O
n

1 DIGITAL SIGNAL AND IMAGE PROCESSING SERIES

Digital Signal and
Image Processing
using MATLAB®

Geérard Blanchet and Maurice Charbit

Sle=

Digital Signal and Image Processing using MATLAB®

This page intentionally left blank

Digital Signal and Image
Processing using MATLAB®

Gérard Blanchet
Maurice Charbit

Part of this book adapted from “Signaux et images sous Matlab : méthodes, applications et
exercices corrigés” published in France by Hermés Science Publications in 2001

First published in Great Britain and the United States in 2006 by ISTE Ltd

Translated by Antoine Hervier

Apart from any fair dealing for the purposes of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may
only be reproduced, stored or transmitted, in any form or by any means, with the prior
permission in writing of the publishers, or in the case of reprographic reproduction in
accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction
outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd ISTE USA

6 Fitzroy Square 4308 Patrice Road

London W1T 5DX Newport Beach, CA 92663
UK USA

www.iste.co.uk

© HERMES Science Europe Ltd, 2001
© ISTE Ltd, 2006

The rights of Gérard Blanchet and Maurice Charbit to be identified as the authors of this work
have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

Blanchet, Gérard.

[Signaux et images sous Matlab. English]

Digital signal and image processing using Matlab / Gérard Blanchet, Maurice Charbit.

p. cm.

Translation of: Signaux et images sous Matlab.

Includes index.

ISBN-13: 978-1-905209-13-2

ISBN-10: 1-905209-13-4

1. Signal processing--Digital techniques--Data processing. 2. MATLAB. 1.Charbit, Maurice.
1. Title.

TK5102.9.B545 2006

621.382'2--dc22

2006012690

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library
ISBN 10: 1-905209-13-4

ISBN 13: 978-1-905209-13-2

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire.

MATLAB® is a trademark of The MathWorks, Inc. and is used with per-
mission. The MathWorks does not warrant the accuracy of the text or exer-
cises in this book. This book’s use or discussion of MATLAB® software does
not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or use of the MATLAB® software.

This page intentionally left blank

Contents

Preface
Notations and Abbreviations

Introduction to MATLAB
1 Vartables

1.1 Vectors and matrices
1.2 ATTayS e
1.3 Cells and structures
2 Operations and functions
2.1 Matrix operations
2.2 Pointwise operations
2.3 Constants and imitialization
2.4 Predefined matrices
2.5 Mathematical functions
2.6 Matrix functions
2.7 Other useful functions
2.8 Logical operators on boolean variables

2.9 Program loops Lo

3 Graphically displaying results

4 Converting numbers to character strings

5 Input/output

6 Program writing Lo oL
Part 1 Deterministic Signals

Chapter 1 Signal Fundamentals

1.1 The concept of signal
1.1.1 Afewsignals
1.1.2 Spectral representation of signals
1.2 The Concept of system
1.3 Summary

15

19

23
24
24
26
27
29
29
30
31
31
32
34
34
35
35
36
39
39
40

8 Digital

Chapter 2
2.1

2.2
2.3

2.4

Chapter 3
3.1

3.2
3.3
3.4

Chapter 4
4.1
4.2

4.3
4.4

4.5
4.6
4.7

4.8

Signal and Image Processing using MATLAB®

Discrete Time Signals and Sampling
The sampling theorem
2.1.1 Perfect reconstruction
2.1.2 Digital-to-analog conversion
Plotting a signal as a function of time
Spectral representation L0
2.3.1 Discrete-time Fourier transform (DTFT)
2.3.2 Discrete Fourier transform (DFT)
Fast Fourier transform, ..

Spectral Observation
Spectral accuracy and resolution
3.1.1 Observation of a complex exponential
3.1.2 Plotting accuracy of the DTFT
3.1.3 Frequency resolution
3.1.4 Effects of windowing on the resolution
Short term Fourier transform
Summingup
Application examples and exercises
3.4.1 Amplitude modulations
3.4.2 Frequency modulation

Linear Filters

Definitions and properties
The z-transform
4.2.1 Definition and properties
422 Afewexamples
Transforms and linear filtering
Difference equations and rational TF filters.
4.4.1 Stability considerations
442 FIR and IIR filters
4.4.3 Causal solution and initial conditions
4.4.4 Calculating the responses
4.4.5 Stability and the Jury test
Connection between gain and poles/zeros
Minimum phase filters L.
Filter design methods
4.7.1 Going from the continuous-time filter to the discrete-

time filtero
4.7.2 FIR filter design using the window method
4.7.3 TR filter design oL
Oversampling and undersampling
4.8.1 Oversampling

51
52
52
64
65
67
67
71
77

Chapter 5
5.1

5.2

Chapter 6
6.1

6.2

6.3
6.4
6.5

6.6

6.7

Part 11

Chapter 7
7.1
7.2

4.8.2 Undersampling

Filter Implementation
Filter implementation
5.1.1 Examples of filter structures

Contents 9

5.1.2 Distributing the calculation load in an FIR filter . . .

5.1.3 FIR block filtering
5.1.4 FFT filtering
Filter banks
5.2.1 Decimation and expansion
5.2.2 Filter banks

An Introduction to Image Processing

Introduction
6.1.1 Image display, color palette
6.1.2 Importing images

6.1.3 Arithmetical and logical operations
Geometric transformations of an image

6.2.1 The typical transformations
6.2.2 Aligning images
Frequential content of an image . .
Linear filtering
Other operations on images
6.5.1 Undersampling
6.5.2 Oversampling
6.5.3 Contour detection
6.5.4 Median filtering
6.5.5 Maximum enhancement . .
6.5.6 Image binarization

6.5.7 Morphological filtering of binary images

JPEG lossy compression
6.6.1 Basic algorithm

6.6.2 Writing the compression function
6.6.3 Writing the decompression function

Watermarking
6.7.1 Spatial image watermarking

6.7.2 Spectral image watermarking

Random Signals

Random Variables

Random phenomena in signal processing

Basic concepts of random variables

159
159
159
164
165
167
173
174
177

187
187
187
191
193
196
196
199
203
207
217
217
217
220
226
227
229
234
236
236
237
240
241
241
244

10 Digital Signal and Image Processing using MATLAB®

7.3

7.4
7.5

Chapter 8

8.1
8.2

8.3
8.4
8.5

Chapter 9

9.1

9.2

Common probability distributions
7.3.1 Uniform probability distribution on (a,b)
7.3.2 Real Gaussian random variable
7.3.3 Complex Gaussian random variable
7.3.4 Generating the common probability distributions . . .
7.3.5 Estimating the probability density
7.3.6 Gaussian random vectors
Generating an r.v. with any typeof pd.
Uniform quantization

Random Processes
Introduction
Wide-sense stationary processes
8.2.1 Definitions and properties of WSS processes
8.2.2 Spectral representation of a WSS process
8.2.3 Sampling a WSS process
Estimating the covariance
Filtering formulae for WSS random processes
MA, AR and ARMA timeseries
85.1 @ order MA (Moving Average) process
8.5.2 P order AR (Autoregressive) Process
8.5.3 The Levinson algorithm
854 ARMA (P,Q) process

Continuous Spectra Estimation
Non-parametric estimation of the PSD
9.1.1 Estimation from the autocovariance function
9.1.2 Estimation based on the periodogram
Parametric estimation L.
9.2.1 AR estimation
9.2.2 Estimating the spectrum of an AR process
9.2.3 The Durbin method of MA estimation.

Chapter 10 Discrete Spectra Estimation

10.1

10.2
10.3

Estimating the amplitudes and the frequencies
10.1.1 The case of a single complex exponential
10.1.2 Real harmonic mixtures
10.1.3 Complex harmonic mixtures
Periodograms and the resolution limit.
High resolution methods
10.3.1 Periodic signals and recursive equations
10.3.2 The Prony method
10.3.3 The MUSIC algorithm

10.3.4 Introduction to array processing

Contents 11

Chapter 11 The Least Squares Method 389
11.1 The projection theorem 389
11.2 The least squares method 393

11.2.1 Formulating the problem 393
11.2.2 The linear model 394
11.2.3 The least squares estimator 395
11.2.4 The RLS algorithm (recursive least squares) 402
11.2.5 Identifying the impulse response of a channel 405
11.3 Linear predictions of the WSS processes 407
11.3.1 Yule-Walker equations 407
11.3.2 Predicting a WSS harmonic process 408
11.3.3 Predicting a causal AR-P process 411
11.3.4 Reflection coefficients and lattice filters 412
11.4 Wiener filteringo oL 417
11.4.1 Finite impulse response solution 419
11.4.2 Gradient algorithm 420
11.4.3 Wiener equalization 427
11.5 The LMS (least mean square) algorithm 430
11.5.1 The constant step algorithm 430
11.5.2 The normalized LMS algorithm 439
11.5.3 Echo canceling 442
11.6 Application: the Kalman algorithm 446
11.6.1 The Kalman filter 446
11.6.2 The vectorcase 449

Chapter 12 Selected Topics 451

12.1 Simulation of continuous-time systems 451
12.1.1 Simulation by approximation 451
12.1.2 Exact model simulation 452

12.2 Dual Tone Multi-Frequency (DTMF) 455

12.3 Speech processing 461
12.3.1 A speech signal model 461
12.3.2 Compressing a speech signal 468

124 DTW . . . 471

12.5 Modifying the duration of an audio signal 474
125.1 PSOLA 475
12.5.2 Phase vocoder 477

12.6 Quantization noise shaping 478

12.7 Elimination of the background noise in audio 482

12.8 Eliminating the impulse noise 484
12.8.1 The signal modelo oo 484
12.8.2 Click detection 485

12.8.3 Restoration 488

12 Digital Signal and Image Processing using MATLAB®

12.9

12.10
12.11

12.12
12.13
12.14
12.15

12.16

12.17

Part I11

Tracking the cardiac thythm of the fetus
12.9.1 Objectives
12.9.2 Separating the EKG signals
12.9.3 Estimating cardiac rhythms
Extracting the contour of acoin
Principal component analysis (PCA)
12.11.1 Determining the principal components
12.11.2 2-Dimension PCA
12.11.3 Linear discriminant analysis (LDA)
Separating an instantaneous mixture
Matched filters in radar telemetry
Kalman filtering
Compression
12.15.1 Scalar quantization
12.15.2 Vector quantization
Digital communications
12.16.1 Introduction
12.16.2 8-phase shift keying (PSK)
12.16.3 PAM modulation 0.
12.16.4 Spectrum of a digital signal
12.16.5 The Nyquist criterion in digital communications . . .
12.16.6 The eye pattern
12.16.7 PAM modulation on the Nyquist channel
Linear equalization and the Viterbi algorithm
12.17.1 Linear equalization
12.17.2 The Viterbi algorithm

Hints and Solutions

Chapter 13 Hints and Solutions

H1
H2
H3
H4
H5
H6
H7
H8
H9
H10
HI11
H12

Signal fundamentalso o000
Discrete time signals and sampling
Spectral observation 0L
Linear filters
Filter implementation
An Introduction to image processing
Random variables
Random processes
Continuous spectra estimation
Discrete spectra estimation
The least squares method
Selected topics

Chapter 14 Appendix

Al Fourier transform

A2 Discrete time Fourler transform

A3 Discrete Fourier transform
A4 z-Transform
A5 Jury criterion

A6 FFT filtering algorithms revisited
Bibliography

Index

Contents 13

This page intentionally left blank

Preface

A practical approach through simulation

Simulation is an essential tool in any field related to engineering techniques,
whether it is used for teaching purposes or in research and development.

When teaching technical subjects, lab works play an important role, as im-
portant as exercise sessions in helping students assimilate theory. The recent
introduction of simulation tools has created a new way to work, halfway be-
tween exercise sessions and lab works. This is particularly the case for digital
signal processing, for which the use of the MATLAB® language, or its clones,
has become inevitable. Easy to learn and to use, it makes it possible to quickly
illustrate a concept after introducing it in a course.

As for research and development, obtaining and displaying results often
means using simulation programs based on a precise “experimental protocol”,
as 1t would be done for actual experiments in chemistry or physics.

These characteristics have led us, in a first step, to try to build a set of exer-
cises with solutions relying for the most part on simulation; we then attempted
to design an introductory course mostly based on such exercises. Although this
solution cannot replace the traditional combination of lectures and lab works,
we do wonder if it 1sn’t just as effective when associated with exercise sessions
and a few lectures. There is of course no end in sight to the debate on educa-
tional methods, and the amount of experiments being conducted in universities
and engineering schools shows the tremendous diversity of ideas in the matter.

Basic concepts of DSP

The recent technical evolutions, along with their successions of technological
feats and price drops have allowed systems based on micro-controllers and
microprocessors to dominate the field of signal and image processing, at the
expense of analog processing. Reduced to its simplest form, signal processing
amounts to manipulating data gathered by sampling analog signals. Digital

16 Digital Signal and Image Processing using MATLAB®

Signal and Image Processing, or DSIP, can therefore be defined as the art of
working with sequences of numbers.

The sampling theorem

The sampling theorem is usually the first element found in a DSIP course, be-
cause it justifies the operation by which a continuous time signal is replaced
by a discrete sequence of values. It states that a signal can be perfectly recon-
structed from the sequence of its samples if the sampling frequency is greater
than a fundamental limit called the Nyquist frequency. If this 1s not the case,
it results in an undesired effect called spectrum aliasing.

Numerical Sequences and DTFT

The Discrete Time Fourier Transform, or DTFT, introduced together with
the sampling theorem, characterizes the spectral content of digital sequences.
The analogy between the DTFT and the continuous time Fourier transform is
considered, with a detailed description of its properties: linearity, translation,
modulation, convolution, the Parseval relation, the Gibbs phenomenon, ripples
caused by windowing, etc.

In practice, signals are only observed for a finite period of time. This
“time truncation” creates ripples in the spectrum and makes it more difficult
to the separate two close frequencies in the presence of noise. This leads to
the concept of frequency resolution. The DTFT is a simple way of separating
two frequencies, but only if the observation time is greater than the inverse of
the difference between the two frequencies. The frequency resolution will allow
us to introduce the reader to weighting windows. However, a more complete
explanation of the concept of resolution can only be made if noise disturbing
the signal is taken into account, which is why it will be studied further when
random processes are considered.

The Discrete Fourier Transform, or DFT is the tool used for a numerical
computation of the DTFT. Because this calculation involves a finite number
of frequency values, the problem of precision has to be considered. There are
a few differences in properties between the DFT and the DTFT, particularly
regarding the indexing of temporal sequences that are processed modulo N.
Some examples of this are the calculation of the DTFT and the DFT of a
sinusoid, or the relation between discrete convolution and the DFT. At this
point, the fast algorithm calculation of the DFT, also called FFT (Fast Fourier
Transform), will be described in detail.

Filtering and Elements of Filter Design

Linear filtering was originally used to extract relevant signals from noise. The
basic tools will be introduced: the discrete convolution, the impulse response,

Preface 17

the frequency response, the z-transform. We will then focus on the fundamen-
tal relation between linear filtering with rational transfer functions and linear
constant-coefficient recursive equations.

Filter design 1s described based on a few detailed examples, particularly the
window method and the bilinear transform. The concepts of over-sampling and
under-sampling are then introduced, some applications of which are frequency
change and the reduction of quantization noise. From a broader perspective,
multi-rate processing and filter banks which are described here, are two subjects
that attract a lot of attention in the field of DSIP.

An introduction to images

Image processing is described in its own separate chapter. Many of the concepts
used in signal processing are also used in image processing. The only difference
is that two indices are used instead of one. However images have particular
characteristics that require specific processing: erosion, expansion, etc. The
computation time is usually much longer for images than it is for signals. It is
nevertheless possible to conduct image processing with MATLAB® or one of
its clones. This theme will be discussed using examples on 2D filtering, contour
detection, and other types of processing in cases where the 2D nature of the
images does not make them too different from a 1D signal. This chapter will
also be the opportunity to discuss image compression and entropic coding.

Random Processes

Up until now, the signals used as observation models have been described by
functions that depend on a finite number of well known parameters and on
simple known basic functions: the sine function, the unit step function, the
impulse function. .. This type of signal is said to be deterministic.

There are other situations where deterministic functions cannot provide us
with a relevant apprehension of the variability of the phenomena. Signals must
then be described by characteristics of a probabilistic nature. This requires
the use of random processes, which are time-indexed sequences of random vari-
ables. Wide sense stationary processes, or WSSP, are an important category
of random processes. The study of these processes is mainly based on the es-
sential concept of power spectral density, or PSD. The PSD is the analog for
WSSP of the square module of the Fourier transform for deterministic signals.
The formulas for the linear filtering of WSSP are then laid down. Thus, we
infer that WSSPs can also be described as the linear filtering of a white noise.
This result leads to a large class of stationary processes: the AR process, the
MA process, and the ARMA process.

18 Digital Signal and Image Processing using MATLAB®

Spectral Estimation

One of the main problems DSIP is concerned with is evaluating the PSD of
WSSPs. In the case of continuous spectra, it can be solved by using non-
parametric approaches (smooth periodograms, average periodograms, etc.) or
parametric methods based on linear models (AR, MA, ARMA). As for line
spectra, the most commonly used methods are the periodogram and what are
called high resolution methods, which use the structures of the signal and the
noise: Prony, Pisarenko, MUSIC, ESPRIT, etc.

The least squares

This chapter discusses the use of the least squares method for solving problems.
This method is used in a number of problems, in fields such as spectral analysis,
modelling, linear prediction, communications... We will discuss such methods
as Wiener, RLS, LMS, Kalman. ..

Applications

This last chapter presents case studies that go a little further in depth than the
examples described earlier. The emphasis is set on audio signal processing, on
compression as well restoring and denoising for speech and music, and on mod-
ulation, demodulation and equalization issues for digital communications. This
chapter is also an opportunity to discover typical approaches and algorithms:

pitch detection, PSOLA, DTW, ACP, LBG, Viterbhi. ..

As a Conclusion

One of the issues raised by many of those who use signal processing has to
do with the artificial aspect introduced by simulation. For example, we use
sampling frequencies equal to 1, and therefore frequencies with no dimension.
There is a risk that the student may lose touch with the physical aspect of
the phenomena and, because of that, fail to acquire the intuition of these
phenomena. That is why we have tried, at least in the first chapters, to give
exercises that used values with physical units: seconds, Hz, etc.

This work discusses important properties and theorems, but its objective
is not to be a book on mathematics. Its only claim, and certainly an excessive
one, is to show how interesting signal and image processing can be, by providing
themes of study we chose because they were good examples, because they were
simple, while trying not to be too trivial.

All of the subjects discussed far from cover the extent of knowledge required
in this field. However they seem to us to be a solid foundation for an engineer
who would happen to deal with DSIP problems.

Notations and Abbreviations

Empty Set

Zk Zn
1 when
0 otherwise

sin(mx)

[t| < T/2

mr

{ 1 whenzec A

0 otherwise
{r:a<z<b}
{ Dirac Distribution when ¢ € R

Kronecker Symbol when t € Z
Real Part of z

Imaginary Part of z
v—1
Fourier Transform

Continuous Time Convolution

/ z(u)y(t — u)du
R
Discrete Time Convolution

Z z(u)y(t —u)

Y=y

(Indicator Function of A)

20 Digital Signal and Image Processing using MATLAB®

Iy (N x N)-dimension Identity Matrix
A~ Complex Conjugate of A
AT Transpose of A
Af Transpose-Conjugate of A
A~! Inverse Matrix of A
P(X € A) Probability that X € A
E{X} Expectation Value of X

X, =X -E{X}
var(X) = E{|X.|}’

Zero-mean Random Variable

Variance of X

E{X|Y} Conditional Expectation of X given Y
ADC Analog to Digital Converter
ADPCM Adaptive Differential PCM
AMI Alternate Mark Inversion
AR Autoregressive
ARMA AR and MA
BER Bit Error Rate
bps Bits per second
cdf Cumulative distribution function
CF Clipping Factor
czT Causal z-Transform
DAC Digital to Analog Converter
DCT Discrete Cosine Transform
d.e./de Difference equation
DFT Discrete Fourier Transform
DTFT Discrete Time Fourier Transform
DTMF Dual Tone Multi-Frequency
dsp Digital signal processing/processor
e.s.d./esd Energy spectral density
FIR Finite Impulse Response
FFT Fast Fourier Transform
FT Continuous Time Fourier Transform

HDB
IDFT
iid./iid
IR

ISI
LDA
Ims
MA
MAC
OTF
PAM
PCA
p.d.
ppi
p.s.d./PSD
PSF
PSK
QAM
rls

rms
r.p./tp
SNR
r.v./rv
STFT
TF
WSS
Z0OH
7T

Notations and Abbreviations

High Density Bipolar

Inverse Discrete Fourier Transform
Independent and Identically Distributed
Infinite Impulse Response
InterSymbol Interference

Linear discriminant analysis

Least mean squares

Moving Average

Multiplication ACcumulation
Optical Transfer Function

Pulse Amplitude Modulation
Principal Component Analysis
Probability Distribution

Points per Inch

Power Spectral Density

Point Spread Function

Phase Shift Keying

Quadrature Amplitude Modulation
Recursive least squares

Root mean square

Random process

Signal to Noise Ratio

Random variable

Short Term Fourier Transform

Transfer Function

21

Wide (Weak) Sense Stationary (Second Order) Process

Zero-Order Hold

z-Transform

This page intentionally left blank

Introduction to MATLAB

In this book the name MATLAB® (short for Matrix Laboratory) will refer to:

— the program launched by using the command matlab in Dos or Unix
environments, or by clicking on its icon in a graphic environment such as

x11, Windows, MacOS. ..,
— or the language defined by a vocabulary and syntax rules.

MATLAB® is an interpreter, that is to say a program that remains in
the computer’s memory once it is launched. MATLAB® displays a com-
mand window used for interpreting commands. If they are considered correct,
MATLAB® will execute them. This execution will itself lead to verifications.

Example 1 (Direct interpretation) Type a=2*1og10(5) then <return>.
The result is shown in a PC environment (Figure 1).

=] MATLAB Command Window EE
File Edit Options Windows Help
»a=2*| 0g10(5) |+
T Commandline

a =
1.3979 <« Result

» <«——— Prompt

12

] [

Figure 1 — The MATLAB® command window on MS- Windows

Commands can be gathered together in text files called matlab programs.
The user %ives them a name that can be called from the prompt line. The
MATLAB™ documentation explains how to use an editor to create such files.

24 Digital Signal and Image Processing using MATLAB®

This editor may either be integrated in the software or kept external (the
user’s favorite editor). Program files use the extension .m. If a program is
called progi.m, all the user has to do is type progl in the MATLAB® com-
mand window to have it executed. MATLAB® then searches for the file in
the routine directory. If it doesn’t find the file there, it looks for progl.m in
the various files specified in the directory path. The latter can be defined di-
rectly in the command prompt window, or by using a program and executing
commands such as path, addpath, rmpath, genpath, pathtool, savepath (see
documentation, online help, or type help path).

Eile Edit Wiew Graphics Debug Deskiop Window Help

O & BB o o« |8 5| 7| curentDirectory | ustlocalimatiabimaliah7ri 4sp2inin_#| J
Shorteuts #] Howto Add 2] What's MNewr
wgrkqlacn FEET | Command Window 7 =
DEL S| |- |/

@ @ b | 7| —_— | <MATLAB>

Current Directony | Workspace | Copyright 1984-2005 The MathWorks, Inc.

Version 7.0.4.352 (R14) Senice Pack 2

05 4:34 PM %
4/8105 2:209 AM %
To get started, select MATLAB Help or Demos from the Help menu.

e

4 start|

Figure 2 — The MATLAB® window in an X-windows environment. The definition
of the routine folder can be done directly by clicking on the icon with “...”7 in the
top-right corner of the window. The definition of the directory path can be done by
selecting the item set path ... in the menu file

Clones of MATLAB® are now available. Some belong to the public domain.
There also exists a compiler that allows the user to translate MATLAB® pro-
grams in machine language, making the execution quicker, and meaning that
it 1s not required to own the interpreter.

1 Variables

1.1 Vectors and matrices

The MATLAB® language is dedicated to matrix calculations and was opti-
mized in this perspective. The variables handled as a priority are real or com-
plex matrices. A scalaris a 1 x 1 matrix, a column vector is a matrix with only
one column, and a line vector a matrix with only one line.

The notation (£ x ¢) indicates that the considered variable has ¢ lines and
¢ columns.

Introduction to MATLAB 25

Example 2 (Assignment of a real matrix) Type a=[1 2 3; 4 5 6] at

the MATLAB® prompt in the command window. The answer is shown in
Figure 3.

&= Command =————=—=SNH|
»a=[1 2 3;4 5 6] E
a= Assignment of matrix a
1 2 3 <«—— Resllt
4 5 6 (2 lines, 3 columns)
=
<] [E

Figure 3 — Assigning a matriz

Values are assigned to the elements of a matrix by using brackets. A space
(or a comma) is a separator, and takes you to the next column, while the semi-
colon takes you to the next line. Elements are indexed starting from 1.
The first index is the line number, the second one is the column number. In
our example, a(1,1)=1 and a(2,1)=4. The assignment a=[1 2;3 4 5] will of
course lead to an error message, since the number of columns is different for
the first and second lines.

Character strings can also be assigned to the elements of a matrix. However,
the string length must be compatible with the structure of the matrix. For
example, N=[’paul’;’ john’] would be correct, whereas N=[’paul’; ’peter’]
would cause an error.

When the vector’s components form a sequence of values separated by reg-
ular intervals, it is easier to use what is called an “implicit” loop of the type
(indD:step:indF). This expression refers to a list of values starting at indD
and going up to indF by increments of step. Values cannot go beyond indF.
The increment value step can be omitted if it is equal to 1.

Example 3 (Implicit enumeration) Type a=(0:1:10) or a=(0:10).
MATLAB® returns:

a =

0 1 2 3 4 5 6 7 8 9 10

Example 4 (Incremented implicit enumeration) Type a=(0:4:10).
MATLAB® returns:

26 Digital Signal and Image Processing using MATLAB®

The last element of a vector is indicated by the reserved word end. In the

previous example, a(end) indicates that its value 1s 8.

It is possible to extend the size of a matrix. The interpreter takes care of

available space by dynamically allocating memory space during the analysis of
the typed phrase.

Example 5 (Extension of matrix) Type the following commands one after

the other:
>>a=[12 3; 4 5 6]
a =
1 2 3
4 5 6
>>a=[a a]
a =
1 2 3 1 2 3
4 5 6 4 5 6
>>a=[12 3; 45 6];
>>a=[a;al
a =
1 2 3
4 5 6
1 2 3
4 5 6
COMMENTS:

1.2

When defining variables and objects, the language takes into account
whether letters are capital or lowercase.

@,

Typing ;" at the end of a command line prevents the program from
displaying the results of an operation.

The display format can be modified by using the format command. Exe-
cuting format long, for example, changes the number of significant digits
from 5 to 15.

The user must bear in mind that MATLAB® dedicates memory space
every time a variable is used for the first time. All of the variables used
during a work session are stored in the computer’s memory, which means
it is necessary to free space from time to time so as not to get the OUT
OF MEMORY error message (see the clear command in the documentation
or type help clear).

Arrays

Multidimensional arrays (not supported by all versions) are an extension of the
normal two-dimensional matrix. One way to create such an array is to start
with a 2-dimension matrix that already exists and to extend it. Type:

Introduction to MATLAB 27

A=[1:3;4:6]
>> A
A=
1 2 3
4 5 6
>> A(:,:,2)=zero0s(2,3), % or A(:,:,2)=0
A(:,:,1) =
1 2 3
4 5 6
AC:,:,2) =
0 0 0
0 0 0

The repmat and cat functions are provided in order to build multidimen-
sional arrays.

1.3 Cells and structures

In the most recent versions of MATLAB®, there are two groups of data that
are more elaborate than scalar arrays and character string arrays: the first one
is called a cell and the second a structure.

In an array of cells, the elements can be of any nature, numerical value,
character string, array, etc. Type:

langcell={’MATLAB’,[6.5;2.3],2002}
>> langcell(2)
ans =

[2x1 double]
>> langcell{2}
ans =

6.5000

2.3000
>> langcell{2}(1)
ans =

6.5000

langcell is made up of three elements: the first one is a character string,
the second omne i1s a column vector, and the third one i1s a scalar. This
example shows the difference in syntax between an array and a cell, a left
brace ({) and a right brace (}) being used instead of a left square bracket
([) and a right square bracket (]). As for the content, langcell(2) refers
to the vector [6.5000;2.3], langcell{2} to the content of this vector, and
langcell{2}(1) to the numerical value 6.5.

A structure is defined by the struct instruction. The following exam-
ple defines a structure, called langstruc, comprising three fields: Language,
Version, and Year. The instruction assigns the character string MATLAB to the

28 Digital Signal and Image Processing using MATLAB®

first field, the character string 6.5 to the second field, and the numerical value
2002 to the third field:

>>langstruc=struct (’Language’, ’MATLAB’,’Version’,’6.5’,’Year’,2002) ;
>>langstruc.Year

ans =
2002
>>

The second instruction displays the content of langstruc.Year, which is
2002. A 1 x 1 dimension structure is organized in the same way as ann x 1
dimension array of cells, where n is the number of fields of the structure. Cells
can therefore be compared to structures with unnamed fields.

The following example defines a structure named langstruc, comprised of
two recordings. Each recording contains all three fields Language, Version,
and Year to which were respectively assigned the sequences of two character
strings MATLAB and C, of the two values 6.5 and 15.1, and of the two values
2002 and 2003:

>> langstruc=struct (’Langage’,{{’MATLAB’,’C’}},...
’Version’,[6.5;15.1], ’Year’,[2002;2003]) ;
>> langstruc
langstruc =
Language: {’MATLAB’ °’C’}
Version: [2x1 double]
Year: [2x1 double]
>> langstruc.Langage{1}
ans =
MATLAB
>> langstruc.Language (1)
ans =
"MATLAB’

>>

These objects can be handled using certain functions: isstruct,
fieldnames, setfield, rmfield, cellfun, celldisp, num2cell, cell2mat,
cell2struct, struct2cell... An example of a conversion is as follows:

>> clear all
>> langcell={’MATLAB’,[6.5;2.3],2002}
>> chps={’Langage’,’Version’,’Year’};
>> cell2struct(langcell,chps,2)
ans =

Language: ’'MATLAB’

Version: 6.5000
Year: 2002

>>

The 2 that is part of the instruction cell2struct(langcell, chps,2) indi-
cates the dimension of langcell that needs to be taken into account to define
the number of fields. Here, for example, size(langcell,2) means that the
number of fields 1s 3.

Introduction to MATLAB 29

2 Operations and functions

2.1 Matrix operations
The main matrix operations are the following:

— The (4, x) operations, sum and multiplication of two matrices.

Example 6 (Multiplication of matrices) Type the following com-
mands:

>>a=[1 2; 3 4] * [5;6]
a =
17
39
>>size(a)
ans =
2 1

The command size(a) returns “1 2”7 giving us the number of lines and
the number of columns of a.

— The backslash provides the solution to the linear problem Ax = b in the
form x=A\b. If A is a full-rank square matrix, this amounts to multiplying
on the left by the inverse matrix. Otherwise, the solution is given wn the

least squares sense! .

Example 7 (Solving a linear system) Type:

>>A=[1 2;2 3]; b=[1;1]; % Full rank square matrix
>>x=inv (A) *b % Solution using the inverse
x =
-1
1
>>x=A\b % Solution using the system resolution
x =
-1
1

— The operation 4/B amounts to performing the operation B*\4”.

— The operation ~ carries out the exponentiation of the argument, which
can be a fractional scalar, positive or negative, or a matrix.

— The apostrophe ’ is used for the transpose-conjugate or transconjugate.
As a reminder, if the (N x N) matrix A is the conjugate-transpose of B,
then A = B¥ and we have [a;;] = [b7;] for 1 <4, 5 < N.

IThe problem of solving a linear system in the least-squares sense plays a crucial role in
signal processing. This will be discussed further in Chapter 11.

30 Digital Signal and Image Processing using MATLAB®

Example 8 (A few operations) Type the following commands:

>>a=[2 0;1 3];
>>a”2
ans =
4 0
5
>>a” .5
ans =
1.4142 0
0.3178 1.7321
>>a=(0:3);
>>b=(0:3);
>>c=bx*a’
c =
14
>>d=b’*a
d =

[=NeNele)
WN = O
R NO
OO WO

The vectors a and b are real (4 x 1) line vectors. The scalar ¢ is therefore
equal to the scalar product of the vectors a and b. On the other hand, d is a
“multiplication table”-type (4 x 4) matrix.

2.2 Pointwise operations

The operations “.x ” and “.”” work term by term. The phrase pointwise

operations is also used. For example, if A = [a;;] and B = [b;;] are two matrices
of the same dimension, A .* B returns the matrix [a;;b;;].

” 49
5 .

Example 9 (Pointwise operations) Type the following commands and
check the result:

>>clear Y% Free data memory space
>>a=(1:3)2 % (1:4); b=(5:7)’ * (1:2:7);
>>c = a.* b;

>>d=a ./ b;
>>e =a .~ (.5);
>>a,b,c,d,e

In this sequence of instructions:

— a and b are two matrices with 3 lines and 4 columns. They are obtained
by multiplying a dimension 3 column vector and a dimension 4 line vector;

— c is a matrix that has ¢; = a; X b; as its generic element;

— d is a matrix whose element d; = a;/b;;

Introduction to MATLAB 31

— e 1s a matrix whose element e; = /a;.

Example 10 (Alternating sequence)
(-1).7[0:9] leads to a sequence of alternating 1 and —1.

COMMENTS:
— 1n term by term operations, matrices must have the same dimensions;

— while the operation * (apostrophe) transconjugates a matrix, the opera-
tion .’ (period-apostrophe) transposes without conjugating.

Example 11 (Transposition and transconjugation) Type:

>>a=[1+j 2;3 4]
a =
1.0000 + 1.00001 2.0000
3.0000 4.0000
>>a’
ans =
1.0000 - 1.0000i 3.0000
2.0000 4.0000
>>a.’
ans =
1.0000 + 1.00001 3.0000
2.0000 4.0000

2.3 Constants and initialization

The constants pi, i, j are predefined: pi=3.14159265358979 - -, i = j =
V/—1. Keep in mind that executing the instruction pi=4 makes pi lose its
predefined value. It is recommended not to use pi, i and j as variables in a
program.

eps, realmin and realmax are other constants provided for limit
test purposes. Their values are respectively: 2.220446049250313¢ — 16,
2.225073858507201e — 308 and 1.797693134862316e + 308.

2.4 Predefined matrices

The following commands are used to obtain certain particular matrices:

— ones(L,C) returns a matrix with L lines and C' columns containing noth-
ing but ones. ones(1,N) returns a line vector made up of N ones;

— zeros(L,C) returns a matrix with L lines and C' columns containing
nothing but zeros;

— eye(N) returns the N x N identity matrix (ones on the diagonal and
zeroes everywhere else);

32 Digital Signal and Image Processing using MATLAB®

— eye(L,C) returns the N x N identity matrix Iy, where N refers to the
smaller of the two numbers L and C', completed by a matrix containing
nothing but zeros, so as to obtain a matrix with L lines and C' columns.
eye(1,N), for example, will return a line vector with one “1”7 followed by

N _ 1 ((077;

— randn(L,C) returns a matrix with L lines and C' columns containing a
centered gaussian distributed sample with a variance equal to 1;

— rand(L,C) returns a matrix with L lines and C' columns containing a
sample uniformly distributed on the interval (0, 1);

— aside from the usual matrices, such as Hilbert, Hadamard, Vander-
monde, etc.; a large number of predefined matrices are available using
the gallery function. For a list of these matrices, type help gallery.

The reshape function is used to change the size of a matrix, for example,
to go from a (2 x 6) matrix to a (3 x 4) matrix (refer to documentation, or type
help). This change of size can also be done directly, as shown in the following
example:

a=[(1:6);(7:12)]1; % 2%6 matrix
c=zeros(3,4); % Predimensioning
c(:)=a; % Column by column filling-out

which would be the equivalent of c=reshape(a,3,4). The zeros(3,4) com-
mand initializes the choice of size for the matrix ¢. The purpose of the next
instruction c(:)=a is to fill out the matrix ¢, column by column, with the
sequence of 12 values taken from a column by column. a and ¢ must have the
exact same number of elements.

Example 12 (Predefined matrices) The instructions:

x=[ones(1,5) ;-ones(1,5)];
y=zeros(1,10); y(:)=x

return a line vector containing 10 alternate 1 and —1. As we have seen, the
same thing can be done with (-1).7[0:9].

2.5 Mathematical functions

Certain functions handle matrices only as an array of values. This is the case
for functions such as: abs, sqrt, exp, cos, sin, log, tan, acos, asin, atan,
etc.

Introduction to MATLAB 33

Example 13 (Exponential function) Type:

T=1024; tims=(0:T-1);

%===== Three frequencies

fq =[.01 .013 .014];

%===== Complex Signal

sig = exp(2*j*pi*xtims’*£fq);

%===== Displaying of the real part of the complex exponential
% for £g=0.01 that is to say cos(2%pi*0.01%n)

plot(tims, real(sig(:,1)))

tims is a (1 x 1024) line vector and therefore tims’#*fq is a (1024 x 3)
matrix. You can see this for yourself by typing, at the end of the previous
program, the command whos:

>>whos
Name Size Elements Bytes Density Complex
T 1 by 1 1 8 Full No
fq 1 by 3 3 24 Full No
sig 1024 by 3 3072 49152 Full Yes
tims 1 by 1024 1024 8192 Full No

The instruction sig = exp(2*j*pi*tims’*fq); applies the exponen-
tial function to each of the elements of the matrix 2*j*pi*tims’*fq.
The result is the (1024 x 3) matrix sig. In the last instruction
plot(tims,real(sig(:,1))), sig(:,1) refers to the last column of the ma-
trix sig.

Built-in functions

There is a large number of library functions that can be called using the
MATLAB® language. Some are provided with the MATLAB® interpreter,
while others have to be paid for, as part of extra modules.

Among the functions available in the basic version, the user will for example
find mathematical functions such as the exponential exp, the logarithm log, the
usual trigonometric functions. .. or functions that have more to do with signals
and images such as the Fourier transform £ft, the 2D convolution conv2, etc.

Some of these functions are written in the MATLAB® language, while
others are written in machine language, for reasons of execution speed.

Example 14 (“Source programs” and compiled programs) Type:
type compan. MATLAB® displays the text of the compan function, which can
be found in one of the folders of your hard-drive. However, if the instruction
type fft is executed, MATLAB® returns:

7?7 Built-in function
meaning that this function is compiled and that its source code cannot be
accessed.

34 Digital Signal and Image Processing using MATLAB®

In the most recent versions of MATLAB®, many functions that used to be
written as “.m” programs (see paragraph 6) were rewritten and now appear as
“Built-in”.

2.6 Matrix functions

As we have seen, the exp(a) command calculates the exponential of each el-
ement of the matrix a. This operation must not be confused with the matrix
exponential. The letter “m” at the end of the functions expm(4), logm(4),
sqrtm(A) indicates that we are dealing with matrix functions. For example,
e is defined by:

A A AF

e =1+ ET.+....+ 7;r.+...
and is obtained with the function expm(4).

There 1s also a function called funm that can be used to calculate any

function of a matrix. Type help funm.

2.7 Other useful functions

The eig function returns the eigenvalues and the eigenvectors of a matrix. The
poly function returns the characteristic polynomial associated to a matrix, or
a polynomial whose roots are a given vector. The roots function returns the
roots of a polynomial.

Example 15 (A few functions - 1) Type:

>»a=[11 1];
>>rr=roots(a)
rr =

-0.5000 + 0.86601i
-0.5000 - 0.86601
>>poly(rr)
ans =
1.0000 1.0000 1.0000

The values of the complex roots of the polynomial a(z) = 2% + = + 1 are
obtained with roots(a).

Example 16 (A few functions - 2) Type:

>>a=[1 2;1 1];
>>poly(a)
ans =
1.0000 -2.0000 -1.0000
>>[vp,nd]l=eig(a)

vp =

Introduction to MATLAB 35

0.8165 -0.8165

0.5774 0.5774
md =

2.4142 0

0 -0.4142

>>roots (poly(a))
ans =

2.4142

-0.4142

In this example, a is a (2 x 2) matrix, its characteristic polynomial poly(a)
is equal to det(A\I—a) = A? —2X\ — 1. The eigenvectors of a are given by vp. md
is the diagonal matrix bearing the eigenvalues on its diagonal, which are also
the roots of the characteristic polynomial.

2.8 Logical operators on boolean variables

The logical operators AND (symbol &), OR (symbol |), and NOT (symbol

) operate on boolean quantities. The “false” boolean value is coded as 0

and “true” as a non-zero value. Boolean quantities can be used in struc-

tures such as “if ... elseif ... else ... end”, “switch ... case
otherwise ... end” or “while ... end”.

Example 17 (Logical functions) Type:

>>x=1;
>>if x==0,
A=[1 21;
else

A=[2 11;
end

>>A

A =

2 1

isnan, isinf, isfinite, isstr, ischar, etc. are boolean functions used
for testing purposes.

2.9 Program loops

The for ... end program structure works as a calculation loop.

Example 18 (Program loops) Type:

>>A=[1 .5; .5 .25];

>>M=eye(2,2); % Unit Matrix

>>for k=1:5

M=M=x* A; % Calculation of the consecutive powers of A
end

36 Digital Signal and Image Processing using MATLAB®

The loop can be written in a single line with for k=1:5; ¥ = M * A; end.

As is the case for many interpreters, loops tend to deteriorate calculation
performances considerably. The user is therefore advised not to use them, by
replacing them with matrix functions when possible.

Example 19 (Avoiding loops) Type:

>>a=randn (400) ;
>>for k=1:400
for m=1:400
b(k,m)=a(k,m) ~2;
end
end
>>c=a ."2;

The last instruction returns a matrix ¢ identical to the matrix b. However
its execution is much faster.

3 Graphically displaying results

Display windows are chosen using the command figure(n), where n is a win-
dow number. Inside the active window, the plot command can be used to
graphically display results:

— If x and y are two real vectors of the same length, the plot(x,y) displays
the graph of y as a function of x.

— If x and y are two real matrices of the same size, the plot(x,y) command
displays the first column of y as a function of the first column of x, the
second column of y as a function of the second column of x, and so on
until there are no columns left. Each line has its own color.

— If x is a real vector with a length of N, and y is a size (N x K) real
matrix, the plot(x,y) command displays the K graphs corresponding
to the K columns of y as a function of x.

— If x 18 a complex vector, the plot (x) displays the graph of the imaginary
part of x as a function of the real part of x (see example 20).

— If the command subplot(3,2,4) or subplot(324) is added before the
plot command, the graph is divided in six “sub-windows” organized in
three lines of two columns each, and the display is done in sub-window
number 4.

Introduction to MATLAB 37

Example 20 (Drawing of a circle)
Type the following program:
clear;
z=exp (2%pi*j*[0:100]/100) ;
figure(1); plot(z); axis(’square’);
figure(2); subplot(121); plot(z); axis([-1.2 1.2 -1.2 1.2]);
subplot (122); plot(z); axis(’square’);

The axis(’square’) command forces the display to appear in a square.
The second axis command forces particular values on the minima and the
maxima of the x- and y-coordinates. The third one makes the calculation of
the minima and maxima automatic.

The zoom command is used to zoom in on a particular part of the graph.

In the recent versions of MATLAB®, windows and graphs are objects whose
properties can be consulted and modified using get and set. These properties
can also be accessed from the pull-down menus, meaning that the user does
not have to reprogram them. See exercise 2.8, page 80 which describes another
way to go about this.

Example 21 (Drawing an ellipse)

The exponents T and H refer to the transposition and the transposition-
conjugation respectively. If the matrix is real, then of course Y# = Y7,
In its matrix form, the equation of an ellipse is:

(X -X)EX - X¢)=¢

where ¢ 1s a positive constant, X is a dimension 2 vector characterizing the
center of the ellipse, and E is a 2 x 2 positive matrix, meaning that, for any
complex vector Y, YHEY is a positive number. A simple way of obtaining a
positive matrix is to take any real matrix G and to calculate GT G.

By diagonalizing E, we get E = PDP¥ where D is a diagonal matrix with
all its diagonal elements positive, and P a unitary matrix, that is to say such
that PPH = PHP =1 where I refers the identity matrix.

Let us assume F = PDY/2P¥ Incidentally, we have F = FH and FIF =
E. Fiscalled the square root of E. Starting with this, we have (X—Xg)?E(X—
Xo) = (X — Xo)¥FIF(X — Xg). By assuming Y = F(X — Xg), we get
Y#HY = ¢ which is the equation of a circle of center O and radius /¢ in a set of
orthonormal coordinates. This leads us to a calculation procedure of N points
of the ellipse characterized by Xp, E and ¢:

1. Calculate Y = +/c[cos @ sinf] for 6 from 0 to 2 in steps of 27/N.
2. Make the variable change X = X, +F~'Y.

Starting with this procedure, we now write a function with the ellipse’s center
defined by any vector X0, the positive matrix E, and the constant ¢ as input
parameters.

38 Digital Signal and Image Processing using MATLAB®

HinT: type:

function ellipse(X0, E, ¢)

hh %
%% Drawing an ellipse Y%
%% SYNOPSIS: ELLIPSE(XO, E, c) %
YAA X0 = Coordinates of the ellipse’s center (2x1) %
%% E = A positive (2x2) matrix %
% c¢ = Scale Factor %
o %

N=100; theta = (0:N) * (2%pi) ./ N ;

Y = sqrt(c)*[cos(theta) ;sin(theta)];

Fmi=inv (sqrtm(E));

X = diag(X0)*ones(2,N+1)+Fml*Y;

plot (X(1,:),X(2,:)); set(gca,’DataAspectRatio’,[1 1 1])
return

Test this function? with the following program, choosing several values of ¢
and:

1.3628 0.7566

Xo=[00]and E= | /"-eo =166

>>X0=[0 0];
>>E=[1.3628 .7566;.7566 .5166];
>>c=1;

>>ellipse (X0, E,c)

We displayed in Figure 4 the results obtained for ¢ = {1,2,3,4,5}. n

10

6 -4 -2 0 2 4 6

Figure 4 — Drawing of several ellipses

?Save this function under the name ellipse.m. It will be used later on.

Introduction to MATLAB 39

4 Converting numbers to character strings

As an example, let us consider the text(x,y, ’text’) command. It allows the
user to add text to a graph, placed at coordinates (z,y). To add a numerical
value to the text command, it must first be converted to a character string.
This can be done with the num2str command.

Example 22 (Numbers and character strings) Type:

fe=10;
valfe=num2str (fe)

The sprintf command can also be used to build a character string. In fact,
it 1s used by num2str.
Example 23 (Creating a character string) Type:

£fq=[10.5 20.566];
valf=sprintf (’F1 = %+15.2f, F2 = %4.2¢’, £q(1),£q(2))

The expression sprintf(...) leads to a character string obtained by con-
verting the numerical value to the format specified by format. For example,
the %10.4f format converts the given value with 4 decimal points. For more
information, 1t is recommended to read the printf function’s description in C
language.

The functions str2num and hex2num should also be looked into.

5 Input/output

MATLAB® makes it possible to perform input-output operations from the
keyboard, on the screen (as it was explained in the previous paragraph with
sprintf) or on files. Here are the main functions:

— input, ginput, ... for keyboard acquisition;
— disp, sprintf, ... to display on the screen;
— gtext, plot, grid, title, ... to display in a graph;

— load, save to load or save parts of the variables in a file, or all of them,
in a format specific to MATLAB®. By default, files have the extension
.mat.

For versions newer than MATLAB-4, it is still possible to ensure that
files are compatible with version 4 by using the option -v4 of the save
command,;

— fopen, fread, fwrite for input-output with formatting.

40 Digital Signal and Image Processing using MATLAB®

Example 24 (Input/output in a file) Type:

clear; x=[1:100];
fid=fopen(’tryl.dat’,’w’);
fwrite(fid,x, ’short’); % Writing
fclose(fid)

Y==========
fid=fopen(’tryl.dat’,’r’);
y=fread(fid, ’short’) % Reading
fclose(fid);

This program creates the tryl.dat file of 16 bit integers, then reads its
content in variable y.

6 Program writing

We have seen that several commands can be grouped together in a file that can
be run by typing its name in the command window. Such a program often uses
functions with names corresponding to the .m files that contain them, and not
the ones declared by the reserved word function!

It is however possible to gather several functions in a single m file, so long
as these functions are called from inside the file, but they are not visible from
the outside.

The first lines of comment (lines starting with a % symbol) of a program
(or a function) are displayed when the help command is executed followed
by the name of the program. It is strongly advised to systematically use this
possibility to write down a synthetic description of the functions used.

MATLAB® authorizes the use of procedures written in an evolved language
such as C, Pascal or Fortran. These programs belong to the type called MEX.
Throughout the rest of this book, we will use only predefined functions and
those we are going to build in the MATLAB® language.

MATLAB® also makes it possible to create programs with a graphic inter-
face, combining buttons, pull-down menus, scrolling windows, etc. Using these
possibilities is a good way of building “press-a-button” demonstrations or lab
works that help to emphasize certain properties. The demonstrations included
with MATLAB® are an excellent source of documentation for creating such
programs.

Part 1

Deterministic Signals

This page intentionally left blank

Chapter 1

Signal Fundamentals

Although this work is mainly focused on discrete-time signals, a discussion of
continuous-time signals cannot be avoided, for at least two reasons:

— The first reason is that the quantities we will be using — taken from nu-
meric sequences — are taken from continuous-time signal sampling. What
is meant i1s that the numeric value of a signal, such as speech, or an
electroencephalogram reading, etc., is measured at regular intervals.

— The second reason is that for some developments, we will have to
use mathematical tools such as Fourier series or Fourier transforms of
continuous-time signals.

The objective is not an extensive display of the knowledge needed in the
field of deterministic signal processing. Many other books have already done
that quite well. We will merely give the main definitions and properties useful
to further developments. We will also take the opportunity to mention systems
in a somewhat restricted meaning, this word referring to what are called filters.

1.1 The concept of signal

A deterministic continuous-time signal is defined as a function of the real time
variable ¢:

Signal = function z(t),t € R

The space made up of these functions is completed by the Dirac pulse
distribution, or 6(t) function.
The following functions spaces are considered:

— Li(R) is the vector space of summable functions such that [[2(t)|dt <
+00;

44 Digital Signal and Image Processing using MATLAB®

— Li(a,b) is the vector space (vector sub-space of L1(R)) of functions such
that f; | (t)|dt < +o0;

— Ly(R) is the vector space of finite energy functions such that
Jg |2(t)]?dt < +o0;

— Ly(a,b) is the vector space (vector sub-space of L2(R)) of functions such
that f; |z (8))?dt < 4o00;

— the set of “finite power” functions characterized by:

lim —/ ()2 dt < +o0
T—+oo T' -T/2

L2(0,T) has the structure of what is called a Hilbert space structure with
respect to the scalar product fx(t)y(t)dt, a property that is often used for
decomposing functions, for example in the case of Fourier series.

In the course of our work, we will need to deal with a particular type of
signal, in sets that have already been defined, taken from R7T.

Definition 1.1 (Causal and anticausal signals) Signals (1) such that
z(t) = 0 for t < 0 are said to be causal. Signals x(t) such that x(t) = 0
fort >0 are said to be anticausal.

1.1.1 A few signals

We will often be using particular functions characteristic of typical behaviors.
Here are some important examples:

— the unit step function or Heaviside function is defined by:
u(t) = 1(t € (0, 4+o0[) (1.1)

Its value at the origin, ¢ = 0, 18 arbitrary. Most of the time, it is chosen
equal to 1/2. The unit step can be used to show causality: z(t) is causal

if 2(t) = x(t)u(t);
— the sign function is defined using the unit step by sign(¢) = 2u(t) — 1;
— the gate or rectangle function is defined by:

recty (1) = 1(t € (=T/2,T/2)) = u(t + T/2) —u(t — T/2) (1.2)

It will be used to express the fact that a signal is observed over a finite
time horizon, with a duration of T. The phrases rectangular windowing
and rectangular truncation of x(t) are also used: zp(t) = z(t)rectr(t);

Signal Fundamentals 45

— the pulse, or Dirac function, has the following properties which serve the
purpose of calculation rules:

L. fpd(t)dt =1 and [o(t)x(t)dt = 2(0).

2. 2(t) = [x(u)d(t—u)du = (x*J)(t) (is the convolution operation).

3. 2(1)o(t —to) = x(te)d(t — to).

4. (x(u) *d(u—10))(t) = (x %) (t — to) = x(t — to).

5. d(at) = 6(t)/]a| for a # 0.

6. Vi, fioo d(u)du = 1(t € (0,400)) = u(t) and therefore du(t)/dt =
d(t). This result makes it possible to define the derivative of a
function with a jump discontinuity at a time t;. Let () =

2o(t) + au(t — ty) where zg(¢) is assumed to be differentiable. We
have dx(t)/dt = dxo(t)/dt + ad(t — to);

— the sine function is defined by:
z(t) = zosin(Qot + ¢) = zosin(2nFpt + ¢) (1.3)

zg is the peak amplitude of the signal, £y its angular frequency (in radi-
ans/s), ¢ its phase at the origin, Fy = /27 its frequency (in Hz) and
T = 1/Fy its period;

— the complexr exponential function is defined by:

z(t) = woexp(2jmFot + job) (1.4)

— the sine cardinal is defined by sinc(t) = sin(nt)/mt. It is equal to 0
for all integers except t = 0 (hence its name). We have fR sinc(t)dt = 1,
Jg sinc(u)sinc(u—t)du = sinc(t) and the following orthogonality property,
for n € IN:

. . 1 with n=0
/]Rsmc(u)smc(u —n)du = {0 with n %0

46 Digital Signal and Image Processing using MATLAB®

1.1.2 Spectral representation of signals

Fourier series

A periodic signal with a period of T'= 1/F; may be decomposed as a sum of

complex exponentials, a sum we will refer to as Fourier series

1.

+oo
z(t) F5. Z X e2imkFot
k=—o0 (15)
1

T
S L [st

Fy = 1/T is called fundamental frequency, and its multiples are called
harmonic frequencies. A few comments should be made:

a signal with a bounded support on (¢1,%3) is also expandable in a Fourier
series, but the series converges to the periodized function outside of the
(t1,12) interval;

expression 1.5 indicates that Xj is the k-th component of z(¢) in the
orthonormal basis of the complex exponentials {7'~1/2e2mkFot}, o in
the Hilbert space L2(0,T);

ey (t) = ZQ/I:—M X5,e27ktT g the best length M approximation of z(t)
in the sense of the least squares;

when z(t) is continuous, xp(t) converges uniformly to z(¢) for any ¢,
when M — 4o00;

if () shows first order discontinuities, #3s(t) converges in quadratic

mean, but not uniformly, to z(¢). This is indicated by the symbol 2 n
the developed expression. At discontinuity points, s (¢) will converge to
the half-sum of the left and right limits of z(¢). Finally, 237(¢) can show
some non-evanescent oscillations in the neighborhoods of all discontinu-
ities. This phenomenon is referred to as the Gibbs phenomenon;

we have Parseval’s relation:

T

T EGIRTED RN D SR TR T VD
0 keZ Rirez

where §(f — kFy) refers to the Dirac distribution at point kFy. Because

the first member of 1.6 is by definition the signal’s power, the sequence

{]Xk|?} can be interpreted as the power distribution along the frequency

axis. It is also called power spectral density, or PSD.

IWe will only be using the complex exponential decomposition, since it easily leads to the
one with the sine and cosine functions.

Signal Fundamentals 47

Fourier transform

The spectral contents X (f) of the function x(t) € Li1(R) N La(R) can be rep-
resented by an integral that uses complex exponentials, an integral we will call
Fourier transform:

X(f):/Rx(t)e_Zj”ftdt — x(t):/RX(f)ezﬂftdf (1.7)

|X(f)] is called spectrum of #(t). The Fourier transform’s main properties
are summarized in Appendix Al.
The convolution property 14.1 leads to Parseval’s formula:

/R (1) dt = /R X ()|2df (1.8)

Because the left member of 1.8 is, by definition, the signal’s energy, | X (f)|?

can be interpreted as the energy distribution along the frequency axis. It is
also called energy spectral density, or esd.
More generally, we have:

[st = [Xy (1.9)

Example 1.1 (Analytical signal)
Let 2(t) be a time-continuous real signal. The analytical signal associated with
x(t) is the signal z(¢) that has Z(f) = 2U(f)X(f) as its Fourier transform,
where X (f) is the Fourier transform of (¢) and U(f) is the unit step function
equal to 1if f > 0 and 0 if f < 0. U(0) is chosen equal to 1/2.

Using the properties of the continuous-time Fourier transform, show that
the real part of z(?) is equal to z(?), and determine its imaginary part called
the Hilbert transform of x(t).

HINT: let:
p(t) = Re(z(1)) = (2(1) + 27 (1)) /2
Using the Fourier transforms, we get:
P =2+ 27 (=MN/2=UNX) +U=NX(=])
Because z(t) is real, X(f) = X*(—f), and therefore, P(f) = X(f), which
means p(t) = x(t). As a conclusion, Re(z(t)) = ().
Likewise, let:
q(t) = Tm(z(t)) = (=() —=7(1))/2j
Using the Fourier transforms, we get:
Q) = (Z(f) =27 (=1)/2i = —jUNX() = U(=HX"(=F))
= —jU) =U=MNHX{)

48 Digital Signal and Image Processing using MATLAB®

Because U(f)=U(—f) is the sign(f) function, Q(f) = —jsign(f)X(f). This
equation can be interpreted as filtering (see paragraph 1.2) with the complex
gain filter —jsign(f). Its gain is equal to 1, meaning that the Fourier transforms
of the output and input have the same modulus, |Q(f)| = | X (f)|.

As a conclusion, the analytical signal associated with the real signal x(¢) is
written:

2(t) = (1) + j(1)

where #(t) refers to the Hilbert transform of x(¢). n

1.2 The Concept of system

A system transforms the signal z(¢) and delivers a signal y(¢), the result of this
alteration. We will refer to this transformation as y(t) = 7[z(u),], and z(¢)
and y(¢) will be called the input and the output of the system respectively.

Filters
A filter with z(¢) as the input and y(¢) as the output is a system defined by:

y(t):/Rx(u)h(t—u)du:/ z(t —u)h(u)du (1.10)

R

The existence of the integral has to do with how the set A’ of considered
signals #(t) is chosen. Among the sets that have practical interest, two of them
play a fundamental role: the signals that have a Fourier transform and those
made up of a linear mix of complex exponentials.

Certain conditions have to be met:

— first, in the case of X sets that show some practical interest, such a system
is linear: Tlajx1(u) 4+ azea(u),t] = a1 T [x1(w), 1] + a2 T [x2(u), t];

— second, it is time-invariant: Tlax(u),t —to] = Tlax(u —tp),?]. Another
way of expressing 1t 1s to say that the output is independent of the time
origin.

Example 1.2 (Counterexample) The system defined by:

¢
y(t) = / z(u)du
0
is linear but is time-dependent.

HINT: the output corresponding to the signal z(t — #g):

g(t):/Otl‘(u—to)du:/t_tox(v)dv

—to

Signal Fundamentals 49

1s different from:

t—to
y(t —to) = / z(u)du
0
which is the output at time ¢ — g when z(¢) is used as the input signal. [

Impulse response

The h(t) function found in 1.10 is called the filter’s impulse response. The
output y(t), convolution product of #(¢) and h(t), is denoted y(t) = (z+h)(¢).

A causal system is a system that depends only on the current and previous
inputs. This means that a filter is causal if 2(¢) = 0 for ¢ < 0.

Frequency response

Let us first consider the case of (¢) signals that have a Fourier transform X (f).
Using the convolution product’s property leads us to:

The H(f) function is called the filter’s frequency response or complex gain.

Let us now take a look at signals z(¢) that are a linear mix of complex
exponentials. Because of the linearity property, all we have to do is calculate
the output with z(¢) = exp(2jnFyt) as the input. We get:

y(t) = /]Rexp(Qjﬂ'Fo(t —u))h(u)du = H(Fy) exp(2jmFyt)

Therefore, the complex output signal H (Fy) exp(2jmFyt) corresponds to the
complex exponential exp(2jm Fyt). In this case, complex exponentials are called
the eigenfunctions of the filters (the eigenvalue beeing H(Fy)).

Stability

A system is said to be BIBO stable if for any Bounded Input the Output is
Bounded. Stability is an essential system property.
A filter 18 BIBO stable if and only if:

/R | () |du < +00

50 Digital Signal and Image Processing using MATLAB®

1.3 Summary

The following table contains some definitions and properties that will be used

throughout the next lessons.

Continuous time

Discrete time

Fourier transform
X(f):/x(t)e_2”ftdt
R
x(t) — / X(f)e2”ftdf
R

Discrete time Fourier transform

X(f)= Z x(n)6_2”"f

nez

1/2
z(n) =

X(fre2 ™ af

—1/2

Linear filter (¢t € R)

(@xh)(t) & X(SHH(S)

BIBO stability @/ |h(t)]dt < +o0
R

Linear filter (n € Z)

(@ xh)(n) & X(HH(f)

BIBO stability <) _ |h(n)| < +oo
nez

Fourier series

e 25wkt /T
X(k) = —/ (t)e 2 T gy
T Jo
l‘(t) — EX(k)e2]Trkt/T
kez

Discrete Fourier transform

N-1
X(k) — x(n)6—2]7'rkn/N
n=0
1 N-1
x(n) — N Z X(k)62]7'rnk/N
k=0

Bilateral Laplace transform

z-Transform

X(s) = [aleta X() = 3 a(n)s
1]R C+4jc0 nez
_ st 1 —
z(t) = 57 S X(s)e™ds z(n) = 2]_7r FX(,z),z Ydz

Filter (t € R)
(xxh)(t) & X(s)H(s)

BIBO stability < imaginary axis C do-
main of convergence of H(s).

Filter (n € Z)
(zxh)(n) & X(2)H(z)

BIBO stability < unit circle C domain
of convergence of H(z).

Chapter 2

Discrete Time Signals and Sampling

Signal processing consists of handling data in order to extract information
considered relevant, or to modify them so as to give them useful properties:
extracting, for example, information on a plane’s speed or distance from a
RADAR signal, making an old and decayed sound recording clearer, synthesiz-
ing a sentence on an answering machine, transmitting information through a
communication channel, etc.

The processing is called digital if it deals with a discrete sequence of values
{@1,25...}. There are two types of scenarios: either the observation is already
a sequence of numbers, as is the case for example for economic data, either the
observed phenomenon is “continuous-time”, and the signal’s value z(t) must
then be measured at regular intervals.

This second scenario has tremendous practical applications. This is why an
entire paragraph of this chapter is devoted to the operation called sampling.

The acquisition chain is described in Figure 2.1.

(Sampling
Period)

Tsl
X(t) Continuous-Time Discrete-Time
~ N Signal Acquisition, Signal (Sequence)
—>| Measure [=
{x(n)=x(nTY}

Supply Voltage v _V
(References) T+ 0 ? 0

Figure 2.1 — Digital signal acquisition

The essential part of the acquisition device is usually the analog-to-digital
converter, or ADC| which samples the value of the input voltage at regular
intervals — every T seconds — and provides a coded representation at the output.

To be absolutely correct, this coded value 1s not exactly equal to the value
of (nTs). However, in the course of this chapter, we will assume that z;(n) =
z(nTy). The sequence of these numerical values will be referred to as the digital

52 Digital Signal and Image Processing using MATLAB®

signal, or more plainly as the signal.

T, is called the sampling period and Fs = 1/T; the sampling frequency. We
will discuss later the problems caused by the gap between the actual value and
the coded value, which is called quantization noise.

Obviously, the sampling frequency must be high enough “in order not to
lose too much information” — a concept we will discuss later on — from the orig-
inal signal, and there is a connection between this frequency and the sampled
signal’s “frequential content”. Anybody who conducts experiments knows this
“graph plotting principle”: when the signal’s value changes quickly (presence
of high frequencies), “many” points have to be plotted (it would actually be
preferable to use the phrase high point density), whereas when the signal’s value
changes slowly (presence of low frequencies), less points need to be plotted.

To sum up, the signal sampling must be done in such a way that the nu-
merical sequence {z;(n)} alone is enough to reconstruct the continuous-time
signal. The sampling theorem specifies the conditions that need to be met for
perfect reconstruction to be possible.

2.1 The sampling theorem

Let 2(t) be a continuous signal, with X (F') its Fourier transform, which will
also be called the spectrum. The sample sequence measured at the frequency
Fy = 1/Ty is denoted by zs(n) = z(nT}).

Definition 2.1 When X(F) # 0 for ' € (B1,B2) and X(F) = 0 ev-
erywhere else, x(t) is said to be (By, Ba) band-limited. If x(t) is real, its
Fourier transform has a property called hermitian symmetry, meaning that
X(F) = X*(=F), and the frequency band’s expression is (—B,+B). A com-
mon misuse of language consists of referring to the signal as a B-band signal.

L X(F)
F
-B Signd +B
band

Figure 2.2 — (—B,+B) Band-limited real signal

2.1.1 Perfect reconstruction

Our goal is to reconstruct z(t), at every time ¢, using the sampling sequence
zs(n) = x(nTy), while imposing a “reconstruction scheme” defined by the ex-

Discrete Time Signals and Sampling 53

pression (2.1):

+oo

y(t) = > a(nTy)h(t —nTy) (2.1)

n=—oQ

where h(t) is called a reconstruction function. Notice that 2.1 is linear with
respect to z(nT;). In order to reach this objective, two questions have to be
answered:

1. TIs there a class of signals z(¢) large enough for y(t) to be identical to z(¢)?
2. If that is the case, what is the expression of h(t)?

The answers to these questions are provided by the sampling theorem 2.1.

Theorem 2.1 (Sampling theorem)
Let x(t) be a (By, Ba) band-limited signal, real or complex, and let {x(nT;)} be
its sample sequence, then there are two possible cases:

1. If Fs = 1/Ts is such that Fy > By — By, then z(t) can be perfectly
reconstructed from its samples x(nTy) using the expression:

+oo
z(t) = > (i), b, (t —nl)) (2.2)

n=—oQ

where the F'T" of the reconstruction function h(p, p,)(t) is:

Hip,) (F) = Fi L(F € (B1, B2)) (2.3)

2. If Fs = 1/T; < By — By, perfect reconstruction turns out to be impossible
because of the “spectrum aliasing” phenomenon.

The proof uses the Poisson summation formula which gives the relation
between X (F) and the values of #(t) at sampling times nT;, and makes it
possible to determine the expression of the spectrum of the signal y(t) defined
by equation 2.1.

Lemma 2.1 (Poisson formula) Let x(t) be a signal, and X(F) its Fourier
transform. Then for any T:

1 +oo +oo .
T > X(F —kF,) = n_z_:oo 2(nTy) exp(—2jmnFT) (2.4)

where the left member is assumed to be a continuous function of F.

54 Digital Signal and Image Processing using MATLAB®

HINT: the left member of equation 2.4 will be written o(F). By construction,
o(F) is periodic with period Fy = 1/T;. Therefore, o(F) can be expanded in a

Fourier series that can be expressed as o(F) oL ;I;Zo_oo ene” 4™/ where:
IR ,
R _/ O_(F)eZJﬂ'nF/Fde
Fs 0
F, +oo
_ 2janFTs
= e X(F —kFy)| dF
+o0 P,
= > / 2™ ETe X(F — |F,)dF
k=—oc 0
+o0 —kF.+F, oo
— Z / eZ]ﬂ'nuTsX(u)du — / eZ]ﬂ'kuTsX(u)du
k=—o00 —kF; -0

where we have assumed that u = F' — kF in order to go from the first-to-last
line to the last line. By referring to property 1.7, which gives us the inverse
Fourier transform, we infer that ¢, = #(n7}), thus demonstrating formula 2.4.
n

We did not go into the detail of all the hypotheses necessary to justify the
previous calculations. We will assume that these calculations are valid. Other
books written on the Fourier transform can be looked up for a more rigorous
approach.

We will use the following definition for the discrete-time Fourier transform.
We will see another completely equivalent expression of it (definition 2.4, ex-
pression 2.21), but more frequently used in the case of numerical sequences.

Definition 2.2 (DTFT) The sum S 5 x(nT,) exp(—2janFT,) is called

n=—oQ

the Discrete-Time Fourier Transform (DTFT) of the sequence {x(nTy)}.

We now go back to the sampling theorem. By using the fact that the Fourier
transform of h(t—nT}) is H(F)e~ 2™ the Fourier transform of y(t), defined
by 2.1, can be written:

400 +oo

Y(F) = Z ¢(nTy) x H(F)e= %™ T = [(F) Z w(nTy)e=2mnFTs
= @ f X(F — kF,) (2.5)

Therefore, if Fy > Ba — By, the different contributions X(F — kF;) do
not overlap, and by simply assuming Hp, p.)(F) = Ts1(F € (B1, Ba)), Y(F)

Discrete Time Signals and Sampling 55

%SX(F)

F

T >

nf:x(l:—nlrs)

y i _Transition band
i Sl /7

| / X 1
W ki

F. ' -B Bl F.
Fy2

1
tos(F =
‘reC ZB(‘ \)‘ A Ts

Y

Figure 2.3 — Real signal reconstruction

coincides exactly with X (F'). Figure 2.3 illustrates this case for a real signal.
In this case, By = —B and Bs = B.

Except if specified otherwise, we will assume from now on that x(t) is real.
The sufficient reconstruction condition can be written as follows:

F,> 2B (2.6)

The limit frequency 2B 1s called the Nyquist frequency. Still in the same
case, the Fourier transform of a possible reconstruction function is Hp(F) =
Tsrectop(F), and therefore:

sin (27 Bt)

T (2.7)

hB(t) =

It should be noted that the filter Hp(F) = Tirectap(F) is not the only
possible filter. If Fs is assumed to be strictly greater than 2B, then we can
choose a filter with larger transitions bands (see Figure 2.3), making it easier
to design.

When there is no possible doubt, we will not indicate the dependence on
B, and simply write h(t) instead of hg(t).

Anti-aliasing filter

The reconstruction formula 2.1, is, according to the Poisson’s formula 2.4, as-
sociated with the periodization of the spectrum X (F) with the period Fy. Tt
follows that, for F; < 2B, the different non-zero parts of the spectrum over-
lap, making perfect reconstruction impossible. The overlapping phenomenon
1s called spectrum aliasing.

Figure 2.4 illustrates the spectrum aliasing phenomenon for a real signal
whose frequential content is of the “low-pass” type, implicitly meaning that it

“fills up” the band (—F,/2,+F;/2).

56 Digital Signal and Image Processing using MATLAB®

Except in some particular cases (see example 2.1 and modulations), we will
assume that spectrum signals are of this type, or that they can be modified to
fit this description.

TX(F)

> F

recte (F)

\ 4 N y
. D ¢ 4
Qe % e ®

F, FJ2 F.

1 N =+oco
= Y X(F-nFy)
Ten=e")

Figure 2.4 — The aliasing phenomenon

For a real signal, showing aliasing means that the frequencies beyond the
frequency F;/2 can be “brought back” to the (—F;/2,4+F,/2) band.
In practice, the following cases will occur:

1. The sampling frequency is imposed: if, knowing how the data is used, the
aliasing phenomenon is considered to “cause damage”, the appropriate
procedure for sampling a real signal requires the use of low-pass filter-
ing called anti-aliasing filtering which eliminates the components of the
frequencies higher than Fy/2.

2. The sampling frequency is not imposed: in this case, it can be chosen
high enough so that the aliased components of the signal do not alter
the expected results. If this is not possible, F; 1s set, and the situation
becomes the same as in the first case.

Speech signals are a good example. If they are sampled at 8,000 Hz, an ex-
tremely common value, high enough to make the person speaking recognizable
and understandable, and if no anti-aliasing filtering is done, the reconstructed
signal contains a “hissing” noise. This alone justifies the use of an anti-aliasing
filter. The irretrievable loss of high frequency components is actually better
than the presence of aliasing.

Figure 2.5 illustrates the case of a “low-pass”, prefiltered, real signal to
prevent aliasing.

In general, it is important to understand that anti-aliasing filtering must
be done in the band that is considered essential (useful band) to the unaliased
signal reconstruction. The low-pass filtering mentioned here corresponds to a
low-pass sampled signal.

The following general rule can be stated:

Discrete Time Signals and Sampling 57

1
Prefiltered fsx(':)
signal
F2
lsl _F
B T B
recte(F) | P nztes
R B)
‘ : 1 L TenSe
-Fs -Bo B Fe

Figure 2.5 — Absence of aliasing after [—Bo, +Bo] filtering [—Bo, + Bo]

The sampling operation of a signal at the frequency Iy must be preceded
by an anti-aliasing filtering with a gain equal to 1 and with a width of F
i the useful band.

The following example illustrates the case of a real band-pass signal, there-
fore (B = [— Fmax, — Pmin] Y [Piin, Fmax]) band-limited. If this was not the case,
an anti-aliasing filtering in the useful band B would be necessary.

