
Giovanni Pighizzini
Cezar Câmpeanu (Eds.)

 123

LN
CS

 1
03

16

19th IFIP WG 1.02 International Conference, DCFS 2017
Milano, Italy, July 3–5, 2017
Proceedings

Descriptional Complexity
of Formal Systems

Lecture Notes in Computer Science 10316

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Giovanni Pighizzini • Cezar Câmpeanu (Eds.)

Descriptional Complexity
of Formal Systems
19th IFIP WG 1.02 International Conference, DCFS 2017
Milano, Italy, July 3–5, 2017
Proceedings

123

Editors
Giovanni Pighizzini
Università degli Studi di Milano
Milan
Italy

Cezar Câmpeanu
University of Prince Edward Island
Charlottetown, PE
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-60251-6 ISBN 978-3-319-60252-3 (eBook)
DOI 10.1007/978-3-319-60252-3

Library of Congress Control Number: 2017943006

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© IFIP International Federation for Information Processing 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-7509-7842

Preface

The 19th International Conference of Descriptional Complexity of Formal Systems
(DCFS 2017) was held in Milan during July 3–5, 2017. It was jointly organized by the
Working Group 1.02 on Descriptional Complexity of the International Federation for
Information Processing (IFIP) and by the Department of Computer Science (Diparti-
mento di Informatica) of the University of Milan (Università degli Studi di Milano).

Descriptional complexity is a field in computer science that deals with the size of all
kinds of objects that occur in computational models, such as Turing machines, finite
automata, grammars, splicing systems, and others. The topics of this conference are
related to all aspects of descriptional complexity and include, but are not limited to:

– Automata, grammars, languages, and other formal systems; various modes of
operations and complexity measures

– Succinctness of description of objects, state-explosion-like phenomena
– Circuit complexity of Boolean functions and related measures
– Size complexity of formal systems
– Structural complexity of formal systems
– Trade-offs between computational models and mode of operation
– Applications of formal systems – for instance in software and hardware testing, in

dialogue systems, in systems modeling or in modeling natural languages – and their
complexity constraints

– Co-operating formal systems
– Size or structural complexity of formal systems for modeling natural languages
– Complexity aspects related to the combinatorics of words
– Descriptional complexity in resource-bounded or structure-bounded environments
– Structural complexity as related to descriptional complexity
– Frontiers between decidability and undecidability
– Universality and reversibility
– Nature-motivated (bio-inspired) architectures and unconventional models of

computing
– Blum static (Kolmogorov/Chaitin) complexity, algorithmic information

DCFS became an IFIP working conference in 2016, continuing the former Work-
shop on Descriptional Complexity of Formal Systems, which was a merger in 2002 of
two other workshops: FDSR (Formal Descriptions and Software Reliability) and
DCAGRS (Descriptional Complexity of Automata, Grammars and Related Structures).
DCAGRS was previously held in Magdeburg (1999), London (2000), and Vienna
(2001). FDSR was previously held in Paderborn (1998), Boca Raton (1999), and San
Jose (2000). Since 2002, DCFS has been successively held in London, Ontario, Canada
(2002), Budapest, Hungary (2003), London, Ontario, Canada (2004), Como, Italy
(2005), Las Cruces, New Mexico, USA (2006), Nový Smokovec, High Tatras,
Slovakia (2007), Charlottetown, Prince Edward Island, Canada (2008), Magdeburg,

Germany (2009), Saskatoon, Canada (2010), Gießen, Germany (2011), Braga, Portugal
(2012), London, Ontario, Canada (2013), Turku, Finland (2014), Waterloo, Ontario,
Canada (2015), and Bucharest, Romania (2016).

This volume contains the papers of the four invited talks and 20 contributed papers
presented at DCFS 2017.

The invited talks have been given by:

– Jürgen Dassow (Otto von Guericke University, Magdeburg, Germany)
– Dora Giammarresi (University of Rome Tor Vergata, Italy)
– Stavros Konstantinidis (Saint Mary’s University, Halifax/NS, Canada)
– Orna Kupferman (The Hebrew University, Jerusalem, Israel)

We are grateful to all invited speakers for accepting our invitation and for their
excellent presentations.

The 20 contributed papers were selected by the Program Committee (PC) out of a
total of 26 submissions, by a total of 54 authors from 21 countries (76.9% acceptance
rate). The selection was made on the basis of at least three reviews per submission,
considering originality, quality, significance, and presentation. We thank all authors
who submitted their work for consideration to DCFS 2017. We wish to thank all PC
members and external reviewers for their competent and timely handling of the sub-
missions. The success of the scientific program is due to their hard work.

During the selection process and the preparation of these proceedings, we used the
EasyChair conference management system, which provided excellent support. We wish
to thank the editorial team at Springer, in particular Alfred Hofmann and Anna Kramer,
for the efficient production of this volume.

We gratefully acknowledge the support of the University of Milan (Università degli
Studi di Milano, Dipartimento di Informatica) and of the Italian Chapter of the
European Association for Theoretical Computer Science (EATCS).

Special thanks for the website design and maintenance are due to Luca Prigioniero
(University of Milan).

We hope that, as in the past, DCFS 2017 will be a scientifically most valuable and
exciting event and, in particular, the starting point for new research and co-operations.

We look forward to seeing this year’s participants and many others in Halifax at
DCFS 2018!

July 2017 Giovanni Pighizzini
Cezar Câmpeanu

VI Preface

Organization

Steering Committee

Cezar Câmpeanu University of Prince Edward Island, Charlottetown,
Canada

Erzsébet Csuhaj-Varjú Eötvös Loránd University, Budapest, Hungary
Jürgen Dassow Otto von Guericke University, Magdeburg, Germany
Helmut Jürgensen Western University, London, Canada
Martin Kutrib Justus Liebig University, Gießen, Germany
Giovanni Pighizzini

(Chair)
University of Milan, Italy

Rogério Reis University of Porto, Portugal

Program Committee

Suna Bensch Umeå University, Sweden
Cezar Câmpeanu (Co-chair) University of Prince Edward Island, Charlottetown,

Canada
Erzsébet Csuhaj-Varjú Eötvös Loránd University, Budapest, Hungary
Michael J. Dinneen University of Auckland, New Zealand
Henning Fernau University of Trier, Germany
Viliam Geffert Pavol Jozef Šafárik University, Košice, Slovakia
Markus Holzer Justus Liebig University, Gießen, Germany
Szabolcs Iván University of Szeged, Hungary
Sylvain Lombardy Institut Polytechnique de Bordeaux, France
Andreas Malcher Justus Liebig University, Gießen, Germany
Tomáš Masopust Dresden University of Technology, Germany
Giovanni Pighizzini

(Co-chair)
University of Milan, Italy

Rogério Reis University of Porto, Portugal
Narad Rampersad University of Winnipeg, Canada
Kai Salomaa Queen’s University, Kingston, Canada
Shinnosuke Seki The University of Electro-Communications, Tokyo,

Japan
Arseny Shur Ural Federal University, Ekaterinburg, Russia
Lynette van Zijl Stellenbosch University, South Africa
Abuzer Yakarylmaz University of Latvia, Rīga, Latvia

Additional Reviewers

Bednárová, Zuzana
Beier, Simon
Charlier, Émilie
Demirci, Gökalp
Fazekas, Szilard Zsolt
Fujiyoshi, Akio
Gazdag, Zsolt
Huang, Nan
Kallmeyer, Laura
Knop, Alexander
Ko, Sang-Ki
Kosolobov, Dmitry
Kutrib, Martin
Lavado, Giovanna

Lázár, Katalin A.
Montoya, Andres
Moreira, Nelma
Ng, Timothy
Okubo, Fumiya
Pribavkina, Elena
Prigioniero, Luca
Say, A.C. Cem
Šebej, Juraj
Szabari, Alexander
Truthe, Bianca
Villagra, Marcos
Watson, Bruce
Wendlandt, Matthias

VIII Organization

Contents

Invited Papers

Sensing as a Complexity Measure . 3
Shaull Almagor, Denis Kuperberg, and Orna Kupferman

Avoiding Overlaps in Pictures . 16
Marcella Anselmo, Dora Giammarresi, and Maria Madonia

Descriptional Complexity and Operations – Two Non-classical Cases 33
Jürgen Dassow

Applications of Transducers in Independent Languages,
Word Distances, Codes . 45

Stavros Konstantinidis

Contributed Papers

On the Degree of Nondeterminism of Tree Adjoining Languages
and Head Grammar Languages . 65

Suna Bensch and Maia Hoeberechts

On the Average Complexity of Strong Star Normal Form 77
Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis

Most Complex Non-returning Regular Languages . 89
Janusz A. Brzozowski and Sylvie Davies

Uncountable Realtime Probabilistic Classes . 102
Maksims Dimitrijevs and Abuzer Yakaryılmaz

A Parametrized Analysis of Algorithms on Hierarchical Graphs 114
Rachel Faran and Orna Kupferman

Graph-Controlled Insertion-Deletion Systems Generating Language Classes
Beyond Linearity . 128

Henning Fernau, Lakshmanan Kuppusamy, and Indhumathi Raman

Computational Completeness of Networks of Evolutionary Processors
with Elementary Polarizations and a Small Number of Processors 140

Rudolf Freund, Vladimir Rogojin, and Sergey Verlan

http://dx.doi.org/10.1007/978-3-319-60252-3_1
http://dx.doi.org/10.1007/978-3-319-60252-3_2
http://dx.doi.org/10.1007/978-3-319-60252-3_3
http://dx.doi.org/10.1007/978-3-319-60252-3_4
http://dx.doi.org/10.1007/978-3-319-60252-3_4
http://dx.doi.org/10.1007/978-3-319-60252-3_5
http://dx.doi.org/10.1007/978-3-319-60252-3_5
http://dx.doi.org/10.1007/978-3-319-60252-3_6
http://dx.doi.org/10.1007/978-3-319-60252-3_7
http://dx.doi.org/10.1007/978-3-319-60252-3_8
http://dx.doi.org/10.1007/978-3-319-60252-3_9
http://dx.doi.org/10.1007/978-3-319-60252-3_10
http://dx.doi.org/10.1007/978-3-319-60252-3_10
http://dx.doi.org/10.1007/978-3-319-60252-3_11
http://dx.doi.org/10.1007/978-3-319-60252-3_11

Recognizing Union-Find Trees Built Up Using Union-By-Rank Strategy
is NP-Complete . 152

Kitti Gelle and Szabolcs Iván

Self-attraction Removal from Oritatami Systems . 164
Yo-Sub Han, Hwee Kim, Trent A. Rogers, and Shinnosuke Seki

One-Time Nondeterministic Computations . 177
Markus Holzer and Martin Kutrib

Kuratowski Algebras Generated by Factor-, Subword-,
and Suffix-Free Languages . 189

Jozef Jirásek Jr., Matúš Palmovský, and Juraj Šebej

Branching Measures and Nearly Acyclic NFAs. 202
Chris Keeler and Kai Salomaa

Square on Deterministic, Alternating, and Boolean Finite Automata 214
Ivana Krajňáková and Galina Jirásková

A Pumping Lemma for Ordered Restarting Automata 226
Kent Kwee and Friedrich Otto

Concise Representations of Reversible Automata. 238
Giovanna J. Lavado and Luca Prigioniero

State Complexity of Unary SV-XNFA with Different
Acceptance Conditions. 250

Laurette Marais and Lynette van Zijl

Reset Complexity of Ideal Languages Over a Binary Alphabet 262
Marina Maslennikova

2-State 2-Symbol Turing Machines with Periodic Support Produce
Regular Sets . 274

Turlough Neary

State Complexity of Suffix Distance . 287
Timothy Ng, David Rappaport, and Kai Salomaa

The Quotient Operation on Input-Driven Pushdown Automata 299
Alexander Okhotin and Kai Salomaa

Author Index . 311

X Contents

http://dx.doi.org/10.1007/978-3-319-60252-3_12
http://dx.doi.org/10.1007/978-3-319-60252-3_12
http://dx.doi.org/10.1007/978-3-319-60252-3_13
http://dx.doi.org/10.1007/978-3-319-60252-3_14
http://dx.doi.org/10.1007/978-3-319-60252-3_15
http://dx.doi.org/10.1007/978-3-319-60252-3_15
http://dx.doi.org/10.1007/978-3-319-60252-3_16
http://dx.doi.org/10.1007/978-3-319-60252-3_17
http://dx.doi.org/10.1007/978-3-319-60252-3_18
http://dx.doi.org/10.1007/978-3-319-60252-3_19
http://dx.doi.org/10.1007/978-3-319-60252-3_20
http://dx.doi.org/10.1007/978-3-319-60252-3_20
http://dx.doi.org/10.1007/978-3-319-60252-3_21
http://dx.doi.org/10.1007/978-3-319-60252-3_22
http://dx.doi.org/10.1007/978-3-319-60252-3_22
http://dx.doi.org/10.1007/978-3-319-60252-3_23
http://dx.doi.org/10.1007/978-3-319-60252-3_24

Invited Papers

Sensing as a Complexity Measure

Shaull Almagor1, Denis Kuperberg2, and Orna Kupferman3(B)

1 Department of Computer Science, Oxford University, Oxford, UK
2 CNRS, ENS Lyon, Université de Lyon, LIP, Lyon, France

3 School of Engineering and Computer Science, The Hebrew University,
Jerusalem, Israel

orna@cs.huji.ac.il

Abstract. The size of deterministic automata required for recognizing
regular and ω-regular languages is a well-studied measure for the com-
plexity of languages. We introduce and study a new complexity measure,
based on the sensing required for recognizing the language. Intuitively,
the sensing cost quantifies the detail in which a random input word has
to be read in order to decide its membership in the language. We study
the sensing cost of regular and ω-regular languages, as well as applica-
tions of the study in practice, especially in the monitoring and synthesis
of reactive systems.

1 Introduction

Studying the complexity of a formal language, there are several complexity mea-
sures to consider. When the language is given by means of a Turing Machine, the
traditional measures are time and space demands. Theoretical interest as well as
practical considerations have motivated additional measures, such as random-
ness (the number of random bits required for the execution) [12] or communica-
tion complexity (number and length of messages required) [11]. For regular and
ω-regular languages, given by means of finite-state automata, the classical com-
plexity measure is the size of a minimal deterministic automaton that recognizes
the language.

We introduce and study a new complexity measure, namely the sensing cost
of the language. Intuitively, the sensing cost of a language measures the detail
with which a random input word needs to be read in order to decide membership
in the language. Sensing has been studied in several other CS contexts. In theo-
retical CS, in methodologies such as PCP and property testing, we are allowed to
sample or query only part of the input [9]. In more practical applications, math-
ematical tools in signal processing are used to reconstruct information based on
compressed sensing [6], and in the context of data streaming, one cannot store

The paper gives an overview of the technical results in the papers [2,3]. The research
leading to these results has received funding from the European Research Coun-
cil under the European Union’s 7th Framework Programme (FP7/2007-2013, ERC
grant no. 278410).

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 3–15, 2017.
DOI: 10.1007/978-3-319-60252-3 1

4 S. Almagor et al.

in memory the entire input, and therefore has to approximate its properties
according to partial “sketches” [13].

Our interest in regular sensing is motivated by the use of finite-state automata
in reasoning about on-going behaviors of reactive systems. In particular, a big
challenge in the design of monitors is an optimization of the sensing needed for
deciding the correctness of observed behaviors. Our goal is to formalize regular
sensing in the finite-state setting and to study the sensing complexity measure
for regular and ω-regular languages.

We consider languages over alphabets of the form 2P , for a finite set P of
signals. Consider a deterministic automaton A over an alphabet 2P . For a state
q of A, we say that a signal p ∈ P is sensed in q if at least one transition taken
from q depends on the truth value of p. The sensing cost of q is the number
of signals it senses, and the sensing cost of a run is the average sensing cost of
states visited along the run. We extend the definition to automata by assuming
a uniform distribution of the inputs.1 Thus, the sensing cost of A is the limit
of the expected sensing of runs over words of increasing length.2 We show that
this definition coincides with one that is based on the stationary distribution of
the Markov chain induced by A, which enables us to calculate the sensing cost
of an automaton in polynomial time. The sensing cost of a language L, of either
finite or infinite words, is then the infimum of the sensing costs of deterministic
automata for L. In the case of infinite words, one can study different classes of
automata, yet we show that the sensing cost is independent of the acceptance
condition being used.

We start by studying the sensing cost of regular languages of finite words. For
the complexity measure of size, the picture in the setting of finite words is very
clean: each language L has a unique minimal deterministic automaton (DFA),
namely the residual automaton RL whose states correspond to the equivalence
classes of the Myhill-Nerode right-congruence relation for L. We show that min-
imizing the state space of a DFA can only reduce its sensing cost. Hence, the
clean picture of the size measure is carried over to the sensing measure: the sens-
ing cost of a language L is attained in the DFA RL. In particular, since DFAs
can be minimized in polynomial time, we can construct in polynomial time a
minimally-sensing DFA, and can compute in polynomial time the sensing cost
of languages given by DFAs.

We then study the sensing cost of ω-regular languages, given by means
of deterministic parity automata (DPAs). Recall the size complexity measure.

1 Our study and results apply also to a non-uniform distribution on the letters, given
by a Markov chain.

2 Alternatively, one could define the sensing cost of A as the cost of its “most sensing”
run. Such a worst-case approach is taken in [5], where the sensing cost needs to be
kept under a certain budget in all computations, rather than in expectation. We find
the average-case approach we follow appropriate for sensing, as the cost of operating
sensors may well be amortized over different runs of the system, and requiring the
budget to be kept under a threshold in every run may be too restrictive. Thus, the
automaton must answer correctly for every word, but the sensing should be low only
on average, and it is allowed to operate an expensive sensor now and then.

Sensing as a Complexity Measure 5

There, the picture for languages of infinite words is not clean: A language
needs not have a unique minimal DPA, and the problem of finding one is NP-
complete [15]. It turns out that the situation is challenging also in the sensing
measure. First, we show that different minimal DPAs for a language may have
different sensing costs. In fact, bigger DPAs may have smaller sensing costs.

To see the intricacy in the case of ω-regular languages, consider a component
in a vacuum-cleaning robot that monitors the dust collector and checks that it
is empty infinitely often. The proposition empty indicates whether the collector
is empty and a sensor needs to be activated in order to know its truth value.
One implementation of the component would sense empty throughout the com-
putation. This corresponds to the classical two-state DPA for “infinitely often
empty”. A different implementation can give up the sensing of empty for some
fixed number k of states, then wait for empty to hold, and so forth. The bigger
k is, the lazier is the sensing and the smaller the sensing cost is. As the example
demonstrates, there may be a trade-off between the sensing cost of an implemen-
tation and its size. Other considerations, like a preference to have eventualities
satisfied as soon as possible, enter the picture too.

Our main result is that despite the above intricacy, the sensing cost of an
ω-regular language L is the sensing cost of the residual automaton RL for L.
It follows that the sensing cost of an ω-regular language can be computed in
polynomial time. Unlike the case of finite words, it may not be possible to define
L on top of RL. Interestingly, however, RL does capture exactly the sensing
required for recognizing L. The proof goes via a sequence (Bn)∞

n=1 of DPAs
whose sensing costs converge to that of L. The DPA Bn is obtained from a DPA
A for L by a lazy sensing strategy that spends time in n copies of RL between
visits to A, but spends enough time in A to ensure that the language is L.

In the context of formal methods, sensing has two appealing applications.
The first is monitoring: we are given a computation and we have to decide
whether it satisfies a specification. When the computations are over 2P , we want
to design a monitor that minimizes the expected average number of sensors used
in the monitoring process. Monitoring is especially useful when reasoning about
safety specifications [8]. There, every computation that violates the specification
has a bad prefix – one all whose extensions are not in L. Hence, as long as the
computation is a prefix of some word in L, the monitor continues to sense and
examine the computation. Once a bad prefix is detected, the monitor declares
an error and no further sensing is required. The second application is synthesis.
Here, the set P of signals is partitioned into sets I and O of input and output
signals, respectively. We are given a specification L over the alphabet 2I∪O,
and our goal is to construct an I/O transducer that realizes L. That is, for every
sequence of assignments to the input signals, the transducer generates a sequence
of assignments to the output signals so that the obtained computation is in L
[14]. Our goal is to construct a transducer that minimizes the expected average
number of sensors (of input signals) that are used along the interaction.

The definition of sensing cost described above falls short in the above two
applications. For the first, the definition above does not distinguish between

6 S. Almagor et al.

words in the language and words not in the language, whereas in monitoring we
care only for words in the language. In particular, according to the definition
above, the sensing cost of a safety language is always 0. For the second, the
definition above considers automata and does not partition P into I and O,
whereas synthesis refers to I /O-transducers. Moreover, unlike automata, correct
transducers generate only computations in the language, and they need not
generate all words in the language – only these that ensure receptiveness with
respect to all sequences of inputs.

We thus continue and study sensing in the context of monitoring and syn-
thesis. We suggest definitions that capture the intuition of “required number
of sensors” in these settings and solve the problems of generating monitors
and transducers that minimize sensing. For both settings, we focus on safety
languages.

Consider, for example, a traffic monitor that has access to various sensors on
roads and whose goal is to detect accidents. Once a road accident is detected, an
alarm is raised to the proper authorities and the monitoring is stopped until the
accident has been taken care of. The monitor can read the speed of cars along the
roads, as well as the state of traffic lights. An accident is detected when some cars
do not move even-though no traffic light is stopping them. Sensing the speed of
every car and checking every traffic light requires huge sensing. Our goal is to find
a monitor that minimizes the required sensing and still detects all accidents. In
the synthesis setting, our goal is extended to designing a transducer that controls
the traffic lights according to the speed of the traffic in each direction, and
satisfies some specification (say, give priority to slow traffic), while minimizing
the sensing of cars.

We revise our definition as follows. Let us start with monitoring. Recall that
the definition of sensing above assumes a uniform probability on the assignments
to the signals, whereas in monitoring we want to consider instead more intricate
probability spaces – ones that restrict attention to words in the language. As we
show, there is more than one way to define such probability spaces, each leading
to a different measure. We study two such measures. In the first, we sample a
word randomly, letter by letter, according to a given distribution, allowing only
letters that do not generate bad prefixes. In the second, we construct a sample
space directly on the words in the language. We show that in both definitions,
we can compute the sensing cost of the language in polynomial time, and that
the minimal sensing cost is attained by a minimal-size automaton. Thus, luckily
enough, even though different ways in which a computation may be given in an
online manner calls for two definitions of sensing cost, the design of a minimally-
sensing monitor is the same in the two definitions.

Let us continue to synthesis. Recall that there, given a specification over sets
I and O of input and output signals, the goal is to construct a finite-state system
that, given a sequence of input signals, generates a computation that satisfies
the specification. In each moment in time, the system reads an assignment to
the input signals, namely a letter in 2I , which requires the activation of |I|
Boolean sensors. A well-studied special case of limited sensing is synthesis with

Sensing as a Complexity Measure 7

incomplete information. There, the system can read only a subset of the signals
in I, and should still generate only computations that satisfy the specification
[4,10]. A more sophisticated case of sensing in the context of synthesis is studied
in [5], where the system can read some of the input signals some of the time. In
more detail, sensing the truth value of an input signal has a cost, the system has
a budget for sensing, and it tries to realize the specification while minimizing
the required sensing budget.

The main challenge there is that we no longer need to consider all words in
the language. This introduces a new degree of freedom, which requires differ-
ent techniques than those used for the definition above. In particular, while a
minimal-size transducer for a safety language can be defined on top of the state
space of a minimal-size deterministic automaton for the language, this is not
the case when we seek minimally-sensing transducers. In fact, we show that a
minimally-sensing transducer for a safety language might be exponentially bigger
than a minimal-size automaton for the language. Consequently, the problems of
computing the minimal sensing cost and finding a minimally-sensing transducer
are EXPTIME-complete even for specifications given by means of deterministic
safety automata. On the positive side, a transducer that attains the minimal
sensing cost always exists for safety specifications.

2 Preliminaries

Automata. A deterministic automaton on finite words (DFA) is A =
〈Σ,Q, q0, δ, α〉, where Q is a finite set of states, q0 ∈ Q is an initial state,
δ : Q × Σ → Q is a total transition function, and α ⊆ Q is a set of accepting
states. We sometimes refer to δ as a relation Δ ⊆ Q × Σ × Q, with 〈q, σ, q′〉 ∈ Δ
iff δ(q, σ) = q′. The run of A on a word w = σ1 · σ2 · · · σm ∈ Σ∗ is the sequence
of states q0, q1, . . . , qm such that qi+1 = δ(qi, σi+1) for all i ≥ 0. The run is
accepting if qm ∈ α. A word w ∈ Σ∗ is accepted by A if the run of A on w is
accepting. The language of A, denoted L(A), is the set of words that A accepts.
For a state q ∈ Q, we use Aq to denote A with initial state q. We sometimes
refer also to nondeterministic automata (NFAs), where δ : Q×Σ → 2Q suggests
several possible successor states. Thus, an NFA may have several runs on an
input word w, and it accepts w if at least one of them is accepting.

Consider a language L ⊆ Σ∗. For two finite words u1 and u2, we say that u1

and u2 are right L-indistinguishable, denoted u1 ∼L u2, if for every z ∈ Σ∗, we
have that u1 ·z ∈ L iff u2 ·z ∈ L. Thus, ∼L is the Myhill-Nerode right congruence
used for minimizing automata. For u ∈ Σ∗, let [u] denote the equivalence class
of u in ∼L and let 〈L〉 denote the set of all equivalence classes. Each class
[u] ∈ 〈L〉 is associated with the residual language u−1L = {w : uw ∈ L}. When
L is regular, the set 〈L〉 is finite, and induces the residual automaton of L, defined
by RL = 〈Σ, 〈L〉,ΔL, [ε], α〉, with 〈[u], a, [u ·a]〉 ∈ ΔL for all [u] ∈ 〈L〉 and a ∈ Σ.
Also, α contains all classes [u] with u ∈ L. The DFA RL is well defined and is
the unique minimal DFA for L.

A deterministic automaton on infinite words is A = 〈Σ,Q, q0, δ, α〉, where
Q, q0, and δ are as in DFA, and α is an acceptance condition. The run of A

8 S. Almagor et al.

on an infinite input word w = σ1 · σ2 · · · ∈ Σω is defined as for automata on
finite words, except that the sequence of visited states is now infinite. For a run
r = q0, q1, . . ., let inf(r) denote the set of states that r visits infinitely often.
Formally, inf(r) = {q : q = qi for infinitely many i’s}. We consider the following
acceptance conditions. In a Büchi automaton, the acceptance condition is a set
α ⊆ Q and a run r is accepting iff inf(r) ∩ α
= ∅. A looping automaton is a
special case of the Büchi condition, with α = Q. Finally, a parity condition is
a mapping α : Q → [i, . . . , j], for integers i ≤ j, and a run r is accepting iff
maxq∈inf(r){α(q)} is even. We use the acronyms NBA, DBA, NLA, DLA, NPA,
and DPA to denote nondeterministic/deterministic Büchi/looping/parity word
automata.

We extend the right congruence ∼L as well as the definition of the residual
automaton RL to languages L ⊆ Σω. Here, however, RL need not accept the
language of L, and we ignore its acceptance condition.

Sensing. We study languages over an alphabet Σ = 2P , for a finite set P
of signals. A letter σ ∈ Σ corresponds to a truth assignment to the signals.
When we define languages over Σ, we use predicates on P in order to denote
sets of letters. For example, if P = {a, b, c}, then the expression (True)∗ · a ·
b · (True)∗ describes all words over 2P that contain a subword σa · σb with
σa ∈ {{a}, {a, b}, {a, c}, {a, b, c}} and σb ∈ {{b}, {a, b}, {b, c}, {a, b, c}}.

Consider an automaton A = 〈2P , Q, q0, δ, α〉. For a state q ∈ Q and a signal
p ∈ P , we say that p is sensed in q if there exists a set S ⊆ P such that
δ(q, S\{p})
= δ(q, S∪{p}). Intuitively, a signal is sensed in q if knowing its value
may affect the destination of at least one transition from q. We use sensed(q)
to denote the set of signals sensed in q. The sensing cost of a state q ∈ Q is
scost(q) = |sensed(q)|.3

Consider a deterministic automaton A over Σ = 2P (and over finite or infinite
words). For a finite run r = q1, . . . , qm of A, we define the sensing cost of r,
denoted scost(r), as 1

m

∑m−1
i=0 scost(qi). That is, scost(r) is the average number

of sensors that A uses during r. Now, for a finite word w, we define the sensing
cost of w in A, denoted scostA(w), as the sensing cost of the run of A on w.
Finally, the sensing cost of A is the expected sensing cost of words of length that
tends to infinity, where we assume that the letters in Σ are uniformly distributed.
Thus, scost(A) = limm→∞ |Σ|−m

∑
w:|w|=m scostA(w). Note that the definition

applies to automata on both finite and infinite words.
Two DFAs may recognize the same language and have different sensing costs.

In fact, as we demonstrate in Example 1 below, in the case of infinite words two
different minimal automata for the same language may have different sensing
costs.

For a language L of finite or infinite words, the sensing cost of L, denoted
scost(L) is the minimal sensing cost required for recognizing L by a determin-
istic automaton. Thus, scost(L) = infA:L(A)=L scost(A). For the case of infinite
3 We note that, alternatively, one could define the sensing level of states, with
slevel(q) = |sensed(q)|

|P | . Then, for all states q, we have that slevel(q) ∈ [0, 1]. All

our results hold also for this definition, simply by dividing the sensing cost by |P |.

Sensing as a Complexity Measure 9

words, we allow A to be a deterministic automaton of any type. In fact, as we
shall see, unlike the case of succinctness, the sensing cost is independent of the
acceptance condition used.

Example 1. Let P = {a}. Consider the language L ⊆ (2{a})ω of all words with
infinitely many a and infinitely many ¬a. In Fig. 1 below we present two minimal
DBAs for L with different sensing costs.

Fig. 1. Two minimal DBAs for L with different sensing costs.

While all the states of the second automaton sense a, thus its sensing cost
is 1, the signal a is not sensed in all the states of the first automaton, thus its
sensing cost is strictly smaller than 1. ��
Remark 1. Our study of sensing considers deterministic automata. The notion
of sensing is less natural in the nondeterministic setting. From a conceptual
point of view, we want to capture the number of sensors required for an actual
implementation for recognizing the language. Technically, guesses can reduce the
number of required sensors. To see this, take P = {a} and consider the language
L = True∗ · a. A DFA for L needs two states, both sensing a. An NFA for L can
guess the position of the letter before the last one, where it moves to the only
state that senses a. The sensing cost of such an NFA is 0 (for any reasonable
extension of the definition of cost on NFAs). ��

Probability. Consider a directed graph G = 〈V,E〉. A strongly connected com-
ponent (SCC) of G is a maximal (with respect to containment) set C ⊆ V such
that for all x, y ∈ C, there is a path from x to y. An SCC (or state) is ergodic if
no other SCC is reachable from it, and is transient otherwise.

An automaton A = 〈Σ,Q, q0, δ, α〉 induces a directed graph GA = 〈Q,E〉
in which 〈q, q′〉 ∈ E iff there is a letter σ such that q′ ∈ δ(q, σ). When we talk
about the SCCs of A, we refer to those of GA. Recall that we assume that the
letters in Σ are uniformly distributed, thus A also corresponds to a Markov
chain MA in which the probability of a transition from state q to state q′ is
pq,q′ = 1

|Σ| |{σ ∈ Σ : δ(q, σ) = q′}|. Let C be the set of A’s SCC, and Ce ⊆ C be
the set of its ergodic SCC’s.

Consider an ergodic SCC C ∈ Ce. Let PC be the matrix describing the
probability of transitions in C. Thus, the rows and columns of PC are associated
with states, and the value in coordinate q, q′ is pq,q′ . By [7], there is a unique
probability vector πC ∈ [0, 1]C such that πCPC = πC . This vector describes the
stationary distribution of C: for all q ∈ C it holds that πC(q) = limm→∞

EC
m(q)
m ,

10 S. Almagor et al.

where EC
m(q) is the average number of occurrences of q in a run of MA of length

m that starts anywhere in C [7]. Thus, intuitively, πC(q) is the probability that
a long run that starts in C ends in q. In order to extend the distribution to
the entire Markov chain of A, we have to take into account the probability of
reaching each of the ergodic components. The SCC-reachability distribution of
A is the function ρ : C → [0, 1] that maps each ergodic SCC C of A to the
probability that MA eventually reaches C, starting from the initial state. We
can now define the limiting distribution π : Q → [0, 1], as

π(q) =
{

0 if q is transient,
πC(q)ρ(C) if q is in some C ∈ Ce.

Note that
∑

q∈Q π(q) = 1, and that if P is the matrix describing the transitions
of MA and π is viewed as a vector in [0, 1]Q, then πP = π. Intuitively, the
limiting distribution of state q describes the probability of a run on a random
and long input word to end in q. Formally, we have the following.

Lemma 1. Let Em(q) be the expected number of occurrences of a state q in a
run of length m of MA that starts in q0. Then, π(q) = limm→∞

Em(q)
m .

Computing the Sensing Cost of an Automaton. Consider a deterministic
automaton A = 〈2P , Q, δ, q0, α〉. The definition of scost(A) by means of the
expected sensing cost of words of length that tends to infinity does not suggest an
algorithm for computing it. In this section we show that the definition coincides
with a definition that sums the costs of the states in A, weighted according to the
limiting distribution, and show that this implies a polynomial-time algorithm
for computing scost(A). This also shows that the cost is well-defined for all
automata.

Theorem 1. For all automata A, we have scost(A) =
∑

q∈Q π(q) · scost(q),
where π is the limiting distribution of A.

Remark 2. It is not hard to see that if A is strongly connected, then π is the
unique stationary distribution of MA and is independent of the initial state of
A. Accordingly, scost(A) is also independent of A’s initial state in this special
case. ��
Theorem 2. Given an automaton A, the sensing cost scost(A) can be calculated
in polynomial time.

Example 2. Let P = {a, b}. Consider the DFA A1 appearing in Fig. 2. Note
that L(A1) = (True)∗ · a · b · (True)∗. It is easy to see that sensed(q0) = {a},
sensed(q1) = {b}, and sensed(q2) = ∅. Accordingly, scost(q0) = scost(q1) = 1
and scost(q2) = 0. Since the state q2 forms the only ergodic SCC, the limiting
distribution on the states of A is π(q0) = π(q1) = 0 and π(q2) = 1. Hence,
scost(A1) = 0.

Consider now the DFA A2, appearing in Fig. 3, with L(A2) = (True)∗ · a · b.
Here, sensed(q0) = {a}, sensed(q1) = {a, b}, and sensed(q2) = {a}. Accordingly,
scost(q0) = scost(q2) = 1 and scost(q2) = 2.

Sensing as a Complexity Measure 11

Fig. 2. The DFA A1.

Fig. 3. The DFA A2 and its corresponding Markov chain.

Since A2 is strongly connected, its limiting distribution is its unique sta-
tionary distribution, which can be calculated by solving the following system of
equations, where xi corresponds to π(qi):

– x0 = 1
2x0 + 1

4x1 + 1
2x2. • x2 = 1

2x1.
– x1 = 1

2x0 + 1
4x1 + 1

2x2. • x0 + x1 + x2 = 1.

Accordingly, π(q0) = π(q1) = 2
5 and π(q2) = 1

5 . We conclude that the sensing
cost of A2 is 1 · 2

5 + 2 · 2
5 + 1 · 1

5 = 7
5 . ��

3 The Sensing Cost of Regular Languages of Finite
Words

In this section we study the setting of finite words. We show that there, sensing
minimization goes with size minimization, which makes things clean and simple,
as size minimization for DFAs is a feasible and well-studied problem.

Consider a regular language L ⊆ Σ∗, with Σ = 2P . Recall that the residual
automaton RL = 〈Σ, 〈L〉,ΔL, [ε], α〉 is the minimal-size DFA that recognizes L.
We claim that RL also minimizes the sensing cost of L.

Lemma 2. Consider a regular language L ⊆ Σ∗. For every DFA A with L(A) =
L, we have that scost(A) ≥ scost(RL).

Since L(RL) = L, then scost(L) ≤ scost(RL). This, together with Lemma 2,
enables us to conclude the following.

Theorem 3. For every regular language L ⊆ Σ∗, we have scost(L) =
scost(RL).

Finally, since DFAs can be size-minimized in polynomial time, Theorems 2
and 3 imply we can efficiently minimize also the sensing cost of a DFA and
calculate the sensing cost of its language:

12 S. Almagor et al.

Theorem 4. Given a DFA A, the problem of computing scost(L(A)) can be
solved in polynomial time.

4 The Sensing Cost of ω-Regular Languages

For the case of finite words, we have a very clean picture: minimizing the state
space of a DFA also minimizes its sensing cost. In this section we study the case
of infinite words. There, the picture is much more complicated. In Example 1 we
saw that different minimal DBAs may have a different sensing cost. We start by
showing that even for languages that have a single minimal DBA, the sensing
cost may not be attained by this minimal DBA, and in fact it may be attained
only as a limit of a sequence of DBAs.

Example 3. Let P = {p}, and consider the language L of all words w1 · w2 · · ·
such that wi = {p} for infinitely many i’s. Thus, L = (True∗ · p)ω. A minimal
DBA for L has two states. The minimal sensing cost for a two-state DBA for L is
2
3 (the classical two-state DBA for L senses p in both states and thus has sensing
cost 1. By taking A1 in the sequence we shall soon define we can recognize L
by a two-state DBA with sensing cost 2

3). Consider the sequence of DBAs Am

appearing in Fig. 4. The DBA Am recognizes (True≥m · p)ω, which is equivalent
to L, yet enables a “lazy” sensing of p. Formally, The stationary distribution
π for Am is such that π(qi) = 1

m+1 for 0 ≤ i ≤ m − 1 and π(qm) = 2
m+1 .

In the states q0, . . . , qm−1 the sensing cost is 0 and in qm it is 1. Accordingly,
scost(Am) = 2

m+1 , which tends to 0 as m tends to infinity. ��

Fig. 4. The DBA Am.

Still we can characterize the sensing cost of an ω-regular language by means
of the residual automaton for the language:

Theorem 5. For every ω-regular language L ⊆ Σω, we have scost(L) =
scost(RL).

Trade-off Between Sensing and Quality: The key idea in the proof of The-
orem 5 is that when we reason about languages of infinite words, it is sometimes
possible to delay the sensing and only sense in “sparse” intervals. This sort of lazy
sensing is sound, as eventualities are allowed to be satisfied in an unboundedly-
far future (see also Example 3). In practice, however, it is often desirable to
satisfy eventualities quickly. This is formalized in multi-valued formalisms such
as LTL with future discounting [1], where formulas assign higher satisfaction
values to computations that satisfy eventualities fast. Our study here suggests
that lower sensing leads to lower satisfaction values. An interesting problem is
to study and formalize this intuitive trade-off between sensing and quality.

Sensing as a Complexity Measure 13

5 Monitoring

As described in Sect. 1, the definition of sensing above takes into an account all
words in (2P)ω, regardless their membership in the language. In monitoring, we
restrict attention to words in the language, as once a violation is detected, no
further sensing is required. In particular, in safety languages, violation amounts
to a detection of a bad prefix, and indeed safety languages are the prominent
class of languages for which monitoring is used [8].

As it turns out, however, there are many approaches to define the corre-
sponding probability space. We suggest here two. We focus on safety languages,
namely these recognizable by DLAs. Let A be a DLA and let L = L(A).

1. [Letter-based] At each step, we uniformly draw a “safe” letter – one with
which we are still generating a word in pref (L), thereby iteratively generating
a random word in L.

2. [Word-based] At the beginning, we uniformly draw a word in L.

We denote the sensing cost of A in the letter- and word-based approaches
lcost(A) and wcost(A), respectively. The two definitions yield two different prob-
ability measures on L, as demonstrated in Example 4 below.

Example 4. Let P = {a} and consider the safety language L = aω + (¬a) ·
(True)ω. That is, if the first letter is {a}, then the suffix should be {a}ω, and if
the first letter is ∅, then all suffixes result in a word in L. Consider the DLA A
for L in Fig. 5.

Fig. 5. A DLA for aω + (¬a) · (True)ω.

In the letter-based definition, we initially draw a letter from 2{a} uniformly,
i.e., either a or ¬a w.p. 1

2 . If we draw ¬a, then we move to q1 and stay there
forever. If we draw a, then we move to q2 and stay there forever. Since scost(q1) =
0 and scost(q2) = 1, and we reach q1 and q2 w.p 1

2 , we get lcost(A) = 1
2 .

In the word-based definition, we assign a uniform probability to the words
in L. In this case, almost all words are not aω, and thus the probability of aω is
0. This means that we will get to q1 w.p. 1, and thus wcost(A) = 0. ��

As a more realistic example, recall our traffic monitor in Sect. 1. There, the
behavior of the cars is the random input, and the two approaches can be under-
stood as follows. In the letter-based approach, we assume that the drivers do
their best to avoid accidents regardless of the history of the traffic and the traf-
fic lights so far. Thus, after every safe prefix, we assume that the next input is

14 S. Almagor et al.

also safe. In the word-based approach, we assume that the city is planned well
enough to avoid accidents. Thus, we a-priori set the distribution to safe traffic
behaviors according to their likelihood.

We now define the two approaches formally.

The Letter-Based Approach. Consider a DLA A = 〈Σ,Q, q0, δ,Q〉. For a state
q ∈ Q, let avail(q) be the set of letters available in q, namely letters that do
not cause A to get stuck. Formally, avail(q) = {σ ∈ Σ : δ(q, σ) is defined}. We
model the drawing of available letters by the Markov chain MA = 〈Q,P 〉,
where the probability of a transition from state q to state q′ in MA is P (q, q′) =
|{σ∈Σ:δ(q,σ)=q′}|

|avail(q)| . Let π be the limiting distribution of MA. We define lcost(A) =
∑

q∈Q π(q) · scost(q).
Since computing the limiting distribution can be done in polynomial time,

we have the following.

Theorem 6. Given a DLA A, the sensing cost lcost(A) can be calculated in
polynomial time.

The Word-Based Approach. Consider a DLA A = 〈2P , Q, q0, δ,Q〉
recognizing a non-empty safety language L. From Sect. 2, scost(A) =
limn→∞ 1

|Σ|n
∑

u∈Σn scostA(u), which is proven to coincide with E[scostA(u)]
where E is the expectation with respect to the standard measure on Σω.
Our goal here is to replace this standard measure with one that restricts
attention to words in L. Thus, we define wcost(A) = E[scost(u) | u ∈ L].
For n ≥ 0, let pref (L, n) be the set of prefixes of L of length n. Formally,
pref (L, n) = pref (L) ∩ Σn. As in the case of the standard measure, the
expectation-based definition coincides with one that that is based on a lim-
iting process: wcost(A) = limn→∞ 1

|pref (L,n)|
∑

u∈pref (L,n) scostA(u). Thus, the
expressions for scost and wcost are similar, except that in the expectation-based
definition we add conditional probability, restricting attention to words in L,
and in the limiting process we replace Σn by pref (L, n).

Note that the term 1
|pref (L,n)| is always defined, as L is a non-empty safety

language. In particular, the expectation is well defined even if L has measure 0
in Σω.

Theorem 7. Given a DLW A, we can compute wcost(A) in polynomial time.

References

1. Almagor, S., Boker, U., Kupferman, O.: Discounting in LTL. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 424–439. Springer, Heidel-
berg (2014). doi:10.1007/978-3-642-54862-8 37

2. Almagor, S., Kuperberg, D., Kupferman, O.: Regular sensing. In: Proceedings of
34th FST & TCS, LIPIcs, vol. 29, pp. 161–173 (2014)

3. Almagor, S., Kuperberg, D., Kupferman, O.: The sensing cost of monitoring and
synthesis. In: Proceedings of 34th FST & TCS, LIPIcs, vol. 35, pp. 380–393 (2015)

http://dx.doi.org/10.1007/978-3-642-54862-8_37

Sensing as a Complexity Measure 15

4. Chatterjee, K., Majumdar, R.: Minimum attention controller synthesis for
omega-regular objectives. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS
2011. LNCS, vol. 6919, pp. 145–159. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24310-3 11

5. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Controller synthesis with budget
constraints. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp.
72–86. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78929-1 6

6. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306
(2006)

7. Grinstead, C., Laurie Snell, J.: Markov chains. In: Introduction to Probability.
American Mathematical Society (1997)

8. Havelund, K., Rosu, G.: Efficient monitoring of safety properties. STT&T 6(2),
18–173 (2004)

9. Kindler, G.: Property testing, PCP, and Juntas. Ph.D. thesis, Tel Aviv University
University (2002)

10. Kupferman, O., Vardi, M.Y.: Church’s problem revisited. Bull. Symbol. Log. 5(2),
245–263 (1999)

11. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

12. Mauduit, C., Sárköz, A.: On finite pseudorandom binary sequences. i. measure of
pseudorandomness, the legendre symbol. Acta Arith. 82(4), 365–377 (1997)

13. Muthukrishnan, S.: Theory of data stream computing: where to go. In: Proceedings
of 30th PODS, pp. 317–319 (2011)

14. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of
16th POPL, pp. 179–190 (1989)

15. Schewe, S.: Beyond hyper-minimisation—minimising DBAs and DPAs is NP-
complete. In: Proceedings of 30th FST & TCS, LIPIcs, vol. 8, pp. 400–411 (2010)

http://dx.doi.org/10.1007/978-3-642-24310-3_11
http://dx.doi.org/10.1007/978-3-642-24310-3_11
http://dx.doi.org/10.1007/978-3-540-78929-1_6

Avoiding Overlaps in Pictures

Marcella Anselmo1, Dora Giammarresi2(B), and Maria Madonia3

1 Dipartimento di Informatica, Università di Salerno, Via Giovanni Paolo II,
132-84084 Fisciano, SA, Italy

manselmo@unisa.it
2 Dipartimento di Matematica, Università Roma “Tor Vergata”,

via della Ricerca Scientifica, 00133 Roma, Italy
giammarr@mat.uniroma2.it

3 Dipartimento di Matematica e Informatica, Università di Catania,
Viale Andrea Doria 6/a, 95125 Catania, Italy

madonia@dmi.unict.it

Abstract. In string combinatorics, the sets of strings that have no over-
laps (i.e. the prefix of one string does not coincide with the suffix of
another string) are extensively investigated since they play an important
role in the context of string matching and coding. The notion of overlap
can be extended naturally to two dimensions; two pictures p and q have
an overlap if one can put one corner of p on some position in q in such a
way that all symbols in the common positions coincide. A picture with
no self-overlaps is called unbordered and it is a generalization in two
dimensions of an unbordered (or bifix-free) string.

We study the problem of generating all unbordered pictures of fixed
size and present a construction of non-expandable non-overlapping sets
of pictures together with some examples.

Keywords: Two-dimensional language · Overlap · Unbordered picture

1 Introduction

Pictures are a generalization of strings to two dimensions and they are repre-
sented by two-dimensional (rectangular) arrays of symbols taken from a finite
alphabet Σ. The size of a picture with m rows and n columns is indicated by
(m,n). Single row or column pictures can be always identified with strings.

Extending results from the formal string language theory to two dimensions
is a very challenging task. The intrinsic complexity of two-dimensional structures
is evident even in the generalizations of the basic concepts and definitions. For
example, the definition of “prefix” of a string can be naturally extended to a
picture by considering its rectangular portion in the top-left corner; neverthe-
less, if one deletes a prefix from a picture, the remaining part is not a picture

Partially supported by INdAM-GNCS Project 2017, FARB Project ORSA138754 of
University of Salerno and FIR Project 375E90 of University of Catania.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 16–32, 2017.
DOI: 10.1007/978-3-319-60252-3 2

Avoiding Overlaps in Pictures 17

anymore. Despite such difficulties, several results from string language theory
have been worthy extended to pictures. Many researchers have investigated how
the notion of recognizability by finite state automata can be transferred to two
dimensions to accept picture languages [2,6–8,20,25,26,28,31]. Moreover two
dimensional codes were studied in different contexts [1,17,21,29] and recently
two-dimensional prefix codes were introduced as the two-dimensional counter-
part of prefix string codes [3,4,8,10,11].

