
Tianhong Pan · Yi Zhu

Designing
Embedded
Systems with
Arduino
A Fundamental Technology for Makers

www.ebook3000.com

http://www.ebook3000.org

Designing Embedded Systems with Arduino

Tianhong Pan • Yi Zhu

Designing Embedded
Systems with Arduino
A Fundamental Technology for Makers

123

www.ebook3000.com

http://www.ebook3000.org

Tianhong Pan
Jiangsu University
Zhenjiang
China

Yi Zhu
Jiangsu University
Zhenjiang
China

ISBN 978-981-10-4417-5 ISBN 978-981-10-4418-2 (eBook)
DOI 10.1007/978-981-10-4418-2

Library of Congress Control Number: 2017937915

© Springer Nature Singapore Pte Ltd. 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

Our world is full of smart and connected products embedded with processors,
sensors, and software. Do-it-yourself communities have always been fascinated by
the fact that a person can design and build his/her own smart system for specific
tasks. Arduino presents us with an alternative platform to build such amazing
products. Users can download the Arduino Integrated Development Environment
(IDE) and code their own program using the C/C++ language as well as the
Arduino Core library, which provides a considerable amount of helpful functions
and features. Arduino makes it easy to sense and respond to touch, sound, position,
heat, light, etc.

The SPIED (Summer Program for Innovative Engineering Design) has been
implemented in three countries, i.e., Japan, China, and Korea, on a rotation basis
since 2013. The role of SPIED is to establish innovative engineering education in
the three countries. In the SPIED, senior-level and graduate students from Japan,
China, and Korea stay and work together on planning, designing, production, and
presentation of a prototype mechatronics and robotic system. By combining engi-
neering design technique with the ability to identify problems from a multidisci-
plinary perspective, SPIED provides participants with a sense of achievement when
they undergo the process of drawing their dreams as a concept, followed by
designing and creating them as prototypes. However, mechatronics and robotic
systems involve numerous techniques related to multiple disciplines. Students need
to spend a considerable amount of time learning technologies. A unique advantage
of Arduino is that it can be used by anyone, even people with no programming or
electronics experience. Arduino is an open-source platform composed of very
simple and easy-to-use hardware and software, which has mainly been developed
for prototyping purposes. Therefore, it is a great fit for students.

In this book, we want to systematically integrate Arduino modules with Arduino
platform and train beginners in understanding this technology. Furthermore,
information on various topics including sensors, photics, electronics, mechatronics,
mathematical calculations, etc. is also introduced in this book, which can help
readers explore system development from an interdisciplinary perspective.

v

www.ebook3000.com

http://www.ebook3000.org

Objective and Intended Audience

The purpose of this book is to present programming and electronics techniques
based on Arduino and to discuss them from the point of view of using micro
controller technology to interact with the environment. Over the last three years,
notes based on this book have been used to support the Summer Program for
Innovative Engineering Design (SPIED), which has been implemented by three
countries, Japan, China, and Korea, on a rotation basis (http://ire-asia.org/ire/spied/).
The book can also be used in senior-level/first-year-graduate courses on micro-
controllers and its applications. Portions of these notes have been used to support
training courses for electronics makers and hobbyist.

Book Contents

Although this is a book on open-source hardware and electronics, you will find a
number of code examples. They are used to configure the hardware as desired and
make it do what we want it to do. The authors are a professional teacher with a good
experience in Embedding System Design. Through our partnership, we try to show
a model of how traditional education can merge with the makers of the world to
create a much richer learning experience than is possible to have by learning
passively. Chapters 1–6 are written by Prof. Tianhong Pan, and Chaps. 7 and 8 are
written by Biqi Sheng Ph.D. and Prof. Yi Zhu respectively.

The book begins (Chap. 1) by pointing out the different variants of Arduino
boards. Next, Arduino history and characteristics are quickly reviewed, and the
driver installation procedure and IDE of Arduino are also introduced.

Chapter 2 describes many embedded basic functions, such as the functions for
reading and writing digital and analog input and output pins, interrupt functions,
mathematic functions, and serial communication functions.

Chapter 3 presents the various types of sensor modules available for Arduino. It
covers many of the commonly available types, such as the temperature sensor,
joystick module, analogy sound sensor, and other items that are not specific to
Arduino, but are compatible. Electrical pin-out information, schematics, and soft-
ware are provided for many of the items discussed.

Chapter 4 explains how you can make things move by controlling motors with
Arduino. A wide range of motor types are covered: DC motor, servo, stepper motor.
All kinds of driving circuits and their schematics are introduced in this chapter.

Chapter 5 focuses on wireless techniques such as: infrared transmitter/receiver
Bluetooth, ZigBee, Wi-Fi, etc. The examples in this chapter demonstrate how to
connect Arduino to devices and modules and realize remote control.

vi Preface

Chapters 6–8 cover some projects that illustrate the capabilities of Arduino
boards and sensor modules. They are intended to demonstrate how Arduino can be
applied in various situations. Each example description includes theory of operation,
schematics, detailed parts lists, layouts, and an overview of the software necessary
for it to function.

Zhenjiang, China Tianhong Pan
Yi Zhu

Preface vii

www.ebook3000.com

http://www.ebook3000.org

Acknowledgements

We would like to thank all the reviewers of the earlier drafts of this book, who made
very useful comments and suggestions. In particular, we would like to thank
Prof. Zhongwei Jiang from the Yamaguchi University, Japan, for his comments
and encouragement. We also gratefully acknowledge many current students at Jiangsu
University who have carefully provided reviews and performed tests: Biqi Sheng,
Wei Guo, Jiao Chen, Jiali Ding, Tao Jiang, etc.

In the spirit of continuous improvement, we encourage feedback from students,
faculty, and practitioners who use this book. We hope you find it useful.

ix

Contents

Part I Basic Skill Training and Application

1 Getting Started with Arduino . 3
1.1 Introduction . 3
1.2 Arduino Variants . 5
1.3 Install the Drivers . 9
1.4 Arduino IDE . 12

2 The Basic Functions . 17
2.1 Overview . 17
2.2 Structure. 17
2.3 Digital I/O Functions . 18
2.4 Analog I/O Functions. 21
2.5 Advanced I/O Functions . 24
2.6 Timer Functions . 27
2.7 Communication Functions . 30
2.8 Interrupt Functions . 35
2.9 Math Functions . 39
2.10 Programming Language Reference. 44

3 Using Sensors with the Arduino . 45
3.1 Introduction . 45
3.2 Light Sensitive Sensors . 45

3.2.1 Introduction . 45
3.2.2 Photodiodes . 46
3.2.3 Demonstration. 47

3.3 Temperature Sensors . 49
3.3.1 Introduction . 49
3.3.2 Digital Temperature Sensor. 49
3.3.3 Analog Temperature Sensor . 54

xi

www.ebook3000.com

http://www.ebook3000.org

3.4 Temperature and Humidity Sensor . 57
3.4.1 Introduction . 57
3.4.2 Demonstration. 59

3.5 Line-Tracking Sensor . 61
3.5.1 Introduction . 61
3.5.2 Demonstration. 62

3.6 Ultrasonic Sensors . 64
3.6.1 Introduction . 64
3.6.2 HC-SR04 . 65
3.6.3 Demonstration. 65

3.7 Digital Infrared Motion Sensor . 68
3.7.1 Introduction . 68
3.7.2 Demonstration. 68

3.8 Joystick Module. 71
3.8.1 Introduction . 71
3.8.2 Demonstration. 71

3.9 Gas Sensor . 73
3.9.1 Introduction . 73
3.9.2 Demonstration. 74

3.10 Hall Sensor . 76
3.10.1 Introduction . 76
3.10.2 Demonstration. 77

3.11 Color Sensor . 78
3.11.1 Introduction . 78
3.11.2 Demonstration. 80

3.12 Digital Tilt Sensor . 82
3.12.1 Introduction . 82
3.12.2 Demonstration. 82

3.13 Triple Axis Acceleration Sensor. 84
3.13.1 Introduction . 84
3.13.2 Demonstration. 85

3.14 Analog Sound Sensor. 88
3.14.1 Introduction . 88
3.14.2 Demonstration. 88

3.15 Voice Recognition Module . 90
3.15.1 Introduction . 90
3.15.2 Demonstration. 91

3.16 Digital Vibration Sensor. 93
3.16.1 Introduction . 93
3.16.2 Demonstration. 94

3.17 Flame Sensor . 95
3.17.1 Introduction . 95
3.17.2 Demonstration. 96

xii Contents

3.18 Capacitive Touch Sensor . 98
3.18.1 Introduction . 98
3.18.2 Demonstration. 99

4 Electromechanical Control Using the Arduino 101
4.1 DC Motor . 101

4.1.1 Overview . 101
4.1.2 Driven Circuit Design. 102
4.1.3 Demonstration. 103

4.2 Stepper Motor . 108
4.2.1 Overview . 108
4.2.2 Working Principle of Stepper Motor. 109
4.2.3 Driven Principle of Stepper Motor 110
4.2.4 Driven Circuit Design. 113
4.2.5 Demonstration 1 . 114
4.2.6 Demonstration 2 . 117

4.3 Servo Motor. 119
4.3.1 Overview . 119
4.3.2 Driven Circuit Design. 120
4.3.3 Demonstration. 121

4.4 Hardware Setting . 121
4.5 Explanation . 123

5 Wireless Control Using the Arduino . 125
5.1 Infrared Transmitter and Receiver Module 125

5.1.1 Introduction . 125
5.1.2 IR Transmitter/Receiver Module 126
5.1.3 IR Kit . 128

5.2 2.4G Wireless Radio Frequency Module 136
5.2.1 Introduction . 136
5.2.2 2.4 GHz Wireless RF Transceiver Module 136
5.2.3 Demonstration. 138

5.3 Bluetooth Module . 142
5.3.1 Introduction . 142
5.3.2 HC-05 Module . 143
5.3.3 Modify HC-05 Module Defaults

Using at Commands . 144
5.3.4 Demonstration. 149

5.4 GSM/GPRS Module . 153
5.4.1 Introduction . 153
5.4.2 A6 GSM/GPRS Module . 155
5.4.3 Demonstration. 156

5.5 Wi-Fi Module . 161
5.5.1 Introduction . 161
5.5.2 Wi-Fi Module . 161
5.5.3 Demonstration. 164

Contents xiii

www.ebook3000.com

http://www.ebook3000.org

Part II Case Studies

6 PM2.5/Air Quality Monitor Using Arduino . 171
6.1 Introduction . 171
6.2 System Design . 171

6.2.1 Air Quality Sensor (SEN0177) . 172
6.2.2 Temperature and Humidity Sensor (DHT11) 175
6.2.3 Liquid-Crystal Display . 175
6.2.4 Servo . 177
6.2.5 Bluetooth (HC-05) . 179
6.2.6 Software Development . 181

6.3 Production Demonstration . 182
6.3.1 Components . 182
6.3.2 UNO R3 Digital Pinouts Are as Follows 182
6.3.3 Results . 182
6.3.4 Codes . 185

7 A Fire-Fighting Robot Using Arduino. 189
7.1 Introduction . 189
7.2 Task Definition . 190

7.2.1 Task 1: Search the Fire Source . 190
7.2.2 Task 2: Extinguishing the Fire . 191
7.2.3 Task 3: Returning to the Start Position 191

7.3 Robot Design . 191
7.3.1 Sensors . 192
7.3.2 Extinguishing System . 192
7.3.3 Motor Drive . 193
7.3.4 Algorithms and Behaviors . 194

7.4 Demonstration . 194
7.4.1 Components . 194
7.4.2 Romeo Pinouts Are as Follows. 195
7.4.3 Results . 195
7.4.4 Codes . 196

8 Intelligent Lock System Using Arduino. 205
8.1 Introduction . 205
8.2 System Design . 205

8.2.1 Key Design of Controllable Lock 207
8.2.2 Key Design of Android APP . 210
8.2.3 Key Design of Host . 214

8.3 Photos of Demonstration System . 217
8.4 Conclusion . 220

Appendix: Arduino Language Reference . 221

References . 227

xiv Contents

About the Authors

Tianhong Pan obtained his Ph.D. degree in April, 2007
from Shanghai Jiao Tong University, China. He then
worked for 1.5 years at National Tsinghua University,
Taiwan China since 2009, and 3.5 years at University of
Alberta, Edmonton Canada since 2011 as a postdoctoral
fellow, where gained valuable industrial experience in
semiconductor manufacturing processes and petro-
chemical industry. Now, He has been a professor in
School of Electrical and Information Engineering,
Jiangsu University, Zhenjiang, China. As the core
member of innovative research & education organiza-
tion of Asia, he organized all Summer Program of
Innovative Engineering Design since 2013 and got a
good experience in “Embedded System Design using
Arduino”. In addition to teaching Arduino, he enjoys
automating everyday tasks, designing and etching PCBs,
and lots of random things in between. Much of his time
has been spent researching, building, and testing various
controllers to make his device work automatically.
Additionally, he published several articles in refereed
journals and international conferences.

xv

www.ebook3000.com

http://www.ebook3000.org

Yi Zhu received the Ph.D. degree in communication
and information system from Nanjing University of
Posts and Telecommunications, Nanjing, China, in
2016. He is currently an Associate Professor of School
of Computer Science and Communication Engineering,
Jiangsu University, Zhenjiang, China. Since 2010, he
has started working in innovative engineering education
and maker training. As the core member of Innovative
Research & Education Organization of Asia, he attended
all Summer Program of Innovative Engineering Design
and Creative Engineering Design Competition since
2013. In 2014 and 2015, he visited Yamaguchi
University of Japan as visiting lecturer to teach
“Embedded System”. These abroad education activities
provided great valuable experiences for forming his
education idea of maker training. Through teaching
practice, he proposed an effective maker training mode
based on “Arduino/Raspberry Pi/Android/Robot” in the
end of 2015. For his contribution in maker education, he
received the first prize of Teaching Achievement Award
by Jiangsu University and the first prize of National
Engineering Training by Ministry of Education institu-
tion of Engineering Training Guidance Committee
respectively in 2016.

xvi About the Authors

Part I
Basic Skill Training and Application

www.ebook3000.com

http://www.ebook3000.org

Chapter 1
Getting Started with Arduino

1.1 Introduction

In 2005, Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino, and
David Mellis came up with an idea for an easy-to-use programmable device for
interactive art design projects at the Interaction Design Institute Ivrea in Ivrea, Italy.
The device needed to be simple, easy to connect to various things (such as relays,
motors, and sensors), and easy to program. It also needed to be inexpensive to make
it cost-effective for students and artists. They selected an AVR family of 8-bit
microcontroller (MCU or µC) devices from Atmel and designed a self-contained
circuit board with easy-to-use connections, wrote bootloader firmware for the
microcontroller, and integrated it all into a simple development environment that
used programs called “sketches.” The result was Arduino.

Arduino is an open-source microcontroller that enables programming and
interaction; it is programmed in C/C++ with an Arduino library to allow it to access
the hardware. This allows for more flexible programmability and the ability to use
electronics that can interface with Arduino. Because Arduino is open source, the
plans for the circuits are available online for free to anyone who wants to use and
create their own board based on the schematics, as long as they share what they
create. This allows for considerable customizability in projects; till date, users have
built Arduinos of different sizes, shapes, and power levels to control their projects.
Arduino is composed of two major parts:

1. The Arduino board, which is a piece of hardware you work on when you build
your objects.

2. The Arduino IDE, which is a piece of software you run on your computer. You
use the IDE to create a sketch (a small computer program) that you upload to the
Arduino board.

Arduino is different from other platforms in the market because of the following
features:

© Springer Nature Singapore Pte Ltd. 2018
T. Pan and Y. Zhu, Designing Embedded Systems with Arduino,
DOI 10.1007/978-981-10-4418-2_1

3

1. It is a multiplatform environment; it can run on Windows, Macintosh, and
Linux.

2. It is based on a processing programming IDE, which is an easy-to-use devel-
opment environment used by artists and designers.

3. You program it via a USB cable, not a serial port. This feature is useful, because
many modern computers do not have serial ports.

4. It is open-source hardware and software—if you wish, you can download the
circuit diagram, buy all the components, and make your own Arduino board,
without paying anything to the makers of Arduino.

5. The hardware is cheap.
6. There is an active community of users, so there are many people who can assist

you.
7. The Arduino project was developed in an educational environment, and is

therefore, great for newcomers to get things working quickly.

Owing to these special features, there are many potential applications:

1. Real-world monitoring

• Automated weather station
• Lightning detection
• Sun tracking for solar panels
• Background radiation monitor
• Automatic wildlife detector
• Home or business security system

2. Small-scale control

• Small robots
• Model rockets
• Model aircrafts
• Quadrotor UAVs
• Simple CNCs for small machine tools

3. Small-scale Automation

• Automated greenhouse
• Automated aquarium
• Laboratory sample shuttle
• Precision thermal chamber
• Automated electronic test system

4. Performance Art

• Dynamic lighting control
• Dynamic sound control
• Kinematic structures
• Audience responsive artwork

4 1 Getting Started with Arduino

www.ebook3000.com

http://www.ebook3000.org

1.2 Arduino Variants

Arduino is rapidly becoming one of the most popular microcontrollers used in
robotics. There are many different types of Arduino microcontrollers that differ not
only in design and features, but also in size and processing capabilities. However,
there are only two models that use completely different chips: the Standard and the
Mega. The Standard is the basic Arduino that uses the Atmega8/168/328 chip,
whereas the Mega is a different Arduino board with more I/O pins and uses the
beefier Atmega1280 chip.

The makers of Arduino also developed software that is compatible with all
Arduino microcontrollers. The software, also called “Arduino,” can be used to
program any of the Arduino microcontrollers by selecting them from a drop-down
menu. Being open source, and based on C, Arduino users are not necessarily
restricted to this software, and can use a variety of other software to program their
microcontrollers.

There are many additional manufacturers who use open-source schematics
provided by Arduino to make their own boards (either identical to the original, or
with variations to add to the functionality), e.g., DFRobot.

In this chapter, the Arduino Uno R3 and DFRobot Romeo BLE boards are
introduced.

1. Arduino Uno R3

The Arduino Uno is a microcontroller board based on the ATmega328. It has 14
digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs,
a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP header, and
a reset button. It contains everything needed to support the microcontroller; simply
connect it to a computer with a USB cable or power it with an AC-to-DC adapter or
battery to get started. Central to the Arduino interface board, shown in Fig. 1.1, is
an onboard microcontroller.

Specifications of the Arduino UNO R3 are as follows:

• Microcontroller: ATmega328
• Operating Voltage: 5 V
• Input Voltage (recommended): 7–12 V
• Input Voltage (limits): 6–20 V
• Digital I/O Pins: 14 (of which 6 provide PWM outputs)
• Analog Input Pins: 6
• DC Current per I/O Pin: 40 mA
• DC Current for 3.3 V Pin: 50 mA
• Flash Memory: 32 KB of which 0.5 KB is used by the bootloader
• SRAM: 2 KB (ATmega328)
• EEPROM: 1 KB (ATmega328)
• Clock Speed: 16 MHz (Fig. 1.2)

1.2 Arduino Variants 5

The Arduino Uno pinout is printed in the silkscreen in the top section. While this
pinout is a good start, it is not a comprehensive guide. At first, you mainly use the
pins in the female headers at the edge of the board (top and bottom in the photo), as
well as the USB, and maybe the power

Tx and Rx are serial UART pins used for RS-232 and USB communications
I2C is another serial communications method that uses a bidirectional data line
(SDA) and a clock line (SCL)
SPI is another serial communications method that uses one line for the master to
transmit (MOSI—Master Out Slave In), another for the master to receive (MISO),
and a third as a clock (SCK)
A/D, the Analog to Digital input, converts an analog voltage into a digital
representation
PWM (Pulse Width Modulator) is used to create a square wave with a specific duty
cycle (high time vs low time)
ICSP is the In Circuit Serial Programming—another way to program the processor
Vcc is the voltage supplied to the processor (+5VDC regulated from a higher input
voltage)
3.3VDC is a regulated voltage (from the higher input voltage) for peripherals
requiring that voltage—50 mA maximum

Voltage
In

Ground
Reset

3.3V Power

5V Power

Analog In

Digital I/O InDigital
Ground

Analog Reference

Serial Out (TX)

Serial In (RX)

Reset Button

In-circuit Serial
Programmer for
Atmega328

MISO VCC
SCK MOSI
/RESET GND

USB to
Computer

7-12V DC
Input

In-circuit Serial
Programmer for USB
interface

(I
2C

)S
CL

(I
2C

)S
DA

(S
PI

)S
CK

(S
PI

)M
IS

O
(S

PI
)M

OS
I

(S
PI

)S
S

In
te

rr
up

t
1

In
te

rr
up

t
0

(I2C)SCL
(I2C)SDA

Fig. 1.1 Arduino UNO interface board

6 1 Getting Started with Arduino

www.ebook3000.com

http://www.ebook3000.org

IOREF provides a voltage reference so shields can select the proper power source
AREF is a reference INPUT voltage used by the A/Ds
GND is the ground reference
RESET resets the processor (and some peripherals)

2. DFRobot RoMeo BLE

The DFRobot Romeo BLE All-in-one Microcontroller (ATMega 328) is an
all-in-one Arduino-compatible microcontroller specifically designed for robotic
applications. It benefits from the Arduino open-source platform; it is supported by
thousands of open-source codes, and can easily be expanded with your
Arduino-compatible shields.

This robot controller uses an Atmel ATmega328p as the main microcontroller. It
comes preprogrammed with an Arduino bootloader for compatibility with the
user-friendly Arduino Uno platform.

A secondary Texas Instruments CC2540 microcontroller handles the BLE
Bluetooth Low Energy communication services. It comes preprogrammed with a
firmware that supports transparent serial over Bluetooth and an AT command
interpreter. Both microcontrollers are full programmable.

The Romeo robot controller contains a built in L298 dual channel motor driver
chip. This motor driver can be used to drive two 5–23 V DC motors at up to 2
amps. Screw terminals are provided for connecting two motors and an external
motor power supply.

Fig. 1.2 Arduino Uno R3 pinout diagram

1.2 Arduino Variants 7

The Romeo BLE microcontroller board also has a large number of pin headers to
simplify connections to your robot project. A full set of 3-pin analog and digital
GPIO headers provide access to signal, voltage, and ground lines at each connec-
tion to simplify wiring arrangements. The digital GPIO headers can also be used to
drive servos and a screw terminal can provide an external servo power supply.
A full set of Arduino Uno compatible headers allow you to choose from a large
number of Arduino-compatible shields for expansion. A triplet of I2C connectors is
also provided.

Additional features include five optional user push buttons, a reset button, and a
number of LED status indicators to assist with diagnostics. The optional user
buttons are conveniently wired to a single analog input. They can be enabled or
disabled via a slider switch (Fig. 1.3).

Fig. 1.3 Romeo BLE interface board

8 1 Getting Started with Arduino

www.ebook3000.com

http://www.ebook3000.org

Specifications of the RoMeo BLE are as follows:

• Microcontroller: ATmega328P
• Bootloader: Arduino UNO
• Onboard BLE chip: TI CC2540
• 14 Digital I/O ports
• 6 PWM Outputs (Pin11, Pin10, Pin9, Pin6, Pin5, Pin3)
• 8 10-bit analog input ports
• 3 I2Cs
• Two way H-bridged motor driver with 2A maximum current
• 5 Buttons
• Power Supply Port: USB or DC2.1
• External Power Supply Range: 5–23 V
• DC output: 5 V/3.3 V
• Auto sensing/switching external power input
• Size: 94 mm � 80 mm

1.3 Install the Drivers

Before beginning your work, you must first download the development environ-
ment (the IDE) from here: www.arduino.cc/en/Main/Software.

1. Choose the right version for your operating system.
2. Download the file and double-click on it to open it; on Windows or Linux, this

creates a folder named Arduino-[version], such as arduino-1.0.
3. Drag the folder to wherever you want it: your desktop, your Program Files

folder (on Windows), etc. On the Mac, double-clicking it will open a disk image
with an Arduino application (drag it to your Applications folder).

4. Whenever you want to run the Arduino IDE, you will need to open up the
Arduino (Windows and Linux) or Applications folder (Mac), and double-click
the Arduino icon. Do not do this yet, though; there is one more step.

5. You must install the drivers that allow your computer to communicate with your
board through the USB port (Fig. 1.4).

1.2 Arduino Variants 9

http://www.arduino.cc/en/Main/Software

Plug the Arduino board into the computer; when the Found New Hardware
Wizard window comes up. The Found New Hardware Wizard will open up as
Windows will have detected that you have connected a new piece of hardware
(your DFRobot Remeo board) to your PC. Tell it NOT to connect to Windows
update (Select No, not at this time) and then click Next.

On the next page, select “Install from a list or specific location (Advanced)”
and click Next (Fig. 1.5).

Make sure that “Search for the best driver in these locations” is checked.
Uncheck “Search removable media.” Check “Include this location in the
search” and then click the Browse button. Browse to the location of the USB
drivers and then click Next (Fig. 1.6).

Fig. 1.4 The dialog box of “Found New Hardware Wizard”

10 1 Getting Started with Arduino

www.ebook3000.com

http://www.ebook3000.org

Fig. 1.5 Select “Install from a list or specific location (Advanced)”

Fig. 1.6 Select “Search for the best driver in these locations”

1.3 Install the Drivers 11

The wizard will now search for a suitable driver and then inform you that a
“USB Serial Convertor” has been found and that the hardware wizard is now
complete. Click “Finish.”

Now, you are ready to upload your first Sketch (Fig. 1.7).

1.4 Arduino IDE

The IDE is split up into the Toolbar across the top, the code, or Sketch Window in
the center and the Serial Output window at the bottom (Fig. 1.8).

The Toolbar consists of 5 buttons, underneath the Toolbar is a tab, or a set of
tabs, with the filename of the code within the tab. There is also one more button on
the far right hand side. Along the top is the file menu with drop-down menus with
the headers File, Edit, Sketch, Tools, and Help. The buttons in the Toolbar provide
convenient access to the most commonly used functions within this file menu.

The Toolbar buttons are listed above. The functions of each button are as follows
(Table 1.1):

Fig. 1.7 Completing the found new hardware wizard

12 1 Getting Started with Arduino

www.ebook3000.com

http://www.ebook3000.org

Table 1.1 Toolbar buttons list

Verify/compile Checks the code for errors

New Creates a new blank Sketch

Open Shows a list of Sketches in your sketchbook

Save Saves the current Sketch

Upload Uploads the current Sketch to Arduino

Serial Monitor Displays serial data being sent from Arduino

Verify

Upload

New

Open

Save

Code goes here

Board Serial Port

Serial Monitor

Fig. 1.8 Arduino IDE

1.4 Arduino IDE 13

Fig. 1.9 “Blink” example in Arduino IDE

Fig. 1.10 Board type selection in Arduino IDE

14 1 Getting Started with Arduino

www.ebook3000.com

http://www.ebook3000.org

Now, you are ready to test your first program with your Arduino board.

1. Open the Blink example sketch by going to: File ! Examples ! 01.
Basics ! Blink (Fig. 1.9).

2. Select the type of Arduino board you are using: Tools ! Board ! your board
type (Fig. 1.10).

3. Select the serial port that your Arduino is attached to: Tools ! Port ! COMxx
(Fig. 1.11).

4. If you are not sure which serial device is your Arduino, have a look at the
available ports, then unplug your Arduino and look again. The one that dis-
appeared is your Arduino.

5. With your Arduino board connected, and the Blink sketch open, press the
“Upload” button (Fig. 1.12).

Fig. 1.11 Serial port selection in Arduino IDE

1.4 Arduino IDE 15

6. After a second, you should see some LEDs flashing on your Arduino, followed
by the message “Done Uploading” in the status bar of the Blink sketch.

7. If everything worked, the onboard LED on your Arduino should now be
blinking! You just programmed your first Arduino!

Fig. 1.12 Default codes of
“Blink”

16 1 Getting Started with Arduino

www.ebook3000.com

http://www.ebook3000.org

Chapter 2
The Basic Functions

2.1 Overview

The code you learn to write for your Arduino is very similar to the code you write in
any other computer language. This implies that all the basic concepts remain the
same and it is simply a matter of learning a new dialect. In the case of Arduino, the
language is based on the C/C++ and can even be extended through C++ libraries.
The IDE enables you to write a computer program, which is a set of step-by-step
instructions that you then upload to the Arduino. Your Arduino will then carry out
those instructions and interact with whatever you have connected to it. The Arduino
includes many basic embedded functions, such as the functions for reading and
writing to digital and analog input and output pins, interrupt functions, mathe-
matical functions, and serial communication functions. Arduino functions are a
convenient way to write code such as those for device drivers or commonly used
utility functions. Furthermore, Arduino also consists of many built-in-examples.
You just need to click on the toolbar menu: File ! Examples to access them.
These simple programs demonstrate all basic the Arduino commands. They span
from a Sketch Bare Minimum, Digital, and Analog IO, to the use of Sensors and
Displays.

For more information on the Arduino language, see the Language Reference
section of the Arduino web site, http://arduino.cc/en/Reference/HomePage. All
Arduino instructions are online.

2.2 Structure

The basic function of the Arduino programming language is fairly simple and runs
in at least two parts. These two required parts, or functions, enclose blocks of
statements.

© Springer Nature Singapore Pte Ltd. 2018
T. Pan and Y. Zhu, Designing Embedded Systems with Arduino,
DOI 10.1007/978-981-10-4418-2_2

17

http://dx.doi.org/10.1007/978-981-10-4418-2_4

void setup() {
//code goes here
}
void loop() {
//code goes here
}

setup(): A function present in every Arduino sketch. Run once before the loop()
function. The setup() function should follow the declaration of any variables at the
very beginning of the program. It is the first function to run in the program, is run
only once, and is used to set pinMode or initialize serial communication.

loop(): A function present in every single Arduino sketch. This code happens
over and over again—reading inputs, triggering outputs, etc. The loop() is where
(almost) everything happens and where the bulk of the work is performed.

2.3 Digital I/O Functions

Digital I/O will allow us to read the state of an input pin as well as produce a logical
high or low at an output pin. If every potential external connection between a
microcontroller and the outside world had a dedicated wire, the pin count for
controller packages would be high. The ATmega 328P in the Romeo board has four
8-bit ports plus connections for power, ground and the like, yet it only has 28
physical pins. In general, each bit of a port can be programmed independently;
some for input, some for output, or all of them for the same purpose.

1. pinMode(pin, mode)

Before we use a port, we need to inform the controller about how it should operate.
In the Arduino system, this is usually done via a call to the library function
pinMode(). Here is a description of the function from online references:

18 2 The Basic Functions

www.ebook3000.com

http://www.ebook3000.org

pinMode(pin,mode)
Parameters

pin: the number of the pin whose mode you
wish to set

mode: INPUT, OUTPUT, or INPUT_PULLUP
Returns

None

It should be noted that the pin could be a number or variable with a value
ranging from 0 to 13 or A0 to A5 (when using the Analog Input pins for digital I/O)
corresponding to the pin number printed on the interface board. Furthermore,
Digital pins default as input, so you really only need to set them to OUTPUT in
pinMode().

2. digitalWrite(pin, value)

Once a pin is established as an OUTPUT, it is then possible to turn that pin on or off
using the digitalWrite() function. Its syntax is as follows:

digitalWrite(pin,value)
Parameters

Pin: the number of the pin you want to write
value: HIGH or LOW

Returns
None

2.3 Digital I/O Functions 19

3. digitalRead(pin)

With a digital pin configured as an INPUT, we can read the state of that pin using
the digitalRead() function. Its syntax is as follows:

digitalRead(pin)
Parameters

pin: the number of the pin you want to read (int)
Returns

HIGH or LOW

The pin can be specified as either a variable or constant (0–13) and the result is
either HIGH or LOW.

4. Example

The following example reads a pushbutton connected to a digital input and turns on
an LED connected to a digital output when the button is pressed. The circuit is
shown in Fig. 2.1

Fig. 2.1 Circuit layout for digital signal read and write

20 2 The Basic Functions

www.ebook3000.com

http://www.ebook3000.org

1

2

3

4

5

6

7

8

9

10

11

12

13

int led = 13; // connect LED to pin 13

int pin = 7; // connect pushbutton to pin 7

int value = 0; // variable to store the read value

void setup() {
pinMode(led, OUTPUT); // set pin 13 as output

pinMode(pin, INPUT); // set pin 7 as input

}
void loop() {
value = digitalRead(pin); // set value equal to the pin 7 input

digitalWrite(led, value); // set LED to the pushbutton value

}

2.4 Analog I/O Functions

1. analogReference(type)

TheArduino interface board, however, has a convenient pin calledAREF located near
digital pin 13 alongwith a function called analogReference() to provide the Arduino’s
ADC a reference voltage other than +5 V. This function will effectively increase the
resolution available to analog inputs that operate at some other range of lower voltages
below +5 V. The syntax for this function is as follows.

analogReference(type)
Parameters

type: which type of reference to use (DEFAULT,
INTERNAL, INTERNAL1V1, INTERNAL2V56, or
EXTERNAL)

Returns
None

DEFAULT: the default analog reference of 5 volts (on 5 V Arduino boards) or
3.3 volts (on 3.3 V Arduino boards)

INTERNAL: a built-in reference, equal to 1.1 volts on the ATmega168 or
ATmega328 and 2.56 volts on the ATmega8 (not available on the
Arduino Mega)

INTERNAL1V1: a built-in 1.1 V reference (Arduino Mega only)

2.3 Digital I/O Functions 21

INTERNAL2V56: a built-in 2.56 V reference (Arduino Mega only)
EXTERNAL: the voltage applied to the AREF pin (0–5 V only) is used as the
reference.

The function is only called once in a sketch, but must be declared before
analogRead() is used for the first time, making it a suitable candidate for placing in
the setup() function. The type specified relates to the kind of reference voltage that
we want to use.

2. analogRead(pin)

Reads the value from a specified analog pin with a 10-bit resolution. This function
works with the above analogy only for pins (0–5). The analogRead() command will
return a number including or between 0 and 1023.

analogRead(pin)
Parameters

pin: the number of the analog input pin to read from
(0-5)

Returns
int(0 to 1023)

It takes about 100 ls (0.0001 s) to read an analog input, so the maximum
reading rate is about 10,000 times a second. Furthermore, analogy pins unlike
digital ones, do not need to be first declared as INPUT nor OUTPUT.

3. analogWrite(pin,value)

The Arduino also has the capability to output a Digital signal that acts as an Analog
signal, this signal is called pulse width modulation (PWM). Digital Pins # 3, # 5, #
6, # 9, # 10, and # 11 have PWM capabilities. To output a PWM signal use the
command: analogWrite().

22 2 The Basic Functions

www.ebook3000.com

http://www.ebook3000.org

analogWrite(pin,value)
Parameters

pin: the number of the pin you want to write
value: the duty cycle between 0 (always off, 0%) and

255 (always on, 100%)
Returns

None

You do not need to call pinMode() to set the pin as an output before calling
analogWrite().

4. Example

The following example reads an analog value from an analogy input pin, converts
the value by dividing by 4, and outputs a PWM signal on a PWM pin (Fig. 2.2).

