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The overload point of the A/D converter (largest signal that can be accommodated) will be chosen on the
basis of the signal statistics and the signal power so as to keep the probability of overload low. Assuming
the signal doesn’t change, we would want to keep the overload fixed. Hence, the A would be halved.

Generally the error signal would be halved in amplitude. This would increase the SNR by 20log;2 = 6 dB.
The bit rate would increase by f,, the sampling rate.
We get, for some constant X,

SNR =6n +K, f,=nf,, (1.1)
and thus

6fs

In particular, the SNR in dB is directly proportional to the bit rate.

Each bit error will cause one recovered sample to be the wrong amplitude, which is similar to an added
impulse to the signal. This will be perceived as a "pop"” or a "click”. The size of this impulse will depend
on which of the n bits of a particular sample is in error. The error will range from the smallest quantization
interval (the least-significant bit in error) to the entire range of signal levels (the sign bit in error).

The most significant sources will be the anti-aliasing and reconstruction lowpass filters, which will have
some group delay, and the propagation delay on the communication medium. Any multiplexes (Chapter
18) will introduce a small amount of delay, as will digital switches (Chapter 18).

Assume the constant bit rate is larger than the peak bit rate of the source. Then we might artificially
increase the bit rate of the source up until it precisely equals the bit rate of the link by adding extra bits.
We must have some way of identifying these extra bits at the receiver so that they can be removed. A
number of schemes are possible, so here is but one: Divide the source bits in to groups called packets with
arbitrary length. Append a unique sequence of eight bits, called a flag, to the beginning and end of each
packet, and transmit these packets on the link interspersed with an idle code (say all zeros). The only prob-
lem now is to insure that the flag does not occur in the input bit stream. This can be accomplished using
coding, with techniques described in Chapter 18.

SNR = =2 +K . (1.2)
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2-1.  We start out with an easy problem! Looking at figure 2-2, when the imaginary part of the impulse response
is zero, we see that the system consists of two independent filters, one for real part and one for imaginary
part of the input, with no crosstalk. The imaginary part of the impulse response results in crosstalk
between the real and imaginary parts.

2-2.  Doing the discrete-time part only, write the convolution sum when the input is e/ 7

Ye= Y e/ Thy o (2.142)

m =

Changing variables,
= X el™Th,

_ (2.143)
=/ F Ty

A—es

The output is the same complex exponential multiplied by a sum that is a function of the impulse response
of the system &, and the frequency w of the input, but is not a function of the time index k. This frequency
response

H(ei%T)= 3 evioTh, (2.144)

is recognized as the Fourier transform of the discrete-time signal &, .
2-3.  The output of the impulse generator is defined as

w(t)= 3 wd(t —kT). (2.145)

k=o—ee

@
Y(§o)=F(jo) Y we /o
k== (2.146)
. il 1 & . 2r . 2r
=FJoHE™")y— ¥ GU@+m——))X((0+m—))
T .= T T

() Yes, you can see from a. that if we add two input signals, the output will be a similar superposition.
) fFJw)=0for l@! > T then for lw| < /T we have

Y(w)= -;:F(j WH (791G (j0)X (j ) 2.147)

and the system is time-invariant with frequency response %F (w)H (e/°T)G (jw).
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2-5.

2-6.

2-7.

29.

In continuous-time:

} lx (¢) 12t =F.T.[x(:)x'(t)] @=0

1 . o .
['ﬁx("") *X ("10))] ome (2.148)

L T a2
= hilxom)l da .

Discrete-time follows similarly.

We get that the energy of the discrete-time signal is
~T

BN |2=-2-7;-JH lXX(i(a)+m—211,r—))lzdm (2.149)
k m

and there is evidently no way to relate this to the energy of the continuous-time signal. However, if the
continuous-time signal is properly bandlimited, then the sum inside the integral includes one term, and the
right hand side is proportional to the energy. In fact, the energy of the discrete-time signal in this case is
1/T? times the energy of the continuous-time signal. As the sampling rate increases, the energy of the
discrete-time signal grows without bound, since we have more and more samples in the summation.

The transfer function is H(z) = 1+ z~! and the frequency response is H (e/T) =1+ ¢~°T. The output is
¥ = A cos(WokT + 0) where the magnitude response is A = V2(1 + cos(woT')) and the phase response is

T+ cos(@eT) = . (2.150)

@l @gT
e_m_l[ sin(woT) ]_ oot G e
B B T 2
=)

2cos¥(

The phase is linear in a.
The Fourier transform of a real system is conjugate symmetric, SO

H(j0)=A()e/* = H® (-j 0) = A (w)e 78, (2.151)
since A (w) = |H (jw)! is both non-negative and symmetric. Hence, 6(®) = -6(-w).

From problem 2-7 the phase response of a real system is anti-symmetric, so the frequency response of the
phase shifter should be

H(j 0) = e /%8 = cos(0) + j sgn(w)sin(6), (2.152)
where we have used the symmetry and anti-symmetry of the cos and sin, respectively. This becomes
k() =8(1)cos(8) - —-sin(®). 2.153)

IfRe{ a} > 0, then we can use the Fourier transform pair

y()= <->Y(jw)=2re"u(- w) (2.154)

jt+a
where u (@) is the unit step function. Then we observe that x(¢) is y (¢) convolved with an impulse stream
Y. &t-mT), so its transform is

X(iw)=}’(ja))—21—7f- f: S(m—z—}t-m)

mE (2.155)
i 2\ 2xmaT
T ngﬂﬁ(a)— ,I_m)e .

If Re{ o) = 0, then we can use the transform of 1/jt, convolving it again with an impulse stream to get



-2n?

e T &o- %’tm)sgn(m).

2.10. Given Y (jw) = H ()X (jw), then if X (j ) = 0 then ¥ (jwg) =0.
211
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coswct
¥
@ HRQ~s ~ y)
sinwct
b
“ —N —j sgn(w) v
coswet
2-12.
@
LOWPASS
y®©) FILTER [ > ()
ﬁ-emjwct
®)
¥2-cos(w, t)
¥ LOWPASS
auer | 2@
y@@) — ‘
LOWPASS
aoer | 2@
V2:sin(w, 1)
2-13.
(@) From (2.7),
Ve = i 2" hgm.

Changing variables,

N= i 2" h, =" f: ™ h,=2"H(2).

R = —ee R =—we

Because the system is time invariant, H (z) does not depend on k.

(2.156)
a(t)
b(t)
(2.157)
(2.158)



CHAPTER 2: SOLUTIONS TO PROBLEMS 5

®)
2-14.

2-15.
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2-17.
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If we constrain z to lie on the unit circle, [zl = 1, the two results are identical.

Let the response to z* be y;. By linearity and problem 2-1, if the input to the system is z¥*™ then the out-
put is z™y, =z*z™. By time invariance the response to that same input is y,,.. Setting these two
responses equal,

2%V = Yirm (2.159)
and setting k = 0 we get the desired result
Ym=yoz". (2.160)

The transfer function is a complex number y,, which is evidently a function of z, so we define the notation
Yo=H(z) to reflect this property.

The Z transform is

X@)= 5_‘, z™a"u,

- (2.161)
- z (az—l)m.
m=0
For any b such that 151 < 1 we have the identity
1 - pm
5 = _Eob (2.163)
which is easily verified by using long division on the left hand side. Therefore, in the region 12711 < _li_l’
the Z transform is
X(z)= ——. 2.164)

1-az

Outside of this region, the Z transform does not exist. If {al > 1, we easily see from (2.102) that the signal
goes to infinity as k-increases. Not coincidentally, the region in which the Z transform exists does not
include the unit circle, implying that the Fourier transform does not exist either.

If the response of the system to z* is y(¢), then by linearity the response to z'** = z'z* is z%y(t). By time
invariance, the response to z*** is y(¢+u). Setting these two equal, y(t +u) =t*y(t), and setting ¢ = 0,
y@)=y©):z".

Clearlly e” =z" if z = ¢*, i.e., if s = j@, then z = ¢/®, a point on the unit circle.
Substituting into the convolution,

y(O)= [h@x@ -)dt= [h(x)e* Vdr=c" [h@e =" dt=e"H(s5) (2.165)

which implies that H (s) is an eigenvalue of the system.

Z
zZ—a

X@)= (2.166)

in both cases.
Izl > lal and 1z1 < lal respectively.
lal <1and lal > 1 respectively.



2-18.

2-19.

()

(®)

©

2-20.

2-21,

DIGITAL COMMUNICATION

Since
1
l-az
we get the signal of problem 2-17a, where the ROC is laz™' I < 1 or Izl > lal. Also, since
t4
a z
Tz T a

—=1+az+a% 2 .167)

- A+ Z+( 2P ) @.168)
1-=
a

we get the signal of problem 2-17b where the ROC is 1za~!'l < 1or Izl <a.
First we perform a partial fraction expansion,
A B

X(z)= z—a+z—b (2.169)
where
2 2
a b
= = ) 2.1
A2 277a 2.170)
The ROCis Iz! > ib1, and applying problem 2-17a to both terms in the partial fraction expansion,
x=A-a* +B-b* (2.171)
for k 2 0, and zero otherwise.
The ROC must be lal < 1z1 < 151 and hence, applying the results of problem 2-17b,
A-a*, k20
= 2.172
e { ~B-b*, k<0 @17

For (a) the signal is not stable because b* — oo, This is because the ROC does not include the unit circle.
For (b) the ROC does include the unit circle so the signal is stable (this is the only ROC for which the sig-
nal is stable).

Consider the zeros, and the poles will follow similarly. Assume that z, is a zero, and hence

M
Y bezg* =0 (2.173)
k=0
and taking the conjugate of this equation.
M M
Y bize)* =X be(zg)* =0 (2.174)
k=0 k=0
and we conclude that z, is also a zero.
The easy terms are
Hoo(z)=(1- 21 +jz)=(1+27) (2.175)
Hou(z) = 1 1 @2.176)

(1-0.5e/%8 1)1 - 0.5¢ 751 1 cos(r/B)z + 025272
but the maximum-phase term requires some more work. Writing one maximum-phase zero in monic form,

a- %ej"’sz") =z71(- %ei*")(x - %e —i%%) (2.177)
and considering both zeros we getL =-2,B =(-2/3)*= -3- and

Hon(z)=1- %—cos(n/S)z + i;-zz . 2.178)
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2-22.
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2-23.

2-24.

2.25.
2-26.
@

®

Let
A@)==C 2.179)
l1-cz
and note that G (z) = H(z)A (z). A (z) is allpass (see example 2-9), so
G (e/9T)l = |H(e/*T)1 1A (e/*T)| = |H (/®T)I . (2.180)

It has the effect of moving a zero {c| < 1 outside the unit circle without changing the magnitude response.
Using the hint, &, can be obtained by putting f; through transfer function (1 - cz™), so

he =fr —cfr - (2.181)
Similarly g, can be obtained by putting f; through transfer function (z™! - ¢ ),
g =fia—cfe - (2.182)
Calculating the difference between the energy in each sample in &; and g,,
Lhe 12— 1 1= I fy = cf 12— i = fi 1P = A= 1)U f 12 = 1 e 1P) (2.183)
and calculating the difference in energy for the first N samples,
%(lh,,lz—lgklz)=(l— Ic1®)Ifn1220 (2.184)
=0

exploiting the fact that f, is causal (why?), and I¢c! < 1,and hence f_; =0.

Using the all transfer function in example 2-9 with lcl <1, define a signal w, with Z transform
X (2)/(1 - cz™"). Note that w; is causal also (why?). Then x; is obtained by putting w; through a system
with transfer function (1 — cz™*) and y, “is obtained by system (z™! — ¢*). From here, the derivation is ident-
ical to problem 2-22, with the result

N
T (x 2= 1y 1) =(1 - Ic1D)Iwy 1220 (2.185)
&=0
Using (2.44) to factor H (z) into the product of minimum-phase and maximum-phase transfer functions,
o H (2
H(z) =Bz H (2 )H 1ax(2 YH pere(z) = Bz% H (2 YH onx (1/z‘)—+‘“—’i(-—)—um(z) . (2.186)
Ho. 1/2%

Now note that H;,, (1/z°) is minimum phase, and from example 2-11 H ., (z)/H 5., (1/z") is allpass. Furth-
ermore, z* is allpass. Hence,

H (z)—zL—H"“—‘(—zl— (2.187)
Wlpaee H:. (1% :
and
H i (z) = BH (2 )H max (1/2°) (2.188)
H'(jw).
The norm of both signals is unity. The inner product is
I 3 .1 _1
<§,.8;> = l SIS dE =15~ Tg = (2.189)

NS, +S,U2= [ (51(t) +s5(1))dt =4% + o-% =3. (2.190)
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There are many possibilities, but here is one:
Define an orthonormal basis for the subspace spanned by S, and S; as:
1

3 2

B— G 0——3]75]1—‘ 0]

A signal orthogonal to §; that is a linear combination of ®; and ®, is 2-®; — —%4&.

The projection of S5 on the two basis vectors is

o
S5O = — -89- <S5 Op> = — % @2.191)
1

3
and hence the projection on the subspace is — —é3-'¢1 - E"Dz-

Clearly if two signals are bandlimited, then their weighted sum is also bandlimited.
Let X be in the subspace. By Parseval’s theorem (problem 2-4), for any YeB,

- w
[x@y @)dt = Elz:' LX(im)Y'(jco)dum 0. (2.192)

Clearly, this is satisfied if and only if X (jw)=0for ol < W,
Let this projection be P, then <S; — P,Y> =0 for all YeB. From (b) this implies that §,(j w) = P (o) for
lo! < W, and of course since PeB , we must have that P (jo) = 0 for lw| > W. Hence,

p 1-e-J®

)= [e-iog =12 2.193
51 @) {e d o (2.193)
and
1 —p—l]®
p)= '2'11? [ —1—7"6—-&““ do. (2.194)
-1

Unfortunately this integral cannot be evaluated in closed form.

Let X;eM; and X,eM,. An element of M,®M, can be written in the form X, + X,. Hence it suffices to
show that

<X—(Pp,X) + Py X)X, +X>=0 (2.195)
Expanding the left side, it equals
<X=Pa, (X)X 1> - <Py, (X) X;> + <X - Py, (X) Xg> — <Py (X). X> (2.196)
But by the definition of projection
<X = Py (X).X;> = <X - Py (X).X> =0 2.197)
and because M and M, are orthogonal subspaces
<Pp (X).X> = <Py (X).X;>=0 (2.198)

and hence the result is established.
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2-29. Defining
™ H<>h(t -kT) , (2.199)
the Schwarz inequality states that
1P, (k)1 < WHIL-Uz™*-HII (2.200)
and since it is easy to verify that the signal and its time-translate have identical norms, this becomes the
desired result.
2-30. Multiplying out the magnitude squared in (2.97) we get
~T
L | 10811 -2acosd-aT) +a%da. @201)
2n -xT
Changing variables, this can be written
A
= [ log(1-2acosw+adda. (2202)
gz,
Since cos o is periodic, the kernel of the integral is periodic. Since we are integrating over one period, we
can rewrite this as
x
1
—— {1 - . 22
o _J;log(l 2acosw+a?)do (2.203)
Finally, since cos ® is symmetric, this is equal to (2.98).
31 Taking the first derivative,
%@:(s) = Oy (s)( + %) (3.265)
and setting s =0 we get E[X ] = 1. Similarly, the second derivative is
P
2 0x(5) = x5+ %) + (530 (3266
and again setting s =0 we get E [X?] = (u? + ¢®). The variance is therefore ¢2.
3-2. We can use (3.17) and carry out the integral.

3-3.
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(e | éz—e‘“"zda (3.267)

0< {éz-e'“"zdas y—ls'! oe~%2da= ;l—s-e‘“"z. (3.268)
34.
(@) Defining the MSE as €2,
e2=E[IX —aY1]]=E[IX13] + lal?E[1Y1*] - 2Re(a"E[XY"]) (3.269)
and taking the derivative with respect to the real and imaginary parts,
Re{a JE[1YI1}]=Re(E[XY"]) (3.270)
Im{a }JE{(1Y!1}=Im({E[XY"]) (3.271)

or
a =EXY'VE[IYI?]. (3272)
(®) The problem can be restated as: Find the vector in the subspace spanned by (Y} that is closest to X.
(c) By the orthogonality principle,
<X-a'YY>=0 (3.273)
or
a =<X,Y>/<Y.Y>=E[XY'JE[IY1Y] . (3.274)

(@) Noting that
EIE/\*=E\E,’-E, +E 12
=E|E,'-E 12+ E |E 12+ 2Re((Ey' - Ey)Ef ) -

Since the filters generating both E, and E;’ have unity coefficients at delay zero, the filter generating
(Ei’ - E;) has a zero coefficient at delay zero, and this signal is a function of only past inputs
Xi-1.X4_p, -+ -, and in view of property (3.184), the third term in (3.275) must in fact be zero.

() Since E, is a linear combination of X; ,X;.1, - * - , it follows from (3.184) that
E[EiimEi1=Re(m)=0, m>0, (3.276)
and since the autocorrelation function has conjugate symmetry, it follows that Rg (m) = 0 for all m #0.

(3.275)

(@) The problem can be restated as: Given a sequence of vectors X;, — o <k < oo, with inner products
Rx (m) = <Xk+m ,Xk> (3.277)

that are independent of k, given a subspace M spanned by (X /n >0}, find the vector X, in M that is
closest to the vector X, , with error vector E, =X, — X,.

(b) By the projection theorem, for every vector Y € M, we must have that
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3-7.

3-9.

3-10.

3-11.

<E,Y>=0 (3.278)
and in particular
<Ek .Xt_m> =0,m>0. (3.279)

Thus the prediction error vector is orthogonal to the past (the vectors used in the prediction estimation).
Since Ey_,, € M, m >0, it follows that

<E E;m>=0,m>0, (3.280)
or equivalently Rg(m)=0,m #0.
Ry(0) =E[1Y, 13 =E[IX kT)1%]. (3.281)
Observe that since X (¢) is WSS
Ry (0)=E[IX ()15 =E[IX(t +7)12] (3:282)
for any 1. Define
T=kT -t (3.283)
and the result follows.
Mechanically,
E[A,A A A)=8,,8, +38,,8, +8,8, -2, 8, 8ps - (3.284)
Observe that from (3.64)
m -
| SsxGo)Mao= | Sy(o)deo, (3.285)
m‘ -

and from the definition of the power spectrum,
) S
Ry(@)=- _L Sy(jw)e’"dw, (3.286)

from which the first result follows. To show that Sy (j ) is non-negative everywhere, assume it is negative
over some region from ®, o ®,. Then note that

[+
| SxGaydo (3.287)
.
must also be negative, which implies that Ry (0) is negative. But
Ry Q)= [ y*(®)dz (3.288)

which must be non-negative, a contradiction.
The power spectrum is
No |F(e/°T)12=NyF (e/*T)F" (e/®T) (3.289)

where F (e/“T) is the discrete-time Fourier transform of f (kT'). Since the inverse Fourier transform of
F* (e/®T)is f* (—kT), the result follows immediately.

Ry () =EX (1 + DY "(1)]

. . (3.290)
=E[Y (¢ - )X ()] =Rex (-1).

No it may be complex-valued.



12

3-12.

3-13.
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If the steady state probabilities exist they must satisfy
U)y= X pGli)p @),
PG)= X | (3.291)
and also must satisfy
Y rG)=1.
s (3.292)
Define the row vector of state probabilities
T = [Pt (O)v et apk (M)] . (3.293)
Then the system of equations in (3.96) can be written more concisely as
N1 =T P. (3294)

The condition that the state probabilities don’t change through a state transition gives the desired steady-
state probabilities.

The signal flow graph i< shown below:

() The corresponding equations are

©
@)

Pz)=1+ A"‘;:pz“l’; ) (3.295)
i=
Pi(z)=qz7'P;_y(z) 1 <i<N-1 (3:296)
Py(z)=qz 'Pnoy(z) +271Py(2) . 3.297)
Solving these equations and using the identity
El N (3.298)
i=0 1-r
we get the result.
This follows directly by differentiation.
For this case,
fn=q" (3.299)

which is what we would expect. The probability of a head is ¢, the probability of N heads in a row is q~,
and on a relative frequency basis N heads in a row will occur once out of g7V trals.
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3-14.

3-15.

3-16.

3-17.

3-18.
@)

(®)
©

P(WoW1. " ** W) =P (Wa 1 Wants " WP (Wa-1. " " " WW0)
=P (Wa 1 Wn-1)P (Wa-1, "~ W0)
=P (W I Wat)P Wa1 1 W2 " " * WoIP (Wa2s " "~ :W0)
=P (Wa | Wna1)P (Want 1 WaDP (Wazs = " W)= -

p(‘{’n Wastls " ° -‘l’u-l-m)
PWasts " v\l’ud-m) '

Using the result in problem 3-14 on both the numerator and denominator and canceling the terms that are
equal, this becomes

PWalWasro--- N’ud-m) =

p ("’M-l ""u )P (\Vu)
p (‘l’lﬂ-l)

PWalWasts - Waim) =

=p (\Vn | Wuﬂ)-

(w w !w)=p(\VR'W"WI)
PRYn:¥s 1Yy P ¥,)

=p(Va l\l’r)[ p(¥,)

where the last equality follows from problem 3-14. The result now follows using Bayes’ rule.
The signal flow graph is in shown in figure 3-22a. The set of equations governing this signal flow graph is

Py, lw,)p(m}

Pz)=052"1Po(z) +0.5272P(z) + 1 (3.300)
Py(z)=0.5z"1P(z) + 0.5Po(z) . (3.301)
Solving these linear equations for P o(z),
1-0.5:7" 1 -
= = -0. .
Pol) = =1 " A

Inverting the Z transform (using problem 2-15),
Pi(0) =3 — 0.5u;,
where u, is the unit step. This is sketched in figure 3-22 (b). Computing P(z) similarly,

-1

Pi(x)=05:71 1

Inverting the Z transform, again using problem 2-15,
Pe(1) = 0.5u; .

The Markov chain is not stationary.

The Markov state diagram is shown in figure 3-23 (a).

The diagram shows the independence required for the random process to be Markov, assuming that the
coin tosses are independent of one another.

The signal flow graph is shown in figure 3-23 (b).
Writing the set of equations and solving them,
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@)

Ap:0) Ap(1)

T T 1 >k T 1 >
2

Figure 3-22. (a) The signal flow graph describing the state probabilities of the parity check ex-
ample when the initial state is zero. (b) The state probabilities as a function of k.

Heads Heads
Heads
Tails
Tails (a)

0.5z7! ®)

Figure 3-23. (a) Markov chain description of the coin toss experiment of problem 3-18. (b)
Signal flow graph.

Pyz) 4
1 423 -6z2+z+1

(3.302)
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3-19.

3-20.

3-21.

3-22.

3-23.
(@)
)

©
@

Starting with (3.121), calculating the optimum value of s, we get for the first bound

X
—=e‘
a

and finally plugging into the bound we get the result.

15

(3.303)

This follows immediately from the fact that N(f,) is Poisson distributed with parameter a =As;. Hence

from (3.120) we get
EN@II=A
Var[N (1;)] = As,.
Writing the joint probability as a conditional probability, the desired probability is
PN@Na)k+n1E) Prgyk) .
The left term is the probability of n arrivals in time interval (¢; ~ 1), or
Atz —1))" JREYI

n!
and the second probability is

[N

k! )

Taking the product, the result follows immediately.
The process is governed by the differential equation

L‘%ﬁ‘l = G-DAgj1(t) - jAg; (¢)
which has Laplace transform
_ 40+ G-DAQ;(s)
Q;(s)= (s+JjX)
and iterating we get
i1g:
Qj(s)= XL

G +2)(s +20)(s +jA)°
It is non-trivial to derive, but the inverse Laplace transform is
gj()=e™ (1-e™y,

(3:304)
(3:305)

(3.306)

(3.307)

(3.308)

(3.309)

(3.310)

3.311

(3.312)

Since the mean value of N (¢) is given by (3.135), differentiating this integral we get the desired expression.
This also follows easily from the fact that the expectation of the convolution is the convolution of the

expectation.
This again follows directly from the interchangeability of expectation and differentiation.
We will just derive the first equation, the second is similar. First note that

Ryx (t1,42) = E[w(11)X (¢2)]
=Ew(t) [h@w(t2-1)d7]
= [R@Rww (t1,12 - 1) d
which we recognize as a convolution in the second argument of the autocorrelation function.
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3-24.

3-25.

3-26.

3-27.

3-28.

3-29.

