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Preface

This book has its origin in lecture notes created at the Naval Postgraduate
School (NPS), whose student and faculty support made this work possible.
The book is written for scnior undergraduates and first-year graduate stu-
dents. Practicing engineers should especially find the book useful in obtaining
the basic knowledge of detection and estimation theory. The main part of
the text deals with detection aspects, while the estimation part is presented
as needed.

Many modern signal processing ideas arc embedded in the approach to de-
teet events. Many aspects of the fast Fourier transform (FFT) and the wavelet
transform (WT) are examined and discussed in the context of detection and
parameter estimation. Digital signal processing has had a tremendous influ-
ence on radar, sonar, digital communications, and the related detection and
estimation area. To this end, where possible, the signal processing ideas are
incorporated into the text.

Where possible, the use of complex envelopes is avoided, even though
acquaintance with the discrete Fourier trausform (DFT) makes the concept
simple. In Appendix B, the complex signal notation is used and related to
the DEFT. Also, Chapter 9, the applications chapter, uses complex valued
CXpressions.

Chapter 1 introduces the concept of detection and cestimation.  Chap-
ter 2 reviews deterministic and random concepts, which are also addressed
in Appendices A, B, and D. Basic signal processing, focusing on the FFT
and the WT are discussed in Chapter 3. Filtering, FIR filters, and the pe-
riodogram arc examined in detail. Appendix E contains more information
related to the wavelet transform. Chapter 4 explores hypothesis testing, us-
ing many cxamples. Non-parametric and sequential detection are discussed
in Chapter 5. Detection of dynamic signals embedded in white Gaussian
noise is presented in Chapter 6. Also, the notion of coherent and incoher-
ent averaging is discussed. Chapter 7 deals with the detection of signals
cmbedded in colored Gaussian noisc. Approaches using scrics type expan-
sion arc presented. Estimation is presented in a very rudimentary form in
Chapter 8. Chapter 9 is dedicated to a variety of detection, parameter es-
timation, and classification problems. Basic topics that are introduced are:
Periodogram, Spectrogram, Correlation, Instantaneous Correlation Function,
Wigner-Ville Distribution, Spectral Correlation, Ambiguity Function, Cyclo-
Stationary Processing, Higher Order Moments and Poly-Spectra, Coherence
Processing, Wavcelet Processing, and Adaptive Techniques.

A typical class reviews aspects of Appendices A—C and Chapter 2. Chap-
ters 1, 3-6, and 8, and Sections 7.1-7.7 and 9.2 are completely covered in



the eleven weeks of a teaching quarter with four hours of lecture per week.
Some MATLADB-based projects are assigned to solidify the understanding of
the lecture material. Chapter 3 uniquely tailors the operation of the Fourier
and wavelet transforms (FFT and WT) to the intended audience.

I want to thank Professors Herschel H. Loomis, Jr., Roberto Cristi, and
Monique P. Fargues of the Naval Postgraduate School (NPS) for their helpful
review and thoughtful comments on some of the chapters. I also want to
thank numerous students at NPS that provided feedback for carly versions
of Chapters 1, 2, 4 7, and 8. In particular, I want to acknowledge the help-
ful comments by students: Brian T. Alexander, Christos Athanasiou, Jaime
C. L. Briggs, Robert D. Broadston, Daniel B. Copeland, Athanasios Konso-
lakis, Dimitrios Koupatsiaris, Kyle E. Kowalske, Mitchell Shipley, Ah Tuan
Tan, and Craig A. Wilgenbusch. Special thanks go to Jim Allen for the line
drawings and the typesctting of this work.

The author welcomes feedback and suggestions. No doubt, with prob-
ability one, some errors did occur. The author can be reached at: rdhip-
pen@ups.navy.mil or hipp@montereybay.com.

Finally, I want to thank my immediate family, my wifc Sylvia, my daugh-
ters Claudia, Patricia, and Linda as well as my mom Sofic, to whom the book
is dedicated, for their encouragement and understanding. The dedication of
this book is made realizing that words alone cannot make up for the lost time
in their lives.

Ralph D. Hippensticl
Monterey, California
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Chapter 1

Introduction

1.1 GENERAL PHILOSOPHY

In the age of modern warfare the theory of detection and estimation has
become a very important topic. The development of radar, sonar, digital
communications, and digital signal processing has immensely stimulated these
areas. With the advent of the flying machine, which can deliver ordinance
to any point at any time, carly detection has become essential. The roots
of modern detection theory can be found in the desire to protect valuable
resources by detecting and destroying enemy airplanes and missiles under all
types of environmental conditions. A large body of detection-related articles
and books can be found in the statistics area. Hypothesis testing relates to
a topic that historically deals with statistics. This statistics topic focuses on
the detection and/or estimation of certain phenomena and usually includes
the computation of the errors associated with these procedures.

World War II has a rich warfare history that demonstrates the importance
of detecting enemy attacks reasonably early to allow for countermeasures or
at least for some evasive action. Detection must be sufficiently early to min-
imize the loss of life. Of course, to obtain a timely warning, carly detection
is essential and hence, detection must usually be accomplished at very low
signal-to-noise ratios (SNRs). In recent history, the development of nuclear,
chemical, and biological armament and the many covert ways of delivering
this type of ordinance have made detection even more important. For exam-
ple, it is relatively casy to hide a submarine, a potential missile deployment
system, in the occan. Passive and active sonar systems allow the detection,
identification, and localization of submerged platforms. Another example is
the ballistic missile system that can be hidden in movable containers. Bal-
listic missiles, for example the scud missile in the conflict with Iraq, can be
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detected by radar, optical or imaging systems.

In cach one of these scenarios, automated detection allows scanning of
large data scts for the purpose of detecting, localizing, and identifying partic-
ular targets of interest. We realize, if there is no distortion (i.c., no noisc or
interference) when observing data then one can readily deduce the presence
(or absence), and when appropriate, the type of the signal emitter.

Typically, throughout this text, we assume that the noise is of the additive
type, that is, the observed (received) component consists of a signal or signals
cmbedded in additive noise. With the exception of Chapter 4, which discusses
hypothesis testing, most of the noise will be of the Gaussian type. During
the first part of the text, we will deal with delta correlated noise (i.e., white
noise), while later sections will address colored noise.

Since the 1960s modern digital signal processing has influenced all arcas
of signal conditioning and signal processing. Some detector implementations
will draw on this topic. To this extent, some introductory digital signal
processing is included, especially as it relates to the use and interpretation of
the fast Fourier transform (FFT) and the wavelet transform (WT), both of
which have revolutionized many signal processing applications.

Many books have been written that cover detection related topics [111].
The reference list is, by no means, exhaustive, but it is meant to provide
additional helpful material. At this time, references [1-5,7-11] remain in
print. These books are excellent references but are sometimes a little difficult
to read.

Our text attempts to question why things arc set up in a particular way
and how the results arc derived. Our students, primarily military officers,
are interested in the topics from a practical point of view because good un-
derstanding will potentially affect the operation and success of some of their
future missions.

The mathematical level is kept at a minimum, with most of the necessary
ideas developed in the text or given in the appendices. If that is not feasible, at
least ample references are provided. Mathematics is kept at a level where the
typical engineer can follow and understand the material. The mathematical
development is appropriate for engineers and physicists and in no way is
meant to be rigorous.

The presentation is oriented toward Hilbert spaces and projections (inner
products) in these spaces. This allows a general description and solutions
for different scenarios. With this approach, the extensions to other basis
functions such as Karhunen-Loeéve is a natural one, allowing a straightforward
interpretation.
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1.2 DETECTION AND ESTIMATION
PHILOSOPHY

The emphasis of this text is on the detection aspect, that is, the declaring of
the occurrence of a particular event with some measure of confidence. Esti-
mation can be interpreted as an extension of the detection part. It answers
the question as to how much of a particular item of interest there is (i.e., a fine
localization in the parameter space) and provides a measure of the accuracy
or confidence.

1.2.1 Detection
Some typical detection examples are

(a) Radar: passive, active, or bi-static (i.c., it uses an antenna and tests for
target presence)

(b) Sonar: bi-static, active, or passive (i.c., it uses hydrophones and tests
for target presence)

(¢) Digital communication: coded binary words (symbols), (i.e., one wants
o detect transmitted, possible encoded, message bits consisting i-
to detect transmitted, ble encoded, message bits consist of b
nary zeros and ones)

(d) Acoustic detection (i.e., it uses microphones): for intrusion alarm, emit-
ter detection (i.c., gunnery, helicopter sound detection/localization, ete.)

(¢) Seismic detection (i.c., it uses geophones): to detect an carthquake,
tunnel digging, nuclear testing, cte.

In gencral, we obtain data (also called measurements or observations)
which is thought to consist of one or several signal components embedded
in additive noise. The noise may be natural (i.e., the environment, medium,
chanunel, electronics, etc.) or man-made (i.e., jammer, power lines, shipping
noise, oil exploration activities in an occan environment, ete.). Based on the
received data, we try to decide whether or not a particular event has occurred.
Note, there is also a subclass of problems. For instance, sce Example 4.17,
where the prevailing probability density or a statistical moment indicates the
occurrence of a particular event. If convenient, we shall use as the start time
t = 0, realizing that it can easily be changed to t = tg, if the need arises.

We separate the detection problem into three types of classes:

e Class I: Known signals in additive noise.

e Class II: Signals with unknown paramcters in additive noise.



4 Detection Theory: Applications and Digital Signal Processing

Signal shape, type, etc., is known except for some signal-related param-
cter or parameters. Typical examples are unknown carrier frequency,
amplitude, or phase.

e Class III: Random signals in additive noisc.

Signals are described statistically. That is, the unknowns are described
statistically (i.c., via probability density functions, or moments, or cor-
relation functions).

(a) Class I (known signals in additive noise):  One will decide, based
on the received data r(t), whether or not the message (or signal)

S0 or s1 was transmitted.

Example 1.1

so(t) = cos(wot) (i.c., a signal with carrier frequency wo)
s1(t) = cos(wit) (i.c., a signal with carrier frequency wy)
r(t) = s;(t)+n() for 0 <t <T andi=0,1

where r(t) is the received, noise corrupted signal and n(t) is an additive noise
process.

Example 1.2

so(t) = Ao (i.c., a DC level of value Agp)
s1(t) = Ap (i.c., a DC level of value A;)
r(t) = si(t)+n(t); for0<t<T; i=0,1

where r(t) is the received, noise corrupted signal and n(t) is an additive noise
process.

Example 1.3

s0(t) = cos{wet) (L.e., asignal with carrier frequency we)
51(t) = sin(wct) (l.e., a phase shifted version of so(t))
r(t) = si(t)+n(t); for 0<t<Tandi=0,1

where r(t) is the received, noise corrupted signal and n(t) is an additive noise
process.

(b) Class II (signals with unknown parameters in additive noise):
One will decide, based on the received data r(t), whether or not
message (or signal) so or $1 was transmitted.
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Example 1.4
r(t) = cos(wit + 0;) + n(t) fori=0,1and for 0 <t <T

where r(t) is the received, noise corrupted signal, 0y and 01 are unknown
deterministic phase values, and wy and wy are known.

Example 1.5

s(t) = cosfwe(t)] for 0 <t <T (radar, sonar problem)
acos [(we +wp)(t — 1) + 0] + n(t)

r(t) = forT <t<7T+T
n(t)

where a represents signal attenuation; the coefficient 0 is an unknown phase
shift, n(t) is the additive noise component, wp represents the unknown Doppler
shift, and T is the unknown time delay (proportional to the round trip distance
to the target).

(¢) Class III (random signals in additive noise): One will decide,
based on the received data r(¢), whether or not the message (or
signal) s,,(t) is present or not.

Example 1.6

sw(t) +n(t) ; if the target is present

n(t) ;  if the target is not present for 0 <t < 7T
where $,(t) is a realization of a random process, and a probabilistic descrip-
tion of s, (t) is available.

1.2.2 Estimation
Some typical examples are
(a) Frequency estimation (i.e., determine the actual Doppler shift)

(b) Differential time delay estimation (i.c., determine the distance or dif-
ferential distance to a target)

Amplitude estimation (i.e., target strength, size, distance)

)
(d) Phase and/or bandwidth estimation (i.e., target identification)
) Spectral estimation (i.c., target identification)

)

Analog wave form estimation (i.e., original noise-free recovery of the
original wave form using optimal filtering)
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Unique Transition Decision
(invertible) Probability Rule
(channel)

Event Signal Observation Decision
Space Space Space Space

I Source I Medium |7 Receiver 4'

Figure 1.1: Decision model.

1.3 DESCRIPTION OF SPACES INVOLVED
IN THE DECISION

The general signal/data flow for detection/estimation is shown in Figure 1.1.
The general signal flow shows how the information moves from the event
space, via the signal and obscrvation spaces to the decision space, with the
spaces denoted by E, S, R, and D, respectively. The events are encoded as
signals (i.c., quantitics that propagate through the channel), where one signal
typically corresponds to one particular event. In some cases, the number of
signals (J) can be different from the number of events (7). An example of this
type is given by the following scenario. A single event “target present” may
be represented by several different signal components (i.c., the emission of a
distorted sinusoidal signal manifests itsclf as a basic sinusoid and additional
harmonically related compounents). Hence, one event could be translated into
or represented by several signals.

The signals are coupled via the chanmnel, which introduces noise, to the
receiver which also is called the detector. The receiver takes samples of the
data and with some (optimal) processing makes a decision regarding the orig-
inal cvent. If we test for the occurrence of a particular event, then we are
addressing a detection problem. Conversely, if we evaluate the size of or the
quantity relevant to the event, then we are addressing an estimation problem.

E: Event Space

In the event space E, one of the I possible events can happen. We may or may
not know a priori probabilities of the event e; (i.e., Pr {e;} fori =0,---,I—1).
Typical events may be

(a) Messages: alphabetical, numeric, station keeping, Morse code



Introduction 7

(b) Parameters: frequency, phase angle, object moving or not, hence, object
speed, cte.

(¢) Targets: target present/target absent, friend/foe, cte.
Note:  The message may be in a discrete or continuous form, may be a ran-
dom variable, random vector, or a realization of a random process.
S: Signal Space

The events are converted into representative signals. Of course, one mapping
might use the original data (events) as the signal directly.

Example 1.7 Phase Modulation

Events : Signals :

€0 = 0° = 0y — so(t) = Acos(wot + )

er = 180° = 61 — s1(t) = Acos(wot+61); for0<t<T
Example 1.8 Event Encoding

Eveunts : Signals :

A = e — so(t) = signal representing event A

B = e — s1(t) = signal representing event B

C = e — s9(t) = signal representing event C'

s for 0 <t <T
Example 1.9 Radar/Sonar Problem

Figure 1.2 provides a typical target detection scenario. The signal s(t) of
duration T is transmitted. A target is R units in range away. The observation
7(t) is received by the receiver. The delay time is tg = 2R/C; where C' is the
propagation velocity. No noise or Doppler is considered.

Events : Signals :
eo(no target) — 7(t) =50(t) =0 ; for 0<¢
er(target present) —  7(t) =s1(t) = as(t —tg) ; fort, <itgp <ip+T

where a is the signal loss coefficient.

Narrow band detection (passive detection addresses the question: is a parti-
cular spectral component at a certain frequency present or not ¢).

Events : Signals :

eo(no target) — so(f)=0
e1(target present) —  s1(f) = Acos(wet +6.) ; for to <t <to+T
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s(?) - transmitted
r(?) - return

. ‘ L

target

7)

Transmitter
and Receiver

Figure 1.2: Typical target detection problem.

Example 1.11 Communication System

Binary communication problem (i.e., frequency shift keying (FSK))

Events : Signals :
e — so(t) = Asin(wot) ; for 0<t<T
ep — s1(t) = Asin(wit) ; for0<t <T
Example 1.12 Intrusion Alarm (i.e., motion detector for 0 <t)
Eveunts : Signals :
eo(no intruder) —  s(t) = Acos(wot + 6)

er(intruder present) —  s(t) = Acos(wot + wp(t)) + )

where wp(t) is a time dependent frequency shift.

R: Observation Space

The signals arc observed (i.c., obtained) after having passed through some
channel (i.e., the medium). Usually, this accounts for the additive noise
component n(t), which may be due to the medium, the electronics, and may
also potentially be due to a jamier (i.e., man-made noise). In general, the
received data is the transmitted signal plus an additive noise component:

r(t) = s(t) + n(t).
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Figure 1.3: Two array processing.

Example 1.13 Target Detection

Events : Reccived Data

eo(no target) — ro(t)=n(t); for0<t<T
ei(target present) — ri(t) =as(t —tg)+n(t); foritpg <t <T +1ip

where a is the signal loss coefficient (i.e., no Doppler shift assumed in this
particular example) and tg is the propagation delay, which accounts for the
round trip to and from the target.

Example 1.14 Two Array Processing

Two arrays are receiving data from a particular geographical area. The targetl
may or may not be present and may be or not be observed at either or both
locations. Details can be seen in Figure 1.5.

Denote by r;;(t) the data received at array i given H;, the ' hypothesis,
15 true.

Events : Received Data :

eo(no target) — r(t)=ni(t); for 0<t<T
roo(t) = me(t) ; for 0 <t <T

ei(target present) —  ri1(t) =a1s(t —11) +n1(t) ; for 0 <t <T
ro1(t) = ags(t — ta) + ma(t) ; for 0 <t <T

where a; is the loss coefficient for the signal component at the 1" array,
assuming a zero Doppler shift, and t; represents the delay to reach the i'h
array, fori=1,2, and T is the duration of the snapshot used in the decision.
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Example 1.15 Binary F'SK Problem

This example represents an FSK signal over a fading channel (multiplicative
fading) in additive noise. The multiplier m(t) represents the multiplicative
fading term and n(t) is the additive observation noise.

Events : Received Data :

o — rolt)= Zmn(t) cos [wo (1 — 7 (t))] + n(t)

n

e — ()= Zmn,(t) cos [wy (t — 7, (1))] + n(t)

n

where my, (t) is the time-varying attenuation factor associated with the n'h

propagation path and 7,(t) is the corresponding propagation delay. In this
stmple model, it is assumed that no inter-symbol interference (ISI) is present.

D: Decision Space

The dimension of D is usually the same as the dimension of F, but not always.
If dim(D) = dim(F), then we try in a best, that is in an optimal, fashion
to estimate the original message. An example for dim(D) to be less than
dim(E) is the estimation of target parameters leading to the decision yes or
no, based on multiple picces of information, such as multiple spectral lines in
the passive SONAR detection problem.

Our text will focus on “how to obtain a mapping from R to D.” This rule
(mapping) must be such that:

(a) An unambiguous decision is made.

(b) Every outcome must lead to some decision.

Example 1.16 Multiple Decision (see Figure 1.4)

d;: choose H;, the hypothesis that the event e; occurred which means that
the observation must lie in the space (region) R;, fori=0,1,2,3.

1.4 SUMMARY

In Section 1.1, a general introduction to the detection topic is given and
related reference material is pointed out. At the same time a historical con-
nection to modern signal processing is made. Section 1.2 provides insight
into detection and estimation problems using examples. The signal detection
problem is classified into three types of classes: known parameters, unknown
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R D
Observation Decision
Space Space

Figure 1.4: Decision regions for Example 1.16.

paramcters, and random parameters. The last scction provides a generic

description of information flow and the spaces involved in the generation,
transmission, reception, and processing of the data.
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Chapter 2

Review of Deterministic
and Random System and
Signal Concepts

2.1 SOME MATHEMATICAL AND
STATISTICAL BACKGROUND

This chapter reviews some signal characteristics and system properties. The
review helps to visualize the implementation of the basic ideas and the corre-
sponding relationships among the building blocks. It also serves to interpret
a given signal and/or system scenario. Most problems addressed will be of
the additive noise type, that is the signal, if it is present, has an additive noise
component. Conversely, if there is no signal component, then only noise is
present. As a matter of interest, in typical situations we want to detect and
track targets (i.e., signals) when the target is still far away. This always sets
up a noisy scenario. If no noise is present, then the detection and estimation
of paramcters (i.c., target characteristics) are usually very simple. The data
typically consists of:

z(t) = s(t)+n(t) ; where (t) denotes the continuous time
dependency
x(n) = s(n)+n(n) ; where (n) denotes discrete time at intervals

nT and T is the sampling interval. The
T dependency is usually suppressed.

13
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Here, s(-) is the signal component which may also have a parametric depen-
dency, where the parameter may be deterministic or random, and n(-) is the
noise component which may have a parametric description in terms of some
modcl paramcters.

Some problems are given and solved in an analog fashion (i.e., time-
coutinuous problems) while some are given and approached in a digital fash-
ion (i.e., discrete time problems). This requires some background in terms of
system theory and random processes for both representations.

The minimum amount of structure that is nceded is that of a normed inner
product space (Hilbert space). Here we can compute the projection of signals
and noise onto the prevailing coordinate axes. For additional background,
the book by Franks [1] is recommended.

In general, we can think of the data space of being decomposable into two
orthogonal subspaces, consisting of a signal and a noisc only space. Depending
on how we want to represent the data in this space, we may choose a particular
set of basis functions. Theoretically, an infinite number of choices is available,
but in practice only a few sets are used.

A well-known expansion uses as basis sct, the orthogonal direction com-
ponents of the signal. Here we choose as the primary basis function one of
the signals. After the normalization of this chosen basis function, we sclect
as a second basis function the orthogonal component of a second signal. Af-
ter normalizing the second basis function, we repeat the process as often as
necessary to span the total signal space. Hence, sequentially we design every
basis function in an ortho-normal fashion relative to all previously sclected
basis functions (i.c., the Gram-Schmidt decomposition, sce Chapter 7, Section
7.4).

We could use any orthogonal decomposition of the signal as a basis func-
tion. Actually, the most commonly used one is the Fourier type decompo-
sition. But, we realize that a host of other decompositions (i.c., Hermite,
Legendre, Chebbycheff, Laguerre, cte.) is available.

In the discrete type problems, the cigenvalue decomposition and the singu-
lar value decomposition (SVD) have found many applications [2,3,19]. These
allow decomposition of the data space based on eigenvectors where the selec-
tion is done by using the magnitude of the cigenvalue. Here the argument is
used that the sum of the squares of the cigenvalues corresponds to the energy
of the system. Hence, in typical scenarios, the signal components correspond
to the dominant eigenvalues (eigenvectors), while the noise only components
tend to be those having the smallest eigenvalue.

There is one particularly useful decomposition where the basis functions
arc determined by the noise covariance matrix (i.c., the Karhunen-Lotve ex-
pansion). In this expansion, we assume that we have correct knowledge about
the noise covariance function. Each one of the approaches discussed so far
has its own characteristics, merits, and disadvantages, which we try to point
out as we go along.
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Since we work with projection onto certain basis functions, we need to
establish the characteristics of the general vector space (Hilbert space) that
we arc using. The vector space must have all the properties assigned to a
lincar vector space. We will indicate vector or matrix quantities by resorting
to bold faced letters.

Definition 2.1: Vector space over the field of real or complex numbers.
We need a set K of objects, called vectors, together with a vector addition
on K and a scalar multiplication of vectors by numbers with propertices.

Vector Addition:
(1) Vector addition is commutative and associative.

(2) There is a unique vector 0 (zero) in K such that 0+ x = x for all x in

K.
(3) There is a unique vector —x in K such that x + (—x) = 0.
Scalar Multiplication:
(4) Must satisfy:

(2) (ab)x = alb)x;
(b) Ix=x

and be related to vector addition by the two distributive laws:
(5) (a) e(x+y) =cx+cy, for all x and y in K.
(b) (a+b)x = ax + bx, for all x and y in K.

In addition, the vector space must have a distance (norm) and an angle (inner
product) measure. So if we take a complete inner product space (i.c., a
veetor space), all of these properties hold. Since the majority of problems
and applications deal with discrete-time problems, more attention is brought
to these types of problems. Where appropriate, the continuous time type
problems are addressed. The hierarchy for the vector space is as follows:

group — ring — ficld — vector space — algebra — complete normed space
(i.e., Banach space) — complete inner product space (real or complex
vector space with inner product, i.e., Hilbert space).

That is, as one imposes more and more structure, one moves from the spec-
ification of a group, to those of a ring, to those of a ficld, and so on. Somec
additional information can be found in Appendix C and in references [1,3,4].

A summary of many of the probability properties is presented in Appendix
A. Most of our work deals with statistical moments. The first moment is the
DC component, while the sccond moment describes the total power of the ran-
dom variables in question. The variance of the random variable X is given
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by the expression variance = E(X — mx)? = E(X?) — m%. It describes the
spread of the density function of the random variable about its mean. These
concepts arc extended to provide auto-correlation and cross-correlation func-
tions of random processes (or random sequences). Many of the properties of
the correlation functions and their Fourier transforms (i.e., the power spec-
tral density (PSD)) are given in Appendix A. Chapter 9, Section 9.2 examines
power spectral density estimation will provide some more insight.

2.2 SYSTEMS AND SIGNALS
(DETERMINISTIC AND RANDOM)

This scction reviews lincar system theory and system behavior due to deter-
ministic and to random inputs as well as some related topics. In general, we
usually assume that the continuous and discrete time systems are lincar and
time invariant (LTT), or linear and shift invariant (LSI), as the case may be.
The random processes and random sequences are assumed to be wide sense
stationary (w.s.s.). If we deal with non-linear or non-stationary entities, we
shall point it out where appropriate.

Linear Systems:

It is well known that the response of a lincar time invariant system can be
expressed in the time domain (i.c., convolution) and in one of the transform
domains (i.c., product of the respective transforms). In the time domain, we
have in general

y(t) = /'00 h(t —7) z(T)dr (2.1)

J —oco

while for a causal system and a causal input, we have

y(t) = !/0. Rh(t — 1) x(T)dr (2.2)

here h(t) denotes the system impulse response, 2(t) is the input, and y(t) is
the output.
Equivalently, for discrete-time systems, we have in general

(e}

y(n) = Z h(n —m) x(m) (2.3)

=—00

while for a causal system and causal input, we have

n

y(n) = Z h(n —m) z(m) (2.4)

m=0
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where h(n), z(n), and y(n) is the sampled impulse respouse, input, and output
(sampled in the Nyquist sense), respectively. In all discrete-time scenarios,
we assume proper analog-to-digital (A/D) conversion has been obtained.

In the transform domain (say the Laplace or Fourier transform domain
for the continuous time case and the Z-transform or discrete time Fourier
transform domain for the sampled data case), we have

Y(s) = H(s) X(s)
Y() = Hw) Xw)
and
Y(z) = H(z) X(2)
Y (explju]) = H (explje]) X (expljo]) (2.5)

It is very convenient to use a related letter for the transformed variables, i.e.,
the Laplace transform of h(t) is denoted by H(s). When convenient, we shall
usc the notation z(n) and =, interchangeably.

There are other linear transformations that could be used, but the ones
mentioned above are the most common ones. We note that for causal quanti-
ties, ouly one-sided transforms need to be used (i.e., the regions of convergence
arc one-sided). The output of a lincar time invariant system is also of interest
when a random input is present. Then, statistical descriptions, i.c., moments,
arc used to describe the responses. We deal primarily with first and sccond
order moments which are all based on the quantity y (time) or Y (frequency)
as described earlier. Omne can spend much more time on systems concepts but
we assume that the reader is aware of the concepts or is willing to pursuce one
of the references listed at the end of the chapter [1,5,7,13 18,20].

For random inputs, we examine the output in terms of first and second
order moments. The first order moment, in general, is given by

Ey(t) = /_C>o h(t — ) Ex(1)dr (2.6)
and -
Ey(n) = Z h{n —m) Ex(m) (2.7)

The sccond order moments are obtained by forming the appropriate products
and then taking an expectation. For example, for the continuous time systemn,
assuming the input is wide sense stationary, we have

Ey(tyy(u) = /700 /700 h(t — T)h(u — o) E(x(r)x(0))drdo

[ =) st oviraa (2
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That is, Ryy (t — u) is the convolution of the input correlation function with
the impulse response and a convolution with the time reversal of the im-
pulse response. The power spectral density is the Fourier transform of the
corrclation function and can be expressed as

Syy(w) = Sxx (w) |H(jw)|? (2.9)

where H(jw) can also be written as H(w). A similar expression holds in the
sampled, w.s.s. data case.

Ryy(n—m) = FE(yn)y(m))

= > ) h(n—k)h(m—t) E(x(k)x(t))

k=—o00 l=—00

= Z Z h(n —k)h(m —¢) Rx(k—¥¢) (2.10)

k=—o0 {=—00

More background can be found in [4,5,7,13,20]. The power spectral density
is the Fourier transform of the correlation function and can be expressed as

Syy (€)= Sxx (%) |H(e??)|? (2.11)

2.3 TRANSFORMATION OF RANDOM
VARIABLES

Some probability density functions (PDFs) occur frequently in communica-
tion/detection related work. We will examine some of the standard proba-
bility density functions. The probability density plots contained in Chapter
2 are created using MATLAB® Version 5.3 [12]. Most of these densities and
related topics can be found in very enjoyable form in Whalen [6] and in Pa-
poulis [7]. Most densities are derived using the Gaussian PDF as gencerating
densities, where the different random variables involved are assumed to be
jointly Gaussian and independently identically distributed (i.i.d.).

For many typical physical phenomena, the Gaussian assumption is a rea-
sonable approximation of actual behavior, that is, the central limit theorem
[7] and extensions of the central limit theorem [22], which do not require i.i.d.
random variables, tend to justify the use of the Gaussian distribution.

In many instances, we are interested in computing the area of a parti-
cular density function to the right of a given threshold Ty. For example, in
the radar/sonar problem, the area of the density function has the following
interpretation: When the target is present (when we say the so-called Hy
hypothesis is true), then the arca of the density function to the right of a given
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threshold represents the probability of detection Pp. The statistical literature
refers to Pp as the power of the test. When no target is present (that is the
noisc only condition is true, we say that the so-called Hy hypothesis is truc),
then the arca to the right of a particular threshold of the density function
represents the probability of false alarm (Pga, also called the size of the test).
Of course one can also compute the area to the left of a given threshold
To, which is just the ones-complement of the density area computed for the
arca to the right of the threshold Ty, This probability is also of interest
when deseribing the detector performance. In the appropriate section, we
will address these quantities. We will also briefly discuss the quantities: the
power and size of the test, for some of the commonly occurring densities.

2.3.1 Gaussian Density

Gaussian random variables arc closed under scalar multiplication and typical
linear transformations. These properties are easily verified using the transfor-
mation of random variables or by using the characteristic function. This im-
plies that filtering operations, convolution, integration, differentiation, as well
as the common transforms (i.c., Hilbert, Fourier, Laplace, and Z-transform,
to mention a few) retain the character of Gaussian random variables, that
is, the transformed random variables stay Gaussian. If data is filtered and
the effective integration time of the filter is relatively long compared to the
correlation time of the noise, the PDF of the output compared to the input
variables tends to be closer to a Gaussian PDF. This is a conscquence of
the central limit theorem (or one of its more general versions) in that the
filtering operation constitutes a summation of many random variables when
interpreting the integration using Riemann sums.
The deunsity function for a single Gaussian (normal) random variable

7 ~ N(mx,0?) is given by:

For rcal x [7]

(r —mx)?
[x(x)= — OXp ———— (2.12)
For complex z [13]
1 |z — mx|?
xr) = —Q _—— 213
() = = exp -0 (213)

The area to the right of a threshold T for a zero mean, real valued, normalized

Gaussian random variable is
1 "0 x2 )
— exp— | — | dzx 2.14
=/ e (3 (214
Some textbooks, for example see [6], refer to the integral expressed in (2.14) as

the complementary crror function (i.c., erfe(Tp)). Figure 2.1 shows a typical
Gaussian PDF and the arca referred to in (2.14).

Q(To) =
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Figurc 2.1: Gaussian density function.

The fourth order moment of the zero mean real valued Gaussian, which
is very useful in computing the variability of the second order moment of
Gaussian based variables, can easily be computed and is of the form:

E.Tf1.732.773.7,‘4 = E.T,l.T,‘Q E.Tf3.774 + E.Tll‘g E.T,‘Q.TA + E.T,ll‘4 E.T,‘Q.T,g (215)

Even if #1 = 2o = 23 = x4 = =z, then Fz* = FE2? Ex? + Fz? Ex? +
Ez? Fx? = 30x®. We note, if linear operations are performed on Gaussian
random variables, the resultant stays Gaussian. This result is especially useful
when dealing with discrete time systems, such as those used when working
with digital processing implementations. A typical example is the averaging
procedure. Suppose we take a boxcar averager, that is a device or algorithm
that sums up NV contiguous samples of = as shown in Figure 2.2, and uniformly
weights the data as described by

N—1
Y= E Tq
i=0

This expression is sometimes normalized by the number of terms involved
and is then called the sample mean. We know that if the input samples arce
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y——> 2 >

Figure 2.2: Boxcar averager.

Gaussian, the output y will be Gaussian too. Hence, all that needs to be
established is the new mean of y and its variance. Suppose the input x; are
1.1.d. Gaussian random variables with mean myx and variance O'g( then the
output y is Gaussian with mean

N-1 N-1
Fy = F T = Fax;
i=0 i=0
N-1
= E mx = Nmx
i=0
with second moment
N—1N-1 N—1N-1
2
FEy* = F Ty = E E Erix;
i=0 j=0 i=0 j=0
N-1
= (N—-1)Nm% + E Exx;
i=0

= (N~ 1)Nm% + N(o% +m%)
= N?m% + No%
and variance
2 2
oy = Noy

Hence, y ~ N(Nmx,No%).

2.3.2 Rayleigh Density

This density occurs naturally in processing that deals with envelopes, magni-
tudes, or distances defined in two dimensions. Given two independent identi-
cally distributed Gaussian random variables, say = and y with = ~ N(0,0?)
and y ~ N(0,02). The envelope is formed by

Given that
(=* +y°)

202

fXY(T7U) - (27_[_10_2) exp —
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then
. z 722 .

where U(z) denotes the unit step funetion.
The area to the right of a given threshold Ty is given by

'z 22
/T ;(sxp—QGde (2.17)
0

The variable z is the output of a typical envelope detector (under the noise
only conditions). We note that the variable z can also denote the magunitude
of a complex variable, where x and y are the real and imaginary components,
or the Euclidean distance in a two-dimensional space.

Some time ago, a convenient (analog) clectronic circuit was the envelope
detector, typically implemented with a one way rectifier diode and an RC filter
(see Figure 2.3(a)). Equivalently, we can take the data (after digitization) and
apply an envelope forming operation (Figure 2.3(b)). Many times, it turns
out that a video output which is actually an envelope squared type output
is created by the processing technique. A typical example is the quadrature
demodulator, followed by a squaring and sumiming operation (Figure 2.3(c)).
Or as in the case of the fast Fourier transform (FFT) implementation, the
square root of the sum of the real and imaginary output squared (Figure
2.3(d)) makes up the envelope. Here the signal 7(¢) is given

r(t) = 2z(t)cos{wt + ¢(1))
= z(t) coswct — y(t)sinwt

where r(t) has a Rayleigh PDF, ¢(t) has a uniformn PDF, and z(t) and y(t)
arc i.i.d. Gaussian random variables for cach fixed point in time. One can
casily show, i.c., via the marginal density, that the Rayleigh random variable
is independent of the uniform random variable. The PDFs of two different
Rayleigh variates are shown in Figure 2.4, with the area to the right of an
arbitrary threshold indicated.

2.3.3 Cauchy Density

For completeness sake, we will discuss the transformation of random variables
that leads to the Cauchy density. This is particularly uscful as a stepping
stone to derive the probability density function of the phase of a Gaussian
bandlimited noise process. Let ¢t be the ratio of the two independent identi-
cally distributed Gaussian random variates, then for either ¢t = x/y ort = y/x
we obtain the following density function

1

fr(t) = =) ;

for all ¢ (2.18)
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Figure 2.3: Envelope detectors.
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Figure 2.5: Cauchy PDF.

The probability density function is plotted in Figure 2.5 and the arca to the
right of a threshold Ty is given by:

"0 1 1 1
—  _dt==— Ztan YT, 2.1

From the Cauchy density, the uniform density can easily be derived. The
uniform density is frequently used to model the uncertainty in the phase of a
bandlimited Gaussian or a sinusoidal random process.

2.3.4 Uniform Density

Let w = arctan(t) = arctan(y/z), then we obtain

1
v(w) = ——; ) 2.2
firlw) = = fwl<n (220)
The arca to the right of a threshold Tj is
1 1
——dw = — (7 — 1} 2.21
| agiv=g ™ (221)
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Figurc 2.6: (a) Uniform PDF; (b) generator.

Figure 2.6(a) shows the uniform PDF while Figure 2.6(b) shows a typical
phase estimation scheme using the k™ bin of the FFT which when dealing
with Gaussian noise, leads to the uniform PDF. We note that a narrowband
Gaussian noise process can equivalently be expressed as a random process
with a Rayleigh distributed envelope and a uniform random phase for cach
point in time or as a process consisting of quadrature components centered
at a carricer frequency.

2.3.5 Chi-Squared Density

The PDF of the sum of N-independent squared identically distributed Gaus-
sian random variables is chi-squared with N-degrees of freedom, where N is
the number of variates involved in the squaring operation and x; ~ N(0,0?)
fori=1,2,---, N [7].

Let the variable C' be a chi-squared random variable with 2 degrees of
freedom. Hence,

¢ = xi+a3 (2.22)
1 —c )
fele) = 257 P gU(C) (2.23)

where U(¢) is the unit step function. Note this is also called the exponential
probability density function. The area to the right of a threshold Ty is

o0 1 —C ) To
/To 552 OXP Wd(: =exp— <ﬁ> (2.24)

This density occurs typically at the output of a spectrum analyzer under the
(Gaussian) noise only condition. This is the equivalent to Figure 2.3(d) with-
out the use of the square root operation. In general, if the input noise density
is Gaussian or we can claim the summation of many independent random
variables form two independent identically distributed Gaussian variables,
then the output density tends to be exponential (i.c., chi-squared with two
degrees of freedom). A typical processing scheme is the arrangement given
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Figurc 2.7: Spectrum analyzer.

in Figure 2.7. This version of spectral estimation is called the periodogram,
which due to its robustuess, ease of interpretation, and efficiency, is used most
of the time when dealing with the detection of spectral components or the
estimation of the power spectral density. To obtain a properly scaled power
spectral density, the variable ¢ should be normalized by the number of terms
in the FFT.

In modern processors, this is accomplished by using the FFT simply be-
cause it is so fast, reliable, and accurate. Omnce the data has been properly
sampled (i.c., the A/D conversion obeys the Nyquist criterion), it is simply
processed as given by

m+N-—1
FFT{x,} = Z xne*JQTrk(n/N)

n=m

where N is the transform length (also called the coherent integration time),
k corresponds to the frequency (L.e., f =k fsampling/N), 7 is the time index
(t = Atn), At is the sample spacing in scconds, n is the start time in samples,
and foampling = 1/At. If we denote the output of the FFT by X (k), then the
spectral estimate Px (k) is denoted by

1 | |mEN- 2
2 —j2nn(k/I

This estimate of the spectral density is called the periodogram [14,15], as
earlier mentioned. If no special data weighting is used, we can easily show
that the mean of the estimate equals to one standard deviation of the estimate
when only white Gaussian noise is present (i.c., the Hp hypothesis is truc).
This is the Achilles heel of the periodogram, namely the variance is relatively
large and does not decrease as the integration time (N) increases. A typical
exponential density, using a o of 1, is shown in Figure 2.8. In general, if ¢ is
the sum of N i.i.d., Gaussian squared random variables

N

L 2, L

c= E xi x; arce 1.i.d. (2.25)
i=1
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Figurc 2.8: Exponential PDF.

where the 2; ~ N(0,02). The PDF then becomes

1 c
fele)y = m(i(N/Z)_l eXp — (27> Ul(e) (2.26)

Some typical members of this PDF, using a ¢ of 1, are shown in Figure 2.9.
We note that this corresponds to incoherent, also called power averag-
ing of periodograms. Typically, one secks to improve the variance of the
basic periodogram by averaging scquential spectral outputs. These outputs
arc scquential in time and, for the purpose of our discussion, assumed to
be independent. Asymptotically, for large numbers of averages, one expects
about a 1.5 dB (decibel) improvement per doubling of the number of terms
used in the averaging procedure. The basic filter bandwidth of the spectrum
analyzer (FFT) remains constant (roughly feampling/IN) providing some ro-
bustness. On the other hand, using coherent averaging would have resulted
in a 3 dB gain per doubling of the number of terms in the FFT operation,
but then the filter bandwidth shrinks (fsampling//V) with the increasing N.
Depending on what the signal of interest does, it may be lost by being over-
resolved, that is the signal spills into many adjacent spectral bins. One needs
to carcfully cvaluate the trade-offs between variance reduction, bandwidth,
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Figurc 2.9: Chi-squared PDF with N-degrees of freedom.

processing gain, and over-resolving to extract spectral information.
The area to the right of a threshold T} is given by

- 1 C
N/l R
-/To N2 NT(N/2) P (%2)"‘ 1= 1I(u,p) (2.27)

where I(u, p) is Pearson’s incomplete v function [23],

1T -
_— / e w(N/Q_l)dw:I(T(QN) 1/2,N/2— 1)
L(N/2) Jo

and

1o
o22(p +1)1/2
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2.3.6 Rician Density (Non-Central Rayleigh)

The Rician density is a modified Rayleigh density which is obtained as the
envelope of two independent Gaussian random variables that have one or
two signal related components in one or both variables, respectively. This
corresponds to the density of the output of an envelope detector which is fed
by the signal compounent(s) embedded in Gaussian bandpass noise. S.0. Rice,
after which the density is named, is credited with the original work [9]. The
detector form is the same as in Figure 2.3. The density is expressed as

1 urn
furlu) = & o=t emt 2oty g (—9) (2.28)
o o
for positive u where
u= /(22 +y2)
and
T —1m)°+1
24 g2
202
Some typical density function examples are given in Figure 2.10.
The arca to the right of a given threshold Ty is

Py — /°° = e (wm?) /207, <@) du = Q <E E) (2.29)
. a

2
Ty O o o

1
[xy(x,y) = 553 OXD —

where Q( , ) is the Marcum @Q-function, which is tabulated in [24].

2.3.7 Non-Central Chi-Squared Density

The mechanism to create this density is the same as for the regular chi-
squared density. The difference comes from the embedded signal components
that shift the central density to a non-central one.

For a block diagram description, consult Figure 2.3(c) or 2.3(d) (removing
the square root operation). The density is created by the following operation,
where the x; are i.i.d. ~ N(0,0?).

N
vo= > (Aot )
i=1
1 yo\(NV-2)/4 At (vA)1/2 )
f\,r(?)) = 27 (X) CXD — < 20_2 )I((N/2)1) |: 0_2 (230)

for v > 0; with A = A2N. A typical set of PDFs is shown in Figure 2.11.
The arca to the right of a given threshold Ty is given by

1 se\(N-2)/4 At (vA)1/2
Po=[ —(5) xp— (S ) T(v/2)— d
D /To 252 \) exp < 902 > ((N/2)-1) { P v
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Figure 2.10: Rician PDF.

=Qu <\/Eo2, \/W) (2.31)

where @ pr(, ) is the generalized Marcum @-function [6,8,25] with M = N/2.
This type of density is typical for the output of a spectrum analyzer based on
the periodogram, that is, the magnitude squared of the Fourier transform of
signal embedded in Gaussian noise. In this particular case N is 2, therefore
M is 1. Higher order deusities are achieved when averaging incoherently (i.e.,
power averaging) the spectral bins of the periodogram.

The densitics described so far are the ones that most frequently occur
in communication (detection) related problems. In many problems, we deal
with sums or weighted sums of Gaussian variates. This, of course, retains the
Gaussian PDF, with possible changes in the mean, variance, and correlation
properties. For many of our detection problems, the underlying premise is
that of an additive Gaussian type perturbation (i.c., Gaussian noisc). A few
results are available for some problems where the Gaussian assumption cannot
be used. The results are not of a general nature.
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Figure 2.11: Non-central chi-squared PDF.

Some results are available using higher order moments or cumulants. Cu-
mulants of order three and higher are zero for true Gaussian variates, allowing
the estimation and identification of the degree of Gaussianity (i.e., how much
of the noise is Gaussian) [21]. Recently, several papers appearing in the IEEE
Signal Processing Transactions deal with these types of problems [10,11].

We note also that the types of densities described carlier in this chapter
are typical for those observed at the output of FFT-type processors which are
used to obtain spectral detection (i.e., power spectrum) or spatial detection
(i.e., intensity or power out of a beam former as a function of look direction).

2.4 SUMMARY

This chapter provides some system, signal, and statistical background. The
first section introduces the notion of vector spaces. Section 2.2 discusses some
aspects of system theory in terms of correlation functions and power spec-
tral densitics. Scction 2.3 introduces the transformation of Gaussian random
variables. In particular, the random variables of interest in communications,
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detection theory, and signal processing are discussed. An effort is made to
show how these PDFs might be generated. Some of the appendices provide
more details and summarics of the basic probability propertics.

2.5 PROBLEMS

1. Computer Exercise

(a) Create uniform random variables u(n) for n = 1,---,12,000 (or
more) u ~ U(—0.5,0.5).

(b) Create Gaussian random variables by using the uniform random
variables, generated in i) above, g(n), for n = 1,---,1000. Make sure
that none of the random variables u(n) is used more than once.

g(m) = > u(i)

(¢) Create Rayleigh random variables r(n), for n = 1,---,500 by using
i.i.d. Gaussian random variables (r.v.s) having a zcro mean and a vari-
ance of 4. One way to do this is to scale the random variables obtained
in step (b), or to use the Gaussian noise generator (randn in MATLAB)
directly. Make sure that none of the random variables g(n) is used more
than once.

r(n) =g(@)?*+g(j)? i#J

(d) Create Rician random variables by using two jointly Gaussian inde-
pendent r.v. one with mean zero, one with mean 2, variance = 4. For
w(n), for n =1,---,500. Make sure that none of the random variables
g(n) is used more than once.

win) = VIR F 90 i
(e) Create chi-squared random variables (with 2 degrees of freedom)
using the same parameters for the mother densities as in part (c¢). Note,
vou arc allowed to square the variables generated by problem (¢), but

say why this is proper. Obtain 500 random variables.

(f) Create non-central chi-squared random variables (with 2 degrees
of freedom) using the same parameters for the mother densities as in
problem (d). Obtain 500 random variables.

(g) For each one of the six different random variables, do the following:

(i) Plot the histogram.
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(ii) Plot the theoretical density function.

)
(iil)
)
)

(iv
(v) Comment on your results.

Compute the first sample moment and the theoretical mean.

Compute the sample variance and theoretical variance.

The following notation is used: given two independent identically dis-
tributed Gaussian random variables, say = and y, with 2 ~ N(0,0?)
and y ~ N(0,0?)

1 xr—imx)?

v~ Nimx,0®) = fx(@) = —— exp ! 202‘\;)

» 1 x —my)?

1y~ N(my,(fz) = fy(y) = Voro? b ( 202 )
o -

2. Find f(z), where z is defined as

z = Va?+y?
1 (22 +9?)
fA\’Y (T- ,7/) - (27_(_0_2) CXpP (20_2)

where 2 and y are jointly Gaussian, with x ~ N(0,02) and y ~ N(0,02).

3. Let t be the ratio of the two i.i.d. Gaussian random variables (as defined
in problem 2 above), so t = z/y. Find f(1).

4. Let w = arctan (f) = arctan (z/y). Find f(w), where z and y are jointly
Gaussian random variables (as defined in problem 2 above).

. Let e be the sum of 2 1.i.d. squared jointly Gaussian random variables
as defined in problem 2, for i = 1,2, 2; ~ N(0,0?). Find f(e), where

o

_ .2 2
e=u1x] + x5

6. Let v be /22 +92; where z and y are jointly Gaussian and z ~
N(m,0?%) and y ~ N(0,02). Find f(v).
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Chapter 3

Introduction to Signal
Processing

3.1 INTRODUCTION

This chapter provides an introduction to some of the basic aspects of digi-
tal signal processing (DSP). It can also be used for a quick review of some
of the essential ideas. The basic mathematical background required is an
exposure to summations, Z-transforms, and discrete-time Fourier transforms
(DTFTs). After finishing the first part of this chapter, the reader will have
been exposed to the concepts of convolution, filtering, correlation, and the
power spectral density, and will have gained some appreciation for the DTFT,
the discrete Fourier transform (DFT), and its fast cousin the fast Fourier
transform (FFT). The FFT is the main tool in many signal processing appli-
cations and will be examined from several points of view. The sccond part of
the chapter addresses the wavelet transform (WT) at a very elementary level,
allowing the reader to become familiar with some of the important attributes
of the WT, at least as far as their application is concerned.

3.2 DATA STRUCTURE AND SAMPLING

We realize that once analog data (continuous time information) has been
sampled, a sequence of data points is obtained. Usually, the points are evenly
spaced in time and once agsumes that a sufficient number of bits is available so
that the amplitude of the data samples accurately models the amplitude of the
analog signal at the sampling times. We assume that the analog-to-digital
(A/D) conversion is properly accomplished, obeying the Nyquist sampling

37
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x (O x (nT) x (n)
Analog =  AD » Re-label |———
Data
o<t O<n

Figure 3.1: Sequence generation.

theorem [1]. The data sequences can also be represented in vector form. A
typical data flow scenario is shown in Figure 3.1. For more information, the
reader is encouraged to consult [1,2,3].

Supposce that we have the sequence

{wo, 21,22, oN_1} = {«Ti}f\;:)l (3.1)

then we can also represent the sequence using the vector notation

XT = {'7"0"7"17"'7'71’1\7—1} (32)

If the intent is clear, we can write the sequence as
{{fo,[l?l,' t ny—l} - {{I'(’I’Z) = 0717' o >N o 1}

or in short hand notation as z(n) or xz, by dropping the curly brackets.
Given two cequal length sequences x, and w,, we can operate on them in the
following ways:

Product: zi=x; uy, fori=0,1,--- N —1
(point by point)

Sum: w; = x; +uy, fori=0,1,---,N—1
(point by point)
. * ‘ ‘

Convolution: Yp = Z T Up—i = x(N) (:onvu(n) (3.3)
2

N . ) *

Correlation: Cn = Z Ti Uign = x(n) - u(n)
(2

Inner product: ¢ =xTu, size (1 x 1), where x and y are of

(or Scalar product) dimension (N x 1)

Outer product: Q =xul, size (N x N), where x and y arc of

dimension (N x 1)
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3.3 DISCRETE-TIME TRANSFORMATIONS

The bilateral Z-transform of the sequence z(n) is defined by

oo

Z{x(n)}=X(z)= > a(n)z" (3.4)

n=—oo

where z = re’¥, w € [—m, 7], and r is a positive (real) number. We note
that in circuit and system analysis, when going to the transform domain,
convolution and correlation operations are reduced to product operations. Of
course, onc has to perform both the forward and inverse transformations.
The inverse is given by

w(n) = 72 M {X(z =57 %X 2"l dz (3.5)

Most engincers perform the inverse, preferably in terms of standard expres-
sions, via partial fraction expansion. These expressions are casily inverted
using tables as can be found in [1,3]. Note that in the bi-linear transforma-
tion the time variable n ranges over all time indexes. This admits the exis-
tence of a non-causal sequence. In circuit analysis, the variable n will take
on only non-negative values (the exceptions are the possible non-zero initial
conditions). For bilateral quantitics, such as correlation functions, probabil-
ity density functions, power spectral demnsities, and of course spatial variables
(i.e., position in z, y, z) one needs to resort to the two-sided transform as
defined in (3.4).
The DTFET pair is defined by the forward transform

oo

X(el¥) = Z x(n) e 7<n (3.6)

n=—oo

which is just the Z-transform evaluated on the unit circle (i.e., z = rexp™,
with » = 1), while the inverse transform is given by

1 /"
x(n) = e

If the data scts are finite in duration {z(n): n=20,---,N — 1} then the
DTFT pair becomes the discrete Fourier transform (DFT) pair given by

X (&%) ¥ dw

N-1
= Z x(n) eI m/N)kn (3.7)
n=0
and
1 =l _
z(n) = ﬁ X (k) 9 @m/N)kn
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where (27 /N)k corresponds to the k" frequency component also expressed
as wg. The DFT is the discrete time analog of the continuous time Fourier
series expansion, that is X (k) is the projection of z(n) onto a complex sinusoid
which has cxactly & periods over N scquential points in time. To simplify
the mathematical expressions we sometimes replace exp (—j2wk/N) with the
symbol WE. The DFT and its inverse can then be written as

2

3
Il
=}

and
N

)= = 3 X(k) Wit

=

The normalization by 1/N can be applied in either domain or can be split
(i.c., 1/v/N) and be applied in both domains.