Fig. 2.2 Circuit layout for analogy signal read and write

2.4 Analog I/O Functions 23

1

2

3

4

5

6

7

8

9

10

11

12

int led = 13; // connect LED to pin 13

int pin = 0; // potentiometer on analogy pin 0

int value = 0; // variable to store the read value

void setup() {
}
void loop() {
value = analogRead(pin); // set value equal to the pin 0’s input

value /= 4; // converts 0-1023 to 0-255

analogWrite(led, value); // output PWM signal to LED

}

2.5 Advanced I/O Functions

1. shiftOut(dataPin,clockPin,bitOrder,value)

Shifts out a byte of data one bit at a time. Starts from either the most (i.e., the
leftmost) or least (rightmost) significant bit. Each bit is written in turn to a data pin,
after which a clock pin is pulsed (taken high, then low) to indicate that the bit is
available. The syntax is as follows.

shiftOut(dataPin,clockPin,bitOrder,value)
Parameters

dataPin: the pin on which to output each bit (int)
clockPin: the pin to toggle once the dataPin has been

set to the correct value (int)
bitOrder: which order to shift out the bits; either

MSBFIRST or LSBFIRST. (Most Significant Bit
First, or, Least Significant Bit First)

value: the data to shift out (byte)
Returns

None

24 2 The Basic Functions

www.ebook3000.com

http://www.ebook3000.org

This is known as synchronous serial protocol and is a common way that
microcontrollers communicate with sensors, and with other microcontrollers. The
two devices always stay synchronized, and communicate at close to maximum
speeds, since they both share the same clock line. Often referred to as SPI (syn-
chronous protocol interface) in hardware documentation.

2. pulseIn(pin,value,timeout)

Reads a pulse (either HIGH or LOW) on a pin. For example, if the value is HIGH,
pulseIn() waits for the pin to go HIGH, starts timing, then waits for the pin to go
LOW and stops timing. Returns the length of the pulse in microseconds. Gives up
and returns 0 if no pulse starts within a specified time out. The timing of this
function has been determined empirically and will probably show errors for longer
pulses. Works on pulses from 10 ls to 3 min in length. The syntax is as follows.

pulseIn(pin,value,timeout)
Parameters

pin: the number of the pin on which you want to read
the pulse (int)

value: type type of pulse to read: either HIGH or LOW
(int)

timeout (optional): the number of microseconds to wait
for the pulse to start; default is one second
(unsigned long)

Returns
the length of the pulse (in microseconds) or 0 if no

pulse started before the timeout

2.5 Advanced I/O Functions 25

Please go to Chap. 4, and refer the example for pulseIn().

3. Example

In this example, we will be using the 74HC595 8-bit shift register, which you can
pick up from most places at a very reasonable price. This shift register will provide
us with a total of eight extra pins to use. The layout is as follows (Fig. 2.3).

In this example, we increment the currentLED variable and pass it to the bitSet
method. The bit is set to the left of the previous one to 1 every time, thereby
informing the shift register to activate the output to the left of the previous one. As a
result, the LEDs light up one by one.

Fig. 2.3 Circuit layout for the shift register

26 2 The Basic Functions

www.ebook3000.com

http://www.ebook3000.org

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

int latchPin = 12;
int clockPin = 11;
int dataPin = 13;
byte leds = 0;
int currentLED = 0;
void setup() {
pinMode(latchPin, OUTPUT);
pinMode(dataPin, OUTPUT);
pinMode(clockPin, OUTPUT);
leds = 0;

}
void loop() {
leds = 0;
if (currentLED == 7) {
currentLED = 0;

}
17

18

19

20

21

22

23

24

25

else {
currentLED++;

}
bitSet(leds, currentLED);
digitalWrite(latchPin, LOW);
shiftOut(dataPin, clockPin, LSBFIRST, leds);
digitalWrite(latchPin, HIGH);
delay(250);

}

2.6 Timer Functions

1. delay(ms)

Pauses the program for the amount of time (in milliseconds) specified as the
parameter. The syntax for the function is as follows.

2.5 Advanced I/O Functions 27

delay(ms)
Parameters

ms: the number of milliseconds to pause (unsigned
long)

Returns
None

Time is specified in milliseconds, where a delay of 1000 ms equals 1 s, 2000 ms
equals 2 s, and so on. This value can be expressed as a constant or variable in the
unsigned long data type.

The use of delay() in a sketch has significant drawbacks. No other reading of
sensors, mathematical calculations, or pin manipulations can function during the
delay function, so in effect, it brings most other activities to a halt.

2. delayMicroseconds(us)

Rather than a long delay, the delayMicroseconds() function is used to delay for a
much shorter time. The syntax is as follows:

delayMicroseconds(us)
Parameters

us: the number of microseconds to pause (unsigned int)
Returns

None

Unlike delay(), time here is specified in microseconds, or millionths of a second,
where a time period of 1000 ls would equal 1 ms or 0.001 of a second, 10,000
would equal 10 ms or 0.01 of a second, and so on.

3. millis()

Inside the microcontroller on the Arduino board there are three onboard hardware
timers that work in the background to handle repetitive tasks like incrementing
counters or keeping track of program operations. Each of these timers is already
being used in some capacity, usually for handling hardware PWM and system

28 2 The Basic Functions

www.ebook3000.com

http://www.ebook3000.org

timing. The millis() function makes use of one of these hardware timers to maintain
a running counter of how many milliseconds the microcontroller has been running
since the last time it was turned on or reset. Because this function uses a hardware
timer, it performs its counting in the background with no impact on the flow or
resources of our source code.

millis()
Parameters

None
Returns

Number of milliseconds since the program started
(unsigned long)

By calling the function, it returns a value in milliseconds that can be used like
any other variable as part of a conditional test, to perform arithmetic operations, or
to be assigned to other variables. Because this function returns a value in an
unsigned long data type, it will overflow, or reset to 0, in about 50 days. It can also
result in undesired problems if an expression is performed on it using other data
types like integers.

4. micros()

Where the millis() function returns the current operating time in milliseconds, the
micros() function does the same, but in microseconds. This could be used in exactly
the same manner as millis(), just on a much smaller scale, effectively returning the
value 1000 for every 1 that millis() would return.

micros()
Parameters

None
Returns

Number of microseconds since the program started
(unsigned long)

Unlike millis(), micros() will overflow, or reset back to 0, every 70 min.

2.6 Timer Functions 29

2.7 Communication Functions

1. Serial.begin(speed)

Opens the serial port and sets the baud rate for serial data transmission. The typical
baud rate for communicating with the computer is 9600, although other speeds are
also supported, i.e., 300, 600, 1200, 2400, 4800, 9600, 14,400, 19,200, 28,800,
38,400, 57,600, or 115,200.

Serial.begin(speed)
Parameters

speed: set the baud rate
Returns

None

It should be noted that the digital pins 0 (RX) and 1 (TX) cannot be used at the
same time when using serial communication.

2. Serial.available()

Receives the number of bytes (characters) available for reading from the serial port.
This is data that has already arrived and been stored in the serial receive buffer.

Serial.available()
Parameters

None
Returns

the number of bytes available to read

Remember, the hardware serial port on the Arduino microcontroller has a buffer
that can store up to 128 bytes of information so that it is not lost. If no data is
waiting for us, it will return 0. On the other hand, if any data is available, the
function will return a value other than 0, which will signify true. We can proceed to
read from the buffer.

30 2 The Basic Functions

www.ebook3000.com

http://www.ebook3000.org

Serial.available() inherits from the Stream utility class.

3. Serial.read()

Reads incoming serial data.

Serial.read()
Parameters

None
Returns

the first byte of incoming serial data available (or
-1 if no data is available) -int

This function simply returns the first byte of information available in the serial
buffer. Because of the way our serial communications are structured, each character
that we send to the Arduino through the Serial Monitor will be converted to that
character’s ASCII character value. For example, if we were to send the Arduino the
number 1, instead of receiving the numerical integer 1, the Arduino will actually
receive the numerical value 49 corresponding to that character’s ASCII character
code.

Serial.read() inherits from the Stream utility class

4. Serial.print(val)

Prints data to the serial port as human-readable ASCII text.

Serial.print(val)
Parameters

val: the value to print - any data type
Returns

None

This command can take many forms. Numbers are printed using an ASCII
character for each digit. Floats are similarly printed as ASCII digits, defaulting to
two decimal places. Bytes are sent as a single character.

2.7 Communication Functions 31

5. Serial.printIn(val,format)

Prints data to the serial port as human-readable ASCII text followed by a carriage
return character (ASCII 13, or ‘\r’) and a newline character (ASCII 10, or ‘\n’).

Serial.printIn(val,format)
Parameters

val: the value to print - any data type
format: specifies the number base (for integral data

types) or number of decimal places (for
floating point types)

Returns
the number of bytes available to read

The println() function is a little easier to use and helps to clean up the output that
we receive from the Serial Monitor. You will often see both the print() and println()
functions used in conjunction to format the output, making the text easier to read.

6. Example

In this example, two Arduinos are used. The Arduino Uno on the left is our sender
and the Arduino Mega on the right is our receiver. We use the Mega to make it
easier to display debug information on the computer. The Arduinos are connected
together using digitals 0 and 1 (RX and TX) on the Uno and digitals 16 and 17
(RX2 and TX2) on the Mega. The receiver on one needs to be connected to the
transmit of the other, and vice versa. The Arduinos also need to have a common
reference between the two. This is ensured by running a ground wire (Fig. 2.4).

Fig. 2.4 The schematic of serial communication

32 2 The Basic Functions

www.ebook3000.com

http://www.ebook3000.org

The first step is to package the string to be communicated. In general, a packet is
comprised of some start byte, a payload (the data you wish to send), and a
checksum to validate your data. Here, the packet is: [0 � 53] + [counter
value] + [static value] + [checksum].

Sender Code
The simple sender coder below increments our counter and sends our packet.

1

2

3

4

5

6

7

8

9

// Sender Information

unsigned char START_BYTE = 0x53; // ASCII "S"

unsigned char counterValue = 0;
unsigned char staticValue = 5;
unsigned char checksum = 0;

void setup() {
Serial.begin(9600);

}
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

void loop() {
// Increment our counter

counterValue = counterValue + 1;
// Check for overflow, and loop

if (counterValue > 250)
counterValue = 0;

// Calculate our checksum

checksum = counterValue + staticValue;
// Important: Serial.write must be used, not print

Serial.write(START_BYTE);
Serial.write(counterValue);
Serial.write(staticValue);
Serial.write(checksum);
// We only need to send a packet every 250ms.

// If your code starts to get complicated,

// consider using a timer instead of a delay

delay(250);
}

Receiver Code
For the receiver code, we constantly go through the main loop and check

whether we have information ready to be read. Once, we receive our first byte we
compare it to our expected start byte. If this passes, then we set a flag and wait for
the rest of the packet to roll in. Once, we have the expected packet then we read the
values in it, calculate our checksum, and then print out the result on our terminal.

2.7 Communication Functions 33

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

// Receiver Information

unsigned char START_BYTE = 0x53; // ASCII "S"

unsigned char counterValue = 0;
unsigned char staticValue = 0;
unsigned char checksum = 0;
boolean syncByteFound = 0; // Sync Byte flag

void setup() {
Serial.begin(9600);
Serial2.begin(9600);

}

void loop() {
unsigned char rxByte = 0;
unsigned char calculatedChecksum = 0;
// Check to see if there's something to read

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

if (Serial2.available() > 0) {
// If we're waiting for a new packet, check for the sync byte

if (syncByteFound == 0) {
rxByte = Serial2.read();
if (rxByte == 0x53)
syncByteFound = 1;

}
// If we've found our sync byte, check for expected number of

bytes

if (Serial2.available() > 2) {
counterValue = Serial2.read();
staticValue = Serial2.read();
checksum = Serial2.read();
calculatedChecksum = counterValue + staticValue;
// Print out our serial information to debug

Serial.print("[");
Serial.print("S");
Serial.print("]");
Serial.print("[");
Serial.print(counterValue);
Serial.print("]");
Serial.print("[");
Serial.print(staticValue);
Serial.print("]");
Serial.print("[");

34 2 The Basic Functions

www.ebook3000.com

http://www.ebook3000.org

2.8 Interrupt Functions

1. attachInterrupt(digitalPinToInterrupt(pin),ISR,mode)

The attachInterrupt() function enables hardware interrupts and links a hardware pin
to an ISR to be called when the interrupt is triggered. This function also specifies the
type of state change that will trigger the interrupt. Its syntax is as follows:

42

43

44

45

46

47

48

49

50

51

52

Serial.print(checksum);
Serial.print("]");
if (calculatedChecksum == checksum)
Serial.println("[Checksum Passed]");

else
Serial.println("[Checksum FAILED]");

syncByteFound = 0;
}

}
}

attachInterrupt(digitalPinToInterrupt(pin),ISR,mode)

Parameters

interrupt: the number of the interrupt (int)

pin: the pin number

ISR: the interrupt service routine (ISR) to call when the

interrupt occurs; this function must take no

parameters and return nothing. This function is

sometimes referred to as an interrupt service routine.

mode: defines when the interrupt should be triggered. Four

constants are predefined as valid values:

LOW to trigger the interrupt whenever the pin is low,

CHANGE to trigger the interrupt whenever the pin changes

value

RISING to trigger when the pin goes from low to high,

FALLING for when the pin goes from high to low.

Returns

None

2.8 Interrupt Functions 35

Normally, you should use digitalPinToInterrupt(pin), rather than place an
interrupt number directly into your sketch. The specific pins with interrupts, and
their mapping to interrupt numbers vary for each type of board. On the DFrobot
Romeo board, there are two possible hardware interrupts, 0 (for digital pin 2) and 1
(for digital pin 3).

Four possible modes are shown in Fig. 2.3, which include LOW, CHANGE,
RISING, and FALLING (Fig. 2.5).

2. detachInterrupt(interrupt)

In some cases, we might need to change the mode of an enabled interrupt. For
example, we may change the mode from RISING to FALLING. For this, we need
to first stop the interrupt by using the detachInterrupt() function. Its syntax is as
follows:

detachInterrupt(interrupt)

Parameters

interrupt: the number of the interrupt to disable

Returns

None

0V

5V

0V

5V

0V

5V

0V

5V

LOW CHANGE

RISING FALLING

Fig. 2.5 State changes

36 2 The Basic Functions

www.ebook3000.com

http://www.ebook3000.org

With only one parameter to determine which interrupt we are disabling, this
parameter is specified as either 0 or 1. Once the interrupt has been disabled, we can
then reconfigure it using a different mode in the attachInterrupt() function.

3. interrupts()

All interrupts in Arduino can be enabled by the function interrupts(). The syntax is
as follows:

Interrupts()

Parameters

None

Returns

None

Interrupts allow certain important tasks to run in the background and are enabled
by default. Some functions will not work while interrupts are disabled, and
incoming communication may be ignored. Interrupts can slightly disrupt the timing
of a code, however, and may be disabled for particularly critical sections of code.

4. noInterrupts()

To deactivate all interrupts, we can use the function noInterrupts(). The syntax is as
follows.

noInterrupts()

Parameters

None

Returns

None

5. Example

In this example, we blink the built-in LED every 500 ms, during which time both
interrupt pins are monitored. When the button on the interrupt 0 is pressed, the
value for micros() is displayed on the Serial Monitor, and when the button on the
interrupt 1 is pressed, the value for millis() is displayed (Fig. 2.6).

2.8 Interrupt Functions 37

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

#define LED 13

void setup() {
Serial.begin(9600);
pinMode(LED, OUTPUT);
attachInterrupt(0, displayMicros, RISING);
attachInterrupt(1, displayMillis, RISING);

}
void loop() {
digitalWrite(LED, HIGH);
delay(500);
digitalWrite(LED, LOW);
delay(500);

}
void displayMicros() {
Serial.write("micros()=");
Serial.println(micros());

}
void displayMillis() {
Serial.write("millis()=");
Serial.println(millis());

}

Fig. 2.6 The circuit for interrupts and time functions

38 2 The Basic Functions

www.ebook3000.com

http://www.ebook3000.org

2.9 Math Functions

The Arduino language supports many math functions which make it possible to
perform sophisticated data processing in a data logger sketch that would otherwise
have to be performed offline in some other software application.

1. min(x,y)

Calculates the minimum of two numbers

min(x,y)

Parameters

x: the first number, any data type

y: the second number, any data type

Returns

The smaller of the two numbers

2. max(x,y)

Calculates the maximum of two numbers.

max(x,y)

Parameters

x: the first number, any data type

y: the second number, any data type

Returns

The larger of the two numbers

2.9 Math Functions 39

3. abs(x)

Computes the absolute value of a number

abs(x)

Parameters

x: the number

Returns

x: if x is greater than or equal to 0.

-x: if x is less than 0.

Because of the way the abs() function is implemented, avoid using other func-
tions inside the brackets, it may lead to incorrect results.

4. Trigonometric functions

The trigonometric functions include sin(rad), cos(rad), and tan(rad). All trigono-
metric functions accept as input and return as output angles in radians, not
degrees:radians ¼ degrees� p=180 and vice versa to convert radians back to
degrees.

5. pow(base,exponent)

Calculates the value of a number raised to a power. pow() can be used to raise a
number to a fractional power. This is useful for generating exponential mapping of
values or curves.

pow(base,exponent)

Parameters

base: the number (float)

exponent: the power to which the base is raised (float)

Returns

The result of the exponentiation (double)

40 2 The Basic Functions

www.ebook3000.com

http://www.ebook3000.org

6. sqrt(x)

Calculates the square root of a number.

sqrt(x)

Parameters

x: the number, any data type

Returns

double, the number's square root

7. constrain(x,a,b)

Constrains a number to be within a range.

constrain(x,a,b)

Parameters

x: the number to constrain, all data types

a: the lower end of the range, all data types

b: the upper end of the range, all data types

Returns

x: if x is between a and b

a: if x is less than a

b: if x is greater than b

2.9 Math Functions 41

8. map(value,fromLow,fromHigh,toLow,toHigh)

Remaps a number from one range to another. That is, a value of fromLow would be
mapped to toLow, a value of fromHigh to toHigh, values in-between to values
in-between, etc.

map(value,fromLow,fromHigh,toLow,toHigh)

Parameters

value: the number to map

fromLow: the lower bound of the value's current range

fromHigh: the upper bound of the value's current range

toLow: the lower bound of the value's target range

toHigh: the upper bound of the value's target range

Returns

The mapped value

9. random(min,max)

The random() function returns a semi-random number up to the parameters spec-
ified. If no parameters are specified, it will return a value in the signed long data
type, with a range of −2,147,483,648–2,147,483,647. Its syntax is as follows:

random(min,max)

Parameters

min: lower bound of the random value, inclusive (optional)

max: upper bound of the random value, exclusive

Returns

a random number between min and max

The random() function will assume a value of 0 as its minimum value.

42 2 The Basic Functions

www.ebook3000.com

http://www.ebook3000.org

10. Example

In this example, we create a sine wave and configure the brightness of the LED to
follow the path of the wave. This is what makes the light pulsate in the form of a
sine wave instead of just illuminating up to full brightness and back down again
(Fig. 2.7).

The codes are as follows (Fig. 2.7)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

int ledPin = 11;
float sinVal;
int ledVal;
void setup() {
pinMode(ledPin, OUTPUT);

}
void loop() {

for (int x = 0; x < 180; x++) {
// convert degrees to radians

// then obtain sin value

sinVal = (sin(x * (3.1412 / 180)));
ledVal = int(sinVal * 255);
analogWrite(ledPin, ledVal);
delay(25);

}
}

Fig. 2.7 The circuit for mathematical example

2.9 Math Functions 43

2.10 Programming Language Reference

The Arduino programming language has a number of constructs. Here, we just
provide the basics that have been used in this book (see Table 2.1). You can explore
the complete language at https://www.arduino.cc/en/Reference.

Table 2.1 Programming language reference

Construct Description

int Integer values, such as 123

float Decimal values, such as 1.15

char[] String values, such as “Arduino”

HIGH Digital pin with current

LOW Digital pin with no current

INPUT Pin can only be read

OUTPUT Pin can only be set

A0–A7 Constants for analog pins; varies by board

0–13 Value for digital pins; varies by board

analogRead() Returns analog pin value (0–1023)

analogWrite() Sets analog pin value

digitalRead() Returns digital pin value (HIGH or LOW)

digitalWrite() Sets digital pin value (HIGH or LOW)

Serial.begin() Initializes serial monitor

Serial.print() Logs message on serial monitor

Serial.println() Logs message on serial monitor with new line

delay(ms) Adds a wait in processing

setup() Standard Arduino function called once

loop() Standard Arduino function called repeatedly

if Checks for a true/false condition

if … else Checks for a true/false condition; if false goes to else

// Single-line comment

/* */ Multiline comment

#define Defines a constant

#include Includes an external library

44 2 The Basic Functions

www.ebook3000.com

https://www.arduino.cc/en/Reference
http://www.ebook3000.org

Chapter 3
Using Sensors with the Arduino

3.1 Introduction

The definition of a sensor is “a device that senses a variation in input energy to
produce a variation in another or the same form of energy.” In general, the sensing
principles are physical or chemical in nature and they can be grouped according to
the form of energy in which the signals are received and generated. There are six
types of signals on the basis of the energy generated or received and they are
mechanical, thermal, electrical, magnetic, radiant, and chemical. Here, we focus on
sensors that are readily available and offer the most versatility for the price.

3.2 Light Sensitive Sensors

3.2.1 Introduction

Light sensitive sensors are electromagnetic radiation detectors that function in the
ultraviolet to far infrared spectral range. The electric signal of a light sensor can be
produced by either a quantum or thermal response from a sensing material when
photons are absorbed by such material. Therefore, light sensors can be divided into
two major groups, quantum and thermal. Light sensors rely on the interaction of
individual photons with a crystalline lattice of semiconductor materials. Their
operations are based on the photo-effect, which requires, at the least, the energy of a
single photon concentrated into localized bundles under certain circumstances. The
energy of a single photon is given by

E ¼ hv ð3:1Þ

© Springer Nature Singapore Pte Ltd. 2018
T. Pan and Y. Zhu, Designing Embedded Systems with Arduino,
DOI 10.1007/978-981-10-4418-2_3

45

where v is the frequency of light, and h is Planck’s constant h ¼ 6:626� 10�34 JSð Þ.
When a photon strikes a conductor, it may result in the generation of a free electron.
The photoelectric effect is shown as

hv ¼ /þKm ð3:2Þ

where / is the work function of photon energy E, which is used to detach the
electron from the surface. Km is the maximum kinetic energy of the electron upon it
exiting the surface. The electron becomes mobile when the photon transfers its high
energy to an electron. Such a response results in an electric current.

3.2.2 Photodiodes

A photodiode is a reverse-biased semiconducting optical sensor that is biased
against its easy flow direction so that the current is very low. Such a device has a
band structure (such as a P-N junction) in which the permitted energies in the
structure change. In a photodiode, an electron is freed when a photon is absorbed, it
may pass over the energy barrier if it possesses enough energy. In this respect, the
photodiode only produces a current if the absorbed photon has more energy than
that needed to traverse the P-N junction. The photodiode is said to have a cutoff
wavelength because the lesser the wavelength of light responses the greater the
energy. Therefore, a photodiode produces detectable currents for photons with
wavelength less than the cutoff, while a current is not produced if the wavelengths
of the photons are greater than the cutoff.

The schematic of a photodiode is shown in Fig. 3.1. The voltage of the PIN port
changes when Q1 absorbs photons with wavelengths greater than the cutoff. Else,
Q1 is not available for the current conduction.

Vcc

R1

Q1

PIN

Fig. 3.1 Schematic of a
photodiode

46 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

3.2.3 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• DFR0026 (analog ambient light sensor) � 1.
• LED � 1.
• Resistor (220 X) � 1.
• Jumper wires � n.

2. Hardware Setting

DFR0026 has three pins: VCC, Output, and GND. The VCC should be con-
nected to 5 V and the GND to a common ground with your Arduino. The Output
pin of DFR0026 should be plugged into a defined pin on the DFRobot UNO R3
board (here, analog input PIN 0) (Fig. 3.2).

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

int LED = 13; //define LED digital pin 13

int LIGHT = 0; //define light analog pin 0

int val = 0; //define the voltage value

void setup() {
pinMode(LED, OUTPUT); //Configure LED as output mode

Serial.begin(9600); //Configure baud rate 9600

}
void loop() {
val = analogRead(LIGHT); // Read voltage value (0 – 1023)

Serial.println(val); // read voltage value from serial monitor

if (val < 700) { // If lower than 700, turn off LED

digitalWrite(LED, LOW);
}
else { // Otherwise turn on LED

digitalWrite(LED, HIGH);
16

17

18

}
delay(10); // delay for 10ms

}

4. Results

After uploading the code, you can shine a flashlight on the photodiode to alter
the light levels in the environment. When it is dark, the LED should light up. When
it is bright, the LED should turn off.

3.2 Light Sensitive Sensors 47

Furthermore, you can open the serial monitor (Baudrate = 9600) and see what
outputs the photodiode provides. Then, use the number you receive as a comparison
number to alter the sensitivity of the circuit (Fig. 3.3).

Fig. 3.2 A diagram of the layout of the DFR0026 and UNO R3

Fig. 3.3 Log messages from Arduino using DFR0026

48 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

3.3 Temperature Sensors

3.3.1 Introduction

In many systems, temperature control is fundamental. There are a number of pas-
sive and active temperature sensors that can be used to measure system temperature,
including: thermocouple, resistive temperature detector, thermistor, and silicon
temperature sensors. These sensors provide temperature feedback to a system
controller to make decisions such as, over-temperature shutdown, turn-on/off
cooling fan, temperature compensation, or general purpose temperature monitoring.

There are many kinds of thermal management products, including Logic Output,
Voltage Output, and Serial Output Temperature Sensors. These products allow a
system designer to implement a device that best meets their application’s require-
ments. Key features include high accuracy, low power, extended temperature range,
and small packages.

3.3.2 Digital Temperature Sensor

3.3.2.1 Introduction

DS18B20 is a direct-to-digital temperature sensor. It has an operating temperature
range of −55 to +125 °C and is accurate up to ±0.5 °C over the range of
−10 to +85 °C. Further, it provides 9–12 bit Celsius temperature measurements and
has an alarm function with nonvolatile user programmable upper and lower trigger
points. DS18B20 communicates over a 1-Wire bus that by definition requires only
one data line (and ground) for communication with a central microprocessor. Each
DS18B20 has a unique 64-bit serial code, which allows multiple DS18B20s to
function on the same 1-Wire bus. Thus, it is simple to use one microprocessor to
control many DS18B20s distributed over a large area. Applications that can benefit
from this feature include HVAC environmental controls, temperature monitoring
systems inside buildings, equipment or machinery, and process monitoring and
control systems.

The block diagram of DS18B20 is shown in Fig. 3.4. The sensor can be powered
by an external supply on the VCC pin, or it can operate in “parasite power” mode,
which allows the DS18B20 to function without a local external supply. Parasite
power is very useful for applications that require remote temperature sensing or that
which are very space constrained. The advantage of the external power supply is
that the MOSFET pull-up is not required, and the 1-Wire bus is free to carry other
traffic during the temperature conversion time.

3.3 Temperature Sensors 49

The unique 64-bit code stored in the ROM is shown in Fig. 3.5. Where the least
significant 8 bits of the ROM code contain the DS18B20’s 1-Wire family code:
28 h. The next 48 bits contain a unique serial number. The most significant 8 bits
contain a cyclic redundancy check (CRC) byte that is calculated from the first 56
bits of the ROM code.

3.3.2.2 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• DFR0024 (DS18B20) � 1.
• DFR0032 (digital buzzer) � 1.
• Jumper wires � n.

2. Hardware Setting

DFR0024 (18B20) is used here to measure the environmental temperature. The
sensor has three pins: VCC, Output, and GND. The VCC should be connected to
5 V and the GND to a common ground with your Arduino. The Output pin of
DFR0024 should be plugged into a defined pin on the DFRobot UNO R3 board
(here, PIN 3).

Power
supply sense

64 bit Rom
and

1-Wire prot
Scratch Pad

Temperature sensor

Alarm High trigger register

Alarm Low trigger register

Configuration gegister

Memory
control logic DS18B20

VCC

GND

VCC

PIN

8 Bit CRC generator

Fig. 3.4 Block diagram of DS18B20

8-BIT CRC 48-BIT SERIAL NUMBER 8-BIT FAMILY CODE(28h)

MSB LSB MSB LSB MSB LSB

Fig. 3.5 Unique 64-bit code of DS18B20

50 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

DFR0032 has three pins: VCC, Output, and GND. The Output pin should be
plugged into a defined pin on the DFRobot UNO R3 board (here, PIN 4) (Fig. 3.6).

3. Sample Codes

Before we verify these codes with Arduino, the 1-wire library, i.e., “OneWire.h”,
should be downloaded first,

(http://www.pjrc.com/teensy/arduino_libraries/OneWire.zip). Then, import the
library in the Arduino IDE with the path as “Sketch ! Include Library ! Add.Zip
Library.”

Fig. 3.6 A diagram of the layout of the DFR0024, DFR0032 and UNO R3

3.3 Temperature Sensors 51

http://www.pjrc.com/teensy/arduino_libraries/OneWire.zip

1

2

3

4

5

6

7

8

9

10

11

12

13

14

#include <OneWire.h>

int ALARM = 4; //define Buzzer digital pin 4

int DS18S20 = 3; //DS18S20 Signal pin on digital 3

float tmprVal = 0; //define value

float sinVal;
int toneVal;
unsigned long tepTimer;
OneWire ds(DS18S20); // on digital pin 3

void setup(void) {
Serial.begin(9600); // configure baud rate to 9600 bps

pinMode(ALARM, OUTPUT); // configure pin of buzzer

}

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

void loop(void) {
tmprVal = getTemp();
if (tmprVal > 27) { //If temperature > 27, the buzzer starts to

make sound.

for (int x = 0; x < 180; x++) {
//Convert sin function to radian

sinVal = (sin(x * (3.1412 / 180)));
//Use sin function to generate frequency of sound

toneVal = 2000 + (int(sinVal * 1000));
//Configure the buzzer pin 4

tone(ALARM, toneVal);
delay(2);

}
}
else { // If the temperature <= 27, turn off the buzzer

noTone(ALARM); // Turn off the buzzer

}
if (millis() - tepTimer > 50) { // Every 500 ms, serial port

outputs temperature value

tepTimer = millis();
Serial.print("temperature: ");
Serial.print(tmprVal);
Serial.println("C");

}
}

52 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

//returns the temperature from one DS18S20 in DEG Celsius

float getTemp() {
byte data[12];
byte addr[8];
if (!ds.search(addr)) {
//no more sensors on chain, reset search

ds.reset_search();
return -1000;

}
if (OneWire::crc8(addr, 7) != addr[7]) {
Serial.println("CRC is not valid!");
return -1000;

}
if (addr[0] != 0x10 && addr[0] != 0x28) {
Serial.print("Device is not recognized");
return -1000;

}
ds.reset();

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

ds.select(addr);
ds.write(0x44, 1); // start conversion, with parasite power on

at the end

byte present = ds.reset();
ds.select(addr);
ds.write(0xBE); // Read Scratchpad

for (int i = 0; i < 9; i++) { // we need 9 bytes

data[i] = ds.read();
}
ds.reset_search();
byte MSB = data[1];
byte LSB = data[0];
float tempRead = ((MSB << 8) | LSB); //using two's compliment

float TemperatureSum = tempRead / 16;
return TemperatureSum;

}

4. Results

Read temperature values from the serial port. If you place your fingers on the
DFR0024 sensor, you will find that the temperature rises immediately. Your fingers
are transferring heat to the sensor (Fig. 3.7).

Once the temperature reaches 27 °C, the buzzer starts to sound. If the temper-
ature drops below 27 °C, the buzzer stops.

3.3 Temperature Sensors 53

3.3.3 Analog Temperature Sensor

3.3.3.1 Introduction

The analog sensor acts as a variable resistor. As the temperature increases, the
voltage output of the sensor decreases. Once we measure the voltage output, we can
calibrate the sensor and convert the output voltage to temperature. The analog
sensor includes thermocouples, platinum resistance, thermal resistance, and tem-
perature semiconductor chips, which are commonly used in high temperature
measurement thermocouples. A platinum resistance temperature is used in the
measurement of 800 °C, while a thermal resistance and semiconductor temperature
sensor is suitable for measuring temperatures of 100–200 °C or below, in which the
application of a simple semiconductor temperature sensor has good linearity and
high sensitivity. One of the semiconductor temperature sensors is the LM35 series.
The LM35 series are precision integrated-circuit temperature sensors, whose output
voltage is linearly proportional to the Celsius temperature. The LM35, thus, has an
advantage over linear temperature sensors calibrated in Kelvin, as the user is not
required to subtract a large constant voltage from its output to obtain a convenient
Centigrade scaling.

The high-accuracy version of the LM35 does not require any external calibration
or trimming to provide typical accuracies of ±1/4 °C at room temperature and
±3/4 °C over a full −55 to +150 °C temperature range. The typical application is
shown in Fig. 3.8.

Fig. 3.7 Log messages from Arduino using DFR0024

54 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

3.3.3.2 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• DFR0023 (LM35) � 1.
• DFR0032 (digital buzzer) � 1.
• Jumper wires � n.

2. Hardware Setting

DFR0023 (LM35) is used here to measure the environmental temperature. The
sensor has three pins: VCC, Output, and GND. The VCC should be connected to
5 V and the GND to a common ground with your Arduino. The signal output of
DFR0023 should be plugged into a defined pin on the DFRobot UNO R3 board
(here, Analog 0) (Fig. 3.9).

Fig. 3.8 Basic centigrade temperature sensor

Fig. 3.9 A diagram of the layout of the DFR0023, DFR0032, and UNO R3

3.3 Temperature Sensors 55

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

11

int ALARM = 4; //define Buzzer digital pin 4

int LM35 = 0; // connect LM35 to the analog input pin 0

float tmprVal = 0; //define value

float sinVal;
int toneVal;
unsigned long tepTimer;

void setup(void) {
Serial.begin(9600); // configure baud rate to 9600 bps

pinMode(ALARM, OUTPUT); // configure pin of buzzer

}
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

void loop(void) {
int val = analogRead(LM35); // read LM35

tmprVal = (float) val * (5 / 10.24); //Convert the voltage value

to temperature value

if (tmprVal > 27) { //If temperature > 27, the buzzer starts to

make sound.

for (int x = 0; x < 180; x++) {
//Convert sin function to radian

sinVal = (sin(x * (3.1412 / 180)));
//Use sin function to generate frequency of sound

toneVal = 2000 + (int(sinVal * 1000));
//Configure the buzzer pin 4

tone(ALARM, toneVal);
delay(2);

}
}
else { // If the temperature <= 27, turn off the buzzer

noTone(ALARM); // Turn off the buzzer

}
if (millis() - tepTimer > 50) { // Every 500 ms, serial port

outputs temperature value.

tepTimer = millis();
Serial.print("temperature: ");
Serial.print(tmprVal);
Serial.println("C");

}
}

56 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

4. Results

After the code is successfully uploaded, the serial monitor of the Arduino IDE
should exhibit values as follows (Fig. 3.10).

Once the temperature reaches 27 °C, the buzzer starts to sound. If the temper-
ature drops below 27 °C, the buzzer stops.

3.4 Temperature and Humidity Sensor

3.4.1 Introduction

DHT11 is a four PIN sensor (Fig. 3.11) that can measure temperatures ranging from
0 to 50 °C and relative humidity ranging from 20 to 95%. The sensor uses its own
proprietary 1-Wire protocol to communicate with Arduino and works at 3.3–5 V.

