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Preface

Bold ideas, unjustified anticipations, and speculative thought,
are our only means for interpreting nature: our only organon,
our only instrument, for grasping her. And we must hazard
them to win our prize. Those among us who are unwilling to
expose their ideas to the hazard of refutation do not take part
in the scientific game.

K. Popper, The Logic of Scientific Discover.

Over the years, technology and society have become more dependent on autono-
mous systems. In this book, two methodologies for the analysis and design of
autonomous systems are considered: the interaction of two subsystems and con-
troller design, i.e., the algorithm that will govern the behavior of these systems. In
general, techniques for analysis and design of systems depend on the structure
of the equation that describes the system dynamics which, in many cases, is non-
linear. Moreover, the presence of unknown terms such as disturbances or modeling
errors may lead to a system lacking the appropriate structures.

The purpose of this book is to provide a methodology to merge different known
techniques for the design and analysis of systems lacking those structures. This
monograph has been written for readers varying from undergraduate students to
Ph.D. candidates/researchers in the fields of sciences and engineering. Since
another objective of this book is to be accessible to the largest variety of readers,
I provide only sketches of proofs, making the idea behind the proofs accessible for
the unfamiliar reader. In Chap. 2, the design and blending of two nonlinear con-
trollers is presented. In Chap. 3, the analysis of two interconnected systems is
considered. The Appendix A recalls fundamental results and concepts employed
along the other chapters.

This monograph has mostly been adapted from my Ph.D. dissertation [1] and
based on a few subsequent articles. The English translation of the title my Ph.D.
manuscript is Stabilization under local and global constraints. This thesis was
supervised by Christophe Prieur (senior researcher at the CNRS/GIPSA-lab,
Grenoble) and co-supervised by Vincent Andrieu (junior researcher at the
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CNRS/LAGEP, Lyon). I thank them for advising me in this project which made me
one of the recipients of the GdR MACS best theses award. This is a French national
prize awarded to up to four Ph.D. candidates every 2 years. I also thank the
examiners and opponents: Antoine Chaillet, Andrew Teel, Andrea Bacciotti,
Laurent Praly, Sophie Tarbouriech, and Luca Zaccarian. They enriched not only my
thesis but also my work as a researcher with their comments.

Sydney, Australia Humberto Stein Shiromoto
October 2016

Reference
1. Stein Shiromoto H (2014) Stabilisation sous contraintes locales et globales. PhD thesis,

Université Grenoble Alpes
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Acronyms and Notations

Ck Denotes the class of k-times continuously differentiable functions;
K Denotes the class of continuous strictly increasing functions;
K1 Denotes class of functions belonging to K and that are unbounded;
P Denotes the class of positive definite functions;
L1

loc Denotes the class of locally essentially bounded functions;
R Denotes the set of real values;
R[ 0 Denotes the set of strictly positive real values;
R� 0 Denotes the set of positive real values;
B\rðKÞ Denotes the open ball centered at the set K and with radius r[ 0;
B� rðKÞ Denotes the closed ball centered at the set K and with radius r[ 0;
S6¼0 Denotes the set Snf0g;
clfSg Denotes the closure of the set S;
cofSg Denotes the convex closure of the set S;
KL Denotes the class of functions b : R� 0 � R� 0 ! R� 0 such that, for a

fixed t� 0, the function s 7! bðs; tÞ is of class K and, for a fixed s� 0,
the function t 7! bðs; tÞ 2 R� 0 is strictly decreasing and satisfies
bðs; tÞ ! 0, as t tends to infinity;

XðVÞ}c Denotes the set fx 2 R
n : VðxÞ � cg, where � is a binary comparison

operator (i.e., � 2 f� ;\; 6¼; etcg;
suppðfÞ Denotes the set fx 2 R

n : f ðxÞ 6¼ 0g;
Dþ

v V is the Dini derivative of a function V : Rn ! R in along the vector
v 2 R

n;
LhV Lie derivative of V in along the vector field h
M � 0 Stands for the matrix M 2 R

n�n being positive definite;
M<0 Stands for the matrix M 2 R

n�n being positive semidefinite;
x � y Denotes the inner product between the vectors x and y 2 R

n;
UGAS Uniformly Globally Asymptotically Stable

xi



Chapter 1
Introduction

Dynamical systems have an important role in sciences and technologies, since it is
employed as tool for modeling physical phenomena. Mathematical control theory
provides a framework to deal with dynamical systems by analyzing their behavior
which can be influenced to satisfy desired constraints. In this book, the considered
dynamical systems are described by ordinary differential equation.

The stability of dynamical systems is one of themain problems in control theory. In
this work, the stability notion introduced by Lyapunov is considered. This concept
was introduced in the seminal work entitled “General Problem of the Stability of
Motion” in 1892. The interested reader may consult the English translation of the
integral text in the special issue [8]. A historical development of stability theory is
summarized by Parks in [9].

Roughly speaking, a point x̄ is said to be Lyapunov stable for a dynamical system
if its solutions starting from a initial condition x(0) near x̄ remains close to this
point. Additionally, if these solutions eventually converge to x̄ , this point is said
to be asymptotically stable. These concepts are precisely stated in Definition A.30,
below. Figure1.1 illustrates these notions.

One of the main advantages of Lyapunov’s stability theory is that the properties
of the solutions to differential equations can be obtained without explicitly compute
these solutions. In this work, this advantage is exploited in two cases: the design of
feedback laws and the analysis of the interaction of two interconnected dynamical
systems. In the first case, conditions to design a feedback law to stabilize a class of
dynamical systems are provided. In the latter case, a criterion to deduce the stability
of interconnected systems is formulated.

In both cases, the main ingredient employed is to take into account the properties
of the dynamical systems near and far from a prescribed set. For the feedback design
case, two controllers are combined, according to appropriate regions, to stabilize a

© The Author(s) 2017
H. Stein Shiromoto, Design and Analysis of Control Systems,
SpringerBriefs in Applied Sciences and Technology,
DOI 10.1007/978-3-319-52012-4_1

1



2 1 Introduction

ε

δ
x̄

xu(0)

xs(0)

xas(0)

Fig. 1.1 Illustration of the concept of Lyapunov’s stability. The point x̄ is a equilibrium. The (blue)
solution issuing from xas(0) remains close and eventually converge to x̄ . The (red) solution issuing
from xs(0) remains close to x̄ . The (green) solution issuing from xu(0) does not remain closed to x̄

class of dynamical systems whereas, for the interconnection analysis, an input-to-
state stability condition is blended with a criterion to ensure that sets undesired of
trajectories have Lebesgue measure zero.

Other works that blend local and global behaviors of dynamical systems are well
known in the literature. See [2] for the design of globally inverse optimal feedback
law satisfying prescribed local optimality constraints, see [1] for a combination of
control-Lyapunov function and see [3] for a combination of input-to-state and integral
input-to-state stability notions.

1.1 Outline and Contributions

This book is organized as follows.
In Chap.2, the problem of designing a feedback law for a class of nonlinear

systems is considered. The lack of structure of the equation describing this class of
systems rends the synthesis method known as backstepping not suitable to obtain a
single controller rendering the closed-loop system is stable.

The term backstepping has been introduced by Kokotović [5]. It is a recursive
technique employed to design controllers for cascades of nonlinear systems [6, 7].
In comparison to other synthesis methods, backstepping does not require the system

http://dx.doi.org/10.1007/978-3-319-52012-4_2


1.1 Outline and Contributions 3

to be feedback linearizable and it does not assume that the first-order approximation
(linearization) is controllable [4].

If the terms impeaching the application of the backstepping technique are uni-
formly bounded, then the backstepping can be used to drive the solutions to the
system inside a compact set around the origin. The next step is to make these solu-
tions converge to the origin.

In a compact domain of the state space that includes the origin, the nonlinear
equation can be bounded by a linear differential inclusion. This domain is defined to
include the compact set containing the global attractor. By employing semidefinite
programming techniques, a feedback law rendering the origin locally asymptotically
stable and including the global attractor in the basin of attraction is computed.

The final step is to blend both controllers. To that end, a discrete variable is
introduced making the closed-loop system hybrid, i.e., with continuous and discrete
dynamics. This technique allows to render the origin globally asymptotically stable
for the closed-loop system.

Chapter 3 is dedicated to the analysis of the feedback interconnection of a class of
nonlinear systems. More precisely, the interconnection of two input-to-state stable
systems is considered.

One of the main results to ensure that origin is globally asymptotically stable
for the interconnected system is the small-gain theorem. Roughly speaking, if the
function resulting from composition of the systems gains is smaller than the iden-
tity function, for all positive values of the argument, then the interconnected system
is asymptotically stable. The small-gain theorem has been employed in many con-
trol problems such as adaptive controllers and dynamic uncertainties (see [4] and
references therein).

The question that is studied in Chap. 3 can be formulated as follows: “How the
small-gain theorem can still be employed, when there exists a finite interval where
it does not hold?”

To answer this question, the small-gain theorem is employed on the intervals of
the real line (corresponding to regions of the state space) where it holds. In the gap
region, a condition regarding the positivity of the divergence of the vector field of
the interconnected system is assumed. In addition to that, the intervals where each
condition hold are assumed to have nonempty intersection.

The asymptotic stability of the equilibrium of the origin is obtained by combining
the two mentioned conditions. More specifically, the set of trajectories of solutions
that do not converge to the origin have Lebesgue measure zero.
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Chapter 2
Blending Two Feedback Laws

2.1 Introduction

Over the years, research in control of nonlinear dynamical systems has led to many
different tools for the design of feedback laws rendering the equilibrium (globally)
asymptotically stable.Most of these techniques require particular structures on vector
field that describes the systems dynamics. According to each case, the designer may
use different approaches such as high-gain [10], backstepping [5], or forwarding
[20]. However, when the vector field does not have appropriate properties (due to the
presence of unstructured dynamics), some of these methods cannot be applied.

The focus of this chapter is on the class of systems with obstructions for the
synthesis of controllers employing the backstepping technique. The approaches pro-
posed in [25–27] may solve the problem by blending a backstepping feedback law
that renders a suitable compact set practically globally stable with a controller that
locally stabilizes the equilibrium of the origin.

By solving a semidefinite program under constraints on the basin of attraction,
the feedback law that locally stabilizes the equilibrium of the origin is obtained. The
main result can be seen as a design of hybrid feedback laws for systems which a
priori do not have a feedback law that globally stabilizes the origin.

Methodologies to synthesize hybrid controllers are well known (see [22] and ref-
erences therein, for instance). These approaches have been also applied for systems
that do not satisfy the Brockett’s condition [6, 12]. Hybrid feedback laws have the
advantage of rendering the equilibrium of the closed-loop system robustly asymp-
totically stable with respect to measurement noise and actuator errors [9, 23].

Other techniques to blend feedback laws do exist in the literature. See, for instance,
[1, 21] for the design of continuous controllers by blending two feedback laws. In
contrast to those works, no a priori knowledge of continuous globally stabilizing
controllers is assumed. Note that the problem considered in this chapter differs from
the one considered in [19], where a synergistic Lyapunov function and a feedback
law are designed using backstepping.

© The Author(s) 2017
H. Stein Shiromoto, Design and Analysis of Control Systems,
SpringerBriefs in Applied Sciences and Technology,
DOI 10.1007/978-3-319-52012-4_2

5



6 2 Blending Two Feedback Laws

2.1.1 Motivation and Problem Formulation

Consider the class of systems described by the equation

{
ẋ1(t) = f1 (x1(t), x2(t)) + h1 (x1(t), x2(t), u(t))
ẋ2(t) = f2 (x1(t), x2(t)) u(t) + h2 (x1(t), x2(t), u(t)) ,

(�h(u))

where, for each positive value of the time t , the system states x1(t) and x2(t), and
the input variable u(t) evolve in the Euclidean spaces R

n−1, R and R, respectively.
The vector fields describing system (�h(u)) are

f1 ∈ C 1
(
R

n−1 × R, R
n−1

)
, h1 ∈ C 1

(
R

n−1 × R × R, R
n−1

)
,

f2 ∈ C 1
(
R

n−1 × R, R
)
, h1 ∈ C 1

(
R

n−1 × R × R, R
)
.

For each index i = 1, 2, the functions fi (resp. hi ) yield zero whenever (x1, x2) =
(0, 0) (resp. (x1, x2, u) = (0, 0, 0)). Moreover, f2(x1, x2) = 0 if and only if
(x1, x2) = (0, 0). From now on, the dependence on the time variable t will be
omitted. A function v ∈ L ∞

loc(R≥0, R
m) is said to be an input or control for system

(�h(v)). The notation (�h(v)) stands for system (�h(u)) under the input v.
For the time being, assume that h1 ≡ 0 and h2 ≡ 0. System (�h(u)) is

described by {
ẋ1 = f1 (x1, x2)
ẋ2 = f2 (x1, x2) u.

(�(u))

The first assumption concerns the global stabilization of the equilibrium of the
origin for system

ẋ1 = f1(x1, x2), (�1 (x2))

when x2 is considered as the input variable.

Assumption 2.1 There exist a feedback lawψ1 ∈ C 1(Rn−1, R) for system (�1 (x2)),
a proper function V1 ∈ (

C 1 ∩ P
) (

R
n−1, R≥0

)
, and a locally Lipschitz function

α1 ∈ K∞ such that the inequality

L f1V1 (x1, ψ1) ≤ −α1 (V1(x1)) (2.1)

holds, for every x1 ∈ R
n−1.

In other words, Assumption 2.1 states that the equilibrium of the origin is globally
asymptotically stable when system (�1 (x2)) is in closed loop with the feedback law
ψ1. This implies that the backstepping design procedure can be employed to design
a feedback law ϕb ∈ C (Rn, R) rendering the origin globally asymptotically stable
equilibrium for system (�(ϕb)) (see Sect. 2.8 for more details).

Whenemploying the backstepping technique for system (�h(u)), the dependences
of the functions h1 and h2 on the input variable u lead to an equation depending
implicitly on u as follows. Consider the function defined as
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V : R
n−1 × R → R≥0

(x1, x2) 	→ V1(x1) + 1

2
(x2 − ψ1(x1))

2 .
(2.2)

The Lie derivative of V along the vector field fh yields the inequality

L fh V (x1, x2, u) ≤ − α1 (V1(x1)) + L fh1
V1(x1, ψ1, u) + (x2 − ψ1(x1))

·
(
f2(x1, x2)u + h2(x1, x2, u) − Lr1ψ1(x1, x2, u)

+ ∂ψ1

∂x1
(x1) ·

∫ 1

0

∂r1
∂ηx1,x2

(
x1, ηx1,x2(s), u

)
ds

)
(2.3)

which holds, for every (x1, x2, u) ∈ R
n−1 × R × R, where the vector field r1 is

defined as r1 = f1 + h1.
To solve inequality (2.3) on the variable u may not be an easy task. Moreover, the

fact that the function f2 yields zero at zero implies that the backstepping could not
be employed. These facts motivate the introduction of an additional hypothesis on
the terms h1 and h2 that is shown in the next section.

2.2 Global Practical Stabilizability

The second assumption provides bounds for the functions h1 and h2 that impeach
the direct application of the backstepping method.

Assumption 2.2 There exist a continuous function Ψ : R
n → R and two positive

constant values ε ∈ (0, 1] and M satisfying the following inequalities

1. (Bounds on h1)

|h1(x1, x2, u)| ≤ Ψ (x1, x2),∣∣∣∣∂h1∂x2
(x1, x2, u)

∣∣∣∣ ≤ Ψ (x1, x2),

Lh1V1 (x1, ψ1) ≤ (1 − ε)α1 (V1(x1)) + εα (M) ; (2.4)

2. (Bound on h2)
|h2(x1, x2, u)| ≤ Ψ (x1, x2),

for every (x1, x2, u) ∈ R
n−1 × R × R.

The role of the constants ε and M is explained as follows. Under Assumption 2.1,
the Lie derivative of the function V1 along the vector field r1 yields
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Lr1V1(x1, x2, u) = L f1V1(x1, x2) + Lh1V1(x1, x2, u), (2.5)

for every (x1, x2, u) ∈ R
n−1 × R × R. Consider the feedback law ψ1 and let x2 =

ψ1(x1). Under Assumption 2.2, Eq. (2.5) yields the inequality

Lr1V1(x1, ψ1, u) ≤ ε (α1(M) − α1(V1(x1))) , (2.6)

for every x1 ∈ R
n−1.

Inequality (2.6) implies that

• The constant M is an estimation of how far a solution to the system

ẋ1 = f1(x1, ψ1(x1)) + h1(x1, ψ1(x1), u) (2.7)

will remain from the origin. Note that ifM = 0, then V1 strictly decreases along the
solutions to system (2.7). Consequently, the equilibrium of the origin is globally
asymptotically stable for system (2.7), for every input u. Thus, M = 0 could be a
strong assumption;

• The constant ε is an estimation of how fast a solution to system (2.7) will approach
the set Ω≤M1(V1) which is defined by the function V1. Thus, ε must be different
from zero. Note that, when ε = 1, the presence of the function h1 has no role in
the speed of convergence of the solutions which may be a strong assumption as
well.

The discussion regarding the role of the constants M and ε motivates the use of
global practical asymptotic stabilizability of sets. This notion is recalled from [13,
p. 126] and it is adapted to the context of this chapter.

Definition 2.3 A compact set S ⊂ R
n containing the origin is said to be globally

practically asymptotically stabilizable for system (�h(u)) if, for every a > 0, there
exists a feedback law ϕa : R

n → R such that the set

B≤a = {
x ∈ R

n : |x |S ≤ a
}

contains a compact set that is globally asymptotically stable for system (�h(ϕa)).

Consider the set A defined below.

A = {
(x1, x2) ∈ R

n−1 × R : V1(x1) ≤ M, x2 = ψ1(x1)
}
. (2.8)

Since the function V1 is proper and ψ1 is of class C 1, the set A is compact.
The first result of this chapter is recalled from [25, 27]. It states that, under

Assumption 2.2, there exists a feedback law ϕb for system (�h(u)) that is continuous
and rends the set A globally practically asymptotically stable for the closed-loop
system (�h(ϕb)).

Proposition 2.4 Under Assumptions 2.1 and 2.2, the set A is globally practically
asymptotically stabilizable for system (�h(u)).
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A sketch of the proof of Proposition 2.4 is provided in Sect. 2.7.1. The main
ingredients are shown as follows. Under Assumption 2.2, the functions h1 and h2
are bounded. This implies that the backstepping method can be employed to design
a feedback law ϕb that rends the set A globally practically asymptotically stable for
system (�h(ϕb)).

Corollary 2.5 Let Assumption 2.2 be satisfied with M = 0, then the equilibrium of
the origin is globally practically asymptotically stabilizable for system (�h(u)).

Now that the set A is globally practically asymptotically stabilizable, it remains
to show how solutions to system (�h(u)) will converge towards the origin which is
contained within the set A. To do so, the existence a feedback law that locally stabi-
lizes the origin is assumed. In a particular case, the local stabilizer can be designed
as shown in Sect. 2.5.

The switching law between the two feedback laws leads to a hybrid system, i.e.,
a system with continuous and discrete dynamics. The framework to deal with these
systems is recalled in the next section.

2.3 Hybrid Systems

The following concept of hybrid feedback lawwas presented in [23], and it is recalled
below.

Definition 2.6 (Hybrid feedback law) A hybrid feedback law, denoted as H , con-
sists of a finite set Q ⊂ N,

• Two collections of closed sets Cq ,Dq ⊂ R
n indexed by q ∈ Q and satisfying

Cq ∪ Dq = R
n and

⋃
q∈Q

Cq = R
n

for every q ∈ Q;
• A collection of continuous functions ϕq : R

n → R indexed by q ∈ Q;
• A collection of outer semicontinuous set-valued maps gq : R

n ⇒ R indexed by
q ∈ Q.

System (�h(u)) in closed loop with H leads to a system with continuous and
discrete dynamics described as follows.

{
ẋ = fh(x, ϕq(x)), x ∈ Cq ,

q+ ∈ gq(x), x ∈ Dq ,
(�h(H ))
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where x = (x1, x2), and

fh(x, u) =
(

f1(x) + h1(x, u)

f2(x)u + h2(x, u)

)
.

The state space of system (�h(H )) is the set R
n × Q. The map fh is said to be

flow map and the maps gq are said to be jump maps.
System (�h(H )) is analyzed in the framework provided in [7, 23] which is

recalled here. The first definition concerns the concept of a hybrid time domain.

Definition 2.7 (Hybrid time domain) A set T ⊂ R≥0 × N is said to be a compact
hybrid time domain if

T =
J−1⋃
j=0

([t j , t j+1], j),

for some finite sequences of the times 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ . It is said to
be a hybrid time domain if, for every (T, J ) ∈ T, the intersection T ∩ ([0, T ] ×
{0, 1, . . . , J }) is a compact hybrid time domain.

Now that the notion of hybrid time domain has been defined, the concept of a
solution to (�h(H )) can be recalled from [23].

Definition 2.8 (Solution to a hybrid system) Let T be a hybrid time domain and
consider the functions X : T → R

n and Q : T → Q. The pair (X, Q) is said to be
a solution to (�h(H )) if

• For a fixed j , the function t 	→ X (t, j) is locally absolutely continuous and
(t, j) ∈ T;

• For a fixed j , the function t 	→ Q(t, j) is constant and (t, j) ∈ T.