Example 2.1 (Sampling of a narrowband signal)

Let 2(t) be a (Fumin, Fmax) “band-limited” real signal. If (Fnax + Fmin)/2 >
(FPrax — Piin), the signal is called a narrowband signal. Determine the sampling
frequencies that allow the perfect reconstruction of z(t).

HINT: the application of formula 2.6 leads to Fs > 2F .. We will now
show that it is still possible to conduct a slower sampling. In order to do this, let

us consider the Fourier transform of the signal y(¢) = :io_oo z(nTs)h(t—nTy)
given by expression 2.5:
H(F)
Y (F) = T k_z_: X(F — kF,)

This leads us to the conclusion that, in order for X (F) to coincide with
Y (F), the two following conditions have to be met:

1. the periodized function Y X (F — kF) shows no aliasing (Figure 2.6);

2. the function H(F) = T; for Fupin < |F| < Fmax and 0 otherwise (see
Figure 2.6).

58 Digital Signal and Image Processing using MATLAB®

Figure 2.6 — Narrowband signal (Fuin, Frax)

The non-aliasing condition (1) is met for frequencies for which both the
following inequalities are true:

sz_Fmin<Fmin and (k+1)Fs_Fmax>Fmax
which is equivalent to the condition:

2Fmax I3 2Fmin
K+l S S T
where k is an integer such that & < ky where kg i1s the integer part of
Fin/(Pmax — Fmin). For k = 0, We encounter once again the Nyquist fre-
quency 2Fpax, but if kg > 0, we get possible sampling frequencies that are
smaller than 2F,,x. Condition (2) leads to the following reconstruction func-
tion:

(2.8)

sin(rAFt)

h(t) =T cos(2m Fyt)

with AF = Fliax — Fiin and Fy = (Pnax + Fmin)/2. n

Causal approximation of the reconstruction formula

In order to calculate z(¢) at time ¢, expression 2.2 requires that all the future
samples beyond ¢ (absence of causality) and up until infinity be known. How-
ever, because h(t) decreases like 1/t, it is possible to approximate (¢) by using
a finite number of samples before and after t. A delay 1s therefore necessary
for practical reconstruction. For ¢ € (mTy, (m+ 1)T;) and a high enough value
of L, this can be written as follows:

m-+L
w(t)~ Y w(kTo)h(t - kTy) (2.9)
k=m-L
Of course, this expression only allows the calculation of #(t), in the interval
(mTy, (m+ 1)Ty), if «((m + L)T) is known. Reconstruction can therefore be
accomplished by tolerating a delay LTj.

We will see in Chapter 4 an implementation based on the insertion of zeros
followed by a filtering. Polynomial interpolations are other methods which can

be used.

Discrete Time Signals and Sampling 59

Spectrum aliasing and ambiguity

Let us consider the continuous-time sine signal:
z(t) = cos(2w Fyt) with Fy = 350 Hz (2.10)

sampled at a frequency of Fy = 800 Hz. The sample sequence can be written
as follows:

zs(n) = x(n/Fs) = cos(2m fon) with fo = Fo/F;s

Let us also consider the continuous-time sine signal of frequency F} = Fys —
Foi

y(t) = cos(2nF1t) with Fy = 1,150 Hz
sampled at the same frequency Fs = 800 Hz. The sample sequence is:
ys(n) = y(n/Fy) = cos(2m fin) with f = F1/F;
Using Il = Iy + Fy, we get fi = fo 4+ 1. Replacing in y(n) leads us to:
yo(n) = cos(2r(fo + 1)n) = cos(2mfun) = z.(n)

This result shows that the use of samples taken at a frequency of F; alone
is not enough to be able to tell signal #(t) from y(¢). Therefore reconstruction
will lead to the same signals, whether it is done from samples z;(n) or ys(n).
In the case of the signal z(¢), the result is accurate, but it is false for y(t): we
started with a frequency of F; = 1,150 Hz and ended up with a signal frequency
of Fy = 350 Hz.

For a given signal, for any integer k, it is not possible to distinguish Fj
from Fy = Fy+ kFs, k € ZintSet, which is called the tmage frequency of Fy
relative to Fy. This is the ambiguity due to the spectrum aliasing phenomenon
(or generally speaking to the Poisson formula).

Example 2.2 (Ambiguity)

In the previous example, we now consider F; = 450 Hz. Write a program
illustrating this case. The continuous-time signal will be visualized over a
period of 5 ms, as well as the samples z;(n) and y,(n).

HINT: type the program:

%===== ALTASEXPLE.M

Fs=800; Te=1/Fs; F0=350; F1=Fs-F0;
tmax=.005; mtm=[0:tmax/100:tmax];
xt=cos (2*pi*F0*mtm) ;

yt=cos (2*pi*F1l*mtm) ;

plot (mtm, [xt’ yt’]); grid; hold on;
nimax=floor (tmax/Te) ;

60 Digital Signal and Image Processing using MATLAB®

mtn=[0:nimax]*Te; % Sampling times
xen0=cos (2#%pi*F0*mtm) ;

plot (mtm,xen0,’07);

xenl=cos (2#%pi*F1l*mtm) ;
plot(mtm,xenl,’x’); hold off

O Samples from x(t) X Samples from y(t)

,,,

fff

,,,

0 05 1 15 2 25 3 35 4 45 5ms
Figure 2.7 — An illustration of aliasing

We obtain the same result y;(n) = ;(n). In the case of z(t) = sin(2n Fyt)
we obtain y;(n) = —u,(n). n

Listen to the spectrum aliasing

We will now perform two simple experiments that will allow us to “hear” the
spectrum aliasing phenomenon.

The first one simply consists of recording speech at a frequency of 8 kHz,
then to take one out of every two samples, and to listen to the signal obtained
at a frequency of 4 kHz. Type the following program:

%===== SPEECHALIAS.M

%===== .mat file containing the speech signal
load speechsig

Fs=8000; N=length(x); xr=x(1:2:N);

goundsc (x,Fs) ; pause; soundsc(xr,Fs/2)

“Hissing” noises can be heard in the restored signal. We will come back to
this example in exercise 4.15 and give the proper method for undersampling a
signal while avoiding aliasing.

In the second example, we create a digital signal from the sampling of a
signal defined by its continuous-time expression. Instead of working the way
the sampling theorem tells us to, we are going to cause spectrum aliasing.

Discrete Time Signals and Sampling 61

Consider the continuous-time signal given by 2.11:
z(t) = Acos(O(t)) witht € R (2.11)
The time dependent function defined by:

1 do

(2.12)
is called the instantaneous frequency. If x(t) is a Fy frequency sine signal, the
instantaneous frequency is equal to Fyy. In general, #(t) is said to be frequency
modulated. Unfortunately, there is no simple expression for the spectrum of
z(t). However we can suspect that, for the most part, the energy can be
located in the frequency band scanned by the function Fj(t).

Consider, for example, the case of an instantaneous frequency that varies
linearly with time, which can be written:

Fl(t) = Fy+ Xt

where A is expressed in Hz/s. By observing the signal over long enough periods
of time, between instants 0 and 7', the frequency should vary linearly between
Fy and Fy = Fy+ AT. We will now determine the expression of z(t). By
integrating F;(t), and by assuming that F;(0) = 0, we get:

O(t) = 2m Fyt + mAt?

The following program creates the samples taken at a frequency of F, =
8,000 Hz of the signal z(¢), for a period of T'= 2 s, with Fy = 1,000 Hz and
for a value of A that we will change, so as to sweep frequency ranges of varying
widths:

%===== MODULFREQ.M

lambda=1000; % Parameter (1000 ou 2000)
Fg=8000; % Sampling Freq.

F0=1000; % Initialization Freq.
T=2; % Observation time

it=(0:Fs*T-1) /Fs; % Time Vector
theta=2%pi*FO*it+pi*lambda* (it .~ 2);
x=cos (theta) ;

soundsc (x,Fs) % Result

The soundsc(x,Fe) function reconstructs a continuous-time signal from
samples x at a sampling frequency Fs, and sends it to the calculator’s audio
output.

First listen to the signal obtained for A = 1,000 Hz/s, as it has been defined
in the example. You can hear a sound going from a low-pitched frequency to
a high-pitched frequency, because the instantaneous frequency varies linearly

from Fy = 1,000 Hz to F; = 3,000 Hz.

62 Digital Signal and Image Processing using MATLAB®

Now listen to a signal for A = 2,000 Hz/s. This time, a low-pitched sound
can be heard, “rising” to a higher frequency, and finally going back down
to a low frequency. This result is rather unexpected, since the instantaneous
frequency varies linearly from Fy = 1,000 Hz to F; = 5,000 Hz. This is simply
the consequence of the spectrum aliasing phenomenon. Because the sampling
frequency is equal to 8,000 Hz, the frequencies beyond F,/2 = 4,000 Hz are
aliased in the (0 Hz - 4,000 Hz) band. This means that, during reconstruction
(see paragraph 2.1.2), when the instantaneous frequency varies between 4,000
Hz and 5,000 Hz, the soundsc(x,Fe) function sees the signal as a frequency
varying from 4,000 Hz to 3,000 Hz.

Interpolation and visual impressions

As we are now going to see, a sampling frequency equal to or slightly greater
than the Nyquist frequency leads to a continuous-time signal that cannot be
clearly identified simply by looking at it. This means that the eye, or more
precisely the brain, is a rather poor interpolator.

To observe this effect, consider a sine function with a frequency of 80 Hz
and a first sampling frequency of Fs; = 200 samples per second. This sampling
frequency 1s greater than the Nyquist frequency, equal only to 160 Hz, and
therefore is high enough to reconstruct the sine function. Now consider the
same signal sampled at a frequency of Fss = 1,500 samples per second. The
following program creates and plots the sequences of values corresponding to
these two sampling frequencies, over a period of 60ms:

%===== SINUS80.M

£0=80; % Sinus Freq.
obsdur=0.06; % Observation Time
Fs1=200; Fs2=1500; % Sampling Freq.

ni=round(obsdur*Fs1); n2=round (obsdur*Fs?2);
tps1=[0:n1-1]1/Fs1; tps2=[0:n2-1]/Fs2;

£1=3*%sin (2*pixfO*tpsl); s2=3*sin(2*pi*fO*tps2);
subplot (211); plot(tpsl,sl,’x’); grid

subplot (212); plot(tps2,s2,’x’); grid

The resulting plot is shown on Figure 2.8.

As you can see, the continuous-time sine function is not recognizable from
the top figure, corresponding to the 200 Hz sampling. On the other hand, the
bottom figure, corresponding to the 1,500 Hz sampling, gives a very good visual
impression of a sine function.

It should be pointed out that if the sampling frequency is chosen to be much
greater than the number of pixels on the screen, the dots on the graph are dis-
played as an almost “continuous-time” trajectory. An interpolation function
can then be used to build the trajectory. In Chapter 5, we will create an in-
terpolation program (exercise 4.14) that calculates (R — 1) intermediate points

Discrete Time Signals and Sampling 63

0.06 s

0.06s

Figure 2.8 — Drawing of the 80 Hz sine function, sampled at a frequency of 200 Hz
(top graph) and at a frequency of 1,500 Hz (bottom graph)

regularly spaced out between each point of a sequence. R is called the interpola-
tion order. In the following exercises, the function used to plot continuous-time
signals may be used, simply by imposing R > 1.

Exercise 2.1 (An illustration of the sampling theorem)
Consider the function #(t) = sin(27 Fyt), sampled at a frequency of Fj.

1. What signal results from perfect reconstruction for Fy = 200 Hz and
Fy =500 Hz?

2. A 200 Hz sine function is sampled at a frequency of Fy = 250 Hz. What
signal is obtained by using the ideal formula for perfect reconstruction?

3. Write a program:

— displaying a 200 Hz sine function,
— displaying 10 of its samples taken at the frequency Fj,

— displaying the reconstructed signal (expression 2.2). The reconstruc-
tion will be performed using the filter function in the following
way:

xti = filter(hn,1,xtr)

where hn is the sample sequence h(nTy) of h(t) (expression 2.7) and
xtr the sample sequence of the sine function completed with zeros,

— and checking the accuracy of the results for questions 1 and 2.

64 Digital Signal and Image Processing using MATLAB®

2.1.2 Digital-to-analog conversion

Reconstructing a continuous-time analog signal from a numerical sequence is
done by using a Digital-to-Analog Converter, or DAC. The DAC blocks the
value of #(nTs) during the time interval (nT, (n+1)T;) where Ty = 1/F;. The
converter is called a Zero-Order Hold (ZOH).

zq(t), the ZOH’s output signal, is shaped like a “staircase”. Tts expression
is:

wo(t) = w(nT)ho(t = nTy) = a(nT) (L € (nTy, 0T, + T,))

n n

Compared to the original signal #(t), the signal z¢(¢) has some of its power
in high frequencies due to the presence of steep transitions. The frequential
study (figure 2.9) clearly shows this behavior: the Poisson formula 2.4 gives us
the following expression for the Fourier transform of zy(t):

+oo
Xo(F) = Ho(F) Y X(F—n/Ty)
n=—oo
with:
Ho(F) = smﬂ(—;Ts S)e_JnFTS _ sinc(FTs)e_”FTs
Side lobes
Zero-Order Hold X(F
) ° D
08 |- : ¥
06 |--i- X
04 | -
O R Rt R S B e e A 7%, 2uf &k Sl SESEEE
0 L NN L ‘ :
-50 -40 -30 -20 -10-40 4 10 20 30 40 KkHz

0 . ; v N1 T\ Y . .
-50 40 -30 -20 -10-40 4 10 20 30 40 kHz

Figure 2.9 — Spectrum modulus at the ZOH’s output

The shape of |Xo(F)| shows two kinds of distortion when comparing the
original signal z(t) with the reconstructed signal zq(t):

1. The first one is due to the presence of the term [sinc(F'T;)| which deforms
the original spectrum in the band (—F,/2, F/2).

Discrete Time Signals and Sampling 65

2. The second one has to do with the spectrum’s periodization and the
presence of side lobes for the function [sinc(f7Ts)| beyond F/2, and par-
ticularly in the band (F;/2, F;) corresponding to the first side lobe.

For example, in the case of an “audio application” sampled at a frequency
of Fy = 8,000 Hz, these components appear between 4,000 Hz and 8,000
Hz and are perfectly audible. One possible solution is to apply a low-pass
filter to the ZOH’s output.

In general, the greater the sampling frequency (compared to the band of the
signal #(¢)), the weaker these distortions will be. This is why for some devices,
the ZOH 1s preceded by an interpolation operation. This processing technique
is explained on page 154.

2.2 Plotting a signal as a function of time

The sampling theorem makes it possible to go from a continuous-time signal
to a sequence of values obtained by using a filter with a gain equal to 1 in the
band (—Fs/2, Fs/2), followed by a sampling procedure at a frequency of Fj.
From now on, and except if specified otherwise, we will only be considering
discrete-time signals, that is to say sequences of values, that we will study
plotted as functions of time and frequency. These two kinds of plotting, which
are equivalent by definition, are nevertheless both useful when interpreting the
phenomena we are dealing with.

Digital signals

The first model, called the temporal model, for a digital signal, is made up of
the values of its samples. As is the case for continuous-time, the support of
these sequences can be limited to INT.

Definition 2.3 (Causal and anticausal signals) The causal signals x(n)
are such that x(n) = 0 for n < 0. If all the elements of the sequence are
equal to zero for n > 0, the sequence is said to be anticausal.

In the same way, some “basic” signals have to be considered to come up
with an ideal model for certain of the observed signals. This is the case for
example for a sine voltage or for very short pulses used to characterize the
behaviour of certain “systems”. Here is an (incomplete) list of some of these
signals:

— The unit pulse defined by:

(5(71):{ 1 forn=0 (2.13)

0 otherwise

66 Digital Signal and Image Processing using MATLAB®

— The unit step defined by:

u(n):{ 1 forn>0 (2.14)

0 otherwise

— The sign function defined by:

. _ |41 for n>0
sign(n) = 2u(n) — 1 = {_1 for n<0 (2.15)

The gate function or rectangle function defined, for N > 0, by:

recty (n) = u(n) — u(n — N) = { b forn €10 N1 g 4
— The sine function defined by:

z(n) = wosin(27 fon + @) (2.17)
— The complex exponential defined by:

z(n) = xgexp(2jmfon) (2.18)
— The truncated sine function defined by:

z(n) = zosin(2w fon + ¢) x recty(n) (2.19)
— The truncated complexr exrponential defined by:

z(n) = xoexp(2jmfon) X recty(n) (2.20)

A discrete-time signal will be referred to as either the set {z(n)} of its
values, or by its generic element z(n) or z,, depending on the context.

Example 2.3 (Basic signals)
Write a program designed to create and plot basic signals.

HINT: the program basicfct.m plots a few basic signals, which are shown in
Figure 2.10.

%===== BASICFCT.M

N=20; mtime=[0:N-1];

impuls=eye(1,N); % Unit Pulse
untstep=ones (1,0); % Unit Step

£0=.1; fsin=gin(2*pi*fO*mtime); % Sinusoid

Discrete Time Signals and Sampling 67

1 2
- I A S R 7 S S S S
0.6 f-----mpommmeobe b ‘ : ‘
T XX K XXX KK XX KKK XK XK
04 | ‘ : :
o2l 0.5 | comemheeb
0 IR 0
10 5 10 15 20 10 5 10 15 20
05 xxxx ,,,,,,, 08 [-or
! ! [0) S S S S
O N T X 04| i
05 oot XURTTTTIN TR 0.2 fomob
-1 ‘ 0
0 5 10 15 20 -20 -10 0 10 20
Figure 2.10 — Basic functions
P=3; tps2=[-N:N]; % 2P+1 sample rect.

porteP=[zeros(1,N-P) ones(1,2*P+1) zeros(1,N-P)];
subplot (221) ; plot (mtime,impuls,’x’); grid
subplot (222); plot(mtime,untstep,’x’); grid
subplot (223) ; plot (mtime,fsin,’x’); grid

subplot (224) ; plot (tps2,porteP,’x’); grid

2.3 Spectral representation

The main goal in the spectral study of a signal is to find out how to decompose
this signal as a sum of sines. To evaluate the importance of the cos(2m fyn)
component with the frequency fy in the (n) signal, the first idea would be to
calculate:

Q(fo) = Z z(n) cos(2m fon)

nez

which can be interpreted as a quantity that measures how similar the sequences
{x(n)} and {cos(2mfyn)} are. It is exactly what the Discrete-Time Fourier
Transform (definition 2.2) does, as well, in fact, as the Fourier transform for
continuous-time functions.

2.3.1 Discrete-time Fourier transform (DTFT)

The sampling period T appears in the DTFT’s expression in definition 2.4.

68 Digital Signal and Image Processing using MATLAB®

Definition 2.4 (DTFT) The discrete-time Fourier transform of a sequence
{x(n)} is the function of the real variable f, periodic with period 1, defined by:

+ oo

X(f)= Y x(n)exp(-2jmnf) (2.21)

n=—oQ

As you can see, we need only impose FT, = f and replace z(nT}) by z(n)
to go from 2.4 to 2.21%.

Definition 2.4 calls for a few comments: it can be proven (see ref. [27])
that if {x(n)} is summable (3_,, |z(n)| < +00), the series (2.21) converges uni-
formly to a continuous function X (f). However, if {z(n)} is square summable
(>, lz(n)|* < +00) without having a summable modulus, then the series con-
verges in quadratic mean. There can be no uniform convergence.

Because of its periodicity, the DTFT is plotted on an interval of length 1,
most often the intervals (—1/2,41/2) or (0, 1).

Example 2.4 (DTFT of the rectangle function)
Let recty(n) be the signal given by 2.16. Tts DTFT is:

N-1
X(f) = D e =14 eI (2.22)
n=0
N for f =0 mod 1
= 1 — e~ 207Nf . sin(Nrf)
e Al O\ b O i S VA 0 mod 1
1 — e-2inf ¢ sin(mf) or /7 0mo

The e=9™(V=17 ig of modulus 1, and only has influence on the phase of

X (f) (Figure 2.11).

0 02 04 06 08 1 12 14 16 18

Figure 2.11 — Modulus of the DTFT of the rectangle signal for N = 10

L X (F), which refers to the FT in 2.4 must not be confused with X (f), the DTFT.

Discrete Time Signals and Sampling 69

|sin(N7f)/sin(rf)| shows one main lobe, with a width of 2/N and side
lobes with a width 1/N. We will often deal with this signal again, particularly
when observing a signal assumed to be of infinite duration, over a finite number
N of values, since it amounts to multiplying it by a rectangle with a duration

of N.

Starting off from X (f), how can we go back to #(n)? One possible answer
is given in the following result.

Theorem 2.2 (Inverse DTFT) If X(f) is a periodic function with period
1, and if fo | X (f)|?df < +oo, then X(f) = >, x(n)e=2™/ where the x(n)

coeﬁ?czents are given by:

1/2 0
z(n) = _1/2X(f)e gt qf (2.23)

Relation between the FT and the DTFT

First let us once again consider the reconstruction formula of a real signal z(¢)
from its samples z;(n):

sin (27 Bt)

sz Jhu(t—nl) with hp(t)= —
wF

(2.24)

F; refers to the sampling frequency and B to the bandwidth of the signal
z(t). We will assume Fs > 2B. The frequency, expressed in Hz, will be denoted
by F', the normalized frequency (no dimension) by f and the sampling period
by Ty = 1/F;.

In practice it is often needed to find the Fourier transform using the DTFT
of z4(n), the frequency F; and the band B. We get:

+oo
X(F)=1(F €(-B,B)) > X(F-kF,)
k=—o00
The Poisson formula 2.4 leads us to:

+ oo
Tsﬂ(F € (—B,B)) Z xs(n)eZJWnF/Fs

n=—oQ

X(F)

= T, (Fe(-B,B)X;(F/Fs)

where X (f) refers to the DTFT of z,(n). What should be remembered is that
the FT of #(t) is obtained:

— by calculating the DTFT of z,(n);

70 Digital Signal and Image Processing using MATLAB®

— by dividing the amplitude by Fj;

— by multiplying the frequency axis by Fj;

— and by limiting the frequency band to the interval (—B, B).
Conversely, the DTFT of z,(n) is obtained:

— by calculating the FT of #(¢);

— by multiplying the amplitude by Fj;

by dividing the frequency axis by Fj;

and by periodizing with period 1.

+oo
X(f)=F Y X((F-h)F) (2.25)

k=—o0

The value of B is often omitted, and implicitly B = F,/2. For example,
the MATLAB® function soundsc(x,Fs), produces the signal in the band
(—=Fs/2, Fs/2) using the sequence x and the value Fs for the sampling frequency.

The discrete-time Fourier transform’s main properties are summarized in
Appendix A2.

As in the continuous-time case, we have the Parseval’s formula:

+oo 1/2
z(n)]* = X(H)*d 2.26
3 ker= [ixorg (2.26)

and the conservation of the dot product:

oo 1/2
2 el)= [XY (2.27)

Because the left member of 2.26 is, by definition, the signal’s energy, | X (f)|?
represents the energy’s distribution along the frequency axis. It is therefore
called the energy spectral density (esd), or spectrum. In the literature, this
last word is associated with the function | X (f)]. If X(f) is included, this adds
up to three definitions for the same word. But in practice, this is not important,
as the context is often enough to clear up any ambiguity. It should be pointed
out that the two expressions |X(f)| and |X(f)|? become proportional if the
decibel scale is used, by imposing:

Sap (f) = 201ogo | X ()] (2.28)

Discrete Time Signals and Sampling 71

Example 2.5 (Inverse DTFT of a rectangle)
Let X(f) = 1(f € (=b,b)) be a periodic function with period 1 and 0 < b <
1/2:

1. Determine the sequence {x(n)} that has X(f) as its DTFT.

2. Using this result, find the sequence y(n) that has Y (f) = (X(f — fo) +
X(f+ fo))/2 as its DTFT.

HINT:
1. By using relation 2.23, we get:

b .
l‘(n) = / erﬂ'nfdf _ 1 [ezjﬂ'nf]b_b — M

b 2jmn ™
{x(n)} is a non-causal sequence consisting of an infinity of terms.
2. Because of the linearity and modulation properties:

erﬂ'nfD +e—2j7rnfg
y(n) = z(n) 5 = z(n) cos(2m fon)

The sequence y(n) also has an infinity of non-zero values. [

Exercise 2.2 (Time domain hermitian symmetry)
Consider a signal z(n) such that z(n) = #*(—n). Notice that z(0) is real.

1. Show that its DTFT X (f) is real.

2. Determine the expression of the DTFT Y (f) of the sequence defined by:

z(n) for n>0
y(n) =< =(0)/2 for n=20
0 otherwise

Using Y*(f), find the relation between X (f) and Y (f).

2.3.2 Discrete Fourier transform (DFT)
Definition of the discrete Fourier transform

A computer calculation of the DTFT, based on the values of the samples z(n),
imposes an infinite workload, because the sequence is made up of an infinity of
terms, and because the frequency f varies continuously on the interval (0, 1).
This is why, digitally speaking, the DTFT does not stand a chance against the

72 Digital Signal and Image Processing using MATLAB®

discrete Fourter transform, or DFT. The DFT calculation is limited to a finite
number of values of n, and a finite number of values of f.

The digital use of the DFT has acquired an enormous and undisputed prac-
tical importance with the discovery of a fast calculation method known as the
fast Fourier transform, or FFT. The algorithm for the FFT can be found in
paragraph 2.4.

Consider the finite sequence {z(0),
its DTFT is expressed as follows:

.., (P —1)}. Using definition 2.21,

P-1
— Z x(n)e—Zywnf
n=0

where f € (0,1). In order to obtain the values of X(f) using a calculator,
only a finite number N of values for f are taken. The first idea that comes to

mind is to take N values, uniformly spaced-out between 0 and 1, meaning that
f=k/N with k € {0, ..., N — 1}. This gives us the N values:

X(k/N) = Z Je~2mnk/N (2.29)

In this expression, P and N play two very different roles: N is the number
of points used to calculate the DTFT, and P is the number of observed points
of the temporal sequence. As we will see later on, N influences the precision
of the plotting of X (f), whereas P is related to what is called the frequency
resolution.

In practice, P and N are chosen so that N > P. We then impose:

. v | xn) forne{0,...,P—1}
x(n)_{ O() forne{P,...,N—1}

Obviously:
k’/N Z —2]7rnk/N — Z i,(n)e—Zyﬂ'nk/N
n=0 n=0

Because the sequence x(n) is completed with (N — P) zeros, an operation
called zero-padding, in the end we have as many points for the sequence #(n)
as we do for X (k/N). Choosing to take as many points for both the temporal
sequence and the frequential sequence does not restrict in any way the concepts
we are trying to explain. This leads to the definition of the discrete Fourier
transform.

Discrete Time Signals and Sampling 73

Definition 2.5 Let {x(n)} a N-length sequence. Its discrete Fourier trans-
form or DFT s defined by:

N-1

X(k)y= > z(m)WF, ke(0,1,...N-1) (2.30)
n=0

where Wy = e~ %™IN (2.31)

1s an N -th root of unity, that is to say such that WJJ\\,T = 1. The wnverse formula,
leading from the sequence {X(k)} to the sequence {x(n)}, is:

z(n) = % Z_: X (k)yWym* (2.32)

To show 2.32, you need to calculate its second member by replacing X (k)
by 2.30 and using the following equality:

0 otherwise

N-1
1 , =
g(n) = = Z p2imkn/N _ { 1 forn=0mod N (2.33)
k=0

With MATLAB®, the ££t function uses the fast calculation algorithm for
the DFT. This is the proper syntax:

xf=fft(xt,N)

The resulting N-length sequence xf is the DFT of the P-length (N > P)
sequence xt (2.29).

If parameter N is missing, it is chosen equal to P. Although the function £ft
allows the calculation of the values of the DFT for any number N of frequency
points, N should be taken equal to a power of 2 to reduce the computation
time?.

Exercise 2.3 (Comparing computation speeds)

Write a program that compares the respective speeds of the direct calculation
using the expression . z(n) exp(—2jmnf) and the FFT calculation. Look into
the use of the functions tic, toc, etime... for purposes of measuring compu-
tation times.

Use of the DFT to plot and study the properties of the DTFT

As it was said before, the DFT is used to digitally determine the values of the
DTFT. The more precise the plotting of the DFT is, the higher the number of
frequency points has to be.

?The N=nextpow2(P) function returns the closest power of 2 greater than P.

74 Digital Signal and Image Processing using MATLAB®

Exercise 2.4 (Spectrum of the triangle function)

Consider the triangle function defined by sig=[1:P P-1:-1:0]. This function
is real. Using the FFT, digitally verify hermitian symmetry properties by
plotting:

1. The modulus and the phase of its DTFT for P = 10.
2. The imaginary and real parts of the DTFT.

Example 2.6 (Time delay properties)

Let {z(n)} be a zero signal outside the {—ng, ..., n1} interval where ng and ny
are two positive integers, and let y(n) be defined by y(n) = x(n —ng), obtained
by a time-shift of ng samples:

1. Determine the DTFT of {x(n)}, expressing it as a function of the DTFT
of {y(n)}.

2. Write a program that checks the previous result for ng = 5. In order to
do this, set {z(n)} equal to 1 between —5 and 5, and y(n) = z(n—>5). To
digitally evaluate the DTFT over 256 frequency points regularly spaced-
out in the (0,1) interval, the ££t function is used.

HINT:

1. We have:

n1)) ni1+no)
X(f) = Z x(n)e‘zjmf — Zimnof Z z(k — no)e_zﬂkf
n=-—ng k=0

ni1+no

— erﬂ'an Z y(k,)e—Zjﬂ'kf :erﬂ'any(f)
k=0

2. X(f) =sin(bnf)/sin(r f). This means that to get the DTFT of {x(n)},

all you have to do is calculate the DTFT of {y(n)} and multiply it by
eleﬂ'f)

The following program can be used to verify this:

%===== SHIFTF.M

Lfft=256; % Length equal to a power of two
£f=(0:Lfft-1) /Lfft; ¥ Normalized Freq.

n0=5; nl1=5; yt=ones(nl+n0+1,1);

Yf=fft (yt,Lfft); % DFT of y(n)

XE=Yf .* exp(2%j*pi*5xf’);

subplot(211); plot(real (Xf)); grid

%==== Imag. part roughly zero (temporal symmetry)
subplot (212) ; plot(imag(Xf)); grid

Discrete Time Signals and Sampling 75

Properties of the DFT

The properties of the DFT show strong similarities with those of the DTFT.
However, there is an essential difference. In the formulas associated with the
DFT, dall the index calculations are done modulo N. The discrete Fourier trans-
form’s main properties are summarized in Appendix A3.

Exercise 2.5 (Circular convolution of the rectangular signal)
Consider the rectangular signal z(n) = 1 (n € {0,---,7}). Compare and ex-
plain the effects of the following commands (if£t is the function used to obtain
the inverse DFT):

||x=ones(1,8); xs=fft(x); xs=xs .* xs; ifft(xs)

and:

||x=ones(1,8); xs=fft(x,16); xs=xs .* xs; ifft(xs)

Exercise 2.6 (Delay)
Because of the time shift property, in order to get the L points DFT of a signal
that has non-zero values between —ng and ny, the sequence’s DFT must be
calculated on N points and then the delay has to be taken into account, by mul-
tiplying the result, term-by-term, by the complex exponential exp(2jmnok/L),
where k € {0, ..., L—1}. This exercise introduces a different method to achieve
the same result.

Let #(n) be a signal equal to zero for n outside the set of indices {—ng, ...,
ny}, where ng and ny are positive, and let y(n) be the signal defined by:

z(n) forne {0,...,n1}
yn) =< 0 forne{n +1,...,L—ng—1}
z(n—L) forne{l —ng,...,L—1}

with L > ng + n1. One way of seeing it is to imagine the values of x(n) with
negative indices being translated to the right by L points.

1. Calculate the DTFT of y(n) on L points. Conclude.

2. Let 2(n) be asignal equal to 1 between —5 and 5, apply the previous result
to a program designed to calculate the DTFT of z(n) on 256 points.

The point of exercise 2.6 is to explain that, in order to determine the DFT of
a sequence z(n) with a length of N, for L points, with L > N, you need to
calculate the DFT of the sequence:

y(n mod L) = z(n)

meaning the sequence whose indices are calculated modulo L.

76 Digital Signal and Image Processing using MATLAB®

Example 2.7 (Calculating the IDFT using the DFT)

Let X (k) be the DFT of 2(n), and let y(k) = jX* (k) be the sequence resulting
from the permutation of the imaginary parts and the real parts of X (k). In
other words, y(k) = X! (k)+j X (k), where X®(k) and X* (k) refer to the real
and imaginary parts of X (k) respectively.

Calculate the DFT of y(k). Use the result to determine a method for
calculating the inverse DFT of a sequence using a direct DFT function with
the real and imaginary parts as its input, and the real and imaginary parts of
the IDFT as its output.

HINT: applying the definition of the DFT to the sequence y(k), we get:

N-1 N-1
Y(n) — Z y(k)e—Zjﬂ'nk/N —] Z xX* (k,)e—Zjﬂ'nk/N
k=0 0

*
I

= (i X(k)ezf”“k/N) = (Va()" = N((' () + jo* (n)

This means that the use of the DFT function on the sequence jX*(k) leads
to the reconstruction of the original sequence z(n) (multiplied by the factor N)
with its real and imaginary parts switched.

Let us now assume that we have at our disposal a direct DFT that has two
arrays as its input, one for the real part, and the other for the imaginary part of
the signal we wish to transform, and that has two arrays as its output, one for
the real part, and the other for the imaginary part of the transform, according
to the following synopsis:

| (xR,XI)= aft (xR,xI)

To go from this function to the inverse DFT, all we have to do is set the
transform as the input, by switching the roles of the real and imaginary parts.
The resulting output is the inverse DFT except for a factor 1/N. This can be
expressed as follows:

” (xI,xR)= dft (XI,XR)

In MATLAB®, the ££t function, used to directly calculate the DFT, has an
array of complex numbers as its argument, which means that it is not possible
to apply the previous result. MATLAB®’s ifft function, in order to calculate
the inverse DFT from the direct DFT, uses the conjugation property:

x(n) — % (Z_: X*(k)e—Zjﬂkn/N)

The inverse DFT is the conjugate of the conjugate’s direct DFT. This can
be written x=conj(fft(conj(X))) where £ft is the function calculating the
DFT (see next paragraph). [

Discrete Time Signals and Sampling 77

2.4 Fast Fourier transform

The fast Fourier transform, or FFT, first published in 1965 by J. W. Cooley and
J. W. Tuckey [24], is a fast DFT calculation technique. The basic algorithm,
many versions of which can be found, calculates a number of points N, equal to
a power of 2, and the time saved compared with a direct calculation is roughly:

N

log, (NV)

To get a better idea, if N = 1,024, the FFT is about 100 times faster than
the direct calculation based on the definition of the DFT.

To understand its mechanisms, consider the case N = 8. Using the notation
Wy = exp(—2jn/N), the DFT can be expressed as the sum of a term related
to even rank indices and of a term related to odd rank indices:

gain =

Xe = (2(0) + (2) (YW + 2 (8)We*)
+WE (21 3wk (5)W§k+x(7)W§’“)
= (2(0)+2(2)W4 +x(YW+ 2 (8) W)
+We (2(1) + z(3)W§ —|—x(5)W42k + z(T)WF) (2.34)

A length 8 DFT is thus replaced by two length 4 DFTs. By iterating the
process, the DFT’s length is divided by two at every step. It takes 10 steps to
go from a length 1024 DFT to length 2 DFTs. In our case, the next step is
(see Figure 2.12):

(2(0) + 2(OWF) + W (2(2) 4 2(6)W3") =
(2(0) + 2(OWF) + Wi (2(2) + 2(6)W5)
and:
(#(1) + 2(5)WE) + Wy (2(3) + (W) =
(o(1) + 2(5)WE) + WS (2(3) + (1))
Each term 1s associated with a sum, a subtraction, and a multiplication by a
power of Wx. An example for this kind of calculation is detailed in Figure
2.12.

By representing all of the terms in a diagram, the calculation algorithm,
Figure 2.13, shows an elementary structure called butterfly.

Evaluating the number of operations

As it can be seen in expression 2.34, a length 8 FFT was replaced, in the first
step, by two length 4 FFTs. We have to include 8 complex multiplication-
addition operations (call MAC operations?).

3The acronym MAC is in reference to the Multiplication-ACcumulation operation that
can be found in the s = s + a;b; algorithm, used to calculate a sum of products Y, a;b;.

78 Digital Signal and Image Processing using MATLAB®

Xp——\
4k
Xq4— Wg"—>
X2
Xg—Wg ‘>R~ WZK—>
X ————
4k
X5 — Wg"—>
X3 Xk

X7 — WgK >R~ W2K >R~ W

Figure 2.12 — Calculation of one of the FFT’s terms

Figure 2.13 — Calculations of the FFT terms. The dotted arrows show the calculation
Of X3

This result can easily be generalized for a length N DFT, where N equals
a power of 2: if Cy is the number of MAC operations for the Nth step, Cy =
2CNy2 + N leads us to the complexity:

Cy =N x logz(N)

We also have to include an index calculation phase needed to access the
data. Figure 2.13 shows that the indices of the terms z, appear in an order
corresponding to the inverted binary code of n, as 1t 1s indicated in the following
table. This is called the bit reverse access.

Discrete Time Signals and Sampling 79

Rank | Binary Coding | Reversal | Element
0 000 000 0
1 001 100 1
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

COMMENTS:

— All of the W% terms are displayed in the left part of Figure 2.13. The
part on the right was simplified by considering certain values, particularly

W4 = —1. As you can see, first level processing is limited to adding and
subtracting. The second level could also be dealt with in this particular
way.

In most of the FFT calculation programs, using these simplifications al-
lows you to save a little time.

— Processors designed for signal processing have a particular addressing
mode, exempting them from actually calculating the indices. The ad-
dressing mode is called bit reverse addressing.

Exercise 2.7 (FFTs of real sequences)

Consider the real sequence z(n), with n € {0... N —1}. Let X (k) be its DFT.
The complex sequence y(n) will be defined by y(n) = #(2n) + jz(2n + 1). Let
Ap and By be the DFTs of the sequences #(2n) and z(2n + 1) respectively. By
linearity, y(n) has the sequence Y (k) = A(k) + jB(k) as its DFT (notice that
A(k) and B(k) may be complex. Therefore A(k) and B(k) are not the real and
imaginary parts of Y (k) respectively).

1. By noticing that z(2n) is the real part of y(n) and is therefore equal to
(y(n) + y*(n))/2, express A(k) using the term Y (k). Do the same for
B(k).

2. Find a method similar to the decomposition given by expression 2.34 to
show that X (k) can be expressed as a function of A(k) and B(k). Using
this result, write an algorithm that calculates the DFT of a real length
N sequence based on a complex length N/2 FFT algorithm.

3. Compare the complexities of the previous algorithm and the complex
length N FFT algorithm.

80 Digital Signal and Image Processing using MATLAB®

Exercise 2.8 (Using the FFT)
What is the purpose of the following program:

plot (£££ ([0 1],128))
set (gca, ’AspectRatio’,[1 1])

Chapter 3

Spectral Observation

The purpose of this chapter is to introduce the reader to the two following
fundamental concepts:

— the accuracy of the frequency measurement when the DFT is used to
evaluate a signal’s DTFT. As we will see, this accuracy depends on the
number of points used to calculate the DFT;

— the spectral resolution, which is the ability to discern two distinct frequen-
cies contained in the same signal. It depends on the observation time and
on the weighting windows applied to the signal.

3.1 Spectral accuracy and resolution

3.1.1 Observation of a complex exponential

To illustrate the DFT’s use in signal spectrum observation, we will begin with
a simple example.

Example 3.1 (Sampling a complex exponential) Consider the sequence
resulting from the sampling of a complex exponential e*7o! at a frequency
of Fy = 1/T;. If we set fo = Fy/F, and assume it to be < 1/2, we get
z(n) = eimfon
1. Determine the DTFT’s expression for the sequence {#(n) = exp(2jnfon)}
where fo =7/32 and n € {0,---,31}.

2. Using this result, find the DTFT’s values at the points of frequency f =
k/32, for k € {0,--- 31},

3. Using the £ft command, display the modulus of the DFT of {z(n)}.

4. Now let fy = 0.2. Display the modulus of the DFT of {#(n)}. How do
you explain the result?

82 Digital Signal and Image Processing using MATLAB®

HINT:

1. Starting off with definition 2.21 of the DTFT, we get:

N-1 .
— 2jmon —~2jnfn _ ST = fo)) _jr(v=1)(fo-1)
X(f) = ;e e = =) ¢ (3.1)

Because a finite duration sequence is all we have at our disposal, the
signal’s DTFT shows ripples (ratio of the sines). |X(f)| is plotted in
Figure 3.1, illustrating this phenomenon. This was achieved with the
following program:

%===== RESOL1.M

N=32; % Number of points of the signal
£0=7/32; % Sine Frequency

npts=512; % Number of points of the frequency

fregqmin=-0.5; freqmax=0.5;
pas=(freqmax-freqmin) /npts;
f=[freqmin:pas:freqmax-pas]; freqM=f-£0;
%===== Direct calculion of the DTFT
fctM=sin (N*freqM*pi) ./ sin(freqM*pi);
plot (f,abs (fctM)); grid

hold on; plot([f0 £01,[0 35]); hold off

in which expression 3.1 is directly used.

N=32 ! ! ! | | 3 3 | DTFT
30------ R SR RS AR S ISR R SRR

I I I I I I I I I

I I I I I I I I I

25 ' I ' ' I | ' I |
fff

I I I I I I I I I

I I I I I I I I I

I I I I I I i I I

20 ' I ' ' ' I i ' I
———

I I I I I I I I

I I I I I I I I

I I I I I I I I

15 ' I I ' ' I ' I
———

I ' i I ' i ' i

I I I I I I I I

I I I I I I b I I

10 i I I I I I I ' I
ff e e TR e

I ' i I ' i | ' i

I I I I I I il I I

I I I I I I I I I

' I ' ' I I ' I I
L S I

I ' i ' i

I I A I

0) ’ | | \
-05 04 03 02 01 0| |01 7/32 03 04 05
1N=1/32

Figure 3.1 — Modulus of the DTFT of the complex exponential fo = 7/32 with
N =32

2. Because the DFT corresponds to a sampling of the DTFT at frequency
points k/N | its values are usually different from zero, except if fy is an
exact multiple of 1/N, which is the case for fy = 7/32. The values of f
are given by 0, 1/32, ..., 31/32. We then get X (k) =32 if k = 7/32 and
0 otherwise. Type:

Spectral Observation 83

%===== RESOL2.M
N=32; L=32; freq=(0:L-1)/L;
£0=7/32; xt=exp(2*j*pi*f0*(0:N-1));

xf=fft (xt,L); % Calculation with the DFT
plot(freq,abs(xf),’x’);
%===== The DTFT calculated by FFT is superposed

L=512; freq=(0:L-1)/L; xf=fft(xt,L);
hold on ; plot(freq,abs(xf),’:’); grid; hold off

This leads to the graph in Figure 3.2.

35

32
30

25
20
15
10

N SN I A N
(| P AVEYRVEVEVINIE VIR VRVAVAVEVAVAVAVAVAVAVAV VAV VAVAVE VAV

0 01 02 03 04 05 06 07 08 09 1
7132

Figure 3.2 — DF'T of the complex exponential when fo is a multiple of 1/N

A “peak” is observed (this is actually the only non-zero value of X (k)),
with an amplitude of 32 at a frequency of 7/32, and all the other frequency
points have a zero spectrum. This result, which seems to agree with what
would be expected of a infinite duration complex exponential with only
one peak, is rather exceptional.

3. Figure 3.3 results from imposing f; = 0.2, and as it clearly shows, 1t is
quite different from a single “peak”. An explanation of this can be found
in paragraph 3.1.4 which deals with the subject of windowing.

3.1.2 Plotting accuracy of the DTFT

As we have just seen, the DFT is all we have at our disposal to plot the DTFT,
or rather its modulus. The previous example is a good illustration of a number
of important properties, the first of which 1s:

84 Digital Signal and Image Processing using MATLAB®

35

2 30 f-mmomdeeee

25 -
20| -
15 \
o

5[
XX)? W

o B Ly ‘XXXXHUFX XX KKK KKK KK XX
0 0.1 03 04| |05 06 07 08 09 1
f0=O.2

VL=1UN

Figure 3.3 — DF'T of the complex exponential when fq is not a multiple of 1/N

For those frequencies thal are not a multiple of 1/L, where L is the num-
ber of calculated DF'T points, a pure sine appears in the form of several
non-zero values. The value with the highest modulus is close to the actual
frequency.

It should be noted that the gap between the frequency fy and the frequency
associated to the maximum of the L = 32 values of the DFT’s modulus is, in
the worst case, equal to 1/L. This leads us to the following rule:

If L refers to the number of DF'T calculation points, the frequency accu-
racy is equal to 1/L. For signals sampled at a frequency of Fy (in Hz),
this leads to a accuracy of Fs/L Hz.

3.1.3 Frequency resolution

Accuracy must not be confused with the ability to distinguish (or separate) two
close frequencies in a signal. One possible definition of the frequency resolu-
tion is the minimum difference between the two sine frequencies with different
amplitudes, necessary to “observe” an attenuation greater than 3 dB between
their two maximums.

As we saw on page 68, limiting ourselves to handling a number of values
no greater than N causes lobes to appear in the sine spectrum. The main

Spectral Observation 85

Figure 3.4 — Separation of frequencies

lobe’s width is equal to 2/N. This means that if z(n) contains two sines the
frequencies of which are separated by less than 1/N, their two main lobes
will be so close that it will be difficult to distinguish them by observing the
spectrum. This is even more true when their amplitudes are very far apart.

Resolution and noise

As we will see in Chapter 10, there is no point in talking about frequency res-
olution in the absence of noise. Consider observations made without noise and
assume we have 100 measurement points of the signal x(n) = A cos(27fin +
$1) + Aa cos(2m fan + ¢2). To determine, from the values of z(n), the two fre-
quencies, the two amplitudes and the two phases, we have to solve the following
system of six equations with six unknowns:

A1 + A2 = l‘(O)
Aycos(2mfi + ¢1) + Az cos(2mf2 + ¢2) = z(1)
Aycos(10mfy + ¢1) + Agcos(10mfa + ¢2) = x(5)

The 94 remaining values must be consistent with the result! It should be
noted that the precision of the result is limited only by the calculator’s preci-
sion, and that no conditions have to be met regarding the difference between
f1 and fo. And there’s no point in using the DTFT calculation!

However, if there is some noise, the observed values of #(n) are “riddled
with errors”. The statistical estimation theory tells us that it is better to use
all of the values, calculating some sort of a mean value. This is precisely what
the DTFT does. Separating f; and f»> now depends on the difference between
f1 and fs, but also on the desired signal-to-noise ratio.

If Fy = 1/T; refers to the sampling frequency, we have:

The frequency resolution R is expressed in Hz. Its has the same order
of magnitude as Fs /N, which is also the inverse of the total observation
time I’ = NTj.

86 Digital Signal and Image Processing using MATLAB®

Without additional informational, frequency differences of less than F;/N =
1/T should not be interpreted when studying a spectrum! In the literature,
the quantity R = F;/N = 1/T is called the Fourier limit.

As an example, type the following program:

%===== RESOLFREQ.M

N=32; L=128; freq=(0:L-1)/L;

%===== First frequency

£0=.2; xtO=exp(2*j*pi*f0*(0:N-1)); xfO=fft(xt0,L);
%===== Second frequence = 0.23

£1=.23; xtl=exp(2*j*pi*f1*(0:N-1)); xfi1=fft(xt1,L);
subplot (311); plot(freq,abs([xf0’ xf1’ (xf0+xf1)’1));

%===== Second frequency = 0.22
£1=.22; xtl=exp(2*j*pi*f1*(0:N-1)); xfi1=fft(xt1,L);
subplot (312); plot(freq,abs([xf0’ xf1’ (xf0+xf1)’1));

%===== Third frequency = 0.21

£1=.21; xtl=exp(2*j*pi*f1*(0:N-1)); xfi1=fft(xt1,L);
subplot (313); plot(freq,abs([xf0’ xf1’ (xf0+xf1)’1));
grid

Figure 3.5 shows the modulus of the DTFT for the sum of two sines, for
three frequency pairs. In the first case, fo = 0.2 and f; = 0.23, the presence of
two sines can be shown, whereas 1t is impossible in the other cases.

60
40
20

0

40

f,=0.2 f,=0.21

0 01 fyf 03 04 05 06 07 08 09 1

0 o1 03 04 05 06 07 08 09 1
fo f1

Figure 3.5 — Frequency resolution: the closer the two frequencies are, the harder it
18 to distinguish their peaks

The R x T product plays the role of a merit factor when using the DTFT
to search for frequencies. For a given resolution R, choosing T so as to have
R x T > 3 usually allows an easy separation of the frequencies.

Spectral Observation 87

Exercise 3.1 (Studying the resolution)
Consider the signal z(n), sum of two real sines with a frequency of f; and
fi = fo+ Af and amplitudes of ag > 0 and a; > 0 respectively.

1. Using gy (f) = sin(Nxf)/sin(mf), give an expression of X(f).

2. Let Nfy > 1, Nfi > 1 and N|Af| > 1. Use these inequalities to show
that | X (f)| has two maximums close to the 2 frequencies fy and f.

3. Write a program that displays the signal’s spectrum for a given a = a1 /ag
dB ratio, and a given phase shift. Change the difference A f from 1/N to
2/N for N = 32 and fy = 0.2. Without changing any other parameters,
compare the two resolutions corresponding to ® = 0 and ® = 7/2.

3.1.4 Effects of windowing on the resolution
Rectangular windows

Limiting the number of samples N of a signal can be interpreted as the term-by-
term multiplication of the signal by the sequence wy(n) = 1(n € {0,...,N —
1}). This sequence is called a rectangular window. The same signal was called
a “rectangle” in the previous chapter.

From a spectral perspective, this multiplication, or weighting, is equivalent
to convoluting the DTFT of #(n) with the DTFT Wx(f) of the sequence
wp (n). This can be written as follows:

{w(n) x w(n)} — (X *Wn)(f)
where Wi (f) is expressed (formula 2.22):

sin(Nf) e—im(N-1)f

Wn(f) = sin(mf)

The effect of this convolution operation is to cause unwanted ripples to
appear in the spectrum.

The concept of windows

Generally speaking, a window i1s a sequence of coefficients used to weight a
signal. A relatively detailed study of the windows used for signal processing
can be found in [43]. Usually, when the frequency resolution is improved:

— the main lobe grows narrower;

— and the side lobes become smaller.

88 Digital Signal and Image Processing using MATLAB®

Unfortunately, reducing the height of the side lobes always means widening
the main lobe. A compromise must therefore be made between these effects. In
the following exercise, which illustrates these properties, we will only be using
the Hamming window, one of the most commonly used windows. Its expression
is:

2mn —
wn () :{ 0.54 — 0.46 cos(*5*) when n € {0,---, N — 1} (3.2)

0 otherwise

Exercise 3.2 (Effect of the Hamming windowing)

Consider a length N = 32 sample of a complex exponential z(n) with a fre-
quency of fo = 0.2 and an amplitude of A = 1. Each sample is multiplied by
cpwp(n), where wp(n) refers to the Hamming window and cp, is a constant we
have to determine.

1. Calculate, for any window, the constant ¢; such that the maximum am-
plitude of the DFT of the windowed signal at f; is equal to A.

2. Write a program that displays the DTFT of x(n) for the rectangular
windowing and the Hamming windowing.

3. For both windows, check the width of the main lobe and the height of
the side lobe (the lobe’s height will be expressed in dB compared to the
height of the main lobe).

4. We want to distinguish, in a signal sampled at 1,000 Hz, two sines of the
same amplitude. Use the previous plot to find an order of magnitude for
the resolution of the two windows that were studied.

5. We want to distinguish, in a signal sampled at 1,000 Hz, two sines with
an amplitude ratio now worth 25 dB. Find an order of magnitude for the
windows that were studied.

In practice, the frequency resolution for sines of the same amplitude is
roughly equal to 1/N when using a rectangular window. When the amplitude
ratio is no longer equal to 1, the resolution depends on which analysis window
is chosen. Exercise 3.2 shows that the Hamming window leads to a resolution
that is not as good as the one obtained with the rectangular window, for an
amplitude ratio of 0 dB, but this phenomenon is reversed for an amplitude
ratio of 25 dB.

A few windows

The following table gives a few characteristics for the most commonly used
windows (see Figure 3.6). A is the main lobe’s width and A4p is the attenu-
ation, in dB, of the first side lobe, compared to the main lobe’s height. The

Spectral Observation 89

results of this table can be found using a MATLAB® program of the type (see
Figure 3.6):

%===== ONEWIN.M

% Blackman

N=10; w=0.42-0.5%cos(2*pi*(0:N-1)/N)+0.08*cos (4*pi*(0:N-1)/N);
w=w/sum (w) ; %===== Gain in 0 equal to 1

ws=fft(w,1024);

plot ((0:1023)/1024,20%1og10(abs (ws)))
set(gca,’xlim’,[0 .5],’ylim’,[-100 0]1); grid
%===== To measure freq. click once on each max.
[xm,ym]=ginput (2)

Type Expression for n € {0,..., N — 1} A Agp =
Rectangular | 1(n € {0,...,N —1}) 2/N | —13dB
Triangular N-width Triangle 4/N | —25dB
2
Hann 05— 0.5cos(%) 4/N | —31dB
. 2mn
Hamming 0.54 —0.46 COS(T) 4/N | —41 dB
2 4
Blackman | 0.42 — 0.5 cos(%) +0.08 cos(%) 6/N | —61.5 dB

' | Attenuation

-100

0 005 01 05 02 025 03 035 04 045 05
|

Half-width of the main lobe

Figure 3.6 — The Blackman window parameters

90 Digital Signal and Image Processing using MATLAB®

Periodic and symmetrical window

Consider, forn € {0,---, N—1}, the two following expressions of the Hamming
window:

wp(n) = 0.54 — 0.46 cos (2%1) and wg(n) = 0.54 — 0.46 cos (]\?ﬂ-_nl)

The first one, indexed with a P, is periodic with period N, that is to
say wp(0) = wp(N). Tt is used, among other things, as a weighting window
for the spectral analysis, of length N portions of a signal. The second one,
indexed with an S, is symmetrical in the sense that ws(0) = wg(N — 1),
wg(1) = ws(N —2)... As we will see, it is particularly used as a weighting
window in the case of length N FIR filter design (see paragraph 4.7, page 133).

If you have the MATLAB® signal toolbox at your disposal, type help
hamming. Depending on what version you own, you may or may not have
the choice between periodic windows and symmetrical windows.

3.2 Short term Fourier transform

The Fourier transform “compares” the signals to the eternal exponentials by
calculating a mean on the time axis. It is therefore better suited for the study
of phenomena that vary little in time than it is for brief, transitory phenom-
ena. This does not mean, however, that information is lost, because the Fourier
transform is bijective under the conditions expressed in the introduction chap-
ter. Consider, for example, the signal z(¢) made up of two consecutive portions
of sines with durations of 77 and 75 and frequencies of f; = 0.1 and f = 0.2
(Figure 3.7). This signal can be created by the following program:

%===== TWOSIN1.M

T1=512; T2=256; % Respective durations
tps1=[0:T1-1];tps2=[0:T2-1]; tps=[tpsl Tl+tps2];

£1=0.1; x1=sin(2*pi*fl*tpsl);

£2=0.2; x2=sin(2*pi*f2*tps2);

x=[x1 x2]; plot(tps,x); grid 7% Plotting of the 2 sinusoids
set (gca, ’x1im’, [384 576])

The Fourier transform X (f) of the complete signal “contains” the informa-
tion regarding the order in which the two sines appear. However this informa-
tion’s interpretation is difficult, because it is found, not very explicitly, in the
transform’s phase. Therefore, by limiting ourselves to the visualization of the
modulus of X(f), there is no way for us to know that f, comes before f5. This
can be illustrated by typing the following program:

%===== SPECCT1.M
% Plotting of the modulus and phase of the signal x
% defined in program TWOSIN1.M

Spectral Observation 91

I Iy

400 420 440 460 480 500 520 540 560s

Figure 3.7 — Two portions of sines

Lfft=1024; freq=(0:Lfft-1)/Lfft;

xf=fft (x,Lfft); xfa=abs(xf); xfph=angle(xf);
subplot (211) ; plot(freq,xfa); grid

set (gca,’x1im’, [0 0.5],’ylim’, [0 max(xfa)]);
subplot (212); plot (freq,xfph); grid

set (gca, ’x1im’, [0 0.5],’ylim’, [-pi pil);

Figure 3.8 shows two peaks at frequencies 0.1 and 0.2, but it does not tell
us which one comes first.

=Y
150 {------ i e At SISO T
200 b

ol

0 005 01 015 02 025 03 035 04 045 05

92 Digital Signal and Image Processing using MATLAB®

% x1 and x2 are defined in TWOSIN1.M

xinv=[x2 x1]; xinvf=abs (fft(xinv,Lfft));

plot (freq,xinvf); grid

set (gca, ’x1im’, [0 0.5],’ylim’, [0 max(xinvE)]);

The resulting spectrum is almost identical to the previous one. However,
if the time interval is “cut up” in N,; sub-intervals with a duration of P,
and if Fourier transforms are performed on each of these sub-intervals, the
information concerning the order of the frequencies becomes clear. This leads
us to the concept of short term Fourier transform, or STFT. At the end of the
previous program, type:

Yi===== SPECCT3.M
% T1,T2, x defined in TWOSIN1.M
nfft=1024; freq=[0:nfft-1]/nfft;

nsi=8; npt=£ix ((T1+T2)/nsi);

xs=zeros (npt,nsi); xs(:)=x(1l:npt*nsi);
xsf=abs (fft (xs,nfft)); xsf=xsf(1:nfft/2,:);
mtime=[0:npt:npt*nsi-1];

subplot (211) ; imagesc(mtime,freq(1l:nfft/2),xsf);
set (gca, ’x1im’, [0 700])

nsi=32; npt=fix ((T1+T2)/nsi);

xs=zeros (npt,nsi); xs(:)=x(1l:npt*nsi);
xsf=abs (fft (xs,nfft)); xsf=xsf(1:nfft/2,:);
mtime=[0:npt:npt*nsi-1];

subplot (212) ; imagesc(mtime,freq(1l:nfft/2),xsf);
set (gca, ’x1im’, [0 700])

The spectra, which can be displayed using the imagesc command (see Chap-
ter 6), are represented in Figure 3.9 for two values of Ng;.

Figure 3.9 — Spectrum for Ny =8 (above) and N¢; = 32 (below)

surf or mesh can also be used for 3D graphs.

Spectral Observation 93

It is clear that by following the time axis, the STFT tells us the order of the
frequencies used in the signal. By comparing the two figures, we notice that
the smaller the number of points K; in a sub-interval:

— the easier it is to locate the position on the time axis of 7} = 512, corre-
sponding to the frequency change;

— the harder it is to locate the positions 0.1 and 0.2 on the frequency axis
because of the width of the main lobes.

Let P; be the number of points in an interval. The following comments can
be made:

— Because the DTFT calculates a “mean” of P; values, choosing a high
value of P; causes an intense smoothing of the signal’s fluctuations in
time. This means that the time transitions cannot be located precisely.

— On the other hand, a high value of P; gives every DTFT more calculation
points. Therefore the width of the lobes (roughly equal to 1/ P;) decreases
and the frequency peaks appear more clearly.

Given the sampling frequency Fy = 1/T, the frequency resolution is roughly
equal to Rp = F;/P;, while the time resolution is roughly equal to Ry = P;Ty,
meaning that the product of the two remains roughly equal to 1.

When using the short term Fourier transform (STFT), improving time
resolution decreases frequency resolution.

Exercise 3.3 (Short term Fourier transform)

The incTF1.mat and incTF2.mat we are going to use are supposed to come
from the sampling at F; = 1,000 Hz of the sum of a certain number of frequen-
tial components with different durations. To access these files, execute the two
following programs:

%===== GENE1.M
T=0.35; Fs=1000; NT=fix(Fs*T); tp=(0:NT-1); xt=zeros(1,NT);
fq=[113 247 327 413]/Fs; org=fix([0 0 0.030 0.150]*Fs);
dur=fix ([0.350 0.050 0.200 0.200]*Fs); amp=[1 1.7 1.9 1.8];
for ii=1:4
xc=amp (i1)*cos (2*pixfq(ii) *tp);
ti=org(ii)+1;tf=org(ii)+dur(ii);
xt(ti:tf)=xt (ti:tf)+xc(ti:tf);
end
save incTF1 xt Fs

94 Digital Signal and Image Processing using MATLAB®

%===== GENE2.M

T=0.35; Fs=1000; NT=fix(Fs*T); tp=(0:NT-1)/Fs;
£0=250; fm=3; beta=6;
phi=fO*tp+betaxsin(2*pi*fm*tp); xt=cos (2*pi*phi);
save incTF2 xt Fs

1. Write a short term Fourier transform function. It will be named:
|| [spec,tpsl=tfct(xt,Lb,ovlp,Lfft,win)

where:

xt is the signal,

— Lb the length (number of samples) of the blocks,
— ovlp the number of overlapping samples,

— Lfft the length of the FFT,

— win the window type,

— spec the complex spectrogram,

— tps the normalized time.
2. Load one of the two signals and display its chronogram.

3. Write a program designed to perform a time/frequency analysis of the
signal. The time interval will be cut up in sub-intervals of the same
length, with an overlapping coefficient of 50%. The contour function
will be used for displaying the results.

Exercise 3.4 (Visualizing the aliasing with the STFT)

Consider the signal 2.11 created in the paragraph on page 60 and illustrating
the the aliasing phenomenon by listening to the created signal. Visualize the
evolution of this signal’s spectrum using the mesh function, or in a 2D graph
by using the contour function. The values T'= 2 and A = 2,000 will be taken.
In order to achieve this, the signal will be cut up in “slices” with a length of
100 samples, on which FFTs will be performed. The blocks should not overlap.
A Hamming window can be used before performing the FFT.

3.3 Summing up

The following exercise illustrates on one hand the sampling effects with the
possible presence of aliasing and on the other hand the effects of truncation
with the presence of ripples.

Exercise 3.5 (Effects of sampling and windowing)
Consider the continuous-time signal z(t) = exp(—t/to)1(t € (0,+o0[) with
tg > 0. Its Fourier transform is called X (F).

Spectral Observation 95

1. Determine the expression of its Fourier transform X (F). Use it to find the
value, as an expression of ¢y, of the frequency corresponding to | X (0)]/v/2.

2. (1) is sampled at the frequency Fy = 1/T;. Let z5(n) = x(nT;) be its
sample sequence and X;(f) the DTFT of #,(n). Using formula 2.25, find
X (f) as an expression of X (F). What can you notice?

3. The DTFT is evaluated using only the first M samples #;(0) to x,(M —1).
What is the resulting effect on the signal’s spectrum?

4. Write a program that gives you figure 3.10, illustrating the different sig-
nal spectra, continuous-time, discrete-time, and windowed discrete-time
(to = 1/0.7, M = 10, F; = 2 Hz and Lfft= 256). Check the results for
the period of the ripples.

2 0 2 (Hz)

Figure 3.10 — Effects of sampling and windowing on the signal’s spectrum: (a)
original signal with its samples, (b) FT et DTFT with aliasing, (c) truncated signal,
(d) effects of tuncation (ripples) and values of the DFT.

3.4 Application examples and exercises

3.4.1 Amplitude modulations

Exercise 3.6 (Amplitude modulation)

Consider a B band, continuous-time real signal m(t), that is to say a signal
whose Fourier transform M (F) is equal to zero for |F| > B. Let Fy be a
frequency such that Fy > B (for broadcasting, the order of magnitude for
Fy/B is 100).

96 Digital Signal and Image Processing using MATLAB®

We call amplitude modulation (AM)* the operation that generates the sig-

nal:

z(t) = (1 4+ km(t)) cos(2m Fyt)

Fy is called the carrier frequency. k refers to a positive constant called the
modulation index, and is chosen so as to have |[km(t)| < 1. When [km(t)]| > 1,
there is what 1s called overmodulation.

1.

Give the expression of the FT X (F) of 2(¢) as a function of k, M (F) and
Fy. How wide is the band occupied by X (F) around Fy?

To perform a spectral analysis of the signal z(t), it has to be sam-
pled at Fy = 500 kHz. We will assume that Iy = 50 and that
m(t) = cos(2nFit) + 1.8 cos(2nFat) + 0.9 cos(2n Fst) where Fy = 2,310
Hz, Fy = 3,750 Hz and F3 = 4,960 Hz. Let k = 1/2. Write a program
that generates x(¢) for a duration of 2 ms. Make sure the chronograms
for m(t) and z(t) show no overmodulation.

. Give the number of samples that have to be processed in order to distin-

guish the two frequencies contained in the signal.

How long must the FFT be if we want a precision of 100 Hz?

. Write a program that draws the modulated signal’s spectrum.

Exercise 3.7 (Carrierless Double Side-Band)
Consider the B band real signal m(t). Its spectrum is called M (F). M(F) =0
for |F'| > B. Let Fy > B be a frequency.

The carrierless amplitude modulation represented in Figure 3.11; is de-
scribed by the expression z(t) = m(t) cos(27 Fyt).

1.

mt) H@)—» X(t)=m(t) cos(2nF)

cos(ZnFot)T Oscillator

Figure 3.11 — Carrierless Double Side- Band

Determine the expression of the amplitude spectrum of the modulated
signal z(t).

I This modulation is called Double Side-Band (DSB) modulation as opposed to the Single
Side-Band (SSB) modulation [97].

2.

Spectral Observation 97

The signal z(¢) is modulated a second time by the local oscillator
2cos(2nFot + ¢). The result is the signal y(¢) = 2x(t) cos(2nFot + ¢).
Determine, as a function of M (F), Fy and ¢, the expression of the spec-
trum of y(t). Use this result to determine a method for reconstructing
the message m(t) from the signal y(¢). Why must we have ¢ = 07 This
operation is called synchronous demodulation when ¢ = 0.

. Consider m(t) = cos(2nFyt) 4+ 1.8 cos(2m Fat) 4 0.9 cos(27 Fst) where I} =

2,310 Hz, Fy = 3,750 Hz and F5 = 4,960 Hz. Set Fy = 50 kHz and
Fy, = 500 kHz as your display frequencies. Write a program that plots
the original, modulated and demodulated signals, as well as their spectra.

Exercise 3.8 (Stereophonic signal)

Some frequency modulated broadcasting are sent stereophonically. This means
that the received signal makes it possible to reconstruct both the left and right
signals. This is achieved by sending the composite signal:

e(t) = (I(t) +r(t)) + ({(@t) — r(2)) cos(2n Fyt)

where [(t) and r(t) refer to the left and right signals respectively. Notice that
the signal ({(t)—r(t)) is transmitted as carrierless double side-band modulation
(see exercise 3.7). TFor broadcasting, the signals [(¢) and r(¢) are band-pass
signals centered in Fy = 38 kHz with a bandwidth of 30 kHz.

1.

Determine the spectrum’s expression for the signal ¢(t). Draw a quick
sketch of its graph.

. Show that e(t) makes it possible to reconstruct the signal on a mono-

phonic set.

. Write a program that displays ¢(?), 2¢(¢) and 2d(t) for a sampling fre-

quency of Fy =1 MHz, where:

— the signal () is the sum of 5 sines with the amplitudes 0.7, 1.5,
1.9, 2.8 and 3.7, and with the frequencies 380 Hz, 957 Hz, 1,164 Hz,
1,687 Hz and 1,953 Hz respectively;

— the signal r(¢) is the sum of 5 sines with the amplitudes 0.3,1.5, 2.7,
1.7 and 2.3, and with the frequencies 347 Hz, 523 Hz, 1,367 Hz,
2,465 Hz and 3,888 Hz respectively.

Use this to find a method for separately reconstructing, by sampling, the
signals {(¢) and r(t).

98 Digital Signal and Image Processing using MATLAB®

3.4.2 Frequency modulation

Let m(t) be a B band real signal. The name frequency modulation at the carrier
frequency Fy > B refers to the operation that generates the signal:

z(t) = Acos(2mFyt + ®(1))

where the instantaneous frequency F;(¢) defined by:

Fl)=Fo+ ———= (3.3)
is related to m(t) by:
Fi(t) = Fo + AF x mf(t) (3.4)

This leads us to ®(¢) = 2rAF fo u)du. For commercial broadcasting,
Fy>» B, since B = 15 kHz and Fy belongs to the 88 MHz to 108 MHz band.
We can rewrite z(¢) as:

z(t) = Acos(2rFyt + ®(1)) = Re {Aezj”F”t'l'jq)(t)} = Re {a(t)ezj”F”t}

where a(t) = AeZ®® . If [y > B, it can be shown [97] that, to obtain the
spectrum of z(t), all you have to do is determine the spectrum of «(¢), and to
translate it, after dividing by 2, around the frequencies % Fjp.

Let us now see the particular case of a sine message m(t) = cos(2nFt).
In this case, the instantaneous frequency F;(t) varies between Fy — AF and
Fy + AF. This is why AF is called the frequency deviation. Let 8 = AF/B.
B is the modulation index®.

It can be shown that the periodic function a(t) = Aexp(j®(t)) =
Aexp(jBsin(2rFput)) has, as its Fourier series expansion:

=A Z Jn (B) exp(2jmnFint)

n—=—oQ

where J,(3) refers to the Bessel function of the first kind of order n. Tts
spectrum shows peaks spaced-out at intervals of F,,. This means that the z(¢)
spectrum also shows peaks spaced-out at intervals of Fy,, around +Fy (Figure
3.12).

Figure 3.12 was obtained using the modfm2.m program. This program plots
the spectrum of a signal modulated in frequency by a sine with a frequency of
F, = 5 kHz and for a carrier frequency Fy = 2 MHz. Type:

2The modulation index plays a fundamental role in communications. In particular, it can
be shown the performances of the frequency modulation in the presence of noise increase like

5.

Spectral Observation 99

,,,

,,,

Fo

198 1985 199 1995 2 2005 201 2015 2.02 MHz

Figure 3.12 — Spectrum of a frequency modulated sine signal with a modulation index
B =2.4 (in this case, Fy peak is missing)

%===== MODFM2.M

Fs=1.0e7; % Sampling freq. for the simulation
npts=20000; mtime=(0:npts-1)/Fs;

F0=2.0e6; % Carrier freq.

Fn=5000; % Signal freq.

disp(’Carrier frequency:’);

disp(sprintf (’\t FO = %d MHz’,F0/1e6));

disp(’Message frequency:’);

disp(sprintf (’\t Fm = %d kHz’,Fm/1000));
disp(’Instantaneous frequency:’);

disp(sprintf (°\t £i(t)/(2 pi) = FO + Deltaf#*sin(2*pi*Fm*t)’));
%===== Frequency deviation

disp(’Choose the frequency deviation (kHz):’);

Df=input (sprintf (’\t Deltaf (kHz) = ’));

Df=Df%1000; % Deviation in Hz

beta=Df/Fm; % Modulation index

theta=2%pi*FO*mt ime+beta*cos (24pi*Fm*mtime) ; x=cos (theta);
LEfft=32%1024; fq=Fs*(0:Lfft-1)/Lfft;

xf=abs (fft (x,Lfft)); plot(fq,xf); ax=axis; grid
axis([max ([0 FO-2*Df]) min([Fs/2 FO0+2*Df]) ax(3) ax(4)])

The program asks for the value of the frequency deviation (input...). By
giving, for example, the value 2,4%Fm/1000 (in the program this corresponds
to Deltaf=12), the result is that the peak at Fy is erased because in this case,
B =24 and Jy(2.4) = 0.

This page intentionally left blank

Chapter 4

Linear Filters

When building a model to describe the behavior of some of the most commonly
used systems, we often rely on the superposition principle. It amounts to as-
suming linearity (the use of Kirchoff’s laws are an example). Usually, time
wmnvariance is also assumed. It consists of saying that, on the time scales that
are used, the characteristics of these systems remain unchanged.

Linear filters are defined in the following by these two properties. Because
of their importance in the field of signal processing, the next two chapters deal
exclusively with filters. This chapter presents the main properties, as well as a
few design methods.

4.1 Definitions and properties

Definition 4.1 (Linear filter) A discrete-time linear filter' is a system
whose output sequence results from the input sequence {x(n)} according to the
erTpression:

+o0 oo
y(n) = (xxh)(n) = Y z(k)h(n—k)= > h(k)z(n—k) (4.1)

where the sequence {h(n)} that characterizes the filter is called the impulse
response. The (x x h) operation is called convolution (Figure 4.1).

For example, the processing defined by y(n) = %x(n)—l— %x(n— 1) is therefore
a linear filtering. The sequence {h(n)} is defined by h(0) = %, h(1) = % and
h(n) = 0 for any value of n # {0, 1}.

For commonly used classes of signals, expression 4.1 is perfectly well defined,
and satisfies the linearity property. We will now prove the time invariance
property. In order to do this, we will assume that the output sequence y(n)

"Most of the time, we will just write filter instead of linear filter.