There is a brute foree way to cvaluate the DFT (3.7) and a fast way.
Traditionally, if N is a power of 2 (i.c., N = 2¥, for v = positive integer)
then (3.7) is computed using the FFT. Relative to the brute force way, which
requires N2 multiplications when manipulating N input data points, the FFT
is faster (i.e., the typical cost is N/2 logy N multiplications), while preserving
exactly the same accuracy. There are many other ways to implement the
FFT operation (i.c., the Winograd transform, number theoretic transform,

ete.) [4].

3.4 FILTERING

Onc of the main signal conditioning and signal processing operations per-
formed is the filtering operation. Roughly speaking, given a data set with
some particular characteristics, we want to isolate (block or pass) certain
types of characteristics. Usually we deal with a spectral discussion, in which
we talk about a spectral region (frequency region(s)) that we want to shape,
that is, annihilate or pass. A simple example relates to the radio spectrum,
say the FM portion, in where we want to pass, that is to listen to, onc
given FM radio station. Typically, we tune a filter (baundpass) to the spec-
tral region (say for example, 100.7 MHz) and pass signals that exist in the
neighborhood of the carrier frequency (100.7 MHz). For commercial FM sta-
tions, the neighborhood is £75 KHz (i.c., bandwidth) and the carrier spacing
(i.c., potentially, the minimum spectral distance to another FM station) is
200 KHz.

Typical filter functions are of a low pass, high pass, bandpass, or bandstop
nature. As the name implies, low frequency, high frequency, and intermediate
frequency components are passed or intermediate frequency components are
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x(n) x(n—1) x(n—-2) x(n—N+1)

Figure 3.2: N-sized FIR filter.

removed. In some applications, the filter frequency response in the pass band
region is functionally related to the signal and noise power spectral densities
(i.c., the matched filter).

3.5 FINITE IMPULSE RESPONSE FILTER

Finite impulse response (FIR) filters have an impulse response that will be
zero after some finite time, that is, A(n) = 0, for n > N. A typical N-sized
FIR filter is shown in Figure 3.2.

An inspection of the diagram reveals that at time n, the output y(n) is
given by the convolutional sum

y(n) = zn)h(0)+zn—-1)h(1)+ ---+x(n— N+ 1N - 1)
N—1
= x(n —1i) h(i) (3.8)
i=0
If we inject a Kronecker-delta function, say z(n) = 6(n), into the relaxed

network, (i.e., the initial conditions are zero), then the output will be
{h(0)7 h(1)7 h(2) T h(N - 1)7 0,0,0,-- } - {h(0)> h(1)7 h(2) T h(N - 1)}

This demonstrates why the name FIR filter is attached to the structure of
Figure 3.2 and also illustrates the convolutional propertics (i.c., (3.8) is the
discrete time convolution) of the input and the impulse response. We note
there is no feedback, hence the filter will always be stable. An equivalent way
of noting this is to observe that the transfer function of the filter has no poles
(other than at the origin), but has zeros ouly or that a bounded input results
in a bounded output (bounded input/bounded output (BIBO) stability).

Classical analog filter theory has memory (feedback) giving rise to poles
in the transfer function. There are also digital filters of this form, i.c., IIR
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filters. IR (infinite impulse response) filters have an impulse response that
gocs on forever (L.e., h(n) = o™U(n), 0 < a < 1). For more background on
IR filters, the reader is encouraged to consult [13].

We can take the Fourier transform of (3.8)

Y(e!) = X(e’) H(e'™)
and obtain the output in the time domain via the inverse transform given by
y(n) = F=H{Y ()} (3.9)
If this is done using FFTs, we call the operation of (3.9)
yin) = FFT7(Y(k))
= FFTY{FFT{x(n)} FFT{h(n)}} (3.10)

the fast convolution. For long filters (i.c., N is large), it may be much more
economical to take the required forward and inverse transforms to obtain the
time domain (i.e., y(n)) data. Some cousiderations must be given to avoid
the wrap-around (modulus N, also called mod(N)) problem, which is caused
by the circular convolutions [1,3].

Example 3.1 Bozcar Averager

This building block is also called an integrate and dump filter. Figure 3.3
shows the averager in (a) block diagram and (b) FIR filter form, while (c)
depicts the frequency response.

By inspecting Figure 3.3(c), the impulse respouse is the sequence

N-times
N
{17 17 Tty 1}
Its frequency response is

N-—1 N
. i 1— e JwN

H(ew — 1 e dwn — i
(() ) 'r;) ¢ 1 —eJw

_ dw(N/2-1/2) SiI.l(u)N/Q) (3.11)
sin(w/2)

The ratio of the two sinusoidal functions is also known as the digital sinc
function. The magnitude squared frequency response becomes

‘2  sin?(wN/2)

‘H(e]“) N sinQ(w/Q)
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Figurc 3.3: Boxcar averager (integrate and dump filter): (a) block diagram, (b)
FIR filter form, and (c) magnitude of the frequency response.

which is plotted in Figure 3.3(c). It shows that the boxcar averager is a low
pass filter, since frequency components around w = 0 are passed with power
gain equal to N2, and frequency components away from w = 0 (i.c., DC) arc
attenuated. The attenuation tends to increase with frequency (i.c., the further
away from w = 0, the larger the attenuation). In terms of passband definition,
one could use the 3 dB points, the null-to-null distance, or the concept of
noise equivalent bandwidth. Of all possible low pass filter implementations,
the boxcar averager tends to be the worst one in terms of side lobe leakage
and roll off in the transition band.

3.6 THE FAST FOURIER TRANSFORM

The fast Fourier transform (FFT), which is just a fast implementation of the
DFT, as introduced in (3.7) has many desirable attributes and many interest-
ing and uscful interpretations. If we visualize two black boxes, one containing
the DFT and the other containing the FFT, and we evaluate the output of
each box at spectral locations 27k/N (rad) one cannot determine which box
(i.e., which algorithin) is respousible for the output under observation. The
responses are indistinguishable. One can associate the speed (or conversely,
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the slowness) of the Fourier transform algorithm (3.7) with the number of
multiples (complex valued). We sce that the DFET implementation requires
N complex valued (4N real valued) multiplies per frequency location (i.c.,
per bin). To obtain the transform for all frequencies (K = 0,1,---, N — 1),
N? complex valued multiplies are required. The FFT implementation (see
Ludeman [3] or Strumn and Kirk [1]) requires N/2 logy N complex valued mul-
tiplies. Suppose we have a data sequence of length NV = 1,024, then the DFT
version would require 10242 = 108 complex valued multiplics, while the FFT
requires only 512-10 = 5,120 complex valued multiplics. An increase in speed
by more than two orders without a loss in accuracy is obtained. The larger
the transform size, the larger the speed up will be relative to the time a DFT
implementation would require. Speedups in the order of 2 to 3 (i.e., 100 to
1,000) arc not unusual. This property has made the FFT the most popular
tool in spectral estimation, correlation, and many filtering operations.

Once could have used different basis functions in decomposing the data
sequence [4]. Any orthogonal expansion would do. Typical examples are
Legendre, Hermite, and the Laguerre polynomials. Also rectangular basis
functions (Walsh functions) could be used to obtain a decomposition with
just the use of additions (i.c., multiplication by plus or minus one amounts to
projecting the data onto the rectangular basis functions). The FFT, because
of its sinusoidal basis functions, is a natural for representation (decomposition,
synthesis, analysis) of data sequences. Many physical responses of interest can
be interpreted via a differential, or difference equation (DE). Solutions to a
sccond order DE typically lead to a sinusoidal solution. Sinusoids are also
cigenfunctions of lincar time invariant systems [1]. That is, once a complex
sinusoid (i.e., exp(—jwt)) is injected into a linear time invariant (LTT) (or
linear shift invariant (LST)) system, the output will be the complex sinusoid,
possibly changed in magnitude and most likely shifted in-phase. This also
applies to lincar combinations of complex sinusoids (i.c., sine and cosine) as
well as to lincar combinations of sinusoids (i.c., weighted sums of sines and
cosines). The statistical analysis of DFT/FFT type algorithms tends to be
very simple for white Gaussian noise. We, the human observers, usually prefer
to deal with sinusoidal signal interpretations since we can relate to sinusoidal
based representations more readily than to non-sinusoidal decompositions. In
the next seven subscctions, we will examine different interpretations of the
DFT/FFT. Some of the interpretations are described in [7].

3.6.1 FIR Filter with Complex Valued Weights
Interpretation

Figure 3.4 depicts the FIR filter interpretation of the DFT/FFT where

Wk 2 emi(2n/N)k
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x(N-1) x(N-2) x(N-3) x(0)

y(&) = y(k,N-1,)

Figurc 3.4: FIR filter interpretation.

We fixed the time index at n, but it should be obvious we could ask for the
output at time n+14, in which case all data samples in the delay line move “2”
places to the right (i.e., the youngest data sample would be z(n + i), while
the oldest data sample would be (7). Usually, data is processed in segments
(blocks) of size N, where N can be the length of a data secgment or a shorter
picce of it. One could also zero pad a shorter segment, say we use M data
points, where M < N, and append the data vector to size N using N — M
zeros. For more details, see Chapter 2, Section 2.3.5, and Chapter 9, Section
9.2. The actual data length may be much longer than the DFT/FFT size, i.e.,
real time processing, so one uses segments of the data in a sequential manner.
If the segments are contiguous (that is non-overlapped with no data point
being omitted), then the FIR filter output rate (at each spectral bin k) is
1/N times the input sample rate. In this sense, the FFT (DFT) corresponds
to a multi-rate filter (i.e., filter and decimate in time, see Section 3.9, Chapter
9, Section 9.8, and Appendix E [22].

3.6.2 Complex Demodulator Interpretation

If we look at (3.7), we can sce that it is the product of two sequences
followed by a summation device. Figure 3.5 presents this type of inter-
pretation. We note that e 77/N)kn ig periodic in N (i.e., modulus N),
hence we can look at it as the output of an oscillator (i.e., e~ 1@2m/N)kn
cos(2m/N)kn — jsin(2n/N)kn) where every k corresponds to a complex val-
ued sinusoidal signal that has exactly k periods over NV data points. If we
interpret the N data points as once period of a larger duration data segment,
then we see that this interpretation is that of the discrete time Fourier series
decomposition. The setup in Figure 3.5 is the same as in any conventional
heterodyne receiver, the difference is in the nature of the oscillator signal (a
complex valued sinusoid rather than a real valued sinusoid). The multiplica-
tion creates the sum and difference frequency terms, while the summer (a low
pass filter, sce Example 3.1) removes the high (i.c., sum) frequency terms.



46 Detection Theory: Applications and Digital Signal Processing

I+N-1
", > b V1.0 = y(h)
n=1I of sequence y(n)
starting at location /,
of length N

e~ i2n/N)kn

Figure 3.5: Complex demodulator interpretation.

cos (2n/N)kn

x(n)

sin (21t/N)kn

Figure 3.6: I-Q demodulator.

3.6.3 I-Q Demodulator (In-Phase Quadrature
Demodulator) Interpretation

If one plots the real and imaginary component sections of Figure 3.5 sepa-
rately, one obtains the form as shown in Figure 3.6. The top leg corresponds to
the in-phase term (I-term), while the bottom leg corresponds to the quadra-
turce term (@Q-term). So we sce the real and imaginary parts of the FFT
(DFT) correspond to the conventional (discrete time) I-Q demodulator. The
demodulators arc followed by decimators [22] since N data samples result in
one output sample per processing branch.

3.6.4 Correlator Interpretation

The expression given in (3.7) can also be sketched as shown in Figure 3.7.
Figure 3.7 is the classic correlator (cross-correlator) that evaluates the cross-
corrclation between the data and a (known or assumed reference) sinusoidal
function. The corrclator does not compute correlation values other than for
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x(n)

e 1@2n/N)kn

Figure 3.7: Correlator.

the zero lag, but it could casily be modified to do so. We also note that the
cross-correlation is just the inner product, which is the projection of the data
onto a set of orthogonal sinusoidal functions. This operation is also called a
scalar product.

3.6.5 Convolver Interpretation

In general, the output of a linear time invariant filter can be written as

n

y(n) =" (i) hin — i) (3.12)

1=0

Looking at (3.7), we sce if we let X (k) be the output of the filter at time
N — 1, denoted by

X(k) = X(k,N-1)=y({N-1)
N1
= Z x(n) eI (m/N)kn (3.13)
n=0

We can also write (3.12) as
Yy =3 (i) a(n i) (3.14)

If we let h(i) = eI (3m/NE(N=1=1) a3d p = N — 1, then (3.14) becomes

N-1
y(N—1) = > e CT/MNFN=I=) (N — 1 — ) (3.15)
=0

which cquals (3.7) by using a change of variables and reversing the upper and
lower limits of the summation. This interpretation is given in Figure 3.8.
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x(n)

—> h (n) — y (n)

Linear shift invariant (LSI) System

Figure 3.8: Convolver.

3.6.6 Matched Filter Interpretation

As will be shown in Chapter 6, the optimum detector for a known signal
embedded in white Gaussian noise is the matched filter, where the matched
filter response is the time reversed (i.e., mirrored) signal. We see that the
h(n) defined in Section 3.6.5 denotes a (complex valued) sinusoid, heuce the
FFT (DFT) is the optimal receiver (detector) for sinusoids embedded in white
Gaussian noise. As such, the FET/DFT constitutes a bank of matched filters
with frequencies (bins) located at spectral locations fsk/N, where k is the
bin index (0 < k < N — 1), N is the transform size, and f is the sampling
frequency.

3.6.7 Coordinate Transformation Interpretation

We can also use lincar algebra (vectors and matrices) to discuss the FET
operation. Let xT = [xg, 71, -+, 7n5 1]

1 1 1 1
1 e—i@n/N) e—i@T/NZ L —j2r/N)(N-1)
wo |1 et e—i@r/NA L —j2r/N)2AN-1)
1 e—i@R/N(N-1)  —i@r/NN-12 .. o=i(2x/N)(N-1)(N-1)
with
then
X =Wx =FFT {z(n)} (3.16)
and 1
X = NW*X = FFT™ {X(k)} (3.17)

Equation (3.16) is in the form of any standard matrix cquation y = Ax,
where y is a lincar transformation of x [6,3].
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3.7 FAST CORRELATION

Correlating two data sequences provides a measure of likeness between the
two scquences. If one normalizes the correlation outputs, the values take on
a value between minus and plus one. The normalization is a division of the
squarc root by the product of the energy of the two sequences involved. A
minus one and plus one correspond to —100 percent and +100 percent, respec-
tively. When the normalized cross-correlation value is +1, the two sequences
arc identical. Conversely, a valuce of —1 indicates that the two scquences are
identical in a magnitude sense, but differ in-phase by 180°. A correlation of
a valuc of zero indicates that the two scquences are uncorrclated.  Assum-
ing that the sequences are of equal length, a typical correlation expression,
disregarding the normalization, is given by

Rxy(£)=>_ x(n) y(n+14) (3.18)

n

The data sequences, as used in (3.18), do not have to be of identical length. To
get meaningful results when using a numerical evaluation routine, we would
zero pad cach sequence to be of length equal to or larger than the sum of
length (z) plus length (y) — 1. Some software (i.c., XCORR in MATLAB)
automatically takes care of this requirement. This operation also corresponds
to the projection of one of the vectors onto the second vector. We can also
obtain this result by

Rxy(0) =FFT 1 {X(k) Y*(k)} (3.19)
where
X(k) = FFT {z(n)}
Y(k) = FFT {y(n)}

and we assume that the lengths of the data sequences are a power of two, or
that they have been zero padded to meet this criterion. The symbol * denotes
conjugation. The procedure given in (3.19) is called the fast correlation.
Other than the suggested normalization (i.c., none), normalization can be
used to obtain other estimates of the cross-correlation function such as biased
or un-biased estimates. When using the FFT-based approach, one also needs
to properly zero pad the x(n) and y(n) sequences to ensure that no fold over
takes place or will cause difliculties. For example, correlating two sequences
of length N results in a correlation function of length 2V — 1. Hence, both
scquences should be zero extended at least to a length of 2V — 1. This is in
addition to the zero padding required by the FFT operations.
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3.8 PERIODOGRAM (POWER SPECTRAL
DENSITY ESTIMATE)

A very common way to obtain an estimate of the power spectral density of
the sequence z(n) is via the following expression

2(n) w(n) e=Im/N)kn (3.20)

where N is the data length (power of two) and w(n) is a data window (i.c.,
Hamming, Gaussian, cte. [9]). This estimate of the power spectral density
is called the periodogram. If one uses no window, then one actually uses a
rectangular window of size N. If a data segment is not equal in length to a
power of two (or is chosen not to be), the segment is zero padded to a power
of two (possibly the next power of two, but maybe even to a larger power of
two). Zero padding produces an interpolated spectrum. The explicit use of
a window will broaden the main lobe response (i.c., the width of the spectral
peak of a corresponding sinusoid). The rectangular window (i.e., no explicit
window) has the most narrow spectral main lobe response, but also has the
poorest side lobe (i.c., leakage) response.

For a cross-spectral density expression, disregarding windows, (3.20) is
modified to

N-1 N-1 *
ny<k>=%<z x(n) e—f“ﬂ/m'm) (Z y(n) e-f@”/N)’m) (3.21)

n=0 n=0

More application-oriented material can be found in Chapter 9. There arc
many other ways to obtain a spectral estimate. Some of these are auto-
regresive (AR), moving average (MA), and auto-regressive moving average
(ARMA) modeling, subspace methods, and Prouy’s and Capon’s method [10-
14]. Extensions that deal with time varying scenarios, such as the spectrogram
and the Wigner-Ville distribution, cte., arc introduced in Chapter 9.

3.9 WAVELETS

3.9.1 Introduction

Wavelets have caught the attention of the signal processing and communica-
tions community on a large scale. Ingrid Daubechies [15,16] advocated the use
of basis functions having a short support (duration). The effective length of
the support is different at different frequencies (scales). Her research followed
carlicr work by Morlet, Grossmann, Meyer, Mallat, and others (for more de-
tail, the reader is encouraged to consult [17]). If the reader is interested in a
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DSP related discrete time wavelet reference, the books by Strang and Nguyen
[18] and Vetterli and Kovacevié [19] are recommended. We cannot do justice
to all the books and papers that relate to wavelets since we must limit our-
sclves to a few references. One of the problems with the wavelet literature is
that most authors claim to have a description that can be followed easily by
the typical engineer. Despite some very enticing book titles, this is just not
the case. We make an attempt to relate wavelet concepts to ideas engineers
arc alrcady exposed to and leave it up to the reader to go on to the references
(some of them are listed in here) to obtain a deeper understanding.

Wavelet processing is also known as multi-rate filtering, octave band pro-
cessing, constant Q-filtering, wavelet series expansion, multi-resolution signal
processing, and bandwidth proportional processing. One could follow the ref-
crences under cach one of these headings to get more information about these
and related topics. For the newcomer, there are many references (mainly re-
prints) available by doing an Internet scarch on the topics mentioned. The
wavelet community also maintains an informative e-mail based newsletter.
Details can be found at http://www.wavelet.org. Karlier copies of the
newsletter are archived, and casily made available when using an Internet
browser (i.c., Netscape Navigator, Internet Explorer, or similar).

We are interested in wavelets in the context of detection and also parame-
ter estimation. There are other groups and individuals that are interested in
wavelet based concepts to solve partial differential equations, compress data
(i.e., pictures, video, music, speech), or denoise data (i.e., remove unwanted
disturbances), just to mention a few. FEach one of these arcas has a large body
of reference material. We will develop the basic ideas of wavelet based pro-
cessing, first in a brute force way and then in terms of a fast version (similar
to the notion of classical DFT and FFT processing).

As far as the wavelet topic is concerned, we use FIR f{ilters (linear and time
invariant) that arc typically of short length and are followed by a decimation
(integer resampling) procedure. More often than not, the multipliers of the
FIR filter are real valued.

3.9.2 Revisiting FIR Filters and the DFT/FFT

Let us look at a data sequence z(n), n > 0 and a network (filter) with impulse
respouse h(n) = sinwon, for 0 < n < N — 1, where wy = (27¢)/N and / is
some fixed integer.

The function h(n), if plotted, will go exactly through ¢ complete periods
over N data points. The frequency response H(e/%) is the Fourier transform
of h(n) denoted by F{h(n)}. This is the same scenario as in Figure 3.3(c),
except that the filter has its center frequency at locations plus and minus
¢ and, of course, the spectral height (i.e., energy deunsity) will be scaled.
Let us idealize the response by assuming it rolls off very fast at the edges
of the bandpass and that the side lobes are negligible (i.c., close to zero).
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Figurc 3.9: Bandpass (ideal) filter.

Then the spectral response is approximated as shown in Figure 3.9. We note

that the filter response is given by ‘H (ej'“’)‘Q, where the center frequency
is w = +(2nf)/N. If we evaluated the output (of this filter) at its center
frequency, we can refer to ‘H(ej@“))/N) ‘2 or |H(¢)]?, with the understanding
that the integer £ corresponds to the spectral location (27¢)/N or wy.

The FFT (see Section 3.6.1) is a collection of FIR bandpass filters, with
complex valued impulse responses, whose outputs are decimated in time.
Each filter has, when we idealize the performance, a response just as the
filter discussed in Sections 3.6.5 and 3.6.6. The result is a filter bank, with
the filter’s center frequencies positioned at locations ¢ (¢ = 0,1,---, N — 1).
The zero location has no complementary spectral term (i.e., £ zero is zero)
and has the same spectral width as any of the one-sided bandpass filters. The
magnitude squared response is the same at all spectral locations except at
locations £ = 0 and £ = N/2. Since all locations (time and frequency) arc
cyclic (i.e., modulus (N)), spectral locations N — k correspound to negative
frequency locations (—k). For real valued input data, we expect Hermitian
syminetry in the amplitude spectrum, that is X (k) = X*(—k) = X*(N — k).
For complex valued input data there is no symmetry at all in the amplitude
spectrum.

If we segment the data, then every N data point segment provides a sin-
gle output point (one from every filter). Sliding the segment by one data
point along the data sequence again produces one data point from each filter
location making the output rate cqual the input rate. Of course, in a given
spectral bin the output data would be heavily correlated. If the segments
arc chosen to be non-overlapping and contiguous, then the output data rate
is 1/N times the data sampling rate. Different overlap factors between suc-
cessive transforms lead to different output data rates. For example, overlap
factors of 50 percent (2:1 overlap) and 75 percent (4:1 overlap) lead to output
rates of (fs2)/N and (fs4)/N, respectively. In this case, the DET/FFT is
a bank (combination) of bandpass filters followed by a decimation scheme
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(see Figure 3.10). Figure 3.10(b) attempts to show that the DFT/FFT is a
bandpass FIR filter bank followed by a decimator that throws away N — 1
output data points and keeps the NP output data point. If more segments
arc to be processed, then from cach filter one obtains one output data point
per segment. From Figure 3.10(a) and Section 3.6, it is clear that each filter
has the same bandwidth.

3.9.3 FIR Filters and Wavelet Transforms

Suppose that we let the bandwidth of each filter be proportional to its center
frequency and we resample the output at a rate governed by the bandwidth.
The filters (filters in a bank) are arranged such that the spectral region is con-
tiguously covered, having no holes and no redundant coverage. The majority
of wavelet filters are FIR filters having a real valued impulse response. We
can construct wavelets that do have a complex valued impulse response, but
we will only usce it to describe a poor man’s version of the wavelet transform.
To illustrate the discussion, we shall choose a small data size, say N = 64.
Figure 3.11(a) and (b) shows the desired arrangements for size N = 64.

If one were to execute one FFT of length 64, 64 spectral bin (filter) outputs
would be obtained, each one consisting of one data point. The number of data
points is preserved; we started with 64 time samples and we ended up with
64 (filtered) output points. A similar conclusion can be drawn from Figure
3.11. If we sum up the output data points (32 +16+8+4+2+ 141 =64)
we again preserve the number of data points. The scheme in Figure 3.11 has
been around for a long time and is known as proportional bandpass filtering,
octave filtering, and constant Q-filtering. € is the ratio of center frequency
to bandwidth. It is also called the quality factor in the clectronic circuit
literature. The circle symbol with the down-pointing arrow and integer I
represents the decimation operation (i.e., keep every I'" sample). Note, while
our example uses a data size of N = (4 it can be any arbitrary power of two.
The number of bandpass filters will always be logy N, i.e., log, 64 = 6, while
there is only one low pass filter.

We have established a wavelet transformer consisting of log, N (i.c., six)
bandpass filters and onc low pass filter. Let us use the example described in
Figure 3.11 to make some observations. The first one is that the number of
data points (i.e., a coordinate transformation) is preserved. Needless to say,
if we properly invert the seven available filter outputs, we will get back the
original data sequence. The filter band width becomes progressively smaller,
starting with the half-band filter (top leg in Figure 3.11(b)). It is cut in
half in each successive stage (i.e., progressing down the filter bank). Since
the bandpass filters reduce the bandwidth of their respective outputs, we can
resample (i.e., change the sampling rate as indicated). The first output (i.e.,
the top of Figure 3.11(b)), denoted by SC1, has an output sampling rate one
half of its input sampling rate. The second output, denoted by SC2, has an
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Figure 3.10: (a) Spectral regions of a bank of bandpass filters and (b) bandpass
filters followed by decimation.
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Figurc 3.11: (a) Spectral regions of a band of proportional bandpass filters (N =
64) and (b) six bandpass filters and one low pass filter followed by decimators.
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output sampling rate one fourth of the input sampling rate. The notation SC
refers to what is commonly called scales, with the widest spectral bandwidth
associated with scale 1. Rather than using a bin (bin numbers) as in the
DFT, we label the filter as scales, usually starting with the number one for the
highest frequency and increasing in count as the frequency location becomes
smaller. We note that some authors label the scales in the same direction as
the frequency (i.e., the filter output ou top of Figure 3.11(b) would be labeled
number 6). This enhances the presentation when using a vector space based
approach (i.c., a larger number corresponds to a larger vector space). The
scale outputs are also referred to as detail functions, while the lowpass output
is called the approximation. The brute force implementation of Figure 3.11(b)
is computationally very expensive. However, there is a cascaded version that
will speed up the operations which we will address in the next section (i.c.,
the fast wavelet transform). If we implement the scheme in Figure 3.11(b),
we could do it with a with a Fourier transform kernel, that is, use the DFT
as a filter to obtain the desired results. To obtain the lowpass output (one
data point) we sum over the whole data set as given by

LP(0) = Z x(n) (one output point)

To obtain the scale outputs, we sum up weighted data points where the
start, stop, and summation times depend on the scale. The scale outputs are
obtained as given by

63
SCG(U) - Z x(n) ei‘j(%(g/@/m)n (1 output point)

n=0

31

SC5(0) = Z w(n) e 9(2n(3/2)/60)n
n=0
(2 output points)

63

SC5(1) = Z () eI (2m(3/2)/60n

n=32
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15
SC4(0) = Z x(n) e—i(2m3/64)n
n=0

31
SC4(1) = Z 2(n) e9(2m3/64)n
n=16

(4 output data points)
47

SC4(2) = Z x(n) e—J(2m3/64)n
n=32

63
SCA(3) = Z w(n) e~3(2r3/64)n
n=48

If we use a compact notation, we can write the filter outputs as

(i+1)8—1
SC3(i) = Z z(n) e~ 7(2m6/64)n t=0,1,---,7 (8 output points)
n=i-8
(i+1)4—1
SC2(i) = Z x(n) e~I2m(12/64)n i=0,1,---,15 (16 output points)
n=i-4
and finally
(i+1)2—1
SC1(i) = Z x(n) e~72m(24/64n i=0,1,---,31 (32 output points)
n=i.2

where 4 corresponds to the segment number (also called tile number). That
is, scale 6 has only one segment, that is one output data point. Scale 5 has
two segments, that is, two output data points. Scale 4 has four segments,
that is, four output data points. Scale 3 has eight segments, that is, eight
output data points. Scale 2 and scale 1 have 16 and 32 scgments (i.c., data
output points), respectively.

This particular example was chosen, since we believe most readers can
relate to the Fourier transform in a natural way. We could have used any type
of FIR filter, as long as it can be construed to be the bandpass filters with
the desired paramecters.  Actually, most wavelet transforms use real valued
weights in their FIR filters. This reduces the computational burden relative
to the filters we have chosen to make the illustration. At his point, we rcalize
that the wavelet transform is just a collection of proportional bandwidth,
linear time invariant bandpass filters with a cleverly chosen bandwidth and
an optimal decimation of the output data rate. The spectral response of the
bandpass filters is typically not very good. This is a dircct consequence of
making these FIR filters relatively short in duration (i.c., few filter weights
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therefore few processing multiplies). In Sections 3.9.3 and 3.9.4 we assummed to
have a unit gain in the passband region. This is usually not true, rather than
that, the gain increases as the frequency bands step towards the DC region.
A white input noise process would tend to have the same power (energy) in
each detail sequence.

3.9.4 Mallat’s Algorithm

Just as in the case of the DFT, there is a clever way to speed up the compu-
tation of the wavelet transform. Again, we use Figure 3.11 to help with the
description. We note that extensions to any size N is straightforward (i.e.,
just add more bandpass filters, hence scales). We start with a bandpass and
low pass filter section that splits the spectral region into equal segments. Fig-
ure 3.12 shows the details of the algorithm, which is also known as Mallat’s
algorithmn [20,21]. All high pass (HP) filters are identical and all low pass
(LP) filters are identical. The number of filter weights is an even number.
The HP filter is just the LP filter spectrally relocated to the fold over fre-
quency. That i, the low pass filter transfer function is modulated to the fold
over frequency and the weights are time reversed (i.c., mirrored)

h,Hp(’l’l,) = (71)71' h,Lp(]\/f —1- TL)

forn=20,1,---, M — 1, given that the FIR filters have M weights. Typically,
the filters have very few weights which, for a given wavelet transform, do not
change in number nor in value. The number of weights is at least two and
maybe as high as 20 to 40. The larger the number of weights, the better the
filter’s spectral characteristics but the poorer its ability to localize a position
in time. There are counstraints on the filter weights if reconstruction (i.e., the
inverse wavelet transform) is desired [15-18]. For the purposes of this book,
good characteristics in the wavelet domain are desirable, while we are less
interested in using the inverse wavelet transform (TWT). In most cases, we
use a real valued impulse response for the filters, but we note that there are
sceveral wavelet candidates allowing complex valued weights. We want to also
check out the computational burden of the WT. From the previous discussion
it should be clear that one needs log, N stages, where each stage consists of
a bandpass and a low pass filter. Each filter at the start of the chain (tree)
processes N samples, using M real valued cocfficients in both the HP and LP
filters. The computational cost in the first stage is 2 M - N. As we proceed
to the next stage, we notice that the filter sizes stay the same but the number
of samples has been reduced to about N/2. Hence, the cost of multiplication
of the second stage is 2 - M - N/2. Adding up all the costs (multiplications)
for the whole tree, we get, in general

11 1 1
Cost wp =2MN ([1+-+—-F+=-+---+— 4MN
ost wr <+2+4+8+ +N><
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Figure 3.12: Mallat’s algorithm (fast wavelet transform).
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For our case we have
Cost, WT é 4M64 = 256 M

The general result is valid for any size of data sct, assuming it is inputed
in segments of size as a power of two. If we compare the multiplication
processing cost of the FFT versus the fast WT, we see that for the FFT

logy N
2

Cost ppr = < ) N (FFT, complex valued multiplications)

= (2logy N)N (FFT, real valued multiplications)
where N = FFT size = data size, while for the fast wavelet transform (WT)
Cost = (AM)N (WT, real valued multiplications)

where M is filter size, N = data size. For small M (the smallest M possible
is two, corresponding to the Haar wavelet, which is also called Daubechies of
order 2) and large N, the WT can easily outperform the FFT. We will get
more exposure to the WT in Chapter 9 and in Appendix E.

3.10 SUMMARY

This chapter introduces discrete time signals and typical processing tools.
In particular, linear data processing is examined. FIR filtering is addressed
in Scction 3.5. The Fourier transform (DFT/FFT) are discussed in detail in
Section 3.6, providing different useful interpretations of this processing opera-
tion. Scctions 3.7 and 3.8 address fast correlation and the fast power spectral
density estimation techniques. The final section provides a layman’s intro-
duction to wavelet processing and contrast the Fourier and W'T processing
methods.
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Chapter 4

Hypothesis Testing

4.1 INTRODUCTION

Hypothesis testing, as presented in this chapter, deals with a finite number
of samples. The samples arc also called data or obscrvations. The data
is used to decide which hypothesis, that is, which signal or symbol is true
(i.e., which one is present) and heuce was transmitted. Throughout Sections
4.1 4.8 we assume that all parameters are known. That is, we know where
and when to look for the signals. In the first seven sections, the binary
casc is addressed, that is, only onc of two signal conditions can be true.
This is typical in radar/sonar detection and binary digital communication
problems. Section 4.8 addresses multiple hypothesis testing, while Section
4.9 deals with composite hypothesis testing. Composite hypothesis testing
allows us to deal with situations when some uncertainty of the parameters
is involved. Section 4.10 addresses receiver operating characteristics (ROC)
curves and performance descriptions.

The problems in this chapter can be separated into two distinct types.
The first type of problem addresses testing for the presence of one of two
distinct signals which arc obscured by additive noise. The solution provides
an answer to the question of which signal is immersed in the additive noise.

The sccond type of problem addresses the testing for the presence of one
of two distinct signals, where each signal has a unique statistical description
(i.e., its own PDF). The solution provides an answer to the question of which
probability density function governs the observed data or equivalently which
signal is present.

Problems in this chapter arc not limited to Gaussian type probability
density functions. In both types of problemus, the statistical part (the additive
noise or the original population deusity) is allowed to be governed by awny
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probability law. Any type of probability density function is allowed. In
most problems, we want to detect the presence or absence of a signal with
a certain measurce of reliability. Of course, usually detection and estimation
arc performed when additive noise is present. If it was not for the noise
disturbance, then it would be no problem to decipher the message symbol
(ves-no, zero-one, etc.). One would simply need to decide which one of the
two hypotheses, Hy or Hy is true (i.e., which signal is present) by just reading
it off the data.

In all cases, a detection scheme in terms of the simplest function or func-
tional of the observation (i.e., the received data) is attempted. This leads in
many cases to what is called a sufficient statistic, which contains all the infor-
mation as far as the problem of interest is concerned but is numerically and
analytically casicr to deal with than the original variable or variables. Reduc-
tion to a simple form of the observation also ensures that the computational
cffort to obtain the detection variable is minimal.

Initially, the Bayes’ detector is derived and then its structure is used as
the basic building block to motivate other detection schemes. These other
detection schemes are based on the maximum a priori (MAP), the maxi-
mum likelihood (ML), the minimum probability of crror, the Min-Max, or
the Neyman-Pearson criterion.  Sometimes the phrases: criterion, strategy,
philosophy, technique, method, algorithm, detector, or receiver are used in-
terchangeably. These detectors are also appropriate if each hypothesis (i.e.,
signal) is governed by a different probability density function. In these cases,
one establishes (decides) which generating PDF (event, hypothesis) produces
the observation (data).

Before the basic detector structure is derived, the concept of the “a poste-
riori probability” is examined. Suppose two different events are possible, such
as a binary “one” or “zero” (i.e., target present or not). The letter i (i = 0,1)
is used to indicate which hypothesis (event) is true. The probability of the
event “4” (i.c., hypothesis H;), given the observation y is described by the “a
posteriori probability” Pr{H;|y}. The “a priori probability” of the cvent “”
(i.e., probability of hypothesis H;) is given by Pr{H;}. The situation is best
illustrated using the general signal flow diagramn of Figure 4.1.

Figure 4.1 depicts the source (generating two possible symbols), two crror-
free and two error transmission paths, and the receiver (i.e., the decision cl-
ement). The path accounts for the channel or medium used to convey the
message from the transmitter to the receiver. A binary “one” (1) or a bi-
nary “zero” (0) is transmitted with probability P or Py, respectively. These
probabilities are “a priori probabilities,” known prior to transmitting either
onc of the symbols. The term “transition probability” is used to denote
Pr{obscrved data(symbol)|actual symbol transmitted}. The quantity of in-
terest is the probability Pr{symbol transmitted|observed data}.
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Hypothesis Observation
(transmit) (receive)
Pr {OR|0T}
Pr{0}=P, O > 0
Pr {OR|1T}
Pr {1R/0T}
Pr(1)=P, 1 > 1
Pr{1R|IT}
Figure 4.1: Binary transmission channel.
Using Bayes’ rule, this is casily obtained as
Pr[y|H;]
Pr|H;|ly]| = ————Pr|H; 4.1
(1Y) = T P (1)

where y is given by y = (y1,v2,--+,yn)?T, the observation vector.

Example 4.1 Binary transmission. The probability of transmitting a “zero”
(0) is 0.7. This makes Pr{onc transmitted} equal to 0.3. The probability of
receiving a zero, given that a zero was transmitted, is 0.8 and the probability
of receiving a one, given that a one was transmitted, is also 0.8. The error
probabilities are therefore 0.2 for each one of the two possible errors. That
is the probability of receiving a one, given that a zero was transmitted, is the
same as the probability of receiving a zero, given that a one was transmitted.
This type of transmission channel is also called a symmetric channel. The
signal flow diagram is given in Figure 4.2.

Pr{OR} = Pr{OR1T}Pr{1T} + Pr{OR|0T} Pr{0T}
= 02x0.3+0.8x0.7=0.62

Pr{1R} = Pr{1R|0T}Pr{0T}+ Pr{1R1T}Pr{1T}
= 02x07+08x03=0.144+0.24=0.38
Pr{1T1R} = Pr{1RT}Pr{1T}/Pr{1RR}
= 0.8 x0.3/0.38 =0.632
Pr{OT0R} = Pr{OR|0T}Pr{0T}/Pr{OR}

= 0.8 x0.7/0.62 = 0.903
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Transmitter Receiver
hypothesis observation
Pr{07}=07 0 0
Pr(17)=0.3 1 > 1
0.8
Figure 4.2: Signal flow diagram for Example 4.1.
Start
Transmitter
Receiver
Figure 4.3: Trellis representation.
Note:
Pr{1T,1R} = Pr{1T|1R}Pr{lR} = 0.632 x 0.38 =0.24
Pr{0T,0R} = Pr{0T|0R}Pr{OR} = 0.903 x 0.62 = 0.56

Note: Another way of obtaining the results is by using a trellis representation
as shown in Figure 4.8. For example, the probabilily of receiving a one is
Pr{lR} = 0.2 x 0.7 + 0.8 x 0.3 and of course as before, we can compute
Pr{1T|1R} = Pr{1R|1T} Pr{1T}/Pr{1R} = 0.8 - 0.3/0.38 = 0.632.

Usually, one needs to evaluate how well a detection scheme (detector)
works. In the binary detection situation, four probabilitics arc of interest.
There are two proper and two improper detections. The proper detection of
the “one” hypothesis is denoted by Pp. The two possible errors are denoted
by Pra and Py. Pry corresponds to the detection of the “one” event, given
that the “zero” event is true and Pp; corresponds to detecting the “zero”
event, given that the “one” event is true. The sum of Pp and Pp; must
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density of r.v.

A
Pr(D|H) =P, Pr(D\|Hp) = Pp,
| AW

Pr(D\|H,) =P,
PH(DyH,) (Di|H) = Py,

value of r.v.

-

jfe——r——>fa— R ———>

Figure 4.4: Probabilities of binary detection.

equal 1. In the statistical literature, Pra, Py, and Pp are also denoted by
the error of the first kind, error of the second kind and power of the test,
respectively. To illustrate these definitions, we assume that we have a single
obscrvation y which has likclihood functions fo(y) and fi(y) when events 0
and 1, respectively are true (see Figure 4.4). Suppose the observation y is
directly used as a detection statistic and a threshold T} is established at the
crossover point of the two likelihood functions. The area to the right of Ty is
the decision region Ry (i.e., decide on D;), while the area to the left of Tp is
the decision region Ry (i.c., decide on Dg). Pra is the arca under fo(y) in
the region Ry. P is the arca under fo(y) in the region Ry and Pp (power of
the test) is the arca under f1(y) in region Ry. The arca under fo(y) in region
Ry denoted by Pry4 is also known as the size of the test. The derivation of
the detectors is not unique to this book; one can find similar expressions and
additional examples in references [6 8.

4.2 BAYES’ DETECTION

Given the observation (data) y(t),we assume that one binary signal or symbol
is transmitted during the interval (0 < ¢ < T). To obtain a vector of length
N, the data segment y(t) has been properly converted from analog to discrete
time (A/D). So for a noisy reception we have y, = s, + 1y, forn=1,--- N.
The labeling, i.e., the first value of the count variable *n” can be arbitrarily
set to zero or one. A vector type representation usually prefers one as the
first index, while FF'T type processing prefers zero as the first index. The
sampling (i.c., A/D conversion), of course, is done in a way that will not
introduce errors (i.c., the Nyquist criterion is not violated and the amplitude
discretization does not create errors). We denote the sequence by the vector
y = (y1,¥2, -, yn)7T, the prior probability Pr{H;} by P, and the likelihood
function by fyu, (¥|H:) = fi(y) = density of y under the “th? hypothesis,
for ¢ = 0,1. The sum of the P; must cqual one.



68 Detection Theory: Applications and Digital Signal Processing

The possible outcomes, accounting for the true symbol that is transmitted,
in a binary detection experiment are
(a) Choose Hy; Hp is true (correct decision)
(b
(¢
(d

) (

) Choose Hy; Hy is true (mistake)

) Choose Hy; H; is true (correct decision)

) Choose Hy; Hj is true (mistake)

Ouly (a) and (c¢) are correct decisions, while (b) and (d) are errors. Let Cj;
be the cost associated with choosing hypothesis “/” when actually hypothesis

“97 is true. So the costs for our problem become

(a) Coo (choose 0, 0 is true
(b
(¢

(d) Co1 (choose 0, 1 is true

10 (choose 1, 0 is true

11 (choose 1, 1 is true

) Coo ( )
) Co ( )
) Cu ( )
) Cou ( )

The average (i.e., expected) value of the cost function (also called the risk
or the penalty function) will be computed. The average cost is a weighted
sum of cost terms C;;. The weights are the probabilitics corresponding to the
events, designated by the indices of the cost terms. This average cost C must
be minimized. Hence, the average cost is defined as

C = CpoPr(choose 0,0 is true)
+C10 Pr (choose 1,0 is truc)
+C11 Pr(choose 1,1 is truc)
+Co1 Pr (choose 0,1 is true)
Using Bayes’ rule for probabilities, Pr(A, B) = Pr{A|B} Pr{B}, the average
cost can be written as
C = (oo Po Pr(choosc 0]0 is true)
+Cho Py Pr(choose 110 is truc)
+Ch1 Py Pr(choose 11 is true)
+Co1 P; Pr(choose 0]1 is truc)

In the radar/sonar problem, the second probability term represents the prob-
ability of false alarm (Ppy4), the third probability term represents the prob-
ability of detection (Pp), while the fourth probability term represeuts the
probability of a miss (Py). The first probabilistic term (i.c., 1 — Pgrga), is
sometimes called the probability of proper dismissal.
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But these conditional probabilities are conditional demnsities integrated
over the appropriate decision region. These decision regions are denoted by
Ry and I?y. These are the regions in which one decides that Hg or Hy is true.
We note that some authors like to use the symbols Dy and D1 to indicate
the decision corresponding to these two regions (see Figure 4.4). The average
cost can be expressed as

C = Cyp P Jo(y)dy
J R,
+Cho Po fo(y)dy
JR,
+Cu P [ fily)dy (4.2)
JR,

+Co1 Py f1(y)dy
J Ro

Note, for an N-dimensional observation space, the integrals are of dimen-
sion N (i.e., N-fold). Equation (4.2) can be expressed in terms of one single
region of integration, say Ro. This eventually allows work with one unknown,
that is a single region. One makes the observation that the cost of a bad de-
cision is always larger than the cost of a good decision and that all costs arc
by definition non-negative quantities. The observation space R is the direct
sum, R = Ry @© Rp, where Ry N Ry = ¢ (the empty set). This implies that
Ry = R — R; and allows the average cost to be expressed as

C = Cop Iy Jo(y)dy
JRo

+Cho Po / foly)dy

J R—Rg

+C11 P / f1(y)dy (4.3)

JR—Re
+Co1 P N(y)dy
B RO

where the integrals are of the same dimension as the dimension of the vector
y. The conditional densities can be integrated over the total probability
region IR resulting in

[siray =15 ori-on
JR
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where the integrals are of the same dimension as the dimension of the vector
y. The equation for the average cost reduces to

C - Cob | fo(y)dy
JR,
+Cho Po <1 _ fo(y) dY)
JRo
+C Py <1 -/ 1) dy) (4.4)
JRo

+Co1 P4 f1(y)dy
B RO

Equation (4.4) can be rewritten as

fixed cost

e e '
C=CioPo +Cii P+ / [P1(Co1 — C11) 1 (y) — Po(Cro — Coo) fo (¥)] dy
JRo

variable cost to be optimized

(4.5)
Every individual term in (4.5) is non-negative with the first two terms con-
stituting a given fixed positive cost. The optimal strategy to minimize the
overall (average) cost is to sclect Rg to make the contribution from the in-
tegral minimal, or if possible, negative. This is accomplished by assigning y
to Ro (hence, say hypothesis Hy is true) when the negative term in the inte-
gral is dominant, reducing the fixed cost. Conversely, if the first term in the
integrand is dominant, y is assigned to belong to region Ry (say hypothesis
H; is true); hence, no additional cost is added to the fixed cost. The decision
criterion becomes

Hy
Py [Cor — Cu1] f1(y) i Po [Cro — Coo] foly)
Hy
Or in morce conventional form, the Bayes’ formulation becomes

Hy
fily) > Po [Cio— Cool

foly) < Pi [Cor —Chi]
Hy

(Bayes’ detector) (4.6)

Note all prior probabilities and all terms within the square brackets are posi-
tive, hence the rearrangement across the inequalities is simple. The quantity
on the left-hand side is called the likelihood ratio (LR) and is denoted by
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A (y), while the right-hand quantity is denoted by A, a positive scalar. So we
can write

Aly) A (4.7

where

_ Py (Cro — Coo)
P (Co1 — Cn1)

Equation (4.7) is interpreted as follows: If A (y) > A, decide on Hy, conversely
if A(y) < A, decide on Hp. In the uunlikely event that there is an equality
(i.e., the left-hand side of (4.7) equals the right-hand side) then one arbitrarily
can assign any hypothesis or let nature decide by flipping an unbiased coin
and assign the decision according to the coin toss. Note both sides of the
incquality arc non-negative; hence, if one takes the logarithm of both sides

A

(i.c., monotonic function), the inequality is preserved. The natural logarithm
of the likelihood ratio (LR) is denoted by LLR.

lnA(y) In A (4.8)

Example 4.2 Under Hy, a constant positive voltage, say “m” wvolts, is trans-
mitted over a wire. Under Hy, nothing (i.e., 0 volt) is transmitted. N samples
are used in making a decision. Additive Gaussian noise, n, ~ N(0,02), i.i.d.,
is introduced by the channel (see Figure 4.5 for a typical likelihood function
plot when N =1)

Hoil/n:nn; forn:l’...’N
Hy:yp=m+n, ; forn=1,---,N

The joint PDF of the noise is given by

1 N n2
In(n) = chp—; 20”2

Looking at y,, we realize that it is the sum of the random variable n, and
the deterministic quantity m, hence y, has a Gaussian distribution. All that
we need to find is the mean and variance of y, to have a complete statistical
description for this random variable. The mean of y, is given by

Ey,=E(m +n,)=m
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Jo@ 5@

Figure 4.5: Likelihood functions of Example 4.2.

The variance is given by

02 = E(yn — Eyn)* = E(m + ny, —m)? = En,* = 0?

Yn

Hence, the individual PDFs for the n'" sample given Hy or Hy are true, are
given by

. 1 (yn — mn)?
filyn) = Zro?) oxXp —=———
1 Y2
fO(?/’n) (27[_0_2)1/2 ’Xp_20_2

_ (yn —m)*
fl(y) - E[ 271_0_2 1/2 XP — 20_2
N 2
_ (Yn)*
fo(y) - E[ 271_0_2 1/2 CXpP — 20_2

The likelihood ratio test (LRT), becomes

ﬂ ! exp — ! (2 m)*
L 27_[_0_2 g p 2 2 /TI
Aly) = v ;
2
CXp — =17
nl;[l V2ra? 202
1 X
OXp 5= Z(yn m)
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Hy
1 >
= oxp ~552 Zl (—Q'rn,yn + m?) < A
n= HO
Toking the natural logarithm leads to
o i
~557 <Z [—2my,] + Nm2> - In A
n=1 Ho
or
N 4
2
> g N
z = nzlyn - <E In A+ ?m)
= H,
The optimal receiver performs a linear operation on the data (i.e., an FIR

filter operation using unit weights). Figure 4.5 shows the likelihood functions
for the variable z. If we use the familiar sample mean, we obtain

Hy
1 & > o2 m
) = — n —IlnA 4 —
" anly' < <Nm nAT 2>
= H,

Note, both z and w are a one-dimensional test statistic (i.e., the sum of the
samples or the sample mean versus a simple threshold). These new random
variables are also called sufficient statistics. If the voltage m is negative (i.e.,
m < 0), then the inequalities in the last equation must be reversed.

Example 4.3 Given N samples of y (i.e., y1,y2, -, yn ), which are Gaus-
sian, i.i.d., random variables with zero mean where the variance conveys the
message. We want to detect which one of two messages is transmitted.

