
ranks for the other k - 2 items. Each cell in the partition then contains two 
rankings, one with Rj < Rjl and one with Rj > Rjl. The probability of 
the second sequence, with items j and j' in the "wrong" order, is always 
less than the probability of the first sequence by at least a factor of e-)., 

since it requires at least one additional pairwise adjacent switch from 7'0. 

The difference between the mean times of first occurrence of items j and 
j' is given by 

2..: (Vi - v) (P7'[Xjl = V',Xj = v]- P7'[Xj = V',Xjl = v]) 
v<v' 

2..: (Vi - v) 2..: (p7'[Rj < Rj/]- p1"[Rj > Rj/l) 
v'<v A(V',V) 

> 2..: (Vi - v) 2..: p7'[Rj < Ri'l(l- e-).,) 
V'<V A(V',V) 

(1- e-).,) 2..: (Vi - v)p1"[Xjl = Vi, Xj = v] 
v<v' 

> (1 - e-).,)p7'[Xj < Xj/]. (8) 

where A(v',v) denotes the cells in the partition which give items j and j' 
the times of occurrence v and Vi. Note that the last line of equation (8) 
contains the probability that items j and j' appear at different times and 
in the correct order; this probability depends on the observation pattern 
T, on the positions of j and j' in the most likely ranking 1"0, and on the 
parameter ).. The probability will be positive if any symptoms ever occur 
at different times .• 

Rema7'ks 

a. The probability in the last line of equation (8) that items appear at 
different times and in the correct order depends on the observation 
pattern T, on the positions of j and j' in the most common ranking 
7'0, and on the parameter ).. The probability will be smaller for items 
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whose true ranks are adjacent, for small values of ,x, and when sam­
pling times are rarely expected to occur between items. For example, 
it may be difficult to distinguish between the last two items if few 
people in the study are observed at a time when all but one symptom 
has occurred. 

b. Theorem 1 is stated for Kendall's metric, but the proof is valid for 
any metric for which the distance from the origin increases when 
two items are transposed out of their "correct" order relative to each 
other. This class includes Spearman's metric. Fligner and Verducci 
[7] discussed more general families of models with this property. 

c. Equation (8) can be used to give a lower bound on the probability that 
the initial estimates Rj are correct, since this requires that J.ljl > J.lj 
for all j', j with Rj' > Rj. 

Theorem 2. All upper bound on tile probability that tile iIlitial guess at 
tile most likely ranking is wrong is given by: 

pr[ro i= ro] S L E[e-cU,j')NU,j')] (9) 
j<jl 

wllere N(j, j') is the number of individuals for wllOm items j and jf occur 
at different times, and c(j, j') is a positive constant depelldillg on ,x. 

PROOF: As in Theorem 1, assume that the most likely ranking is 
(1, ... , k). The initial guess at the most likely ranking will be wrong if any 
of the pairs of mean first occurrence times are reversed from the correct 
order, so that 

pr[ro i= ro] < L pr[Xj' < Xj] 
j<j' 

L ENpr[Xj' < Xj IN(j,n] 
j<jl 

< L 2EN[e- N(j,j')f 2 /(2pQ+2f/3)] 

j<jl 
(10) 

where the last inequality follows from a result in Uspensky [14], with p 
defined to be the probability that item j' occurs before item j if they 
are not tied, q = 1 - p, and € = .5 - p. The exponential term in the 
last line of equation (10) is decreasing in p, and, for Kendall's metric, 
p < e->'(jl-j) < .5, so that the probability of equation (10) is bounded by 

'"' -N(j /)(1/4 - e->'UI-j) - e-2AU'-j) 
pr[ro i= rol < 2 ~<'I EN [exp( 1/~ + 4/3e->'U'-j) _ 2e- 2>'U'-j) )l. (11) 

J J 
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Provided that the distribution of observation patterns T guarantees some 
untied observations, this probability converges to 1 rapidly as the sample 
SIze mcreases. • 

Conditional on the true ranking ro being known, the likelihood f(RIA) is 
a regular exponential family with regard to A. Dempster, Laird, and Rubin 
[3] showed that repeated application of the E and M steps leads to the 
maximum likelihood estimate based on the incomplete data in the regular 
exponential family case. Thus, if the correct estimate of the true ranking ro 
has been obtained, the EM procedure will lead to the maximum likelihood 
estimate of the scale parameter, A. Theorem 2 ensures that the probability 
of the correct estimate being chosen is close to 1 for large samples. In 
the low-probability case that the correct estimate of ro is not chosen, the 
properties of the EM algorithm for estimating A are not known. 

Testing goodness of fit of the Mallows model is complicated by the pos­
sibility of a large number of cells (kV +I possible values of the vector X). 
As in the cross-sectional case presented in Smith and Evans [13], where 
V = 1, the expected number of observations in cell X can be calculated, 
conditional on the pattern of times of observation, T, as 

E[m(X)] = ( (12) 
X/with sameT rEST(X) 

Asymptotically, if ro were known, the chi-square statistic l:X(m(X) -
Em(X))2 jEm(X) has a chi-square distribution with k(V + 1) - 2 degrees 
of freedom (one degree lost for fixing the total number for each pattern T, 
one for estimating A.) In practice, if n is large enoughto justify a goodness 
of fit test, the probability of having the correct value for the most likely 
sequence ro is near 1, and cells can be combined if the expected values are 
too small. The goodness of fit test is illustrated for the data set in the next 
section. 

More detailed diagnostics can be carried out if the Mallows model does 
not appear to fit well. Patterns of deviation may be identified by a resid­
ual analysis, similar to the spectral analysis proposed in Diaconis [4, 5]. 
This analysis is particularly straightforward for Kendall's metric. For a 
fixed censoring pattern, T, each of the possible realizations of X has the 
same number of rankings in the corresponding right coset, ST(X). It can 
be shown by symmetry arguments that the probability under Mallows's 
model with Kendall's metric of the coset is proportional to the minimum 
distance from ro to a compatible ranking in the coset. Since the probabil­
ity decreases exponentially with distance, we would expect the logarithm 
of the frequencies to decrease linearly with distance. Moreover, the slope 
should be the same for all values of T, although the intercepts may differ. 

Thus the residual analysis begins by finding the shortest distance from a 
ranking in ST(X) to ro, say d(X). Then graphical displays and analysis of 
covariance can be used to check whether the pairs (d(X), log m(X)) follow 
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parallel linear relationships for the values of T. A curvilinear relationship 
would suggest that Kendall's distance may be the wrong metric. Failure 
of parallelism would suggest that T and R are not independent, since 
the values of ro and A may depend on how many ties have occurred and 
whether they are early or late in the observation period. Other deviations 
from parallel lines might identify specific symptoms as failing to fit the 
model. 

6.4 Example 

The methods proposed in Section 6.3 are now illustrated with an exam­
ple involving 3809 non-institutionalized persons aged 65 years and over in 
East Boston who were interviewed annually about common medical and 
social problems of older people. Boston is one center of the US National 
Institute on Aging Established Populations for Epidemiologic Studies of 
Elderly (Cornoni-Huntley et al., 1986) [1]. Smith and Evans [13] looked at 
cross-sectional results from three different sets of questions about physical 
function in the initial year of the study, separately for males and females. 
The discussion in the present paper focuses on a single set of questions, 
the Rosow and Breslau items [12], for which the cross-sectional analyses 
suggested that the Mallows model was a good fit and that the parameters 
were close for males and females. 

In-home interviews were conducted in year 1 and year 4 of the study. 
At each of these times the respondent was asked whether he or she could 
climb a flight of stairs, walk half a mile, or do heavy work around the house 
without aid. Table 1 shows the self-reported ability to perform each of the 
three activities in year 1 and year 4. Data from males and females have been 
pooled. Respondents were excluded from the present analysis if they were 
missing any items at one or both interviews or if the answers were provided 
by a proxy rather than self report. There were 2653 subjects with complete 
responses at both year 1 and year 4 interviews. The most commonly re­
ported symptom of impaired physical function among the Rosow-Breslau 
items was being unable to do heavy work around the house, followed by 
inability to walk half a mile and inability to climb a flight of stairs. This 
is in agreement with the cross-sectional data reported by Smith and Evans 
[13]. 

The present analysis coded the ph item by Xi = 0 if the respondent 
reported being unable to perform the activity at the year 1 interview, Xi = 
1 if the respondent could perform the activity at year 1 but not at year 4, 
and Xi = 2 if the respondent could perform the activity at both years. 
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Table 1. 
Change in Self-Reported Physical Function: Year 1 to Year 4. 

East Boston Older Persons 

Number of Subjects Able to Perform Activity Combinations Unaided 
Yr. 1 Yr. 4 

--H -S- -SW W-- W-H WS- WSH Missing 
129 1 46 3 7 1 23 7 125 

- - H 5 1 2 0 0 0 0 2 4 
-S- 43 0 101 22 1 0 46 19 83 
-SH 21 3 21 10 0 0 4 31 18 
W-- 7 0 2 1 3 0 21 6 10 
W-H 3 0 2 0 1 0 3 3 0 
WS- 8 0 60 12 8 1 224 159 78 
WSH 5 5 65 54 4 7 227 1148 115 

Missing 7 0 9 2 1 1 11 6 21 
W = walk half a mile or 8 city blocks 
S = climb a flight of stairs 
H = heavy work around the house 

Of the 2653 who had complete self report at both interviews, 1148 never 
reported any impairment and 129 were impaired in all activities at both 
interviews. Potential ambiguities in the coding scheme might arise if im­
pairment were reported in one activity at year 1 but not at year 4 and in 
another at year 4 but not at year 1. Such cases were rare (23 out of 2653, 
or less than 1 %) and were handled by using only the time of first report of 
impairment and ignoring recoveries. Thus the 2 people who reported that 
they could do housework but could not climb stairs or walk half a mile 
at year 1 and that they could climb stairs but not walk half a mile or do 
housework at year 4 were coded with X = 0 for walking half a mile, X = 1 
for climbing stairs, and X = 2 for doing heavy work around the house. The 
estimates of the parameters A and ro are based on two years of data from 
the 1374 = 2653 - (1148 + 129) people with some impairment at one or 
more year and no ambiguity and on the first year of data from the 23 with 
self-reports which could not be coded. 

Table 2 shows the partial orderings created from the data in Table 1 by 
using this c.oding procedure. Thus, for example, the 7 people coded with 
X = 0 for walking and climbing stairs and X = 1 for doing housework 
would be consistent with either the sequence walk, stairs, housework or the 
sequence stairs, walk, housework. The most common sequences are those 
consistent with the ordering in which ability to do housework was lost first, 
followed by ability to walk half a mile and to climb stairs. 
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Table 2. 
Partial Rankings from East Boston Physical Function Data Time of First 

Appearance of Inability to Perform Activity 

Time of No. Time of No. Time of 
First of First of First 

Impairment Subjs. Impairment Subjs. Impairment 
WSH WSH WSH 

000 217 001 7 002 
010 44 011 21 012 
020 186 021 25 022 
100 10 101 5 102 
110 8 111 5 112 
120 72 121 65 122 
200 30 201 4 202 
210 9 211 4 212 
220 383 221 227 222 

W = walk half a mile or 8 city blocks 
S = climb a flight of stairs 
H = heavy work around the house 

o = impairment reported at first interview 
1 = impairment reported at second but not first interview 
2 = impairment reported at neither interview 

No. 
of 

Subjs. 

3 
3 

41 
0 
5 

54 
3 
7 

1148 

The parameters of Mallows's model were fitted using the EM algorithm 
as described in the preceding section, and a Fortran program on an IBM 
PC-compatible 386 personal computer. The maximum likelihood estimate 
of the location parameter or most likely sequence was housework, walking, 
stairs, and the scale parameter estimate was A = 1.70. This is consistent 
with the separate analyses of year 1 data for males and females reported in 
Smith and Evans [13], where the same sequence was found for both genders, 
with A = 1.90 for males (based on n = 477 with some impairment) and 1.70 
for females (n = 892). Fitting the Mallows model to the year 1 and year 4 
marginals of the pooled data given in Table 1 for the 2653 with no missing 
data gave similar values, with A = 1.72 for year 1 (n = 1049) and A = 1.91 
for year 4 (n = 1016). The value A = 1.70 can be interpreted to mean that 
every reversal of an adjacent pair of symptoms from the most common 
ordering, heavy work - walk half mile - stairs, reduces the likelihood of the 
new ordering by e1. 70 or about 72%. Fitting the Mallows model not only 
confirms the obvious ordering, but also provides a quantitative summary 
of how strongly this sequence predominates in the population. 

The next question is whether the Mallows model gives an adequate fit 
to the data. There are 27 cells in Table 2, of which 3 (those with X values 
(0,0,0), (1,1,1), and (2,2,2)) are not informative. The remaining 24 cells 
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can be pooled according to the right coset to which they correspond and 
grouped by the partition into which the right cosets divide the space of 
all permutations, using equation (5). For example, the censoring patterns 
with one impairment in one item reported first and the other two later but 
not ordered can all be treated as a group. Conditional on these censoring 
patterns, the expected number can be found by applying Mallows's mod­
el with the maximum likelihood estimates to the total number with the 
censoring pattern. 

Table 3 shows the 24 informative cells grouped according to three possible 
censoring patterns: one symptom each before year 1, at year 4, and never 
seen; one symptom at year 1 or 4 and the other two symptoms both at year 
4 or never; and two symptoms both at year 1 or both at year 4 and the third 
later or never. For each grouping, the possible right cosets are shown and 
the corresponding partial orderings are given. The observed frequencies 
are shown and compared with the expected frequencies under Mallows's 
model with the maximum likelihood estimates. There was good agreement 
between the observed and expected frequencies; none of the three chi-square 
statistics was significant. 

Table 3. 
Adequacy of Fit of Mallow's Model To East Boston 

Physical Function Data 

Time of First 
Impairment Compatible Observed Expected 

(X(W) ,X(S) ,X(H)) Rankings Frequency Frequency 

(0,1,2) WSH 3 2 
(0,2,1) WHS 25 16 
(1,0,2) SWH ° ° (1,2,0) HWS 72 78 
(2,0,1) SHW 4 3 
(2,1,0) HSW 9 14 

(0,0,1 ),(0,0,2),(1,1,2) WSH,SWH 15 12 
(0,1,0) ,(0,2,0),( 1 ,2,1) HWS,WHS 295 294 
(1,0,0) ,(2,0,0),(2,1,1) HSW,SHW 44 50 

(0,1,1) ,(0,2 ,2),( 1 ,2,2) WSH,WHS 116 127 
(1,0,1) ,(2,0 ,2) ,(2, 1 ,2) SHW,SWH 15 18 
(1,1,0),(2,2,0),(2,2,1 ) HWS,HSW 618 607 

W = walk half a mile or 8 city blocks 
S = climb a flight of stairs 
H = heavy work around the house 
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o = impairment reported at first interview 
1 = impairment reported at second but not first interview 
2 = impairment reported at neither interview 

Figure 1 presents a graphical display of the log of the observed frequencies 
of the 24 informative cells versus the minimum distance from the estimated 
most likely ranking. The cells have been grouped more finely than in Table 
3, by exact censoring pattern, and one-half was added to frequencies before 
taking logs since some cells were empty. The plots generally appear con­
sistent with the model, showing parallel lines, although some sample sizes 
are small. Thus, Mallows's model appears to provide an adequate fit to the 
partially ordered data given by the longitudinal data on physical function. 

6.5 Discussion 

The methods here permit estimation of a population distribution of se­
quences from incomplete longitudinal data, that is, when the order in which 
symptoms occur is known only up to a partial ranking. The family of mod­
els proposed by Mallows allows for a most likely sequence, with other se­
quences less likely according to how far they are away from the most likely 
sequence in some metric. This class of models is a helpful way to summarize 
the natural history of disease in a population, where some typical or most 
common sequence of events may characterize many but not all members 
of a population. The methods proposed here allow the use either of cross­
sectional data or, more generally, data collected at a limited number of time 
points. The parameters can be estimated by maximum likelihood using the 
EM algorithm. Goodness of fit can be tested using the expected number of 
observations under Mallows's model, conditional on the censoring patterns 
observed. 

Two key assumptions are made. First, each individual is assumed to 
acquire or lose symptoms in a characteristic fixed sequence. The possibility 
that one symptom may appear, then disappear while another appears, is 
not considered within this model. Second, the pattern of censoring, that is, 
how many new symptoms have appeared by each occasion of observation, 
is assumed to be independent of the individual's sequence. The residual 
analyses described here can be used to test this assumption. If the most 
likely ranking or the change in likelihood for other rankings differs according 
to how rapidly the symptoms are occurring, the plots will fail to have 
parallel lines. 

There are many potential applications of these methods in studying nat­
ural history of disease. In AIDS research, for example, it would be desirable 
to know the order in which positive response to skin tests of various anti­
gens is lost as immune function declines; this would permit more refined 
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FIGUREl 
Model Validation Using Graphical Displays 
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staging of disease, monitoring loss of immune function by less invasive pro­
cedures, and possibly early evaluation of the efficacy of therapy. Further 
research problems include the development of efficient computational meth­
ods for large numbers of symptoms and large numbers of times of observa­
tions and the comparison of estimates for subgroups of people within the 
population. Inconsistent longitudinal sequences, which have been ignored 
here, might be handled by modifying the model or by treating them as 
measurement errors. Finally, a very interesting problem is subset selection. 
It is desirable to be able to identify useful groups of symptoms. For ex­
ample, a set of symptoms could be selected which had the largest scale 
parameter >.; this would give a population distribution highly concentrated 
around a single sequence or permutation, so that most people would have 
a very similar natural history. 
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Extensions of Mallows' ¢ 
Model 
Lyinn Chung1 

John I. Marden2 

ABSTRACT Mallows' ¢> model is a one-parameter exponential family mod­
el for vectors of ranks. Fligner and Verducci have extended this model to 
multistage ranking situations. In this paper we introduce a class of models 
based on so-called orthogonal contrasts of the objects to be ranked, which 
we use to analyze three sets of data. The first set, from the GRE, con­
sists of 98 students' ranking of five words according to their association 
with the word idea. The second is the American Psychological Associa­
tion's 1980 presidential election data. The final set illustrates an approach 
to rank-based analysis-of-variance. 

7.1 Introduction 

The ranking literature contains a series of papers that develops theory and 
practice for a particular set of nonnull ranking models based on Kendall's 
T metric. Mann [23] first presented the basic model in order to exhibit 
an alternative distribution against which Kendall's T test is most powerful. 
Mallows [22] derived this model from the point of view ofranking data, i.e., 
data arising from a number of judges ranking a number of objects. He also 
incorporated the Spearman's p metric into the model. (For a discussion of 
these and other metrics, see Critchlow [10] and Diaconis [14].) The model 
based solely on the T metric was termed the "cp model," a name that has 
become familiar in the field. Later, Shulman [26] arrived at the cp model 
using a slightly different argument. Analysis and use of the cp model can 
also be found in Feigin and Cohen [16], Cohen and Mallows [8, 9], Cohen 
[6], Fligner and Verducci [18, 19], Chung and Marden [5] and Marden [24]. 
Barton, David and Mallows [2] proposed a similar model when there are 
only two distinct types of objects (or ranks). 

The basic cp model has only one parameter, hence would not be expect­
ed to fit especially well for large data sets, large either in the number of 

I Clinical Statistics, Abbott Laboratories, Abbott Park, Illinois 
2Department of Statistics, University of Illinois, Champaign, Illinois 
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judges or objects. Fligner and Verducci [19] greatly expanded the possi­
bilities by extending the model to multistage ranking models. At the first 
stage, the judge decides which object to rank #1. At the second stage, the 
judge decides which of the remaining to rank #2, ... , until the ranking is 
complete. In their IjJ component model, the stages are independent with a 
single parameter for each stage. Setting these parameters equal yields the 
IjJ model. 

Chung and Marden [5] were interested in applying such models to ranked 
data obtained by calculating the rank statistics from independent sam­
ples; data for which popular nonparametric procedures such as Kendall's 
T, Mann-Whitney and Wilcoxon, Jonckheere-Terpstra, Kruskal-Wallis, and 
Friedman tests are indicated. Since observed data is often rife with ties, 
the IjJ model was extended to allow for ties. Also, in order to analyze 
analysis-of-variance problems, a larger class of possible stages, which we 
call orthogonal contrasts, were introduced. 

Marden [24] suggested some models for ranking situations that used con­
tingency table models with the factors being orthogonal contrasts of the 
objects to be ranked. Goldberg's [20] data on the ranking of 10 professions 
on their perceived social prestige was analyzed, continuing work of Feigin 
and Cohen [16], Cohen and Mallows [8, 9], Cohen [6], Fligner and Verducci 
[18, 19], and van Blokland [31]. 

In this paper we apply the above notions to three data sets, hoping 
to show the usefulness of these models in a variety of settings. The first 
consists of 98 students' ranking of five words according to their association 
with the word idea. Fligner and Verducci [18] apply a IjJ component model. 
We look at some other IjJ models based on sets of orthogonal contrasts, 
and find some very satisfactory models. See Section 7.4. In Section 7.5 the 
data consist of the rankings of five candidates for president in the 1980 
American Psychological Association elections. Diaconis [15] presents an 
extensive analysis of this data. Unlike our first example, there is enough 
data (5738 full rankings) to use a complete contingency table analysis. We 
decompose the ran kings into a four-way table by using a set of orthogonal 
contrasts, thereby arranging the data in a format convenient for analysis. 
Using this structure, we compare the results of voters who give full rankings 
to those who only specify their top one, two or three favorite candidates. 

The final example, in Section 7.6, exhibits a possible approach to analy­
sis of variance (ANOVA) based on ranks. There is a vast literature on this 
topic, but not much on testing for two- and higher-way interactions. One 
approach that has gained wide currency is to perform the usual normal­
theory calculations on the ranks rather than the raw data. When testing for 
main effects in location-family models, this method works well. However, 
Thompson [30] shows that in a two-way ANOVA, if both main effects are 
present but there is no interaction, the usual statistic for testing that there 
is no interaction has an asymptotic mean of infinity, suggesting that the true 
level approaches 1. We take a different tack, placing a parametric model, 
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the ¢; model with orthogonal contrasts, on the ranks themselves. Main ef­
fects and interactions are then defined in terms of the model's parameters. 
Although the model we use does not arise from any location-family lin­
ear model, the hope is that the model describes the true distribution well 
enough, and that it presents a convenient framework for an ANOVA. 

Sec.tion 7.7 provides some further discussion of contrasts, in particular 
how to choose them, and why orthogonality is important. 

7.2 The General Model 

We assume we have a set Om of m objects, denoted Om = {o}, 02,"', Om}, 

and the data consist of a number of independent rankings of the objec.ts. 
Mathematically, we are interested in models on Pm == {permutations of the 
first m integers}. A vec.tor y E Pm could be an ordering of the objec.ts, in 
which case Yi = j means objec.t OJ is ranked ith, or it could be a ranking 
of the objects, in which case Yi = j means that object 0i is ranked jth. For 
exposition it does not matter, but the two possibilities do in general give 
rise to distinc.t models. We will present our orthogonal contrast models in 
terms of rankings, so that for example Y = (3,2,4,5,1) means object 01 is 
ranked third, 02 is ranked second, ... , and Os is ranked first. See Remark 1 
for models on orderings. 

Our models are based on sets of orthogonal contrasts of the objects. 
A contrast is a comparison of groups of objects. Consider an example in 
Bockenholt [3] in which there are eight objects == soft drinks: 

Om = {Coke, Pepsi, 7-up, Sprite, Diet Coke, 

Diet Pepsi, Diet 7-up, Diet Sprite}. (1) 

One might wish to compare the colas to the non-colas, or the diet 
drinks to the non-diet drinks. Technically, a contrast C is defined by C == 
(It, ... , IK) where II,"', IK are disjoint nonempty subsets of Om. Then 
some possible contrasts are 

C1 = ({Coke, Pepsi, 7-up, Sprite}, {Diet Coke, Diet Pepsi, Diet 7-up, 
Diet Sprite}; 

C2 = ({Coke, Pepsi, Diet Coke, Diet Pepsi}, {7-up, Sprite, Diet 7-up, 
Diet Sprite}); 

C3 = ({Coke}, {Pepsi}, {Diet Coke}, {Diet Pepsi}); 

and 

C4 = ({Coke, Pepsi}, {7-up, Sprite}). 
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Thus C1 compares the non-diet to the diet drinks, C2 compares the colas to 
the non-colas, C3 compares the four colas to each other, and C4 compares 
the non-diet colas to the non-diet non-colas. 

The value a particular judge has for a particular contrast is defined to 
be the set of ranks of the objects in the subsets II,"', IK relative to the 
union C U == Uf=l h. The relative ranks of the objects within groups hare 
irrelevant. The formal definition follows. 

Definition 1 For y E oPm and C = (h, 12,"', IK)' a contrast of objects 
in Om, the value of the contrast at the ranking y is 

where Yi is the rank of Yi relative to the ranks {Yiloi E CU }. 0 
Continuing the Soft Drink example, suppose Y = (3,8,5,7,6,2,4,1). The 

values of the four contrasts follow. 

Contrast 
Value 

Contrast 
Value 

Values for =38576241 
C1 

({3,5,7,8},{1,2,4,6}) 
C3 

({2},{4},{3},{1}) 

C2 

({2,3,6,8},{1,4,5,7}) 
C4 

({1,4},{2,3}) 

The values for C1 and C2 are found by just grouping the ranks for the 
diet and non-diet drinks, or cola and non-cola drinks, respectively. The 
value for C3 is found by first finding the ranks for the colas, 3862, then 
reranking these relative to each other: 2431. These numbers are the Yi'S. 
C4 is similar but groups the non-diet colas and non-colas. 

Knowing the value of a contrast only gives partial information about the 
entire ranking y. However, if one know the values for enough of the con­
trasts, the entire ranking can be reconstructed. In particular, it is enough 
to know just the pairwise contrasts ({ o;}, {OJ}) for i < j. The minimal 
number needed is m - 1. Special sets of contrasts, orthogonal contrasts, are 
especially efficient. Two contrasts are orthogonal if the comparisons they 
represent are not confounded, as below. 

Definition 2 Two contrasts, C as above and D = {J1,···, JL}, are said 
to be orthogonal if either 

(i) CU n DU = 0; 

(ii) CU c Jz for some I; 

or 
(iii) DU C h for some k. 

A set of contrasts, (C1 , .. . CT), is orthogonal if each pair is orthogonal. 0 
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The orthogonality designation is justified by noting that if Y '" Uniform 
(Pm), then C1(Y), ... , CT(Y) are independent, each distributed uniformly 
over its space. The idea is that if two contrasts involve completely distinct 
sets of objects, or if one contrast makes comparisons solely within one of 
the groups in the other contrast, then the contrasts are orthogonal. 

In the example, C1 and C4 are orthogonal since the first compares non­
diets to diets, while the second is a comparison within the non-diets. Like­
wise, C2 and C3 are orthogonal since the former compares colas to non­
colas, and the latter compares types of colas. None of the other pairs are 
orthogonal. For example, C1 and C2 both involve comparisons of Coke and 
Pepsi to Diet 7-up and Diet Sprite. 

An orthogonal contrast model depends on a set ofT orthogonal contrasts, 
(C1, C2 , ••• , CT). If T = m - 1 then the set of possible values of this vector 
is in one-to-one correspondence with the set ofrankings Pm. Given a set of 
orthogonal contrasts, we consider the T-way contingency table for elements 
of Pm with the factors being the contrasts and the levels being the possible 
values of the contrast. Thus if Y '" Uniform(P m), then the contingency 
table exhibits total independence of the factors, as well as uniform marginal 
distribution for each of the contrasts. Any other log-linear model can also 
be considered. With a sufficient number of replications of Y, the usual 
hierarchical models can be used to analyze the data. See the APA voting 
example in Section 7.4 with m = 5 and 5738 complete observations. 

When the number of observations is not substantially larger than m!, the 
resulting contingency table will be too sparse to fit all the factorial models, 
so one may have to collapse some categories or make do with only lower­
order models, or both. In many examples, one expects to observe a trend 
in the Yi'S given by the order of the groups in a contrast C. It may then be 
sensible to collapse the categories of C by using the J onckheere-Terpstra 
statistic, i.e., 

d(C(y)) = 2: 2: I({Yi > Yj}), (2) 
iElk jEl, 

k<l 

where I(A) is the indicator function of A. Now d(Y) == (d(C1(y)), ... , 
d( CT(Y))) is assumed to be a sufficient statistic. One can also combine 
contrasts in the following way. If for contrasts C and D as above, CU = h 
for some 1, we can define the combined contrast oflength K + L - 1 by 

(3) 

If we now use (2) to reduce the model, we have d(C* D(y)) = d(C(y)) + 
d(D(y)). 

A special case of the model that assumes independence of the contrasts is 
the tP model, the exponential family model with d as the natural sufficient 
statistic. That is, for parameter D. E RT and set of orthogonal contrasts 
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C == (C1,···, CT), the density of Y is 

f(y; H.., C) = e!'.<!(y)- I>I1(8;;C;) (4) 

with respect to Uniform(Pm). Since the contrasts are independent under 
the dominating measure, and the density factors, the contrasts are indeed 
independent under (4). From Chung and Marden [5], we have that for real 
B and contrast C, 

K 

w(B; C) w#cv(B) - LW#Ik(B), (5) 
k=l 

where 

Wq(B) = ~ln [it1~e;:)]. 
Note that if we can combine two contrasts as in (3), then setting their 
parameters equal in (4) will automatically combine them in the natural 
sufficient statistic. 

Mallows' ¢ model with modal ordering (Ol,02, ... ,Om) is (4) with C = 
({Od, {02}'···' {Om}), and the model in Barton, David and Mallows [2] is 
(4) with C = (Il,h). The general model with T = 1 contrast is given in 
Critchlow [10]. See Remark 3. 

Remark 1 When y E Pm represents the ordering of the objects, the 
contrasts are defined on the ranks rather than the objects. Thus the sets Ik 
are subsets of the ranks {I, 2, ... , Tn}. The values of the contrasts are then 
given in terms of the indices of the objects. Fligner and Verducci [18, 19] 
introduced such models with the contrasts 

Ck = ({ k }, {k + 1, ... , Tn} ), k = 1, ... , Tn - 1. 

Here, C1 asks which object is ranked first, C2 asks which is ranked first 
among the remaining Tn-I objects, ... , and Cm- 1 asks which of the last two 
objects is ranked higher. Fligner and Verducci present the corresponding 
¢ model, which they call the ¢- component model, as well as the "Free" 
model, which posits the contrasts independent but otherwise unrestricted, 
and some other models with ordering constraints. 

Remark 2 This section is historically backwards. Mallows' ¢ model is the 
starting point, followed by Barton, David and Mallows [2] and Critchlow 
[10], all of whom consider just one contrast. Fligner and Verducci [18, 19] 
were the first to use orthogonal contrasts. Chung and Marden [5] extended 
the ¢-component model to arbitrary sets of contrasts, and Marden [24] in 
analyzing the Goldberg [20] data considered Free versions of those models, 
as well as models in which the contrasts were not necessarily independent. 
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7.3 Ties, Partial Rankings 

The previous section assumes that the data Y consist of complete rankings, 
but it is common for there to be ties, partial rankings or incomplete rank­
ings. Ties may arise in a number of ways. In order-statistic models, one 
starts with a set of independent observations and then ranks them. If the 
underlying distributions are not continuous, there are likely to be ties, and 
in practice even with continuous distributions one often sees ties due to 
roundoff error. In ranking models, it may be that judges are asked to rank 
only their top 3 choices, or sort the objects into groups of 5, etc., or it may 
be that each judge decides how fine to make the ranking. Silverberg [27] 
models situations in which the judges rank the top q of their choices. Diaco­
nis ([14], Chapters 5 and 9) approaches partial rankings group-theoretically, 
and in Diaconis [15] analyzes the APA voting data. Critchlow [10] presents 
a general method, with examples, for extending metrics on full rankings 
to metrics on partial rankings. Smith [24] has an example on medical data 
that consist of the subset of symptoms a person exhibits at a given point in 
time, yielding a ranking of "1" to the symptoms that have appeared, and 
a "2" to those that have not. See Sections 7.5 and 7.6 for other examples. 

There are many ways in which information about rankings can be miss­
ing. The discussion here is geared toward situations wherein the ranking of 
the objects may be only a partial ordering, but it is complete in that for 
any i :f. j, we have either Yi < Yj, Yi = Yj, or Yi > Yj. In contrast, there may 
be m objects, but the judge only sees m' < m of them, hence the unseen 
objects can not be compared to each other nor to the seen ones. Or one 
may only know that the judge prefers "1" to "2" and "3" to "4". The ba­
sic approach below can be followed for these more complicated structures, 
but the notation will become more cumbersome, and in particular the nice 
results for the ¢ model will not necessarily hold. 

The models we present for cases in which Y may have ties are motivated 
by censored-data models. That is, we assume that there is a latent random 
vector W E Pm generated by one of the models in Section 7.2, but there is 
a variable, independent of both Wand its distribution, that "ties" certain 
values in the vector W to produce the observed Y. Note that we have not yet 
specified the convention used to represent a vector with ties. Midranks are 
the most common, but any systematic approach will yield the same result. 
Chung and Marden [5] present an explicit representation of the independent 
variable and the tying mechanism, in which the vector Y consists of the 
integers from 1 to S, where S == S(y) is the number of distinct elements in 
y. We will adopt this convention. 

To illustrate, return to the soft drink example of Section 7.2. A person 
who likes non-diet colas best, then 7-up, then Sprite, then diet colas, then 
Diet 7-up, and lastly Diet Sprite, but who does not make a distinction 
between Coke and Pepsi, or Diet Coke and Diet Pepsi, would have Y = 
(1,1,2,3,4,4,5,6) according to our notation, with S(y) = 6. (Midrank 
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notation would yield (1.5,1.5,3,4,5.5,5.5,7,8).) One whose only distinction 
is between diet and non-diet drinks, preferring the former to the latter, has 
y= (2,2,2,2,1,1,1,1). 

Let the pattern of ties for y be defined by T(y) == (#T1 (y), ... , #Ts(y)), 
where T.(y) = { i I Yi = s}. For the above two examples of y, T(y) = 
(2,1,1,2,1,1) and (4,4), respectively. Then for any distribution P on W E 
Pm, the corresponding probability for y is, conditioning on the ancillary 
T(y) = t, 

pry = y I T(Y) = t] = P[W is consistent with y]. (6) 

Thus the conditional likelihood of any vector y of tied rankings can be 
found by simply adding the likelihoods of all complete rankings that are 
consistent with y. There are 4 complete rankings consistent with y = 
(1,1,2,3,4,4,5,6) given by the possible relative preferences of Coke and 
Pepsi, and of Diet Coke and Diet Pepsi: (1,2,3,4,5,6,7,8), (2,1,3,4,5,6,7,8), 
(1,2,3,4,6,5,7,8) and (2,1,3,4,6,5,7,8). There are 4! x 4! complete rankings 
consistent with y = (2,2,2,2,1,1,1,1) given by the possible rankings with­
in the non-diet drinks and within the diet drinks. 

Whether this model is an appropriate representation for a particular 
situation has to be decided on a case-by-case basis. The least innocuous 
assumption is that the pattern of ties T is independent of the order W of 
the latent ranks. In the medical example above, it is reasonable as long 
as the observation time point is independent of the order of onset of the 
symptoms. In ranking situations, one is assuming that the judge could give 
a full ranking, but (due to time constraints, etc.) does not. This assumption 
seems fine if each judge is asked to give the same pattern t. However, if 
different judges give different patterns, it may be inappropriate to consider 
the judges' distributions of W to be homogeneous over patterns. See Section 
7.5. 

For an arbitrary model on Pm, the presence of ties can cause identifi­
ability and computational problems, but these are slight for the <p model. 
Chung and Marden [5] show that for given C, ~ and pattern of ties t, Y 
has conditional density 

f(y ' () C t) = ep.,i!l(y)-l: iJ1(8;;C;,y) ,-,-, , (7) 

where d(C(y)) is defined again by (2) even when y has ties, and 

K S K s 
w(();C,y) = w#d()) - LW#Ik (()) - LW#T.(()) + LLWhnT,(()). 

k=1 8=1 k=18=1 

The dominating measure in this case is Uniform( {YIT(y) = t}). Note that 
the density (7) factors just as the density (4) without ties. The d(Ci(Y))'s 
may not be independent, however, since the dominating measure is not 
generally a product measure. 



116 L. Chung and J. I. Marden 

In the examples in Sections 7.4 and 7.6, we use maximum likelihood esti­
mators and likelihood ratio tests for inference about ft. Given independent 
observations YI, ... , Yn with correspondings patterns of ties tl, ... , tn, we 
assume the data is generated according to (7). The maximum likelihood 
estimator for ft is found by solving the equations 

n n 

L I}f/(B;; G;, Yj) = L d(G;(Yj)) (8) 
j=l j=l 

for i = 1, ... ,T. Using Chung and Marden [5], we have that asymptotically, 
the B; 's are approximately independent normals, where the asymptotic 
mean and variance of B; are B; and 

(9) 

respectively. 
The parameter ft is not necessarily easy to interpret. Consequently, we 

also use the parameter r based on Kendall's r. When there are no ties in 
y, the sample Kendall's r for contrast Cis (10) 

k(y;G) = 1 - 2· d~~~) , M(G) == max{d(C(y)) lyE Pm}, (10) 

which takes values between + 1 and -1, and has an interpretation similar 
to that of a correlation coefficient. When a contrast has J{ = 2 groups, 
then M(G) = #h x #12 . The corresponding parameter is defined by 
r(B) == E8[k(Y; G)]. We want this parameter to be defined independently 
of the pattern of ties, hence in general we set r(B) == E8[k(W; G)]. If Y 
has ties, we estimate r(B) by first finding iJ as in (8), and then calculating 

~ _ , I}f/(B; G) 
r(B) = Ee[k(W;G)] = 1-2· M(G) (11 ) 

by (5). We use the ~-method to find the asymptotic standard error of this 
statistic: 

( 12) 

Remark 3. In Section 7.2 we mentioned that Critchlow [10] contains the 
model (4) with T = 1. His model can actually be given as a special case 
of (7) in two distinct ways. Suppose the data arises from a judge sorting 
m objects into the top kl objects, next k2, ... , and last kK . If Y is the 
ordering of the objects, then the corresponding phi model is (4) with the 
one contrast 
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On the other hand, if y is the vector of (tied) ranks, then the model is 
(7) with the one contrast being C = (Ol,02, ... ,Om) and pattern of ties 
t=(k1 ,k2 , ... ,kK ). 

7.4 Example: Word Association 

Fligner and Verducci [18] present data of 98 students' responses to a ques­
tion on the Graduate Record Examination. The students were to rank five 
words according to their association with the word "idea," where the five 
words were 1) thought, 2) play, 3) theory, 4) dream, 5) attention. We will 
abbreviate these words to Tt, P, Ty, D and A at times. For a given student, 
Yi = j means word i was ranked j, the higher the number j the stronger the 
association of the word i with "idea." The modal ranking was (5,1,4,3,2). 
Fligner and Verducci fit if;-component models. Table 1 contains a number 
of orthogonal contrast models, along with their A's for testing fl. = 0, where 
A = 2 . In(LRS), LRS being the Likelihood Ratio Statistic. We leave the 
brackets off singleton sets. The R2 is the ratio of A to the maximum possi­
ble for this data set, the maximum being 529.43. The sets presented are a 
sample of the many tried. Although the search among the sets proceeded 
in an ad hoc manner, guidance can be found from the mean ranks of the 
words, which are (4.8,1.3,3.6,3.3,1.9). Thus one is immediately lead one to 
link words "play" and "attention," and words "theory" and "dream." 

Table l' Some if;-models and their R2 's 
Contrast! I = Mallows II III 

C1 (P,A,D,Ty,Tt) (P,{Tt,Ty,D,A} ) (Tt,{P,Ty,D,A}) 
C2 (A,{Tt,Ty,D} ) (Ty,{P,D,A} ) 
C3 (D,{Tt,Ty}) (D,{P,A}) 
C4 (Ty,Tt) (P,A) 
A 435.80 454.50 456.20 

R2 82.3% 85.8% 86.2% 

Contrast! IV V 
C1 (Tt,{P,Ty,D, A}) ({Tt,Ty,D}, {P,A}) 
C2 ({P,A},{Ty,D} ) (Tt,{Ty,D}) 
C3 (Ty,D) (Ty,D) 
C4 (P,A) (P,A) 
A 462.60 462.72 
R2 87.4% 87.4% 

Models II and III are analogous to the if;-component models of Fligner 
and Verducci, defined on the objects rather than ranks. See Remark 1. One 
can see that all the models, even the one-parameter Mallows' if; model, pick 
up a substantial portion of the variation in the data. The best is model V as 
far as the A goes, although there is very little difference among the models 
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II through V. We tried many other models, none of which were as good as 
V. 

The set of contrasts in V make some substantive sense. Contrast 1 com­
pares (thought, theory, dream) to (play, attention), which divides the words 
into those fairly close to "idea" and those very far. The next two contrasts 
separate the 3 close words, and the last contrast compares the two others. 

Before looking closely at the estimates for this model, we look at the fits 
of the individual contrasts to the ¢ model. Contrasts 3 and 4 fit exactly 
since they are binomials. Table 2 gives the distributions for Contrasts 1 
and 2. The "G" statistic is the likelihood-ratio-like chi-squared statistic 
G = 2· I: Observed .In(Observedj Expected). 

Table 2: Marginal fits for Model V 
Contrast 1: {Tt, Ty, D} vs. {P, A} - G = 12.40 

d(C1 Y) -+ 0 1 2 3 4 5 6 
Observed 80 13 4 0 0 0 1 
Expected 78.19 13.86 4.91 0.87 0.15 0.01 0.00 

Contrast 2: Tt vs. {Ty, D} - G = 2.90 
d(C2(y)) --. 0 1 2 
Observed 4 9 85 
Expected 2.02 12.96 83.02 

The ¢ model seems to fit well, except for the one observation in category 
"6" for Contrast 1. This person's ranks suggest that "play" and "attention" 
are both closer to "idea" than any of "thought," "theory" and "dream," 
which leads one to believe that this person misunderstood the instructions 
and ranked the words in reverse order. In fact, this person's ranks were 
(1,4,2,3,5), almost the exact reverse of the modal ranking. Fligner and 
Verducci [18] note this and one other observation as suspect. If we leave 
out this observation, and recalculate the ¢ model, we find A = 485.93, 
R2 = 91.5%, and the G's for testing the fits of Contrasts 1 and 2 are, 
respectively, 2.35 and 1.80. The model now seems to fit well, and we will 
continue without the outlier. Table 3 contains the calculations for the fitted 
model. The 1";'S and their standard errors are from (11) and (12). 

Table 3: Statistics for ¢ Model V 
St d d th an ar errors m paren eses 

Contrast! (); T; A 
1. {Tt,Ty,D} vs. {P,A} 1.91 (0.19) -0.93 (0.018) 331.20 
2. Tt vs. {Ty,D} 1.97 (0.25) -0.85 (0.041) 125.42 
3. Ty vs. D 0.57 (0.21) -0.28 (0.098) 7.62 
4. P vs. A -1.00 (0.23) 0.46 (0.090) 21.70 
Total 485.93 

Table 3 shows that the 1"'S for Contrasts 1 and 2 are highly negative, 
meaning there is a very strong trend for people to associate "thought," 
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"theory" and "dream" more closely with "idea" than "play" or "attention," 
and to associate "thought" more closely than "theory" or "dream." There 
is a mild tendency to prefer "theory" to "dream," and a slightly stronger 
tendency to prefer "attention" to "play." 

We use contingency table techniques to investigate whether independence 
of the contrasts seems viable. In order to avoid too sparse of a table, Con­
trasts 1 and 2 were collapsed before making any tests, so that Contrast 1 
has just the categories 0 and 1-6, and Contrast 2 has categories 0-1 and 2. 
Thus the data is now reduced to a 24 contingency table. It is still a fairly 
sparse table: Of the 16 cells, there are four O's, two 1 's, and three 2's. We 
start by testing pairwise independence of the contrasts, using the usual 
G-test of independence. The values of G for the 6 tests range from 0.045 
to 3.386, revealing no evidence of dependence. Trying some other models, 
we have that the G for testing mutual independence of the four contrasts 
is 19.79 on 11 degrees offreedom (dJ.), that for testing there is no 3- or 4-
way interaction is 11.38 on 5 dJ., and that for testing no 4-way interaction 
is .38 on 1 dJ. With the sparseness of the table, it is hard to know how 
seriously to take these latter results. Using 1000 simulations, we estimate 
the p-value for the test of mutual independence to be .058, which leads us 
to compare the observed and expected tables. We see that about 11 of the 
19.79 G-points are due to the extreme cells (0,0-1,0,0) and (1-6,2,1,1), for 
which the observed counts are both 0 and the expected counts are 2.86 and 
2.62, respectively. Thus there may be something slightly wrong here with 
the model, but overall the ¢ model fits quite well, and explains clearly the 
observed features of the data. 

7.5 Example: APA Voting 

Diaconis [14, 15] analyzes the data for the 1980 American Psychological 
Associations election. Five people (whom we will call A, B, C, D and E) 
were running for president, and voters were asked to rank their choices 
from l=favorite to 5=least favorite. The Hare [21] system was used to 
determine the victor, who turned out to be Candidate C. Of the 15,449 
ballots received, 5738 consisted of complete rankings. The others gave only 
their top 1, 2 or 3 candidates. Diaconis [15] used spectral analysis to analyze 
these data. A brief summary of his results are that there are two camps, 
people who like candidates A and C, and those who like candidates D and E. 
Candidate C received the most first-place votes but also a large number of 
last place votes. That there were two camps was not surprising as the APA 
is a strong mixture of academicians and clinicians. Diaconis also analyzes 
the voters who ranked only q = 1, 2 or 3 candidates. He finds that the 
q = 1 people have approximately the same profile as the people who gave 
full rankings, the q = 2 people liked candidate A better and D and E worse, 
while the q = 3 voters preferred candidates D and E. McCullagh [25] fit 
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inversion models to the q = 3 and full data, as well as a latent class model 
with two classes to the model. The first class ranked the candidates in the 
order ED, BA, C, while the second class ranked them C, A, B, DE. 

Stern [29] investigated several voting schemes in addition to the Hare sys­
tem, and fit several models, including latent class models, to the data. The 
data analysis confirmed the previous results, but it is particularly interest­
ing that some voting schemes elected Candidate C, and others Candidate 
A. 

Our objective is to use orthogonal contrasts to arrange the data into 
a four-way contingency table. The c/J models are not especially appropri­
ate here since they detect monotone trends, while the voting tends to be 
quadratic in that some people get a high number of first and fifth place 
votes, while others get high numbers of second, third or fourth place votes. 
Thus instead of evaluating a set of contrasts on the A as in Section 7.4, 
we decompose the G( = 1717.51) for testing uniformity versus the saturated 
model into the deviance due to the marginals of the contrasts and the two-, 
three- and four-way interactions. A good set of contrasts is one for which 
the resulting table is easy to understand, i.e., one for which lower order 
interactions have relatively more weight. From Diaconis' results, we know 
the contrasts should involve comparing AC with DE, and comparing A to 
C and D to E. Table 4 shows the calculations for several models for the set 
of complete rankings. 

Model II is best in terms of having the most deviance explained by the 
marginals of the contrasts, while Model IV explains the most with just the 
marginals and two-way interactions. None of the models, except perhaps 
V, has much four-way interaction. We will concentrate on Model II, a good 
part of the reason being that it separates the noncontroversial candidate 
2 from the others early, leaving the more interesting comparisons between 
and within the groups AC and DE. Table 18 shows the data arranged in 
the table for this model. 