102 Digital Signal and Image Processing using MATLAB®

Input % | Linearfilter | " oOutput

CO N OV ARt
\\\(}pnvol ufi»qn,/’/

Figure 4.1 — Discrete-time linear filter

corresponds to the input signal z(n), and we must determine what output
signal v(n) corresponds to the input signal u(n) = x(n — ng). We can write:

+o0 oo
vin) = > u(k)h(n—k)= > a(k—no)h(n— k)
. “°°
= > a(p)h((n—no) = p) = y(n — no)

However, if there is an ng delay for the input, there i1s also a time delay
of ng for the output. It should be noted that linear systems as simple as the
following two:

y(n) = x(n)cos(2mfon)
+oo
yn) = D w(k)h(n—k)

do not possess the time invariance property.
Throughout the rest of this chapter, the two important concepts of causality
and BIBO stability will often be referred to.

Definition 4.2 (Causality) A system is said to be causal when its oulput
y(n) at time n depends only on the current and previous values of the sequences
z(n) and y(n):

y(n) = F{z(p)}, {y(p)}) withp,p’ <n

Definition 4.3 (Bounded input — bounded output stability (BIBO))
A system is said to be BIBO stable’ if, for any bounded input, the output
remains bounded:

Vn, Je(n)| < A= |y(n)| < B

We have the following two results:

2From now on, when there is no possible confusion, we will just write “stable” instead of

“BIBO stable”.

Linear Filters 103

Theorem 4.1 A filter is causal if and only if its impulse response {h(n)} is
such that:

h(n) =0 whenn <0 (4.2)

HINT: because of 4.1, y(n) depends only on {z(n), z(n—1), ..., z(n—k), ...}
for k > 0, if and only if (k) = 0 for k < 0. If the terms h(n) are equal to zero
for n > M, the filter memory is finite, and its value is M. [

Theorem 4.2 A linear filter 1s BIBO stable if and only if its tmpulse response
{h(n)} verifies:

> lh(n)] < +o0 (4.3)

nez

HINT: let us first assume that), |h(k)] = M < +o00. To any bounded input,
that is to say such that |z(n)| < A, corresponds a signal y(n) that verifies:

|<Z|h Wa(n— k)| < AM
kel

and which is therefore bounded itself. This means that the filter 1s BIBO stable.

Conversely, we assume that the filter is BIBO stable. We will use proof by
contradiction. Let us assume that)", [A(k)| = co. The question is “can we
find at least one bounded input yielding a non-bounded output?”. All we have
to do is take x(n) = sign(h(—n)) as our bounded input, resulting at the time
n = 0 in an infinite output y(0) = >, |h(k)]. L]

A first use of MATLAB®’s filter function

In MATLAB®, the filtering operation is performed by a built-in function called
filter. This function provides us with a causal implementation of the filtering
operation, so in order to “filter” the input sequence {z(1), ..., #(N)} by the
impulse response filter of finite length {h(1), ..., R(L)} (the phrase used will
be “finite impulse response filter”, or FIR filter), we need to type:

y = filter(h,1,x);

The output sequence {y(1), ..., y(N)} has the same length as the input
sequence. To calculate it, the (L —1) values preceding x(1) must first be known.
filter can accept a fourth argument, used to specify the initial state associated
with these values. If this argument is left blank, the £ilter considers that all

104 Digital Signal and Image Processing using MATLAB®

values are equal to zero, and we have:

y(1) = h(1)z(1)

y(2) = h(1)z(2) 4+ r(2)x(1)

y(L) = h(D)a(L)+- -+ h(L)x(1)

y(n) = h(l)z(n)+ -+ h(L)z(n — L +1)
y(N) : h(D)a(N) + -+ h(L)a(N = L +1)

Note that because the impulse response has a finite length, it necessarily
verifies 4.3, and therefore the filter is BIBO stable. The fourth argument’s
purpose will be discussed more in depth in paragraph 5.1.

Example 4.1 (Smoothing filter) We are going to filter the sequence [0 : 6]
with the use of the impulse response filter [1 1]. Type:

Yi===== EXFILTINT.M
clear; x=[0:6]; h=[1 1];
y=filter(h,1,x)

The resulting sequence is:

y =

0 1 3 5 7 9 11

Example 4.2 (Smoothing filtering of a random sequence)
We will now filter a random sequence x=rand(50,1) using a filter with the
impulse response:

h:[lllll]

This filter calculates a weighted mean of five consecutive samples. The
result is expected to be less “turbulent” than the signal we started with. Type:

%===== EXFILTRAND.M

clear; x=rand(50,1); % Input signal x
h=[1/8 1/4 1/4 1/4 1/8]; % Impulse response
y=filter(h,1,x); % Output signal y

plot ([x y1); grid

The result is shown in Figure 4.2.

Linear Filters 105

Figure 4.2 — Filtering a random sequence with the smoothing impulse response filter
{12221}/8

Definition 4.4 (Step response of a filter)

The step response of a filter is this filter’s output when the unit step (u(n) =
1 when n > 0 and 0 otherwise) is fed into the input. The step response’s
eTpression is:

y(n) = > hik)

k=—o0

In the case of a causal filter, y(n) = > ._o h(k) for n > 0 and 0 otherwise.

Example 4.3 (Step response of an FIR filter)

Consider the impulse response filter 2(n) = Aa”™ for 0 < n < 15 and 0 otherwise.
Tts step response is denoted y(n). Determine the expression of y(n). Use this
to find the expression of A that leads to 1 for n > 15. Write a program that
calculates, with the filter function, the 30 first samples of the step response.

HINT: we have, for n < 15:

For n > 15, y(n) = A(1—a'®)/(1—a). In order to have y(n) = 1 for n > 15,
A has to be set such that A = (1 — a)/(1 — a*®). The higher the value of |al,
the slower the step response will close in on the final value 1, reaching 1t at the
time n = 15. Type the following program:

%===== REPINDIC.M
% Impulse responses
N=16; a=[1/2 3/4 7/8]; HNct=length(a);

106 Digital Signal and Image Processing using MATLAB®

a=ones (l,1)*a; hh=(0:N-1) ’*ones (1,Nct) ;

h=a .~ hh; sigm=sum(h);

%===== The impulse responses are normalized in order

% to compare the rise times

ho=h(:,1)/sigm(1); hi=h(:,2)/sigm(2); h2=h(:,3)/sign(3);
Lrep=30; % Response’s length
tps=[0:Lrep-1]; x=ones(Lrep,1);

%===== Responses with null initial conditions
y=[filter(ho,1,x) filter(hl,1,x) filter(h2,1,x)];

plot (tps,y,’=’,tps,y,’0’); set(gca,’YLim’,[0 1.1]); grid

The results are given in Figure 4.3. [

0 5 10 15 20 25 30

Figure 4.3 — Step responses

4.2 The z-transform

An important tool used in discrete-time linear-filtering is the z-transform for
which we will give the definition, the main properties and a description of
how it is used in a filtering context. Most of the properties mentioned in this
paragraph are given without proof. Some of them will have no direct use for
what follows; however, it is useful simply to know they exist.

4.2.1 Definition and properties

Definition 4.5 (z-transform) The z-transform (ZT) of the sequence {x(n)}
is the function X, () of the complexr variable =z defined by:

+ oo

X.(z)= > w(n)e" (4.4)

n=—oQ

3When there is no possible confusion, we will use X (z) instead of X, (z).

Linear Filters 107

Jor values of z taken inside a ring described by {z € C : Ry < |z| < Ra},
assumed to be non-empty, and called the convergence area or domain of con-
vergence (Figure 4.4).

The values of z for which X, (z) is equal to zero are called zeros, and the
values of z for which X, (z) diverges are called poles.

Convergence (Z)

T
N

Figure 4.4 — Convergence area

The properties enumerated in Appendix A4 provide calculation methods
pertaining to the sequence {z(n)} or to the function X, (z).

What should be remembered is that the analytical expression of X, (z) does
not characterize the sequence {x(n)}. What does characterize the latter is the
pair comprising the function X,(z) and a convergence area.

4.2.2 A few examples

The following results can be proved as an exercise, in particular by using the
fundamental formula:

1
— =14 u+tui+- w4 with [ul < 1 (4.5)

1—wu

— Unit impulse:

am:% when 1 =0 A(z) = 1,v: (4.6)
— Unit step:

un)=1(n>0)=U(z) = 1—1ﬁ’ with |z] > 1 (4.7
— Ramp:

r(n) =nl(n>0) = R(z) = L with |z] > 1 (4.8)

(1212

108 Digital Signal and Image Processing using MATLAB®
— Causal exponential:

ec(n) =a”l(n > 0) = E.(z) = with |z]| > |a| (4.9)

1
(1—az"1)’
— Anti-causal exponential:

eg(n) = —a"l(n < —1) = Eu(z2) = , with |z] < |a| (4.10)

1
(1 —az™1)
We are going to prove 4.8 and 4.10. Because of 14.11 and 4.7, we have:

-1
ZdU(z) B z

R(z) = - dz (1—z71)2

which is expression 4.8.
For 4.10 we have:

+ oo
= —Za_pzp +1 with Ja7'z] <1
n=—oo p=0
o, 1
o S 1—alz T (I —az—1)

Fq(2)

Il
|
x
3
w

Note that F.(z) and F4(z) have the same analytical expressions. We can
tell them apart by their convergence areas.

The z-transform and the DTFT

When the unit circle belongs to the convergence area, the DTFT exists. In the
complex plane, the unit circle can be represented by z = e*™f where f varies
from 0 to 1. In that case:

Xz(ezj”f) = Zx(n)e‘zj”"f

n

is also the DTFT of #(n) which we denoted by X(f). The unit circle can
therefore be scaled, in values of f, from f=0for z =1,to f = 1/2for z = —1,
including f = 1/4 for z = j (Figure 4.5). To be less specific, if |z| = 1:

_ arg(z)
f== (4.11)

Linear Filters 109

f=1/4 (mod 1)
M (z=¢Z")
f=1/2 el
(mod 1) f=0 (mod 1)
f=—1/4 (mod 1)

Figure 4.5 — Unit circle

4.3 Transforms and linear filtering

Consider again the previous linear filtering. We will refer to the transforms of
the sequences {z(n)}, {y(n)} and {h(n)} as X,(z), Y.(z) and H,(z) respec-
tively, and to their DTFTs as X(f), Y (f) and H(f) (we will assume that all
these functions exist, and in particular that the convergence areas of X, (z),
Y. (%) and H,(z) contain the unit circle). We then have:

Property 4.1 (Filtering relations for finite energy signals)

Consider a BIBO stable linear filter with a BIBO stable impulse response
{h(n)}, meaning that), |h(k)| < +o0o. In this case, for finite energy sig-
nals {z(n)}, that is to say such that 3", |x(k)|* < +o0o, we have the following
mput-output formulas:

y(n) = (e xh)(n) — 4)T AN (4.12)
Y (f) = H(HX()

H,(z) is called the filter’s transfer function (TF) and:

H(f) = H.(e¥™) Z h(n)e=2imn (4.13)

n=—0oQ
is called the complex gain or frequency response. Remember relation 2.23:
1/2

h(n) = H(f)eX™Imdf (4.14)
-1/2

Let H(f) = G(f)e??). G(f) = |H(f)]| is called the filter gain, and ¢(f) =
arg(H (f)) is its phase.

110 Digital Signal and Image Processing using MATLAB®

Property 4.2 For a linear filter whose impulse response h(n) is real, we have
H.(z) = H:(z*) and H(f) = H*(=f). In this case, the gain G(f) = |H(f)]
and the real part of H(f) are even functions. Its phase ¢(f) = arg(H(f)) and
its imaginary part are odd functions:
G(f)=G(=f) and ¢(f) = —o(=Ff)
In this case we can restrict the graphical representation of G(f) to f €

(0,1/2).

Property 4.3 (Harmonic response of a linear filter)
Let {h(n)} be the BIBO stable impulse response of a filter, and let {x(n) =
exp(2jmfon)} be the input signal. The expression of the output signal is:

y(n) = H(fo)x(n)
where H(f) =, h(n)e=2™/ 4s the DTFT of {h(n)}.

This can easily be shown by writing:
y(n) = D _h(k)a(n—k)=>_ h(k)exp(2imfo(n — k)
k k
= exp(2jmfon) Z h(k)exp(—2j7fok)
k

Complex exponentials are called the eigenfunctions of linear filters.

In the particular case of a real filter, that is in the case where h(n) is real,
with the input signal z(n) = cos(27 fyn), we obtain, by using the expression
z(n) = (exp(2jmfon) + exp(—2jmfon))/2 and the linearity property:

() = S H(fo) exp(2imfom) + 3 H (= fo) exp(~2jmfon)

Because h(n) is real, H(f) = H*(—f) and therefore:

sn) = o) exp(2infon) + S (fo) exp(~2jmfon)
G(fo) cos(2m fon + ¢(fo))

The output sine has the same frequency as the input sine, but its amplitude
is multiplied by G(fo) and its phase is shifted by ¢(fs).

Consider again the example of the impulse response filter [1 1]. Tts transfer
function is, for any z:

H.(z)=1+ 21
Its complex gain can be expressed:

H(f) = H(e¥™) = 14 7™ = 2797 cos(n f)

Linear Filters 111

Tts gain is therefore G(f) = 2| cos(nf)| and its phase is:
é(f) =—nf if fe(=1/2,1/2)
You can check that G(f) = G(—f) and that ¢(f) = —¢(—f). These char-

acteristics can be directly plotted using the following program:

%===== GAINPHASE.M
£=[0:.01:1];
gaincplxe=1+exp (-2*pix*j*f) ; % Complex gain

gain=abs (gaincplxe) ;
phase=angle(gaincplxe)*180/pi; % Phase (degrees)
subplot (211); plot(f,gain); grid

subplot (212); plot (f,phase); grid

4.4 Difference equations and rational TF filters

Consider this difference equation (d.e.):
Yn + Q1Yn-1+ -+ apYn_p =boxn + bixn_1+ -+ born_g (4.15)

We will assume that the z(n) are known (n € Z) and that we want to
calculate the y(n). Assuming that the z-transforms of z(n) and y(n) exist,
consider the z-transforms of the two sides of equation 4.15. Using the delay
property, we get:

Y. () (1 taz 4+ apz_P) = X.(2) (bo bz o+ sz_Q)

which leads us to:

Yo(2) bg + b1z~ 1 +~~~+sz_Q _ B(z)

H,(z) = -
(2) X, (2) l4+az7t+---4+apzF A(z)

(4.16)

The system relating the sequence y(n) to the sequence #(n) is therefore a
linear filter with the transfer function H,(z). This proves that linear recursive
equations with constant coefficients perform a linear filtering with rational
fractions (ratios of two polynomials) as their transfer functions.

But what convergence area should we choose? This choice is related to the
way we calculate the solution to the difference equation.

Example 4.4 (First order difference equation) Consider the example:
y(n + 1) — ay(n) = z(n)

If no further information is given, this equation cannot be solved. We have
to indicate the type of solution that we want: causal or non-causal. For these
hypotheses we get:

112 Digital Signal and Image Processing using MATLAB®

1. Causal solution: a value is set at the origin, for example y(0), and y(n—+1)
is calculated based on y(n). We write the successive expressions:

y(1) = ay(0)+ z(0
(2) = a’y(0) +ax(0) +x(1)
y(n) = a"y(0) +a"1x(0)+ - +x(n—1)

2. Anticausal solution: a value is set at the origin, for example y(0), and
y(n) is calculated based on y(n+1). We write the successive expressions:

y(—=1) = y(0)/a—2a(-1)/a
y(-2) = y(O)/a2 — ar:(—l)/a2 —z(-2)

y(=p) = y(0)/a" —z(=1)/a" —--- = z(=p)

In an equivalent way, we can define the convergence area of the z-transform
of the sequence {y(n)} we wish to determine. Depending on whether z is set
such that |z| > « or |z| < «, where « has to be determined, we get a causal
solution or an anti-causal solution, respectively (see properties 4.9 and 4.10).

Example 4.5 (Counterexample: homogeneous first order d.e.)
Consider the difference equation:
yn — oy 1 =0 (4.17)
By changing over to the z-transform of the two sides, we get Y (2)(1 —
e2imfo ;=1 = 0, from which we infer Y,(z) = 0 and hence y, = 0. However,
we can directly check, using the difference equation, that, for any A, the signal
Yn = AeZ™Ion is solution to (4.17). The fact that this solution cannot be found
by changing over to the z-transform of (4.17) is precisely due to the fact that
yn does not have a z-transform.

4.4.1 Stability considerations

We know, first that the possible convergence areas are delimited by poles,
and second that stability is ensured so long as the unit circle belongs to the
convergence area. Hence, a stable solution exists if and only if there are no
poles on the unit circle.

Linear Filters 113

Theorem 4.3 (Stable solution) A system whose input x(n) and output y(n)
obey the recursive equation:

Un + @1Yn—1+ - -+ apYn_p =bozn + b1z 1+ -+ bgTn_gq
1s a stable filter iof and only if:
Ay =14a1z7 + -+ apz=F #0 when |z| = 1 (4.18)
In this case, the impulse response is the sequence {h(k)} of coefficients of the

Fourier expansion of the rational function H(f) = B(e*™)/A(e*™F), where
B(z) is defined by 4.16, and we have:

y(n) = 52020 o hk)e(n — k)

Causality

When faced with the recursive equation 4.15, we can always solve it “causally”,
by writing:

Yn =botn + izp1+ -+ borp_g — (@1Yn—1+ -+ apPYn-p)

Calculating y(n) requires that we know all the values of x(k) and y(k)
for £ < n. Obviously, this can also be inferred from the transfer function’s
expression. H,(z), given by 4.16 as a function of z (and not of =), is such that
the numerator and denominator polynomials are of the same degree, equal to
max(P, Q). Therefore, because of the properties 14.5, a causal sequence {h(n)}
exists with H,(z) as its z-transform. This solution corresponds, for H,(z), to
the convergence area {z € C: |z| > maxy(|px|)}. Here the py are used to denote
the poles of H,(z), that is the roots of A(z). However, the implementation of
this solution is not necessarily stable. It is stable if and only if the convergence
area contains the unit circle. This gives the following fundamental result:

Theorem 4.4 (Stable and causal solution)
The system whose input x(n) and output y(n) obey the recursive equation:

Un + @1Yn—1+ - -+ apYn_p =bozn + b1z 1+ -+ bgTn_gq
1s a causal and stable linear filter if and only if all of the poles of the transfer
funetion H,(z) = B(z)/A(z) have a modulus that is strictly less than 1, that is
to say if:

Ay =14a1z7 + -+ apz=F #0 when |z| > 1

In that case, the impulse response is such that hy, = 0 for k < 0 and:
yn) =z(n)+he(n—1)+ -+ hgz(n—Fk)+---

Note the importance of the words causal and stable when expressing this
property. It is quite possible for the system described by the recursive equation
4.15 to have, because of theorem 4.3, a stable solution (the convergence area
of H,(z) contains the unit circle) that is not causal.

114 Digital Signal and Image Processing using MATLAB®

4.4.2 FIR and IIR filters

When the polynomial A(z) is only a constant, equation 4.15 can be written:
y(n) = boz(n) + brz(n—1)+-- -+ bgz(n — Q)

which can be seen, according to 4.1, as the convolution of #(n) with an impulse
response that has a finite number of non-zero values. The filter is then called
a Finite Impulse Response filter, or FIR filter. A direct consequence is the
stability of this type of filter, because of the absence of poles.

When the polynomial A(z) is not a constant, and if the rational function
H,(z) is irreducible, the filter is called an Infinite Impulse Response filter, IIR
filter, or recursive filter. The use of this term is justified by the fact that
the value y(n) is calculated not only using the sampled input values z(n),
z(n—1)..., but also the output ones y(n — 1), y(n — 2) ...

The expressions “Infinite Impulse Response” and “recursive” are not equiv-
alent. For example, the following filter I7,(z) has a transfer function that can
be expressed in two different ways:

1—afz=P

Hz(z)Il+az_1_|_..._|_aP—1Z—P+1: :

1—az™
This filter is fundamentally FIR. However, its implementation can be recur-
Sive Or non-recursive:

ay(n — 1) + z(n) — o x(n — P) (recursive)

either y(n)
ory(n) = z(n)+ax(n—1)+---+a""tz(n — P4+ 1) (non-recursive)

Filtering implementation using MATLAB®

The filter function, which we have already used for a finite impulse response
filter, provides what is called the causal solution:

y(n) = boz(n)+bhaen—1)+ - +bgz(n—Q)
~{@r(n— 1)+ + apyln - P)

to the recursive equation 4.15. All you have to do is type:
y = filter(B,A,x);

where A=[1 a1l ... aP] and B=[b0 bl ... bQ].

The output sequence has the same length as the input sequence. The first
term x(1) of the sequence x represents the oldest element. Theoretically, the
calculation requires the @) past values of {z(n)} and the P past values of {y(n)}.
Without any further explanation, these values are considered to be equal to
zero. The problem of the initial conditions using the fourth parameter of the
filter function will be discussed more in depth in paragraph 5.1.1.

Linear Filters 115

When using the filter function, because it prouvides the causal solution
to the recursive equation, and because a filter must always be stable, it is
imperative that there be no pole with a modulus greater than or equal to
1. Hence we must have A(z) # 0 for |z| > 1.

4.4.3 Causal solution and initial conditions

Consider this example of a recursive equation to which we want to find a causal
solution:

yn+2)+ ary(n+ 1) + azy(n) = z(n+ 1) with n > 0 (4.19)
We can write the successive expressions for n = 0, n = 1...and multiply by
1,271 272

bl

Lox y(2) +ary(l) + azy(0) = «
27 ox y(3) 4 ay(2) + azy(l) = x(2)
z X y(4) + a1y(3) + a2y(2) = &

By summing these relations, we get:
ZZYZ(Z) — zzy(O) —zy(1) + a1 (2Y;(2) — zy(0)) + a2Y,(2) = 2 X, (z) — z2(0)
Hence the ZT of the output is:

z X () + 22y(0) + zy(1) + zy(0) — z2(0)
224 a1z4+ay 224 ayz 4 as

This relation shows two terms. The first one corresponds to the “forced”

Y. (2) = (4.20)

part, or the particular solution to equation 4.19. The second term is the “free”
part corresponding to the solution to the homogeneous equation which provides
the solutions corresponding to the initial conditions.

Generally speaking, if we have:

y(n) +ay(n — 1)+ -+ any(n — N) =boz(n) + -+ byrx(n — M) (4.21)

with n > M where ag and by are constant coefficients, applying the ZT to 4.21,
taking into account the initial conditions, leads to expression 4.22:

bo +brz7t 4o 4 byre™™
X:(2)
1+ayz71 4+ +ayz=N
Po(2)
1+ayz71 4+ +ayz=N

= Y.(z)

(4.22)

116 Digital Signal and Image Processing using MATLAB®

where Pg(z) corresponds to the initial conditions (see equation 4.20). The
quantity:
bo+brz7t 4 ™™
G:(2) = - N
1+az7t+---+anz
is the transfer function (TF). As you can see, the transfer function coincides
with Y, (2)/ X, (z) when the initial conditions are equal to zero.

It can be noted that, because of expression 4.22, simplifying, in the transfer
function, an unstable pole of the system by an “unstable” zero (outside the unit
disk) of another transfer function does not stabilize the system. There is no
reason for applying this simplification to the free part. Consider the following
example with |a| > 1:

X, (2) — (_AC:)(ZO(Z) . ; _N;)(;)O(Z) — Y, (2)

There 1s indeed a simplification in the transfer function. However, if you
consider the free parts of the two systems with the initial conditions polyno-
mials, Py(z) and P[(z) respectively, the resulting free part is:

Po(2)Po(z)
(= —a)Do(2) A (2)
which remains unstable.

These considerations can be related to structural concepts (see exercise 12.3
in the following chapter) regarding filters, particularly their observability and
controllability, which we will not discuss in this book. Do remember, however,
that the transfer function i1s not enough to characterize the behaviour of a
system defined by the recursive equation, because 1t provides us only with an
input-output relation without enough information to lead to a model for the
system.

Given the method used to solve 4.19, we can consider that finding a causal
solution requires the use of a slightly modified z-transform, called the unilateral
z-transform.

Definition 4.6 (Causal z-transform)
The causal z-transform (CZT) of the sequence {x(n)} is the quantity:

Xoo(z) = 4y 2(n)z" (4.23)
for values of z such that R < |z|.

This is the definition of the z-transform accepted by control engineers who
are used to dealing with causal systems, and who take close interest in transient
states. Among the properties of the CZT, the lead property is fundamentally
different for the two transforms:

Linear Filters 117

Property 4.4 (Time advance)

z(n+ P)— ZPXZ(Z) — x(O)zP — l‘(l)ZP_l —x(P=1)z (4.24)

The convergence area is unchanged.

Applying this property to a recursive equation y(n+ P)+ajy(n+ P — 1)+
-+-4apy(n) = bpx(n+ P)+--- to which we are trying to find a causal solution
provides the free part of the answer. Using the z(n + P) — zF X, (2) property
only leads to the stationary solution (the one that “started at” n = —oo).

4.4.4 Calculating the responses
Evaluating the impulse response

The filter function can be used to directly plot the impulse response of a
rational transfer function filter from the coefficients of the recursive equation.
Consider as an example the causal and stable filter whose transfer function is:

. 1+ blz_l + b22_2
T 14 azl 4 agz?
with b = 0.7, b5 = 0.6, a1 = 1.5, az = 0.9 and for which you can check that

the two poles are complex, and that each one has a modulus smaller than 1.
To plot its causal impulse response, type:

H,(z)

%===== REPIMPULS.M

N=60; % Number of calculation points
b=[1 0.7 0.6]; % Numerator coefficients

a=[1 -1.5 0.9]; % Denominator coefficients
h=filter(b,a,eye(1,N));

stem(h)

The input signal is a 1 followed by several 0 (eye(1,N)). Obviously this
method is not appropriate if the filter, assumed to be stable, is not causal.

Evaluating a complex gain

In order to calculate the complex gain H, (e2/™/) of a rational transfer function
filter over L points at the frequencies f = k/L with k € {0,--- | L — 1}, we
need to calculate the quantities:

{ 14 aje=2mh/L 4 4 qpe—2imPk/L

bo+b16_2jﬂ-k/L+...+er—2j7TQk/L kE{O”L_l}

Notice that they represent the DFTs of the sequences {1,ay, ..., ap} and
{bo, b1, ..., bg} respectively, over L points. This leads to the following proce-
dure:

118 Digital Signal and Image Processing using MATLAB®

The caleulation of the compler gain of a filter with H,(z) = B(z)/A(z)
as its transfer function over L points is performed by:

H = £fft(B,L) ./ fft(4A,L);

where B and A represent the sequences of the numerator and denominator
coefficients respectively, in decreasing powers of z.

Exercise 4.1 (The rectangular impulse response filter)
Consider an impulse response h(n) = 1/M when n € {0,---, M — 1} and
h(n) = 0 otherwise.

1.
2.

What can be the purpose of such a filter?

Calculate the gain and the phase of this filter. What can you say about
the latter?

. Use MATLAB® to plot the gain, the phase, the index response of the

filter h(n) for several values of M.

Two filters with an impulse response h(n) are arranged in a cascade.
What is the gain of the resulting filter?

4.4.5 Stability and the Jury test

Examining a filter’s stability requires you to know the poles of the transfer
function H,(z). Using the Jury, or Jury-Lee, test spares you the explicit cal-
culation of their value. Tt is applied to the denominator A(z) of H,(z), which
we will express as:

A(z) = apz™ + a1z" P4 ap_12 + an, with ag >0

We now set up the following 2n — 1 line array:

ap ay as e ay ap
QAn An—1 Qp-2 - An—3 - ag
bO bl bn—l
bn—l bn—Z bO

CO Cl e e e -

Ch—2 Cpn_3

q0 q1 q2
q2 q1 qo0
Lol 1

Linear Filters 119

Lines 3 and 4 are filled out based on the first two lines using b; = aga; —
G ap—;i, then lines b and 6 are filled out using ¢; = bob; — b,,_1b,—;—1, etc. The
necessary and sufficient condition for stability is the following set of conditions:

ap > |ay|
bo| > [br—1]

lgo| > |g2]
o] > |

and all of them have to be satisfied simultaneously. In practice a 2n — 3 line
array must be constructed such that its final values are ¢qo ¢1 ¢2, and the
conditions can then be expressed:

ap > |ay|
A(=1) <0 when n odd |bo| > [bs—1]
A1) >0, { A(=1) >0 when n even and
lgo| > lg2|
You can refer to Appendix Ab for the proof.

Exercise 4.2 (Purely recursive first order filter)
Consider the purely recursive first order filter with the transfer function:
1
Hi(z) = ———
:(2) 1—az"!
1. This filter is assumed to be stable and causal. Determine the convergence
area.

2. By writing H,(z) as the power series Zkezh(k’)z_k, find the impulse
response h(n).

3. Give the expressions of the complex gain, of the gain, and of the phase.

4. Using definition 4.4, determine the expression of the unit step response
as a function of a. Determine, as a function of a, the value of A such that
the unit step response tends to 1 when n tends to infinity.

5. Write a program using MATLAB® that calculates, with the use of the
filter function, the 30 first samples of the index response for a = —2/3,
a=1/2,a=3/4 and a = 7/8. What can you notice?

4.5 Connection between gain and poles/zeros

The positions of the poles and zeros in the complex plane can easily be used
to determine the shape of the gain. First of all, we need to study the transfer
function of the purely recursive second order filter.

120 Digital Signal and Image Processing using MATLAB®

Purely recursive second order filter

Consider the filter whose transfer function coefficients are real:

1 1

H, =
(2) 1+az71 +ayz~2 (I—=prz=1)(1 = paz—1)

We assume that a? — 4a2 < 0, meaning that the two poles are complex
conjugates. They are denoted by p; = pel? and ps = pe=7%. We also assume
that p1ps = p? = as < 1 (the product of the roots is equal to as). Under these
conditions, the poles are inside the unit circle.

Figure 4.7 shows the positions of the poles and the unit circle. The filter
is therefore stable and causal, and its transfer function is H,(z), which will be
associated with the convergence area |z| > p. We will now calculate its impulse
response. We need to rewrite the transfer function:

H.(z) = ! ! (n_ P2)

(I—prz= (1 —paz=l) ~ pr—p2 \l—prz=l 1 —pyz?

with |z| > p. By applying formula 4.5 to the two fractions in z~! of the right
side and by isolating the coefficient of 27", we get for n > 0:

PPyt sin((n +1)0)
=p -
p1—p2 sin(f)
We plotted in Figure 4.6 the impulse response of this filter obtained with
the program repimp2.m, for p = 0.96 and 6§ = 7/12:

h(n) =L

%===== REPIMP2.M

N=60; % Number of calculation points
tps=[0:N-1]; % Time vector

theta=pi/12; rho=.96; 7, Parameters

%===== Direct calculation of the response

rep=rho .” tps .* sin((tps+l)*theta) / sin(theta);
stem(tps,rep); grid

The impulse response is a “damped sine”.

The farther away the poles are from the unit circle, the faster the impulse
response will decrease to zero (it decreases like p™). The filter “forgets” the
past faster as p is closer to 0. We can therefore define a time after which the
memory is “almost completely” gone, by calculating the index ng such that
p"% can be considered to be negligible, meaning that p”® becomes < ¢.

Let n = log(g), we have:

oy
" Tog(p) (4:29)

This result is common to many situations: we can consider that an IIR filter
which, in theory, has an infinite memory of the past, has an “almost finite”

Linear Filters 121

0 10 20 30 40 50 60

Figure 4.6 — Impulse response of a second order filter whose two conjugate complex
poles have a modulus p = 0.96 and a phase § = 7 /12

memory that becomes shorter as the poles move away from the unit circle.
This duration corresponds to the time the filter spends “forgetting” the initial
conditions, and to get close enough to asymptotic behavior.

Let us now study the gain using the position of the poles. First, notice that
the gain:

: 1
G(f) = |H.(e¥™)| = —————
() = [H-(2")] = S5 s
where M represents a point on the unit circle with the affix ™/, and P1 and
P2 the poles with p; and py as their respective affixes. We then see (Figure
4.7) that as MP1 decreases, G(f) increases. Consider, as an example, the case
of a denominator:

A2) =1-0.82"1 4+ 0.4272

The purpoles.m program gives the position of the poles on the complex
plane (Figure 4.7).

%===== PURPOLES.M

mycircle=exp (2xpixj*[0:100]/100);
plot(mycircle); hold on

plot(roots([1 -.8 .4]),’x’); hold off; grid
axis(’square’)

The gain plot is represented in Figure 4.8. As an exercise, you can check
that, if:

—a1(1 4+ a2)

1
4&2 <

-1«

122 Digital Signal and Image Processing using MATLAB®

Figure 4.7 — Position of the poles on the complex plane for a purely recursive second
order filter with a; = —0.8 and ax = 0.4. We can graphically evaluate the gain as the
tnverse of the product MPyx MP;

0 005 01 015 02 025 03 035 04 045 05

Figure 4.8 — Gain of a purely recursive second order filter with a; = —0.8 and
az = 0.4. Notice the resonant frequency as well as the overvoltage

the gain shows a maximum at the frequency:

_ 1 —a1(1 + Clz)
fr = o, arccos (T) (4.26)

The frequency fr is called the resonant frequency. The value G(fr) of the
gain at resonant frequency is:

4&2
(1 — a2)?(4as — a?)

G(fr) =

Let the input signal be z(n) = £ cos(2n frn). According to property 4.3, the
output signal’s expression is y(n) = G(fr)e cos(2w frn+ ¢o). If G(fr) is much
greater than 1, the amplitude can reach catastrophic values (like the ones, due

Linear Filters 123

to the wind, that caused the suspender cables on the Tacoma bridge to snap,
in November 1940, only four months after its inauguration).

Exercise 4.3 (Purely recursive second order)

Consider a purely recursie second order filter whose transfer function has real
coeflicients:

B 1

T 14 azl 4 agz?

H.(2)

1. Sketch the gain in decibels of a second order cell whose poles are given
by p = pel? for p = 0.9 and for different values of ¢.

2. Do the same thing for different values of p, ¢ remaining constant.

3. Study the stability, in the sense of “bounded input - bounded output”,
as a function of a@; and as by applying the Jury test presented on page
118.

General second order filter

We now add two complex conjugate zeros to the purely recursive second order
filter, to see how the frequency response is changed. The transfer function can
be expressed as:

(1= 21271 (1 — 29271)
(I =prz=)(1 = p2z71)

By limiting ourselves to the case, which is actually very frequent, of zeros
chosen on the unit circle, we get a gain equal to zero at the frequency fo = o/27
where « refers to the argument of z;. Such a gain is represented in Figure
4.9. The value of a verifies 2cos(ev) = —1.1, which leads us to the gain’s
cancelling frequency fo = «/27 = 0.3427. Choosing to put the zero outside of
the bandpass reduced the gain’s value in the frequency band where the gain
was already small.

H.(2) =

Example 4.6 (Resonance and rise time)
Consider a purely recursive second order filter with the following transfer func-
tion:
1
H.(2)

1 +ayz7t 4+ agz—2

1. The poles are assumed to be complex with a given modulus p. Using
4.26, determine a1 and as such that the resonance frequency is fr = 0.1.

2. Derive the value of the gain G at the resonant frequency.

124 Digital Signal and Image Processing using MATLAB®

55
5 -
45|
4
35
3|
251
2|
15¢-
11
05

0 005 01 015 02 025 03 035 04 045 05

Figure 4.9 — Gain of a second order filter with two zeros on the unit circle: ay =
—0.8, az =0.4. by = 1.1, bo = by = 1. Canceling frequency of the gain fo =~ 0.3427

3. Let the input signal be a sine signal z(n) = Gx'sin(27fgn). Determine
the output signal’s expression.

4. Let the input signal be a “causal sine”:
z(n) = Gl,_%1 sin(2r frn)1(n € N)

Write a program that plots the output signal y(n) for values of p from
0.99 to 0.999. What happens when n tends to infinity?

5. What connection is there between the convergence time and the position
of the poles?

HINT:

1. Because the poles are complex as = p?. Using 4.26 we obtain:

a) = —

T+ o cos(27fR) (4.27)

2. The gain is given by Gg = |1 + aje™?™/r 4 qoe4mifr|~1

3. Because of theorem 4.3, if the input signal z(n) = Gx'sin(27fon),
the output signal’s expression is y(n) = sin(2nfrn + ¢r) where ¢p =
arg(IT. (2731)).

4. Type:
%===== CTERES.M

clf; clear all; figure(1)
tho=[0.98:0.001:0.999]; fR=0.1; expfR=exp(-2j*pi*fR);

Linear Filters 125

a2=rho."2; al=-4*a2*cos (24pi*fR) ./(1+a2);
HRml=1+expfR*al+expfR"2 *a2;
GRm1=abs (HRm1) ; phase=angle (HRm1) ;
N=4000; mtime=(0:N-1); x=sin(2*pi*fR*mtime) ; % Input signal
for k=1:1length(rho)
AA=[1 a1(k) a2(k)];
set (gca,’ylim’,[-1.1 1.1],’x1im’, [0 30])
xe=x*GRm1(k); y=filter(l,AA,xe); % Filtering
plot (mtime,y); grid; title(sprintf (’rho=%5.3f’,rho(k)));
set (gca,’ylim’,[-1.1 1.1])
pause(0.1)
end

Notice that when n increases, the filter’s output ends up tending to the
sine y(n) with the amplitude 1. Everything works as if, after a while, the
filter has “forgotten” the initial conditions.

5. Tt should also be noted that the closer the pole gets to the unit circle, the
longer 1t takes the filter to reach its asymptotic behavior. As we saw on
page 120, expression 4.25 makes it possible to evaluate the rise time.

Generally speaking, as the amplitude of the resonance peaks increases, the
time constant increases. As a consequence, a small amplitude input can lead to
a high amplitude output so long as the energy is provided at the right frequency.
This is what happened to the Tacoma bridge because of the wind. [

Exercise 4.4 (Suppressing a sinusoidal component)

The rejection problem discussed in this exercise can be solved by using the
location of the poles and zeros in the complex plane. We wish to suppress the
frequential component f = fy. The first idea that comes to mind is to place a
zero on the unit circle at the frequency f = fy. Because we want a real transfer
function, we also need the conjugate zero. The numerator can be expressed as:

N, () =(1- ezjﬂf”z_l)(l — e_zj”foz_l)

If we restrict ourselves to this transfer function, the gain is too far from 1
for other frequencies than fy. This is why a pole 1s placed close to each zero.
Here we are going to impose pe®™fo and pe=2/™/o with p < 1 and ~ 1. Thus,
when z = €%/ is far away from the “pole-zero” pairs, the gain is roughly equal
to 1. We have MP ~ MZ and MP ~ MZ (Figure 4.10).

Consider now the second order filter with the transfer function:

1—2cos(¢)z=t 4+ 272
1 =2pcos(¢)z=1 4 p?z—2

H.(z) = Hy (4.28)

where p < 1, p = 1 and Hy such that (1) = 1.

126 Digital Signal and Image Processing using MATLAB®

1
Z fy
P
7 M
{4
1
P
Do
Z

Figure 4.10 — Graphic interpretation of the gain

1. Write a program that plots the frequency response of this filter.

2. By making the approximation 27 f & ¢ in the neighborhood of the reso-
nant frequency, determine the expression of the frequency interval’s width
for which the attenuation is higher than 3 dB (decibels).

3. Download ([x,Fs] = wavread(’phrase.wav’);) an audio file sampled
at 8000 Hz. Add to the signal a sinusoidal component at 500 Hz.

Perform the filtering of the signal by using the filter function with
the filter H,(z) previously defined. Check that the 500 Hz peak was
suppressed by looking at the spectra of the original signal and of the
processed signal.

4. Instead of the filter defined by 4.28, let us consider the filter the transfer
function of which is the following:

1(1 2y _ 4 -1 1 2\,—2
2 1 —2pcospz=1 + p2z—2
(a) Verify that the gain is equal to 1 for f =0 and f = 1/2.
(b) Verify that, if the zeros are e*7?:
g = 2pCosy (4.30)
cosfl = ——— .
(14p7)

(c) Write a program that draws the poles and zeros of 4.28 and 4.29 in
the complex plane for a few values of p.

(d) Write a program that draws the gain of 4.29 for the same values of
p.

Linear Filters 127

A description of the gain of a filter

In many practical cases, we have to describe a filter based on its frequency
behavior. The frequency band is often partitioned in three zones (see Figure
4.9):
— the passband is the frequency band where the gain’s values belong to the
interval (1 —J,,14,), where §, 2> 0 is the passband ripple level;

— the stopband is the frequency band where the gain’s values are less than
dq, where 6, 2 0 is the maximum allowed value for the ripples in the
stopband,;

— the transition band is the area where the filter is “moving” between the
stopbands and passbands.

Figure 4.11 illustrates these points for a passband filter with characteris-
tics of mediocre quality, whereas Figure 4.12 illustrates the case of a lowpass
Butterworth filter (see paragraph 4.7.3).

Transition Transition
band band
(dB)—b———> |

I TEANTN 2
Ripples ‘ 3 3

—90 |-~ il [R

0 01 02 03 04 05

Figure 4.11 — Specification constraints and positions of the poles and zeros for a
passband filter

Summing up the temporal and spectral aspects of filtering

You will find in this paragraph a certain number of properties that must be
kept in mind:

128 Digital Signal and Image Processing using MATLAB®

8]

Figure 4.12 — Specification constraints and positions of the poles and zeros for a
low-pass Butterworth filter (paragraph 4.7.3)

— The impulse response of an FIR filter has a finite length.

— The impulse response of an IIR filter is the sum of “damped sinusoids”
(when there are complex poles) that decrease exponentially, decreasing
faster as the poles are closer to the unit circle. The decrease duration, or
time constant, has the same order of magnitude as 1/log(par) where pas
denotes the modulus of the pole with the highest modulus.

— A pole very close to the unit circle means an important gain at the reso-
nant frequency, which is roughly equal to arg(p)/2n.

— The angular part of the complex plane where the poles can be found
corresponds to the bandwidth. Depending on where the poles are, the
filter can be low-pass, high-pass, or band pass. These names mean that
the filter allows low or high frequencies, or a given band of frequency
components respectively, in the input signals to pass.

— The higher the number of poles, the more the bandwidth ripples can be
attenuated. A simplified way of seeing it is to imagine that as z travels
along the unit circle, the overvoltages associated with each pole do not
have the time to dampen.

— The angular part of the complex plane where the zeros can be found
correspond to the stopband.

Linear Filters 129

— The higher the number of zeros, the more the stopband ripples can be
attenuated.

— In the case where there are zeros on the unit circle, the gain is equal to
zero at the corresponding frequencies.

— A low-pass filter reduces the high frequency components making the tran-
sitions in the temporal domain smoother.

4.6 Minimum phase filters

Minimum phase filters have some optimality properties, particularly in terms
of response time. Before studying these properties the reader must first be
introduced to the concept of all-pass filters.

Definition 4.7 (All-pass filter) An all-pass filter is a stable filter with a gain
equal to 1.

Theorem 4.5 Let {by} be a sequence of N complex values with their moduli
smaller than 1. This means that the filter whose transfer function is:

N

27— b 1—b52

1s an all-pass, stable, causal filter and verifies:

<1 if |z >1
1P()[{=1 o [z]=1
>1 if |z|<1

All you have to do is check it for the term Py (z) = (1 —b52)/(z — by). First,
by taking z = e*™f we get:
1 — bre?ims gins €T —b%
e2imf _ b = e e2imf _ b
the modulus of which is 1 (the modulus of the ratio of two complex conjugate
numbers is equal to 1). For |z| < 1, notice that |P,(0)] = 1/|bs] > 1. This
means we necessarily have |Px(z)| > 1 for |z| < 1, otherwise this would contra-
dict the maximum theorem [20] for holomorphic functions. When |z| > 1, the
same argument is used after noticing that |Py(1/2*)| = 1/|Pk(2)|.
Moreover, because the poles are strictly inside the unit circle, the filter 1s
stable and causal.
How are the zeros and poles of H,(z) placed? Again, all we have to do
is limit ourselves to the term (271 —b5)/(1 — by2~1). The pole is in px = b

130 Digital Signal and Image Processing using MATLAB®

and the zero is in z; = 1/b}. The moduli of the complex values py and z
are therefore the inverse of one another, and their phases are the same. In the
complex plane, the two points are therefore the transforms of one another by
the inversion centered in O with a ratio of 1 (Figure 4.13).

|~

by by

bic

Figure 4.13 — Positions of poles and zeros in an all-pass filter

Exercise 4.5 (All-pass filter, properties of the maximum)
Prove geometrically, using the properties of the inversion, the property stated
in theorem 4.5.

Exercise 4.6 (All-pass filter)
Consider an all-pass filter. The input and output sequences will be denoted by

z(n) and y(n) respectively.

1. Show that S |x(n)|2 = ;I],—Zo—oo |y(n)|2

n=—0Q

2. Show that an all-pass causal filter verifies, for any N, ZnN:_oo |z (n)|? >

S ()]

Theorem 4.6 Let H,(z) be the rational transfer function of a stable and causal
filter. If we transform, by the wnversion centered in O with a ratio of 1, the
position of any zero, we get a stable, causal filter with the same gain.

If we denote by z; a zero of H,(z) and consider the transfer function:

-1 *
z -z

Fo(2) = H.(2) T

1— 212~

Because the poles have not moved, the filter whose transfer function is F,(z)
is stable and causal. However, the numerator has changed, but according to

4.5:
£ (7)) = | 57|

Linear Filters 131

To put it simply, if |z1| > 1, we made the zero go from outside the unit
circle to inside it, and without changing the filter’s gain. If we assume that
H,(2) has @ zeros, then there are 29 ways of placing them, either outside or
inside the unit circle. All the resulting filters have the same gain, but different
phases.

One of them, the filter with all its zeros inside the unit circle, plays an
important role. It is called the minimum phase filter.

Definition 4.8 (Minimum phase) A stable and causal filter is called a min-
wmum phase filter iof all the zeros of its transfer function, assumed to be rational,
are strictly inside the unit circle. Notice that the inverse filter is also a stable,
causal and minimum phase filter.

Often when designing a rational filter with @) zeros and P poles, the only
information given is the frequency gain. It i1s implicit that the filter is stable,
causal and minimum phase, making the solution unique.

Exercise 4.7 (Minimum phase filter)

If the numerator of the rational function B(z)/A(z) has @ zeros, there are 29
ways of placing them, either inside or outside the unit circle, without chang-
ing the modulus of B(e2™)/A(e2™). If A(z) # 0 for |z| > 1, the impulse
responses associated to all these rational functions are causal and stable. In
this exercise, the index m refers to the causal, stable, minimum phase filter
(all the zeros are inside the unit circle), whereas the absence of an index refers
to one of the (29 — 1) other causal and stable filters G(f) with the same gain
|G(f)] = |Gm(f)]. The responses of the filters G, (f) and G(f) to the signal
z(n) are denoted ym, (n) and y(n) respectively.

1. Show that if #(n) is causal, then |y, (0)| > |y(0)|.

2. Show that S0 |ym ()] > 0 [y(n)]%.

The results of exercise 4.7 show that, among all the causal and stable fil-
ters with the same gain, the minimum phase filter is the one with the fastest
response.

Definition 4.9 (Group time, phase time)
The phase delay at fy is the quantity (its dimension is time) given by:

__1 M‘
T¢(f0) - I f f=1o
The group delay in fo 1s defined by:
_ 1 de(f) ‘
)= o 4 p=r,

132 Digital Signal and Image Processing using MATLAB®

Among all the filters with the same gain, the minimum phase filter is the
one with the lowest phase delay and the lowest group delay.

As an example we will demonstrate the group delay property: since the
zero b = |ble?/™/b contributes the factor 1 — b2~! to the transfer function, the
corresponding phase contribution is ¢5(f) = arg(l — be=27/). Then ¢,(f)
contributes the following to the group delay:

~ Ldeu(f) |b] — cos(27(f — f))
20 df |bl+ b=t — 2cos(27(f — fu))

(4.32)

The denominator and f; are invariant by reflecting the zero b outside of the
unit circle. However, by reflecting b outside of the unit circle, the magnitude
of [b] in the numerator of (4.32) is increased. Thus, having b inside the unit
circle minimizes the group delay contributed by the factor (1 — bz~1). We can
extend this result to the general case of more than one zero since the phase of
the multiplicative factors of the form (1 — b;271) is additive.

The following example gives an explanation for the names group delay and
phase delay.

Example 4.7 (Group delay, phase delay)

Consider the complex signal z(n) = m(n) exp(2jnfon). #(n) can be seen as a
sine with the frequency fy; and its amplitude modulated by m(n). This signal
is the input for a complex gain filter exp(j®(f)).

We assume that the frequency fy is greater than the bandwidth B of the
signal m(n). Hence X (f) fills up a very narrow B frequency band around fy.
It is then justified to approximate ® by its first order series expansion around
fo. By assuming that 7, is an integer (or the closest integer), determine the
output signal’s expression as a function of m(n), Ho, 74, 74 and fo.

HINT: with ®(f) ~ ®(fo) + (f — fo)®'(fo) and definition 4.9, we have:
H(f) = Hoexp(j®(f)) ~ Hoexp(j®(fo) +j(f — fo)®'(fo))
= Hyexp(=2jmfory) exp(=2jm7y(f — fo))
We also have X (f) = M(f — fo), hence:
Y(f) = Hoexp(—2jmfory) exp(=2jmry(f — fo))M(f — fo)

According to the delay property, the term T'(f) = exp(—2jnr, f)M(f) is
the DTFT of the sequence m(n — 75). Therefore, the term T'(f — fo) is the
DTFT of the sequence m(n — 1) exp(2jmfon). If we multiply by the term
Hyexp(—2jnfors) which is independent from f, we get:

y(n) = Hoexp(—2jnfory)m(n — 1) exp(2jmfon)
= Hom(n — 1) exp(2jmfo(n — 74))

Linear Filters 133

In the end, we have:
m(n)exp(2jmfon) — Hom(n — 75) exp(2jmfo(n — 74))

The envelope is, on the whole, delayed by 7,, hence the name group delay,
and the phase of the carrier is shifted by 7. This result can easily be extended
to the signal z(n) = m(n)cos(2wfon). All we need to do is decompose the
cosine as two exponentials, one around — fy, and the other around + fy, [

4.7 Filter design methods

The methods explained in this paragraph make it relatively easy to design
the most common filters. We will only be using the window method and the
methods taken from “discrete-time” to “continuous-time” transformations.
The first paragraph shows the relation between the gain of a given
continuous-time filter and the gain of the digital filter that implements it.

4.7.1 Going from the continuous-time filter to the discrete-time fil-
ter

Consider a filter whose impulse response is h(t) with the continuous-time input
signal z(¢). The output signal is denoted by y(¢). The Fourier transforms of
z(t), y(t) and h(t) are denoted by X (F), Y(F') and H(F) respectively.

H(F)
Input x(t) Continuous-time | Output y(t)
e i
ys(n)
T [ADC TlaDc} == ()~
He(f) -
| % | Discretetime EQ) T
system

Figure 4.14 — Comparing the outputs at sampling times

Consider H(F). We are going to try and find a discrete-time filter with
an impulse response hs(n), which would have the samples y;(n) = y(nT) of
the signal y(¢) as its output when it has the samples #,(n) = z(nT) as its
input. In order to do this, we are going to calculate on one hand the DTFT
of the output samples of the digital filter’s output, and on the other hand the
DTFT associated with the output samples of the filter. By making these two
expressions equal, we obtain a relation between the two filters.

The discrete-time filter output samples we are trying to determine will be
denoted g, (n). Using obvious notations, the DTFT of g, (n) is given by:

Yo(f) = Hi ()X (f) (4.33)

134 Digital Signal and Image Processing using MATLAB®

Because, by definition, H(f) is periodic with period 1, the function f](f),
defined on (—1/2,41/2) by H(f) = Hs(f)1(f € [-1/2,1/2]), is such that:

= H(f -k

To put it more graphically, f[(f) represents the truncated pattern of the
function H(f) in the (—1/2,1/2) band. Using formula 2.25 (see page 70),
which gives us X (f) as a function of X(F'), 4.33 can also be written:

ZHf k) ZX (f = k)F (4.34)

If we now assume that (¢) is (—F;/2,+F;/2) band limited, which hap-
pens in practice when an anti-aliasing filter 1s used before the analog-to-digital
converter, X (I") = Y, X(F — kF)I(F € (—F;/2,+F,/2)). In this case, the
truncated pattern of ", X(F — kF;), in the (—F,/2,+F,/2) band, coincides
with X (F) and expression 4.34 can also be written:

_ %Zf](f — K)X((f = k) Fy) (4.35)

As for continuous-time, we have Y(F) = H(F)X(F), and therefore, by
using once again formula 2.25, the DTFT of the sequence y;(n) = y(nT') can
be expressed:

ZY (f —k)F ZH (f=k)FO)X((f —k)F,) (4.36)

In order for 4.35 and 4.36 to coincide, we need:
H(f) = H(FF)U(S € (=1/2,1/2))
Hence the method for constructing the gain H,(f) from H(F):
— H(F) is truncated at the interval (—F;/2,+F;/2).
— The frequency scale 1s normalized by dividing by Fj.
— The resulting function is periodized* with period 1.

Once the function H,(f) has been determined, creating and implementing
it requires certain techniques, some of which are given in this chapter (see
exercise 4.11). Example 4.8 shows an application for which the filtering is
applied directly to the frequency.

4If the resulting function shows jumps such that X(f;) = a~ and X(f(;l') = a¥, the
condition X (fo) = (a~ + at)/2 is set for continuity reasons.

Linear Filters 135

Example 4.8 (Analytical signal)

As a reminder (see example 1.1), the analytical signal z(¢) associated with the
continuous-time real signal z(¢), is obtained by filtering x(¢) using the filter
with 2U(F) as its complex gain, where U(F) is the unit-step function, equal
to 1if FF > 0 and 0if F < 0.

We also saw in the same example that #(¢) was the real part of z(¢) and
that the Hilbert transform of x(t) was defined as the imaginary part of z(t):

1.

Using Z(F) = 2U(F)X(F) as the frequency’s expression, find the
discrete-time filtering that creates the samples of z(¢) by working with
the samples of the signal z(¢).

. We want to perform the frequency filtering Z(F) = 2U(F)X(F'), using

the DFT. What problems are we going to be faced with?

. Write a program that calculates the analytical signal of the real signal

z(n) resulting from the sampling of #(¢). Name this program siganal.m.

Use the function created for plotting the impulse response of the Hilbert
transform response, by typing siganal([zeros(32,1);eye(1,32)]).

. Record a speech signal, sampled at F; = 8,000 Hz. Using the previous

function, calculate its Hilbert transform. Visualize the signal, then listen
to 1t.

HINT:

1.

The analytical signal is obtained by applying the filter with the gain
H(F)=2U(F) to the real signal x(¢). Because we are working with the
sampled signals, the filter’s gain is, in the interval (—1/2,+1/2):

0 when —1/2< f<0
H(fy=<1 when fe{0,1/2}
2 when 0< f<1/2

The rest of the function H(f) is obtained by periodizing the expression
above with period 1.

. In the expression Y;(f) = H;(f) X5 (f), substituting the DFTs for DTFTs

leads to replacing a linear convolution with a circular convolution. In
practice, if the signal block on which the DFT is calculated is much
greater than the duration of the filter’s impulse response, the resulting
error 1s small, except at the beginning and at the end of the block. This
implementation can therefore be used since the impulse response of the
analytical filter decreases like 1/n.

136 Digital Signal and Image Processing using MATLAB®

3. We are going to perform an L length DFT on the considered block signal.
As z(n) is the real part of the analytical signal z(n), as in the continuous
case, we have to verify Hay (k) + Hip(—k mod L) =2 for k=0to L—1.
We then multiply by 2 the portion of the DFT that goes from the indices
2 to L/2 (positive frequencies), by 0 the portion of the DFT that goes
from the indices L/2 + 2 to L (negative frequencies), and finally by 1
the terms for the indices 1 (zero frequency) and L/2+1 (frequency 1/2).

Type:

function sa=siganal(x)

hh %
%% Calculating the analytical signal of a real signal %
%% Synopsis: sa=SIGNANAL(x) %
o x = real signal VA
Wh sa = analytical signal associated with x %
o %

x=x(:); N=length(x);
xf=fft(real(x));

if rem(N,2)==

twoUf=[1; 2%ones(N/2-1,1); 1; zeros(ll/2-1,1)]1;
else

twoUf=[1; 2%ones((N-1)/2,1); zeros((N-1)/2,1)];
end
saf=xf .* twoUf; sa=ifft(saf);
return

4. We can now check the 1/n decrease of the Hilbert transform filter’s im-
pulse response. Type:

Y%===== RIHILBERT.M

clear; L=32;

%===== Impulse response of the analytical filter
riA=siganal ([zeros(L,1);eye(L,1)]1);

%===== Impulse response of the Hilbert filter

riH=imag(rid);

hyperbola=zeros(L,1); hyperbola(2:2:L+1)=(2/pi) ./ (1:2:L);
hyperbola=[0;-hyperbola(L:-1:2) ;hyperbolal;

stem(riH, ’x’); hold on; plot(hyperbola,’r:’); hold off

The imaginary part of the result is assumed to be equal to the Hilbert
transform. A direct calculation of the inverse DTFT of —jsign(f) leads
us to 2/nm if n is odd, and 0 otherwise.

5. Type:

%===== HILPHRASE.M
clear; load phrase

Linear Filters 137

yhilb=imag(siganal(y));

subplot (211), plot(y); grid
subplot (212), plot (yhilb); grid
goundsc (yhilb,8000) ;

By looking at the graph of the signal resulting from the Hilbert transform,
you can notice important modifications compared with the original signal, even
though the signal remains perfectly clear when listened to. This is sometimes
explained by saying that the human ear is mainly sensitive to the Fourier
transform’s modulus rather than to its phase, and it just so happens that the
Hilbert transform filter’s gain is equal to 1, hence the input and output Fourier
transforms have the same modulus. [

4.7.2 FIR filter design using the window method

The window method allows us to design finite impulse response filters, based
on an ideal frequency response. This implementation always leads to unwanted
ripples in the frequency response. Furthermore, the calculation time during a
filtering operation, expressed as a number of MAC operations (see footnote on
page 77), is usually much greater than for an equivalent ITR structure.

Its main advantage is that the calculation of the coefficients is simple.
Other, more complex algorithms (Remez)[9], use optimization criteria, such
as a separate setting for passband and stopband ripples.

We will start with an example.

Linear phase FIR filter

Most of the time, the window method is used to satisfy the linear phase con-
dition, which merely corresponds to a delay (see property 14.2 of the TFTD).
For “audio” applications, this property is often required to make sure the fil-
tered signal maintains a certain level of quality. It is related to the coefficient
symmetry property. To understand this, consider the impulse response {h(n)}

such that h(n) = h(P —n) for n € {0, ..., P} and h(n) = 0 otherwise. We
then have:
HU) = hO) R

—|—h(P _ l)e—ZjW(P—l)f + h(P)e—Zjﬂ'Pf
= Qe_j”Pf(h(O) cos(mPf) + h(1)cos(m(P —2)f)+)

This expression shows that the phase of H(f) is ®(f) = 7 — Prf or ®(f) =
—Prf depending on the sign of the real term between parentheses. The filter
is then called a linear-phase filter. It can easily be checked that taking h(n) =
—h(P — n) leads to a similar result.

138 Digital Signal and Image Processing using MATLAB®

In practice, in order to satisfy the symmetry properties, there are two possi-
bilities, depending on whether the impulse response we are trying to determine
has an odd or an even number of coefficients.

We will illustrate this with a simple example: consider a filter we want to
create, the gain of which is represented in Figure 4.15, and called a half-band
filter (notice that H(f)e~™/ also obeys this property).

H(f)

f

—i/2 -1/4 14])2
Figure 4.15 — Ezample: half-band filter

1. If N is odd, the coefficients are given by:

) = 1/2 H(f)ezjﬂ—nfdf _ /1/4 el g — sin(nw/2)
—1/2 —1/4 nmw

The moduli of the terms of this infinite length sequence decrease with n.
Keeping only N terms introduces an error in the filter’s output signal. In
our example with N = 15, there 1s some justification for keeping only the
terms for the indices from n = —7 to n = +7. Hence this filter is non-
causal. When performing real-time filtering, the impulse response has to
be delayed by 7 samples to ensure causality. This leads to an equivalent
output delay of (N — 1)/2 samples.

Causal implementation gives the finite impulse response:

n 0 1 2 3 4 5 6 7
1 1 1 1 1
hn) |l=7 0 5 0 -5 T 2
n 8 9 10 11 12 13 14
1 1 1 1
hin) || = 0 -5 w0 =7
The filter’s complex gain is:
1 1 . 1 . 1 . 1)
H - _ = —4jnf - _=8jnf ~ 125 f - —l4jnf
(%) T 571'6 371'6 + 71'6 t3¢
1 —16j5nf 1 —205nf 1 —245nf 1 —28jnf
+7re 371'6 + 571'6 771'6

. 2 2
— o l4nf [_ 2 —
—e (— cos(l4mf) + o cos(10mf)

_3% cos(6mf) + %COS(QTFf) + %)

Linear Filters 139

Its phase is linear, and given by ®(f) = A — 14nf, where A equals 0 or
m, depending on the sign of the term between parentheses.

2. If N is odd (see Figure 4.16), the coefficients are given by:

1/2))
/ [H(f) —]7Tf:| 2]7Tnfdf / —]7Tf62]7rnfdf
1/4

—1/2
sin((2n — 1)m/4)
(2n—1)m/2

MT T T MTT T

T T

4 3-2-101 4 32-101 4

Figure 4.16 — Half-band filter: comparison of the impulse responses in the odd case
(a) and in the even case (b)

With N = 6, the indices n from —2 to +3 are kept. The causal imple-
mentation consists of designing the finite impulse response filter:

n || O 2 3 4 b
hn) | -2 £ L L2 @ f

This linear phase filter has the complex gain:

242 . 1 1
H(f) = ie_f)]ﬂ'f <_3 cos(br f) + 3 cos(3rf) + cos(ﬂ'f))
71'
Type
%===== EVENODD.M
Lfft=512; freq=[0:Lfft-1]’ / Lfft;
%===== 0dd case

N=11; K=(N-1)/2; idx=(-K:K);

hi=sin(idx*pi/2) ./ idx / pi; hi(K+1)=.5; hi=hi/sum(hi);
Hif=abs (fft (hi,Lfft));

%===== Even case

N=12; K=N/2; idx=2*(-K+1:K)-1;

hp=2%sin(idx*pi/4) ./ idx / pi; hp(K)=.5; hp=hp/sum(hp) ;

140 Digital Signal and Image Processing using MATLAB®

Hpf=abs (fft (hp,Lfft));

== Drawing the gains

plot(freq,Hif,’-’,freq,Hpf,’-b’)

== Drawing the theoretical frequency response

hold on; plot([0 0.25 .25 .5],[1 1 0 0],’:’); hold off
set (gca, ’XLim’, [0 1/2]1); grid

Algorithm

To sum up, the window method comprises the following steps:

Steps:

1. Consider the compler gain H(f) we want to implement and the num-
ber N of the filter’s coefficients.

2. The coefficients h(n) are determined by:

h(n) = 15, H(F)eX ™ df if N is odd
h(n) = _152 H(f)e ImT 2™ df if N is even

and we then calculate N values symmetrically spaced-out around n =
0.

3. If needed, the resulting sequence is multiplied, term-by-term, by a

sequence w(n) called a weighting window.

Figure 4.17 shows a comparison of the answers calculated by the evenodd.m

program.

Type of filters obtained with weighting windows

Up until now, we have designed two types of filters for which the frequency re-
sponse was 1 or e=/™/. We also could have considered a complex gain sign(f)
or sign(f)e~I™/ . If we assume that we have made the impulse responses {h(n)}
causal, we end up with four possibilities, four types, depending on the charac-
teristics of the impulse responses:

1. type I: N odd and h(n) = h(N — 1 — n);

2. type II: N even and h(n) = (N — 1 —n);

3. type III: N odd and h(n) = —h(N — 1 — n);

Linear Filters 141

12

R T e S M S
S N S
T Y A

79 S S U T W O N S

1) S S SO S W A S

0 005 01 015 02 025 03 035 04 045 05

0

Figure 4.17 — Half-band filter: frequency response for N = 11 and N = 12
4. type IV: N even and h(n) = —h(N — 1 —n).

We will denote by P = | N/2] the integer part of N/2:
1. In the first, by a direct calculation:

P-1 N-1
H(f) = Zh(n)e_%j"f—l—h(P)e_%ij-|- Z h(n)e—%jnf

n=P+1

— Z h(n)e—Zﬂ'jnf —|—h(—271']Pf + Z h —271'] (N=1-m)f

= —W]N nf (22]1 COSTrf —1—2n)—|—h(P))
— TmIN- 1)fHI(f)
Hi(f) is the resulting filter when the coefficients h(n) are chosen sym-

metrically about n = 0 (hence before making the sequence causal). For
a low-pass, as we have already seen, the result is:

Je :
h(n) :/ AeZﬂ'jnfdf — ASIH(Qﬂ-nfC)

~fe nm

142 Digital Signal and Image Processing using MATLAB®

2. In the second case:

P-1 ' N-1 '
Z h(n)e_zmnf + Z h(n)e_zmnf
e~ mIN=1)f (22/1 ycosmf(N —1—2n))

= e W=D HL(f)

H([)

For a low-pass, we get:

fe .
h(n) = / Ae=ImF?mint g — Asm(2ﬂ'nfc —7fe)
~fe nr— /2

3. In the third case A(P) = 0 and:

P-1 N1
H(f) = Z h(n)e_%j”f +h(P)e_27Tij + Z h(n)e—%jnf
n=0 n=P+1

e~ mIN=1)f (2]2/1 ysinwf(N —1—2n))

— e TIN= 1)fHIII(f)

For a low-pass (defined by |H(f)| = 1), we get:

fe
by = [g4 sign(pyermnt i = 4B =L

—fe nm

H(f) shows a “discontinuity” at the origin (gain = 0 for f = 0).

4. In the fourth case:

P-1
H(f) = > hn)e >l 4 Z o= 2ming
n=0

n=P

2

N-1-

P-1
= Z h(n)e—Zﬂ'jnf Z —1— m)e—zﬂ'j(N_l_m)f

= ¢ TIIN-If (232/1 ysinwf(N —1—2n))

= e ™WN=UIH(f)

Linear Filters 143

For a low-pass, we get:

Je ~ ~
h(n) :/ JA sign(f)e—j”fe%jnfdf:ACOS(Qﬂ'nfc fe)—1

—fe 2nmt—m

H(f) shows a “discontinuity” at the origin as for the previous case.

When designing a low-pass filter, it is actually preferable to choose types I and
II. However, if the frequency response has to be asymmetrical, types III and
IV can be used.

As an example, type:

%===== LOWPASS2.M

clear; nfft=256; freq=[0:nfft-1]’/nfft;
fc=1/8; % Low-pass filter [-fc,+fc]
Nt=56;

Y===== Type I (hn odd) =============

Mt=Nt+1; M=floor (Mt/2);

n=[-M:M]’; % with 2M+1=Mt coefficients
hnI=sin(2*pi*n*fc) ./ n/pi; hnl(M+1)=2%fc;

hnls=fft (hnl,nfft); hrIs=abs (hnls);

%===== Type II (hn even) ===============

Mt=Nt; nII=[-Mt/2+1:Mt/2]’;
hnIT=sin(2*pi*nII*fc-(pixfc)) ./ (Il*pi-(pi/2));
hnlls=fft (hnll,nfft); hrIls=abs (hnlls);

Y===== Type III (hn odd) ============

Mt=Nt+1; nIII=n;

hnITI=(cos (2*pi*nIIT*fc)-1) ./ (nIII*pi); hnITII(M+1)=0;
hnIlIs=fft (hnIII,nfft); hrIlIs=abs (hnIlls);

%===== Type IV (hn even) =============

Mt=Nt; nIV=nII;

hnIV=2%(cos (2*pi*nIV*fc-pi*fc)-1) ./ (2*nIV*pi-pi);
hnIVs=fft (hnlV,nfft); hrIVs=abs (hnlVs);

subplot(211); plot([hnI [hnII;0] hnIII [hnIV;0]1]1); grid
subplot (212) ; plot(freq, [hrIs hrIls hrIIls hrIVs]);
set(gca,’xlim’, [0 .5]); grid;

To sum up, if we choose the gain A(f), the impulse response calculations
are done by:

1. type It h(n) = ff}c A(f)e?mind df;

2. type II: h(n) = ff}c A(f)e=dmT 2mint df;

3. type I1I: h(n) = [jA(f) sign(f)e™/ df;

4. type IV: h(n) = [75 jA(f) sign(f)e=I™ e2min/ df

144 Digital Signal and Image Processing using MATLAB®

0.3
0.2
0.1
0 L=
-0.1
-0.2

| | | | | | |

! ! ! ! ! ! ! !
! ! ! ! ! ! ! !

ol B N o R S S
‘ : ! ‘ : ! ‘
‘ ! ! ‘ ‘ ! ‘

0 1 1 § | i | | | |
0 005 01 015 02 025 03 035 04 045 05

Figure 4.18 — Impulse responses and gains for the four types of low-pass filters

Weighting window

Keeping only a finite number of terms of the impulse response {h(n)} amounts
to multiplying it by an N width rectangle, and therefore to convoluting H(f)
with the function:

N-1 : .
: 1 — e 2™N sin(Nraf) _.
W, _ E —2j7nf _ _ —jn(N=1)f
)= — ‘ 1—e"27f sin(nf) ‘

This weighting function, called the rectangular weighting window, causes
ripples in the bandpass and the stopband, and widens the transition band,
hence the idea of applying other windows so as to modify these properties.
Among the most common ones, we can mention the Bartlett, Hamming, Hann,
and Kaiser windows [74], etc. Let us examine the Hamming window defined

by:

2mn

wpr(n) = 0.54 — 0.46 cos (N

1),forn€{0,...,N—1} (4.37)

We plotted in Figure 4.19 the gain of an ideal half-band filter as well as
the gains of the filters obtained by the window method, with the rectangular
window and the Hamming window respectively.

Notice that reducing the ripples in the passband and in the stopband causes
the transition band to widen, in other words the gain decreases more slowly
around the frequency f = 1/4.

Figure 4.19 is obtained using the program:

%===== RIFHAM.M
Lfft=1024; freq=[0:Lfft-1]1’> / Lfft; N=15; K=(N-1)/2;
%===== Rectangular window

h=sin((1:K)*pi/2) ./ ((1:K))/pi; h=[h(K:-1:1) 1/2 hl;

Linear Filters 145

Transition

,,,,,,,,,,,,,,,,,

Redtangulér o

1 1 window
02 T e -

0O 005 01 015 02 025 03 03 04 045 05

Figure 4.19 — Gain of a 15th order filter for a rectangular window and a Hamming
window

h=h/sum(h) ; Hf=abs (£fft (h,Lfft));

%===== Hamming window
ham=.54-.46%cos (2%pi* (0:N-1) /(N-1)); hh=h .* ham;
hh=hh/sum(hh) ; Hfh=abs (fft (hh,Lfft));

plot (freq, [Hf;Hfh]); axis([0 1/2 0 1.4]1); grid

%===== Drawing the theoretical frequency response
hold on; plot([0 0.25 .25 .5],[1 1 0 0],’:’); hold off

The method gives rise to the following comments:

— the integral we wish to calculate requires the analytical expression of

H(f);
— the resulting filter is stable (by definition, since it has no poles);

— because the impulse response 1s symmetrical, the transfer function has
zeros on both sides of the unit circle. Therefore, it is not a minimum
phase filter;

— its phase can be linear (piecewise), unlike the ITR;
— the ripples do not have a constant amplitude;

— as we saw with the low-pass filter, the passband and stopband ripples are
the same;

— transition bands are widened because of the width of the chosen window’s
main lobe;

— unwanted ripples are due to side-lobes.

146 Digital Signal and Image Processing using MATLAB®

NoTE: the window method is mainly used because it can be used to provide
linear phase filters. This property has to do with the symmetry of the coeffi-
cients: it is important for the weighting window to preserve this symmetry. In
particular, the two extreme values, for n = 0 and n = N — 1, are equal (see
expression 4.37). Bear in mind that the windows used to weight the signals do
not have this symmetry, but are periodic with period N.

Exercise 4.8 (Window method: low-pass filter)
We want to design an ideal low-pass filter, the gain of which is represented in
Figure 4.20.

1. Determine the expression of ~(n) in the cases where the length is chosen
even, and where it is chosen odd.

2. Write the rif (N,£0) function, which determines the filter’s coefficients
based on the length N and the cancelling frequency fy;. Write this func-
tion by implementing a Hamming window.

H(f)

-2 fo 12
Figure 4.20 — Ideal low-pass

Using the angle function, use a program to check that the phase is piecewise
linear.

Exercise 4.9 (Spectrum reversal encryption)
Starting off with a sound (B band real signal z(¢)), a typical encryption tech-
nique consists of performing the process represented in Figure 4.21.