Under Hy : 3, has variance o3 ; forn=1,2,---,N
Under Hj : g, has variance o7 ; forn=1,2,--- N

where 02 > 02. The PDFs are given by

Ay) ! L i 2
1WY)=—F» XP—7—= Yn
(2mo2)™/? 207
N
1
foly) = exp — o
(2mo?)™/? 203;
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The LRT becomes

Hy
oo\ N 1 Y y 2 y 2 <
A - (= XD — — ALRE B Al by
) <01> P 27; <01> <00> <
= H,
where A is given by
A= Py (Cro — Coo)
(Co1 — C11)
Toking the natural logarithm leads to
H,
o0 Ien ,/1 1Y\ >
InA(y) =Nln <U—1) + 3 Z Un <(7_8 - 0_%) < In A (4.9)
n=1
Ho

Note, the constant multiplier term (inside of the summation) is strictly pos-
itive for the given parameters; hence, one can bring it over to the other side
of the inequality without any special consideration. Hence, the last expression
can be rewritten as

H,y
al > 2 o)
2
Zyn < 71 I\ <ln>\ — Nln <0_1>)
n=1 —_
This can be simplified to
Hy
N 9 > 20%08 0o
z:Z?/n, < m InXx—-NIn p =7
n=1
Hy
The optimal detector consists of a non-linear operation on the data, (i.e., a

square law type detection). Note there is only a single random variable (i.e.,
sufficient statistic) “z” rather than the N random variables of y. So the
probabilities of interest are easily obtained using

Pp = /‘00 f1(z)dz
sy

P]\,j == /’y fl(Z)dZ

PFA = /oo fo(z)dz
sy
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Note, that if the order of the magnitude of the variances is reversed (i.e.,
0% < 0 ), then the inequalities in the Bayes’ test are also reversed since the
constant multiplier in (4.9) is negative. Hence, the Bayes’ test becomes

Hy
a > 20303 00
9 (
z= Y ———({InA—Nln <—)> =
=7 < o o) < )"
H,

Example 4.4 This is a numerical example using the results obtained in the
last example. Only a single sample is received and based on this single sample,
a decision is made. The prior probability for each symbol is identical (i.e.,
Py = P, = 0.5), the cost of a mistake of either type is equal, and the cost
Jor proper decision is zero. The variances are given by o} = 4 and 02 = 1.
Hence, X, the threshold, is unity.

Under Hy :y ~ N(0,1)

1 1,
foly) = ' exp —5y
Under Hy : y ~ N(0,4)
1 1,
hily) = W KPP =5 Y

The likelihood ratio test (and corresponding threshold) under the Bayes’ de-
tection philosophy becomes

2

(27r)1/2 exp . Iil
Aly) = S 2
(2774)1/2 exp v
2 Ho

This becomes

H,y
1 3y
—(‘Xpi Za=1
2 8§ <

Ho

Taking the logarithm on both sides and further simplifying, leads to a power
or square law detector

H,
27 B8 00— 183
Yy < 3 T
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Equivalently, one can use an envelope detector of the form

IEf
[yl z Vv1.85=1.36
Ho
Example 4.5 A signal (5 volts) may or may not be transmitted and is ob-

served in additive Gaussian noise. The noise has zero mean and unit vari-
ance. Cop=C11 =0,Co1 =Cro=k, Ph=P, =0.5 and k > 0. Hence, the
threshold X = 1. N equals 1, that is, one sample is available. Under

Ho : y(t)=n(t)

Hy : yt)=5+n()

We sample the data at one point in time and work with one observation. The
density function under each hypothesis becomes

1 1,
foly) = o oXp —5Y
1 1 9
Nily) = W GXP*§(11*5)
The likelihood ratio test becomes
H,
1. >
Ay) = (,Xp—§(20—1031) < 1
Hy

Further simplifying it by taking the logarithm leads to

Note, this result is somewhat expected. When the threshold A equals to unity,
then we are just equating the two likelihood functions and test which one
is the dominant one. QObuviously, the point of dichotomy is exactly halfway
between the means of the two possible densities, making the threshold selection
equivalent to the crossover point of the two likelihood functions. The power
of the test (i.e., Pp) and the false alarm rate Pp4 are easily computed. Also
the probability of a miss (Py), that is, the probability of saying Ho is true
while in reality the hypothesis Hy 1s correct is easily obtained. The numerical
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values can be taken out of a table in Appendiz D or be computed via one of
the many numerical procedures available.

Pp = f1(z)dz = 0.9938
J2.5
PFA = fo(Z)dZ = 0.0062
J2.5
2.5
Py = fi(z)dz = 0.0062

= 1—-Pp=1-0.9938

One procedure that is easily implemented on a calculator or a personal
computer (see Appendiz D) is advocated in Helstrom [4] and Abramowitz and
Stegqun [9]. The error is less than 7.5 1078, limiting the usefulness somewhat.
That is, for problems where the area under the tail section of a Gaussian is
on the order of this error or smaller, more sophisticated procedures must be
used.

Example 4.6 Given the same scenario as in the previous problem, except
that now there is access to nine independent samples (i.e., N =9). Under

Hy : yo~N(0,1); n=12---,9
Hy : yo~N(5,1); n=1,2---,9

From Example 4.2 we have

Hy

Since y, is Gaussian under each hypothesis, it is obvious that z will be Gaus-
stan under each hypothesis. To characterize f;i(z), for i = 0,1, all that is
needed is the mean of z under each hypothesis and the variance of z. The
means are

9

Eoz = Y Eoyan=9-0=0
n=1
9

Eyz = Y Eiy,=9-5=45
n=1

where the subscript of E indicates which signal is asswmed to be present (i.e.,
which hypothesis is true).
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We realize that the DC component has no effect on the variance compu-
tation; hence, we compule the variance for the zero hypothesis (i.e., no DC
component). Therefore, the second moment equals the variance

9 9

0’2 = Eo 2’2 = EO Z Z (yn, ym)

n=1m=1

9
= > o2=9-1=9
n=1
So under

Hy : 2z~ N(0,9)
Hy, : z~ N(45,9)

Hence, the test becomes

,
z ~ 25
<
Hy
and the detection performance becomes
oo 22.5 —45 22.5
J22.5

o 22.5
Ppa = fo(2) dz=Q < 3‘)) =Q(7.5)=3.19-10""
J22.5

Note that we could have used a normalized statistic that is the sample mean.
Then the test and threshold would be as follows:

9 =4
1 1 > 225
Sample mean =w = — z = — 1 —
. Femgym 2 5
— H,
S0
H,y
w > 2.5
<
Hy

The sample mean will be 0 and 5 under the zero and one hypothesis, respec-
tively. The variance under each hypothesis will be 1/9. So we have

Hy : w~ N(0,1/9)
Hy : w~N(51/9)
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Of course, the detection performance of the statistics of w relative to the z
detection statistic will not change at all as the interested reader might quickly
verify.

Example 4.7 An experiment is performed and the number of events are
counted. The number of events obey a Poisson law. Under

Hy : Pr{n eveuts} = (mg)/n! exp —(mo)
Hy : Pr{nevents} = (m})/n! exp—(my); forn=0,1,2,3,---

The Bayes’ detector is given by the likelihood ratio test (LRT) which is com-
pared to the threshold X\, which depends on prior probabilities and the cost
associated with each decision. For this example we obtain

Hy

Pr (n eveuts|H;) mi\" >
Aln)= =|—] e mtmo A
(n) Pr (n cvents|Hy) Mo ¢ <
Ho

The log likelihood ratio test (LLRT) becomes

H,
m >
n In <—1> +mo — my In A
mo <
Hy

Depending on which parameter is the larger one, the multiplier associated with
n is positive or negative. The detection scheme becomes

if my > mg, then
> InA+mip —mo
< !
nl—
Hy 1mo
> InA+mi; —mo
< !
nl—
Hy mo
Example 4.8 An event may or may not have occurred. The costs and prior
probabilities are given by Coo = C11 =0, Cop = C10 =1, and Py = P, = 0.5,

respectively. Hence, the threshold X = 1. N equals 1, that is, one sample
1s available. The density functions, are two-sided exponential densities. The

if mo > my, then
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conditional PDFs are given by

1
foly) = 5 exp—1yl

1
hty) = 7 CXP—‘Z—QA

The likelithood ratio test becomes
Hy
1 >
Ay) = gexp(yl—1ly/2) _ T =1

Hy

Further stimplification (i.e., take natural logarithms) leads to

H,
> Do
z = |yl - 21In2 = 1.3863
Hy
Fquivalently, this can also be written as:

If —1.3863 < y < 1.3863 then decide on Hy, otherwise decide on Hj.
The numerical values for the performance can be obtained from the simple
exponential integrals given below

1 [
Pp = = / exp —(2) dy
2 J1.3863
Ppy = / exp— (y) dy
1.3863
Py 1-Pp

Example 4.9 An event may or may not have occurred. The costs and prior
probabilities are given by Coo = C11 =0, Co1 = C10 =1, and Py = Py = 0.5,
respectively. Hence, the threshold A = 1. N independent samples are available.
The density functions, are one-sided exponential densities. The conditional
PDFs, given that Hy or Ho are true, are given by

Jolyn) = exp(—yn) U(yn)

1 Yn

Nlyn) = 3 exp (— 7) Uyn)



Hypothesis Testing 81

Accounting for all the observations, this becomes
N
fO(y) - H emp(f 1/71,) U(’l/n)
n=1

3 n
exp(~ %) Ulyn)

N —

N
hy) = H

The likelihood ratio test (LRT), for positive y,, becomes

o n=1
Aly) = ~
H exp —(yn)
n=1
o m
= (\xp§zlyn < A = 2N
n= HO
Taking the logarithm leads to
N Zl
z = Z:lyn, - 2N In 2
n= Ho
The optimal receiver performs a linear operation on the data (i.e., a FIR filter

operation using unit weights).

Example 4.10 This is a numerical ezample of a problem of the type shown
in FExample 4.7. A stock market analyst noticed that he could use the number
of touchdowns scored by his favorite team as an indicator as to what the stock
market will be doing the following week. In this model, the touchdowns follow
a Poisson law and the threshold X is set to one. We will notice later that
this threshold selection corresponds to the mazimum likelihood (ML) detection
scheme. Under

Hy : bull market (i.c., expanding economy)
H; : bear market (i.e., stagnating or collapsing economy)
The probability law under each hypothesis is Poisson with parameter mgy and

my, respectively. From experimental data, the analyst had established the
value of mo as 1 and of m1 as 3. So he proposed to plot the number of
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(number of
touchdowns)

|
Bull Bear
Market Market

Figurc 4.6: Likelihood functions of Example 4.10.

touchdowns on the horizontal azris (see the likelihood function plot in Figure
4.6). Then establish which of the two probability density functions is the
dominant one, then detect the type of market valid for the next trading week.
Of course this scheme seems lo disregard cause and effect, but it seemed to
work for this market analyst.

So far we have used the Bayes’ test (detector, philosophy, approach, ctc.),
but many times not all the required information for the Bayes’ test is available.

4.3 MAXIMUM A POSTERIORI (MAP)
DETECTION

Suppose that we have information about the prior probabilities but either
cannot, or do not want to, assign a cost to making the possible decisions.
This approach is the maximum a posteriori (MAP) detection philosophy. To
keep the notation simple, we assume in the derivation that the number of
data samples is one. If one wants to derive the equivalent expressions for
N data samples (i.e., N > 1), all that needs to be done is to replace the
scalar quantities in 4.10—4.15 with the corresponding vector quantities. We
start with a test that chooses the dominant (i.e., maximum) a posteriori
probability, as given by

Hy

>
Pr(fhly) _ Pr(Holy) (4.10)

Hy
The left side of (4.10) is the a posteriori probability of hypothesis H; given
the observation y, while the right side is the a posteriori probability of hy-

pothesis Hy given the observation y. In other words, given the data (y), which
hypothesis has the larger probability (i.c., which one is more likely true, Ho
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or H1)? We usually want to work with probability density functions rather
than with probabilitics (i.c., distributions). Equation (4.10) can be written
for an increment of y as follows:

H,y
>

Pr(Hily <y <y+dy) - Pr(Holy <y <y+dy) (4.11)
Hy

The Bayes’ theorem for conditional probabilitics says

Pr(y <y <y+dy|lH;)
Pr(y <y <y+dy)

Pr(Hily < y <y+dy) = Pr(H;) (4.12)

for i = 0,1. The probability of an incremental arca cquals the PDF times dy,
given by
Priy <y <y+dy|H:) = [fi(y)dy
Priy <y <y+dy) = f(y)dy (4.13)

As the vector dy becomes very small (e, a differential), the conditional
probability (4.12) can be written as

fi ()
f()

for i = 0,1. The detection inequality (4.11) becomes when using Pr(H;) = P;

Pr(H;ly) =

Pr(H;) (4.14)

Hy

?EU; i % (MAP detector) (4.15)
oly 1

Hy

Note, no cost function is used, or cquivalently Cg — Cog = Co1 — C11. We
can also interpret the MAP detector as a Bayes’ detector with a different
threshold. The threshold for the MAP detector is just a function of the prior
probabilitics (i.c., Pp and Py). At this point, if it is desirable to work with
a vector of data samples, all that needs to be done is to replace the scalar y
with the vector y in (4.15).

4.4 MAXIMUM LIKELIHOOD (ML)
CRITERION

Supposc no prior probability nor any cost information is available, but we
still want to set up a meaningful detection scheme, we will sce that comparing
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the likelihood function will us allow to do this. Our criterion is “Given the
obscrvation (data), which conditional PDF (i.c., f1(y) or fo(y)) more likely
generated the observation.” We again prefer the scalar case in deriving the
detector. Once the detector expression is obtained, it can casily be extended
to the vector case. The detection scheme becomes

Hy
>
fly) — foly)
Hy
and for multiple observations
Hy
Nily) > 1 (ML detector) (4.16)
foly) <
Hy

Note, one can interpret this as a Bayes’ detector where the prior probabilities
are equal and the cost functions are of the form Ci9 — Coo = Co1 — Ch1.
The ML approach is frequently used since it does not require knowledge of
cither prior probabilitics or of cost functions. This information is many times
not available or sometimes it is not desirable to use it. At any rate, we sce
at this point in our venture that the difference between the three detection
schemes (i.e., Bayes, MAP, aud ML) is in the selection of the threshold but
that the detector structure is identical. We will also sce that this observation
is general in that it also applics to the remaining detectors to be discussed in
Scctions 4.5 4.7.

4.5 MINIMUM PROBABILITY OF ERROR
CRITERION

This detection criterion is used in binary communication problems, where
the cost of making an error, that is calling a true zero a one or calling a
true one a zero is the same and the cost of making a correct decision is zero.
We do allow non-cqual prior probabilitics, which is a function of how the
coding (i.c., source coding) is performed. This problem is in the same form as
Example 4.1, which illustrated the conditional probabilitics and the channel
transition probabilities. We set up the average cost in the same fashion as was
done in the Bayes’ detector derivation. The average cost (which needs to be
minimized) using (4.2) and the cost assigument Cop = C17 = 0, Cip = Co; = 1

=" foly) dy + P fi(y) dy
J R, J R
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which is the total probability of making an error. The Bayes’ approach then
leads dircctly to
Hy
fily) > B (4.17)
foly) < P
Hy

Note, this is the same expression (including the threshold) as that of the MAP
detector in vector form. In some literature, this particular test criterion is
also called the “ideal observer criterion.”

Aly) =

Example 4.11 N independent observations of a Gaussian random process
(w#h fhP siqr)/al embedded} are obfm'rmd (7' €., Yn for n=12- N) Use

a@@ocmf,ed P robabzlm&s. Un/der

Hy : yn~N(mg,1); forn=1,---,N; 1iid.

Hy : ypo~N(mny,1); form=1,---,N; iid.
with Py and Py given and mqy > mqg. The LRT becomes
N 1 )
I exp =5 (Yn —ma)
n=1
Aly) ==
1 2
H exp —= (yn — mo)
2
n=1
N L
1 P
P35 Z: —2mo + 2my) Yp +m3 — mﬂ i F? =
— ,

This can be further reduced. As always, we try to get as close as possible to
the raw data variables. This makes the receiver (detector) relatively simple
and many times allows the computation of the detection quantities in terms
of tractable probability density functions. Hence, we obtain

H,
i\f: > InA+ (m1 — m%) N

2(mq —mg)

=\
Ho
Or in terms of the sample mean (if it is more convenient)
N H1
InA 1
E §(ml +mp) =1

< 2N(my — mo)
Hy
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where the mean of the random variable z is given by

1 X
FE; 2= NZE Vn = 1N

n=1

and m; is the transmitted symbol value (i = 0,1). Note, if we want to compute
the performance of this detector using the original y variables, say we want to
compute Pr(say Hiy|Hy is true) or Pr(say Hi|H; is truc) then we have to deal
with N-dimensional integrals over an N-dimensional decision region. The
problem becomes much simpler if we use the new sufficient statistic z. We
recall that the sum of Gaussian random variables is Gaussian (the Gaussian
family is closed under linear operations), so all we need to compute are the
mean and variance of the new Gaussian random. variable z.

We see now that the detection statistic, the random variable z, is a simple
one-dimensional Gaussian random variable.

[SHV)

1 N N
- = Z Z E((yn — my, ) (ym —my,,))

n=1m=1

1 N 1
— E 2 _
= — oy, ==

n=1

where my, is the mean of the nth sample y,,. Any desired performance statis-
tic, in contrast to the N-dimensional random variable y,, is easily com-
puted. For example, using By z = mo and F1 z = mq, then Pr(Hi|Hy)
and Pr(Hy|Hy) are easily computed by

Pr(say Hi|Hyp is true) =

(z—mo)® N

7 expl[— 5

|dz=Q ((77 - mo)\/ﬁ>
Pr(say Hi|H; is true) =

oo ;1/2 e)q>}%] dz = Q <(17 - ml)\/ﬁ)

Pr(say Ho|H; is true) =
= 1—Pr(say Hi|H; is true) =
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73 exp[— | dz

- 2
(o)
N

/'” 1 (z —my)?N

=erf ((7] — 'ml)\/ﬁ)
1—Q((n —mi)VN)

Example 4.12 Given that N samples of y, i.e., y1,y2,- -, yn are Gaussian,
i.4.d., random variables with zero mean and a variance which conveys the mes-
sage, we want to detect which one of two messages was transmitted. Design
the detector using the Bayes’ error criterion. Under

. 2
Hy : yp hasvariance o5 ; forn=1,2,---,N

H, : y, has variancc (T% ; forn=1,2,---,N

where (7% > 08, P =Py, Coo=C11 =0, Cpy = Co =1, and A = 1; hence,
In A = 0. Using (4.6) or equivalently Bayes’ test from Example 4.3, we have

H
3, S
= Un < (0_‘13 — 0_(2)) 70 = 20
n=1
Ho

Since the observations y, are i.i.d. Gaussian random variables, the random
variable z is x? (chi-squared) with N-degrees of freedom. The probability
density function for z is (see Appendiz A and [1])

~(N/2)—-1
z 2
Ay — —z/(207). N7 —
fi(z) = QN/202F(N/2)6 ; fori=0,1
J
The detection statistics are given by

rea = [ °° fol2)dz

Py = '/j:ofl(z)dz

Pp

1— Py

To evaluate these expressions, we need to have tables of Pearson’s incomplete
gamima function [2] or use a numerical approzimation technique that requires
evaluation on a computer.
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C

A

|

H Minimum cost at

! worst case P,
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|

LA Worst case prior

! ! probability P,
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| i

] | Py
| i . >
0 P, (worst case) 1

Figure 4.7: Average cost versus Pi.

4.6 MIN-MAX CRITERION

If the cost information (i.c., Ci; 4,7 = 0,1) is available but not the “a priori
probability” Py or Pp, then the best Bayes’ related detection scheme (under
the worst possible choice of H;, (i = 0,1)) is desirable. This approach assumes
that nature plays the role of an adversary and moves or picks the worst
possible value for Py and P; in order to make the average cost the largest
onc possible. We know this phenomena under a different name. Many times
we call it Murphy’s law, which says Mother Nature knows what hurts the
most and uses it ruthlessly. We can plot the average cost versus the a priori
probability, say P, as shown in Figure 4.7.

We assume without loss of gencrality that the costs Cop, Cp1 arc smaller
than the cost of making an crror and the cost of any decision is some non-
negative number. If we take Bayes’ cost (rearranging (4.2)), we can replace
the integrals using the symbols of Pr s and Py,.

C = P Cup Joly) dy + Po Cho Joly) dy
J Rg J Ry

+P Cor N (y)dy + P Ci f1(y) dy (4.18)
J Rg J Ry

The average cost (Bayes’ approach) becomes
C = PyCoo+ PiC11 + Pi(Co1 — C11) Py
+ Po(Cro — Coo) Pra (4.19)

We note that at the end points we have the following conditions:
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e When Py = 1 (i.e., certainty of event “zero”), then we must have P, = 0
and Pra = 0. The average cost becomes C' = Cog + (Cro — Coo) Pra =
Coo.

e When Py = 1 (L.e., certainty of event “one” ), then we must have Py = 0,
Ppa = 0, and Py = 0. The average cost becomes C' = Cq1 + (Co1 —
Cn1) Py = C11.

If we assume that Chpo = C71 = 0, as is the case in most real life situations
of interest, then as we plot the average cost C' as function of Py we obtain
a graph of the form given in Figure 4.7. The maximum occurs where the
slope of the curve is zero. The exception is when the average cost becomes a
straight line, then the maximum occurs at one of the end points. To obtain
the maximum of the curve we take a partial derivative of C' with respect to
Py and sct it to zero (e, we find where the slope is zero). So, given the
maximum average cost, we minimize it, hence the name Min-Max criterion.
After we express every term in terms of Py, taking a partial derivative leads
to

w9
oP,  oP,
(1= P1)Coo + P1C11 + P1(Cor — C11) Py + (1 — P1)(Cro — Cop) Pral

(4.20)

Setting the partial derivative to zero leads to
(C11 — Coo) + (Co1 — C11)Par — (Cro — Coo)Ppa =0 (4.21)
If Coo == 011 =0 we get
Co1 Py = CroPra (4.22)
The detector form using the Bayes’ cost formula is the Bayes’ detector with

a threshold A that requires (4.21) to be true.

Example 4.13 The cost for a correct decision is zero (Cy; = 0 for i =0,1).
The number of samples is one (N = 1), Copp = C1o =K > 0. Under

Hy : y=14n; wheren~ N(0,1)
H  y=24+n

The Min-Maz test becomes (4.22) Ppa = Pyr. Or in terms of integrals, we
obtain

-2 el —1)2
y—2) (mp@ )dy

_1 /’“ oxry 1 -1
Vom e T2 V@) ro 2

With error function replacement, this becones er f(Ag — 2) = Q(Xo — 1) =
0.3085. Using the error function tables, we see that the solution will be a Ao

2
dy =
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of 1.5. In general, if Coo # C11 and Coy # Cho then we use (Cop — C11) Py —

(C10 — Coo)Pra = Coo — Ci1; or in terms of the detection statistic
00
Pra = foly) dy
J o
Ao Co1 —C11 Cop—C
01 11 00 11
= Hi(y)dy +
J =0 Ci0—Coo  Coo — C1o

4.7 NEYMAN-PEARSON CRITERION

4.7.1 Introduction

This criterion is typically used in radar and sonar applications since it allows
us to hold the false alarmn rate (Pp4) at a constant value. We cannot attach a
cost to making mistakes in radar/sonar applications. This is particularly true
since loss of life and loss of essential equipment can be involved. An alternative
approach is to use the concept of a fixed false alarm rate. Furthermore, this is
highly desirable when resource allocations are important and the maximum
falsc alarm rate has to be kept at a tolerable level. This detector was the first
in a class called CFAR (constant false alarm rate) detectors. In essence, the
false alarm rate is fixed while the detection probability is maximized. This is
best shown by using methods that maximize or minimize a cost term while
meeting an cquality constraint. To this end, we will introduce the method of
Lagrange multipliers in Scction 4.7.2.

4.7.2 Optimization and Lagrange Multipliers

The optimization of a function having a constraint may be done via two
different ways:

(a) Direct approach (can be very cumbersome)

(b) Lagrange multipliers (adjustable multiplying parameters, usually a straight-
forward systematic method) [10]

These methods are best illustrated by working one of the classical problems
in optimization when cquality constraints are present.

Example 4.14 Mazimize the volume (V) of the cylindrical grocery can of
Figure 4.8, for a given amount of sheet metal (i.e., for a fized (constraint)
area (Ag) maximize the volume).

(a) Direct approach: Mazimize V such that Ag is a fized constant.
(1) V(r, t)=mr
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Figure 4.8: Geometry of Example 4.14.

(2) A(r,0) = 2nr? + 2nrd = Ag = fized constant

Solution.:
From (2) we solve for { = (Ag — 27r?)/(27r) and insert it into (1)
Ao —2mr? Agr
_ 220 e
Vir)=mar 5 5

Since V' is now just a function of one parameler, the partial derivative
with respect to v (i.e., the slope is zero therefore there is a maximum)
leads to

ov. A, o
a—r - 7*571’7" =0

—r = \/AO

- 67
£7A0727T7"27 2A0
o 2mr VY 3r

and

(b) Via Lagrange multipliers: We define the appended cost function as

shown by
J(r,t) = V() + A(A(r,£) — Ay)
= 7r¥l4+ A (27r7"2 4 27l — Ao)

The first term is the quantity to be optimized, while the second term
is the equality comstraint, weighted by the Lagrange multiplier . We
note that it is purely coincidental that the Lagrange multiplier is labeled
with the Greek letter A, which is also the symbol used to denote many
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of the thresholds in the detector implementations. Taking the partial
derivatives w.r.t. £, r, and X leads to

ﬂ = w2+ X2 =0 = r=-2)
o
a.J
o = el + Admr +270) =0 = = —4\
’
oJ
- omr? 4 2l — Ay —>
2
Ag = | =20 +2n | =22 | | —4) | = 247N?
S~ — | =~
r r 4
Hence
[ Ao
A== ﬂﬂ—
Solving for r and £ leads to
Ag Ag
r = 24— =1/—
241 us
B Ao [24¢
C e NWam Ve

So we see this systematic way leads directly to the constraint solution.

4.7.3 Neyman-Pearson Approach

Let us now fix the false alarm rate Pry at a value of a and optimize the
probability of detection Pp, or equivalently minimize the probability of a
miss Py, since Py = 1 — Pp. We define the appended cost function as

minimize equality constraint

J = Ji(y)dy +A Jo(y)dy — «
J Ry J Ry

= | N(y)dy + A {1 _ Joly)dy — (1} (4.23)
JRo JRo

= )\(1—(1)—&-/ (f1(y) = Afoly)) dy

J Rg

The first term in (4.23) represents a fixed positive cost, while the second
term is an adjustable cost. The expression is set up similar to the Bayes’ case
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(4.5). When we examine the integral, we notice that we would like to select
the region Ry in such a fashion that the function J is minimized. There is
no nced to take any derivatives, we just used the Lagrange multiplier to sct
up the function .J. Obviously, the term J is minimized when one uses the
following philosophy: If the data y makes the second term in the integrand
larger than the first term, then include the data as belonging to region Rj.
Conversely, if the data makes the first term larger than the second one, then
include this data as belonging to region 127, In other words:

H,y
>
Lly) 2 Aoly)
Hy
The form of the detector is
H,y
fily) >
Aly) = 4.24
¥) Joly) < (4.24)
Hy

The threshold A is chosen so that the Pra constraint is met. The false alarm
rate is given by

Pra = //\00 Joly) dy (4.25)

hence, in principle, one can solve for the threshold A in a straightforward
fashion.

Example 4.15 Under the no signal condition only noise is received, while
under the signal present condition 1 volt plus additive noise is received. The
noise is Gaussian with zero mean and unit variance. We want to design a
CFAR detector (i.e., Neyman-Pearson detector) with a fized Ppa of 0.1. The
noise is Gaussian as described by n ~ N(0,1). Under

Hy : y=n
H : y=1+4n

H,
1Y) >
A X —0.5 A
(y) o) p(y ) -
Hy
or
o,
1
ln A(y) ¥ 3 i ln A
Hy
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or
Hy
>
InA+05 =
y o + 0.5 ¥
Hy

The fized alarm rate is given by

00 1 2
Prpa = / — CXp — <L> dy=0.1
Jy 2 2 i

We know the above expression is Q(v) = 0.1. From the tables (Appendiz D),
we can solve for v, which is 1.29. The final test becomnes:

Of course, we also want to compute the probability of detection. Using the
tables, we find Pp = Q(0.29) = 0.3859, which is not a particularly good detec-
tion performance, but it is the best one can obtain under the circumstances.

Example 4.16 Suppose that we have the same conditions as in Fzample
4.15, except that we have access to 100 samples rather than just one. Under

Hy : yn)=nn); forn=0,1,---,99 and
H : yn)=1+n(n); forn=0,1,---,99

H,y
) S 02y
Ay = cxp—0.5 1—2y(n In A
( ) fO(y) n=0 <
Hy
99 Iil
> yn) ~ A450
n=0 Ho

Let us call the left-hand side of the inequality z and the right-hand side
that is

Hy
99 -

2= yln) v
n=0 Ho

We realize that z is a Gaussian random variable (i.e., one-dimensional) with
mean of 0 or 100 under Hy or Hy, respectively. The variance is easily shown
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to be 100; hence, the standard deviation equals 10. To guarantee a Ppa of 0.1,
we know 0.1 = Q(v/10) or 1.29 = ~/10. Hence, v = 12.9 and the probability
of detection Pp = Q({100 — 12.9}/10) =~ 1.0. Compared to Example 4.15,
the probability of detection has drastically improved. If desirable, one could
increase v to force a smaller probability of false alarm and yet still retain a
satisfactory detection probability.

As in all detection problems, a minute change in detection probability, say
from 0.999 to 0.998, is too small a difference to be noted. But at the other
end of the scale, at the probability of false alarm, a change by 0.001, say from
1075 t0 0.001001 =~ 0.001, is a change by three orders of magnitude, which
constitutes a thousandfold increase in the false alarm rate.

Note, in particular, in the last example the change from a 100-dimensional
random variable space to a one-dimensional space. We always try to take
advantage of a lower-dimensional equivalent random variable, if possible.

As a final binary hypothesis testing example, we shall use one in which the
functional form of the probability density function depends on the hypothesis.

Example 4.17 When the event “17 or “07 is true, the date will follow an
exponential or uniform distribution, respectively.

Hy : vy has a PDF given by fi(y) = e YU(y)
1
Hy : yhas a PDF given by fo(y) = 3 [U(y) — U2 —1y)]

Clearly, negative valued data is impossible.

or

1
e 2 S0 -UE@=y)], fory>0
< 2
Clearly, the left-hand side (LHS) > right-hand side (RHS) if y > 2 (since
foly) is zero for arguments greater than 2).
If we restrict ourselves to the interval [0,2], then
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or
Hy
y ~ In2=0.6931
<
Hy
Hence, the decision regions are
If y < 0.6931 then Hyp is true,
if y > 2 then H, is true,

if 0.6931 <y < 2 then Hy is true.

ln 2 geel
Pr (Di|Hy) = Pp / e Ydy + / e Ydy = 0.6353
J2

J0
In 2 1
J0

Suppose that we want to fix Pr (D1|Hp) at a level of 0.8, then we shift the
original threshold (1u2) an increment to the left so that

T
1
—dy = 0.:

Hence, T = 0.6. The new threshold also changes Pr (D1|H1) to

-0.6

Pr (Dy|Hy) = /

J0

de .l

e Vdy + / e Ydy = 0.5865
J2

4.8 MULTIPLE HYPOTHESES

If there are more than two hypotheses (i.c., more than two signals), the ap-
proach used in the Bayes™ detector derivation is still appropriate. There are,
however, more hypotheses and more types of errors. We will derive the general
M-dimensional case, and then via an example, detail the analysis for the case
when M = 3. Suppose there are M different events (i.e., Ho, H1, -+, Hyp—1)
and assume that we know

(a) Pr(Ho) = Py, Pr(Hy) = P1,---,Pr(Hy—1) = Puy—1, where the
sum of these prior probabilities must equal one;

(b) Ci; that is the cost of choosing ¢ when j is true;
(¢) fily) fori=0,1,---, M — 1, the conditional density fyu,(y|H;), then
the Bayes’ formulation minimizes the average cost C' given by

M—-1M-1
C= Z Z C;j Pr (choose H;|H;) P; (4.26)

i=0 j=0
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Note, the product of the last two terms in (4.26), Pr(choose H;|H;)P; is just
Pr(choose H;, H; is true). Bayes’ test will separate the observation space into
M mutually disjointed and exhaustive regions Ry, Ry, -, Ryr—1 such that ¢

is minimized. Mutually exhaustive and digjointed means:

IR, m R; = & (the cmpty set, the Null space) when ¢ # 7
M-1
U R; = R (the obscrvation space)
1=0

Now Pr(choose H;|H;) denoted by Pr(D;|H;) can be written as

Pr(D;|H;) = //R fi(y) dy

The average cost can therefore be written as

M—-1 M-1 M-1

C=Y b [ fiy+ Y Y Cop [ vy
i=0 MR v

i=0 j=0,i#j
Using I; = R — U;\iglﬁél R; and
/ fily)dy =1
JR
we get
fixed cost
e

M-1 My M—-1

C= S cartd [ 3 By -Gy
i=0 i=0 v ¥

@ =05
Define Ii(y) as
M-1
Ly)= Y. Pi(Ci;— Ci)fi(y)
j=0,i%j
then C'is given by
M1

C = fixed cost + Z / Ii(y)dy
=0 v 1t

(4.27)

(4.28)

(4.29)

(4.30)

The first term in (4.30) is a fixed cost termu, while the second term constitutes
a variable cost. As in the binary decision case, we assign cach observation y
to the region which will make the variable cost the smallest. To do this, let
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us define our decision rule, that is, “choose that hypothesis that corresponds
to the minimum of I;(y) as the correct one (i.c., say H; is true).”

Dividing I;(y) of (4.29) by fo(y), we get the averaged (weighted by cost
and prior probabilitics) likelihood function J;(y) as follows

=
= _AIX_:;P]'(C@—CN)AJ'(Y)(IY (4.31)
where o
=5

The decision (detection) criterion becomes: “choose the hypothesis for which
Ji(y) is minimum (i.e., say H; is true).” For example, choose Hy if all the
following inequalities are true.

M-1 M-1

Jo <= Y Fi(Coj— Ci)hy(y) < P (Crj = Ci)A4(y)
j=0 j=0
J#0 J#1
M1 M1

Jo < Jy = Pj(Coj — ij)A]-(y) < Pj(ng — ij)/\j(y)
j=0 j=0
Jj#0 Jj#2
M1 M1

Jo<Ju-1= Y Pi(Coi—CiAi(y)< Y. Pi(Carv;—Ci)Ai(y)

j =0 j =0
; #0 J 7Z M -1

The decision will be made in a likelihood space of dimension M (i.c., an M
dimeunsional hyper space).

Example 4.18 Suppose M = 3
If Jo < J1 m Jo<Jy theny € Ry = choose Hy
If Ji < Jo ﬂ Ji<Jy theny€ R, = choose H;
If Jo < Jo ﬂ Jo<Jy theny € Ry = choose H

where () represents the logical “and” operation.
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Example 4.19 Suppose one of three constant signals is present (mg or my
or msg). The signal is embedded in Gaussian noise (i.i.d.) ~ N(0,02), where
N data samples are available.

Hy @ yo~ N(mo,0%)

Hy, : y,~N(mny,o%)
Hy : ¥y, ~ N(mg,o?)

where n =0, 1,2, ..., N, mg < my <mg. P, =1/3, Cyy =0, fori=0,1,2.
Ci; = 1 when i # j. Minimize the probability of error based on using all N
samples. Under

N
1 1
H; : i(y) = ———oxp——=(yn — mi)? ; 1=0,1,2
$710) = 11 s P =gz = )

The Ii(y), (4.29), becomes (fori=0,1,2)

Lly) = Y P Co f;(y)

5 o¥) + 3 A1)

B = 2= M)+ )
1L fly) (1 faly) 11
O S T RN T IR Rl
1 foly) L faily) 11
R) = 3 fo(y) +§ Jo(y) B 5+§ Aa3)
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Suppressing the argument in the likelihood functions, this says the following:

Choose Hj
if Jo < J1 and Jy < Jo, that is

(a) 1/3 (A1 +A2) <1/3(1+A) = A<l
() 1/3 (A1 +A2) <1/3(1+A1) = As<1
Choose H;
if Ju < Jo and Jy < Jo, that is
(a) 1/3 (1+A) <1/3 (A1 +A) = 1<
(b) 1/3 (14+A2) <1/3(1+A1) = A<
Choose H,
if Jo < Jo and Jy < Jy, that is
(a) 1/3 (1+A1) <1/3 (A1+A) = 1<A
(b) 1/3 (14+ A1) <1/3(1+A) = A<y

These decision regions are shown in Figure 4.9, which shows the regions in
terms of the likelihood ratios Ay and Ao. The decision separating surfaces are
A =1, Ay =1, and Ay = Ay, As indicated in Figure 4.9, we decide on the
event i if the event is located in region i (i.e., we decide on H; in region R;).

This type of representation is not easily visuolized, so rather than working
with likelihood functions, we try to simplify the representation by taking log-
arithms and reducing the expressions to their simplest form. We know that
the expression

fily) >
Aily) == _ 1
! foly) <

by inserting the appropriate probability density function, the expression be-

comes for j =1,2

N N

1 >

exp *F Z(yn — ’m,j)Q — Z(yn — ’771,0)2 < 1
n=1 n=1

Taoking logarithms and simplifying leads to

N

N
_ 221 (m? — 2mjyn) + Z (mg — 2moyn ) z 0
—

n=1

Simplifying these terms and using the sample mean as a convenient statistic
leads to

1 N > g+ m
Mo + 1M .
Z:N;yn < ij for]zl,?.
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A"
o
N o

NN

Figure 4.9: Decision regions for Example 4.19.

From Ay <1 we obtain z mo + 1) /2.

<( )
< (o +1m2)/2.
> ( )
> ( )

From Ay < 1 we obtain z

From Ay > 1 we obtain z mo +m1)/2.

From Ay > 1 we obtain z o + 1) /2.

From Ay = As, we obtain

f1(y) = faly)

or N N
Z (m% — 2'rn,1yn) = Z (m% — 27n,2yn)
n=1 n=1

hence, z = (m1 +m2)/2. Ao > Ay and Ay < Ay translate into z < 0.5(mq +
me) and z > 0.5(my + ma), respectively. The decision regions are now very

simple and intuitively pleasing:

(a) decide on Ho when Ay < 1 and Ay < 1, becomes z < 0.5 (mq + mg)
and z < 0.5(mg + ma),

(b) decide on Hy when 1 < Ay and Ay < Ay, becomes z > 0.5 (my + o)
and z < 0.5 (m1 + ma)

2
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m, +m,

« R, >ie R, >re R, >
my +m, m, +m,
2 2

Figurc 4.10: Decision surfaces for Example 4.19.

(c) decide on Hy when 1 < Ag and Ay < Ag, becomes z > 0.5 (ma + mo)
and z > 0.5 (my +ma).

These (one-dimensional) decision surfaces are shown in Figure 4.10.

4.9 COMPOSITE HYPOTHESIS TESTING

In the previous sections, we assumed that we know exactly how the quantities
(i.c., signals) to be tested for look like. Usually, but not necessarily so, we
have the statistical description of the noise. Many times the information
about the signal component may be vague, in that we might not know all the
parameters. We distinguish between three different types of scenarios, where
we allow for a varying degree of uncertainty in one or several parameters.
These three scenarios are

Type 1: The probabilistic description of some or all of the signal parameters
(i.e., a known probability deusity function (PDF)) is available,

Type 2: A statistical description of the random signal or its paramecters arc
not available. Or only a partial knowledge of the PDF is available,
and

Type 3: The paramecter(s) of the signal or signals arc unknown; henee, a
PDF description is not available.

We will only address the binary detection problem in this chapter know-
ing that an extension to the M-ary detection problem is straightforward but
tedious. The unknown parameters are also called nuisance parameters. The
nuisance parameters may be an issue appropriately addressed under cither or
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both hypotheses. They allow us to incorporate randomness into the signals
and uncertaintics in the noise PDF. This may be used to model uncertainty in
the arrival time, duration, carrier frequency, phase, amplitude, cte. If we de-
note the nuisance parameter by 8, where @ may be one- or multi-dimensional,
then under the two hypotheses we have:

Hy : yisdescribed by fo(y|@o) and
H, : yisdescribed by f1(y|61)

where 6;, for ¢ = 0,1 is a vector of nuisance parameters (random or deter-
ministic).

Before we deal with these types of problems, we will review the concept of
removing (1.c., averaging out) a nuisance parameter. As we recall, we can av-
crage out, via the marginal approach, undesired quantitics from a conditional
probability density function. Suppose we have the conditional probability
density function f(ziz2|zszs) and we want to remove (average out) the left-
hand variable 5. This is done by employing the so-called marginal property
[1], as follows:

[ (x1|wszs) = / [ (x122]|2374) dvo (4.32)

To remove a right-hand variable, we multiply by the conditional density of
the variable to be removed w.r.t. the remaining right-hand variables and
integrate out the undesired nuisance parameter as follows:

f({flfl?2|[l74) = / f(T1T2|T3$4)f($3‘$4) d{fg (433)

and

fa) = [ [ 1 @imleses) §osleg (o) dsdry (4.34)

These identities can be verified very easily by using Bayes’ rule. When nui-
sance parameters are involved, we call the hypothesis test a composite hy-
pothesis test. If no unknown parameters are involved, we call the hypothesis
test a simple hypothesis test. We note, when the limits of integration (or
summation) arc understood, then they are sometimes left off.

4.9.1 Nuisance Parameters with Known or Unknown
Probability Density Function or with Unknown
but Fixed Values

The likelihood ratio test is the optimum detection strategy, that is one com-
putes Ay) and compares it to the appropriate detection threshold (which is
a function of the detector implementation, i.e., MAP, ML, etc.).
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Type 1: We have

“ . . Hl
_hy) _ / -/Ql (y|61) f(6)) dby !
foly) //00 (y160) f(8o) d6y ;0

Type 2: When the vector 8 is random with unknown or partially known
density, we approach the problem as follows:

Aly)

Ao (4.35)

Design the detector as for Type 1 assuming the worst case probability
density function (i.c., the uniform PDF reflects very little knowledge
about the parameter density, except of course, the maximum and min-
i values of the parameter(s)). If possible we use the partial knowl-
edge about the PDF that may be available. Many times the decision
rule turns out to be independent of the parameter.

Type 3: 6 is deterministic but unknown. Thercefore, there is no PDF over
which one can average. In principle, there are two approaches to this type of
problem.

(a) We can use a Neyman-Pearson test. If the Neyman-Pearson test turns
out to be independent of 8, then it is called a uniformly most powerful
(UMP) test. The test must be independent of @ in both threshold and
in test decision variable(s) (the detector algorithm).

(b) If a UMP test does not exist, @ can be estimated and these estimates
arc then used in a “gencralized LRT”

maxg [f1(y)

Agly) = Inaxeofo(y)

H,

fo(y|8o)
Hy

where 8; is the ML estimate of the paramcter, for hypothesis i = 0, 1.
These problems arc best illustrated using examples. The examples use
only a one-dimensional parameter. This serves well to illustrate the
principle involved. The extension to more than one nuisance parameter
is straightforward, i.c., replace the one-dimensional average with the
corresponding multi-dimensional average.
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Example 4.20 Type 1, known nuisance PDF. Suppose that under the Hoy
assumption we have a simple hypothesis, while under the Hy assumption we
have a composite hypothesis. This means that under Hy we know the likelihood
function for the zero event exactly, while under Hy there is uncertainty and a
statistical description of the parameter. In this ezample we have as a nuisance
parameler the mean of the process, m. Under

Hy yNN((J?O—Q)
H, : y~N(m,ad?)

where m has a Gaussian PDF given by m ~ N(0,02)). The likelihood ratio
s given by

B /Zf (ylm) f(m) dm fil

fi(y)
Ay) = —F5 = A
Jo(y) fo(y) <
Hy
Using the available statistical information, this becomes
1 e (y —m)? 1 m? H
oxXp — = oxXp — dm 111
Vomo? (/_oo P 202 V2mo2, P 202, >
Ay) = 1 " <

Vim? 207 Ho

This can be reduced to

H
9 >1 202 (0% + 02,) o2
v 0—2”' <ln)\+0.5ln <1—|—U—7;')>
HO m

Problems of type 2 are handled the same way as problems of type 1, that
is, use whatever statistical information is at hand or assign a worst-case one.
Other than that, the problem of type 2 is handled the same way as problems
of type 1.

Example 4.21 Type 3a, UMP type problem. Under
Ho : y~N(0,1)
H, : y~N(m1)

where m s an unknown positive quantity. The LRT is written as

H,
a2
s (2

Hy
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After some simplification this can be expressed as

IE
> m

y - 5—&——111)\ Ao
Hy

Note, we could only reduce it to this simple form since we knew in advance that
m > 0 and the test left-hand side of the inequality can be made independent of
the nuisance parameter. For the Neyman-Pearson test, the false alarm rate
s fized at some desired level of Ppa. Since our detection statistic is simply
the observation, the expression for the Ppa becomes just the area under the
integral of fo(y) from Ao to infinity. That is

o0 2

Yy
Pra = exp —=—dy = Q(A
A . Vo Py Q(No)

We see that the determination of the threshold Mg is independent of the nui-
sance parameter m and that the Neyman-Pearson test (i.e., the left-hand side
of the inequality) is also independent of the nuisance parameter m. This says
that this test is a UMP test with respect to the parameter m.

Example 4.22 Type b, generalized LRT problem. A similar problem is
given in Example 4.20 with two exceptions: (a) we do not know the polarity
of the signal and (b) we have N samples (i.e., N > 1) available. Under

Hy : yn~N(0,0%) forn=1,2,---,N

Hy, : yn~N(m,o%)
where m is a non-zero constant of wunknown (polarity) sign. In terms of
likelihood function we have

N

1 1

foly) = H > CXp — 5~ 2yn (simple hypothesis)
T

n=1

and for the composite hypothesis, assuming m is known, we have

1
fi(ylm) H F(yn —m)?

We use a mazimum likelihood (ML )estimation procedure to obtain an estimate
of m, denoted by mprr. The derivation and idea behind the M L estimate will
be discussed in Chapter 8. For now we use the sample mean as the ML
estimate of the true mean. The expression for the sample mean is

1 N
My = N Z Yn

n=1
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hence the LRT becomes

A = Jo(y)

H exp —

2
Lo age) s

>
N <)\
H QQU'n HO

After some manipulation this can be simplified

N Hl
1 I
\/_Nzy” z :\/20'2111)\
n=1 Ho

We introduced the idea of nuisance parameters using simple examples.
We will return to the idea of averaging out undesired influences in Chapter
6.

4.10 RECEIVER OPERATOR
CHARACTERISTIC CURVES
AND PERFORMANCE

4.10.1 General Background

In all of the derivations and all of the examples we typically left out one
important ingredient, namely the detector performance. This section will
address this shortcoming. Usually, we want to know the probability of detec-
tion (Pp), the probability of a miss (Pyr), and the probability of false alarm
(Ppa). Of course, Pp + Py = 1, hence knowing one of these two quanti-
tics provides the sccond one automatically. These terms have their origin in
the detection literature where we describe the performance of binary decisions
(target present or target absent) with these quantities. We interpret the term
Pr 4 as the probability of saying the “1” cvent is true given that the “0” event
actually occurred. Py is the probability of saying the “0” event is true given
that the “17 event actually occurred, while Pp is the probability of saying the
“1” event is true given that the “1” event actually occurred. The majority
of detection problems (i.e., radar, sonar, nuclear blast) cousider as the “1”
event the condition that a target or event to be detected is present. Without
loss of generality, it is more convenient for us to describe the performance
via the three carlier defined terms (Ppa, Par, and Pp). Perhaps some better



108 Detection Theory: Applications and Digital Signal Processing

suited definitions are Pr(D1|Hp) for Pra, Pr(Do|H1) for Py, and Pr(Dq|H;)
for Pp. But since the majority of problems deal with detection of targets, we
usc the radar/sonar definitions most of the time. Only when more clarity is
provided by the general definition will we resort to it.

These quantities can be used to provide a graphical representation of the
particular detection scheme. It seems a little strange to talk about different
implementations of detectors at this time, but there are many reasons to
compare detector performance. Four very typical reasons arce listed below.
They arc:

(a) One could choose to use or disregard certain picces of information when
designing the detector. A typical scenario is not to use prior probabil-
ities, even when they are available, and then obtain a measure of the
trade-offs when ignoring that information.

(b) We may want to check out the design procedure by computing theo-
retical values of the detection performance and compare them with the
results using the detector on simulated or real data scet.

(¢) Another frequent use of these quantitics is to study the degradation
of the performance as a function of signal-to-noise ratio (SNR) or as
a function of the degree of straying away from the postulated ideal
functional form of the detector. Omne can also display the degree of
sensitivity to variations in PDF parameters.

(d) The performance of several detection schemes can be compared. We
may have a choice of approaching the detection problem that is to say
we may have to or want to sclect a sub-optimal design, which might lead
to different detector implementations. In these cases, the trade-offs can
be studied using the detection quantities.

4.10.2 ROC Curves

The basic receiver operating characteristic (ROC) curve is a two-dimensional
graph of probability of detection (Pp) versus the probability of false alarm
(Pra). A typical example of the likelihood functions for the binary signal
casc is shown in Figure 4.11.

We note that one can slide the threshold away from the point as dictated
by the detection philosophy (i.e., MAP, ML, Bayes, etc.) and examine the
detection performance at each of these thresholds. To each unique threshold
chosen, there corresponds a unique pair of points (Pp and Pra) which de-
scribe the performance of the detector at that threshold. We typically plot
these pairs of points against a vertical and horizontal scale of Pp and Pp 4, re-
spectively. A typical plot of these points for various SNRs is shown in Figure
4.12.
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Figure 4.11: Probability density functions at the output of a detector.