The question arises how seriously to take such putative chi-squared 
statistics. The data does not represent a random sample, some major devi­
ations being a selection effect as well as people tending to vote in clumps. 
These chi-squared statistics can legitimately be thought of as results of ran­
domization tests, or as the Kullback-Leibler distance between the observed 
distribution and the expected under the null model. (Actually, the dis­
tance is In(LR8)/5738.) We will take the general view that if the statistic 
is not much larger than the degrees offreedom, then the effect is ignorable. 
Otherwise, we will look more closely to see whether something important 
and interesting is happening, or if there is just a wrinkle in the observed 
distribution. 
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Table 4: Models for the APA voting data: Decompositions of A 
D f f: d th egrees 0 ree om m paren eses 

Model- I II III 
Cl (C,ABDE) (B,ACDE) (ABC,DE) 
C2 (AB,DE) (AC,DE) (B,AC) 
C3 (A,B) (A,C) (A,C) 
C4 (D,E) (D,E) (D,E) 

Effects! 
Marginals 611.19 (11) 941.34 (11) 590.47 (13) 

2-way interactions 914.32 (39) 569.77 (39) 956.99 ( 41) 
3-way interactions 178.34 (49) 186.31 (49) 155.53 (47) 
4-way interactions 13.66 (20) 20.10 (20) 14.53 (18) 

Model- IV V 
Cl (AC,BDE) (C,ABDE) 
C2 (B,DE) (A,BDE) 
C3 (A,C) (B,DE) 
C4 (D,E) (D,E) 

Effects! 
Marginals 831.73 (13) 533.00 (10) 

2-way interactions 762.61 ( 41) 1001.76 (35) 
3-way interactions 98.01 (47) 142.43 (50) 
4-way interactions 25.17 (18) 40.32 (24) 

In Section 7.5, the complete rankings are analyzed thoroughly using 
straightforward contingency table analysis. In Section 7.5 we follow McCul­
lagh [25] in fitting a latent class model to these data. Section 7.5 contains 
analysis of the partially ranked data, the main effort being to ascertain the 
difference between the partial and full rankings. 

COMPLETE RANKINGS - CONTINGENCY TABLE ANALYSIS 

Taking the contrasts in II, we tried to find a parsimonious log-linear model 
to fit the table. The model that fits the two three-way interactions Contrasts 
1-2-3 and Contrasts 1-2-4 has a goodness of fit statistic of 32.78 on 29 
degrees offreedom. Note this is the model positing that Contrasts 3 and 4 
are conditionally independent given Contrasts 1 and 2. Presumably, all the 
information in the data can be found by scrutinizing the two 3-way tables. 

We start with the marginals. Contrast 1 gives the rank of Candidate B. 
The percentages are (14,19,25,25,18), so that 14% of the voters ranked B 
first, 19% second, etc. This candidate is not particularly liked nor hated. 
Contrast 2 is the most interesting, as it pits candidates A and C against 
D and E. Let ij be the event that A and C are ranked ith and ph, in 
some order, among the four A, C, D and E. (That is, we are abbreviating 
value ({1,2},{3,4}) of the contrast to" 12.") The marginal percentages for 
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the values in the order (12,13,14,23,24,34) are (28,12,12,14,12,22). Half the 
voters ranked either AC or DE together as first and second, with AC favored 
more often. The other four possibilities have uniformly small percentages. 
This distribution reveals the same second-order effect that Diaconis finds. 
Finally, the pairwise Contrasts 3 and 4 show that A is barely preferred to 
C by a 50.5% majority, and 52% prefer D to E. 

There is significant lack of independence between the contrasts (Table 
4), so we investigate next the 2-way tables. Table 5 presents the results of 
the pairwise tests of independence. 

Contrasts ---+ 
G 

d.f. 
15.77 

4 

1&4 
37.96 

4 

2&3 
285.36 

5 

2&4 
27.65 

5 

3&4 
4.95 

1 

Clearly, the interactions of Contrasts 1 and 2 and Contrasts 2 and 3 contain 
the bulk of the pairwise dependence. For the former pair, the dependence 
lies primarily in the difference between the people who vote 12 for Contrast 
2 and the others. The G for that collapsed table is 170.93 on 4 dJ., while 
the G for testing independence leaving out the 12 category is 36.37 on 16 
dJ. Table 6 shows the distributions for the collapsed table. 

Table 6: Distribution of Contrast 1 given Contrast 2 
Entries are percenta es of row totals 

2. AC vs. DE 1; 1. Rank of B---+ 1 2 3 4 5 
12 8 14 35 24 19 

13,14,23,24,34 15 21 21 25 18 

The most striking feature is that those with Contrast 2 being 12 have a 
greater portion of their Contrast 1 values at 3, and fewer at 1 and 2, than 
the others. We interpret this to mean the people who are much in favor 
of Candidates AC insist on ranking Candidate B third rather than first or 
second, suggesting that B is closer to the DE camp. 

The other large effect comes from Contrasts 2 and 3. Table 7 shows that 
the AC supporters prefer C to A by a 2:1 margin, while the DE supporters 
prefer A to C by a 3:2 margin. 

Table 7: Distributions of Contrasts 3 and 4 given Contrasts 1 and 2 
Entries are ercenta es within Contrast 1 or 2 categories 

C1 : Rank of B ---+ 1 2 3 4 5 
C3 - A preferred to C 57 48 50 51 48 
C4 - D preferred to E 51 54 49 43 44 

C3 - A preferred to C 
C4 - D preferred to E 

12 13 
35 43 
46 41 

14 23 24 
54 55 64 
50 49 49 

34 
61 
52 
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The Contrasts 1 and 3 have mild dependence given by the fact that 57% 
of the people who rank B first prefer A to C, while the people who rank B 
from second to fifth have percentages from 48 to 51 in favor of A. As before, 
people who do not put AC at the top tend to prefer A to C. For Contrasts 
1 and 4, we see that people who like B prefer D to E, while people who rank 
B low prefer E to D. Contrasts 2 and 4 show that the AC people tend to 
prefer E to D, while the DE people prefer D to E. The last pair, Contrasts 
3 and 4, show a weak dependence which, when conditioning on Contrasts 
1 and 2, actually disappears. For this pair, we see that of the people who 
prefer A to C, 49% prefer D to E, and of those who prefer C to A, 46% 
prefer D to E. 

It is interesting to see whether we can now place the candidates on a scale 
as in an unfolding model. Leaving out B, the order CAED works well since 
the AC supporters prefer C to A and E to D, while the DE supporters 
reverse these preferences. Placing B in the middle to obtain CABED is 
slightly misleading: B supporters prefer A to C, but also D to E. 

Turning to the 3-way tables, consider Contrasts 1, 2 and 3. Testing the 
no-3-way interaction model for this collapsed table yields G = 95.55 on 20 
d.f. Table 8 contains the observed percentage of people who rank A above 
C for the 30 Contrast 1 x Contrast 2 possibilities, as well as the expected 
percentage under the no-3-way interaction model. 

Table 8: Contrast 3 by Contrasts 1 and 2 
Entries are the percentage who favor A over C, Observed and Expected 

1. Rank of B!; 
2. AC vs. DE -+ 12 13 14 23 24 34 

1 52,39 57,47 66,58 60,59 59,67 50,65 
2 27,32 38,40 45,51 59,61 68,60 56,58 
3 35,37 50,45 51,57 62,57 69,66 62,63 
4 31,35 38,43 58,54 44,55 66,64 71,61 
5 39,34 40,41 52,53 47,53 54,62 61,60 

The biggest discrepancies between the observed and expected percent­
ages occur in the first and fourth rows. When B is ranked first, the people 
who like AC rank A above C more often than expected, and the people 
who like DE do so less often. That is, when B is the favorite, the stark 
differences in feelings about A and C are moderated in the AC and DE 
groups. In the fourth row, last column, we see that 71% prefer A to C, 
while we expect only 61 %. These people rank D and E first and second, in 
some order, and B fourth. They strongly dislike C, ranking A third and C 
last 71 % of the time. The fourth row, fourth column contains those that 
rank D and E first and fifth, B fourth, hence A and C second and third. 
They like C better than A, 11 percentage points better than expected. The 
rest of the differences were less than 10 points. 
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Table 9: Contrast 4 by Contrasts 1 and 2 
Entries are the ercenta e who favor Dover E, Observed and Ex eeted 

1. Rank of B1; 
2. AC vs. DE -+ 

1 
2 
3 
4 
5 

12 
55,49 
49,52 
49,47 
38,41 
42,43 

13 
48,44 
45,47 
48,42 
30,36 
40,38 

14 
60,52 
55,55 
44,51 
44,45 
45,46 

23 
48,51 
68,54 
51,50 
35,43 
37,45 

24 
49,52 
57,55 
52,51 
44,44 
46,46 

34 
48,55 
50,58 
47,54 
60,47 
53,49 

Table 9 contains the analogous results for Contrasts 1, 2 and 4, where 
the entries are the percentage who prefer D to E. The cell with the largest 
difference between observed and expected percentages, row 2 column 4, are 
those that rank B second and D and E first and fifth. They prefer D to 
E 15 points more than expected. In the row 4 column 6 cell, we have B 
ranked fourth and DE ranked first and second. Now 60% prefer D to E, 12 
points over the expected. All the other differences are less than 10 points. 

It is somewhat dangerous to read too much into these three-way interac­
tions, but they do seem to yield some information. We already know that 
the AC people prefer C to A and E to D, while the DE people have reversed 
preferences. In Tables 8 and 9, we see that these differences are enhanced 
when Contrasts 1 and 2 suggest the feelings about AC or DE are strong, 
and are moderated when the feelings are less strong. 

Finally, just to make sure nothing drastic has been missed, we found the 
(Obs - Exp)/VExp scores for the full table when fitting the model with 
the two 3-way interactions. Of the 120 values, the largest was 1.58, hence 
we need not look any further. 

COMPLETE RANKINGS - LATENT CLASS ANALYSIS 

The existence of two groups in this data set cries out for some sort of 
latent class analysis. With two latent classes, we fit the model with complete 
independence of the contrasts, and the model with all two-way interactions. 
The former model yielded a G of 343.42 on 96 d.f., the latter G=13.11 on 
18 dJ., which fits quite well. We used the E-M algorithm, trying several 
different starting values and obtaining essentially the same results. 

The two classes will be denoted AC and DE for obvious reasons. The 
estimated percentage in the AC group is 58%. Table 10 gives the estimated 
marginal distributions of the contrasts for the two classes using the two­
way interaction model. The pairwise tables for the two groups could also 
be compared, but in the interest of space and sanity we will not do so. 
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Table 10: Latent marginal distributions of the contrasts 
Entries are percentages of the latent class 

Contrast 1: Rank of B 
Latent Group! 1 2 3 4 5 

AC 14 17 30 23 17 
DE 14 21 18 27 21 

Contrast 2: AC versus DE 
Latent Group! 12 13 14 23 24 34 

AC 
DE 

Latent Group! 
AC 
DE 

43 18 12 16 4 8 
6 5 13 11 24 41 

Contrast 3 
A 
37 
70 

C 
63 
30 

Contrast 4 
D E 
39 61 
60 40 

125 

These distribution are consistent with the results of the previous sub­
section. The AC group is more likely to rank B third rather than first or 
second as compared to the DE group; each group overwhelmingly prefers 
its candidates to the other group's; the AC group much prefers C to A and 
D to E, while the DE group has the opposite preferences. 

PARTIAL RANKINGS 

We will follow Diaconis and categorize the voters by the number q of candi­
dates they ranked. Our main interest is to try to fit models to the partially 
ranked data, and thereby compare those data to the complete rankings. 

We start by testing whether indeed the fully ranked data is different from 
the q = 1, 2 or 3 data by collapsing the former to be consistent with each 
of the latter. The resulting chi-squared statistics are, respectively, 52.88 on 
4 dJ., 181.01 on 19 dJ., and 139.38 on 59 d.f. The contrasts in Model II of 
Table 4 will continue to be used to pinpoint the differences in the groups. 

For the q = 1 data, we cannot estimate very much, and are unable to test 
any of the log-linear models as in Section 7.5 since there are not enough 
degrees of freedom. The percentages of voters who rank the candidates 
(A,B,C,D,E) first for q = 1 and q = 5 are, respectively, (17,17,23,22,20) 
and (18,14,28,20,20). Thus the q = 1 people like Band D slightly better, 
and C less well. In fact, the q = 1 voters are much closer to uniformity than 
the q = 5 voters, the G's being 79.65 and 310.26. 

Although the above fairly well exhausts the comparison of the two groups, 
since our main purpose is to illustrate the use of orthogonal contrasts, we 
will show how to compare the marginal distributions of the contrasts for 
the groups. For Contrast 1, we only know how many ranked B first, and 
how many second through fifth. Categorizing the q = 5 data similarly, we 
obtain a 2x2 contingency table. Testing homogeneity gives G = 27.66, the 
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percentages obtainable from above. For Contrast 2, we ignore the people 
who ranked B first since they give no information on the AC/DE com­
parison. The two categories remaining are those that rank either A or C 
first, and those that rank either D or E first. Testing homogeneity now 
yields G = 18.65: 53.6% of these q = 5 voters choose A or C, but only 
49.1 % of the q = 1 voters do. (Note that these percentages are conditional 
on B not being ranked first. Other comparisons made below are similarly 
conditional.) For Contrast 3, only those who rank either A or C first are 
used. Homogeneity is not far off here. The G=4.97 with 40% of the q = 5 
voters and 43% of the q = 1 voters preferring A to C. Contrast 4 is even 
closer, with G=1.62, and 51% and .53%, respectively, preferring D to E. 
Basically, the voters who only list one candidate seem to be milder in their 
preferences, especially in choosing B first, and in the AC/DE controversy. 

When q = 2, it is possible to estimate more of the marginal distributions 
of the contrasts, as well as to test whether the model that the contrasts 
are independent. The latter test yields 0=194.19 on 12 dJ., which means 
independence in untenable. We still cannot test whether the model with all 
the two-way interactions fits. 

The main difference between the q = 5 and q = 2 groups is that the 
latter are much more likely to rank A and C first and second, in either 
order: 21 % for q = 5 to 34% for q = 2. We now look at the contrasts. 
Contrast 1 categorizes people into those who rank B first, second, and 
third through fifth. The 0 for homogeneity is 32.70, with the percentages 
of the three categories for q = 5 and q = 2 being, respectively, (14,19,68) 
and (12,14,74). The latter group seems to think less well of B. Contrast 2 
is a little more complicated. People who rank A and C (D and E) first and 
second clearly have Contrast 2 being 12 (34). Those who rank one of A and 
C (D and E) first and one of D and E (A and C) second have Contrast 2 
being 13 or 14 (23 or 24). Finally, if only one of A, C, D, E is ranked first 
or second, then one can only distinguish between Contrast 2 being 12, 13 
or 14, or being 23, 24 or 34. Thus we have six categories, as in Table 11, 
where G=155.09. 

Table 11: Comparison of q = 5 and q = 2 on Contrast 2 
Entries are percentage of q-group 

AC vs. DE--+ 12 13,14 12,13,14 34 23,24 23,24,34 
q = 5 21 16 15 15 16 17 
q = 2 34 12 12 14 14 14 

The difference is in the "12" category, the other categories being fairly 
uniform. 

There is very little difference in the groups for Contrast 3, with G=.69, 
and a slight difference for Contrast 4, with 0=4.32: 48% of q=5 prefer D, 
while 52% of q=2 do. 

Finally, turn to the q = 3 data. Each of the marginal distributions of 
the contrasts is estimable, except that the last two categories in Contrast 
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1 must be collapsed since there is no way to distinguish between those who 
rank B fourth and fifth. We fit both the full independence model and the 
two-way interaction model, obtaining G's of 272.55 on 74 d.f. and 30.94 on 
17 dJ. The latter model fits reasonably well, so we will use the estimates 
from it to compare the q=5 and 3 groups. See Table 12. The q=3 people 
like DE better, and are more likely to prefer A to C, than the q=5 group. 
The two groups are fairly similar on their ranking of B, and preferences 
between D and E. 

Table 12: Comparison of q = 5 and q = 3 groups 
Entries are percentages of q-group 

Contrast 1: Rank of B 
1 2 3 45 

q = 5 14 19 25 43 
q = 3 16 18 21 45 

Contrast 2: AC versus DE 
12 13 14 23 24 34 

q = 5 28 12 12 14 12 22 
q=3 24 12 11 11 16 26 

Contrast 3 Contrast 4 
A C D 

q=5 50 50 48 
q=3 60 40 48 

E 
52 
52 

Recall that the "12" and "34" people in Contrast 2 are quite opinionated 
on Contrasts 3 and 4. Thus the marginal comparisons of Contrasts 3 and 
4 in Table 12 may be a bit misleading since there are distinct differences 
between q=5 and 3 on Contrast 2, leading us to consider Table 1:3. 

Table 13: Distributions of Contrasts 3 and 4 given Contrast 2 
Entries are percentage of group and category 

who prefer A to C 
c2 : AC versus DE-+ 12 13 14 23 24 34 

q = 5 35 43 54 55 64 61 
q = 3 43 49 68 54 75 71 

Entries are percentage of group and category 
who prefer D to E 

c2 : AC versus DE-+ 12 13 14 23 24 34 
q=5 46 41 50 49 49 52 
q=3 38 32 56 33 .53 55 

We see that the q=3 group does fairly uniformly (over the Contrast 2 
categories) like A more than the q=5 group does. By contrast, the q=3 
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group is more favorable to E than the q=5 group when C2=12, 13 or 23, 
but agrees with the q=5 group otherwise. 

To summarize the comparisons, it appears that those who only give their 
first choice are less involved in the AC/DE controversy, being more favor­
able toward B, and more uniform overall. The people who rank their top 
two are strong AC supporters, while the people who rank three are some­
what more supportive towards DE. 

7.6 Exanlple: ANOVA 

Chapman et. al. [4] carried out an experiment to study differences in the 
cognitive processes between novice and expert searchers using online com­
puter catalogs. There were seven subjects in each group, with each subject 
performing the same twelve searches. A search is a sequence of online com­
mands whose goal is to find a particular library holding. Each subject, for 
each search, was to try to memorize the search and then reconstruct it on 
the computer. If the reconstruction was not perfect, the subject had anoth­
er chance to memorize the search. The process continued until the search 
was reproduced accurately. Among the data collected were the number of 
tries until successful. These are the data we will analyze here. See Table 
19. 

The twelve searches are categorized in three ways: A == Large (5-6 
commands) versus Small (1-4 commands); B == LCS versus LCS & FBR 
(LCS means Library Circulation System and FBR means Full Bibliographic 
Record. These are two different databases, each with its own set of com­
mands.); and C == Real versus Nonsense. The "Real" searches are logi­
cal sequences of commands, while the "Nonsense" searches use legitimate 
commands but the commands do not make a coherent search. The main 
hypothesis is that the experts should do much better on the Real than the 
Nonsense searches, while the Novices should do equally well (or poorly) 
on each. This hypothesis suggests that experts can encode information in 
chunks. 

For each of the four A x B categories, there were two Real searches 
and one Nonsense search, as in Table 14. The data can be found in the 
Appendix. Note that all the numbers are between one and four. It happens 
that on the Nonsense searches, the subjects are limited to three attempts. 
Thus in the analysis that follows, we set all the fours to three on the Real 
searches. 
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Table 14: Arrangement of the searches 
Search # J; Variable-> A B C 

1 Large LCS Real 
2 Large LCS Real 
3 Large LCS&FBR Real 
4 Large LCS&FBR Real 
5 Large LCS Nonsense 
6 Large LCS&FBR Nonsense 
7 Small LCS Real 
8 Small LCS Real 
9 Small LCS&FBR Real 
10 Small LCS&FBR Real 
11 Small LCS Nonsense 
12 Small LCS&FBR Nonsense 

The experiment is taken to be a randomized block design with the sub­
jects being the blocks. Within each block we have a 2 x 2 x 2 fixed effect 
ANOVA. The subjects are grouped into Novices and Experts. A usual 
normal-theory or other location family model could be assumed, but one 
might feel uneasy assuming a continuous distribution when the data con­
tain only three values. An alternative would be contingency table models, 
with the Number of Searches as fourth factor. However, one would then 
have two 3 x 2 x 2 x 2 tables, each with only seven observations. We will 
introduce a third approach that treats the discreteness of the data exactly, 
but with fewer parameters than the contingency table models. Specifically, 
we suppose the seven Novice 12 x 1 vectors are independent and identically 
distributed, as are the seven Expert, with distributions of the form (7). 

It is necessary, of course, to choose the set of orthogonal contrasts. The 
object is to make comparisons on the variables, but in order to preserve 
orthogonality it must be done in a nested fashion. We start with A, and let 
Contrast 1 compare the Large and the Small Searches, (where o5i denotes 
the ith search): Cl = ({o5l,052,o53,o54,o55,o56},{o57,o5S,o59,o5lO,o5ll,o5l2})' Now 
B has two contrasts, one for each level of A: C2 = ({ 051,052, o55}, {o53, 054, S6}) 
and C3 = ({S7,SS,Sll},{o59,s10,S12}). Finally, variable C has one con­
trast for each of the four A x B categories: C4 = ({Sl,S2},{S5}), C5 = 
({S3,S4},{S6}), C6 = ({S7,SS},{Sll}) and C7 = ({s9,slO},{Sl2}). 

Table 15 contains the results of fitting the model. Since the sample size 
is fairly small and the data contains only three distinct values, we worried 
that the distributions of the A's under the null fl. = 0 would not be well 
approximated by independent x-squared variables. To check, we simulated 
the null distribution by randomly permuting the elements within each of 
the 14 vectors and refitting the model. It turned out that the estimated 
distributions of the A's were very close independent xi variables, and in 
particular that the estimated p-values were very close the nominal values. 
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Table 1.5: Estimates from the model (7) 
p-values based on 1000 simulations 

Novices 
Contrast! Bi(s.e.) Ti(s.e.) A(p - value) 

1 0.25 (.08) -0.49 (.12) 12.01 (.000) 
2 -0.51 (.24) 0.52 (.19) 5.40 (.028) 
3 -0.02 (.19) 0.02 (.22) 0.01 (.896) 
4 -00 (-) 1.00 (-) 8.21 (.008) 
5 0.91 (.91) -0.53 (.41) 1.26 (.274) 
6 1.01 (.68) -0.58 (.29) 2.77 (.108) 
7 -1.01 (.68) 0.58 (.29) 2.77 (.108) 

Total 32.44 (.000) 

Experts 
Contrast! Bi(s.e.) Ti(s.e.) A(p - value) 

1 0.42 (.11) -0.70 (.10) 24.82 (.000) 
2 0.02 (.19) -0.02 (.22) 0.01 (.919) 
3 -0.03 (.24) 0.03 (.28) 0.01 (.910) 
4 -00 (-) 1.00 (-) 10.99 (.003) 
5 -0.41 (.67) 0.27 (.41) 0.41 (.523) 
6 0.48 (.72) 0.31 (.43) 0.47 (.493) 
7 -1.13 (.93) 0.63 (.35) 2.03 (.178) 

Total 38.73 (.000) 

The largest effect for both the Novices and Experts is Contrast 1, which 
shows that the Large searches are more difficult to memorize than the 
Small ones. For the Novices, Contrast 2 shows a reasonably large effect, 
suggesting that the Large searches with both LCS and FBR are more of 
a challenge than those with just LCS. This difference is not evident in 
the Small searches, nor for the Experts. If we take the four variable C 
contrasts together, testing B4 = B5 = B6 = B7 = 0 yields A's of 15.02 and 
13.98, which suggests there are Real/Nonsense differences. (In Contrast 4, 
which compares Real searches 1 and 2 to Nonsense search 5, for no one was 
the Nonsense search easier than either of the Real ones. This particular 
Nonsense search appears to be especially difficult. It had a mean of 2.64 
while the others had means ranging from 1.14 to 2.29.) The interesting 
aspect of these four contrasts is that for the Novices, two show positive r's 
and two negative, while for the Experts the r's are all positive. Thus the 
main hypothesis above, that the Experts do better on Real than Nonsense 
while the Novices do equally well on both, is consistent with the data. The 
standard errors for the r's are too large to make any definitive conclusions, 
but the results are certainly suggestive. 

In the Introduction we implied that we could produce an ANOYA table 
that decomposes the overall A into main effects, two-way interactions and a 
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three-way interaction. These effects can be defined easily using linear con­
straints on the ()t's. Table 16 gives the null and alternative hypotheses for 
each effect. Testing each pair of hypotheses yields a one-degree-of-freedom 
test for the effect. The logic is as follows. For the main A effect, it is clear 
that ()1 is the parameter to test. Before testing for the main B effect, we 
want to make sure that there is no A x B interaction. Since ()2 measures the 
B effect for variable A being Large, and ()3 for variable A being Small, the 
effect of B is independent of the level of A if ()2 = ()3. Now to find the B 
effect we test ()2 = ()3 = 0 assuming the parameters are equal. There are 
four parameters, ()4 to ()7, for the C effect, representing the C effect for 
different levels ofAxB. The main C effect is then found as for the B effect 
by testing the parameters are zero versus their equality. The AxB, AxC 
and AxBxC effects are found using these same four ()j's. No three-way 
interaction occurs if the difference in C effect between the two levels of B 
within the first level of A is the same as that within the second level of A. 
That is, ()4 - ()5 = ()6 - ()7. (Interchanging the roles of A and B yields the 
same result.) To isolate the AxC interaction, we need to assume that the 
C effect does not depend on the level of B, but may depend on the level of 
A. Thus the alternative hypothesis is ()4 = ()5 and ()6 = ()7. The null then 
equates the parameters. The B x C effect is defined similarly. 

Table 16: ANOVA effects defined via the model parameters 
Effect! Null hypothesis Alternative hypothesis 

A ()1 = 0 ()1 i= 0 
B ()2 = ()3 = 0 ()2 = ()3 

C ()4 = ()5 = ()6 = ()7 = 0 ()4 = ()5 = ()6 = B7 
AxB ()2 = ()3 ()2 i= ()3 

A x C ()4 = ()5 = ()6 = ()7 ()4 = ()5 and ()6 = ()7 

B x C ()4 = ()5 = ()6 = ()7 ()4 = ()6 and ()5 = ()7 

A x B x C ()4 - ()5 - ()6 + ()7 = 0 ()j'S arbitrary 

Table 17, column "ABC," contains the results of the hypothesis tests from 
the model given in Table 15. As before, both Novices and Experts show 
strong A effect. It is interesting that for the Novices, the only other large 
effect is the three-way interaction. In particular, the main C effect is very 
small. For the Experts, the C effect is quite significant, confirming the 
original hypothesis of the experimenters. The Experts also show a possible 
three-way interaction, presumably due mainly to the extreme behavior of 
Contrast 4. 

In Table 17, the "Sum" is the sum of the seven effect A's, while the 
"Overall" is the statistic for testing ()1 = ... = ()7 = O. In a balanced 
ANOVA, the Sum and Overall values should be equal. The slight discrep­
ancy here is due to the A x C and B x C effects. The linear constraints are 
orthogonal, but the lack of homoscedasticity ofthe OJ'S causes some depen­
dence in the linear combinations. 
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Finally, note that the nesting of the variables could have been done in any 
ofthe 6 orders of A, Band C. Table 17 contains the ANOVA decompositions 
corresponding to each of the orderings. Different orders do give different 
results, although the overall conclusions do not change much. The main 
effects remain fairly constant, and for the Novices the three-way effect stays 
large. The major differences occur for the AxB effect among the Novices, 
for which the A ranges from 2.66 to 6.32, and for the interaction among the 
Experts, in which the A- points wander about. However, none of the latter 
values are especially significant. We chose to focus on the ABC ordering 
since, given a significant three-way interaction, we would prefer to be able 
to investigate the Real versus Nonsense effects for the levels of the other 
variables, variable C being the main one of interest. Of course, the ordering 
BAC would have also worked, and in fact gives almost identical answers. 

Table 17: ANOVA Decompositions 
A=Large-Small, B=LCS-LCS & FBR, C=Real-Nonsense 

Novices 
Effect!; Order---+ ABC BAC ACB CAB BCA CBA 

A 12.01 11.47 12.01 9.41 7.66 7.66 
B 2.75 2.48 2.88 2.88 2.25 2.16 
C 0.53 0.53 1.09 0.93 0.52 0.93 

AxB 2.66 2.98 4.96 4.96 6.32 6.32 
AxC 0.82 0.82 1.05 2.09 1.07 1.07 
BxC 0.04 0.04 0.00 0.00 0.00 0.00 

AxBxC 13.57 13.57 9.27 9.27 9.63 9.63 
Sum 32.39 31.90 31.26 29.55 27.46 27.80 

Overall 32.44 31.72 31.27 29.57 27.30 27.64 

Experts 
Effect!; Order---+ ABC BAC ACB CAB BCA CBA 

A 24.82 26.61 24.82 22.06 22.98 22.98 
B 0.00 0.14 0.17 0.17 0.14 0.46 
C 8.68 8.68 8.44 6.45 6.33 6.45 

AxB 0.02 0.09 0.10 0.10 0.10 0.10 
AxC 0.50 0.50 0.48 3.29 4.16 4.16 
BxC 0.80 0.80 3.02 3.02 0.70 1.80 

AxBxC 4.03 4.03 4.06 4.06 0.00 0.00 
Sum 38.86 40.85 41.09 39.15 34.41 35.96 

Overall 38.73 40.73 41.01 39.07 34.34 35.88 

7.7 Discussion of Contrasts 

It is likely that the reader will ask, "How is the set of orthogonal contrasts 
chosen?" or "Must the contrasts be orthogonal?" The brief answers are 
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"We don't know" and "No." Longer answers follow. 
In the Word Association and APA voting examples in Sections 7.4 and 

7.5, as well as the Goldberg example (m = 10) as treated in Marden [24], 
the set of orthogonal contrasts was chosen by trying several sets and tak­
ing the one whose fit was most pleasing. For the Word example and for 
Goldberg data, we judged goodness by the strength of the likelihood ratio 
test statistic for testing uniformity versus the model. In other words, we 
treated the contrasts C in (4) as a parameter along with ft, and tried to 
maximize the likelihood with respect to both. For the APA voting data, we 
tried to minimize higher-order interactions among the contrasts. 

The number of possible sets of contrasts rises rapidly with m, which 
makes an exhaustive search for the best C difficult. The number of sets 
of size T = m - 1 seems to grow a bit faster than m!, with 105 sets 
for m = 5 and 34.5 million sets for m = 10. Since we did not do an 
exhaustive search, we may not have hit the absolute maximum. An open 
problem is how to efficiently search through the sets of contrasts to find 
the best. This is a generalization of the problem of searching for the modal 
ranking in the Mallows' ljJ model, for which Critchlow [10] has an algorithm. 
In the examples we have attempted, this problem does not appear too 
serious. By using other analyses, such as the spectral decompositions in 
Diaconis [14, 15] or data analytic techniques as in Cohen [6], one can obtain 
reasonable guesses about the structure of the optimal C. In fact, Section 
7.4 shows that just calculating the average rank for each object can be 
quite informative. 

Besides the computational concern, there is the question of statistical va­
lidity. The asymptotic results on ft for these models assume C is known, but 
including C as a parameter changes the problem. Critchlow ([10], Chapter 
6, Section 5) considers this problem for Mallows' ljJ model with partial rank­
ings. He shows that since the maximum likelihood estimator of the modal 
ranking is consistent, the asymptotic chi-squared nature of the goodness­
of-fit statistic holds as it would if the modal ranking were known. A similar 
result should hold for model (7) under appropriate conditions. The main 
requirement for consistent estimation of C would be that the model be 
identifiable, which will not hold unless there were as many distinct values 
among the true Oi'S as the assumed number T of contrasts. 

In other examples, one may have a priori contrasts of interest. In the 
ANOVA example of Section 7.6, the computational problem is minor since 
there are only six relevant sets of contrasts to consider. We did not base our 
choice on the A, but rather on its interpretability given that factor C was 
the main one of interest. (It turned out that for the Novices, the model did 
maximize A.) In any case, it was easy enough to look at all six, and they all 
gave similar results. Croon [12, 13] presents results from an international 
survey in which people were asked to rank a set of political goals. Goals are 
categorized as "materialist" and "post-materialist," and within materialist 
there are goals concerned with social stability, and others concerned with 
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economic stability. Thus at least three contrasts are suggested by context. 
Bockenholt [3] has an example in which people were asked to rank eight 
soft drinks as in our illustration in Sections 7.2 and 7.3. An interesting 
question is whether people's choices can be described by a set of orthogo­
nal contrasts. For example, do people first divide the drinks into cola and 
noncola, or into diet and nondiet? 

Our revised answer to the first question has to be conditioned on the 
situation. If there is a small number of sets of contrasts we know are of 
interest, all the models can be fit and inspected. If the number of sets is 
too large, one may have to engage in an extensive search, systematic or 
otherwise. Prior informal inspection of the data can provide good starting 
points. 

The model (4) follows in a long tradition of exponential family models 
for ranked data. A number of interesting statistics are defined for a sample 
rank vector, and the model uses these as the natural sufficient statistics. 
Models include those based on paired comparisons, and on metrics on Pm. 
See Critchlow [10], Critchlow, Fligner and Yerducci [11], and Diaconis ([14], 
Chapter 9) for reviews of many such approaches. McCullagh [25] presents 
an additional model based on inversions. There is no reason why one can­
not create an exponential family based on a set of contrasts that are not 
orthogonal. In fact, several models do consist of non orthogonal contrasts. 
Babington Smith [1] takes the m( m - 1 )/2 pairwise contrasts of elements, 
Gij = (Oi' OJ). The first order inversions of McCullagh [25] are also these 
contrasts. A special case of the Babington Smith model given in Mallows 
[22] takes as sufficient statistic the rank of each object, so that in a sam­
ple the average ranks of the objects are sufficient. Here, the contrasts are 
Ci = (OdOl, ... , Om}, ... , } - {Od) for i = 1, ... , m since d( Ci(Y)) = Yi - 1. 
(In fact, Mallows phi model and the orthogonal contrast phi models are 
also special cases of Babington Smith.) The ANOYA situation of Section 
7.6 can easily be formulated in terms of non orthogonal contrasts. The main 
effect contrast for each variable would be defined as in Contr::tst 1 in Sec­
tion 7.6, the two-way interaction contrasts would pit the ranks in the 0-0 
and 1-1 cells versus those in the 0-1 and 1-0 cells, etc. 

Why, then, restrict orthogonal contrasts? There are computational and 
conceptual reasons. For small values of m, say m ::; 5, general linear 
methodology can be effectively used fit any well-parametrized exponen­
tial family model. When m is even moderately large, say m 2:: 10, the 
computations are both time-consuming as well as susceptible unaccept­
able accumulations of round-off error since the number of cells exceeds 3.6 
million. At which point between five and ten the process breaks down is 
debatable, but it is not unusual to have m 2:: 10, e.g., the Goldberg data has 
m = 10, the ANOYA data has m = 12, and the Draft Lottery example in 
Fienberg [17] has m = 366. Fortunately, when using orthogonal contrasts 
in (7) the likelihood computation breaks into T independent pieces, each 
using a sum of at most m fairly simple functions as in (5). Thus compu-
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tations grow at the rate of m instead of m!. Further complications arise 
if ties are incorporated into the model with nonorthogonal contrasts, since 
the nice exponential family structure may be destroyed. (It may not, de­
pending on how the ties are incorporated.) But with orthogonal contrasts, 
there is no essential increase in complexity. Additionally, although a few 
well-chosen nonorthogonal contrasts may indeed produce a better model 
than one with orthogonal contrasts, an unrestricted search through arbi­
trary sets of non orthogonal contrasts quickly becomes a nightmare. The 
number of such sets is on the order of 2(3m /2), so that even m = 6 pushes 
us beyond 10100. Restricting sets of k only reduces the rate 3m /2 choose k. 

Orthogonal contrasts are easier handle conceptually here for the same 
reason that orthogonality is preferred in experimental designs and nor­
mal linear models: The interpretation of each individual contrast does not 
depend on the values of the other contrasts. It also follows that the individ­
ual parameters can be estimated more precisely. In our ranking case, when 
leaving the ¢J model, the data falls into a nice contingency table in which 
independence, conditional independence, multi-way interaction, etc., are of 
real interest. Thus standard methods yield a straightforward data-analytic 
framework. With nonorthogonal contrasts, independence is not a natural 
circumstance of interest. 

To answer the second question, there are certainly many useful models 
that do not have orthogonality, but the purpose of this paper is convince the 
reader that modeling with orthogonal contrasts is an approach dealing with 
rank data that is flexible, easy interpret, and computationally accessible. 

7.8 Appendix 

Table 18 contains the fully ranked APA voting data arranged in the four­
way table as in Section7.5. Contrast 1 gives the rank of candidate B, 
Contrast 2 gives the unordered ranks of A and C among (A,C,D,E), and 
Contrasts 3 and 4 compare A to C and D to E, respectively, the value "1" 
("2") meaning the first (second) is preferred. 
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Table 18: APA Voting data, Full Rankings 
Entries are numbers of voters 

Contrast 2 
C3 = 1,C4 = 1 Cd 12 13 14 23 24 

1 40 26 42 42 34 
2 30 27 35 75 64 
3 102 35 28 52 52 
4 45 24 48 28 53 
5 50 17 35 21 34 

C3 = 2,C4 = 1 
1 34 16 29 23 19 
2 74 40 50 51 24 
3 172 35 26 35 22 
4 96 35 28 28 24 
5 79 36 30 27 24 

C3 = I,C4 = 2 
1 30 24 36 40 30 
2 28 29 34 34 41 
3 95 37 35 53 45 
4 70 51 52 44 63 
5 70 36 40 40 35 

C3 = 2,C4 = 2 
1 30 22 11 31 25 
2 82 52 35 24 26 
3 186 38 34 30 22 
4 162 87 43 62 37 
5 106 45 38 41 34 

34 
45 
66 
84 
133 
61 

46 
44 
49 
67 
54 

50 
58 
91 
107 
71 

50 
54 
57 
29 
31 

The raw data from the computer searches, Section 7.6, is presented in 
Table 19. See Table 14 for more detail on the searches. 

Table 19' Search Data' Numbers of Attempts 
Search Novices Experts 

1 2 2 3 2 3 1 1 3 2 1 1 1 3 1 
2 2 2 2 1 1 1 1 3 1 1 1 1 3 2 
3 3 4 3 3 2 2 2 2 2 2 1 1 2 3 
4 2 243 3 2 2 4 2 1 2 2 3 2 
5 2 2 3 3 3 2 3 3 3 2 3 2 3 3 
6 3 2 3 3 2 1 2 2 2 2 2 2 2 3 
7 3 3 2 3 3 2 1 3 1 1 1 1 1 2 
8 1 1 2 2 1 1 1 1 1 1 1 1 1 1 
9 1 1 2 3 1 2 1 1 1 1 1 1 1 1 
10 1 2 1 1 1 1 2 1 1 2 2 1 1 1 
11 2 2 1 1 1 1 1 1 3 1 1 1 2 1 
12 1 3 3 2 2 2 1 2 2 2 1 1 1 1 
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Rank Correlations and the 
Analysis of Rank-Based 
Experimental Designs 

M. Alvo 1 

P. Cabilio2 

ABSTRACT The notion of distance between two permutations is used to 
provide a unified treatment for various problems involving ranking data. 
Using the distances defined by Spearman and Kendall, the approach is 
illustrated in terms of the problem of concordance as well as the problem 
of testing for agreement among two or more populations of rankers. An 
extension of the notion of distance for incomplete permutations is shown 
to lead to a generalization of the notion of rank correlation. Applications 
are given to the incomplete block design as well as to the class of cyclic 
designs. 

8.1 Introduction 

The subject of rank correlation has had a rich and extensive history. By 
viewing the rank correlation between two rankings in terms of distance 
functions, it is possible to define different measures of correlation, which 
include as special cases those defined by Spearman and Kendall [17]. The 
connection between average Spearman rank correlations and the Friedman 
test statistic for the problem of Tn rankings was noted by Kendall [17], while 
Ehrenberg [9] introduced average Kendall rank correlations for this prob­
lem. Durbin [8] extended the Friedman statistic to the balanced incomplete 
block design. 

The distance based approach offered herein provides a unified treatment 
of such tests and allows for a general solution to the problem of m rankings, 
as well as that of testing for agreement between two or more populations of 
rankers. Many of these results, described in Sections 8.3 and 8.4, have been 
dealt with in greater detail in Alvo, Cabilio and Feigin [1], Alvo and Cabilio 

1 University of Ottawa, Ontario, Canada 
2 Acadia University, Nova Scotia, Canada 
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[2] and Feigin and Alvo [10]. In Section 8.5, an extension of the notion of 
distance applied to sets of permutations permits a generalization of the 
problem of m rankings to the case of balanced incomplete block designs, 
and allows for a new interpretation of the Durbin statistic. A detailed 
analysis of this problem appears in Alvo and Cabilio [4]. 

The definition of distance measures for incomplete rankings allows us 
to present some new results in the concluding sections. In Section 8.6 the 
Durbin test is extended to the more general situation of cyclic designs. 
In Section 8.7, measures of correlation between incomplete rankings are 
introduced and are related to the coefficient of concordance in a way that 
is parallel to the complete ranking situation. 

8.2 Distance Based Measures of Correlation 

Let P = {Vj} be the space of all possible permutations of the integers 
1,2, ... , t and let the column vectors 

Vj = (Vj(1), ... , Vj(t))', j = 1,2, ... , t! 

denote the t! possible permutations. Thus P represents the collection of all 
possible rankings of t objects. For convenience these objects are ordered 
in some way and labelled 1,2, ... , t. A measure of the correlation between 
permutations It and v may be defined in terms of the distance d(lt, v) 
between them as: 

( ) -1 2d(Jl,v) 
0: Jl, v - - M (1) 

where M is the maximum value of d taken over all possible pairs Jl and v 
in P. Examples of distances over permutations may be found in Critchlow 
[6]. These include the distances associated with Spearman and Kendall (see 
Kendall [17]): 

t 

dS(lt, v) = ~ :2)Jl(i) - v(iW (2) 
i=1 

dK(lt, v) = L {I - sgn[lt( i) - It(j)]sgn[v( i) - v(j)]} (3) 
i<j 

These distances have the property that the distance between two rankings 
remains unchanged under any permutation relabeling of the objects. That 
is, for any 17, Jl, v E P, d(Jl, v) = d(Jl(T, V(T). This property is known as 
right invariance. 

Let ~ = (d(v;, Vj)) denote the matrix of distances. If d is right invariant, 
then it follows that there exists a constant c > 0 for which 

~e = (ct!)e (4) 
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where e = (1,1, ... ,1)' is of dimension t! (see Feigin and Alvo [10]). Hence, 
c represents the average distance between pairs of permutations. For the 
Spearman and Kendall metrics, we have 

t(t 2 - 1) 
Ms = 2cs (5) Cs = 

12 

t( t - 1) 
MK = 2CK (6) CK = 

2 
(see Kendall [17]). 
The correlation coefficients based on these distances are of the multiplica­
tive type in the sense of Kendall [17]; that is, there exists a function 9 such 
that 

t t 

n(jj,v) = k/lkv LLg(jj(i),ll(j))9(v(i),v(j)), 
i=l j=l 

where k/l, kv are normalizing constants. Kendall [17] distinguishes such co­
efficients into type a and type b depending on the choice of normalizing 
constants. For the distances in (2) and (3), the functions 9 are respectively 

gS(ll(i),ll(j)) = jj(i) -Il(j) 

9K(ll(i), Jl(j)) = sgn[Jl(i) - Jl(j)]. 

(7) 

(8) 

For a multiplicative index, the matrix r = (n(vi, Vj)) is necessarily positive 
semi-definite (see Quade [21]). Setting Q == (A[ J - Ll), where J = ee', this 
implies there exists a matrix T for which 

Q=T'T. 

In view of (4), it follows that for a right invariant metric 

M 
Qe = t!(- - c)e 

2 

(9) 

(10) 

Moreover, for the Spearman and Kendall distances, the relationships in (5) 
and (6) imply that Qse = 0 = QKe. 

The matrices T corresponding to ds and dK are respectively: 

(11 ) 

of dimension (t x t!) where 

t+l t+1, 
ts(v) = (v(1) - -2-'···' vet) - -2-) (12) 

the centered rank vector, and 

(13) 
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of dimension (G) x t!) where the qth element of tK(V) is 

sgn[v(j) - v( i)] (14) 

z 
q = (i - 1) (t - "2) + (j - i) l:Si<j:St. (15) 

Here, tK(V) is the vector of pairwise concordances or discordances of the 
ranking v with the identity rank permutation (1, ... , t)' (see Feigin and 
Alvo [10]). 

The notion of correlation between two permutations has previously been 
used in nonparametric tests of trend and of independence (see Randles and 
Wolfe [22]). In that context, it can be shown that the null distributions of 
as and aK properly standardized are asymptotically normal as t -+ 00. (see 
Kendall and Stuart [[19] p. 507] and Jirina [15]). Daniels [7] showed that 
the limiting joint distribution of as and aK is bivariate normal whereas 
Hajek and SIdak [12] noted that, up to a factor, the Spearman correlation 
coefficient may be viewed as the projection of the Kendall coefficient into 
the family of linear rank statistics. As t -+ 00, the two coefficients have a 
correlation which tends to 1 and hence are asymptotically equivalent. 

8.3 The Problem of m Rankings 

Suppose that m judges acting independently provide ran kings Xl, X 2, ... , 

Xm of t objects, each chosen according to a distribution 7r = (7rI' .. . 7rt!)' 

over P; that is, 
7ri = P(X = Vi) i = 1, ... , t! 

The problem of m rankings consists of testing the null hypothesis Ha : 
7r = 7ra == (t!)-Ie against the alternative HI : 7r # 7ra. This problem 
was first considered by Friedman [11] and later by Kendall and Babington 
Smith [18]. Friedman's result which may be presented in the context of the 
average pairwise correlation 

( 16) 

is that under Ha, as m -+ 00. 

(t - 1)[(m - l)o:s + 1] b xLI (17) 

The test rejects H a for large values of O:s. 
Noting that O:s, apart from some factors, can be expressed as a quadratic 

form in a multinomial t! vector with parameters m and 7r, Alvo, Cabilio 
and Feigin [1] provide a proof of Friedman's result using the multivariate 
form of the central limit theorem (see also Quade [21]). Specifically, let 



144 M. Alvo and P. Cabilio 

1= (11, ... , It!)' be the vector of frequencies of rankings and let iT = 11m. 
Defining Zm = m 1/ 2(1 - m1TO), and using (10) and (5) one may write 

1 
(m - l)as + 1 = -[Z:"QZm] 

Cs 

= m [Ts(iT _ 1To)]'[Ts(iT - 1TO)]. 
Cs 

The form (18) may be simplified on noting that Tse = 0, so that 

(m - 1)as + 1 = m (TsiT)'(TsiT) 
Cs 

(18) 

(19) 

From (11) and (12), it follows that the right side of (19) multiplied by (t-l) 
is equal to the familiar form of the Friedman statistic, 

t 
12 ~ R t + 1 2 

mt(t + 1) ~[ q - m(-2-)] (20) 

where Rq is the sum of the ranks assigned to the qth object. 
The representation in (19) provides a different interpretation for testing 

H ° in terms of the characteristics defined by the matrix Ts and hence by 
the distance ds . This opens the possibility of generalizing the approach. In 
particular, the test statistic associated with the Kendall metric would, in 
view of (9), have the form: 

(21) 

since TKe = O. 
It has been shown by Alvo, Cabilio and Feigin [1] that under Ho, the 

asymptotic distribution (m --+ (0) of maK + 1 is given by 

222 
3t(t _ 1) {(t + l)xt-l + X(';!)} (22) 

where the two X2 variates are independent. The distribution in (22) is 
dominated by the first variate for all values oft. The statistics (19) and (21) 
may be viewed as sampling estimates of specific functions of the parameters 
TS1T, the vector of expected centered ranks, and TK 1T, the vector of expected 
pairwise concordances. These parameters or characteristics thus replace the 
original parameter 1T, effecting a large decrease of dimensionality. Ehrenberg 
[9] was the first to suggest the use of average Kendall correlations as an 
alternative to as. He justified his preference for aK by arguing that pairwise 
concordances offer a deeper measure of agreement than that to be had from 
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simply using the sum of the ranks. In this connection, it should be pointed 
out that if t = m, and the matrix of rankings forms a circulant 

1 
m 

m-l 

2 

2 3 
1 2 
m 1 

3 4 

m 
m-l 
m-2 

1 

then, with HI true, 

whereas 

1 
iis = --- -+ 0 

m-l 

4 
iiK = 1- - -+ 1 

m 

as rn -+ 00 

as m -+ 00 

(see Ehrenberg [9]). Hence, under this alternative to Ho, the test based 
on iis would not reject. A similar difficulty arises when one half of the 
observed rankings are in natural order and the rest are in reverse natural 
order. 

