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PREFACE

The material in this book contains sufficient mathematical
background to challenge the graduate student and to allow
the experienced communication systems engineer to analyze,
specify, and select optimum solutions for a variety of appli-
cations. Furthermore, it is hoped that the many performance
plots, tables, and design concepts will prove beneficial to sys-
tem design engineers who are less inclined to delve into the
mathematical rigors. The importance of communication sys-
tems performance simulations cannot be overstated as a
developmental tool prior to the software and hardware
designs. Computer simulations allow the designer to predict
the system performance beyond the assumptions leading to
mathematical models. In nearly every chapter to follow,
the results presented have been verified using computer simu-
lations and found to be in agreement with the theoretical
results.

Although the material presented in this book focuses on
the modulator and demodulator (modem) subsystems, the
transmitter and receiver (transceiver) subsystems and the cor-
responding antenna subsystems must be considered in order
to evaluate the overall communication link performance. Fur-
thermore, the design of these subsystems is influenced by the
communication channels that are broadly characterized as
wireline and wireless or radio frequency (RF) channels.

The modulator, transmitter, and transmitter antenna sub-
systems function together with inputs from an information
source. Similarly, the receiver antenna, receiver, and demod-
ulator subsystems perform the complementary functions pro-
viding optimum data estimates to the information destination
or sink. In these roles, the modulator performs the important
functions of preparing the source information data for subse-
quent transmission. This involves source coding, channel
coding, and optimal mapping of the coded data to the selected
symbol modulation format for transmission. Design

considerations regarding the symbol modulation format
selection involve bandwidth conservation and power effi-
ciency that are largely influenced by the channel.

Communication systems are broadly defined in terms of
point-to-point and network communications. Within these
systems, there are three basic forms of transmissions: simplex
refers to information transmission in one direction only as in
commercial broadcast radio; half-duplex refers to transmis-
sion is one direction at a time as in push-to-talk radios;
full-duplex refers to simultaneous transmissions in both
directions. These forms of transmission require increasing
degrees of complexity and performance capabilities. The data
link performance analysis presented in the book typically
applies to the physical layer corresponding to single carrier
per channel (SCPC) point-to-point communication links.
With the inclusion of the network controls [1] and the asso-
ciated overhead functions, the physical layer performance
can be applied directly to time division multiple access
(TDMA) networks. The performance of frequency division
multiple access (FDMA) and code division multiple access
[2] (CDMA) networks can also be evaluated with the respec-
tive inclusion of adjacent channel interference (ACI) and co-
channel interference (CCI) losses. In general, network centric
protocols are specialized for specific applications and as such
are beyond the scope of the book. However, because of its
relative simplicity and utility in providing virtually error-free
data transmission, the performance of automatic repeat
request (ARQ) protocols requiring half or full-duplex net-
working capabilities is discussed.

A major performance measure of a digital communication
system is the bit-error probability characterized as a function
of the ratio of the received signal energy per source bit to the
noise density. Many of these performance plots are obtained
using Monte Carlo simulations with the goal of providing a
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smooth eye-appealing curve approximating the theoretical
performance.' To this end, the number of Monte Carlo trials
over the entire range of signal-to-noise ratios is selected to
achieve a reasonable confidence level at the lowest bit-error
probability of interest. The resulting performance curve is
very accurate for the lower signal-to-noise ratios; however,
the performance at the highest signal-to-noise ratio may
appear as an outlier not conforming to the expected theoret-
ical result. In these cases, the outlier data is brought into com-
pliance with the smooth performance curve in one of two
ways; the simulation is re-run using a minimum of 10 times
the number of Monte Carl trials or the data point is brought
into compliance manually by adjusting the bit-error probabil-
ity; this approach is comparable to fitting a French curve to
the lower signal-to-noise ratio data points and appropriately
adjusting the outlier. Flaring of the performance curve due to
nonlinearities or intersymbol interference is also taken into
account.

The following is a brief description of the subjects in each
chapter that often includes case studies to illustrate the meth-
odology of the evaluation and the characteristics of the under-
lying performance measure.

Chapter 1 focuses on the description of techniques and
analytical methods used throughout the book including real
and analytic characterization of waveform modulations,
Fourier transforms, an introduction to statistical analysis,
optimum waveform detection and parameter estimation, a
brief look at ARQ protocols, spectral control using windows,
vector and matrix operations, and lists of commonly mathe-
matical relationships. The chapter can be considered as refer-
ence material associated with the remaining chapters;
however, the notion of the complex envelope or analytic rep-
resentation of baseband signals should be thoroughly
understood.

Chapter 2 discusses many fundamental relationships
required for analysis involving digital signal processing.
The notion of Nyquist sampling and the requirement for cap-
turing the information contained in the received signal are
described using baseband and bandpass sampling techniques.
Multirate signal processing and rate conversion is examined
using various rate conversion filters including the cascade
integrate and comb (CIC) filter. The chapter includes a dis-
cussion of polyphase filters and Lagrange interpolation lead-
ing to the Farrow filter. The chapter concludes with the
derivation of a parabolic interpolator for improvement of
time and frequency estimation errors used during waveform
acquisition and information detection and tracking. The
material in the chapter provides essential insights into funda-
mental digital signal processing requirements for the design
of the modem subsystem and, as such, each topic should be
examined in sufficient detail to result in an optimum design.

'To aid in the simulation of a smooth eye-appealing performance curve, all of
the noise generator seeds are reset at each signal-to-noise ratio.

Chapter 3 introduces the fundamental concepts of digital
communication systems involving source and channel cod-
ing and optimum techniques for information recovery. The
concepts are discussed using discrete memoryless and binary
symmetric channels. Shannon’s channel capacity limit forms
the basis of the analysis and bounds on the bit error are exam-
ined using the computational cutoff rate. The chapter con-
cludes with a discussion of the probability integral and the
error function. The chapter, like Chapter 1, may be consid-
ered reference material; however, Shannon’s error-free per-
formance limit must be understood along with the many
applications and forms of the error function.

Chapters 4 through 7 provide a comprehensive analysis of
various waveform modulations and the corresponding power
spectral density (PSD) and bit-error performance. Constant
envelope modulations ranging from multiphase shift keying
(MPSK) to Gaussian minimum shift keying (GMSK) are
examined. Spectral efficiency achieved through phase shap-
ing while maintaining a constant envelope is a major topic.
The simplicity and robustness of differentially coherent
waveform modulation and demodulation is also examined.
The spectral root-raised-cosine (SRRC) waveform, although
not a constant envelope modulation, results in superior spec-
tral efficiency. The spectrums of these modulated waveforms
are compared to industry-standard transmit spectral masks.
Chapter 5 examines the bit-error performance and PSD of fre-
quency shift keying with coherent and noncoherent detec-
tion. Chapter 6 examines the performance of amplitude
shift keying (ASK) including binary on—off keying (OOK),
pulse amplitude modulation (PAM), and quadrature ampli-
tude modulation (QAM). Chapter 6 concludes with a discus-
sion of partial response modulation focusing on the modified
and multilevel duobinary modulations. Chapter 7 discusses
M-ary coded waveforms focusing on the coherent and nonco-
herent detection of M-ary orthogonal and biorthogonal
waveforms.

Chapter 8 focuses on coding for improved communica-
tions, beginning with the description of commonly used pulse
code modulation (PCM) waveforms. Coding techniques that
are generally applied to a variety of waveform modulations
include gray and differential coding, binary cyclic coding,
cyclic redundancy check (CRC) coding, data randomizers,
and block and convolutional interleaving. The chapter also
includes descriptions and performance results for Wagner
coding, convolutional coding with Viterbi decoding, turbo
and turbo-like parallel concatenated convolutional coding
(PCCC) or turbo coding, serial concatenated convolutional
coding (SCCC), low-density parity-check (LDPC) coding,
and turbo product codes (TPCs). The chapter concludes with
Bose—Chaudhuri-Hocquenghem (BCH), Reed-Solomon
(RS), and Reed—Solomon Viterbi (RSV) coding.

Chapter 9 focuses on forward error correction (FEC)
codes without bandwidth expansion. In these cases, addi-
tional modulation states are included as redundant states



for maximum likelihood error correction in a trellis decoder.
The implementation and performance of multi-# M-ary con-
tinuous phase modulation (CPM) is compared to that of
MPSK trellis-coded modulation (TCM).

Chapter 10 provides a detailed analysis and performance
evaluation of carrier acquisition and tracking using first
through third-order phaselock loops. The tracking perfor-
mance using classical control theory is compared to that
using the maximum a posteriori probability (MAP) estima-
tion procedure. Detailed implementations diagrams and per-
formance results are provided for MPSK and MSK waveform
modulations. A procedure is discussed to optimize the phase-
lock loop gains in simulation and hardware designs to con-
form to the theoretical response under prescribed input
conditions. Case studies are provided that demonstrate the
dynamic and steady-state tracking conditions.

Chapter 11 discusses the signal presence detection and
acquisition of a received waveform using a data preamble;
the topics including automatic gain control (AGC), coarse
and fine carrier frequency estimation and acquisition, symbol
synchronization, and start-of-message (SOM) detection. The
chapter concludes with various methods of estimating signal
and noise powers and the received signal-to-noise ratio.

Chapter 12 analyzes various adaptive estimation algo-
rithms beginning with a discussion of the orthogonality prin-
ciple and Wiener’s solution to the optimum filtering problem.
Various estimation techniques are examined with algorithms
developed for the finite impulse response (FIR) and least
mean-square (LMS) adaptive filters. Adaptive equalization
algorithms include the zero-forcing, linear feedforward, non-
linear decision feedback, fractionally spaced and the recur-
sive least-squares (RLS) equalizers. Interference and noise
cancellation algorithms are also discussed.

Chapter 13 provides a detailed study of the spread spec-
trum communications focusing on direct-sequence spread-
spectrum (DSSS), frequency-hopping spread-spectrum
(FHSS), and time-hopping spread-spectrum (THSS). The
link geometry and link margins are characterized for
anti-jam (AJ) and low probability of intercept (LPI)
communications. The probability of detecting and intercept-
ing spread-spectrum waveforms is examined for various
interceptor detection algorithms. The communicator’s perfor-
mance with intentional jamming is evaluated under the
following conditions: BPSK and QPSK with a continuous
wave (CW) jammer; M-ary FSK and DC-MPSK with partial
band noise jammers; and FHSS with multitone jammers.
A simplified analytical computation of the upper bound on
the bit-error performance with various modulations and jam-
mers is outlined. The chapter concludes with a case study of a
terrestrial jammer encounter using the Longley—Rice irregu-
lar terrain model (ITM).

Chapter 14 describes various acceptance and rejection
procedures suitable for modem pre- and postproduction test-
ing. Modem subsystem modeling and Monte Carlo
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simulation techniques are also described leading to the bit-
error performance evaluation through various types of chan-
nels. The chapter concludes with the description of the bit-
error performance evaluation using quadrature integration.
Several case studies are provided to demonstrate the method-
ology and utility of the evaluation procedures.

Chapter 15 describes the link budget analysis using the
communication range equation. This is an essential chapter
that outlines fundamental system requirements and related
analysis that must be established prior to a detailed subsys-
tem design. The link budget essentially establishes the
cost-effective subsystem conditions to ensure that the sig-
nal-to-noise ratio at the receiver input is sufficient for relia-
ble communications under the specified channel condition.
The chapter highlights the important topics involving
high-power amplifier (HPA) nonlinearities, transmitter and
antenna effective isotropic radiated power (EIRP), receiver
antenna gain-temperature ratio (G/T), receiver noise figure,
antenna polarization, system phase noise, and channel rain
losses.

Chapter 16 analyzes various satellite orbits focusing on
the link range and signal dynamics. The results correspond
to terrestrial or airborne satellite links and satellite cross-links
and are used in establishing a satellite link budget as dis-
cussed in Chapter 15.

Chapter 17 discusses the transmission information
through a bandlimited time-invariant channel. The chan-
nel response to an input data symbol is examined in terms
of the channel amplitude and phase functions. This anal-
ysis forms the bases for evaluating the performance of
baseband PCM modulated waveforms using wireline
medium.

Chapter 18 discusses communicating through a Ricean
fading channel characterized in terms of the specular-to-
random power ratio with limits corresponding to the
Rayleigh and Gaussian channel models. The bit-error perfor-
mance of fast and slowing nonselective fading channels is
examined for coherent BPSK, differentially coherent BPSK,
and noncoherent BFSK waveform modulations. The relation-
ship between the channel coherence time and bandwidth is,
respectively, associated with Doppler spread and time disper-
sion. The channel concludes with a discussion to diversity
combining techniques to mitigate the loss associated with
fading channels. This material is considered to be a prerequi-
site for the material in Chapters 19 and 20.

Chapter 19 discusses various aspects of atmospheric prop-
agation using the spherical 4/3 effective Earth radius model.
The topics discussed include line of sight (LOS) propagation,
reflection from the Earth’s surface, tropospheric and iono-
spheric refraction, and diffraction. Several propagation loss
models are characterized for urban, suburban, rural environ-
ments with applications to land mobile and satellite commu-
nications. The chapter concludes with the characterization of
communication links involving impulsive noise induced by
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lightning strikes, ocean wind-waves, and dispersion of opti-
cal pulses through clouds.

Chapter 20 discusses various aspects of ionospheric prop-
agation beginning with the characterization of electron den-
sities in the natural and nuclear-disturbed environments. The
refractive index is characterized in terms of the magnetic field
strength and electron collisions from which the signal absorp-
tion and phase functions are established. Signal fading is
characterized in terms of the scintillation index and the Rytov
parameter. The dependence of the signal-decorrelation time
and the frequency-selective bandwidth on the carrier fre-
quency is also identified. A methodology is described for
seamlessly concatenating an unlimited number of fading
channel temporal FFT generated records to facilitate accurate
Monte Carlo performance simulations in a stressed environ-
ment. Based on the electron density profiles, the Rayleigh
channel fading model corresponding to severe signal scintil-
lation is used to evaluate the link performance using several
robust waveform modulations. Monte Carlo simulations are
used to compare the performance of DEPSK, DCBPSK, and
8-ary FSK modulations with and without FEC coding in the
slow Rayleigh fading channel. The simulated performance of
interleaved RSV coded DCBPSK and DCQPSK is also
examined over the range of fast to slow Rayleigh fading
regimes.

The book concludes with three appendices:

Appendix A discusses the following classical analog fil-
ters: Butterworth, Chebyshev, Bessel, and Elliptic. The filter
functions are implemented as digital filters and used in sev-
eral chapters and case studies.

Appendix B is a brief discussion of the design and imple-
mentation of digital filters. The filter functions are used in
several chapters and case studies.

Appendix C discusses the theoretical detection and false-
alarm probabilities of signals in noise under a variety of condi-
tions are examined, including coherent and noncoherent detec-
tion using single and multiple pulse integration with and
without fading. The results are based on the classical radar
related work of J.I. Marcum and P. Swerling and are selectively
applied principally to the detection and acquisition of commu-
nication waveforms.
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SUMMARY OF NOTATIONS

Notation Description Notation Description

T Modulation symbol duration” (= 1/R;) [x],,, nint(x) Nearest integer to x computed as: [x+.5]: x> 0
T, Information bit duration (= 1/R;,) and [x-.5]; x <0

Tx Transmitter subsystem m

Rx Receiver subsystem ( ), mCn Binomial coefficient

N, One-sided white noise spectral density n

= Equal [a1” Matrix transpose

=~ Approximately equal [AT* Matrix conjugation

#+ Not equal [AT* Matrix complex conjugate transpose

~ Asymptotically equal AL, 1Al 4, Determinate of matrix

< >8,02 Inequality; inclusion bij Kronecker delta function: §;=1:i=j; o.w. §;=0
ow. Otherwise au values:. nf)t indicated 50) Delta function: J © 5(1)di=1

— Approaches in the limit o

A For all sinc(fT) sin(zfT)/=fT

2 Definition rectT)=1:1t| < T2 ;=0 o.w.

= Implies recty{(t/T,n) rect((t — nT)/T)*

& Transform pair Sign(a,x) =a: x20; =-a: o.w.

1/ab Inline division: 1 =+ ab N(m,o) Gaussian (normal) distributed random variable
|x] Floor: greatest integer < x Elx] Statistical average (expectation)

[x] Ceiling: smallest integer > x pdf Probability density function

(Xp1s ves X)) Finite time sequence of elements x, pmf Probability mass function

{x1, ..., x,,} Finite set of elements x cdf Cumulative distribution function

<x(f)> Time average iid Independently and identically distributed

Zix; Summation over all i except i=0 id Identically distributed

[x], int(x) Integer value of x iff If and only if

TAlmost exclusively used as the symbol duration.
iRepetition notation for P.M. Woodward’s rect(¢/T) function.
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MATHEMATICAL BACKGROUND AND

ANALYSIS TECHNIQUES

1.1 INTRODUCTION

This introductory chapter focuses on various mathematical
techniques and solutions to practical problems encountered
in many of the following chapters. The discussions are
divided into three distinct topics: deterministic signal analy-
sis involving linear systems and channels; statistical analysis
involving probabilities, random variables, and random pro-
cesses; miscellaneous topics involving windowing functions,
mathematical solutions to commonly encountered problems,
and tables of commonly used mathematical functions. It
is desired that this introductory material will provide the
foundation for modeling and finding practical design solu-
tions to communication system performance specifications.
Although this chapter contains a wealth of information
regarding a variety of topics, the contents may be viewed
as reference material for specific topics as they are encoun-
tered in the subsequent chapters.

This introductory section describes the commonly used
waveform modulations characterized as amplitude modula-
tion (AM), phase modulation (PM), and frequency modula-
tion (FM) waveforms. These modulations result in the
transmission of the carrier- and data-modulated subcarriers
that are accompanied by negative frequency images. These
techniques are compared to the more efficient suppressed
carrier modulation that possesses attributes of the AM,
PM, and FM modulations. This introduction concludes
with a discussion of real and analytic signals, the Hilbert
transform, and demodulator heterodyning, or frequency
mixing, to baseband.

Sections 1.2—1.4, deterministic signal analysis, transform
in the context of a uniformly weighted pulse f(#) and its spec-
trum F(f) and the duality between ideal time and frequency
sampling that forms the basis of Shannon’s sampling theorem
[1]. This section also discusses the discrete Fourier transform
(DFT), the fast Fourier transform (FFT), the pipeline imple-
mentation of the FFT, and applications involving waveform
detection, interpolation, and power spectrum estimation. The
concept of paired echoes is discussed and used to analyze the
signal distortion resulting from a deterministic band-limited
channel with amplitude and phase distortion. These sections
conclude on the subject of autocorrelation and cross-
correlation of real and complex deterministic functions; the
corresponding covariance functions are also examined.

Sections 1.5-1.10, statistical analysis, introduce the con-
cept of random variables and various probability density func-
tions (pdf) and cumulative distribution functions (cdf) for
continuous and discrete random variables. Stochastic pro-
cesses are then defined and the properties of ergodic and sta-
tionary random processes are examined. The characteristic
function is defined and examples, based on the summation
of several underlying random variables, exhibit the trend in
the limiting behavior of the pdf and cdf functions toward the
normal distribution; thereby demonstrating the central limit
theorem. Statistical analysis using distribution-free or nonpa-
rametric techniques is introduced with a focus on order statis-
tics. The random process involving narrowband white
Gaussian noise is characterized in terms of the noise spectral
density at the input and output of an optimum detection filter.
This is followed by the derivation of the matched filter and the
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2 MATHEMATICAL BACKGROUND AND ANALYSIS TECHNIQUES

equivalence between the matched filter and a correlation
detector is also established. The next subject discussed
involves the likelihood ratio and log-likelihood ratio as they
pertain to optimum signal detection. These topics are general-
ized and expanded in Chapter 3 and form the basis for the opti-
mum detection of the modulated waveforms discussed in
Chapters 4-9. Section 1.9 introduces the subject of parameter
estimation which is revisited in Chapters 11 and 12 in the con-
text of waveform acquisition and adaptive systems. The final
topic in this section involves a discussion of modem configura-
tions and the important topic of automatic repeat request
(ARQ) to improve the reliability of message reception.

Sections 1.11-1.14, miscellaneous topics, include a
characterization of several window functions that are used
to improve the performance the FFT, decimation filtering,
and signal parameter estimation. Section 1.12 provides an
introductory discussion of matrix and vector operations. In
Section 1.13 several mathematical procedures and formulas
are discussed that are useful in system analysis and simulation
programming. These formulas involve prime factorization of
an integer and determination of the greatest common factor
(GCF) and least common multiple (LCM) of two integers,
Newton’s approximation method for finding the roots of
a transcendental function, and the definition of the
standard deviation of a sampled population. This chapter
concludes with a list of frequently used mathematical formu-
las involving infinite and finite summations, the binomial
expansion theorem, trigonometric identities, differentiation
and integration rules, inequalities, and other miscellaneous
relationships.

Many of the examples and case studies in the following
chapters involve systems operating in a specific frequency
band that is dictated by a number of factors, including, the
system objectives and requirements, the communication
range equation, the channel characteristics, and the result-
ing link budget. The system objectives and requirements
often dictate the frequency band that, in turn, identifies the
channel characteristics. Table 1.1 identifies the frequency

TABLE 1.1 Frequency Band Designations

Letter Frequency
Designation  Frequency Designation (GHz)
ELF 3-30 Hz L 1-2
SLF 30-300 Hz N 2-4
ULF 0.3-3 kHz C 4-8
VLF 3-30 kHz X 8-12
LF 30-300 kHz Ku 12-18
MF 0.3-3 MHz K 18-27
HF 3-30 MHz Ka 27-40
VHF 30-300 MHz Vv 40-75
UHF 0.3-3 GHz w 75-110
SHF 3-30 GHz mm (millimeter) 110-300
EHF 30-300 GHz

band designations with the corresponding range of frequen-
cies. The designations low frequency (LF), medium fre-
quency (MF), and high frequency (HF) refer to low,
medium, and high frequencies and the prefixes E, V, U,
and S correspond to extremely, vary, ultra, and super.

1.1.1 Waveform Modulation Descriptions

This section characterizes signal waveforms comprised of
baseband information modulated on an arbitrary carrier fre-
quency, denoted as f.. Hz. The baseband information is char-
acterized as having a lowpass bandwidth of B Hz and, in
typical applications, f,. >> B. In many communication system
applications, the carrier frequency facilitates the transmission
between the transmitter and receiver terminals and can be
removed without effecting the information. When the carrier
frequency is removed from the received signal the signal pro-
cessing sampling requirements are dependent only on the
bandwidth B.

The signal modulations described in Sections 1.1.1.1
through 1.1.1.4 are amplitude, phase, frequency, and sup-
pressed carrier modulations. The amplitude, phase, and fre-
quency modulations are often applied to the transmission
of analog information; however, they are also used in various
applications involving digital data transmission. For exam-
ple, these modulations, to varying degrees, are the underlying
waveforms used in the U.S. Air Force Satellite Control
Network (AFSCN) involving satellite uplink and downlink
control, status, and ranging.

In describing the demodulator processing of the received
waveforms, the information, following removal of the carrier
frequency, is associated with in-phase and quadphase (I/Q)
baseband channels or rails. Although these I/Q channels
are described as containing quadrature real signals, they
are characterized as complex signals with real and imaginary
parts. This complex signal description is referred to as com-
plex envelope or analytic signal representations and is dis-
cussed in Section 1.1.1.5. Suppressed carrier modulation
and the analytic signal representation emphasize quadrature
data modulation that leads to a discussion of the Hilbert
transform in Section 1.1.1.6. Section 1.1.1.7 discusses con-
ventional heterodyning of the received signal to baseband
followed by data demodulation.

1.1.1.1 Amplitude Modulation Conventional amplitude
modulation (AM) is characterized as

s(8) =A(1 +mym(t)sin(w,t) )sin(w,?) (1.1)

where A is the peak carrier voltage, m; >0 is the modulation
index, m(?) is the information modulation function, w,, is the
modulation angular frequency, and . is the AM carrier
angular frequency. Upon multiplying (1.1) through by sin



(w.t) and applying elementary trigonometric identities, the
AM-modulated signal is expressed as

s(t) =Asin(w.t) + %m(r)cos((wc—wm)t)
A (1.2)
—Tlm(t)cos((a)c +wp)1)

Therefore, s(f) represents the conventional double side-
band (DSB) AM waveform with the upper and lower side-
bands at .+, equally spaced about the carrier at w,.
With the information modulation function m(f) normalized
to unit power, the power in each sideband is m;Pg/4 where
Py is the power in the carrier frequency f..

