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CHAPTER 1: SOLUTIONS TO PROBLEMS

I-I.
(a) The overload point of the AID converter (largest signal that can be accommodated) willbe chosen on the

basis of the signal statistics and the signal power so as to keep the probability of overload low. Assuming
the signal doesn't change, we would want to keep the overload fixed. Hence, the A would be halved.

(b) Generally the error signal would be halved in amplitude. This would increase the SNR by 2010g102 =6 dB.

(c) The bit rate would increase by f., the sampling rate.

(d) We get, for some constant K,

and thus

SNR =6n +K, fb =nf., (1.1)

6fb
SNR = f. +K. (1.2)

In particular, the SNR in dB is directly proportional to the bit rate.

1-2. Each bit error will cause one recovered sample to be the wrong amplitude, which is similar to an added
impulse to the signal. This will be perceived as a "pop" or a "click". The size of this impulse will depend
on which of the n bits of a particular sample is in error. The error will range from the smallest quantization
interval (the least-significant bit in error) to the entire range of signal levels (the sign bit in error).

1-3. The most significant sources will be the anti-aliasing and reconstruction lowpass filters, which will have
some group delay, and the propagation delay on the communication medium. Any multiplexes (Chapter
18) will introduce a small amount of delay, as will digital switches (Chapter 18).

1-4. Assume the constant bit rate is larger than the peak bit· rate of the source. Then we might artificially
increase the bit rate of the source up until it precisely equals the bit rate of the link by adding extra bits.
We must have some way of identifying these extra bits at the receiver so that they can be removed. A
number of schemes are poSSIble, so here is but one: Divide the source bits in to groups called packets with
arbitrary length. Append a unique sequence of eight bits, called a flag, to the beginning and end of each
packet, and transmit these packets on the link interspersed with an idle code (say all zeros). The only prob­
lem now is to insure that the flag does not occur in the input bit stream. This can be accomplished using
coding, with techniques described in Chapter 18.
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CHAPTER 2: SOLUTIONS TO PROBLEMS

2-1. We start out with an easy problem! Looking at figure 2-2, when the imaginary part of tile impu,lse response
is zero. we see that the system consists of two independent filters. one for real part and one for imaginary
part of the input. with no crosstalk. The imaginary part of the impulse response results in crosstalk
between the real and imaginary partS.

2-2. Doing the discrete-time part only. write the convolution sum when the input is eia»:T

(2.142)....-
Changing variables.

.-
.-

(2.143)

The output is the same complex exponential multiplied by a sum that is a function of the impulse response
of the system h,. and the frequency 00 of the input. but is not a function of the time index k. This frequency
response -H(e irAT)= L e-i-Th,..-
is recognized as the Fourier transfonn of the discrete-time signal h,..

2-3. The output of the impulse gen~r is defined as-w(t) = L Wtl)(t -kT).
t-

(a)

-YUCI»=FUCI» L Wte-id;T
t-

=FUC1»H (e iIDT).'! i GU(00 + m 2n»)X (j(CI) + m 2n»
T ..._ T T

(b) Yes, you can see from a. that ifwe add two input signals, the output will be a similar superposition.

(c) If F U00) =0 for 1001 > 7tIT then for 1001 ~ 1Cf[' we have

YUCI» = ~FUCI»H(eiCDT)GUCI»)XUCI»

and the system is time-invariant with frequency response ~F Uoo)H (eiCDT)G U(0).

(2.144)

(2.145)

(2.146)

(2.147)
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2-4. In continuous-time:

I'X(I), 2dt =F.T.[X(I)xe(t}] ••0

=[_IXUw) *Xe
( _ jw)l

27t ] ••0

=~1'XUW),2dw.

3

(2.148)

(2.150)

(2.149)

(2.151)

2-5.

2-6.

2-7.

2-8.

Discrete-time follows similarly.

We get that the energy of the discrete-time signal is
ffIT

L IXt 12 = ; f ILXu(w+m
2
;»I2dW

t ~ •

and there is evidently no way to relate this to the energy of the continuous-time signal. However, if the
continuous-time signal is properlybandlimited. then the sum inside thP. integral includes one term, and the
right hand side is proportional to the energy. In fact, the energy of the discrete-time signal in this case is
Irr2 times the energy of the continuous-time signal. As the sampling rate increases. the energy of the
discrete-time signal grows without bound. since we have more and more samples in the summation.

The transfer function is H (z) =1+ z-1 and the frequency response is H (e jCDT ) =1 + t-j(ilT. The output is
Yt =A cos(CJl#!" + 8) where the magnitude response is A =-.12(1 + cos(WoT» and the phase response is

[

• CJloT WoTI_ [ sin{C!loT)] _ 2sin(T)cos(T) rooT
8=tan 1 =tan 1 =--.

1+ cos(rooT) ~ rooT 2
2cos \-)

2

The phase is linear in roo.
The Fourier transform ofa real system is conjugate symmetric. so

H Uw) =A (oo)e j 8(tIl) =He (-jw) =A (w)e- j 8(-Gl).

since A (w) = IHUw) I is both non-negative and symmetric. Hence. 8(w) = -9(-eo).

From problem 2-7 the phase response of a real system is anti-symmetric, so the frequency response of the
phase shifter should be

HUw) =e-j9cp«(il) =cos(8) + j sgn(w)sin(8), (2.152)

where we have used the symmetry and anti-symmeuy of the cos and sin. respectively. This becomes

h (I) =8(1 )cos(8) - ..!...sin(8). (2.153)
Xl

(2.155)

2-9. IfRe( a} > 0, then we can use the Fourier transform pair

y(I) =-._1_ <-> Y(jw) =21te GCOu( - (0) (2.154)
)1 +a

w~ere u(oo) is the unit step function. Then we observe that X(I) is Y(I) convolved with an impulse stream

L 8(1-mT), so its transform is
IN =.......

XUOO)=Y(jW)~ i: ~(CJ)-~m)
111=-

2T2 f ~00 - 21C m)e 2ItIo&aIT •
T ".=_ T

If Re ( a ) =0, then we can use the transform of 11jl, convolving it again with an impulse stream to get
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-2r - 2n-- L ~CI)- -m)sgn(CI).
T ••_ T (2.156)

2-10. Given YUCI) =H (jCl)X (jCl). then ifXUroo) =0 then YUO>o> =O.
2-11.

coswct

•
a(t)

a(t) y(t)

sinwct
b(t) •-jsgn(CI)

b(t)

coswct

2·12.

(a)

y (t) _J'....h---"'J

..fi·emjwct

LOWPASS

FILTER
u(t)

(b)

LOWPASS

FILTER
a(t)

y(t)

LOWPASS

FILTER
b(t)

2-13.

(a) From (2.7).

(2.157)....-
Changing variables.

(2.158)
A=- liE .....

Because the system is time invariant. H (z ) does not depend on k.
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(b)

2-14.

If we constrain z to lie on the unit circle, Iz I = I, the two results are identical.

Let the response to zt be Yk. By linearity and problem 2-1, ifthe input to the system is zt.... then the out­
put is z"'Y1: =z1: z"'. By time invariance the response to that same input is Y1: ..... Setting these two
responses equal,

(2.159)

and setting Ie = 0 we get the desired result

Y.. =YoZ"'. (2.160)

The transfer function is a complex number Yo. which is evidently a function of z, so we define the notation
Yo = H (z) to reflect this property.

2-15. The Z ttansform is

-X(z) = L z--a"'u,....- (2.161)

For any b such that Ib I < 1 we have the identity

_1_ = ib'" (2.163)
I-b ... ..0

which is easily verified by using long division on the left hand side. Therefore, in the region Iz-1 I < I~ I'

the Z transform is

1
X (z) = l-az-1 ' (2.164)

Outside of this region, the Z transform does not exisL If Ia I> I, we easily see from (2.102) that the signal
goes to infinity as Ie -increases. Not coincidentally, the region in which the Z transform exists does not
include the unit circle, implying that the Fourier transfonn does not exist either.

2-16. If the response of the system to Zl is y(t), then by linearity the response to Zl"" =Zl z" is z"y(t). By time
invariance, the response to Zl"" is Y(I+II). Setting these two equal, y(t + II) =t"y(t), and setting t = 0,
Y(II) =Y(O)z" •

Clearly e llt =z I if z = e 6
, i.e., if s =j m, then z =ei(i), a point on the unit circle.

Substituting into the convolution,

(2.165)

which implies that H (s) is an eigenvalue of the system.
2-17.

(a)

in both cases.

(b) Izl> lal and Izi < lill respectively.

(c) lal < I and lal > I respectively.

z
X(z)=--

z -a
(2.166)
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2-18. Since

1 =1 +az-1+a2z-2+ ...
1 -1-az

we get the signal of problem 2-17a, where the ROC is laz-11 < lor Izi > lal. Also,since

z

- _a_ = _ .!.(1 +.!. + (.!.f+ ... )
1-.!. a a a

a

we get the signal of problem 2-17b where the ROC is Iza-11< lor IzI < a.
2-19. First we perform a partial fraction expansion.

A B
X(z) =;-:a + z - b

where

(2.167)

(2.168)

(2.169)

a2 b 2
A = --, B = -- (2.170)

a -b b-a

(a) The ROC is Iz I > Ib I, and applying problem 2-17a to both tenns in the partial fraction expansion,

~t =A'at +B·bt (2.171)

for k ~ 0, and zero otherwise.

(b) The ROC must be Ia I < Iz I < Ib I and hence, applying the results of problem 2-17b,

{
A'at, k ~O

Xt = -B'bt, k <0 (2.172)

(c) For (a) the signal is not stable because b t -+ 00. This is because the ROC does not include the unit circle.
For (b) the ROC does include the unit circle so the signal is stable (this is the only ROC for which the sig­
nal is stable).

2·20. Consider the zeros, and the poles willfollow similarly. Assume that z0 is a zero, and hence
Ii

~ btzt =0 (2.173)
t~

and taking the conjugate of this equation.
Ii Ii
~ bk·(Z~r4: = ~ bt(z~r4: =0
t~ l~

and we conclude that z; is also azero.

2·21. The easy terms are

(2.174)

(2.175)

1 1
H min(z) = (1- 0.SeitrlSz-1)(1- 0.Se-itrlSz-1) = 1-coS(1tI8)z-1 + 0.25z-2 (2.176)

but the maximum-phase term requires some more work. Writing one maximum-phase zero in monic form,

(l_1.eitrlSz-l) =Z-I.( _1.e i trlS )(l_1.e -itrlSz ) (2.177)
223

and considering both zeros we get L = -2, B =(- 213)2 = :' and

4 4
H max.(z) = 1- "3cos(7tI8)z + '9z2 . (2.178)
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2-22.

(a) Let

7

2-23.

-I •
A(z)= z -c (2.179)

1- cz- I

and note that G (z ) =H (z)A (z). A (z) is aIlpass (see example 2-9). so

IG(eimT)1 = IH(e imT ) I IA(e imT) I = IH(eimT)1 (2.180)

It has the effect of moving a zero Ic I < 1 outside the unit circle without changing the magnitude response.

(b) Using the hint, hI.; can be obtained by putting'" through transfer ftmction (1- cz- I
). so

hI.; =11.; - cll:.-l • (2.181)

Similarly gl.; can be obtained by putting I I.; through transfer function (z-1 - c1.
gl.; =/1-1- c·/I:. • (2.182)

Calculating the difference between the energy in each sample in hI.; and gl:..

IhI.; 12_ Igl.; 12= III.; - cll.;_112- 1"'-1;'" c·h 12= (1- Icl1(1/1.; 12_ Ih_1 12) (2.183)

and calculating the difference in energy for the firstN samples,
H
L(lhI.;12-lgl.;l1=(1-lcl11/HI2~0 (2.184)
I.;~

exploiting the fact thatI j; is causal (why?), and IcI < 1. and hence1-1 =O.

Using the allpass transfer function in example 2-9 with Ic I < I, define a signal WI.; with Z transfonn
X (z)/(1- cz-I

). Note that WI.; is causal also (why?). lben ~I.; is obtained by putting WI.; through a system
with transfer function (1- cz- 1

) and YI.;"is obtained by system (z-I - c1. From here, the derivation is ident­
icalto problem 2-22, with the result

H

L(I~1.;12-IYI:.12)=(1-lcl1lwHI2~O (2.185)
I.;~

(2.187)

2-24. Using (2.44) to factor H (z) into the product of minimum-phase and maximum-phase transfer functions,

L L. .... Hmax(z)
H (z) =Bz Hmin(z)Hmax(z)Hu:ro(z) =Bz Hmin(z)HIIWt(liz). .... Hv::ro(z) . (2.186)

H max (liz)

Now note that H~x (liz j is minimum phase, and from example 2-11 H max(z )/H~x (liz1 is allpass. Furth­
ermore, ZL is allpass. Hence,

H (z) _ zL H max(z)
aIIpaa - H':'"(liz j

and

Hmin'(z ) =BHmin(z )H';'X (liz j.

2-25. H·U w).

2-26.

(a) The nonn of both signals is unity. The inner product is

eo

f
3 1 1

<51.52> =_Sl(t)S2(t)dt =1''4 - 1.'4 ="2 .

(b)

(2.188)

(2.189)

(2.190)
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(c) There are many possibilities. but here is one:

(d) Define an orthononnal basis for the subspace spanned by 51 and 5zas:
1

--~ ---m
o 0.75- +1(t) 0 0.751 +z(t)

A signal orthogonal to S1 that is a linear combination of 4>1 and 4>z is 2.cz,1 - ~ .cz,z.

(e) The projection of Ss on the two basis vectors is

"'3 1
<SS.4>I> =-"8 <Ss.4>z> =- i

and hence the projection on the subspace is - ~ ·eIll - ~ .cz,z.

(2.191)

2-27.

(a) Clearly if two signals are bandlimited. then their weighted sum is also bandlimited.

(b) Let X be in the subspace. By Parseval's theorem (problem 24), for any Ye8,
- w
lX(I)y·(t)dt =~.LX(jm)Y·Um)dw=O. (2.192)

Clearly. this is satisfied if and only ifX(jm) = 0 for ImI S w.
(c) Let this projection be p. then <S1 - P,Y> =0 for all Ye8. From (b) this implies that S lUm) =P Um) for

ImI S W, and of course since Pe8 , we must have that PUw) = 0 for fmI > W. Hence,
1 -jm

SIUm)=fe- j O)ldt= 1-~ (2.193)
6 Jm

and

1 1 l-e-jfb .
p(t) = "l_ J. eJfAl dw. (2.194)

-'l~ -1 J m
Unfortunately this integral cannot be evaluated in closed fonn.

2-28. Let XleM 1 and X'].£M z. An element of M 1fiMz can be written in the form Xl + Xz. Hence it suffices to
show that

<X-{PM.(X)+ PM.(X»,X1 + Xi>=0

Expanding the left side, it equals

<X-PM.(X),xl> - <PM.(X),xl> + <X - PM.(X),Xi> - <PM.(X).Xi>

But by the definition of projection

<X -P M,(X),Xl> =<X - PM.(X),Xi> =0

and because M 1 and Mzare orthogonal subspaces

<PM.(X),Xl> =<PM,(X),XZ> =0

and hence the result is established.

(2.195)

(2.196)

(2.197)

(2.198)
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2-29. Defining

z-l'H <-> h(t - kT) ,

the Schwarz inequality Slates that

9

(2.199)

Ip4(k)1 S; IIHII·IIz-l·HII (2200)

and since it is easy to verify that the signal and its time-translate have identical nonns, this becomes the
desired result.

2-30. Multiplying out the magnitude squared in (2.97) we get

r WT
-I log [1- 2acos(9 - CJ)T) + 0 2] dCJ). (2201)
21t-'ffIT

Changing variables, this can be written

1 e+1t
21t I log (1 - 2a cos CJ) + 01 d CJ) . (2.202)

1-1l

Since cos co is periodic. the kernel of the integral is periodic. Since we are integrating over one period, we
can rewrite this as

1 It

-2 f log(l-2acosCJ)+01dCJ).
1t -It

Finally, since cos CJ) is symmetric, this is equal to (2.98).

CHAPTER 3: SOLUTIONS TO PROBLEMS

3-1. Taking the first derivative,

a
as c1lx (s ) =et>x (s)QL + crs)

and setting s =0 we get E eX] =J.L Similarly, the second derivative is

if2 c1lx (s) = : et>x (s){JL + o2s) + et>x (s)a2
as as

and again setting s =0 we get E [X 2] =(JL2 + 02). The variance is therefore cr.
3-2. We can use (3.17) and carry out the integral.

3-3.

(2.203)

(3265)

(3.266)
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.J2iQ (y) =j.!..(ae-a'J2dex)
)' ex

1( -rl'iI- -I 1 - clJ2d=- -e - -e exex a 0:-
)'

=.!..e-a"'i Ia- - j !.,. e-a'J2d ex .
ex )'~

The bounds then follow from the fact that

.0< j _1'1. e-clJ2dex~ -l,-jae-a'J2 d ex =-\-e-a'J2.
)' ~ y )' y

DIGITALCOMMUNICATION

(3.267)

(3.268)

3-4.

(a) Defining the MSE as £2.
£2= E[IX - aYI 2] =E[IXI2] + la1 2E[IY12] -2Re(a-E[XYJ}

and taking the derivative with respect to the real and imaginary parts,

~e( a }E[IYI1= Re(E[XYJ }

Im( a }E[IYI2]= Im(E[XYJ}

or

(b) The problem can be restated as: Find the vector in the subspace spanned by (Y) that is closest to X.

(c) By the orthogonality principle,

<X-a·Y.Y>=O

or

3-5.

(a) Noting that

(3.269)

(3.270)

(3.271)

(3.272)

(3.273)

(3.274)

(3.275)
EIEI;'1 2 =E lEI;'-EI; +EI; 12

=EIEI;'-EI; 12 +E lEI; 12 +2Re( (EI;' -EI;)£I;-) .

Since the filters generating both EI; and EI;' have unity coefficients at delay zero. the filter generating
(E,:' - EI;) has a zero coefficient at delay zero. and this signal is a function of only past inputs
Xt - lo XI:-2•...• and in view of property (3.184). the third term in (3.275) must in fact be zero.

(b) Since EI: is a linear combination of XI: .XI:-!•...• it follows from (3.184) that

E [EI;.... EI;J =RE (m) = 0, m>0, (3.276)

and since the autocorrelation function has conjugate symmetry, it follows thatR£(m) =0 for all m ~ O.

3-6.

(a) The problem can be restated as: Given a sequence of vectors XI;, - 00 < k < 00, with inner products

Rx(m) =<XI;.... ,XI;> (3.277)

that are independent of k , given a subspace M spanned by (XI;-...;n > OJ, find the vector XI; in M that is
closest to the vector XI:, with error vector EI; =XI; - XI;.

(b) By the projection theorem, for every vector Y EM, we must have that
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and in particular

<EI;.Y>=O

11

(3.278)

<EI; .Xl ..... > =O. m > 0• (3.279)

Thus the prediction error vector is orthogonal to the past (the vectors used in the prediction estimation).
Since EI;-IIC eM. m > O. it follows that

<£1; .£1; ..... > =O. m > 0 • (3.280)

or equivalently RE(m) =O. m 'I; o.
3·7.

Ry(O) =E[IYl 11 =E[IX(kT)1 2].

Observe that since X (I) is WSS

Rx(O)=E[IX(/)11 =E[IX(I +'t)1 2]

for any t. Define

t=kT-I

and the result follows.

3·8. Mechanically.

E[ApAqArA.r] =SpqSr,r + Sp,Sq.r + SprSqr - 2S pq SprSpr.

3·9. Observe that from (3.64)
ClIo

JSx(joo)doo =JSy(joo)doo.
CA.

and from the definition of the power spectrum,

1 -J .
Ry(t) = 2n _ Sy(j OO)e /01td 00.

(3.281)

(3.282)

(3.283)

(3.284)

(3.285)

(3.286)

from which the first result follows. To show that Sx(j (0) is non-negative everywhere. assume it is negative
over some region from 00.. to OOb. Then note that..

JSx(joo)doo (3.287)
CA.

must also be negative. which implies that Ry(O) is negative. But

Ry(O) =Jy~t)dt

which must be non-negative. a contradiction.

3·10. The power spectrum is

(3.288)

No.1 F (e jfDT ) 12 =N o·F (ejfDT)F· (e jfDT) (3.289)

where F (e iilff) is the discrete-time Fourier transform of f (kT). Since the inverse Fourier transform of
F· (e iilff) is r (-kT), the result follows immediately.

3-11.

Rxr(t) =E[K(I + t)Y·(/)]

=E[Y·(p - t)X (P)] = R~(-t).

No it may be complex-valued.

(3.290)
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3-12. Ifthe steady state probabilities exist they must satisfy

p(j) = 1: p(jli)p(i) ,
i. Or

and also must satisfy

DIGITALCOMMUNICATION

(3.291)

(3.292)

(3.293)

1: p(j) =1.
j« Or

Define the row vector of state probabilities

7tt =[Pt(O)," . ,pt(M)] .

Then the system of equations in (3.96) can be written more concisely as

7thl =7tt P. (3.294)

The condition that the state probabilities don't change through a state ttansition gives the desired steady­
state probabilities.

3-13.

(a) The signal flow gtaph j!, shown below:

(b) The corresponding equations are
N-l

PO<z) =1 + 1: PZ-1P i (z)
i .0

,P;(z)=qz-1Pi-1(Z) ,I ~ i ~N-l

PN(z) =qz- 1PN_1(Z) + Z-lPN (z) .

Solving these equations and using the identity
N-I. l-rN
1: r'=--

i =0 1- r

we get the result.

(c) This follows directly by differentiation.

(d) For this case,

(3.295)

(3.296)

(3.297)

(3.298)

f N =q-N (3.299)

which is what we would expect. The probability of a head "is q, the probability of N heads in a row is qN,
and on a relative frequency basis N heads in a row will occur once out of q-N trials.
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3-14.

P('I'o.'I'lo· ., .'1',,) =p('I'" I'I',,-lo" .•'I'O)P('I',,-lo· ..•'1'0)

=p('I'" I'I',,-I)P ('1',,-1•...•'1'0>

=p('I'" I'I',,-I)P ('1'..-1 1'1'..-2 ... •'I'O>P('I',,-2.··· .'1'0)

=p('I'" I'I'..-I)p ('1'..-1 1'I',,-~P('I'..-2• ••••'1'0) = ...

3-15.

13

p('I'...'I'''+h·· .•'1'"....)
p('I'"I'I'..+lo···.'If..+"')= p(\I1 ... ,,( ).

TlI+1t 'TlI""
Using the result in problem 3-14 on both the numerator and denominator and canceling the tenns that are
equal. this becomes

3-16.

( I) P('I'lI.'If,.'I'.r)
P 'I'...'I'.r '1', = p('If,)

= ( I )[ p('I', 1'I'.r)P('I'.r)]
P '1'" 'If, P ('1',) •

where the last equality follows from problem 3-14. The result now follows using Bayes' rule.

3-17. The signal flow graph is in shown in figure 3-22a. The set of equations governing this signal flow graph is

PO<z) =0.5z- 1P O(z) + 0.5Z- 2P 1(z) + 1 (3.300)

P I(Z) =0.5z-lp l(z) + O.5Po(z) .

Solving these linear equations for P rAZ ).

P O<z) = 1 - 0.5z-
1

= 1 _ 0.5z-1 1 .
1 - z-1 1 - Z-1 I - z-1

Inverting the Z transform (using problem 2-15 ).

p" (0) =u" - 0.5u,,_1t

where u" is the unit step. This is sketched in figure 3-22 (b). ComputingPI(z) similarly.

PI (z ) =O.5z-I 1 -1'
l-z

Inverting the Z transform. again using problem 2-15.

p,,(l) = 0.5u"_I·

(3.301)

3-18.

(a)

The Markov chain is not stationary.

The Markov state diagram is shown in figure 3-23 (a).

The diagram shows the independence required for the random process to be Markov. assuming that the
coin tosses are independent of one another.

(b) The signal flow graph is shown in figure 3-23 (b).

(c) Writing the set of equations and solving them.
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J Pk(O)

1 --t----,

-1
O.5z

-1
O.5z

1
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-1 (a)
O.5z

(b)

o
I
1

I
2

I
3

I
4

...
k

o 1 2 3 4

Figure 3-22. (a) The signal flow graph describing the state probabilities of the parity check ex­
ample when the initial state is zero. (b) The state probabilities as a function of k.

Heads Heads

rn-== Heads
Tails or

Tails
Tails (a)

(b)

Figure 3·23. (a) Markov chain description of the coin toss experiment of problem 3-18. (b)
Signal flow graph.

Piz) z
-1-= 4z 3 -6z2+z + 1

(3.302)
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3-19. Swting with (3.121), calculating the optimum value of s, we get for the first bound

:'=e'
a

15

(3.303)

and finally plugging into the bound we get the resulL

3-20. This follows immediately from the fact that N (II) is Poisson distributed with parameter a =AtI' Hence
from (3.120) we get

E[N(/I)]=Atl

Var[N(/I)] = Atl'

3-21. Writing the joint probability as a conditional probability, the desired probability is

PN(fi)IN(f,)(k+nllc)'PN(f,)(k) •

The left term is the probability of n arrivals in time interval (/2 - 'I), or

[A.{/2- /1)]" 4(/.-',)
, en.

and the second probability is

(Atl)k 4.r.
k"!"e .

Taking the product, the result follows immediately.

3-22. The process is governed by the differential equation

dq~t) = (j-l)AI{j-I(/) _ jA.qj(/)

which has Laplace ttansform

and iterating we get

_ >.i-I(j-l)!
Qj(s) - (s + A)(S + 2A,)···(s +jA)'

It is non-trivial to derive. but the inverse Laplace ttansform is

qj(/) =e4.r (1- e4.ry-l.

(3.304)

(3.305)

(3.306)

(3.307)

(3.308)

(3.309)

(3.310)

(3.311)

(3.312)

3-23.

(a) Since the mean value ofN(/) is given by (3.135), differentiating this integral we get the desired expression.