The hybrid timedomainwhere (X, Q) is defined is denoted asdom(X, Q).Moreover,

S1. X (0, 0) ∈ CQ(0,0) ∪ DQ(0,0);
S2. For every j ∈ N such that I j := {t ∈ R : (t, j) ∈ dom(X, Q)}, and for almost
every t ∈ I j ,

Ẋ(t, j) = fh
(
X (t, j), ϕQ(t, j)(X (t, j))

)
, X (t, j) ∈ CQ(t, j) ;

S3. For every (t, j) ∈ dom(X, Q) such that (t, j + 1) ∈ dom(X, Q),

Q(t, j + 1) ∈ gQ(t, j)(X (t, j)), X (t, j) ∈ DQ(t, j).

A solution (X, Q) is said to be

• Nontrivial if dom(X, Q) contains at least two points;
• Complete if supdom(X, Q) = ∞;
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• Maximal if there exists no other solution
(
X , Q

)
to (�h(H )) such that

dom(X, Q) � dom
(
X , Q

)
, and for every (t, j) ∈ dom(X, Q), (X (t, j), Q(t, j))

= (
X(t, j), Q(t, j)

)
.

Let (X, Q) be a solution to system (�h(H )). Whenever X ∈ CQ , the evolution
of (X, Q) is given by the differential equation and the solution is said to flow. On the
other hand, whenever X ∈ DQ , the evolution of (X, Q) is given by the difference
equation and the solution is said to jump.

The following definition concerns the regularity that the functions f and g satisfy
to ensure that solutions to system (�h(H )) exist. These conditions are based on [7,
Assumption 6.10] and [23].

Definition 2.9 (Basic Assumptions) System (�h(H )) is said to satisfy the basic
assumptions for the existence of solutions if, for every index q ∈ Q,

1. The sets Cq and Dq are closed subsets of R
n;

2. The map fh(·, ϕq(·)) : Cq → R
n is continuous;

3. The set-valued map gq : Dq ⇒ Q is outer semicontinuous, locally bounded, and
for every x ∈ Dq , the set gq(x) is nonempty.

Items 1 and 2 have been added here for the sake of completeness of this chapter.
Note that these conditions hold for system (�h(H )), due to Definition 2.6.

Now that the concept of a hybrid solution and the conditions for its existence have
been stated, the notion of asymptotic stability can be recalled from [7, 23].

Definition 2.10 (Uniform Local Asymptotic Stability) Let A ⊂ R
n be a compact

set. The set A is said to be

• Uniformly stable for system (�h(H )) if, for every ε > 0, there exists δ > 0
such that, for every solution (X, Q) to (�h(H )) satisfying |X (0, 0)|A ≤ δ, the
inequality |X (t, j)|A ≤ ε holds for every (t, j) ∈ dom(X, Q);

• Attractive for system (�h(H )) if there exists δ0 > 0 such that every solution
(X, Q) to (�h(H )) satisfying |X (0, 0)|A ≤ δ0 is complete and satisfies the limit

lim
t+ j→∞ |X (t, j)|A = 0 ; (2.9)

• Asymptotically stable for system (�h(H )) if it is stable and attractive.

The uniform basin of attraction of the setA is the set of all X (0, 0) ∈ R
n such that,

for every Q(0, 0) ∈ Q, there exists a solution (X, Q) to (�h(H )) that is complete
and satisfies the limit (2.9).

Note that the uniformity of the stability ofA is with respect to the indexes q ∈ Q.
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2.4 Blending Feedback Laws

Assumption 2.11 (Locally stabilizing feedback law) There exists a hybrid feedback
law H� for system (�h(u)) which is defined as follows. Given a finite set L ⊂ N,
for every index l ∈ L, there exist

1. A collection of closed sets Cl ,Dl ⊂ R
n satisfying

Cl ∪ Dl = R
n and

⋃
l∈L

Cl = R
n ;

2. A collection of continuous feedback laws ϕl : R
n → R;

3. A collection of outer semicontinuous set-valued maps gl : R
n ⇒ L;

4. A collection of functions Vl for system (�h(H�)) for which there exist functions
α, α ∈ K∞ and a constant value c� > 0 satisfying the following inequalities

∀x ∈ R, α(|x |) ≤ Vq(x) ≤ α(|x |) ; (2.10a)

∀x ∈ (Ω≤c�
(Vl)) ∩ Cl) \ {0}, L fh Vl(x, ϕq(x)) < 0 ; (2.10b)

∀x ∈ (Ω≤c�
(Vl) ∩ Dl) \ {0}, g ∈ gl(x), Vg(x) − Vl(x) < 0. (2.10c)

Items 1–3 of Assumption 2.11 concern the definition of a hybrid feedback law
for system (�h(u)), according to Definition 2.6. Item 4 states that the functions
Vl are positive definite and proper and that each one strictly decreases along the
solutions to the closed-loop system (�h(H�)). The functions satisfying the set of
inequalities (2.10) have a special denomination as follows.

Definition 2.12 Each function Vl satisfying the set of inequalities described in Eq.
(2.10) is said to be a hybrid Lyapunov function for system (�h(H�)).

Assumption 2.11 implies that the set {0} × L is locally asymptotically stable for
(�(H�)). To see this claim, note that whenever a solution starts in a neighborhood of
the origin, Eq. (2.10b) ensures that, for every l ∈ L, hybrid the Lyapunov function Vl

is strictly decreasing during a flow. Eq. (2.10c) ensures that, for a solution starting in
a neighborhood of the origin, during a transition from a feedback law ϕl to a feedback
law determined by g ∈ gl , the value Vl(x) strictly decreases to Vg(x).

Recall the set A defined in Eq. (2.8). The next assumption concerns the inclusion
of A in the basin of attraction of the origin for system (�h(H�)).

Assumption 2.13 For every l ∈ L, the function Vl and the constant cl ofAssumption
2.11 satisfy the inequality

max
x∈A

< c�.

Recall that, under Assumptions 2.1 and 2.2, the set A is globally practically
asymptotically stabilizable for system (�h(u)). It remains to show that a hybrid
feedback law can steer the solutions to system (�h(u)) towards the origin. This
result is recalled from [25, 27].
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Theorem 2.14 Under Assumptions 2.1, 2.2, 2.11, and 2.13, there exist

• A continuous feedback law ϕb : R
n \ {0} → R;

• A constant value b� satisfying the inequality 0 < b� < c�;
• Ahybrid feedback law for system (�h(u)) defined by the discrete setQ = {1, 2}×L
such that, for every l ∈ L,

– The closed subsets of R
n are defined by

C1,l = Ω≤c�
(Vl) ∩ Cl, D1,l = (

Ω≤c�
(Vl) ∩ Dl

) ∪ Ω≥cl (Vl)

C2,l = Ω≥b�
(Vl), D2,l = Ω≤b�

(Vl); (2.11a)

– The continuous feedback laws ϕq,l : Cq,l → R are defined by

ϕq,l(·) =
{

ϕl(·), i f q=1,

ϕg(·), i f q=2 ; (2.11b)

– The outer semicontinuous set-valued maps gq,l : Dq,l ⇒ Q are defined by

g2,l : D2,l ⇒ Q
x 	→ {(1, l)} (2.11c)

and

g1,l : D1,l ⇒ Q

x 	→

⎧⎪⎨
⎪⎩

{(1, gl(x))}, x ∈ Ω<c�
(Vl) ∩ Dl ,

{(2, l)}, x ∈ Ω>c�
(Vl),

{(1, gl(x)), (2, l)}, x ∈ Ω=c�
(Vl) ∩ Dl ,

(2.11d)

rendering the set {0} × L globally asymptotically stable for (�h(H )).

Figure2.1 illustrates the sets defined in Eq. (2.11a), when system (�h(u)) is
bidimensional. A sketch of the proof of Theorem 2.14 is provided in Sect. 2.7.2.

Note that Theorem 2.14 can also be employed to design controllers for systems
that do not satisfy Brockett’s necessary condition for the existence of a continuous
stabilizing feedback law (see, e.g., [8, Example 38] and [11]).

Remark 2.15 A concept of robust stability of system (�h(H )) is recalled from [7,
Definition 6.27] and [23, Definition 4.1] as follows. A compact invariant set S ⊂ R

n

is said to be robustly asymptotically stable for system (�h(H )) with respect to
measurement noise if S is asymptotically stable for (�h(H )) and there exists a
continuous function ρ : R

n → R≥0 such that S is also asymptotically stable for
system {

ẋ ∈ f ρ
q (x), x ∈ Cρ

q ,

q+ ∈ gρ
q (x), x ∈ Dρ

q ,
(�

ρ

h (H ))
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Fig. 2.1 Illustration of the
proposed approach, when
system (�h(u)) is
bidimensional

x1

x2

D2,l

C2,l

Ω=b�
(Vl)

D1,l

C1,l
Ω=c� (Vl)

where

f ρ
q (x) = co

{
fh

(
x, ϕq(B≤ρ(x)(x) ∩ Cq)

)}
,

gρ
q (x) =gq

(
B≤ρ(x)(x) ∩ Dq

)
,

Cρ
q = {

x ∈ R
n : B≤ρ(x)(x) ∩ Cq 
= ∅} ,

Dρ
q = {

x ∈ R
n : B≤ρ(x)(x) ∩ Dq 
= ∅} .

From the definition of a hybrid feedback law, the set {0} × L is robustly asymp-
totically stable for system (�h(H )) (c.f. [23, Theorem 4.3]).

Note that the definition of the setsCq andDq imposes a limitation on themagnitude
of the perturbation ρ. More precisely, if ρ is such that Dρ

1,l ∩ Dρ

2,l 
= ∅, then the
hysteresis region is empty and solutions to system (�h(H )) may chatter between
the feedback laws ϕb and ϕl . In this case, the x-component of the solution would
remain in the region Dρ

1,l ∩ Dρ

2,l and never converge to zero.

So far, the global asymptotic stability of the set {0}×Lhas beenobtainedby assum-
ing the existence of a local stabilizer and combining it with a controller that renders
a set globally practically asymptotically stable. In the next section, an approach is
proposed to design the local stabilizer satisfying constraints on the basin of attraction.



2.5 Semiglobal Stabilization 15

2.5 Semiglobal Stabilization

In this section, another notion of stabilization of the set {0} × L is considered. This
concept is recalled from [4] and [13, p. 126] and is employed to design a feedback
law satisfying Assumptions 2.11 and 2.13.

Definition 2.16 (Semiglobal Asymptotic Stabilizability) The origin is said to be
semiglobally asymptotically stabilizable for system (�h(u)) if, for every compact
set K ⊂ R

n containing the origin, there exists a feedback law ϕ� : R
n → R such

that K is contained in the basin of attraction of (�h(ϕ�)).

Using the approach proposed in [2], the nonlinear dynamics of (�h(u)) is for-
mulated in terms of a linear differential inclusion (LDI). A brief explanation of, this
method can be given as follows. Let L be a singleton, define a neighborhood N≤r

of the origin strictly containing the set A. In this neighborhood, the search of a con-
tinuous stabilizing feedback law ϕl : R

n → R for system (�h(u)) is formulated in
terms of semidefinite programming with the constraint that the basin of attraction of
the closed-loop system (�h(ϕl)) must contain the set A.

Under Assumption 2.1 the setA is compact. Thus, there exist a finite set of indexes
P ⊂ N and a set of vectors

{
xp ∈ R

n : p ∈ P
}
such that

A ⊂ co
{
xp ∈ R

n : p ∈ P
}
. (2.12)

Let ru > 0 and r = (r1, . . . , rn) ∈ R
n
>0 be such that

co
{
xp ∈ R

n : p ∈ P
} ⊂ N≤r = {

x ∈ R
n : |xi | ≤ ri , i = 1, 2, . . . , n

}
.

Define the matrices F ∈ R
n×n and G ∈ R

n×m as

F = ∂ fh
∂x

(0) and G = ∂ fh
∂u

(0). (2.13a)

These matrices correspond to the first approximation of (�h(u)) at the origin, i.e.,

ẋ = Fx + Gu. (2.13b)

Define the function

f̃h(x, u) = fh(x, u) − Fx − Gu. (2.14)

Note that f̃h is of class C 1.
Consider the set of indexes M = {

m ∈ N : 1 ≤ m ≤ 2n×n
}
. For each index m ∈

M, let Cm ∈ R
n×n be a matrix with components c±

i j , where i, j = 1, 2, . . . , n, are
given by either

c+
i j = max

{
∂ f̃h,i

∂x j
(x, u) : x ∈ N≤r , |u| ≤ r

}
(2.15a)
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or

c−
i j = min

{
∂ f̃h,i

∂x j
(x, u) : x ∈ N≤r , |u| ≤ r

}
. (2.15b)

Analogously to the previous paragraph, consider the set of indexes V = {v ∈ N :
1 ≤ v ≤ 2n}. For each index v ∈ V, let Dv ∈ R

n×1 be a vector with components d±
i ,

where i = 1, 2, . . . , n, are given by either

d+
i = max

{
∂ f̃h,i

∂u
(x, u) : x ∈ N≤r , |u| ≤ r

}
(2.16a)

or

d−
i = min

{
∂ f̃h,i

∂u
(x, u) : x ∈ N≤r , |u| ≤ r

}
. (2.16b)

Remark 2.17 To see that the maximum number of matrices Cm and vectors Dv are
2n×n and 2n , respectively, consider a differentiable function g : R

p → R
q . The

(i, j)-th element of the Jacobian matrix J of g is given by

Ji j = ∂gi
∂x j

,

where i = 1, 2, . . . , p and j = 1, 2, . . . , q.
Consider a matrix whose elements are given by either J−

i j or J+
i j . In particular,

consider the matrix with only one element J−
i j . When i = j = 1, this matrix is

represented by ⎡
⎢⎢⎢⎣

− + · · · +
+ + · · · +
...

...
. . .

...

+ + · · · +

⎤
⎥⎥⎥⎦ .

The number of matrices with only one element J−
i j is given by the combination

of the symbol “−” among all of the (p × q − 1) symbols “+”. Thus,

(
p × q
1

)
= (p × q)!

1!(p × q − 1)! = (p × q)!

which is the permutation of “−” among all “+”.
Hence, the total number of matrices is given by the sum of all the above combi-

nations. More precisely,

p×q∑
k=1

(
p × q
k

)
=

p×q∑
k=1

(p × q)!
k!(p × q − k)! = 2p×q ,
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Therefore, the number of matrices grows exponentially with the dimension of the
domain and image sets of g.

Note also that, depending on the structure of the function g, the number ofmatrices
may be smaller than p × q. Example 2.18 illustrates this case.

Example 2.18 Consider the nonlinear function fh,1 ∈ C 1(R3, R), and the linear
function fh,2 ∈ C 1(R3, R). Recall the definition of the function f̃h from (2.14),

f̃h(x, u) = fh(x, u) − Fx − Gu,

where x := (x1, x2). Since fh,2 is linear, the function (2.14) is given, for every
(x1, x2, u) ∈ R

3, by
f̃h(x1, x2, u) = (

f̃h,1(x1, u), 0
)�

.

Following the previous definitions of the derivatives, the 16 matrices Cm are

[
c+
11 c

+
12

c+
21 c

+
22

]
,

[
c−
11 c

+
12

c+
21 c

+
22

]
,

[
c+
11 c

−
12

c+
21 c

+
22

]
,

[
c+
11 c

+
12

c−
21 c

+
22

]
,

[
c+
11 c

+
12

c+
21 c

−
22

]
,

[
c−
11 c

−
12

c+
21 c

+
22

]
,

[
c−
11 c

+
12

c−
21 c

+
22

]
,

[
c−
11 c

+
12

c+
21 c

−
22

]
,

[
c+
11 c

−
12

c−
21 c

+
22

]
,

[
c+
11 c

−
12

c+
21 c

−
22

]
,

[
c+
11 c

+
12

c−
21 c

−
22

]
,

[
c+
11 c

−
12

c−
21 c

−
22

]
,

[
c−
11 c

+
12

c−
21 c

−
22

]
,

[
c−
11 c

−
12

c+
21 c

−
22

]
,

[
c−
11 c

−
12

c−
21 c

+
22

]
,

[
c−
11 c

−
12

c−
21 c

−
22

]
.

(2.17)

Because of the structure of f̃h,1 and f̃h,2, c
−
12 = c+

12 = 0, and for every i = 1, 2,
c+
2,i = c−

2,i = 0. Thus, the matrices (2.17) are reduced to the first pair of the first line.
For the derivatives with respect to the input u, the 4 vectors Dv are

[
d+
1
d+
2

]
,

[
d−
1
d+
2

]
,

[
d+
1
d−
2

]
,

[
d−
1
d−
2

]
,

Since d−
2 = d+

2 = 0, these vectors are also reduced to the first pair.

From Eq. (2.14), for every x ∈ N≤r and for every |u| ≤ ru , the value fh(x, u)

is contained in the convex set formed by the first-order approximation (2.13) and
the matrices Cm and vectors Dv, where m ∈ M and v ∈ V. More precisely, for
every x ∈ N≤r and for every |u| ≤ ru , system (�h(u)) satisfies the following linear
differential inclusion

ẋ ∈ co {(F + Cm)x + (G + Dv)u} ,

wherem ∈ M and v ∈ V. For a proof of this claim, the interested reader may address
[24, Sect. 2.5.4].



18 2 Blending Two Feedback Laws

Let the set of vectors {ei }i∈I, where I = {i ∈ N : 1 ≤ i ≤ n}, be the canonical
basis in R

n . In other words, the vector ei has all components equal to zero except
the i-th which is equals to 1. Let M ∈ R

n×n be a matrix. The notation M � 0 (resp.
M � 0) stands for M being positive (semi)definite.

The next result is recalled from [27]. It concerns the design a local stabilizing
feedback ϕ1 for system (2.14) satisfying the constraint that the set A is included in
the basin of attraction of the origin of (�h(ϕ1)).

Proposition 2.19 Assume that there exist for a symmetric positive definite matrix
W ∈ R

n×n and a matrix H ∈ R
n×1 satisfying, for every indexes m ∈ M and v ∈ V,

the following set of linear matrix inequalities

W (F + Cm)T + H(G + Dv)
T + (F + Cm)W + (G + Dv)H

T ≺ 0, (2.18a)

∀i ∈ I,
[
r2i W Wei

∗ 1

]
� 0, (2.18b)

∀p ∈ P,

[
1 xTp
∗ W

]
� 0, (2.18c)

and [
r2uW H

∗ 1

]
� 0. (2.18d)

Then, by letting L = {1}, V1(x) = xT Px, where P = W−1, c� = 1, C1 = R
n,

D1 = Ω≥1(V1), g1(x) ≡ {1} and ϕ1(x) = Kx, where K = HT P, Assumptions 2.11
and 2.13 hold.

A sketch of the proof is given as follows. Eq. (2.18a) implies that the function V1

is a Lyapunov function in the small (cf. Definition A.34) for system (�h(ϕ1)).
From Schur’s complement,1 the linear matrix inequalities (2.18b)–(2.18d) are,

respectively, equivalent to the following set of inequalities in the variablesW and H

Weie
T
i W

T � r2i W, (2.18b.bis)

xpW
−1xTp ≤ 1, (2.18c.bis)

HHT � Wr2u . (2.18s.bis)

Equation (2.18b.bis) implies the inclusion Ω≤1(V1) ⊂ N≤r holds. Equation
(2.18c.bis) implies that co{xp ∈ R

n : p ∈ P} ⊂ Ω≤1. Finally, Eq. (2.18d.bis)
implies |u| ≤ ru .

Note that, from Proposition 2.19, the origin is semiglobally asymptotically stabi-
lizable for system (�h(u)). Global asymptotic stability of {0} × {(1, 1)} is achieved
by blending the practical asymptotic stability of A with the semiglobal asymptotic

1See Theorem 2.25.
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stability of the origin. This is formalized in the next result which is a consequence
of Theorem 2.14 and is recalled from [24].

Corollary 2.20 Under Assumptions 2.1 and 2.2 and the hypotheses of Proposition
2.19, by defining the hybrid feedback law H as in (2.11), the set {0} × {(1, 1)} is
globally asymptotically stable for (�h(H )).

2.6 Illustration

Consider the system presented in [27] and given by

{
ẋ1 = x1 + x2 + 0.1[x21 + (1 + x1) sin(u)],
ẋ2 = u.

(2.19)

Define the functions

f1(x1, x2) = x1 + x2 + 0.1x21 , h1(x1, x2, u) = 0.1(1 + x1) sin(u),

f2(x1, x2) ≡ 1, h2(x1, x2, u) ≡ 0.

Due the presence of the term 0.1(1 + x1) sin(u), the use of the backstepping
technique requires to solve an implicit equation in the variable u (see more details
in Remark 2.22). This motivates the approach proposed in this chapter.

Checking Assumptions

First, Assumptions 2.1 and 2.2 are verified. Then, Proposition 2.19 is employed to
design a controller such that Assumptions 2.11 and 2.13 are satisfied. Next, Propo-
sition 2.4 and Corollary 2.20 are employed to design a hybrid feedback law H
rendering the set {0} × {(1, 1)} globally asymptotically stable for system (2.19) in
closed loop.
Assumption 2.1. Consider the function defined, for every x1 ∈ R, as V1(x1) = x21 /2.
The Lie derivative of V1 along the vector field f1 yields, for every x1 ∈ R,

L f1V1(x1, x2) = x21 + x1x2 + 0.1x31 .