Tables for the exact null distribution of iiK for small values of t and m 
can be found in Quade [21] and Alvo and Cabilio [2]. The latter provide 
comparisons of different approximations to the null distribution of iiK given 
by Ehrenberg [9], Hays [13] and (22). 

A different set of asymptotics arises if m is fixed and t -+ 00 as the 
following theorem shows. 

Theorem 8.3.1 Under Ho, as t -+ 00, 

a) 

and 

b) 

where 

iis b N(O, 1) 
JVar(as) 

(m) -1 1 
Var(iis)= 2 (t-l) 
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Proof: First, it can be seen that if either result a) or b) holds, then the 
other must follow. Indeed, recall that 

and (m) -1 1 
Var(c¥s) = 2 (t - 1)" 

Using a result from Hajek and Sldak ([12], p. 61), it can be shown that 

(m2 ) -1 (2t) -1 (t +3 1) " E[C¥KC¥S] = 

consequently, as t -+ 00, 

In the case where the rankings arise from the observation of t independent 
random vectors Xj = [X?), ... , Xj(m»)', with independent components and 
continuous distributions, an application of the multivariate central limit 
Theorem 8.41 of Puri and Sen [20], leads to a demonstration of b). A more 
direct proof of a) for this case makes use of the central limit theorem for 
U -statistics. 

In view of Theorem 8.3.1 as well as the comparisons described in Alvo 
and Cabilio [2], the asymptotic distributions provided in (17) and (22) are 
inappropriate when m, the number of rankers is not large compared to the 
number of objects t. 

8.4 The Two Sample Problem 

Consider now the problem of testing for agreement between two popula­
tions of rankers acting independently of one another. Letting 1T(1), 1T(2) be 
the two distributions over P associated with the populations, the two sam­
ple problem may be viewed as a test of the hypothesis 1T(1) = 1T(2) against 
the alternative 1T(1) /; 1T(2). Schucany and Frawley [24] and subsequently 
Hollander and Sethuraman [14] suggested different interpretations of the 
notion of agreement. Feigin and Alvo [10], motivated by Rao's concept 
of diversity [23], proposed testing T1T(l) = T1T(2) against the alternative 
T1T(l) /; T1T(2) where as before the matrix T serves to define certain pop­
ulation characteristics of interest and to reduce the dimensionality of 1T. 

Feigin and Alvo then proceeded by using standard multivariate method­
s. Their approach allows for a generalization to several populations and 
permits consideration of several problems in the analysis of variance when 
ranking data is involved. 
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8.5 The Problem of rn Rankings for a Balanced 
Incornplete Block Design 

A generalization of the problem of m rankings was first considered by 
Durbin [8]. A total of mb judges are presented k < t objects to rank. 
The pattern of the objects presented follows m replications of a balanced 
incomplete block design of b blocks of k rankings of t objects. Within each 
basic design, every object is considered by r of b judges and each pair of ob­
jects is presented together to A of these judges. For a balanced incomplete 
block design, 

bk = tr 

A = r( k - 1) / (t - 1) 

(see Cochran and Cox [5]). 

(23) 

(24) 

Each block represents a different pattern of k objects to be ranked. Let 

(R) _ ( (l)( ) (l)(k))' k I Vj - Vj 1, ... , Vj ,j = 1, ... , '. 

represent the k! possible permutations of the integers (1, ... , k) correspond­
ing to all the possible k-partial rankings for each of the block patterns in­
dexed by C = 1, ... , b. A judge presented with k objects according to block 

pattern C selects a ranking from {vy)} according to the probability vector 

1T(i) = (1Til) , ... ,1TW)'. 

The (bk! x 1) vector of probability vectors for the overall design is 

1T* = (1Til), ... '1T~;)I ... Hb), ... ,1T~~))'. 
Setting 

1T~ = (k!)-I(I, ... ,11·· .11, ... , I)', 

the null hypothesis to be tested is H~ : 1T* = 1T~ against the alternative 
Hr : 1T* =j:. 1T~. 

In order to clarify the notation, suppose t = 3 objects are presented 
k = 2 at a time. The complete rankings are labelled 

VI = (123)', V2 = (132)', V3 = (213)', V4 = (231)', V5 = (312)', V6 = (321)'. 

The incomplete rankings are denoted by 

VP) = (12_)', v~l) = (2L)'; vi 2) = (L2)', v~2) = (2_1)'; 

vF) = (2)', v~3) = (_21)' 

The following notion of compatibility between a complete and an incom­
plete ranking plays an important role in the sequel. 
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Definition 8.5.1 A complete ranking v is said to be compatible with 
an incomplete ranking v(*) if the relative ranking of every pair of objects 
ranked in v(*) coincides with its relative ranking in v. 

Hence, the complete rankings VI, v2 and V4 above are compatible with 
the incomplete ranking vF). In general, the number of complete rankings 
compatible with a specific incomplete ranking in a balanced design will be 

a = t!/k! 

The definition of compatibility is useful in extending the notion of distance 
to incomplete rankings. 

Definition 8.5.2 The distance between the incomplete rankings Vi(i) and 

vJr), denoted by d* (vY), v}r)) is defined to be the average of all values of 

d(Jl, "7) taken over all complete rankings jl, "7 compatible with vIi) and v;r) 
respectively. 

Although the distance given in Definition 8.5.2 maintains the triangle in­
equality, it is not a metric since the distance between a ranking and its du­
plicate will not be zero. Another way of defining distances between incom­
plete rankings may be based on Hausdorff metrics as detailed in Critchlow 
[6] for the case of partial rankings. On the other hand, our approach could 
be extented to the situations studied by Critchlow. One justification for our 
approach in this case is that a gain in mathematical tractability offsets, in 
our opinion, the loss of the least important property of a metric. In any 
case, our approach leads to results which nicely parallel the complete case. 

Ordering the complete rankings {Vj} in some way, we may associate 
with every incomplete ranking v(*) a (t! x 1) compatibility vector, whose 
ith component is 1 or 0 according to whether Vi is compatible with v(*) or 
not. In this way, a matrix of compatibiity Ci may be generated for block 
pattern f whose ph column is the compatibility vector associated with 

(i) . - 1 k' Vj ,) - , ... , .. 

Finally, the overall compatibility matrix for the design is defined to be 

(25) 

As an example for t = 3, k = 2, the compatibility matrix C is found to be 

10 10 10 
10 10 01 

C= 01 10 10 
10 01 01 
01 01 10 
01 01 01 

In matrix notation, if~· = (d*(v}i), vjr))) represents the matrix of dis­
tances between pairs of incomplete rankings, it follows that 

~*=a-2C/~C (26) 
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Restricting attention to the Spearman and Kendall metrics, the represen­
tation in (9) leads to 

,6.*= M a- 2C'JC-T*'r* (27) 
2 

where T* = a-ITC. Consequently, in analogy with (19) and (21), the 
test statistic for testing Ho will be based on the sampling estimate of 
(T* 7r* )'(T* 7r*). 

The following theorem is proved in Alvo and Cabilio [4]. Let f(l) = 
(f~l), ... , fk7))' be the vector of frequencies of rankings for block pattern f 
and set the (bk! xl) vector 

f = (f~l), ... , fk~) I· .. If~b), ... , f~~))', 
Theorem 8.5.1 Under Ho as m --> 00, 

(a) (28) 

(b) m-ICK == (ayrn)-2(TKCf)'(TKCf) b a2X;_1 + a 3X(I-;1) (29) 

where 

At(t + 1)2 A(t + 1)2 A[t(k - 1) - 2] 
al = 12(k + 1)' a2 = 3(k + 1)' a3 = 3(t _ 2)(k + 1) (30) 

and the X2 variates in (29) are independent. 
The result in (28) coincides with Durbin's [8]. In fact, it can be shown 

that the left side of (28) divided by al is equal to 

t 

D= 12 L::[R*-mr(k+1 W (31) 
mAt(k + 1) q=l q 2 

where R; is the sum of the ranks assigned to the qth object. On the other 
hand, (29) provides a generalization to (22) in the case of the Kendall 
metric. Note that (31) becomes equal to (20) in the complete block situation 
when k = t, b = r = 1 and A = 1. 

A computational formula can be developed in order to facilitate the use 
of the Kendall metric (Alvo and Cabilio [4]). Specifically, for each pair of 
objects labelled (ql, q2), ql < q2, the incomplete ranking J.Lj of judge j is 
assigned a score aj (ql, q2) where 

sgn(J.Lj(q2) - J.Lj(qI) 

1 _ 2J.Lj(qI) 
k+1 

2J.Lj(q2) _ 1 
k+1 

o 

if judge j ranks both ql and q2 

if judge j ranks only ql (32) 

if judge j ranks only q2 

otherwise 
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The sum over all rankings of the scores for the pair (q1, q2) is 

(33) 

1 
the qth element of -(TKCf), where q is defined by (15) with i = q1,j = q2. 

a 
Thus 

mb 

OK = 2: [2: aj(q1, Q2W· (34) 
ql <q2 j=1 

This form is reminiscent of the one derived by Hays [13] for the complete 
ranking situation, and in fact reduces to it in that case. 

8.6 The Problerll of rn Rankings for Cyclic 
Designs 

In certain instances where the requirements of the balanced incomplete 
block design are too restrictive, it may be useful to consider cyclic designs 
instead. The properties of such designs are given in some detail in John [16]. 
As in the balanced incomplete block design the pattern is of m replications 
of a basic design of b blocks of k ran kings of t objects, with each object 
presented to r of b judges. For such a design relation (23) continues to hold. 
A cyclic design is further characterized by a symmetric concurrence matrix 
(Aij) where Aij is the number of blocks in the design in which treatments i 
and j occur together. Unlike the balanced incomplete block design Aij is not 
a constant, but depends on (j - i) and thus does not meet the requirements 
of (24). Specifically for a cyclic design 

for 1 ~ i ~ j ~ t. 

i~j-l 
i=j 
i~j+l 

To illustrate, consider the following cyclic design with 4 treatments: t = 
4, k = 2, b = 4, r = 2. 

Treatments 
1 2 3 4 

Blocks * * 
* * 

* * 
* * 
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The concurrence matrix is given by 

so that Al = 2, A2 = 1, A3 = 0, A4 = 1. 
In analogy to (28), it may be shown that for the C defined by this design 

(avrn)-2(TsC J)'(TsCJ) (t+l)2 ~[R*- (k+l)]2 
m( k + 1)2 ~ q mr 2 

t-l 

b '" a~Z~ ~, , (35) 
q=l 

where the {ai} are the eigenvalues of 21kITsCC'T~ and {Z;} are inde-
a . 

pendent standard normal variates. The principal change between this re-
sult and (28) is that the eigenvalues for the cyclic design are no longer all 
identical. This is a consequence of the fact that the cyclic design alters the 
balance in the compatibility matrix. What the actual eigenvalues are in 
general is unclear, however they may be calculated for specific situations. 

In this example, ai = 295 and a2 = a3 = i~· 

8.7 Measuring Correlation Between Incomplete 
Rankings 

Motivated by the concepts of compatibility and average distance one may 
define the distance between Jli and Jl], the incomplete rankings of judges 
i and j respectively as 

(36) 

where C(fL*) is the compatibility vector of II"; C = Cs = t(t21~ 1) in the 

t( t - 1) 
Spearman case, and C = CK = 2 in the Kendall case. Let Wj be the 

vector formed by filling in the blanks of the incomplete ranking II] with 

the average rank k + 1 . That is 
2 

Wj(s) = Jl](s)8(s,j) + (k; 1) (1- 8(s,j)) (37) 
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where 
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8(s,j) = {I if judg~ j ranks object s 
o otherwIse 

Then a simplified form of the Spearman distance is 

d* (~ ~) _ t (t + 1) (2t + 1) _ (t + 1 ) 2 ~ . () . ( ) 
s Il" IlJ - 6 k + 1 L.,; w, S wJ S . 

8=1 

In the Kendall case the distance may be written as 

where aj(Ql,q2) is defined as in (32). 
An application of the Cauchy-Schwarz inequality indicates that the upper 

bound of [C(Jlt)l'T'TC(Ilj) is achieved when C(Jli) = C(Ilj), that is when 
Ili = Ilj, and the lower bound is achieved when TC(tti) = -TC(ttj). If we 
let Ilj be the inverted ranking, that is Ilj (s) = k + 1 - Ili( s) when object s 
is ranked by i, then Wj(s) = k+1-w;(s) and TsC(ttj) = -TsC(lli). Further 
aj(Ql, Q2) = -a;(Ql, Q2), and thus TKC(Jlj) = -TKC(Jli). A straightforward 
calculation of these distances using the incomplete ranking (12 ... k_ . .. _)' 
and its inversion shows the minimum (m*) and the maximum (M*) dis­
tances in the two cases to be 

* _ _ (t+1)2k(k-1) M*- (t+1)2k(k-1) 
ms-cs 12 (k+1)' s-cs+ 12 (k+1) 

* _ _ (2t+k+3)k(k-1) M* _ (2t+k+3)k(k-1) (38) 
mK - CK 6 (k + 1)' K - CK+ 6 (k + 1) 

Kendall [17] introduced the coefficient of concordance W, a measure of 
overall agreement amongst the judges in the complete ranking situation 
described in Section 8.3. This coefficient W may be written as 

1 
W = -(as(m - 1) + 1) 

m 
(39) 

and clearly achieves the maximum value of 1 when all judges agree. Durbin 
[8] extends this coefficient to the incomplete case. This measure, denoted 
by Ws, is related to Gs in (28) through 

W - 12(k + 1)2 G 
s - n2).2t(t _ 1)(t + 1)3 s· (40) 

Ws is constructed so that it achieves the maximum value of 1 when the 
incomplete ran kings share one compatible complete ranking. The property 
of W in (39), that it can be expresed as a linear function of the average of 
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the Spearman rank correlations between all pairs of rankings, can be ex­
tended to the incomplete case by properly defining the correlation between 
two incomplete rankings. One possible approach is to define the correlation 
between the incomplete rankings IIi and p; by 

* * * 2(d*(pi,pj) - m*) 
a (IIi' p)' ) = 1 - . M* -m* 

(41 ) 

Such a definition may be justified in various ways. For one, it is related to 
the average of the correlations between the corresponding complete compat­
ible rankings in the following way. If this average is denoted by 6:(117, II;), 
then 

6:(p:, Ilj) = +[C(11nl'T1TC(llj) = 1 - ~d*(ll:, Pj) 
a c c 

which on simplification becomes 

In the Spearman case a further justification for the definition (41) may be 
had by considering the vectors defined in (37). The Spearman distance (2) 
between Wi and Wj is found to be 

( 42) 

so that the correlation between Wi and Wj defined by 

is exactly a'S(11i, Ilj). Further this correlation coincides with both type (a) 
and type (b) correlations as defined by Kendall [17]. Turning now to the 
average correlation between all pairs of incomplete rankings, we have 

Ci* = 1 "f(1- 2(d*(pi,Pj) - m*)). (43) 
mb(mb - 1) itj M* - m* 

With G = a- 2 (TCf),(TCf), use of 

gives 

mb 

L d*(p:, pj) = cm2 b2 - m*mb - G 
i;tj 

(mb-1)Ci*= b( 2 )G-1. 
1n M* - m* 

(44) 

( 45) 
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In the Spearman case, use of (38) yields 

_* mA(t + 1) 
(mb - l)as = (k + 1) Ws - 1, (46) 

so that 
(k+l) _* 

Ws = mA(t + 1) (as(mb - 1) + 1). (47) 

It may also be noted that use of (31) shows that the relationship between 
O:s and the Durbin statistic D is 

( ) _* 1 
mb - 1 as = --D - 1 

t - 1 

which is the same as the relatioship between o:s and Friedman's statistic in 
the complete ranking case. For the Kendall case a measure of concordance 
may be defined to be 

1 
WK = -GK 

I 
where I is the value of G K when all the incomplete rankings are compatible 
with one complete ranking which can be taken to be in natural order. 
However, the calculation of I in this case is not as straightforward as is the 
case of Gs. (see Alvo and Cabilio [3]). 
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Applications of Thurstonian 
Models to Ranking Data 

VIf Bockenholt 1 

ABSTRACT Thurstonian models have proven useful in a wide range 
of applications because they can describe the multidimensional nature of 
choice objects and the effects of similarity and comparability in choice 
situations. Special cases of Thurstonian ranking models are formulated that 
impose different constraints on the covariance matrix of the objects' util­
ities. In addition, mixture models are developed to account for individual 
differences in rankings. Two estimation procedures, maximum likelihood 
and generalized least squares, are discussed. To illustrate the approach, 
data from three ranking experiments are analyzed. 

/{ ey words and Phrases: common factor model, normal orthant probabilities, 
mixture models, ranking data. 

9.1 Introduction 

This paper discusses a class of ranking models that is based on Thurstone's 
[33] random utility approach. Although the idea to analyze ranking data 
from a Thurstonian perspective is not a new one (Thurstone [34]; Daniels 
[13]), only recently have Thurstonian ranking models been developed that 
facilitate a parsimonious and flexible modeling of ranking data (Bockenholt 
[7]; Brady [8]). The main reason for this slow development is related to the 
computational complexity in estimating the model parameters. However, 
recent advances in evaluating the multivariate normal distribution make 
now the application of Thurstonian ranking models practical. This paper 
presents an overview of these models and introduces some new applications 
in the context of modeling individual differences. 

As early as 1931, Thurstone suggested rankings as a substitute for paired 
comparison data. However, in his attempts to analyze these data he did not 
treat rankings as unit of analysis but converted them to paired comparison 
data to which he applied his influential 'law of comparative judgment' 
(Thurstone [33]). The crucial idea underlying Thurstone's approach is that 

IDepartment of Psychology, University of Illinois at Urbana-Champaign, 
Champaign, Illinois 
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a judgment about an object i can be represented by a random variable Uj 

which is composed of a fixed and a random part (Bock & Jones [5]), 

Uj = {lj + d j . 

Thus, the location of object i is determined by its 'affective value', {lj, 

and corresponds to the modal response of a homogeneous group of respon­
dents to that object. Random components of the individual judgments are 
represented by d j . When the joint distribution of dj and d j associated with 
objects i and j is bivariate normal with a zero mean vector and covariance 
matrix, 

.Il = [o} (1i j ] 
(1ij (1J ' 

the probability of preferring object i over object j is given by the difference 
process 

P(i, j) = <'P ( {li - Itj ) , 
)(1; + (1J - 2 (1ij 

where <'P denotes the standard normal distribution function. In the next 
section, Thurstone's law of comparative judgment is extended to ranking 
judgments. 

9.2 The Ranking Model 

In a ranking task, a homogeneous group of respondents is asked to rank 
t > 2 distinct objects with respect to some criterion. The respondents' 
rankings are assumed to be independent of each other. According to the 
random utility approach, an object i is ranked first if its value, Uj, is largest; 
it is ranked second if its value is second largest, etc. Note that although 
a judge may compare the objects in any order, the affective values remain 
fixed during the ranking trial. Thus, it is assumed that a judge does not 
'resample' affective values when slhe rank orders the objects. 

Ranking outcomes are represented by the ordering vector s = (i, j, ... , k) 
which denotes that object i is judged superior to object j which in turn 
is judged superior to the remaining objects in the choice set, with the last 
preferred object being k. The probability of observing s = (i,j,k, ... ,s,t) 
IS 

To compute this probability, it is assumed that the joint distribution of 
d = (dj , d j , ... , d t ), is multivariate normal with covariance matrix .Il, 

d", N(O, .E), 
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and 
u ~ N(J-t, E). 

As a result, the probability of a particular rank order can be determined 
by evaluating a (t - 1) variate normal distribution function. For example, 
when t = 3, 

where <1>2 is the standard bivariate normal distribution function with inte-
gration limits, J {L,-I"; and J {L;-{Lk , and correlation coefficient 

u?+u}-2ut j uJ+u~-2ujk 

The covariance terms describe the perceived relationship between two ob­
jects, and the variance components describe the rankers' heterogeneity in 
their judgments. For instance, assume that three objects to be ranked have 
the same average popularity (IIi = Ilj = Ilk) but that the discriminal dis­
persIOn of object i is much larger than of the two other objects. In the 
limit, 

P(.'3 = i, j, k) = P(.s = i, k, j) = P(.s = j, k, i) = P(.s = k, j, i) = 0.25, 

and 
P(.s = j, i, k) = P(.s = k, i,j) = O. 

Thus, in this extreme case of heterogeneity, object i is either ranked first 
or last although there are no differences in the mean rank values of the 
objects. To illustrate the effect of non zero covariances, assume that object 
i and j are very similar but have the same average popularity as object k. 
In the limit, 

P(.s = i,j, k) = P(.s = j, i, k) = P(.'3 = k, i,j) = P(.'3 = k,j, i) = 0.25, 

and 
P(.s = i, k,j) = P(.s = j, k, i) = O. 

Note that the rank positions of object i and object j are always adjacent 
although there are no differences in the average rank values of each ob­
ject. In general, by relaxing the assumption that the mean utilities are 
independently distributed, Thurstonian models allow for a straightforward 
representation of effects of heterogeneity and perceived similarity between 
choice objects. 
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Thurstone [33] suggested several simple constraints to be imposed on the 
covariance matrix E that have been applied successfully in the modeling 
of paired comparison data. For example, in his Case III formulation, 
Thurstone allowed the variances to vary, while in his Case V formulation, 
Thurstone posited that the variances are equal. Both constraints reduce 
considerably the number of parameters to be estimated. In Case V, (t - 1) 
mean values have to determined; in Case III (t -1) mean values and (t -1) 
variance components have to be estimated. Daniels [13] suggested the Case 
V constraint for the analysis of ranking data. When the number of objects 
to be ranked is large, modeling the covariance matrix E may also prove 
useful. This is the topic of the next section. 

9.3 Modeling ~ 

Under the assumption that respondents use for their rankings a set of r 
dimensions that characterize the choice alternatives, the covariance matrix 
may be modeled by a common factor structure, 

E = AA' +ip, 

where the loading matrix A(t x r) and the diagonal matrix ip(t x t) are all 
parameters. Thus, u can be written in the form 

u = I-"+Af+d. 

Under the assumptions that the common factors f(r X 1), and d(t x 1) are 
multinormally distributed, 

f '" N(O, I), d '" N(O, ip), 

and f and d are independent, 

u'" N(I-", AA' + ip). 

Indeterminancies in the estimation of the common factor model can be 
handled by imposing constraints on A and I-" (Bartholomew [2]). The 
ranking probabilities are invariant under a transformation of the loading 
matrix by any orthogonal matrix of order r and addition of a constant 
r-dimensional vector. Similarly, the ranking probabilities are not affected 
by any linear transformation of the mean utilities. The factor analytic ap­
proach has proven useful in the analyses of a wide variety of paired and 
multiple comparison data (Arbuckle & Nugent [1]; Brady [8]; Manski & 
McFadden [23] ). 

An alternative to the linear factor model is provided by the ideal point 
factor model (Brady [8]; Takane [31]). This model assumes that respondents 
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can be represented by their ideal points, f, on a latent continuum. In this 
case the 'affective value' of a choice object is determined as, 

Ui = J-li - (Ai - f)'(Ai - f) + dj , 

and by making the same distributional assumption as for the linear factor 
model, we obtain 

U rv N(I-t - diag(AA')l, AA' + !l!), 

where 1 is a t-dimensional unit vector. Thus, although the mean vectors of 
the linear and the ideal point factor model differ, their covariance structures 
are identical. 

In their analyses of paired comparison data, Takane [30] and Heiser and 
DeLeeuw [18] assumed that the unique variances can be ignored and intro­
duced a principal component type of constraint with :E = AA'. This model 
requires the estimation of (t - 1) mean utilities and (t r - r(r + 1)/2 - 1) 
effective parameters to determine :E. Other approaches that constrain the 
structure of the covariance matrix and the mean utilities include the Wan­
dering Vector model (DeSoete & Carroll [14]) and the Wandering Ideal 
Point model (1. Bockenholt & Gaul [6]; DeSoete, Carroll, DeSarbo [15]). It 
seems likely that these approaches developed for modeling paired compar­
ison data will also prove useful in the analysis of ranking data. 

9.4 Subpopulations 

The assumption of a preference structure that is common to all rankers 
may not always be adequate and can be rather restrictive. For example, 
it is easy to imagine that in an election there are several groups of voters 
with very different opinions about the political candidates. In this case it 
may be more appropriate to analyze the data of each group separately. 
This approach is straightforward if group membership is known for every 
ranker. Group differences can be investigated systematically by comparing 
the groups' scale values and covariance structures. An application of this 
approach is presented in Example II. 

However, if group membership is not known, a mixture approach may 
be utilized for modeling population differences in ranking data. Recently, 
Croon [12] demonstrated that a special case of mixture models, latent class 
analysis, in combination with Luce's [21] or the Pendergrass-Bradley [26] 
ranking model, can prove useful in the exploration of individual differences 
in ranking data. Consistent with the Thurstonian framework, a multivariate 
normal mixture approach is adopted here that assumes that the heteroge­
neous population of rankers can be regarded as a finite mixture of more 
homogeneous subpopulations. Each subpopulation is characterized by its 
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distinct mean ranking of the choice alternatives. Consequently, the proba­
bility of observing a ranking pattern is a weighted sum of each subgroup's 
ranking probability, Pg(s) 

w 

pes) = L 7rg Pg (s). 
g=1 

The relative size of each group is denoted by 7rg and because the subpop­
ulations are assumed to be exhaustive and disjunctive, 

w 

L7rg = 1 with 7rg > o. 
g=1 

For example, the probability of observing the ordering vector S = (1,2,3) 
in the g-th subpopulation is given by 

Although (theoretically) the covariance matrix of each subgroup may be 
of arbitrary form, it is restricted to be equal for all subpopulations. This 
constraint is introduced because the log-likelihood of a mixture of nor­
mal distributions is unbounded in the case of unequal covariance matrices 
(McLachlan & Basford [24]). In general, parameters of finite mixtures of 
multivariate normal distributions are identified (see Teicher [32]). However, 
in the analysis of ranking data, it is necessary to impose parameter con­
straints to solve for the location, scale, and rotational indeterminancies of 
each subgroup's estimated parameter values as discussed in the previous 
section. A further essential condition for identifiability is that the total 
number of free parameters does not exceed the number of independent 
rankings. 

In the application of mixture models reported in Example III, use is 
made of the Expectation-Maximization (E-M) algorithm. The implemen­
tation of this algorithm is straightforward and not further discussed here 
because it is well documented in the literature. For example, Hathaway [17] 
and Lwin and Martin [22] provide a detailed discussion of this algorithm 
for estimating normal mixture models. However, it should be noted that 
the E-M algorithm has slow convergence properties. As a result, the E-M 
algorithm becomes impractical for the estimation of mixture models for 
rankings with more than four choice alternatives because of the repeated 
evaluation of the ranking model at each Maximization-step. More detail on 
the estimation of the ranking models is presented in the next section. 
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9.5 Model Estimation and Tests 

Two general approaches, maximum likelihood and general least squares, are 
presented for estimating the parameters of a Thurstonian ranking model. 
The maximum likelihood approach models the probability of observing a 
ranking pattern. In contrast, the generalized least squares (GLS) approach 
takes into account only binary choice probabilities or trinary rankings, and, 
as a result, is more attractive from a computational viewpoint. 

Maximum likelihood estimation: Parameter estimates of the 
Thurstonian ranking models can be obtained by using maximum likelihood 
methods. Assuming random sampling of N subjects for the ranking task, 
the log-likelihood function is specified as 

t! 

In L = c + L r(sl)/n P(SI), 
1=1 

where c is a constant and r(sl) is the observed frequency of the ordering 
vector SI . The estimation of P(SI) requires the computation of normal 
orthant probabilities. In the case of a covariance matrix with a common 
factor structure, numerical evaluation of the multivariate normal integral 
can be performed by Gauss-Hermite quadrature to any practical degree of 
accuracy (Stroud & Sechrest [29]). Because of the assumption of a com­
mon factor structure, this approach is computationally unproblematic for 
a small number of factors. Gauss-Hermite quadrature has proven practical 
for a large number of items in the evaluation of the multivariate normal 
distribution of person parameters in full information factor analysis (Bock 
& Aitkin [3]; Bock, Gibbons, & Muraki [4]). If the covariance structure is 
general and not limited to a common factor model, Schervish's [28] error 
bounded algorithm can be employed for evaluating a normal distribution. 
To ensure the positive definiteness of E in this case, it is useful to esti­
mate the Cholesky factor V with E = VV'. Unfortunately, the Schervish 
algorithm is rather slow for practical applications in a 6- or higher normal 
variate case. 

When the number of objects to be ranked is small, large sample tests of 
fit are available based on the likelihood-ratio (LR) chi-square statistic: 

where re(sI) refers to the expected ordering frequencies under the model 
to be tested. Asymptotically, for small t, if the ranking model provides an 
adequate description ofthe data, then G 2 will be distributed with (t!-h-l) 
degrees of freedom, where h refers to the number of parameters to be deter­
mined. Moreover, nested ranking models can be compared by computing 
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the difference between their LR statistics. This difference is asymptotically 
distributed as a chi-square statistic with the number of degrees of freedom 
equal to the difference between the number of parameters in the unre­
stricted and restricted model. For large t only a small subset of all possible 
ranking patterns may be observed and, as a result, there is little justifica­
tion that the LR statistic will follow a chi-square distribution. Instead, the 
model fit may be assessed by comparing standardized differences between 
the observed and fitted ranking probabilities in different partitions of the 
ranking data (Cohen & Mallows, [9]). 

Generalized Least Squares Estimation: A computationally attractive 
procedure for estimating the parameters of the Thurstonian ranking models 
is provided by the generalized least squares (GLS) principle. In the analysis 
of binary data, Christofferson [10] and Muthen [25] demonstrated the use­
fulness of the GLS estimators for determining the common factor model 
and structural equation models. Brady [8] suggested GLS estimation for 
the analysis of ranked data and provided a detailed discussion of GLS esti­
mation for binary choices and trinary rankings. GLS estimators are defined 
by minimizing 

F = e'S-le, 

where e = P - p* and S is a sample estimate of the covariance matrix of 
e. If only binary choice probabilities are extracted from the ranking data, 
P is a (;) x 1 vector of the observed binary choice probabilities and p* 
contains the binary choice probabilities expected under the ranking model. 

The information contained in the binary choice probabilities may be 
rather limited. Brady showed that more efficient estimators are obtained 
if trinary ran kings are used. In this case, P is a vector containing nonre­
dundant trinary ranking probabilities and p* contains the corresponding 
expected trinary probabilities. Further improvements in efficiency may be 
obtained by considering higher-order rankings. However, in this case, the 
GLS approach loses its computational attractiveness. The GLS estimators 
for binary choices and trinary rankings are consistent. Model tests may 
be based on (min F) which follows asymptotically a chi-square distribu­
tion with degrees of freedom equal to the difference between the number of 
independent probabilities and the number of free parameters. 

9.6 Applications 

Example 1: Analysis of Incomplete Rankings 

In the first example a data set with incomplete rankings presented by 
Pendergrass and Bradley [26] is reanalyzed. These authors suggested an 
extension ofthe Bradley-Terry-Luce model (Luce [21]) for modeling trinary 
ranking data. As a numerical illustration of their model, they collected 
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ranking data according to a balanced incomplete block design (BlBD) with 
four objects presented three at a time so that each object is considered three 
times by four judges and each pair of objects is considered by two judges. 
This whole pattern is replicated forty times. The data are displayed in 
Table 1. 

Table 1 
Ranking Frequencies (Pendergrass and Bradley [26]) 

Triples ijk ikj jik jki kij kji 
ijk 
123 10 8 8 6 4 4 
124 12 8 8 6 4 2 
134 10 8 8 8 4 2 
234 8 6 6 8 6 6 

The initial model fitted to these data is the Thurstonian model with identity 
covariance matrix. This model requires the estimation of three parameters 
and yields a 0 2 = 6.57 on 17 degrees of freedom. The parameter estimates 
are ill = .317, il2 = .066, il3 = -.046, and il4 = -.336. Compared to 
the likelihood ratio statistic, 0 2 = 23.02 (df = 20), under the hypothesis 
of no differences between the four objects (fJI = fJ2 = fJ3 = fJ4 = 0), a 
significant reduction in the fit statistic is obtained (~02 = 23.02 - 6.57 = 
16.45, ~df = 20 - 17 = 3) which clearly indicates that the judges have an 
order preference. 

The blocking effect may be investigated by first estimating a model with 
mean utilities that do not differ among the four blocks of triple com­
parisons and then comparing the fit of this model against the fit of a 
ranking model without this constraint. The difference in the fit statis­
tics follows asymptotically a X2-distribution with 5 degrees of freedom 
(~02 = 6.57 - 4.22 = 2.35, ~df = 17 -12 = 5 and is not substantial which 
suggests that the four blocks do not need to be modeled separately. Finally, 
note that the differences between the estimated means for the second and 
the third object are quite small and probably negligible. To test this 'post­
hoc' hypothesis, the two means were constrained to be equal 0, and a 0 2 

= 7.08 on 19 degrees of freedom was obtained. Thus, this restriction seems 
consistent with the data (~02 = 7.08 - 6.57 = 0.51, ~df = 2) and the 
estimation of only one parameter (ill = .327) is required. 

In summary, subjects seem to distinguish only between the 'first' and the 
'last' of the four objects. It is interesting to note that the most parsimonious 
Thurstonian model (with one parameter) still provides a somewhat better 
fit than the Pendergrass-Bradley extension of the Bradley-Terry-Luce mod­
els to triple rankings. The likelihood ratio statistics of this model is 7.94 
on 17 degrees of freedom. 
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Example II: Testing for Agreement Among Groups of Judges 

One procedure for testing for agreement among groups of judges is to 
determine the likelihood ratio statistic for a ranking model with equal scale 
values for all groups and compare this likelihood ratio statistic to the fit 
of a model without this constraint. This difference in the test statistics 
is compared to a X2-distribution with [(w - 1)(t - 1)] degrees of freedom 
where w refers to the number of groups. This procedure is illustrated with 
a data set in Hollander and Sethuraman [19] who obtained the data from 
an unpublished dissertation by G. Sutton. Sutton asked 14 white females 
(WF) and 13 black females (BF) to rank order the gender with which 
they preferred to spend their leisure time. The females were between 70 
and 79 years old and their three choice alternatives were (1) 'male', (2) 
'female', and (3) 'both sexes'. The data are displayed in Table 2 with the 
first position denoting the most preferred alternative and the last position 
denoting the least preferred alternative. For example, five black females 
specified the preference rank order 'both sexes', 'male', and 'female'. Note 
that the following X2- statistics should be interpreted with care because 
the ranking frequencies are quite small. 

Table 2 
Ranking Frequencies (Hollander and Sethuraman [19]) 

Triples 123 132 213 231 312 321 
W. Females 0 0 1 7 0 6 
B. Females 1 1 0 0 5 6 

The likelihood ratio test C2 = 21.12 of a model with equal means for 
both groups and an identity covariance matrix has 8 degrees of freedom for 
this data set. The x2-statistic indicates that the means of the two groups 
may be different. A ranking model that allows for different mean utilities 
for each group yields a C2 =4.91 on 6 degrees of freedom. This statistic 
may be decomposed into a C2 = 1.22 for the WF group and a C2 = 3.69 
for the BF group and both LR statistics have three degrees of freedom. 
The difference between the likelihood ratio statistics for the constrained 
and the unconstrained model AC2 = 21.12 - 4.91 = 16.21 on 2 degrees 
of freedom supports the hypothesis that there is little agreement between 
both groups. The estimated mean utilities for the WF group are itw F = 
(-1.695, 1.015, .680) and for the BF group itBF = (-.502, -.665, 1.167). 
Clearly, the rank orders of the three choice alternatives are different. The 
WF group does not like to socialize with only 'males' and seems to be 
indifferent between a 'female' companion and 'both sexes'. In contrast, 
the BF group prefers 'both sexes' and seems to be indifferent between a 
'female' and a 'male' companion. A test of this 'post-hoc' hypothesis yields 
a AC2 = 5.54 - 4.91 = .63 on 2 degrees of freedom with the scale values 
itw F = (-1.677, .839, .839) and itBF = (-.583, -.583, 1.167). 
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Cohen and Mallows [9] applied the ranking model suggested by Luce 
[21] for separate analyses of the two groups. The resulting LR-tests are 
compared to a X2 distribution with 3 degrees of freedom. Luce's model 
provided a somewhat less satisfactory fit of the data than the Thurstonian 
model with C 2 = 3.19 for the WF group and C 2 = 6.39 for the BF group. 
However, the conclusions reached by Luce's ranking model are similar to 
the ones presented above. 

The assumption that the three choice alternatives are judged indepen­
dently seems doubtful when considering that the 'both sexes' category 
includes 'female' and 'male' companions. However, the goodness-of-fit 
statistic of a Thurstonian ranking model with an identity covariance ma­
trix indicates that the impact of the correlations between the responses 
is quite small. Of course, the Thurstonian approach is not limited to this 
independence assumption and can deal naturally with situations where the 
independence assumption is violated and ranking data from several groups 
(of unequal sample sizes) are collected (Fligner & Verducci [16]; Pettitt 
[27]). 

Example III: A comparison of GLS and ML 

The third example is taken from Croon [12] who reported the rankings 
of 2262 German respondents in a survey about the desirability of the four 
political goals: 1. Maintain order in the nation; 2. Give people more say in 
the decisions of the government; 3. Fight rising prices; 4. Protect freedom 
of speech. Table 3 contains the ranking data. In his detailed analysis of 
the data set, Croon made use of Ingelhart's [20] distinction between a 
materialistic and a post-materialistic value orientation. According to this 
theory, respondents with a materialistic value orientation prefer the first 
and the third item, while respondents with a post-materialistic orientation 
prefer the second and the fourth item. Croon found support for Ingelhart's 
distinction when modeling the ranking data with Pendergrass-Bradley's 
and Luce's ranking model in a latent class framework. 

In a first analysis of the data set, a Thurstonian ranking model was fitted 
with an identity covariance matrix. Both ML and G LS estimation methods 
were used to determine the mean utilities of the ranking model. No sup­
port was found for this simple Thurstonian ranking model. Maximum like­
lihood estimation led to the LR-statistic C 2 = 256.28 with df = 20. GLS 
estimation was performed based on trinary and quaternary rankings. The 
corresponding chi-square statistics were 179.08 (df = 11) and 195.24 (df = 
20), respectively. The degrees offreedom for the trinary rankings are deter­
mined as the difference between the number of independent probabilities 
(14) and the number offree parameters (3). To test the hypothesis that the 
independence structure of the covariance matrix caused the poor fit of the 
ranking model, a common one-factor model, E = ,.\,.\' + tP, was estimated. 
This modification led to a substantial reduction in the LR-statistic, C2 = 
60.38 (df = 18). Similarly, the GLS chi-squared statistics were 41.59 (df = 
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9) and 60.15 (df = 18) for trinary and quaternary rankings, respectively. 
Although the fit of the one-factor ranking model is still far from being 
satisfactory, the decrease in the goodness-of-fit statistics indicates that the 
political goals are not perceived independently of each other. 

Substantial agreement was found between the mean values and the factor 
loadings estimated by ML and GLS methods. Mean utilities estimated by 
ML methods are P,ML = {.514, -.449, .578,-.643}. Mean utilities estimated 
by GLS methods are for trinary rankings P,GLS3 = {.533, -.441 .558, -.650} 
and for quaternary rankings P,GLS4 = {.530, -.443, .561, -.649}. Clearly, 
these results point to the materialistic value orientation of the respondents. 
Moreover, the loadings of the one-factor ranking model are quite similar 
to the mean scale values. For example, ~M L = {.62, -.59, .33, -.44} which 
indicates that the materialistic item pair 1 and 3 and the post-materialistic 
item pair 2 and 4 are positively correlated, but negatively correlated with 
each other. 

Table 3 
Ranking order of Political Goals (Croon [12]) 

1234 137 2134 48 3124 330 4123 21 
1243 29 2143 23 3142 294 4132 30 
1314 309 2314 61 3214 117 4213 29 
1341 255 2341 55 3241 69 4231 52 
1423 52 2413 33 3412 70 4312 35 
1432 93 2431 59 3421 34 4321 27 

Mixture analysis: According to Ingelhart's [20] theory, there should be 
two distinct subpopulations of respondents, one with a materialistic and 
one with a post-materialistic value orientation. To test this hypothesis, 
mixture models with two and three groups were fitted to the ranking data 
by ML methods. For both analyses, the covariance matrix was set equal 
an identity matrix. The results indicated that a two group solution (G2 = 
32.37, df = 16) may be preferable to a three-group solution (G2 = 28.18, 
df = 12). Note, however, that the overall fit of the two-group model is 
poor. A residual analysis of this model showed that the assumption of 
equal variances may be too strong. This result was supported by the fit 
improvement obtained by a two-group model with a variance component 
estimated for the first item (G2 = 27.51, df = 15; U11 = .81). Although 
this finding of more homogeneous responses to item 1 may not be a stable 
one, it is interesting to observe that item 1 occupies an extreme position in 
both groups. The estimated mean values for the first group are P,l = (.75, 
-.62, .69, -.82) and for the second group, P,2 = (-.88, .62, .04, .22). While 
the difference between the third and the fourth item in the second group 
is small, the overall pattern of means corresponds roughly to Inglehart's 
expectation regarding a materialistic and post-materialistic value structure. 
However, the relative group sizes differ significantly (7h = .83, -IT-2 = .17), 
supporting the initial finding of a dominant materialistic value orientation. 
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9.7 Discussion 

The approach presented here does not require a simultaneous ranking of 
all t objects. In particular, when the number of choice alternatives is large, 
incomplete rankings of m(2 :::; m :::; t) out of t alternatives provide an 
attractive alternative to a complete ranking of all t choice alternatives 
(Critchlow [11]). For instance, in Example I subjects were asked to rank 
three (out of four) alternatives at a time. Other data collection methods 
such as paired comparisons and the method of first choices are special cases 
of an incomplete ranking task and can be treated in the same framework. 
Given this wide range of data collection devices, the choice of a particular 
ranking method can depend solely on the needs and requirements of an 
application. For example, the method of first choices seems more natural 
in the context of consumers' purchase decisions than other (incomplete) 
ranking methods. The paired comparison technique may be the method 
of choice if the experimenter wants to impose minimal constraints on a 
response behavior of the subject. 

Imposing restrictions on the parameters of a ranking model facilitate 
straightforward testing of a variety of hypotheses, for instance, regarding 
differences between subpopulations and treatment effects. Moreover, by 
relaxing the assumption that the random variables representing the choice 
objects are independently and identically distributed, apart from location 
shifts, one can describe the multidimensional nature of choice objects and 
effects of similarity and comparability. Recent advances in evaluating the 
multivariate normal distribution facilitate the straightforward analysis of 
choice sets with at least eight alternatives by maximum likelihood methods. 
In addition, the application ofthe GLS method in Example III demonstrat­
ed that this estimation technique compares favorably with a ML approach. 
If this result can be supported in further research, GLS may be the method 
of choice in estimating the parameters of ranking models because of its 
computational attractiveness. Thus, the main reason, computational com­
plexity, that hampered the application of Thurstonian ranking models may 
have lost its force, rendering a parsimonious and flexible modeling of rank­
ing data. 
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Probability Models on 
Rankings and the Electoral 
Process 

Hal Stern 1 

ABSTRACT Multicandidate elections with a single winner suggest several 
questions about the manner in which the preferences of a group of individ­
ual voters are aggregated into a single social choice. Obvious examples are 
the national presidential primaries in the major political parties. However, 
nonpolitical exercises such as the ranking of job applicants or college foot­
ball teams provide other examples. If an individual's preference is viewed as 
a ranking of the available choices then the literature on probability models 
for rankings (see the survey by Critchlow, Fligner and Verducci [11]) may 
be used to analyze methods for combining preferences. Several probabili­
ty models are used to analyze the results of a five candidate presidential 
election of the American Psychological Association. In addition, simulated 
data generated by parametric probability models is used to consider the 
merits of a variety of voting systems. 

10.1 Introduction 

Political scientists, sociologists and philosophers are among the many to 
consider appropriate mechanisms for social choice. Consider an election 
with more than two candidates but only a single winner. The nomination 
of a political party's single presidential candidate in the United States is an 
example of such an election. The population of voters includes a variety of 
different constituencies. Each voter's preference is assumed to be recorded 
as a ranking of the set of candidates. An electoral system is defined as a 
mechanism for aggregating the preferences of a population of voters. It is 
well known that different electoral systems may lead to different outcomes 
in multicandidate elections (Rae [31], for example). Arrow's [1] result that 
it is impossible to construct a multicandidate voting system that satisfies 
four seemingly straightforward and desirable criteria has motivated many 
comparisons of electoral systems. Arrow's criteria are: monotonicity - a 

1 Department of Statistics, Harvard University, Cambridge, MA 02138 
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candidate should not be hurt by a gain of support or aided by a loss of sup­
port, non dictatorship - no one voter determines the winner, nonimposition 
- the outcome cannot be imposed independently of the voters' preferences, 
and independence from irrelevant alternatives - the relative standing of two 
candidates in an election consisting of k candidates should not change if 
one of the other k - 2 candidates is removed from consideration. Research 
has focused on two questions: 1) for a given distribution of preferences 
what electoral system leads to the best social choice and 2) how can the 
preferences of a population be modeled. 

Recent comparisons of electoral systems include Bordley [4], Merrill [28] 
[29], Chamberlin and Featherston [8] and Hill [24]. A variety of election 
paradoxes are exhibited in these studies. One example is the failure of elec­
toral systems to elect a candidate that is preferred to each of the others in 
pairwise comparisons; such a candidate is called the Condorcet candidate 
(Condorcet [9]). Voting systems in which a decision is reached by succes­
sively eliminating candidates may fail to achieve Arrow's monotonicity con­
dition. It is possible that voters can help their favorite candidate by placing 
him/her lower in their ranking (Fishburn and Brams [20]). A system for 
which such paradoxes occur frequently would seem to be undesirable. 

The statistical and psychometric literature describe a variety of tech­
niques for the analysis of data that is in the form of rankings. Critchlow, 
Fligner and Verducci [11] review four categories of parametric ranking mod­
els and their properties. Diaconis [15] describes the use of spectral analysis 
for ranked data. Probability models for rankings are applied to the election 
context in the remainder of the paper. In the next two sections, seven elec­
toral systems and three parametric ranking models are described in more 
detail. Following these descriptions, data from the 1980 presidential election 
of the American Psychological Association is used to illustrate the voting 
systems and the probability models. Finally, the electoral systems and rank­
ing models are considered under a variety of conditions using simulated 
election data. 

10.2 Electoral Systems 

To illustrate the seven voting systems, consider an election among 3 can­
didates (A,B,C) in which 200 voters have the following preferences: 

38: ABC 33: ACB 30: BAC 33: BCA 28: CAB 38: CBA. 