The timings must be precise and according to the datasheet of the sensor. Each
DHT11 sensor is strictly calibrated in a laboratory to ensure absolute accuracy for
humidity calibration. The calibration coefficients are stored as programmers in the
OTP memory, which are used by the sensor’s internal signal detection process. The
single-wire serial interface makes system integration rapid and easy. Its small size,
low power consumption, and up-to-20 m signal transmission range makes it the
best choice for various applications, including highly demanding ones.

Fig. 3.10 Log messages from Arduino using DFR0023

3.3 Temperature Sensors 57

Figure 3.12 shows an overall communication process between Arduino and
DHT11. When Arduino sends a start signal, DHT11 changes from the low power
consumption mode to the working mode, waiting for Arduino to complete the start
signal. Once it is complete, DHT11 sends a response signal of 40-bit data that
includes relative humidity and temperature information to Arduino.

Arduino initiates the data transmission process by pulling the data bus low for
about 18 ms and keeps it High for about 20–40 ls before releasing it.
Subsequently, the sensor responds to the Arduino’s data transfer request by pulling
the data bus Low for 80 ls followed by 80 ls of High. At this point, Arduino is
ready to receive data from the sensor (Fig. 3.13).

The format of 40-bit data is “8 bit humidity integer data + 8 bit Humidity
decimal data + 8 bit temperature integer data + 8 bit fractional temperature
data + 8 bit parity bit.” The received data is correct when the 8 bit checksum is
equal to the results of the last eight. The example is as follows:

00110101
High humidity

00000000
Low humidity

00011000
High temperature

00000000
Low temperature

01001101
Pairy bit

Calculate:
00110101 + 00000000 + 00011000 + 00000000 = 01001101
Received data is correct, and
Humidity: 00110101 = 0 � 35 = 53%RH
Temperature: 00011000 = 0 � 18 = 24 °C

DHT11

VCC
PIN

NC
GND

Fig. 3.11 Block diagram of DHT11

Start
signal

Response
signal

Wait for
sensor

response

Get ready for
sensor's
output

Output data
1 bit 0

Outpot data 1 bit 1Arduino
signal

DHT signal

VCC

GND

Fig. 3.12 Overall communication process

58 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

3.4.2 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• DFR0067 (DHT11 Temperature and Humidity Sensor V2) � 1.
• Jumper wires � n.

2. Hardware Setting (Fig. 3.14)

VCC

GND

Wait for
DHT

response
(20~40us)

Pull up
voltage and
keep 80us

Arduino sends out start
signal and pulls down

voltage least 18ms to let
DHT detect the signal

DHT sends out response
signal and keeps it 80us

Start data
transmission

Fig. 3.13 Send start signal to DHT

Fig. 3.14 A diagram of the layout of the DFR0067 and UNO R3

3.4 Temperature and Humidity Sensor 59

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

#include <dht11.h>

#define DHT11_PIN 4 //define humidity digital pin 4

dht11 DHT;
void setup() {
Serial.begin(9600); // configure baud rate to 9600 bps

Serial.println("DHT TEST PROGRAM ");
Serial.print("LIBRARY VERSION: ");
Serial.println(DHT11LIB_VERSION);
Serial.println();
Serial.println("Type,\tstatus,\tHumidity (%),\tTemperature

(C)");
}
void loop() {
int chk;
Serial.print("DHT11, \t");
chk = DHT.read(DHT11_PIN); // read data

switch (chk) {
case DHTLIB_OK:
Serial.print("OK,\t");
break;

case DHTLIB_ERROR_CHECKSUM:
Serial.print("Checksum error,\t");
break;

case DHTLIB_ERROR_TIMEOUT:
Serial.print("Time out error,\t");

26

27

28

29

30

31

32

33

34

35

break;
default:
Serial.print("Unknown error,\t");
break;

}
Serial.print(DHT.humidity, 1); // display data

Serial.print(",\t");
Serial.println(DHT.temperature, 1);
delay(1000);

}

Before we verify these codes with Arduino, the DHT11Lib, i.e., “dht11.h”,
should be downloaded first (http://playground.arduino.cc/Main/DHTLib). The
uploading path is “Sketch ! Include Library ! Add.Zip Library.”

60 3 Using Sensors with the Arduino

www.ebook3000.com

http://playground.arduino.cc/Main/DHTLib
http://www.ebook3000.org

4. Results

After uploading the code, you can see the humidity and temperature values
through the serial monitor (Baudrate = 9600) (Fig. 3.15).

3.5 Line-Tracking Sensor

3.5.1 Introduction

Line tracking is the most basic function of a smart mobile robot. The line-tracking
sensor can detect white lines in black and black lines in white via the TTL signal
(Black for LOW output, White for HIGH output). Line-tracking sensor SEN0017 is
used here to explain the tracking principle, whose schematic is shown in Fig. 3.16.

ITR20001/T consists of an infrared emitting diode and an NPN silicon photo-
transistor, encased side-by-side on a converging optical axis in a black thermo-
plastic housing. The phototransistor receives radiation from the IR only. This is in
normal conditions. However, when a reflecting object is in close proximity with the
ITR, the phototransistor receives reflected radiation. 74HCT14 is a hex inverter
with Schmitt-trigger inputs. This device features reduced input threshold levels to
allow interfacing to TTL logic levels. Inputs also include clamp diodes, which
enables the use of current limiting resistors to interface inputs to voltages in excess

Fig. 3.15 Log messages from Arduino using DFR0067

3.4 Temperature and Humidity Sensor 61

of the VCC. Schmitt-trigger inputs transform slowly changing input signals into
sharply defined jitter-free output signals. The best distance between objects such as
the ground and sensor is 1–2 cm. For the purpose of tracking lines in different
cases, an optional multi-channel mix can be implemented with the necessary line
tracking sensors. The IR is absorbed by black lines and reflected by white lines,
which is why we have Black for LOW output and White for HIGH output.

3.5.2 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• SEN0017 (line-tracking sensor) � 1.
• Jumper wires � n.

2. Hardware Setting

The line-tracking sensor SEN0017 has three pins: VCC, Output, and GND.
The VCC should be connected to 5 V and the GND to a common ground with your
Arduino. The Output pin of SEN0017 should be plugged into a defined pin on the
DFRobot UNO R3 board (here, PIN 2) (Fig. 3.17).

PIN

ITR20001/T

74HC14

VCC

R1R2
R3 C1

Fig. 3.16 Schematic of
SEN0017

62 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

#define LINE 2 //define line tracking digital pin 2

int val = 0;
void setup() {
Serial.begin(9600); // configure baud rate to 9600 bps

}
void loop() {
val = digitalRead(LINE);
Serial.println(val);
delay(500);

}

4. Results

It should be noted that the best distance between objects such as ground and the
sensor is 1–2 cm. When the sensor detects a black line, then the light in the
SEN0017 board is off and the Output will be LOW (see the serial monitor). Else,
the light in the SEN0017 board is on and the Output is HIGH (see the serial
monitor) (Fig. 3.18).

Fig. 3.17 A diagram of the layout of the SEN0017 and UNO R3

3.5 Line-Tracking Sensor 63

3.6 Ultrasonic Sensors

3.6.1 Introduction

When creating an autonomous target tracking robot, one of the most crucial aspects
is obstacle detection and avoidance. Often, a target may move in a scenario where
there is an object between the target and robot. A sensor must be able to detect the
object, with adequate range to allow the robot to respond and move accordingly.
Ideally, the sensor must be small, low in cost, and easy to manufacture and must be
usable on a large scale. A readily available sensor that fits all of these requirements
is the ultrasonic sensor.

The ultrasonic sensor uses sonar to determine the distance from an object,
similar to bats and dolphins. The sensor is a non-contact distance measurement
equipment that uses a timing variable t, measured from the transmission of some
kind of a pilot signal till a reflected signal is received from the object (Fig. 3.19).

The distance L to the object can be calculated as follows:

L ¼ vt cos h
2

ð3:3Þ

where, v is the speed of ultrasonic waves in the media (i.e., 340 m/s), h is the
reflection angle. If the transmitter and the receiver are close to each other, then
cos h � 1.

Fig. 3.18 Log messages from Arduino using SEN0017

64 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

For example, if the object is L = 10 cm away from the sensor, and the speed of
sound is 340 m/s or 0.034 cm/µs, the sound wave will need to travel about 294 µs.
However, what you will get from the receiver will be double that number because
the sound wave needs to travel forward and bounce backward. Therefore, in order
to obtain the distance in cm we need to multiply the received travel time value from
the receiver by 0.034 cm/µs and divide it by 2.

3.6.2 HC-SR04

Ultrasonic Sensor HC-SR04 is used here to measure distances in the range of 2 m–

400 cm with an accuracy of 3 mm. The sensor module consists of an ultrasonic
transmitter, receiver, and control circuit. The working principle of an ultrasonic
sensor is as follows:

1. A high level signal is sent for 10 µs using the Trigger.
2. The module sends eight 40 kHz signals automatically, and then detects whether

the pulse is received or not.
3. If the signal is received, then it forms a high level. The time of the high duration

is the time gap between sending and receiving the signal.
4. The distance is calculated using Eq. (3.3).

The timing diagram is shown as Fig. 3.20.

3.6.3 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• HC-SR04 (ultrasonic distance sensor) � 1.
• Jumper wires � n.

θ

L

Transmitter

Receiver

ObjectFig. 3.19 The principle of
ultrasonic sensor

3.6 Ultrasonic Sensors 65

2. Hardware Setting

The ultrasonic sensor HC-SR04 has four pins: VCC, TRIG, ECHO, and GND.
The VCC should be connected to 5 V and the GND to a common ground with your
Arduino. TRIG is used for emitting the transmitted signal. The output pin of the
Ultrasonic sensor should be plugged into a defined pin on the DFRobot UNO R3
board. The ECHO pin is what is used for detecting the response from the ultrasonic
wave; this two should be plugged into a separate defined pin on the DFRobot UNO
R3 board (Fig. 3.21).

10us TTL
Trigger Input

To module

Sonic Burst
From Module

Echo Pulse Output
To User Timing

Circuit

8 Cycle Sonic Burst

Output proportional
to range

Fig. 3.20 Timing diagram

Fig. 3.21 A diagram of the layout of the HC-SR04 and UNO R3

66 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

const int trigPin = 5; // PWM trigger

const int echoPin = 3; // PWM Output 0-25000US,Every 50US represent

1cm

long duration; // defines variables

int distance;
void setup() {
pinMode(trigPin, OUTPUT); //Sets the trigPin as an Output

pinMode(echoPin, INPUT); // Sets the echoPin as an Input

Serial.begin(9600); //configure baud rate to 9600 bps

}
void loop() {
digitalWrite(trigPin, LOW); //Clears the trigPin

delayMicroseconds(2);
// Sets the trigPin on HIGH state for 10 micro seconds

digitalWrite(trigPin, HIGH);
delayMicroseconds(10);

17

18

19

20

21

22

23

24

25

26

digitalWrite(trigPin, LOW);
duration = pulseIn(echoPin, HIGH); // Reads the echoPin, returns

the sound wave travel time in microseconds

distance = duration * 0.034 / 2; // Calculating the distance

Serial.print("Distance Measured="); // Prints the distance on

the Serial Monitor

Serial.print(distance);
Serial.println("cm");

}

4. Results

Open the IDE serial port (Baudrate = 9600); the distance is displayed on it
(Fig. 3.22).

3.6 Ultrasonic Sensors 67

3.7 Digital Infrared Motion Sensor

3.7.1 Introduction

A motion sensor is an electronic device that is used for motion detection. It contains
an electronic sensor that quantifies motion and can either be integrated with or
connected to other devices that alert a user of the presence of a moving object that is
within the field of view of the sensor. Motion sensors are a vital component of
comprehensive security systems for businesses and homes. An electronic motion
detector contains a motion sensor that transforms detected motion into an electric
signal. Infrared motion sensors allow you to sense motion; it almost always is used
to detect whether a human has moved in or out of a sensor’s range. They are small,
inexpensive, low power, easy to use, and do not wear out. For that reason they are
commonly found in appliances and gadgets used in homes or businesses.

3.7.2 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• SEN0018 (digital infrared motion sensor) � 1.
• LED � 1.

Fig. 3.22 Log messages from Arduino using HC-SR04

68 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

• Resistor (220 X) � 1.
• Jumper wires � n.

2. Hardware Setting

The digital infrared motion sensor SEN0018 has three pins: VCC, Pinout, and
GND. The VCC should be connected to 5 V and the GND to a common ground
with your Arduino. The Pinout is used for emitting the transmitted signal.

Power SEN0018 up and wait 12 s for the sensor to obtain a snapshot of the still
room. If anything moves after that period, the Pinout will go low (Fig. 3.23).

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

const int InfraredPin = 2; //define Infrared sensor pin 2

const int LED = 13; //define LED digital pin 13

void setup() {
pinMode(LED, OUTPUT);
pinMode(InfraredPin, INPUT);
Serial.begin(9600); //configure baud rate to 9600 bps

}
void loop() {

if (digitalRead(InfraredPin) == HIGH) {
digitalWrite(LED, HIGH);
Serial.println("anything move in!");

}
else {
digitalWrite(LED, LOW);
Serial.println("this is nothing!");

}
delay(1000);

}

4. Results

When the sensors detect that people have moved, the light illuminates
(Fig. 3.24).

3.7 Digital Infrared Motion Sensor 69

Fig. 3.23 A diagram of the layout of the SEN0018 and UNO R3

Fig. 3.24 Log messages from Arduino using SEN0018

70 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

3.8 Joystick Module

3.8.1 Introduction

A number of robots contain a joystick module. It simply connects to two analog
outputs based on your commands with X and Y control. The joystick provides an
affordable solution to move robots to a target directly. It also has a digital output pin
with 0, 1 (Z axis).

The joystick module is made up of two potentiometers and a press button, which
are associated with the X and Y axes, respectively. The output voltages are changed
between 0 and 5 V when the potentiometer is moved in the direction of X or Y. The
digital output is changed to 0 when the button is pressed. The diagrams of a joystick
module are shown in Fig. 3.25.

3.8.2 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• DFR0061 (joystick module) � 1.
• Jumper wires � n.

2. Hardware Setting

The joystick module has nine pins (three pins for each axis): VCC, Output, and
GND. In the X and Y axes, the VCC should be connected to 5 V and the GND should
be connected to a common ground on the DFRobot UNO R3 board. The Output pin

X

Y

Z

Fig. 3.25 The diagrams of X, Y, and Z axes of Joystick

3.8 Joystick Module 71

of the X/Y axis should be plugged into the analog pin (here, PIN 0/1) and the Output
of the Z axis should be connected to the digital pin (here, PIN 3) (Fig. 3.26).

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

int JoyStick_X = 1; //define X-Axis analog pin 1

int JoyStick_Y = 0; //define Y-Axis analog pin 0

int JoyStick_Z = 3; //define X-Axis digital pin 3

void setup() {
pinMode(JoyStick_Z, INPUT);
Serial.begin(9600);//configure baud rate to 9600 bps

}
void loop() {
int x, y, z;
x = analogRead(JoyStick_X);
y = analogRead(JoyStick_Y);
z = digitalRead(JoyStick_Z);
Serial.print(x , DEC);
Serial.print(",");
Serial.print(y , DEC);
Serial.print(",");
Serial.println(z , DEC);
delay(100); // wait for 100 ms

}

Fig. 3.26 A diagram of the layout of the DFR0061 and UNO R3

72 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

4. Results

After uploading the program to your Arduino IDE, opening the serial monitor
(Baudrate = 9600), and moving the joystick, you can observe the following.

In the Arduino sketch, the analogRead () function returns a number in the
0–1023 range (512 at the center/idle position of the joystick) (Fig. 3.27).

3.9 Gas Sensor

3.9.1 Introduction

Gas sensors are wieldy used to detect gas leakages of LPG, i-Butane, Propane,
Methane, Alcohol, Hydrogen, and smoke in houses and factories. The gas sensor is
composed of a micro AL2O3 ceramic tube, Tin Dioxide sensitive layer, electrode
and heater measurer, which are fixed into a sensitive component. The conductivity
of the gas sensing layer changes when a gas leakage occurs, which changes the
voltage value in the output. The heater provides the necessary work condition for
sensitive components. The schematic is shown as follow (Fig. 3.28).

Fig. 3.27 Log messages from Arduino using DFR0061

3.8 Joystick Module 73

3.9.2 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• DFR0049 (gas sensor) � 1.
• Jumper wires � n.

2. Hardware Setting

The gas sensor DFR0049 uses three pins to connect with Arduino: VCC, Output,
and GND. The VCC should be connected to 5 V and the GND should be plugged
into the common ground. The Output pin should be connected to the analog pin
(here, A0) (Fig. 3.29).

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

int GasPin = 0; //define gas sensor analog pin 0

int val; //define value

void setup() {
Serial.begin(9600);//configure baud rate to 9600 bps

}
void loop() {
val = analogRead(GasPin); //Read Gas value

Serial.println(val, DEC);
delay(100); // wait for 100 ms

}

VCC

Output

Heater coil

Gas sensing layer
and

Electrode

Fig. 3.28 The schematic of a
gas sensor

74 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

4. Results

After uploading the program to your Arduino IDE, opening the serial monitor
(Baudrate = 9600), and generating some smoke, you should see the following
values (Fig. 3.30).

Fig. 3.29 A diagram of the layout of the DFR0049 and UNO R3

Fig. 3.30 Log messages from Arduino using DFR0049

3.9 Gas Sensor 75

3.10 Hall Sensor

3.10.1 Introduction

The hall sensor is an Omnipolar magnet sensor used to detect magnetic objects. It
can be used for proximity switching, positioning, speed detection, and current
sensing applications. The principle of a hall sensor is shown in Fig. 3.31.

When a beam of charged particles passes through a magnetic field, forces act on
the particles and the beam is deflected from the original path. As a consequence,
these particles are deflected. One plane of the conductor becomes negatively
charged and the other side becomes positively charged. The voltage between these
planes (VH) can be detected. When the force on the charged particles from the
electric field balances the force produced by the magnetic field, the separation stops.

N

S

DC

VH

Fig. 3.31 The working
principle of a hall sensor

76 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

3.10.2 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• SEN0185 (hall sensor) � 1.
• LED � 1.
• Resistor (220 X) � 1.
• Jumper wires � n.

2. Hardware Setting

SEN0185 uses three pins to connect with Arduino: VCC, Output, and GND.
The VCC should be connected to 5 V and the GND should be plugged into the
common ground. The Output pin should be connected to the digital pin (here, PIN2)
(Fig. 3.32).

Fig. 3.32 A diagram of the layout of the SEN0185 and UNO R3

3.10 Hall Sensor 77

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

int ledPin = 13; // choose the pin for the LED

int hallPin = 2; // choose the input pin

int val = 0; // variable for reading the pin status

void setup() {
pinMode(ledPin, OUTPUT); // declare LED as output

pinMode(hallPin, INPUT); // declare pushbutton as input

}
void loop() {
val = digitalRead(hallPin); // read input value

if (val == HIGH) { // check if the input is HIGH

digitalWrite(ledPin, HIGH); // turn LED ON

}
else {
digitalWrite(ledPin, LOW); // turn LED OFF

}
}

4. Results

After uploading the program to your Arduino, the digital light illuminates when
SEN0185 detects a magnet.

3.11 Color Sensor

3.11.1 Introduction

The TCS3200 Color Sensor is a complete color detector, including a TAOS
TCS3200 RGB sensor chip and four white LEDs. It can detect and measure a nearly
limitless range of visible colors. The applications of TCS3200 include test strip
reading, sorting by color, ambient light sensing and calibration, and color matching,
etc.

In TCS3200, the light-to-frequency converter reads an 8� 8 array of photodi-
odes. 16 photodiodes have blue filters, 16 photodiodes have green filters, 16
photodiodes have red filters, and 16 photodiodes are clear with no filters (shown in
Fig. 3.33). The four types (colors) of photodiodes are interdigitated to minimize the
effect of non-uniformity of incident irradiance. All photodiodes of the same color
are connected in parallel. When choosing a color filter, only one particular color is
permitted through and the other colors are prevented. The color that needs to be
sensed by a color sensor is selected by two pins S2 and S3 (shown in Table 3.1).

78 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

Then, signals from the sensor can calculate the RGB values in terms of the red,
blue, and green components.

If we need to sense the RED color intensity, we need to set both pins to LOW.
Once that is done the sensor detects the intensity and sends the value to the control
system inside the module.

The control system inside the module is shown in Fig. 3.34. The light intensity
measured by the array is sent as a current for frequency conversion. What it does is,
it generates a square wave whose frequency relates to the current sent by ARRAY.

Therefore, we have a system that generates a square wave whose frequency
depends on the light intensity of the color that is selected by S2 and S3.

The signal frequency sent by the module can be modulated depending on the
use. We can change the output signal frequency bandwidth (Table 3.2).

Frequency scaling is performed by two bits S0 and S1. For convenience, we
limit the frequency scaling to 20%. This is done by setting S0 to high and S1 to
LOW. This feature comes is useful when we use the module on a system with a low
clock.

S0

S1

GND

OE

S3

S2

GND

OUT

Fig. 3.33 The TCS3200 chip

Table 3.1 Selectable options

S2 S3 Photodiode type

L L Red

L H Blue

H L Clear (no filter)

H H Green

Photodiode
Array

Current-to-Frequency
ConverterLight

S2 OE

Output

S3 S0S1

Fig. 3.34 The control system inside the TCS300 module

3.11 Color Sensor 79

3.11.2 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• SEN0101 (TCS3200 color sensor) � 1.
• Jumper wires � n.

2. Hardware Setting

The TCS3200 sensor contains 10 pins, 7 of them are used here: S0, S1, S2, S3,
Output, VCC, and GND. S0, S1, S2, S3, and Output should be connected to the
digital pin (here: PIN 3, 4, 5, 6, and 2, respectively), the VCC should be connected
to 5 V, and the GND should be plugged into the ground (Fig. 3.35).

Table 3.2 The signal frequency selection

S0 S1 Output frequency scaling (f0)

L L Power down

L H 2%

H L 20%

H H 100%

Fig. 3.35 A diagram of the layout of the SEN0101 and UNO R3

80 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

int s0 = 3, s1 = 4, s2 = 5, s3 = 6;
int OutPut = 2; //define pin 2 of as output

unsigned int frequency = 0;
void setup() {
pinMode(s0, OUTPUT); //PINS 3,4,5,6 as OUTPUT

pinMode(s1, OUTPUT);
pinMode(s2, OUTPUT);
pinMode(s3, OUTPUT);
digitalWrite(s0, HIGH); //setting frequency as 20%

digitalWrite(s1, LOW);
Serial.begin(9600);//configure baud rate to 9600 bps

}
void loop() {
digitalWrite(s2, LOW); //setting for RED color sensor

digitalWrite(s3, LOW);
frequency = pulseIn(OutPut, LOW); //reading frequency

Serial.print("Red=");
18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Serial.println(frequency, DEC);
delay(500);
digitalWrite(s2, LOW); //setting for BLUE color sensor

digitalWrite(s3, HIGH);
frequency = pulseIn(OutPut, LOW); //reading frequency

Serial.print("Blue=");
Serial.println(frequency, DEC);
delay(500);
digitalWrite(s2, HIGH); //setting for GREED color sensor

digitalWrite(s3, HIGH);
frequency = pulseIn(OutPut, LOW); //reading frequency

Serial.print("Green=");
Serial.println(frequency, DEC);
delay(500);

}

4. Results

After uploading the program to your Arduino, placing some colored objects
close to the sensor, and opening the serial monitor (Baudrate = 9600), three color
intensities are shown as follows (Fig. 3.36).

3.11 Color Sensor 81

3.12 Digital Tilt Sensor

3.12.1 Introduction

The digital tilt sensor is a digital tilt switch. There are two modules of the tilt sensor,
mercury-based and ball-based. Because mercury is a toxic substance, we only
consider the ball-based sensor as an example. The tilted sensor makes the ball move
to the switch on account of gravity and makes the switch close (Fig. 3.37).

It should be noticed that the sensor is simply a simple digital tilt sensor, which
outputs ‘0’ or ‘1’. The tilt angle could not be adjusted. Moreover, strong vibrations
can affect its output.

3.12.2 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• DFR0028 (digital tilt sensor) � 1.
• LED � 1.
• Resistor (220 X) � 1.
• Jumper wires � n.

Fig. 3.36 Log messages from Arduino using SEN0101

82 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

2. Hardware Setting

The tilt sensor has three pins: VCC, Output, and GND. The VCC should be
connected to 5 V and the GND should be plugged into the common ground. The
Output pin should be connected to the digital pin (here, PIN3) (Fig. 3.38).

Fig. 3.37 The working principle of a tilt sensor

Fig. 3.38 A diagram of the layout of the DFR0028 and UNO R3

3.12 Digital Tilt Sensor 83

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

int ledPin = 13; // Connect LED to pin 13

int switcher = 3; // Connect Tilt sensor to Pin3

void setup() {
pinMode(ledPin, OUTPUT); // Set pin 13 to output mode

pinMode(switcher, INPUT); // Set pin 3 to input mode

}
void loop() {

if (digitalRead(switcher) == HIGH) //Read sensor value

digitalWrite(ledPin, HIGH); // Turn on LED when the sensor is

tilted

else
digitalWrite(ledPin, LOW); // Turn off LED when the sensor is

not triggered

}

4. Results

After uploading the program to your Arduino, the digital light illuminates when
DFR0028 is tilted to the switch side.

3.13 Triple Axis Acceleration Sensor

3.13.1 Introduction

The triple axis accelerometer is an analog voltage output sensor that detects the
acceleration of a moving object. It can be used for detecting acceleration infor-
mation or measuring the slope angle for your devices. The device consists of a
surface micromachined capacitive sensing cell (g-cell) and a signal conditioning
ASIC contained in a single package. The sensing element is sealed hermetically at
the wafer level using a bulk micromachined cap wafer.

The g-cell is a mechanical structure formed from semiconductor materials
(polysilicon) using semiconductor processes (masking and etching). It can be
modeled as a set of beams attached to a movable central mass that move between
fixed beams (see Fig. 3.39).

As the center beam moves with acceleration, the distance between the beams
changes and each capacitor’s value changes. It can be calculated by:

84 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

C ¼ Ae=D ð3:4Þ

where A is the area of the beam, e is the dielectric constant, and D is the distance
between the beams. Then, the acceleration information can be extracted from the
sensor (Table 3.3).

There are two sensitivities that can be chosen by users:

3.13.2 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• DFR0143 (MMA7361 triple axis accelerometer) � 1.
• Jumper wires � n.

2. Hardware Setting

The triple axis accelerometer has nine pins (three pins for each axis): X/Y/Z-Axis,
VCC, and GND. X, Y, and Z should be connected to analog voltage outputs (here,
A0, A1, and A2, respectively). The VCC should be connected to 5 V and the GND
should be connected to a common ground (Fig. 3.40).

This sample shows how to measure the angle value using two axis values
(X and Z):

Fig. 3.39 The simplified
model of a g-cell structure

Table 3.3 g-select pin
description

g-select g-range (g) Sensitivity (mV/g)

0 1.5 800

1 6 206

3.13 Triple Axis Acceleration Sensor 85

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

#include<math.h>

#include<stdio.h>

#define A_X 0 //A0,A1,A2 are used

#define A_Y 1

#define A_Z 2

double b;
void setup() {
Serial.begin(9600);//configure baud rate to 9600 bps

}
void loop() {
float a;
int val_x = 0, val_y = 0, val_z = 0;
for (int i = 0; i < 10; i++) {
val_x += analogRead(A_X); delay(2);
val_y += analogRead(A_Y); delay(2);
val_z += analogRead(A_Z); delay(2);

}
val_x = val_x / 10; // noise removal

val_y = val_y / 10;
val_z = val_z / 10;
delay(300);
Serial.print("X_Axis: "); // output

Serial.print(val_x);
Serial.print("Z_Axis: ");
Serial.print(val_z);
Serial.print(" ");
//320 is the analog output with horizontal state

b = (double) (abs(val_x - 320)) / (abs(val_z - 320));
Serial.print("B: ");
Serial.print(b);
Serial.print(" ");
a = atan(b);
Serial.print("A: ");
Serial.println(a / 3.14 * 180); //the value of Angle

}

86 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

4. Results

After uploading the program to your Arduino IDE, opening the serial monitor
(Baudrate = 9600), and tilting the sensor, you should see values as follows
(Fig. 3.41).

Fig. 3.40 A diagram of the layout of the DFR0143 and UNO R3

Fig. 3.41 Log messages from Arduino using DFR0143

3.13 Triple Axis Acceleration Sensor 87

3.14 Analog Sound Sensor

3.14.1 Introduction

The analog sound sensor is typically used in detecting loud sounds in an ambient
environment. It uses an electret condenser microphone to convert sound energy into
an electrical signal, which is the reverse of how a speaker operates. The electret
condenser microphone is a parallel plate capacitor and works on the principle of a
variable capacitance (see Fig. 3.42).

A solid conducting metal body encapsulates the various parts of the microphone.
The top face is covered with a porous material with the help of glue. It acts as a
filter for dust particles. The microphone consists of two plates, one fixed (called the
back plate) and the other moveable (called the membrane) with a small gap between
them. An electric potential charges the plate. When sound signal vibrations pass
through the porous material and falls on the membrane through the hole, the sound
strikes the membrane and it starts moving, thereby changing the capacitance
between the plates which in turn results in a variable electric current to flow.

3.14.2 Demonstration

1. Components

• DFRobot Romeo BLE microcontroller board and USB cable � 1.
• DFR0034 (analog sound sensor) � 1.
• Jumper wires � 1.

Sound openings

Connection ring

Spacer

PCB

JFET

Electret layer
Membrane

Ground pad
Output pad

Back plate

Sound openings

Connection ring

Spacer

PCB

JFET

Electret layer
Membrane

Ground pad
Output pad

Back plate

Fig. 3.42 The diagram of an electret condenser microphone

88 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

2. Hardware Setting

The analog sound sensor has three pins, Output, VCC, and GND. The Output
should be connected to analog voltage outputs (here, PIN 0). The VCC should be
connected to 5 V and the GND should be connected to a common ground on the
DFRobot Romeo BLE board (Fig. 3.43).

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

#define voicePin 0

void setup() {
Serial.begin(9600); // configure baud rate to 9600 bps

}
void loop() {
int val;
val = analogRead(voicePin); //read mic sensor

Serial.println(val, DEC); //print the sound value

delay(100);
}

4. Results

After uploading the program to your Arduino, opening the serial monitor
(Baudrate = 9600), and generating some sounds, you should see values as follows
(Fig. 3.44).

Fig. 3.43 A diagram of the layout of the DFR0034 and UNO R3

3.14 Analog Sound Sensor 89

3.15 Voice Recognition Module

3.15.1 Introduction

Voice recognition is a technology through which sounds, words, or phrases spoken
by humans are converted into electrical signals. These signals are transformed into
coding patterns that have been assigned meaning. It is widely used in home, health,
public, and entertainment devices. The most common approaches to voice recog-
nition can be divided into two classes: template matching and feature analysis. In
this chapter, the voice recognition module we used belonged to the template
matching class. The first step for the user is to speak a word or phrase into the
microphone. The microphone transforms the sound signal to an electrical signal,
which is then digitized by an analog-to-digital (A/D) converter, and is stored in the
memory. To determine the meaning of this voice input, the module attempts to
match the input with a digitized voice template, which is stored in the program. The
module will match this template with the actual input using a simple conditional
statement.

Fig. 3.44 Log messages from Arduino using DFR0034

90 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

3.15.2 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• DFR0177 (voice recognition module) � 1.
• LED � 1.
• Resistor (220 X) � 1.
• Jumper wires � n.

2. Hardware Setting

The voice recognition module is an expansion board of Arduino, which can be
plugged into the UNO directly (Fig. 3.45).

DFR0177 is a Chinese module, so we can use Chinese pinyin to substitute
English with similar pronunciation when writing codes. Table 3.4 shows some
pinyin codes that may be useful in programming.

Fig. 3.45 A diagram of the layout of the DFR0177 and UNO R3

3.15 Voice Recognition Module 91

3. Sample Codes

Before we verify these codes with Arduino, the voice recognition library, i.e.,
“VoiceRecognition.h”, should be downloaded first

(https://github.com/tyjjr/voiceRecognition1.1/). Then, import the library in the
Arduino IDE with the path as “Sketch ! Include Library ! Add.Zip Library.”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

#include <avr/wdt.h>

#include <VoiceRecognition.h>

VoiceRecognition Voice;
#define Led 13 // define the light digital pin

void setup() {
Serial.begin(9600);
pinMode(Led, OUTPUT);
digitalWrite(Led, LOW);
Voice.init();
Voice.addCommand("lai ci on", 0);
Voice.addCommand("lai ci ao fu", 1);
Voice.start();
wdt_enable(WDTO_1S);

}
void loop() {

switch (Voice.read()) {
case 0:
digitalWrite(Led, HIGH);
Serial.println("received 'lights on',command flag'0'");
break;

case 1:
digitalWrite(Led, LOW);
Serial.println("received 'lights off',command flag'1'");
break;

}
wdt_reset();

}

Table 3.4 Some English
commands in Chinese pinyin

English Chinese English Chinese

Start si da te End en de

Up a pu Down dang

Go gou Back bai ke

Left lai fu te Right ruai te

Lights on lai ci ang Lights off lai ci ao fu

92 3 Using Sensors with the Arduino

www.ebook3000.com

https://github.com/tyjjr/voiceRecognition1.1/
http://www.ebook3000.org

4. Results

After uploading the program to your Arduino, the serial monitor
(Baudrate = 9600) needs to be opened; the digital light illuminates after DFR0177
receives the voice “lights on.” Further, the serial monitor shows the following
(Fig. 3.46).

3.16 Digital Vibration Sensor

3.16.1 Introduction

Vibration detection is critical in security systems that are normally placed at win-
dow grills or doors. The DFRobot Digital Vibration Sensor is a digital plug that
plays sensor blocks. It can sense weak vibration signals, which can be realized with
the shock interaction with relevant works. The vibration sensor is made up of a
vibration switch that contains a spring and a conductive material passing through
(no contact) the center of the spring (Fig. 3.47).

The switch is in an open circuit OFF-state when static. When external force
resulting in vibrations or movement speeds that produce adequate (partial) cen-
trifugal force are applied, the spring touches the conductive material; then, the
circuit is complete and the switch is in the ON-state. When the external force
disappears, the switch goes back to the open circuit OFF-state.

Fig. 3.46 Log messages from Arduino using DFR0177

3.15 Voice Recognition Module 93

3.16.2 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• DFR0027 (digital vibration sensor) � 1.
• LED � 1.
• Resistor (220 X) � 1.
• Jumper wires � n.

2. Hardware Setting

The vibration sensor has three pins: VCC, GND, and Output. The VCC should
be connected to 5 V and the GND should be plugged into the common ground. The
Output pin should be connected to the digital pin (here, PIN 3) (Fig. 3.48).