Consider the feedback lawψ1 for subsystem x1 of (2.19) defined, for every x1 ∈ R,
as ψ1(x1) = −(1 + K1)x1 − 0.1x21 , where K1 > 0 is a constant value. Letting
x2 = ψ1(x1), the Lie derivative L f1V1 yields the equation

L f1V1(x1, ψ1(x1)) = −K1x
2
1 = −α(V1(x1)),

where, for every s ∈ R≥0, α(s) := 2K1s. Thus, Assumption 2.1 holds.

Assumption 2.21 The following remark explains the need of Assumption 2.2 for
the example in consideration.
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Remark 2.22 Since Assumption 2.1 holds, the backstepping technique could be
employed to design a stabilizing feedback law for system (2.19), if the term h1
was identically zero (see more details on the backstepping procedure in Sect. 2.8).

Based on the backstepping procedure, consider the function V defined in Eq. (2.2)
and with n = 2. The Lie derivative of V along the vector field ( f1+h1, f2)� satisfies
the inequality

L fh V (x1, x2, u) ≤ − K1x
2
1 + x10.1(1 + x1) · sin(u) + (x2 − ψ1(x1))

·
(
u + x1

2
+ (1 + K1 + 0.2K1x1)

· (x1 + x2 + 0.1[x21 + (1 + x1) · sin(u)])
)

, (2.20)

for every (x1, x2, u) ∈ R × R × R.
To obtain a term proportional to the term (x2 − ψ1(x1))2 on the right-hand side

of the inequality (2.20), it would be necessary to solve an implicit equation in the
variable u defined as E(x1, x2, u) ≤ −K1x21 − L(x2 − ψ1(x1))2, where E is the
right-hand side of (2.20), and L > 0 is a constant value. This procedure seems to be
difficult (if not impossible), and motivates the design a hybrid feedback by applying
Theorem 2.14.

To see that items 1 and 2 of Assumption 2.2 hold, note that the equations

|h1(x1, x2, u)| = |0.1(1 + x1) sin(u)| ≤ 0.1(1 + |x1|),
|h2(x1, x2, u)| ≡ 0,∣∣∣∣∂h1∂x2

(x1, x2, u)

∣∣∣∣ ≡ 0,

Lh1V1(x1, ψ1(x1), u) ≤ |x1|0.1 + x210.1 ≤ x21
2
1.2 + 0.12

2
,

hold, for every (x1, x2, u) ∈ R × R × R.
It remains to define the function Ψ and constant values ε and M . Let, for every

(x1, x2) ∈ R × R, the function Ψ (x1, x2) = 0.1(1 + |x1|). For the constants, letting
them satisfy the inequalities ε ≤ 1 − 1.2/(2K1) and

2 M ≥ 0.1/(4K1ε), items 1 and 2
of Assumption 2.2 are satisfied.

Using Proposition 2.19 to verify Assumptions 2.11 and 2.13. In the following, the
process described in Sect. 2.5 is illustrated.

From the definitions of the storage function V1 and the feedback law ψ1, the set
A is given by

A =
{
(x1, x2) ∈ R × R : |x1| ≤ √

2M, x2 = −(1 + K1)x1 − 0.1x21
}

.

2The conditions ε ≤ 1 − 1.2/(2K1) and ε > 0 imply the lower bound K1 > 0.6.
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Since ψ1 ∈ C 1(R, R), from the mean value theorem, for every x1 ∈[
−√

2M,
√
2M

]
\ {0}, there exits c ∈

[
−√

2M,
√
2M

]
such that

ψ1(x1) = ∂ψ1

∂x1
(c) · x1.

Define the constant values

a+ = max
|x1|≤

√
2M

∂ψ1

∂x1
(x1) = max

|x1|≤
√
2M

−(1 + K1) − 0.2x1 = −(1 + K1) + 0.2
√
2M

a− = min
|x1|≤

√
2M

∂ψ1

∂x1
(x1) = min

|x1|≤
√
2M

−(1 + K1) − 0.2x1 = −(1 + K1) − 0.2
√
2M

and the setP = {1, 2, 3, 4} of indexes. From these definitions, for every |x1| ≤ √
2M ,

the inequality
a− · x1 ≤ ψ1(x1) ≤ a+ · x1

holds. This implies that, for every (x1, x2) ∈ A, the inequality a− · x1 ≤ x2 ≤ a+ · x1
holds. Consequently,

A ⊆ co

{({√
2M

}
×
{
x+,<0
2 , x−,<0

2

})

∪
({

−√
2M

}
×
{
x+,>0
2 , x−,>0

2

})}
, (2.21)

where
x+,>0
2 = −a+√

2M, x+,<0
2 = a+√

2M,

x−,>0
2 = −a−√

2M, x−,<0
2 = a−√

2M .
(2.22)

Figure2.2 illustrates the inclusion (2.21).
A condition for feasibility of the linear matrix inequalities (2.18) of Proposition

2.19 is the inclusion A ⊂ N≤r . This inclusion holds, whenever the inequalities√
2M < r1 and |a±√

2M| < r2 are satisfied. These inequalities imply that K1 is
bounded as follows.

0.1

2r21
+ 0.6 < K1 <

r2
r1

− 0.2r1 − 1. (2.23)

Note that the bounds on K1 described in Eq. (2.23) impose a limitation on the speed
of response.

Employing the technique presented in Sect. 2.5, let θ = 0.1, r = [1, 2], N≤r =
{(x1, x2) ∈ R × R : |x1| ≤ 1, |x2| ≤ 2}, and |u| ≤ 2π . For these choices, Eq. (2.23)
holds with K1 = 1.45. To satisfy Assumption 2.2, let M = 0.03 and ε = 0.6.
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Inclusion of the set A in a convex set

Fig. 2.2 The sets A (solid blue line) and the convex set defined in (2.21) (dashed red line) are
presented. The circles are the vertexes of the convex set

The matrices F and G defined in (2.13a) are given by

F =
[
1 1
0 0

]
and G =

[
0.1
1

]
.

Function f̃h is given by

f̃h(x, u) =
[
0.1 sin(u)(x1 + 1) − 0.1u + 0.1x21

0

]
,

its derivatives with respect to the state and input variable are, respectively, given by

∂ f̃h
∂x

(x1, x2) =
[
0.2x1 + 0.1 sin(u) 0

0 0

]

∂ f̃h
∂u

(x1, x2) =
[
0.1 cos(u)(x1 + 1) − 0.1

0

]
.

The matrices Cm ∈ R
2×2, indexed by m ∈ {m ∈ N : 1 ≤ m ≤ 2}, and vectors

Dv ∈ R
2, index by {v ∈ R : 1 ≤ v ≤ 2}, have components defined by the set of Eqs.

(2.15) and (2.16), respectively. The matrices and vectors that are not identically zero
are given by
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Fig. 2.3 The sets Ω=1(xT Px) (in black with solid line), Ω=0.75(xT Px) (in black with dashed
line), and the set co{xp ∈ R

n : p ∈ P} (in red) at the center. Initial conditions (blue crosses) are
points given in a ball of radius 0.5 and centered at the origin

C1 =
[
0.3 0
0 0

]
, C2 =

[−0.3 0
0 0

]
, D1 =

[
0.1
0

]
, and D2 =

[−0.3
0

]
.

Using the optimization parser Yalmip [18] and solver Mosek to solve the linear
matrix inequalities (2.18), the following matrices P and K have been obtained

P =
[
29.1836 11.8910
11.8910 6.6548

]
and K = [−12.7326 −6.3529

]
.

From Proposition 2.19, Assumptions 2.11 and 2.13 hold with c� = 1.
Figure2.3 shows some solutions of system (2.19) in closed loopwith the feedback

law ϕ�, the inclusions A ⊂ Ω≤1(V1) and Ω≤1(V1) ⊂ N≤r .

Main Result

Since Assumptions 2.1 and 2.2 hold, from the proof of Proposition 2.4 the feedback
law defined, for every (x1, x2) ∈ R × R, as

ϕg(x1, x2) = −(1 + K1 + 2θx1)(x1 + θx21 + x2) − x1
2KV

− x1 − ψ1(x1)

KV

[
c + c

4
Δ(x1, x2)2

]
,
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where

Δ(x1, x2) = |x1|θ(1 + |x1|) + KV θ(1 + |x1|)(1 + |1 + K1 + 2θx1|),

andwith parameters θ = 0.1 and c = Kv = 350 renders the setA globally practically
asymptotically stable for system (2.19) in closed loop with ϕg .

To employ the hybrid feedback lawH provided by Theorem 2.14, let b� = 0.75,
Q = {1, 2} × {1}. From Eq. (2.11a), the subsets of R

2 are given by

C1,1 = Ω≤1(xT Px), D1,1 = Ω≥1(xT Px),
C2,1 = Ω≥0.75(xT Px), D2,1 = Ω≤0.75(xT Px).

From (2.11b), the function ϕq,1 is given by

ϕq,1(·) =
{

ϕ1(·), if q = 1,
ϕg(·), if q = 2,

while, from (2.11c) and (2.11d), the function gq,1 given by

D2,1 � x 	→ g2,1(x) = {(1, 1)}

and
g1,1 : D1,1 ⇒ Q

x 	→
⎧⎨
⎩

{(1, 1)}, x ∈ Ω<1(xT Px) ∩ D1,

{(2, 1)}, x ∈ Ω>1(xT Px),
{(1, 1), (2, 1)}, x ∈ Ω=1(Vl) ∩ D1.

0 0.5 1 1.5 2 2.5 3
Time (t)

-1.5
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x
1(
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Time (t)
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20
30

x
2(

t)

0 0.5 1 1.5 2 2.5 3
Time (t)

1

1.5

2

q(
t)

Fig. 2.4 Continuous-time evolution of a solution of (2.19) in closed loop with H starting from
(−1.6814, 31.7552, 1)
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Moreover, from Corollary 2.20, the set {0} × {(1, 1)} is globally asymptotically
stable for system (2.19) in closed loop withH .

A simulation of (2.19) in closed loop withH with initial condition (x1, x2, q) =
(−1.6814, 31.7552, 1) is presented in Fig. 2.4. The continuous-time evolution of the
components3 x1, x2 and q of the solution is shown. First, system (2.19) is in closed
loop with ϕg (for t ∈ [0, 1.4]), and after (2.19) is in closed loop with ϕ1, and the
solution converges to the origin.

2.7 Sketches of the Proofs of Chap. 2

2.7.1 Sketch of the Proof of Proposition 2.4

Under Assumptions 2.1 and 2.2, recall the proper function V1 ∈ (C 1 ∩ P)(Rn−1,

R≥0), the feedback lawψ1 ∈ C 1(Rn−1, R) for system (�1 (x2)) and the setA defined
in Eq. (2.8). To sketch a proof of Proposition 2.4, the following lemma is recalled
from [27].

Lemma 2.23 There exist constant values a′ > 0 and KV > 0, and a function
given by

V : R
n−1 × R → R

(x1, x2) 	→ V1(x1) + KV

2
(x2 − ψ1(x1))2

(2.24)

such that the set Ω≤a′(V ) satisfies the inclusion

Ω≤a′(V ) ⊂ B≤a(A). (2.25)

In other words, Lemma 2.23 shows that it is possible to choose the gain KV such
that there exist sublevel sets of the function given by (2.24) that are contained in
B≤a(A).

Remark 2.24 What remains is to estimate the values KV and a′. By letting the
constant valuesa′ ≤ M+a and Kv = (M + a)/(2a2) the inclusionΩ≤a′(V ) ⊂ B≤a(A)

is satisfied. To see this claim, pick any (x∗
1 , x

∗
2 ) ∈ Ω≤a′(V ) such that4

⎧⎨
⎩ V1(x∗

1 ) ≤ a′

2|x∗
2 − ψ1(x∗

1 )| ≤ a.

3Regarding q, here it is shown only its first component, because the second one does not change.
4Note that with these constraints, V (x∗

1 , x∗
2 ) ≤ a′.
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This implies that

V (x∗
1 , x

∗
2 ) = V1(x

∗
1 ) + KV

2
(x∗

2 − ψ1(x
∗
1 ))

2 ≤ M + a

2
+ M + a

4
= 3

M + a

4

and the inclusion (2.25) holds.
Note that KV makes V dependent on the parameter a. In other words, Eq. (2.24)

is also parametrized by a. A theorem to deduce uniform global practical stability
is provided in [3, Theorem 7.5] (see Theorem 2.26), where an additional condi-
tion regarding the behavior Lyapunov function with respect to the parameter a is
introduced.

A sketch of the proof of Proposition 2.4 can now be provided. The objective of this
sketch is to show that there exist a continuous feedback law ϕg : R

n \ {0} → R and a
constant value a′ > 0 such that the set Ωa′(V ) ⊂ B≤a(A) is globally asymptotically
stable for the closed-loop system �h(ϕg).

Define the function

r1 : R
n−1 × R × R → R

n−1

(x1, x2, u) 	→ f1(x1, x2) + h1(x1, x2, u).

The Lie derivative of V1 along r1 yields the inequality

Lr1V1(x1, x2, u) ≤ ε[α(M) − α(V1(x1))] + Lr1V1(x1, x2, u)

−Lr1V1(x1, ψ1(x1), u)
(2.26)

which holds for every (x1, x2, u) ∈ R
n−1 × R × R, due to Assumption 2.1 and item

1 of5 Assumption 2.2.
Fix (x1, x2) ∈ R

n−1 × R and let the function

ηx1,x2 : [0, 1] → R

s 	→ sx2 + (1 − s)ψ1(x1).

Since r1 ∈ C 1(Rn+1, R
n−1) and ηx1,x2 ∈ C 1([0, 1], R), the equation

r1(x1, x2, u) − r1(x1, ψ1(x1), u) =

(x2 − ψ1(x1)) ·
1∫

0

∂r1
∂ηx1,x2

(x1, ηx1,x2(s), u) ds

holds.

5Recall that the inequality Lh1V1(x1, ψ1(x1), u) ≤ (1 − ε)α(V1(x1)) + εα(M) is assumed.
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Hence, from Eq. (2.26), the inequality

Lr1V1(x1, x2, u) ≤ ε[α(M) − α(V1(x1))]

+∂V1

∂x1
(x1) · (x2 − ψ1(x1)) ·

1∫
0

∂r1
∂ηx1,x2

(x1, ηx1,x2(s), u) ds (2.27)

holds, for every (x1, x2, u) ∈ R
n−1 × R × R.

Consider the function ψ̃ : ((Rn−1 × R
) \ {(0, 0)}) × R → R defined by

ψ̃(x1, x2, ū) = 1

f2(x1, x2)

(
ū

KV
+ L f1ψ1(x1, x2)

)

1

KV

∂V1

∂x1
(x1)

⎛
⎝·

1∫
0

∂ f1
∂ηx1,x2

(x1, ηx1,x2(s)) ds

⎞
⎠ , (2.28)

where KV is given by Lemma 2.23.
Denote ψ̃(x1, x2, ū) as ψ̃(ū) and let u = ψ̃(ū). From inequality (2.27), the Lie

derivative of function V (defined by Eq. (2.24)) along the vector field fh yields the
inequality

L fh V (x1, x2, ψ̃(ū)) ≤ ε[α(M) − α(V1(x1))]

+∂V1

∂x1
(x1)(x2 − ψ1(x1))

1∫
0

∂r1
∂ηx1,x2

(x1, ηx1,x2(s), ψ̃(ū)) ds

+KV (x2 − ψ1(x1))

·
[
f2(x1, x2)ψ̃(ū) + h2(x1, x2, ψ̃(ū)) − Lr1ψ1(x1, x2, ψ̃(ū))

]
. (2.29)

Now, replacing the function (2.28) in inequality (2.29) yields

L fh V (x1, x2, ψ̃(ū)) ≤ ε[α(M) − α(V1(x1))]

+(x2 − ψ1(x1))

⎡
⎣ū + ∂V1

∂x1
(x1) ·

1∫
0

∂h1
∂ηx1,x2

(x1, ηx1,x2(s), ψ̃(ū)) ds

+KV h2(x1, x2, ψ̃(ū)) − KV Lh1ψ1(x1, x2, ψ̃(ū))

]
. (2.30)
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Let

Υ (x1, x2, ψ̃(ū)) = ∂V1

∂x1
(x1) ·

1∫
0

∂h1
∂x2

(x1, ηx1,x2(s), ψ̃(ū)) ds

+KV h2(x1, x2, ψ̃(ū)) − KV Lh1ψ1(x1, x2, ψ̃(ū)). (2.31)

Replacing (2.31) into (2.30), the Lie derivative L fh V yields the inequality

L fh V (x1, x2, ψ̃(ū)) ≤ ε[α(M) − α(V1(x1))]
+ (x2 − ψ1(x1))[ū + Υ (x1, x2, ψ̃(ū))]. (2.32)

Define, for every (x1, x2) ∈ R
n−1 × R, the function

Δ(x1, x2) =
∣∣∣∣∂V1

∂x1
(x1)

∣∣∣∣
1∫

0

Ψ (x1, ηx1,x2(s)) ds + KVΨ (x1, x2)

(
1 +

∣∣∣∣∂ψ1

∂x1
(x1)

∣∣∣∣
)

.

From Assumption 2.2, the inequality

|Υ (x1, x2, ψ̃(ū))| ≤ Δ(x1, x2),

holds, for every (x1, x2, ū) ∈ R
n−1 × R × R.

From the Cauchy–Schwartz inequality, and for any constant value c > 0, the
inequality

(x2 − ψ1(x1))Υ (x1, x2, ū) ≤ 1

c
+ c

4
(x2 − ψ1(x1))

2Δ(x1, x2)
2. (2.33)

holds, for every (x1, x2, ū) ∈ R
n−1 × R × R.

Let, for every (x1, x2) ∈ R
n−1 × R,

ū = −(x2 − ψ1(x1))
[
c + c

4
Δ(x1, x2)

2
]
. (2.34)

Inequality (2.32) together with (2.33) and (2.34) yields, for every (x1, x2) ∈
R

n−1 × R, and for any c ≥ 1, the inequality

L fh V (x1, x2, ψ̃) ≤ ε[α(M) − α(V1(x1))] + 1

c
− c(x2 − ψ1(x1))

2, (2.35)

where, ψ̃(x1, x2) is denoted by ψ̃ , to simplify the presentation.
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Since V1 is a proper function, the set

A≥0 :=
{
(x1, x2) ∈ R

n−1 × R
n : εα(V1(x1)) + c(x2 − ψ1(x1))

2 ≤ εα(M) + 1

c

}

is compact. Note that A≥0 is the set of values of (x1, x2) for which the inequality
L fh V (x1, x2, ψ̃) ≥ 0 holds.

Define the value

ζ = max{V (x1, x2) : (x1, x2) ∈ A≥0},

for every c > 1.Note that, for every (x1, x2) ∈ Ω>ζ (V ), the inequality L fh V (x1, x2, ψ̃) <

0 holds. In other words, the set Ω≤ζ (V ) is globally asymptotically stable for the
closed-loop system �h(ψ̃).

Let Kα > 0 be the Lipschitz constant of α in the compact set [0, ζ ]. With this
constant, the inequality

|α(V1(x1)) − α(V (x1, x2))| ≤ KV Kα

2
(x2 − ψ1(x1))

2

holds, for every (x1, x2) ∈ Ω≤ζ (V ).
From Eq. (2.35), for every c > 1, and for every (x1, x2) ∈ Ω≤ζ (V ), the inequality

L fh V (x1, x2, ψ̃) ≤ ε[α(M) − α(V (x1, x2))] + 1

c
−
(
c − ε

KV Kα

2

)
(x2 − ψ1(x1))

2

holds.
Consider the constant value a′ given by Lemma 2.23 and let the value

cg = max

{
1

ε[α(a′) − α(M)] , ε
KV Kα

2
, 1

}
.

For every c > cg , and for every (x1, x2) ∈ Ω≤ζ (V ), the inequality

L fh V (x1, x2, ψ̃) ≤ ε
[
α(a′) − α(V (x1, x2))

]

holds. Thus, for every c > cg , and for every (x1, x2) ∈ Ω>a′(V ),6 the inequality

L fh V (x1, x2, ψ̃) < 0

holds. Hence, the set Ω≤a′(V ) is an attractor for �h(ψ̃).

6Let |x |a′ := dist(x,Ω≤a′ (V )). Since α ∈ K∞, define the function αa′ (|x |) := α(|(x1, x2)|a′ ) =
−α(a′) + α(V (x1, x2)) which is of class K∞. Thus, for every (x1, x2) ∈ Ω≥a′ (V ),
L fh V (x1, x2, ψ̃) ≤ −αa′ (|x |a′ ) and Eq. (2.39b) is satisfied.
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From Lemma 2.23 the inclusionΩ≤a′(V ) ⊂ B≤a(A) holds, this implies that solu-
tions to the closed-loop system �h(ψ̃) with initial conditions belonging to B>a(A)

will converge to a set contained in B≤a(A). Thus, A is practically asymptotically
stable for �h(ψ̃).

From (2.28) and (2.34), consider the function

ϕg(x1, x2) = 1

KV f2(x1, x2)

⎡
⎣KV L f1ψ1(x1, x2) − ∂V1

∂x1
(x1) ·

1∫
0

∂ f1
∂x2

(x1, ηx1,x2 (s)) ds

−(x2 − ψ1(x1)) ·
(
c + c

4
Δ2(x1, x2)

)]

which is defined, for every (x1, x2) ∈ R
n−1 × R \ {(0, 0)} and c > cg , the feedback

law ψ̃(·) = ϕg(·) rends the setΩ≤a′(V ) globally asymptotically stable for the closed-
loop system �h(ϕg). This concludes the sketch of the proof of Proposition 2.4.