This data set is a random sample of 200 voters from a population of voters 
with preferences described by the uniform distribution on the permutations. 
Two common summaries of a set of candidate rankings are given below. 
The table on the left gives n( i, j), the number of voters ranking candidate 
i in position j, for each candidate i and position j. The table on the right 
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gives the results of pairwise elections in which candidates other than i, j 
are ignored. 

Ranking Candidate 
Candidate 2 3 Candidate A B C 

A 71 58 71 A 99 101 
B 63 76 61 B 101 101 
C 66 66 68 C 99 99 

Thus 76 voters have candidate B ranked second. If candidate A is ignored 
then 101 voters prefer candidate B to candidate C. 

The most commonly used electoral system is the plurality voting system. 
Each voter is allowed to cast one vote for exactly one candidate. Candidate 
A would be elected with 71 votes to 66 for C and 63 for B. Notice that 
those voters with preference BCA might choose to abandon candidate B 
in favor of candidate C in order to defeat their least favorite candidate A. 
This type of strategic voting is sometimes referred to as insincere voting 
because those voters that abandon B do not rank the candidates in the 
same order that their personal preference would suggest. Of course such 
voters would need to have detailed information about the preferences of 
the rest of the population in order to determine the best voting strategy. 
Such strategic voting issues are ignored here; each voter is assumed to cast 
one vote for his/her most preferred candidate. In multicandidate elections, 
if no candidate has a majority of the votes, then the plurality system is 
often supplemented with a runoff election between the two top candidates. 
In this case A would defeat C in the runoff election 101-99. We refer to this 
electoral system as the plurality with runoff voting system. 

The Borda [3] rank system requires each voter to rank all of the candi­
dates. If there are k candidates then the voter casts k - 1 votes for his/her 
first choice, k - 2 votes for his/her second choice, down to 0 votes for his/her 
least favorite candidate. For the above voter preferences, candidate B is the 
winner with 202 votes to 200 for A and 198 for C. One interpretation of this 
system is that each candidate gets one vote for every opponent to whom 
they are preferred. 

Approval voting (Brams and Fishburn [6]) allows voters to cast one vote 
for as many candidates as the voter desires. The candidate with the most 
votes is elected. The system seems to have favorable properties for getting 
people to vote sincerely according to their beliefs. There is still little infor­
mation about the voting strategies of individuals under approval voting. In 
the absence of such information, we assume that in a k- candidate election, 
voters are equally likely to choose 1, ... , k /2 candidates. This corresponds 
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roughly to current political theory (Brams and Nagel [7]) which suggests 
that the average number of approval votes cast will be less than half the 
number of candidates. In the simulations of 3 and 4 candidate elections 
described in Section 10.5, each voter is given a 50% chance of voting for 
one candidate and a 50% chance of voting for two candidates; in 5 candi­
date simulations the voter is equally likely to cast one, two or three votes. 
Given the number of votes to be cast, the voter is assumed to vote for the 
highest ranked candidates according to the voter's preference. The winner 
of the election according to this randomized implementation of approval 
voting depends on the randomly generated voting patterns. Either A, B, 
or C could be elected given the distribution of preferences in this example. 

The Hare [23] system of preferential voting is used in elections for the 
Australian House of Representatives. Each voter ranks all of the candidates. 
If no candidate has a majority of the first place votes, then the candidate 
with the fewest first place votes is eliminated and votes for that candidate 
are distributed to their second favorite candidate. Candidate B would be 
eliminated and then candidate A would be elected in the second round 
with 101 votes. In three candidate elections, the Hare voting system will 
always elect the same candidate as a plurality election followed by a runoff. 
An interesting account of some of the things that can go wrong under this 
electoral system is given by Fishburn and Brams [20]. The Hare system 
has been quite successful in elections with many candidates and more than 
one winner. It is typically called the single-transferable vote in that context 
and is quite effective at achieving proportional representation. The Coombs 
[10] elimination system is a modification of the Hare system in which the 
candidate with the most last place votes is eliminated at each stage. Here, 
candidate A is eliminated and B defeats C with 101 votes. In practice, 
many voters fail to rank all of the candidates. For the American Psycho­
logical Association presidential election described in Section 10.4, 65% of 
the ballots were incomplete. The Hare system is still feasible in such a case. 
If all of a voter's ranked candidates are eliminated, then the voter's ballot 
is removed. The Coombs system is not feasible because it requires some 
assumption about the least favorite candidate of the incomplete ballots. 

A family of techniques have been proposed that choose a candidate that 
defeats each of the other candidates in pairwise elections if such a candi­
date exists. This candidate is called the Condorcet candidate (Condorcet 
[9]) and the voting systems are called Condorcet completion methods. One 
such system, derived from the writings of Dodgson [17] (also known as Lewis 
Carroll), elects the candidate that is closest to being a Condorcet candidate. 
In this paper, the Dodgson system refers to a minimax election criterion. 
The results of two candidate elections between each pair of candidates are 
determined by ignoring the other candidates in every voter's ranking. The 
candidate whose worst defeat in any two candidate election is the smallest 
is elected. A Condorcet candidate, who wins each two candidate election 
by definition, is always elected by this system. Candidate B is elected by 
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the Dodgson system in the sample election. An alternative interpretation 
of the same Dodgson proposal is described by Bartholdi, Tovey and Trick 
[2]. They determine the candidate that requires the minimum number of 
pairwise adjacent transpositions to be a Condorcet candidate. The dis­
tinction between the interpretation used in this paper and the Bartholdi 
interpretation is similar to the distinction between Cayley's distance and 
Kendall's distance (Diaconis [14]). Note however that the interpretation 
of the Dodgson voting system used here is based only on the results of 
pairwise elections and does not use the complete rankings explicitly. 

For a given set of permutations, each election system can be used to 
determine a single winner and a consensus ranking of the candidates. Voting 
systems are compared in subsequent sections with regard to the frequency 
with which they elect the same candidate and with regard to the similarity 
of the consensus rankings. The consensus ranking is obtained by ranking 
candidates according to the number of votes received in the approval voting, 
plurality and Borda systems. When two or more candidates have the same 
number of votes, the tie is broken by a random selection of one of the tied 
candidates. For elimination systems, like the Hare and Coombs systems, 
candidates eliminated early are ranked last. 

10.3 Models for Permutations 

Probability models on rankings can be used to analyze election data and 
to generate simulated election data for studying the effectiveness of voting 
systems under various assumptions about the population. A permutation 
of k objects is represented as either a ranking 7r or an inverse ranking 7r- l 

in the remainder of the paper. Let 7r = (7r( 1) ... 7r( k)) represent the ranking 
of k objects or candidates where 7r(i) is the rank of candidate i. The inverse 
ranking or ordering is 7r- l =< i l ... ik > where candidate ij has rank j. As 
an example, 7r = (3421) and 7r- l =< 4312 > are alternative representations 
of the preference of a voter whose first choice is candidate 4, followed by 
candidates 3, 1 and 2. 

Three probability models are used throughout this article. The Bradley­
Terry-Luce model (Luce [26], Bradley and Terry [5]) is an example of a 
Thurstone [33] order statistics model. For each voter, a random variable is 
associated with each candidate. The random variable Xi can be interpreted 
as the voter's reaction to candidate i on a linear scale. The random variables 
Xi are assumed to be independent of each other with common distribution 
F but different location parameters /-Ii, Xi ,..., F(x - /-Ii). The probabil­
ity of a ranking is the probability that the associated random variables 
are ordered according to that ranking. Thurstone developed this model 
for studies in which subjects ranked pairs of psychophysical stimuli; he 
considered the case in which F is taken to be the normal distribution. 
The Bradley-Terry-Luce (BTL) model is the result of using the Gumbel or 



178 H. Stern 

extreme value distribution for F. The BTL is the only Thurstone model 
used in the simulations. If the candidates in an election are represented by 
the integers from 1 through k, then the probability of the ranking 7r with 
inverse ranking < il i2 ... ik > under the Bradley-Terry-Luce model is 

where Br is the set of candidates remaining after the first r - 1 are chosen. 
The Pi are just a transformation of the location parameters of the random 
variables in the Thurstone model, P,i = -In Pi. The probability of a per­
mutation is unchanged if all of the Pi are multiplied by a positive constant, 
or equivalently, if each of the P,i is shifted by the same amount. By con­
vention, the Pi are taken to have sum one, thus the BTL model contains 
k-l free parameters. If each Pi = 1/ k, then the BTL model is equivalent to 
the uniform distribution on all k! rankings. The assumption of independent 
univariate X's is quite restrictive. Mixture models, described later, are one 
mechanism for circumventing this restriction. Estimates of the parameters 
Pi of the BTL model are obtained by using Newton's method to maximize 
the multinomial likelihood. Steepest descent steps are also used in the al­
gorithm to ensure that the estimates remain feasible (each Pi 2: 0) at each 
step. Other order statistics models used in the analysis of ranking data 
include the Thurstone [33] -Mosteller [30] -Daniels [12] model, based on 
a location family of normal random variables, and gamma models (Stern 
[32]), based on a scale family of gamma random variables. 

The other models used in the simulations are special cases of the multi­
stage ranking models of Fligner and Verducci [21]. These models are derived 
by assuming that each voter ranks the candidates sequentially, with the 
choice at each stage independent of the other stages. The probability of 
a ranking 7r is determined by how closely the ranking matches a central 
ranking 7ro at each stage of the process. Specifically, let V; = m if at the ith 
stage the (m + 1 )st best of the remaining candidates is selected. The vari­
ables V; indicate the degree of discordance of the ranking 7r with respect to 
the central ranking 7ro at the ith stage. If 7ro = (2314) and 7r = (4312) then 
VI = 0 (since 7r has candidate 3 ranked first in agreement with 7ro), V2 = 2 
(since candidate 4 is ranked second according to 7r ahead of candidates 1 
and 2 that are preferred by the central ranking) and V3 = 1 (candidate 
2 is ranked ahead of candidate 1 in disagreement with 7ro). In the general 
stagewise model, 

k-l 

P( 7r) = II P(V/3,,8) 
/3=1 

where p(V/3',8) is the probability that the V/3 + 1 st best candidate of the 
k + 1 - ,8 candidates remaining at stage ,8 is chosen. We restrict attention 
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to a subset of the stagewise models for which 

p( a, {3) ex exp( -aBfj) 

where Bfj 2: o. The parameters Bfj measure the sensitivity of the probability 
model at each stage of the ranking. A large value of Bfj indicates that there is 
little disagreement at stage {3, rankings with incorrect choices at this stage 
are unlikely. This model is called the ¢-component model by Fligner and 
Verducci, however the authors' initials FV are used to refer to the model 
here. The uniform model results if all of the Bfj are set to zero. The FV 
model is a generalization of Mallows' [27] ¢ model. Mallows' model results 
when Bfj = B, {3 = 1, ... , k-1 and therefore P(7r) = exp( -BK(7r, 7ro)) where 
K is Kendall's distance (Kendall [25]). The use of the letter ¢ refers to an 
alternative parameterization of the model; the abbreviation PHI is used to 
refer to this model. Models which are more flexible than the FV models are 
obtained by replacing a with f(a) in the expression for p(a, {3), where f(-) is 
a nonnegative and strictly increasing function with f(O) = 0 and f( 1) = 1. 
Mallows' original description suggests that 7ro is known and P( 7r) describes 
variability around the known central ranking. In the application of the FV 
and PHI models to election data, the central ranking is usually estimated 
from the data. The approach of Fligner and Verducci [21] is used to obtain 
maximum likelihood estimates of the continuous parameters Bfj and the 
central ranking 7ro in the FV and PHI models. The impact of the extra 
parameter 7ro is considered as part of the simulation study. This parameter 
is not a continuous parameter and the usual results concerning degrees 
of freedom do not apply. Many examples and simulations (see Critchlow, 
Fligner and Verducci [11] for one example) indicate that a wide variety of 
models, including the three considered here, provide a similar fit to ranking 
data. 

The models described thus far use relatively few parameters to describe 
a distribution on k! permuations. In addition, ranking data from elections 
would be expected to be multimodal, as a result of the different con­
stituencies in the population. Mixture models can be used to describe such 
heterogeneous populations. A mixture distribution with M components has 
the form 

M 

PMIX(7r) = 2: Ai Pi(7r) 
i=1 

where Ai is a parameter indicating the proportion of the population with 
preferences described by the distribution Pi (7r) and 2: Ai = 1. For the mix­
ture distributions considered here, the Pi are assumed to be distributions 
from a single family (BTL, FV, or PHI) but with different parameters. 
The mixture models have some of the properties of the spatial models used 
by political scientists. Each component of the mixture can be viewed as a 
single dimension or issue; the parameters of that component indicate the 
locations of the candidates on that dimension or issue. 
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Maximum likelihood estimates of the mIxmg parameters Ai and the 
parameters of the component distributions Fi( 11") are estimated using the 
EM algorithm (Dempster, Laird and Rubin [16]). The EM algorithm is an 
iterative procedure for obtaining maximum likelihood estimates in situa­
tions with incomplete data. In this case, the data is incomplete because 
the appropriate mixture component for each individual voter is unknown. 
If the correct component for each voter was known, then maximum likeli­
hood estimation would be straightforward using the procedures described 
above for each component. During each iteration of the EM algorithm, 
the E-step updates estimates of the probabilities that a voter with a par­
ticular preference ranking is from each component of the mixture given 
the current estimates of the component parameters. The E-step is followed 
by the M-step that computes new maximum likelihood estimates of the 
parameters of each component assuming that the E-step results are accu­
rate. The starting values for the mixture proportions in the EM algorithm 
are chosen such that all of the Ai are equal. Starting values for the com­
ponent parameters are determined from the sample summaries n(i,j), the 
number of voters ranking candidate i in position j. For the BTL model, 
the starting parameter values for the jth mixture component are taken 
to be a renormalized version of the vector n(·, j). The starting values are 
bounded away from zero. An initial estimate for the central ranking of 
the jth mixture component for the FV and PHI models is obtained from 
the ranking of the elements of the vector n(·, j). Starting values for the 
B parameters in the FV and PHI models are chosen on an ad hoc basis, 
the first mixture component is assumed to be most highly peaked (large 
B), and subsequent mixture components are less highly peaked (smaller B). 
The maximum likelihood calculation converged from these starting values 
in all examples, however no formal investigation of the starting values has 
been carried out. 

IDA The American Psychological Association 
Election 

Diaconis [15] provides the results ofthe 1980 American Psychological As­
sociation (APA) presidential election. There were 5 candidates, and voters 
were asked to rank order all of the candidates. Of the roughly 15,000 vot­
ers, only 5738 cast complete ballots. These complete ballots are considered 
here. Table 1 provides two summaries of the election data, the number of 
voters ranking each candidate in each position, and the results of pairwise 
elections between each pair of candidates. The complete data is provided 
by Diaconis. The Hare system was used to decide the winner of the elec­
tion, candidate C. Plurality voting or plurality voting with a runoff election 
would also elect C. However, the Borda sum of ranks system and the 
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Table 1. APA Presidential Election 1980 

Ranking 
Candidate 1 2 3 4 5 

A 1053 1519 1313 1002 851 
B 775 1077 1415 1416 1055 
C 1609 960 793 1050 1326 
D 1172 972 1089 1164 1341 
E 1129 1210 1128 1106 1165 

Candidate 
Candidate A B C D E 

A 3318 2897 3129 3053 
B 2420 2593 2853 2711 
C 2841 3145 3031 2935 
D 2609 2885 2707 2745 
E 2685 3027 2803 2993 

Coombs elimination system would elect candidate A. In fact, despite being 
ranked first by fewer than 20% of the voters, candidate A is the Condorcet 
candidate. 

Table 2 indicates the fit obtained by the models described in the previ­
ous section. The last column of the table is twice the difference between 
the log likelihood of the specified model and the uniform model (a model 
with no parameters). The saturated model refers to a multinomial model 
that incorporates one parameter for each of the k! permutations subject to 
the usual multinomial restriction. The number of continuous parameters 
ignores the central ranking in the PHI and FV models. Results obtained 
by fitting 2 and 3 component mixture models are included in Table 2. Four 
and five component mixtures of BTL models are also included. The usual 
likelihood ratio tests for comparing nested models do not apply to mix­
ture models because of difficulties with the asymptotic normality of the log 
likelihood under the null hypothesis (see Everitt and Hand [19] for more 
details). It is also difficult to reach conclusions about appropriate models 
because the large sample size produces large changes in the likelihood for 
even minor improvements in the model. 

Mixtures of BTL models seem to provide a better fit to the data than 
mixtures of FV models. Table 3 gives the parameter estimates for the BTL 
mixture models with up to five components. In the two component mix­
ture, the large group (roughly 72% of the voters) is described by a roughly 
uniform distribution with a slight preference for the order DEBAC . The 
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Table 2. Log-Likelihood of Ranking Models for APA Data 

Number Number Twice the 
of Mixture Log of Continuous LogLikelihood 

Model Components Likelihood Parameters vs Uniform 

Uniform -27470.63 0 
Saturated -26611.87 119 1717.5 
BTL 1 -27402.29 4 136.7 
BTL 2 -26838.72 9 1263.8 
BTL 3 -26774.68 14 1391.9 
BTL 4 -26720.85 19 1499.6 
BTL 5 -26707.38 24 1526.5 
FV 1 -27338.76 4 263.7 
FV 2 -26999.28 9 942.7 
FV 3 -26978.13 14 985.0 
PHI 1 -27408.49 1 124.1 
PHI 2 -27347.88 3 245.5 
PHI 3 -26997.86 5 945.5 

smaller group has a highly peaked distribution about the preference or­
der CABED (the reverse order of the first group). The three component 
mixture provides an even more interpretable picture. A partisan minority 
that prefers candidates D, E by a wide margin over the others is removed 
from the large, approximately uniform distribution. Additional components 
find smaller groups with slightly different preferences. Note that Table 3 
does not suggest the winner of the election, only the makeup of the voting 
population. The partisan group supporting the candidates A, C is much 
larger than the partisan group supporting the candidates D, E, suggesting 
that either candidate A or C be chosen. The smaller two mixture com­
ponents in the three group model apparently correspond to the partisan 
voters from the two main groups in the APA at the time, clinical psychol­
ogists and academic psychologists. The large component, approximately 
uniformly distributed, includes the less partisan voters and voters from 
other constituencies. 

The structure obtained here corresponds closely to the picture obtained 
by Diaconis' spectral analytic approach. Diaconis finds considerable struc­
ture in the data unaccounted for by the first order results of Table 1. 
Candidates A and C appear in positions 1 and 2, in either order, more 
often than would be expected by looking at the number of first and second 
place votes of each candidate. The same result holds for candidates D and 
E. Diaconis considers a spectral decomposition of the vector of 120 counts 
representing the number of voters who rank the candidates according to 
each permutation. Diaconis calculates the sum of squared residuals for the 
vector after accounting for the mean (the mean is 5738/120), 104384, the 
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Table 3. B-T-L Parameter Estimates for APA Data 

Candidate Parameters 
No. of Mixture Population 
Components Proportion A B C D E 

1 1.00 0.232 0.188 0.200 0.182 0.198 

2 0.72 0.185 0.190 0.134 0.248 0.243 
0.28 0.234 0.059 0.640 0.028 0.039 

3 0.67 0.196 0.212 0.162 0.215 0.215 
0.24 0.222 0.044 0.682 0.021 0.031 
0.09 0.052 0.032 0.013 0.481 0.422 

4 0.59 0.185 0.199 0.159 0.197 0.260 
0.27 0.234 0.053 0.652 0.027 0.034 
0.09 0.060 0.035 0.014 0.492 0.399 
0.05 0.081 0.185 0.028 0.693 0.013 

5 0.49 0.164 0.223 0.153 0.226 0.234 
0.28 0.229 0.054 0.652 0.029 0.036 
0.11 0.072 0.039 0.Q18 0.470 0.400 
0.08 0.308 0.088 0.121 0.059 0.424 
0.04 0.083 0.168 0.022 0.718 0.009 

sum of squared residuals after accounting for the first order (Table 1) struc-
ture, 68593, and the sum of squared residuals after accounting for the struc-
ture of unordered pairs, 13495. This is quite similar to the sum of squared 
residuals obtained from the three component BTL mixture, 14300. 

10.5 Simulation Results 

Election data for which the preferences of the population are known pro­
vide a means for comparing voting systems. Simulations for 3, 4, and 5 
candidates, with 25, 201 and 1001 voters (odd numbers are desirable for 
avoiding ties in pairwise elections) are carried out. The simulations with 25 
voters are intended to represent elections or rankings by small committees. 
The larger populations are intended to illustrate the effects of samples that 
approach town and city size. For elections with three and four candidates, 
25 voter elections are replicated 10000 times, 201 voter elections are repli­
cated 2500 times and 1001 voter elections are replicated 1000 times. With 
five candidates the number of replications is 1000, 500 and 200. A sample 
of voter preferences, in the form of counts of voters selecting each of the k! 
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possible rankings, are generated from either the BTL, PHI or FV model, 
or a mixture model. The behavior of voting systems is investigated using 
the simulated data. In addition to the seven voting systems of Section 10.2, 
the modal ran kings obtained from the maximum likelihood estimates of the 
three parametric ranking models are also considered as voting systems. 

There are two interpretations of the simulations. The interpretation here 
is that each simulated set of voters is a population for which a social choice 
is required. Thus the election is viewed as a problem in aggregation of 
individual preferences rather than an estimation problem. An alternative 
interpretation is to view the probability model as describing the popula­
tion. Each simulated data set is a sample from which an estimate of the 
appropriate population social choice is to be estimated. We return to this 
distinction in discussing simulations based on the APA data ofthe previous 
section. 

Voting systems are evaluated in several ways in the remainder of this 
section. It is frequently held that the Condorcet candidate, the candidate 
who could defeat all others in pairwise elections, should be chosen, if such 
a candidate exists. Thus, the proportion of elections for which a system 
elects the Condorcet candidate, when one exists, provides one means of 
evaluation. The similarity of two electoral systems can be judged by the 
proportion of elections for which the two systems choose the same winner. A 
more comprehensive measure of similarity is the average value of Kendall's 
distance between the final consensus rankings of the two systems. The 
tendency of systems to elect a particular candidate, for example, a partisan 
minority candidate, is examined by considering the frequency with which 
each candidate is ranked first, second, etc. Political scientists also consider 
the ease with which a system can be manipulated by insincere voting. This 
measure is not reproduced here; Chamberlin and Featherston [8] find that 
the most difficult systems to manipulate are the Hare and Coombs electoral 
systems by virtue of the complicated sequence of calculations involved. 

Simulations of electoral systems have also been carried out by Merrill [28] 
and Bordley [4]. Bordley generates a vector of candidate utilities for each 
voter from either the uniform distribution or a multivariate normal distri­
bution. Voters rank the candidates in order of decreasing utility. Merrill 
generates voter preferences according to the uniform model or a spatial 
model (Downs [18]). In the spatial model, voters rank candidates accord­
ing to the distance from each candidate to the voter's position in some 
issue space. Candidate and voter positions in the issue space are obser­
vations from multivariate normal distributions. Each author uses many of 
the voting systems described in Section 10.2. The results presented here 
for data from the uniform model match the results of Merrill and Bordley. 
The mixture models and Merrill's spatial models seem to produce similar 
effects. 

Table 4 compares the voting systems with regard to the frequency with 
which Condorcet candidates are elected when voter preferences are from the 
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uniform model. The table also includes the proportion of elections for which 
a Condorcet candidate exists. The results are similar to those in Table 2.1 
of Merrill [29]. For example, in 3 candidate elections with 201 voters from 
the uniform model, 90.5% of the elections had a Condorcet winner. The 
proportion of elections with a Condorcet candidate can be computed di­
rectly when voters preferences follow the uniform distribution, assuming 
the number of voters is large. Let n;j represent the number of voters pre­
ferring candidate i to candidate j in a pairwise election. Under the uniform 
model with independent voters, nij is a binomial random variable with n 
voters and probability of success 1/2. The probability that candidate 1 is 
a Condorcet candidate is the probability that n12 and n13 are both greater 
than n/2. For a large number of voters, the two binomial variables are 
well approximated by two correlated normal random variables (correlation 
= 1/3). The probability that n12 and n13 are both greater than n/2 can 
be computed using a result of David [13] (see also Gibbons [22]) as 0.304. 
By symmetry, the probability of a Condorcet winner for a three candidate 
election is three times this quantity, 0.912. David also gives a formula for 
trivariate normal probabilities that can be used to determine the probabil­
ity of a Condorcet candidate among four candidates in a large population 
with uniform preferences, 0.825. Table 4 seems to indicate that the normal 
approximation is adequate for even 25 voters. Exact calculations for five or 
more candidates require high dimension numerical integration. 

With 201 voters and four candidates, the Hare system elected the 
Condorcet candidate 93.6% of the time while approval voting chose the 
Condorcet candidate 71.5% ofthe time. As mentioned earlier, the results for 
four candidate elections with 201 voters are based on 2500 replications. The 
Dodgson election system and Mallow's ¢ model always find a Condorcet 
candidate if one exists. The elimination systems, Hare and Coombs, are 
next best. The simpler vote accumulation systems, approval voting and 
plurality are least effective. They elect the Condorcet candidate less than 
70% of the time with five candidates. The electoral systems are more likely 
to elect Condorcet candidates in the presence of a large voting population. 
The plurality with runoff system does better than approval voting but this 
advantage disappears as the number of candidates increases (Merrill [29]). 

Table 5 illustrates simulated results for permutations generated from 
the BTL order statistics model. These simulations use 201 voters from 
the BTL model with the given parameters. The parameters of the BTL 
model correspond to the proportion of voters ranking each candidate first. 
The behavior of the voting systems is quite similar to the behavior under 
the uniform model. The results in this table, which we expect to be more 
representative of real elections than the results from the uniform model, 
indicate much better performance by all voting systems. 
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Table 4. Proportion of Condorcet Winners Elected for a Uniform Model 

25 voters 201 voters 

Number of Candidates 
Voting 
System 3 4 5 3 4 

Approval Voting 0.753 0.707 0.681 0.764 0.715 
Borda 0.903 0.876 0.852 0.908 0.882 
Plurality 0.790 0.694 0.610 0.765 0.676 
Plurality with Runoff 0.959 0.901 0.807 0.960 0.899 
Hare 0.959 0.925 0.884 0.960 0.936 
Coombs 0.965 0.936 0.905 0.968 0.932 
Dodgson 1.000 1.000 1.000 1.000 1.000 
PHI max likelihood 1.000 1.000 1.000 1.000 1.000 
FV max likelihood 0.868 0.814 0.796 0.869 0.798 
BTL max likelihood 0.873 0.826 0.792 0.888 0.841 

% Condorcet winners 0.915 0.836 0.758 0.905 0.824 

Table 5. Proportion of Condorcet Winners Elected 
Preferences from Bradley-Terry-Luce Model with 201 voters 

Number of Candidates 
3 4 5 

p= p= p= 

,5 

0.649 
0.847 
0.569 
0.782 
0.880 
0.905 
1.000 
1.000 
0.747 
0.792 

0.798 

Voting System (.38, .32, .30) (.28, .26, .24, .22) (.24, .22, .20, .18, .16) 

Approval 0.881 0.773 0.768 
Borda 0.949 0.883 0.895 
Plurality 0.866 0.721 0.681 
Plur w Runoff 0.986 0.924 0.916 
Hare 0.986 0.957 0.966 
Coombs 0.994 0.972 0.971 
Dodgson 1.000 1.000 1.000 
PHI max like. 1.000 1.000 1.000 
FV max like. 0.935 0.8,50 0.871 
BTL max like. 0.941 0.859 0.848 

% Condorcet 0.979 0.936 0.948 

The similarity of election systems can be judged by comparing the av­
erage distance between the consensus rankings of the different systems, 
or by comparing the frequency with which systems elect the same can-
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didate. Table 6 shows the proportion of elections in which systems elect 
the same candidate below the diagonal and the average distance between 
the consensus rankings of electoral systems above the diagonal for the five 
candidate elections used to generate the last column of Table 5. As a first 
means of comparison of the voting systems, consider the frequency with 
which systems elect the same candidate. The Dodgson and Coombs votes 
agree quite often, choosing the same winner in 94.2% of the elections. The 
Mallows PHI maximum likelihood ranking produces the same winner as 
the Dodgson system in 98.6% of the elections. Approval voting and plu­
rality voting, the systems that do not require complete rankings from the 
voters, are different from the other systems and from each other. The win­
ner changes between approval voting and plurality voting in approximately 
one-third of the elections. Approval voting is more likely to agree with the 
ranking methods. 

Table 7 lists the number of times that each candidate is elected in the 
500 simulated elections. Plurality voting fails to elect the most popular 
candidate, candidate A by design here, 44% of the time. Plurality is also the 
only system for which candidate E, the least popular candidate according to 
the probability model, is ever elected. Approval voting fails to elect the most 
popular candidate in 34.6% of the elections. Both systems are extremely 
easy to implement and Brams and Fishburn [6] show that approval voting 
for three or four candidates leads to sincere voting by the electorate. The 
systems that require complete ranking of the candidates tend to elect the 
best candidate approximately 70% of the time. As expected, choosing the 
candidate ranked first according to the maximum likelihood estimates of the 
parameters of the Bradley-Terry-Luce model, the model used to generate 
the data, agrees with the designated winner most often. 

The similarity of voting systems can also be judged by comparing the 
average Kendall's distance between the consensus rankings obtained by the 
voting systems, given above the diagonal in Table 6. The standard error of 
the averages is approximately 0.04. Considering average distances may be 
misleading since voting systems are typically designed to choose a winner 
and no claim is made about the ordering of the other candidates. Naturally 
the plurality system is extremely similar to the plurality system with runoff 
as they necessarily agree on the ranking of the last k - 2 candidates. The 
plurality system with a runoff election between the top two candidates is 
extremely similar to the Hare system. The two systems are identical for 
three candidate elections. Even with five candidates the difference is an av­
erage of only 0.65 pairwise adjacent transpositions with a standard error of 
0.04 transpositions. Both systems eliminate candidates with few first place 
votes. Also striking is the similarity of the ranking based on Borda vote 
totals (sum ofthe ranks) and the ranking based on the maximum likelihood 
estimates of the BTL parameters. The average difference is 0.31 pairwise 
adjacent transpositions with a standard error of 0.025 transpositions. The 
largest differences in Table 5 are for systems that are qualitatively different. 
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Table 7. Number of Times Each Candidate Elected in 500 Trials 
5 candidates, 201 voters, BTL model p = (0.24,0.22,0.20,0.18,0.16) 

N umber of Times Elected 
Voting System A B C D E 

Approval Voting 327 131 37 5 0 
Borda 367 113 19 1 0 
Plurality 280 148 53 18 1 
Plurality with Runoff 336 128 31 5 0 
Hare 346 123 29 2 0 
Coombs 353 114 29 4 0 
Dodgson 358 114 27 1 0 
PHI max likelihood 362 113 24 1 0 
FV max likelihood 349 126 23 2 0 
BTL max likelihood 380 104 15 1 0 

189 

Thus, the plurality voting system which uses only the voters' first choices 
is markedly different than the Coombs and Dodgson methods which use 
more information. 

Tables 4-7 above are selected to illustrate the main results from a large 
number of simulations. The relative order of the voting systems, in terms 
of their ability to elect Condorcet candidates, remains the same when the 
number of candidates and the number of voters are varied. The observed 
similarities among systems are also consistent. The results do not seem to 
change when the BTL model is replaced by the FV model (Fligner and 
Verducci's <,b-component model) or the PHI model (Mallow's <,b model). In 
fact if appropriate parameter values are selected, the probability models 
produce extremely similar simulation results. Larger differences between 
the probability models might be expected when mixtures are considered in 
place of the one-dimensional voting populations. 

Table 8 illustrates the results from a two-component mixture, with each 
portion of the population having preferences consistent with a BTL model. 
The majority of the population has preferences from a distribution that 
favors A and B, followed by C and D, with candidate E least preferred. 
There is a minority (30% of the population) that tend to favor C over the 
other candidates. The first column in the table gives the proportion of elec­
tions in which each voting system elected the Condorcet candidate (there 
was a Condorcet candidate in 489 of the 500 trials). As before, plurality 
and approval voting are least effective at electing Condorcet candidates. 
The Borda system is a slight improvement over these systems, however the 
elimination systems seem to perform best. The remaining columns indi­
cate the number of times each candidate was elected. As with the simple 
one class models, plurality and approval voting are most likely to elect a 
minority candidate. 
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Table 8. Simulation of 500 Elections with 201 Voters - BTL Mixture 
70% of the population p = (0.36,0.34,0.15,0.12,0.03) 
30% of the population p = (0.14,0.13,0.50,0.12,0.11) 

N umber of Times Elected 
% Condorcet 

Voting System Winners Elected A B C D E 

Approval Voting 0.767 313 167 20 0 0 
Borda 0.883 336 150 14 0 0 
Plurality 0.753 284 153 63 0 0 
Plurality with Runoff 0.947 333 156 11 0 0 
Hare 0.949 334 153 13 0 0 
Coombs 0.990 345 153 2 0 0 
Dodgson 1.000 343 150 7 0 0 
PHI max likelihood 1.000 342 149 9 0 0 
FV max likelihood 0.890 333 158 9 0 0 
BTL max likelihood 0.857 342 151 7 0 0 

To consider a more realistic example, the three component BTL mixture 
that was fit to the APA presidential election data (parameter values in 
Table 3) is used to generate 1000 simulated elections with 5738 voters. 
The simulation results are summarized in Table 9. There was a Condorcet 
winner in 987 of the 1000 simulated elections. The Condorcet winner in 
the data set, candidate A, was the Condorcet winner only 22% of the time. 
Candidate C was the Condorcet winner 78% of the time. The first column of 
Table 9 is the first indication that the relative ranking of the voting systems 
is population dependent. The Borda system, which usually outperforms 
plurality and approval voting, is inferior in these simulations. The last five 
columns show that the Borda system elects candidate A in 997 of the 1000 
simulated elections. The plurality and Hare systems elect candidate Cover 
99% of the time. The Dodgson and Coombs system are most effective at 
electing Condorcet candidates. Note that the BTL parameter estimates are 
ineffective in identifying Condorcet candidates, despite the fact the data is 
from a mixture of BTL models. The BTL model uses information about the 
complete ranking and always elects candidate A. The FV model appears 
to place more emphasis on the first stage and therefore favors candidate C. 

Table 9 examines each simulated data set of 5738 voters as if it were the 
complete voting population. As described earlier, an alternative interpreta­
tion of the simulated data views the mixture distribution as describing the 
preferences of the APA population and each simulated data set as a sam­
ple from that population. Candidate C is the Condorcet candidate of the 
population described by the mixture distribution (C is preferred to A by 
50.3% of the population). The Borda and Coombs systems applied to the 
population distribution elect candidate A. The plurality and Hare voting 
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Table 9. Simulation of 1000 APA-like Elections 
(data generated by 3 component BTL mixture of Table 3) 

Number of Times Elected 
% Condorcet 

Voting System Winners Elected A B C D 

Approval Voting 0.766 320 0 680 0 
Borda 0.223 997 0 3 0 
Plurality 0.780 0 0 1000 0 
Plurality with Runoff 0.877 97 0 899 0 
Hare 0.780 0 0 996 0 
Coombs 0.969 254 0 746 0 
Dodgson 1.000 222 0 778 0 
PHI max likelihood 1.000 228 0 772 0 
FV max likelihood 0.759 89 0 911 0 
BTL max likelihood 0.220 1000 0 0 0 
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systems applied to the population distribution elect candidate C. Under 
this alternative interpretation, the results of Table 9 illustrate the degree 
to which electoral system results vary under sampling. The sample Con­
dorcet candidate does not match the "population" Condorcet candidate 
(candidate C) in 22% of the elections. The plurality and Hare voting sys­
tems elect the population Condorcet candidate C even in samples for which 
A is the Condorcet candidate. With larger sample sizes the Condorcet can­
didate in each sample would be expected to agree with the population 
Condorcet candidate. 

This analysis suggests a plan of attack for organizations attempting to 
choose a voting system. Probability models may be used to model the 
population and generate simulated election data. Election systems can then 
be compared on the simulated data sets. The evidence from this APA 
election suggests that while the Hare system is competitive with plurality 
voting and approval voting, improvement would be obtained by using the 
Coombs system or a technique that checks for a Condorcet candidate first. 
Of course there are other considerations, as the Coombs system would 
invalidate the ballots of those voters that did not rank all candidates (2/3 
of the voters in 1980). 

Comparison of the probability models with each other is also possible 
based on the simulations. For each simulated data set, the log likelihood 
is computed for the BTL, FV and PHI models. Naturally, each probability 
model fits best on data generated by that model. As the PHI model is a 
subset of the FV model, the latter always provide a better fit as measured 
by the likelihood. However, the extra parameters provide no significant 
improvement when the data is actually generated by a Mallows model. 
The effect of estimating the central ranking in the FV and PHI models 
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can be determined by considering simulations of uniform populations. For 
1000 simulated elections with 3 candidates and 1001 voters with uniform 
preferences, the average difference between the saturated multinomial log 
likelihood and the BTL log likelihood is 2.96 with a standard error of 0.08. 
This mean difference matches quite closely the difference in degrees of free­
dom between the multinomial model (5 parameters) and the BTL model 
(2 free parameters). The average for the PHI model is 3.06 and the aver­
age for the FV model is 1.90 (approximately the same standard errors as 
above), both suggesting that the central ranking is the equivalent of one 
parameter in this case. However, for data generated using a highly peaked 
distribution (Mallows model with () = 0.25), the average difference between 
the saturated multinomial log likelihood and the FV log likelihood is 2.98 
and the average for the PHI model is 3.91, as would be expected ifthe cen­
tral ranking is not counted as a parameter. Evidently, the central ranking 
7To is obvious from the data in this case and the central ranking does not 
appear to be the equivalent of a parameter. Evidence from elections with 
more than 3 candidates leads to similar conclusions. The empirical evidence 
suggests that when the central ranking must be estimated, typically in pop­
ulations with roughly uniform preferences, it is roughly equivalent to k - 2 
parameters in a k candidate election. 

10.6 Conclusions and SUlllmary 

The data analysis and simulations in this study reinforce some obvious 
notions. Systems that require voters to completely rank all of the candi­
dates in an election perform extremely well at electing Condorcet candi­
dates. Within this group, it is interesting to note that the Coombs system 
outperforms the more popular Hare system. The Hare system is however 
more forgiving of incomplete ballots (a certainty in any election). If an or­
ganization agrees that electing Condorcet candidates is a reasonable goal, 
then a Condorcet completion method like the Dodgson election system is 
recommended. 

The simpler balloting systems, approval voting and plurality, are qualita­
tively different than the ranking systems and each other. Due to the limited 
information obtained from the voter, neither system elects Condorcet can­
didates as often as the ranking systems. Results regarding approval voting 
should be viewed with skepticism due to the ad hoc rule used in the sim­
ulations to decide how many votes are cast by approval voters. Plurality 
elections tend to elect inferior candidates (as specified by the probability 
model) more often than any other system. Adding a runoff election when no 
majority candidate exists, a procedure currently used in many state and lo­
cal elections in the United States, tends to alleviate this problem. Plurality 
elections followed by a runoff are more effective than approval voting at 
electing Condorcet candidates (although this advantage disappears when 
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the number of candidates is large). The runoff election is however an added 
cost to the organization and these results suggest that approval voting may 
deserve more consideration. 

The final decision of an electoral system will frequently depend on prop­
erties of the system that are not considered here: cost, ease of implementa­
tion, legal restrictions, and ease of manipulation. Simulations of APA-like 
data indicate that the structure of the voting population should be inves­
tigated to determine the consequences of the various election systems for a 
particular organization. 

10.7 Acknowledgenlents 

The author thanks Laurel Smith for the argument concerning the asymp­
totic probability of a Condorcet winner in the uniform model. The editors 
and two referees provided several thought provoking comments and helpful 
references. This work was partially supported by National Science Foun­
dation grant SES-8805433 and Office for Naval Research Grant N00014-
86K-2046. The author thanks Donald Rubin and Herman Chernoff for this 
support. 

10.8 REFERENCES 

[1] K. J. Arrow. Social choice and individual values, 2nd ed., 1963. New 
York: John Wiley. 

[2] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. Voting schemes for 
which it can be difficult to tell who won the election. Social Choice 
and Welfare 6, 157-165, 1989 .. 

[3] J. C. deBorda. Memoire sur les elections au scrutin. Histoire de 
l'Academie Royale des Sciences, 1781. Paris. 

[4] R. F. Bordley. A pragmatic method for evaluating election schemes 
through simulation. American Political Science Review 77, 123-141, 
1983. 

[5] R. A. Bradley and M. E. Terry. Rank analysis of incomplete block 
designs. I. The method of paired comparisons. Biometrika 39, 324-
345, 1952. 

[6] S. J. Brams and P. C. Fishburn Approval Voting, 1983. 
Boston:Birkhauser. 

[7] S. J. Brams and J. H. Nagel. Approval voting in practice. to appear 
in Public Choice, 1990. 



194 H. Stern 

[8] J. R. Chamberlin and F. Featherston. Selecting a voting system. Tlle 
Journal of Politics 48, 347-369, 1986 

[9] Marquis de Condorcet (also known as J.A.N. de Caritat). Essai sur 
l'application de l'analyse a la probabilite des decisiOlls rendues a la 
plurailite des voix, 1785. Paris. 

[10] C. Coombs. A tlleory of data, 1964. New York: John Wiley. 

[11] D. E. Critchlow, M. A. Fligner, and J. S. Verducci. Probability models 
on rankings. Journal of Mathematical Psychology, 35:294-318, 1991. 

[12] H. E. Daniels. Rank correlation and population models. J. Roy. Statist. 
Soc. Ser. B 12, 171-181,1950. 

[13] F. N. David. A note on the evaluation of the multivariate normal 
integral. 
Biometrika 40, 458-459, 1953. 

[14] P. Diaconis. Group representations in probability and statistics, IMS 
Lecture Notes, Volume 11, 1988. 

[15] P. Diaconis. A generalization of spectral analysis with application to 
ranked data. AIlll. Statist. 17, 949-979, 1989. 

[16] A. P. Dempster, N. M. Laird and D. B. Rubin. Maximum likelihood 
from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. 
B 39, 1-38 (with discussion), 1977. 

[17] C. 1. Dodgson. A method of taking votes on more than two issues, 
1876. presented in the appendix of Tlle tlJeory of committees alld 
elections, D. Black (1958), University Press, Cambridge. 

[18] A. Downs. An eCOllOmic theory of democracy, 1957. New York:Harper 
and Row. 

[19] B. S. Everitt and D. J. Hand. Finite mixture distributions, 1981. 
London:Chapman and Hall. 

[20] P. C. Fishburn and S. J. Brams. Paradoxes of preferential voting. 
Matllematics Magazine 56,207-214,1983. 

[21] M. A. Fligner and J. S. Verducci. Multistage ranking models. Jour. 
Amer. Statist. Assoc. 83,892- 901, 1988. 

[22] J. D. Gibbons. Nonparametric statistical inference, 2nd ed., pg 209, 
1985. New York:Marcel Dekker. 



Rankings and the Electoral Process 195 

[23] T. Hare Tlle election of representatives, parliamentary and municipal: 
a treatise, 3rd ed., 1865. London:Longman, Roberts and Green. 

[24] I. D. Hill. Some aspects of elections - to fill one seat or many. J. Roy. 
Statist. Soc. Ser. A 151, 243-275 (with discussion), 1988. 

[25] M. G. Kendall. Rank correlation metllods, 4th ed., 1970. New 
York:Hafner. 

[26] R. D. Luce. Individual cllOice bel]avior, 1959. New York:John Wiley. 

[27] C. L. Mallows. Non-null ranking models. I. Biometrika 44, 114-130, 
1957. 

[28] S. Merrill III. A comparison of efficiency of multicandidate electoral 
systems. American Joumal of Political Science 28, 23-48, 1984. 

[29] S. Merrill III. Making multicandidate elections more democratic, 1988. 
Princeton:Princeton University Press. 

[30] F. Mosteller. Remarks on the methods of paired comparisons: I. The 
least squares solution assuming equal standard deviations and equal 
correlations. II. The effect of an aberrant standard deviation when 
equal standard deviations and equal correlations are assumed. III. A 
test of significance for paired comparisons when equal standard de­
viations and equal correlations are assumed. PsycllOmetrika 16, 3-9, 
203-206,207-218,1951. 

[31] D. W. Rae. Tlle political consequences of election laws, 1971. New 
Haven:Yale University Press. 

[32] H. Stern. Models for distributions on permutations. Jour. Amer. 
Statist. Assoc. 85, 558-564, 1990. 

[33] L. L. Thurstone. A law of comparative judgment. Psycllol. Rev. 34, 
273-286, 1927. 



11 

Permutations and Regression 
Models 

Peter McCullagh 1 

ABSTRACT A class of exponential-family models on the set of permuta­
tions of k objects or items is described. The null or uniform model gives 
probability 11k! to each of the k! possible permutations. The first-order 
inversion model has as sufficient statistic the k X k matrix listing the num­
ber of times that each pair of candidates was ranked in that order, i.e. the 
number of times that candidate a was preferred over candidate b for all 
ordered pairs a and b. In the second-order inversion model the sufficient 
statistic is a similar listing for each ordered triplet of three candidates. 
Interesting sub-models are identified and used to help in the analysis of the 
AP A election data. 

11.1 Introduction 

A class of factorial models for permutations is constructed as follows. For 
any permutation Y we construct a potential function A(Y) such that the 
probability of observing the permutation y is proportional to exp(A(y)). 
Thus A(Y) = 1 gives rise to the null or uniform model on the set of permu­
tations. In the class of models considered here, the simplest non-null po­
tential function is a sum of pairwise effects or first-order inversions. More 
complicated potential functions are sums over the items taken three at 
a time. Thus the higher-order models contain the lower-order models as 
sub-models. In this way, the total sum of squares or total deviance can 
be decomposed into first-order effects, second-order effects and so on. This 
decomposition is very similar to the decomposition of the total sum of 
squares for factorial models into main effects, first-order interactions, and 
so on. Unlike Diaconis's [5, 6] decomposition, our decomposition is not in 
any sense complete or maximal. 

The first-order model is sometimes called the Babington Smith model: 
see Babington Smith [1] or Mallows [10]. The higher-order models and 
some of their sub-models seem to be new. A quite different class of models 
based on rankings is described by Critchlow [3]. Further probability models, 

1 Department of Statistics, University of Chicago 
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including the Babington Smith model, are discussed in Critchlow, Fligner 
and Verducci [4]. 

In the analysis of the APA election data, the first-order model is found 
to be unsatisfactory. A more satisfactory fit is found using a sub-model of 
the second-order inversion model. This model has a potential function that 
is a sum of pairwise potentials proportional to the unsigned rank difference 
of each pair of candidates. High positive coefficients identify pairs that are 
usually ranked far apart: high negative coefficients indicate pairs that tend 
to be ranked adjacent. In the context of the APA election data, where 
candidates and voters tend to be either academicians or clinicians, this 
model makes sense. Most voters tend to rank the academician candidates 
together, whether high or low: similarly for the clinical candidates. 

11.2 Models for Random Permutations 

NOTATION 

Suppose for the moment that four contestants, here denoted by the letters 
a, b, e, d are ranked independently by each of n judges. For clarity of 
exposition in this section, it is helpful to assume that the n judges form a 
homogeneous set, so that the probabilities for the 4! rankings are the same 
for each judge. In subsequent sections, we deal with the case where it is 
required to compare two or more groups of judges or, more generally, to 
take account of covariates measured on each of the judges. 