1.1.1.2 Phase Modulation Conventional phase modula-
tion (PM) is characterized as

s(t)=Asin(@.t+ @(t)) (1.3)

where A is the peak carrier voltage, o, is the carrier angular
frequency, and ¢() is an arbitrary phase modulation function
containing the information. The commonly used phase func-
tion is expressed as

@(t) = ¢sin(w,t) (1.4

where ¢ is the peak phase deviation. Substituting (1.4) into
(1.3), the phase-modulated signal is expressed as

s(t) =A(sin(w.t + ¢ sin(wyt)) (1.5)

and, upon applying elementary trigonometric identities, (1.5)
yields

s(t) =Asin(w.t)cos(Psin(wyt)) + Acos(w,t)sin(¢g sin(w,,t))
(1.6)

The trigonometric functions involving sinusoidal argu-
ments can be expanded in terms of Bessel functions [2]
and (1.6) simplifies to

s(t)=AJy(¢p)sin(w.t) +A N Ju(P)sin((w,. + nw,,
(1) (¢)sin(wcr) + Zl[ (¢)sin((@c + nwp)t) 0

+(=1)"Ju(@)sin((w.—newpy)t))

Equation (1.7) is characterized by the carrier frequency
with peak amplitude AJy(¢p) and upper and lower sideband
pairs at @, +nw,, with peak amplitudes AJ,(¢). For small
arguments the Bessel functions reduce to the approximations
Jo(@) =2 1,01 () =¢p/2 with J,(¢)=0:n>1 and (1.7)
reduces to
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s(t) =2 Asin(w.1) + ATqbsin((wc +wp,)t) —A%bsin((wc—wm)t)
:small ¢
(1.8)

Under these small argument approximations, the similari-
ties between (1.8) and (1.2) are apparent.

1.1.1.3 Frequency Modulation The frequency-modulated
(FM) waveform is described as

s(f)=Asin (wct+ %Sin(wmt)) (1.9)

m

where A is the peak carrier voltage, . is the carrier angular
frequency, Afis the peak frequency deviation of the modula-
tion frequency f,,, and ®,, is the modulation angular fre-
quency. The ratio Afff,, is the frequency modulation index.
Noting the similarities between (1.9) and (1.5), the expres-
sion for the frequency-modulated waveform is expressed,
in terms of the Bessel functions, as

s(t) = A (%f) sin(w.) +Ag {Jn (%) sin((@e +nay)t)

+(=1)"J, (?—”{) sin((wc—"wm)f)]

(1.10)

with the corresponding small argument approximation for the
Bessel function expressed as

5(6) = Asin(@.) + %sm((a)c + o)) -%Sm((wc—w,ﬂ)z)
: small g
(1.11)

The similarities between (1.11), (1.8), and (1.2) are apparent.

1.1.1.4 Suppressed Carrier Modulation A commonly
used form of modulation is suppressed carrier modulation
expressed as
s(t) =Am(r)sin(w.t + (1)) (1.12)
In this case, when the carrier is mixed to baseband, infor-
mation modulation function m(z) does not have a direct current
(DC) spectral component involving 6(w). So, upon multiplica-
tion by the carrier, there is no residual carrier component @, in
the received baseband signal. Because the carrier is suppressed
it is not available at the receiver/demodulator to provide a
coherent reference, so special considerations must be given
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to the carrier recovery and subsequent data demodulation.
Suppressed carrier-modulated waveforms are efficient, in
that, all of the transmitted power is devoted to the information.
Suppressed carrier modulation and the various methods of
carrier recovery are the central focus of the digital communi-
cation waveforms discussed in the following chapters.

1.1.1.5 Real and Analytic Signals The earlier modula-
tion waveforms are described mathematically as real wave-
forms that can be transmitted over real or physical
channels. The general description of the suppressed carrier
waveform, described in (1.12), can be expressed in terms
of in-phase and quadrature modulation functions m(f) and
my(1) as

s(t) =me(t)cos(w.t) —my(t)sin(w,1) (1.13)
The quadrature modulation functions are expressed as
m. (1) =Ad.m(t)cos(¢(t)) (1.14)
and
my(t) =Adgm(1)sin(p(1)) (1.15)

With PM the data {d_, d;} may be contained in a phase
function ¢,(f), m(t) is a unit energy symbol shaping function
that provides for spectral control relative to the commonly
used rect(t/T) function, and A represents the peak carrier
voltage on each rail. With quadrature modulations, unique
symbol shaping functions, m.(f) and my(f), may be applied
to each rail; for example, unbalanced quadrature modulations
involve different data rates on each quadrature rail. With
quadrature amplitude modulation (QAM) the data is
described in terms of the multilevel quadrature amplitudes
{a, ay} that are used in place of {d,, d,} in (1.14) and (1.15).

Equation (1.13) can also be expressed in terms of the real
part of a complex function as

s(t) =Re{5(t)e"'} (1.16)
where
5(1) =m(t) +jmy(1) 1.17)

The function 5(¢) is referred to as the complex envelope or
analytic representation of the baseband signal and plays a
fundamental role in the data demodulation, in that, it contains
all of the information necessary to optimally recover the
transmitted information. Equation (1.17) applies to receivers
that use linear frequency translation to baseband. Linear fre-
quency translation is typical of heterodyne receivers using
intermediate frequency (IF) stages. This is a significant result
because the system performance can be evaluated using the

analytic signal without regard to the carrier frequency [3];
this is particularly important in computer performance
simulations.

Evaluation of the real part of the signal expressed in (1.16)
is performed using the complex identity No. 4 in
Section 1.14.6 with the result

s(t) = %{E(t)e””f’+§(t)*e‘f“’"’} (1.18)

A note of caution is in order, in that, the received signal
power based on the analytic signal is twice that of the power
in the carrier. This results because the analytic signal does not
account for the factor of 1/2 when mixing or heterodyning
with a locally generated carrier frequency and is directly
related the factor of 1/2 in (1.18). The signal descriptions
expressed in (1.12) through (1.18) are used to describe the
narrowband signal characteristics used throughout much of
this book.

1.1.1.6 Hilbert Transform and Analytic Signals The
Hilbert transform of the real s(¢) is defined as

1T 1
NOEE J s—dT=S(I)*— (1.19)
b4 it

The second expression in (1.19) represents the convolu-
tion of s(r) with a filter with impulse response h(t) =1/xt

where h(f) represents the response to a Hilbert filter with fre-
quency response H(w) characterized as

h(t) < H(w)
—jsign(w) :|w|>0 (1.20)
0 0w

The Hilbert transform of s(#) results in a spectrum that is
zero for all negative frequencies with positive frequencies
representing a complex spectrum associated with the real
and imaginary parts of an analytic function. Applying
(1.20) to the signal spectrum S(w) < s(z) results in the spec-
trum of the Hilbert transformed signal

JS(w) :w<0
S(w)={ 0 cw=0 (1.21)
—jS(w) :0>0

Applying (1.21) to the spectrum S(w) of (1.12) or (1.13),
the bandwidth B of m(f) must satisfy the condition B << f,.
In this case, the inverse Fourier transform of the spectrum

S(w) yields the Hilbert filter output 5(¢) given by



s(t) S(l‘)‘

Hilbert 5(1)
. >
filter

FIGURE 1.1 Hilbert transform of carrier-modulated signal s(f)
(B/f. < 1).

Zonal _‘E“(t)

filter

Zonal _*Es(t)
filter

FIGURE 1.2 Heterodyning of carrier-modulated signal s(7)
(B/f. < 1).

5(t) =Ty[Am(t)sin(w.t + (1)) = Am(t)sin(w.t + P (t) - /2)

= —Am(t)cos(w.t + p(1))
(1.22)

where Ty[s(7)] represents the Hilbert transform of s(7).

The function 5(¢) expressed by (1.22) is orthogonal to s(7)
and, if the carrier frequency were removed following the
Hilbert transform, the result would be identical to the
imaginary part of the analytic signal expressed by (1.17).
The processing is depicted in Figure 1.1.

1.1.1.7 Conventional and Complex Heterodyning Con-
ventional heterodyning is depicted in Figure 1.2. The zonal
filters are ideal low-pass filters with frequency response
given by

H(f)=rect (f —]%) : zonal lowpass filter (1.23)

These filters remove the 2w, term that results from the
mixing operation and, for s(f) as expressed by (1.13), the
quadrature outputs are given by

se(1) = %[mc(t)cos(qﬁ(t)) —my(t)sin(¢p(r))] (1.24)
and
ss(t)= % [mc(t)sin((1)) + my(t)cos((1))] (1.25)
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With ideal phase tracking the phase term ¢(r) is zero
resulting in the quadrature modulation functions m.(f) and
my(?) in the respective low-pass channels.

1.2 THE FOURIER TRANSFORM AND
FOURIER SERIES

The Fourier transform is so ubiquitous in the technical liter-
ature [4—6], and its application are so widely used that it
seems unnecessary to dwell at any length on the subject.
However, a brief description is in order to aid in the under-
standing of the parameters used in the applications discussed
in the following chapters.

The Fourier transform F(f) of f(¢) is defined over the inter-
val |t € oo and, if f(¥) is absolutely integrable, that is, if

(1.26)

J If (¢)]dt < o
then F(f) exists, furthermore, the inverse Fourier transform
of F(f) results in f(r). In most applications " of practical inter-
est, f(r) satisfies (1.26) leading to the Fourier transform pair
f(t) < F(f) defined as

F(f)= jf<r>e-ﬂ”ﬁd~:>f<r>= j F(f)e™af  (1.27)

In general, f(¥) is real and the Fourier transform F(f) is
complex and Parseval’s theorem relates the signal energy
in the time and frequency domains as

Jf(t)zdt= J \F(f)df (1.28)

The Fourier series representation of a periodic function is
closely related to the Fourier transform; however, it is based
on orthogonal expansions of sinusoidal functions at discrete
frequencies. For example, if the function of interest is peri-
odic, such that, f(t) = f(t — iT,) with period T, and is finite
and single valued over the period, then f{(f) can be represented
by the Fourier series

f(t) = Z Cnejnwnt

n=-—oo

(1.29)

where w, = 27/T, and C,, is the n-th Fourier coefficient
given by

“For special cases refer to Papoulis (Reference 7, Chapter 2).
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To/z
C,= = J f(t)e ot dr (1.30)
[ _ “/2

Equation (1.29) is an interesting relationship, in that, f{¢)
can be described over the time interval 7, by an infinite set
of frequency-domain coefficient C,; however, because f(f)
is contiguously replicated over all time, that is, it is periodic,
the spectrum of f{¢) is completely defined by the coefficients
C,.. Unlike the Fourier transform, the spectrum of (1.29) is not
continuous in frequency but is zero except at discrete fre-
quencies occurring at multiples of nw,,. This is seen by taking
the Fourier transform of (1.29) and, using (1.27), the result is
expressed as

F(f)=3 G J ¢ g
S (1.31)

= i Cna(f_nf;l)

n=-—o0o

where &(f-nf,) is the Fourier Transform™ of e/"®T,
Equation (1.31) is applied in Chapter 2 in the discussion of
sampling theory and in Chapter 11 in the context of signal
acquisition.

Alternate forms of (1.29) that emphasize the series expan-
sion in terms of harmonics of trigonometric functions are
given in (1.32) and (1.33) when f{¢) is a real-valued function.
This is important because when f{¢) is real the complex coef-
ficients C,, and C_,, form a complex conjugate pair such that
C_, =C;, which simplifies the evaluation of f{f). For example,
using the complex notations C, =a, +jf, and C, =a,—jp,,
the function f{¥) is evaluated as

f()=C,+ Zi [, cos(nw,t) = B, sin(nw,t)] (1.32)

n=1

this simplifies to

f(z)=C,,+2i\Cn|cos(nw{,t+¢n) (1.33)

n=1

where |C,|=+/a? + > and ¢, =arctan(B/q).

An important consideration in spectrum analysis is the
determination of signal spectrums involving random data
sequences, referred to as stochastic processes [8]. A stochas-
tic process does not have a unique spectrum; however, the
power spectral density (PSD) is defined as the Fourier
transform of the autocorrelation response. Oppenheim and

“A summary of Fourier transforms pairs is given in Section 1.2.11.

Schafer [9] discuss methods of estimating the PSD of a
real finite-length (V) sampled sequence by averaging
periodograms, defined as

1
Iv(@) =5 |F (@) (1.34)

where F(w) is the Fourier transform of the sampled sequence.
This method is accredited to Bartlett [10] and is used in the
evaluation of the PSD in the following chapters. For a fixed
length (L) of random data, the number of periodograms (K)
that can be averaged is K = L/N. As K increases the variance
of the spectral estimate approaches zero and as N increases
the resolution of the spectrum increases, so there is a trade-
off between the selection of K and N. To resolve narrowband
spectral features that occur, for example, with nonlinear
frequency shift keying (FSK)-modulated waveforms, it is
important to use large values of N. Fortunately, many of
the spectrum analyses presented in the following chapters
are not constrained by L so K and N are chosen to provide
a low estimation bias, that is, low variance, and high spectral
resolution. Windowing® the periodograms will also reduce
the estimation bias at the expense of decreasing the spectral
resolution.

1.2.1 The Transform Pair rect(t/T) < Tsinc(fT)

The transform relationship rect(#/T) < Tsinc(fT) occurs so
often that it deserves special consideration. For example,
consider the following function:

s(t)=Acos(w.(t—7)—)rect <@> (1.35)

where w,., 7, and ¢ represent arbitrary angular frequency,
delay, and phase parameters. The signal s(f) is depicted in
Figure 1.3.

The Fourier transform of s(¢) is evaluated as

T/2‘+1
S(f)=A cos(w.(t—7)—¢p)e ™ dt (1.36)
-T2+t
s(1)
A
» !
-T2+t 0 7 2 +7

FIGURE 1.3 Pulse-modulated carrier.

"Windows are discussed in Section 1.11.



Expressing the cosine function in terms of complex
exponential functions and performing some simplifications
results in the expression

t+T/2
S(f)= 2] et J o2 £ gy
2
-T/2

(1.37)
t+T/2

+ o-iCAfe=) J PR o) gy
-T/2
Evaluation of the integrals in (1.37) appears so often that it

is useful to generalize the solutions as follows:
Consider the integral

X

I(y)= Je—.i()fri)xdx
x (1.38)
e IENR _ p-jyxy)xn

- -ji(y=y)

The general solution involves multiplying the last equality
in (1.38) by the factors e /0=¥)(2+x1)/2 apd /=) (0+x0)/2)
having a product of one, where (x;+x;)/2 is the average
of the integration limits. Distributing the second factor over
the numerator of (1.38) and then simplifying yields the result

£y)(x2-x1)/2)
¥)(2=x1)/2
(1.39)

(e o Yy 5) ()2 S0
I(y)=(x2—x1)e : e

Applying (1.39) to (1.37) and simplifying gives the
desired result

_AT

S(H="5

{e‘j(z”f’*’/’>sinc((f—fc)T) +e 1P gine((f +ﬁ)T)}
(1.40)
When f.>>1/T, the positive and negative frequency

spectrums do not influence one another and, in this case,
the positive frequency spectrum is defined as

S*(f)= ATTsinC((f_fc)T) e >>% (1.41)

On the other hand, when the carrier frequency and phase
are zero, (1.40) simplifies to the baseband spectrum, evalu-
ated as

Spp(f) =ATe 7 sinc(fT) :f.=0, =0 (1.42)
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Using (1.42), the baseband Fourier transform pair, corre-
sponding to of (1.35) with f,. = 0, is established as

t— 5t T
rect (%) & Te P sinc(fT) :|t—7|< 5 (1.43)
and, with 7 = 0,

t T
rect (?) < Tsinc(fT) :t]< 5 (1.44)

1.2.2 The sinc(x) Function

The sinc(x) function is defined as

sin(zx)

sinc(x) = (1.45)

X

and is depicted in Figure 1.4. When x is expressed as the nor-
malized frequency variable x = fT then (1.45), when scaled by
T, is the frequency spectrum of the unit amplitude pulse rect
(#/T) of duration T seconds such that ¢ < |772l. This function is
symmetrical in x and the maximum value of the first sidelobe
occurs atx=1.431 withalevel of 1010g(sincz(x)) =-13.26 dB;
the peak sidelobe levels decrease in proportion to 1/Ixl. The
noise bandwidth of a filter function H(f) is defined as

J H ()
B, éW (1.46)

where f,, is the filter frequency corresponding to the maxi-
mum response. When a receiver filter is described as
H(f) = sinc(fT) the receiver low-pass noise bandwidth is eval-
vated as B,, = 1/T where T is the duration of the filter impulse
response.

1.0 T T T T T T T T T T T T T T T T
0.8 - .
0.6 - .

0.4 .

sinc(x)

02 i

0.0 -

FIGURE 1.4 The sinc(x) function.
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0.75 — 71 r 1 T 1 ' T T 1T T T T T T 7T

Integral sinc(x)
o
W
=)

o
)
[

FIGURE 1.5 Integral of sinc(x).

It is sometimes useful to evaluate the area of the sinc(x)
function and, while there is no closed form solutions, the
solution can be evaluated in terms of the sine-integral
Six)" as

Z 74 B 1 Tz H
J sinc(x)dsz dez —J s (/I)dl
0 0 X T )o A

(1.47)
1
= ;Si(ﬂz)

where the sine-integral is defined as the integral of sin(4)/A.
Equation (1.47) is shown in Figure 1.5. The limit of S;(zz) as
Izl — oo is’ 7 sign(1,z)/2 so the corresponding limit of (1.47)
is 0.5sgn(z).

A useful parameter, often used as a benchmark for
comparing spectral efficiencies, is the area under sinc*(x)
as a function of x. The area is evaluated in terms of the
sine-integral as

4 7 oin2
J sincz(x)dxzj L(Zx)a’x
0 0o (mx)

(1.48)

1 sin®(27z)
= |:S,(271’Z) )

Equation (1.48) is plotted in Figure 1.6 as a percent of the
total area and it is seen that the spectral containment of 99%
is in excess of 18 spectral sidelobes, that is, x = fT'= 18. In
the following chapters, spectral efficient waveforms are
examined with 99% containment within 2 or 3 sidelobes,
so the sinc(x) function does not represent a spectrally efficient
waveform modulation.

“The arguments x and z may be complex; however, the following analysis
uses only real arguments.
"The sign(a, x) function is defined in Section 1.14.7.

100 =7

80—/
60 |- -

40 -

Integral sinc%(x) (% of total)

0 PR B 1 I 1 I 1 I 1 I 1 I 1 I | I
o 2 4 6 8 10 12 14 16 18

X

FIGURE 1.6 Integral of sinc®(x) function.

1.2.3 The Fourier Transform Pair
Zné(t—nT) & wozn(‘i((u—nw,,)

The evaluation of this Fourier transform pair is fundamental
to Nyquist sampling theory and is demonstrated in
Section 2.3 in the evaluation of discrete-time sampling. In this
case, the function f{¢) is an infinite repetition of equally spaced
delta functions 6(¢) with intervals T seconds as expressed by

o0

f)=">" 8(t-nT) (1.49)

n=-—-oo

The challenge is to show that the Fourier transform of
(1.49) is equal to an infinite repetition of equally spaced
and weighted frequency domain delta functions expressed as

F(w)=w, io: S(w—nw,) (1.50)

n=-0oo

with weighting ®, and frequency intervals w, =27z /T. Direct
application of the Fourier transform to (1.49) leads to the

spectrum Zne'j”'”T but this does not demonstrate the equal-

ity in (1.50). Similarly, evaluation of the inverse Fourier
transform of (1.50) results in the time-domain expression
g(r)= ! i et (1.51)
Tn =—-00 ‘
So, by showing that g(#) =f(¢), the transform pair between
(1.49) and (1.50) will be established. Consider ga() to be a
finite summation of terms in (1.51) given by

| LA
gn(t)= ?n;Nef"‘“" .
_sin((2N+ Dw,t/2) '
© Tsin(w,t/2)
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FIGURE 1.7 The Fourier-series kernel gn(¢) (N = 8).

The second equality in (1.52) can be shown using
the finite series identity No. 12, Section 1.14.1. Equation
(1.52) is referred to by Papoulis [7] as the Fourier-series
kernel and appears in a number of applications involving
the Fourier transform.

The function ga(#) is plotted in Figure 1.7 for N = 8. The
abscissa is time normalized by the pulse repetition interval
T=1/f, such that, gn(t)=gn(r—nT), and there are a total
of 2N + 1 peaks of which three are shown in the figure. Fur-
thermore, there are eight time sidelobes between #7 = 0 and
0.5 with the first nulls from the peak value at #/7 = 0 occurring
at £7 /(2N +1); the peak values are (2N + 1)/T=17/T in
this example.

The maximum values of 2N + 1, occurring at ¢/T =n, are
determined by applying L’Hospital’s rule to (1.52), which is
rewritten as

sin((2N + 1)w,t/2)
T(2N +1)sin(w,t/2)

sin((2N + 1)w,t/2)
T(2N + D) w,t/2

av(t)= (2N +1)
(1.53)

~(2N+1)

The approximation in (1.53) is obtained by noting that
as N increases the rate of the sinusoidal variations in the
numerator term increases with a frequency of (2N +1)f, Hz
while the rate of sinusoidal variation in the denominator
remains unchanged. Therefore, in the vicinity of /T =n,
sin (w,1/2) = w,t/2 and (1.53) reduces to a sin(x)/x function
with x= (2N + 1)w,t/2 and a peak amplitude (2N + 1). The
proof of the transform pair is completed by showing that
f(t) = g(1). Referring to (1.51) g(¥) is expressed as

g(r)= lim gy(r) (1.54)
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From (1.53) as N approaches infinity the sin(x)/x sidelobe
nulls converge to #/T = n, the peak values become infinite,
and the corresponding area over the interval [#/71 = n + 1/2
approaches unity. Therefore, g(¢) resembles a periodic series
of delta functions resulting in the equality

0= fime= 2 o=l

=/ (1)

thus completing the proof that (1.49) and (1.50) correspond to
a Fourier transform pair. Papoulis (Reference 7, pp. 50-52)
provides a more eloquent proof that the limiting form of
gn(?) is indeed an infinite sequence of delta functions.

1.2.4 The Discrete Fourier Transform

The DFT pair relating the discrete-time function f(mAf) =
f(m) and discrete-frequency function F(nAf) = F(n) is de-
noted as f(m) < F(n) where

M-1 N-1

F(n)= AlZf(m)e_ﬂ””AfmAl &f(m)= Afz F(n)e]?imAfmAt
m=0 n=0

: DFT

(1.56)

With the DFT the number of time and frequency samples
can be chosen independently. This is advantageous when pre-
paring presentation material or examining fine spectral or
temporal details, as might be useful when debugging simula-
tion programs, by the independent selection of the integers m
and n.

1.2.5 The Fast Fourier Transform

As discussed in the preceding section, the DFT pair, relating
the discrete-time function fimAf) = f(m) and the discrete-
frequency function F(nAf) = F(n), is denoted as f(m)
< F(n) where f{m) and F(n) are characterized by the expres-
sions for the DFT. The FFT [11-17], is a special case corre-
sponding to m and n being equal to N as described in the
remainder of this section. In these relationships N is the num-
ber of time samples and is defined as the power of a fixed
radix-r FFT or as the powers of a mixed radix-r; FFT."
The fixed radix-2 FFT, with r = 2 and N = 2/, results in the
most processing efficient implementation.