-B +B +Fp, “Fm +Fy

Figure 4.21 — Sound encryption: on the left, the spectrum of the real signal about
to be encrypted; on the right, the encrypted signal’s spectrum

1. Let us assume that y(t) = 2 x x(t) cos(2wF,t). Using the spectrum of
y(t) shows that, if Fl,, > B, the “encrypted” signal’s spectrum can be
obtained (see exercise 3.7).

Linear Filters 147

What does the decryption operation consist of?

2. Write a program that decrypts, at the frequency F,, = 12,800 Hz, a B
band signal sampled at Fj.

Exercise 4.10 (Window method: band-pass filter)
Let h(n) be the impulse response of a filter.

1. What is the complex gain of the filter 2h(n)cos(2rnfy)? How can a
band-pass filter be designed using a low-pass filter.

2. Write a program that uses the fir function to design a band-pass filter
centered at 0.2 with a width of 0.1.

Exercise 4.11 (Window method: derivative filter)
Let z(t) be a continuous-time signal and let X (F') be its Fourier transform.

1. Show that the derivative of the Fourier transform of z(¢) has the expres-
sion 27 F X (F'). Using a procedure similar to the one found on page 133,
determine the complex gain of a discrete-time derivative linear filter.

2. Using this result and the window method, find the coefficients of the
FIR filter that approximates a derivative filter for an odd number of
coefficients.

3. The resulting filter is not causal. Give a causal solution to the problem.
What is the consequence on the operation performed?

4. Write the derivative filter as a MATLAB® function and test it on different
types of signals, in particular on a signal of the type sin(27 fyn).

4.7.3 IIR filter design

A rather common method of recursive filter design is based on the continuous-
time/discrete-time change. Starting off with a “continuous-time” filter, the
characteristics of which are known, all that needs to be done is to “discretize”
that filter. This isn’t the only way to proceed of course. Other design methods
can be found in more specialized books, in particular methods that do not
require changing over to continuous-time (notably the Remez method).

A few characteristics of the analog filters used

1. The Butterworth filters have a continuous-time transfer function I (s)
(Laplace transform of their impulse response) resulting from a gain func-
tion that can be expressed:

|H (f)I° = W = H(s) = m

148 Digital Signal and Image Processing using MATLAB®

2k—1
2n

where s, = j7 (
n 1s odd or even:

+ %) The situation changes depending on whether

n/2 1
H =
even kl;[l s2 4 2s cos((?k’ — 1)77/277') +1
(n=1)/2
1 1
d Hogq = ——
an odd s+ 1 1H—1 s 4+ 2scos(km/n) + 1

Butterworth filters show no ripples in their passband and stopband.
2. Type 1 Chebyshev filters have the gain |H;(f)|? = (1 +2T2(f))~" with:

cos(narccos(z)) for |z| <1

T (x) = { cosh(nargcosh(z) for |z|>1

And hence for k € {1,---,n}, py = —sinh(a)sin((2k — 1)7/2n) +
jcosh(a) cos((2k — 1)7/2n) with o = argsinh(e=1)/n.

3. Type 2 Chebyshev filters have the following gain:

1
T 14 212 (fa) TS

| (f)]

where f, is the frequency where the stopband begins. And therefore:

2nfaAx . 27faBs
= — for ke {1,---
h A = —sinh(«) sin((2k — 1)7/2n)
W By = cosh(o) cos((2k — 1)7/2n)

Pk

o = argcosh(A;1)/n, whereA, is the imposed passband amplitude. The
zeros are placed on the imaginary axis:

2j7fa
cos((2k — 1)m/2n)

e =

Chebyshev filters show:

— either a passband ripple but none in the stopband (type 1 filters);
— either a stopband ripple but none in the passband (type 2 filters).

Linear Filters 149

The passband ripple is equal to 1/4/1 4 2. The Chebyshev filter have
better attenuation characteristics than the Butterworth filters. The band-
pass ripple, the attenuation and the integer n all need to be known in
order to calculate these filters.

4. Cauer filters or elliptic filters are optimal in terms of the transition band,
and have the following gain:

1
2

where R, is a rational Chebyshev approximation, and where L character-
izes the attenuation. The Cauer filters show ripples in the bandpass and
in the stopband. The band pass ripple is equal to 1/v/1 + 2. The band-
pass ripple and the minimum attenuation in the stopband are needed to
be able to calculate these filters,which are defined by arrays.

Using the bilinear transform

Using the bilinear transform is justified by the calculation of an integral with
the trapezoid method. We will write #, = z(nT) to denote the function’s
values at points nT. If s, is the value of the integral from 0 to nT', s, obeys
the recursive equation:

Tpn + Tn_1

Snzsn—l'i'Tf = B(Z)I

S(z) _Zl—i—z_l
X(z) T 21— -1

B(z) is an approximation of the integral operator, which is expressed 1/s in
the Laplace transform. The bilinear transform method consists of replacing s
with 1/B(z) in the expression of the continuous-time filter’s transfer function.
[27, 8]. If the sampling is done fast enough, the frequency distortion caused by
this transformation is negligible. When this is not the case, there are methods
for compensating this distortion (to a certain extent).

Exercise 4.12 (Butterworth filter)
We wish to perform an IIR filter design based on the Butterworth filter.

1. Write a program designed to calculate the coefficients of the Butterworth
filter’s denominator, for a given value of n.

2. Write the program that provides the frequency response of the Butter-
worth filter for a few orders (for example, for n from 2 to 6). The gain,
in decibels, will be chosen as the y-coordinate, and log;,(w) as the x-
coordinate, where w is the angular frequency in rad/s (for a given value
of w, the value of a polynomial is the scalar product of its coefficients
with the vector [1 jw - - (jw)™]).

150 Digital Signal and Image Processing using MATLAB®

3. Using the bilinear transform to obtain the digital filter:

(a) Consider the polynomial G(z) = ag + ayz + - -+ ayz™. Write its
development as a recursive relation based on the Horner polynomial
representation®.

(b) The variable change # = B(z)/A(z) is made, where A(z) and B(z)
are polynomials. Write the previous relation for the numerator and
denominator polynomials.

(c) Write the program that performs the bilinear transform of a poly-
nomial.

4. Compare the obtained discrete and continuous spectra.

Using the DFT

A method that would seem reasonable would be, for filter design, to start with
values of the DTFT H(f) (actually the values of the DFT), and to try to find
the original {A(n)} using the IDFT. As we are going to see in exercise 4.13, it
actually is not such a good idea.

Exercise 4.13 (Temporal aliasing and the use of the DFT)

Consider H(f), the complex gain of a filter with the impulse response {h(n)}.
Give the expression of the filter’s impulse response {71(77,)}, calculated based
on the DFT H(k/N) as a function of the h(n). Compare the results for the
window method and this method, on a low-pass filter. Compare the resulting
gains.

4.8 Oversampling and undersampling

The oversampling and undersampling operations play an important role in
digital signal processing.

Oversampling by an integer factor M consists of performing an interpolation
on the sequence #(n) by calculating M — 1 intermediate values between two
consecutive points.

Undersampling by an integer factor M consists of calculating, based on a
sequence sampled at the frequency Fj, the values of that same sequence as if it
had been sampled at F /M. Undersampling does not mean simply taking one
out of every M samples of the original sequence.

A typical application of oversampling and undersampling is the frequency
change. In order to go from 42 kHz to 48 kHz, for example, you can start by
oversampling by a factor of 8, and then undersample by a factor of 7. These

5A polynomial 2" + 12"~ + ... 4+ an can be developed by writing z(-- (z(z + a1) +
a2)--+) + an. This is known as the Horner polynomial representation or the Horner scheme.

Linear Filters 151

operations are also helpful for what is called “multifrequency” processing, which
is used in particular for bank filter techniques, presented in paragraph 5.2.

4.8.1 Oversampling

We are going to start with an example. Let z(n) be a sequence with X, (z)
as its z-transform. Consider the sequence y(n) = x(n/4) for n = 0 mod 4 and
y(n) = 0if n # 0 mod 4. This operation, called the expansion operation, inserts
three 0 in between the terms of the sequence #(n). Notice that the sequence
y(n) contains 4 times more samples than the sequence x(n), and theoretically,
should be interpolated at 4 times the sampling frequency F; associated to z(n).

We will now determine the expression of the z-transform of the sequence
y(n) as a function of z(n). With obvious notations, we have:

Va(z) =) x(n)e" = X, (2Y)

k

With z = %™/ the DTFT can be expressed as Y (f) = X(4f). The interval
(—=1/2,1/2) contains the spectrum of x(n) replicated four times. We say that
there are images in the spectrum (see Figure 4.22).

This means that if you consider the samples y(n) corresponding to a
continuous-time signal sampled at the frequency F! = 4F, the spectrum is
made up of these images in the (—2F;, +2F;) band (see page 69). Inserting
zeros where real values should be has added high frequency components corre-
sponding to the brutal transitions introduced in the temporal sequence.

X(f)

Y

\i

Figure 4.22 — Effects of oversampling

If we have a sequence y(n) and wish to reconstruct the intermediate samples
without causing the distortion due to the images, we simply need, after the
expansion operation, to perform a gain F!/F; = 4 filtering in the (—1/8,1/8)
band, in order to suppress the high frequencies found in the (—1/2,—1/8) and
(+1/8,41/2) bands. The resulting signal, after being reconstructed at the

152 Digital Signal and Image Processing using MATLAB®

frequency 4Fs, is located in the (—4F;/8,4+4F,/8) = (—Fs/2,+F;/2) band,
with 4 times the number of samples.

All these results can easily be generalized. If we insert (M — 1) zeros in
between the elements of the sequence x(n), the resulting sequence’s z-transform
has the expression:

Y (2) = X: (M) (4.38)

In order to properly oversample, this expansion has to be followed by a low-
pass filter in the (—1/2M,1/2M) band, corresponding, after reconstruction at
the frequency F! = M Fj, to the original (—F; /2, Fs/2) band with M times the
number of samples. What should be remembered of all this is written below:

In order to oversample a signal x(n) by a factor M, one method consists
of inserting (M — 1) zeros in between the values of the signal, and then
to perform an M gain filtering in the (—=1/2M,+1/2M) band.

Exercise 4.14 (Interpolation)

1. Write a function that interpolates by a factor of M.

2. Apply this function to the x=rand(1,40); sequence.

Example 4.9 (Expansion and frequency translation) Starting off with
a speech signal the spectrum of which is placed, for the positive frequencies, in
the (0 Hz - 4,000 Hz) band, we are going to listen to the signal resulting from
the following operations:

1. The frequency scale is expanded by a factor of 5/4. Mathematically
speaking, this means that if S, (F') refers to the original signal’s spectrum,
the modified signal’s spectrum is Sy(F) = Sy(5F/4). Therefore, the
spectrum can be found, for the positive frequencies, in the (0 Hz - 5,000
Hz) band. How is this achieved?

2. The signal’s spectrum is shifted by Fy = 1 kHz toward the positive fre-
quencies. This means that if S} (F) refers to the part of the signal’s
spectrum found in the positive frequencies of the original signal, then the
part belonging to the positive frequencies of the modified signal’s spec-
trum is S;’ (F) = S} (F—Fp). Hence the spectrum is now, for the positive
frequencies, in the (1, 4) kHz band. How is this achieved?

Linear Filters 153

Write a program using MATLAB® that performs these two operations.
Listen to the obtained signals and compare the results. You can also compare
the spectra with the smperio.m function discussed in Chapter 9, example 9.1.

HINT:

1. According to the time scale expansion/compression property (see Chapter
1), all that is needed to expand the spectrum is to take the signal sampled
at the frequency F; = 8,000 Hz, and listen to it at the reconstruction
frequency %Fs Hz. Type:

|| soundsc(x, 10000);

In order to compare with the signal obtained in the next question, you
can also construct the signal interpolated by a factor of 2 corresponding
to the sampling frequency F! = 2F; = 16,000 Hz and listen to the result
at the frequency %Fs’ = 20,000.

2. The original signal, sampled at F; = 8,000 Hz, is in the (—4, +4) kHz
band. Because of the frequency translation, the desired signal is in the
(=5, +5) kHz band. Hence interpolation must first be performed in order
to have a sampling frequency at least equal to 10,000 Hz. To make the
interpolation operations simpler, we will set F! = 16,000 Hz, by using
the interpl function with an interpolation factor of 2.

The spectrum has then to be shifted by 1 kHz. This can be done by
multiplying the signal by the function e*71999% sampled at the frequency
F! = 16,000 Hz.

The (+1, +5) kHz band then has to be filtered. To this purpose, a
low-pass filter is implemented in the (—2, +2) kHz band and shifted in
frequency by 3 kHz. This result is achieved using the rif function in

the (=b,b) band where b = 126000000 followed by a multiplication of the filter

2j7n3000/16000

coefficients by e

Type the program:

Y%===== FRQSHIFT.M

close all; clear all

Fg=8000; load phrase.mat; % or [sn,Fs]l=wavread(’phrase.wav’);
Fep=2%Fs; xi2=interM(sn,2,100);

F0=1000; xi2trans=xi2.*exp(2*j*pi*(0:1length(xi2)-1) >*F0/Fep);

%===== Low-pass filter
Lh=201; h=rif (Lh,Fs/4/Fep);
%===== Band-pass filter centered on Fc

Fc=Fs/4+F0; htrans=h .* exp(2%j*pix(0:Lh-1)*Fc/Fep);

154 Digital Signal and Image Processing using MATLAB®

xi2transfiltre=filter (htrans,1,xi2trans);

xtrans=real (xi2transfiltre);

%===== Listening (sound or soundsc depending on the version)
soundsc(sn,Fg); disp(’Press a key’); pause

goundsc (sn,5%Fs/4); disp(’Press a key’); pause

soundsc (xtrans,Fep) ;

Digital-to-analog conversion

In paragraph 2.1.2, we saw that distortions appear during the signal’s recon-
struction simply by using a ZOH. In the case of audio frequency applications
(speech, music, etc.), a simple way of avoiding this is to place before the ZOH
an oversampler with a high enough factor M.

This is because oversampling spreads further apart the periodized compo-
nents of the signal’s spectrum. Furthermore, concerning the ZOH, working M
times faster “widens” the sine cardinal lobes.

Figure 4.23 shows what the spectrum looks like for the output signal of the
ZOH, for M = 5 and for a sampling frequency of F; = 1/T = 8 kHz. The
result should be compared to the one in Figure 2.9 of paragraph 2.1.2.

0.8
0.6
0.4 ! :
s e I e
~A : : :

0 I I
-50 -40 -30 -20

kHz

Figure 4.23 — Output spectrum of a ZOH preceded by an oversampling with a factor
of M =5

The part found in the (—F;/2, F;/2) undergoes a slight distortion, since
sinc(fT/M) stays close to 1. Beyond Fy /2, the first term due to the periodiza-
tion of the spectrum can be found around 40 kHz, outside of the audible band.
This method is often used by the boards installed in our computers to avoid
having to use an analog high-quality low-pass filter: the signal is oversampled
by a factor M so as to have M x Fy greater than 40 kHz (typically, M x F ~ 48
kHz), and the obtained values are maintained constant, at the same processing
rate.

Linear Filters 155

4.8.2 Undersampling

Let {z(n)} be a sequence with X (z) as its z-transform. Consider the sequence
{y(n) = x(4n)} obtained by keeping only one out of every 4 samples of the
sequence {z(n)}. The operation that takes us from {z(n)} to {y(n)} is called
a factor M = 4 decimation.

By using the identity 2.33, the expression of the z-transform of {y(n)} is:

+o0 400 3
Yz (Z) = Z x(4n)z—n — Z l‘(p) (% Zerﬂ'kp/él) Z_p/4
n=-oe p=—0o0 k=0
—2j7 P 1 5 —9in
= —Z (p_z_:oo (21/46 2§ k/4)) _ Z;X'Z (21/46 25 k/4)

Notice that you must not write p = 4n and then p € Z. The resulting
inexact expression would be Y, (2) = X,(2'/*). By using the DTFT, that is to
say by choosing z = ¢%™/ and by recalling the notation X (f) = X, (e%"7), we
get, for M = 4:

igx (lel;k) (4.39)

This expression shows that inside the interval (—1/2,1/2), Y(f) is the alge-
braic sum of the four contributions, shifted by 1/4. To obtain the signals of the
continuous-time signals (frequencies expressed in Hz), f has to be multiplied
by the sampling frequency as we have already said. The y(n) are the signal
samples taken at the frequency F;/4, hence the expression of Y(f) shows a
spectrum aliasing effect. Notice, by the way, the difference with the expansion
operation that creates “images” in the signal’s spectrum.

Y(f)

'& R

‘ u® \.
L — T~ ' Obtained result
/_m Expected resut

s 12 1

Figure 4.24 — Effects of undersampling

156 Digital Signal and Image Processing using MATLAB®

However, according to the sampling theorem, the undersampled signal’s
spectrum is the one referred to as Xa(f) in Figure 4.24. Therefore, to un-
dersample the signal z(n), a gain 1 filtering (see page 69 with the ratio
F!/Fs = 1/M already included in 4.39) has to be performed in the (—1/8,+1/8)
band before the decimation operation, so as to avoid spectrum aliasing.

These results can be generalized. If y(n) refers to the sequence obtained by
taking one out of every M values of the sequence z(n), the expression of its
z-transform is:

Y.(z) = iMilx (zl/Me—zj”k/M) (4.40)
2 - M z .
k=0

In order to undersample a signal (n) by a factor M, one possible method
is to perform a gain 1 filtering in the (—=1/(2M),+1/(2M)) band, followed
by a decimation operation of 1 out of every M values.

Exercise 4.15 (Undersampling)

1. Write a function for undersampling by a factor M.
2. Record a speech signal at 8,000 Hz.

— Create a new signal by taking one out of every 2 samples without
any particular processing. Listen to the result.

— Perform a “proper” undersampling by using the previous function
with M = 2. Listen to the result.

Figure 4.25 sums up the M factor oversampling and undersampling oper-
ations. It should be noted that all of these operations, including the filter-
ing, are performed in discrete-time, and on no occasion did we change to the
continuous-time signal!

Exercise 4.16 (Paralleled undersampling and oversampling)

The filtering operation necessary to the undersampling can be performed M
times faster by M parallel filters. The output at the time nM has the expres-
sion:

+oo
y(nM) = Y h(k)z(nM — k)
1\4_—100+oo
= Z Z h(mM 4+ rye((n —m)M —r)

r=0 m=-—oco

Linear Filters 157

a) Oversampling Low-pass
— M f > M ?__‘1 —
— L
Expansion -U2M UM
b) Undersampling
Low-pass Decimation
— e]
—_— L
-U2M - U2M

Figure 4.25 — Oversampling and undersampling operations

y(nM) appears as the sum of M filterings with the impulse responses
{hy(m) = h(mM + r)}mez. The filter input is the sequence ..., z(r — M),
z(r), e(r+ M), x(r +2M),...obtained from z(n) by a delay of r followed by
a decimation. Notice that h, is the r-th M-polyphase component of h.

1. Give the processing architecture.
2. Write a paralleled undersampler simulation program.

3. Write a paralleled oversampler simulation program.

This page intentionally left blank

Chapter 5

Filter Implementation

Mathematically speaking, using the filter with the transfer function H(z) for
filtering the sequence z(n) leads to a perfectly determined result. However,
depending on the practical implementation of the filter, the results can vary
in terms of precision, speed, etc. This chapter deals with the technical aspects
of filtering. If you restrict yourself to a “simulation” approach, as we have up
until now, the filter function is everything you will ever need. However, if
this filtering operation has to be implemented, its effectiveness requires some
additional knowledge that will be detailed in this chapter.

5.1 Filter implementation

5.1.1 Examples of filter structures

In this paragraph, we will study the implementation of the filtering function,
in other words its programming. Figure 5.1 shows a particular implementation
called the canonical direct form of a general recursive filter with the transfer
function:

H{(z)

Cbot bz 4 by
o ldaz i dape?

Choosing the same degree for both the numerator and the denominator does
not restrict us in any way; you need only consider that some of the coefficients
can be equal to zero.

This “implementation” first performs the calculation of:

t(n) =i(n) —ait(n — 1) — - - — apt(n — p)
then the calculation of:

o(n) = bot(n) + bit(n — 1) + - -+ bpt(n — p)

160 Digital Signal and Image Processing using MATLAB®

i(n) +® t(n) i @_4; X o(n)
” X

+®®+

Figure 5.1 — Processing architecture

where {i(n)} and {o(n)} are the input and output sequences respectively.

For this algorithm, the vector x(n) 2 [a:o(n) zi(n) ... xp_l(n)]T (px
1) is called the filter state:

x(n) = [t(n) tn—=1) ... th—p+1)]"

Its components, referred to as state vartables, are the input values of the
“delay” cells denoted z~! in Figure 5.1. By introducing the vectors:

a=[a; az ... a) andb=1[by by ... b,]"

we get the following expression for the algorithm:

t(n) = i(n) —aTx(n — 1)
(n):b t(n) +bTx(n - 1) (5.1)
(n) :[(n) xzon—1) z(n-—-1) - l‘p_z(n—l)]

The following filter function implements this algorithm:

function [ys,xs] = filtrer (num,den,xe,xi)

%h %
%% Filter (direct canonical structure) %
%% SYNOPSIS: [ys,xs]=FILTRER(num,den,xe,xi) %
% num = [b0 bl ... bP] %
% den = [1 al a2 ... aP] %
% xe = input sequence %
%h xi = initial state %
% ys = output sequence %

Filter Implementation 161

%h xs = final state Y%

lden=length(den); lnum=length(num) ;
if (lden<lnum), den(lnum)=0; lden=lnum; end
if (lnum<lden), num(lden)=0; end
1d=1den-1; N=length(xe);
av=zeros(1,1d); bv=av;
av(:)=den(2:1den); bv(:)=num(2:1den) ;
if (nargin==3), zzi=zeros(ld,1); end
if (nargin==4),
if length(xi)<1ld, xi(1d)=0; end
zzi=zeros(1d,1); zzi(:)=xi;
end
bO=num(1); xs = zzi; ys=zeros(1ld,1);
for ii=1:N,
xOn=xe(i1) - av * xs;
ye(ii)=b0 * x0n + bv * xs;
xs=[x0n ; xs(1:1d-1)]; % New state
end
return

Determining the initial state leading to a given input-output sequence is
another problem altogether. Using the recursive equations 5.1 that lead to t(n)
and o(n), we can also write:

by by - by 0 0
o(lp—1) 1 o a 0 ol [tp—1)
Z(p— 1) 0 bo bp—l bp 0 0
: =10 1 t(-1) | =oT
0((0)) : :
(0 0 -0 ... 0 by by - b ‘(—
P
0o 0 1 oar - ap] (=p)

This expression shows that the initial state T = [t(—1) ... t(—p)]? can
be reconstructed so long as the matrix O is invertible. The system theory
demonstrates that the possibility of reconstruction is related to the concept of
observability. A great number of observability criteria exist, based on the state
representations associated with a system [51].

The filtric function detailed hereafter carries out the reconstruction of
the state associated to the processing architecture implemented by filter:

function zi=filtric(num,den,xi,yo)

%h %
%% Initial state reconstruction for a direct %
%% canonical structure %
%% SYNOPSIS: zi=FILTRIC(num,den,xi,yo) %
hh num = [b0 bl ... bP] %

%h den = [1 al a2 ... aP] %

162 Digital Signal and Image Processing using MATLAB®

% xi = input sequence %
% yo = output sequence %
%h zi = reconstructed initial state %
07 0 9,
%h A

lden=length(den); lnum=length(num) ;

if (lden<lnum), den(lnum)=0; lden=lnum; end
if (lnum<lden), num(lden)=0; end

1d=1den-1;

numv=zeros (lden, 1) ; denv=numv;

numv (:)=num; denv(:)=den;

1x=length(xi); ly=length(yo);

if 1x<1d, xi(1d)=0; end

if 1y<1d, yo(1d)=0; end

ysv=zeros(1,1d); xev=zeros(1,1d);
yesv(:)=yo(ld:-1:1); xev(:)=xi(ld:-1:1);
x=[ysv;xev]; vec=zeros(2%1d,1); vec(:)=x;
vO=[numv; zeros(1ld-1,1); denv; zeros(1ld,1)];
A=[]; for ii=1:1d, A=[A v0]; end
A=A(1:4%1d#1d) ;

Ax=zeros (2¥1d,2%1d); Ax(:)=A; Ax=Ax’;
zzi=inv (Ax) * vec; zi=zzi(1d+1:2%1d);
return

The state reconstruction function is inseparably related to the filtering
function, which is itself based on a particular processing architecture.

However, as the following example shows, the reconstruction function is
rarely used. The state vector xs, final state of the first block’s processing, is
transmitted as the initial state of the second block. The result yp is identical
to the one obtained for the filtering of the entire block etot.

%===== FIL2BLOCKS.M

inpl=randn(100,1); inp2=randn(100,1); etot=[inpl;inp2];
b=[1 .3]; a=[1 -.8 .9];

%===== Global filtering (null initial state)
y=filtrer(b,a,etot);

%===== Filtering the 2 blocks

[yl xs]l=filtrer(b,a,inpl); % Null initial state
y2=filtrer(b,a,inp2,xs); % Initial state xs
yp=[y1;y2];

%===== Drawing for the transition between 2 blocks
[y(90:110) yp(90:110)]

MATLAB®’s filtering function, filter, uses the Transpose-Form IIR struc-
ture [69], different from the previous one, represented in Figure 5.2. As in our

Filter Implementation 163

example, filter transmits the state vector. It is however impossible to obtain
it using the reconstruction function filtic.m, available as part of the Signal
Toolbox. Exercise 5.1 1s a study of this structure.

Exercise 5.1 (Filter architecture)
Consider the Transpose-Form IIR structure (Figure 5.2) of a rational filter.

i(n) +) + + o(n)
= +A x,(n-1)
1(n)
4—
L L
o

,,(n)
_,@

Figure 5.2 — Transpose-Form IIR structure

1. Determine the filter’s transfer function.

2. By defining the state x = [z1(n) ...

state representation and express it as follows:

zp(n)] at the time n, determine the

{xm= il

Use this to find the filtering program. It might be useful to notice that
the matrix A is the transpose of the companion matrix (compan function)
assoclated with the denominator polynomial [1 a1 as ... ap)].

. Find the associated reconstruction function using only the filtering func-
tion. In order to do this, express x;(0) as the sum of an input filtering
and an output filtering.

164 Digital Signal and Image Processing using MATLAB®

5.1.2 Distributing the calculation load in an FIR filter

We wish to distribute the calculation load for an FIR filtering algorithm among
several processors. Only two methods will be presented. The first one consists
of distributing the number of multiplication/accumulation operations (MAC
operations) among M branches without changing the processing rate. The
second one consists of organizing the calculation in different units, so as to
reduce this speed, at the cost of a certain delay.

Paralleled calculations

Consider the filtering equation y(n) = +oo h(k)xz(n — k). For a given M,

k=—o0

we define k = mM + r where r € {0, ..., M — 1}. We get:

M-1 4o

y(n) = Z Z h(mM + rye(n —mM —r)

r=0 m=—o0

This expression shows y(n) as the sum of M terms:

+oo
r=20 S>> h(mM)x(n—mM)

m=—00

r=1 -I—ZO:O h(mM 4+ z(n —mM — 1)

m=—00

+oo
r=M-—1 S h(mM+ M —1)z(n—mM —M+1)

m=—00

The first term is the filtering of a sequence ..., z(n— M), z(n), z(n+ M), ...
by the filter with the impulse response h(0), h(M),... The next terms cor-
respond to translated sequences filtered by the filters h,(m) = {h(r), ...,
h(r+mM), ...}. The filter h.(m) is called the r-th M-polyphase component
of h(n).

Figure 5.3 illustrates this processing method.

Exercise 5.2 (Parallel implementation of the FIR filtering)

Write a program designed to simulate the process described by Figure 5.3.
Choose M = 4 and a low-pass, (—0.3,40.3) band FIR filter with 25 coefficients.
The result will be compared to the one obtained through direct filtering.

This method for paralleling does not reduce the processing speed in inter-
mediate filters. Only the number of multiplications per filter is reduced.

Filter Implementation 165

x(n) x(n-1)

x(n-2)

X(n=3) | x(n-4) | x(n-5)

X(n-6)

[

hO,_ &

h@

o)

v
X

h@»

®

hﬂ»

®

M=3

h@>

® "o

Figure 5.3 — A representation of the paralleled process

5.1.3 FIR block filtering

Let us again consider the FIR filtering equation:
y(k) = h(0)x(k) + h(D)e(k—1)+ -+ h(P)z(k— P)

Let:
y(nN) h(0)
;- yoN =1) - h(;l)
y(nN — (N = 1)) h(P)
with:

B

X - z(nN —1) z(nN —2)

2(nN = (N = 1)) 2(nN — N)

By organizing the inputs modulo M, we get:

[x(nN)
[x(nN —1)
y= .

[e(nN — (N = 1))

[x(nN —1)
[x(nN —2)

[e(nN — N)

z(nN — M)
z(nN —1—-M)

z(nN —(N—-1)—-M)

z(nN —-1-M)
z(nN —2—-M)

z(nN —N—-M)

z(nN — P)
z(nN —1-P)

z(nN—(N-1)—-P)

[—

166 Digital Signal and Image Processing using MATLAB®

By restricting ourselves to the case M = N = 2, the previous expression
can be written:

[y(2n)] _

y(2n —1)
FTh(0)]T
h(2)

[[z(2n) v(2n—=2) -] [#(2n=1) x(2n-3) -]| || |

[x2n—1) z(2n—=3) -+] [#(2n—=2) z(2n—4) ---] h(1)
h(3)

If we assume xg(n) = [z(2n), z(2n—2),...]¥ and x1(n) = [z(2n—1), z(2n—
3),...]F, we can also write:

y(2n) | _ [xo(n) xi(n) | [Ho
[y(% - 1)] B [Xl(”) xo(n — 1)] [Hl]
where Hy = [R(0), h(2),...]7 and Hy = [h(1),h(3),...]7. If we develop y(2n)
and y(2n — 1), we get:

y(2n) = xo(n)Ho+ x1(n)H;
= xi(n)(Ho+ Hi) + (x0(n) — x1(n))Ho
y2n—1) = =x;(n)Hg+x0(n—1)H;

= xi(n)(Ho + Hy) + (x0(n — 1) — x1(n))Hy

Therefore, the calculation of the two terms y(2n) and y(2n — 1) requires the
calculation of a total of four terms. However, one of them, x;(n)(Hy + Hy),
appears twice. If P refers to the length of the filter h, the lengths of Hy and
H,; are at the most equal to P/2. Hence the three terms of the calculation of
y(2n) and y(2n — 1) correspond to P/2 length filtering. Figure 5.4 illustrates
all these calculations.

2} [
- {y(n}

{x(2n-2)} Y - +

[12f——2®B—{H}—¢

Figure 5.4 — Block filtering: the case where M = N =2

To sum up, in order to calculate y(2n) and y(2n — 1), the number of MAC
operations is roughly 3 x P/2. This value should be compared to the 2 x P

Filter Implementation 167

MAC operations of the direct calculations. You may, as an exercise, simulate
the process described in Figure 5.4. There is more than one method organizing
the process. Consider for example:

y(2n) = xo(n)Ho+ x1(n)H;
= (xo(n) +x1(n))(Ho + Hy) — xo(n)Hy — x1(n)Ho
y2n—1) = =x;(n)Hg+x0(n—1)H;

Notice that the term xg(n — 1)H; was calculated previously. Hence there
are indeed only three MAC operations at this stage of the calculation. We can
also consider parallel block processing for values of M and N different from 2.

5.1.4 FFT filtering

A possibility for accelerating filtering operations is to work in the frequency
domain, using Fourier transforms to take advantage of the FFT algorithm’s
speed. Unfortunately, this 1s not as simple as it seems, because linear filtering
uses a linear convolution:

y(n) = +oo z(m)h(n —m) (5.2)

m=—00

the DTFT of which is H(f)X(f), whereas the product of the DFTs is the DFT
of the circular convolution. As a reminder, here is its expression 14.3:

SVl (m)h((n — m) mod N) (5.3)

m=0 x

A simple calculation shows that expressions 5.2 and 5.3 lead to completely
different results. Consider a finite impulse response filter {hx(n)} and a se-
quence {z(n)}. The output value at the time n is:

y(n) = hy(0)z(n)+ -+ hAn(N — Da(n—-N+1) (5.4)

For a clearer picture, let us assume N = 8. We are going to calcu-
late the terms resulting from a circular convolution of the length 8 block
{z(n),...,2(n — 7)} with a filter with the coefficients {n(0),...,h(7)}. The

following table describes the operations modulo 8.

m 0 1 2 3 4 5 6 7
hon [ho [b1 | ha | hs | ha | hs | he [h7]

| @n7 | Tne | ®nos [Tnoa [En_s | Tno [2a_1 | 2, |

hom mod 8| ho | hr | he | hs | ha | hs | ha |hi]

hiom mod s | hi | ho | hr | he | hs | ha [hs [ha]

ht—m mod s | hr | he | hs | ha | hs | hos [A1 [ho]

168 Digital Signal and Image Processing using MATLAB®

Notice that among the 8 results of the circular convolution, only the last
one, hoxy + hi®n_1+ -+ hrx,_7, corresponds to one of the terms from the
linear convolution, making this approach completely hopeless. This is actually
downright wrong, as we are going to see now.

The overlap-save algorithm

Consider an N = 5 length filter with its coefficients h(0), ..., h(4) completed
by 3 zeros. Let {x(n), ..., #(n — 7)} be the L = 8 length input block. As
we did before, we can build the sequence of the 8 output values by using the
following table:

m 0 1 2 3 4 5 6 7T
hn Lo | by | hy [hs [ha | O [O [0]

X | Zn_7 | Tno6 | Tnos | Tn_a | a3 | Tn_s | Tn1 | 2n]

h—m mod 8| hO | 0 | 0 | 0 | h4 | h3 | hz |h1 |

hl—m mod 8| hl | hO | 0 | 0 | 0 | h4 | h3 |h2 |

hr—m mod 8| 0 [0 [0 [ha [hg | ho | hi [ho]

The resulting circular convolution outputs are:

Ye(0) = hoxp—7+ hatn_3+ hatpn_o + hatpn_1 + bz,
Ye(l) = hizp_7+ hotn_¢ + hatn_2 + hatn_1 + hoxy,
Ye(2) = hawp_7+ h1xn_¢ + hoxn_s + haxn_1 + hsz,
Ye(3) = haxp_7+ hotn_¢ + hixn_s + hotn_a + haz,
Ye(4) = hawp_7+ hstpn_6 + howp_s + hi@n_a+ howp_3
Ye(D) = hapn_6+ hatn_s5 + howp_a + hizp_3+ hotp_2
Ye(6) = hap_5+ hatn_q + howp_s+ hixp_o + hoxn_1
Ye(7) = hap_a+ hatn_3+ howp_o + hin_1 + hoxy

Notice that the four last expressions correspond to terms found with the
linear convolution:

ye(4) = y(n = 3)

ye(5) = y(n —2)

Ye(6) = y(n — 1)
(1) =y(

Filter Implementation 169

In order to calculate the next 4 values, we have to choose {x(n+4), ...,
z(n — 3)} as our input block. This block partly overlaps the previous one (see
Figure 5.5), hence the word overlap in the name “overlap-save algorithm”.

N-1 erroneous values
N

X(n-L+1) P X(n)
1] [4
v Ly
Block p[| L
0 iE = |
e ! |
h(N-1) N h(0) [T | | Block p+1
P |
| Ssavep [| savep+i |

Figure 5.5 — Owverlap-save algorithm

All of the operations can be summed up as follows:

Overlap-save

1. Calculation (performed only once) of the DFT of the L length se-
quence h(n) completed by (L — N) zeros. L (the DFT’s length) is
usually a power of 2.

2. Calculation of the DFT of an L length block extracted from the input
data with an overlap of the (N — 1) last values of the previous block.

3. Term-by-term multiplication of the two DFTs, followed by an IDFT.

4. The (L — N 4 1) terms corresponding to the linear convolution 5.2
are saved.

Let us compare the number of operations for the overlap-save algorithm
with that of a direct calculation. The direct calculation of one convolution
point for an N length impulse response requires a loop comprising N MAC
operations.

Using the overlap-save algorithm, the impulse response’s DFT is calculated
in advance. There are two L length FFTs left for each step (one direct, one
inverse) and I complex multiplications, in all a calculation load of roughly
2 x Llogy(L) + L = 2Llog,(L\/2) MAC operations. This calculation provides
us with a block of (L — N +1) convolution points, equivalent to a load of about

170 Digital Signal and Image Processing using MATLAB®

2L log,(L)/(L — N +1) MAC operations per calculation point. Hence the gain
is roughly:

_(L=N+1)N
G, 1) = 2L log, (Lv/2)

Thus, for N = L/2 and N > 32, the FFT technique is quicker.

Other parameters have to be considered. The FFT calculation implies the
use of array pointers, which cause a considerable increase in the calculation
time. The FFT also requires memory space to save the data arrays that are
too large for the filter’s memory. This is why convolution calculations that
use the FFT are usually undertaken only with filters with a length of more
than a hundred coefficients. In acoustics, impulse response of a quarter-second
sampled at 8,000 Hz lead to lengths of 2,000 samples. You also have to add to
that the delay caused by block processing, a delay roughly equal the block’s
length. For some applications, this delay is reason enough to discard these
techniques.

Overlap-add algorithm

Consider once again the previous example of a filter {n(0),..., h(4)}. We still
hope to obtain the output:

y(n) = hoxn + h12n_1 + hozn_o 4+ ha®p_s + hatp_a

Consider the convolutions concerning two consecutive length 8 blocks la-
belled x, and x,41.

m 0 1 2 3 4 5 6 7T
hoo [ho | hi | hs | hs [Ra[000 |

xy (s [ns [#nmi | o [0 000

x4 (Zaer [nez [Zags [7asa [0 [0 [0 0]

h—mmod8|h0| 0 | 0 | 0 |h4|h3|h2|h1|

hl—mmod8|h1 |h0| 0 | 0 |0|h4|h3|h2|

h7—mmod8| 0 | 0 | 0 |h4|h3|h2|h1|h0|

Filter Implementation 171

The values obtained from the first block are:

Yep(l) = hizn_3+ hozp_s

Yep(2) = hoxpn_s+ hizp_o + hozn_1

Yep(3) = han_3+ hozp_o + hizp_1 + hon
Yep(4) = hazn_3+ hszn_o + hozpn_1 + hiz,
Yop(5) = hazn_o+ hazn_1 + hoz,

yc,p(6) = haxp_1 + hazn

yc,p(7) — h4xn

Ye,p+1(0) = hozni1

yc,p+1(1) = hlxn+1 + hOxn+2

Yep+1(2) = hozng1 + hiznyo + hotnts
Yep+1(3) = hazny1 + hoznyo + hings + hoZnta
Yept+1(4) = hazny1 + haznyo + hottnis + hi2nta
Yep+1(D) = hanyo + haZnys + honia

yc,p+1(6) = h4xn+3 + h3£n+4

Ye,p+1(7) = hatnia

As you can see:

y(n+1) = yep(4) + ye p+1(0)
y(n+2) = ye p(5) + ye pt+1(1)
y(n+3) = ye,p(6) + ye p+1(2)
y(n+4) = ye p (7) + Ye p+1(3)

The conclusion is that if the input block 1s completed with N — 1 = 4 zeros,
the circular convolution will calculate incomplete sums. These sums will then
be completed with values obtained from the next block translated by N — 1
values. The sequence of operations can be summed up in the following way:

Overlap-add
1. Calculation of the DFT of the N length sequence h(n) completed
with (L — N) zeros. Usually the length L of the DFT is 2F.

2. Caleulation of the DFT of a length (L — N + 1) block extracted from
the input data without any overlap and completed with (N —1) zeros.

3. Term-by-term multiplication of the two DFTs, followed by an IDFT;

4. Sum of the current block and of the next block with an overlap of
(N — 1) values.

172 Digital Signal and Image Processing using MATLAB®

You can check that the overlap algorithm leads to basically the same cal-
culation load as the overlap-save algorithm.

To sum everything up, the overlap-save performs an overlap on the inputs
then delivers the result, whereas the overlap-add technique performs an overlap
not on the input but on the output (see Figure 5.6).

x(n-L+N) x(n)

N—ljnull‘values

Block p] ‘ ‘ jo[[o]
I VIR S
h(N-D) N Th©) o[]o] Block p+1

L =

Sum‘ o] ‘ Sum p+1

Figure 5.6 — Overlap-add algorithm

Exercise 5.3 (FFT filtering)

Let #(n) be a signal such that x(n) = sin(27 fon) +sin(27 fin), where fy = 0.15
and f1 = 0.3 and let h(n) be the following impulse response filter:
h(n)=[0.0002 0.0134 0.0689 0.1676 0.2498 0.2498 0.1676 0.0689
0.0134 0.0002].

1. Normalize the filter’s coefficients so as to have the gain at the frequency
0 equal to 1.

2. Display on the same graph the original signal and the filtered signal ob-
tained with the filter function.

3. Display the filter’s complex gain and the spectra of the original signal
and of the filtered signal.

4. Perform the filtering using an FFT on the entire signal.

5. Perform the same process with length 32 blocks. Notice that this requires
an overlap of consecutive blocks.

Appendix A6 gives another approach of the FFT filtering based on the prop-
erties of circulant matrices.

Filter Implementation 173

5.2 Filter banks

The idea of using several parallel filters to “simultaneously” analyze several
frequency bands is very old. That is how some analog spectrum analyzers work.
Several filters, forming what is called a “filter bank” | with slightly overlapping
frequency responses, cover the entire extent of the frequency band we wish
to analyze. The short term Fourier transform time-frequency analysis (see
paragraph 3.2) is another example.

Signal spectrum analysis is not the only application of filter banks. For the
purpose of processing improvements, we can imagine performing operations on
signals coming from different filters. This is what is represented in Figure 5.7.

Figure 5.7 — How filter banks work

There are two advantages to this method: on one hand, the calculations
are parallel, and on the other hand, the processes can be adapted to the vari-
ous channels. Among the main applications of subband filtering techniques, a
few are worth mentioning, such as subband coding, multicarrier modulations,
analog-to-digital conversion (X-A), etc. In this paragraph, we will only present
some results concerning filter banks that can be encountered when dealing with
processing architectures.

In digital processing, the fact that each channel operates on narrower fre-
quency bands allows the possibility, according to the sampling theorem, of
reducing the sampling rate at the filter’s output, as it is shown in Figure 5.7.
We end up with a system for which different processing frequencies are used
simultaneously in different points of the calculation chain. The oversampling
and undersampling operations are examples. Two operations form the basis
of these techniques: decimation and expansion. We have already encountered
them in paragraph 4.8, and we will now discuss them in greater detail.

174 Digital Signal and Image Processing using MATLAB®

5.2.1 Decimation and expansion

Decimation: an operation that takes one out of every M samples. Symboli-
cally, it is represented by an arrow pointing down (Figure 5.8). According
to 4.40:

M-
Xy (2 Z 1/MI/V/IC where Wy = exp(—2jm/M) (5.5)

Expansion: an operation that inserts M — 1 zeros between two samples of the
original sequence. Symbolically, it is represented by an arrow pointing
up (Figure 5.9). According to 4.38:

Xpar(z) = X (M) (5.6)

Property 5.1 (Filtering and decimation)
We have the property illustrated by Figure 5.8.

X(i IM > H@ _y>(n) =)@» H(Z") u(n)‘ iy _Z(n)

Figure 5.8 — Fquivalence implicating a filtering and a decimation

HINT: on the right-hand side of Figure 5.8, we have:
M-

1
Y(z) =Um(z) = Z ('MW
By choosing U(z) = H(:M)X(z), we get:

Y(z) = 12) MY (W) M

which corresponds to the expression for the process on the left-hand side of

Figure 5.8. [

Property 5.2 (Filtering and expansion)
We have the properties illustrated by Figure 5.9.

HINT: starting off with the diagram on the left of Figure 5.9, and with
U(z) = H(z)X(z), we have:

Y(2) = UEM) = HEXEY) = HE) Xa(2)

corresponding to the expression for the process on the right of Figure 5.9. =

Filter Implementation 175

x(n) u(n)

y(n) x(n) y(n)
— H(2 > & R

— TM H(Z2\)

Y

M

Figure 5.9 — Fquivalence implicating a filtering and an expansion

Application: the comb decimation filter

Consider the filter represented in Figure 5.10. It 1s composed of the filter with
the transfer function 1/(1 — 271) cascaded with the filter with the transfer
function (1 — 2=M).

Figure 5.10 — Comb filter composed of the filter 1/(1 — 271} followed by the filter
(1-=7")
Hence its transfer function has the expression:

1
1—2-1

H,(z)= x(l—z_M)

A simplification leads to H,(2) = 142~ 442~ (M=1)_ This is therefore
an FIR filter with the impulse response h(n) =1 forn e {0,..., (M —1)} and
0 otherwise. Notice that 1/(1 — z7!) has a pole in z = 1 (zero frequency) and
that (1 — z=*) has M zeros placed on the unit circle in W, = e2ImmIM where
me{0,..., (M —-1)}.

Because of the location of the zeros of (1 — 2=M), regularly spread out on
the unit circle, the filter is called a comb filter. After a simplification, H,(z)
has (M — 1) zeros in e2™/M where m € {1, ..., (M — 1)}, and no poles.

The frequency response of the filter H,(z) is represented in Figure 5.11 for
M =16. Tt has a main lobe centered at 0 with a width of 2/M. Tt is therefore
a low-pass filter. By placing the first cell’s pole on another of the second cell’s
zeros, we can obtain a low-pass filter (see exercise 5.4).

Exercise 5.4 (Band-pass filter based on a comb filter)
In a method similar to the one used for the low-pass comb filter in Figure 5.10,
design a real band-pass filter centered at the frequency f,, = m/M.

Although the filter in Figure 5.11 is, after simplification, an FIR filter that
can therefore be achieved by a stable structure, the diagram in Figure 5.10 is
unstable because the first cell can produce an unbounded output even if the

176 Digital Signal and Image Processing using MATLAB®

18 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
T
R T,
12 TR
of

~05 -04 03 02 -01 0 01 02 03 04 05

Figure 5.11 — Frequency response of a comb filter for M = 16

input is bounded. For systems that use comb filters (see Figure 5.14), it is
ensured that this never happens. We will now see an application of the comb
filter.

The comb filter represented in Figure 5.10 can be used for designing a low-
pass filter (but not a very selective one) in the undersampling operation (see
paragraph 4.8.2, page 155), by placing it before an M order decimator. The
result is the first system represented in Figure 5.12.

Prefiltering o
Decimation
1 M
—ITa 1-7 | M
U
1
—Ta M 1-z1

Figure 5.12 — Permutation of the decimator and the derivative filter

According to property 5.1, the filtering and decimation operations can be
performed in any order. We end up with the second system in Figure 5.12.
In this system I(z) = 1/(1 — z~!) performs the operation that associates the
output u(n) with the input z(n) as follows:

u(n) =u(n—1) 4+ z(n)

which is an accumulation /integration and D(z) = 1 — 2~! performs the opera-
tion that associates the output y(n) with the input v(n) as follows:

y(n) =v(n) —v(n—1)

which can be seen as the approximation of a derivative filter.

Filter Implementation 177

The selectivity can be increased by cascading several integrators and several
derivative filters, as it is done on certain audio CD players using what is called
the one-bit stream technique. Figure 5.13 explains how it works.

6,4 MHz 100 kHz
: 1
gL oo | (2] (]
1bit |-z Hz 20 bits

M=16
Figure 5.13 — Undersampling filter

Starting off with a binary flux at 6.4 MHz, we accumulate input values, 0
or 1, then we decimate by a factor of 4. We obtain a flux of values represented
on 20 bits and sampled at 400 kHz. As we have already said, the integrator
cascade 1s, by nature, unstable. However, it can be shown that if we use
a modulo M summer, the “integrator, decimator, derivative filter” set does
not cause any overflow, so long as the summer contains M bits. Because the
cascade 1s comprised of four of these systems, an M + 4 = 20 bits summer is
used. Finally, the calculations performed by the fourth band output filter are
processed with 38 bits.

5.2.2 Filter banks

An analysis filter bank is a group of parallel digital filters, the input signals of
which are z(n), that cuts up the frequency band in K subbands. The synthesis
filter bank is a group of K filters placed after the the analysis filter bank and
generating the signal Z(n).

The processing system can be represented by a group of filters connected
by undersampling and expansion operators as shown in Figure 5.14.

A

Figure 5.14 — How the filter bank works

We now reconsider the problem of perfect reconstruction: is there a filter
bank such that the aliasing effects for each band compensate each other exactly

178 Digital Signal and Image Processing using MATLAB®

on the entire band? This question is justified by the fact that if no processing
is done, the least that can be expected of this structure is to produce an output
signal identical to the input signal. To make the rest of this discussion simpler,
we will consider the case where M = 2 according to Figure 5.15, a case of
important practical use.

&(n)

x(n)
o2 W’ 2 |12 SEgRLCA e
e I I DI

Figure 5.15 — Two channel filter bank

Obvious solutions

Note that the perfect reconstruction problem has at least two obvious solutions.
The first one consists of taking two ideal low-pass filters in the (0,1/4) band
for Go(z) Hy(z), and two ideal high-pass filters in the (1/4,1/2) band for G (%)
H1(z). This solution has the advantage of using very selective filters, but its
filters are infinite impulse response filters, which is a drawback.

The second solution simply consists of choosing Go(z) = Hi(z) = 1 and
G1(2) = Ho(z) = 27!, In this case, the analysis filter bank is merely a de-
multiplexer distributing the even index values of z(n) to one channel and the
odd index values to the other channel, while the synthesis filter bank is a mul-
tiplexer that interlaces the two channels. This solution uses FIR filters (with
only one coefficient!). However, these filters are unfortunately band-pass filters
with a gain of 1 without any frequency selectivity.

One of the major problems we are faced with when using filter banks is
the difficulty of finding a solution that has a finite impulse response, a good
selectivity and the ability to perform perfect reconstruction, all at once.

Perfect reconstruction equations

By referring to the diagram in Figure 5.15, and by using formulae 5.5 and 5.6,
we can write:

Zo(z) = (GoX)yop2 = [Go(2)X(2) + Go(—2)X(—2)]/2
Z1(z) = (G1X) 212 [G1(2) X (2) + G1(=2) X (=2)]/2

and:

Yo(2) = Ho(2)[Go(2)X(2) + Go(=2)X(=2)]/2
Yi(z) = Hi(2)[G1(2)X(2) + Gi(=2)X(=2)]/2

Filter Implementation 179

This leads us to the reconstructed sequence #(n) by X(z) =Yo(z) + Yi(2)
and therefore:

2X(z)

[Go(2)Ho(2) + Gu(2) Hi(2)] X(2) +
[Go(=2)Ho(2) + Gr(=2)Hi(2)] X(=2)
= T(=)X(z)+A(z)X(—2)
Perfect reconstruction is ensured when X (z) = 2" X(z). This gives us the
following two conditions:
T(z) = Go(z)Ho(2) + G1(2)Hy1(2) = 2277 (5.7)
A(z) = Go(—=2)Ho(2) + G1(—2)H1(2) =0 (5.8)

The first condition (5.7) expresses the absence of distortion, due to the fact
that the transfer function 7'(z) has a gain equal to 1 and a linear phase. The
second one (5.8) ensures that the term X(—z), characterizing the spectrum
aliasing, is zeroed out.

Quadrature filters

A first solution consists of imposing:

Hy(z) = Gi(—%) and Hyi(z) = —Go(—2) (5.9)
which ensures condition 5.8. Condition 5.7 then becomes:

Hy(2)Go(z) — Go(—z)Ho(—2) = 227" (5.10)

If Ho(z) and Go(z) are two polynomials in z71, equation 5.10 can be ex-
pressed a(z) — a(—z) = 227", where we have defined «(z) = Ho(2)Go(z). In
a(z)—a(—=z), only the odd degree coefficients of a(z) remain. Therefore, all the
odd degree coefficients of a(z) must be equal to 0, except for the r-th degree
coefficient. This implies, incidentally, that r is odd. We then have to factorize
a(z) = Hy(2)Go(z). Because the two constraints 5.9 are supposed to be obeyed
at all times, two simple solutions arise:

— We impose Gg(z) = G1(—=2). If we change over to the DTFTs, we get
Go(e¥™1) = G1(e¥™=1/2)) " Because the filters are real, this expres-
sion implies that the frequency responses of the filters have a “mirror”
symmetry about the frequency 1/4. This is called a QMF filter bank,
short for Quadrature Mirror Filters. Unfortunately, there are very few
solutions, and they are not selective. In order to show this, we replace
Go(z) = G1(—2) in the first expression of 5.9, meaning Hy(z) = G1(—2),
and we get Go(z) = Ho(z). Replacing it in 5.10 leads us to:

HE(z) — Hi(—z) = 227"

180 Digital Signal and Image Processing using MATLAB®

For this solution to be satisfied, Hy(z) cannot have more than two non-
zero coefficients, in other words Hy(z) = hoz %o 4 hqz=%1. If we identify
the terms, we get:

4h0h12_(k0+k1) =277

and therefore kg and k1 can have any value so long as the sum is odd, for
example, kg = 0 and ky = 1, and hohy = 1/2. By imposing that the filters
be linear-phase filters, and therefore hy = hy, we get hg = hy = 1/\/5
This result is not satisfactory because the obtained filters are very poorly
selective. Thus, the frequency response of Hy(z), for kg = 0 and &y = 1,
is |Ho(e2™)|2 = cos®(rf)/2.

— The condition Gi(z2) = Go(—=2) is now replaced by Gi(z) =
(=2) "N Go(—271) or g1(n) = (=1)"go(N — n), which is equivalent. This
is called a CQF filter bank, short for Conjugate Quadrature Filters. By re-
placing G1(2) = (—2) N Go(—271) in 5.9, that is to say Ho(z) = G1(—2),
we have Ho(z) = (—2) N Go(271). Replacing it in 5.10 leads us to:

NV (Go(2)Go(=71) + Go(=2)Go(—=71))
and a sufficient condition on the phase is provided by:

GO(Z)GO(Z_l) + Go(—z)Go(—Z_l) =1

The transfer function D(z) = Go(2)Go(z71) is sometimes called a zero-
phase half-band. Because Go(e* ™) satisfies |Go(e*™)|? 4+ |Go(e¥ =122 =
1, Gy is said to be “power symmetric”. Searching for a solution can be summed
up as follows:

Steps:
1. Find an odd order, “power symmetric” filter D(z), approzimately

half-band.

In order to do this, we can start with the window method (using a
triangular window for which positivity is ensured), or with an itera-
tive method such as the Parks-McClellan algorithm [9] (the problem
is that there is no guarantee that the phase will be linear).

2. Perform a spectral decomposition of D(z) in Go(2)Go(z71).
3. Construct the filter bank using G1(z) = (—z) N Go(—271), then:
Ho(z) = Gi(=2) Hi(z) = =Go(—2)

Filter Implementation 181

Orthogonal filters
We will again use equations 5.7 and 5.8, written below:
Go(2)Ho(2) + G1(2)H1(2) = 2277
{GO(—Z)HO(Z) +Gi(=2)Hi(2) =0

and solve this linear system in order to determine the expressions of Hy(z) and
H,(z) as an expression of Gy(z) and G1(z). We get:

= 227"Gh(—2)
Ho(2) = GG =) = Gr(2)Go(=2) (5.11)
Hy(z) = — 227"Go(—2)

Go(Z)Gl(—Z) — Gl(Z)GO(_Z)

Property 5.3 For the two channel filter bank, the perfect reconstruction prop-
erty 1s obtained if and only if:

Yo go(k)ho(2n — k) = d0(2n —)
Yo gi(k)hi(2n — k) =d0(2n —)
Yo gi(k)ho(2n — k) =0

HINT: let P(z) = Ho(2)Go(z). Using 5.11, we have:
P(z) =227"G1(—2)Go(z)/D(z)
where D(z) refers to the denominator of Hy(z) in 5.11. Likewise:
H1(2)G1(z) = =227 "Go(—2)G1(2)/ D(%)
Because D(z) = —D(—z), we have H1(z)G1(z) = P(—z), and we can write:
P(z)+ P(—z)=2z""

This condition implies that r is even, and that p(2r) = 6(2n — r). By
noticing that P(z) = Hy(z)Gy(%) is the z-transform of the convolution product
of ho(n) with go(n), we get:

S go(k)ho(2n — k) = 6(2n —)

Now let Qo(z) = H1(2)Go(2):
Qo(z) = =227"Go(2)Go(—2)/D(2)

Because 7 is even, Qg(z) is odd. And hence ¢o(2n) = 0. By noticing that
Qo(z) = H1(2)Go(z) is the z-transform of the convolution of hy(n) with go(n),
we get > g1(k)ho(2n — k) = 0. =

182 Digital Signal and Image Processing using MATLAB®

The sequences gop(n) g1(n) on one hand, and hg(n) and hy(n) on the other,
lead to the definition of two sets of orthogonal sequences. Let:

Gon(k) = go(2n — k), dont1(k) =g1(2n — k)
VYon (k) = ho(k —2n), tPonq1(k) = hi(k — 2n)

Property 5.3 shows that the two sequences {¢,(k)} and {4, (k)} verify for
any n # n':

S G (k)ar (k) = 0

The two sets {¢(n)} and {¢¥(n)} are said to have the bi-orthogonality
property. This is the equivalent for infinite dimension of the property of
two matrices such that ¥T® = diag(dy,...,dx) where diag(dy,...,dk) is a
diagonal matrix, the identity being a particular case.

We will now discuss the orthogonal case [98], where the sequences ¢, (k) and
¢ (k) coincide, that is where one is equal to the other translated. A sufficient
condition is to have hg(n) = go(r — n) and hy(n) = g1(r — n). Hence perfect
reconstruction and orthogonality require the impulse responses of the synthesis
filters to be reversed copies of the impulse responses of the analysis filters.
Changing over to the z-transforms, this leads to:

Hi(z) = z7"G;(1/z) where ¢ = {0,1} (5.12)
This means, first of all, that P(z), defined by P(z) = Hy(z)Go(z) can be
written:
P(z) = z7"Go(1/2)Go(z)

This relation implies that if zg is a root of P(z), then 1/zp is also a root of
P(z). Hence, the roots of P(z) are pairs of inverse values, one inside and one
outside the unit circle.

By replacing 5.12 in the second equation of 5.11, we get:

Go(—l/Z)Go(Z) + Gl(—l/z)Gl(z) = 0

If the polynomials Gg(z) and G1(z) share the same finite degree (FIR filters
of the same length) and are different from one another, then the roots of G1(z)
have to be roots of Go(—1/z). Therefore, Gi(z) = —2*-1Go(~1/z). This

relation can be expressed, in the temporal domain, as:
g1(n) = (=1)"go(2K — 1 —n)

To sum up, calculating analysis filter banks using orthogonal filters is
achieved using the following method: starting off with P(z) = Go(2)Go(1/2)
which verifies P(z) + P(—z) = 2:

Filter Implementation 183

— we associate with Gp(z) the roots of P(z) that are inside the unit circle,
then we calculate go(n);

— we calculate hg(n) = go(—n);
— we calculate g1 (n) = (=1)"¢0(2K — 1 — n);
— we calculate hy(n) = g1(—n).

We still have to find a function P(z) = Go(z)Go(1/z) such that P(z) +
P(-z)=2.

A first crude method consists of imposing the relation P(z)+ P(—z) = 2 by
choosing a sequence p(n) such that p(2n) = 0 in the following manner: we start
off with an even sequence w,, for example, the one obtained by the FIR filter
design method (window method, Remez method), and all the even index terms
are replaced by zero, except for the zero index term. This can be expressed as
follows:

p(n) = wyep

where ¢a, = d(n). However, this does not guarantee that P(z) can be expressed
as Go(2)Go(1/z), or that P(e2™f) is positive, which is equivalent. We can
then determine the sequence ¢, such that P(e*™/) > 0. As a consequence, the
relation P(z) + P(—z) = 2 is not quite true anymore, and becomes even less
true as the minimum negative value of the DTFT of w, becomes smaller.

Let us now see an important example related to the Daubechies wavelets.
We start with a polynomial P(z), such that it is at the frequency 1/2. As a
consequence, this introduces in the sequence p(n) a kind of regularity similar
to the signal smoothing property when the energy of the high frequencies is
reduced, hence the idea to place a great number of zeros in z = —1. For this
we assume:

P(z) = (14 2 (1 4+ =) R(2)

where R(z) can be expressed as Ry(z)R1(1/z). R(z) is therefore a symmetrical
polynomial for which the degrees of its terms vary from —s to +s. Therefore,
P(z) has 2k 4 2s roots and is dependent on 2k + 2s + 1 coefficients, (k + s) of
which have to be equal to zero (p(2n) = 2d6(k)). This leads to (k+s) equations.
Yet we have 2s 4+ 1 linearly independent coefficients in R(z). This means we
have to set k4+s=2s+1,0or s =k — 1. Thus, for k£ = 2, we get s = 1. Hence
the length of the filter Gg(z) is 4. Generally speaking, this method leads to
FIR filters with lengths of L = 2k.

Let us calculate the coefficients for & = 2. For this we assume R(z) =
(az + B+ az71). The expression of the condition P(z) 4+ P(—z) = 2 will give

184 Digital Signal and Image Processing using MATLAB®

us two equations with two unknowns a and 3. First we have:
P(z) = az 4 (@da+p)z"2+ 48 +Ta)z"" + (8a +63)
+(48 4+ Ta)z + (4a + B)2% + a2®
The condition:
P(z)+ P(—z) = 2((4a +)27 + (8a + 68) + (4a + 3)2°) = 2
is met if 4o + 8 = 0 and 8« + 65 = 1. This leads to &« = —1/16 and 3 = 1/4.

If we factorize R(z), then associate with Gy(z) the roots inside the unit circle,
we get:

Go(z) = ﬁ (V) + B+ VB + (3 VB + (1 - VB)=)
This leads to hg(n) = go(—n), then g1(n) = (—=1)"g0(3 — n) and hi(n) =

g1(—n).

The following program calculates the coefficients of Gy(z), plots the gains
of the analysis filters, and checks the perfect reconstruction property on a
trajectory.

%===== DAUB4.M
clear
r=4; % Delay due to the bank

g0=[1+sqrt (3) ;3+sqrt (3) ;3-sqrt (3) ;1-sqrt (3)1/4/sqrt (2) ;
hO=g0(r:-1:1); gi1=-h0 .* ((-1) .~ (0:r-1)’);
hi=gl(r:-1:1);

%===== Gains

Lfft=1024; freq=[0:Lfft-1]/Lfft;

GOf=abs (fft (h0,Lfft)); Gif=abs (fft(hl,Lfft));

subplot (311) ; plot(freq,[GOf G1f]); grid;

set (gca, ’X1im’, [0 .5])

Y%===== Verification

%===== Analysis

x0=filter(g0,1,x); x1=filter(gl,1,x);

%===== Decimation/expansion

v0=x0; v0(1:2:N)=zeros(li/2,1);

vi=x1; v1(1:2:N)=zeros(li/2,1);

%===== Synthesis

yO=filter(h0,1,v0); yl=filter(hl,1,vl);
xchap=y0+y1; max(abs (xchap(r:N)-x(1:N-r+1)))
subplot (312); plot(x(100:120)); grid

subplot (313); plot(xchap(100+r-1:120+r-1)); grid

Comments

— We often only restrict ourselves to the two-branch symmetrical filter,
because the same segmentation can be applied to both branches (Figure

5.16).

Filter Implementation 185

X(n) Go(2) —»
Gl

[ea] [
~~{oa] iz

Figure 5.16 — Decomposition of each branch

A particular decomposition in octaves (Figure 5.17) can be associated
with the wavelets using multi-scale analysis.

ﬁ“:m»lam»m

Figure 5.17 — Decomposition in octaves

— A commonly used approach in sub-band decomposition techniques uses
the FFT calculation structure. Analysis and synthesis filter banks consist
of inverse and direct “FFT blocks”. A reader curious for more information

on this method should read [27, 96].

This page intentionally left blank

Chapter 6

An Introduction to Image Processing

This chapter provides the reader with a few elements on image processing
with MATLAB®, which comes equipped with 2D (two dimension) functions,
necessary when working in this field, a field not too different from 1D signal
processing.

This chapter is merely an introduction. The reader can benefit from read-
ing [31], a rather extensive overview of what is done with images, both still
and animated. Some important problems, related to sampling, rectangular,
hexagonal or of another kind, to perception, to content aspects in terms of
objects, etc., will not be discussed here. The only thing we will be dealing with
is handling two dimension arrays. We will also explain how to program some
of the functions contained in the “image” toolboz.

Examples in this chapter are illustrated by figures that cannot perfectly ren-
der the phenomena we are trying to underline. The printing process, whether
monochrome or not, adds its own imperfections (quantization, weaving, number
of colors, color transcription, etc.) when rendering images. In fact, every part
of the digital processing chain, from the data recording device to the printer,
has a role that will not be covered in this book.

6.1 Introduction

6.1.1 Image display, color palette

From now on, an image will be considered as a set of pizels (the contraction
of picture element), associated with a rectangular grid of the original image

(Figure 6.1).
In MATLAB®, there are several ways to display an image:

— Either directly with an (N x M x 3) or (N x M x 4) array depending on
the color model: RGB (Red, Green and Blue), CMYK (Cyan, Magenta,
Yellow and blacK), HSL (Hue, Saturation and Lightness), CIE Lab

188 Digital Signal and Image Processing using MATLAB®

Figure 6.1 — Each point of the original image has an 8-bit coded “gray-level”. Fach
pizel appears as a gray square

(“Commission Internationale de I'Eclairage”: L is for luminance, and a
and b are color component coordinates), etc.

In the following example, an image in JPEG format is imported with the
use of the imread function as a 3 dimension 800 x 580 x 3 array, the 3
indicating that there are three RGB color planes. Notice that the data
type used is the 8-bit unsigned integer:

>> xx=imread(’elido72. jpg’,’jpeg’);

>> whos
Name Size Bytes Class
ans 1x94 188 char array
XX 800x580x3 1392000 uint8 array

— either by using a 2D (short for 2 dimension) array and a color palette.
This is the display mode we will be using; it is called an indezed repre-

sentation.

Let A =[a(i,5)], with 1 <i< Nand 1 <j< M, bean N x M array. The
number a(i, j), placed in line ¢ and column j, indicates the color of the point
with coordinates (7, j) in the image after it has been “sampled” and “quan-
tified”. The line index 7 represents the horizontal position, and the column
index j represents the vertical position. The point with the coordinates (1, 1)
is placed in the top-left corner (see Figure 6.2).

An Introduction to Image Processing 189

Example 6.1 (Pixelizing an image) Type:

image1=[32 0 48;0 16 0];
image (imagel) ; colormap(’gray’)

The image displayed is comprised of 6 points, or logical pizels, and the one
associated with image1(1,1) is the one in the top-left corner (Figure 6.2).

Figure 6.2 — Siz logical pizels: notice the integer z- and y-coordinate corresponding
to the “center” of each pixel

Notice that an element of the array with the index (¢, j) can be associated
with several physical pixels of the display window. In fact, there is no reason for
the number of values of the matrix of elements a(%, j) to be equal to the number
of phystical pirels of the display window. Hence, a point with the coordinates
(,7) can be represented by several physical pizels, just as a physical pizel can
be used to represent several points with the coordinates (¢, j). From now on,
when we use the word pirel, we mean a logical pixrel, that is to say elements
identified by the pair (¢, 7).

If we want to display a Figure and preserve its real size (one screen
pixel corresponding to one image pixel), we will be using the properties
units, Position, AspectRatio...(these parameters can change from one
MATLAB®version to the next). In example 6.1, a real-size display is achieved
by typing:

” set (gca, ’units’, ’pixels’, ’Position’, [20 20 fliplr(size(imagel))])

In the indexed representation, a(%, j) indexes a color array called the palette
(Figure 6.3). The color palette is a (P x 3) array where each line is used to
code a color according to its Red, Green and Blue components (RGB) using a
real number between 0 and 1.

This representation is convenient since most bitmap editing programs can
provide an image description in three planes, each one of them correspond-
ing to a primary color R, G or B, encoded as an integer between 0 and
2" — 1 (n-bit encoding). The images we will be considering will be “in lev-
els of gray”. MATLAB® has a default palette that can be activated using the
colormap(’gray’) instruction.

Type colormap(’gray’) then colormap. You get a (64 x 3) array with
three identical columns of values between 0 and 1:

190 Digital Signal and Image Processing using MATLAB®

3 @6\) Palette B
A =la(i)] oA o
pml pm2 pm3
R

Figure 6.3 — Connection between the image array and the palette

ans =

0.0159 0.0159 0.0159
0.0317 0.0317 0.0317
0.0476 0.0476 0.0476

0.9841 0.9841 0.9841
1.0000 1.0000 1.0000

COMMENTS:

— In example 6.1 the zero values of the imagel array are redefined as 1 and

therefore index the color (0,0,0), which is black (Figure 6.2).

— Help for the commands image, imagesc and colormap should particularly
be looked into.

— The standard palette is constructed linearly. Each column is of the type
[0:1/63:1]1° (1/63 ~ 0.0159). This does not quite correspond to the
perception we have of brightness. The visual response is roughly pro-
portional to the logarithm of the intensity (Fechner-Weber law), hence
the progression of the levels of gray should correspond to this law. In
practice, the palette’s linear conformation makes our work much easier
since palette index lines and gray levels are related by an affine relation.

— Other palettes come standard in the basic version of MATLAB® to make
the user’s work easier. Use the help color command to learn more
about them. Also, nothing stops you from defining your own palettes.
For example, to get a display with 256 levels of gray, all you need to do
is create a cmap array as follows:

cmap=[0:255] **ones (1,3) /255;
colormap (cmap) ;

An Introduction to Image Processing 191

6.1.2 Importing images

If you don’t have an image you can perform tests on in MATLAB®, you can
always create one based on raw format images (no header) using image pro-
cessing software. At the same time, you can save the palette, if that is possible.
The following function allows you to read and/or create a file that can be used
directly by MATLAB®. The image that was chosen is an image universally
used by “image processors” to compare results obtained for different implemen-
tations. It is referred to as lena. We assume that the data is stored as unsigned
8-bit coded integers.

Figure 6.4 — Test image

function pixc=rawZmatf (NomFE,Nlig,Ncol,Tr ,Fc,NomFS)

%h %
%% Reading a raw image file %
%% SYNOPSIS: pixc=RAWZMATF (NowFE,Nlig,Ncol,Tr,Fc,NomFS) %
%% NomFE = raw file ([.raw]) %
YAA Nlig,Ncol = Image dimensions %
%h Tr = when ’T’: transposing the image %
YAA Fc = when ’F’: creating the file NomFS (.mat) %
%% NomFS = Resulting file ([.mat]) %
%h %
if nargin<6é, NomFS=’fictrav.mat’; end

if nargin<5, Fc="N’; end

if nargin<4, Tr="N’; end

192 Digital Signal and Image Processing using MATLAB®

%===== Raw image
nFS=findstr (NomFE,’.’);
if isempty(nFS),
NFE=[NomFE,’ .raw’];
else
NFE=NomFE; NomFE=NomFE(1:nFS-1);
end
fid=fopen(NFE,’r’); [pixc,Npix]=fread(fid,’uchar’);
if (Npix ~= Nlig*Ncol)
sprintf (’Dimensions error: %dx%d “= %d’,Nlig,Ncol,Npix)

return
end
pixc=reshape (pixc,Nlig,Ncol); if Tr=="T’, pixc=pixc’; end
fclose(fid);
%===== Creating the .MAT file
if Fc=="F’,

sprintf (’Creating the file %s’,NomFS)
eval([’save ’> NomFS ’ pixc’])

end
return

The image can be loaded and displayed (Figure 6.4) by the following pro-
gram:

Y%===== TSTRAW2MAT.M

pixc=raw2matf (’lenab0’,256,256,°T’);
%===== Palette construction
cmap=([255:-1:0]°/255)*[1 1 1];

%===== Displaying with the new palette

imagesc(pixc); colormap(cmap); axis(’image’)

In this program, the palette is defined, but it can also be saved in the image
processing application and stored in the .mat file.
COMMENTS:

— Recent versions of MATLAB® allow you to directly load and save images
in formats such as “bmp” (bit map), “tiff”, “jpeg”, “pcx”, etc. using the
imread and imwrite functions.

— Notice that when a palette is used, the image function works with an
array of integer values (the non-integer values are rounded) between 1
and M. The values above M are constrained to M, and those below 1
are constrained to 1. Type at the end of the previous program:

p256=pixc+256; subplot(121); image(p256); axis(’image’)
pO=pixc-256; subplot(122); image(p0); axis(’image’)

colormap (cmap)

You should see a white square and a black square.

An Introduction to Image Processing 193

— Tt is usually preferable to use the imagesc function (suffix sc as in scale)
which displays a version with the same scale as the original image: the
values are changed to fit between 1 and size(colormap,1).