In the case of a homogeneous group of n judges, the data comprise 
n independent and identically distributed observations, here denoted by 
YI, ... , Yn, where each Yi is one of the 4! permutations of abed. Thus, the 
observations are non-numerical. If n is large, it is often more convenient to 
exhibit the data in a condensed form as 24 counts, one for each of the 4! 
permutations of abed. In other words, we write (Y(I),WI), ... (Y(4!),W4!), 
where Y(I), ... , Y(4!) are the distinct permutations in alphabetical order 
and WI, ... ,W4! are the associated counts. In either case, the ys are non­
numerical. In what follows, the data can be taken in either form. 

For convenience of notation, we denote by 1, the permutation abc ... 
in standard order. Probabilities are denoted by 7r(Y) or by 7r(abde) when 
we wish to refer to a particular permutation. As usual, when dealing with 
probabilities, it is more convenient and natural to work on the logistic scale, 
and so we write 

A(Y) = 10g{7r(Y)/7r(1)} 

for the relative log odds in favour of Y over 1. Thus, A(l) = 0 and the 
remaining 4! -llogits are unconstrained. The probabilities may be recovered 
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from the logits via the expression 

7r(Y) = exp{,\(y)} , 
Lj exp{ A(j)} 

where the sum in the denominator runs over all 4! permutations. 
Our aim then is to construct a useful class of non-null probability dis­

tributions on the set of permutations. To do so, we express A(Y) linearly 
in terms of 'first-order inversions', 'second-order inversions', and so on, 
in much the same way that a class of multivariate discrete distributions 
can be expressed in terms of independence, conditional independence and 
so on. In other words, the absence of second- and higher-order inversions 
has much the same meaning as the absence of two-factor interaction in a 
log-linear model. In a similar manner, the absence of third- and higher­
order inversions has much the same meaning as the absence of three-factor 
interaction in a log-linear model for the joint distribution of three or more 
discrete response variables. 

The first step in this program is to describe what we mean by inversions 
of higher order. 

INVERSIONS 

An inversion in a permutation is measured relative to an agreed standard 
order, here taken to be alphabetical. Two letters, not necessarily adjacent in 
the sequence, are either in standard order, for example be, or else inverted, 
cb. Three letters may occur in any of six orders, each order associated 
with one or more of the three inversions, ba, cb, ca, as shown in Table 1. 
Such inversions, involving only two letters at a time are called 'first-order 
inversions' in the remainder of this paper. Every permutation is uniquely 
identified by its list of first-order inversions, but there are lists of first-order 
inversions for which no permutation is possible, for example cb, ba omitting 
ca, in a list of three. 

In addition to the three first-order inversions of three letters, we now 
introduce the notion of a second-order inversion. A second-order inversion 
is an ordered triple ofletters, not necessarily adjacent in the sequence, none 
of which occurs in its natural position relative to the other two. Thus, there 
are exactly two second-order inversions of abc, namely bca and cab as shown 
in Table 1. In the case of four letters, there are two second-order inversions 
for each subset of three letters taken from the four available. The list of 8 
second order inversions so constructed is given in Table 2. 
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Table 1: Incidence matrix of inversions of abc. 

First-order Second-order 
Permutation inversions Inversions 

cb ba ca bca cab 

abc 
acb + 
bac + 
bca + + + 
cab + + + 
cba + + + 

By extension, a third-order inversion is an ordered sequence of four let­
ters, none of which occurs in its natural relative position in the sequence. 
Thus, bade and bcda are two third-order inversions. Oddly, bade contains 
no three-letter sequences that are second-order inversions, whereas bcda 
contains bca, bda, and cda. The third-order inversion cdab contains four 
second-order inversions. Table 2 gives a complete list of all inversions of 
abed. 

Order No. 

1 
2 
3 

6 
8 
9 

Table 2: Inversions of abed 

Inversions 

dc, cb, db, ba, ca, da 
cdb, dbc, bca, bda, cda, dac, cab, dab 
bade, bcda, bdac, cadb, cdab, cdba, dabc, dcab, dcba 

According to this decomposition of effects, for k letters there are (;) 
first-order inversions, one for each distinct pair of letters. For each subset 
of three letters chosen from the k available, there are two second-order 
inversions as shown in Tables 1 and 2. This gives a total of 2 (;) second­
order inversions. By extension of this argument, it is easily seen that there 
are 9 (:) third-order inversions. 

The general expression for the number of inversions of order j - 1, 
involving exactly j ~ 2 of the k letters, is 

_ (k) ., (1 1 1 ) hj - j J. 2! - 3! + ... ± j! 

which may be derived by extension of the argument in Feller (1968, p.101). 
The same formula gives the number of permutations in which exactly k - j 
of the items occur in their 'home' position. Summation from j = 2 to j = k 
gIVes 
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By transformation of variables, we find 

k 

Llkj = k!-1. 
j=2 

In other words, the total number of inversions of all orders is exactly k! - 1, 
the same as the number of independent probabilities required to specify an 
arbitrary probability distribution over the set of permutations. 

For large k, the great preponderance of inversions are of near maximal 
order since 

Ikk ::= h,k-l ::= k! e- 1 

h,k-j::= k!e-1fj! for j 2: 1. 

In other words, roughly 74% of the inversions are of orders k -1 and k - 2, 
while 98% are of order k - 4 or more. These approximations are quite 
accurate even for k = 4 as can be seen from Table 2. 

INCIDENCE MATRICES 

By an incidence matrix is meant a matrix R of zeros and ones, whose 
rows are indexed by observations or permutations and whose columns are 
indexed by effects or inversions. Such a matrix is given in Table 1 for k = 3. 
This incidence matrix differs from the incidence matrix for a factorial design 
in three important respects. First, the constant vector or column of ones 
is missing, though if we had chosen to work with log probabilities rather 
than logits, it would have been essential to include the constant vector 
in R. This augmented matrix is henceforth denoted by R*. Second, the 
'main effects' or first-order inversions are not orthogonal as they are in 
the case of balanced factorial designs. Third, the 'interactions' or second­
order inversions cannot be obtained by elementwise multiplication of pairs 
of main-effect vectors. Despite these obvious differences, the analogy with 
main effects and interactions in factorial models is useful and helpful for 
understanding and interpreting effects. 

We use the terms first-order incidence matrix, second-order incidence 
matrix and so on, meaning that only selected inversions up to the stated 
order are included in R. Thus, a complete first-order incidence matrix is 
of order k! x (~); a complete second-order incidence matrix of order k! x 

{(~) + 2 (~)}, and so on. 
lt is by no means obvious that the incidence matrices so constructed have 

full rank equal to the number of effects included. I have checked the rank 
condition for k :S 4 and in all cases I find that the augmented k! x k! inci­
dence matrices have unit determinant. In fact, by a suitable re-arrangement 
ofrows and columns, R* may be reduced to lower triangular form with unit 
values along the diagonal. I believe that these properties must extend to 
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complete incidence matrices of all orders, though I have been unable to 
prove this conjecture. 

FACTORIAL MODELS 

Linear models for the logits of the permutation probabilities may be con­
structed by writing 

A=Rp (1) 

for a suitably chosen incidence matrix R and coefficients p. We use R 
and p here rather than the more familiar X and fJ because the effects in­
volved are internal to a single multinomial response vector. In keeping with 
standard statistical usage, X and fJ are reserved for describing differences 
between groups or populations. The latter contrasts are sometimes said to 
be external. Stated in an equivalent way, (1) implies that the vector A is re­
quired to lie in the column space of the chosen incidence matrix. The trivial 
null distribution is obtained by taking R to be degenerate, or equivalently, 
p = o. This gives A = 0 and 7r(Y) = 11k! for each permutation y. 

More interestingly, if R is any first-order incidence matrix that includes 
the inversion ba, then (1) implies that 

(2) 

In the above, and in subsequent expressions, *1 and *2 are so-called 'wild­
card' characters that match any string, possibly degenerate. All occurrences 
of *1 and *2 in one equation refer to the same sets of strings. In particular, 
for k = 3, any first-order model including the inversions ba and ca implies 
that 

I (~) I (~) og 7r(cab) = og 7r(abc) = pba 

I (~) I (~) og 7r(bac) = og 7r(acb) = pca (3) 

and so on. These conclusions are independent of whether the inversion cb 
is included in R or not. 

If a and b are not adjacent, switching the two letters triggers inversions 
involving the intervening letters. For example, if c intervenes between a 

and b we have 

as can be seen from the first-order incidence matrix in Table 1. 
The justification for drawing a strong analogy between the first-order 

inversion model and a model of 'no interaction' is the following. Given that 
a and b are adjacent, the odds that b occurs first is eXp(Pba), independently 
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of the position of c. Similarly, the odds that c occurs before a is exp(pca) 
independently of whether b occurs first or last position. Thus, the first­
order inversion model does indeed imply the absence of interaction of an 
easily understood type. 

By extension, in the case of a second-order inversion model, we have 

log (71'(*1 bac*2)) = const(*) + Pba, 
71'(*1 abo2) 

log ( 71'(*1 cba*2)) = const(*) + Pba - pcab, 
71'( *1 cab *2) 

again independently of the two sequences *1 and *2. The constant term may 
depend on *1 and *2, but the same constant occurs in both cases. Stated 
in another way, the prior occurrence of c reduces the odds of b preceding a 
by the factor exp(pcab). 

The occurrence of second-order inversions may be interpreted as hetero­
geneity among judges of the type that we might expect among voters in 
elections. To take a drastically over-simplified example, suppose that in 
a constituency for which there is a number of seats available, voters are 
required to rank the three candidates, Messrs Left, Centre and Right, in 
decreasing order of preference. One would expect that voters who rank Mr 
Left in first place would tend to prefer Mr Centre to Mr Right and that 
those who rank Mr Left in third place would prefer the reverse order. This 
is a simple instance of a second-order inversion explained by heterogeneity 
among the voters. 

MARGINALITY 

The log odds ratio 

log ( 7r(cba) 7r(abc)) (7r(cba)) (7r(baC)) 
7r(cab) 7r(bac) = log 7r(cab) -log 7r(abc) = -Pcab (ba vs. c) 

is a measure of the change in the ba effect explained by the position of c. 
It would not normally make sense, therefore, to include in R, the second­
order inversion, cab, without the ba inversion. The interpretation given to a 
non-zero value of pcab implies the exist.ence of a ba effect.. We say that ba is 
marginal to cab in the sense of Neider [11]. See also McCullagh and Neider 
[9], (section 3.5). The usual marginality constraint on linear models is that 
every term included in a model must be accompanied by all marginal terms. 
Wilkinson and Rogers's [12] model-formula notation for the specification 
of linear models automatically enforces the marginality conditions, at least 
for factorial models. In this section we describe the marginality conditions 
appropriate for models based on inversions. A model formula not.ation is 
developed to enforce these conditions in an automatic way. 
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The remaining second-order contrasts, 

I ( 7r( acb) 7r( bca) ) 
og = Pbca 

7r( abc) 7r( cba) 
(cb vs. a) 

( 7r(cab) 7r(baC)) 
log 7r( acb) 7r( bca) = Pcab - Pbca, (ca vs. b) 

are interpreted as the change in the cb effect explained by the position of a, 
and the change in the ca effect explained by the position of b respectively. 
If the bca inversion were excluded from the model then the interpretation 
of Pcab would be ambiguous: it could be taken either as the (ba vs. c) effect 
or as the (ca vs. b) effect. If the above interpretations as interactions are to 
be maintained, it follows that the second-order inversions bca and cab must 
be included as a pair. Furthermore, if this pair of second-order inversions 
is included in R all three marginal second-order inversions must also be 
included. 

For k 2: 4 the above argument can be applied directly to each subset of 
three items or letters. By, extension all nine third order inversions involving 
a given set of four letters must be handled en bloc and not teased apart 
except, perhaps, for interpretation. 

To summarize, therefore, for k = 3, there are nine models that satisfy 
the marginality conditions (Fig. 1). In the remainder of this paper, such 
models are called factorial although, in the literature on discrete data, 
hierarchical is unfortunately sometimes used for the same purpose. The 
notation adopted in Fig. 1 is such that AB denotes the space spanned by 
the constant and the ba inversion. By the marginality convention, ABC 
includes the inversions bca and cab as well as the three marginal first-order 
inversions and the constant vector. The order of appearance of the letters 
is therefore immaterial, so no distinction is made between AB and BA, 
nor between ABC, BAC, CAB, ... . These factors refer to the same spaces, 
though they might use different basis vectors. With this notation a factor 
with r upper-case letters has r! levels, one for each permutation of the 
letters. 

The number of factorial models is considerably less than the 25 = 32 
possibilities available if the marginality conditions are ignored. Among the 
factorial models, there is a partial ordering based on the relationship of 
nesting or sub-model. For instance, the null model (0), is a sub-model of 
ca, which, in turn, is a sub-model of both cb + ca and ba + ca. The lattice 
diagram in Figure 1 depicts all the order relationships among the various 
factorial models for k = 3. 
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ABC 

I 
AB+AC+BC 

_____ I '----
AB+BC AC+BC AB+AC 

\>< ><1 
BC AB AC 

~I/ 
1 

Fig. 1: Lattice diagram of factorial models for k = 3. 

In the case of four letters, the number of factorial models is considerably 
larger. So far as I can determine, there are 114 models of 16 different types 
(20 including sub-types). A part of the lattice, which has 12 rows in all, is 
shown in Fig. 2. 

ABCD 

I 
ABC + ABD + ACD + BCD 

I 
ABC+ABD+ACD 

I 
ABC+ABD+CD 

/~ 
ABC+ABD ABC+AD+BD+CD 

I ______ I 
ABC+AD+BD AB+AC+AD+BC+BD+CD 

I _______ I 
ABC+AD AB+AC+AD+BC+BD 
~ I ______ I ______ 

ABC AB+AC+AD+BC AB+AC+AD+BD AC+AD+BC+BD 
~ I _______ I ______ I 

AB+AC+BC AB+AC+AD AC+AD+BD 

~/ / 
AB+AC AC+BD \------- / 

AB AC 

~/ 
1 

Fig. 2: Part of lattice diagram of factorial models for k = 4. 
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For instance, in addition to the equi-probable null model, there are 26 -1 = 
63 first-order inversion models obtained by selecting up to 6 of the first­
order inversions. In addition to these, there are models such as ABC + 
BCD+AD, meaning that all first- and second-order inversions of a, b, c, all 
first- and second-order inversions of b, c, d as well as the first-order inversion 
da are included. Of these 114 factorial models, only 17 include all six first­
order inversions. 

I have been unable to determine, for an arbitrary number of letters, the 
number of models that satisfy the marginality constraints. Evidently, the 
number increases rapidly with k. The counting problem is essentially the 
same as determining the number of factorial models that, in the notation 
of Wilkinson and Rogers [12], contain no singleton letters, i.e. the number 
of elements in the free distributive lattice on k generators that contain no 
singleton letters. 

11.3 Sufficient Statistics and Log-linear Models 

In this section we apply some of the ideas discussed in the previous section 
to help analyse the APA election data (Diaconis [6]) from a new perspective. 
We begin with an examination of the sufficient statistic for the complete 
first- and second-order inversion models. This process helps to pinpoint the 
major sources of variation in these data, and serves as a guide in formulating 
a suitable model. 

SUFFICIENT STATISTICS 

In this section we consider initially log-linear models in which the incidence 
matrix R contains all inversions up to a given order, say d :S k, and no 
higher-order inversions. Such models are invariant under item re-labelling, 
but they are not the only useful models with that property. If WI, ... , Wk' 

are the observed counts for the various permutations, then RTW is the 
sufficient statistic for the model under consideration. For example, if k = 5 
and R is the first-order incidence matrix, RTW may be presented as a 
k x k matrix in which the (i, j) entry is the number of times that item i 
received a lower rank than item j. In the case of the APA election data 
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(Diaconis [6]), we have 

a b c d e Total 
a 3318 2897 3129 3053 12397 
b 2420 2593 2853 2711 10577 

s= c 2841 3145 3031 2935 11952 
(4) 

d 2609 2885 2707 2745 10946 
e 2685 3027 2803 2993 11508 

Tot 10555 12375 11000 12006 11444 

Note that in all cases Sij + Sji = 5738, the total number of votes cast. 
Furthermore, Si. is the linear score for candidate i, with a score of 4 for 
first place, 3 for second place and so on, the score being equal to the number 
of candidates beaten. Thus popular candidates tend to have large values 
of Si.: unpopular candidates have low values. What is remarkable about 
the APA election is that the entries in the above table are so nearly equal 
for all candidates. Candidate a has the highest score, but only by a very 
small margin. This first-order analysis is more or less consistent with the 
hypothesis that all votes were cast at random and that the voters have 
no strong preferences among the candidates. As we shall see, however, 
this simple hypothesis is not supported by a second-order analysis, which 
examines the structure of the data in finer detail. 

For the second-order model, the sufficient statistic may be presented as 
a k x k x k table, each margin indexed by the candidates in the same 
order. Thus Sijl gives the total number of votes in which candidates i, j 
and I were ranked in the specified order. Evidently, cell (i, j, I) is empty if 
any pair of indices is equal, leaving 60 non-empty entries among the 125 
cells for k = 5. It is difficult to find a satisfactory way to present a 3-way 
symmetrically indexed array, particularly when, as here, more than half 
the cells are empty. Ideally we would like a format in which all two-way 
and one-way marginal tables are equally apparent, but I have been unable 
to devise anything better than Tables 3 and 4 below. 



Table 3: Three-way table of count" for APA data 

Candidate A B C D E Total 
* * A *+A 

A 
B 665 709 717 2091 
C 803 630 681 2114 
D 951 758 925 2634 
E 870 813 903 2586 

+*A 2624 2236 2242 2323 9425 

* * B *+B 
A 969 985 1059 3013 
B 
C 1373 950 1029 3352 
D 949 707 954 2610 
E 1098 854 1066 3018 

+*B 3420 2530 3001 3042 11993 

* * C *+C 
A 976 728 799 2503 
B 952 772 805 2529 
C 
D 1221 1228 1074 3523 
E 1191 1144 1009 3344 

+*C 3364 3348 2509 2678 11899 
_ * D 

* + D 
A 1384 948 1233 3565 
B 760 593 920 2273 
C 1453 1488 1264 4205 
D 
E 857 1007 720 2584 

+*D 3070 3879 2261 3417 12627 
_ * E 

*+E 
A 1161 907 1039 3107 
B 833 644 926 2403 
C 1347 1262 1047 3656 
D 781 865 624 2270 
E 

+_E 2961 3288 2175 3012 11436 

First marginal table: **+ *++ 
A 3521 2824 2752 3091 12188 
B 2545 1902 2407 2442 9296 
C 4173 3553 2627 2974 13327 
D 2951 3044 2089 2953 11037 
E 3146 3021 2387 2978 11532 

+*+ 12815 13139 9202 10764 11460 57380 

Second marginal table: *+* *++ 
A 3013 2503 3565 3107 12188 
B 2091 2529 2273 2403 9296 
C 2114 3352 4205 3656 13327 
D 2634 2610 3523 2270 11037 
E 2586 3018 3344 2584 11532 

++* 9425 11993 11899 12627 11436 57380 

Third marginal table: +** +*+ 
A 3420 3364 3070 2961 12815 
B 2624 3348 3879 3288 13139 
C 2236 2530 2261 2175 9202 
D 2242 3001 2509 3012 10764 
E 2323 3042 2678 3417 11460 

++* 9425 11993 11899 12627 11436 57380 



Table 4: Three-way table of partial residuals for APA data 

Candidate A B C D E Total 
.. A *+A 

A 
B -138.0 -105.8 -71.3 -315.1 
C -58.0 -271.3 -214.5 -543.8 
D 199.4 -104.6 115.6 210.3 
E 59.5 -94.9 19.2 -16.1 

+*A 200.9 -337.5 -357.9 -170.2 -664.7 

.. B *+B 
A -138.0 -105.8 -71.3 -315.1 
B 
C 196.0 -94.9 -41.8 59.3 
D -93.6 -300.8 -16.8 -411.1 
E 11.8 -205.8 40.5 -153.5 

+*B 114.2 -644.5 -160.3 -129.9 -820.4 

**C *+C 
A -58.0 -271.3 -214.5 -543.8 
B 196.0 -94.9 -41.8 59.3 
C 
D 375.9 395.7 209.2 980.8 
E 309.4 247.5 73.9 630.8 

+*C 881.3 585.2 -292.3 -47.1 1127.0 

.. D *+D 
A 199.4 -104.6 115.6 210.3 
B -93.6 -300.8 -16.8 -411.1 
C 375.9 395.7 209.2 980.8 
D 
E -134.8 -23.7 -283.1 -441.6 

+*D 147.5 571.4 -688.5 308.0 338.4 

.. E *+E 
A 59.5 -94.9 19.2 -16.1 
B 11.8 -205.8 40.5 -153.5 
C 309.4 247.5 73.9 630.8 
D -134.8 -23.7 -283.1 -441.6 
E 

+*E 186.3 283.4 -583.8 133.7 19.6 

First marginal table: **+ *++ 
A 200.9 -337.5 -357.9 -170.2 -664.7 
B 114.2 -644.5 -160.3 -129.9 -820.4 
C 881.3 585.2 -292.3 -47.1 1127.0 
D 147.5 571.4 -688.5 308.0 338.4 
E 186.3 283.4 -583.8 133.7 19.6 

+*+ 1329.0 1641.0 -2254.0 -676.7 -39.2 0.0 

Second marginal table: *+* *++ 
A -315.1 -543.8 210.3 -16.1 -664.7 
B -315.1 59.2 -411.1 -153.5 -820.4 
C -543.8 59.3 980.8 630.8 1127.0 
D 210.3 -411.1 980.8 -441.6 338.4 
E -16.1 -153.5 630.8 -441.6 19.6 

++* -664.7 -820.4 1127.0 338.4 19.6 0.0 

Third marginal table: +** +*+ 
A 114.2 881.3 147.5 186.3 1329.0 
B 200.9 585.2 571.4 283.4 1641.0 
C -337.5 -644.5 -688.5 -583.8 -2254.0 
D -357.9 -160.3 -292.3 133.7 -676.7 

E -170.2 -129.9 -47.1 308.0 -39.2 

++* -664.7 -820.4 1127.0 338.4 19.6 0.0 
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Table 3 shows that of the N = 5738 votes cast, 665 had candidates a, b 
and c in the order bca, whereas 803 had them in the order cba. With some 
effort on the part of the reader one can begin to unravel some of the strong 
effects that are present in this three-way table. For a start, the counts in 
the table range from 593 to 1488, a factor of 2.5. Second, all of the counts 
in the column labelled 'c' are less than the average of 956. On the other 
hand, the counts in the rows labelled 'c' are mostly larger than average, 
though this effect is not so easy to detect because of the way that the table 
has been laid out. 

The three two-dimensional marginal tables of counts are also shown. 
These are labelled **+, *+* and +**, with + indicating the index that 
has been summed out. Each marginal table is a weighted version of the 
first-order sufficient statistic, with weights depending on the ranks of the 
two candidates. For example, in the permutation edcba, the inversion ec 
receives weights of 2, 1, and 0 in the three marginal tables. These weights 
are equal to the number of items that can be substituted for the '+'. The 
one-dimensional *++-table gives a weighted ranking of the candidates, with 
weights (12,6,2,0,0) for the various ranks. Similarly, the *++-table gives a 
weighted ranking of the candidates, with weights (0,6,8,6,0). The weights 
are the number of ordered pairs that can be substituted for the two '+'s: 
in both cases the weights are quadratic functions of the ranks. 

Table 4 is the result of an attempt to remove some of the clutter from 
Table 3. In addition to removing the overall mean, all first-order effects have 
been removed by regression. In other words, Table 4 has been constructed 
in the same way as Table 3, but instead of starting with the raw counts 
I have used the residual counts from the first-order inversion model. The 
residuals have not been standardized in any way. As a result, the table 
now contains only 30 distinct numbers, reverse permutations being equal. 
In addition, cyclic sums of three are zero, so there are effectively only 
20 linearly independent combinations in the Table. We now see that all 
of the entries in the column labelled 'C', and most of the large values in 
column 'D' are negative. Conversely, most of the large positive values occur 
in columns 'A' and 'B'. 

In the marginal *++ and +*+-tables, candidate 'c' has the largest 
totals, in the first case positive and in the second negative. In other word 
candidate 'c' improves his relative position when greater weight is given 
to higher positions in the ranking. The negative value in the +*+-table 
shows that few voters ranked 'c' in the middle. A positive value for the 
(i, j)-entry in the marginal **+-table indicates that candidates i and j tend 
to be ranked as ij when both are ranked high, and as ji when both are 
ranked low. 

If we denote by MI , M 2 , Ms, the three two-dimensional marginal tables 
it can be seen that Ms = Mr, M2 = M'[, and M2 + Ms = -MI. Thus 
all the information in the three two-dimensional marginal tables resides in 
the symmetric and asymmetric parts of M I , which are the upper and lower 



210 P. McCullagh 

triangles of the matrix below. 

A B C D E 
A 31.5.1 543.8 -210.3 16.1 
B -86.7 -59.2 411.1 153.5 

(5) C 1218.8 1229.7 -980.8 -630.8 
D 505.4 73l.7 -396.2 -441.6 
E 356.5 413.3 -536.7 -174.3 

Each entry in the above table is associated with a pair of candidates. The 
value in cell (i, j) is a weighted sum of residuals, with weights depending 
on the ranks of i and j, here denoted by r(i) and rU). In the symmetric 
part (upper triangle) of the table, the weight is k - max(r(i), rU)). Since 
the residuals are orthogonal to r(i), this weight is equivalent to -~Ir(i)­
rU) I, i.e. minus one half the rank difference between the two candidates. 
In the asymmetric part, the weight is {k - max(r( i), rU))}sign(rU) - r( i)), 
i.e. the interaction of the symmetric part with the (i, j) inversion. Since 
the residuals are orthogonal to r(i), this weight is equivalent to -~(r(i) + 
rU) )sign( r( i) - rU)). 

It follows then that large positive values in the upper triangle indicate 
pairs who tend to have similar, or adjacent, ranks. Conversely, large nega­
tive values indicate pairs that tend not to be ranked together. Thus there 
is a tendency for c and d, and also c and e not to be ranked together. Con­
versely, ab and ac tend to be given similar rankings. These second-order 
unordered effects are much larger than any first-order effects, and are remi­
niscent of the 'unordered pairs subspace' in Diaconis's [5, 6] analysis. Large 
positive values in the asymmetric lower triangle of the table indicate pairs 
whose order tends to be reversed when their average rank is increased. 
Thus, the orders ca, cb, ce and db are favoured when the average rank is 
low, but the opposite orders are favoured when the average rank is high. 
This effect is again reminiscent of Diaconis's ordered pairs subspace. 

MODELS AND THEIR INTERPRETATION 

Armed with the information we have obtained from the tables in the pre­
vious section, it is helpful to clarify aspects of our interpretation by fitting 
a sequence of well-chosen models. It should be abundantly clear that the 
first-order inversion model does not fit the APA data. This model gives 
a deviance of 1527.9 on 109 degrees of freedom, which is only a slight 
reduction over the uniform null model. The second-order model does con­
siderably better, giving a residual deviance of 246.5 on 89 degrees of free­
dom. In a context such as this, where voters almost certainly do not vote 
independently, we should expect over-dispersion relative to the Poisson or 
multinomial distributions. If we accept, at least tentatively, the second­
order model, our dispersion factor is estimated as 2.77, not an unrealistic 
figure for data of this sort. 
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The majority of the second-order inversions are quite large in absolute 
terms. For example the estimated inversion coefficients for b, e, d in the 
second-order model are 

Parameter Estimate Nominal s. e. 

eb 0.7768 0.080 
db -0.9210 0.104 
de -0.2438 0.092 

edb 0.3580 0.090 
dbe 0.9224 0.085 

Thus, by way of example, the fitted probabilities satisfy 

corresponding to an odds ratio of 1.430. 
It should be clear from our examination of the sufficient statistics in 

the previous section that both the first-order and the second-order inver­
sion models have interesting sub-models whose sufficient statistics are the 
marginal tables in (4) and (5). For example, the Bradley-Terry model has as 
its sufficient statistic the vector of rank sums, which form the row totals of 
Sin (3.1). By extension, the second-order inversion model has a sub-model 
w hose sufficient statistic is (4) together with the symmetric half of (5). 

In order to simplify the discussion of the various sub-models, it is helpful 
to introduce suitable notation. First, Ra denotes the rank of a; Rab denotes 
the average rank of a and b. These are both k! x 1 vectors. Similarly Dab = 
IRa - Rb I, the unsigned rank difference. These quantities occur as weights 
in the formation of sufficient statistics in (4) and (5). In what follows, we 
use standard model-formula notation augmented by the bracket summation 
convention. Thus, 

is a model formula in which the model matrix of order 5! x 5 specifies the 
rank vectors for the five candidates. Since the sufficient statistic for this 
model is the vector of rank sums, it follows that Ra[5] is equivalent to (a 
reparameterization of) the Bradley-Terry model. Likewise AE[10] denotes 
the complete first-order inversion model, also called the Babington Smith 
model. Table 6 below shows the residual deviances for selected sub-models 
of the second-order inversion model. The fit of the third-order inversion 
model is also given for comparative purposes. 
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Table 6: Analysis of deviance for a sequence of models fitted to the 
APA election data 

Residual Reduction Mean 
Model deviance d.f. deviance d.f. Deviance 

1 1717.5 119 

Ra[5] 1566.3 115 151.2 4 37.8 

AB[10] 1527.9 109 38.4 6 6.4 
+ Dab[10] 269.4 100 1258.5 9 139.8 

+ AB.Rab[10] 249.2 94 20.2 6 3.4 

ABC[10] 246.5 89 2.7 5 0.6 
ABCD[5] 58.8 44 187.7 45 4.2 

Dab[10] 431.6 110 

AB + Dab[10] 290.5 109 141.1 1 141.1 

The model Dab[10] accounts for a very large fraction of the total de­
viance, almost as much as the complete second-order inversion model, but 
using only 10 parameters rather than 30. This model asserts that the log 
probability of any permutation is a sum of pairwise potentials, one poten­
tial for each pair of candidates regardless of their order in the permutation. 
The potentials are proportional to the unsigned rank difference, with a 
coefficient that depends on the pair of candidates. It follows then that re­
versed permutations have equal probability according to this model. The 
estimated coefficients in the model AB + Dab[10], with the single inver­
sion AB added, are shown in Table 7. By way of illustration, the fitted log 
probability of the permutation abcde is 

log 11'( abcde) 1.242 + 0.316 + 0.036 x 1 - 0.039 x 2 + 0.180 x 3 

+0.106 x 4 + 0.137 x 1 - 0.018 x 2 + 0.101 x 3 

+0.388 x 1 + 0.286 x 2 + 0.000 x 1 

3.844. 

The fitted probability for the reverse permutation is computed in the same 
way except that the ab inversion is omitted. Apart from the effect of the 
ab inversion, pairs for which the potential coefficient is high tend to be 
well separated. Conversely, pairs having low or negative potential coeffi­
cients tend to be adjacent in the rankings. Note that any constant could 
be added to each of the potential coefficients without altering the fitted 
model. The convention employed here is to set the coefficient of Dde to 
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zero, although a zero sum constraint would make it slightly easier to dis­
tinguish the attractive potentials from the inhibitory ones. 

Table 7: Parameter estimates in the model AB + Dab [10] 

Parameter Estimate Parameter Estimate 

1 1.242 Dbc 0.137 
AB 0.316 Dbd -0.018 
Dab 0.036 Dbe 0.101 
Dae -0.039 Ded 0.388 
Dad 0.180 Dee 0.286 
Dae 0.106 Dde 0.000 

These conclusions are similar to, but are not entirely in agreement with 
the informal analysis used in the previous section. In particular, the asym­
metric part of the matrix (5) strongly suggests that the interaction term 
AB.Rab[10] should be rather substantial, but the model-fitting analysis 
shows that the term has little effect. Thus, it appears that the large values 
in the lower triangle of (5) must be caused by the confounding effect of the 
symmetric part of the table. 

11.4 Conclusions 

This paper began by considering models based solely on inversions of vari­
ous orders. By examining the sufficient statistics produced by these inver­
sion models, we are led to consider a variety of sub-models that turn out 
in some cases to be more interesting and more readily interpretable than 
the inversion models themselves. The Bradley-Terry model, which has a 
simple interpretation in terms of consensus and linear ordering, is the most 
obvious example of this phenomenon. It is a sub-model of the first-order 
inversion model whose sufficient statistic is the column of marginal totals 
of S in (4). 

Unfortunately, in the case of the APA election data, none of these first­
order models fit the data, even approximately. The second-order inversion 
model is more successful in the sense that it fits the data reasonably well, 
but the parameters are not especially easy to interpret. By examining the 
marginal tables of the sufficient statistic, we were led to consider a sub­
model based on undirected distance-related pairwise potentials, namely 
the model Dab[10]. This 10-parameter model, which is invariant under re­
labelling, accounts for 75% of the total deviance. Of the first-order inver­
sions, only AB makes a noticeable improvement to the fit. The parameter 
estimates in Table 7 show that there is a tendency for a and b to occur 
together, and a strong tendency for a to precede b. It is as if b were the 
junior partner or running mate of a. The largest inhibitory effects are c 
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versus d and e. It is as if c were at the opposite end of the psychologi­
cal/political spectrum from d and e. 

It is undoubtedly true that our final model leaves some small higher-order 
systematic effects unaccounted for. Indeed, it can be sen from Table 6 that 
the third-order inversion model is a statistically significant improvement 
over the second-order model. Nevertheless our final model is strikingly 
simple in its interpretation, and seems to fit the data reasonably well. Unless 
we have very specific questions in mind concerning the third-order effects, 
the simpler model based on undirected pairwise potential seems adequate 
for most purposes. 
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ABSTRACT There are many situations where we wish to combine multiple 
rank orders or other preference information on a fixed set of options to 
obtain a combined rank order. Two of the most common applications are 
determining a social rank order on a set of options from a set of individual 
rank orders on those options, and predicting (or prescribing) an individual's 
overall rank order on a set of options from the rank orders on a set of 
component dimensions of the options. In this paper, I develop solutions to 
this class of problems when the rank orders can occur probabilistically. I 
develop aggregation theorems that are motivated by recent theoretical work 
on the combination of expert opinions and I discuss various models that 
have the property that the representations are 'of the same form' for both 
the component and overall rank order probabilities. I also briefly discuss 
difficulties in actually using such probabilistic ranking models in the social 
choice situation. 

12.1 Introduction 

According to Critchlow (1980, p. 97), at an early symposium on ranking 
methods Sir Maurice Kendall stated that a major outstanding problem 
was to construct suitable non-null (probabilistic) ranking models (Kendall, 
1950). By this term, Kendall meant models for the set of m! rank orders on 
a set of m items where the m! rank orders may occur with unequal probabil­
ities - as opposed to the uniform model where all m! rank orders are equally 
likely to occur. From our current vantage point, it is hard to conceive of 
the time when this was the pressing research issue in ranking theory; in 
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contrast, we now have such a diversity of ranking models as to warrant an 
excellent integrative summary of them being published (Critchlow, Flign­
er, and Verducci, 1991). The major such models, as described by Critchlow 
et aI., are those based on order statistics, paired comparisons, distances 
between permutations, and stagewise decompositions of the ranking pro­
cess. In most developments and applications of these models, it is either 
implicitly assumed that there is a single probability density (or distribu­
tion) from some parametric family underlying the sampled rank orders, 
or else that a single such density (or distribution) of rank orders is to be 
constructed from the data - which might be, say, rank orders or paired 
compansons. 

For instance, if the data consist of a sample of rank orders on m items, 
we can ask when is the sample sum of ranks for each of the m items a suffi­
cient statistic for the distribution generating the data (Martin-Lof, 1973); 
Buhlmann and Huber (1963) and Huber (1963) (note the early date) solved 
the parallel problem when the rank orders are constructed from paired com­
parisons data. However, there are numerous cases where we cannot easily 
defend the assumption that a single common probabilistic ranking distribu­
tion from some parametric family generates the data. For instance, suppose 
that m items are ranked on n criteria, or dimensions, by some individual, 
and we wish to use these rank order data to construct some overall rank 
order. If we assume that the rankings are probabilistic on each dimen­
sion, then there is a priori no reason to assume that the same distribution 
underlies the rank orders on each dimension. It may be more reasonable 
to assume that the distributions on each dimension belong to some com­
mon parametric family, but even this may be too strong an assumption in 
some situations. Thus, we wish to aggregate the data (set of rank orders) 
and/or the theoretical distributions in some 'sensible' way. The major aims 
of this paper are to motivate plausible aggregation rules, and also to consid­
er when (in some appropriate sense) the family of distributions is 'closed' 
under such aggregation; we can then think of the rank order data as com­
ing from a single probabilistic ranking distribution (from some parametric 
family), with the component distributions belonging to the same family. 

After developing the main theoretical results, I briefly discuss various 
other practical and theoretical issues. For instance, in the above example, I 
assumed that the data on each dimension are probabilistic, yet frequently 
we will only have one sample rank order on each dimension - is this sufficient 
for estimation purposes? (Of course, we might sometimes have multiple 
samples on a given dimension). Also, the aggregation rules implied above 
were at the level of the distributions of rank orders, but there are other pos­
sible levels for aggregation. For instance, order statistics models (Critchlow 
et aI., 1991) assume that these rank order probabilities are determined by 
the values of a random vector over the set of m items - i.e. associated with 
each item is some random variable (which may depend on the other random 
variables), a sample is taken of each random variable, and the items are 
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ranked on a given occasion in the order of the magnitudes of the associated 
random variables. Now consider the multicomponent case - i.e. each prob­
abilistic ranking distribution on each dimension of a set of n-dimensional 
items satisfies a (usually distinct) order statistics model. It might be plau­
sible to require that the aggregate rank order probabilities also satisfy an 
order statistics model, with this latter model functionally determined by 
the component models. This is a different aggregation model than that sug­
gested in the previous paragraph for aggregating rank order distributions, 
and an interesting theoretical question is what is the relation between these 
two classes of aggregation models - Alsina (1989) gives partial results on 
this question. 

The above ideas were motivated in terms of combining rank orders de­
fined on the components of multidimensional items. A second important 
interpretation of the ideas involves probabilistic social choice. There are 
numerous excellent papers on this topic (Intriligator, 1973; Fishburn, 1975, 
1984; Fishburn and Gehrlein, 1977; Barbera and Sonnenschein, 1978; Clark, 
1992; Gibbard, 1977; Pattanaik and Peleg, 1986; Fishburn, 1990, summa­
rizes various of the earlier papers). Somewhat surprisingly, none of the 
authors except Clark discusses aggregating probabilistic rank orders - rather, 
they assume that some more basic data, such as from probabilistic binary 
choices, have to be combined to give a consensus ranking. I rectify this 
omission by applying the above ideas and results on multiple probabilistic 
rank orders to social choice, plus I discuss probabilistic versions of approval 
voting (Brams and Fishburn, 1978). Unfortunately, I can show that voting 
procedures such as those based on sums of ranks, number of approval votes, 
etc., are 'optimal' (in a sense to be defined) only when the ranking or choice 
probability distributions for each voter are the same - not only from the 
same parametric family, but with identical parameters within that family. 
This limits the applicability of these 'classical' voting procedures in the 
case of probabilistic social choice, but the result is similar to the known 
limitations of such aggregation procedures in the non probabilistic social 
choice literature. (e.g. Sen, 1986). 

12.2 Notation and Basic Aggregation Theorems 

We have a finite m element set X of options, m 2: 2, and a finite n element 
set of dimensions (voters). R(X) denotes the set of rank orders of X (no 
ties allowed). For p E R(X), Pg is the element of X that is ranked in the 
g-th position of p, and p( x) denotes the rank order position of x E X under 
the ranking p. p = Pl ... Pm, (T = (T1 ... (Tm, and 7 = 71 ... 7 m , are arbitrary 
elements of R(X). For each i, there is a probability distribution Pi over 
the m! rank orders of X, and there exists (or is to be developed) an overall 
probability distribution P over the rank orders of X. I call such a set of 
rank order probabilities on a set X, denoted (X, P), a structure of ranking 
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probabilities; for simplicity, I do not refer to n or Pi, i = 1, ... , n, in the 
notation. I write (X, P), (X, Q), etc., for such structures, and the class of 
ranking probabilities on X is the family of probability distributions obtained 
as P and Pi, i = 1, ... , n, vary. For aset X and p E R(X), I use the notation 
P(p : X) and Pi(p : X), i = 1, ... , n, to denote the relevant probabilities 
of the rank order p occuring. A more accurate notation, and one more in 
line with that normally used in choice theories, would be P(p : R(X)) and 
Pi(P: R(X)),i = 1, ... ,n - however, I do not believe any confusion will 
arise from using the briefer notation. Also, I tend to talk interchangeably 
of ranking probability densitities and distributions; since all the densities 
considered in this paper are discrete, this causes no difficulties; however, 
it is worth noting that most of the aggregation conditions that I present 
are at the level of the densities. Finally, although most of the results in the 
paper are stated in terms of a fixed finite set X they can also be applied to 
arbitrary subsets X of some fixed finite set T, in which case we can discuss 
whether the rank order distributions are 'consistent' across the subsets X of 
T; I present one such result (Theorem 2) regarding order statistics models 
(Critchlow et al., 1991) or random utility models (Luce and Suppes, 1965) 
as they are known in psychology. 

My general goal is to motivate aggregation rules for combining the com­
ponent rank order distributions Pi, i = 1, ... , n, to yield the overall rank 
order distribution P. My assumptions and techniques closely follow those 
on aggregating expert opinions (reviewed by Genest and Zidek, 1986), and 
on aggregation in stochastic choice models (Marley, 1991a). Since the ma­
jority of the proofs in this paper exactly parallel Marley's (1991a), I do not 
include them, but simply indicate how to translate the notation of that 
paper to the notation of the present paper. The end result will be two 
combination rules, one based on arithmetic means, the other on geometric 
means. Also, I normally assume at least three elements, i.e. IX I :::: 3, since 
the case of two elements sets, i.e. IXI = 2, is of little interest for ranking 
models, and also has more solutions than arithmetic and geometric means 
(Marley, 1991a). 

I now present and motivate a plausible set ofrestrictions on the structures 
ofranking probabilities (X, P) that leads to P being an arithmetic mean of 
the Pi, i = 1, ... , n, then I present an alternate set of plausible assumptions 
that leads to P being a weighted geometric mean of the Pi, i = 1, ... , n. 
For the present, X is a fixed finite set. 

Assumption Ml. (simple marginalization property). There exists a func­
tion Fx such that for all structures of ranking probabilities (X, P) and for 
each p E R(X), 

P(p: X) = Fx[p, P1(p: X), ... , Pn(P: X)J. 

I write Fx [p, ... J rather than, say Fx , pl . .. J or F[X, p, ... J to keep the 
notation similar to that used in the literature on the aggregation of expert 
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opinion (e.g. Genest, 1984) where the function would depend on P but its 
dependence on X would not be explicitly stated. Note that for a given struc­
ture (X, P) and p E R(X) Assumption M1 is trivially satisfied by defining 
Fx(p, al, ... , an) = P(p : X) for all ai E [0,1], i = 1, ... , n. However, the 
representation has to hold for all structures of ranking probabilities (X, Q) 
under consideration, not just a particular one (X, P). 

I call Assumption M1 simple marginalization because it is a special 
case of the marginalization property considered in the context of opinion 
aggregation (McConway, 1981 and Genest, 1984) - see Marley (1991a) for 
discussion of that property. Clearly, aggregation by simple marginalization 
is similar to the way univariate or marginal distributions are aggregated to 
form multivariate distributions; however, it must be emphasized that here 
the Pi are not necessarily the marginals of P. 

The main result of this section is that provided IXI > 2, the simple 
marginalization property, plus some regularity and existence conditions 
(below), implies that Fx is essentially an arithmetic mean with weights 
that can depend on X. However, when IXI = 2, the class of solutions is 
much larger - see Marley (1991a) for discussion of such solutions. 

Assumption M2. For any n-dimensional real vectors (rl, ... , rn), (Sl, 
... , Sn) with ri, Si, ri + Si E [0,1]' i = 1, ... , n, it is possible to select a 
structure of ranking probabilities (X, Q) and p, (1, r E R(X) such that for 
i = 1, ... , n, 

Qi(p : X) = ri, Qi((1 : X) = Si, Qi(r : X) = 1- (ri + s;). 

Note that this condition requires IXI 2: 3. It is a technical assumption that 
allows the application of functional equation results to our problem. This 
assumption is somewhat 'strange' in that we are dealing with a finite set 
X, yet we want the total set of available probabilities to be quite dense. 
Falmagne (1981) discusses the use of conditions similar to Assumption M2 
in other situations, and presents weaker versions of those conditions; Aczel 
and Dhombres (1989, Chapter 6) discuss the related general problem of 
conditional functional equations. 

Condition M2 is not satisfied by the usual ranking version of Luce's 
choice model (Luce and Suppes, 1965, and later in this paper). For a three 
element set X = {x, y, z} this ranking model assumes that there are ratio 
scales Vi, i = 1, ... , n such that for each p E R(X), 

Q .( . X) -. Vj(pt} . Vi(P2) 
, p. - v, 3 3 

Lj=l Vi(Pj) Lk=2 Vi(Pk) 

Now consider the case of Assumption M2 on such a three-element set X 
where none ofthe rj, Sj, ri+si, i = 1, ... , n, equals 0 or 1, i.e. we are required 
to select p, (1, r E R(X) and a structure of ranking probabilities (R, Q) such 
that none of Qi(p : X), Qi((1 : X), Qi(r : X), i = 1, ... , n equals 0 or 1, yet 

Qj(p : X) + Qi((1 : X) + Qi(r : X) = 1, 
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i.e. p, IJ, T are the only rank orders with nonzero probability. However, it 
is easy to check that on a three-element set, if the above model holds and 
three distinct rank orders p, IJ, T E R(X) have nonzero probability, then all 
the seale values are nonzero, and therefore all the rank orders in R( X) have 
nonzero probability, which contradicts the above equation that is required 
by Assumption M2. It is probably possible to develop weaker versions of 
Assumption M2 (and stronger versions of Assumption M 1) that apply to 
the ranking version of the choice model; I do not do so here, however, since 
as we will see later Assumption M 1 is not a 'natural' aggregation property 
for this model. 

Assumption M3. (dominance principle). For structures of ranking prob­
abilities (X, P), (X, Q) and for each p E R(X), if Pi(p : X) ::; Qi(p : X) for 
i = 1, .. . ,n, then P(p: X)::; Q(p: X). 

A similar condition has been presented in the combination of expert 
opinion context by Aczel, Ng, and Wagner (1984), discussed by Genest 
(1984), and used by Marley (1991a) in aggregating choice probabilities. 
The condition clearly implies Assumption M 1 with Fx satisfying a form of 
monotonicity. 

Assumption M4. (zero preservation property). For a structure of ranking 
probabilities (X, P), and for each p E R(X), if Pi(p : X) = 0 for all 
i = 1, ... , n, then P(p : X) = o. 

A similar condition has been presented in the combination of expert 
opinion context by McConway (1981), generalized by Schmidt (1984), dis­
cussed by Genest (1984), and used by Marley (1991a) in aggregating choice 
probabilities. The interpretation of the condition is again clear. 

THEOREM 1. If a class of ranking probabilities on a finite set X satis­
fies Assumptions M1 and M2, then provided IXI 2: 3 there exist weights 
wx(i), i = 1, ... , n, wx(i) E [-1,1], and a probability measure 1/;(. : X) 
on R(X) such that Z=7=1 wxU) ::; 1 and for each structure of ranking 
probabilities (X, P) and p E R(X), 

P(p: X) = t WX(i)Pi(p : X) + [1 - t WX(i)]1/;(P : X). 