Spring
Conductive

material

Fig. 3.47 The diagram of a vibration switch

Fig. 3.48 A diagram of the layout of the DFR0027 and UNO R3

94 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

#define ledPin 13 // define the light digital pin

#define vibrationPin 3 // define the vibration digital pin

unsigned char state = 0;
void setup() {
pinMode(ledPin, OUTPUT);
pinMode(vibrationPin, INPUT);
attachInterrupt(1, blink, FALLING); // select interrupt 1, the

service routine is blink

}
void loop() {

if (state != 0) {
state = 0;
digitalWrite(ledPin, HIGH); //Trigger the blink function when

the falling edge is detected

delay(500);
}
else
digitalWrite(ledPin, LOW);

19

20

21

22

23

}
// interrupt service routine

void blink() {
state++; // change the state

}

4. Results

After uploading the program to your Arduino, the digital light illuminates when
DFR0027 vibrates. Of course, the light is off when the vibration disappears.

3.17 Flame Sensor

3.17.1 Introduction

The flame sensor can be used to detect fire or other wavelengths at 760–1100 nm
light. Small flames like a lighter flame can be detected at roughly 0.8 m. The
detection angle is roughly 60° and the sensor is particularly sensitive to the flame
spectrum. In the fire-fighting robot game, the flame sensor plays an important role

3.16 Digital Vibration Sensor 95

in the probe, which can be used as a robot’s eyes to find a fire source or football.
The sensor can be employed in fire-fighting robots and soccer robots. The circuit of
the flame sensor is as follows (Fig. 3.49):

The negative lead is connected to 5 V and the positive lead is connected to the
GND through a 10 KX resistor. When the intensity of infrared light changes, the
resistance of the sensor changes too, which then leads to a change of voltage.

The flame sensor’s operating temperature is −25 to 85 °C. Further, it should be
noted that the probe distance from the flame should not be too near in order to avoid
damage. The shortest test distance is 80 cm, if the flame is bigger, it should be
tested at a farther distance.

3.17.2 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• DFR0076(Flame sensor) � 1.
• LED � 1.
• Resistor (220 X) � 1.
• Jumper wires � n.

2. Hardware Setting

The flame sensor has three pins: VCC, GND, and Output. The VCC should be
connected to 5 V and the GND should be plugged into the common ground. The
Output pin should be connected to the analog pin (here, A0) (Fig. 3.50).

Vcc

Connected to ADC

Flame sensor

10kΩ

Fig. 3.49 The wiring
diagram of flame sensor

96 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

#define flamePin A0

void setup() {
Serial.begin(9600); // configure baud rate to 9600 bps

}
void loop() {
Serial.print("Sensor Value: ");
int val = analogRead(flamePin);
Serial.println(val);
if (val < 800) {
Serial.println(" FLAME DETECTED!");

}
else {
Serial.println();

}
delay(100);

}

4. Results

When the flame sensor detects a flame, the data is observed on the serial monitor
(Fig. 3.51).

Fig. 3.50 A diagram of the layout of the DFR0076 and UNO R3

3.17 Flame Sensor 97

3.18 Capacitive Touch Sensor

3.18.1 Introduction

In a number of cases, machines, home appliances, and electronic devices have to be
controlled by human beings. It is part of everyone’s daily life and we are familiar
with switches, push buttons, keyboards, knobs, and slider controls. Over the last
few years, a new way to control device has emerged. We are referring to the touch
sensor. The reasons for this development are durability, robustness, attractive
product design, and cost. Touch sensors, unlike mechanical devices, do not contain
moving parts. Hence, they are more durable than mechanical input devices. Touch
sensors are robust as there are no openings for humidity and dust to enter.

When any object with capacitive characteristics—such as a finger—comes close
to a capacitive touch sensor, it acts as another capacitor due to its dielectric nature.
This varies the effective capacitance of the system, which is used to detect the
touch.

The finger acts as one of the parallel plates, while another parallel plate is
connected to the sensor input of the chip, as shown in the illustration below
(Fig. 3.52).

p.s. (1) CF: finger capacitance, CS: sensor capacitance, d: distance between the
plates
(2) Untouched sensor pad with parasitic capacitance CS, touched sensor pad with
additional touch capacitance CF

Fig. 3.51 Log messages from Arduino using DFR0076

98 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

The iron content in human blood creates strings of capacitors that are aligned to
the surface of the body. When such strings of capacitors come in proximity with a
conductor, a capacitance that is essentially coupled to the ground is created, which
causes a change in the measured voltage, determining the touch.

3.18.2 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• DFR0030 (Touch sensor) � 1.
• LED � 1.
• Resistor (220 X) � 1.
• Jumper wires � 1.

2. Hardware Setting

The touch sensor has three pins: VCC, GND, and Output. The VCC should be
connected to 5 V and the GND should be plugged into the common ground. The
Output pin should be connected to the digital pin (here, PIN 2) (Fig. 3.53).

Fig. 3.52 The principle of capacitive touch sensor

3.18 Capacitive Touch Sensor 99

3. Sample Codes

1

2

3

4

5

int ledPin = 13; // Connect LED on digital pin 13

int keyPin = 2; // Connect Touch sensor on digital Pin 2

void setup() {
pinMode(ledPin, OUTPUT); // Set ledPin to output mode

pinMode(keyPin, INPUT); // Set touch sensor pin to input mode

6

7

8

9

10

11

12

13

14

15

16

17

}
void loop() {
// Read Touch sensor signal

if (digitalRead(keyPin) == HIGH) {
// if Touch sensor is HIGH, then turn on

digitalWrite(ledPin, HIGH);
}
else {
// if Touch sensor is LOW, then turn off

digitalWrite(ledPin, LOW);
}

}

4. Results

After uploading the program to your Arduino, the digital light illuminates when
your finger or metal object touches the metal surface of the transducer.

Fig. 3.53 A diagram of the layout of the DFR0030 and UNO R3

100 3 Using Sensors with the Arduino

www.ebook3000.com

http://www.ebook3000.org

Chapter 4
Electromechanical Control Using
the Arduino

4.1 DC Motor

4.1.1 Overview

DC motors are becoming increasingly common in a variety of motor applications
such as fans, pumps, appliances, automation, and automotive drive. The reasons for
their increased popularity are better speed versus torque characteristics, high effi-
ciency, long operating life, and noiseless operation. In addition to these advantages,
the ratio of torque delivered to the size of the motor is higher, making it useful in
applications where space and weight are critical factors. This makes them attractive
options for designers who are interested in robotics. You can run a DC motor by
supplying a voltage difference across its leads. However, you need to overcome
certain challenges in order to drive them effectively. The most common goals are
variable speed and direction. To control the direction of the spin of DC motors,
without changing the way that the leads are connected, an H-Bridge is commonly
used.

An H-bridge is an electronic circuit that can drive the motor in both directions.
As shown in Fig. 4.1, one H-bridge uses four transistors connected in such a way
that the schematic diagram appears like an “H”.

The basic operating mode of an H-bridge is fairly simple: if Q1 and Q3 are
turned on, the left lead of the motor is connected to the power supply, while the
right lead is connected to the ground. Current starts flowing through the motor,
which energizes the motor in (let us say) the forward direction and the motor shaft
starts spinning.

If Q4 and Q2 are turned on, the reverse happens, the motor gets energized in the
reverse direction, and the shaft will start spinning backwards.

© Springer Nature Singapore Pte Ltd. 2018
T. Pan and Y. Zhu, Designing Embedded Systems with Arduino,
DOI 10.1007/978-981-10-4418-2_4

101

In a bridge, you should never ever close both Q1 and Q2 (or Q3 and Q4) at the
same time. If you did that, you may create a really low-resistance path between the
power and GND, effectively short-circuiting your power supply. This condition is
called “shoot-through” and is an almost guaranteed way to quickly destroy your
bridge, or something else in your circuit.

4.1.2 Driven Circuit Design

In a number of cases, especially for little toy motors, you do not need to build a
whole H-bridge circuit from scratch. In fact, using a chip can save you a consid-
erable amount of trouble with regard to offset voltages; if you have a different motor
supply voltage than your logic voltage, you will need drivers between the logic and
the power transistors. There are several packaged IC chips (such as L293D, L298N,
TA7257P, SN754410, etc.) that are inexpensive and easy to build into a circuit.

The common L293N dual motor controller is a 16-DIP IC chip that contains two
protected driver circuits capable of delivering up to 600 mA of continuous current
to each motor at up to 36 VDC (see Fig. 4.2). L298N is a similar chip that can
deliver 2 amps to each motor. These chips (and others) accept standard 0–5 V input
signals and have internal logic gates to prevent accidental overloading and com-
manding the controller into a destructive state.

Notice in Fig. 4.2 that there are six pins labeled IN1, IN2, IN3, IN4, ENA, and
ENB. You can use digital pins on the Arduino to control the four input pins and set
the motor direction, while using a PWM signal on each enable pin (ENA and ENB)
to set the speed of each motor. It should be pointed out that L298N does not have

M

Q3

Q1 Q4

Q2

Vcc

M

Q3

Q1 Q4

Q2

Vcc

Fig. 4.1 H-bridge and the direction of motor

102 4 Electromechanical Control Using the Arduino

www.ebook3000.com

http://www.ebook3000.org

built-in protection diodes, so you will need to add those. The datasheet for the
L298N specifies “fast recovery” 1-amp diodes; an inexpensive selection is the
1N4933, available from most online electronic parts outlets.

Let us look at how to control just one of the motors, Motor1. In order to activate
the motor, the pin ENA must be high. You then control the motor and its direction
by applying a low or high signal to the Input1 and Input2 lines, as shown in
Table 4.1.

The L298N H-bridge module can be used with motors that have a voltage of
between 5 and 35 V DC.

4.1.3 Demonstration

1. Components

• DFRobot Romeo board and USB cable � 1
• DC motor � 1
• 9 V battery � 1
• Jumper wires � n

M

OUT1

OUT2

OUT3

OUT4

0.1uF

V
cc V
s

ENA
ENB

IN1
IN2
IN3
IN4

G
N

D

SENA
SENB

Vcc

L298N

+12V

M

+12V

Fig. 4.2 Schematic of L298N driven circuit

Table 4.1 Motor direction
control

IN1 IN2 Action

LOW LOW Motor breaks and stops

HIGH LOW Motor turns forward

LOW HIGH Motor turns backward

HIGH HIGH Motor breaks and stops

4.1 DC Motor 103

2. Hardware Setting

Connect four motor wires to motor terminal. Then, apply power through the motor
power terminal (Fig. 4.3).

The PWM DC motor control is implemented by manipulating two digital IO pins
and two PWM pins. As illustrated in the diagram above (Fig. 4.3), Pins 4 and 7 are
motor direction control pins, Pins 5 and 6 are motor speed control pins (shown in
Table 4.2).

Fig. 4.3 Romeo motor connection diagram

Table 4.2 PWM mode Pin Function

Digital 4 Motor 1 direction control

Digital 5 Motor 1 PWM control

Digital 6 Motor 2 PWM control

Digital 7 Motor 2 direction control

104 4 Electromechanical Control Using the Arduino

www.ebook3000.com

http://www.ebook3000.org

3. Sample Codes

1

2

3

4

#define keyPin A0; // analogy key input

int E1 = 5; //M1 Speed Control

int E2 = 6; //M2 Speed Control

int M1 = 4; //M1 Direction Control

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

int M2 = 7; //M2 Direction Control

unsigned long sampleTime;
unsigned int SampleInterval = 100; // sampling time is 0.1s

int adc_key_val[5] = {50, 200, 400, 600, 800 }; // threshold for

comparison

boolean blnKey; // flag for against key shake

int NUM_KEYS = 5; // 5 keys

int adc_key_in;
int key = -1;

void setup() {
Serial.begin(9600); //Configure baud rate 9600

}

void loop() {
if (millis() - sampleTime >= SampleInterval) {
sampleTime = millis();
adc_key_in = analogRead(A0); // // read the key value

if (adc_key_in < 1000) { // if key press

if (blnKey == 0)
blnKey = 1; // wait for debounce time

else
key = get_key(adc_key_in); // convert into key press

}
else {
key = -1; // no key press

blnKey = 0;
}

}
if (key >= 0) {

switch (key) {
case 0: {

Serial.println("S1 OK");
advance (100, 100); //move forward

break;
}

case 1: {

4.1 DC Motor 105

42

43

44

45

46

47

48

Serial.println("S2 OK");
back_off (100, 100); // move backward

break;
}

case 2: {
Serial.println("S3 OK");
turn_L (100, 100); // turn left

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

break;
}

case 3: {
Serial.println("S4 OK");
turn_R (100, 100); // turn right

break;
}

case 4: {
Serial.println("S5 OK");
stop(); // stop

break;
}

}
}

}

// convert ADC value to key number

int get_key(unsigned int input) {
int k;
for (k = 0; k < NUM_KEYS; k++) {

if (input < adc_key_val[k]) { // compared the threshold

return k;
}

}
if (k >= NUM_KEYS)
k = -1; // no valid key pressed

return k;
}

void stop(void) { //Stop

digitalWrite(E1, LOW);
digitalWrite(E2, LOW);

}
void advance(char a, char b) { //Move forward

106 4 Electromechanical Control Using the Arduino

www.ebook3000.com

http://www.ebook3000.org

83

84

85

86

87

88

89

90

91

92

analogWrite (E1, a); //PWM Speed Control

digitalWrite(M1, HIGH);
analogWrite (E2, b);
digitalWrite(M2, HIGH);

}
void back_off (char a, char b) { //Move backward

analogWrite (E1, a);
digitalWrite(M1, LOW);
analogWrite (E2, b);
digitalWrite(M2, LOW);

93

94

95

96

97

98

99

100

101

102

103

104

105

}
void turn_L (char a, char b) { //Turn Left

analogWrite (E1, a);
digitalWrite(M1, LOW);
analogWrite (E2, b);
digitalWrite(M2, HIGH);

}
void turn_R (char a, char b) { //Turn Right

analogWrite (E1, a);
digitalWrite(M1, HIGH);
analogWrite (E2, b);
digitalWrite(M2, LOW);

}

4. Analysis

In this example, the PWM DC motor control is implemented by manipulating two
digital IO pins and two PWM pins. Furthermore, the move direction is controlled
by the button-on-board: “S0—move forward”, “S1—move backward”, “S2—turn
left”, “S3—turn right”, “S4—stop” (Fig. 4.4).

The schematic of button-on-board is shown as follows.
It can be seen that if no button is pressed, the voltage of Pin A0 is 5 V (1023). If

any button is pressed, the voltage of Pin A0 is less than 5 V and the specific values
are shown in Table 4.3.

4.1 DC Motor 107

4.2 Stepper Motor

4.2.1 Overview

A stepper motor is a brushless, synchronous electric motor that converts digital
pulses into mechanical shaft rotations. Each rotation of a stepper motor is divided
into a set number of steps. The stepper motor must send a separate pulse for each
step. The stepper motor can only receive one pulse and take one step at a time and
each step must be of the same length. Since each pulse results in the motor rotating
at a precise angle, you can precisely control the position of the stepper motor
without any feedback mechanism (an open-loop controller).

As the digital pulses from the controller increase in frequency, the stepping
movement converts into a continuous rotation with the velocity of the rotation
directly proportional to the frequency of the control pulses. Stepper motors are
widely used because of their low cost, high reliability, and high torque at low
speeds. Furthermore, an energized stepper motor maintains full torque at a standstill

Fig. 4.4 Schematic of button-on-board of Romeo board

Table 4.3 Voltage of A0
when button is pressed

Button pressed Voltage (V) ADC value

S1 0 0

S2 0.7 145

S3 1.6 330

S4 2.5 505

S5 3.6 741

108 4 Electromechanical Control Using the Arduino

www.ebook3000.com

http://www.ebook3000.org

position. Their rugged construction enables you to use stepper motors in a wide
environmental range.

4.2.2 Working Principle of Stepper Motor

A stepper motor is constructed from ferromagnetic material with salient poles as
shown in Fig. 4.5. The stator is made from a stack of steel laminations and has six
equally spaced projection poles (or teeth), each wound with an excitation coil. The
rotor, which maybe solid or laminated, has four teeth of the same width. As seen,
there are three independent stator circuits or phases A, B, and C and each one can
be energized by a direct current pulse from the drive circuit.

A simple circuit arrangement for supplying current to the stator coils in proper
sequence is shown in Fig. 4.6. The six stator coils are connected in two-coil groups
to form three separate circuits called phases. Each phase has its own independent
switch. Diametrically, opposite pairs of stator coils are connected in series such that
when one tooth becomes an N-pole, the other becomes an S-pole. Although shown
as mechanical switches in Fig. 4.5, in practice, switching of phase currents is
performed with the help of solid-state control. When there is no current in the stator
coils, the rotor is completely free to rotate. Energizing one or more stator coils
causes the rotor to step forward (or backward) to a position that forms a path of least
resistance with the magnetized stator teeth. The step angle of this three-phase,
four-rotor teeth motor is b ¼ 360

4�3 ¼ 30
�

Fig. 4.5 Structure of stepper
motor

4.2 Stepper Motor 109

In general, there are three kinds of phase current switching modes, i.e.,
one-phase-ON, two-phase-ON, and half-step operation.

As shown in Fig. 4.6, energizing stator phases in sequence A-B-C-A, the rotor
will rotate clockwise in 30° steps. If the switch sequence is made C-B-A-C, the
rotor will rotate anticlockwise. This mode of operation is known as the
one-phase-ON mode operation and is the simplest and most widely used way of
making the motor step. The stator phase switching truth table is shown in Table 4.4.

In Fig. 4.7, If the stator phases are switched in the sequence AB-BC-CA-AB
(shown in Table 4.5), the motor will take full steps of 30° each (as in the
one-phase-ON mode), but its equilibrium positions are interleaved between the
full-step positions.

If the stator phases are excited in the sequence A-AB-B-BC-CA-A (shown in
Table 4.6), i.e., alternately in the one-phase-ON and two-phase-ON modes, then it
is sometimes known as “wave” excitation and it causes the rotor to advance in steps
of 15°.

4.2.3 Driven Principle of Stepper Motor

The stepper motors can be split into two types: unipolars and bipolars. The type of
the motor is important to determine a compatible electronic device. In general, a
stepper motor is controlled by a series of electromagnetic coils surrounding the
shaft and designed to convert the electrical pulse in mechanical movements.

Fig. 4.6 Sequence of supplying current to stator coil

Table 4.4 One-phase-ON
mode “A-B-C-A”

A B C

+ 0 0 0°

0 + 0 30°

0 0 + 60°

+ 0 0 90°

110 4 Electromechanical Control Using the Arduino

www.ebook3000.com

http://www.ebook3000.org

A unipolar stepper motor has one winding with a center tap per phase. Each
section of windings is switched on for each direction of magnetic field. Since in this
arrangement, a magnetic pole can be reversed without switching the direction of the
current, the commutation circuit can be made very simple (e.g., a single transistor)
for each winding. Typically, given a phase, the center tap of each winding is made
common: giving three leads per phase and six leads for a typical two-phase motor.
Often, these two phase commons are internally joined, so the motor has only five
leads. The circuit for a unipolar stepper motor is shown in Fig. 4.8.

A microcontroller or stepper motor controller can be used to activate the drive
transistors in the right order, and this ease of operation makes unipolar motors
popular with hobbyists; they are probably the cheapest way to obtain precise
angular movements.

A

B

C

A

B

C

Vcc

S1

S2

S3

Fig. 4.7 Principle of phase
current switch

Table 4.5 Two-phase-ON
mode “AB-BC-CA-AB”

A B C

+ + 0 15°

0 + + 45°

+ 0 + 75°

+ + 0 105°

Table 4.6 Half-step
operation one-phase-ON and
two-phase-ON mode
“A-AB-B-BC-C-CA-A”

A B C

A + 0 0 0°

AB + + 0 15°

B 0 + 0 30°

BC 0 + + 45°

C 0 0 + 60°

CA + 0 + 75°

A + 0 0 90°

4.2 Stepper Motor 111

Bipolar motors have a single winding per phase. The current in a winding needs
to be reversed in order to reverse a magnetic pole, so the driving circuit must be
more complicated, typically with an H-bridge arrangement (shown in Fig. 4.9).
There are two leads per phase; none are common. Because windings are better
utilized, they are more powerful than a unipolar motor of the same weight. This is
owing to the physical space occupied by the windings.

Though a bipolar stepper motor is more complicated to drive, the abundance of
driver chips means that this is much less difficult to achieve.

Q1
M

A+

A-

B
+ B
-Q1

Q3

Q4

Q5

Q6

Q7

Q8

Vcc

Fig. 4.9 Driven circuits for bipolar stepper motor

M

Q1 Q4Q2 Q3

Vcc

A+

A-

B
+ B
-

Fig. 4.8 Driven circuits for unipolar stepper motor

112 4 Electromechanical Control Using the Arduino

www.ebook3000.com

http://www.ebook3000.org

4.2.4 Driven Circuit Design

There are actually many ways you can interface a stepper motor to your controller;
out of them the most used interfaces are:

• Interface using L293D—H-Bridge Motor Driver
• Interface using ULN2003/2004—Darlington Arrays

1. Connoting bipolar stepper motor using L293D

L293D contains two H-bridges for driving stepper motors. One L293D can, in
theory, drive one bipolar two-phase stepper motor, if you supply the correct
sequence.

L293D IC has 16 pins. Here is how each of the pins should be connected:
Pins 1, 9 Enable pins. Hook them together and you can either keep them high

and run the motor all the time or control them with you own controller.
Pins 3, 6, 11, 14 Here is where you plug in the two coils. To determine which

wires correspond to each coil, you can use a multimeter to measure the resistance
between the wires. The wires that correspond to the same coil have a much lower
resistance than wires that correspond to different coils. Then, you can get one coil
hooked up to Pins 3 and 6 and another one hooked up to Pins 11 and 14.

Pins 4, 5, 12, 13 These are attached to ground.
Pin 8 The motor voltage, for the motors we are using, is 12 V.
Pin 16 +5 V. It is the power supply of the chip and it is a good idea to keep this

power supply separate from your motor power.
Pins 2, 7, 10, 15 Control signals. Here is where you supply the pulse sequence.

The following is how you pulse them for a single cycle (to move the motor in the
opposite direction, just reverse the steps. i.e., from step 4 to step 1).

The driving circuit is shown in Fig. 4.10.

M
A+

A-

B
+ B
-

OUT1
OUT2
OUT3
OUT4 14

3
6
11

V
ss V
s

EN
1

EN
2IN1

IN2
IN3
IN4

G
N

D
G

N
D

G
N

D
G

N
D

15

2
7
10

916 8 1
134 5 12

+5V+12V

D5
D6
D7
D8

L293D

Fig. 4.10 Driving one
stepper motor using L293D

4.2 Stepper Motor 113

As you see in the circuit, above the four Pins “D5, D6, D7, and D8” control the
motion and direction of the stepper motor according to the step sequence pro-
grammed in the controller.

2. Connecting unipolar stepper motor using ULN2003/2004

ULN2003/2004 internally employs high-voltage, high-current Darlington arrays
each containing seven open collector Darlington pairs with common emitters. Each
channel is rated at 500 mA and can withstand peak currents of 600 mA.
Suppression diodes are included for inductive load driving and the inputs are
pinned opposite the outputs to simplify board layout. ULN2003A is of 5 V TTL,
CMOS. These versatile devices are useful for driving a wide range of loads
including solenoids, relays, DC motors, LED displays, filament lamps, thermal
printheads, and high-power buffers. ULN2003A are supplied in 16 pin plastic DIP
packages with a copper leadframe to reduce thermal resistance.

The driven circuit is shown in Fig. 4.11. The Pins 1 to 4 of ULN2003 are
connected to the microcontroller pins. Through Pins 13 to 16 of ULN 2003, stepper
motor draws the control sequence for the sake of rotation. Pin 9 is common and Pin
8 is ground. The sequence 0011 (03H), 0110 (06H), 1100 (0CH), 1001 (09H)
provides maximum torque in a two-phase configuration. This sequence energizes
two adjacent phases, which offers an improved torque-speed product and greater
holding torque.

4.2.5 Demonstration 1

1. Components

• DFRobot UNO R3 board and USB cable � 1
• 28BYJ48 Stepper motor � 1
• ULN2003A � 1
• Jumper wires � n

M

Vcc

A+

A-

B
+ B
-

OUT1
OUT2
OUT3
OUT4 13

16
15
14

IN1
IN2
IN3
IN44

1
2
3

D5
D6
D7
D8

OUT5
OUT6
OUT7

COM 9

12
11
10

IN5
IN6
IN7

GND8

5
6
7

GND

ULN2003

Fig. 4.11 Driving one
stepper motor using
ULN2003

114 4 Electromechanical Control Using the Arduino

www.ebook3000.com

http://www.ebook3000.org

2. Hardware Setting

In this example, the driven chip ULN2003 is used, the connecting diagram is shown
in Fig. 4.12. This is the simplest way of interfacing a unipolar stepper to Arduino.

Fig. 4.12 UNO board and driven circuit diagram

4.2 Stepper Motor 115

2. Sample Codes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

// Controlling a servo position using a potentiometer (variable

resistor)

int motorPin1 = 2; // input 1 of the stepper

int motorPin2 = 3; // input 2 of the stepper

int motorPin3 = 4; // input 3 of the stepper

int motorPin4 = 5; // input 4 of the stepper

int delayTime = 500;
int stepDelay = 25; // Delay between steps in milliseconds

void setup() {
pinMode(motorPin1, OUTPUT);
pinMode(motorPin2, OUTPUT);
pinMode(motorPin3, OUTPUT);
pinMode(motorPin4, OUTPUT);

}
void loop() {
direction1();

}

void direction1() {
21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

A();
BB();
AA();
B();

}

void direction2() {
B();
AA();
BB();
A();

}

void A() {
digitalWrite(motorPin1, HIGH);
digitalWrite(motorPin2, LOW);
digitalWrite(motorPin3, LOW);
digitalWrite(motorPin4, LOW);
delay(delayTime);

}

116 4 Electromechanical Control Using the Arduino

www.ebook3000.com

http://www.ebook3000.org

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

void AA() {
digitalWrite(motorPin1, LOW);
digitalWrite(motorPin2, HIGH);
digitalWrite(motorPin3, LOW);
digitalWrite(motorPin4, LOW);
delay(delayTime);

}
void BB() {
digitalWrite(motorPin1, LOW);
digitalWrite(motorPin2, LOW);
digitalWrite(motorPin3, LOW);
digitalWrite(motorPin4, HIGH);
delay(delayTime);

}
void B() {
digitalWrite(motorPin1, LOW);
digitalWrite(motorPin2, LOW);
digitalWrite(motorPin3, HIGH);
digitalWrite(motorPin4, LOW);
delay(delayTime);

}

4.2.6 Demonstration 2

1. Components

• DFRobot UNO R3 board and USB cable � 1
• 42BYGH1861A-C Stepper motor � 1
• DRI0023 (Stepper Motor Shield) � 1
• Jumper wires � n

2. Hardware Setting

In this example, the stepper motor shield (DRI0023) is used, which can be plugged
into the UNO directly. Using this stepper motor shield, you can easily drive two
stepper motors via just four digital I/Os (digital pins: 4, 5, 6, 7) (Fig. 4.13).

4.2 Stepper Motor 117

3. Sample Codes

1

2

3

4

int M1dirpin = 4; // define the motor digital pin

int M1steppin = 5;
int M2dirpin = 7;
int M2steppin = 6;

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

void setup() {
pinMode(M1dirpin, OUTPUT);
pinMode(M1steppin, OUTPUT);
pinMode(M2dirpin, OUTPUT);
pinMode(M2steppin, OUTPUT);

}
void loop() {
delayMicroseconds(2);
digitalWrite(M1dirpin, LOW);
digitalWrite(M2dirpin, LOW);
for (int j = 0; j <= 5000; j++) {
digitalWrite(M1steppin, LOW);
digitalWrite(M2steppin, LOW);
delayMicroseconds(2);
digitalWrite(M1steppin, HIGH);
digitalWrite(M2steppin, HIGH);
delay(1);

}
}

Fig. 4.13 Stepper motor and Romeo board connection diagram

118 4 Electromechanical Control Using the Arduino

www.ebook3000.com

http://www.ebook3000.org

4.3 Servo Motor

4.3.1 Overview

Servo motors are small controllable motors that tend to be implemented in many
applications. There are servos with many different speeds, sizes, and torque capa-
bilities, but all have three wires, power, ground, and control. Servo motors are
popular with hobbyists because they are inexpensive, $15–$100, and control of
servo motors with microcontrollers is universal for all models. Servos receive pulse
width modulated (PWM) signals to determine in which manner to move.

A servo motor consists of several main parts, the motor and gearbox, a position
sensor, an error amplifier and motor driver, and a circuit to decode the requested
position. Figure 4.14 contains a block diagram of a typical servo motor unit.

At the initial position of a servo motor shaft, the position of the potentiometer
knob is such that there is no electrical signal generated at the output port of the
potentiometer. This output port of the potentiometer is connected to one of the input
terminals of the error detector amplifier. Another input terminal of the error detector
amplifier is connected to an external source. Then, the difference between these two
signals is amplified in the error detector amplifier to feed the DC motor. This
amplified error signal acts as the input power of the DC motor and the motor starts
rotating in the desired direction. As the motor shaft progresses, the potentiometer
knob also rotates as it is coupled with a motor shaft with the help of a gear
arrangement. As the position of the potentiometer knob changes, there is an elec-
trical signal produced at the potentiometer port. As the angular position of the
potentiometer knob progresses, the output or feedback signal increases. After the

Fig. 4.14 Schematic of DC servo motor

4.3 Servo Motor 119

desired angular position of the motor shaft is achieved, the potentiometer knob
reaches to a position such that the electrical signal generated in the potentiometer
becomes the same as that of the external electrical signal given to the amplifier. At
this stage, there is no output signal from the amplifier to the motor input, as there is
no difference between the externally applied signal and the signal generated at the
potentiometer. As a result, the motor stops rotating.

Servo motors are being used in a wide variety of robots, machines, and general
robotic applications, including: robotic arms, radio-controlled toy cars, airplanes,
and helicopters, industrial machinery, and many more applications. There are many
reasons that make servo motors so common—their ease of control, the low energy
requirements (efficiency), the high torque, TTL voltage level control, and even the
physical properties; servo motors are relatively small sized and have a low weight.

FYI Comparison between servo motors and stepper motors
■ The most significant difference between servo motors and stepper motors is the fact

that servo motors operate in a closed loop, while stepper motors operate in an open
loop. This means that servo motors have an internal feedback—they are able to
measure their position, the difference between the actual position and the desired
position, and to fix the gap by controlling the motor. Stepper motors, on the other
hand, have no feedback and thus are more error-prone

■ RC Servo motors are limited to 0°–180° of movement and require physical and
electrical modification in order to be able to move in 360°. Stepper motors do not
have this limit

■ Stepper motors are usually cheaper than servo motors
■ Stepper motors lose torque in high rotational speeds, while servo motors do not

4.3.2 Driven Circuit Design

Servo motors are controlled through a control line, usually yellow in color. The
pulse width of the signal sent to the servo control wire determines how the motor
will move, either clockwise or counterclockwise. The signal is known as a pulse
proportional modulation (PPM). PPM uses 1–2 ms out of a 20 ms time period to
encode its information. The servo expects to see a pulse every 20 ms. The length of
the pulse will determine how far the motor turns. A 1.5 ms pulse will make the
motor turn to a 90° position (often called the neutral position). If the pulse is shorter
than 1.5 ms, then the motor will turn the shaft closer to 0°. If the pulse is longer
than 1.5 ms, the shaft turns closer to 180°. Figure 4.15 shows how different pulse
widths correspond to different positions of the motor.

The amount of power applied to the motor is proportional to the distance it needs
to travel. Therefore, if the shaft needs to turn a large distance, the motor will run at
full speed. If it needs to turn only a small amount, the motor will run at a slower
speed. When the servo motor reaches the desired position, it will hold there until a
signal is sent to move.

120 4 Electromechanical Control Using the Arduino

www.ebook3000.com

http://www.ebook3000.org

4.3.3 Demonstration

1. Components

• DFRobot UNO R3 board and USB cable � 1
• 10 k ohm potentiometer � 1
• Servo motor � 1
• Jumper wires � n

4.4 Hardware Setting

Servo motors have three wires: power, ground, and signal. The power wire is
typically red, and should be connected to the 5 V pin on the UNO board. The
ground wire is typically black or brown and should be connected to a ground pin on
the board. The signal pin is typically yellow or orange and should be connected to
Pin 9 on the board. (shown in Fig. 4.16). Furthermore, a potentiometer is also used
to control the servo position.

1ms

1.5ms

2ms

Minimum Pulse

Neutral Position

Maximum Pulse

Fig. 4.15 Pulse widths and their corresponding position of the servo motor

4.3 Servo Motor 121

1. Sample Codes

1

2

3

4

5

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int potpin = 0; // analog pin used to connect the potentiometer

int val; // variable to read the value from the analog pin

void setup() {
6

7

8

9

10

11

12

13

14

15

16

17

18

19

myservo.attach(9); // attaches the servo on pin 9 to the servo

object

}

void loop() {
val = analogRead(potpin); // reads the value of the potentiometer

(value between 0 and 1023)

val = map(val, 0, 1023, 0, 180); // scale it to use it with the

servo (value between 0 and 180)

myservo.write(val); // sets the servo position according to the

scaled value

delay(15); // waits for the servo to get there

}

Fig. 4.16 Servo motor and Romeo board connection diagram

122 4 Electromechanical Control Using the Arduino

www.ebook3000.com

http://www.ebook3000.org

4.5 Explanation

#include < Servo.h>
The #include <Servo.h> loads the necessary code to use a servo motor. After

including it, you can initialize the servo motor with Servo myservo. which defines
the motor and gives it the name myservo, which is how it will be referred to in the
rest of the code. Before using it, you should download the library from http://
playground.arduino.cc/uploads/ComponentLib/SoftwareServo.zip.

myservo.attach(pin)
myservo.attach(9) turns on the servo and informs the code that the servo can be

accessed through digital Pin 9.
There is another syntax of attach(): servo.attach(pin, min, max)
pin: the number of the pin that the servo is attached to
min (optional): the pulse width, in microseconds, corresponding to the minimum

(0°) angle on the servo (defaults to 544)
max (optional): the pulse width, in microseconds, corresponding to the maxi-

mum (180°) angle on the servo (defaults to 2400)
myservo.write(angle)
This code will inform the servo motor to move forward for the degree within the

servo1.write(val) command, then waits 15 ms in the delay(15)command
angle: the value to write to the servo, from 0 to 180.
myservo.read()
Reads the current angle of the servo (the value passed to the last call to write()).

The angle of the servo, from 0° to 180°.
myservo.detach()
Detach the myservo variable from its pin. If all myservo variables are detached,

then Pins 9 and 10 can be used for PWM outputs with analogWrite().
myservo.writeMicroseconds(uS)
Writes a value in microseconds (uS) to the servo, controlling the shaft accord-

ingly. On a standard servo, this will set the angle of the shaft. On standard servos, a
parameter value of 1000 is fully counterclockwise, 2000 is fully clockwise, and
1500 is in the middle.

Note that some manufactures do not follow this standard very closely so that
servos often respond to values between 700 and 2300. Feel free to increase these
endpoints until the servo no longer continues to increase its range. Note however
that attempting to drive a servo past its endpoints (often indicated by a growling
sound) is a high-current state, and should be avoided.

myservo.readMicroseconds()
uS: the value of the parameter in microseconds (int)
Returns the last written servo pulse width in microseconds.