1 Pg,

Figure 4.12: Typical ROC curve.
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We note that if each event is equally likely and we randomly pick a choice,
we would be right and wrong half of the time. This would trace a diagonal
line from the lower left-hand corner to the upper right-hand corner in Figure
4.12. By the nature of designing a receiver (detector) we should do better
than a random guess of the event. Hence, we always expect to operate with
a higher probability of detection than the probability of false alarm. This
ensures that all ROC curves will reside in the upper left-hand plane above
the line based on a random guess. Figure 4.11 shows that if the threshold
is reduced from Ty to Ty to T3, cte., then the Prpy and the Pp will both
increase as the threshold is decreased. Hence, we know that the curve must
be concave. That is, if we lower the threshold and allow a higher Pr4 at least
as many or more eveuts belonging to the f1(y) population are then allowed
to pass through resulting in the same or higher Pp. We sce that sliding along
the ROC curve is equivalent to changing the threshold of the receiver. A low
level of Pr 4 and Pp corresponds to a high threshold level, while a high level of
Pr 4 and Pp corresponds to a low level of threshold. As a matter of fact, the
numerical value of the slope of the ROC curve at any point corresponds to the
numecrical value of the threshold of the detector to provide the performance
indicated by the coordinates of that point on the curve. A simple derivation
of this result is given below. The detection statistic A(y), which usually is a
single random variable under each hypothesis, is compared to the threshold
A. The detector performance can then be described by:

Py = PN = [ () de (4.37)
JA
Pra = Prld>AHo) = [ () dé (438)
A
We can also rewrite Pp, the probability of detection using
Sam, (8
P (© = 2 © =A@ fam(©)
faja, (&)

as

Pp = //\ fajm, (§) d€

- A T AE) Faym€) de (4.39)

Taking the derivatives of (4.38) and (4.39) with respect to A (using Leibnitz’s
rule, Appendix D), leads to

s~ fam) (1) (1.40)
00— A Fapss () (=1) = <A fajay (V) (4.41)

OA
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where A(A) = X is substituted. The ratio of the two partial derivatives, that
is, the slope of the ROC curve, becomes

OPpa

- =A 4.42
0Pp ( )

We realize that the instantancous slope of the ROC curve at any arbitrary
point numerically corresponds to the threshold of the detector, which provides
the probability of false alarm and probability of detection as indicated by
the coordinate of the point under consideration. The detection performance
display of the ROC curve is reasonable when considering a typical Pp of better
than 0.5 at ranges of Ppa larger than 0.1. This is acceptable for our purposes,
that is, the understanding of detectors and their performance. However, for
many problems we would like to look at performance at probability of false
alarm levels many orders of magnitude smaller than 0.1. A typical Pp4 range
might be 10712 to 1075, In those cascs, we will resort to other performance
representations, i.c., use logarithmic values of the detection quantities, index
the curves by SNR, cte. [3,5,6,7]. At this point, however, we recognize the
relationship of threshold, performance, and the use of the ROC curve, since
in any class project we would want to use manageable probabilities, hence a
manageable number of simulation runs.

4.11 SUMMARY

The concept of hypothesis testing is introduced in Section 4.1. Bayes’ cost
function, criterion, and detectors are discussed in Section 4.2. Section 4.3
introduces the MAP, while Section 4.4 addresses the ML based detection. In
Section 4.5 we investigate the concept of minimizing the probability of er-
ror, while in Scction 4.6 we introduce the Min-Max criterion. The class of
CFAR detector is introduced via the Neyman-Pearson technique in Section
4.7. Section 4.8 extends the binary detection scenario to an M-ary detection
problem. An introduction to the removal of nuissance parameters (uncertain-
tics) is given in Scection 4.9. Scction 4.10 investigates the concept and use of

ROC curves.

4.12 PROBLEMS

1. When the zero hypothesis is true, a DC value of zero is transmitted.
When the one hypothesis is true, a DC value of 0.75 is transmitted. The
transmitted signal is embedded in uniformly distributed noise. The
variance of the uniform noise is 0.5. Assume each event (i.e., signal)
is equally likely, the cost for making no error is zero and the cost for
making cither one of the possible mistakes is unity. Only one single
sample is available.



112

Detection Theory: Applications and Digital Signal Processing

(a) Derive the optimal detector and state which criterion you are using.
(b) Derive the appropriate threshold.

(¢) Compute the total probability of error.

2. Single sample scenario. Under the zero hypothesis, zero mean Gaus-

sian noise is received. Under the one hypothesis, a DC value of 1 is
transmitted and received embedded in zero mean Gaussian noise. The
variance of the Gaussian noise is 1.0. Use the ML criterion to obtain
the most convenient (most simple) implementation.

(a) Set up the detector and threshold. Compute the probability of
Pr(D1|Hp) based on this information.

(b) Go back to the likelihood ratio test (an exponential); call that
random variable L. Compute the density of L under the zero and
the one hypothesis. Integrate the appropriate density function over
the appropriate range of L (i.c., one limit is the value of A obtained
in the original setup of the LRT) to obtain Pr(Dq|Hy). HINT: Onc
would expect the values from part (a) and (b) to agree.

Under
Ho @ yst. fly) = exp(—y) Uly) Uy)
Hy wyst fly) = 2exp(=2y) U(y)

where U(y) is the unit step.

(a) Derive the appropriate detector and corresponding threshold (sim-
plest form).

(b) Sketch and label the detector output densities. Show threshold
and decision regions.

(¢) Compute Pr(Dq|Hy).

Fori=1,2, ; arc independent random variables uniformly distributed
with x; ~ U(—=2/3,2/3). Under the zero hypothesis, only noise is re-
ceived. Under the one hypothesis, a DC value of 1/2 is embedded in
the noise (for the duration of 2 samples). The receiver inadvertently
adds the two input samples. That is, y = x1 + x2 under either one of
the two hypotheses.

(a) Basced on this single picce of information y, design the optimal
detector and threshold.

(b) Compute Pr(Dy|Hp).
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5. Computer exercise. Under

Hy : r(n) = n(n); 0<n<63

=
3
S
3
=
|

s(n) +nin); 0<n<63
2
s(n) = cos {W}

n{n) is white Gaussian noisc with unit variance.
ko =0.15, k; =7.0 (known signal in whitec Gaussian noisc)

(a) Design the optimal receiver for these conditions for a Pp of 1073,

(b) Show all work in sufficient detail. Provide a diagram of the detector
and the numerical value of the threshold.

(¢) Verify results using a MATLAB simulation.
6. Under H;

Under Hy
1
Jo(2) = = exp—[al
2
Single sample scenario: Set up L.R.T. Determine threshold, decision
regions, and detector form.

7. Under
Hy : y = -exponential with parameter a
H, : y = -exponential with parameter b

where a > b > 0. Sce table in Appendix D for the exponential PDF.
Find the optimal detector, its threshold, the Pry and Pay;.

8. Under
Hy : y==x

where z is rectified Gaussian noise n, with the Gaussian n ~ N(0,1).

Under
Hy o y=z

where

fo(z) =exp — 2U(2)
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(a) Find the detector to minimize the probability error (detector and
threshold).

(b) Compute P,..

9. Under
Hy : y = chisquared with 2 degrees of freedom (¢ = 1)
Hy : y = chisquared with 2 degrees of freedom (o = 4)

(a) Find the optimal detector (say also which detection criterion is
used and why).

(b) What is the detection threshold?
(¢) Find P(D;|Hy).
(d) Find P(Do|Hy).

10. Under

Ho :y = a
H 1y = ¢
where c=a+b
fala) = 0.5 exp—(0.5a) U(a)
f(b) = 0.25 cxp — (0.25b) U(b)

A and B are statistically independent and U( ) are unit step functions.

(a) Determine the detector (in its simplest form).

(b) Determine the threshold(s) and sketch the decision regions for your
detection statistic.

(¢) Compute Pr(Dq|Hyp).
(d) Compute Pr(Dy|Hy).

11. Under

Hy : y = x; where fo(r) = 2v271 exp — (2%/2) U(x)
Hy :y = z; where f.(2) =cxp — (2)U(2)

x and z are statistically independent, and U{( ) are unit step functions.

(a) Determine the detector (in its simplest form).

(b) Determine the threshold(s) and sketch the decision regions.
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12. Prove that
e 1 (y — m)Q) 1 < m? ) H
— cxp | —— cx — dm 1
./,Oo 2mo P < 202 2m0m P 202, >
1 2 < 1
V2o P\ T2 Ho
can be reduced to
H,
2 2 2
> i QQU_Zm<1Il(’I7) —ln< >>
Hy '
13. Show that
2
ﬁ ! ex — ! Ui — i 3 H
i1 V2ro P 22 \"" TN — Y >1
Aly) = A > - 0
H exp | — Ui H,
i V2mo 202
can be reduced to
N H;
>
\/—_ Z < 'Y = (72 hl ( )
i1 ,
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Chapter 5

Non-Parametric and
Sequential Likelihood
Ratio Detectors

5.1 INTRODUCTION

This chapter deals with non-parametric detection, a topic that is more difficult
to analyze than the detection problems discussed in Chapter 4. We shall
introduce the reader to the topic in a simple fashion. This chapter serves as an
introduction to non-parametric and sequential likelihood ratio detection and
is meant to make the reader aware of these topics as well as to provide some
references. Much information about these topics can be found in the IEEE
Transactions on Aerospace, and some detailed information is also available in
Helstrom [1], in Kazakos and Kazakos [2], and in [3-5,7,8].

5.2 NON-PARAMETRIC DETECTION

Non-parametric detection can be used when the density function of the noise
is not known or is known ouly approximately. We usually assume that the
noise PDF is an even function or that the noise, on the average, takes on
a positive value just as often as a negative value. Typical book references
discussing this material are the texts by Gibson and Melsa [3] and Gibbons
[4]. Also, the book by Mclsa and Cohn [5] has a chapter dedicated to this
material.

117
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The statistical test is usually easily implemented, but the resulting demn-
sity functions are somewhat difficult to deal with. We shall look only at the
two simplest variations of this type of detector, but gencralizations to more
complicated weighting schemes can casily be visualized. The tests are based
on the Neyman-Pearsou criterion, which is familiar to the reader (see Chapter
4, Section 4.7). Mauny times we refer to these types of detectors as constant
false alarm rate (CFAR) detectors, siuce the false alarm rate is kept at a
constant level. We are using the terminology “non-parametric” in the engi-
neering sense referring to non-parametric and distribution free methods. As
the name implies, non-parametric refers to a class of distributions where the
number of parameters is so large that one cannot use just a few of them. The
distribution free method refers to a test statistic distribution which tends to
be insensitive to having exact knowledge of the data distribution [7].

5.2.1 Sign Detector

The optimal detector for a fixed voltage level (i.e., a positive constant) in the
presence of zero mean additive Gaussian noise is (see Example 4.6)

Hy
N >
Z_:lyn < T
n= HO

We could also count the number of times the samples exceed zero, which
requires N to be greater than one.

o

ol >
Z_:l U(fl/n) < T,

n= HO

where U() denotes the standard unit step function

1y yn>0
U(yn,){ 0: ;ﬂ <0

and T, denotes an appropriately chosen threshold. Basically, this detector is
a counter that counts the number of times the observation takes on positive
values. It does so on a sample by sample basis employing a uniform weight
of one. That is, no special emphasis (i.c., weight) is given to the magnitude
value of the data, i.c., the distance from zero. Since the number of positive
observations is counted, the detector is essentially counting the number of
positive sigus (i.e., it is a sign detector). The linplementation is very simple,
typically consisting of a hard limiter and an adder, but the performance
analysis is somewhat tedious. To provide some insight into the performance
the following analysis is undertaken.
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5.2.2 Performance Analysis of the Sign Detector

Given the observation (data), under

Hp Pr{yn, > 0|mo} =1/2 ) _
Hy Pr{y, > 0mi}=p>1/2 ° forn=1,2,---,J

Let us denote the sign of y, by

. 1; UYn > 0
T 05 Yn < 0

and

Pr (sn|mo) { 1/2; tn =0

1/2; yn:1

1—p; n =0
Prismlm) = {PQ ! :anl

where p is the probability of the data being positive, given that the fixed
voltage level my is transmitted. This leads to the likelihood ratio test (LRT)
as follows

J J Hl
A(s)fpz'":ls" Q_p >
B (1/2)7 < 0

Hy

Let JT denote the number of positive observations, then the LRT can be
written as

)

M= Ty
Jt Hl
| P >
= eo-a () 2 A
Hy

To simplify it to the point where it is in its most uscful form, we take the
logarithin to the base (p/(1 — p)). The expression can then be reduced to

Hy

>
JT - logp/(l_p) Ao —J logp/(l_p) 21 —p)] = Ay
Hy
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JT is the sum of Bernoulli distributed random variables. If the event with
paramcter myg is true, then the binomial distribution J* has paramcters J

and 1/2. That is,
n J—n
IV ()L
n 2 2
J\ (1Y’
n ) \2

The probability of saying Hi, given that Hy is true, which in radar/sonar
terms is called the Pry, is given by

ra= 3 (1)(5)

n=A;1+1

Pr (JT = n|mo)

If the event with parameter m, is true, then the binomial distribution J* has
parameters J and p

Pr(J" =mn|m;) = < ; > p" (1—p)/ "

and the probability of saying Hy, given that H; is true, which in radar/sonar
terms is called the Pp, is given by

J
'] n —n
Pp= Y < . )p (1-p)’
n=A1+1 )

These concepts are best illustrated with an example.

Example 5.1 Given that eight samples (y1,y2,---,ys) are used, and insist-
ing on a Ppa of 0.1, derive all pertinent information that governs a sign
detector and analyze the performance. Under

HO : Yn = Nn 1’],:172’...8
Hy @ yn=m+n,

where n, are i.i.d. zero mean Gaussian random variables n,, ~ N(0,02) and
the signal is a positive constant.

Solution: J =8, Pra =0.1.

Pra = 28: <S><%>8<0.1
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or .
> <8><25()
n
n=A1+1
Now,
i _ il
k ) k(i — k)
hence,
8\ . 8\ . 8\ .. 8\ ..
(8)-1 (7)=s (§)-= (5)-w
and
/8
Z( ):1+8<25
—\n
while

°. /8
Z( - >1+8+28>25
n==6 )

This makes A7 = 6. Hence, the LRT becomes

H,y
° >

Tt =) Ulyn) _ 6
n=0 H()

8 8
8\ /1 8+1
Pps = n§~< n ) <§> =256 = 0.035 < 0.1

8
Pp = < " )p”(l -p)""

-
=1

n

To obtain a feel for how the probability of detection varies with the probability
p under the Hy hypothesis (i.c., probability of the random variable y,, for
n = 0,1,---,.J, to be positive), we compute the detection probability for
different values of p.

Suppose p = 3/4, then
Pr (choose Hy|H; is true)

is given by

Pp = 8(3/4)7(1/4)" + (3/4)% = 0.367



122 Detection Theory: Applications and Digital Signal Processing

Suppose p = 0.99, then
Pr (choose Hy|H; is true)

is given by
7

Pp =8(0.99)7(0.01)* + (0.99)® = 0.997
Suppose p = 1.0, then

Pr (choose Hy|H; is truc)

would result in

Pp =8(1.0)7(0.0)! + (1.0)*(1)° = 1.0

5.3 WILCOXON DETECTOR

In the previous section we developed a counting procedure to find the number
of times the observation is positive. This approach also points out how the
detection scheme can be modified. This modification is a ranking or weight-
ing according to the distance from the line of dichotomy (i.e., zero in this
case) under the Hy hypothesis. Again the detector is used with a threshold
guaranteeing a CFAR type performance. The detector is modified to count
according to the rank of the observation. By this we mean

H,
J >
dodn _ T where | <yl < [ < |
n=1 H()

0 for yg, <0

where d,, = { n for yp. > 0

forn = 1,2,---,J

To illustrate the ranking, we show a typical data sct and extract the
detection statistic.

Example 5.2 Given the data set, where J =7
{yi}_, = {0.11, —0.4, 9.12, 0.12, —4.1, 6.0, 0.99}
the magnitude ordered set is given by
{0.11, 0.12, 0.99, |—4|, |—4.1], 6, 9.12}

{d.}=1{1, 2,3, 0,0, 6, 7}



Non-Parametric and Sequential Likelihood Ratio Detectors 123

H,y

! >
z:Zdn:w _ Tz

n=1 H()

where Ty still has to be determined.

Note this ranking is directly proportional to the position of the positive
values while accounting for the magnitude of the negative values. This tech-
nique can be modified to allow other rankings (weightings). Analysis of the
rank detector is not as simple as that of the sign detector. For more informa-
tion regarding non-parametric detection schemes, we refer the reader to the
references quoted at the end of the chapter.

A new, exciting arca of signal processing deals with higher order moments
and cumulants [9]. In some applications, one can use the momeunt (or cumu-
lant) to detect the absence or presence of a signal or component. For example,
Aktas and Hippenstiel [6] used thresholds based on fourth order moments to
reject noise in the reconstruction of a waveform in a wavelet band processing
scheme.

5.4 SEQUENTIAL DETECTION

The sequential likelihood ratio detection criterion was introduced by A. Wald
(1959), whose name it carrics (i.c., Wald’s scquential LRT). One can interpret
this technique as a modifiecd Neyman-Pearson test in which two thresholds
are established. Testing is done until one of the two thresholds is crossed.
This modified Neyman-Pearson test fixes the probability of a miss in addi-
tion to the probability of a false alarm. In the classical Neyman-Pearson
test, we compare the LR with a threshold which in turn is governed by the
Ppa, a given constant. In the modified Neyman-Pearson test (also called the
sequential probability ratio test (SPRT)), we use the likelihood ratio (LR)
and compare it at every update time (i.e., at each new sequential observation
point) with two thresholds. These thresholds are denoted by ng and ;. The
thresholds are determined by specifying a Pry fixed at a value of « and a
Py fixed at a value of . If the LR is larger than 77, we decide on Hy, while
if the LR is smaller than ng, we decide on Hg. If cither threshold is crossed,
the test is terminated and the appropriate decision is declared. If the LR
falls between the two thresholds then we defer the decision, that is we take
another sample and repeat the test. Let gy, 49, -, ¥y, represent the obser-
vations (assumed to be independent and identically distributed) denoted by
yr = (41,92, -,yr). Then the LRT becomes

_ Ly _ oy falee) T Alm) Aul) ;
Moo =250 = Lges = LRy man 51)
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Alyr) = Ayr-1)My1)

where the boldface quantitics are vectors and the non-boldface quantitics are
scalars. The vectors have an index that is used to indicate that they change
in the size of their dimension (i.e., increase as the test progresses). Hence, we
have a recursive arrangement for the LRT with initial condition

Aly1) = A(yp)
where A(ys) is given by
A(y2) = Aly1)A(y2) = Ay)A(y2)

For a specified (fixed) Ppa and Py, we need to derive thresholds g and 7
so that we meet the constraints:

« = Pps=Pr(choose Hi|Hy is true)
= / fO(yn) dY71r ; for 77’:1’27"'a[ (52)
. Jry
B# = Pyu=1—-PFPp

where Pp = Pr(choose Hy|H; is true)

Pp

/ filyn) dy,; forn=1,2,--- T (5.3)
. JRr,

If we multiply and divide the integrand of (5.3) by fo(y.), we obtain

/ Ji(yn)

P S Folyn)

fo(yn) dyn

/ A yn fO(yn) dyn for n = 1727' oo >I

To declare detection, the scqu(‘,ntial arrangement of the LRT is denoted by
SLRT

Alyn) = AMyn-1) Alyn-2)---Aly1) > m

must be true. Hemnce,

Pp = / A (yn) fo(yn) dyn > m / fo(yn) dyn
= mPra=mnmo
We also know that Pp =1— Py = 1 — 3 resulting in

Prh=1-02> mua



hence,

1-8

83

m <

Similarly,

Pu=p= [ R Fi(ya) dyn = //RA<y> folyn) dyn

To declare a miss

A(Yn) < 7o
hencee,
£ <no / [ folyn) dyn = no (1—q)
. J Rg
This leads to a bound on ng
I}
>
o = 1—a
The SLRT, at step I, becomes
Hy
>m
Alyr) take another sample
<o
Ho

This is interpreted as if A(yr) > 71, we declare Hy to be true, and if A(y) <
1o, we declare Hy to be true. If A(yr) > no, but smaller than 7y, we take
another sample, going to A(yr41) and repeat the test. Note, we assumed
in all the derivations that the samples are i.i.d. and that the probabilities
Py = and Prag = o remain constant throughout the whole test.

This type of test allows the user to use computational resources more effec-
tively, since the test typically could be terminated carlier (with the modified
Neyman-Pearson constraints). In other words, once the presence or absence
of a target has been determined with an acceptable level of error (Ppa or
Pyr), other possible targets can be interrogated while data related to the just
declared detection or non-detection is delegated to a tracking or classification
network.

Example 5.3

Under Hy : y(n) =n(n) o
Under Hy y(n) =m+n(n) forn=1,2,---

The additive noise is Gaussian (i.i.d.) with zero mean and variance o2. We
want to terminate the test (SPRT) when Py < «q or Ppa < as.
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[}

o%/m In (n;)

o%/m In (1)

Y R

declare D,

Figure 5.1: LRT versus the number of samples (test terminated at n = 6).

We Enow that
1-— P]y[ - 1-— 1

Pra o%)

m <

and that
Py o

1—PFA:1—()/2

no =

The SLRT, at step I, becomes

H,y
>m
2 I 2 I 2
Alyr) = e/ (207 (anly,,,,—znzl(z/,,,—m) ) take another sample
<o
Hy
Simplifying the above expression leads to
2
o mn
—In + —
Hy 7, (1) D)
I >
z = Z Yn take another sample
n=1 <
Hy 2 mn

o2
1 _°
m n(mo) + 2

Figure 5.1 demonstrates the outcome of a particular test where for I =
1,2,3,4, and 5, another sample needs to be taken since neither of the two
thresholds are crossed. When I = 6, the lower threshold is crossed, allowing
the declaration of event hypothesis zero to be true.
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5.5 SUMMARY

The general concept of non-parametric detection is introduced in Section 5.1.
The concept is illustrated with the sign detector in Section 5.2, whose charac-
teristics are also derived. Section 5.3 introduces the Wilcoxon detector, which
ranks the observations. The concept of sequential detection is introduced in
Section 5.4. Sequential detection permits termination of the detection test
when a prescribed level of false alarm or probability of a miss is achieved.

5.6 PROBLEMS

1. Computer Exercise.

Under
Hy : r(i) = so(i)+mn.(3) ,where sg(i) =0
Hy @ r(i) = s1(8) +n.(4) ,where s1(i) =1 i=0,---,9

Let n(i) be Gaussian, i.i.d. ~ N(0,1/9). For this simulation exercise,
we define the received noise n,.(i) having three different PDFs (i.e.,
Gaussian, product of Gaussians, and the ratio of Gaussian that is a

Cauchy):
6w = n@
() n(i) = =

n (i)
(iii) n.(i) = n@) ni(9)
where nq(4) is a Gaussian r.v. zero mean, variance = 1/9 and statisti-
cally independent of n(i). Use 1000 realizations.

(a) Design optimum detector for noise defined in (i). Plot simulation
based ROC curves for optimum, signal, and Wilcoxon detector.

(b) Repeat the experiments for noise defined in (ii). Use the optimum
detector based on assuming the noise is Gaussian, the sign and
Wilcoxon detector. Plot their experimental ROC curves.

(¢) Repeat the experiments for noise defined in (iii). Use the optimum
detector based on assuming the noise is Gaussian, the sign and
Wilcoxon detector. Plot their experimental ROC curves.

Jomment on your results.
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Chapter 6

Detection of Dynamic
Signals in White Gaussian
Noise

6.1 INTRODUCTION

Initially, we will cover the detection of known signals embedded in white
Gaussian noisc. That is, we assume that we know all of the signal and noise
parameters. This is an ideal case. Later in this chapter, we will remove
some of the limitations in that we will allow the parameters to be random or
unknown. In Chapter 7, we will allow the Gaussian noise to be colored (i.e.,
the noise process is not delta correlated). The bilateral white noise spectral
density is given by Sy (w) = Np/2 and the corresponding correlation function
is given by Ry (7) = Np/2 6(7). Note, as long as the noise is spectrally flat
over the region of interest it can be interpreted as bandlimited white noise.
We minimize the use of complex valued functions when possible and point
out the changes when dealing with complex valued functions. Typically, the
extensions to complex valued functions require the complex conjugation of
the sccond term in the definition of the inner product. The sccond edition
of Detection of Signals in Noise by McDonough and Whalen [10], has ample
examples using complex valued emntities.

We will let the signals be continuous functions of time and sample them
properly, rather than starting with fixed quantitics as in Chapter 4. Onc
could have introduced signals with a time varying nature in Chapter 4, but
for clearness of presentation this was not attempted. This particular ap-
proach introduces the processing of data in a natural fashion. That is, the
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n (1)

Optimum Choose
receiver proper 1,

§; ® 2 > y (f) —P

Figure 6.1: Binary detection.

setting up of the continuous time problem as a discrete time problem allows
the application of the techniques learned in Chapter 4. It also allows the
direct derivation of the discrete time version of the appropriate detectors.
This chapter derives the discrete time correlator and hence, the discrete time
matched filter. In addition, we are exposed to the projection of the data onto
a set of basis functions. The data is projected onto a replica of the signal
(i.c., the signals serve as the basis function). This is our first exposure to the
concept of an inner product in a Hilbert space sctting.

Section 6.2 will address the digital and analog correlator solution, while
Sections 6.3 and 6.4 address the matched filter approach. In Section 6.5 we
will extend the binary case to the more general M-ary case. The notion of
paramcter uncertainty will be taken up in Section 6.6. In Scctions 6.7 and
6.8 we will examine the multi-pulse scenario as well as the notion of coherent
and non-coherent averaging.

6.2 THE BINARY DETECTION PROBLEM

Suppose that one of two possible communication signals is transmitted. That
is, when hypothesis Hy is true signal so(f) and when hypothesis Hy is true,
signal s1(¢) is sent. This is a binary hypothesis problem where the additive
noise (as specified above) makes the detection difficult. The binary detec-
tion scenario is shown in Figure 6.1. Since at this time, we only know an
approach based on samples (i.c., data points), we will address this problem
in a way very similar to the hypothesis testing procedure in Chapter 4. To
analyze the situation, we conduct a Gedanken experiment (thought experi-
ment) which allows us to use the tools that we have already acquired. During
this derivation, we assume that the noise is bandlimited. This translates into
knowledge about the zero crossing of the noise correlation function and al-
lows, in theory at least, a sampling procedure where the sampling interval
corresponds to the distance from the origin to the first zero crossing of the
noise correlation function. Since the noise is Gaussian and the samples due
to the sampling approach are uncorrelated, the samples are also independent
under cach hypothesis. The continuous waveform y(t) is sampled and once
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a description in terms of a likelihood ratio of the data sequence is obtained,
a limiting argument allows the sampling interval go to zero which in turn
allows the description of the optimum receiver in terms of time continuous
variables. This approach is advocated in Whalen [1] and helps to relate to
the concept of representing signals and/or noise using weighted basis func-
tions. In this context, we realize that a data sequence can be thought of to be
an arrangement of weighted Kronecker delta functions, where the Kronecker
delta functions form a complete ortho-normal basis set [5 7).
The known analog signals of duration T have the following representation,

under

Ho = y(t) = so(t) +n(t)

; for0<t<T

Hy = yt) = si(t) +n(t)
Sampling these components (we assume that the signal is sampled at least at
a rate correspouding to the Nyquist rate) leads to the description

y(t'm) — Ym = Sim T Nm

for1<m<k and i=0,1 (6.1)

that is, under cach hypothesis k samples arc available. Using the expression
from Chapter 4, we can casily write an expression for the LRT as

o
Jilyn, 2, uk) > ‘
A = A 6.2
(y) fo(?/173/2a"'7yk) < ( )
Hy

where X\ depends on the criterion that is being employed. For the time being
and without loss of gencrality, we leave it as A, knowing that at any time
we can replace this symbol with the appropriate numerical quantity if that
is desired. We notice that the left-hand side of expression (6.2), is just the
ratio of two likelihood functions (or, if interpreted correctly, the ratio of two
conditional probability density functions).

Bandlimited white Gaussian noise with spectral density as shown in Figure
6.2 has the corresponding correlation function shown in Figure 6.3. We recall
that the correlation and spectral density function are related by a Fourier
transform (i.e., the Wiener-Khintchine theorem, also known as the Wiener-
Khintchine-Kolmogorov-Einstein theorem).

In cquation form, the spectral density and corresponding correlation func-
tion arc given by

No/2 for |w| < Q .
Sv(w) = { 0 o/ else‘ | (6.3)
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Figurc 6.2: Bandlimited white noise: spectral density.

RN ©)

N,Q/2n

=3n/Q 21/Q  —m/Q n/Q  2n/Q  3n/Q

Figurc 6.3: Bandlimited white noise: correlation function.

and

~ No , sin(Qr7)
R]V (7—) - % Q (527)

_ o 2 sinc (Q71) (6.4)
2T

The first zero crossing of the correlation function is at the correlation lag
where 7 = At = n/€Q. If we sample using this sampling interval, then all
noise samples are uncorrelated and the joint density (likelihood) function can
be expressed as the product of independent terms. This makes the derivation
of the optimal detector very simple. To have a proper LR function expression,
all we need to find is the mean under each hypothesis and the variance. The
variance in this case, is independent of which hypothesis is true. The mean

under cach hypothesis is

Elym| = Elsim + 1) Sim; fori=0,1

m=1,---,k (6.5)

The computation of the variance is just slightly more complicated. For ex-
ample, under H; we have

02 = Elym— Eyml’

Ym



Detection of Signals in White Gaussian Noise 133

= I [Sim + Ny — Siml:)

N
2 0
= oy = Ry(0) = — Q 6.6
3= Rw(0) = 32 (6.6)
which is independent of the hypothesis 4. Using k independent samples (At
units apart, taken over the time segment (0,7)), we obtain the likelihood

functions as given by

k

1 1 .
- - m — S1m)” 6.7
fl (y) (27_[_0_ )k/Z exp 2(7]2\7 — U 3 S1 ) ( )

1 T

2
= Xp — m — Som. 6.8
fo(y) Zron i P 5,7 mz::l(?/ — Som) (6.8)

The LRT (6.2) becomes
k H1
Aly) = ! QWmSom — 2Um 2 21 ‘

(y) = exp *ﬂ Z_:l ( YmSom — 2YmS1im — ['50m - '51m]) < (()9)

As always, these types of expressions are reduced to the simplest form. Taking
the natural logarithm and simplifying, lcads to

k <$ k
_Z%SOM P WY Z s —s2) (6.10)
oN < 2 ON
m=1 . m=1
0

If we multiply through by the variance of the noise, we obtain the discrete
(also called digital) correlator form. So, if we are dealing with discrete sam-
ples, we would stop here and implement the digital correlator. This correlator
is of the form

H,y

k k >
Z Ym S1m — Z Ym Som < n (()11)

m=1 m=1 Ho

The threshold is casily obtained from the discussion leading to the digital
correlator form. The discrete (digital) correlator is shown in Figure 6.4.
The final part of this section deals with the analog version of the detector
implementation, so we need to apply some limiting arguments. To do this,
consider the expression for the variance of the noise samples. For a bandlim-
ited white noise process with spectral height No/2, the variance is given by
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Figure 6.4: Discrete time correlator.

0% = NoQ/(2m). A bandlimited process needs only to be sampled at twice
the highest spectral frequency. In this case, the sampling frequency in radi-
ans/scc is fo = 2Q = 2w /At, hence Q = w/A¢. The noise variance becomes
0% = No2/(2m) = No/(2At). This allows (6.10) to be written as

Hy
k 29m S0 k 2Um 81 >
o lim — Z TOAIL—F Z N—OAIL < In A
At—0 3At k=T m=1 m=1 H,
k
_1 ($8m — $1m) At (6.12)
NO m=1

In the limit, the sumimations become integrals so that we obtain the following
expression

H,y
T2 T2 > T, )
L~ y(t) s1(t) dt—( . No y(t) so(t) dt < In >\—|—( N (s7(t) — sg(t)) dt
Ho
(6.13)
One can normalize this expression to obtain
IEf
T v T
N 1
/ y(t) s1(t) dt—/ y(t) so()dt — =2 In A= / (s1(t) — s3(1)) dt = Ty
Jo Jo < 2 2 Jo
Hy
(6.14)

This detector is shown in Figure 6.5. In the right-hand side, the threshold
has been simplified to be represented by the single symbol Tj.
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Figure 6.5: Correlation receiver.

We note that this is a correlation receiver. That is, the input is correlated
with the stored replicas of the signals so(t) and s1(¢) for a time delay of zero.
If a maximum likelihood approach is used and both signals have the same
cnergy, then the test reduces to the determination of which correlator has the
dominant output. For the Neyman-Pearson type criterion, we will disregard
the value of Ty altogether. The appropriate threshold is obtained by solving
for the value under the zero hypothesis, to guarantee the desired Pry. We
also note that if our problem calls for the implementation as a communication
receiver, then substituting the known values into the expression for A (i.c.,
Py = Py, Coo = C11 =0, Cp1 = C1p = 1) leads to a A of one. Let us now
define a convenient test statistic for the receiver and obtain the performance
of the receiver.

The desired test quantity is G, and with In A = 0, we obtain the following
expression

H,
G:./o y(f)(sl(t)—so(t))dwr%/O (so(t) — s7(1)) dt z 0 (6.15)
Hy

Since y(t) has a Gaussian PDF, a scaled and integrated version of it also has
a Gaussian PDF. Hence, G as defined in (6.15) is normally distributed. To
obtain values for the performance of the detector, only the means and the
variance of the Gaussian random variable G have to be obtained.

6.2.1 Performance Analysis

This is also a very convenient place to evaluate the performance of some
standard digital communication modulation techniques. We use some sim-
plifying assumptions to enhance the comparison. We assume that Py = Py,



136 Detection Theory: Applications and Digital Signal Processing

Coo = C11 =0, and Co; = C1p = 1. This is the minimum probability of error
criterion introduced in Chapter 4, resulting into a threshold of A = 1. Hence,
the recciver (detector) and threshold can be made as shown in (6.15).

To obtain the optimal recciver (detector) form and threshold is not suffi-
cient. Oune also needs to determine the performance. This is most easily done
using the probability of error, which, due to the costs and prior probabilities
is numerically the same as Pr(choose Hq|Hp is true). We recall that a scaled
Gaussian random variable is still a Gaussian random variable. Hence, the
random variable G is Gaussian under cach hypothesis. To compute any of
the performance indicators we need to find the means of G under each hy-
pothesis and its variance. Under each hypothesis (inay it be Hy or Hy), the
variance is identical for this type of detector. The mean of GG, under the zero
hypothesis, is denoted by

E(G|Ho) = Eo(G) (6.16)

Disregarding the noise dependent terms that cquate to zero, i.c., the first
order moments of the noise are zero, we obtain

Eo(G) = E

Aswﬂmm—mmw—éé<ﬁw—%wmﬂ

E

/T (s0(t)s1(t) — s3(t) — 0.5s7 () + 0.553(¢)) dt] (6.17)
J0

This can be simplified to

1

Bo(G) = =3 [ (a(t) = sl (6.18)

The mean under the one hypothesis is computed similarly and is given by

B(GIm) = Bi(G) =g [ ()= s

— (@) (6.19)

The variance is a little more difficult to compute. We recall that the variance
corresponds to the AC power in electronic circuits or in terms of statistics,
it describes the spread of the probability density function about its mean.
That is, it is independent of the mean (i.e., the DC termn) and in this case can
be computed cither under the zero or the one hypothesis. Usually, we check
which way the result can be obtained more casily. In many cases, the zero
hypothesis results in a zero mean. Under this condition we prefer to compute
the variance under the Hy hypothesis since the second moment corresponds
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to the variance and no special consideration for any mean value has to be
taken. In our case, we arbitrarily choose to work with the zero hypothesis
(the one hypothesis requires the same amount of computation). We define
the variance of the Gaussian test statistic as

varg, = E[(G|Ho) — E(G|Hy)]® = E[(G|H,) — E(G|H,)]> = varg, (6.20)

Now, we first examine the expression

GlHy — Bo(G) = / (s0(t) + (1)) (s1(2) — so(t)) dt

T
= /0 n(t) [s1(t) — so(t)] dt (6.21)

Using (6.20), we note that the variance expression becomes

T 2
varg, = F </0 n(t) [s1(t) — so(t)] dt)

= [ [ Bmono) ) - o) ba(o) — so(e s

T
- % ./0 [51(1) — so(t)]” dt = varg, (6.22)

Rather than carrying this somewhat cumbersome expression further along,
we use some simplifying terms. Let us define the following terms

T
- %/O [2(1) + $2()] dt (6.23)
) = é/o so(D)sy (D)t (6.24)

We note that € and p represent the average energy and the normalized cross-
corrclation coefficient, respectively. This means that p is bounded above by
1 and below by —1. We can now express the following integrals in a more
compact form

T T T
/0 [s1(t) + so(D)]dt = /0 [s6(t) + s1(1)] dti?/ so(t)s1(t)dt

0
= 2e+2ep

= 2(1+p) >0 (6.25)
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Using these expressions, the means and the variance of the Gaussian random
variable G become

Ey(G) = —e(1—p) (6.26)
B(G) = <(1-p) (6.27)
varg, = varg, = No(l—p)e (6.28)

The PDFs of G under the zero and one hypothesis are ~ N(—e(1—p), Noe(1—
p), and ~ N{(e(1 — p), Noe(1l — p)), respectively. The threshold is given by
0, the halfway mark between the means where either Hy or Hj is free. The
probability of choosing H; while Hy is true (i.e., Pra in the radar and sonar
terminology) is given by

(/O.C>o folg)dyg

Pra

/'00 e—(9+(1=p))?/(2Noe(1—p))

Jo V27 Noe(1 — p)
_ e(1—p)
- ¢ < Noe(1 — ﬂ))

e(1—p)

= .2
o [\ (6:29)
The probability of error is
1 1
Pg = =P =P,
E 5 rA + 5 i
= Pry (6.30)

hencee,
€ C

We notice that the probability of error depends only on p, £, and Ny and is
therefore independent of the signal shape (i.e., ouly momeunts related to the
sccond order arc important).

We can now cvaluate this expression for various values of p. Especially,
the values 0, —1, and +1 are the most interesting ones. If p = 0, then

Py — / fo(g) dg
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10 1 2
_ = e~ +e)7/(2Noe) 4
/0 (27 Noe) 172 © 4

= of[2])”)

Py =

If p=—1, then

e (9+=2)%/(2No2e) g

00 1
/0 vV QWQENQ

°(77z) -olVx)

If we compare the complementary crror function integrals for p equal to 0
and —1, we note that the latter expression has half the variance of the first
one. In other words, the noise power has been halved or the effective average
signal cnergy has doubled. This shows that if signals having a normalized

cross-correlation cocfficient of —1 arc used, then this modulation scheme has
a 3 dB advantage over the one that uses signals with a normalized cross-
correlation coefficient of 0.

If we let p = +1, then s1(t) equals so(t) and

00 o—9%/2 1

- —dg = =

Jo V2w 2
This indicates that only half of the time we would make the correct deci-

sion. This constitutes very poor reception, but that should be obvious when
we recognize that we would use the same symbol to represent two different

PEE

Messages.
Example 6.1 Coherent Phase Shift Keying (CPSK). Under

Hy : s0(t) = Asin(wot)

Hy - 51(t) = — Asin(wot) for0<t<T

and wo 18 such that in T seconds an integer number of periods are generated.
The two messages are two sinusoids 180 degrees oul of phase. During trans-
mission, white Gaussian noise with variance equal to No/2 is added to the
signal. Hence,

AT
2

T
€= / <A2 sin® wot + A? sin® wot) dt =
0

| =

and

T
/ — AZgin? wotdt
0

hs
Il
o | =

= -1
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The probability of error is given by

Pg

00 o—(y+2¢)?/(2No2¢)
d
/0 Nz i

ol

This is the optimum system since the normalized cross-correlation coefficient
equals —1. Typical error probabilities are shown in Figure 6.0.

Example 6.2 Coherent Frequency Shift Keying (CFSK). The two messages
are transmitted of two different frequencies.

Hy : s0(t) = Asin(wot) N

oy : s1(t) = Asin(wt) for0<i<T
We assume that wo and wy are orthogonal, that is, over T seconds of observa-
tion the projection of one of the sinusoids onto the other is zero (i.e., p=10).
The communication channel adds white Gaussian noise with variance equal
to No/2. Since both signals have the same amplitude (i.e., amplitude = A),
they have the same energy (A2T/2). Hence, the average energy

T T
€ = %/0 (s‘;’(t)Jrsg(t))dt:%/O (s3(t) + s1(1)) dt

1 /T
= 3 / <A2 sinwot + A% sin 2 wlt) dt =
Jo

is the same as in Example 6.1. Using (6.29) the probability of error is given

“’ re-a(/F)

This performance is 3 dB worse than the one for CPSK. A typical perfor-
mance curve is shown in Figure 6.6.

Example 6.3 On-Off Keying (OOK, or amplitude shift keying (ASK)).

Ho : .S’o(f) =0

for0<t<T
H, : s1(t) = B cos(wrt) -
The normalized cross-correlation coefficient is, by inspection, zero (p = 0).
The communication channel adds white Gaussian noise with variance equal
to No/2. Only one correlator is needed to account for the signal s1(t). By
definition, since there is no energy used for signal so(t), the average energy
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Figure 6.6: Detectability of CPSK, CFSK, and OOK.

is half of the energy of signal s1(t). Sometimes we refer to this type of mod-
ulation as amplitude shift keying (ASK). The energy of signal s1(t) is given
by

BT

T
€1 = —/ B2 cos® wy tdt =
2 Jo

We denote this average energy by €1, where g1 represents half of the energy
in signal s1(t). The probability of error becomes

o)

If the average energy €1 can be made numerically equal to the average energy
e transmitted in the continuous frequence shift keying (CFSK) scheme (i.e.,
let B =+/2A), then, OOK will have the same performance as CFSK. This of
course would require a higher modulation amplitude (by 41.4%) which may
be a serious consideration in some applications. A larger peak power, higher
voltages, etc., would be needed. If the amplitude of signal s1(t) equals the
amplitude of the CFSK (i.e., B = A), then there is a & dB loss relative to
CFSK performance. Typical performance results are shown in Figure 6.6.

In summary, these three examples show the performance of three very
typical digital modulation schemes. If the signal amplitudes are identical
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then CPSK will outperformn CFSK, which in turn outperforms OOK. If the
amplitudes are kept identical, the processing loss is 3 dB when going from
CPSK to CFSK and an additional loss of 3 dB when going from CFSK to
OO0K.

Example 6.4 Radar/Sonar Reception. We can interpret the radar and ac-
tive sonar detection scheme as a realization of OOK. The received data is
given by

Ho = y(t) = n(l)
Hy : y(t) = Acos(wit) +n(t) for 0st<T

The channel (medium and electronics) adds white Gaussian noise with vari-
ance equal to No/2. The optimal detection statistic, modifying (6.14), is given

by

Hy
T S
L= / y(t) syt >
Jo <
Hy

where s(t) is the signal under the Hy hypothesis and 1 is the appropriate
threshold. We assume al this time (known signal) that we have an accurate
description for the signal (i.e., we disregard Doppler, dispersion, attenuation,
etc.). For the engineer studying detection theory, this particular example is
a very tmportant one that helps to form an understanding of the core ideas.
The majority of details are worked out earlier in this section and will be used
to minimize the work.

The mean of L under the zero assumption is zero. The mean of L under
the one assumption is &1 = (A*T')/2. The likelihood functions are given by

Jo(f) ~ N(0,07)

and
f1f) ~ N(e1,07)

The variance (under the “zero” as well as under the “one” assurnption) is
0% = (Nope1)/2. The probability of false alarm Pp 4 is given by

00 o—(%/(Noe1)

Jn /(27 Nge1/2) o

PFA = /C>o fo(/) df =
Jn

2
= Q(n 51N0>

In the radar/sonar problem we use the Neyman-Pearson criterion which fizes
the constant false alarm rate (CFAR). The actual threshold n is obtained by
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Figurc 6.7: Radar/sonar detector.
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Figurc 6.8: Correlator.

examining the test statistic (i.e., detector output) under the Hy hypothesis and
computing the threshold n from the statistic and the fized alarm rate value.
The probability of detection is given by

Pp

/-oo e—(t=€1)?/(20})
n

\/ 2%0%

= Q<(77—51) 63%)

The final detector and its threshold, for an arbitrary start time to, are given
in Figure 6.7. Typically, the false alarm rate is kept at a very small level, in
the order of 10712 to 1075,

6.3 MATCHED FILTERS

In Sections 6.3 and 6.4, to make the notation simple, we re-label the input
as z(t). This follows the general systems notation, labeling the inputs as ()
and the output as y(t). If we re-examine the detector of the last section (the
corrclator), we realize that the multiplication by the replica and the follow-on
integration can be replaced by a standard convolutional filter. The correlator
is reproduced in Figure 6.8 while the convolutional filter is shown in Figure

6.9.
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T
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Figure 6.9: Convolutional filter.

The correlator output, for an arbitrary input z(t), at time T is given by

T
wol®) = [ o) sa(0) (6.32)

while the filter output at time 71" is described by

we(T) = [ (T =) () ar (6.33)

We note that the filter output is written as being produced by a causal input
operating on a causal system. Suppose hq () is related to s1(t) by

hi(t)=5(T—1); for0<t<T (6.34)

where hi(t) is a time reversed (i.e., a time mirrored) version of s1(¢). Then
the output of the filter is given by

T
yp(T) = !/0 (T —7) 51(T — 7)dr (6.35)

With the change in variables T'— 7 = ¢ and —dr = do, the output becomes

pe() = [ (o) silo) (<) do

JT

T
= /O x(o) s1(0) do (6.36)

We note this equals the output of the correlator if it is evaluated at time T'.
Since the respouse of the filter is matched to the signal to be detected, this
technique is called the “matched filter.”

For binary hypothesis testing, we have two channels as shown in Figure
6.10. Note the concept casily extends to the many (M-ary) hypothesis by
allowing a matched filter for each signal to be detected. A typical set up
is shown in Figure 6.11. This parallel filter arrangement is also known as a
matched filter bank. We can also express the response of the matched filter
in the frequency domain. Let

T
S(jw) = !/0 s(t) e 7t dt (6.37)
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Figure 6.10: Two channel detection.
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and
T

H(jw) = /0 h(t) e 7" dt (6.38)

Now, hopt (1) = s(T' —t) and assuming that s(t) is real valued, hence

T
Hopt(jw) = / s(T —t) e at
Jo

*

(./()Ts(t) e—Iwt dt) e~IwT

Hopi(jw) = e 19T 8% (jw) (6.39)

or

6.4 MATCHED FILTER APPROACH
(maximizing the output SNR)

When a known signal might be embedded in white Gaussian noise, the match-
ed filter can be derived using a criterion where one maximizes the output
SNR. This obtains an optimal receiver structure by maximizing the output
SNR, rather than minimizing the Bayes’ cost. For the Gaussian noise case,
the optimal detector (recciver) will be the same, independent of the criterion
used. A brief description follows. Suppose there is a deterministic signal
embedded in white Gaussian noise, then the input to filter can be written
as 2(t) = s(t) + n(t). The output of the filter can be described as y(t) =
ys(t) + yn(t). The subscript denotes the output due to the signal and the
noisc input. The output SNR can be expressed as

[ys(T)]>  signal cnergy

SN Ry= = —— (6.40)
vary . (r) noise power
where
T
ys(T) = / h(t) s(T —7) dr
Jo
and

(T = [ h) n(T =7 dr

The noise correlation function is given by E{n(t1)n(ta)} = (No/2)6(t1 — o).
The noise power at time 7' is obtained by first computing

T T
lyn (1)) = /0 '/0 h(11) h(12) n(T — 1) n(T — 1) d11 d7o (6.41)
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and then applying the expectation operator
2 Tt No
Blux0 = [ [ hn) hr) 52 or = 72} dry
Jo Jo

No [T, .
= 70/0 h2(r) dr (6.42)

The second moment is numerically equal to the variance when no DC com-
ponent is present. In our case then, the last expression represents the output
noise variance at time T. The output SNIRR becomes

) [_/O.Th/(T) s(T — ) dT‘| 2
SNRy=— -
'/0 R2(7) dr

No
Using the Schwarz inequality, the last expression becomes

T 2

. [/0 h(r) s(T —7) dr o T 1

SNRy = — 1< / s (T—71)dr  (6.43)
0

N, T No
0 / h2(7') dr 0
Jo

The equality ouly occurs when the impulse response h(t) is proportional to
the time mirrored signal s(T" — t). Uunder these conditions, the theoretical
maximum of the output SNR is achieved, that is

T
SNRy = 2 / 4T —7)dr (6.44)
No Jo

The optimum detector, using the criterion that maximize the output SNR, is
called the matched filter for the obvious reason that the impulse response and
the time signal are related (ie., matched). Note we obtain for this scenario
(known signal in white Gaussian noise) the same solution as if we minimized
a cost function as defined in Chapter 4.

6.5 M-ARY COMMUNICATION SYSTEMS

Suppose there are M possible signals which are orthogonal over the signal
interval and that they have equal energy. Under

Hy y(t) = s1(t) + n(t)
HQ . jl/(t) = ,5‘2(75) + Tl(f)

Hy © ylt) = su(t) +n0)
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Figure 6.12: Correlator bank (M-ary detection).

Since the signals are orthogonal and have equal energy, we have

T E 1=]
o= [ w51

where the detector is of the form

T
G, = (/0 y(t)si(t)dt

The detector consists of M parallel correlators (see Figure 6.12), which arc
compared at time T to choose the dominant output. This cquates to choos-
ing the proper hypothesis (i.e., signal). Figure 6.13 shows the equivalent
implementation using matched filters.

6.6 DETECTION OF SIGNALS WITH
RANDOM PARAMETERS

In this scction, we will allow some uncertainty in some of the parameters of
the signals that are to be detected. This is a continuation of the material
introduced as the nuisance topic in Chapter 4, Section 4.9. Again, by using
Bayes’ rule of conditional densities and the application of marginal densities,
we arc able to average out the random fluctuations of the paramcter(s) if the
situation warrants it. To simplify the presentation, we will only address and
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Figure 6.13: Matched filter bank (M-ary detection).

illustrate the simple uncertainties that can occur in the reception of a signal.
In particular, the random phase, random amplitude, random frequency, and
random arrival time will be addressed. But, this suffices to illustrate the idea
behind the removal of the nuisance parameters. Since we work mainly with
analog (continuous time) functions, we need to address the continuous time
version of the likelihood function first.

6.6.1 Likelihood Functions

In Scction 6.2, the continuous time correlator was derived. This was accom-
plished by performing a Gedanken (thought) experiment. It was assumed that
the bandlimited noise is white, having a sinc-type correlation function. The
sinc function was examined for the time lag of its first zero crossing which,
if the process is sampled at multiples of this time increment, results in un-
correlated, hence independent noise samples. A limiting argument was then
applied to obtain the continuous version of the likelihood ratio. The discrete
form of the correlator was derived since it paves the way for decompositions
in which orthogonal representations, using a variety of series expansions, will
be used (sce Chapter 7). The likelihood function development is introduced
here since we need the likelihood function in its analog (i.c., continuous) form
in this scction.

For the i*" hypothesis we have the discrete version of the likelihood func-
tion

Af m/2 m N2
fily) = <7TNO> 6_(1/1\70)Zk:0(?/k_51k) At (6.45)
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where y denotes a vector of size m. Let time m — oo and At — 0 such
that mAt = T, the duration of the signal. The continuous version of the
likelihood function becomes

T
fily) = K =0/ [ =it ar (6.46)

where K is a positive constant.