2.7.2 Sketch of the Proof of Theorem 2.14

Let the constant values a, b�, and c� be such that the inequalities 0 < b� < c� and

max{Vl(x) : x ∈ B≤a(A)} < b�, (2.36)

hold, for every l ∈ L.
UnderAssumptions 2.1 and 2.2, Proposition 2.4 provides the continuous feedback

law ϕg : R
n \ {0} → R which is used to design a hybrid feedback law H building

an hysteresis of local and nonlocal feedback laws on appropriate domains.
Define the set of indexes Q = {1, 2} × L. Consider the subsets (2.11a) and the

maps defined in Eqs. (2.11b)–(2.11d). Recall that the state of the closed-loop system
(�h(H )) is (x, q) ∈ R

n × Q. The remainder of this sketch consists of the analysis
of solutions to (�h(H )), according to the region where the initial condition belongs
to.

Case 1. Assume that q = {(2, l)}.
1.i. If x ∈ C2,l , thenEq. (2.11b) implies thatϕ2,l(x) = ϕg(x). FromProposition 2.4,

the setA is globally practically asymptotically stable for the closed-loop system
�h(ϕg). Moreover, Eqs. (2.11a) and (2.36) imply that the inclusion A ⊂ D2,l

holds. Together with the fact that solutions of (�h(H )) will not jump until the
x-component be in the set D2,l , they will converge to D2,l ;

1.ii. If x ∈ D2,l , then from (2.11c), g2,l(x) = {(1, l)} and, after the jump, the local
hybrid feedback law is selected. Since the value of x does not change during
a jump, x ∈ D2,l after a jump. Moreover, Eqs. (2.11a) and (2.36) imply that
the inclusion D2,l ⊂ Ω<c�

(Vl) holds. From the local asymptotic stability of the
set {0} × L, solutions to the closed-loop system (�h(H�)) starting in D2,l will
converge to {0} × L;
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To sum up Case 1, whenever (X (0, 0), Q(0, 0)) ∈ R
n × {(2, l)}, the issuing

solutions of (�h(H )) converge to {0} × L.
Case 2. Assume that q = {(1, l)}.

2.i. If x ∈ C1,l , then from Eq. (2.11b), ϕ1,l(x) = ϕl(x), and the local hybrid
feedback law is selected. From the local asymptotic stability of {0}×L, solutions
to �h(H�) starting in C1,l will converge to {0} × L;

2.ii. If x ∈ D1,l . Then from the definition of sets (2.11a) and the jump map (2.11d),
either

2ii.a. q+ = {(2, l)} and, after the jump, ϕg is selected. Since before this jump
x ∈ Ω≥c�

(Vl), and Ω≥c�
(Vl) ⊂ C2,l , and the x-component remains con-

stant after the jump; from Case 1.i., solutions of (�h(H )) converge to
D2,l ;

2ii.b. or q+ = {(1, gl(x))} and, after the jump, a local feedback law is selected.
Since before this jump, x ∈ Ω≤c�

(Vl) ∩ Dl and the x-component of the
solutions remains constant just after the jump, from the local asymptotic
stability of {0} × L, solutions of �h(H�) starting in Ω≤c�

(Vl) ∩ Dl will
converge to {0} × L;

To sum up Case 2, whenever (X (0, 0), Q(0, 0)) ∈ R
n × {(1, l)}, the solutions of

(�h(H )) converge to {0} × L.
Therefore, the set {0} × L is locally stable and globally attractive for system

(�h(H )). Hence, it is globally asymptotically stable for this system. This concludes
the sketch of the proof of Theorem 2.14.

2.8 Summary

In this chapter, a method to design hybrid feedback laws has been presented. The
hybrid controller is employed to combine a nonlinear feedback law, obtained by
employing the backstepping method that practically stabilizes a compact set with a
feedback law that renders the equilibrium of the origin locally asymptotically stable.
The approach employed to design both controllers is constructive. In particular, the
second controller is obtained by solving a semidefinite program under constraints in
the basin of attraction.

Appendix of Chap. 2

The Backstepping Procedure

The backstepping is a well-known method to design a feedback law rendering a
class of cascaded systems asymptotically stable. This procedure is recalled here. For
more details, the interested reader may address [13, 15–17] and references therein.
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Consider the system {
ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)u

(2.37)

where the functions f1 : R
n → R

n−1 and f2 : R
n → R
=0 are of class C 1.

Assume that, there exists a feedback lawφ1 ∈ C 1(R, R)withφ1(0) = 0 for the x1-
subsystem rendering the equilibrium of the origin globally asymptotically stable for

ẋ1 = f1(x1, φ1(x1)).

From the converse Lyapunov theorem,7 there exist a proper function V1 ∈ (C 1 ∩
P)(Rn−1, R≥0) and a function α1 ∈ K∞ such that the Lie derivative of V1 along
the vector field f1 yields the inequality L f1V1(x1, φ1(x1)) ≤ −α1(|x1|), for every
x1 ∈ R

n−1.
Fix the pair (x1, x2) ∈ R

n−1 × R and consider the function

ηx1,x2 : [0, 1] → R

s 	→ sx2 + (1 − s)φ1(x1).

Since for every pair (x1, x2) ∈ R
n−1 × R, the function f2 is nonzero, by letting

u = v/ f2(x1, x2), system (2.37) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩
ẋ1 = f1(x1, φ1(x1)) + (x2 − φ1(x1))

1∫
0

∂ f1
∂ηx1,x2

(x1, ηx1,x2(s)) ds

ẋ2 = v,

where v ∈ R.
Consider the change of variables e := x2 −φ1(x1). The time derivative of e yields

the differential equation ė = ẋ2 − L f1φ1(x1, x2). System (2.37) rewritten in the new
variable e is given by

⎧⎪⎪⎨
⎪⎪⎩
ẋ1 = f1(x1, φ1(x1)) + e

1∫
0

∂ f1
∂ηx1,x2

(x1, ηx1,x2(s)) ds

ė = w,

(2.38)

where w = v − L f1φ1(x1, x2). System (2.38) is denoted by ẋ = f (x).
Consider the candidate Lyapunov function for system (2.38) given by

V (x1, e) = V1(x1) + e2

2
.

7See Theorem A.36.
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Its Lie derivative along the vector field f yields the inequality

L f V (x1, e) ≤ α1(|x1|) + e

⎡
⎣∂V1

∂x1
(x1) ·

1∫
0

∂ f1
∂ηx1,x2

(x1, ηx1,x2(s)) ds + w

⎤
⎦ .

Consider the feedback law defined by the equation

φ(x1, e) = −∂V1

∂x1
(x1) ·

1∫
0

∂ f1
∂ηx1,x2

(x1, ηx1,x2(s)) ds − Ke,

where K > 0 is a constant value. Letting w = φ(x1, e), the Lie derivative L f V
yields the inequality

L f V (x1, e) ≤ −α1(|x1|) − Ke2

which holds for every (x1, e) ∈ R
n−1 × R. Thus, the equilibrium of the origin is

globally asymptotically stable for system (2.38) in closed loop with φ. Hence, it is
also asymptotically stable for (2.37).

Since φ(x1, e) = w = v − L f1φ1(x1, x2), it follows that

v = −∂V1

∂x1
(x1) ·

1∫
0

∂ f1
∂ηx1,x2

(x1, ηx1,x2(s)) ds − (x2 − φ1(x1)) + L f1φ1(x1, x2).

Therefore, the feedback law defined, for every (x1, x2) ∈ R
n−1 × R, by8

ϕb(x1, x2) = 1

f2(x1, x2)

[
− ∂V1

∂x1
(x1) ·

1∫
0

∂ f1
∂ηx1,x2

(x1, ηx1,x2(s)) ds − (x2 − φ1(x1))

+ L f1φ1(x1, x2)

]
.

rends the equilibrium of the origin globally asymptotically stable for (2.37) in closed
loop.

The Schur’s Complement

The Schur’s complement is employed in this chapter to design a linear feedback law
rendering the origin locally asymptotically stable. For further reading on the Schur’s

8Note that, if f2(0, 0) = 0 the feedback law ϕb would be discontinuous at the origin.
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complement, the interested reader is invited to address [14, 28]. Here, some of the
basic concepts are recalled.

Consider the matrices A ∈ R
p×p, B ∈ R

p×q ,C ∈ R
q×p, D ∈ R

q×q and the block
matrix M ∈ R

(p+q)×(p+q) given by

M =
[
A B
C D

]
,

and assume that det(A) 
= 0. Consider a vector z = (x, y) ∈ R
p × R

q . The linear
system MzT = 0, i.e., the system

{
Ax + By = 0,
Cx + Dy = 0.

Multiplying the first equation by −CA−1, on the left, and adding it to the second
one, the x-component of the vector is eliminated, and the linear system is given by

(D − CA−1B)y = 0.

The matrix S = D − CA−1B is called Schur complement of A in M (cf. [14]).
The next result is recalled from [28] and adapted to the context of this book.

Theorem 2.25 Let M ∈ R
(p+q)×(p+q) be a symmetric matrix given by

M =
[
A B
BT D

]
,

where A ∈ R
p×p and det(A) 
= 0. Then, M � 0 if and only if A � 0

and (D − BT A−1B) � 0.

From [14, Proposition 1], under the hypothesis of Theorem 2.25, M � 0 if and
only if D � 0 and A − BD−1BT � 0.

A Remark on the Lyapunov Sufficient Conditions
for Practical Stability

Recall the concept of global practical asymptotic stabilizability stated in Definition
2.16.

Under Assumptions 2.1 and 2.2, for every value a > 0, there exists (cf. Propo-
sition 2.4, above.) a feedback law ϕg : R

n → R such the set B≤a(A) contains
a compact invariant set that is globally asymptotically stable for the closed-loop
system (�h(ϕg)), where A is the set given by

A = {(x1, x2) ∈ R
n−1 × R : V1(x1) ≤ M, x2 = ψ1(x1)}. (2.8)
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Because of the value KV , the feedback lawϕg is parametrized by a (cf. the proof of
Proposition2.4). Consequently, the closed-loop system (�h(ϕg)) and the candidate
Lyapunov function

V : R
n−1 × R → R

(x1, x2) 	→ V1(x1) + KV

2
(x2 − ψ1(x1))2

(2.24)

are also parametrized by a.
From now on, the dependence of aforementioned functions on the parameter a is

highlighted by adding it as subscript, for instance, (�h(ϕg,a)).
The following theorem is presented in [3, Theorem 7.5] and it has been reformu-

lated to the context of this chapter. It provides a sufficient condition for the stability
of a compact invariant set when the candidate Lyapunov function and the feedback
law depend on the parameter.

Theorem 2.26 (Lyapunov sufficient conditions for global practical asymptotic sta-
bility) Let A ⊂ R

n be a compact set. Suppose that, given any a > 0, there exist a
continuous differentiable Lyapunov function Va : R

n → R≥0, and functions αa, αa

and αa of class K∞ such that, for every x ∈ B≥a(A), the following inequalities

αa(|x |A) ≤ Va(x) ≤ αa(|x |A), (2.39a)

L fh Va(x, ϕg,a) ≤ −αa(|x |A), (2.39b)

lim
a→0

α−1
a ◦ αa(a) = 0 (2.39c)

hold. Then, the set A is globally practically asymptotically stable for the closed-loop
system �h(ϕg).
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Chapter 3
Analysis Under Nested Criteria

The small-gain theorem provides a sufficient condition for the stability of two feed-
back interconnected dynamical systems for which input-to-state (or input–output)
gains can be defined. Roughly speaking, to apply this theorem, the resulting gains’
composition is required to be continuous, increasing, and strictly smaller than the
identity function.

In this chapter, an alternative sufficient condition is presented for the case inwhich
such criterion fails due to either lack of continuity or when gains composition results
in a function that is larger than the identity function, on a finite interval of the real
line. A notion of asymptotic stability of the origin is ensured by merging a region-
dependent small gain with an additional condition on the divergent of the vector
field of the interconnected system. This latter condition implies that trajectories of
solutions that do not converge to the origin have zero Lebesguemeasure. An example
illustrates the approach.

3.1 Introduction

The use of nonlinear input–output gains for stability analysis was introduced in [35]
by considering a system as an input–output operator. A result that ensures stability
of interconnected systems is provided by the so-called small-gain theorem.

Sontag introduced a new concept of system gain relating the input to system
states [27]. This stability notion, called input-to-state stability, links Zames’ and
Lyapunov’s approaches [28]. Characterizations in terms of dissipation inequalities
and Lyapunov functions are given in [30].

In [18], the small-gain theorem has been reformulated for systems that are input-
to-state stable. This theoremhas also been formulated in terms of Lyapunov functions
in [17].

© The Author(s) 2017
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Besides stability analysis, the importance of the small-gain theorem is also due
to its use for the design of feedback laws satisfying robustness constraints. The
interested reader is invited to see [12, 26] and references therein. Other versions
of the small-gain theorem do exist in the literature, see, for instance, [4, 5] for not
necessarily input-to-state stable systems, [15, 16] for the context of integral input-
to-state gains, and [8] for the large-scale interconnection of input-to-state stable
systems.

One of the requirements to employ the small-gain theorem for input-to-state stable
system is that the composition of the system gains must be smaller than the identity
function for all positive values. Such a condition, called small-gain condition, restricts
the application of the small-gain theorem to a composition of well chosen gains.

The approaches proposed in [33, 34] provide an alternative criterion for the sta-
bilization of interconnected systems, when a single small-gain condition does not
hold for every positive values. It consists of showing that two small-gain conditions
hold on two intervals of the set of positive real numbers, these intervals correspond
to regions of the state space. More specifically, these two regions are: a compact set
containing the origin and the infinity. Additionally, in the gap between these regions,
a condition on the divergence of the vector field is provided to ensure that the set
of trajectories of solutions not converging to the compact set has Lebesgue measure
zero. Then, the combination of these conditions implies that equilibrium of the ori-
gin is almost globally asymptotically stable (this notion is precisely defined below)
for the interconnected system. For planar systems, an extension of the Bendixson’s
criterion to regions which are not simply connected is provided.

This approachmay be seen as a blend of two small-gain conditions with a criterion
on the derivative of the vector field. The use of a unifying approach for local and
nonlocal properties is well known in the literature, see [2] in the context of control
Lyapunov functions, and [6] for blending iISS and ISS properties.

3.2 Background, Motivation, and Problem Statement

3.2.1 Background

Let f : R
n × R

m → R
n be a function of class C 1 and consider the system

ẋ(t) = f (x(t), u(t)), (3.1)

where for every positive time t , the system state x(t) and the input variable evolve
in the Euclidean spaces R

n and R
m , respectively, for some positive integers n andm.

From now on, arguments t will be omitted.
A function u ∈ L ∞

loc(R≥0, R
m) is said to be an input or control for system (3.1).

A solution to system (3.1) with initial condition x ∈ R
n , under the input u, and

computed at time t is denoted as X (t, x, u).
The following stability notion is recalled from [29, p. 8].
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Definition 3.1 (Input-to-State Stability) The equilibrium of the origin is said to be
input-to-state stable for (3.1) if there exist functions γ ∈ K∞ and β ∈ K L such
that the inequality

|X (t, x, u)| ≤ β(|x |, t) + γ
(∣∣u[0,t]

∣∣∞) , (3.2)

holds, for every initial condition x ∈ R
n , for every input u for system (3.1), and for

every time t ≥ 0. The function γ
(∣∣u[0,t]

∣∣∞) is said to be an ISS gain for (3.1).

As remarked in [29, p. 9], since γ ∈ K∞, the value sup{γ (|u(s)|) : s ∈ [0, t]} is
equivalent to γ (sup{|u(s)| : s ∈ [0, t]}) = γ (|u[0,t]|∞).

From now on, to state that system (3.1) is ISS is equivalent to state that the
equilibrium of the origin is input-to-state stable for system (3.1).

Inequality (3.2) implies that solutions to ISS systems converge to a ball centered
at the origin with radius given by γ (|u|∞) (see (3.2)).

The next definition is based on [8, 19, 29].

Definition 3.2 Let V : R
n → R≥0 be a locally Lipschitz function. It is said to be

an ISS-Lyapunov function for system (3.1) if

• There exist functions α, α ∈ K∞ such that the inequality

α(|x |) ≤ V (x) ≤ α(|x |) (3.3)

holds, for every x ∈ R
n .

• There exist a function αx ∈ K that is said to be an ISS-Lyapunov gain for system
(3.1), and a proper function λx ∈ (C ∩ P)(Rn, R≥0) such that the condition

V (x) ≥ αx (|u|) (3.4a)

implies that the inequality

D+
f V (x, u) ≤ −λx (x) (3.4b)

holds.

As remarked in [8], the proof that a locally Lipschitz ISS-Lyapunov function for
system (3.1) implies that system (3.1) is ISS goes along the lines presented in [30].

3.2.2 Motivation

Consider the system
ż = g(v, z), (3.5)
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where g ∈ C 1(Rn × R
m, R

m). A solution to (3.5) with initial condition z, under the
input v and computed at time t is denoted as Z(t, z, v).

From now on, assume that there exists an ISS-Lyapunov functionW : R
m → R≥0

for system (3.5). Consequently, there exist functions αz, αz ∈ K∞ such that the
inequality

αz(|z|) ≤ W (z) ≤ αz(|z|) (3.6)

holds, for every z ∈ R
m . Also, there exist functions αz ∈ K and λz ∈ (C ∩ P)

(Rm, R≥0) such that the condition

W (z) ≥ αz(|v|) (3.7a)

implies
D+

g W (v, z) ≤ −λz(z). (3.7b)

Interconnecting systems (3.1) and (3.5) yields the system

{
ẋ = f (x, z)
ż = g(x, z).

(3.8)

Using vectorial notation, system (3.8) is denoted as ẏ = h(y). A solution to (3.8)
starting at y ∈ R

n+m and evaluated at time t is denoted as Y (t, y). The set of
inequalities (3.4) and (3.7) are rewritten, respectively, as

V (x) ≥ γ (W (z)) ⇒ D+
f V (x, z) ≤ −λx (x) (3.9a)

and
W (z) ≥ δ(V (x)) ⇒ D+

g W (x, z) ≤ −λz(z). (3.9b)

The ISS-Lyapunov gains are defined as the functions γ (·) = αx ◦ α−1
z (·) ∈ K and

δ(·) = αz ◦ α−1
x (·) ∈ K .

A sufficient condition to ensure that the equilibrium of the origin is globally
asymptotically stable for system (3.8) is provided by the small-gain theorem. This
result is roughly stated here, the interested reader may consult [17, Theorem 3.1] for
further details.

If the ISS-Lyapunov gains γ and δ are such that the small-gain condition

γ ◦ δ(s) < s (SGC)

holds, for every s > 0, then the equilibrium of the origin is globally asymptotically
stable for system (3.8).

In this chapter, systems for which the composition of the ISS-Lyapunov gains
does not satisfy the small-gain condition (SGC) on an interval ofR>0 are considered.
Moreover, if
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• There exist ISS-Lyapunov gains γ� and γg , for the x-subsystem of (3.8);
• There exist ISS-Lyapunov gains δ� and δg , for the z-subsystem of (3.8);
• The compositions γ� ◦ δ� and γg ◦ δg satisfy the small-gain condition, not for all
values of the arguments, but for two different intervals of R>0;

• In the region where the small-gain condition does not hold, a criterion on the
derivative of the vector field is satisfied.

Then, for almost every initial condition, solutions to (3.8) converge to the ori-
gin. Moreover, if n = m = 1, the previous conclusion holds true for every initial
condition. These results are formally stated in Theorems 3.11 and 3.12.

3.3 Standing Assumptions

The first assumption, recalled from [34], concerns the region where the set of impli-
cations (3.9) holds.

Assumption 3.3 There exist constant values

0 ≤ M < M ≤ ∞ and 0 ≤ N < N ≤ ∞,

functions γ and δ of class K such that the limit

b = lim sup
s→∞

γ (s) >

{
M, if M < ∞
M, if M = ∞ (3.10)

holds. If min{M, N } < ∞, assume also that the inequality

max{γ −1(M), N } < min{δ(M), N } (3.11)

holds. Define the set

S = {
(x, z) ∈ R

n × R
m : M ≤ V (x) ≤ M,W (z) ≤ N

}
∪ {(x, z) ∈ R

n × R
m : V (x) ≤ M, N ≤ W (z) ≤ N

}
.

(3.12)

The ISS-Lyapunov functions V and W satisfy, for every (x, z) ∈ S, the set of
implications (3.9).

Assumption 3.3 provides conditions for the ISS-Lyapunov inequalities (3.9a) and
(3.9b) to hold on the set S ⊂ R

n+m , which is defined as the union of sublevel sets of
the ISS-Lyapunov functions V and W .

Equation (3.10) states that, for the ISS-Lyapunov gain γ , its maximum value is
reached outside the set (M, M) (when S is bounded) or inside it (when S being
unbounded).
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The role of Eq. (3.11) becomes clear in Proposition 3.6. This equation is employed
for the estimation of the basin of attraction of suitable attractors.

The next assumption is also recalled from [34].

Assumption 3.4 The inequality

γ ◦ δ(s) < s, ∀s ∈
{[

M, M
] \ {0}, if M < ∞

[M, M) \ {0}, if M = ∞ (3.13)

holds.

Assumption 3.4 implies that the small-gain condition holds on an interval of R≥0

corresponding to the set S.