4.5 Explanation 123

http://playground.arduino.cc/uploads/ComponentLib/SoftwareServo.zip
http://playground.arduino.cc/uploads/ComponentLib/SoftwareServo.zip

Chapter 5
Wireless Control Using the Arduino

5.1 Infrared Transmitter and Receiver Module

5.1.1 Introduction

An infrared (IR) transmitter consists of an infrared LED array, which functions as a
luminophore, and a PN junction made of a special material with high infrared
radiation efficiency, which is usually GaAs. When a current is injected into the PN
junction by a forward bias voltage, it can excite a source of infrared light with a
center wavelength range of 830–950 nm. The power of the infrared light excited is
proportional to the current injected. However, in the case that the injected current
exceeds the maximum rating, the power of the infrared light may decline as the
current increases.

The infrared receiver is a semiconductor device used for translating infrared light
signals into electrical signals. The core component of it is a PN junction made of a
special material. The PN junction has a different structure from a general purpose
diode, enabling more infrared light to be received. As the intensity of the infrared
light increases, more current can be generated.

The schematic diagram of an IR transmitter/receiver is shown in Fig. 5.1.
In an IR transmitter/receiver module, the data being transmitted is wrapped by

start and stop bits. The start bits alert the receiver that a command will soon follow,
and the stop bits indicate that the transmission has ended. One downfall of using
infrared for data transmission is the presence of infrared sources other than that of
the data transmitter. Because of environmental infrared noise, infrared transmitters
are designed to oscillate at a certain frequency. The receiver is simply “tuned” to
react to that frequency. It will ignore any infrared signals that are outside of that
carrier frequency, much the way your radio is tuned to your favorite FM channel.

© Springer Nature Singapore Pte Ltd. 2018
T. Pan and Y. Zhu, Designing Embedded Systems with Arduino,
DOI 10.1007/978-981-10-4418-2_5

125

www.ebook3000.com

http://www.ebook3000.org

A common modulation scheme for IR communication is somewhere around
38 kHz. There are very few natural sources that have the regularity of a 38 kHz
signal, so an IR transmitter sending data at that frequency would stand out among
ambient IR. 38 kHz modulated IR data is most common, but other frequencies are
also used.

5.1.2 IR Transmitter/Receiver Module

1. Components

• DFRobot UNO R3 board and USB cable � 2.
• IR Receiver Module (SKU:DFR0094) � 1.
• IR Transmitter Module (SKU:DFR0095) � 1.
• Jumper wires � n.

2. Hardware setting (Figs. 5.2 and 5.3).

Encrypt &
Modulation

Photoelectric
Amplification DemodulationEncoder

MCU
Decoder

MCU

IR Transmitter IR Receiver

Fig. 5.1 IR transmitter/receiver principle

Fig. 5.2 A diagram of the layout of the IR transmitter and UNO R3

126 5 Wireless Control Using the Arduino

3. Sample Codes
The first thing you need to do is install the IR Arduino library, the IR library can
be found at https://github.com/z3t0/Arduino-IRremote.
The codes for the IR Transmitter:

1

2

3

4

5

6

7

8

9

10

11

#include <IRremote.h>

IRsend irsend;
void setup() {
}

void loop() {
irsend.sendRC5(0x0, 8); //send 0x0 code (8 bits)

delay(200);
irsend.sendRC5(0x1, 8);
delay(200);

}

The codes for the IR receiver:

Fig. 5.3 A diagram of the layout of the IR receiver and UNO R3

5.1 Infrared Transmitter and Receiver Module 127

www.ebook3000.com

https://github.com/z3t0/Arduino-IRremote
http://www.ebook3000.org

1

2

3

4

5

6

7

8

#include <IRremote.h>

const int RECV_Pin = 11; // IR Sensor pin

const int LED_Pin = 13; // LED pin

IRrecv irrecv(RECV_Pin);
decode_results results;

void setup() {
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Serial.begin(9600); // configure the baudrate

irrecv.enableIRIn(); // Start the receiver

}

void loop() {
if (irrecv.decode(&results)) {
if (results.bits > 0) {
int state;
if (0x1 == results.value) {
state = HIGH;

}
else {
state = LOW;

}
digitalWrite(LED_Pin, state);

}
irrecv.resume(); // prepare to receive the next value

}
}

4. Results
The LED of the shield connected to the IR Receiver will blink when the IR
Receiver faces the IR Transmitter.

5.1.3 IR Kit

1. Comp7onents

• DFRobot UNO R3 microcontroller board and USB cable � 1.
• IR Kit (SKU:DFR0107) � 1.
• Jumper wires � n.

2. Hardware setting (Fig. 5.4)

128 5 Wireless Control Using the Arduino

Fig. 5.4 A diagram of the
layout of DFR0107 and UNO
R3

5.1 Infrared Transmitter and Receiver Module 129

www.ebook3000.com

http://www.ebook3000.org

3. Sample Codes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

#define IR_BIT_LENGTH 32 // number of bits sent by IR remote

#define FirstLastBit 15 // divide 32 bits into two 15 bit chunks

for integer variables. Ignore center two bits. they are all the

same.

#define BIT_1 1500 // Binary 1 threshold (Microseconds)

#define BIT_0 450 // Binary 0 threshold (Microseconds)

#define BIT_START 4000 // Start bit threshold (Microseconds)

#define IR_Pin 8 // IR Sensor pin

#define LED_Pin 13 // LED goes off when signal is received

int debug = 0; // flag as 1 to output raw IR pulse data stream

length in microseconds

int output_verify = 0; // flag as 1 to print decoded verification

integers. same number for all buttons

int output_key = 0; // flag as 1 to print decoded key integers

int remote_verify = 16128; // verifies first bits are

11111100000000 different remotes may have different start codes

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

void setup() {
pinMode(LED_Pin, OUTPUT); //configure the pin

pinMode(IR_Pin, INPUT);
digitalWrite(LED_Pin, LOW); // turn off

Serial.begin(9600);
}

void loop() {
digitalWrite(LED_Pin, HIGH);
int key = get_ir_key();
digitalWrite(LED_Pin, LOW); // turn LED off while processing

response

do_response(key);
delay(130); // 2 cycle delay to cancel duplicate keypresses

}

/* wait for a keypress from the IR remote, and return the

integer mapping of that key (e.g. power button on remote returns

the integer 1429) */

int get_ir_key() {
int pulse[IR_BIT_LENGTH];
int bits[IR_BIT_LENGTH];

do {} //Wait for a start bit

130 5 Wireless Control Using the Arduino

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

while (pulseIn(IR_Pin, HIGH) < BIT_START);

read_pulse(pulse);
pulse_to_bits(pulse, bits);
RemoteVerify(bits);
return bits_to_int(bits);

}

/* use pulseIn to receive IR pulses from the remote.

Record the length of these pulses (in ms) in an array */

void read_pulse(int pulse[]) {
for (int i = 0; i < IR_BIT_LENGTH; i++) {
pulse[i] = pulseIn(IR_Pin, HIGH);

}
}

/* IR pulses encode binary "0" as a short pulse, and binary "1"

as a long pulse. Given an array containing pulse lengths,

convert this to an array containing binary values */

void pulse_to_bits(int pulse[], int bits[]) {
64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

if (debug) {
Serial.println("-----");

}
for (int i = 0; i < IR_BIT_LENGTH; i++) {

if (debug) {
Serial.println(pulse[i]);

}
if (pulse[i] > BIT_1) { //is it a 1?

bits[i] = 1;
}
else if (pulse[i] > BIT_0) { //is it a 0?

bits[i] = 0;
}
else { //data is invalid...

Serial.println("Error");
}

}
}

/* check returns proper first 14 check bits */

void RemoteVerify(int bits[]) {
int result = 0;
int seed = 1;

5.1 Infrared Transmitter and Receiver Module 131

www.ebook3000.com

http://www.ebook3000.org

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

//Convert bits to integer

for (int i = 0 ; i < (FirstLastBit) ; i++) {
if (bits[i] == 1) {
result += seed;

}
seed *= 2;

}
if (output_verify) {
Serial.print("Remote ");
Serial.print(result);
Serial.println(" verification code");

}
if (remote_verify != result) {
delay (60); //verify first group of bits. delay for data

stream to end, then try again.

get_ir_key();
}

}

/* convert an array of binary values to a single base-10 integer

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

*/

int bits_to_int(int bits[]) {
int result = 0;
int seed = 1;

//Convert bits to integer

for (int i = (IR_BIT_LENGTH - FirstLastBit) ; i < IR_BIT_LENGTH ;
i++) {

if (bits[i] == 1) {
result += seed;

}
seed *= 2;

}
return result;

}

/* respond to specific remote-control keys with different

behaviors */

void do_response(int key) {
if (output_key) {
Serial.print("Key ");
Serial.println(key);

}

132 5 Wireless Control Using the Arduino

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

switch (key) {
case 32640: // turns on UUT power

Serial.println("POWER");
break;

case 32385: // FUNC/STOP turns off UUT power

Serial.println("FUNC/STOP");
break;

case 32130: // |<< ReTest failed Test

Serial.println("|<<");
break;

case 32002: // >|| Test

Serial.println(">||");
break;

case 31875: // >>| perform selected test number

Serial.println(">>|");
break;

case 32512: // VOL+ turns on individual test beeper

Serial.println("VOL+");
break;

case 31492: // VOL- turns off individual test beeper

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

Serial.println("VOL-");
break;

case 31620: // v scroll down tests

Serial.println("v");
break;

case 31365: // ^ scroll up tests

Serial.println("^");
break;

case 30982: // EQ negative tests internal setup

Serial.println("EQ");
break;

case 30855: // ST/REPT Positive tests Select Test and Repeat

Test

Serial.println("ST/REPT");
break;

case 31110: // 0

Serial.println("0");
break;

case 30600: // 1

Serial.println("1");
break;

case 30472: // 2

Serial.println("2");
break;

5.1 Infrared Transmitter and Receiver Module 133

www.ebook3000.com

http://www.ebook3000.org

4. Results
The sketch will automatically decode the type of remote you are using and
identify which button on your remote has been pressed. Open the serial port in
the Arduino IDE at 9600 bps and hit different buttons on your remote (shown in
Fig. 5.3) (Fig. 5.5).
In IR kit, every button on the remote control has a corresponding value (shown
in Table 5.1).

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

case 30345: // 3

Serial.println("3");
break;

case 30090: // 4

Serial.println("4");
break;

case 29962: // 5

Serial.println("5");
break;

case 29835: // 6

Serial.println("6");
break;

case 29580: // 7

Serial.println("7");
break;

case 29452: // 8

Serial.println("8");
break;

case 29325: // 9

Serial.println("9");
196

197

198

199

200

201

202

203

204

205

206

207

208

break;
default: {

Serial.print("Key ");
Serial.print(key);
Serial.println(" not programmed");

}
break;

}
}

134 5 Wireless Control Using the Arduino

Table 5.1 The value of characters in remote control

Characters in remote control Value Characters in remote control Value

Power (red) 0xff00 ST/REPT 0xf10e

VOL+ 0xfe01 1 0xef10

FUNC/STOP 0xfd02 2 0xee11

0xfb04 3 0xed12

0xfa05 4 0xeb14

0xf906 5 0xea15

▼ 0xf708 6 0xe916

VOL− 0xf609 7 0xe718

▲ 0xf50a 8 0xe619

0 0xf30c 9 0xe51a

EQ 0xf20d

Fig. 5.5 DFR0107 output in Arduino serial monitor

5.1 Infrared Transmitter and Receiver Module 135

www.ebook3000.com

http://www.ebook3000.org

5.2 2.4G Wireless Radio Frequency Module

5.2.1 Introduction

nRF24L01 is a single chip radio transceiver for the worldwide 2.4–2.5 GHz ISM
band. The channel spacing is 1 MHz, which allows for 125 possible channels
numbered 0, 1, 2, …, 124. The transceiver consists of a fully integrated frequency
synthesizer, a power amplifier, a crystal oscillator, a demodulator, modulator, and
enhanced ShockBurst™ protocol engine. Output power, frequency channels, and
protocol setup are easily programmable through an SPI interface. Current con-
sumption is very low, only 9.0 mA at an output power of −6 dBm and 12.3 mA in
the RX mode. Built in Power Down and Standby modes makes power saving easily
realizable. The key features of the nRF24L01 are as follows (source, http://www.
nordicsemi.com/eng/Products/2.4 GHz-RF/nRF24L01P):

• Worldwide 2.4 GHz ISM band (free, unlicensed band)
• 250 kbps, 1 Mbps, and 2 Mbps on air data rates
• Ultra-low power (11.3 mA Tx with 1 mW output power, down to 26 lA in

standby-I and 900 nA in the power down mode)
• 1.9–3.6 V supply voltage, with 5 V tolerant input pins
• Automatic acknowledgment message transmissions with automatic retries
• RX and TX FIFO’s with ACK user data possibility
• Up to 6 data pipes/addresses for a simplified star network

5.2.2 2.4 GHz Wireless RF Transceiver Module

NRF24L01 wireless RF transceiver module is a great wireless module suitable for
short range 100 m remote controls at a 250 kbps data rate. They are transceivers,
which means that each module can transmit and receive data. The module shape is
shown in Fig. 5.2 and has the following pins connected to a microcontroller
(Fig. 5.6):

Fig. 5.6 nRF24L01 Wireless RF Transceiver Module

136 5 Wireless Control Using the Arduino

http://www.nordicsemi.com/eng/Products
http://www.nordicsemi.com/eng/Products

• GND: Ground.
• VCC: 3.3 V.
• CE: Chip (RX/TX) Enable, high active. If high, module is either sending or

listening.
• CSN: Chip Select Not, low active. If low, the chip responds to SPI commands.

This is actually the “real” chip select signal, and is easily confused with CE,
which enables/disables the transceiver radio part.

• SCK: SPI Shift Clock, up to 10 MHz.
• MOSI: Master-Out-Slave-In, used to shift data from the microcontroller to the

device.
• MISO: Master-In-Slave-Out, used to shift data from the device to the

microcontroller.
• IRQ: Optional Interrupt Request pin. Signals RX/TX status such as packet sent

or received.

The schematic diagram of the module is shown in Fig. 5.7:

Fig. 5.7 Schematic of NRF24L01 wireless RF transceiver module

5.2 2.4G Wireless Radio Frequency Module 137

www.ebook3000.com

http://www.ebook3000.org

5.2.3 Demonstration

The experiment is to have the A0 and A1 analog pins collect the X and Y values of
the joystick, and send the data wirelessly via the NRF24L01 module.

1. Components

• DFRobot UNO R3 microcontroller board and USB cable � 2.
• NRF24L01 wireless RF transceiver module � 2.
• DFR0061 (joystick module) � 1.
• Jumper wires � n.

2. Hardware setting
There are eight pins on the NRF24L01 RF module, with two power pins for the
VCC and GND, the CE pin, SCN pin, SCK, MOSI, MISO, and IRQ pin. Refer
below for the hardware setup.
To setup the NRF24L01 as a transmitter on the Arduino, the wiring connections
are shown in Fig. 5.8. In this diagram, the joystick module is powered by 5 V
and GND on Arduino, while Horizontal (X axis) is set to A0 and Vertical
(Y axis) is set to A1 of Arduino, we leave the Select (Z axis for “1” and “0”)
unconnected.
To setup the NRF24L01 RF module as a receiver to sync the data at 2.4 GHz
band, we setup a separate Arduino and NRF24L01 module as in the setup in the
picture below. The wire connections are the same as the transmitter (Table 5.2;
Fig. 5.9).

Fig. 5.8 A transmitter diagram of the layout of the nRF24L01 and UNO R3

138 5 Wireless Control Using the Arduino

3. Sample Codes
Download the RF24 Library (https://github.com/maniacbug/RF24) for
NRF24L01, and write the sketch below to be uploaded to Arduino.

Table 5.2 Wiring
connecting between
Arduino UNO and nRF24L01

Number nRF24L01 Arduino UNO

1 VCC 3.3 V

2 GND GND

3 CE D9

4 CSN D10

5 SCK D13

6 MOSI D11

7 MISO D12

8 IRQ Un-connecting

Fig. 5.9 A Receiver diagram of the layout of the nRF24L01 and UNO R3

5.2 2.4G Wireless Radio Frequency Module 139

www.ebook3000.com

https://github.com/maniacbug/RF24
http://www.ebook3000.org

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

#include <SPI.h>

#include <nRF24L01.h>

#include <RF24.h>

#define CE_PIN 9

#define CSN_PIN 10

#define JOYSTICK_X A0

#define JOYSTICK_Y A1

const uint64_t pipe = 0xE8E8F0F0E1LL;
RF24 radio(CE_PIN, CSN_PIN);
int joystick[2];
void setup() {
Serial.begin(9600);
radio.begin();
radio.openWritingPipe(pipe);

}

void loop() {
joystick[0] = analogRead(JOYSTICK_X);
joystick[1] = analogRead(JOYSTICK_Y);
radio.write(joystick, sizeof(joystick));

}
Upload the sketch below to Arduino to open up the reading pipe, listen, and read
the joystick X and Y data wirelessly via radio frequency. The data is then serial
printed and can be checked via the Serial Monitor on the Arduino software.

140 5 Wireless Control Using the Arduino

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

#include <SPI.h>

#include <nRF24L01.h>

#include <RF24.h>

#define CE_PIN 9

#define CSN_PIN 10

const uint64_t pipe = 0xE8E8F0F0E1LL;
RF24 radio(CE_PIN, CSN_PIN);
int joystick[2];

void setup() {
Serial.begin(9600);
delay(1000);
Serial.println(“Nrf24L01 Receiver Starting”);
radio.begin();

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

radio.openReadingPipe(1, pipe);
radio.startListening();;

}

void loop() {
if (radio.available()) {
bool done = false;
while (!done) {
done = radio.read(joystick, sizeof(joystick));
Serial.print(“X = “);
Serial.print(joystick[0]);
Serial.print(“Y = “);
Serial.println(joystick[1]);

}
}
else {
Serial.println(“No radio available”);

}
}

4. Results
Connect the receiver to the computer, open up the Arduino software and Serial
Monitor, the X and Y data of the joystick shall be printed out as in Fig. 5.10.

5.2 2.4G Wireless Radio Frequency Module 141

www.ebook3000.com

http://www.ebook3000.org

5.3 Bluetooth Module

5.3.1 Introduction

Bluetooth® wireless technology is becoming a popular standard in communication.
It is one of the fastest growing fields in wireless technologies. It is convenient to use
and has the bandwidth to meet most of today’s demands for mobile and personal
communications (using short-wavelength UHF radio waves in the ISM band from
2.4 to 2.485 GHz). Bluetooth technology handles the wireless part of the com-
munication channel; it transmits and receives data wirelessly between these devices.
It delivers the received data and receives the data to be transmitted to and from a
host system through a host controller interface (HCI). The most popular host
controller interface today is either a UART or a USB.

Bluetooth is a packet-based protocol with a master–slave structure. One master
may communicate with up to seven slaves in a piconet. All devices share the
master’s clock. Packet exchange is based on the basic clock, defined by the master,
which ticks at 312.5 ls intervals. Two clock ticks make up a slot of 625 ls, and
two slots make up a slot pair of 1250 ls. In the simple case of single-slot packets,
the master transmits in even slots and receives in odd slots. The slave, conversely,
receives in even slots and transmits in odd slots. Packets may be 1, 3, or 5 slots

Fig. 5.10 nRF24L01 result in Arduino serial monitor

142 5 Wireless Control Using the Arduino

long, but in all cases the master’s transmission begins in even slots and the slave’s
in odd slots.

5.3.2 HC-05 Module

The HC-05 module is one of the easiest Bluetooth module that we can find in the
market, it is also very cheap and suitable for those who are cost conscious. The
module shape is shown in Fig. 5.11 and has the following pins connected to a
microcontroller:

• EN/KEY: If the pin is set as HIGH before the power is applied, it forces the AT
Command Setup Mode. LED blinks slowly (2 s)

• VCC: +5 Power
• GND: System/ Arduino Ground
• TX: Transmit Serial Data from HC-05 to Arduino Serial Receive. NOTE: 3.3 V

HIGH level: OK for Arduino
• RX: Receive Serial Data from Arduino Serial Transmit
• STATE: Informs if connected or not

The module has two modes of operation, Command Mode where we can send
AT commands to it and Data Mode where it transmits and receives data to another
Bluetooth module. The default mode is the DATA Mode, and this is the default
configuration, which may work fine for many applications:

Fig. 5.11 HC-05 Module

5.3 Bluetooth Module 143

www.ebook3000.com

http://www.ebook3000.org

• Baud Rate: 9600 bps, Data: 8 bits, Stop Bits: 1 bit, Parity: None, Handshake:
None

• Passkey: 1234

In some cases, you may want to change some of the configuration setup values.
HC-05 comes with a rich set of AT commands (shown in Table 5.3) to perform
various tasks such as changing the module’s default settings including changing the
pass code, the device name, and the baud rate.

The HC-05 module can switch roles from the master to slave structure; its
original password is 1234. As a master structure, the HC-05 module cannot store a
slave structure in its original setting, but only after communicating the slave
structure by setting the AT command—AT + CMODE = 0; it can, however,
communicate with any slave. It can also communicate by appointing specific
addresses of mobile phones, computers, and slave structures. In the meantime, the
master structure is able to automatically scan slave structures by default.

5.3.3 Modify HC-05 Module Defaults Using at Commands

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• HC-05 Bluetooth Module � 1.
• Jumper wires � n.

2. Hardware setting
In this experiment, the Arduino does two things. It takes the AT commands you
enter from the Arduino IDE Serial Monitor and sends those commands to
HC-05. The program then reads the output of HC-05 and displays it on the
Arduino IDE Serial Monitor.
The Arduino communicates with the HC-05 using SoftwareSerial ports while
the Arduino communicates with the user via the Serial Monitor (Fig. 5.12).

3. Sample Codes
For the HC-05 module to switch to the AT command mode, the HC-05 pin 34
(often referred to as the Key pin) needs to be pulled HIGH but in a certain order
of events explained below. When in the AT command mode, the LED on the
HC-05 needs to blink on/off every second and the HC-05 needs to communicate
at 38,400 baud rate.

144 5 Wireless Control Using the Arduino

T
ab

le
5.
3

T
he

m
ai
n
A
T
co
m
m
an
ds

of
bl
ue
to
ot
h

C
om

m
an
d

R
es
po

ns
e

Pa
ra
m
et
er

D
es
cr
ip
tio

n

A
T

O
K

N
on

e
T
es
t

A
T
+
R
E
SE

T
O
K

N
on

e
R
es
et

A
T
+
V
E
R
SI
O
N
?

+V
E
R
SI
O
N
:
<P

ar
am

>
O
K

V
er
si
on

nu
m
be
r

G
et

th
e
so
ft
ve
rs
io
n

A
T
+
O
R
G
L

O
K

N
on

e
R
es
to
re

de
fa
ul
t
st
at
us

A
T
+
A
D
D
R
?

+A
D
D
R
:
<P

ar
am

>
O
K

B
lu
et
oo

th
ad
dr
es
s

G
et

m
od

ul
e
bl
ue
to
ot
h
ad
dr
es
s

A
T
+
N
A
M
E
?

+N
A
M
E
<P

ar
a1
>
O
K

B
lu
et
oo

th
de
vi
ce

na
m
e
D
ef
au
lt:

“H
C
-0
5”

Se
t/i
nq

ui
re

de
vi
ce
’s

na
m
e

A
T
+
N
A
M
E
=
<P

ar
a1
>

1.
+A

T
+
N
A
M
E
:
<P

ar
a1
>
O
K

(s
uc
ce
ss
)

2. E
R
R
O
R

=
<E

rr
or
_C

od
e>

(f
ai
lu
re
)

A
T
+
R
O
L
E
?

+R
O
L
E
:
<P

ar
am

>
O
K

0-
Sl
av
e

1-
M
as
te
r

2-
Sl
av
e-
L
oo

p
D
ef
au
lt:

0

Se
t/i
nq

ui
re

m
od

ul
e
ro
le

(m
as
te
r
of

sl
av
e)

A
T
+
R
O
L
E
=
<P

ar
am

>
O
K

A
T
+
PS

W
D

=
<P

ar
am

>
O
K

Pa
ra
m
:
pa
ss
ke
y
D
ef
au
lt:

“1
23

4”
Se
t/i
nq

ui
re
-p
as
sk
ey

A
T
+
PS

W
D
?

+
PS

W
D
:
<P

ar
am

>
O
K

A
T
+
U
A
R
T
?

+U
A
R
T
=
<P

ar
am

1>
,
<P

ar
am

2>
,

<P
ar
am

3>
O
K

Pa
ra
1:

ba
ud

ra
te

(b
its
/s
),

th
e
va
lu
e
(D

ec
im

al
)
sh
ou

ld
be

on
e
of

th
e
fo
llo

w
in
g:

48
00

,9
60

0,
19

,2
00

,3
8,
40

0,
57

,6
00

,1
15

,2
00

,2
3,
40

0,
46

0,
80

0,
92

1,
60

0,
1,
38

2,
40

0
Pa
ra
2:

st
op

bi
t
0–
1

bi
t
1–
2
bi
ts

Pa
ra
3:

pa
ri
ty

bi
t

Se
t/I
nq

ui
re
-s
er
ia
l
pa
ra
m
et
er

A
T
+
U
A
R
T
=
<P

ar
a1
>,

<P
ar
a2
>,

<P
ar
a3
>

O
K

A
T
+
ST

A
T
E
?

+S
T
A
T
E
:
<P

ar
am

>
O
K

“I
N
IT
IA

L
IZ
E
D
”-
in
iti
al
iz
ed

st
at
us

“R
E
A
D
Y
”-
re
ad
y
st
at
us

G
et

th
e
w
or
k
st
at
us

of
bl
ue
to
ot
h
m
od

ul
e

(c
on

tin
ue
d)

5.3 Bluetooth Module 145

www.ebook3000.com

http://www.ebook3000.org

T
ab

le
5.
3

(c
on

tin
ue
d)

C
om

m
an
d

R
es
po

ns
e

Pa
ra
m
et
er

D
es
cr
ip
tio

n

“P
A
IR
A
B
L
E
”-
pa
ir
ab
le

st
at
us

“P
A
IR
E
D
”-
pa
ir
ed

st
at
us

“I
N
Q
U
IR
IN

G
”-
in
qu

ir
in
g
st
at
us

“C
O
N
N
E
C
T
IN

G
-c
on

ne
ct
in
g
st
at
us

“C
O
N
N
E
C
T
E
D
”-
co
nn

ec
te
d
st
at
us

“D
IS
C
O
N
N
E
C
T
E
D
”-
di
sc
on

ne
ct
ed

st
at
us

“N
U
K
N
O
W
”-
un

kn
ow

n
st
at
us

A
T
+
C
M
O
D
E
=
1

O
K

N
on

e
M
ak
e
th
e
m
as
te
r
m
od

ul
e
pa
ir

w
ith

th
e
sl
av
e
m
od

ul
e

146 5 Wireless Control Using the Arduino

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

#include <SoftwareSerial.h>

SoftwareSerial BTSerial(10, 11); // RX | TX

void setup() {
pinMode(9, OUTPUT); // this pin will pull the HC-05 pin 34 (key

pin) HIGH to switch module to AT mode

digitalWrite(9, HIGH);
Serial.begin(9600);
Serial.println("Enter AT commands:");
BTSerial.begin(38400); // HC-05 default speed in AT command

}

void loop() {
// Keep reading from HC-05 and send to Arduino Serial Monitor

if (BTSerial.available())
Serial.write(BTSerial.read());

// Keep reading from Arduino Serial Monitor and send to HC-05

if (Serial.available())
BTSerial.write(Serial.read());

}

Follow these steps in the stated order to switch the HC-05 to the AT command
mode.

Fig. 5.12 A diagram of the layout of the HC-05 and UNO R3

5.3 Bluetooth Module 147

www.ebook3000.com

http://www.ebook3000.org

• Wire the HC-05 and Arduino Uno as per instructions.
• Before you connect the Arduino to the USB remove the VCC (power) red

wire from the HC-05 so that it does not receive any power from the Arduino.
All other wires are still connected.

• Now connect the Arduino Uno to the USB cable connected to your PC.
• Make sure the HC-05 module is NOT PAIRED with any other Bluetooth

device.
• Reconnect the Arduino Uno 5 V wire to the HC-05’s VCC (5 V power) pin.

In this step, you need to hold the button switch closed while powering on.
• The HC-05 LED will blink on and off at about 2 s intervals. Now the HC-05

is in the AT command mode and ready to accept commands to change
configuration and settings.

• To test if everything is wired correctly, open the Serial Monitor from the
Arduino IDE and type “AT” and click SEND. You should see an “OK”.

• If you do not see an “OK” check your wiring.

4. Results
Once you open the serial monitor and arrange line settings to NL & CR and
baud rate to 38,400 you will manage to communicate with the module. Type
“AT” and the module should respond as “OK” (Fig. 5.13).

Fig. 5.13 HC-05 result in Arduino serial monitor

148 5 Wireless Control Using the Arduino

If your module is not responding, try to change the baud rate to 9600 and check
the wiring again.

5.3.4 Demonstration

In this experiment, you will learn how to make a connection between two HC-05
modules.

1. Components

• DFRobot UNO R3 board and USB cable � 2.
• HC-05 Bluetooth Module � 2.
• Jumper wires � n.

2. Hardware setting
Both Bluetooth modules are connected in the same way (see Table 5.4). The
SoftwareSerial ports is used to communicate between the user and Arduino via
the Serial Monitor. The circuits is shown as follows (Fig. 5.14):

Fig. 5.14 The diagram of layout of two HC-05 modules

Table 5.4 Wiring
connecting between
Arduino UNO and nRF24L01

Number HC-05 Arduino UNO

1 VCC 5 V

2 GND GND

3 TX D10

4 RX D11

5 KEY D9

5.3 Bluetooth Module 149

www.ebook3000.com

http://www.ebook3000.org

3. Sample Codes

(1) Codes for Master

1

2

3

4

5

6

7

8

9

10

11

12

// Connect the HC-05 and communicate using the serial monitor

// When first powered on, you need to manually enter AT mode

// The default baud rate for AT mode is 38400

#include <SoftwareSerial.h>

SoftwareSerial BTSerial(10, 11); // RX | TX

// Connect the HC-05 TX to Arduino pin 10

// Connect the HC-05 RX to Arduino pin 11

void setup() {
pinMode(9, OUTPUT); // this pin will pull the HC-05 pin 34 (key

pin) HIGH to switch module to AT mode

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

digitalWrite(9, HIGH);
Serial.begin(9600);
Serial.println("Arduino is ready");
Serial.println("Remember to select Both NL & CR in the serial

monitor");
BTSerial.begin(38400); // HC-05 default speed in AT command

more

}

void loop() {
// Keep reading from HC-05 and send to Arduino Serial Monitor

if (BTSerial.available())
Serial.write(BTSerial.read());

// Keep reading from Arduino Serial Monitor and send to HC-05

if (Serial.available())
BTSerial.write(Serial.read());

}

150 5 Wireless Control Using the Arduino

(2) Codes for Slave

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

//When a command is entered in the serial monitor on the computer

//the Arduino will relay it to the HC-05 and display the result.

#include <SoftwareSerial.h>

SoftwareSerial BTSerial(10, 11); // RX | TX

// Connect the HC-05 TX to Arduino pin 10

// Connect the HC-05 RX to Arduino pin 11

void setup() {
Serial.begin(9600);
Serial.println("Enter your commands:");

// HC-05 default baud rate is 9600

BTSerial.begin(9600);
}

void loop() {
// Keep reading from HC-05 and send to Arduino Serial Monitor

if (BTSerial.available())
Serial.write(BTSerial.read());

// Keep reading from Arduino Serial Monitor and send to HC-05

if (Serial.available())
BTSerial.write(Serial.read());

25

26

27

}

4. Results
To setup a communication between two HC-05 modules, you need to do the
following things first:

• Set one HC-05 module as a master device
• Configure to pair with any address
• Cycle the power to the module

First, you need to place the HC-05 into the AT mode (hold the button switch
closed while powering on). When in AT mode the LED on the HC-05 should
blink on/off every second (Fig. 5.15).

• Check whether the HC-05 is in the AT mode or not. Enter “AT” and hit
Send. You should receive “OK.”

5.3 Bluetooth Module 151

www.ebook3000.com

http://www.ebook3000.org

• Set HC-05 as a master device, Enter “AT + ROLE = 1,” and hit send, you
should receive another “OK.”

• Configure HC-05 to pair with any address. Enter “AT + CMODE = 1” and
hit send, you should receive another “OK.”

Cycle the power to the master HC-05. The LED on the master HC-05 will blink
twice a second as it searches and once it has connected with the slave HC-05 the
LED will quickly blink twice every 2 s or so. The LED on the slave HC-05
should be constantly on.
Now, whatever you enter into one of the serial monitors will be sent by
Bluetooth to the other Arduino and then displayed in the opposite serial monitor.
It should be noted that you should change the baud rate from 38,400 bit to
9600 bit in the master HC-05. Or else, you will not receive the correct responses
(Figs. 5.16 and 5.17).

AT

AT+ROLE=1

AT+CMODE=1

Fig. 5.15 Setting the HC-05 as a Master using the Arduino serial monitor

152 5 Wireless Control Using the Arduino

5.4 GSM/GPRS Module

5.4.1 Introduction

The GSM/GPRS system is the most widely used cellular technology in use in the
world today. GSM stands for Global System for Mobile Communication, which is a
digital cellular technology used for transmitting mobile voice and data services. It is
also sometimes referred to as 2G, as it is a second-generation cellular network.
GSM supports outgoing and incoming voice calls, Simple Message System (SMS
or text messaging), and data communication (via GPRS).

The GPRS (General Packet Radio Service) is a wireless packet data service that
is an extension of the GSM network. It provides an efficient method to transfer data
by optimizing the use of network resources. The GPRS radio resources allocator
allows the provision of multiple radio channels to a single user in order to ensure a
high data user rate. Furthermore, one radio channel can be shared by multiple users
in order to optimize radio resources. Then, GPRS enables a high spectrum

Fig. 5.16 Message from the master HC-05

5.4 GSM/GPRS Module 153

www.ebook3000.com

http://www.ebook3000.org

efficiency by sharing time slots between different users, supporting data rates of up
to 170 kbit/s and providing a very low call setup time. Additionally, GPRS offers
direct Internet Protocol (IP) connectivity in a point-to-point or a point-to-multipoint
mode and provides packet radio access to external packet data networks (PDN).

There are many kinds of GSM/GPRS modules available in the market. Those
GSM/GPRS modules are a ready solution for remote wireless applications, machine
to machine, or user to machine and remote data communications in all vertical
market applications. A GSM/GPRS module is designed for communication of a
computer with the GSM and GPRS network. It requires a SIM (Subscriber Identity
Module) card just like mobile phones to activate communication with the network.
Furthermore, they have an IMEI (International Mobile Equipment Identity) number
similar to mobile phones for their identification. The power supply circuit is also
built in the module that can be activated by using a suitable adaptor. A GSM/GPRS
module can perform the following operations:

Fig. 5.17 Message from the slave HC-05

154 5 Wireless Control Using the Arduino

(1) Receive, send, or delete SMS messages in a SIM.
(2) Read, add, and search phonebook entries of the SIM.
(3) Make, receive, or reject a voice call.
(4) Receive/send data from/to a remote location through GPRS.

The module needs AT commands, for interacting with the processor or con-
troller, which are communicated through serial communication. These commands
are sent by the controller/processor. The module sends back a result after it receives
a command. Different AT commands supported by the module can be sent by the
processor/controller/computer to interact with the GSM/GPRS cellular network.