(b) This also follows easily from the fact that the expectation of the convolution is the convolution of the
expectation.

(c) This again follows directly from the interchangeability of expectation and differentiation.

(d) We will just derive the first equation, the second is similar. Fll'St note that

Rwx(/lh) =E[w(tl)X(/~]

=E [W(/I) Ih('t)W(t2 - 't)d't]

=Ih(t)Rww(/tJ2-t)d't

which we recognize as a convolution in the second argument of the autocorrelation function.
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3-24. Note that

(3.320)

(3.318)

(3.313)

(3.319)

(3.317)

(3.314)

(3.315)

E [N(ll)(N(I~ -N(II))]=E [N(/l)N(I~]- E [N"{II)].

Independence implies that the expectation of the product is the product of the expectations

E [N(I IXN (I,) - N(ll)}]=E[N(II)]E[N(I~ - N(II)]

=A(II)(A(I~ - A(II»'

Since N (I) is a Poisson random variable, from (3.135)

E [N"{II)] =A"(II) + A(I I)

from which the result follows immediately with some min<X: algebraic manipulation.

Noting thatRNN(II.t~is continuous at 11 =12. take the derivative first with respect to 12.

ORNN(II.t,) {A(llr)J..I~. II < 12
RNi/(II.I,) = 01 2 = (1 + A(II»A(I~. 11 ~ 1£ (3.316)

Now take the derivative with respect to 11. first noting that there is a discontinuity of siz~ A(I~ at 11 =12,

ORNi/(II.t~
RiIN(ll,l,) = 0 =A(II)A(I~ + A(/,)O(II - I,).

II

Finally, we convolve this result with first h (I I) and then h (I~ to obtain the autocorrelation of shot noise.
First convolving with h (I I),

RiIN(l 1,1,) *h (I I) =[A(I I) *h (I I)]A(I,) + A(/~h(11- I,)

and then convolving with h (I,), we obtain (3.199).

Substituting a constant rate into the autocorrelation of (3.198), the autocorrelation is

Rxx(II.t,) =')..2H 2(O) + ')..Jh (-u)h (12 - I 1- u) du

which is a function of t =12 - 11 and hence the autocorrelation is

Rx('t) =')..2H"{0) + 'A.h(t) *h('t).

3-26.

3-25.

3-27.

Taking the Fourier transform of this expression we get the power spectrum,

Sx(oo) = 27tA 2H 2(O) ()(oo) + ')..IH(j (0) 12• (3.321)

Note that the power spectrum has a d.c. tenn. corresponding to the expected value of the shot noise, and a
term proportional to the magnitude-squared of the filter transfer function (as expected).

The expected value of the shot noise is
,

E[X(/)]=Ao Jh(t)dt (3.322)

which is proportional to the step function.

3-28. Ifthe filter has impulse response h (I) and transfer function

H (j (0) =A (oo)ei+(Ol) (3.323)

then the response of the filter to Ao is AoA (0) and the response to the sinusoid is ')..IA (OOI)cOS(OOII + ~OOI»'
The mean value is the sum of these two signals.

3-29. The outputs are still obviously equally probable, p(O) =p(1) =~. From figure 3-20 we can calculate
Pll1(z),

(3.324)
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1 -1

S;(z) = 0.5· (I-Z-1)(;-~I-2p)Z-I) .

Recognizing that Ilx =~ and subtracting 02~1 from (3.325) we get
l-z

S+(z)- 0.25 _ 025
x 1- z-1 - 1- (1-2p)z-1 .

Calculating the two-sided spectrwn. we get

S (z) - 025 + 0.25 - 0.25
x - 1-(l_2p)z-1 1-(l-2p)z

which simplifies to the desired result

CHAPTER 4: SOLUTIONS TO PROBLEMS
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(3.32S)

(3.326)

(3.327)

4-1. The entropy is 0.81 bits. The rate is R =0.81 bits/second. There are many possibilities for the coder. Here
is one. Pair the coin flips and represent them as follows:

FLIPS BITS
IT 0
TH 10
HT 110
HH 111

The first occurs with probability 9/16. the second and third with probability 3/16 and the last with probabil­
ity 1/16. The expected number of bits per flip-pair is therefore 1.67. or 0.844 bits per flip. which is close to
the rate of the source. but not equal.

4-2.

R =175 trials/second.

A coder that will work is given by the following table.

outcome bits
a, 0
a? 10
a~ 110
a4 111

The average number of bits per trial is

1111
2""1 + "4.2 + 8. 3 + 8. 3=1.75.

(4.65)

(4.66)

(4.67)
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4-3. Suppose that Pi= py (Yi) where the set of 'Yi for i e {1.2,···.M}] is the alphabet for the random variable
Y. Define the random variable X =qi Ipi. In other words, an outcome Y =Yi results in the outcome
X =x =q;lPi' By Jensen's inequality,

E[log~] S log2E[X] (4.68)

but

and

II q.
E[log~] = L Pi log2-'

i -I Pi
Ii II

=L Pilog~i - L Pilog,pi
i-I i"'l

AI
E[X]= L qi =a.

i .. 1

(4.69)

(4.70)

The p-q inequality follows.

4-4. Let qi =11K in the p-q inequality and the result follows easily.

4-5. The size of the set over which X has positive probability is less than or equal to 2" , so the result follows
immediately from exercise 4-1.

4-6.

(a) It is easy to show that the input and output of this channel are statistically independent, and from this that

H(XIY)=H(X), H(YIX)=H(Y) ,

I(X ,Y)=O.

(4.71)

(4.72)

(b) Since the mutual information is zero independent of the input probability distribution, the capacity is also
zero.

4-7.

(a) For this noiseless channel, the output is equal to the input, so

H(XIY)=O, H(YIX)=O,

I(X ,Y) =H(X)=H(Y).

(4.73)

(4.74)

(b) The capacity is the maximum of H (X) over the input distribution, which is one bit because the input has
alphabet size of two.

4-8.

(a) We get

I (X ,Y) =H (Y) +P log2/' + (I-p )Iogil-p) . (4.75)

(b) Capacity is achieved when H (Y) is maximized. By direct calculation,

H(y)= -plog2/' -(I-p)logil-p)-q(l-p)log~-(I-q)(l-p)logiI-q) (4.76)

where q is the probability of the first input and (l-q) is the probability of the second This quantity is
maximized when the inputs are equally likely (q = ~), and the capacity is

C. = l-p (4.77)

The center output is called an erasure, and tells us nothing about what the channel input is, so it is not
surprising that the capacity approaches zero as p -+ 1.
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4-9.

(a) This follows from

19

The channel has" binary input and output, so all we need to show is symmetry. To do this, we solve part b.

The number of transitions from 0 to 1 or vice versa is binomially distributed. As long as there are an even
number of such crossovers, then the output of the channel willbe the same as the input The probability of
this occurring is

(b)

4-10.

(a)

(b)

qi qi
I:Pi log2- ~ I:Pi(- - 1) =0
i Pi i qi

where we have used the inequality logx ~~ - 1.

Substitute a unifonn distribution qi =11K. and the bound follows immediately.

L
PrI~(OIO) =Prlx(lll) = I: K..(I-pf-"p"

... 0

"nal

whece

(4.78)

(4.79)

(4.81)

(c)

K. = [~ = m!(::~m)! . (4.80)

Similarly. a channel error occurs if there are an odd number of crossovers. which occurs with probability
L

PYlx(lIO)=PYIX(OIl)= I: K",(l-p'f-"P"·
.. =1
.. odd

Pxly(OIO)=Pxly(lIO)=Pxly(Oll)=PXly(lI1)=~ as L -+-.

4-11. Suppose X has distribution Pi and Y has distribution qi' Then
IC

H(X) =- I:Pi log2Pi
i =1

IC

~ - I:Pilog~i •
i=1

where the inequality follows from problem 4-9. Meanwhile,
IC

H (Y) =- I: qi 10g2'/i
i-I

IC

= - (PI - 5)log2'/1 - (P2 + 5)10&2'/2 - I:Pilo~i
i =3

IC

=- I: Pi 10g2'li + [~Iog~ 1 - ~Iog~iI .
i-I

(4.82)

(4.83)

(4.84)

Since PI>P2. we have that ql > q2' and the term in brackets in non-negative. so by comparing with (4.83)
we get that H (Y) ~ H (X).

4-12.

(a)

.. 11 1
H (X) = - f 2a log2 2a cU = - log2 2a .- (4.85)
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(b) The variance ofX is

Hence we can write

and

DIGITALCOMMUNICATION

(4.86)

(4.87)

H(X) = logz(2.["3a). (4.88)

The entropy of a Gaussian is given by (4.21),

H(Y)=logz(~). (4.89)

Since 2"'3 < .J2Jr.e , then H (X) < H (Y).

4-13. Let the random vector Z denote the ordered pair (X"X). The set of all possible pairs of outcomes of Z is in
Ox xQr. Number the possible outcomes (in any order) from 1 through M , where M is the size of Ox mul­
tiplied by the size of Or. Then let Zi denote a particular pair of outcomes (x;y), where 1 :S i :S M. Then
define

(4.90)

Further, define

qi=Px(X)PY(Y). (4.91)

These Pi and qi satisfy the constraints of the p-q inequality. The p-q inequality then yields

II Pi II
-I (X ,Y) = - L Pi logz- :S logz L qi = a. (4.92)

i=1 qi i=1

Hence,

I(X,Y)~a=IOgz[ LL Px(x)py(y)l
JrEOr,Eo, J

:IOg{ L~o. Px(z)] L~o. pylY)]] =~I-O.
(4.93)

(4.96)

The second and third inequalities follow easily, using (3.27) for the third. The inequalities are equalities
when X and Y are independent'

4-14. This follows easily with repeated application of tile definition of conditional probability.

4-15. Using the inequality lo~(x):s (x-I),

N 0; 0;
C:s 2'1~2'Ncr =logz.J;· cr . (4.94)

Thus, as the number of degrees of freedom increases, the capacity approaches a constanL As we increase
N we have in effect more parallel channels to transmit over, and hence the factor ofN. However, since the
total input power is constrained to 0;, the transmitter is forced to reduce the power in each parallel chan­
nel, and hence the SNR on each channel decreases. In the limit, these two effects precisely balance one
another.

4-16. The implication of (4.47) is that for any set of outcomes Xl>' •• ,x,..

.!.(XI + .. , +x,,) =E[X] (4.95)
n

with high probability. Let Xi =10gzYi . Then

1
E[logzY] =-logz<YI ... y,,)

n
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with high probability. The result follows from this.

4-17. Define the random variable Y to have value 5 with probability 1/6 and value 1/5 with probability 5/6. Then
the money left after playing the game n times is

•
~=~n~ ~n

I-I

where Yi is a sequence of independent Irials of the random variable Y. Now, because of independence,

"E[M.] =100 n E[Yi ] =100. (4.98)
i-I

Surprisingly, this does not imply that the game is fair. From (4.39), with high probability, a set of out­
comes YI' ... tY" satisfies

M. =l00,n Yi =[2E{1osJ]1" =[0.34]". (4.99)
I -I J

This cenainly goes to zero as n gets large. I wouldn't play the game. at least not repeatedly.

4-18. The better estimate is (b). The argument is similar to that in the solution to problem 4-17.

CHAPTER 5: SOLUTIONS TO PROBLEMS

5-1. Note: We will make in this solution the additional assumption that the characteristic impedance of the line
is real-valued.

At some point on the line, let the complex voltage and impedance be V and I respectively. Then the
instantaneous power at that point is

Re( Ve icot }Re{Ie icot 1= .!.(V/e i24lt + V-I-e - i24lt + 2Re( VI- }). (5.106)
., 4

Evidently, the average power at this point is ~e( VI- }.

At any given point on the line, the voltage and current are

V
V(x)=V.(e-'J'%+re'J'%) I(x)= z;(e-'J'%-re'J'%). (5.107)

At the tenoination and input to the line. the complex power is

_ IV.12 2
V(O)! (0) =-_-(1- Irl + 2jlm( r}) (5.108)

zo

(5.109)

(5.110)

Taking the real part of each teno is simplified by the assumption that Zo is real, in which case the ratio of
the power into the termination to the power into the line is

lhRe( V(O)/-(O») 1- 1r1 2

~e( V( -L)!-(-L)} - e 2aL - IrI2e- 2aL



22 DIGITAt COMMUNICATION

It might make sense if this ratio was maximized when the reflection coefficient is uro, and indeed it is.
Letting the value of chis ratio be £ for r =0 and £' otherwise,

, l-ln2

£ =£ l-Irl~ . (5.111)

Since £ < I, it is easily shown lhat £' S e. thereby establishing lhat the maximum power ttansfer from input
to termination occurs when r =0, or~ =ZOo (Note that then Zo is not real-valued. the termination should
be the conjugate of the characteristic impedance, and swprisiDgly under these conditions there is a
reflection.)

For this termination, the input to the line has impedance Zo, and as is well known the maximum power
transfer to the line input will occur when the generator has the same impedance Zo. again under the
assumption that Zo is real-valued. This can also be verified·simply for this assumption.

5-2. From figure 5-5 we have that

and from (5.6) we have

CJ) = vp.
Eliminating p from these two equations, we get the desired relation.

(5.112)

(5.113)

(5.117)

(5.116)

5-3.

(a) The configuration of a single bridged tap is shown in figure 5-44a, where the bridged tap is modeled as a
shunt impedance ZB' This is an accurate model where the shunt impedance is equal to the input impedance
of the bridged tap. From example 5-9 we know that this impedance is

1+ re 2rL,
ZB =ZO 2rL (5.114)

l-re '
where L 3 is the length of the bridged tap. Because of assumption of matched termination, the line can for
purposes of analysis be split up into two pieces as shown in figure 5-44b and figure 5-44c. In figure 5-44a
the section of line after the bridged tap has input impedance Zo from example 5-9, so we simply replace it
by that impedance. From example 5-10 we know that the voltage across the bridged tap, VB, is given by

VB = 1+r e""YL'ViIt (5.115)
2

where, from example 5-8

2ZB
l+r=2Z Z

'B + 0

Now figure 5-44c models the transmission line from the bridged tap, where the source voltage is now
known, to the termination. From example 5-10, the output voltage is

V 0Ul =e-iyLayB

l+r "'-'f,+L,)V=--e-.... B
2

The effect of the bridged tap is the extra tenn 1+ r, which can be calculated for any given bridged tap
length.

(b) From example 5-9. the input impedance of a very long transmission line is the characteristic impedance,

ZB =Zo (5.119)

and for this case,
2

1 + r= 3" (5.120)

For this case, the attenuation due to the bridged tap is frequency independent. and simply attenuates all fre­

quencies by the same factor 20.loglO( ~) =-3.5 dB. For this case, a fraction : of the power goes down
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..."--- L 1 ---111+1---- L 2 -----tl~
Zo

(a)

Zo

+

ViA Zo VB

x=-L1 (b)
x=O

~}.:-
+

VB

x=-L2 (c)
x=O

Figure 5-44. Model for analysis of bridged tap. a. A bridged tap as a shunt impedance. b. A
model replacing the line after the bridged tap by the characteristic Impedance. c. A model for
the section of line after the bridged tap.

the bridged tap, never to return, an equal amount goes to the load, and the remaining factor ~ is reflected

from the bridged tap back to the load due to the impedance mismatch.

(c) For bridged laps of lesser length, unless the bridged tap is terminated, the effect is much more complicated
than the fixed loss of b. The effect can be modeled using the techniques described in appendix 4-B. intui­
tively, we expect that a part of the energy traveling down the line will enter the bridged tap, be reflected off
the end of the bridged tap, and return to travel down the main line. This energy will be delayed, with larger
delay for longer taps, and anenuated. with larger attenuation for longer taps. Thus. for a transmitted pulse,
the effect will be a "ghost pulse" which follows the main pulse at the receiver, plus an attenuation of the
main pulse. As the bridged tap gets longer, this ghost pulse will be delayed more and will get smaller. In
the limit of a long bridged tap, the ghost pulse will be absent

(d) As the bridged tap approaches zero, the ghost pulse gets larger in amplitude and shorter in delay relative to
the main pulse. Due to its shon delay, it adds constructively to the main pulse, boosting its amplitude. In
the Iimil, it gets the main pulse amplitude back up to where it would be in the absence of the bridged tap.

5-4. From Snell's law, assuming the index of refraction of the incident medium is unity,

sin(e1)
sin(e:z} =-- (5.121)

nl

and total internal reflection will result if
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112
sin(.) >-.

111

Further, from the geometry, since ~ and • fonn two angles of a right triangle,

sin~9V + sin~.) =1.

Manipulating these equations. we get the desired resWL

(5.122)

(5.123)

(5.124)

Since the path length is proportional to the hypotenuse of a right triangle with side proportional to the
length of the fiber, the result follows immediately.

(b) The result follows from the manipulation of the equations

sin(9:z} =sin(9l )

111

5-5.

(a)

(5.125)

5-6. Since a picosec is 1O-1~ seconds and a GHz is 109 Hz, ifwe normalize everything to GHz and nsec (10-9
sec) we get

~ =3.3 kIn-GHzlpsec-1<>3 psec/nsec =3300 km-{GHZ)2 . (5.126)

Hence we get

(5.127)

where R is the bit rate in GHz and L is the repeater spacing in kilometers. Therefore we get the following
table for .!- vs. R.

L (km) R (GHz)
1 57

10 18
100 5.7
1000 1.8

Notice how dramatically the maximum bit rate drops as the repeater spacing increases due to the linearly
increasing dispersion as the spacing increases.

5-7.

(a) The number of received photons per second is :V.and therefore the number of received photons pee bit is

(5.128)

(b) IfN is constant, we get

P =NRhv

and the necessary optical power is proportional to the bit rate.

(5.129)

(c)

NRhc
P = -A.- =4.4·10-' watts (5.130)

which equals -53.6 dBm.

(d) The allowable attenuation is 53.6 dB, so the distance is 268 kIn.
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5-8.

(a) Starting with the formula ofproblern 5-7,

-!.- _R . 109Nhc
10-3 - IIh A.

where the left side is the power expressed in mwatts and

R
RJih = 1()6·

25

(5.131)

(5.132)

(b)

5-9.

5-10.

Taking the logarithm and substituting numerical values, the result follows.

230 and 180 Jan respectively.

The 20 vs. 2000 reduction in the number of photons reduces the receiver power by 10loglO(IOO) = 20 dB.
We have also increased the launched power by 20 dB. This additional 40 dB gives us an additional
4010.2 = 200 km in distance, or changes 230 and 180 to 430 and 380 km respectively. The range has been
approximately doubled! Repeater spacings of 300 kIn are being seriously sought in undersea cable sys­
tems.
The number of parallel repeatered lines willbe BTIB and the number of repeaters in each line will be LrIL.
Hence, the total number of repeaters is

BT·Lt
N=Ji:L.

This is obviously minimized by maximizing B ·L.

5-11.

(a) We have that

PT PT PR
yoL =IOIog10-p = 1010g--3 - 10Iog--3 = 0 - Ptill",

R Hi l(j

(b) The equation becomes

L =329 - 5·log1oRlih •

We get the following table:

Rulo (Mb s)
I 329

10 324
100 319

1000 314
10.000 309

(5.133)

(5.134)

(5.135)

Observe that the repeater spacing is only very wealcly dependent on the bit rate. Of course, as the rate
increases eventually dispersion will become the dominant impainnent

(c) TheLR product is

(5.136)

which is a monotonically increasing function of bit rate. Hence, we can minimize the number of repeaters
by increasing the bit rate as much as possible, until we reach a dispersion-limited region. This is because
the repeater spacing penalty in increasing the bit rate is so small that the best way to decrease the number
of repeaters is to transmit at the maximum rate.

5-12. First the voltage source: Ifa voltage V(/) is in series with the resistor R, then a voltage v(/)12 appears
across a matched termination, also with resistance R. The powec in a bandwidth B Hz in the matched ter­
mination is the available power, and is equal to V 2(1 )/4R. Setting the expectation of this, or the average
power, equal to kT"B , we get the desired result.

Next the current source: If a current i(/) is in series with the resistance R. the current through a matched
termination with resistance R is also i (I), and the instantaneous powec in that tecmination in bandwidth B
is i2(/)R. Setting this equal to kT" B , we get an available power of kT"B IR .
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5-13. The wavelength from (5.31) is A. = 0.05 meters, the gain is G = 104, and thus the area is

GA.2
A = 4Jttl = 2.84 meters. (5.137)

Since this area is 7td'l/4 where d is the diameter, we get d =1.9 meters.

5-14. The parameters staying constant are d , Ar , and AR' Expressing the total loss in tenns of these quantities,
we get

PR ARAr
P

r
=1\R1lr 2d 2A.2 • (5.138)

The loss is minimum for the short wavelength end, which is the high frequency end. This is because the
antenna presents a larger effective aossection in relation to the wavelength at this end of the band. The
difference in loss is proportional to the square of the ratio of the frequencies, or in dB

2OIogi0 ~:~~ =0.043 dB . (5.139)

For all practical purposes the loss is independent of frequency.

5-15.

(a) Since from (5.28) we have

Pr
Yod =1010g10 P

R
' (5.140)

increasing Pr by an order of magnitude adds an additional 10fyo to the repeater spacing. For example, if
Yo =0.2 for a fiber system, we can add 50 Ian to the repeater spacing. As the spacing gets longer, this
increment in spacing will get less and less significant.

(b) From (5.48),

(5.141)

(5.142)

5-16.

~r
d=K -PR

and increasing the transmitted power by an order of magnitude increases the repeater spacing by a factor of
about 3.1. Hence, the transmitted power plays a much bigger role in the repeater spacing or distance
between antennas than for transmission lines.

This loss corresponds to (5.48) for the case of perfect efficiency and unity antenna gains. Hence,

47td 1an '103

Loss(dB) =2010g10 A.

where

c
A. = f Glfz: 109 •

Substituting for the constants, we get the result.

5-17. Equating the total noise power at the output of figure 5-428. and b.,

kT,.B +kT1B +kT1BG =kT~G

we get

(5.143)

(5.144)

T2
T3 =T1 + (f' (5.145)

Note how the noise referenced to the input is decreased by the gain of the amplifier. Further note that the
noise temperatures add for two noise sources with no intermediate gain.
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5-18.

5-19_

T
The IF noise source can be referenced to the input to the RF amplifier with noise temperature G

IF
•

RF
Hence, the total noise referenced to the input has temperature

TIP
Till + Tn: + G

RF
• (5.146)

Note that any noise in the IF amplifier is inherently less significant than noise introduced at the input or RF
amplifier.

The excess distance for the reflected path is approximately

2h 2
d =1.66 meters (5.147)

and the excess delay (and hence the delay spread) is therefore about 55 osee. The reciprocal of the delay
spread is 180 MHz, and assuming the narrowband model is valid over 1% of this bandwidth, that would be
1.8 MHz.

5-20.

(a) The spectrum will become asymmetric about the carrier, with more power concentrated at frequencies near
(OOc + kv)

(b) The spectrum will fill out in the middle and get smaller near (OOc ±kv), but still be close to symmetric
about the carrier frequency.

5-21. There are two oscillators, the worst case Ilc - 1.1 < 3 Hz. This means that each oscillator should not
deviate more than 1.5 Hz from the nominal frequency 1 MHz, implying 1.5 parts per million accuracy.

5-22.

y(/) = Re{ s(l)ej(CA,' +.-"CCII(~')1 )•
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(t-1. Using (6.4), we can write

H (j(0) =G(joo)B (j ro).

Using the result of appendix 3-A, we can write the power spectrum of the received signal as

1 a2 a 2

SR(jro)= T IH(jro) I2SA (e j 6)T) = ; IG(jro)B(jro)1 2 = ; IG (joo)1 28 (joo).

Using appendix 2-A

G (j' ) = -jO)TI2 T sin(roT/2)
ro e roT/2 '

so
·2

IG(jro)1 2 = sin (~/W).
ro /4

The power spectrum SR (j (0) is sketched below:

(5.148)

(6.280)

(6.281)

(6.282)

(6.283)
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--'-1 lost sidelobes
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The distortion is due to the loss of the sidelobes ofGU00) when it is multiplied by BU0».

6-2. From appendix 3-A. the transmit power spectIUm for baseband PAM is

Ss(jo»= ~ IGUoo)1 2SA (e iCllT)

T',

= r.[I_sin[...!..(lo>l_.!.)l]:1.
4 2a T]'
0;

Os 10>1 S (1- a)1tIT

(l - a) ~ S 10>1 S (1 + a)~ ,

1001 > (l + a)1tIT

(6.284)

(6.286)

(6.285)

6-3.

from (6.25). Considering only positive 00. the transmit power is

Rs(O) = ~ ISsUoo)doo

1(l-a)IfIT 1(1 +a)IfITT[ [ T ~]:1=- J Tdoo+- I - I-sin -(oo-~) doo
Jt 0 Jt (I _ cx)IfIT 4 2a T

(I+a> I[ [0 ~]:1=(I-a)+ J- I-sin .2._...!..) dQ
(l-a>4 2a 2a

which is independent of T.

The minimum bandwidth pulse has bandwidth Jt!T radians/sec. or 112T Hz. where lIT is the symbol rate.
The bandwidth of a pulse with 50% excess bandwidth is 1.5aT in Hz. We require that

1.5 S 1500
2T

which implies that the maximum symbol rate is ~ =2000 symbols per second.

6-4.

(a) X" is white. Rx(k) = 0". so Sx (e iCllT) =1. Further,

A" =X" -X"_I.
Taking Z-transforms.

A(Z)=X(Z)(l-z-l) .

Define

H(z)=~= l-z-1

X(z)

so

Hence

(6.287)

(6.288)

(6.289)

(6.290)
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SA (eit»T) =SX(eit»T) IH (eit»T) 12

=11_e- j t»T I2

=2-2cos(ooT).