DIGITAL COMMUNICATION

Note that
EIN@EWN () = N @) =E NN ()] - EINY1)). (3.313)
Independence implies that the expectation of the product is the product of the expectations
EIN@ YN -NO)I=EN@)IEN(@)-N(1))]
= At )(A(tD) — AQy)).
Since N (¢) is a Poisson random variable, from (3.135)

EIN* (1)1 = AXty) + A(ty) (3315)
from which the result follows immediately with some minor algebraic manipulation.
Noting that Ryy (£1.12) is continuous at ¢ = ¢, take the derivative first with respect to ¢,,
AR (1142 { AUDMED, 1<ty

(3.314)

RN}}(IIJQ)= atz (1+A(t1))l(lz), t] > tz. (3.316)

Now take the derivative with respect to ¢,, first noting that there is a discontinuity of size A(t;) at#; = {5,
IR (t1:22)
Rigi(1t) = — 5 —— = MeoMe) + Me8(t, - 1), (3317)
1

Finally, we convolve this result with first / (¢,) and then h(t,) to obtain the autocorrelation of shot noise.
First convolving with A (t;),

Rygi(t1,02) % A (£1) = [A(ey) * A (£)IM(e2) + AR (1) — 1) (3318)
and then convolving with A (¢,), we obtain (3.199).
Substituting a constant rate into the autocorrelation of (3.198), the autocorrelation is

Rx(t1.02) = NHX0) + A [ h (~u)h (e = t1 ~ u) du (3319)
which is a function of T = ¢, — 1, and hence the autocorrelation is
Ry (7) = A2H*(0) + Ah (7) * h (7). (3.320)
Taking the Fourier transform of this expression we get the power spectrum,
Sx (@) = 2-A2H*(0) §(w) + A H (G w) 12, (3.321)

Note that the power spectrum has a d.c. term, cormresponding to the expected value of the shot noise, and a
term proportional to the magnitude-squared of the filter transfer function (as expected).

The expected value of the shot noise is
H
EX@=2 [ k(v (3:322)

which is proportional to the step function.
If the filter has impulse response & () and transfer function

H(j) =A(w)e/¥® (3.323)
then the response of the filter to Aq is AA (0) and the response to the sinusoid is A4 (@;)cos(@y? + o(w,)).
The mean value is the sum of these two signals.

The outputs are still obviously equally probable, p(0)=p (1) ='%. From figure 3-20 we can calculate
P1n(2),

1-gz7"
2

P =
1n(z) =gzt g +p D) + %22

(3.324)
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1-gz!
S$Z(z)=05 —_ 32
=03 -G 329
Recognizing that iy = % and subtracting 10.225_ _ from (3.325) we get
oon_ 025 __ 025
DL e P (3.326)
Calculating the two-sided spectrum, we get
025 025
Sx(2)= + - 327
)= T To 0 (3327)

which simplifies to the desired result.

CHAPTER 4: SOLUTIONS TO PROBLEMS

4-1.  The entropy is 0.81 bits. The rate is R = 0.81 bits/second. There are many possibilities for the coder. Here
is one. Pair the coin flips and represent them as follows:

FLIPS | BITS
T 0
TH 10
HT 110
HH 111

The first occurs with probability 9/16, the second and third with probability 3/16 and the last with probabil-
ity 1/16. The expected number of bits per flip-pair is therefore 1.67, or 0.844 bits per flip, which is close to
the rate of the source, but not equal.

HX)= -;—logz(Z) + %logz(‘t) + %logz(S) + -;—logz(S) =175. (4.65)

R =175 trials/second . (4.66)
A coder that will work is given by the following table.

outcome _{ bits
—
ai 0
as 10
as llO
ay 111
The average number of bits per trial is
1 1 1 1
—1+—2+—=3+=3=175. .
21+42+83+83 75 (4.67)
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4-3.

4-4.
4-5.

4-6.
(a)

®)

4-7.
(a)

®)

4-8.
@

®)

DIGITAL COMMUNICATION

Suppose that p; = py(y;) where the set of y; fori € {1,2,--- ,M}] is the alphabet for the random variable
Y. Define the random variable X =g¢;/p;. In other words, an outcome Y =y; results in the outcome
X =x = q;/p;. By Jensen’s inequality,

E[log,X] < log,E[X] (4.68)
but
M q
EflogX1= 3 p; lOEz;_‘
i=1 ]
o M (4.69)
= Y pilogyq; - 21 pilogap;
i=1 i=
and
M
EX]=Y ¢=a 4.70)
i=l
The p-q inequality follows.

Let g; = 1/K in the p-q inequality and the result follows easily.

The size of the set over which X has positive probability is less than or equal to 2", so the result follows
immediately from exercise 4-1.

It is easy to show that the input and output of this channel are statistically independent, and from this that
HXIY)=HX), HIX)=H(), “.71)
IXY)=0. 4.72)

Since the mutual information is zero independent of the input probability distribution, the capacity is also
zero.

For this noiseless channel, the output is equal to the input, so
HXlY)=0, HIX)=0, 4.73)

IXY)=HX)=H(). 4.74)

The capacity is the maximum of H (X') over the input distribution, which is one bit because the input has
alphabet size of two.

We get
IX.Y)=H(Y)+plogyp +(1-p)log(1-p) . @.75)
Capacity is achieved when H (Y) is maximized. By direct calculation,
H(Y)= —plogp - (1-p)logxl-p) - q(1-p)logzg — (1-g)(1-p)logx1—q) (4.76)

where ¢ is the probability of the first input and (1—¢) is the probability of the second. This quantity is
maximized when the inputs are equally likely (g = %4), and the capacity is

C,=1-p @17

The center output is called an erasure, and tells us nothing about what the channel input is, so it is not
surprising that the capacity approaches zeroasp — 1.
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4-9.
@

®
4-10.

@
®)

©

4-11.

4-12.
(@

This follows from
qi q;
Tpilogy - <Zpi(-=1)=0 (4.78)

where we have used the inequality logx <x — 1.
Substitute a uniform distribution ¢; = 1/K, and the bound follows immediately.

The channel has binary input and output, so all we need to show is symmetry. To do this, we solve part b.

The number of transitions from O to 1 or vice versa is binomially distributed. As long as there are an even
number of such crossovers, then the output of the channel will be the same as the input. The probability of
this occurring is

L
Prx@0=prx(11)= 3 Ka(l -pY~"p 4.79)
m event
where
kool flo— L 4.30)
" olm mYL -—m)
Similarly, a channel error occurs if there are an odd number of crossovers, which occurs with probability
L
110)= 0l11)= K,(1-p)y~"p™.
Prix(110) =pyx (011) nE-.-x (1-pY~"p 4.81)
m odd
Pxir(010) = px y(110) = pxyy QI D) =pxiy(111) =% as L - . (4.82)

Suppose X has distribution p; and Y has distribution g;. Then

X
HX)= - 3 pilogop;

i=1

X (4.83)

< - Y pilogyg; s

i=1
where the inequality follows from problem 4-9. Meanwhile,
K
H(Y)= - Y qlogxq;
i=1
I 4

= — (p1 - O)logzq; — (P2 + Ologzga — ¥ pilogaq; 4.84)

i=3

K
= — ¥ pilogyq; + [Slogyq; - dlogzq,] -
i=1
Since p, > p,, we have that g, > ¢, and the term in brackets in non-negative, so by comparing with (4.83)
we getthat H(Y) 2 H(X).

T 1 1 1
HX)= - | 5glom5 45 = ~logas —. (4.85)



20

DIGITAL COMMUNICATION
(b) The variance of X is
?=E[X¥ = j R Y -;—az . (4.86)
Hence we can write
a =Vic “4.87
and
HX) =log;(2\30). (4.88)
The entropy of a Gaussian is given by (4.21),
H(Y)=logy(cV2ne ). “4.89)

4-13.

4-14.
4-15.

4-16.

Since 2V3 < V2ne , then H(X) < H (Y).

Let the random vector Z denote the ordered pair (X,Y). The set of all possible pairs of outcomes of Z is in
Qyx xQy. Number the possible outcomes (in any order) from 1 through M, where M is the size of Qy mul-
tiplied by the size of Qy. Then let z; denote a particular pair of outcomes (x,y), where 1<i <M. Then
define

Pi =pxy(x.y) (4.90)
Further, define

=px(x)pr(¥) . 491)
These p; and g; satisfy the constraints of the p-q inequality. The p-q inequality then yields

-IX,Y)= _Z Pi 1°g2? <log; Z q= 4.92)

=1 i=1

Hence,

I(X.Y)2a=logz[ X X px(x)py(y)}

xellkyeQr
(4.93)
=1082[{ ) Px(X)][ ) PY(Y)” =log,1=0.
x € fx ye

The second and third inequalities follow easily, using (3.27) for the third. The inequalities are equalities
when X and Y are independent’

This follows easily with repeated application of the definition of conditional probability.

Using the inequality log, (x) < (x-1),
N o}
< —log, 2-—— =log,Ve - —=-.
o og. 2~ 2 ogave - —

Thus, as the number of degrees of freedom increases, the capacity approaches a constant. As we increase
N we have in effect more parallel channels to transmit over, and hence the factor of N. However, since the
total input power is constrained to 2, the transmitter is forced to reduce the power in each parallel chan-
nel, and hence the SNR on each channel decreases. In the limit, these two effects precisely balance one
another.

4.94)

The implication of (4.47) is that for any set of outcomes xy, * * * X,
%(xl + -0+ +x,) =EX] (4.95)
with high probability. Let X; =log,Y;. Then
E[log,Y] = —Ing()'x Ya) (4.96)
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4-17.

4-18.

with high probability. The result follows from this.

Define the random variable Y to have value 5 with probability 1/6 and value 1/5 with probability 5/6. Then
the money left after playing the game n times is

M, = IOO.IIIY,- 4.97)
where ¥; is a sequence of independent trials of the random variable Y. Now, because of independence,
EM,]= IOO_HlE[Y,-] =100. (4.98)

Surprisingly, this does not imply that the game is fair. From (4.39), with high probability, a set of out-
comes yy, - - -y, Satisfies

M, = 1oo,ﬁ1Y.- = [ 9EllogY 1] " =[0347". 4.99)

This certainly goes to zero as n gets large. I wouldn’t play the game, at least not repeatedly.
The better estimate is (b). The argument is similar to that in the solution to problem 4-17.

CHAPTER 5: SOLUTIONS TO PROBLEMS

5-1.

Note: We will make in this solution the additional assumption that the characteristic impedance of the line
is real-valued.

At some point on the line, let the complex voltage and impedance be V and I respectively. Then the
instantaneous power at that point is

Re(Ve/™ JRe(le/™ ) = -:_(VIeiW +V T~ i2 L ORe(VI')). (5.106)

Evidently, the average power at this point is 4Re{ VI }.
At any given point on the line, the voltage and current are

14
V(x)=V.,(e ™ +Te¥) I(x)=-zi(e"”‘—l"e7"). (5.107)

0

At the termination and input to the line, the complex power is
. v,12
V)Y (0) = z+‘ (1-1IT12+2jIm(T}) (5.108)
0
. v,1? 2oL 2, -20L ; ~2jp
V(=LY (-L)= 7= (e** - IT'1%e=*%)+2jIm(Te ~%¥}) . (5.109)
1]

Taking the real part of each term is simplified by the assumption that Z,, is real, in which case the ratio of
the power into the termination to the power into the line is
YRe(VOV'(0) _ 1-1Ir1?
WRe(V(-LY*(-L)} e**—ITr1% 2L~

(5.110)
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It might make sense if this ratio was maximized when the reflection coefficient is zero, and indeed it is.
Letting the value of this ratio be € for I' = 0 and €’ otherwise,

’ 1-1r12
€ =€m—g. (5.111)

Since € < 1, it is easily shown that &’ < ¢, thereby establishing that the maximum power transfer from input
to termination occurs when I'=0, or Z; = Zy. (Note that then Z, is not real-valued, the termination should
be the conjugate of the characteristic impedance, and surprisingly under these conditions there is a
reflection.)

For this termination, the input to the line has impedance Zo, and as is well known the maximum power
transfer to the line input will occur when the generator has the same impedance Z,, again under the
assumption that Z, is real-valued. This can also be verified simply for this assumption.

From figure 5-5 we have that

A= —2‘-;5 (5.112)
and from (5.6) we have
w=vp. (5.113)

Eliminating B from these two equations, we get the desired relation.

The configuration of a single bridged tap is shown in figure 544a, where the bridged tap is modeled as 2
shunt impedance Zp . This is an accurate model where the shunt impedance is equal to the input impedance
of the bridged tap. From example 5-9 we know that this impedance is

(5.114)

where L is the length of the bridged tap. Because of assumption of matched termination, the line can for
purposes of analysis be split up into two pieces as shown in figure 5-44b and figure 5-44c. In figure 544a
the section of line after the bridged tap has input impedance Z, from example 5-9, so we simply replace it
by that impedance. From example 5-10 we know that the voltage across the bridged tap, V3, is given by

1+T

Vs=—5 e v, (5.115)

where, from example 5-8
14T = 22 5.116
ez iz, (5.116)

Now figure 5-44c models the transmission line from the bridged tap, where the source voltage is now
known, to the termination. From example 5-10, the output voltage is

Vout = e—j'(LIVB

(5.117)
= —————-l ;r edﬂ" +L‘)V3

The effect of the bridged tap is the extra term 1+ I', which can be calculated for any given bridged tap
length.

From example 5-9, the input impedance of a very long transmission line is the characteristic impedance,
Zg = Zo (51 19)
and for this case,
14T= % (5.120)

For this case, the attenuation due to the bridged tap is frequency independent, and simply attenuates all fre-
quencies by the same factor 20.logm(-5~) =-3.5 dB. For this case, a fraction 9 of the power goes down
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b L, e L, 4
Zo
Vi Zy Zy
(a)
Zo
+
V.'. ZB ZO VB
+ +
VB ZO Vcld
x=-Lq ©) x=0

Figure 5-44. Model for analysis of bridged tap. a. A bridged tap as a shunt impedance. b. A
model replacing the line after the bridged tap by the characteristic impedance. c¢. A model for
the section of line after the bridged tap.

the bridged tap, never to return, an equal amount goes to the load, and the remaining factor -;— is reflected
from the bridged tap back to the load due to the impedance mismatch.

(c) For bridged taps of lesser length, unless the bridged tap is terminated, the effect is much more complicated
than the fixed loss of b. The effect can be modeled using the techniques described in appendix 4-B. Intui-
tively, we expect that a part of the energy traveling down the line will enter the bridged tap, be reflected off
the end of the bridged tap, and return to travel down the main line. This energy will be delayed, with larger
delay for longer taps, and attenuated, with larger attenuation for longer taps. Thus, for a transmitted pulse,
the effect will be a "ghost pulse” which follows the main pulse at the receiver, plus an attenuation of the
main pulse. As the bridged tap gets longer, this ghost pulse will be delayed more and will get smaller. In
the limit of a long bridged tap, the ghost pulse will be absent.

(d) As the bridged tap approaches zero, the ghost pulse gets larger in amplitude and shorter in delay relative to
the main pulse. Due to its short delay, it adds constructively to the main pulse, boosting its amplitude. In
the limit, it gets the main pulse amplitude back up to where it would be in the absence of the bridged tap.

5-4.  From Snell’s law, assuming the index of refraction of the incident medium is unity,
sin(6;)

sinep) = — -

(5.121)

and total internal reflection will result if
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5-5.
(@)

®

5-6.

5-7.
(@)

®

©)

@
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. na
sin(¢) > —. (5.122)
n
Further, from the geometry, since 6, and ¢ form two angles of a right triangle,
sin%(@,) + sin%(¢) = 1. (5.123)

Manipulating these equations, we get the desired result.

Since the path length is proportional to the hypotenuse of a right triangle with side proportional to the
length of the fiber, the result follows immediately.

The result follows from the manipulation of the equations
sin(el)
ny

sin(9,) = (5.124)

sin®8;) <n? - n. (5.125)
Since a picosec is 1071 seconds and a GHz is 10° Hz, if we normalize everything to GHz and nsec (10~
sec) we get

—213 =33 km-GHz/psec'10° psec/nsec = 3300 km~(GHZ)? . (5.126)

Hence we get
L-R?< 3000 5.127)

where R is the bit rate in GHz and L is the repeater spacing in kilometers. Therefore we get the following
table for L vs.R.

L (km) | R (GHz
1 57
10 18
100 5.7
1000 1.8

Notice how dramatically the maximum bit rate drops as the repeater spacing increases due to the linearly
increasing dispersion as the spacing increases.

The number of received photons per second is —P-, and therefore the number of received photons per bit is

hv
P
= — .128
N Rhv G )
If N is constant, we get
P =NRhv (5.129)
and the necessary optical power is proportional to the bit rate.
P= ”’;"C = 4410 watts (5.130)

which equals -53.6 dBm.
The allowable attenuation is 53.6 dB, so the distance is 268 km.
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5-8.
(@)

®)
5-9.

5-10.

5-11.
@

®)

©

5-12.

Starting with the formula of problem 5-7,
P 10°Nhe

10 =Ry Y (5.131)
where the left side is the power expressed in mwatts and
R
Ryp = —. .
Mb =706 (5.132)

Taking the logarithm and substituting numerical values, the result follows.
230 and 180 km respectively.

The 20 vs. 2000 reduction in the number of photons reduces the receiver power by 10log;o(100) =20 dB.
We have also increased the launched power by 20 dB. This additional 40 dB gives us an additional
40/0.2 = 200 km in distance, or changes 230 and 180 to 430 and 380 km respectively. The range has been
approximately doubled! Repeater spacings of 300 km are being seriously sought in undersea cable sys-
tems.

The number of parallel repeatered lines will be Br/B and the number of repeaters in each line will be Ly/L .
Hence, the total number of repeaters is

Br-Lr
= ) 5.133
N=—~ (5.133)
This is obviously minimized by maximizing B-L.
We have that
Pr Pr Pp
L= — = 10log—— - 101 =0-Pigm . 134
Yo 10log;o P 10log 0 Olog 10 &8 (5.134)
The equation becomes
L =329 — 5-log;oRus - (5.135)
We get the following table:
Ryp ML | )
1 329
10 324
100 319
1000 314
10,000 | 309

Observe that the repeater spacing is only very weakly dependent on the bit rate. Of course, as the rate
increases eventually dispersion will become the dominant impairment.

The LR product is
L-Ryp = Rps (329 — SlogioRus ) (5.136)

which is a monotonically increasing function of bit rate. Hence, we can minimize the number of repeaters
by increasing the bit rate as much as possible, until we reach a dispersion-limited region. This is because
the repeater spacing penalty in increasing the bit rate is so small that the best way to decrease the number
of repeaters is to transmit at the maximum rate.

First the voltage source: If a voltage v(r) is in series with the resistor R, then a voltage v (f)/2 appears
across a matched termination, also with resistance R. The power in a bandwidth B Hz in the matched ter-
mination is the available power, and is equal to v%(s)/4R. Setting the expectation of this, or the average
power, equal to kT, B, we get the desired result.

Next the current source: If a current i (1) is in series with the resistance R, the current through a matched
termination with resistance R is also i (¢), and the instantaneous power in that termination in bandwidth 8
isi%(t)R. Setting this equal to kT, B , we get an available power of kT, B/R .
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5-13.

5-14.

5-15.
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®

5-16.

5-17.
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The wavelength from (5.31) is A = 0.05 meters, the gain is G = 10*, and thus the area is

2
A=5% _ 384 meters. (5.137)
4mm
Since this area is nd%/4 where d is the diameter, we get d = 1.9 meters.

The parameters staying constant are d, Ar, and Ag. Expressing the total loss in terms of these quantities,
we get
Py ArAr

—Fr— =TrTr 2422
The loss is minimum for the short wavelength end, which is the high frequency end. This is because the

antenna presents a larger effective crossection in relation to the wavelength at this end of the band. The
difference in loss is proportional to the square of the ratio of the frequencies, or in dB

2010g,0%g-3- =0.043dB. (5.139)

For all practical purposes the loss is independent of frequency.

(5.138)

Since from (5.28) we have
Pr
‘Yod =10 logio— (5.140)
Pg

increasing Pr by an order of magnitude adds an additional 10/y, to the repeater spacing. For example, if
Yo= 0.2 for a fiber system, we can add 50 km to the repeater spacing. As the spacing gets longer, this
increment in spacing will get less and less significant.

From (5.48),
d=x‘\/f_’_ (5.141)
Py

and increasing the transmitted power by an order of magnitude increases the repeater spacing by a factor of
about 3.1. Hence, the transmitted power plays a much bigger role in the repeater spacing or distance
between antennas than for transmission lines.

This loss corresponds to (5.48) for the case of perfect efficiency and unity antenna gains. Hence,

4rd,,'10°
Loss(dB) = 20log;o ’;:‘ (5.142)
where
c
= a0 (5.143)
Substituting for the constants, we get the result.
Equating the total noise power at the output of figure 542a. and b.,
kT,B + kT B + kT \BG = kTBG (5.144)
we get
T,
Ty=Ti+ o (5.145)

Note how the noise referenced to the input is decreased by the gain of the amplifier. Further note that the
noise temperatures add for two noise sources with no intermediate gain.
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5-18.

5-19.

5-20.
(@)

(®)
5-21.

5.22.

T,
The IF noise source can be referenced to the input to the RF amplifier with noise temperature E":_
: RF
Hence, the total noise referenced to the input has temperature
Tyr
Ti + Tgp + ——. (5.146)
Grr
Note that any noise in the IF amplifier is inherently less significant than noise introduced at the input or RF
amplifier.
The excess distance for the reflected path is approximately
2
—2‘—’;— = 1.66 meters (5.147)

and the excess delay (and hence the delay spread) is therefore about 5.5 nsec. The reciprocal of the delay
spread is 180 MHz, and assuming the narrowband model is valid over 1% of this bandwidth, that would be
1.8 MHz,

The spectrum will becomc asymmetric about the carrier, with more power concentrated at frequencies near
(@ +kv)

The spectrum will fill out in the middle and get smaller near (®, * kv), but still be close to symmetric
about the carrier frequency.

There are two oscillators, the worst case |f, — f41 <3 Hz. This means that each oscillator should not
deviate more than 1.5 Hz from the nominal frequency 1 MHz, implying 1.5 parts per million accuracy.

y(&) =Re[s(f)e/l>! +mmacnnly (5.148)
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Using (6.4), we can write

HGw)=G({w)B(w). (6.280)
Using the result of appendix 3-A, we can write the power spectrum of the received signal as
) 2 o?
Sk (@)= % |H (j) 125, (e/oT) = —"TA IG 0B ()17 =216 ()18 (j) (6.281)
Using appendix 2-A
. = =0T Siﬂ((!)Tn)
G(w)=e T—————mT n (6.282)
SO
i 2 W)
IG (jw)12= S0@rW) 6.283
() o2/a (6.283)

The power spectrum Sg (j @) is sketched below:
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o S2(0)
B(jw)
. lost sidelobes

A

The distortion is due to the loss of the sidelobes of G (j @) when it is multiplied by B (j ®).
From appendix 3-A, the transmit power spectrum for baseband PAM is

Ss(jw) = —;-laum)lzsA(ei“)

T; Olol<(1-o)r/T
2
rf,_.fr, =l x L3
= —i[l—sm[z(lml—?)” : (l-a)TSImIS(l+a)T,

0; lol >0 +o)r/T

(6.284)

from (6.25). Considering only positive @, the transmit power is

Rs©)=+ [ssioda

-anT Q +omT 2
=L [ re+d | Ticsinl Te-5)| do (6.285)
T 3 T a-aerd 2a T
1+a) 2
1 . | Qr T
=(1-0)+ —|1=sin| — -—)| dQ
qu)“[ [2“ 2‘*”
which is independent of T.

The minimum bandwidth pulse has bandwidth r/T radians/sec. or 1/2T Hz, where /T is the symbol rate.
The bandwidth of a pulse with 50% excess bandwidth is 1.5/2T in Hz. We require that

1.5
—
2T < 1500 (6.286)

which implies that the maximum symbol rate is -%: = 2000 symbols per second.

X, is white, Ry (k) = 8;, so Sx(e/“T) = 1. Further,

A =Xy ~Xiy. (6287)
Taking Z-transforms,
A@)=X@E)(1-2z). (6.288)
Define
H()= ;g; =1-71 (6.289)
SO
H(e/*T)=1-e7°T (6.290)

Hence
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6-5.

Sa(e/%T) =Sy (e/®T) IH (e7°T) 12
=11-¢7oT|2 (6.291)
=2 -2cos(wT).

The sketch is shown in the following figure.

SA(C’W-)

ava

(b) Here is a well-labeled, careful sketch:

Ss(jw)
4
T
A(I)
l =T
SA)= T (Xn—-Xn)g(t —mT)
= ¥ Xnglt-mT)~ 3 Xngt—-mT —T) (6294)

L m=——

= 3 Xnlg(t -mT)-g(t —mT =T)].