5.4.2 A6 GSM/GPRS Module

In this chapter, we use the most popular A6 GSM/GPRS module as an example.
The module is basically a GSM Modem connected to a PCB with different types of
outputs taken from the board—TTL Output (for microcontrollers) and RS232
Output to interface directly with a PC (personal computer). The board also has pins
or provisions to attach a mic and speaker, to accept +5 V or other values of power
and ground connections. The features are as follows:

• Supports up to eight channel network connections.
• Low power consumption: standby is as low as 3 mA.
• Wide operating temperature range.
• Dual-Band GSM/GPRS 900/1800 MHz.
• RS232/TTL interface for direct communication with computer or MCU kit.
• Configurable baud rate.
• ESD Compliance.
• Consists of a MIC and Speaker socket.
• With slide in SIM card tray.
• With Stub antenna.
• Stackable UNO headers.
• Optional power on through microcontroller.

The module shape is shown in Fig. 5.18 and has the following pins that connect
to a microcontroller:

• Antenna interface: connected to external antenna
• Earphones: to answer phone calls
• MicroSIM Card: activate communication with the network
• EN: MP1584 Power chip enable pin, pull high enable power chip, pull low

disenable, the foot can be used as the reset pin of the module
• PWR: Power on
• REC +/REC: Speaker positive/negative
• MIC +/MIC: Microphone positive/negative

5.4 GSM/GPRS Module 155

www.ebook3000.com

http://www.ebook3000.org

• H_TXD/H_RXD: Pinout for firmware upgrade
• GND/R232_RX/R232_TX: RS232 Send out/receive
• GND/U_RXD/U_TXD: A6 module send out/receive (TTL level)
• VCC_IN: Power input pin, 5–9 V

As mentioned before, the module interacts with the processor or controller by
using the AT commands. Here, we just list some common AT commands
(Tables 5.5 and 5.6):

5.4.3 Demonstration

In this experiment, we are going to see how to interface the A6 GSM/GPRS
Module to Arduino.

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• A6 GSM/GPRS Module � 1.
• SIM card � 1.
• GSM Antenna � 1.
• Jumper wires � n.

2. Hardware setting
In any case, the communication between Arduino and the GSM/GPRS module
is serial. Therefore, we are supposed to use serial pins of Arduino (Rx and Tx).
In this example, the pins 9 and 10 (which are PWM enabled pins) are used. This
method is made possible with the SoftwareSerial Library of Arduino.
SoftwareSerial is a library of Arduino that enables serial data communication
through other digital pins of Arduino. The library replicates hardware functions
and handles the task of serial communication. The circuits is shown in Fig. 5.19:

Fig. 5.18 A6 GSM/GPRS module

156 5 Wireless Control Using the Arduino

T
ab

le
5.
5

A
T
co
m
m
an
ds

fo
r
SM

S

C
om

m
an
d

D
es
cr
ip
tio

n
R
es
po

ns
e

R
es
ul
t

A
T
+
C
M
G
F

Se
t
th
e
m
od

ul
e
m
es
sa
ge

m
od

e,
se
t
ei
th
er

at
PD

U
(0
)
or

te
xt

m
od

e
(1
)

O
K

–

A
T
+
C
N
M
I

Se
t
th
e
ne
w

m
es
sa
ge

re
m
in
d,

fo
r
ex
am

pl
e
A
T
+
C
N
M
I
=
2,
1,

+C
M
T
I:
“S
M
”,
2

W
he
n
se
t
is
on

an
d
m
es
sa
ge

bo
x

is
N
O
T
fu
ll,

m
es
sa
ge

is
st
or
ed

at
po

si
tio

n
2

A
T
+
C
M
G
S

Se
nd

m
es
sa
ge
,
se
nd

18
0
by

te
s
at

G
SM

m
od

e,
or

70
C
hi
ne
se

ch
ar
ac
te
rs

at
U
C
S2

m
od

e,
A
T
+
C
M
G
S
=
“1
58

05
29

83
57

”

W
ill

re
tu
rn

“>
”
an
d
th
en

ty
pe

m
es
sa
ge
,

th
en

en
d
up

w
ith

H
E
X

va
lu
e
1A

(o
x1

A
,

“C
T
R
L
+
Z
”)
,

se
nd

1B
to

ca
nc
el

“E
SC

”

A
nd

fi
na
lly

re
tu
rn
:
+C

M
G
S:
15

6,
in

w
hi
ch

15
6
ha
s
m
ea
ni
ng

A
T
+
C
M
G
R

R
ea
d
m
es
sa
ge
,
fo
r
ex
am

pl
e,

A
T
+
C
M
G
R

=
1

to
re
ad

m
es
sa
ge

at
po

si
tio

n
1

–
–

A
T
+
C
M
G
L

L
is
t
al
l
m
es
sa
ge
s
re
ce
iv
ed

on
th
e
G
SM

m
od

em
,

fo
r
ex
am

pl
e,

A
T
+
C
M
G
L
=
“A

L
L
”

+C
M
G
L
:
<i
nd

ex
>,

<s
ta
t>
,
<o

a>
,

[<
al
ph

a>
],
[<
sc
ts
>]

<C
R
>
<L

F>
<d

at
a>

<C
R
>
<L

F>
… O
K

+C
M
G
L
:
1,

“R
E
C

U
N
R
E
A
D
”,

“+
31

62
88

70
63

4”
,

“1
1/
01

/0
9,
10

:2
6:
26

+
04
”

T
hi
s
is
te
xt

m
es
sa
ge

1
+C

M
G
L
:
2,
”R

E
C

U
N
R
E
A
D
”,
”
+
31

62
88

70
63

4”
,

”1
1/
01

/0
9,
10

:2
6:
49

+
04
”

T
hi
s
is
te
xt

m
es
sa
ge

2
O
K

A
T
+
C
M
G
D

D
el
et
e
m
es
sa
ge
,
fo
r
ex
am

pl
e

A
T
+
C
M
G
D

=
1
to

de
le
te

m
es
sa
ge

at
po

si
tio

n
1

O
K

–

5.4 GSM/GPRS Module 157

www.ebook3000.com

http://www.ebook3000.org

3. Sample Codes

(1) GSM Example

Table 5.6 AT commands for GPRS

Command Description Response Result

AT + CGATT Attach (1) or disattach (0) GPRS service,
for example, AT + CGATT = 1

OK –

AT + CGACT = 1,1 Activate (AT + CGACT = 1,1) and deactivate
(AT + CGACT = 0,1) PDP context

AT + CIPSTART Initiate a connect or setup a UDP port,
for example, AT + CIPSTART = “TCP”,
“180.120.52.222”, “8086”, to connect to
180.120.52.222 at port 8086

Connect
OK

–

AT + CIPSEND Send data, module will return “>”, send max
1352 bytes and end up with 1A same as SMS

Send OK –

AT + CIPCLOSE Close current TCP/UDP connection status – –

Fig. 5.19 The diagram of layout of A6 GSM/GPRS module

158 5 Wireless Control Using the Arduino

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

#include <SoftwareSerial.h>

SoftwareSerial mySerial(9, 10);

void setup() {
mySerial.begin(9600); // Setting the baud rate of GSM Module

Serial.begin(9600); // Setting the baud rate of Serial

Monitor (Arduino)

delay(100);
}

void loop() {
if (Serial.available() > 0)

switch (Serial.read())
{

case 's':
SendMessage();
break;

case 'r':
RecieveMessage();
break;

}
if (mySerial.available() > 0)
Serial.write(mySerial.read());

}

void SendMessage() {
mySerial.println("AT+CMGF=1"); //Sets the GSM Module in Text

Mode

delay(1000); // Delay of 1000 milli seconds

or 1 second

mySerial.println("AT+CMGS=\"+9115805298357\"\r"); // mobile

number

delay(1000);
mySerial.println("I am SMS from GSM Module"); // The SMS text

you want to send

delay(100);
mySerial.println((char)26);// ASCII code of CTRL+Z
delay(1000);

}
41

42

43

44

45

46

47

void RecieveMessage() {
mySerial.println("AT+CNMI=2,2,0,0,0"); // AT Command to receive

a live SMS

delay(1000);
}

5.4 GSM/GPRS Module 159

www.ebook3000.com

http://www.ebook3000.org

The steps of booting the A6 GSM/GPRS module are as follows:

(1) Insert the SIM card into the GSM/GPRS module and lock it.
(2) Connect the adapter to the GSM/GPRS module and turn it ON.
(3) Wait for some time (say 1 min) and see the blinking rate of “status LED” or

“network LED” (GSM/GPRS module will take some time to establish a
connection with the mobile network).

(4) Once the connection is established successfully, the status/network LED
will blink continuously every 3 s. You may attempt to make a call to the
mobile number of the SIM card inside the GSM/GPRS module. If you hear
a ring back, the GSM/GPRS module has successfully established a network
connection.

In this example, the communication is triggered by the user input. The program
seeks user input via the serial monitor of Arduino. If the input is “s,” the
program will invoke a function to send an SMS from the GSM module. If the
user input is “r,” the program will invoke a function to receive a live SMS
from the GSM module and display it on the serial monitor of Arduino
(Fig. 5.20).

(2) GPRS Example

Fig. 5.20 A6 GSM/GPRS result in Arduino serial monitor

160 5 Wireless Control Using the Arduino

5.5 Wi-Fi Module

5.5.1 Introduction

Wi-Fi, or Wireless Fidelity, is a term that is used generically to refer to any product
or service using any type of 802.11 technology. Wi-Fi networks operate in the
unlicensed 2.4–2.5 GHz radio bands, with an 11 Mbps (802.11b) or 54 Mbps
(802.11a) data rate, respectively. Wi-Fi technology may be used in a variety of
scientific, industrial, commercial, and consumer applications. Many devices can use
Wi-Fi, e.g., personal computers, video-game consoles, smartphones, digital cam-
eras, tablet computers, and digital audio players. These devices can all connect to a
network resource via a wireless network access point. The following list summa-
rizes some of the benefits of a Wi-Fi network.

• Wireless Ethernet. Wi-Fi is an Ethernet replacement. Wi-Fi and Ethernet, both
IEEE 802 networks, share some core elements.

• Extended Access. The absence of wires and cables extends access to places
where wires and cables cannot go or where it is too expensive for them to go.

• Cost Reduction. As mentioned above, the absence of wires and cables brings
down cost. This is accomplished by a combination of factors, the relatively low
cost of wireless routers, and cost-savings from not trenching, drilling, and other
methods that may be necessary to make physical connections.

• Mobility. Wires tie you down to one location. Going wireless means you have
the freedom to change your location without losing your connection.

• Flexibility. Extended access, cost reductions, and mobility create opportunities
for new applications as well as the possibility of creating new solutions for
legacy applications.

5.5.2 Wi-Fi Module

There are many different kinds of Wi-Fi Modules & Solutions available when you
do your search. The vendors or module makers usually categorize the modules by
many parameters including data rate, range, RF band, certification and packaging
type, etc. In this section, a DFRobot Wi-Fi module v2.2 (TEL0047) is chosen as an
example (shown in Fig. 5.21, and its functions are shown in Table 5.7).

The module uses WizFi210, which is a low power-consuming Wi-Fi module that
is applied with dynamic power management technology. When the Wi-Fi module
needs to be on but not operate, it can be set to Standby mode, a low power mode,
and the module simply needs to be woken up when it has to work. It provides
bridging from TTL serial port communication to IEEE802.11b/g/n wireless com-
munication. Therefore, any device with TTL serial ports can be easily connected

5.5 Wi-Fi Module 161

www.ebook3000.com

http://www.ebook3000.org

with this Wi-Fi module and controlled and managed remotely through a wireless
network. Different kinds of communication protocols and encryption algorithms are
integrated with the module. The Arduino architecture enables you to easily integrate
this module into any Arduino based project and achieve Wi-Fi communication via
UART by sending AT commands. The specifications are as follows:

• Radio Protocol: IEEE 802.11b/g/n compatible
• Supported Data Rates: 11, 5.5, 2, 1 Mbps (IEEE 802.11b)
• Modulation: DSSS and CCK
• RF Operating Frequency: 2.4–2.497 GHz
• Antenna Options: Chip antenna and U.FL connector for external antenna
• Networking Protocols: UDP, TCP/IP (IPv4), DHCP, ARP, DNS, HTTP/HTTPS

Client and Server (*)
• Power Consumption (Typical): Standby = 34.0 µA Receive = 125.0 mA

Transmit = 135.0 mA
• RF Output Power (Typical): 8 ± 1 dBm

Fig. 5.21 Wi-Fi module

Table 5.7 The instruction for the function of Wi-Fi module v2.2

Interface Functions

USB/Arduino
Switch

USB: Config Wi-Fi module via PC comm port directly
Arduino: Enable the communication between Arduino and Wi-Fi module

RUN/Prog
Switch

RUN: Enable the USB or Arduino to drive the Wi-Fi module
Prog: Disable the Wi-Fi module for programming Arduino via USB

Debug interface Drive and config the Wi-Fi module directly by using the FTDI or USB
serial light adapter

162 5 Wireless Control Using the Arduino

• Security Protocols: WEP, WPA/WPA2-PSK, Enterprise, EAP-FAST,
EAP-TLS, EAP-TTLS, PEAP

• I/O Interface: UART, SPI(*), I2C(*), WAKE, ALARM, GPIOs
• Working Voltage: 5 V
• Chip working voltage: 3.3 V
• Dimensions (except Antenna): 59 � 54 mm

The following AT commands are a quick review of the essentials needed to get
your Wi-Fi module connected to your network with a UDP server running on port
4000. This is not meant to be an all-encompassing tutorial. If you would like to
make a more complex setup, please refer to the WizFi datasheet provided in the
documents section of this wiki for a complete list of AT commands and their
description (Table 5.8).

Table 5.8 The AT commands for configuration

Command Response Description

AT OK Enter at mode

AT + WD AT + WD
OK

Disassociate from previous
connection

AT + WWPA = 1234 AT + WWPA = 1234
OK

Set wireless password

AT + NDHCP = 1 AT + NDHCP = 1
OK

Enable DHCP settings.
Auto-assign IP address. You
might want to disable this option
“0” and set your own IP address

AT + WA = YOURSSID Define router’s “SSID”

AT + NSTAT = ? Current wireless and network
config. Note: write down the
reported IP address. You will
need it later

AT + WSTATUS Adapter reports the current
network config to serial host

AT + DNSLOOKUP = baidu.com Test your connection to the
internet. If successful it will
return baidu’s IP address

AT + NSTCP = 5000 <Port> Set TCP server at port 5000

AT + NSUDP = 4000 <Port> Set UDP server at port 4000

AT + CID = ? <CID> Returns the current CID
configuration

ATC1 ATC1
OK

Set to auto connect at restart

AT&W0 AT&W0
OK

Save settings to profile “0”

ATA Connect

5.5 Wi-Fi Module 163

www.ebook3000.com

http://www.ebook3000.org

5.5.3 Demonstration

In this experiment, we are going to see how to interface the Wi-Fi Module to
Arduino.

1. Components

• DFRobot UNO R3 board and USB cable � 1.
• DFRobot Wi-Fi module v2.2 (TEL0047) � 1.
• Router � 1.
• Antenna � 1.
• Jumper wires � 1.

2. Hardware setting
The Wi-Fi module v2.2 is an expansion board of Arduino, which can be plugged
into the UNO directly (Fig. 5.22).
Before implementation, you should configure the Wi-Fi module first,

(1) Program a simple led blinking sample code for your Arduino UNO R3 first
to avoid a serial communication conflict between the USB port and the
Wi-Fi module.

(2) Stack the Wi-Fi module to the Arduino UNO R3 and connect the antenna to
the Wi-Fi module.

(3) Set the “USB/Arduino” Switch to the USB side to enable the PC com port
to send AT commands to the Wi-Fi module directly.

(4) Set the “Run/Prog” Switch to the RUN side.
(5) Plugin the A to B USB to the Arduino microcontroller. The “POWER” LED

turns on at the same time.

Fig. 5.22 A diagram of the layout of the Wi-Fi module v2.2 and UNO R3

164 5 Wireless Control Using the Arduino

Then, the Serial monitor included in Arduino IDE is used to configure the Wi-Fi
module. Please set the baud rate to 115,200 bps for both NL and CR.

(1) Open the com port of your Arduino UNO. Enter “AT” to test the com-
munication between the Wi-Fi module and the USB port.

(2) Enter the “AT + WS” command to scan the network and obtain a list of
found networks (shown in Fig. 5.23).

(3) Setting the Wi-Fi module according to the router information. List the
sample command below (Fig. 5.24).

(4) Then, save the setting (at&w0). Otherwise, all the settings above will be
cleared after resetting.

(5) After getting the feedback correctly from the Wi-Fi module, we finish the
setting for the Wi-Fi shield and create a TCP server in the local network.
Next, the indicator LEDs (marked “STW” and “ASSOC”) turn on to indi-
cate the connection with the router.

Fig. 5.23 Scanning the network using the Arduino serial monitor

5.5 Wi-Fi Module 165

www.ebook3000.com

http://www.ebook3000.org

(6) Next, we create a client and send a message to our Wi-Fi module.
Connect to the TCP server from the Wi-Fi module.
The PuTTy (http://www.chiark.greenend.org.uk/*sgtatham/putty/
download.html) is chosen to work as a TCP client and send commands to
the Wi-Fi module.
Configure the Host Name and Port. Set the connection type to Raw and
Press open. Then, you will connect to the server created by the Wi-Fi
module (Fig. 5.25).
Now, you could send commands via the TCP client simulated by putty to
the Wi-Fi module. Further, putty will receive the strings sent from the Serial
monitor as well.

Set the SSID of the target router

Set the password for the UJSteacher security

Disable DHCP

Set static network parameters

Set the Wi-Fi module as a TCP server

Set the destination to 4000

Save the profile

Disable auto connect on next reboot

Start auto connect, including association

Fig. 5.24 Setting Wi-Fi module using the Arduino serial monitor

166 5 Wireless Control Using the Arduino

http://www.chiark.greenend.org.uk/%7esgtatham/putty/download.html
http://www.chiark.greenend.org.uk/%7esgtatham/putty/download.html

1. Sample codes

Once you have verified that your Shield is connected to the internet you can
upload this sketch to your Arduino by simply removing the 2 jumpers, and
replacing them once the sketch has been uploaded. There is no need to change the
settings for this, so just replace them on the “USB” mode.

You can test the Wi-Fi communication with this shield by removing the USB
cable and providing external power. It is recommended that you provide 7.5 Vdc
and 1 A to ensure that the Wi-Fi Radio has enough power.

You should now be able to connect to your shield’s IP address and the specified
UDP port using PuTTy.

Pressing 1 and 0 should turn LED 13 on and off, while reporting back to you on
the PuTTy screen.

Fig. 5.25 Configure PuTTy software

5.5 Wi-Fi Module 167

www.ebook3000.com

http://www.ebook3000.org

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

void setup() {
pinMode(13, OUTPUT);
Serial.begin(115200);
delay(100);
Serial.println("Press any key to continue");
while (Serial.available() == 0);
Serial.println(" Lets test the DFRobot WiFi module");
Serial.println("Press 1 to light the LED, and 0 to turn it off");
Serial.println("Entery: ");
digitalWrite(13, HIGH);

}

void loop() {
if (Serial.available()) {
char input = Serial.read();
switch (input) {

case '1':
digitalWrite(13, HIGH);
Serial.println("ON");
delay(500);
break;

case '0':
digitalWrite(13, LOW);
Serial.println("OFF");
delay(500);
break;

}
}

}

168 5 Wireless Control Using the Arduino

Part II
Case Studies

www.ebook3000.com

http://www.ebook3000.org

Chapter 6
PM2.5/Air Quality Monitor Using Arduino

6.1 Introduction

Dust, known as “airborne particles”, refers to solid particles that are suspended in
air (diameter � 100 lm). Among them, dust with diameter < 2.5 lm, known as
“fine particulate matter”, is referred to as PM2.5. After being inhaled by the human
body, PM2.5 can directly enter the blood through the bronchi and alveoli, which are
phagocytized by macrophage. Their long-term stay in the alveoli exerts a negative
impact on the human cardiovascular, nervous system, and other organs, posing a
threat to people’s health. Consequently, indoor air quality has become a great
concern.

In this chapter, an indoor air quality monitor based on Arduino is developed,
which integrates a thermometer, a humidity meter, an air quality monitor, and a
HEPA filter into one single system, in order to help users gauge and improve indoor
air quality. Furthermore, Bluetooth communication is also used in this system. The
Bluetooth communication system enables a user to remotely control and observe
the air quality monitor.

6.2 System Design

The indoor air quality monitor mainly consists of a dust sensor module, humidity,
and temperature sensor module, Arduino UNO R3, a liquid-crystal display module,
electronic speed control (ESC) module, suction fan and air HEPA filters, a wireless
transmitting and receiving module (Bluetooth), and power supply circuit, as shown
in Fig. 6.1.

First, the dust particle information is converted into an electrical signal by the
dust sensor, and after passing the preamplifier circuit of the sensor, it is converted
into digital electrical signals by the A/D conversion circuit, which is fed to Arduino

© Springer Nature Singapore Pte Ltd. 2018
T. Pan and Y. Zhu, Designing Embedded Systems with Arduino,
DOI 10.1007/978-981-10-4418-2_6

171

for processing and analysis. Arduino displays the processed and analyzed data
through the LCD. When Arduino determines that the dust concentration exceeds
preset indicators, the suction fan operates using the ESC circuit, and the indoor air
is filtered through the HEPA filter. The Bluetooth module is used to realize sharing
and real-time transmission of data and information.

6.2.1 Air Quality Sensor (SEN0177)

An air quality sensor can detect the particle concentration in an indoor environment
and communicate the same to Arduino. Therefore, Arduino can obtain air quality
information. In this project, the SEN0177 dust sensor is used, which can obtain the
number of suspended particulate matter in a unit volume of air within 0.3–10 lm,
namely the concentration of particulate matter, and output it to a digital interface; it
can also output the quality data per particle (shown in Fig. 6.2).

PM2.5 Sensor

Arduino UNO

ESC Module

Suction fan Air filters

LCD

APP

Humidity &
temperature sensor

Bluethooth

Power supply

Fig. 6.1 Structure diagram of the indoor air quality monitor

Fig. 6.2 Connecting diagram between UNO and SEN0177

172 6 PM2.5/Air Quality Monitor Using Arduino

www.ebook3000.com

http://www.ebook3000.org

It can be seen that the PM2.5 laser dust sensor is connected to the Arduino UNO
through the PM2.5 sensor adapter with TXD and RXD pins. The RS232 on-board
the UNO (RXD, TXD) is used to connect with the Bluetooth module. Therefore, the
software serial port is used to connect with the PM2.5 sensor adapter. Before
writing codes, the SoftwareSerial library (http://arduiniana.org/NewSoftSerial/
NewSoftSerial12.zip) should be included first. The SoftwareSerial library has
been developed to allow serial communication on other digital pins of the Arduino,
using software to replicate the functionality. It is possible to have multiple software
serial ports with speeds of up to 115,200 bps. A parameter enables inverted sig-
naling for devices that require that protocol.

The packet length of the PM2.5 sensor adapter is fixed at 32 bytes and the
information is shown in Table 6.1.

Table 6.1 The packet information of SEN0177

Bits Information

Start character 1 0 � 42 (fixed bit)

Start character 2 0 � 4d (fixed bit)

Frame length 16-byte Frame length = 2 * 9 + 2 (data + check bit)

Data 1, 16-byte Concentration of PM1.0, lg/m3

Data 2, 16-byte Concentration of PM2.5, lg/m3

Data 3, 16-byte Concentration of PM10.0, lg/m3

Data 4, 16-byte Internal test data

Data 5, 16-byte Internal test data

Data 6, 16-byte Internal test data

Data 7, 16-byte The number of particulate of diameter
above 0.3 lm in 0.1 L of air

Data 8, 16-byte The number of particulate of diameter
above 0.5 lm in 0.1 L of air

Data 9, 16-byte The number of particulate of diameter
above 1.0 lm in 0.1 L of air

Data 10, 16-byte The number of particulate of diameter
above 2.5 lm in 0.1 L of air

Data 11, 16-byte The number of particulate of diameter
above 5.0 lm in 0.1 L of air

Data 12, 16-byte The number of particulate of diameter
above 10.0 lm in 0.1 L of air

Data 13, 16-byte Internal test data

Check Bit for data sum, 16-byte Check Bit = Start character 1 + Start
character 2 + …all data

6.2 System Design 173

http://dx.doi.org/10.1007/978-981-10-4418-2_3
http://dx.doi.org/10.1007/978-981-10-4418-2_3

The reading codes are shown as follows

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

#define rx_Pin 7 //define the software RXD pin
#define tx_Pin 8 //define the software TXD pin
#define PMArrayLenth 31 //0x42 +31 bytes = 32 bytes
unsigned char buf[PMArrayLenth];

int PM01Value = 0; //define PM1.0 value
int PM2_5Value = 0; //define PM2.5 value
int PM10Value = 0; //define PM10 value

void setup() {
 mySerial.begin(9600); //configure the baudrate
 mySerial.setTimeout(1500); //set the Timeout to 1500ms, longer
than the data transmission periodic time of the sensor
}

void loop() {
//start to read when detect 0x42
if (mySerial.find(0x42)) {

 mySerial.readBytes(buf, PMArrayLenth);
if (buf[0] == 0x4d) {

if (checkValue(buf, PMArrayLenth)) {
 PM01Value = transmitPM01(buf);
 PM2_5Value = transmitPM2_5(buf);
 PM10Value = transmitPM10(buf);

}
}

}
}

char checkValue(unsigned char *thebuf, char leng) {
char receiveflag = 0;
int receiveSum = 0;
for (int i = 0; i < (leng - 2); i++) {

 receiveSum = receiveSum + thebuf[i];
}

 receiveSum = receiveSum + 0x42;
if (receiveSum == ((thebuf[leng - 2] << 8) + thebuf[leng - 1]))

{ //check the serial data
 receiveSum = 0;
 receiveflag = 1;

}
return receiveflag;

}

//count PM1.0 value of the air detector module
int transmitPM01(unsigned char *thebuf) {

int PM01Val;
 PM01Val = ((thebuf[3] << 8) + thebuf[4]);

return PM01Val;
}

//count PM2.5 value of the air detector module

1
2
3

#include <Arduino.h>
#include <SoftwareSerial.h>
SoftwareSerial mySerial(7, 8); //create softwareSerial

174 6 PM2.5/Air Quality Monitor Using Arduino

www.ebook3000.com

http://www.ebook3000.org

6.2.2 Temperature and Humidity Sensor (DHT11)

The temperature sensor can transform the temperature information into voltages.
After analog to digital conversion, the temperature information can be obtained.
The humidity sensor can transform the humidity information into electrical signal.
After analog to digital conversion, the humidity information can be obtained. Here,
the DHT11 module (DFR0067) is used. Please refer to Sect. 3.4 in detail.

6.2.3 Liquid-Crystal Display

The liquid-crystal display is an optional approach to display the data of the tem-
perature, humidity, and air quality information. Here, LCD1602 is used, which is a
2 � 16 LCD. The connecting diagram is shown in Fig. 6.3.

Fig. 6.3 Connecting diagram between UNO and LCD1602

61
62
63
64
65
66
67

int transmitPM10(
int PM10Val;

 PM10Val = ((
return PM10Val;

}

//count PM10 value of the air detector module
unsigned char *thebuf) {

thebuf[7] << 8) + thebuf[8]);

56
57
58
59
60

int transmitPM2_5(unsigned char *thebuf) {
int PM2_5Val;

 PM2_5Val = ((thebuf[5] << 8) + thebuf[6]);
return PM2_5Val;

}

6.2 System Design 175

To wire your LCD screen to your board, connect the following pins:

• LCD RS pin to digital pin 12
• LCD Enable pin to digital pin 11
• LCD D4 pin to digital pin 5
• LCD D5 pin to digital pin 4
• LCD D6 pin to digital pin 3
• LCD D7 pin to digital pin 2

Additionally, wire a 10k pot to +5 V and GND, with its wiper (output) to LCD
screens VO pin (pin3). A 220 X resistor is used to power the backlight of the
display, usually on pin 15 and 16 of the LCD connector.

The codes are as follows. Here, we only provide the display codes, you need to
obtain the other detection codes (dust, humidity, and temperature detection) from
previous sections.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

#include <dht11.h>
#include <LiquidCrystal.h>
#include <dht11.h>
#include <Arduino.h>
#define DHT11_PIN 6
dht11 DHT;
LiquidCrystal LCD(12, 11, 5, 4, 3, 2);
#define PMArrayLenth 31 //0x42 + 31 bytes = 32 bytes
unsigned char buf[PMArrayLenth];
int PM01Value = 0; //define PM1.0 value
int PM2_5Value = 0; //define PM2.5 value
int PM10Value = 0; //define PM10 value

void setup()
{
 Serial.begin(9600);
 LCD.begin(16, 2);
 Serial.setTimeout(1500);
}

void loop() {
 LCD.setCursor(0, 0); //display PM2.5
 LCD.print("PM2.5=");
 LCD.print(PM2_5Value);
 LCD.print("ug/m3");

int chk = DHT.read(DHT11_PIN);
 LCD.setCursor(0, 1); // display temperature
 LCD.print("TMPR=");
 LCD.print(DHT.temperature);
 LCD.print("C");

 LCD.setCursor(9, 1);
 LCD.print("HUM=");
 LCD.print(DHT.humidity); // display humidity
 LCD.print("%");
}

The result is shown as follows (Fig. 6.4).

176 6 PM2.5/Air Quality Monitor Using Arduino

www.ebook3000.com

http://www.ebook3000.org

6.2.4 Servo

According to air quality information obtained by the dust sensor, Arduino can
control the suction fan to rotate at a certain speed. Then, the indoor air is filtered
through the HEPA filter (shown in Fig. 6.5).

The suction fan is connected with ESC which are PWM controllers. The ESC
generally accepts a nominal 50 Hz PWM servo input signal whose pulse width
varies from 1 to 2 ms. When supplied with a 1 ms width pulse at 50 Hz, the ESC,
responds by turning off the motor attached to its output. A 1.5 ms pulse-width input
signal results in a 50% duty cycle output signal that drives the motor at approxi-
mately half speed. When presented with a 2.0 ms input signal, the motor runs at full
speed owing to the 100% duty cycle (on constantly) output (Fig. 6.6).

Fig. 6.4 Detecting results

M

Fresh Air

Contaminated
Air

HEPA Filter

Suction
Fan

Contaminated
Air

Fig. 6.5 The filtering principle of air indoor

6.2 System Design 177

The codes are shown as follows:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

#include <Servo.h>
Servo myservo;
int ESC_Pin = 9;
int pulsewidth;
int temp = 0;

void servopulse(
int myangle;

 myangle = map(
500-2480
 digitalWrite(

 digitalWrite(
 delay(20 - val /
}
void setup() {
 pinMode(ESC_Pin,

for (int i = 0;
 servopulse(

}
for (int i = 0;

 servopulse(
}
for (int i = 0;

 servopulse(
}

 myservo.attach(
}
void loop() {

double len = 700
 myservo.
}

// define the ESC output pin
// define the pulse width

//test motor

// define pulse function
int ESC_Pin, int val) {

val, 0, 180, 500, 2480); // al1 from 0-

ESC_Pin, HIGH); // set HIGH
delayMicroseconds(myangle); // delay

ESC_Pin, LOW); // set LOW
1000); // Delay

OUTPUT);
i <= 110; i++) {

ESC_Pin, 150); //set max speed about 2s

i <= 55; i++) {
ESC_Pin, 20); //set min speed about 1s

i <= 150; i++) {
ESC_Pin, 31); //control the motor

ESC_Pin); //define motor i/o

+ temp ; // len =0.7*1000~0.95*1000
writeMicroseconds(len); // control motor

180 to

Fig. 6.6 Connecting diagram of ESC

178 6 PM2.5/Air Quality Monitor Using Arduino

www.ebook3000.com

http://www.ebook3000.org

The key point in this program is to set the throttle range. You would likely
have to do this once. Once the throttles are set, the values are persistent. The steps
are as follows:

1. Set the initial throttle position to high.
2. Turn on the ESC. It is very important that ESC receives a high signal on the

PWM pin when it is turned on. You should send a high signal and wait for a
user input, so that you have time to turn the ESC on. When turned on, the ESC
will emit a 1-2-3 (three tones of different frequencies in rapid succession).

3. The ESC will emit a beep-beep tone, indicating that the high throttle range has
been set.

4. As soon as you hear the beep-beep, you need to send a low throttle signal.
The ESC will respond by emitting several beeps (the number depends on the
input voltage of the power supply connected to the ESC). These beeps will be
followed by a long beep, indicating that the low point has been correctly set.

Furthermore, you should include the servo library in your code before coding;
the download link is http://playground.arduino.cc/uploads/ComponentLib/
SoftwareServo.zip.

6.2.5 Bluetooth (HC-05)

In this design, the HC-05 module is used to setup the communication between
mobile phones and the monitor through Bluetooth. Bluetooth is a wireless tech-
nology standard for exchanging data over short distances (using short-wavelength
UHF radio waves in the ISM band from 2.4 to 2.485 GHz) from fixed and mobile
devices, and building personal area networks (PANs). The range is approximately
10 m (30 ft).

Using HC-05, the temperature, humidity, and air quality information are sent to
an App so that users can read these information on their mobile phones. The HC-05
connection diagram is shown as follows (Fig. 6.7):

6.2 System Design 179

http://playground.arduino.cc/uploads/ComponentLib/SoftwareServo.zip
http://playground.arduino.cc/uploads/ComponentLib/SoftwareServo.zip

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

dht11 DHT;
int PM01Value = 0;
int PM2_5Value = 0
int PM10Value = 0;
int HumValue = 0;
int TmprValue = 0;
unsigned int
2s
unsigned long

void setup () {
 Serial.begin(
}
void loop () {

if (millis() -
 printTime =
 Serial.println
 Serial.println
 Serial.println
 Serial.println
 Serial.println

}
}

#include "Arduino.h"
#include <dht11.h> //temperature and humidity

//define PM1.0 value
; //define PM2.5 value
//define PM10 value

//define humidity value
//define temperature value

printInterval = 2000;

printTime;

9600);

printTime >= printInterval) {
millis();

(PM01Value);
(PM2_5Value);
(PM10Value);
(TmprValue);
(HumValue);

// communication interval is

Fig. 6.7 Bluetooth connecting diagram

180 6 PM2.5/Air Quality Monitor Using Arduino

www.ebook3000.com

http://www.ebook3000.org

6.2.6 Software Development

Figure 6.8 shows the flow chart of the monitor. Once the sensor readings are
acquired, they are encoded into the data message for data transmission and display.
Data from the temperature and humidity sensor, dust sensor are sampled every 2 s
owing to the response time. Then, data messages are shown on the LCD display and
transmitted to a mobile phone through Bluetooth. Based on the detected PM2.5
value, the suction fan will rotate at variable frequencies. Of course, the suction fan
will stop when the PM2.5 is less than 70.