— The image’s color levels can have values such that it becomes difficult to
display the image because of a few extreme values. The use of image or
imagesc may not be satisfactory. The following function allows you to
improve the display by modifying the color distribution:

function mydisp(pixr,cmap,stdpar,style)

%h %
%% Displaying with gray level control %
%% SYNOPSIS: MYDISP(pixr, cmap, stdpar, style) %
o pixr = image A
Wh cmap = palette A
YAA stdpar = controls the min and max indices %
%h style = see AXIS function %
%h %

if nargin<2,

sprintf (’Error on arguments’);

return
end
if nargin<4, style=’image’; end
if nargin<3, stdpar=3; end
if (stdpar <= 0 | stdpar >10), stdpar=1; end
moy=mean (mean(pixr)); stdp=stdpar*std(std(pixr));
ninp=moy-stdp; maxp=moy+stdp;
idx=1+(pixr-minp) * (size (cmap,1)-1)/(maxp-minp) ;
colormap (cmap) ; image(idx); axis(style)

return

— When using scanners or digital cameras, the standard sampling values,
in “dots per inch” (dpi), are (300 x 600)*, (600 x 1,200), (1,600 x 3,200),
(2,700 x 2,700)..., and for quantification, 8, 10, 12... bits for each of the
primary colors.

6.1.3 Arithmetical and logical operations

Because images in MATLAB® are matrices, the usual operations can be di-
rectly applied to them. In particular, arithmetic and logical operations between
images, pixel by pixel, can be performed from the array values they are asso-
ciated with.

Thus, the sum of two images pix1 and pix2 of the same size can be written
pixl + pix2, or just as the square root of pix can be written sqrt(pix). You

IMeaning 300 dots per inch in one direction, and 600 dots per inch in the other.

194 Digital Signal and Image Processing using MATLAB®

only have to make sure that the obtained values are consistent with the color
palette, or you can use the functions imagesc or mydisp.

As for the logical operations applied to the 8 bits of the image pixels’ bi-
nary representation, the problem is trickier, because MATLAB® has no integer
type to which we could directly apply the boolean operations (this was how-
ever modified in the recent versions). The operations have to be performed by
extracting bits one by one from the image matrices. Here is an example: con-
sider the two images in Figure 6.5 — we are going to perform the AND function
between the figure on the left and the figure on the right.

Figure 6.5 — Logical operation AND

The result is shown in Figure 6.6: the black areas of the image on the right in
Figure 6.5, which are encoded as byte 0000 0000, force the corresponding areas
of the resulting image to be black. This is because if xxxx xxxx is the value
associated with a pixel from the first image, the logical AND of xxxx xxxx
and 0000 0000 is 0000 0000. The white areas of the image on the right are
encoded as byte 11111111, leaving untouched the values of the corresponding
pixels of Lena. This 1s because the logical AND of xxxxxxxx with 1111 1111
i1s xxxx xxxx. Finally, the areas of the image on the right which are encoded
as yyyy yyyy lead to a pixel value with some bits unchanged, and others set
to 0.

Figure 6.6 — Result of the logical AND

An Introduction to Image Processing 195

The ANDlog function performs the logical AND operation we have just de-
scribed:

function pixr=ANDlog(pix1,pix2,L)

hh %
%% Logical AND between two images %
%% SYNOPSIS: pixr=ANDLOG(pix1,pix2,L) %
%h pixl = first image (gray palette) %
Wh pix2 = second image (gray palette) %
YAA L = number of bits for color coding %
%h pixr = image result Y
o %

if (nargin<3), L=8; end
Ni=size(pixl);
if (W1 "= size(pix2)),
error (’Matrix dimensions are not appropriate’)

end

pixr=zeros(lil);

%===== Extraction of the bits one by omne
for k=1:L

pixr=pixr+ (rem(pix1,2) & rem(pix2,2)) * 2~ (k-1);
pixl = fix(pix1/2); pix2 = fix(pix2/2);

end

return

The program testlogic.m which uses the ANDlog fonction, leads to Fig-
ure 6.6:

%===== TESTLOGIC.M

load lena2b; % Loading and displaying
subplot (131); imagesc(pixc+1); 7% the first image
colormap (cmap) ; axis(’image’);

load testlogl; % Loading and displaying
subplot (132); imagesc(pixtl+1l); % the second image
axis(’image’)

%===== Logical operation

pixr = ANDlog(pixc,pixtl,size(cmap,1));

subplot (133); imagesc(pixr+l); axis(’image’);

Exercise 6.1 (Logical functions)

1. Write a function that uses the four basic logical operators AND, OR, EOR
and NOT, as well as the comparison operators. Use the eval function to
implement it.

2. Write a test program for the logical operator NOT, as well as for the
logical operator that is true when a,, < b,,, where a,, and b,, are the
bits corresponding to two bytes we wish to compare.

196 Digital Signal and Image Processing using MATLAB®

6.2 Geometric transformations of an image

6.2.1 The typical transformations

The simple geometric transformations, such as translations, rotations and tor-
sions are problematic because of the “integer” nature of the pixels’ position in
an image (Figure 6.7).

o) Column (mn) y

,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,

Line‘ ‘

Figure 6.7 — Rotations of an image

Example 6.2 (Rotation of an image)
We wish to rotate an image. To make things simpler, we will be using an image
in levels of gray.

1. The rotation matrix has the expression:

sinf cos@

_ [cos # —sin 9]

2. We create an array for the pixel coordinates (change from the line and
column numbers over to the z, y coordinates). Applying the rotation
to every point provides, after rounding the resulting value, and changing
back to the line, column representation, leads us to the final image:

%===== GEOMTRANSF .M

% Geometric transformations / Rotation

fmt=’jpeg’; fn=’imageGG.jpg’; pixc=imread(fn,fmt);
figure(1); imagesc(pixc); Spix=size(pixc);
N1=Spix(1); Nc=Spix(2);

tbcolor=[0:1/255:1]1’*[1 1 1]; % Gray colormap
colormap (tbcolor) ; set(gca,’DataAspectRatio’,[1 1 1])
%===== Rotation center

An Introduction to Image Processing 197

xor=(1+lc) /2; yor=-(1+N1)/2;

%===== tbidx=indices (columnwise)

tbx=ones (N1,1)*[1:Nc]; tby=[1:N1] *ones(1,Nc);
tbidx=[reshape (tby,1,N1#Nc) ;reshape (tbx,1,N1xlc)];
idtb=tbidx(1,:)+(tbidx(2,:)-1)*N1; % Linear indices

%===== tbcoord=coordinates pixels/rotation center
tbecoord=[tbidx(2,:)-xor;-tbidx (1, :)-yor];
%===== Rotation

theta=25; thet=theta*pi/180;

MRot=[cos (thet) -sin(thet);sin(thet) cos(thet)];
tbv=round (MRot*tbcoord) ;

xmin=min(tbv(1,:)); xmax=max(tbv(1l,:)); ncol=xmax-xmin+1;
ymin=min (tbv(2,:)); ymax=max(tbv(2,:)); nlig=ymax-ymin+1;
%===== Index Reconstitution
tbidxR=[-tbv(2,:)-ymin+1;tbv(1l,:)-xmin+1];
pixcR=zeros(nlig,ncol); pixcR2=pixcR-1;
idtbR=tbidxR(1,:)+(tbidxR(2,:)-1)*nlig;
pixcR(idtbR)=pixc(idtb); pixcR2(idtbR)=pixc(idtb);

save pixcR2 pixcR2 thet tbcolor N1 Nc; % for next processing
%===== Displaying the result

figure(2); imagesc(pixcR); colormap (tbcolor)

set (gca, ’DataAspectRatio’,[1 1 1]);

%===== Saving the image for median filtering

pxRmn=min (min(pixcR)); pxRmx=max (max (pixcR));
pixcRn=255%(pixcR-pxRun) / (pxRmx-pxRmn)+1;

imwrite (pixcRn,tbcolor,’imageGGR.bmp’, *bmp’)

Notice the use of the imread and imwrite functions, making it possible
to read and save images in a given format, “jpeg” in this example.

Rotating two neighboring pixels can result, after rounding, in identical co-
ordinates. This leads us to the conclusion that there are “holes” in the target
image. These are clearly visible in the image resulting from the rotation (Fig-
ure 6.8). We will see in exercise 6.12 how to deal with these isolated points. Tt
is also possible to process the pixels with identical coordinates using a weighted
mean of the source pixels.

Generally speaking, affine transformations are represented with expression

6.1:

X a b ty| |z
Y| =|e d t,| |y (6.1)
1 0 0 1 1

z and y are the coordinates of the source &, X and Y those of the target image
C. t; and t, define the translation applied to the image.

198 Digital Signal and Image Processing using MATLAB®

Figure 6.8 — Flaws due to the rotation

Likewise, the word torsion (see exercise 6.3) is used when the relation be-
tween & and C is of the type 6.2:

U a b t.| |z
V] = d ty| |y andX:%,Y:% (6.2)
T ro1lh

These two types of transformations pose a problem for interpolation
(paragraph 6.5.2) and/or undersampling (paragraph 6.5.1) which we will
discuss later.

There is no rule that says you have to use an zQy axis system instead of a
“line, column” coordinate system (L C coordinates). In the case of a rotation,
it allows the transformation matrix to preserve its usual form. In general, the
transformation matrix can be identified immediately in LC coordinates.

Exercise 6.2 (Plane transformation)

Describing a transformation can be done in an interactive way using a simple
shape. Here we are going to use the triangle to define the affine transformation
we will apply to the image.

1. Write a linear transformation function of an n x m pixel image, knowing
that the (2 x 2) transformation matrix is described in an Oy system.

2. Write a program asking the user to define two triangles interactively,
which then calculates the (3 x 3) affine transformation matrix used to go
from one triangle to the other.

3. Apply the transformation to an image.

An Introduction to Image Processing 199

Exercise 6.3 (Transformation of a rectangular selection)

Many image processing applications allow you to deform a rectangular-shaped
selection by having an effect on each corner of the selection. Consider expression
6.2 of the “torsion”. For a corner with the coordinates zy, yg, the coordinates
X and Y}, after modifications can be expressed:

_ Uk amp + by, + 1o
T exi+ fyr +1
Vi cap+dyr + 1y

dY,=—=
e Tk Ty exp+ fyp+1

Xy

{ Xi(exy + fyp + 1) = azp + byg + 4 (6.3)

Yi(exp + fur + 1) = cap + dys + 1y

If applied to all four corners, these expressions make it possible to determine
the eight coefficients of the transformation matrix.

1. Using 6.3, determine the linear system needed to find the transformation
matrix.

2. Apply this transformation to an image by assuming that the rectangular
selection is applied to the whole image.

6.2.2 Aligning images

Many applications — biometrics, identification number recognition, handwriting
recognition, etc. — require that an image be forced to fit a certain size before
undergoing whatever processing i1s needed. A method called the Procrustes
method 1s often used to perform this operation.

The idea 1s to start with a simplifed model based on characteristics points.
Thus, for a face, we can choose a model such as the one illustrated in Figure
6.9. In the case of a hand, you can either choose points on the outline of the
hand, or points on the outline of each finger. For a license plate, the natural
choice would be the four corners, etc.

Once we have a reference model A (the pattern on the left in Figure 6.10),
we can start searching for a transformation that drags the characteristic points
of the figure B to be analyzed (the pattern on the right in Figure 6.10) over
onto the points of the reference model, according to a criterion used to evaluate
the distance between two sets of points.

The fact that the two sets of points .4 and B must correspond exactly adds
a difficulty. When the points are provided by the automatic image analysis, A
and B do not necessarily have the same number of points, meaning that some
manual corrections may turn out to be unavoidable.

Let A € R™**® and B € R"** be two r x s matrices. In our case, the matrix
size is (N, 2) or (2, N), where N is the number of charateristic points. We are

200 Digital Signal and Image Processing using MATLAB®

NN/
ﬂ%@7§§
Mb‘

%
—.

Figure 6.10 — Characteristic points and Delaunay triangulation: the pattern on the
left serves as a reference, the set of points on the right corresponds to the figure we
wish to align

trying to determine the (r x r) matrix Q, solution to the problem, for which
we define a constraint:

ming [|A — QB||F
A
{ QTQ = 0-217' (6)

The matrices A and B are centered. If their size is (N, 2):

X1 N
Xe Y
M= | . :
Xy Yy

they are centered by typing M - ones(N,1)*mean(l1).

An Introduction to Image Processing 201

For a matrix M, the Frobenius norm is defined by ||[M||% = Tr{MMT7}.
We have:

|IA—-QB|% = Tr{AAT} —2Tr{QBA”} ++*Tr{BB”}
= Tr{AAT} - 2¢Tr{PBAT} + o’ Tr{BB”} (6.5)

where Q = oP where P is a unitary matrix. Hence, for a given o, the mini-
mization problem amounts to the maximization problem of Tr{PBA”} under
the constraint PTP = I,.

The matrix BA” is an r x r square matrix. Its singular value decomposition
can be written as follows:

BAT = UDV”
where U and V are unitary. This leads us to:
Tr{PBA’} = Tr{PUDV’} = T+{VIPUD}
If we assume Z = VIPU, and because D is diagonal, we have:

Tr{PBA”T} = T+{ZD} =) ziidi;

7

where the z; and d;; are the diagonal terms of Z and D respectively. But,
because Z is a unitary matrix, |z;;| < 1 for 7, j any pair. Indeed using 777 =1,
for all j we have 3, |z;;|*> = 1. This means that, for any matrix P:

The upper bound)", dj;, which is independent of P, can be reached if we
let Z = VTPU =1, that is to say:

P=vU” (6.6)

which is unitary. Hence (6.6) is the solution we were looking for. To sum up,
after starting with A and B € R"** we calculate, one after the other:

1. C =BAT7;

2. the singular value decomposition: C = UDV7;

3. P=VUT;

4. notice that minimizing 6.5 in regard to ¢ leads to:

_ Tr{PBAT} _ Tr{PBAT}
T Tr{BBT} ~ Tr{BBT}

202 Digital Signal and Image Processing using MATLAB®

Notice that if A=B, Q =1.
The counterpart to the problem posed by expression (6.4) is determining
the r x r unitary matrix R, solution to the problem:

{ ming ||A — BR/|r 67)

RTR = 31,

Of course, its solution can be inferred from the previous one if you notice
that 6.7 is equivalent to:

1 AT _RTBT
{ ming || I3 63)

RTR = 31,

the solution of which is R = 5Y W7 where BTA = YD'WT.

100
1005 200
200, 3001/
300 4004,
4001} 500
500 600
600 700
0
100 AT i 100 SRNE——x7
)‘l.!‘ SKR —\> "‘H\
200 B AV/"‘U' ‘!é\«éf@’ N
2NN =%
300 V)

300

500 500

600 600

100 200 300 400 500

Figure 6.11 — Applying the multiplications on the right and on the left in the example
of Figure 6.10. In the bottom-right, the size of the transformation matriz is (2 x 2).
In the bottom-left, the size of the matriz is (N x N) where N is the number of points
in the mesh

An Introduction to Image Processing 203

Notice in the example above that if one of the dimensions is always equal
to 2, for example:

X1 X2 Xs sl 9 P
Y1 Y2 N Ys:| an |:y1 Yo e Ys

the algorithm’s development is true for any r x s pair. In particular, the pixels
of two images we wish compare can be directly used.

6.3 Frequential content of an image

Just as it was done for 1D discrete-time signals, we are going to define the
Fourier transform X (v, p) of an image, referred to as the 2D-DTFT.

Definition 6.1 (2D-DTFT) Let z(k,{) be a two index sequence. The 2D-
DTFT is the function of v and of v defined by:

f f —271'] (ku+ev) (69)
k=—o0cl=—c

Because of its definition, X (u,v)is periodic with period 1 for the two vari-
ables p and v.

In practice, the images processed have a finite size K x L and we have:

>

—-1L-1
X(p,v) = w(k, ()¢ 2mi hutty) (6.10)
k=0 0

o~
I

In this case, X (u, v) poses no existence problems, since the values of z(k, {)
are bounded and the sequence is finite.
The inverse formula leading to z(k, £) from X (p,v) is:

1/2 p1/2
2 (k, 0) / X (g, v)e2m I kut) gy dy (6.11)
1/2J-1/2

Property 6.1 (2D convolution) 2D convolution is the name of the opera-
tion that associates the two sequences x(k,£) and y(k,£) with the sequence:

+ oo [e%e)
k)= @)k 0= Y S wlidylk—i - j) (6.12)

{=—00 j=—00

The 2D-DTFT of the 2D convolution of x with y is the product of the
respective 2-DTEFTs. In other words:

(xxy) & X(p,v) xY(p,v) (6.13)

204 Digital Signal and Image Processing using MATLAB®

Just as for 1D, the problem of the numerical calculation of the 2D-DTFT
leads to the introduction of the 2D-DFT, which corresponds to the 2D-DTFT’s
expression calculated in points regularly spread-out over the (0,1) x (0, 1) block.
Without being at all specific, and as for 1D, the number of points before and
after the transformation can be considered the same, by completing with zeros
if necessary. This leads to the following definition.

Definition 6.2 (2D Discrete Fourier Transform (2D-DFT))
The 2D discrete Fourier transform, or 2D-DFT, of the finite sequence {x(k,{)},

withk e {0, ..., M —1} and 1 € {0, ..., N — 1}, is the sequence defined, for
me{0, ..., M—1} andne {0, ..., N —1}, by:
M-1N-1 m n
X(m,n) = z(k, O)exps —27j | — 4+ — 6.14
mn = 33 stk e {2 (57 + 1) (6.14)

If we change the expression of X (m,n) to:

X(m,n) = Nz_:l (exp {—QWj%l} Mz_:l 2k, 0) exp {—zwj%”}) (6.15)

£=0 k=0

for each value of ¢, the 1D-DFT of the sequence z(k,¢) for the variable &
appears in the parenthesis. With MATLAB®, the N FFTs corresponding to
expression 6.15 are calculated by applying the ££t function to the (M x N)
array x. The 2D-DFT is then achieved simply by performing another FFT on
the resulting transpose array.

To sum up, the 2D-DFT is obtained by doing:

fEe(£ft(x). 7).

The ££t2 function, available in the basic version of MATLAB®, performs
the same operation. As was the case with 1D signals, typing £ft2(x,M,N)
completes, if necessary, the array x with zeros so as to have an M x N array.
Again, as it was the case for 1D signals, 1t is often preferable to display the
spatial frequencies with values between 0 and 1, or between 0 and 1/2. This is
what we did in example 6.3.

Example 6.3 (2D-DTFT of a square block)
The following program calculates the 2D-DTFT of a square block and displays
its modulus. The result is shown in Figures 6.12 and 6.13:

%===== TSTFFTBLOCK.M

block=zeros(8,8); delta=4;
block(1l:delta,l:delta)=ones(delta,delta);

set (gcf, ’color’,[1 1 1])

subplot (131) ; imagesc(block); colormap(’gray’);

An Introduction to Image Processing 205

axis(’image’); set(gca, ’xcolor’,[0 0 0], ’ycolor’,[0 O 0])

%===== Spectral content
M=32; N=32; blockFgs=fft2(block,M,N);
%===== Normalized spatial frequencies

mu=(0:M-1) /M;nu=(0:N-1) /N;

subplot (132) ; contour (nu,mu,abs (blockFgs),20);
axis(’square’); set(gca,’xlim’,[0 .5],’ylim’,[0 .5])
set (gca, ’xcolor’,[0 0 0], ycolor’,[0 O 0])

subplot (133); imagesc(nu,mu,abs (blockFgs))
axis(’square’); set(gca,’xlim’,[0 .5],’ylim’,[0 .5])
set (gca, ’xcolor’,[0 0 0], ycolor’,[0 O 0])

04

, 03
I

Figure 6.12 — 2D-FFT applied to the rectangular block by restricting the frequencies
to ([0,1/2] x [0,1/2])

2 02 04

The lobes are similar to the ones obtained for the discrete-time sine cardinal

(Figure 6.13).

Figure 6.13 — 2D-FFT applied to the rectangular block with the frequencies belonging
to ([0,1] x [0,1])

The properties of the 2D-DFT are similar to those of the 1D-DFT:

Property 6.2 (Inverse 2D-DFT) The 2D-inverse-DFT of X (m,n) has the
erTpression:

1 km In
z(k,£) = i Z X (m,n)exp {271']' (W + ﬁ)}

m=0 n=0

206 Digital Signal and Image Processing using MATLAB®

where k € {0,..., M — 1} and £ € {0,...,N — 1},
This result is obtained by using the relation:
M-1N-1

ﬁ > Zexp{?ﬂ'j (%Jr%n)}

m=0 n=0

g(k, o)

_ { 1 ifk=0mod M and £ =0 mod N

0 otherwise

Property 6.3 (Circular convolution (2D-DFT))

Let x(k,t) and y(k,£f) be two images with the same finite size M x N. Let
X (m,n) and Y (m,n) be their respective 2D-DFTs calculated over M x N points.
Then the inverse 2D-DFT of Z(m,n) = X(m,n)Y (m,n) has the following
expression, fork € {0,.... M — 1} and £ € {0,..., N — 1}:

M-1N-1

z(k,) = Z Z z(u, v)y((k — w) mod M, (£ —v) mod N)

u=0 v=0

where the indices of y are calculated modulo M and modulo N respectively.

Property 6.4 (Real image and hermitian symmetry (2D-DFT))
If the image x(k,£) is real then its 2D-DFT is such that:

X(m,n) = X" (—=m mod M,—n mod N)

where the first indices® are calculated modulo M and the second indices modulo

N.

Thus, X(0,0) = X*(0,0) which is therefore real. If M = 8 and N = 16,
X(4,3) = X*(8 — 4,16 — 3) = X*(4,13).

Example 6.4 (2D-DFT of a checkerboard)

The following program calculates the 2D-DFT of a checkerboard the horizon-
tal frequency of which is £0x=0.2 and the vertical frequency £0y=0.3, and
displays its modulus. The resulting graph shows lobes at the spatial frequen-
cies (0.2;0.3) and (1 —0.2;1— 0.3), since the image is real. You can try other
values of £0x and £0y.

%===== TSTFFTM0.M

%===== Checkerboard

clear; cote=8; bloc=zeros(cote,cote);

£f0x=0.2; £0y=0.3;

dom=f0x* (0:cote-1) *ones(1,cote)+fO0y*ones (cote,1)*(0:cote-1);
chkbd=cos (2*pi*dom)+1;

?Bear in mind that the array indices start at 1 and not 0.

An Introduction to Image Processing 207

set (gcf, ’color’,[1 1 1])

subplot (121) ; imagesc(chkbd) ;

colormap (’gray’); axis(’image’)

set (gca, ’xcolor’,[0 0 0], ycolor’,[0 O 0])
%===== Spectral content

M=128; N=128; chkbdFqs=fft2(chkbd,M,N);
mu=(0:M-1) /M;nu=(0:N-1) /N;

subplot (122) ;

contour (nu,mu,abs (chkbdFgs) ,20) ; %imagesc(nu,mu,abs (chkbdFqgs)) ;
set (gca, ’xcolor’,[0 0 0], ycolor’,[0 O 0])
axis(’square’); grid

W =~ @& W s W N =

Figure 6.14 — 2D-FFT applied to a checkerboard

If 2(k,¢) is separable, that is if #(k,¢) = x1(k)x2(£), the 2D-DFT can be
expressed as the product of two 1D-DFTs (meaning that X (m, n) is separable).
Thus, we can write:

X (m, n) M_lxl(k) exp{—?ﬂ'jkﬁm} X Z_:lxz(ﬁ) exp{—?n’jlﬁn}

= Xl(m) ><X2(n)

The calculation then becomes quite simpler.

6.4 Linear filtering

The £ilter2 function, used for 2D filtering, is available in the basic version of
MATLAB®. This function uses the 2D-convolution function, the command line
of which is, in MATLAB®, c=conv2(a,b). The 2D-convolution is a built-in
function.

Definition 6.3 2D-linear filtering is the operation that associates the image

z(k, £) with the image y(k,t) defined by:

[e%e) + oo
y(k, 0) = (@ h)(k,)= > > w(k—m, = n)h(m,n) (6.16)

m=—0o0 Nn=—00

208 Digital Signal and Image Processing using MATLAB®

The two index sequence h(k,), characteristic of the filter, is called the Point
Spread Function, or PSF.

As was the case for 1D-filtering, the operation denoted by “x” in expression

6.16 is linear and space-invariant, and the sequence h(k,) is the equivalent
of the impulse response for the one dimension case. Once again, property 6.1
leads to a simple expression of the filtering operation in the frequential range.
This gives us the following property.

Property 6.5 Consider a 2D-linear filter with the PSF h(k,?). H(p,v) de-
notes the 2D-DTFT of its PSF. It s called the optical transfer function, or
OTF. Because of property 6.1 we have:

Yip,v) = H(p,v)X(p,v)

where X (p,v) and Y (p,v) refer to the 2-DTFTs of x(k,) and y(k,£) respec-
tively.

Thus, the identity filter has the PSF h(k, £) = §(k)J(£), where d(k) is equal
to 1 if & = 0 and 0 otherwise. Its OTF is equal to 1 for any frequency pair
(g, v). This filter leaves the input image untouched. Because of property 6.5,
we can also say that the identity filter passes all frequencies.

In MATLAB®, unlike the filter(b,a,x) function for 1D use, which allows
the user to design an infinite impulse response filter using the input coefficients
a, the filter2(B,x) function performs only the 2D equivalent of a finite im-
pulse response filtering, the expression of which is:

y(k,0) = (zxh)(k, £) = ZQ: i z(k—m, £ —n)h(m,n) (6.17)

The filter2 function has an additional parameter that allows the user
to set how the side effects should be taken into account: ‘same’ to have an
output image with the same size as the input image (this is the default option),
‘valid’ to keep only the part of the image unaffected by the side effect (the
resulting image is smaller than the original), and full to keep all of the points,
including the ones resulting from the filter’s impulse response (this leads to an
image larger than the original).

The concept of stability is essential, as it was with 1D signals. It states that
to any bounded input corresponds a bounded output. Because we will only be
considering filters characterized by expression 6.17 and similar to the 1D FIR
filters, the stability condition will always be met from now on.

On the other hand, the concept of causality, although fundamental when
it comes to signals, has very little significance in the case of images. This
1s because there is no reason for the quantity calculated for the coordinates

An Introduction to Image Processing 209

(k,£) to be dependent only on the points placed “before” (k,£), that is to say
(k —m, ¢ —n), where m and n are positive. In 2D processing, all of the points
around (k, £) can contribute to the calculated value.

Example 6.5 (Circular filter)
Consider what is called the circular filter, h(k,l), defined in the program:

Y%===== SMOOTH1.M

h=[001110 0;
011111 0;
111111 1;
111111 1;
111111 1;
011111 0;
001110 0];

h=h/ sum(sum(h));

load wenmanu; subplot(121); imagesc(pixc);

colormap (cmap) ; axis(’image’);

set (gca,’units’, ’pixels’, ’DataAspectRatio’,[1 1 1])
pixr=filter2(h,pixc); subplot(122); imagesc(pixr);
set (gca,’units’, ’pixels’, ’DataAspectRatio’,[1 1 1])
axis(’image’)

This program smooths the image.

150 200 230 300 350

Figure 6.15 — Smoothing of an image test using the circular filter

As was the case with 1D smoothing filters, this filter tends to “erase” high
frequencies, particularly the ones contained in the contours, and therefore pro-
duces a blurred image (Figure 6.15) compared to the original image.

Definition 6.4 A filter is said to be separable when its PSE is such that:

h(k, €) = hy(k)hy(0) (6.18)

210 Digital Signal and Image Processing using MATLAB®

In the case of a finite PSF, if h is the matriz with h(k,) as its elements,
and if hy and hy, are the vectors with the respective components hy(k) and
hy(£), relation 6.18 is equivalent to:

_ T
h = h,h! (6.19)

We are going to show that a separable 2D filtering can be performed by
combining two consecutive 1D filters. This is how 1t works:

(@xh)(mn) = > > w(m—kn—0h(k,l)
= > ha(k) (Z x(m—k,n—ﬁ)hy(ﬁ))
= i hy(€) (ZQ: z(m—k,n —E)hx(k))

Bear in mind that if the filter function is used for a separable 2D filtering,
you must take into account the fact that filter implements a causal design.
(exercise 6.4).

Exercise 6.4 (The rectangular filter)
Consider the rectangular filter defined by:

11111 1
Lt
h=— |1 1 1 1 1|==—|1|[t1111]
By 1] Bh
11111 1

Write a program that:
1. Performs the filtering of the test image;

2. Performs the same filtering using two separate 1D filterings.

Exercise 6.5 (The conical filter)
The conical filter is defined by:

00100
Loz 220
h=— 11 2 5 2 1
1o 2 2 2 0
00100

Apply the conical filter to the test image.

An Introduction to Image Processing 211

Definition 6.5 (The Gaussian smoothing filter) The generating element
of the Gaussian smoothing filter’s PSF is:

1 k2 412
2mo? xp 202

This filter is separable, since we can write h(k,£) = hy(k)hy(€).

h(k,€) =

The smaller the o parameter is, the more the filter behaves like an identity
filter, that is to say that it passes all the frequencies of the plane. The gain
filter can of course be modified by mulitplying it by a constant.

Exercise 6.6 (The Gaussian smoothing filter)

1. Write a MATLAB® function that calculates the PSF of Gaussian smooth-
ing filter using o.

2. Apply the Gaussian filter to the test image.

2D-DFT frequency filtering

Starting with the circular convolution property 6.3, it is possible to consider
performing a filtering by simply multiplying the 2D-DFT of an image by the
2D-DFT of the filter’s PSF. Of course, just like in 1D, this process must take
into account the circular convolution property.

Consider the PSF h(k, £) of a K x L filter (number of non-zero coefficients),
and an M x N image z(k,£). We will assume M > K and N > L. H(m,n)
and X (m,n) refer to the 2D-DFTs of the PSF and of the image respectively.
Both are calculated for M x N points. According to property 6.3, the inverse
2D-DFT of the product H (m,n)X (m,n) can be written, for k € {0,..., M —1}
and £€{0,...,N —1}:

For k> K — 1, (k—u mod M) = k — u: there is no index “aliasing” when
we sum u from 0 to (K —1). This also true for £ > L—1, ({—v mod N) = {—wv.
In this case, the calculated points do correspond to those of the convolution
associated with the filtering. However, for k < K — 1 and/or £ < N — 1, there
is an index “aliasing” which leads to an incorrect result. One way of avoiding
this phenomenon is by completing the image with K zeros along the horizontal
axis, and L zeros along the vertical axis.

z(k —u mod M, ¢ —v mod N)

IIMI

212 Digital Signal and Image Processing using MATLAB®

Derivative operations

To display the variations of a 2D function, the concept of derivative can be
used, as it was in 1D. The difference is that in 2D, the derivative comprises
two components corresponding to the two directions of the plane. Thus, to
perform a 2D-derivative, you can use a first derivative filter along the horizontal
direction, and a second one along the vertical direction.

Definition 6.6 (Prewitt derivative filter)
The PSF of a Prewtt derwative filter along the vertical direction s given by:

o =17
hU:§10—1:§1[10—1]
10 -1 1

and the PSF of a Prewitt derivative filter along the vertical direction by:

hy==|0 0 0|==]0][[1 1 1]

1
3

These two filters are therefore separable. Decomposing h, clearly shows:

— a smoothing function along one direction, smoothing corresponding to

the vector [1 1 1] /v/3;

— a derivative function in the other direction, corresponding to the vector
[1 0 —1] /\/§ Remember that the 1D causal filter defined by this
vector associates the input w(n) with the output v(n) = (u(n) — u(n —

2))//3, which can be seen as the derivative.

Definition 6.7 (Sobel derivative filter)
The PSF of a Sobel fitler along the vertical axis is given by:

(roo -1
hy =22 0 —2) =212 [1 0 —1] (6.20)
1 0 -1 1

The PSF of a Sobel fitler along the vertical axis is given by:

hy,=-[0 0 0 :% 0|1 2 1] (6.21)

1
Tl -2 -1

Sobel filters are separable. Notice that they perform a derivative along one
axis, and a smoothing operation along the perpendicular axis.

An Introduction to Image Processing 213

Applying formula 6.19 leads to a 2D filter that derives in both directions
without any smoothing:

1 10
h=a|0|[l 0 —-1]=a|0 0 O
-1 -1 0

where « is a normalization coefficient.

Starting off in 1D, we can also design a 2D filter that approximates the sec-
ond derivative, by convoluting the impulse response filter [—1 1], which 1s an
approximation of the first derivative, with itself. If you type conv([-1 1],[-1
1]) in MATLAB®, the result is [1 -2 1]. By combining the two directions,
we get a 2D filter that performs a second derivative in both directions, defined

by:

1 0 1 0
h=a|-2[[1 -2 1]=a|l -4 1 (6.22)
1 0 1 0

where « is a normalization coefficient.
Generally speaking, it is of course possible to design other filters using one
dimension design methods, and then inferring a 2D separable filter with formula

6.19.

Exercise 6.7 (The Sobel derivative filter)
1. Apply the Sobel filters 6.20 and 6.21 to the test image.
2. Apply the filter 6.22 to the same image.

3. By using a similar method to the window method, calculate a derivative

filter.

4. Same question for a second derivative filter.

Definition 6.8 (Gaussian derivative filter)
Consider the function defined as the difference between two Gaussians, also
called a Difference of gaussians mask, or DoG mask:

(k.0) 1 k2 4+ 12 1 k2 4+ 12
= ——exp|— — exp | ————
g 271'0'% b 20’% 271'0'% b 20’%

with o9 = ro1 and r between 1.4 et 1.8. The Gaussian deriwative filter is the
filter with the following PSF:

h(k, 0) = g(k,) — Zngﬁ

implying that >, >, h(k,£) = 0.

214 Digital Signal and Image Processing using MATLAB®

The imposed condition, Y, >, h(k,£) = 0, is related to the fact that a
derivative filter has a gain equal to 0 at the frequency 0. This result is similar
to the one obtained in 1D in exercise 4.11.

The graph of a Gaussian derivative filter PSF 1s shaped like the one in
Figure 6.16.

Figure 6.16 — Graph shape of a Gaussian derivative filter’s PSF

Example 6.6 (Gaussian derivative filter)

1. Write a MATLAB® function that calculates the PSF of a Gaussian
derivative filter. Write it so that >~, >~ h(k,{) = 0.

2. Apply this filter to the test image for three values of oy = {1,2,3} and
for » = 1.4. Save the results in three different files (use the functions
sprintf and eval to change in a program the name of the saved file).

SOLUTION:
1. Type:
function hd=dergauss (sigma)
%h %
%% Gaussian derivative filter %

%% SYNOPSIS: hd = DERGAUSS(Sigma) %
YAA sigma = Standard deviation %
%% hd filter PSF (N*N) %
%h %
rho=[-sigma*3:sigma*3]; N=length(rho);
rp=1.4; s2=2%sigma”2; s22=s2%rp*rp;

An Introduction to Image Processing 215

idx= ([1:N]-(N+1)/2)’ * ones(1,N); idy=idx’;
idxa=[1:N]’> * ones(1,N); idya=idxa’;

indices (1, :)=reshape(idx,1,N*N);

inda(1, :)=reshape (idxa,1,N*N);

indices (2, :)=reshape(idy,1,N*N);

inda(2, :)=reshape (idya,1,N*N) ;

rho2=sum(indices .* indices); rho=sqrt(rho2);

for k=1:N%N
gl=(1/sigma)*exp (-rho2(k) / s2);
g2=(1/sigma/rp)*exp(-rho2(k) / s22);
hd(inda(2,k),inda(1,k))=gl-g2;

end

hd=hd-sum (sum(hd)) /N/N;

return

2. Applying the filter to the test image (Figure 6.17):

Loading the image
clear; load lena; subplot(221); imagesc(pixc+1);
colormap (cmap) ; axis(’image’)
set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])
Y%===== Gaussian derivative filter
for k=1:3
hd=dergauss (k) ;
pixr=round(filter2(hd,pixc));
subplot (2,2,k+1); imagesc(pixr); axis(’image’)
set (gca, ’Xcolor’,[0 0 0], ’Ycolor’,[0 0 0])

end
set (gcf,’Color’,[1 1 1])

The programs we have just described are used in the contour detection
program.

Definition 6.9 (Gaussian derivative-smoothing filter)
Consider the rotation of angle 6 that changes the point with coordinates (u,v)
according to the expression:

et = [ty o] [1] .
Consider the Gauss function:

hi(k,t) = Ul\l/ﬂ exp (—%) (6.24)

216 Digital Signal and Image Processing using MATLAB®

Figure 6.17 — Gaussian derivative for o1 = {1,2,3} and 02 = 1.40;

and the derivative function:

ho(k, £) = _uk b exp (_v(k,ﬁ)z) (6.25)

3 2
o5 I 20’2

The Gaussian derivative-smoothing filter 1s the filter that performs a Gaus-
stan smoothing filtering (function hy) along the direction 6§ € (0,2n) and a
Gaussian derivative filtering (function hy) along the perpendicular direction.

The expression of its PSF’s generating element is:

h(k,£) = hy(k,0)ho(k, £) — ZZh (k, €)ha(k, L)

which verifies >, >, h(k, £) = 0.
Exercise 6.8 (Gaussian derivative-smoothing filter)

1. Write a MATLAB® function that calculates the PSF of a Gaussian
derivative-smoothing filter.

2. Apply this filter to the test image.

An Introduction to Image Processing 217

6.5 Other operations on images

6.5.1 Undersampling

As it was the case with one dimension signals; the undersampling has to meet
some conditions to avoid the aliasing phenomenon. Remember that aliasing
occurs when the sampling rate is too slow compared to the frequencies found
in the image, and causes frequential artifacts to appear. In an image, high
frequencies correspond to important variations in color and/or brightness con-
centrated on small surfaces. Take the example of the images represented in
Figure 6.18. They were obtained with the following program:

%===== ALTASINGTRAINS

close all; clear all

load trainsV4

xx1se=xx1(1:5:512,1:5:768) ; % Under-sampling
lwpass=ones(5,5)/25;

yyl=filter2(lwpass,xx1); % Filtering before
yylse=yy1(1:5:512,1:5:768); % under-sampling
subplot (221) ; imagesc(xx1); colormap(’gray’)
subplot (222) ; imagesc(xxlse); colormap(’gray’)
subplot (223) ; imagesc(yyl); colormap(’gray’)
subplot (224) ; imagesc(yylse); colormap(’gray’)
set (gcf,’Color’,[1 1 11)

In the top-left corner, you can see the original image, a 512 x 768 array.
This image contains “high frequencies”, particularly around the electric cables
and the tracks, where the shapes are in some places less than a few pixels
wide. In the image represented in the top-right corner, obtained by taking 1
out of b pixels horizontally and vertically, you can clearly see major and erratic
variations in some areas of the image, due to aliasing.

Just like in 1D, a low-pass filtering must be performed before the under-
sampling. This can be done with a simple filter, calculating the mean over
5 x 5 cells. This operation is performed by filter2(lwpass,xx1), which uses
the filter2 function. The resulting image is shown in the bottom-left corner.
The filter causes a slight “blur”. The image in the bottom-right corner shows
the previous image after the undersampling operation. Most of the artifacts
are gone. The tracks in particular show less unwanted fluctuations.

6.5.2 Oversampling

As for the oversampling of 1D signals, the interpolation operation can be per-
formed by the insertion of “zeros” (the zero’s significance is not the same here)
followed by a low-pass filter. In the following example, we isolated the part
of the original image containing the clock, on the platform to the left. This
portion of the image is shown on the left-hand side of Figure 6.19. In order

218 Digital Signal and Image Processing using MATLAB®

Figure 6.18 — Effects of spectrum aliasing. In the top-left corner, the original image
(512 x 768). In the top-right corner, the same image undersampled by a factor of 5.
In the bottom-left corner, the image filtered by a smoothing filter over a 5 x 5 square.
In the bottom-right corner, the image filtered and undersampled by a factor of 5

to improve the image rendering, we oversampled by a factor of 4, horizontally
and vertically. The low-pass filter is a separable filter with a PSF of the type
sin o/, to which a Hamming window is applied in order to reduce the ripples
in the resulting image. The following program was used to obtain the image
on the right of Figure 6.19:

OVERSAMP2DS .M
Over-sampling ratio
clear; Mx=4; My=4; cmap=’gray’;
load trainsV4; ima=xx1; % The file "trains" --> xx1
%===== Zooming in on the clock
pixc=ima(180:210,80:120);
[Lig,Coll=size(pixc);
%===== Low-pass filter PSF (Lfft>N)
N=30; [X,Y]=meshgrid(-N:1:N, -N:1:N); X=X+eps; Y=Y+eps;
FEP=Mx*My* (sin(pi * X/Mx) ./ X) .* (sin(pi * Y/My)./ Y);
%===== Hamming window
W= (0.54 - 0.46%cos (24pi* (X+I1) /(2%N)))
.k (0.54 - 0.46%cos (24pi*x (Y+N) /(2%N)));
FEP=FEP .x W;
%===== Expansion and filtering

An Introduction to Image Processing 219

pixcz=zeros (Mx*Lig,My*Col) ;

pixcz(1:Mx:Mx*Lig, 1:My:My*Col)=pixc;
pixcSE=filter2(FEP,pixcz);

%===== Displaying the result

subplot (121) ; imagesc(pixc); axis(’image’); colormap (cmap);
subplot (122) ; imagesc(pixcS8E); axis(’image’); colormap (cmap) ;
set (gcf,’Color’,[1 1 11)

Figure 6.19 — Image on the left: zoom-in on the clock in the original image from
Figure 6.18. Image on the right: oversampling by a factor of 4 in both directions

These techniques, taken directly from signal processing, are not the only
ones used. The bibliography shows some sources of information for bilinear
interpolations, cubic interpolations, etc.

For example, the bilinear interpolation consists of constructing “intermedi-
ate” pixels P from four pixels Pyo, Fo1, Pio and Py; by making the values of
the parameters ¢, and ¢, vary from 0 to 1:

P = Pyo(l —to)(1 —ty) + Por(1 — o)ty + Piote (1 —ty) + Piitsty

Example 6.7 (Bilinear interpolation) The bilintrimg function performs
the bilinear interpolation of an image with (n x m) pixels:

function pixcR=bilintrimg(pixc,Rintx,Rinty)

hh %
%% Bilinear interpolation of an image %
%% SYNOPSIS: pixcR=BILINTRIMG(pixc,Rintx,Rinty) %
% pixc = Image (nl*nc) pixels %
YAA Rintx = Interpolation rate (x) %
YAA Rinty = Interpolation rate (y) %
o %

Spix=size(pixc); N1=Spix(1); Nc=Spix(2);
txt=[0:Rintx-1]/Rintx; ty=[0:Rinty-1]’/Rinty;
nlig=(N1-1)*Rinty+1; ncol=(Nc-1)*Rintx+1;
pixcR=zeros(nlig+Rinty,ncol+Rintx) ;

220 Digital Signal and Image Processing using MATLAB®

MOO=(1-ty)*(1-txt); MO1=(1-ty)*txt;
M10=ty* (1-txt); Mil=ty*txt;
pixc=[pixc zeros(W1l,1);zeros(l,Nc+1)];
for k1=1:N1
for kc=1:Nc
t1=(k1-1)*Rinty+[1:Rinty]l; tc=(kc-1)*Rintx+[1:Rintx];
PC=pixc(kl,kc)*MOO+pixc (k1 ,kc+1)*MO1+. ..
pixc(kl+1,kc)*M10+pixc (k1+1,kc+1)*M11;
pixcR(t1,tc)=PC;
end
end
pixcR=pixcR(1:nlig,1:ncol);
return

The following program loads an image in levels of gray and oversamples by
a factor of Rint using a bilinear transformation (Figure 6.20):

%===== INTBILIN.M

xor=40; yor=40; % Positionning in the window
pixcl=imread(’oceile.jpg’,’jpeg’);

Spix=size(pixcl); N1=Spix(1); Nc=Spix(2);
pixc=zeros(Spix); pixc(:)=pixcl;

cmap=[0:1/255:11’*[1 1 1];

subplot (121); imagesc(pixc); colormap(cmap)

set (gca, ’units’, ’pixels’, ’Position’, [xor yor Nc N1]);
set (gcf, ’color’,[1 1 1])

%===== Interpolation with ratio 4 in both directions
Rint=4;

pixcR=bilintrimg(pixc,Rint,Rint);

subplot (122) ; imagesc(pixcR); colormap (cmap)
Spix=size(pixcR); ncol=Spix(2); nlig=Spix(1);

set (gca, ’units’, ’pixels’, ’Position’, [xor+xor+lic yor ncol nligl);

6.5.3 Contour detection

Contour detection is a common application of image processing. A simple
method is to start by extracting the portions of the image with a significant
gradient. This can be done with a derivative filter. We then need to define a
boolean information, for each pixel, stating whether or not the pixel belongs
to a contour. This can be done simply by comparing the obtained results to a
threshold. The following program uses an image obtained by differentiation in
example 6.6:

= THRESHOLDG.M

File loading

clear; load lenabool?2;

subplot (121) ; mydisp(pixr,cnap);

%===== Threshold with manual choice of alpha

An Introduction to Image Processing 221

20
40
B0
&0

20 40 &0 80 100 50 nog 150 200 250 300 350 400 450

Figure 6.20 — Applying the bilinear interpolation

alpha=0;
decal=round((max (max (pixr))+nin(min(pixr)))/2);
subplot (122) ; imagesc(-sign(pixr+decal+alpha));
axis(’image’)

The result of the thresholding is represented in Figure 6.21.

Figure 6.21 — Results of the thresholding after derivative filtering

It can be wiser to search for local maxima — peaks — in the result of the
derivative. The following function can find the maxima:

function resul=searchmax(pixr,cmap)

%h A
%% Searching the peaks %
%% SYNOPSIS resul=RECHMAX (pixr,cmap) %
%% pixr = image %

%% cmap = palette Y%

222 Digital Signal and Image Processing using MATLAB®

%% resul = result %
%h %

[nlig, ncoll= size(pixr); Lcmap=size(cmap,1);

pixr(:,1:pp)=zeros(nlig,pp); pixr(1l:pp,:)=zeros (pp,ncol);

pixr(:,ncol-pp+l:ncol)=zeros(nlig,pp);

pixr(nlig-pp+1:nlig,:)=zeros (pp,ncol);

%===== Searching the maxima

pixdyl= [pixr(2:nlig,:); pixr(nlig,:)];

pixdy2= [pixr(1,:); pixr(l:nlig-1,:)];

pixdx1= [pixr(:, 2:ncol) pixr(:,ncol)];

pixdx2= [pixr(:,1) pixr(:,1l:ncol-1)];

maxima = find ((pixr>pixdyl & pixr>pixdy2) |...
(pixr>pixdxl & pixr>pixdx2));

resul= zeros(size(pixr)); resul (maxima)= pixr(maxima);

resul (:,1:2)=zeros(nlig,2); resul(1:2,:)=zeros(2,ncol);
resul (:,ncol-2:ncol)=zeros(nlig,3);

resul(nlig-2:nlig, :)=zeros(3,ncol);
resul=resul/max(resul (:))*Lcmap; % Normalization
return

The following program displays the obtained result on a test image (Figure

6.22):

%===== TRTEYES1.M

load eyes3;

[nlig, ncoll= size(pixc); Mcmap=size(cmap,1)-1;
Y%===== Differentiation

hd=dergauss(1); pixr=(filter2(hd,pixc));
%===== Looking for the maxima

pixr(:,1:3)=zeros(nlig,3); pixr(1:3,:)=zeros(3,ncol);
pixr(:,ncol-2:ncol)=zeros(nlig,3);
pixr(nlig-2:nlig,:)=zeros(3,ncol);

tbmax = searchmax(pixr,cmap);

subplot (131) ; imagesc(pixc+1); colormap(cmap); axis(’image’)
subplot (132); imagesc(pixr); axis(’image’)

subplot (133); imagesc(tbmax); axis(’image’)

save eyetst pixr tbmax cmap

The results are saved (save command) to the file eyes3 for further process-
ing.

Combining a Gaussian low-pass filter with first order horizontal and vertical
derivatives, such as in the previous example, is a very common method for
contour detection. J. Canny [18] showed that this method is very similar to
applying a filter that optimizes a criterion related to precision and stability.

An Introduction to Image Processing 223

Figure 6.22 — Results of thresholding and of the search for local mazima

Exercise 6.9 (Contours using Sobel filtering)
1. Apply the Sobel filters 6.20 and 6.21 to the test image.

2. Using the resulting pixels p, (k,1) and pp(k,!), construct the image of the
pixels \/p2(k,l) + p?(k,l). By defining an appropriate threshold value,
extract the contours of the image.

The function fminsearch implementing the Nelder-Mead algorithm can be
used for the seaching of extrema.

Detection of a given shape

Extracting contours is usually required to extract a given shape in an image.
In Figure 6.22, it may be useful to properly detect an iris, for identification
purposes for example. In order to achieve this detection, we are going to
perform a filtering with a circular PSF, and we will work with the maxima of
the results.

Exercise 6.10 (Iris search)
Using the array tbmax obtained in the previous program, imagine a way to
identify where the iris is located.

Hough method

For shape recognition, it may be useful to detect the presence of basic shapes,
such as circles, ellipses, straight lines, etc. The Hough method is one of the
most common.

Consider for example the case of line detection in an image previously pro-
cessed so as to outline the contours. For straight contour detection, we then
use sets of lines where each straight line is defined by the pair of paramaters
(p, 8) (Figure 6.23). p refers to the distance to the origin and @ the angle to
the direction perpendicular to the line.

In each point of the contour, a set of concurrent lines is built, with the
parameters p and @ (see Figure 6.23). Figure 6.24 shows that two sets of lines

224 Digital Signal and Image Processing using MATLAB®

A Image space

A6 Parameter space

o
DC
Yo

Figure 6.23 — Setting the parameters for the set of lines

on a portion of a line share a common point, or to be less specific, in the same
neighborhood, on the parameters.

The accumulation, resulting from all the filters associated with this portion
of a line, leads to a maximum in the neighborhood of this point. We then
proceed to partitioning the parameter space, so as to obtain a quantization
grid, then we count the points inside each box of the grid. The resulting values
are then used for different kinds of processing.

oA

Contour
90
—
$—
@ r
0 —r >
L4
Accumulation

Figure 6.24 — Using sets of lines

Example 6.8 (Implementing the Hough method)

Consider an image (Figure 6.26, image on the left), assumed to have been
obtained by contour extraction. The following program performs a search for
straight lines

An Introduction to Image Processing 225

HOUGH.M
load hough; [nlig,ncoll=size(pixc);
figure(1); subplot(121); colormap (cmap) ;

imagesc(pixc); axis(’image’)
Contour extraction

indx=find(pixc==0); Nidx=length(indx);

A
Nt=60; thetad=[0:180/Nt:180]

; theta=thetad*pi/180;

thet=thetad(1:Nt); tbl=zeros (Nt,Nt);

figure(2)

for k=1:Nidx

For each point and each value
of theta, rho is computed

nc=floor((indx(k)-1)/nlig)+1; nl=indx(k)-(nc-1)*nlig;
for m=1:Nt, rho(m)=nc*cos(theta(m))+nl*sin(theta(m)); end

tbl(:,k)=rho’;
plot (rho,thet); hold on
end

rhomax=sqrt (nlig*nlig+ncol*ncol);

set (gca, ’X1im’, [0 rhomax]) ;

grid; hold off

Result (visual examination)

figure(1); subplot(122); imagesc(pixc); colormap (cmap) ;

axis(’image’); hold on
plot ([0 54.5%cos (70%pi/180)]
hold off

, [0 54.5%sin(70%pi/180)1)

The observation of the resulting set (Figure 6.25) provides us with a direc-

tion.

R
Y
===

/]

7 A

7,

(7

S

AR~=X
N ,,ﬁll

Ny TNy
NP

\\' WA

Figure 6.25 — Zoom-in on the set of lines: we find the values p = 54.5 and § =70°

226 Digital Signal and Image Processing using MATLAB®

The perpendicular direction is indicated in Figure 6.26 (the image on the
right). An automatic search requires searching for zones with a high point
density, hence the idea to use a 2D histogram to extract the (p, 6) positions of
the maxima.

Figure 6.26 — Search for a straight line

One example of an application for this type of processing is the search for
the writing line directions in a handwritten text. The method described here is
known as the Hough method [46], or Hough transform method, and allows the
extraction of directions, one of which still has to be chosen. The presence of a
high point density along a line can help find them.

The Hough method can also be used to search for other shapes. The idea
is the same. For example, for circular shapes, the parameter {r,6, R} can be
used, where the pair (r,#) refers to the polar coordinates of the circle’s center
and R is its radius.

6.5.4 Median filtering

Compared to other non-linear filters, median filtering is both simple and ef-
ficient. Just like a linear low-pass filtering, it smooths the image and can
therefore eliminate certain of the image’s imperfections. However, unlike a lin-
ear low-pass filter, which inevitably adds a blur around the contours, it better
preserves the sharp variations of the image.

Definition 6.10 (Median filter)

Let {a(k,€)} be an image. The median filter associates the mean value m(k,)
with the point with coordinates (k,t), in the (M x N) rectangular window,
centered on (k,t). If we assume N and M to be odd, and if u(n) denotes the
sorted sequence (u(n) > u(n — 1)) obtained from the array [a(i,j)] (M x N)
wherei € {(k— (M —=1)/2, ..., k+ (M —=1)/2y and j e {({ - (N =1)/2, ...,
{— (N +1)/2)}, we have:

m(k,0) = u((MN +1)/2)

An Introduction to Image Processing 227

Exercise 6.11 (Median filtering)
Apply this program to the test image:

%===== SNOWING.M

load lena

dims = size(pixc);

msnow = (randn(dims)>-2);
pixcmsnow = pixc .* msnow;
imagesc(pixcmsnow); axis(’image’)

This causes white points to randomly riddle the image, a bit like snow.
Compare the effect of a Gaussian smoothing filter with the effect of a median
filtering on the “snowy” image.

Exercise 6.12 (Processing the result of a rotation)
Use the saved image in example 6.2.

1. Perform a 3 x 3 median filtering on the resulting image. Try several
rotation angles.

2. Perform a processing of the “missing” points by calculating a mean on
the surrounding pixels.

There are many possible methods for processing an image after it has undergone
geometric transformations: interpolations, morphological filtering (paragraph
6.5.7), median filterings. .. or other methods adapted to the case in question.
There are no absolute rules in the field.

6.5.5 Maximum enhancement

The use of a unique threshold for the entire image can hide local maxima from
view. Hence the idea to perform some transformations to enhance certain max-
ima before the thresholding. This non-linear processing significantly improves
the detection of “peaks” | in an image that has, more often than not, undergone
a derivative and an extraction of local maxima.

An example of this type of processing is given in the following program
which performs an affine transformation in order to bring the maxima to the

same level:

function vecnorm=NormVec(vec,max0,seuil)

%h %
%% SYNOPSIS: vecnorm=NORMVEC(vec,max0,seuil) %
YAA vec = vector to be normalized %
% max0 = global maximum %
YAA seuil = threshold for the local maxima Y%
o vecnorm = global vector %
%h %
ip=find(vec<0); vec(ip)=zeros(1l,length(ip));

228 Digital Signal and Image Processing using MATLAB®

Lvec=length(vec); tbvec=zeros(l,Lvec);
ip=find(vec>seuil); tbvec(ip)=ones(1,length(ip));

for k=1:Lvec
if (indbool0 & tbvec(k)),
indboo0l0=0; ki1=k;
elseif ("indbool0 & “tbvec(k)),
[vmx, ivmx]=max(vec(kl:k-1));
indbool0=1; indm=[indm ivmx+k1-1];
vm=[vm vmx];
end

Lim=length (indm) ;

if Lim==0, vecnorm=vec; return; end

kl=indm(1) ; rapd=ones(1,k1)*max0/vn(l); rap=rapd;
k2=indm(Lim) ; rapf=ones(1,length(vec)-k2)*max0/vm(Lim) ;
rap=zeros(1l,Lvec);

if Lim==1,
rap=[rapd rapf];
else
rap=rapd;
for k=2:1ength(indm),
il=indm(k-1); i2=indm(k);
y1l=max0/vm(k-1); y2=max0/vm(k);
for m=il1+1:i2,
rap(m)=y1+(m-i1) *(y2-y1) /(i2-i1);

end
end
rap=[rap rapfl;
end
vecnorm=vec .* rap;
return

The following program uses the data taken from the search of maxima in
an image (Figure 6.27):

%===== ENHANCEYE.M

load eyetst

subplot (221); imagesc(pixr); axis(’image’);
subplot (222) ; imagesc(tbmax); axis(’image’);
colormap (cmap)

[nlig, ncoll= size(pixr); Mcmap=size(cmap,1)-1;
%===== Improving the peaks with the derivative
max0=max (max (pixr)); [nlig, ncoll=size(pixr);
seuil=6; resul=zeros([nlig, ncoll);

for k=1:nlig;

An Introduction to Image Processing 229

vecnorm=NormVec(pixr(k,:) ,max0,seuil);
resul (k, :)=vecnorm;

end
subplot (223) ; imagesc(resul); axis(’image’);
%===== Improving the peaks

max0=max (max (tbmax)); [nlig, ncoll=size (tbmax) ;

seuil=45; resul2=zeros([nlig, ncoll);

for k=1:nlig;
vecnorm=NormVec (tbmax (k, :) ,max0,seuil);
resul2(k, :)=vecnorm;

end

subplot (224) ; imagesc(resul2); axis(’image’);

Figure 6.27 — Processing by contour extraction

6.5.6 Image binarization

Image binarization consists of intensifying the contrast until complete satura-
tion is reached. Black and white are the only two levels kept after this opera-
tion. It is used in particular for Optical Character Recognition, or OCR. The
technique described below is based on a method suggested by N. Otsu in 1979
[70]. Tt requires the calculation of an histogram first, followed by a separation
in two categories, C and C, associated with the two colors. It is quite simple to
adapt this method to a greater number of categories:

230 Digital Signal and Image Processing using MATLAB®

1. The histogram calculation consists of initializing with zeros an array H =
[h(k)] with P = 256 entries. These entries correspond to P levels of gray.
The entire image is covered, and for each pixel (n,m) with a level of gray
k, the entry for h(k) in the array H is incremented. The histogram is
normalized by dividing H by the number N of pixels in the image. The
h(k) can then be interpreted as estimated values for the probabilities of
finding the 256 levels of gray in the image.

2. Separating the image pixels in two categories can be done by directly
comparing levels of gray with a threshold value defined by observing the
previous histogram.

This very simple method can give disappointing results. There are two main
drawbacks. First, isolated pixels can belong to an area and not be part of that
area’s category. In particular, this can lead to highly contrasted textures. The
second drawback concerns images showing the shadow of certain objects. It
is not always a good thing to have them belong to the same category as the
object they came from, whatever the lighting may be.

Consider for example the original image in Figure 6.29. The following pro-
gram first draws the histogram for the 256 levels (Figure 6.28), then uses it to
calculate threshold values. Based on these values, the program displays two bi-
narization examples. The results, for two threshold values, are shown in Figure

6.29:

%===== BINAR1.M

load elido72

[nlig ncoll=size(pixc); nbpix=prod(size(pixc));

%===== Global histogram

histog=zeros(1,256); pixc3=zeros(nlig*ncol,1); pixc3(:)=pixc;
histog=hist(pixc3,256)/nlig/ncol;

figure(1); plot([0:255] ,histog); grid

%===== Thresholds based on a visual examination

% of the histogram

figure(2); subplot(131);

imagesc(pixc); axis(’image’); colormap (cmap) ;

%===== Threshold 1

pixc2=zeros(nlig,ncol);

geuil=152; idxy=find(pixc>seuil);
pixc2(idxy)=255%ones (size (idxy)); subplot (132); imagesc(pixc2);
axis(’image’); colormap (cmap)

%===== Threshold 2

pixc2=zeros(nlig,ncol);

geuil=90; idxy=find(pixc>seuil);
pixc2(idxy)=255%ones (size (idxy)); subplot (133); imagesc(pixc2);
axis(’image’); colormap (cmap)

save histog histog

An Introduction to Image Processing 231

1 \ T ‘
' Threshold 2 Threshold 1

0.01
0.008
0.006
0.004

0002 | WMk

0 50 100 150 200 250 300

Figure 6.28 — Histogram and global thresholds

Figure 6.29 — Binarization of the image above for two threshold values

Automatic threshold calulation: the Otsu method

We will now see how to make the choice of the threshold automatic. In order to
do this, we will write h(k) to refer to the percentage of values from the image
that are equal to k, where k € {0,...,255}, as it was calculated in the previous
histogram. h(k) provides an estimation for the probability of level k.

Let s be the threshold. s defines two categories of values: category Cr for
values below s, and category Cs for values above s. The method suggested by
Otsu [70] simply consists of choosing, as the threshold value s, the integer for
which the quadratic error is minimal between the observed random value & and
its corresponding value p(K) in one of the two categories.

This method is merely the particular case for 1 bit of the N scalar quan-
tification problem, the solution of which is known as the Lloyd-Max solution.

Let gy and pg be the number of pixels in the categories C; and Cg respec-
tively. The expression of the criterion we wish to minimize, with respect to s,

232 Digital Signal and Image Processing using MATLAB®

pr and pg is:
L(s, o pis) = Sk = ur)*h(K) + 37 (k — pis) (k) (6.26)

Minimizing this ratio as a function of p; and pg can be achieved by zeroing
the partial derivatives of L(s, us, i) with respect to py and pg.
In the case of py for example, this leads to:

OL(s, . pis) _
—_— =2 k—ppn)h(k) =0
o S (k=)it
the solution of which is:
wo kh(k)

Th (k) (027

pr(s) =

Likewise, we have:

oo kh(k)
s, h(k)

Notice that there is an obvious interpretation for puy and pg: they are

s(s) = (6.28)

the respective means of each category. By replacing these two expressions of
L(s, pir, ps) in 6.26, we get an expression J(s), dependent only on s, which
needs to be minimal. The solution cannot be obtained analytically, but the
numerical solution can be found by calculating J(s) for the 256 possible values
of s.

There are two equivalent expressions of J(s) that are best adapted for the
numerical calculation. Let:

Pr(s) = Z_:h(k’) and Pg(s) = Z_: h(k) (6.29)

such that Pr(s) + Ps(s) = 1. The minimizing of J(s) with respect to s is
equivalent to maxrimizing:

G(s) = Pr(s)ui(s) + Ps(s)u5(s) (6.30)
with respect to s. This is because:

J(s) = gt kPh(k) — 230520 kpr(s)h(k) + S52g 3 (s)h(k) +
P R h(k) = 25002 ks (s)h(k) + S0, 13 (s)h(k)
= 5 “o K2h(k) = (13 (5)Pr(s) + i (s) Ps(s))

An Introduction to Image Processing 233

Hence, because the first term is independent of s, minimizing J(s) is equiv-
alent to maximizing G(s) = p3(s)Pr(s) + p%(s)Ps(s).
The maximizing of G(s) found in 6.30 is equivalent to the maximizing of:

H(s) = Pr(s)Ps(s)(pr(s) = ps(s))* (6.31)

Notice that the quantity:
Pr(s)pr(s) + Ps(s)ps(s) = Yhzy k2h(k)

(see expressions 6.27, 6.28 and 6.29) is independent of s, we can calculate
its square and substract this square value from G(s) without changing the
maximizing with respect to s. We get:

H(s) = G(s) = (Pr(s)ur(s) + Ps(s)ps(s))*
= ui(s)Pr(s) + p(s)Ps(s) — ui(s)Pr (s) — u§(s) P5(s)

(s
(

—2P1(s) Ps(s)pr(s)ps (s)
= ui(s)Pr(s)(1 = Pr(s)) + pis(s) Ps (s) (1 = Ps(s))
—2P1(s) Ps(s)pr(s)ps (s)

If we use Pr(s) + Ps(s) = 1, we get the expected result 6.31.

Exercise 6.13 (Application of the Otsu method)

1. Using MATLAB®, write the function that calculates the threshold ob-
tained by maximizing expression 6.31.

2. Apply this function to a test image.

Figure 6.30 gives the result obtained by calculating the threshold with the Otsu
method.

Figure 6.30 — Binarization for the threshold calculated with the Otsu method

234 Digital Signal and Image Processing using MATLAB®

6.5.7 Morphological filtering of binary images

A morphological filtering is a filtering that uses min and max operations. This
can be symbolized as follows:

pey = F (B(P)) (6.32)

where P is an image, B(P) a portion of the image extracted using a window
B, and F is a logical operation applied to pixels isolated by the window B.
The following function, called erosion, illustrates the process 6.32 applied to a
binary image when the min operation amounts to a logical AND:

function ppx=erosion(block,mtool)

%h %
%% SYNOPSIS: ppx=ER0SION(block,mtool) %
%% block = Data block of the same size as the tool %
%% mtool = Matrix defining the tool shape %
YAA Example: [0 1 0;1 1 1;0 1 0] defines a cross. %
%% ppx = Resulting pixel value %
%h %

L=round (log(size(colormap,1))/log(2));
ido=find (mtool==1); Lido=length(ido);
ppx=block(ido(1));
for m=2:Lido,
pps=block(ido(m)); ppt=ppx; st=0;
for k=1:L
st=st + (rem(ppt,2) & rem(pps,2)) * 27 (k-1);
ppt=fix(ppt/2); pps=fix(pps/2);
end
ppx=st;
end
return

In this function, the windowing matrix associated with the operator B is
referred to as the structuring element. It consists of a boolean matrix. A “1”
indicates a pixel that needs to be taken into account by the logical function
processing. Hence the processing can be symbolized by:

Pkl = ﬂ Pnom

{n,mb, m=1}
The program exerosion.m illustrates the erosion function call:

Y===== EXEROSION.M
clear
pixres=raw2matf (’exerode.raw’,128,128,°T’);

cmap=[1:-1/255:01"*[1 1 1]; [nl0,ncO]=size(pixres);
subplot (121) ; colormap (cmap); NbLevel=size(cmap,1);
imagesc(pixres); axis(’image’)

An Introduction to Image Processing 235

%===== Defining the window
Nlig=1; Ncol=1; mtool=ones ((2*Nlig+1), (2%Ncol+1));
%===== The image must be coded between 0 and NbLevel-1

pixc=[ones(nl0,Ncol) (pixres-1) ones(nlO,Ncol)];
pixc=[ones (Nlig,nc0+2*Ncol) ;pixc;ones (Nlig,nc0+2+Ncol)];
subplot (122) ; imagesc(pixc); axis(’image’)
pixr=zeros(nl0,nc0);

for nl=Nlig+1:Nlig+nl0
for nc=Ncol+1:Ncol+ncO
blk=pixc(nl-Nlig:nl+Nlig,nc-Ncol:nc+Ncol);
ppx(nl-Nlig,nc-Ncol)=erosion(blk,mtool) ;
end
end
subplot (122) ; imagesc(ppx); axis(’image’)

In this program, the structuring element is a (3 x 3) square. Its execution is
particularly slow. MATLAB® is not well suited for this type of processing com-
prising many loops. The best method would once again be to write a dedicated
“.mex” function. The image toolboz, of course, provides such functions.

If, in the erosion.m function, the AND (N) function is replaced with an
OR (U) function, the result is a dilation function. This means we are dealing
with the implementation of the max function for binary images.

Figure 6.31 illustrates the respective effects of erosion and dilation. In the
case of erosion, any pattern not covered by the window disappears. The con-
tours of the objects in the foreground are “eroded”. Dilation, on the contrary,
emphasizes the image’s details by “increasing” their size.

8%
2o

P-»
©

&
o

Figure 6.31 — Effects of erosion and dilation: original, eroded and dilated images
from left to right respectively

236 Digital Signal and Image Processing using MATLAB®

6.6 JPEG lossy compression

The JPEG format (Joint Photographic Experts Group) for coding image files is
widely used because of the compression rates it can achieve without significant
quality loss. We are going to construct the functions of this coding, without
trying, however, to construct the final binary flux.

The idea behind this coding has to do with the use of the discrete cosine
transform, or DCT.

6.6.1 Basic algorithm

The JPEG compression (lossy compression) algorithm can be very briefly
summed up as follows [42]:

— the image is divided 1n blocks of 8 by 8 pixels, to which a DCT is applied
(the blocks are read line by line, from top to bottom and from left to
right) The basic process implies that the levels associated with each pixel
are 8 bit coded. To make things simpler, we will assume that the images
we are going to process are given in “levels of gray”;

— the 64 coefficients of the DCT are quantified (rounded);

— the “mean value” (DCT value at the frequency 0) is subtracted from the
same term of the next block;

— the 63 other terms are read in “zigzags” (Figure 6.32);

PO S5 =5 P07

P 44

L 7P(7,7)

Figure 6.32 — Reading of the DCT coefficients

— the sequence of the obtained values is coded (Huffman entropic coding);

— each non-zero coefficient is coded by the number of zeros preceding it,
the number of bits needed for its coding, and its value. The coding rules
are imposed by the [93] standard.

We assume that we will keep the floating-point representation coding. We
will not try to optimize the size of the coded DCTs.

An Introduction to Image Processing 237

6.6.2 Writing the compression function
Writing the DCT calculation and quantification functions

Consider an (8 x 8) array of pixels p(x,y) (z,y € {0,...,7}), the DCT’s ex-
pression for u,v € {0,...,7}:

77
1 (22 4+ 1)mu (2y + 1)mv
Pu,v) = 4C(U)C(v);§p(l‘,y) cos 16 cos 16 (6.33)
with C'(0) = % and C'(k) = 1 for k = 1...7. Once the coefficients are
obtained, the array is weighted and quantified:
P(u,v)

Py(u,v) = roundm
where Qtab is a quantification table for chrominance included with the standard
as an example. Tt is supposed [99] to provide good results for the type of coding
performed here and for most images commonly dealt with.

The following initialization function returns the Qtab table as well as the
indices used for the “zigzag” reading of the DCT array:

function [Qtab,zig,zagl=initctes

%h %
%% Init. of the constants for the JPEG algorithm %
%h %

global mNORM mYV mUX
nUX = cos([0:7] (2% [0:7]+1)*pi/16);
nYV = cos((2%[0:7]’+1)*[0:7]*pi/16);
mlNORM = [1/2 ones(1,7)/sqrt(2); ones(7,1)/sqrt(2) ones(7,7)]1/4;
Qtab=[16 11 10 16 24 40 51 61;
12 12 14 19 26 58 60 55;
14 13 16 24 40 57 69 56;
14 17 22 29 51 87 80 62;
18 22 37 56 68 109 103 77;
24 35 55 64 81 104 113 92;
49 64 78 87 103 121 120 101;
72 92 95 98 112 100 103 99];
zig=[19 2 3 10 17 25 18 ...
11 4 5 12 19 26 33 41 ...
34 27 20 13 6 7 14 21 ...
28 35 42 49 57 50 43 36 ...
29 22 15 8 16 23 30 37 ...
44 51 58 59 52 45 38 31 ...
24 32 39 46 53 60 61 54 ...
47 40 48 55 62 63 56 64];
zag=zig(64:-1:1);
return

238 Digital Signal and Image Processing using MATLAB®

Exercise 6.14 (Writing basic functions)

1. Write the calculation function of the DCT using the vectors mNORM, mYV
and mUX, which will be declared global mNORM mYV mUX and initialized
with the initctes.m function.

2. Write the quantification function.
3. Check the processing using the following data [2].

The data we are working with are coded on one byte, a value between 0
and 255, that you need to bring back between —128 and 127:

%===== DATAEX.M

pix=[139 144 149 153 155 155 155 155;
144 151 153 156 159 156 156 156;
150 155 160 163 158 156 156 156;
159 161 162 160 160 159 159 159;
159 160 161 162 162 155 155 155;
161 161 161 161 160 157 157 157;
162 162 161 163 162 157 157 157;
162 162 161 161 163 158 158 158];

The result has to be:

15 0 -1 0 0 0 0 0
-2 -1 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

COMMENT: the quantification table is usually associated with a quality
factor F,. The previous table corresponds to £y = 50 %. The following function
can be used to generate tables for other values of Fj:

function [Qtabl=TabQuantif (Fq)

T)
%% SYNOPSIS: [Qtab]=TABQUANTIF (Fq) %
Wh Fq = Quality factor (0 to 100) %
o Qtab = Weighting table %
hh)
if nargin<1, Fg=50; end

%===== Table for a quality factor = 50

Qtab=[16 11 10 16 24 40 51 61 ;
12 12 14 19 26 58 60 55 ;
14 13 16 24 40 57 69 56 ;
14 17 22 29 51 87 80 62 ;
18 22 37 56 68 109 103 77 ;

An Introduction to Image Processing 239

24 35 55 64 81 104 113 92 ;

49 64 78 87 103 121 120 101 ;

72 92 95 98 112 100 103 99];
Y=====
if (Fq<50)

scal = 5000/Fq; else scal = 200 - Fqgx2;

end
Qtabnew=floor (((Qtab.*scal)+50)./100);
idz=find (Qtabnew<=0); Qtabnew(idz)=ones(size(idz));
idz=find (Qtabnew>255) ; Qtabnew(idz)=255%ones (size(idz));
Qtab=Qtabnew;
return

Exercise 6.15 (Writing the compressed frame)

1. Using the functions written in exercise 6.14, write the function that cre-
ates the compressed frame for one block. The starting mean value is
assumed to be zero. For the previous exercise, the result, with some
comments, should be:

%==== Test block

5 number of bits used to code the difference

15 difference with the previous block’s mean (0 in this case)
1,2,-2 1 zero before the -2, which is 2 bit coded

0,1,-1 No zero before the -1 which is 1 bit coded

0,1,-1 Idem

0,1,-1 Idem

2,1,-1 2 zeros before the -1 which is 1 bit coded

0,1,-1 No zero before the -1 which is 1 bit coded

0,0 There is nothing left but zeros

Do not calculate, for now, the number of bits needed for coding each of
the DCT’s coefficients. We will assume it is the same for all of them, and
that its value is 17.