(b) Here is a well-labeled, careful sketch:

E1IJ~.oo
1CfI'

(c)

-
S(t)= 1: (X1ft -XIft_t)g(t -mT)

IftE_- -= 1: Xlftg(t-mT)- 1: X",g(t-mT-T)

29

(6.291)

(6.294)
",E_ .---= 1: X.[g(t -mT)-g(t -mT-T)].
ME_

So

h(t)=[g(t)-g(t -T)]

and

(6.297)

H U 00) =(1- e-it»T)G (j00) . (6.298)

Note that HUco) =0 for all 00 =m 21C1T, so the Nyquist aiterion is not satisfied for any G U00). Further­
more,

p U 00) =(1 - e-it»T)G U oo)FU 00) (6.299)

does not satisfy the Nyquist aiterion for any GUoo) and FUoo) that are finite for all 00. (It turns out that
lSI-can be eliminated using a receive filter that has infinite gain at DC, but this filter is not stable.)

6-5. The only zero excess~bandwidth pulse satisfying the Nyquist criterion is (6.16). But since the pulse falls
off as lit, the worst case transmitted symbol sequence will result in infinite intersymboI interference for
any sampling phase other than the ideal phase (where the intersymbol interference is zero).

Consider binary PAM signaling with a zero excess-bandwidth raised<osine pulse shape, which is an ordi­
nary sine pulse. We can show that if the timing phase is off from the ideal by any amoWlt, the data cannot
be recovered. The pulse shape is given by

poet) = sin(1tt IT) (6.300)
mIT

and the PAM signal by
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sine.!.(t - mT»
R(t)= ~ A",pcl..t -naT) = ~ A", 'itT (6.301)

"'.- "'.- T(t -mT)

Sampling with exactly the correct timing phase, we get foc any integer n

R (nT) =All • (6.302)

To see what happens ifthe timing phase is slightly off, we rewrite the signal using trigonometric properties
of the sine function,

_ T..!. - ( - 1)'"
R (t) - sm( T t) ~ A... (_ T)''It ...._ t m

For any nonzero E, if we sample at t =£ instead of t =0 we get

R ( ) - T . (.!.) ~ A ( - I)'"
E - sm T E ~ '" (_ T)''It 11I._ E m

For small E this is

R(E) =E ~ Alii (-1)'" =Ao+ 1: A", (-1)""
"'._ £-mT ", .. 0 -mT

(6.303)

(6.304)

(6.305)

This is far from the desired value A o, and with the unfortunate outcome A... =(- 1)... , the sample is not
even finite for any nonzero E. Since the interference from neighboring symbols may not even be finite for
any arbitrarily small error in the timing phase, the width of the eye is zero. Consequently, binary antipodal
excess bandwidth must be larger than zero.

6-6. Decreasing K also decreases the signal power so the SNR is unchanged. Furthermore, ifwe compensate by
transmitting more power from the transmitter, then arbitrarily large power is required from the transmitter
as K gets arbitrarily small. Arbittary transmit power is not feasible.

6-7.

(a)
...n

E[ IAl I2] =RA(0) = 2
T J SA (eit»T)d ro =1.
'It-'fllT

(b) Using the results of appendix 3-A,let the transmit signal be

l

Z(t)= 1: A",g(t +8-kT)

"'.-
and

SzU (J» = ~ IG Uro) 12SA (e imT ) =1,.

so the power spectrum in independent of T .

(c) From (6.35),

F U(J» =-Ifrect(ro, 1CIT) .

The pulse satisfies the Nyquist aiterion.

(d) From (6.41)
2

N -
a'- =_0 J I -.IT rect(ro, 1CIT) I d ro =No·2'1t _

Also, P (t) satisfies the Nyquist criterion, which implies it is properly nonnalized,

(6.306)

(6.307)

(6.308)

(6.309)

(6.310)
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p(O) = _1 jPUCl>)dCl> = 1
21t_

so
1

SNR =No.

(e) The noise power can be gotten from (6.41),
.. 2

1 !Ji.!El
<i-=-2 JNol .; I dCl>

1t_ T

No'brIT T2 2=- I(T -Cl>-)2dCl>=No-.KT 2K 3

The SNR is therefore

SNR=_3­
2No

which is better than in part b even though the receive filter bandwidth is greater!

6·8.
(a) Yes this pulse satisfies the Nyquist criterion. So does Re{p(l) }.

(b) From appendix 3-A we get

which is sketched below.

(c) Let

x(jCl» =T.firect(Cl>.)C!2T)

and

YUCl»= 2~XUCl»·XUCl»
and note that

PUCl» =YUCl>- j1ClT).

In the time-domain, from appendix 2·A,

y(l) =[X(/)]2

and also from appendix 2-A,

( )_ ..f2. sin(/1tI2T)
x1 - 2 IrrI2T •

Hence

p(/) =e itJrff [ .J2. Sin(lrrI2T)] 2
2 lrrl2T

31

(6.311)

(6.312)

(6.313)

(6.314)

(6.315)

(6.316)

(6.317)

(6.318)

(6.319)

(6.320)

(6.321)
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6-9.

(a) The power of the received signal as a fWlction of a is given by (6.285) multiplied by erl. The noise power
is the same thing multiplied by No. The SNR is therefore erilN0. independent of a.

(b) The receive filter is an ideal LPF

(c)

6-10.

(a)

(b)

(c)

(d)

6-11.

(a)

{

I; Iml < x(1 + a)ff
FUm)= 0; otherwise (6.322)

The noise power after the receive filter is therefore N 0(1 + a)ff. The signal power is given by
(6.285) multiplied by erl. The SNR is the ratio of the two, not a pretty sight.

This can be found using techniques similar to those in problem 6-2.

64 kb/s are required, so with binary antipodal signaling this is 64,000 symbols per second, so the minimum
bandwidth is 32 kHz.

64 kHz.

32kHz.

16kHz.

The frequency response of the baseband equivalent channel is:

____....Jcbv
....·_

m

_)__ --+.m
«•
10kHz

(6.324)

(6.323)

From appendix 2-A, the Fourier transform of Re{ z(t) } is ZeUCJ» and the Fourier transform of jIm( z(I) }
is Zo UCJ». Hence the Fourier transform of 1m( z(t) } is - JZo UCJ». So we need to show that

H UCJ»ZeUCJ» =-jZoUCJ».

Note that since z(t) is analytic, ZUCJ» = 0 for CJ) < 0 so

{
O.5ZU CJ»; CJ» °

Ze UCJ» =O.5[ZU ro) + Z-(-j ro)l = O.5Z-(-j ro); CJ) <°.

and the impulse response is a corresponding sinc function.

(b) The answers are respectively 20 kb/s, 6667 b/s, 20 kb/s, and 40 kb/s. In the latter case, the receive filter
should be properly designed to meet the Nyquist criterion.

(c) A reasonable transmit filter is g (t) =S{t). There is no point in using a bandlimited transmit filter since the
channel will bandlimit the signal. Using this transmit filter, the receive filter should be an ideallowpass
filter just like the baseband equivalent channel. This minimizes the noise that gets through to the slicer and
properly forms p (t).

Since the passband chaMel is the same as a baseband channel, the only difference being the complex data
symbols, the criterion is the same. The required bandwidth is twice as great, since the spectrum is two­
sided, or in other words a bandwidth of 21t1T is required for a symbol spacing of T. Although the
bandwidth is twice as great, the symbol rate referenced to real-valued symbols is also twice as great, so the
bandwidth efficiency is the same.

From appendix 2-A it is clear that HUm)X U CJ) =y U ro) in either case.

6-12.

6-13.

6-14.

(a)

Hence

H UCJ»Ze UCJ» =-jO.5[ZUCJ» - Z·(-jro)] =-JZoU ro),

which is the desired result.

(6.325)
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(b) We need to show that

This follows similarly.

6-15. Define

z(t) = HUt) = H(jCll) 'CiII."
From the duality property in appendix 2-A

Z(jCll) =21th (-(J).

Note that Z(j Cll) =0 for Cll < O. so z(t) is analytic. From problem 6-14,

1
bn{z(t») =- *Re{ z(t»)m

so

!m{HUt») =1.. *Re{HUt»).
m

Fonnally replace t withCll and the result follows.

6-16. Using appendix 2-A

DTFT{Re{ Zi; )] =Z.(e iOlT ) = O.5[Z(e iOlT) + Z·(e- iCillT)].

Hence

Z. (eimT)H (e imT ) =O.sZ (eiOlT)H (elmf') + O.SZ·(e-imf')H (elmf')

=-o.5jZ(e i f»T) + O.SjZ·(e- iOlT )

=-jZo (eif»T).

The inverse discrete-time Fourier transform is bn{ zi; ) (from appendix 2-A).

6-17.

(a) This follows from problem 6-16 and the observation that the signal is bandlimited.

(b)

33

(6.326)

(6.327)

(6.328)

(6.329)

(6.330)

(6.331)

(6332)

hi; =2gA;sin(Cll c kT). (6.333)

This is the desired filter because using the discrete-time Fourier transfonn of sin(CllekT) from appendix 2-A
we get

1 trIT •

H (jCll) =-;' I G (eJQT)[~Cll - n - Clle) - ~Cll - n + Clle)]dn
j ..-.n

=~[G (e i (m-4ll,)T) - G (e i (f»+4ll,)T)].
j

6-18. Use ROMs with N bit addresses, two outputs. each with i Nlil bits.

6-19.
T

I go(t)g l(t)dt =Isin(Cllol )sin(Clllt )de
o

= ~ J[cos«mo - Clll)t)+ cos«mo + Clll)t)] de .
o

Under both set of assumptions, the integral evaluates to zero.

(6.334)

(6.335)
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6-20. Write the pulses from (6.149) as

Io(t) =±sin«(I)c: + (I),,)t)w(t)

'1(1) =± sin«(I)c: - (I),,)t)w(t)

where

~-CI>t
(I)" = 2

is the peak deviation. Then

TIT 1 T
f,o(t)'l(t)dt =± 2 rcos(2(1)"t)dt ± '2fCOS(2(1)c:t)dt
o ~ 0

=-4
1

sin(2CJ)"T) .
(I)"

The signals are orthogonal ifand only ifthis is zero, which occurs ifand only if

2(1)" T =K 1t

for some integer K. The minimum (non-zero) frequency spacing therefore occurs when

2(1)"T =1t

or

(6.336)

(6.337)

(6.338)

(6.339)

(6.340)

(6.345)

1t
(I)" = 2T . (6.341)

This is the frequency spacing (6.148) of MSK signals.

6-21. For MSK, the frequency separation should be (I); - (I); -I =1tff, or I; - I; -I =112T =0.5 MHz. So the
desired frequencies are 11 =10.5 MHz.!z= 11.0 MHz, etc.

6-22.

(a) From (6.152), using trigonometric identities,

X(t)= .~_[sm(Ol,,1+b. ;)oos(~.)+cos(Ol,,1+b. ;)sin(~.)]W(I -kT). (6.342)

Since sin(~t) = 0 this becomes, using more trigonometric identities

X(I) - • ~Jsin(Ol,I)cos(b. ;)+ oos(Ol"t)sin(b. ;)] cos(~.)w(t - kT) • (6.343)

From the symmetry of the cosine we get

1tt 1tt
cos(bt 2T) = cos( 2T) (6.344)

and from the anti-symmetry of the sine we get

sin(bt ;>=bl;sin( ;>,

from which the result follows.

(b) Notice that bt _1 - bt is always either zero or ±2 SO if k is even then from (6.153)

't =~t-I + K21t
where K is an integer. Hence

(6.346)

Qt =cos(~t> =Qt-I =COS(~I;_I) . (6.347)

If k is odd then examining (6.153) we see that ifbl; = bt- I then It = It-I. Furthermore, ifbt =-bt - I then
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41" ::: 41,,-1 ± 1CIc

and since k is off cos(4I,,)::: -cos(4I"_I) and again I" :::1"-1.

(c) Wrile the first summation of (6.226)

cos(ooct) L I"sin( ;;')(W(t - kT) - W(I -kT - T)]
"evea

using the fact that for k even 11 ::: 11+1• Then notice that for k even

sin(~(1 - kT»::: (-l)ll2sin(~)
2T 2T

so

sin( ;;.) ::: sin( ;T (I - kT»(_1)ll2 •

Hence the first summation of (6.226) is

cos(ooc') L Il (-I)ll2p (t -.tT).
lcyea

The second summation follows similarly.

6-23. The real part of the output of the phase $PIitler is

A.J2 cos(OOc t)

while the imaginary part is

3S

(6.348)

(6.349)

(6.350)

(6.351)

(6.352)

(6.353)

(6.355)

~ sin(ooct) , (6.354)

where we have used problem 6-13. The magnitude squared of the complex output is therefore A 212.
6-24. Each of 128 subchannels (one per pulse) must carry a bit rate of 19,200/128 or 150 bits per second. Using

4-PSK, we can rransmit 2 bits per symbol, so the symbol rale should be 75 symbols/second. Hence. T is
In5 seconds or about 13msec.

6-25.

(a) This follows because the D1FI' of a linear combination of pulses is the linear combination of the D1Fr of
the pulses.

(b)
N-I

G" (ei«IT)::: L g,,(r&)e-i«IT'l
l~

N-l
=L ei'bW:IN e-jllfl1lN

l~

N-l= L ejA:(2IrA -«ITYN
1000

1- ej (2IrA -mT)

= 1_ e j (2IrA - mT)lN

where we have used the given identity for the last equality. We can now factor out half-angle tenns in the
numerator and denominator to get the required resulL
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6-26. Observe that E[Z(I)] has zero mean, since E [cos(CI)c I + 8)] =O. To find its autocorrelation function, use
the trigonometric identity

cos(a )cos(b ) =O.Scos(a - b) + O.scos(a + b)

to get

Rz(t) =2E[cos(CI)c(1 + t) + 8)cos(CI)cl + 8)S(1 + t)S·(I)]

=E[cos(CI)c t) + cOs(CI)c (21 + t) + 28)]Rs(t)

=cos(CI)c t)Rs(t) .

We have used the easily shown fact that

E[cos(w c (2t + t) + 28)] =O.

The power spectrum is then given by

SzU w) =O.5[SsU (1)c - j w) + Ss(-j (1)c - j (0») .

For example, given the same complex-valued baseband power spectrum shown below,

~)CI)
the power spectrum of Z (t) is shown below:

SzUw)

c;--->- l ~ ·00
-Cl)c 0 W1Cl)c W 2

6-27. We can write

_I:: ../2 •
X (I) ="'42Re( Z(I) } =2[Z(I)+ Z (t)]

where

Z(t)=S(I')ei(I»./+8) .

Showing that the expected value is independent of time is easy using

E[X(I)]=..r2Re( E[S(/)]E[ei(1».1 +8)]} .

(6.356)

(6.357)

(6.358)

(6.359)

(6.360)

(6.361)

(6.362)

The second expectation is easily shown to be zero by directly computing it (the expectation is over e,
which has a uniform p.dJ., so we simply need to integrate over [O,2n:]). The autocorrelation can be wrItten

•1 ••• •
E[X(/ 1)X (/z)] =2"E[Z(/ 1)Z(/z)Z(/l)Z (Iz)Z (/l)Z(Iz)Z (/ 1)Z (Iz)] , (6.363)

where the first term,

E[Z{t I)Z(/z»):::; E[S (/I)S (/z»)E[ei(CA,(h +10)+28») . (6.364)

can also easily be shown to be zero by directly computing the expectation over 8 of the complex exponen­
tial. The fourth term E[Z·(II)Z·(tz)] will similarly tum out to be zero. The second term is

E[Z(II)Z·(/z)] = E[S (/I)S·(Iz)]eil».(/, -I.) • (6.365)

The exponential is now a deterministic function of II - 12' as is E[S (11)S·(Iz»), the autoCOrrelation of S(I),
because S (t) is WSS. The third term wiD similarly prove to be a function of 11 - 12, so X(I) is WSS.
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6-28. We need to check the conditions of exercise 6-14 to see ifthey are satisfied. Since the Hilbert transfonn is
an all-pass filter, StU (0) =SyU (0), and hence Rt(t) =Ry(t). Further, since

StyUoo)=-jsgn(oo)SyUoo) , (6.366)

we have that

Rty(t) =Ry(t) . (6.367)

Since Sty(t) is imaginary-valued, it follows that Rty( - t) = - !tr(t) is an odd function. Thus the condi­
tions for X (I) to be WSS are satisfied. Letting S(I) =Y(I) + j Y(I), it follows from exercise 6-18 that

Rs(t) =2Ry(t) - 2j Rr/(t)

=2Ry(t) + 2j Rty(t) (6.368)

=2Ry(t) + 2j Ry(t) .

Hence

. _{4SYUoo),oo~0
SsUoo) - 0, 00 < 0

The power spectrum of X (I) is then given by (6.195).

6-29. The sketches are shown in figure 6-60. Define

s. (t) = W[~lt/I2r;:)] COS«n HI)~ t)

Then

ho(t) = SI(/) + $3(/)

hl(/) = SI(/) - $3(/)

hi/) =$2(/) + si/)

h3(/) =$2(/) - $il)

The bandwidth efficiency is the same as that of the pulses in figure 6-38.

(6.369)

(6.370)

(6.371)

(6.372)

(6.373)

(6.374)

6·30.

(a) This is just a matter of multiplying it out

(b) Let 8(00) ="'tD(oo).

(c) If we choose M 1 = 0 and M 2 = 2 in (6.199), we get the pulses with Fourier transforms shown in figure 6-61.
From this, we see that each pulse consists of three parts. Each part is a sine pulse modulated by e-j2Jrlrttrr

for m = 0, I, and 2, and scaled by a complex value that depends on n. For n =0, I, and 2, we can write

sinc (1U ([') ( -j23t{.!.. +~) -j4Jl(.!.. +!!'J
h (I) = 1 + e T 3 + e T 3 (6.375). ~ ,

where sine (x) = sin(x )/x.

(d) The time domain pulses are not real. To use these pulses for orthogonal multipulse over a real channel, we
need to modulate them, fonning the real-valued passband equivalent pulses

h. (I) ="2Re( ejfA.1 h. (I) } (6.376)

for some roc ~ 7tIT. The bandwidth of such a signal is twice that of figure 6-38, or NIT Hz, making the
spectral efficiency of orthogonal multipulse
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Figure ~60. The Fourier transform for the orthonormal pulses in problem 6·29. The value of
Hit (jCJ) in the dashed regions of the CJ) axis is determined by the requirement for conjugate
symmetry. while the value in the solid regions is determined by 8(CJ).
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I• CJ)

61t
T

Figure 6-61. The Fourier transforms of three orthogonal multipulse pulses. Complex values
are plotted as magnitudes but labeled with the actual complex value.

v= 10g~N) =10&2 (;) =0.528 . (6.3n)

With combined PAM and multipulse, instead of transmitting 1082(3) bits per symbol we can transmit
log2(M) on each of N simultaneously transmitted pulses, so

Nlo82(M)
v = N = log2(M). (6.378)

This is equivalent to passband PAM with the same alphabet size, and since symbols can be complex, is
equivalent to baseband PAM and 10 PAM plus multipulse using figure 6-38. The pulses are not practical
because of the gradual rolloff of the sine function, or equivalently, because of the abrupt transitions in the
frequency domain.
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7-1. The conditions of the problem are satisfied if

lIY-Sj Il2 S IIY-S;1I2

and substituting for Y. this becomes

lIE+S; -Sj 11 2 s IIEII2 •

Multiplying out the left side. we get

IlEII2 + d;) - 2Re{ <E.5j - S;» S IIEU2 •

and dividing by di J.

(7.88)

(7.89)

(7.90)

S· -So
Re{ <E. 'd.. ' }~ YuiiJ . (7.91)

'01

This is the result promised. since (Sj - Si )/di J is a unit vector in the direction of (Sj - Si).

7-2.

(a)

(b)

3T
-1---:....----1t----I--t-........-+--t--.t

o T 2T

7-3.

(a)

(b)

-
p;(-k)= Jh·(t)h(t +kT)dt =Jh(u)h·(u -kT)du.

where the change of variables u = t + kT has been made.

S,,·(ejO)T) =LP;(k)e jflllT =LP;( -k)e -jflllT =S,,(ejO)T)
I: I:

(7.92)

(7.93)
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74. Dividing the folded spectrum Z-ttansfonn into positive and negative time,

- 0
S,,(z} =LP,,(k}z~ + L p,,(k}z~ - p,,(O}.

1-0 1---

The second summation can be written

:i p" ( - k }zl =:i p;(k}zl =S,,~+ (liz j.
1=0 k-o

7·5.
(a)

- IC IC
p,,(k)= J Lf",hO<t-mT}'~f:h;(t-nT-kT}dt

- • ..0 ,,-0
IC

2 •=<10 L f "./"'~ .
....0

(b)
IC

<1;=a$ '1:. III12
•

hO
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{7.94}

(7.95)

(7.96)

(7.97)

(7.98)

7·6.

7-7.

The receiver can consider three received symbols at a time. The detection of these symbols goes as fol­
lows: For each of 16 possibilities, generate the corresponding set of three tertiary symbols by table lookup.
Calculate the Euclidean distance between "I: and these three symbols, in three-dimensional Euclidean
space. Choose the four bits corresponding to the minimum Euclidean distance.

For this case, S,,(z) =a;, and hence we'get that A,,2 =a;, G,,(z) =1. The criterion of (7.61) becomes

[
0 IC - 1min ~. IWk 12 + L 1WI: -al: 12 + L IWI: 12

•
{al: , 1 5. k 5. K} h -'- 1=1 lalC+1

Clearly, the first and third sums do not'affect the minimization. and the middle sum is equivalent to figure
7·10.

7-8.

(a) XeMIt must be of the form
x

x(t}= ~xl:h(t -kT}
1:,.1

which has energy

- -IIX ,,2 =L L XI:X"P... (I - k) .
... 11=1

Ifx(t) is input to the filter, the discrete-time output will be
IC

WI: =XI: *g... ,A: = ~ x"'g....I:-... ,
",=1

which has energy
- IC -ICIC2 ••
~ I Lx'" g... .A:-... I =~ ~ '1:. x'" X" g");-ffI g... );_
1:=1 ",=1 1:..1"'201 ....1

XX - ICX
=L LX'" x,,· L giI,A:-ItI g.....A:_ = L ~x", x,,· p,,(n-m}.

"'~,,~ I:~ "'~,,~

(b) Using the property of the projection that Y - YIt is orthogonal to the subspace M....

(7.99)

(7.l00)

(7.l01)

(7.102)
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y-x,=Y-Y.+Y.-Xi (7.103)

and Y-Y II is orthogonal to Y. - Xi' since the Iatec is a vector in M.. Hence,

IIY- Xi 11 2 = IIY- VII 11 2 + "Y. - Xi 11 2 (7.104)

and since IIV-V II 11 2 is a constant it cannot affect the minimization.

(c) This signal is orthogonal to M., and hence the sampled matched filter response to it will be zero.
(d) Since

V-Xi =Y-V. +Y. -Xi, (7.105)

and further the filter response to Y- Y. is zero, the response to Y- Xi is the same as the response to
YII - Xi. The latter input is a vector in Mil, and hence

-"Y. -Xi 11 2 = 1: IW1~ - Wi~ 12
•

i-l
(7.106)

(e) If the known input signal corresponds to data symbol sequence att the oUlput is ai *glt~. The minimum­
distance receiver calculates the distance between this and Wi, the response ~'f the filter to y (t).

7-9. The allpass filter has transfer function
d- - :-1

HalJpa(z)= I-dz-l ' Idl < I . (7.107)

(a) The precursor equalizer filter is

and the channel model filter is

(l - c-Z Xd- - Z-1)

I-dz-l (7.108)

(7.109)
(1- cz-1Xl - dz-l) .

(b) The zero location of the upper-path filter is outside the unit circle, since it is maximum-phase. In order to
cancel this zero, the pole of the allpass filter would have to be outside the unit circle, which would make it
anti-causal.

(c) The filter transfer function can be expanded in partial fractions as

I-:z-l + I_~Z-l (7.110)

which has impulse response

where

(7.111)

cd--I
a= ,

c -d
(7.112)

7-10.

(a) The precursor equalizer filter is

and the channel-model filter is

d - -1-z

(1 - cz-l)(d- - z-l)
1- dz-l

(7.113)

(7.114)

(b) The pole location of the precursor equalizer filter is outside the unit circle, since it is maximum-phase. In
order to cancel this pole, the zero of the allpass filter would have to' be outside the unit circle, which is
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(7.116)

(7.115)

acceptable because the allpass filter is then causal. The precursor equalizer filter then has transfer function
z-I

l-cz-I '

which is causal. and the channel-model filter transfer fWlction is c - - z-I.

(c) The filter transfer function can be expanded in partial fractions as

A 2 d- - (cd- + 1)%-1 + CZ-2

.. I-dz-1

which has impulse response
2(d-d l (- )dl-I d l - ZA.. "1 - cd + 1 "1-1 + C "t-2 .

(d) The impulse response is FIR.

7-11.

(a) Ifthe data symbols have magnitude unity, then the minimum distance between them is d mill =.fl.
(b) d min is 0 .. 'times the minimum distance between data symbols. and hence & 10 ,

(c)

(d) The distance is

(7.117)

(7.118)

(7.119)

d 2 =1£112+ 1£212+ 2a'Re( £1£;) • (7.120)

Clearly we want to make the third term as large negative as we can. Since the £ can be have a phase that is
any multiple of 1tI4, clearly the third term is minimized if£1 and £z are antipodal; that is, they have opposite
phase. Also, the £ can have magnitude either .flor 2. TIws, there are three cases to consider:

d~ =4 + 4 - 2a·2·2 (7.121)

d~ =4 + 2 - 2a·.J2·2

dJili, =2 + 2 - 2a·.J2·.J2
It is easy to verify that the third case is always the smallest for aliOS a < I, and hence

d mill = 2,"1 - a .

Note that the minimum distance goes to zero as a-+l.

7-12. Let us bound the energy of s(t) in the intetval [KT,00),

f s~t)dl =r[i:1

iAl".h..(t _kT)1
2

dt
h ir looQ ..=1 ~

K-l N-

S LL AI". f h;(1 -1cT)dl
tooQ ..=1 JrT

<'}:liA 2 a
- t~ ..=1 1". (KT - kT)2 .