Remark 3.5 Equation (3.13) is equivalent to

if M < ∞, s ∈ [γ −1(M), γ −1(M)] \ {0}, δ ◦ γ (s) < s,
if M = ∞, s ∈ [γ −1(M), γ −1(M)) \ {0}, δ ◦ γ (s) < s.

(3.14)

3.4 Results

The first result is recalled from [34].

Proposition 3.6 Under Assumptions 3.3 and 3.4, define the values

M̃ = max{γ −1(M), N } and M̂ = min{δ(M), N }.

There exists a proper function U ∈ (C ∩ P)(Rn+m, R≥0) that is locally Lipschitz
on R

n+m \ {0} and such that the limit

lim
t→∞U (Y (t, y)) ≤ M̃

holds, for every y ∈ Ω≤M̂(U ) \ Ω≤M̃(U ). Moreover, if the ISS-Lyapunov gains γ

and δ are differentiable, then a suitable U is given by

U (x, z) = max {σ(V (x)),W (z)} , (3.15)

where σ(·) = (δ(·) + γ −1(·))/2.
A sketch of the proof of Proposition 3.6 is provided in Sect. 3.6.1. The main lines

of reasoning are presented here as follows. Assumptions 3.3 and 3.4 provide the
function U : R

n+m → R≥0 whose Dini’s derivative (see Definition A.39 below) is
negative-definite inS. From inequality (3.11), the setΩ≤M̂ (U )\Ω≤M̃(U ) is nonempty
and included in S. Thus, solutions to system (3.8) starting in Ω≤M̂(U ) \ Ω≤M̃(U )

converge to the set Ω≤M̃(U ).
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Remark 3.7 Since the function U given by Proposition 3.6 is not locally Lipschitz
at the origin, the construction of the function σ ∈ (K∞ ∩ C 1) is slightly different.
The interested reader may consult the proofs of [25, Lemma 4.1 and Theorem 4.2].

The next two corollaries of Proposition 3.6 are recalled from [34] (see also [7, 8])

Corollary 3.8 (Local stabilization)Consider Assumptions 3.3 and 3.4 with the con-
stant values M = N = 0, M� := M < ∞ and N� := N < ∞. The set Ω≤M̂�

(U�) is
included in the basin of attraction of the origin of (3.8), where U� and M̂� are given
by Proposition 3.6.

Corollary 3.9 (Global attractivity) Consider Assumptions 3.3 and 3.4 with the con-
stant values Mg := M > 0 and Ng := N > 0, and M = N = ∞. The setΩ≤M̃g

(Ug)

is globally attractive for (3.8), where Ug and M̃g are given by Proposition 3.6.

From Corollary 3.8 (resp. Corollary 3.9), solutions to (3.8) starting in Ω≤M̂�
(U�)

(resp. Ω>M̃g
(Ug)) converge to the origin (resp. to the set Ω≤M̃g

(Ug)).
Note that if the inclusion Ω≤M̃g

(Ug) ⊂ Ω≤M̂�
(U�) holds, then global asymptotic

stability of system (3.8) is achieved by combining the local stability of origin together
with the global attraction of the set Ω≤M̃g

(Ug). When that inclusion does not hold,
solutions to system (3.8) starting in the set Ω≤M̃g

(Ug) \ Ω≤M̂�
(U�) may converge to

a ω-limit set instead of Ω≤M̂�
(U�) (see [14] Birkhoff’s theorem). The following the-

orems provide sufficient conditions for sets of trajectories of solutions that converge
to these ω-limit sets to have Lebesgue measure zero. Before presenting these results,
the following stability notion is recalled from [3].

Definition 3.10 Let A ⊂ R
n+m be a compact set. It is said to be almost globally

asymptotically stable for system (3.8) if it is locally stable in the Lyapunov sense,
i.e.,

∀ε > 0, ∃δ > 0 : |y|A ≤ δ ⇒ |Y (t, y)| ≤ ε, ∀t ≥ 0,

and attractive for almost every initial condition. More precisely, there exists a set
ℵ ⊂ R

n+m with Lebesgue measure μ(ℵ) = 0 such that the limit

lim
t→∞ |Y (t, y)|A = 0

holds, for every y ∈ R
n+m \ ℵ.

Now, the first result is to be recalled from [34].

Theorem 3.11 Under Assumptions 3.3 and 3.4, assume that the constant values of
Corollaries 3.8 and 3.9 are such that

M� < Mg or N� < Ng.
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Let
R = cl

{
Ω≤M̃g

(Ug) \ Ω≤M̂�
(U�)

}
.

If there exists a function ρ ∈ C 1(Rn+m \ {0}, R≥0) with supp(ρ) ⊇ R such that the
inequality

div (hρ)(y) > 0

holds, for every y ∈ R, then the equilibrium of the origin is almost globally asymp-
totically stable for system (3.8).

A sketch of the proof of Theorem 3.11 is provided in Sect. 3.6.2 and is based on
[3, 22]. The main reasoning can be stated as follows. From Liouville’s theorem (see
Lemma 3.29), the Lebesgue measure of the sets of trajectories of solutions to (3.8)
is related to the divergence of vector field of system (3.8). Under the hypothesis of
Theorem 3.11, the Lebesgue measure of sets of trajectories of solutions that does not
converge to Ω≤M̂�

(U�) is zero. Thus, the conclusion of Theorem 3.11 follows.
The next result is recalled from [34].

Theorem 3.12 Let n = m = 1. Under Assumptions 3.3 and 3.4, assume that the
constant values of Corollaries 3.8 and 3.9 are such that

M� < Mg or N� < Ng.

Let
R = cl

{
Ω≤M̃g

(Ug) \ Ω≤M̂�
(U�)

}
.

If
div h(y) �= 0 and h(y) �= 0 (3.16)

holds, for every y ∈ R, then the equilibrium of the origin is globally asymptotically
stable for system (3.8).

The main ingredient of the sketch of the proof of Theorem 3.12 is to show the
absence of ω-limit sets in R. This is achieved by exhibiting a contradiction between

Fig. 3.1 Illustration of sets
Ω≤M�

(V ) × Ω≤N�
(W ) (red

region), Ω=M̃�
(U�) (dark red

line), Ω≥M (V ) × Ω≥N (W )

(blue region), Ω=M̃g
(Ug)

(blue line), and
R = cl{Ω≤M̂g

(Ug) \
Ω≤M̃�

(U�)} (pattern filled)

W

V

N�

Ng

MgM�
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its existence and the assumption that, for every y ∈ R, div h(y) �= 0 and h(y) �= 0.
A sketch of the proof of Theorem 3.12 is provided in Sect. 3.6.3.

Figure3.1 illustrates the regionR obtained from the hypothesis of Corollaries 3.8
and 3.9, when Ml < Mg and Nl < Ng .

3.5 Illustration

In this section, an example where the small-gain condition cannot be applied is
given.1 Corollaries 3.8 and 3.9, and Theorem 3.12 are illustrated.

Consider the system

{
ẋ = f (x, z) = −ρx (x) + z,
ż = g(x, z) = −z + ρz(x),

(3.17)

where for every x ∈ R, the functions ρx and ρz are defined by

ρx (x) = x3

3
− 3

x2

2
+ 2x and ρz(x) = 0.8ρx (x).

Let the functions

R � x �→ V (x) = |x | ∈ R≥0,

R � z �→ W (z) = |z| ∈ R≥0.

The Dini derivative (cf. Definition A.39) of V along the vector field f yields the
inequality

D+
f V (x, z) ≤ −ρx (V (x)) + W (z),

which holds, for every (x, z) ∈ R × R. Define the function λx (x) = εxρx (V (x)),
for every x ∈ R, where εx ∈ (0, 1) is a constant value. The condition

ρx (V (x)) ≥ W (z)

1 − εx
(3.18a)

implies that the inequality
D+

f V (x, z) ≤ −λx (x) (3.18b)

holds.

1To conclude about the asymptotic stability of this example, one may infer from the LaSalle invari-
ance principle together with the Lyapunov function V + W . Other techniques also apply, see [4],
for example.
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Since the function ρx is strictly decreasing on the interval (1, 2), it is not possible
to use its inverse as an ISS-Lyapunov gain. From now on, let the constant value
εx = 0.05. Consider the piecewise continuous and positive-definite function2

Γ (s) =

⎧⎪⎪⎨
⎪⎪⎩

ρ−1
x

( s

0.95

)
, s ∈ [0, 0.6),

ρ−1
x,+
( s

0.95

)
, s ∈ [0.6,∞),

(3.19)

where ρx,+ : [2,∞) → [ρx (2),∞) is given by ρx,+(·) = ρx (·).
Proposition 3.13 The positive-definite function Γ can be viewed as a nonsmooth
ISS-Lyapunov gain of the x-subsystem of (3.17), because the condition

V (x) ≥ Γ (W (z)) (3.20a)

implies that the inequality
D+

f V (x, z) ≤ −λx (x) (3.20b)

holds. Moreover, the function Γ is “tight”. More precisely, if there exist a func-
tion Γ ∗ : R → R and a positive value s∗ such that Γ ∗(s∗) < Γ (s∗), then there
exists (x∗, z∗) ∈ R>0 × R>0 satisfying the inequalities V (x∗) ≥ Γ ∗(W (z∗)) and
D+

f V (x∗, z∗) > 0.

A sketch of the proof of Proposition 3.13 is provided in Sect. 3.6.4. Note that any
function γ ∈ K satisfying the inequality Γ (·) ≤ γ (·) is an ISS-Lyapunov gain for
the x-subsystem of (3.17).

The above reasoning can be applied to the z-subsystem. The condition

W (z) ≥ Δ(V (x)) (3.21a)

implies that the inequality
D+

g W (x, z) ≤ −λz(z) (3.21b)

holds,whereΔ is the tight ISS-Lyapunov gain of the z-subsystemof (3.17) defined by

Δ(s) =
⎧⎨
⎩

ρ(s), s ∈ [0, 1),
ρ(1), s ∈ [1, 2.5),
ρ(s), s ∈ [2.5,∞),

where the function ρ is defined as ρ(s) = ρz(s)/0.95, for every s ∈ R>0. Note also
that any function δ ∈ K satisfying the inequality Δ(·) ≤ δ(·) is an ISS-Lyapunov
gain for the z-subsystem of (3.17).

2Note that 0.95ρx (2) = 0.6.



3.5 Illustration 47

Now that the tight ISS-Lyapunov gains have been obtained, their composition
shows that the small-gain condition (SGC) does not hold. This claim is formalized
in the following proposition:

Proposition 3.14 The inequality s ≤ Γ ◦ Δ(s) holds, for every s ∈ (0.65, 2.5).

A sketch of the proof of Proposition 3.14 is provided in Sect. 3.6.5.
Note that the results from [5, 15, 16] cannot be applied here, since they require a

composition of gains to be smaller than its argument. Although the results presented
in [4] could be applied to this example, the main advantage of this approach over
that method is that a Lyapunov function can be obtained in the regions where the
small-gain condition holds.

Illustration of Corollary 3.8. Consider a function γ� ∈ K such that, for every
s ∈ [0, 0.6], γ�(s) = Γ (s). Let the function δ� ∈ K be such that

δ�(s)

{= Δ(s), s ∈ [0, 1),
≥ Δ(s), s ∈ [1, 2.5].

Verifying Assumption 3.3. Pick3 M = M� = N = N� = 0.3, and M = N = 0.
Note that max{γ −1

� (M), N } = 0 and min{δ�(M�), N�} = 0.3. Moreover, for every
(x, z) ∈ (Ω≤M�

(V ) × Ω≤N�
(W )), the implications

V (x) ≥ γ�(W (z)) ⇒ D+
f V (x, z) ≤ −λx (x),

W (z) ≥ δ�(V (x)) ⇒ D+
g W (x, z) ≤ −λz(z)

hold.
Verifying Assumption 3.4. From Remark 3.5 the inequality

δ� ◦ γ�(s) = ρz ◦ ρ−1
x (s/0.95)

0.95
= 0.8

0.95
ρx ◦ ρ−1

x

( s

0.95

)
< s

holds, for every s ∈ (0, γ −1
� (M�)] = (0, 0.6].

From Corollary 3.8, the set Ω≤0.3(U�) is included in the basin of attraction of the
origin. Moreover,

U�(x, z) = max

{
δ�(V (x)) + γ −1

� (V (x))

2
,W (z)

}
.

Illustration of Corollary 3.9. Consider a function γg ∈ K such that, for every
s ∈ [0.7,∞), γg(s) = Γ (s). Let also the function δg ∈ K be such that, for every
s ∈ [2,∞), δg(s) = ρ(s).

3Note that b = ∞.
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Verifying Assumption 3.3. Pick M = Mg = 4 and N = Ng = 1, and M =
N = ∞. Note that, max{γ −1

g (M), N } = 4 and min{δg(M), N } = ∞. Moreover, the
implications

V (x) ≥ γg(W (z)) ⇒ D+
f V (x, z) ≤ −λx (x),

W (z) ≥ δg(V (x)) ⇒ D+
g W (x, z) ≤ −λz(z)

hold, for every (x, z) ∈ (Ω≥Mg (V ) × Ω≥Ng (W )).
Verifying Assumption 3.4. From Remark 3.5 the inequality

δg ◦ γg(s) = 0.8

0.95
ρx ◦ ρ−1

x

( s

0.95

)
< s

holds, for every s ∈ [γ −1
g (Mg),∞) = [4.5,∞).

From Corollary 3.9 the set Ω≤4(Ug) is globally attractive for (3.17). Moreover,

Ug(x, z) = max

{
δg(V (x)) + γ −1

g (V (x))

2
,W (z)

}
.

Illustration of Theorem 3.12. Note that M� = 0.3 < 4 = Mg and N� = 0.3 <

1 = Ng . Since the vector field of system (3.17) has a continuous derivative, and the
only equilibrium point is the origin, and the equation

-8 -6 -4 -2 0 2 4 6 8
x

-8

-6

-4

-2

0

2

4

6

8

z

Fig. 3.2 Simulation of (3.17)
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∂ f

∂x
(x, z) + ∂g

∂z
(x, z) = −x2 + 3x − 3 = 0

has no zeros on the set

R = cl
{
Ω≤4(Ug) \ Ω≤0.3(U�)

}
,

from Theorem 3.12, the equilibrium of the origin is globally asymptotically stable
for system (3.17).

Figure3.2 shows a simulation of (3.17) for some initial conditions.

3.6 Sketches of the Proofs of Chap. 3

3.6.1 Sketch of the Proof of Proposition 3.6

Before sketching a proof for Proposition 3.6, the following lemma is recalled
from [33].

Lemma 3.15 Under Assumptions 3.3 and 3.4, there exists a function γ̃ ∈ K∞ such
that the inequality

δ(s) < γ̃ (s), (3.22)

holds, for every s ≥ 0. Moreover,

if M < ∞, then ∀s ∈ [M, M] \ {0}, γ̃ (s) < γ −1(s),
if M = ∞, then ∀s ∈ [M, b) \ {0}, γ̃ (s) < γ −1(s).

(3.23)

The proof of Lemma 3.15 is based on [17] and is provided in [32].
The ideas to prove Proposition 3.6 are adapted from [17, proof of Theorem 3.1].

The sketch is divided into two parts. First, the Dini derivative of a proper function
U ∈ (C ∩ P)(Rn+m, R≥0) is shown to be strictly negative in the set S defined in
(3.12). In the second part, solutions to (3.8) starting inΩ≤M̂(U )\Ω≤M̃(U ) are shown
to converge to Ω≤M̃(U ).

First Part. Under Assumptions 3.3 and 3.4, consider the function γ̃ ∈ K∞
obtained in Lemma 3.15. Since δ is of class K and the function γ̃ satisfies (3.23),
there exists ([17, Lemma A.1]) a function σ ∈ K∞ ∩C 1 whose derivative is strictly
positive and satisfies the inequality

δ(s) < σ(s) < γ̃ (s) (3.24)

for every s > 0.
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Let
U : R

n × R
m → R≥0

(x, z) �→ max{σ(V (x)),W (z)}.

Note thatU ∈ (C ∩P)(Rn+m, R≥0) is a proper function. For any (x, z) ∈ R
n ×R

m ,
one of the following cases is possible:

Case 1. σ(V (x)) < W (z);
Case 2. W (z) < σ(V (x)) or;
Case 3. W (z) = σ(V (x)).

The proof follows by showing that the Dini derivative of U is strictly negative. For
each case, assume that

(x, z) ∈ S�=0 := S \ {(0, 0)},

where S is defined in (3.12).
Case 1. Assume that

σ(V (x)) < W (z).

This implies that

U (x, z) = W (z) and D+
f,gU (x, z) = D+

g W (x, z).

From (3.24), the inequality

δ(V (x)) < σ(V (x)) < W (z)

holds. From implication (3.9b), the inequality D+
g W (x, z) ≤ −λz(z) holds. Thus,

W (z) > σ(V (x)) ⇒ D+
f,gU (x, z) ≤ −λz(z).

Case 2. Assume that the inequality

W (z) < σ(V (x))

holds. This implies that

U (x, z) = σ(V (x)) and D+
f,gU (x, z) = σ ′(V (x))D+

f V (x, z).

Since (x, z) ∈ S�=0, Eq. (3.24) implies that the inequality

W (z) < σ(V (x)) < γ̃ (V (x))

holds.
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If M < ∞, then from (3.23), the inequality

W (z) < σ(V (x)) < γ̃ (V (x)) < γ −1(V (x)) (3.25)

also holds. Together with implication (3.9a), the inequality D+
f V (x, z) ≤ −λx (x)

holds.
IfM = ∞, then two regions of xmust be analyzed:b < V (x) andM ≤ V (x) ≤ b.
Case 2.a. In the region where b < V (x), Eqs. (3.9a) and (3.10) yield the impli-

cation
V (x) > b > γ (W (z)) ⇒ D+

f V (x, z) ≤ −λx (x).

Case 2.b. In the region where M ≤ V (x) ≤ b the implication

V (x) > γ (W (z)) ⇒ D+
f V (x, z) ≤ −λx (x)

holds, due to Eqs. (3.23), (3.25), and (3.9a).
Summing up Case 2,

W (z) < σ(V (x)) ⇒ D+
f,gU (x, z) ≤ −σ ′(V (x))λx (x).

Case 3. Assume that
W (z) = σ(V (x)).

Note that,

D+
f,gU (x, z) = lim sup

t↘0

1

t

[
max

{
σ
(
V (X (t, x, z))

)
,W (Z(t, z, x))

}−U (x, z)
]

= lim sup
t↘0

max

{
σ(V (X (t, x, z))) − σ(V (x))

t
,
W (Z(t, z, x)) − W (z)

t

}

= max
{
σ ′(V (x))D+

f V (x, z), D+
g W (x, z)

}
.

The analysis of D+
f,gU is divided into two subcases. In the first, the function D+

g W
is analyzed while in the last the function D+

f V is analyzed.
Case3.a.Theanalysis of D+

g W . From (3.24), and the fact that x �= 0 and z �= 0, the
inequality δ(V (x)) < σ(V (x)) = W (z) holds. Following the reasoning employed
in Case 1, D+

g W (x, z) ≤ −λz(z).
Case 3.b. The analysis of D+

f V . From (3.24), and the fact that x �= 0 and z �= 0,
the inequalityW (z) = σ(V (x)) < γ̃ (V (x)) holds. Following the same reasoning as
in Case 2, D+

f V (x, z) ≤ −λx (x).
Summing up Case 3, the condition

0 �= W (z) = σ(V (x))
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implies that the inequality

D+
f,gU (x, z) ≤ −min{σ ′(V (x))λx (x), λz(z)}

holds.
From [34, Claim 1], there exists a value c > 0 such that the inclusion Ω≤c(U ) ⊂(

Ω≤M(V ) × Ω≤N (W )
)
holds. Moreover, the constant values M̃ and M̂ are such that

(
Ω≤M(V ) × Ω≤N (W )

)
⊂ Ω≤M̃(U ) ⊂ Ω≤M̂(U ) ⊂ (Ω≤M(V ) × Ω≤N (W )

)
.

(3.26)
The chain of inclusions (3.26) implies that the inequality

M̃ ≤ U (x, z) ≤ M̂

holds. Consequently, also the inequality

D+
f,gU (x, z) ≤ −E(x, z)

holds, where the function E is defined by

E : R
n × R

m → R≥0

(x, z) �→ min{σ ′(V (x))λx (x), λz(z)}.

Since E ∈ (C ∩ P)(Rn × R
m, R≥0), from Lemma A.33 (see also [27, p. 13])

there exists a function α ∈ K∞ such that, for every (x, z) ∈ R
n+m , the inequality

α (|(x, z)|) ≤ E(x, z) holds. Moreover, since the set Ω<M̃(U ) contains the origin

α
(|(x, z)|M̃) ≤ α (|(x, z)|) ≤ E(x, z)

holds. Thus, the condition
M̃ ≤ U (x, z) ≤ M̂

implies that the inequality

D+
f,gU (x, z) ≤ −α

(|(x, z)|M̃)

holds.
Second part. The locally Lipschitz continuity of the functionU on (Rn ×R

m)\
{(0, 0)} follows from the Lipschitz continuity of W and σ ◦ V on that region. As
explained in [19, Remark III.1], the functionU can be modified to be Lipschitz also
at the origin.