Save the compressed data to the file unbloccode.dat, but after having
added at the beginning of the file the number of line blocks and of column
blocks as follows:

fid=fopen(’unbloccode.dat’,’w’);

furite(fid,nby, ’integer*1’);

furite(fid,nbx, ’integer#*1’);

% Writing the compressed data

for k=1:...
furite(fid, ..., integerx1’);

end

fclose(fid);

2. Apply the obtained program to the test image. Save the compressed data
to the file imgtstcode.dat.

240 Digital Signal and Image Processing using MATLAB®

6.6.3 Writing the decompression function
Inverse DCT

The inverse DCT, referred to as the ICDT, is given by 6.34:

ple,y) = % Z Z P(u,v)C(u)C(v) cos (22 —11_61)71-“ cos 2y —11_61)7”) (6.34)

Exercise 6.16 (Decompression)

1. Using the @Qtab table given on page 237, write the “dequantization func-
tion” of the DCT coeflicients.

2. Write the inverse DCT function.

3. Test the “decompression” operation by applying it to the previously used
test block which is coded as follows:

H A=[1,1,17,15,1,17,-2,0,17,-1,0,17,-1,0, ...
17,-1,2,17,-1,0,17,-1,0,0]

The first two terms indicate that there is only one block.

4. Apply the program to the file imgtstcode.dat obtained in exercise 6.15
(the result obtained with the test image that was chosen is shown in

Figure 6.33).

Figure 6.33 — Comparing original images with images obtained by coding and de-
coding for a quality factor of =~ 30%

An Introduction to Image Processing 241

6.7 Watermarking

Having access to digitalized information such as images, sound or video raises
important issues regarding intellectual property and copyright. Those who
edit these contents have a strong demand for systems that can protect or at
least identify the documents that can be easily downloaded off of a network.
Watermarking is a collection of methods used for leaving a mark on these
documents. We will restrict ourselves to still images, and only give a few ideas
on the techniques that are used.

The difficulty is due to the fact that the watermarking must satisfy several
contradictory constraints: the mark left on the document must be both not
too visible (to a certain extent) and easy to reconstruct. This reconstruction
must however be easy only for the one who left the mark. Furthermore, the
mark must not be destroyed by the manipulations an image can undergo when 1t
travels (coding and decoding), when it is stored (compression), when it sustains
an ill-intentioned process or several successive markings.

Watermarks can be fragile or robust:

1. A fragile watermark implies that the watermark reconstruction will be
perfect. It makes it possible to know whether or not the image was
altered. This method is needed by users who wish to be certain that the
documents they receive are originals.

2. A robust watermark must make it possible to know if there has been
a watermark despite any attempt to destroy it, and must preserve the
copyright information attached to the document.

The following pages give a few ideas for watermarking methods. You can
now find articles (see [103] for example) that sum up all of the methods that
are used.

6.7.1 Spatial image watermarking

Spatial watermarking consists of adding a mark to the image, visible or invis-
ible, made up of another image, such as a logo, or a secret key that only the
image’s creator has.

Example 6.9 (Use of the least significant bits (LSB))

We are going to start by performing a highly fragile deterministic marking. The
mark i1s the image of a stamp added to the least significant bits for levels of
gray. The following program adds the image of a stamp to the original “lena”
image. We voluntarily chose to alter four bits in order to see the stamp in the
final image (Figure 6.34). Tt is impossible, of course, to perfectly reconstruct
the original in this case. In practice, because the stamp is coded on two levels,
it would have been enough to alter only one bit, and the transformation would
be invisible to the naked eye:

242 Digital Signal and Image Processing using MATLAB®

f===== WMO1.M

load lena; subplot(221)

imagesc(pixc); axis(’image’); colormap(cmap)

set (gca, ’Xcolor’,[0 0 0], ’Ycolor’,[0 O 0])

%===== NbBits trailing bits set to zero

NbBitsg=4; nbniv=2"NbBits-1;

mmask=(255-nbniv) * ones(size(pixc));

pixcm=FoncLog(pixc, ’&’, mmask);

subplot (222) ; imagesc(pixcm); axis(’image’); colormap (cmap)
set (gca, ’Xcolor’,[0 0 0], ’Ycolor’,[0 O 0])

%===== Mark

load tampon; subplot (223);

imagesc(pixct); axis(’image’); colormap (cmap)

set (gca, ’Xcolor’,[0 0 0], ’Ycolor’,[0 O 0])

mmark=round ((pixct*nbniv) /255) ; % Level adjustment
pixcmm=FoncLog(pixcm, ’|’, mmark); %

subplot (224) ; imagesc(pixcmm); axis(’image’); colormap (cmap)
set (gca, ’Xcolor’,[0 0 0], ’Ycolor’,[0 O 0])

Notice that the levels of gray of the mark are changed to adequate values,
so as to allow them to be included in the least significant bits of the image
(level adjustment).

Easy to implement, this method leads, however, to a watermark that is not
in the least robust in regard to compression and noising operations. Also, it is
possible for any user to reconstruct the mark.

Example 6.10 (The IBM method)

This method [65] was implemented at the Vatican’s request in order to certify
the origin of the works made available to everybody on the Internet. It consists
of inserting in the image a watermark that is both visible and reversible. The
color alteration algorithm is known only to IBM, and it is the only tool that
can be used to “wash away” the watermark image.

Example 6.11 (The patchwork method)

This method consists of choosing pairs of pixels based on a random selection.
One of the two is made brighter, and the other darker. This defines a transition
used to code a watermark.

Exercise 6.17 (Yeung and Wong method)
This method makes it more difficult to reconstruct the mark than it was in
example 6.9. First, we generate a key, allowing us to define a function that
associates a 0 or 1 value with each level of gray:

{0,1,...,255} & {0, 1}

An Introduction to Image Processing 243

=0
100
150
200
250 b

=0

100 100

120 1=0

200 200

230 2=0

0 100 200 0 100 200

Figure 6.34 — Watermark using the least significant bits of the image. The top-left
tmage 18 the original. The top right image is the one with its four least significant
bits set to zero. The bottom-right image is the one with the “stamp”

Consider a mark M made up of (N x M) pixels coded on two levels my ;.
An (N x M) portion of the original image Z. Let ix; be the level of gray value
of a pixel from iy ;, and let i, be its modified value. Necessarily, f(i}, ;) = mx .

Knowing the function f; or in other words knowing the key, allows you
to reconstruct the original image. The point of the following exercise is to
implement this method.

1. Define a binary mark (two levels only).

2. Using the rand function, generate the function f and save it. Write the
image modification program.

3. Write the program designed to reconstruct the mark based on the modi-
fied image.

Other methods consist of adding a secret key to a group of pixels chosen in
the image. Each pixel contains only one bit of the key (the Walton method).

It is also possible to generate a random bipolar sequence (comprised of 1
and —1) which is added to each of the lines of the image, with a translation

244 Digital Signal and Image Processing using MATLAB®

that changes from one line to the next (the van Schyndel method). Correlation
methods are used to search for the presence or the absence of the mark.

6.7.2 Spectral image watermarking

Watermarks based on frequency considerations can be justified by the following
comments:

— Using a transform (Fourier, Gabor, DCT, wavelets) to generate the mark
allows it to be stretched, in the transformed area, over the entire image.
This makes it harder to locate it.

— It is easier to include perceptual considerations in the method that is
chosen.

— When using the DCT, the result shows good robustness when 1t undergoes
compressions of the JPEG type.

Exercise 6.18 (DCT modulation)
The method implemented in this exercise makes it possible to confirm an im-
age’s authenticity, without visibly altering it.

1. Write the direct and inverse DCT calculation functions for any image size
using the expressions found for the DCT in the 8 x 8 case.

2. Write a program that performs the following operation:

(a) calculates an image’s DCT. Sorts the coefficients by modulus value.
Keeps only N of these coefficients, N depending on the percentage P
of the power contained in this set of coefficients. Let ¢, k =1... N
be these coefficients;

(b) generates a binary bipolar (—1 and +1) sequence wy, of length N —1;
(c) adds the ex, k=2...N, and the wy, k=1...N — 1.

3. Write a watermark identification program, knowing that you have at your
disposal the original image and the watermark.

Part 11

Random Signals

This page intentionally left blank

Chapter 7

Random Variables

7.1 Random phenomena in signal processing

In many practical circumstances, the phenomena observed show important vari-
ations, when in fact the relevant information itself has not changed. Thus, if
you record the signals obtained when pronouncing several times the sound
“A” asimple observation will tell you that all the recordings are different even
though they all sound basically the same. It i1s neither easy nor relevant to
try to find a deterministic equation to describe the evolution in time of such a
phenomenon. The model used to describe this variability is based on the con-
cept of random variables (r.v.), defined by the Probability Theory. A common
misuse of language consists of saying that this is a random phenomenon.

Another example of a random phenomenon is the background noise heard
with radio reception. It seems difficult to describe this noise without using sta-
tistical characteristics. In the complete chain of communications, an example
we will come back to later, every device, as well as the transmission medium,
causes background noise. But with such a system, this is not the only “source
of randomness”. From the receiver’s point of view, the message itself must also
be considered random.

In fact, any device or physical phenomenon has a random part to it. De-
ciding how important that random part is to the system is the only factor in
determining what type of model is used to describe the phenomena. If the
amount of information that we cannot have knowledge of is negligible, then we
will choose a deterministic approach. The evolutionary models this leads us to
are comprised of differential or recursive equations, analytical expressions, etc.
In the opposite case, we need to use probabilistic models to try to represent
the variability of the observed signal with a time-indexed sequence of random
variables. Each of the random variable describes the uncertainties related to
the phenomenon at a given time. A family of random variables is called a ran-
dom process. They will be studied in Chapter 8, but we will first give a quick
overview of the main properties of random variables.

248 Digital Signal and Image Processing using MATLAB®

7.2 Basic concepts of random variables

Without describing in detail the formalism used by the Probability Theory, we
will simply remind the reader that a random variable is an application that
assoclates a numerical value with each possible outcome of a trial.

A familiar image is the presence of values between 1 and 6 in a trial con-
sisting of rolls of a dice. However, to be comfortable enough with probabilistic
tools, we need to go beyond this simple definition. This is why we advise the
reader to consult some of the many books with authority on the subject [28, 12].

From a practical point of view, it is often enough to distinguish two situ-
ations, that is whether the set of possible values of the random experiment is
discrete or continuous. The number of people waiting in a line 1s an example
of the discrete situation: the only possible values are zero or positive integers.
Whereas taking down the speeds of vehicles on a road is an example of a contin-
uous random variable: this time, the possible values are real numbers between

0 and 65 mph.

Definition 7.1 (Discrete random variable)

A random variable X is said to be discrete if the set of its possible values is, at
the most, countable. If {aq,...,an,...}, where n € N, is the set of its values,
the probability distribution (p.d.) of X is characterized by the sequence:

px (n) = Pr(X = a,) (7.1)
representing the probability that X is equal to the element a,,. These values are
such that 0 < px(n) <1land) -, px(n)=1.

This leads us to the probability for the random variable X to belong to the
interval]a, b]. Tt is given by:
Pr(X €]a,b]) = 32,50 px (n)1(an €la, b])
The function defined for z € R by:

Fx(r) = Pr(X <) =) 0., <0 px(0)
= Lnzobx(n)l(an €] - o0, 2]) (7.2)

is called the cumulative distribution function (cdf) of the random variable X. Tt
is a monotonic increasing function, and verifies Fix (—o0) = 0 and Fx (+o0) = 1.
Its graph resembles that of a staircase function (see Figure 7.6), the jumps of
which are located at z-coordinates a,, and have an amplitude of px (n).

Random Variables 249

Definition 7.2 (Two discrete random variables)

Let X and Y be two discrete random wartables, with possible wvalues
{ag, ..., an, ...} and {bo,... by, ...} respectively. The joint probability distri-
bution is characterized by the sequence of positive values:

pxy(n, k) =Pr(X =a,,Y = by) (7.3)
with 0 < pxy(n, k) <1 and anozkzopxy(n,k) =1.

Pr(X = a,,Y = by) represents the probability to simultaneously have X =
a, and Y = by. This definition can easily be extended to the case of a finite
number of random variables.

Property 7.1 (Marginal probability distribution) Let X and Y be two
discrete random variables, with possible values {ag .. .a, ...} and {by.. .bg ...}
respectively, and with their joint probability distribution characterized by
pxy(n, k). We have:

+o0

px(n) =Pr(X =a,) = Y pxv(nk) (7.4)
+o0

py (k) =Pr(Y =b;) = pry(n, k)

px (n) and py (k) denote the marginal probability distribution of X and Y re-
spectively.

Definition 7.3 (Continuous random variable)

A random variable 1s said to be continuous if its values belong to R and f, for
any real numbers a and b, the probability that X belongs to the interval]a, b
18:

Pr(X E]a,b]):/ px (x)dx (7.5)

where px () is a function that must be positive or equal to zero (not necessarily
less than 1) such that f_-l_;j px (z)de = 1. px () is called the probability density
funetion (pdf) of X.

The function defined for any =z € R by:

xr

Fx(z)=Pr(X <) = / px (u)du (7.6)
is called the cumulative distribution function (cdf) of the random variable X. Tt
is a monotonic increasing function and it verifies Fix (—oo) = 0 and Fx (+00) =
1. Notice that px (x) also represents the derivative of Fix (x) with respect to .

250 Digital Signal and Image Processing using MATLAB®

Definition 7.4 (Two continuous random variables)

Let X and Y be two random variables with possible values in R x R. They are
said to be continuous if, for any domain A of R?, the probability that the pair
(X,Y) belongs to A is given by:

Pr((X,Y) e A) = //Apxy(x,y)dxdy (7.7)

where the function pxy (z,y) > 0, and is such that:

// pxy (z,y)dedy =1
R2

pxy (,y) is called the joint probability density function of the pair (X,Y).

Property 7.2 (Marginal probability distributions) Let X and Y be two
continuous random variables with a joint probability distribution characterized
by pxy(z,y). The probability distributions of X and Y have the following
marginal probability density functions:

px(x) = /_+Oopxy(x,y)dy (7.8)
pY(y) = /_+Oopxy(l‘,y)dx

The marginal probability density functions of X and Y are referred to as
px (x) and py (y).

An example involving two real random variables (X,Y) is the case of a
complex random variable 7 = X + jY.

It is also possible to have a mixed situation, where one of the two variables
is discrete and the other is continuous. This leads to the following:

Definition 7.5 (Mixed random variables)

Let X be a discrete random variable with possible values {ag...a, ...} and Y
a continuous random variable with possible values in R. For any value a,,, and
for any real numbers a and b, the probability:

b
Pr(X = a,,Y et = [pxy(na)dy (7.9)

where the function pxy(n,y), withn € {0...k...} and y € R, is > 0 and
verifies ano Jrpxy (n,y)dy = 1.

Definition 7.6 (Two independent random variables)

Two random variables X and Y are said to be independent if and only if their
joint probability distribution s the product of the marginal probability distribu-
tions. This can be expressed (for the previous cases only):

Random Variables 251

— For two discrete random variables:
pxvy(n, k) = px(n)py (k)

— For two continuous random variables:
pxy (2, y) = px(z)py (¥)

— For two mized random variables:
pxy (n,y) = px(n)py (y)

where the marginal probability distributions are obtained with formulae 7.4 and

7.8.

We wish to insist on the fact that, knowing pxy (x,y), we can tell whether
or not X and Y are independent. To do this, we need to calculate the marginal
probability distributions and to check that pxy (z,y) = px(z)py (y). If that is
the case, then X and Y are independent.

The following definition is more general.

Definition 7.7 (Independent random variables) The random variables
(X1,...,Xy) are jointly independent if and only if their joint probability dis-
tribution s the product of their marginal probability distributions. This can be
erpressed:

DX, Xo X, (X1, 2, ., 2n) = px, (21)px, (22) .. px, (25) (7.10)

where the marginal probability distributions are obtained as integrals with re-
spect to (n — 1) variables, calculated from px,x, x, (€1, %2,...,Ln).

For example, the marginal probability distribution of X; has the expression:
px, (1) = / . ~/pX1X2...Xn(l‘1, T, ..., &p)des. . . dz,
———
Rn—l

In practice, the following result is a simple method for determining whether
or not random variables are independent:

If px,x5. x,(®1,22,...,2y) is a product of n positive functions of the
type f1(x1)f2(z2) ... fa(2y), then the variables are independent.

252 Digital Signal and Image Processing using MATLAB®

It should be noted that if n random variables are independent of one an-
other, it does not necessarily mean that they are jointly independent.

Definition 7.8 (Mathematical expectation)

Let X be a random variable and f(x) a function. The mathematical expectation
of f(X) (respectively f(X,Y)) is the value, denoted by E{ f(X)} (respectively
E{f(X,Y)}), defined:

— For a discrete random variable, by:

E{f(X)} = 3 Flan)px (n)

n>0

— For a continuous random variable, by:

E{f(X)} = /R J(2)px (2)da

For two discrete random variables, by:

E{f(XaY)} = Z Zf(an,bk)pXY (na k)

n>0k>0

— For two continuous random variables, by:

E{f(X.Y)} = / K/R f (e w)pxy (2, y)dady

Property 7.3 If {X1, Xo, ..., X,} are jointly independent, then for any
wintegrable functions fi, fo, ..., fa:
E{ka(Xk)} = [EL/(X0)} (7.11)
k=1 k=1

Definition 7.9 (Characteristic function)
The characteristic function of the probability distribution of the random wvari-
ables X1, ..., X, is the function of (u1,...,u,) € R" defined by:

¢X1~~~Xn(u1a A ’un) — E{eju1X1+~..+juan} — E{ H ejuka} (712)

k=1

Random Variables 253

Because |ej“X| = 1, the characteristic function exists and is continuous even
if the moments do not exist. The Cauchy probability distribution, for example,
the probability density function of which is px (z) = 1/m(14+2?), has no moment
and has the characteristic function e~!*l. Notice that |¢x,. x, (w1, -, un)| <

éx(0,---,0)=1.

Theorem 7.1 (Fundamental) (X1, -, X,) are independent if and only if
for any point (uy,ua, ..., uy) of R™:

n
¢x,x, (Ut u HQSXk)

Notice that the characteristic function ¢x, (uz) of the marginal probability
distribution of X} can be directly calculated using 7.12. We have ¢x, (u;) =
E{eJ“ka} — ¢>X1~~Xn(0, oo, 0, up, 0, - - - ’0),

Example 7.1 (First calculations)

Let X be a random variable with possible values in {0, 1} with Pr(X = 0) =
po > 0, Pr(X =1) =p; > 0and pp + p1 = 1. Calculate E{X}, E{XZ},
E{cos(rX)} and ¢x(u).

HINT: we get:
FE{X}=0xpo+1xp=prand B{X?} =0% x po + 1% x p1 = p
then:
E{cos(nX)} = cos(0) x po + cos(m) X p1 = po — p1
and finally:

¢x (1) = poe?™ 0 + pred > = py + pred®

Definition 7.10 (n-th order moment)
The n-th order moment is the mathematical expectation of the function f(x) =

z™.

Definition 7.11 (Mean, variance)

The mean of the random variable X is defined as the first order moment, that
is to say B{ X }. If the mean is equal to zero, the random variable is said to be
centered. The varitance of the random variable X 1s the quantity defined by:

var(X) = E{(X — E{X})?} = E{X?} — (E{X})?

The variance is always positive, and its square root s called the standard
deviation.

254 Digital Signal and Image Processing using MATLAB®

The standard deviation can be interpreted as a measure of the random
variable’s fluctuations around its mean: the higher it is, the more the values of
X are spread out around E{X}.

Property 7.4 (Chebyshev inequality)
Let X be a random variable, with E{ X} as its mean and var(X) as its variance.
Then for any § > 0:

Pr(IX—E{X}|>0) = Pr(E{X}-d<X<E{X}+d)
< LZ(ZX) (7.13)

Inequality 7.13 means that the probability for X to deviate from its mean
by £4 decreases when the variance decreases.
As an exercise, we are going to show that, for any constants a and b:

E{aX +b} = aB{X}+b (7.14)
var(aX +b) = azvar(X) (7.15)

7.14 is a direct consequence of the integral’s linearity. We assume that ¥ =
aX +b, then var(Y) = E{(Y — E{Y})?}. By replacing E{Y} = aE{X} + b,
we get var(Y) = E{a*(X — E{X})?} = a?var(X).

A generalization of these two results to random vectors (their components
are random variables) will be given by property 7.6.

Definition 7.12 (Covariance, correlation)
Let (X, Y)! be two random variables. The covariance of X andY is the quantity
defined by:

cov(X,Y) = E{(X -E{XHY"-E{Y"}} (7.16)
— E{XY*}-E{X}E{Y*}

X and Y are said to be uncorrelated if cov(X,Y) = 0 that is to say if
E{XY*} = E{X}E{Y*}. The correlation coefficient is the quantity defined
by:

cov(X,Y)
var(X)/var(Y)

p(X,Y) = (7.17)

Applying the Schwartz inequality gives us —1 < p(X,Y) < 1.

Except in some particular cases, the random variables considered from now on will be
real. However, the definitions involving the mean and the covariance can be generalized with
no exceptions to complex variables by conjugating the second variable. This is indicated by
a star (x) in the case of scalars and by the exponent H in the case of vectors.

Random Variables 255

Definition 7.13 (Mean vector and covariance matrix)

Let {Xy, ..., X, } be n random variables with the respective means BE{ X;}. The
mean vector is the n dimension vector with the means B{ X;} as its components.
The n x n covariance matriz C 1s the matriz with the generating element Cy; =
cov(X;, X;) for1<i<nand 1 <j<n.

Matrix notation: if we write
Xy
X=]":
Xn
to refer to the random vector with the random variable X as its k-th compo-
nent, the mean-vector can be expressed:

E{X1}

E{X}=|
E{Xn}

and the covariance matrix:
C=E{(X-E{X})(X - E{X}) = B{XX"} ~E{X}E{X}" (7.18)

Notice that the diagonal elements of a covariance matrix represent the re-
spective variances of the n random variables. They are therefore positive. If
the n random wvariables are uncorrelated, their covartance matriz is diagonal.

Property 7.5 (Positivity of the covariance matrix)

Any covariance matriz 1s positive, meaning that for any vector a, we have
affCa > 0.

To obtain this result, consider for any sequence of complex values
{ay, - ,an} the random variable Y = Zi\;l ap(Xy — E{Xx}). We have, of
course, E{ |Y|2} > 0 (because it is the mathematical expectation of a positive
random variable). We will now express L { |Y|?}. We get:

N N
E{mek ~ LG Y a5 (X —E{Xm}>*}

k

E{Y]*}

1
-

akE{ (Xp = E{ X3 }) (X —E{ X })*}a,

kckma _aHCaZO

ﬁMZ ||M2

256 Digital Signal and Image Processing using MATLAB®

Property 7.6 (Linear transformation of a random vector)
Let {Xy,..., X,} be n random variables with B{X} as their mean vector and
Cx as their covariance matriz, and let {Y1,...,Y,} be ¢ random variables
obtained by the linear transformation:
Y1 X1
Y, Xn
where A 1s a matriz and b 1s a non-random vector with the adequate sizes. We
then have:
E{Y} = AE{X}+b
Cy = ACxA”
The first expression i1s a direct consequence of the integral’s linearity. It
leads to Y —FE{Y} = A(X —E{X}). We now lay down the second expression:
Cy = E{(Y-E{Y})(Y-E{Y}"}
= AE{(X-E{XH(X-E{X}H¥} A" = ACxA¥
Definition 7.14 (White sequence) Let {X1, ..., X,,} be a set of n random

variables. They are said to form a white sequence if var(X;) = o? and if
cov(X;, X;) =0 for i # j. Hence their covariance matriz can be expressed:

C =1,

where 1, is the n x n identity matrix.

Property 7.7 (Independence = non-correlation)
The random variables {Xy, ..., X, } are independent, then uncorrelated, and
hence their covariance matriz s diagonal. Usually the converse statement is

false.

7.3 Common probability distributions

7.3.1 Uniform probability distribution on (a,b)

Definition 7.15 A random variable X is said to be uniformly distributed on
(a,b) with b > a if its probability density function has the expression:

px(e) = b—a) e e @by =4 0T FrEE@l g g

0 otherwise

Random Variables 257

Notice that the set of all possible values of X is reduced to the interval
(a,b), and that the probability of X belonging to an interval (¢,d) C (a,b) is
equal to (d — ¢)/(b — a), and is therefore proportional to the interval’s length.
Its probability density function is shown in Figure 7.1. It is constant in the
interval (a, b).

Px(X)
R S
b-a
| o b > X

Figure 7.1 — Probability density of the uniform probability distribution

You can check as an exercise that its mean, its second-order moment and
its variance are given respectively by:

b
b
E{X}I/ =t

—a 2

b2 2 2
+ab+b
E{x?l = i d :a
X% /Gb—a v 3
(b —a)?
12

An example of quantities that can be described by a uniformly distributed
random variable is the errors that are made when, in calculations, numbers are
rounded to D decimal places. When a large number of operations is performed,
it can be assumed that the errors behave like random variables uniformly dis-
tributed between the values —107?/2 and 1072 /2. We will see on page 270
how this random variable model 1s used to describe uniform quantization noise.

var(X) = B{ X2} —E{X}" =

7.3.2 Real Gaussian random variable

Definition 7.16 A random variable X is said to be Gaussian, or normal, if
all its values belong to R and if its characteristic function has the expression:

éx(u) = exp (jmu - %Uzuz)

where m is a real parameter and o is a positive parameter. If o £ 0, it can be
shown that the probability distribution has a probability density function with
the expression:

px(x) = L exp (—M) (7.20)

202

258 Digital Signal and Image Processing using MATLAB®

We also check that its mean is equal to m and its variance to o?.

In physics, many phenomena, which are the combination of a multitude
of microscopic effects, are distributed on the macroscopic scale according to
a Gaussian probability distribution: this is the case of background noise in
receptors. The Gaussian nature of these phenomena is a consequence of the
central limit theorem [28]. Figure 7.2 shows the shape of the probability density
function for the Gaussian random variable.

02 P

016) . L N
0.12
0.08

0.04

Figure 7.2 — Probability density function of the Gaussian random variable and 99%
confidence interval

It can be checked numerically that more than 99% of the values belong
to the interval (m — 30, m + 30). The interval can then be called a 99%
confidence interval. This leads us to a practical rule called the 3-sigma rule for
which the probability of “falling outside” this interval is less than 1%. If we
restrict ourselves to a 95% confidence interval, we have to choose the interval
(m — 20,m+ 20). If, on the contrary, we prefer a 99.9% confidence level, we
have to take (m — 40, m + 40).

7.3.3 Complex Gaussian random variable

In some problems, and particularly in the field of communications, the complex
notation X = U + jV is used, where U and V refer to two real, Gaussian,
centered, independent random variables with the same variance o2 /2. Because
of independence (definition 7.7), the joint probability distribution of the pair
(U, V) has the following probability density:

1 u? 4 v?
= ——exp|—
To? b o2

Random Variables 259

If we notice that |z|? = u? + v?, and if we introduce the notation px(z) =
puv (u,v), we can also write:

px(x) = —exp (—@) (7.21)

Expression 7.21 1s called the probability density of a compler Gaussian
random variable. The word circular is sometimes added as a reminder that the
isodensity contours are the circles u? + v? = constant.

Note that:

E{XP} = E{XX"}=E{(U+jV)(U-jV)}
= E{U*}+E{V?} =¢"
Expression 7.21 deserves a few words of warnings:

— the argument z is complex;

— if you compare expressions 7.21 and 7.20 of the probability density of a
real Gaussian random variable, you will notice the disappearance of the

factors 2 and of the square root in 2.

7.3.4 Generating the common probability distributions
MATLAB® has two random number generators:

1. the first one generates probability distributions uniformly distributed on
(0, 1) (see definition 7.15). This generator is called by the rand command;

2. the second is a centered Gaussian probability distribution (see definition
7.16), with a variance equal to 1. This generator is called by the randn
command.

We will assume that when we use these generators several times, the re-
sulting samples correspond to independent random variables. This 1s why the
array randn(4,1000) can be considered as an experiment with a trial length of
1,000 on 4 independent, centered, Gaussian random variables with a variance
equal to 1.

COMMENT: prior to version 4 of MATLAB® the rand(’uniform’) or
rand(’normal’) initializes the random generator either for a probability dis-
tribution uniformly-distributed on the interval (0, 1) or for centered, Gaussian
probability distribution, with a variance equal to 1. Running the command
rand(k,c) would then construct a matrix with k lines and ¢ columns made up
of random numbers of the corresponding probability distribution. The type of
the currently used distributions could be known with the rand(’dist’) com-
mand. In the new versions of MATLAB®, the uniform generator is called with
the rand command, and the Gaussian generator with the randn command.
This is the only notation we will be using.

260 Digital Signal and Image Processing using MATLAB®

Example 7.2 (Uniform probability distribution on (a, b))

We wish to obtain a random variable X with a uniform probability distribution
on (a,b), using the MATLAB® function rand which returns a random variable
with a uniform probability distribution on (0,1). As an exercise, you can show
that the random variable X = (b — a)U + a, where U is a uniform variable on
(0,1), is uniform on (a,b). The unifab.m function given below generates N
values uniformly distributed on (a, b):

function X=unifab(a,b,N)

%h %
%% Generating a r.v. uniformly distributed on (a,b) %
%% SYNOPSIS: X=UNIFAB(a,b,N) %
%h a,b = Interval Y
% N = Number of samples %
o X = Sequence of samples %
%h %
U=rand (1,N);

X=(b-a)*U+a;

return

In order to obtain 1,000 sample values of a random variable, uniform on
(—m,+m), type: x=unifab(-pi,pi,1000);. A sample of this type is repre-
sented in Figure 7.3.

0O 100 200 300 400 500 600 700 800 900 1,000

Figure 7.3 — 1,000 trials of a random variable uniformly distributed on [—m,+7]

Now type hist(X). The result is a diagram called a histogram, representing
an estimation of the probability density shown in Figure 7.1.

Example 7.3 (Gaussian variable (m, ¢?))

Let Y be a centered Gaussian random variable with a variance of 1. If we
apply relations 7.14 and 7.15, we can easily verify that the mean of the random
variable X = oY + m is m and that its variance is 2. We will see on page

Random Variables 261

263 that a direct consequence of the general definition of a Gaussian vector is
that its Gaussian nature is unchanged by linear transformation. To get a 5,000
value sample of a Gaussian probability distribution with a mean equal to 4 and
a variance equal to 7, type:

%===== HIST0G1D.M

clear; N=5000; m=4; sigma2=7;

X=sqrt (sigma2)*randn (1,N)+m;

figure(1); plot(X,’.’)

1k=0.5; [nn,xx]=hist (X, (-74m:1k:7+m));

pxchap=nn/ (N*1k) ; figure(2); bar (xx,pxchap)

CG=1/sqrt (2#pi*sigma2); px=CG*exp(-(xx-m) . 2/(2*sigma2));
hold on; plot(xx,px,’0’); hold off; grid

Notice the use of formula 7.23 in the command pxchap=nn/(N*1k) to esti-
mate the probability density using the results returned by the hist function.
The trials are shown in Figure 7.4. The theoretical probability densities (o)
and the estimated ones (bar chart) are show in Figure 7.5.

Example 7.4 (Complex Gaussian random variable)
To generate a 1,000 value sample of a centered, complex, Gaussian random
variable (see expression 7.21), with a variance of 5, type the following program:

%===== GCOMPL.M

varX = b ;

U = sqrt(varX/2) * randn(1,1000) ;
V = sqrt(varX/2) * randn(1,1000) ;
X=U+3j*V;

262 Digital Signal and Image Processing using MATLAB®

0.16 ‘ ‘ ‘
014 ———————— o
o2 [
Y S N - S S
o] A —
0.06]]]
0.04,,,,,,,,,3”,”” ,,,,,,,,
0.02} -] o i .

0
-4 -2

o
[N)
N
o
o)
S
N}

Figure 7.5 — Histogram of the Gaussian probability distribution (m = 4,06 = 7)

7.3.5 Estimating the probability density

A theorem inaccurately called the “law of large numbers” states that the proba-
bility for a random variable X to belong to an interval A can be approximated,
if N is large enough, in the following way:

— consider N independent random variables with the same probability dis-
tribution as X; an experiment is conducted, leading to the trials z;, ...,
IN;

— the number n of values in these trials that belong to A is determined;
— the approximation used for Pr(X € A) is n/N.

The quantity n/N is called the empirical frequency. This result can be
used to estimate the probability density of px (x) at the point of the random
variable X which is assumed to be continuous. By definition, we have:

Pr(X € A) :/ px (u)du
A
If A is a closed interval chosen small enough around the point &, we have
px (u) = px(x) and the second member is approximately equal to px(z) x £
where ¢ refers to the length of A. This leads us to a practical formula for
estimating px (z):

n

N — 22
N7 (7.22)

px (v)
where n is the number of observed points inside the closed interval A. Faced
with a sample of N values, the procedure for estimating the probability density
in P points can be summed up as follows:

Random Variables 263

Steps:
1. The interval containing the observed values is partitioned in P sub-
wintervals Iy, -+, Ip with the respective lengths {1, - ,£p, located
around the points x1,...,xzp. Usually, the sub-intervals are chosen

so that they all have the same length, and so that xy, s placed in the
maddle of the sub-interval Iy, except possibly for the first and last
wintervals.

2. The probability density at the point xy 1is estimated by:

Nk

Nl

where ny is the number of points wn the interval I;. Note that

Zk]A)X(l’k)gk =1.

px (z) = (7.23)

The choice of the value of P is a complex problem. What we can say is that
P has to be large enough for the probability density to be properly estimated
but also small enough for the number of points in each interval to remain large.
P = N1/3 for example, would be suitable, since it tends to infinity when N
tends to infinity, and N/P also tends to infinity when N tends to infinity.

The MATLAB® function hist implements this procedure. The usual syn-
tax 1s [ndelta x0]=hist(X). In this case, hist automatically chooses ten
values regularly spread out between the minimum and the maximum of the
sample X with intervals of the same length.

The sequence ndelta returns the number of points of X placed around
each element of the sequence x0. Thus a list of values for x0 can be set as a
parameter. Expression 7.23 is then used to find an estimation of the probability
density.

7.3.6 Gaussian random vectors

Definition 7.17 (Gaussian vector) {X;,..., X, } are said to be n jointly

Gaussian variables, or that the length n vector [X1 ... X,]* is Gaussian,
if any linear combination of its components, that is to say Y = a” X for any
a=[a; ... ay)?, is a Gaussian random variable.

Theorem 7.2 (Probability distribution of a Gaussian vector)

It can be shown that the probability distribution of a length n Gaussian vector,
with a length n mean vector m and an (n x n) covariance matriz has the
characteristic function:

1
dx(ur,...,uy) = exp (jmTu — §uTCu) (7.24)

264 Digital Signal and Image Processing using MATLAB®

where u = (uy,...,up)T € R®. Let x = (z1,...,2,)7. If det(C) # 0, the
probability distribution’s density has the expression:

1 1 Te—1
px (1, ..., 2n) = PUENGEIG) exp (—i(x—m) C (x—m)) (7.25)

Theorem 7.3 (Gaussian case: non-correlation = independence)
If n jowntly Gaussian variables are uncorrelated, then they are independent.

This is because if we replace C = ¢I in expression 7.25, px(x1,...,2,) =
px, (x1) ... px, (zs), hence, according to 7.10, the variables are independent.

Theorem 7.4 (Linear transformation of a Gaussian vector)

Let [Xy ... Xn]T be a Gaussian vector with a mean vector mx and a co-
variance matriz Cx. The random vector Y = AX + b, where A and b are
a matriz and a vector respectively, with the ad hoc length, 1s Gaussian and we
have:

my — Amyx +b and Cy = ACxA”

In other words, the Gaussian nature of a vector is untouched by linear
transformations.

This result is a consequence of definition 7.17 and of property 7.6.
Exercise 7.1 (Confidence ellipse)

1. px(z1,®2) denotes the probability density of a length 2 random Gaussian
vector, with the mean m and the covariance matrix C, and let:

a=Pr(XeA(s)) = / px (1, x2)drdes
A(s)

where A(s) is the set of points in the plane defined by:
A(s) = {x: (21, 22) € R? : (x—m)TC_l(x—m) <5}
the borderline of which in R? is the ellipse centered on m with the equa-

tion (x — m)TC_l(x —m) =s.

We will now determine the relation between s and «. The ellipse £ is
called the 100a% confidence ellipse of the variable X.

By making the variable change Y = C~1/?(X — m), show that s =
—2log(1 — «).

Random Variables 265

| 2.3659 —0.3787

= |_0.3787 0.6427 | 2nd @ =0.95.

2. We assume m = [0 0]7, C

Write a program:

— that generates a length 2 Gaussian sample of N = 200 values, with a
mean m and a covariance matrix C, using a centered, white sample
obtained with y=randn(2,N);

— that displays the points with the plane coordinates z, as well as the
ellipse with the equation (x—m)?C~!(x—m) = s (use the ellipse
function, given on page 38 where s = —2log(1 — «a));

— that counts the number of points outside the ellipse and compares
it to the value (1 — &) N. Think of using the find function for the
condition ¥} + y3 > s.

7.4 Generating an r.v. with any type of p.d.

Since the only generators MATLAB® provides are rand and randn, you may
wonder whether it is possible to infer the function that can generate random
variables with any type of probability distributions. The answer is yes, and one
solution is given by the inversion of the cumulative distribution function [21].

Generating a discrete random variable

Let X be a discrete random variable, a sample of which we wish to generate.
Let {ag, a1, ..., @pn..., } be the set of its values, px(n) = Pr(X = a,) its
probability distribution and Fx(z) = Pr(X < #) its cumulative distribution
function. Figure 7.6 shows the graph shape of the function Fx(z). Its value in

& = ay, is expressed Fx(ag) = Zi:o px(n).

A F®
1]
‘ [V >_ ,,,,,
L 2]
Px(0) 1 | 1
1 Lo : v >

Figure 7.6 — Cumulative distribution function of a discrete random variable

266 Digital Signal and Image Processing using MATLAB®

Now consider a random variable U, uniformly-distributed on (0, 1), and
let Y be the random variable obtained from U by inversion of the cumulative
distribution function, which we write:

[0, px (0)[then Y = ag
[px(0),px (0) + px (1) then Y =a;
IfUe : (7.26)

[Fx(ak_l),Fx(ak)[then Y:ak

We will now show that the probability distribution of the obtained random
variable Y is the very variable X we were looking for. Indeed, if we use the
fact that U is uniform, we can successively write:
Fx(ak)
Pr(Y =a;) = Pr(UE[FX(ak_l),FX(ak[):/ du
Fx(ar—1)
= Fx(ax)— Fx(ax—1) = px(ag)

The variable Y constructed with procedure 7.26 obeys the expected probability
distribution.

Example 7.5 (Uniform discrete random variable)

Generate a set of NV values obeying a uniform discrete probability distribution
on {0,..., N — 1}, meaning that Pr(X = k) = 1/N for 0 < k < N — 1. Draw
the histogram of its values.

HINT: because the cumulative distribution function is such that Fix (k) = k/N
for k € {0,..., N—1}, expression 7.26 provides us with, if U € [k/N, (k+1)/N|,
the value X = k/N, meaning that X is simply the integer part of NU. Type:
%===== HISTOUNIF.M

clear; clf; nbp=3000; N=10; U=rand(1,nbp); X=ceil (N*U);

px=hist (X, (1:N)); bar (px/nbp); grid

As we expected, the obtained graph matches the uniform probability dis-
tribution Pr(X = k) = 1/10. L]

Exercise 7.2 (Poisson distribution)
The random variable X, with possible values in IN, has a Poisson distribution
when:

Pr(X =k)=px(k) = —e™ ¢ (7.27)

where a refers to a positive quantity called the distribution parameter.

Random Variables 267

1. Determine the mean and the variance of X.

2. Determine, for & € I, the recurrence relation that gives px(k) as a
function of px (k — 1), as well as the one that gives Fx (k) = Pr(X < k).

3. Using 7.26, write a program that generates a Poisson random variable
with a parameter @ = b, using a random variable U uniformly-distributed

on (0, 1).

4. Using the hist function, check the result.

Theorem 7.5 (Variable change formula)

Let x = f(u) be a bijective and differentiable function, and let U be a random
variable, with the probability density py(u). Then the random variable X =
F(U) has the following probability density:

du
dx

_ pu(u) _ pu(g(z))
1<) 1F(9())]

where f'(u) = dx/du refers to the derivative of f(u) and where u = g(x) refers
to the inverse function of ¥ = f(u), that is to say such that g(f(u)) = u.

px (%) = pu(u) (7.28)

Generating a continuous random variable

We now apply 7.28 in the particular case where U is a random variable uni-
formly distributed on (0, 1) the probability density of which has the expression
pu(u) = 1(u € (0,1)). The probability distribution for the random variable
X = f(U) then has the probability density:

du

. 1{g(x) € (0,1)} (7.29)

px(x) =

where u = g(z) represents the inverse of ¢ = f(u). For ¢g(x), we will choose the
function F(z), where F'(x) is precisely the cumulative distribution function of
the random variable we want to generate a sample of. We have Z—z =F'(x) > 0.
By replacing it in 7.29 and by noticing that F'(z) € [0, 1], we get px (¢) = F'(z),
meaning that the probability distribution of X has the probability density
F'(x), which is the probability density of the expected distribution.

We can use this result to our advantage, to generate, using the uniform
generator on (0,1), a sample of the random variable for a given probability

density px (x). Here is the algorithm:

Steps:

1. Determine the function u = f_xoo px (t)dt.

268 Digital Signal and Image Processing using MATLAB®

2. Determine its inverse ¥ = g(u).

3. If U is a sample uniformly distributed on (0,1), then X = g(U) is a
sample whose distribution has the probability distribution px (x).

Example 7.6 (Exponential distribution)
A random variable has an exponential distribution if its values belong to R*
and its probability density has the expression:

px(z) = Aexp(—Az)1(z € [0, +0o0]) (7.30)

where the parameter A > 0.

1. Determine the mean and the variance of X.

2. Using the cumulative probability distribution of X, determine a func-
tion X = ¢(U) such that X has an exponential distribution with the
parameter A when U has a uniform probability distribution on (0, 1).

3. Check the result using the hist function.

HINT:

1. An integration by parts leads to E{X} = /\fo-l_Oo re Mdx = 1/X. Like-
wise, E{ X2} = 2/A? = var(X) = 1/A%

2. The cumulative distribution function of X has the expression u =
fox Ae™Mdt = 1 — e If we “inverse” it, we get ¥ = —log(1 — u)/\.
Hence the variable X = —log(1—U)/A has an exponential distribution if
U has a uniform probability distribution on (0, 1). Because U and (1-U)
have the same distribution, we can also simply choose X = —log(U)/A.

3. Type:

%===== EXPLAW.M

clear; N=3000; lambda=2; U=rand(N,1); X=-log(U)/lambda;
moyX=1/lambda; lk=moyX/10; maxx=max (X); pointsx=(0:1lk:maxx);
[nn,xx]=hist (X,pointsx); bar (xx,nn/(N*1k)); hold on

%===== Theoretical exponential distribution

pth=lambda*exp (-lambda*pointsx); plot(pointsx,pth,’r’)

hold off; grid

In the program, the step 1k, used to estimate the probability density, is
determined from the mean. [

Random Variables 269

Exercise 7.3 (Rayleigh distribution)
X has a Rayleigh distribution if its probability density has the following ex-
pression:

X

px(z) = 3 eXD (—;7) 1(x € [0, 4+o0[) (7.31)

Check that E{X} = o+/n/2. Knowing that U has a uniform probability
distribution on (0, 1):

1. determine the function X = ¢(U) such that X has a Rayleigh distribu-
tion;

2. use the hist to check the result.

Exercise 7.4 (Bernoulli distribution)

B is said to have a Bernoulli distribution (the kind of distribution you get if you
flip a coin several times in a row) with a parameter p, if B is a random variable
with only two possible values, 0 and 1, with the probabilities Pr(X = 1) = p
and Pr(X = 0) = 1 — p respectively. Considering N independent Bernoulli
variables B, , let us assume:

|
S=5 2. B
n=1
1. Determine, as a function of p, the mean and the variance of B,,.

2. Determine, as a function of p, E{BiB,} for k # n. Remember that
if random variables U and V are independent, they are uncorrelated,

meaning that E{UV} = E{U}E{V}.

3. Determine as a function of p and N the mean m and the variance o? of
the random variable 5.

4. We assume that if N is large enough, the probability for S to be located
in the interval (m — 20, m + 20) is greater than 95%. This means we
can say that S provides an estimation of m with the relative precision
gr = 20/m. Determine the expression of ¢, as a function of p and of N.
Use this result to show that for ¢, = 10%, and for small values of p, an
approximate value of N is given by N & 400/p.

5. Write a program that calculates the length NV of a Bernoulli sequence with
the parameter p = 0.1 so that the empirical mean S is an approximation
of p with an accuracy of ¢,.

270 Digital Signal and Image Processing using MATLAB®

The Bernoulli distribution can be used, among other applications, as a
random sequence of bits used to simulate a digital communications system, or
as 1t 1s explained in example 7.7, as a model for describing errors.

Example 7.7 (Error probability estimation)

Consider a random experiment where a sequence of values is received with an
error probability p. We are going to try and estimate p using a sequence of
N observations. In order to do this, a given sequence of length N is sent and
compared to the received sequence. The question we are faced with is “what
must be the value of N to estimate the error probability with an accuracy of
10%7”.

The model used for describing the error sequence is a sequence of random
variables B, such that B,, = 0 if the values in the n-th position are identical
in the original sequence and the erroneous sequence and B, = 1 if they are
different. This way, the random variable:

1 N
S= nz_:l B, (7.32)

gives an estimation of the probability error p. If we assume that the random
variables B, are independent, we can use the results obtained in exercise 7.4.
To estimate p with an accuracy &, roughly equal to 10% and a 95% confidence
interval, we need to start with a sequence with a length of N =~ 400/p. If
we restrict ourselves to a 70% confidence interval, the same accuracy &, = 0.1
is achieved for N = 100/p. This value is often the one used in practice to
calculate the length of a test. Note that Np represents approximately the
number of errors. This leads us to adopting the following rule:

To estimate an error probability with a precision of 10% and a confidence
level of T0%, you need to see a hundred errors “go by”. Hence the esti-
mation must be performed on a sequence with a length roughly equal to

100/p.

If the order of magnitude wanted for p is 10~°, you need N = 10,000,000.
Such a length can require a long simulation time, even with a fast computer.
This is a very common problem in the field of digital communications (see
exercise 12.25).

7.5 Uniform quantization

Quantization provides a non-trivial example using the concepts explained in
this chapter. The practical implications of the results are fundamental. In

Random Variables 271

this paragraph, we will only discuss the very simple case of the uniform scalar
quantization.

The uniform quantization operation on N bits consists of dividing the inter-
val (—A, +A) in 2V sub-intervals of the same length ¢ = 24/2N. ¢ is called the
quantization step. When the quantization operation is performed, each sample
X is associated with the N-bit coded number of the interval it belongs to.
When the signal is reconstructed, this number is replaced by the median value
of the interval. If X denotes the sample we want to quantize and Y denotes
the reconstructed value, we have:

Y =kq+q/2 when kq< X < (k+1)q

Usually ADCs use a two’s complement binary coding for the quantized
samples. The code takes values between —2V~1 and 42V~ — 1 where N is
the number of bits used for coding. The conversion law can be described by
Figure 7.7.

Figure 7.7 — Quantization and two’s complement binary coding with 3 bits

Therefore, there is a gap between the “true” value and the reconstructed
value. If ¢ = X — Y refers to this gap, called the quantization noise, we can
write X = Y 4 . The quantization operation is the equivalent of adding a
noise with the power E{gz}.

. v

— Q I— <:>X—>®—>Y

Figure 7.8 — Uniform quantization

Although it is possible to determine the probability distribution of £ using
that of X, it is often sufficient to just assume that £ 1s a uniform random
variable on (—¢/2,4+¢/2). This means that E{¢} = 0 and that:

+q/2 1 q2
E{¢’} = e’—de = = (7.33)
—q/2 q

272 Digital Signal and Image Processing using MATLAB®

The uniformity hypothesis implies the absence of clipping, meaning that
none of the values we wish to quantize are located outside the range (—A4, +A4).
Otherwise, ¢ can assume much greater values than ¢/2. Tt just needs to be made
sure that the amplitudes of X higher than A have a negligible probability. In

the case where X is a centered random variable with a variance o2, we usually
choose:
A=F.o

where F is called Clipping Factor (CF). Thus, if X is Gaussian, by adopting
the “3 sigma” rule (page 258), corresponding to a 99% confidence level, F, = 3.
For a speech signal, the Gaussian hypothesis usually works poorly, and the value
of F. is rather chosen roughly equal to 4.

Exercise 7.5 (Signal-to-quantization noise ratio)

Consider the uniform quantization of an observation X described with a cen-
tered random variable with a variance 0. We wish to find the expression for
the level of noise quantization as a function of the number of bits used for
coding.

1. The signal-to-quantization noise ratio (SNR) is defined by:

SNR = 10log;, (%)

Show that in the absence of clipping, that is if A = F.o with F. high
enough, the SNR’s expression as a function of the number N of bits used
for coding the samples is:

SNR = 101log,,(E{ X*}/E{e*}) = 6N + 10log,,(3/F?) (7.34)
2. Write a function performing the two’s complement binary coding of a
sequence.

3. Write a program to check the hypothesis of uniform quantization noise
distribution. Perform a simulation to measure the SNR for values of V
from 1 to 7.

What should be remembered from formula 7.34 of exercise 7.5 is the follow-
ing rule, called the 6 dB per bit rule:

In uniform quantization, the signal-to-quantization noise ratio is en-
hanced by 6 dB every time 1 bit is added to the quantizer.

Chapter 8

Random Processes

8.1 Introduction

At the beginning of Chapter 7, we pointed out that the concept of random vari-
able was needed to describe with a model the variability of certain phenomena
said to be random. Speech signal observed at a microphone’s output is an
example. There is no use to try and describe it with a deterministic expres-
sion such as z(t) = Acos(2wfot), which is relevant however when describing
electrical voltage, hence the idea of using random variables for describing the
phenomenon at every instant. This leads us to the following definition.

Definition 8.1 A random process is a set of time-indered random variables
X (t) defined in the same probability space. If the possible values fort belong to
R, the process is called a continuous-time random process. If the possible values
for t belong to 7, then we are dealing with a discrete-time random process'.

The definition implies that a random process associates a real value called
a realization with every instant t and every outcome w. A random process can
therefore be interpreted as two different perspectives (Figure 8.1):

1. either as a set of functions of time, also called trajectories, each one
associated with an outcome;

2. or as a set of random variables, each one associated with a given time.

In MATLAB®, the randn function makes it possible to simulate the tra-
jectories of a zero-mean gaussian random process with a variance of 1. In the
following program, x is a matrix with 4 columns and 100 lines:

Y===== TRAJ1.M
x=randn (100,4) ;
for k=1:4

IWe will often use n, k, £, m, ...to denote time for a discrete-time random process.

274 Digital Signal and Image Processing using MATLAB®

X(t,ap)
X(t, 1)

X(t,,)

=30 40

Figure 8.1 — Trajectories of a random process

subplot(2,2,k); plot(x(:,k)); grid
end

x can be considered as the representation of four trajectories for the same
random process, for an observation time of 100 points (Figure 8.2).

'A’Aﬂ’h’fi;]\”KﬁMA,/’m}’A’AA;A’ATA’[AM L D Tl UL
AR A A IR L R

,,,,,,,,,,,,,,,,,,,,,,,,,

0 20 40 60 80 0 20 40 60 80 100

IR S N S S
AMAJNM\AJWAAHAAH ach bt | o I daan A By ol g
IR V0 U g AT A I M

Figure 8.2 — Fzamples of random process trajectories

8.2 Wide-sense stationary processes

In some processings involving random processes, particularly in linear filtering,
the signals are assumed to be stationary, and only the first and second order
moments are taken into account. The two trajectories represented in Figure
8.3 illustrate these concepts. We might say, after observing them, that:

— the behavior of the signals with time show a certain permanence. Their
properties do not depend on the time origin;

— the mean seems to be equal to zero;

Random Processes 275

— most of the power is located around roughly 110 Hz, because 11 oscilla-
tions are observed over a duration of 0.1 s, hence about 110 oscillations
per second.

15

0'8 ”””” /\/\/\f\/\/\/\/\/\/‘\/\/\ﬁ AP
~05 \,/v ,,,,,,,, \/,L\/,,\/,,U,V,\/,,}{,V ,,,,,,,,, \X}\/\/V

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 02s

"ol f\"’ﬂff/*\"’A"i{"/i’N/’\"}\4’/’\”f\tf/’\"/\”/\"’/ﬁ\ﬂm ”””
05 \/V\/\/\/ \j\/\/ \/\/\/fimv\/\/vvv

Figure 8.3 — The two representations give an idea of the meaning of the word “sta-
tionary”

You will find here the mathematical definitions associated with these con-
cepts for random processes, and such a process is referred to as a Wide sense
stationary random process, or WSS.

8.2.1 Definitions and properties of WSS processes

Definition 8.2 (Mean) The mean of a random process is the mathematical
expectation of the random variable X (t). This quantity, which depends on the
time t, 1s a deterministic function of t, which will be denoted by:

mx(t) =E{X(t)} (8.1)

Definition 8.3 (Autocovariance function) Let X (¢) be a random process.
The autocovariance function is the function of t; and to defined by:

Rxx (ty,t2) = E{Xc(t1) X2 (t2)} (8.2)
where X (t) = X(t) —E{X(t)} refers to the centered process.
Definition 8.4 (Autocorrelation function) Let X (t) be a random process.
The autocorrelation function is the function of t1 and ts defined by:
E{Xc (1) X ()}
VE{IXc ()P HE{[Xc(t2) 7}

where X (1) = X(t) — E{X(t)} refers to the centered process. The Schwartz
wmequality tells us that for any random variables X1 and X5 :

IE{ X X5} < E{|X1 7} E{ X% (8.4)

pxx(ti,t2) = (8.3)

276 Digital Signal and Image Processing using MATLAB®

Inequality 8.4 implies that:
Vi, ta, [pxx(t,t2)] <1 (8.5)

A simple calculation shows that:
Rxx(t1,t2) = E{X (1) X" (t2)} — mx (t1)m% (t2) (8.6)

Definition 8.5 (Covariance function) The covariance function of two dis-
tinet processes X (t) and Y (t) is defined by:

Rxy (t1,t2) = E{Xc(01)Y. (t2)} = E{X(01)Y"(t2)} — mx (t1)my (t2) (8.7)

Of course, in the case of a real process, it is not useful to have the con-
jugation (*) appear in expressions 8.6 and 8.7. The autocovariance function
i1s always a deterministic function of #; and t5. From now on, if there is no
possibility of confusion, we will omit the index xx when writing something of
the type Rxx (t1,12).

In the general case, the autocovariance function Rxx (t1,%2) depends sepa-
rately on t1 and t5. In the particular case where it only depends on ¢y —t5, the
time origin does not determine the level of covariance. This implies that the
trajectories of the process have an almost eternal permanence. The term sta-
tionaryis associated with this property. This concept is absolutely fundamental
in signal processing. It leads to the following definition.

Definition 8.6 (Second order stationary random process)
A random process is said to be “wide sense second order stationary” (WSS),
or simply “second order stationary”, if it obeys the following properties® :

— the mean BE{X(t)} = m is independent of t;
~ B{IX(O1} < +oo;

— the autocovariance function E{ X (t1)X;(t2)} = R(r) depends on the
time difference T = t; — to.

We have, according to relation 8.7, E{ X (#1)X*(t2)} = E{ X (t1) X (t2)} +
mx (t1)m (t2). If we let to = ¢ and ¢, =t + 7 we get:

E{X(t+ 1) X" (1)} = R(7) + [m|”

which depends only on 7.

2In the case of continuous-time processes, we add that the autocovariance function is
continuous at the origin.

Random Processes 277

Example 8.1 (Complex harmonic process)
Consider the complex random process defined by:

P
1) = Zakezjﬂfkt (8.8)
k=1

where {fi} refers to a deterministic sequence of P frequencies and {ay} to
a sequence of P zero-mean, uncorrelated complex random variables with the
respective variances o2. Such a process is called a harmonic process. It does
not matter here whether ¢ is an integer or a real number.

First, we calculate the mean of X (¢). Because the expectation of the sum
is the sum of the expectations, we get E{X(¢)} = 0. Hence the process is
zero-mean. Its autocovariance function has the expression:

P P
E{X(t+7)X*()} = Z ZE{QW;}} Q2T fR(t47) g=2j 7 fut
k=1n=1
Because by hypothesis, E{ |ax]?} = ¢ and E{azal} = 0 for k # n, we
get:

E{X(t+7)X*(t)} = 20'2 2t (8.9)

E{X(+7)X*(t)} depends only on 7. This process is therefore WSS.

Example 8.2 (Real harmonic process)
Consider the random process:

P
= ZAk cos(2m frt + Dy) (8.10)
k=1
where {fi} refers to a deterministic sequence of P frequencies, {Ag} to a se-
quence of P independent, zero-mean, real random variables, with the respective
variances o; and {®;} to a sequence of P uniform random variables on (0,27),
independent of one another and of A;. A calculation similar to the previous
one leads to E{X ()} = 0. We now calculate the autocovariance function. We
get:

P P
E{X{t+7mX ZZE{AkA cos(2m fr (t + 1) + @) cos(2m frt +) }

P
Z { AR A YE{cos(2m fir (t + 7) 4+ @) cos (27 fut + B,)}

M*u nM*u

{Ai}E{cos(?ﬂfk (t+ 1)+ @p) cos(2m frut + Pp) }

B
I
—

278 Digital Signal and Image Processing using MATLAB®

where we used the non correlation of the Ag, then the independence of Ay and
of ®y. Next, we get:

P
E{X(t+7)X"(t)} = % Z oiE{cos(2m fiT) 4 cos(2m £, (2t 4 7) + 20) }
k=1

P
= %Z oj [cos2m o) + E{cos(2mfi (2t + 7) + 28y) }]
1k;1
= 52 cos(2m fiT) (8.11)

where we used the hypothesis according to which @ is uniform in (0, 27) and
therefore that:

27
E{cos(2mfi(2t + 1) +2®)} = / cos(2m fy (2t + 1) + 2(/))% dé =0
0

As a conclusion, the autocovariance function of a real harmonic process
depends only on 7 and therefore the process is WSS.

CoMMENTS: if the autocovariance function (expressions 8.9 and 8.11) of a
real or complex harmonic process is the sum of periodic functions, then the
variables X (¢ + 7) and X (¢) remain correlated, even for large time differences.
This is called a memory effect, and it lasts indefinitely.

The property 11.3, which we will see further on, gives it a more precise
mathematical meaning: a harmonic process 1s perfectly predictable from its
last P values.

Unlike harmonic processes, there are WSS processes for which the auto-
covariance function R(7) tends to 0 when 7 tends to infinity. This can be
interpreted as a memory loss of the process occurring with time.

8.2.2 Spectral representation of a WSS process

Definition 8.7 (Spectral density)

Let X (t) be a WSS process with the autocovariance function R(t). The Fourier
transform of R(r) is called the power spectral density (or PSD), or the spec-
trum. For continuous-time WSS random processes, the PSD therefore has the
erTpression:

+eo .
S(f) :/ R(r)e=2mI7dr (8.12)
and for discrete-time WSS random processes:
+oo
S(f) = Y R(k)e?mi* (8.13)

k=—o0

Random Processes 279

Power 1s defined as:
P=E{|X(0)]*} = R(0) + |m|* (8.14)

The power’s square root is also called the root mean square. We will often
be dealing with zero-mean processes. In such cases, the power is equal to the
autocovariance function’s value at the origin.

By inversion of the FT, we have, for continuous-time WSS random pro-
cesses:

+eo)
R(r) = / S(f)e¥™ T df with 7 € R (8.15)
and for discrete-time WSS random processes:
+1/2 '
R(k) = / S(f)e¥ ™k df with k € Z (8.16)
—1/2

Note that because of 8.15 and 8.16, R(0) is merely the integral of S(f).
The following result can be proven [14]:

Theorem 8.1 (Positivity of the PSD) Let X () be a WSS random process,
and let S(f) be its PSD. We have:

S(f) =0 (8.17)

In the particular case of a real process, the PSD is an even function, that

is S(/) = S(=1).

It should be noted that the positive nature of S(f) is directly related to the
positive nature of the covariance, a property we showed on page 255.

Property 8.1 Let X(t) be a WSS random process. We have:

1. Hermitian symmetry: R(r) = R*(—7). Therefore, we only need to
evaluate R(7) for 7 > 0.

2. Positivity property: for any N, for any sequence of times {to, ..., {n—1},
and for any sequence of complex values {ag, ..., any—1}:
N-1N-1
afRa = Z Z agan, R(ty —tm) >0
k=0 m=0

where R 1s the N x N covariance matriz constructed from the covariance
function R(7) of the process, where a = [ag,...,an_1]7 and where the
exponent I indicates a transpose-conjugation (see also page 255).

280 Digital Signal and Image Processing using MATLAB®

3. If the process has a mean different from zero, a “peak” with an ampli-
tude |m|? is attached to the spectrum at the origin (f = 0). This peak
at the origin, which simply indicates the presence of a non-zero mean,
15 called the continuous component of a process. Using the Dirac dis-
tribution amounts to choosing the Fourier transform of the second order
moment as the definition of the spectrum. Indeed, we have:

E{X(t+)X (1)} = R(7) + [m|”

which has S(f) + |m|?d(f) as its Fourier transform.

4. The complex and real harmonic processes, expressions 8.8 and 8.10, have
periodic autocovariance functions, expressions 8.9 and 8.11. Therefore,
it does not exactly have a Fourier transform. However, we can find a
meaning to the PSD using Fourier series:

— in the case of a complex process:

=" o?(+ fi) (8.18)

k=1
— and wn the case of a real process:

P

Z" S(f + fu) + izoié(f—fk) (8.19)

k=1

The PSD comprises peaks that indicate the presence in the signal of si-
nusoidal components with uncorrelated amplitudes.

5. As it was the case with the deterministic description, the spectrum rep-
resents the distribution (or localization) of the power along the frequency
axris. The power is given by:

+o0
P =R(0)+ |m|* = S(fydf +|m|* (continuous-time)

— 00

o (8.20)
P =R(0)+ |m|* = / S(f)df + |m|* (discrete-time)

—1/2

COMMENT: the fact that the PSD of an observed process contains peaks
can be used in some synchronization systems to retrieve, using a very narrow
band-pass filtering, a harmonic component with the same phase as a particular
component of the observed process.

We admit without proof the following result: [14]

Random Processes 281

Property 8.2 (Characterization of positivity) Consider a sequence T'(k)
with k € Z such that T'(k) = T*(—k) and >, |T'(k)| < +oo. This sequence is
the covariance sequence of a WSS process if and only if, for all f:

+ oo

(= 3 T >0

k=—o0

Example 8.3 Consider the real sequence T'(k) = 1 x1(k = 0)+axT1(k = x1).
Determine the condition on a such that the sequence is the covariance sequence
of a WSS process.

HINT: obviously we have, for any a, >, [I'(k)| < +o0. Using property 8.2,
T'(k) is a sequence of covariance if and only if:

S(f)y =14 2acos(2nf) >0

The condition S(f) > 0 is equivalent to |a| < 1/2. Notice that a represents
the correlation coefficient p(1). Hence, after 8.5, we already knew that
|p(1)] < 1. The fact that the sequence is a covariance sequence of a WSS
process imposes a stronger condition. [

Studying methods that make it possible to estimate the spectra of a second
order stationary random process is an important field in signal processing. We
will discuss this later on.

Positive Toeplitz matrix

Consider a WSS discrete-time random process X (n). We are going to determine
the covariance matrix at any K consecutive times of the process. If we start

at the times {n, n+1, ..., n+ K —1}3, the K x K covariance matrix has the
expression:
Xe(n)
Xc(n+1)
R = E , [X:(n) X:(n+1) ... X:(n+K-1)]

Xe(n —I—.K -1)
R() R(-1) ... R(-K+1)
R(1) R(0) R(-1) .

: . R(-1)
R(K—1) ... R(1) R(0)

3Most of the time, we will write the time sequence from left to right by increasing times.

282 Digital Signal and Image Processing using MATLAB®

R(0) R*(1) ... R (K —1)
R(1) R(0) R(1)
R = .]
: g R*(1)
RK-1) ... R(1) R(0)

Notice that R = R¥ and that because of the stationarity of the process,
the matrix R is such that the lines parallel to the main diagonal are comprised
of equal terms. This type of matrix is called a Toeplitz matriz.

The MATLAB® function toeplitz (V) allows you to construct, from the
vector V. = [V(0) ... V(K — 1)]¥, the square hermitian Toeplitz matrix the
first line of which is [V(0), V(1), ..., V(K —1)].

Definition 8.8 (Gaussian random process)
A random process X (1) is Gaussian if, for any k, and for any time sequence
{t1, ..., tx}, the vector [X(t1),..., X (1x)] is Gaussian.

For the definition of a Gaussian vector, see 7.17.

Definition 8.9 (White noise) Discrete-time white noise is the name given
to a WSS, zero-mean, random process X (n), the covariance function of which
can be written:

Ry when k=0

R(k) = E{X(n—i—)X(n)} = { 0 when k#0

Because of formula 8.13, which provides us with the spectrum, the power
spectral density 1s constant, and has the expression:

S(f) = Ro (8.21)

In the continuous-time case, a definition similar to 8.9 poses a problem,
because it leads to a random process of infinite power (the integral fR S(f)df
diverges) and the autocovariance function can only be defined in the distribu-
tions context. Thus, we have:

S(f) = Ro = R(1) = Rod(7)

where (1) now refers to the Dirac distribution. We must say however, that
in most practical cases, the calculations performed with the Dirac distribution
lead to results that coincide with those obtained by starting off with a B band
noise (which does not lead to an infinite power problem), and then making B
tend to infinity.

The word white comes from the analogy made with white light, for which
the power is uniformly distributed among all the optical frequencies.

Random Processes 283

White noise is the archetype of models used in practice for describing noise.
In communications systems, for example, it describes every kind of noise caused
by thermal phenomena in the transmission chain, from the emitter to the re-
ceiver. The rounding and quantization noises that occur in a digital processing
system are another example.

Although a process often is both Gaussian and white, particularly in ther-
mal noise models, there is no implication between these two properties. Thus,
a random process can be white without being Gaussian or Gaussian without
being white.

Example 8.4 (Trajectory of a noisy sine)

Write a program that displays a sequence of 30 samples taken at the frequency
Fy, = 1,000 Hz, from a signal X(t) = s(t) + B(¢), sum of a sine s(t) with a
frequency of Fy = 80 Hz and of a zero-mean, Gaussian, white noise B(t). The
power of B(t) is chosen so as to have a signal-to-noise ratio equal to 15 dB,
knowing that the signal s(¢) has an amplitude of 3.

HINT: having a signal-to-noise ratio equal to 15 dB means that the ratio
rp of the signal’s power to the noise’s power is such that 10log;y(rp) = 15,
and therefore rp = 10'°. Because the power of a sine with an amplitude A is
equal to P = A?/2, the noise variance has to be ¢? = A?/2rp. Since A = 3,

this leads to o = 3/v/2 x 1015,

To obtain a trajectory, type:

%===== SIN8OBR.M
N=30; F0=80; Fs=1000; tps=(0:N-1)/Fs;
sigma=3/sqrt (2%10 = 1.5); Y===== SR

g=3%cos(2 * pi * FO * tps);
x=s + sigma*randn(1,length(tps));
plot (tps,s,tps,x,’0’); grid

The result is shown in Figure 8.4. A cross indicates a sample without noise,
and a circle indicates a noisy sample. [

Example 8.5 (Linear transformation of a WSS process)

Let W (n) be a zero-mean, WSS, discrete-time random process. Ryw (k) refers
to the autocovariance function and W = [W(n) ... W(n + N — 1)] to the
vector obtained from N consecutive values of W (n).

1. Write, as a function of Rww (k), the expression of the covariance matrix

of W.

2. Given an (N x N) matrix M, let X = MW. Determine the expression
of the covariance matrix of the vector X (definition 7.13). What is the
probability distribution for X when W (n) is a Gaussian process?

284 Digital Signal and Image Processing using MATLAB®

o Samplesof the noisy signal x ~ x Samples of the signa s

o 0.005 0.01 0.015 002 0025 0.03(9)

Figure 8.4 — Sine with a frequency of 80 Hz, corrupted by white noise with a signal-
to-noise ratto SNR = 15 dB

3. Use this result to find a method for obtaining a sequence of N values with
a given covariance, when W (n) is white, zero-mean and with a variance
equal to 1.

4. Use this result to find a method for obtaining a sequence N values of a
white process with a variance equal to 1, when X(n) has Rxx (k) as its
autocovariance function. This is called whitening the process X (n).

HiINT:
1. Because W(n) is zero-mean, the covariance matrix is given by:
Ry = E{WW"} = [E{WHn+OW*(n+k)}]
= [Rwwn+£—n—k)]=[R{—-Fk)]
where £,k € {0,..., N — 1}, which leads us to:
Rww (0) s wa(—N + 1)
Ry = z z
Rww (N —=1) --- Ryww (0)

2. If we start off with X = MW, the covariance matrix has the expression:
Rx = E{XX"} = E{MWW*M#?} = MR,y M¥

If W(n) is Gaussian, the sample X is Gaussian itself, since Gaussian
nature is unchanged by linear transformation (see theorem 7.4). Tts mean
is zero and its covariance matrix is Ry, meaning that the probability
density has the expression:

1 1 _
px(x) = ~Rsx)

(27)N/2 det(RX)eXp< 2

Random Processes 285

where x = [z, -, #pin_1]".

3. If the process W(n) is white, zero-mean and has a variance of 1, its
covariance matrix Ry = Iy, where Iy refers to the N x N identity
matrix. Given the matrix Rx, how should M be chosen for the sample
X = MW, where W is white, to have the covariance Rx7 All we need to
do is choose M such that MM¥ = Rx. M is called a square root of Rx.
Just like in the case of scalars, a positive matrix has several square roots*.
With MATLAB®, the sqrtm(R) function, with R positive, calculates the
principal square root of R.

4. Bear in mind that Ry = MRy M. If we want X(n) to be white with
a variance of 1, Rx has to be equal to the identity matrix. This can be
achieved by choosing M as the inverse of the square root of Ry, which
is obtained in MATLAB® using the command inv(sqrtm(Rw)).

If X(n) is Gaussian, then the sample W is Gaussian and white. If this
is the case, we know (see theorem 7.3) that non-correlation implies inde-
pendence. Therefore, the obtained sequence is comprised of independent
variables.

This provides us with the following important result:

Colored noise can be changed into white noise by multiplying the sample by
the inverse of the square root of the “colored” process’s covariance matriz.
This is called whitening the signal. Furthermore, if the original samples
are Gaussian, the processed samples are Gaussian and independent.

8.2.3 Sampling a WSS process
Consider a real, zero-mean, WSS random process X (), t € R, with the PSD:

+eo .
S(F) = / R(r)e= %™ qr
where R(r) = E{X(t + 7)X (1)} represents its autocovariance function. Here,
Fis a frequency expressed in Hz, and (¢, 7) are times expressed in seconds. We
assume that X (¢) is B-band limited, meaning that S(F) = 0 for |F| > B.

4With scalars, if » > 0, the equation mm* = r has the solution \/Re”5 where ¢ is an
arbitrary real number. /m is called the positive square root, and the number u = eI? is
such that wu* = 1. Likewise, the matrix equation MM# = R, where R > 0, has an infinite
number of solutions of the type vVRU where U is any unitary matrix that obeys UU¥ = I.

286 Digital Signal and Image Processing using MATLAB®

The signal X (t) is sampled at a frequency of Fy = 1/T;. Tts samples are
denoted by X (n) = X(nT,). It can be shown [100] that if Fy; > 2B, the
process can be reconstructed, as a limit in quadratic mean, from its samples
according to the reconstruction formula 2.24 proved in the deterministic case,
the expression of which is recalled below:

oQ

X(t) = Z Xs(n)hp(t —nTs) where hp(t) =

n=—oQ

sin (27 Bt)

.22
mFt (8.22)

In the case where Fy < 2B, perfect reconstruction is impossible because of
aliasing.

As it was the case with deterministic signals, when a continuous-time WSS
random process is sampled, the sampling operation at a frequency F; must be
preceded by anti-aliasing filtering with a gain of 1 in the (—F;/2, F;/2) band
to avoid aliasing.