(7.122)

(7.123)

(7.124)

(7.125)

N
Ifthe data symbols are drawn from a finite constellation, we can assume that L Al". is boWlded. say by

K~ ..~

C 1. The remaining sum. L 1I(KT - kT)2 is also bounded. since the series is convergent. say by C2.
l~

Hence, the energy outside [O.KT) is bounded by a constant at: lC2. independent of K , and the fraction of
the energy outside [KT. 00) goes to zero since the energy of s (I) is increasing with K.
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CHAPTER 8: SOLUTIONS TO PROBLEMS

8-1.

(a) Writing it as

..fi1(t)eiOl.t =I.(t) + il.(t) • (8.210)

since the analytic bandpass filter impulse response is analytic. the imaginary part/.(t} must be the Hilbert
transform of the real part I .(t).

(b)

(c)

1.(1) = Re{..fif (t)ei-" ) = ..fiRe{f(/) }cos(<J:lct) - ..fiIm{f (I) }sin(<J:lc/}

i.(/}=Im(..fif (/)ei-" ) =..fiRe{f (I) }sin(CI)cl) + ..fiIm{f (I) }cos(CI)ct}

(8.211)

(8.212)

(8.213)

(8.214)

(d) Since/.(/)_and!.(t) have the same energy. the real and imaginary partS of M(/) have equal variance,

equal to No I1.'(/}dt. The energy off .(1) aflJJ/.(/) are equal since the Hilbert transform is a phase only-(allpass) filtering. We need to relate the energy in/.(t) to the energy inf(/). This foUowseasily from the
relationship

and since the two terms on the right side are equal. we get the power of the complex noise

E[Ml(/)]=E[Ml(/)]=cr. E[IM(t)12
] =2cr

where

- N -
cr=NoJ If(/)1 2dt = ;: I IF(j<J:l)1 2 dCl) .

- -

(8.215)

(8.216)

(8.217)

This establishes that samples of the real and imaginary parts of the complex noise have equal variance. We
can also easily show that they are uncorrelated, and hence independent, since a function and its Hilbert
transform are orthogonal. The latter fact follows directly from Parseval's relation,

(8.218)

since the integrand is an odd function of frequency.
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(e) Since the real and imaginary parts of Z(/) are obviously just linear combinations of dte real and imaginary
parts of M (I), they are also jointly Gaussian. We know that

E(M:lj = E(M·~] = 0 , (8.219)

and thus

E[(Re(Z(/)})2)=E[(Im(Z(/)}):lj=cr ,

E[Re(Z(/»)Im(Z(t»)]=0 •

(8.220)

(8.221)

Considering just one case,

(Re( Z(t) »2= ~ ( M'(/)e -j'-, + 2IM(/)12+ «M· (t)~e+j'-') (8.222)

and the result follows immediately sirlce the expectation of the first and third terms is zero. Similarly,

Re(Z(t»)Im(Z(t») = ;j(M2(t)e-j2tll" -(M·(t»2e +j2tll,') (8.223)

which immediately has zero expected value. The statistics of Z(/) are identical to those of M (I), and the
demodulator has no effect on the statistics ofone sample of the noise.

8-3.

Q(2) =0.027 (8.224)

(8.227)

(8.228)

(8.229)

The second is much smaller.

Q (4) =3.35xlo-s Q2(4) =1.12x1()-9 (8.225)

The approximation in (8.62) is clearly valid for these cases.

8-4. The first probability is Q(.fiJo.S) which is roughly 2.6xIo-3• The second probability is Q (210.5) which is
roughly 3.4xI0-s, two orders of magnitude lower!

8-S. The probability of error for the four innermost points (which have probability 1/4) is

I - (l - 2Q (d 12a»(1 - 2Q (d 12a» = 4Q (d 12a) - 4Q '(d 12a) . (8.226)

The probability of error for the eight intermediate points (which have probability 1(1.) is

I - (1 - 2Q (d 12a»(l - Q (d 12a» =3Q (d12G) - 2Q2(d 120) .

The probability oferror for the eight intermediate points (which have probability 1(1.) is

1- (1- Q(df2o»(I- Q(df2CJ» =2Q(df2CJ) - Q2(dI20).

The result follows by adding these weighted by their probabilities.

8-6. Given the transmit power limitation we set

E[IAt I2
) =01 =I.

The received pulse has Fourier transform

PUoo) = GUoo)BeUoo)FUoo) = KGUoo) , (8.230)

where BeUoo) =I and FU(0) =Krect(OO,21C1T). The baseband equivalent discrete-time channel is

. K - 21t
P(e IOlT ) =- L GU(m- -m»=K . (8.231)

T ",c_ T

We should select K =I. Then the signal component at the slicer has power 01 =I, and

cr = 1N~ . (8.232)

The SNR at the slicer is

01 T
SNR=-=-.

2dl 4N o
(8.233)
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Now the probability of error is

3Q (-.:!L)_2.2SQ 2( -If )
2..JSN0 2..JSN0•

DIGITALCOMMUNICATION

(8.234)

8-7.

(a) A suitable coder works as follows. TaIce one bit; ifit is a one, cransmit one of Ute innec points depending
on the next bit. Ifit is a zero, transmit one oCthe OUlel' points depending on the next two bits. An elW1lple
bit mapping (which is a Gray code) is given in the following figure.

001 10 000
o 0

010 II 011
o 0

(b) Let C denote a correct decision and E a signal error. Then

Pr[C Iinner] =(1- 2Q(bI2O")Xl- Q(bl2O"»

which implies that

Pr[symbol error Iinner] =3Q (b 120") - 2Q~b 120") .

Also

Pr[C Iouter] =(l - Q(b 120"»2

which implies that

Pr(symbol error lower] =2Q (b 120") - Q~b 120") .

Combining,

Pr[symbol error] =1h[3Q (bl2O') - 2Q~bI2O")] + lh[2Q(bl2O") - Q2(bl2O")]

= ; Q (bI2O") - ; Q2(bl2O').

(c) The power is

(d)

Pr[symbol error] = ; Q (..JSNR 13) - ; Q7{..JSNR 13) .

If 10log,o(SNR) =10 then SNR =10 SO

Pr[symbolerror] = ; Q(..JIOI3)- ; Q1:..J1013) =0.10.

(8.235)

(8.236)

(8.237)

(8.238)

(8.239)

(8.240)

(8.241)

(8.242)

(e) The approximations are respectively,

Pr[symbol error] :::: ~ Q (..JSNR 13) Pr[symbol error] =Q (..JSNR (3) . (8.243)

The values when SNR = lOdE are 0.10 and 0.041 respectively.
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8-8.

(a) The decision regions are bounded by the planes fonned by pairs of axes.

(b) The probability oferror is

Pr[symbol error] =1 - (I - Q(d 12a)t' .

8-9. Since the distance between symbols is d = a42,
Pr[Eij] =Q(alcrl2)

(8.244)

(8.245)

so

Pr[symbolerror] = Pr[symbol eaorlAt =tIj]:S (M -1)Q(al<rl2) (8.246)

(8.248)

(8.247)

There are 4 symbols-at distance d = 2c, 4 symbols at distance d = 2-12c , 2 symbols at distance d = 4c , 4
symbols at distance d =2..JSc, and I symbol at distance d =4,f2c , so from the union bound

Pr[symbol error IAl = c + jc] :S 4Q (c la) + 4Q (-lie la) + 2Q (2c la)

+4Q ("5c la) + Q (2.J2c la)

=4Q(cla) .

(b) There are 2 symbols at distance d = 2,2 symbols at distance d ="'5, 2 symbols at distance d =m, 4 sym­
bols at distance d = "'l7, 2 symbols at distance d = 2..rs, I symbol at distance d =442, and 2 symbol at dis­
tance d =m, so from the union bound

Pr[symbol error IAl = I + j]:S 2Q (1/a) + 2Q ("SI2a) + 2Q (..fila) + 4Q ("lfi12a)

+2Q ("Sla) + Q (2..fila) + 2Q ({fi12a)

=2Q(l/a) .

8-10.

(a)

(c) The noise components in the directions of the nearest neighbors are not onhogonal, and hence not indepen­
dent

(d) The average power in the 16-QAM constellation is IOc 2 and in the V.29 constellation it is 13.5, so
c =..[1.35 =1.16. The approximate probabilities of error are 4Q (1.161a) for 16-QAM and 2Q (110') for
V.29, so assuming the SNR is high enough that the constant multipliers are not important, 16-QAM is
about 1.3 dB better. There are good reasons, nonetheless, for using the V29 constellation. In particular, it
is less sensitive to phase jitter.

8-11. Taking a second pulse of the form of (8.113),
N-l

g(I)= ~ Yt he (I -mTc >' (8.249)
,..0

then the inner product of h(l) and g(l) is

- N-l

J • 2 •h(l)g (I)til =O'c ~ x. Y••
••0

(8.250)

Considering (x.. , 0 :S m :S N -I) and (x.. , 0 :S m :S N-I) as vectOrs x and y in N -dimensional Euclidean
space, then the pulses h(IO and g(l) will be orthogonal when Euclidean vectors x and y are orthogonal.
The number of pulses specified in this fashion that can be mutually orthogonal is N =2BT, the dimen­
sionality of the Euclidean space.
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8-12. For every zero in H (z) at location z =C , ifH (z ) is to be alIpass, we must have a pole at location z =11c·,
as shown in Section 2.5.3. Since FIR filters can only have poles at z =0 or z =-, an allpass FIR can only
have zeros at z =- or z = O. A filter with L ~ 0 poles at z =0 and L zeros at z =- has impulse response
5" -L. IfL < 0, then the poles are at z = 00 and the zeros are at z =O.

8-13. The received signal is r (I) =±h(I) + J (I), and the matched filter output is a random variable
T N

U =rr(t)h(t)dl ='I;(sl + S;J;) . (8.251)
~ ; ..1

N N
(a) The signal component of U is 1:sl and the noise component is 'I;S;Ji.

~ i~

(b) The mean-value of the signal is al. The variance of the noise conditioned on knowledge of the signal is.,
since the Ji are independent.

N
1:S;'lVar(J;1 •
; ..1

The variance of the noise is the expected value of this conditional variance, which is

N al N a;E/
1:E[Sl]Var(Jd =- 1: Var(J;j =-- .
;=1 N ;..1 N

The SNR is therefore

(8.252)

(8.253)

al a1
SNR = =N·- . (8.254)

alE/IN E/

The processing gain is therefore N independent of how the jammer disuibutes its energy.

8-14. For the passband channel of figure 8-6b the complex-baseband channel has bandwidth B 12, and hence the
dimensionality of the signal subspace in time T is BT. The received vector C is now complex-valued, and
the noise vector is complex-\'alued where the components are independent, have independent real and ima­
ginary pans, each with variance cr=No (by ciIcular symmetry of the noise). We can think of C as an
N =2lJT dimensional real-valued vector with independent noise components. The signal power constraint
now applies directly to the resulting2lJT-dimensional real-valued signal vector

N N
E[LIS.. 12] =E[1:Re(S.. )2+ !m(S .. )2] = T Ps . (8.255)

..=1 .... 1

This establishes the equivalence of the baseband and passband cases.
8-15. From (8.137),

(8.256)

or at high SNR,

SNRf' = SNRf' . (8.257)

Taking, the logarithm, we can express the SNRs in dB, as

B2
lo-log1oSNR 1 = Ii;.lOolog1oSNR 2· (8.258)

Thus, for high SNR, to get the same channel capacity in half the bandwidth, the SNR (in dB) must be dou­
bled, meaning that the SNR (not in dB) must be squared.

8-16. We have M = 2, and assuming the signal constellation is ±l, a1 =1 and amin = 2, and 'YA =1. The spectral
efficiency is v =(10822)/BT = IIBT. and hence

'Yss = 2lJT (lUST - 1) =1.. BT . (2UST - 1) . (8.259)
3 3

Asymptotically, as BT -+ 00, 1ss -+ ~ 'lo~2 = 0.46. Thus. the SNR gap to capacity is asymptotically
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(8.260)

(8.261)

8-17.

increased by - 10 ·Ioglo0.46 =335 dB.

Assume that the threshold used in the slicer is halfway between the two signal levels. <X' (ro + r l)l2. Using
the results of problem 3-19. for one case the mean is roand the dueshold is (ro+ r 1)12. For the other case.
the mean is r 1 and the threshold is the same. Hence.

[
~ J(I".+T,)12 [ 2r J(I".+T,)12

Pc < 1JJ. 0 t(T'·-T.lI2+ 1JJ. 1 t -(T'.-T.lI2.
4+~ 4+~

For example. when ro=0 we can't make an error when zero is transmitted. and

p. <~[;r
8-18.

(a) Assuming 20 photons pet bit. and interpreting the optical powee as the optical powee for a received one-bit.
thepoweeis

2O-h v·1OS =2.6.10-10 Watts. (8.262)

or -66 dBmW. The average optical power. assuming equally likely zero and one-bits. would be 3 dB
lower.

(b) Assuming that N(/) is the thermal noise voltage across the resistor. which is white with power spectrum
No = 2kTIIR • and letting T =10-' be one symbol interval. the variance of the noise at the output of an ideal
integrator wiII be

T

ElIIN(/)N('t)dI d't] =NO£ . (8.263)
o

This is numerically 8·10-)4 vQ!i2-sec2• Similarly. the signal output of the integrator is the total charge per
bit times the resistance. or RqN.

(c) If. for a received one-bit. the average current in the resistor is i. the power is i2R •and we set this 100 times
as big as the noise power in bandwidth B •or

4kTIIRB
;2R =(rP iR = R ·100 (8.264)

where P is the optical power and r =1.21 is the responsivity. Thus. we get the optical power as

P =... /41cT.B ·100 = 33.10-' (8.265)

" 1.21
2
R

or -45 dBmW. This power is 21 dB higher than for part a.

(d) Let the number o[photons in one bit time be N.Land the avaage number of photons be N. The optical
power is equal to Nh v times the bit ate (lOS). orN = 2500.

(e) Similarly. the signal output of the integrator is th£ total charge pee bit times the resistance. or RqN. and the
variance of this signal is R 2q2 Var{N) =R 2q2N. which evaluates to 6.4.10-15 vol~-sec2. Note that the
thermal noise variance at the output of the integrator is 11 dB larger than the signal variance. and even
though the error rate is very low. the thermal noise is still the dominant noise source. Of course in practice
both of the noise variances. as well as the signal level. would be much larger due to the preamplifier. but
this would not change the relative levels.

8-19.

(a) As in problem 8-18, the signal power is

4kT,.B
p 2 =10·-- (8.266)

r 2R

which evaluates to P =10-- WallS. where r =1.21 is the responsivity of the photodeteetor. This
corresponds to -49.8 dBmW power. Let N be a random variable equal to the number of photons arriving
during one bit time. Then the average number of photons per bit is
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- PAr
N =& =790.6, (8.267)

where T =10-1 is the baud interval Now, at the output of the integrate and dump, the signal is shot noise
with a random multiplier and with pulse shape

{

qR, O~I ~T
h(I) = 0, otherwise (8.268)

and constant arrival rate iirr. Them~ Qf the signal is the convolution of h (I) with the arrival rate, times
the average avalanche multiplier, or GqRN. The variance of the signal is the convolution with h~t) times
G2,or

(8.269)

(8.273)

(8.272)

(8.271)

(8.270)
- 1

FG =leG + (2 - -=Xl - k), k =0.03 •
G

Finally, the thermal noise variance at the output of the integrator is Nor =2kT"RT. 1be SNR is then
- -2

SNR = (GqRN)
FGiJ'lq2R2N + 2JcT"RT

which evaluates 10 19.5 (12.9 dB] at if=I, and peaks at 317.6 (25 dB) at if =13. If we change to
" =0.97, the peale SNR is at only G =4, and is 123.5 (20.9 dB).

The maximum advantage due to avalanche gain is 12.1 dB for k =0.03.

At the sampler the desired s~ amplitude is ± 2AB =± 2"1000A 2 while the undesired common term
amplitude is B 2 + A 2 =l00lA . The power of the common teem is 24dB stronger.

The probability of error for OOK if the received power is P when a "one" bit is transmitted is

p~ =O.5e-l'

from (8.162). For homodyne it is bounded by

p~ S;O.5e-2P

from (8.178), which is at least 3 dB better (half the received power for the same perfonnance).

For large a, a Poisson random variable with parameter a can be approximated as a Gaussian random vari­
able with mean a and variance a (see Section 3.4). The input 10 the sliCer therefore can be written

8-22.

8-21.

(b)

8-20.

Q =±2ABT+N

where each N is a zero mean Gaussian random variable with variance A.
Then an error occurs with probability

Pr[error]=Q(2ABTrIA)=Q (2A ..Jf)
S;e- 2A7 =e-2N ,

(8.274)

Assuming large B , A :: B 2T .

(8.275)

where the inequality follows from the Oternoff bound (3.43).
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(9.176)

o
o 1-

1 1-
1 1- 1-

Since P < ~, the ML detector selects 4 = 0 ify =0 and 4 =1if'1 =1. That is, it chooses 4 =y.

An error occurs every time the channel.f1ips a bit, which occurs with probability P •

The posterior probabilities are

{
(I - p)q; 4 =0

PrIA(014)PA(a)= p(l-q); 4 =1

{

pq; 4=0
PrIA(1la)PA(4)= (l-p)(1-q); a =1

Using the numbers supplied we see that the MAP detector always selects 4 = O. An error occurs whenever
a =1 is transmitted, which occurs with probability 1 - q =0.1. This is lower than the probability of error
in part b, which is P =0.2.

(d) The MAP detector will maximize the probability PYlA ()Ila )PA (a), which is given in the following table:

a la

9-1.
(a)

(b)

(c)

If we observe '1 =0, then we will choose a =0 if(1 - p)q >P (1 - q), or q > p. Ifwe observe y =1 we
will choose a =1 if (l - P Xl - q) >pq ,or q < 1-p. Hence we must divide the q axis into three regions
as shown below:

(e)

9-2.

4 =1 4='1 .1-0
I I "- I• q
o P I-p 1

For very small q, the prior probability ofa =0 is small, so the MAP detector always chooses 4 =1. Simi­
larly, for large q it always chooses 4 =O. In the mid:'range of q, the MAP detector makes the same deci­
sion as the ML detector.

The MAP detector will always select 4 =0 ifq > 1- p.

The MAP detector maximizes

PVI,<Y I~)p,(s) =(1- Pt' -'W('J).p'W(cJ)P.(s) • (9.177)

Taking the logarithm of this expression and discarding the constant term, the MAP detector equivalently
minimizes

W (s,y) log [ I; p] - logp,(s) . (9.178)
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9-3. The values for!y(y 1£)Px(£) are shown below for each possible £ as a fimction of the observation y .
!(x)

THRESHOLD THRESHOLD

The decision regions are determined by three dtresholds. the middle of which is zero. The othec two can be
found by finding the observation at which the receiver is indifferent between a decision +3 and a decision
+1. That is the point y satisfying

Iy - 31 2 _ 2crtn(0.1) =Iy _11 2 _ 2021n(0A). (9.179)

Solving this yields

(9.181)

9-4.

y =2 + ~a2In(4). (9.180)

The thresholds are therefore at ± (2 + 'ha2In(4». Ifa2 = 0.25 the thresholds are at ± 2.17, so an observation
of 2.1 yields a decision £ = 1.

Using techniques similar to those in problem 9-3, the final answec is

_X.;..1 _+_X,;;;.2 + a2 1n[_Px_<_XV_]
2 XI-X2 Px(.Xl)·

9-S.

(a)

(b)

(c)

51 =[1,O,OJ, 52 =[0,1 ,OJ, 53 =[0,0,1] .

51 =[1001,52 =[0101, 53 = [001] •

Pr[ error IS; transmitted] S 3Q (.fit2cJ)

Pr[ error 15i transmitted] S 3Q (2,p) .

Note that in both cases Pr[ error 15i transmitted] is independent of i , so

Pr[ enor 1~ 3Q (.J2n.a)

Pr[ error] S 3Q (2.p ) •

(9.182)

(9.183)

(9.184)

(9.185)

(9.186)

(9.187)

9-6. The likelihood to be maximized is

L =fX,_~x"I~Xl'· •• ,XN ler)

[
1 1N -S.I!2Jt _S.ln4' -a"1!2Jt

= cTI2i e e ···e ,

from independence. This can be rewritten

L - [_1_] N -{I.,'+ ••• +1lM')rJiJ'
- cTI2i e .

Taking the derivative with respect to 0- we get
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[ I
N [ ]

ilL I "+ ..• + .. I Naa = CrI2i e-<xl 7« &)I1Ii ci' (X 1
2 + ... + XN; - c1 •

which is zero only when

53

A (XI2+ ••• +XN;cr= N •

ThUS. the ML estimator for the variance is the average of the squares of the observations.

9-7. By symmetry. we can condition the probability of error on any of the signals transmitted. and the result will
be the same as the un-conditioned error probability. Hence assume that (I,i) is transmitted, in which case
the error probability is

Pc = Pr{Nl > 1)+ Pr{N2 > 1)- Pr{Nl>I.N2>1}=2Q(.!.)-Q~.!.). (9.188)a a

9-8.

(a) By symmetty. is clear that the error probability is the same· whethec (00000o) or (111111) is transmitted.
and similarly for (111000) or (000111). If(OOOOOO) is ttan~mitted. a detection error occurs whenever two
out of the first three bits are in error. or two out of the last three bits. or both. If there is one channel error.
no detection error is ever made. and this occurs with probability (1 - P)6. If there are two channel errors, if
one is in the first three bits and the othec is in the second three bits. no error is made. and this occurs with
probability (3p (l - P );2. However. ifboth errors are in the first three or second three bits. there is an
error. If there are three channel errors. thece must always be two errors in either the first three or the
second three bits. and there is therefore always a detection error. Similarly, four or more channel errors
wiD always result in a detection error. Thus.

Pc =1- [(1- p)6+6p(l_p)S + (3p(l- p)2)2] . (9.189)

It is easy to verify that when (111000) is transmitted. the error probability is the same.

(b) Since the minimum Hamming distance is three. the approximate error probability is

Pc = 2Q(IJ1) =2[32(1- p) +p3]. (9.190)

When p =0.1, the error probability evaluates to Pc =0.05522 and the approximation is 0.056.

9-9.

(a) In this case. L =1 and II h 11 2 =1.25. so the threshold test can be impleRlented as a slicer, and the system
can be simplified as shown in figure 9-27.

(b) The probability of error of the discrete-time matched filter detector can be found using the techniques of
Section 7.2. Using the vector model, there are two possible transmit vectors in problem 9-9. 51 =(1,0.5]
and 52 =[0.0]. The probability of error is

Pc =Q(dfla)=Qf"I.2512a). (9.191)

If51 and 52 are equally likely. the ML receiver is the MAP receiver. and this is the minimum probability of

k=1 SUCER

f" ~ ~ {Z] A
~o" +0"-1 •
MATCHED SElECTti =1

FILTER IF INPUT > 1.2512

Figure 9·27. A representation of the receiver where the threshold test is represented as a
slicer.
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9-10.

(a) The only difference from problem 9-9 is that the matched filter has causal impulse response

hM-l =O.I~l - O.~l-l + ~l-2

and the output is sampled at k = 2. The equivalent slicer threshold is at 1.26/2.
(b) The probability of error is

(9.192)

(9.193)

(c) The receiver is shown below:

MATCHED

ALTER

2 1.5

SELECT

LARGEST

The receiver selects a=+1 if2q - 1.5 > 0 and 2q - 1.5> -2q - 1.5, where q is the sampled output of the
matched filter. These conditions together are q > 0.75. Similarly, the receiver selects a=- 1 is
q <- 0.75, and selects a=0 otherwise. Hence the slicer thresholds are at ± 0.75 as expected.

9-11.

(a) Wehave

$1(t)=O $2(t)=h(t)

1151 11 2 =0 1152 11 2 =p,,(0).

Defining

K l =O, K 2= I IY(t)e-iaa.'h-(t)dtl ,

the MLdetector chooses 51 if

(9.194)

(9.195)

(9.196)

(9.197)

Taking the logarithm of both sides will not change the inequality, so we get equivalently

lnIO<;)< p~~) . (9.198)

In view Of the monotonicity of lnl0('), the MLdetector compares K 2 to some threshold v, where that thres­
hold depends on the SNR. The receiver is the same as a passband PAM coherent receiver, consisting of a
demodulator, matched filter, and sampler. The difference is that instead of comparing the complex-valued
slicer input to the transmitted dilta symbols, we only evaluate the magnitude of this input (distance from the
origin) and compare in effect to the magnitude of the data symbols.

(b) The data symbols must all have distinct radii in the signal constellation. Thus, for example, PSK would not
work, but the ASK of this problem will work.
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(c) When signal one is transmitted.

K 2 =1<z.s~1 ,
where ofcourse S2 = H, the PAM pulse shape. The error probability in this case is

Pr (error! Sl U3JlSI1litted) =Pr(K2 > v) .

Similarly when signal two is transmitted.

K 2 =leiell~1I2+<Z~1
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(9.199)

(9.200)

(9.201)

and the probability of error is

Pr( error I~ transmitted} =Pr(K2 < v} • (9.202)

The get the overall probability of error we sum these two probabilities weighted by the prior probabilities
of the two signals.

9-12-

(a) With respect to the signal, an isolated pulse before sampling has Fourier transform HUro)F*U(iJ), and
hence afler sampling the discrele-time Fourier transform is

~ 'LH(j«(iJ + m ': »F*(j«(iJ + m ':» . (9.203)...
Note that the impulse response of the equivalent discrele-time channel is equivalent to the sampled isolated
pulse response. Similarly, for the noise, after demodulation the noise has JX:>wer spectrum SN(ro + roc)' and
81 the output of the matched filter, before sampling, 'lSN(ro + roc) IF(jro) 12• Aflee sampling, the spectrum
is

(9.204)

(9.205)

(b) The discrete-time isolaled pulse has Fourier transform

1 IH(j«(iJ+m';»1 2

T1: 211: •
... SN(ro+ (iJe + mT )

and the discrete-time noise has a power spectrum which is the same formula multiplied by two.