From Theorem A.42, for every y ∈ R
n+m , and for every t ∈ R≥0, along solutions

to system (3.8), the equation
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D+U (Y (t, y)) = D+
h U (Y (t, y))

holds. Thus, solutions to (3.8) starting in Ω≤M̂(U ) \Ω≤M̃(U ) converge to Ω≤M̃(U ).
To see that U can be given as in (3.15), note that U relies on the computation of

σ . Define, for every s ∈ R≥0, the function σ(s) = (δ(s) + γ −1(s))/2. The derivative
of this function yields for every s ∈ R>0,

2
dσ

ds
(s) = dδ

ds
(s) + 1

dγ

ds

(
γ −1(s)

) .

Note that this derivative is positive, because dδ(s)/ds > 0 and dγ
(
γ −1(s)

)
/ds > 0.

Moreover, the function σ satisfies inequality (3.24). This concludes sketch of the
proof of Proposition 3.6.

3.6.2 Sketch of the Proof of Theorem 3.11

Before sketching a proof of Theorem 3.11 the following lemma, based on [3, 22], is
recalled from [34].

Lemma 3.16 Under the hypotheses of Theorem 3.11, if there exists a function
ρ ∈ C 1(Rn+m, R≥0) with supp(ρ) ⊇ R such that the inequality

div (hρ)(y) > 0 (3.27)

holds, for every y ∈ R, then for almost every initial condition in R, the solutions to
system (3.8) converge to Ω≤M̂�

(V ).

A sketch of the proof of Lemma 3.16 is provided after the sketch of the proof of
Theorem 3.11.

This sketch is divided into four parts. First, every solution starting in Ω>M̃g
(Ug)

is shown to converge to Ω≤M̃g
(Ug). The second part shows that every solution to

system (3.8) starting in Ω≤M̂�
(U�) converges to the origin. In the third part, the set

of trajectories of solutions to (3.8) starting in the set R that do not converge to the
set Ω≤M̂�

(U�) is shown to have Lebesgue measure zero. The fourth part concludes
the almost global asymptotic stability of the origin.

First Part. From Corollary 3.9, the set Ω≤M̃g
(Ug) is globally attractive for

(3.8) with the constant values M̃g = max{γ −1
g (Mg), Ng}, Mg , and Ng , where the

ISS-Lyapunov function γg is given by Assumption 3.3.
Second Part. From Corollary 3.8, the set Ω≤M̂�

(U�) is contained in the basin
of attraction of the origin with the constant values M̂� = min{δ�(M�), N�}, M�, and
N�, and ISS-Lyapunov function γ� is given by Assumption 3.3.

Third Part. It remains to show that the inclusionΩ≤M̂�
(U�) � Ω≤M̃g

(Ug) holds.
From the proof of [34, Claim 1], the implications
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U�(x, z) ≤ M̂� ⇒ max{V (x),W (z)} ≤ min{M�, N�},
Ug(x, z) ≥ M̃g ⇒ min{V (x),W (z)} ≥ max{Mg, Ng}

hold. Moreover, inequality min{M�, N�} < max{Mg, Ng} implies that inclusion
Ω≤M̂�

(U�) � Ω≤M̃g
(Ug) holds. Consequently, the set

R = cl
{
Ω≤M̃g

(Ug) \ Ω≤M̂�
(U�)

}

is nonempty.
Because of the existence of the function ρ ∈ C 1(Rn+m, R≥0)with supp(ρ) ⊇ R

and such that the inequality div (hρ)(y) > 0 holds, for every y ∈ R, the set Z of
initial conditions in R from which solutions do not converge to Ω≤M̂�

(U�) and the
set of trajectories of solutions to system (3.8) have Lebesgue measure zero, due to
Lemma 3.16.

Fourth Part. Trajectories of solutions to (3.8) that converge to the set Z ⊂ R
(cf. proof of Lemma 3.16) are shown to have also measure zero. For every t , let

Y (t,Z) = {Y (t, z) : t ∈ dom(z), z ∈ Z},

wheredom(z) is themaximum time intervalwhereY (t, z) exists. SinceZ is positively
invariant, for every t1, t2 ∈ dom(z),

t1 < t2 ≤ 0 ⇒ Y (t2,Z) ⊂ Y (t1,Z).

This inclusion implies that4

Y :=
⋃
t≤0

{Y (t,Z)} =
⋃
l∈Z<0

{Y (t,Z) : t ≤ l}.

Hence, the setY is a countable union of images ofZ by the flow. SinceZ ismeasurable
(cf. proof of Lemma 3.16) and, for every t ∈ dom(y), the map Z � y �→ Y (t, y) is
a diffeomorphism,5 Y is also measurable. Consequently, the equation

∫
Y (t,Z)

dz ≤
∫
Z

|grad Y (t, y)| dy = 0

holds, for every value of the time t ∈ dom(Z), because Z has Lebesgue measure
zero. This implies that, for every t ∈ dom(Z), the set Y (t,Z) has Lebesgue measure
zero. Since Y is the countable union of sets of measure zero, it has also measure
zero.

4Note also that, when Y (t,Z) does not exist, Y (t,Z) = ∅.
5Because (3.8) is of class C 1 and solutions are unique (see also [13, Corollary 3.1]).
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From the above discussion, the equilibrium of the origin is locally stable and
almost globally attractive for (3.8). Thus, it is almost globally asymptotically stable
for (3.8). This concludes the sketch of the proof of Theorem 3.11.

Sketch of the proof of Lemma 3.16. The objective of this sketch is to show the
set of trajectories of solutions to (3.8) that do not converge to the set Ω≤M̂�

(U�) has
Lebesgue measure zero. To do so, the same reasoning employed in [22, Theorem 1]
and [3, Theorem 3] is used. However, here a less conservative condition is required,
since a set that positively invariant is considered, the divergence is required to be
positive only in a compact set.

Let Z ⊂ R
n+m be given by

Z =
∞⋂
l=1

{
y ∈ Ω≤M̃g

(Ug) : U�(Y (t, y)) > M̂�, t > l
}

,

SinceZ is a countable intersection of open sets, it is measurable (cf. Propositions A.8
and A.9).

Note that Z is the set of all initial conditions belonging to Ω≤M̃g
(Ug) from which

issuing solutions do not converge toΩ≤M̂�
(U�). SinceΩ≤M̃g

(Ug) is positively invari-
ant (cf. Corollary 3.9), the set Z is also positively invariant. Thus, given a fixed time
instant τ > 0, for every time t ≥ τ , the inclusion Y (t,Z) ⊂ Y (τ,Z) holds. Hence,
the inequality ∫

Y (t,Z)

ρ(y) dy −
∫
Z

ρ(y) dy ≤ 0 (3.28)

holds, for every t ≥ 0.
From Lemma 3.29, for every t ≥ 0,

t∫
0

∫
Y (s,Z)

div (hρ)(y) dyds =
∫

Y (t,Z)

ρ(y) dy −
∫
Z

ρ(y) dy.

Since the inequality div (hρ)(y) > 0 holds, for every y ∈ R, and Z belongs to the
set R, the inequality

t
∫

Y (t,Z)

div (hρ)(y) dy ≤
t∫

0

∫
Y (s,Z)

div (hρ)(y) dyds

≤
∫

Y (t,Z)

ρ(y) dy −
∫
Z

ρ(y) dy

holds, for every time t ≥ 0.
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Inequality (3.28) implies that the inequality

∫
Y (t,Z)

div (hρ)(y) dy ≤ 0

holds, for every positive value of the time t . Consequently, inequality (3.27) implies
that the equation ∫

Y (t,Z)

div (hρ)(y) dy = 0

holds, for every positive value of the time t . Thus, the set Y (t,Z) has Lebesgue
measure zero, for every t ≥ 0. From the continuity of Y , the set Z has also Lebesgue
measure zero. Consequently, the inequality

lim sup
t→∞

U�(Y (t, y)) ≤ M̂�

holds, for almost every y ∈ R. This concludes the sketch of the proof of Lemma 3.16.

3.6.3 Sketch of the Proof of Theorem 3.12

Before showing a sketch of the proof of Theorem 3.12, the following lemma is
recalled from [34].

Lemma 3.17 (Extended Bendixson’s criterion) Let n = m = 1, under the hypothe-
ses of Theorem 3.12 if the conditions

div h(y) �= 0 and h(y) �= 0, (3.29)

hold, for every y ∈ R, then all solutions to (3.8) issuing from R converge to the set
Ω≤M̂�

(U�).

A sketch of the proof of Lemma 3.17 is provided after the sketch of the proof of
Theorem 3.12.

This sketch follows the same reasoning as the sketch of the proof of Theo-
rem 3.11. The difference consists of the third and fourth parts. More specifically,
condition (3.29) is assumed instead of the existence of the function ρ. Moreover,
Lemma 3.17 implies that there exist no ω-limit sets in R. In the fourth part, no
considerations concerning the measure of the sets of initial conditions are needed.

Similarly to the discussion of the sketch of the proof of Theorem 3.11, the equi-
librium of the origin is locally stable and globally attractive for (3.8). Thus, it is
globally asymptotically stable for (3.8). This concludes the sketch of the proof of
Theorem 3.12.
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Before sketching a proof for Lemma3.17, some concepts regarding the asymptotic
behavior of solutions are recalled. For planar systems, a closed curveC ⊂ R

2 is called
closed orbit if C is not an equilibrium point and there exists a time T < ∞ such
that, for each (x, z) ∈ C , the equality (X (kT, x, z), Z(kT, x, z)) = (x, z) holds, for
every integer k (cf. [26, Definition 2.6]).

Sketch of the Proof of Lemma 3.17. Consider the proper function U� ∈ (C ∩ P)

(Rn+m, R≥0) (resp. Ug ∈ (C ∩ P)(Rn+m, R≥0)) and the constant values given by
Corollary 3.8 (resp. Corollary 3.9). From the proof of [34, Claim 1], the implications

U�(x, z) ≤ M̂� ⇒ max{V (x),W (z)} ≤ min{M�, N�},
Ug(x, z) ≥ M̃g ⇒ min{V (x),W (z)} ≥ max{Mg, Ng}

hold.The inequalitymin{M�, N�} < max{Mg, Ng} implies the inclusionΩ≤M̂�
(U�) �

Ω≤M̃g
(Ug). Consequently, the set

R = cl
{
Ω≤M̃g

(Ug) \ Ω≤M̂�
(U�)

}

is nonempty.
FromLemma 3.19, there exists a proper functionU∞ ∈ (C ∩P)(Rn+m, R≥0) that

is locally Lipschitz onR
n+m \{0} (resp. a function h̃ ∈ C 1(R2, R

2)) with supp(U∞)

(resp. supp(h̃)) satisfying the inclusion supp(U∞) ⊃ R (resp. supp(h̃) ⊃ R).
Moreover, for every y ∈ R, U∞(y) = Ug(y) (resp. h̃(y) = h(y)).

From Theorem 3.25,

• The set Ω=Mg (U∞) has finite perimeter;
• The functionU∞ is almost everywhere (in the Hausdorff measure sense) differen-
tiable in Ω=Mg (U∞);

• LetS∞ ⊂ Ω=Mg (U∞) be set of points,whereUg is not differentiable. There exists a
Lipschitz parametrization p∞ : [a∞, b∞] ⊂ R → Ω=Mg (U∞) that is injective and
satisfies, for almost (in the Lebesgue measure sense) every s ∈ [a∞, b∞], p∞(s) /∈
S∞. Moreover, in the points where p∞ is differentiable, dp∞(s)

ds is perpendicular to
∂U∞
∂p∞ (p∞(s)).

From Theorem 3.27,

∫∫
Ω≤Mg (U∞)

div h̃(y) dy =
∮

Ω=Mg (U∞)

h̃(y) · n∞(y) dy, (3.30)

wheren∞ is the outwardnormal ofΩ≤Mg (U∞)defined, for every y ∈ Ω=Mg (U∞),6 by

n∞(y) =

⎧⎪⎪⎨
⎪⎪⎩

∂U∞
∂y (y)∣∣∣ ∂U∞
∂y (y)

∣∣∣ , if
∂U∞
∂y (y) exists,

0, if otherwise.

6Note that, from the previous paragraph, for almost every y ∈ Ω=Mg (U∞), ∂Ug
∂y (y) exists.
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From the sketch of the proof of Proposition 3.6 and from Corollary 3.9, there
exists a function Eg ∈ (C ∩ P)(Rn+m, R≥0) such that the inequality

D+
h̃
U∞(y) ≤ −Eg(y) < 0

holds, for every y ∈ Ω=Mg (U∞).
From the above discussions, the existence of the parametrization p∞ and

Remark A.40, the inequality

D+
h̃
U∞(p∞(s))∣∣∣ ∂U∞

∂y (y)(p∞(s))
∣∣∣ = h̃(p∞(s)) · n∞(p∞(s)) < 0

holds, for almost every s ∈ [a∞, b∞].
Applying the generalized divergence theorem to the level curve Ω=Mg (U∞), the

inequality

∫∫
Ω≤Mg (Ug)

div h(y) dy =
∫

[a∞,b∞]
h(p∞(s)) · n∞(p∞(s)) ds < 0, (3.31)

is obtained from Eq. (3.30), because U∞(y) = Ug(y) and h̃(y) = h(y), for every
y ∈ K.

Analogously to the reasoning that lead to inequality (3.31) and by letting p� :
[a�, b�] → Ω=M�

(U�) be a parametrization of Ω=M�
(U�) with outward unit normal

n�, the inequality

∫∫
Ω≤M̂�

(U�)

div h(y) dy =
∫

[a�,b�]
h(p�(s)) · n�(p�(s)) ds < 0 (3.32)

holds.
Suppose, by absurd, that there exists a closed orbit7 C ∈ R

2, parametrized by
p : [a, b] → C and with outward unit normal n, and contained in R. From the
generalized divergence theorem,

∫∫
DC

div h(y) dy =
∫

[a,b]
h(p(s)) · n(p(s)) ds = 0, (3.33)

where DC is the simply connected region bounded by C .

7From the uniqueness of solutions with respect to initial conditions, the closed orbit C is a simple
closed curve.
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Note that
∫∫

Ω≤Mg (Ug)\DC

div h(y) dy =
∫∫

Ω≤Mg (Ug)

div h(y) dy −
∫∫
DC

div h(y) dy

=
∫∫

Ω≤Mg (Ug)

div h(y) dy,

where the last equality is due to (3.33). From inequality (3.31), the following
inequality ∫∫

Ω≤Mg (Ug)\DC

div h(y) dy < 0 (3.34)

holds. On the other hand,

∫∫
DC\Ω≤M̂�

(U�)

div h(y) dy =
∫∫
DC

div h(y) dy −
∫∫

Ω≤M̂�
(U�)

div h(y) dy

= −
∫∫

Ω≤M̂�
(U�)

div h(y) dy,

where the last equality is also due to (3.33). From inequality (3.32), the inequality

∫∫
DC\Ω≤M̂�

(U�)

div h(y) dy > 0 (3.35)

holds.
From inequalities (3.34) and (3.35) and the fact that C is arbitrary, the function

div h changes sign in R. From the continuity of div h, there exists ȳ ∈ R such
that div h(ȳ) = 0. This is a contradiction with the condition (3.29). Thus, there
exist no closed orbits C contained in R.

From the Poincaré–Bendixson Theorem (cf. [26, Theorem 2.15]), the ω-limit set
of a solution starting in R is a closed orbit or equilibria. Since equilibria do not exist
inR by assumption, there exist no ω-limit sets inR, every solution starting inR will
converge to the setΩ≤M�

(U�). This concludes the sketch of the proof of Lemma 3.17.

Corollary 3.18 (Bendixson criterion) Let n = m = 1, under the hypotheses of
Theorem 3.12 if R is a simply connected region such that the conditions

div h(y) �= 0 and h(y) �= 0 (3.29)

hold, for every y ∈ R, then all solutions to (3.8) issuing from the set R converge to
Ω≤M̂�

(U�).
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3.6.4 Sketch of the Proof of Proposition 3.13

Assume for a fixed (x, z) ∈ R
n × R

m , the inequality V (x) ≥ Γ (W (z)) holds.
Suppose also that z ∈ Ω<0.6(W ). From (3.19),

Γ (W (z)) = ρ−1
x

(
W (z)

0.95

)
.

Consequently, the inequality

V (x) ≥ ρ−1
x

(
W (z)

0.95

)

holds. Because ρ−1
x is strictly increasing in [0, 0.6), it is invertible and the condition

ρx (V (x)) ≥ W (z)

0.95

holds. This implies that the inequality D+
f V (x, z) ≤ −λx (x) holds, due to (3.18).

The above reasoning, applied for z ∈ Ω≥0.6(W ), yields an analogous conclusion.
Now it remains to show that Γ is tight. From the surjectivity and continuity of

W , there exists z∗ ∈ R>0 such that s∗ = W (z∗). Thus, the inequality Γ ∗(W (z∗)) <

Γ (W (z∗)) holds.
Assume that z∗ ∈ (R>0 ∩ Ω<0.6(W )). From (3.19),

Γ (W (z∗)) = ρ−1
x

(
W (z∗)
0.95

)
.

Sinceρ−1
x is strictly increasing in the interval [0, 0.6), it is invertible and the inequality

ρx (Γ
∗(W (z∗)))0.95 < W (z∗) holds. From the surjectivity and continuity of V ,

there exists x∗ ∈ R>0 such that ρx (Γ
∗(W (z∗)))0.95 ≤ ρx (V (x∗)) < W (z∗). Since

(x∗, z∗) ∈ R>0 × R>0, the Dini derivative of V yields the inequality

D+
f V (x∗, z∗) = −ρx (V (x∗)) + W (z∗) > 0.

The case in which z∗ ∈ Ω≥0.6(W ) is parallel. Thus, there exists (x∗, z∗) ∈
R>0 × R>0 such that D+

f V (x∗, z∗) > 0. This concludes the sketch of the proof
of Proposition 3.13.

3.6.5 Sketch of the Proof of Proposition 3.14

In the interval (0.65, 2.5) two regions are analyzed: (0.65, 1) and [1, 2.5).
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Suppose that s ∈ (0.65, 1). In this region, Δ is strictly increasing and satisfies
the inequality 0.6 < Δ(s) < 0.7. From (3.19), the function Γ is strictly increas-
ing in the interval (0.6, 0.7). Moreover, the function ρ−1

x satisfies the inequality,
2.2 < ρ−1

x (s) < 2.3, for every s ∈ (0.65, 0.7). Hence, for every s ∈ (0.65, 1), the
inequality s ≤ Γ ◦ Δ(s) holds. The analysis for the interval [1, 2.5) is analogous.
This concludes the sketch of the proof of Proposition 3.14.

3.7 Conclusion

A condition to verify the stability of interconnected ISS systems that do not satisfy
the small-gain condition is proposed. The approach consists in verifying if the small-
gain conditions hold in two different intervals corresponding to different regions of
the state space: close to the origin and at infinity. In the gap between both regions,
these small-gain conditions are blended with a divergence criterion for the absence
of ω-limit sets. For planar system, an extension of Bendixson criterion is proposed.
For higher dimensional systems, the set of trajectories of solutions that does not
converge to the origin has Lebesgue measure zero.

Appendix of Chap. 3

Technical Lemma

Lemma 3.19 Let k ≥ 0 and p > 0 be constant integers. Given a function h ∈ C k

(Rn, R
p), and compact setK ⊂ R

n such that, for every y ∈ K, h(y) �= 0. Then, there
exists h̃ ∈ C k(Rn, R

p) such that supp(h̃) ⊃ K and, for every y ∈ K, h̃(y) = h(y).

The proof of Lemma 3.19 is based on [24, p. 370] and can be found in [32].

The Divergence Theorem for Level Sets of a Lyapunov
Function

The following definition is recalled from [23]:

Definition 3.20 (Gamma function) The function

Γ : R≥0 → R

s �→
∞∫
0

t s−1e−t dt

is called gamma function.
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The next definition is recalled from [21].

Definition 3.21 (Hausdorff measure) Let E ⊂ R
n , the diameter of the set E is the

function
diam : E × E → R≥0

(x, y) �→ sup{|x − y|}.

Let 0 ≤ n < ∞ and define, for 0 < δ ≤ ∞, the value

H n
δ (E) = inf

⎧⎨
⎩
∑
j∈N

diam(E j )
n : E ⊂

⋃
j∈N

E j ,diam(E j ) < δ,E j ⊂ R
n

⎫⎬
⎭ .

The n-dimensional unnormalized Hausdorff measure of E is the limit

H̃ n(E) = lim
δ→0

H n
δ (E) = sup

δ>0
H n

δ (E).

The n-dimensional Hausdorff measure of E is given by

H n(E) = α(s)

2n
H̃ n(E),

where

α(n) = Γ
(
n
2

)
Γ
(
n
2 + 1

) .

The relation between Hausdorff and Lebesgue measures is explained in the fol-
lowing remark which is based on [10, Sect. 2.2] and [20]:

Remark 3.22 Note that the n-dimensional Lebesgue measure of a set E ⊂ R
n is

the n-fold product of unidimensional Lebesgue measures (cf. Definitions A.5 and
A.7) while the Hausdorff measure is computed in terms of arbitrarily coverings of
E with small diameters. Moreover, the Lebesgue measure in R

n is equivalent to
the n-dimensional Hausdorff measure, i.e., μ = H n . Also, if H n(E) < ∞, then
H n−1(E) = ∞ and H n+1(E) = 0.

The next concept, recalled from [21, p. 50], is a measure-theoretical notion of
boundaries of a set.