In the combinatorics of strings, the study of the structure and the special
patterns of the strings plays an important role both from the theoretical and the
applicative side. Given a string s, a bifix or a border of s is a substring x that
is both prefix and suffix of s. A string s is bifix-free or unbordered if it has no
other bifixes besides the empty string and s itself. Bifix-free strings are connected
with the theory of codes [18] and are involved in the data structures for pattern
matching algorithms [24,27]. From a more applicative point of view, bifix-free
strings are suitable as synchronization patterns in digital communications and
similar communications protocols [30]. The combinatorial structure of bifix-free
strings over a given alphabet was studied by Nielsen in [30]; he provided an
algorithm to enumerate all bifix-free strings of the same length n over a given
alphabet. A set of strings X in which no prefix of any string is the suffix of
any other string in X is called a cross-bifix-free code. Constructive methods for
cross-bifix-free codes are widely investigated in [14,19,22].

In this paper we investigate the notion of overlaps in pictures. It can be very
naturally extended from the string theory since it is not related to any preferred
scanning direction. Informally, we say that two pictures p and q overlap when it
is possible to place p somewhere on q in such a way that all the superimposed
positions hold the same symbol. In other words, two pictures p and q overlap
when we can find the same rectangular portion x at one corner of p and at
the opposite corner of q. Observe that there are two different kinds of overlaps
depending on the pair of opposite corners involved. If such common rectangular
part x is found at the top-left corner of p (and bottom-right corner of q) we will
say that p and q tl-overlap; if x is found at the bottom-left corner of p (and
top-right corner of q) we will say that p and q bl-overlap. Moreover, special cases
of overlaps will occur when such common part x is a “string” (for example there
is a prefix of the first row in p that is a suffix of the last row in q). We refer to
them as frame-overlaps.

The notion of overlap leads easily to the notion of border, when we consider
overlaps between a picture p and its copy p′. As for overlaps, we can have tl- and
bl-borders. A picture p is unbordered if it has no proper borders. Unbordered
pictures are connected both to picture codes and to two-dimensional pattern
matching. We are interested in computing all the unbordered pictures of a fixed
size (m,n) on a given alphabet.

It can be verified that the recursive construction of bifix-free strings given by
Nielsen in [30] cannot be directly generalized to generate unbordered pictures.
Nevertheless, a bidimensional version of Nielsen’s construction produces a bigger
set of pictures to which we referred to as quasi-unbordered pictures in [5]. The

18 M. Anselmo et al.

quasi-unbordered pictures can have only certain particular types of borders. The
unbordered pictures can then be extracted from this set. In this paper we discuss
more in detail the advantages of using quasi-unbordered pictures as an interme-
diate step in the construction of the unbordered ones. In particular we show that
the probability that any quasi-unbordered picture is actually unbordered goes
to 1 when the size of the picture grows. Moreover we prove that unbordered
pictures can be obtained by intersecting two different sets of quasi-unbordered
pictures.

Next we consider particular sets of unbordered pictures where no picture
can be overlapped on another one of the same set. We refer to them to as non-
overlapping sets. They are therefore a generalization of cross-bifix-free codes of
strings and they correspond to a family of picture codes. In particular, non-
overlapping sets of pictures are two-dimensional comma-free codes (recently
studied in [12]) with a stronger property.

Using a naive algorithm, a non-overlapping set of pictures of a fixed size
(m,n) can be “extracted” by getting pictures one by one from the set of all
unbordered pictures, by checking at each step that the current picture does
not overlap with all the previously chosen ones. This procedure can be useful for
getting small sets. The major problem is to find non-expandable non-overlapping
(NENO) sets of pictures, i.e. sets to which it is not possible to add other non-
overlapping pictures of the same size.

Very recently, in [15,16], some sets of non-overlapping matrices have been
presented by exploiting some techniques from the string case. The problem of
finding non-expandable non-overlapping sets was left open. Note that also in the
string case the corresponding problem of finding large non-expandable cross-
bifix-free sets is difficult [14,19,22]. In [9] a first example of a family of NENO
sets of pictures is proposed. It is constructed by exploiting some conditions on
the frames of the pictures of NENO sets. (The frame of a picture is the quadruple
of strings corresponding to its first and last rows and columns). Once fixed the
“right” set of frames F that avoid frame overlaps, the NENO set is found as
subset of all the pictures with frame in F .

The method can be applied to obtain further examples. It was not clear the
role of the frame for the selection of the pictures of the NENO set; in particu-
lar it was left open the problem whether fixing the frame set could univocally
determine the NENO set. In this paper we solve this problem by exhibiting two
different NENO sets with the same frame set.

2 Preliminaries

We recall some definitions about two-dimensional languages (see [26]). A picture
over a finite alphabet Σ is a two-dimensional rectangular array of elements of
Σ. Given a picture p, |p|row and |p|col denote the number of rows and columns,
respectively, while size(p) = (|p|row, |p|col) denotes the picture size. We also
consider all the empty pictures that correspond to all pictures of size (m, 0) or
(0, n). The set of all pictures over Σ of fixed size (m,n) is denoted by Σm,n.

Avoiding Overlaps in Pictures 19

The set of all pictures over Σ is denoted by Σ∗∗ while Σ++ refers to the set Σ∗∗

without the empty pictures. A two-dimensional language (or picture language)
over Σ is a subset of Σ∗∗.

In order to locate a position in a picture, it is necessary to put the picture
in a reference system. Let p be a picture of size (m,n). The set of coordinates
dom(p) = {1, 2, . . . , |p|row} × {1, 2, . . . , |p|col} is referred to as the domain of a
picture p. We let p(i, j) denote the symbol in p at coordinates (i, j). We assume
the top-left corner of the picture to be at position (1, 1), and fix the scanning
direction for a picture from the top-left corner toward the bottom right one.
Moreover, to easily detect border positions of pictures, we use initials of words
“top”, “bottom”, “left” and “right”; then, for example the tl-corner of p refers
to position (1, 1) while the br-corner refers to position (m,n). Furthermore, we
denote by rF (p), rL(p) ∈ Σn the first and the last row of p, respectively and
by cF (p), cL(p) ∈ Σm the first and the last column of p, respectively. Then, the
frame of p is frame(p) = (rF (p), rL(p), cF (p), cL(p)).

For the sequel, it is convenient to extend the notation for the frame of a
picture to languages. Let X ⊆ Σm,n. Let us denote by RF (X) ⊆ Σn the set
RF (X) = {rF (p) | p ∈ X} of the first rows of all pictures in X. In a similar
way, RL(X), CF (X), and CL(X) will denote the sets of the last rows, of the first
columns, and of the last columns of all pictures in X, respectively. The frame of
X is the quadruple frame(X) = (RF (X), RL(X), CF (X), CL(X)).

A subdomain of dom(p) is a set d of the form {i, i+1, . . . , i′}×{j, j+1, . . . , j′},
where 1 ≤ i ≤ i′ ≤ m, 1 ≤ j ≤ j′ ≤ n, also specified by the pair [(i, j), (i′, j′)].
The portion of p corresponding to positions in subdomain [(i, j), (i′, j′)] is
denoted by p[(i, j), (i′, j′)]. Then, a non-empty picture x is subpicture of p if
x = p[(i, j), (i′, j′)], for some 1 ≤ i ≤ i′ ≤ m, 1 ≤ j ≤ j′ ≤ n; we say that x
occurs at position (i, j) (its tl-corner).

Observe that the notion of subpicture generalizes very naturally to two
dimensions the notion of substring. On the other hand, the notions of prefix
and suffix of a string implicitly assume the left-to-right reading direction. In two
dimensions, there are four corners and four scanning-directions from a corner
toward the opposite one. Hence, we introduce the definition of four different
“prefixes” of a picture, each one referring to one corner.

Given pictures p ∈ Σm,n, x ∈ Σh,k, with 1 ≤ h ≤ m, 1 ≤ k ≤ n, we say that
x is a tl-prefix of p if x is a subpicture of p occurring at position (1, 1); x is a
tr-prefix of p if x is a subpicture of p occurring at position (1, n − k + 1); x is a
bl-prefix of p if x is a subpicture of p occurring at position (m − h + 1, 1); x is a
br-prefix of p if x is a subpicture of p occurring at position (m−h+1, n−k+1).

Some operations can be defined on pictures. Let p, q ∈ Σ∗∗ be pictures of
size (m,n) and (m′, n′), respectively. The column and the row concatenation of
p and q are defined by horizontally and vertically juxtaposing p and q and are
denoted by p � q and p � q, respectively. They are partial operations, defined
only if m = m′ and if n = n′, respectively. The reverse operation on strings
can be generalized to pictures and gives rise to two different mirror operations
(called row - and col -mirror) obtained by reflecting with respect to a vertical

20 M. Anselmo et al.

and a horizontal axis, respectively. Another operation that has no counterpart
in one dimension is the rotation. The rotation of a picture p of size (m,n), is the
clockwise rotation of p by 90◦, denoted by p90

◦
. Note that p90

◦
has size (n,m).

All the operations defined on pictures can be extended in the usual way to sets
of pictures.

We conclude by remarking that any string s = y1y2 · · · yn can be identified
either with a single-row or with a single-column picture.

3 Overlaps in Strings and in Pictures

In the string theory, patterns and overlaps are widely investigated. Two strings
s and s′ overlap if there exists a string x that is a suffix of s and a prefix of
s′, or vice versa; we will equivalently say that s overlaps s′. In this framework,
the cross-bifix-free sets have been introduced in [13] by taking back a notion
introduced in early sixties. A set of strings X is cross-bifix-free when no prefix
of any string is the suffix of any other string in X (i.e. no two strings in X
overlaps); it is non-expandable if no other element can be added to X without
falsifying the property of the set.

The case when a string overlaps with itself leads to the notions of border (or
bifix) of a string and unbordered (or bifix-free) strings. A string x that is both
prefix and suffix of s is called a border or a bifix of s. The empty string and
s itself are trivial borders of s. A string s is unbordered or bifix-free if it has
no borders other than the trivial ones. In [30] Nielsen proposed a procedure to
generate all bifix-free strings of a given length that is based on a property of
string borders; we will give some details of this procedure in Sect. 4.

This notion of overlap of strings can be extended very naturally to two dimen-
sions by taking into account that now four different corners exist. Informally, we
say that two pictures p and q overlap when we can find the same rectangular
portion at a corner of p and at the opposite corner of q. Observe that there
are two different kinds of overlaps depending on the pair of opposite corners
involved. The definitions here reported can be found in [9].

Definition 1. Let p ∈ Σm,n and q ∈ Σm′,n′
.

The pictures p and q tl-overlap if there exists a picture x ∈ Σh,k, with 1 ≤
h ≤ min{m,m′} and 1 ≤ k ≤ min{n, n′}, which is a tl-prefix of p and a br-prefix
of q, or vice versa.

The pictures p and q bl-overlap if there exists a picture x ∈ Σh,k, with
1 ≤ h ≤ min{m,m′} and 1 ≤ k ≤ min{n, n′}, which is a bl-prefix of p and
a tr-prefix of q, or vice versa.

The pictures p and q overlap if they tl-overlap or they bl-overlap.
The picture x is called an overlap of p and q, and its size (h, k) is the size of

the overlap.

For the sequel, it is useful to identify some special cases of picture overlaps
and we list them in the definition below. Note that the same overlap can be of
different types. Let p ∈ Σm,n and q ∈ Σm′,n′

, then

Avoiding Overlaps in Pictures 21

p and q properly overlap if they have an overlap x with x �= p and x �= q
p and q h-slide overlap if they have an overlap x ∈ Σh,k with h = m = m′

p and q v-slide overlap if they have an overlap x ∈ Σh,k with k = n = n′

p and q frame-overlap if they have an overlap x ∈ Σh,k with h = 1 or k = 1.

Examples are given in Fig. 1.

0 1 1

1 1 0

1 0 0

1 0

1 0

0 1 1 0

0 1 1

1 1 0

1 0 0

0

0

0

0 1 1

1 1 0

1 0 0

0 1 1

0 0 1 1

1 1 1 0

1 1 0 0

0 1 1

0 0

1 1

Fig. 1. From left to right: a pair of pictures that tl-overlap, h-slide overlap, v-slide
overlap, frame-overlap (and also bl-overlap).

Consider now the case when a picture overlaps with itself; this case leads to
the generalization of the notion of border from strings to pictures.

Definition 2. Given pictures p ∈ Σm,n and x ∈ Σm′,n′
, with 1 ≤ m′ ≤ m and

1 ≤ n′ ≤ n, the picture x is a tl-border of p, if x is a subpicture of p occurring
at position (1, 1) and at position (m−m′ +1, n−n′ +1); picture x is a bl-border
of p, if x is a subpicture of p occurring at position (m−m′ +1, 1) and at position
(1, n − n′ + 1) Moreover x is a border of p if it is either a tl- or a bl-border.

As special cases, p is a trivial border of itself, and x is a proper border of p
if it is not trivial. A tl-border is called a diagonal border in [23]. Notice that
a tl-border x of a picture p of size (m,n) can be univocally detected either by
giving the position where it occurs in p (besides position (1, 1)) or by giving its
size. The same holds for bl-borders. Examples of pictures together with their
borders are given below.

0 1 0 0 0 0
1 1 0 1 1 1
0 0 1 1 1 0
0 1 1 0 1 0
1 1 1 1 1 0

1 0 0 1 0
1 1 0 1 1
1 1 1 0 0
1 0 1 1 0
1 1 1 1 0
0 0 0 1 0

0 0 1
1 1 1
0 1 1

0 1 0 0
1 1 1 1
0 0 1 1
0 1 0 0
1 1 1 1

Note that if a picture p has a tl-border x, then the rotation p90
◦

has a bl-
border (that coincides with x90◦

). In the figure above, the second picture is the
rotation of the first one.

Definition 3. A picture p ∈ Σm,n is bordered if there exists a picture x that
is a proper border of p. Picture p is unbordered (or border-free) if it is not
bordered.

22 M. Anselmo et al.

In the next two sections we consider two main problems. Firstly we discuss
the problem of generating the set of all unbordered pictures of fixed size and
secondly we study sets of unbordered pictures that also do not overlap each
others and that are non-expandable. Such sets, we call NENO sets, are the
generalization to two dimensions of cross-bifix-free sets of strings.

4 Unbordered Pictures

The aim of this section is to construct all the unbordered pictures of a fixed size
(m,n). Some of the results in this section can be also found in [5]. Let us denote
by UΣ(m,n), or simply U(m,n), when the alphabet can be omitted, the set of
all unbordered pictures of size (m,n) over the alphabet Σ.

Few simple results useful in determining the unbordered pictures can be
immediately listed. They hold for any alphabet Σ and integers m,n ≥ 1.

The set UΣ(m,n) is closed with respect to the col- and row-mirror operations,
and with respect to permutation of symbols in Σ. Moreover, UΣ(m,n)90

◦
=

UΣ(n,m). The first row (column, resp.) of an unbordered picture p of size (m,n)
must be different from its last one, otherwise p would have a border of size (1, n)
((m, 1), respectively).

The opposite corners of an unbordered picture p of size (m,n) must contain
different symbols otherwise p would have a border of size (1, 1). This last simple
remark allows to give a bound on the cardinality of the set of all unbordered
pictures, |U(m,n)| ≤ 1/4|Σm,n|.

The unbordered pictures of size (1, n) or (m, 1) coincide with the unbordered
strings, which have been widely investigated in the literature. In particular, as
we recalled in the previous section, Nielsen proposed a recursive procedure to
generate all bifix-free strings of a given length (cf. [30]). Let us report briefly the
main steps of this construction.

The construction is based on the result that a string s of length n is unbor-
dered if and only if it has no “short” border, that is no border of length i for
1 ≤ i ≤ �n/2	. Unbordered strings of length n are constructed from unbordered
strings of shorter length, by inserting extra symbols in the central positions.
The starting set of unbordered strings of length 2 is simply the set of all strings
ab with a, b ∈ Σ and a �= b. Then, the unbordered strings of odd length n are
obtained by inserting any symbol in the middle of any unbordered string of
length n − 1. The unbordered strings of even length n are obtained by inserting
two symbols in the middle of any unbordered string of length n−2 and excluding
those strings that have a border of length n/2.

Before studying the general case let us consider the case of the binary alpha-
bet Σ = {0, 1} and of pictures of “small” size. It is immediate to see that there
are no unbordered pictures of size (2, 2), since there is no way to have different
opposite corners and different first and last row. For similar reasons there are no
unbordered pictures of sizes (2, 3), (3, 2) and (3, 3). The “smallest” unbordered
pictures are of size (4, 2) and they all are listed below:

Avoiding Overlaps in Pictures 23

0 0
1 0
0 1
1 1

,

0 0
0 1
1 0
1 1

,

1 1
0 1
1 0
0 0

,

1 1
1 0
0 1
0 0

.

To generate the 40 unbordered pictures of size (4, 3) we can generalize
Nielsen’s construction, and construct them by inserting a suitable middle row
in the unbordered pictures of size (4, 2) listed above. Unfortunately, this proce-
dure does not work when the size of pictures grows, as shown by the following
example.

Example 4. The following picture of size (5, 4) is unbordered but it cannot be
obtained by insertion of a row or a column in a middle position of a smaller
picture. All the pictures obtained by deleting either the third row or the second
column or the third column (or both the second and the third column) are
bordered pictures.

0 1 0 1
0 1 0 0
0 1 1 1
0 0 0 0
0 0 1 1

The main reason why Nielsen’s construction of unbordered strings can not
be directly generalized to pictures (as in Example 4), is that the result that any
string with a “long” border has necessarily a “short” border too, does not hold
in two dimensions. For pictures we have the following weaker result claiming
that if a picture has a “large” border then it necessarily has a “small” or a
“middle” border. More precisely, [5], if a picture p ∈ Σm,n has a border of size
(i, j) with i ≥ �m/2	 + 1 and j ≥ �n/2	 + 1 then p has a border of size (h, k)
with h ≤ �m/2	 or k ≤ �n/2	.

A simple generalization of Nielsen’s construction to pictures, presented in [5],
produces the family of quasi-unbordered pictures, which is a family containing
all unbordered pictures. In the sequel, we will recall such construction and then
discuss the ways to obtain the set of unbordered pictures of given size from the
family of quasi-unbordered pictures of that size. Notice that in the special case
of one-row pictures, identifiable with strings, the quasi-unbordered pictures are
exactly the unbordered strings and the construction presented below coincides
with Nielsen’s construction.

Definition 5. A picture p ∈ Σm,n is quasi-unbordered if p has no border at
position (i, j) with 1 ≤ i ≤ m and
n/2� + 1 ≤ j ≤ n.

Informally, a picture is quasi-unbordered if it has no border occurring in its right
side. The set of all quasi-unbordered pictures of size (m,n) over an alphabet Σ
is denoted by QΣ(m,n), or simply Q(m,n), when the alphabet can be omitted.
Observe that U(m,n) ⊆ Q(m,n). Moreover, a quasi-unbordered picture either is
an unbordered picture or it necessarily has a border of size (i, j), with i ≤
m/2�
and j > �n/2	 (and possibly a large one).

24 M. Anselmo et al.

In the following, the set Q(m,n) is constructed in a recursive way by the
insertion of one column in the middle of pictures in Q(m,n − 1). We introduce
first some formal notations. For any picture p ∈ Σm,n, the left side of p is the
subpicture pL = p[(1, 1), (m,
n/2�)], containing the first
n/2� columns of p,
and the right side of p is the subpicture pR = p[(1,
n/2�+1), (m,n)] containing
the remaining columns. Hence p = pL � pR.

The picture obtained by inserting in the “middle” of p a column c ∈ Σm,1

is denoted p‖c = pL � c � pR. We also define the inverse operation of removing
the central column in a picture. More exactly, if n is odd, then p∦ denotes the
picture obtained by removing the
n/2�-th column; if n is even, then p∦ denotes
the picture obtained by removing the (n/2 + 1)-th column.

We are now ready to sketch the algorithm that provides the set Q(m,n) of
quasi-unbordered pictures of a given size (m,n) (see [5] for more details). It
consists in the following two steps.

1. Construct Q(m, 2).
2. Recursively construct Q(m,n) from Q(m,n − 1) as follows.

If n is odd then define Q(m,n) as the set of all pictures p‖c for all p ∈
Q(m,n − 1), c ∈ Σm,1.
If n is even then define Q(m,n) as the set of all pictures p‖c for all p ∈
Q(m,n − 1), c ∈ Σm,1, such that p‖c has no border occurring at a position
in c.

A detailed example of this construction can be found in [5].
After having recalled the construction for the quasi-unbordered pictures let

us now come back to the unbordered pictures. We discuss here more in detail the
advantages of using such construction as an intermediate step in the construction
of the unbordered ones.

Recall that U(m,n) ⊆ Q(m,n). In the special case of one-row pictures, iden-
tifiable with strings, Q(1, n) = U(1, n), for any n ≥ 1. In the general case,
Q(m,n) contains all unbordered pictures in U(m,n), but it may also contain
some bordered pictures which are characterized by the occurrence of a “middle”
border in their left side.

In order to estimate the overhead of considering the set Q(m,n) as interme-
diate step for obtaining U(m,n), note that the difference in size of the two sets
sensibly decreases when n grows. This can be easily understood if we think that
the probability that a picture has a border with more than n/2 columns sensibly
decreases when n grows. More precisely, the following result holds.

Proposition 6. Let m,n, h be positive integers, 1 ≤ h ≤ �m/2	, and Σ be an
alphabet. The probability P (m,n, h) that a random picture p in QΣ(m,n) has
a border in its left part of size (h, k) for some
n/2� ≤ k ≤ n is such that
limn→∞ P (m,n, h) = 0.

Proof. Let p ∈ QΣ(m,n) and m,n, h, k be fixed as in the statement and let
P (m,n, h, k) be the probability that p has a border x in its left part of size
(h, k). Since the two occurrences of the border x inside p do not overlap,

Avoiding Overlaps in Pictures 25

P (m,n, h, k) = 1
|Σ|hk . Suppose that n is even (the case of n odd goes similarly).

Then, P (m,n, h) = P (m,n, h, n/2) + P (m,n, h, n/2 + 1) + · · · + P (m,n, h, n).

By simple calculations one obtains that P (m,n, h) = 1
|Σ|hn/2 · 1− 1

|Σ|h(n/2+1)

1− 1
|Σ|h

.

Hence, limn→∞ P (m,n, h) = 0. �
Let us now consider the problem of extracting U(m,n) from Q(m,n).
A first solution consists in considering any picture p in Q(m,n) and test

whether it has a “middle” border in its left side. Notice that this procedure is
more efficient (at least in terms of the necessary comparisons) than the one of
taking any picture in Σm,n and test whether it has a border of any size inside the
whole picture. A simple bound on |Q(m,n)| is |Q(m,n)| ≤ 1/4|Σm,n|, for any
m,n ≥ 2, since opposite corners in quasi-unbordered pictures must be different.

A second way to obtain U(m,n), once Q(m,n) is constructed, is provided by
the following result, where Q(m,n)rev denotes the col-mirror of Q(m,n).

Proposition 7. For any m,n ≥ 2, U(m,n) = Q(m,n) ∩ Q(m,n)rev.

Proof. Recall that by definition Q(m,n) is the set of all pictures with no border
in their right sides. Then, Q(m,n)rev is the set of all pictures with no border
in their left sides. The intersection of these two sets gives the set of all pictures
with no border at all, that is U(m,n). �

The previous proposition motivates a further investigation to find a clever
procedure to generate Q(m,n) and Q(m,n)rev in such a way to easily perform
the intersection operation.

5 Non-overlapping Sets of Pictures

In this section we consider the generalization to two dimensions of the notion of
cross-bifix-free sets of strings, introduced in [13]. They are special sets of unbor-
dered pictures such that all the pictures do not overlap each others. Moreover,
in analogy to the case of cross-bifix-free sets of strings, we will consider sets of
pictures of fixed size.

Definition 8. A set of pictures X ⊆ Σm,n is non-overlapping if for any p, q ∈
X, p and q do not properly overlap.

A set X ⊆ Σm,n is non-expandable non-overlapping, NENO for short, if X
is non-overlapping and for any p ∈ Σm,n \X, there exists q ∈ X such that p and
q overlap.

We here consider the problem of constructing NENO sets, continuing the
investigation in [9] where all the missing proofs can be found.

Notice that a way to obtain a NENO set X of pictures of size (m,n) is to
consider the set U(m,n) of all unbordered pictures, constructed following the
results in Sect. 4; pick a picture p ∈ U(m,n) and put in X; then add one by one
the other pictures in U(m,n) after checking that they do not cause conflicts.

26 M. Anselmo et al.

For example, a NENO set X of pictures of size (4, 2), can be obtained from the
set U(4, 2) shown in Sect. 4. By an exhaustive procedure, one can show that,
for any picture p ∈ U(4, 2), the set {p} is a NENO set. This kind of technique
does not shed light on the structure of NENO sets. Indeed, our aim is to give a
description of some families of NENO sets.

In general it seems not too complicate to construct sets of non-overlapping
pictures by selecting ad-hoc pictures; the hard part is to let them satisfy the
non-expandability property. In [9] the problem is tacked in a sort of reverse way.
First, it is generated a set of pictures X non-expandable with respect to the non-
overlapping property. This set X is defined by imposing particular conditions
only on the frames of the pictures. Then, the problem is reduced to finding a non-
overlapping set inside such X, by stating some conditions on the internal part
of the pictures. We briefly report here the main steps of this procedure (all the
proofs can be found in [9]) and subsequently, we discuss some questions related
to the choice of the conditions on the internal part of the pictures. Moreover we
introduce some significant new examples of NENO sets.

Recall that the frame of a picture language X is the quadruple of the sets of its
first and last rows and columns, frame(X) = (RF (X), RL(X), CF (X), CL(X)).
Note that not any quadruple (S1, S2, S3, S4) of string languages S1, S2 ⊆ Σn

and S3, S4 ⊆ Σm, can be the frame of a set of pictures since the corresponding
strings need to match in the corner positions. If there exists a picture language
X ⊆ Σm,n such that frame(X) = (S1, S2, S3, S4) we say that the quadruple is
frame-compatible.

The following definition captures a sufficient condition for a set X to be non-
expandable with respect to the overlapping. (Note that pictures inside X could
possibly overlap each others).

Definition 9. Let X ⊆ Σm,n. X is frame-complete if for any p, q ∈ X, p and q
do not frame-overlap, and if for any picture p ∈ Σm,n \ X there exists a picture
q ∈ X such that p and q frame-overlap.

Frame-complete sets of pictures can be constructed by exploiting the follow-
ing proposition.

Proposition 10. Let S1, S2 ⊆ Σn, S3, S4 ⊆ Σm and (S1, S2, S3, S4) be a
quadruple of frame-compatible string languages. If for each pair (M,N) =
(S1, S2) or (M,N) = (S3, S4) the following properties hold

1. M ∩ N = ∅.
2. for any u ∈ M , v ∈ N , u and v do not overlap.
3. for any w /∈ M ∪ N , there exist u ∈ M , v ∈ N such that w and u overlap,

and w and v overlap

then the set X of all the pictures p with frame(p) ∈ S1 × S2 × S3 × S4 is
frame-complete.

The next proposition states some sufficient conditions for a subset Y of a
frame-complete set X to be NENO. The idea is that, providing that Y has the

Avoiding Overlaps in Pictures 27

same frame as X, we can choose Y as a maximal non-overlapping set inside X.
Moreover, in order to choose the pictures in Y , we need only to check overlaps
of size (h, k) with h, k ≥ 2; that is we do not need to take care of frame-overlaps
in this next step.

Proposition 11. Let X ⊆ Σm,n be a frame-complete set. If a subset Y of X is
such that

(a) frame(Y) = frame(X)
(b) Y is non-overlapping
(c) for any p ∈ X \ Y there exists q ∈ Y such that p and q overlap

then Y is a NENO set.

A first example of a NENO set is given in [9] by exploiting Proposition 11.
A particular frame is chosen in a way that the set X of all pictures with that
frame is frame-complete and then the NENO set Y is extracted from X. It was
not clear the role of the frame in extracting Y . The problem whether, once fixed
the frame, the set Y was uniquely determined, was left open. Here, we show that
there can be different NENO sets with the same frame. Let us start defining the
frame.

Example 12. Let Σ = {0, 1} and let F = (S1, S2, S3, S4) be a quadruple of string
languages defined as follows:

– S1 = {1w0 | |w| = n − 2, w �= 0n−2, w with no suffix in 110∗} ⊆ Σn

– S2 = {110n−2} ⊆ Σn

– S3 = {1w1 | w ∈ {0, 1}m−2} ⊆ Σm

– S4 = {0m} ⊆ Σm

After comparing the first and last symbols of the strings in Si, we note that F
is frame-compatible. Let us show that the pairs (S1, S2) and (S3, S4) verify all
the conditions in Proposition 10.

Consider the pair (S1, S2). The sets S1 and S2 are disjoint and no strings
u ∈ S1 and v ∈ S2 overlap by definition. Let s be any string s /∈ S1 ∪ S2. If
s = 0x then s overlaps any string in S1 and the string in S2 with an overlap of
length 1. If s = 1y1 then s overlaps any string in S1 and the string in S2 with an
overlap of length 1. If s = 1z0 then, since s /∈ S1, two cases are possible: either
z ∈ 0∗ or z has a suffix, say r, in 110∗. In the first case, s overlaps some string
in S1 with an overlap of length 2 and s overlaps the string in S2 with an overlap
of length |s| − 1. In the second case s overlaps some string in S1 with an overlap
of length |r| and s overlaps the string in S2 with an overlap of length |r| + 1.

Consider now the pair (S3, S4). The sets S3 and S4 are disjoint and no strings
in S3 can be overlapped with a string in S4. Moreover, let s be any string
s /∈ S3∪S4. Two cases are possible: s = 0x or s = 1y. In the first case, s overlaps
the string in S4 with an overlap of length 1. Moreover, since s /∈ S4, we can write
s = 0k1r for some k ≥ 1, and then s overlaps some string in S3 with an overlap
of length k + 1. In the second case, s overlaps any string in S3 with an overlap

28 M. Anselmo et al.

of length 1. Moreover, since s /∈ S3, we have s = 1z0 and therefore s overlaps
the string in S4 with an overlap of length 1.

Finally, by Proposition 10, we can affirm that the set of all the pictures in
Σm,n that have frame in (S1, S2, S3, S4) is frame-complete.

We now define a set P (m,n) of pictures of size (m,n), which have the quadru-
ple (S1, S2, S3, S4) of Example 12 as their frame, while their internal part is filled
with all 0’s, apart for the positions in the second column that can hold either 0
or 1. See the leftmost picture in Fig. 2 for a generic picture in P (m,n), where
x, y, w ∈ {0, 1}∗, w �= 0n−2, and w has no suffix in 110∗.

Definition 13. Let Σ = {0, 1} and m,n ≥ 4. Let S1, S2 ⊆ Σn and S3, S4 ⊆ Σm

be the languages S1 = {1w0 | |w| = n − 2, w �= 0n−2, w with no suffix in 110∗},
S2 = {110n−2}, S3 = {1w1 | w ∈ {0, 1}m−2} and S4 = {0m}. Let X(m,n) ⊆
Σm,n be the set of all the pictures p with frame(p) ∈ S1 × S2 × S3 × S4.

The set P (m,n) ⊆ X(m,n) is the set of all the pictures p ∈ X(m,n) such
that p(i, j) = 0 for 2 ≤ i ≤ m − 1 and 3 ≤ j ≤ n − 1.

Proposition 14. The language P (m,n) in Definition 13 is a NENO set, for
any m,n ≥ 4.

Proof. Let X(m,n) and P (m,n) be the languages defined in Definition 13. The
set X(m,n) is frame-complete as shown in Example 12. Let us show that P (m,n)
satisfies the conditions (a), (b), and (c), of Proposition 11.

(a) frame(P (m,n)) = frame(X(m,n))
It is obvious.

(b) P (m,n) is non-overlapping.
Let p, q ∈ P (m,n). The pictures p and q cannot frame-overlap, because
the pairs (RF (X(m,n)), RL(X(m,n))), (CF (X(m,n)), CL(X(m,n))) sat-
isfy condition 2 of Proposition 10 (as shown in Example 12).
The pictures p and q cannot h-slide overlap, because the last row of
any picture in P (m,n) is unbordered. The pictures p and q cannot v-
slide overlap because, for any p, q ∈ P (m,n), p(1, 3)p(1, 4) . . . p(1, n) �=
q(i, 3)q(i, 4) . . . q(i, n), for 2 ≤ i ≤ m.
Moreover, p and q cannot tl-overlap. Indeed, since they cannot h-slide or
v-slide overlap, and p(1, 1) = q(1, 1) = 1, then p and q could eventually
tl-overlap only with an overlap of size (h, n − 1) with 1 < h < m. But this
would imply that the first row of a picture in P (m,n) is of the form 1w0
with w = 0n−2 and this is impossible.
Finally, p and q cannot bl-overlap. Indeed, since they cannot h-slide or v-slide
overlap, and p(m, 1) = q(m, 1) = 1, we have that p and q could eventually
bl-overlap only with an overlap of size (h, n − 1) with 1 < h < m. But this
would imply that position (h, 3) of a picture in P (m,n) carries symbol 1
and this is impossible.

(c) For any p ∈ X(m,n) \ P (m,n) there exists q ∈ P (m,n) such that p and q
overlap.

Avoiding Overlaps in Pictures 29

1 w 0

0 . . . 0 0

x y
...

...
...

0 . . . 0
...

1 1 0 . . . 0 0

1 0 0 1 0

0 1 0 0

0 0 0 0

0

1 1 0 0 0

1 0 1 0 0

0 0

0 0

1 0 0 0 0

1 1 0 0 0

1 1 1 1 0

0

1 1 0 0

0

1 1 0 0 0

Fig. 2. From left to right: a generic picture in P (m,n) and three pictures in X(5, 5) \
T (5, 5) that violate condition (1), (2) and (3), respectively, in the positions in bold.

If p ∈ X(m,n)\P (m,n) then frame(p) ∈ S1×S2×S3×S4, but there exists
(i, j), with 2 ≤ i ≤ m−1 and 3 ≤ j ≤ n−1, such that p(i, j) = 1. Let (i0, j0)
be the rightmost among the lowest positions such that p(i0, j0) = 1. Then,
one can find in P (m,n) a picture q such that p and q tl-overlap, since there
exists in P (m,n) a picture q with its tl-prefix of size (m − i0 + 1, n − j0 + 1)
equal to the br-prefix of p of size (m − i0 + 1, n − j0 + 1). �

We now define another set of pictures T (m,n) with the same frame as
P (m,n). This time the positions in the internal part of the pictures can hold 0
or 1 everywhere, except for some special forbidden configurations. For example,
there cannot be rows with a suffix in 110+, or some particular L-shapes. Here
below is the formal definition, while some forbidden configurations are illustrated
in Fig. 2.

Definition 15. Let X(m,n) ⊆ Σm,n be the set given in Definition 13. The set
T (m,n) ⊆ X(m,n) is the set of all the pictures p ∈ X(m,n) such that

1. if there exists (i, j), with 2 ≤ i ≤ m − 1 and 2 ≤ j ≤ n − 2, such that
p(i, 1) = p(i, 2) = . . . = p(i, j) = 0 and p(1, j) = p(2, j) = . . . = p(i−1, j) = 0,
then there exists (i′, j′), with 1 ≤ i′ < i and 1 ≤ j′ < j − 1, such that
p(i′, j′)p(i′, j′ + 1) . . . p(i′, j) ∈ 110+.

2. there exists no index i, 2 ≤ i ≤ m−1, such that p(i, 1) = 1, p(i, 2) = p(i, 3) =
. . . = p(i, n − 1) = 0 and p(1, n − 1) = p(2, n − 1) = . . . = p(i − 1, n − 1) = 0.

3. there exists no (i, j), with 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 1, such that
p(i, j)p(i, j + 1) . . . p(i, n) ∈ 110+.

Proposition 16. The language T (m,n) in Definition 15 is a NENO set, for any
m,n ≥ 4.

Proof. The set X(m,n) is frame-complete (see Example 12). Let us show that
T (m,n) satisfies conditions (a), (b), and (c), of Proposition 11. Condition (a) is
trivially true.

(b) T (m,n) is non-overlapping.
Let p, q ∈ T (m,n). The pictures p and q cannot frame-overlap, because the
pairs (RF (X(m,n)), RL(X(m,n))), (CF (X(m,n)), CL(X(m,n))) satisfy
condition 2. of Proposition 10 (as shown in Example 12).

30 M. Anselmo et al.

The pictures p and q cannot h-slide overlap, because the last row of any
picture in T (m,n) is unbordered. The pictures p and q cannot v-slide overlap
because of condition (3) in the definition of T (m,n).
Moreover, p and q cannot tl-overlap. Indeed, suppose that p and q tl-overlap
with an overlap of size (h, k) and w.l.o.g. suppose that the tl-corner of p is
inside q.
If k = n − 1 then p violates condition (2) with i = h.
If k < n−1, then we have p(h, 1) = p(h, 2) = . . . = p(h, k) = 0 and p(1, k) =
p(2, k) = . . . = p(h − 1, k) = 0. By condition (1), there exists (i′, j′), with
1 ≤ i′ < h and 1 ≤ j′ < k−1, such that p(i′, j′)p(i′, j′+1) . . . p(i′, k) ∈ 110+.
Therefore, picture q violates condition (3) in its (m − h + i′ + 1)-th row.
Finally, p and q cannot bl-overlap. Indeed, suppose that p and q bl-overlap
with an overlap of size (h, k) and w.l.o.g. suppose that the bl-corner of p is
inside q. In this case q violates condition (3) in position (h, n − k + 1).

(c) For any p ∈ X(m,n) \ T (m,n) there exists q ∈ T (m,n) such that p and q
overlap.
If p ∈ X(m,n) \ T (m,n) then frame(p) ∈ S1 × S2 × S3 × S4, but p does
not satisfy at least one condition among (1), (2) and (3) in Definition 15.
Let (i0, j0) be the highest position of p that violates some condition.
If in position (i0, j0) condition (1) is violated, then there exists q ∈ T (m,n)
with the br-prefix of q of size (i0, j0) equal to the tl-prefix of p of the same
size i.e. p and q tl-overlap. Note that the maximality of (i0, j0) implies that
q does not violate neither condition (1) nor condition (2). Moreover, since
there exists no (i′, j′), with 1 ≤ i′ < i0 and 1 ≤ j′ < j0 − 1, such that
p(i′, j′)p(i′, j′ + 1) . . . p(i′, j0) ∈ 110+, then q does not violate condition (3).
Similar reasonings show that there exists q ∈ T (m,n) such that p and q
tl-overlap, also when in position (i0, j0) condition (2) or (3) is violated. �

We have defined two NENO sets of pictures P (m,n) and T (m,n) with the same
frame. Note that the two languages are different, actually they are disjoint. It
would be interesting to investigate the relationships among NENO sets with the
same frame together with the role of the frame in their definitions.

References

1. Aigrain, P., Beauquier, D.: Polyomino tilings, cellular automata and codicity. The-
oret. Comput. Sci. 147, 165–180 (1995)

2. Anselmo, M., Giammarresi, D., Madonia, M.: Deterministic and unambiguous fam-
ilies within recognizable two-dimensional languages. Fund. Inform. 98(2–3), 143–
166 (2010)

3. Anselmo, M., Giammarresi, D., Madonia, M.: Strong prefix codes of pictures. In:
Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp.
47–59. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40663-8 6

4. Anselmo, M., Giammarresi, D., Madonia, M.: Two dimensional prefix codes of
pictures. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 46–57.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38771-5 6

http://dx.doi.org/10.1007/978-3-642-40663-8_6
http://dx.doi.org/10.1007/978-3-642-38771-5_6

Avoiding Overlaps in Pictures 31

5. Anselmo, M., Giammarresi, D., Madonia, M.: Unbordered pictures: properties and
construction. In: Maletti, A. (ed.) CAI 2015. LNCS, vol. 9270, pp. 45–57. Springer,
Cham (2015). doi:10.1007/978-3-319-23021-4 5

6. Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambiguous recogniz-
able two-dimensional languages. ITA 40(2), 227–294 (2006)

7. Anselmo, M., Giammarresi, D., Madonia, M.: A computational model for tiling
recognizable two-dimensional languages. Theor. Comput. Sci. 410(37), 3520–3529
(2009)

8. Anselmo, M., Giammarresi, D., Madonia, M.: Prefix picture codes: a decidable class
of two-dimensional codes. Int. J. Found. Comput. Sci. 25(8), 1017–1032 (2014)

9. Anselmo, M., Giammarresi, D., Madonia, M.: Non-expandable non-overlapping
sets of pictures. Theor. Comput. Sci. 657, 127–136 (2017)

10. Anselmo, M., Giammarresi, D., Madonia, M.: Picture codes and deciphering delay.
Inf. Comput. 253, 358–370 (2017)

11. Anselmo, M., Giammarresi, D., Madonia, M.: Structure and properties of strong
prefix codes of pictures. Math. Struct. Comput. Sci. 27(2), 123–142 (2017).
http://journals.cambridge.org/article-S0960129515000043

12. Anselmo, M., Madonia, M.: Two-dimensional comma-free and cylindric codes.
Theor. Comput. Sci. 658, 4–17 (2017)

13. Bajic, D.: On construction of cross-bifix-free kernel sets. In: 2nd MCM COST 2100,
Lisbon, Portugal (2007)

14. Bajic, D., Loncar-Turukalo, T.: A simple suboptimal construction of cross-bifix-free
codes. Crypt. Commun. 6(1), 27–37 (2014)

15. Barcucci, E., Bernini, A., Bilotta, S., Pinzani, R.: Cross-bifix-free sets in two dimen-
sions. Theor. Comput. Sci. 664, 29–38 (2017)

16. Barcucci, E., Bernini, A., Bilotta, S., Pinzani, R.: Non-overlapping matrices. Theor.
Comput. Sci. 658, 36–45 (2017)

17. Beauquier, D., Nivat, M.: A codicity undecidable problem in the plane. Theor.
Comp. Sci 303, 417–430 (2003)

18. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press, Cambridge (2009)

19. Bilotta, S., Pergola, E., Pinzani, R.: A new approach to cross-bifix-free sets. IEEE
Trans. Inf. Theory 58(6), 4058–4063 (2012)

20. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: SWAT (FOCS), pp.
155–160 (1967)

21. Bozapalidis, S., Grammatikopoulou, A.: Picture codes. ITA 40(4), 537–550 (2006)
22. Chee, Y.M., Kiah, H.M., Purkayastha, P., Wang, C.: Cross-bifix-free codes within

a constant factor of optimality. IEEE Trans. Inf. Theory 59(7), 4668–4674 (2013)
23. Crochemore, M., Iliopoulos, C.S., Korda, M.: Two-dimensional prefix string match-

ing and covering on square matrices. Algorithmica 20(4), 353–373 (1998)
24. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific, Singapore

(2002). http://www-igm.univ-mlv.fr/ mac/JOS/JOS.html
25. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. J. Pattern

Recognit. Artif. Intell. 6(2–3), 241–256 (1992)
26. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-

maa, A. (eds.) Handbook of Formal Languages, vol. III, pp. 215–268. Springer,
Heidelberg (1997)

27. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

http://dx.doi.org/10.1007/978-3-319-23021-4_5
http://journals.cambridge.org/article-S0960129515000043
http://www-igm.univ-mlv.fr/ mac/JOS/JOS.html

32 M. Anselmo et al.

28. Kari, J., Salo, V.: A survey on picture-walking automata. In: Kuich, W., Rahonis,
G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020, pp. 183–
213. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24897-9 9

29. Kolarz, M., Moczurad, W.: Multiset, set and numerically decipherable codes over
directed figures. In: Arumugam, S., Smyth, W.F. (eds.) IWOCA 2012. LNCS, vol.
7643, pp. 224–235. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35926-2 25

30. Nielsen, P.T.: A note on bifix-free sequences. IEEE Trans. Inf. Theory 19(5), 704–
706 (1973)

31. Pradella, M., Cherubini, A., Crespi-Reghizzi, S.: A unifying approach to picture
grammars. Inf. Comput. 209(9), 1246–1267 (2011)

http://dx.doi.org/10.1007/978-3-642-24897-9_9
http://dx.doi.org/10.1007/978-3-642-35926-2_25

Descriptional Complexity and Operations – Two
Non-classical Cases

Jürgen Dassow(B)

Fakultät für Informatik, Otto-von-Guericke-Universität Magdeburg,
PSF 4120, 39016 Magdeburg, Germany
dassow@iws.cs.uni-magdeburg.de

Abstract. For a language family L, a syntactic complexity measure K
defined on languages of L, a number n ≥ 1, and an n-ary operation ◦
under which L is closed, we define gK◦ (m1,m2, . . . ,mn) as the set of all
integers r such that there are n languages Li, 1 ≤ i ≤ n, with

K(Li) = mi for 1 ≤ i ≤ n and K(◦(L1, L2, . . . , Ln)) = r.

In this paper we study these sets for the operation union, catenation, star,
complement, set-subtraction, and intersection and the measure number
of accepting states (defined for regular languages) as well as for reversal,
union, catenation, and star and the measures number of nonterminals,
productions, and symbols (defined for context-free languages).

Moreover, we discuss the change of these sets if one restricts to finite
languages, unary languages, and finite unary languages.

1 Introduction

The state complexity sc(L) of a regular language L is defined as the mini-
mal number of states that are sufficient and necessary for a deterministic finite
automaton to accept L. The study of the state complexity of regular languages
is a central topic in theoretical computer science, but it has also large impor-
tance in applied fields. The first important results by Lupanov, Moore, Meyer,
Fischer and others date back to the sixties and seventies, i.e., to the beginning
of theoretical computer science.

In the last three decades the following problem was intensively investigated:
Given a binary regularity preserving operation ◦ and two numbers m and n,
determine the maximal number k (denoted by fsc

◦ (m,n)) such that there are
languages Lm and Ln with sc(Lm) = m, sc(Ln) = n and sc(Lm ◦ Ln) = k (we
have introduced the concept for binary operations, but the concept can be used
for unary, ternary etc. operations as well). Summaries on the study of fsc

◦ can
be found in the papers [8,25].

As for other problems concerning the state complexity, one has noticed that
the behaviour of the complexity under operations can considerably change if one
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 33–44, 2017.
DOI: 10.1007/978-3-319-60252-3 3

34 J. Dassow

Operation Regular Finite Reg. unary Fin. unary

Union mn mn − (m + n) ∼mn max{m,n}
Intersection mn mn − 3(m + n) + 12 ∼mn min{m,n}
Complement m m m m

Kleene plus 2m−1 + 2m−2 − 1 m (m − 1)2 m

Reversal 2m O(2O(m)) m m

restricts to finite or unary or finite unary languages. This can be seen from the
following table.

We mention that there are also many papers where other subfamilies of the
family of regular languages have been studied, e.g., star-free languages, union-
free languages, languages closed under certain subword operations. Examples for
such results can be found in [12,18].

There are also some results where instead of the maximal number fsc
◦ the set

gsc◦ of all numbers k such that there are languages Lm and Ln with sc(Lm) = m,
sc(Ln) = n, and sc(Lm ◦ Ln) = k is determined. We mention here three such
results.

– Complement: gscC (m) = {m} for m ≥ 1,
– Union: [16] gsc∪ (m,n) = {1, 2, . . . ,mn} for m ≥ 2 and n ≥ 2

– Kleene star: [17] gsc∗ (m) =
{{1, 2} for m = 1

{1, 2, . . . , 2m−1 + 2m−2} for m ≥ 2 .