(c) When. 1;«(iJ) =No. the isolated pulse response is S,(eiIAT)/No and the noise power spectrum is
'lS" (ell» )/N ()o Ifwe scale the signal size by No. the noise spectrum is scaled by N 6, and we get the same
answer as in the lext

9-13. Doing a factorization of the folded spectlUm.

S,,(z) =A,2·G(z)G·(I/zj

for some constant A,.2. Assume that the received pulse is of the form-
h(I)= 1: h",g(1 -mT)

... "'-

(9.206)

(9.207)

for some pulse g (I) for which g (I) and g (I - mT) are mutually orthogonal for m ~ 0 (for example, "sinc"
pulses in the case of zero excess bandwidth). Then,

p,,(z)== J 1: h",g(1 -mT) 1: h/g·(1 -LT-kT)
-"'=- l~

and after minor manipulation,

,..=-
Taking the Z-transform, we get

(9.208)

(9.209)
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s,.(z) =p,(O)H(z)H·(lIz} .

Comparing (9.206) and (9.210), we conclude that

H (z ) =..y P,~O) G (z)

wiu suffice, or ht =g.. within a constant.

9-14. The conditional probability density is

N (<<s.. )'"
p(xI···~NlsI···sN)=ne-CUa-"'--

t=1 xt!

and hence the log-likelihood function is

DIGITALCOMMUNICATION

(9.210)

(9.211)

(9.212)

N
-logJ1(~1 .•. %N lSI· .. SN) = L (as .. - xtloUXSt + 10~l!) .

t=1
(9.213)

The last term is independent of the signal. as is the ~llo~ a term. so the simplified branch metric is
(asl - ~llo~l).

9-15. The log-likelihood function is given by the following table. where the last column specifies the branch
meaic:

~ v Pr(ylx 1 -logPr(ylxl
0 0 I-p -Iog(l-p)
0 1 p -log(p)
1 2 0 -00

1 0 0 -00

1 1 p -log(p)
1 2 I-p -log(l- p)

9-16.

(a) The ML detector can operate independently on each observation. It will perform a threshold test with the
threshold set at 0.5. The decision is:i.. ={1,1,1.0].

(b) The outputs associated with each transition are shown in figure 9-17. We can find the transition weights by
just subtracting those outputs from the observations and squaring. The result is shown in the following
figure.

~~O16 0.01 0.9 004
. 0.16 0.64 .

036 0.04
Performing the Viterbi algorithm, the surviving paths and their path meaies after each observation are
shown in the following figure.
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032

037
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1.01

0.41

0.45

(9.216)

The decision is i" ={O,I,I,O}, which is different from the decision in part (a). The knowledge of the lSI is
useful.

9-17.

(a) The probability of error in the comparable system free of lSI is Q (1120"), where cfl is the noise in this sys­
tem. The two systems have the same probability of error when

../1.25 1
2(J = 2a' • (9.214)

or 0' =0.89440". This implies that 0' is about 1 dB smaller than 0", so the system with lSI has about 1 dB
more noise margin than the system without lSI.

(b) In example 9-25.5" takes on the values 0.0, 0.5.1.0 and 1.5 with equal probability. So its power is

E[ IS" 12] =0.8750. (9.215)

The power in the modified system in part (a) is

EfIS'" 12] =0.5.

... /0.8750
So let K = V 0.5 = 1.32.

(c) The probability of error in the new normalized system is

Q (1.32120"') (9.217)

which will be the same as the probability of error in the lSI system when

1.32 ../1.25
20' =~ (9.218)

or 0"' =1.1830". The new normalized system has about 1.46 dB better noise margin than the system with
lSI.
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9-18.

(a) The shift register model and state transition diagram are shown in the following figure:

'1'1:..

(a)

XI: - 0.5XI:_1 + 0.lXl-2

(0,0.0)

(b)

(b) The trellis is shown in the following figure:
(0,0.0)

(1,0.6)

(c)

(1,0.6)
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(d)

(e)

~o.~

0.25

0.----0..---.--0 0.29

0.34

1.69

0.74

2.43

0.30

~~-o()O.83

...0----0 2.42

3;19

....0---0----0 2.43

9-19.

(a) The state is (£1-I,E1-:z), and the btanch metric is

lEA; + 81E1-l + 8zEl-112 •

The trellis diagram, not labeled with the branch metrics, is shown below:

(-1,-1)' G---.:EJ

(-1,0)

(-1,1) ......, "A.'"

(0,-1)

(0,0)

(0,1)

(1,-1)

(1,0)

(1,1) B--~

(9.219)
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(b) A finite set of error events which do not pass through the same state or its negative twice is
shown below:

(c) Shown below are the single~rror error event, and another error event corresponding to two symbol errors:

The shorter path has path metric (distance-squared) (l + g 1+ g 1) while the longer path has metric

1 + (l + g.)2+ (g. + gV2+gl (9.220)

and hence will have a smaller metric if g. =1 and g2 =- g.. For example, if g. = 1 and g2 =- I, the
minimum distance is..fi.

9·20.

The metric in this case is (el + dek-l + dek_V2, and the trellis diagram is pictw"ed in figure 9-28. A set of
five paths guaranteed to include the minimum distance path is pictured in figure 9-29. The path metrics for
these paths are:

Path 1: 1 + (l +d)2+4d2+d2 Path 2: 1+(1 +d)2+(l- 2d)2+d2 (9.221)

£t:i~\-~--.".~f.~11
0,-1 0,-1

1,1 1,1

-1,0 -1.0

O~ O~

1.0 1.0

-1.0 -1.0

0.1 0.1

1,1 1,1

Figure 9-28. Trellis diagram for a four-state lSI channel.
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Figure 9-29. A set of candidate minimum-distance paths for the trellis of figure 9-28.

61

Path 3: 1+d2 +d2 Path 4: 1+(I-d)2+d2 PathS: 1+(1-d)2+1+4d2+d2 (9222)

The metric for paths 1 and 2 are always bigger than path 3. and similarly the metric for path 5 is always
bigger than path 4. When 0 ~ d ~ ~ the path 3 metric is smaller than path 4. Thus. the answer is

2 { 1+ 2d2
• 0 ~ d :S ~

gmitt= l+d2+(I-d)2. ~~d~I' (9.223)

9-21. The trellis diagram and the two error events at a minimum distance "2 are shown in figure 9-30. As in
example 9-38, there is an infinite set of error events at this minimum distance. where the only difference is
that each error event corresponds to a sequence of alternating data symbols. The error probabilityesti­
mates ;Jte the same. The intuitive explanation is that the output of the channel is zero during sequences of
alternating data symbols. It is therefore difficult to distinguish the two sequences of alternating symbols
which are the complement of each othec.

'I'
-I

o

+1

(a)

Figure 9-30. A trellis diagram and two corresponding events at the minimum distance of "2.
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(9.225)

(9.224)

'-22.

(a) The logarithm of the moment generation function is. from (3.137).

'I';(v) =f(A.; (I) +~[e1fH) - 1] til

and hence the Otemov bound is

p. """p{1'.1(1.,(1) + ).".".}[<of"" - 1] + 0..(1) +~<-.(..., - 1])<It}

(b) By the method of variations. we substitute / + £A/ for /. differentiate w.r.L e. set £ =O. and set the result
to zero. The result is

logQ..il) +~ -log(Al(l) + A.a.0
/(-1)= 2 •

.which says that we correlate the shot noise against Ihe logarithm of Ihe known intensity.

(c) Substituting into the Chemov bound from b.• we get

p. "exp{f(1.,(I)+ ).".".}"(1.,,(1) + ).".".}~<It _ E I ; E2
}

where E, is the energy corresponding to the intensity.

E; =f(A.; (I) + A..w0 dt.

9-23. First equate the two representations ofI, (I). (9.116) and (9.48).

N - s,;
1,(1) =1: F,): "'i(l) = 1: - ~;(I).

i=1 ;=1 (J;

Now fonn the inner product of both sides with ~...(I).

NT _S.T

1: F,); I"'i(I)~~(I)dt =~ -0-I~;(I)~~(I)dt
i=1 ,=1 (J,

and applying (9.118) we get

Finally. substituting (9.231) into (9.46)•
•- s,·V,=1: y;·-t

;=1 (J;

- y. N N - y.
=1: -' 1: F,); "';; = 1: F,j, L-' ."';;

; =1 (J, i=1 i=I;=1 (J;

N

=Lf,j,Ui .
i=1

(9.226)

(9.227)

(9.228)

(9.229)

(9.230)

(9.231)

(9232)



63

CHAPTER 10: SOLUTIONS TO PROBLEMS

o
--0---0- -

o 0
o 0
000
000

The crellis and Ihree error events are sketched below:
£1-2'£1-1 £1-1'£1

1,1

1,0

1,-1

0,1

0,0

1,-1

-1,1

-1,0

-1,-1

10-1.

The error event with the dark lines is the one requested in (b), and the two events in light lines are those
requested in (c). (The answer to (c) is not unique.)

10·2. Let J be the order of the FIR filter G. (z). We will show that the inequality (10.27) is strict for every error
event To do this, we need to show that at 1east one of the tenns thrown away (m ~ 2) is non-zero, for any
error event. Assume L is the length of a given error event (£L ~ 0 and £1 =0 for k > L), and consider the
m =J+L term,

L

IL £lg"J~-l. 12 = I£Lg"J 12 > O.
1=1

(10.187)

Thus, the inequality is strict for each and every error event. which implies that it is strict for the minimum­
distance error event

10-3. Since

IH1-2 =(1 - a- IXI - c·z) , (10.188)

the coefficient of z0 is 1 + IC 12 independent of whether the channel is minimum-phase or maximum-phase.
For lei < I, the geometric mean is clearly unity, since (10.188) is in the form of a minimum-phase spectral
factorization. When lei> I, we can write (10.188) in the form

IHI-2 =Icl2(1-(cj-lz- IXI-c-lz), (10.189)

and thus the geometric mean is Ic1 2•

10-4.

(a) (1 - ez-I )

(b)

(10.190)

from problem 10-3.
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(c) When e =0 thece is no noise enhancement. As 'el --. 1 the noise enhancement approaches 3 dB. For'e I > 1 the noise enhancement gets even larger because the channel tIansfel' function gets smaller.

(d) The maximum-phase case will not arise in practice. because the channel impulse response would be both
IIR and anticausal.

10-5. For the minimum-phase case. multiply the lI3nSfer function by ../1 - 'e ,2 to normalize it. and thus

,,1- A 1. I + 'el
1

(10.191)
-ura- - • 1- 'e,1 .

For the maximum-phase case. the normalization constant can be detennined by

1-
H(z)= z =-1: e-.l:zl:+1 (10.192)

e (l-e-1z) e 1:=0 •

and the energy is 1/( Ie ,1_ 1) so that the normalization constant becomes ..J Ic 11 _ 1. and

,,1-_. _ A 1• lel
1

+ 1 (10.193)
~ZF- • lel1 -1 .

The solution is quite different from problem 104. since the noise enhancement approaches infinity as
Ic I --. 1 and goes away as 1cI gets large. This is to be expected. since as Ie I --. 1 the channel transfer
function on the unit circle goes to zero at all frequencies except the pole location. and as 'e' gets large the
channel approaches a negative unit delay. which is easily equalized without noise enhancement by a unit
delay.

10-6.

(a) From problem 10-3. the geometric mean is unity and hence £6FE-ZF=A? No precursor equalizer is
required. and the posteursor equalizer is

CZ-l

H(z)-I= l-cz- 1 • (10.194)

(10.197)

(10.196)

(10.195)

(b) From problem 10-3. the geometric mean is 1c,2. and hence t6FE_ZF=A?'C,1. WritingH in monic form.

- e-1z
H(z) = -1

l-e z

we get r =1. H 0 = - c-I• and H mu =11(1 - e-1z). The precursor equalizer is

C()E() l-(C)-lz-I
zz = - c 1- c-1z

and the postcursor equalizer is E (z) - 1= - (e )-Iz-I

(c) In the maximum-phase case the precursor equalizer is IIR and anticausal. and hence not practical to imple­
ment However. the MSE gets smaller because the equalizer utilizes the large delayed sample for decision
making. The MSE of the LE-ZF is always larger than the LE-ZF. by a factor of 1 + 'c ,2 for·' e' < 1 and
by a factor of (l + 'e 11)/1 c1 2 for 'el > 1. This difference is largest (about 3 dB) in the region of Ie I =1.

In the minimum-phase case the normalization constant is ../1- 'e,2. and

A.2
£6FE-ZF =--~1- lel 1 .

In the maximum-phase case the normalization constant is "r-j-e"'":12:"'"_-1 and

1 =A 2, 1e,1
£DFE-ZF • Ie 12 _ 1 (10.198)

As for the LE-ZF, the MSE blows up as the pole approaches the unit circle. The DFE-ZF can tolerate
zeros on the unit circle. but not poles. Likewise. the noise enhancement goes away as Ie I --. 00 because
the equalizer bases its decision on the larger delayed sample, which is asymptotically unity in the normal­
izedcase.

10-7.
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10-8. The fannula for the MSE follow readily. The spectral factorization of (10.81) approaches, as Sz --+ 0,

Sf --+ SttHH• (10.199)

Sf --+ IHoI2A"2(;,,G:HmJl:-'H:wPmu

A;-' IHol2a1

G, --+ G"HmJI:-'

and finally

H·
C'E _1_~_1"'-1

--+ HH -v.o mas

which is the DFE-ZF precursor equalizer.
10-9.

(a) When the excess bandwidth is less than 200%, we get the fonowing picture:
• -jm.I

.!1 I C 3(e j O)TI3) =H· Um)C l(eimT )

Y(t)~ ::; H=iiiH C3(eiO)T~ F~L =i=F Qt

(b)

(10.200)

(10.201)

(10.202)

(10.203)

e-i f4. 1

Y(')~3~
10-10. The picture is as follows:

e-i f4.1

The output is

.--
10-11. Given a baseband transmit specttum Sx, the transmit powee coostraint of (10.114) is

Ps2= IFI·<Sx >tt.F,

where S" =L - SN"HI2 for f e F, and hence we geta relation for L,

Ps2= IFI·(L - <SNIIHI2>A.F).

Substituting this into (l0.112), ifthe integral is restricted to f E F,

(10.204)

(10.205)

(10.206)
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Finally,

r="FI = < 1 + Sx IHI1/Sft/ >G.F = L
< Sft/IIH1 1

>G.F

Ps 12·IFI + <Sft/IIHI1 >A.F
=

<Sft/IIHI1
>G.F

DIGITALCOMMUNICATION

(10.207)

(10.209)

10-12. The pulse at the output of the receive fiItee has Fourier transform T·G(j27cf)H(j21Cf)F(j27cf) and the
noise has power spectrum T'Sft/(j21Cf)IF(j21Cf) 11• Afrer sampling, the isolated pulse has Fourier
transform

H(e i2rcfT ) =1:G(j27C(f + mrI'»H(j27c(f + mrr»F(j27c(f + mrr»,..
and the noise has power spectlum

Sft/(ei'bcfT)=1:Sft/(j27C(f +mfT»IF(j21C(f +mrr»1 2
,

III

(a) The capacity is given by (10.119) with these values ofH( e i 2s.fT ) and Sft/(ei'bcfT).

(b) For this case, F =G·H·, and thus

H(ei'bcfT) =I:. IG (j27C(f + mfT» 12'IH(j21C(j + mrr» 12 ,..
and

..

(10.210)

(10.211)

(10.212)

(10.213)

Note that when the noise is white, H(ei'bcfT) and Sft/( e i 2s.fT ) have the same shape; that is, they are equal
within a multiplicative constant N Q. Thus,

Sft/( ei 2s.fT ) N Q
---";;-;..,.~-'--o- = (10.214)
IH(e i 2s.fT ) I2 IH(ei'bcfT) I

(c) First, the discrete-time system has to be able to geneI3te the water-pouring spectrum. A sufficient condi­
tion for this is the following: IfF is the warer-pouring band. which must be symmetric about f =0, then
the sampling I3te is twice IFI12, or lrr>IFI, and the transmit filter is ideally bandlimited to half the
sampling rate and non-zero over this bandwidth. (1'b.is is not a necessary condition. because ifF is a "gen­
eralized Nyquist interval" with respect to sampling I3te Irr, then the water-pouring spectrum can be gen­
erated by an appropriate transmit filter. A generalized Nyquist interval has the property that for each
If I S; 112T. f + m rr E F for precisely one value of m.) Second, the receive filtee must prevent allilsing
and allow all frequencies within the wafel'-pouring band to pass. A sufficient condition for this is that it be
an ideal LPF bandlimited to I12T Hz. (Again this is not a necessary condition. Ifthe wafel'-pouring band is
a generalized Nyquist interval with respect to sampling I3te 1fT then the receive filter that is ideally
bandlimited to this water-pouring band will do.)

(d) For this case, if the transmit filter and sampling tale meet the criteria of (c), then the receive filter will
automatically be OK. The fact that the receive filter is not flat within the generalized Nyquist interval will
not be a problem. since this transfer flDlction can always be reversed with an equalizer filter in a reversible
fashion.

(e) The precursor equalizer is a reversible operation, and thus will not affect the capacity.
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(l0.217)

(10.218)

10-13.

10-14.

(a)

(b)

For the baseband case, we get SN =No and H =I, and thus from (10.120), Sx =L - No. From the power
constraint. Ps =(L -N~rr orSx =PsT. Substituting into (10.119),

1c= 2T·log1(l+PsTINo)=B.logil+Ps nNo!JL (10.215)

since in this case the sampling rate is lrr =2B •

In the passband case, we have Sz =2N0 and H =I, and thus from (10.124) Sx =2L - No. and the power
constraint of (10.122) becomes Ps = (2L - 2N o)lT. SubstiUlting into (10.123),

1
C = T 'log1 (1 +PsTl2No)=B 'log2(1 +Ps l2NoB), (10.216)

since the sampling rate is lIT =B in this case.

At the output of the channel, the noise specllUm is Sz and hence the total noise power is IF I· < Sz >".F'
Ifthe channel input signal has power specllUm Sx, confined to water-pouring band F. then the total signal
power at the channel output is IFI· <Sx IHI 2 >..". This is easily related back to the transmit signal
power Ps through the water-pouring spectrum since for f e F,

2 2 Ps 2Sx lHI = IHI .("'i"F!+ <Sz/IHl >...F)-SZ,

and from this the channel-output SNR is

IFI· <Sx IHI 2 >"'.F
SNR out =-------'--

IFI· <Sz >A.F

<IHI2 >= < 1H1 2 >"'.F(PS IIFI + <SzIlHI1 >.4o.F)· "',F -1.
<Sz >.4o.F

(10.219)
SNR = {SNR OGl + 1)'<Sz >",.,1< IHI

2
>.4o,F - <SzIlHI

2
>"'.F

ncmn 2vB.IlFI. < SzllHI 2 >G.F - < Sz/lHI 2 >.4o.F

10-15. We require that < 101 2 >", =PsTk11.. The effect of the tI3I1Smit filter is to change the channel from H to
OH. and hence the MSE at the output of the DFE-ZF to

2 2 <SzIlHI2>G
£DfE-2'F= <SzIlOHI >G = 2 (10.220)

<101 >G

Using the geometric mean inequality < 101 1>G S < 101 2 >", =Ps Tla1., we get
~2'F~ < Szll H12 >GCl1.IPsT with equality ifand only if0 =~TlCl",.

10-16. We have that <S.. >.40 =Cl1.andconstraint <S", 101 2>.. =Ps·T.
(a) Expliciting calculating the MSE.

(10.221)
<SA >G

~ < SzllHl2 >G' PsT

'fus. the MSE is bounded below by a quantity that can be achieved when SA 101 2 is a constant. namely
PsT.

(b) £5fE-2'F= < Sz/IHI 2 >G <SA >GIPsT.
(c) Since < SA >G S < SA >A = Cli. we get that. when the transmit filter is optimized.
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1
1 2 O'A

£DFE-zFS <Sz/IHI >G' PsT' (10.222)

The right side of (10.222) is the MSE for the white symbol case, established in problem 10-15.

10-17. The derivation for the error probability asswnec:l Gaussian noise at die slicec. For the DFE-MSE, the slicer
error includes residual lSI, and hence is not Gaussian. It would be surprising to find the SNR gap to capa­
city shrunk by the presence of lSI, so it is likely that ifthe effect of lSI at the slicer were taken into account
we would find lSI to be beneficial.

CHAPTER 11: SOLUTIONS TO PROBLEMS

11-1. For a predictor with coefficient vector f, the error is given by

E[IEt 12] =E[IRt-(rt 12]

=E[lRt 12]-2Re{,..'E [Rtr-'l}+,..'E[r;r/]f

=410 - 2Re{'" , a.} + ,.. ,cl»f

where

(11.166)

(11.167)

(11.170)

cl»=E [r·'rt'], (11.168)

the same as before, by wide-sense stationarity. The solution is the same as the the equalizer, with the new
definition of a..

11-2. The orthogonality principle of (11.26) implies that

O=E[Etr-']

=E[(At -c'rt)r-'] (11.169)

=0.- cl»c

where the last equality follows since c'rt is a scaler and therefore

E[(c'rt)r·']=E[r-'rt ']e.

11-3.

E[Elr;l =E[(Rt - fope'rt)r;l

=E[Rtr;]-E[r;r/lfopt

=0.- cl»fapt

=0.

(11.171)
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11-4.

(a) This follows from the definition of matrix multiplication since the ijelement of ell is +i-j=+j-i.

(b) AsL-+oo. -L +j-iV; =I..Vj • -- < j < 00.

i-

Since this is a convolution sum. the Fourier Transfoan gives:

S (ej~V(ej~=I..V(ej~

69

(11.172)

(11.173)

(c) Either V(ej~= 0 or 1..= S(ej~. Since S(ej~ is single valued. 1..= S(ej~ can occur at only one Cllo since
I.. is a. c90stant Hence V(ej~ will be zero at other m. V(ej~ =~CJ)-CJ)o) will be an eigenvector. or
Vi =e/ftIoI. (a complex exponential).

(d) As L -+00 the eigenvalues are by this argument the values of the function S (ej~.

11-5.

(a) Taking the Fourier transform of the autocorrelation fmlction ellA:. the power spectrum is

S(e J--,= Lcxllle-jiDl
l

l-a2
- (l--<Xej~(l--<Xe-j~

l-a2

- 1-2a.cos(Cl))+a2

(b) Assume 0 < a < 1. Then the minimum of the power spectrum is at cos(ro) =-1. and

Amm-' l-a
1+<X

Similarly the maximum is at cos(ro) =+1. and

1+<X
Amax-'l-a

(c) For N =2. the autocorrelation matrix is

(11.174)

(11.177)

(11.178)

4> =[ ~ i] (11.179)

and setting the determinant of ll- 4> equal to zero. we get eigenvalues 1..1 = I-a and '-2 = l+a.

(d) As N -+00 we get that

and CorN =2.

For a=I these values are the same.

(e) AsN~.

t=[::]'
A.n.x =[ I+<xJ
Awn l-a

(11.180)

(l1.181)

l-a2
Popt = 1+<i

and the dominant mode of convergence is proportional to

(11.182)
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(11.183)

As a-+I, the input samples become perfectly correlated and the convecgence of the MSEG algorithm
slows.

11-'. The error vector is given by (11.32),

qj = [1- JW»] j qo

=~[1- p,,-;) j Vi V;'qo
,-1 (11.184)

II

=~~JVi
i-I

where

1iJ =(1 - p,,-;Yv;'qo (11.187)

pe co~nentof the error in the direction of each eigenvector Vi is ~J' and decreases exponentially as
II- PA.J J. The component of the initial error in the ~tion of Vi is v;'qo. the component of the initial

error in the direction of Vi .

11-7. From problem 11-6,

or

E[El4-E[El] miD =~A.(qj'Vi] '1=~A;~'1.j
,el I=l

=i~A. ( I~A.;] '1j ( v;'q~ '1

which decreases exponentially with n modes as [ I-PA.] '1j

11-8.

(a) Assume the dominant mode is i ,A. ,Vi' From problem 11-7, the excess MSE for this mode is

A.(l~A.)2i (V;'q~2,

and taking 100oglo of this we get

where

(11.188)

(11.l89)

(11.191)

(11.192)

(11.193)

~-20log1O<I-PA.) (11.194)

Note that the excess MSE measured in dB decreases linearly with time. Hence the speed ofconvergence is
often measured in dB/sec. or some equivalent units.

(b) From figure 11-4, when Pis small the dominant mode corresponds to A"w" so that
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11-9.

11 =1010g1O<vt'qoi+ 10IogloAmm
'Y2 = -2010g1O<I-~W

-20lo&(1-~W
=

10&(10)

2O~Amm
= 108e(lO)

As ~ increases, the speed of convergence increases in direct proportion.

TheMSEis

(11.195)

A 2 2
E[Y1 - Y1] =E[Y1- aY1-1 -b]

and setting the derivative w.r.L a and b to zero,

O=+I-a +O- b J1=J1-aJl,-b.

Solving for a and b we get the stated results.

(11.199)

(11.200)

11-10.

(a) Doing a partial fraction expansion, we get

4>(,)= 1~a'[ 1!a> + '~Q] (11201)

and expanding each term, the first corresponding to positive time and the second to negative, we get

..... - _A_all! (11.202)
'l"1 - 1- cx2 •

(b) Putting Y1 thru a filter (1- az-l) results in a white signal. This filter is in the form ofa predictor, and hence
is the optimal predictor of infinite order. Hence the optimal predictor of any order one or higher has all­
zero tap coefficients except for f 1 =a.

11-11.

(a) From (1 1.38), we Icnow that

•
q;+1 =k(l- ~j+1A;)(vt'q;) vi·

;=1
(11.203)

(11.204)

(11.205)
..

E[a;) =(1- a) k o!a2=a2.
j=O

Using this result and the assumption that the eigenvectors are orthonormal, we can prove the stated result
by induction.