Definition 3.23 (Essential boundaries) For a set E ⊂ R
n ,

• The essential exterior is the set

ext∗(E) =
{
x ∈ R

n : lim
r→0

μ
(
E ∩ B≤r (x)

)
μ
(
B≤r (x)

) = 0

}
;

• The essential interior is the set int∗(E) = ext∗(Rn \ E);
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• The essential closure is the set cl∗{E} = R
n \ ext∗(E);

• The essential boundary is the set ∂∗E = cl∗{E} \ int∗(E).

The following properties hold8:

int∗(E) ⊂ cl∗{E},int∗(Rn \ E) = ext∗(E),

∂∗E = cl∗(E) ∩ cl∗{Rn \ E} = ∂∗(Rn \ E) = R
n \ (int∗(E) ∪ ext∗(E)).

Definition 3.23 is related to the usual topological concepts as follows:

int(E) ⊂ int∗(E), cl∗{E} ⊂ cl{E}, ∂∗E ⊂ ∂E.

Moreover,

∂∗E = ∂E ⇔ int(E) = int∗(E) and cl∗{E} = cl{E},

and the inclusion

int∗(E) ⊂
{
x ∈ R

n : lim
r→0

μ
(
E ∩ B≤r (x)

)
μ
(
B≤r (x)

) = 1

}

becomes an inequality, when E is measurable.
The following measure-theoretical notion of perimeter of a set is recalled from

[21, Definition 4.5.1]:

Definition 3.24 (Perimeter of a set) The perimeter of a set E ⊂ R
n is the measure

P(E) = H n−1(∂∗E).

The perimeter is finite if μ(E) + P(E) < ∞.

The notion of a perimeter of a set is an important concept for the next theorem,
adapted from [1, Theorem 2.5].

Theorem 3.25 Let k ≥ 0 be a constant integer, and consider the Lipschitz map
V ∈ C k(R2, R≥0)withsupp(V ) compact. The following statements hold, for almost
every c ∈ R≥0:

1. Ω=c(V ) is 1-rectifiable9 and H 1 (Ω=c(V )) < ∞;
2. For H 1-almost every x ∈ Ω=c(V ), the map V is differentiable at x;
3. Every connected component C of Ω=c(V ) is either a point or a closed simple

curve with a Lipschitz parametrization p : [a, b] → C which is injective and
satisfies, for almost every t ∈ [a, b],

8Pfeffer [21, p. 49].
9In other words, the set Ω=c(V ) can be H 1-almost everywhere covered by countably many 1-
dimensional curves of class C 1.
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dp

dt
(t) = τ(p(t)),

where, for every x ∈ C, τ(x) is the vector tangent to C.

From item2and since the level setΩ=c(V ) is either a point or a simple closed curve
ofR

2, ∂Ω=c(V ) = cl{Ω=c(V )} = Ω=c(V ). Moreover, ∂∗Ω=c(V ) ⊂ cl{Ω=c(V )}.
From item 1, the sublevel set Ω≤c(V ) has finite perimeter. Thus the inequality

∫
Ω=c(V )

dH 1 < ∞

holds. Note that, from Remark 3.22, this integral is defined in the Lebesgue sense
in R

1.
The next definition, based on [20, Definition 1.6] and [21, pp. 127–128], recalls

the concept of vector being an outward normal to a set.

Definition 3.26 (Outward normal) For every x ∈ ∂∗E, denote by nE(x) the unit
vector of R

n such that

H±(E, x) = {y ∈ R
n : ±nE(x) · (y − x) ≥ 0}.

The function nE is called outward unit normal of E ⊂ R
n if, for every x ∈ ∂∗E,

lim
r→0

μ
(
B≤r (x) ∩ H+(E, x) ∩ E

)
μ
(
B≤r (x)

) = 0,

lim
r→0

μ
(
B≤r (x) ∩ (H−(E, x) \ E)

)
μ
(
B≤r (x)

) = 0

(3.36)

hold.

From item 2 of Theorem 3.25, for H 1-almost every x ∈ Ω=c(V ), grad V (x)
exists. Thus, the vector field

n : Ω=c(V ) → R
2

x �→
⎧⎨
⎩

grad V (x)

|grad V (x)| , if grad V (x) exists,

0, if otherwise

(3.37)

isH 1-almost everywhere an outward normal to the set Ω≤c(V ). Since the outward
normal to sets of finite perimeter is unique (cf. [11, Theorem 3.4]), the vector n
satisfies the limits (3.36).

For a further reading on the sets of finite perimeters and on the construction of
outward normals for them, the interested reader is invited to see [21, Chaps. 5 and 6].
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The next result shows the relationship between the line integral along a closed
curve and the integral on the domain bounded by this curve.

Theorem 3.27 (Generalized divergence theorem)10 Under the assumptions of The-
orem 3.25. Let k ≥ 0 be a constant integer, and consider the map f ∈ C k(R2, R

2).
Then, the formula

∫∫
Ω≤c(V )

div f (x) dx =
∮

[a,b]
f (p(s)) · n(p(s)) ds

holds, where the integral of the left-hand side (resp. right-hand side) is taken in
the Lebesgue (resp. 1-dimensional Hasudorff) measure on R

2 (resp. R), and p :
[a, b] → Ω=c(V ) is a parametrization of Ω=c(V ).

Before showing a sketch of the proof of Theorem 3.27, the following lemma,
based on [31, p. 106], is needed. For a detailed proof inR

n , the interested reader may
consult [21, Chaps. 1–6].

Lemma 3.28 (Green’s Theorem) Let C ⊂ R
2 be a positively oriented, piecewise

smooth, simple closed curve with finite length, let DC be the region bounded by C,
and let f = ( f1, f2) : R

2 → R
2. If f1 : R

2 → R and f2 : R
2 → R are defined on

an open region containing DC , and f is differentiable in such a region, then

∮
C

( f1(x1, x2) dx1 + f2(x1, x2) dx2) =
∫∫
DC

(
∂ f2
∂x1

− ∂ f1
∂x2

)
dx1dx2, (3.38)

where the path of integration along C is counterclockwise.

Sketch of the (of Lemma 3.28)
This proof is based on [31, p. 108]. Since C is a simple closed curve in the

plane, the region DC is bounded. The projection of the curve in the x-axis (resp.
y-axis) yields an interval [a, b] (resp. [e, f ]). Consider the points of A, B ∈ C (resp.
E, F ∈ C) corresponding to the points a and b (resp. e and f ) on the x-axis, the
curve C can be seen as the union of the curves AEB and AFB. Figure3.3 illustrates
the curve C , and the intervals [a, b], and [e, f ].

Let the equation of the curve containing the points AEB (resp. AFB) be given
by a piecewise continuous function η1 : [a, b] → R

2 (resp. η2 : [a, b] → R
2).

Integrating the partial derivative of f1 with respect to x2 in DC yields

∫∫
DC

∂ f1
∂x2

(x1, x2) dx1dx2 =
b∫

a

η2(x1)∫
η1(x1)

∂ f1
∂x2

(x1, x2) dx2dx1,

10Adapted from [20, Theorem 1.7] or [21, Theorem 6.5.4]. In the latter, the set where the integral
is computed is assumed to have Bounded Variation, in [21, Theorem 6.5.5] it is shown that a set
has bounded variation if and only if it has finite perimeter.
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Fig. 3.3 Illustration of the
curve C
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a b

e

f

A B

E

F

where the equality is due to Fubini’s theorem (cf. [9, Theorem 14.1]). Moreover,
since C has finite length, the equality

∫∫
DC

∂ f1
∂x2

(x1, x2) dx1dx2 =
b∫

a

( f1(x1, η2(x1)) − f1(x1, η1(x1))) dx1

= −
b∫

a

f1(x1, η1(x1)) dx1 −
a∫

b

f1(x1, η2(x1)) dx1

= −
∮
C

f1(x1, x2) dx1.

holds.
Analogously, integrating the partial derivative of f2 with respect to x1 inDC yields

∫∫
DC

∂ f2
∂x1

(x1, x2) dx1dx2 =
∮
C

f2(x1, x2) dx2.

From where the conclusion follows.
Now, it is possible to present an idea of the proof of Theorem 3.27.
From Theorem 3.25,

• The curve Ω=c(V ) is piecewise C 1, because it is rectifiable. Moreover, it is also
simple and closed;

• Since V is H 1-a.e. differentiable in Ω=c(V ), the outward normal vector defined
by (3.37) isH 1-a.e. non-nil;

• The curve Ω=c(V ) has finite length, because H 1(Ω=c(V )) < ∞;
• There exists a injective and Lipschitz continuous parametrization p : [a, b] →

Ω=c(V ) that is a.e. differentiable.

Consider the vector field f̃ = (− f2, f1) that is perpendicular to f = ( f1, f2).
Since f = ( f1, f2) ∈ C 1(R2, R

2), f̃ ∈ C 1(R2, R
2). Together with the above,

from11 Lemma 3.28,

11More specifically from (3.38).
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∮
Ω=c(V )

(− f2(x1, x2) dx1 + f1(x1, x2) dx2) =
∮

Ω=c(V )

(− f2(x1, x2), f1(x1, x2)) · (dx1, dx2)

Consider a point x̄ = (x̄1, x̄2) ∈ C for which there exists s̄ ∈ [a, b] such that
p(s̄) = (x̄1, x̄2) and p′(s̄) is defined. The unit tangent vector to C at x̄ is given
by T (s̄) = p′(s̄)/|p′(s̄)| = (τ (s̄), σ (s̄)). The unit normal vector at x̄ is given by
N (s̄) = n(p(s)) = (σ (s̄),−τ(s̄)). For almost every s ∈ [a, b],

(
dx1
dx2

)
= T (s) ds =

(
τ(s)
σ (s)

)
ds.

Thus,

∮
Ω=c(V )

(− f2(x1, x2) dx1 + f1(x1, x2) dx2) =
∮

[a,b]
(− f2(p(s)), f1(p(s))) · (τ (s), σ (s)) ds

=
∮

[a,b]
( f1(p(s)), f2(p(s))) · (σ (s),−τ(s)) ds

=
∮

[a,b]
( f1(p(s)), f2(p(s))) · n(p(s)) ds

From (3.38),

∫∫
Ω≤c(V )

(
∂ f1
∂x1

(x1, x2) + ∂ f2
∂x2

(x1, x2)

)
dx1dx2 =

∮
[a,b]

( f1(p(s)), f2(p(s)))·n(p(s)) ds.

This concludes the sketch of the proof of Theorem 3.27.

Integration Along Solutions of an ODE

Before recalling the main result, the following lemma which is recalled from [22,
Lemma A.1] is needed.

Lemma 3.29 (Liouville’s Theorem) Let k ≥ 1 and p ≥ 1 be constant integers,
the function ρ ∈ (C k ∩ L p)(Rn+m, R≥0). Let also Y (t, y) be a solution of (3.8)
starting in y ∈ R

n+m and computed at time t ∈ R≥0. For a measurable set Z, let
Y (·,Z) = {Y (·, z) : z ∈ Z}. Then,
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∫
Y (t,Z)

ρ(y) dy −
∫
Z

ρ(y) dy =
t∫

0

∫
Y (τ,Z)

div (ρh)(y) dydτ.

The main result in this section is recalled from [22, Theorem 1].

Theorem 3.30 (Almost attractivity) Let k ≥ 1 and p ≥ 1 be constant integers.
Suppose that there exists ρ ∈ (C k ∩ L p)(Rn, R≥0) such that,

∫
B≥1(0)

(hρ)(y)

|y| dy < ∞

and
y ∈ R

n+m, div (hρ)(y) > 0.

Then, for almost every initial condition y ∈ R
n+m,

lim sup
t→∞

|Y (t, y)| = 0.

Moreover, if the origin is stable, then the conclusion remains valid when ρ takes
negative values.
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Appendix A
Appendix

A.1 Notation

The set of real values and (resp. strictly) positive are denoted, respectively, by R and
(resp. R>0) R≥0.

Throughout this book, the Euclidean space R
n , for some integer n > 0, is consid-

ered endowed with the inner product denoted as x · y, for any two vectors x, y ∈ R
n .

The Euclidean norm of the vector x is denoted as |x |. Let K ⊂ R
n be a compact set

and x ∈ R
n \ K, the notation |x |K stands for point-to-set distance inf y∈K |y − x |.

The open (resp. closed) ball centered at the compact set K ⊂ R
n with radius r > 0

is defined as B<r (K) = {x ∈ R
n : |x |K < r} (resp. B≤r (K) = {x ∈ R

n : |x |K ≤ r}).
Let S ⊂ R

n be a set containing the origin, the notation S�=0 stands for the set
S \ {0}. The closure of S is denoted as cl{S}. The notation co{S} stands for the
convex closure of the set S.

The support of a function f : R
n → R

k is denoted as supp( f ) and is the set
{x ∈ R

n : f (x) �= 0}.

A.2 Lebesgue Measure and Integral

Some concepts of Lebesgue measure an integral, used mainly in Chap. 3, are
recalled here.

A.2.1 The Lebesgue Measure

Definition A.1 [21] A collection S of subsets of a set R
n is said to be a σ -algebra

of sets if
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1. ∅, R
n ∈ S(Rn);

2. if A ∈ S(Rn), then R
n \ A ∈ S(Rn);

3. if {Ai : i ∈ N} ⊂ S(Rn), then

⋃
i∈N

Ai ∈ S(Rn) and
⋂
i∈N

Ai ∈ S(Rn).

The pair (Rn,S(Rn)) is said to be a measurable space, and the sets A ∈ S(Rn) are
said to be measurable sets.

Definition A.2 [12] Let T(Rn) be collection of all open sets of R
n . The Borel

σ -algebra B(Rn) on R
n is the σ -algebra generated by the open sets, B(Rn) =

S(T(Rn)). A set that belongs to B(Rn) is said to be a Borel set.

Definition A.3 (Based on [14]) Consider a measurable space (Rn,S(Rn)), a map-
ping mes : S(Rn) → R≥0 is said to be a measure if

1. mes(∅) = 0;
2. mes is countably additive, i.e.,

mes

(⋃
i∈N

Ai

)
=

∑
i∈N

mes(Ai ),

for every sequence of pairwise disjoint sets {Ai }i∈N ⊂ S(Rn).

The triple (Rn,S(Rn),mes) is said to be a measure space.

Definition A.4 (Based on [12, 14]) The length of an interval [a, b] is defined by
�([a, b]) = b − a. A rectangle R ⊂ R

n is a set of the form

R = n×
i=1

[ai , bi ].

A rectangle is said to be open if R = int(R). Two rectangles R1 and R2 are said
to be almost disjoint if int(R1) ∩ int(R2) = ∅. The set of all n-dimensional
rectangles of R

n is denoted by R. The volume of a rectangle R is defined by

vol(R) =
n∏

i=1

�([ai , bi ])

with the convention that 0 · ∞ = 0.

Definition A.5 (Based on [12, 14]) Let (Rn,S(Rn)) be a measurable space the
Lebesgue outer measure of E ⊂ R

n is defined by

μ∗(E) = inf

{∑
i∈N

vol(Ri ) : E ⊂
⋃
i∈N

Ri ,Ri ∈ R

}
,
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where the infimum is taken over all countable collection whose union contains E.
The mapping

μ∗ : 2R
n → R≥0

E �→ μ∗(E),

where 2R
n

denotes the collection of all subsets of R
n , is called outer Lebesgue mea-

sure.

Proposition A.6 [12] The Lebesgue outer measure has the following properties

P1 μ∗(∅) = 0;
P2 if E ⊂ S(Rn), then μ∗(E) ≤ μ∗(S(Rn));
P3 if {Ei ⊂ R

n : i ∈ N} is a countable collection of subsets of R
n, then

μ∗
(

n⋃
i=1

Ei

)
≤

m∑
i=1

μ∗(Ei ).

Definition A.7 [12] A set E ⊂ R
n is said to be Lebesgue measurable if, for every

A ⊂ R
n ,

μ∗(A) = μ∗(A ∩ E) + μ∗(A \ E). (A.1)

Let L(Rn) denote the σ -algebra of Lebesgue measurable sets, the restriction of
the Lebesgue outer measure μ∗ to the Lebesgue measurable sets, μ = μ∗|L(Rn),
μ : L(Rn) → [0,∞], is called Lebesgue measure.

Proposition A.8 [12] Every rectangle is Lebesgue measurable.

Proposition A.9 [12] Every open set is a countable union of almost disjoint rectan-
gles.

A consequence of Propositions A.8 and A.9 is that every open set is Lebesgue
measurable.

Definition A.10 [12] Let (Rn,S(Rn)) and (Rm,S(Rm)) be measurable spaces.
A function f : R

n → R
m is called measurable if f −1(B) ∈ S(Rn), for every

B ∈ S(Rm).

A.2.2 The Lebesgue Integral

Definition A.11 [12] A characteristic function of a subset E ⊂ R
n is defined as

χE : R
n → R

y �→
{

1, if y ∈ E,
0, if y /∈ E.
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A simple function φ : R
n → R on a measurable space (Rn,S(Rn)) has the form

φ(y) =
N∑
i=1

ciχEi (y),

where, for every i = 1, . . . , N , ci ∈ R, and Ei ∈ S(Rn). It is said to be positive
simple function if, in addition, for every i = 1, . . . , N , ci ∈ R≥0.

Definition A.12 [12] Let (Rn,S, μ) be a measure space and φ : R
n → R≥0 a

positive simple function the integral of φ with respect to μ is defined as

∫
φ dμ =

N∑
i=1

ciμ(Ei )

with the convention that if ci = 0 and μ(Ei ) = ∞, then 0 · ∞ = 0.

Definition A.13 (Based on [12]) Let (Rn,S, μ) be a measure space, and h : R
n →

R≥0 a be measurable function, then

∫
h dμ = sup

{∫
φ dμ : 0 ≤ φ ≤ h, φ simple

}
.

The function h is said to be integrable if

∫
h dμ < ∞.

Remark A.14 [12] Definitions A.12 and A.13 can also be applied to vector fields.
In this case, the integral of a vector field simple function φ is defined exactly as in
Definition A.12. A vector field f : R

n → R
m is called integrable if there exists a

sequence of integrable simple functions {φi }i∈N, where φi : R
n → R

m , such that the
convergence φi → f pointwisely1 with respect to the norm on R

m , and

∫
|| f − φn|| dμ → 0, as n → ∞.

Definition A.15 (Based on [12, 26]) Let (Rn,S(Rn), μ), and p ∈ [1,∞). The
Lebesgue measurable function h : R

n → R is said to be locally p-integrable (or
p-summable) on R

n if, for every compact set K ⊂ R
n , and for p ∈ [1,∞), the

inequality ∫
K

|h(y)|p dμ < ∞

1Let S ⊂ R
n , and { fn}n∈N be a sequence of real valued functions defined on S. The sequence

{ fn}n∈N is said to converge pointwisely to f if there exists x̄ ∈ S such that, for every ε > 0, there
exists N (x̄, ε) > 0 satisfying, for every n ≥ N (x̄, ε), the inequality | fn(x̄) − f (x̄)| < ε.
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holds. The class of locally p-integrable functions h on R
n is denoted by L p

loc(R
n, R).

For p = ∞, the inequality
esssup

y∈K
|h(y)| < ∞

holds, where

esssup
y∈K

h(y) = inf{a ∈ R : μ(y ∈ K : h(y) > a) = 0}.

The class of locally ∞-integrable functions h on R
n is called locally essentially

bounded, and is denoted by L ∞
loc(R

n, R). The essential supremum norm of h in R
n

is the positive value |h|∞ := esssup{|h(y)| : y ∈ R
n}.

A.3 Continuity of Functions

Definition A.16 (Uniform continuity) Let Y ⊂ R
n be an open set. A function h :

Y → R
n is said to be continuous if,

∀ȳ ∈ Y,∀ε > 0, ∃δ(ȳ, ε) > 0 : ∀y ∈ Y, |y − ȳ| < δ(ȳ, ε) ⇒ |h(y) − h(ȳ)| < ε.

The class of k-times continuously differentiable functions h : Y → R
n is denoted

by C k(Y, R
m). The function h is said to be uniformly continuous if,

∀ε > 0, ∃δ(ε) > 0 : ∀y1 ∈ Y,∀y2 ∈ Y, |y2 − y2| < δ(ε) ⇒ |h(y1) − h(y2)| < ε.

Let V : R
n → R be a continuous function and c be a constant value, the notation

Ω(V )�c stands for the the set {x ∈ R
n : V (x) � c}, where � is a binary comparison

operator, i.e., � ∈ {≥,<, �=, etc}.
Definition A.17 A continuous function h : R

n → R
m is said to be locally Lipschitz

if, for every compact set K ⊂ R
n , there exists a constant value M > 0, called

Lipschitz constant such that, for every y1, y2 ∈ K, the inequality

|h(y1) − h(y2)| ≤ M |y1 − y2|

holds.

Definition A.18 (Absolute continuity) Let [a, b] ⊂ R be a compact set. A function
h : [a, b] → R

n is said to be absolutely continuous if there exists a function g ∈
L 1([a, b], R

n) such that, for every t ∈ [a, b],

h(t) = h(a) +
∫ t

a
g(s) ds.
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Definition A.19 [18] A function h : R
n → R

m is said to be locally bounded if, for
all x ∈ R

n , there exists an open set O ⊂ R
n such that h is bounded on O.

Theorem A.20 [18] If the function f : R
n → R

m is continuous, then it is locally
bounded.

A.3.1 Set-Valued Maps

The following definition is recalled from [8].