“Mixed radix FFTs provide an efficient method of computing the Fourier
transform when the number of samples is not a power of r. In general,
N=r""r,2 ... and the radices of the FFT are determined as the prime factors
of N. For example, N = 31 = %31 requires a single radix =31 FFT, N=32 =
2x2x2x+2%2 requires a radix-2 FFT, and N = 33 = 311 requires a radix-3 and
aradix-11 FFT.
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Defining the time window of the FFT as T,, results in
an implicit periodicity of f(f) such that f(r) = f(r + kT,,)
and Ar = T,/N. The sampling frequency is defined as
fs=1/At=N/T,, and, based on Shannon’s sampling theo-
rem, the periodicity does not pose a practical problem as
long as the signal bandwidth is completely contained in
the interval IBl < f/2 = N/(2T,,). Since the FFT results in
an equal number of time and frequency domain samples, that
is, Af=f,/Nand At=T,/N, it follows that AfAr=f, T, /N* = 1/
N. Normalizing the expression of the time function, f{m), in
(1.56), that is, multiplying the inverse DFT (IDFT) by At
requires dividing the expression for F(n) by At. Upon substi-
tuting these results into (1.56), the FFT transform pairs
become

N-1 N—1
F(n) = Zf(m)e—jZﬂnm/N <:)>f(m) = %ZF(n)e/Znnm/N
m=0 n=0
: FFT
(1.57)

The time and frequency domain sampling characteristics
of the FFT are shown in Figure 1.8. This depiction focuses
on a communication system example, in that, the time sam-
ples over the FFT window interval T, are subdivided into
Ny, symbol intervals of duration T seconds with N, sam-
ples/symbol.

Typically the bandwidth of the modulated waveform is
taken to be the reciprocal of the symbol duration, that is, 1/
T Hz; however, the receiver bandwidth required for low sym-
bol distortion is typically several times greater than 1/T
depending upon the type of modulation. Referring to
Figure 1.8 the sampling frequency is f; = 1/At, the sampling
interval is At = T/Nj, the size of the FFT is Ny; = N Ny, and
the frequency sampling increment is Af = f/Ng;. Upon using
these relationships, the frequency resolution, or frequency
samples per symbol bandwidth B = 1/7, is found to be

=Ny, :determines frequency resolution (1.58)

B

Af
and the number of spectral sidelobes” or symbol bandwidths
over the sampling frequency range is

s

— =N, :determines spectral sidelobes (1.59)

Therefore, to increase the resolution of the sampled signal
spectrum, the number of symbols must be increased and this

“These results are based on the underlying rect(t/T) window and the sinc(fT)
frequency function that includes the principal lobe and the positive and neg-
ative spectral side lobes.

(@) (b)
F(nA
Ok"]|" 2|T 3|T |T " x 5=’
w= 1 ) s=
At Ny T OAf T g Ny Af
N, :samples/symbol (T) Nsym: samples /bandwidth (B)
Ny, : symbols / window (T,) N;:bandwidths/frequency (f;)

Time sampled waveform
(t = mA¥)

Bandlimited sampled spectrum

(f=nAf)
FIGURE 1.8 FFT time and frequency domain sampling.

is comparable to increasing 7,,. On the other hand, to increase
the number of signal sidelobes contained in the frequency
spectrum the number of samples per symbol must be
increased and this is comparable to decreasing At. Both of
these conditions require increasing the size (V) of the FFT.
However, for a given size, the FFT does not allow independ-
ent selection of the frequency and time resolution as
determined, respectively, by (1.58) and (1.59). This can be
accomplished by wusing the DFT as discussed in
Section 1.2.4. Since the spectrum samples in the range 0 <
f < fi/2 represent the positive frequency signal spectrum
and those over the range f,/2 < f < f; represent the negative
frequency signal spectrum, the range of signal sidelobes of
interest is +f;/(2B) = +N/2. As a practical matter, if the signal
carrier frequency is not zero then the sampling frequency
must be increased to maintain the signal sidelobes aliasing
criterion. The sampling frequency selection is discussed in
Chapter 11 in the context of signal acquisition when the
received signal frequency is estimated based on locally
known conditions.

The following implementation of the FFT is based on the
Cooley and Tukey [18] decimation-in-time algorithm as
described by Brigham and Morrow [19] and Brigham [20].
Although (1.57) characterizes the FFT transform pairs, the
real innovation leading to the fast transformation is realized
by the efficient algorithms used to execute the transforma-
tion. Considering the radix-2 FFT with N = 2", this involves
defining the constant

W& e=2m/N (1.60)
and recognizing that
N-1
F(n)=AtY f(m)W"™ (1.61)
m=0

Equation (1.61) can be expressed in matrix form, using
N = 4 for simplicity, as
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Sampled
data :
e U Y
f0) ! J i
: wo wo
Ty Unscramble
. F'(1) F(1)
D) | W;\J/ ’
WO
TS
F(2)
£2) T
TS
| F(3)
f3) >

FIGURE 1.9 Radix-2, N = 4-point FFT implementation tree diagram.

F(0) wo wo wo w7 [£(0)
0 1 2 3
F(1) W W f(1) .62
F(2) wo w2 wt wo | | F(2)
F(3) wo W we WP | f(3)

Recognizing that W° = 1 and the exponent nm is modulo
(N), upon factoring the matrix in (1.62) into the product of
two submatrices (in general the product of log,N subma-
trices) leads to the implementation involving the minimum
number of computations expressed as

F(0) 1 wWeo o[t o w’ o177Jrf0)
F(2)_t1W200 01 0 W2||f(1)
F(1) 0 0 1 WH|[1oWwW? 0]|]|f(2
F(3) 0 0 I Wlo1 o W] L[f(3)
(1.63)

The simplifications result in the outputs F(2) and F(1)
being scrambled and the unscrambling to the natural-number
ordering simply involves reversing the binary number
equivalents, that is, with F'(1) = F(2) and F'(2) = F (1); there-
fore, the unscrambling is accomplished as F(1) = F (01) =
F(2) = F(10) and F (2) = F (10) = F/(1) = F/(01). The
radix-2 with N = 4 FFT, described by (1.63), is implemented
as shown in the diagram of Figure 1.9.

The inverse FFT (IFFT) is implemented by changing the
sign of the exponent of Win (1.60), interchanging the roles of
F(n) and f(m), as described earlier, and replacing Az by Af.

Recognizing that ArAf = 1/N, it is a common practice not
to weight the FFT but to weight the IFFT by 1/N as indicated
in (1.57). The number of complex multiplication is deter-
mined from (1.63) by recognizing that W? = —~W° and not
counting previous products like W°A2) from row 1 and
W2f(2) = —=WPA(0) from row 3 in the first matrix multiplication
on the rhs of (1.63). For the commonly used radix-2 FFT, the
number of complex multiplications is (N/2)log,(N) and the
number of complex additions is Nlog,(N). By comparison,
the number of complex multiplications and additions in the
direct Fourier transform are N> and N(N — 1), respectively.
These computational advantages are enormous for even mod-
est transform sizes.

1.2.5.1 The Pipeline FFT The FFT algorithm discussed
in the preceding section involves decimation-in-time proces-
sing and requires collecting an entire block of time-sampled
data prior to performing the Fourier transform. In contrast,
the pipeline FFT [21] processes the sampled data sequentially
and outputs a complete Fourier transform of the stored data at
each sample. The implementation of a radix-2, N = 8-point
pipeline FFT is shown in Figure 1.10. The pipeline FFT
inherently scrambles the outputs F'(n) and the unscrambled
outputs are not shown in the figure; the unscrambling is
accomplished by simply reversing the order of the binary
representation of the output locations, n, as described in
the preceding section.

In general, the number of complex multiplications for a
complete transform is (N/2)(N — 1). In Chapter 11 the pipeline
FFT is applied in the acquisition of a waveform where a
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WO
O
¥1 A
WO —> Ts
an LD T
} % A
™ ZTS W2
D, T L
-~ L '}ﬂ/ '
TS
Sampled wo +
data +/ TN\ f\ F:(3)
N N
» AT,
f(m) Wl
P A i
_=\J =¥1/ »>
w2 1 T, N
AR LD
,+ ¥ 1
—» 27
W3
N, + T PO
-€/ L i '+\1‘J i
T
v
MU

FIGURE 1.10 Radix-2, N = 8-point pipeline FFT implementation tree diagram.

complete N-point FFT output is not required at every sample.
For example, if the complete N-point FFT is only required at
sample intervals of N(T, the number of complex multiplica-
tions can be significantly reduced (see Problem 10). The
pipeline FFT can be used to interpolate between the
fundamental frequency cells by appending zeros to the data
samples and appropriately increasing the size of the FFT;
it can also be used with data samples requiring mixed radix
processing. The pipeline FFT is applicable to radar and sonar
signal detection processing [21] using a variety of spectral
shaping windows; however, the intrinsic rect(#/T) FFT win-
dow is nearly matched for the detection of orthogonally
spaced M-ary FSK modulated frequency tones.

1.2.6 The FFT as a Detection Filter

The pipeline Fourier transform is made up of a cascade of
transversal filter building blocks shown in Figure 1.10. The
transfer function of this building block is

(1.64)

=W;+e %

The overall transfer function from the input to a particular
output is evaluated as



(1.65)

where k =logx(N) and k; =2i—1,i=1, ..., k. The complex
weights are given by

W= e e (1.66)
where
2rli
= 1.67
¢[,1 N ( )

Substitution of W;; into (1.65) results in

N-1
T,(s) = e‘ﬂ)"Ze_k(ST‘ ) (1.68)
k=0
where
k
D= "¢y, (1.69)
i=1

This transfer function is expressed in terms of a
magnitude and phase functions in @ by substituting s = jo
with the result

Ty(w) = sin(N (0T~ ¢y ) /2) oI gmiN=1)o T /2
sin((0Ts— ) /2)

(1.70)

where
@y =Dy~ (N=1)¢py /2 (1.71)

Therefore, the FFT forms N filters, £=0,...,N—1 each
having a maximum response |Ty(w)|,,, =N that occurs at
the frequencies w=¢,;/T;. As N increases these transfer
functions result in the response

sin (N (0Ty =) /2) oI pmi(N-1)T,/2

Ty(w)=N N(oT—¢;4)/2

N — o0

(1.72)

The magnitude of (1.72) is the sinc(x) function associated
with the uniformly weighted envelope modulation function
and, therefore, the FFT filter functions as a matched de-
tection filter for these forms of modulations. Examples of these
modulated waveforms are binary phase shift keying (BPSK),
quadrature phase shift keying (QPSK), offset quadrature phase
shift keying (OQPSK), and M-ary FSK.
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The FFT detection filter loss relative to the ideal

matched filter is examined as N increases. The input signal
is expressed as

s(t) = V2Pcos(w.t - ) rect (%) (1.73)

and the corresponding signal spectrum for positive frequen-
cies with w. > 2x/T is

Tsin((w-w:)T/2) _,
S(w) = i 1.74
(@) 2 (w-w.)T/2 ¢ (1.74)
The matched filter for the optimum detection of s(¢) in
additive white noise with spectral density N, is defined as

H(w)=KS*(w)e " (1.75)

where K is an arbitrary scale factor and 7, is an arbitrary
delay influencing the causality of the filter. By letting
K=2NV2P/T, p=-®,, T, = (N - DTJ/2, and .= ¢,/
T it is seen that the FFT approaches a matched filter as N
increases.

The question of how closely the FFT approximates a
matched filter detector is examined in terms of the loss in sig-
nal-to-noise ratio. The filter loss is expressed in dB as

SNR,
p=10log,, (W) (1.76)
0/ opt

where (SNR,),,,, = 2E/N,, is the signal-to-noise ratio out of the
matched filter and E is the signal energy. The signal-to-noise
ratio out of the FFT filter is expressed in terms of the peak
signal output of the detection filter and the output noise
power as

2
SNR, = W (1.77)
on

where B,, is the detection filter noise bandwidth. For conven-
ience the zero-frequency FFT filter output is considered, that
is, for £ =0, and letting the signal phase ¢ = 0, the response of
interest is

_sin(NwT/2)
A= (T, /2 (1.78)
and, from (1.74),
_ Tsin(wT/2)
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TABLE 1.2 N-ary FSK Waveform
Detection Loss Using an N-Point FFT
Detection Filter

N p (dB)
2 0.452
3 0.236
8 0.116
16 0.053

To evaluate SNR, at the output of the FFT filter, g,(¥),x
and B, are computed as

o= 5y | Tol@)S(@)do

(1.80)

/Ty
__ 1 J sin(wT/2)sin(NwT/2)

1
2zN (0T /2)sin(wTs/2)
0

dw

and

2r|T,(0))
/T 1.81
o JM (80

" aN sin*(wT,/2)
0

1
" 2NT,

Substituting these results into (1.77) and using (1.76), the
parameter p is evaluated as

/2
2 ( sin®(N.
p=20]0g N J de
Nx
0

xsin(x) :dB (1.82)

Equation (1.82) is evaluated numerically for several
values of N and the results are tabulated in Table 1.2. These
results indicate, for example, that detecting an 8-ary
FSK-modulated waveform with orthogonal tone spacing
using an N = 8-point FFT results in a performance loss of
0.116 dB relative to an ideal matched filter.

1.2.7 Interpolation Using the FFT

When an FFT is performed on a uniformly weighted set of
N data samples a set of N sinc(fT,,) orthogonal filters is gen-
erated where T,, = NT, is the sampled data window and T is

the sampling interval. The N filters span the frequency range
fs= 1T, and provide N frequency estimates that are separated
by Af = fi/N Hz. Frequency interpolation is achieved if the
FFT window is padded by adding nN zero-samples, thereby
increasing the window by nNT seconds. In this case, a set of
(n + )N sinc(fT,,) filters spanning the frequency f; is gener-
ated that provides n-point interpolation between each of
the original N filters.

The FFT can also be used to interpolate between time
samples. For example, consider a sampled time function
characterized by N samples over the interval T,, = NT, where
T, is the sampling interval. The corresponding N-point FFT
has N filters separated by Af = f,/N where f; = 1/T,. If nN
zero-frequency samples are inserted between frequency sam-
ples N/2 and N/2 + 1 and the IFFT is taken on the resulting
(n + 1)N samples, the resulting time function contains 7 inter-
polation samples between each of the original N time sam-
ples. These interpolations methods increase the size of the
FFT or IFFT and thereby the computational complexity.

1.2.8 Spectral Estimation Using the FFT

Many applications involve the characterization of the PSD of
a finite sequence of random data. A random data sequence
represents a stochastic process, for which, the PSD is defined
as the Fourier transform of the autocorrelation function of the
sequence. If the random process is such that the statistical
averages formed among independent stochastic process are
equal to the time averages of the sequences, then the Fourier
transform will converge in some sense to the true PSD,
S%(w); however, this typically requires very long sequences
that are seldom available. Furthermore, the classical
approach, using the Fourier transform of the autocorrelation
function, is processing intense and time consuming, requiring
long data sequences to yield an accurate representation to the
PSD. A much simpler approach, analyzed by Oppenheim and
Schafer [22], is to recognize that the Fourier transform of a
relatively short data sequence x(n) of N samples is

N-1

X(ei“’) = Zx(n)e‘jwn

n=0

(1.83)

and, defining the Fourier transform of the autocorrelation
function C,.(m) of x(n) as the periodogram

- (1.84)
1 o |2
= 51X

These are referred to as ergodic process and, under some circumstances,
converge to the mean of the stochastic process.



However, the periodogram is not a consistent estimate” of
the true PSD, having a large variance about the true values
resulting in wild fluctuations. Oppenheim and Schafer then
show that Bartlett’s procedure [10, 23] of averaging period-
ograms of independent data sequences results in a consistent
estimate and, if K periodograms are averaged, the resulting
variance is decreased by K. In this case, the PSD estimate
is evaluated as

@ _ 1\~ 0
S=2> IV (o) (1.85)

Oppenheim and Schafer also discuss the application
of windows to the periodograms and Welch [17] describes a
procedure involving the averaging of modified periodograms.

1.2.9 Fourier Transform Properties

The following Fourier transform properties are based on the
transform pairs x(t) < S(f) and y(r) < Y(f) where x(¢) and
¥(f) may be real or complex.

1.2.9.1 Linearity

ax(t) +by(t) < aX(f) +DbY(f) (1.86)

1.2.9.2 Translation
x(t=7) < X(f)e 2" (1.87)
and

X(f—f,) < x(t)e 2! (1.88)

1.2.9.3 Conjugation
xX(t) = X (-f) (1.89)
and

X*(f) & x*(-1) (1.90)

1.2.9.4 Differentiation With z(t) £d"x(t)/dt" and Z(f)
£4"X(f)/df" then

2(1) & (27f)"X(f) 1.91)

A consistent estimate is one in which the variance about the true value and
the bias approaches zero as N increases.
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and

Z(f) & (=j2x1)"x() (1.92)

1 T
1.2.9.5 Integration Defining z(t)éj J x(7)

f i
dz...dr, andZ(f)éJ J Z(f)df...df, then

5

() & X(f) <i2t) +m) (1.93)

and

Z(f) & x(0) <5(t) . 1) (1.94)

1.2.10 Fourier Transform Relationships

The following Fourier transform relationships are based on
the transform pairs x(¢) < X(f) and y(r) < Y(f) where
x(¢) and y(f) may be real or complex.

1.2.10.1 Convolution Defining the Fourier transforms
() & X(F)Y*(f) and Z(f) < x(¢r)y*(¢) then

" x(o)y*(t-7)dz  (1.95)

— 0

()= Jm x(i—2)y* (e)de :J

— 0

(s

XY (F=f)df (1.96)

— 0

2)=| x-7()ar=|

1.2.10.2 Integral of Product (Parseval’s Theorem)

(s

X(NHY*(f)df (1.97)

- 00

Jw x(t)y*(t)dt:J

— 00

Letting y(f) = x(f) results in Parseval’s Theorem that
equates the signal energy in the time and frequency
domains as

J |x(t)\2dt=J |X(f)?df :Parseval’s theorem

(1.98)
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TABLE 1.3 Fourier Transforms for f(¢) < F(f)

Waveform f(r) Spectrum F(f)
1 ()
ft—-1) F(f)exp(—j2xfr)
f(t)ele! F(f=1o)
1 jwt 3, _
500 Zje’ di=1
6(t—1) exp(—j2zfr)
fan) (Ma)F(fla)
el2nhe! 8(f /o)
1
cos(2xf,t) (5) (6(f +fo) +6(f=1o))
sin2x £, 1) (%) (8(f +fo)=8(f=1o))
> Sl L NS B S R
n:Z_wé(t nr) Tnzz_we J _T,,:Z_w(s(f
d"f(1) (27f)"F(f)
dtn
(=)' (1) d"F(f)
df}l

(1/2)(8(1) =1/ (jmt))s(1)
o~ (t/@? /2

f) = x(@) y(@)
JO) = x*y(@0)

B 1 :t20
u(t)=
0 :ow.

1 :t-720
u(t—r)z{

0 :ow.

sgn(t)=2u(t)-1

1 :t>0¢
-1 :t<0

1
f)=—
gn(t) it
t
rect<?)—1 \t|<§
=0 :ow
sinc(2t/T)

(1/2)(6(1) + 1/ Gaf))F(f)
[f F(2)di
2rae~ )’ /2

X(P*Y() = JX(f—/l)Y(/I)d/I
F(h = X(P Y(O

U(Hexp(—j2zfr)

1
sen(f) =1z

sgn(f)=2u(f)-1

Tsinc(fT)"

g)rea@)ﬂ fl<g

=0 : ow.

& .
Denotes convolution.

“The signum function sgn(x) is also denoted as signum(x).

bWoodward [24].

1.2.11 Summary of Some Fourier Transform Pairs

Some often used transform relationships are listed in
Table 1.3.

1.3 PULSE DISTORTION WITH IDEAL
FILTER MODELS

In this section the distortion is examined for an isolated base-
band pulse after passing through an ideal filter with uniquely
prescribed amplitude and phase responses. In radar applica-
tions isolated pulse response leads to a loss in range resolu-
tion; however, in communication application, where the
pulse is representative of a contiguous sequence of informa-
tion-modulated symbols, the pulse distortion leads to inter-
symbol interference (ISI) that degrades the information
exchange. The following two examples use the baseband
pulse, or symbol, as characterized in the time and frequency
domains by the familiar functions

s(t):rect(%) & S(f)=Tsinc(fT) (1.99)

1.3.1 Ideal Amplitude and Zero Phase Filter

In this example, the filter is characterized in the frequency
domain as having a constant unit amplitude over the band-
width f< |Bl with zero amplitude otherwise and a zero phase
function. Using the previous notation the filter is character-
ized in the frequency and time domains as

H(f)=rect <2f_B> < h(t)=2Bsinc(2Bt) (1.100)

The frequency characteristics of the signal and filter are
shown in Figure 1.11.

S¢
T
f
“2T~"-1/T 0  UT>~UT
H(f)
1
-B 0 B !

FIGURE 1.11 Ideal signal and filter spectrums.



The easiest way to evaluate the filter response to a pulse
input signal is by convolving the functions as

g(t)= Jjo h(z)s(t—1)dz

- (1.101)
= ZBJ sinc(2Br)rect (%_t) dr

— o0

The rect(®) function determines the integration limits
with the upper and lower limits evaluated for = when the
argument equals +Y2, respectively. This evaluation leads to
the integration

t+T/2
(1) =ZBJ _sin(27B7) | (1.102)

i-rj2  2mBr

Equation (1.102) is evaluated in terms of the sine
integral [25]

Si(y)=Jy Sin ) (1.103)

0 X
resulting in the filter output g(f) expressed as
1 1
g(t)==S;2zB(t+T/2))-—=S;(2zB(t-T/2)) (1.104)
/2 /4

Defining the normalized variable y = #/T and the parameter
p = BT, Equation (1.104) is expressed as

g(y)= %&'(271}0()7"' 1/2))—%5;’(27[,0()/—1/2)) (1.105)

Equation (1.105) is plotted in Figure 1.12 for several
values of the time-bandwidth (BT) parameter. Range resolu-
tion is proportional to bandwidth and the increased rise time
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FIGURE 1.12 Ideal band-limited pulse response (constant-
amplitude, zero-phase filter).
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or smearing of the pulse edges with decreasing bandwidth is
evident. The ISI that degrades the performance of a commu-
nication system results from the symbol energy that occurs in
adjacent symbols due to the filtering.

This analysis considers only the pulse distortion caused by
constant amplitude filter response and, as will be seen in the
following section, filter amplitude ripple and nonlinear phase
functions also result in additional signal distortion. If the filter
were to exhibit a linear phase function ¢(f) = —2zfT, where T,
represents a constant time delay, then, referring to Table 1.3,
the output is simply delayed by 7, without any additional dis-
tortion. If T, is sufficiently large, the filter can be viewed as a
causal filter, that is, no output is produced before the input
signal is applied.

1.3.2 Nonideal Amplitude and Phase Filters: Paired
Echo Analysis

In this section the pulse distortion caused by a filter with
prescribed amplitude and phase functions is examined using
the analysis technique of paired echoes [26]. A practical
application of paired echo analysis occurred when a modem
production line was stopped at considerable expense due to
noncompliance of the bit-error test involving a few tenths
of a decibel. The required confidence level of the bit-error
performance under various IF filter conditions precluded
the use of Monte Carlo simulations; however, much to the
pleasure of management, the paired echo analysis was suc-
cessfully applied to identify the cause of the subtle filter dis-
tortion losses.

Consider a filter with amplitude and phase functions
expressed as

H(f)=A(f)e D rect (;—B> (1.106)

where the amplitude and phase fluctuations with frequency
are expressed as

A(f)=1+asin(2zfz,) (1.107)

and

¢(f) =2xfT, +bsin(2zfz,) (1.108)

The parameters a and 7, represent the amplitude and
period of the amplitude ripple and » and 7, represent the
amplitude and period of the phase ripple. Using these func-
tions in (1.106) and separating the constant delay term invol-
ving T,, results in the filter function

H(f)=(1+acos(2zfz,))e %) recy (2];;) el

(1.109)
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Equation (1.109) is simplified by using the trigonometric
identity

cos(2afz,) = % (e772 7 . i) (1.110)
and the Bessel function identity [27]
o bsin(2afry) _ i To(=b)em/ o
=J,(b) +J1(b) (e ™ =) + 05 ( £n)
(1.111)*

In arriving at the last expression in (1.111), the following
identities were used

Jn(=b)=J_y(=b) = (=1)"J,(b) (1.112)

Upon substituting (1.110) and (1.111) into (1.109), and
performing the multiplications to obtain additive terms repre-
senting unique delays results in the filter frequency response

H(f) = {Jo(b)e_jz”fTﬁ + gfo(b)e_ﬂ”f(T”J””)
+ ;Jo(b)e—ﬂ”fm—fu) +J1 (b)e 2 (o)
+ T (b)e P Torrarn) L & 1 (p)p el (Tmratn)
2 2

A (b)e—ﬂnf(Tn—rb) _ EJI (b)e—jan(T,, +Ta—Tp)
2

- gjl (b)e—jznfm—ra—rh)}

rect (;;) + higher order filter terms involving J,,(b)

(1.113)

Upon performing the inverse Fourier transform of each
term in (1.113), the filter impulse response, A(f), becomes a
summation of weighted and delayed sinc(x) functions of
the form 2BKsinc(2B(t — T,;)) where K and T, are the ampli-
tude and delay associated with each of the terms. Performing
the convolution indicated by the first equality in (1.101), that
is, for an arbitrary signal s(7), the ideally filtered response g(¥)
is expressed as

sinc(2Br)s(t—1)dz

—

(1) :ZBJ (1.114)

"The notation O,(+n) refers to higher order terms involving Inl > 2. These
terms can be neglected for small values of b, that is, b < 0.2.