(b) We force the error to zero after N iterations by choosing

All <. <NPi=);' -J- .
'/

The product term then always contains a term 1 - ~,A, =0 for every i.

Note: The problem should state that R1 is a real-valued and zero-mean process.11-12.

(a)

(b) A Ieey fact is that when X is a Gaussian zero-mean random variable, E[X 3
] = 0 and E[X4J= 30-4, which

can be derived from the moment-generating function (Section 3.1). Then calculating the variance,

Var[a;J =E[(cr;fJ - (a2f. (11.206)

The first term can be calculated directly,
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- -
(1 - ai 1: 1: ci"+f&E [Rl.....Rl_l

.=0..=0

=(1- a)2[ i a""E[R.,....... l + :E :E ci"+f&(02)2_ :E a:z",(02)21
",=0 .-0,,=0 ...=0 J

where the third term subtracts off terms that were included twice in the first and second tenDs. Using the
result for the fourth moment. we get

Var[<11l =2d' 1- a (11.208)
l+a

where this variance approaches zero as a -+ 1 and 204 as a -+ O. It is of course desirable to have an a
near unity because of the long time constant, since this results in a lot of averaging. The price we pay is a
long convergence time. or poor traclcing capability.

11-13. In figure 1O-18c,let the samples at the lPF output beR1 , so that this implies that
N

QI; = 1: c.R 21:..... E., = AI; - QI; (11.209)
",-Ii

For simplicity. doing the real-valued case.

a
~El=2EI;R2I:-j .
aCj

Then analogous to (11.54).

[chllj =[cl;lj- ~.,R2I:-j .

For each increment of k. the delay line storing R., shifts two positions.

(11.210)

(11.211)

11-14.

(a) 4> is replaced by (<I» + e:rt). and it is simple to verify that the eigenvalues of this matrix are Q.; + 02). with
the same eigenvectors.

(b) The new eigenvalue spread is <Amu + cr)/CJ..mu. + 02). which is smaller than before.

(c) From exercise 11-7.

(11.212)

and hence

(11.213)

and the excess MSE is

N Iv~'aI2
(c - 4>-la )*'<I»(c - 4»-la) =<t 1: ~~ 02 (11.214)

;=1 .. +)

which is the same result as problem 11-15. For small cr the increase in MSE is approximately proportional
to (o2~)2 for the i -th mode.

11-15. Adding~ IIcIl 2 to(1l.8).

E[Ell =E [IA., 12]-2Re{c·'a)+c· '(<I»+J1I) c . (11.215)

Hence the solution is the same as before with 4» replaced by(~.or

cil=(4)>+~rla. (11.216)

The eigenvalues of (<I»+~) are Vi and the eigenvalues Q.;~) • where Vi and ~ are the eigenvectors and
eigenvalues of <1». The eigenvectors and eigenvalues of ($+JJ.I)-I are Vi and 1IQ.;~)and hence
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-I .:. 1 .,
(<Il+J.tI) = '"--V;V;

;..1A;+J1

and

All .,
e,.-<Opf = t.r( A.;+J1 -1;")V;V; ex.

The excess mse is given by (11.42),

The excess mse of the ith mode increases as

which has derivative

a -1L ~
~ ( A;+J1 f = (A;+J1)3

and since this derivative is zero at IJ. =0, the excess mse increases very slowly with IJ..

11-16.

(a)

so that the gtadient algorithm is

73

(11.217)

(11.218)

(11.219)

(11.220)

(11.221)

(11.222)

(11.223)

(b) The eigenvalues of(~are (A;+IJ.), so replace Awn by O-mm+J1) and i.mu by <Am..x+J1). The algorithm is
stable if

(11.224)

(c)

(11.225)

(d) The eigenvalue spread is now

Amax+J1 Am.x
~+J1 = Awn+J1 (11.226)

which can be reduced dramatically by Jt>O when Awn is very small.

(e) They apply to the speed of convergence o( the average trajectory and the asymptotic excess mse caused by
the algorithms converging to cll rather than capt. The second tenn in (11.226) biases the solution in the
direction of keeping the coefficients small. The SO algorithm corresponding to minimizing (11.226) is

Ct+1 =(1 - P1J.)c" + PEtp; , (11.227)

where IJ. =0 corresponds to the previous algorithm without leakage (11.53). The operation of this algo­
rithm is evident., since the coefficient vector is multiplied by a constant slightly less than unity at each step
before adding in the correction term. When the corrections are small, as when the coefficient vector is
wandering in the direction of a eigenvector corresponding to a small eigenvalue, this leakage decreases the
size of the vector over time.
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11-17. The lowest frequency in the passband signal is

1800-120CH.l =480 Hz (11.228)

and the highest frequency is

1800 + 1200·1.1 =3120 Hz. (11.229)

(a) The baseband case is shown below:

PHASE

SPUTTER

2400Hz

EQUALIZER

7200Hz

CARRIER

RECOVERY

r-- 72OOHz .....---,

~-J BPF [;f.I 480-3120 Hz I.
+

2400 Hz

The BPF rejects all frequencies other than the signal bandwidth. The sampling rate at the front end of 7200
Hz is greater than twice the highest frequency of the passband signal. Following demodulation, a sampling
rate of 4800 Hz would be adequate since the highest signal frequency is 1320 Hz; however, it is not con­
venient to decimate by a factor of two-thirds (perhaps a 96004800 decimation would be more appropriate,
but this does not meet the specifications of the problem statement), The fractionally spaced equalizer can
generate a signal at the slicer input at the symbol rate, a decimation factor of three.

(b) The passband case is shown below:

CARRIER

RECOVERY

2400 Hz-1 P
200 Hzr- 7...,200 Hz

BPF PHASe
IN EQUAlIZER t={~~

480·3120 Hz SPUlTER ..-.~~.....

2400 Hz

You might expect that the equalizer output had to be sampled at 7200 Hz also, but after demodulation a
rate of 2400 is adequate. Since demodulation followed by decimation is equivalent to decimation followed
by demodulation, in fact the equalizer output can be decimated to the symbol rate.

(c) This case is shown below:
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~-1-480-3-B-:-Hz-F

CARRIERIOSCILLATOR I RECOVERY

,....--I
u.

r>~PHASE J! ~
EOUALIZER -'" f- ::I I: I: ~

SPUTTER 'ttI....::/ '<..)If

7200Hz 2400Hz

+ -
~ ~ )(
"lCoJ

2400 Hz

This case is similar. except for the reasoning. The equalizer input could again have a sampling rate of
4800. although this is not convenienL The 2400 Hz sampling rate at equalizer output is adequate for the
same reason as in the baseband case (no funny business as in the passband case).

The passband equalizer case seems superior since the sampling rates are the same, but only one complex
multiply for demodulation is required rather than two.

11-18. The block diagram is shown below:

CARRIER

RECOVERY

-1 P
7200 Hz,-----;.;7200 HzF---,

IN BPF PHASE PRECURSOR

48003120 Hz SPUTTER EQUAlIZER t:=:J[~~ f

2400 Hz

+

EQUALIZER

The poSCCW'SOr equalizer and carrier recovery circuits work in the non-rotated domain along with the slicer.
The slicer error is used directly in the posccW'SOr equalizer and is rotated before being input to the precursor
equalizer.
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12-1.

(a) The relation between input and output is
• (.->

X'I\ 1-
y(l) =~ - - Jx(u)e 1: du (12.122)

2 2't_

where t =2Re is the time constant of the circuit. The first tenD in (12.122) represents the desired data sig­
nal attenuated by the voltage divider. The second tenD represents an undesirable lSI, consisting of an
exponentially weighted average into the past.

(b) The output lSI becomes

12-2.

(a) We get a maximum lSI of.I~ times the maximum data symbol.
. t l-p

(b) We get

T- =2tt-o.OI =0.0628
't

(12.123)

(12.124)

p =e~06211 =0.939. (12.125)

The maximum lSI is therefore 0.97 times the maximum data symbol. While this worst-case is very
unlikely, nevertheless this situation is unacceptable!

12-3. Performing a similar integral to exercise 12-1, we get Ibis time

(x· - 2%3 + 2% - 1) (12.126)

-~
for x =e 2. Letting 13 =.033, we get an intersymbol interference of 2.6xI<r4, much smaller than for the
biphase case.

12-4.

(a) If an equalized pulse has Fourier transform G (jw), then since the transmitted biphase pulse has zero area,
so must the equalized pulse, and G (0) =O. In order for the equalized pulse to satisfy the Nyquist aiterion,
we must have G(j21tlT) ~O in order for the folded spectrum to be constant. This implies that the pulse
bandwidth must be at least as great as the symbol rate 21t1T, or a minimum of 100% excess bandwidth.

(b) The bandwidth of the equalized pulse is less than 31t1T, and it is easily verified that two aliases will fold
over into the frequency band [O,1tlT] in the folded spectrum. Thus, we must have that

G(j(w+ 2;»+G(jW)+G(j(ro- 2;» (12.127)

is a constant over the band [O,1tIT).



CHAPTER 12: SOLUTIONS TO PROBLEMS 77

(c) The minimwn bandwidth pulse bas bandwidth 'btIT. We can find a zero-area Nyquist pulse with this
bandwidth by starting with the pulse

h(/)=sioc(2; I) (12.128)

which has bandwidth 'belT and satisfies the Nyquist criterion since it bas zero aossings at multiples of T12.
but bas non-zero area. Then we note that

g(/)=h(t)-h(/- ~) (12.129)

will have the same bandwidth. will also satisfy the Nyquist criterion (zero aossings at multiples of T). and
bas zero area. Hence this pulse meets all the requirements. In fact. the pulse that meets the requirements is
unique. so this is iL

(d) Yes. since they have a zero at d.c•• the only way the folded speclrUm can be constant is ifthe pulse has
energy at the symbol rate 27r11'•

12-S. Asswne the same pulse shape in both cases. the signal power is the same in both cases. and that we transmit
levels ±I for binary antipodal and 0# for the twinned binary code. F'1CSt we find the P for which the avec­
age powec is tt.... same. For both codes. since the pulses are orthogonal. the average power is proportional
to E [All. For the antipodal code this value is unity regardless ofp. For the twinned binary code. assum­
ing for the moment that p =1.

E [All =E [(Bt - Bt _1)2l

=E[Bll +E[Bl-d - 2E[Bt lE[Bt _tl (12.130)

=p +p _2p2=2p(I_p).

For arbitrary p we must multiply this quantity by p2. Setting the powers equal. we get

2 I
P = 2p(I_p) (12.131)

For the binary antipodal code the noise must be unity in magnitude to cause in error. and for the twinned
binary code it must be pl2. Thus. the relative immunity expressed in dB is

20 IOglO(f) = - 10 IOgIO(P (l - p» - 9 . (12.132)

(a) When p = ~ the immunity becomes -3 dB. implying that the antipodal code is better by 3 dB.

(b) The twinned binary code bas better immunity when p is near zero or unity, because in this case a large
numbec of data symbols are zeco and the level spacing can be large for a given average power. In particu­
lar, it is henec when

1OIoglO(P(l-p» < -9 (12.133)

or p < .148 or p > .853.

12-6. Using binary antipodal signaling with the pulse shape shown below will result in the same transmitted sig­
nal as with a twinned binary code with an RZ transmitted pulse:

g(/)

1

-I
2T
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12·7. 1be receiver SUUClwe shown below will work, where the binary slicer (decision level at zero) output
assumes the values ±1:

~ BINARY I-r--
-~ SUC£A IJ b.

The signal values in the absence of noise at the slicer input assume the values ±~, and hence are the same
distance apart as for the ternary slicer in figure 12·3. Hence, the SNR will be the same. Note that we do
not have 10 normalize signal powers since the transmitted signal is identically the same in both cases.

12-8.

The twinned binary and AMI codes can be represented by lrellis diagrams as shown in figure 12-21. Note
that for twinned binary, if we observe a" =0, then the decoded output b" depends on the previous state,
and hence the decoder is not memoryless. For AMI, an observation of a" =0 uniquely specifies that
b" = 0, and observations a" = ±I uniquely specify b" = I, independent of the past state. Hence, in AMI the
decoder is memoryless.

For twinned binary, at the slicer, Q" =B" -B"-l +N". The minimum distance is "'2, and the probability of
error is approximately 4Q (firlCJ). Without the VA, the received levels are 0 (probability ~) and ±1 (pro­
bability v..). The error probability is thus

1 1h 1 Ih 1 ~ 3 1
Pc = 4"Q(c;-) + "4Q (c;-) + "2'2'Q (c;-) = "2Q (2CJ) • (12.134)

This analysis ignores the error propagation. which results since the 0 level will be observed for b"-l =b"
for either b" =0 or b" =1. Hence the actual error probability, taking into account this error propagation,
will be slightly worse. Thus, the VA is at least 3 dB better at high SNR.

12-9. Comparing the trellis diamams in figure 12-21a and figure 12·21b, with respect 10 the observation at they
are identical. Thus, the minimum distance is the same and the VA willperfonn the same in twinned binary
and AMI. However, the error probability is slightly different for AMI without the VA because there is no
error propagation. Thus, the error probability is the same as that calculated in problem 10-7, and in this
case it is exact.

12·10.

(a) A bipolar violation consists of two "+" or two "." symbols in a row with any number of intervening "0"
symbols.

(b) We can count the number of bipolar violations, and the error rate should be proportional to this.

(c) When a single ternary slicing error is made the number of bit errors and bipolar violations that result are
listed in the following table:

(a)

[1,0]
1

(b)

[0,0]
1

Figure 12·21. Trellis diagram representing two line coders. a. Twinned binary. and b. AMI.
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Ternary Level 1# Bit Errors 1# Bipolar Violations
Actual Detected

+ 0 1 1
+ 0 2
0+1 1
o 1 1

+ 0 2
011
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Making the asswnption that errors are infrequent and hence do not interact in funny ways, this table accu­
rately reflects the relationship between bit error rate and rate of bipolar violations. We see that the rate of
bipolar violations is higher. However. the slicer errors that result in two bipolar violations and no bit errors
are much less probable than those that cause a single bipolar violation. Therefore, we conclude that the
rate of bipolar violations is very similar to the rate of bit errors.

12-11.

(a) In accordance with this notation, an AMI signal would consist ofonly "O"'s and "B"'s.

(b) The sequence "BVBV" is cLe. balanced. The price we pay is a larger RDS. The example has a RDS in the
range [-2,2], which is larger than AMI.

12-12.

(a) Long sequences of zeros are avoided, so that timing recovery circuits can function better.

(b) At the decoder, we can recognize this block of symbols since it violates the AMI constraints in a prescribed
way, and substitute the "o00ooo" decoded block of bits.

(c) This codeword always has zero-disparity, where the disparity of the codeword or block is defined as the
digital swn of just that block. Hence the RDS at the end of the block is equal to the RDS at the beginning
plus the disparity, or for this case is the same as AMI. However, at the end of the third symbol in the
block, the RDS is in the range -1 SRDS S+2, and hence the DSV is three. We have therefore paid a
penalty for the guaranteed timing energy in terms ofa larger RDS and DSV.

12-13. The largest block consisting of one "V" and starting with a "V" has disparity zero (since it consists of an
even number of non-zero symbols alternating in sign), and hence we can ensure that the RDS at the end of
this block is zero. The RDS within the block alternates between +1 and 0 ifit starts with V =+ and alter­
nates between -I and 0 ifit starts with V =-.

12-14.

(a) We could substitute "BVBV" for each block of four input "zeros".

(b) The disparity of the block is zero, so the RDS at the end of the block is in the range 0 S RDS :s 1. The RDS
at the end of the second symbol is in the range of-1 :S RDS :S 2 and hence the DSV is three.

(c) The RDS properties are the same, and there will be more timing energy. However, the crosstalk and RFI
will be increased. If the timing energy of B6ZS is adequarc. then it will be preferable because of the
improved crosstalklRFI properties.

12-15.

(a) We want to substitute for blocks of three "zeros". The only non-zero blocks of three ternary digits with
zero disparity have no bipolar violations, and hence would not be recognizable at Ihe receiving terminal.

(b) This code is not unique, but choose the following code: If the RDS at the beginning of a block of three
"zeros" is -I, then transmit"+0+". Ifthe RDS is 0 or I, uansmit "00+". The reader can verify that the RDS
at the end of this block is always in the range -1 S RDS S +1. Furthermore, rhe RDS within the block is in
the same range. The DSV is therefore two, which is better than B6ZS.

12-16. The decoder can monitor the RDS and ensure that it faIls in the range -3 S RDS :s; 2 at the end of each
block. Any violation of rhis range indicates a ternary slicing error. Note however, that a ternary slicing
error will cause a permanent offset in the RDS at the decoder. Thus, when the RDS at the decoder falls
outside rhe allowable range, the RDS must be reset to the nearest value within the range. A more refined
strategy would monitor rhe ternary blocks and detect any illegal combinations. For example. a block wirh
disparity "+3" mustalways be followed by a block with negative disparity.
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12-17. For AMI, the one's density is zero since any Dombel' ofconsecutive zeros are allowed.

For the remaining line codes, the one's density is listed in the table below:

n B6ZS HDB3 4B3T
1 0 0 0
2 0 0 0
3 0 0 0
4 0 114 0
5 0 115 115
6 1/6 1/6 1/6
7 'JJ7 In In
8 218 218 218
9 219 219 219

The table can be extended to longer block sizes.

12-18. The code is not unique, but here is one such code:

lnputBlock Output Block
Mode A ModeB

000 +-++ -+- ±2
001 -+++ +-- ±2
010 -+-+ -+-+ 0
011 -++- -++- 0
100 +-- +--- 0
101 +-+- +-+- 0
110 +++- --+ ±2
111 ++-+ --+- ±2

Mode A is used whenever RDS =0 at the start of the block and Mode B is used when RDS =2. The reader
can verify that the RDS within the block never gets out of the range -1 ~ RDS ~ +3 for a DSV of four.
The key to the design of this code is that we have not used two of the zero-disparity blocks, "-++" and
"++--", which would otherwise carry the RDS to -2 and +4.

12-19. Use a filter F zetO(z) =1 + Z-I. From the spectral factorization, F min(z) is still a first-order filter with one
pole, and the pole location Pis still real-valued. Hence a1 is unchanged. However,

af =E[IXl + Xl - 112] =a1'(1 + p), (12.135)

and hence

a1 =2aq/(1- P) . (12.136)

Clearly in this case we want -1 < ~ ~ 0, which makes sense since this places the pole near the zero. The
frequency response is just the mirror image of example 12-15, and the tradeoff between a1 and a; is the
same.

12-20. Let the slicer output be al, so that the posteoder output is
1

C1 =a1 + C1-l =co+ La1 . (12.137)
i=1

It is evident that ifone of the al is in error, then CI; is forever in error. Of course, if CI; goes outside of its
allowable range, we can arrange to notice this, and perhaps correct the condition. For example, the Viterbi
algorithm can be used for this PW'pOse.

12-21.

(a) This pulse has samples ( ... ,0,0,1,2,1,0,0,' .. ) and therefore is a pulse approximately three symbol inter­
vals wide. This pulse has two zeros at half the symbol rate, and therefore has relatively little high fre­
quency content, as manifested by its width in the time domain.

(b) The intersymbol interference is

VI; =2c1;_1 + CI;-2 (12.138)
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and since this assumes the values (+-1.+-31. there must be five received levels. Therefore consulting
figure 12-14 for the five-level case. we can develop the following table specifying the precoder:

Ct-2 Ct Vt bt Ct

-1 -1 -3 0 -1
-1 -1 -3 1 +1
-I +1 +1 0 -1
-I +1 +1 1 +1
+1 -1 -1 0 +1
+1 -1 -1 1 -1
+1 +1 +3 0 +1
+1 +1 +3 1 -1

Turning this into a logic bUth table. we get

Ct-2 Ct bt Ct

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

We note that the output data symbol at is in fact independent of the last symbol Ct-It so therefore the
precoder need only use CI;-2 and the current input bit bt • A Boolean expression representing the truth table
is

(12.139)

(c) There are five received levels. and the following mapping is implemented between slicer output and infor­
mation bit (from figure 12-14):

Slicer output bt

4 0
-2 1
o 0

+2 1
+4 0

(12.141)

12-22. The precoders for dicade and duobinary PR are respectively

ChI =Ct ED bl;+1 ChI =Ct ED bt+l ED 1 . (12.140)

We can see that duobinary reverses the effect of dieade: in dieade. a "one" input-causes the Slate to reverse.
whereas in duobinary. a "one" input causes the Slate to be the same. Thus. the state diagrams for the two
precoders will be the same. except that bl; is replaced by its complement in duobinary. There are therefore
two differences: First. in duobinary the precoder oUtput power spectrwn is the same as dieade with p
replaced by (l - p). Second. the filter F (D) is (1 +D) rather than (l - D). Thus. we can write immedi­
ately. making these modifications to (12.20),

S (eiO>T) _ 2p (1- )1 + cos roT
A - fJ 1+ (2p-l)2- 2(2p-I)cos roT .

The case of modified duobinary is a little more complicated. Two dicode PR sequences of data symbols,
which we can assume are uncorrelated, are interleaved. Calling this sequence XI;. and calling one of the
interleaved sequences AI; ,
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{
o, m odd

Rx(m)=E[X"X,,_] = m
RA.(T)' m even

(12.142)

and taking the Z-ttansform,

--Sx(z)= ~ Rx(m)z .... = ~ RA.(r)z-2r=SA.(z~.
11I-

(12.143)

Thus, frequency is scaled by a factor of two, and the zero in the spectrum of dieade at <lc. (and hence the
symbol rate) becomes a zero at the half symbol rate. In (12.20), Cl) is simply replaced by 2m.

12-23.
(a) The equalizer in the receiver is

(12.146)

(12.147)

(12.144)

(12.145)

1 = 1_ pD + p2D 2 _ .,.
l+pD

and therefore the noise variance at the slicer input is

c:r(1 + p2 + p" + ... ) = --L .
l_ p2

The SNR is therefore 4(1- P~/c:r. Since both peak and average powers are unity,
SNR PEAK =SNR AVO = 4(1 - p2)E /(jl.

(b) The same equalizer is now put in the transmitter, so it has no effect on the slicer input noise, and therefore
the S~"'R is 4/c:r. However, the peak transmiued signal is changed from unity to

1+p+p2+ ... =_1_ .
I-p

and lite average transmitted signal is changed to

l+p2+ p"+ ... =_1_ .
I_p2

Hence,

SNRJIEAX=4(l-p)2E/c:r, (12.148)

or worse than lite LE-ZF by a factor of (1 + p)/(l- pl. The lesson is that transmitter equalization doesn't
makes sense unless an increase in peak ttansmiued signal comes for free. Similarly,

SNR AVO =4(1- p~E/c:r , (12.149)

the same as binary antipodal.

(c) In the receiver we implement an equalizer

l+D 1 1 1 I-n 2 2 3 3--= - + (I - -) =1 +~(pD - P D + P 'D - .•• ) . (12.150)
l+pD P P l+pD P

The noise variance at the slicer input is thus

02(1 + (.!.::..e.)2(p2 + p" + ... »= 2a2 (12.151)
P l+p

and the SNR is 2(1 + p)/c:r. The peak and average signal powers are both unity, so

SNRpEAK=SNRAVO=2(1 +p)E/c:r . (12.152)

This is better lItan the LE·ZF by a factor of 112(1 - p), yielding the conclusion again that duobinary has
better noise immunity for this channel than conventional Nyquist signaling when p>~ because it is better
malChed to the channel.

(d) We put the same equalizer in the transmitter, so lite SNR is lite same, 4/cr. But the peak transmiued signal
is



CHAPTER 12: SOLUTIONS TO PROBLEMS

I + !=£.(p + p2 + p3 ... ) =2
P

and the avecage ttansmitted power is

I +(.!.=£.)~2+ p~+ ... )= _2_ .
P I+p

Hence,

E
SNR PEAK = a'-
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(12.153)

(12.154)

(12.155)

SN.'R - 2(1 + p)E
AVO - a'- (12.156)

Thus we conclude again that equalization in the receiver is preferable unless the peak ttansmitted signal
doesn't mauer.

12-24. Ifwe take the slicer output signal, and pass it through a filrec I/F(D), in the absence of errors the output
will be a binary antipodal signal with values ±1. Many possible emxs will result in <>thee values. For
dicode PRo the filter 1/(1 - D) is equivalent to calculating the RDS of the sequence, and checking that it is
in the set {O,±I}. This is of course equivalent to checking f<r bipolar violations. In the case of duobinary,
the filter 1/(1 - D) is equivalent to multiplying by alternating ±1 and then forming the RDS..

12-25. Let the input symbols bt lie in the M-ary set (O,I, ... .M-I), and let CI; be the precoded symbol, assumed
to fall in the same SeL For the moment. assume that CI; is transmitted through the filter F (D) to yield the
transmitted symbols at (we will modify this in a moment). Then we get

N

at =CI; + "LliCt-i . (12.157)
isl

Let the precoder be specified as
N

Ct =(bt - 1:Iicl;-i) modulo M
i-I

(12.158)

(12.159)

(12.160)

where the "modulo M" operator results in an integer in the interval [O.M -I]. Then we get the transmitted
symbol

N N
al; =1:/iCt.-i + (bl; -1:licl.:-i)modM

jel jel

The receiver then slices the reception into the nearest integer, and then reduces the result modulo M. In the
absence of noise, the result is

N N
al; modM =[1:/icl.:-i+(bl; - "L/ict.-i) modM) modM

iel leI
N N

=[1:/iCI.:-j + bt -1:ljCt-j]modM =bt modM =bl.: .
jel l=I

The only problem with this approach is that CI; bas a non-zero mean. This can be removed by replacing it
by (2ct - (M-l)), which lies in the range [-(M-I),(M-I»). The output of the filter F(D) will then be
replaced by 2at - (M -I)F(I),8nd in the receiver we can simply add (M-I)F(I) and multiply by 0.5 prior
to the application of the modulo operation. As an example of this, for dicode, F (I) =0, and we get the fol­
lowing table specifying the precoding, F (D ) filtering, and noiseless decoding:

bl.: 2c1.:_I-l 2ct -1
at at

Cl-I CI.: at - -mod2
2 2

0 0 -1 0 -1 0 0 0
0 1 1 11 0 0 0
1 0 -1 I 1 2 11
111 0 -1 -2 -1 I
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Similarly, for duobinary, F(l) =2, and we gee

bl; 2c1- 1-1 2c1-1
a1+2 Ot+2

C1-1 C1 a" 2
--mod2

2
0 0 -I 0 -I -2 0 0
0 1 1 1 1 2 2 0
1 0 -I 1 1 0 1 1
1 1 1 0 -I 0 1 1

Note that in both cases, the original input b" is recovered by the noiseless and memoryless decoding opera­
tion in the last column.