Definition A.21 (Outer semicontinuity) A set-valued map M : R
n ⇒ R

m is said to
be outer semicontinuous at x ∈ R

n if, for every sequence of points {xi }i∈N ⊂ R
n

convergent to x ∈ R
n , and any convergent sequence of points {yi }i∈N ⊂ M({xi }i∈N),

one has y ∈ M(x), where yi → y. The map is outer semicontinuous if it is outer
semicontinuous for every x ∈ R

n . Given S ⊂ R
n , M : R

n ⇒ R
m is outer semi-

continuous relative to S if the set-valued map from R
n ⇒ R

m defined by M(x), for
x ∈ S, and ∅, for x /∈ S, is outer semicontinuous at each x ∈ S.

Note that continuous functions are outer semicontinuous set-valued maps.

A.4 Initial-Value Problem

A.4.1 Existence and Uniqueness of Solutions

Consider the locally Lipschitz function h : R
n × R

m → R
n and the initial-value

problem {
ẏ(t) = h(y(t), u(t)),
y(t0) = y0,

(IVP)

where, for every value of the time t ∈ R, the system state y and the input variable u
evolve in the Euclidean spaces R

n and R
m , respectively. Inputs for (IVP) are functions

v ∈ L ∞
loc(R, R

m).
With an abuse of notation and concept, the input variable u and inputs for system

(IVP) are denoted with the same letter, unless specified otherwise.
From the fundamental theorem of calculus, for almost every t ∈ R, Eq. (IVP) is

equivalent to

y(t) = y0 +
t∫

t0

h(y(s), u(s)) ds.
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Definition A.22 (Solution) Let y0 ∈ R
n , I ⊂ R with t0 ∈ I, and a fixed input u for

(IVP). A function Y : I × {y0} × {u} → R
n is said to be a solution to (IVP) with

initial condition y0 and input u if

1. Y (t0) = y0;
2. The function I � t �→ Y (t, y0, u) ∈ R

n is absolutely continuous;
3. For almost every t ∈ I, the equation

dY

dt
(t, y, u) = h(Y (t, y, u))

holds.

The set of solutions to (IVP) with initial condition y0 and input u is denoted by
Sh(y0, u). From now on, the interval I is denoted by dom(Y ). When u ≡ 0, the
solution is denoted by Y (t, y0) and the set of solutions by Sh(y0).

Definition A.23 [10] Let Y and Ȳ be solutions to (IVP), Ȳ is said to be continuation
of Y if dom(Y ) � dom(Ȳ ), and for every t ∈ dom(Y ), the equation Y (t, y0, u) =
Ȳ (t, y0, u) holds, and for almost every t ∈ dom(Ȳ ),

dȲ

dt
(t, y0, u) = h(Ȳ (t, y0, u)).

A solution Y is called

• complete if dom(Y ) is unbounded. If supdom(Y ) = ∞, then Eq. (IVP) is said to
be forward complete;

• maximal if cannot be continued.

Definition A.24 Let Y be a solution to (IVP), the set

⋃
t∈dom(Y )

{Y (t, y0, u)} (A.2)

is said to be the trajectory of Y .

Note that the concept of trajectory of solutions employed here is different from
what is stated in [10]. There, the set (A.2) belongs to R

n+1, because the time is
considered in the definition.

The next three theorems are recalled from [10, 11, 25] and adapted to the context
of this book.

Theorem A.25 (Existence) Let u be an input for system (IVP). If the vector field
h is continuous, then for every initial condition y0 ∈ R

n, there exists at least one
solution Y to (IVP) that is locally Lipschitz continuous and can be continued to a
maximal interval of existence. Moreover, if Y is maximal, then Y (t, y0, u) tends to
infinity as t → ∂dom(Y ).
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Theorem A.26 (Uniqueness) Let u be an input for system (IVP). If the vector field
h is locally Lipschitz continuous with respect to y and uniformly continuous with
respect to u on compact sets, then for every initial condition y0 ∈ R

n, there exists a
unique solution Y to (IVP).

Theorem A.27 (Regularity) Let u be an input for (IVP). If the vector field h is of
class C 1, then for every initial condition y0 ∈ R

n, the solution Y to (IVP) is of
class C 1(dom(Y ) × {y0} × {u}, R

n) and the map R
n � y0 �→ Y (·, y0, u) ∈ R

n is a
diffeomorphism of class C 1.

A.4.2 Stability of Solutions

Continuous feedback laws for system (φ-ODE) are continuous functions φ : R
n →

R
m . Letting u = φ, it yields

{ dy

dt
(t) = h(y(t), φ(y(t))),

y(t0) = y0.
(φ-ODE)

With an abuse of notation the function h(y(·), φ(y(·))) is denoted as h(y(·)).
Also, assume that (φ-ODE) is forward complete.

The following definition is based on [13, 22].

Definition A.28 (ω-limit and invariant sets) The element y∞ ∈ R
n is said to be an

ω-limit point of Y if there exists a sequence of times {ti }i∈N ⊂ dom(Y ) with ti ↗ ∞
such that, for every solution Y ∈ Sh(y0), the limit Y (ti , y0) → y∞ holds as i → ∞.
The set of all ω-limit points of Y is called ω-limit set, and it is denoted by ω(y0).

A set M ⊂ R
n is said to be positively invariant with respect to (φ-ODE) if,

for every initial condition y0 ∈ M, and for every issuing solution Y ∈ Sh(y0),
Y (t, y0) ∈ M, for every t ≥ t0.

Definition A.29 [22] The point ȳ is said to be an equilibrium point of (φ-ODE) if
h(ȳ) = 0.

Note that, if (φ-ODE) has only one equilibrium point in Y, then there exists a
coordinate change rendering the origin an equilibrium point. Thus, the properties
referring to the origin as an equilibrium point are equivalent to refer to any other
single equilibrium point.

The next definition is recalled from [1, 2, 22] and adapted to the context of this
book.

Definition A.30 Let A ⊂ R
n be a compact and positively invariant set with respect

to (φ-ODE). This set is said to be
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• Stable for (φ-ODE) if, for every ε > 0, there exists δ(ε) > 0 such that, for
every initial condition y0 ∈ R

n , and for every issuing solution Y ∈ Sh(y0), the
implication

|y0|A ≤ δ(ε) ⇒ |Y (t, y0)|A ≤ ε

holds, for every t ≥ t0;
• Unstable for (φ-ODE) if not stable;
• Locally attractive for (φ-ODE) if, there exists δ0 > 0 such that, for every initial

condition y0 ∈ R
n , and for every issuing solution Y ∈ Sh(y0), the implication

|y0|A ≤ δ0 ⇒ lim
t→∞ |Y (t, y0)|A = 0

holds;
• Locally asymptotically stable for (φ-ODE) if it is stable and locally attractive. The

adjective locally is replaced by globally, when the choice of δ0 can be taken as
large as desired.

Note that stability and attractivity are different concepts. An example provided in
[9, Paragraph 40] shows a system that is unstable but attractive.

A.5 Differentiation Along Solutions of an ODE

The next definition of classes of functions is recalled from [13, 22, 23].

Definition A.31 (Comparison functions)

• A continuous function V : R
n → R≥0 is said to be locally positive definite with

respect to a set S ⊂ R
n if there exists a constant value r > 0 such that, for every

y ∈ B≤r (S) \ cl{S}, V (y) > 0, and V (y) = 0 if and only if y ∈ S. The class
of such functions is denoted Ploc(R

n, R≥0). It is said to be positive definite if r
can be taken as large as desired and S = {0}, in this case, the class of functions is
denoted by P(Rn, R≥0) ;

• A continuous function V : R
n → R≥0 is said to be proper2 if V (y) → ∞, as

|y| → ∞;
• A continuous function α : [0, a) → R≥0 is said to be strictly increasing if, for

every s1, s2 ∈ [0, a) with s1 < s2, α(s1) < α(s2);
• A continuous function α ∈ P([0, a), R≥0) is said to be of class K ([0, a), R≥0)

if it is strictly increasing. It is denoted by K , if a can be taken as large as desired.
It is said to be of class K∞ if it is of class K and unbounded;

• A continuous function β : R≥0 × R≥0 → R≥0 is said to be of class K L if, for
a fixed t ≥ 0, the function s �→ β(s, t) is of class K and, for a fixed s ≥ 0,
the function t �→ β(s, t) ∈ R≥0 is non-increasing and satisfies β(s, t) → 0, as
t → ∞.

2This property is also called radial unboundedness.
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Fig. A.1 Illustration of some of the functions described in Definition A.31

Figure A.1 illustrates the functions presented in Definition A.31.

Proposition A.32 [13] Let α1, α2 ∈ K , α3, α4 ∈ K∞, and β ∈ K L . Then the
following properties hold:

• α−1
1 ∈ K is defined on [0, α1(a)];

• α−1
3 ∈ K∞;

• α1 ◦ α2 ∈ K ;
• α3 ◦ α4 ∈ K∞;
• β(s, t) = α1(β(α2(s), t)) ∈ K L ;
• β(s, t) ≤ α1(α2(s)e−t ) ∈ K L .3

The following lemma is recalled from [13] and adapted to the context of this book.

Lemma A.33 The continuous function V : R
n → R≥0 is locally positive definite

with respect to the origin if and only if there exist a constant value r > 0, and
functions α, α ∈ K ([0, r), R≥0) such that the inequalities

α(|y|) ≤ V (y) ≤ α(|y|) (A.3)

hold, for every y ∈ B≤r (0). Additionally, V is proper if and only if α, α ∈ K∞.

3[24, Proposition 7].
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Definition A.34 (Lie derivative, Lyapunov function) The locally Lipschitz function
V : R

n → R≥0 is said to a Lyapunov function candidate4 for (φ-ODE) (resp. in the
small) if there exist α, α ∈ K∞ (resp. α, α ∈ K ([0, r), R≥0)) such that, for every
y ∈ R

n (resp. for every y ∈ B≤r (0)), the inequality (A.3) holds.
If V is differentiable, the function

LhV : R
n → R

y �→ ∂V

∂y
(y) · h(y, φ)

is said to be the Lie derivative of V in along the vector field h. If −LhV is continuous
and (resp. locally) positive definite, then V is said to be Lyapunov function (resp. in
the small) for (φ-ODE).

From Lemma A.33 and Definition A.34, −LhV ∈ (C ∩ Ploc)(R
n, R≥0) implies

that there exists a function α ∈ K ([0, r), R≥0) such that, for every y ∈ B≤r (0),
the inequality LhV (y) ≤ −α(|y|) holds. Remark 4.1 from [16] shows that it is not
restrictive to choose the functions α, α satisfying the inequalities (A.3), and α as
belonging to the set (C∞ ∩ K )([0, r), R≥0).

Theorem A.35 [22] If

1. V ∈ Ploc(R
n, R≥0) and proper, and −LhV ∈ Ploc(R

n, R≥0), then the origin
is locally uniformly asymptotically stable for (φ-ODE);

2. V ∈ P(Rn, R≥0) and proper, and −LhV ∈ P(Rn, R≥0), then the origin is
globally uniformly asymptotically stable for (φ-ODE).

Theorem A.36 [1] If the origin is globally (resp. locally) asymptotically stable for
(φ-ODE), then there exists a Lyapunov function (resp. in the small) for (φ-ODE).

Proposition A.37 [13] Consider the scalar differential equation

{
ẏ = −α(y)

y(t0) = y0,

where α is a locally Lipschitz function of class K ([0, a), R≥0). For every 0 ≤
y0 < a, this equation has a unique solution Y defined on [t0,∞). Moreover, there
exists β ∈ K L (([0, a), R≥0) × R≥0, R≥0 × R≥0) such that, for every t ≥ t0,
y(t) = β(y0, t − t0).

Proposition A.38 [13] Assume that the origin is an equilibrium point of (φ-ODE).
Then,

• It is uniformly stable if and only if there exist α ∈ K , and a constant value c > 0
such that for every |y0| ≤ c, the inequality

4This function is also known as storage function.
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|Y (t, y0)| ≤ α(|y0|)

holds, for every t ≥ 0;
• It is locally uniformly asymptotically stable if and only if there exist β ∈ K L ,
and a constant value c > 0 such that for every |y0| ≤ c, the inequality

|Y (t, y0)| ≤ β(|y0|, t) (A.4)

holds, for every t ≥ t0;
• It is globally uniformly asymptotically stable if and only if the constant value c
can be taken as large as desired, in inequality (A.4).

In some cases, the requirement for a continuously differentiable Lyapunov func-
tion candidate can be quite restrictive. Inspired by works such as [7, 15, 19], relaxed
notions of derivatives and sufficient conditions ensuring asymptotic stability are
recalled.

The next definition is recalled from [5, 17, 20] and adapted to the context of this
book.

Definition A.39 (Dini Derivatives) Consider a function f : [a, b) → R, if the
limits at t ∈ [a, b)

D+ f (t) = lim sup
τ↘0

f (t + τ) − f (t)

τ
,

D+ f (t) = lim inf
τ↘0

f (t + τ) − f (t)

τ
,

D− f (t) = lim sup
τ↗0

f (t + τ) − f (t)

τ
,

D− f (t) = lim inf
τ↗0

f (t + τ) − f (t)

τ
,

exist, then they are said to be Dini derivatives. Let the vectors y, v ∈ R
n , and the

function V : R
n → R. The limit

D+
v V (y) = lim sup

τ↘0

V (y + τv) − V (y)

τ
(A.5)

(if it exists) is said to be the Dini derivative of V along the vector v and computed
at y. The other three Dini derivatives can be analogously defined in along v. The set

gradD V (y) = {ξ ∈ R
n : D+,vV (y) ≥ ξ · v,∀v ∈ R

n}

is said to be the Dini subdifferential of V and each ξ is called Dini subgradient.

Remark A.40 [6] Let V : R
n → R be a locally Lipschitz function. Then, for every

y ∈ R
n , D+

v V (y) exists. Moreover, if V is of class C 1, then, for every y ∈ R
n ,

D+
v V (y) = ∂V

∂y (y) · v.
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Proposition A.41 [20] Let the function f : (a, b) → R be continuous. It is increas-
ing in (a, b) if and only if, on the interval (a, b), the four Dini derivatives are larger
or equal to zero.

The following theorem is credited to [27], and it is presented and proved in [20,
Theorem 4.3]. It states that the Dini derivative with respect to time of a locally
Lipschitz function computed along solutions of (φ-ODE) is equal to its Dini derivative
computed along solutions of (φ-ODE) in the direction of the vector field.

Theorem A.42 Let Y be a solution to (φ-ODE), and V : R
n → R be locally

Lipschitz. Then, for every t ∈ dom(Y ), the equation

D+V (Y (t, y)) = D+
h V (Y (t, y))

holds.

A consequence of Proposition A.41 and Theorem A.42 is that if the inequality
D+

h V (y) ≤ 0 holds, for every y ∈ R
n , then V is non-increasing along the solu-

tions to (φ-ODE). Moreover, the above statements and consequences remain true for
the other three Dini derivatives (see [20]).

Remark A.43 Let V : R
n → R≥0 be Lyapunov function candidate for system (φ-

ODE). If there exists a function α ∈ K∞ such that, for every y ∈ R
n , the inequality

D+
f V (y) ≤ −α(|y|)

holds, then V is strictly decreasing along solutions of (φ-ODE).
Note that, for a functionW ∈ (C 0∩P)(Rn, R≥0) the condition D+

h W (y) < 0, for
every y ∈ R

n , is not enough to ensure that D+
h W is strictly decreasing. Since D+

h W
may not exist in a given ȳ, the condition D+

h W (ȳ) < 0 may imply sup D+
h W (ȳ) = 0.

Definition A.44 [4, 5] The Clarke upper and lower derivatives of a function V :
R

n → R are given, respectively, by the limits

V ◦
v (y) = lim sup

x→y
τ↘0

V (x + τv) − V (x)

τ
,

V◦,v(y) = lim inf
x→y
τ↘0

V (x + τv) − V (x)

τ
.

The set
gradC V (y) = {ξ ∈ R

n : V ◦
v (y) ≥ ξ · v,∀v ∈ R

n}

is said to be the Clarke generalized gradient of V at y ∈ R
n .
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Since the Clarke generalized gradient has the following property5

gradC V (y) = {ξ ∈ R
n : V◦,v(y) ≤ ξ · v ≤ V ◦

v (y)},

the Clarke derivatives can be reconstructed as

V◦,v(y) = inf {ξ · v : ξ ∈ gradC V (y)},
V ◦
v (y) = sup {ξ · v : ξ ∈ gradC V (y)}.

The next result is recalled from [5].

Proposition A.45 The following properties hold for theClarke generalized gradient

• If V ∈ C 1(Rn, R≥0), then gradC V (y) = {grad V (y)};
• Let x ∈ R

n and V : R
n → R≥0 be locally Lipschitz. Let also ℵ be any subset of

measure zero inR
n, andℵV be the set of points at which V fails to be differentiable.

Then,

gradC V (y) = co

{
lim
i→∞grad V (yi ) : yi → y, yi /∈ ℵ ∪ ℵV

}
.

The result that gives sufficient a condition for the monotonicity of a function
V : R

n → R is recalled from [5].

Theorem A.46 Let V : R
n → R≥0 be a Lyapunov function candidate for (φ-ODE).

If, for every y ∈ R
n, and for every ξ ∈ gradC V (y), the inequality

max{h(y) · ξ} ≤ 0

holds, then V is non-increasing along solutions to (φ-ODE).

Remark A.47 Under the conditions of Theorem A.46. If there exists α ∈ K∞ such
that, for every y ∈ R

n , and for every ξ ∈ gradC V (y),

max{h(y) · ξ} ≤ −α(|y|), (A.6)

then V is strictly decreasing, along solutions of (φ-ODE). From [6, Proposition 5.3],
Eq. (A.6) is equivalent to

inf
x∈Rn

D+,hV (y) ≤ −α(|y|).

The conclusion follows from Remark A.43.

5See also [3, p. 22].
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Trade-offs. Note that,6 for every τ ∈ R>0,

lim inf
x→y

V (x + τv) − V (x)

τ
≤ V (y + τv) − V (y)

τ
≤ lim sup

x→y

V (x + τv) − V (x)

τ
.

From Definitions A.39 and A.44, and the continuity of V , these inequalities imply

V◦,v(y) ≤ D+,vV (y) ≤ D+
v V (y) ≤ V ◦

v (y).

Consequently,

Proposition A.48 (Based on [5, Proposition 11.49]) If the function V : R
n → R is

locally Lipschitz, then for every y ∈ R
n, the inclusion

gradD V (y) ⊂ gradC V (y)

holds.

From Definition A.39, the Dini subdifferential reduces to the derivative, when it
exists. This is not necessarily the case for the Clarke generalized gradient, because it
is defined on the dual set. On the other hand, the Clarke derivatives can be reconstruct
directly from the Clarke generalized gradient while the four Dini derivatives can not
be directly reconstruct from the Dini subdifferential [5].

From Proposition A.48, requiring a property to hold with respect to the Clarke
generalized gradient is more restrictive than require for it to hold with respect to Dini
subdifferential.

A.5.1 The System with Inputs

Recall system (IVP) defined by

{
ẏ(t) = h(y(t), u(t)),
y(t0) = y0.

(IVP)

From now on assume that (IVP) is forward complete and, for every t ≥ 0, u(t) ∈ Km ,
where Km ⊂ R

m is a compact set.
The objective of this section is to recall the existing results on the stability analy-

sis of (IVP) with inputs in a compact set. The concepts of stability and Lyapunov
functions are slightly different.

6See also [3, p. 22].
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Definition A.49 [16] A closed set M ⊂ R
n is said to invariant set with respect to

(IVP) if
∀y0 ∈ M,∀u ∈ L ∞

loc(R≥0,Km),∀t ≥ 0, Y (t, y0, u) ∈ M.

System (IVP) is uniformly globally asymptotically stable (UGAS) with respect
to M if it is

• Uniformly stable: there exists a function δ ∈ K∞ such that, for every ε ≥ 0, and
for every u ∈ L ∞

loc(R≥0,Km), and for every t ≥ 0, the implication

|y0|M ≤ δ(ε) ⇒ |Y (t, y0, u)| ≤ ε

holds;
• Uniformly attractive: for any r, ε > 0, there exists T > 0 such that, for every
u ∈ L ∞

loc(R≥0,Km), and for every t ≥ T , the implication

|y0| ≤ r ⇒ |Y (t, y0, u)| ≤ ε

holds.

Analogously to Proposition A.38, the UGAS of (IVP) is also characterized in
terms of comparison and Lyapunov functions. Namely,

Proposition A.50 [16] System (IVP) is UGAS with respect to a closed invariant set
M ⊂ R

n if and only if there exists a function β ∈ K L such that, for every y0 ∈ R
n,

for every u ∈ L ∞
loc(R,Km), and for every t ∈ R≥0, the inequality

|Y (t, y0, u)|M ≤ β(|y0|, t) (A.7)

holds.

The next definition is recalled from [16] and adapted to the context of this book.

Definition A.51 Let V : R
n → R≥0 be a Lyapunov function candidate for (IVP)

with respect to a nonempty, closed invariant set M ⊂ R
n . Let also V be smooth on

R
n \ M. The function V is said to be a smooth Lyapunov function for (IVP) with

respect toM if there exists a function α ∈ K∞ such that, for every y ∈ R
n \M, and

for every u ∈ L ∞
loc(R,Km), the inequality

LhV (y, u) ≤ −α (|y|M)

holds.

Theorem A.52 [16] LetM ⊂ R
n be a nonempty compact invariant set with respect

to (IVP). Then, system (IVP) is UGAS with respect to M if and only if there exists a
smooth Lyapunov function V for (IVP) with respect toM.
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