” = —-s

So
h@)=[g@)-g-T) (6.297)
and
H(o)=(1-e7T)G(jw). (6.298)
Note that H (jw) =0 for all ® =m2x/T, so the Nyquist criterion is not satisfied for any G (jw). Further-
more,
P(iw)=(1-e7T)G(jo)F (o) (6.299)
does not satisfy the Nyquist criterion for any G (j ) and F (j ) that are finite for all @. (It turns out that
ISI'can be eliminated using a receive filter that has infinite gain at DC, but this filter is not stable.)

The only zero excess-bandwidth pulse satisfying the Nyquist criterion is (6.16). But since the pulse falls
off as 1/t, the worst case transmitted symbol sequence will result in infinite intersymbol interference for
any sampling phase other than the ideal phase (where the intersymbol interference is zero).

Consider binary PAM signaling with a zero excess-bandwidth raised-cosine pulse shape, which is an ordi-
nary sinc pulse. We can show that if the timing phase is off from the ideal by any amount, the data cannot
be recovered. The pulse shape is given by

_ sin(rt/T)
o)== (6.300)

and the PAM signal by
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- - sin(%(r - mT))
R(t)= X Awpolt —-mT)= Y Apg——. (6.301)

" m== F-mD)

Sampling with exactly the correct timing phase, we get for any integer n
R(nT)=A, (6.302)

To see what happens if the timing phase is slightly off, we rewrite the signal using trigonometric properties
of the sine function,

R (t)——sm(——t) Z Am ~—QM—- (6.303)

ol -mT) ~
For any nonzero &, if we sample at ¢ =€ instead of ¢ = 0 we get

R(e)= —sm(—e) 3 A -éf%n% (6.304)

~m =
For small ¢ this is

n-
-mT ~

R(e)= eZAL—— Ao+ Y A, =07
"= m w0
This is far from the desired value A, and with the unfortunate outcome A,, = (— 1)™, the sample is not
even finite for any nonzero €. Since the interference from neighboring symbols may not even be finite for
any arbitrarily small error in the timing phase, the width of the eye is zero. Consequently, binary antipodal
excess bandwidth must be larger than zero.

Decreasing K also decreases the signal power so the SNR is unchanged. Furthermore, if we compensate by
transmitting more power from the transmitter, then arbitrarily large power is required from the transmitter
as K gets arbitrarily small. Arbitrary transmit power is not feasible.

(6.305)

T
E(1A 1 =Ry (O =5 [ Sa(e’*M)do=1, (6:306)
2r
Using the results of appendix 3-A, let the transmit signal be
Z()= T Awg(+O-KT) (6.307)
and
Sz @)= -;- IGG @)%, (efeT) =1, (6.308)
so the power spectrum in independent of T'.
From (6.35),
F (j ) =T rect(®, ©/T) . (6.309)
The pulse satisfies the Nyquist criterion.
From (6.41)
2
N -
=52 | | Trea@.nt) | do=N,. (6.310)

Also, p (1) satisfies the Nyquist criterion, which implies it is properly normalized,
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pO= 2 [PGaMa=1
2“ —

1
SNR-—N .

0

(e) The noise power can be gotten from (6.41),

. . 2
02=%-!‘N0|£%91| do

NO TZ 2 2
=2 - — =Np=.
uTl(T @og ) d0=No3
The SNR is therefore
3
SNR—?NO

which is better than in part b even though the receive filter bandwidth is greater!
6-8.
(@) Yes this pulse satisfies the Nyquist criterion. So doesRe{p (1) }.
(b) From appendix 3-A we get

7
SG@)=—1PGa)l

which is sketched below.
P(jo)
T
L R (0]
' 2r/T 47/T
() Let
X (j ) = T V2rect(w,x/2T)
and
D U
Y(j)=5-X(0)*X (o)
and note that

Pl)=Y(w-jnT).
In the time-domain, from appendix 2-A,
y() =)
and also from appendix 2-A,

r .
x()= —2'2—'—————8‘2(32/3,7‘) )

Hence

()= =T V2 sin(en2T) ’
P = 2 mnT |
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(6.311)

(6.312)

(6.313)

(6314)

(6.315)

(6.316)

6.317)

(6.318)

(6.319)

(6.320)

(6.321)
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®)

©
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6-11.

()

®)
©

6-12.

6-13.
6-14.
(a)

DIGITAL COMMUNICATION

The power of the received signal as a function of « is ngen by (6.285) multiplied by 62. The noise power
is the same thing multiplied by No. The SNR is therefore g2/N,, independent of ..

The receive filter is an ideal LPF

. L lol<n(l+a)T 6322
FG@)=1 ¢, otherwise : (6.322)
The noise power aftcr the receive filter is therefore No(1+a)/T. The signal power is given by
(6.285) multiplied by 6. The SNR is the ratio of the two, not a pretty sight.

This can be found using techniques similar to those in problem 6-2.

64 kb/s are required, so with binary antipodal signaling this is 64,000 symbols per second, so the minimum
bandwidth is 32 kHz.

64 kHz.
32kHz.
16 kHz.
The frequency response of the baseband equivalent channel is:
2Be(w)
[ ] L@
>
10 kHz

and the impulse response is a corresponding sinc function.

The answers are respectively 20 kb/s, 6667 b/s, 20 kb/s, and 40 kb/s. In the latter case, the receive filter
should be properly designed to meet the Nyquist criterion.

A reasonable transmit filter is g (¢) = 8(¢). There is no point in using a bandlimited transmit filter since the
channel will bandlimit the signal. Using this transmit filter, the receive filter should be an ideal lowpass
filter just like the baseband equivalent channel. This minimizes the noise that gets through to the slicer and
properly forms p (¢).

Since the passband channel is the same as a baseband channel, the only difference being the complex data
symbols, the criterion is the same. The required bandwidth is twice as great, since the spectrum is two-
sided, or in other words a bandwidth of 27/T is required for a symbol spacing of T. Although the
bandwidth is twice as great, the symbol rate referenced to real-valued symbols is also twice as great, so the
bandwidth efficiency is the same.

From appendix 2-A it is clear that H (j )X (j w) = Y (j ®) in either case.

From appendix 2-A, the Fourier transform of Re(z(t) ] is Z, (j ®) and the Fourier transform of jIm{z(¢))
is Z, (j ). Hence the Fourier transform of Im{ z(t) } is —jZ, (j ®). So we need to show that

H(jw)Z,(jw)=-jZ,(j w). 6.323)
Note that since z (¢) is analytic, Z(j @) = 0 for © <0 so

R 0.5Z(j w); ©>0
Z,(jo)=05[Z(¢w)+Z (—jw)] ={0.52‘(—jm); ©<0" (6.324)
Hence
H(0)Z,(jo)=-j05[Z(w)-Z(-j o)l ==jZ,(j ®), (6.325)

which is the desired result.
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®)

6-15.

6-16.

6-17.
@)
®)

6-18.
6-19.

We need to show that
-Z,(jo)=H (j0)[-/Z, G 0)]. (6:326)
This follows similarly.
Define
z()=H{)=H({ ) g=,. 6.327)
From the duality property in appendix 2-A
Z(jw)=2rh(—w). (6.328)
Note that Z(j @) = 0 for @ < 0, so z(¢) is analytic. From problem 6-14,
Im(2()) = - *Re(z()} 6329)
S0
Im(H(r)) = = *Re(H(i)). (6330)
Formally replace ¢t with © and the result follows.
Using appendix 2-A
DTFT[Re( z; )1 =2, (e/°T)=0.5[Z(e/*T) + Z*(e~*T)]. (6331
Hence

Z,(e/°T)H (e/°T) = 0.5Z (e/*T)H (¢/°T) + 0.5Z (e /T )H (¢/*T)
=—0.5jZ(e/“T) +0.5;Z"(¢™/*T) (6.332)
=—jZ,(e/*T).
The inverse discrete-time Fourier transform is Im{ z; } (from appendix 2-A).

This follows from problem 6-16 and the observation that the signal is bandlimited.

ki = 2g, sin(@  kT). (6.333)

This is the desired filter because using the discrete-time Fourier transform of sin(w.kT") from appendix 2-A
we get

=T
H(jo)= % [ G )3 -0-0,)- 80 -2+ w,)dQ
-~ (6334)
= L(G (/@) - G (i@ =Ty,
J
Use ROMs with N bit addresses, two outputs, each with 2 V3 bits,
- T
[ 8081t )ds = [sin(wt Jsina,1)ds
- o (6.335)

1
2

Under both set of assumptions, the integral evaluates to zero.

T
I[cos((mo — @)t )+ cos((wg + m,)t)] dt .
0
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Write the pulses from (6.149) as
o{t) = x sin((@, + wg)t)w(t)
4 J c d ( 6.3 36)
81(1) =t sin((@, — @ ))w ()
where
0y = “’0; @ (6:337)
is the peak deviation. Then
T 17 1 T
[eolt)g @)t =+ 3 {cos(Zmdt)dt to Jcos(2e, £)dt
0 A o (6.338)
= I(-o-‘—sm(Zde) .
The signals are orthogonal if and only if this is zero, which occurs if and only if
20,T =Kn (6.339)
for some integer K. The minimum (non-zero) frequency spacing therefore occurs when
20,T=xn (6.340)
or
T
O =75 . (6.341)
This is the frequency spacing (6.148) of MSK signals.
For MSK, the frequency separation should be @; —®; _; =%T, or f; — f; -1 = 12T =0.5 MHz. So the
desired frequencies are f, = 10.5 MHz, f,=11.0 MHz, etc.
From (6.152), using trigonometric identities,
X)= 3 [sin(u)ct + by %)cos(q)k) + cos(w, ¢ + b —%)sin(q),‘)} w(t —kT). (6.342)
Since sin(¢, ) = 0 this becomes, using more trigonometric identities
X(@)= Y |sin(o.t)cos(b, ;—t;,—) + cos(w, t)sin(b, %)] cos(d)w(t —kT) . (6.343)
From the symmetry of the cosine we get
T cos(
cos(by 2T) = cos( 2T) (6.344)
and from the anti-symmetry of the sine we get
cy WS R
sin(b, '2_7-‘-) = by sin( 2T) . (6.345)
from which the result follows.
Notice that b, _; — b, is always either zero or + 2 so if k is even then from (6.153)
b =r + K21 (6.346)
where K is an integer. Hence
Qi = c05(91) = Qi1 = c0s(P—1) - (6.347)

If k is odd then examining (6.153) we see that if ka = by_; then Iy =I,_;. Furthermore, if b, = —b;_; then
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O = ok (6.348)
and since k is off cos(¢y ) = —cos(¢,-1) and again I =1Ip_;.
(c) Write the first summation of (6.226)

cos(@.t) ¥ I sin(—g—.)[w (t —kT)-w(t kT -T)] (6.349)
keven
using the fact that for k even I; =/;,;. Then notice that for k even
in(-%-(¢ - kT)) = (~1)*Zsin(==
sin(o (¢ — KT = 1) sin(2r) (6.350)
S0
PR L R . _1yk72
sin(o) = sin(r (¢ 179) G Y i (6.351)
Hence the first summation of (6.226) is
cos(@.t) X i (-1)*%p (¢ —&T) . (6.352)
keven "

The second summation follows similarly.
6-23.  The real part of the output of the phase splitter is

—%—cos(a)cl) (6353)
while the imaginary part is
%sin(mct) . (6.354)

where we have used problem 6-13. The magnitude squared of the complex output is therefore A%2.

6-24.  Each of 128 subchannels (one per pulse) must carry a bit rate of 19,200/128 or 150 bits per second. Using
4-PSK, we can transmit 2 bits per symbol, so the symbol rate should be 75 symbols/second. Hence, T is
1/75 seconds or about 13msec.

6-25.

(@) This follows because the DTFT of a linear combination of pulses is the linear combination of the DTFT of
the pulses.

®)
N-1 .
G.(ejmr') - Egk(n)e—/uﬂ'k
k=0
N-1
= 3 el 2akiN g=joTLiN
k=0
N-t (6.355)
= 3 ehm -aTIN
k=0
1- ej(‘an -oT)
S ej@m-wlWN -

where we have used the given identity for the last equality. We can now factor out half-angle terms in the
numerator and denominator to get the required result.
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Observe that E[Z(¢)] has zero mean, since E [cos(@, ¢ + ©)] =0. To find its autocorrelation function, use
the trigonometric identity

cos(a)cos(b) =0.5cos(a — b) + 0.5cos(a +b) (6.356)
to get
Rz (1) = 2E[cos(@, (¢ + T) + B)cos(w,t + B)S (¢t +1)S K0
= E[cos(®,T) + cos{(®. (2 + 1) + 28)]Rs(T) 6.357)
= cos(, TIRs(7) .
We have used the easily shown fact that
E[cos(a,. (2t + 1) +26)] =0. (6.358)
The power spectrum is then given by
Sz(j0)=0.5[Ss( o, —jw)+Ss(-jo, —jw)] . (6.359)

For example, given the same complex-valued baseband power spectrum shown below,

Ss(jw)
PR,
the power spectrum of Z (¢) is shown below:

Sz(jw)
Dr T T~

-, 6 Wl’l G;c “"2 e
We can write
V2 .

X()=VIRe(Z() ) = - Z()+ Z°(@)] (6.360)

where
Z(@)=S@)e/ ™ *9 (6.361)

Showing that the expected value is independent of time is easy using

E[X (¢)] = V2Re( E[S (1)]E[e/ ™ * 9} . 6.362)

The second expectation is easily shown to be zero by directly computing it (the expectation is over 8,
which has a uniform p.d.f., so we simply need to integrate over [0,2x]). The autocorrelation can be written

EX ()X ()] = SEZOIZEIZZ DT OZEIZOZ ] (6363)
where the first term,

E[Z(¢)Z (¢2)] = EIS (¢1)S (t)]E[e/ @ @+ +20 (6.364)

can also easily be shown to be zero by directly computing the expectation over © of the complex exponen-
tial. The fourth term E[Z"(t,)Z"(¢2)] will similarly turn out to be zero. The second term is

E[Z(t)Z°(t2)] = EIS (1) (1))’ ™"~ . (6.365)

The exponential is now a deterministic function of ¢, — ¢, as is E[S (t1)§ *(¢5)], the autocorrelation of S (¢),
because S (¢) is WSS. The third term will similarly prove to be a function of £; — 15, s0 X (¢) is WSS.
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6-28.

6-29.

6-30.
@)

®)
©

()

We need to check the conditions of exercise 6-14 to see if they are satisfied. Since the Hilbert transform is
an all-pass filter, Sy(j @) = Sy (j @), and hence Ry(t) = Ry (1). Further, since

Sy (fw)=—jsgn(@)Syw) , (6.366)
we have that
Ry () =Ry (1) . (6367)

Since Syy (1) is imaginary-valued, it follows that Ry (— 1) = — AR”(T) is an odd function. Thus the condi-
tions for X (¢) to be WSS are satisfied. Letting S(¢1) =Y (¢) + j Y (¢), it follows from exercise 6-18 that

Rs(t) =2Ry (1) - 2j Ryy ()
= 2Ry (1) + 2j Ry () (6.368)
=2Ry (V) +2j Ry (%) .
Hence

45y(jw), ®20

The power spectrum of X (¢) is then given by (6.195).
The sketches are shown in figure 6-60. Define

sa(0)= g‘;[%@fﬂ] cos((n + W) X0) 6370)
Then
ho(t) =s1(t) + 55(c) 6.371)
hy(e) = 51(e) - s3(0) 6372)
ho(t) =52(1) + so(t) (6.373)
hy(t) =s2(¢) — 50(t) (6374)

The bandwidth efficiency is the same as that of the pulses in figure 6-38.

This is just a matter of multiplying it out.

Let H(w) = ‘\/?D(m).

If we choose M; =0 and M, = 2 in (6.199), we get the pulses with Fourier transforms shown in figure 6-61.
From this, we see that each pulse consists of three parts. Each part is a sinc pulse modulated by e~/2™T
form =0, 1, and 2, and scaled by a complex value that depends on n. Forn =0, 1, and 2, we can write
. L] n
_ sinc(m/T) [ I+ )
h, ()= T l+e

where sinc (x) = sin{x)/x.

The time domain pulses are not real. To use these pulses for orthogonal multipulse over a real channel, we
need to modulate them, forming the real-valued passband equivalent pulses

k. (t)=V2Re[ /™ h (1)} (6.376)

for some @, 2n/T. The bandwidth of such a signal is twice that of figure 6-38, or N/T Hz, making the
spectral efficiency of orthogonal multipulse

—ja( L+ B
te ""‘r*a’J , (6.375)
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Ho(j )
T
-
] > @
_2n 2 4n
T 0 T T
Hy(jw)
T
2
! > @
2n 2n
T 0 T
Hy(jw) ,
T _
2
4 — 0
2r 2r 4r
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Hy(j w)
T
5 -
+ f —> @
_2r 2n 4An
T T T

Figure 6-~60. The Fourier transform for the orthonormal pulses in problem 6-29. The value of
H,(jw) in the dashed regions of the @ axis is determined by the requirement for conjugate
symmetry, while the vaiue in the solid regions is determined by H(w).
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Figure 6-61. The Fourier transforms of three orthogonal multipulse pulses. Complex values
are plotted as magnitudes but labeled with the actual complex value.

‘N
v= l%;—f—)-ﬂog &) o3, (6.377)

With combined PAM and multipulse, instead of transmitting log,(3) bits per symbol we can transmit
log,(M ) on each of N simultaneously transmitted pulses, so

ve Nlog,(M)

= m =

This is equivalent to passband PAM with the same alphabet size, and since symbols can be complex, is

equivalent to baseband PAM and to PAM plus multipulse using figure 6-38. The pulses are not practical

because of the gradual rolloff of the sinc function, or equivalently, because of the abrupt transitions in the
frequency domain.

loga(M) . (6.378)
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7-1.  The conditions of the problem are satisfied if

1Y -S;12< 1Y -§; I (7.88)
and substituting for Y, this becomes
HE+8; -S;I2< UEUZ, (7.89)
Multiplying out the left side, we get
HEU2+d2 —2Re(<ES; - §;>} < IEN?, (7.90)
and dividing by di Jo
S;-S;
Re(<E,~Z V2%d;; . (7.91)
i
This is the result prorhised, since (S; - §;)/d; ; is a unit vector in the direction of (S; — §;).
7-2.
@
} > ¢
0 T 2T
®)
BE:
t —* ¢
0 T 2r U
7-3.
@
pr(—k)= [ R @R +kT)dt = | h(u)h"(u ~ kT)du., (192)
where the change of variables u = ¢ + kT has been made.
®)

Si(ei®Ty = Zk:p,:(k )e VT = zk;ph'( ~k)e 1T =§,(e/T) (1.93)
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71-4.

7-5.

(€Y

®)

7-7.

(€))

®)

Dividing the folded spectrum Z-transform into positive and negative time,

- 0
5@ =Y pk&):*+ T putk)z™ —p,0). (71.94)
k=0 k==
The second summation can be written
i pu(- k)2t = i pak)zt =Sy . (12°). (7.95)
k=0 k=0

~ K K
ou()= [ T fuholt ~mT) T £k (¢ ~nT = KT)ds
—ae gy =) n=0

(7.96)

K -
=°'32.fn|fm—k-
m=0

K
oi=a3 3 Ifi!?. (797
k=0

The receiver can consider three received symbols at a time. The detection of these symbols goes as fol-
lows: For each of 16 possibilities, generate the corresponding set of three tertiary symbols by table lookup.
Calculate the Euclidean distance between u, and these three symbols, in three-dimensional Euclidean
space. Choose the four bits corresponding to the minimum Euclidean distance.

For this case, S, (z) = 62, and hence we get that A2 = 62,G,(z) = 1. The criterion of (7.61) becomes

0 y ¢ -
min Iwg 124 3 lwy —a, 12+ w13 . 7.98
{ap, 1<k <K} gz‘- * Z':x BT k-§+x (7.98)

Clearly, the first and third sums do not affect the minimization, and the middle sum is equivalent to figure
7-10.

Xe M, must be of the form

X
x(t)=Y x,h(t —kT) (1.99)
k=1
which has energy
IX12= Y ¥ xx'eall k). (7.100)
k=1i=1
If x(¢) is input to the filter, the discrete-time output will be
K
Wy =X X8 3 = Y Xm8hk-m » (7.101)
m=1
which has energy
- K , S k& . .
Z 1 zxmgh)—m 1= E z me Xn 8k k—m 8h k—n
k=1 m=l k=1 m=] a=1
X K - " X x (1.102)
= E zxm Xa E 8h k-m Bhk—n = Z Exm Xy Paln—m).
m=] na=l k=1 m=1n=1

Using the property of the projection that Y - Y, is orthogonal to the subspace M, ,
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Y-X;=Y-Y,+Y; -X; (7.103)

and Y - Y}, is orthogonal to Y, — X;, since the later is a vector in M,. Hence,
MY -X; 1I2=11Y =Y, 12+ 1Y, =X, lI2 (7.104)

and since Y — Y, 1% is a constant it cannot affect the minimization.
This signal is orthogonal to M, and hence the sampled matched filter response to it will be zero.
Since
Y-X;=Y-Y,+Y,-X;, (7.105)

and further the filter response to Y ~ Y, is zero, the response to Y — X; is the same as the response to
Y, —X;. The latter input is a vector in M, , and hence

Y, - X; uz=h§;l Iwy g —wig 12, (7.106)

If the known input signal corresponds to data symbol sequence a;, the output is a;. * g, . The minimum-
distance receiver calculates the distance between this and w; , the response f the filter to y(¢).

The allpass filter has transfer function

H gipuss(z) = _‘dz_, , ldi<1, (1.107)
The precursor equalizer filter is
(mend oo .108)
and the channel model filter is
47 (7.109)

Q-czW1-4dz7Y) °

The zero location of the upper-path filter is outside the unit circle, since it is maximum-phase. In order to
cancel this zero, the pole of the allpass filter would have to be outside the unit circle, which would make it
anti-causal.

The filter transfer function can be expanded in partial fractions as
a b
+

1-cz7!  1-dz7! (7.110)
which has impulse response
acku, +bd*u, (7.111)
where
cd -1 Id12-d?
= = —, d12
@="c=d b d-c (7.112)
The precursor equalizer filter is
d -z
- 113
(1-¢"2)1-dz7™) (1.113)
and the channel-model filter is
I g® -1
(l-cz)d -2 )' (7.114)

1-d:!

The pole location of the precursor equalizer filter is outside the unit circle, since it is maximum-phase. In
order to cancel this pole, the zero of the allpass filter would have to' be outside the unit circle, which is
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acceptable because the allpass filter is then causal. The precursor equalizer filter then has transfer function

z—l

et (7.115)

which is causal, and the channel-model filter transfer functionis¢®—z~!.
The filter transfer function can be expanded in partial fractions as
2d' —(cd’ + Dz 422
Ag

7.11
1- dz-l ( 6)
which has impulse response
Add d uy — (cd” + 1)d* upy + cd* 2y, . (7.117)
The impulse response is FIR,
C‘Sg -8k_, . (7.118)
If the data symbols have magnitude unity, then the minimum distance between them is d gy = V2.,
dmin is 0, times the minimum distance between data symbols, and hence ‘ffc,. .
d2. =0} + 0}, dyn=20, (7.119)
The distance is
d2= 15,12 + lg;12 + 200Re{ 67 ) . (7.120)

Clearly we want to make the third term as large negative as we can. Since the € can be have a phase that is
any multiple of nt/4, clearly the third term is minimized if €, and €, are antipodal; that is, they have opposite
phase. Also, the € can have magnitude either V2 or 2. Thus, there are three cases to consider:

d%, =4+4-2022 (7.121)
di, =4+2-20:\22 (7.122)
dl, =2+2-2aV2\2 (7.123)
It is easy to verify that the third case is always the smallest for all 0 < a < 1, and hence
duin=2V1-0a . (7.124)

Note that the minimum distance goes to zero as a— 1.
Let us bound the energy of s(¢) in the interval (KT, ),

- (& N 2
Jrsz(t)dt= ‘[r Y 3 Aunho(t —KT)| dr
k=0 n=l

K-1 N -

<Y T AL [ bX-kDdi (7.125)
k=0 n=l KT
K-1 N

< A2, —%
Z A T ity

N
If the data symbols are drawn from a finite constellation, we can assume that 3" A2, is bounded, say by
n=]
K-
C,. The remaining sum, ¥ 1/KT - kT)? is also bounded, since the series is convergent, say by C,.
=0

Hence, the energy outside [0,KT] is bounded by a constant aC C,, independent of K, and the fraction of
the energy outside {KT, o<} goes to zero since the energy of s(¢) is increasing with K.
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8-1.
(@) Writing itas
VRf@)e' ™ =)+ if0) . (8210)
since the analytic bandpass filter impulse response is analytic, the imaginary part £, (r) must be the Hilbert
transform of the real part f,(¢).
®)
fa()=Re{V2f (1)e/™" } = 2Re(f (¢) Jcos(a, t) - V2 Im{ £ (1) }sin(c, 1) (8:211)
fa@)=Im(¥2£ (1)’ } =V2Re(f (1) }sin(@, 1) + V2 Im( £ (r) Jcos(cw, 1) (8212)
©)
Var(Mg (1)) =No [ fXe)dt , Var(M;()) =No [ fX)dt , (8213)
EMz(M @] =Nq [ fo@)f () dr . (8214)

(d) Since f,(t) and f,(z) have the same energy, the real and imaginary parts of M (t) have equal variance,
equal to No [ fXt)dr. The energy of f.(¢) and £, (¢) are equal since the Hilbert transform is a phase only
(allpass) ﬁlt;ing. We need to relate the energy in f,(t) to the energy in f (¢). This follows easily from the

relationship
2f 1f )2t = [ fA0dr + [ fH)ar (8.215)
and since the two terms on the right side are equal, we get the power of the complex noise
EMEN =EMANDI=62, E[IM ()1} =25 (8216)
where
n No T .
01=Noi If (1)12dt =Et—-ilF(;m)lzdm ) (8217)

This establishes that samples of the real and imaginary parts of the complex noise have equal variance. We
can also easily show that they are uncorrelated, and hence independent, since a function and its Hilbert
transform are orthogonal. The latter fact follows directly from Parseval’s relation,

[fa)fayat = i'ln"j 1F,(j )13 sgnw)do =0 (8.218)

since the integrand is an odd function of frequency.