Obviously, the problem of the behaviour of syntactic measures of complexity
under operations can be discussed in other cases, too, where one can change the
complexity measure and/or the considered type of automaton. We mention here
the following approaches.

The most natural extension of deterministic finite automata are nondeter-
ministic finite automata. The operational behaviour of the (nondeterministic)
state complexity is studied in [14] and summarized in [15].

The number of transitions is not of interest for complete deterministic finite
automata, but the situation changes if one allows incomplete finite automata.
In the papers [9,19], one can find results on the behaviour of the number of
transitions under operations.

In order to cover XML structures one has to extend usual finite automata and
comes to nested word automata or visibly pushdown automata or input-driven
pushdown automata. The state complexity of these automata under operations
is studied in the papers [1,20,21].

Another natural extension of finite automata over strings is given by tree
automata. There are also some results for their operational state complexity
(see [22,23]).

In this paper we summarize results on the behaviour of some further non-
classical measures of descriptional complexity under operations.

Descriptional Complexity and Operations 35

First we consider the number of accepting states instead of the number of (all)
states. For a regular language L, the number asc(L) is defined as the minimal
number of accepting states that are sufficient and necessary for a deterministic
finite automaton to accept L. We mention two points of interest in this measure:

– It was shown that, for two languages Lm and Ln with sc(Lm) = m and
sc(Ln) = n, the relation sc(Lm · Ln) ≤ m2n − asc(Lm) · 2n−1 holds for
m ≥ 2 and n ≥ 1, and that the bound is optimal. For the Kleene-closure and
the cut-operation, the complexity of the resulting language also depends on
the number of accepting states (see [6,8]).

– The complexity of algorithms for the minimization of Büchi automata and for
model checking based on Büchi automata depend on the number of accepting
states of the Büchi automaton (see [2,7]).

We determine the sets gasc◦ for union, complement, set-subtraction, Kleene
star, catenation, and intersection. Furthermore, we discuss variants of gasc◦ where
we restrict the sets Lm and Ln to be finite sets or regular unary sets and or
finite unary sets. The comparison shows that, for most operations, the situation
is similar for arbitrary regular, finite sets, and regular unary sets, whereas finite
unary sets show a completely different behaviour.

Some of these results were already published in [3].
Furthermore, we consider context-free languages and define their syntactic

complexity as the minimal number of nonterminals or productions or symbols
which is necessary to generate the language by context-free grammars. These
measures were introduced and studied by Gruska in [10,11]. We summarize some
results obtained in cooperation with Ralf Stiebe and Ronny Harbich (see [4,5,
13]) for the operational behaviour of these measures for arbitrary context-free
languages under reversal, union, catenation, and star. Moreover, we add results
for the case of finite, unary context-free, and finite unary languages. For the
number of variables, there is a large difference which comes from the fact that
the complexity for finite and unary context-free languages is bounded by one
or two. For the number of productions, it seems that the difference between
arbitrary and finite sets is essentially that we miss one or two “large” values.

2 Definitions and Notations

We assume that the reader is familiar with the basic notions of theory of
automata and formal languages; for details we refer to [24]. Essentially, we give
some notations and define the complexity measures of regular and context-free
languages which are considered in this paper.

By card(M), we denote the cardinality of a set M . The empty word is denoted
by λ. By N, we denote the set of all positive integers. If L is a language, then
we define the complement C(L) of L as the set of all words w ∈ V ∗ which are
not contained in L, where V is the minimal set (with respect to inclusion) with
L ⊆ V ∗.

36 J. Dassow

We specify a (deterministic) finite automaton as a tuple A = (Q,X, q0, F, δ)
where Q and X are finite sets of states and inputs, respectively, q0 ∈ Q is a
distinguished state (the initial state), F is a subset of Q (the set of accepting
states), and δ is a function from Q × X into Q. The language accepted by A is
denoted by L(A).

For a finite automaton A = (Q,X, q0, F, δ) and a regular language L, we set

asc(A) = card(F),
asc(L) = min{asc(A) | L(A) = L}.

A context-free grammar is specified as a quadruple G = (N,T, P, S) where
N and T are two finite and disjoint sets, P is a finite subset of N × (v ∪ N)∗,
and S is a distinguished element of N . The elements of N , T , and P are called
nonterminals, terminals, and productions, respectively, and S is called the axiom.
We write A → w instead of (A,w) ∈ P . By L(G), we denote the language
generated by G.

For a context-free grammar G = (N,T, P, S), we set

Var(G) = card(N),
Prod(G) = card(P), and

Symb(G) =
∑

A→w∈P

(|w| + 2).

Let K ∈ {Var,Prod,Symb}. For a context-free language L, we set

K(L) = min{K(G) | L(G) = L}.

For a language family L, a syntactic complexity measure K defined on lan-
guages of L, a number n ≥ 1, and an n-ary operation ◦ under which L is closed,
we define gK◦ (m1,m2, . . . ,mn) as the set of all integers r such that there are
n languages Li, 1 ≤ i ≤ n, with

K(Li) = mi for 1 ≤ i ≤ n and K(◦(L1, L2, . . . , Ln)) = r.

If we additional require that the languages Li, 1 ≤ i ≤ n, are finite or unary or
finite unary, we use the notations gK,f

◦ (m1,m2, . . . ,mn), gK,u
◦ (m1,m2, . . . ,mn),

and gK,f,u
◦ (m1,m2, . . . ,mn).

3 Number of Accepting States

In this section we only consider regular languages; therefore we omit the adjective
“regular”.

With respect to the measure number of accepting states, we consider
the operations complement, union, set-substraction, catenation, star, and
intersection.

We start with complement.

Descriptional Complexity and Operations 37

Theorem 1. The following relations hold for the operation complement:

gascC (m) = gasc,uC

⎧⎨
⎩

{1} for m = 0
{0} ∪ N for m = 1
N for m ≥ 2

gasc,fC (m) = gasc,f,uC (m) =
{{1} for m ∈ {0}
N for m ≥ 2 .

We see that the only difference is that 0 is not in gasc,fC (1) and not in
gasc,f,uC (1). This difference comes from the following observations:

– asc(∅) = 0 holds, and asc(L) ≥ 1 iff L is not empty.
– the complement of the empty set is the non-finite set V ∗ of all words (and
asc(V ∗) = 1).

We now give the results for union, set-subtraction, and star and compare
them afterwards.

Theorem 2. The following relations hold for the operation union:

gasc∪ (m,n) = gasc,u∪ (m,n) =

⎧⎨
⎩

{m} for n = 0,m ≥ 0
{n} for m = 0, n ≥ 0
N for m ≥ 1, n ≥ 1

,

gasc,f∪ (m,n) =

⎧⎪⎪⎨
⎪⎪⎩

{m} for n = 0,m ≥ 0
{n} for m = 0, n ≥ 0
N for m = n = 1
N \ {1} for m ≥ 1, n ≥ 1, m + n ≥ 3

,

gasc,f,u∪ (m,n) = {max{m,n},max{m,n} + 1, . . . , m + n}.

Theorem 3. The following relations hold for the operation set-subtraction:

gasc\ (m,n) = gasc,u\ =

⎧⎨
⎩

{0} for m = 0, n ≥ 0
{m} for n = 0,m ≥ 0
N ∪ {0} for m ≥ 1, n ≥ 1

,

gasc,f\ (m,n) =

⎧⎪⎪⎨
⎪⎪⎩

{0} for m = 0, n ≥ 0
{m} for n = 0,m ≥ 0
{0, 1} for m = 1, n ≥ 1,
N ∪ {0} for m ≥ 2, n ≥ 1

,

gasc,f,u\ (m,n) = {m,m − 1, . . . ,m − n}.

Theorem 4. The following relations hold for the operation star:

gasc∗ (m) = gasc,u∗ (m) =
{{1} for m = 0
N for m ≥ 1 ,

gasc,f∗ (m) = gasc,f,u∗ (m) =
{{1} for m ∈ {0, 1}
N for m ≥ 2 .

38 J. Dassow

First we mention that, for all these three operations union, set-subtraction,
and star, there is no difference between the situations for arbitrary sets and
arbitrary unary sets.

Moreover, for all these three operations, a difference between allowing arbi-
trary sets and restricting to finite sets only occurs for m = 1. In all cases,
essentially, it comes from the following lemma.

Lemma 1. Let L be a finite language. Then asc(L) = 1 if and only if L is
prefix-free (i.e., no prefix of w ∈ L, which is different from w, is in L).

If we now assume that asc(L ∪ L′) = 1, then Lm ∪ Ln is prefix-free, and
consequently Lm and Ln are prefix-free, too, which gives asc(L) = asc(L′) = 1.

Moreover, if asc(L) = 1 and thus L is prefix-free, we get that L \ L′ is
prefix-free for all languages L′. Therefore, we get

asc(L \ L′) =
{

0 if L ⊆ L′

1 otherwise .

However, we see that there are differences between the situations for finite
sets and finite unary sets at one hand and arbitrary unary sets and finite unary
sets at the other hand. These differences come from the fact that, for a unary
finite set L with n elements, we have asc(L) = n, from which the statements for
finite unary sets follow.

We now turn to catenation where we have no results – except for some trivial
cases – for unary sets.

Theorem 5. The following relations hold for the operation catenation:

gasc· (m,n) = gasc,u· (m,n) =
{{0} for min{m,n} = 0
N for m ≥ 1, n ≥ 1 ,

gasc,f· (m,n) = {0} for min{m,n} = 0
gasc,f· (m,n) ⊇ {n + k | k ≥ 0} for m ≥ 2, n ≥ 1

gasc,f,u· (m,n) =
{{0} for min{m,n} = 0

{k | m + n − 1 ≤ k ≤ m · n} for m ≥ 1, n ≥ 1 .

Note that we do not know whether there is a difference for arbitrary and
finite sets, since gasc,f. is not completely determined.

For all the preceding operations ◦, gasc◦ (m,n) was almost the set of all positive
integers. This changes completely, if we consider intersection. Let L and L′ be
two regular sets accepted by the finite automata A and A′, respectively. Then the
standard construction of an automaton B accepting L∩L′ gives an upper bound
asc(A)·asc(A′) for asc(L∩L′). Hence gasc∩ (m,n) contains only numbers ≤ m·n.

Theorem 6. The following relation holds for the operation intersection: For
m ≥ 0 and n ≥ 0,

gasc∩ (m,n) ⊇ {(m − k)(n − l) + s | 0 ≤ k ≤ m, 0 ≤ l ≤ n, 0 ≤ s ≤ min{k, l}}.

Descriptional Complexity and Operations 39

We mention some easy consequences:

– gasc∩ (0, n) = gasc∩ (m, 0) = {0} for m ≥ 0 and n ≥ 0,
– m · n ∈ gasc∩ (m,n) for m ≥ 0 and n ≥ 0,
– for m ≥ 0, we have gasc∩ (m,m) ⊇ {r | 0 ≤ r ≤ 4m

9 }, i.e., a large section of
small numbers is in gasc∩ (m,m).

For the unary case and intersection, we have the following statements:

Theorem 7. The following relation holds for the operation intersection: For
m ≥ 0 and n ≥ 0,

gasc,u∩ (m,m) ⊇ {(m − k)(m − k) + s | 0 ≤ k ≤ m, 0 ≤ s ≤ k} (1)

and
gasc,f,u∩ (m,n) = {0, 1, . . . ,min{m,n}}.

By the proof of (1), one can give an extension for m �= n and numbers k and l
with 0 ≤ k ≤ m and 0 ≤ l ≤ n, but one has to use in the formulation min{m,n}
and min{k, l} which makes the formulae a little bit hard to read.

We have no useful result for gasc,f∩ (m,n).
We have seen above that there are differences if we considered in general case

or the unary case. Thus it is a natural question if there are further differences
if we restrict the size of the underlying alphabet, i.e., if we consider the binary,
ternary etc. case. We mention that all results presented above for arbitrary
regular languages and finite languages already hold for alphabets with at least
two letters. Therefore it is not necessary to distinguish by the size of the alphabet.

4 Syntactic Complexity Measures for Context-Free
Languages

In this section we only consider context-free languages; therefore we omit the
adjective “context-free”.

We start with the remark that, Var(L) ≤ 1 for any finite language L (the
set consisting of the words w1, w2, . . . , wn is generated by a grammar with the
rules S → w1, S → w2, . . . S → wn) and Var(L) ≤ 2 for any unary context-
free language (L = {an1 , an2 , . . . , ans

} ∪ ap{am1 , am2 , . . . , amt} is generated by
a grammar with the rules S → an1 , S → an2 , . . . , S → ans

, S → S′, S′ → apS′,
S′ → am2S′ → am1 , . . . , S′ → amt). Thus, the sets gVar,f

◦ (m,n) are not defined
if m ≥ 2 or n ≥ 2, and the sets gVar,u

◦ (m,n) are not defined if m ≥ 3 or n ≥ 3.
We now present the results for the reversal operation.

Theorem 8. For K ∈ {Var,Prod,Symb} and all permissible m ∈ N ∪ {0},

gKR (m) = {m}, gK,f
R (m) = {m}, gK,u

R (m) = {m}, gK,f,u
R (m) = {m}.

40 J. Dassow

From commutativity of union and Theorem8, it follows that, for the measures
K ∈ {Var,Prod,Symb},

gK∪ (m,n) = gK∪ (n,m) and gK· (m,n) = gK· (n,m)

and the corresponding relations also hold if we restrict to finite languages, unary
languages, and finite unary languages. Therefore we can assume without loss of
generality that m ≥ n, if we discuss union or product.

We have the following results concerning operations and the number of
variables.

Theorem 9. The behaviour of Var under union is shown in Fig. 1.

arbitrary gVar
∪ (m,n) = {1, 2, . . . ,m + n + 1} for m ≥ 1, n ≥ 1

finite gVar,f
∪ (1, 0) = gVar,f

∪ (0, 1) = gVar,f
∪ (1, 1) = {1}, gVar,f

∪ (0, 0) = {0}

unary gVar,u
∪ (m,n) = {1, 2} for 1 ≤ m ≤ 2, 1 ≤ n ≤ 2

gVar,u
∪ (1, 0) = gVar,u

∪ (0, 1) = {1}, gVar,u
∪ (0, 0) = {0}

finite unary gVar,f,u
∪ (1, 0) = gVar,f,u

∪ (0, 1) = gVar,f,u
∪ (1, 1) = {1}, gVar,f,u

∪ (0, 0) = {0}

Fig. 1. Behaviour of the number of variables under union

Theorem 10. The behaviour of Var under catenation is shown in Fig. 2.

arbitrary gVar
· (m,n) ⊇ {1} ∪ {max{m,n},max{m,n} + 1, . . . ,m + n + 1}

for m ≥ 1, n ≥ 1

finite gVar,f
∪ (1, 1) = {1}, gVar,f

· (1, 0) = gVar,f
· (0, 1) = gVar,f

∪ (0, 0) = {0}

unary gVar,u
· (m,n) = {1, 2} for 1 ≤ m ≤ 2, 1 ≤ n ≤ 2

gVar,u
· (1, 0) = gVar,u

· (0, 1) = gVar,u
· (0, 0) = {0}

finite unary gVar,f,u
∪ (1, 1) = {1}, gVar,f,u

· (1, 0) = gVar,f,u
· (0, 1) = gVar,f,u

∪ (0, 0) = {0}

Fig. 2. Behaviour of the number of variables under catenation

Theorem 11. The behaviour of Var under Kleene star is shown in Fig. 3.

We see that there is a large difference between arbitrary regular languages
on the one side and finite or unary sets on the other hand, but the difference
only originates from the restricted domain of gVar,f

◦ and gVar,u
◦ . Between finite

and finite unary sets, there is no difference.
We now consider the number of productions.

Descriptional Complexity and Operations 41

arbitrary gVar
∗ (n) = {1, 2, . . . , n + 1} for n ≥ 1

finite gVar,f
∗ (1) = gVar,f

∗ (0) = {1},

unary gVar,u
∗ (1) = gVar,u

∗ (2) = {1}, gVar,u
∗ (0) = {1}

finite unary gVar,f,u
∗ (1) = gVar,f,u

∗ (0) = {1},

Fig. 3. Behaviour of the number of variables under star

Theorem 12. Let m ≥ n ≥ 2.

(i) The number 1 and all numbers k with k > m+n+2 are not in gProd
∪ (m,n).

(ii) If n ≥ 7, then {k | 6 ≤ k ≤ m + n + 2} ⊆ gProd
∪ (m,n).

(iii) If n ∈ {5, 6}, then {k | 4 ≤ k ≤ m + n + 2} ⊆ gProd
∪ (m,n).

(iv) If n = 4, then {2} ∪ {k | 4 ≤ k ≤ m + n + 2} ⊆ gProd
∪ (m,n).

(v) If n ∈ {2, 3}, then {k | 2 ≤ k ≤ m + n + 2} = gProd
∪ (m,n).

Theorem 13. (i) For all numbers m with m ≥ 2, the number 1 and all num-
bers k with k > m + 2 are not in gProd

∪ (m, 1).
(ii) For m ≥ 2, we have {k | n ≤ k ≤ m + 2} ⊆ gProd

∪ (m, 1).
For m ≥ 5, the relation n − 1 ∈ gProd

∪ (m, 1) holds.
For n ≥ 6, we have n − 2 ∈ gProd

∪ (m, 1).
Moreover, gProd

∪ (1, 1) = {1, 2} is valid.

We notice that the open problems concern only small numbers, i.e., it is open
whether or not the following relations hold:

– 2, 3 ∈ gProd
∪ (m, 1) for m ∈ {4, 5} and 2, 3, . . . ,m − 2 ∈ gProd

∪ (m, 1) for m ≥ 6,
– 3 ∈ gProd

∪ (m, 4) for m ≥ 4,
– 2, 3 ∈ gProd

∪ (m, 5) for m ≥ 5,
– 2, 3, 4 ∈ gProd

∪ (m, 6) for m ≥ 6,
– 2, 3, 4, 5 ∈ gProd

∪ (m,n) for m ≥ n ≥ 7.

Theorem 14. (i) For all numbers m ≥ 1 and n ≥ 1, the number 1 and all
numbers k with k > m + n are not in gProd,f

∪ (m,n).
(ii) If m ≥ n ≥ 1, then {m,m + 1, . . . ,m + n} ⊆ gProd,f

∪ (m,n).
(iii) If m ≥ n ≥ 3, then {n, n + 1, . . . m + n} ⊆ gProd,f

∪ (m,n).
(iv) If m ≥ 6 and m ≥ n ≥ 4, then {6, 7, . . . ,m + n} ⊆ gProd,f

∪ (m,n).

Theorem 15. (i) For all numbers m ≥ 1 and n ≥ 1, the number 1 and all
numbers k with k > m + n + 2 are not in gProd,u

∪ (m,n).
(ii) If m ≥ n ≥ 1, then {m,m + 1, . . . m + n} ⊆ gProd,u

∪ (m,n).
(iii) If m ≥ n ≥ 3, then {n, n + 1, . . . m + n} ⊆ gProd,u

∪ (m,n).

The essential differences between the cases of arbitrary, finite, and unary sets
are:

42 J. Dassow

– If we restrict to finite sets, then m+n+1 and m+n+2 are not in gProd,f
∪ (m,n)

and not in gProd,f,u
∪ (m,n).

– If we restrict to the unary case we only know that the numbers k ≥
min{m,n} are in gProd,u

∪ (m,n) and gProd,f,u
∪ (m,n); for “small” numbers we

miss constructions.

For the star operation, we have the following results.

Theorem 16. The following relations hold:

(i) gProd
∗ (0) = gProd,f

∗ (0) = {1},
(ii) gProd

∗ (1) = gProd,f
∗ (1) = {1, 2},

(iii) For n ≥ 2, gProd
∗ (n) = {2, 3, . . . , n + 2} and gProd,f

∗ (n) = {2, 3, . . . , n + 1}.
We see that the only difference between arbitrary context-free and finite sets

is that n + 2 is not contained in gProd,f
∗ (n).

We do not have non-trivial results for gProd,u
∗ and gProd,f,u

∗ .
We now discuss the concatenation and restrict to the general case, because

all our proofs require infinite languages and languages over an alphabet with at
least two letters (i.e., we cannot present results on gProd,f

· , gProd,u
· , and gProd,f,u

·).

Theorem 17. (i) For all numbers m ≥ n ≥ 1, the number 0 and all numbers
k with k ≥ m + n + 1 are not in gProd

· (m,n). Moreover, if m ≥ 2, then
m + 2 /∈ gProd

· (m, 1) and 1 /∈ gProd
· (m,n).

(ii) We have {1} = gProd
· (1, 1).

(iii) We have {2, 3, 4, 5} = gProd
· (2, 2) and {m,m+1,m+2,m+3} ⊆ gProd

· (m, 2)
for m ≥ 2.

(iv) We have {m + n − 1,m + n,m + n + 1} ⊆ gProd
· (m,n) for m,n ∈ {3, 4}.

(v) We have {n + 2, n + 3, . . . m + n + 1} ⊆ gProd
· (m,n) for m ≥ n ≥ 5.

With respect to the number of symbols the situation is not very clear for
small numbers n and m. We only give the results for “large” numbers; for a
proof and further facts we refer to [13].

Theorem 18. (i) For all numbers m ≥ 23 and n ≥ 23, we have

{k | k ≥ m + n + 7} ∩ gSymb
∪ (m,n) = ∅ and

{23, 24, . . . , n} ∪ {n + 3, n + 4, . . . ,m + n − 2} ∪ {m + n + 6} ⊆ gSymb
∪ (m,n).

(ii) For all numbers m ≥ 8 and n ≥ 5 with m ≥ n we have

{k | k ≥ m + n + 5} ∩ gSymb
· (m,n) = ∅ and

{n + 4, n + 5 . . . ,m + n − 2} ∪ {m + n + 4} ⊆ gSymb
· (m,n).

(iii) For all numbers m ≥ 10, we have

{k | k ≥ m + 7} ∩ gSymb
∗ (m) = ∅ and {10, 11, . . . ,m} ∪ {m + 6} ⊆ gSymb

∗ (m).

Descriptional Complexity and Operations 43

5 Conclusion

We have presented a summary of result concerning the operational complexity
of the number of accepting states for regular languages and of the number of
nonterminals, productions, and symbols for context-free languages.

For the number of accepting states and the operations union, set-subtraction,
complement, and star, the results are complete, and we see that there are –
essentially – no differences between arbitrary, finite, and unary sets. However,
the finite unary sets behave completely differently. With respect to catenation,
the situation can be the same, but, for a proof, a complete determination of
gasc,f· is necessary (and missing at present). For the intersection, we have not
enough information in order to make a statement on the comparison.

The situation is different for the syntactic measures of context-free languages.
Concerning the number of nonterminals, we have a difference between arbitrary
context-free languages and the restricted versions, but it comes from the very
limited domain (of the variables m and n in the case of restrictions). If we restrict
to “large” arguments (say m ≥ n ≥ 50, which can be justified by practical
reasons), we have a good situation for the number of productions with respect
to union and star since the difference between arbitrary context-free sets and
finite sets is only in two or one “large” values. For the comparison of unary and
finite unary languages, we need more information.

In order to get a more complete picture, it is necessary to determine the sets
gProd,f

· , gProd,u
· , and all sets with a restriction and the measure Symb.

Finally, we mention that it remains open to determine the sets gasc◦ and
their restricted versions for further operations as reversal (LR) or squaring (L2),
quotients, etc. as well as the sets gK◦ with K ∈ {Var,Prod,Symb} for operations
as squaring, quotients, etc.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of ACM
Symposium on Theory of Computing, pp. 202–211 (2004)

2. Champarnaud, J.-M., Coulon, F.: Büchi automata reduction by means of left and
right trace inclusion preorder. Manuscript (2004)

3. Dassow, J.: On the number of accepting states of finite automata. J. Automata
Lang. Comb. 21, 55–67 (2016)

4. Dassow, J., Stiebe, R.: Nonterminal complexity of some operations on context-free
languages. Fundam. Inform. 83, 35–49 (2008)

5. Dassow, J., Harbich, R.: Descriptional complexity of union and star on context-free
languages. J. Automata Lang. Comb. 17, 123–143 (2012)

6. Drewes, F., Holzer, M., Jakobi, S., van der Merwe, B.: Tight bounds for cut-
operations on deterministic finite automata. In: Durand-Lose, J., Nagy, B. (eds.)
MCU 2015. LNCS, vol. 9288, pp. 45–60. Springer, Cham (2015). doi:10.1007/
978-3-319-23111-2 4

7. Edelkamp, S., Jabbar, S.: Large-scale directed model checking LTL. In: Valmari, A.
(ed.) SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006). doi:10.
1007/11691617 1

http://dx.doi.org/10.1007/978-3-319-23111-2_4
http://dx.doi.org/10.1007/978-3-319-23111-2_4
http://dx.doi.org/10.1007/11691617_1
http://dx.doi.org/10.1007/11691617_1

44 J. Dassow

8. Gao, Y., Moreira, N., Reis, R., Yu, S.: A review on state complexity of individual
operations. Technical report series DCC-2011-08, Version 1.1, University of Porto,
Faculty of Sciences, Department of Computer Science (2012), September 2012

9. Gao, Y., Salomaa, K., Yu, S.: Transition complexity of incomplete DFAs. Fundam.
Inform. 110, 143–158 (2011)

10. Gruska, J.: Some classifications of context-free languages. Inf. Control 14, 152–179
(1969)

11. Gruska, J.: On the size of context free grammars. Kybernetika 8, 213–218 (1972)
12. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free regular

languages. Theoret. Comput. Sci. 410, 2537–2548 (2009)
13. Harbich, R.: Regel- und Symbolkomplexität kontextfreier Sprachen unter aus-

gewählten Operationen. Dissertation (2018)
14. Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic

finite automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS,
vol. 2608, pp. 148–157. Springer, Heidelberg (2003). doi:10.1007/3-540-44977-9 14

15. Holzer, M., Kutrib, M.: Nondeterministic finite automata - recent results on the
descriptional and computational complexity. Int. J. Found. Comput. Sci. 20, 563–
580 (2009)

16. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular lan-
guages and descriptional complexity. In: Mereghetti, C., Palano, B., Pighizzini, G.,
Wotschke, D. (eds.) Proceedings of 7th International Workshop of Descriptional
Complexity of Formal Systems, University of Milano, pp. 170–181 (2005)

17. Jirásková, G.: On the state complexity of complements, stars, and reversals of
regular languages. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp.
431–442. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85780-8 34

18. Jirásková, G., Krausová, M.: Complexity in prefix-free regular languages. Electron.
Proc. Theor. Comput. Sci. 31, 197–204 (2010)

19. Maia, E., Moreira, N., Reis, R.: Incomplete operational transition complexity of
regular languages. Inf. Comput. 244, 1–22 (2015)

20. Okhotin, A., Salomaa, K.: State complexity of operations on input-driven push-
down automata. J. Comput. Syst. Sci. 86, 207–228 (2017)

21. Piao, X., Salomaa, K.: Operational state complexity of nested word automata.
Theoret. Comput. Sci. 410, 3250–3260 (2009)

22. Piao, X., Salomaa, K.: State complexity of the concatenation of regular tree
automata. Theoret. Comput. Sci. 429, 273–281 (2012)

23. Piao, X., Salomaa, K.: State complexity of projection and quotient on unranked
trees. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386,
pp. 280–293. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31623-4 22

24. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I–III.
Springer, Berlin (1997)

25. Yu, S.: State complexity of regular languages. J. Automata Lang. Comb. 6, 221–234
(2001)

http://dx.doi.org/10.1007/3-540-44977-9_14
http://dx.doi.org/10.1007/978-3-540-85780-8_34
http://dx.doi.org/10.1007/978-3-642-31623-4_22

Applications of Transducers in Independent
Languages, Word Distances, Codes

Stavros Konstantinidis(B)

Department of Mathematics and Computing Science, Saint Mary’s University,
923 Robie Street, Halifax, NS B3H 3C3, Canada

s.konstantinidis@smu.ca

Abstract. A (nondeterministic) transducer t is an operator mapping an
input word to a set of possible output words. A few types of transducers
are important in this work: input-altering, input-preserving, and input-
decreasing. Two words are t-dependent, if one is the output of t when
the other one is used as input. A t-independent language is one con-
taining no two t-dependent words. Examples of independent languages
are found in noiseless coding theory, noisy coding theory and DNA com-
puting. We discuss how the above transducer types can provide elegant
solutions to some cases of the following broad problems: (i) computing
two minimum distance witness words of a given regular language; (ii)
computing witness words for the non-satisfaction, or non-maximality, of
a given regular language with respect to the independence specified by
a given transducer t; (iii) computing, for any given t and language L, a
maximal t-independent language containing L; (iv) computing, for any
given positive integer n and transducer t, a t-independent language of
n words. The descriptional complexity cost of converting between trans-
ducer types is discussed, when this conversion is possible. We also explore
methods of defining more independences in a way that some of the above
problems can still be computed.

Keywords: Algorithm · Automata · Codes · Distance · Independence ·
Language · Maximal · Transducer

1 Introduction

The Abstract already serves as the first part of the introduction to this paper.
Our main objective is to survey results related to describing independences and
answering algorithmic questions about such independences. In particular, the
description of an independence can be part of the input to the algorithms of
interest. Many independences are known as code-related properties. The paper is
organized as follows. Section 2 contains the basic terminology. Section 3 explains
the use of transducers to describe the kind of independences we are interested

Research supported by NSERC.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 45–62, 2017.
DOI: 10.1007/978-3-319-60252-3 4

46 S. Konstantinidis

in. Section 4 presents the algorithmic questions we consider and discusses how
to solve some of those questions. Section 5 presents results about embedding
a given independent language to a maximal one when the independence is
described by an input-decreasing transducer. Section 6 discusses a method of
computing minimum distance witnesses of a given regular language. Section 7
discusses some known facts about converting one type of transducer to another.
Section 8 explores new ways of describing independences. Section 9 contains a
few concluding remarks.
At the end of some sections we also discuss directions for further research.

2 Terminology

We write N,N0 for the sets of positive integers and non-negative integers, respec-
tively. If S is a set, then |S| denotes the cardinality of S, and 2S denotes the
set of all subsets of S. When there is no risk of confusion, we write a single-
ton set {x} simply as x. Thus, S ∪ x means S ∪ {x}. An alphabet is a finite
nonempty set of symbols. We write Σ,Δ for arbitrary alphabets. The set of all
words, or strings, over Σ is denoted by Σ∗, which includes the empty word λ.
As usual, Σ+ denotes Σ∗ − λ. A language (over Σ) is any set of words. Let L
be a language and let u, v, w, x be any words. If w ∈ L then we say that w is
an L-word. We use standard operations and notation on words and languages,
[14,30,42], in particular |w| denotes the length of w and L denotes Σ∗ − L. If
w is of the form uv then u is a prefix and v is a suffix of w. If u �= w then
u is called a proper prefix of w—the definition of proper suffix is analogous. A
relation over Σ and Δ is a subset of Σ∗ × Δ∗, that is, a set of pairs (x, y) of
words over the two alphabets (respectively). The inverse of ρ, denoted by ρ−1,
is the relation {(y, x) | (x, y) ∈ ρ}.

Independent Languages, Code Properties. Consider a fixed, but arbitrary, alpha-
bet Σ containing at least two symbols. A (language) property is any set of lan-
guages, that is, subsets of Σ∗. An independence, or code property, [17], is
a property P such that L ∈ P, if and only if, L′ ∈ P for all L′ ⊆ L with
0 < |L′| < n, for some n ∈ N ∪ {ℵ0}. If L ∈ P then we say that L satisfies

P. Thus, L satisfies P exactly when all nonempty subsets of L with less than
n elements satisfy P. In this case, we also say that P is an n-independence. A
language L ∈ P is called P-maximal, or a maximal P code, if L ∪ w /∈ P for any
word w /∈ L. Every language satisfying P is included in some P-maximal lan-
guage [17]. To our knowledge, almost all code related properties in the literature
[4,8,9,12,15,17,18,20,22,31,34,38,44,45] are independences. Also, any indepen-
dence with respect to a binary relation in the sense of [39] is a 3-independence.
Examples: (i) L is a prefix code if no L-word is a prefix of another L-word—
this is a 3-independence; (ii) L is 2-substitution error-detecting if no L-
word can result by changing one or two symbols in some other L-word—this
again is a 3-independence; (iii) L is a UD-code 1, if every word in L+ can be
parsed in exactly one way as a list of words in L—this is an ℵ0-independence.
1 UD means Uniquely Decodable/Decipherable.

Applications of Transducers in Independent Languages 47

Fig. 1. Various transducers. An arrow with label a/a denotes multiple transitions: one
with label a/a for each a ∈ Σ, and similarly for labels a/λ. An arrow with label a/a′

denotes multiple transitions: one with label a/a′ for all a, a′ ∈ Σ with a �= a′. Let w
be any word. We have: eq(w) = {w}; px(w) = set of proper prefixes of w; sx(w) = set
of proper suffixes of w; hc(w) = set of words resulting by deleting at least one symbol
in w; sub≺

1 (w) = set of words resulting by substituting exactly one 1 in w with a 0;
sub1(w) = set of words resulting by substituting at most one symbol in w with another
one; id2(w) = set of words resulting by inserting and/or deleting at most 2 symbols
in w.

48 S. Konstantinidis

Automata and Regular Languages [37,43]. A nondeterministic finite automaton
(NFA) is a quintuple a = (Q,Σ, T, I, F) such that Q is the set of states, Σ is
an alphabet, I, F ⊆ Q are the sets of start (or initial) states and final states,
respectively, and T ⊆ Q × Σ × Q is the finite set of transitions. If (p, x, q)
is a transition, then x is the label of the transition, and we say that p has an
outgoing transition (with label x). The language accepted by a, denoted by
L(a), is the set of words w formed by concatenating the labels that occur in
some accepting path of a. The size |a| of the automaton a is |Q| + |T |.
Transducers [3,37,43]. A transducer is a sextuple t = (Q,Σ,Δ, T, I, F) such
that Q, I, F are exactly the same as those in NFAs, Σ is now called the input

alphabet, Δ is the output alphabet, and T ⊆ Q × Σ∗ × Δ∗ × Q is the finite
set of transitions. We write (p, x/y, q) for a transition—its label (x/y) consists
of the input label x and the output label y. The relation R(t) realized by
the transducer t is the set of word pairs (u, v) such that u (resp. v) is formed
by concatenating the input labels (resp. the output labels) that occur in some
accepting path of t. We write t(u) for the set of possible outputs of t on input
u, that is, v ∈ t(u) iff (u, v) ∈ R(t). For any language L, t(L) is the language
∪u∈Lt(u). The domain of t is the set of all words u such that t(u) �= ∅. The
transducer t is called functional if, for all words u, t(u) contains at most one
word. Examples of transducers are shown in Fig. 1. The size of a transition
(p, x/y, q) is the number 1 + |x| + |y|. The size |t| of the transducer t is the
number of states plus the sum of the sizes of the transitions in T . For any
transducers s, t and NFA a, we have the following. There is a transducer t−1

of size O(|t|) realizing the relation
(
R(t)

)−1. There is a transducer s ∨ t of
size O(|s| + |t|) realizing R(s) ∪ R(t). There are transducers t ↓ a and t ↑ a,
each of size O(|t| · |a|), realizing the relations {(u, v) : u ∈ L(a), v ∈ t(u)} and
{(u, v) : u ∈ Σ∗, v ∈ L(a) ∩ t(u)}, respectively [23].

3 t-Independent Languages: Classic and Antimorphic

The concept of ρ-independence, where ρ is a binary relation, goes back to [39]—
see also [38,44]. Here we rephrase this concept in terms of transducers, with
the aim of answering algorithmic questions about independences using trans-
ducer tools—see Sect. 4. We focus on certain transducer types that turn out to
be important in the context of those algorithmic questions. First we consider
“classic” independences, and then (see further below) “antimorphic” ones.

Definition 1. Let ‘≺’ be the lexicographic word order2. A transducer t is

input-preserving, if x ∈ t(x), for all words x in the domain of t;
input-altering, if x /∈ t(x), for all words x;
length-decreasing, if y ∈ t(x) implies |y| < |x|, for all words x, y;
input-decreasing, if y ∈ t(x) implies y ≺ x, for all words x, y.

2 In this order, the alphabet Σ is totally ordered. Then, u ≺ v if and only if, either
|u| < |v|, or |u| = |v| and u = xσ1y1, v = xσ2y2 such that σ1, σ2 ∈ Σ and σ1 ≺ σ2.

Applications of Transducers in Independent Languages 49

Remark 1. Every length-decreasing transducer is input-decreasing and every
input-decreasing transducer is input-altering. Moreover, for every transducer t,
the transducer (t ∨ eq) is input-preserving—see Fig. 1.

Definition 2. Let t be a transducer. A language L is called t-independent, if
the following condition holds for all words u, v:

u, v ∈ L and v ∈ t(u) implies u = v. (1)

Pt denotes the independence described by t; this is the set of all languages
satisfying the above condition. In [9], if t is input-preserving then Pt is called
an input-preserving transducer property, and if t is input-altering then Pt

is called an input-altering transducer property. If the transducer t is input-
altering, then condition (1) is equivalent to

t(L) ∩ L = ∅ (2)

Remark 2. One verifies that condition (1) is equivalent to the one resulting if we
replace t with t−1, or with (t∨ t−1). Similarly, one verifies that condition (2) is
equivalent to “t−1(L) ∩ L = ∅”, and also to “(t ∨ t−1)(L) ∩ L = ∅”.

Remark 3. Every independence described by a transducer is a 3-independence.
Moreover, for every transducer t, every singleton language {w} is t-independent.

Remark 4. The type of transducer used to describe an independence affects the
computability and complexity of algorithmic questions about that independence
(see subsequent sections). It turns out, however, that limiting (1) to t’s that are
input-preserving does not constitute any restriction on the describable indepen-
dences. Indeed, one can confirm that, for any transducer t, we have that

the transducer (t ∨ eq) is input-preserving and Pt = Pt∨eq.

Remark 5. In [25], the independence described by an input-preserving trans-
ducer t is called an error-detecting property. Specifically, t can be viewed
as a communication channel such that, if v ∈ t(u) and v �= u then we have
a channel error. A language satisfying Pt is called error-detecting for t. This
means that the channel t cannot turn an L-word to a different L-word.

Example 1. The transducers px, sx, hc shown in Fig. 1 are input-altering and
describe, respectively, prefix codes, suffix codes, and hypercodes. A language L
is a hypercode if no L-word results by deleting at least one symbol in some
other L-word, that is, hc(L) ∩ L = ∅. The transducer sub1 is input-preserving
and describes the 1-substitution error-detecting languages. The transducer id2 is
input-preserving and describes the 2-synchronization error-detecting languages.
A language L is k-synchronization error-detecting if no L-word results by
inserting and/or deleting a total of at most k symbols in some other L-word. For
example, {0101, 1010} is not 2-synchronization error-detecting as 1010 results by
deleting the first 0 of u = 0101 and inserting a 0 at the end of u. Using sub1, id2,
as a guide, one can design input-preserving transducers subk, idk describing the
k-substitution and k-synchronization error-detecting languages, for any k ∈ N.

50 S. Konstantinidis

Remark 6. In [8], 3-independences are defined by trajectories. A regular trajec-
tory expression ē is any regular expression over {0, 1} and describes the inde-
pendence consisting of all languages L such that (L ē Σ+) ∩ L = ∅, where ē

is the shuffle operation according to ē. For example, 0∗1∗ describes prefix codes
because the shuffle inserts symbols at the end of an L-word and the result cannot
be an L-word. In [9], it is shown that, for every regular trajectory expression,
there is an input-altering transducer describing the same independence. More-
over, there are natural error-detecting properties that cannot be described by
regular trajectory expressions. On the other hand, the method of trajectories
provides a simple and effective method for describing many independences.

Antimorphic Independences. Independences related to DNA computing cannot
be described by transducers as in Definition 2, [20]. This is because such inde-
pendences involve the antimorphic involution “dna” over the DNA alphabet
{a, c, g, t}. In general, let θ be a permutation on the alphabet Σ. Then, θ is
called an involution if θ−1 = θ. A morphic permutation on Σ∗ is a permu-
tation on Σ extended to Σ∗ such that θ(λ) = λ and θ(σx) = θ(σ)θ(x), for all
σ ∈ Σ and x ∈ Σ∗. When θ is extended such that θ(σx) = θ(x)θ(σ), then it is
called an antimorphic permutation. For example, the antimorphic involution
“dna” is such that dna(a) = t and dna(c) = g. Let θ be any (anti)morphic
permutation and let t be any transducer. In [20], the independence described

by t and θ is the set of all languages L such that

t(L) ∩ θ(L) = ∅. (3)

Example 2. A language L is called strictly θ-compliant, [19,20], if it contains
no two words of the form xθ(v)y and v. This is equivalent to saying that by
deleting a prefix and/or a suffix of an L-word (see transducer sco) the resulting
word cannot be in θ(L), that is, sco(L) ∩ θ(L) = ∅; hence, strict θ-compliance
is described by sco and θ. Now consider the independence H = {L ⊆ Σ∗ :
δH(u, θ(v)) ≥ 2, for all u, v ∈ L}, [20], where δH(x, y) is the Hamming distance
between the words x, y. Then, H is described by sub1 and θ.

4 Algorithmic Questions About Independent Languages

In the context of the research on languages and independences, we consider the
following algorithmic questions.

Satisfaction question. Given the description of an independence P and the
description of a language, decide whether the language satisfies P. In the
witness version of this problem, a negative answer is also accompanied by
an appropriate list of words showing how the property P is violated.

Maximality question. Given the description of an independence P and the
description of a language L, decide whether the language is P-maximal. In
fact we allow the more general problem, where the input includes also the
description of a second language M and the question is whether there is no

Applications of Transducers in Independent Languages 51

word w ∈ M − L such that L ∪ w satisfies P. The default case is when
M = Σ∗. In error control coding (see also the construction question below)
M = Σ�, for some positive integer 	, so all languages of interest are block

codes, that is, their words are of fixed length 	. In the witness version of
this question, a negative answer is also accompanied by any word w ∈ M −L
that can be added to the language L.

Embedding question. Given the description of an independence P and the
description of a language L satisfying P, compute a P-maximal language
containing L. As above, maximality can be considered with respect to a cer-
tain language M .

Construction question. Given the description of an independence P and two
positive integers n and 	, construct a language that satisfies P and contains
n words of length 	 (if possible).

Minimum distance question. Given the description of a language L, compute
the minimum distance between any two different L-words. In the witness

version, also return two minimum distance L-words. This question depends
on the distance of interest—see Sect. 6.

In this section, we assume that an independence is described by a transducer t,
and possibly by a permutation θ, and in the first three problems, the language is
given via an NFA a. In the maximality question, the second language M is also
given via an NFA b. Answers to the embedding and minimum distance questions
are discussed in the next sections.

Remark 7. Next we list a few algorithmic tools used in answering some of the
above questions. Occasionally we use object-oriented notation: t.f(P) is the
algorithm f of the object t with list of parameters P .

1. t.nEmptyW(), where t is a transducer, returns either a pair of words in R(t), or
(None, None) if R(t) = ∅. Similarly, for any NFA a, we have that a.nEmptyW()
returns either a word in L(a) or None. This algorithm is called non-emptiness
witness, and is based on the standard shortest path algorithm from the start
states to the final states of t or a.

2. t.nFunctW() returns either a triple (u, v1, v2) of words such that v1 �= v2 and
v1, v2 ∈ t(u), or a triple of None’s if the transducer t is functional. This
algorithm is a witness version, [25], of the decision algorithm for transducer
functionality in [1,2].

3. (a� t) is an NFA accepting the language t
(
L(a)

)
, for any given transducer t

and NFA a.

Some results from [9,20,26] are the following.

1. The witness version of the satisfaction question is polynomially computable
and, in fact, reasonably efficiently so—see the above references. More specif-
ically we have the following cases: (i) given transducer t (and possibly a
permutation θ) and NFA a, return either (None, None) if L(a) satisfies (3),
or a pair (u, v) of L(a)-words such that (3) is not satisfied for L = {u, v};
(ii) given input-preserving transducer t and NFA a, return as above, either

52 S. Konstantinidis

(None, None), or a pair (u, v) depending on whether (1) is satisfied. Case (i)
is solved using the algorithm (t ↓ a ↑ aθ).nEmptyW(), where aθ is an NFA
accepting θ(L(a)). For case (ii), condition (1) is equivalent to whether

the transducer (t ↓ a ↑ a) is functional. (4)

Then, the desired witness version is solved by making use of the algorithm
(t ↓ a ↑ a).nFunctW().

2. The decision version of the maximality question can be coNP-hard, [26],
PSPACE-hard or undecidable, [20]. Specifically, if the given transducer t
is input-preserving, or input-altering, or θ-input-altering3, then deciding
whether L(a) is maximal satisfying, respectively, (1) or (2) or (3), is PSPACE-
hard. In fact, the witness version is computable using the algorithm

(
b ∧ (

(a � t) ∨ (aθ � t−1) ∨ a
)co)

.nEmptyW(), (5)

where we assume that, for any given NFAs c and d, cco is an NFA accepting
the complement of L(c), (c∧d) is an NFA accepting L(c)∩L(d), and (c∨d)
is an NFA accepting L(c) ∪ L(d). On the other hand, even for any fixed
permutation θ, it is undecidable to tell, given t and a, whether L(a) is maximal
satisfying (3), where there is no restriction on t.

3. The approach of [26] for the construction question is as follows: a definition is
given of what an f% P-maximal block code is, and then a simple randomized
algorithm is described that is given an input-preserving transducer t and
positive integers n, 	, and returns either a t-independent language of n words
of length 	, or a t-independent language L of less than n words of length 	
such that L is a 95% Pt-maximal block code.

5 The Embedding Question

The embedding question has been addressed well for several fixed code proper-
ties like UD codes [10], bifix codes [46], solid codes [29], and bounded deciphering
delay codes [5]. In [40], the question is solved for any independence described by
some length-decreasing-and-transitive transducer. In [24], the embedding ques-
tion is addressed for any independence described by some input-decreasing trans-
ducer. We consider maximality with respect to a certain fixed , but arbitrary,
language M. We discuss next some recent results from [24].

Definition 3. A (language) operator is a function Op : 2Σ∗ → 2Σ∗
. It is

called union respecting if Op(X) = ∪v∈XOp(v), for all languages X. For any
language X and nonnegative integer i, we define the following operators.

Op0(X) = X and Opi+1(X) = Op(Opi(X))

Op∗(X) = ∪∞
i=0Opi(X), Op∩(X) = ∩∞

i=1Opi(X)

3 This is when θ(w) /∈ t(w), for all nonempty words w.

Applications of Transducers in Independent Languages 53

The operator Op is called exhaustive, if Op∩(X) = ∅, for all languages X.
If Op1 is also a language operator then we write Op ⊆ Op1 to indicate that
Op(X) ⊆ Op1(X) for all languages X. A union respecting operator Op is
functional, if Op(v) contains at most one word, for all words v.

Example 3. We view a transducer t as a language operator, which is union
respecting. Then, we have that t is transitive if and only if t2 ⊆ t.

In the sequel we assume that t is a fixed , but arbitrary, input-altering trans-
ducer. We define the following language operators.

It(X) = M − (
t(X) ∪ t−1(X)

)
and μtX = It(X) − t−1

(
It(X)

)

The above operators are translated to transducer notation from the correspond-
ing ones in [40]. The operator It(·) is the set of all possible words that are either
in X or t-independent from X, so in some sense it is the max imum set in which
X can be embedded. However, two words in It(X) − X might be t-dependent.
The operator mapping any Y to Y − t−1(Y) is the ‘t-min imize’ operator which
returns all Y -elements that cannot produce another Y -element via t.