When g(7) is passed through the filter H(f) with amplitude
and phase described, respectively, by (1.107) and (1.108), the
distorted output g,(f) is evaluated as

8o(1)=Jo(b)g(1=T,) + SJo(b)g(1=To=7.)
+ Sh(b)g(1=T, +7,) +1 ()8 (=T, ~7,)

+ gjl (b)g(t-T,—ta—15) + gjl (b)g(t-T,+1,—15)

a
=Ji(b)g(t-T, +rb)—§J1 (b)g(t-T,~74+75)

a
—511 (b)g(l‘—To+Ta+’Z'b)
(1.115)

If the input signal is described by the rec#(t/T) function,
then g(#) is the response expressed by (1.104) and depicted
in Figure 1.12. The distortion terms appear as paired echoes
of the filtered input signal and Figure 1.13 shows the relative
delay and amplitude of each echo of the filtered output g(#).
For b << 1 the approximations Jy(b) = 1.0 and J(b) = b/2
apply and when a = b = 0 the filter response is simply the

(@)
J()(b)
al,(b)2 al (D)2
! I t
T,-7, T, T,+7,
Amplitude distortion terms
(b)
J1(D)
To —Tp T ‘
To To +1
J1(b)
Phase distortion terms
(©)

T,+1,—71 aly(b)2

To—74—7p T T p
l l T, T,+7,+7p

Ta—Ta+Tb
al, ()2

Joint amplitude and phase distortion terms

FIGURE 1.13 Location of amplitude and phase distortion paired
echoes relative to delay 7,,.



delayed but undistorted replica of the input signal, that is,
g,(t) = gt — T,). More complex filter amplitude and phase
distortion functions can be synthesized by applying Fourier
series expansions that yield paired echoes that can be viewed
as noisy interference terms that degrade the system perfor-
mance; however, the analysis soon becomes unwieldy so
computer simulation of the echo amplitudes and delays must
be undertaken.

1.3.3 Example of Delay Distortion Loss Using
Paired Echoes

The evaluation of the signal-to-interference ratio resulting
from the delay distortion of a filter is examined using paired
echo analysis. The objective is to examine the distortion
resulting from a specification of the filters peak phase error
and group delay within the filter bandwidth. The filter phase
response is characterized as

$(f) =2afT, g, sin(2xf7) (1.116)
where T, is the filter delay resulting from the linear phase
term, ¢, is the peak phase deviation from linearity over the
filter bandwidth, and 7 is the period of the sinusoidal phase
distortion function. The linear phase term introduces the filter
delay T, that does not result in signal distortion; however, the
sinusoidal phase term does cause signal distortion. In this
example, the phase deviation over the filter bandwidth is
specified parametrically as ¢,(deg) = 3 and 7°. The parameter
7 is chosen to satisfy the peak delay distortion defined as

()
27df

=1¢,cos(2xf7)

Tq(f)=
(1.117)

where ¢, is in radians. The peak delay, evaluated for fzr =0,
is specified as T; = 34 and 100 ns and, using (1.117), the
period of the sinusoidal phase function, = = T,/¢,, is tabu-
lated in Table 1.4 for the corresponding peak phase errors
and peak delay specification. Practical maximum limits of
the group delay normalized by the symbol rate, R, are also
specified.

Considering an ideal unit gain filter with amplitude
response of A(w) = 1, the filter transfer function is ex-
pressed as

H(f)=e"/)

— —j2xfT, €]¢" sin(2zf7)
¢ (1.118)

(s8]

=e—j2ﬂan Z Jn(¢0)ejmrf1

n=-—o0o
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TABLE 1.4 Values of 7 for the Phase and Delay Specifications

¢p,(deg) T (ns) 7(ns) T, /R
3 34 649 1015
7 100 818 -

“Normalized group delay over filter bandwidth.

Upon taking the inverse Fourier transform of (1.118), the
filter impulse response is evaluated as

8(1)=Jo(¢,)8(1-T,)
+ i],l((/)o)[(‘i(t—To +nt/2)-6(t—T,—nz/2)]
(1.119)

The parameter 7 determines the delay spread of all the
interfering terms; however, for small arguments the interfer-
ence is dominated by the J(¢,) term and the signal-to-
interference ratio is defined as

o)

For ¢,(deg) = 3 and 7°, the respective signal-to-inter-
ference ratios are 32 and 24.3 dB and under these
conditions, a 10 dB filter input signal-to-noise ratio results
in the output signal-to-noise ratio degraded by 0.02 and
0.17 dB, respectively.

(1.120)

1.4 CORRELATION PROCESSING

Signal correlation is an important aspect of signal processing
that is used to characterize various channel temporal and
spectral properties, for example, multipath delay and fre-
quency dispersion profiles. The correlation can be performed
as a time-averaged autocorrelation or a time-averaged cross-
correlation between two different signals. Frequency domain,
autocorrelation, and cross-correlation are performed using fre-
quency offsets rather than time delays. The Doppler and multi-
path profiles are characteristics of the channel that are typically
based on correlations involving statistical expectations as
opposed to time-averaged correlations that are applied to deter-
ministic signal waveforms and linear time-invariant channels.
The following discussion focuses on the correlation of deter-
ministic waveforms and linear time-invariant channels.

The autocorrelation of the complex signal X(¢) is defined as’

o0

R~~(T)éjm )Nc(t))?*(t—r)dt=J M40 (de (1121)

— o0 — o0

“The asterisk denotes complex conjugation. The double subscripts on R,.(7)
are not always included for the autocorrelation notation; however, they are
important when describing the cross-correlation response.
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TABLE 1.5 Properties of Correlation Functions

Property Comments
Ri(-7) =R5:(7)

Cax(~7) = Rua(7) - | [

R (=7) =R« (7) x : real
Cuo(=7) =Ry (7)—m? x : real
Riz(-7) =R;‘,)—C(T)

Ci(7) =Ry () — oy

Ciy(7) =Ry (7) —mym, X,y : real
Rz (7) =Rix(1) + Ry () + Ry (7) + Ryx(7) Z=X+y

The autocorrelation function implicitly contains the mean
value of the signal and the autocovariance is evaluated, by
removing the mean value, as

Cur(7) = J (1) — i) [£(1— ) i

(1.122)
=Rz (1) — ||

where 71, = my, + jm, is the complex mean of the signal X(7).
The cross-correlation of the complex signals X(7) and y(7) is
defined as

[s0) [s9)

)?(t)j)*(t—r)dtzj X(t+7)y*(n)dr (1.123)
Similarly, the corresponding cross-covariance is evalu-
ated as

- (1.124)

The properties of various correlation functions applied to
complex and real valued functions are summarized in
Table 1.5. The properties of correlation functions are also
discussed in Section 1.5.9 in the context of stochastic
processes.

1.5 RANDOM VARIABLES AND PROBABILITY

This section contains a brief introduction to random variables
and probability [6, 8, 28-30]. A random variable is described in
the context of Figure 1.14 in which an event y in the space S is
mapped to the real number x characterized as X(y) = x or f(x) :
X, £ x £ xp,. The function X(y) is defined as a random variable

which assigns the real number x or f{x) to each event y € S.” The
limits [x,, x;,] of the mapping are dependent upon the physical
nature or definition of the event space. The second depiction
shown in Figure 1.14 comprises disjoint, or nonintersecting,
subspaces, such that, for i # j the intersection SNS; = @ is
the null space. Each subspace possesses a unique mapping
xIS; conditioned on the subspace S; : j =1, ..., J. The union
of subspaces is denoted as S;US;. This is an important distinc-
tion since each subspace can be analyzed in a manner similar
to the mapping of y € S. The three basic forms of the
random variable X are continuous, discrete, and a mixture of
continuous and discrete random variables as distinguished
in the following sections.

1.5.1 Probability and Cumulative Distribution and
Probability Density Functions

The mathematical description [6, 8, 24, 28, 30-32] of the ran-
dom variable X resulting from the mapping X(y) given the
random event y € S is based on the statistical properties of
the random event characterized by the probability P({X <
x}) where {X < x} denotes all of the events X(y) in S. For
continuous random variables P(X = x) = 0. The probability
function P(X; € §) satisfies the following axioms:

Al. P(X(y)€S) = 0
A2. P({X(p)eS)) = 1
A3.If P(SNS) = @ Vi # j then P(S;U,...,S;)=

> PS))

Axiom A3 applies for infinite event spaces by letting J = .
Several corollaries resulting from these axioms are as follows:

Cl. P(x) = 1 — P(y) where y¢ is the complement of y
such that YNy = @

C2. P() <1

C3. P(r: Uxp) = P(ra) + P(xp) — P N xp)

C4. If P(@) =0

The cumulative distribution function (cdf) of the variable
X is defined in terms of the value of x on the real line as

Fy(x)2P(X<x) :-oco<x< co, cumulative
(1.125)
distribution function

A particular outcome x’ = f{x) is a random variable resulting from the map-
ping X(y) onto the real line; however, X(y) is also referred to as a random
variable. Wozencraft and Jacobs (Reference 30, p. 39) point out that this
nomenclature stems from practical applications and is somewhat misleading.
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FIGURE 1.14 Mapping of random variable X(y) on the real line x.
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FIGURE 1.15 Uniformly distributed continuous random variable.

where Fx(x) has the following properties:

Pl. 0 < Fx(x) <1

P2. In the limit as x approaches oo, Fx(x) = 1

P3. In the limit as x approaches —co, Fx(x) =0

P4. Fx(x) is a nondecreasing function of x

P5. In the limit as e approaches 0, Fx(x;) = Fx(x; + €)
P6. The probability in the interval x; < x < x; is: P(x; < x

< xj) = Fx(x) — Fx(x;)
In the limit as & approaches 0, the probability of the
event x; is P(x; — € < x < x;) = Fx(x;) — Fx(x; — €).

P7.

Property PS5 is referred to as being continuous from the
right and is particularly important with discrete random vari-
ables, in that, Fy(x;) includes a discrete random variable at x;.
Property P7, for a continuous random variable, states that
P(x;) = 0; however, for a discrete random variable, P(x;) =
px(x;) where px(x;) is the probability mass function (pmf)
defined in Section 1.5.1.2.

The probability density function” (pdf) of X is defined as

é de (}C)
dx

Sx(x) : probability density function (1.126)

The pdf is frequency used to characterize a random vari-
able because, compared to the cdf, it is easier to describe
and visualize the characteristics of the random variable.

“The pdfis formally denoted fi(x) and in the notation f{x) the random variable
X is understood by the usage; the notation p(x) is also used to denote the pdf;
however, these notations are sometimes justified by notational simplicity.

1.5.1.1 Continuous Random Variables A random varia-
ble is continuous if the cdf is continuous so that Fx(x) can be
expressed by the integral of the pdf.- The mapping in
Figure 1.14 results in the continuous real variable x. From
(1.125) and (1.126) it follows that

X

P(XSx)=FX(x)=J fx(xXdx' (1.127)

A frequently encountered and simple example of a
continuous random variable is characterized by the uniformly
distributed pdf shown in Figure 1.15 with the corresponding
cdf and probability function.

From property P7, the probability of X = x; is evaluated as

P(X=)C,')= limO(FX(x,»—s))—FX(xi) (1128)

However, for continuous random variables, the limit in
(1.128) is equal to Fx(x;) so P(X = x;) = 0; this event is han-
dled as described in Section 1.5.2.

1.5.1.2 Discrete Random Variables The probability
mass function [8, 28, 29] (pmf) of the discrete random vari-
able X is defined in terms of the discrete probabilities on the
real line as

px(xi) éP(X=X,‘) (1129)
The corresponding cdf is expressed as
Fx(x)=  px(x)u(x-x;) (1.130)
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FIGURE 1.16 Discrete binary random variables.
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FIGURE 1.17 Mixed random variables.

where u(x — x;) is the unit-step function occurring at x = x; and
is defined as

(1.131)

Using (1.126), and recognizing that the derivative of u(x —
X;) is the delta function 6(x — x;), the pdf of the discrete ran-
dom variable is expressed as

Felx)=)_px(x)(x=x) (1.132)

The pmf px(x;) results in a weighted delta function and,
from (1.130), (1.131), and property P2, the summation must
satisfy the condition prx (x)=1.

The pdf, cdf, and the corresponding probability for the
discrete random variable corresponding to binary data {0,1}
with pmf functions px(0) = 1/3 and px(1) = 2/3 are shown
in Figure 1.16. The importance of property PS5 is evident in
Figure 1.16, in that, the delta function at x = 1 is included in
the cdf resulting in P(X < 1) = 1. Regarding property P7, the
limit in (1.128) approaches X = x; from the left, corresponding
to the base of the discontinuity, so that P(X = x;) = px(x;).

1.5.1.3 Mixed Random Variables Mixed random vari-
ables are composed of continuous and discrete random vari-
ables and the following example is a combination of the
continuous and discrete random variables in the examples of
Sections 1.5.1.1 and 1.5.1.2. The major consideration in this

case is the determination of the event pmf for the continuous
(C) and discrete (D) random variables to satisfy property P2.
Considering equal pmfs, such that, px(S = C) = px(S = D) =
1/2, the pdf, cdf, and probability are depicted in Figure 1.17.

1.5.2 Definitions and Fundamental Relationships for
Continuous Random Variables

For the continuous random variables X, such that the events X
(x;)) € S, the joint cdf is determined by integrating the joint
pdf expressed as

X1 X
FXI.,.,,XN(XI’-WXN):J J T ()5 Xy )X dy
. )

(1.133)
and, provided that Fy, . x,(x1,...,xy) is continuous and
exists, it follows that
oNF
Forty (et y) = Bt (B XNy

Bxl ...aXN

The probability function is then evaluated by integrating
x; over the appropriate regions x;; < r; < xp: i =1, ..., N with
the result
p(x,l,...,x,N)=j J Bty (Kool ).l
r N

(1.135)



1.5.2.1 Marginal pdf of Continuous Random Variables
The marginal pdf is determined by integrating over the
entire region of all the random variables except for the
desired marginal pdf. For example, the marginal pdf for x;
is evaluated as (see Problem 17)

d X1 o
m=gel [

=fx, (xl)ro

o0
J fxl...XN(x'l,...,xf\,)dx’l,...,dx;\,
-

J fXZ...XN(x’z,...,xjv)dx’z,...,dxﬁ\,
= fx, (x1)
(1.136)

The random variables X; are independent iff the joint cdf
can be expressed as product of the each cdf, that is

Fxl ,,,,, XN()C],...,XN)=FX] (xl)FXz(x2)"'FXN(xN) (1137)

In addition, if X; V i are jointly continuous, the random
variables are independent if the joint pdf can be expressed
as the product of each pdf as

Sxrooxy (1se o) =fx, (0)f, (12) -+ iy (o) (1.138)

Therefore, the joint pdf of independent random variables
is the same as the product of each marginal pdf computed
sequentially as in (1.136).

The joint cdf of two continuous random variables is
defined as

Fxy(x,y) 2P(X<x,Y<y) (1.139)

with the following properties,

Fx.y(x,00)=Fx(x), Fx.y(0,y)=Fy(y), FX,Y(oo,oo)zl}
FX!y(x, - 00) =0, vay(— oo,y) =0

(1.140)
and the joint pdf is defined as
82
f(X,Y):mFX,Y(x,y) (1.141)
with the following properties,
© (> oFy y(x, Y
J J Sry(xy)dxdy=1, %y)=J Sy (x,y)ay,
F "X
Frrtey) X’ayy(x’y) =J e (' y)dy
(1.142)
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1.5.2.2 Conditional pdf and cdf of Continuous Random
Variables The conditional pdf is expressed as

Sxix, (X150 %)
For 1l ) = (1143)
1 o " in+I---Xrl(xi+1?---,xn)
and the conditional cdf is evaluated as
Fx, o (X1 oo Xil X 10200 X))
X1 Xi
J J S (X XXty Xn)d X, d X
Y= —
fxi+l-<-Xy,(-xi+l’---yxn)
(1.144)

A basic rule for removing random variables from the left
and right side of the conditional symbol ( | ) is given by
Papoulis [33]. To remove random variables from the left side
simply integrate each variable x; from —co to co: j < i. To
remove random variables from the right side, for example,
x; and xz: i + 1 < j,k < n, multiply by the conditional pdfs
of x; and x; with respect to the remaining variables and inte-
grate x; and x; from —oco to oco. For example, referring to
(1.143) and considering fy;(xqlx,,x3,x4), eliminating the ran-
dom variables x; and x, from the right side is evaluated as

Jx, (x1|x2) = J J S, (x1|x2, 3, x4)f (%3, X4 %2 ) dxz dxs

— o0 — 00

(1.145)

The conditional probability of ¥ € S, given X(y) = x is
expressed as

P(YES],X=X)

P(YES1|X=)C>: P(X:x)

(1.146)

Since P(X = x) = 0 for the continuous random variable X,
(1.146) is undefined; however, if X and Y are jointly contin-
uous with continuous joint cdfs, as defined in (1.139), then
the conditional cdf of Y, given X, is defined as

A P(X<x,Y<y) F,(xy)

Fy(y|X<x) P(X<x)  Fx(x)

(1.147)

and differentiating (1.147) with respect to y results in

)/dy ) J_ oofX,Y(x/’y)dx/

dyFx,y(x,y
X<x)= "
Jr(y[X <x) Fx(x) J J Sx(¥,y)dx'dy
X,Y(x’y)

 f(x)
(1.148)
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If fx(x) # 0, the conditional cdf of y, given X = x, is
expressed as [34]

J_ fX,Y(x,y/)dyl

FY(le:x):WfT

(1.149)

and the corresponding conditional pdf is evaluated by differ-
entiating (1.149) with respect to y and is expressed as

—x _fX,Y(xsy) _
MOX=9="5 0

fX,Y(x’y) (1150)

J fX,Y(x’y)dy

— o0

If X and Y are independent random variables then
Srxx) =fr()fx(x) and (1.147) and (1.150) become
Fy(y|x) =Fy(y) and fy(y[x) =fr(y).

Upon rearranging (1.150), the joint pdf of X and Y is
expressed as

Jr.x(0,%) =fr (]x)fx (x) (1.151)

Considering the probability space S; = Syjx N Sx, such
that S§ # @, the probability P(Y €Sx) is determined by the
total probability law defined as

P(Y€eSx)= LX

ny<y’|x>dy’ Fe(@)dx
Sy|x (1.152)

_ L P(Y € Sy |x)fi (x)dx

In this case, the subspace Sy can be examined as if it were a
total probability space obeying the axioms, corollaries, and
properties stated earlier.

1.5.2.3 Expectations of Continuous Random Variables
In general, the k-th moment of the random variable X is
defined as the expectation

E[x] 2 |

(s

x*fy (x)dx (1.153)

and the k-th central moments are defined as the expectation

£ ox-m'| 2

o)

(x—my)f (x)dx (1.154)

— 00

The mean value m, of X is defined as the expectation

mxéE[X]:JDo xfx (x)dx (1.155)

The second central moment of X is evaluated as

E {(X—mx)z} £ J°° (x—my) fx (x)dx

— 00

B[] (1.156)

= Varl[x]

where Var[x] is the variance of x. An efficient approach in
evaluating the k-th moments of a random variable, without
performing the integration in (1.153) or (1.155), is based
on the moment theorem as expressed by the moment gener-
ation function (1.241) in Section 1.5.6.

The expectation of the function g(x) is evaluated as

Elg(X)] =J°° o () () (1.157)

-0

and the expectation of the function g(X,Y) of two continuous
random variables is

E[g(X,Y)]=r Joo glx.y)fxy(x.y)dxdy — (1.158)

— o0 — 0
The expectation is distributive over summation so that

E[X +Y]=E[X] +E[Y] (1.159)

and

E[(X+ 77| =E[X*] + 2E[XY] + E[¥] (1.160)
The following relationships between X and Y apply under
the indicated conditions:

E[X]E]Y] :X and Y are uncorrelated
E[XY]= (1.161)

0 :X and Y are orthogonal

From (1.160) and (1.161) it is seen that if X and Y are
uncorrelated random variables they are also orthogonal ran-
dom variables if the mean of either X or Y'is zero. The follow-
ing example demonstrates that if two jointly Gaussian
distributed random variables are orthogonal they are also
independent.

The conditional expectation of X given Y is defined as

(s

E[X|Y]=J xfx (x|y)dx (1.162)

— 00

However, if Y is a random variable the function g,(Y) =
E(X1Y) is also a random variable and, using (1.157), the
expectation (1.162) becomes

o

E[x[ylfy(y)dy (1.163)

E[gz(Y)]=E[E[X\YH=J



Papoulis [35] establishes the basic theorem for the condi-
tional expectation of the function g(X,Y) conditioned on
X = x, expressed as the random variable E[g(X,Y)IX = x].
The theorem is:

E[E[g(X,Y)IX]|=E[g(X,Y)] (1.164)

with the corollary relationship

E[g1(X)g2(Y)]=E[E[g1(X)g2(Y)|X]] = E[g1(X)E[g2(Y) |X]]
(1.165)

Papoulis refers to (1.165) as a powerful formula.

The Bivariate Distribution—An Example of Conditional
Distributions Consider that x; and x, are Gaussian random
variables with means m;, m, and variances o, 05, respec-
tively, with the joint pdf is expressed as [36]

Fem, (X1.%2)

o3 (x1 —m1)2—26162p(x1 —my)(xa—my) + (T%(Xz—mz)z
26 05(1-p?%)

2761624/ 1 —p?

exp| -

(1.166)

where p is the correlation coefficient, such that, Ipl < 1,
expressed as

p=E[(x1—m1)(X2—m2)} _ Elvixa] —mumy (1.167)

0102 0102

Using (1.150), the distribution of x; conditioned on x, is
expressed as

S (X1,32)

Fun 1) = )
_ 1 exp| - (1 =m) =p(o1/02)(x2=m3))?
V27(1-p?) o, 267(1-p?)

1
= exXp| —
2n:(1—p2)01 p[

((xl—M1)—P(X2—M2))2 o=
257(1-p?) A

(1.168)

If x; and x, are uncorrelated random variables then
E[xx;] = E[x;]E[x>] and, from (1.167), the correlation
coefficient is zero and (1.168) reduces to the Gaussian distri-
bution of x; with f, |, (x1]x2) = 1, (x1) :p=0. Therefore, two
jointly Gaussian distributed random variables are orthogonal
and independent if they are uncorrelated.

Referring to (1.165), the first and second conditional
moments of the second equality in (1.168) are evaluated
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using as E[g(X;)g>(X»)] and E [g% (X1)g3 (Xz)] , respectively,
with g1(X;) =X, and g,(X,) =X, In the evaluation, the con-
ditional mean of the Gaussian distribution is established
from (1.168) by observation as

(2]

o1
EXi|Xs =x2]=p—x2—p—my +my
09 09

(1.169)

and the desired result is evaluated as

snnes oo )oo( o)
{2

=po0y +mniy

(1.170)

where E[x}] =03 +m3 and E[x;]=m,. The evaluation of
E[g3(X1)g3(X>)] is left as an exercise in Problem 12. The
evaluation of (1.169) could have been performed using the
integration in (1.155); however, it is significantly easier
and less prone to error to simply associate the required para-
meters with the known form of the conditional Gaussian
distribution as indicated in (1.168).