12·26.

(a) The tteUis is shown in figure 12-22

(b) From (6.150), note that the MSK signal within any pulse interval is

'i(t) =csin(Ct)c +b;) (12.161)

whece b =±l and c =±l. Upward-tending branches in figure 12-17 correspond to b = +1 and downward­
tending branches correspond to b =-1. The value of c is dependent on the starting position of the branch
in figure 12-17. The squared distance between any two branches going in opposite directions in figure
12-17 is

T

d2= J(sin(Ct)c +1ttflT}-sin(Ct)c -1ttflT)]2dt =2E
o

(12.162)

where £ is the enecgy in one pulse. By contrast any two distinct (modulo 21t) parallel branches have
squared distance 4£. By inspection, therefore, being careful to associate branches in figure 12-17 with
branches in figure 12-22, we see that the minimum-distance error event is the one of length two, with
squared distance 4£ .

(c) The squared distance of 4£ is 3 dB better than the squared distance 2E in figure 646.

12·27. Take as input the maximal-length sequence itself, and invect every other bit Then the scrambled bit stream
will be alternating zero-one.

12-28. The polynomial has octal entry "13" which corresponds to binary "1011". Hence the polynomial is

h(D) = 1 e D ED D3 (12.163)

and the difference equation is

x" = X"_1 e X"-3 •

The sequence of states is given in the following table:

Figure 12·22. A finite planar trellis for the MSK signal.

(12.164)
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%t %t_1 %t_1 xt-3
1 0 0 1
11 0 0
1 1 1 0
0 1 1 1
1 0 1 1
0 1 0 1
0 0 1 0
1 0 0 1

Note that the period is seven, indicating a maximal-length sequence.

12-29. For this case the characteristic polynomial is

h(D)= 1 eDeD 4 (12.165)

and the difference equation is

xt =%k-l e %k-4 • (12.166)

The sequence of states is given below:

%t %t_1 %t 1 %t-3 %t=4

1 0 0 0 1
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
0 1 1 1 1
1 0 1 1 1
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1
0 0 1 1 0
1 0 0 1 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
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13-1. We use the approximation

1 ....
Q(y) = .J1iy e-Y'4.

By successive approximation we find that

Q (y) =10-5 when y =427

and

(13.128)

(13.129)

Q(y) = 10-' when y =520. (13.130)

(A programmable calculator or a computer is useful here.) So rbe uncoded system achieves a probability of
error of 10-5 when

and a probability of error of 10-' when

a/a.. =427 (13.131)

a/a.. =5.20 (13.132)

For rbe coded system the probability of error will be at least 10-5 when

O.5a[a~J =10-' (13.133)

which by successive approximation occurs when

a/a.. =3.57 . (13.134)

Comparing rbis to (13.131) we find that the coding advantage in signal level is at best

2OIog(5.2013.57) =1.56dB • (13.135)

The best case coding advantage at 10-' can be found the same way, using (13.132) instead of (13.131).
The worst case coding advantages are also found rbe same way, but using (13.20) rarber than (13.19).

13-2.

(a) There are only two codewords 00 .. ·0 and 11 ... I, which have distance n, so dH JffiA =n .

(b) The (7,4) Hamming code has dH,fItiA =3, and is rate 4{7 code. A minimum distance of dHJffiA =3 in a
repetition code requires n =3, which has rate If3, considerably worse than 4{7.

13-3.

(a) For all c e C, cO' =O. The product cO' is a linear combination of rows of 0', or columns of O. Hence
the minimum number of columns of 0 that can be added to produce 0 is

min wH(C)
CE C (13.136)

which equals dH"..;,. •

(b) From part (a), no linear combination of dHJffiA - 1 or fewer columns of h can be zero, so 0 has rank
dH,miIt - 1. Since H has dimension n x(n - k), its rank cannot be larger than n - k , so
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from which the result follows.

134.

(a) Reverse the order of the first three columns.

(b)

H =I~::~!HI,
1100001

(c) In each case the most likely error pattern is the one with the smallest Hamming weight.

s ~ s e
ooסס ooסס000 1000 000 1000
0001 0000001 1001 000 1001
0010 0000010 1010 000 1010
0011 0000011 1011 000 1011
0100 0000100 1100 1000001
0101 0000101 1101 ooסס100
0110 0000110 1110 001 ooסס
0111 ooסס010 1111 1000010
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(13.137)

(13.138)

For those entries with two or three one bits in e, the choices for eshown may not be unique. Syndromes
for which this is this case correspond to errors that cannot be reliably corrected, but can be detected.

(d) This code equivalent to the dual of the (l,4) Hamming code.

(e) dH ...... =4, so only one bit error can be reliably corrected.

(f) c =1010011.

13-5.

(a) In this case, m =n - k =4, and the parity-check matrix has as columns all possible 4-bit patterns except
the all zero pattern. To get it into systematic fonn. simply arrange the columns so that the last four
columns form an identity matrix. The first 11 columns can appear in any order. The generator matrix can
be gotten by comparing (13.39) with (13.34).

(b) The parity-check matrix is

(13.139)

13-6.

1
0ooooo111111111ס
oo1111סס0001111

H = 011001100110011 .

101010101010101

From (13.43), if e is all zero except for a 1 in position i, then en' will be the transpose of the iTa column of
H, which in (13.139) is a binary representation of i.

Following example 13-12,

(13.140)

and

(13.141)

so the power advantage at high SNR is
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33
1000glS =3.42 dB .
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(13.142)

13-7. The coded system has 15/4 times the symbol rate of the uncoded system so the noise variance at the
receiver is 15/4 times higher.

(13.143)

The minimum Hamming distance between codewords is 8 so the Euclidean distance is

dE ...... =4a-12 (13.144)

from (13.7). where the alphabet is ± a. Hence the probability of error for the coded system is approxi­
mately

(13.145)

compared to

for the uncodcd system. which means a power advantage of about

[ 2"2] [ 32]2010g "15/4 =1010g 15 =3.29 dB •

for the soft decoder.

13-8.

(a) The system is described by the following equations

C(I)(D) =B (I)(D )$B (2)(D )(D $D 2)

c(2)(D) =B(I)(D)D fI)B(2)(D )(1 $D 2)

C(3)(D) =B(2)(D)D .

These equations can be manipulated to get

0= C(I)(D)D 2EBC(2)(D)D EBC(3)(D )(1 EDD 3)

which means that the parity-check matrix is

H(D)= [D2, D, I$D 3].

(13.146)

(13.147)

(13.148)

(13.149)

(13.150)

(13.151)

(13.152)

(b) A similar technique can be used to derive the parity-check matrix. showing that it is the same.

13-9. The condition B.. =0 for k < 0 implies that the starting state is the (0,0) state. The condition B.. =0 for
k ~ 3 implies that the fifth state and beyond are zero. Hence the trellis is shown in the following figure.

1 1 2 1 0
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The transitions are labeled with their weights. which are the Hamming distances from the observation bit
pairs. 11le minimum path metric conesponds to the bold path. Without errors introduced by the BSC the
observation would have been {l.1.0.l.1,1.0.0.0.0•.••}. implying that two bit errors were made. The deci­
sionbl; is {I.O.O•...}.

13·10.

(a) The stale transition diagram and trellis are shown in the following figure:

(0.[0.0])

(0.[0.0])

(1.U.O])

(b) The error event with the minimum Hamming distance is again an event with length K =2. as shown in the
following figure:

(0.[0.0])

The minimum Hamming distance is therefore three. Assume a BSC with probability of correct ttansmis­
sion p. The probability of the error event is

[;]p'(l- p) + [~] p'=3p'(l-p) + p'. (13.153)

For p small this is approximately 3p 1 which is significantly worse than the probability computed in
(13.79). which for smaIl p is approximately lOp'.

(c) The trellis is shown below re-labeIed with the binary antipodal outputs.
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(O,[-8.-a])

The minimum distance error event is shown below.

DIGITALCOMMUNICAnON

d} =d6 d 2 =d6 d 3 =d6

The ML soft decoder therefore has d min =&6 where dl =2a. Hence, assuming the probability of error is
dominated by this event.

Pr[errorevent] =Q ("3alat:) (13.154)

where at: 2 is the variance of the noise of the coded system, which is twice the variance of the noise of the
uncoded system, at: 2 =20'"2. Hence, the coded system is IOlog(312) = 1.8 dB better than the uncoded sys­
tem. This is a full 2.2 dB worse than conv(ll2) in figure 13-Sa. This is not surprising because the
minimum distance is far worse.

13-11. One stage of the trellis is shown in figure 13-23.

(a) The minimum Hamming distance error event has distance 3, by inspection of figure 13-23a. Following the
development of (13.79) we get that the probability of Ibis error event is boWlded by

(1,01)

(a)

(1,[-0 ,+aD

(b)

Figure 13-23. One stage of the trellis for the coder in figure 13-20. In (a) it is labeled with the
binary output. In (b) it is labeled with the channel symbols, assuming binary antipodal signal­
ing.
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Pr[lhis ,rror __) " [;] p'(l - p) +[ ~] p' = 3p'(l - P ) +p' . (13.155)

(b) By inspection of figure 13-23b we see that the minimum Euclidean distance error event has distance 14"3.
Heoce

[14"3] [ 14"3]Pr(this error ~enl] =Q 2o'c: =Q 2..J2a.. .

The WlCOded system has probability ofCITOI"

1'3[......... uncoded systeM! =Q[ :,J
so the coding gain is approximately

(13.156)

(13.157)

2010g(..J3r12) =1.8 dB . (13.158)

Note that this is the same coding gain achieved by the codec in figure 13-19 with a soft decoder. This
coder is simpler, howevec, since its trellis has only two states.

13-12. The code is not linear because it does not include the zero vector.

13-13. n =7, k =3, dH ",..,. =4, and the codewords are

0oooooס
1110100
0111010
1101001
1001110
0011101
1010011
0100111

Note that ail the non-zero codewords have the same weight

13-14. In figure 13-24 we show the state transition diagram with the zero state broken and the branches labeled
with z raised to the square of the Euclidean distance of that branch from the zero bfanch. The path
enumerator polynomial is therefore

T (z) =Z 124
1

+ Z160
1

+ ... (13.159)

In l!:obl<mL.l3-11 we found that the error event with the minimum Euclidean distance had distance
14-./3 ="114 2, consistent with this result 1be compact form of this polynomial is

z 124
1

T(z)= l-z"'*' (13.160)

""IZ

Figure 13-24. A state transition diagram with the zero state broken and the branches labeled
with z raised to the square of the Euclidean distance of that branch from the zero branch.
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13-15.

(a) By inspection,

or equivalently

DIGITALCOMMUNICATION

(13.161)

.x2yz3
T(.x,y.z) = . (13.162)

1-.xyz

(b) From (13.161) the length four error event (corresponding 1O.x~ has four bit errors and Hamming distance
6.

(c) The broken $We transition diagram of figure 13-17 can be modified as shown in figure 13-25. Since we are
only interested in length and distance (and not die number of bit errors) we need only two variables,.x and
z. The path enumerator polynomial is found using (13.109)

.x3zS

T(.x.z) = 1 _ .x1z _.%% • (13.163)

By long division, we compute the first few tenns

T(.x.z) =.x 3zS + .x4Z 6 + .xSz6 + .xSz7 + .x6z1 +.x7z7 + ... (13.164)

From this we see that there are two distance 6 c:m>r events, one with length 3 and one with length 4. (The
length is the exponent of.x minus one.) Also, there are two length four error events, one with distance 6
and one with distance 7.

Figure 13-25. The state transition diagram of figure 13-17 is modified for enumerating the
path lengths as shown. .
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14-1. In the transmitter. generate two-dimensional symbols in the conventional way. Now group the transmitted
baseband symbols into pairs. and transmit the real part of the two-dimensional symbol fiIst. then the ima­
ginary part. In the receiver. group the received samples at the slicer into pairs. and apply them to a com­
plex slicer.

14-2.

(a) The coding gain is. of course. "fA=I. The shaping gain is

2·1tR2 1t

"fs = 12.R212 =3".

(b) The coding gains are the same. The circular shaping provides 1010g1oPi13 =0.2 dB of shaping gain.

14-3. For the hexagonal constellation. the fundamental volume is the volume of a hexagon with inscribed radius
d min12. Hence.

Y (A) =6 (dmml2)2 tan1tl6

and the coding gam is

2
"fA = 3 tan1tl6 = l.1S5 .

This is 0.6 dB.

14-4. Oearly

and

Y(a·A)=aN·Y(A).

Thus. as a function of a, the coding gain is

crd;'" d~
"fcoA = cr y 2IN (A) = y 2IN (A) ='YA •

14-5. The volume is

(14.82)

(14.83)

(14.84)

(14.85)

(14.86)

Y[CN(R)] = J dx. (14.87)
c,,(R)

The integral can be separated into the product of N integrals. each evaluating to 'lR. so
Y [CN(R») = ('lR)N. To evaluate the power, the uniform density function over the N -cube has height
('lR )-N • so the power is

N

P[CN(R») =('lR)-N J IIxll2 dx =('lR)-N L J xldx. (14.88)
C,,(R) ;=1 c,,(R)

Each of the integrals evaluates to the same value.
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(14.89)

and thus

P [CN(R)] =N ·R zl3 .

Substituting the volume and power into the shaping gain. we get 'Yc,,(R) =1.

(14.90)

(14.91)

14-6.

(a) Assuming the radius of the N -sphere is R. P is the power of SN(R) divided by the number of complex
symbols. Nfl. Hence P ='1R z/(N+2). and for fixed P the radius as a function of N is R Z =(N+2)p12.
Assuming N is even. the volume ofa sphere of this radius is

V(S (..J(Nfl+ 1)P)= (7t(Nfl+ l)pfl2
N (Nfl)!

The number of points in the signal constellation is proportional to the volume, since the fundamental
volume is assumed to be constant. and hence v is proportional to the logarithm of the volume divided by
Na. or

(14.92)1.. [(1C(Nfl+I)Pf
12

] _ _1.. tv (X N logz (Nfl)! -logz(7tP)+log:z(Nfl+ I) N Iogz(NI2)..

Thus. the spectral efficiency is a constant plus a tenn that depends on N. where the latter is

N2
1og:z("2 + I) - N ·log:z(N fl)! (14.93)

When N goes from 2 to 4. the spectI3l efficiency increases by 0.085 bits. When N goes from 2 to 6. the
spectral efficiency increases by 0.138 bits.

(b) By the Sterling approximation. the increase in spectral efficiency as N -+ 00 relative to N =2 is
logze - 1 =0.443 bits per complex symbol. Of course. the absolute (as opposed to relative) spectral
efficiency depends on A as well as N.

Let us assume that R is chosen such that XN bas unit variance components; that is. R 2 =N +2. The margi­
nal density of XK will be the density of XN integrated over N -K components. The iittegral is over a
sphere of radius ..JR 2 - II XK II 2 and dimension N -K. The integrand is the density of X N • which is a con­
stant lIVN (R ), and thus the integral becomes proportional to the volume of an (N -K)-dimensional sphere.
Thus.

14-7.

J IIxK 11 2] NO.

_ VN-K(..JR Z - IIxK liZ) _ VN-K(1) 1- RZ

f L(X/C> - VN(R) - VN (I) e[ lIxe11 2J1i2 • (14.94)
R 1---=--

RZ

Taking R 2=N+2, or equivalently R 2 =N whenN is large. the only term that is a function ofxK as N -+ 00

is the numerator, which assumes the functional form exp{ - IIxK II zfl}. a Gaussian density with unit vari­
ance and independent components. The remaining constants are of course the normalization to unit area,
and must equal (21C) - Ko. asymptotically.

14-8. It is straightforward to calculate this probability.

< __ V(SN[R-e)]_(R-ef _[ _.£I N

Pr( IlXII _R e} - V[SN(R)) - R N - 1 R -+ O. (14.95)
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14-9. The trellis foe the convolutional codec is shown in the following figure:
(0,[0,0])

Comparing this to figure 14-9a. ifwe choose the mapping
C (1) C (2)

o 0 a
o 1 -a
1 0 ja
1 1 - ja

then the trellis is identical. Thus with a line coder that implements this mapping, the code is equivalent.

14-10. The trellis foe the convolutional coder is shown in the following figure:

To get a trellis equivalent to that in figure 14-9 we select the mapping
C (1) C (2) A

o 0 a
o 1 ja
1 0 -a
11- ja

95
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14-11. One stage of the trellis is shown in figure 14-37a. The minimum-distance enor event is shown in figure
14-37b for three different correct state ttajectories. Also shown is the distance. The distance is different
for all three.

14-12.

(a) Four bits per symbol are required. SO the alphabet needs 16 symbols. 16-QAM willwork.

(b) The required alphabet size is 32. The cross constellation in figure 14-23 will work. although there are oth­
ers in Chapter 6.

(c) Coding is required. To get 4 dB total gain. using Ungerboeck's rule of thumb (see the first paragraph in
Section 14.2.1). an eight state trellis code willwork. The coder in figure 14-23 will do the job. and provide
the additional benefit of 90 degree phase invariance. Ifphase invariance is not an issue. then the coder in
figure 14-18 willalso work. although one additional uncoded bit is required.

14-13. Consider the error events in figme 14-38. There are several error events represented here because of the
parallel paths. To find the minimum-distance error event of these. first find the minimum distances
between ttansitions in the same stage of the trellis. These are shown in the figure. For example. in the first
stage. the Upper parallel pair of ttansitions are taken from subset A in figure 14-13. The lower pair are
taken from subset C. Hence the minimum distance in Ibis stage is the minimum distance between symbols
in A and C. or../2. The minimum distance in the third stage is similarly computed. The minimum distance
in the second stage is the minimpm distance between symbols in A and B. which with some simple

(1.+1)

(a)

~1--0----::~

o +~ 0

d =4m
~

1 ......0----:1-............
... 0

+1. -1

d =245
(b)

o -1 ......0 .... +3 0
411" .......

",,' ........
0'''' 0 "'0

+1 +1
d =242

Figure 14-37. a. One stage of the trellis for the trellis coder in figure 14-33. b. The minimum­
distance error events when the correct state trajectory is the path shown as a dashed line.

MIN.DIST.(A.C)

=-12
MI~.DIS~A.B)
= 2- 2

Figure 14-38. A set of error events and their minimum distance.
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geometry can be shown 10 be ~2 - 'Ii=0.77. The minimum distance of all the enor events shown is the
square root of the sums of the squares of these stage distances. or

~2 + 2- 'Ii+2= ~6-1Ji=2.14. (14.96)

It is easy 10 see that any enor event with length greater than three stages will have a distance greater than
these error events. so 2.14 is the distance of the second closest eaor evenL

1~-1~.

(a) The partition is shown in figure 14-39. along with the minimum distances. Notice that at the final partition­
ing stage (into 16 subsets) there is no improvement in minimum distance for some of the subsets.

(b) The average power of the 16-QAM constellation has been computed elsewhere and is 10. The 32-cross
constellation has all the same points. plus 16 additional points with average power

.!.(S2+3~+ .!.(S2+ 1~=30 (14.97)
16 16

so the overall average power is

~(10 + 30) = 20 . (14.98)

This is 10 log(2) =3 dB more power.

(c) It should be adequate 10 use the subsets in the third row of figure 14-39. The minimum distance between
paraDel transitions is 4. There are 4 such subsets. so iii =1. Compared 10 the 16-QAM constellation in

• • • •
• • • • • •
• •• • • •
• • • • • •
• • • •• •

• • • •
/ '-...

• • • •
• • • • • •

• • • • • •
• • • • • •

• • • •• •
• • ••

/ '-...

+.. +.:.
• • •

• • •
• •

/ "-

>1 ~. ~:I ~'
++++

Figure 14-39. Set partitioning for a 32-eross constellation. The minimum distances between
points in the subset are shown.
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part (b). which has minimum distance 2. this is a 6 dB improvemenL However. the power of the 32-cross
constellation has to be reduced by 3 dB, so ifthe parallel transitions have dte smallest distance (we can
assure this with proper coder design) then the cotal gain will be about 3 dB. Using Ungerboeck's rule of
thumb (see the first paragraph of Section 14.2.1), a coder with 4 states should work.

(d) It should be adequate to use the subsets in the (ourth row of figure 14-39. There are 8 such subsets, so
m =2. The minimum distance between parallel transitions willbe 4"2. which is about 9 dB better than the
minimum distance of 2 in the 16-QAM constellation. Again, of this 9 dB improvement, 3 dB must be
sacrificed to normalize the power, leaving a 6 dB gain. This is more than we need, so we could use a 16
state trellis coder to get about S dB gain. and the minimum-distance eaor event will probably not be the
parallel transitions.

14·15.

(a) The trick here is to compare to an uncoded system with the same avenge power. Ifthe 8-PSK symbols
have amplitude a, then it has average power a2• Ifthe 16-QAM symbols have real and imaginary partS
that are ±b or ±3b., then they have average power IOb 2• Hence, (or the two systems to have the same
average power, we require that a =..JiOb =3.16b. The subsets that are used (or parallel transitions are in
the third row of figure 14-16. The symbols within each subset have minimum distance 4b , so if the parallel
transitions dominate the probability of error, then

Pr[error]=Q[~J . (14.99)

The minimum distance for the 8-PSK alphabet is a -./2 -:.Ji =O.77a, so (or the uncoded system

Pr[error]=Q[0.77 2:J . (14.100)

The difference is

201og[ o~a] = 2010g[ o.;m] = 4.3 dB , (14.101)

which is very good indeed.

(b) The trellis is shown in figure 14-40. We can show that the error event with shape as in figure 14-38 is
..f2Ob, which is greater Ihan the distance 4b of Ihe parallel transitions. Hence the assumption in (a) seems
reasonable.

Figure 14·40. Yet another trellis;
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(14.103)

14-16. FlI'St note that every error event is a minimum-disrance error event for all possible actual palhs through the
trellis. Note fwther that every error event starts and ends with a symbol error, and has no symbol errors in
between. so w(e) =2 for all e e E. Consequently, (9.150) becomes

R =2 1: Prl'!']. (14.102)
4EE

Define E ('!') to be the set of error events for the actual path '!' through the trellis. Then the summation in
(14.102) can be rewritten

L Prr'!'] =1: 1: Prr'!'] =[L Prr'!']) ( L 1).
4 E E 'f4 E E('f) 'f 4 E E('f)

The first summation is unity. and the second is infinite because every '!' has an infinite number of error
events. Consequently. R is unbounded.

14-17.

(a) One stage of the trellis is shown in the following figure.

ar:=m
(1,-j) (OJ)

o (0,1) ~

~
(1J)

(b) For different assumed correct state trajectories. the minimum-distance error events are shown below.

~7 ~
(1••I)~(O'-J) O~~

(lj) (1j)

(0,1)

o~
(1j)

In each case the distance is dE~ =../6. The probability of occurrence is therefore Q (..J6aa).

(c) The 2-PSK alphabet with the same power is 0" =(-1,+1) which has a minimum distance of 2 The
coded system is therefore

2010g(../6a) =1.76 dB

better.

(d) The set partioning is illustrated in the following figure.

±
~

+/ "'-*
+/ + +-' '-+
ABC 0

A suitable mapping is shown in the following trellis.

(14.105)
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(e) The minimum-distance error event is shown in lite following figure.

~(1,8)~

DIGITALCOMMUNICAnON

The minimum distance between points in A and P.Qin1tin B is.,[2. The minimum distance between points
in A and points in C (find by simple geometry) is ~2 -..J2. The total minimum distance is lIterefore

de",,;,. ="4 - "Ii. (14.106)

The uncoded (4-PSK) system has a minimum distance..J2 so lite total gain is

20Iog("4 - "Iirl2) = 1.1 dB • (14.107)

a modest gain.

14·18. The trellis for lite convolutional coder is shown below willt lite arcs labeled (B" (I).[C" (2). C"(3»)).

5"(1)5" (0)

00

11

The same subsets of lite 8-PSK constellation shown in figure 14·13 can be used in which case lite trellis for
the trellis code is identical if the mapping is given by the following table.

C (2) C (2) subset
o 0A
o 1B
10C
liD
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15-1.

(a) Two.

(b) The loop is unstable because

which has two poles on the j c.o axis.

15-2. From (15.17)

4»(s) KL

8(s) = KL +S2 (15.99)

(15.100)lim «S) = lim~ =1
K,. .... - e(s) K,. .... - KL + S

so in the limit the output phase is identical to the input phase. The bandwidth of the PlL goes to infinity.
This might be useful for carrier recovery, example 15-2, and not for timing recovery on point-ta-point
links, example 15-1. In either case. no noise on the input will be rejected.

15-3.

(a) Since the coefficients are real, the roots are complex conjugate pairs. We can write the two roots At:tjG.

where A > O. Then

S2 + as + b =(s -Aeiexs -Ae- i ')=s2- 2Acos(9) +A2. (15.101)

Noting that b =A 2 we observe that b > 0 unless A =0, in which case the poles are both at 2;erO and hence
not in the open left half plane. Also note that 2A cos(O) =a. Hence the poles are in the openleft half plane
if and only ifa > O.

(b) The result follows trivially from part a.
15-4.

(a) From (15.15)

which has poles at

The PJ,..L is stable.

(b) For all c.o,

(c) From (b)

4l(s) 1
8(s) =S2 +..f2s + 1•

1.
S =~+...L'#2 -..J2 .

2

I <l>(jc.o) I =_1_ < 1au c.o) I + c.o4 -•

(15.102)

(15.103)

(15.104)
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15-5.