Initialization

ESC unlock

Sensor reading? Reading Sensor

Communication? Bluetooth

ESC PWM control

Data Display? LCD display

N

Y

Y

Y

N

N

Pulse duty ratio
calculation

Fig. 6.8 Flowchart of indoor
air quality monitor

6.2 System Design 181

6.3 Production Demonstration

6.3.1 Components

• DFRobot UNO R3 board and USB cable � 1.
• DFR0067 (DHT11 Temperature and Humidity Sensor V2) � 1.
• HC-05 (Bluetooth) � 1.
• SEN0177 (Air Quality Sensor) and its adapter � 1.
• Skywalker-40A (ESC) � 1.
• Brushless motor � 1.
• LCD1602 � 1.
• HEPA filter � 1.
• Jumper wires � n.

6.3.2 UNO R3 Digital Pinouts Are as Follows

HC-05 module
0—Bluetooth TXD pin
1—Bluetooth RXD pin
LCD 1602 module
2—LCD D7 pin
3—LCD D6 pin
4—LCD D5 pin
5—LCD D4 pin
11—LCD Enable pin
12—LCD RS pin
DHT11 module
6—Temperature and Humidity input pin
Skywalker-40A module
9—ESC output pin
SEN0177 and its adapter
7—Air quality sensor adapter TXD pin
8—Air quality sensor adapter RXD pin

6.3.3 Results

The product is shown in Fig. 6.9
The Arduino indoor environment monitor can also send information to a mobile

phone using Bluetooth. The App is designed by using E4A tools (http://bbs.e4asoft.
com/thread-33742-1-1.html). Pair the Bluetooth device with your mobile phone and

182 6 PM2.5/Air Quality Monitor Using Arduino

www.ebook3000.com

http://bbs.e4asoft.com/thread-33742-1-1.html
http://bbs.e4asoft.com/thread-33742-1-1.html
http://www.ebook3000.org

then run the application. All environmental data are encoded into data messages in
an agreed format and transmitted to the App. Figure 6.10 shows the application
front view.

Fig. 6.9 The photo of air quality monitor

6.3 Production Demonstration 183

Fig. 6.10 View of the app

184 6 PM2.5/Air Quality Monitor Using Arduino

www.ebook3000.com

http://www.ebook3000.org

6.3.4 Codes

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

int PM10Value = 0; //define PM10 value
int HumValue = 0; //define humidity value
int TmprValue = 0; //define temperature value
unsigned int sampleInterval = 2000; //sampling interval is 2s
unsigned int printInterval = 2000; //communication interval is 2s
unsigned int displayInterval = 2000; //LCD display internal is 2s
unsigned long sampleTime, printTime, displayTime;

/* check the data of air quality */
char checkValue(unsigned char *thebuf, char leng) {

char receiveflag = 0;
int receiveSum = 0;
for (int i = 0; i < (leng - 2); i++) {

 receiveSum = receiveSum + thebuf[i];
}

 receiveSum = receiveSum + 0x42;
// check the accumation
if (receiveSum == ((thebuf[leng-2] << 8) + thebuf[leng-1])) {

 receiveSum = 0;
 receiveflag = 1;

}
return receiveflag;

}

/*count PM1.0 value of the air detector module */
int transmitPM01(unsigned char *thebuf) {

int PM01Val;
 PM01Val = ((thebuf[3] << 8) + thebuf[4]);

return PM01Val;
}

/*count PM2.5 value of the air detector module */
int transmitPM2_5(unsigned char *thebuf) {

int PM2_5Val;
 PM2_5Val = ((thebuf[5] << 8) + thebuf[6]);

return PM2_5Val;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); //LCD pin
#include <SoftwareSerial.h>
SoftwareSerial mySerial(7, 8); //create software Serial
#define rx_Pin 7 //define the software RXD pin
#define tx_Pin 8 //define the software TXD pin
#include <dht11.h>
dht11 DHT; //create a DHT object
#define DHT_Pin 6 //define the humidity & temperature pin
#include <Arduino.h>
#include <Servo.h>
Servo myservo; //create a servo object
#define ESC_Pin 9 //define the ESC output pin
int pulsewidth; //define the pulse width
int temp = 0; //test motor
#define PMArrayLenth 31 //0x42 + 31 bytes = 32 bytes
unsigned char buf[PMArrayLenth]; // air quality data
int PM01Value = 0; //define PM1.0 value
int PM2_5Value = 0; //define PM2.5 value

6.3 Production Demonstration 185

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

 lcd.print("HUM=");
 lcd.print(humi); // display humidity value
 lcd.print("%");
}

/*define pulse function */
void servopulse(int pin, int val) {

int myangle;
// al1 from 0 - 180 to 500 - 2480

 myangle = map(val, 0, 180, 500, 2480);
 digitalWrite(pin, HIGH); //high
 delayMicroseconds(myangle); //delay
 digitalWrite(pin, LOW); //low
 delay(20 - val / 1000); //delay
}

void setup() {
 lcd.begin(16, 2); //define rows and columns of LCD
 pinMode(rx_Pin, INPUT); //define RXD input
 pinMode(tx_Pin, OUTPUT); //define TXD output
 Serial.begin(9600); // configure baudrate of serial port
 mySerial.begin(9600); // configure baudrate of software serial
 mySerial.setTimeout(1500);

 pinMode(ESC_Pin, OUTPUT);
for (int i = 0; i <= 110; i++) {

 servopulse(ESC_Pin, 150); //max speed about 2s
}
for (int i = 0; i <= 55; i++) {

 servopulse(ESC_Pin, 20); //min speed about 1s
}
for (int i = 0; i <= 150; i++) {

 servopulse(ESC_Pin, 31); //control the motor
}

 myservo.attach(ESC_Pin); //define motor i/o
}

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

/*count PM10 value of the air detector module */
int transmitPM10(unsigned char *thebuf) {

int PM10Val;
 PM10Val = ((thebuf[7] << 8) + thebuf[8]);

return PM10Val;
}

/* display the minitoring value */
void LCDdisplay(int pm25, int tmpr, int humi) {
 lcd.setCursor(0, 0); //location of display
 lcd.print("PM2.5=");
 lcd.print(pm25); //display PM2.5 value
 lcd.print("ug/m3");

 lcd.setCursor(0, 1); //location of display
 lcd.print("TMPR=");
 lcd.print(tmpr); //display temprature value
 lcd.print("C");
 lcd.setCursor(9, 1); //location of display

186 6 PM2.5/Air Quality Monitor Using Arduino

www.ebook3000.com

http://www.ebook3000.org

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

// display sensors' value using LCD
if (millis() - displayTime >= displayInterval) {

 displayTime = millis();
 LCDdisplay(PM2_5Value, TmprValue, HumValue);

}

// print the information on the serial monitor (Bluetooth).
if (millis() - printTime >= printInterval) {

 printTime = millis();
 Serial.println(PM01Value);
 Serial.println(PM2_5Value);
 Serial.println(PM10Value);
 Serial.println(TmprValue);
 Serial.println(HumValue);

}

// ESC control by the variable speed
if (PM2_5Value > 70)

// al1 from 70 - 150 to 0 - 250
 temp = map(PM2_5Value, 70, 150, 0, 250);

else
 temp = 0;

double len = 700; //len = 0.7*1000 ~ 1.0*1000
 len = len + temp;
 myservo.writeMicroseconds(len); //control motor
}

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

void loop() {
// read data from sensors
if (millis() - sampleTime >= sampleInterval) {

 sampleTime = millis();
int chk = DHT.read(DHT_Pin); // read humidity & temperature

 HumValue = DHT.humidity;
 TmprValue = DHT.temperature;

if (mySerial.find(0x42)) { // read air quality data
 mySerial.readBytes(buf, PMArrayLenth);

if (buf[0] == 0x4d) { // split air quality value
if (checkValue(buf, PMArrayLenth)) {

 PM01Value = transmitPM01(buf);
 PM2_5Value = transmitPM2_5(buf);
 PM10Value = transmitPM10(buf);

}
}

}
}

6.3 Production Demonstration 187

Chapter 7
A Fire-Fighting Robot Using Arduino

7.1 Introduction

A robot is defined as a mechanical design that is capable of performing human tasks
or behaving in a human-like manner. Building a robot requires expertise and
complex programming. It is about building systems and putting together motors,
solenoids, and wires, among other important components. There are a number of
subsystems that must be designed to fit together into an appropriate package suit-
able for carrying out a robot’s task. The fire-fighting robot competition is an
international competition where the challenge is to design and construct a
fire-fighting robot that can find its way through an arena that represents a model
house, find a lit candle that represents a fire in the house, and extinguish the fire in
the shortest time while avoiding any obstacles in the robots path. As the contests
web page states, the main purpose of this contest is to “provide an incentive for the
robotics community to develop what can be a practical application for a real-world
robot.” The competition aims to increase awareness of robotic fire-fighting,
encourage team-based education, and promotes robotics as a theme for teaching
engineering design.

The arena is designed as Fig. 7.1 and the explanations are follows:

(1) The field is set to 3 � 3 m, and is designed for five rooms. The start position is
designed as a black rectangular area.

(2) The door of each room has a black belt. It is convenient for the robot to detect
the room location by using the line-tracking sensor.

(3) There is a single lit candle in any one of the five rooms, randomly selected. The
robot enters the room, finds the lit candle, and extinguishes it.

(4) The fire-fighting robot returns to the start position safely.

© Springer Nature Singapore Pte Ltd. 2018
T. Pan and Y. Zhu, Designing Embedded Systems with Arduino,
DOI 10.1007/978-981-10-4418-2_7

189

www.ebook3000.com

http://www.ebook3000.org

7.2 Task Definition

In this competition, the robot needs to finish three tasks: search the fire source,
extinguish the lit candle, and return to the start position.

7.2.1 Task 1: Search the Fire Source

In the task of searching the fire source, the intelligent robot should find a lit candle
in a room in the shortest time. As the lit candle is placed randomly, the robot should
enter each room as fast as possible.

The criteria for the robot to enter the room are that the robot’s body should
completely cross a pre-drawn black line at the door.

The criteria for successfully searching the lit fire are that the robot prepares to
extinguish the fire or already commences fire-fighting operations when it meets the
fire source.

St
ar

t/
En

d

Room 1 Room 2

Room 3Room 4Room 5

Candle Candle

CandleCandleCandle

Fig. 7.1 The diagram of arena

190 7 A Fire-Fighting Robot Using Arduino

7.2.2 Task 2: Extinguishing the Fire

When the robot is close to the location of the fire source, it needs to extinguish the
fire source. In this competition, we use a fan to extinguish the fire. It should be
noted that the simulated fire source (candles) cannot be knocked down.

7.2.3 Task 3: Returning to the Start Position

After finishing the task of fighting the fire, the robot needs to return back to the start
position as soon as possible. Further, when returning, the robot does not need to go
into other rooms.

7.3 Robot Design

In order to satisfy the competition requirements and to be able to realize the goal of
the competition, which is to detect a lit candle in a house model and extinguish it in
the shortest possible time, a fast reliable robot with a body that is able to lift all the
hardware and at the same time be light enough to remain fast is required. An easy
shape that could navigate through the house while avoiding obstacles is designed
first. Here, we simply select a premade four-wheel car as the robot’s body (shown in
Fig. 7.2), which is purchased from DFrobot (http://www.dfrobot.com.cn/goods-
443.html).

Fig. 7.2 The premade engine block for moving robot

7.2 Task Definition 191

www.ebook3000.com

http://dx.doi.org/10.1007/978-981-10-4418-2_3
http://dx.doi.org/10.1007/978-981-10-4418-2_3
http://www.ebook3000.org

The system block diagram of the fire-fighting robot is shown in Fig. 7.3.

7.3.1 Sensors

Three kinds of sensors are used, i.e., flame sensor (DFR0076), line-tracking sensor
(SEN0017), and ultrasonic sensor (HC-SR04).

The flame sensor is used to detect the fire source. The accuracy of the flame
sensor is up to 3 ft. It detects flames or wavelengths of light source within 760–
1100 nm (please refer Sect. 3.17 for details).

The line-tracking sensor detects the black belt at the door and informs the robot
about how many rooms it has crossed (please refer Sect. 3.5 for details).

The ultrasonic sensor (please refer Sect. 3.6 for details) is used to recognize the
walls and avoid obstacles. The intelligent robot reads the distance between the robot
and the wall using three ultrasonic sensors at the front, left, and right side of the
four-wheel car, and adjusts the distance constantly. Thus, the fire-fighting robot can
search for the fire source along the wall and return. Using the ultrasonic sensor at
the head of the car body, the fire-fighting robot can measure the distance between
the car and the fire source, so that the fan driven by the servo can extinguish the fire.

7.3.2 Extinguishing System

In our method of extinguishing candles, the DFR0332 fan module (shown in
Fig. 7.4) is chosen. We chose this fan over other options due to its low cost, small
size and weight, low power requirements, and ability to put out candles within and
only within a small distance. This fan has three pins to control its operation: VCC,
ground, and signal.

Arduino Remeo

Wheel (Right)

Wheel (left)

Ultrasonic
Sensor

Line Tracking
Sensor

Flame Sensor

Power supply

Servo (Fan)

Fig. 7.3 Structure diagram
of fire-fighting robot

192 7 A Fire-Fighting Robot Using Arduino

The driving codes are as follows.

1
2
3
4
5
6
7
8
9

#define Fan_Pin 3 //define driver pins

void setup() {
pinMode(Fan_Pin, OUTPUT);
Serial.begin(9600); //Baudrate: 9600

}
void loop() {
int value;
for (value = 0; value <= 255; value += 5) {

10
11
12
13
14

analogWrite(Fan_Pin, value); //PWM
Serial.println(value);
delay(30);

}
}

7.3.3 Motor Drive

The four wheels are driven by a pair of DC motors that are interfaced to the
Arduino Romeo through L-298 dual H-bridges. L298 can drive two DC motors that
can be controlled in both the clockwise and anticlockwise direction. It has an output
current of 600 mA and peak output current of 1.2 A per channel. The in-build
diodes protect the circuit from back EMF at the outputs (please refer Sect. 4.1 for
details).

Fig. 7.4 The shape of fan
module

7.3 Robot Design 193

www.ebook3000.com

http://www.ebook3000.org

7.3.4 Algorithms and Behaviors

In this competition, the movement of the robot is ensured such that it maintains a
fixed distance from the side walls. Therefore, the speed of the wheel is adjusted
such that one wheel is faster than the other. The difference in speed between both
wheels helps in varying the movement direction of the robot (Fig. 7.5).

The ultrasonic sensor measures the distance between the robot and wall, and the
robot adjusts the distance by using the driving motors. As a result, the robot can
walk along the wall. To control the speed of the motor, the pulse width modulation
(PWM) technique is used to vary the voltage of the motor. Arduino is responsible
for sending a PWM signal to L298 Quadruple Half H Driver, which controls the
voltage supplied to each motor (please refer Chap. 4 for details).

7.4 Demonstration

7.4.1 Components

• DFRobot Romeo board and USB cable � 1.
• DFR0076 (flame sensor) � 3.
• SEN0017 (line-tracking sensor) � 3.
• HC-SR04 (ultrasonic sensor) � 3.
• DFR0332 (fan module) � 1.
• Jumper wires � n.

Target
Distance

Left wheel is faster than right
wheel, robot move towards right

Right wheel is faster than left
wheel, robot move towards left

Fig. 7.5 The schematic of wall-following

194 7 A Fire-Fighting Robot Using Arduino

7.4.2 Romeo Pinouts Are as Follows

Motors (four outputs required):

4—Right Motor Direction
5—Right Motor Speed
6—Left Motor Speed
7—Left Motor Direction.

Fan (one output required):

3—Fan Pin A.

Ultrasonic sensors (9 output required):

A3—Ultrasonic Left Trig
A4—Ultrasonic Left Echo
8—Ultrasonic Front Trig
9—Ultrasonic Front Echo
0—Ultrasonic Right Trig
1—Ultrasonic Right Echo.

Line-tracking sensors (three inputs required):

11—Line Sensor 1
12—Line Sensor 2
13—Line Sensor 3.

Flame Sensors (three inputs required):

A0—Flame Sensor Left
A1—Flame Sensor Font
A2—Flame Sensor Right.

7.4.3 Results

When the robot first starts, it runs a calibration routine. This establishes base values
for the flame and ultrasonic sensors, so that action can be taken when the sensors
provide values significantly above the calibration values. Each individual flame
sensor and ultrasonic sensor have their own separate calibration value. For more
information, please refer Chap. 3.

To realize the goal, i.e., searching the fire source, extinguishing the candles, and
returning to the start position, two algorithms are used in the robot, i.e.,
wall-following algorithm and fire-fighting algorithm.

7.4 Demonstration 195

www.ebook3000.com

http://www.ebook3000.org

The wall-following algorithm is that the fire-fighting robot moves according to
the left-hand rule. The robot turns right only if there is no other possibility, whereas
it always turns to the left if there is an option. Here, L = UltraLeft() and
F = UltraFont();

• If L < 10, the robot is close to the wall, and should turn right;
• If 10 < L < 13, the distance between the wall and robot is suitable, and the

robot moves forward;
• If L > 13, the robot is far away from the wall, and should turn left;
• If F < 19, there is an obstacle in front of the robot, and the robot should turn

right.

When a flame sensor detects a candle, the robot pauses its search algorithm. If
the candle was detected by one of the side sensors, the robot turns in the direction
and lets the proximity sensor (front) see the candle. After the robot is centered on
the candle and completely stopped, the fan turns on. After four seconds the fan
turns off, and the robot checks the front flame sensor to see if it succeeded in
extinguishing the candle. If it did not, the robot would readjust and repeat by
turning the fan on.

7.4.4 Codes

1
2
3
4
5
6
7
8
9
10
11

#define E1 5 //M1 Speed Control
#define E2 6 //M2 Speed Control
#define M1 4 //M1 Direction Control
#define M2 7 //M1 Direction Control
#define IR1 11 //line tracking sensor 1
#define IR2 12 //line tracking sensor 2
#define IR3 13 //line tracking sensor 3
#define flame_L A0 // flame sensor in left
#define flame_F A1 // flame sensor in front
#define flame_R A2 // flame sensor in right
#define trig1 A3 //ultrasonic sensor in left

12
13
14
15
16
17
18

#define echo1 A4
#define trig2 8 //ultrasonic sensor in front
#define echo2 9
#define trig3 0 //ultrasonic sensor in right
#define echo3 1
#define fan 3 // extiguishing fan

196 7 A Fire-Fighting Robot Using Arduino

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

int ldistance,fdistance,rdistance;
int Lspeed = 190; //basic speed for left motor
int Rspeed = 180; //basic speed for right motor
int flag = 0; //tasks flag: Searching room, Judging fire, a
Extinguishing fire, Return
int flag2;
int room = 0; // room number

void setup() {
pinMode(E1, OUTPUT);
pinMode(E2, OUTPUT);
pinMode(M1, OUTPUT);
pinMode(M2, OUTPUT);
pinMode(echo1, INPUT);
pinMode(echo2, INPUT);
pinMode(echo3, INPUT);
pinMode(trig1, OUTPUT);
pinMode(trig2, OUTPUT);
pinMode(trig3, OUTPUT);
pinMode(IR1, INPUT);
pinMode(IR2, INPUT);
pinMode(IR3, INPUT);
pinMode(fan, OUTPUT);

}
// --
// Functions for motor moving
void stopp(float c) { //Stop
digitalWrite(E1, LOW);
digitalWrite(E2, LOW);
delay(c * 100); //duration

}
void advance(float c) { //forward
analogWrite (E1, Rspeed + 10); //PWM Speed Control
digitalWrite(M1, HIGH);
analogWrite (E2, Lspeed + 10);
digitalWrite(M2, HIGH);
delay(c * 100); //duration

}

7.4 Demonstration 197

www.ebook3000.com

http://www.ebook3000.org

58
59
60
61
62
63
64
65
66
67
68

void back (float c) { // backward
analogWrite (E1, Rspeed); //PWM Speed Control
digitalWrite(M1, LOW);
analogWrite (E2, Lspeed);
digitalWrite(M2, LOW);
delay(c * 100); //duration

}
void left(float c) { //turn left (one motor working)
analogWrite (E1, Rspeed);
digitalWrite(M1, LOW);
analogWrite (E2, LOW); // left motor stop

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

delay(c * 100); //duration
}
void right(float c) { //turn right (one motor working)
analogWrite (E1, LOW); //right motor stop
digitalWrite(M1, HIGH);
analogWrite (E2, Lspeed);
digitalWrite(M2, LOW);
delay(c * 100); //duration

}
void turnL (float c) { //Turn Left (two motors working)
analogWrite (E1, Rspeed); //PWM Speed Control
digitalWrite(M1, LOW);
analogWrite (E2, Lspeed);
digitalWrite(M2, HIGH);
delay(c * 100); //duration

}
void turnR (float c) { //Turn Right (two motors working)
analogWrite (E1, Rspeed); //PWM Speed Control
digitalWrite(M1, HIGH);
analogWrite (E2, Lspeed);
digitalWrite(M2, LOW);
delay(c * 100); //duration

}
// --
// Functions for ultrasonic sonser
float UltraFont() {
float m;
digitalWrite(trig1, LOW); //Clears the triger Pin
delayMicroseconds(2);
// Sets the trigger Pin on HIGH state for 10 micro seconds
digitalWrite(trig1, HIGH);
delayMicroseconds(10);
digitalWrite(trig1, LOW);
m = pulseIn(echo1, HIGH);
m = m * 0.034 / 2; // Calculating the distance
return m; // return the distance

}
float UltraLeft() {
float m;
digitalWrite(trig2, LOW); //Clears the triggre Pin
delayMicroseconds(2);
// Sets the trigger Pin on HIGH state for 10 micro seconds
digitalWrite(trig2, HIGH);
delayMicroseconds(10);
digitalWrite(trig2, LOW);
m = pulseIn(echo2, HIGH);

198 7 A Fire-Fighting Robot Using Arduino

115
116
117
118
119
120
121
122
123
124
125

m = m * 0.034 / 2; // Calculating the distance
return m; // return the distance

}
float UltraRight() {
float m;
digitalWrite(trig3, LOW); //Clears the triggre Pin
delayMicroseconds(2);
// Sets the trigger Pin on HIGH state for 10 micro seconds
digitalWrite(trig3, HIGH);
delayMicroseconds(10);
digitalWrite(trig3, LOW);

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

m = pulseIn(echo3, HIGH);
m = m * 0.034 / 2; // Calculating the distance
return m; // return the distance

}
// --
// Function for extinguishing fire
void Fans() {
int m;
m = analogRead(flame_L); // if the fire in the left side
if (m < 800) {
turnR(0.6); // adjust the motor to right
stopp(1);
m = analogRead(flame_L);

} while (m > 800);
stopp(20);
m = analogRead(flame_R); // if the fire in the right side
if (m < 800) {
turnL(0.6); // adjust the motor to left
stopp(1);
m = analogRead(flame_R);

} while (m > 800);
stopp(20);
if (analogRead(flame_F) < 800) { // if the fire in the font
analogWrite(fan, 250);
delay(4000);
analogWrite(fan, 0);

}
stopp(10);
flag2 = 1; // The fire is in this room
stopp(10);

}
// --
// Function for left-hand law (searching room)
void Left_rule1() {

do
{ fdistance = UltraFont();
ldistance = UltraLeft();
if (fdistance < 21)
turnR(0.3);

else if (ldistance < 10)
right(0);

else if (ldistance < 13)

7.4 Demonstration 199

www.ebook3000.com

http://www.ebook3000.org

172
173
174
175
176
177
178
179
180
181
182

advance(0);
else
left(0);

} while (digitalRead(IR1) == LOW && digitalRead(IR2) == LOW &&
digitalRead(IR3) == LOW);
// searching the room and enter in
if (digitalRead(IR1) == HIGH || digitalRead(IR2) == HIGH ||

digitalRead(IR3) == HIGH)
{
back(1);

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

stopp(20);
room++; // record the room
advance(1.5); //enter room

}
flag = 1;

}
// --
// Function for left-hand law (searching fire)
void Left_rule2() {

do
{ fdistance = UltraFont();
ldistance = UltraLeft();
if (fdistance < 21)
turnR(0.3);

else if (ldistance < 10)
right(0);

else if (ldistance < 13)
advance(0);

else
left(0);

} while (digitalRead(IR1) == LOW && digitalRead(IR2) == LOW &&
digitalRead(IR3) == LOW);
// searching the fire
if (digitalRead(IR1) == HIGH || digitalRead(IR2) == HIGH ||

digitalRead(IR3) == HIGH)
{ back(1);
stopp(40);
if (analogRead(flame_L) < 800 || analogRead(flame_F) < 800 ||

analogRead(flame_R) < 800)
{ Fans(); // it is fire
advance(1.0);

}
else
advance(2.1); // no fire

}
flag = 2;

}
// --
// Function for left-hand law (leaving room)
void Left_rule3()
{ do

{ fdistance = UltraFont();
ldistance = UltraLeft();
if (fdistance < 21)

200 7 A Fire-Fighting Robot Using Arduino

229
230
231
232
233
234
235
236
237
238
239

turnR(0.3);
else if (ldistance < 10)
right(0);

else if (ldistance < 13)
advance(0);

else
left(0);

} while (digitalRead(IR1) == LOW && digitalRead(IR2) == LOW &&
digitalRead(IR3) == LOW);

if (digitalRead(IR1) == HIGH || digitalRead(IR2) == HIGH ||
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

digitalRead(IR3) == HIGH)
{ stopp(10); //prepare to leaving
advance(1.0);
if (flag2 == 0) // if no fire, continue to searching
flag = 0;

if (flag2 == 1) // it is fire, go back home
flag = 3;

}
}
// --
// Function for back (in Room 3 or Room 4)
void Left_rule_Back() {

if (room == 3)
{ do

{
fdistance = UltraFont();
ldistance = UltraLeft();
if (fdistance < 19)
turnR(0.3);

else if (ldistance < 10)
right(0);

else if (ldistance < 12)
advance(0);

else
left(0);

} while (digitalRead(IR1) == LOW && digitalRead(IR2) == LOW &&
digitalRead(IR3) == LOW);

stopp(20);
back(8);
turnR(6);
do {
advance(0);

} while (digitalRead(IR1) == LOW && digitalRead(IR2) == LOW &&
digitalRead(IR3) == LOW);

back(1);
stopp(20);
delay(10);
stopp(50);

}
if (room == 4)
{ advance(8);
turnL(7);

7.4 Demonstration 201

www.ebook3000.com

http://www.ebook3000.org

286
287
288
289
290
291
292
293
294
295
296

do {
advance(0);

} while (digitalRead(IR1) == LOW && digitalRead(IR2) == LOW &&
digitalRead(IR3) == LOW);

do {
advance(0);

} while (digitalRead(IR1) == LOW && digitalRead(IR2) == LOW &&
digitalRead(IR3) == LOW);

back(1);
stopp(20);
delay(10);

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

stopp(50);
}

}
// --
// Function for back (in Room 1 or Room 2)
void Right_rule_Back() {

if (room == 1)
{ advance(6);
turnR(5);
do {
advance(0);

} while (digitalRead(IR1) == LOW && digitalRead(IR2) == LOW &&
digitalRead(IR3) == LOW);

back(1);
stopp(20);
delay(10);
stopp(50);

}
if (room == 2)
{ advance(1);

do
{
fdistance = UltraFont();
rdistance = UltraRight();
if (fdistance < 19)
turnL(0.3);

else if (rdistance < 10)
left(0);

else if (rdistance < 13)
advance(0);

else
right(0);

} while (digitalRead(IR1) == LOW && digitalRead(IR2) == LOW &&
digitalRead(IR3) == LOW);

stopp(20);
back(7);
turnL(7);
do {
advance(0);

} while (digitalRead(IR1) == LOW && digitalRead(IR2) == LOW &&
digitalRead(IR3) == LOW);

back(1);
stopp(20);
delay(10);
stopp(50);

202 7 A Fire-Fighting Robot Using Arduino

343
345
346
347
348
349
350
351
352
353
354

}
}
// --
// Main Function
void loop() {

switch (flag) {
case 0:
Left_rule1();
break;

case 1:
355
356
357
358
359
360
361
362
363
364
365
366
367

Left_rule2();
break;

case 2:
Left_rule3();
break;

case 3:
if (room == 1 || room == 2)
Right_rule_Back();

else if (room == 3 || room == 4)
Left_rule_Back();

break;
}

}

7.4 Demonstration 203

www.ebook3000.com

http://www.ebook3000.org

Chapter 8
Intelligent Lock System Using Arduino

8.1 Introduction

Today, intelligent locks are a hot topic in smart home or smart security systems.
Differing from traditional mechanical locks, an intelligent lock always uses
non-mechanical identification technologies as the unlocking method, such as fin-
gerprint, Iris recognition, radio frequency card, etc. With the rapid development of
mobile Internet, a new method to access and secure private spaces has emerged;
people find it more convenient to unlock private spaces using a smartphone as a
key. When a specific App is installed in your smartphone, the smartphone becomes
a skeleton key immediately. If you want to open a door, you only need to obtain the
authority to open it in the App. After obtaining the authority from the administrator,
you can open the door without any physical key, but rather your smart phone. It is a
desirable alternative.

In this chapter, we demonstrate the design of an intelligent lock based on
Arduino, PC or Raspberry Pi, and Android smartphone. This system uses QR code
as an unlocking identification, and it can effectively solve the problem of “one key
versus one lock” and provide a flexible management method for updating a vali-
dation key. The following contents of this chapter focus on the detailed system
design, including how to open an electric bolt using Arduino, how to generate a QR
code based on Android system, and how to recognize a QR code using PC or
Raspberry Pi. After completing this chapter, the user can further develop more
convenient and secure intelligent lock systems by themselves.

8.2 System Design

Our demonstration system includes three parts, as shown in Fig. 8.1.

© Springer Nature Singapore Pte Ltd. 2018
T. Pan and Y. Zhu, Designing Embedded Systems with Arduino,
DOI 10.1007/978-981-10-4418-2_8

205

1. A controllable lock: it consists of an electric bolt, Arduino, and relay. Through
relay, Arduino can control the electric bolt to open or close it.

2. An application running on Android system: it is used to open the lock as a
skeleton key. This APP should have two basic functions: (1) it can obtain a
validation key from the host through Wi-Fi or 4G network; and (2) it can
generate a QR code for unlocking according to the validation key.

3. A host running on Windows or Linux system: it can be a personal computer or
Raspberry Pi. The web camera is connected to the host using a USB cable and
Arduino is connected to the host through a serial port. As a server, the host is in
charge of generating a dynamic validation key for the Android App, recognizing
the QR code from the image captured by the web camera, and then sending an
unlock indicator to Arduino after successful validation.

The unlocking methodology of our demonstration system is illustrated in
Fig. 8.1. In this system, the electric bolt is controlled by the recognition result of the
QR code scanned from a web camera, and the Android App replaces the traditional
mechanical key. Therefore, the major processes include five steps.

Step 1: Android App applies authorization (validation key) from host when we
click a button on its user interface.
Step 2: Android App generates QR code according to the validation key. Then, a
QR code image will display on the screen of your Android phone.
Step 3: Then show this QR code image to a camera connected to the host.
Step 4: The host recognizes the validation key from an image and validates it.
Step 5: The host feedbacks the validation result to Arduino. If the validation key is
correct, Arduino will control relay to open the electric bolt. Otherwise, a buzzer
connected to Arduino will buzz for warning.

Arduino

Relay

Buzzer

Electric Bolt

Host
(PC or Raspberry Pi)

Camera

Android
Smartphone

Generate QR code
 for unlocking

USBRead image
of QR code

Recognition
Result

Serial Port

Digital Pin

Digital Pin

On-off current

Controllable Lock

Assign validation key (where a fixed
string can be used for simplifying design)

Fig. 8.1 Structure diagram of the indoor air quality monitor

206 8 Intelligent Lock System Using Arduino

www.ebook3000.com

http://www.ebook3000.org

8.2.1 Key Design of Controllable Lock

As mentioned above, the controllable lock consists of an electric bolt, Arduino,
relay, and buzzer. In this section, we focus on the principle of electric bolt and the
usage of relay.

1. Electric Bolt

An electric bolt is an electronic control lock, and the extension or retraction of its
lock tongue is determined by the on–off status of input current. When the input
current is broken, the lock tongue will retract. According to the number of input
wires, the electric bolt can be classified into four categories: two-wire, four-wire,
five-wire, and eight-wire. Among these categories, the two-wire electric bolt is used
most frequently and we also select it for our demonstration system. Figure 8.2
shows a picture of a two-wire electric bolt. As its name indicates, the two-wire
electric bolt has two input wires, neutral wire (black) and live wire (red). The
neutral wire should be connected to ground (GND), and the live wire should be
connected to the power supply. If any one of these wires is cut off, the lock tongue
will retract automatically, and then the door can be opened. Because it can be easily
controlled by an input current, it is frequently used on various occasions as a
controllable door. Further, it is also suitable for an occasion with high security
requirement owing to its characteristic of implicit installation.

2. Relay

A relay is an electrically operated switch, which has a control system (also
known as the input circuit) and the controlled system (also known as the output
circuit), usually used in automatic control circuit. It is an “automatic switch”, using
a small electric current to control a larger current. Therefore, the relay has the
effects of automatic adjustment, security, conversion circuit in the circuit, and so on.

Fig. 8.2 Photo of electric
bolt

8.2 System Design 207

Relays are used where it is necessary to control a circuit by a low-power signal
(with complete electrical isolation between control and controlled circuits), or
where several circuits must be controlled by one signal.

In the demonstration project, we select a 16A relay module of Arduino suite, and
this module can be used to control solenoid valves, lamps, and other equipment.
Obviously, it is suitable for controlling the electric bolt. It can be controlled through
the digital I/O port of Arduino (Fig. 8.3).

Specification
Contact Rating (Res. Load): 16A 277VAC/24VDC
Maximum switching voltage: 400VAC(NO)
Max. switching current: 16A
Max. switching power: 4700VA
Operate time (at nomi. Vot.): 10ms max
Release time (at nomi. Vot.): 5ms max
Type: Digital
Single relay board
Digital Interface
Control signal: TTL level.

Relay Module Pinout: There are a total of 7 pins on the relay module board.

(1) Link Arduino Side: Signal, VCC, and GND.
(2) Link Appliance Side (as shown in Fig. 8.4):

• COM (IN): Input positive wire from appliance
• N/A (NC): Not connected
• NC (OUT1): Normally closed, which means that when the relay is off

(a digital low “0” is received from Arduino) the device is on
• NO (OUT2): Normally open, which means that when the relay is on

(a digital high “1” is received from Arduino) the device is on.

Fig. 8.3 Photo of 16A relay
module

208 8 Intelligent Lock System Using Arduino

www.ebook3000.com

http://www.ebook3000.org

WARNING: Please be very careful not to play with live circuits! 120 V or
220 V should not be taken lightly. Make sure the appliance to be tinkered with is
unplugged from the mains.

Plugging in Electric Bolt or Lamp

We will use “out1” for connecting the electric bolt, use “out2” to simply reverse
the logic, as explained above. Figure 8.5 gives an example of plugging in an
appliance such as a lamp, we can replace the lamp to the electric bolt, and the
connection relationship is the same.

Step 1: Cut and strip a portion of the positive wire so that you end up with two ends
of the wire as shown in Fig. 8.5.
Step 2: The relay should have a positive wire of the device being used connected to
“IN” and to “Out 1” as shown in Fig. 8.5, and any digital signal pin on the Arduino
end (For example pin 13).