Definition 4. The operator μt is called the max-min operator. The opera-
tor μ∗

t is called the iterated max-min operator. We say that it converges

finitely on a language L, if there is i ∈ N0 such that μ∗
tL = μi

tL.

In the case of codes defined by length-decreasing-and-transitive transducers,
already the language μtL is maximal and constitutes a solution to the embed-
ding question, [40], where L is the given language satisfying Pt. As stated in
[40], however, this does not work for other codes like bifix codes, and also for
error-detecting codes. The following results about any t-independent language
L are shown in [24].

1. If t−1 is exhaustive and there is i ∈ N0 such that μi+1
t L = μi

tL then μi
tL is

Pt-maximal containing L.
2. If t−1 is exhaustive and t is transitive then μtL is Pt-maximal containing L.
3. If t is input-decreasing then μ∗

tL is Pt-maximal containing L. Note that if t
is input-decreasing then t−1 is exhaustive.

Example 4 [24]. Let M = {0, 1}∗ and let t = (px ∨ sx), an input-decreasing
transducer describing bifix codes. We have that μt(001) = {001, 000, 10, 11}
and μ2

t(001) = 01∗0(0 + 1) + 10 + 11, which is maximal. Again, we have μ2
t

(
(0 +

1)311
)

= (0 + 1)3(0 + 10∗1), which is maximal—this code is the reverse of what
[4] calls the reversible Golomb-Rice code. Now let M = {0, 1}5 and t = sub≺

1 .
Then, the following code is maximal and known as the even-parity code of length
5: μ3

t(01111) = {w ∈ {0, 1}5 | w’s count of 1s is even}.

54 S. Konstantinidis

Research Directions. Statement 3 above can be applied to the case where t
describes bifix codes, hence, if L is a bifix code then μ∗

tL is a maximal bifix code
containing L. An open question stated in [24] is whether in this case μ∗

t converges
finitely. We believe that the answer here is yes, so this would give an alternate
proof of the fact that every regular bifix code can be embedded in a maximal
one [4,46]. Computing μtL(a), for any given transducer t and NFA a, requires
complementing an NFA, which is known to be a hard problem. The question
here is whether there is a heuristic that could compute efficiently “chunks” of
μtL(a) containing L(a) and somehow these chunks get “close” to being maximal
as μt gets iterated.

6 The Minimum Distance Question

An integral difference is a function δ that maps any pair of words into
N0 ∪ {∞} such that δ(x, y) = 0 if and only if x = y. In addition, if δ(x, y) =
δ(y, x), and δ(x, y) ≤ δ(x, z) + δ(z, y), for all words x, y, z, then δ is called a
distance. The minimum difference δ(L) of a language L containing at least two
words is the quantity min{δ(x, y) : x, y ∈ L and x �= y}. Here we discuss how
to compute δ

(
L(a)

)
, for any given NFA a accepting at least two words, based

on the method of [27]. Questions related to the distance between two languages
are studied in [13,35].

Definition 5. Let δ be an integral difference and let (ti)i∈N be a sequence of
transducers. We say that δ is compatible with (ti)i∈N, if the following holds,
for any n ∈ N and x, y ∈ Σ∗ with x �= y,

δ(x, y) ≤ n if and only if y ∈ tn(x) or x ∈ tn(y).

Example 5. The Hamming distance δH is compatible with (subk)k∈N (see Exam-
ple 1). In [6], the authors consider the general concept of an additive dis-
tance and show that many known distances are additive. For example, for two
words x, y, with |x| ≥ |y|, their prefix Hamming distance δpH(x, y) is equal to
δH(x1, y) + |x2|, where x = x1x2 and |x1| = |y|. This distance is compatible
with (pHk)k∈N (see Fig. 2). The results of [21] imply that the edit distance4 is
compatible with a sequence of input-altering transducers—this can be adapted
easily to show that also the Levenshtein distance is compatible with a sequence
of input-altering transducers. For any two words x, y, their prefix distance, [32],
is |x1| + |x2|, where x = ux1 and y = uy1 and u is the longest common prefix
of x, y. It can be shown that this distance also is compatible with a sequence of
input-altering transducers similar to (pHk)k∈N.

Lemma 1. Let δ be an integral difference that is compatible with some sequence
(ti)i∈N of input-altering transducers, and let L be a language containing at least
two words. Then δ(L) = min{i | ti(L) ∩ L �= ∅}, assuming min ∅ = ∞.
4 The edit distance δed(x, y) is the minimum number of single-symbol substitu-

tions/insertions/deletions in x that turn x to y. The Levenshtein distance δL(x, y)
is similar by considering only insertions/deletions.

Applications of Transducers in Independent Languages 55

Remark 8. A classic connection between a distance δ and “error”-detection is
that a block code C is a k-“error”-detecting if and only if δ(C) > k. Lemma 1
generalizes this connection when we note that L is error-detecting for (tk ∨ eq)
if and only if δ(L) > k.

Using Lemma 1, we present below an algorithmic method to compute the mini-
mum difference m = δ

(
L(a)

)
, for any given NFA a, assuming that (i) δ values are

not ∞; (ii) |L(a)| ≥ 2; (iii) there is an algorithm computing the input-altering
transducer ti, given any i ∈ N; (iv) there is an algorithm UBδ(a) computing an
upper bound for m, that is, m ≤ UBδ(a). In addition to m, the method com-
putes two words in L(a) whose difference is m. Such words are called witnesses

of minimum difference for L(a).

B := the upper bound on δ
(
L(a)

)
returned by UBδ(a) ;

Perform binary search for the smallest m ∈ {1, . . . , 1 + B} such that(
(tm ↓ a) ↑ a

)
.nEmptyW() �= (None, None)

Return m and the word pair
(
(tm ↓ a) ↑ a

)
.nEmptyW();

This algorithm works in time O(|a|2M log B), where M = max{|tm| | m =
1, . . . , B + 1}. Assuming that UBδ(a) works in time O(|a|) and B is O(|a|) and
M is polynomially bounded in terms of |a|, which is true in many examples of
integral differences, we have that also |a|2M log B is polynomially bounded.

Remark 9. The above algorithmic method is meant to provide a general app-
roach to addressing the minimum difference question as well as an upper bound
for the time complexity of it. In some cases however, with a careful algorithm
design the time complexity can be improved. For example when δ is the edit
distance, [21], the algorithm can be optimized to work in time O(m · |a|2), where
m is the computed minimum distance of L(a). Also in [32], the author discusses
computing the minimum prefix distance δpd(L) of a regular language L using
weighted transducers in time O(|a|2 log |a|).
Research Directions. It is interesting to investigate connections between additive
distances [6] and their compatible transducer sequences. Also interesting is to
investigate the use of weighted transducers in computing the minimum difference
of a language, for various differences—recall [32] does this for the prefix distance.
To this end, it might be necessary to consider the concept of input-altering
weighted transducers.

7 Cost of Converting Between Transducer Types

Describing an independence with an input-altering transducer, or a difference
with compatible input-altering transducers, allows us to answer the satisfaction
and minimum difference questions using simple and polynomially bounded algo-
rithms. Moreover, if an independence is described by an input-decreasing trans-
ducer then the method of the iterated max-min operator can be used to address
the embedding question. Ideally we would like to be able to convert any input-
preserving transducer to an input-altering one, or even to an input-decreasing
one describing the same language independence. We have the following results.

56 S. Konstantinidis

Fig. 2. More transducers. Let w be any word. We have: sid2(w) = set of words resulting
by substituting and/or inserting and/or deleting a total of at most 2 symbols in w;
ov(w) = set of words (including w) having a nonempty prefix that is equal to a suffix of
w; pHk(w) = set of words x �= w such that |w| ≥ |x| and the prefix Hamming distance
of x, w is at most k—see Example 5.

1. Consider the alphabet {0, 1} and the input-preserving transducer subk

describing the k-substitution error-detecting property. Then there is an input-
decreasing transducer sub≺

k describing the same property such that |sub≺
k | =

|subk| − 1.

Applications of Transducers in Independent Languages 57

2. Consider the input-preserving transducer sidk describing the k-sid error-
detecting property—see Fig. 2 for the case of k = 2. In [21], it is shown that
there is an input-altering transducer sid
=

k describing the same property such
that |sid
=

k | = Θ(|sidk|).
3. Consider the input-preserving transducer ov (see Fig. 2) describing the

overlap-free property such that no word of an overlap-free language L has
a nonempty suffix that is a prefix of another L-word. It can be shown, [28],
that there is no input-altering transducer describing the same property.

4. The strictly θ-compliant independence (see Example 2) cannot be described
by any input-preserving transducer according to Definition 2, [20].

5. The comma-free code property cannot be described by any transducer (see
Remark 10).

6. The transducer id≺
2 in Fig. 1, [24], is an input-decreasing transducer describ-

ing 2-synchronization error-detecting languages over the alphabet {0, 1}.

Research Directions. A natural question here is to investigate the effect on the
size of the transducer when converting from an input-altering transducer to an
input-decreasing one (when this is possible). For example, converting idk to id≺

k ,
for any integer k > 1. Also interesting is to characterize mathematically when
such a conversion is possible for any given input-altering transducer.

8 t-Undescribable Independences and New Directions

Let Σ be the alphabet of independences. In this section we identify some limi-
tations of the transducer method in describing independences (Remark 10), we
discuss the method of implicational independence conditions of [16] (Remark 12),
and we consider the work of [33] on decision questions related to language equa-
tions (Remark 13). These two references provide logical descriptions of language
properties. Transducer based methods provide a more operational approach to
describing independences, which seems to be a necessary step if one wants to
implement objects representing independences [25]. Using all available back-
ground information, we explore ways of extending the transducer based method
with the aim of describing more independences and at the same time being able
to answer related algorithmic questions in a way that some of the algorithms
involved can be implemented efficiently in available software systems [11,41].

Remark 10. No n-independence with n > 3 is describable by transducers—see
Remark 3. The UD-code property is not an n-independence, for any n ∈ N, [17].
Dependence theory allows us to give simple proofs of such facts. For example, the
comma-free code property is not a 3-independence but it is a 4-independence. A
language L is a comma-free code, [38], if

Σ+LΣ+ ∩ LL = ∅. (6)

To see that this is not a 3-independence, it suffices to consider a 3-word language
that is not a comma-free code but any two words of that language constitute a
comma-free code. This holds for the language {01111, 001011, 0110111}.

58 S. Konstantinidis

If A is any language and Op is any union respecting operator (e.g., a transducer
operator) then we define the union respecting operators (Op ↓ A) and (Op ↑ A)
such that, for all words v, we have

(Op ↓ A)(u) = Op(u ∩ A) and (Op ↑ A)(u) = Op(u) ∩ A.

Remark 11. Let # be any symbol not in Σ. Using condition (4) as a guide,
we can define the UD-code property as the set of languages L satisfying the
condition

the operator ins# ↑ (L#)+ is functional. (7)

This says that inserting #’s in any word u ∈ Σ∗ results in at most one list of
L-words where these words are delimited with #.

Remark 12. In [16], the author uses certain first order logic expressions, called
implicational independence conditions, to describe independences. That method
is aimed for variable-length type of code properties as opposed to typical error-
detecting properties of languages such as block codes. The method provides a
very general mechanism for expressing independences and answering the satis-
faction question. For example, the first condition below describes prefix codes
and the second one describes comma-free codes.

∀u, x : (u ∈ L ∧ ux ∈ L) → (x = λ);
∀u, u, w, x, y : (u ∈ L ∧ v ∈ L ∧ w ∈ L ∧ uv = xwy) →(

(x = λ ∧ y = v) ∨ (x = u ∧ y = λ)
)
;

where quantification of variables is over a monoid that is typically equal to
Σ∗. Quantification over the number of variables is allowed, so as to express
independences like the UD-code property, but the syntax for that capability
needs to be worked out.

Remark 13. In [33], the author investigates decision questions about language
equations. These equations are based on language expressions. There is a set
of variables and a set of constants, both representing languages. A language

expression ϕ is defined inductively as follows: it is a variable, or a constant,
or one of ϕ1ϕ2, ϕ1 ∪ ϕ2, ϕ1 ∩ ϕ2, ϕ1, where ϕ1 and ϕ2 are language expressions.
When an equation involves only one variable L, then the set of solutions is a
set of languages, which does not necessarily constitute an independence. For
example, consider the set S of solutions of the following language equation

LΣ+ ∩ L = ∅. (8)

Then, 0Σ∗ satisfies the equation but the subset {0} of 0Σ∗ does not satisfy
it, so S cannot be an independence. The cause of this is the presence of the
complementation operation L. On the other hand, the set of solutions of the
language Eq. (6) is exactly the comma-free code property.

Applications of Transducers in Independent Languages 59

Considering that Eq. (3) describes an independence and considering also
conditions (4) and (7), we are led to define independence expressions involv-
ing one variable L. An independence expression ϕ is defined inductively as
follows: it is L, or a language constant, or one of ϕ1ϕ2, ϕ1∪ϕ2, ϕ1∩ϕ2, (ϕ)∗, (ϕ)+,
t(ϕ1), θ(ϕ1), where ϕ1 and ϕ2 are independence expressions, θ is an antimorphic
permutation constant, and t is a transducer constant. We assume here that each
language constant is written as a regular expression so it represents a regular
language. This implies that when the variable L occurring in ϕ is replaced with
a regular language then also ϕ evaluates to a regular language. We also note that
any regular expression, transducer, or permutation involved might contain sym-
bols outside of Σ (recall Σ is the alphabet of the independences being described).

Definition 6. Let t be a transducer and let ϕ,ψ be independence expressions
such that at least one of them contains the variable L. A language L is called
(t, ϕ, ψ)-independent if

the operator t ↓ ϕ(L) ↑ ψ(L) is functional. (9)

The independence Pt,ϕ,ψ described by t, ϕ, ψ is the set of all (t, ϕ, ψ)-independent
languages. Suppose that ϕ contains L. A language L is called ϕ-independent if

ϕ(L) = ∅ (10)

Remark 14. It can be shown that the concept of (t, ϕ, ψ)-independence in the
above definition is well-defined. Moreover, for every independence expression ϕ
containing L, a language L is ϕ-independent if and only if it is (all#, Σ∗, ϕ∪#)-
independent, where all# is any transducer with input and output alphabet
Σ∪# such that all#(u) = (Σ∪#)∗. It can further be shown that the satisfaction
question is decidable, where we assume that, in the given expressions ϕ and/or
ψ, any constant language is represented by a regular expression and the language
to be tested is given by an NFA or a regular expression.

Example 6. Any independence described by one of the conditions (2), (3), (6) is
a ϕ-independence for some ϕ. Any independence described by the condition (1)
or (7) is a (t, ϕ, ψ)-independence for some t, ϕ, ψ.

Research Directions. The independences proposed in Definition 6 should be
investigated in various ways. (i) In terms of dependence theory: e.g., when ϕ
describes an independence P, find an n such that P is in fact an n-independence.
(ii) Compare the expressibility of the independence method in Definition 6 to
that in Remark 12. (iii) In terms of algorithmic questions about these indepen-
dences: e.g., (a) define, for given language L and given ϕ and/or ψ describing
some independence P, what the witnesses are for the non-satisfaction of L with
respect to P; (b) investigate maximality possibly for restricted forms of ϕ in (10).

60 S. Konstantinidis

9 Concluding Remarks

We have surveyed applications of transducers in questions related to independent
languages. Describing independences by transducers is an operational approach
that has led to the implementation of related objects and algorithms [25]. At the
end of some sections we proposed directions for future research. In the previous
section we proposed a possible extension of the transducer method for describing
independences. The method allows one to treat in a uniform way many existing
independences as well as to deal with a priory unknown independences. We close
with an example of combining three independences.

1. From variable-length codes: UD-code relative to some language M , [7]: ins# ↓
M ↑ (L#)+ is functional.

2. From error-control codes: error-detection for subk (see Example 1): sub
=
k (L)∩

L = ∅.
3. From DNA codes: θ-compliance (see Example 2): sco(L) ∩ θ(L) = ∅.

Let Σ′ be a primed and disjoint copy of the alphabet Σ and let cp be a transducer
that outputs a primed copy of any given input Σ∗-word. The conjunction of the
above independences is described by the condition

(
ins′

#′ ∨ all#
) ↓ (

cpM ∪ Σ∗) ↑
((

cp(L#)
)+ ∪ (

ϕ(L) ∪ #
))

is functional,

where ϕ(L) =
(
sub
=

k (L)∩L
)∪ (

sco(L)∩θ(L)
)
, and ins′

#′ is the primed version
of ins#.

References

1. Allauzen, C., Mohri, M.: Efficient algorithms for testing the twins property. J.
Automata Lang. Comb. 8(2), 117–144 (2003)

2. Béal, M.P., Carton, O., Prieur, C., Sakarovitch, J.: Squaring transducers: an effi-
cient procedure for deciding functionality and sequentiality. Theoret. Comput. Sci.
292(1), 45–63 (2003)

3. Berstel, J.: Transductions and Context-Free Languages. B.G. Teubner, Stuttgart
(1979)

4. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press, Cambridge (2009)

5. Bruyère, V.: Maximal codes with bounded deciphering delay. Theoret. Comput.
Sci. 84, 53–76 (1991)

6. Calude, C., Salomaa, K., Yu, S.: Additive distances and quasi-distances between
words. J. Univ. Comput. Sci. 8(2), 141–152 (2002)

7. Daley, M., Jürgensen, H., Kari, L., Mahalingam, K.: Relativized codes. Theoret.
Comput. Sci. 429, 54–64 (2012)

8. Domaratzki, M.: Trajectory-based codes. Acta Inf. 40, 491–527 (2004)
9. Dudzinski, K., Konstantinidis, S.: Formal descriptions of code properties: decidabil-

ity, complexity, implementation. Int. J. Found. Comput. Sci. 23(1), 67–85 (2012)
10. Ehrenfeucht, A., Rozenberg, G.: Each regular code is included in a maximal regular

code. RAIRO Inform. Théor. Appl. 20, 89–96 (1985)

Applications of Transducers in Independent Languages 61

11. FAdo: Tools for formal languages manipulation. http://fado.dcc.fc.up.pt/.
Accessed Apr 2017

12. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J.
26(2), 147–160 (1950)

13. Han, Y.-S., Ko, S.-K., Salomaa, K.: Computing the edit-distance between a reg-
ular language and a context-free language. In: Yen, H.-C., Ibarra, O.H. (eds.)
DLT 2012. LNCS, vol. 7410, pp. 85–96. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31653-1 9

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Boston (1979)

15. Jonoska, N., Mahalingam, K.: Languages of DNA based code words. In: Chen, J.,
Reif, J. (eds.) DNA 2003. LNCS, vol. 2943, pp. 61–73. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24628-2 8

16. Jürgensen, H.: Syntactic monoids of codes. Acta Cybern. 14, 117–133 (1999)
17. Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg and Salomaa [36], pp.

511–607 (1997)
18. Kamabe, H.: Outfix-free and intercode constraints for DNA sequences. In: Proceed-

ings of 2011 IEEE International Symposium on Information Theory, pp. 1574–1578
(2011)

19. Kari, L., Kitto, R., Thierrin, G.: Codes, involutions, and DNA encodings. In:
Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural
Computing. LNCS, vol. 2300, pp. 376–393. Springer, Heidelberg (2002). doi:10.
1007/3-540-45711-9 21

20. Kari, L., Konstantinidis, S., Kopecki, S.: Transducer descriptions of DNA code
properties and undecidability of antimorphic problems. In: Shallit, J., Okhotin, A.
(eds.) DCFS 2015. LNCS, vol. 9118, pp. 141–152. Springer, Cham (2015). doi:10.
1007/978-3-319-19225-3 12

21. Kari, L., Konstantinidis, S., Kopecki, S., Yang, M.: An efficient algorithm for com-
puting the edit distance of a regular language via input-altering transducers. CoRR
abs/1406.1041 (2014). http://arxiv.org/abs/1406.1041

22. Kari, L., Konstantinidis, S., Sośık, P.: On properties of bond-free DNA languages.
Theoret. Comput. Sci. 334, 131–159 (2005)

23. Konstantinidis, S.: Transducers and the properties of error-detection, error-
correction and finite-delay decodability. J. Univ. Comput. Sci. 8, 278–291 (2002)

24. Konstantinidis, S., Mastnak, M.: Embedding rationally independent languages into
maximal ones. J. Automata Lang. Comb. (2017, to appear)

25. Konstantinidis, S., Meijer, C., Moreira, N., Reis, R.: Implementation of code prop-
erties via transducers. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol.
9705, pp. 189–201. Springer, Cham (2016). doi:10.1007/978-3-319-40946-7 16

26. Konstantinidis, S., Moreira, N., Reis, R.: Generating error control codes with
automata and transducers. In: Bordihn, H., Freund, R., Nagy, B., Vaszil, G. (eds.)
Proceedings of NCMA 2016, pp. 211–226. No. 321 in Österreichische Computer
Gesellschaft (2016)

27. Konstantinidis, S., Silva, P.V.: Computing maximal error-detecting capabilities
and distances of regular languages. Fundam. Inf. 101(4), 257–270 (2010)

28. Kopecki, S.: Personal communication (2013)
29. Lam, N.H.: Finite maximal solid codes. Theoret. Comput. Sci. 262, 333–347 (2001)
30. Mateescu, A., Salomaa, A.: Formal languages: an introduction and a synopsis. In:

Rozenberg and Salomaa [36], pp. 1–39 (1997)

http://fado.dcc.fc.up.pt/
http://dx.doi.org/10.1007/978-3-642-31653-1_9
http://dx.doi.org/10.1007/978-3-642-31653-1_9
http://dx.doi.org/10.1007/978-3-540-24628-2_8
http://dx.doi.org/10.1007/3-540-45711-9_21
http://dx.doi.org/10.1007/3-540-45711-9_21
http://dx.doi.org/10.1007/978-3-319-19225-3_12
http://dx.doi.org/10.1007/978-3-319-19225-3_12
http://arxiv.org/abs/1406.1041
http://dx.doi.org/10.1007/978-3-319-40946-7_16

62 S. Konstantinidis

31. Mercier, H., Bhargava, V.K., Tarokh, V.: A survey of error-correcting codes for
channels with symbol synchronization errors. IEEE Commun. Surv. Tutor. 12,
87–96 (2010)

32. Ng, T.: Prefix distance between regular languages. In: Han, Y.-S., Salomaa, K.
(eds.) CIAA 2016. LNCS, vol. 9705, pp. 224–235. Springer, Cham (2016). doi:10.
1007/978-3-319-40946-7 19

33. Okhotin, A.: Decision problems for language equations. J. Comput. Syst. Sci. 76,
251–266 (2010)

34. Paluncic, F., Abdel-Ghaffar, K., Ferreira, H.: Insertion/deletion detecting codes
and the boundary problem. IEEE Trans. Inf. Theory 59(9), 5935–5943 (2013)

35. Pighizzini, G.: How hard is computing the edit distance? Inf. Comput. 165, 1–13
(2001)

36. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I. Springer,
Berlin (1997)

37. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Berlin
(2009)

38. Shyr, H.J.: Free Monoids and Languages, 2nd edn. Hon Min Book Company,
Taichung (1991)

39. Shyr, H.J., Thierrin, G.: Codes and binary relations. In: Malliavin, M.P. (ed.)
Séminaire d’Algèbre Paul Dubreil Paris 1975–1976 (29ème Année). LNM, vol. 586,
pp. 180–188. Springer, Heidelberg (1977). doi:10.1007/BFb0087133

40. Van, D.L., Hung, K., Huy, P.T.: Codes and length-increasing transitive binary
relations. In: Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp.
29–48. Springer, Heidelberg (2005). doi:10.1007/11560647 2

41. Vaucanson: The vaucanson project. http://vaucanson-project.org/. Accessed Apr
2017

42. Wood, D.: Theory of Computation. Harper & Row, New York (1987)
43. Yu, S.: Regular languages. In: Rozenberg and Salomaa [36], pp. 41–110 (1997)
44. Yu, S.S.: Languages and Codes. Tsang Hai Book Publishing, Taichung (2005)
45. Zaccagnino, R., Zizza, R., Zottoli, C.: Testing DNA code words properties of regular

languages. Theoret. Comput. Sci. 608, 84–97 (2015)
46. Zhang, L., Shen, Z.: Completion of recognizable bifix codes. Theoret. Comput. Sci.

145, 345–355 (1995)

http://dx.doi.org/10.1007/978-3-319-40946-7_19
http://dx.doi.org/10.1007/978-3-319-40946-7_19
http://dx.doi.org/10.1007/BFb0087133
http://dx.doi.org/10.1007/11560647_2
http://vaucanson-project.org/

Contributed Papers

On the Degree of Nondeterminism
of Tree Adjoining Languages and Head

Grammar Languages

Suna Bensch1(B) and Maia Hoeberechts2

1 Department of Computing Science, Ume̊a University, Ume̊a, Sweden
suna@cs.umu.se

2 Ocean Networks Canada and Department of Computer Science,
University of Victoria, Victoria, Canada

maiah@uvic.ca

Abstract. The degree of nondeterminism is a measure of syntactic com-
plexity which was investigated for parallel and sequential rewriting sys-
tems. In this paper, we consider the degree of nondeterminsm for tree
adjoining grammars and their languages and head grammars and their
languages. We show that a degree of nondeterminism of 2 suffices for
both formalisms in order to generate all languages in their respective
language families. Furthermore, we show that deterministic tree adjoin-
ing grammars (those with degree of nondeterminism equal to 1), can
generate non-context-free languages, in contrast to deterministic head
grammars which can only generate languages containing a single word.

Keywords: Tree adjoining languages · Head grammar languages ·
Degree of nondeterminism

1 Introduction

The degree of nondeterminism for tabled Lindenmayer systems and languages
has been studied in [8,9] as a measure of syntactic complexity. The degree of
nondeterminism has also been considered for sequential rewriting systems in
[1–3]. The degree of nondeterminism is usually defined as the maximal number
of production rules with the same left-hand side which provides a measure of the
amount of choice available during derivations using the grammar. In this paper
we consider the degree of nondeterminism for tree adjoining grammars and head
grammars. Tree adjoining grammars were first introduced in [5] and their formal
properties and linguistic relevance have been considered in [4,10]. TAGs are tree-
generating grammars which use an adjoining operation that generates new trees

M. Hoeberechts—This research has been supported in part by an NSERC scholarship
and by NSERC grant OGP 249 (Helmut Jürgensen).

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 65–76, 2017.
DOI: 10.1007/978-3-319-60252-3 5

66 S. Bensch and M. Hoeberechts

by joining and attaching two different trees at a particular node. Head Grammars
were first introduced in [7]. The principle feature which distinguishes a Head
Grammar (HG) from a context-free grammar is that the head grammar includes
a wrapping operation which allows one string to be inserted into another string
at a specific point (the head). It is known that for both tree adjoining grammars
and head grammars, the class of string languages generated by the grammars is
larger than the class of context-free languages (e.g. they are able to define the
language {anbncndn|n ≥ 0} [10]). In [10] it is shown that the two formalisms
generate exactly the same class of string languages, and that these languages are
mildly context-sensitive.

The notion of mild context-sensitivity tries to capture mathematical and
computational properties that formal models for the description and analysis
of natural language should possess. The notion of mild context-sensitivity was
first mentioned in [4] and sparked active research yielding to many different
approaches and definitions thereof (see, for example, [6]). There has been much
discussion about the linguistic differences between mildly context-sensitive gram-
mar formalisms, and in general, investigations mainly focus on polynomial pars-
ing algorithms. Formal properties of mild context-sensitive grammar formalisms
have not been as extensively considered. The examination of degree of nondeter-
minism for TAGs and MHGs is a step in that direction. It would be interesting to
consider whether there are any linguistic implications for the degree of nondeter-
minism — for example, are there aspects of natural language modelling which are
best done with a grammar having a higher (or lower) degree of nondeterminism
than others?

2 Notational Conventions

The reader is assumed to be familiar with the basic notions in formal language
theory. We use the following notational conventions and definitions in this paper.
|S| denotes the cardinality of the set S, ∅ denotes the empty set, ∪ denotes set
union, and \ denotes set difference. S is called an alphabet if it is a finite non-
empty set of symbols. N denotes the set of natural numbers {1, 2, 3, . . .}. For
any set X, a word over X is a finite sequence of symbols from X. λ will be used
to denote the empty word. The concatenation of two words x and y is denoted
by xy and represents the word formed by the juxtaposition of x and y. The
concatenation of a word x and a set S is xS = {xy | y ∈ S} (Sx is similarly
defined). X∗ is the free monoid generated by X with concatenation as binary
operation and λ as identity element. X+ = X∗ \ λ.

3 Tree Adjoining Grammars (TAGs)

Tree Adjoining Grammars. (TAGs) are linguistically motivated tree-generating
grammars which were originally introduced in [5]. For linguistic applications,
TAGs have an advantage over string generating grammars such as context-free
grammars because the elementary objects and all the objects generated are trees,

Degree of Nondeterminism of TAG and HG Languages 67

which represent syntactic structure explicitly, as opposed to strings, which do
not. In what follows, we give an informal description of TAGs first and their
formal definition later.

The components of a TAG are a set of initial trees and a set of auxiliary
trees. Each node in an initial tree or an auxiliary tree is labelled by a terminal
symbol, by λ, or by a nonterminal symbol and constraints (which serve to restrict
adjunction at that node, as will be explained later). The initial trees are the
axioms used in the generation of new trees. The only means by which new trees
are generated is the adjunction operation, which allows an auxiliary tree to be
inserted into an initial tree or a derived (i.e. previously generated) tree. TAGs
which include a second operation, substitution, are not discussed here as they
are equivalent in generative power to TAGs which use only adjoining.

Tree adjunction is illustrated in Fig. 1 (adapted from [10]). The tree shown
on the left, γ, is an initial tree or a derived tree. The root node of γ is labelled
by the nonterminal A, and γ contains an interior node n which is labelled by
the nonterminal B. The tree in the centre, β, is an auxiliary tree in which both
the root node and the foot node, a special node on the frontier of the tree, are
labelled by B. As the nonterminal labelling n in γ and the nonterminal labelling
the root node of β are the same, it is possible to adjoin β at n. Adjunction results
in the new tree γ′ which is constructed by removing the subtree rooted at n from
γ, inserting β into γ at the point where n was removed, and then replacing the
foot node in β by the subtree originally rooted at n.

Fig. 1. Tree adjunction

The language defined by a TAG G is the set of all words which are produced
as the yield of some tree generated through zero or more adjunction operations
in G. The yield of a tree is the word obtained by concatenating the terminal
symbols on the leaf nodes of the tree, read from left to right. In a TAG, initial
trees must have only terminal symbols on their leaf nodes, and auxiliary trees
have terminal symbols on all leaf nodes except for the foot node. Thus, every
tree generated through adjunction operations in G has a terminal word as its
yield, and that word is an element of L(G). All trees discussed in this paper are
finite.

In a TAG, a node n in a tree γ is labelled either by a terminal symbol, by λ, or
by a triple of the form 〈A, sa(γ,n), oa(γ,n)〉 where A is a nonterminal symbol and

68 S. Bensch and M. Hoeberechts

sa(γ,n) and oa(γ,n) are called the adjunction constraints and have the following
interpretations1:

– sa(γ,n) is a set of trees. For a given node, sa(γ,n) (selective adjunction) is the
set of trees from the grammar which are allowed to be adjoined at that node.
We assume that for all β in sa(γ,n), the root node of β is labelled by the same
nonterminal as n. If sa(γ,n) = ∅, then adjunction is not permitted at that
node, and we can write NA to indicate a null adjunction constraint.

– oa(γ,n) ∈ {true, false}. If oa(γ,n) has the value true then we speak about an
OA (obligatory adjunction) constraint and if oa(γ,n) has the value false then
this indicates that adjunction is optional.

Definition 1. A Tree Adjoining Grammar (TAG) is a quadruple G = (N,T,
I,A), where, N is the alphabet of nonterminal symbols, T the alphabet of ter-
minal symbols, N ∩ T = ∅, I and A are given as follows

– I is a finite set of initial trees where each α ∈ I satisfies:
• All interior nodes of α are labelled by 〈B, sa(α,n), oa(α,n)〉, B ∈ N ,

sa(α,n) ⊆ A and oa(α,n) ∈ {true, false}.
• All leaf nodes of α are labelled by some u ∈ {T ∪ {λ}}.

– A is a finite set of auxiliary trees where each β ∈ A satisfies:
• All interior nodes of β are labelled by 〈B, sa(β,n), oa(β,n)〉, B ∈ N ,

sa(β,n) ⊆ A and oa(β,n) ∈ {true, false}.
• All leaf nodes of β are labelled by some u ∈ {T ∪ {λ}}, except the foot

node, denoted by ft(β), which carries the same category (but not neces-
sarily the same adjunction constraints) as the root node.

Tree adjunction is a partial ternary operation ∇(γ, β, n) which produces a
new tree, γ′, which is a copy of γ with the auxiliary tree β inserted at the
node with address n. We define a derived tree to be an initial tree, an auxiliary
tree or a tree produced by an application of ∇. We say adjunction is permitted
when the following conditions hold for the arguments of ∇: γ is a derived tree,
β is an auxiliary tree, and n is the address of an interior node in γ with label
γ(n) = 〈B, sa(γ,n), oa(γ,n)〉. The root node of β must be labelled by the same
nonterminal as n, that is, 〈B, sa(β,λ), oa(β,λ)〉, and β must be an element of
sa(γ,n).

After adjunction the labels of the nodes are unchanged from their original
labels in γ and β, except for the nodes affected by adjunction: the node at address
n which now carries the label from the root node of β, and the foot node of β
with the change that the oa constraint on the node is set to false.

For a TAG G = (N,T, I,A), a derivation in G will be denoted by =⇒
G

. The

tree γ′ can be derived from γ if and only if there exist β ∈ A and n in gamma
such that adjunction of β in γ at n is permitted and ∇(γ, β, n) = γ′. Then we
write γ =⇒

G
γ′. Let ∗=⇒

G
denote the reflexive, transitive closure of =⇒

G
.

1 This notation has been changed slightly from [10] to include an index on the sa and
oa constraint.

Degree of Nondeterminism of TAG and HG Languages 69

The tree language generated by G is the set of all trees which can be generated
in zero or more derivation steps from the initial trees of G, and in which no nodes
remain which are labelled by an OA (obligatory adjunction) constraint.

T (G) = {γ | α
∗=⇒
G

γ for some α ∈ I and γ has no OA nodes}

The yield of a tree is the string one obtains by concatenating the labels on
the leaf nodes from left to right.

For a TAG G = (N,T, I,A) with tree language T (G), the tree adjoining
language generated by G is

L(G) = {yield(γ) | γ ∈ T (G)}
Let LTAG represent the family of tree adjoining languages.

3.1 Degree of Nondeterminism for TAGs

The degree of nondeterminism for tree adjoining grammars will measure the
amount of choice between auxiliary trees which can be adjoined within a given
TAG. When defining the degree of nondeterminism for TAGs an essential ambi-
guity in the interpretation has to be taken into account. On the one hand, when
defining the degree of nondeterminism for a given node n in a tree γ, one could
consider only the auxiliary trees in the set sa(γ,n), which can be adjoined at that
node. On the other hand, one could consider all auxiliary trees in the set A for
the given tree adjoining grammar (even if they are not in the set sa(γ,n)). We
will call these views weak degree of nondeterminism and strong degree of non-
determinism, respectively. In this section we will define strong and weak degree
of nondeterminism, and then show that the two measures are equivalent. For
the following definitions, consider a TAG G = (N,T, I,A). Let γ represent an
arbitrary tree in I ∪ A and β ∈ A represent an arbitrary auxiliary tree.

Definition 2. Weak degree of nondeterminism

– For a node in γ at address n labelled by 〈B, sa(γ,n), oa(γ,n)〉, the degree of the
node is denoted by DegG(γ, n), and is defined as the number of trees in the
selective adjunction set for the node. That is, DegG(γ, n) = |sa(γ,n)|.

– The weak degree of nondeterminism of a tree adjoining grammar G is denoted
by Detw(G), and is defined as the maximal degree of any node in a tree in G:
Detw(G) = max{DegG(γ, n) | γ ∈ I ∪ A, n ∈ dom(γ)}.

– The weak degree of nondeterminism of a tree adjoining language L, Detw(L),
is defined as the minimal weak degree of nondeterminism of any TAG capable
of generating L: Detw(L) = min{Detw(G) | G is a TAG with L(G) = L}.

Definition 3. Strong degree of nondeterminism

– The degree of a nonterminal B ∈ N , denoted by DegG(B), is the number of
auxiliary trees in A which have B labelling their root node: DegG(B) = |{β |
β ∈ A, β(λ) = 〈B, sa(β,λ), oa(β,λ)}|.

70 S. Bensch and M. Hoeberechts

– The strong degree of nondeterminism for a tree adjoining grammar G, denoted
by Dets(G), is defined as the maximal degree of a nonterminal in N :
Degs(G) = max{DegG(B) | B ∈ N}.

– The strong degree of nondeterminism of a tree adjoining language L, Dets(L),
is defined as the minimal strong degree of nondeterminism of any TAG capable
of generating L: Dets(L) = min{Dets(G) | G is a TAG with L(G) = L}.

We will now show that strong and weak degree of nondeterminism are equiv-
alent measures for TAGs.

Theorem 1. Given a TAG G = (N,T, I,A), Detw(G) ≤ Dets(G).

Proof. By definition, for every node n in a tree γ ∈ I ∪ A labelled by
〈B, sa(γ,n), oa(γ,n)〉, sa(γ,n) ⊆ A. Therefore, DegG(γ, n) ≤ DegG(B) for any
given node labelled by B in a tree γ at n, and thus Detw(G) ≤ Dets(G).

Theorem 2. Given a TAG G = (N,T, I,A) with Detw(G) < Dets(G), there
effectively exists a TAG G′ = (N ′, T ′, I ′,A′) for which L(G) = L(G′) and
Detw(G′) = Dets(G′) = Detw(G).

Proof. The intuitive idea behind the proof is that the set of auxiliary trees which
can be adjoined at any given node is determined by two conditions: (i) the non-
terminal symbol labelling the node, and (ii) the sa constraint which restricts the
subset of auxiliary trees which are actually permitted to be adjoined at that node.
The Algorithm 1 below works by making copies of the auxiliary trees such that
for an sa set containing {β1, . . . , βk}, k new auxiliary trees are introduced, whose
root nodes are labelled by a common nonterminal which is used only for the aux-
iliary trees in that sa set. The result of copying and relabelling is that the strong
degree of nondeterminism for the grammar is reduced to the weak degree because
the number of auxiliary trees labelled by any given nonterminal is equal to the
size of the sa set in which the auxiliary trees bearing that nonterminal appear.
The algorithm recursively relabels all new auxiliary trees which are created.

An example of the effect of Algorithm 1 for one node is shown in Fig. 2. The
trees at the top, α1, β1 and β2, are the trees from the TAG before relabelling
takes place. In the new initial tree, α′

1, the relabelled node can be seen. The new
auxiliary trees, δ1 and δ2, are copies of β1 and β2 respectively for which new root
and foot nodes have been added, and relabelling has been recursively applied to
produce β′

1 and β′
2.

Algorithm 1.
Preconditions: G = (N, T, I, A) is the TAG which will be relabelled.
Postconditions: A new TAG G′ = (N ′, T ′, I′, A′) is produced for which L(G) = L(G′) and
Detw(G′) = Dets(G

′) = Detw(G).
Let N ′ = ∅, T ′ = T , I′ = ∅, A′ = ∅
For each t in I

Let t′ be a new tree name, t′ /∈ (I ∪ A ∪ I′ ∪ A′)
t′ = Relabel(N ′, t, A′)
Let I′ = I′ ∪ t′

Function Relabel(N ′, t, A′)
Preconditions: N ′ is the set of nonterminal symbols defined so far, t is the tree currently being
considered, A′ is the set of new auxiliary trees constructed so far

Degree of Nondeterminism of TAG and HG Languages 71

Postconditions: N ′ has been updated to include any new nonterminals, t is unchanged, A′ has
been updated to include any new trees resulting from the relabelling of t

Returns a new tree t′ which is the relabelled t
Let t′ be a copy of t
For each node n of t labelled by 〈A, sa(t,n), oa(t,n)〉, with sa(t,n) = {β1, . . . , βk}

Let Aβ1 · · · βk be a nonterminal symbol
If Aβ1 · · · βk /∈ N ′

Let N ′ = N ′ ∪ Aβ1 · · · βk

For each βi in sa(t,n)
Let δi be a new tree name, δi /∈ A′

Let δi be an auxiliary tree constructed as follows:
• label the root node of δi by 〈Aβ1 · · · βk, ∅, false〉
• connect the root node of δi to the root node of a copy of βi

• connect the foot node of the copy of βi to the foot node of δi

• label the foot node of δi by 〈Aβ1 · · · βk, ∅, false〉
Let A′ = A′ ∪ δi

For i from 1 to k
δi = Relabel(N ′, δi, A′)

If sa(t,n) = ∅
Let sa′

(t,n) = ∅
Else

Let sa′
(t,n) = {τ | τ ∈ A′, τ(λ) = 〈Aβ1 · · · βk, sa(τ,λ), oa(τ,λ)〉}

(sa′
(t,n) is the set of all trees in A′ whose root nodes are labelled by Aβ1 · · · βk)

Let the node corresponding to n in t′ be labelled by 〈Aβ1 · · · βk, sa′
(t,n), oa(t,n)〉

End Function

Fig. 2. Effect of Algorithm 1 for one node in α1

Thus, as the strong degree of nondeterminism can be reduced to the weak
degree for any given TAG, one measure of degree of nondeterminism is suffi-
cient. We can omit reference to strong or weak in our notation, and therefore,
Det(G) will be used to denote the (weak) degree of nondeterminism for TAGs,
and DetTAG(L) will denote the degree of nondeterminism for tree adjoining lan-
guages. Finally, we will show that for a TAG G with degree of nondeterminism
greater than 2, we can create an equivalent TAG G′ with degree of nondeter-
minism equal to 2. Thus, the degree of nondeterminism for any tree adjoining
language is at most 2.

Theorem 3. Given a TAG G = (N,T, I,A) with Det(G) > 2, there effectively
exists an TAG G′ for which L(G) = L(G′) and Det(G′) = 2.

72 S. Bensch and M. Hoeberechts

Proof. The following Algorithm 2 examines all the nodes in the initial trees and
auxiliary trees of G. When a node n in a tree γ is found with Deg(γ, n) > 2,
this indicates that there is a choice between more than two auxiliary trees for
adjunction at that node. Suppose the selective adjunction set for the node is
sa(γ,n) = {β1, . . . , βn} with n > 2. The algorithm works by introducing new
auxiliary trees δ1, . . . , δn−2 each consisting of only a root node and foot node.
The purpose of the δi trees is to reduce the choice between auxiliary trees to 2 at
any given node. Node n is relabelled such that only β1 or δ1 can be adjoined, that
is, sa(γ,n) = {β1, δ1}. At the root node of δ1, β2 or δ2 can be adjoined, that is,
sa(δ1,λ) = {β2, δ2}. Generally, for δi with 1 ≤ i < n−2, sa(δi,λ) = {δi+1, βi+1} For
δn−2, the root node is labelled by the sa set saδn−2,λ = {βn−1, βn}. Introduction
of new auxiliary trees and relabelling is done for all nodes in G with degree
greater than 2. The resulting TAG G′ generates the same language as G, but
contains no node with more than 2 trees in its sa set, and therefore Det(G′) = 2.

Algorithm 2.
Preconditions: G = (N, T, I, A) is a TAG with Det(G) > 2
Postconditions: G has been modified such that L(G) is unchanged and Det(G) = 2
For each γ ∈ I ∪ A

For each n in dom(γ) labelled by 〈A, sa(γ,n), oa(γ,n)〉 with sa(γ,n) = {β1, . . . , βk}
If k > 2

For i from 1 to (k − 2)
Let δi be a new tree name δi /∈ (I ∪ A)
Let δi be an auxiliary tree constructed as follows:

• δi consists of two nodes: the root node and the foot node
• If i < k − 2
the root and foot are labelled by 〈A, {βi+1, δi+1}, oa(γ,n)〉
Else
the root and foot are labelled by 〈A, {βi+1, βi+2}, oa(γ,n)〉

Let A = A ∪ δi

Let the label of n be replaced by 〈A, {β1, δ1}, oa(γ,n)〉

Corollary 1. For any L ∈ LTAG, DetTAG(L) ≤ 2.

4 Modified Head Grammars (MHGs)

We will consider Modified Head Grammars (MHGs) which were proposed in [11],
and differ only slightly from the definition in [7]. The strings used in modified
head grammars are called headed strings. In a headed string, a special position
between two symbols, marked by ↑, is designated as the head of the string. MHGs
use a wrapping operation to insert one string into another, and the purpose of the
head is to designate the insertion point during this operation. For an alphabet
X, let HX be the set of headed strings over X. HX is defined as:

HX = {v↑w | v, w ∈ X∗}

For example, for the alphabet X = {a, b, c}, abc↑cbacba, λ↑aaa and λ↑λ are
three of the elements of HX .

The production rules of an MHG are defined in terms of two types of oper-
ations, wrapping and concatenation, which are performed on headed strings.

Degree of Nondeterminism of TAG and HG Languages 73

The wrapping operation, W : H2
X → HX is a binary operation which has

the effect of inserting one string into another at the head. Given headed strings
v1↑w1 and v2↑w2, the result of applying W is a new headed string comprised of
v2↑w2 inserted into v1↑w1 at its head:

W (v1↑w1, v2↑w2) = v1v2↑w2w1

The concatenation of headed strings is an n-ary operation denoted by Cm,n :
Hn

X → HX , where n is the number of headed strings to be concatenated and m
is the index of the string whose head becomes the head for the resulting string.
The indices must satisfy n ≥ 1 and 1 ≤ m ≤ n. The interpretation of Cm,n is as
follows:

Cm,n(v1↑w1, v2↑w2, . . . , vm↑wm, . . . , vn↑wn) = v1w1v2w2· · ·vm↑wm· · ·vnwn

Given a nonterminal alphabet N and a terminal alphabet T , a headed string
expression over N and T is recursively defined as follows:

– Every headed string σ ∈ HT is a headed string expression.
– For all A ∈ N , A is a headed string expression.
– If σ1 and σ2 are headed strings expressions, then W (σ1, σ2) is a headed string

expression.
– If σ1, . . . , σn are headed string expressions, then Ci,n(σ1, . . . , σn) are headed

string expressions for 1 ≤ i ≤ n.
– There are no other headed string expressions.

Let EN,T represent the set of headed string expressions over N and T . By con-
vention, we will use σ to represent a headed string expression. If a headed string
expression contains no nonterminals, we call it closed.

Definition 4. A Modified Head Grammar (MHG) is a quadruple, G = (N,T,
P, S) where N is a finite set of nonterminal symbols, T is a finite set of terminal
symbols, S ∈ N is the start symbol, P is a set of production rules {p1, . . . , pk},
where pi = A → σi, with A ∈ N,σi ∈ EN,T .

Consider an MHG, G = (N,T, P, S), with pi = A → σi ∈ P . Given a headed
string expression σ ∈ EN,T containing a nonterminal A, we may apply the rule
pi to replace one instance of A in σ by the right hand side of pi, σi. Let σ′ denote
the resulting string. Then we write σ =⇒

G
σ′ to indicate that σ′ can be derived

from σ using a production rule in G. If the grammar in use is clear from the
context, we write =⇒ rather than =⇒

G
. Let ∗=⇒

G
denote the reflexive, transitive

closure of =⇒
G

.