CHAPTER 8: SOLUTIONS TO PROBLEMS 45

(¢) Since the real and imaginary parts of Z(t) are obviously just linear combinations of the real and imaginary

8-3.

8-4.

8-5.

8-6.

parts of M (¢r), they are also jointly Gaussian. We know that

EMY)=E[M")]=0, 8.219)
and thus
E[Re{Z¢)NI=EM@m{Z()}]=0, (8.220)
E[Re(Z(:) ) Im{Z())1=0 . (8221)
Considering just one case,
Re(Z(t) )=V [ MXg)e ~7220 L 2IM )12+ (M" (£))%e +i2‘“] 8222)
and the result follows immediately since the expectation of the first and third terms is zero. Similarly,
Re(Z()Im(Z()) = 5= (MA@e 7 - (M" O 1) 8223)

which immediately has zero expected value. The statistics of Z(¢) are identical to those of M (¢), and the
demodulator has no effect on the statistics of one sample of the noise.

0(2)=0.027 02%(2) =0.00073 (8.224)
The second is much smaller.
Q&) =3.35x10"° 0%4) =1.12x107° (8.225)
The approximation in (8.62) is clearly valid for these cases.

The first probability is Q (¥2/0.5) which is roughly 2.6x1073, The second probability is Q (2/0.5) which is
roughly 3.4x107%, two orders of magnitude lower!

The probability of error for the four innermost points (which have probability 1/4) is

1-(1-2Q(dR0))1 - 20 (d120)) =4Q (d126) - 4Q0%Xd 120) . (8.226)

The probability of error for the eight intermediate points (which have probability 1/2) is
1-(1-20(dR20)X1 - Q (d120)) = 30 (d/20) - 20*(d/20) . (8.227)

‘The probability of error for the eight intermediate points (which have probability 1/2) is
1-(1-Q(dnRc)X1-Q(drac))=20(drs)-Q%dRa). (8.228)

The result follows by adding these weighted by their probabilities.
Given the transmit power limitation we set

E(l1A1Y]=c?=1. (8.229)
The received pulse has Fourier transform
PGo)=GC(w)Be(jo)Fjw)=KG(jw), (8.230)
where B (jw) =1 and F (j @) = Krect(w,2r/T). The baseband equivalent discrete-time channel is
; K & , 2x
P(e’N=T T G(@-Fm)=K. (8:231)
We should select K = 1. Then the signal component at the slicer has power 67 = 1, and
o2= INYT . (8.232)
The SNR at the slicer is
2
c,
SNR=—A _ L (8.233)
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Now the probability of error is
T T
30 (—=) -2.25Q? .
Q(Z‘@To) Q(NSN—O) (8234)

A suitable coder works as follows. Take one bit; if it is a one, transmit one of the inner points depending
on the next bit. If it is a zero, transmit one of the outer points depending on the next two bits. An example
bit mapping (which is a Gray code) is given in the following figure.

001 410 000
° ? o

010 #11 o1l
o] o]

Let C denote a correct decision and E a signal error. Then

Pr{C linner]= (1 - 2Q (b26)X1 - Q (b/20)) (8.235)
which implies that
Pr{symbol error | inner ] = 3Q (b126) — 20 Xb 120) . (8.236)
Also
Pr(C louter] = (1 - Q (b/20))* (8.237)
which implies that
Pr{symbol error louter] = 2Q (b126) — Q*(b 126) . (8.238)
Combining,
Pr{symbol error] = A[3Q (b 20) — 2Q%(b 126)] + (20 (b20) —~ Qb 20)]
5 3., (8.239)
The power is
2 12
E[A%4])= %["7] +‘/z[d2+ ‘i ]
(8.240)
3.
= 2 d
Prsymbol error] = -;—Q (SNR3) - —;-Qz(‘JSNR 73). (8.241)
If 10l0g;(SNR ) = 10 then SNR =10 so
Pr{symbol error] = %Q (1073) - %Q 21083) =0.10. (8.242)
The approximations are respectively,
Pr{symbol error] = %Q (VSNR 3) Pr{symbol error] = Q0 (VSNR3) . (8.243)

The values when SNR = 10dB are 0.10 and 0.041 respectively.
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The decision regions are bounded by the planes formed by pairs of axes.

The probability of emror is
Pr(symbol error] = 1 - (1 — Q (d20))™ . (8.244)
Since the distance between symbolsisd = a V2,
Pr{E;1=Q(alc\2) (8245)
SO
Pr{symbol error] = Pr{symbol emror |4, = a;] < (M - 1)Q (a/cV2) (8.246)

There are 4 symbols at distance d = 2c, 4 symbols at distance d =2¥2c, 2 symbols at distance d = 4c, 4
symbols at distance d = 2¥5¢, and 1 symbol at distance d =4¥2¢, so from the union bound

Pr{symbol emror 14, = ¢ + jc]1 <40 (c/0) + 40 (V2c I6) + 20 (2¢ /o)
+40 (V5c10) + Q 2V2¢ 10) (8247)
=4Q(c/o).
There are 2 symbols at distance d = 2, 2 symbols at distance d = 5,2 symbols at distance d = 2V2, 4 sym-

bols at distance d = V17, 2 symbols at distance d = 2V5, 1 symbol at distance d = 4V2, and 2 symbol at dis-
tance d = ‘5’_7-, so from the union bound

Pr{symbol error14; = 1+ j] <20 (1/6) + 20 (¥5/26) + 20 (V2/0) + 40 (V17120)
+20 (¥5/0) + 0 (2¥2/0) + 20 (37120) (8.248)
=20 (1/0).
The noise components in the directions of the nearest neighbors are not orthogonal, and hence not indepen-
dent.

The average power in the 16-QAM constellation is 10c2 and in the V.29 constellation it is 13.5, so
¢ =Y135=1.16. The approximate probabilities of error are 40 (1.16/0) for 16-QAM and 20 (1/0) for
V.29, so assuming the SNR is high enough that the constant multipliérs are not important, 16-QAM is
about 1.3 dB better. There are good reasons, nonetheless, for using the V.29 constellation. In particular, it
is less sensitive to phase jitter.

Taking a second pulse of the form of (8.113),

N-1
g)= }:oyk h.(t —mT.), (8249)
then the inner product of A (¢) and g(¢) is
- N
[ hO8' @b =0 T 5uys. (8250)

Considering {x,,,0<m <N-1) and (x,,0<m <N-1} as vectors x and y in N -dimensional Euclidean
space, then the pulses £ (10 and g (t) will be orthogonal when Euclidean vectors x and y are orthogonal.
The number of pulses specified in this fashion that can be mutually orthogonal is N = 2BT", the dimen-
sionality of the Euclidean space.
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For every zero in H (z) at location z = ¢, if H (z) is to be allpass, we must have a pole at location z = 1/c*,
as shown in Section 2.5.3. Since FIR filters can only have poles at z =0 or z = o, an allpass FIR can only
have zeros at z =eoor z =0. A filter with L 20 poles at z =0 and L zeros at z = oo has impulse response
8¢ _r. If L <O, then the poles are at z = oo and the zeros are at z = 0.

The received signal isr(¢)=+h () + J (1), and the matched filter output is a random variable

U= Ir(t)h(t)dt 3 (524501 - (8251)

i=l

The signal component of U is Z S.2 and the noise component is Z S:J:.

i=1 i=1
The mean-value of the signal is 6Z. The variance of the noise conditioned on knowledge of the signal is,
since the J; are independent,

N
Y SPVar(J;} . (8:252)
i=1
The variance of the noise is the expected value of this conditional variance, which is
G2E,
z E(S3Var(J;] = -ﬁ z Var(J;} = . (8.253)
=1 i=l
The SNR is therefore
2 2
Oi Ok
SNR = =N-—. 8.254
ORE;IN E, ®254)

The processing gain is therefore N independent of how the jammer distributes its energy.

For the passband channel of figure 8-6b the complex-baseband channel has bandwidth B /2, and hence the
dimensionality of the signal subspace in time T is BT . The received vector C is now complex-valued, and
the noise vector is complex-valued where the components are independent, have independent real and ima-
ginary parts, each with variance 62=N, (by circular symmetry of the noise). We can think of C as an
N =2BT dimeasional real-valued vector with independent noise components. The signal power constraint
now applies directly to the resulting 2BT -dimensional real-valued signal vector

Elgl IS.12]=E[2"l;lRe(S. J2+Im(S, }1=TP;s. (8.255)
This establishes the equivalence of the baseband and passband cases.
From (8.137),
B logx(1 + SNR;) = Bylogl1 + SNR») , (8.256)
or at high SNR,
SNR%' = SNR%* . 8.257)

Taking, the logarithm, we can express the SNRs in dB, as
B
10-log,oSNR, = -B—?--lO-logloS'NRg. (8.258)
1

Thus, for high SNR, to get the same channel capacity in half the bandwidth, the SNR (in dB) must be dou-
bled, meaning that the SNR (not in dB) must be squared.

We have M = 2, and assuming the signal constellation is +1, 63 = 1 and @, =2, and Y, = 1. The spectral
efficiency is v = (log, 2)/BT = 1/BT , and hence

yes = ——— = _ = .pT. QBT _1). (8.259)

2 1og,2=0.46. Thus, the SNR gap to capacity is asymptotically

Asymptotically, as BT — oo, Y55 — 3
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increased by — 10-log;0.46 = 3.35 dB.

Assume that the threshold used in the slicer is halfway between the two signal levels, or (I'g + I')/2. Using
the results of problem 3-19, for one case the mean is I'g and the threshold is (I'g + I'1)/2. For the other case,
the mean is I, and the threshold is the same. Hence,

21-.0 T+ )2 21—-1 Te+ )2 ComTor2
1 -T2 -h-
P, < A{ Tor Fx] e + %[ Tot n] e . (8.260)
For example, when I'g = 0 we can’t make an error when zero is transmitted, and
2
P, < %[%] . (8.261)

Assuming 20 photons per bit, and interpreting the optical power as the optical power for a received one-bit,
the power is

20-hv-10*=2.610"1° Watts, (8.262)
or -66 dBmW. The average optical power, assuming equally likely zero and one-bits, would be 3 dB
lower.

Assuming that N (¢) is the thermal noise voltage across the resistor, which is white with power spectrum
No=24T,R, and letting T = 10~ be one symbol interval, the variance of the noise at the output of an ideal
integrator will be

T
E[[[N@N@dtdtl=N,T . (8263)
0

This is numerically 8-107% volt®-sec®. Similarly, the signal output of the integrator is the total charge per
bit times the resistance, or RgN .

If, for a received one-bit, the average current in the resistor is i, the power is i%R , and we set this 100 times

as big as the noise power in bandwidth B, or

4kT.RB
=

where P is the optical power and r = 1.21 is the responsivity. Thus, we get the optical power as

4kT,B-100
P= \/ ———=3310" (8265)
1212R

or 45 dBmW. This power is 21 dB higher than for part a.

Let the number of photons in one bit time be N, and the average number of photons be N. The optical
power is equal to Nh v times the bit rate (10%), or N = 2500.

Similarly, the signal output of the integrator is the total charge per bit times the resistance, or RgN , and the
variance of this signal is R2g%Var{N } =R%q?N, which evaluates to 6.4-10"> volt>~sec?. Note that the
thermal noise variance at the output of the integrator is 11 dB larger than the signal variance, and even
though the error rate is very low, the thermal noise is still the dominant noise source. Of course in practice
both of the noise variances, as well as the signal level, would be much larger due to the preamplifier, but
this would not change the relative levels.

iR =@P)R = 100 (8.264)

As in problem 8-18, the signal power is

P%2=10 T.B (8.266)
- r’rR ’

which evaluates to P =10~ Watts, where r =121 is the responsivity of the photodetector. This
corresponds to -49.8 dBmW power. Let N be a random variable equal to the number of photons arriving
during one bit time. Then the average number of photons per bit is
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where T = 107 is the baud interval. Now, at the output of the integrate and dump, the signal is shot noise
with a random multiplier and with pulse shape

R, 0<t<T
h(;):{q (= (8.268)

N=

=790.6, (8.267)

0, otherwise

and constant arrival rate N/T. The mean of the signal is the convolution of 4 () with the arrival rate, times
t_i% average avalanche multiplier, or GgRN. The variance of the signal is the convolution with h%(t) times
G4 or

G%q®RN =FgG*q’R’N (8.269)
— 1
Fo=kG+(2—-G=)(l-k), k=0.03. (8.270)
Finally, the thermal noise variance at the output of the integrator is NoT' = 2kT,RT . The SNR is then
(GgRN Y
SNR = =
FgG*q®R>N + 2kT,RT ®.271)

which evaluates to 19.5 (12.9 dB) at G =1, and peaks at 317.6 (25 dB) at G = 13. If we change 1o
k =0.97, the peak SNR is at only G =4, and is 123.5 (20.9 dB).

The maximum advantage due to avalanche gain is 12.1 dB for k = 0.03.

At the sampler the desired si amplitude is + 2AB =+ 2V10004? while the undesired common term
amplitude is B2+ A2=10014% The power of the common term is 24dB stronger.

The probability of error for QOK if the received power is P when a "one" bit is transmitted is

P, =05e" 8.272)
from (8.162). For homodyne it is bounded by
P, <05e% (8.273)

from (8.178), which is at least 3 dB better (half the received power for the same performance).
For large a, a Poisson random variable with parameter a can be approximated as a Gaussian random vari-
able with mean a and variance a (see Section 3.4). The input to the slicer therefore can be written

Q =+2ABT +N 8.274)

where each N is a zero mean Gaussian random variable with variance A. Assuming large B, A=B’T.
Then an error occurs with probability
Prierror] = Q (ABTNA) = 0 (2AT )

8.275
<e -24'T e~ WM ( )

where the inequality follows from the Chemoff bound (3.43).
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Since p < 14, the ML detector selects d =0if y =0andd =1if y = 1. Thatis, it choosesd =y.
An error occurs every time the channel flips a bit, which occurs with probability p.
The posterior probabilities ace
(1-p)q: =0
p(l-q) d=1
Pq; éd=0

11d)p,s (@)=

leA( a)PA( ) {(l-p)(l-q); d=1

Using the numbers supplied we see that the MAP detector always selects 4 =0. An error occurs whenever
a =1 is ransmitted, which occurs with probability 1 — ¢ =0.1. This is lower than the probability of error
in part b, which is p =0.2.

The MAP detector will maximize the probability pyi4 (yla)p4 (a), which is given in the following table:

Pria(01d)ps(d) ={
9.176)

a |y | priaQyla)pa(a)
111] d-pXl-9)
110 p(l-q)
011 pq
010 (1-p)y

If we observe y =0, then we will choose d =0 if (1-p)g >p(1—g),orq >p. If we observe y =1 we
will choose d =1 if (1 -pX1 —¢q) >pq,or ¢ <1-p. Hence we must divide the ¢ axis into three regions
as shown below:

[ { 1 1 —> g

For very small ¢, the prior probability of @ =0 is small, so the MAP detector always chooses d = 1. Simi-
larly, for large ¢ it always chooses 4 = 0. In the mid-range of ¢, the MAP detector makes the same deci-
sion as the ML detector.

The MAP detector will always selectd =0ifg >1-p.
The MAP detector maximizes

Py 18)p8) = (1 - p)¥ ~VENpVEIp(5) ©.177)
Ta.kgng. the logarithm of this expression and discarding the constant term, the MAP detector equivalently
minimizes

W(&y) log [ liﬂ] —logp. () . ©.178)
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The values for fy (y1X)px () are shown below for each possible £ as a function of the observation y .
fix)

[
xd

LI ) |
THRESHOLD THRESHOLD

The decision regions are determined by three thresholds, the middle of which is zero. The other two can be
found by finding the observation at which the receiver is indifferent between a decision +3 and a decision
+1. That is the point y satisfying

ly —312-26%n(0.1) = ly - 112 - 267%In(0.4) . 9.179)
Solving this yields
y =2+ %do’In(4). (9.180)

The thresholds are therefore at + (2 + %062%In(4)). If 6 = 0.25 the thresholds are at +2.17, so an observation
of 2.1 yields a decision X = 1.

Using techniques similar to those in problem 9-3, the final answer is
Xi+xy o’ m[ Px(xz)} .

2 x1—x2 | px(xy) ©-181)
§; = [1,0.0], sz = [0.1,0]. SS = [0.0.1] . (9.182)
s; = [100], s, = [010], s5 = [001] . 9.183)
Pr{ error Is; transmitted ] < 30 (V2/20) (9.184)
Pr{ error |s; transmitted 1 < 30 (2.0) (9.185)
Note that in both cases Pr{ error Is; transmitted ] is independent of i, so
Pr{ error ] <30 (V2120) (9.186)
Prlemor1€30Q2p). 9.187)
The likelihood to be maximized is
L=fx.  x1xn ", xn16)
=[ " 12“:] Ne-x.'mé:e—xﬁz&‘ .. e-&.‘m‘s"

from independence. This can be rewritten

N
1 e Y25
L= = € .

Taking the derivative with respect to G we get
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_a_L_= 1 e - a2 1 24 e 4 _N
86' [&‘,—2—1‘] 4 [a(xl xNz) & ,

which is zero only when
2
a X1+ o 4+ X
2= (x %) .
N
Thus, the ML estimator for the variance is the average of the squares of the observations.

By symmetry, we can condition the probability of error on any of the signals transmitted, and the result will
be the same as the un-conditioned error probability. Hence assume that (1,1) is transmitted, in which case
the error probability is

P, = Pr(Ny> 1) + Pr(N,> 1} — Pr(N,> IN,> 1) =2Q(%)—Q2(-(l?). 9.188)

By symmetry, is clear that the error probability is the same whether (000000) or (111111) is transmitted,
and similarly for (111000) or (000111). If (000000) is transmitted, a detection error occurs whenever two
out of the first three bits are in error, or two out of the last three bits, or both. If there is one channel error,
no detection error is ever made, and this occurs with probability (1 — p)S. If there are two channel errors, if
one is in the first three bits and the other is in the second three bits, no error is made, and this occurs with
probability (3p(1 - p)?)2 However, if both errors are in the first three or second three bits, there is an
error. If there are three channel errors, there must always be two errors in either the first three or the
second three bits, and there is therefore always a detection error. Similarly, four or more channel errors
will always result in a detection error. Thus,

P, =1-[1-p)*+6p(1-p)+Bp(1-p))]. (9.189)
It is easy to verify that when (111000) is transmitted, the error probability is the same.
Since the minimum Hamming distance is three, the approximate error probability is
P, =20(1p)=203%1-p)+p?]. (9.190)
When p = 0.1, the error probability evaluates to P, = 0.05522 and the approximation is 0.056.

In this case, L = 1 and Ilh1i%=1.25, so the threshold test can be implemented as a slicer, and the system
can be simplified as shown in figure 9-27.

The probability of error of the discrete-time matched filter detector can be found using the techniques of
Section 7.2. Using the vector model, there are two possible transmit vectors in problem 9-9, s; = [1,0.5]
and s, = [0,0]. The probability of error is

P, =0(dne)=0(12510). 9.191)
If s, and s, are equally likely, the ML receiver is the MAP receiver, and this is the minimum probability of

k=1 SUCER
L X 7
58y + 8ty : f -
MATCHED SELECTd =1
FILTER IF INPUT > 1.252

Figure 9-27. A representation of the receiver where the threshold test is represented as a
slicer.
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€rror.

The only difference from problem 9-9 is that the matched filter has causal impulse response

hys = 0.18g - 0.58*..1 + 81:_2 (9.192)
and the output is sampled at k =2. The equivalent slicer threshold is at 1.26/2.
The probability of error is
V1.26
Q[ 2 | (9.193)
The receiver is shown below:
2 15
0 0
k=1
Y 0 \ SELECT | 4,
- 1 %8g + 8,:_1 % —t"
LARGEST
MATCHED 2 15
FILTER f f -

The receiver selects d = +1 if 2 — 1.5 >0 and 2g — 1.5 > —2¢g — 1.5, where ¢ is the sampled output of the
matched filter. These conditions together are ¢ >0.75. Similarly, the receiver selects d=-1 is
g <—0.75, and selects 4 = 0 otherwise. Hence the slicer thresholds are at + 0.75 as expected.

We have
S510)=0 s$t)=h() (9.194)
1§, 12=0 US12=p,(0) . 9.195)
Defining
K1=0, Ky=1[Y@)e7™ " (n)dr11 , (9.196)
the ML detector chooses S if
K _p® K
10(;2‘—) =I0)=1 > e 71.,(—&2—‘-) . ©9.197)
Taking the logarithm of both sides will not change the inequality, so we get equivalendy
Ky pu(0)
Inlo(—) < . 9.198
of p: ) Py ( )

In view of the monotonicity of In/ (), the ML detector compares K , to some threshold v, where that thres-
hold depends on the SNR. The receiver is the same as a passband PAM coherent receiver, consisting of a
demodulator, matched filter, and sampler. The difference is that instead of comparing the complex-valued
slicer input to the transmitted data symbols, we only evaluate the magnitude of this input (distance from the
origin) and compare in effect to the magnitude of the data symbols.

The data symbols must all have distinct radii in the signal constellation. Thus, for example, PSK would not
work, but the ASK of this problem will work.
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9-13.

When signal one is transmitted,
Ky=1<ZS8>1 , 9.199)
where of course S, = H, the PAM pulse shape. The error probability in this case is
Pr{error|$, transmitted} = Pr{K, > v} . (9.200)
Similarly when signal two is transmitted,
Ko= 178,112+ <Z S| (9.201)
and the probability of error is
Pr{error | S, transmitted} = Pr(K,<v} . 9.202)

The get the overall probability of error we sum these two probabilities weighted by the prior probabilities
of the two signals.

With respect to the signal, an isolated pulse before sampling has Fourier transform H (j 0)F *(j @), and
hence after sampling the discrete-time Fourier transform is

%EH(i(m+m%))F.(i(®+m%))- 9:203)

Note that the impulse response of the equivalent discrete-time channel is equivalent to the sampled isolated
pulse response. Similarly, for the noise, after demodulation the noise has power spectrum Sy (@ + @, ), and
at the output of the matched filter, before sampling, 25y (@ + @) |F (jw) 2. After sampling, the spectrum
is

%gs,,(mmc +m2—;)m(,'(m+m3r’i))12. (9204)

The discrete-time isolated pulse has Fourier transform

lH(i((o+m~21—1,t))I2

) " (9.205)
m Sn(@+a, + m?)

~ |-

and the discrete-time noise has a power spectrum which is the same formula multiplied by two.

When .;N(m) =N, the isolated pulse response is S,(e/“T)/INy and the noise power spectrum is
25,(e’™")IN¢. If we scale the signal size by N, the noise spectrum is scaled by N¢, and we get the same
answer as in the text.