With zero-mean random variables X; and X, that is, when
my = my = 0, the second equality in (1.168) results in (see
Papoulis [37])

E[X1X;]=poi06, : zero-mean Gaussain conditional pdf
(1.171)
and
E[X{X3] =E[X]|E[X3] + 2E*[X,X] (1.172)

The time correlated zero-mean, equal-variance Gaussian
random variables denoted as x; and x;_; taken at t; = t;_; +
At are characterized, using the last equality in (1.168), as

1 _ui=pioy)?
Fojxi (eilxio1) = oz (1-p2) P [ 203(1 —pz)]
(1.173)

Equation (1.173) is used to model Gaussian fading chan-
nels with the fade duration dependent on Af and p and the
fade depth dependent on o;.

1.5.3 Definitions and Fundamental Relationships
for Discrete Random Variables

In the following relationships, x;, y;, x, and y are considered
to be discrete random variables corresponding to the
event probabilities Px(x;), Py{(y;), Px(x), and Py(y) with the
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corresponding pmfs pA2) = PAZ=27): Z={X,Y}, 2= {x;,y,2,y}
corresponding to the amplitude of the discrete delta functions.
In general, the characterization of discrete random variables is
similar to that of continuous random variables with the integra-
tions replaced by summations and the pdf replaced with
the pmf.

1.5.3.1 Statistical Independence 1If X(y;) = x with y; € S
and the events y; are independent V i, then the joint probabil-
ities are expressed as the product

=

P(Xl =)C1,...,XN=)CN)= P[(Xi=x[) (1174)
i=1
or, in terms of the pmf, px(x;) = P(X = x;)
N
le»~~-,PXN(XL,---»XN)=HPXi(xi) (1.175)
i=1

If § = §,NS, such that X(y,) = x; with y; € Sy, Y(y,) = y; with
;€ S> , and the individual mdfs satisfy (1.175), then

P[S]= Z ZPX, v (%)) = Z pr(xi)PY ()
= ZPX (xi)ZPY ()

=P(S1)P(S2)

(1.176)

Therefore, if the joint pmfs are independent, X and Y are
also independent and, from the last equality in (1.176), S;
and S, are also independent. Consequently, {X,Y} are inde-
pendent iff the pmfs of X and Y can be expressed in the prod-
uct form as in (1.175).

The expectation of x is evaluated as

E[X]= J_oo prx(x)é(x—x,-) = inpx(x,-) = Zx,P(X:x,-)
(1.177)

For the discrete sampled function g(X,Y), the expectation
value is evaluated as

Eg(X.7)]=Y g(xny)pwr(X=x.Y=y;)  (1.178)

inJ

where the pmf is expressed as pxy (xi,yj) =P(X=xi, Y =yj).

1.5.3.2 Conditional Probability The conditional proba-
bility of X given Y = y; is expressed as

P(X=x,Y=y))

P(X=x|Y=y;)= P(Y=y)

(1.179)

and, in terms of the conditional pmfs, (1.179) becomes

_bxy (Xisyj>

px (xly) = or0) (1.180)

The pmf behaves like the pdf of continuous random vari-
ables, in that, if the event X(y;) = x; with y; € S, the proba-
bility of X € S, given Y =y; is evaluated as

P(XeSi|Y=y;) =) px(xily) (1.181)
If X and Y are independent (1.180) becomes
px(xi|yj)=lM=px(xi) (1.182)
Py (yj)

1.5.3.3 Bayes Rule Bayes rule is expressed, in terms of
the condition probability, as

P(Y =yjlx;)P(X =x;)
P(Y=y;)

P(X=x|Y=y;)= (1.183)

and, in terms of probabilities and pmfs, Bayes rule is
expressed as

py () P(X =xi)
px (xily;) P =) (1.184)
The probability state transition diagram is shown in
Figure 1.18 for N-dimensional input and output states x;
and y;, respectively. The outputs are completely defined by
the conditional, or transition, probabilities P(y/lx;) and the
input a priori probabilities P(x;). Upon choosing the state
v, that is, given yj, the a posteriori probability P(x;y;) is

PO

P(xy)

FIGURE 1.18 Probability state transition diagram.




the conditional probability that the input state was x;.
Wozencraft and Jacobs (Reference 30, p. 34) point out that,
“The effect of the transmission [decision] is to alter the
probability of each possible input from its a priori to its a
posteriori value.”

The conditional expectation of X given Y =y is

E(X|Y)=> xipx(xily) (1.185)

Xi

where the pmf px(x;ly) = P(X = xly).

1.5.4 Functions of Random Variables

Applications involving random variables that are functions of
random variables, that is, z = g(xy, ..., X3y), require that the
density function f»(z) be determined given fx, (x,): n = 1,
., M. In the following subsections, the transformation from
Sx, (xm) to f£(2) is discussed for the relatively easy case invol-
ving functions of one random variables, that is, M = 1. More
complicated cases are also discussed involving functions of

two random variables and M random variables of the form
M
Z= Zm: X The following descriptions involve continu-

ous random variables and cases involving discrete and mixed
random variables are discussed in References 6, 8, 29.

1.5.4.1 Functions of One Random Variable In the fol-
lowing description, the mapping of the random variable
X = x is continuous and Fx(x) is differentiable at x as in
(1.126), with finite values of fx(x). The transformation from
X to Z can be based on the functional relationships z = g(x) or
x = h(z) with the requirements that P(X =00 )=P(Z=0) =1
corresponding to unit areas under each transformation. These
transformations correspond, respectively, to

_ fx(x=h(z))
f2(2) = EACI P (1.186)
and
fo(re dh(z)
fZ(Z) —fX(x—h(Z)) ‘d_z (1187)

Equations (1.186) and (1.187) require the inverse
relationship

’dh(z) (1.188)

_|de)|"
dz

dx

x=h(z)

The function z = h(x) typically has a finite number of
solutions x,,, corresponding to the roots z = h(x;), h(xy),...,
h(xy) of the transformation and, under these conditions, the
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- 0 ¢ Qo T

FIGURE 1.19 Random variable x = asin(g) (fp(@) = 1/(2n)).

solution to f,(z) given fx(x,) is determined using the funda-
mental theorem [38, 39],

fo DIZLED!

n=1

dh(z,
zfx he) [

(1.189)

where h(z,,) corresponds to the transformation of x,, expressed
in terms of z,, and ' (z,) =dh(z,)/dz,.

As an example, consider a sinusoidal signal z, with con-
stant amplitude a and random phase ¢ uniformly distributed
between +7, expressed as

z=asin(@) (1.190)

Referring to Figure 1.19, and noting that z=asin(¢g,) =
asin(¢,), the problem is to determine the pdf f»(z) using
the two roots of ¢, =h(z;) and ¢, =h(z2). Using (1.190),
@=h(z) is evaluated as

. _1/(%
@=h(z)=sin 1(;) co={p1,0,} (1.191)
and
dh(z) 1
TN _ o
h(Z)— dZ _\/m '¢_{¢]’§02} and |Z| <a

(1.192)
Therefore, evaluating (1.189) with fo(@) = 1/(27) results in

f2(2)=fo(0,) W ()| +fo (0,) IH (22)]

1/ 1 1
‘5( o /—az_zz) (1.193)

I 1
=——— : [¢|<a

ﬂ,/aZ_ZZ

1.5.4.2 Functions of Two or More Random Variables
The concepts involving a function of one random variable
can also be applied when the random variable Z is a function
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of several random variables; for example, the dependence on
two random variables, such that, z = g(x,y) is discussed at
length by Papoulis (Reference 8, Chapters 6 and 7) where
the subjects involving marginal distributions, joint density
functions, probability masses, conditional distributions and
densities, and independence are introduced. According to
(1.126), the probability density function f(z) is determined
from the distribution function F4(z) as

_ an(Z)

fz(2) PR (1.194)

and the joint pfd of X and Y is characterized for continuous
distributions as

82ny (X,y)
V) =——a 1.195
Jorbey) =55y (1.195)
where the joint cdf is given by
'y X
Fxy(x,y) =J J Sy (¥, )ax' dy' (1.196)

Based on the conditions for the equality of the probabil-
ities, that is,

P7(Z<z)=Pxy(x,y€g(x,y)<z)

the pdfs are equated as

FZ(Z)=FXY(8(X,Y)SZ)=J fo,y(x,y)dxdy (1.197)

g(x,y)<z

Upon differentiating (1.197) with respect to z yields the
desired result expressed as

_ an(Z) _ 3
fz(2)= % -3 Jg(x,)')szjf (x,y)dxdy

(1.198)

As an example application consider the random variable
Z = X + Y; Papoulis states that, “This is the most important
example of a function involving two random variables.”
Upon letting y = z — x and using (1.198) the density function
of Z is evaluated as

a (o] =X (o]
fz(z)=a—zj_ j f(x,y)dxdy=J_ Frr (5, 2—x)dx
(1.199)

and, when X and Y are independent, (1.199) is simply the
convolution of fy(x) with fy(y). Several examples involving
the use of (1.199) are given in Section 1.5.6.1.

Using the joint probability density function of two contin-
uous random variables x and y, as expressed in (1.195), the

marginal pdfs fx(x) and fy(y) are obtained by integrating over
y and x, respectively, resulting in

Sx(x)= Jm Sxr(x,y)dy (1.200)
and
fY()’)=J Sxy (x,y)dx (1.201)

These results can also be generalized to apply to the joint
density function of any number of continuous random vari-
ables by integrating over each of the undesired variables.

1.5.5 Probability Density Functions

The following two subsections examine the probability den-
sity function [40] of the magnitude and phase of a sinusoidal
signal with additive noise and the probability density func-
tion of the product of two zero-mean equal-variance Gaussian
distributions. In these cases, the random variables of interest
involve functions of two random variables. In Section 1.5.6,
the characteristic function is defined and examined for
several probability distribution functions demonstrating the
central limit theorem with increasing summation of random
variables. In Section 1.5.7, many of the probability distribu-
tions used in the following chapters are summarized and
compared.

1.5.5.1 Distributions of Sinusoidal Signal Magnitude
and Phase in Narrowband Additive White Gaussian Noise
This example involves the evaluation of the pdf of the mag-
nitude and phase at the output of a narrowband filter when the
input is a sinusoidal signal with uniformly distributed phase
and zero-mean additive white Gaussian noise [41] (AWGN).
In this case, the output of the narrowband filter is a
narrowband random process. The evaluation involves three
random variables: the input signal phase ¢ and the two inde-
pendent-identically distributed (iid) zero-mean quadrature
noise random variables with variance 6,%. The signal plus
noise out of the filter is expressed as

s(t)=Acos(w.t+ @) +n(t)cos(w.t+ P(t))
=Acos(@)cos(w.t) —Asin(p)sin(w.t)
+ n(t)cos(¢p(t))cos(w.t) —n(t)sin(¢p(z))sin(w,?)
= (Acos(@) +n.(t))cos(w.t) — (Asin(gp) + ny(t) )sin(w.t)
(1.202)

where the third equality in (1.202) emphasizes the in-phase
and quadrature functions of the signal and noise terms and,
when sampled at ¢ = iTy, represent the random variables
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FIGURE 1.20 Relationship between transformation variables.

X, Mg Xg, and ng. The functional relationships are
x.=Acos(p) +n. and x; =Asin(@) + n; with n, and n, repre-
senting zero-mean quadrature Gaussian random variables.
The signal phase, ¢, is uniformly distributed between 0
and 2z. Under these conditions, the quadrature signal and
noise components x. and x; are independent random vari-
ables” and the pdfs of x, and x, are expressed as

L (xe-Acos(g))?/202

e
vV2ro,

Jx (xe) = (1.203)

and

L —(x-asin())/202

e
V2o,

The pdf of the phase is

fx, (x5) = (1.204)

1

Jo(p)==— :0<@p<2rx

1.2
27 (1209

Using (1.203), (1.204), and (1.205) the joint pdf is
expressed as
Txo X, 0 (Xes X5, @) =, (X ), (%5 )for ()

1 (x¢c —Acos())? + (xs —Asin(p))?
262

- 47r20'2€_
(1.206)

The evaluation of the joint pdf of the magnitude and phase
of the sampled sine-wave plus noise involves the transfor-
mation of variables from (x.x;) to (r,6) as depicted in
Figure 1.20. The magnitude is described as

r=|s(iTy)| = /%2 +x2

and the in-phase and quadrature components, x. and x,, are
described in terms of the angle 0 as

(1.207)

x.=rcos(0) and x,=rsin(6d) (1.208)

“Orthogonal Gaussian random variables are also independent.
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Expressing the phase angle in (1.208) as a function of x,
and x; leads to the expressions

O=cos! [ —— (1.209)
X2+ x2
and
O=sin”! [ —=__ (1.210)
X2+ x2

The Jacobian of the transformation is defined as [6, 8,
28, 29]

0g,, (Xe,Xs) 08, (XerXs)

ox, ox,
J(xe,xg) & ‘ ' (1.211)
' agzl (xc’xs) agzz (xC7xs)
Xe ox; det

and, using the Jacobian, the transformation from (x.x;) to
(r,0) is expressed as

_fXL-'me (hl (r’g)’h2(r’9)’(p)
fr.0.(r.6.0)= G|

(1.212)

To evaluate the Jacobian for this transformation, the func-
tions g;i(x..x,) are defined in terms of (1.207), (1.209), and
(1.210) as follows:

g1 (Xe, Xs) = 812 (Xeyxy) = 4 /X2 442 (1.213)
821 (Xe,x;) =cos™! e (1.214)
X2+ X2
and
20 (e x) =sin ™! [ ——— (1.215)
X2+ x2

Upon evaluating the partial derivatives in (1.211), the
Jacobian is found to be"

1

1
2+ 2 7
xo+x; T

J(Xe,xg) = (1.216)

"The phase angle can also be expressed as = tan™' (x,/x.) with the Jacobian
evaluated as earlier using, g»1(x;, X.) = g22(x; X.) = tan"'(x,/x.) (see
Problem 16).
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and, using (1.208), the functions h(r,0) and h,(r,0) are
expressed as
hy(r,0) =x,|

(9)=rcos(0) (1.217)

rcos
and

hy(r,0) =xs|rsin(9> =rsin(0) (1.218)
Substituting (1.216), (1.217), and (1.218) into (1.212) and

applying the independence of x,, x, and ¢, as in (1.206), the

pdf of the transformed variables r and 6 is expressed as

Tro.0(r,0,0) =fr(r)fe(0)fe(p)

(rcos(6)—Acos(p))? + (rsin(8) —Asin(p))?

r —
262

=——¢
4202

r? + A2 —2Arcos(0-¢)

r _
202

- 47[2026
(1.219)

where r > 0, otherwise the pfd is zero, and 6 and ¢ are
uniformly distributed over the range 0 < 0, ¢ < 2z. The pdf
for the magnitude r is determined by computing the marginal
distribution Mg(r) by integrating over the ranges of 8 and ¢.
Defining w = 8 — ¢, the marginal is evaluated as

2 2 g 271_(/’
_rorea ] J 1 J A7 g, | dg

(1.220)

Davenport and Root [42] point out that the integrand of the
bracketed integral is periodic in the uniformly distributed
phase y and can be integrated over the interval O to 2z. With
this integration range, the bracketed integral is identified as
the zero-order modified Bessel function expressed as [43]

2
Ar 1 reo o2
I <§> = J AP g,
0

Therefore, upon using (1.221) and performing the integra-
tion over @, the marginal distribution function Mg(r) simpli-
fies, at least in notation, to

ro_rxa (A
)= x50, (25

o

(1.221)

(1.222)

Equation (1.222) is the Rice distribution or, as referred to
throughout this book, the Ricean distribution that, as devel-
oped in the forgoing analysis, characterizes the baseband

magnitude distribution of a CW signal with narrowband addi-
tive white Gaussian noise. The Ricean distribution also char-
acterizes the magnitude distribution of a received signal from
a channel with multipath interference; this channel is referred
to as a Ricean fading channel. The Ricean distribution
becomes the Rayleigh distribution as A — 0 and the Gaussian
distribution as A — oo; the proof of these two limits is the
subject of Problems 19 and 20. The Rayleigh distribution
characterizes the amplitude distribution of narrowband noise
or, in the case of multipath interference, the composite signal
magnitude of many random scatter returns without a domi-
nant specular return or signal component. The multipath
interference is the subject of Chapter 18. Defining the
signal-to-noise ratio as y = A%1(26%), (1.222) is expressed as

fe(r) =S~ (24, (@)

p (1.223)

The pdf of the phase function is evaluated by computing
the marginal distribution Mgq(6,¢) by integrating over the
range of the magnitude r. By forming or completing the
square of the exponent in the last equality in (1.219) the inte-
gration is performed as

foo(0,0)=

—Asin®(0-¢) /26> ® —(r—Acos(6-¢))* /26> d
=— ¢ re r
47202 J

0
(1.224)

Davenport and Root [44] provide an approximate solution
to (1.224), under the condition Acos(@ — ¢) >> . The approx-
imation is expressed as

Acos(0-¢)
(27)* 6

1%

foo(0,0) e 0-0) 020, p<2n (1.225)

where y is the signal-to-noise ratio defined earlier. An alter-
nate solution, without the earlier restriction, is expressed by
Hancock [45], with y = 8 — ¢, as

fulw) = 5 (14 Vanreos(y)e™ WP (y/2reos(y)) )
e 21/ ]
(1.226)

where P(z) is the probability integral defined in Section 3.5.
Hancock’s phase function is used in Section 4.2.1 to charac-
terize the performance of phase-modulated waveforms.

Asy — 0in (1.226) the function fg(y) — 1/27 resulting in
the uniform phase pdf. However, for y greater than about 3,
the probability integral is approximated as [26]

e7/?

1z>3 (1.227)
2rz



Using (1.227), the phase pdf is approximated as

Vr/meos(y)e W) 1> cos(y) > 2.5/ /7
0 1 =2.5/\/r>cos(y)> -1
(1.228)

So(w) Q{

With lyl = 0 such that sin’(y) = w” and defining
y=1/20;, (1.228) is approximated as

2

Foly) eV % iy ~0andy=1/262 (1.229)

o V2ro,

Equation (1.229) describes a zero-mean Gaussian phase
pdf with the phase variance 65,= 1/2y. Hancock’s phase
function, expressed in (1.226), is plotted in Figure 4.3 for var-
ious signal-to-noise ratios.

1.5.5.2 Distribution of the Product of Two Independent
Gaussian Random Variables In this section the pdf of
the product z = xy of two zero-mean equal-variance iid Gaus-
sian random variables X and Y is determined. The solution
involves defining an auxiliary random variable w = h(x) = x
with z = g(x,y) = xy and evaluating fz y{(w,z) characterized as

_fxr(w,z/w)

fwz(w,z)= ] (1.230)

where Jy y(x,y) is the Jacobian of the transformation evalu-
ated as

dg(x,y) dg(x.y)

Jxy () ox dy
X,y) = =—x
XY= Shey) 9h(x,y)

ox ay det

(1.231)

Using (1.231) and the joint Gaussian pfd of X and Y,
expressed by (1.230), with x = w and y = z/w, the marginal
pdf of 7 is evaluated as

< 1
f2(2) =J |fo,y(w,z/w)a’w (1.232)
However, since X and Y are independent
_ (xz +y2)
Jry(xy) =fx(x)fy(y) e 22 (1.233)

2n0?

and, upon substituting x =w and y = z/w into (1.233), (1.232)
is expressed as
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1 © w? +(z/w)?
—J —e 262 dw

o e (1.234)

= —J —e~ 202 dw

where the second equality recognizes that the first equality is
symmetrical in w. Letting A = w*/267 (1.234) is expressed as

e 2
£(2) LJ %e_(/”m) da (1.235)

Y
2rn0° |

The solution to the integral in (1.235) appears in the
table of integrals by Gradshteyn and Ryzhik (Reference
46, p. 340, pair No. 12) as

(1.236)

Jm Ale (“ %) dﬂ:Z(%)VK_V(u)

0

where K, (1) is the modified Bessel function of the second kind
of order v. With v = 0 and u = /6, (1.235) is evaluated as

o= st ()

The magnitude of z in (1.237) is used because of the even
symmetry of fz(z) with respect to z. The symmetry of fA(z)
results in a zero-mean value so the variance is evaluated as

(1.237)

Var[z]=E[z*] :zero-mean

2 (%, K4
== | 2K (5)
HUZJO “RolGz) %

The solution to the integral in (1.238) is found in Gradsh-
teyn and Ryzhik (Reference 46, p. 684, Integral No. 16) and
the variance f,(z) is evaluated as

(1.238)

Var(z) = %W @) =0 (1.239)

where the second equality in (1.239) results from the value of
the Gamma function I'(3/2)=+/z/2. In Example 4 of
Section 1.5.6.1, the pdf of the summation of N iid random
variables with pdfs expressed by (1.237) is examined.

1.5.6 The Characteristic Function

The characteristic function of the random variable X is
defined as the average value of ¢ and is expressed as

Cx(v)2E[e/™] =J°° fx(x)e™dx (1.240)



32 MATHEMATICAL BACKGROUND AND ANALYSIS TECHNIQUES

With v = —w and x = ¢ (1.240) is similar to the Fourier
transform of a time-domain function. The characteristic func-
tion is also referred to as the moment-generating function, in
that, the nth moment of the random variable X, defined as the
expected value E[x"], is evaluated (see Problem 26) as

ndnCX(v)

5= (gt

(1.241)

The Fourier transform relationship between time domain
convolution and frequency domain multiplication also
applies to the convolution of random variables and the mul-
tiplication of the corresponding characteristic functions.
Therefore, based on the discussion in Section 1.5.6.1, the
summation of N identically distributed (id) random variables
corresponds to the product of their individual characteristic
functions, that is,

N
v =][cx(v) 2= X, i=1,...N;X;cid
i=1
(1.242)

This is a very useful result, in that, the distribution of the
summation of N independent random variables is obtained as
the inverse transform [47] of (1.242) expressed as

Cz(v)e™dz

— o0

f2(2) =J (1.243)

Campbell and Foster [47] provide an extensive listing of
Fourier transform pairs defined as

G( g) e~ 2nf8 dg

— 00

G(g)=r° F(f)e*™df and F( f):J

-0

(1.244)

and, by defining v = —2xf, the Fourier transform pairs apply
to the transform pairs between fx(x) and Cx(v) as expressed
in (1.240).

1.5.6.1 Summation of Independently Distributed Random
Variables If two random variables X and Y are independent
then the probability density f(z) of their sum Z =X + Y is
determined from the convolution of fx(x) with fi(y) so that”

fz(Z)=Joo fx(z=y) Y(y)dy=r Fx()fy (z—x)dx (1.245)

For multiple summations of a random variable, the convo-
lution is repeated for each random variable in the summation.

"For proof see Reference 8, p. 189.

fx)
12a —
X
—-a 0 a
12a — Range 1:

—2a<z<0

X

Z z+a
12a — Range 2:

0<z<2a

X

z—a z

FIGURE 1.21 Convolution of two zero-mean uniform
distributions.

Example I Consider the summation of N zero-mean uni-
formly distributed random variables X; expressed as

(1.246)

with

fx(x)==— :-as<x<a (1.247)

For N = 2 the convolution involves two ranges of the
variable z as shown in Figure 1.21 and the integrations are
evaluated as

1 [zte
fz(z)—ﬁJ. dx :-2a<z<0 (1.248)
a —a
and
1 a
fz(Z)=@J dx :0<z<2a (1.249)

Upon evaluation of (1.248) and (1.249) and recognizing
the symmetry about z the density function is expressed as

fz(z)=i<—%+l) iz < 2a

Repeating the application of the convolution for N = 3
and 4 (see Problem 24) results in the probability density func-
tions shown in Figure 1.22 with the corresponding cdf results
shown in Figure 1.23. As N — oo the probability density and
characteristic functions will approach those of the Gaussian
distributed random variable (see Problem 23).

(1.250)
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FIGURE 1.22 pdf for sum of N = 2, 3 and 4 independent zero-
mean uniform distributions (a = 1).
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FIGURE 1.23 cdf for sum of N = 2, 3 and 4 independent zero-
mean uniform distributions (a = 1).