6.6.2 Random Phase

To examine the technique on signals having a phase uncertainty, we assume
that under

Ho . .S’o(f) =0

H © () = Asin(wit o) or0stsT

The PDF for 6 is given by fo(8) = 1/(2r), for —m < § < w. The noise
is additive white Gaussian noisc with spectral density No/2. The received
signal is given by

Ho = y(t) =n(t)
Hy : y(t) = Asin(w.t + 0) + n(t)

As shown in the composite hypothesis testing section, we use

[rworneaw
Aly) =+ o) < Mo (6.47)
: b

Now, using (6.46) for the zero hypothesis, we obtain
Foly) = Ko (/N0 [ ool ar
while the one hypothesis leads to
T o 2
Fiy]0) = Ke—(l/No)fO [y(t)— A sin(wt+0)]2dt
which becomes
fl(y|9) _ Kef(l/No) fOT[yg(t) — 24 sin(wet+0) +a? sing(wct+9)] dt

Expanding the sccond quadratic term of the exponential in the last ex-
pression leads to

T T AQ T AQ
/ A% sin®(wet + 0)dt = / —dt — / — cos(2w.t + 20) dt
Jo Jo 2 Jo 2
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If the integration time T > 27 /w. is much longer than the period of one
cycle of the sinusoid, then the sccond term in this equation can be neglected
and the integral is approximately equal to A2T/2. Of course, if the period
of the sinusoid is such that in T scconds an integer number of half cycles arce
described, then the second term is automatically equal to zero. Hence, the
LRT becomes

27 T, .
e—(AQT)/(QNO) / 6_(1/N0) (]OT(:'IH(T/)—QQI(T/)A sul('udct-‘rg))dtde/(gﬂ_)
Ay) = =

T
e—(l/No) jo y2(t) dt

This can be further reduced using the trigonometric identity sin(w.t + ) =
sin(w.t) cos(0) + cos(wet) sin(f) to

"D
4T de
A(U) — e*AQT/(QNo) /0 e(?Aq/No)coswao) o (648)

Here a simplification of the form

T
/ y(t) sin{w t)dt = qcos(bp)
Jo
T
/ y(t) cos{wet)dt = gsin(fp)
Jo

and the trigonometric identity cos(fg)cos(6)+sin(g) sin(f) = cos(6p—0) were
used. Now, the following integral will simplify the expression for the LRT

1

27
o T cos(9+a)d6 B
27T Jo € O(x)

where a can be any real number and Io( ) is the modified zero-order Bessel
function of the first kind. Note, the parameters can also be translated into
the lower and upper limits of the integral (i.c., change of variables). What
matters is that the support of the integral is exactly over 2. The LRT
becomes

o,
_ 2Aq\ >
Aly) = e— (A*D)/(2No) A A
()=e o(F2) 2 % (6.49)
Hy
This can be further simplified
Hy
249\ > A2T/(2Ng) -
Io < No ) < )\0 e (()OU)
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The modified Bessel function Ip(2Aq/No) is a monotonically increasing func-
tion of ¢ (sce Appendix D). Thercfore, cither g itself or ¢? can be used as a
decision rule. The detection rule becomes

H,y

q z Mo (6.51)
Hy

or
o,
> .
@ _omo=m (6.52)
Hy

For a specified Ag, the threshold ny for the detection rule in (6.51) is obtained
by solving
_ - army/eNgy g (oA -
)\0 =€ Io <2 No ) (()05)

The correlator and matched filter based detectors are shown in Figures 6.14
and 6.15, respectively. One can use ¢ or cquivalently, ¢2 as the detection
statistic. The quantity ¢ is proportional to the power spectral density at
frequency we. A little thought will reveal that the implementation in Figure
6.14 corresponds to a power spectrum analyzer. Based on the discussions
in Chapters 2 and 3, we realize that under the noise only condition, the
quantity ¢? will have an exponential PDF (i.e., chi-squared with two degrees
of freedom). If the signal is present (i.c., Hi is true), the random variable
¢? will have a non-central chi-squared PDF. We notice that the output of
the correlators of Figure 6.14 correspond to a finite time Fourier transform
of y(t), where the top leg and bottom legs correspond to the imaginary and
real part of the transform, respectively.

The quantity g corresponds to the envelope. When the hypothesis Hy is
true, g will have a Rayleigh PDF. Conversely, if the hypothesis Hy is true, g
will be a Rician variate.

6.6.3 Random Amplitude

The same procedure as for the random phase case is followed. That is, an
LRT of the form

[ 5i0) st o
= h A

> - =
Aw) fo(y) < % (654
Hy

is formed. From physical insight or a worst-casc scenario, the probability
density of the random variable a can be estimated if the PDF is not available.
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Figure 6.15: Matched filter implementation.
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6.6.4 Random Amplitude and Phase
The LRT is of the form

| .
) /@ 1418) f1(6) d 6

>

fo(y) <
Hy

Ay) Ao (6.55)

where

Q/@ £1(418) 11(8) d 6 :./A /@ F1(y1a.6) f1(a,0) dado

If a and @ are statistically independent, then f1(a,0) = fi(a) f1(6). Note, if
the zero hypothesis contains a random component, then the denominator of
the LRRT will also be averaged to remove the perturbation due to the random
component.

6.6.5 Random Frequency

Again the LRT is set up to allow the averaging out of the random component.
The LRT is of the form

/' filylw) fi(w) do D
Afy) = =2 ) Y (6.56)
, =

The PDF fi1(w) can be approximated as

filw) = Z Pr(w;) 6(w — w;) (6.57)

The spacing between w; and w;y; is suitably chosen (i.e., M evenly spaced
spectral locations). Figure 6.16 shows a detector (matched filter) implemen-
tation for a constant amplitude, uniform phase distribution, and a uniform
frequency distribution. The block designated by hi(t) for ¢ = 1,2,--+, M,
and the envelope detector produces g; in the same way as illustrated in Fig-
ure 6.15. We realize that cach channcl to perform the envelope detection
properly must have an h;(t) and a corresponding hqg(t) (I and @ channel if
the phase is unknown).

6.6.6 Random Arrival Time

The basic detector (i.e., correlator or matched filter) can be used to examine
adjacent contiguous or overlapping data scgments in time. If one looks for
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Figure 6.16: Matched filter (known amplitude, random uniform phase and fre-
quency) embedded in additive white Gaussian noise.

a signal of length T, while the segments are contiguous and of size T, a
mismatch of 3 dB relative to a perfect line up is possible in the worst-case
scenario. This is because half of the energy would fall into each one of two
contiguous segients.

A simple method to reduce the loss is to use overlap processing, that is,
sclect data segments of duration T that overlap. At 50% overlap, also called
2:1 overlap, the worst-case processing loss is limited to 1.25 dB (i.c., the
worst-loss is 1/4 of the energy). If one goes to a 75% overlap, also called a 4:1
overlap, the worst-case processing loss is limited to 0.58 dB (i.e., the worst
loss is 1/8 of the energy). In the extreme case, one can go to an arbitrarily
dense overlap, which is what wavclet processing (sce Chapter 3) achicves

at the highest spectral band prior to resampling. However, in conventional
processing (1.c¢., correlator or matched filters), the processing load may become
too large while not providing a measurable gain in performance.

6.6.7 Summary

It is obvious that the optimum receiver (in the Bayes’ sense or by maximizing
the output SNR) for narrowband signals (tonals, sinusoids) with unknown
frequency, unknown phase, and unknown arrival time is the power spectral
density. Usually, this is implemented using the periodogram, which in turn
is the scaled magnitude squared output of the FFT. As we recall from the
discussions in Chapter 3, the FFT is an extremely efficient processing tool.
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Clever choice of the window function, number of padded on zeros, and overlap
factor will provide a good match in frequency and time [3,4].

6.7 MULTIPLE PULSE DETECTION

When multiple pulses are available, two processing techniques lend themselves
for use when trying to use the information from more than one pulse. The
two choices are

(a) Incoherent processing or integration, also called power averaging.
This usually reduces the variance of the output statistic and enhances
the processing gain by combining the projections.

(b) Colerent processing or integration.

This usually takes the inner product obtained by performing the correla-
tion or matched filtering and provides the processing gain by extending
the effective integration time.

6.7.1 Incoherent Averaging

We recall that the exact expression for a single known pulse is given by (6.50).
The Bessel function In(z) has expansions that arc valid for small arguments
(i.c., low SNRs) and for large arguments (i.c., large SNRR). The approximation
of the zero-order modified Bessel function for small arguments is given by

2
x
hencee,
Aq A2q2

hl2— =1+ — 6.58
0 < No) + NE (6.58)

Taking the natural log of (1 4 2), for small z, leads to

2 a2t
111(1—|—.1:):.1:—§+3—!—Z

Hence, the natural log of the Io(2A4q/2Ng) at small SNRs is approximated by

A(] A2(]2 A2q2 .
In I <2F0> ~ In <1 + Nz ~ Nz (6.59)

Figure 6.17 shows the general (i.e., the exact) radar/sonar detector imple-
mentation for M pulses, while Figure 6.18 shows the receiver based on a low
SNR approximation.
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Figurc 6.17: Radar/sonar M-pulse averaging (exact) scheme.
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Figure 6.18: Radar/sonar M-pulse approximation at low SNR averaging scheme.

At a high SNR we can use a different approximation. The approximation
of the zero-order modified Bessel function is given by

€ZE

Io((F) ~

;

2rx

In our case, the approximation of the Bessel function (high SNR) becomes

A ,2(Aq/No)

I <2—q> ~ (6.60)
Ny in Aq
No

The natural log becomes

A A 1 A
In | Iy 2_{] ~ 2_{] ——=In 47r—q
Ny Ng 2 Ny

p e (6.61)

l

The last approximation takes advantage of the fact that the logarithm of a
large positive number is much smaller than the positive number itself. An
implementation using the high SNR approximation is shown in Figure 6.19.
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Figure 6.19: High SNR approximation.

The operation of summing M-successive ¢ or ¢2 outputs is also called
post detection integration [8]. From an analysis point of view, square law
detection (i.e., ¢%) is preferred since the mathematical expressions are rela-
tively simple. This is due to the fact that averaged chi-square probability
densitics arc mathematically more tractable than averaged Rayleigh densi-
ties. See for example, the section on chi-squared densities in Chapter 2 or
Appendix A. Chi-squared probability density functions, similar to the Gaus-
sian density functions, are closed under addition. That is, when adding i.i.d.
chi-squared random variables, the resultant is chi-squared. Of course the de-
grees of freedom will change according to the number of i.i.d. chi-squared
random variables that arc added. The performance of the lincar sum of post
detection outputs (i.e., sum of envelopes) and that of the sumn of post detec-
tion outputs power wise (i.e., ¢%) differ by less than 0.2 dB at a typical Pr4
value of 1078, over a Pp range of 0.5 to 0.995, for values of M from 2 to 2'4
[1,2].

This is why the performance of an envelope based system can be approx-
imated using envelope squared quantities.

6.7.2 Coherent Versus Incoherent Integration
(Averaging)

Sometimes the operation of coherent or incoherent averaging follows the basic
detector implementation. By this we mean that the outputs of the detector
(as a function of time) are averaged in a power or in a phase preserving sense.
An cxample of a coherent integration scheme is shown in Figure 6.20. We
note that a quantity, accessed and averaged, takes on other than just positive
values. The quantity to be averaged can also be complex valued. Coherent
processing (averaging or integration) can improve the processing gain by 3
dB per doubling of the number of terms involved (see also Chapter 9, Section
9.2).

Incoherent averaging asymptotically gains 1.5 dB per doubling (for a large
number of terms in the average) [1,8,9]. A typical example for coherent aver-
aging is the addition of sequential FFT outputs prior to magnitude squaring.
If we magnitude squares first (spectral density estimate) and then add the
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Figure 6.21: Incoherent averaging example.

components, we have implemented power (or incoherent) averaging. Sce Fig-
ure 6.21 for an example [3,4].

6.8 SUMMARY

Chapter 6 extends the basic detection technique, introduced in Chapter 4,
to the more general case allowing the signal to be functions of time, rather
than a constant. That is s = s(t) or s(n) in the continuous and discrete time
case, respectively. With the exception of Section 6.6, the signals are assumed
to be known and embedded in white Gaussian noise. Section 6.6 allows for
randomness or uncertainties in the signal and/or noise parameters, but still
assumes a Gaussian delta correlated (i.e., white) noise environment. Section
6.2 cstablishes the correlator structure of the optimal receiver (detector) and
evaluates the performance. Sections 6.3 and 6.4 examine the matched filter
minimizing the cost and maximizing the output SNR, respectively. Section
6.5 extends the binary to the M-ary detection case. In Section 6.7, multi-pulse
processing is introduced. Coherent and incoherent averaging techniques are
also addressed.

6.9 PROBLEMS

1. Under
Ho : y; = mny i=1,2,---,10 ,ni ~ N(0,1) ii.d.
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H vy, = 1+n; for 1=1,2,---,5
~14+n; for i1=6,7,---,10

(a) Derive the optimumn detector.

(b) Derive the optimum threshold for the conditions given (also state
what design philosophy you used).

(¢) Compute the probability Pr(Dq|Hy).
(d) Compute the probability Pr(D1|Hy).

2. Under
Ho : yi = m;; ni ~ N(0,1), i.i.d.
H :yi = si+n;; i=1,2,---,4

si=(=1) fori=1,2,3,4,
co1 = 25 ¢10 = 1; Py =0.25.
(a) Which criterion is to be used?
(b) Derive the optimum detector and threshold.

(¢) What is Pr(D1|Hp)? (obtain a numerical value)

3. Given the optimal detector for a pulsed sinusoid of known duration
(unknown: frequency, phase, arrival time) in white Gaussian noise at
low SNR as shown below:

r(n) — — R(k) — | magnitude squarer | — |R(k)|

0 <n, k<511, FFT-size = N = 512, no overlap, no window.

RO~ 3 () exp (j 2;2”)

n=0

(a) How do you establish the threshold to guarantee an overall Pra?
Elaboratc.

(b) Assumc that the variance of n(n) is unity, Prpa = 1075, 512 spec-
tral bins, disrcgard any window losses, compute the appropriate

? - g ?

threshold.

(¢) For an 8:1 overlap (i.c., shift 1/8 of the transform length, say 32
points) assuming an unknown arrival time, what is the worst case
processing loss due to misalignment in time?

(d) Computer Exercise:

Verify (b) using a MATLADB simulation (don’t forget to explain
your results).
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4. Computer Exercise:

Hy : y~ N(0,0?) (single sample)

Hy : y~ N(5,07 (single sample)

Using MATLADB:

(&)
(b)

(¢)

Derive the optimal detector. Show all work.

Plot theoretical ROC curves for 02 = 0.5,1,2,4, and 8 (one plot
with {ive curves).

Pick the worst detection case of (b) above. Increase the num-
ber of data samples from 1 to 8 and plot the corresponding ROC
curve superimposed on the corresponding worst-case ROC curve.
Repeat the computation using N = 64 samples and superimposc
the result on the two ROC curves. Of course, the noise will be
statistically independent for all and any sample. This part of the
exercise demonstrates the performance enhancement as we are al-
lowed to see more and more samples in the detection process. Use
sufficiently many computation points to obtain a fairly smooth sct
of curves. Give a brief explanation of your results (one plot with
three ROC curves).

Perform a numerical simulation. Use the theoretical plots from
part (a) for 02 = 0.5 and for 02 = 8 and compare them to experi-
mental results obtained from a simulation. The number of experi-
ments should be sufficiently large to illustrate that the theoretical
and experimental ROC curves (for both SNRs) agree.

Comment on your results.

5. Under

Hy :yi = —l+4mni; i=0,1,---,71—1

H1 LY = +1+7LL7 7‘,:0,1,"',171

where n; 1i.d. ~ N(0,1).

(a)
(b)
(¢)

(d)

Find the optimal detector and its threshold.
Compute the Prg when I = 9.

If we fix the Pra at 107° (i.e., Neyman-Pearson criterion): find
the threshold.

For the problem in part (¢), compute the Pp.
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6. Under

Hy : ri =50 ; 1=0,1,2,3,4,5
H1 LTy =514 Ny iid. ~ N(O.l)

so’ =[1,1,1,-1,-1,-1]  s;" =[-1,-1,-1,1,1,1]

P’I“(Ho) = P’I“(Hl) Coo — €11 — 0 C10 — Cp1 — 1

(a) Derive the optimal detector by minimizing the probability of error.

(b) What is the P,, the probability of error?

7. The binary signal 0 and 1, represented by 0 and 5 volts, respectively,
are transmitted over a symimetric channel. The prior probabilities are

the same. There is zero cost for correct decisions and a given constant
cost, C,, for making a mistake. The channel adds zero mean, white
Gaussian noisc with a prescribed variance o2, So, we have:

Hy : y~ N(0,0°) (single or multiple samples)

Hy @y~ N(5,0% (single or multiple samples)

(a) Design the appropriate detectors and provide for each one the ap-
propriate detector form, threshold, and Pr4 and Pp. Note: ROC
curves display Pp versus Prp4, where Pp and Pry are plotted on
the vertical and horizontal axis, respectively.

(i)

(iii)

Computer Excrcise: Using one data sample, obtain and plot
theoretical ROC curves for o2 = 0.5,1,2,4, and 8. This part
shows the theoretical degradation as a function of SNR (one
plot with five theoretical ROC curves).

Pick the worst detection scenario of (i) above, inercase the
number of data samples from 1 to 8 and plot the corresponding
ROC curve superimposed on the respective worst-case detector
curve (which is used ou sample). Repeat the computation us-
ing N = 64 samples and superimpose on the other two curves.
Of course, the noise will be statistically independent for all
and any sample. This part of the exercise demonstrates the
performance enhancement, as we are allowed to use more and
more samples in the detection process. Use many computa-
tion points sufficiently to obtain a fairly smooth set of curves.
Give a brief explanation of your results (one plot with three
theoretical ROC curves).

Perform a numerical simulation. Use the theoretical plots from
part (i) for 02 = 0.5 and for 02 = 8 and compare to cxper-
imental results obtained from a simulation. The number of
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experiments in the simulation should be sufficiently large to
illustrate that the theoretical and experimental ROC curves
agree (two plots: one for cach o sclected, cach plot displaying
a theoretical and one experimental ROC curve).

Comment on your results.
8. Under
Hy : r(t) =nt)

where n(t) is a white Gaussian noise process with variance of 0.3.
Hy : or(t) = s(t) + n(t)

sty=t, for0<t<1
PI‘(HQ) = Pl(Hl)
Cop = Cr1, Cio=Co1 =1

(a) Derive the optimal detector by minimizing the probability of error.
(b) What is the threshold?
(¢) What is P., the probability of crror?

)

(d) Give the expression and draw the impulse response of the appro-
priate matched filter.

9. Under
Ho : r(f)=n(t); 0<1<T

Hy :or(t)=s(t) +n(t); 0<t<T

where n(t) is a white Gaussian noise process with bi-spectral height
No/2, wo =2 /T, T = 1 millisecond, and s(t) = sin(2rwq t).

(a) Design the optimal detector (receiver) for these conditions. Pro-
vide a diagram of the detector and the numerical value of the
threshold.

(b) What is Pr(D;|Ho) and Pr(D;|Hy)? Show all work in sufficient
detail.

(¢) Suppose instead of the required replica, we can only use a hard
clipped version of the sinusoid (i.e., a square wave with the same
period). What is the change in Pr(Dq|H;) if we adjust the thresh-
old to provide a Pr(D1|Hp) as obtained in the ML approach in part
(a) above?

(d) What is the loss (or gain) comparing the results in part (a) and

(c)?
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Chapter 7

Detection of Signals in
Colored Gaussian Noise

7.1 INTRODUCTION

The study of detection and estimation can be enhanced by using an approach
based on a series representation. The general concept of series decomposition
and scrics representation is addressed in Section 7.2. Scction 7.3 examines
the problem to deteet known signals embedded in white Gaussian noise using
a general complete ortho-normal basis set. The Gram-Schmidt procedure is
introduced in Section 7.4, while in Section 7.5 the Gram-Schmidt technique is
applied to detect a known signal embedded in white Gaussian noise. Section
7.6 deals with the series expansion in a colored noise background. In this
context, integral cquations, Mercer’s theorem and the Karhunen-Locve ex-
pansion arc introduced. In Section 7.7, the problem to detect a known signal
embedded in colored Gaussian noise is addressed. The bilateral Laplace trans-
form is introduced to allow the conversion of the Fredholm integral equation
into a differential equation. A simple colored noise detection problem serves
to illustrate the concepts. The performance of the correlator operating in a
colored noise environment and the analog implementation of the whitening
filter is briefly discussed. Section 7.8 examines approaches to discrete-time
colored noise problems. We note that Chapter 7 deals almost exclusively
with Gaussian type noise and we only deviate from the Gaussianity in the
discrete-time matched filtering in Section 7.8.5.
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7.2 SERIES REPRESENTATIONS

There are many ways to describe a given function, one particularly useful
one is the series representation. A series representation (or expansion) refers
to the use of a sct of basis functions and a sct of corresponding expansion
cocfficients to represent a particular function. The number of basis functions
may be finite or countable. We are familiar with this type of representa-
tion since we often consider functional expressions by representing them as
a weighted sum of basis functions. A very well known example, for periodic
continuous time functions with periodicity Tp, is the synthesis equation (i.c.,
Fourier serics representation)

o(t) =1/To Y X(k) exp (jwokt) (7.1)
k=—oc0
where wy = 27/Tp and
T
X(k)= / 2(t) exp (— jwokt) dt
Jo

serves as the analysis equation.
Another example is the discrete-time Fourier transform (DFT). For the
DFT, we have

=4

2| -
]

—1

z(n) = C elwrhkn

ol
[y

X (k) eI r/N)kn (7.2)

2l =
>
Il
o

where wp = 27/N and

N-—1
Cr=X(k)= Z w(n) e~ 9Cm/N)kn
n=0

is the k' Fourier coefficient. This representation is frequently used in the
signal processing area, where we interpret the basis functions as a set of or-
thogonal basis functions (i.e., see Chapter 3, [12,19]). As discussed in Chapter
3, the DFT and FFT arc the transformation that dominate the majority of
signal processing applications. For the Fourier based representation, we use a
sct of oscillatory type basis functions where the basis functions are weighted
and summed as given by Equation 7.2.

In general, an expansion (representation) in which the basis functions are
orthogonal is chosen. This makes the expansion cocfficients of data (i.c.,
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signals, observation processes) that have a Gaussian type PDF, statistically
independent.  Hence, the algorithms (i.c., the simple likelihood ratio test)
developed for independent samples apply directly, with high order joint PDF's
becoming the product of one-dimensional PDFs. The expansions for finite
duration data can be based on the signal set or on the noise space.

If we use an expansion based on the signal set, we can utilize one of two
types of representations. Should we use an expansion based on the noise
characteristics then we depend on an cigenvalue type decomposition.

(a) The basis function set spans the signal space:

Typical candidates are Fourier kernel [1,12] or auny other orthogonal
polynomial function [2] (i.e., Hermite, Laguerre, Chebbychefl, etc.).
Usually a complete ortho-normal (C.O.N.) set is prefered for the anal-
ysis. For signal space dependent expansions, we can use an expansion
along a preferred signal (coordinate) axis. We sclect as the first basis
function one particular signal (i.e., the signal under the H; condition)
and choose all other basis functions, in a sequential fashion, orthog-
onal to the first and all previously sclected basis functions. All basis
functions arc normalized providing a set of ortho-normal basis functions
(i.c., Gram-Schmidt procedure [3,13] and Chapter 7.4).

(b) The cigenfunctions (or cigenvectors) set spans the noise space:
We use the correlation function of the noise process to generate the basis
functions (i.c., the Karhunen-Lotve expansion). In the continuous time
casc (i.c., sce Scction 7.6), the cigenfunctions of the auto-corrclation
function of the noise serve as basis functions [4,5]. In the discrete-time
case, we use the auto-correlation matrix of the noise and the corre-
spouding eigenvectors [3].

Independent of which basis function set is chosen, it is essential (critical)
that this sct is a complete one. That is, no matter what the signal form is, it
must be expressible as a countable sum of weighted basis functions as given
by

y(t) = ye gr(t) 0<t<T (7.3)
k=1

where {g(t)} is a set of countable basis functions and g is the expansion
coefficient that is to be paired with the k" basis function. For notational
convenience, the interval is chosen to be [0,7], but in general, the method
can be used for any arbitrary interval [to,to + T]. Note, that k can range
from one to infinity or from onc to K (a finite number). In some problems,
the expansion count k can start at zero (i.c., sce the DFT type representation
in Chapter 3). In some expaunsions, the count variable k can also take on
negative values, such as in the complex Fourier series representation. We
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note that in most discussions we assume that the basis functions are real
valued. If complex valued basis functions are to be considered, the definition
of the inner product must be generalized by conjugating one of the functions
involved. This indeed guarantees that the projection of one basis function
onto itself (i.e., its energy) will always be real valued.

The k*® expansion coefficient, y, is obtained by projecting y(¢) onto the
k' basis function

T

v = (), gu (1)) = / y(1) g(t) dt (7.4)

J0

where the angular brackets denote the inner product. Note, the usage of
the angular brackets to denote the inner product. In Chapter 9, the angular
brackets will be used to indicate a time averaging operation. The basis sct
{gr(t)} consists of a C.O.N. sct, that is

T
(gi(1), gu (1)) = / 6i(t) gult) dt = 163, (7.5)
where

1 =k , ,.
Oik = { 0 dse (i.e., the Kronecker delta)

and {gx(t)} will span the signal space. If necessary, expressions (7.3) (7.5)
can casily be modified to allow the representation of complex valued signals
or to represent real valued signals using complex valued basis functions. As
the reader will recall, the basis functions of the DFT and FFT are complex
valued exponentials. For some complex basis function examples see Chapter
3. In most work discussed in Chapter 7, as earlier stated, we shall deal with
rcal valued processes.

We denote the m™ approximation to the function f(#) (i.c., the known
signal), by fn,.(t), that is

Fn () =" e gi(t) (7.6)
k=1

such that

i fo(t) = ka gr(t) = f(t)
k=1

We will re-examine the problem of a known signal embedded in white Gaus-
sian noise to illustrate the use of series representations and the manipulations
of the resulting terms.
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7.3 DERIVATION OF THE CORRELATOR
STRUCTURE USING AN ARBITRARY
COMPLETE ORTHO-NORMAL (C.O.N.)
SET

This section employs the series expansion to derive the standard correlator
result. It primarily serves the purpose of exposing the reader to the applica-
tion of series expressions by allowing the derivation of a known result using
an alternative (the series based) approach. We shall investigate the detection
of a known signal in an additive white Gaussian scenario as is addressed in
Chapter 6, Section 6.2. Under H;, we have

Hi o ylt) = si(1) + (), (7.7)
where n(t) is white Gaussian noise. The k' projection (component along the
k' basis function) is given by

Yk = Sik + Ng 1= 0, 1 (78)
where
T
w = (), o(0) = / u(t) gi(t) di
T
s = (s1(t) (D)) = / s1(t) gu(t) dt
son = (s0lt), g(t)) = / solt) gult) dt
e = (nlt), ge()) = / n(t) gult) dt
and {gr(1)} forms a C.O.N. arbitrary basis set.

Example 7.1 An example of a second order approximation for the received
signal, when the Hy hypothesis is true (i.e., s1(t) is present), is illustrated in
Figure 7.1. Here under Hy, we have: y(t) = s1(t) + n(t) while the second
order approximation is given by

y2(t) = s12(t) +na(f)

9

_ ZS”" gr(t) + im« 9 (1)
k=1

k=1
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A gz(t)
S KT 1~ ()
S, ! TNy
1) y)
|
|
|
< > > g,(0)
N T'\basis function
v \\‘E hypothesis
n, nz(t)

Figurc 7.1: Second order approximation of y(t) under the H; condition.

Note: yo is the projection of y(t) onto the second basis function while yo(t) is
the second order approzimation of y(t). Note also that we use Figure 7.1 to
represent both the projections of the components onto the basis azes, as well as
the resultant time dependent components. For example, s11 and s1o represent
the projection of s12(t) onto g1(t) and ga(t), respectively. The expression
s12(t) represents the sum of s11 g1(t) + $12 ga(t).

In general, the expansion coctficients yp,ys,- -+, arc random variables
which arc defined by

under  Ho = yr = (y(t),gx(t)) = (s0(t) + n(t), gx(1))
= Sox + (7.9)
Hy ooy = (51() +n(t), 96(1))
= S1p + g (7.10)

We note that ny = (n(t), gx(1)) is a linear transformation of n(t) and since
n(t) is Gaussian, (under each hypothesis) ng, and hence, y, will be Gaussian.
All that is required is knowledge of the means and the variance. The means
arc given by

FE {yk|H1} = F {Slk + nk} = S1k (711)

FE {yk|H0} = F {S()k + nk} = Sok (712)
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while the variance is described by

var {yx|Ho} var {sor + ni}
= E{sox +ni}’ — E* {sox}

= K {Sok}2 + F {nk}z + 2F {S()k nk} — F {S()k}z

and since E {sor g} = 0, the variance becomes
var {yelHo} =
= E{n,}?

B {sie +ni}? — B* {s1.}
= var {yx|H1} (7.13)

In the white noise case, we would have

B} = E/ / gr(t) gu(s) dt ds

= —/(; Ge(t) dt = = bpp = — (7.14)

We can form the likelihood ratio test using the orthogonal components
(Y191(t), y292(t), - -+, ykg () as given by
Ay(t)) = lim A(ye(t))
k—oo

C i D191 9200(), - yegi (1)
k—oo fo (y191(1),4292(1), - -+, yregr (1))

(7.15)

We recall that if a Gaussian has parameters z ~ N(m,, 02), then

y = ax ~ N(am,, o o)

therefore, the nt® term for n =1,2,---, is given by

f1(yngn (1)) _ J1(yn)
fO(l/ngn (t)) Jo (yn)

so the LRT becomes

B f (”L/l,’l/Q,"' Uk)
A(U(f)) - ,}HIOIO fo (7/1 Y2, - Zlk)
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k
. fl (7/71 )
lim H —fo ()

k—oo
n=1

k

H e_(l/(QNO/Q))(?/n_Sln)z Hl

= lim 2=t -
k—oco k

2 2 2 <
[T e @/@No/ma—so®

n=1

Ao (7.16)

Taking the natural logarithm of the kP approximation of the LRT leads to

k k Hl
2 ¢ 1 < >
In A (yr(t)) = No E Yn (S1n — Son) + ~ E (88n — 5Tn) - InXy (7.17)
n=1
Hy

We want to obtain an equivalent expression for the first and second summa-
tions in (7.17). To do this, we will start with the following integral

k

T T k
/0 yi(t) sin(t) di = /0 [Zu mw] [Z g,,@)} dt (7.18)

r=1

where y; (1) is the k" approximation of y(t) and s;;(¢) is the k" approxima-
tion of s;(t) for i = 0,1, and g, (t) is the n'® basis function for n = 1,--- k.
By rearranging the order of the linear operators of the right-hand side of
(7.18), we obtain

E k T k
Z qun Sir / gn(f) gr(f) dt = Z Yn Sir (Snr
n=1r=1 0 n=1lr=1
1 , =
:{ 0 :lse " =bnr
k
= Z Yn Sin ; fori=0,1 (7.19)
n=1
Reversing the order of the equation, we obtain
k T
o s = [ lt) salt) dr (7.20)
ot Jo

By analogy it is casily shown that

k T
Y sk = | /O s2. (1) dt (7.21)
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Therefore, the LRT can be written as

A () = Nio /0 Y (1) [s16(1) — sok(t)] dt
T Hl

+ NLO/O (52, (1) — s2,(1)] dt z In Ao (7.22)
Hy

Taking the limit as k — oo, leads to

Jim A () = InA(y(r)
T
- = / y(t) [s2(1) — so(0)] dt
17 Zl
—&—FO/O [sa(t) — si(t)] dt < In Ao (7.23)
( "

where Ag is a function of detector philosophy (i.c., ML implics Ag is unity).
For Bayes’ formulation, we have

- Py (Cro — Coo)

N = —~—2 0
7 P (Cor —Chy)

In general, the detector becomes

IEf
/0 y(t) s1(1) di — /0 y(t) solt) dt (7.24)
Hy

where -
v = % InAp + %/0 (s3(t) — sp(1)) dt
If a Neyman-Pcarson criterion is used, then v is sclected to meet the desired
PFA .
Notes:

(1) Again we derived the correlation structure, the same one that was first
developed in Chapter 6, Section 6.2. This time, rather than using a
data sampling approach, we used a decomposition based on an arbitrary
C.0O.N. basis sct.
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(2) If ouly white noise is present, any C.O.N. set will be appropriate to be
used as basis function set {g,(¢)}, independent of whether or not the
obscrvation interval T is finite or not. Due to its natural interpretation
and the case of its implementation [6], the Fourier basis sct is usually
preferred.

(3) If the signal duration 7" becomes very large (i.e., ranging from —oo to
+00), the coefficients of the Fourier expansion of any w.s.s. random
process (of any spectral shape) tend to be uncorrelated [7].

(4) A problem occurs when dealing with a colored random process if the
signal is of finite duration (i.c., T < 00). We cannot usc the Fourier
expaunsion since the coefficients become uncorrelated ouly as T — oo
[7]. The Karhunen-Loéve expansion [4], to be discussed in Section 7.6.3,
allows decomposition of the signals of interest such that the (colored)
noise expansion coefficients are uncorrelated.

7.4 GRAM-SCHMIDT PROCEDURE

This scction serves as an introduction to the Gram-Schmidt procedure, a
technique frequently used in statistical digital signal processing. Suppose that
we have a Hilbert space (i.e., a vector space with an inner product and a norm
derived from the inner product), and allowing for complex valued functions
(or vectors) we can define the inner product depending on the scenario as

Zl‘i y; ;  for discrete time variables
i
= ' . . . 25
xy) / xz(t) y*(t) dt ; for continuous time variables (7.25)
Exy* ;  for random variables
where * denotes conjugation. The norm is defined as
norm = (x,x)%2 = ||x|| (7.26)

Given a vector space is spanned by the vectors, {aq, o, -}, we want to
span the same vector space with a set of complete ortho-normal (C.O.N.)
vectors {qi1,qs,-- -, }. We do this by sequentially forming orthogonal vectors
{v1,va,---,} and performing a normalization to obtain {qi,qs,---,}

fa  — {v} — {4
— — ~—
arbitr. orthogonal ortho-
vectors vectors normal

vectors
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> : >

q, o=V

Figurce 7.2: First two vector relationships when using the Gram-Schmidt procedure.

First we sclect a starting vector. Without loss of generality, we sclect «p as
the starting vector and then sequentially determine the follow-on vector va

Vi Vi

V] = & q; = HVlH = <V1’V1>1/2 (727)

vy =y — kiq;

where kq is selected such that vo and q; are orthogonal (vo and v; are
orthogonal). When vector vg L q; (read vy orthogonal to qi), then we have

(
(i, v2) = 0

(g1, 000 — k1q1)

(a1, e2) — ki {qi, qi1)

= (ai,00)—k (7.28)
We realize that (q1,q1) = 1, hence the coefficient k; is obtained as
ki = (qi, o) = (2, 1) (7.29)

while the orthogonal vector ve is given by
va = oo — (o) @

<0é2aV1> Vi .
- — 7.30
DTNV (vp,vq) /2 (7.30)

and ortho-normal vector qs is obtained by

Qo = 7— (7.31)

The first two relationships are illustrated in Figure 7.2. In general, the ortho-
normalization procedure is obtained from a sequential determination of or-

thogonal vectors for k= 1,2, ..., as defined by
— (g, vi) v orthogonal
o N ks Vi 0 rnog .
Ve = Ak (vi, vi)l/2 (v, v;)1/2 < set ) (7.32)

i=1
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Ak

O Vi < ortho-normal ) (7.33)

Vel (v, vi)t/? set
where the normalization was obtained by dividing cach vector by its norm.

Example 7.2 Given {cay, a9, -+, = {t%t1,¢%,--- )} where —1 < t < 1.
Find an ortho-normal set over [—1,1]. We note that

-1
<(l/1,(¥1> = / 11dt:27é1

J—=1

1

1 f3
{ag,3) = / 1-t2 dt =
Jo 3

2
=240
37

—1

Hence, the set {ay,a,---, } does not form an orthogonal basis set for [t] < 1.
Let v1 = o

m 1 1
(] = = e —
P ] 1 V2
/ 1-1dt
J1
vo = g —{a2,q1) @1
S <f 1> 1
B L1 , 2! _,
\/5 ol 4.,
.1 31
t 2
H’UQH = /ttdt: - = =
J-1 314 3

2 \/gf
G2 = T——F/ =1\/37
[|v2]| 2
vz = 3 — (3, Q2 q2 — <(Y3 f]1> q1

(
= <t2, > Zt— <z‘2 %> LQ

| =
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B

1 1 1 2
22| = 2—2) dt
3 \/./—1< 3)

B8 N\
— .94
\/<5 3.3 +9)

V3 5\/—<2 1)
S AVATIN
o os]] ~ 4 3

leall

-1

The ortho-normal set {q1,q2,qs3,- -} is now of the form

N , 1
{Q1>(I2>(I37"'7}{\/§, \/gt’ 4\/E<t 3>7 }

which is the set of ortho-normal Legendre polynomials over the interval (—1,1).
We leave it for the reader to verify that indeed

(q1,q1) = (@2, q2) = (g3, q3) = 1

and that
(q1,q2) = {q1,93) = {q2,q3) = 0

7.5 DETECTION OF A KNOWN SIGNAL
IN ADDITIVE WHITE GAUSSIAN
NOISE USING THE GRAM-SCHMIDT
PROCEDURE

In this section, we want to apply the Gram-Schmidt ortho-normalization pro-
cedure to the problem of detecting a known signal embedded in white Gaus-
sian noise. This enhances the understanding of series representations and
leads to the general correlator result, using coordinates axes that are slightly
different compared to results derived carlier.

Supposce we want to determine whether or not the signal so(t) or s1(t) is
embedded in white Gaussian noise, and that we have

under Ho : yt) = so(t)+n(t)
Hy : yt) = s1(t)+n(t)

We want to find the optimal detector using the Gram-Schmidt procedure.
Let

0<t<T (7.34)

T
g1 = (s1(t),51(1)) = ./o si(t) dt
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be the energy of s1(t)

g0 = (so(t), s0(t)) = ./(; so(1) dt

be the encrgy of so(t), and

T

= {(so(t),s1(t)) = / so(t) s1(t) dt

J0

be the un-normalized cross-correlation coefficient.
We arbitrarily have chosen s1(t) to be the first basis function (note that
we could have used so(t) just as well); henee,

vi(t) = s1(t)

nl) = =

(so(t), s1(1)) 51(1)

l,rZ(t) SO(t) - <81(f),$1(f)>1/2 <.S’1(f),$1(f)>1/2
o rosi(t) T
= so(t) — NGVl so(t) — gél(f)
o m(t)

=0 = T

The norm of vy(t) is given by

a0 ¢ (50~ Zs10) (300~ Zor00) )
_ e 2T
1 &7
_ 515(;1— 72
hence
. solt) = —s (1)
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For the binary case, no additional basis functions arc needed since we already
have a complete ortho-normal set to describe the signals s1(t) and so(¢). If
any were to be chosen, they would be orthogonal to ¢1(¢) and g2(t). In general,

oo

y(t)=> wealt); 0<t<T (7.35)
=1

where y, = (y(t), q(1)). In our case

9

y(t)=> wealt) 0<i<T
=1

We realize,

(a) that y, is the projection of y(t) onto the basis functions g, (t) for £ = 1,2,
and

(b) due to the lincarity of the inner product, the variables y,, for £ = 1,2,
will be independent Gaussian random variables. We need the means
and variances of these Gaussian random variables. Because the noise
has zero mean, we have

T
E{ylHo} = / y(t|Ho) qult) dt

T
= [ s di=so s 0=12 (730
JO

Similarly, the mean under the H; hypothesis and the variance (inde-
pendent of the hypothesis) are given by

E{ylH,} = / o) qlt) di=sy (=12  (737)

var {yelHi} = / / E{n(t) n(s)} ac(t) ails) dt ds

No [T, No (=12
= = t)dt = =2 ; ’ K
5 /0 q; (1) 5 0.1 (7.38)

=

respectively, where £ is basis function and 7 corresponds to the hypoth-
csis.

We ortho-normalized the two original functions and nced only the two
ortho-normal functions and their expansion coefficients (i.c., A(y(t)) = A(ya(t)).
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0:(0) = 1Ne s,(t) (511 = 501)
O J'Ofdt Y1
+ H
(1) — Z A,
T 2 - H,
—>?—> L dt
(512 —S02)
R N (4
w0 [ 20

g 5—-r &

Figurc 7.3: Optimal detector using Gram-Schmidt procedure (s;¢, for ¢ = 0,1 and
¢ =1,2, denotes the £** coefficient of the i*® signal).

If more basis functions, say M, arc required such as in an M-ary problem,
then A(y(t)) = Alyar(¢)). For our binary problem, the LRT becomes

= |
H — e(*l/]\fo)(l/kfSm)2 H,
_1VTiNo
Alya(t)) = 2 z o (7.39)
11 L (=1/No)we=s00)? g
hel 7TNO
or
Hy
2 1 ¢ >
In A(y2(t)) = N Zyk(slk — Sok) + oA Z(sgk —52,) - In Ay (7.40)
O k=1 0 k=1
Hy
or
IEf
2 > No 1Y 2 2
Zyk ($16 — Sok) < 7 In Xy — 3 Z(s% —$1k) =M (7.41)
k=1 k=1
Hy

This detector is casily implemented as shown in Figure 7.3. As we see, the
structure is the same as the correlator structure advocated in Chapter 6,
Section 6.2 and Scction 7.3. We can interpret the detector operation as a
projection of the data onto basis functions (vectors) to determine which pro-
jection coefficient dominates. Of course, we account for prior information,
cost, and for differential energy.

In summary, we have addressed three ways for detecting known signals in
white Gaussian noisc. Each approach led to the correlator structure which
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is a projection of the data onto a set of basis functions for continuous time
signals (or vectors for discrete-time signals) in a Hilbert space sctting.

7.6 SERIES EXPANSION FOR
CONTINUOUS TIME DETECTION
FOR COLORED GAUSSIAN NOISE

7.6.1 Introduction

This section introduces some concepts that arc essential in solving the prob-
lem of detecting signals embedded in colored Gaussian noise. We will first re-
view Mercer’s theorem and the Karhunen-Loéve expansion, which are needed
in the derivation of the detector.

If the additive Gaussian noise process is colored and the signal duration is
finite, then the use of traditional orthogonal (or ortho-normal) basis functions
leads to correlated coefficients. This does not lend itself to an approach based
on a simple LRT. A workable solution is available if we resort to the Karhunen-
Loeve expaunsion [4].

The Karhunen-Loeve expansion is based on the correlation propertics of
the random process. It provides basis functions that guarantee the projections
of the noise onto the basis functions to be uncorrelated. The Karhunen-
Loeve expansion is based on the eigenfunction of the noise auto-correlation
function, where the auto-correlation function is syminetric in the arguments,
non-negative, and continuous. Note, we will use the label ¢(¢) rather than
g(t) to distinguish basis function derived via the noise space characteristics
from the signal space based functions.

7.6.2 Mercer’s Theorem

Any real valued function R(t,s), which is symmetric, positive semi-definite,
and continuous on the square 0 < ¢, s < T may be expanded into an absolutely
and uniformly convergent series [§]

R(t,s)=> Mo qe(t) qr(s);  0<t,s<T (7.42)
k=1

The set {Ax ,qx(t)} contains the pairs of cigenvalues and cigenfunctions ob-
tained from the integral equation

T
Ak qr(l) = /0 R(t,s) qi(s) ds (7.43)

where {gx(t)} forms a C.O.N. sct over the interval 0 < ¢ < T'. Equation (7.43)
is also called the homogencous integral equation [9].
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7.6.3 Karhunen-Loéve Expansion

The expansion based on the cigenfunctions of the auto-correlation function
is called the Karhunen-Lotve expansion. The cigenfunctions {gi(¢)} form a

complete ortho-normal set, that is

1 n=n1m

T
_/0 Gn(t) Gm (1) dt = bnm = { 0 clse

The projection of the noise onto the k™ basis function produces

T
e = {n(t) () — / n(t) qult) dt

The noise function is given by
= hm anqk ) 0<t<T

where limpy_ oo denotes the limit in the mean square sense

2
N
i E {nu) D qk,m} 0
k=1
If E{n(t)} =0, then

E{n,} = ./o. En(t) gp(t) dt =0

The second order moment is given by

E{ng np}t = E./o. /0 n(t) n(o) qr(t) gm(o) dtdo

= (/O'T '/(;TRN(t,o) () do | qu(t) dt

=Am gm(t) (7.43)

hence

T
E{nk nm} - / Am (Im(t) Qk(t) dt = A 6k
J0

hence, if kK £ m
E{ng npt =0

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)
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If k =m, then
Ef{ng ny} = var np = Mg (7.50)

We note, that the variance of the k™ term of the noise expansion can also be
obtained as

T ,T T
[ ao rattos) ol at as = [ auie) doanle) de = (750
Jo Jo Jo
and that the sum of the cigenvalues corresponds to the integral of the corre-

lation function (potentially the time-varying instantaneous power) as shown
by

T
E/ n?(t) dt = Ry (t,t) dt
J0

I

o

)ﬂ

I M8
>
>~
N}
B
=
Ne)
>~
—~~
=
[
e

7.7 DETECTION OF KNOWN SIGNALS IN
ADDITIVE COLORED GAUSSIAN
NOISE

This section focuses on deriving the correlator structure for known signals
cmbedded in colored Gaussian noise. The bilateral Laplace transform is re-
viewed and the integral equation for the leucogenic noise case is converted
into a differential equation, which then can be solved. We also look at the per-
formance assessment (Section 7.7.3) of the detector and discuss an approach
basced on whitening the additive noise (Section 7.7.4).

Suppose that the signal s;(t) is received in the presence of additive zero
mean colored Gaussian noise. Under H;, we have

y(t) = si(t) +nlt) ; (7.53)

Looking at the projection of the noise onto the '™ basis function, we have a
scquence of Gaussian random variables

T
m= [ a1 (7.54)
J0
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where E n; = 0 since E n(t) = 0. The statistical dependency of the i and
k' noise component is obtained as shown in (7.48)

)\ka k:j

T
F {TL]' nk} = / )\k qk(t) q]'(f/) dt = )\kék] = { 0 (‘1%(‘ (755)
Jo 5 IS¢

Since the cocfficients are Gaussian and uncorrelated, it follows that they are
independent random variables. We see that

T
under Ho @ y; / y (t|Ho) g;(t) dt
Jo
(7.56)
T
= [ o)+ n0) (0) dt =0y ny G- L
Jo

similarly, under
T
Hiooyy= [ i) a0 de=siy+ns j=L2ee (157)
Jo
Under cach hypothesis, the inner product given by y; is Gaussian, hence, we

can set up the LRT as in the previous sections, once we obtain means and
variances. The means of the random variables y; are given by

E{yj|Hot = E (05 +nj) = so; (7.58)
and
E{y;|Hi} = s15 (7.59)
The variance is independent of the mean, hence
var (y;|H;) = var (y;) = var (n;) , i=0,1 (7.60)

Using (7.60) and (7.55)
var (y]) = )\j (7()1)

At this point, we can formulate the k™ approximation of the LRT

H 1 e(_1/2)(31j—51j)2/>‘j H,

In Ao (7.62)
o(—1/2)(uj—s05)%/X; Hp

Canceling common terms, taking the natural logarithm, and letting & — oo
results in



Detection of Signals in Noise 185

By replacing the Karhunen-Loeéve coefficients with their corresponding inner
products, this can be written as

T T
Y; = / y(t) q;(t) dt and n,; = / n(t) g;(t) dt, cte.,
Jo Jo

hence, (7.63) becomes

ZAA / y(h q](h)dfl/(; (s1(f2) = so(t2)) q;(t2)dt2

j=1"7

[ ] st sote) i) o) e do} (7.64)

/ / o) q;(t') q;(0) dt' do ~ In A

Reordering, (7.64) leads to

/0. /0 (1) (s02) = so(t2) S Ai q;(t) q;(t2) dty dt

w3 [ o) o) =t 51@];%qﬂf’)%(o)df’dv o

This is independent of the received data,

hence, it is equal to a constant K.

(7.65)
hence, we get
Hy
g o ¢ (1) >
/ y(tl) / (51 ff) 50 ff) Z ]>\ q; t2 dff) dfl < In )\0 — K = T1
JO J0 — J
Jj=1 H,
(7.66)
or
Hy
T oo 1 T 7 < .
tl Z )\— J 51 ff) ,5‘0(152)} q]'(f/;)) df/;) q]'(f/l) df/l < T1 (7()7)
. J

j=1
Hy
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which becomes

' 1 > .
/ Z ~ (515 — s05) q;(t1) dty < T (7.68)
A
j=1 H,

h(t1)

If we label the terms in the integrand of (7.68), excluding y(¢1), as h(t1) and
use ¢ as the dummy variable of integration, we can write

H,y
T -
/ y(t) h(t) dt g T, (7.69)
Jo
Hy

We have a correlation receiver where the standard replica is replaced by h(t)
which is given by

re) = 3 ES e

Sl S
515 05

i=1 j=1 7

1(t) — ho(t) (7.70)

I
Mg

<.

I
>

We note, if the A;’s equal a coustant, for all j, such as it is the case with white
noise, then (7.70) would become the scaled difference between s (t) and so(t).
If desired, we can split k(%) into hi(t) and ho(t), as indicated in (7.70). This
will provide the two legs of the correlator structure, one for cach signal as
shown in Figure 7.4.

To use (7.70), we would have to obtain {A;} and {g;(¢)} for all j. This
approach is very tedious. Of course, one could try to approximate h(t) of
(7.70) with a finite number of terms. But then the question remains: which
terms should be used and how many? Rather than solving for A(f) in this
fashion, we propose the following [4,18,21]:

To solve for h(t), we take h(t) and its defining cquation, multiply by the
noise kernel and integrate over the signal duration. Assuming that the noise
is w.s.s., we have

/OTRN(tT)h i( >/ Ry(t—7) qi(7)dr

via (7.43) X, q;(t)
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Figurc 7.4: Correlator structure (colored Gaussian noise).

= Z = ) (7.7)

8

= Z(Su = s05) 4j(t) = 51(t) — s0(t) = s(1)

Hence, we obtain a Fredholm integral equation of the first kind [10]

T
/ Ry(t —7) h(1) dT = s(t) ; 0<t<T (7.72)
Jo
Note, if Ry(7) = No/2 6(7) (i.c., the white noise case) then

/T%(S(f—T)h(T)df:S(f); 0<t<T

becomes

or
~— s(t) (a scaled version of s(t))

Therefore, in the white noise case, we would obtain our original result, that is
we correlate the received data with a replica of the signal that we are testing
for. This paraphrases the note that follows (7.70).

We can split the A(t) and s(¢) functions into their “0” and “1” components,
as given by

/T RN (t—71) hi(7) dT = 51(1) for0<t<T (7.73)
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and

/'T Ru(t—7) ho(t) dt = so(t) for0<t<T (7.74)
J0

We see that the optimum receiver (detector) is the correlator, where the
functions h;(t), for ¢ = 0,1, have to be computed by solving a Fredholm
integral equation of the first kind [10]. In general, we need to solve the
following cquation for the quantity h(t)

/T Ry (t,w) h(u) du = s(t) ; 0<t<T (7.75)

where Ry (t,u) is the correlation function of the noise and s(t) = s1(t) — so(t).
In the stationary case Ry (t,u) becomes Ry (t —u). One can also solve (7.75)
for hi(t) and ho(t) by using s;(t) and so(t) as drivers (also called excitation
or input), respectively.