Doing a factorization of the folded spectrum,

Sa(2) =A,,2-G )G (/2% (9.206)
for some constant A2. Assume that the received pulse is of the form
h(¢)= ¥ hng(t—mT) (9.207)

m =

for some pulse g (¢) for which g(¢) and g (¢t — mT') are mutually orthogonal for m # 0 (for example, "sinc"
pulses in the case of zero excess bandwidth). Then,

pu()= | 3 hng(t—mT) 3 h'g'(C - IT —KT) (9.208)
1E

—o g = —oe

and after minor manipulation,

or ) =p©) T bkt . (9.209)

m =0

Taking the Z-transform, we get
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S:()=p, (OH)H 1I2°). (9210)
Comparing (9.206) and (9.210), we conclude that
K
H(@z)= G(z 9.211
@) 0, @) @) (9211)
will suffice, or b, = g, within a constant.
The conditional probability density is
N o, )™
p(x,---xylsl-'-s~)=ne'°“-(——%- (9.212)
k=1 Xy
and hence the log-likelihood function is
N
—logp (xy -~ xy sy -~ s§) = Y, (05 — xelogeosy +logex,!) . 9.213)

k=1

The last term is independent of the signal, as is the x;log, a term, so the simplified branch metric is
(o — xlogesy).

The log-likelihood function is given by the following table, where the last column specifies the branch
metric:

Priylx} —logPr{ylx)
1-p —log(1-p)
—log(p)

—— D O™
N~ ON = Of<

The ML detector can operate independently on each observation. It will perform a threshold test with the
threshold set at 0.5. The decision is X, = {1,1,1,0}.

The outputs associated with each transition are shown in figure 9-17. We can find the transition weights by
just subtracting those outputs from the observations and squaring. The result is shown in the following
figure.

0.36 0.81 1.69 0.09

Performing the Viterbi algorithm, the surviving paths and their path metrics after each observation are
shown in the following figure.
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9-17.
(a)

®)

©

032

037
101
041

045
The decision is £, = {0,1,1,0), which is different from the decision in part (a). The knowledge of the ISI is
useful.

The probability of error in the comparable system free of ISI is Q (1/2¢”), where 6" is the noise in this sys-
tem. The two systems have the same probability of error when

‘11.25 1
26 20" 0214)

or ¢’ = 0.8944¢. This implies that ¢’ is about 1 dB smaller than o, so the system with ISI has about 1 dB
more noise margin than the system without ISI.

In example 9-25, S; takes on the values 0.0, 0.5, 1.0 and 1.5 with equal probability. So its power is
E[15,1%]=0.8750. (9215)
The power in the modified system in part (a) is

E[1S13]=05. (9.216)
SoletK = ‘\/ -0—37—5-0— =1.32.

The probability of error in the new normalized system is

0(1.3212¢") ©217)
which will be the same as the probability of error in the ISI system when

132 V125

20 2 0218)

or ¢’ = 1.1830. The new normalized system has about 1.46 dB better noise margin than the system with
ISL
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(@) The shift register model and state transition diagram are shown in the following figure:

@)

®)

Xy =As

¥

r

1 A

-1

)

Apa

|

N,

Xk - O.SX,_; +0. 1X¢_2

(b) The trellis is shown in the following figure:

(0,0.0)
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@
0.25 O 0 0.29
: 0.34
0.25 1.69
O 0.98 0.74
243
0.30
0.83
-0 242
c\/><;j 3.19
\// T
O]
d?>=d2+d?+d?=126
d,=10
9-19.
(@) The state is (€;_,€;-2), and the branch metric is
€, + g1€e1 + 8282217 (9219)
The trellis diagram, not labeled with the branch metrics, is shown below:
(-1-1):
(-1,0)
LD
©.-1)
0.0)
©.1)
(1-1)
(1.0

(L1)
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(b) A finite set of error events which do not pass through the same state or its negative twice is
shown below:

(c) Shown below are the single-error error event, and another error event corresponding to two symbol errors:

The shorter path has path metric (distance-squared) (1 + g 2 + g#) while the longer path has metric
1+(1+8)+ (g, + 807+ 82 9220)
and hence will have a_smaller metric if g, =1 and g,= — g;. For example, if g;=1and g,= -1, the
minimum distance is V2.
9-20.
The metric in this case is (e + d€;_; + d€x_p)%, and the trellis diagram is pictured in figure 9-28. A set of

five paths guaranteed to include the minimum distance path is pictured in figure 9-29. The path metrics for
these paths are:

Path1: 1+(1+d)?+4d?+d? Path2: 1+(1+d)?+ (1 —2d)*+d? (9.221)

1,1

Figure 9-28. Trellis diagram for a four-state ISl channel.
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9-21.

Figure 9-29. A set of candidate minimum-distance paths for the trellis of figure 9-28.

Path3: 1+d2+d? Pathd: 1+(1 —d)*+d? Path5: 1+(1—-d)*+1+4d*>+d? 9.222)

The metric for paths 1 and 2 are always bigger than path 3, and similarly the metric for path 5 is always
bigger than path 4. When 0 <d < 14, the path 3 metric is smaller than path 4. Thus, the answer is

) {l+2d2,05ds%

8min =1 14424 (1-d)?, o<d <1 0223)
The trellis diagram and the two error events at a minimum distance ¥2 are shown in figure 9-30. As in
example 9-38, there is an infinite set of error eveats at this minimum distance, where the only difference is
that each error event corresponds to a sequence of alternating data symbols. The error probability esti-
mates are the same. The intuitive explanation is that the output of the channel is zero during sequences of
alternating data symbols. It is therefore difficult to distinguish the two sequences of alternating symbols
which are the complement of each other.

Figure 9-30. A trellis diagram and two comresponding events at the minimum distance of V2.
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The logarithm of the moment generation functioa is, from (3.137),
¥ v) =)+ lm)[e‘f‘*’ - 1] d 9:224)
and hence the Chemov bound is
< cxp{ Y(f at) + Aaadle” ) = 114+ Olt) + Aaade ™ - 1)) dt}. 9.225)
By the method of variations, we substitute f + eAf for f, differentiate w.r.t. €, set € =0, and set the result
to zero. The result is
log(Ao(t) + Aaed) — logAe(r) + Agud)
fE0)= — . 9.226)
which says that we correlate the shot noise against the logarithm of the known intensity.
Substituting into the Chernov bound from b., we get
E,+E
exp{j M)+ Raas) *al0) + At ~ —5—= ’} (9:227)
where E; is the energy corresponding to the intensity,
E; = [(u(0) + M) d. (9228)
First equate the two representations of f 1(t), (9.116) and (9.48),
fi0)= EFu V()= z—i“—¢,(:) 9.229)
i=1 l
Now form the inner product of both sides with ¢, (),
T
> Fuy !w(t)cb..(t)dt > ’f {@(z)%(:)dr (9.230)
k=1 i=l G;
and applying (9.118) we get
.T[',,
EFu Vim == (9.231)
Finally, substituting (9.231) into (9.46),
Sy
i=1 :
'2 ZFUz Vei= ZFU:E ~ i (9:232)
.-1 Oi k=1 i=1 O,
= Ef 1k Uk .

k=1
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10-2.

10-3.

10-4.
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®)

The trellis and three error eveats are sketched below:
€281 €p—1.€¢
1,1

1.0
1-1
0,1
0,0
1-1
-1,1
-1,0
-1,~1

The error event with the dark lines is the one requested in (b), and the two events in light lines are those
requested in (c). (The answer to (c) is not unique.)

Let J be the order of the FIR filter G, (z). We will show that the inequality (10.27) is strict for every error
event. To do this, we need to show that at least one of the terms thrown away (in 2 2) is non-zero, for any
error event. Assume L is the length of a given error event (g, #0 and &, =0 for k > L), and consider the
m =J+L term,

L
IY €egnsews1?=1e,8,,12>0. (10.187)
k=1

Thus, the inequality is strict for each and every error event, which implies that it is strict for the minimum-
distance error event.

Since
IHI2=(1~-cz"X1-¢"2), (10.188)

the coefficient of 2% is 1 + |12 independent of whether the channel is minimum-phase or maximum-phase.
For Icl < 1, the geometric mean is clearly unity, since (10.188) is in the form of 2 minimum-phase spectral
factorization. When ¢t > 1, we can write (10.188) in the form

HI1?2= 11?1 - ()2 YA - c72), (10.189)
and thus the geometric mean is |c12.

(-czh

=A< IHI2>, =AX1+ Icl? (10.190)
from problem 10-3.
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When ¢ =0 there is no noise enhancement. As Icl — 1 the noise enhancement approaches 3 dB. For
lcl > 1 the noise enhancement gets even larger because the channel transfer function gets smaller.

The maximum-phase case will not arise in practice, because the channel impulse response would be both
IIR and anticausal.

For the minimum-phase case, multiply the transfer function by V1 - 1¢12 to normalize it, and thus
1+ Ici?
=At———.
R B Pl
For the maximum-phase case, the normalization constant can be determined by

s zr (10.191)

1
H - ___Z___ - -k _k+1 .
@)=- ooy "¢ Eo Tz (10.192)

and the energy is 1/(1c12— 1) so that the normalization constant becomes Vic 12— 1, and

lel2+1
leli2-1"

The solution is quite different from problem 10-4, since the noise enhancement approaches infinity as
tcl — 1 and goes away as 1c| gets large. This is to be expected, since as icl — 1 the channel transfer
function on the unit circle goes to zero at all frequencies except the pole location, and as lc| gets large the
channel approaches a negative unit delay, which is easily equalized without noise enhancement by a unit
delay.

eler=Ar (10.193)

From problem 10-3, the geometric mean is unity and hence €3mzr=A4.2 No precursor equalizer is
required, and the postcursor equalizer is
-1
H@)-1=—%—. (10.194)
l-cz

From problem 10-3, the geometric mean is | ¢ 12, and hence &g zr = A 21c12. Writing H in monic form,

-1
H@E)=— (10.195)
1-¢c72
wegetr =1, Ho= —c™!, and H,, = 1/(1 — ¢ 'z). The precursor equalizer is
(el
C@E@)= —c‘—l——(?_,—’— (10.196)
- Z

and the postcursor equalizer is E(z) - 1= - (c*) 'z

In the maximum-phase case the precursor equalizer is IIR and anticausal, and hence not practical to imple-
ment. However, the MSE gets smaller because the equalizer utilizes the large delayed sample for decision
making. The MSE of the LE-ZF is always larger than the LE-ZF, by a factor of 1 + fc12 for I¢cl <1 and
by a factor of (1 + Ic1?)/1c1? for Icl > 1. This difference is largest (about 3 dB) in the region of lcl =1.

In the minimum-phase case the normalization constant is V1 — I¢12, and

3 Al (10.197)
€ =— .
DFEZF = T3
In the maximum-phase case the normalization constant is Vic 12— 1 and
fcl?
Bz =Ad—— (10.198)
lcl*-1

As for the LE-ZF, the MSE blows up as the pole approaches the unit circle. The DFE-ZF can tolerate
zeros on the unit circle, but not poles. Likewise, the noise enhancement goes away as lc! — oo because
the equalizer bases its decision on the larger delayed sample, which is asymptotically unity in the normal-
ized case.
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10-8. The formula for the MSE follow readily. The spectral factorization of (10.81) approaches, as Sz — 0,

Sy - SuHH®
Sy = (Ho1?A2G, G H o puxH miH max
A,z - lHo'zcz

G’ -—)G.Hmy;u‘

and finally
1 Hupu
CE > Ho Ho Gy
which is the DFE-ZF precursor equalizer.
10-9.
(@) When the excess bandwidth is less than 200%, we get the following picture:
] —jact
u C(e/“TP) = H' (j0)C1(e/*T)
LPF —] HAY A 1 J——,, -
B =D J0 e D
Y@ 3T Al e L= iT 2
)
e it
Cy(e’ %) = H® (j 0)C(e’*T)
IJ’F | —~— T H |  —— ]
= =] j02T3y == el
YO — R 3pr CTTN I T kT O
10-10. The picture is as follows:
e-—jm.l
% | LPF X
=3 ~ ey b,
o wr [ Lkt % t=kT O

The output is

O = i ConX 2k -

» =

10-11. Given a baseband transmit spectrum Sy, the transmit power constraint of (10.114) is
Py
"'2"‘= 'F|‘<Sx >A.F ’
where S, =L — Sy/IH12 for f € F,and hence we get a relation for L,
Pg 2
T-‘: ‘Fl'(L - <SN,|H| >A.F) -

Substituting this into (10.112), if the integral is restricted to f € F,

(10.199)
(10.200)
(10.201)

(10.202)

(10.203)

(10.204)

(10.205)

(10.206)
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L

2°1F = <14 Sy \HIUSy > r =
XN TG T Syl HI2 > ¢
_ P2 IFL+ <SylIHP >, f (10.207)
- <Sn/IH12>g ¢ )
Finally,

Ps12-IFl + <Sy/IHI?>,

C = IFl-logy| == N AF (10209)

<SN”H|2 >G.F

The pulse at the output of the receive filter has Fourier transform TG (j2xf )H (j2nf )F (j2rf ) and the
noise has power spectrum T-Sy(i2nf)|F(j2nf)1%. After sampling, the isolated pulse has Fourier
transform

H(e/™T)= ¥G(j2r(f +mT)H(2n(f +m/T)F G2(f +mIT)), (10210)
and the noise has power spectium
Sy(e’T) =3 Sy(j20(f +mT)IF (j2n(f +m/T)1?, (10211)

The capacity is given by (10.119) with these values of H (¢/2*T) and Sy (¢/>¥T).
For this case, F = G"H", and thus

H(e™T)= E; IGG2r(f +mMNI*IHG2r(f +mTHI, (10212)

and
SN(ef”fT)=}:SN(iZn(f +mHIGG2r(f +mTNI2HG2r( +mTH12. (10213)

Note that when the noise is white, H (e/2¥7) and Sy(e/>¥T) have the same shape; that is, they are equal
within a multiplicative constant Ng. Thus,

Sn(@>T) N
IH(e/™T)12 ™ |H(e/T)| °

(10214)

First, the discrete-time system has to be able to generate the water-pouring spectrum. A sufficient condi-
tion for this is the following: If F is the water-pouring band, which must be symmetric about f =0, then
the sampling rate is twice |F /2, or I/T > IFl, and the transmit filter is ideally bandlimited to half the
sampling rate and non-zero over this bandwidth. (This is not a necessary condition, because if F is a "gen-
eralized Nyquist interval” with respect to sampling rate 1/T, then the water-pouring spectrum can be gen-
erated by an appropriate transmit filter. A generalized Nyquist interval has the property that for each
IfI <172T, f +mIT € F for precisely one value of m.) Second, the receive filter must prevent aliasing
and allow all frequencies within the water-pouring band to pass. A sufficient condition for this is that it be
an ideal LPF bandlimited to 1/2T Hz. (Again this is not a necessary condition. If the water-pouring band is
a generalized Nyquist interval with respect to sampling rate 1/T then the receive filter that is ideally
bandlimited to this water-pouring band will do.)

For this case, if the transmit filter and sampling rate meet the criteria of (c), then the receive filter will
automatically be OK. The fact that the receive filter is not flat within the generalized Nyquist interval will
not be a problem, since this transfer function can always be reversed with an equalizer filter in a reversible
fashion.

The precursor equalizer is a reversible operation, and thus will not affect the capacity.
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10-13. For the baseband case, we get Sy =N and H =1, and thus from (10.120), Sx =L — N,. From the power
constraint, Ps = (L — No)/T or Sy = PsT. Substituting into (10.119),

C= ﬁ loga(1 + PsTINg) =B -logll + Ps[2NoB), (10.215)

since in this case the sampling rate is 1/T =28.
In the passband case, we have Sy = 2N and H = 1, and thus from (10.124) Sy =2L — N4, and the power
constraint of (10.122) becomes Ps = (2L — 2No)/T. Substituting into (10.123),

- %-logz(l +PsT2Ng)=Blogy (1 + Ps 2NB) (10216)

since the sampling rate is 1/T = B in this case.
10-14.

(a) At the output of the channel, the noise spectrum is Sz and hence the total noise power is |Fl- <§z >, .
If the channel input signal has power spectrum Sx. confined to water-pouring band F, then the total signal
power at the channel output is |FI- <S8y IH12>4 p. This is easily related back to the transmit signal
power P through the water-pouring specu'um sinceforf € F,

Sy |HI2= IHI’(TI?I-+ <SNH1*>4 )-S5z, (10217)

and from this the channel-output SNR is
IFI- <8y 1HI?2>, ¢

SNR o =
lFl'(Sz >A F

’ (10.218)

) <IHI*?>, ¢

= <IHI12>, ((PsIIFl + <S§z/IHI*>, gy ———— -1
<SZ >A.F
®

SNR oo+ 1) <8z D4 pl < VHI12>, p — <Sz/IHI?>

SNRm,,:( ot 1) <S8z >4r AF Z AF (10219)

2Bl < SHIHI2 > ¢ — <SzIIHI2>, ¢

10-15. We require that < |G12>>, = PsT/c2. The effect of the transmit filter is to change the channel from H to
GH , and hence the MSE at the output of the DFE-ZF to
<SzIH12>¢
<IGI1?>g

Usmg the geometric mean inequality <IGI?>g< <IG12>,=PsTlc], we get
€2re.7r 2 < S7/IHI2>502/PsT with equality if and only if G = VP5 T/cy.
10-16. We have that < S, >, =7 and constraint <S4 1G12>, =PsT
(a) Expliciting calculating the MSE,

edmzr= <Sz/IGHI2>; = (10.220)

<SzIHI2>G <S4 >

<SINGH12>; = <85,871S4 \GI2IHI12>5 =
z G ATz ¢ <Su1G12>;

(10.221)
<S8, >¢

PsT
Thus, the MSE is bounded below by a quantity that can be achieved when S, |G 12 is a constant, namely
VPsT

> <SZ/HI2>-

(b) egFE_u:= <SZ/IH|2>G <SA >G/PST‘
(¢) Since <§, >; < <S8, >, = 63, we get that, when the transmit filter is optimized,
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PsT °
The right side of (10.222) is the MSE for the white symbol case, established in problem 10-15.

edrezr S <Sz/IHI*>g- (10.222)

10-17. The derivation for the error probability assumed Gaussian noise at the slicer. For the DFE-MSE, the slicer
error includes residual ISI, and hence is not Gaussian. It would be surprising to find the SNR gap to capa-
city shrunk by the presence of ISI, so it is likely that if the effect of ISI at the slicer were taken into account
we would find ISI to be beneficial.

CHAPTER 11: SOLUTIONS TO PROBLEMS
11-1. For a predictor with coefficient vector f, the error is given by
E[E 1 =E[IR,~r, 17
= E[IR 12]-2Re(f" "E [Ryx™*P+f" "E [ryr, If (11.166)
=g — 2Re(f" ‘o) + 1 ‘0f
where
0=E [R,r™] = [¢,62...0.1 (11.167)
O=E[r"r, 1, (11.168)
the same as before, by wide-sense stationarity. The solution is the same as the the equalizer, with the new
definition of o..
11-2.  The orthogonality principle of (11.26) implies that
0=E[E,r"]
=E[(A - c'ri)r"] (11.169)
=o-Pc
where the last equality follows since ¢’ry is a scaler and therefore
Elc 1)) =Er™r 1c. (11.170)
11-3.

E(E;r;1=E Ry — fope T2)r]
=ER,r;] - Elrire Mon
=0—Pfg,
=0.

11.171)
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11-4.
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This follows from the definition of matrix multiplication since the i,j element of ® is $ij =~
As L —oo,
Zq,j__‘-v‘. =ij R —-o-o<j <oo, (11.172)
FE S
Since this is a convolution sum, the Fourier Transform gives:
S(e/®)V(ei®=AV(e/?) (11.173)
Either V(e/®) =0 or A=5(e/®). Since S (e’®) is single valued, A = S (e/®) can occur at only one @y since

A is a constant. Hence V(e/®) will be zero at other 0. V(e/®)=8(w—wy) will be an eigenvector, or
v; = /™ (a complex exponential).

As L —o the eigenvalues are by this argument the values of the function S (e/®).

Taking the Fourier transform of the autocorrelation function ¢, the power spectrum is
S(e/™) =T a'te i
k

2

= la 11.174
(1-0e/*)(1-0e™®) (11.174)
S
1-2acos(@)+a?
Assume 0 < a < 1. Then the minimum of the power spectrum is at cos(®) = -1, and
1-a
A= o (11.177)
Similarly the maximum is at cos(®) = +1, and
1+0
Ao - (11.178)
For N = 2, the autocorrelation matrix is
| la
d>-[a1] (11.179)
and setting the determinant of AT — & equal to zero, we get eigenvalues A; = 1-a and A, = 140
As N —oo we get that
%2
lmtx [ 1+a
e~ | 1o (11.180)
and for N =2,
( b
Ao _| 1 (11.181)
Ain | 10
For a=1 these values are the same.
As N —o0,
1-o2
=— 11.182
Boe 1+o? ( )

and the dominant mode of convergence is proportional to
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% x

Troz| - (11.183)
As a—1, the input samples become perfectly correlated and the convergence of the MSEG algorithm
slows.
The error vector is given by (11.32),

q,-=[l—ﬂ¢]iqo
=5[1- m,] viv'de

i=l

= Z‘Yi.ivi

i=l

(11.184)

where

Yij = [1 - Bl.-] "vi'ao (11.187)

e component of the error in the direction of each eigenvector v; is ¥; Jz, and decreases exponentially as
1- Bl, . The component of the initial error in the direction of v; is v;" “qo. the component of the initial
error in the direction of v;.

From problem 11-6,
(74 r (74
QG Vi=2Y%ivVi i=V (11.188)
i=0
or

E(E3 -E[E,?] = il.- [q,’ 'V.-] 2=§7~m24

i=l

j 2 (11.189)
n 2j ™
=Y\ (I—BA&] [V.‘ ‘Io]
i=t
2
which decreases exponentially with n modes as [l—ﬁk;] !
Assume the dominant mode is i ,A;,v;. From problem 11-7, the excess MSE for this mode is
QBN (viqo?, | (11.191)
and taking 10log, ¢ of this we get
-it (11.192)
where
1 = 101ogyo (A (v 40 (11.193)
Y=—20log;o(1-BA;) (11.194)

Note that the excess MSE measured in dB decreases linearly with time. Hence the speed of convergence is
often measured in dB/sec. or some equivalent units.

() From figure 11-4, when B is small the dominant mode comresponds t0 Ay, so that
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11-9.

11-10.
(@)

®

11-11.
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®)

11-12.
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®)

71 = 1010g;0(v; “qo)* + 1010810Amia
Y2 = —2010g;0(1-PArin)

_ ~20%og, (1-PAwi) (11.195)
log,.(10)
_ 20
log, (10)
As B increases, the speed of convergence increases in direct proportion.
The MSE is
E[Y, -V, P=E[Ys-aY;4-bF (11.199)
and setting the derivative w.r.t. a and & to zero,
0=¢;—a¢o—bp=p-apn-b. (11.200)

Solving for @ and b we get the stated results.

Doing a partial fraction expansion, we get

o(z)= 2 [ LI “] (11.201)

1-?2| -z z-a
and expanding each term, the first corresponding to positive time and the second to negative, we get
A ___w
= ot . 11.202
¢k 1- az ( 0; )

Putting Y, thru a filter (1 — oz™!) results in a white signal. This filter is in the form of a predictor, and hence
is the optimal predictor of infinite order. Hence the optimal predictor of any order one or higher has all-
zero tap coefficients except for | = .

From (11.38), we know that
Q1= XA = Bk v q)) vi. (11.203)
i=1
Using this result and the assumption that the eigenvectors are orthonormal, we can prove the stated result

by induction.
We force the error to zero after N iterations by choosing

p,.=-;7, 1<j <N. (11.204)

The product term then always contains a term 1 - B;A, =0 for every i.
Note: The problem should state that R, is a real-valued and zero-mean process.

E[03]=(1-a)f:a’01=02. (11.205)
j=0

A key fact is that when X is a Gaussian zero-mean random variable, E [X>] = 0 and E [X*] = 3¢*, which
can be derived from the moment-generating function (Section 3.1). Then calculating the variance,

Var{o?] = E[(c?)’] - (¢7)°. (11.206)
The first term can be calculated directly,
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(1-0)? Y ¥ " ERZ R
m=0 n=0
- - - - (11.207)
=(1-0? ¥ ®ERLL+ Y T o)~ ¥ a""(o’)zl
m=0 m=0 x=0 m=0
where the third term subtracts off terms that were included twice in the first and second terms. Using the
result for the fourth moment, we get

1-a
l1+a
where this variance approaches zero as oo — 1 and 20* as o — 0. It is of course desirable to have an o

near unity because of the long time constant, since this results in a lot of averaging. The price we pay is a
long convergence time, or poor tracking capability.