For an MHG G = (N,T, P, S), the expression language generated by G,
E(G), is the set of all closed headed string expressions which can be derived
from S using the rules of G. Formally,

E(G) = {σ |S ∗=⇒
G

σ, σ is closed}

74 S. Bensch and M. Hoeberechts

The head language generated by G, H(G), is the set of headed strings which
result from the evaluation according to the definitions of W and Cm,n of the
closed headed string expressions in E(G):

H(G) = {v↑w | v↑w ∈ E(G)}

The language generated by G, L(G), is the set of strings one obtains by
removing the heads from the strings in H(G):

L(G) = {vw | v↑w ∈ H(G)}

Let LMHG denote the family of languages which can be defined by MHGs.

4.1 Degree of Nondeterminism for MHGs

Let G = (N,T, P, S) be an MHG. For a nonterminal A, let PA be the set of
production rules with A on the left-hand side.

That is, PA = {pi | pi ∈ P, pi = A → σ}.

Definition 5. Degree of nondeterminism

– The degree of the nonterminal A, denoted by DegG(A), is the number of
production rules with A on the left-hand side: DegG(A) = |PA|

– The degree of nondeterminism of the MHG G, Det(G), is defined as the
maximum degree of a nonterminal in G: Det(G) = max{DegG(A) |A ∈ N}.
Intuitively, the degree of nondeterminism measures how much choice between
productions rules there is during a derivation using a specific MHG.

– DetMHG(L), the degree of nondeterminism for an MHG language L, is defined
as the minimal degree of nondeterminism of any MHG capable of generating
L: DetMHG(L) = min{Det(G) |G is an MHG for which L(G) = L}.

It will now be shown that the degree of nondeterminism for any MHG lan-
guage is at most 2. The proof of Theorem 4 contains an algorithm which generates
an MHG with degree of nondeterminism equal to 2 from any MHG with degree
of nondeterminism greater than 2.

Theorem 4. Given an MHG G = (N,T, P, S) with Det(G) > 2, there effec-
tively exists an MHG G′ = (N ′, T, P ′, S′) for which L(G′) = L(G) and
Det(G′) = 2.

Proof. An MHG G with Det(G) > 2 contains nonterminals A ∈ N which appear
on the left hand side of more than 2 production rules. The Algorithm 3 presented
below introduces new nonterminal symbols and production rules so that the
choice between production rules at any point in a derivation is always binary. To
understand how it works, suppose there is a nonterminal A ∈ N which appears
on the left hand side of 3 rules, p1 : A → σ1, p2 : A → σ2 and p3 : A → σ3.
After execution of the algorithm, the nonterminal A would be replaced by three
nonterminal, A1, A2 and A3, and the rules p1, p2 and p3 would be replaced by six

Degree of Nondeterminism of TAG and HG Languages 75

production rules: p′
1 = A1 → σ′

1, p′′
1 = A1 → A2, p′

2 = A2 → σ′
2, p′′

2 = A2 → A3,
p′
3 = A3 → σ′

3, p′′
3 = A3 → A1. The rules are “chained” such that the same

strings can be derived but the choice of production rules at any given time is
reduced to 2.
Algorithm 3.
Preconditions: G = (N, T, P, S) is an MHG with Det(G) > 2
Postconditions: New MHG G′ = (N ′, T ′, P ′, S′) such that L(G′) = L(G) and
Det(G′) = 2
Let N ′ = ∅, T ′ = T , P ′ = ∅, S′ = S1
For each A ∈ N

Let PA = {p1, . . . pj} be the set of rules with A on the left hand side
Let A1 be a new nonterminal, A1 /∈ (N ∪ N ′)
Let N ′ = N ′ ∪ A1
For i = 1 to j

From pi = A → σi

Create rule p′
i = Ai → σ′

i
where σ′

i is the headed string expression which results
by replacing all B ∈ N appearing in σi by B1

Let P ′ = P ′ ∪ p′
i

If i < j
Let Ai+1 be a new nonterminal, Ai+1 /∈ (N ∪ N ′)
Create rule p′′

i = Ai → Ai+1
Let N ′ = N ′ ∪ Ai+1, P ′ = P ′ ∪ p′′

i
Else If j > 1

Create rule p′′
i = Ai → A1

Let P ′ = P ′ ∪ p′′
i

Corollary 2. For any L ∈ LMHG, DetMHG(L) ≤ 2.

A deterministic MHG is an MHG G = (N,T, P, S) for which Det(G) = 1. In
other words, no nonterminal A ∈ N appears on the left-hand side of more than
one production rule pi ∈ P .

Theorem 5. A deterministic MHG G = (N,T, P, S) defines a language with
|L(G)| ≤ 1.

Proof. We can observe the following requirements for the production rules of
a deterministic MHG with a nonempty language: (i) At least one production
rule must have only terminal symbols or λ on the right-hand side. (ii) The same
nonterminal symbol may not appear on the left and right-hand side of a given
production rule. (iii) There can be no set of production rules Pcycle ⊆ P =
p1, . . . , pk which have the following form: p1 : A1 → σ1 where σ1 contains A1 . . .
pi : Ai → σi, where σi contains Ai+1 . . . pk : Ak → σk, where σk contains A1.

(i) is necessary so that it is possible to derive a headed string expression
which is closed. (ii) and (iii) are necessary so that the sequence of derivations
does not contain a loop. Such a loop would prevent the sequence of derivations
from ending since each nonterminal appears on the left hand side of only one
rule, and therefore the derivation leading to the loop would be chosen every time.
Thus, since the sequence of derivations does not contain a loop and must start
from S, if L(G) is nonempty then |L(G)| = 1.

5 Conclusions

The relationship between TAGs and MHGs was explored in several papers [10,
11]. In this paper, we have shown that for both TAGs and MHGs, the degree

76 S. Bensch and M. Hoeberechts

of nondeterminism 2 suffices to generate all languages in their respective lan-
guage families. Reducing the degree of nondeterminism with our algorithms can
increase the number of elementary trees in a TAG or the number of production
in a MHG considerably. We note that there is a significant difference between
deterministic MHGs and deterministic TAGs. In [10], an example of a TAG
appears which has only one auxiliary tree (and is therefore deterministic by
our definition), and yet it generates the language {anbncndn |n ≥ 0} which is
noncontext-free. By contrast, deterministic MHGs are only capable of generat-
ing languages for which |L| ≤ 1. Finally, there is a small question which arose
concerning TAGs during our work. Although we know that deterministic TAGs
are capable of generating noncontext-free languages, we did not identify the class
of languages which can be generated by deterministic TAGs.

Acknowledgments. We thank Henning Bordihn for helping us to understand and
define Degree of Nondeterminism for TAGs. Thank you to Helmut Jürgensen for his
comments on drafts of this paper and for his support and encouragement for this
project.

References

1. Aydin, S., Bordihn, H.: Sequential versus parallel grammar formalisms with respect
to measures of descriptional complexity. Fundam. Inf. 55, 243–254 (2003)

2. Bordihn, H.: Über den Determiniertheitsgrad reiner Versionen formaler Sprachen.
Ph.D. thesis, Technische Universität “Otto von Guericke” Magdeburg (1992)

3. Bordihn, H.: On the degree of nondeterminism. In: Dassow, J., Kelemenova, A.
(eds.) Developments in Theoretical Computer Science, pp. 133–140. Gordon and
Breach Science Publishers, Philadelphia (1994)

4. Joshi, A.: Tree adjoining grammars: how much context-sensitivity is required to
provide reasonable structural descriptions? In: Dowty, D., Karttunen, L., Zwicky,
A. (eds.) Natural Language Parsing, pp. 206–250. Cambridge University Press,
Cambridge (1985)

5. Joshi, A., Levi, L.S., Takahashi, M.: Tree adjunct grammars. J. Comput. Syst. Sci.
10, 136–163 (1975)

6. Marcus, S.: Mild context-sensitivity, after twenty years. Fundam. Inf. 73, 203–204
(2006)

7. Pollard, C.: Generalized phrase structure grammars, head grammars and natural
language. Ph.D. thesis, Stanford University (1984)

8. Rozenberg, G.: Extension of tabled 0L systems and languages. Int. J. Comput.
Inform. Sci. 2, 311–336 (1973)

9. Rozenberg, G.: T0L systems and languages. Inf. Control 23, 357–381 (1973)
10. Vijay-Shanker, K., Weir, D.: The equivalence of four extensions of context-free

grammars. Math. Syst. Theory 87, 511–546 (1994)
11. Weir, D., Vijay-Shanker, K., Joshi, A.: The relationship between tree adjoining

grammars and head grammars. In: Proceedings of the 24th Annual Meeting of
Computational Linguistics, New York, NY (1986)

On the Average Complexity of Strong Star
Normal Form

Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis(B)

CMUP & DM-DCC, Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre, 4169-007 Porto, Portugal

{sbb,nam,rvr}@dcc.fc.up.pt, ajmachia@fc.up.pt

Abstract. For regular expressions in (strong) star normal form a large
set of efficient algorithms is known, from conversions into finite automata
to characterisations of unambiguity. In this paper we study the average
complexity of this class of expressions using analytic combinatorics. As
it is not always feasible to obtain explicit expressions for the generating
functions involved, here we show how to get the required information for
the asymptotic estimates with an indirect use of the existence of Puiseux
expansions at singularities. We study, asymptotically and on average, the
alphabetic size, the size of the ε-follow automaton and the ratio of these
expressions to standard regular expressions.

1 Introduction

A regular expression α is in strong star normal form (ssnf) if for any subexpres-
sion of the form β� or β + ε the language represented by β does not include the
empty word, ε. The star normal form was introduced by Brüggemann-Klein [5]
as a step to improve the construction of the position automaton from a regu-
lar expression from cubic to quadratic time. Transforming a regular expression
into this normal form can be achieved in linear time, and moreover the posi-
tion automaton resulting from that normal form coincides with the one of the
original expression. In the same paper, the star normal form was also used to
characterize certain types of unambiguous expressions. The position automa-
ton construction [9] is a basic conversion between regular expressions and ε-free
nondeterministic finite automata (NFA), and several other constructions are
known to be its quotients. This is the case for the partial derivative automa-
ton [1,7] and the follow automaton [14]. Champarnaud et al. [6] showed that
if a regular expression is in star normal form and is normalised modulo some
regular expression equivalences, the partial derivative automaton is a quotient of
the follow automaton. Many conversions from regular expressions to equivalent

This work was partially supported by CMUP (UID/MAT/00144/2013), which is
funded by FCT (Portugal) with national (MEC) and European structural funds
through the programs FEDER, under the partnership agreement PT2020.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 77–88, 2017.
DOI: 10.1007/978-3-319-60252-3 6

78 S. Broda et al.

NFAs consider automata with transitions labelled by the empty word (ε-NFA).
Although the most used of these conversions is the Thompson construction
(implemented in many UNIX-like string search commands) [18], an older and
more thrifty construction in the use of ε-transitions was presented by Ott and
Feinstein in 1961 [16]. An improved version of this construction was redefined by
Ilie and Yu, and called the ε-follow automaton. Gulan, Fernau and Gruber [10–
12] studied the optimal (worst-case) size for all known constructions from regular
expressions to ε-NFAs. It turns out that the optimal construction corresponds to
the conversion of a regular expression in strong star normal form into an ε-follow
automaton.

All this motivated us to study the average-case complexity of regular expres-
sions in strong star normal form, as well as their conversions to NFAs. In previ-
ous work, we studied the asymptotic average complexity for some of the above
mentioned conversions from regular expressions using the framework of analytic
combinatorics [2–4], which relates the enumeration of combinatorial objects to
the algebraic and complex analytic properties of generating functions. In par-
ticular, generating functions can be seen as complex analytic functions, and the
study of their behaviour around their dominant singularities gives access to the
asymptotic form of their coefficients. Starting with an unambiguous grammar for
the set of regular expressions over a given alphabet, and a non-negative measure,
the symbolic method allows to obtain a generating function associated with the
sequence of the (finite) number of expressions of measure n. Multivariate gen-
erating functions can be used to analyse different measures apart from the size
of combinatorial objects, e.g. the number of states of the automaton resulting
from a given conversion method applied to a regular expression of given size,
and thus allow to obtain estimates for the average values of those measures.

While in previous work we were able to get explicit expressions for the gener-
ating functions involved, here that would be unmanageable. Using the existence
of a Puiseux expansion at a singularity, we show how to get the required infor-
mation for the asymptotic estimates from an algebraic equation satisfied by the
generating function, without actually computing that expansion. We note that
the technique here presented allows to find, for the combinatorial classes consid-
ered, the form of the function without knowing beforehand the explicit value of
the singularity. This provides a very useful method, at least for some combinator-
ial classes, that circumvents some of the more cumbersome steps of the Algebraic
Coefficient Asymptotics algorithm presented by Flajolet and Sedgewick [8, pp.
504–505], as well as the need to know a priori the type of the singularity.

We use this method to derive the asymptotic estimates for the number of reg-
ular expressions in ssnf of a given size, as well as a parametric function of several
related measures, which can give us, in particular, the alphabetic size or the size
of the ε-follow automaton, on average. In the next section, we review some basics
on regular expressions and ε-NFAs. In Sect. 3, we consider the transformation
into strong star normal form and give some characterisations of expressions in
this form. Section 4 describes a shortcut to obtain asymptotic estimates of the

On the Average Complexity of Strong Star Normal Form 79

coefficients of generating functions. This is used in Sect. 5 to obtain the esti-
mates mentioned before. Some experiments corroborating those estimates are
presented in Sect. 6. Conclusions are drawn in Sect. 7.

2 Regular Expressions and ε-NFAs

We consider the grammar for regular expressions proposed by Gruber and Gulan
in [10,11], which has the major advantage of avoiding many redundant expres-
sions built with the symbols ε and ∅. Given an alphabet Σ = {σ1, . . . , σk} of
size k, the set Rk of regular expressions, α, over Σ is defined by the following
grammar,

α := ∅ | ε | β,

β := σ1 | · · · | σk | (β + β) | (β · β) | β? | β�,

where the operator · (concatenation) is often omitted. The language associated
with α is denoted by L(α) and is defined as usual, with L(β?) = L(β) ∪ {ε}. It
is clear that α? is equivalent to the standard regular expression α + ε.

For the size of a regular expression α, denoted by |α|, we will consider reverse
polish notation length, i.e., the number of symbols in α, not counting parenthe-
ses. The number of letters in α is denoted by |α|Σ , and usually called alphabetic
size. The number of occurrences of each operator c ∈ {+, ·, �, ?} is denoted
by |α|c.

A nondeterministic finite automaton is a tuple N =〈Q,Σ, δ, q0, F 〉, where Q
is a finite set of states, Σ is the alphabet, δ ⊆ Q× (Σ ∪{ε})×Q is the transition
relation, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. The
size of an NFA N is |N | = |Q| + |δ|, the number of states |N |Q = |Q|, and the
number of transitions |N |δ = |δ|. An NFA that has transitions labelled with ε
is an ε-NFA. The language accepted by an automaton N is L(N) = { w ∈ Σ� |
δ(q0, w) ∩ F 	= ∅ }, where δ is naturally extended to sets of states and words.

Fig. 1. The ε-follow construction, Aεf .

Conversion of a regular expression into an equivalent NFA can be defined
by induction on the structure of the regular expression. Let Nα denote the

80 S. Broda et al.

automaton corresponding to a regular expression α. In Fig. 1 we present the
construction of the ε-follow automaton, Aεf(α) [14]. The size of the Aεf(α) for
the atomic expressions ∅, ε, and σ ∈ Σ is 2, 3 and 3, respectively. For the
remaining constructions, the size of the resulting automaton equals the sum of
the sizes of its constituents plus some constant. For instance, for the operator +
one has |Nβ1+β2 |Q = |Nβ1 |Q + |Nβ2 |Q −2, |Nβ1+β2 |δ = |Nβ1 |δ + |Nβ2 |δ, and thus
|Nβ1+β2 | = |Nβ1 | + |Nβ2 | − 2. This can be generalised by considering constants
(c∅, cε, cσ, c+, c•, c�, c?) that define functions that can be used to compute several
interesting measures. For example, using (2, 2, 2,−2,−1, 1, 0) one gets the num-
ber of states; the number of transitions are computed using (0, 1, 1, 0, 0, 2, 1),
and the combined size corresponds to (2, 3, 3,−2,−1, 3, 1).

We note that the worst-case complexity for this conversion can be reached
for expressions with only one letter and n − 1 stars. For such an expression of
size n, the corresponding Aεf automaton has size 3n.

3 Strong Star Normal Form

A regular expression α is in star normal form if for any subexpression of the
form β�, ε /∈ L(β) [5]. The original notion of star normal form makes use of two
operators on regular expressions. Gulan and Gruber simplified that definition
and adapted it to forbid that subexpressions of the form β? could have ε ∈ L(β).
The resulting form was called strong star normal form.

Definition 1. The operators ◦ and • are inductively defined as follows. Let
ε◦ = ∅◦ = ∅, σ◦ = σ for σ ∈ Σ, (β1 + β2)◦ = β◦

1 + β◦
2 , β?◦ = β◦, β�◦ = β◦;

finally (β1β2)◦ = β◦
1 + β◦

2 if ε ∈ L(β1β2) and (β1β2)◦ = β1β2, otherwise.
Let ∅• = ∅, ε• = ε, σ• = σ for σ ∈ Σ, (β1 +β2)• = β•

1 +β•
2 , (β1β2)• = β•

1β•
2 ,

β�• = β◦•�; finally β?• = β• if ε ∈ L(β), and β?• = (β•)?, otherwise.
The expression α• is the strong star normal form (ssnf) of α.

For a regular expression α, L(α•) = L(α) and |α•| ≤ |α|. The following
theorem characterizes the regular expressions in strong star normal form.

Theorem 1 [11, Theorem 3.2.8]. A regular expression α is in strong star normal
form, i.e. α = α•, if and only if for every subexpression β� or β? of α, one has
ε /∈ L(β).

Using this theorem it is possible to write a context-free grammar for regular
expressions in ssnf, i.e., in which every subexpression of the form α� or α?,
satisfies ε /∈ L(α). The set Sk of regular expressions in ssnf over Σ is defined by:

α := ε | ∅ | αε | αε

αε := αεαε | αε + αε | αε + αε | αε + αε | α�
ε | α?

ε

αε := σ1 | · · · | σk | αεαε | αεαε | αεαε | αε + αε,

(1)

where αε are regular expressions whose language includes ε, while for αε, ε /∈
L(αε). The following theorem summarizes the results by Gruber and Gulan [10,
Theorems 4 and 6] (see also Gulan [11]).

On the Average Complexity of Strong Star Normal Form 81

Theorem 2. Let α be in ssnf of size n and alphabetic size m. Then, Aεf(α) has
size at most min(2215 (n + 1) + 1, 22

5 m + 1).

4 Asymptotic Average Complexity

Let A(z) =
∑

n anzn be the generating function associated with some combi-
natorial class A (cf. [8]). Given some measure of the objects of the class, the
coefficient an represents the sum of the values of this measure for all objects
of size n. We will use the notation [zn]A(z) for an. The generating function
A(z) can be seen as a complex analytic function, and the study of its behaviour
around its dominant singularity ρ (when unique) gives us access to the asymp-
totic form of its coefficients. In particular, if A(z) is analytic in some indented
disc neighbourhood of ρ, then one has the following [3,8]:

1. if A(z) = a − b
√

1 − z/ρ + o
(√

1 − z/ρ
)
, with a, b ∈ R, b 	= 0, then

[zn]A(z) ∼ b

2
√

π
ρ−nn−3/2; (2)

2. if A(z) = c√
1−z/ρ

+ o

(
1√

1−z/ρ

)

, with c ∈ R
∗, then

[zn]A(z) ∼ c√
π

ρ−nn−1/2. (3)

Applying this result for the generating function Rk(z), corresponding to the
number of expressions in Rk of size n, the following asymptotic values were
obtained in Broda et al. [3]:

[zn]Rk(z) ∼
4
√

2k
√

ρk

4
√

π
ρ

−(n+1)
k (n + 1)−3/2, with ρk =

1
2(

√
2k + 1)

. (4)

In the same paper, the average size of the ε-follow automata construction was
studied, and it was shown that, as the alphabet grows, the size of Aεf approaches
0.75n, asymptotically and on average.

Let us now give a generic description of the method used for the combinator-
ial classes that show up within the present paper. From a grammar one obtains,
by the symbolic method expounded in [8], a set of polynomial equations involv-
ing the generating function of whose coefficients we want to have an asymptotic
estimate. Computing a Gröbner basis for the ideal generated by those polyno-
mials, one gets an algebraic equation for that generating function w = w(z), i.e.,
an equation of the form

G(z, w) = 0,

where G(z, w) is a polynomial in Z[z][w], of which w(z) is a root.
Since w(z) is the generating function of a combinatorial class, thus a series

with non-negative integer coefficients, which is not a polynomial, it must have, by

82 S. Broda et al.

Pringsheim’s Theorem [8, Theorem IV.6], a real positive singularity, ρ, smaller
than 1. At this singularity two cases may occur: either limz→ρ w(z) = a, a
positive real number, or limz→ρ w(z) = +∞.

In the first case, after making the change of variable s = 1 − z/ρ, one knows
that w = w(s) has a Puiseux series expansion at the singularity s = 0, i.e., there
exists a slit neighbourhood of that point in which w(s) has a representation as
a power series with fractional powers [13, Chap. 12]. In particular, w must have
the form

w(s) = a − g(s)sα, (5)
for some a ∈ R, α ∈ Q

+, the first positive exponent of that expansion, and g(s)
such that g(s) = b + h(s)sβ , h(0) 	= 0, β ∈ Q

+, and b ∈ R
∗. We will show that,

under some generic conditions that happen to be satisfied in all the cases treated
below, one has α = 1

2 or α = − 1
2 . One then needs to find the values of ρ and of

b or c, depending on the case, to use either (2) or (3) to obtain the sought-after
asymptotic estimates of the coefficients of w(z).

Using Taylor expansion of G(z, w) at (ρ, a),

G(z, w) =G(ρ, a) +
∂G

∂z
(ρ, a)(z − ρ) +

∂G

∂w
(ρ, a)(w − a)+

+
1
2

∂2G

∂z2
(ρ, a)(z − ρ)2 +

1
2

∂2G

∂w2
(ρ, a)(w − a)2+

+
∂2G

∂z ∂w
(ρ, a)(z − ρ)(w − a) + · · · ,

and noticing that G(z, w(z)) = 0, that G(ρ, a) = 0, and using Eq. (5), one has,

0 = − ∂G

∂z
(ρ, a)ρs − ∂G

∂w
(ρ, a)g(s)sα +

1
2

∂2G

∂z2
(ρ, a)ρ2s2+

+
1
2

∂2G

∂w2
(ρ, a)g(s)2s2α − ∂2G

∂z ∂w
(ρ, a)ρg(s)s1+α + Q(s)s3α,

(6)

for some function Q(s), a Puiseux series with non-negative exponents.
In the case under study, the curve defined by G has a shape similar to the

one depicted in Fig. 2, and therefore
∂G

∂w
(ρ, a) = 0. (7)

This, together with the fact that G(ρ, a) = 0, shows that ρ is a root of the
discriminant polynomial of G with respect to variable w, which is a polynomial
in z (cf. [15, p. 204]). In all the cases studied here, this polynomial has only one
root in]0, 1[, a fact that allows to numerically get an approximation for the value
of ρ. The minimum polynomial in Q[z] of ρ can be obtained by analysing the
greatest common divisor of the polynomials G(z, w) and ∂

∂wG(z, w) with respect
to w: gcdw(G(z, w), ∂

∂wG(z, w)). We will denote this polynomial by mρ(z). Using
now the gcdz(G(z, w), ∂

∂wG(z, w)) one can get a polynomial that has a as a root.
One can then numerically compute all the real roots of that polynomial, and then
check which one is an approximation for the value of a by means of a numerical
study of the curve G(z, w).

On the Average Complexity of Strong Star Normal Form 83

Fig. 2. Generic shape of
G(z, w) near its domi-
nant singularity.

Using (7) in (6), and dividing it through by sα, one
gets

0 = − ∂G

∂z
(ρ, a)ρs1−α +

1
2

∂2G

∂z2
(ρ, a)ρ2s2−α

+
1
2

∂2G

∂w2
(ρ, a)g(s)2sα+

+
∂2G

∂z ∂w
(ρ, a)ρg(s)s + Q(s)s2α.

(8)

Now, in all cases studied in this paper, one has

∂G

∂z
(ρ, a) 	= 0, and

∂2G

∂w2
(ρ, a) 	= 0. (9)

This was checked by computing

p1(z) = gcdw(G(z, w),
∂

∂z
G(z, w)), p2(z) = gcdw(G(z, w),

∂2

∂w2
G(z, w)),

gcd(p1(z),mρ(z)) and gcd(p2(z),mρ(z)), obtaining a constant depending only
on k, that is non-zero for all k 	= 54 in all cases dealt with in this paper. The
case k = 54 was dealt separately. Using the explicit value for ρ, the validity of
(9) for this value of k was verified.

It now follows from (8), by noticing that the first and third summands have
the smallest degrees in s, that they must have the same degree and cancel each
other. Dividing, then, by sα and letting s → 0, one obtains

α =
1
2
, and b = g(0) =

√
2ρ ∂G

∂z (ρ, a)
∂2G
∂w2 (ρ, a)

.

In conclusion, for the case where limz→ρ w(z) = a, using (2), one has

[zn]w(z) ∼ b

2
√

π
ρ−nn−3/2.

For the case where limz→ρ w(z) = +∞, making v = 1/w one concludes as
above that v = csα −g(s)sα+β , for some 0 < α < 1, β > 0, and for some Puiseux
series g(s), with non-negative exponents. The polynomial satisfied by v is then

H(z, v) = vnG

(

z,
1
v

)

, (10)

which is the reciprocal polynomial of G(z, w) with respect to the variable w.
Using the same procedure as above, one computes ρ, and checking that the
corresponding derivatives are non-zero, i.e.

∂H

∂z
(ρ, 0) 	= 0, and

∂2H

∂w2
(ρ, 0) 	= 0,

84 S. Broda et al.

one gets in the same way that

α =
1
2
, and c =

√
2ρ ∂H

∂z (ρ, 0)
∂2H
∂w2 (ρ, 0)

. (11)

Since

w =
1

csα − g(s)sα+β
=

1
c
s−α 1

1 − g(s)
c sβ

=
1
c
s−α

(

1 +
g(s)
c

sβ +
g(s)2

c2
s2β + · · ·

)

,

one sees, using (3), that

[zn]w(z) ∼ 1
c
√

π
ρ−nn−1/2. (12)

5 Average Sizes: Concrete Results

Let Ak(z) and Bk(z) be the generating functions for αε and αε, respectively.
They satisfy the following equations

Ak(z) = 2zAk(z)2 + 2zAk(z)Bk(z) + 2zBk(z) (13)
Bk(z) = kz + 2zAk(z)Bk(z) + 2zBk(z)2. (14)

From (13) one gets

Bk(z) =
Ak(z)(1 − 2zAk(z))

2z(Ak(z) + 1)
,

and then substituting Bk(z) in (14) one obtains, after clearing up denominators,

4z2Ak(z)3 − (2kz2 + 4z)Ak(z)2 − (4kz2 − 1)Ak(z) − 2kz2 = 0,

i.e., Ak(z) is an algebraic function that is a root of

G(z, w) = 4z2w3 − (2kz2 + 4z)w2 − (4kz2 − 1)w − 2kz2.

Using now (14) to get Ak(z) as a function of Bk(z), and then substituting
that into (13), one easily sees that Bk(z) is a root of

H(z, w) = 4zw3 + 2kzw2 − kw + k2z.

Using the technique described in the previous section, one sees that Ak(z)
and Bk(z) have the same singularity, namely the only root in the interval]0, 1[
of the polynomial

mρ(z) = z3 +
9z2

2k + 27
− z

8k + 108
− 1

k(2k + 27)
. (15)

On the Average Complexity of Strong Star Normal Form 85

Also one gets that α = 1
2 , and that the values of aA = Ak(ρ) and of aB = Bk(ρ)

are roots of the polynomials 8z3−kz2+2kz−k, and 8z3+2kz2−k2, respectively.
With all this, and writing Sk(z) = Ak(z) + Bk(z) one then gets that

[zn]Sk(z) ∼ bk

2
√

π
ρ−n

k n−3/2, (16)

where, for example,

b2 = 1.089338906, ρ2 = 0.1915181504
b10 = 2.313181803, ρ10 = 0.09581011247
b50 = 5.054983041, ρ50 = 0.4606805763.

Using these results and the one mentioned in (4), the ratio of regular expres-
sions in ssnf, r(k,n) = [zn]Sk(n)

[zn]Rk(n)
, can now be computed for any k and n.

In particular, one finds that, for example, r(2,1000) = 4.427117336 × 10−59,
r(10,1000) = 2.562752010 × 10−19, r(50,1000) = 1.517513555 × 10−4.

5.1 Counting Letters

To obtain the asymptotic average value of several measures for regular expres-
sions of a given size, we consider bivariate generating functions parametrized by
weights of the form co, with o ∈ {∅, ε, σ,+, ·, �, ?}, associated to each regular
expression element. Considering the grammar (1), let Ak(u, z) and Bk(u, z) be
the bivariate generating functions associated to αε and αε, respectively. Then

Ak(u, z) = (uc• + uc+)zAk(u, z)2 + 2uc+zAk(u, z)Bk(u, z) + (uc? + uc�)zBk(u, z),
Bk(u, z) = kucσz + (uc• + uc+)zBk(u, z)2 + 2uc•zAk(u, z)Bk(u, z).

Note that A and B depend on the parameters (c∅, cε, cσ, c+, c•, c�, c?), but for
sake of simplicity we choose to omit them. For computing the average number of
letters those parameters are (0, 0, 1, 0, 0, 0, 0), and analogously for each operator.

The generating function Lk(z) for the number of letters is given by

Lk(z) =
∂

∂u

∣
∣
∣
∣
u=1

(Ak(u, z) + Bk(u, z)) .

Setting A = Ak(1, z), B = Bk(1, z), A1 = ∂
∂u

∣
∣
∣
∣
u=1

Ak(u, z), B1 = ∂
∂u

∣
∣
∣
∣
u=1

Bk(u, z),

so that Lk = A1 + B1, one has:

A = 2A2z + 2ABz + 2Bz,

B = 2ABz + 2B2z + kz,

A1 = 4AA1z + 2AB1z + 2BA1z + 2B1z,

B1 = 2AB1z + 2BA1z + 4BB1z + kz,

Lk = A1 + B1.

86 S. Broda et al.

Using Gröbner basis, as mentioned above, one gets the following polynomial for
w = Lk:

G(z, w) =
((

8 k2 + 108 k
)

z3 + 36 kz2 − kz − 4
)
w3+

+
((

k3 + 12 k2
)
z3 + 4 k2z2 + kz

)
w − 2 k2z3 − k2z2.

It turns out that, from this, one can deduce that the singularity for this algebraic
function w has the same minimal polynomial as in (15), and so it is the same as
for the number of regular expressions there considered. One then finds that, in
this case, α = − 1

2 , and that

[zn]Lk(z) ∼ 1
ck

√
π

ρ−n
k n−1/2, (17)

where, for example,

c2 = 2.725255757, ρ2 = 0.1915181504,
c10 = 1.271387537, ρ10 = 0.09581011247,
c50 = 0.5749569245, ρ50 = 0.04606805763.

From this one gets, for any given k, the density of letters in expressions of
size n, �k = [zn]Lk(n)

n[zn]Sk(n)
, which is independent of n since the singularities of Lk and

Sk are the same. In particular, one finds that, for example, �2 = 0.4172563448,
�10 = 0.4432524170, �50 = 0.4657465002.

5.2 Size of ε-Follow Automata

Considering the parameters (2, 3, 3,−2,−1, 3, 1), as defined in Sect. 2, the gen-
erating function Fk(z) for the size of the Aεf automaton is given by

Fk(z) =
∂

∂u

∣
∣
∣
∣
u=1

(Ak(u, z) + Bk(u, z)) .

Using the same abbreviations as above, one has:

A = 2A2z + 2ABz + 2Bz

B = 2ABz + 2B2z + kz

A1 = −3A2z − 4ABz + 4AA1z + 2AA2z + 2BA1z + 4Bz + 2A2z

A2 = −2ABz + 2AA2z − 3B2z + 2BA1z + 4BA2z + 3kz

Fk = A1 + A2.

Proceeding as above, one can verify that the singularity for Fk(z) still has
the same minimal polynomial as in (15), that α = − 1

2 , and that

[zn]Fk(z) ∼ 1
ck

√
π

ρ−n
k n−1/2, (18)

On the Average Complexity of Strong Star Normal Form 87

where, for example,

c2 = 1.159914873, ρ2 = 0.1915181504,
c10 = 0.6237795132, ρ10 = 0.09581011247,
c50 = 0.3187807970, ρ50 = 0.4606805763.

For the average ratio, fk = [zn]Fk(n)
n[zn]Sk(n)

, between the size of the Aεf and the
size of the respective regular expression (also independent of n) one has, for
example, f2 = 0.9803566472, f10 = 0.9034371711, f50 = 0.8400260553.

6 Experimental Results

We ran some experiments, using the FAdo package [17], to obtain average sizes
of the measures studied above for small values of k and n. For the results to
be statistically significant, regular expressions were uniformly random generated
using a version of the grammar for Sk in reverse polish notation. For each size n ∈
{200, 500, 1000}, and alphabet size k ∈ {2, 10, 50}, samples of 10000 expressions
were generated. This is sufficient to ensure a 95% confidence level within a 1%
error margin. The results are presented in Table 1, together with the values of �k

and fk calculated in the previous section. The last column, labeled wc, presents
the worst case size of Aεf as given in Theorem 2, for expressions of size n.

Table 1. Results for regular expressions in ssnf

k |α| |α|Σ |δεf | |Qεf | |εf| |α|Σ
|α| �k

|εf|
|α| fk wc

2 200 83.86 112.20 52.86 165.06 0.42 0.417 0.83 0.98 1.479

500 208.99 279.97 129.74 409.71 0.42 0.82 1.472

1000 417.70 559.04 257.85 816.89 0.42 0.82 1.469

10 200 89.13 111.98 51.80 163.78 0.45 0.443 0.82 0.90 1.479

500 222.09 279.11 126.91 406.02 0.44 0.81 1.472

1000 443.77 557.72 252.30 810.02 0.44 0.81 1.469

50 200 93.63 108.53 51.29 159.82 0.47 0.466 0.80 0.84 1.479

500 233.34 270.66 125.80 396.46 0.47 0.79 1.472

1000 466.20 540.84 249.94 790.78 0.47 0.79 1.469

7 Conclusions

The average complexity results obtained for expressions in ssnf are only slightly
smaller than the ones obtained for general regular expressions. Indeed, for the
size of Aεf , and the same values of k, the asymptotic values obtained in [3], were
f2 = 1.2, f10 = 1, and f50 = 0.9. In that study, we got an explicit expression,
depending on k, for the asymptotic size of Aεf , allowing us to compute its limit

88 S. Broda et al.

of 0.75 as k goes to ∞. Here we were not able to obtain such an expression,
but we conjecture that the limit is the same. This would mean that the average
size is half the worst-case one. This is corroborated by the experimental results.
Furthermore, the ratio between the number of ssnf expressions and the number
of general expressions, of a certain size, tends to zero.

References

1. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)

2. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average state complexity
of partial derivative automata: an analytic combinatorics approach. Int. J. Found.
Comput. Sci. 22(7), 1593–1606 (2011)

3. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: A hitchhiker’s guide to descrip-
tional complexity through analytic combinatorics. Theor. Comput. Sci. 528, 85–
100 (2014)

4. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Average size of automata con-
structions from regular expressions. BEATCS 116, 167–192 (2015)

5. Brüggemann-Klein, A.: Regular expressions into finite automata. Theor. Comput.
Sci. 48, 197–213 (1993)

6. Champarnaud, J.M., Ouardi, F., Ziadi, D.: Normalized expressions and finite
automata. Int. J. Algebra Comput. 17(1), 141–154 (2007)

7. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theor. Comput. Sci. 289, 137–163 (2002)

8. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. CUP, Cambridge (2008)
9. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16(5), 1–53

(1961)
10. Gruber, H., Gulan, S.: Simplifying regular expressions. In: Dediu, A.-H., Fernau,

H., Mart́ın-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 285–296. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13089-2 24

11. Gulan, S.: On the relative descriptional complexity of regular expressions and finite
automata. Ph.D. thesis, Universität Trier (2011)

12. Gulan, S., Fernau, H.: Local elimination-strategies in automata for shorter regular
expressions. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P.,
Bieliková, M. (eds.) SOFSEM 2008, Vol. II, pp. 46–57 (2008)

13. Hille, E.: Analytic Function Theory, vol. 2. Blaisdell Publishing Company, New
York (1962)

14. Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)
15. Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer,

New York (2001)
16. Ott, G., Feinstein, N.H.: Design of sequential machines from their regular expres-

sions. J. ACM 8(4), 585–600 (1961)
17. Project FAdo: tools for formal languages manipulation. http://fado.dcc.up.pt.

Accessed Feb 2017
18. Thompson, K.: Regular expression search algorithm. Commun. ACM 11(6), 410–

422 (1968)

http://dx.doi.org/10.1007/978-3-642-13089-2_24
http://fado.dcc.up.pt

Most Complex Non-returning Regular
Languages

Janusz A. Brzozowski1(B) and Sylvie Davies2

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

brzozo@uwaterloo.ca
2 Department of Pure Mathematics, University of Waterloo, Waterloo,

ON N2L 3G1, Canada
sldavies@uwaterloo.ca

Abstract. A regular language L is non-returning if in the minimal
deterministic finite automaton accepting it there are no transitions into
the initial state. Eom, Han and Jirásková derived upper bounds on the
state complexity of boolean operations and Kleene star, and proved that
these bounds are tight using two different binary witnesses. They derived
upper bounds for concatenation and reversal using three different ternary
witnesses. These five witnesses use a total of six different transformations.
We show that for each n � 4 there exists a ternary witness of state com-
plexity n that meets the bound for reversal and that at least three letters
are needed to meet this bound. Moreover, the restrictions of this witness
to binary alphabets meet the bounds for product, star, and boolean
operations. We also derive tight upper bounds on the state complexity
of binary operations that take arguments with different alphabets. We
prove that the maximal syntactic semigroup of a non-returning language
has (n − 1)n elements and requires at least

(
n
2

)
generators. We find the

maximal state complexities of atoms of non-returning languages. Finally,
we show that there exists a most complex non-returning language that
meets the bounds for all these complexity measures.

Keywords: Atom · Boolean operation · Concatenation · Different
alphabets · Most complex · Non-returning · Reversal · Regular · Star ·
State complexity · Syntactic semigroup · Transition semigroup · Unre-
stricted complexity

1 Introduction

Formal definitions are postponed until Sect. 2; we assume the reader is familiar
with basic properties of regular languages and finite automata as described in [11,
13], for example.

This work was supported by the Natural Sciences and Engineering Research Council
of Canada grant No. OGP0000871.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 89–101, 2017.
DOI: 10.1007/978-3-319-60252-3 7

90 J.A. Brzozowski and S. Davies

A deterministic finite automaton (DFA) is non-returning if there are no tran-
sitions into its initial state. A regular language is non-returning if its minimal
DFA has that property. The state complexity of a regular language L, denoted by
κ(L), is the number of states in the minimal DFA accepting L. The state com-
plexity of an operation on regular languages is the maximal state complexity of
the result of the operation, expressed as a function of the state complexities of
the operands.

The state complexities of common operations (union, intersection, differ-
ence, symmetric difference, Kleene star, reverse and product/concatenation)
were studied by Eom et al. [7]. They pointed out that several interesting sub-
classes of regular languages have the non-returning property; these subclasses
include the class of suffix-free languages (suffix codes) and its subclasses (for
example, bifix-free languages), and finite languages.

A regular language Ln(a, b, c) of state complexity n is defined for all n � 3
in Fig. 1. It was shown in [2] that the sequence (L3(a, b, c), . . . , Ln(a, b, c), . . .)
of these languages meets the upper bounds (for regular languages) on the com-
plexities of all the basic operations on regular languages as follows: If L(b, a)
is L(a, b) with the roles of a and b interchanged, then Lm(a, b) ◦ Ln(b, a) meets
the bound mn for all binary boolean operations ◦ that depend on both argu-
ments; if m �= n, Lm(a, b) ◦ Ln(a, b) meets the bound mn; (Ln(a, b))∗ meets the
bound 2n−1 + 2n−2 for star; (Ln(a, b, c))R meets the bound 2n for reversal; and
Lm(a, b, c)Ln(a, b, c) meets the bound (m − 1)2n + 2n−1 for product.

Fig. 1. Most complex regular language Ln(a, b, c)

It was proposed in [2] that the size of the syntactic semigroup of a regular
language is another worthwhile measure of the complexity of the language. The
syntactic semigroup is isomorphic to the transition semigroup of the minimal
DFA of L, that is, the semigroup of transformations of the state set of the DFA
induced by non-empty words.

Another complexity measure suggested in [2] is the number and state com-
plexities of the atoms of the language, where an atom is a certain kind of inter-
section of complemented and uncomplemented quotients of L.

It was shown in [2] that the languages Ln(a, b, c) not only meet the bounds
on the state complexities of operations, but also have the largest syntactic semi-
groups (of size nn), and the largest number of atoms (2n), all of which have
the maximal possible state complexities. In this sense these are most complex
regular languages.

In this paper we show that there also exist most complex non-returning lan-
guages. For each n � 4, we define a language of state complexity n. We prove

Most Complex Non-returning Regular Languages 91

that the syntactic semigroup of this language has (n − 1)n elements (the maxi-
mal possible for non-returning languages), that it is generated by

(
n
2

)
elements,

and that the number of generators cannot be reduced. We also show that this
language has 2n atoms, all of which have maximal state complexity. We demon-
strate that the upper bound on the state complexity of reversal is met by a
single ternary language, and that no binary language meets this bound. More-
over, restrictions of this language to binary alphabets meet the bounds for star,
product and boolean operations. This is in contrast to [7] where several types
of witnesses are used to meet the various bounds. We correct an error in [7,
Table 1], where it is stated that the upper bound on the complexity of prod-
uct cannot be reached with binary witnesses. Additionally, we consider both
restricted and unrestricted state complexity [3] of binary operations on non-
returning languages. When computing restricted state complexity, one assumes
the operation takes in two languages over the same alphabet; for unrestricted
state complexity we allow the inputs to be languages over different alphabets.

Omitted proofs can be found at http://arxiv.org/abs/1701.03944.

2 Preliminaries

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F),
where Q is a finite non-empty set of states, Σ is a finite non-empty alphabet,
δ : Q × Σ → Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q
is the set of final states. We extend δ to a function δ : Q × Σ∗ → Q as usual.
A DFA D accepts a word w ∈ Σ∗ if δ(q0, w) ∈ F . The language accepted by
D is denoted by L(D). If q is a state of D, then the language Lq(D) of q is the
language accepted by the DFA (Q,Σ, δ, q, F). A state is empty if its language is
empty. Two states p and q of D are equivalent if Lp(D) = Lq(D). A state q is
reachable if there exists w ∈ Σ∗ such that δ(q0, w) = q. A DFA is minimal if all
of its states are reachable and no two states are equivalent.

We use Qn = {0, . . . , n−1} as our basic set with n elements. A transformation
of Qn is a mapping t : Qn → Qn. The image of q ∈ Qn under t is denoted by
qt, and this notation is extended to subsets of Qn: if P ⊆ Qn, then Pt = {qt :
q ∈ P}. The rank of a transformation t is the cardinality of Qnt. If s and t
are transformations of Qn, their composition is denoted (qs)t when applied to
q ∈ Qn. Let TQn

be the set of all nn transformations of Qn; then TQn
is a monoid

under composition.
For k � 2, a transformation t of a set P = {q0, q1, . . . , qk−1} ⊆ Qn is a k-cycle

if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0. This k-cycle is denoted by
(q0, q1, . . . , qk−1), and leaves the states in Qn \P unchanged. A 2-cycle (q0, q1) is
called a transposition. A transformation that sends state p to q and acts as the
identity on the remaining states is denoted by (p → q). If a transformation of
Qn has rank n − 1, then there is exactly one pair of distinct elements i, j ∈ Qn

such that it = jt. We say a transformation t of Qn is of type {i, j} if t has rank
n − 1 and it = jt for i < j.

The syntactic congruence of a language L ⊆ Σ∗ is defined on Σ+ as follows:
For x, y ∈ Σ+, x≈L y if and only if wxz ∈ L ⇔ wyz ∈ L for all w, z ∈ Σ∗. The

http://arxiv.org/abs/1701.03944

92 J.A. Brzozowski and S. Davies

quotient set Σ+/≈L of equivalence classes of ≈L is a semigroup, the syntactic
semigroup TL of L.

Let D = (Qn, Σ, δ, 0, F) be a DFA. For each word w ∈ Σ∗, the transition
function induces a transformation δw of Qn by w: for all q ∈ Qn, qδw = δ(q, w).
The set TD of all such transformations by non-empty words is the transition
semigroup of D under composition [12]. Often we use the word w to denote the
transformation t it induces; thus we write qw instead of qδw. We also write w : t
to mean that w induces the transformation t.

If D is a minimal DFA of L, then TD is isomorphic to the syntactic semigroup
TL of L [12], and we represent elements of TL by transformations in TD. The
size of this semigroup has been used as a measure of complexity [2,6,8,10].

The (left) quotient of L ⊆ Σ∗ by a word w ∈ Σ∗ is the language w−1L = {x :
wx ∈ L}. It is well known that the number of quotients of a regular language is
finite and equal to the state complexity of the language.

Atoms are defined by a left congruence, where two words x and y are con-
gruent whenever ux ∈ L if and only if uy ∈ L for all u ∈ Σ∗. Thus x and y
are congruent whenever x ∈ u−1L if and only if y ∈ u−1L for all u ∈ Σ∗. An
equivalence class of this relation is an atom of L [5]. Atoms can be expressed as
non-empty intersections of complemented and uncomplemented quotients of L
(see Sect. 5). The number of atoms and their state complexities were suggested
as measures of complexity of regular languages [2] because all quotients of a
language and all quotients of its atoms are unions of atoms [4,5,9].

Suppose ◦ is a unary operation on languages, and f(n) is an upper bound on
the state complexity of this operation. If the state complexity of (Ln)◦ is f(n),
then Ln is called a witness to the state complexity of ◦ for that n. In general,
we need a sequence (Lk, Lk+1, . . . ,) of such languages; this sequence is called a
stream. Often a stream does not start at 1 because the bound may not hold for
small values of n. For a binary operation we need two streams. The languages
in a stream usually have the same form and differ only in the parameter n.

Sometimes the same stream can be used for both operands of a binary oper-
ation, but this is not always possible. For example, for boolean operations when
m = n, the state complexity of Ln ∪ Ln = Ln is n, whereas the upper bound is
mn = n2. However, in many cases the second language is a “dialect” of the first,
that is, it “differs only slightly” from the first. A dialect of Ln(Σ) is a language
obtained from Ln(Σ) by deleting some letters of Σ in the words of Ln(Σ) – by
this we mean that words containing these letters are deleted – or replacing them
by letters of another alphabet Σ′. Here we encounter only two types of dialects:

1. A dialect in which some letters were deleted; for example, Ln(a, b) is a dialect
of Ln(a, b, c) with c deleted, and Ln(a,−, c) is a dialect with b deleted.

2. A dialect in which the roles of two letters are exchanged; for example, Ln(b, a)
is such a dialect of Ln(a, b).

These two types of dialects can be combined, for example, in Ln(a,−, b) the
letter c is deleted, and b plays the role that c played originally. The notion of
dialects also extends to DFAs; for example, if Dn(a, b, c) recognizes Ln(a, b, c)
then Dn(a,−, b) recognizes the dialect Ln(a,−, b).