Fig. 8.4 Diagram of
connection of relay

Fig. 8.5 Diagram of
plugging in electric bolt or
lamp

8.2 System Design 209

Step 3: Sending a digital high or a “1” will trigger the relay. Sending a digital low
or “0” will disable the relay. If the relay is disabled, the lock tongue of electric bolt
will retract; then, the door will be opened.

Sample Code

This sample code is used to test if the relay module works normally.

1
2
3
4
5
6
7
8
9
10
11
12
13

int Relay = 3;
void setup() {
pinMode(13, OUTPUT); //Set Pin13 as output
digitalWrite(13, HIGH); //Set Pin13 High
pinMode(Relay, OUTPUT); //Set Pin3 as output

}
void loop() {
digitalWrite(Relay, HIGH); //Turn off relay
delay(2000);
digitalWrite(Relay, LOW); //Turn on relay
delay(2000);

}

8.2.2 Key Design of Android APP

In our demonstration system, the main functions of the Android App include two
points. The first point is to obtain the validation key from the host through wireless
network. The second point is to generate a QR code for unlocking using the
validation key. If we use a fixed string as a validation key, such as “aaaaa”, we can
simplify the first function. Therefore, we only focus on how to generate a QR code
based on Android system in this section.

1. Introduction to Zxing Library

Today, Zxing class library is the most commonly used class library for devel-
oping QR code applications on Android system. Zxing (“zebra crossing”) is an
open-source, multi-format 1D/2D barcode image processing library implemented in
Java, with ports to other languages. Zxing can easily realize encoding and decoding
of barcode using the camera of smartphone, and the barcode formats supported by it
include UPC-A, UPC-E, EAN-8, EAN-13, code 39, code 93, Code 128, Codabar,
RSS-14, QR Code, etc. Although the Zxing library has several class libraries, we
only need its core library if we just use it to generate QR code. The official website
of Zxing is https://github.com/zxing/zxing/releases, and we can also download the
core library named “core-3.2.1.jar” from http://central.maven.org/maven2/com/
google/zxing/core/3.2.1/core-3.2.1.jar.

【Generate QR code using Zxing core library】

210 8 Intelligent Lock System Using Arduino

www.ebook3000.com

https://github.com/zxing/zxing/releases
http://central.maven.org/maven2/com/google/zxing/core/3.2.1/core-3.2.1.jar
http://central.maven.org/maven2/com/google/zxing/core/3.2.1/core-3.2.1.jar
http://www.ebook3000.org

Preliminary 1 Create an Android project, and then add the core-3.2.1.jar to the
folder “libs” under the project, Fig. 8.3 shows the operation screenshot.

Preliminary 2 After successfully adding the jar package, we can begin to program
for generating a QR code. Because QR code is a bitmap image, the target of this
program is to generate a special bitmap according to an input string (this string is
the information hidden in the QR code). We will use a class named
“QRCodeWriter” to realize this function.

Class QRCodeWriter exists within “com.google.zxing.qrcode”, and it has an
important method “encode” for encoding barcode. The detailed description of
method “encode” is as follows.

Public BitMatrix encode(String contents, BarcodeFormat format, int width, int height,
Map<EncodeHintType,?> hints)

throws WriterException
Description: Encode a barcode using input parameters and return a QR Code as a BitMatrix 2D

array of greyscale values.
Specified by:

Encode in interface Writer
Parameters:

contents - The contents to encode in the barcode
format - The barcode format to generate
width - The preferred width in pixels
height - The preferred height in pixels
hints - Additional parameters to supply to the encoder

Returns:
BitMatrix representing encoded barcode image

Throws:
WriterException - if contents cannot be encoded legally in a format

This method is used to encode a barcode using input parameters, and its return
type is class “BitMatrix”, a 2D array of greyscale values.

8.2 System Design 211

com.google.zxing.common
Class BitMatrix

Represents a 2D matrix of bits. In function arguments below, and throughout the common module, x is
the column position, and y is the row position. The ordering is always x, y. The origin is at the top-left.
Internally the bits are represented in a 1-D array of 32-bit ints. However, each row begins with a new int.
This is done intentionally so that we can copy out a row into a BitArray very efficiently.
The ordering of bits is row-major. Within each int, the least significant bits are used first, meaning they
represent lower x values. This is compatible with BitArray's implementation.

Constructor and Description

BitMatrix(int dimension)

BitMatrix(int width, int height)

Modifier and Type Method and Description

void clear() // Clears all bits (sets to false).

BitMatrix clone()

boolean equals(Object o)

void flip(int x, int y) // Flips the given bit.

boolean get(int x, int y) // Gets the requested bit, where true means black.

int[] getBottomRightOnBit()

int[] getEnclosingRectangle()
This is useful in detecting the enclosing rectangle of a 'pure' barcode.

int getHeight()

BitArray getRow(int y, BitArray row)
A fast method to retrieve one row of data from the matrix as a BitArray.

int getRowSize()

int[] getTopLeftOnBit() // This is useful in detecting a corner of a 'pure' barcode.

int getWidth()

int hashCode()

static BitMatrix parse(String stringRepresentation, String setString, String unsetString)

void rotate180()
Modifies this BitMatrix to represent the same but rotated 180 degrees

void set(int x, int y)
Sets the given bit to true.

void setRegion(int left, int top, int width, int height)
Sets a square region of the bit matrix to true.

void setRow(int y, BitArray row)

void unset(int x, int y)

void xor(BitMatrix mask)Exclusive-or (XOR): Flip the bit in this BitMatrix
if the corresponding mask bit is set.

212 8 Intelligent Lock System Using Arduino

www.ebook3000.com

http://www.ebook3000.org

Example: Based on the usage of “encode” and “BitMatrix”, the following
program snippet demonstrates how to generate a QR code according to the input
string.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Private Bitmap generateBitmap(String content,int width, int height)
{

QRCodeWriter qrCodeWriter = new QRCodeWriter();
Map<EncodeHintType, String> hints = new HashMap<>();
hints.put(EncodeHintType.CHARACTER_SET, "utf-8");
try {

BitMatrix encode = qrCodeWriter.encode(content,
BarcodeFormat.QR_CODE, width, height, hints);

int[] pixels=new int[width*height];
for (int i=0;i<height;i++) {

for (int j=0;j<width;j++) {
if (encode.get(j,i)){

pixels[i*width + j] = 0x00000000;
} else {

pixels[i*width + j] = 0xffffffff;
}

}
}
Return Bitmap.createBitmap(pixels, 0, width, width, height,

Bitmap.Config.RGB_565);
} catch (WriterException e) {

e.printStackTrace();
}
Return null;

}

Explanation: This program snippet defines a function generateBitmap(), and it
has three input parameters, where the first parameter indicates the text content
hidden in the QR code, and the second and the third parameters denote the width
and height of output 2D bitmap, respectively. In this function, we declare an object
named “qrCodeWriter”; first, it is an instantiation of class QRCodeWriter. Then,
using “qrCodeWriter.encode” method, the input text “content” will be converted to
a 2D array. The return result is stored in the variable “encode”, and its type is class
BitMatrix. Each element within the 2D array “encode” corresponds to a pixel of
output 2D bitmap. We use method “encode.get” to extract the information of each
element. If the return value of “encode.get” is true, it means the element has useful
data and its corresponding pixel in output bitmap should be black (the RGB rep-
resentation of black in hexadecimal format is 0x00000000); otherwise, the corre-
sponding pixel in output bitmap should be white (the RGB representation of white
in hexadecimal format is 0xffffffff). Next, to create the bitmap using the method
“Bitmap.createBitmap”, a 1D array pixel[] is defined to store the color of each

8.2 System Design 213

pixel, where we adopt two nested for-loops to assign value for pixels[] by going
through 2D array “encode”. After constructing and filling up array pixels[], a QR
code image can be created by the method “createBitmap” (the class Bitmap is
realized within android. Graphics). There are six input parameters of the
createBitmap method: the first parameter is the colors array to write to the bitmap;
the second parameter is the index of the first color to read from pixels[] (a offset
value); the third parameter is the number of colors in pixels[] to skip between rows
(normally this value will be the same as the width of the bitmap, but it can be
larger); the fourth parameter is the number of colors to copy from pixels[] per row;
the fifth parameter is the number of rows to write to the bitmap; and the sixth
parameter is the color mode of the bitmap (we can set this parameter as RGB_565
as the QR code image only has two colors, black and white).

Call Function generateBitmap(): Now, we add a button and an imageView to
the UI of our project; then, we can call the QR code generation function
generateBitmap() in the click event of the button. If the id name of imageView is
“iv”, the sample code snippet is as follows.

1
2
3
4
5

Public void generate(View view) {
Bitmap qrBitmap = generateBitmap("http://www.ujs.edu.cn", 400,

400);
iv.setImageBitmap(qrBitmap);

}

8.2.3 Key Design of Host

In above section, we assume that a default string is adopted as a validation key to
avoid complex communication programming between the Android client and host.
Therefore, we only discuss how to recognize QR codes in this section. If the
recognition result is equal to the default string, the host will pass the verification
and notify Arduino to disable relay for unlocking the door.

Because the host can be a PC or a Raspberry Pi, it has two available operation
systems: Windows and Linux. Based on these two operation systems, many pro-
gramming languages can realize the function of QR code recognition, such as C#,
VB, C++, java, python, etc. Considering that the programming language in the
Android side is java, now we continue to use java and the Zxing library to complete
the recognition of QR code.

【Read QR code using the Zxing core library】

214 8 Intelligent Lock System Using Arduino

www.ebook3000.com

http://www.ebook3000.org

Preliminary: Within the Zxing library, there is a class named
“MultiformatReader”, which belongs to “com.google.zxing”. By default, the class
MultiformatReader attempts to decode all barcode formats that the Zxing library
supports. We will use the method decode() of MultiformatReader to read QR code.
The detailed description is as follows.

com.google.zxing
Class MultiformatReader

MultiFormatReader is a convenience class and the main entry point into the library for most uses. By
default it attempts to decode all barcode formats that the library supports. Optionally, we can provide a
hints object to request different behavior, for example only decoding QR codes.

Modifier and Type Method and Description

Result decode(BinaryBitmap image)
This version of decode honors the intent of Reader.decode(BinaryBitmap) in
that it passes null as a hint to the decoders.

Result decode(BinaryBitmap image, Map<DecodeHintType,?>hints)
Decode an image using the hints provided.

Method Detail
public Result decode(BinaryBitmap image)

throws NotFoundException
Description: This version of decode honors the intent of Reader.decode(BinaryBitmap) in that it passes
null as a hint to the decoders.
Specified by: decode in interface Reader
Parameters: image - The pixel data to decode
Returns: The contents of the image
Throws: NotFoundException - Any errors which occurred

public Result decode(BinaryBitmap image, Map<DecodeHintType,?>hints)
throws NotFoundException

Description: Decode an image using the hints provided. Does not honor existing state.
Specified by: decode in interface Reader
Parameters:

image - The pixel data to decode
hints - The hints to use, clearing the previous state.

Returns: The contents of the image
Throws: NotFoundException - Any errors which occurred

Example: Based on the usage of method decode(), the following Java program
snippet demonstrates how to decode a QR code using Zxing.

8.2 System Design 215

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

package com.google.zxing.client.j2se;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Hashtable;
import javax.imageio.ImageIO;
import com.google.zxing.BinaryBitmap;
import com.google.zxing.DecodeHintType;
import com.google.zxing.LuminanceSource;
import com.google.zxing.MultiFormatReader;
import com.google.zxing.NotFoundException;
import com.google.zxing.Result;
import com.google.zxing.common.HybridBinarizer;
public class Decoder {
 public static void main(String[] args) {
 File file = new File("c://qrcodeImage.png");//location of
image file
 BufferedImage bufferedImage = null;
 try {
 bufferedImage = ImageIO.read(file);

} catch (IOException e) {
 e.printStackTrace();

}
 LuminanceSource source = new
BufferedImageLuminanceSource(bufferedImage);
 BinaryBitmap bitmap = new BinaryBitmap(new
HybridBinarizer(source)); //convert original image to bitmap
 Hashtable<DecodeHintType, String> hints = new
Hashtable<DecodeHintType, String>();
// DecodeHintType encapsulates a type of hint that a caller may
pass to a barcode reader to help it more quickly or accurately
decode it. It is up to implementations to decide what, if
anything, to do with the information that is supplied.
 hints.put(DecodeHintType.CHARACTER_SET, "UTF-8");
// Specifies what character encoding to use when decoding, where
applicable (type String).
 Result result=null;
 try {
 result=new MultiFormatReader().decode(bitmap, hints);
// Obtain the recognition result

} catch (NotFoundException e) {
 e.printStackTrace();

}
 System.out.println(result.toString());

}
}

The above example shows how to read the QR code using Zxing in java, and the
return result is string “result”. Then, we can compare it with a default validation key
using the if statement. When the result matches, the host should notify the suc-
cessful message to Arduino.

216 8 Intelligent Lock System Using Arduino

www.ebook3000.com

http://www.ebook3000.org

Relay controlling in Arduino:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

int relay = 3; // connect relay to digital pin 3
int volume=12; // connect buzzer to digital pin 12
char i;
void setup() {
 Serial.begin(9600); // set baud rate of serial port as 9600bps
 pinMode(relay, OUTPUT); // set digital pin 3 as OUTPUT mode
 pinMode(volume,OUTPUT); // set digital pin 12 as OUTPUT mode
}
void loop() {
if(Serial.available()>0){

 i= Serial.read(); // read data from serial port
if(i=='1'){ // if received data is equal to “1”, where

“1” as the message of passing verification
 digitalWrite(relay, HIGH);
 delay(1000);
 digitalWrite(relay,LOW); // control relay to output low
level, then lock tongue of electric bolt will retract

}
 else if(i=='2'){ // if received data is equal to “2”, where
“2” as the message of verification failure

 digitalWrite(volume, HIGH); // control buzzer to buzz for
warning
 delay(1000);
 digitalWrite(volume,LOW);
 }

 }
}

In this example, we use “1” as a successful message and “2” as a failure mes-
sage. That means, the host will send “1” to Arduino through serial port if the
validation key is correct, and it will send “2” to Arduino through serial port if the
validation key is wrong. From the Arduino side, it should initialize serial port in the
setup stage, and then use serial.read() method to obtain data from the serial port. If
the received data is equal to “1”, Arduino should disable relay; otherwise, Arduino
should control the buzzer to buzz for warning.

8.3 Photos of Demonstration System

Based on the above description, we realize a demonstration system using Arduino,
Raspberry Pi, Android smartphone, and Fischer robot. Figures 8.6, 8.7 and 8.8
show some photos of our demonstration system. Figure 8.6 shows the main
hardware components of this system. We can find the camera located on the top-left
area. Further, from top to bottom in the middle area, there is Raspberry Pi, electric

8.2 System Design 217

bolt, and Arduino, respectively. Figure 8.7 shows the photo of the entire demon-
stration system, and we use the mechanical component of the Fischer robot to build
a house for demonstration. In this house, each door has a camera (installed above
the door) and an electric bolt (installed in the middle of the door). Figure 8.8 shows
the screenshots of the Android App that we developed. Figure 8.8a shows the login
interface and Fig. 8.8b demonstrates a generated QR code; it can be scanned by a
camera when the smartphone is close to the door.

Fig. 8.6 Photo of main
hardware components

Fig. 8.7 Photo of entire
demonstration system

218 8 Intelligent Lock System Using Arduino

www.ebook3000.com

http://www.ebook3000.org

Fig. 8.8 Screenshot of Android application

Web Browser/Smart
Phone/PC Client

Host
(PC / Raspberry Pi) Camera

Mechanical Platform Robot,
Vehicle, UAV, Robotic arm

Microcontroller
(Anduino) Sensors

DC
Motor/Servo/Relay

Bluetooth/WifiSerial port/Ethernet

Bluetooth/Wifi/4G/GPRS

Fig. 8.9 Recommended
solution for intelligent device
design

8.3 Photos of Demonstration System 219

8.4 Conclusion

Based on the demonstration system described in this chapter, we can understand
that the most common intelligent device should consist of a mechanical system,
microcontroller (such as Arduino), host (such as PC or Raspberry Pi), and smart-
phone. Microcontroller is important in intelligent device design. Using a micro-
controller, the device can receive environment information from sensors, drive DC
motor, or servo, control high current equipment by relay. However, this is not
enough for designing an intelligent device if we only depend on a microcontroller.
Owing to its limited processing capacity, a microcontroller cannot deal with images
captured by a camera and cannot meet complex logical processing requirement.
Therefore, a host is necessary for the most common intelligent devices. The host
has more powerful processing capacities than the microcontroller, and we can
program using a high-level language based on its operating system. With the host,
the device designed by us can be more intelligent. In the end of this chapter, we
provide a solution of intelligent device design, as shown in Fig. 8.9. A user can
realize their own designs for any intelligent device according to this solution.

220 8 Intelligent Lock System Using Arduino

www.ebook3000.com

http://www.ebook3000.org

Appendix
Arduino Language Reference

The Arduino language is based on C/C++ and supports all standard C constructs
and some C++ features. It links against AVR Libc and allows the use of any of its
functions; see its user manual for details.

Structures

void setup() The function is called when a sketch starts. Use it to
initialize variables, pin modes, start using libraries, etc. The
setup function will only run once, after each power up or
reset of the Arduino board

void loop() After creating a setup() function, which initializes and sets
the initial values, the loop() function does precisely what its
name suggests, and loops consecutively, allowing your
program to change and respond. Use it to actively control the
Arduino board

Control structures
if (condition) {} Tests whether a certain condition has been reached. Used in

conjunction with a comparison operator

if……else Allows you to do multiple tests

for(initialization; condition;
increment)

Creates a loop for repetitive operations

switch (var) {
case label:

break;
default:

break;
}

Allows you to specify different code that should be executed
in various conditions

while() Loops continuously, and infinitely, until the expression
inside the parenthesis, () becomes false

do {} while () Works in the same manner as the while loop, with the
exception that the condition is tested at the end of the loop,
as does the do loop, which will always run at least once

break Exits from a do, for, or while loop, bypassing the normal
loop condition

(continued)

© Springer Nature Singapore Pte Ltd. 2018
T. Pan and Y. Zhu, Designing Embedded Systems with Arduino,
DOI 10.1007/978-981-10-4418-2

221

(continued)

continue Skips the rest of the current iteration of a loop (do, for, or
while). It continues by checking the conditional expression
of the loop, and proceeds with any subsequent iterations

return Terminates a function and returns a value from a function to
the calling function

goto Transfers program flow to a labeled point in the program

Further syntax
; Each statement ends in a semicolon

{ } Curly braces always come in pairs; they are used to define
the start and end of functions, loops, and conditional
statements

// Single line comment

/* */ Multi-line comment

#define Used to give a name to a constant value

#include<avr/pgmspace.h> Includes outside libraries in your sketch

Arithmetic operators
¼ Assignment operator stores the value to the right of the equal

sign in the variable to the left of the equal sign

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo

Comparison operators
x == y x is equal to y

x != y x is not equal to y

x < y x is less than y

x > y x is greater than y

x <= y x is less than or equal to y

x >= y x is greater than or equal to y

Boolean operators
&& Logical AND. True only if both operands are true

|| Logical OR. True if either operand is true

! NOT. True if the operand is false

Constants
HIGH When reading or writing to a digital pin, there are only two

possible values a pin can take (or be set to): HIGH and
LOW

LOW

true Logical levels (result of a comparison):
false is defined as 0, true is defined as 1 (but more broadly,
anything but 0)

false

INPUT Digital pins can be used either as INPUT or OUTPUT.
Changing a pin from INPUT to OUTPUT with pinMode()
drastically changes the electrical behavior of the pin.

OUTPUT

(continued)

222 Appendix: Arduino Language Reference

www.ebook3000.com

http://www.ebook3000.org

(continued)

Data types
void Used in function declarations to indicate that the function

returns no information

boolean A boolean holds one of two values, true or false

char A data type that stores a character value

unsigned char An unsigned data type that occupies 1 byte of memory.
Same as the byte datatype. The unsigned char datatype
encodes numbers from 0 to 255

byte A byte stores an 8-bit unsigned number, from 0 to 255

int Integers are your primary datatype for number storage, and
store a 2 byte value. This yields a range of −32,768 to
32,767

unsigned int Unsigned ints (unsigned integers) are the same as ints in that
they store a 2 byte value. Instead of storing negative
numbers however they only store positive values, yielding a
useful range of 0 to 65,535

word A word stores a 16-bit unsigned number, from 0 to 65536.
Same as an unsigned int

long Long variables are extended size variables for number
storage, and store 32 bits (4 bytes), from -2,147,483,648 to
2,147,483,647

unsigned long Unsigned long variables are extended size variables for
number storage, and store 32 bits (4 bytes). Unlike standard
longs unsigned longs do not store negative numbers, making
their range from 0 to 4,294,967,295

float Datatype for floating-point numbers, a number that has a
decimal point

double Floating-point numbers are often used to approximate
analog and continuous values because they have greater
resolution than integers. Floats have 6–7 decimal digits of
precision

string Strings are represented as arrays of type char and are
null-terminated

arrays It is often convenient, when working with large amounts of
text, such as a project with an LCD display, to setup an array
of strings

Conversion
char() Converts a value into the char datatype

byte() Converts a value into the byte datatype

int() Converts a value into the int datatype

word() Convert a value into the word datatype or create a word from
two bytes

long() Converts a value into the long datatype

float() Converts a value into the float datatype
(continued)

Appendix: Arduino Language Reference 223

(continued)

Utilities
sizeof The sizeof operator returns the number of bytes in a variable

type, or the number of bytes occupied by an array

Functions: digital I/O
pinMode(pin, mode) Configures the specified pin to behave either as an input or

an output. pin is the pin number

digitalWrite(pin, value) Write a HIGH or a LOW value to a digital pin

digitalRead(pin) Reads the value from a specified digital pin. The result will
be either HIGH or LOW

Functions: Analog I/O

analogReference(type) The default reference voltage is 5 V. This can be changed to
a different type and different resolution using this function

analogRead(pin) Reads the value from the specified analog pin and returns a
value between 0 and 1023 to represent a voltage between 0
and 5 V (for default). It takes about 0.0001 s to read an
analog pin

analogWrite(pin,value) Writes an analog value (PWM wave) to a pin. value is the
duty cycle: between 0 (always off) and 255 (always on).
Works on pins 3, 5, 6, 9, 10, and 11

Functions: math
min(x, y) Calculates the minimum of two numbers

max(x, y) Calculates the maximum of two numbers

abs(x) Computes the absolute value of a number

pow(base, exponent) Calculates the value of a number raised to a power

sqrt(x) Calculates the square root of a number

map(value, fromLow,
fromHigh, toLow, toHigh)

Re-maps a number from one range to another. That is, a
value of fromLow would get mapped to toLow, a value of
fromHigh to toHigh, values in between to values in
between

Functions: trigonometric
sin() Calculates the sine of an angle (in radians). The result will be

between −1 and 1

cos() Calculates the cos of an angle (in radians). The result will be
between −1 and 1

tan() Calculates the tangent of an angle (in radians). The result
will be between negative infinity and infinity

Functions: random numbers
randomSeed(seed) Initializes the pseudo-random number generator, causing it

to start at an arbitrary point in its random sequence

random() The random function generates pseudo-random numbers

Functions: serial communication
Serial.begin(9600) Used to begin serial communications, typically at a 9600

baud rate (bits per second)

Serial.print(val,format) Prints data to the serial port as human-readable ASCII text
(continued)

224 Appendix: Arduino Language Reference

www.ebook3000.com

http://www.ebook3000.org

(continued)

Serial.println(val) Prints val followed by carriage return

Serial.available() Get the number of bytes (characters) available for reading
from the serial port. This is data that’s already arrived and
stored in the serial receive buffer (which holds 128 bytes)

Serial.read() Reads incoming serial data

Serial.write() Writes binary data to the serial port

Serial.end() Disables serial communication, allowing the RX and TX
pins to be used for general input and output

Appendix: Arduino Language Reference 225

References

A. Hayes, Arduino: A Quick-Start Beginner’s Guide (CreateSpace Independent Publishing
Platform, 2017)

M. Banzi, M. Shiloh, Getting Started with Arduino: The Open Source Electronics Prototyping
Platform (Maker Media, Inc., 2014)

J. Blum, Exploring Arduino: Tools and Techniques for Engineering Wizardry (Wiley, London,
2013)

B. Francis, Arduino: The Complete Beginner’s Guide (CreateSpace Independent Publishing
Platform, 2016)

K. Chelli, S. Chavhan, Development of wireless sensor node to monitor poultry farm, in Mobile
Communication and Power Engineering. (Springer, Berlin, 2013), pp. 27–32

A.K. Dennis, Raspberry Pi Home Automation with Arduino (Packt Publishing Ltd, 2013)
R. Faludi, Building Wireless Sensor Networks: With ZigBee, XBee, Arduino, and Processing

(O'Reilly Media, Inc., 2010)
S. Ferdoush, X. Li, Wireless sensor network system design using Raspberry Pi and Arduino for

environmental monitoring applications. Procedia Computer Science 34, 103–110 (2014)
M. Geddes, Arduino Project Handbook: 25 Practical Projects to Get You Started (No Starch

Press, 2016)
H. Timmis, Practical Arduino Engineering (Apress, New York, 2011)
H. Harun, A. Mohd Zin, A study using internet of things concept towards engineering education.

Int. J. Adv. Comput. Sci. Technol. 4(6), 133–136 (2015)
J. Purdum, Beginning C for Arduino (2nd edn) (Apress, New York, 2015)
J-D. Warren, J. Adams, H. Molle, Arduino Robotics (Apress, New York, 2011)
J. Bayle, C Programming for Arduino (Packt Publishing Ltd., 2013)
T. Karvinen, K. Karvinen, Make: Arduino Bots and Gadgets: Six Embedded Projects with Open

Source Hardware and Software (O'Reilly Media, Inc., 2011)
P. Kumar, P. Kumar, Arduino based wireless intrusion detection using IR sensor and GSM. Int.

J. Comput. Sci. Mobile Comput. 2(5), 417–424 (2013)
A. Kurniawan, Getting Started with Matlab Simulink and Arduino (PE Press, 2013)
G. Lockridge, Development of a low-cost Arduino-based sonde for coastal applications. Sensors

16(4), 1969–2017 (2016)
M. Margolis, Make an Arduino-Controlled Robot (O'Reilly Media, Inc., 2012)
M. McRoberts, B. Levy, C. Wootton, Beginning Arduino (Apress, New York, 2010)
M. Riley, Programming Your Home: Automate with Arduino, Android, and Your Computer

(Pragmatic Bookshelf, 2012)

© Springer Nature Singapore Pte Ltd. 2018
T. Pan and Y. Zhu, Designing Embedded Systems with Arduino,
DOI 10.1007/978-981-10-4418-2

227

www.ebook3000.com

http://www.ebook3000.org

Forums

Arduino, Official Arduino forum website (http://www.arduino.org/forums)
Adafruit Industries, Microcontrollers, Adafruit Products, Arduino, and laser cutting (http://forums.

adafruit.com)
AVR Freaks, Programming AVR microcontrollers, using GCC, AVR tutorials (www.avrfreaks.

net/phorum)
BILDR, Tutorial discussion, hardware and software help (http://forum.bildr.org)
DIY Drones, Autonomous unmanned aerial vehicles powered by Arduino (http://diydrones.com/

forum)
MakerBot Industries, Arduino and 3D printing (http://wiki.makerbot.com/forum:start)
Processing, General Processing discussion, project exhibitions, and library development (http://

forum.processing.org)
PureData, All things PD—patches, libraries, and hardware (http://puredata.hurleur.com)
RepRap, More 3D printing and other Arduino Arduino-related stuff (http://forums.reprap.org)
SparkFun Electronics, Electronics, SparkFun products, Arduino, PCB design, and project ideas

(http://forum.sparkfun.com)

Tutorials

Adafruit Industries, Beginning electronics, sensors, and other Arduino tutorials (www.adafruit.
com/tutorials)

Arduino, Official Arduino tutorial website (http://arduino.cc/en/Tutorial/HomePage)
Tutorialspoint, Arduino Tutorial (https://www.tutorialspoint.com/arduino/index.htm)
Jeremy Blum, Video tutorials from Jeremy Blum (http://jeremyblum.com/category/arduino-

tutorials)
SparkFun Electronics, Embedded electronics, surface mount soldering, projects, and other tutorials

(www.sparkfun.com/tutorials)
Spooky Projects, Class notes and tutorials from Tod E. Kurt (http://todbot.com/blog/

spookyarduino)
Tronixstuff, An ever expanding series of Arduino tutorials from John Boxall (http://tronixstuff.

wordpress.com/tutorials)
Wiring, Tutorials for the Wiring platform, similar to and mostly compatible with Arduino (http://

wiring.org.co/learning/basics)

228 References

http://www.arduino.org/forums
http://forums.adafruit.com
http://forums.adafruit.com
http://www.avrfreaks.net/phorum
http://www.avrfreaks.net/phorum
http://forum.bildr.org
http://diydrones.com/forum
http://diydrones.com/forum
http://wiki.makerbot.com/forum:start
http://forum.processing.org
http://forum.processing.org
http://puredata.hurleur.com
http://forums.reprap.org
http://forum.sparkfun.com
http://www.adafruit.com/tutorials
http://www.adafruit.com/tutorials
http://arduino.cc/en/Tutorial/HomePage
https://www.tutorialspoint.com/arduino/index.htm
http://jeremyblum.com/category/arduino-tutorials
http://jeremyblum.com/category/arduino-tutorials
http://www.sparkfun.com/tutorials
http://todbot.com/blog/spookyarduino
http://todbot.com/blog/spookyarduino
http://tronixstuff.wordpress.com/tutorials
http://tronixstuff.wordpress.com/tutorials
http://wiring.org.co/learning/basics
http://wiring.org.co/learning/basics

	Preface
	Objective and Intended Audience
	Book Contents

	Acknowledgements
	Contents
	About the Authors
	Basic Skill Training and Application
	1 Getting Started with Arduino
	1.1 Introduction
	1.2 Arduino Variants
	1.3 Install the Drivers
	1.4 Arduino IDE

	2 The Basic Functions
	2.1 Overview
	2.2 Structure
	2.3 Digital I/O Functions
	2.4 Analog I/O Functions
	2.5 Advanced I/O Functions
	2.6 Timer Functions
	2.7 Communication Functions
	2.8 Interrupt Functions
	2.9 Math Functions
	2.10 Programming Language Reference

	3 Using Sensors with the Arduino
	3.1 Introduction
	3.2 Light Sensitive Sensors
	3.2.1 Introduction
	3.2.2 Photodiodes
	3.2.3 Demonstration

	3.3 Temperature Sensors
	3.3.1 Introduction
	3.3.2 Digital Temperature Sensor
	3.3.2.1 Introduction
	3.3.2.2 Demonstration

	3.3.3 Analog Temperature Sensor
	3.3.3.1 Introduction
	3.3.3.2 Demonstration

	3.4 Temperature and Humidity Sensor
	3.4.1 Introduction
	3.4.2 Demonstration

	3.5 Line-Tracking Sensor
	3.5.1 Introduction
	3.5.2 Demonstration

	3.6 Ultrasonic Sensors
	3.6.1 Introduction
	3.6.2 HC-SR04
	3.6.3 Demonstration

	3.7 Digital Infrared Motion Sensor
	3.7.1 Introduction
	3.7.2 Demonstration

	3.8 Joystick Module
	3.8.1 Introduction
	3.8.2 Demonstration

	3.9 Gas Sensor
	3.9.1 Introduction
	3.9.2 Demonstration

	3.10 Hall Sensor
	3.10.1 Introduction
	3.10.2 Demonstration

	3.11 Color Sensor
	3.11.1 Introduction
	3.11.2 Demonstration

	3.12 Digital Tilt Sensor
	3.12.1 Introduction
	3.12.2 Demonstration

	3.13 Triple Axis Acceleration Sensor
	3.13.1 Introduction
	3.13.2 Demonstration

	3.14 Analog Sound Sensor
	3.14.1 Introduction
	3.14.2 Demonstration

	3.15 Voice Recognition Module
	3.15.1 Introduction
	3.15.2 Demonstration

	3.16 Digital Vibration Sensor
	3.16.1 Introduction
	3.16.2 Demonstration

	3.17 Flame Sensor
	3.17.1 Introduction
	3.17.2 Demonstration

	3.18 Capacitive Touch Sensor
	3.18.1 Introduction
	3.18.2 Demonstration

	4 Electromechanical Control Using the Arduino
	4.1 DC Motor
	4.1.1 Overview
	4.1.2 Driven Circuit Design
	4.1.3 Demonstration

	4.2 Stepper Motor
	4.2.1 Overview
	4.2.2 Working Principle of Stepper Motor
	4.2.3 Driven Principle of Stepper Motor
	4.2.4 Driven Circuit Design
	4.2.5 Demonstration 1
	4.2.6 Demonstration 2

	4.3 Servo Motor
	4.3.1 Overview
	4.3.2 Driven Circuit Design
	4.3.3 Demonstration

	4.4 Hardware Setting
	4.5 Explanation

	5 Wireless Control Using the Arduino
	5.1 Infrared Transmitter and Receiver Module
	5.1.1 Introduction
	5.1.2 IR Transmitter/Receiver Module
	5.1.3 IR Kit

	5.2 2.4G Wireless Radio Frequency Module
	5.2.1 Introduction
	5.2.2 2.4 GHz Wireless RF Transceiver Module
	5.2.3 Demonstration

	5.3 Bluetooth Module
	5.3.1 Introduction
	5.3.2 HC-05 Module
	5.3.3 Modify HC-05 Module Defaults Using at Commands
	5.3.4 Demonstration

	5.4 GSM/GPRS Module
	5.4.1 Introduction
	5.4.2 A6 GSM/GPRS Module
	5.4.3 Demonstration

	5.5 Wi-Fi Module
	5.5.1 Introduction
	5.5.2 Wi-Fi Module
	5.5.3 Demonstration

	Case Studies
	6 PM2.5/Air Quality Monitor Using Arduino
	6.1 Introduction
	6.2 System Design
	6.2.1 Air Quality Sensor (SEN0177)
	6.2.2 Temperature and Humidity Sensor (DHT11)
	6.2.3 Liquid-Crystal Display
	6.2.4 Servo
	6.2.5 Bluetooth (HC-05)
	6.2.6 Software Development

	6.3 Production Demonstration
	6.3.1 Components
	6.3.2 UNO R3 Digital Pinouts Are as Follows
	6.3.3 Results
	6.3.4 Codes

	7 A Fire-Fighting Robot Using Arduino
	7.1 Introduction
	7.2 Task Definition
	7.2.1 Task 1: Search the Fire Source
	7.2.2 Task 2: Extinguishing the Fire
	7.2.3 Task 3: Returning to the Start Position

	7.3 Robot Design
	7.3.1 Sensors
	7.3.2 Extinguishing System
	7.3.3 Motor Drive
	7.3.4 Algorithms and Behaviors

	7.4 Demonstration
	7.4.1 Components
	7.4.2 Romeo Pinouts Are as Follows
	7.4.3 Results
	7.4.4 Codes

	8 Intelligent Lock System Using Arduino
	8.1 Introduction
	8.2 System Design
	8.2.1 Key Design of Controllable Lock
	8.2.2 Key Design of Android APP
	8.2.3 Key Design of Host

	8.3 Photos of Demonstration System
	8.4 Conclusion

	Appendix: Arduino Language Reference
	References
	Forums
	Tutorials