The moments of the random variable X are evaluated
using the characteristic function

Cx(v) = sin(av)

(1.251)
ayv

In regions where the characteristic function converges, the
moments E[x"] completely define the characteristic function
and the pdf of the random variable X, so, upon expanding
(1.251) as the power series

(av)*  (av)*
31 s

Cx(v)=1- — (1.252)
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TABLE 1.6 Moments of f(zy) for
Z= in :i=1,...,4, X; iid Zero-Mean
Uniform Distributions

N Elz] E[Z*]
1 0 a3
2 0 24°%/3
3 0 a*

4 0 4a*3

the moments are easily evaluated using (1.241). The
moments for the random variable Z, formed as in (1.246),
are determined using (1.242) and, with X; : i = 1,...,N
iid random variables, the characteristic function for Z is
approximated as

N 2
C(v)=CV(v) = 1- (;"V) (1.253)
The first and second moments for N = 1, ..., 4 are listed

in Table 1.6. These results are also obtained by evaluating
fA2) using (1.250) and then evaluating the moments (see
Problem 25) as

Na
E[z"] =J Z"fz(z)dz (1.254)

—Na

However, it is much easier to use the characteristic
function.

Example 2 As another example, consider the summation of
N random variables X; characterized as the sinusoidal
function

X,'=A,' sin(CI)i) (1255)

with constant amplitudes A; and zero-mean uniformly distrib-
uted phase, expressed as

1
f®((ﬂ)=ﬂ o< (1.256)

The resulting pdf of the random variable X; for ¢ = x, is
evaluated in (1.193) as

1

7/ Aiz— xi2

and is plotted in Figure 1.24.

fx(x)= (1.257)
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FIGURE 1.24 pdf of x = Asin(¢) with zero-mean uniformly
distributed phase, A = 1 and ¢ = 7.

]00 T T T T T T T T T T T T T

0.75 y

0.50

f22)

0.25

0'00—4 -3 2 -1 0 1 2 3 4
FIGURE 1.25 pdf of N = 2, 3, and 4 successive convolutions
of fx(x).

The pdf of the random variable Z, expressed as in (1 .246),*
is evaluated by successive convolutions as in (1.245) and the
results for N = 2, 3, and 4 are plotted in Figure 1.25 with the
corresponding cdf functions shown in Figure 1.26. The
results in Figures 1.25 and 1.26 for N > 1 are obtained by
numerical evaluations of the convolutions using incremental
values of Az =2.5x107° ; this is a reasonable compromise
between simulation time and fidelity in dealing with the infi-
nite value at Ixl = 1.0.

In this case, the mean and variance of the random variable
X are evaluated using the characteristic function of (1.257)

By forming the average summation Z = (1/N )Z;= %i the range of the pdf
is limited to +a with an associated decrease in the standard deviation.

1.00
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0.50 1

Fz2)

025

00 3" 51T 0 1 2 3 4

FIGURE 1.26 cdf of N = 2, 3, and 4 successive convolutions
of fx(x).

TABLE 1.7 Moments of f,(zy) for Z= X; :i=1,...,N, X; iid
Random Variables Expressed by (1.255)

Theoretical Numerical® (A = 1)
N E[z] E[Z] E[z] E[Z’]
1 0 A2 0 0.4999
2 0 A? 0 1.0044
3 0 3A%12 0 1.5055
4 0 242 0 2.0146

“Numerical values are sampled with Az = 2.5x 107,

found in (Reference 47, p. 123, Transform Pair 914.5); the
result is

Cx(v)=1,(—jAv) (1.258)
where I,(—) is the modified Bessel function of order

zero. Expanding (1.258) for Av < 1 as a power series,
(Reference 46, p. 375, Ascending Series 9.6.10), results in"

@) @yt @
SOy ey ey

(1.259)

and the moments are easily evaluated using (1.241). The first
and second moments are listed as the theoretical values in
Table 1.7. The moments for the random variable Z, formed
as in (1.246) with X; iid random variables for all i as expressed
by the pdfin (1.255), are determined using the characteristic
function expressed as

"By comparing the ascending series expansion of /,(z) with that of the Bessel
function J(z) it is found that I,(—jz) = Jo(2).



Cz(v)=C{(v)=1- (1.260)

The corresponding first two moments of the random var-
iable Z for N = 2, 3, and 4 are also listed in Table 1.7. The
numerical results listed in Table 1.7 are based on computer
evaluations of the various convolutions resulting in the pdfs
shown in Figures 1.24 and 1.25.

A major observation in these two examples is that the
probability distribution of the random variable Z approaches
a Gaussian distribution as N increases (see Problem 27). This
is evidence of the central limit theorem which states that (see
Davenport and Root, Reference 6, p. 81) the sample mean of
the sum of N arbitrarily distributed statistically independent
samples becomes normally distributed as N increases. This is
referred to the equal-components case of the central limit the-
orem. However, as pointed out by Papoulis (Reference 8,
p- 266), a consequence of the central limit theorem is that
the distribution f,(2) of the sum of N statistically independent
distributions having arbitrary pdf’s tends to a normal distri-
bution as N increases. This is a stronger statement and sug-
gests that the probability P(z) = fAZ < z) can be considered a
Gaussian distribution for all z as is frequency assumed to be
the case in practice. Davenport and Root also point out that,
even though N is seemingly large, the tails of the resulting
distribution may result in a poor approximation to the
Gaussian distribution.

Upon computing the mean and variance using the power
series expansion of Cx(v) expressed by (1.252) with av << 1,
the approximate expression for the corresponding Gaussian
distribution is easily obtained. After summing N uniformly
distributed amplitudes the expression for the pdf is

! e/ (aNa/3) :z=Zx,-, i=1,...,N,

\/2zNa?/3

1
plx)= 70 il <a

fz(2)=

(1.261)

Similarly, for the summation of N sinusoids with Av << 1,
the pdf in Example 2 is expressed as

1
e—zz/(ZNAZ/Z)

/27NAZ)2

:z=Zx,~, i=1,...,N, x;=Asin(g;)

fz(z)=
(1.262)
p(p;)= P lp;| <7

It is interesting to note that the second moments are NA*
for all values of N including those for which the pdf does
not have the slightest resemblance to the Gaussian pdf.
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In these cases, the important difference is that the corres-
ponding probabilities P(x) = Fx(X < x) are entirely different
from those of the Gaussian distribution with the possible
exception of the median value. Finally, it is noted that the
limiting behavior for Av << 1 and N — oo applies to the sum-
mation of independently distributed distributions that may,
or may not, be identically distributed distributions.

Example 3 This example involves the summation of
random chips {£1} in a direct-sequence spread-spectrum
(DSSS) waveform. In this case, the chips occur with equal
probabilities according to the pdf expressed as

fx(x)zéé(x—l)+%5(x+ 1) (1.263)

Using (1.240), the characteristic function is evaluated as

Crtn)= | et as

1 © o
E(J e’”é(x—l)dx+J S (x+ 1)dx)

=cos(v)
(1.264)

The DSSS waveform uses N chips per bit and the demod-
ulator correlation sums the N chips to form the correlation

N-1 . . -
output y:Zn_ oXn with the corresponding characteristic
function given by

Cy(v)=CE (x) =cos" (v)
(1.265)
To evaluate the first and second moments of y only the

first two terms in the expansion of cos™(v) are required
and, upon using (1.241), these moments are evaluated as

Elx] = j% =0 : first moment (mean value, X)
e (1.266)
and
E[¥]= (—1)% =N :second moment (1.267)
" lv=0
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The variance of y is defined as the second central
moment E [(x—)?)z] =E[x*]-%* and with zero-mean the var-

iance is o} = E[x*] =N.

Example 4 The pdf f,(z) of the product of two, zero-mean,
equal-variance, iid Gaussian random variables, z = xy, is
expressed in (1.237) as a function of the zero-order modified
Bessel function K,(Izl/c®) where the magnitude of z provides
for the range: —co <z< 0. In this example, the pdf f7(2)
is evaluated where Z:ZlZi :i=1,...,N. The evaluation

is based on the N-th power of the characteristic function
C4(v) and, from the work of Campbell and Foster
(Reference 47, p. 60, pair No. 558), the characteristic func-
tion is evaluated as’

1/6?

V1/c*-p?

The characteristic function of Z is the N-th power of
(1.268) expressed as

Cz(v)= (1.268)

1/62N

(1/o*=p?)"

cY(v)= (1.269)

and, using the transform pair of Campbell and Foster
(Reference 47, p. 61, pair No. 569.0), the pdf of Z is evaluated
as

Y 1/6*V _(N=1)/2 1zl
2= { A Kw-va (a) }

(1.270)

As in the case for f4(z), the pdff;(Z) applies for —co £ 7< o0
and is symmetrical with respect to z resulting in a zero-mean
value with the variance expressed as

Var[z)=E [22] :with zero-mean

2/0N ® N-1)2 z
_ﬁr(N/z)(z/aZ)‘N‘”/zL 2K () e

(1.271)

The solution to the integral in (1.271) is found in
Gradshteyn and Ryzhik (Reference 46, p. 684, Integral No.
16) and the variance f(z) is evaluated using

ooiu o2 Mtu+y 1+u-v
Jsz(az)dz—au+1F< 3 >F< 5 ) (1.272)
0

“The tables of Campbell and Foster are Fourier transform pairs that corre-
spond to characteristic function pairs with p = —jv.

Substituting the solution to the integral in (1.272) into
(1.271), with u = (N + 3)/2, v = (N = 1)/2, and a = 1/6°,
the solution to variance simplifies to

Var(z)=No* (1.273)

In the earlier evaluation, the integer argument Gamma
function is related to the factorial as I'(N)=(N-1)! and
I'(3/2)=+/z/2. This result could also be evaluated using
the movement generating function of (1.241), however, using
the integral solution as in (1.272) it is sometimes easier
to evaluate the moments. With a sufficiently large value
of N the pdf f;(Z) is approximated as the Gaussian pfd
expressed as

1 =
7(2) ¢~%/(Ne") . zero-mean Gaussian pdf

N /2N
(1.274)

The probability density functions discussed earlier and
others encountered in the following chapters are summarized
in Table 1.8 with the corresponding mean values, variances,
and characteristic functions.

1.5.7 Relationships between Distributions

In the following two subsections, the relationship between
various probability density functions is examined by straight-
forward parameter transformations, allowing parameters to
approach limits, or simply altering various parameter values.
The most notable relationship is based on the central limit
theorem in which a distribution approaches the Gaussian
distribution by increasingly summing the operative random
variable.

1.5.7.1 Relationship between Chi-Square, Gaussian,
Rayleigh, and Ricean Distributions A random variable
has a chi-square (y%) distribution with N degrees of freedom
if it has the same distribution as the sum of the squares of
N-independent, normally distributed random variables, each
with zero-mean and unit variance.”

Consider the zero-mean Gaussian or normal distributed
random variable x with variance afc and pdf expressed as

1 2 2
— -x*/20
X)=——e E (1.275)
pX( ) \/EO'X
The pdf of a new random variable y = x*, obtained by sim-
ply squaring x, is determined by considering the positive and
negative regions of x= +,/y as shown in Figure 1.27.

A normally distributed random variable x with mean value m, and variance
oi can be transformed into a zero-mean, unit-variance normally distributed
random variable y by substituting y = (x —m,)/o,.
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TABLE 1.8 Probability Distributions and Characteristic Functions
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Name Jx(x) E[x] Var[x] Cx(v) Conditions
Uniform 1 a+b (b—a)2 (ejvh_ejva) a>x<bh
b-a 2 12 jv(b—a)
Bernoulli p D= 4 p(1 —p) 1 -p)+pv Discrete binary variable
. x=k:i=1,2
l-p :i=2
Binomial n\ ek np np(l — p) ((1-p)+pv)"  Discrete variable
L |p=p) x=k=12,...n
Poisson ake=[k! a a ev=1) Discrete variable
x=k=0,1,...;a>0
Exponential ae™ la 1/a? a/(a—jv) x20; a>0
Gaussian (normal) (x=m)® m & jmy— — 00 <x<
e 20?2 e 2
\2ro
Chi-square (N = 2) e~ ¥/? 2 4 (1-j2v)7"! xz0
Exponential (a = 1/2) 2
Chi-squared (N-degrees) xN/2-1p=x/2 N 2N (1—-j2v)~N/? N-degrees of freedom x > 0
V(N J2-1)!
Rayleigh e /2 /717/20 as y—00 (4-n)o? a5 oo (1-jv/B) x>0
o? 2
Ricean (-2 “ “ “ x>0
xe 27 1 (&4) A?/26% — o
0'2 ¢ 0'2
A%/262=0
Gamma B(Bx)*"! i alp al? 1 ] gig o
I'(a) (1-73) ;
Lognormal _ (1“02‘)—2'")2 e+ ot/2 m+26° b y is lognormal
e T gt y=e20
V2nyo x = N(m,0)
Nakagami-m 2p2m=1g=ms*/Q ¢ ¢ ¢ x20
Tm)Q” o ET
E[-E(x)]
21/2

Notes: y = A%/(26?) is the signal-to-noise ratio. y—0 fy(x) = Rayleigh with E[x] = +/ 7/20, Varlx] = (4-n)0° /2.

9y — 00 fy(x) = Gaussian with E[x] = A, Var[x] = 6°.

b Approximated using a series expansion of ¢/*”.
“Refer to special cases in Section 1.5.7.2.

—X

0 X

FIGURE 1.27 Transformation of the random x to y = x°.

The pdf of y is determined using the incremental intervals
dy = 2xdx at x= £ ,/y such

pr(y)=px (x= \/y)

[e—y/Zai + e—y/z:ri}

V2no,

e_y/2 0.)2(

\2nyo,

dx
e

dx

& U(y)

%\ )

:U(®y)

(1.276)
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The characteristic function of (1.276) is evaluated as

1

Cy(v)=E[py(y)e™] = W

(1.277)

Consider now the random variable z resulting from the
summation of N independent random variables y; such that

N

N
=Y y=d 2 (1.278)
=1

i=1 i

The characteristic function of z is simply the N-th power
of Cy(v) so that

cdw=[cym]"

! (1.279)
(1-j2062v) N2

Equation (1.279) transforms to the pdf of z, resulting in

N/2=1p-2/20

pz(z)= 2 <%]_1>! U(y)

X

(1.280)

In conforming to the earlier definition, the chi-square
distribution is expressed by letting > =1 in (1.280) or, more
formally, using the transformation y =z/0?; therefore, the
pdf of the chi-square random variable y with N degrees of
freedom is

N2l

px(y)= Y A U(y) Chi-square distribution
N2 (— - 1) !
2

(1.281)

and the corresponding characteristic, or moment generating,
function is

1

N () =
) (1—-j2v)"/?

: Chi-square characteristic function

(1.282)

Equation (1.281) is occasionally referred to as the central
z~ distribution because it is based on noise only, that is,
the underlying zero-mean Gaussian random variables x;

with distribution given by (1.275) do not contain a signal
component.”

Special Case for N = 2 Under this special case z=x] +x3
(1.280) reduces to the exponential distribution

_ >
e z/2 o3

S : U(y) exponential distribution (1.283)
6)(

pz(2)=

So the resulting chi-square y* distribution is obtained from
(1.281) with N = 2. This is an important case because x; and
X, can be thought of as orthogonal components in the com-
plex description of a baseband data sample. Urkowitz [48]
shows that the energy of a wide-sense stationary narrowband
white noise Gaussian random process with bandwidth —W to
W Hz and measured over a finite interval of T seconds is
approximated by N = 2WT terms or degrees of freedom.
The frequency W is the noise bandwidth of the narrowband
baseband filter and the approximation error in the energy
measurement decreases with increasing 2WT. The factor of
two can be thought of as the computation of complex orthog-
onal baseband functions Z=x? + jx? so N = 2 degrees of free-
dom correspond to WT = 1. For example, the rect(t/T)
function observed over the interval T seconds has a noise
bandwidth of W = 1/T Hz corresponding to WT = 1 resulting
in 2 degrees of freedom.

Upon letting w=|z| = /22 + 2, the random variable w is
described in terms of the Rayleigh distribution
w e—w2 /202

pw(w)= )
Ux

:U(y) Rayleigh distribution (1.284)

So the Rayleigh distribution is derived from the magni-
tude of the quadrature zero-mean Gaussian distributed ran-
dom variables, x = N(0,0)."

1.5.7.2 Relationship between Nakagami-m, Gaussian,
Rayleigh, and Ricean Distributions The Nakagami-m dis-
tribution [49] was initially derived from experimental data to
characterize HF fading; however, subsequent experimental
observations demonstrate its application to rapid fading at
carrier frequencies from 200 MHz to 4 GHz. It is considered
to be a generalized distribution from which other distri-
butions can be derived, for example, m = 1 results in the
Rayleigh power distribution, m = %2 results in the one-sided

“When the underlying Gaussian distributed random variable is composed of
signal plus noise, the signal amplitude represents the mean value of the dis-
tribution. An analysis, similar to that of (1.276) through (1.280), containing a
mean value, results in a noncentral y* distribution with 1 through N degrees
of freedom. The noncentral x> distribution is developed and discussed in
Appendix C.

"The notation N(m,0) is used to denote the distribution of a Gaussian, or nor-
mal, random variable with mean value m and standard deviation .



zero-mean Gaussian distribution, and as m— oo the
m-distribution approaches the Gaussian distribution with a
unit mean value. In the region 1 < m < co, the Nakagami-m
distribution behaves much like the Ricean distribution;
however, the normalized distributions are subtly different
when plotted for various signal-to-noise ratios less than
about 10 dB. The Ricean distribution, referred to as the
n-distribution by Nakagami, is derived from concepts invol-
ving narrowband filtering of a continuous wave (CW) signal
with additive Gaussian noise, whereas the Nakagami-m
distribution is derived from experimental data involving
multipath communication links.

1.5.8 Order Statistics

Communication systems analysis and performance evalua-
tions often involve a large number of random samples taken
from an underlying continuous or discrete probability distri-
bution function. The various parameters, used to characterize
the system performance, result in limiting distributions
with associated means, variances, and confidence levels as
dictated, for example, by an underlying distribution. Order sta-
tistics [31, 50, 51], on the other hand, involves a distribution-
free or nonparametric analysis that requires only that
the probability distribution functions be continuous and not
necessary related to the underlying distribution from which
the samples are taken. However, the randomly drawn samples
are considered to be statistically independent.

Consider that the n random samples {X;, X, ..., X,,} are
taken from the continuous pdf fx(x) over the range a<x<b.
Now consider reordering the random variables X; : i = 1,
..., n to form the random variables {Yi, Y>, ..., Y, } arranged
in ascending order of magnitude, such that, a<Y; <Y, <---
<Y,<b where fy,(y;)=1/(b—a) is uniformly distributed
over the interval b — a. The joint pdf of the ordered samples
[52] is expressed as

&Yoot V1 Y20 o 3n) =0l [ (00 (1.285)
i=1

fora<y; <y;<---<y,<b and n! is the number of mutually
disjoint sets of xy, xy, ..., x,. For example, for n = 4 the set
X1, X2, X3, X4 results in n! = 24 mutually disjoint sets deter-
mined as shown in Table 1.9. The first six mutually disjoint
sets are determined by cyclically left shifting the indicated
subsets of original set x;, x5, x3, x4; a cyclic left shift of a
subset is obtained by shifting each element of the subset to
the left and replacing the leftmost element in the former posi-
tion of the rightmost element. Following the first six sets
shown in the figure, the original set is cyclically shifted three
more times each leading to six mutually disjoint sets by shift-
ing subsets resulting in a total of 24 mutually disjoint sets.
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TABLE 1.9 Example of Mutually Disjoint Sets (n = 4,
24 Mutually Disjoint Sets)

No. Mutually Disjoint Sets Shifting”

1 X1, X2, X3, X4 Original set

2 X1, X2, X4, X3 Shift subset x3, x4

3 X1, X3, X4, Xo Shift subset x,, x3, x4
4 X1, X3, X2, Xa Shift subset x4, x>

5 X1, X4, X, X3 Shift subset x3, x4, x>
6 X1, X4, X3, X Shift subset x,, x3

7 Xo, X3, X4, X1 Shift original set

8 X, X3, X1, X4 Shift subset x4, x;

9 X, X4, X1, X3 Shift subset x3, x4, X;

“Shift denotes a cyclic left shift of a previous set or subset.

The ordered sample Y; is referred to as the i-th order sta-
tistic of the sample set. The marginal pfd of the n-th order
statistic Y,,, that is, the maximum of {X;, X», ..., X,,}, is eval-
vated using (1.285) by performing the integrations in the
ascending order i = 1,2, ...,n — 1 as follows™:

gum=nt] [ [ U”f(yl>dy1}f<yz>---f<yn>dyz~-~dyn-1

a a a a

[ U’3F(n).f(yz)dyz]f(ya)--f(yn>dy3~--dyn-1
Yn '1 V4 )
=[] Pos 0] 00) 70
= !f)’n()’n) _l ] ynFn_z(yn—l)f(yn—l)dyn—l
" (n-2)1),
(1.286)
The solution (see Problem 15) to (1.286) is
8y, 0n)=n[F()]" " fr,Om) : a<ya<b  (1.287)

where F"~'(y,) is the cdf evaluated as

F'(y,) = (n—l)J ' F" 2 (Ve )fy n=1)dyn-1 = %

(1.288)

Using the marginal pdf of Y, given by (1.287), the prob-
ability of selecting the maximum of value Y, is determined as

!

PY) =nf F' (5 ()

a

=1 (1.289)
y=b

“For notational simplicity f(y) is used to denote fy(y).
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TABLE 1.10 Order Statistics False-Detection Probability for
Gaussian Distributed Random Variables

False-Detection Probability (Py,)

Ordered S + N and

N Statistics (j,k) vas = 10 YaB = 15 YaB = 20
1,1 2.440¢72 6.645¢> 1.408e™!2
1,2 4.226¢72 1.308¢7* 2.815¢712
1.4 6.980e72 2.547¢74 5.629¢ 12
1,8 1.089¢7! 4.874e7* 1.126e7!!

These results are distribution free, in that, the pdf has not
been defined; however, from a practical point of view (1.289)
can be evaluated for any continuous pdf.

The distributions from which the x; are taken need not be
identical”; for example, the samples x; through X; can be
taken from a distribution involving signal plus noise (or clut-
ter) and those from x;,; through x, corresponding to noise
(or clutter) only. Using this example the distribution in
(1.287) is expressed as

()] = ()] ()

1, ()’n)=m

(1.290)

where F,(y) is the distribution corresponding to signal plus
noise and F,(y) is the noise-only distribution.

Example distributions used to evaluate the performance
of communication and radar systems are Gaussian, Ricean,
lognormal, and Weibull distributions. Table 1.10 lists the
false-detection probabilities, for the indicated signal-to-noise
ratios yg4g, associated with the detection of j = 1 signal-plus-
noise event and k = n — j = (1,2,4, and 8) noise-only events.

1.5.9 Properties of Correlation Functions

Correlation processing is used in nearly every aspect of
demodulator signal detection from energy detection, wave-
form acquisition, waveform tracking, parameter estimation,
and information recovery processing. With this wide range
of applications, the theoretical analyst, algorithm developer,
software coder, and hardware developer must be thoroughly
familiar with the properties and implementation of waveform
correlators. An equally important processing function is
that of convolution or linear filtering. The equivalence
between matched filtering and correlation is established in
Section 1.7.2 and involves a time delay in the correlation
response; with this understanding, the properties of correla-
tion can be applied to convolution or filtering. The correlation

*Equation (1.286) allows for different distributions; however, (1.287)
through (1.289) are based on independent identically distributed (iid) random
variables.

response can be exploited to determine the signal signature
regarding the location of a signal in time and frequency,
the duration and bandwidth of the signal, the shape of the
modulated signal waveform, and the estimate of the informa-
tion contained in the modulated waveform.

The correlation function® is evaluated for the complex
functions X(¢) and y(z) as the integral

(o)

R;Q}(T)ZJ X(0)x*(t=7)dr :autocorrelation  (1.291)

— 00

X(0)y*(t=7)dr :cross-correlation  (1.292)

Ry(7) = J
— 00

where the asterisk denotes complex conjugation.

Autocorrelation processing examines the correlation
characteristics of a single random process with the maximum
magnitude corresponding to the zero-lag condition R;;(7=0)
that is equal to the maximum energy over the correlation
interval. The correlation response Riz(7) is indicative of
the shape of X() and the duration, 7, of the principal corre-
lation response is indicative of the correlation time. For deter-
ministic signals, the correlation time (z,) is usually
characterized in terms of the one-sided width of the principal
correlation lobe; however, for stochastic processes the corre-
lation interval is defined when |R;;(7)! decreases monotoni-
cally from R;;(0) to a defined level; for example, when the
normalized correlation response first reaches the level
Rii(7,)/Rz(0) =e~!. The normalized correlation response
is referred to as the correlation coefficient as defined in
(1.295) or (1.296). The parameters related to the correlation
of the function %(z) have equivalent Fourier transform
frequency-domain definitions. In the case of stochastic
processes, the Fourier transform of Ry;(7) is defined as the
PSD of the process.