Most Complex Non-returning Regular Languages 93

3 Main Results

From now on by complexity we mean state complexity.
Let Γ = {ai,j : 0 � i < j � n − 1}, where ai,j is a letter that induces any

transformation of type {i, j} and does not map any state to 0. Let Γ ′ = Γ \
{a0,n−1, a0,1, a1,n−1, a0,2}. Let Σ = {a, b, c, d} ∪ Γ ′, where a : (1, . . . , n − 1)(0 →
1), b : (1, 2)(0 → 2), c : (2, . . . , n − 1)(1 → 2)(0 → 1), and d : (0 → 2). Note
that a, b, c and d are transformations of types {0, n − 1}, {0, 1}, {1, n − 1} and
{0, 2}, respectively. Note also that a, b and c restricted to Qn \ {0} generate
all the transformations of {1, . . . , n − 1}. This follows from the well-known fact
that the full transformation semigroup on a set X can be generated by the
symmetric group on X together with a transformation of X with rank |X| − 1.
For X = {1, . . . , n − 1}, we see that {(1, . . . , n − 1), (1, 2)} (the restrictions of a
and b) generate the symmetric group, and (2, . . . , n − 1)(1→2) (the restriction
of c) is a transformation of rank |X| − 1 = n − 2.

We are now ready to define a most complex non-returning DFA and language.

Definition 1. For n � 4, let Dn = Dn(Σ) = (Qn, Σ, δn, 0, {n − 1}), where
Σ = {a, b, c, d} ∪ Γ ′, and δn is defined in accordance with the transformations
described above. See Fig. 2 for Dn(Σ) restricted to {a, b, c, d}. Let Ln = Ln(Σ)
be the language accepted by Dn(Σ).

Fig. 2. Most complex non-returning language Ln(Σ) of Definition 1. The letters in
Γ ′ = Σ \ {a, b, c, d} are omitted

Theorem 1 (Most Complex Non-returning Languages). For each n � 4,
the DFA of Definition 1 is minimal and non-returning. The stream (Ln(Σ) : n �
4) with some dialect streams is most complex in the class of regular non-returning
languages in the following sense:

1. The syntactic semigroup of Ln(Σ) has cardinality (n − 1)n, and at least
(
n
2

)

letters are required to reach this bound.
2. Each quotient of Ln(a) has complexity n − 1, except L itself, which has com-

plexity n.
3. The reverse of Ln(a, b, c) has complexity 2n, and at least three letters are

needed to meet this bound. Moreover, Ln(a, b, c) has 2n atoms.

94 J.A. Brzozowski and S. Davies

4. For each atom AS of Ln(Σ), the complexity κ(AS) satisfies:

κ(AS) =

{
2n−1, if S ∈ {∅, Qn};
2 +

∑|S|
x=1

∑|S|
y=1

(
n−1
x

)(
n−1−x

y

)
, if ∅ � S � Qn.

Moreover, at least
(
n
2

)
letters are required to meet these bounds.

5. The star of Ln(a, b) has complexity 2n−1.
6. Let m,n � 4.

(a) Restricted product: κ(Lm(a, b)Ln(a,−, b)) = (m − 1)2n−1 + 1.
(b) Unrestricted product: κ(Lm(a, b)Ln(a,−, b, d)) = m2n−1 + 1.

7. Let m,n � 4.
(a) Restricted boolean operations: κ(Lm(a, b) ◦ Ln(b, a)) = mn − (m + n − 2).
(b) Additionally, when m �= n, we can use the same witness for both argu-

ments: κ(Lm(a, b) ◦ Ln(a, b)) = mn − (m + n − 2).
(c) Unrestricted boolean operations: The complexity of Lm(a, b, c)◦Ln(b, a, d)

is mn + 1 if ◦ ∈ {∪,⊕}, that of Lm(a, b, c) \ Ln(b, a) is mn − n + 1, and
that of Lm(a, b) ∩ Ln(b, a) is mn − (m + n − 2).

All of these bounds are maximal for non-returning languages.

Proof. From the definition of the letters of Σ it is obvious that the DFA Dn

is non-returning, and that any pair (p, q) of states can be distinguished by the
shortest word in a∗ accepted by p but not by q.

1. This follows from Propositions 1 and 2 below. In particular, note that the
syntactic semigroup of Ln(Σ) contains the symmetric group on Qn \ {0}, so
the conditions of Proposition 2 are met.

2. Observe that for i > 0, the quotient (ai)−1Ln(a) has complexity n − 1; for
i = 0, the quotient (a0)−1Ln(a) = Ln(a) has complexity n.

3. By Proposition 3 the number of atoms of Ln(a, b, c) is 2n. By [5] the complex-
ity of the reverse is the same as the number of atoms. By Proposition 4 at
least three letters are required to meet this bound on the number of atoms
and the complexity of reverse.

4. See Propositions 5, 6, and 7.
5. See Proposition 8.
6. See Propositions 9 and 10.
7. See Propositions 11 and 12.

We prove Propositions 1, 2, 3, 4 and 11 below. �

4 Syntactic Semigroup

For all basic operations on non-returning languages, the complexity bounds can
be met with either binary or ternary witnesses [7]. However, to meet the bound
for the size of the syntactic semigroup, our most complex stream is forced to use
an alphabet that grows quadratically in size.

For n � 2, let Nn denote the semigroup of transformations of Qn such that
it �= 0 for all i ∈ Qn. We call Nn the full non-returning semigroup on Qn. We
give a necessary condition and a sufficient condition for a set G to generate Nn.

Most Complex Non-returning Regular Languages 95

Proposition 1. If G is a generating set for Nn, then G contains a transfor-
mation of type {i, j} for each {i, j} ⊆ Qn. Thus a minimal generating set has
exactly one element of type {i, j} for each of the

(
n
2

)
sets {i, j} ⊆ Qn.

Proof. Suppose t is a transformation of type {i, j}, and let t′ be an arbitrary
transformation. If tt′ has rank n−1, then tt′ has type {i, j}. Indeed, since it = jt,
it follows that itt′ = jtt′. Thus composing a transformation of type {i, j} with
an arbitrary transformation either preserves the type, or lowers the rank.

Suppose G generates Nn. Observe that Nn does not contain transforma-
tions of rank n (since these map some element to 0). Since composition with a
transformation of type {i, j} either preserves type or lowers rank, the semigroup
generated by G contains only transformations that either have the same type as
some element of G, or have rank less than n − 1 and so are typeless. But Nn

contains a transformation of type {i, j} for each {i, j} ⊆ Qn. So if G generates
Nn, then G must contain an element of type {i, j} for each {i, j} ⊆ Qn. �

Proposition 2. Let G be a subset of Nn that contains a transformation of type
{i, j} for each set {i, j} ⊆ Qn, i < j. Let G′ be obtained by restricting every
transformation in G to Qn\{0}. If G′ generates the symmetric group on Qn\{0},
then G generates Nn.

Proof. First, we show that G′ in fact generates the full transformation semigroup
on Qn \ {0}. Recall that the full transformation semigroup on X is generated
by the symmetric group on X together with a transformation of X of rank
|X| − 1. By assumption, G′ contains generators of the symmetric group on Qn \
{0}. Transformations in G of type {i, j} with 0 < i < j have rank n − 1, and
furthermore their restrictions to Qn \ {0} are of rank n − 2.

Thus G′ contains generators of the symmetric group on Qn \ {0}, as well as
a transformation of rank |Qn \ {0}| − 1 = n − 2; it follows that G′ generates the
full transformation semigroup on Qn \ {0}.

Now, we prove that G generates every transformation in Nn. Let t be an
element of Nn; we want to show that t is in the semigroup generated by G. Since
Nn does not contain any transformations of rank n, the transformation t has
rank less than n, and thus there exist distinct i, j ∈ Qn such that it = jt. Select
a transformation s of type {i, j} in G. Then for distinct q, q′ ∈ Qn, we have
qs = q′s if and only if {q, q′} = {i, j}.

Hence there is a well-defined transformation r′ of Qn\{0} given by (qs)r′ = qt
for all q ∈ Q; it is well-defined since if we have qs = q′s, then {q, q′} = {i, j} and
is and js get mapped to a common element it = jt. The transformation r′ lies
in the full transformation semigroup on Qn \ {0}, and so it is in the semigroup
generated by G′. Hence there is some transformation r of Qn in the semigroup
generated by G such that r is equal to r′ when restricted to Qn \ {0}.

Since qs ∈ Qn \ {0} for all q ∈ Qn, it follows that (qs)r = (qs)r′ = qt for all
q ∈ Qn, and thus sr and t are equal as transformations. Since s is in G and r is
in the semigroup generated by G, it follows sr = t is in the semigroup generated
by G. Thus the semigroup generated by G contains all elements of Nn; but G is
a subset of Nn, so G generates Nn. �

96 J.A. Brzozowski and S. Davies

5 Number and Complexities of Atoms

Denote the complement of a language L by L = Σ∗ \L. Let Qn = {0, . . . , n− 1}
and let Ln be a non-empty regular language with quotients K = {K0, . . . ,Kn−1}.
Each subset S of Qn defines an atomic intersection AS =

⋂
i∈S Ki ∩

⋂
i∈S Ki,

where S = Qn \ S. An atom of L is a non-empty atomic intersection; this
definition is equivalent to that given in Sect. 2 in terms of a left congruence.
Note that if S �= T , then AS ∩ AT = ∅; that is, atoms corresponding to distinct
subsets of Qn are disjoint. A language of complexity n can have at most 2n atoms,
since there are 2n subsets of Q. We show that this bound can be met by non-
returning languages. Additionally, we derive upper bounds on the complexities
of atoms of non-returning languages, and show that our most complex stream
meets these bounds.

We now describe a construction due to Iván [9]. Let L be a regular lan-
guage with DFA D = (Q,Σ, δ, q0, F). For each S ⊆ Q, we define a DFA
DS = (QS , Σ,Δ, (S, S), FS) as follows.

– QS = {(X,Y) : X,Y ⊆ Q,X ∩ Y = ∅} ∪ {⊥}. State ⊥ is the sink state.
– Δ((X,Y), a) = (Xa, Y a) if Xa ∩ Y a = ∅, and otherwise Δ((X,Y), a) = ⊥;

also Δ(⊥, a) = ⊥.
– FS = {(X,Y) : X ⊆ F, Y ⊆ F}.

The DFA DS recognizes the atomic intersection AS of L; if it recognizes a non-
empty language, then AS is an atom. We can determine the complexity of AS

by counting reachable and distinguishable states in DS .

Proposition 3. The language Ln = Ln(a, b, c) has 2n atoms.

Proof. We want to show that AS is an atom of Ln for all S ⊆ Qn. It suffices
to show for each S that the DFA DS recognizes at least one word. Then since
atoms corresponding to different subsets of Qn are disjoint, this proves there are
2n distinct atoms.

First, we show that from the initial state (S, S), we can reach some state
of the form (X,Y) where 0 �∈ X and 0 �∈ Y . Consider the set {0, 1, n − 1}.
Notice that for each subset {i, j} of {0, 1, n − 1}, we have a transformation of
type {i, j}: a has type {0, n − 1}, b has type {0, 1}, and c has type {1, n − 1}.
Additionally, by the pigeonhole principle, either S contains two distinct elements
from {0, 1, n − 1}, or S contains two distinct elements from {0, 1, n − 1}.

Suppose without loss of generality it is S which contains two distinct elements
from {0, 1, n − 1}. Let {i, j} ⊆ S for some {i, j} ⊆ {0, 1, n − 1} with i �= j. Let
σ ∈ Σ be the letter inducing the transformation of type {i, j}. Then we claim
(S, S)σ �= ⊥. Indeed, suppose that q ∈ Sσ∩Sσ. Then since σ is a transformation
of type {i, j}, we must have iσ = jσ = q, and no other element is mapped to q.
But {i, j} ⊆ S, so we cannot have q ∈ Sσ.

Hence Sσ ∩ Sσ = ∅. Furthermore, since σ is a non-returning transformation,
we have 0 �∈ Sσ and 0 �∈ Sσ. Thus starting from the initial state (S, S), we can
apply σ to reach a state of the form (X,Y) with 0 �∈ X and 0 �∈ Y .

Most Complex Non-returning Regular Languages 97

Now, recall that the three transformations {a, b, c}, when restricted to Qn \
{0}, generate all transformations of Qn \ {0}. Since X ⊆ Qn \ {0}, there exists
a transformation of Qn \ {0} that maps every element of X to n − 1 and every
element of (Qn \ {0}) \ X to 1. Let w ∈ {a, b, c}∗ be a word that induces this
transformation when restricted to Qn \{0}. Since Y ⊆ Qn \{0} and Y is disjoint
from X, it follows that w maps every element of Y to 1. Since Fn = {n − 1} is
the final state set of Dn, we see that Xw ⊆ Fn and Y w ⊆ Fn. Thus (Xw,Y w) =
({n − 1}, {1}) is a final state of DS .

This shows that there exists a word σw ∈ {a, b, c}∗ that maps the initial
state (S, S) of DS to a final state. Thus AS is an atom. �

Next, we prove that the bound on number of atoms cannot be met by a binary
witness. From [5] we know that the number of atoms of a regular language is
equal to the state complexity of the reverse of the language. Hence this also
proves a conjecture from [7], that a ternary witness is necessary to meet the
bound for reversal of non-returning languages.

Proposition 4. Let L be a non-returning language of complexity n over Σ =
{a, b}. Then the number of atoms of L is strictly less than 2n.

Proof. Let D be the minimal DFA of L, with state set Qn. We introduce some
special terminology for this proof, which generalizes the notion of transforma-
tions of type {i, j}. We say that a transformation t unifies i and j, or unifies
the set {i, j}, if it = jt. For example, transformations of type {i, j} unify {i, j}.
But furthermore, every transformation of Qn of rank n − 1 or less unifies at
least one pair of elements of Qn. The transition semigroup of D cannot have
transformations of rank n, since L is non-returning; thus all the transformations
in the transition semigroup must unify some pair of states.

Suppose that in D, the letter a induces a transformation that unifies {i, j},
and b induces a transformation that unifies {k, �}. Assume also that i �= j and
k �= �. We will show that at least one atomic intersection AS of L is empty, and
thus is not an atom.

Suppose {i, j} = {k, �}. Let S = {i} and consider the atomic intersection
AS . The initial state of the DFA for AS is ({i}, S). Note that j ∈ S, so ja ∈ Sa.
But a unifies i and j, so ja = ia ∈ {i}a. Thus since {i}a ∩ Sa �= ∅, the letter a
sends the initial state ({i}, S) to the sink state. Since b also unifies i and j, the
letter b also sends ({i}, S) to the sink state. Thus AS is non-empty if and only
if ({i}, S) is a final state. In fact, either AS is non-empty or AS = {ε}, since
every non-empty word sends the initial state ({i}, S) to the sink state. If we let
T = {j}, the same argument shows that AT is either empty or AT = {ε}. But
AS ∩ AT = ∅, so one of AS or AT must be empty.

Now, suppose {i, j} ∩ {k, �} = ∅. Let S = {i, k} and consider the atomic
intersection AS . The initial state of the DFA for AS is ({i, k}, S) with j, � ∈ S.
Thus as before, the transformation a which unifies {i, j} and the transformation
b which unifies {k, �} both send AS to the sink state. So either AS is empty or
AS = {ε}. For T = {j, �}, the same argument shows that either AT is empty or
AT = {ε}. Hence as before, one of AS or AT is empty.

98 J.A. Brzozowski and S. Davies

Finally, suppose {i, j}∩{k, �} has exactly one element. Then either k ∈ {i, j}
or � ∈ {i, j}. Assume without loss of generality that � ∈ {i, j} and � = i;
otherwise rename the elements so this is the case. Then a unifies {i, j}, and b
unifies {i, k}. Let S = {i} and consider AS . As before, the initial state of the
DFA for AS is sent to the sink state by both a and b. Thus either AS is empty
or AS = {ε}. For T = {j, k}, the same argument shows that either AT is empty
or AT = {ε}. Hence one of AS or AT is empty. �

Proposition 5. Let L be a non-returning language of complexity n, and let Qn

be the state set of its minimal DFA. Let S ⊆ Qn; then we have

κ(AS) �
{

2n−1, if S ∈ {∅, Qn};
2 +

∑|S|
x=1

∑|S|
y=1

(
n−1
x

)(
n−1−x

y

)
, if ∅ � S � Qn.

Proposition 6. The atoms of the language Ln = Ln(Σ) meet the complexity
bounds of Proposition 5.

Proposition 7. Let L be a non-returning language over Σ of complexity n. If
the atoms of L meet the bounds of Proposition 5, then Σ has size at least

(
n
2

)
.

6 Other Operations

Proposition 8 (Star). Let Dn(a, b) be the DFA of Definition 1 and let Ln(a, b)
be its language. Then the complexity of (Ln(a, b))∗ is 2n−1.

When dealing with binary operations, to avoid confusion between the sets of
states {0, . . . , m − 1} and {0, . . . , n − 1} we use D′

m(Σ) = (Q′
m, Σ, δ′

m, 0′, {(m −
1)′}), and Dn(Σ) = (Qn, Σ, δn, 0, {n − 1}), where Q′

m = {0′, . . . , (m − 1)′}. We
write L′

m(Σ) for the language of D′
m(Σ).

Proposition 9 (Restricted Product). Let Dn(a, b, c) be the DFA of Defin-
ition 1 and let Ln(a, b, c) be its language. Then for m,n � 4 the complexity of
L′
m(a, b)Ln(a,−, b) is (m − 1)2n−1 + 1.

Proposition 10 (Unrestricted Product). For m,n � 4, let L′
m (respec-

tively, Ln) be a non-returning language of complexity m (respectively, n) over
an alphabet Σ′, (respectively, Σ). Then the complexity of product is at most
m2n+1 + 1, and this bound is met by L′

m(a, b) and Ln(a,−, b, d).

A binary boolean operation is proper if it is not a constant function or a
function of only one argument.

Proposition 11 (Restricted Boolean Operations). Let Dn(a, b) be the
DFA of Definition 1 and let Ln(a, b) be its language. Then for m,n � 4 and
for any proper binary boolean operation ◦ the complexity of L′

m(a, b) ◦Ln(b, a) is
mn − (m + n − 2). If m �= n then κ(L′

m(a, b) ◦ Ln(a, b)) = mn − (m + n − 2).

Most Complex Non-returning Regular Languages 99

Proof. The upper bound was established in [7]. For the lower bound, Fig. 3
restricted to the alphabet {a, b} shows the two argument DFAs. As usual we con-
struct their direct product. State (0′, 0) is initial and can never be reached again.
If we apply a, we reach state (1′, 2), and the states reachable from this state form
the direct product of DFA E ′

m−1(a, b) = ({1, . . . , (m − 1)′}, {a, b}, δ′, 1′, {(m −
1)′}) and DFA En−1(b, a) = ({1, . . . , n − 1}, {a, b}, δ, 2, {n − 1}), where δ′ and
δ are δm′ and δn restricted to Q′

m \ {0′} and Qn \ {0}. Since the transition
semigroups of E ′

m and En are the symmetric groups Sm and Sn, respectively,
the result from [1, Theorem 1] applies, except in the cases where (m,n) is in
{(4, 5), (5, 4), (5, 5)}, which have been verified by computation. Our first claim
follows for the remaining cases by [1, Theorem 1]. If m �= n, [1, Theorem 1]
applies to D′

m(a, b) and Dn(a, b), and the second claim follows. In both cases
the direct product of E ′

m and En has (m − 1)(n − 1) states; hence in the direct
product of D′

m and Dn there are (m − 1)(n − 1) + 1 = mn − (m + n − 2) states.
By [1, Theorem 1] all these states are reachable and pairwise distinguishable for
every proper binary boolean operation ◦.

Finally, note also that (0′, 0) is distinguishable from all other states. Since
(0′, 0)a = (1′, 2) and the preimage of (1′, 2) under a is {(0′, 0), ((m − 1)′, 1)}, we
see that (0′, 0) is distinguishable from (p′, q) �= ((m − 1)′, 1) by first applying
a, then applying a word that distinguishes (0′, 0)a = (1′, 2) from (p′, q)a. It is
distinguishable from ((m − 1)′, 1) by first applying b, then applying a word that
distinguishes (0′, 0)b = (2′, 1) from ((m − 1)′, 1)b = ((m − 1)′, 2). �
Proposition 12. For m,n � 4, let L′

m(Σ′) (respectively, Ln(Σ)) be a non-
returning language of complexity m (respectively, n) over an alphabet Σ′, (respec-
tively, Σ). Then the complexity of union and symmetric difference is mn+1 and
this bound is met by L′

m(a, b, c) and Ln(b, a, d); the complexity of difference is
mn − n + 1, and this bound is met by L′

m(a, b, c) and Ln(b, a); the complexity of
intersection is mn− (m+n− 2) and this bound is met by L′

m(a, b) and Ln(b, a).

Fig. 3. DFAs D′
m(a, b, c) and Dn(b, a, d) for unrestricted boolean operations

100 J.A. Brzozowski and S. Davies

7 Conclusions

We have shown that there exists a most complex non-returning language stream
(L4(Σ), . . . , Ln(Σ), . . .). The cardinality of the syntactic semigroup of Ln(Σ)
is (n − 1)n and its atoms have the highest state complexity possible for non-
returning languages; both of these bounds can be reached only if Σ has at least(
n
2

)
letters. The bounds for the common restricted operations, however, can be

met by streams over {a, b, c} or {a, b}: κ(Lm(a, b) ◦ Ln(b, a) = mn − (m + n − 2)
for all proper boolean operations ◦; κ(Ln(a, b))∗ = 2n−1; κ(Ln(a, b, c)R) = 2n;
and κ(L′

m(a, b)Ln(a,−, b)) = (m − 1)2n−1 + 1. The bounds for unrestricted
boolean operations can be met by L′

m(a, b, c) and Ln(b, a, d), whereas those for
the unrestricted product, by L′

m(a, b) and Ln(a,−, b, d).

Acknowledgments. We are very grateful to Corwin Sinnamon and an anonymous
reviewer for careful proofreading and constructive comments.

References

1. Bell, J., Brzozowski, J., Moreira, N., Reis, R.: Symmetric groups and quotient
complexity of boolean operations. In: Esparza, J., Fraigniaud, P., Husfeldt, T.,
Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 1–12. Springer, Heidel-
berg (2014). doi:10.1007/978-3-662-43951-7 1

2. Brzozowski, J.A.: In search of the most complex regular languages. Int. J. Found.
Comput. Sci. 24(6), 691–708 (2013)

3. Brzozowski, J.: Unrestricted state complexity of binary operations on regular lan-
guages. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol.
9777, pp. 60–72. Springer, Cham (2016). doi:10.1007/978-3-319-41114-9 5. Revised
version in http://arxiv.org/abs/1602.01387

4. Brzozowski, J.A., Tamm, H.: Complexity of atoms of regular languages. Int. J.
Found. Comput. Sci. 24(7), 1009–1027 (2013)

5. Brzozowski, J.A., Tamm, H.: Theory of átomata. Theor. Comput. Sci. 539, 13–27
(2014)

6. Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages. In:
Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117–128. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22321-1 11

7. Eom, H.S., Han, Y.S., Jirásková, G.: State complexity of basic operations on non-
returning regular languages. Fund. Inform. 144, 161–182 (2016)

8. Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size.
Theoret. Comput. Sci. 327, 319–347 (2004)

9. Iván, S.: Complexity of atoms, combinatorially. Inform. Process. Lett. 116(5), 356–
360 (2016)

10. Krawetz, B., Lawrence, J., Shallit, J.: State complexity and the monoid of transfor-
mations of a finite set. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.)
CIAA 2004. LNCS, vol. 3317, pp. 213–224. Springer, Heidelberg (2005). doi:10.
1007/978-3-540-30500-2 20

11. Perrin, D.: Finite automata. In: van Leewen, J. (ed.) Handbook of Theoretical
Computer Science, vol. B, pp. 1–57. Elsevier, Amsterdam (1990)

http://dx.doi.org/10.1007/978-3-662-43951-7_1
http://dx.doi.org/10.1007/978-3-319-41114-9_5
http://arxiv.org/abs/1602.01387
http://dx.doi.org/10.1007/978-3-642-22321-1_11
http://dx.doi.org/10.1007/978-3-540-30500-2_20
http://dx.doi.org/10.1007/978-3-540-30500-2_20

Most Complex Non-returning Regular Languages 101

12. Pin, J.E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages: Volume 1 Word, Language, Grammar, pp. 679–746. Springer,
New York (1997)

13. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, pp. 41–110. Springer, Heidelberg (1997)

Uncountable Realtime Probabilistic Classes

Maksims Dimitrijevs(B) and Abuzer Yakaryılmaz

Faculty of Computing, University of Latvia, Raiņa bulvāris 19, R̄ıga 1586, Latvia
md09032@lu.lv, abuzer@lu.lv

Abstract. We investigate the minimum cases for realtime probabilis-
tic machines that can define uncountably many languages with bounded
error. We show that logarithmic space is enough for realtime PTMs on
unary languages. On binary case, we follow the same result for double log-
arithmic space, which is tight. When replacing the worktape with some
limited memories, we can follow uncountable results on unary languages
for two counters.

1 Introduction

When using uncountable transitions, bounded-error probabilistic and quantum
models can recognize uncountably many languages [1,8]. It is interesting to iden-
tify the minimum resources that are sufficient to follow this result. Some of the
known results [3,8] are as follows:

– Uncountably many unary languages can be defined by poly-time double log-
space probabilistic Turing machines (PTMs) and linearithmic (O(n log n))
time log-space one-way PTMs.

– Uncountably many k-ary languages (k > 1) can be defined by poly-time
constant-space quantum Turing machines, linear-time linear-space two-way
probabilistic counter machines, and arbitrarily small but non-constant-space
PTMs.

In this paper, we investigate realtime probabilistic models that read the
input in a streaming mode such that there is no pause on the input sym-
bols. (This is also referred as strict realtime.) On general alphabets, it is known
that bounded-error one-way PTMs cannot recognize any nonregular language in
space o(log log n) [5]. Here we show that O(log log n)-space is enough for realtime
PTMs to define uncountably many languages. Therefore, this bound is tight for
general alphabets. On unary alphabet, we follow the same result for O(log n)
space and we leave open whether realtime PTMs can recognize any unary non-
regular languages in o(log n) space. Lastly, we follow the same result for unary
realtime probabilistic automata with counters and we show that two counters
are sufficient. It is known that one counter is not enough since unary one-way
probabilistic automata with one stack can recognize only regular languages with
bounded error [6]. On the other hand, the case of two stacks is trivial since
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 102–113, 2017.
DOI: 10.1007/978-3-319-60252-3 8

Uncountable Realtime Probabilistic Classes 103

a work tape can be simulated by two stacks. We leave open to determine the
minimum number of counters that use sublinear or sublogarithmic space on the
counters.

In the next section, we present some background to follow the rest of the
paper and then we present our results in Sect. 3 under two subsections. We first
present the results for unary languages (Sect. 3.1), and then for general alphabet
languages (Sect. 3.2).

2 Background

We assume the reader is familiar with the basics of complexity theory and
automata theory. Throughout the paper, Σ not containing ¢ (the left end-
marker) and $ (the right end-marker) denotes the input alphabet, Σ̃ is the
set Σ ∪ {¢, $}, Γ not containing blank symbol denotes the work tape alphabet,
Γ̃ is the set Γ ∪ {blank symbol}, and Σ∗ is set of all strings obtained from the
symbols in Σ including the empty string.

Formally, a realtime PTM P is a 7-tuple

P = (S,Σ, Γ, δ, s1, sa, sr),

where S is the set of finite internal states, s1 ∈ S is the initial state, sa ∈ S and
sr ∈ S (sa �= sr) are the accepting and rejecting states, respectively, and δ is the
transition function

δ : S × Σ̃ × Γ̃ × S × Γ̃ × {←, ↓,→} → [0, 1]

that governs the behaviour of P as follows: When P is in state s ∈ S, reads
symbol σ ∈ Σ̃ on the input tape, and reads symbol γ ∈ Γ̃ on the work tape, it
enters state s′ ∈ S, writes γ′ ∈ Γ̃ on the cell under the work tape head, and then
the work tape head is updated with respect to d ∈ {←, ↓,→} with probability

δ(s, σ, γ, s′, γ′, d),

where “←” (“↓” and “→”) means the head is moved one cell to the left (the head
does not move and the head is moved one cell to the right). Note that input head
can only perform “→” moves. To be a well-formed PTM, the following condition
must be satisfied: for each triple (s, σ, γ) ∈ S × Σ̃ × Γ̃ ,

∑

s′∈S,γ′∈Γ̃ ,d∈{←,↓,→}
δ(s, σ, γ, s′, γ′, d) = 1.

The computation starts in state s1, and any given input, say w ∈ Σ∗, is
read as ¢w$ from the left to the right symbol by symbol, and the computation
is terminated and the given input is accepted (rejected) if P enters sa (sr). It
must be guaranteed that the machine enters a halting state after reading $.

The space used by P on a given input is the number of all cells visited on the
work tape during the computation with some non-zero probability. The machine

104 M. Dimitrijevs and A. Yakaryılmaz

P is called to be O(s(n)) space bounded machine if it always uses O(s(n)) space
on any input with length n.

If (realtime) P is allowed to spend more than one step on an input symbol,
then it is called one-way. Formally, its transition function is extended by the
move of the input head with {↓,→} in each transition, and then, the well-formed
condition is updated accordingly.

Moreover, any PTM without work tape is called probabilistic finite automa-
ton (PFA).

A counter is a special type of memory containing only the integers. Its value
is set to zero at the beginning. During the computation, its status (whether its
value is zero or not) can be read similar to reading blank symbol or non-blank
symbol on the work tape, and then its value is incremented or decremented by 1
or not changed similar to the position update of the work head. (A counter can
be seen as a unary stack.)

A realtime probabilistic automaton with k counters (PkCA) is a realtime
PTM having k counters instead of a working tape. In each step, instead of reading
the symbol under the work tape head, it checks the statuses of all counters; and
then, it updates the value of each counter by a value from {−1, 0, 1} instead of
updating the content of the work tape.

The language L is said to be recognized by a PTM with error bound ε
(0 ≤ ε < 1/2) if every member of L is accepted with probability at least 1 − ε
and every non-member of L (w /∈ L) is accepted with probability not exceeding
ε.

We denote the set of integers Z and the set of positive integers Z
+. The set

I = {I | I ⊆ Z
+} is the set of all subsets of positive integers and so it is an

uncountable set (the cardinality is ℵ1) like the set of real numbers (R). The
cardinality of Z or Z

+ is ℵ0 (countably many).
The membership of each positive integer in any I ∈ I can be represented as

a binary probability value:

pI = 0.x101x201x301 · · · xi01 · · · , xi = 1 ↔ i ∈ I.

3 Our Results

In our proof we use a fact presented in our previous paper [3].

Fact 1 [3]. Let x = x1x2x3 · · · be an infinite binary sequence. If a biased coin
lands on head with probability p = 0.x101x201x301 · · · , then the value xk can be
determined with probability at least 3

4 after 64k coin tosses.

The proof of this fact involves the analysis of probabilistic distributions for
the number of heads after tossing 64k coins that land on the head with prob-
ability p. The (3 · k + 3)-th bit from the right in obtained number of heads is
equal to xk with probability at least 3

4 .

Uncountable Realtime Probabilistic Classes 105

3.1 Unary Languages

In [9], it was shown that realtime deterministic Turing machines (DTMs) can
recognize unary nonregular languages in O(log n) space. By adopting the tech-
nique given there, we can show that bounded-error realtime PTMs can recognize
uncountably many unary languages.

Theorem 1. Bounded-error realtime unary PTMs can recognize uncountably
many languages in O(log n) space.

Proof. We start with defining a unary nonregular language that can be recog-
nized by bounded-error log-space realtime PTMs:

ULOG = {0ki | k1 = 64 · 28 and ki = ki−1 + 64i · (18i + 10) for i > 1},

where each member is defined recursively. Since it is not a periodic language,
ULOG is nonregular.

For any I ∈ I, we define the following language:

ULOG(I) = {aki | aki ∈ ULOG for i ≥ 1 and i ∈ I}.

We describe a bounded-error log-space PTM for ULOG(I), say PI . Then, we
can follow the proof since there is a bijection (one-to-one and onto) between
I ∈ I and ULOG(I) and I is an uncountable set.

The PTM PI uses a coin landing on head with probability

pI = 0.x101x201x301 · · · xi01 · · · ,

where xi = 1 if and only if i ∈ I. The aim of PI is iteratively finding the values
of x1, x2, . . . with high probability. If all input is read before reaching a decision
on one of these values, then the input is always rejected.

During the computation, PI uses two binary counters on the work tape. At
the beginning, the iteration number is one, i = 1. The machine initializes the
work tape as “#000000#000000#” by reading 15 (= 9 · 1 + 5 + 1) symbols from
the input (after 15-th symbol the working tape head is placed on the first zero to
the left from the third #). We name the separator symbols #s for the counters
as the first, second, and third ones from the left to the right. The first (second)
counter is kept between the last (first) two #s.

By using the first counter, the machine counts up to 64i and so meanwhile
also tosses 64i coins. By using the second counter, it counts the number of heads.
The value of each counter can be easily increased by 1 when the working tape
head passes on the counters from right to left once. Thus, when the working tape
head is on the third #, it goes to the first #, and meanwhile increases the value
of the first counter by 1, then tosses its coin, and, if it is a head, it also increases
the value of the second counter. After tossing 64i coins, the machine uses the
leftmost value of the second counter as its answer for xi. Once this decision is
read from the work tape and immediately after the working tape head is placed
on the first #, the current iteration is finished. If (i) an iteration is finished,

106 M. Dimitrijevs and A. Yakaryılmaz

(ii) there is no more symbol remaining to be read from the input, and (iii) the
decision is positive, then the input is accepted, which is the single condition to
accept the input. After an iteration is finished, the next one starts and each
counter is initialized appropriately and then the same procedure is repeated as
long as there are some input symbols to be read.

Since the input is read in realtime mode, the number of computational steps is
equal to the length of the input plus two (the end-markers). Now, we provide the
details of each iteration step so that we can identify which strings are accepted
by PI .

At the beginning of the i-th iteration, the working tape head is placed in the
first # and the contents of the counters are as follows:

0 · · · 0︸ ︷︷ ︸
3(i−1)+3

#0 · · · 0︸ ︷︷ ︸
6(i−1)

#.

By reading 9i+5+1 symbols from the input, the counters are initialized for the
current iteration as

#0 · · · 0︸ ︷︷ ︸
3i+3

#0 · · · 0︸ ︷︷ ︸
6i

#

by shifting the second and third #s to 3 and 9 amounts of cells to the right
(after initialization the working head is placed on the first zero to the left from
the third #).

After the initialization of the counters, the working head goes to the first #
and then comes back on the third # 64i − 1 times. In each pass from right to
left, the first counter is increased by 1, the coin is flipped, and then the second
counter is increased by 1 if the result is head. When all digits of the first counter
are 1, which means the number of passes reaches 64i − 1, the working tape head
makes its last pass from the third # to the first #. During the last pass, PI flips
the coin once more and then determines the leftmost digit of the second counter.
Meanwhile, it also sets both counters to zeros.

By also considering the initialization step, PI makes 64i passes starting from
the first #. So, the total number of steps is 64i · 2 · (9i + 5) during the i-th
iteration. One can easily verify that this is valid also for the case of i = 1.

Therefore, PI can deterministically detect the i-th shortest member of ULOG
after reading ki symbols, where k1 = 64 · (28) and ki = ki−1 + 64i · (18i + 10)
for i > 1. Then, by using Fact 1, we can follow that PI recognizes ULOG(I) with
error bound 1

4 . �
It is known that bounded-error unary one-way PFAs with a single stack

cannot recognize any nonregular language [6]. Therefore, we can check the case
of having two stacks.

Corollary 1. Bounded-error unary realtime PFA with two stacks using loga-
rithmic amount of space can recognize uncountably many languages.

Proof. It is a well-known fact that two stacks can easily simulate a worktape of
a TMs without any delay on the running time. Therefore, by using Theorem 1,
we can follow the result in a straightforward way. �

Uncountable Realtime Probabilistic Classes 107

It is possible to replace stacks with counters by losing the space efficiency.
We start with four counters.

Theorem 2. Bounded-error realtime unary P4CAs can recognize uncountably
many languages.

Proof. We start with describing a realtime P4CA, say PI , that can use a coin
landing head with probability pI for an I ∈ I. Let Ci (1 ≤ i ≤ 4) represent the
values of counters.

The automaton PI executes an iterative algorithm. We use m to denote the
iteration steps. At the beginning, m = 1. In each iteration, 64m coin tosses are
performed. The details are as follows:

– Set C1 = 64m and C2 = 4 · 8m.
– Perform C1 coin flips and meanwhile increase/decrease the values of C2 and

C3 by 1. If the coin flip result is head, one of the counters is increased by
1 and the other one is decreased by 1. When one of them hits zero, update
strategy is changed. Since C3 is zero at the beginning, the first strategy is
decreasing the value of C2 and increasing the value of C3. Thus, after each
4 · 8m heads, the update strategy on the counters is changed.

– When C1 hits zero, C2 and C3 are equal to X and 4 · 8m − X, and, the
automaton makes its decision on xm. If the latest strategy is decreasing the
value of C3 or C2 = 0, then xm is determined as 1. Otherwise, it is determined
as 0.

The described algorithm is similar to the one that is used in the proof of
Theorem 1. Here changing the update strategy between C2 and C3 refers to the
change of bit xm, which is changed after each 4 · 8m heads: it is 0 initially and
then changed as 1, 0, 1,

At the end of the m-th iteration, we have C1 = 0, C2 = X, and C3 =
4 · 8m − X. We initialize (m + 1)-th iteration as follows:

– By using C2 and C3, we can set C1 = 2X + 2(4 · 8m − X) = 8m+1. Now
C2 = C3 = C4 = 0.

– Set C2 = C3 = 8m+1 by setting C1 = 0. Then, in a loop, until C2 hits zero:
decrease value of C2 by 1, then transfer C3 to C4 (or C4 to C3 if at the
beginning of loop’s iteration C3 = 0) and meanwhile add 8m+1 to C1.

– C1 = 8m+1(8m+1) = 64m+1, C2 = 0, C3 = 8m+1, C4 = 0. Then set C2 =
4 · 8m+1 by setting C3 = 0.

After initializing, we execute the coin-flip procedure. Each iteration is finalized
after the coin-flip procedure.

The input is accepted if there is no more input symbol to be read exactly at
the end of an iteration, say m-th, and xm is guessed as 1. Otherwise, the input
is always rejected.

The coin tosses part is performed in 64m steps. The initialization part for
m-th iteration is performed in 8m + 8m + 64m + 4 · 8m = 64m + 6 · 8m steps,
where m > 1. The initialization part for m = 1 is performed in 64 steps.

108 M. Dimitrijevs and A. Yakaryılmaz

Based on this analysis, we can easily formulate the language recognized by
PI , which is subset of the following language

UP4CA = {0ki | k1 = 128 and ki = ki−1 + 6 · 8i + 2 · 64i for i > 1}.

For any I ∈ I, the realtime P4CA PI can recognize the language

UP4CA(I) = {aki | aki ∈ U4PCA for i ≥ 1 and i ∈ I}

with bounded error. The automaton PI iteratively determines the values of
x1, x2, . . . with high probability and the number of steps for each iteration cor-
responds with the members of U4PCA.

Since I is an uncountable set and there is a bijection between I ∈ I and
UP4CA(I), realtime P4CAs can recognize uncountably many unary languages
with bounded error. �

We can establish a similar result also for realtime P2CAs. For this purpose,
we can use the well-known simulating technique of k counters by 2 counters.

Theorem 3. Bounded-error unary realtime P2CAs can recognize uncountably
many languages.

Proof. Let PI be the realtime P4CA described above and UP4CA(I) be the lan-
guage recognized by it. Due to the realtime reading mode, the unary inputs to
PI can also be seen as the time steps. For example, PI can be seen as a machine
without any input but still making its transition after each time step. Thus, after
each step it can be either in an accepting case or a rejecting case.

It is a well-known fact that two counters can simulate any number of counters
with big slowdown [7]. The values of k counters, say c1, c2, . . . , ck, can be stored
on a counter as

pc1
1 · pc2

2 · · · · pck
k ,

where p1, . . . , pk are some prime numbers. Then, by the help of the second
counter and the internal states, it can be easily detected and stored the sta-
tus of each simulated counters, and then all updates on the simulated counters
are reflected one by one.

Thus, by fixing the above simulation, we can easily simulate PI by a P2CA,
say P ′

I . Then, P ′
I recognizes a language with bounded error, say UP2CA(I).

It is easy to see that there is a bijection between

{UP4CA(I) | I ∈ I} and {UP2CA(I) | I ∈ I},

and so realtime P2CAs also recognize uncountably many languages with bounded
error. Remark that for each member of UP4CA(I), the corresponding member of
UP2CA(I) is much longer. �

Uncountable Realtime Probabilistic Classes 109

3.2 Generic Alphabet Languages

Here, we focus on non-unary alphabets and establish our result for double loga-
rithmic space. For this purpose, we use a fact given by Freivalds in [4].

Fact 2. Let P1(n) be the number of primes not exceeding 2	log2n
, P2(l, N ′, N ′′)
be the number of primes not exceeding 2	log2l
 and dividing |N ′−N ′′|, and P3(l, n)
be the maximum of P2(l, N ′, N ′′) over all N ′ < 2n, N ′′ ≤ 2n, N ′ �= N ′′. Then,
for any ε > 0, there is a natural number c such that limn→∞

P3(cn,n)
P1(cn) < ε.

Let bin(i) denote the unique binary representation of i > 0 that always starts
with digit 1. The language LOGLOG is composed by the strings

bin(1)2bin(2)2bin(3)2...2bin(s)4,

where |bin(s)| = 64k for some positive integer k. For any I ∈ I, we define
language LOGLOG(I) = {w | w ∈ LOGLOG and k ∈ I}.

Fact 3. Denote by π(x) the number of primes not exceeding x. The Prime Num-
ber Theorem states that limx→∞

π(x)
x/ ln x = 1 [2].

Theorem 4. Bounded–error one–way PTMs can recognize uncountably many
languages in O(log log n) space.

Proof. By modifying the one-way algorithm given in [4], we present a PTM,
say Pc,I , shortly P , for language LOGLOG(I) for I ∈ I and for a specific c that
determines the error bound. P performs different checks by using the separate
parts of the work tape.

For each i, P keeps two registers storing m = |bin(i)| and m0 = |bin(i − 1)|.
After reading bin(i), P checks: if m = m0 or (m = m0+1 and bin(i−1) contained
only ones), then P continues. Otherwise, P rejects the input.

For each bin(i), P generates a random number of |m| · c bits and tests it for
primality. If the generated number is not prime, the same procedure is repeated.
Due to Fact 3, we can follow that the probability of picking a prime number of
|m| · c bits is θ(1

|m|·c). Therefore, the expected time of finding a prime number
is O(|m| · c). Assume that the generated prime number is ri. For each bin(i),
P calculates bin(i) mod ri and bin(i + 1) mod ri. If (bin(i) mod ri) + 1 �=
bin(i + 1) mod ri, P rejects the input. Otherwise, the computation continues.

After reading “4”, P checks whether m = 64k for some integer k > 0. If so,
m is written on the tape as 1(000000)k. If m �= 64k, then the input is rejected.

If all previous checks are successful, P tosses 64k coins and meanwhile cal-
culates the number of heads mod (8 · 8k), say C. If after all coin tosses, the
leftmost bit of C is 1, then the input is accepted, otherwise it is rejected.

The PTM P reaches symbol “4” without rejecting with probability 1 if the
input belongs to LOGLOG, and it rejects the input before reaching “4” with prob-
ability at least 1 − ε if the input is not in LOGLOG due to Fact 2. Due to Fact 1
the membership of k ∈ I for LOGLOG(I) will be computed with probability at

110 M. Dimitrijevs and A. Yakaryılmaz

least 3
4 . Therefore language LOGLOG(I) is recognized correctly with probability

at least (1 − ε) · 3
4 , which can be arbitrarily close to 3

4 by picking a suitable c.
The space used on the work tape is linear in the length of the counter for

|bin(i)|. The value of bin(i) is logarithmic to the length of input word, and so
the length of the counter is double logarithmic to the input length. Therefore,
the space used is in O(log log n) throughout the computation. �

Let L ⊆ Σ∗ be a language recognized by a one-way DTM, say D, and σ be
a symbol not in Σ. We can execute D in realtime reading mode on the inputs
defined on Σ ∪ {σ} as follows [9]: For each original “wait” move on a symbol
from Σ, the machine expects to read symbol σ. If it reads something else or
there is no more input symbol, then the input is rejected. If there is more than
expected σ symbol, then again the input is rejected. Thus, we can say that this
modified machine recognizes a language L′ and there is a bijection between L
and L′. Moreover, the space and time bounds for both machines are the same.

The question is whether we can apply a similar idea for one-way PTM given
above in order to get a realtime PTM. A DTM follows a single path during its
computation and so the aforementioned bijection can be created in a straight-
forward way. On the other hand, PTMs can follow different paths with different
lengths in each run. So, in order to follow a similar bijection, we need some
modifications. The main modification is necessary for the task of picking the
prime numbers. Except this task, the other ones can be executed with the same
number of steps (remember the algorithms in the previous subsection) in every
execution of the machine.

Now, we modify PTM Pc,I in order to guarantee that each computation path
uses the same amount of time steps on the same input. We represent the new
PTM as P ′

c,I or shortly P ′.
The PTM P ′ uses some registers on the work tape separated by “#”:

#1st#2nd# · · · #last#.

– The 1st register keeps both the lengths of the counters m and m0. If
m = x1x2x3 · · · and m0 = y1y2y3 · · · , then the register keeps the values
in the following way: x1y1x2y2x3y3 · · · . After reading symbol “2” it is easy to
compare m and m0 bit by bit with a single pass.

– The 2nd register keeps the number of heads for the coin-tosses, based on which
the bit xk is determined. It is set to �|m|/2� + 2 zeros before any coin-toss
procedure and it is updated accordingly when the value of m is changed.

– The 3rd register keeps the track of attempts to generate prime number, it has
|m| · c bits.

– The 4th and 5th registers keep the prime numbers with some auxiliary num-
bers. Each register has |m| · c · 2 bits. If the (candidate) prime number is
r = r1r2r3 · · · and the auxiliary number is q = q1q2q3 · · · , then the regis-
ter keeps both of them as r1q1r2q2r3q3 · · · . The machine uses r to store the
prime number that is being checked or computed, and q is used to help to
perform tasks with r like storing number modulo r and comparing and copy-
ing numbers. For each j > 0, the machine uses 4th and 5th registers to work

Uncountable Realtime Probabilistic Classes 111

with prime numbers and then checks the correctness of the candidates for
bin(2 · j − 1) and bin(2 · j).

– The 6th and 7th registers are the same as 4th and 5th registers, respectively.
Only they are responsible for the correctness of the candidates for bin(2 · j)
and bin(2 · j + 1).

– The 8th register has a number to keep track of total number of subtractions
performed while checking the divisibility of r by d. It has |m| · c bits.

– The 9th register has twice of �|m|/2� · c bits to keep numbers d and h (each
is �|m|/2� · c bits). If d = d1d2d3 · · · and h = h1h2h3 · · · , then the register
keeps them as d1h1d2h2d3h3 · · · . Both numbers are used to check whether
the generated number r is prime. The machine uses d to check whether d
does not divide r, such check is performed for different values d. The check
is performed by making subtractions. The value of d is subtracted from r
multiple times. For this operation, the machine uses h as auxiliary number.

Each member of LOGLOG(I) has parts bin(i) at least up to bin(263). P ′ deter-
ministically checks input up to bin(263) and prepares the work tape with 9
registers.