Var[o?] = 2¢6*

(11.208)

11-13. In figure 10-18c, let the samples at the LPF output be R, so that this implies that

11-14.
@

®)
©)

11-15.

N
Or= Y CuRruwm Er=Ar—Qs (11.209)
m=>—N
For simplicity, doing the real-valued case,
d
——E2=2E;Ry; . (11.210)
3c,- .
Then analogous to (11.54),
[cinlj = [cal; —BE:R % - (11211

For each increment of k, the delay line storing R, shifts two positions.

& is replaced by (@ + o), and it is simple to verify that the eigenvalues of this matrix are (A; +0°), with
the same eigenvectors.

The new eigenvalue spread is (Apag + 62)/ (Ao + 67, which is smaller than before.
From exercise 11-7,

N
@+oD)'= 2_‘1 ~ 102V.-V.-" 11212
and hence
—1 N 02 £Y4
(c-07'a)= ‘_,_‘,1 m(w a)v; (11.213)
and the excess MSE is
v al?

N

-0 ')"dc-0 ) =c"Y —5-
EZnorod

which is the same result as problem 11-15. For small o the increase in MSE is approximately proportional

to (6/A;)? for the i -th mode.

Adding p licli®to (11.8),

(11.214)

E[E,?] = E[14, 12]-2Refc” “oJ+¢’ ‘(@+ul) c. (11.215)
Hence the solution is the same as before with @ replaced by (®+l), or
¢y = (@+uh)'a. (11.216)

The eigenvalues of (d+ul) are v; and the eigenvalues (A;+4) , where v; and A; are the eigenvectors and
eigenvalues of ®. The eigenvectors and eigenvalues of (O+uI)~! are v; and 1/(A;+1) and hence
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11-16.
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-1 _ 174
(O+ud) Z_‘; ,ﬁ Pl (11.217)
and
€ Cope = Z;‘( 1‘ iy Lyvva (11218)
The excess mse is given by (11.42),
E[EXT)] - EIEAM ain = T A (c=cop0” ViP= ThIE L 2 0P (11.219)
i=1 i=1
The excess mse of the ith mode increases as
2
7\. +u) (11.220)
which has derivative
P 2 A
au(Mu) RS (11221)

and since this derivative is zero at p = 0, the excess mse increases very slowly with pt.

Vp licli2=2uc (11.222)
so that the gradient algorithm is
Civ1 = (1-Pu)c; +Pa—2c;) (11.223)

The eigenvalues of (O—uI) are (A;+), 0 replace A, by (ApiHt) and Ay, by (Ame+t) . The algorithm is
stable if

2

O<f< . 224
gy 29
Bope = T (11.225)

P Dt hemart 2 ‘

The eigenvalue spread is now
;‘-nnx‘*'u lmu

= 11.2

Mia . Pt (11229

which can be reduced dramatically by u>0 when Ay, is very small.

They apply to the speed of convergence of the average trajectory and the asymptotic excess mse caused by
the algorithms converging to ¢y rather than ¢, The second term in (11.226) biases the solution in the
direction of keeping the coefﬁcxems small. The SG algorithm corresponding to minimizing (11.226) is

cre1=(1 - Bu)ce + B Eeps . (11.227)

where p =0 corresponds to the previous algorithm without leakage (11.53). The operation of this algo-
rithm is evident, since the coefficient vector is multiplied by a constant slightly less than unity at each step
before adding in the correction term. When the corrections are small, as when the coefficient vector is
wandering in the direction of a eigenvector corresponding to a small eigenvalue, this leakage decreases the
size of the vector over time.
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11-17. The lowest frequency in the passband signal is
1800 — 1200-1.1 =480 Hz (11.228)
and the highest frequency is
1800 + 1200-1.1=3120 Hz. (11.229)

(a) The baseband case is shown below:

CARRIER |
RECOVERY

7200 Hz
8pF PHASE

SPLITTER

480-3120 Hz

7200 Hz

2400 Hz

The BPF rejects all frequencies other than the signal bandwidth. The sampling rate at the front end of 7200
Hz is greater than twice the highest frequency of the passband signal. Following demodulation, a sampling
rate of 4800 Hz would be adequate since the highest signal frequency is 1320 Hz; however, it is not con-
venient to decimate by a factor of two-thirds (perhaps a 96004800 decimation would be more appropriate,
but this does not meet the specifications of the problem statement): The fractionally spaced equalizer can
generate a signal at the slicer input at the symbol rate, a decimation factor of three.

(b) The passband case is shown below:

CARRIER
RECOVERY
i |
7200 He 7200 Hz
8PF PHASE -
IN — 1 EQUALIZER £ Ay
4803120 Hz SPUITTER
2400 Hz

N

—X)

You might expect that the equalizer output had t0 be sampled at 7200 Hz also, but after demodulation a
rate of 2400 is adequate. Since demodulation followed by decimation is equivalent to decimation followed

by demodulation, in fact the equalizer output can be decimated to the symbol rate.
(c) This case is shown below:
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7200 Hz

OSCILLATOR

BPF
4803120 Hz

PHASE
SPLITTER

BPF
IN
4803120 Hz

7200 Hz

EQUALIZER

7200 Hz

AN

CARRIER
RECOVERY

—

75

2400 Hz

This case is similar, except for the reasoning. The equalizer input could again have a sampling rate of
4800, although this is not convenient. The 2400 Hz sampling rate at equalizer output is adequate for the
same reason as in the baseband case (no funny business as in the passband case).

The passband equalizer case seems superior since the sampling rates are the same, but only one complex
multiply for demodulation is required rather than two.

11-18. The block diagram is shown below:

=l

CARRIER | _
RECOVERY |
7
7200 Hz
2400 Hz
PHASE PRECURSOR :< c
SPUTTER EQUALIZER ye

4N

Ny
|

POSTCURSOF

EQUALIZER

The postcursor equalizer and carrier recovery circuits work in the non-rotated domain along with the slicer.
The slicer error is used directly in the postcursor equalizer and is rotated before being input to the precursor
equalizer. :
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The relation between input and output is

R
y(:):x—gl-—z%jx(u)e * du (12.122)

where 1= 2RC is the time constant of the circuit. The first term in (12.122) represents the desired data sig-
nal attenuated by the voltage divider. The second term represents an undesirable ISI, consisting of an
exponentially weighted average into the past.

The output ISI becomes

T & —Gk-m)TH
Y Y Ame (12.123)

sz

We get 2 maximum ISI of %_lin— times the maximum data symbol.

We get
%:21:0.01 =0.0628 (12.124)

p=e0%%2-0939, (12.125)
‘The maximum ISI is therefore 0.97 times the maximum data symbol. While this worst-case is very
unlikely, nevertheless this situation is unacceptable!
Performing a similar integral to exercise 12-1, we get this time
@*-2x3+2x-1) (12.126)
B

forx =e 2. Letting B=.033, we get an intersymbol interference of 2.6x107%, much smaller than for the
biphase case.

If an equalized pulse has Fourier transform G (j @), then since the transmitted biphase pulse has zero area,
so must the equalized pulse, and G (0) = 0. In order for the equalized pulse to satisfy the Nyquist criterion,
we must have G (j2r/T) # 0 in order for the folded spectrum to be constant. This implies that the pulse
bandwidth must be at least as great as the symbol rate 2rt/T, or a minimum of 100% excess bandwidth.

The bandwidth of the equalized pulse is less than 3/T, and it is easily verified that two aliases will fold
over into the frequency band [0,7/T] in the folded spectrum. Thus, we must have that

GG+ 2y +G o)+ G-y az12)
is a constant over the band [0,n/T ].
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12-6.

The minimum bandwidth pulse has bandwidth 2r/T. We can find a zero-area Nyquist pulse with this
bandwidth by starting with the pulse

h(t)= sinc(%’f—z) (12.128)

which has bandwidth 2n/T and satisfies the Nyquist criterion since it has zero crossings at multiples of T'/2,
but has non-zero area. Then we note that

8O =hO-h( - ) (12129)

will have the same bandwidth, will also satisfy the Nyquist criterion (zero crossings at multiples of T'), and
has zero area. Hence this pulse meets all the requirements. In fact, the pulse that meets the requirements is
unique, so this is it.

Yes, since they have a zero at d.c., the only way the folded spectrum can be constant is if the pulse has
energy at the symbol rate 27/T .

Assume the same pulse shape in both cases, the signal power is the same in both cases, and that we transmit
levels 1 for binary antipodal and 0,p for the twinned binary code. First we find the p for which the aver-
age power is tho same. For both codes, since the pulses are orthogonal, the average power is proportional
to E{A2]. For the antipodal code this value is unity regardless of p. For the twinned binary code, assum-
ing for the moment thatp =1,
E[AA1=E[(B: —Bi-1)}]

=EBA+E(BX]-2E(B)E(B:) (12.130)

=p+p-2p*=2p(1-p).
For arbitrary p we must multiply this quantity by p2. Setting the powers equal, we get

p?= 1
2p(1-p) -

For the binary antipodal code the noise must be unity in magnitude to cause in error, and for the twinned
binary code it must be p/2. Thus, the relative immunity expressed in dB is

20l0gio(5) = ~ 1010gio(p (1 ~=p)) = 9. (12.132)

(12.131)

When p = % the immunity becomes -3 dB, implying that the antipodal code is better by 3 dB.

The twinned binary code has better immunity when p is near zero or unity, because in this case a large
number of data symbols are zero and the level spacing can be large for a given average power. In particu-
lar, it is better when

10logi1o(p(1 -p)) < -9 (12.133)

orp <.148 or p > .853.

Using binary antipodal signaling with the pulse shape shown below will result in the same transmitted sig-
nal as with a twinned binary code with an RZ transmitted pulse:

g()

1

'S
-~

2r
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The receiver structure shown below will work, where the binary slicer (decision level at zero) output
assumes the values *1:

+ BINARY
Iy SLICER

;bk

The signal values in the absence of noise at the slicer input assume the values +%, and hence are the same
distance apart as for the temary slicer in figure 12-3. Hence, the SNR will be the same. Note that we do
not have to normalize signal powers since the transmitted signal is ideatically the same in both cases.

The twinned binary and AMI codes can be represeated by trellis diagrams as shown in figure 12-21. Note
that for twinned binary, if we observe a, =0, then the decoded output b, depends on the previous state,
and hence the decoder is not memoryless. For AMI, an observation of a, =0 uniquely specifies that
b, =0, and observations a; = +1 uniquely specify b; = 1, independent of the past state. Hence, in AMI the
decoder is memoryless.

For twinned binary, at the shcer O, =B; — B;_; + N;,. The minimum distance is V2, and the probability of
error is approximately 40 ( V2/26). Without the VA, the received levels are O (probability %) and +1 (pro-
bability ¥). The error probability is thus

=Llo Loy Log®y=39L
Po= 50+ 70(5)+ 320(5)=50() - (12.134)

This analysis ignores the error propagation, which results since the 0 level will be observed for b,_; = b,
for either b, =0 or b, =1. Hence the actual error probability, taking into account this error propagation,
will be slightly worse. Thus, the VA is at least 3 dB better at high SNR.

Comparing the trellis diagrams in figure 12-21a and figure 12-21b, with respect to the observation a; they
are identical. Thus, the minimum distance is the same and the VA will perform the same in twinned binary
and AMI. However, the error probability is slightly different for AMI without the VA because there is no
error propagation. Thus, the error probability is the same as that calculated in problem 10-7, and in this
case it is exact.

A bipolar violation consists of two "+" or two "-" symbols in a row with any number of intervening "0"
symbols.

‘We can count the number of bipolar violations, and the error rate should be proportional to this.

When a single temary slicing error is made the number of bit errors and bipolar violations that result are
listed in the following table:

By_ [0,0] By By {0,0] B,
0 o 0 0 © O 0

[bi ]

@ ®)

(1,0 (0,01

Figure 12-21. Trellis diagram representing two line coders. a. Twinned binary, and b. AML.
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12-16.

Ternary Level # Bit Errors | # Bipolar Violations
Actual | Detected
+ 0 1 1
+ - 0 2
0 + 1 1
0 - 1 1
- + 0 2
- 0 1 1

Making the assumption that errors are infrequent and hence do not interact in funny ways, this table accu-
rately reflects the relationship between bit error rate and rate of bipolar violations. We see that the rate of
bipolar violations is higher. However, the slicer errors that result in two bipolar violations and no bit errors
are much less probable than those that cause a single bipolar violation. Therefore, we conclude that the
rate of bipolar violations is very similar to the rate of bit errors.

In accordance with this notation, an AMI signal would consist of only "0"’s and "B"’s.

The sequence "BVBV" is d.c. balanced. The price we pay is a larger RDS. The example has a RDS in the
range [-2,2], which is larger than AMI.

Long sequences of zeros are avoided, so that timing recovery circuits can function better.

At the decoder, we can recognize this block of symbols since it violates the AMI constraints in a prescribed
way, and substitute the "000000" decoded block of bits.

This codeword always has zero-disparity, where the disparity of the codeword or block is defined as the
digital sum of just that block. Hence the RDS at the end of the block is equal to the RDS at the beginning
plus the disparity, or for this case is the same as AMI. However, at the end of the third symbol in the
block, the RDS is in the range —1 < RDS <+2, and hence the DSV is three. We have therefore paid a
penalty for the guaranteed timing energy in terms of a larger RDS and DSV.

The largest block consisting of one "V" and starting with a "V has disparity zero (since it consists of an
even number of non-zero symbols alternating in sign), and hence we can ensure that the RDS at the end of
this block is zero. The RDS within the block alternates between +1 and O if it starts with V = + and alter-
nates between -1 and 0 if it starts with V= -,

We could substitute "BVBV™ for each block of four input "zeros".

The disparity of the block is zero, so the RDS at the end of the block is in the range 0 <RDS < 1. The RDS
at the end of the second symbol is in the range of ~1 < RDS <2 and hence the DSV is three.

The RDS properties are the same, and there will be more timing energy. However, the crosstalk and RFI
will be increased. If the timing energy of BGZS is adequate, then it will be preferable because of the
improved crosstalk/RFI properties.

We want to substitute for blocks of three "zeros". The only non-zero blocks of three ternary digits with
zero disparity have no bipolar violations, and hence would not be recognizable at the receiving terminal.

This code is not unique, but choose the following code: If the RDS at the beginning of a block of three
“zeros" is —1, then transmit "+0+". If the RDS is 0 or 1, transmit "00+". The reader can verify that the RDS
at the end of this block is always in the range —1 <RDS < +1. Furthermore, the RDS within the block is in
the same range. The DSV is therefore two, which is better than B6ZS.

The decoder can monitor the RDS and ensure that it falls in the range —3 < RDS <2 at the end of each
block. Any violation of this range indicates a ternary slicing error. Note however, that a ternary slicing
error will cause a permanent offset in the RDS at the decoder. Thus, when the RDS at the decoder falls
outside the allowable range, the RDS must be reset to the nearest value within the range. A more refined
strategy would monitor the ternary blocks and detect any illegal combinations. For example, a block with
disparity "+3" must always be followed by a block with negative disparity.



80 DIGITAL COMMUNICATION

12-17. For AMI, the one’s density is zero since any number of consecutive zeros are allowed.
For the remaining line codes, the one’s density is listed in the table below:

n___B6ZS _HDB3 4B3T
1 0 0 0

2 0 0 0

3 0 0 0

4 0 1/4 0

5 0 1/5 s

6 16 1/6 1/6

7 7 117 17

8 28 278 8

9 29 29 29

The table can be extended to longer block sizes.
12-18. The code is not unique, but here is one such code:

Input Block Output Block
Mode A | Mode B
000 -t —+-- +2
001 -t +e- 2
010 —~+—+ —++ ]
011 —+t- - 0
100 e - 0
101 e - 0
110 - —_— +2
111 +—+ —t- +2

Mode A is used whenever RDS = 0 at the start of the block and Mode B is used when RDS = 2. The reader
can verify that the RDS within the block never gets out of the range —1 <RDS <+3 for a DSV of four.
The key to the design of this code is that we have not used two of the zero-disparity blocks, "-—++" and
"++--", which would otherwise carry the RDS to -2 and +4.

12-19. Use a filter F,o(z) =1+ z!. From the spectral factorization, F ;,(z) is still a first-order filter with one
pole, and the pole location B is still real-valued. Hence o is unchanged. However,
o =E[IX; + Xs 11 =cF(1 +p), (12.135)
and hence
2=20%/(1-B). (12.136)

Clearly in this case we want -1 <B<0 which makes sense since this places mepolenwrﬂxezzro The
frequency response is just the mirror image of example 12-15, and the tradeoff between 67 and o7 is the
same,

12-20. Let the slicer output be d;, so that the postcoder output is

&
Ce=dp+Cp1=Cot 2 di . (12.137)
i=1

It is evident that if one of the d; is in error, then c; is forever in error. Of course, if ¢, goes outside of its
allowable range, we can arrange to notice this, and perhaps correct the condition. For example, the Viterbi
algorithm can be used for this purpose.

12-21.

(a) This pulse has samples (- - - ,0,0,1,2,1,0,0, - - - ) and therefore is a pulse approximately three symbol inter-
vals wide. This pulse has two zeros at half the symbol rate, and therefore has relatively little high fre-
quency content, as manifested by its width in the time domain.

(b) The intersymbol interference is
W= 2Ck_l +Cr-2 (12.138)
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12-22.

and since this assumes the values {+1,+#—3]}, there must be five received levels. Therefore consulting
figure 12-14 for the five-level case, we can develop the following table specifying the precoder:

G2 G v b ¢
-1 -1 -3 0 -1
-1 -1 -3 1 41
-1+ +1 0 -1
-1 +1 +1 1 +1
+1 -1 -1 0 «+1
+1 -1 -1 1 -1
+1 +1 +3 0 +1
+1 +1 43 1 -1

Turmning this into a logic truth table, we get:

o
=

—_O OO~ O
O r O OO

ot et ok et DO OO
—— OO -0 O

We note that the output data symbol a; is in fact independent of the last symbol c;_;, so therefore the
precoder need only use c;_, and the current input bit b,. A Boolean expression representing the truth table
is

Ct = Bp-yby + Craby (12.139)

There are five received levels, and the following mapping is implemeated between slicer output and infor-
mation bit (from figure 12-14):

Sliceroutput by

4 0
1
0
1
0

2
0
+2
+4

The precoders for dicode and duobinary PR are respectively
e =C Pbry Ca=cr Oby @ 1. (12.140)

We can see that duobinary reverses the effect of dicode: in dicode, a "one" input causes the state to reverse,
whereas in duobinary, a "one" input causes the state to be the same. Thus, the state diagrams for the two
precoders will be the same, except that b, is replaced by its complement in duobinary. There are therefore
two differences: First, in duobinary the precoder output power spectrum is the same as dicode with p
replaced by (1 — p). Second, the filter F(D) is (1 + D) rather than (1 — D). Thus, we can write immedi-
ately, making these modifications to (12.20),

Sa(e?*T)=2p (1-p) Licoswl

1+ Qp-1)2-2(2p-1)cos oT

(12.141)

The case of modified duobinary is a little more complicated. Two dicode PR sequences of data symbols,
which we can assume are uncorrelated, are interleaved. Calling this sequence X, , and calling one of the
interleaved sequences A;,
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Re(m)= EXX; ol ={ " ™04
x\n)= kA kem] =
e R,( L;_ ), m even (12.142)
and taking the Z-transform,
Sx(@)= 3 Ry(m)z™ = F Ry(r)z¥ =5,(z%). (12.143)

Thus, frequency is scaled by a factor of two, and the zero in the spectrum of dicode at d.c. (and hence the
symbol rate) becomes a zero at the half symbol rate. In (12.20), @ is simply replaced by 2.

The equalizer in the receiver is

1 _ - p2_ ...
T+pD =1-pD +p°D (12.144)
and therefore the noise variance at the slicer input is
0.2(1+p2+p‘+ .--):: lc_rzpz . (12.145)

The SNR is therefore 4(1 ;fz)/c’. Since both peak and average powers are unity,
SNR pgag = SNR avG = 4(1 — pHE I6.

The same equalizer is now put in the transmitter, so it has no effect on the slicer input noise, and therefore
the SNR is 4/c%. However, the peak transmitted signal is changed from unity to

l+p+p2+---=—l—_—p. (12.146)
and the average transmitted signal is changed to

1+p*+p'+ - = ,_lpz : (12.147)
Hence,

SNRpeax = 4(1 - p)’Elc? , (12.148)

or worse than the LE-ZF by a factor of (1 + p)/(1 ~- p). The lesson is that transmitter equalization doesn’t
makes sense unless an increase in peak transmitted signal comes for free. Similarly,

SNR ovg=4(1-pHE 5 , (12.149)
the same as binary antipodal.
In the receiver we implement an equalizer
1+D 1 1, 1 1-p, 212, 313
== - = D — p2D - ). .
1+pD p+(l p'l+pD 1+ p (p p°D*+p°D ) (12.150)
The noise variance at the slicer input is thus
o1+ (A2Rypt 4 gt o)) = 2 z.151)
P I+p
and the SNR is 2(1 + p)/c®. The peak and average signal powers are both unity, so
SNR peak = SNR pvg = 21 + p)E /> . (12.152)

This is better than the LE-ZF by a factor of 1/2(1 - p), yielding the conclusion again that duobinary has
better noise immunity for this channel than conventional Nyquist signaling when p>%2 because it is better
matched to the channel.

We put the same equalizer in the transmitter, so the SNR is the same, 4/c%. But the peak transmitted signal
is ‘
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12-25.

1+‘—";E(p+p2+p3---)=2 (12.153)
and the average transmitted power is
1-po 2. 4. . .y__2
1+4( 5 Y2+ pt+ o) Tep - (12.154)
Hence,
SNR = £ (12.155)
SNR pvg = 2(1:2 E (12.156)

Thus we conclude again that equalization in the receiver is preferable unless the peak transmitted signal
doesn’t matter.

If we take the slicer output signal, and pass it through a filter 1/F (D), in the absence of errors the output
will be a binary antipodal signal with values 1. Many possible errors will result in other values. For
dicode PR, the filter 1/(1 — D) is equivalent to calculating the RDS of the sequence, and checking that it is
in the set {0,£1}. This is of course equivalent to checking for bipolar violations. In the case of duobinary,
the filter 1/(1 ~ D) is equivalent to multiplying by alternating £1 and then forming the RDS.

Let the input symbols by lie in the M-ary set {0,1, - - - ,M -1}, and let ¢; be the precoded symbol, assumed
to fall in the same set. For the moment, assume that ¢, is transmitted through the filter F (D) to yield the
transmitted symbols a; (we will modify this in a momeat). Then we get

N
ag=ce+ Y fjchj - (12.157)
i=
Let the precoder be specified as
N
¢k = (b — } fjcx—;) modulo M (12.158)
j=1

where the "modulo M " operator results in an integer in the interval [0,M —1]. Then we get the transmitted
symbol

N N
a =3 ficr-j+(be — XL fice—;) mod M (12.159)
j=1 j=1

The receiver then slices the reception into the nearest integer, and then reduces the result modulo M. In the
absence of noise, the result is

N N
a; mod M =[2ijg_i +(bk - zfng_i) mod M] mod M

~ = (12.160)
=[Zf,~ck_,- +bg - Zfng_j] mod M =bk modM =b, .
j=1 j=1

The only problem with this approach is that ¢; has a non-zero mean. This can be removed by replacing it
by (2¢; — (M~1)), which lies in the range [<(M-1),(M—1)]. The output of the filter F (D) will then be
replaced by 2a, — (M —1)F (1), and in the receiver we can simply add (M —1)F (1) and multiply by 0.5 prior
to the application of the modulo operation. As an example of this, for dicode, F (1) =0, and we get the fol-
lowing table specifying the precoding, F (D ) filtering, and noiseless decoding:

A G
by Cg-1 2C¢_1—1 Cg 21 a; T ‘9_ mod 2
0 0 -1 0 -1 0 0 0
0 1 1 1 1 0 0 0
1 0 -1 1 1 2 1 1
1 1 1 0 -1 -2 -1 1
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Similarly, for duobinary, F (1) =2, and we get:

ag+2 ag+2

bk Cgq 263-1"1 [~ 2€k'—l ag D) D) mod 2
0 0 -1 0 -1 -2 0 0

0 1 1 1 1 2 2 0

1 0 -1 1 1 0 1 1

1 1 1 0 -1 0 1 1

Note that in both cases, the original input b, is recovered by the noiseless and memoryless decoding opera-
tion in the last column.