Expanding (1.292) in terms of the real and imaginary
with X(¢) =x,(¢) +jx;(t) and ¥(¢) =y,(z) +jy;(¢) results in

o0 [s9)

Ry(7)= J xe(0)y,(t-7)dt + J yi(t)yi(t—7)dt

-0 — 0

+j(J°° x[(t)y,(t—r)dt—ro x,(t)y,»(t—r)dt)
h - (1.293)

This evaluation requires four real multiplies and integra-
tions for each lag, whereas, if X(¢) and y(r) were real functions
only one multiplication and integration is required for each

TA stationary stochastic processes is characterized by the first- and second-
order moments corresponding to the mean E[x(t)] = m,, +jm, and autocor-
relation response Ry (7) = E[X(r)x* (1-7)].



lag. With discrete-time sampling, the integrations are
replaced by summations over the finite sample values X,
and y,, where t =nT: n=0, ..., N— 1 and T, is the sampling
interval; in this case, the computational complexity is propor-
tional to N*. The computation complexity can be significantly
reduced by performing the correlation in the frequency
domain using FFT [53], in which case, for a radix-2 FFT
with N = 2%, the computation complexity is proportional to
Nlog,(N). Brigham [54] provides detailed descriptions of
the implementation and advantages of FFT correlation and
convolution processing. The correlation results throughout
the following chapters use the direct and FFT approaches
without distinction.

Referring to (1.291) the zero-lag correlation is
expressed as

|%(1) dr
-~ (1.294)

where E, is the total energy in the received signal. Using
(1.294), the normalized correlation is defined in terms of
the normalized autocorrelation coefficient as

2 Ru(7)

p(1) = : normalized autocorrelation coefficient
E;

(1.295)

with |p(7)l £ 1. From (1.292), the normalized cross-correlation
coefficient is defined as

: normalized cross-correlation coefficient

(1.296)

with Ip,(7)l < 1.
The correlation may also be defined in terms of the long-
term average over the interval T as

1 T/2
Riz(7)= lim —J X(1)X*(t-7)dr :autocorrelation

T— o0 T —T/2
(1.297)

However, most practical waveforms are limited to a finite
duration T, = NT; and, in these cases, X(¢) is zero outside of
the range 7. Therefore, dividing the zero-lag correlation by
T. results in the second-order moment E(|%|*)=0?2+m?
where m? is the DC or mean signal power. Removing the
mean signal level prior to performing the correlation results
in the autocovariance with E(|x|?) =02. Table 1.11 summar-
ized several properties of correlation functions.

RANDOM PROCESSES 41

TABLE 1.11 Correlation Function Properties of Deterministic
and Stochastic Processes

Property Comments
Ri(-7) =R (1) Autocorrelation
R (=7) =R\ (7) x(2) is real
Cix(—7) =Rz (7) = |my|? Autocovariance
Cy(=7) =Ry(7) —m? x(t) € real
x(t) =m(t)cos(w
e = 0 =it
x(t)=mf(t)c
()= =it
Ri5(—7) =R (7) x(t),y(t) € complex
Ci5(7) = Ry (7) = iuiiny Cross-covariance
Ciy(7) =Ryy (1) —mym, x(t),y(¢) € real
Rz(7) = R(7) + Ry(7) + Ry (7) + Ry (7) 2(1) =x(1) +y(1)

Consider, for example, that (¢) =X(¢) +71(z) is a received
signal plus AWGN, the correlation Ry (7) is performed in the
demodulator using the known reference signal x(z). The
dynamic range of the demodulator detection processing is
minimized by the normalization in (1.296) and the optimum
signal detection corresponds to p,,(0). On the other hand, if
the optimum timing is not known, near optimum detection
can be achieved by choosing the maximum correlation output
over the uncertainty range of the correlation lag about 7 = 0.
During initial signal acquisition, the constant false-alarm rate
(CFAR) threshold, described in Section 11.2.2.1, is an effec-
tive algorithm for signal presence detection and coarse
synchronization.

1.6  RANDOM PROCESSES

Many of the signal descriptions and processing algorithms in
the following chapters deal exclusively with the signal and
neglect the additive noise under the reasoning that the noise
detracts from the fundamental signal processing requirements
and complicates the notation which has the same effect. On
the other hand, understanding the impact of the noise on the
system performance is paramount to the waveform selection
and adherence to the system performance specifications. To
this end, the performance evaluation is characterized by
detailed analysis of the signal-plus-noise conditions and con-
firmed by computer simulations.

The following descriptions of noise and signal plus noise
are provided to illustrate the assumptions and analysis asso-
ciated with the inclusion of the most basic noise source—
AWGN. The reference to narrowband Gaussian noise simply
means that the carrier frequency f. is much greater than
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the signal modulation Nyquist bandwidth By so that the 2f,
heterodyning or homodyne mixing terms are completely
eliminated through filtering. In such cases, the white noise
in the baseband demodulator bandwidth is denoted by the
single-sided noise density N, watts/Hz, where single-sided
refers to positive frequencies.

1.6.1 Stochastic Processes

The subject of stochastic processes is discussed in consider-
able detail by Papoulis [55] and Davenport and Root [56] and
the following definitions are often stated or implied in the
applications discussed in throughout the following chapters.
A stochastic process is defined as a random variable that is a
function of time and the random events y in S as depicted in
Figure 1.14. In this context the random variable is character-
ized as x(t,y). For a fixed value of t = 7;, x(¢;,) is a random
variable and y = y;, x(t,y;) denotes as the real random process
x(¢) such that x(¢;) is a random variable with pdf fx(x:t,); in
general, the pdf of x(f) is defined as fy(x:f).

1.6.1.1 Stationarity There are several ways to define the
stationarity of a stochastic process, for example, stationarity
of finite order, asymptotic stationary, and periodic stationar-
ity; however, the following two are the most frequently
encountered.

Strict-Sense Stationary Process The stochastic process x(f)
is strict-sense stationary, or simply stationary, if the statistics
are unaltered by a shift in the time axis. Furthermore, two ran-
dom variables are jointly stationary if the joint statistics are
unaltered by an equal time shift of each random variable, that
is, the probability density function f(x ; #) is the same for all
time shifts z. This is characterized as

)=f(xxe, . HT, B+, )
(1.298)

fx1,x0,..5 1,0, ..

Wide-Sense Stationary Process The stochastic process x(f)
is wide-sense stationary (WSS) if its expected value is con-
stant and autocorrelation function is a function of the time
shift 7 =1, — t; V t; and f,. WSS stationarity is characterized
as

E[x(t)] = m, = constant (1.299)

and
E[x(t)x(t—7)] = Ry(7) (1.300)

Because wide-sense stationarity depends on only the first
and second moments it is also referred to as weak stationarity.
A function of two random processes is wide-sense stationary

if each process is wide-sense stationary and their cross-
correlation function is dependent only the time shift, that is,

E[x(t1)y(t2)] =Ry (t1 —12) =Ry (7) (1.301)

1.6.1.2 Ergodic Random Process The random process x
(1), defined earlier, is an ergodic random process if the statis-
tics of x(7) are completely defined by the statistics of x(z,y).
Denoting the random process x(#;y) as an ensemble of x
(), then ergodicity ensures that the statistics x(z;) are iden-
tical to those of the ensemble; in short, the time statistics are
identical to the ensemble statistics.” Ergodicity of the mean,
of the stochastic process x(t,y), exists under the condition

(x(t.01)) =Elx(ting)] :Vi (1.302)
where the time average is defined as
1 (7
) 2 fim 5[ o) (1.303)
and the ensemble average is defined as
Elx(tix)] & JZ Xt x)dx (1.304)

Since the mean value of a random process must be a con-
stant, the ergodic of the mean theorem states that the equality
condition in (1.302) is satisfied when E[x(f;,y)]=#5: Vi
where # is a constant. This is a nontrivial task to prove, how-
ever, following the discussion by Papoulis [57], the ergodic
of the mean theorem states that

T
Jim %J x(t)dt = E|x(t)] =1
mender (1.305)

S B )
wﬁ‘Tan;ﬁJ_TRx(T)dT—n

The iff condition in (1.305) is formally expressed in terms
of the autocovariance function for which the limit 7 — oo
is expressed as the variance o2=n?—E[x(r)]>. However,
from (1.305), the expectation E[x(f)] = # resulting in aﬁ =0.
Therefore, the limit 7 — oo of the autocovariance function
converges in probability with the conclusion that
E[x(t.y;)] = E[x(t;,y)] proving ergodicity of the mean.” Dem-
onstration of ergodicity of the autocorrelation function

*Papoulis (Reference 8, Chapter 9) discusses the ergodicity of a stochastic
process with respect to certain parameters.

"Convergence in probability is also discussed by Davenport and Root
(Reference 6, pp. 66-71).



is considerably more involved, requiring the fourth-order
moments.

1.6.2 Narrowband Gaussian Noise

Consider the noise described by the narrowband process [58]
with bandwidth B << f, expressed as
n(t)=N(t)cos(w.t +60(t))—N(t)sin(w .t +6(r))  (1.306)
where N(f) and 6(r) represent, respectively, the envelop
and phase of the noise and w,. = 2xf, is the angular carrier

frequency. Upon expanding the trigonometric functions,
(1.306) can also be expressed as

(1) =ne(1)cos(@ct) =, (1)sin(w.1) (1.307)
where

ne(t) =N (1)cos(0(1)) (1.308)
and

ns(1) =N (0)sin(6(1)) (1.309)

The noise terms n.(¢) and n,(¢) are uncorrelated with spec-
trum S(f) and bandwidth B, such that S(f) = O for |f - f.| > B/2.
This is the general characterization of a narrowband noise
process; however, in the following analysis, n.(¢) and ny(f)
are also considered to be statistically independent, stationary
zero-mean white noise Gaussian processes with one-sided
spectral density N, watts/Hz.

Because of the stationarity, the noise autocorrelation is
dependent only on the correlation lag 7z and is evaluated as

Run(7)=En(t)n(t-7)]
=E[{n.(t)cos(w.t)—n,(t)sin(w,t)}
{n.(t—7)cos(w.(t—7))—ny(t—7)sin(w.(t-7)) }]

(1.310)

Upon evaluating the product in (1.310) and distributing
the expectation, it is found that the conditions for stationarity
require” Ryy(7) = R.o(7) and R.y(7) = —R,.() so that (1.310)
reduces to

R, (7) =R.o(7)cos(@.7) — Rys(7)sin(w,7) (1.311)

The noise power is evaluated using (1.311) with 7 =0 with
the result R,,,,(0) = R..(0) = aﬁ. This evaluation can be carried

“See Problem 29.
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further using the Wiener—Khinchin theorem’ which states
that the power spectral density of a WSS random process
is the Fourier transform of the autocorrelation function,
that is,

Sa(f)= J R (2)e™ 7 dr (1.312)
From (1.312) the inverse Fourier transform is
R,m(r)=J Su(f)e* ™ df (1.313)

and, substituting the condition that the single-sided noise
spectral density is defined as N, watts/Hz, (1.313) becomes

N0 ® 2rft NO
Rn(T)=7J eﬂfdf=75(1)

— o0

(1.314)

In (1.314) the single-sided noise density is divided by two
because of the two-sided integration, that is, the integration
includes negative frequencies. In this case, the noise power,
defined for 7 = 0, is infinite, however, when the ideal band-
limited filter, with bandwidth B, is considered the noise
power in the filter centered at f. is computed as

fc+B/2

R,(0) =N,,J

fe=B/2

df=N,B (1.315)

In this case the one-sided noise density N, is used instead
of N,/2 because the one-sided integration is over positive
frequencies.

If a linear filter with impulse response /A(?) is used, the fre-
quency response is given by

H(f)=Joo h(t)e P dt (1.316)

— 0

The corresponding unit gain normalizing factor is |H(O)I.
With the stationary noise process n(f) applied to the input of
the filter, the output is determined using the convolution inte-
gral and the result is as follows:

ny (1) = J T =Dh()dA (1317)

— 0

"Leon-Garcia (Reference 29, p. 404) refers to this theorem as the Einstein—
Wiener—Khinchin theorem based on the discovery of an earlier paper by
Albert Einstein.
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Using (1.317) it can be shown (see Problem 33) that
the normalized spectrum of the output noise is expressed,
in terms of the input noise PSD S,,(f), as

2

Sno(f)=Sn(f)’% (1.318)

where |1H(0)l is the normalizing gain of the filter. Using
(1.318), with S,(f) = N,/2 corresponding to white noise, the
output noise power is evaluated as
2
12 (f)]

J~fc+B/2

= S f
s H ()P
ﬂfwmm
2 Jrsp [H{E))
=Nan

R,,(0)

daf

(1.319)

df

where the second integral in (1.319) is recognized as the def-
inition of the noise bandwidth of the bandpass filter with low-
pass bandwidth B,,.

1.7 THE MATCHED FILTER

The problem in the detection of weak signals in noise is one
of deciding whether the detection filter output is due to the
signal and noise or simply noise only. The matched filter
[59, 60], provides for the optimum signal detection in AWGN
noise based on the maximum instantaneous signal-to-noise
ratio when sampled at the optimum time.” The matched filter,
for an AWGN channel, is characterized as having an impulse
response equal to the delayed time-reverse replica of the
received signal. To maximize the signal detection probability
the matched filter output must be sampled at 7, as defined in
the following analysis. The matched filter can be implemen-
ted at a convenient receiver IF or in the demodulator using
quadrature baseband-matched filters.
Considering the received signal, s,(f), the matched filter
impulse response depicted in Figure 1.28 is expressed as
h(t)=Gs,(T,—1) (1.320)
The gain G is selected for convenience; however, it must
be a constant value. The delay 7, is required to result in a
causal impulse response, that is, the response of A(t < 0) =
0 for A(?) to be realizable; consequently, s,(t > T,,) must be
zero. Usually the selection of T, is not an issue since many
symbol modulation functions are time limited or can be trun-
cated without a significant impact on the transmitted signal

"The matched filter was first derived by D.O. North [59] and is also referred
to as the North filter.

s1)
V—\ t
0

h(1)

Y

0 T,

FIGURE 1.28 Example received signal and corresponding
matched filter.

spectrum; however, the matched filter delay results in a
throughput delay. To the extent that the impulse approxi-
mates (1.320) a detection loss will be encountered.

The criterion of the matched filter is to provide the max-
imum signal-to-noise ratio in the AWGN channel when
sampled at the optimum time 7,,. The following matched fil-
ter analysis follows that of Skolnik [61]. The signal-to-noise
ratio of interest is

Is-(£)] ,

= 1.321
Yy N ( )

where |5, ()2, = |s,(T,)|? is evaluated as

o0 ] 2
I5o(To)|* = J S(HH(f)e™ " df (1.322)
and N is the noise power evaluated as
_ ® 2 g0 N, ® 2

V=[N Pa=S | e as

In these expressions, the filter spectrum H(f) is normal-
ized, such that H(0) = 1, and the last equality in (1.323) results
because the channel noise is white with one-sided constant
power density of N, watts/Hz. Substituting (1.322) and
(1.323) into (1.321) results in the expression for the signal-
to-noise ratio

[ 2
‘JWWWMW

e (1.324)
/2 | (e

-0

Yr=

The maximum signal-to-noise ratio is evaluated by applying
Schwarz’s inequality (see Section 1.14.5, Equation 5) to the
numerator of (1.324). Upon substituting f*( f) =S( f)e/>"T
and g(f)=H(f) into the Schwarz inequality, (1.324) is
expressed as



Jm |s<f>\2dfj°° H(f)Pdf r IS(F)Pdr
s S =
/2 | ()P Nof2
(1.325)

The equality condition of the signal-to-noise ratio in
(1.325) applies when f{(f) = cg(f), where ¢ > 0 is a conven-
iently selected constant resulting in the matched filter fre-
quency response expressed as

H(f)=GS*(f)e ™ . matched filter frequency response
(1.326)

where G = 1/c is an arbitrarily selected constant gain greater
that zero. Upon applying Parseval’s theorem and recognizing
that the numerator of the second equality in (1.325) is the sig-
nal energy, E, the optimally sampled matched filter output
signal-to-noise ratio is simply expressed as

2F
}/f(max)=N— : baseband modulated signal ~ (1.327)

o

Therefore, for the AWGN channel, the optimally sampled
matched filter output results in a signal-to-noise ratio that is a
function the signal energy and noise density and is independ-
ent of the shape of the signal waveform. The factor of two in
(1.327) results from the analytic or baseband signal descrip-
tion in the derivation of the matched filter. Typically, the
received signal spectrum is modulated onto a carrier fre-
quency with an average power equal to one-half the peak car-
rier power. In this case, the signal-to-noise ratio at the output
of the matched filter is one-half of that in (1.327) resulting in

: carrier moduated signal (1.328)

E
yf(max) = N
Referring to (1.326), the inverse Fourier transform of the
complex conjugate of the signal spectrum results in the filter
impulse response corresponding to the time reverse of the sig-
nal. In addition, the inverse Fourier transform of the exponen-
tial function in (1.326) results in a signal time delay of 7,
seconds, so the resulting filter impulse response, A(f), corre-
sponds to the example depicted in Figure 1.28. Consequently,
the matched filter impulse response can be expressed in the
time domain by (1.320) or in the frequency domain by (1.326).
The detection loss associated with a filter that is not
matched to the received signal is evaluated as

v _ 15Ol e/ No

yp(max)  2E/N, (1.329)

>

Py

where s/ (f) and N! are the output signal and mean noise
power density at the output of the unmatched filter. Typically
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the matched filter is based on the transmitted waveform;
however, the received signal into the matched filter may be
distorted by the channel or receiver filtering” resulting in a
detection loss. The matched filter implementation may also
result in design compromises that result in a detection loss.

1.7.1 Example Application of Matched Filtering

In this example, a BPSK-modulated received signal is con-
sidered with binary source data bits b; = {0,1} expressed
as the unipolar data d; = (1 — 2b;) = { 1,—1} over the data inter-
vals iT <t < (i+ 1)T of the bit duration 7. The received signal
plus noise is expressed as

r(t)=dis(t) +n(r) (1.330)
The signal is described as
s(t)=Acos(w,t) (1.331)

The noise is zero-mean additive white Gaussian noise with
one-sided spectral density N,, described as
n(t) =n(t)cos(w.t) —ns(t)sin(w,t) (1.332)
The receiver-matched filter impulse response and Fourier
transform are given by

h(1)=As(T,~1) < H(f)=GS*(f)e”"  (1.333)

In (1.333) the signal spectrum defined as S(f) and the
squared magnitude of the matched filter output at the opti-
mum sampling point is

soT)P= | S ar

- (1.334)
=j S(f)Pdf =

— 00

where the gain G = |H(0)l is normalized to one resulting in a
unit gain-matched filter response H(f).

Referring to the additive noise described by (1.332) and
Section 1.6.2, the noise power at the output of the matched
filter is expressed as

Rno (O) =5

2
2| ) Par

N} B/2
J (1.335)

-B/2

where B/2 is the baseband bandwidth of the matched filter.

“Adaptive channel equalizers are often used to compensate for the channel
distortion.
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The received signal, as expressed in (1.330), can be
rewritten in terms of the optimally sampled matched filter

output as
(r(iT,)) = VEd; +\/7

where n; are iid zero-mean, unit variance, white Gaussian
noise samples. Upon dividing (1.336) by y/N, /2 the sampled
matched filter output is expressed as

(1.336)

2E
l'(ri)= ﬁd,-+ni

(1.337)

The sampled values I(r(iT,)) and '(r;) are referred to as
sufficient statistics, in that, they contain all of the information
in r(t), expressed in (1.330), to make a maximum-likelihood
estimate d; of the source-bit d;. The normalized form in
(1.337) is used as the turbo decoder input discussed in
Section 8.12. In Section 1.8 the sufficient statistic is seen
to be a direct consequence of the log-likelihood ratio.

1.7.2 [Equivalence between Matched Filtering
and Correlation

Consider the receiver input as the sum of the transmitted
signal plus noise expressed as

r(t)=s(t) +n(t) (1.338)

The cross-correlation of 7(f) with a replica of the received
signal is computed as

R(T):Jm

— 0

r(t)s(t—7)dt :cross-correlation  (1.339)

Defining the matched filter impulse response as A(f), the
matched filter output response to the input #(¢) is

yo(t)=ro

— o0

r(A)h(t—=A)dA :convolution (1.340)

However, referring to the preceding matched filter discus-
sion, the matched filter response is equal to the delayed image
of the signal, such that,

h(t)=s(T,-1) (1.341)

As mentioned previously, the delay T, ensures that
the filter response is causal and, therefore, realizable.
To substitute (1.341) into (1.340) first let ¥ =¢—1 so that

h(t=4)=s(T,—(t—1))=s(A—(t-T,)) and substitute this
result in (1.340) to get

)dA

II
%

=T (1.342)

1l
h

R(t- T(,)

So that the convolution response is equal to the cross-
correlation response delayed by T,. If the input noise is zero,
so that r(¢) = s(f), the same conclusion can be drawn regarding
the autocorrelation response.

1.8 THE LIKELIHOOD AND
LOG-LIKELIHOOD RATIOS

Bayes criterion is based on two events, referred to as hypoth-
esis H; and H,, that are dependent upon a priori probabilities
P, and P, and the, respective, associated costs (Cy;,Cy;) and
(C10,Co0). Letting m correspond to the decision and n corre-
spond to the hypothesis, the range of the cost is 0 < C,,, < 1
with C,,,,, + C,,l ;2 = 1. The cost of a correct decision is C,,
and an incorrect decision is C,l,2,. For communication
links the cost of incorrect decision is typically higher than
a correct decision so that C,,,l,,,, > C,,,. For example, when
Conlmzn = 1 and C,,, = 0 the decision threshold minimizes
the probability of error which is the goal of communication
demodulators. In summary,

: cost of correct decision

m=n
Con= L. (1.343)
m#n :costof decision error

and the a priori probabilities are typically known and equal.
In the following example, the hypotheses correspond to
selecting d; = {1,—1}, such that, under the two hypotheses

H; : d;=+1 with a prioi probability P

. - . (1.344)
Hy : d;=-1 with a prioi probability Py
with the observations
ri=d;+n; :t=il, (1.345)

corresponding to the optimally sampled outputs of the
matched filter. In terms of the a priori, the transition probabil-
ities, and the cost functions, the hypothesis H;: with d; =1 is
chosen if the following inequality holds,

Py, (r|Hy) Py(Cor=Cht) 2 Py, (r|Ho) Po(Cio=Coo)
(1.346)



otherwise, chose H, with d; = —1. The decisions are made
explicit under the following rearrangement of (1.346)

PV\Hl(r|H1) I;IPO(CIO—CQ(D
Py, (r|Ho) ph P(Co1=Cn1)

(1.347)

Left and right sides of (1.347) are defined as the likelihood
ratio (LR) A(r) and decision threshold # or, alternately, as the
log-likelihood ratio (LLR) InA(r) with the threshold In#, so
(1.347) is also expressed as

H, H, ..
A(r)>n or InA(r) > Inn :alternate decisions thresholds
< <
HU HO
(1.348)

1.8.1 Example of Likelihood and Log-Likelihood
Ratio Detection

Consider the two hypotheses H; and H, mentioned earlier
with d; = {1,—-1} and the observation r; in (1.345) with the
additive noise n; characterized as iid zero-mean white
Gaussian noise, denoted as N(0,0,,). The transition probabil-
ities are expressed in terms of the Gaussian noise pdf as

1 —(r—rh)z/Zo'%

p)= e

Upon forming the likelihood ratio and recognizing that
m = %d,, the likelihood ratio decision simplifies to

(1.349)

2r;i\ H P()(C]()—C()())
expl — | > —F—7i7—= 1.350
p<¢’5) 5 P1(Co=Cn) (1350
and the log-likelihood ratio decision simplifies to
2 H Po(Clo—COO))
> In( ———m—F71—= 1.351
o2 < (PI(COI_CII) ( )

Recognizing that I(r;) is a sufficient statistic, (1.351) is
rewritten as

2 (Po(Cio—C
2 %y (—0( 10 0")) (1.352)
P1(Co1—-Cn1)
When ClO = COl = 1, COO = Cll = 0, and P() = Pl the LLR
simplifies to

17)50 :In(r=1)=0
<

Hy

(1.353)
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Therefore, the data estimate is d; = 1 when I(r;) > 0, other-
wise, Eii = —1. Recall that observations r; : t = iT, are made at
the output of the matched filter. These concepts involving the
LR and LLR surface again in Section 3.2 and the notion of the
natural logarithm of the transitions probabilities is discussed
in the following section involving parameter estimation.