Now, we describe the steps of picking prime numbers.
For number bin(i), the prime number is generated in (6 − 2 · (i mod 2))-

th register. The number r is generated by using |m| · c random bits (bit by
bit). After this, the primality check is performed. For this purpose, the machine
checks whether r is divided by any natural number between 2 and 2	|m|/2
·c − 1,
where 2	|m|/2
·c > sqrt(r) because r < 2|m|·c. Each candidate natural number is
denoted by d below. Remark that the number of ds does not depend on r and
so for any candidate prime number, the primary test procedure takes the same
number of steps.

To begin the check of divisibility of r by d, the value of r is copied to q
bit after bit, and the value of d is copied to h bit after bit. The 8th register
is initialized with zeros before check for pair r and d. Then, 2|m|·c iterations
are performed. In each iteration, the values of q and h are decreased by 1, the
value of 8th register is increased by 1. If only h reaches zero, d is again copied
into h and the machine continues to perform iterations. When q reaches zero, if
h reaches zero at the same time, the machine concludes that r is not a prime
number, otherwise, r is not divisible by d. After that, P ′ continues to perform
the iterations but without changing q and checks of value of q until the value of
the 8th register reaches 2|m|·c. Then, P ′ repeats the procedure for the next d.

If r is not divisible by any of these ds, then the procedure of finding prime is
terminated successfully since r is prime, otherwise, the machine continues with
the next prime candidate number since r is not a prime number.

The 3rd register counts the number of attempts to generate a prime number.
It is initialized with zeros and is increased by one after each try. If P ′ finds
a prime number before 3rd register reaches 2|m|·c, P ′ continues performing the
algorithm until the register reaches 2|m|·c by fixing the candidate with the already
found prime number. If the register reaches value 2|m|·c (all bits become zeros)
and P ′ fails to generate a prime number, P ′ uses the last generated r for the

112 M. Dimitrijevs and A. Yakaryılmaz

modular check for pair bin(i) and bin(i + 1). P ′ performs each try to generate
(or process already generated) prime number in equal number of steps. For any
bin(i) P ′ performs exactly 2|m|·c such operations.

After finding and checking prime r, the machine copies r into (7 − 2 · (i
mod 2))-th register bit by bit. To perform this operation, the machine sets q to
zeros in both registers, copies the bits of r one by one, and marks the copied bit
by setting the next bit in q to one.

Now, we describe how the machine calculates the value bin(i) mod r. At the
beginning, the register keeps r and zeros for q. Assume that bin(i) = i1i2 · · · im.
When the machine reads ij , the value of q is multiplied by 2 and increased by
ij . Therefore, all bits of q are shifted to left by one position, and the machine
puts value ij in leftmost bit. If, after this operation, q ≥ r, then r is subtracted
from q. Because both values are interleaved, it is easy to subtract r from q in one
pass. In the case when q < r the machine performs one pass through registers
without changing the values. This ensures that each iteration for ij is performed
in equal number of steps. The machine performs the calculation while reading
bin(i) for the 5th and the 6th registers if i mod 2 = 0, and for the 4th and the
7th registers otherwise.

After these, the machine compares the values of two modules: the 4th and
the 5th registers if i mod 2 = 0; the 6th and the 7th registers otherwise. This
time machine sets r in both registers to zeros and marks compared bits of q’s by
setting bits in r to one.

If r in modular check is not prime, P ′ cannot guarantee that incorrect pair
bin(i) and bin(i + 1) will be rejected with probability at least 1 − ε. The proba-
bility not to generate a prime number of |m| · c random bits in 2|m|·c tries does

not exceed (1 − 1
|m|·c)2

|m|·c
because of Fact 3. Note that limn→∞ (1 − 1

n)n = 1
e ,

therefore limm→∞ (1 − 1
|m|·c)2

|m|·c
= limm→∞ 1

e

2|m|·c
|m|·c = 0. The smallest |m| for

which a prime number is generated is 7. By picking a suitable c, the value
(1 − 1

7·c)2
7·c

= ε0 can be arbitrarily close to zero. For each i > 0, checking the
equality of bin(i) and bin(i + 1) by using the generated prime number is per-
formed independently. Therefore, any incorrect pair is accepted with probability
at most ε due to Fact 2. Since P ′ can fail to generate a prime number, this prob-
ability is increased to at most ε + ε0 − ε · ε0. If the input belongs to LOGLOG(I),
P ′ is guaranteed to not reject the input before reaching “4” on input tape. If at
least one pair bin(i) and bin(i + 1) is inacceptable, then P ′ rejects input right
after checking this pair with probability at least 1 − ε − ε0 · (1 − ε). Therefore,
the error remains bounded.

The other parts of the algorithm are executed with the same number of steps
in every execution of P ′.

Theorem 5. Bounded–error realtime PTMs can recognize uncountably many
languages in O(log log n) space.

Proof. We can obtain a realtime algorithm from P ′, say Rc,I or shortly R,
by using aforementioned technique borrowed from [9]. Let LOGLOG(I)′ be the

Uncountable Realtime Probabilistic Classes 113

language recognized by R. Then, the language LOGLOG(I)′ differs from the lan-
guage LOGLOG(I) with the presence of symbols “3”: for each “wait” move on “0”,
“1”, “2” or “4” by P ′, R expects to read one symbol of “3”. If R fails to read a
symbol of “3” when it is expected, the input is rejected.

PTM P ′ recognizes LOGLOG(I) in O(log log n) space, therefore, realtime
machine R recognizes LOGLOG(I)′ in O(log log n) space and there is a bijection
between LOGLOG(I) and LOGLOG(I)′. �

In [4] Freivalds has proven that only regular languages can be recognized
with one-way PTM in o(log log n) space and with probability p > 1

2 . Therefore,
the presented space bound is tight.

Acknowledgments. Dimitrijevs was partially supported by University of Latvia
project AAP2016/B032 “Innovative information technologies”. Yakaryılmaz was par-
tially supported by ERC Advanced Grant MQC. We thank to the reviewers for their
helpful comments.

References

1. Adleman, L.M., DeMarrais, J., Huang, M.D.A.: Quantum computability. SIAM J.
Comput. 26(5), 1524–1540 (1997)

2. Chandrasekharan, K.: Chebyshev’s theorem on the distribution of prime numbers.
Springer, Heidelberg (1968). pp. 63–83

3. Dimitrijevs, M., Yakaryılmaz, A.: Uncountable classical and quantum complexity
classes. In: Eigth Workshop on Non-Classical Models for Automata and Appli-
cations (NCMA2016), vol. 321, pp. 131–146. Austrian Computer Society (2016).
books@ocg.at

4. Freivalds, R.: Space and reversal complexity of probabilistic one-way turing
machines. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 159–170. Springer,
Heidelberg (1983). doi:10.1007/3-540-12689-9 101

5. Freivalds, R.: Space and reversal complexity of probabilistic one-way turing
machines. Ann. Discrete Math. 24, 39–50 (1985)

6. Kaņeps, J., Geidmanis, D., Freivalds, R.: Tally languages accepted by Monte Carlo
pushdown automata. In: Rolim, J. (ed.) RANDOM 1997. LNCS, vol. 1269, pp.
187–195. Springer, Heidelberg (1997). doi:10.1007/3-540-63248-4 16

7. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Upper Sad-
dle River (1967)

8. Say, A.C.C., Yakaryılmaz, A.: Magic coins are useful for small-space quantum
machines. Technical report TR14-159, ECCC (2016)

9. Yakaryılmaz, A., Say, A.C.C.: Tight bounds for the space complexity of nonregular
language recognition by real-time machines. Int. J. Found. Comput. Sci. 24(8),
1243–1253 (2013)

http://dx.doi.org/10.1007/3-540-12689-9_101
http://dx.doi.org/10.1007/3-540-63248-4_16

A Parametrized Analysis of Algorithms on
Hierarchical Graphs

Rachel Faran(B) and Orna Kupferman

School of Engineering and Computer Science, Hebrew University, 91904 Jerusalem,
Israel

rachelmi@cs.huji.ac.il

Abstract. Hierarchical graphs are used in order to describe systems
with a sequential composition of sub-systems. A hierarchical graph con-
sists of a vector of subgraphs. Vertices in a subgraph may “call” other
subgraphs. The reuse of subgraphs, possibly in a nested way, causes
hierarchical graphs to be exponentially more succinct than equivalent
flat graphs. Early research on hierarchical graphs and the computational
price of their succinctness suggests that there is no strong correlation
between the complexity of problems when applied to flat graphs and
their complexity in the hierarchical setting. That is, the complexity in
the hierarchical setting is higher, but all “jumps” in complexity up to an
exponential one are exhibited, including no jumps in some problems.

We continue the study of the complexity of algorithms for hierarchi-
cal graphs, with the following contributions: (1) In many applications,
the subgraphs have a small, often a constant, number of exit vertices,
namely vertices from which control returns to the calling subgraph. We
offer a parameterized analysis of the complexity and point to problems
where the complexity becomes lower when the number of exit vertices
is bounded by a constant. (2) We describe a general methodology for
algorithms on hierarchical graphs. The methodology is based on an iter-
ative compression of subgraphs in a way that maintains the solution to
the problems and results in subgraphs whose size depends only on the
number of exit vertices, and (3) We handle labeled hierarchical graphs,
where edges are labeled by letters from some alphabet, and the problems
refer to the languages of the graphs.

1 Introduction

Systems are typically constructed in a compositional manner. The two basic
types of compositions are concurrent and sequential. In a concurrent composi-
tion, the state space of the composed system is essentially the product of the
state spaces of its underlying components. In a sequential composition, the state

The research leading to these results has received funding from the Euro-
pean Research Council under the European Union’s 7th Framework Programme
(FP7/2007-2013, ERC grant no. 278410).

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 114–127, 2017.
DOI: 10.1007/978-3-319-60252-3 9

A Parametrized Analysis of Algorithms on Hierarchical Graphs 115

space of the composed system consists of copies of the state spaces of its under-
lying components. Since a component may be reused several times, in particu-
lar when nesting is allowed, both types of compositions allow an exponentially
more succinct presentation of systems [1]. A natural question is whether one can
reason about the succinct presentation in order to answer questions about the
composition.

Beyond the theoretical interest in studying this question, the challenge of
reasoning about systems in their succinct presentation is of great importance in
the context of formal verification. There, we reason about a hardware or software
system by translating it to a finite state machine (FSM) [5]. The FSM is a labeled
graph, and since it lacks the internal structure of the high-level description of the
system, we refer to it as a flat graph. The exponential blow-up in the translation
of the system to a flat graph is typically the computational bottleneck in model-
checking algorithms. For concurrent graphs, where components are composed in a
concurrent manner [8], there has been extensive research on compositional model
checking (cf., [6]). Compositionality methods are successfully applied in practice,
but it is a known reality that they cannot always work. Formally, the system
complexity of the model-checking problem (that is, the complexity in terms of
the system, assuming a specification of a fixed length) for all common temporal
logics is exponentially higher in the concurrent setting [14]. This exponential gap
is carried over to other related problems such as checking language-containment
and bisimulation—all are exponentially harder in the concurrent setting [11].

For sequential compositions, which are common in software systems (reuse
of components amounts to calling a procedure), the model used is that of hier-
archical graphs (HGs, for short). An HG consists of a vector of subgraphs. A
subgraph may be used several times in the composition. Technically, this is done
via special vertices, termed boxes, that are substituted in the composition by sub-
graphs. Each subgraph has an entry vertex and a set of exit vertices. In order
to ensure a finite nesting depth of substitutions, the subgraphs are indexed, and
a box of a graph can only call (that is, be substituted by) subgraphs with a
strictly bigger index. A naive approach to model checking a system with such
a sequential composition is to “flatten” its HG by repeatedly substituting ref-
erences to subgraphs by copies of these subgraphs. This, however, results in a
flat graph that is exponential in the nesting depth of the hierarchical system.
In [2], it is shown that for LTL model checking, one can avoid this blow-up
altogether, whereas for CTL, one can trade it for an exponential blow-up in the
(often much smaller) size of the specification and the maximal number of exits
of sub-structures. Likewise, μ-calculus model-checking in hierarchical systems is
only PSPACE-complete [3].

For general graph algorithms, there is a good understanding that the expo-
nential succinctness of concurrent graphs comes with a computational price. For
example, classic NEXPTIME-complete problems (cf., the succinct-Hamiltonian-
path problem) are the succinct versions of NP-complete problems [10]. A similar
exponential gap exists in other complexity classes. For HGs, the picture is less
clear. Indeed, it is shown in [16] that there is no strong correlation between

116 R. Faran and O. Kupferman

the complexity of problems when applied to flat graphs and their complexity in
the hierarchical setting. More specifically, Lengauer and Wagner examine a large
number of problems in different complexity classes, and show that while for some,
the hierarchical setting makes the problem exponentially harder, for some it does
not: problems that are in LOGSPACE, NLOGSPACE, PTIME, NPTIME, and
PSPACE in the flat setting, may stay in this complexity or jump to any (at
most exponentially harder) class in the hierarchical setting. For example, graph
reachability is NLOGSPACE-complete for flat graphs and is PTIME-complete
for HGs. On the other hand, alternating graph reachability (that is, where the
graph is a two-player game, and the players alternate moves picking a successor
vertex) is PTIME-complete for flat graphs and is PSPACE-complete for HGs.
Additional examples can be found in [13,15,17].

We continue to investigate the complexity of algorithms on HGs. Our con-
tributions are described below.

Parameterized Analysis. In many applications, the subgraph components
have a small, often a constant, number of exit vertices. Indeed, these exit vertices
form the interface of a procedure or a library component. We offer a parame-
terized analysis of the complexity of algorithms on HGs [7]. In particular, while
[16] proves that the problems Hamiltoniam path, 3-colorability, and independent
set are PSPACE-complete for hierarchical graphs, we show that they are in NP,
namely as hard as in the flat setting, for HGs with a constant number of exits
(CE-HGs, for short). Likewise, while the problem of finding a maximal flow in a
network jumps from PTIME to PSPACE in the hierarchical setting, we conjec-
ture that it is in PTIME for CE-HGs, and prove that this is indeed the case for
HGs with at most 3 exits. As another example, while [16] proves that alternating
reachability is PSPACE-complete for HGs, we prove it is in PTIME for CE-HGs.
We note that analyzing the complexity of the PSPACE algorithms in [16] for a
constant number of exit vertices does not lead to improved upper bounds. Thus,
our tighter complexity results involve new algorithms, as described below.

Methodology. We define a general methodology for algorithms on HGs. For a
problem P , we say that a function f on subgraphs maintains P if for every graph
G, the graph f(G) has the same entry and exit vertices as G, and every HG that
calls G may call f(G) instead without influencing P . Consider, for example, the
problem P of finding a shortest path between two vertices in a graph. Consider
also the function that maps a subgraph G with entry vertex s and set T of
exit vertices to a tree whose vertices are {s} ∪ T , whose edges are {s} × T , and
in which the weight of an edge 〈s, t〉 is the length of the shortest path from
s to t in G. It is easy to see that f maintains P . Moreover, the size of f(G)
depends only on the number of exit points in G. For two complexity functions
gsize and gtime, we say that a problem P is (gsize, gtime)-compressible if there is
a function f that maintains P , maps graphs G with a set T of exit vertices to
graphs whose size is bounded by gsize(|T |), and does so in time gtime(|G|, |T |).
We use the notion of compressibility in order to develop algorithms on HGs that
iteratively replace boxes that call internal subgraphs by the compressed version
of these subgraphs. In particular, when gsize and gtime are polynomial, then the

A Parametrized Analysis of Algorithms on Hierarchical Graphs 117

complexity of solving P in HGs adds a polynomial factor to the complexity of
its solution in flat graphs. Moreover, the fact gtime has two parameters, enables
the parameterized complexity analysis. In particular, when the number of exit
vertices is bounded by a constant, the complexity is induced by gtime only.
Thus, if gtime is linear (or polynomial) in its first parameter, then so is the
complexity of solving P in CE-HGs. We extend the notion of compressibility
to nondeterministic functions f , where compression of graphs also generates a
witness to the soundness of the compression. The witness can be verified in time
that is polynomial in the number of exit vertices, and thus nondeterministic
compression is used for obtaining NP upper bounds in the hierarchical setting.

Labeled Graphs. We study labeled hierarchical graphs, where each edge in the
graph is labeled by a letter from some alphabet. In [1], the authors study com-
municating hierarchical state machines, which are similar to labeled hierarchi-
cal graphs. The study in [1] extends classical decision problems from automata
theory to the hierarchical setting. In particular, the authors study reachabil-
ity, emptiness, and language inclusion. Here, we study an extension of classi-
cal graph-theory problems to the labeled setting. The input to such problems
includes, in addition to the graph, a specification that constrains the paths in
the graph. For example, [4] studies the problem of finding a shortest path that
satisfies regular and even context-free specifications, and shows that the problem
stays in polynomial time. On the other hand, research in regular path queries
shows that the problem of finding a shortest simple path that satisfies a regular
specification is NP-complete [19]. Typical algorithms on labeled graphs are based
on a product between the graph and an automaton for the specification. We show
how the compression of subgraphs defined above can be extended to products
of labeled HGs and automata, and demonstrate the use of such a compression.

Due to lack of space, the study of labeled graphs as well as some of the proofs
are omitted, and can be found in the full version, in the authors’ URLs.

2 Preliminaries

A graph with source and target vertices is G = 〈V, s, T,E〉, where V is a set
of vertices, s ∈ V is a source vertex, T ⊆ V is a set of target vertices, and
E ⊆ V × V is an edge relation. A graph may be weighted, in which case the
tuple G includes also a weight function w : E → R

+.
A hierarchical graph (HG, for short) consists of a vector of subgraphs that

together compose a graph. A subgraph may be used several times in the com-
position. Technically, this is done via special vertices, called boxes, that are
substituted in the composition by other subgraphs. In order to ensure a finite
nesting depth of substitutions, the subgraphs are indexed, and a box of a
graph can only call (that is, be substituted by) subgraphs with a strictly big-
ger index. Formally, an HG G is a tuple 〈G1, . . . , Gn〉, where each subgraph is
Gi = 〈Vi, Bi, ini, Exiti, τi, Ei〉, where Vi and Bi are sets of vertices and boxes,
respectively. We assume that Bn = ∅ and that V1, . . . , Vn, B1, . . . , Bn−1 are pair-
wise disjoint. Then, ini ∈ Vi is an entry vertex for Gi, and Exiti ⊆ Vi is a set of

118 R. Faran and O. Kupferman

exit vertices for Gi. The function τi : Bi → {i+1, . . . , n} maps each box of Gi to
an index greater than i. If τi(b) = j, we say that the box b is substituted by Gj in
Gi. Finally, Ei is an edge relation. Each edge in Ei is a pair (u,v) with source u
and target v. The source u is either a vertex of Gi, or a pair 〈b,x〉, where b ∈ Bi,
and x ∈ Exitτi(b). That is, u may be a box b coupled with an exit vertex of the
subgraph by which b is about to be substituted. The target v is either a vertex
or a box of Gi. Formally, Ei ⊆ (Vi ∪ (∪b∈Bi

{b}×Exitτi(b)))× (Vi ∪Bi). We refer
to {ini} ∪Exiti as the set of interface vertices of Gi, denoted V face

i . We refer to
Gn as the bottom subgraph of G.

When |Exiti| is bounded by a constant for all 1 ≤ i ≤ n, we say that G is a
hierarchical graph with constant number of exit vertices (CE-HG, for short). A
weighted HG is an HG with weight functions wi : Ei → R

+ for all 1 ≤ i ≤ n.
Note that weights are associated with edges (rather than vertices).

A subgraph without boxes is flat. Each HG can be transformed to a flat
graph, referred to as its flat expansion, by recursively substituting each box by
a copy of the suitable subgraph. Formally, given an HG G, for each subgraph
Gi we inductively define its flat expansion Gf

i = 〈V f
i , ini, Exiti, E

f
i 〉, where

V f
i = Vi ∪ (∪b∈Bi

{b}×V f
τi(b)

). Note that different boxes in Gi can be substituted

by the same subgraph. By substituting each box b by a set of vertices {b}×V f
τi(b)

,

we preserve b as an identifier. The edge relation Ef
i includes the following edges:

– (u, v) such that u, v ∈ Vi and (u, v) ∈ Ei,
– (u, 〈b, v〉) such that u ∈ Vi, v = inτi(b) and (u, v) ∈ Ei,
– (〈b, u〉, v) such that u ∈ Exitτi(b), v ∈ Vi and (u, v) ∈ Ei, and
– (〈b, u〉, 〈b, v〉) such that u, v ∈ V f

τi(b)
and (u, v) ∈ Ef

τi(b)
.

The graph Gf
1 is the flat expansion of G, and we denote it by Gf .

Example 1. In Fig. 1 we describe an HG G = 〈G1, G2〉, where G1 includes two
boxes, b1 and b2, with τ1(b1) = τ1(b2) = 2. The bottom subgraph G2 is flat. The
flat graph Gf is described on the right. �

Fig. 1. A hierarchical graph

A Parametrized Analysis of Algorithms on Hierarchical Graphs 119

We define the size of a graph G = 〈V, s, T,E〉, denoted |G|, as |V | + |E|.
For an HG G = 〈G1, . . . , Gn〉, we define the size of each subgraph Gi =
〈Vi, Bi, ini, Exiti, τi, Ei〉, denoted |Gi|, as |Vi| + |Bi| + |Ei|. Note that the sizes
of the subgraphs that are substituting the boxes in Bi do not affect |Gi|. We
denote by |G| the size of all of the subgraphs in G, namely |G1| + · · · + |Gn|.

It is not hard to see that the hierarchical setting is exponentially more suc-
cinct. Formally, we have the following.

Proposition 1 [1]. Flattening an HG may involve an exponential blow up. That
is, Gf may be exponentially larger than G. The exponential blow-up applies
already to the diameter of the graph, and applies even when all the subgraphs
in G have a single exit vertex.

3 Compression of Hierarchical Graphs

Let G be the set of all flat graphs with source and target vertices. Let P be a
problem on graphs. That is, P : G → {0, 1} may be a decision problem, say
deciding whether all the vertices in T are reachable from s, or P : G → R may
be an optimization problem, say finding the length of a shortest path from s to
T . For an HG G, solving P on G amounts to solving P in Gf

1 , namely in the
flat expansion of G. A naive way to do so is to construct the flat expansion of
G and then solve P on it. By Proposition 1, this may involve an exponential
blow-up. In this section we present a general methodology for reasoning about
HGs without generating their flat expansions. Essentially, we iteratively replace
subgraphs, starting from the innermost ones, by compressed flat versions in a
way that maintains P (G). The important fact is that the size of the compressed
versions depends only on the number of exit vertices, which enables an analysis
of the parametrized complexity of solving P in HGs.

We now formalize this intuition. Consider an HG G = 〈G1, . . . , Gn〉. A bottom
flatenning of G, denoted G↓, is the HG obtained from G by removing Gn and
replacing all boxes b that call Gn by Gn. Formally, G↓= 〈G′

1, . . . , G
′
n−1〉, where

for every 1 ≤ i ≤ n − 1, the subgraph G′
i is obtained from Gi by replacing every

box b ∈ Bi with τi(b) = n by a copy of Gn. As in the case of a flat expansion,
the copies preserve b as an identifier. Let Gi = 〈Vi, Bi, ini, Exiti, τi, Ei〉, and let
Bn

i = {b ∈ Bi : τi(b) = n}. Then, G′
i = 〈Vi∪(Bn

i ×Vn), Bi\Bn
i , ini, Exiti, τi, Ei∪

(Bn
i ×En)〉, where Bn

i ×En includes the copies of En in the different substitutions.
Formally, 〈u, u′〉 ∈ En iff for all b ∈ Bn

i , we have (〈b, u〉, 〈b, u′〉). Note that
transitions in Ei that involve a box b with τi(b) = n have end-points in 〈b, inn〉
and {b}×Exitn, so the transitions in G′

i are well defined eventhough we remove
b.

While G↓ has one less subgraph, the boxes in its subgraphs that call Gn have
been replaced by Gn, so |G↓ | ≥ |G|. The key idea behind our methodology is
that often we can replace Gn by a subgraph G′ of a constant size that retains its
properties. We now formalize this intuition. Consider the HG G = 〈G1, . . . , Gn〉.
Given a graph with source and target vertices G′ = 〈V ′, s, T, E′〉, we say that
Gn is substitutable by G′ if inn = s and Exitn = T . The HG G[Gn ← G′] is

120 R. Faran and O. Kupferman

then 〈G1, . . . , Gn−1, G
′〉. We say that a function f : G → G maintains P if for

every graph G ∈ G , we have that G is substitutable by f(G) and for every HG
G with bottom subgraph G, we have P (G) = P (G[G ← f(G)]). Note that, in
particular, if G contains only one flat subgraph G, then solving P in G can be
done by solving P in f(G).

Example 2. Let P be the problem of finding the length of a shortest path from
s to some vertex in T in a possibly weighted graph. Then a function ftree that
maps G to the tree {s} × T in which the weight of an edge 〈s, t〉 is the length of
the shortest path from s to t maintains P . �

Consider two complexity functions gs : N → N and gt : N × N → N, where s
and t stand for size and time, respectively. Note that gt has two parameters. We
say that a problem P is (gs, gt)-compressible if there is a function f : G → G
such that the following hold.

1. f maintains P ,
2. For every graph G = 〈V, s, T,E〉, we have that |f(G)| ≤ gs(|T |), and
3. For every graph G = 〈V, s, T,E〉, the complexity of calculating f(G) is

gt(|G|, |T |).
We then say that P is (gs, gt)-compressible with witness f .

Note that, by Condition 2, the size of f(G) depends only on the number of
exit vertices in G. In particular, if G has a constant number of exit vertices, then
f(G) is of constant size.

Theorem 1. Let G be an HG. If a problem P is (gs, gt)-compressible, then we
can generate a flat graph G such that P (G) = P (G), |G| ≤ gs(|Exit1|), and the
complexity of calculating G is

∑n
i=1 gt(|Gi|−|Bi|+

∑
b∈Bi

gs(|Exitτi(b)|), |Exiti|).
Proof. Let G = 〈G1, . . . , Gn〉, with Gi = 〈Vi, Bi, ini, Exiti, τi, Ei〉. We prove
that for every 0 ≤ j ≤ n − 1, we can generate an HG G′

j = 〈Gj
1, G

j
2, . . . , G

j
n−j〉

such that:

1. P (G) = P (G′
j),

2. |Gj
n−j | ≤ gs(|Exitn−j |), and

3. The complexity of calculating G′
j is

∑n
i=n−j gt(|Gi| − |Bi| +

∑
b∈Bi

gs

(|Exitτi(b)|), |Exiti|).
The theorem then follows by taking j = n − 1. Indeed, G′

n−1 = 〈Gn−1
1 〉 consists

of a single subgraph, which must be flat.
Let f : G → G be such that P is (gs, gt)-compressible with witness f . The

proof proceeds by an induction on j. For j = 0, we define G′
0 = G[Gn ← f(Gn)].

The claim follows immediately from the fact P is (gs, gt)-compressible with wit-
ness f .

Assume the claim holds for j ∈ {0, . . . , k − 1}. We prove it holds for j = k.
We define G′

k = G′
k−1↓ [Gk

n−k ← f(Gk
n−k)]. That is, we flatten all boxes that call

the bottom subgraph in G′
k−1, obtain an HG with n − k subgraphs, and then

apply f to the new bottom subgraph, namely on Gk
n−k. We prove that all three

conditions hold.

A Parametrized Analysis of Algorithms on Hierarchical Graphs 121

1. Since flattening maintains P and so does an application of f , then P (G′
k) =

P (G′
k−1). Thus, by the induction hypothesis, P (G) = P (G′

k).
2. All subgraphs G0

n−k, G1
n−k, . . . , Gk

n−k have the same set of exit vertices,
namely Exitn−k. By the definition of (gs, gt)-compressibility, |f(Gk

n−k)| ≤
gs(|Exitn−k|).

3. Inparticular, note that |Gk
n−k|doesnotdependon the size of internal subgraphs,

as f does not change the number of exit vertices. Finally, the calculation of G′
k

involves a calculationofG′
j for all j ∈ {0, . . . , k−1}. For every j ∈ {0, . . . , k−1},

the calculation of f on Gj
n−j , which is required in order to obtain G′

j , is done on a
graph of size |Gn−j | − |Bn−j | +

∑
b∈Bn−j

gs(|Exitτn−j(b)|) with |Exitn−j | exit
vertices.Hence, the time complexity of calculatingG′

j is
∑n

i=n−j gt(|Gi|−|Bi|+∑
b∈Bi

gs(|Exitτi(b)|), |Exiti|).
�

We focus on linear, polynomial, and exponential functions. For classes
γG, γT ∈ {LIN,POLY,EXP}, we say that a problem P is (γG, γT)-compressible
if P is (gs, gt)-compressible for gs whose complexity is γT in its parameter, and
gt that is γG in its first parameter and γT in its second parameter. For example,
if gs(y) = 2y and gt(x, y) = x + 2y, then P is (LIN,EXP)-compressible.

Theorem 2. Let P be a (γG, γT)-compressible problem on graphs.

1. If γG and γT are LIN (respectively, POLY), then the complexity of solving
P in HGs is linearly- (polynomially-) reducible to the problem of solving P in
flat graphs.

2. If γG is LIN (respectively, POLY), then the complexity of solving P in CE-
HGs is linear (polynomial).

3.1 Applications

Shortest Path. The problem P from Example 2 is (POLY,POLY)-
compressible. Indeed, calculating a tree {s} × T with the length of the shortest
path from s to t as the weight of every edge 〈s, t〉 can be done in polynomial
time, and the size of such a tree is clearly linear in |T |. Theorem 2 thus implies
that the shortest-path problem for HGs can be solved in polynomial time.

Eulerian Cycle. In the full version we present a polynomial function f that
maintains the Eulerian cycle problem. Intuitively, f preserves both the parity of
the degree of every interface vertex, and the connectivity of the graph. Techni-
cally, this is done by maintaining the interface vertices of the bottom subgraph
and adding internal vertices for each maximal set of connected interface vertices.
The new vertices are connected in a way that preserves connectivity and parity
of degrees (parity of both in- and out-degrees, in the case of a connected graph).

122 R. Faran and O. Kupferman

Alternating Reachability. A directed and-or graph 〈V,E〉 is a graph whose
vertices are partitioned into and and or vertices. Thus, V = Vand ∪ Vor, with
Vand ∩ Vor = ∅. We say that a set T of vertices is alternating-reachable from
a vertex u, denoted ar(u, T), if u ∈ T , u ∈ Vor and T is alternating-reachable
from some successor of u, or u ∈ Vand and T is alternating-reachable from all
the successors of u. The AR problem is to decide, given G, u, and T , whether
ar(u, T). The problem is PTIME-complete [12] for flat graph and PSPACE-
complete for HGs [16]. We prove that AR is (LIN,EXP)-compressible, implying
it is PTIME-complete for CE-HGs.

We describe a function f that maintains P . Consider an and-or graph G =
〈V, s, T , E〉, with a partition Vand ∪Vor. Let T1, . . . , Tm be the subsets of T that
are alternating-reachable from s. We define f(G) = 〈{s, u1, . . . , um}∪T, s, T,E′〉,
where the or-vertices are {s}∪(T ∩Vor), and the and-vertices are {u1, . . . , um}∪
(T∩Vand). The edge relation E′ consists of edges {s}×{u1, . . . , um} and {uj}×Tj

for every 1 ≤ j ≤ m. That is, there are edges from s to every vertex uj , and
from uj to every vertex in Tj , where 1 ≤ j ≤ m. It is easy to see that calculating
f(G) is polynomial in |G| and exponential in |T |, and its size is exponential in
|T |.

Maximal Flow. A flow network is a weighted directed graph G =
〈V, s, {t}, E, c〉, where the weight function c : E → IN maps each edge to its
capacity, namely the maximum amount of flow that can travel through it, the
source edge s has no incoming edges, and the target vertex t has no outgoing
edges. A flow is a mapping f : E → R

+ that satisfies the following two con-
straints: (1) For every edge (u, v) ∈ E, it holds that f(u, v) ≤ c(u, v), and (2)
For every v ∈ V \ {s, t}, it holds that

∑
u:(u,v)∈E f(u, v) =

∑
u:(v,u)∈E f(v, u).

The value of flow is defined by |f | =
∑

v:(s,v)∈E f(s, v). The problem of finding
a maximal flow (MF, for short) is to find, given a flow network G, the maximal
value of a flow for it. For flat graphs, the problem can be solved in polyno-
mial time (cf., the Ford-Fulkerson algorithm [9]). It is shown in [16] that the
problem is PSPACE-complete for hierarchical graphs. Here, we conjecture that
the problem is (POLY,EXP)-compressible, implying that it can be solved in
PTIME for CE-HGs. We prove that for graphs with at most 3 exit vertices, it
is even (POLY,POLY)-compressible, implying it can be solved in PTIME for
such graphs. For the general case, the problem is strongly related to the problem
of polytop optimization (cf., [20]).

Consider a flow graph with source and several target vertices G =
〈V, s, T,E, c〉. The characteristic function v : 2T → R

+ of G maps each a set
U ⊆ T of target vertices to the maximal flow that can be routed to U . That is,
v(U) is the maximal flow in a network G′ = 〈V ∪ {t′}, s, {t′}, E′, c′〉, obtained
from G by defining a new single sink vertex t′ and adding edges with capacity
∞ from every vertex in U to t′. In particular, v(T) is the maximal flow that
can be routed to all target vertices together. Also, for a single vertex t ∈ T , we
have that v(t) is the maximal flow that can be routed to t. It is known that
the characteristic function is necessary and sufficient in order to represent a flow

A Parametrized Analysis of Algorithms on Hierarchical Graphs 123

network [18]. Therefore, the equivalence of two flow networks can be proved by
proving that their characteristic functions are identical.

We show a function f that maintains the MF problem for flow networks
with up to three sink vertices: given a flow network G = 〈V, s, T,E,w〉, where
|T | ≤ 3, the function f(G) constructs in polynomial time a flow network G′

of constant size such that every flow in G is a flow in G′, and vice versa. It
is easy to see that every flow network with one sink t is equivalent to a flow
network with two vertices, s and t, connected by an edge with capacity v(t).
Formally, if a given flow network G = 〈V, s, {t}, E,w〉 has one exit vertex, then
f(G) = 〈{s, t}, s, {t}, 〈s, t〉, v(t)〉. In Fig. 2, we describe the flow network that f
returns for flow networks with two (left) and three (right) sinks. For the one in
the right, it is easy to see that the maximal flow in this network is v({t1, t2}),
while the maximal flow to the sinks t1 and t2 is v(t1) and v(t2), respectively. In
addition, f maintains MF also for three sinks. Note that calculating f requires
2|T | − 1 polynomial computations, where |T | ≤ 3.

Fig. 2. Compressing flow networks with two and three sinks

Conjecture 1. The problem of maximal flow is (POLY, EXP)-compressible.
Thus, by Theorem 2 it can be solved in PTIME for CE-FGs.

3.2 Not All Problems Are Compressible

We conclude this section pointing to a problem for which the exponential penalty
cannot be avoided even if the number of exit vertices is constant. The problem
of path of length in a given interval in a tree (the PI problem, for short) is
to decide, given a weighted directed tree G = 〈V,E,w〉 and an interval [x, y],
whether there is a path of length in [x, y] in G. For flat graphs, we can solve
the problem by computing the length of the path between every pair of vertices.
Since the graph is a directed tree, there is at most one path between every two
nodes, and therefore this algorithm is polymonial. A tree HG is an HG all whose
subgraphs are trees.

Lemma 1. The PI problem is NP-complete for CE-HGs.

124 R. Faran and O. Kupferman

4 Nondeterministic Compression of Hierarchical Graphs

In this section we study problems P for which a polynomial verifier is known in
the flat setting. We argue that when the number of exit vertices is bounded by
a constant, this can be used in order to verify that a suggested compression of
the bottom subgraph indeed maintains P . This enables us to show membership
in NP for the hierarchical setting for several problems for which membership in
NP is known in the flat setting, improving the PSPACE upper bound for the
general case (that is, when the number of exit vertices is not a constant).

Consider a decision problem P and a graph with entry and exit vertices G.
We say that G is hopeful with respect to P if there is an HG in which G is called
and P (G) holds. For example, if P is 3-coloring, and G includes a 4-clique, then
G is not hopeful. We say that a relation R : G ×G maintains P if for every graph
G ∈ G that is hopeful with respect to P there is at least one graph G′ ∈ G such
that 〈G,G′〉 ∈ R, and for every pair of graphs 〈G,G′〉 ∈ R, we have that G
is substitutable by G′ and for every HG G with bottom subgraph G, we have
P (G) = P (G[G ← G′]).

Consider three complexity functions gs : N → N, gt : N × N → N and
gw : N → N, where s, t and w stand for size, time and witness, respectively. We
say that a problem P is nondeterministically-(gs, gt, gw)-compressible if there is
a relation R : G × G such that the following hold.

1. R maintains P ,
2. For every graph G = 〈V, s, T,E〉 and pair 〈G,G′〉 ∈ R, we have that |G′| ≤

gs(|T |),
3. There is a verifier V that runs in time gt(|G|, |T |) such that whenever 〈G,G′〉 ∈

R, there is a witness w such that V returns “yes” on (〈G,G′〉, w), and
4. For every graph G = 〈V, s, T,E〉, we have |{G′ : 〈G,G′〉 ∈ R}| ≤ gw(|T |).
We then say that P is nondeterministically-(gs, gt, gw)-compressible with wit-
ness R.

Theorem 3. Let G be an HG. If a problem P is nondeterministically-
(gs, gt, gw)-compressible and P (G) holds, then there is a flat graph G such that
|G| ≤ gs(|Exit1|), and there is a verifier V that runs in time

∑n
i=1 gw(|Exiti|) ·

(gt(|Gi| − |Bi| +
∑

b∈Bi
gs(|Exitτi(b)|), |Exiti|)) such that if P (G) = P (G), then

there is a witness w such that V returns “yes” on (G,w).

Theorem 4. If a problem P is nondeterministically-(gs, gt, gw)-compressible for
gt polynomial in its first parameter, then P is in NP for CE-HGs.

4.1 Applications

In this section we describe NP-complete problems that stay in NP for CE-HGs.
We rely on Theorem 4, showing that the problems are nondeterministically-
(gs, gt, gw)-compressible for gt that is polynomial in its first parameter in |G|.

A Parametrized Analysis of Algorithms on Hierarchical Graphs 125

k-coloring. A valid k-coloring for a graph is a labeling of the vertices of the
graph by k colors so that adjacent vertices are mapped to different colors. We
define a relation R : G × G such that for every graph G = 〈V, s, T,E〉, we
have that 〈G,G′〉 ∈ R iff G′ = 〈{s, v1, v2, . . . , vk} ∪ T, s, T,E′〉, there is exactly
one valid coloring of G′ with k colors, and there is a valid coloring of G that
agrees with the coloring of the interface vertices in G′. Note that if there is a valid
coloring of the interface vertices in G, then the edge relation E′ can force it on the
interface vertices in G′ using a “k-colors plate” clique {v1, v2, . . . , vk}. Namely,
the set E′ includes an edge between every pair of vertices in {v1, v2, . . . , vk},
and in addition it includes edges from every vertex v ∈ {s} ∪ T to the colors in
{v1, v2, . . . , vk} that v is not colored in. It is easy to see that R maintains P .
Note that for every graph G = 〈V, s, T,E〉 and pair 〈G,G′〉 ∈ R, |G′| is clearly of
size linear in |T |, and verifing that 〈G,G′〉 ∈ R can be done in polynomial time,
given a witness that shows a coloring of G that agrees with G′ on the coloring of
the interface vertices. Finally, for every graph G, the number of graphs G′ such
that 〈G,G′〉 ∈ R is bounded by k|T |, which is constant for CE-HGs.

Independent Set. The independent set problem is to decide, given a graph
G = 〈V,E〉 and number k ≥ 0, whether G contains an independent set S ⊆ V
of size at least k, where S is independent if for all two vertices v and v′ in S,
we have (v, v′) �∈ E. Note that the input to the problem contains a parameter
k. We extend our definition of maintenance to also account for the parameter.
Thus, the relation R : (G × IN) × (G × IN) maintains P if for every graph G ∈ G
and parameter k ∈ IN, such that 〈G, k〉 is hopeful with respect to P , there is at
least one graph G′ ∈ G and parameter k′ ∈ IN, such that 〈(G, k), (G′, k′)〉 ∈ R.
In addition, we allow R to refer to labeled versions of G and G′. Formally,
we rephrase the independent set problem as follows: given G = 〈V,E〉 and k,
decide whether there is a labeling function l : V → {0, 1} such that l−1(1) forms
an independent set of size at least k. Now, whenever we compress a graph G,
we mark the interface vertices of G′ by 0’s and 1’s, serving as identifiers as to
whether these vertices participate in the witness independent set of G. Thus,
〈(G, k), (G′, k − k′)〉 ∈ R iff G′ = 〈{s} ∪ T, s, T, ∅, l〉, where l is such that there
is an independent set S in G of size k′ + |({s} ∪ T) ∩ l−1(1)| such that for all
v ∈ {s} ∪ T , we have that v ∈ S iff l(v) = 1. Note that l uniquely defines k′,
thus for each l : {s} ∪ T → {0, 1}, there is at most one graph G′ such that
〈(G, k), (G′, k − k′)〉 ∈ R.

Now, when G is replaced by G′, the search for a labeling function in G that
serves as a characteristic function of the independent set takes the labels of G′

into account. Thus, edges that lead to an interface vertex of G′ that is labeled
by 1 cannot be labeled by 1. Since there are at most 2|T |+1 possible labeling
functions, all the conditions on R are satisfied.

Hamilton Path. A Hamiltonian path in the graph is a path that traverses
all the vertices of the path, each vertex exactly once. For directed graphs, the
hierarchical setting is less challenging, as a subgraph may be entered only once.

126 R. Faran and O. Kupferman

We consider here also the more challenging undirected case, where a subgraph
may be entered via all its interface vertices. There, a Hamiltonian path in an HG
may enter a subgraph more than once, and it may visit an interface vertex of a
box without entering or leaving it. For an HG G with a box b that is substituted
by G, restricting a Hamiltonian path to b yields a set of paths in G, where every
vertex in G appears exactly in one path. This set induces a partition of the
interface vertices of G, where the vertices in every subset in the partition are
ordered. For a Hamiltonian path with sub-paths p1, . . . , pm in G, we denote this
partition as the restriction of p1, . . . , pm to the interface vertices of G. We define
a relation R : G × G such that for every graph G = 〈V, s, T,E〉, we have that
〈G,G′〉 ∈ R iff G′ = 〈{s} ∪ T, s, T,E′〉, and E′ is such that there are two sets
of paths {p1, . . . , pm} in G and {p′

1, . . . , p
′
m} in G′ with the same restriction to

the interface vertices {s} ∪ T . It is easy to see that this relation maintains the
problem of Hamiltonian path both for directed and undirected graphs and for
every graph, there is a bounded number of graphs that are in relation R with it.
In addition, for every graph G = 〈V, s, T,E〉 and pair 〈G,G′〉 ∈ R, |G′| is clearly
of size linear in |T |. Finally, given a witness that shows set of paths in G that
are restricted to the same partition as E′ in G′, verifing that 〈G,G′〉 ∈ R can be
easily done in polynomial time.

References

1. Alur, R., Kannan, S., Yannakakis, M.: Communicating hierarchical state machines.
In: Wiedermann, J., Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol.
1644, pp. 169–178. Springer, Heidelberg (1999). doi:10.1007/3-540-48523-6 14

2. Alur, R., Yannakakis, M.: Model checking of hierarchical state machines. ACM
TOPLAS 23(3), 273–303 (2001)

3. Aminof, B., Kupferman, O., Murano, A.: Improved model checking of hierarchical
systems. Inf. Comput. 210, 68–86 (2012)

4. Barrett, C., Jacob, R., Marathe, M.: Formal-language-constrained path problems.
SIAM J. Comput. 30(3), 809–837 (2000)

5. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

6. de Roever, W.-P.: The need for compositional proof systems: a survey. In: de
Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536,
pp. 1–22. Springer, Heidelberg (1998). doi:10.1007/3-540-49213-5 1

7. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, Heidelberg (2013)

8. Drusinsky, D., Harel, D.: On the power of bounded concurrency I: finite automata.
J. ACM 41(3), 517–539 (1994)

9. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8(3),
399–404 (1956)

10. Galperin, H., Wigderson, A.: Succinct representations of graphs. Inf. Control 56(3),
183–198 (1983)

11. Harel, D., Kupferman, O., Vardi, M.Y.: On the complexity of verifying concurrent
transition systems. Inf. Comput. 173, 1–19 (2002)

12. Immerman, N.: Length of predicate calculus formulas as a new complexity measure.
In: Proceedings of 20th FOCS, pp. 337–347 (1979)

http://dx.doi.org/10.1007/3-540-48523-6_14
http://dx.doi.org/10.1007/3-540-49213-5_1

A Parametrized Analysis of Algorithms on Hierarchical Graphs 127

13. Kupferman, O., Tamir, T.: Hierarchical network formation games. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 229–246. Springer,
Heidelberg (2017). doi:10.1007/978-3-662-54577-5 13

14. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. J. ACM 47(2), 312–360 (2000)

15. Lengauer, T.: The complexity of compacting hierarchically specified layouts of
integrated circuits. In: Proceedings of 23rd FOCS, pp. 358–368 (1982)

16. Lengauer, T., Wagner, K.W.: The correlation between the complexities of the non-
hierarchical and hierarchical versions of graph problems. JCSS 44, 63–93 (1990)

17. Lengauer, T., Wanke, E.: Efficient solutions of connectivity problems on hierarchi-
cally defined graphs. SIAM J. Comput. 17(6), 1063–1081 (1988)

18. Megiddo, N.: Optimal flows in networks with multiple sources and sinks. Math.
Program. 7(1), 97–107 (1974)

19. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.
SIAM J. Comput. 24(6), 1235–1258 (1995)

20. Rothvoß, T.: The matching polytope has exponential extension complexity. In:
Proceedings of 46th STOC, pp. 263–272 (2014)

http://dx.doi.org/10.1007/978-3-662-54577-5_13

Graph-Controlled Insertion-Deletion Systems
Generating Language Classes Beyond Linearity

Henning Fernau1(B), Lakshmanan Kuppusamy2, and Indhumathi Raman3

1 Fachbereich 4 – CIRT, Universität Trier, 54286 Trier, Germany
fernau@uni-trier.de

2 SCOPE, VIT University, Vellore 632 014, India
{klakshma,indhumathi.r}@vit.ac.in

3 SITE, VIT University, Vellore 632 014, India

Abstract. A regulated extension of an insertion-deletion system known
as graph-controlled insertion-deletion (GCID) system has several com-
ponents and each component contains some insertion-deletion rules. A
rule is applied to a string in a component and the resultant string is
moved to the target component specified in the rule. When resources are
so limited (especially, when deletion is context-free) then GCID systems
are not known to describe the class of recursively enumerable languages.
Hence, it becomes interesting to find the descriptional complexity of such
GCID systems of small sizes with respect to language classes below RE.
To this end, we consider closure classes of linear languages. We show
that whenever GCID systems describe LIN with t components, we can
extend this to GCID systems with just one more component to describe,
for instance, 2-LIN and with further addition of one more component, we
can extend to GCID systems that describe the rational closure of LIN.

Keywords: Insertion-deletion systems · Graph-controlled systems ·
Descriptional complexity measures · Closure classes of linear languages

1 Introduction

The origin of insertion systems comes from linguistics, under the name of semi-
contextual grammars [6], as well from biology. In biology, the insertion opera-
tion is found in the process of mismatched annealing in DNA strands [14] and
in RNA editing, some fragments of messenger RNA are inserted or deleted [1].
Further motivation for insertion operations can be seen in [8]. On the other hand,
the deletion operation was introduced independently in [10]. Insertion and dele-
tion operations together were introduced in [11]; the corresponding grammatical
mechanism is called insertion-deletion system (abbreviated as ins-del system).
Informally, insertion means inserting a string η between the strings w1 and w2,
whereas deletion means deleting a substring δ from the string w1δw2.