The trellis is shown in figure 12-22
From (6.150), note that the MSK signal within any pulse interval is
gi(0) =csin(@, +b72) (12.161)

where b =+1 and ¢ =1. Upward-tending branches in figure 12-17 correspond to b = +1 and downward-
tending branches correspond to b =-1. The value of ¢ is dependent on the starting position of the branch
in figure 12-17. The squared distance between any two branches going in opposite directions in figure
12-17 is

T
d?= [(sin(w, +m2T) - sin(w, — mt/2T)’de = 2E (12.162)
0

where E is the energy in one pulse. By contrast any two distinct (modulo 2x) parallel branches have
squared distance 4E. By inspection, therefore, being careful to associate branches in figure 12-17 with
branches in figure 12-22, we see that the minimum-distance error event is the one of length two, with
squared distance 4E .

The squared distance of 4E is 3 dB better than the squared distance 2F in figure 6-46.

Take as input the maximal-length sequence itself, and invert every other bit. Then the scrambled bit stream
will be altemnating zero-one.

The polynomial has octal entry "13" which corresponds to binary "1011". Hence the polynomial is
h(D)=18©D &D? (12.163)
and the difference equation is
Xp =Xy P xpa. (12.164)
The sequence of states is given in the following table:

Figure 12-22. A finite planar treliis for the MSK signal.
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Xk Xi-1 _Xk-2 _Xi-3
1 0 0 1
1 1 0 0
1 1 1 0
0 1 1 1
1 0 1 1
0 1 0 1
0 0 1 0
1 0 0 1
Note that the period is seven, indicating a maximal-length sequence.
12-29. For this case the characteristic polynomial is
h(D)=1®D @®D* (12.165)
and the difference equation is
X=X Oxq. (12.166)
The sequence of states is given below:
Xg 1 Xp—2 Xp-3 __Xi-

COO OO i O O mtmm it
OO OO O Ot i bt O
O OO it ot O bt O 1t et b s OO
Pt OO bt et Dt O bt et bt et © OO
oo-—--o»—-o-—-—-—-—ooo-—-L
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We use the approximation
0= e @
By successive approximation we find that
Q(y)=10" when y =427 (13.129)
and
Q(¥)=10"7 when y=520. (13.130)

(A programmable calculator or a computer is useful here.) So the uncoded system achieves a probability of
error of 10~° when

alo, =421 (13.131)
and a probability of error of 10~ when
alo, =520 (13.132)
For the coded system the probability of error will be at least 1075 when
O-SQ{“—;’%E—} =10 (13.133)
which by successive approximation occurs when
alo, =3.57. (13.134)
Comparing this to (13.131) we find that the coding advantage in signal level is at best
2010g(5.20/3.57) = 1.56dB . (13.135)

The best case coding advantage at 1077 can be found the same way, using (13.132) instead of (13.131).
The worst case coding advantages are also found the same way, but using (13.20) rather than (13.19).

There are only two codewords 00 - - - 0 and 11 - - - 1, which have distance n, s0 dyy iy =n.

The (7.4) Hamming code has dy ax = 3, and is rate 4/7 code. A minimum distance of dy s =3 in a
repetition code requires n = 3, which has rate 1/3, considerably worse than 4/7.

For all ce C, cH” =0. The product cH” is a linear combination of rows of H’, or columns of H. Hence
the minimum number of columns of H that can be added to produce 0 is

min wy(c)
ceC

cnl

(13.136)

which equals di ia -

From part (a), no linear combination of dy a; — 1 or fewer columns of H can be zero, so H has rank
dy min — 1. Since H has dimension nx(n — k), its rank cannot be larger thann ~ k, so



CHAPTER 13: SOLUTIONS TO PROBLEMS 87

13-4.
(@)
®)

©

@
(e)
®
13-5.
@)

®)

13-6.

dym —-1<n -k (13.137)
from which the result follows.

Reverse the order of the first three columns.

1011000
1110100

H=10110010]"
1100001

(13.138)

In each case the most likely error pattem is the one with the smallest Hamming weight.

s é s é
0000 0000000 1000 000 1000
0001 0000001 1001 000 1001
0010 0000010 1010 0001010
0011 0000011 1011 000 1011
0100 0000100 1100 1000001
0101 0000101 1101 100 0000
0110 0000110 1110 001 0000
0111 0100000 1111 1000010

For those entries with two or three one bits in &, the choices for & shown may not be unique. Syndromes
for which this is this case correspond to errors that cannot be reliably corrected, but can be detected.

This code equivalent to the dual of the (7,4) Hamming code.
dy min =4, so only one bit error can be reliably corrected.
¢=1010011.

In this case, m =n — k =4, and the parity-check matrix has as columns all possible 4-bit patterns except
the all zero pattern. To get it into systematic form, simply arrange the columns so that the last four
columns form an identity matrix. The first 11 columns can appear in any order. The generator matrix can
be gotten by comparing (13.39) with (13.34).

The parity-check matrix is

{000000011111111
000111100001111

H=10611001100110011] *
101010101010101

(13.139)

From (13.43), if e is all zero except for a 1 in position #, then eH’ will be the transpose of the i™ column of
H, which in (13.139) is a binary representation of i.

Following example 13-12,
dg in =2aV3 (13.140)

o, = \/ —:%c“ . (13.141)

and

so the power advantage at high SNR is
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10log%% ~3424B . (13.142)

The coded system has 15/4 times the symbol rate of the uncoded system so the noise variance at the
receiver is 15/4 times higher,

15
o= —4—0.2. (13.143)
The minimum Hamming distance between codewords is 8 so the Euclidean distance is
dg pin =4a V2 (13.144)

from (13.7), where the alphabet is + a. Hence the probability of error for the coded system is approxi-
matcly

d 2aV2
Q[ 20‘} = Q[ c,*lﬁi] (13.145)
comparcd 0
d a
Q[ 20,.} = Q[ 0“] (13.146)
for the uncoded system, which means a power advantage of about
22 32| _
2010g[ ﬁ%] = 1010g[ : 5] =329dB , (13.147)
for the soft decoder.
The system is described by the following equations
CYD)=BYND)BBAD YD ®D? (13.148)
C®D)=BYD)D &®BA(D)16D? (13.149)
CcOD)=BAD)D . (13.150)
These equations can be manipulated to get
0=CYD)D2BCPD)D SCH(D X19D3) (13.151)
which mcans that the parity-check matrix is
H(D)={D? D, 18D3]. (13.152)

A similar tcchnique can be used to derive the parity-check matrix, showing that it is the same.

The condition B, =0 for k <0 implies that the starting state is the (0,0) state. The condition B, =0 for
k 23 implics that the fifth state and beyond are zero. Hence the trellis is shown in the following figure.
0
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The transitions are labeled with their weights, which are the Hamming distances from the observation bit
pairs. The minimum path metric corresponds to the bold path. Without errors introduced by the BSC the
observation would have been {1,1,0,1,1,1,0,0,0,0,...}, implying that two bit errors were made. The deci-
sion b; is {1,0,0,...}.

13-10.
(@) The state transition diagram and trellis are shown in the following figure:

©.00,0) '@ ©.0,1)

(1,[0.01)

(0.[0,0])

(0.[0,1])
(10,1

(1,[0.00)
0,[1,01)

(1,[0.1) ©.[1,1])

(0,[1,0D)

©,[11]
L[L1D)

(1,01.1])

(1,(1,01

(1.01,00)

() The error event with the minimum Hamming distance is again an event with length K = 2, as shown in the

following figure:
0,{0.01) (0,[9.0]){\/ 0.00.01)

0,[0,1])

The minimum Hamming distance is therefore three. Assume a BSC with probability of correct transmis-
sion p. The probability of the error event is

[;} pP(1-p)+ [?] pP=3p*(1-p)+pi. . (13153)

For p small this is approximately 3p? which is significantly worse than the probability computed in
(13.79), which for small p is approximately 10p>.

(c) 'The trellis is shown below re-labeled with the binary antipodal outputs.
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OL-aa)

©.[-aa)
(L.[-aa))
(L[-a,-a))

©,[a,-a])

0.[a,a])
(1,{a,a])

(L.faa])

The minimum distance error event is shown below.

O
A

.
.
.
.
!
]
1
.
.

dy=d, dy=d, dy=d,

The ML soft decoder therefore has d;, = ﬁd, where d, =2a. Hence, assuming the probability of error is
dominated by this event,

Prlerror event] = Q (V3a/o,) (13.154)

where o2 is the variance of the noise of the coded system, which is twice the variance of the noise of the
uncoded system, 6.2 = 20,2 Hence, the coded system is 10log(3/2) = 1.8 dB better than the uncoded sys-
tem. This is a full 2.2 dB worse than conv(1/2) in figure 13-8a. This is not surprising because the
minimum distance is far worse.

13-11. One stage of the trellis is shown in figure 13-23.

(@) The minimum Hamming distance error event has distance 3, by inspection of figure 13-23a. Following the
development of (13.79) we get that the probability of this error event is bounded by

(0.(-a,—a])

(1,[+a,+a])
0.(+a,-al

[

(l,[—;. +al)

®)

Figure 13-23. One stage of the trellis for the coder in figure 13-20. In (a) it is labeled with the
binary output. In (b) it is labeled with the channel symbols, assuming binary antipodal signal-
ing.
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3 3
Pr{this error event] < [2} pX1-p)+ [3] pP=3p*(1-p)+p3. (13.155)
(b) By inspection of figure 13-23b we see that the minimum Euclidean distance error event has distance 243,
Hence
. _l2a3] | 2aW3
Pr{this error event] = Q[ 2, ] = Q[ 2%‘] . (13.156)
The uncoded system has probability of error
Prlerror, uncoded system) = Q[ -:—-] (13.157)
(4

so the coding gain is approximately
20log(¥3n2) = 1.8 dB . (13.158)

Note that this is the same coding gain achieved by the coder in figure 13-19 with a soft decoder. This
coder is simpler, however, since its trellis has only two states.

13-12. The code is not linear because it does not include the zero vector.
13-13. n =7,k =3, dy px =4, and the codewords are

0000000
1110100
0111010
1101001
1001110
0011101
1010011
0100111

Note that all the non-zero codewords have the same weight.
13-14. In figure 13-24 we show the state transition diagram with the zero state broken and the branches labeled

with z raised to the square of the Euclidean distance of that branch from the zero bfanch. The path
enumerator polynomial is therefore

Ty =% 4 164 - (13.159)

In proble; 3-11 we found that the error event with the minimum Euclidean distance had distance
2aV3 = V1242, consistent with this result. The compact form of this polynomial is
124"
T@z)= -1‘—7; : (13.160)
-z

Figure 13-24. A state transition diagram with the zero state broken and the branches labeled
with z raised to the square of the Euclidean distance of that branch from the zero branch.
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By inspection,
T(xyaz)=xz> +x3y%% + x*y35 + x5y 426+ - - (13.161)
or equivalently
il
Tixyz)= 1-mz (13.162)

From (13.161) the length four error eveat (corresponding to x%) has four bit errors and Hamming distance
6.

The broken state transition diagram of figure 13-17 can be modified as shown in figure 13-25. Since we are
only interested in length and distance (and not the number of bit errors) we need only two variables, x and
z. The path enumerator polynomial is found using (13.109)

x5
Tka)=—5—". (13.163)
1-x“2 —xz
By long division, we compute the first few terms
Txiz)=x32+x25 + x528 + x527 + x%2% +x727+ - -+ (13.164)

From this we see that there are two distance 6 error events, one with length 3 and one with length 4. (The
length is the exponent of x minus one.) Also, there are two length four error events, one with distance 6
and one with distance 7.

Figure 13-25. The state transition diagram of figure 13-17 is modified for enumerating the
path lengths as shown.
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In the transmitter, generate two-dimensional symbols in the conventional way. Now group the transmitted
baseband symbols into pairs, and transmit the real part of the two-dimensional symbol first, then the ima-
ginary part. In the receiver, group the received samples at the slicer into pairs, and apply them to a com-
plex slicer.

The coding gain is, of course, Y4 = 1. The shaping gain is
2nR?2 =«
= =—=. 14.81
®=T2r%2 3 (1481)

The coding gains are the same. The circular shaping provides 10log;qpi /3 = 0.2 dB of shaping gain.

For the hexagonal constellation, the fundamental volume is the volume of a hexagon with inscribed radius
dmin/2. Hence,

V(A) = 6 (dpinf2)* tann/6 (14.82)
and the coding gain is
= 3o = LI5S (14.83)
This is 0.6 dB.
Clearly
dpin(0-A) = o d i (A) (14.84)
and
V(ocA)=aV-V(A). (14.85)
Thus, as a function of o, the coding gain is
YaA o i dain Ya- (14.86)

= aZ V?/N(A) = V?/N(A) =

The volume is

VICyR)l= | dx. 148
oo 42

The integral can be separated into the product of N integrals, each evaluating to 2R, so
VICy(R)1=(@2R)N. To evaluate the power, the uniform density function over the N-cube has height
(2R)™, so the power is

N
P[CyR) =@R)™ j Ux2dx=2R)* T jx,-’-dx. (14.88)
Cu(R) i=1Cx(R)

Each of the integrals evaluates to the same value,
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ZRS
[ zPdx=viCu RN~ (14.89)
Cu(R)
and thus
P[Cy(R)I=N-R*3. (14.90)

Substituting the volume and power into the shaping gain, we get ¥c,z) = 1.

Assuming the radius of the N-sphere is R, P is the power of Sy(R) divided by the number of complex
symbols, N/2. Hence P = 2RY(N+2), and for fixed P the radius as a function of N is R2=(N+2)P /2.
Assuming N is even, the volume of a sphere of this radius is

_(mNR+ 1PN
VEyON2+1)P)= o) .

The number of points in the signal constellation is proportional to the volume, since the fundamental
volume is assumed to be constant, and hence Vv is proportional to the logarithm of the volume divided by
N72,or

(14.91)

2. (mNR+DPYW?| 2. \
vV a N logz[ NP = logy(mP) + loga (N2 + 1) N logo(N/2)Y . (14.92)
Thus, the spectral efficiency is a constant plus a term that depends on N, where the latter is

logz(-lzl +1)- %-logz(NIZ)! (14.93)

When N goes from 2 to 4, the spectral efficiency increases by 0.085 bits. Whea N goes from 2 to 6, the
spectral efficiency increases by 0.138 bits.

By the Sterling approximation, the increase in spectral efficiency as N — oo relative to N =2 is
log,e — 1=0.443 bits per complex symbol. Of course, the absolute (as opposed to relative) spectral
efficiency depends on A as weltas N.

Let us assume that R is chosen such that Xy has unit variance components; that is, R? = N+2. The margi-
nal density of X, will be the density of Xy integrated over N-K components. The integral is over a
sphere of radius VRZ- 1l xx 112 and dimension N-K . The integrand is the density of Xy, which is a con-
stant 1/Vy(R), and thus the integral becomes proportional to the volume of an (N —K)-dimensional sphere.

Thus,
xe 12"
Ve ORZ= Uxg 1) _ Vyg(1) [I"T]
Va(R) S R‘[l— uxxuz}m'

fx(xx) = (14.94)

R?.

Taking R2 = N+2, or equivalently R>= N when N is large, the only term that is a function of xg asN —» o
is the numerator, which assumes the functional form exp{ — lixx 11%/2}, a Gaussian density with unit vari-
ance and independent components. The remaining constants are of course the normalization to unit area,
and must equal (2r1) - X2 asymptotically.

It is straightforward to calculate this probability,

- N N
Pr{iXli <R €] = Vg‘["S[R(R)?] = (Rl;,f) =[1—£} - 0. (14.95)
N
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14-9.  The wrellis for the convolutional coder is shown in the following figure:
(0,[0.0)

0.[0,1])

(1,[0,0D)
(0,[1,0])

©,[1,1])
L{L1])

(101,0])

Comparing this to figure 14-9a, if we choose the mapping
G0 P | A

0 0 a
0 1 -a
1 0 ja
1 1 -ja

then the trellis is identical. Thus with a line coder that implements this mapping, the code is equivalent.
14-10. The trellis for the convolutional coder is shown in the following figure:

(0.10.0))

©.(1.0D
(10190

(1,[0.0)
0,[0,1])

©.(1,11)
(1.01,1])

(110,1))

To get a trellis equivalent to that in figure 14-9 we select the mapping

C; o ¢ @ | Ay
0 0 a
0 1 Jja
1 0 -a
1 1 - ja
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Ore stage of the trellis is shown in figure 14-37a. The minimum-distance error event is shown in figure
14-37b for three different correct state trajectories. Also shown is the distance. The distance is different
for all three.

Four bits per symbol are required, so the alphabet needs 16 symbols. 16-QAM will work.

The required alphabet size is 32. The cross constellation in figure 14-23 will work, although there are oth-
ers in Chapter 6.

Coding is required. To get 4 dB total gain, using Ungerboeck’s rule of thumb (see the first paragraph in
Section 14.2.1), an eight state trellis code will work. The coder in figure 14-23 will do the job, and provide
the additional benefit of 90 degree phase invariance. If phase invariance is not an issue, then the coder in
figure 14-18 will also work, although one additional uncoded bit is required.

Consider the error events in figure 14-38. There are several error events represented here because of the
parallel paths. To find the minimum-distance error event of these, first find the minimum distances
between transitions in the same stage of the trellis. These are shown in the figure. For example, in the first
stage, the upper parallel pair of transitions are taken from subset A in figure 14-13. The lower pair are
taken from subset C. Hence the minimum distance in this stage is the minimum distance between symbols
in A and C, or ¥2. The minimum distance in the third stage is similarly computed. The minimum distance
in the second stage is the minimum distance between symbols in A and B, which with some simple

(0;—3)

Figure 14-37. a. One stage of the trellis for the trellis coder in figure 14-33. b. The minimum-
distance error events when the correct state trajectory is the path shown as a dashed line.

— 6—]

MIN.DIST(A,C)
=\2

MIN.DIST.(A,‘(I:_)
=V2
O

MIN.DIST(A,B)
=V2-V2

Figure 14-38. A set of error events and their minimum distance.
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geometry can be shown to be 2-0= 0.77. The minimum distance of all the error events shown is the
square root of the sums of the squares of these stage distances, or

V2 +2-V2+2=V6-2=214. (14.96)

It is easy 10 see that any error event with length greater than three stages will have a distance greater than
these error events, so 2.14 is the distance of the second closest emror event.

The partition is shown in figure 14-39, along with the minimum distances. Notice that at the final partition-
ing stage (into 16 subsets) there is no improvement in minimum distance for some of the subsets.

The average power of the 16-QAM constellation has been computed elsewhere and is 10. The 32-cross
constellation has all the same points, plus 16 additional points with average power

8 2 8 2, 12 -
6¢ +3)+ 66 +1%)=30 (14.97)
so the overall average power is
%10+ 30)=20. (14.98)

This is 10 log(2) = 3 dB more power.

It should be adequate to use the subsets in the third row of figure 14-39. The minimum distance between
parallel transitions is 4. There are 4 such subsets, so ni = 1. Compared to the 16-QAM constellation in

Figure 14-39. Set partitioning for a 32-cross constellation. The minimum distances between
points in the subset are shown.
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part (b), which has minimum distance 2, this is a 6 dB improvement. However, the power of the 32-cross
constellation has to be reduced by 3 dB, so if the parallel transitions have the smallest distance (we can
assure this with proper coder design) then the total gain will be about 3 dB. Using Ungerboeck’s rule of
thumb (see the first paragraph of Section 14.2.1), a coder with 4 states should work.

It should be adequate to use the subsets in the fourth row of figure 14-39. There are 8 such subsets, so
#i = 2. The minimum distance between parallel transitions will be 4v2, which is about 9 dB better than the
minimum distance of 2 in the 16-QAM constellation. Again, of this 9 dB improvement, 3 dB must be
sacrificed to normalize the power, leaving a 6 dB gain. This is more than we need, so we could use a 16
state trellis coder to get about S dB gain, and the minimum-distance error event will probably not be the
parallel transitions.

The trick here is to compare 0 an uncoded system with the same average power. If the 8-PSK symbols
have amplitude a, then it has average power a2 If the 16-QAM symbols have real and imaginary parts
that are + b or + 3b, then they have average power 1062 Hence, for the two systems to have the same
average power, we require that a = V106 = 3.16b. The subsets that are used for parallel transitions are in
the third row of figure 14-16. The symbols within each subset have minimum distance 45, so if the parallel
transitions dominate the probability of error, then

Prierror] = Q[ -2—}} . (14.99)
The minimum distance for the 8-PSK alphabet isa 2-2=0.77a , so for the uncoded system
Prlerrorl=Q 0.77—‘—‘—] . (14.100)
| 2c
The difference is
20log| —22| = 2010g (2| 43 (14.101)
0.77a | 0.77710

which is very good indeed.

The wellis is shown in figure 14-40. We can show that the error event with shape as in figure 14-38 is
v20b, which is greater than the distance 45 of the parallel transitions. Hence the assumption in (a) seews
reasonable.

Figure 14-40. Yet another trellis.
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14-16. First note that every error event is a minimum-distance error event for all possible actual paths through the
trellis. Note further that every error event starts and ends with a symbol error, and has no symbol errors in
between, so w(e) =2 for all ¢ € E. Consequently, (9.150) becomes

R=2F Prly]. (14.102)

Define E (y) to be the set of error events for the actual path y through the trellis. Then the summation in
(14.102) can be rewritten

Y Privl=Y I Pr[v1=[}v:l>r[v1][ pX 1]- (14.103)

eecE veeEW) ecE(y)

The first summation is unity, and the second is infinite because every y has an infinite number of error
events. Consequently, R is unbounded.

14-17,
(a) One stage of the trellis is shown in the following figure.

©.1)

©.1) (1.1)
(l"j
ap O

)

() For different assumed correct state trajectories, the minimum-distance error events are shown below.
Qb @b

In each case the distance is dg i = V6. The probability of occurrence is therefore Q (¥6/20).

(¢©) The 2-PSK alphabet with the same power is Q4 = {(-1,+1) which has a minimum distance of 2. The
coded system is therefore

20log(V6/2) = 1.76 dB (14.105)
better.
(d) The set partioning is illustrated in the following figure.

47
TR

A suitable mapping is shown in the following trellis.
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©A)
(1.B)
(1.cC
©.D)
(¢) The minimum-distance error event is shown in the following figure.
©A) ©0,A)

The minimum distance between points in A and ‘;}Qim%j_n B is V2. The minimum distance between points
in A and points in C (find by simple geometry) is Y2 — ¥2. The total minimum distance is therefore

de pin =4 -2, (14.106)
The uncoded (4-PSK) system has a minimum distance V2 so the total gain is
20log(V4 —V2"2)=1.1dB , (14.107)

a modest gain.
14-18. The trellis for the convolutional coder is shown below with the arcs labeled (B;V,(C, @, C,®)).

Sk(l)sk(o)

0,00.0])

(1.[1.0D

L{L1])

1 ©0.10)

The same subsets of the 8-PSK constellation shown in figure 14-13 can be used in which case the trellis for
the trellis code is identical if the mapping is given by the following table.

C}m C; @ subset
0 0 A
0 1 B
1 0 C
1 1 D
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15-1.
@)
®)

15-2.

15-3.
€))

®
15-4.

@

®)

©

Two.
The loop is unstable because
o) K
8G) K, +52 (15.99)
which has two poles on the j® axis.
From (15.17)
K
) _ fim —E =1 (15.100)

Ko=) K=K +s

so in the limit the output phase is identical to the input phase. The bandwidth of the PLL goes to infinity.
This might be useful for carrier recovery, example 15-2, and not for timing recovery on point-to-point
links, example 15-1. In either case, no noise on the input will be rejected.

Since the coefficients are real, the roots are complex conjugate pairs. We can write the two roots Ae*/®,
where A > Q. Then
s2+as+b =(s — Ae/%(s — Ae7®) = 52— 24 cos(0) + A2. (15.101)

Noting that b = A2 we observe that b > 0 unless A = 0, in which case the poles are both at zero and hence
not in the open left half plane. Also note that 24 cos(0) = a. Hence the poles are in the open left half plane
if and only ifa > 0.