If Assumptions M2 and M3 hold, then the above representations has W x (i) 
E [0,1]' and if Assumptions M2, M3, and M4 hold, then wx(i) E [0,1] and 
Z=~=1 wx(i) = l. 
PROOF. The statement of Marley's (1991a) Theorem 1 exactly parallels 
that of the present Theorem except that where we have a structure (X, P) of 
ranking probabilities, he has a structure (X, P) of choice probabilities - i.e. 
for each x E X there is a set of choice probabilities Pi(x : X), i = 1, ... , n, 
and P(x : X), where these are the probabilities of choosing the option 
x from the set X. However, no properties of x, X are used in the proof 
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of Marley's (1991a) Theorem 1 beyond those stated in his Assumptions 
MI-M4, which parallel the corresponding conditions just given. Thus, if in 
Marley's (1991a) Theorem 1 we reinterpret X as a set of rank orders, i.e. 
R(X) above, and reinterpret x E X as an element of the set of rank orders, 
i.e. p E R(X), then we immediately obtain the present result. 0 

For convenience, I refer to a class of ranking probabilities with the rep­
resentation of Theorem 1 as satisfying arithmetic mean combination (of 
ranking probabilities). As in Marley (1991a), it is unclear how to interpret 
negative weights in this context, although examples with such weights can 
be constructed that satisfy the probability constraints - see Genest (1984). 
Thus it is reasonable to add Assumptions M3 and/or M4. The theorem 
might appear to have no content, in that for a particular structure of 
ranking probabilities (X, P) one can always set wx(i) = 0, i = 1, ... , n 
and ~)(p : X) = P(p : X) for each p E R(X). However, remember that 
the representation is to hold for all structures of ranking probabilities 
(X, P)satisfying the specified conditions; in particular, the special solution 
just given says that the overall ranking probabilities have no dependence 
on the component unidimensional ranking probabilities - this is, of course, 
a possible solution but not one of much interest for the relevant empirical 
domains. Also note that the theorem gives no constraint on the form of the 
(nonnegative) weights wx(i) and the probability distribution 1/;(. : X), only 
that they exist. Genest and McConway (1990) discuss various interpreta­
tions of weights in such linear opinion pools, and methods of estimating 
them with relevant asyhJptotic properties. In the present context, the obvi­
ous interpretation is that wx(i) is the probability of the person 'attending' 
to dimension i, and basing the choice on that dimension alone, and that 
1- 2.::7=1 wx(i) is the probability of choosing 'randomly' according to the 
distribution ~)(. : X). It is important to note that, since the weights depend 
on the context X, such a strategy can lead to quite complex patterns of 
choices which will not superficially appear to be determined (at any given 
choice opportunity) by a single dimension. 

The above aggregation result was for a fixed finite set X; I now discuss 
the case where the rank orders are defined on all the subsets (with at least 
two elements) of some finite master set T. First, I need to introduce an 
additional definition. 

DEFINITION 1. A ranking random utility model is a set of ranking prob­
abilities defined on all the subsets (with at least two elements) of a finite 
set T for which there is a random vector U on T such that for each X ~ T 
with IXI 2: 2, and for each p = PI·· ·Pm E R(X), 

P(p : X) = Pr[U(pJ) > '" > U(Pm)]. 

If the random vector U consists of components that are independent ran­
dom variables, then the model is an independent random utility model. 

Random utility model is the term used in psychology (e.g. Luce and 
Suppes, 1965); an alternate term is order statistics model (e.g. Critchlow 
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et ai, 1991). The latter term tends to be used for the case where the ran­
dom variable representation is only known to hold for a particular set X; 
since any rank order distribution on a fixed set X can be given a random 
variable representation (see the representation for the case X = T at the 
end of Section 12.4), this case is usually studied in the context of addi­
tional assumptions such as that the components of the random vector are 
independent and/or they have specified distributions such as the normal. 

The following result follows easily using the techniques of Theorem 49 of 
Luce and Suppes (1965). 

LEMMA l. A set of ranking probabilities defined for all subsets (with 
at least two elements) of a finite set T satisfies a ranking random utility 
model if and only if there exists a probability distribution P over the set 
of rank orders of T such that for X <;;: T with IXI :::: 2, and each p E R(X), 

P(p : X) = L P( 0' : T) 
aER(p,X) 

where R(p, X) is the set of rank orders on T that agree with the rank order 
p on X. 

In order to prove the next theorem, I need to strengthen Assumption M2 
which I do by adding a further assumption. 

Assumption M5. For any n-dimensional real vector (1'1, ... , rn) with ri E 
[0,1] and any p E R(X) with IXI :::: 2 it is possible to select a structure of 
ranking probabilities (X, P) such that Pi(p : X) = ri, i = 1, ... , n. 

This is, in fact, a slightly stronger condition than is needed for the proof. 
Note that it would form part of Assumption M2 if in that condition the 
rank orders p, 0', T E R(X) were fixed before the structure (X, P) were 
selected. 

In the statement of the next results, component ranking probabilities 
refers to a set Pi, i = 1, ... , n, and overall ranking probabilities refers to P. 

THEOREM 2. Assume that each of a set of component and overall rank­
ing probabilities defined for all subsets (with at least two elements) of a 
finite set T satisfy (usually distinct) ranking random utility lllOde[s and 
that Assumption M5 holds for all X <;;: T with IXI :::: 2. Then under t.he 
conditions of Theorem 1, its results hold with the additional ('ollstraints 
that for each X <;;: T with IXI :::: 3, and p E R(X), the weight" H'x(i) are 
independent of X and1j;(p : X) = LaER(p,X) 1/J(0' : T). 

PROOF. In the Appendix. 
When the weights are nonnegative, this result call Iw illterpreted a:-; giv­

ing a probabilistic social choice rule (Pattanaik and "('leg, E186). In this 
interpretation, Pi, i = 1, ... ,11, are the distributions of [auk orders for 
voter i, i = 1, ... , n, and P is the distribution of rank urders for the soci­
ety. For a set X <;;: T with IXI :::: 3, the social distribution is determined 
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by that of voter i with probability w( i) and is imposed according to the 
distribution 'lj;(. : X) with probability 1 - 2:7=1 w(j). The special cases 
where 2:7=1 w(j) = 1 are called random dictactorship rules. Such rules 
have been axiomatized and discussed by numerous authors in the case 
of deterministic component rank orders (e.g. Barbera and Sonnenschein, 
1978; Clark, 1992; Gibbard, 1977; Pattanaik and Peleg, 1986); in this de­
terministic case, such random dictatorship rules are the only probabilistic 
aggregation rules that are neither imposed nor open to strategic manipula­
tion (e.g. Gibbard, 1977). To my knowledge, I am the first author to extend 
such aggregation rules to the case where the component rank orders can 
occur probabilistically. Note, however, that if we only have a single rank 
order from each voter, we can use these rules without having to decide 
whether the voter gives deterministic or probabilistic rank order data. In 
particular, for each voter i, i = 1, ... , n, let 

S;((J': X) = 
1 voter i produces sample rank order (J' E R(X) 

if 

o voter i does not produce sample rank order (J' E R(X) 

Then we can let the overall rank order probability be given by: for each 
p E R(X), 

n 

P(p: X) = L W(i)Si(p : X), 
;=1 

i.e. we have a random dictatorship rule, and we do not need to know 
whether repeated samples would give the same component rank order for 
each voter. Of course, if the voters are 'probabilistic', then a larger sample 
is desirable, but it is not necessary. This is in stark contrast with geometric 
mean aggregation (discussed next) which does not usually 'work' well either 
in the deterministic or single sample cases. 

The aggregation rules of Theorem 2 satisfy a form of the independence of 
irrelevant alternatives condition: given a feasible set X ~ T with IXI ~ 3, 
if the individual (probabilistic) rank orders over X remain the same, then 
the lottery on the basis of which society makes a choice from X remains 
the same even though the individual (probabilistic) rank orders over T 
may have changed otherwise. Note that this independence condition follows 
from the combination of the ranking random utility model (as represented 
in Lemma 1) and Assumption M 1, neither of which alone is equivalent to 
the independence condition. 

As discussed later, there does not seem to be a natural family (parametric 
or otherwise) of probabilistic ranking distributions that is 'closed' under 
such arithmetic combinations. I now turn to an alternate set of assumptions 
that lead to a weighted geometric mean combination rule under which 
several standard ranking models are suitably 'closed'. 

As above, I present various assumptions, motivating them as I proceed. 
Again, for the time being, X is a fixed finite set and to avoid excessive 
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technical detail I restrict attention to nonzero structures of ranking prob­
abilities, i.e. structures (X, P) such that for each p E R(X), P(p : X) i- 0 
and Pi(p : X) i- 0, i = 1, ... , n. For a structure of nonzero ranking proba­
bilities (X, P) and for each p, (1, E R(X), let 

L P ( ) _ P(p : X) 
x p, (1 - P( (1 : X) , 

i.e. L~ (p, (1) is the likelihood or odds ratio of p versus occuring according to 
the measure P. Similar notation is used for the corresponding component 
odds ratios. 

Assumption Ll. (likelihood independence property). There exists a func­
tion Fx such that all nonzero structures of ranking probabilities (X, P) 
and for each p, (1 E, R(X), 

L~(p, (1) = Fx [L~l (p, (1), ... , L~n (p, (1)] . 

Clearly, this condition states that it does not matter (in calculating like­
lihood ratios) whether one first calculates them on the individual dimen­
sions, and then combines these ratios over dimensions, or simply calculates 
likelihood ratios on the multidimensional set. 

There are various, roughly equivalent, forms of this assumption, some 
of which have been used in the aggregation literature. For instance, with 
p E lR t;; R(X), i.e. lR is a subset of R(X), let, 

P(p : X) P(p : X) 
P(p: XllR) = P(lR: X) = LUEiR P((1 : X)' 

i.e. P(p : XllR) is the conditional probability of p occuring given that some 
element of lR occurs (with a similar notation for each dimension). Now 
assume that for p E lR t;; R(X), 

P(p : XllR) = Gx[P1(p : XllR), ... , Pn(P : X: lR)] 

for some function Gx . This is similar to the external Bayesian condition 
(Genest and Zidek, 1986), and can be used to obtain results similar to 
Theorem 3 below. However, Assumption L1 leads to that result in a more 
direct manner. 

I now show that when IXI 2: 3, the only solutions satisfying Assump­
tion L1 (plus the following two existence and monotonicity conditions) are 
weighted geometric means. 

Assumption L2. For any n-dimensional positive real vectors (1'1, ... , T'n), 
(Sl,"" sn), and for any X with IXI 2: 3, it is possible to select a structure 
of nonzero ranking probabilities (X, P) and p, (1, T E R(X), such that for 
i = 1, .. . ,n, 
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Note that this condition requires IXI ~ 3. Similar general comments can be 
made about this condition as were made previously about Assumption M2. 
However, in contrast to Assumption M2, this condition can be reasonably 
assumed to hold for the usual ranking version of Luce's choice model. When 
IXI = 3, direct evaluation leads to the desired solution; the case IXI > 3 
can essentially be reduced to the three-element case by selecting Y C X 
with IYI = 3, and constructing p, (1, T E R(X) with p = (U/, (1 = {3TJ, T = fTJ, 
where CY., (3, f E R(Y) and TJ E R(X - Y). 

Assumption L3. (dominance principle). For structures of nonzero ranking 
probabilities (X, P), (X, Q), and p, (1 E R(X), 

if Lf;(p, (1) :S L~i(p, (1) for all i = 1, ... , n, 

then Lfc(p, (1) :S L~(p, (1). 

This is again a monotonicity condition for Fx in Assumption L1. It does 
not imply Assumption L1, although it does imply a condition that can be 
written as 

Lfc(p, (1) = Fx[p, (1Lfl (p, (1), ... , Lfn(p, (1)], 

i.e. an explicit dependence on the elements p, (1 E R(X) is included that 
may vary as p, (1 are varied. 

THEOREM 3. If a class of nonzero ranking probabilities on a finite set 
X with IXI ~ 3 satisfies Assumptions L1 - L3, then there exist nonnega­
tive constants wx(i), i = 1, ... , n, such that for each structure of nonzero 
ranking probabilities (X, P) and for each p E R(X), 

TIn P'(p' X)wx(i) 
P(p : X) = i-I ~ . . . 

L:O"ER(X) TI i =1 Pi((1 : X)w x (') 

PROOF. As with Theorem 1, Marley's (1991a) Theorem 2 uses Assump­
tions similar to L1-L3 to prove a representation on a structure of choice 
probabilities (X, P). If we reinterpret X as a set of rank orders R(X) 
and reinterpret x E X as a rank order p E R(X), then Marley's (1991a) 
Theorem 2 gives the desired result. 0 

For convenience, I refer to a class of ranking probabilities with the repre­
sentation of Theorem 3 as satisfying weighted geometric mean combination 
(of ranking probabilities). The next section discusses this class of represen­
tations, but here I briefly mention a process interpretation of this structure 
when the model is applied to the ranking of multidimensional options by an 
individual with wx(i) = 1, i = 1, ... , n. In this case, the overall rank order 
p is selected provided p is selected simultaneously on all of the dimensions 
i; otherwise, rank orders are resampled on the dimensions until such an 
event occurs. 
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Note that if the component rank orders occur deterministically - i.e. for 
each i, i = 1, ... , n, there is a unique pi E R(X) with Pi(pi : X) = 1 -
then the assumptions of Theorem 3 are not met (we do not have nonzero 
ranking probabilities). Also, in such cases, the overall rank order probability 
given by the theorem is well-defined (has nonzero denominator) only if 
pi = pi for all i, j E {I, ... , n}, i.e. only if there is unanimity among the 
dimensions (voters) concerning which is the 'best' rank order; put another 
way, each dimension (voter) can veto undesirable rank orders. Similarily, in 
the case of probabilistic rank orders, if we have a single sample rank order for 
each dimension (voter) with no relations assumed between the rank order 
distributions across dimensions (voters), then the above arguments from 
the deterministic case apply. On the other hand, if the component rank 
order distributions are related in some way - e.g. they (are identical - then 
we can obtain 'sensible' results for the combined rank order probabilities 
in this single sample version of weighted geometric mean aggregation; such 
cases are presented in the next section. 

Although ranking is the major focus of this paper, the discussion of 
L(uce)-decomposability (the following section and Critchlow et al., 1991) 
requires the introduction of choice probabilities P(x : Y), x E Y ~ X 
(respectively, Pi(X : Y), i = 1, ... , n), where P(x : Y) (respectively, Pi(X : 
Y)) can be interpreted as the probability that the element x is selected 
as the 'best' overall (respectively, on dimension i) with respect to the ele­
ments in the set X. Then weighted geometric mean combination (of choice 
probabilities) (Marley, 1991a, Theorem 2) means that there are nonnegative 
constants wy(i), i = 1, ... , n, such that for every x E Y ~ X, 

. _ TI~-l Pi(X : y)wy(i) 
P(x . Y) - L: TIn .(. )w y (;)' 

yEY i=l P, Y . Y 

12.3 Specific Multidimensional Ranking and 
Subset Selection Models and Their 
Properties 

As mentioned previously, Critchlow et al (1991) describe numerous classes 
of ranking models and their properties. Specifically, they describe order 
statistics models, ranking models induced by paired comparisons, ranking 
models based on distances between permutations, and multistage ranking 
models. They also study various properties satisfied by some or all of the 
models, namely label invariance, strong unimodality, complete consensus, 
and L(uce)-decomposability. I now consider when a given model or condition 
is closed under the above weighted geometric mean model - i.e. if the given 
condition holds for each of the ranking structures on the dimensions, does 
it hold on the overall ranking structure? I will not study all of the models 
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and the properties here, but simply give preliminary results on models 
satisfying strong unimodality or L-decomposability and on models induced 
by paired comparisons. 

Strong unimodality holds if the structure of ranking probabilities (X, P) 
has a modal ranking 71'0 such that the probability P(p : X), P E R(X), is 
nonincreasing as P moves farther away from 71'0 by interchanging adjacent 
items in P on which P and 71'0 agree in rank order (see Critchlow et al., 
1991, for the precise specification). One can check that strong unimodality 
is closed under weighted geometric mean combination provided the modal 
ranking is the same on all dimensions - not a plausible condition - but it is 
not in general invariant otherwise. 

A structure ofranking probabilities (X, P) satisfies L(uce)-decomposability 
provided there exist choice probabilities P(x : Y), x E Y ~ X, such that 
for every P = PI ... Pm E R(X), 

P(p : X) = P(PI : {PI, ... , Pm}) P(p2 : {P2, ... , Pm}) ... 

P(Pm-1 : {Pm-I, Pm}) 

(see Critchlow et aI, 1991, for discussion and interpretation of such repre­
sentations). [This is the one case in the paper where my notation P(p : X) 
for the probability of the rank order P is open to misinterpretation. Note 
that in the above expression, the term on the left hand side is a rank order 
probability, whereas each term on the right hand side is a choice probabil­
ity). 

Bringing together the various condit.ions that I have introduced, we have: 
weighted geometric mean combination of ranking probabilities; weighted 
geometric mean combination of choice probabilities; and L-decomposability. 
The obvious next topic is which ranking and choice models satisfy some 
or all of these properties. This leads to a number of fascinating questions 
and characterizations on which I have numerous results (Marley, 1991a, 
1991 b). As illustration, I now present results on a particular class of models 
where the ranking probabilities are induced from paired comparisons. I first 
discuss the models from the viewpoint of possibly descriptive probabilistic 
models of ranking of multidimensional options, then in terms of prescriptive 
probabilistic models of social choice. 

For distinct x, y E X, p(x, y) denotes the probability that item x is pre­
ferred to item y in a paired comparison of these two items. Assume that 
every distinct pair of items can be compared, and that if the results are 
consistent with a rank order then that rank order is selected; otherwise, the 
entire process is repeated until a ranking is obtained. This process yields, 

for P = PI·· ·Pm E R(X), 

P(p : X) = TII<g<h<m p(Pg, Ph) . 
~17ER(X) TII:Sj<k:SmP(O'j,O'k) 
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For notational simplicity I write this as 

P(p: X) ~ 

(with similar notation for all such 'normalized' representations). Clearly, 
if the above representation holds for each dimension i, i = 1, ... , n, and 
if weighted geometric mean combination holds with weights that do not 
depend on X, then a representation of the same form holds for the overall 
ranking probabilities P(p : X) - i.e. 

P(p: X) ~ 

n 

where p(Pg,Ph) "-' II Pi(Pg,Ph)w(i). 
i=l 

The unidimensional version of this model is due to Mallows (1957), 
and satisfies L-decomposability (Marley, 1968; Critchlow et al., 1991). 
Since the multidimensional version has the same form, it also satisfies 
L-decomposability. Thus, I have presented an example of a ranking mod­
el that satisfies geometric mean combination of ranking probabilities with 
L-decomposability holding on each dimension and overall. However, the 
choice probabilities of the decomposition (explicitly stated in Marley, 1968) 
do not combine according to weighted geometric mean combination when 
IXI :2 3. (I have not proved this result, which seems obviously correct). 
Therefore, an open problem in this area concerns whether or not there is 
a ranking model that satisfies L-decomposability on each dimension and 
overall, with both the ranking probabilities and the induced choice proba­
bilities satisfying weighted geometric mean combination. 

Continuing with the development of the model, if the binary choice 
probabilities have the Bradley-Terry-Luce form, i.e. there are ratio scales 
Vi, i = 1, ... , n, such that for x, y EX, 

Vi(X) 
Pi ( x, y) = () + () , 

Vi X Vi Y 

then we obtain 
m 

P(p : X) "-' II V(PI )m-1 
1=1 

n 

where V(PI) = II Vi(PI)w(i). 
i=1 

If a set of rank orders is probabilistically generated by this model with Vi 

and w(i) independent of i for all i (or, alternatively, one only considers the 
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model for a fixed i), then a sufficient statistic for the above ranking model 
is the vector whose k-th component is the sample sum of the ranks asso­
ciated with the k-th item, k = 1, ... , m (Martin-Lof, 1973). It is probably 
possible to prove the converse of this result, i.e. if the overall rank order 
probabilities are generated by the above model, then the sample sum of 
ranks is a sufficient statistic only if the Vi and w( i) are independent of i. 
(See Buhlmann and Huber, 1963, and Huber, 1963, for relevant techniques, 
and also the discussion in the next paragraphs). 

Turning to the social choice interpretation, assume Vi is independent of 
i and w( i) = 1/ n for all i, giving that one can estimate the (common) 
p(x, y), x, y E X, from the collective choices of a group of n voters. Now 
suppose that each of the n voters compares each distinct x, y EX, and let 

k - ~ k of the n voters select x over y 

a(x, y) = if 

~ - k n - k of the n voters select y over x 

(i.e. the row scores are transformed so that for each distinct x, y E X, a(x, y) 
+ a(y, x) = 0). Now suppose that for each item x we calculate the score 
LZEX-{x} a(x, z), and rank the items in descending order of these scores. 
We can then ask for what class of 'underlying probability structures is 
such a ranking by scores 'optimal' (with these terms precisely defined in 
Buhlmann and Huber, 1963, and Huber, 1963). It turns out that such is 
the case for precisely the above special case probabilistic ranking model 
just described. Note the unfortunate assumption that the binary choice 
probabilities of all the voters are based on the same scale values for this 
ranking by scores to be optimal (as is the case in the Martin-Lof result). 
This is a very restrictive condition making it difficult to vigorously defend 
such ranking by total scores methods. 

So far I have used aggregation techniques to study the combination of 
probabilities for the selection of the 'best' element from some available set 
(Marley, 1991a, 199Ib), and to study the combination of ranking probabili­
ties on some set (this paper). I now apply similar techniques to probabilistic 
models of subset selection - first, as a descriptive model for choice amongst 
multidimensional options; second, as a probabilistic version of approval 
voting (Brams and Fishburn, 1978; Fishburn, 1978; Fishburn and Brams, 
1981 ). 

A person is presented with a set X of (multidimensional) items, from 
which he/she may select any subset Y, <p ~ Y ~ X; in the approval voting 
case these would be the 'acceptable' items. Consider the following process 
that might be descriptive of the selection process on the ith dimension 
(later, of the ith voter). The person considers each item x in turn, and 
independently accepts (respectively, rejects) that item with a probability 
Vi(X) (respectively, 1 - Vi(X)); for simplicity in the following, I assume 
Vi(X) i 0,1 for any i or x. Then with X the set of items, Y a subset 
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of X, and Pi(Y : X) the probability that the person approves of subset 
Y, cP ~ Y ~ X, on dimension i, we have 

Note that since 

Pi(Y : X) = II Vi(Y) II (1 - Vi(Z)). 
YEY zEX-Y 

L Pi (Y : X) = 1, 
4>CYCX 

i.e. some subset of X must be selected by this process, we can divide the 
expression for Pi(Y : X), <I> ~ Y ~ X, by this quantity to obtain 

Pi(Y : X) = TIyEY Vi(Y) TIZEX-Y (1- Vi(Z)) , 
I:e~s~x TIsEs Vi(S) TItEX-S (1- Vi(t)) 

which, assuming Vi(Y) # 0,1 for any Y E X, and letting 

Ui(Y) = Vi(Y) 
1 - Vi(Y) 

becomes 
Pi(Y : X) = TIyEY Ui(Y) , 

I:e~s~x TIsEs Ui(S) 

l.e. Pi(Y : X) '" II Ui(Y)· 
yEY 

Now assuming that these subset selection probabilities are aggregated as in 
Theorem 3 with weights that do not depend on the set Y (again, the axioms 
leading to that theorem are easily reinterpreted for the present context), 
we obtain that 

n 

P(Y : X) '" II Pi(Y : Xt(i) 
i=l 

from which it follows by simple substitution and cancellation of common 
terms that 

( ) 

w(i), 

P(Y : X) "'}] }J Ui(Y) 

l.e. P(Y : X) '" II u(y) 

YEY 

n 

where u(y) = II Ui(y)w(i). 

i=l 
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In particular, the component and overall subset selection probabilities are 
of the 'same form'. In fact, if we let 

U(y) 
v(y) - -..0..::...:--:­

- 1 + u(y) 

and then reexpresses the u(y) in terms of the Ui(y) and hence the Vi(y), we 
obtain that 

and P(Y : X),..., II v(y) II (1- v(y)). 
yEY zEX-Y 

In particular, when w( i) = 1 for all i, v(y) has the following interpretation: 
accept y if it is acceptable on all dimensions, reject y if it is unacceptable 
on all dimensions, otherwise resample. Then v(y) (respectively, 1- v(y)) is 
the probability that y is accepted (respectively, rejected) according to the 
aggregate rule. 

Turning to the approval voting interpretation, assume w(i) = 1 for all i, 
and let Yi be the subset selected by voter i, i = 1, ... , n. Then the proba­
bility of the selection vector (Y1 , ... ,Yn ) across voters is given by 

n 

II Pi(Yi : X), 
i=l 

which has the form 

where 

1](X) = f:r (2: II Ui(s))-l 
;=1 cf>r;Sr;X sES 

is independent of the data. Therefore the probability of the selection vector 
(Y1 , ••• , Yn ) is 

n 

T}(X) II II u;(y)"i(Y) 
i=l yEY 

where 

1 voter i accepts option y 

Si(y) = if 

o voter i rejects option y. 
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In particular, if Ui (y) is independent of i, then the vector of vote sums 
L:yEY Si(Y), the score used in approval voting, is sufficient for the distribu­
tion ofthe selection vector. The techniques of Buhlmann and Huber (1963) 
and Huber (1963) should now be used to prove (if it is so) that ranking in 
descending order of these scores is 'optimal' within the class of models for 
probabilistic subset selection if and only if the probabilistic subset model 
has the above form (with Ui and w(i) independent of i). As with the pre­
vious social choice interpretation, this result (if true) is disappointing as 
it says that the usual method of social choice ranking based on approval 
scores is optimal only if all the voters have the same scale values for all the 
options. 

12.4 Multidilnensional Randolll Variable Models 

The above probabilistic models of ranking, choice, and subset selection 
amongst multidimensional options assume that the probabilities for the 
overall choices can be written as an aggregate function of the corespond­
ing probabilities on the component dimensions. For random utility models 
(Section 12.2), also known as order statistics models (Critchlow et al., 
1991), an alternative (in general incompatible - see below) combination 
process is plausible. Remember, in a random utility model (generalized 
to multiple dimensions), for each x in the master set T and for each 
dimension i, i = 1, ... , n, there is a random variable ti(X) such that for 
P = PI ... Pm E R(X), X ~ T, IXI 2: 2, 

Fi(p : X) = Pr[ti(pt} > ... ti(Pm)], 

and also there are overall random variables t( x), x E T, such that for P = 
Pl·· ·Pm E R(X),X ~ T, IXI2: 2, 

F(p : X) = Pr[t(PI) > ... > t(Pm )]. 

With these forms in front of us, there is an obvious plausible combination 
model: assume that there is a function H such that for each x E T, 

t(x) = H[tI(x), ... , tn(x)]. 

Clearly, H has to be constrained in such a way that t is a random variable 
(Alsina, 1989). An alternative approach to the aggregation at the random 
variable level is to consider the cumulative distributions associated with 
the random variables, i.e. for real t, let 

Fx,i(t) = Pr[ti(x) < t] ,i = 1, ... , n, 

Fx(t) = Pr[t(x) < t], 
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and assume that there is a function f such that for real t, 

Fx(t) = f[Fx,l(t), ... , Fx,n(t)), 

where f is such that Fx is a cumulative distribution (Alsina, 1989). In fact, 
these two approaches are often incompatible (Alsina, 1989), and neither 
approach is in general compatible with the earlier approach of aggrega­
tion at the level of the ranking probabilities - see Theorem 2 and the 
discussion below. I do not currently have general results on the class of 
multidimensional order statistics models, so I briefly present one result re­
garding a multidimensional version of Luce's choice model, and relate it to 
the previous aggregation results. (Clark, 1992, applies the random variable 
aggregation approach to the social choice interpretation). 

Consider the following independent random variables: for x E T, t 2 
0, i = 1, .. . , n, 

v·(x) 
Pr(t(x) :S t) = exp - _I_t -

for some (ratio) scales Vi, i = 1, ... , n, on X, and let 

max 
t(x) = i ti(X). 

Then clearly 

Pr(t(x) :S t) = exp _ v~x) 
n 

where v(x) = L Vi(X), 
i=1 

and for P E R(X) we obtain (see Robertson and Strauss, 1981) 

Pi(p : X) = Pr[ti(pt) > ... > ti(Pm)] 

m-l () 

= II mVi Ph , 
h=1 L:k=h Vi (Pk) 

and P(p: X) = Pr[t(PI) > ... > t(Pm)] 
m-l 

=II 
h=1 

with, for x E X, 
n 

v(x) = L Vi(X). 
i=1 
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There are several interesting observations to be made about these 
representations, which suggest the need for further work. First, the rank­
ing probabilities (both componentwise and overall) obviously satisfy L­
decomposability with the choice probabilities in the decompositions satisf­
ing Luce's choice model, i.e. for x E Y ~ X, 

Vi( x) . 
Pi(x : Y) = L .( )' t = 1, ... , n, 

yEY v, y 

and 
V(x) 

P(x : Y) = L ( )" 
yEY v Y 

n 

where v(y) = L Vi(Y)· 
i=l 

In fact, the unidimensional version of the above ranking model motivated 
Critchlow et al's (1991) definition of L-( or Luce-) decomposability. How­
ever, neither the ranking or the choice probabilities combine according 
to weighted geometric mean combination - in fact, Marley (1991a,1991b) 
shows that such component and overall choice probabilities satisfying Luce's 
choice model (with ratio scales vi,i = 1, ... ,n, and v) satisfy geometric 
mean combination provided v( x) = rr=l Vi (x); he was unable to construct 
an (aggregate) order statistics model with this latter form (on the choice 
probabilities) . 

Continuing, the earlier Theorem 2 shows that under its aggregation con­
dition and its reasonable 'technical' conditions, no aggregate random util­
ity model satisfies weighted geometric mean combination. That Theorem 
shows that under its conditions, if a multicomponent random utility model 
satisfies an aggregation rule at the level of the rank order probabilities, then 
the aggregation rule is an arithmetic mean. Note that there are also ran­
dom variable representations of this arithmetic mean aggregation rule at 
the level of (random) rank orders: with the notation as in Theorems 1, 2 
for P = P1 ... Pm E R(T), and i = 1, ... , n, let 

ti(p) w(i) 

t(p) = with probability 
n 

Q(p: X) 1- L w(i) 
i=l 

where Q = (Q(l), ... , Q(m)) (constructed below) is a random rank order 
such that for each p E R(T), P(Q(P1) < ... < Q(Pm)) = 1jJ(p : T). Note 
that I have written the random utility model in the reverse of the usual 
order to take advantage of the definition of Pi as the object with the i-th 
rank; and we can then select Q(x) as the (random) rank of option x, i.e. 
Q(p;) will equal i. So now with T the ordered set (1, ... , m), and T the set 
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of permutations of T, for a permutation 7r in T let 7r( i), i = 1, ... , m, be the 
rank of option i, and let 7r- 1(j), j = 1, ... , m, be the item that is assigned 
rank j. Now define the random vector Q = (Q(1), ... , Q(m)) (where Q(i) 
is the random rank of option i) by Pr( Q = 7r) = 1/>( 7r- 1 (1) ... 7r- 1 (m) : T); 
this gives the desired form of the random vector Q. 

Note that the above represents the overall random utility model as a 
mixture of the component random utility models with the mixture being 
at the level of the rank orders. Thus, this representation is not immeditely 
of the form discussed above where the aggregation was at the level of the 
random variables associated with individual elements of T. 

12.5 Conclusion 

I have used assumptions and techniques developed in the study of aggrega­
tion of expert opinions to motivate probabilistic models for choice, ranking 
and subset selection on multidimensional options. There remain a large 
number of open questions regarding relations between various models and 
properties for such probabilistic choice, ranking, and subset selection data; 
for instance, we do not currently know whether there is a probabilistic rank­
ing model that satisfies L-decomposability on each component and overall, 
with both the ranking probabilities and the induced choice probabilities 
satisfying geometric mean combination. Reinterpretations of the presented 
framework give parallel probabilistic models for the social choice problem. 
In particular, I have shown that arithmetic mean combination of ranking 
probabilities can be applied equally well to the case of deterministic com­
ponent rank orders and to the case of a single sample from each of a set 
of nondeterministic (probabilistic) rank order distributions. However, no 
standard probabilistic ranking (or choice) model is 'closed' under arith­
metic mean combination, in contrast to numerous such 'closed' models in 
the case of weighted geometric mean combination. Unfortunately, weighted 
geometric mean combination is generally inapplicable to the case of deter­
ministic component rank orders, and is only applicable to the case of a 
single sample from each of a set of nondeterministic (probabilistic) rank 
order distributions when these component rank order distributions are re­
lated in some way - e.g. when they are identical. These latter results also 
show that for the particular probabilistic models studied, classical social 
choice decision rules based on sums of ranks, sums of binary superiority, 
etc., are only 'optimal' when each voter has the same probabilistic (choice, 
ranking, subset) distribution from a particular limited family of distribu­
tions - note well that it is required that all voters have the same distribution 
(parameters included), not simply distributions with possibly different pa­
rameters all from the same limited family. These results are disappointing, 
but perhaps not surprising given the known difficulties in the deterministic 
case of obtaining a satisfactory social choice, or aggregation, function (Sen, 
1986). 
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APPENDIX 

Proof of Theorem 2. Under the assumed conditions, the results of both 
Theorem 1 and Lemma 1 are valid. Therefore, for X <;;; T with IXI 2'. 3 and 
for arbitrary p E R(X), 

pep : X) = L P( cr : T) 
<7ER(p,X) 

<7ER(p,X) 

{~WT(i)Pi(cr: T)+ (1-~ WT(i)) 1/;(cr : T)} 

t wT(i) L Pi(cr: T) + (1 -t WT(i)) 
i=1 <7ER(p,X) i=1 

L 1/;(cr: T) 
<7ER(p,X) 

t wT(i) Pi(p : X) + (1 -t WT(i)) L 1/;(cr: T). 
i=1 i=1 <7ER(p,X) 

But since p E R(X), we also have 

pep : X) = ~ wx(i) Pi(p : X) + (1 -~ WX(i)) 1/!(p : X). 

Combining these two equations gives 

~ (wT(i) - wx(i)) Pi(p: X) + (1- ~WT(i)) 

L 1/;(cr: T) - (1 - t WX(i)) 1/)(P: X) = O. (AI) 
<7ER(p,X) 1=1 

Now using Assumption M.) to seledPi,i = 1, ... ,n, with Pi(p: X) = 0, 
this reduces to 

(1 -t WT(i)) L 1/;(cr : T) = (1 -t WX(i)) 1/;(p : X). (A2) 
1=1 <7ER(p,X) 1=1 
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Therefore Equation Al reduces to 

n 

~)wT(i) - wX(i))Pi(p : X) = O. 
i=l 

Now using Assumption M5 to select Pi, i = 1, ... , n, with Pi(p : X) = 
0, i:f. k, and Pk(p : X) > 0, this reduces to (wT(k) - WX(k))Pk(p : X) = 0 
with Pk(p : X) > 0 - i.e. we must have wT(k) = wx(k). But both k and X 
were selected arbitrarily, therefore wx(i) = wT(i) for i = 1, ... ,n,X ~ T 
with IXI 2:: 3. In particular 2:7=1 wT(i) = 2:7=1 wx(i) for each X ~ T 
with IXI 2:: 3, and so returning to Equation A2, if 2:7=1 wT(i) :f. 1 then we 
obtain 

1f;(p:X)= L 1f;(o-:T), 
l1ER(p,X) 

and if 2:~=1 WT( i) = 1 then we can impose the previous equality as it has 
no effect on the representation. 0 
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A Nonparametric Distance 
Model for Unidimensional 
Unfolding 

Rian van Blokland-Vogelesang1 

ABSTRACT 
The unidimensional unfolding model is placed in the wider context of social 
choice theory, median procedures and strictly unimodal distance models for 
rankings. Social choice theory is used to construct a framework for the un­
folding model; for example, given single-peaked preference functions for in­
divid uals, Simple Majority Rule yields the median ordering as a group con­
sensus ordering. We generalize Coombs' and Goodman's (1954) theorems: 
if the data follow a strictly unimodal distance model, the median ordering is 
an admissible ordering of the J scale that has the highest probability. This 
is because the maximum likelihood and the minimum-number-of-inversions 
criterion yield the same ordering in a strictly unimodal distance model: the 
mean/modal/median ordering. We prove that the group consensus ordering 
is transitive and is the modal or median ordering. Also, we prove that the 
social preference function is unimodal on the J scale in this case. 

/{ ey words and phrases: unfolding, median ordering, group consensus rank­
ing, Kemeny distance, unimodal distance model for rankings, maXImum 
likelihood, minimum number of inversions. 

13.1 Introduction 

We start with an overview of the unidimensional unfolding model as devised 
by Coombs (1964). Consider an experimenter asking individuals to judge 
which of a number of policies is more beneficial to society; he or she might 
use such judgments to study the statements (more generally, options) or to 
study the individuals. If the experimenter decides to interpret the behavior 
observed as relations between an individual and an option, this will lead to 
different conclusions than if the observed behavior is interpreted as relations 
between options only. Relations between individuals and options are called 
preference data. An unfolding technique is an algorithm for constructing 

1 University of Leiden, FSW, Department of Datatheory, P.O. Box 9555,2300 
RB Leiden, The Netherlands. 
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a psychological space from such data. If the psychological space consists 
of one dimension, it is called a joint scale or J scale, and the unfolding 
technique is called unidimensional unfolding. The dimension found can be 
seen as the latent structure, a common reference frame, in a certain field of 
research. 

Coombs' (1950, 1954, 1964) unidimensional unfolding model was devised 
for the analysis of complete orderings of preference, where n individuals 
rank k options 0 1 , O2 , ... ,Ok, from most to least preferable. In the un­
folding model, each individual and each option is represented on a single 
dimension, called the J scale. The locations associated with individuals are 
called ideal points, and represent the best possible option from the individ­
ual's point of view. Admissible orderings on the unidimensional unfolding 
scale are Single-Peaked Preference Functions (SPF's). An SPF is defined as 
follows: if the J scale is 0 1 , O2 , 0 3 , ... , Ok, then for each triple of ordered 
options OJ, OJ +1 , 0j+2, one of the three following relations should hold: 
(a) OJ >p 0j+1 >p 0j+2, (b) OJ <p 0j+1 and 0j+1 >p 0j+2, or (c) 
OJ+2 >p OJ+1 >p OJ, where j = 1,2, ... , k - 2, and '>p' denotes 'is pre­
ferred to' . This means that in passing from one option to the next, each 
individual's preference function monotonically rises to a peak, and then 
drops off monotonically. Each individual's preference ranking of options is 
then given by the rank order of the distances of option points from the 
ideal point, with nearer options being most preferred. At this point, we 
make a distinction between an admissible ordering (a J scale ordering) and 
an individual ranking (an ordering stated by an individual). Both include 
the options from most preferable to least preferable in that order. 

Let the J scale for k options denote a k-scale, and let A, B, C, D, ... 
denote the successive options on the scale. Midpoints are represented in 
lowercase, e.g., ab is the midpoint between options A and B. J scales are 
named according to the first admissible ordering on the J scale, which 
corresponds to the order of the options along the J scale. Possible rankings 
of preference correspond to segments of the J scale (see Figure 1). The 
Figure shows a 3-scale with options A, B, C. Between the options A and 
B is the midpoint ab; to the left of the midpoint ab is the segment ABC; 
this represents the set of ideal points of individuals with A >p B, A >p C 
and B >p C. (thus, nearer to A than to B or C) To the right of the 
midpoint ab is the segment BAC: the set of ideal points of individuals with 
B >p A, B >p C, A >p C (thus, nearer to B than to A or C), and so 
forth. Four out of six (=3!) rankings are admissible orderings, two are not 
represented on the J scale and, hence, are inadmissible orderings for this 
scale. 

With four options, two distinct 4-scales arise, depending on the order of 
the midpoints ad and be (see Figure 2). In Figure 2a their order is ad, be; in 
Figure 2b this is be, ad. So there are two distinct midpoint orders or quanti­
tative 4-scales. These 4-scales differ only in the admissible orderings in the 
midst of the J scale (BCDA and CBAD, respectively). The quantitative 
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J scale is defined as a strict order of options and of the midpoints between 
the options. If we disregard the particular order of the midpoints, the qual­
itative J scale arises. The qualitative J scale is defined as a strict order of 
the options only, this is denoted the J order in the following. Midpoints are 
not strictly ordered on the qualitative J order: they are partially ordered, 
and admissible orderings cannot be represented on a unidimensional con­
tinuum, they can be represented in a lattice of orderings (see Van Blokland, 
1991). For k = 3, there is only one quantitative 3-scale, for k = 4 two (see 
Figure 2), for k = 5 twelve. With larger numbers of options, the number 
of quantitative J scales that can be derived from one qualitative J order, 
increases very quickly (for k = 9, this is 4,451,496,278). In considering that 
there are k!/2 distinct qualitative J orders, it should be clear that the total 
number of possible quantitative J scales is very large. 

Unfolding can be defined as follows: from the set of individual rankings, 
we wish to determine the J scale on which individuals as well as options are 
ordered. Individual rankings then correspond to so-called folded J scales. 
This can be explained as follows. When the J scale is picked up and folded 
in any (ideal) point, a folded J scale arises: the options project on the 
folded J scale in order of increasing distance from the folding point, and 
the first option corresponds to the ideal option (see Figure 3). The number 
of admissible orderings on a qualitative J scale is 2k -1, and is equal to 
the number of ways folded J scales can be constructed (Coombs, 1964; 
Davison, 1979). For a quantitative J scale this number is (;) + 1 (i.e., the 
number of midpoints plus one). 

For a variety of reasons, however, individuals generally do not all produce 
rankings consistent with one underlying qualitative or quantitative J scale, 
and a variety of methods have been developed for the unfolding of imperfect 
data. Many start from a distance model and a metric or non-metric loss 
function (e.g., Roskam, 1968; Carroll, 1972; Heiser, 1981; 1987); others rely 
on parametric functions to describe the choice probabilities (e.g., Sixtl, 
1973; Jansen, 1983; Desarbo and Hoffman, 1986; Andrich, 1988, 1989; and 
Formann, 1988). Almost invariably, the latter techniques are suited for 
dichotomous data only. 

Our approach differs from existent procedures since neither a parametric 
distance model nor a parametric function is used to describe individuals' 
preferences, and instead, a minimum-number-of-inversions criterion is used. 
This criterion has not yet been used in unfolding analysis. The procedure 
begins with a nonparametric distance measure related to Kendall's (1970) 
r: the number of inversions between an individual's ranking and the qual­
itative or quantitative J scale. For each distinct J scale, the number of 
inversions between each individual ranking and each admissible ordering of 
the J scale is assessed; each individual ranking is assigned the admissible 
ordering from which it has a minimum number of inversions. Thus, for each 
individual ranking the number of inversions from each admissible ordering 
on each qualitative or quantitative J scale has to be assessed. The best J 
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scale is the scale for which the total number of inversions from individuals' 
rankings is a minimum. We shall not go into the specific combinatorialop­
timization strategy that is used to find the best J scale. This is discussed 
in Van Blokland (1991). 

In the following, we show that the unidimensional unfolding model can 
be placed in the context of social choice theory (section 13.2), distance mea­
sures for rankings (section 13.3), and probability models on rankings (sec­
tion 13.4). In the original Coombsian unfolding model, single-peakedness 
is assumed for all individual preference functions. In this case, the medi­
an ordering is a group consensus ordering and is an admissible ordering 
of the qualitative or the quantitative J scale. We prove that the require­
ment of exclusively SPF's is unnecessary strong, and that the same holds 
without this restriction. This is shown to hold at least if rankings follow a 
strongly unimodal distance model for rankings (Section 13.5). For this case, 
we also prove that the best quantitative J scale according to the criteria 
of Maximum Likelihood (ML) and Minimum-Number-of-Inversions (MNI) 
are the same (Section 13.6). Section 13.7 presents two illustrations of the 
theoretical results, Section 13.8 closes with a discussion. 

Midpoints: ... 

Isotonic regions: ... ABC 

ab 

BAC 

ac bc 

BCA CBA 

____ 1 __ 1 __ • __ 1 __ • __ J scale ABC 

A B C 

Figure 1 The 3-scale ABC 

I. d(AB) > d(CD) (ad precedes be) 

midpoints: ab ac ad be bd cd 

Interval: 
II 12 13 14 IS \J~ ABCD BACD BCAD BCDA CBDA CD~A DCBA ,_ 

A B C D 

II. d(AB) < d(CD) (be precedes ad) 

midpoints: ab ac be ad bd cd 

Interval: 
II 12 13 14 IS 16 17 

ABCD BACD BCAD CBAD CBDA CDBA DCBA 

A B C D 

Figure 2 The two possible midpoint orders for 4-scale ABCD; ad precedes 
bc (top) and bc precedes ad (bottom) 
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Figure 3 J scale ABGD and folded J scale BGAD for individual i 

13.2 Social Choice Theory 

A main issue in the field of welfare economics has been the construction of 
a social preference out of a variety of individual preferences. The problem is 
to establish a fair procedure to combine the individual rankings to reach a 
group consensus ordering. This problem is related to the unfolding problem, 
since there is a strong connection between the existence of a unidimensional 
unfolding scale, the conditions under which group consensus orderings are 
transitive orderings, and uniqueness of median, modal, and mean orderings. 
These traditions and its ramifications are amply described in Luce and 
Raiffa (1957); Sen (1982); Fishburn (1972); Riker and Ordeshook (1973); 
Vickrey (1960); Roberts (1976); Fligner and Verducci (1986); Critchlow, 
Fligner and Verducci (1989), and many others. These subjects are discussed 
in this section, as far as they relate to unfolding. First, we present some 
definitions and notation; after this we proceed with an overview of the main 
results from social choice theory, namely, the conditions a group consensus 
function should satisfy and the specific function that best satisfies these 
conditions. It turns out that the optimal group consensus function is Simple 
Majority Rule which yields the median ordering on the quantitative J scale 
as a group consensus ordering, given single-peakedness of all individual 
preference functions. The relaxation of this restriction is the subject of the 
next section. 

Definitions: 

- 0 is the set of options (alternatives), 

- 0 = {a, b, c, d .. . }; when referring to unfolding, 0 = {A, B, G, D, ... } 
is used. 

- S is the set of individuals, to be labelled 1,2, ... , i, ... n. 

- Pi is the ranking of the ith individual (1 ::; i ::; n). 



246 R. van Blokland Vogelesang 

- aPib abbreviates the statement that i prefers a to b, where i E Sand 
a,b E O. 

- Given a group, the rankings (PI, P2 , ... , Pn ) of the members of the 
group define the group's profile. 

- alib denotes the statement that i is indifferent between a and b. 

- Weak preference, the 'at least as good as', aPbUalb, is a weak order. 

- A strict weak order is one in which aPb and alb cannot both occur. 

- A relation is transitive if (a, b) E P and (b, c) then (a, c) E P, for 
a,b,c,EO. 

- The relation "P or I" is a transitive relation and is called a partial 
order. 

- A strict partial order is irreflexive and transitive. 

- a and b are preference-comparable (comparable or connected), iff aPb 
or bPa (or both), that is, if and only if (a, b) E PUp-I. 

- a and b are preferentially incomparable if (a, b) ~ P U p- 1 ¢} ( a, b) E 
--,( P U p-l), or: ( a, b) belongs to the complement of the relation P U 
p-l. 

- A linear ordering P of 0 is a partial ordering in which each pair of 
options is comparable, i.e., aPb or bPa for all a, bE O. 

- A relation is asymmetric if (a, b) E P, then (b, a) ~ P, for a, bE O. 

- The relation of strict preference a >p b is transitive and asymmetric. 

- A complete ranking is a strict weak ordering without ties. 