We are now going to determine the relation between the PSD S(F) of the
continuous-time random process X (t) and the PSD S, (f) of the random process
sampled at X;(n) = X(n/F;). Because of definition 8.13:

So(f) = Y E{Xs(n+ k)X, (n)} e

If we use the fact that X,(n) = X(n/F;), we get:
E{X;(n+ k) X; ()} =E{X((n+k)/F)X(n/Fs)} = R(k/Fy)

Replacing in S, (f) leads us to:
Si(f) =D R(k/Fy)e™ Ik T

k

where we have assumed F = fF; and F7s; = 1. If we apply the identity given
by the Poisson formula 2.4 to the second member, we get:

S.(f) = E Y S((f —n)F) (8.23)

Finally, we find the PSD’s expression for the process X (t):

S(F) = Fi S, (F/F)I(F € (=B, B)) (8.24)

5

To sum up, it should be remembered that the PSD of X (¢) is obtained from
the PSD of X(n) by:

— multiplying the amplitude by 1/F;

— multiplying the frequency axis by Fj;

Random Processes 287

— and by limiting the frequency band to the interval (—B, B).
Conversely, the PSD of X, (n) is obtained from the PSD of X (¢) by:

— multiplying the amplitude by Fj;

— dividing the frequency axis by Fj;

— and by periodizing with the period 1.

To illustrate this, we are going to apply these formulae to the problem of the
signal-to-quantization noise ratio when the signal is oversampled at frequency
higher than the Nyquist frequency.

Quantization noise and oversampling

When oversampling a band-limited signal without quantizing it, we know, from
the sampling theorem, that it is useless to oversample (compared with the
Nyquist frequency). This changes completely when the sampling is followed by
a quantization operation, because the quantization operation can be interpreted
as the addition of noise. Let us see the consequences of oversampling in terms
of signal-to-noise ratio.

Consider the B band, zero-mean, WSS, real random process X (¢). This
signal is sampled at the frequency Fy > 2B, the sequence of obtained signals
is denoted by {X;(n)}. These samples are then uniformly quantized, with a
quantization step ¢ (see paragraph 7.5). Let X2(n) be the samples that are
quantized. We are going to reconstruct a signal denoted by X9 (¢), from the
quantized samples X9 (n), using expression 8.22, then try to evaluate the power
of the “error” between the original signal X (¢) and the signal X% (t) obtained
from the quantized samples.

Starting off with 8.22, we can write successively:

E:XQ Vhp(t — nT})

where hp(t) is given by 2.24. Let us define ¢(n) with XsQ(n) = X;(n) +(n).
We get:

E:X' Vhp(t —nTy) +§: n)hp(t —nT})

By hypothesis, F; > 2B. Hence the first term is exactly equal to the signal
X (t) and therefore:

X9 +§: n)hp(t —nT})

=B9(t)

288 Digital Signal and Image Processing using MATLAB®

The signal B?(t) represents the error between the original signal and the
reconstructed signal: it is called the quantization noise. Notice that its expres-
sion is obtained, from the process ¢(n), precisely by using the reconstruction
formula 8.22. Therefore, according to expression 8.24, we can determine the
PSD of B9 (t) from the PSD of £(n), and from there, determine its power.

By referring to the hypotheses on £(n) made in paragraph 7.5, we know
that ¢(n) is a zero-mean random process with a variance of ¢?/12 and such

that E{e(n)e(k)} = 0 for n # k. Hence the PSD of e(n) is given for any f by:

2

SN =135

Using formula 8.24, the PSD of B?(t) is then given by:

Su(F) = %Fisn(F € (—B, B)) (8.25)

The quantization noise’s power is obtained by integrating Sp(F):

+oo 2
_ _49° 2B
Pg _/_Oo Sp(F)dF = 2 F (8.26)

Using formula 7.34, we end up, in the case of uniform quantization with
oversampling, with the following expression of the signal-to-noise ratio:

SNR = 6N + 101log,((3/F2) + 10log,,(F,/2B) (8.27)

where N refers to the number of bits of the quantizer and F, to the clipping
factor. A 3 dB gain occurs every time the sampling frequency is doubled. This
result calls for a few comments:

1. According to the sampling theorem, oversampling is useless without the
quantization operation. All the information useful to reconstructing the
signal without errors is contained in the samples taken at Fy = 2B.

2. Formula 8.27 was obtained by assuming that the quantization noise is
white (the sequence £(n) is uncorrelated). If this happens to be false,
the PSD Sp(F), given by expression 8.25, has a different shape (sharper
peaks). This means that the quantization noise’s power is no longer given
by expression 8.26 and the gain can then be much less than 3 dB. This
is the case when the oversampling factor becomes too high, because the
non-correlation error hypothesis is not quite established anymore. Hence
there cannot be an infinite iteration of the 3 dB gain by doubling the
sampling frequency.

3. There is no point in interpolating (interpolating is not oversampling) the
already quantized discrete-time sequence in the hope of obtaining samples

Random Processes 289

that would have been produced when oversampling a continuous-time sig-
nal. The errors introduced by the quantization process are permanently
added, and the reconstructed samples are noised in the same way.

8.3 Estimating the covariance

The concept of ergodicity

In practice, the covariance functions are not known, and we are faced with the
problem of estimating them. As we have already said, a random process can be
seen as great number of trajectories corresponding to a great number of realiza-
tions of the identically repeated experiment. However, in many practical cases,
we have at our disposal only one process trajectory. It then becomes clear that
the stationary process category, for which the moments can be estimated by
calculating a “temporal mean” on only one trajectory, will have an important
practical role.

Ergodicity i1s related to this concept. However, we will not give its gen-
eral definition here. We will only say that a WSS random process X (n)
with the mean m = E{X(n)} and the autocovariance function R(k) =
E{X.(n+ k)X (n)}, is ergodic if its mean and its autocovariance function
can be obtained as the convergence in probability, when N tends to infinity,
of a temporal mean calculated for only one trajectory. This can be expressed,
when N tends to infinity:

N-1
. 1
mN = nz_:o X(n) —m (8.28)
For the covariance, this leads to:

]%N(k) = % _Z:_ (X(n+k)—my)(X"(n) —my)) — R(k) (8.29)

This convergence actually is not all that surprising. We know, for example,
from the law of large numbers [28], that, for a sequence of independent random
variables, with the same mean m and the same finite variance, which is a
particular case of a WSS process, the empirical mean:

| -1
7 2 X(0)
n=0
converges in probability to m. The question is “does this result apply to a

larger class of random processes than just the sequences of independent random
variables, such as for example the WSS random processes?” The answer is yes

290 Digital Signal and Image Processing using MATLAB®

[82], but it is not fundamentally useful for what we are going to do to go into
it any further. We will simply assume that, for the WSS processes we will
be considering, the conditions are in fact met. We can then use expressions
8.28 and 8.29 to estimate the mean and the autocovariance function of a WSS
process from the observation of N samples.

Notice that if the mean of X (n) is m, then we can write that X(n) = m+
B(n), where B(n) is a zero-mean process. If we start off with this, formula 8.29
for estimating covariance consists of estimating m first, then of subtracting this
estimation to X (n), and finally of estimating the covariance of B(n). Generally
speaking, we have to consider X (n) = s(n;#)+ B(n) where B(n) is a zero-mean
random process and s(n; @) represents a deterministic signal that depends on a
parameter ! we have to determine. In this context, s(n; §) is sometimes referred
to as the trend term. This trend can be either affine, polynomial or periodic.
For the latter, the trend is said to be seasonal. In conclusion, estimating the
covariance is achieved on the process B(n), which is obtained in the following
way:

— if a non-zero mean is observed, center the process by calculating B(n) =
N-1
X(n) = % Y=o X(k);

— if an affine trend is observed, of the kind s(n;8) = a; + aan (here # =
(a1,az2)), use the program written in exercise 8.1, that allows you to
estimate the pair (a1, as) and then to obtain the residue B(n);

— if, finally, a seasonal trend is observed, of the kind s(n;0) = a +
beos(2mfon — ¢) (here 6 = (a,b,¢) and fy is known), use the program
written in example 8.6.

Suppressing a mean

With MATLAB®, the estimated mean %Zi\;l)((k’) is obtained with the
mean command. To obtain the zero-mean process, all you need to do is type
xc=x-mean(x). You can also type moyx=sum(x)/N, where x is assumed to be a
length N column vector, then xc=x-moyx.

Exercise 8.1 (Suppressing an affine trend)
Consider a discrete-time random process X(n) = a; + asn + B(n) where the
noise B(n) is a centered WSS random process. What happens is that in the
absence of noise, we get a line of equation Y (n) = a1 4+ asn, whereas in the
presence of noise, we get a scatter plot, more or less spread out around this
line. The problem will be to find the line that best fits the scattered points,
the meaning of which will soon become clear.

To do this, we start with the observation of X(n) over a time interval
{0,..., N =1}, and we assume that B(n) is a white, Gaussian, random process

Random Processes 291

with an unknown variance 0'2. a1 and ay are the two unknown parameters we
are going to determine.

1. Give the expression of the probability density px (zq, ..., nx_1; a1, az, o2)
of the random vector {X(0), ..., X(N —1))} as a function of the param-
eters a1, as and 0'2.

2. Gauss had the idea of choosing the values of ay, as and 0'5 such that
px (o, ..., 2N_1; 01, a2, 0'5) would be maximum. ay, as and 0'5 are called
the mazimum likelihood estimators. We choose the following notations:

X(0) oo

a:[al],X: : and W = .

as . :
X(N-=1) 1 N1

Determine, as a function of X and W, the expression of a that maximizes

the likelihood.

3. Write a function that eliminates the affine trend and only keeps the sta-
tionary part zero-mean. Test this function.

COMMENTS:

— What exercise 8.1 teaches us is that in the case of a Gaussian hypoth-
esis, the maximum likelithood estimator coincides with the least square
estimator.

— The method explained here can easily be applied to any polynomial trend
of the kind X(n) = ag + ayn + -+ ayxn® + B(n).

Example 8.6 (Suppressing a seasonal trend)

In many fields, such as meteorology, economics and biology, certain behaviors
show a periodicity related to natural phenomena that are periodic themselves:
the rotation of the Earth around the Sun, the rotation of Earth on its axis,
etc. These behaviors are said to show a seasonal trend. A model can then be
used to describe them as a sum of deterministic components representing this
trend and of a zero-mean random process B(n), representing the variability of
the phenomenon, which can be written:

X(n)=a+bcos(2nfon — ¢) + B(n)

In this context, the frequency fy 1s assumed to be known. Studying the
process B(n) requires a preprocessing to eliminate the seasonal trend. In order
to do this, we estimate a, b, and ¢, then subtract a + bcos(2w fon — ¢) to X(n)
to obtain an estimation of the residual process B(n). A criterion often used

292 Digital Signal and Image Processing using MATLAB®

for estimation is the one called the least squares criterion (see the following
comment in exercise 8.1). Beginning with the observation of X(n) for n €
{0,..., N — 1}, we are trying to find the values of a, b and ¢ that minimize the
RMS deviation:

N—1

J(a,b,¢) = > _(X(n) — (a+bcos(2nfon — ¢)))

n=0
between X (n) and the expected seasonal evolution.

1. Determine the expressions of a, b and ¢ that minimize J(a, b, ¢).

2. Write a function that eliminates the seasonal trend, leaving only the
stationary part zero-mean.

HINT:
1. Let 81 = bcos¢ and B = bsin¢. We have:

g p) = 3 (X(n) - (a+ beos(znfon -)’
= - (X(n) —a— 3 cos(2mfon) — Bo sin(27 fon))?

If we successively set to zero the derivatives with respect to a, 81 and s,
we get:

— with respect to a:

Z_: (X(n) —a— pfycos(2mfon) — B2sin(2n fyn)) =0

— with respect to By:

Z

-1

Z X (n)cos(2mfon) — a cos(2m fon)

n

I
=)

N-1

N—
-5 Z cos? (27 fon) — Z n(2m fon) cos(2w fon) =0

n=0

— with respect to Ba:

2
i)

Z X (n)sin(2nfon) — a sin(2m fon)

n

i
2
i)

N-1

-5 Z cos(2m fon) sin(2m fon) — fa sin?(27 fon) = 0

n=0 n=0

Random Processes 293

Let:
U =1 ... 1)
X [X(0) ... X(N-1D]"
C [cos(2mfo x 0) ... cos(2mfy x (N — 1))]T
S = [sin(2nfo x0) ... sin(2rfyx (N — 1))

With these notations, we can group the three previous derivatives to-
gether to write a single matrix equation:

U7t a U7t
cT [U C S] Al =CTX
sT 62 sT
which can also be written:
N uTfc UuTs a U7t
CTu CTc CTs| |p|=|CT|X (8.30)
sTu sTc sTs 57 sT

If M refers to the 3 x 3 matrix found in the left-hand side of equation
8.30, and if we assume M to be invertible:

a uT
gl =M C; X (8.31)
8 S

In the case where fo N > 1, it can easily be checked that we successively
have UTC ~ 0, UTS ~ 0, SC ~ 0, CTC ~ N/2 and S”S ~ N/2.
This means that M ~ diag(N, N/2, N/2) for which we infer the following
approximate expressions:

| Nl
a & NH_OX(n)
g V-1
G = v X (n) cos(2m fon)
n=0
g V-1
and B = v X (n)sin(27 fon)
n=0

We will see in Chapter 11, on the least squares method, a generalization
of this result to the sum of several periodic components.

294 Digital Signal and Image Processing using MATLAB®

2. Save the function trendseason.m:

function dx=trendseason(x,f0)

Wh %
%% Suppressing a seasonal trend %
%% SYNOPSIS: dx=TRENDSEASON(x,f0) %
% x = Input sequence %
o f0 = Seasonal frequency %
%h dx = Residue %
Wh %
x=x(:); N=length(x);

U=ones (N,1);

C=cos (2%pi*f0* (0:N-1)’); S=sin(2*pi*f0*(0:N-1)7);
M=[N U’%C U’%S ; C’*U C’*C C’*S; S’*U S’*C S’%S];
theta=inv (M) *[U’;C’;S’] *x;

dx=x-[U C S]*theta;

return

Test the tendseason function by executing the following program:

Yi===== TESTTRENDSEASON.M

N=100; B=randn(N,1); a=4; £0=0.01; phi=pi/6;
tseason=3*cos (2*pi*f0* (0:N-1) ’-phi) ;

X=attseasont+B; Res=trendseason(X,f0);

subplot (311); plot(B); grid; set(gca,’ylim’,[-4 4])
subplot (312); plot(X); grid;

subplot (313); plot(Res); grid; set(gca,’ylim’,[-4 4])

Because fyN = 1, the terms that do not belong to the diagonal of matrix M
(see expression 8.31) are not negligible. You can check that the approximated
formulas provide results with noticeable differences. [

Estimating covariance

From now on, we will assume, except if specified otherwise, that the observa-

tion sequence has been previously processed in order to remove the mean and

the possible tendencies. This means, according to expression 8.29, that the

estimation of the autocovariance function from {X(0), ..., X(N —1)} is given,
for k€ {0,..., K — 1}, by:
R | Nohot

k)= — n+k X(m)X*(m—k .32

Rxx (k) NHZ::O X(n+ k)X Z) (8.32)

Likewise, an estimation of the covariance functlon between two random

processes X (n) and Y'(n), both assumed to be WSS and zero-mean, is given
for k€ {0, ..., K —1} by:

Y(n+k)X*(n)== > Y(m)X*(m—k) (833)

Random Processes 295

From a theoretical point of view, it can be shown, as we said at the be-
ginning of this paragraph, that for a very large category of WSS processes,
the estimators given by expressions 8.32 and 8.33 converge, when N tends to
infinity, to the true covariance [14].

In practice, ¥ must however remain much smaller than the number N of
observations. A practical rule is to choose k less than N/10.

Positivity of the estimated covariance matrix

Consider the first K values RXX(O), e EXX(K— 1) obtained with expression
8.32. To construct an estimation of the covariance matrix of a WSS process,
you only need the hermitian Toeplitz matrix, for which the elements of the first

column are precisely Rxx(0), ..., Rxx (K — 1). The matrix can be written:
Exx(()) Exx(—l) Exx(—f(—l—l)
R=| fx(Rax(0) ~ (8.34)
A : . RAXX(—l)
Rxx(K—-1) ... Rxx(l) Rxx(0)
A simple calculation shows that:
~ 1
R=—-DD :
I (8.35)
with D =
X*0) X*(1) .- XH(N-=1) 0 0
0 X*0) X*(1) X*(N = 1) (5.36)
o .. 0 X*(0) X*(1) . X*(N-1)

The fact that R can be written as DYD/N guarantees that R is both
hermaitian and positive. This is because for any vector a, we can write that:

~ 1 1 1
afRa—= —af (DHD)a: —(Da)H(Da) = vy
N N N

Hy is the

where we let v.= Da. We can conclude by noticing that the scalar v
sum of the square moduli of the components of v, and is therefore positive.
Obviously, in practice, you do not construct D to then calculate DED. You
calculate Rxx (k) for k£ = 0,..., K — 1 with formula 8.32, then you use the
toeplitz function of MATLAB® to store the obtained values in a matrix of

the type 8.34.

296 Digital Signal and Image Processing using MATLAB®

In the literature, this method for calculating R is called the correlation
method. What we see is that, in a way, everything is as if we had padded the
observed sequence on the left and on the right with (K — 1) zeros. Its major
drawback is therefore to add false data, zeros to be precise, on both sides of
the observed data. This is why when the length N of the sample is small, 1t
1s usually discarded, to the benefit of the covariance method which consists of
choosing as the covariance matrix:

1

R = v_xP'D
with:
XK -1) X*K) - X" (N-1)
XK -2 X*(K—-1) - X*(N-2)
D — : : : (8.37)
X*(0) X*(1) .- X*(N-K)

The resulting covariance matrix remains, of course, positive, but it loses its
Toeplitz structure necessary to certain fast inversion algorithms.

There are two other methods for constructing D, padding with zeros either
on the left or on the right. For example:

X*(K -1) X*(N-1) 0 0
pH _ | XK =2) X*(K-1) X*(N-1) 0
: . - 0
X*(0) X*(1) X*(N-1)

We give in paragraph 9.2.1 a comparison of these methods. If N > K it is
obvious that they will give basically the same results.

COMMENT: in the correlation calculation, each of the terms can be inter-
preted as a convolution, hence the idea to use the DFT for calculating the
sequence of the covariance. We know that with a convolution in the time
domain corresponds a product in the frequency domain, and the estimated
autocovariance function can be seen precisely as the convolution of #(n) with
z*(—n), with which X(f)X*(f) = |X(f)|* corresponds by Fourier transform.
However, bear in mind that in the DFT context, we know that the associated
convolution is circular.

8.4 Filtering formulae for WSS random processes

Filtering formula for the PSD

Let X (#) be a WSS random process, with the autocovariance function Rx x (7)
and the PSD Sxx (f) fed into the input of a linear filter with the impulse
response h(t) and the complex gain H(f).

Random Processes 297

Linear filter

h(t)
XO—= n1 YO

Figure 8.5 — Linear filter

We assume that A(t) is summable (BIBO stable filter). In the continuous-
time case, this can be expressed:

/ [h(t)|dt < +o0
R
and in the discrete-time case’:
D IA(1)] < 400
teZ
It can be proven [14] that the output random process Y(¢) is WSS itself.
Its mean is given by:
my = mxH(O) (838)

Therefore, it is zero-mean if the input signal is zero-mean. Its PSD is given
by the following expression:

Syy (f) = [H(f)I?Sxx (f) (8-39)

Notice that if we decide to use the distribution formalism, formula 8.39 can
still be applied when the process is harmonic. Consider for example as the input
signal of the filter the real harmonic process X (¢) = kazl A cos(2m fyt + Dy),
the PSD of which is given according to 8.19 by:

Sxx (f Zoza F+fe)+ Zaza F= 1)
A direct calculation of the output 51gnal Y (¢) leads to:
P P
- ZAkH(_fk)e—Zjﬂka‘I’k + ZAkH(fk)eZMka@k
k=1 k=1
If we use 8.19, we get, for the PSD of Y'(¢):
1 E
Syv(f) = 72 alH(=1)lP0(f + fi)
T
+3 2 ok H () PO(f = fi) (8.40)
k=1

5In this paragraph, t and 7 belong either to R or to Z depending on whether the considered
process is continuous-time or discrete-time.

298 Digital Signal and Image Processing using MATLAB®

which can be identified with Syy (f) = [H(f)|*Sxx (f) if we use the identity
H(f)o(f — fo) = H(fo)d(f — fo), where §(f) refers to the Dirac distribution.
Starting off with 8.40, we end up with the following expression of the autoco-
variance function:

P
1
RYY 420_ |H |2 —2]7rfk7_|_ Zak|H fk)|2 25w f.T
k=1 k 1

If the filter is real, H(—f) = H*(fx) and:

Ryy (r ZO’MH (fr) | cos(2m fiT)

In the case where the input process is a white noise, the PSD Sxx(f) is
constant. It may be useful to write the Parseval formula again:

f_-l—;j |h(t)|2dt = f+°° |H (f)|*df (continuous time)

ree h f+11/22 DI?df (discrete time)

(8.41)

which allows you to calculate the filter’s output power by integrating the im-
pulse response either in time or in frequency.

The output autocovariance function’s expression is not as simple as the
PSD’s. If we restrict ourselves to the discrete-time case, we have:

+oo
Ryy(r)= > (Z h(n)) Rxx(r —m) (8.42)

m=—00 n=—oQ

Filtering formulae for the interspectrum

If the previous stationarity hypotheses are made, it can be proven that
the processes X(t) and Y (t) have stationary covariance, meaning that
E{Y:(t+ 7) X (t)} = Ryx(r) (the index ¢ refers to zero-mean processes) only
depends on the time gap 7. Once again this formula has an simpler expression
in frequency. We have:

Syx(f) = H()Sxx (f) (8.43)

where Sy x(f), which is called the interspectrum, refers to the Fourier trans-
form of Ry x(7). Note that this function has none of the PSD’s remarkable
properties. In particular, there is no reason why it should be positive, or even
real. If we restrict ourselves to the case of discrete-time random processes, we
infer:

Ryx(r) = B{Y.(t+1)X Z h(m)Rxx (1 —m) (8.44)

m=—00

Random Processes 299

Notice that if X (¢) is white with a variance of 1, that is Rxx(r) = d(7),
formula 8.44 can be simplified, and leads to:

Ryx(7) = h(r)

The impulse response coincides with the output/input covariance. This
result can be used for estimating a filter’s impulse response (see exercise 8.5).

Exercise 8.2 (Smoothing filtering of noise)
Consider the filter h(n) = 1/8 for 0 < n < 7 and 0 otherwise. A white,
zero-mean random process with a variance of 1 is fed into the input.

1. Determine the gain |H(f)|? of the filter.

2. Use this result to find the output process’s spectrum and the output
power.

3. Use this result to find the form of the output autocovariance function.
Determine after which value k the output autocovariance function is null.

4. Write a program that simulates the filtering over 2,000 points of data,
that evaluates the output autocovariance function using formula 8.32, and
uses this to find the spectrum by an FFT calculation over 512 points.

5. Compare with the theoretical results.

Generating a random signal using white noise

We are often faced with the problem of simulating the trajectory of a WSS
process with a given spectrum. The functions randn and filter make it
possible to construct such a trajectory.

The randn function generates samples of Gaussian white noise with a vari-
ance of 1. Tts spectrum is therefore constant, and equal to 1 in the (—1/2,+1/2)
band. The WSS process filtering formula 8.39 shows that we can obtain the
trajectory of the process Y (n) with a given spectrum, by properly filtering
W(n). We have:

Syy (F) = [H(N)? x Sww (f) = [H())

Usually, the complex gain H(f) = H,(e*™/) is that of a filter whose
transfer function is a rational function that can be written H,(z) =
B.(z)/A;(z). This means we have to use the filter function with the com-
mand y=filter(b,a,w), where a and b refer to the denominator and numer-
ator polynomials of the transfer function.

When used like this, the filter function starts with zero initial conditions,
creating at the beginning of the trajectory a transient part that does not cor-
respond exactly to the intended trajectory. One way of partly avoiding this is

300 Digital Signal and Image Processing using MATLAB®

to spread out the first P values of the obtained signal, when the choice of P
is directly related to the duration of the transient state of the filter’s impulse
response. For the numerator of the transfer function, this duration is simply
the number of coefficients. For the denominator, we know that this value 1s
related to the position of the poles with respect to the unit circle. A simple and
practical rule consists of considering the modulus pyax of the most resonant
pole, that is the one closest to the unit circle, and to choose P such that pf
is negligible compared with the root-mean-square of Y (n). Remember that for
a pole with the modulus p, the transient state decreases like p” (see impulse
response of a filter on page 128).

Example 8.7 (Generating a random signal)

Consider the process z(n) obtained as the output of the filter with the transfer
function H,(z) = 1/(1+ az~1'), where @ is a real number with its modulus less
than 1, the white noise W(n) with a variance of 1 being fed to its input.

1. Determine its PSD’s expression.

2. Write a program that generates a trajectory for the process X (n).
HINT:

1. Tts PSD’s expression is given by formula 8.39:

1 1
(14 ae2™)(1 + ae=27f) 14 2acos(2rf) + a2

Sxx(f)=H()I? =

2. Type:

Y===== AR1.M
a=0.9; N=1000; W=randn(N,1);
X=filter(1,[1 al,W); plot(X); grid

Note that 0.919° = 2.7 x 10~? is negligible. Hence we can consider that after
the hundredth sample the obtained signal almost represents the trajectory of
a stationary random process. [

Exercise 8.3 (Generating a band limited process)

Write a program that generates 7' = 1,000 samples of a real random process
sampled at a frequency of 10,000 Hz, the PSD of which is constant in the
(—1,000 Hz - 1,000 Hz) band and null beyond it. Its power is assumed to be 2
Watts.

Exercise 8.4 (Pre-emphasis and de-emphasis)
When transmitting a signal through a channel subjected to noise, the signal-
to-noise ratio can be enhanced by adding to the emitter a filter H,(f), called

Random Processes 301

the pre-emphasis filter, and to the receiver the inverse filter Hy(f) = 1/H,(f),
called the de-emphasis filter. The choice of H,(f) depends on the spectral
properties of the signal and of the noise.

Consider the real, zero-mean, second order stationary discrete-time process
X (n), we will assume that its PSD Sx (f) is known. This signal is corrupted
by a zero-mean, WSS, additive noise B(n) for which the PSD Sp(f) is also
assumed to be known (Figure 8.6). This type of situation is encountered in
transmission channels of communication systems, but also in any processing
that adds noise to the signal, such as the quantization operation

i B(n)
X(n) + X(n)+W(n)

— 7 | Hy(f) H+®_, Ha(f)=1/H,(f)

Figure 8.6 — Pre-emphasis and de-emphasis system

The output signal has the expression X (n) + W(n) where W(n) refers to
the noise obtained by filtering the noise B(n). The goal is to determine H,(f)
(and hence Hq(f) = 1/H,(f) also) so as to minimize the power of W(n). But
a constraint has to be imposed, since we can make the power of W(n) as small
as we want it to be: we only have to multiply H,(f) by a very large factor A
and to divide H4(f) by that same factor A, thus dividing the power of W (n)
by A? while leaving X(n) untouched. This is why we are going to compare
the SNRs obtained with and without the pre-emphasis/de-emphasis system. Py
denotes the output power of the filter H,(f).

1. Determine as a function of Hy(f) and Sp(f) the expression of the power
of the signal W(n). Use this result to find the expression of the signal-
to-noise ratio ppp of the system represented in Figure 8.6.

2. Determine as a function of H,(f) and Sx (f) the expression of Py. Use
this result to find the expression of the SNR p = Py/E(|B(n)|?) for a pro-
cess that does not use the suggested pre-emphasis/de-emphasis system.

3. Let ¢ = ppp/p. The factor g can be interpreted as a gain: the higher it
is, the better the suggested system. Determine the expression of g.

4. Using the Schwarz inequality, determine the expression of the filter H,(f)
for which ¢ is maximum.

Exercise 8.5 (Estimation of an FIR filter’s impulse response)
As you may remember, the formula 8.44 giving the output/input covariance is:

Ryx (k) = E{Y.(n+ k)X (n)} = h(k) » Rxx (k) (8.45)

302 Digital Signal and Image Processing using MATLAB®

In the case where X (n) is a white process with the PSD o2, the expression
can be simplified, leading to Ry x (k) = o?h(k). In this exercise, we are going
to use this result to estimate the impulse response of an FIR filter.

1. Determine again the expression we found relating the output/input co-
variance function Ry x (k) to the input autocovariance function Rxx (k),
for a linear filter with a finite impulse response of length L, assumed to be
known. Show that the vector h = [A(0) ... h(L —1)]7 is the solution to
a matrix expression of the type Rh = r where R is a matrix constructed
from Rxx (k) and r is a vector constructed from Ry x (k).

2. Write a program that performs an estimation of h based on the values of
X and Y generated by the following program:

%===== GENEREPIMP.M

tps=(-16:1.2:15); h=sin(tps*(pi/5.8)) ./ tps*(pi/5.8);
num=[0.3 0.4 -0.2 0.1]; den=[1 -0.8 +0.5];

x=filter (num,den,randn(1,300)); y=filter(h,1,x);

This method, called the method of moments should be compared with
the least squares method (see Chapter 11).

8.5 MA, AR and ARMA time series

The search for models to describe random processes is at the core of signal
processing, and the applications cover most of the applied fields. In this section,
we will discuss models originating from the linear filtering of a white noise, and
only discrete-time processes will be considered.

8.5.1 () order MA (Moving Average) process

Definition 8.10 (MA-Q process) An MA-Q process, MA for Moving Aver-
age, is the random process defined by:

X(n)=Wn)+bWn—-1)+---+boW(n—-Q) (8.46)

where W (n) refers to a centered, second order stationary, white random process
with a variance of 0% and {by,...,bq} is a sequence of Q) coefficients.

The process constructed in this manner turns out to be the mean weighted
by the sequence {1,b1,...,bo} of the last (@) + 1) input values. Everything
happens as if this weighting sequence was applied to the input signal, which is
why the process is called Moving Average. The process X (n) can also be seen
as the output of a linear filter the impulse response of which is the sequence
{1,b1...,bg}. Therefore, this FIR filter has the following transfer function:

B(z) =14bz 4 4 bge=9 (8.47)

Random Processes 303

It has no poles, hence it is stable.

The filter function can be used to obtain the trajectory for such a process.
The following program generates 300 samples of an MA-2 process where b; =
1.5, bs = —1.2 and ¢? = 1:

%===== TRAJMA.M
B=[1 1.5 -1.2]; w=randn(1,300);
x=filter(B,1,w); plot(x); grid

Relations between the model’s parameters and the covariances for

an MA-Q

We are going to determine the relations between the model’s parameters and
the covariance of the process X(n), starting with the example of an (MA-2)
process associated to the equation:

X(n)=Wn)+bhW(n-—1)+bW(n—2)

where W (n) is a white, centered, WSS random process with the variance o=.
First, we have E{X(n)} = 0. Hence the process is centered. Let us determine
the expression of R(k) = E{X(n + k)X*(n)} as a function of by, b5 and o?.
Using linearity and the fact that 1 (n) is white, we successively get:

Rk)=FE{X(n+k)X*(n)} =0 for k< -3

R(=2) = E{X(n —2)X*(n)} = o?b3

R(=1) = E{X(n — 1)X*(n)} = o?(b] + b13)

R(0) = BAX(0)X* (1)} = o2(1+ b + [bal?) (3.45)
R() =E{X(n+1)X*(n)} = a(by + b2b7)

R(2) = E{X(n+2)X*(n)} = by

R(k)=0 for k>3

This result can be generalized to any MA-@Q process for which the autoco-
variance function has the expression (if we note that):

o I by for 0<k<Q
R(k) = EQ Ikl g, Vb for —Q < k<0 (8.49)
0 for |k| > @Q

We check that R(k) = R*(—k). The sequence of covariances of an MA-
@ has 2Q) + 1 non-zero terms. It is of the second degree with respect to the
parameters b;.

Obviously, equation 8.49 can be used for estimating the model’s (@ + 1)
parameters, by substituting the autocovariance coefficients R(k) with their
estimates given by 8.32. Before we see an example, we are going to focus on

the PSD of X(n).

304 Digital Signal and Image Processing using MATLAB®

Spectrum of an MA-Q

According to equation 8.46, an MA-Q process can be seen as the output of a
filter the input of which is a white noise with the PSD o?. Hence formula 8.39
can be applied and leads, for the PSD, to:

S(f) = o’ |1 + bW 4y er_zjﬂQf|2 (8.50)

COoMMENT: shows 8.50 that knowing S(f), which is equivalent, by defini-
tion, to knowing the covariance coefficients, only allows us to determine the
modulus of B(e%7/). Because of theorem 4.6, we know that the roots of B(z)
can be inside as well as outside the unit circle without it changing the value of
|B(e%™7)|. Therefore, if we start with the covariance coefficients of the PSD, or
in practice with their estimates, we have 2% solutions for the polynomial B(z),
all of them leading to the same spectrum S(f). If this is all we know, there is
no reason why one of them should be chosen rather than another. However, if
we have reason to believe, in a particular problem, that B(z) has all its roots
inside the unit circle, that is if B(z) is minimum phase (definition 4.8), then
B(z) can be identified. Unfortunately, in digital communications, this is never
the case. Completely identifying B(z) requires the use of what is called higher
order statistics, or HOS (higher implicitly means higher than 2). This rules out
the Gaussian case for good, since in that case, the HOS are statistical functions
of the second order.

Example 8.8 (Minimum phase M A-1 process)

Consider a real MA-1 process defined by X(n) = W(n) + byW(n — 1), where

W (n) is a white, centered, WSS random process with the variance o?.

1. Determine the sequence of the covariances.

2. The first order correlation coefficient 1s defined by:

p = R()/R(0)

Starting with the definition of the PSD, show that |p| < 1/2 (use the
positive nature of the PSD).

3. Show that b; satisfies a second degree equation dependent on R(0) and
R(1).

4. Assuming that B(z) is minimum phase, show that only one of the two
solutions is possible.

HINT:

1. We have R(0) = o%(1 + b}), R(£1) = ¢?b; and R(k) = 0 for |k| > 2.

Random Processes 305

2. By definition, the spectrum is:
S(f) = R(1)e*™ + R(0) + R(1)e=%™ = R(0)(1 + 2p cos(27f))

The condition S(f) > 0 imposes that |p| < 1/2 (see example 8.3).

3. We get:
pb? — by 4+p=0
This equation has two solutions: b; = EanVanil Vzlp_w and b = v A V;_w the

product of which 1s 1. Knowing p, or in the case of a sequence of N
observations X (1), ..., X(N), knowing its estimate:

these two roots are both as likely. This is another example of the problem
expressed in the comment that follows expression 8.50.

4. We assume that B(z) is minimum phase. In that case, |b1] < 1, and
therefore only one of the two solutions is possible.

n

Notice, finally, that the system of equations we wish to solve is not linear.

This is why when estimating an MA, even a short one, it is usually preferable

(see exercise 9.4) to approximate it with a long AR because, as we are going
to see, the system is now linear.

8.5.2 P order AR (Auloregressive) Process

Consider the recursive equation:

X(n)+ @ X(n—1)+---+apX(n—P)=W(n) (8.51)
where W (n) refers to a white, centered, WSS random process with the variance
o2, and where {ai, ..., ap} is a sequence of coefficients. If we let:

1
H,(z) (8.52)

T 1tae '+ tapF

then the signal X(n) can be seen as the output of the all-pole filter with the
transfer function H,(z) and the process W (n) as its input (Figure 8.7).

306 Digital Signal and Image Processing using MATLAB®

W(n) 1 X(n)
A@

Figure 8.7 — Generating an AR process

Tt can be shown [14] that the recursive equation 8.51 has a single solution
X (n), second order stationary if and only if the denominator polynomial 8.52
is different from 0 for |z| = 1 (no poles on the unit circle). This results leads
us to adopting the following definition:

Definition 8.11 (AR process) A P order autoregressive process, or AR-P,
15 the only WSS process to the equation:
X(n)+ @ X(n—1)+---+apX(n—P)=W(n) (8.53)

where W (n) refers to a centered, second order stationary, white random process
with a variance of o2 and where the polynomial:

Ay =14az7 4+ +apz" P £0 for 2] =1 (8.54)
The expression of this solution is:
+oo
X(n)= Y mW(n—k) (8.55)
k=—o0

where hy is the sequence of the Fourier series expansion coefficients of the
function H(f) = 1/A(e%™7).

In the case where A(z) # 0 for |z| > 1, the poles of H,(z) are strictly inside
the unit cirele, hy = 0 for k < 0 and X(n) can be causally expressed as a
funetion of W(n):

Xn)=Whn)+hWh-1)+-+hWh—Fk +- - (8.56)

Notice that the stationary solution to equation 8.53 is the same as the
stable solution we obtained in the case of deterministic signals (see theorem
4.3, page 113). Finally, remember that if W(n) is Gaussian, then X(n) itself

is Gaussian since Gaussian nature is unchanged by linear transformations (see
theorem 7.4).

Spectrum of an AR-P

Since an AR-P can be interpreted as the output of a filter fed with a white noise
with the PSD o2, formula 8.39 can be used to determine the PSD’s expression.
This leads us to:

S(f)

0.2

- 8.57
|1—|—ale—2jﬂ'f_|_..._|_aPe—2j7rPf|2 ()

Random Processes 307

As an example, let us plot the trajectory of an AR-2 process associated
with the polynomial A(z) = 1+ a;2~! + as272, the two poles of which are
conjugated, imposing that a? — 4as < 0. Let p be the modulus of the two
conjugated poles and +¢ their respective phases. Starting off with p and ¢,
and by calculating the product and the sum of the roots, we get a; = p? and
a; = —2pcos(¢). The program trajAR.m displays a trajectory of this process.

%===== TRAJAR.M

sigma=2; phi=20%pi/180; rho=0.9;

al=-2*rho*cos (phi); a2=rho*rho;

w=randn(1,300); x=filter(sigma,[1 al a2],w); plot(x); grid

Example 8.9 (Noised sine function versus AR-2)
Write a program:

— that displays a sequence of N = 100 samples taken at the frequency F; =
1,000 Hz, from a signal Y'(t) = s(t)+ B(t), sum of a sine s(¢) = sin(27w Fyt)
with a frequency of Fy = 100 Hz and of a zero-mean, Gaussian, white
noise B(t) with variance of 0% = 0.04;

— that displays a sequence of N = 100 samples taken at the frequency
Fy, = 1,000 Hz, from an AR-2, solution of the equation X(n) + a1 X(n —
1) 4+ asX(n—1) = W(n), where W(n) is a white, centered, WSS process
with the variance O'IZ/V and with a; and as such that the filter has a
resonance at Fy = 100 Hz (see equation 4.26). Using 8.58, derive the
value of ¢, such that X(n) and Y (n) have the same power.

Compare the results.
HinT: type:

%===== SINUSVERSUSAR2.m
N=100; F0=100; FS=1000; tps=(0:N-1)/FS; sigmaB2=0.04;
y=sin(2*pi*FO*tps)+sqrt (sigmaB2) *randn(1,N) ;

%===== X and Y have the same power
RO=1/2 +sigmaB2; R1=-R0*al/(1+a2); R2=-al#R1-a2*R0;

sigmaW=sqrt (RO+al*R1+a2*R2); w=sigmaW*randn(1,N+1000);
x=filter(l,a,w); x=x(1001:length(x));

subplot (211); plot(tps,y); grid

subplot (212); plot(tps,x); grid

Figure 8.8 shows that the graph (a) presents irregularities but, however
large the errors, periodogram analysis is applicable to such curve, and, given

308 Digital Signal and Image Processing using MATLAB®

T S U S B

o T 2T 3T 41 5T 6T 7T 8T 9T 10T

Figure 8.8 — Noised sine function versus AR-2 process

a sufficient number of periods, should yield a close approximation to the pe-
riod. On the other hand, there are not abrupt variations in the graph (b), but
the amplitude varies within wide limits, and the phase is continually shifting.
Increasing the magnitude of W(n) simply increases the amplitude: the graph
remains smooth. [

Relations between the model’s parameters and the covariances for
an AR-P

Property 8.3 For a causal AR-P process, the relation between the model’s
parameters and the covariances R(k), with R(k) = R*(—k), are given by:

R(O) R(=1) - RE=P]r17 s
R(1) R(0) : oY (8.58)
R(P) - R() R@) |lerl L0

and for k > P by:

R(k) = — ZP: a; R(k — i) (8.59)

i=1

Equations 8.58 are called normal equations or Yule-Walker equations. We
will see later on that they are directly related to the problem of linear predic-
tion. More precisely, we will show that:

X(n)==Y axX(n—k)

k=

—_

Random Processes 309

represents the best linear estimation in the least squares sense, of X (n) based
on its past and that the prediction error, defined by:

g(n) = X(n) — X(n) (8.60)
is therefore equal to W(n).

To establish relations 8.58 and 8.59, we start by multiplying the two mem-
bers of the recurrence relation 8.53 by X*(n— k), then if we consider its math-
ematical expectation, we get:

E{(X(n) + - +apa(n— P)X"(n—k)} = E{W (@) X" (n - &)}

For k > 1, the second member is equal to zero, since on one hand, X (n—k)
only depends on W(n—k), W(n—k—1)...because of the stationary solution’s
causality, and on the other hand, W(n) is white. If we use the stationarity of

X (n), and if we let R(k) = E{X(n 4+ k)X™*(n)}, then for any k& > 1:
R(E)+ arR(k — 1)+ -+ apR(k — P) = 0 (8.61)

We get the same relation as 8.59. Furthermore, if we multiply the two
conjugate members of the recurrence relation 8.53 by W (n) and if we consider
the expectation, we obtain:

E{(X*(n) + a1 X*(n = 1)+ +apX*(n = P)W(n)} =E{[W(n)|"} = o

The first member is reduced to E{X*(n)W (n)} because of the causality of
X (n) as a function of W(n) and because W (n) is white. As a consequence, we
have E{X*(n)W(n)} = o?. Replacing W(n) with X(n) + a1 X(n —1) +---+
apX(n — P) leads us to:

R(0) + ay R(=1) + -+ ap R(—P) = o* (8.62)

If we stack 8.62 and the P relations we obtained from 8.61 for k =1, 2, ...,
P, we get 8.58.

You can recognize the (P + 1)-th order covariance matrix of the process
X (n) in expression 8.58 . This matrix is hermitian in the general case, R(—j) =
R*(j), and is symmetrical if the process X (n) is real.

An important result states that, because the covariance matrix is a positive
Toeplitz matrix, the solution to equation 8.58 is such that the polynomial
A(z) = 14 aj2z7t + -+ apz~F has all its roots inside the unit circle. This
result is still true if the covariances are replaced with their estimates, so long
as the matrix remains a positive Toeplitz matrix, as it is the case for the
correlation method. The fact that A(z) has all its roots inside the unit circle
ensures that the filter with the transfer function 1/A(z) has a causal and stable
representation. This filter is used for creating X(n) from W(n). We will see
an application for it in speech processing.

310 Digital Signal and Image Processing using MATLAB®

Conversely, if we know the sequence {ay, ..., ap} et 2, equation 8.58 allows
us to calculate the covariance coefficients R(k). The equations we have to solve
are linear. Thus, in the case of a real random process for which R(k) = R(—k),
we get the expression:

1 a - ap 10 0 R(0)/2 o’

a ap 0 ar 1 - 0 R(1) 0

: . . : + : . . : : = :

ap 0 -+ 0 ap -+ a; 1 R(P) 0
(8.63)

We have a system of (P + 1) linear equations with the unknowns R(0),
..y R(P). Once R(0), ...,R(P) have been calculated, 8.59 can be used to
calculate the values of R(k) beyond P, and the hermitian symmetry can be
used for k < 0.

Example 8.10 (First order AR model)
Consider the first order, real AR process, solution of the equation X(n) +

a1 X (n — 1) = W(n) where a; is real with its modulus strictly less than 1, and

W (n) is a white, centered, WSS process with the variance o?.

1. Write the Yule-Walker equations.
2. Use them to find the covariances as a function of a; et o2.
3. Use this result to find a; and o? as a function R(0) of R(1).
HINT:
1. The Yule-Walker equations are, for P = 1:
R(0) + a1 R(1) = ¢ and R(1) 4+ a1 R(0) =0 (8.64)

where we used R(1) = R(—1). And for k& > 1, equation 8.59 leads to
R(k) = —a1R(k - 1).

2. By solving equations 8.64 with respect to R(0) and R(1), we get:

Using the recurrence relation 8.59 then, for k¥ < —1, noticing that R(k) =
R(—k), leads us to:

R(k) = (-1)%'{“'% (8.65)

3.

Random Processes 311

We can also find a; and ¢? from R(0) and R(1):

_ _RQ) 2 _
al_—m and o = R(0)

R (1)
~ R(0)

(8.66)

These expressions can be used to estimate the parameters a; and ¢? from
a sequence of N observations. All we need to do is replace the covariance
coefficients with their respective estimates (equation 8.32), and we get:

ZnNz_oz X(n+1)X(n) and 5% = ZnNz_ol X*(n) (1- ﬁ%)

Sncs X2(n) N

n=0

=

Example 8.11 (Generating an exact Gaussian AR)

We have already seen how to generate a sequence of random processes with
given spectra by filtering a white sequence. We discussed the problem regarding
the transient state. In the case of a Gaussian AR process, we will see that an
exact process trajectory can be generated. This can be used to initialize the
previous method. Write a program:

that picks M poles at random inside the unit circle and then use the
MATLAB® function poly to calculate the coefficients of the polynomial
using these poles and their conjugates;

that calculates, using equations 8.63, the covariances of an AR process

defined by A(z) and o?;

that generates 20 samples of the AR process. Use a method similar to
that of example 8.5 on page 283 where we generated a colored noise using
a white noise and the square root of its covariance matrix;

that constructs a trajectory with the length 7" of this process from the
2M previous samples. Use the filtricII function to calculate, as a
function of the 2M previous samples, the nitial state that must be given
to the filter function;

that plots the sequence of covariance;

that plots in 2D the couples {a;, 2,41}

HinT: type:

%===== EXACTAR.M
% Polynomial generation
sigma2=2; M=5; rho=0.45*rand(1,M)+0.5; phi=pi*rand(1,M)/4;

312 Digital Signal and Image Processing using MATLAB®

rac=rho .* exp(j*phi); rac=[rac conj(rac)];

coeff=real (poly(rac)); LgAR=length(coeff)-1;

%===== Calculation of the exact covariances

cl=[coeff zeros(1,LgAR+1)]; c2=[zeros(1,LgAR) coeff];
Al=toeplitz([coeff (LgAR+1) ;zeros(LgAR,1)],coeff (LgAR+1:-1:1));
A1=A1(: ,LgAR+1:-1:1);

A2=toeplitz(coeff, [coeff(1);zeros(LgAR,1)]1);
rx=(A1+A2)\[sigma2; zeros(LgAR,1)]; rx(1)=rx(1)*2;
Rcov=toeplitz(rx);

%===== Square root of the covariance matrix
MatM=sqrtm(Rcov(1:LgAR,1:LgAR)) ;
%===== Generating the first Ncoeff-1 values of X(k)

WO=randn(LgAR,1); X0=MatM*W0; ZO0=filtricII(1l,coeff,0,X0);
T=200; W=sqrt(sigma?2)*randn(T,1);

Xf=filter(1l,coeff,W,Z0); LXf=length(Xf);

Xf=Xf-mean(Xf); R=2*LgAR; covX=zeros(R,1);

for rr=1:R, covX(rr)=Xf(rr:T)’ ’*Xf(1:T-rr+1)/T; end

subplot (221) ; mycirc=exp(2*j*pi*(0:100)/100); plot (mycirc);
hold on; plot(rac,’x’); hold off; axis(’square’); grid
subplot (222) ; plot (Xf); grid

subplot (223); stem(covX/covi(1));

subplot (224) ; plot (Xf(1:LXf-1) ,Xf(2:LXf),’.”); grid

A high correlation between consecutive samples corresponds to poles near
the unit circle and gives a 2D-plotting in which points are gathered around a
straight line. [

8.5.3 The Levinson algorithm

We have seen that the covariance matrix of a WSS process is a Toeplitz matrix.
We are now going to give a fast algorithm, originally suggested by Levinson,
for solving the Yule-Walker equations 8.58. If k& is the size of the covariance
matrix, this algorithm has a complexity in k? whereas a general inversion al-
gorithm is in k3. Tt is useful only when implemented in a language like “C”,
or “Fortran”, since MATLAB® provides a built-in type matrix inversion func-
tion (the inv function). In the most recent versions, the signal toolbor has a
levinson function.

The Levinson algorithm is recursive. It calculates the coefficients of the
m-th step coefficients using those obtained in the (m — 1)-th step. To achieve
this recursion, we choose the following notation for equation 8.58, in which we
used the hermitian symmetry R(—k) = R*(k):

R(0) R*(1) -+ R (m-—1) am—1(0)
RO) RO -1 X

: . . }%*(1) : :
R(m—1) -~ R(1) R(0) tp—1(m —1) 0

Random Processes 313

In this expression, the index (m — 1) indicates the (m — 1)-th step solution,
am-1(0) = 1 and v, refers to the variance of the input process. We will see

in section 11.4 that the coefficients a,,—1(k) have a fundamental meaning in
the linear prediction problem.

We can now rewrite expression 8.67 in the following two ways:
_ 0n—
R,,_1al | = [Um—1] and R,,_1a2* , = [m—2]

m—1 — *
0m-» Um—1

where we have assumed®:

A = [() o apa(m—1))7
a0 = famam—1) - anoa() 17

The exponents F' and B (as in forward and backward) indicate the direction
chosen for the vectors.

By going on to the m-th step, the covariance matrix can be written:

IR CEA

m
I‘F Rm_ 1

R(0) m
where r2 = [R(m) -+ R(1)]¥ and rf, = [R(1) --- R(m)]?. Using the
expression of the (m — 1)-th step solution, we then get:
af] [R , rBr] [aF] Lvm—1]
Rm m—1 — m m m—1 — Om—
[0 rp R(0) 0 I rmTaﬁz_l
r FH,_Bsx
R 0 1 _ [RO rEH U I B
" anty ry, Ry anty | [T_Z]
Um—1
By linear combination:
aF 0 Um—1 + kmrnF@HanBib*_l
S E T N B R .
m—1 vBTaf 4 kovh
By choosing:
BT _F
by = _rm*aim—l (8.69)
Um—1

the last term is set to zero and, by identification, we obtain the m-th step solu-
tion, which leads to vy, = vp_1 + knriHal* | By noticing that by definition,

riHaBx = (£BTal’)* we infer from 8.69 that
FH_Bs _ _ 1%
rant] = =k Umo1

8Remember that the exponent T refers to transposition without conjugation.

314 Digital Signal and Image Processing using MATLAB®

and therefore that:
U = Vo1 (1 = [km]?) (8.70)
Because v, > 0 for any m, then (1 — |k, |*) > 0 and 0 < vy, < vp—1 and:
lkm| <1 (8.71)

The coefficients k,,, are called the reflection coefficients.
By identification, we infer from 8.68 the m-th step coefficients as functions
of those obtained at the (m — 1)-th step:

F
Fo_ Ap1 0

In particular, a,,(0) = 1 and ap, (m) = ky,. To sum up, starting off with the
sequence of the covariances R(k), or of their estimates in practice, the Levinson
algorithm can be written as follows:

Initial values: ag(0) =1 and vy = R(0)
Form=1, ..., K, repeat:

R(m)am—1(0) + - -+ R(Dap_1(m — 1)
2. am(0) = 1, am(m) = kp "
3.Forje{l, - ,m—1}:an(j) = am-1(j) + kmaj,_1(m — j)

4 vy = Vo1 (1 — |km|2)

1.k, = —

We have to check that for the step m = 1, we have:
k’l = —R(l)/R(O), 01(0) = 1, al(l) = k’l, v = Uo(l — |k’1|2)

In the case of an AR~ P process, we will show that the coefficients a,, (m) = 0
for m > P + 1, which makes it possible to stop the previous loop.

Exercise 8.6 (Levinson algorithm)

1. Write a function that calculates the covariance estimates then the param-
eters of a P order AR model using the Levinson algorithm. Check the
function on a P order AR model by comparing with the estimates from
the Yule-Walker inversion. Check that am,(m) = 0 when m > P+1. The
Levinson algorithm also returns the reflection coefficients k,, .

Random Processes 315

2. Using a structure similar to the one used in the Levinson algorithm for
solving the matrix equation of the type R[1 a; --- a,]T =[¢? 0--- 0],
imaginer an algorithm that can solve the equation Rh = ¢, where R
is a Toeplitz matrix and ¢ 1s any vector. We will run into this type
of equations in section 11.2.5 when identifying a filter: see for example
equations 11.22 and 11.42 from Chapter 11. R is an autocovariance
matrix, ¢ is a covariance vector between the input and the output and h
is an FIR filter we have to estimate.

8.5.4 ARMA (P, Q) process

ARMA processes are obtained using an AR structure and an MA structure in
series. The process is the solution to the recursive equation:

X(n)+a: X(n—1)+---+apX(n—P) = W(n)+btW(n—1)+- - -+bgogW(n—0Q)

(8.73)

where W (n) refers to second order stationary, centered, white random pro-

cess with the variance o? and where {a1, ..., ap} and {by, ..., bg} are two
sequences of coefficients. Let:

o l4bzT b9

T l4az 4+ 4apzF

H,(z) (8.74)

It can be proven that equation 8.73 has a single, second-order stationary
solution X (n) if and only if the denominator’s roots, that is the poles of the
transfer function H,(z), have a modulus different from 1. In the case where
A(z) # 0 for |z| > 1, the poles of H,(z) are strictly inside the unit circle, X(n)
can be causally expressed as a function of W(n).

By definition, an ARMA (P, Q) process is the stationary solution to the
recursive equation of the type 8.73.

Spectrum of an ARMA-(P, Q)

Because an ARMA process can be interpreted as the output of a filter with a
white noise with the PSD o2 as its input, we can use formula 8.39 to determine
an expression of the PSD. This leads us to:

. . 2
_ |1 e 4 er—ZMQf|

1L+ aje=%7f 4. 4 ape=207Pf|?

S(f) (8.75)

Comments

Using an ARMA process as a model for describing an observation amounts to
assuming that its spectrum is a rational function. This 1s why 1t can seem

316 Digital Signal and Image Processing using MATLAB®

restrictive to assume that the second order parameters of an observation only
depend on a finite number of parameters. From the engineer’s perspective, the
great “universal” nature of this model is due to the fact that rational transfer
functions make it possible to approximate a very large number of functions, and
quite naturally play a role in electric, electronic, or even mechanical devices,
often by way of a constant coefficient linear recursive equation.

Furthermore, any ARMA of MA process can be approximated with an AR,
order of a high enough order. This result is fundamental for practical applica-
tions, since if among these three models the wrong one is chosen, a reasonable
accuracy can still be achieved by taking a high enough order. However, it is
easily conceivable that a process for which the spectrum has “deep valleys” will
require less parameters if the MA model is used to represent it rather than an
AR model. And conversely for “high peaks”.

Finally, remember that estimating the coefficients of an MA model usually
is not simple, since the relations 8.49 between the model’s coefficients and the
covariances are not linear, whereas they are for an AR model. This is why we
will only be estimating the parameters of an AR model.

Chapter 9

Continuous Spectra Estimation

The object of this chapter is mainly a discussion of the power spectral density’s
(PSD) estimation. In this field, it is customary to separate two cases:

9.1

9.1.1

When the statistical properties of the observation depend on a finite, and
usually small number of parameters, the model is said to be parametric.
To be more precise, it means that knowing the few useful parameters
is enough to find the exact probability distribution of the observation.
We have already encountered an example of the parametric model: the
AR-P model in the case of a white Gaussian input. Knowing the (P +
1) parameters a1, ..., ap, o2 is enough to determine the probability
distribution. Without the Gaussian hypothesis, and although it is no
longer possible to write the probability distribution of the observation
precisely, it is still possible to estimate some useful quantities, such as its
spectrum, given a finite number of parameters: this is sometimes called
a semiparametric model.

Otherwise, the model is said to be non-parametric. In the first paragraph
of this chapter we will study a situation in which the only hypothesis is
that the process 18 WSS. Knowing the spectrum requires the estimation
of an infinity of parameters, that is the set of covariance coefficients.

Non-parametric estimation of the PSD

Estimation from the autocovariance function

We have seen that expressions 8.32 can be used to estimate R(k) from a se-
ries of N observations X (1), ..., X(N). Using the resulting estimate of the
autocovariance function and the definition 8.13 of the PSD, an estimate of the

318 Digital Signal and Image Processing using MATLAB®

latter can be obtained by:

K-1

S(fi= > R(k)e Hm* (9.1)

k=—(K-1)

For a real WSS random process, we can write 9.1 as follows:

S()+ 2 Z) cos(2mk f) (9.2)

since R(k) = R(—k).

COMMENTS:

— Even if we have at our disposal the actual values of the autocovariance
function (assumed to be with infinite support), the fact of restricting, in
the calculation of S(f), the sequence R(k) to k € {—(K—1),...,(K—=1)}
amounts to multiplying { R(k) } by the rectangular window w, (k) = 1(k €
{=(K—=1),...,(K=1)}). This operation causes unwanted ripples, as we
saw in Chapters 3 and 4. Because the lobes can have positive or negative
values, this can result in negative values for the PSD estimate. Losing
the positive nature (see page 279) of the PSD is not advisable. To avoid
such a phenomenon, the triangular window, or Bartlett window can be
used instead of the rectangular window, the expression of which is:

wy(k) = (|[]i|)Il(ke{—(K—l),...,(K—l)}) (9.3)

It ensures the positive nature of the result, because the triangle function is
obtained by convolution of the rectangular window with itself. The DTFT
of the sequence wy (k) is therefore the function sin?(7(2K —1)f)/ sin®(r f),
which is always positive. Another commonly used window is the Ham-
ming window, the expression of which, as you may remember, 1s:

wh (k) = [o.54+0.46cos<K”f1)] 1k € {—(K—-1),...,(K=1)}) (9.4)

— Another important element is the choice of the number K of estimated
covariance points compared with the number N of observations. Consider
the case where N — oo (large samples). If K remains constant, the
covariance coefficients (expression 8.29) become more and more precise,
but the windowing effect remains. Hence the idea of increasing K as N
increases, but much “slower” than N. For example, we can take K = AN
with A = 1/10 and o < 1. That way, when N tends to infinity, a

Continuous Spectra Estimation 319

number K, that tends to infinity, of covariance points are calculated while
ensuring that the number of values used for estimating each covariance
point also tends to infinity.

The following function estimates the spectrum by DFT of K covariance
coefficients estimated from N observations:

function sf=covtodsp(x,K,wintype,Lfft)

%h %
%% Estimating the spectrum from the covariances %
%% SYNOPSIS: sf=COVTODSP(x,K,wintype,Lfft) %
% X = Input sequence %
YAA K = Number of estimated covariances %
%% wintype = ’r’, ’h’ ou ’b’ %
YAA for ’rectangular’, ’hamming’ or ’bartlett’ %
% Lfft = FFT size %
hh st = PSD %
%h %
N=length(x); x=x(:); rx=zeros(1,K); x=x-ones (1,N)#*x/N;
%===== Estimating the K covariances

for ii=1:K, rx(ii)=x(1:N-ii+1)’*x(ii:N); end

rx=rx/N;

%===== Windowing

if wintype(l) == ’b’,
rx=rx .* (K:-1:1)/K;
elseif wintype(l) == ’h’
rx=rx .* (0.54+0.46*cos(pix(0:K-1)/K));

end

%===== Using the hermitian symmetry property
rx(1)=rx(1)/2; st=fft(rx,Lfft); sf=2%real(sf);
return

The program is designed to process complex signals. In this case, the spec-
trum is of course real and positive, but no longer has the even symmetry any-
more. Any of the rectangular, Hamming or Bartlett, windows may be used
by assigning to fentype one of the three values ‘r’, ‘h’ or ‘b’. Calculat-
ing the PSD uses the hermitian symmetry property of the covariance function:
remember (see exercise 2.2 in Chapter 2) that to calculate the DFT of the
sequence, completed by hermitian symmetry, all you have to do is take the
real part multiplied by 2 of the monolateral sequence after having divided the
first element by 2. The behaviors for a Bartlett window are illustrated by the
spectra represented in dB in Figures 9.1 and 9.2 for two values of the number
of covariance estimates, K = 25 and K = 150. They are obtained using the
program:

%===== Complex process generated by the all-pole filtering

320 Digital Signal and Image Processing using MATLAB®

% of a white noise

a=[1 -2.4788 3.0905 -2.0646 0.6856];
sw=[1;0%j]; Pw=sw’ *sw;

w=randn (N, 2) *sw; x=filter(l,a,w);

%===== K and the window type can be modified
K=25; sest=covtodsp(x,K,’b’ ,Lfft);
sestlog=10*1loglO(sest);

sth =10%1logl10(Pw * abs(1 ./ fft(a,Lfft)) .72);
plot (freq,sth,freq,sestlog,’r’); grid

set (gca,’x1im’, [0 1/2]); % if x is real

The real signal x is generated by a white noise filtered with N = 500 values.
The theoretical spectrum is given by the filtering formula, equation 8.39.

25 (dB) — ‘ ‘ ‘ ‘ ‘
20| e b NES00 K=

! ! ! ! ! odel | !
-15-—--- o deee- e - R o IR

0 : : : : : : : Pt
0O 005 01 015 02 025 03 03 04 0.45 05

Figure 9.1 — Non-parametric estimation of an AR-4 spectrum based on K = 25
estimates of the covariance coefficients. The length of the sample is N = 500. The
window used is the Bartlett window. The dashed line is the theoretical PSD

As you can see, when the number of estimates of the covariance coefficients
increases, the estimated spectrum’s fluctuations are “closer” to the theoretical
spectrum, but the fluctuations have higher amplitudes. You can easily check
with the program that the use of the rectangular or Hamming windows does not
ensure that the estimated PSD is positive (if not, the program returns an er-
ror message when the command plot(freq,sth,freq,sest,’r’) is executed,
since sest contains complex numbers because of the fact that the logarithm
of a negative number is a complex number). A complex signal can be used by
changing for example sw=[1;0%*j] to sw=[1;3#%j] and suppressing the last line.

9.1.2 Estimation based on the periodogram

Rather than to use the DTFT of the covariances to estimate the PSD, an
intuitive idea would be to start off with the Fourier transform of a trajectory,
or of a portion of a trajectory and to calculate its square modulus. This leads
to the following definition of the periodogram.

Continuous Spectra Estimation 321

25 (dB)
20 |

150 A\ A
10
5
0
5
-10
15
-20

0 005 01 015 02 025 03 035 04 045 05

Figure 9.2 — Non-parametric estimation of an AR-4 spectrum based on K = 150
estimates of the covariance coefficients. The length of the sample is N = 500. The
window used is the Bartlett window

Definition 9.1 (Periodogram) Let X(n) be a centered WSS random pro-
cess. A periodogram is the random function of f € (0,1) defined by:

2

() = | 3 K (m)em! (95)

You would think that In(f) might be a good estimator of the PSD S(f)
of the process X (n) assumed to be WSS, but in fact not at all. Although the
mean E{In(f)} tends to the “true” value S(f) when N tends to infinity, the
square deviation E{ [In(f) — S(f)|2} does not tend to zero when N tends to
infinity.

We will now prove that the mathematical expectation of In(f) tends to
S(f). We have:

1 N-1 ' N-1 '
E{In(f)} = NE{ Z X (n)e=2mIn Z X*(m)eZJme}

n=0
] NoiN-d '
= x R(n — m)e~2mf(n=m)
n=0 m=0
N-1
k .
= (1 - %) R(k)e=?mik

where we used E{ X (n)X*(m)} = R(n—m) (the process is assumed to be WSS
and centered) and then the identity:

N-1N-1 N-1

YD gn—my= Y (1 = %) g(k) (9.6)

n=0 m=0 k=—(N-1)

322 Digital Signal and Image Processing using MATLAB®

We can rewrite E{In(f)} as follows:

+ oo

E{In(f)} = Z:(—%51%6{4N—U,H4N_UDR%FJMM

k=—o0

+oo
> In(k)R(k)em2mI*

k=—o0

If we assume that R(k) is summable, we can calculate the limit of E{ Ix(f)}
by swapping the limit and the sum sign (dominated convergence theorem [28]).
By noticing that fy(n) tends to 1, we infer that E{In(f)} tends to S(f) when
N tends to infinity. Hence the periodogram is an asymptotic unbiased estimator
of the PSD: for N high enough, Iy (f) fluctuates around the “true” value S(f).

However, 1t can be proven, and we will assume so, that the amplitude of
the fluctuations, that is E{ [N (f) = S(H)? }, does not tend to 0 when N tends
to infinity. To be more precise, what can be shown is that, under very general
hypotheses, this quantity can have the same order of magnitude as the value
we wish to estimate.

The periodogram fluctuates around the true PSD. Even if N is
very high, the amplitude of the fluctuations still has the same
order of magnitude as the PSD we wish to estimate.

The following program illustrates this behavior:

%===== FLUCTPERIO.M
Lfft=1024; fq=(0:Lfft-1)/Lfft;
w=randn(1,1000); b=[1 1.2 0.9]; a=[1 -1.1 0.92];
PSDth= 20x1ogl10(abs (£ft (b,Lfft) ./ £ft(a,Lfft)));
x=filter(b,a,w); Yi===== Process
1xt=[100 200 500 1000];
for ii=1:length(1lxt)
xt=x(1:1xt(ii));
per=20*logl0(abs (fft(xt,Lfft)))-10%1ogl0 (1xt(ii));
subplot(2,2,ii); plot(fq,per,fq,PSDth,’w’); grid
axis([0 .5 -30 401);
title(sprintf ON = %d’,1xt(ii)));
end

The samples of the random process X (n) are obtained by filtering white
noise with a variance of 1. Based on the transfer function of the filter H,(z) =
(1412271 4+0.9272) /(1 = 1.1271 4+ 0.92272), the expression of the theoretical
PSD of the process X (n) is:

14 1267 % 4 0,964

S(f) = . :
) |1-—]ﬂle—zfﬂf-+(192e—4waf

Continuous Spectra Estimation 323

Figure 9.3 shows the periodograms for four values of N as well as the the-
oretical PSD. The periodograms fluctuate around the exact PSD and the am-
plitude of these fluctuations does not seem to decrease when N increases.

40dB
20

-20

40

0 01 02 03 04 05

Figure 9.3 — Fluctuations of the periodogram for several values of N

Therefore, there is no point in directly using the periodogram for estimat-
ing the spectrum. However, in practice, every good estimator of the PSD is
constructed from the periodogram. We are going to explain two methods: the
smoothed periodogram and the averaged periodogram.

Frequency smoothed periodogram

The periodograms in Figure 9.3 show that the values obtained in several neigh-
boring frequency points fluctuate around the actual value: some are very close,
whereas others are very far, hence the idea of calculating a frequency mean. To
be more precise, consider an integer M and a sequence Wiy (k) of weighting
coefficients such that:

1. for any k, War v (k) = War v (—k) and Wi n (k) > 0;
2. ElleM WM,N(k) = 1;

3. Z|k|<M WJ%/IN(]?) — 0 when N — oo;

4. ZIkISM E*War (k)| /N? = 0 when N — oo.
If a relation of the type:
M =N witha <1 (9.7)
is chosen, then the above conditions are met. This is particularly the case for

the rectangular window defined by:

1

Wun (k) = 5357

1ke{-M, -, M}

324 Digital Signal and Image Processing using MATLAB®

and of the triangular window, or Bartlett window, defined by:

WM,J\W@I%(—%)1(1476{—M+1,~~,M—1})

In the case of a rectangular window, condition 3 can be expressed:

1 1
< < (2M +1) 2M+1

If M tends to infinity with N, then this condition 3 is satisfied. Condition
4 can be expressed:

Zinigar H War v (k) S 1
N=2 2
h (2M + 1)N
1 M(M+1
NZ2(2M+1) ZlklgM k* = (3N2)

The condition is satisfied if M/N — 0 at infinity, which is the case with the
conditions set forth.

Then we calculate the periodogram of the sequence {X(0),..., X(N — 1)}
at the points of frequencies k/N. Finally, the spectrum is estimated according
to the expression:

S (m/N) = S0y Wary (k) In ((m + k) /) (9.8)

To deal with the side effects, remember that I (f) is periodic with period
1.

Obviously, expression 9.8 leads to a decrease in the variance but on the
other hand adds bias. A detailed study of the properties of various window
and of the compromise between bias and variance can be found in [14]. We will
only be considering the triangular window.

Example 9.1 (Smoothed periodogram) Write a function that smooths
the periodogram using either a rectangular window or a triangular window,
with a length of 2m 4+ 1 and with the sum of its coefficients equal to 1.
Making the choice of L = N avoids withdrawing the empirical mean since
ZnNz_Ol pe= 2R IN = 0 for all k # 0 mod N. To make the choice of the win-

dow’s length automatic, you can take M = N2/® where N is the length of the
signal.

HinT: type:
function [sf,frql=smperio(x,M,window)
Wh A
%% Smoothed periodogram %

%% SYNOPSIS: [sf,frq]l=SMPERIO(x,M, window) %

Continuous Spectra Estimation 325

% X = Input sequence %
% M such that the window length is 2*M+1 %
%% window = ’r’ for rectangular %
%% = ’t’ for triangular %
YAA frq = Frequencies for the estimated PSD ¥
% st = Spectrum %
Wh %

if nargin<3, window=’t’; end
x=x(:); N=length(x);
if nargin<2, M=N"(2/5); end
sf=zeros (N-2xM+1,1) ;
if window==’t’
WE=[(1:M+1) (M:-1:1)1/(M+1)"2;
else
Wf=ones (1,2%M+1)/(2%M+1) ;
end
Periodogram=abs (fft(x)) ."2/N; % Periodogram
frg=(M+1:N-M-1) /N; sf=filter(Wf,1,Periodogram); sf=sf (2xM+2:I);

Averaged periodogram

This method, suggested by P. Welch [101], consists of cutting up the signal in
blocks and to calculate a mean of the different periodograms obtained for each
block. To be more explicit, the algorithm is as follows:

1. The sample {X(n)} of length N is divided in L blocks of the same
length K with overlapping.

2. A weighting window 1s applied to each of the L blocks. The resulting
sequences are denoted by {X,(k)} with£ =0:L—1and k =0 :
K—1.

3. The L periodograms are calculated, as well as their mean:

§N(f) = %Z_: (%

~ . 2
! e[(9.9)

This algorithm calls for a few comments:

1. Numerically, 9.9 is calculated on a finite number of values of f = m/M
and m € {0,..., M — 1} using the ££¢ function of MATLAB®.

326 Digital Signal and Image Processing using MATLAB®

2. It can be shown, with relatively general conditions, that §N(f) 18 a spec-
trum estimator the variance of which tends to 0 when N tends to infinity.
One condition in particular is that L also has to tend to infinity, but not
as fast as V. To make the choice of L automatic, you can take for example
L=NY3or L =N%5

3. In practice, the variance is reduced by choosing a large value for L. How-
ever, for a given value of N, increasing the number L of periodograms
amounts to reducing the number of points K = N/L of each analysis win-
dow and at the same time to reducing the frequency resolution. You may
remember that this is because when a signal is observed over a duration
of K, you cannot “see” frequency differences of less than 1/K. The con-
sequence 1s that the various periodograms show a discrepancy with the
actual spectrum: this is called a bias. The conclusion is that choosing L
1s a compromise between bias and variance.

4. The absence of weighting in expression 9.9 amounts to multiplying the

samples X (k) of the signal by the rectangular window:
1
wp(k) = —=1(ke{0,....(K-1
(k) TR (kef ()}

the energy of which is >, wZ(k) = 1. This causes unwanted ripples to
appear, related to the side lobes of its DTFT, hence the idea of using a
different window to reduce these ripples. The consequence, of course, is a
decrease in the resolution related to the main lobe. Generally speaking,
the results are the same as those already found when studying the spectral
analysis of deterministic signals; or filter design:

— the wider the main lobe is, the more the details of the spectrum will

be rubbed out;

— the higher the second lobes are, the stronger the induced ripples
will be. This is particularly noticeable in the areas of the spectrum
showing few variations.

The Hamming window is very often used:
wy (k) = @ (0.54 — 0.46 cos(27k/K)) 1(k € {0,--- , (K —1)})
where « is chosen such that >, w? (k) = 1.

5. Multiplying some of the samples by very small weighting coefficients
(about 0.08 for the smallest values of the Hamming window) gives these
samples a very unimportant role in the calculation. This is why Welch
had the idea of choosing the intervals so they would overlap. The most
commonly used overlap factor is 50%. For example, if N = 1,000 and
K = 200, we get the following intervals:

Continuous Spectra Estimation 327

|X1)"' » X200 ||X201)"' » X400 ||X401)"' » X600 ||X501)"' » Xgoo ||X801)"')X1000|

|X101,'~~ » X300 ||X301,'~~ > X500 ||X501,'~~ s X700 || X7015 > X900 |

Each sub-interval is then weighted by the appropriate Hamming window.
The 9 periodograms, and then the mean are calculated.