1.9 PARAMETER ESTIMATION

The subject of optimum signal detection in noise was exam-
ined in the preceding section in terms of a pulsed-modulated
carrier and it resurfaces throughout the following chapters in
the context of a number of different waveform modulations.
However, signal detection is principally based on the signal
energy without regard to specific signal parameters, although
frequency and range delay must be estimated to some degree
to declare signal presence and subsequently detection. Signal
detection uses concepts involving direct probabilities,
whereas the subject of parameter estimation uses concepts
involving inverse probabilities as discussed by Feller [32],
Slepian [62], Woodward and Davies [63], and others. The
distinction between these concepts is that direct probability
is based on the probability of an event happening, whereas
inverse probability formulates the best estimate of an event
that has already occurred. With this distinction, it is evident
that parameter estimation involves inverse probabilities. The
major characteristic of inverse probability is the use of a
priori information associated with the available knowledge
of each source event. At the receiver the a posteriori proba-
bility is expressed in terms of the inverse probability using
Bayes rule that associates the transition probability and a
priori knowledge of the source events.

The subject of this section is signal parameter estimation
and, although the major parameter of interest in communica-
tions is the estimation of the source information, the estima-
tion of parameters like, frequency, delay, and signal and
noise powers are important parameters that aid in the estima-
tion of the source information. For example, estimation of
the received signal and noise powers form the basis for esti-
mating the receiver signal-to-noise ratio that is used in the
network management to improve and maintain communica-
tion reliability. Furthermore, characterizing the theoretical
limits in the parameter estimates provides a bench mark or
target for the accuracy of the parameter estimation during
the system design.

The following discussion of statistical parameter estima-
tion is largely based on the work of Cramér [64], Rao [65],
Van Trees [66], and Cook and Bernfeld [67]. The received
signal is expressed in terms of the transmitted signal with
M unknown parameters ay, da, ..., ay and additive noise, as

r(t) =s(t;ay,az,...,ay) +n(t) (1.354)
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Considering that N discrete samples of the received signal
and additive noise are used to estimate the parameters, the
joint probability density function (pdf) of the samples is

pe(ri,ra, .. rnla,as, ....am) =pa(ri—S1,12 =82, ..., TN —5N)
(1.355)

where the noise samples n; = r; — §; are substituted into
the joint pdf of the noise. The noise samples are statistically
independent and the statistical characteristics of the noise
are assumed to be known. Therefore, based on the received
signal-plus-noise samples r;, the receiver must determine
the estimates dy, do, ..., dy; of the M unknown parameters.
The probability density function p.(ry,... lay,...) in (1.355)
is called the likelihood function.

Van Trees discusses several estimation criteria” and the
following focuses on the optimum estimates for the mean-
square (MS) error’ and maximum a posteriori probability
(MAP) criterion that are defined, respectively, for a single
parameter a as

s (1) =J apy(alr)da :MS estimate (1.356)
and
0 .
%mf’alr (alr) =0 :MAP equation (1.357)
a=dyqp(r)

The estimate 4,,,(r) is optimum in the sense that it results
in the minimum MS error over all s; and a. The MAP estimate
A,nqp(r) is the solution to (1.357) and is optimum in the sense
that it locates the maximum of the a posteriori probability
density function; however, the solution must be checked to
determine if it corresponds to the global maximum in the
event of a multimodal distribution.

By applying Bayes rule to (1.357), the MAP estimate is
expressed in terms of the a priori pdf, p.(a), and the likelihood
function, pyj,(r|a), as

ilnpr|a(r|a) +ilnpa(a) =0 (1.358)

da da 4= e 7)

When the a priori probabilities are unknown, that is, as
the a priori knowledge approaches zero, (1.358) becomes
the maximum-likelihood equation and 4,,(r) is the
maximum-likelihood estimate, evaluated as the solution to

“The criteria are based on Bayes estimation procedure that minimizes the risk
associated with the cost or weight assigned to various kinds of statistical deci-
sions. In communication systems, the decision costs are assigned to minimize
the demodulator bit-error probability.

"The MS error is also referred to as the minimum mean-square
error (MMSE).

=0 :ML estimate

a= ﬁm[ (r)

(1.359)

d
alnpr\a(ﬂa)

To make use of these estimates it is necessary to determine
the bias and the variance of the estimate. The mean value of
the estimate is computed as

E[a(r)) = ro A(r)pa(rla)dr (1.360)

The bias of the estimate is defined as B(a) = E[a(r)]-a. If,
as indicated, the bias is a function of a, the estimate has an
unknown bias, however, if the bias is B, independent of a,
the estimate has a known bias that can be removed from
the observation measurements r. In general, for any known
biased estimate a(r) of the real random variable a, the vari-
ance is defined as

o2 = Var[a(r) - d] éE[(a(r)-a)z} -B (1.361)

Although the bias and variance are often difficult to deter-
mine, the Cramér—Rao inequality provides a lower bound on
the variance of the estimate. For a biased estimate of the ran-
dom parameter a with a priori pdf p,(a), the variance is lower
bounded by the Cramér—Rao inequality [64, 66]

A 2
o2 > (9E[a(r)]/0a) 5= :biased; variable
El{aln(pﬂa(ra)) aln(pa(a))} ]
+
da da
(1.362)
or, the equivalent result,
- ((BE([é(r));/aa);
In(pya(rla)) 0 In(pa(a))
—E[ =7 " ] (1.363)

:biased; variable

When the estimate is unbiased, that is, when E[a(r)] =a,
the estimation variance of the random variable a simplifies to

032 ! >
E Haln(p g;(rla)) + aln(gz(a))} 1 (1.364)
:unbiased; variable
or, the equivalent result,
o2 azln(pra(r|a1)) 0% In(pa(a))
-E l o + aag 1 (1.365)

:unbiased; variable



The Cramér—Rao bound in these relationships is formu-
lated in terms of the Schwarz inequality and the equality
condition applies when

oln (pya(rla)) .\ oln(p,(a))
da da

:MAP efficient estimate condition

=k(a(r)=a) (1.366)

where k is a constant. Therefore, (1.366) guarantees that the
equality condition for the variance applies in (1.362) through
(1.365); in this case, the MAP estimate is defined as an effi-
cient estimate. Furthermore, an unbiased estimate, excluding
the trivial case k = 0, requires that a(r) = a leading to (1.358).

When the a priori knowledge p,(a) is constant, that is,
the parameter a is nonrandom, or unknown, then (1.359)
also requires that a=a or a,,(r) =a. Under the maximum-
likelihood (ML) criteria Schwarz’s equality condition
applies when

Aln (pya(rla)) 3
— PR = k(@) (a(r)-a) (1.367)

: ML efficient estimate condition

In this case, the constant k(a) may be a function of a; this
condition only applies when parameter a is a constant which
corresponds to the ML estimate.

Van Trees lists three principles based on the forgoing
results:

1 The mean-square (MS) error estimate is always the
mean of the a posteriori density, that is, the conditional
mean.

2 The MAP estimate corresponds to the value of a for
which the a posteriori density is maximum.

3 For a large class of cost functions, the optimum esti-
mate is the conditional mean whenever the a posteriori
density is a unimodal function which is symmetric
about the conditional mean. The Gaussian pdfis a com-
monly encountered example.

By way of review, the estimates are evaluated using the a
posteriori pdf, however, if the parameter is a random variable,
the a posteriori pdf must be expressed in terms of the transi-
tion distribution and the a priori pdf of the random parameter
using Bayes rule. If the estimate is unbiased, that is, if
B=El[a(r)]—a = 0, evaluation of the Cramér-Rao bound
simplifies to (1.364); it is sometimes necessary to use the
equivalent expression in (1.365). The Cramér—Rao equality
condition is established if the left-hand side of (1.366) can
be expressed in terms of the right-hand side where & is a
constant parameter resulting from Schwarz’s condition for
equality.
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If the a priori knowledge is unknown then the maximum-
likelihood equation given in (1.359) is used to determine
maximum-likelihood estimate. In this case, the Cramér—
Rao bound is established by omitting the dependence of
Ppa(a) in, (1.362) through (1.365) and the equality condition
is established if the left-hand side of (1.367) can be expressed
in terms of the right-hand side where, in this case, the con-
stant k(a) is a function of the parameter a. With either the
MAP or ML estimates, if the bias is zero and the equality
condition applies, the estimate is referred to as an efficient
estimate.

Van Trees shows that for the MS estimate to be an effi-
cient estimate, the a posteriori probability density p,(a|r)
must be Gaussian for all r and, for efficient MAP estimates,
Qs (1) =gy (r). However, it may be easier to solve the MAP
equation than to determine the conditional mean as required
by the MS estimation procedure.

1.9.1 Example of MS and MAP Parameter
Estimation

As an example application of the parameter estimation pro-
cedures discussed earlier, consider the Poisson distribution
that is used to predict population growth, telephone call ori-
ginations, gamma ray emissions from radioactive materials,
and is central in the development of queueing theory [68].
For this example, the Poisson distribution is characterized as

n

palaln)=%e™ 1a20:n=0,1.2,... (1.368)
n.

In the application of (1.368) to queueing theory, a = At is
the average number of people entering a queueing line in
the time interval O to ¢ and A is the arrival rate. The a
posteriori distribution p,, (a|n) is the probability of a condi-
tioned on exactly n arrivals occurring in the time interval.
A fundamental relationship in the Poisson distribution is that
the time interval between people entering the queueing line is
exponentially distributed and is characterized by the a priori
distribution

(1.369)

The a posteriori pdf in (1.368) is expressed in terms of the
a priori and transition pdfs as

aln _pn\a(n|a)pa(a) _
R R

5 n ,—2a

(1.370)

where the constant & is a normalizing constant that includes 1/
pn(n). Integrating of the second equality in (1.370) with
respect to da over the range 0 to oo and setting the result equal
to one, the value of k is found to be k = 2"*! and (1.370)
becomes
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n+1

Pap(aln) = = a'e™ (1.371)

Using (1.356) and (1.371) the MS estimate is evaluated as

2n+1
ﬁmx (Vl) =

(1.372)

© n
an+le—2ada= ”
n! 2

0

Also, using (1.357) and (1.371) the MAP estimate is eval-
uated as

p) 2n+l 2 p) 2n+l
$<ln{ e })-E(ln{ o }+nln(a)—2a>

)

a

=0

a=yq,(n)

(1.373)

and solving the second equality in (1.373) for a results in
yap(n)=n/2. As is typical in many cases, the MS and
MAP estimation procedures result in the same estimate. It
is left as an exercise (see Problem 38) to determine the bias
of the estimates, compute the Cramér—Rao bound, and using
(1.366), determine if the estimates are efficient, that is, if the
Cramér—Rao equality condition applies.

1.9.2 Constant-Parameter Estimation in
Gaussian Noise

To simplify the description of the estimation processing,
the analysis in this section considers the single constant-
parameter case with zero-mean narrowband additive
Gaussian noise. Under these conditions, the estimation is
based on the solution to the maximum-likelihood equation
with the joint pdf of the received signal and noise written as

pl‘(rl’r29""rN;a) :pn(rl_Sl:r2_52’~~~,rN_sN)

N (1.374)
:HPn(Vi—Si)
i=1

where a is the constant parameter to be estimated and r; = s; +
n; represents the received signal samples. The sampling rate
satisfies the Nyquist sampling frequency and the second
equality in (1.374) recognizes that the noise samples are inde-
pendent. The following analysis is based on the work of the
Woodard [24] and Skolnik [61] and uses the maximum-
likelihood estimate of (1.359) with the Cramér—Rao bound
expressed by (1.365).

Using (1.374) with zero-mean AWGN, the minimum
Cramér-Rao bound on the variance of the estimate is
expressed as

A2 (mi )__E-a_zl ﬁ 1 (ri=si)’ o
ocd (min) = 3(12 n i manexp 20_%
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.z _aa_:zln{kexp (2_1\71 LT (r(r) _S(f))zdt> }1 )
L (1.375)

In arriving at the third equality in (1.375) the factor k is
independent of the parameter a and, it is recognized that,
02 =N,B where B = 1/T, is the bandwidth corresponding to
the estimation time. The integral is formed by letting At —
0 as the number of samples N — oo over the estimation inter-
val T,. Upon taking the logarithm of the product kexp(—) and
performing the partial derivatives on the integrand, (1.375)
simplifies to

[l (52) ]

The last equality in (1.376) is the basis for determining the
variance and is obtained by moving the expectation inside of
the integral and recognizing that E[r(t)—s(t)] = E[n(z)] =0.
The following example outlines the procedures for estimating
the variance of the estimate using the ML procedures.

(1.376)

1.9.2.1 Example of ML Estimate Variance Evaluation
Consider the signal s(f) expressed as

s(t) =Acos(w,t + @t /2 + ) (1.377)
where A is the peak carrier voltage, @, is the IF angular fre-
quency, @ is the angular frequency rate, and ¢ is a constant
phase angle; the signal power is defined P, = A%/2.

The variance of the frequency estimate is determined by
squaring the partial derivative of s(f) respect to o, and inte-
grating over the estimation interval T, as indicated in (1.376).
Under these conditions the analysis of the Cramér—Rao lower
bound is performed as follows.

AZ T, -1
o2 (min) = [NJ sin’ (w,t + @t* /2 + ) dt]
0J0
P, (™ -
= [YJ tz(l—cos(2w0t+d)t2+2¢))dt}
N, Jo
(1.378)



Upon neglecting the term involving 2w, and performing
the integration, (1.378) becomes

:rad?/s?

(1.379)

2
ele

where y, = P,T./N, is the signal-to-noise ratio in the estima-
tion bandwidth of 1/7,. In terms of the carrier frequency f,
in hertz, the standard deviation of the estimate is

o; (min) = V3 Hz

=—— 1.380
27T /7. ( )

In a similar manner, the standard deviation of the fre-
quency rate and phase are evaluated as

V5

(fj}(min)=m :HZ/S (1381)
and
(min) ! rad (1.382)
I = .
¢ Ve

The evaluation of the standard deviation of the signal
amplitude (A) estimation error is left as an exercise (see
Problem 39).

1.9.3 Received Signal Delay and Frequency
Estimation Errors

Accurate estimation of the signal delay and frequency are
essential in aiding the signal acquisition processing by mini-
mizing the overall time and frequency search ranges. The delay
estimation accuracy (o7,) is inversely related to the signal
bandwidth (B) and the signal frequency estimation accuracy
(07,) is inversely related to the time duration (7) of the signal.
Neglecting the signal-to-noise dependence of each measure-
ment, these inverse dependencies are evident, in that, the prod-
uct 674077 < 1/TB where TB is the time-bandwidth product
of the waveform. For typical modulated waveforms 7 and B
are inversely related so that simultaneous accurate time and
frequency estimates are not attainable. However, the use of
spread-spectrum (SS) waveform modulation provides for arbi-
trarily large BT products with simultaneous accurate estimates
of T, and f,;. The analysis of delay and frequency estimation
errors in the following sections is based on the work of
Skolnik [61] and can be applied to conventional or SS-
modulated waveforms. In Section 1.9.3.3 delay and frequency
estimation is examined using a DSSS-modulated waveform.

1.9.3.1 Delay Estimation Error Based on Effective
Bandwidth The signal delay measurement accuracy using
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the effective signal bandwidth was introduced by Gabor

[69] and is discussed by Woodward [24] and defined as the
standard deviation of the delay measurement expressed as”

:second

1
= 1.383
S 5 (1389

where y, = PJ/N,W = E/N,, is the signal-to-noise ratio’ meas-
ured in the two-sided bandwidth W, N, is the one-sided
noise density, P; is the signal power, and f is the effective
bandwidth of the signal. % is the normalized second moment
of the waveform spectrum IS()I*, defined as

j (2af IS (f) Pf
o (1.384)

pe
| storar

The denominator in (1.384) is the signal energy and the
integration limits extend over the frequency range f < I[W/2|
corresponding to the nonzero signal spectrum. The one-
way range error corresponding to (1.383) is o6, =cor,
meters where c is the free-space velocity of light in meter/
second.

For the rectangular symbol modulation function rect
(t/T), band limited to W Hz with * = W/T and large time-
bandwidth products WT/2, (1.383) is evaluated as

T
or,= : band-limited rect(¢/T) symbol; WT' /2> 1
WTy,

(1.385)

1.9.3.2 Frequency Estimation Error Based on Effective
Signal Duration In a manner similar to the analysis of
the delay estimation error in the preceding section, Manasse
[70] shows that the, minimum root-mean-square (rms) error
in the frequency estimate is given by*

o
Cay2y,

oy, :Hz (1.386)

where y, = E/N, is the signal-to-noise ratio measured in the
two-sided bandwidth W, N, is the one-sided noise density, P,
is the signal power, and « is the effective time duration of the

“Woodward refers to the delay error as the standard deviation of the error.
Slepian’s analysis [62] is based on the likelihood function and also arrives
at (1.383).

"The factor of two in 7. results because N, is the one-sided noise density and
W is the two-sided bandwidth.

“The notation o is used to denote the standard deviation of the frequency
estimation error.
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FIGURE 1.29 Time—frequency estimation using DSSS waveform.

received signal. The parameter o” is the normalized second
moment of the waveform s(7) and is defined as

Jm (2122 (1)t
S (1.387)
J s2(1)dt

— o0

The Doppler frequency results from the velocity (v) and
the carrier frequency (f.) and is expressed as f; = (V/c)f..
Frequency errors resulting from hardware oscillators are
usually treated separately and combined as the root-sum-
square (RSS) of the respective standard deviations.

For the band-limited rect(#/T) symbol modulation used
in the preceding section, the normalized second moment is
evaluated as a® = (7zT)2/3 and (1.386) is expressed as

3
0f = #273 : band-limited rect(t/T) symbol; WT' /2> 1

(1.388)

Comparison of (1.385) and (1.388) demonstrates the
inverse relationship between the estimation accuracy of the
range-delay and frequency errors for conventional (unspread)
modulations. For example, for a given time bandwidth (WT)
product and signal-to-noise ratio (y.), the delay estimate error
decreases with decreasing symbol duration; however, the fre-
quency estimate error increases. The issue resolves about the
signal-to-noise ratio in the estimation bandwidth. For exam-
ple, with conventional waveform modulations, WT'=2BT =2
so BT =1 and the bandwidth changes inversely with the sym-
bol duration. Consequently, by decreasing symbol duration,
the bandwidth increases resulting in a signal-to-noise yj,

measured in the symbol bandwidth, degradation of B/B’
where B’ > B. Therefore, in the previous example, to maintain
a constant signal-to-noise ratio y, the estimation interval
must be appropriately adjusted. As mentioned previously,
the solution to simultaneously obtaining accurate estimates
of range delay and frequency while maintaining a constant
75, involves the use of a SS-modulated signals with an inher-
ently large WT product as discussed in the following section.

1.9.3.3 Improved Frequency and Time Estimation Errors
Using the DSSS Waveform The DSSS waveform uses a
pseudo-noise (PN) sequence of chips with and instantaneous
bandwidth (W) over the estimation interval (7) as shown in
Figure 1.29." The resulting large WT product signal provides
for arbitrarily low time and frequency estimation errors. This
is accomplished by the respective selection of a high band-
width (short duration) chip interval (z) and the low bandwidth
(long duration) estimation interval 7. The estimation interval
can be increased to improve the frequency estimate; con-
versely, the chip interval can be decreased to improve the
range-delay estimate; however, to maintain the accuracy of
the other, the number of chips per estimation interval ()
must be increased. These relationships are described in terms
of the pulse compression ratio, defined as p = T/t = N. In
Figure 1.29 the chips are depicted as appropriately delayed
Ad,rect((t—-n)/t—0.5):n=0, ..., N—1 functions and, because
of the equivalence between the correlator and matched filter,
the peak correlator output is a triangular function with a peak
value’ of AN. When sampled at ¢ = Nz, the correlator output

*A]though not shown in the figure, the chips are + binary pulses which sug-
gest that the received signal carrier frequency is BPSK modulated.

"This suggests that the local reference is an identical unit amplitude PN
sequence that is synchronized with the received PN sequence.



results in the maximum signal-to-noise ratio measured in the
bandwidth of 1/T Hz.

Based on the fundamental principles for jointly achieving
accurate time and frequency estimates as stated earlier, the
triangular shape of the wide bandwidth correlator output is
related to the accuracy of the time estimate and the low band-
width sampled output at interval of T = Nz determines the
accuracy of the frequency estimate. Therefore, evaluation
of the time and frequency estimation accuracies of the DSSS
waveform involves evaluating, respectively, the effective
bandwidth (f) of the triangular function and the effective
time duration («) of the rect(t#/T — 0.5) function.

Delay Estimation Error of the DSSS Waveform The delay
estimation error is based on detecting the changes in the lead-
ing and trailing edge of wideband signals. This does not
require that the signal has a short duration but that the band-
width is sufficiently wide to preserve the rapid rise and fall
times of the correlator response. On the other hand, received
signals with additive noise must be detected and the para-
meters estimated under the optimum signal-to-noise condi-
tions as provided by matched filtering or correlation. In
this regard, the correlator output in Figure 1.29 is examined
in the context of the signal delay estimate error.

The triangular function, corresponding to the correlator
output, is an isosceles triangle with base and height equal
to 27 and AN, respectively, and is described as

Ri(§)=AN(1-[¢|/7) :[¢|< (1.389)
where, for convenience, & = ¢ — Nt such that the time axis
is shifted so that the isosceles triangle is symmetrical about
€ = 0. The effective bandwidth of R (&) is evaluated (see
Problem 41) as

3
523 iangular function (1.390)
T

and the corresponding standard deviation of the delay esti-
mate is

: triangular function (1.391)

GTd

VAV,

Frequency Estimation Error of the DSSS Waveform The
frequency estimation error is based on the interval T of the
PN sequence under the conditions corresponding to the local
PN reference being exactly synchronized with and multiplied
by the received signal; in other words, with zero frequency
and phase errors, the integrand of the correlation integral is
constant over the interval 7. However, with a frequency error
of f. Hz the correlator response is computed as
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T
Ry(T:f.) :AJ ePrleqe
0

e osin(zf. T
=ATe’”fETM : correlator response with f;
xf.T

(1.392)

The principal frequency error in the main lobe of the sinc
(feT) function corresponds tol f.| < 1/T which defines the fun-
damental resolution accuracy of the frequency estimate.
However, the effective duration of the correlator of length
T = Nt is evaluated (see Problem 42) as

27T

a= 5 :rectangular function (1.393)

and the corresponding standard deviation of the frequency
estimate is

:rectangular function (1.394)

3
of, = 22T /_2}/(5

Considering the SS pulse compression ratio, or processing
gain, p = T/z, the correlator output signal-to-noise ratio (y,,) in
(1.391) and (1.394) is measured in the bandwidth of 1/T. The
product of the estimation accuracies of the SS waveform is

T 1
07,6f, =——— =
TLI le ZET}/E 2777[7]/6

(1.395)

Therefore, the time and frequency estimates accuracies
can be made arbitrarily low, even in low signal-to-noise ratio
environments, by designing a SS waveform with a suffi-
ciently high pulse compression ratio.

1.9.3.4 Effective Bandwidth of SRRC and SRC
Waveforms In view of the increasing demands on band-
width, the spectral containment of the spectral raised-
cosine (SRC) waveform meets the corresponding need for
spectrum conservation. Although the spectral root-raised-
cosine (SRRC) waveform has a slightly wider bandwidth
than the SRC waveform, it is preferred because of the
improved matched filter detection” and, in the context of
range delay estimation, provides for a somewhat better range
delay estimate. The spectrum of the SRC waveform is char-
acterized, in the context of a spectral windowing 