Group Consensus Orderings: 
Given a profile of rankings PI,' .. , Pn , the problem is to find a rank­

ing P on 0 that represents the group consensus ordering. A rule for de­
termining the group consensus ordering from a group profile is called a 
group consensus function. Examples are Simple Majority Rule (Condorcet, 
1785), Borda Rule (Borda,1781), Plurality Rule (Malkevitch et al., 1974) 
and Lexicographical Rule (Tversky, 1969). The most important rule is Sim­
ple Majority Rule: given a profile PI, .. . , Pn , let the group rank option a 
over b if and only if a majority (more than half) of the individuals ranks a 

over b. Simple Majority Rule, however, sometimes fails to yield a transitive 
ordering. This phenomenon is called the voting paradox, and goes back as 
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far as Borda and De Condorcet. For example, let 0 == {a, b, c}, n == 3 and 
the group profile is PI == abc, P2 == bca, and P3 == cab. The group ranking 
P would then have aPb, bPc, and cPa. Since a ranking is asymmetric by 
definition (see above), such a group ranking is impossible, it would not be 
transitive. 

Arrow (1951) stated five conditions a 'fair' group consensus ordering 
should satisfy: (1) Unrestricted Domain for Preferences (all possible pref­
erence rankings are permissible); (2) Positive Association of Social and 
Individual Values (if aPib for every i, then the social outcome is aPb); (3) 
Independence of Irrelevant Alternatives ( the social outcome remains the 
same if an option is deleted); (4) Citizen's Sovereignty (the social outcome 
is not imposed by some kind of government); (5) Non- Dictatorship (the 
social outcome is not determined by a single individual). Simple Majority 
Rule is the only rule that satisfies all of Arrows' conditions, except the 
implicit requirement of being a unique, transitive ordering; this may be 
violated. In posing restrictions on the domain of rankings (thereby vio­
lating Arrow's first condition, the unrestrictedness of preferences), Black 
(1948a, b) and Arrow (1951) proved the following important result. Under 
the condition that the individual preference rankings be SPF's on a unidi­
mensional continuum, it holds that the top choice of the median (middle) 
individual yields the social ideal, the option that is most preferred by the 
group as a whole: the group consensus. 

This group decision process applies if the options are strictly ordered, 
that is, for a qualitative J scale. Coombs (1954) and Goodman (1954) 
showed that an analogous, but stronger, assertion holds. They proved that 
the ranking of the median individual equals the group consensus ordering 
according to Simple Majority Rule iff the individual preference rankings 
are restricted to be SPF's on a quantitative J scale. If the J scale is folded 
downwards in the ideal point of the median individual (see section 13.1), 
the preference ranking of the median person arises as a folded J scale. The 
options project onto this folded J scale in order of increasing distance from 
the median individual's ideal option. 

The epitome of Black's, Arrow's, Coombs', and Goodman's conditions 
is, that social preferences are strictly ordered if some sort of inner harmony 
exists among choosers. The existence of single- peaked functions reflects a 
common cultural uniformity about the standard of judgment, even though 
people differ about what ought to be chosen under that standard (Riker 
& Ordeshook, 1973, p. 105; Coombs, 1964, p. 397). The generalization of 
Coombs' and Goodman's conditions to preferences that are not necessarily 
single-peaked functions is the main purpose of this paper. To this end, we 
first show that the median ordering is a group consensus ordering in general, 
not only for rankings that are restricted to be SPF's on a quantitative J 
scale. Next we show that it holds quite generally that the median ordering 
is a folded J scale if the rankings satisfy a strongly unimodal distance 
model for rankings. The unimodal distance model for rankings can be seen 
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as a nonparametric analogue of the normal distribution for real numbers 
on a line. In doing so, we wish to create a frame of reference to interpret 
the results of the unidimensional unfolding model in the context of social 
choice theory. This is the subject of the next sections. 

13.3 Distance Measures for Rankings 

Kemeny (1959) and Kemeny and Snell (1972) presented an axiomatic ap­
proach to arrive at a unique distance measure for rankings and to define a 
group consensus ordering in terms of this distance. In their approach, rank­
ings are strict weak orderings, and are represented as points in geometrical 
space. Rankings that differ in the order of only two options are connected 
by a line; the ranking that has both options tied lies on the line between 
them. 

Kemeny's distance function is based on May's (1952) paired comparisons 
distance and is defined as follows. Suppose P and Q are rankings and a 
and b are options in O. Define Dp(a, b) = 1,0, -1, according as aPb, alb, 
or bPa. Then for all a, b in 0 

and the function d(P, Q) defined as 

d(P, Q) = L Dp,Q(a, b) 
a,b 

provides the unique distance measure d that satisfies all axioms. This dis­
tance is called the Kemeny distance. For strict linear orders, this distance 
is equal to the Kendall (1970, Ch. 2) T-distance, which was used to define 
the correlation coefficient T (see Bogart, 1973). Kemeny and Snell defined 
two group consensus orderings: the median ordering and the mean order­
ing. The median ('Med') is defined as the ordering for which the sum of all 
distances d(Med, Qi) (i = 1, ... , n) is a minimum and the mean ('Mean') is 
defined as the ordering for which the sum of all squared distances d(Mean, 
Qi)2 is a minimum: 

Median: Ld(Med,Qd is minimal 

Mean: L d(Mean, Qi? is minimal 

These definitions for rankings are analogous to those from classical statistics 
for real numbers on a line: the median ordering is the mid-ordering on a 
scale and the mean ordering represents the center of gravity for all rankings. 
However, Kemeny and Snell did not show why medians or means should be 
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taken as group consensus orderings (see Roberts, 1976). Moreover, in the 
situation in which the voter's paradox occurs, neither the median nor the 
mean yields a unique ordering. 

The results of Bogart (1973; 1975) demonstrate the benefits of the me­
dian ordering as a consensus ordering: if Simple Majority Rule applied to 
(partial, weak, or linear) orderings gives rise to an ordering, then this or­
dering is the unique median with respect to the city-block metric unless for 
some options a and b the number of individuals preferring a to b is equal 
to the number preferring b to a. A similar result was obtained for the mean 
ordering with respect to the Euclidean metric. Essentially, Bogart showed 
that medians and means are unique precisely when there is a majority win­
ner for each pair of options, that is, precisely when the situation of the 
voting paradox does not occur. 

13.4 Strongly Unimodal Distance Models for 
Rankings 

Some widely used examples of distance models for rankings based on paired 
comparisons are the Thurstone (1927) Case V model (see Torgerson, 1958, 
Ch. 9), and Mallows' (1957) model. The latter model includes two sub­
models; one is popularized by Schulman (1979) and is based on Spear­
man's p-distance. Another submodel is Mallows' ¢I-model which is based 
on Kendall's (1970) r-distance. This model is completely worked out by 
Feigin and Cohen (1978), who also provide maximum likelihood estimates 
for model parameters and furnished tables for the distribution of the num­
ber of inversions from the central ordering. Therefore, we shall refer to this 
model as Feigin and Cohen's model and we use their notation. 

Feigin and Cohen's model assigns probability to a ranking in inverse 
relation to its Kendall r-distance from some central ordering. The model is 
a non parametric one: it does not depend on parametric assumptions, and is 
based on a simplification ofthe Bradley-Terry (1952) model by the following 
assumption: rankings W with the same Kemeny or Kendall distance from the 
central ranking Wo, have the same probability. For an overview of distance 
based ranking models in the paired comparisons tradition, see Fligner and 
Verducci (1988), Critchlow, Fligner, and Verducci (1988). In the following 
paragraphs, Feigin and Cohen's model is overviewed. 

The distribution in Feigin and Cohen's model is based on the num­
ber of inversions between rankings. An individual ranking is denoted W = 
(WI, ... ,Wj, ... ,Wk) and is a permutation of the numbers (1, ... ,j, ... ,k), 
in which Wj{j = 1, ... , k) denotes the jth option. The distribution of 
W depends on one discrete and one continuous parameter, denoted Wo 

and 0, respectively. The first is a permutation that acts as a location: 
Wo = (W01,' .. , WOj, ... , WOk) and is denoted the central ordering in which 
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Woj denotes the jth option. The second parameter () is a non-negative dis­
persion parameter (0 ~ () ~ 1). The number of inversions between a rank­
ing wand the central ordering Wo is denoted X(wo,w) = x. The probability 
distribution of a ranking W is: 

(1) 

where f( ()) = Lw ()X, a normalizing constant so that the probabilities sum 
to 1. 

There are a! permutations with x inversions for fixed k (Kendall, 1970, 
5.2, where a! is termed u(n, s)). Consequently, the probability distribution 
of the number of inversions X(wo,w) = x is: 

k 
Pe(X = x) = U«()))-la ()X, 

x 
X=O,l, ... ,(~) 

where (~) = maximum number of inversions, 
a! = number of orderings with x inversions from Wo , 

f«()) = Lx a!()X = Lw ()X, a normalizing constant. 

(2) 

With increasing values of (), the concordance decreases; () = 0 corresponds 
to complete concordance and () = 1 corresponds to random selection of 
rankings. 

Strong Unimodality 
Let w = Wl, W2, ... , Wk denote an arbitrary ranking of k options. Let 

the probability function P(w) represent a probability model on rankings, 
in particular, let Pe (w) stand for the Feigin and Cohen model. A ranking 
Wm is a modal ordering if it uniquely maximizes P(w). A probability model 
on ranking data is strongly unimodal if it has a modal ordering wm , and 
the probability P(w) is nonincreasing as w moves farther from Wm along a 
certain type of path (see Critchlow, Fligner, and Verducci, 1988). This is 
an analogy with the usual definition of strong unimodality for univariate 
probability distributions. Feigin and Cohen's model is strongly unimodal, 
since the probability Pe (w) decreases according to increasing Kendall or 
Kemeny distance from the central ordering wo(O ~ () ~ 1), hence, the 
median and modal ordering coincide here. 

The maximum likelihood (ML) estimator for wo,wo, is the ordering for 
which the total number of inversions with respect to all rankings, Li X 
(wo, Wi)' is a minimum. Thus, Wo is a central ordering according to both the 
ML and the MNI criteria .Therefore, estimates based on the ML criterion 
and on the MNI criterion yield equal results under Feigin and Cohen's 
model. For the simplest case ofthree options, A, B, and C, and wo = ABC, 
this equality of results is represented in Table 1. The ML estimate for () 
given wo is the value of () for which the mean number of inversions x equals 
Ee(X) (see Feigin and Cohen, 1978). 
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Table 1. 

Probabilities of all rankings of three options A, B, and G as a function of 
the number of inversions X from the median ordering ABG and selected 
values of the dispersion parameter () from the Feigin and Cohen model. 

Ranking X 7fx () = .10 () = .20 () = .50 () = .90 
ABG 0 7fo .819 .672 .381 .194 
AGB 1 7fl .082 .135 .190 .175 
BAG 1 7fl .082 .135 .190 .175 
BGA 2 7f2 .008 .027 .095 .157 
GAB 2 7f2 .008 .027 .095 .157 
GBA 3 7f3 .001 .005 .048 .142 
Total 1.000 1.001 .999 1.000 

Table 2. 

Admissible orderings for three possible 3-scales with options A, B, and G. 
The median ordering ABG is marked with '*'. The last column gives the 
probabilities of the admissible orderings given Feigin and Cohen's model 
with () = .20. 

Ranking J Scale Probability 
w ABC BAC ACB () = .20 

ABG *ABG *ABG 7fo = .672 
BAG BAG BAG 7fl = .135 
BGA BGA BGA 7f2 = .027 
GBA GBA GBA 7f3 = .005 
AGB AGB AGB 7fl = .135 
GAB GAB GAB 7f2 = .027 
Total .839 .969 .194 1.001 

13.5 Generalization of Coombs' and Goodman's 
Conditions 

In the following paragraphs, we show that the median ordering is a folded 
J scale under rather general conditions. In particular, we show that the 
group consensus ordering is a folded J scale given that the rankings satisfy 
a strongly unimodal probability model for rankings. This constitutes the 
generalization of Coombs' and Goodman's conditions. 

Niemi (1969) defined the dominant J scale as the scale that satisfies the 
largest proportion of individual rankings, and proved that, for the case of 
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3-scales containing at least 2/3 of the individual rankings, the probability 
that the group consensus ordering is a folded J scale, approaches one if the 
number of individuals is sufficiently large. Niemi proved that the probability 
of an intransitive group consensus ordering decreases monotonically as the 
proportion of preference rankings satisfying a common 3-scale increases. In 
Niemi's approach, the data have to satisfy an equally probable condition: 
all admissible orderings on the one hand and all inadmissible orderings on 
the other are assumed to have the same probability. Even when individuals 
share a common reference frame, the condition that all possible admissible 
orderings have equal probabilities seems unrealistic. This would correspond 
to a uniform distribution of individuals on the J scale, no matter how large 
the proportion of individuals who state single-peaked preferences. In fact, 
Niemi's (1969) conditions seem to imply random choice, within two disjoint 
sets of individuals: those who choose admissible orderings and those who 
choose inadmissible orderings. 

A more general approach could start from a non-null concordance con­
dition and a nonparametric distance measure that is based on the number 
of inversions between rankings. By using a unimodal distance model for 
ranking data, it can be proved that the median ordering is a folded J scale 
in general. Any ranking model for which probabilities of rankings strictly 
decrease with increasing numbers of inversions from the median ordering 
can be used. Feigin and Cohen's model is suited for this purpose. In the 
following, we prove that the median ordering is a folded J scale if the data 
follow the distribution specified by Feigin and Cohen's model. First, we 
introduce some notation and definitions. 

Let a median-compatible J scale denote a J scale that includes the median 
ordering as an admissible ordering and let a non-compatible J scale denote a 
J scale that does not include the median ordering as an admissible ordering. 
Without loss of generality, in the following paragraphs it is assumed that 
ABCD ... is the median or modal ordering Wo0 

The probability of an arbitrary ranking W with x inversions from the 
median ordering Wo is given by (1) and geometrically decreases with the 
number of inversions from WOo Let trx denote the probability of a ranking 
with x inversions from Wo : trx = BX / J(B), from (1), and can be found 
from the Appendix using the relation trx = Pe(X = x)/a!, from (2). The 
probabilities of the six possible rankings for three options given selected 
values of B were presented in Table 1. Since ABC is the median ordering, 
it has the largest probability (7ro). The two rankings with one inversion 
from ABC: ACB and BAC, have the second-largest probabilities (7rl). 
Rankings with two inversions from ABC: BCA and CAB, have the next 
largest probabilities (7r2). Lastly, CBA has three inversions from the median 
ordering ABC and has the smallest probability (7r3). 

Now, let's introduce possible J scale orderings. As is shown in Table 2, 
there are three distinct J scales for three options (all other ones are mirror 
images of these): one with B in the middle, one with A in the middle, 
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and one with C (the least preferred option) in the middle. From Table 
2, it can be verified that if the median ordering is ABC and the data 
satisfy Feigin and Cohen's model, the admissible orderings of the median­
compatible 3-scale BAC have the largest probability: 11"0 + 211"1 + 11"2, which 
is .672 + 2( .135) + .027 = .969 if () = .20. Hence, 3-scale BAG is called the 
dominant J scale, following Niemi (1969). This result does not only hold 
for () = .20. From Figure 4, it can be seen that for 0 < () < 1, and given 
the median ordering ABC, 3-scale BAC has the largest probability, while 
the non-compatible 3-scale AC B has the smallest probability. 

t 
p{scale) 

.667 

Figure 4 Proportions of individuals who satisfy each of the three possible 
3-scales, given the F fj C model (0 ::; () ::; 1) and median ordering ABG 

From the above example, we conclude three things. If the conditions of 
Feigin and Cohen's model are met and if the median ordering is ABC, the 
median-compatible 3-scale BAC is the dominant or ML 3-scale in the first 
place. If () = 1, we cannot discriminate between the 3-scales; they have the 
same probability and we expect each option A, B, and C to occur in all 
positions (first, second, and last) with equal probability, which is precisely 
the standard example of the voting paradox! Therefore, the median order­
ing is not unique, it can be any of the three possible rankings; or rather, 
the median ordering is a three-way tie in this degenerate case, except for 
random differences in the rankings. Secondly, the social preference function 
is single-peaked on the J scale, since the probabilities of the admissible or­
derings of 3-scale BAG decrease away from Wo = ABC, on both sides (the 
admissible orderings are BAC, ABC, ACB, and CAB, having probabilities 
11"1, 11"0, 11"1, 11"2, resp.). Third, the admissible orderings of the ML 3-scale have, 
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in total, the largest probability, since the probability of a ranking decreases 
monotonically with increasing numbers of inversions away from the median 
ordering. Therefore, the ML 3-scale is at the same time the MNI 3-scale. 
This can be proved in general, using the strong unimodality property of 
Feigin and Cohen's model. To prove this, we need only the strong uni­
modality property of the Feigin and Cohen model, therefore, these results 
can be generalized to any strictly unimodal distance model for rankings for 
any number of options. This is the subject of the next section. 

13.6 Equal Results for ML or MNI Criterion 

In this section, we show that Coombs' (1954), and Goodman's (1954) re­
sults can be generalized to the case of k options under rather general prob­
abilistic conditions: a strongly unimodal distance model for rankings. In 
particular, we wish to show that the median or modal ordering is a folded 
qualitative or quantitative J scale when individuals' preference rankings 
are not all single-peaked functions. 

First, we need some preliminary theoretical results about the midpoint 
order, the distances of admissible orderings with respect to the median 
ordering on a non-compatible scale, and the single-peakedness of the so­
cial preference function on the J scale. After having established these, we 
proceed to prove the proposition for k options. 

Definitions 
The admissible orderings of a quantitative J scale constitute a subset of 

those of the qualitative J order. Thus, if the median ordering proves to be 
a folded quantitative J scale, it is a folded J order. Therefore, we consider 
only quantitative J scales, and a 'J' scale will stand for a quantitative J 
scale in this section. Let (1st denote the inversion of two adjacent options S 
and T in any permutation, then (1 st· P denotes that (1 st is applied to ranking 
P to produce the inversion of Sand T in P. Let Pi(i = 1,2, ... , (~) + 1) 
denote an admissible ordering on the quantitative J scale, and let X(wo, Pi) 
denote the number of inversions (the distance) between the ith admissible 
ordering and the median ordering; also, let Pe(Pi) denote the probability 
of Pi given Feigin and Cohen's model. A w - non - compatibleJ scale is 
a non-compatible J scale for which the admissible orderings have at least 
w inversions from the median ordering wo, and w = min; X (wo, Pi), where 
i = 1,2, ... , (~)+ 1. A non-compatible J scale denotes a I-non-compatible J 
scale. Without loss of generality, it is assumed that ABC D ... is the median 
ordering wo. 

Midpoint Order in a k-Scale 
The 3-scale is the smallest scale that imposes restrictions on the rankings: 

two out of six rankings are inadmissible for each possible 3-scale (see Table 
2). Therefore, the 3-scale is taken as the smallest J scale. 
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Each quantitative scale is a path along admissible orderings. A step along 
such a path moves from an arbitrary admissible ordering Pi to Pi+l = I7s t 'Pi, 
where options Sand T are adjacent in Pi. The step is away from Wo if Pi 
and Wo initially agree on the order of the options Sand T, and towards 
Wo otherwise. Since each option pair may be interchanged only once (there 
is one midpoint between two options), the interchanges are disjoint. Thus, 
each successive interchange yields one more inversion from Pl, the first 
admissible ordering on the J scale. The order of interchanging options on 
the J scale is from left to right, and corresponds to the midpoint order on 
the scale. This was illustrated in the 3-scale ABC in section 13.5. If the J 
order is ABC, the midpoints are necessarily ordered ab -+ ac -+ bc, where 
'-+' denotes 'precedes'. This follows from the positions of the options on 
the J order, and can be shown as follows. If A is the first option on the 
scale, and B precedes C on the scale, the midpoint between A and B( ab) 
must precede the midpoint between A and C(ac). In general, with a J order 
ABC D ... Y Z, the midpoint order must satisfy the restrictions: 

ab -+ ac -+ ad -+ ... -+ ay -+ az; bc -+ bd -+ ... -+ by -+ bz,... (3) 

In the same way, the midpoint order must satisfy analogous restrictions 
when keeping the last option on the J scale fixed: 

ad -+ bd -+ cd; az -+ bz -+ cz -+ ... -+ yz. (4) 

w-Non-Compatible Scales 
It takes three options to build a non-compatible scale: a non-compatible 

3-scale has the least preferred option in the middle position (this follows 
from the definition of an SPF, see section 13.1). Therefore, violations of 
the unfolding model can be detected by inspection of triples of options (cf. 
Dijkstra, 1978; Van Schuur, 1984). Using the restrictions on the order of 
the midpoints (from (3) and (4)), we can derive the successive distances 
X(wo,Pi)(i = 1, ... ,(~)+ 1) on a non-compatible J scale. This is illus­
trated for a small selection of cases. To simplify matters, we consider only 
non-compatible scales that comprise the non-compatible 3-scale AC B. The 
results are easily generalized to cases in which not Band C, but another 
pair of options is in the wrong order on the J scale. 

At the moment, we are concerned with non-compatible J scales only. 
Therefore, additional options must be adjoined to the non-compatible 3-
scale AC B in order of decreasing preference away from the most preferred 
option A, on both sides. To show this, we prove the following propositions. 

Proposition I 
The options on a median-compatible J scale are in order of increasing 

social preference towards the socially ideal option A and in order of decreas-
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ing social preference away from it. This implies that the social preference 
function is unimodal on the J scale. 

Proof 
If the scale is median-compatible, the median ordering ABC is an ad­

missible ordering, and is thus a folded J scale. Since the median ordering 
is a group consensus ordering, it holds the options in order of decreasing 
social preference. In folding the J scale in A, the options to the right of A 
project on the folded J scale in order of increasing distance from A, hence, 
they must be in order of decreasing social preference away from A on the 
J scale. An analogous reasoning holds for options to the left of A. Hence, 
the social preference function is unimodal on the J scale. 0 

Proposition II 
The options on a w-non-compatible J scale are in order of increasing so­

cial preference towards the socially ideal option A and in order of decreasing 
social preference away from it, apart from w inversions. 

Proof 
A non-compatible J scale arises if there is a triple of options where the 

least preferred option holds the middle position. Thus, the interchange of 
A and B in Wo does not give rise to a non-compatible scale, nor can it 
contribute to the non-compatibility of the J scale: only the placement of 
option C between A and B yields a non-compatible 3-scale. If the k-scale 
is w-non-compatible, then, by definition, there is an admissible ordering 
Q such that X(wo, Q) = w, and Q is a folded J scale. Thus, there are w 
mverSlOns CJSjtj of adjacent options Sj and 1j(j = 1, ... , w), such that 

These inversions are away from wo, but, as above, cannot concern A and 
B. Therefore, the interchanges concern pairs of adjacent options either to 
the right or to the left of A on the J scale. In folding the J scale in A, 
the options project on the folded scale in order of increasing distance from 
A. Hence, if two options are ordered away from Wo in Q, they must be so 
on the J scale; if their order in Q agrees with that in Wo, they must be in 
order of decreasing preference on the J scale, away from the social ideal A 
(from Proposition I). 0 

From Proposition II, it follows that we can construct non-compatible J 
scales out of the 3-scale AC B by adjoining options in order of increasing 
preference towards AC B and in order of decreasing preference away from 
it. This can be illustrated in the following .J-scales: J scales EDACB and 
ACBDE are I-non-compatible, J scale DEACB is 2-non-compatible. This 
can be verified by folding the J scale at A. 
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Distances from Wo : Non-Compatible J Scales 
Using the above results, we can now derive the successive distances 

X (wo, Pi)( i = 1, ... , ( ~ ) + 1) on a non-compatible J scale for different place­
ments of the non-compatible triple AC B on the J scale. This is illustrated 
for k = 3,4,5. 
Case k=3 

If the median ordering is ABC, only the placement of option C be­
tween A and B yields a non-compatible 3-scale. In the following, only 3-
scale AC B is considered; analogous results are obtained in considering its 
mirror image: 3-scale BC A. The admissible orderings of 3-scale AC Bare 
ACB, CAB, CBA, BCA, and have X = 1,2,3,2 inversions, resp., from 
Wo = ABC (see Table 1). From (3) and (4), it follows that the midpoint 
order on 3-scale ACB is: 

ae --+ ab --+ be, (5) 

thus, options C and B cannot be interchanged directly. Each step along the 
3-scale AC B involves the interchange of two adjacent options and moves 
away from PI since the interchanges are disjoint. Let Q = (jbc • Wo, thus 
X(wo, Q) = 1. Here, Q = PI, and each step moves away from Q. The first 
two steps move away from Wo too, but in P3, Band C are adjacent and the 
third step involves their interchange (from (5)); therefore, since the order 
is CB in P3 and BC in Wo, the third step is towards woo The distances 
X(wo, Pi), i = 1,2,3,4, are given below: 

and X(WO,Pi) > 1 if Pi =F Q. 
Case k=4 

[1 2 3 2], (6) 

If the J scale is ACBD , then Q is the first admissible ordering on the 
scale. To obtain remaining admissible orderings, options A, C and B have to 
be interchanged as in 3-scale ACB (from (5)), and it takes three inversions 
(D, A; D, B; D, C) to interchange D with remaining options. Hence, the 
distances X(wo, Pi), i = 1,2, ... ,7, are resp.: 

[1 2 3 2] 3 4 5. 

If the J scale is DACB, it takes three inversions (D, A; D, C; D, B) to 
reach Q = (jbc • Wo; after this, A, B, and C have to be interchanged as in 
3-scale AC B (from (5)); hence, the distances X(wo, Pi)' i = 1,2, ... ,7, are 
resp.: 

432 [1 2 3 2]. 

The numbers in the brackets correspond to those of the constituting non­
compatible 3-scale ACB, (from (6)). 
Case k=5 

If the J scale is EDACB, it takes four inversions for E and three in­
versions for D to reach Q = (jbc • Wo; after this, A, B, and C have to be 
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interchanged (as before). Hence, the distances X(WO,Pi), i 
are resp.: 

8 7 6 5 4 3 2 [1 2 3 2]. 

In the same way, these distances X(WO, Pi)' i = 1,2, ... ,11, are 

[1 23 2] 345 6 7 8 9, 

1,2, ... ,11, 

for the J scale ACBDE. As examples, the admissible orderings of the 
median-compatible 4-scale C BAD and the non-compatible 4-scale DAC B 
are shown below with the number of inversions from the median ordering: 

median-conlpatible 4-scale: 
CBAD BCAD BACD ABCD ABDC ADCB DACB distance: 3 2 1 0 1 2 3 

non-compatible 4-scale: 

DACB ADCB ACDB ACBD CABD CBAD BCAD distance: 4 3 2 1 2 3 2 

Distances from Wo : w-Non-Compatible J Scales 
The above derivations and examples concerned I-non-compatible J scales. 

For w-non-compatible scales, the same rules (from (3) and (4)), and rules 
analogous to (5) and (6) apply, the main difference being now that we start 
with a minimum distance of w inversions from the median ordering. Using 
Proposition II, it follows that w pairs of options are ordered away from 
Wo on the J scale. There is an admissible ordering Pi, say Q, such that 
X(wo, Q) = w, and each step on the J scale from Pi to Pi+l (to the right 
of Q ) or to Pi-l (to the left of Q ) moves farther away from Q. This step 
moves away from Wo too, if Pi and Wo initially agree on the order of the 
options concerned, but towards Wo otherwise. Therefore, there are w steps 
towards Wo, In other words, w times a pair of options is interchanged whose 
inversion is now towards Wo. As an illustration of a 2-non-compatible scale, 
4-scale BDAC is given below: 

2-non-compatible 4-scale: 

BDAC DBAC DABC ADBC ADCB ACDB CADB distance: 3 4 3 2 3 2 3 

Stochastic Ordering of Permutations 
Let D be a ranking in which the options are represented by the alpha­

betical sequence of letters a, b, c, ... , z, and let E, F, ... , T denote different 
permutations of these letters. Let D and E differ only in the inversion of 
two letters and let D have a greater probability than E , then we write 
D > E . If there is a sequence of permutations D, E, F, ... , T in which 
we proceed from one permutation to the next by interchanging two letters 
which were in alphabetical order, then D> E> F> ... > T, and we say 
that D and T are stochastically ordered (see Henery, 1981). As an example, 
4-scale CBAD is given below, with numbers of inversions from the median 
ordering ABC D and the probabilities of its admissible orderings. These 
orderings are stochastically ordered, away from Wo, on both sides of Wo. 
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Ordering: CBAD BCAD BACD ABCD ABDC ADBC DABC 
In versions: 3 2 1 0 1 2 3 
Probability: 7["3 7["2 7["1 7["0 7["1 7["2 7["3 

Dominance of the Median-Compatible J Scale 
Theorem 

The dominant J scale is median-compatible if the data follow the distri­
bution specified by Feigin and Cohen's model. 
Proof: 

Suppose the data follow the distribution specified by Feigin and Cohen's 
model. In the sequel, r stands for [( ~ )/2]' where [xl denotes the largest inte­
ger not exceeding x. Without loss of generality, it is assumed that ABCD ... 
is the median ordering wo, and that (~) + 1 is odd. Hence, r = (~)/2. Anal­

ogous arguments hold true if (~) + 1 is even. The proof consists in showing 
that the total probability of admissible orderings from an optimal median­
compatible J scale is larger than the total probability from an optimal 
non-compatible scale. 

Probability for the median-compatible J scale 
If the k-scale is median-compatible, Wo is an admissible ordering of the 

J scale and, in principle, can have all possible positions on the J scale. 
Let Ii(i = 1,2, .. . 2r + 1) denote the position of Wo on the scale, then 
X(wo,PiI1d represents the number of inversions between each admissible 
ordering and the median ordering, given the position of the latter on the 
J scale. These distances are given in Table 3. 

Since the Feigin and Cohen model has the strong unimodality property, 
Pe(Pi) increases towards Wo and decreases away from Wo on the J scale (wo 
and Pl are stochastically ordered, as are Wo and P2r+l). Hence, the special 
J scale that includes Wo in the midranking has the largest probability, and 
must be the dominant J scale if the data satisfy Feigin and Cohen's model. 
No other median-compatible J scale can have a larger probability. Let the 
total probability of the J scale denote 

(7) 

then for this scale, the total probability of the admissible orderings is: 

(8) 

Probability for the w-non-compatible J scale 
If the k-scale is w-non-compatible, it does not include Wo, and X(wo, Pi) 2: 

w(i = 1, ... , 2r + 1). By definition, there is an admissible ordering Pi, say 
Q, for which X(wo, Q) = w, and each step on the J scale from Pi to Pi+l 

(to the right of Q) or to Pi-l (to the left of Q) moves farther away from Q. 
This step moves away from Wo too, if Pi and Wo initially agree on the order 
of the options concerned, but towardswo otherwise. Since X(wo,pd 2: w, 
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and only w out of (~) steps are towards Wo, it is evident that the total 
distance 

XPi = ~X(WO'Pi)' (i = 1, ... (~) + 1) 
• 

must be larger for a w-non-compatible J scale than for a non-compatible 
J scale; hence, PPi (from (8)) must be smaller than for a non-compatible J 
scale. Thus, a w-non-compatible J scale cannot be the dominant J scale, 
and we restrict our attention to non-compatible J scales. If the J scale 
is I-non-compatible, there is an admissible ordering Pi = Q, for which 
X(wo, Q) = 1 , and Q = us, .WO, where options Sand T are adjacent both 
in Q and Wo; suppose the order is ST in Wo and TS in Q. Thus, Sand T 
must be embedded in a triple RTS, and of the three options, T is the least 
preferred. Somewhere on the J scale, options Sand T are interchanged 
(there is a midpoint between Sand T ), so there is also a Pj (j i= i) in 
which Sand T are adjacent and their order agrees with that in WOo From 
(5) it follows that X(Q, pj) ~ 3. With a proper placement of the triple RTS 
among remaining options on the J scale, Q may have a middle position on 
the J scale (see above). Hence, X(wo, Q) = 1 in the middle of the J scale, 
and X(WO,Pi) monotonically increases towards one end ofthe J scale (say, 
the left end), and monotonically increases towards the other end apart from 
one drop by one inversion somewhere on the J scale (this follows from (6) 
and the discussion above). For the non-compatible J scales with Q in the 
midranking or next to it, the distances X(wo,Pi),i = 1, ... ,(~)+ 1 (apart 
from taking reverses), are given in Table 4. Using the same reasoning as 
in the case of median- compatible scales, there are now two candidates for 
the dominant J scale, namely those for which X(wo, Pi) shows the pattern: 

r, r - 1, r - 2, ... ,3,2,1,2,3,2,3,4,5, ... , r - 1, r, or 

r + 1, r, r - 1, ... ,4,3,2,1,2,3,2,3,4, ... , r - 2, r - 1, 

and for these J scales, 

PPi = 1TI + 3 1T2 + 3 1T3 + 21T4 + ... + 21Tr -1 + 21Tr, or (9) 

PPi = 1TI + 31T2 + 3 1T3 + 21T4 + ... + 21Tr -1 + 1Tr + 1Tr +l· (10) 

Since 1Tr > 1Tr +1 (from the strong unimodality property of Feigin and 
Cohen's model), it follows that the J scale defined by (9) has the largest 
probability and must be the best non-compatible candidate for the domi­
nant J scale. This scale will be compared with its best median-compatible 
counterpart (defined by its total probability from (8), to decide whether the 
dominant J scale is median-compatible or non-compatible. Suppose that 
the dominant J scale is non-compatible. Comparing (8) and (9), this would 
imply that 

1T2 + 1T3 > 1To + 1TI· (11) 
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However, from the strong unimodality property of Feigin and Cohen's mod­
el, we know that rankings are stochastically ordered away from Wo; thus, 

(12) 

hence, (11) is in contradiction with (12), therefore, the dominant J scale 
must be median-compatible. 0 

Corollary 1: 
If the data follow the distribution specified by a strongly unimodal dis­

tance model for rankings, the dominant J scale is median compatible. 

Proof: 
Since we only used the strong unimodality property of Feigin and Cohen's 

model, the results of the theorem are valid for any strongly unimodal dis-
tance model for rankings. 0 

Corollary 2: 
If the data are follow the distribution specified by a strongly unimodal 

distance model for rankings, the minimum-number-of-inversions J scale is 
median compatible. 

Proof: 
The dominant or ML J scale maximizes the probability of getting an 

admissible ordering, because probabilities of rankings decrease monotoni­
cally with increasing numbers of inversions away from the median ordering. 
Therefore, the ML J scale is at the same time the MNI J scale, and, hence, 
the results of the Theorem and Corollary 1 generalize to this case. 0 

This generalizes the found results for the 3-scale (see section 13.5). The 
plot for 

i.e., the probability-ratio for the best non-compatible J scale versus the 
best median-compatible J scale, is given in Figure 5, for k ;::: 3 and 0 ::; 
B ::; 1. From this, it is evident that this ratio is monotonically increasing 
but smaller than 0.5 over the whole range of B. Therefore, the best median­
compatible J scale optimizes the probabilities of admissible orderings of a 
J scale as well as the total number of inversions of the individual rankings 
with respect to the J scale. 

Folded J Scales and Consensus Orderings 
The main purpose of this paper concerned the generalizability of Coombs' 

(1954) and Goodman's (1954) results. These authors showed that Simple 
Majority Rule ordering is the ranking of the median individual on the 
quantitative J scale if all individuals' preference functions are single-peaked 
on the J scale. We used theorems from Kemeny (1959), Kemeny and Snell 
(1972), and Bogart (1973, 1975) to show that Simple Majority Rule yields 
the median ordering when not all rankings are SP F's. We proved that 
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t 
2 3 

G=(9 +9 )/(1+9) 

p(scale) 
0.9 

0.6 

0.3 

0.8 r 
Figure 5. Probability ratio P(best non-median scale)! P (best median­
compatible scale), for k 2: 4; 0 ::; B ::; l. 

the median ordering is a folded J scale if probabilities of rankings strict­
ly decrease with increasing Kemeny or Kendall distance from the median 
or modal ordering. This constitutes the generalizability of Coombs' and 
Goodman's assertions under rather general conditions. For all sets of da­
ta which have been analyzed to date, the median ordering proved to be a 
folded J scale. This result is the more remarkable since these sets often con­
tained a high level of error, and the number of individuals was often small. 
It appears to hold quite generally for dichotomous data as well (see Van 
Blokland, 1991). In one case, the Andrich (1988) data on Capital Punish­
ment, two pairs of options are tied in the median ordering and the median 
ordering is not a folded J scale in this case. This is precisely what is to be 
expected according to Bogart's theorems (see section 13.2). 

Folded J Scales and Single-Peaked Social Preference Functions 
Just as the normal distribution is found to mirror the frequency distri­

bution of many variables, a unimodal or single-peaked distribution of rank­
ings often arises on the unfolding scale. The single-peakedness of the social 
preference curve has important consequences for interpretation: the social 
preference decreases on either side of the median ordering towards the ends 
of the J scale. Socially most preferred options are found in the center of the 
J scale, less popular options towards both ends. Mostly, the ends of the J 
scale have opposite connotations: the J scale may be described in terms of 
a bipolar continuum. In folding the J scale in the social ideal point (point 
of highest social preference) in the center of the scale, the median ordering 
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arises as a folded J scale, with options ranked in order of decreasing social 
preference. This is the Simple Majority Rule ordering, the group consensus 
ordering. This is what we found in all of the data sets analyzed up till now, 
except for the Andrich data (see above and next section). 

13.7 Unfolding and Social Choice Theory: 
Illustrations 

Two sets of data, one consisting of complete rankings and one consisting 
of dichotomous data, are presented for illustration of the connections be­
tween unfolding theory and social choice theory: the Coombs' (1950) Grade 
Expectations and Andrich' (1988) data on Capital Punishment. They rep­
resent two different kinds of data: complete and incomplete rankings of 
preference, respectively. 

13.7.1 Analysis of Complete Rankings: Coombs' (1950) Grade Expectations 
The first example concerns Coombs' (1950) Grade Expectations data 

(n = 121). Subjects were students in a graduate course in statistics (nl = 
40) and in an undergraduate course in sociology (n2 = 81), who completed 
a questionnaire about grades expected in the course (from 'most expected' 
to 'least expected'). The grades were: A, B, C, D, and E. The rankings, their 
frequencies, and the number of students in each of the courses are given 
in Table 5. For this data, both the dominant (ML) and the minimum­
number-of-inversions (MNI) criterion yield the same results, namely, the 
qualitative J order ABCDE and the quantitative J scale ABCDE. In 
addition, these results are obtained both in the total group and in the two 
subgroups separately. All other results (the median ordering is a folded J 
scale, and single-peakedness of the social preference function) are the same 
as well. For space considerations, only the results for the total group are 
presented here. 

Best ML and MNI quantitative J scales 
The order of the midpoints be and cd on the J scale is indeterminate 

because of zero frequencies for two of the admissible orderings. Hence, 
two different quantitative J scales are possible, both of which include the 
same number of individuals without inversions. Also, the total number of 
inversions from individuals' rankings with respect to the quantitative J 
scale is the same for both scales. In Figure 6, one of these J scales is 
displayed on a line. If an individual ranking is observed that is not equal 
to one of the admissible orderings of the quantitative J scale, it is assigned 
the admissible ordering from which it has a minimum number of inversions. 
The first number above the admissible orderings is the frequency of rankings 
that fit the indicated admissible ordering without inversions. The second 
number, if any, is the number of non-permissible individual rankings that 
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Table 5. 

Coombs' data: number of individuals in two courses with the following 
rankings 

Statistics Sociology Total 
Ranking Class Class group 

1. ABCDE 14 6 20 
2. BACDE 10 22 32 
3. BCADE 6 21 27 
4. CBADE 1 4 .5 
.5. CBDAE 1 11 12 
6. CBDEA 2 3 5 
7. CDBEA 1 0 1 
8. DECBA 1 0 1 
9. BCDAE 3 7 10 
10. BCDEA 0 6 6 
11. BACED 0 
12. CABDE 1 0 1 

40 81 121 

have been assigned the indicated admissible ordering with one inversion, 
and so on (see Van Blokland, 1991). 

Our results can be compared with Coombs' results. Coombs sought the 
dominant J scale, that is, the scale that fits a maximum number of in­
dividuals' rankings perfectly (Coombs, 1964; Niemi, 1969), thus, the ML 
scale. Our criterion for the best J scale is the minimization of the total 
number of inversions from the individual rankings (see section 13.5), the 
MNI criterion. Despite this difference in optimization criteria, for this data, 
Coombs' and our results are essentially the same: (a) the best qualitative 
J order is the same (i.e., ABCDE) under the ML and MNI criterion; (b) 
the best quantitative J scale is the same (i.e., ABCDE) under the ML 
and MNI criterion; (c) the median ordering is a folded J scale; and (d) the 
social preference function is single-peaked on the quantitative J scale. 

Goodness-oJ-Fit 
The goodness-of-fit of the Feigin and Cohen model to the data is evalu­

ated using the chi-squared testing procedure described in Feigin and Cohen 
(1978). As a test statistic, Pearson's X 2 is used. The number of degrees of 
freedom for this test is equal to the number of X-categories in which the 
data are combined, minus 2. One extra degree of freedom has to be sub­
tracted because of the estimation of B; for the estimation of Wo no degree of 
freedom need be subtracted (see Critchlow, 1985). The test for goodness­
of-fit is presented in Table 6. In this Table, the observed frequencies of 
inversions, X are given. From this, x = L x/n = 153/121 = l.26, and iJ 
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can then be determined: fj = 2.75 (from the Appendix, and by interpo­
lating). Expected frequencies are determined from the Feigin and Cohen 
distribution from exp(x) = n . Pe(x). Expected values for X = 6,7, ... 10 
have been combined because of small values, leaving 6-2 = 4 degrees of 
freedom. On behalf of the resulting p-value, we conclude that the Feigin 
and Cohen model does not fit this data. This may be caused by a lack of 
symmetry: rankings with the same number of inversions from the median 
ordering do not have the same frequencies; this is reflected in the J scale: 
rankings are not symmetrically distributed about the median ordering. 

Figure 6 shows that the median ordering is a folded J scale, and, is thus 
an admissible ordering of the J scale; moreover, it shows the ranking of 
the median individual on the J scale. Also, the social preference function 
is unimodal on the J scale. Despite the fact that the rankings do not fit 
Feigin and Cohen's unimodal distance model, Coombs' and Goodman's 
theorems apply for this data that do not only consist of SP F's (see section 
13.2). Therefore, we conclude that a strictly unimodal distance model for 
rankings is a sufficient condition and not a necessary one to ensure that 
the best MNI scale includes the median ordering as an admissible ordering, 
and that the social preference function is unimodal on the quantitative J 
scale. 

We have to distinguish between the unimodal distance model and the 
unfolding model. With Feigin and Cohen's model, we are fitting a strictly 
unimodal distance model, with the unfolding model, the total number of 
inversions of individuals' rankings with respect to all admissible orderings 
ofthe quantitative J scale (denoted L Y) is assessed (see section 13.1). The 
goodness offit of the unfolding model to the data is tested in an analogous 
way as in Feigin and Cohen's model. The Coombs' data fit the unfolding 
model nearly perfectly (see Van Blokland, 1991). 

social preference 

A B C o E 

consensus ranking BCADE 

(median ranking) 

J scale 

Figure 6 One of two possible quantitative J scales ABC DE for Coombs' 
(1950) Grade Expectations. 
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Table 6. 

Number of inversions X, their observed frequencies (Obs) and expected 
frequencies (Exp) for the Coombs' (1950) Grade Expectations 

# Inversions X Obs 
0 27 
1 47 
2 40 
3 5 
4 1 
5 0 
6 0 
7 1 
8 0 
9 0 
10 0 

Total 121 

Exp 
37.21 
40.92 
25.33 
11.60 
4.26 
1.28 
0.33 
0.06 
0.00 
0.00 
0.00 
121 

2.80 
0.90 
8.50 
3.76 
2.49 
0.23 

X2=17.11 
df = 4,p~ .001 

13.7.2 Analysis of Incomplete Rankings: Andrich' Data 
The procedures for finding the best qualitative or quantitative J scale 

on the basis of the MNI criterion can be used for incomplete rankings as 
well. Incomplete rankings may consist of partial rankings, 'order r out of 
k' data (r S; k - 1), rating scores, and dichotomous data. In the unfold­
ing procedure,2 equal scores are treated as ties, which are untied using a 
primary approach to ties (Van Blokland, 1991). Andrich (1988) collected 
data concerning attitudes toward Capital Punishment. Subjects were 54 
graduate students in an introductory course in Educational Measurement. 
The data are dichotomous scores: Agree (1) or Disagree (0). The students 
were asked to judge eight statements: 

A Capital punishment is one of the most hideous practices of our time 
'HIDEOU' 

B The state cannot teach the sacredness of human life by destroying it 

'SACRED' 

C Capital punishment is not an effective deterrent to crime 'NONEFF' 

D I do not believe in capital punishment but I am not sure it is not 
necessary 'NOSURE' 

2 For the unfolding analysis of the data, the computer program UNFOLD (Van 
Blokland and Van Blokland, 1990) has been used. 
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E I think capital punishment is necessary but I wish it were not 
'INEVIT' 

269 

F Until we find a more civilised way to prevent crime we must have 
capital punishment 'NECESS' 

G Capital punishment is justified because it does act as a deterrent to 
crime 'JUSTIF' 

H Capital punishment gives the criminal what he deserves 'REVENG' 

Median Ordering and Social Preference Function 
The results of the unfolding analysis for Andrich' data are given in Table 

7. The best quantitative J scales for k = 4, ... 8 form an order-preserving 
or 'nested set' of quantitative J scales: each smaller J scale is contained 
in a larger J scale, as can be seen from Figure 7. The resulting scale is 
ABCDEF HG, and is the same as the one Andrich obtained. The under­
lying continuum goes from Capital Punishment as a Hideous Practice to 
Justified Deterrent to Crime, and clearly is bipolar. 

The median ordering for Andrich' data is CBED(AF)(GH), where 0 
means that options have equal mean ranks, and inverting these options 
in the median ordering yields the same total number of inversions from 
individuals' rankings. Thus, the median ordering is not unique. The same 
conclusion follows from the observation that the number of individuals 
preferring A to F equals the number preferring F to A. Also, the number 
of individuals preferring G to H equals the number preferring H to G. 
This illustrates Bogart's (1975) theorem that the median is unique unless 
for some options X and Y, the number of individuals preferring X to Y is 
equal to the number preferring Y to X (see section 13.2). 

Apart from the ties in the median ordering, the median ordering also is 
not a folded J scale for this data: the order of D and E on the J scale is 
not in agreement with their position in the median ordering. The number 
of individuals preferring E to D is 14, the number preferring D to E is 
13, which, again, is a demonstration of Bogart's theorem: E just has a 
simple (14/27) majority over D, which is reflected in the median ordering 
where E dominates D. The fact that option D precedes E on the J scale is 
probably due to the large number of individuals (26) who prefer C and B 
(the most preferred options) to E, while the number preferring C and B to 
D is only 17 and 18, respectively. In fact, the mean scores of D and E are 
nearly equal: 28/54 and 29/54 respectively. On inverting these options in 
the median ordering, the total number of inversions with respect to the J 
scale, L: Y, increases from 299 to 300. Hence, the social preference function 
is very close to single-peakedness. 
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Table 7. 

Best quantitative J scales for Andrich' data, k = 4, ... , 8. The total number 
of inversions for this J scale is given by '2:: y', the frequency of perfect fit 
is given under 'Fit'. 

Andrich' Data 
k Scale 2::y Fit 
4 AEFH 1 53 
5 ADEFH 5 50 
6 ACDEFH 12 47 
7 ACDEFHG 22 43 
8 ABCDEFHG 37 40 

13.8 Discussion 

The unfolding technique was placed in the wider context of social choice 
theory, median procedures and strictly unimodal distance models for rank­
ings. Social choice theory was used to construct a framework for the unidi­
mensional unfolding model. We generalized Coombs' (1954) and Goodman's 
(1954) theorems: if the data follow a strictly unimodal distance model, 
the modal or median ranking is an admissible ordering of the quantita­
tive J scale whose admissible orderings have the highest total probabili­
ty according to the model. This is because the maximum likelihood and 
the minimum-number-of-inversions criterion yield the same ordering: the 
mean/modal/median ordering. From this, it follows that the group con­
sensus ordering is transitive and is the median ordering. In addition, we 
proved that the social preference function is unimodal on the quantitative 
J scale if the data follow a strictly unimodal distance model. 