6. Averaging the periodograms does not completely eliminate the “fluctu-
ations”. To be more specific the reference [54] gives a % confidence
interval involving what is called the y-square distribution. If the latter
is approximated by a Gaussian distribution, we infer that the spectrum
has a 8% chance of being in the interval:

S (f) Sw (f) with ~ = ﬁerﬁnV(ﬁ) (910)
1+y 1-—4% \/f

where gw(f) is the periodogram averaged using the Welch method (50%
overlap). The erfinv(3) function is the inverse function of the error func-
tion, which can be called in MATLAB® using the command erfinv.
For g = 95% and L = 30, we get, in decibels, the confidence interval
(Sw(f) —1.33) Su(f) +1.92).

Exercise 9.1 (Estimating the spectrum using the Welch method)

1. Write a MATLAB® function that estimates the spectrum using the Welch
method, with as the input the signal to be analyzed, the type of window
(rectangular or Hamming), and the number of points of the spectra.

2. Using the filter function, generate a signal corresponding to a given
spectrum. Use the previous function to estimate the PSD of this test sig-
nal. Compare the result with the spectrum obtained with the smperio.m
function of example 9.1. Compare it with the theoretical spectrum.

Exercise 9.2 (Estimating the spectrum of a binary signal)
Write a MATLAB® function that associates with each term of the sequence
a, of independent random variables with possible values —1 or 1, either the
signal g(n) or the signal —g(n) respectively. The signal g(n) is a rectangular
impulse made up of a sequence of 77 = 10 values equal to A = 5, followed
by a sequence of To = 25 values equal to 0. Figure 9.4 shows this signal for
a sequence of 7 successive values of a,. This signal could originate from the
sampling of a “computer” signal used for transmitting a sequence of bits.

Use the welch.m function to estimate the spectrum of the signal associated
with a sequence of 1024 values. Compare with the theoretical spectrum the
expression of which, according to formula 12.55, is given by:

sin(mwf17)
sin(mf)

1 2

S = F1GUNN = 7

= (9.11)

328 Digital Signal and Image Processing using MATLAB®

where T = T1 + T5 is the duration of the sample and G(f) is the DTFT of
the sequence g(n). S(f) is obtained either by applying the ££t function to the
sequence that defines g(n), or by using expression 9.11.

50 100 150 200

Figure 9.4 — Binary signal. The positive impulse corresponds to the bit 1 and the
negative impulse to the bit 0. Fach impulse i1s comprised of a constant amplitude for
a duration of 10 followed by a zero amplitude for a duration of 25

Example 9.2 (Estimating the PSD of the quantization noise)

Write a program that estimates, using the welch function designed in exercise
9.1, the PSD of the quantization noise for several values of the quantization
step. Remember that, using the notations of Chapter 7, page 271, under the
hypothesis that the quantization is uniform and that the quantization noise
is white, the quantization noise’s PSD is equal to ¢?/12 on the signal’s entire
band. Compare the theoretical and estimated values of the quantization noise’s
PSDs using a speech signal.

HinT: type:

Y===== DSPQ.M

load phrase; Ac=max(y);

Lfft=1024; Fe=8000; fq=Fex(0:Lfft-1)/Lfft;

for M=4:7 %===== Number of bits
q=2*Ac/2"M; %===== Quantization step
yQ=round(y/q) *q; eQ=y-yQ;
[sf gammal=welch(eQ,Lfft, ’rect’ ,Lfft,0.95);
plot(£q,10%logl0(sf)); hold on
sth=10%1og10(q*q/12); plot ([0 Fel, [sth sthl,’-.’)

end
hold off; set(gca,’xlim’,[0 Fe/2]1); grid

The results are shown in Figure 9.5. Notice that the theoretical values
(horizontal full line) are in agreement with the estimates. [

Exercise 9.3 (Spectral observation and oversampling)
Use the welch function designed in exercise 9.1 to estimate the spectra.

Continuous Spectra Estimation 329

145

140 -

135 -

130 |

125 -

120 -

115

0 500 1,000 1,500 2,000 2500 3,000 3500 4,000

Figure 9.5 — PSD of the quantization noise (in dB) as a function of the frequency
(in Hz) for various values of the quantization step. The test signal is a speech signal
sampled at 8,000 Hz. The dashed lines represent the theoretical value of the PSD
under the hypothesis that the quantization noise is whaite

1. Using filtering, create a signal X (n) with the length 1024. A crude ap-
proximation could make this signal a model for audio-frequency signal.
You can use the rif function (see page 599) with a small number of co-
efficients to generate this signal. Display the resulting signal’s spectrum.

2. Perform the expansion operation corresponding to an oversampling by a
factor of 8 (see page 151). Display the resulting signal’s spectrum.

3. Perform the oversampling operation necessary to the filtering operation.
You can use the rif function with a high number of coefficients. Display
the resulting signal’s spectrum.

9.2 Parametric estimation

9.2.1 AR estimation

The object of this section is to study methods for estimating the coefficients
of an AR-model from the observed data X (0), ..., X (N — 1), and correlatively
for estimating the dsp of this sample.

Least squares method

The first idea is to minimize, with respect to a = [a1, ..., ap], the criterion:

Snop(X(n) = 5L 4 X (n — §))° (9-12)

330 Digital Signal and Image Processing using MATLAB®
Canceling the derivatives w.r.t. {a;} gives:
a=(DD)"'Dx

where x = [X(P) --- X(N — 1)]¥ and (see equation 8.37):

X*(P-1) X*(P) - X*(N-2)
X*(P-2) X*(P—1) -~ X*(N-3)
D — : : : (9.13)
X*(0) X*(1) .- X*(N—P—1)

The resulting matrix D¥D is not Toéplitz due to end-effects. This might
produce a polynomial A(z) with zeroes outside the unit circle.

The Yule-Walker method

The Yule-Walker equations 8.58 provide us with a relation between the AR
model’s parameters and its covariance coefficients. This means they make it
possible to estimate the parameters of an AR model by replacing the covari-
ances with their estimates, provided for example by the equations 8.32.

The [a,sigma2]=xtoa(X,P) function given below estimates the sequence a
of the P coefficients of an AR model as well as the power sigma2 of the white
noise input from a sample X and the model’s assumed order P:

function [a,sigma2]=xtoa(x,P)

Wh %
%% XTOA estimates the (P+1) parameters of an AR model 7
%% SYNOPSIS: [a sigma2]=XTOA(x,P) %
o X = Signal %
%h P = Order of the model %
hh a =[1a.l..... a_P] %
%h sigma2 = Variance of the input white noise %
Wh %

N=length(x); x=x(:); x=x-mean(x);
for kk=1:P+1

rconj (kk)=x(kk:N) >*x(1:N-kk+1) /N;
end
Rc=toeplitz(rconj); vaux=Rc\eye(P+1,1);
a=vaux/vaux(1); sigma2=1/vaux(1);
return

In this program, the quantities rconj(kk) provide estimations for the co-
variances R*(k). We then know (see page 295) that the estimate RC of the
covariance matrix, provided by the toeplitz(rconj) function, is a positive
matrix.

To test the xtoa function, type the following program:

Continuous Spectra Estimation 331

%===== TESTXTOA.M
trueCoef=[1 -1.3 0.8]; P=length(trueCoef)-1; sw=sqrt(1);
Lrun=100; 1istN=(500:500:4000); lgN=length(listN); perf=zeros(1gN,1);
for ii=1:1gl
N=1listN(ii);
for ell=1:Lrun
w=swkrandn(N,1); x=filter(1,trueCoef,w);
[aest s2est]=xtoa(x,P);
% Performance for the estimation of the coeff trueCoef (2)
eQ=(aest (2)-trueCoef (2)) * (aest (2) -trueCoef (2)) ’;
perf (ii)=perf(ii)+eQ;
end
end
perf=perf/Lrun;

plot (listN,perf); hold; plot(listN,perf,’ro’); hold; grid

In this program, we consider the AR-2 process defined by X(n) —1.3X(n —
1) + 0.8X(n — 2) = W(n) where W(n) is a white noise with a variance of 1.
L =100 runs are performed identically, and we will take the mean over L runs
of the square deviation between the estimated value of a parameter and its
true value as an indication of the estimation error. The experiment is repeated
for several values N of the sample’s length. Notice that the obtained graph
shows that the deviation decreases when N increases. It can be shown that
this deviation has the same asymptotic behavior as 1/\/N The program can
be modified to evaluate the estimation deviations on another of the model’s
parameters, or to change the model’s order.

The Yule-Walker algorithm solves the least squares minimization by
padding data with P zeroes on each side of the sequence (see equations 8.36
and 8.37), which is equivalent to add false data to the observed sequence. The
main advantages are the following: the associated estimates define stationary
processes and the estimates may be easily computed using the Levinson recur-
sion.

Example 9.3 (Sunspot periodicity)
The sun’s magnetic field, and its interactions with the movements of plasma,
cause small, temporarily active regions called sunspots to appear on the surface.
The intriguing part is how their number follows a cycle. The number of these
sunspots has been recorded every month for over two centuries. The resulting
values are available for research, and can be downloaded off the internet. The
graph in Figure 9.6 shows the monthly data gathered from January 1750 to
December 1999. As you can see, there are 23 lobes of roughly equal widths,
over a period of 250 years. A tendency over a longer period is also visible, but
is more difficult to analyze.

In 1898, Schuster defined the periodogram as a method to discover the
frequencies of the “hidden harmonics” in a signal and was the first to use the

332 Digital Signal and Image Processing using MATLAB®

periodogram to analyzing sunspot activity [85]. Later in 1927, the sunspot
data have first been studied by Yule [105] with an AR model (see example 8.9).

Write a program to analyzing sunspot activity using periodogram and AR-2
estimation. Notice that it is necessary to denoise the signal before processing
it. Use the function rif.m as a lowpass filter.

300

250 [s S
200 f-oooe gy T
150 f-pf i b 3

L R TR I

VA

léOO 1850 1900 1950 2000

O LB
1750

Figure 9.6 — Number of sunspots recorded monthly during the period from January
1750 to December 1999, plotted against time

HINT: type the program (Figure 9.7):

%===== ANALSUNSPOTS.M

clear; load tachsol; y=tachsol; N=length(y);

Fg=12; tps=(0:N-1)/Fs; % 12 samples per a year

[AA yc]l=tendoff (y); Lyc=length(yc); % Detrend

h=rif (30,1/40); yc=filter(h,1,yc);

%===== Periodogran

Lfft=4096; fq=Fs*(0:Lfft-1)/Lfft;

perioy=abs (fft(yc,Lfft)). 2/N; [periomax indperiomax]=max(perioy);
f0=Fs* (indperiomax-1) /Lfft; mperiod=1/£0

%===== Covariance

P=2; rr=zeros(P+1,1);

for kk=1:P+1, rr(kk)=yc(kk:N) ’*yc(1:N-kk+1)/N; end
Rc=toeplitz(rr(1:P+1)); vaux=Rc\eye(P+1,1);

%===== AR model

aAR=vaux/vaux (1) ; sigma2=1/vaux(1);

SAR=sigma2 ./ (abs(fft(aAR,Lfft)) .~2);

[SARmax indSARmax]=max(SAR);

fO_AR=Fs*(indSARmax-1)/Lfft; mperiodAR=1/f0_AR

%===== Figures

subplot (221); plot(yc(2:Lyc),y(1:N-1),°x’);grid

subplot (222) ; plot3(yc(3:Lyc),yc(2:Lyc-1),y(1:N-2),’x’); grid
subplot (212); plot(fq,perioy,’g’); set(gca,’xlim’,[0 Fs/30]); grid
hold on; plot(f0,periomax,’or’);

Continuous Spectra Estimation 333

” plot (fq,8AR,’r’); set(gca,’x1lim’, [0 Fs/30]); hold off

300 ; ; St N
250 300,
200 .
100
200\\\\ \:*200
_05 : : : : ‘ L
0 200 400 600 800 0 01 02 03 04

Figure 9.7 — Sunspots: DTFT calculated over 4,096 frequency points

Note that an estimation of the affine trend with function tendoff leads to
A(2) = 0, as we can expect from to the slope from Figure 9.6, which is almost
equal to zero. However, the mean is large since the signal’s values are positive.

The processing, for the period, leads to a value slightly above 11 years.
The previous program can be modified so as to estimate the period over sub-
intervals of the set of data. This is a method that can be used for studying
possible fluctuations. [

The Burg method

J.P. Burg had the idea [16] [38] of directly estimating the reflection coeffi-
cients (see paragraph 8.5.3) from the data, and to do this without first using
the covariance calculation. Once the reflection coefficients are calculated, the
recursive equation 8.72 is used to determine the model’s parameters.

To obtain the reflection coefficient estimates, J.P. Burg started off with the
expression (see 8.60) of the error prediction sequence at a step m > 0:

651(71) = X(n)+an(HDX(n—=1)4 -+ an(m)X(n—m)
= x'(n)a
for n from m + 1 to V. This error is said to be forward. Also, the error said to
be backward (see 11.34) is defined by:
eB (n) = X"(n=—m)+an(DX*(n—m+1)+ - +an(mX (n)

m
= xf(n)al

334 Digital Signal and Image Processing using MATLAB®

Notice that it is the conjugated values of X(n) that are involved in the
definition of ¢Z (n). If we introduce the k,, starting at equation 8.72, we can
write the m-th step forward error as a function of the (m — 1)-th step errors:

<o ([%5 o g,]

= b)+ kneB (n—1) (9.14)

)

!

=
|

Likewise, we have for the backward error:

<o ([l o5])

= B =1+ kel (n) (9.15)

)

Iw

=
(l

These two relations will be proven in section 11.3 as part of our discussion
on linear prediction.

In order to find an estimator of k,,, Burg suggests minimizing the sum
of the errors E{|cf (n)|? + |eB (n)|*} with respect to ky,. The two previous
equations lead us to a second degree equation in k,,. If we set its derivative to
zero, we get, for m > 1:

QE{Em (= 1)l 1(n)}
E{|ef,_1(n)|* + lef i (n = 1)]?}

m:

In the actual algorithm, an estimate of k,, is obtained with “temporal
means”. Thus, for m > 1, the numerator is estimated by:

LS -1 ()

E{eh_i(n—1)eh_1(n)} ~ Nomal

and the denominator by:

E{|6m 1)|2} +E{|5n€—1(”_ 1)|2}

N N
1
¥ N Tmal (Z lem—1(n)]* + Z lem—1(n — 1)|2)

n=m

This is the Burg algorithm:

Continuous Spectra Estimation 335

Inetialezation:
eg(n) = e¥(n)=X(n)forne{l,... N}
ap(0) = landwy= %zfﬂ X (n)|?
Form=1,..., K, repeat:
T D (S) 1)

N N
Zn:m |6g—1(n - 1)|2 + Zn:m |6§—1(n)|2

2. am(0) =1 and ap(m) = kn,

3. Forje{l,--- ,m—1}:am(j) = am-1(j) + kman,_1(m —)

4. v = Umo1 (1= k%)

5. el (n)=¢eb _(n) +kpel* (n—1) for n=m+1: N
Bm)y=el_(n—1)4knek™ (n) for n=m+1:N

One of the properties of the Burg algorithm is that it ensures that the
reflection coefficient estimates have a modulus < 1, and therefore guaran-
tees the stability of the lattice filter which will be described in Chapter 11.
This helps to avoid introducing false data the way the correlation method does.

Exercise 9.4 (The Burg estimation of the AR parameters)
1. Write a function that implements the Burg algorithm.
2. Write a program that compares the results of the Burg algorithm with
those obtained with the xtoa function from exercise 9.2.1.
The modified covariance method

If we stack the values of the forward error’s expression for n from p+1 to N —p,
we get:

X(p+1) X(p) e X() —ay er(p+1)
z - z S B RN .
X(N —p) X(N—-p-1) ... X(N-=2p)| |-ap ep(N —p)
= —Da+e¢p (9.16)
One approach consists of choosing a” = [al e ap]T so as to minimize

the norm of this error ep. We will see in Chapter 11 that the solution is given

336 Digital Signal and Image Processing using MATLAB®

by formula 11.10 (page 396), which can be written:
a=—(D'D)"'DTX (9.17)

where X = [X(p—l— 1) ... X(N —p)]T. This expression has to be com-
pared with the Yule-Walker equations 8.58 that are constructed from the data
matrices 8.36.

Starting off with the backward error’s expression, we have:

X(p+1) X(p+2) o X2p+ 1) [—a ep(2p+ 1)
| = z D S
X(N —p) X(N—-p+1) ... X(N) —a, ep(N)
= —Ba+4e¢p (9.18)

The modified covariance algorithm, or Forward-Backward algorithm, con-
sists of minimizing the sum of the forward and backward errors, the way the
Burg method did. If A denotes the half-sum of the forward and backward
errors, we have:

1 1
X = —§(D +B)a+ 5(EF +ep)=-Ha+ A
If we minimize, we get:
a=—(H'H)'HTX (9.19)

The essential difference between this algorithm and the one suggested by
Burg is that no stability constraint is imposed. However, it is more efficient
when estimating sines, but it does not have the drawback of the correlation
method’s poor behavior for small samples.

Exercise 9.5 (AR-1 estimation and confidence intervals)

Let @ and &2 be the respective estimators of the parameters @ and o2 of the AR-
1 model. Because the estimators are functions of the random variables X (1),
.osy X(N), they are themselves random variables. However, even in cases where
X(1), ..., X(N) are assumed to be Gaussian, their probability distribution
does not have a simple expression, but when N tends to infinity, one version
of the central limit theorem states that the random variables (a, %) are jointly
Gaussian, independent, with the means a and o? respectively, and with the
variances (1 —a?)/N et 20*/N respectively. The general result for an AR-P is
given in [21].

1. For large values of N, determine the 98% confidence ellipse of the pair
(a,5?).

Continuous Spectra Estimation 337

2. Write a program that performs L = 500 consecutive runs of a length N =
1,000 sample of an AR-1 process defined by X(n) + aX(n — 1) = W(n)
with @ = —0.7 and ¢? = 1, then estimates @ and ¢?, and finally displays
the result in the 98% confidence ellipse. Check that roughly 2% of 500,

that is 10 points, are outside the ellipse (see exercise 7.1).

9.2.2 Estimating the spectrum of an AR process

We saw in paragraph 8.5.2 that an AR process is defined as the only WSS
solution to the recursive equation:

X(n)+ @ X(n—1)+---+apX(n—P)=W(n)

where W (n) is a white, centered, WSS random process with the variance o2

and where the polynomial A(2) = 14+ ayz7t +-- - +apz=F £ 0for |z| > 1. In
this case, X (n) has a causal expression as a function of W(n).

Relation 8.58 between the model’s parameters and the covariances provides,
as we have explained, a simple way of estimating the parameters ay, ..., ap and
o? by substituting the theoretical autocovariance sequence with the sequence
of the covariance estimates. The spectrum can then be estimated using the
formula:

~ o2

S(f) = , .
(/) |1+ @ e=27f ... _|_aPe—2MPf|2

This formula is obtained by replacing the model’s parameters with the esti-
mated parameters in expression 8.57 (page 306) of the spectrum obtained with
the filtering formula 8.39 and by considering an AR process as the output of
a filter with the complex gain H(f) = 1/A(e*™) and white noise with the
PSD ¢? as its input. Remember that solving equation 8.58 leads to sequence
of coefficients a1, ..., ap such that the polynomial A(z) # 0 for |z| > 1.

This spectral estimation method is sometimes called the high-resolution
method. Notice that it is not affected, unlike the periodogram method, by the
2/N limitation related to the time truncation. Once the parameters have been
measured, the spectrum is known with an “infinite” resolution. This may seem
surprising, but is simply due to the fact that @ priori information is added
when we say that the signal is a P order AR process.

An important obstacle to the AR identification however is the noticeable
loss of resolution in the case of noised observations. The signal is then of the
type Y(n) = X(n)+ B(n) where X(n) is an AR process and B(n) is a noise. It
can be shown that for small signal-to-noise ratios, the periodogram’s resolution
is improved. [54] gives the following order of magnitude: if the signal-to-noise
ratio, expressed in decibels, is less than (32log;q N — 24), the periodogram’s
resolution 1s better than that of the AR method. For example, for N = 100,
the formula indicates that if SNR < 40 dB, it is wiser to use the periodogram.

338 Digital Signal and Image Processing using MATLAB®

9.2.3 The Durbin method of MA estimation
Consider a process MA-Q defined by:
Xn)=Wn)+nuWhn-1)+ - +bogW(n—-Q)

where W (n) refers to a white, WSS, centered random process with the variance
o2, (b1, ..., bg) is a sequence of @ coefficients. X (n) is observed for n = 1,
..., N, and we wish to estimate, using the coefficients, the parameters of this
model. Because the process is centered, the covariance estimates are denoted
with:

R(k) =+ 05 X (G + 0)X ()

We know (see page 303 on MA-Q process) that the equation system, aside
from not being linear, has more than one solution. The solution we are going
to give leads to minimum phase solution, that is the one for which all of the
roots of the polynomial B(z) = 1 +b1271 4+ -+ + bgz~% have a modulus < 1.

We wish here to indirectly estimate the parameters of the MA process by
using the estimation for an AR process. Theoretically, as the inverse of B(z),
the polynomial of the exact AR process we are looking for should have an
infinite length. In practice, the polynomial is chosen such that A(z) = 1+
a1z~ '+ -4apz~F with P high enough. The coefficient can then be estimated
using the Levinson algorithm.

Once the sequence {1, ay, as, ..., ap} is estimated, we express the fact
that A(z)B(z) & 1, in other words the convolution of the sequence {1, aj,
as, ..., ap} with the sequence we are trying to determine {1, by, bo, ...,

bo} is approximately d(n). For example, we can minimize the ¢* norm of the
discrepancy:

1 0 - 0
ay 1
1 1
dde | o
ay : -
ap bQ 0
0 ap]

If we call A the first matrix of this expression, then multiply on the left by
A we get the expression R4 [1 by ... bQ]T — [1 0 ... O]T where we
have defined R4 = A7 A. Notice that Ry is a positive Toeplitz matrix. This
leads us to an equation similar to the Yule-Walker equation 8.58, which can
therefore be solved with the Levinson algorithm presented in paragraph 8.5.3.
This method was suggested by J. Durbin.

Continuous Spectra Estimation 339

The choice of P essentially depends on where the zeros of the MA process
are located: the closer they are to the unit circle, the higher P has to be.
Finally, we wish to mention the fact that solving the Yule-Walker equations
leads to a polynomial the zeros of which are inside the unit circle. Therefore,
this method leads, for the MA process, to the minimum phase solution.

The following function estimates the parameters of an MA-@) using the
Durbin method:

function [b,sigma2]=durbin(x,Q,P)

b)
%% DURBIN estimating the (Q+1) parameters of a MA process %
%% SYNOPSIS: [b,sigma2]=DURBIN(x,q) %
o X = signal %
Wh Q = model order A
% b =[1b.l..... b_ql 3
Wh sigma2 = power of the white noise input %
hh h

N=length(x); x=x(:); x=x-ones(1,N)#*x/I;

if nargin<3, P=8%Q; end

for kk=1:P+1, rx(kk)=x(kk:N) >*x(1:N-kk+1)/N; end
Rx=toeplitz(rx); Phix=Rx\[1;zeros(P,1)]; sigma2=1/Phix(1);
for kk=1:Q+1,ra(kk)=Phix(kk:P+1) ’*Phix (1:P-kk+2); end
Ra=toeplitz(ra); Phia=Ra\[1;zeros(Q,1)]; b=Phia/Phia(1);
return

The following program tests the result:

Y%i===== TESTDURBIN.M
sigma2=8; w=sqrt (sigma2)*randn(10000,1);
hh=[1;0.3]; % minimum phase case

% hh=[.3;1]; % non minimum phase case
Q=length(hh)-1; x=filter(hh,1,w);
[b,s2]=durbin(x,Q); [hh bl, [sigma2 s2]

You can change hh=[1;0.3] to hh=[0.3;1], thus moving the zero from
inside to outside the unit circle.

Example 9.4 (Estimating the PSD of an MA-1)
Using MATLAB®, write a program:

— that generates N values of an MA-1, WSS random process;

that calculates the theoretical spectrum;

that estimates the spectrum with the use of the welch function;

that estimates the spectrum from an estimation of Rxx (0), ..., Rxx (K)
for K =2 and K = 4 (covtodsp function);

340 Digital Signal and Image Processing using MATLAB®

T

t
® 20 @

0 005 01 015 02 025 03 035 04 045 05

Figure 9.8 — Fstimating an MA-1 process’s PSD

— that estimates the spectrum using the Durbin method for P = 15.
HINT: type (see Figure 9.8):

%===== DSPMA1.M

N=3000; b1=[1;-0.7]; sigmaw2=1;
w=sigmaw2+randn(N,1); x=filter(bl,1,w);
Lfft=1024; bls=fft(b1,Lfft);

fq=(0:Lfft-1) /Lfft; Sth=sigmaw2*abs(bls) ."2;

%===== Welch method
Swelch=welch(x,16,’h’ ,Lfft,.95);
%===== K=2 covariances
Scov2f=covtodsp(x,2,’b’ ,Lfft).’;
%===== K=4 covariances
Scov4f=covtodsp(x,4,’b’ ,Lfft).’;
%===== Durbin method

[bich, sigma2ch]l=durbin(x,1,15);
Sdurb=sigma2ch*abs (fft (blch,Lfft)) . 2;
plot(fq, [Sth Swelch Scov2f Scov4f Sdurb])
set (gca, ’x1im’,[0 0.5]1); grid

Comment on Figure 9.8:

— (a) theoretical PSD;

— (b) PSD estimated with the Durbin method for an AR-15;

— (¢) PSD estimated with the Welch method for a Hamming window with
a length of 16;

— (d) PSD estimated as the DTFT of the sequence of 4 covariance coeffi-
cients estimated with the Bartlett window;

— (e) PSD estimated as the DTFT of the sequence of 2 covariance coeffi-
cients estimated with the Bartlett window.

The methods that directly use the covariance estimates (situations d and €)
often leads to results that are not as good as those obtained with the Durbin
method. [

Chapter 10

Discrete Spectra Estimation

As we have seen for both the deterministic and the random cases, a signal
composed of a sum of sines shows “peaks” in its spectrum. The object of
this chapter is to study methods for estimating their frequencies and their
amplitudes when the signal is corrupted by noise.

In this chapter, random processes will be denoted by lowercase letters so as
to reserve capital letters for Fourier transforms.

10.1 Estimating the amplitudes and the frequencies

10.1.1 The case of a single complex exponential

Consider an observation z(n) = s(n;0) + b(n) where s(n;0) = a;eX™1" is
a complex harmonic signal, where b(n) is a white, centered, WSS, complex
random signal, and where @ refers to the parameters (a1, f1). We are going to
try to estimate the complex parameter a1 and the parameter f;, which belongs
to (0,1), based on a sequence of N noised observations.

In practice, the noise b(n) is used to take into account the measurement
errors, but also the possibility that we are not quite sure of the model used for
the signal s(n; #). This occurs when we have a prioriinformation at our disposal
on the wanted signal, for example with an active radar, where s(n) represents
the signal emitted then sent back by the target. It is also the case with speech
when some of the noises originating from the vocal cords are described as a
sum of sines.

The least squares method, the general presentation of which is given in
Chapter 11, consists of calculating the values of a; and f; that minimize the
square deviation between the observed values, that is z(n), and the expected
values, that is s(n;). When the noise is assumed to be Gaussian, the obtained
values are those that maximize the probability density. In that case, the method
is called the mazimum likelihood method.

342 Digital Signal and Image Processing using MATLAB®

By stacking a sequence of N successive values of the model for the signal
s(n;0) = a1e?™51 for n from 0 to N — 1, we get the vector expression:

s(0) = are(f1)

. s(0) =[s(0) ... s(v-1)]"
with ,
e(fi)= |1 e¥rh HrH(N-D)
Notice that the expression s(f) = «je(f1) is linear with respect to ag

whereas it is not with respect to fi.
The square deviation between the observation and the model is given by:

N-1
S, fi) = |2(n) = 5(n; 0)] = (x — a1e) (x — are)
n=0
= (xf —atefl)(x — aje)
where x = [#(0) ... x(N — 1)]¥ represents the sequence of N observations.

The expression is similar to the one we encountered in example 8.6 page 291,
on suppressing seasonal trends. The minimization of J(ay, f1) with respect to
aq and f; 1s performed first by setting to zero the derivative with respect to
oy, then by replacing the result in J(aq, f1). We get:

H

a—J:2eH(x—oz1e) =0 eflx=ajefle
3@1

Noticing that efe = N for any f; leads us to:

1 1=
a] = NeHX =% nz_:o x(n)e‘zﬂfl" (10.1)

By replacing this expression of «; in the expression of J, we get a new
expression dependent only on fi:

N-1
1 3 .
Ji(f1) = xTx —ajeflx = x"x — N | = eln)e 0

and that we have to minimize with respect to f; € (0,1). Because the first
term x x does not depend on f;, the problem is equivalent to determining the
value of f; € (0,1) that maximizes the expression:

2

[{(f)_i Jvz_:l —2jmfin 10.2
D= Y e (102)
n=0

Discrete Spectra Estimation 343

There 1s no simple analytical solution to this problem. It will be denoted

by:

N-1
o —2jnfin
—arg max — E xr(n)e
hi g1‘16(0,1)]\7 = (n)

However, an approximation of the solution can be obtained digitally by
performing a tightened sampling of the interval (0,1). Once this value is cal-
culated, we get the numerical complex amplitude using expression 10.1:

1 N-1 o
31 = N 0 x(n)e—l?ﬂ'fln

n

The fact that we used expression 10.2 to estimate a frequency is not in the
least surprising, because it contains the expression of the DTFT of the sequence
{x(0),...,2(N — 1)} or to be more precise, its square modulus, which is the
expression of the periodogram (definition 9.5).

To estimate, wn the least squares sense, the frequency of one complex
exponential corrupted by white noise, all we have to do ts calculate the
observation pertodogram and find the frequency for which it reaches its
marimum.

10.1.2 Real harmonic mixtures

We now consider a real signal, sum of P sinusoidal components of the type:

P
s(n) = ZAk cos(2m fun + o)

k=1
P P

= Z ap cos(2mfiym) + Z by sin(27 fin) (10.3)
k=1 k=1

where Ay, fr and ¢ represent the parameters we wish to estimate based on a
sequence of N observations. The frequencies f1, ..., fp are all assumed to be
different.

Notice that we go from the pair (Ag, ¢x) € R¥ x (0, 27) to the pair (ay, bg) €
R x R using the bijection:

ap = Ap cos(dk) — Ay = Jai + b

by = —Ap sin(¢g) ¢ = — arctan(by /ay)

(10.4)

344 Digital Signal and Image Processing using MATLAB®

From now on, we will assume that P i1s known, and that there are more

observations than there are parameters to estimate. Let £ = (f1,...,fp),
s=[s(0) ... s(N -1 and:
Af)= [C(f) S(f)] (10.5)
where
1
cos 27rl<7f1) e cos(2mk fp)
cos(2m(N = 1)f1) -+ cos(2n(N —1)fp)
0
sin 27rl<7f1) e sin(2mk fp)
sin(2r(N —1)f1) -+ sin(2n(N —1)fp)

is a (N x 2P) matrix. If we use these notations, and stack the N
equatlons of 5() for n from 0 to N — 1, we get the expression:

s=A(f)d (10.6)
where the) = 2P sized vector
]T

d:[a1 ..o ap b1 bp I[dl dQ]

1s the amplitude vector we wish to estimate. The expression of the square
deviation is still given by:

J(d.f) = Z_: j2(n) = s(n)]” = (x = A(f)d)" (x — A(f)d)
= (x'—d"A)")(x - A(f)d) (10.7)
where x = [#(0) ... (N —1)]¥. To solve the problem, we are going to

proceed as we did previously by setting to zero the partial derivatives of J with
respect to each of the components of d. We have:

a%:a]T(x—A(f)d):o je{l,...,Q}

Discrete Spectra Estimation 345

where a; represents the j-th column of A. If we group together the equations
in matrix form, we get:

AR x-Af)d)=0< AF)TA(f)d= A(f)'x

Because the values of fi, ..., fp are assumed to be all different, the matrix
A(f)T A(f) is invertible. This leads to the expression of d, dependent on fi,
.., fp, that leads to the maximum:

d=[AF)TAE)] AR 'x (10.8)
If we then replace this value of d in J, the resulting expression is a function
of f1, ..., fp that we have to maximize:
Ji(fi,.. . fp) = (x' —d"AME)T)(x - A(f)d)

x'x —xTA(F)[AE)TAE)] A x

where we have used the fact that the matrix[A (f)TA(f)]~! is identical to its
transpose. Because the first term is not dependent on the frequencies f we are
trying to determine, the minimization is equivalent to the maximization of:

-1

K(fi,...,fr) =xTA(f) [AB)TAM)] A)Tx (10.9)

The expression of K contains the frequencies fi, ..., fp, but is not linear
with respect to these frequencies. Just as before, its maximization does not
lead to a simple analytical formula. We will simply write:

f=arg _ max x"A(f)[A()TA()

Af)Tx
fe(0,1)x---x(0,1)

We still have the possibility of a numerical calculation, but the problem
quickly becomes overwhelming, because we have to find the maximum of a
function of P variables. Once f has been calculated, the amplitudes are found
by replacing its value in 10.8. We get:

d= [A(f)TA(f)}_l A(f)x (10.10)

10.1.3 Complex harmonic mixtures

The complex case is dealt with in exactly the same way as the real case. Con-
sider:

s(n) = Zak exp(2jmfin) (10.11)

where the ay are a sequence of P complex amplitudes and the f; are a sequence
of P frequencies assumed to be all different, and belonging to the interval (0, 1).

346 Digital Signal and Image Processing using MATLAB®

The square deviation between the observation and the model has the ex-
pression:

N-1 P ' E

J(ay,...;ap, f1,..., fp) = Z z(n) — ajeZimiin (10.12)
n=0 k=1

If we let £ = (f1,..., fp) and:
1 1 1
e2imh e2imf2 e2imip
E(f) =) . . (10.13)
L2T(N-Of 20n(N=Ofa . 2in(N=1)fp

J can be written:

x — B(f)al> = (x - B(f)a)" (x - E(f)a)
= (" - a"E(f)")(x - E(f)a)

J(ala"'aapafla"'afP)

where the exponent H indicates a transpose-conjugation. First, we minimize
with respect to a = [aq, ..., ap]’. If we set to zero the partial derivatives, we
get:

Ef)? (x —E(f)a) = 0 & E(f)’x = E(f)?E(f)a
You can check for yourself that if the P frequencies are different, the matrix
E(f)?E(f) is invertible. This means that:

1

a=[E(f)YE(f)] E(f)"x (10.14)

and that the minimum’s expression 1s:
7 = xx — x"E{f) [E€)TEF)] E(F) x

We still have to minimize this quantity with respect to the set of frequencies
f. Because the first term x™x does not depend on f, this is equivalent to
maximizing the second term:

1

K(fi,...,fr)=x"E(f) [EE)PE(f)] E(f)"x (10.15)

which implies the difficulties we mentioned earlier, and that will be studied in
detail in the following paragraph.

Discrete Spectra Estimation 347

10.2 Periodograms and the resolution limit

When P is greater than 1, it becomes difficult to maximize the function
K(f1,...,fp) with respect to the frequencies f1, ..., fp, whether in the real
case with expression 10.9, or in the complex case with expression 10.15, because
it is a function of several variables, and usually has several local maxima.

However, if the differences between the frequencies are greater than 2/N | the
method whereby the P maxima of the periodogram are determined is a quite
efficient method. This makes the calculations much simpler since the multi-
variable maximization problem is changed into a single-variable maximization
problem. This is what we are going to see now by numerically studying the
case where P = 2.

Presence of several maxima for &

Let us reconsider, for P = 2, the expression of the function K (fi, f2) defined
by 10.13. The matrix E has the expression:

1 e~2infi .. g-2m(N-1)f
EH(fl,fz):[l e=20mf2 .. p=2m(N-1)f2

This means that:

He 1 pn(fo — f1)]
EE‘N[ﬁmﬁﬁ> 1

where:

sin(w N f)

pr(f) = eim v Il

(10.16)

By replacing this result in expression 10.15, we get:

K(fif) = = [Xalh) X))

N
[p}‘v(le—) S fl)] : [iﬁg] (10.17)

X

where:
N-1)
XN(f) — Z x(n)e—ZJﬂ'fn
n=0

is simply the DTFT of the sequence z(n). We are going to perform a numerical
study by considering the signal z(n) = s(n) + b(n) where:

. L0 . .0
s(n) = a?ezﬂfln + agez‘”b"

348 Digital Signal and Image Processing using MATLAB®

with @} = 1.5, a = 1, f = 0.12 and fJ = 0.61 and where b(n) is a white,
centered, Gaussian noise. There are N = 10 sample values. The following
program generates the signal z(n), plots the surface K(f1, f2) defined by 10.15
as well as the periodogram of xz(n) defined by:

In(f) = & IXn ()P (10.18)
Type

Yi===== CMLE.M

clear; T=10; £f01=.12; £02=.61; tps=[0:T-1]’;

Y%===== Signal

g=1.5%exp (2% j*xpi*f01l*tps) +exp (2% j*pi*f02%tps) ;
SNR=15; sigma2= (s’*s/T)/(10 "~ (SNR/10));
%===== Noised signal

xb=s+sqrt(sigma2) *randn(T, 1) ;

Lf=70; £1=(0:Lf-1)/Lf; £2=£f1;

mm=exp (2*j*piktps*fl) ;

%===== or: [X, Yl=meshgrid(f1,tps); mm=exp (2*j*pi*(X.*Y));
yy=zeros (Lf,Lf);
for ki1=1:Lf

for k2=1:k1-1

E=[mm(:,k1) mm(:,k2)];

yy (k1,k2)=abs(xb’ * E * pinv(E) * xb);
end

end
subplot (121) ; mesh(f1,£2,yy); view([115 35])

subplot (122); plot(f1l,abs(fft(xb,Lf))); grid

The results, obtained for a signal-to-noise ratio equal to 15 dB are shown in
Figure 10.1. Because K(f1, f2) = K*(fa, f1), we restricted the representation
to the half-plane delimited by the bisector of the first quadrant. The function
shows a global maximum in M the coordinates of which, f; and f>, are almost
equal to the two real values. But this function also has local maxima such as
m, making it difficult to find the global maximum using a numerical technique.

The graph at the bottom of Figure 10.1 shows that the obtained values f;
and f, are almost equal to the z-coordinates of the two highest maxima of the
periodogram of #(n). As we are going to show, this property has to do with
the fact that the frequency difference is such that |f{ — f9|N = 4.5 > 1. This
is a fundamental result, because it justifies the use of the periodogram for esti-
mating frequency sequences. Note that there is an essential difference between
the search for the global mazimum of the multivariable function K(f1, f2) and
the search for the two highest mazima of the single-variable function In(f).

Discrete Spectra Estimation 349

0 0.25 05 0.75 1

Figure 10.1 — Frequency estimation: the figures correspond to the function K(f1, f2)
given by equation 10.17. The bottom figure shows the periodogram (equation 10.18)
for N =10 and a signal-to-noise ratio of 15 dB

Resolution limit of Fourier

We are going to show that, when the frequencies contained in the signal s(n)
are such that:

1
min _|f) — [> — 10.19
{6,355} = 5i1> 5 ()
then the global maximum of K (f1,..., fp) is located at a point whose coordi-

nates are almost equal to the periodogram’s P highest maxima. First, let us
write once more expression 10.15:

K(fi,-- fr)=x"E(E"E)” Efx

If condition 10.19 is met, then according to 10.13, the diagonal elements of
EXE are equal to N and the non-diagonal elements have the expression:

(N1 (10— oy Sin(TN () — f2))
pn (f2 _fr?@ — JTWN=-1)(F =) . m
eI N sin(r(/g — 13)
Therefore, they quickly tend to 0 when (f? — f%)N becomes large. Hence

we can write, using the notation E = [ey, - - -ep] in the form of column vectors:
1 1 er
K(fi,...,fr) = NXHEEHX:NXH[el...eP] Sl x
H
ep

1
+ (

xHele{Ix—l— . ~~—|—xHepegx)

350 Digital Signal and Image Processing using MATLAB®

But according to 10.18, NxHe]e] x = In(f;), and therefore:

K(fv,...,fp) = In(f1)+ - -+ In(fpP)

This function’s maximum is obtained by separately maximizing In(f) for
each variable, hence the maximum of K(fi,..., fp) is obtained by using the
periodogram as an univariate function. This is why the 2/N limit condition on
the use of the periodogram is called the fundamental resolution limat of Fourier.
Finally, the estimates, denoted by fi, are used to simplify formula 10.14 and
lead to the following estimates for the complex amplitudes:

N-1

1 7
Gk = nz_:o x(n)e=2minds (10.20)

We can also prove that, under condition 10.19 set by the resolution limit
of Fourier, the result is similar in the case of real harmonic signals. Based on
10.5, we first show that:

a07am =[Sl oo sw= g7]

As a consequence, the frequencies are provided by the periodogram’s max-
imum in the (0,1/2) band (because of the hermitian symmetry). As for the
amplitudes, all we have to do is replace A(f)TA(f) = (N/2)I in 10.10, then
use relations 10.4 and 10.6. We get:

Fk] _ 2 2 [ZnNz_ol z(n) COS(?Fﬁn)]
by N

TN |05 @ (n) sin(2r fin)

As a conclusion, the amplitudes a; and —by, are twice the real and imaginary
parts respectively of the complex quantities oy given by expression 10.20.

Consider the case of a signal containing only one real sine with the frequency
f1 = 0.1, that is to say two complex exponentials with the frequencies f; and
—f1. If we apply the previous result, the periodogram is effective so long as the
difference in frequency is such that 2f; N > 1. Let us assume that N = 100,
meaning that 2f1; N = 20. The following program implements the frequency
estimation based on the periodogram:

CT
ST

%===== EST1SINREEL

clear; £1=0.1; Lfft=4%1024; N=100; A1=2; phil=pi/3;

SNR=30; sigmab=A1%10" (-SNR/20) ;
xt=Al*cos(2%pi*f1*(0:N-1)+phil)+sigmab*randn(1,N) ;
al=Alx*cos(phil); bl=-Al*sin(phil);

xf=fft (xt,Lfft)/N; [amp flind]=max(abs (xf(1:Lfft/2)));
flest=(f1ind-1)/Lfft;

alest=2*real (xf (f1ind)); blest=-2ximag(xf (f1ind))

[f1 flest], [al alest], [bl blest], [Al sqrt(alest ™ 2+blest”2)]

Discrete Spectra Estimation 351

Notice that the frequency value is given by the z-coordinate of the maxi-
mum of Iy (f) on the interval (0,1). The maximum can be found using the
FFT-based computation of In(f) for f = k/L and k € {0,...,L — 1}. The
frequency estimate’s accuracy improves as the number L of FFT calculation
points increases. This accuracy has direct consequences on the amplitudes of
the sine and cosine components, and particularly on the measurement of the
phase, as you can see from the two displayed values.

The performances are “enhanced” when N increases

We will show that, on average, the higher N is, the better the periodogram’s
components stand out in the noise. Consider once again the case where P = 1.
In the presence of noise, the signal has the expression:

z(n) = apeXThn 4 b(n)

where n € {0, ..., N — 1} and where b(n) is assumed to be white with the
variance o2. We are going to determine the periodogram’s expression. Let:

. i N
() = eimv=1s I

and:
1 N-1)
BN(f) = \/—N Z b(n)e_QJﬂ'fn
n=0

With these notations, the periodogram can be written:

2

N-1
I = |3 atme ™| = |VRapntf -)+ By ()]
n=0

Naipi(f = fr)
+2Re{VNaipy (f — f1) By (£)} + By (f))? (10.21)
Consider the expectation of In(f). The first term is deterministic. The

second term of 10.21 has an expectation equal to zero because b(n) is centered.
The expectation of the third term is expressed:

N-1N-1

n=0n'=0
where we have used the fact that E{b(n)b*(n’)} = 0?1 (n = n’). Therefore:
E{In(f)} = Naip} (f = f1) + o°

As a conclusion, E{Iy(f)} is comprised of two terms: the first one, related
to the wanted signal, shows a maximum in f; that increases with N. The

352 Digital Signal and Image Processing using MATLAB®

second one, related to the noise, is independent of N and equal to ¢?. When
N increases, that part corresponding to the wanted signal tends to stand out
in the noise around f;. This can be checked by using the previous program.
Theoretically, when N is multiplied by 2, there is a 3 dB gain on the emergence
of the peak. This result can be generalized to the case of a signal containing P
complex exponentials.

To sum up, if the frequency differences are much greater than 2/N, deter-
mining the frequencies is equivalent to studying the periodogram, which shows:

— peaks around the real frequencies f7, ..., f%, the heights of which in-
crease proportionally to V;

— and farther away from these frequencies, a basically “constant” level for
the power of the noise.

Remember that using windows other than the rectangular windows makes
it possible to reduce the height of the side lobes and therefore to help the low
amplitude components stand out better, but at the cost of a worse frequency
separation.

A program for the search of the P maxima

As we just saw, the P frequencies contained in a noised signal can be esti-
mated by choosing the periodogram’s P maxima. However, this is difficult to
implement because the periodogram usually has local maxima that must not
be taken into account. To solve this problem, we are going to use the fact that
the periodogram of a sum of P sines, in the absence of noise, and under the
Fourier condition (condition 10.19) of P lobes with the width Af around the
frequencies. The value of Af essentially depends on the weighting window.

Example 10.1 (Finding the maxima)

Consider the length N = 25 sample of the signal 2(n) = s(n) + b(n) where b(n)
refers to a Gaussian, additive, white noise of unknown power o?. We know that
s(n) is the sum of 3 real sines with unknown frequencies and amplitudes and
that the differences in frequency are much greater than the resolution limit of
Fourier, which in this case is equal to 2/25 = 0.08.

Write a program that estimates the three frequencies by calculating the
periodogram over L = 256 frequency points. Remember that the choice of L is
related to the frequency accuracy: with L = 256, for example, the calculation
points on the spectrum are separated by 1/256 & 0.004. The method mentioned
previously consists of finding the first maximum then to eliminate the points in
the spectrum around this maximum in a range of Af = +«/N. The choice of
the value for « is based on the type of weighting window. For the rectangular
window for example, the value of « is slightly higher than 1. The procedure is
repeated until the P maxima are found.

Discrete Spectra Estimation 353

%===== PMAXSIN.M
clear; clg
P=3; A=[2 1.5 1]; F=[0.1;0.23;0.3]; N=25; Lfft=256;
deltaf=round (Lfft/N);
s=A*cos (2xpixF* (0:N-1)) ;
sigma2=0.5;x=s+sqrt(sigma2)*randn(1,N) ;
%===== Signal
subplot (221); plot(x); axis([0 N -5 5]); grid
text (16,4, Temps’)
%===== Spectrum
xf=abs (fft (x,Lfft)) . 2; xf=xf(1:Lfft/2)/max(xf);
subplot (222) ; plot((0:Lfft/2-1)/Lfft,xf);
set (gca, ’xlim’, [0 0.5]1, ylim’, [0 1]); grid
text(.25,.75, 'Frequence’)
subplot (212); grid
%===== Looking for the frequencies
for ii=1:P
[mm im]=max(xf); fs=(im-1)/Lfft;
ul=max(1,im-deltaf) ;u2=min(Lfft/2,imtdeltaf);
nb=u2-ul+1l; xf(ul:u2)=zeros(1,nb);
hold on; plot(fs,mm,’0’); hold off
axis ([0 0.5 0 1])
text (£s+0.01,mm,sprintf (’% .3g’,fs))
end

Figure 10.2 shows the temporal form of the signal and its spectrum. At
first, the periodicities are difficult to distinguish in the signal’s representation
as a function of time. The spectrum, on the other hand, clearly shows the
location of the three frequencies. This calls for a comment: a more relevant
study of the temporal signal consists of interpolating the signal (this is allowed
because it is in agreement with the sampling theorem) so as to obtain a time
discretization sufficient to estimate the periodicity.

The previous program also allows you to check the efficiency loss when the
differences in frequency are too small. This is achieved by choosing values of
Af with a modulus close to 1/N. (]

Example 10.2 (Analysis of a musical note)
Figure 10.3 shows the signal created by a piano note, a “C2” (264 Hz), sampled
at the frequency 24 kHz. The signal’s shape, as well as the physical phenomena
involved when the chords vibrate, lead us to describing the signal as a sum of
sines.

The spectrum in Figure 10.4, for a 600 samples portion of the signal, shows
peaks with frequencies that are approximatively the multiples of a fundamental
frequency corresponding to the note that is played. The spectral envelope, the

354 Digital Signal and Image Processing using MATLAB®

08 | | Frequencies

ffffffffffffffffffffffffffff

0 5 10 15 20
1 50,0977

0 3 3 3 3 : : : 3 :
0O 005 01 015 02 025 03 035 04 045 05

Figure 10.2 — Top-left graph: the signal as a function of time. Top-right graph: the
stgnal’s spectrum. Bottom graph: location of the 3 maxima obtained with the program.
The signal-to-notse ratio s equal to 10 dB and the real frequencies are equal to 0.1,
0.23 and 0.3

77

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

Figure 10.3 — Note played by a piano

virtual line that passes through the maxima of the peaks, 1s characteristic of
the instrument’s timbre.

We are first going to analyze the signal in such a way as to extract the
main frequential components, then, based on these components, synthetize a
signal. The point of this process is to have a small number of parameters (the
duration, the frequency, the timbre) that can then be modified, to create a
sound. After having recorded a sound created by a musical instrument such as
a piano, a guitar, etc. write a program:

— that cuts up the signal in windows covering a duration of a few periods;

— that extracts the amplitudes and the frequencies of the P most important
components. You can use the Hamming window, and with a method
similar to the one used in the previous program, spread out a certain

Discrete Spectra Estimation 355

0 500 1,000 1,500 2,000 Hz

Figure 10.4 — Spectrum of a 600 sample portion of the signal shown in Figure 10.3

number of points located on either side of the maxima. The value of P
can be chosen based on an a prioristudy or through an automatic process
such as the one we will see on page 357;

— that creates a signal from the extracted amplitudes and frequencies. Dis-
continuities appear in the trajectory when the created portions are placed
one after the other, and these discontinuities are distinctly audible. This
problem can be solved by cutting up the signal in windows with an a%
overlap. When the signal is created, the calculated window 1s multiplied
by a triangular or trapezoidal window then added with an overlap of a%
to the previous window (Figure 10.5).

Overlapping windows

N

+
W

Figure 10.5 — Reconstruction with overlapping blocks

This “Overlap-Add” technique ensures a satisfactory continuity of the
total trajectory.

HiNT: the following program analyzes and synthetizes a piano note. The
duration of a window was set to 350 samples, which corresponds for this note
to a little over 4 periods. The window must be chosen long enough, but not
too long to maintain a good stationarity. A long window is particularly badly
suited for the attack and the release of a note.

356 Digital Signal and Image Processing using MATLAB®

%===== ANANOTE.M

clear

figure (1)

load piano; Fe=24000; N=length(piano);
%===== Splitting in blocks

1bloc=350; nbblocs=fix(/1bloc);
pianoF=piano (1:nbblocs*1bloc);
xsyn=zeros (nbblocs*1bloc,1);
tpsbloc=(0:1bloc-1)/Fe;
%===== Windows
fenH=0.54-0.46%cos (2%pi*(0:1bloc-1)’/(1bloc-1));
fenH=fenH*1bloc/sum(fenH) ; % Normalization
fenT=2%[(0:1bloc/2-1)’; (1bloc/2-1:-1:0)’]/1bloc;
%===== Parameters of the spectral analysis
P=12; Lfft=4096; deltaf=2%round(Lfft/1bloc) ;
fq=Fex (0:Lfft/2-1) /LEft;
%===== Processing
for jj=0:2*nbblocs-2
jj1=(1bloc/2)*jj+1; jj2=jjil+lbloc-1;
x=pianoF(jjl:jj2) .* fenH; x=x-mean(x);
fs=zeros(1,P); mm=zeros(P,1);
%===== Spectrum
xf=fft (x,Lfft); xf=xf(1:Lfft/2)/1bloc; xfvar=xf;
xfvar(1l:deltaf)=zeros(1,deltaf);
%===== Analysis
for ii=1:P
[bid im]=max(abs(xfvar));
fs(ii)=(im-1)/Lfft; mm(ii,1)=xfvar(im);
ul=max(1,im-deltaf) ;u2=min(Lfft/2,im+tdeltaf) ;
nb=u2-ul+1l; xfvar(ul:u2)=zeros(1,nb);

end

%===== Synthesis
xsyn_f=2+*real (exp (2*j*pi*(0:1bloc-1) ’*fs) *mm) ;

%===== Overlap-add

xsyn(jjl:jj2)=xsyn(jjl:jj2)+ xsyn_f .* fenT;

subplot (211) ;

plot (tpsbloc,pianoF(jj1:jj2),’:’ ,tpsbloc,xsyn_f); grid
%===== Drawing the spectra

subplot (212) ,plot (fq,20%1log10 (abs (xf))) ;

set (gca, ’ylim’,[-70 0])

hold on; plot(fs*Fe,20%log10(abs(mm)),’or’); hold off;
grid; pause

end
ti=(0:nbblocs*1lbloc-1);
%===== Displaying the reconstructed signal

figure(2); plot(ti,pianoF,’b’,ti,xsyn,’r’); grid

Discrete Spectra Estimation 357

The diagram at the bottom of Figure 10.6 shows the spectra of a signal
portion and of the estimated frequencies and amplitudes. The graph above it
shows the analyzed (dashed line) and synthetized signal (full line). [

0 1,000 2,000 3,000 4,000 5,000 6,000

Figure 10.6 — Frequency and amplitude estimates of the harmonic part for a win-
dow of 350 samples extracted from the signal shown in Figure 10.3. Top figure: the
original signal (dashed line) and the synthetized signal (full line). Bottom figure: the
periodogram. The dots ('0’) indicate frequency and amplitude estimates

We wish to determine sinusoidal frequencies, but in most problems, the
number of sines is unknown. We can mention the case of the number of signifi-
cant frequential components in a music signal (see example 10.2) or the case of
the RADAR where P represents the number of targets that are being tracked.
Unfortunately, estimating P is a difficult problem, and the reader can find more
detailed information in the literature [54]. We will now introduce a heuristic
method that has the advantage of being simple. It is based on the comment
made on page 352 explaining that the periodogram’s level is basically equal to
the noise levels at the frequencies other than the sine frequencies. We are also
going to estimate the value of ¢? and use it to estimate the number of sines:

— Let us assume that the number of sines is less than a set value Py,
given a priori. Its value depends on the practical information available
concerning the system being studied.

— The periodogram is computed over L FFT points, and the values located
in a A-wide interval around each of the P, maxima. This makes it
possible to eliminate the sinusoidal contributions. The choice of A de-
pends on the type of window used and the number of FFT points. It can
be adjusted depending on the situation. Usually the number of lobes is
chosen to be an integer.

2

— Based on the remaining values of the periodogram, o< is estimated.

— Finally, only the P maxima greater than a certain threshold are kept.
The choice of this threshold can be made according to the 3-sigma rule.

358 Digital Signal and Image Processing using MATLAB®

In terms of power, this leads the values of the periodogram smaller than
962 to be considered as noise, and the rest as part of the signal.

NBSIN.M

Definition of the signal

A=[2 1.5 1]; F=[0.1;0.23;0.3]; N=100; Lfft=128;
deltap=3*round(Lfft/N); % Value to adjust

% typically 3*Lfft/N

%===== (Generation of samples
s=A*cos (2xpixF* (0:N-1)); sigma2=0.4;
Pmax=6; %==== Number of sines

mm=zeros (1,Pmax) ; x=s+sqrt(sigma2)*randn(1,N);
xf=abs (£ft (x,Lfft)) .~ 2 / N ;
xfplus=xf(2:Lfft/2);
for ii=1:Pmax
[mm(ii) im]=max(xfplus);
ul=max(1,im-deltap); u2=min(Lfft/2,im+deltap);
nb=u2-ul+1;
%===== Set to 0 close to the maxima
xfplus (ul:u2)=zeros (1,nb);
end
nbz=length (find (xfplus==0)) ;
%===== Mean of the values of the periodogram
sigma2est=sum(xfplus)/((Lfft/2)-nbz) ;
seuil=9*sigma2est;
P=length(find (mm>seuil));
disp(sprintf(’%2i sines’,P))

10.3 High resolution methods

Unlike the methods using the periodogram, even with windowing, the high
resolution methods are such that the error tends to zero when SNR — co.

10.3.1 Periodic signals and recursive equations

Property 10.1 Let s(n) be the harmonic signal such that:

s(n) = Zak exp(2jmfin) (10.22)

where ay is a sequence of P compler amplitudes and fi is a sequence of P
frequencies, all of them different from one another. Then there is a sequence
b1, ..., bp such that:

1. the signal s(n) obeys the recursive equation:

s(n)+bis(n—1)+---+bps(n—P)=0 (10.23)

Discrete Spectra Estimation 359

2. and the equation:
B(z) =2 +b2P 7 4 4 bp =0 (10.24)
has its P distinct roots on the unit circle.
Conversely, if s(n) obeys 10.23, and if B(2) = 2F +b1zF~1 + ...+ bp has

its P distinct roots on the unit circle, then s(n) is of the type 10.22 where the
ag are any P complexr values.

The proof of this i1s in every way the same as the one given in Chapter §,
page 409 for random harmonic processes. It leads to B(z) = Hkpzl(z — zi)
where z; = 23775

This is even more true when s(n) is a real signal, sum of P sines of the
type:

P
s(n) = Z ai cos(2mfyn + ¢r)
k=1

[l
]~

% [ej‘z’k exp(2jmfxn) 4 e7I9% exp(—?jﬂ'fkn)]
1

=
o
I

= > olf
k=1

where the (i are the 2P values of the type e This is because s(n) is
expressed as the sum of 2P complex exponentials the frequencies of which come
in pairs of positive and negative values. Therefore, according to property 10.1,
s(n) obeys a recursive equation of the type s(n)+bys(n—1)+...+baps(n—2P) =
0 where the 2P degree polynomial B(z) = 228 4 b, 22P~1 4+ .. 4 byp has all of
its roots on the unit circle come in pairs of complex conjugate values. Hence
the coefficients of B(z) are real.

An important example i1s that of a periodic signal with period T, sum of
sines the frequencies of which are multiples of the fundamental frequency 1/7.
In this case, the roots of B(z) are regularly distributed on the unit circle.

Notice that in any case, the recursive equation associated with the signal
depends on the sequence of frequencies of this signal (by way of the coefficients
of B(z)) but is independent of the sequence of complex amplitudes. Remember
that if the roots are strictly inside the unit circle, then the signal is evanescent
with a time constant that increases as the root with the highest modulus gets
closer to 1. We are now going to see that the recursive equation can be modified
by filtering.

*2j7 i

Filtering a periodic signal with a linear filter

We know that filtering a sine of frequency fy leads to a sine with the same fre-
quency fo, the amplitude of which is multiplied by H(fy), where H(f) refers

360 Digital Signal and Image Processing using MATLAB®

to the filter’s complex gain. The same goes for any linear combination of sines.
Hence, because a sum of sines obeys the M-th order recursive equation, the
signal obtained after filtering obeys the same order recursive equation. This
result should not be surprising since, as we have just seen, this equation has
several solutions that differ only by the amplitudes of each frequential compo-
nent. And the amplitudes of these components are precisely what is set by the
filter’s frequency response.

Example 10.3 (Impulse train)
Consider the signal made up of a sequence of periodic impulses with period M
and with the same amplitude A:
A forn =0 mod M
zo(n) =

0 otherwise

1. Give the recursive equation verified by #(n).
2. Give the general solution z(n) to the previous recursive equation.

3. z(n) is fed into the input of a filter with the complex gain H(f). Give
the expression of the output signal y(n). Is it possible to determine H(f)
based on the signal y(n)?

4. Show that, when the filter is an all-pole filter with the transfer function
1/A(z) and M > 1, A(z) can be estimated using the least squares method
without having to estimate M. You can use the xtoa function written
previously (see page 330). Write a program that checks the result.

HINT:

1. The signal z(n) verifies the recursive equation z(n) — z(n — M) = 0.

2. To find the general solution, we must first solve the characteristic equation
zM —1 =0, the roots of which are ; = exp(2jrk/M), k=0,..., M —1.
The general solution is then given by:

M-1

z(n) = Z ok exp(2jmkn/M)
k=0

where the ay are M arbitrary complex constants. One example is the
impulse sequence zg(n) for which a, = A/M. We end up with the same
identity as 2.33.

3. Based on the complex exponential filtering property and because of lin-
earity, we have:

M

M
y(n) = ZakH(k/M) exp(2jmhkn/M) = Zﬁk exp(2jmkn/M)
k=1 k=1

Discrete Spectra Estimation 361

Hence y(n) also verifies y(n) — y(n — M) = 0.

Theoretically, without any further information, we cannot find H(f) for
any f based on the signal y(n), because the values of H(f) of the type
H(k/M) are found in the expression of y(n). However, if M is large,
the function H(f) will be sampled at a high rate, and under certain
regularity conditions, we can find a unique reconstruction of H(f). An
example of a constraint is for the sequence h(n), the inverse DTFT of
H(f), to have a duration shorter than M. Another example is to have
an all pole filter with the P-th order transfer function 1/A(z). In that
case, the polynomial A(z) is completely determined once the P frequency
points are known, and then we only need to have M > P.

. Since the filter has the P-th order transfer function 1/A(z), we can write:
y(n) +ary(n — 1)+ -+ apy(n — P) = z(n)

where z(n) is the sequence of impulses with the amplitude A and the
period M. Based on a sequence of observations y(1), ..., y(N), and by
stacking the recursive equations, we get the matrix expression:

y(P+ 1)+ ary(P) + -+ apy(l) = z(P +1)
y(P) +ary(P — 1) + -+ apy(0) = z(P)

y(N)+a1y(N —1)+ -+ apy(N — P) = z(N)
This set of expressions can be written as follows:

y Y] [;] v+ Ya-4i

and can be rewritten as:
y = —Ya + Ai (10.25)

where Y is the Toeplitz matrix the first line of which is [y(P) ... y(1)], and
the first column of which is [y(P) ... y(N —1)],y = [y(P+1) ...y(N)]7,
a=[a; ...ap]”, and where i is a periodic eigenvector comprised of a 1
followed by (M — 1) zeros. Let us now assume that M is much greater
than 1. The vector i contains almost nothing but zeros, and a can be
estimated using a “least squares” type approach by minimizing, with
respect to a, the norm J(a) = ||y — (= Ya)||> = (y + Ya)T (y + Ya). If
we set the gradient of J(a) to zero, we have:

dJ(a)
Oa

=2Y (y + Ya) = 2(Y'y + YT Ya) = 0

362 Digital Signal and Image Processing using MATLAB®

leading to the estimate:

a=—(Y'Y)"'Y'y = —(YT'Y/N) L (YTy/N) (10.26)

The matrix (YZY)/N and the vector (YZy/N) can be seen as elements
constructed from the covariances. Hence expression 10.26 is similar to the
equation a = —R~'r derived from the Yule-Walker equations 8.58, which
relate the parameters of an AR process to the covariance coefficients.
Thus, we can use the xtoa function, the advantage of which is to provide
us with a stable filter. Type:

%===== FILTRAIN.M
clear all, close all
Fg=8000; F0=120; % FO frequency in Hz
M=round(Fs/F0); % Period in sample number
For "ideal'" pulse P=1
In all cases, P must be much smaller than M
P=1; pulse=ones(P,1);
% An other pulseshape:[0.2;0.7;1;0.3;0.1];
nbpulses=20; lx=nbpulses*M; xs=zeros(lx,1);
for tt=0:nbpulses-1

ii=tt*M+1;iifin=ii+P-1;

xg(ii:iifin)=pulse;
end
K=10; % Try any shift
xs=[zeros(K,1);xs]; 1lx=length(xs);
xs=xs*sqrt (1x) /sum(xs); Px=xs’#*xs/1x;
subplot (411); plot((1:1x)/Fs,xs)
nfft=2"nextpow2(1lx); freq=Fs*(0:nfft-1)/nfft;
Xf=abs (fft (xs,nfft))/sqrt(1x);
subplot (412); plot(freq,Xf); set(gca,’xlim’,[0 Fs/2]);
%===== Filtering
aa=[1;-1.6;0.9]; Hf=1./abs(fft (aa,nfft));
ys=filter(l,aa,xs); Yf=abs(fft(ys,nfft))/sqrt(1lx);
subplot (413) ; plot(freq,Yf);
hold on; plot(freq, Hf,’r’); hold off;
set (gca, ’x1im’, [0 Fs/2]);
[aae sse]l=xtoa(ys,2); [aa aael,[Px sse]
subplot (414) ; hatxs=filter(aae,1,ys); plot((1:1x)/Fs, hatxs)

The advantage of this method is that it requires neither the estimate of the
period M nor the estimates of the phases corresponding to the precise times
when x(n) is equal to 1.

Discrete Spectra Estimation 363

10.3.2 The Prony method

The least squares method used in paragraph 10.1 uses a model for the signal.
We already explained in paragraph 10.1 that this leads us to the difficult task of
finding the maximum of a multivariable function. The periodogram is another
method that approximates the previous calculation. Its advantage i1s that it
only requires the search for the M maxima of a single-variable function. It
is, however, limited when it comes to frequency resolution. We know that
the order of magnitude for this limit is 2/N, where N is the duration of the
observation.

We are now going to discuss a method invented in the 18th century by the
Baron of Prony, a method that enhances the resolution while still having the
advantage of requiring only the search for the maximum of a single-variable
function.

Exercise 10.1 (The Prony method)
Consider the noised harmonic signal z(n) = s(n) + w(n) where:

P
s(n) = Z ai cos(2mfyn + ¢r)

k=1

and where w(n) is a white, centered, Gaussian noise with the variance o%. {ay}
refers to a sequence of P unknown amplitudes, assumed to be all different from
one another, and ¢ refers to a sequence of P unknown phases belonging to

(0,2m).

1. Given equation 10.24, how can the sequence of frequencies fi, ..., fp be
determined based on the sequence of values by, ..., bap 7

2. If we assume that £(n) = w(n) + byw(n — 1) + -+ - 4+ bapw(n — 2P) and
add s(n) + b1s(n— 1)+ -+ -+ baps(n — 2P) = 0 to the second member,
we get e(n) = z(n) + bye(n — 1) + -+ -+ bapx(n — 2P). We are going to
try to determine the sequence by, ..., bop that minimizes) £%(n).

Show that this is equivalent to minimizing, with respect to b =
[1by ... bap]”, an expression of the type:

b"(DTD)b

where D is a matrix obtained from the observations z(0), ..., (N —1).

Using the Lagrange multiplier method (see page 382 and the Capon
method), find the expression of b and therefore the frequencies fj.

3. Write a program that implements the Prony method. Study this method’s
performances by choosing for example the test signal x generated by the
program:

364 Digital Signal and Image Processing using MATLAB®

%===== SIGNALTEST.M

N=25; Am=[2 1.5 1]; F=[0.2 0.225 0.3];
s=Am*cos (24pi*F’*(0:N-1));

SNR=40; sigma2= (s#*s’/N)/(10 ~(SNR/10));
x=s+sqrt (sigma2)*randn(1,N) ;

COMMENTS:

1. The recursive equation s(n) +b1s(n—1)+---+bps(n— P) =0, given in
property 10.1, should be assimilated to equation 8.53 (Chapter 8) which
defines an AR-P random process with its second member equal to zero
and with its poles on the unit circle. AR identification is known for
usually behaving very badly with noised observations. This is also the
case of the Prony method, which provides good results only when the
noise is low.

2. The Prony method can also be applied to signals that are sums of damped
sines of the type:

P

Z Agpl; cos(2mfon + ¢r)

k=1

s(n)

P
A , . iy)
= ZpZTk (6‘7¢k exp(2jmfxn) + e 719k exp(—?jﬂ'fkn))
k=1

It can easily be proven that s(n) verifies the recursive equation s(n) +
bys(n — 1) + -+ + baps(n — 2P) = 0, where the polynomial B(z) =
22 4 012°P~T 4 ... 4 byp has 2P complex conjugate roots given by zp =
pi exp(£2j7fi). The previous algorithm makes it possible to calculate
the by, then the roots z; and therefore the frequencies f; and the damping
coeflicients py.

Exercise 10.2 (The Pisarenko method)
Consider the real, discrete-time observation z(n) = s(n;#) + b(n), sum of a
centered, WSS, random sequence s(n;#), that represents the signal with the
vector parameter § we wish to estimate, and of a noise b(n) assumed to be
WSS, centered, white, with the variance ¢, and uncorrelated with s(n; 0).
Let R;s(k) = E{s(n+k;0)s(n;0)} be the autocovariance function of
s(n; @), and let Ry, Ry and Ry, be the (M x M) covariance matrices of the
random vectors obtained by stacking M consecutive times of s(n;#), b(n) and
z(n) respectively. Hence, because s(n;#) is centered, Ry can be written:

Ry, (0) o Ry (M —1)
R, = z g z
Re(=M +1) -+ Ry, (0)

Discrete Spectra Estimation 365

Because the sequence R, (k) is even, the matrix Ry is symmetrical. As for
the noise b(n) assumed to be white, we have Ry, = 0?1 where I refers to the
size M identity matrix.

1. Show that R, = R, + ¢°1.

2. The rank of the matrix R; is assumed to be R = (M — @) and let {Ay,
...y AM—q} be the non-zero (hence strictly positive) eigenvalues of R.
Use this to show that the eigenvalues p,, of R, can be arranged in the
following order:

f1 > fiy > > UM > MGl = BM G2 = = g = O

3. Let us assume the random signal is of the type:
s(n; A, fo) = Acos(2r fon + @)

where A is an unknown positive amplitude, fy is an unknown frequency
belonging to (0,1/2) and @ is a random variable with a probability distri-
bution uniformly distributed on (—m, +7) and assumed to be independent

of b(n).

Determine E{s(n)} and E{s(n+ k)s(n)}. By using the fact that any
sine 1s the solution to a recursive equation with its second member equal
to zero, show that the (3 x 3) matrix R, usually has a rank equal to 2.

This means that there is a non-zero vector of the typea = [I =2z 0]7
such that R;a = 0.

4. Generalize the previous result and infer a method for estimating f; based
on R;.

5. Evaluate this method’s performance using the test signal x generated by
the program signaltest.m, and compare the results to those obtained
with the Prony method.

Y===== STGNALTEST.M

N=25; Am=[2 1.5 1]; F=[0.2 0.225 0.3];
s=Am*cos (24pi*F’*(0:N-1));

SNR=40; sigma2= (s#*s’/N)/(10 ~(SNR/10));
x=s+sqrt (sigma2)*randn(1,N) ;

The Pisarenko method can be generalized and leads to the MUSIC algo-
rithm (for MUltiple SIgnal Classification) presented in paragraph 10.3.3.

366 Digital Signal and Image Processing using MATLAB®

10.3.3 The MUSIC algorithm

In this paragraph, we are going to present a method that belongs to the cate-
gory of what are called subspace methods, and that will provide us with a way
of estimating the frequencies of a harmonic mixture by finding the P minima
of a single-variable function. The algorithm, the acronym of which is MUSIC,
for MUltiple Signal Characterization, works better than the DTFT when the
frequency differences are much smaller than the inverse of the number of ob-
served points (resolution limit of Fourier). TFurthermore, it can be applied to
a broader observation model than that of sines corrupted by noise.

Based on the example of a sum of P real sines corrupted by white noise,
we are going to end up with equation 10.29 responsible, because of how it is
written, for the notable properties of the covariance matrix.

Sum of P real sines corrupted by white noise

Consider the real observation z(n), n € {0, ..., N — 1}, of the type:
P
Zak cos(2m fxn) —|—Zbk sin(27 fyn) + b(n) (10.27)
k=1 k=1

1. {fx }is a sequence of P frequencies, all of them different from one another,
belonging to the interval (0,1/2);

2. {ag} and {bg} are two sequences of P real values;

3. b(n) is a centered, white noise, with the unknown variance o?.

Once the sequence fi has been estimated, the sequences ag and by can be
estimated using the least squares method. Refer to expression 10.8 on page
345.

Let us now develop s(n + £). We successively get:

P
(n+1) Z ap cos(2mn i) cos(2mlfi) — ag sin(2mn fi,) sin(27L fr)
k=1 k=1
P P
+ Z by cos(2mn fy) sin(2wlfi) + Z by sin(2mn fi,) cos(2mL f)
k=1 k=1
Let 8 =[0, ... 0p]" where 0 = 2nfx and let:
cos(2mlf1) ay cos(2mn f1) + by sin(27nf1)
_ |cos(2nlfp) | apcos(2mnfp) + bpsin(2wnfp)
w(6) = sin(2mlf1) and s(n) = —aysin(2mnfi) + by cos(2mnfi)

sin(é;r.ﬁfp) —ap sin(?ﬂnfp.).—l.— bp cos(2mnfp)

Discrete Spectra Estimation 367

With these notations, we have:

s