The result follows trivially from part a.
From (15.15)
D(s) 1
= s 15.102
6(s) st+V2s5+1 ( )
which has poles at
-1, j
= —
s G iG (15.103)
The PLL is stable,
For all o,
) 2
' D @) | = 1 1. (15.104)
6(j ) 1+t

From (b)
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j @) 1
| :O({m) | = el (15.105)
15-5.
@) From (15.21)
D(s) _  s+05
8(s) s2+25+05° (15.106)

(b) The conditions in problem 15-3 are satisfied so the PLL is stable.
(c) The poles are at s = — 1+ V2/2 and the zero is at s =— 0.5. This leads to the Bode plot below:

4 20log | O @)/B( @)

0
<~ .20 dB/DECADE
4
[ - log(@)
1 T >
053 03 023 \
(d) We need to prove that for all ®
2
| 209 | <y (15.107)
6 w)
But
2 2
I P(w) l _ l ja+0S5 '
. - _ 2 .
o(jw) 0*+2jo+05 (15.108)
_ 9’4025
@*+302+0.25
Hence proving (15.107) is equivalent to proving
0*+30?+ 0252 w*+0.25 (15.109)
or
@?+220 (15.110)
which is obviously true.
15-6.
@
2 . 2
| & w) I - l K jo+K K, l
68(jw) -0+ K, +K)jo+K K, (5.1
_ K2+ K2K? '
T K + K)o+ (K K| — 0?)?
Peaking occurs if and only if for some @
1 200) 2, 4 (15.112)

o(jw)
or
KPo?+KP2K 2 > (K + K)*0? + (K Ky — 0?)? (15.113)
or
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®)
©)

15-7.
(@)
®)

©

15-8.
@

®)
©)

0>K2-2K K+ (15.114)
so peaking occurs if and only if
0?<2K K,-K%. (15.115)
Hence there are frequencies at which the gain is greater than unity if and only if
K? <2K.K,. (15.116)

Given by (15.115).
The lock range of the second-order loop is

"KLK (/K 5! (15.117)
from (15.20) so without peaking, since K# 2K, K, or K2 2 V2K K1,
lock range < -%*JKLzK;. (15.118)

Using (15.73) we get that the lock range for the second-order loop satisfies
lock range < —%KL,. (15.119)

C/?Ir_npaﬁng this to (15.18), the lock range of the first-order PLL, we see that it is smaller by a factor of
1N2,

Stability implies that K; Ky > 0, and since K, =0, (15.72) is always true.

From (15.21) we get
2 2
I O ) l _ ' K Ky + K jNK K, I
eGam) ! K. jVK K
v AR (15.120)
K1+KL
=—x

From problem 15-3 we know that the type I PLL is stable if and only if K, >~ K; and K, K > 0. Since in
this case K, = 0, this is equivalent to the conditions stated in the exercise.

The transfer function is

K
This is an all pole transfer function, and hence is a lowpass filter. The d.c. gain is unity.
This follows immediately from problem 15-3.
Input 6(j ®) will be amplified for values of @ for which |®(j w)/6(jw)1?> 1. We can write
2
' @(;:o)) I =22 2 K 2, 4 (15.122)
6(j w) Ki+K3;-2KDo'+ @
This is greater than or equal to unity when
w?<2K,-k%. (15.123)
Clearly if
2k? <k? (15.124)

there is no amplification for any .
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®)

15-10.

15-11.

@)

®

©

@

15-12.
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~First note that 6(s) = B/s. From (15.31)
i SOG) _ o sB
Car —S—OOL(S)“.'S -th-lPOKL +s =0. (15.126)
Now 6(s ) = 2B/s3, so from (15.31)
= lim. _L oo,
£ 05K, +52 (15.127)
The loop filter has the form
_NG)
L(s)= DG (15.128)
where N (0) # 0 and D (0) =0. From (15.31)
L@ eDG)
Car ‘.h.'f'oL(s)u T s0N(s)+sD(s) =0. (15.129)
In each case
| D(e’T) | - &, |
O(e/T) —1+e/°T| (15.130)

1K1
" NKZ+2-2K, + 2K, - 1)cos(oT) |

Q) 05 (15.131
l &e’eT) I V1.25 - cos(@T) ’ )

shown in figure 15-17a.

D) (15.132
l e(ej(o‘l') | L, )

shown in figure 15-17b.

| e | -

o) (15.133)

1.5
Y125+ cos(@T)
shown in figure 15-17¢c.

The loop filter in (b) is not particularly useful because it results in an all-pass filter. The loop filter in (c) is
even less useful because it amplifies the phase of the input at all frequencies.

Expanding we see that
D(z)=z2-(q +p)z +pq (15.134)
)
pg=b and q+p=-a. (15.135)
If p and g are inside the unit circle, {pl <1and Iql <1, then
Ipgl=b<1. - (15.136)

We now need to show that p and ¢ inside the unit circle also imply that
lal=lg+pl<l+pg. (15.137)
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15-13. From problem 15-12, the PLL is stable if and only if

15-14.

15-15.

15-16.
(@)
®)

©)

15.138
l a+ bl I ( )
and
| 2o 1tbo—by | < _ (15.139)
a+b, az+ bl
Since 6(r) = ¢(¢), cos(6(t) - ¢(1)) = 1, so from (15.58)
e(t) = i’fl— . (15.140)
This is a d.c. term so
AA
c0="22LO= d:’k(‘ ) (15.141)
Hence
tAA
)= [—SFL©O)d +K (15.142)
0
for some constant K , so
0()=¢(t) = A, ’ LO) +K . (15.143)

The VCO output frequency can range from 1 MHz/(N + 1) to 1 MHz/(N — 1), or about 9.9 kHz to 10.1
kHz. The lock range is therefore about 200 Hz.

2,048 = 2568 while 1,512 = 189x8. 256 and 189 are relatively prime, so N =256 and M = 189.
We can write

256 _ 16 16 16 16
189 9 21
(among many other factorizations). Hence we can used cascaded frequency dividers with Ny=N,=16
and M;=9 and M,=21. The first frequency synthesizer will produce a signal with frequency
2,688 kHz = 16x1,512 kHz/9, and its phase comparator will be comparing the phases of two signals with
frequencies on the order of 168 kHz. The second phase comparator will be comparing signals with fre-
quencies on the order of 128 kHz. The main advantage is the greatly relaxed design of the LPFs and faster
response time (see example 15-15).
The maximum number of cascaded frequency synthesizers is 8, evident from the prime factorization
256 _ 2X2xx2X2x2X2x2
189 3x3x3x7

(15.144)

(15.145)
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1 11— 1
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N[t

Figure 15-17. Frequency response of the first-order discrete-time PLL with three different
values of the loop gain. The frequency response is symmetric and periodic so it is only shown
overthe region0 <o <nT.
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16-1.
(@ Weneed

O — b =0y — Gpy +MT2 (16.30)
which corresponds to an offset frequency (in radians) of

Mz

Wy = T2 (16.31)

(b) The minimum offset frequency comrsponds to M =1, so

1x

o= 7;-2—' . (16.32)

In this case, (1/T°) = 15x10°%, so the minimum offset if 15/4 MHz.

(c) If the channel frequency offset is constrained to be small, then the VCO output frequency range can also be
constrained to be small enough that the sum of the two offsets is less than half that which leads to false
lock.

16-2.
@

(b) Suppose that A, =3 + j, which has angle sin™'(1/3) = 0.34 radians. An decision error occurs if the phase
error is less than —0.34 or greater than +0.22, half the angular difference between A; and the symbol
3+3j. W(-)is shown in the following figure:

ox(6)
0
.68 0.44
16-3.
(@) From (15.44) we have
O(z) 0.1
6(z) z-09 (16.33)

which has a pole at z =0.9. The frequency response is similar to that in figure 15-17a, but with a stronger
lowpass characteristic.
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From (15.44) we have
o) __ 017 _ 0.1
6(z) 01z'+z-1 z22-z+01°

which has poles at 0.89 and 0.11. The frequency response is still reasonable, although slightly comprom-
ised. Since the poles are all real there cannot be peaking.

From (15.44) we have

(16.34)

o) __ 012 0.1
6(z) 0.1:2+z-1 23-22401°

The poles can be found using a computer program, or by the following method. The system has at least
one real pole, call ita, so

(16.35)

z-a)H(z)=23-22+01, (16.36)
for some second-order polynomial H (z). We can find H (z) by long division
23-22401
H(z)=——z--—a—-'—=z +(@-1z+a(@-1)+r(a) 16.37)
where the remainder is
r(@)=01+a%a-1). (16.38)
For a to be a pole, the remainder must be zero, so
a’-a?=-0.1 (16.39)
which by successive approximation implies that
a =087, (16.40)
Consequently,
D(2) 0.1
= . 41
8(z) (z -0.87)z%2-0.13z - 0.11) (16.41)
The poles are at z = 0.87, 0.40, and -0.27. The system is stable.
D(z) 0.1z7 0.1
= = . 16.42
8G) 0L M4z -1 -7 +01 (1642)
This goes unstable when M is 16 or larger. It exhibits peaking when M is 3 or larger.
There is no integer N such that
eMNasa) _ 1 (16.43)
because the angles of the symbols are not related by rational multiples.
N =4 will work.
N =4, 50 0, = 2<2400x4. The smallest required lock range is +2%,
lwg! <1200rad/sec or 192H:z . (16.44)

Insert a "divide by N" between (-} and the phase detector in figure 16-8. The frequency divider might be
preceded by a hard limiter for each of the real and imaginary parts.
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16-6.
@

®)

©

R@)= _;_[ei(ut +8(g )+ e @+ O(t))s‘(‘ )] . (16.45)
Hence
R¥(1)= _‘1?[ A @IS ) 4 215 (1) 124 ¢ T +e(r»s'2(,)] (16.46)
from which the result follows.
The periodicity would come from the second term of (16.27). It is easy to show that for 4-PSK
ERe(SX¢)}1=0 (1647)
so the expect value of the second term is zero.
As long as
ERe(5%(1)}1#0 (16.48)
there will be tone at 2w,. Aslong as A,, is white,
Re(5°0)= 3 [Re(An 112~ Im(An 1] p7 - mT) (1649)

m = e

which has nonzero expected value if
E[rRe{A,. )12~ (Im( An 112] £0. (16.50)

CHAPTER 17: SOLUTIONS TO PROBLEMS

17-1.

17-2.

Using (17.48), and sampling Q (¢) at ¢t=kT + o, the summation is a convolution, and the filter impulse
response is easily seen to be

sin-’;:(nT -T40)
hy = 17.72)
—’;-(nr —-T+0)

Clearly, an exact non-recursive implementation has infinite order. The impulse response can be approxi-
mated as FIR by truncation, but it falls off only linearly with n, so using a small number of taps will intro-
duce substantial error.

First note that since the pulse has only 100% excess bandwidth, the Fourier series coefficients Z, for
tm! 2 2 are zero. From (6.25), the pulse has Fourier transform

T T T 2n
7{1—81"['2—(0)—_]-‘)”~ lol < T (17.73)
PGa)=q o,

otherwise
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From (17.10),
E IA 12
Zy=—2 (14,17 ¢ jr(, - jo)P (jo)do.
T (17.74)
- T —sinl LE _ —sinl Lio- &
=E[14; 115 £ (1 sm[z(T a))]]{l sm[z(m T)]}dm.
Using trigonometric identities, we find that
T 2T
Z,=E[IAH’][%+§ {(eos[n—Tm]-l]dm}
r (17.75)
- 2 l‘._.—. in(x — = 2£
_E[IA,|][4 8sm(1t To))lo""‘] E[IA,‘I]4
From (17.11)
z(t) =E[IR ()1} = E[1A, 121{ Zo+ _;Ecos(l;‘.,)} (17.76)

implying a strong timing tone. Square law timing recovery works well with PAM signals with raised
cosine Nyquist pulses with large excess bandwidth.

The 0% excess bandwidth pulse is
sin /T
g@)= T
and has the Fourier transform
T T
- <=
X lof < T
G@)=9 0, otherwise -
From (17.10),

,=—;-IG(-2;_t——m)G(m)da)=0

Write the autocorrelation function
Rr(@)=E[R( +O+T)R"(t +O)]

=E[ i iA,.,A:p(t +0+1-mT)p(t +8—nT)]

m = —sep=—ee

=a 3 Elp(t +©+1-mT)p( +8~nT))

”m = .o

=a z; —jp(t+e+x mT)p(t +6~nT)dO
meT Q177

—mT+T

a f; -;— j P +0+T)p( +0)d0

pt+0+1t)p(t +0)do6

~al—- 2

il
%i 0 +T)p(6)d0 .
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The Fourier transform of this is
SR(im)=-;—IP(ia))I2 (17.78)

which has no spectral lines at the symbol frequency if p (t) is not periodic with period T'.

17-5.  The Fourier transforms that are used to compute the timing tone are shown in figure 17-15. Note that the
entire signal is used. There is no useful prefiltering.

17-6.  The conditions in (17.54) imply that w,¢ + ¢(¢) evaluated at kT + 1, is 3n/2 plus any multiple of 2.
Hence we can write

o, kT + @, T + ¢U*T +t,)=3—2“+k21:. (17.79)

17-7.
(@ Write

f (@) =E[-Ap Q4 1(Te) + A1 Qe (4]
=E(- 3 AAnp((-m-1)T +1,)+ AN,

+ i AAnp ((k—m)T + 1) + AN, ] (17.80)

” =—eo

=E[4 lp (e ~T)-p (1 +T)].

P{jw)
“ /\
— + + 4 4 4 t — Q
—600 -300 300 600 2r
P (27600 — j @)
®)
+ ‘ . Q2
600 2
P (27600 + j @)
(c)
— + + — Q
-600 2x

Figure 17-15. An illustration of prefiltering for recovering timing of a 600 baud, 100% excess
bandwidth raised cosine signal. The Fourier transform of the pulse is shown in (a). The
Fourier transforms in (b) and (c) are multiplied by the one in (a) and integrated to get the timing
tone. Note that the whole signal contributes to the timing tone.
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The timing function is plotted in the following figure:
f)

E[14,17]
. T 2T

Write

Z =Ap 1O (t) = f.‘, ApAnp ((k—m)T + 7). (17.82)

Then
f@)=EZ]=EllA1Yp(t, +T). (17.83)

For the triangular pulse, the timing function is just a shifted and scaled version of the triangular pulse.

The method does not look good for triangular pulses ( no unique zero crossing of the timing function) but
will work for raised cosine pulses, especially if the excess bandwidth is low.

f@)=EZ]=ElA 1 p(u - T). (17.84)
This again will work for raised cosine pulses with low excess bandwidth.

The only frequencies that will contribute to the jitter power are those where H (j ®) is near unity in magni-
tude, or ® << K . Investigating this region further, let € = W/K; <« 1, and do a Taylor series expansion,

%1 +jeN = jNe~ BN (N+DE2, (17.85)
and hence
Hy(K,€) =N[l - jﬁiﬂ ] . (17.86)

We see that |Hyora (@)l is a lowpass filter with cutoff frequency at approximately €=2/N or
®=2K; /N. An ideal lowpass filter with this cutoff would have a jitter power twice that predicted in exam-
ple 17-13; the difference is due to the deviation from an ideal filter.
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18-1.
@)

®)

18-2.

18-3.
@)

®)
©

18-4.

18-5.
@)

®)

One superframe of 1176 bits corresponds to 6-48 =288 bits on each input. The bit rate is thus
1176-1544/288 = 6,304.7 kb/s.

One superframe corresponds to 288 bits at 1,544 kb/s, which is 186.53 psec. A frame is one-quarter this,
or 46.6 psec.

The traffic burst contains 2 ms - 1.544 kb/s = 3088 information bits. The information portion of a traffic
burst consumes 25.56 psec, and there is room for 78 time-slots in the absence of overhead. Since there are
more time-slots required in the G.733 case, overhead is going to be more of a factor, and therefore in prac-
tice a fewer number of voiceband channels will be accommodated.

Regardless of the location of the error, we will fail to recognize the start of the link-frame. In fact, we will
incorrectly infer the end-flag to be a start-flag, since the end-flag cannot occur in the information packet. In
the absence of a recovery procedure or additional bit-errors, we will perpetually detect each idle period as a
link frame and each link frame as an idle period!

We will eroneously detect the start flag of the next link frame as the end flag of the current packet. The
end effect will be the same as in a.

Most locations of errors will not cause a loss of link frame synchronization, although some will. In particu-
lar, it is possible for a bit-error to create an end flag within the information packet. The effect will be to
shorten that packet, and then cause the same major problem as in a. and b.; namely, reversal of the link
frames and idle periods.

Clearly these problems suggest the need for a means of detecting the reversal of link frames and idle
periods, as well as indicate that individual packets will be "lost", meaning that they will not be recognized
at the receiver.

There are an infinite number of possibilities, but here are two:

o Poll each buffer in order, but if more than one packet is waiting in a buffer take only one packet, the old-
est, for transmission.

e At each cycle take a packet from the buffer the closest to overflow; that is, the one with the largest
number of packets stored.

The probability of j packets sitting in the buffer is given by (3.129), o’ (1 - p).

The average number of packets in the queue is given by

M=3joa-p==0— . as.17)
i= -P

The summation of this series can be obtained by differentiating the series ¥ /.
=0
This follows from the summation

> Pa-p)=p" . (18.18)
M
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With a finite buffer the multiplex is no longer modeled as an M/M/1 queue, so the previous results are not
directly applicable. However, the probability of a buffer that can hold M packets overflowing should be
approximately the same as an infinite buffer exceeding M packets waiting for transmission.

The average length of a packet is S00 bits divided by 1 Mb/s, or 0.5 msec. The utilization is therefore
0.5/3.0=0.17.

The utilization of the output link must be 5 times the incoming links, or 0.833.

The average service time on the outgoing link is the time it takes to transmit 500 bits at 2 Mb/s, or 0.25
msec. The queueing delay is therefore
0833
0.25 1-0833 — 1.25 msec . (18.19)

If we transmit our packet at time ¢¢, constrained to be the beginning of a time-slot, a collision occurs only if
a packet (including retransmissions) arrives at another node in the interval [t — 141,00]. The probability of
this occurring is € ~?=, and hence we get the load equation px = poue ~*~ leading to a doubling of
throughput. This equation is plotted in figure 18-9.

CHAPTER 19: SOLUTIONS TO PROBLEMS

19-1.

19-2.
€))

®)

If we use the precoder plus (1 — D) filter, we must connect the echo canceler after the precoder, since it is
nonlinear in the sease that it cannot be modeled as a continuous-amplitude transversal filter. We can con-
nect the echo canceler before the filter, since it is linear, and the filter will simply be a part of the echo path.
It is in fact advantageous to do so, since for binary transmission the filter output has three levels and the
input two, simplifying the "multipliers” in the echo canceler. An alternative would be to directly code the
input signal to a three-level signal (zero-bits to zero level, one-bits to alternating positive and negative lev-
els). In this case, the coder output, a three-level signal, would be connected to the echo canceler. Thus, the
precoder realization is probably more attractive because of the simplification to the echo canceler.

Either 7200 (R = 3) or 9600 Hz (R = 4) could be used. The tradeoff is that the former rate would allow a
lower multiply rate in the canceler, and the latter would result in simpler anti-alias and phase-splitter filter
designs since there would be a greater guard-band between the highest signal frequency and filter cutoff
frequency.

Assume R =4. For interleaved cancelers, each canceler would require 32>2.4 = 76.8 thousand complex
multiplies per second, and all four cancelers would require 307.2 thousand complex multiplies per second.
For the single canceler connected to the transmitter output, the canceler would have 32x4 = 128 taps, and
would calculate its output at a rate of 9600 Hz, for a multiply rate of 1228.8 thousand multiplies per second
(four times higher than the interleaved cancelers).
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19-4.

As discussed in Chapter 6, we can use a phase splitter followed by demodulator as shown below:

ECHO
REPUCA
FROM BpE PHASE | + 10
HYBRID SPLITTER RECEIVER
e -jat
Alternatively, we can use the demodulator followed by bandpass filter as shown below:
ECHO
REPLICA
FROM % '% , T
4%)—':3 BPF
HYBRID RECEIVER

e it

In this case the bandpass filter serves two purposes — elimination of out-of-band noise and rejection of
double frequency components. Both configurations generate a baseband complex envelope signal, allow-
ing us to0 do complex-error cancellation and giving us a demodulated signal ready to be fed into the
receiver.

No, because the signal is baseband we need both real and imaginary parts. We could modulate to passband
again after cancellation and take the real part, but this would be silly.

A bascband transversal filter echo canceler with complex coefficients and no modulator will be appropriate.
This configuration would be identical to the complex-error canceler described in the chapter.

This configuration eliminates the modulator in the echo canceler, which is an advantage. It is probably the
appropriate configuration for the case where the two directions are synchronous. But where they are not
synchronous, it requires interpolation of the complex envelope, which requires two lowpass filters rather
than one.

Four cases must be considered:

1. Complex-error and baseband transversal filter. The transversal filter requires N multiplies, each with
four real-valued multiplies, and the modulator requires four multiplies, for a total of R (4N +4) real-valued
multiplications per baud.

2. Complex-error and passband transversal filter. The transversal filter requires N multiplies, each with
four real-valued multiplies, and the modulator requires no multiplies, for a total of R (4N ) real-valued mul-
tiplications per baud.

3. Real-error and baseband transversal filter. The transversal filter requires N multiplies, each with four
real-valued multiplies, and the modulator requires two multiplies (since only the real part of the output is
required), for a total of R (4N +2) real-valued multiplications per baud.

4. Real-error and passband transversal filter. The transversal filter requires N multiplies, each with two
real-valued multiplies (since only the real part of the output is required), and the modulator requires no
multiplies, for a total of R (2N') real-valued multiplications per baud.

Clearly, assuming that it meets the other system requirements the real-error canceler with passband
transversal filter is the most attractive. It has approximately half the multiplication rate of the other
configurations.
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19-5.  One possible configuration is shown below:

ECHO
REPLICA
FROM pHASE |+ YO
—9 BPF =>é5==> e =
HYBRID SPLITTER RECEIVER

We use a complex-error canceler, which generates an analytic signal represeatation of the far-end data sig-
nal. We can interpolate this far-end signal using a complex lowpass filter, followed by sampler synchro-
nous with the far-end data signal. Another possibility would be to put the receive demodulation after the
phase splitter and before cancellation (problem 19-3), thereby simplifying the canceler.

19-6.  If we approach this problem intelligeatly it is trivial. First we draw the channel model and corresponding
baseband transversal filter model below:

ag
LYy Yy
TRANSVERSAL h(e)
FILTER
. !
e/u.(k +T)T eiOU
Ct < - l
(k+=)T
Then note that the two modulators can be moved through &e difference operation and combined into a sin-
gle modulator as shown below:
ag
y ‘l‘f
TRANSVERSAL k()
FILTER
e
€ -

" 1

ja(k+ ‘E)T
Since €

. ]
—fan(k + =T
lEgl=1le 1 R Ei ! (19.114)

minimizing 1E; |2 is equivalent to minimizing the variance of the difference operation output. But the
latter problem is identical to the passband transversal filter case with A; replaced by A, and k; replaced by
h; . Hence the solution is the same with a simple redefinition of @ and p.
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19-8.
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~jan(k + L T

As long as we deal with (e fad+g) E,) rather than E, for the baseband transversal case, there is an
equivalence between the two echo canceler structures (exercise 19-2). The convergence formulas will all
apply as long as we replace d; by a, and k; by h,. The convergence rate and asymptotic MSE are not
affected by h;, so that substitution makes no difference. If the transmitted data symbols are uncorrelated
and have uncorrelated real and imaginary components, then d; and a; have the same second order statis-
tics, and thus that substitution will not affect the convergence rate and asymptotic error. Of course we do
have to assume that the two cancelers have the same number of coefficients!

The egfectivc step-size of the algorithm is proportional to the norm-squared of the echo impulse response
lic, U4,

We could calculate this norm squared, and normalize the step-size by this value. In fact, since we expect
the echo impulse response to vary slowly, we need recalculate this norm-squared only occasionally.

We get
ORe E; ))? dRe(E
ORE ) _ o per, ) RLE) (19.115)
20 20
where the second term is
aRC[ Eg }

= (B + D)
= (- jellc,”a, + je 1% a;) (19.116)
= ~Im{e 7% a; ) =Im{ /%, 4, } .
Subtracting a constant times the derivative from last phase estimate, we get
6, =6,.1 — BRe(E; ) Im( e/, 5, ) . (19.117)

This can be interpreted as shown below:

Rk Ek p
CIO c;ﬁk
Efia Ciik
R,

@) ®)

Shown are two cases, where the echo replica is above and below the real-axis. In both cases the real-error
is negative, but the interpretation as to whether the phase estimate should be increased or decreased is
opposite. We therefore multiply by a quantity which is positive if the echo replica is above the axis and
negative if below, Im{ e/ 6c‘ 'i, }.
The correction is

Re((e’® - e/%)c, 8, JIm{ 70 3; ) =

[(e’® - /%), "y + (€7 - e 79 a1 e 7y a; — 7%, "8,] .

The expectation of the cross terms in (19.118) is zero in view of exercise 19-7. Hence the expectation of
(19.118) becomes

(19.118)

Y62l ¢, 11%sin(0; — 6;) . (19.119)

As might be expected, the correction is half as large as in the complex-error case, and hence for the same
step-size P the convergence is slower.