The unfolding procedure was illustrated in Coombs' (1950) Grade Ex­
pectations. Results have been compared with Coombs'. Coombs sought the 
dominant or ML J scale, our criterion for the best J scale is the minimiza­
tion of the number of inversions, the MNI criterion. Despite this difference, 
Coombs' and our results are essentially the same: the best quantitative J 
scale is the same. The median ordering is a folded J scale, and the social 
preference function is single-peaked on the J scale. 

We presented the Andrich' data to show the importance of Bogart's 
(1973,1975) theorems on the unicity ofthe median ranking. In the Andrich' 
data, the median ordering it is not unique: three pairs of options are tied 
in the median ordering. Combined with an option pair that shows only a 
bare majority, this results in a median ordering that is not a folded J scale. 
Consequently, the social preference function is not single-peaked, however, 
it is nearly so. 
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APPENDIX: Ee(X) and Ee(t) 

E e(X) (fust row) and E e(t) for selected values of e and k. 

ek 3 4 5 6 7 8 9 10 
.05 .100 .152 .205 .258 .310 .363 .415 .468 

.933 .949 .959 .966 .970 .974 .977 .979 

.10 .199 .310 .421 .532 .643 .754 .865 .976 
.867 .897 .916 .929 .939 .946 .952 .957 

.15 .297 .471 .647 .824 1.000 1.177 1.353 1.530 
.802 .843 .871 .890 .9OS .916 .925 .932 

.20 .392 .636 .884 1.134 1.384 1.634 1.884 2.134 
.738 .788 .823 .849 .868 .883 .895 .905 

.25 .486 .803 1.132 1.464 1.797 2.130 2.463 2.796 
.676 .732 .774 .805 .829 .848 .863 .876 

.30 .576 .972 1.388 1.813 2.240 2.668 3.096 3.525 
.616 .676 .722 .758 .787 .809 .828 .843 

.35 .663 1.141 1.653 2.180 2.714 3.251 3.789 4.327 
.558 .620 .669 .709 .741 .768 .790 .808 

.40 .747 1.309 1.924 2.566 3.221 3.882 4.547 5.212 
.502 .564 .615 .658 .693 .723 .747 .768 

.45 .828 1.475 2.199 2.967 3.759 4.564 5.375 6.190 
.448 .508 .560 .604 .642 .674 .701 .725 

.50 .905 1.638 2.477 3.382 4.326 5.295 6.277 7.268 
.397 .454 .505 .549 .588 .622 .651 .677 

.55 .978 1.798 2.755 3.806 4.920 6.075 7.256 8.452 
.348 .401 .449 .492 .531 .566 .597 .624 

.60 1.048 1.953 3.031 4.238 5.536 6.899 8.308 9.747 
.301 .349 .394 .435 .473 .507 .538 .567 

.65 1.115 2.103 3.304 4.672 6.168 7.762 9.429 11.149 
.256 .299 .339 .377 .413 .446 .476 .504 

.70 1.179 2.248 3.572 5.IOS 6.810 8.654 10.609 12.651 
.214 .251 .286 .319 .351 .382 .411 .438 

.75 1.239 2.388 3.832 5.533 7.455 9.565 11.834 14.237 
.174 .204 2.34 .262 .290 .317 .343 .367 

.80 1.297 2.522 4.085 5.953 8.096 10.483 13.088 15.885 
.135 .159 .183 .206 .229 .251 .273 .294 

.85 1.352 2.650 4.329 6.362 8.726 11.396 14.350 17.565 
.099 .117 .134 .152 .169 .186 .203 .219 

.90 1.404 2.772 4.563 6.757 9.340 12.293 15.601 19.248 
.064 .076 .087 .099 .110 .122 .133 .145 

.95 1.453 2.889 4.786 7.137 9.932 13.164 16.823 20.902 
.031 .037 .043 .048 .054 .060 .065 .071 

1.00 1.500 3.000 5.000 7.500 10.500 14.000 18.000 22.500 
0 0 0 0 0 0 0 0 
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Models on Spheres and 
Models for Permutations 

Peter McCullagh 1 

ABSTRACT It is shown that the space of permutations is naturally or­
dered in a circular or spherical manner. By exploiting the geometry of the 
sample space it is shown that Mallows's ¢-model with the Spearman met­
ric is essentially equivalent to the Mallows-Bradley-Terry ranking model, 
which is essentially equivalent to the von Mises-Fisher model on the sphere. 
Extensions to bi-polar models are discussed briefly. 

The Geometry of Permutations 

In the discussion that follows, Sf, is the set of permutations of k items, here 
labelled a, b, ... , k. Thus Sf, has k! elements, and if k = 4 a typical vector 
y in Sf, is y = (b, d, a, c). The elements of S;, are k-component vectors, but 
the components of y E Sf, are non-numeric labels. Associated with each 
YES;' is a vector of ranks r(y). Thus if y = (b, d, a, c), r(y) = (3,1,4,2). 
The components of the rank vector are ordinal numbers, namely the rank 
achieved by that item or competitor. By convention, the integers 1, ... , k 
are used to denote the ranks, and these are often treated as cardinal num­
bers rather than ordinal numbers. Use of the integers as cardinal numbers in 
this context (rather than squared integers or reciprocal integers) is clearly 
arbitrary, though in practice this choice is often surprisingly effective. 

In visualizing the set S;, I find it helpful to imagine the k! points lying on 
the surface of a sphere in Euclidean space of dimension k - 1. Neighboring 
points in this set differ by one transposition of adjacent letters or labels. 
The set S3 and the rank vectors for k = 3 are shown in Fig. 1. Figure 2 
illustrates the nature of the set S4. 

1 Department of Statistics, University of Chicago 
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Fig 1. Schematic diagram of the permutation vectors and rank vectors 
for k = 3. 
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Fig 2. Sample space of permutations of abed. The graph has 24 vertices, 
36 edges, 6 square faces and 8 hexagonal faces. 
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The above representation of S'k as a network of points on the surface 
of a sphere is based on Kendall's metric. The distance between any two 
points Yl, Y2 in Kendall's metric is the shortest Euclidean distance within 
the network between the points: in other words the length of the shortest 
chain beginning at Yl and ending at Y2. By contrast, Spearman's metric 
given by 

the Euclidean distance between the two rank vectors, measures distance 
'as the crow flies', i.e. not restricted to the network of edges of the graph. 
Kendall's metric treats the ranks as ordinal numbers and is unaffected 
by monotone transformation of the ranks. Spearman's metric on the oth­
er hand treats the rank vectors as points in a (k - I)-dimensional affine 
subspace of Euclidean k-space. Both metrics are entirely consistent with 
the diagrams shown above, but with slightly different interpretations of 
distance. 

MALLOWS'S 4> MODELS. 

In his 1957 paper, Mallows discussed a class of unimodal models on the 
sample space of permutations. The simplest of these, discussed in section 7 
of Mallows's paper, have the form 

p(y) = C4> exp { -eftd(y, Jl)} (1) 

in which d(y, Jl) is a measure of distance (or squared distance or 'general­
ized matching coefficient') between y and the modal permutation Jl, eft is 
a concentration parameter and C4> is a constant of integration chosen to 
make the probabilities sum to unity. For purposes of this discussion we take 
d(.,.) to be 

(2) 

the squared Euclidean distance between r(y) and B, the rank vector for the 
modal permutation Jl. 

It is conventional to denote the ranks by the integers 1, ... , k so that the 
sum of the ranks is ! k(k + 1) and the sum of squared ranks is i k(k + 
1)(2k + 1). This choice is to some extent arbitrary, and in what follows it 
is more convenient to arrange matters so that the average rank is 0 and 
the sum of squared ranks is unity. In other words we use numerical ranks 
of the form 

if = (i - (k + 1)/2)/Jk(P -1)/12 

in which i is an integer from 1 to k. Thus these modified rank vectors lie 
on the unit sphere. With that choice in (2) we have 

d(y, Jl) = 2 - 2B . r(y) 
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where 0 . r(y) is the cosine of the angle between r(y) and the modal rank 
vector. Thus Mallows's probability distribution becomes 

p(y) = C.p exp{2¢O . r(y)}, (3) 

in which 0 and r(y) are both rank vectors of unit length. 
In the literature on directional data, probability distributions on the 

surface of the unit sphere Sp in p-space are often studied. Beginning with 
the uniform distribution on Sp, the associated exponential family 

exp(II:OT Y)II:V 
2v+lIv(II:)7rp/2 ' 

(4) 

with I ° I = I y I = 1, II: 2: 0, v = p/2 - 1, is known as the von-Mises Fish­
er distribution. This is an exponential family distribution with canonical 
parameter 11:0: 0 is the mean or modal direction and II: is a concentration 
parameter. 

There is a very strong similarity between (4) and (3) with II: = 2¢, 
p = k - 1, and in fact it is advantageous to extend (3) by taking 0 to be an 
arbitrary vector with zero sum and unit length, not necessarily one of the 
k! rank vectors. With this extension we have 

p(y) = C( ¢, 0) exp{2¢O . r(y)} (5) 

where the constant of integration now depends on both 0 and ¢. In inter­
preting 0 as a modal ranking vector, it must now be borne in mind that 
o may correspond to a vector on the unit sphere that is intermediate be­
tween two or more permutations. In other words, there may be two or more 
permutations with rank vectors close to 0, whose probabilities are approx­
imately equal under (5). For example, 0 = (-3, 1, 0, 2)/y'14 corresponds 
to a 'rank vector' (1,3,2.5,3.5). This is half-way between (1,2,3,4) and 
(1,4,2,3), though the nearest rank vector is clearly (1,3,2,4) correspond­
ing to a modal permutation acbd. By extension 0 = (-3, 1, 1, 1)/y'12 gives 
rise to a distribution that depends only on the rank assigned to a. The six 
modal permutations are those for which a is placed in first position. 

Evidently, by reparameterization, (5) is a full exponential family model 
in which the sum of the rank vectors is the complete sufficient statistic. 
It follows that (5) must be a re-parameterization of the Mallows-Bradley­
Terry ranking model, for which the average rank vector is also the sufficient 
statistic. Thus we are led to the approximate equivalence 

M_S2 = M-B- T = vM-F 

meaning that Mallows's model with the squared Spearman metric is equiv­
alent to the Mallows-Bradley-Terry ranking model, which is in turn equiva­
lent to the von Mises-Fisher model. Strictly speaking, the three models are 
distinct: M_S2 is equivalent to M-B- T with the restriction that the modal 
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vector in the M-B-T model be proportional to one of the k! rank vectors. 
The Mallows-Bradley-Terry ranking model is equivalent to the von Mises­
Fisher distribution except for the discrete nature of the sample space: the 
likelihood functions are both of the linear exponential-family form. 

Using the fact that the set of k! permutations lie on a sphere in (k - 1)­
space, we can use the normalization constant from the von Mises Fish­
er distribution to obtain an approximate normalization constant for the 
M allows-Bradley-Terry ranking model (5). On approximating the sum in 
(5) by an integral over the sphere we find that the approximate normal­
ization constant depends only on ¢ and not on the modal direction e. The 
approximation thus obtained is 

where v = (k - 3)/2, and Iv(¢) is the modified Bessel function of order v. 
This approximation seems to be very accurate particularly for small values 
of ¢, say ¢ < 1. For example, if k = 4 and e corresponds to any rank vector, 
the exact sum reduces to 

2 cosh(2¢) + 6 cosh(8¢/5) + 2 cosh(6¢/.5) + 8 cosh(4¢/5) + 4 cosh(2¢/5) + 2. 

The approximation gives 

C-1(¢, e) = 4! sinh(2¢). 
2¢ 

In the range ¢ < 1, these expressions differ by no more than 0.3%. For 
other values of e the error of approximation can be larger, but it never 
exceeds 1 % for ¢ < 1. The maximum error seems to decrease rapidly as 
k increases. 

Bi-polar rnodels 

The logarithm of the von Mises-Fisher distribution (4) is linear in y. Such 
linear functions on the sphere are called first-order harmonics. They form 
a space of dimension p that is invariant under orthogonal transformation 
of coordinates. The second-order harmonics on Sp are quadratic functions 
of the form L aijYiYj with coefficient matrix A satisfying aij = aji and 
L aii = O. These functions form an invariant subspace of dimension 
p(p + 1) /2 - 1. The second-order exponential-family model on the sphere 
is therefore 

p(y; e) = exp { L eiYi + ~ L eijYiYj - K(e)} 

with L eii = O. Unfortunately there is no simple closed form expression for 
the cumulant function K(e). Depending on the choice of parameters, the 
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density may be unimodal or bimodal: in addition, there may be stationary 
points that are neither local maxima nor minima. If Bi = 0 the density 
is antipodally symmetric, and is known as the Bingham distribution. The 
shape of the density is then governed by the eigenvalues of the matrix Bij . 

Analogous probability distributions on the set of permutations are ob­
tained by replacing y by the rank vector, and summing over the permuta­
tions. Such models are automatically invariant under re-labelling of items 
or candidates. 
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Complete Consensus and 
Order Independence: 
Relating Ranking and 
Choice 

Hans Colonius1 

ABSTRACT Complete Consensus has been introduced as a plausible 
independence from irrelevant alternatives' property of probability mod­
els on rankings. It is shown here that complete consensus implies order­
independence for the choice probabilities of the corresponding random 
utility models for choice. 

Introduction 

In a simple choice experiment, a person is asked to select one element from 
a set of available alternatives according to some specified criterion (pref­
erence, loudness, brightness, etc.). Similarly, in a ranking experiment the 
task consists of rank-ordering the set (or a subset) of available alterna­
tives according to some criterion. For example, the person may be asked to 
assign rank 1 to the most preferred alternative, rank 2 to the second-best, 
and so on. For both tasks, various theoretical accounts have been proposed 
in the psychological and the economics literature. The purpose of this note 
is to point out how, under certain conditions, a property of a probabili­
ty model for rankings (viz. 'complete consensus') constrains corresponding 
probabilistic models for choice. We first introduce some definitions and fix 
notation. 

lInstitut fiir Kognitionsforschung, U niversitiit Oldenburg, Germany 
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Let T = {I, ... , k} be a set of alternatives labelled arbitrarily as al­
ternative 1 to alternative k and suppose that for all i E A ~ T, there 
is a probability P(i, A) that i is chosen from an available set A. The set 
{P( i, A) : i E A ~ T} is a complete system of choice probabilities. If only 
sets of cardinality two are available, the set {P(i, A) : i E A ~ T, IAI = 2} 
is called a pair comparison system. A ranking of the k alternatives cor­
responds to a permutation function 7r from Tonto T, where 7r( i) is the 
rank assigned to alternative i, i = 1, ... , k. With composition of rankings 
defined by (7r 0 O")(i) = 7r[O"(i)], the set ST of all rankings on T constitutes 
the permutation group. A transposition is a permutation Tij defined by 
Tij(i) = j, Tij(j) = i, and Tij(m) = m for all m :f i,j. Note that 7r 0 Tij 
is the permutation that agrees with 7r except that the ranks assigned to 
alternative i and alternative j are exchanged. A probability mass function 
P( 7r), 7r E ST, represents a probability model on rankings (see Critchlow, 
Fligner, & Verducci [2] for an excellent review of various classes of these 
models). 

Cornplete Consensus and Order Independence 

Note that there are two different, although formally equivalent, ways to 
think about the probability mass function P on rankings. First, if the data 
are collected from a single person, P( 7r) is the (multinomial) probability 
with which ranking 7r is produced by the person in a series of independen­
t replications of the ranking task. Second, if the data are collected from 
a population, P(7r) represents the (multinomial) probability of randomly 
sampling a person with a fixed ranking 7r. In both situations, an impor­
tant question is whether there exists - in a sense to be made precise -
an underlying "true" or "consensus" ordering of the alternatives. Define 
alternative i to be strongly preferred to alternative j, written i >-8 j, if 
for any ranking 7r such that 7r( i) < 7r(j), P( 7r) ~ P( 7r 0 Tij) holds with 
strict inequality for at least one ranking 7r. A probability model on rank­
ings is said to have complete consensus with consensus ranking v if for any 
i, j with v(i) < v(j), i >-8 j. The notion of complete consensus has many 
implications. For example, the consensus ranking agrees with the order­
ing of alternatives according to the probability of being ranked first (see 
Henery [6], Fligner & Verducci [4]). In the following, its implications for 
corresponding models of choice are explored. 

There are numerous ways to derive a probability model for rankings from 
a system of choice probabilities. The Babington-Smith model, for example, 
is defined in terms of a pair comparison system (see Joe & Verducci [7] and, 
for further examples, Critchlow et al. [2]). Conversely, the most natural way 
to define choice probabilities in terms of rankings seems to be the following. 
The probability to select i from a subset A of available alternatives is given 
by summing the probability mass function P over all permutations on T 
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where i is ranked before all other elements of A. Formally, 

P(i, A) = L P(7r) (1) 
1I"ER(i,A) 

for i E A ~ T where R(i,A) = {7r E STI7r(i) < 7r(j), j E A \ {i}}. 
Assumption (1) puts some constraints on a system of choice probabilities. 
Specifically, it is equivalent to the existence of a random utility presen­
tation for {P(i, A) : i E A ~ T}, i.e., there is a random vector U with 
components Ui , i E T, such that P(i,A) = Pr(Ui = maxjEA Uj) (see Block 
& Marschak [1], Falmagne [3] and, for a recent review, Suppes, Krantz, 
Luce, & Tversky [9], Chpt. 17). Another property of choice probabilities 
has gained some notoriety in the literature. The choice probabilities are 
said to satisfy order-independence if for all i, j E B \ C and k E C 

P(i, B) ~ P(j, B) if and only if P(k, CU {i}) ::; P(k, Cu {j}) (2) 

provided the choice probabilities on the two sides of either inequality are 
not both 0 or 1. In a pair comparison system (2) takes the simpler form 

1 
P·· >­

I) - 2 if and only if Pik ~ Pjk (3) 

for all i, j, k where Pij denotes P( i, {i, j}). Order-independence assumes 
that the ordering of the alternatives is independent of context. Although it 
may hold in many circumstances, it is clear from both empirical evidence 
and theoretical considerations that it does not hold in general. For example, 
let A = {i, j, k} and suppose i and j are very similar to each other whereas 
k is very different from both of them. Assume that all pair comparison 
probabilities are equal one- half. It follows from order-independence that 
all trinary choice probabilities equal one-third. It seems unlikely, however, 
that the choice between j and k is greatly affected by the addition of 
the very similar alternative i. More generally, it appears that the addition 
of an alternative to an available set "hurts" alternatives that are similar 
to it more than those that are dissimilar to it (see Suppes et al. [8] for 
further examples including Savage's case of 'dominated alternative'). These 
considerations led Tversky's to developing more general models of choice 
where order- independence is no longer implied (Tversky [9]). 

Given the empirical status of the hypothesis of order-independence for 
choice probabilities the following result seems of interest. 

Theorem If a probability model on rankings has complete consensus, 
then the complete system of choice probabilities (or, the corresponding 
pair comparison system) defined by (1) satisfies order-independence. 

The proof consists of showing that, under complete consensus, either side 
of (2) implies the other side of (2). For convenience, we consider the pair 
comparison case, i.e., condition (3). Note that complete consensus implies 



Complete Consensus 287 

that all binary probabilities are different from ~ and write (3) as strict 
inequalities. Obviously, under complete consensus, the left hand side of (3), 
Pij > ~, implies that i is strongly preferred to j. For the right hand side, 
we introduce the following notation: let [ijk] be the set of all permutations 
on T where 7r(i) < 7r(j) < 7r(k). From assumption (1) 

[ikj] [ijk] [jik] 

and 

[j ki] [ijk] [j ik] 

Obviously, the right hand side of (3), i.e., Pik > Pjk, holds if and only if the 
respective sums in the first position above are ordered accordingly. This, 
however, follows from i >- s j. Conversely, Pik > Pj k is compatible only 
with i >-s j implying Pij > ~. The proof in the general case, for complete 
systems of choice probabilities, is analoguous and is omitted here. 

In Fligner and Verducci [5] it is noted that the relation of strong prefer­
ence that underlies the complete consensus concept may be motivated by 
the idea of "independence from irrelevant alternatives", and it is correctly 
pointed out that complete consensus is a less restrictive realization of that 
idea than the wellknown Luce-Plackett model. Nonetheless, the above result 
relating complete consensus of rankings and order-independence of choice 
probabilities suggests that complete consensus is a property that may still 
be too strong in many situations. 
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Ranking From Paired 
Comparisons by 
Minimizing Inconsistency 

Edwin L. Crowl 

ABSTRACT A criterion is presented for the best ranking of items or 
individuals who have been compared in pairs in an unbalanced fashion. 
The criterion is to choose the ranking or rankings that minimize the sum 
over all contestants of the absolute differences between the number of net 
wins over players ranked above and the number of net losses to players 
ranked below. A method for reaching the minimum is presented. There are 
two variations of the criterion. They are illustrated on a small set of 1989 
tennis player data 

Introduction 

I consider the problem of ranking k items or individuals when each of them 
has been compared in separate pairs with one or more of the others and a 
preference or winner is declared as the result of each comparison. I let nij 

be the number of comparisons between individual (player) i and individual 
j with nij 2: 0 and 8ij the number of times i wins, so that 8ij + 8ji = nij 

(i, j, = 1,2, ... , k, i:l j). The extensive literature on the problem has been 
summarized and unified by David (1988). Here I propose a nonparametric 
criterion for a best ranking and a method for attaining it. 

The data may be presented in a win-loss chart (preference table), a ma­
trix with the i-th row and the i-th column identified with player i and 8ij 

1 Institute for Telecommunication Sciences, National Telecommunications and 
Information Administration, U. S. Department of Commerce, Boulder, Colorado 
80303 
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the element of the i-th row and j-th column. Only Sij > 0 need be entered. 
If the players are ordered according to their ability to defeat other players 
and the abler player always wins, then all the Sij are above the main diago­
nal. If the abler player does not always win, then an upset or inconsistency 
with the given order or ranking occurs, and an Sij appears below the main 
diagonal. Slater (1961) proposed to determine a ranking by minimizing the 
total number of inconsistencies (TN 1). The TN I provides a nonparametric 
criterion for the efficacy of a given ranking. However, if nij > 1, an upset 
may be nullified by one or more opposite outcomes of the nij comparisons. 
Thus a more appropriate criterion when the nij may exceed 1 is the net 
number of inconsistencies (N N 1), in which only non-nullified upsets are 
summed (Crow, 1990). More symmetrically, two players having equal num­
bers of wins against each other would result in a contribution of ~ to N N I 
for each mark below the main diagonal. 

Still another nonparametric criterion is suggested by a pair of results 
printed out by the STAR computer program (System for Tournament 
Administration and Ranking) made available to rankers by the United 
States Tennis Association, WnAb (number of wins above) and LsBl (num­
ber of losses below) for each player. These are the inconsistencies. Crow 
(1990) included the criterion 

WALB = L: JWnAb - LsBIJ, 

the sum of the absolute differences between wins above and losses below. 
However, a better criterion, by analogy with the advantage of N N lover 
TN I, is the sum of the absolute differences between net wins above and 
net losses below, 

NW ALB = L: JNWnAb - N LsBlJ. 

since any wins above may be partly or wholly nullified by losses above to 
the same players and likewise for losses below. In the case of two players 
with equal numbers of wins against each other, one is credited with half a 
win, the other half a loss for each mark below the main diagonal. Only net 
wins above and net losses below provide true inconsistency with any given 
ranking. The criterion may result in several equally good rankings and 
indicate that the players should be tied (co-ranked). A further criterion, 
David's score (1987; 1988, p. 108) in particular, may be used to break a 
tie. 

A further modification in the criterion is proposed. Two or more net 
inconsistencies of the same type (win or loss) by a player against the same 
player are to be counted only once; thus the inconsistency is measured by 
the number of players out of line rather than the number of matches. This 
is analogous to the reckoning in David's score, in which a series of matches 
between any two players has a total value of 1. 
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The NW ALB criterion has an advantage over N N I: The algebraic term 
for each player tells how to improve the ranking. If NW nAb - N LsBI > 0, 
move him up; in the contrary case, down. Furthermore, move the player 
with the largest absolute difference first. This type of operation is then 
repeated, on the player with the remaining largest absolute difference (who 
mayor may not be the same as the first player moved). The process is 
continued until all the rankings yielding the minimum NW ALB have been 
found. Since a win above by any player is a loss below for his opponent, 
the algebraic sum of the NWnAb - N LsBI is zero, providing a check. 

Relatively few of the k! possible rankings should have to be considered. 
The initial ranking can be made by using David's score. The process can 
be easily programmed for, and performed by, a computer. 

Although the best ranking for a group of players is obtained by mini­
mizing NW ALB over the entire group this criterion can be applied to any 
convenient subgroup. Inconsistencies may often occur over a limited range 
of ranks. If a subgroup has no inconsistencies outside it, then the minimum 
for it is part of the solution for the entire group. In other words, the global 
minimum can be obtained by combining regional minima. 

An illustration of the use of the criterion is provided by a subgroup of 
four closely matched players in the 70-&-over men's singles of the 1989 Col­
orado Tennis Association annual ranking: Cougnenc (Co), Herr (He), Tan­
ner (Ta), and Trostorff (Tr). They had no wins over the top three players 
and no losses to the only other player eligible for ranking, so minimizing 
NW ALB over them provides their correct order in the overall ranking. 
Their initial order in the table below is determined by their David scores 
S, which include results of matches against the other five players as well as 
against several other, ineligible players (players with too few tournaments 
and non-residents). 

4 5 6 7 Total NWab NLBI Diff. S 
4. Ta 1 1 2 0 1 -1 0 
5. He 1 2 3 0 1 1 -21 2 -12 

-51 6. Co 1 1 2 1 0 2 2 2 
7. Tr 1 1 1 0 1 -7 
Total 1 2 2 3 8 11 

2 
11 

2 3 (Absolute) 

Can this order be improved by moving players as indicated by the differ­
ences, i.e., Ta and He down and Co and Tr up? I try the following order: 
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4 5 6 7 Total NWab NLB Diff. 
4. Co 1 2 0 -I! _11 

2 
5. Ta 2 1 1 0 
6. Tr 1 1 1 1 0 
7. He 1 2 3 11 0 11 

31 2 
Total 2 1 3 2 8 31 3 2 2 

This is as good a ranking as the first one according to NW ALB, even 
though TN I = 5 versus 2 and N N I = 4~ versus 1 ~. Similarly one can 
confirm that the order TaCoHeTr yields NW ALB = 3, but five other 
orders also turn out to have NW ALB = 3, while nine have NW ALB = 4 
and seven have NW ALB = 5 (completing the 24 permutations). One can 
resolve the tie by choosing the original order above on the basis of the N N I 
or the David scores, but the large number of ties is disturbing. Perhaps the 
NW ALB criterion is not a very refined measuring tool, although it must 
be recognized that the four players are closely bunched. 

At the Amherst Conference for ranking data David commented on a 
presentation of the above criterion that it gave no more credit for a big 
upset than for a mild upset. That can be allowed for by adding the difference 
in ranks for each upset instead of simply tallying it, thus obtaining the 
criterion 

N DW ALB = LIN DWnAb - N DLsBl1 

where N DWnAb denotes the difference in ranks of the two players in a 
net upset win and N DLsBI the same in a net upset loss. This criterion 
makes sense; a big upset raises more question than a mild one. For the first 
table above, the differences for this criterion are -3, -~, ~, 3 respectively 
for a numerical total of 7, whereas the second table yields a total of 5, the 
minimum, as does also the order HeTaTrCo. N DW ALB is reminiscent of 
the criterion Net Difference in Ranks (NDR) (Crow, 1990), but it differs in 
considering only upsets and in classifying them. 

The complete distribution of NDWALB over the 24 permutations of the 
four players, as well as that of TN I, is: 

Value 2 3 4 5 6 7 8 9 10 11 
NDWALB Frequency 2 8 2 1 2 7 2 
TNI Frequency 2 6 8 6 8 

In the example at least, and apparently often, N DW ALB thus does 
substantially better than NW ALB in reducing ties for the best ranking. 
The N N I is not tabulated above because in this example (not in general) 
it is uniformly less than TN I by a constant. The criteria NW ALB and 
N DW ALB are attractive in corresponding closely to the views of players 
being ranked about the fairness of their individual rankings; they believe 
they should never fall below a player they have defeated unless there is a 
counteracting loss to a player they outrank. 
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ADDENDUM 

A refinement of the NW ALB criterion that makes fuller use of the data 
is preferable. This is achieved by defining the net number of wins above 
of a given player, i, against any particular player, j, ranked above him, 
NW nAb, as the proportion of the matches between them won by the given 
player (Sij /nij in the notation of the first paragraph). The same change in 
definition applies to N LsBI. In practice there is no change from the pre­
vious definition unless the two players play three or more matches against 
each other. The refined NW ALB criterion is slightly less subject to ties 
than the previous criterion. 



Graphical Techniques for 
Ranked Data 

G. L. Thompson l 

Exploratory graphical methods are critically needed for displaying ranked 
data. Fully and partially ranked data are functions on the symmetric group 
of n elements, Sn, and on the related coset spaces. Because neither Sn nor 
its coset spaces have a natural linear ordering, graphical methods such as 
histograms and bar graphs are inappropriate for displaying ranked data. 
However, a very natural partial ordering on Sn and its coset spaces is in­
duced by two reasonable measures of distance: Spearman's p and Kendall's 
T. Graphical techniques that preserve this partial ordering can be devel­
oped to display ranked data and to illustrate related probability density 
functions by using permutation polytopes. A polytope is the convex hull of 
a finite set of points in ~n-l, and a permutation polytope is the convex hull 
of the n! permutations of n elements when regarded as vectors in ~n (see, 
for example, Yemelichev, et. al.[9]). This concept is closely related to the 
observation by McCullagh [7] that the n! elements of Sn lie on the surface 
of a sphere in ~n-l. 

To illustrate a rudimentary version of the proposed graphical technique, 
we will consider the paired ranking data of Critchlow and Verducci [4] in 
which n = 4. This data consists of pairs of orderings in which 38 students 
have ranked 4 styles of literary criticism in their order of preference, both 
before and after taking a course. The question of interest is whether the 
students' preferences have moved toward the teacher's preferred ordering 
< p, c, a, t >, i.e, toward the ordering in which style p is ranked first, style 
c is ranked second, style a is ranked third, and style t is ranked fourth. 
As illustrated by figure 1 of McCullagh [7], the 24 possible orderings of 4 
items form the vertices of an Archimedean solid, the truncated octahedron, 
which is the permutation polytope for n = 4. The edges connect orderings 
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that differ by exactly one pairwise transposition so that Kendall's T is the 
minimum number of edges that must be traversed to get from one ordering 
to another. The straight line distance between two points is proportional 
to Spearman's p. In the proposed graphical technique, the frequency with 
which each ordering appears in a data set is visually indicated, for example, 
by the size of a circle, at the corresponding vertex. The frequencies of the 
38 pre-rankings are shown in Figure 1 and the 38 post-rankings are shown 
in Figure 2. To make the plots perceptually accurate, the areas of the 
circles are based on Steven's Law (Cleveland [1]) which says that a person's 
perceived scale, p, of the size of an area is proportional to (area)·7. Hence 
the radii are scaled so as to be proportional to (frequency)5/7. 

Fig. 1: Frequencies of the pre-rankings. 
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Although the bivariate nature of the data is lost, valuable insight into this 
data can be obtained from the above figures. Just as with paired univariate 
data, it is often fruitful to do exploratory data analysis by comparing the 
histograms of the "before" and "after" components. When Figures 1 and 2 
are compared, it is obvious that the frequencies do change a great deal be­
tween the two sets of ran kings. There is a notable increase in the frequencies 
of the vertices of the hexagon corresponding to the 6 orderings beginning 
with c, and a decrease in the frequencies of the 6 vertices corresponding to 
orderings that end with c. Hence, it appears that c has a higher level of 
preference in the post-rankings than in the pre-rankings. In fact, one might 
hypothesize that the orderings have moved toward < c,p, t, a > because 
almost half of the post-rankings lie either on < c, p, t, a> or on the three 
vertices within one edge (pairwise transposition) of < c, p, t, a >. This is 
not inconsistent, however, with the conclusion of Critchlow and Verducci's 
[4] that the rankings have moved closer to < p, c, a, t >. Because the figures 

Fig. 2: Frequencies of the post-rankings. 
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are based on partial ordering of S'n, and not on a full linear ordering, 
movement closer to a permutation is not necessarily the same as movement 
toward it. Figures 1 and 2 also show that 1) style a is rarely chosen as 
either first or second choice after the course is completed; 2) the incidence 
of style t as a first choice decreases; and 3) there does not seem to be any 
movement toward < a, c, p, t >, the ordering of the styles on the second 
questionnaire. Different rotations of Figures 1 and 2 would make some of 
these observations more apparent. 

Figures 1 and 2 are fairly elementary examples of the potential of per­
mutation polytopes in developing graphical techniques for ranked data. 
Significant improvements are immediately possible in the following three 
areas. First, the availability of information would be greatly enhanced if 
the truncated octahedrons could be arbitrarily rotated about any axis. This 
can be accomplished via interactive software, especially if the coordinates 
of the permutation polytope are known. For S'n the coordinates of the 
vertices of the permutation polytope in ~n-1 with center at 0 are found 
by using the Helmert transformation. Let 7r = (7r1' 7r2, ... , 7rn)'cS'n be any 
ranking ( not ordering) of n items. This means that the item i has rank 
7ri. Let r be the n dimensional column vector in which every element equal 
(n+ 1)/2, and let H be the Helmert transformation which maps the hyper­
plane 2::7=1 Xi = 0 onto the hyperplane Xn = O. Note that H is orthogonal 
and preserves Euclidian distances. The coordinates of the vertices of the 
permutation polytope in ~n-1 are H (7r - 7r), 7rfS'n. At the same time capa­
bilities are introduced to rotate the polytopes, the frequencies associated 
with each vertex could be color coded on a scale chosen to highlight desired 
features. With color and rotational capabilities, it also might be worthwhile 
to experiment with illustrating the observed frequencies on the duals of the 
polytopes. For n = 4, the dual of the truncated octahedron is the tetrakis 
hexahedron. It has 24 faces which, instead ofthe 24 vertices of the truncat­
ed octahedron, would correspond to the 24 possible orderings. See Cundy 
and Rollett [5] for a discussion of the duals of Archimedean solids. 

Second, these graphical techniques can be extended to the case where n is 
greater than 4 even though the dimension of the corresponding permutation 
polytope is greater than three. One approach to this is interactive software 
to successively view adjacent three dimensional faces. Possibly, the faces 
of greatest interest are those generated by the set of orderings in which 
four items are permuted while the remaining n - 4 items remain fixed. 
Characterizations of all the faces of permutation polytopes are given by 
Yemelichev, et. al. [9]. The application of other new graphical methods of 
viewing higher dimensions may be very useful. 

Third, the above arguments can be extended to partially ranked data 
by considering the multiset M = (lal,2a2, ... ,kak). This multiset has k 
levels and ai items are ranked together in the i-th level. It is assumed that 
aifZ+ and 2::7=1 ai = n. Stanley [8] discusses multisets. The set of per­
mutations of M, when regarded as vectors in ~n, become the vertices of 
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an integral polytope. These vertices can be shown to lie on an n - 1 di­
mensional sphere ~n. Just as with fully ranked data, software to rotate th,e 
vertices and techniques to view the three dimensional faces for n > 4 are 
needed. The characterizations of the faces of integral polytopes formed by 
permutations of multisets is a straightforward generalization of the results 
in Yemelichev, et. al. (1984) for permutation polytopes. These integral poly­
topes can also be thought of as Cayley diagrams (see Coxeter and Moser 
[2]) and have interesting connections with the generators of the coset space 
8n /II8a ;. Furthermore, they induce an interesting extension of Kendall's r 
to partially ranked data that has properties quite different from both the 
Haussdorf metric (Critchlow [3]) and the metric i( '1l") discussed by Diaco­
nis [6]. Similarly, the straight line distance between vertices in ~n is an 
extension of Spearman's p. 
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Matched Pairs and 
Ranked Data 

Peter McCullagh 1 

J ianming Ye2 

ABSTRACT We consider the Babington Smith and Bradley-Terry Models 
for ranked data. Both models are based on inversions. In a matched pairs 
design the pair-specific nuisance parameters are eliminated by a condition­
ing argument. The conditional likelihood has a form similar to that of a 
logistic model, so that conditional likelihood computations are straight­
forward. An example previously considered by Critchlow and Verducci is 
analysed using the new method. 

Intro d uction 

We consider a class of models for a matched pairs design in which each 
response is a permutation of k objects. All models considered include a 
pair-specific vector-valued nuisance parameter, together with a treatment 
effect that is assumed to be constant across pairs. As is usual in matched 
pairs models, no assumptions are made concerning the pair-specific pa­
rameters, though in some circumstances it might be reasonable to assume 
that they are independent and identically distributed according to an ar­
bitrary unspecified distribution. The treatment effect, on the other hand, 
is modelled in such a way as to take account of the nature of the reponse 
variable. We assume here that the effect of treatment is to make certain 
inversions relatively more likely. The treatment effect is therefore a vector­
valued parameter having k(k - 1)/2 components, although an important 

1 Department of Statistics, University of Chicago 
2 Department of Statistics, University of Chicago 



300 J. Ye and P. McCullagh 

sub-model having rank k - I is also considered. 
The pair-specific nuisance parameters are eliminated by using a condi­

tioning argument previously employed for matched binary pairs by Cox [1], 
and for multinomial matched pairs by McCullagh [6]. This argument follows 
the general theory for constructing similar regions (See Lehmann [4], chap­
ter 4). The resulting conditional models are related to quasi-symmetry and 
generalize the first example in McCullagh [6] to the case where the response 
is a permutation rather than a purely nominal set of response categories. 
One the other hand, they generalize the model for permutation data (See 
McCullagh [5]) to allow for control and treatment effect. Since the condi­
tionallikelihood function has the formal appearance of a likelihood derived 
from a series of Bernoulli trials with varying probability, standard computer 
programs such as G LIM can be used to compute the conditional maximum 
likelihood estimate and its asymptotic standard error. 

The Model 

In a matched pairs experiment, (Yi, Y;) is observed for each pair. Here the 
first response refers to the control and the second to the treated individual, 
with each response a permutation of k objects, say, a, b, ... , k. So, each Y 
has k! possible values. Our interest is to investigate the effect of treatment 
on the response probabilities. 

For example, if the response for each individual is a permutation of 3 ob­
jects, a, band c, then Y takes one of the 6 values, abc, acb, bac, bac, cab or 
cba. We take alphabetical order as the standard and measure all inversions 
relative to this order. Any two letters, not necessarily adjacent in the se­
quence, are either in standard order or inverted. So, in cab, ab is in standard 
order, ca, cb are in inverted order. A permutation is uniquely determined 
by the order of all pairs. This kind of inversion is called a 'first-order in­
version'. The incidence matrix X, of order k! x k(k - 1)/2, is a matrix of 
Os and Is whose rows are indexed by permutations and whose columns are 
indexed by inversions. For the above example with k = 3, the first-order 
incidence matrix is 

ba ca cb 

abc 0 0 0 
acb 0 0 1 

X= 
bac 0 0 
bca 1 1 0 
cab 0 
cba 1 

Let 7ri, 7r; be k! x 1 probability vectors giving the probability distribution 
for the ith pair and let 11i, 11: be the vectors of log probabilities. Consider 
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the following model: 

17; 

'r/i Ai + X(3 

:30 I 

(1) 

(2) 

where Ai is a vector-valued nuisance parameter specific to the ith pair, r~ 
measuring the effect of treatment is a k( k - 1)/2 dimensional parameLpr 
vector assumed constant across pairs, and X is the incidence matrix of 
first-order inversions. Let Xw be the wth row of X, and let 7riw, 7)iw be thc 
elements ofthe probability vector and log probability vector for the ith pair, 
corresponding to w E [2, where [2 is the set of all possible permutations of 
the k objects. The likelihood contribution from one pair is then (olllitting 
the subscript i) 

~wEn exp{Aw }~w' En exp{Aw' + X w' (3} 

exp{~wEnAw[I(y = w) + I(Y' = w)] + X y ' (3} 

~wEn exp{Aw }~w' En exp{Aw' + Xw ' (3} 

If (3 is known, the minimal sufficient statistics for A is the unordered set 
SA = {y, y'}, which has marginal distribution 

pr{(Y, y') = (y, y') or (y', y)} 

exp{~wEnAw[I(w = y) + I(w = y')]}(eXy (3 + eXy ,(3) 

~wEn exp{ Aw} ~w, En exp{ Aw' + X w' (3} 

Standard procedure for generating similar regions (Lehmann 1986, chap­
ter 4) leads to consideration of the conditional distribution of the ordered 
pair (y, y') given SA' This conditional distribution depends only on the 
treatment parameter (3 and not on the pair-specific parameter Ai. The 
contribution to the conditional likelihood given by the ith pair is then 
the probability that Y takes the value y conditional on Y = y or y', i.e. 
pr{Yi = Yi I {Yi,Y;} = {Yi,y;}}. Omitting the subscript i, this is equal 
to 

e(Xy ,-Xy)(3 

1 + e(Xy ' -Xy)(3' 

For example, if y = (cabd) and y' = (acdb) then the inversions vectors 
X(cabd) and X(acdb) in the order (ba, ca, da, cb, db, de) are (0,1,0,1,0,0) and 
(0,0,0,1,1,0) respectively and the common inversions cancel. The resulting 
procedure is closely analogous to working with differences in the standard 
normal-theory matched pairs problem. The conditional likelihood for this 
paIr IS 

1 
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The interpretation of the parameters is now clear. For example, f3db mea­
sures the effect of treatment on the log probability that d precedes b. If 
f3db > 0, the order db is more probable after the treatment than before if all 
other relative rankings remain unchanged. Finally, we note that if y = y', 
the contribution to conditional likelihood is constant and can be ignored 
in the conditional analysis. 

Let di = Xy: - X Yi be the vector of net changes in inversions for the 

ith pair. The conditional likelihood contribution (3) is the same as the 
likelihood contribution of a success in a Bernoulli experiment B(l, 11"), with 
11" = exp( di.B)/(l + exp( di.B)). As a consequence numerical maximization 
of the conditional likelihood is straightforward using programs for fitting 
linear logistic models. The full conditional likelihood is 

(4) 

Note that the denominator on the left is symmetric in the pair (Yi, y;), 
so that E d i is sufficient for .B conditional on {SA)' If we use 1,2,3,4 
to indicate the rank of an object in a ranking, as in dcba where b takes 
rank 3, then E di is the aggregate net total change in inversion for every 
two-object combination. 

To test transitivity (see Critchlow [2]), we may make the further assump­
tion that 

(5) 

This means, if order ba is relatively more probable than ab in the treatment 
group (f3ba > 0) and ac is more probable than ca (f3ac = -f3ca > 0), then be 
should be relatively more probable than cb after treatment (f3bc = -f3cb > 
0) and f3cb = f3ca + f3ab. This is a submodel of the first-order inversion 
model and usually referred to as the Bradley-Terry model. The order of 
the Os measures the change in relative ranking of objects. The reduced 
model (2) now becomes 

(6) 

where XO is the incidence matrix corresponding to (5). For the case k = 3 

a b c 

abc 0 0 0 
acb 0 -1 1 

XO = X (-1 1 0) _ bac -1 1 0 
-1 0 1 - bca -2 1 1 

cab -1 -1 2 
cba -2 0 2 

Since XO has rank (k - 1), one of the Os can be set to zero. Every row 
indicates the rank changes of the k objects in a permutation relative to 
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their rank in standard order. Let di = X;: - Xy,' The full conditional 

likelihood corresponding to (4) is 

exp(L: diO) 
(7) 

11(1 + exp(diO)) 

so L: di, the net change in rank for each object, is sufficient for 0 conditional 
on {SA)' 

Example 

In the example discussed by Critchlow and Verducci [3], 38 students rank 
four styles of textual criticism before and after a course in writing and 
literary criticism. The four styles are "Authorial" (A), "Comparative" (C), 
"Personal"(P) and "Textual" (T). They show that the post-treatment rank­
ings have moved toward the direction of the teacher's own ranking, which 
is considered as "idealized". 

To use the models presented in the last section, we need maximize the 
conditional likelihood, which is a product ofterms like (3), one for each pair. 
The estimates for the first-order inversion model, obtained using GLIM, are 
as follows: 

Parameter L:d; Estimate s.e. 
CA 7 0.529 0.872 
PA -2 0.009 0.928 
PC -13 -1.500 0.843 
TC -14 -1.281 0.766 
TP -1 -0.240 0.748 

The scaled deviance reduction due to inversions PC and TC is 16.88 on 
2 degrees of freedom, and all the other factors contribute only 0.55 on 4 
degrees of freedom. When CA, PA, T A, T P are excluded from the model, 
the estimates of parameters are 

Parameter L: d; Estimate s.e. 
PC -13 -1.448 0.683 
TC -14 -1.529 0.670 

From these analyses we conclude that the orders CT and C P are much 
more probable after the course than before, the odds being increased by 
4.61 and 4.25, respectively. It does not follow, though it happens in this case 
to be true, that the post-treatment orders CT and C P are more probable 
than TC and PC, respectively. 

The Bradley-Terry model fits almost as well as the first-order inversion 
model, the deviance increasing by only 0.28 on three degrees of freedom. 
There is no evidence of lack of transitivity in the treatment effect. The 
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parameter estimates are as follows, showing that the major effect of the 
course is to decrease the rank (or to enhance the perceived importance) 
of C mainly at the expense of P and T. 

Parameter 2: d7 Estimate s.e. 
A 3 0.000 0.000 
C -33 0.853 0.374 
P 13 -0.309 0.372 
T 17 -0.439 0.345 

Figure 1 is an attempt to depict the rank vectors geometrically. The 
4! sample points lie on the surface of a sphere as shown in the diagram. 
Neighbouring points differ by one transposition of adjacent letters. The 
point f} is the average ofthe pre-course ranks, namely (2.95, 2.74, 1.97, 2.34) 
in the order A, C, P, T. The modal pre-course 'direction' is thus closest to 
PTCA. Note that, although the individual sample points lie on the surface 
of the sphere, averaged ranks lie in the convex hull of the vertices. If the 
pre-course ranks were uniformly distributed f} would be depicted as having 
zero length. Thus, the origin 0 in the diagram corresponds to the 'rank 
vector' (2.5,2.5,2.5,2.5). 

Figure 1: Sample space of permutations of A CPT. The graph has 24 ver­
tices, 36 edges, 6 square faces, and 8 hexagonal faces. Vectors y and y' are 
shown enlarged by a factor of 2. 
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The average post-course rank vector is (3.03,1.87,2.32,2.79), denoted 
by i/ in the diagram, so that the modal post-course direction is closest to 
CPTA. The difference vector, on which our conditional analysis is based, is 
(0.079, -0.87,0.34,0.45). The effect of treatment is to move the rank toward 
(C, A, -, -), i.e. in the direction between (C, A, P, T) and (C, A, T, P), even 
though A has the lowest rank before and after treatment, and the favoured 
post-treatment ranking is (C, P, T, A). Critchlow and Verducci (1989) find 
that the post-rankings are getting closer to the assumed idealized ranking, 
(P, C, A, T), but here we show that the idealized ranking is not the exact 
direction of movement and the effect of the writing course is not exactly 
the same as what the teacher wanted it to be. 
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