To be able to solve the integral equations we will first review some of the
properties of the bilateral Laplace transform.

7.7.1 Bilateral Laplace Transform

This scction serves as a quick review on a topic that is used to convert the
integral to an equivalent differential equation. It may also serve as an intro-
duction to the general Laplace transformation, allowing analysis of two-sided
functions, such as correlation, power spectral density or probability density
functions. The bilateral Laplace transform of the function f(t) is given by
1]

Lolf}=Fe) — [ ) e ar (7.76)
where 09 < Re s < o7 lies in the region of convergence (R.O.C.) (sce Fig-

ure 7.5). The region of convergence guarantees the existence of F(s). The
transform variable F(s) can be decomposed into two parts:

F(s) = Fi(s) + F_(s) (7.77)

where -~
Fo(s) = /0 f(t) e *t dt (7.78)

and o
F_(s) = ./700 f(t)y e *t dt (7.79)

Let £,.{ } denote a conventional one-sided Laplace transform, then

P = Lo () = [T et ar (7.80)
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Jo = imaginary part of s
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Figure 7.5: Region of convergence for the bilateral Laplace transform.

and
F_(s) = L4 {f-(—)}],_, (7.81)

where f_(t) is f(¢) for negative time arguments, and f_(—t) is f(¢) for neg-
ative time arguments with ¢ being replaced by ¢t — —1.

To verify that the Laplace transform of the anti-causal part (negative time
function) is done properly, we take a look at the expression

Lol (=D}H s

(/Oioo f(—t) e™5" dt

S§——S8

/oo fo(=t)esDat
JO

./;Ooo f(t) e™s" dt

which is the desired result.

To obtain the inverse transform in a bilateral sense, an overlapping region
of convergence for both positive and negative time segments must exist (see
the cross-hatched strip in Figure 7.5). We perform the inverse in four steps:

(1) For Re s > og, take the one-sided conventional inverse and call it
Fo(t) ulh).

(2) For Re s < o1, replace s — —s, take the conventional one-sided inverse,
and call the result f_(—1).
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(3) Replace t — —t in 2) and call it f_(t).
(4) f(t) = f+(8) u(t) + f- () u(-1).

To illustrate the procedure we will look at a few simple examples.
Example 7.3 Forward transform:
fy=e 550
or

e " u(t) + e u(—t)

= L) ult) + (1) u(=1)

Fi(s) = Ly {f+(0)}

= Li{e )} = / e~ et dt
Jo

1
= for Re (s) > — R.O.C.
o frRel > (ROO)

Fo(s) = Lo{/[-(=D}H._,

/ eu(—t) e Sdt
/0 t——t

.00 1
= {/ e”%“dt} =
J0 sS——s s+ Y s——3s
_ 1
sty
for Re (s) <~v (R.0.C.) so
1 1 2y
F(s) = - +— = -5
s+vy —s+7 —85 4y

for Re (s) > —v for Re (s) <. R.0.C.: |Re (s)| > 7.

Inverse transform: Given
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R.O.C.: |Re (s)| < where v > 0. By partial fraction expansion, we have

1 1
+
sty  —s+ry

F(s) =

Re (s) > —v Re (s) <

1) £ = £7 | = }Mu@

- {rs) -
s——s 5 g
() f-()= e

(4) f(t)=e " u(t) + e’ u(—t) = e“'”t; for all t.

s+y

(3) 1) = 2" { —

Example 7.4

b}

Note: there is only for a valid pole assignment.

—> the causal pole respousible for the positive time function is at

§= -2
= the anti-causal pole responsible for the negative time function
isat s =3

Using partial fraction expansion, we have

1 1

F(s) = o + 13 = Fy(s)+ F_(s)
R.O.C. R.O0.C.
Re (s) > —2 Re (s) < 3
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7.7.2 Integral Equations

When the noise is a sccond order random process and can be thought of as
being obtained as the output of a physically realizable filter that is driven
by white noise, then we can convert the integral (7.72) into a differential
equation. This section deals with the Fredholm integral equation of the first
and second kind [10]. We changed the notation for the right-hand side of the
integral equation by letting z(¢) replace s(t). This is to avoid confusion, since
the capital letter S stands for power spectral density when we evaluate the
expressions in the s-domain. The equation of the form

-t
/ ' Ry (t,u) h{n) du = x(t) to <t <ty (7.82)
Jto
is the Fredholm equation of the first kind, where Ry (t,u) and z(t) are known
functions and h(t) is the unknown quantity. For Section 7.7.2, we prefer the
more general limits £ and ¢7 and evaluate them at tg = 0 and #y =T, when
convenient.

If the colored noise has an underlying stationary white noise component,
then the noise auto-correlation function has an impulse-like component. The
noise correlation function can then be written as

N,
Ry (t,u) = 70 8(t —u) + Ry, (t,u) (7.83)

where Ry (¢, ) is the correlation function of the noise process, No/2 8(t — u)
is the correlation function of the white noise component, and Ry, (¢, ) is the
correlation function due to the colored noise component. Then the integral
equation becornes

'ty
No h(t) + / Ry (t,u) h(u) du=z(t) ; to <t <ty (7.84)
Jtg

This is called the Fredholm integral equation of the second kind. There is
also the homogencous integral (7.43) which was discussed carlier.

Usually, solutions to integral equations are tedious undertakings. How-
ever, under some reasonable conditions, we can obtain solutions by translating
to and solving an equivalent differential equation. This approach is applica-
ble when one can interpret the colored noise as being the output of a lincar
time invariant system that is driven by stationary white noise (i.c., leuco-
genic noise as coined in [4]). In this case, the colored noise is stationary and
its power spectral density (in the s-domain) is the ratio of two even ordered
polynomials. The degree of the denominator is greater than the degree of the
numerator, guaranteeing that the power of the noise process is finite. We can
express the Laplace transform of the correlation function as

SN(S) = /oo RN(T) e—S’T dr

J =00
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N(s%) .
= DD (7.85)
We recall that oo
L{6(t)}) = / s(t)yedt =1 (7.86)
hencee,
L6t —1)} = / S(t—T) et dt=e T (7.87)
with an inverse given by
E—l {e—S’T} _ / e—srest ds
and -~
6(t—71)= / st s
Now
> d
—6t—1) = ./700 T e (s
= / s 77 dg (7.88)
Hence, in general
d(k) e s(t—1
i 80 -7) = ./_oo sF es0=T) g (7.89)
Using the notation p = d/dt
N 6t —1) = / N(s?) es=7) ds (7.90)

where N(p?) is an cven ordered polynomial of differential operations and
N(s?) is a corresponding polynomial in cven powers of s (i.c., if N(p?) =
aop® + asp? then N(s?) = ag + ay s%). We also recall

Ry(u) = /700 Sn(s) e ds (7.91)

where Ry (u) is the correlation function and Sy(s) is the spectral density in
the s-domain. A shifted version then looks like (i.c., let v =1 — 1)

Ry(t—71) = /_00 Sn(s) es=) ds (7.92)
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Application of D(p?) to both sides of (7.92) leads to

D(p*) Ry(t —7) = / D(s?) Sy(s) es=) ds (7.93)
Realizing that
N(s?)
)= D)
or
N(s%) = D(s*) Sy(s) (7.94)
we obtain -~
D(p?) Ry(t—7) = / N(s?) et ds (7.95)

This expression becomes, using the results from (7.90) on the right-hand side
D(p?) Ry(t—7) = N(p?) 8(t —7) (7.96)

where p = d/dt. We can use this result to solve (7.82) for stationary noise
kernels, which is reproduced here for convenience.

/tf Ry(t—7) h(T) dr = x(1) to <t <ty (7.97)

Jio

Hence, when we operate on both sides of (7.97) with D(p?), we obtain

/tf D(p*) Ry(t —7) h(1) dr = D(p*) x(t) ;  to <t <ty (7.98)

Jtg

Using (7.96) this becomes

ot
/ ! N?) §(t —7) h(7) dr = D(p?) 2(t) ; to <t <ty (7.99)
Jto
or

NG ) = DR a(t) s to <t <t (7.100)
Equation (7.100) is a differential cquation. Essentially, we converted an in-
tegral equation problem into a differential equation problem, which can be
solved using standard techniques.

The solution of the differential equation (7.100) consists of three parts
h(t) = hup(t) +hp(t) + he(t), where hp(t) is the homogeneous solution (i.e., no
excitation), h,(#) is the particular solution (i.c., due to the input z(¢)), and
he(t) is the end point solution [4,10,18,21].

The solution to (7.97) is obtained by solving (7.100). We will sketch out
the steps and provide an example. Given that the differential equation is of
the form

N@*) h(t) = D(p?) (1) ; to <t <ty
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we solve

(a) The homogencous part
N(p?) h(t) =0 (7.101)
hp(t) = solution of (7.101)

(b) N(p?) h(t) = D(p?) z(t) can be solved using Laplace transform tech-

niques
N(s?) H(s) = D(s%) X(s)
H(s) = ]?[EZZ;X@)
= Sn(s) X(s)
hp(t) = L1{S(s) X(s)} (7.102)

(¢) The end point solution is given by

2(p—q—1)
he(t) = Y {ai SOt —to) + by 60 (t — 1) (7.103)
i=0

where §0)(#) is the it derivative of the delta function, p is the order of
D(s?), and q is the order of N(s?).

Numerical values of the coeflicients contained in the set {a;, b;} are ob-
tained by cvaluating (7.97) and using

h(t) = hn(t) + hp(t) + he(t)

Example 7.5 A correlation based receiver for a known signal in additive
colored Gaussian noise (0 <t <T) is desired. We are given

y(t) = (1) + ()
—y |7 , 2A v
Rylr) = A 71— () = L
T
/ Ryt —7) (1) dr =x(t) ; 0<t<T
Jo
(This is a Fredholm integral equation of the first kind.)
D(s?) = —s°4+%" = p=1 (order of s?)

N(s?) = 24ys" = ¢=0 (order of s%)

Solution:

N(p?*) h(t) = D(p?) =(t) 5  0<t<T



196 Detection Theory: Applications and Digital Signal Processing

we have

(a) N(p?) h(t) =0 (homogeneous part), or 2 A v h(t) = 0. This is not a
differential equation, just an algebraic one. Hence, (a), hp(t) is of the
form

hu(t) =0

(b)

—

N (p®
d? A~
—WT(f) +722(t) = 2Ay h(t) (particular solution)

D(p?)a(t)

is an algebraic equation in h(t) (a differential equation in x(t)). Hence,
(b), hy(t) is of the form

(c) End points

i has arange from 0 to 2(p—q—1)=0 = §D() =69 (t) =6(t)

0
he(t) = > a; 89(t) +b; 69t — 1)
i=0
= dap (S(f)—Fbo (S(f—T)

The total solution is given by

W) = hy(t) & ha(t) + he(h)
M) = g (3%~ 30) + a0 81) + bo A1 )

We still need to solve for ag and by. Here x(t) is the known signal, y(t) is the
recewed signal, and n(t) is the additive colored Gaussian noise. From (7.97),
we have

Tt

Ry (t —7)h(T)dT (includes end points)
Jo_

x(t)

/T+ Ae =7l {ﬁ (V22 () — #(7)) + aod(7) + bod(T — T)} dr
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The integral is split into two regions to eliminate the absolute value symbol.

/f Ae—Y(t=7) {ﬁ <V21‘(7) — .'75(7)) + ,1/05(7)} dr

Tt

Jr. t Aetr(t=7) {21}1’}/ ('y z(1) — (7’)) + bob(T — T)} dr
it
= ap AeT 1 ho AT 4 [ AeT T — (y2a(7) — (7)) dr
Jo_ 2Ay
T+ 1
+. t Aeﬂmﬂﬁ (v2 @(r) —i(r)) dr
Now
t
/ T E(r)dr = e a(t) —2(0) —y e x(t) — vy x(0)
0_
t
—|—/ v2er T x(T) dr
0
and
T+
/ e TN dr = e Ta(T) — e i (t) + ye Ta(T) — ye ia(t)
t

so we obtain

z(t) = x(t)+{e” {aoAJr 2() @}
oo 4050
for0<t<T

But x(t) = x(t) = curly bracket terms must be zero for all 0 < ¢ <T.

z(0)  x(0)

can split and set each

aoA + 2~y 9 =0 term to zero since
sccond term in the last
(T (T expression has a time
a BT @ e

2y 2 varying term (i.e., e’ and e )
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1 .
t0 = g (e(0) = 3(0)
b = g Gall)+ )

Hence, the desired reference correlation (i.e., replica) function is given by

B(1) = g {(9(0) = (0)) (1) + (30(T) +5(T) 81 = T) +7%(1) =)}
foro<t<T.

7.7.3 Performance of the Optimum Receiver for Known
Signals in Colored Gaussian Noise

This scction shows how one can solve in principle for Pra and Pp to test
for the presence of a known signal in additive colored Gaussian noise. From
Figure 7.4, we can ascertain that the output of the optimum detector will
be a Gaussian random variable. This is true under each hypothesis, since a
lincar operation on a Gaussian random variable results in a Gaussian ran-
dom variable. Replicating (7.69), for convenicence and denoting the output
Gaussian random variable as z, we have

- / ' y(t) h(t) dt 7 (7.104)
J0

The mean of z under the Hy hypothesis is given by

oz = /0 (so(t) +n(t)) h(t) dt

T
= / so(t) h(t) dt (7.105)
Jo
while the mean of z the Hy hypothesis is given by
T
Jo

The variance, invariant under each hypothesis is given by

02 = U?‘Hg = U§|H1



Detection of Signals in Noise 199

T

T

_ Ei{[/ n(t) h(t) dt]*}

T T
/ / Ry (t,s) h(t) h(s)dt ds
Jo Jo

T T
'/0 /0 Ry (t —s) Z /2 (815 — s0i)gi(t)

D 1N (s15 = s0)g;(s) dt ds
i
T

33O i = i)y = s0r) [ s g0

J0

Z 1/)\, (817‘ - 807‘) (7107)

So the false alarm rate can be expressed as

Pra = QUT1 — Eo 2)/0%) (7.108)
while the probability of detection is given by

Py = QUTi - By 2)/o.) (7.109)

where the means and the variance are defined above. To obtain actual values
one has to solve the homogeneous integral equation, which at best is a tedious
undertaking.

7.7.4 Whitening Filter

Whitening, which is also sometimes called spectral shaping or pre-whitening,
is a simple technique which, as the name implies, converts the colored noise
to white noise. If possible, the whitener will correct the spectral shape of
the noise and convert the problem into one that can then be solved with the
standard matched filter or correlator. One can solve for a whitening filter by
assuming that the impulse respouse of the whitener is of the form [18§]

hw (t,u) = Z hj q;(t) q;(u) (7.110)

where {g;(#)} is a C.O.N. sct based on the noise kernel cigendecomposition.
Note that this impulse response admits a non-stationary behavior. With some
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work [18] one can show that {h;} = {1/X;}. Hence,

hw (tu) = Y 1/A 4;(t) g;(u) (7.111)

J

To obtain the cigenvalues and cigenfunctions, the homogencous integral equa-
tion has to be solved.

A practical solution exists when the noise is stationary and the signal
duration 7" much larger than the correlation width of the noise, or the ob-
servation interval >> T, and the noise spectrum is of a rational (leucogenic)
form. If we let the start time approach —oo, then the whitening filter of
(7.110) can be made time-invariant, that is

h,ur(T) == h,ur (t — u) (7112)

where 7 = ¢ — u. Hence, given the noise correlation function Ry (7), the
spectral density is given by Sy(s) = S¥(s) Sy(s), where ST (s) has all its
poles and zeros in the left-hand s-plane (i.e., the causal contribution) and
Sy (s) has all its poles and zeros in the right-hand s-plane (i.e., the anti-causal
contribution), then the transfer function of the whitening filter is given by

Hy (s) = 1/S%(s) (7.113)
and the corresponding impulse response is defined by
hw(t) =L {1/S%(s)} (7.114)

If this filter is used to whiten the received data, it must also be applied to
the replica signals (sce Figure 7.6) to allow the signals to correlate when they
are present.

7.8 DISCRETE-TIME DETECTION —
KNOWN SIGNALS EMBEDDED IN
COLORED GAUSSIAN NOISE

7.8.1 Introduction

This section will focus on the detection of known signals in colored Gaussian
noise, where the observations are processed in discrete-time (i.c., at sample
instances). We assume that the noise process has a spectral density func-
tion that is a rational polynomial, hence the process will always satisfy the
Paley-Wiener condition. This implies that the power spectral density has no
extended regions in which it takes on a zero value [3]. Depending on the
spectral region of interest, and relative to the total spectral region available,
onc can partition the detection problem into two classes:
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Whitener
h(?)

Y
—(X)—> IOT dt

< 5(9)

+
W) = W}Z(t;e)ner L o 2 threshold
- -
L J. dt
0
Whitener
H) — 5.(0)

Figurce 7.6: Two channel realization of the analog whitener.

(a) The spectral region of the signal(s) of interest, i.c., the bandwidth, is
narrow relative to the center frequency, and the PSD of the noise is
almost constant over the band. In this particular case, as far as the
receiver is concerned, the noise (after proper filtering) can be treated
as a bandlimited white noise process, where the PSD outside the band
takes on very small values. Hence, the noise corrclation function is
approximately a sinc-function, whose first zero crossing occurs at lag
one. This says that Ry(m) = 0, for [m| > 1 since all other correlation
lags will have low correlation values. Hence, due to their Gaussian
nature, the uncorrclated samples can be assumed to be statistically
independent. We can solve this class of problems, as was alrcady done
in Chapter 6 (see the development of the discrete-time correlator).

(b) The PSD of the noise exhibits variations in magnitude over the band of
interest. Then one can whiten (also called pre-whiten) the data so that
at the output of the whitener the noise will have a constant spectral
height. In some literature the whitener is also referred to as a spectral
cqualizer. At this point in the processing chain, we have converted
the original problem of detecting a known signal embedded in colored
Gaussian noise into the problem of detecting the known filtered signal
embedded in white Gaussian noise. Hence, the standard approach of
replica correlation applies, as was derived in Chapter 6, Section 6.2.
The major difference is that now the replica function will be replaced
with a filtered version of the original signal. This technique is illustrated
in Figure 7.7.

We note that one can combine the whitening and filtering operations into a
one-step operation. For clarity, we typically do not implement this type of
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Whitener
h(n)

Y
_>®_>

< 5,(n)

=
!

=0 +
() = Whitener [ & Z threshold
h(n)
N-1 -
—>(%>—>
n=0
Whitener
H(n) < s5,(n)

Figurc 7.7: Discrete-time colored noise detector.

streamlined operation. Rather than that, we usually prefer to keep the build-
ing blocks (an explicit whitener and the correlator) separate. We also want
to point out that the wavelet transformation tends to whiten the noise [20],
but the different filters will have a different bandwidth and output sampling
rate (i.c., sce Chapter 3 and Appendix E).

7.8.2 Whitening via Spectral Factorization

There are sceveral ways to accomplish the whitening of the noise. Many of
them are championed in the digital signal processing literature [3,13 16].
Knowledge of the noise auto-correlation function is equivalent to knowing
the power spectral density of the noise. Most of the time, the PSD can be
factored into its pole and zero constituents. This allows for the separation
of the poles and zeros that lie inside the unit circle from those that do not.
We assume that the PSD of the colored noise does not take on a zero valuc;
hence, there are no zeros on the unit circle. There cannot be any poles on the
unit circle since that would result in spectral resonance (i.e., a response due
to a sinusoid). So in this discussion only poles and zeros inside and outside
the unit circle will be considered. We further assume that the observation (or
processing) time is much larger than the signal duration, unless it is called
for otherwise. The PSD can be written as

Sn(z) = Z{Rn(m)} (7.115)
which can be factored as
Sn(z) =K S]'C(z) Sy () (7.116)

where S (2) contains all the poles and zeros that reside inside the unit circle,
Sy (z) contains all poles and zeros outside the unit circle, and K is a positive
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w (n) B(2) n (n)
—>| H(2)= —>

white A(2) colored

noise noise

Figure 7.8: Generation of the colored noise sequence n(n) from the white noise
sequence w(n).

n(n) 4(2) n,, (n)
—>| H(2)= —> )

colored B(2) white

noise noise

Figure 7.9: Whitener (spectral equalization).

valued constant. If we let H(z) = S5 (z), then we can filter the noise process
using the inverse of the filter transfer function (i.e., H 1(z)) to obtain a
constant power spectral density.

This is equivalent to the leucogenic process in analog systems [4] and its
generating mechanism is shown in Figure 7.8.. One assumes that the colored
noise is generated by processing stationary white noise with a system that has
a transfer function with a finite number of poles and zeros. All poles and zeros
must lie within the unit circle (i.e., the stable region). The requirement on the
order of the poles relative to the zeros is relaxed. It is permissable to have
more zeros than poles (i.c., FIR filter transfer functions have a non-trivial
numerator polynomial) since the region of support extends ouly from —7 to
7w radians. The wording non-trivial polynomial refers to having roots not
located at the origin. A valid model for the noise process is given by Figure
7.8. The zeros of the numerator A(z) and denominator B(z) polynomials arce
all inside the unit circle.

The whitening is accomplished as the data sequence n(n) is equalized (sce
Figure 7.9), that is, the output becomes spectrally flat.

The filter response is obtained by using the factored power spectral den-
sity:

1 A(R)

Hi(z) = SH(z) ' = BG) (7.117)

Now the whitened noise is given by
nw(n) =n(n) = hi(n) (7.118)

hencee,

9

2

Snw(2) = Sn(2) [Hi(2)]* = |B(2)/A(z)]* |A(z)/B(z)
= coustant (7.119)
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12

x(n) z™!

Figure 7.10: Example of a whitener based on spectral factorization.

Therefore, the noise has been whitened. Of course, the signal will also have
been filtered, that is, the output signal is the prevailing input signal con-
volved with the impulse response hi(n). This approach leads to a whitener
that opcrates in real time (i.c., on line) in a contiguous fashion (i.c., sample
by sample). Now that the additive noise component is white, the standard
approach (see Chapter 6.2) applies to the filtered signals embedded in white
Gaussian noise.

Example 7.6
z—(1/44+1/16) + 271

S8 = AT s
or / 1 /
1—-1/427" 1—-1/4 =z
SN = TR T T2,
hence

114270 2—1/4
1 -1/2z21 0 2 —1)2

The transfer function of the whitener is

SN

1 Z—1/2

T Si(z) z-1/4

H(z)

The difference equation is easily derived via

Y(2) (1-02521=X(2)(1-052z1)
resulting in

y(n) = 1/4 y(n — 1) +2(n) = 1/2 2(n — 1)

The filter that uses this transfer function is shown in detail in Figure 7.10.
Since this filter shapes the embedded signal, the filter must also be applied to
the stored replica to allow effective correlation.
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7.8.3 Whitening Using Correlation Domain Information

If the observation time is relatively short (i.c., Tobserv & Tsignat = T'), then an
approach basced on the decomposition of the noise auto-correlation function
can be used. In this case we can factorize the correlation matrix and use
the resultant matrix to filter a finite data segment. A good candidate is the
L D; L7 decomposition. The L Dy L decomposition is the special case of
the L Dy U decomposition, when the matrix to be factored is symmetric.
Using the matrix obtained via the factorization, one can transform (filter)
the data of length L (i.e., L x L is the size of the correlation matrix) into L
uncorrelated samples [3,16,17]. The transformation is obtained by factoring
the correlation matrix as given by

Ry =L D, LY (7.120)

where H denotes the Hermitian transpose (i.c., complex conjugate transpose).
The matrix L is a unit lower triangular matrix, with unit elements on the
diagonal. Pre-multiplying by L~! and post-multiplying by (L)~!, we obtain

LRy (L)y'=L'LD,L” (L)' =D, (7.121)
Hence, Dy, is a correlation matrix of the random vector given by
w=L"'n (7.122)

Since Dy, is a diagonal matrix, the components of the vector w are orthogonal
(ortho-normal, if Dy is the identity matrix). Since L is a lower triangular
matrix, L™! is also a lower triangular matrix, which will perform the trans-
formation shown in (7.122). As far as the noise is concerned, the end goal
is to obtain independent random variables (i.e., uncorrelated and Gaussian).
Any choice of transformation of the form

w = An (7.123)

will do, as long as the matrix A makes the random variables contained in w
orthogonal (or ortho-normal). The decomposition, L Dy, L7 is just one of the
transformations that can be used. For example, the Cholesky decomposition
[17] can also be used to obtain the whitening effect.

Example 7.7 Suppose the noise correlation funclion is given by the expo-
nential expression

Ry (i) = el fori=0,1,2,3
The one-sided correlation vector is given by

Ry = [1.0000,0.3679,0.1353,0.0498] "
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The L Dy, LH decomposition provides an L matriz of the form

|

T

1.0000  0.0000
0.3679 1.0000
0.1353 0.3679
0.0498 0.1353

0.0000 0.0000
0.0000 0.0000
1.0000  0.0000
0.3679 1.0000

1

|

So the desired transformation matrix is given by

1.0000

—.3679

0.0000
0.000

|

S

0.0000
1.0000
—.3679
0.0000

0.0000
0.0000
1.0000
—.3679

0.0000
0.0000
0.0000
1.0000

1

|

which can be used in (7.128). If we were to use the Cholesky decomposition,
that is Ry = C CT, then C is given by

1.0000
0.3679
0.1353
0.0498

|

"

0.0000
0.9299
0.3421
0.1258

0.0000
0.0000
0.9299
0.3421

Then the desired transformation malriz is given by

[ 1.0000  0.0000

ol —.3956  1.0754
0.0000  —.3956

{ 0.000  0.0000

which can be used in (7.123).

0.0000
0.0000
1.0754
—.3956

0.0000
0.0000
0.0000
0.9299

1

|

0.0000
0.0000
0.0000
1.0754

1

Example 7.8 Suppose the noise correlation function is given by the expres-

ston

Ry (i) = 0.5"!

for i =0,1,2,3

The one-sided correlation vector is given by

Ry = [1.0000,0.500,0.2500,0.1250]7

The L Dy, LH decomposition provides an L matriz of the form

|

T

1.0000  0.0000
0.5000 1.0000
0.2500 0.5000
0.1250  0.2500

0.0000 0.0000
0.0000 0.0000
1.0000 0.0000
0.5000 1.0000

1

|
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So the desired transformation matrix is given by

1.0000  0.0000
—.5000  1.0000
0.0000  —.5000
0.000  0.0000

L' =

0.0000
0.0000
1.0000
—.5000

0.0000
0.0000
0.0000
1.0000
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which can be used in (7.128). If we were to use the Cholesky decomposition,

that is Ry = C CT, then C is given by

[1.0000 0.0000
c — | 05000 0.8660
0.2500  0.4330
{0.1250 0.2165

0.0000
0.0000
0.8660
0.4330

Then the desired transformation matriz is given by

[ 1.0000  0.0000
—.0774  1.1547
0.0000 —.5774
0.000  0.0000

c! =

which can be used in (7.123).

0.0000
0.0000
1.1547
—.0774

0.0000 -‘
0.0000
0.0000
0.8660

0.0000
0.0000
0.0000
1.1547

1

Example 7.9 Suppose the noise correlation function is given as the linear

combination of two exponential type terms

Ry (i) = (—0.5)l1 +0.11

fori=0,1,2,3. The one-sided correlation vector is given by

Ry = [2.0000, —0.4000, 0.2600, —0.1240]”

The L Dy, LH decomposition provides an L matriz of the form

1.0000  0.0000
—.2000  1.0000
0.1300 —.1813
—.0620 0.1225

L =

0.0000
0.0000
1.0000

—.1793

So the desired transformation matrix is given by

[ 1.0000  0.0000

L~ — 0.2000  1.0000
o —.0938 0.1813
0.0207  —.0900

0.0000
0.0000
1.0000
0.1793

0.0000
0.0000
0.0000
1.0000

0.0000
0.0000
0.0000
1.0000

1
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which can be used in (7.128). If we were to use the Cholesky decomposition,
that is Ry = C CT, then C is given by

1.4142  0.0000 0.0000 0.0000
—.2828 1.3856 0.0000 0.0000
0.1838 —.2511 1.3795 0.0000
—.0877 0.1697 —.2474 1.3792

Then the desired transformation matriz is given by

0.7071  0.0000 0.0000 0.0000
0.1443  0.7217 0.0000 0.0000
—.0680 0.1314 0.7249 0.0000
0.0150  —.0653 0.1300 0.7250

c' =

which can be used in (7.123).

The matrix decomposition method will work for segmeunts of length L (i.e.,
the dimension of the noise correlation matrix which equals the signal dura-
tion). This implics that the start and stop times of the signal should line up
with the segment under consideration (i.c., known signal timing parameters).
If we segment the data and the expected signal duration is of length L, then
it is possible to be misaligned as much as by 1/2 of the length of the data
points. If the signal energy is homogeneous in time, potentially half of the
energy could be lost (i.c., a3 dB loss). This loss can be reduced by performing
overlap processing (choosing overlapping segments of data for processing). Of
course, the price paid is the additional processing cost, i.c., for a 50 percent
overlap factor, the processing cost doubles relative to an approach in which
contiguous non-overlapping segments are used. The non-overlap segment pro-
cessing lends itself to scenarios in which signal synchronization is ensured (i.c.,
binary communication signals, fixed pulse repetition frequency (PRF) radar
signals, sonar signals, ctc.). Noise samples from segment to segment will be
correlated but within one segment the L samples will be independent. We
note, that if one were to let this filter operate in a contiguous mode (i.e.,
shift one data point to define a new segment), output samples separated by
a number of samples smaller than the filter length will be correlated, henee
be colored.

7.8.4 Whitening via Auto-Regressive Modeling

An important aspect of digital signal processing is auto-regressive modeling.
Here one assumes that the data is generated using an auto-regressive model
(i.c., an IIR filter driven by a white noise source). As indicated in Figurce
7.11, we sce that the observation noise is obtained by processing white noise
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signal
AR
w (n) .
. — [IR — n(n) signal +
(white noise) colored
(colored noise) .
noise
Figure 7.11: AR model.
s; (n)
w (n) >
—» AR /—> FIR [—{ Correlator [—» _ threshold

smEn) oy +n (n)

Figurc 7.12: AR generation, whitener, and optimal detector.

with an IIR filter. This noise is also called an auto-regressive process and the
shaping filter is called an all pole model (disregarding zeros due to the trivial
numcrator polynomial with roots only at the origin).

We already know from the earlier discussion in this section, that proper
filtering of the colored noise sequence produces a white noise sequence. Figure
7.12 shows the processing stream to perform detection of the signal compo-
nents ecmbedded in colored Gaussian noise.

Here n(n) is a colored noise sequence, and s}(n) is the filtered signal
component. To obtain the optimal filter weights one has to solve the Wiener
(Yule-Walker, Normal) equations. These equations are intimately related, see
for example [3]. We can solve for the optimal filter by studying the model in
Figure 7.8. We have

n(n) = h(n) * w(n)
where h(n) is the general impulse respouse, w(n) is the white noise input
sequence and n(n) is the colored noise output sequence. We can express the
system difference equation as

P
Z a; w(n —i) =w(n) (7.124)

i=1
where a; denotes the variable A(7), for all required values of 4. Post-multiplying
by n{n — 1) and taking cxpectation leads to

Ry(1) = a; Ry(1—i) = Rwn(l) (7.125)

i=1
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Now
Rwn(l) =

= FE {w(n) Z

i=1

E {w(n) n(n—1)}

a; w(i)h(n —1—1)}

p
= > op b(n—i) h(n—1—1i)
=1

= o h(-1)
So (7.125) becomes
p
By(0) =) a; Ry(—i) =0y , for I =0
i=1
Ry(-1) —Z a; Ry(—i+1)=0, fori=1
i=p1
Rn(=2) =) ai Ry(—i+2)=0, forl=2
i=1
p
Ry(-p) —Y aiBy(—itp) =0, forl=p
i=1
In matrix form, we can write
Rya=r (7.126)
Ry (0) Ry(-1) Ry (-2) Ry(—P +1)
Rn (1) Rn(0) Rn(-1) Ry(—P +2)
Ry = Rn(2) Rn(1) Ry (0) Ry (—P +3)
Ry(P—=1) Rn(P—2) Ry(P—3) R (0)
with
a” = [a(1),a(2), - a(p)]
and

1’ = [Ry(1) Ry(2) -+ Ry (P)]

This approach works with sequential data samples (i.e., real time), hence
there is no need to segment the data. All noise output samples of the FIR
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whitener will be statistically independent once the FIR filter has processed L
data samples (i.c., has processed sample (L — 1)). The whitened output can

then be correlated with the filtered ¢f(n) components, (i.c., $i(n) = si(n) *

h(n), the FIR filter weights). We also note that the auto-regressive modeling
can be interpreted as a spectral factorization, where only the denominator
A(z) is a noun-trivial polynomial.

Example 7.10 Suppose we have the one-sided correlation vector as given by
Ry = [1.0000, 0.800, 0.0640]"
We can easily verify that the corresponding correlation function given by
Ry(i) =081 fori=0,1,2
Suppose we let the model order be P = 1, then we have
RN (0) a1 = Ry(1)

hence

a; = Ry(1)/Rn(0) = 0.8/1 = 0.8

Suppose we let the model order be P = 2, then we have

Rn(0) a1 + Ry(1l) aa = Rpy(1)
Ry(1) a1 + Ry(0)aa = Rpy(2)
hence
1.0 a; + 0.8 ao 0.8
0.8 a; + 1.0a2 0.64

Solving these two simultaneous equations leads to
ar =08 and ay=0

If we would increase the model order P, we will see that all coefficients
past the first one (i.e., a1 will be zero). So we see we can easily extract the
proper pole location, even when the assumed model order exceeds the true
model order.

7.8.5 Whitening by Discretizing the Continuous Time
Karhunen-Loeve Equations

We can also approach the colored noise problem using the results obtained
in Scction 7.7. Suppose that we do have continuous time processes so that
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(7.72) is applicable. Further, assume that we sample the data in the Nyquist
sense, then s(n), any signal component, can be accurately represented by the
DFT representation (i.c., the discrete Fourier synthesis equation)

1 )
s(n) = — S(k) ef3m/N)kn (7.127)
N
k=0
where S(k) is the complex amplitude spectrum and 27k/N = wy. The highest
frequency component (i.e., wmax = wo) has a correlation function component
of the form

R(m) = Acos(wo m)

where wq corresponds to the highest frequency present. One can sample the
correlation function at the same rate as would be appropriate for the analog
(continuous time) data. Henee, (7.72) can be represented by

i Ry (1l —m) h(m) = s(l) = s1(1) — so(l) 0<I<L-1 (7.128)

m=0

In matrix form we have, using s = s1 — sg as the signal difference sequence
Ry h=s (7.129)

where we replaced the continuous version of s(t) in (7.72) with the appropriate
sampled version (1) = s1(1) — so(I). The matrix cquation is similar to the
matrix cquation of the auto-regressive approach (i.c., sce (7.126)), but with
h and r represented by

a’ = h' = [1(0) = ho(0), h1(1) = ho(1),-- -, ha (L = 1) = ho(L — 1)]

t7 = 8T = [51(0) — 50(0),s1(1) — s0(1), -+, s1(L — 1) — so(L — 1)]

One can also start directly with the discrete-time sequences, and produce
the discrete-time equivalent of the Karhunen-Loeve expansion. With some
work one can show the result is equivalent to the last matrix equation. We
note, if the noise process is white, then (7.128) can be solved as given by

s1(2) — so(7)

i) = Rn(0)

resulting in the correlator solution.

We also note that many times the analytic form of the noise correlation
function, or the noise PSD are not available. One can estimate the correlation
function, noting that the signal may be present and that its effects must be
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nullified. Some application of adaptive filtering techniques might provide ways
to get a uscful approximation of the correlation function. This approach tries
to take advantage of the temporal and spectral differences between signal
and noise. At high SN levels, one can use time-frequency distributions (i.c.,
Wigner-Ville distributions [22]) to mask out temporal and spectral regions
that may have signal components.

If one has noise only data cuts, one can obtain numerical estimates of the
corrclation or spectral density function. These cstimates are not the same
as the analytic expressions. To solve the Yule Walker, Normal or Wicner
equations, or in general use correlation based approaches, numerical estimates
of the correlation function will do. It is not as simple as when one wants to
extract pole and zero locations to design a whitener based on (7.117).

7.8.6 Matched Filtering

For the known signal casce (i.c., deterministic signal) in colored noise refer-
ence [3] derives the optimal FIR filter to maximize the output SNR. In this
particular casc the whitening and correlation are combined to occur simul-
taneously while performing the FIR filter operation. For real valued signals,
the optimal filter weights are given by

h= (TR s) /2Ry 8 (7.130)

where § is the time reversed vector s. For white noise, the FIR filter weights
become

h=(sTs)"%/%3 (7.131)

which is the scaled time reversed version of the signal under consideration.
This particular approach works also if the noise is not Gaussian, but note
the optimum recciver is based on maximizing the output SNR and not on
minimizing the Bayes’ cost. In the non-Gaussian case, these two approaches
do not provide the same solution.

7.9 SUMMARY

Chapter 7 discusses the detection of signals when the noise is not white but
still Gaussian. At first, detection in a white noise background is re-examined
in the context of C.O.N. basis sets. Then the basis sets are changed using
the Gram-Schimidt procedure. In Section 7.4, the Gram-Schmidt procedure
is applied to the white Gaussian noise case. All of this is used to familiar-
ize the reader with scrics representations.  Scction 7.5 addresses the series
expansion for colored Gaussian noise. In particular, the Karhunen-Loéve
expansion and Mercer’s theorem are introduced. Section 7.0 applies the con-
cepts introduced in Section 7.5 to the colored Gaussian noise case, leading
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to the integral equation (7.78). In this context, the bilateral Laplace trans-
formation is introduced and the integral cequations, in particular Fredholm
integral equations, arc discussed. The Laplace transform is used to convert
the Fredholm integral equation of the first kind into a differential equation.
One standard problem is worked out to illustrate the steps of the technique.
Section 7.8 addresses discrete-time problems and introduces some of the al-
gorithms used in the statistical digital signal processing area. This allows
whitening of the discrete-time colored noise sequence. Consequently, the col-
ored noise becomes white noise, the signals are spectrally shaped, and the
problem becomes a standard problem that is solved earlier in Chapter 6.

7.10 PROBLEMS
1. Given the power series: 1/00,#1/11,42/21 - i /il, .- for 0 <t < 1

(a) Obtain the Gram-Schmidt expansion for the first four terms.

(b) Plot the basis functions for the original and the modified functions
(using MATLAB or any other software).

2. Assume Ay are the cigenvalues associated with the kernel R(iq, t2).

(a) Show
T
/ R(ty, ta)dt; = Mg
Jo .

(b) Show
T pT
/ / R (ty, to)dtydty = > A
JO JO L

(¢) Show, if
R ) = 3 50 (00i(r)

- (]
1

then the integral

T
/ RZ_Vl(f,T)RN(T,U)dT =7
Jo

Show all work.

3. Given that we have a discrete-time, real valued, and proper auto-
corrclation function (i.c., non-negative, symmetric, R(0) > R(m)), arc
the cigenvectors:
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(a) real valued
(b) orthogonal

(¢) normal

Jonvince the reader.
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Chapter 8

Estimation

8.1 INTRODUCTION

In previous chapters we addressed the detection of a particular signal (or
component), now we want to obtain an estimate of its value. This chapter
attempts to offer a rudimentary introduction into the topic of estimation the-
ory. For additional details, we refer the reader to [1-5,19]. As shown in Figure
8.1, we can look at the estimation problem and its solution in two steps. The
first step is the mapping of the parameter (the ones to be estimated) to the
observation space, while the sccond step is the mapping from the observation
space to the estimation space. The estimation of the parameter provides a
rule (algorithm) to obtain an optimal value of the parameter of interest. Since
the observations, by nature, are corrupted by noise, the observations are ran-
dom variables. Any operation on these random variables will result in a new
random variable; hence, part of this chapter will examine ways to address
the goodness of the particular estimator in question. We distinguish between
the estimate and the estimator in the seuse that the estimate is the result
of operating on data with an estimator. We also note that we do attach the
propertics of the estimate to that of the estimator (i.c., an unbiased estimate
equates to an unbiased estimator).

8.2 BASIC ESTIMATION SCHEMES

This scction takes a cursory look at three types of estimators: the MAP,
ML, and Baycs’ estimator [1 8]. Similarly to the detection approaches, we
can choose to deal with the a priori probability density (i.c, MAP) or a cost
function (i.e., Bayes’), or neither one (i.e., ML). We shall deal ouly with scalar

217
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Probabilistic Estimation
Mapping Rule

Parameter Space Observation Space Estimation Space

Figurc 8.1: General estimation.

parameters. Vector extensions, in principle, are straightforward, but may be
difficult to use in illustrations and as examples.

8.2.1 MAP Estimation

MAP estimation is an optimization technique that maximizes the a posteriori
probability. That is, we find the most likely value of the parameter « given
the observation. This is expressed as

{a} f(y)

It is obvious that we need the PDF of the paramcter « (i.c., f(a)) to
maximize expression (8.1). A typical conditional PDF scenario is shown in
Figure 8.2, where the location of the maximum provides the MAP estimate
of the parameter a. No cost function is required.

fyla)f(a)
11{13}Xf (a]y) = max {—} (8.1)

Example 8.1 Given that we have the observations
Yi = a+ny 1=0,---,N -1
ni ~ N(0,02), (iid.)

a is a Gaussian random variable, independent of n; having a PDF given by
a~ N(0,02).
Find the MAP estimate of «

7(7/1'704)2/2031

H\/27r7
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S (aly)

P o

Q> H------mmmmmmmmooeo

MAP

Figure 8.2: MAP estimation.

1

= —a?/202
a) = ——— ¢ 2
f(a) N
f(yla)f(a)
flaly) =
) f(y)
N-1 2
= (II ! e_zigl(?/i—a)z/Qoii
=0 V2T Tn [y)V2r o,
flaly) = k(y) 67(1/2"2)@*02/05,21:7/7:)2
where
2 0 0n
- No2+o2

and k(y) is a function of y only.
The best estimate (i.e., MAP) for the parameter « is the value where
flaly) peaks, which happens when

hence

aMAP = — Yi
n
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S Oloy

|
|
|
|
|
|
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Figure 8.3: ML estimation.

2 | Nl
~ 240N N ;y

We note, if 02> 02 /N, then

N-1
1
AMAP = ~ Z Yi (the sample mean)
i=0

8.2.2 ML Estimation

ML estimation is an optimization technique that maximizes the likelihood
function f(y|«), i.c., finds the peak of the likelihood function, as shown in
Figurc 8.3.

This is expressed as

max f(yla) (8.2)

As is obvious in the MAP cstimator definition, one can look at the ML
estimator as a version of the MAP estimator in which the PDF of «v (i.c., f(«))
has no cffect on the actual outcome. The ML estimator does not require a
cost function nor the PDF of f(«).

Example 8.2 Given
Yi = a-+n; 1=0,1,---,N -1
ni ~ N(0,02), (iid.)

Estimate the mean of sequence of data points y;, wherei=0,1,---, N—1.
Since we do not have a PDF description for a, we assume that the conditional
PDF f(aly), as far as any functional interactions are concerned, is essentially
independent of f(a). Hence, an ML estimate is appropriate, i.e., marimize

f(yla)
1

V2mo,

N-1

2 2

max f(y|a) = max H e~ (Wima) /20,
i=0
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or, equivalently minimize the logarithm of f(yla) (i.e., minln f(yl|a)). The
natural logarithm of f(yla) can be written as

N— 1 7/ —a)
In f(yla) = Z 307
where k is independent of «, and hence
] N—1
0 (yi —a)
—1 ) =2 ——— =0
el i =2 )
or
N—1
i=0
or finally

L = ~ ; Vi (the sample mean)

8.2.3 Bayes’ Estimator

The Bayes’ estimator uses an average cost function which will be minimized.
The cost of an crror is defined as C'(a. ), which is a non-negative term that
is a function of the estimate and its true value (i.e., C(a.) = C(a,&). The
average cost is defined as

- [[ cta.d) stay) (s ay d (5.3)

where we assume that all variables are continuous in nature. We see it is
similar in form to the average cost

M—-1M-1

= > > Cy f(Di|H;) Pr(hy) (8.4)

i=0 j=0

as advocated in (4.26). It can be interpreted as the generalization of the
M-ary hypothesis test to a test where a continuum of outcomes is possible.
Usually, three typical cost terms are advocated: lincar (absolute error) cost,
constant (uniform) error cost, and quadratic error cost. Figure 8.4 shows the
cost as a function of error for these three cases.

Figure 8.4a shows that the penalty (i.e., cost) for the absolute error crite-
rion will increase linearly with the magnitude of the error. The uniform error
cost, Figure 8.4b will tolerate an error in magnitude less than A/2; that is,
a zero cost (or penalty) is applied as long as the error is smaller than the
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AC (o) =la— al

» o,
0

(a) Absolute (linear) error cost function.
_J1 la—a|> AR

ACla)= {0 else

1

» o

-AN2 0 A2
(b) Uniform (constant) error cost function.
AC(0)=(a-ay
» o,

0

(¢) Quadratic error cost function.

Figurc 8.4: Cost functions.
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guard band A/2. As the name implies, the quadratic cost (Figure 8.4c) will
penalize any error proportional to the square of the crror. Of the three cost
functions, the quadratic cost usually is the one that will be used. The main
reasons are

(a) The expressions arc analytically tractable.
(b) The error that is produced is the minimum mean squared error (MMSE).

We can write (8.3) as follows

C() = / Claly) f(y) dy (8.5)

where C(ély) is the so-called conditional cost given by

Claly) = / Cla, &) flaly) da (8.6)

The estimator & that minimizes the total cost C(&) is called the Bayes’
estimator. The total cost is minimized by minimizing C(&]y). Using the
preferred cost function (i.e., the guadratic cost), the conditional cost (8.6)
becomes

Claly) = '/((y —&)? flaly) do (8.7)

This expression is minimized with respect to « by taking a partial deriva-
tive with respect to & and setting the result equal to zero, as given by

‘—C (Gly) = / 9 (a —@&)? flaly) da =0 (8.8)

or

5 Claly) =2 /(Oz — & flaly) da=0 (8.9)

This can be solved to show that the best estimator is the conditional
mean, as shown by

& / flaly) da = / a flaly) do (8.10)
G = .u flaly) da = E{«|y} (8.11)

The controls literature is also advocating estimation based on the so-called
H, norm. For some detail we refer the interested reader to the book by
Burl [20]. This technique has also been successfully applied to estimate the
frequency of a complex sinusoid in white noise [21].
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8.3 PROPERTIES OF ESTIMATORS

The estimates are always functions of the data, where the data consists at
least in part of a random component. This makes the estimate, no matter
which estimation technique is used, a random variable. At this point, it is
of interest to investigate the quality of the estimate by evaluating its mean
and its standard deviation. The mean conveys information about the ex-
pected value of the estimate. The standard deviation indicates the degree
of scattering of the estimate’s value about its mean (i.c., the less scattering
the better). If no error would occur then the mean of the estimate would be
the true value of the quantity to be estimated and the variance (or standard
deviation) would be close to zero. We recall that random quantities have a
PDF where the behavior of the random quantities, in part, is determined by
the mean and standard deviation. We will introduce some of the definitions
that arc customarily used.

Definition 1: Unbiased Estimate

If the mean of the estimate equals the true value, then the estimate is unbi-
ased. The difference between the true value and the expected value is called
the bias.

Definition 2: Asymptotically Unbiased Estimate
If the estimate possesses the property that
lim E{anla} = a
N—oco
then the estimate is called asymptotically unbiased. The subscript of the
estimate indicates the functional dependency on the sample size N.

Definition 3: Consistent Estimate

If, as the number of observations increases, the PDF of an unbiased estimate
becomes more and more peaked (i.e., the variance keeps decreasing with an
increase in the number of observations) then the estimate is called a consistent
cstimate. More precisely, ¢ is called a consistent estimate if

lim Pr{(éd—a)>e}=0 (8.12)

N —o0
Definition 4: Minimum Variance Estimate
The unbiased estimate ¢ is the minimum variance estimate &gy if

var anv S var Oé(any other estimation scheme) (815)
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Definition 5: Cramer-Rao (CR) Bound

The Cramer-Rao bound is a bound on the variance of the estimate given by

, 1 1

gz > = - 8.14

7= Oln f(yla) 2 B { & In f(y|e) } 814
£ < Ow > 0a

Definition 6: Efficicnt Estimate

An unbiased estimate that meets the CR bound, is called an efficient estimate.

There is a host of other definitions that apply to the area of estima-
tion [2,4], which we leave for the interested reader to pursue. The body of
information on cstimators and their propertics is large. We are primarily
interested in this topic since we do use parameter estimates in nuisance type
likelihood ratio problems. A sccond reason comes about in that some typical
problems, detection and estimation, are closely coupled. See for example,
the periodogram (power spectral density estimator) in Chapter 9. It is the
ideal detector for low SNR narrow-band signals which are embedded in white
Gaussian noisc, where the phase and frequency are assumed to be uniformly
distributed. That is, the phase and frequency have the worst possible uncer-
tainty. We shall illustrate some of the definitions using simple examples.

Example 8.3 Let us re-ezamine Frample 8.2, the mazimum likelihood esti-
mator of the mean and evaluate its expected value and its variance.

avr = % Z Yi

El{avn} = — Z E{y;} where weuse Ey; = E gy

1 . . .
=  avL = ~ E Yi 1s an unbiased estimate

varane, = E{(@w)’} - (Blaw))’
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Q|

2
2 IR —(%ZE@})

1
= < (N-1N(E{y})’+ NE{y*} —N*(BE{y})’
N’
off-diagonal terms diagonal term
1 2
- = {-NEW VB
1 2
= B Bl
1 1,
= — vary = — o,
N : N
hence, we can say that
1Vl
aML = N ; Yi is a consistent estimate

To see if the sample mean is also an efficient estimate, we will obtain the

CR bound.
- - N-1
7, 0 (y; — a)?
2 A o Wi %)
da nf(yle) da { —~ 207
1 N-—-1
= 522 Wi-a)
n i=0
N-1
1
= =2 Wi-a)
n =0
021 f(yla) 0 1=
T % Baoz WY
™ i=0
1 N-1 N
RN

The CR bound is given by

_ = =
E{O—lnf(y|a,)} *%

2
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The variance of the estimator var ay, = 02 /N; hence, the sample mean is
an efficient estimate.

Example 8.4 Given y(t) = s(t,a) +n(t), for 0 < ¢ < T, where s(t,) is
known except for a, which is an unknown parameter. The additive noise is
a white Gaussian random process, with zero mean and a spectral height of
No/2. We want to find the ML estimate of the unknown parameter .