(a) From (15.21)

I ~I_ 1
e(jCD) -..JI + CD4 •

DIGITALCOMMUNICAnON

(15.105)

cz-(s) s + 0.5
e(s) = s2+2s +0.5 .

(b) The conditions in problem 15·3 are satisfied so the PLL is stable.

(c) The poles are at s == - 1 ± ..J2n. and the zero is at s =- 0.5. This leads to the Bode plot below:

2OlogIcz-(j CD)/e(jCD) I

Iog(CD)

(d) We need to prove that for aU CD
2

I ct»(jCD) I < 1
8(jCD) -

But
2 2

I~ I = I j CD + 0.5
9(jCD) _CD2 + 2jCD+ 0.5

CD2+0.25=--,-=--~;;';:""'-

CD4 + 3002 + 0.25

Hence proving (15.107) is equivalent to proving

CD4 + 3CD2 + 0.25 ~ 002 + 0.25

or

which is obviously true.

15-6.

(a)

(15.106)

(15.107)

(15.108)

(15.109)

(15.110)

2

I ~~» I = I _~K...;;.LJ~·CD_+_K~LK_l~_
'V\JW -CD2 +(KL +K~jCD+KLKl

Klor+KcK?

= (KL + K V2W2 + (KLK 1 - W'J2

Peaking occurs ifand only iffor some CD

or

or

2

(15.111)

(15.112)

(15.113)
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so pealdng occurs ifand only if

0)2<2KLK1-Kl.
Hence there are frequencies at which the gain is greater chan unity ifand only if

Ki <2KLK 1 •

103

(15.114)

(15.115)

(15.116)

(b) Given by (15.115).

(c) The lock range of the second-order loop is

1tIKL~IIK21 (15.117)

from (15.20) so without peaking, since Ki ~ 2KL~1 or K 2 ~ ~2KL~It

lock range S *~KL~1 • (15.118)

Using (15.73) we get that the lock range for thesecond-order loop satisfies

2t
lockrangeS ..fiKLl. (15.119)

Comparing this to (15.18), the lock range of the first-ordec PLL. we see that it is smallec by a factor of
1m.

15-7.

(a) Stability implies that KL K 1 > 0, and since K 2 =0, (15.72) is always true.

(b) From (15.21) we get

(I)(j0),,)

e(j0),,)

2

= IKLK1+Kd~
KLj~KLKl

K 1 +KL=
KL

2

(15.120)

(c) From problem 15-3 we know that the type I PLL is stable if and only ifK 2> - KL and KLK 1> 0. Since in
this case K2 =0, this is equivalent to the conditions stated in the exercise.

15-8.

(a) The transfer function is

cl»(s) _ K 1

e(s) - K 1 +K-p +s2 .

This is an all pole transfer function. and hence is a Iowpass filtel'. The d.c. gain is unity.

(b) This follows immediately from problem 15-3.

(c) Input 8(j 0) will be amplified for values of 0) for which 14}(jO)/e(j0) 12 > 1. We can write
2

~ _ Kl
I e(j0) I- Kl +(Ki -2K1)(J>2+CJ>4 •

This is greater than or equal to unity when

2<2K K 2
CJ>_ 1- 2·

Clearly if

there is no amplification for any CJ>.

(15.121)

(15.122)

(15.123)

(15.124)
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IS-9.

(a) First note that e(s) =~s. From (15.31)

£# = lim s7e(s) = lim --.!.fL- =0.
..... oL(s)+s ..... oKL+s

(b) Now e(s) = 2(3/S3. so from (15.31)

IS-10. The loop filter has the Conn

L( ) =N(s)
s D(s)

where N (0) "" 0 and D (0) = O. From (15.31)

£ = lim CIlo = lim moD (s) = 0 .
# .....oL(s)+ s ..... oN(s) +sD(s)

15-11. In each case

tKLI
=-----:-=-

IKL -1 +~i.T I

IKLI

OIGITAl COMMUNICAnON

(15.126)

(15.127)

(15.128)

(15.129)

(15.130)

(a)

05
= "1.25 - cos(CJ.>T) •

(15.131)

shown in figure 15-17a.

(b)

shown in figure 15-17b.

(c)

(15.132)

(15.133)

shown in figure 15-17c.

(d) The loop filter in (b) is not particularly useful because it results in an all-pass lilter. The loop filter in (c) is
even less useful because it amplifies the phase of the input at all frequencies.

15-12. Expanding we see that

D(Z)=Z1_(q +p)z +pq

so

pq=b and q+p=-a.

If p and q are inside the unit circle. Ipi < I and Iq I <: 1. then

Ipqt =b < 1.

We now need to show that p and q inside the unit circle also imply that

lal =Iq +p 1< 1 +pq .

(15.134)

(15.135)

(15.136)

(15.137)
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15-13. From problem 15-12, the PLL is stable if and only if

I Qo-bo
<1

Q1+ b l

and

1S.14. Since e(l) =~(I), cos(e(l) - «I» =I, so from (15.58)

~£(1) = 2.

This is a d.c. term so

C (I) = AyA y L(O) =!!!Ql.
2 dt

Hence

'A A
+(1)=J-TL(O)dJ +K

o

for some constant K, so
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(15.138)

(15.139)

(15.140)

(15.141)

(15.142)

(15.143)
AyA,

e(l) =«I) =-2-L(0)1 +K .

15-15. The veo output frequency can range from 1 MHz/(N + 1) to 1 MHz/(N -I), or about 9.9 kHz to 10.1
kHz. The lock range is therefore about 200 Hz.

15-16.

(a) 2,048 =256x8 while 1,512 = 189x8. 256 and 189 are relatively prime, soN =256 and M = 189.

(b) We can write

(15.144)

(among many other faclOrizations). Hence we can used cascaded frequency dividers with N 1 = N 1 = 16
and M1 =9 and M1 =21. The first frequency synthesizer will produce a signal with frequency
2,688 kHz =16xl,512 kHzI9, and its phase comparator will be comparing the phases of two signals with
frequencies on the order of 168 kHz. The second phase comparator will be comparing signals with fre­
quencies on the order of 128 kHz. The main advantage is the greatly relaxed design of the LPFs and faster
response time (see example 15-15).

(c) The maximum number ofcascaded frequency synthesizers is 8. evident from the prime factorization

256 2x2x2x2x2x2x2x2
189 = 3x3x3x7 (15.145)
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Figure 15-17. Frequency response of the first-order discrete-time PLL with three different
values of the loop gain. The frequency response is symmetric and periodic so it is only shown
over the region 0 ~ CJ) ~ 7CfI' •
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16-1_

(a) Weneed

Ot - +t =Ot-l - +t-l + M 1CI2

which corresponds to an offset frequency (m radians) of

Mx
COo = T2'

(16.30)

(16.31)

(16.33)

(b) The minimum offset frequency colTSponds to M =I, so

I x
COo= T 2' (16.32)

In this case, (lIT) =15xl~, so the minimum offset if15/4 MHz.

(c) If the channel frequency offset is constrained to be small, then the veo output frequency range can also be
constrained to be small enough that the sum of the two offsets is less than half that which leads to false
lock.

16-2.

(a)

W(O)

(b) Suppose that At =3 + j. which has angle sin-1(1J3) =0.34 radians. An decision error occurs ifthe phase
error is less than -0.34 or greater than +0.22, half the angular difference between At and the symbol
3 + 3j. W (.) is shown in the following figure:

16-3.

(a) From (15.44) we have

~_ 0.1
8(z) - z -0.9

which has a pole at z =0.9. The frequency response is similar to that in figure 15-1780 but with a stronger
lowpass characteristic.
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(b) From (15.44) we have

DIGITALCOMMUNICATION

4I»(z) 0.1z-1 0.1--= = (16.34)
e(z) 0.1z-1+ z -1 z2- z +0.I'

which has poles at 0.89 and 0.11. The frequency response is still reasonable, although slightly comprom­
ised. Since the poles are all real there cannot be peaking.

(c) From (15.44) we have

~ _ 0.1z-2 = 0.1
6(z) - 0.1z-2+ z -1 z3- z2+0.1· (16.35)

The poles can be found using a computet program, or by the following method. The system has at least
one real pole, call it a •so

(z -a)Jl(z)=z3_ z2+0.1.

for some second-order polynomial H (z). We can find H (z) by long division

z3_ z2+0 1
H(z) = . =Z2+ (a -1)z + a(a -1) + rea)

z-a

where the remainder is

r(a)=O.l +a~a -1).

For a to be a pole, the remainder must be zero, so

a3 _a2 =-0.1

which by successive approximation implies that

a =0.87.

Consequently,

4I»(z) 0.1
8(z) = (z - 0.87)(z2 - O.13z - 0.11) .

The poles are at z =0.87, 0.40, and -0.27. The system is stable.

(d)

4I»(z) 0.1z-M 0.1
6(z) = 0.1:-M +:-1 = zN+l_ Z M +0.1·

This goes unstable when M is 16 or larger. It exhibits peaking when M is 3 or larger.

16-4.

(a) There is no integer N such that

ejNtIT,(A.) =1

because the angles of the symbols are not related by rational multiples.

(b) N =4 will work.

16-5.

(a) N =4, so 00" =210<2400><4. The smallest required lock: range is ±2%,

10001 ~ 1200radlsec or 192Hz.

(16.36)

(16.37)

(16.38)

(16.39)

(16.40)

(16.41)

(16.42)

(16.43)

(16.44)

(b) Insert a "divide by N" between (of and the phase detector in figure 16-8. The frequency divider might be
preceded by a hard limiter for each of the real and imaginary parts.
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16-6.

(a)

Hence

R 2(1) =~ [e2j(Ql,r +8(r»S~t}+ 21S (I) 12 + e-2j
(Ql,r +e<r»S-2(I)]

from which the result follows.

(b) The periodicity would come from the second ttnn of (16.27). It is easy to show that for 4-PSK

E[Re{S~I»)] =0

so the expect value of the second ttnn is zero.

(c) As long as

E[Re{S2(1) n;tO

there will be tone at 2c.oc ' As long as A.. is white.

Re(S2(1)}= ~ ([Re{A... n2-[lm{A... n2)p2(I-mT).....-
which has nonzero expected value if

E( [Re{A... )]2-[lm{A... }]2) ;to.

CHAPTER 17: SOLUTIONS TO PROBLEMS
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(16.45)

(16.46)

(16.47)

(16.48)

(16.49)

(16.50)

(17.72)

17-1. Using (17.48), and sampling Q(I) at 1=IeT + ex. the summation is a convolution. and the filter impulse
response is easily seen to be

sin ; (nT - 't + a)
h,.=-....;;....----

;(nT -'t+ a)

Clearly, an exact non-recursive implementation has infinite order. The impulse response can be approxi­
mated as FIR by truncation, but it falls off only linearly with n. so using a small number of taps wiD intro­
duce substantial error.

17-2. First note that since the pulse has only 100% excess bandwidth, the Fourier series coefficients 2", for
1m 1~ 2 are zero. From (6.25), the pulse has Fourier transform

(17.73)
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From (17.10),

E[IA \2J - 2
Z = I: IP (j~ -' \P (j \-1I T _T ) Cs)J Cs)".. Cs).

= E[IA. 12]'!:' 'bITi (1- sin[ T (~ _ Cs)l ) (1- sin[ T (Cs) - ~)l )dCs)
4 0 2 T] 2 T] .

Using trigonometric identities, we find that

Z, = E[IA, I'{ ~ + i Tloos(lt- rOll-IldOl]

=E[ lA, I'{ =-isin(lt - rOl)I~ =El 1.1,1'1 :

From (17.11)

(17.74)

(17.75)

'It)= ElIR(t)I'] = EllA, I'{ z.+ ~ cos(;" n] (17.76)

implying a strong timing tone. Square law timing recovery works well with PAM signals with raised
cosine Nyquist pulses with large excess bandwidth.

17-3. The 0% excess bandwidth pulse is

() sin 1tl rr
g 1 = 7Clrr

and has the Fourier transform

From (17.10),

{

T 1t-' 1"'1 <­2' ... -T

G (Cs) = 0; otherwise'

I-I 21t .Xl =- G(- - Cs)G(Cs)dCs) =0T_ T

17-4. Write the autocorrelation function

R, (t) =E[R (I + e + t)R ·(1 + e)]- ..
=E[ L 1: A",A:p(1 +e+t-mT)p(1 +e-IlT)]

..
=a r, E(jJ(t +e+t-mT)p(t +e-nT)]

"'"'-
.. 1 T

=a r, -r"(1 +O+t-mT)p(t+O-nT)dO
",",_Tf

.. I-T+T

=a L - I p(l +O+t)p(1 +O)dO
",E_ T .....r

=al. jp(1 + 0 + t)p(t + O)dOT_

=a ~ .1!(O + t)p(O)d0.

(17.77)
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The Fourier transfonn of this is

111

SRUW) = ~ IPUm)1 2 (17.78)

which has no spectral lines at the symbol frequency ifP (I) is Dot periodic with period T.

17-5. The Fourier lranSforms that are used 10 compute the timing tone are shown in figure 17-15. Note that the
entire signal is used. There is no useful prefiltecing.

17-6. The conditions in (17.54) imply that my 1 + +(1) evaluated at leT +'Ct is 31t12 plus any multiple of 21t.
Hence we can write

(17.79)

17-7.

(a) Write

-=E[- 1: AtA...p«le-m-l)T+'Ct)+At Nt.....-

(c)

-+ L AtA...p «k-m)T +'tt) + AtNtl.....-

PUW)

(a) ~
-+-----+-----+I~----+----+I_-.Q.

-600~300600 21t

(b_) -+-__ --+-_P_(_2Jt600_b+-t----+1__ ..!!..

600 21t
P (2Jt600 + j m)

,~I----+---+---+--+l-.Q.
~ 21t

(17.80)

Figure 17-15. An illustration of prefiltering for recovering timing of a 600 baud, 100% excess
bandwidth raised cosine signal. The Fourier transform of the pulse is shown in (a). The
Fourier transforms in (b) and (c) are multiplied by the one in (a) and integrated to get the timing
tone. Note that the whole signal contributes to the timing tone.
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(b) The timing function is plotted in me following figure:
f(tt.)

IEVA.A
T

-2T -T ~

17-8.

(a) Write

.. --
Then

f(tt) = E[Ztl = E[IAll~(tt + T).

DIGITAL COMMUNICATION

(17.82)

(17.83)

(b) For the triangular pulse. the timing function is just a shifted and scaled version of the triangular pulse.

(c) The method does not look good for triangular pulses (no unique zero aossing of the timing function) but
will work for raised cosine pulses. especially ifthe excess bandwidth is low.

(d)

f (tt) = E[Ztl = E[IAj;1 2]p(tt - T) . (17.84)

This again will work for raised cosine pulses with low excess bandwidth.

17-9. The only frequencies that will contribute to me jittel'power are mose where H(jo» is near unity in magni­
tude. or 0> «KL • Investigating this region further. let E= roIKL « 1. and do a Taylor series expansion.

~ I +jEf=jN£-1hN(N+l>£l. (17.85)

and hence

HT(i[«£)=11-jN;I, . (17.86)

We see that IHrorALV 0»I is a lowpass filter with cutoff frequency at approximately £=21N or
0> =2KL IN. An ideallowpass filter with this cutoff would have a jitter power twice that predicted in exam­
pie 17-13; the difference is due to the deviation from an ideal filter.
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CHAPTER 18: SOLUTIONS TO PROBLEMS

18-L

(a) One superframe of 1176 bits corresponds to 6-48 =288 bits on each input. The bit rate is thus
1176-15441288 =6,304.7 kbls.

(b) One superframe corresponds to 288 bits at 1,544 kbls, which is 186.53 J.l.SeC. A frame is one-quarter this,
or 46.6 J.lSeC.

18·2. The traffic burst contains 2 ms . 1.544 kb/s =3088 information bits. The infonnation portion of a trnffic
burst consumes 25.56 J!SeC, and there is room for 78 time-slots in the absence of overhead. Since there are
more time-slots required in the G.733 case, overhead is going to be more of a factor, and therefore in prac­
tice a fewer number of voiceband channels will be accommodated.

(18.17)

Regardless of the location of the error, we will fail to recognize the start of the link-frcune. In fact. we will
incorrectly infer the end-flag to be a stan-flag, since the end-flag cannot occur in the infonnation packet In
the absence of a recovery procedure or additional bit-errors, we will perpetually detect each idle period as a
link frame and each link frame as an idle period!

(b) We win erroneously detect the stan Bag of the next link frame as the end Bag of the current packet The
end effect win be the same as in a

(c) Most locations oferrors will not cause a loss of link frame synchronization, although some wilL In particu­
lar, it is possible for a bit-error to aeate an end Bag within the information packet. The effect will be to
shorten that packet, and then cause the same major problem as in a and b.; namely, reversal of the link
frames and idle periods.

Clearly these problems suggest the need for a means of detecting the reversal of link frames and idle
periods, as wen as indicate that individual packets will be "lost", meaning that they willDot be recognized
at the receivet'o

There are an infinite number ofpossibilities, but here are two:

• PoD each buffer in order, but ifmore than one packet is waiting in a buffer take only one packet, the old­
est. for transmission.

• At each cycle take a packet from the buffer the closest to overflow; that is. the one with the largest
number of packets stored.

The probability ofj packets sitting in the buffer is given by (3.129), pi(1- p).

The average numbel' ofpackets in the queue is given by

M=}:.jpi(l-P)=-L.
j='J 1- P

18-4.

18-3.

(a)

18-5.

(a)

-The summation of this series can be obtained by differentiating the series L pi .
j=O

(b) This follows from the summation

-:Epi(l-p)=pM
j~

(18.18)
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(c) With a finite buffer the multiplex is no longer modeled as an MIMII queue. so the previous results are not
directly applicable. However. the probability of a buffer that can hold M packets overflowing should be
approximately the same as an infinite buffer exceeding M packets waiting for transmission.

18-6.

(a) The average length of a packet is SOO bits divided by 1 Mbls. or 0.5 1nSeC. The utilization is therefore
0.5/3.0=0.17.

(b) The utilization of the oulpUt link must be S times the incoming links. or 0.833.

(c) The average service time on the outgoing link: is the time it takes to transmit sao bits at 2 Mb/s. or 0.25
msec. The queueing delay is therefore

0.833
0.25· 1-0.833 = 1.25 msec . (18.19)

18-7. Ifwe cransmit our packet at time to. constrained to be the beginning of a time-slot. a collision occurs only if
a packet (including retransmissions) arrives at anothec node in the interval [to - lIJ,L.to]. The probability of
this occurring is e - p-. and hence we get the load equation Px =pooae -p.. leading to a doubling of
throughput This equation is plotted in figure 18-9.

CHAPTER 19: SOLUTIONS TO PROBLEMS

19-1. If we use the precoder plus (1 - D) filter. we must connect the echo canceler after the precoder. since it is
nonlinear in the sense that it cannot be modeled as a continuous-amplitude tnulSVersa! filter. We can con­
nect the echo canceler before the filter. since it is linear. and the filter wiU simply be a part of the echo path.
It is in fact advantageous to do so. since for binary cransmission the filter output has three levels and the
input two, simplifying the "multipliers" in the echo canceler. An alternative would be to directly code the
input signal to a three-Ievel signal (zero-bits to zero level, one-bits to alternating positive and negative lev­
els). In this case, the coder output. a three-level signal. would be connected to the echo canceler. Thus, the
precoder realization is probably more attractive because of the simplification to the echo canceler.

19-2-

(a) Either 7200 (R = 3) or 9600 Hz (R = 4) could be used. The tradeoff is that the fonner rate would allow a
lower multiply rate in the canceler. and the latter would result in simpler anti-alias and phase'-splitter filter
designs since there would be a greater guard-band between the highest signal frequency and filter cutoff
frequency.

(b) Assume R =4. For interleaved cancelers. each canceler would require 32><2.4 =76.8 thousand complex
multiplies per second, and all four cancelers would require 307.2 thousand complex multiplies per second.
For the single canceler connected to the transmitter output. the canceler would have 32><4 = 128 taps. and
would calculate its output at a rate of 9600 Hz. for a multiply rate of 1228.8 thousand multiplies per second
(four times higher than the interleaved cancelers).
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19~3.

(a) As discussed in Chapter 6. we can use a phase splitter followed by demodulator as shown below:

ECHO
REPLICA

FROM~ BPF HAMS£~ TO

HYBRlDI"--__ .. SPUTTER~RECEIVER

e- jf4t

Alternatively. we can use the demodulator followed by bandpass filter as shown below:

ECHO
REPLICA

FROM

HYBRID
BPF

TO

RECBVER

In this case the bandpass filter serves two purposes - elimination of out-of-band noise and rejection of
double frequency components. Both configwations generate a baseband complex envelope signal. allow­
ing us to do complex-error cancellation and giving us a demodulated signal ready to be fed into the
receivex.

(b) No, because the signal is baseband we need both real and imaginary parts. We could modulate to passband
again aftex cancellation and take the real part. but this would be silly.

(c) A baseband transversal filter echo canceler with complex coefficients and no modulator willbe appropriate.

(d) This configuration would be identical to the cOmplex-error cancelex descn"bed in the chapter.

(e) This configuration eliminates the modulator in the echo cancelex. which is an advantage. It is P'Obably the
appropriate configuration for the case where the two directions are synchronous. But where they are not
synchronous. it requires interpolation of the complex envelope. which requires two Iowpass filters rather
than one.

19-4. Four cases must be considered:

I. Complex-error and baseband transversal filter. The transversal filter requires N multiplies. each with
four real-valued multiplies. and the moduJator requires four multiplies. for a total of R (4N +4) real-valued
multiplications per baud.

2. Complex-error and passband transwrsal filter. The transversal filter requires N multiplies, each with
four real-valued multiplies. and the modulator requires no multiplies. for a total ofR (4N) real-valued mul­
tiplications per baud.

3. Real-error and baseband transversal filter. The tranSVecsaI filter requires N multiplies. each with four
real-valued multiplies. and the modulator requires two multiplies (since only the real part of the output is
required). for a total ofR (4N +2) real-valued multiplications per baud.

4. Real-error and passband transwrsal filter. The tranSVersal filter requires N multiplies. each with two
real-valued multiplies (since only the real part of the output is required), and the modulator requires no
multiplies. for a total ofR (2N) real-valued multiplications per baud.

Clearly. assuming that it meets the othec system requirements the real-error canceler with passband
transversal filter is the most attractive. It has approximately half the multiplication rate of the other
configurations.
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19-5. One possible configw-ation is shown below:

FROM~
HYBRIO

We use a complex-error canceler. which generaleS an analytic signal representation of the far-end data sig­
nal. We can interpolate this far-end signal using a complex Iowpass filter. followed by sampler synchro­
nous with the far-end data signal. Another possibility would be to put the receive demodulation after the
phase splitter and before canceUatiOll (problem 19-3). chereby simplifying the canceler.

19-6. H we approach chis problem intelligently it is trivial F1l"St we draw the channel model and corresponding
baseband transversal filter model below:

al; ========::::;;-;::=============il

TRANSVERSAL

RlTER
h(t)

+
el; <=:======:(

(k + 1-)T
Then note that the two modulators can be moved through Ite diffemlce operation and combined into a sin­
gle modulator as shown below:

al; ==========:;-;:::==============:;,

TRANSVERSAl

RlTER
h(t)

Since

+

-}Ol.(I;+ .!)T
lEI; 1=Ie R EI; I (19.114)

minimizing lEI: 12 is equivalent to minimizing the variance of che difference operation output But the
latter problem is identical to the passband transversal filter case with AI: replaced by AI; and Ii" replaced by
hI:. Hence the solution is the same with a simple redefinition of cl» and p.
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19-7.
-jtA(. + J..)T

As long as we deal with (e ' E.) rather than E. for the baseband transversal case, there is an
equivalence between the two echo canceler sauctures (exercise 19-2). TIle convecgence fannulas willall
apply as long as we replace 4. by o. and Ii. by h.. The convergence rate and asymptotic MSE are not
affected by h., so that substibJtion makes no difference. Ifthe transmitted data symbols are uncorrelated
and have uncorrelated real and imaginary components, then 4t and at have the same second order statis­
tics, and thus that substiwtion will not affect the convecgence rate and asymptotic error. Of course we do
have to assume that the two cancelers have the same numbel" of coefficients!

19-8.

(a) The effective step-size of the algorithm is proportional to the nonn-squared of the echo impulse response
/lc.II2•

(b) We could calculate this norm squared. and normalize the step-size by this value. In fact. since we expect
the echo impulse response to vary slowly, we need recalculate this norm-squared only occasionally.

19-9.

(a) Weget

where the second tenn is

oRe{ E. } 0 •--o-'-a- = Y.l-ae (E. + Et )

=Y.l( - je i8c. 'i. + je-j8c;'i;)

=- Im( e-j8c:;'i;} =Im( ei8C:/i. }.

(b) Subtracting a constant times the derivative from last phase estimate, we get
- - ., ,.
91; =91;-1 - ~Re( EI; }Im{ e J C:I; 81; }•

This can be interpreted as shown below:

(19.115)

(19.1 16)

(19.117)

(19.118)

(0) (b)

Shown are two cases, where the echo replica is above and below the real-axis. In both cases the reaI-error
is negative. but the inteq>retation as to whether the phase estimate should be increased or decreased is
opposite. We therefore multiply by a quantity which is positive if the echo replica is above the axis and
negative if below. Im{ eiecl; 'i. }.

(c) The correction is

Re{ (e i &. - ei~1; 'i. }Im{e-iec:;'i; ) =
'Go '$' °e °8·'· °8·'· '8'[(e J - e' )c:1; i. + (e-' •- e-' )c:. 8I;][e-' c. il; - e J c:. itl .

The expectation of the cross tenns in (19.118) is zero in view of exercise 19-7. Hence the expectation of
(19.118) becomes

Y.l0'; II c. ,,2sin(9t - at) . (19.119)

As might be expected. the correction is half as large as in the complex-error case, and hence for the same
step-size ~ the convergence is slower.