T 2 2
n{m}x flyla) = H{laf{ Jo e L/Mo Jo O=s(t0)?/20 dt

or
. 2 [T t) —s(ta)® 0
min In f(y|(1) = FO ./0 T %b(t,@) dt =0

(a) Suppose s(t,a) = as(t), where s(t) is known, hence the partial deriva-
tive becomes

0 0
. s(tya) = . as(t) = s(t)

hence, we minimize the logarithm of the conditional PDF via

or

A Jo
ML =

o
/ s(t) s(t) dt
Jo

Note, this is the cross-correlation of y(t) and s(t) normalized by the
auto-correlation coefficient of s(t).

(b) Suppose s(t,a) = Acos(wot + «), where wy and A are known and «,
the phase angle, is the desired unknown parameter. Then the partial
derivative becomes

0%3(t, w) O%A(:os(wot + )
= —Asin(wo + @)

hence, we minimize the logarithm of the conditional PDF via
v
/ (y(t) — Acos{wot + @) (—Asin(wot + ) dt =0
Jo

the cross-term A2 (]’OT sin(wot 4+ @) cos{wol + a)dt equals to zero if
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woT = kT (k is integer) and is approzimately equal to zero if 2m/wo <
T. We assume that this cross-term can be neglected, so we have

T
/ y(t) Asin(wot + a)dt =0
Jo

or
T

T
SiIlOé/ y(t) cos{wpt)dt = <::osoz/ y(t) sin(wot)dt
Jo Jo

The ML estimate becomes

T
A 1 {sina . /0 y(t) sin(wot)dt
Qv — tan — tan Jo_

oS (v
y(t) cos(wot)dt
Jo

Note, if this were o discrete-time problem, then

2
y(n) sin <Wﬁkn>

QNIL = tan~

where Y (k) = the DFT or FFT of y(n), n = 0,1,---,N — 1, and k closely
corresponds to wy.

8.4 CRAMER-RAO BOUND

This section will provide the derivation of the Cramer-Rao (CR) bound for a
non-random unbiased parameter case. The random parameter case is treated
in van Trees [6]. Assuming that we have an unbiased estimator, then

E{&—a)|a} = / (6 —a)f(yla) dy =0 (8.15)
Taking the derivative with respect to o leads to
o[~ (& —a)f(yla) dy = /‘°° i((Ay—(y) flyle) d
o J_o e /y_(_oo(‘)oz TSy ey
e e 0 ,
= - / [(yla) dy + / (6 — u)% dy (8.16)
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Since du/dx = u d(lnu)/dx, we can rewrite (8.15) as

/ (& —a) L)i( In f(yu)} flyla) dy =1 (8.17)
J oo Y
Rearranging (8.17) leads to

<10
1= / {mln Y()z} V f(yla) - <\/f (y]a)( oz—oz)) dy (8.18)

v =00

Recalling the Schwarz inequality,

</_Z 9(w) hiz) d”‘)Z = /_Z g*(z) dz / h*(x) dz

where the terms are equal when g(z) is linearly related to h(x). Applying the
Schwarz inequality to (8.17) leads to

gde.]

/'°° (ilnﬂyw))Qf(ymwy [ G- sl ayz1 s19)

Jooo \Ocx Jooo

Using the definition for the moment of the function of a random variable,

say E{g(z)} = [ g(z)f(z)dz, we obtain
1

E { <0%lnf(yu))2}

An cquivalent definition for the CR bound is given in (8.21). The deriva-
tion is not given here, the interested reader is referred to [18]. The scecond
form of the CR. bound is given by

E(6—a)? >

(8.20)

-1

9% 1n f(y|a)
E { 19206 }

o8> (8.21)

8.5 WAVEFORM ESTIMATION

Many times it is desirable to recover the original waveform or some function of
it, where usually the waveform is embedded in noise. Typical measurements
(data, observations) may be amplitude or position as a function of time. We
see that one possible data estimation scheme might recover the amplitude or
position, as the case may warrant. In the case of positional data, it may be
desirable to estimate the velocity or acceleration directly from the data. This
corresponds to the first and sccond differential of the true positional values,
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| Y Current
Past ¢
A
s N

— , time

Figurc 8.5: Filtering scenario.

respectively. Henee, we sce that estimation of functions of the true data do
naturally come up in some applications.

Estimation problems can be separated into three different basic types (con-
figurations, solutions, setups), which are addressed in the literature. These
three basic problems are filtering, predicting, and smoothing. We will briefly
discuss these three processing types and refer the reader to Figures 8.5 8.7.

(a)

Filtering:

This technique (see Figure 8.5) uses all past and the current data in-
formation. As the name implies, filtering manipulates current and past
information (data) to obtain an optimal estimate of the true message
value at time ¢.

Predicting:

Predicting uses all information available at time ¢, just as the filtering
operation docs. To obtain an optimal predicted value of the message
or signal some € seconds into the future, it uses past and present in-
formation. Figure 8.6 shows the geometry of the predicting process.

Smoothing:

The smoothing operation is an off-line processing technique. It is as-
sumed that all information regarding a particular experiment is made
available to the estimation procedure. Having all the information avail-
able essentially employs future data, relative to a given point in time
(i.e., it is non-causal as far as the point at time ¢ is concerned). This is
why it is an off-line processing technique, since from a processing point
of view all data points occur in the past. Figure 8.7 provides the geom-
ctry of this estimation problem. Clearly, at any time ¢, all information
is made available to the processor.
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A0 Current
Past ¢ Future
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' future value
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N > time
I\/ t+e
t
Figurc 8.6: Predicting scenario.
A (0 Current
i i
Past ! Future !
[} [}
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,~ NS
M |
: — time
} / -V }
End

Figure 8.7: Smoothing scenario.
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Historically, two different solutions have been formulated. The first one
is obtained in the frequency domain, while the sccond one is obtained in the
time domain. The frequency domain approach was formulated by Wicener
[7] and leads to a description of the optimal processor in terms of second
order mornents (i.e., correlation or spectral properties) [8,9,19]. The estimate
is non-recursive. The time domain approach was formulated by Kalman [10]
and is based on an update of the estimate, a gain factor, and an error criterion.
For the discrete-time case, the governing equation for filtering is of the form

§(n)=® §(n—1)+Kn) [yn) —C ® s(n—1)]

where ® and C' are the state transition and observation matrices, respectively.
The quantity §(n—1) is the estimate at the previous sample instant, the term
y(n) — C ® §(n — 1) corresponds to the error occuring at time n, and K(n)
is the time varying Kalman gain. The estimate is recursive in nature. Many
books focus on the Kalman filtering technique, see for example [3,11,19].

8.5.1 Wiener Filtering

A fairly simple solution is obtained when the orthogonality principle (sce Pa-
poulis [12]) is invoked. Typically, the minimumn mean squared error (MMSE)
criterion is used, which is of the form

MMSE = E{(g(t) —g(t))Q} (8.22)
where MMSE denotes the minimum mean squared crror, g(f) is the desired
quantity, and §(t) is its estimate. In our problems, the data is of the form

y(t) = s(t) +n(t) 0<t<T (8.23)

The interval is [0,T], but can casily be adapted to any interval [to, ;] and
the desired quantity is

g(t) = s(t+cq), a>0 = a predicting problem
g(t) = s(t) = a filtering problem
gt) = s(t+a), 0<(a+ t)<T = asmoothing problem

Example 8.5 Given y(t), predict y(t + «) for a >0
g(t) = ylt+a)

§(t +a) = ay(t)

Q>

—~
o~

N
I

win 2{(9(1) ~5(1)°) = min B{(y(t +0) —ay(0)’}

min J
{a}
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where J =F {(1/(1‘ +a)—ay(t)” } Setting

0s _
da
produces
2B {(y(t + ) —ay(t)) (=y(t))} =0
or
Ry(a) —aRy(0)=0
hence
a - Ry((l/)
MSSE Ty (0)

MMSE is given by

MMSE =

=

{(ste
= E{ y(t + ) —07/(1‘))2}

_ Ry(a)

= YT R, O “) }

N 2RY( ¥)

= RY < 0 (0) Ry((l/)
2 o) — 2 (8%

= Ry(0)+ Ay ])fy(?)])%Y( )
2 (8%

GRS =

Note, the correlation function Ry (-) can be simplified to Ry (-) = Rg(:) +
RN (-) if the processes s(t) and n(t) are statistically independent.

The orthogonality principle [12], a compact version of minimizing the
mean squarcd error, says:

(a) E{crror- data} = 0, hence solve for the pertinent parameters
(b) MMSE = E{crror - quantity to be estimated} = MM SE.

Example 8.6 We want to rework the Fxample 8.5 using the orthogonality
principle. The error is given by

error = y(t + o) — a y(t)
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hence
Efcrror- data} = E{(y(t + o) —ay(t))y(t)} =0
Ey(t+a)y(t)y —a Ey(t)y(t) =0
= Ry (@) —a Ry (0)

and the optimal solution is given by

a - RY (Oé)
MMSE Ty (0)
The MMSE is given by
MMSE = E{crror- quantity to be cstablished}
Ry («) ) }
= FEllyt+a)— y(t y(t+ «
{(s0+ )= 2250 o+
_ R{g)/(oz)
= Ry(0)— By (0)

We note that the same results are obtained as in the previous example.

Example 8.7 Given y(t) = s(t) + n(t), we want to find the best estimate of
s(t) using y(t), i.e., §(t) = ay(t)

Eferror- data} = FE{(s(t) —ay))yt)} =0

= Es(y(t) —aEyt)y(t)

hence
i Bsy(0) Rs(0) + Rsn(0)
MAMSE T Ry (0) Rs(0) + B (0) + Rsn(0) 1 Rs(0)
Rs(0)

Rs(0) + Rn(0)

if signal and noise are statistically independent. Assuming that signal noise
are statistically independent, the MMSE is given by

MMSE = E { <s(t) - RSY(O)y(t)) s(t)}

Ry (0)
Rs(0) - %Rm(m
~ Re(0) - RE(0)  Rs(0)Rn(0)

Rs(0) + Rn(0)  Rs(0) + Ry (0)
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Example 8.8 Given y(t) = s(t) + n(l)

(a) find -
5(t) = / y(t —71) h(T) dr

J —oco

Note, this implies that y(t) and h(t) are non-causal.

{ (st = [ yte-nnriar) e - a1} ~o

de el

= Rgy (o) — / h(T)Ry (0 — 1) dr

J =00

Taking the Fourier transform, we obtain

Ssy (f) = H(f)Sy(f) =0

where Sgy (f) and Sy (f) are the cross- and auto-power spectral densi-
ties, respectively. The optimal (non-causal) filter is given by

H(f) = Ssy (f) Sss(f)

Sy(f)  Ss(f)+Sn(f)

if signal and noise are statistically independent and

h(t) = FHH()}

where we dropped the subscript indicating that the impulse response is
due to minimizing the mean squared error. The MMSE is given, as-
suming signal and noise are statistically independent, by

MMSE = E { <s(t) - /_Z y(t —7) h(r) dT) s(t)}
= Rs(0) — /O; Rsy(7) h(r) dr
= 1)~ [ Rs(r) icr) ar

(b) Suppose .
§(t) = /0 y(t — 1) h(r) dr

E{<s(t)—'/:y(t—7) h(T) m) y(t—u)} =0 0<a<t
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ot

Ry (o) — / h(T) Ry (o —7) dr

Jo
which needs to be solved for h(t).
The MMSE is given by

B{ (01~ [ w7 vy ar ) st}

Rs(0) — ./0 h(T) Ry (7) dr

MMSFE

Example 8.9 Gliven that we know s(t) and its derivative s/(t), we want to

predict s(t + o) for o > 0, in terms of s(t) and s/(t). Hence, the estimate is
given by

$(t4+ ) =as(t)+bs(t)

The orthogonality principle is utilized in two equations, that is

E{(s(t+a)—(ast)+bs/(t))s(t)} =0
and
E{(st4+a)—(as(t)+bs/(1)))s/(t)} =0
This leads to
RSS((I) - G,Rss(()) - I)Rs/s(()) =0
and
RSS,((I) — G,Rss,(()) —b Rs,s,(O) =0

Since Rgs/(0) = Rgs(0) = 0, due to the correlation property of a function
and its derivative at the zero lag, we have

RSS((I/) — (les(O) = 0
RSS/((Y) — bRS/S/(O) = 0
AMMSE Bss(a)

Rss(0)
barss = Rss ()
MMSE Ros(0)

The MMSE is given by
MMSE = FE{(s(t+a)—as(t)—0bs/(t))s(t+a)}
= Rss(()) *(les((l/) 7bR55,(O4)

where we insert the optimal values for a = aypsp and b = byryrse from the
optimal solutions set.
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8.5.2 Discrete-Time Waveform Estimation

The concept of continuous time Wiener filtering (i.c., filtering, predicting,
smoothing) dircctly extends to the discrete-time case. Ample reference ma-
terial can be found in the books on statistical signal processing [13—17]. The
typical problem is that of a signal (message) embedded in additive noise,
defined by

y(n) = s(n) + n(n), n=0,---,N—1 (8.24)

Usually, onc is interested in filtering out s(n) or predicting s(n+m), the value
of s(-), m-steps into the future. One can also obtain a smoothed version of
s(n) for all 0 <n < N—1, where the data time index n ranges from 0 to N —1.
A very convenient way to obtain the necessary filter is via the orthogonality
principle [12,14]. The orthogonality principle says that

(a) The expected values of the error and the data are orthogonal.

(b) The MMSE is obtained by projecting the error onto the quantity to be
cstimated.

In equation form, we have
Ele(n) y(j)} =0 j=0,--,N 1 (8.25)
and the MMSE is given by
MMSE = E{e(n)g(n)} (8.26)

where g(n) is the quantity to be estimated and e(n) = g(n) — g(n).

Example 8.10 The received data is given by y(n) = s(n) + n(n), for n =
0,...,N — 1 where s(n) and n(n) are statistically independent random se-

quences (i.e., Rns(i) = 0,Vi). Estimate s(n) using a weighted sum of the
most recent M data points (i.e., a FIR filter of length M, where we need to
find the optimum values of the filter weights) as given by

M—1
S(n) = > h(i) yn—1) n=01-,N 1
i=0
e(n) = 3(n)—sn)
E{e(n) yin =34} = 0 j=01,--,N—1

or
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hence
M-1
> h(i) Ry(j —i) — Rsy(j) = 0
=0
or
M-1
> (i) By (j — i) = Rsy (4)
i=0

In matriz form, we have

Ry(0)  Ry(—1) - Ry(-M+1) h(0)
Ry (1) Ry(0) - Ry(-M+2) h(1)
Ry(M—1) Ry(M—2) -  Ry(0) (M — 1)
Ry (0)
B Ry (1)
Ry (M — 1)
. Rh - r

where R is the auto-correlation matriz of y,
h = [h(0),~(1), -, A(M — 1)}T

and

r=[Rs(0), Rs(1), -, Rs(M —1)]"
The optimal FIR filter weights (in the MMSE sense) are given by

h=R!r
The MMSE is given by
MMSE = Fe,s,
M—1
. { <s<n> =3 hliyln - >> s<n>}
i=0
M-1
= Rs(0) - h(i) Rys(—%)
i=0
M—1
= Rs(O) - h(?) R55(7)
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Example 8.11 Given y(n) = s(n) +n(n), forn=20,1,--- N — 1, where the
signal and the noise are statistically independent. Use the M most recent data
points to estimate s(n+ 1) the desired quantity.

Predict s(n + 1) based on s(n—1i),i=0,1,---, M — 1

en+1)=358n+1)—s(n+

M—-1
E{(Zh(i)y(n7)s(n+1> } ~0,1,---,M —1

=T hG) By (G i)~ Rey(+1) =0
=0
or M—-1
= Z h(i) Ry (i —j) — Rs(j +1)

where Ry () = Rs(m) + Ry (m).
In matriz form, we have

Rh=r
where
Ry (0) Ry(—M +1)
Ry (1) Ry (—M +2)
R = : . :
By(M~1) - Ry(0)
h = [n(0),h(1), -, (M —1)]"
r o= [Rs(1),Rs(2),-, Re(M —1)]"

The MMSE is given by

M—1
MSSE = E { <s(n +1)— Z i) y(n — i)) (s(n + 1))}

= Rs(0) — i h(i) Rs(1+1)

Note, we could have computed a total MMS error by accounting for the MMS
error at every time increment n. Note, we only examined the FIR Wiener
filter solution. One can also address problems where the Wiener filter is of the
IIR form. A nomn-causal solution is simple. The causal solution is obtained
using what is called the Wiener-Hopf technique.  Details can be found in
[12,14,19], which require factorization of the PSD.
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8.6 SUMMARY

Chapter 8 serves as an introduction to the area of estimation. We use esti-
mation in some detection problems (i.c., use the estimate in place of the true
value in the nuissance detection problems). Wiener filters are discussed in
some detail while Kalman filters are mentioned for completeness sake. Both
types of filters are very important processing tools in the signal processing,
communications, and control areas. Section 8.2 addresses the basic classes
(i.c., MAP, ML, and Baycs’) of cstimators, which are detailed in different
subscctions. In Section 8.3, we define several clementary properties that are
used in identifying the characteristics of the estimate. These definitions arce
basic ones. In books specializing on estimation theory, additional definitions
can be found. Section 8.4 derives the CR, bound for the non-random unbiased
parameter case. In Section 8.5, we focus on waveform estimation (i.e., pre-
dicting, filtering, and smoothing). Wicener filtering is illustrated using simple
examples. Finally, the Wicner filter is examined in the discrete-time case and
demonstrated with a Wiener FIR filter example.

8.7 PROBLEMS

1. We estimate the second moment of a zero mean white Gaussian sequence
using:

which is an estimate of the second order moment.

(a) What is the bias of Z7
(b) What is the variance of Z7
2. Given the optimal detector for a pulsed sinusoid of known duration

(unknown: frequency, phase, arrival time) in white Gaussian noise at
low SNR . is shown below:

y(n) — FFT — Y (k) — magn. sq. + normaliz. — 1/N |[Y(k)|?

.

Determine whether or not this estimator is biased (show work).

3. Given n(i), for i = 0,1,2,3,---, N — 1, where n(i) are i.i.d. Gaussian
random variables with zero mean and a variance of o2

(a) Obtain the ML estimate of the variance of the sequence, denoted
by 02,, (assume the true mean is zero).

(b) Compute the bias of this estimate.
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(¢) Compute its variance (i.e., the variance of the estimate).

The random processes x(t) and y(t) are real valued and jointly Gaussian
(with zero means) (ie., f(z(t)y(s)) = f(z(t)f(y(s)) for all t and s).
Let’s define the estimate of the cross-correlation function (based on the
time average) as

rxy (r) = 1/T / P(t)y(t + 7)dt

where the data is available for time (0,7 + 7).

(a) What is the bias of this estimate (show all work)?

(b) What is the variance of this estimator (show all work)?  Useful

hint:
T/2 T/2 T ‘71,|
/ / g(t — s)dtds = / <1 - —> g(u) du
T/2 T/z Jor T
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Chapter 9

Applications to Detection,
Parameter Estimation, and
Classification

9.1 INTRODUCTION

This chapter introduces some of the modern signal processing ideas (algo-
rithms) that can be used to perform detection and/or parameter estimation.
As was discussed in the earlier chapters, the basic idea is to focus the energy
(or power) of the signal of interest at one location in the decision or esti-
mation space while spreading noise, interference, and jamming as much as
possible in the adopted coordinate system. Usually, the discussions will deal
with cnergy. Extensions to power arc casily obtained by normalizing by the
length, that is by the number of samples involved. Power is just normalized
energy. Normalizing the energy requires one more division per output data
point; hence, if we can save in the processing effort (i.e., do not normalize),
we prefer to do so. If the energy at some location exceeds a given threshold,
then detection has taken place and estimation can take place.

All of the applications deal with discrete-time data (i.c., discrete-time pro-
cesses or sequences), since by definition an application implies using hardware
and/or software to process the data. There are some analog type detectors,
but the speed, size, power consumption, crror correction and storage abilitics,
and robustness to physical perturbation (i.c., heat, shock, age deterioration)
make digital implementations the preferred choice. It is difficult to switch ana-
log devices from one processing job to another, due to an electronic charge
buildup or removal. For digital implementations, a processing job change

243
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(i.e., use data from a different sensor or to obtain a different computational
result) requires only the temporary storage of intermediate results in some
memory device (RAM, hard drive, cte.) [1 3]. We note that in the litera-
ture, the discussion of most of the algorithms arce done using continuous time
arguments (i.e., continuous time, countinuous frequency, etc.). Closed form
expressions are much more readily obtained by using analog rather than dis-
crete arguments. Typically, we show only discrete processing schemes, since
those are the ones that do get implemented. There is sufficient information
provided so that the reader will get familiar with the processing schemes. To
fully understand these algorithms, we refer the reader to the references. In
earlier chapters we used exp(jmkn) to denote an exponential terms. Now we
prefer to use the more compact notation e/ in this chapter. We define
the correlation function based on the time average as given in Problem 8.4;
that is, for a positive lag, the sccond variable uses a positive shift.

9.2 THE PERIODOGRAM AND THE
SPECTROGRAM

We start the discussion by examining two powerful techniques used in many
applications, the periodogram and the spectrogram. The periodogram and
the spectrogram provide information about power (or energy) as a function
of frequency and as a function of frequency and time, respectively.

9.2.1 Periodogram

We know that for sinusoids embedded in white additive Gaussian noise, the
periodogram is the optimal processing algorithm (see the arguments in Chap-
ter 6, Section 6.6). If only white Gaussian noise is present, the energy (power)
obeys an exponential probability density function (PDF) at cach spectral bin
(see Chapter 2, Section 2.3.5). The periodogram, disregarding the normal-
ization, is given by

Py (k)= | a(n) el-35En) (9.1)

where k denotes the spectral location and N is the integration or data length.
To speed up the operation (compare (9.1) with (3.20)), the normalization has
been left out. If the need arises, we can always normalize. The block diagram
for the periodogram is given in Figure 9.1.

In a given bin, when a signal is present, the bin’s output will be governed
by a non-central chi-squared probability density function. We also know
that for white Gaussian noise, the bin’s PDF is of an exponential form, also
called chi-squared with two degrees of freedom. The mean of the exponential
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o o] A® O
-point :> Magnitude —— £(1)
data FFT squarer .
FFT — > E(N-1)
output E(i) = energy
in bin “i”

Figure 9.1: The block diagram of the periodogram.

PDF cquals to once standard deviation (sce the probability summary table
in Appendix D). Henee, we can talk about the probability of detection and
the probability of false alarm. We also know if we take the average of the
noise only background across the bins, three and more standard deviations of
peak to noise mean separation are required to have a reasonable false alarm
rate. Once could obtain an exact threshold based on the noise only PDF to
guarantee a desired false alarm rate and hence, determine the probability of
detection based on the prevailing SNR level.

The processing gain of the periodogram is essentially 3 dB per doubling
of the FFT length, provided the sinusoid under investigation stays in one
spectral bin, where the spectral bin width is halved every time the integration
time is doubled (i.c., double the FFT size). All spectral components, including
stable sinusoids, have an inherent frequency stability and bandwidth. If the
sinusoid is time limited then the spectral peak of the sinusoid has a bandwidth
inversely proportional to the duration. In a situation like this, exceeding the
integration time will add additional noise to the integration process during
the time epoch when the signal disappears. Even if the signal exists for the
duration of the transform, the bin width may be so small that the frequency of
the sinusoid wanders outside its spectral bin. When signal energy is diverted
outside the principle spectral bin, then the spectral representation suffers
from what is called over-resolving.

9.2.2 Spectrogram

The spectrogram allows multiple looks of the spectral content as a function
of time. The algorithm, disregarding the normalization, is given by

9

SPx(k,m) = Z x(n) w(n —m) e(=i5¢kn) (9.2)

n

where w(n) is a suitably chosen window, N is the transform length, and k and
m correspond to the spectral location and the time index, respectively. The
spectral output, as a function of time, is achicved by segmenting the data
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mth gram .
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Energy/power of mth
segment at frequency &

Figure 9.2: The block diagram of the spectrogram.

in an overlapping fashion and computing a periodogram for each segment;
hence, it can also be interpreted as a sequence of periodograms. Figure 9.2
shows the block diagram for the spectrogram.

In a cathode ray type (CRT or scope) display, the spectrogram results in
what is called a waterfall display since cach new segment is plotted on top
of a row of older spectra, with the oldest ones sliding down the screen and
eventually dropping out of view at the bottom line. In a sonar application,
this type of display is called a Lofargram, where paper is darkened according
to the intensity (energy) of the spectrum. The term Lofar (Low Frequency
Analysis and Recording) has its roots in military applications, that is, in
the detection of submarines, torpedoes, boats, and ships which primarily was
accomplished at low audio frequencies.

These displays show energy (power) versus time and frequency. Narrow-
band components, (i.c., sinusoids or tonals) will provide a display in which
cnergy is high in a given spectral location for the duration of the signal. If
the window, w(n) in (9.2), is a rectangular window, we have

. _N/2<n< _
w(n) = { (1) ' els]‘Z/Q snN/2-1 (the rectangular window)

The rectangular window will sclect data values from N/2 points to the left
of time location m, to N/2 — 1 points to the right of m. If a Gaussian type
window is used and the Fourier transform is not magnitude squared, then this
particular version of the short time Fourier transform (STFT) is called the
Gabor transform. An application of the Gabor representation to detect tran-
sient signals can be found in [48]. The choice of the Gaussian window allows
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Figurc 9.3: The spectrogram of a sinusoid and of a linear chirp.

a time-frequency product which achieves the lower bound of the uncertainty
inequality (i.e., best time frequency localization) [7]. For discrete-time appli-
cations, the parameter m is stepped in inerements of N (no overlap), N/2
(50 percent overlap), or N/4 (75 percent overlap), where N denotes the FET
size. The display may be in the form as demonstrated in Figure 9.3, which
illustrates the one-sided spectral display for two signals. A sinusoid, for all
time, at spectral bin location kg and a linearly chirped sinusoid ramping from
spectral bin location ke_; at time 75 to spectral bin location kry; at time
Ty arce present. We can further enhance the detection/estimation procedure
by incoherently averaging over time or over time and frequency.

If we expect the presence of constant frequency sinusoids, we can average
each spectral bin of the PSD over time. Assuming that the individual spectra
are statistically independent, the output PSD will have a chi-squared PDF
with two times the number of averages as the degree of freedom. Asymptot-
ically, we expect an improvement by 1.5 dB per doubling (sce discussion in
Chapter 6, Scction 6.8).

If we expect that a linearly chirped sinusoid is present, we can initialize an
integration along slant lines in the spectrogram. This is done by integrating
over the desired (expected) signal duration starting at time T; and accumu-
lating energy along the hypothetical path of the chirp. If the chirp rate is
unknown, we can initialize an averager for start frequency and for slew rates
starting at time T;. An averager is obtained by integrating for the length of
the signal. Since we do not know the start time in general, we initialize a
bank of averagers for every i hence for all T; of interest. The outcome of the
integration is thresholded (CFAR fashion). When the threshold is exceeded,
we establish the presence of the chirp using a pre-set false alarm rate. We can
also extract the parameters of interest, such as, start and stop time, duration,
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Figurc 9.4: Energy of the averager.

slew rate, start and stop frequencies, and energy.

Figure 9.3 shows the so-called time frequency tiling where each tile has
the same time duration and frequency bandwidth; hence, the BT (bandwidth-
time) product is constant. Figure 9.4 shows a representative output of the
incoherent averager (i.c., the time dependency is averaged out). If the energy
stays in one spectral bin for the duration of the incoherent average, then
variance reduction allows the detection of very weak (but stable) compounents.

We can also modify the periodogram to obtain coherent processing gain
for a stable sinusoidal or a lincar chirp signal. This is accomplished by length-
cning the integration time of the periodogram or cquivalently summing the
periodogram or spectrogram outputs prior to the magnitude square opera-
tion. For a chirp waveform, we apply pre-hetrodyning to the chirp waveform
(i.e., de-chirping), as shown in (9.3), assuming that start time and duration
arc known as given by the following cquation

no+N—1
Px(k,a) = Z x(n) e(—1om?) o= (15Fkn) (9.3)

n=ng

where « is proportional to the unknown slew rate of the lincar chirp, & is
the spectral location, N is the signal duration, and ng is the start time. If
the start time is unknown, we can casily modify this approach by initializ-
ing the processing at every point of interest, similar to the window used in
(9.2). The signal duration problem can be handled by using multiple duration
transforms, each one identical in operation, differing only in the duration V.
Of course, when working with energy one needs to account for the difference
in integration (summation) length if an automated thresholding is employed.
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9.3 CORRELATION

For wideband (i.e., transient) components, the cross-correlation is an ideal
detection tool. The cross-correlation can be used to detect the presence of
transient signals reccived at two spatially separated sensors (arrays). When
the signals are lined up in time, a sharp peak occurs in the correlation domain
indicating the presence of the transient and providing an estimate of the time
difference of arrival (TDOA). We define the correlation function (based on
the time average)

N—|e]—1
1

Rxy(£) Nowl Z x(n)y*(n+1) (unbiased estimate)

n=0

N—|e-1
1 X . .

Rxy(#) = i Z z(n)y*(n+1) (blased estimate) (9.4)

n=0

We realize that averaging of the lagged products corresponds to the pro-
jection of one vector onto a shifted version of the second vector (i.c., an inner
product as discussed in earlier chapters). A typical application is the local-
ization of an uncooperating target or emitter [4].

9.4 INSTANTANEOUS CORRELATION
FUNCTION, WIGNER-VILLE
DISTRIBUTION, SPECTRAL
CORRELATION, AND THE
AMBIGUITY FUNCTION

The publication of the papers by Claasen and Mecklenbréuker [5,6] renewed

interest in time frequency distributions (TFDs). The basic idea is to take

the Fourier transform of the instantaneous correlation function, where the

instantancous correlation function is approximated using the lagged product
of the sequences under consideration.

9.4.1 Wigner-Ville Distribution (WVD)

Several textbooks [7 9] and papers [5,6,9 19] have been written describing
aspects of the WVD. If we define R(n,m) as E [x(n+m/2) z*(n —m/2)],
and approximate it by its instantaneous value z(n +m/2) x*(n —m/2), then
taking the 1-D Fourier transform over m leads to

WVDx(n, k) = Z Rx(n,m) e(—15Fkm)
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Figure 9.5: Block diagram of the WVD.

= g T (n + %) x” (n - %) e(=15F kn) (9.5)

where n is the time index, m is the delay, and £ is the spectral location. The
algorithin is illustrated with the block diagram (Figure 9.5), where one could
easily replace the x-sequence with a y-sequence and create the cross Wigner-
Ville distribution between the = and y sequences, denoted by WV Dxy (n, k).
Figurce 9.6 shows the WVD and its three transform domains, which will be
discussed in the following sections.

The product in the summand (i.c., x(n+m/2) 2*(n —m/2), a non-lincar
operation) causes mauny artifacts in the time frequency domain. In particular,
cross terms in time and in frequency do occur. Several approaches to minimize
or remove these unwanted cross terms have been addressed [13,15,18,19]. In
the time frequency (TF) plane, one can read off the onset, frequency, duration,
bandwidth, spectral shape, and spectral dynamics of the signal of interest.
The tiles of the TF representation can be averaged, in a magnitude sense, to
enhance the detection of a waveform that follows the time-frequency positions
governed by the averaging assignment of the TF tiles.

9.4.2 Spectral Correlation

As shown in Figure 9.6, the 2-D Fourier transform of the instantancous corre-
lation function leads to the spectral correlation function denoted by C(¥, k),
as given by

Rx (€, k) = zn: Zm:T <n + %) a* (n - %) eTI@m/N)tn (=3 (2m[N)km (g )

where ¢ and k are spectral locations. This result can also be obtained by
taking a 1-D Fourier (inverse) transform over n, of the WVD as given by

Cx(€.k) =Y WVDx(n, k) e Er/Nin (9.7)

n
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Figure 9.6: Transform domains of the WVD.

For our adopted sign convention, the 1-D forward Fourier transforms (i.e.,
the exponential kernel uses a negative sign) are indicated on Figure 9.6. The
sign convention is arbitrary, but comes from making the narrowband ambi-
guity function definition agree with the generally aceepted version.

9.4.3 Ambiguity Function

The ambiguity function (narrowband ambiguity function) is given by the 1-
D Fourier transform of the instantaneous correlation function, by the 1-D
Fourier transform of the spectral correlation function, or by the 2-D Fourier
transform of the WVD. The most common form is given by

Ax(€,m) = Z a(n +m/2) x*(n —m/2) e I m/N)in (9.8)

n

where £ is the spectral location and m is the time (correlation shift) variable.
This cquation shows that it is the auto- (or cross-) corrclation function of the
sequence z(n) with a frequency shifted version of z(n).

Depending on the task and the scenario, one of the four representations
can be exploited to obtain detection and parameter information directly from
the surface or from the magnitude of the surface. Usually, the WVD is the
preferred tool. As mentioned earlier, it suffers from the product operation
of the two scquences involved. Many papers have dealt with the artifacts
created by the non-lincar operation. Most noteworthy are the smoothing
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using a Gaussian type window (Choi-Williams [18]) and the adaptive ker-
nel techniques [15]. If the summation support is finite, which is usually the
casce, then the truncated version is called the pscudo Wigner-Ville distribu-
tion (PWVD). A host of TF distribution estimators is available, which can
be obtained by using a particular kernel function in what is known as Co-
hen’s class of joiut time-frequency representations [7,10]. MATLAB based
code and a user manual can be found at the website http://www.crttsuuniv-
nantes.fr/~auger/tfth.html, free of charge.

9.5 CYCLO-STATIONARY PROCESSING

Cyclo-stationary processing performs a spectral correlation between the side-
bands (or what is assumed to be the sideband components) relative to a
given spectral signal location [21]. The resultant output surface obtained by
cyclo-stationary processing will convey more information than a conventional
power spectral density if the auto-correlation function of the signal of interest
tends to be periodic. Different signal modulations result in different, unique
outputs from a spectral corrclation analyzer (SCA) [22], which can be used
to

(a) Establish the presence of a signal.
(b) Identify the type of modulation.
(¢) Extract some of the signal paramcters.

Clearly, the first item is the detection part while the last two items address
the estimation aspect. The time smoothed cyclic periodogram of the sequence
xz(n) is defined as

S hac = (Xr (nf +5) X (ns - 5)) (9.9)

where At is the data time span used in the process, Xrp(n, f + «@/2) arc
the complex euvelopes of the narrowband bandpass sequence z(n) filtered
at f £ «a/2, * denotes complex coujugation, « is the spectral separation, and
{ )¢ denotes time averaging over the data time span. The complex envelope
is given by

N’'/2—-1
Xr(n, f) = Z a(m) z(n —m) e~ 72/ (n=m)T (9.10)

m=—N'/2
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Figure 9.7: Smoothed cyclic periodogram.

where a(n) is a data tapering window of length T (T" = N’ Ts), Ts is
the sampling period, N’ is the number of data samples in 1" seconds. By
comparison, that standard time averaged periodogram is of the form

SPX(”)f) - oléii%sg((naf)At

Sx(f) (9.11)

Equation 9.11 shows that the classical PSD estimate resides at the ao = 0
locations of the surface.

If we arc dealing with just one single, short data span (i.c., one segment),
then we can remove the time dependency, in the argument list of (9.11). If
there is more than one data segment, we retain the time dependency, symbol-
ized with the symbol n. One way to create the smoothed cyclic periodogram
is shown in Figure 9.7, where « = f1 — fo, L is the decimation parameter (for
no decimation, L will be one), fi is the center frequency of the top bandpass
filter, fo is the center frequency of the bottom bandpass filter, and g(n) al-
lows the low pass filter to have desirable characteristics. Oune possible g(n)
sequence is that all g(n) equal unity, ie., a summer that sums up a finite
number of samples, also called a boxcar integrator.

Figure 9.7 illustrates the general principle of spectral correlation very
eloquently. Assuining for simplicity that g(n) is a boxcar integrator, then we
see that the algorithm is simply a correlator that correlates the output of the
top channel with the conjugated output of the bottom channel. Focusing on
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Figurc 9.8: Rearranging hetrodyne and desample operations.

the top chanmnel, we see that the signal is the complex envelope of the bandpass
sequence centered at f1, desampled by a factor L (i.e., the filter passes the
bandpass process, the complex exponential hetrodynes the bandpass process
to base band, and the desampler removes, if desired, redundancy due to the
oversampling of the process). The bottom chaunel repeats the process, but
selects as the center frequency fo.

This system, in modern terminology, is a multirate system. The input
is sampled at a rate fs. The input to the correlator section is sampled at
a rate fs/L. The output is a three-dimensional surface indexed by f (i.c.,
f=1/2 (f1+ f2), which is the center frequency), and « (e, @« = f1 — f2)
which is the difference frequency. The difference frequency is the two-sided
bandwidth relative to the center frequency f. If the proper fo and g are
sclected we expect a large correlation peak at the coordinate (fo, ). If that
value, in magnitude, exceeds a given threshold, we declare a detection. The
behavior of [SE(f)] (i.c., peaks, valleys, and geometry) tells the investigator
about the modulation type and modulation parameters. Increasing At, the
data span, will increase detectability and improve the accuracy of the mod-
ulation parameters, provided the received signal maintains integrity of the
paramcters. Hence, a negative SNR (in dB) is not a problem if the number of
samples can be made sufficiently large to make up for the low SNR. We also
notice that (9.7) and the operations shown in Figure 9.7 can be related. That
is, the smoothed cyclic periodogram can be interpreted as an evaluation of
the spectral correlation function about a center frequency given by (f1+ f2)/2
followed by an additional time average (i.c., LPF opcration).

When we examine (9.9) and (9.10) and Figure 9.7, we notice the order
of the hetrodyne and desample operations. This is also presented on the
left-hand side of block diagramn Figure 9.8.

The order of the resampler and hetrodyner can easily be reversed, as
shown on the right-hand side of Figure 9.8. The new arrangement has the
obvious advantage that by resampling first the number of data points has
been reduced. Hence, the number of data points that need to be stored and
operated on has been reduced while maintaining full accuracy. We can modify
the algorithm of Figure 9.7 to take advantage of this idea. The result is shown
in Figure 9.9.
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We realize that the first two elements (blocks) in each leg (i.e., the band-
pass filter and the down sampler) can be replaced with an FFT using the
spectral bin corresponding to frequency fi and fa, denoted by fy, and fo,,
respectively. The desired down sampling is obtained with proper choice of
the FFT size and the overlap factor. We can also replace the last processing
compounents (i.e, the two hetrodyne, the product, and the low pass filter-
ing operations) with an additional FFT of size P. This processing scheme
is called the FFT accumulation method (FAM) [24] and is shown in Figure
9.10.

The variables are: 4, the number of the i'® FFT (or segment); N, the input
FFT size governing the accuracy of choosing the particular center frequency
f and the width of the spectral filter as well as the desampling rate; and
P, the size of the output FFT governing the incremental resolution of the «
paramcter [25,26].

There is another processor implementation, the so-called strip spectral
correlation algorithm (SSCA) as shown in Figure 9.11 [24]. The topic of cyclic
detection, where the theoretical and measured spectral correlation density
(SCD) arc correlated, is addressed in Chapter 14, Section E of [27]. A possible
detection statistic for continuous type variables is given in (9.12)

_ [ ¢a Se(f)
o / % (/) SN(f—F(x/QS) Sn(f —a/2) df (9.12)
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Figure 9.11: The strip spectral correlation algorithm (SSCA).
where * denotes conjugation, S;“( (f) is a coarse estimate of Sg(f). We can

interpret the operation in (9.12) as a correlation between a known cyclic
spectra (SE(f)) and the data dependent estimate §¢(f), which will be an
optimal operation if the output noise can be thought of as white Gaussian
noisc. The denominator serves as a normalization. For additional details
consult reference [27]. This does not include averaging over the o parameter.
The variable z is, in general, complex valued, so that one works with the
magnitude of z.

For more details, especially for plots of the magnitude of S§(f) of various
modulated digital communication signals, we refer the reader to [21,23 28].
Extensions of this work are very successful, when using higher order statistics
[29,30]. We shall explore some general aspects of higher order statistics in
the next section.



Applications 257

9.6 HIGHER ORDER MOMENTS AND
POLY-SPECTRA

With cver faster computers, tasks that scemed to be overwhelming some time
ago arc becoming commonly solved problems. Of particular interest is the
detection of transients and non-Gaussian type signals as well as the detec-
tion of signals in a non-stationary or non-Gaussian noise environment. One
successfully employed technique relies on the use of higher order moments
or higher order cumulants. For simplicity, we shall assume that the random
scquences and their underlying random processes are real valued and station-
ary. Extensions to complex valued processes and sequences are available in
the literature. As a starting point, we recommend the book by Nikias and
Petropulu [31] and three tutorial papers [32,38,41]. From a probabilistic point
of view, the first four moments are given by

my = E{xi} (9.13)
my = FE{ri} (9.14)
msy = FE{zr}} (9.15)
my = FE{z]} (9.16)

The corresponding cumulants, using the sign convention [31,32] (i.e., plus
signs in the expectations) are given by

¢1 = my (mean) (9.17)
s = mg — mi (variance) (9.18)
c3 = mg — 3Imamy + Qm‘;’ (9.19)
cy = mg — dmazmy — 3m3 + 12mami — 6m] (9.20)

If {x(n)} is a rcal and stationary random scquence and its first n moments
exist, then
mom {z(m),z(m +11),...,x(m+Th_1)}

= FE{z(m),z(m+m1),...,z(m+ 7_1)}
=mp{z(m),z(m+71),...,2(m+ Th_1)

and will only depend on the time difference 7, 79,...,7,_1. For example,
for orders n = 1, 2, 3, 4, the cumulants ¢, (71, 72, 73) of the zero mean
sequence {xz(m)} are related to the moments my, (11, 72, 73) as follows

¢1 = mp= Ezxz(m)=0

ca(m) = ma(r) — mi(m) =mx(n) =E z(m) x(m + 1)
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cs(m,m2) = Fx(m)xz(m+m)xim+m)
cq(m1,72,73) = E x(m)az(m+m) xz(m+ 1) x(m+713)
—FExz(m)z(m+1) E xz(m+ 1) x(m+ 73)
—FE xz(m) z(m+ 1) E x(m+ 1) x(m+ 713)
—FExz(m)z(m+713) Ex(m+ 1) x(m+ 1)

The expressions become complicated as the order of the cumulant increases.
Espccially if we cannot claim that the first order moment is zero. A further
complication arises if we allow the process to be complex valued. Then one
needs to decide which terms in the expressions are to be conjugated (there
may be several choices) [32,39].

Cumulants have some properties that make them more desirable than mo-
ments, as far as higher order statistics are concerned. Some of these properties
are listed below [40,41]

(a) Each cumulant is independent of all lower order cumulants.

(b) For a Gaussian process (or sequence), all cumulants of order greater
than two arc cqual to zcro, that is, the Gaussian process is completely
characterized by its first two moments. Hence, one can use cumulants
to estimate the degree of non-Gaussianity of the process.

(¢) Cumulants of the sum of two independent statistical processes equal the
sum of their respective cumulants.

(d) Ideally, the cumulant of Gaussian noise will be zero, suggesting a pro-
cessing approach wherein Gaussian noise will have little effect on the
processors outcome.

From a data processing point of view, we cannot compute expectations
and, assuming ergodicity of the moment (cumulant) under consideration, em-
ploy a time varying opcration. For example

N—-1

m; =1/N Z @7 (1)
i=0

where 77 (7) is x(i) raised to the 7 power.

N-1
Com) =1/N 3 (i) 2(i +7)
and
N-1

Cs(r,m) = 1/N Y (i) 2(i + 1) 2(i +7)
=0
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Complex valued data requires complex conjugation of some of the se-
quences [31,39]. Biased and unbiased estimates will use different normaliza-
tions.

9.6.1 Cumulant Spectrum

Suppose z(n)Vn is a real statistical random sequence with m'™® order cumulant
em(T1, T2, ..., Tm—1). Assuming that the cumulant sequence satislies

o0 oo
Z Z lem (1,72, oy Ti1)| < 00
TI=—00  Tpo1=—00
and
oo oo
S Y Al )] < o0
TI=—00  Tm_1=—00

forj=1,2,...,m— 1.

Then the m'™® order cumulant spectrum Cp, (w1, ..., wm—1) of {z(n)} ex-
ists, is continuous, and is defined by the (m—1)-dimensional Fourier transform
of the m™ order cumulant sequence. The second order cumulant spectrum is
the power spectrum (power spectral density) given by

oo
Crlw) = Z co(T) e 79T

- % X ()2 (9.21)

for -7 <w <.

The sccond order cumulant sequence is the covariance sequence, while the
sccond order moment sequence is the auto-correlation function. Of course,
for a zero mean scquence, the auto-covariance and the auto-correlation se-
quence are identical. The Fourier transforn relationship (9.21) is known as
the Wiener-Khintchine relationship.

9.6.2 Bi-Spectrum

The bi-spectrum is defined as the 2-D Fourier transform of the third order
cumulant sequence and is given by

oo oo
o) = S0 S el esn e

TI=—00 Tg=—00

= %X(Wl) X{we) X* (w1 + w2) (9.22)

for —m <wy wo <M, and |wy + wo| < 7.
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9.6.3 Tri-Spectrum

The tri-spectrum is given as the 3-D Fourier transform of the fourth order
cumulant scquence and is given by

04(01170127603) = Z Z Z 04(71772,7'3)

T1=—00 T2=—00 T3=—00
,e*.]wlTl e*.szTz e*]waTs (923)

for |wi| <, |wa| <7,

wsg| <7, and |wy + wa +ws| < 7.

9.6.4 Poly-Spectrum

In general, the poly-spectrum of order L — 1 is given as the (L — 1)-D Fourier
transform of the L*® order cumulant sequence and is given by
oo oo ] ZLfl ot
Y N - P il
Cr{wy,...,wp_1) = E E ep(T,...,TL_1) € =1 T

T1=—0C0 TL—1=—00

(9.24)

Many papers have been published to show the properties of these spectral
and their equivalent cumulant representations [32,38,41]. We want to point
out that the cumulant sequences or the cumulant spectra can be used for
detection and classification purposes. Some typical examples are

e Kletter and Messer use higher order spectral analysis (bi-spectrumn) to
detect a non-Gaussian signal embedded in Gaussian noise [33].

e Colonnese and Scarano use the third and fourth order statistics to detect
transients in white Gaussian noise. The detectors are suboptimal and it
is shown that the detector based on third order statistics outperforms
the suboptimal detectors based on second and fourth order statistics

[34].

e Wickert and Turcotte detect the symbol rate line of a digitally modu-
lated carrier. Their results show that the tri-spectrum performs better
than conventional detectors [35]. Robust beam forming is introduced

by Nikias and Mendel [38].

e Sattar and Salomonsson study detection using filter banks and higher
order statistics [36].

e Ferrari and Alengrin address the estimation of frequencies of a complex
sinusoid using the fourth order statistics [37).

These examples are by no means exclusive, rather than that they are
thought to serve as a starting point for the interested reader. Mathworks
software package [42] maintains a higher order statistics toolbox that allows
data processing using some standard algorithms (i.c., bi-spectrum).
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Figurc 9.12: Receiver-target scenario.

9.7 COHERENCE PROCESSING

Coherence processing deals with the detection and localization of narrowband
signal emitters using two or more receivers. Early applications are found in
detection, classification, and localization of high value military targets (i.e.,
submarines, aircraft carriers, cte.) which emit an acoustic signal that may
propagatc over long distances in the ocean (i.c., sce Figure 9.12). Actually,
any narrowband or tonal component that propagates through the medium
(that is the ocean) with little attenuation can serve as the detection and
localization clue [43,44)].

The output from the coherence processor, provided a particular threshold
(i.c., CFAR philosophy) is exceeded, can fix the location by using the time
difference of arrival (TDOA) and differential Doppler frequency estimate. One
can use either information, or both, to help in the localization of the target.
The generic continuous time algorithm is given by

vy (f) = Sxv(f)
) VSx(f) Sy (f)

where Sxy (f) is the cross power spectral density, Sx (f) and Sy-(f) are the
auto-power spectral densities. Since the cross PSD is complex valued, one
typically works with the magnitude squared coherence (MSC) function as
given for frequency fr by

(9.25)

vy (Fe)]? = % (9.26)

where 0 < |yxy (fx)|?> < 1. This algorithm is shown in Figure 9.13.
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Figure 9.13: MSC estimator.

Usually, estimates are accomplished in discrete-time suggesting an esti-
mate of the form

M
S X() Y (R)
xy (k) = Ll (9.27)

PR ACIDSNADI

for some given k, where X;(k) and Y;(k) are the Fourier transforms of the i*®
scgments, k is the frequency of interest, M is the number of segments, and
* denotes complex conjugation. We can also interpret (9.27) as the average
cross PSD cevaluated at frequency k, averaged over M scquential segments
and normalized by the square root of the product of the averaged auto-power
spectral densities.

The MSC has several useful properties, some of which are listed below:

(1) If z(n) and y(n) are independent then yxy = 0.

(2) The MSC can be used to measure the linearity of a system, where x(n)
and y(n) represent the input and output of the system, respectively.

(3) If z(n) and y(n) arc the outputs of two parallel channels, which arce
both fed by a common signal and independent noise, then the MSC can
be used to obtain an estimate of the input SNR to the two channels.

The PDF of the MSC estimate is given by [45 47]

AIV=2) (1= 232

%) (9.28)

p (AN, P = (N=1)(1=]") (1=
Iy (1= N,1-N;1; |52
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Figure 9.14: Doppler and delay compensated MSC estimator.

where
Py (a,b;¢52) = ;m» OB e
and
(a)e = % = ala+1)...(a+£-1)

To allow for Doppler correction and time delay adjustments, the actual
MSC algorithm is given by

Yo X () Vi (Ji) e

Yy (1,0)]F = — 9.29
AR SITNTATS SITTAT: o

This implementation is shown in Figure 9.14. A typical MSC type output is
illustrated in Figure 9.15, where the MSC peaks at location (6, 7).

9.8 WAVELET PROCESSING

We recall from the discussion in Chapter 3, see also Appendix E, that wavelets
arc bandpass filters whose quality factor (Q) is a constant, that is the ratio
of center frequency to bandwidth is a given constant. We also recall that
the filtering operation is a lincar operation; hence, if signals arc embedded
in Gaussian noise, then the wavelet filter outputs still have the Gaussian
characteristic. Depending on whether or not a signal component is present or
not, the output of the wavelet filter (the bandpass portion is called a detail
function) may or may not contain a desampled scaled version of the signal.
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Figurc 9.15: Typical MSC output.

If the signal is present, it will be embedded in Gaussian noise. Furthermore,
if the input noise is white, the output noise tends to be white.

If the input noise is not white, the bandpass and decimating operations
tend to make the output noise spectrally flat. A simple detection scheme
is then just based on the detection of a signal embedded in white Gaussian
noise. Since the wavelet output, properly desampled, is just a bandpass fil-
tered version of its input that is being sampled at the Nyquist rate, detection
of transients is fairly casily accomplished. This is in contrast with the clas-
sical narrowband (tonal) detector, which as we recall is achieved via an FET
operation followed by a magnitude (or magnitude squared operation). The
periodogram is the optimal detector for a tonal that exists for the duration
of the transform. But when the signal is a short duration event, i.e., a pulsed
sinusoid or a transient, then the periodogram based detection scheme per-
forms poorly since it averages in too much noise, does not take advantage of
the signal bandwidth property, and cannot localize in time. Wavelet based
processing is addressing these types of problems, since it allows a range of
bandwidth and works in the neighborhood of the time in question. A typical
detection setup is shown in Figure 9.16.

For some signals, in particular the ones that have jumps or discontinuitics
(in amplitude, phasc and/or frequency) wavelet decomposition allows a sparse
representation. We recall that the ideal scenario is the situation where the
resultant is a delta function. Then all signal related information has been
focused at one location in the detection space, while all interferences, i.e,
noise, other signals, jamming waveforms, cte., are diffused over the detection
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Figure 9.16: Wavelet detection.

space. This is the idea behind the inner product as was advocated in Chapters
4 and 6. Hence, a wavelet type decomposition can be the operation that allows
good detection. Note, we left out the word optimal, since we did not derive
a wavelet type structure from a Bayes point of view. Rather, we argue using
a matched filter type argument, where we try to match the replica to the
signal, provided the ambient noise is Gaussian. For introduction to wavelet
transforms, we refer the reader to Chapter 3 and Appendix E, as well as to
[49 56]. For some wavclet based detection application, we suggest [57 62].
The list is by no means complete, it is intended to serve as a starting point
for further reading.

9.9 ADAPTIVE TECHNIQUES

The adaptive filter [63 65] can be used to enhance narrowband spectral line
components which are embedded in white noise. Hence, this filter can be
used as a detection tool. The adaptive filter can be set up to predict the pre-
dictable (i.e., correlated) part of the data under consideration. The so-called
automatic line enhancer (ALE) constitutes such an implementation [66—08].
It can be used as a one-step lincar predictor. A typical implementation is
shown in Figure 9.17. The predicted output is subtracted from the actual
and received data. The resulting error output is used in the filter update al-
gorithm. This is similar to the auto-regressive modeling technique addressed
in Chapter 7, Section 7.8.4. Rather than solving the matrix equation (7.126),
the optimal weights arc obtained by solving for them in an iterative fashion,
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x(n) =s(n) + n(n)

- s(n) + n(n)
D——c®
A — 5(n)

Figurc 9.17: Block diagram of the adaptive line enhancer (ALE).

as given by
w(n)=w(n—1)+2pue(n)x(n — D) (9.30)

where D is the delay (typically one sample) between reference and delay
channel, p is a small positive constant, £(n) is the crror at time n. The vectors
w and x are given by w(n) = [wy(n), wa(n),---,wr_1(n)]” (the filter weights
at time n) and x(n — D) = [#(n — D),z(n — D —1),---,a(n— D — I +1)]©
(the stored data in the delay channel), I is the number of multipliers in
the FIR filter, and w(n — 1) is the previous filter vector. This is called the
least mean-square (LMS) algorithm [69], which is an implementation of the
steepest descent method using an estimate or measurement of the gradient of
the error surface.

This realization (adaptive filter) does not require knowledge of the correla-
tion functions, but it needs a good choice of the step size paramceter: too large
a step size creates noise, while too small a step size does not allow quick con-
vergence to the true values (i.c., it requires excessive time). The filter weights
can be used to form an estimate of the power spectral density as given by
(9.31), where the impulse response h(i) = —w(i), for ¢ = 1,2,---, I — 1 and
h(0) =1

constant

Pare(k) = ~ 5 (9.31)
Z h/(j)e_j(Zﬂ'/N)ki
1=0

where k = 0,1,---, N — 1 and [7k/N] is the digital frequency. Notice that
the vector w(n) is of length I — 1 while N is typically larger than I. This
is casily accomplished by zero padding the filter weight vector to the desired
length. Tt is not unusual to append zeros so that the h vector is substantially
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longer than the w vector.

The filter is adaptive, hence it allows operation in a non-stationary cnvi-
ronment or with dynamic spectral components, or it can accommodate both.
Of course, this is all a function of how quickly the filter adjusts (i.c., learns),
knowing that a quick response can also generate excessive noise.

9.10 SUMMARY

This chapter trics to trace out some of the late cfforts associated with de-
tection and detection related topics. With the progress in computational
abilities, processing tasks once assumed to be too cumbersome have become
a standard operation. In this spirit, some of the newer techniques have been
identified in this chapter, providing some reference material that a moti-
vated reader may casily be able to access. In Scection 9.2, the periodogram,
the spectrogram, and some averaging techniques are addressed. Section 9.3
briefly explores the correlation concept. The concept of instantaneous corre-
lation function, Wigner-Ville distribution, spectral correlation, and ambiguity
function are addressed in Section 9.4. Cyclo-stationary processing and some
of its implementations are introduced in Scction 9.5. Section 9.6 addresses
higher order moments and cumulants as well as their Fourier transforms (i.c.,
higher order spectra). Colerence processing is discussed in Section 9.7, while

9.9 introduces the adapative filter in a detection related scenario and provides
some references.
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APPENDIX A

Probability, Random Processes, and Systems

This appendix summerizes some of the properties of probability, random pro-
cesses, and systems. The nomenclature is

Deunsity function: fx (z)
Probability: Pr{X <z}
Distribution function: Fx(x)

Some properties of probability deusity functions (PDFs) using conventional
dummy variables of integration (slight misuse in a mathematical sense) are:

fx(@) >0

‘/_O;fx (2) do = 1
PriX <o} = Fx()= [ fx(o)as
PriX <z, Y<y}= /; /;o [xv(2,y) dov dy
prix<e= [~ [ fovade dp magua

fx(z) = / fxy(z,y) dy (marginal deunsity)

Bayes’ rule:
fXY ([I?, l/)
Sy (y)

This is also true for multi-dimensional variables:

Ixpy(zly) = with  fy(y) # 0

S, y2, - YN, T1, 22, Tar)
f(eTh«T%"'yT/M)

f(?/lay%"'a?/N‘flaTZa"'aml\J) =

273
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Some common densities are

Uniform PDF: for0<a<b

For example: If

T
uw=tan"" <—> or u=tan"! <2)
Yy T

where z, y i.i.d. and

then

—; 7 <u<sT
fluy=¢ 27
0; clse
Exponential PDF: (x? with 2 degrees of freedom)

ae™®™ >0 a>0

fl@) =
0 r <0
Gaussian (Normal) PDF:
1 2 /e 2
— —(z—m)“ /20
r) = ———e
f(x) s
where m = FEx
and o = Ex°- E2(T)
= E{r—E()}*

or
x ~ N(m,o?)
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For N-real valued Gaussian random variables, the joint probability density
function is given by

1

1 T A1
W(/Xp —_— = (X—I’l’lA\f) A)( (X—l’n)

fx(mlvaa"'7mN): 9

where
X ({I?l,ffg,"',[EN)T
T
my = (mi,me, - ,mN)
Ax = (uij)
where (u;;) = E(x; —m;)(x; —m; ) and |Ax]| is the determinant of the

covariance matrix Ax.

If the random variables arc all uncorrelated, i.c.,

”ij:{oz i #

o; 1=7
then Ay is a diagonal matrix having entries 02 along its diagonal.
Rayleigh PDF:

Let z= 12+ 19?2

where z, y~ N(0,0%) areiid.

Iiefzg/%; z>0 b>0
then f(z) = ’

0; z2<0
Cauchy PDF:
Let c= z
Y
where x, y~ N(0,0%) arc i.id.
‘ 1
then fle)= % pral a>0
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Chi-Squared PDF (N-degrees of freedom):

N
Let Y= Z 7
i=1
where xi ~ N(0,0%) arc ii.d.
1
then — N2y . Ul(y)

TW) = Smmar N 2)ew ¥ 202

A .
where T'(n 4+ 1) = n! and U(-) denotes the unit step.

Rician (non-central Rayleigh) PDF:

Let  f(z,y) = 12 eXP{<M>}

202 202

and z =22+ y?

= exp (22 +m%)/20% I (zmx) ;22>0

2 2
then flzy=¢ 7 7
0 z <0
where In(x) = modified Bessel function of order zero
B i 2n
- 2n (,1)2
= 22" (nl)

Log-Normal PDF:
Let y = exp(x)

where r~ N(mx,o%)

1 < (Iny — mx)? >
ez xp—|——5o——) i ¥y=0
then fly) = 2noxY 202

0 oy <0
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Non-Central Chi-Squared PDF:

N
Let v = Z(Aer,v)Q
i=1
where z; ~ N(0,0%) areiid. and A is a fixed constant

1 jv\(N=2)/4 A+ (vA)1/2
then flv) = 257 <X> exXp <—W> Iinj2)-1 < 3 U(v)
where A= A2N
A very useful rule, applicable when differentiation of an integral expression
is required.

Leibnitz Rule:

o) = | I

da(z)
dx

dp (P of(t,x) db(x)
i o Tdf+f(”(f)=m) e

Ja(x),)

PROPERTIES OF DISTRIBUTION FUNCTIONS

F(—0) = 0 F(z) 2 Pr(X <a)
F(eo) = 1
F(xz1) < F(za) forz <zo (non-decreasing function)

)
F(zT) = F(z) (continuous from the right)

If 1 < x5 then

F(X € (z1,22)) = Pr{iz; < X <z} = F(zg) — F(z1)

Note: for discrete random variables

F(r):ZPr(X:mj) forall iz <=z

Density Function:




278 Detection Theory: Applications and Digital Signal Processing

Pr{X e A} = Af(:r)dm

Moments:

E(x™) = /oo " fx(x)dz

J —oo

ge o)

mean = Ex = / xfx(x)dx

variance = (v — mx)? = B(z?) — m%
2" moment = E(z?)
If y = g(x) then E(y) = Eg(x) = /q(T) Ix(x) dx.

Covariance:

Cxy =cov(X,Y)=FE{(x —mx)(y — my)} = Rxy — mxmy

We realize that for zero mean random processes Cxy = Rxy.
h
Cxy . . .
PXYy = (normalized covariance cocfficient)
Ox 0y

Uncorrelated: The random variables X and Y are uncorrelated iff (if and
only if)
Cxy =cov(XY)=0=E{(xr —mx)(y —my)}

= PEry=FExLy

Orthogonal:
Erxy=10

Note: If zero mean and uncorrclated, then the components are orthogonal.

Independence:

Ixy(zy) = fx () fy(y)
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= FPEry=FExLy

Note: independence = uncorrelated

Uncorrelatedness doces not imply independence. However, if the random vari-
ables are Gaussian and uncorrclated = Cxy = 0, then

= [xv(z,y) = fx(@)fy(y)

FUNCTIONS OF RANDOM VARIABLES

Given the random variable T
and the transformation y = g(x)

The Fundamental Theorem [2] Says:

CIx() | fx(e) o Ix(me)
KO =gl Mgt T gt
where
g (x) = dg() (also called Jacobian)

dz

and x;’s arc all the real valued roots of

y = gla) =~
= glz,) =

Note:
1. The theorem does not apply when g(-) is coustant over an interval.
2. If there are no real roots (y = g(x)) then the deunsity fy (y) = 0.
3. Be carcful to account for all roots.

Another way is through the probability distribution function:

Pr{Y <y} Prig(X) <y}
= Pr{X <g '(y)}

= Fx(g™'(y)
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Example: y=ay+bfora>0

Fy(y) = Pr{Y <y}=Pr{aX +b<y}

festt]n ()
a a

via the fundamental theorem

Yy = ar a>0

1
x~N(0,1) hence fx(z)= —x%/2

dg(x
x=y/a hence I = =«

1

(%

1 6_3/2/20‘2

V2T«

hence Y ~ N(0,0?)

Ir(y) = fx (%)

or: via the distribution function

Pr{y <y} = Pr{X < %}
y/a
Y 1 e
Py (y) = Fx (E> = / Wil S2dg

_d _ 4 1 e —&%/2
fy(y)—d—yF(y) = df_y<\/_2_7r./_oo e df)

1 1 ?/2/2a2

V2r « /

1 Leibnitz rule

or: for Gaussian family (closed under linear transformation)

r~N(0,1) EBxr=0 Ez*=1

Fy=aFz =0

Ey? = 0’Ex? = 0?1 = o?
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=y~ N(0,0°)

Example: Solve the fundamental theorem

y=m1 +x9; where 1 and g arc statistically independent

The Auxiliary Variables Are:

Yy =1x1 + a2 let 29 =9

y=gi(r1me) hence zo9 = go(wo)

991 g1
= = —1
992 g2 0 1
0$1 ()T;)
T = Yy—o2
Ty — T

1
Ixixe (W, m2) = fxx, (Y — $2,$2)m

fY(l/):/ Ixix,(y — w2, m0)dwy = / Ix (Y — m2) fx, (w2)dws

f statistically independent

Fy(y) = /Oi /U:r Ixix, (21, w2)dedes
= Pr{Y <y}
[t ([ p e )
d
Iv(y) = %(U)

= / Ix,(@2) fx, (y — x2)das

1t Leibnitz rule



282 Detection Theory: Applications and Digital Signal Processing

Characteristic Function:

Cxtiw) = [ et

flz) = %/_ Cx (jw)e 7" dw

Example: Suppose the random variable is Gaussian, i.e., ¢ ~

>~ 1
Cx(jw) = / = e~ /2010 - p=w?/2

(i.c., lincar transformation of a Gaussian is Gaussian)

General Moments:

Bo) = [ gt
Exz" = /00
Eg(r,y) = /C>o /Oo (z,y) f (2, y)dx dy
Exmy™ / / z"y™ f(x,y)dx dy
ExyY = Rxy / / xyf(z,y)dz dy

Note: if Exy = Ez Ey, then x and y are uncorrelated.

CONDITIONAL PROBABILITY

N(0,1), then

Fx(z]Y € B)2 Pr(X <2|Y € B) with (Pr{(Y € B)} > 0)

A dFx(z|Y € B)

[x(z|Y € B) = .

fx(z|Y € B) >0
/oo fx(z|Y € B)dz =1

Px(elV e B)= [ fxtaly € B)is
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PriX € AlY € B)] = /A fx(x]Y € B)dx

I fxy(ay)de
Fxpy (z]y) 2 Fx(a|Y =y) = ;;Y(y)
A dE\f‘Y(l',?/) N fXY('T?y)
Fxiv (zly) = dx ()

Prixealy =yl = [ fayGelpde

Bayes’ Theorem:

Pr(A,B)  Pr(B|A)

PrAIBY = =5 57 = ey A
Pr(A|B,C) = —P;SA?EB(’;(;)

Note: DBayces’ theorem holds also for densities.

fmra[%fwwvay

where

flxly) =

/ f(z,y)dy = marginal of f(x)

Typically used when an uncertainty is present. We condition it on the uncer-
tainty (need the density function of the uncertainty) and average it out.
For example,

Sl = [ sty )y

and

) = [ el

= [ sl sl ey
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RANDOM PROCESSES

x(E0)
//t/\ "/\V‘VA ,}\ AP > time
R ()]
A AA__ L\ A, time
*(Eup00)
Seop i AN [\ A AA Ac—> i
VNSNS ~A~/ V'VVVV\M[\ » time
Lol | Folo) |,
15¢ Order Density:
Ix, (@e,), fx,, (%1,),---  (any t; combination)
224 Order Density:
fx. x,, (t1,t2),- -+ (any #;,1; combination)

34 Order Density:

thle?Xf3 (Tty, Tty Tty )y L
. (any t;,t;,1, combination)

For a complete description, we need all moments (joint moments) of all orders
for all possible times. However, most analysis is done using the first two
moments (requires knowledge of at most the joint density). Somectimes we
need to know up to the 4™® order moment.

ENSEMBLE AVERAGES

Rx, x,,(t1,12) = Rx (t1,t2) = E{r122} = / / 2122 fx, X, (T1, T2)dw1ds

(We use the notation t; and 4 interchangeably.)
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for t; =tandty =t—7 we have

Rx(t,t —7) = / / Tt 7 fx, X (Tt Do )dTedas -

for wide sense stationary (w.s.s.) process

Ixox, (w0 r) = fXHTXHTfT(l‘HT — TtyT—7)

— 1% moment is constant:

Ez(t)=m

274 moment is a function of time difference:
(for general complex valued processes)

Ex(t)x*(t —7) = Rx(7)

S0
Rx(t,t —7) = Rx(7)
pxc (s 1) 2 El(x1 —my)(xa —msa)] _ Rx (t1,t) —mymo
g102 7102
where
m; = Fx; 1 =1,2
02 = E(x; —m;)?

for w.s.s. process (m; = constaut = m)

Rx (1) —m?
/)X(T) = 72
Cross-Correlation Function:
ny(tl,f/g) - E{Tlg’r;}
Rxy(T) = E {xtmf{_T}
Properties:
Rx(t) = RY(-7) for complex process

Rx(r) = Rx(-7) for real process
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Rxy (1) = Ryx(-7)

Rx(0) = o%

Rx(] < Rx(0)= ok
Rer(n)] £ glRx(0)+ Ry (0)
[Bxy(T)] < VEx(0)Ry(0)

Time Averages: (ergodic processes: times averages = ensemble averages)

T

A 1
(x(t)) = Tlgréo T 7Tx(t)dt = mean
1 T
Rx(t) = lim — x(t)x*(t — 7)dt
T—oo 2 J_T
1 7
Rxy(t) = lim — 2ty (t —T)dt

T—o0 2T J-=T

POWER SPECTRAL DENSITY (PSD)

Sx(w) = / Rx(m)e 7“Tdt = F{Rx ()}
1 s JwT
Rx(r) = 7 Sx(w)e’* T dw
1 [ 9
Note: Rx(0) = o Sx(w)dw = E(z3)
Properties:
1. Sx((U) 2 0

2. Sx(w) = Sx(—w) for real z;

3. Sx(w) is real for real x;

Note:

Sil) = / Ry (r)etd
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= / RX(T)e_j“’tdt = Sx(w) = is always a real valued function

= imag Sx(w) =10
= au even function (for real process)

since

Rx (1) =rcal = Sk (w) = / Ry (w)et 1974t = Sy (—w)

Cross-Spectra/Correlation:
Sxy(w) = /ny(T)eiijdt

1 . jwT
Rxy(r) = . /Sxy(w)e]“’ dw

Syy(w) = Syx(w) for complex processes
Sxy(w) = Sxv(—w) for rcal processes
LINEARITY: (lincar filter with input f(¢))

T = yt) ) —|T]— y(t)

T{afi(t) + 8f2(1)y = oT{fi(1)} + AT{f2(D)}

= ay(t)+ By(t)

where h(t) is the impulse respouse

or

Fly()} = F{ROYE{f(1)}
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BIBO STABILITY
If
O] =M < oo

then
00

ly(t)| = / fWx(t —T)dt] < / M|h(T)|dt < ]\/[/ |[h(T)|dt < o0
In general we’ll work with stable time invariant systems.

Random Inputs:

Let 2(t) be a realization (sample fun(tlon) of the random process z(t, w)
O

my =g =FEy(t) = / h(r)mxdt
J0

h,(T)m(t —T)dt

= mX/ h(r)dt
Jo

| my = mx H{(0) |

Bl = [ [ hOn0) B yas ar
| w.s.s. input
_ / / Y Rx (7 +~ — €)de dy
= Ry(7)=Rx(7)*h"(—7)*h(7)
Sy(w) = F{Ry(7)}
- /O; Ry (r)e 77 dr

Sy (w) / €)= dg / ey
J0

: / Rx (147 —&e Ut =84¢ dydt

= |H(jw)\25X(w) < Ry (1) = Rx *xh(1) * h*(—7)
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Given the parallel networks:

(0 > 7
x(?)
—>
h() > 3,0
Ry,y,(17) = / / ha(u)ha(V) Ry (T + v — w)dudv
Jo Jo
1 = - * jWT
- 3 / Hy(jw)H; (jw)Sx (w)e’“"dw
Sviva(w) = Hi(jw)H;(jw)Sx ()
White Noise:
Sy(®)
Ny2
Sy(w) = % for all ® > ©
0
R\(T)
Ny2
Ry = 22 50) * ’
MO = —= 8 | > 1
0
Bandlimited White Noise (lowpass process):
A Sy(®@)
A_TC W<o<W AT/W
sw=93 "
> o
0 else W w

289
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R\(1)
R(®) =4 sin (W) .
wr 0
SBrm 2r - ®_ 2n 3w
w W W w w w
A
WW wo—W<w<w +W
) = A
Snlw)=q 27 —wp— W <w< —wg+ W
w
0 clse
An
w
[— 2 —P] — 21V —P>
I I o
—W, | ®,
2
Ry(T) = A% cos(woT)
R\()
A
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APPENDIX B

Signals and Transforms

Given a signal f(#) we say it has a Fourier transform [1 3] if it is absolutely
integrable

[l <

or if it is squarc integrable

[ < o

then

Fjw) = /_00 f(t)e Itat

Mauy times we suppress the j dependency, so F(jw) is denoted by F(w).
The inverse is given by

1 ge.]

= — F(w)et ' duw
2

ft)

—0o0

For periodic signals (Fourier serics expansion):

2
f) = fit+1) V¢ and 7=
wo
) = Z el kol
k=—o0
I _
where Cxk = = / f(t)efj(kwot)dt
T, —T/2

Discrete-Time Fourier Transform:

1 /" ;
F(ty) = - F(e?)ei“ dw

—T

PE) =Y flte

k=—o0

293
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Discrete Fourier Transform (DFT):

N—-1 ,
F(k) _ f(n)e—](Zﬂ/N)kn
n=0
1 N—-1
_ = j(27/N)kn
o) = X

For Fouricr reference related material consult [1,2,3] and review Chapter 3.

Hilbert Transform: [4,5]

#(t)

Mi()) = alr) «

= lPe/lOO MdT

T P

where P denotes the principle value:

oL L

lim  (simultaneously)
e—0

Fiz®)} = X()
I {%} = %sgn(w) = —j sgn(w) = { 7:;: : Z i 8
F{z(t)} = —jX(w)sgn(w)= { 7??%5% : Z i 8

— Hilbert transform flips the sign of the Fourier transform of the positive
part of the frequency components and multiplies all spectral components by

j=+v-1
Example:
ejwof e*j’u.}of

2 2

xz(t) = coswot =

|7
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F{coswot} = w[d(w—wo)+ 6w+ wo)]
|
H{F{coswot}} = Hjn[—6(w—wp)+ 6(w + wp)]

-

FHH{F{coswot}}} = H{z(t)}

H{coswot} = (1)
1 . .
- = (eﬂ“’ot — e_ont) = sinwpt
2j

Example: If a(t) is bandlimited (i.e., F{a(t)} = A(w) = 0 for |w| > W),
then

H{a(t)} coswt} = a(t)sinwot
H{a(t)sinwt} = —a(t)coswot
Properties:
1. 2(t) and #(t) arc orthogonal
2. i(t) = H{x(t)}
3. H{z(D)} = —2(t)

4. Hilbert transform behaves as a 90° phase shifter for sinusoidal signals
5. If
y(t) = h(t) x x(t)
then

6. If a(t) is bandlimited then
H{a(t) coswot} = a(t)sinwpt

H{a(t)sinwot} = —alt)coswot
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7. Time averages:

Expectations:
EX:Xi—r = R, ¢(7)

Ry(r) = —Rxx(7)

Rey(m) = Rxx(7)

Ri;(1) = Rxx(7)

Sxx(w) = Six(w)
Pre-Envelopes, Analytic Signal and Complex Envelopes
We define the pre-envelope of z(t) = x,(t)

ep(1) = alt) + ji(t)

where 7(t) = Hilbert transform of z(t)

#(t) = real {x,(1)}
() = H{x()} = imag {z,(1)}
Xw) = F{a(n)}
Xpw) = Floy(t)}

= X(w) +j[=7 sgn(w)] X (w)
{ 2X(w)  w>0

X(0) w=20
0 w <0



Appendiz B 297

The two sketches drawn below illustrate the idea behind the concept of
the pre-envelope. It shows, in the Fourier domain, how the bandpass and DC
components are manipulated.

X(w) X, (@)
B A B 24
| | H—> o H—> o
-0, o ®, ®

We can get x,(t) two different ways:
1. get H{z(t)} = &(1) and use an earlier equation
7p(t) = 2(t) + G0
or

2. get X(w) = F{z()} let

and inverse transform
9 oo
_ Jwt
zp(l) = o / X{w)e!“ dw
™, 0

We also call the pre-envelope the analytic signal.
If the carrier frequency is removed, then the analytic signal becomes the
complex envelope denoted by #(t). This is shown with the next example.
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Example: Bandpass signal

------- 24 24

We see that ~
X (w) = shifted version of X, (w)

or _
F(t) = ap(t)e 7wt

Example:

f(t) a narrowband signal

Ft) = z(t)coswot — y(t) sinwet
f(t) = x(t)sinwot + y(t) coswot
B = o)+ i)
= z(t) coswot — y(t) sinwot
+j(z(t) sinwot + y(t) coswot)

z(t) + jy(t))(coswot + 7 sin wot)
a(t) + jy(t))e’ "
(

) = fpt)e ™" =a(t) + jy(t)
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The envelope is defined to be the magnitude of the complex envelope
F&) =1f(O)] = Va2(t) +y2(t)
Example: DBandlimited white noisce

n(t) = z(t) coswot — y(t) sinwot

n(t) is w.s.s. —  z(t) and y(t) arc w.s.s.
with Rxx(7) = Ryvy(7) and Rx(0) = Ry (0) = ¢*

Sx(w) = Sy (w) (narrowband process)

A(t) = 2(t) sinwot + y(t) coswot
S0
x(t) = n(t)coswot + At) sinwpt
y(t) = ncoswet — n(t)sinwot

If n(t) is Gaussian then 7(t) is Gaussian, therefore z(t) and y(t) are Gaus-
sian.

Note:
n(t) = x(t)coswot — y(t) sinwpt
in-phasc quadraturc
component phase component
Let
e(t) = x2(t) + y(t) (Raylcigh PDF)
&) = tan~'(y(t)/x (1)) (uniform PDF)
then

n(t) = e(t) cos(wot + (1))

For more detail on signals, consult [4,5].
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DFT Interpretation:

Suppose we have a complex valued time signal (i.e., signal with a one-sided
narrowband spectrumn), say x(n) = a(n)e?“°™ where a(n) is low pass narrow-
band process.

n+N-—1
Xn(e?v) = E z(m)e 7™ ;. where n is the time index

m=n
and the DFT output rate equals the input rate.

n+N-—1
= Z a(m)eIm@=wo) — A (W — w)

m=n

If a(n) does not vary much over the N data points,

then the transforms can be approximated by

n+N-—1
>~ q(n) Z e~ im(w—wo)
m=n
B Na(n) w = wo
B 0 else
zp(n) = x(n) (since signal is alrcady onc-sided)
F(n) = xp(n)e ivon

— r(n)e—jwon — a(n)ejwone—jwon
= a(n)

Example: Oune-sided narrowband spectral data (residing in one spectral
bin). For the DFT, the output at the particular bin corresponds to a de-
sampled complex envelope. I the maximum overlap (change one point per
transform) is used, the output rate equals the input.

Note: The complex time data out of that spectral bin corresponds to the
complex envelope.  If real valued narrowband data is inputed (resides at a
given spectral £k location) then the output at spectral location corresponds
to the complex envelope (scaled by a factor of N/2 and resampled).
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APPENDIX C

Mathematical Structures

Group: A group consists of
1. A set K.

2. A rule (or operation) which associates with each pair element z,y in K
an clement zy in K 3.
(a) x(yz) = (2y)z, Vr,yand zin K
(b) Janelement ein K der =zve=a2Vaoin K

(¢) to cach clement x in K there corresponds an clement 71 in K 2

zx l=x"le=c¢

Commutative Group: zy=yzr z,y € K

Ring: A ring is a sct K, together with two operations (z,y) — x + y and
(z,y) — xy satisfying

1. K is a commutative group under the operation (z,y) — z+y (ie., K
is a commutative group under addition).

2. (zy)z = z(yz) (multiplication is associative).

Z‘y(it)’? i ;;{ i :i } (distribution law holds).

If zy = yx for all z and y in K, the ring K is commutative. If there is an
element 1 in z > x = z1 = x for each z, K is said to be a ring with identity
1 (it is called the identity for K).

Field: Let K be the set of real or complex numbers.
Ficld axioms:
1. Addition is commutative
r4+y=y+z forall z,yin K
2. Addition is associative

(r+y)+z=x+(y+2) foralzy and zin K

303
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3. There is a unique element 0 (zero) in K 2 +0 =z for all x in K.

4. To each x in K there corresponds a unique element —x in K > x +
(—=x) =0 (i.c., additive inverse).

5. Multiplication is commutative
Vax,ye K
Ty =yr

6. Multiplication is associative

(xzy)z =x(yz) Va,y,2 € K

7. There is a unique element 1 (one) in K dzxl=z V2 in K.

8. To each non-zero z in K there corresponds a unique element z—! in
K > x2~! =1 (ie., multiplicative inverse).

9. Multiplication distribution over addition z(y+2) = zy+zz, Vz,y,z €
K.

Order Axioms:

1. If # € y in K then only one is true

<y, y<x or xTx=y

2. fr<yifandonlyif 0 <y —=

3. f0<rand 0 <y then 0 < (z+y) and 0 < xy

Completeness Axioms: If S and T arc the non-ecmpty subscts of K 5
(a) K=SUT.
(b) s < tfor every s in T and cvery ¢ < T then cither there exists a largest
number in the set S or there exists a smallest number in the set T
Vector Space or Linear Space: A vector space consists of
1. Field K of scalars
2. A set V of objects (called vectors)

3. A rule (operation) called vector addition such that all scalars ¢ € K
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(a) addition is commutative

(b) addition is associative

(¢) Funique vector 03z + 0=, forallx € V

(d) 3 unique vector —z 3 x4+ (—z) =0, forallx € V

4. A rule (operation) called scalar multiplication
(a) le =x,forallx e V

(b) (c1c2)x = c1(can), forallx € V
(¢) elr+y)=cx+cy, forallxy eV

(d) (e1 4 c2)xr = cox + com, for allx € V

(i.c., vector space = ficld 4 a set of vectors and two operations with certain
special properties).

Algebra: A (lincar) algebra over the field K is a vector space A over K
with an additional opcration of vectors which associates with cach pair of
vectors ¢,y in A a vector xy in A called the product of  and ¥y in such a way
that

1. Multiplication is associative x(yz) = (zy)z
2. Multiplication is distributive with respect to addition

zy+z)=zy+zz and (z+y)z=x2z+yz

3. For cach scalar ¢ in K
clay) = (cv)y = v(cy)

If there is an element 1 in A 2 1o = 21 = x for each x in A, then A is a linear
algebra with identity over K. Algebra A is called commutative if zy = yx
for all z,y in A.

Normed (Linear) Space £: Normed vector space

Definition: £ a lincar space with a norm || || defined on it with these
propertics

(a) [J«]| >0
(b) N+ yll < 2l + [lyll
(¢) llCz|[ = |C] |=|l

and if ||z|] = 0 then z =0

If the space is complete and has a norm ——  we call it a Banach space.
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Inner Product Space: An inner product space is a linear space with an
inner product on L.

Inner product:
(a) (z,2) > 0if (z,x) =0 thenx =0
(b) (9,2) = {w,5)°
(©) {3, 2) = e, 2) + {1, 2)

A finite-dimensional normed linear space is called a Fuclidian space. 1t
is a normed linear space which consists of linear space R™ together with the
norm

| ([21]? + 2?4+ 4 a2

= length

A complete inner product space is called a Hilbert space.

For additional reference consult [1,2].
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Some Mathematical Expressions and Moments
of Probability Density Function

1 27

Ip(z) = — e”s1n0qp [1]
2m Jo
Io = modified Bessel function (1 kind) of order zero
©  2n 72 ! 76
) = Yampp U et e
L(x) = j7"Ja(jz) = e 70D g ()
Io(z) = Jo(jz)
1 /7 ) 72 x4 28
Jo(r) = ;/0 cos(xsinf)df =1 — > + IVEARC TR TINE +-- 1]
1 2T
- eJTsin 9(]9
2m Jo
1 2T
Ip(z) = — exp(z cos(6 + ¢))do
2r Jo

2
forsmall v Ip~ 1+ ~

—
4

,~ asymptotic expansion (large arguments)

CXp T 1 1232
Io(z) = 14—+ —2 ...
olz) T < + % + 2(37)° +
exp(z)

for large @ Ip(x)

307



308 Detection Theory: Applications and Digital Signal Processing

erf (x)
Define
2
erf(z) = — eV 2dy
\/_ >
erfe(x) = Nors e Y /{)dy
et = Q)
62=1 m=0 normalized Gaussian
/ erfe(x)
A\ .
X
AN
erf(x)
Note 1:
./ a negative number
2 <0 . We see erfe(xy) = erf(Jz1]) « a positive number

erf(r1) = er el
erf (x1) =1—erf(—x1)

Note 2: Beware of definition (table) of the crror function.

forx >0

erfe(x) = (Zle (Liti) o—77/2

accuracy : error < 7.5-107%

where

a1 = 0.127414796
as = —0.142248368 ¢ = 1/(1 + ex)
as = 0.710706871
ag = —0.726576013 e = 0.2316419
as = 0.530702714

Sce Abramowitz and Stegun [2].

We can also solve for z iteratively, when 0 < Ppy < 1/2
x=erfc Y(PFA)
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Guess a reasonable xg

1/2
T = {2 In <R(t0) )} where

repeat until  x; — 11 <€

where R(t) is from last page

Note: For N ~ (m,a?) over (—oo, 7))

. 1
0 1+ exp
1
t =
1+ exy

Vormao.,

— 00

e*tg/(‘)dt

1 x—m/o
N V2T ./700

_Q <:r Um)

! /T 67(7/7m)2/202dy —erf <

Tr—m

)
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Complementary Error Function Table

ERFC(x —u* /2y,

The valucs are computed using the MATLAB 4 or 5 version (The Mathworks,
Inc.) as given below.

1 T
ERFO(T) = §€Tf(:MATLAB <%>

x 0 0.0100 0.0200 0.0300 0.0400 0.0500 0.0600 0.0700 0.0800 0.0900

0| 05000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1000 | 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2000 | 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3858
0.3000 | 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4000 | 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
0.5000 [ 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6000 [ 0.2743 0.2708 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7000 | 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8000 [ 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9000 [ 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0000 [ 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1000 | 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2000 [ 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3000 [ 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4000 [ 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5000 [ 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6000 [ 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7000 [ 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8000 [ 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9000 [ 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
2.0000 [ 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1000 | 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2000  0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3000 [ 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0088 0.0087 0.0084
2.4000 | 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
2.5000 | 0.0062 0.0060 0.0058 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6000 | 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7000 [ 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8000 [ 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9000 [ 0.0019 0.0018 0.0018 0.0017 0.0016 0.0018 0.0015 0.0015 0.0014 0.0014




Appendiz D 311

Some Handy Expressions
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Functional Characteristic
Density Form Function Mean o?
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a
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Erlang

fx(x)

a'n,rw,flcfam

T (n=1)!
for x >0
n=12"---

a>0

dx (w)
o

T (a—jw)n

Q3

Log normal

fx(x)

V2mwo? (z — a)
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_—{In(z—a)—b}2 /202
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Weibull

Ix(x)

1 st
= abx® " te”

for z > 0
a,b>0

Cauchy

fx(x)
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=a2+(m—b)2;

a>0

for —oco <z < o0
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APPENDIX E

Wavelet Transforms

The purpose of this appendix is to provide a quick introduction into wavelet
transform processing. The wavelet transform (WT) takes a one-dimensional
function and decomposes it into a two-dimensional expression. For simplic-
ity, we will use a time function or, if appropriate, a time sequence of one
dimension. The nature of the variables of the transformation (continuous or
discrete-time and continuous or discrete co-domain parameters) determine the
name of the transformation. This is similar to conventional Fourier transform
terminology [1], as is bricfly indicated next.

Fourier Transform (FT)

1. When both domains are continuous and non-periodic, the transform is
called the Fourier transform (FT).

2. If the time domain is discrete, the transform is called the discrete-time
Fourier transform (DTFT). The frequency domain representation will
be periodic.

3. If the function is continuous and periodic in time, the transform is called
the Fourier scries (FS). The frequency domain representation will be
discrete.

4. If the function is discrete in time and finite in duration, the transform is
called the discrete Fourier transform (DFT). The frequency representa-
tion will be discrete and periodic. Its fast cousin is the well-known fast
Fourier transform (FFT). Some readers will recognize that the DFT is
just the discrete-time Fourier series.

Wavelet Transform (WT)

The wavelet transform (WT) has a once-dimensional time domain and a two-
dimensional transform domain. The two transform dimensions arc the shift
(also called delay) and scaling dimensions. The delay shifts the basis function
along the segment of data under consideration, while the scale sets up a par-
ticular spectral filter frequency and bandwidth. The WT can be characterized
as in the FT case.

1. If the input is continuous and outputs that are continuous in both
dimeunsions (delay and scale), the transform is called the continuous
wavclet transform (CWT).
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2. If the input is continuous and the outputs are discrete (shift and scale
arc evaluated on a grid), the transformation is called the discrete wavelet
transform (DWT).

3. If the time signal is discrete and the transformed dimensions arc dis-
crete, the transform is called the discrete-time wavelet transform
(DTWT). The DTWT is the one that is usually performed in WT
applications. Using the so-called Mallat algorithm leads to a fast im-
plementation, sometimes called the fast wavelet transform.

4. If the input time signal is discrete and the transformed dimensions are
continuous, the transform is called the discrete-time continuous wavelet
transform (DTCWT). The DTCWT is mentioned for completeness sake.
The author is not aware of any applications of this transform.

We will examine the CTWT and the DTWT in some detail. The dis-
cussion and notation will follow the ones advocated in [2]. This appendix is
written so that it can be followed with little difficulty. The only oddity is our
convention to label (order) scales in the same spectral sense as the frequencies.
From a vector space point of view and from a simpler labeling ability, our
ordering is meaningful. We note scale labeling is totally arbitrary. Common
sense suggests that the labeling goes in the opposite direction that frequency
labeling goes, which indeed most articles and books adhere to. We will use
the words shift and delay interchangeably. A wavelet, denoted by (), is the
term coined to describe an oscillatory function that exists over a relatively
short period of time and has no DC component. We start the introduction
by considering continuous time domain functions and the CTWT.

Continuous Time Wavelet Transform (CTWT)

We assume that the time function of interest is band limited and that we
can represent any band limited function by a weighted combination of basis
functions. We assume that these basis functions are such that any possible
signal function, band limited as discussed, can be modeled (expressed) as a
lincar combination of these basis functions. It may help to think in terms
of a particular basis function sct, such as the FT, that is any band limited
function can be expressed as a linear combination of complex exponentials,
ie.,
" 00
f(t) = / E(fye ™10 df

o — 00
where F(f) is the weight and {e727™} are the basis functions.

In the wavelet transform representation, one is not limited to sinusoids,
rather than that, any band pass function can be used. This means the wavelet
(i.c., band pass) functions do not allow a DC component, and must be oscil-
latory and of finite duration (i.c., compact support). This means that only
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bandpass phenomena can be represented with wavelets. One extreme case is
the set of the Haar basis functions, also called Daubechics wavelets of order
2. They consist of functions that are positive for the first and negative for the
sccond half of the time support. The magnitude is the same for both halves
of the support. Another interpretation of the Haar function is that of a hard
clipped sine wave. We note that the time support is substantially shorter
than the data length. To span another bandpass region, the wavelet function
has to be dilated or expanded. The original wavelet function is also called the
mother wavelet. If the wavelet (basis) function is dilated (compressed) the
frequency range is decreased (increased). Suppose that we have a prototype
that is a real valued wavelet function (mother wavelet) denoted by ¥(t), we
define the wavelet transform as

Wila,b) = WT{f(t)}
(Yap (1), f(1))

/fo ba(t) 1(1) dt

The inverse exists if

C(_,):/ Mdg < 00
N NS

and

U(0) = /_oo G(t) dt =0

then the original time function is given by

1 [ [ db
fit)=—=— / / WEr(a,b) Yap(t) da—
C@, J—occ JO a

Discrete Wavelet Transform (DWT)

The CWT is very redundant and not very practical. To climinate these prob-
lems, the shift (delay) and scale parameters are allowed to take on discrete
values ounly (i.e., sample the CWT at discrete points iu its transform domain).
Given any spectral region (— fp, fp), we can partition the spectral region into
two equal sized parts (i.e., a low pass and a high pass region). Hence we can
talk about two different scts of basis functions that span these two spectral
regions. The low pass region is spanned by the scaling (i.c., low pass) func-
tions while the band pass region is spanned by the wavelet functions. Let us
take the example of band limited spectral region as plotted in the drawing
on the next page and interpret the different spectral regions.



318 Detection Theory: Applications and Digital Signal Processing

V3
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r— N
v, :
- N ~ :
4 i i
[} [}
Is \ [} [}
VO W() Wl WZ

> f

The regions Wy, Wy, and W5 are band pass regions, while Vp, Vi, Vo,
and V3 are low pass regions. The direct sum of Vo & Wy = V; and
Vi ® W1 = Vs, ete. Suppose we have a prototype real valued function ) (t),
which is a bandpass (wavelet) function and a low pass (scaling) function ¢(t).

Define ¢p(t) = ¢(t — k), for k € Z,and ¢ € L? so that
Vo = span {¢x (1)
The subspaces, as indicated in the above drawing, are arranged as
{0} ...CcV, CVoy cVo Vi Vo ... L?

Where ‘/] (o2 Wj = j+1-
Suppose that f(t) € V; then f(2t) € V;11. The inner product of the
scaling and wavelet function is given by

B3k (1), (1)) = / b3u(t) (1) dt = 0

which says that for all scales labeled j and for all delays, the scaling and
wavelet functions are orthogonal. Also

/ o(z) ¢(x —m) de = Kb(m)

which says that the scaling function (in a given scale) is delta corrclated. The
cnergy of the scaling function is denoted by K. If K cquals one, then the
basis functions are normalized.

In general, any function f(f) can be written as

oo

FOy = > ek) ¢t —k)+ > > d(m, k) tm(t)

k=—oc0 m=0 k=—oc0

where gme(t) = 27/2 ¢(27/2 t — k).
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Since ¢(2t —n) spans Vi = Vo @ W, ¢(t —n) spans Vo, and ¥ (t —n) spaus
Wo a weighted sum will span Vg, as given by

o) = Z h(n)v/2 ¢(2t — k) the scaling equation

n

and a weighted sum will span Wy as given by
Z hi(n)yv/2 ¢(2t — k)  the wavelet equation
As it turns out, hi(n) is such that hi(n) = (=)™ h(l — n). Tt is a time

reversed, odd ordered locations sign reversed, copy of the FIR filter denoted
by h(n).

Discrete-Time Wavelet Transform (DTWT)

With some work, one can obtain a recursive relationship between ¢, (k) and
d(m, k), allowing addressing discrete-time problems by replacing ¢p41 with
f(n), the low pass signal with the highest sampling rate (i.c., original sampled
time data):

em(k) = D A= 2k) ey (l)
l
d(7n’> k) - dm(k) - Z hl(] o Qk) chrl(l)
l

This arrangement is shown, suppressing the time dependency, in the fol-
lowing drawings.

hy(=n) -’@—f d,, (high pass output)
Comt1
h(-n) -P@—V ¢n (low pass output)
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y(n) —»@—» d,

c
high
h(—n) hy(=n) —b@—> dm—l pass
output

. h(-n) hy(—n) —b@—b d,_,
J
o h(—n) —P@—> Con2
— )
——

low pass output

In this decomposition (Mallat’s algorithm), d,,, represents the detail (high
pass), while ¢, stands for the low pass output, at scale m. The decomposition
can be stopped anywhere in the scale space. If it is allowed to continue until
it runs out of data, then at the bandpass filter and the associated low pass
filter at the last scale will output only one data point. Typically, the data
length is chosen to be N = 27, where r is an integer. Then the number of
stages (i.c., scales) is In 27 = 7, if indeed a total decomposition is desired.
The process can casily be inverted to recover the original signal f(¢).

Chapter 3 and Appendix E constitute an attempt to provide a simplified
introduction to wavelet processing. For more detail, see references [2,3].
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a posteriori probability, 64
a priori probability, 64
adaptive filtering, 265
adaptive line enhancer (ALE), 265
ambiguity function, 251
amplitude shift keying (ASK), 140
analytic signal, 297
approximation, 56
asymptotically unbiased cstimate,
224

auto-correlation, 284
auto-regressive (AR) modeling, 208
averaging

coherent, 158

incoherent, 158

power, 27, 159

B

bandlimited white noise, 132, 289,
299
bandpass filter, 52, 54, 57, 263
Bayes’ detection, 67
Bayes’ theorem, 65, 283
biased estimate, 224, 249
bibo stability, 41, 288
bi-laterial transform
Laplace, 188
region of convergence (R.0.C.),
189
binary detection problem, 65
bi-spectrum, 259
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boxcar averager, 21, 42
C

Cauchy density, 22, 273
Cauchy-Schwarz incquality (sce
also Schwarz incquality),
147
characteristic function, 282
chi-squared density, 25, 276
Choi-Williams approach, 252
Cholesky decomposition, 205
coherence processing, 261
coherent frequency shift keying
(CFSK), 140
coherent integration, 26, 158
coherent phase shift keying (CPSK),
139
colored Gaussian noise, 165
complete ortho-normal (C.O.N.) set,
169
complex demodulator, 45
complex valued weights, 44
composite hypothesis testing, 102
conditional probability, 282
consistent estimate, 224
constant false alarm rate (CFAR)
detection, 90, 118
continuous time
correlator, 135
matched filter, 143, 147
whitener, 199
continuous wavelet transform

(CWT), 315
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couvolution, 47
coordinate transformation, 48
correlation
instantancous, 249
spectral, 250
correlation receiver, 135
correlator, 134
corrclator bank, 148
cost, 68
covariance, 278
Cramer-Rao (CR) bound, 225, 228
cross (power) spectral density, 287
cross corrclation, 285
cumulant spectrum, 259
cumulants, 257
cyclo-stationary processing
FFT accumulation method (FAM),
256
method, 252
strip spectral correlation method
(SSCA), 256
smoothed cyclic periodogram,
253

D

decimation, 53
decomposition, 320
detail function, 56, 320
discrete Fourier transform (DFT),
40, 294, 315
discrete time
convolution, 16
correlation, 49
DFT, 40, 294
discrete time continuous wavelet trans-
form (DTCWT), 316
discrete time corrclator, 133
discrete time Fourier transform (DTFT),
39, 293, 315
discrete wavelet transform (DW'T),
316
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E

efficient estimate, 225
eigenfunction, 182
eigenvalue, 182

cnsemble average, 284
cnvelope detector, 23
crgodicity, 258

error function, 308, 310
error of the first kind, 67
crror of the sccond kind, 67
cstimation, 217

F

fast correlation, 49

fast Fourier transform (FFT), 40,
43, 51

fast wavelet transform, 58

filtering, 230

finite impulse respouse (FIR) fil-
ter, 41, 45, 51

Fourier transform (FT), 315

Fourier series, 293, 315

Fredholm equation of the first kind,
192

Fredholm equation of the second
kind, 192

fundamental theorem of transfor-
mation, 279

G

Gabor transform, 246
Gaussian density, 19, 274
Gram-Schmidt procedure, 174, 177

H

higher order moments, 257

Hilbert transform, 294
homogeneous integral equation, 181
hypothesis testing, 63
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I

in-phase and quadrature (I-Q) terins,
46

incoherent integration, 27, 158

independent, 278

inner product, 168

instantaneous correlation function,
249

integral equation, 192
K

Karhunen-Loeve expansion, 181, 182,
211

Lagrange multiplier, 90, 91

Laplace transform, 188

LDLT factorization, 205

Leibnitz rule, 277

leucogenic noise, 192, 203

likelihood ratio (LR), 70

linearity, 287

low pass filter, 319

low pass signal, 319

M

magnitude squared coherence (MSC)
function, 261

Mallat’s algorithm, 58, 320

MAP estimation, 218

M-ary communication systems, 147

matched filter, 48, 143, 146

matched filter bank, 145, 149

maximum a priori (MAP) detec-
tion, 82

maximum likelihood (ML) detec-
tor, 83

Mercer’s theorem, 181

Min-Max criterion, 88

minimum mean squared error (MMSE),
222,232

minimum probability of error, 84

minimum variance cstimate, 224

ML estimation, 220
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moments, 275, 282

mother wavelet scaling function, 317
multiple hypothesis testing, 96
multiple pulse detection, 156
multi-rate filter, 45

N

Neyman-Pearson criterion, 90, 92,
123

non-central chi-squared density, 29,
277

non-parametric detection, 117

non-stationary, 267

normal cquation, 209

nuisance parameters, 103

(0)

on-off keying (OOK, ASK), 140
orthogounal, 278

orthogonality principle, 233
output PSD, 18

P

periodogram, 26, 50, 244
poly-spectra, 257
power averaging, 27
power of the test, 19
power spectral density (PSD) func-
tion, 284
power spectrum analyzer, 26
predicting, 230, 237
probability density function (PDF),
273
Cauchy, 22, 275
chi-squared, 25
chi-squared, N degrees of free-
dom, 25, 276
cxponential, 25, 274
Gaussian, 19, 274
lognormal, 274
non-central chi-squared, 29, 277
Rayleigh, 21, 275
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Rician, 29, 276

uniform, 24, 274
probability distribution, 277
probability of detection, 68
probability of error, 84
probability of false alarm, 68

Q

Q-function, 308
R

radar, 142
random paramcters
amplitude, 152
frequency, 154
phase, 150
time of arrival, 154
random process, 284
Rayleigh density, 21, 275
receiver operating characteristic (ROC)
curve, 107
rectifier, 22
region of convergence (R.O.C.), 189

S

scalar product, 47

scale, 53

scaling equation, 319

Schwarz inequality (see also Cauchy-
Schwarz inequality), 147

scquential likelihood ratio detection,
123

sequential likelihood ratio test (SLRT),
124

scries representation, 166

sign detector, 118

signal-to-noisc ratio (SNR), 108

sine (sin z/x) function, 300

size of the test, 19

smoothing, 230

sonar, 142

spaces

decision, 10

cvent, 6

observation, 8

signal, 7
spectral factorization, 202
spectrogram, 245
standard deviation, 245
summer (boxcar averager), 20

T

time average, 286, 296
time difference of arrival (TDOA),
249
time frequency distributions, 249
transforms
Fouricr, 315
Hilbert, 294
Laplace, 188
Z, 39
trellis, 66
tri-spectrum, 260

U

unbiased estimate, 224

uncorrelated, 278

uniform density, 24, 274

uniform most powerful (UMP) test,
104, 105

\%%

Wald’s sequential LRT, 123
wavelet

detector, 265

equation, 319

processing, 263

transform, 315
wavcelets, 50, 315
whitening filter (continuous time),

199

whitening filter (discrete time), 202
wide sense stationary (WSS), 285
Wicner filtering, 209, 232
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Wigner-Ville distribution, 249
Wilcoxon detector, 122
Yule-Walker equation, 209

Z

Z-transform, 39
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