Among the several variants of ins-del systems (e.g., see [15] for this), we
focus on graph-controlled ins-del systems (abbreviated as GCID systems). Such
a system was introduced in [5] where the concept of components is introduced,

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 128–139, 2017.
DOI: 10.1007/978-3-319-60252-3 10

Graph-Controlled Insertion-Deletion Systems 129

associated with insertion or deletion rules. The transition is performed by
choosing any applicable rule from the set of rules of the current component
and by moving the resultant string to the target component specified in the
rule. The descriptional complexity measures are based on the size, denoted by
(k;n, i′, i′′;m, j′, j′′) where the parameters from left to right denote (i) the num-
ber of components k (ii) the maximal length of the insertion string n, (iii) the
maximal length of the left context and right context used in insertion rules, i′

and i′′, respectively, (iv) the maximal length of the deletion string m, (v) the
maximal length of the left context and right context used in deletion rules, j′

and j′′, respectively. We will also refer to the last six numbers in the septuple as
ID size, where ID stands for insertion-deletion.

It is known that the class of linear languages LIN is not closed under concate-
nation and Kleene closure. Let L◦(LIN) and L∗(LIN) denote the super-classes
of LIN closed under concatenation and Kleene closure, respectively. It is shown
in [3] that if GCID systems can describe LIN with ID size s and t components,
then it can be extended to a GCID system with ID size s and t + 1 components
to describe L∗(LIN) and particular cases of GCID systems with ID size s and
t+2 components describing L◦(LIN) were reported. In this paper, we generalize
these results to show that even the rational or regular closure of LIN (denoted
as Lreg(LIN)) can be described by GCID systems with ID size s and t + 2
components. We also show that a subclass of Lreg(LIN) containing languages
which can be described as concatenation of two languages from L∗(LIN), can be
described by GCID systems with ID size s and t + 1 components. For the first
result, we employ a new normal form for Lreg(LIN). Due to space restrictions,
many illustrations, examples and proofs have been suppressed.

2 Preliminaries

We assume that the readers are familiar with the standard notations used in
formal language theory. However, we recall a few notations. Let N denote the set
of positive integers, and [1 . . . k] = {i ∈ N : 1 ≤ i ≤ k}. If Σ is an alphabet (finite
set), then Σ∗ denotes the free monoid generated by Σ. The elements of Σ∗ are
called strings or words; λ denotes the empty string. For a string w ∈ Σ∗, wR

denotes the reversal (mirror image) of w. Likewise, LR and LR are understood
for languages L and language families L. The family of linear, context-free and
recursively enumerable languages are denoted by LIN, CF and RE, respectively.

The language class LIN is neither closed under concatenation nor under
Kleene closure. This motivates to consider several so-called closure classes of
the linear languages. A detailed study of these closure classes is given in [12].

Let Lop(F) be the smallest language class containing F and being closed
under the operation op. Since LIN is not closed under concatenation and Kleene
closure, the closure classes L◦(LIN) and L∗(LIN) are strict supersets of LIN.
The class L◦(LIN) is the class of metalinear languages. If L ∈ L◦(LIN), then
L = L1 ◦ L2 ◦ · · · ◦ Lk (in short L1L2 . . . Lk) for some k ≥ 1, where Li ∈ LIN
for each 1 ≤ i ≤ k. Fixing k ≥ 1, we arrive at the class k-LIN, a subclass

130 H. Fernau et al.

of L◦(LIN). In other words, L◦(LIN) =
⋃

k≥1 k-LIN and LIN = 1 − LIN by
definition. Similarly, if L ∈ L∗(LIN), then either L ∈ LIN or L = (L′)∗ for
some linear language L′. It is well known that L∗(LIN) and L◦(LIN) are not
closed under concatenation and Kleene closure, respectively; see [12]. The class
L := {L∗

1L2 | L1, L2 ∈ LIN} is also considered as an extension of L∗(LIN) in
[12].1 It has a nice characterization in terms of pushdown automata with finite
turns. Continuing to play around with the concatenation and Kleene closure
operators and extending our notation to lists of operators, we have L◦,∗(LIN),
the smallest language family containing LIN and being closed under concatena-
tion and Kleene closure. Recall that Lreg(LIN) is the smallest language family
that contains LIN and is closed under the three regular operators: union, con-
catenation and Kleene closure. In our notation, this corresponds to L∪,◦,∗(LIN).

2.1 Graph-Controlled Insertion-Deletion Systems

We define graph-controlled insertion-deletion systems following [5].

Definition 1. A graph-controlled insertion-deletion system (GCID system for
short) with k components is a construct Π = (k, V, T,A,H, i0, if , R), where k is
the number of components, V is an alphabet, T ⊆ V is the terminal alphabet and
V \ T is the non-terminal alphabet, A ⊆ V is a finite set of axioms, H is a set
of labels associated (in a one-to-one manner) to the rules in R, i0 ∈ [1 . . . k] is
the initial component, if ∈ [1 . . . k] is the final component, and R is a finite set
of rules of the form (i, r, j) where r is an insertion rule of the form (u, η, v)ins
or a deletion rule of the form (u, δ, v)del, with i, j ∈ [1 . . . k]. We say that a
GCID system handles terminals properly if terminal symbols are only inserted
in non-empty contexts containing non-terminals and never get deleted.

An insertion rule of the form (u, η, v)ins means that the string η is inserted
between u and v and it corresponds to the rewriting rule uv → uηv. Similarly, a
deletion rule of the form (u, δ, v)del means that the string δ is deleted between
u and v and this corresponds to the rewriting rule uδv → uv. The pair (u, v) is
called the context, η is called the insertion string, δ is called the deletion string
and x ∈ A is called an axiom. A rule of the form l : (i, r, j), where l ∈ H is the
label associated to the rule, denotes that the string is sent from component i
(for short denoted as Ci) to Cj after the application of the insertion or deletion
rule r on the string. If the initial component itself is the final component, then
we call the system to be a returning GCID system.
A graph-controlled ins-del system Π is said to be of size (k;n, i′, i′′;m, j′, j′′) if

k is the number of components
n = max{|η| : (i, (u, η, v)ins, j) ∈ R} m = max{|δ| : (i, (u, δ, v)del, j) ∈ R}
i′ = max{|u| : (i, (u, η, v)ins, j) ∈ R} j′ = max{|u| : (i, (u, δ, v)del, j) ∈ R}
i′′ = max{|v| : (i, (u, η, v)ins, j) ∈ R} j′′ = max{|v| : (i, (u, δ, v)del, j) ∈ R}

1 In [12], L was called L∗, which we avoid due to possible confusions with our Kleene
closure operator notation.

Graph-Controlled Insertion-Deletion Systems 131

In general, we follow the convention to use rule label names that are carrying
some meaning as follows. For instance, if we like to describe the simulation of a
rule p, then this is usually done by several rules in several components, so that
pi.j would refer to the jth simulation rule in component Ci. The underlying
control graph of a k-GCID system Π is defined to be a graph with k nodes
labelled C1 through Ck. There exists a directed edge from Ci to Cj if and only
if there exists a rule of the form (i, r, j) in R of Π. We also associate a simple
undirected graph on k nodes to a GCID system of k components as follows: There
is an undirected edge from a node Ci to Cj (i �= j) if and only if there exists
a rule of the form (i, r1, j) or (j, r2, i) in R of Π. If this underlying undirected
simple graph is a tree structure, then we call a returning GCID system tree-
structured. The language class generated by returning GCID systems of size s is
denoted by GCID(s).

We assume the following normal form for linear grammars: p : X → aY ,
q : X → Y a and h : Z → λ where X, Y, Z ∈ N , a ∈ T as in [2–4]. We also
call a returning GCID system simple-deleting if it contains one rule of the form
h1.1 : (1, (λ,Z, λ)del, 1) intended to simulate h : Z → λ and that this rule is
always the last to be applied in order to obtain a terminal string. For simplicity,
we will denote the class of simple-deleting GCID systems (of size s), as well as the
corresponding language family, by GCIDSD(s). Moreover, we use the subscript
SDT if we want to emphasize that the control graph is tree-structured. With
these notations, we rephrase the previous LIN results of [2–4] as follows, omitting
the situation when even RE could be characterized.

Proposition 1. LIN�GCIDSD(3; 1, 1, 0; 1, 0, 0) ∩ GCIDSD(3; 1, 0, 1; 1, 0, 0) and
LIN � GCIDSDT (3; 2, 1, 0; 1, 0, 0) ∩ GCIDSDT (3; 2, 0, 1; 1, 0, 0).

3 Properties of Closure Classes

In this section, we show some auxiliary results needed to describe the closure
classes by GCID system and then provide a characterization of the rational
closure of LIN which follows directly from a normal form representation for
regular expressions which states that each regular expression can be expressed
as finite union of union-free expressions; see [13, Theorem 2].

Proposition 2. The language classes L∗(LIN), L◦(LIN), L ∪ LR, 2-LIN and
Lreg(LIN) are all closed under reversal, but L and LR are not.

Proof. The positive closure properties follow in a straightforward inductive way
from what is known about LIN and some algebraic identities.

Suppose L is closed under reversal. Then (L∗
1L2)R = L∗

3L4 for some linear
languages L3, L4 in particular if L1 = {anbn | n ≥ 1} and L2 = {cmdm |
m ≥ 1}. Clearly, (L∗

1L2)R is not a linear language. Discuss some djw ∈ L3,
where w does not start with d. If w �= λ, then (djw)2 ∈ L3 is not a prefix of
any word in (L∗

1L2)R. Hence, L3 ⊆ {d}∗. Consider again dj ∈ L3 with j > 0.
Then, cjbrar ∈ L4 for some r ≥ 0. But then, also (dj)2cjbrar ∈ L∗

3L4, but
(dj)2cjbrar /∈ (L∗

1L2)R, contradicting our assumption. �

132 H. Fernau et al.

Proposition 3 [12]. The following inclusions are true. Moreover, all are strict.

(i) LIN � L∗(LIN) � L ∪ LR � Lreg(LIN) � CF.
(ii) LIN � 2-LIN � L◦(LIN) � Lreg(LIN).

Proposition 4 [12]. The following pairs of language classes are incomparable.
(i) 2-LIN and L∗(LIN), (ii) 2-LIN and L ∪LR, (iii) L◦(LIN) and L∗(LIN), (iv)
L◦(LIN) and L ∪ LR.

LIN

2-LIN L∗(LIN)

L◦(LIN) ∪ R

SMLIN MSLIN

Lreg(LIN)

CF The inter-relationship between the closure
classes of LIN stated in Propositions 3 and 4 is
shown on the left. A (path of) solid arrow from
A to B indicates A � B and no arrowed path
between A and B tells that A and B are incom-
parable. We also add MSLIN = L◦(L∗(LIN))
and SMLIN = L∗(L◦(LIN)).
The following proposition follows directly from
Theorem 2 of [13].

Proposition 5. Let L ⊆ T ∗. Then L ∈
Lreg(LIN) if and only if L is the finite union
of languages from L◦,∗(LIN).

Let us now consider a small example that illustrates this proposition. Con-
sider the language L described as follows.

L = (L′
1(L

′
2 ∪ (L′

3)
∗)(L′

1 ∪ L′
2)L

′
3)

∗

for linear languages L′
1, L

′
2, L

′
3 ⊆ T ∗. Then, we find the following representation:

L = ((L′
1L

′
2L

′
1L

′
3)

∗ ◦ (L′
1L

′
2L

′
2L

′
3)

∗ ◦ (L′
1(L

′
3)

∗L′
1L

′
3)

∗ ◦ (L′
1(L

′
3)

∗L′
2L

′
3)

∗)∗. (1)

Due to the previous proposition, we can focus now on expressions that have
only concatenation and Kleene star as operations and whose basic elements are
linear languages. Recall the well-known equivalence between expressions and
(expression) trees about which we talk in the following. So, the term subexpres-
sion corresponds to a subtree. In this sense, leaf labels can be subexpressions.
Also, we consider Kleene star as a unary operation, but concatenation can take
any arity of at least two. This allows us to assume that stars and concatenation
always alternate on any path in the expression tree.

In order to describe our grammar constructions that show how to generate
all languages from the regular closure of LIN by appropriate GCID systems,
we need to specify which of the linear grammars (associated to the leaves of
the expression trees) should be simulated ‘next’, i.e., after finishing with the
simulation of the ‘current’ grammar. This is formalized in the following with the
notion of continuation points, reminiscent of the Glushkov transformation [7].

Assume that t is an expression tree with inner nodes labeled ∗ or ◦, and the
leaves be labeled with numbers from [1 . . . k]. For i ∈ [1 . . . k], we define the set of

Graph-Controlled Insertion-Deletion Systems 133

L′
1 L′

2 L′
1 L′

3

◦

∗

L′
1 L′

2 L′
2 L′

3

◦

∗

L′
1 ∗

L′
3

L′
1 L′

3

◦

∗

L′
1 ∗

L′
3

L′
2 L′

3

◦

∗

◦

∗

Fig. 1. The expression tree of our example; dotted lines indicate continuation points
by joining leaves i and j if j ∈ cont(i), suppressing the direction information.

continuation points cont(i) ⊆ [1 . . . k+1] as follows. Here, let subex(i) denote the
smallest subexpression to which i belongs, and r(i) be the root label of subex(i).
Moreover, range(i) be the subinterval of [1 . . . k] that spans from the first to
the last leaf label of subex(i). Slightly abusing notation, we also write range(n)
for the subinterval of [1 . . . k] that spans from the first to the last leaf label of
the subexpression rooted at some inner node n. Hence, subex(i) = subex(r(i)).
Inductively, we set subex1(i) = subex(i), r1(i) = r(i) and range1(i) = range(i),
as well as rj(i) = p(rj−1(i)), where p is the parent function, subexj(i) is the
subexpression rooted at rj(i), and rangej(i) be the subinterval of [1 . . . k] that
spans from the first to the last leaf label of subexj(i). We refer to j also as the
level. Clearly, at some point p(rj−1(i)) is no longer defined, as specified by the
height h(i). In the following, let j ≤ h(i).

– If rj(i) = ∗ and i = max(rangej(i)), then min(rangej(i)) belongs to cont(i).
Moreover, if j = h(i), we include max(rangej(i))+1 = k+1 as a continuation
point.

– If rj(i) = ◦ and i < max(rangej(i)) and either (a) j = 1 or (b) rj−1(i) = ∗
and i = max(rangej−1(i)), then let s1, . . . , sq be all the right siblings of (a) i
or (b) the root of subexj−1(i), respectively, such that the labels of s1, . . . , sq
are all ∗ but that of sq, which is ◦, or sq is a leaf; then, min(range(so)) belongs
to cont(i) for all 1 ≤ o ≤ q. As a special case, if there is no sq with label
◦ (because all right siblings carry stars), then we have to continue from the
beginning, with the left siblings, again from left to right, until we hit the first
s′
q with label ◦.

Look again at our example to illustrate this definition, calling the 16 linear
languages occurring in the leaves of the expression in Eq. (1) as L1, . . . , L16 from
left to right, also cf. Fig. 1. The following table lists the continuation points.

134 H. Fernau et al.

i = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

cont(i) 2 3 4 1, 5, 9, 13 6 7 8 1, 5, 9, 13 10, 11 11 12 1, 5, 9, 13 14, 15 15 16 1, 5, 9, 13, 17

For instance, for i = 1, we have r1(1) = ◦, as the parent operation of L1 = L′
1 is

concatenation, r2(1) = ∗, as the subexpression L1L2L3L4 is starred, r3(1) = ◦
and r4(1) = ∗, with h(1) = 4. Moreover, range1(1) = [1 . . . 1], range2(1) =
[1 . . . 4], range3(1) = [1 . . . 4] and range4(1) = [1 . . . 16]. For the computation
of the continuation points, only r1(1) = ◦ is important and yields 2. The case
i = 4 is more interesting. Again, we have r1(4) = ◦, r2(4) = ∗, r3(4) = ◦ and
r4(4) = ∗, with h(4) = 4. However, the level j = 1 is no longer of interest, rather
j = 2, which puts 1 = min(range2(4)) into cont(4). Moreover, considering the
level j = 3, we get the first elements of the range of the siblings into the set of
continuation points, which is 5 = min(range(p(p(5)))), as p(p(5)) describes the
right sibling of p(p(4)), 9 = min(range(p(p(9)))), as p(p(9)) describes the right
sibling of p(p(5)), as well as 13. The next interesting case happens if i = 8, as
we now have to continue looking at siblings from the beginning. Finally, with
i = 9, we see something interesting with j = 1, as now the starred subexpression
L∗
10 = (L′

3)
∗ that follows L9 = L′

1 can be skipped.

Proposition 6. Let L ⊆ T ∗. If L ∈ L∗,◦(LIN), given by some expression tree t,
then there is a context-free grammar G = (N,T, S′

1, P) with L(G) = L, together
with some integer k ≥ 1 counting the leaves of t, satisfying the following:

– N is partitioned into N0, N1, . . . , Nk, where for each i = 1, . . . , k, Si ∈ Ni;
– N0 = {S′

1, S
′
2, S

′
3, . . . , S

′
k, S

′
k+1};

– P can be partitioned into P0, P1, . . . , Pk such that Gi = (Ni, T, Si, Pi) forms
a linear grammar for each i = 1, . . . , k;

– P0 = {S′
i → SiS

′
c | c ∈ cont(i)} ∪ {S′

k+1 → λ}.
If the continuation points satisfy cont(i) = {i + 1} for all 1 ≤ i ≤ k, then this
gives a characterization of the language class L◦(LIN).
In order to simplify some of our main results in the following sections, the

following observations from [4] are helpful.

Proposition 7. [4]. Let L be a language class that is closed under reversal and
k, n, i′, i′′,m, j, j′′ be non-negative integers. The following statements are true.

1. GCID(k;n, i′, i′′;m, j′, j′′) = [GCID(k;n, i′′, i′;m, j′′, j′)]R

2. L ⊆ GCID(k;n, i′, i′′;m, j′, j′′) iff L ⊆ GCID(k;n, i′′, i′;m, j′′, j′)

4 Describing Closure Classes of Linear Languages

Initially, our main objective was to find how much beyond LIN GCID systems (of
the four sizes stated in Proposition 1) can lead us. However, we then succeeded to
provide a general result showing that if there exists GCIDSD(T) systems of ID size
(n, i′, i′′;m, j′j′′) describing LIN, then these constructions can be extended to
GCIDSD(T) systems of the same ID size at the expense of two more components

Graph-Controlled Insertion-Deletion Systems 135

to describe Lreg(LIN). Unfortunately, we were not able to describe even CF with
GCID systems of these four sizes and this question is left open to the reader.

Describing Lreg(LIN) by GCID systems is rather an immediate consequence
of Proposition 6. Here, we slightly extend the notion cont(i) once more to the
case when i = 0. This is somehow interesting when rh(1)(1) = ∗ and allows to
skip, for instance, to the position k + 1 to easily incorporate the empty word.

Theorem 1. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1,
if LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) for X ∈ {SD,SDT}, then Lreg(LIN) ⊆
GCIDX(t + 2;n, i′, i′′;m, j′, j′′).

Proof. Let L ∈ L∪,◦,∗(LIN) for some L ⊆ T ∗. By Proposition 5, we can assume
that L is the finite union of k languages from L◦,∗(LIN). We first show how
to simulate context-free grammars that are given as in Proposition 6, using
GCIDX(t + 2;n, i′, i′′;m, j′, j′′) for languages from L◦,∗(LIN). By using disjoint
nonterminal alphabets, we get a GCID system for the finite union of such lan-
guages, as well, because we can assume that the constituent systems handle
terminals properly.

Since LIN ⊆ GCIDSD(T)(t;n, i′, i′′;m, j′, j′′), each Gi can be simulated by
a simple-deleting GCID system Πi = (t, Vi, T, {Si},Hi, 1, 1, Ri) for 1 ≤ i ≤ k,
each of size (t;n, i′, i′′;m, j′, j′′). We assume, without loss of generality, that
Vi ∩ Vj = T if 1 ≤ i < j ≤ k. Let us first consider the case i′ ≥ 1 and i′′ = 0.
We construct a GCID system Π for G as follows: Π = (t + 2, V, T, {S0S

′
c | c ∈

cont(0)},H ∪ H ′, 1, 1, (R \ R̂) ∪ R′ ∪ R′′), where

– V =

(
k⋃

i=1

Vi

)

∪ {S0, S
′
1, . . . , S

′
k+1}

– H ′ =
k⋃

i=1

{ri(t + 1).1, ri(t + 1).2, ri(t + 2).1} ∪ {rk+1(t + 1).1}

– H =
k⋃

i=1

Hi; R =
k⋃

i=1

Ri; R̂ =
k⋃

i=1

{hi1.1 : (1, (λ,Xi, λ)del, 1)};

– R′ =
k⋃

i=0

{hi1.1 : (1, (λ,Xi, λ)del, t + 1) | Xi → λ ∈ Pi ∨ X0 = S0}
– R′′ is the set with the following rules: for each 1 ≤ i ≤ k and c ∈ cont(i),

ri(t + 1).1 : (t + 1, (S′
i, Si, λ)ins, t + 2),

ri(t + 1).(c + 1) : (t + 1, (Si, S
′
c, λ)ins, 1)

ri(t + 2).1 : (t + 2, (λ, S′
i, λ)del, t + 1);

Further, rk+1(t + 1).1 : (t + 1, (λ, S′
k+1, λ)del, 1)

Since Li = L(Gi) is generated by Πi, respectively, for 1 ≤ i ≤ k, the linear
rules of Πi are simulated by rules of Ri in the first t components and there is
no interference between rules of different systems Πi and Πj , since Vi ∩ Vj = T
if 1 ≤ i < j ≤ k.

136 H. Fernau et al.

We start with the axiom S0S
′
c for some c ∈ cont(0). S0 is deleted and in

C(t + 1) and C(t + 2), a simulation of Gc is initiated: (S0S
′
c)1 ⇒ (S′

c)t+1 ⇒
(S′

cSc)t+2 ⇒ (Sc)t+1 ⇒ (ScS
′
d)1 for some d ∈ cont(c). Now, a string w1 ∈ Lc is

produced by simulating Gc in the first t components of the system Π. In general,
the simulation goes from left to right. When the string wc ∈ Lc is produced, the
terminating rule of Lc, namely hc.1, takes the string to component t + 1, where
we either arrive in configuration (wcS

′
d)t+1, and the simulation continues with

producing a word according to Gd etc. The whole process ends on applying the
rule rk+1(t+1).1 : (t+1, (λ, S′

k+1, λ)del, 1), which deletes the nonterminal S′
k+1.

Conversely, any derivation within Π can be split into phases, where each
linear phase starts and ends in the first component with a string that starts
with a terminal string, followed by SiS

′
c for some c ∈ cont(i) in the beginning,

and by some XivS′
c in the end of this phase, where v is some terminal string. Now,

on applying hi1.1, Xi gets deleted and the transition phase is initiated, moving
a string starting with a terminal string and ending with some S′

c into C(t + 1).
Now, apart from the special case when S′

k+1 is the last symbol of the string, by
applying rules from C(t + 1) or C(t + 2), some string is moved back to C1 that
satisfies the conditions expressed as the beginning of a linear phase. It is now
clearly seen that this alternation of linear and transition phases corresponds to
generating words from L from left to right, following some concrete instantiation
of the expression tree. The case when i′ = 0 and i′′ ≥ 1 follows from Propositions
2 and 7. �

5 Reducing Components for Certain Closure Classes

In this section, we show that with GCID systems of ID size s and t+1 components
we can describe L2

∗(LIN) := {M1M2 : M1,M2 ∈ L∗(LIN)}. Hence, L2
∗(LIN) =

2-LIN ∪ (L ∪ LR) ∪ {L∗
1L

∗
2 : L1, L2 ∈ LIN}. We prove the next theorem by

providing three different simulations of its three subsets stated above, in the
subsequent theorems.

Theorem 2. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1
and X ∈ {SD,SDT}, if LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) was shown by a
simple-deleting simulation, then L2

∗(LIN) ∈ GCIDX(t + 1;n, i′, i′′;m, j′, j′′).

Theorem 3. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1
and X ∈ {SD,SDT}, if LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) was shown by a
simple-deleting simulation, then 2-LIN ⊆ GCIDX(t + 1;n, i′, i′′;m, j′, j′′).

Proof. Let G1 = (N1, T, S1, P1) and G2 = (N2, T, S2, P2) be linear grammars
of L1 and L2, respectively, with N1 ∩ N2 = ∅ and whose rules are of the
form pi : Xi → aYi, qi : Xi → Yia and hi : Xi → λ, with Xi, Yi ∈ Ni

for = 1, 2. Since LIN ⊆ GCIDSD(t;n, i′, i′′;m, j′, j′′), each of the rule types
pi, qi, hi can be simulated by rules of a simple-deleting GCID system Πi =
(t, Vi, T, {Si},Hi, 1, 1, Ri) for i = 1, 2, each of size (t;n, i′, i′′;m, j′, j′′). Hence,
the hi rule type is simulated by the GCID rules hi1.1 : (1, (λ,Xi, λ)del, 1). First,

Graph-Controlled Insertion-Deletion Systems 137

consider the case when i′ ≥ 1 and i′′ = 0. We construct a GCID system
Π3 = (t + 1, V1 ∪ V2 ∪ {#}, T, {λ, S1#},H1 ∪ H2 ∪ {r1.1, r(t + 1).1}, 1, 1, R)
for L(G1)L(G2), with R = ((R1 ∪ R2) \ {h11.1 : (1, (λ,X1, λ)del, 1)}) ∪ R′,
where R′ has the following three rules: (i) h11.1 : (1, (λ,X1, λ)del, t + 1), (ii)
r(t + 1).1 : (t + 1, (#, S2, λ)ins, 1), (iii) r1.1 : (1, (λ,#, λ)del, 1).

Starting with the axiom S1# and using rules of R1, a string w1 ∈ L1 is
produced first with being the last rule applied is h11.1. This leads to w1# in
C(t+1). The only rule in C(t+1) is applied which inserts S2 after # and moves
back to C1. Continuing with w1#S2, w2 ∈ L(G2) is generated reaching to the
configuration (w1#w2)1 where # is deleted by r1.1. If r1.1 is applied before
h11.1, then the string is stuck at C(t + 1) which is not the target component.

Since 2-LIN is closed under reversal (due to Proposition 2), the case when
i′ = 0, i′′ ≥ 1 follows from Proposition 7. �

Theorem 4. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1
and X ∈ {SD,SDT}, if LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) was shown by a
simple-deleting simulation, then L ∪ LR ⊆ GCIDX(t + 1;n, i′, i′′;m, j′, j′′).

Proof. Let G1 = (N1, T, S1, P1) and G2 = (N2, T, S2, P2) be linear grammars
of L1 and L2, respectively, with N1 ∩ N2 = ∅. Let i′ ≥ 1, i′′ = 0 and we will
now show L ⊆ GCIDSD(t + 1;n, i′, i′′;m, j′, j′′). We construct a GCID system
Π4 = (t+1, V1 ∪V2 ∪{#}, T, {λ,#S2},H1 ∪H2 ∪{r(t+1).1, r(t+1).2}, 1, 1, R)
for (L(G1))∗L(G2), with R = ((R1 ∪ R2) \ {h11.1 : (1, (λ,X1, λ)del, 1), h21.1 :
(1, (λ,X2, λ)del, 1)}) ∪ R′, where R′ has the following rules.

h11.1 : (1, (λ,X1, λ)del, t + 1) h21.1 : (1, (λ,X2, λ)del, t + 1)
r(t + 1).1 : (t + 1, (#, S1, λ)ins, 1) r(t + 1).2 : (t + 1, (λ,#, λ)del, 1)

If we start with the axiom #S2, w2 ∈ L2 is produced and #w2 moves to C(t+1).
The rules in C(t+1) initiate the simulation of the rules of G1 by inserting S1 after
and thereafter continuing with #S1w2 from C1, the configuration (#w1w2)t+1

is reached, with w1 ∈ L∗
1 and w2 ∈ L2. Now if r(t+1).1 is applied, the simulation

of G1 is restarted, and after generating w1 ∈ L(G1) for desired number of times,
the whole derivation stops. With this observation, we conclude that Π4 generates
(L(G1))∗L(G2) ∈ L .

Consider the case when i′ = 1, but we want to prove the inclusion for LR.
We aim at constructing a GCID system Π ′

4 for L2L
∗
1. The simulation is identical

to the one just presented except for the axiom, which is S2# now.
The case when i′ = 0 and i′′ ≥ 1 follows from the fact that L ∪LR is closed

under reversal and by Propositions 2 and 7. �

Theorem 5. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1
and X ∈ {SD,SDT}, if L1, L2 ∈ LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) was shown
by a simple-deleting simulation, then L∗

1L
∗
2 ∈ GCIDX(t + 1;n, i′, i′′;m, j′, j′′).

The following proof is a simple extension of Theorem 4. Hence, we give the
simulating rules and refrain from explaining the working.

138 H. Fernau et al.

Proof. For i′ ≥ 1 and i′′ = 0, we construct a GCID system Π3 = (t + 1, V1 ∪
V2∪{#1,#2}, T, {#1#2},H ∪{r1(t+1).1, r2(t+1).1, s1(t+1).1, s2(t+1).1}, t+
1, t + 1, (R \ R̂) ∪ R′ ∪ R′′) such that L(Π3) = L∗

1L
∗
2, where

– R̂ = {h11.1 : (1, (λ,X1, λ)del, 1), h21.1 : (1, (λ,X2, λ)del, 1)};
– R′ = {h11.1 : (1, (λ,X1, λ)del, t + 1), h21.1 : (1, (λ,X2, λ)del, t + 1)};

– R′′ is the set of the following four rules:

r1(t + 1).1 : (t + 1, (#1, S1, λ)ins, 1) r2(t + 1).1 : (t + 1, (#2, S2, λ)ins, 1)
s1(t + 1).1 : (t + 1, (λ,#1, λ)del, t + 1) s2(t + 1).1 : (t + 1, (λ,#2, λ)del, t + 1)

The case when i′ = 0 and i′′ ≥ 1 follows from Propositions 2 and 7. �
Remark 1. The proof of Theorem 5 can be extended to describe {L∗

1L
∗
2 . . . L∗

k :
Li ∈ LIN for 1 ≤ i ≤ k}. Consider the GCID system Π ′ as in Theorem 5 with
alphabet and label set extended from 2 to k. Let axiom be #1#2 . . . #k. The rules
of R̂, R′ ∈ Π3 are similarly extended to k rules and there are 2k rules in R′′. This
shows that L∗

1L
∗
2 . . . L∗

k ∈ GCID(t + 1;n, i′, i′′;m, j′, j′′) under the assumptions
of Theorem 5. Since there is no control on the number of applications of the rule
ri(t + 1).1 : (t + 1, (#i, Si, λ)ins, 1), we cannot enforce it to be applied exactly
once; hence L1L2 or L∗

1L2 or L1L
∗
2 alone cannot be produced this way.

Remark 2. By Proposition 1, LIN � GCID(4; 1, 1, 1; 1, 0, 0) and by Theorem 2,
L2

∗(LIN) � GCID(5; 1, 1, 1; 1, 0, 0). By [4], RE = GCID(5; 1, 1, 1; 1, 0, 0). This
opens the quest to prove computational incompleteness results, similarly to the
conjecture of Ivanov and Verlan [9] which states that RE �= GCID(s) if k = 2 in
s = (k; 1, i′, i′′; 1, j′, j′′), with i′, i′′, j′, j′′ ∈ {0, 1} and i′ + i′′ + j′ + j′′ ≤ 3.

6 Summary and Future Challenges

Up to the present, most of the research on the descriptional complexity of (graph-
controlled) insertion-deletion systems was about the limits to the resources so
that we can still show that such systems are able to describe all recursively enu-
merable languages. Although we do not have a proof showing that the borderline
that we reached is optimal, it might be an idea to look into smaller language
classes now. One natural question would be to see with which resources we can
still describe all context-free languages. While all results collected in this paper
show, in particular, that all linear languages can be described by the correspond-
ing resources, we put it up as a challenge to come up with non-trivial simulations
of context-free grammars.

In this paper, we tried to bridge between linear and context-free languages as
best as possible. Our main technical contribution is to describe these simulations
in quite a general fashion, so that we can save giving similar simulations for each
specific case of sizes of the systems.

Acknowledgments. Some part of the work done by the second author was during
the author’s visits to University of Trier, Germany in June-July and December 2016.
The possibility to use some overhead money from a DFG grant to support this stay is
gratefully acknowledged.

Graph-Controlled Insertion-Deletion Systems 139

References

1. Benne, R. (ed.): RNA Editing: The Alteration of Protein Coding Sequences of
RNA. Series in Molecular Biology. Ellis Horwood, Chichester (1993)

2. Fernau, H., Kuppusamy, L., Raman, I.: Descriptional complexity of graph-
controlled insertion-deletion systems. In: Câmpeanu, C., Manea, F., Shallit, J.
(eds.) DCFS 2016. LNCS, vol. 9777, pp. 111–125. Springer, Cham (2016). doi:10.
1007/978-3-319-41114-9 9

3. Fernau, H., Kuppusamy, L., Raman, I.: Generative power of graph-controlled
insertion-deletion systems with small sizes. J. Automata Lang. Comb. (2017)

4. Fernau, H., Kuppusamy, L., Raman, I.: On the computational completeness of
graph-controlled insertion-deletion systems with binary sizes. Theoret. Comput.
Sci. (2017). doi:http://dx.doi.org/10.1016/j.tcs.2017.01.019

5. Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-
deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings of Twelfth
Annual Workshop on Descriptional Complexity of Formal Systems, DCFS, EPTCS,
vol. 31, pp. 88–98 (2010)

6. Galiukschov, B.S.: Semicontextual grammars (in Russian). Mat. Logica i Mat.
Ling., Kalinin Univ. 38–50 (1981)

7. Glushkov, V.M.: The abstract theory of automata (in Russian). Russ. Math. Surv.
16, 1–53 (1961)

8. Haussler, D.: Insertion languages. Inf. Sci. 31(1), 77–89 (1983)
9. Ivanov, S., Verlan, S.: About one-sided one-symbol insertion-deletion P systems. In:

Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa,
A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 225–237. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54239-8 16

10. Kari, L.: On insertion and deletion in formal languages. Ph.D. thesis, University
of Turku, Finland (1991)

11. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131(1), 47–61 (1996)

12. Kutrib, M., Malcher, A.: Finite turns and the regular closure of linear context-free
languages. Discrete Appl. Math. 155(16), 2152–2164 (2007)

13. Nagy, B.: A normal form for regular expressions. In: Calude, C.S., Calude, E.,
Dinneen, M.J. (eds.) Supplemental Papers for DLT 2004, CDMTCS, vol. 252,
University of Auckland, New Zealand, Centre for Discrete Mathematics and The-
oretical Computer Science (2004)

14. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Para-
digms. Springer, Heidelberg (1998)

15. Verlan, S.: Recent developments on insertion-deletion systems. Comput. Sci. J.
Moldova 18(2), 210–245 (2010)

http://dx.doi.org/10.1007/978-3-319-41114-9_9
http://dx.doi.org/10.1007/978-3-319-41114-9_9
http://dx.doi.org/10.1016/j.tcs.2017.01.019
http://dx.doi.org/10.1007/978-3-642-54239-8_16

Computational Completeness of Networks
of Evolutionary Processors with Elementary

Polarizations and a Small Number of Processors

Rudolf Freund1, Vladimir Rogojin2, and Sergey Verlan3(B)

1 Faculty of Informatics, TU Wien, Favoritenstraße 9–11, 1040 Vienna, Austria
rudi@emcc.at

2 Department of Information Technologies, Åbo Akademi University,
Domkyrkotorget 3, 20500 Turku, Finland

vladimir.rogojin@abo.fi
3 Laboratoire d’Algorithmique, Complexité et Logique, Université Paris Est Créteil,

61 av. du général de Gaulle, 94010 Créteil, France
verlan@u-pec.fr

Abstract. We improve previous results obtained for networks of evo-
lutionary processors with elementary polarizations −1, 0, 1 by showing
that only the very small number of seven processors is needed to obtain
computational completeness. In the case of not requiring a special output
node even only five processors are shown to be sufficient.

1 Introduction

Networks of evolutionary processors (NEPs) consist of cells (processors) each of
them allowing for specific operations on strings. Computations in such a net-
work consist of alternatingly performing two steps – an evolution step where
in each cell all possible operations on all strings currently present in the cell
are performed, and a communication step in which strings are sent from one
cell to another cell provided specific conditions are fulfilled. Examples of such
conditions are (output and input) filters which have to be passed, and these
(output and input) filters can be specific types of regular languages or permit-
ting and forbidden context conditions. The set of strings obtained as results of
computations by the NEP is defined as the set of objects which appear in some
distinguished node in the course of a computation. In networks of evolutionary
processors with polarizations each symbol has assigned a fixed integer value; the
polarization of a string is computed according to a given evaluation function,
and in the communication step copies of strings are moved to all cells having
the same polarization. As in [12], in this paper we only consider the elementary
polarizations −1, 0, 1 for the symbols as well as for the cells.

Seen from a biological point of view, networks of evolutionary processors are
a collection of cells communicating via membrane channels which makes them
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 140–151, 2017.
DOI: 10.1007/978-3-319-60252-3 11

Computational Completeness of Small NEPs with Elementary Polarizations 141

to be seen as tissue-like P systems (see [11]) considered in the area of membrane
computing (see [14]); as in membrane computing, the computations are carried
out in a parallel and synchronized way in all cells The operations considered
for the processors (cells) in networks of evolutionary processors usually are the
point mutations insertion, deletion, and substitution, well-known from biology
as operations on DNA.

Networks of Evolutionary Processors (NEPs) were introduced in [7,8] as a
model of string processing devices distributed over a graph, with the processors
carrying out the operations insertion, deletion, and substitution. NEPs with a
very small number of nodes are very powerful computational devices: already
with two nodes, they are as powerful as Turing machines, e.g., see [3,4]. For a
survey of the main results regarding NEPs the interested reader is referred to
[10].

In hybrid networks of evolutionary processors (HNEPs), each language
processor performs only one of these operations on a certain position of the
strings. Furthermore, the filters are defined by some variants of random-context
conditions, i.e., they check the presence and the absence of certain symbols in
the strings. For an overview on HNEPs and the so far known best results, we
refer the reader to [1].

Networks of polarized evolutionary processors were considered in [6] (a new
version of that paper is going to appear, [5]), and networks of evolutionary
processors with elementary polarizations −1, 0, 1 were investigated in [12]. In
this paper we consider the same model of networks of evolutionary processors
with elementary polarizations −1, 0, 1 as in [12], yet we considerably improve the
number of processors (cells) needed to obtain computational completeness from
35 to 7, which makes these results already comparable with those obtained in [1]
for hybrid networks of evolutionary processors using permitting and forbidden
contexts as filters for the communication of strings between cells.

The rest of the paper is structured as follows: In Sect. 2 we give the definitions
of the model of a network of evolutionary processors with elementary polariza-
tions −1, 0, 1 (NePEP for short) and of the variant of a circular Post machine we
are going to simulate by the NePEP. In Sect. 3 we show our main result proving
that any circular Post machine can be simulated by an NePEP with only seven
processors (cells), and in the case of not requiring a special output processor
even only five processors are needed. A summary of the results and an outlook
to future research conclude the paper.

2 Prerequisites

We start by recalling some basic notions of formal language theory. An alphabet
is a non-empty finite set. A finite sequence of symbols from an alphabet V is
called a string over V . The set of all strings over V is denoted by V ∗; the empty
string is denoted by λ; moreover, we define V + = V ∗ \ {λ}. The length of a
string x is denoted by |x|, and by |x|a we denote the number of occurrences of
a letter a in a string x. For a string x, alph(x) denotes the smallest alphabet

142 R. Freund et al.

Σ such that x ∈ Σ∗. For more details of formal language theory the reader is
referred to the monographs and handbooks in this area, such as [15].

We only remark that in this paper, string rewriting systems as Turing
machines, Post systems, etc. are called computationally complete if these sys-
tems are able to compute any partial recursive relation R on strings over any
alphabet U . Computational completeness in the usual sense with respect to
acceptance and generation directly follows from this general kind of compu-
tational completeness; for more details we refer to [1]. The definitions of the
succeeding subsections are mainly taken from [1,12].

2.1 Insertion, Deletion, and Substitution

For an alphabet V , let a → b be a rewriting rule with a, b ∈ V ∪{λ}, and ab �= λ;
we call such a rule a substitution rule if both a and b are different from λ; such a
rule is called a deletion rule if a �= λ and b = λ, and it is called an insertion rule
if a = λ and b �= λ. The set of all substitution rules, deletion rules, and insertion
rules over an alphabet V is denoted by SubV ,DelV , and InsV , respectively.

Given such rules π ≡ a → b ∈ SubV , ρ ≡ a → λ ∈ DelV , and σ ≡ λ → a ∈
InsV as well as a string w ∈ V ∗, we define the following actions of π, ρ, and σ
on w:

– If π ≡ a → b ∈ SubV , then

π(w) =
{{ubv : ∃u, v ∈ V ∗ (w = uav)}, if | w |a> 0,

{w}, otherwise.
– If ρ ≡ a → λ ∈ DelV , then

ρr(w) =
{{u : ∃u ∈ V ∗ (w = ua)}, if | w |a> 0,

{w}, otherwise.

ρl(w) =
{{v : ∃v ∈ V ∗ (w = av)}, if | w |a> 0,

{w}, otherwise.
– If σ ≡ λ → a ∈ InsV , then σr(w) = {wa} and σl(w) = {aw}.

The symbol α ∈ {∗, l, r} denotes the mode of applying a substitution, inser-
tion or deletion rule to a string, namely, at any position (α = ∗), on the left-hand
end (α = l), or on the right-hand end (α = r) of the string, respectively.

For any rule β, β ∈ {π, ρ, σ}, any mode α ∈ {∗, l, r}, and any L ⊆ V ∗,
we define the α-action of β on L by βα(L) =

⋃
w∈L βα(w). For a given finite

set of rules M , we define the α-action of M on a string w and on a language
L by Mα(w) =

⋃
β∈M βα(w) and Mα(L) =

⋃
w∈L Mα(w), respectively. In the

following, substitutions will only be used at arbitrary positions, i.e., with α = ∗,
which will be omitted in the description of the rule.

2.2 Post Systems and Circular Post Machines

The left and right insertion, deletion, and substitution rules defined in the pre-
ceding subsection are special cases of string rewriting rules only working at

Computational Completeness of Small NEPs with Elementary Polarizations 143

the ends of a string; they can be seen as restricted variants of Post rewriting
rules as already introduced by Post in [13]: for a simple Post rewriting rule
Πs ≡ u$x → y$v, where u, v, x, y ∈ V ∗, for an alphabet V , we define

πs(w) = {yzv | w = uzx, z ∈ V ∗}.

A normal Post rewriting rule πn ≡ $x → y$ is a special case of a simple
Post rewriting rule u$x → y$v with u = v = λ (we also assume xy �= λ); this
normal Post rewriting rule $x → y$ is the mirror version of the normal form
rules u$ → $v as originally considered in [13] for Post canonical systems; yet
this variant has already been used several times for proving specific results in
the area of membrane computing, e.g., see [9]. A Post system of type X is a
construct (V, T,A, P) where V is a (finite) set of symbols, T ⊆ V is a set of
terminal symbols, A ∈ V ∗ is the axiom, and P is a finite set of Post rewriting
rules of type X; for example, X can mean simple or normal Post rewriting rules.
In both cases it is folklore that these Post systems of type X are computationally
complete.

The basic idea of the computational completeness proofs for Post systems is
the “rotate-and-simulate”-technique, i.e., the string is rotated until the string
x to be rewritten appears on the right-hand side, where it can be erased and
replaced by the string y on the left-hand side, which in total can be accomplished
by the rule $x → y$. By rules of the form $a → a$ for each symbol a the string
can be rotated. In order to indicate the beginning of the string in all its rotated
versions, a special symbol B (different from all others) is used; B is to be erased
at the end of a successful computation.

Circular Post machines are machine-like variants of Post systems using spe-
cific variants of simple Post rewriting rules; the variant of CPM 5 we use in this
paper was investigated in [2].

Definition 1. A (non-deterministic) CPM5 is a construct

M = (Σ,T,Q, q1, q0, R),

where Σ is a finite alphabet, T ⊆ Σ is the set of terminal symbols, Q is the set
of states, q1 ∈ Q is the initial state, q0 ∈ Q is the only terminal state, and R is
a set of simple Post rewriting rules of the following types (we use the notation
Q′ = Q \ {q0}):
• px$ → q$ (deletion rule) with p ∈ Q′, q ∈ Q, x ∈ Σ; we also write px → q

and, for any w ∈ Σ∗, the corresponding computation step is pxw
px→q−→ qw;

• p$ → q$y (insertion rule) with p ∈ Q′, q ∈ Q, y ∈ Σ; we also write p → yq

and, for any w ∈ Σ∗, the corresponding computation step is pw
p→yq−→ qwy.

The CPM5 is called deterministic if for any two deletion rules px → q1 and
px → q2 we have q1 = q2 and for any two insertion rules p → q1y1 and p → q2y2
we have q1y1 = q2y2.

144 R. Freund et al.

The name circular Post machine comes up from the idea of interpreting the
machines to work on circular strings where both deletion and insertion rules
have local effects, as for circular strings the effect of the insertion rule p$ → q$y
is the same as the effect of p → yq directly applied to a circular string, which
also justifies writing p$ → q$y as p → yq.

For a given input string w, w ∈ T ∗, the CPM5 M starts with q1w and applies
rules from R until it eventually reaches a configuration q0v for some v ∈ T ∗; in
this case we say that (w, v) is in the relation computed by M .

Definition 2. A CPM5 M = (Σ,T,Q, q1, q0, R) is said to be in normal form if

– Q \ {q0} = Q1 ∪ Q2 where Q1 ∩ Q2 = ∅;
– for every p ∈ Q1 and every x ∈ Σ, there is exactly one instruction of the

form px → q, i.e., Q1 is the set of states for deletion rules;
– for every insertion rule p → yq we have p ∈ Q2, i.e., Q2 is the set of states

for insertion rules, and moreover, if p → y1q1 and p → y2q2 are two different
rules in R, then y1 = y2.

Theorem 1 (see [2]). CPM5s in normal form are computationally complete.

2.3 Networks of Evolutionary Processors with Elementary
Polarizations

Definition 3. A polarized evolutionary processor over V is a triple (M,α, π)
where

– M is a set of substitution, deletion or insertion rules over the alphabet V ,
i.e., (M ⊆ SubV) or (M ⊆ DelV) or (M ⊆ InsV);

– α gives the action mode of the rules of the node;
– π ∈ {−1, 0,+1} is the polarization of the node (negative, neutral, positive).

The set M represents the set of evolutionary rules of the processor. It is
important to note that a processor is “specialized” in one type of evolutionary
operation only as in HNEPs. The set of evolutionary processors over V is denoted
by EPV .

Definition 4. A network of polarized evolutionary processors (NPEP for short)
is a 7-tuple Γ = (V, T,H,R, ϕ, nin, nout) where

– V is the alphabet of the network;
– T is the input/output alphabet, T ⊆ V ; T ⊆ V ;
– H = (XH , EH) is an undirected graph (without loops) with the set of vertices

(nodes) XH and the set of (undirected) edges EH ; H is called the underlying
communication graph of the network;

– R : XH −→ EPV is a mapping which with each node x ∈ XH associates the
polarized evolutionary processor R(x) = (Mx, αx, πx);

– ϕ is an evaluation function from V ∗ into the set of integers;
– nin, nout ∈ XH are the input and the output node, respectively.

Computational Completeness of Small NEPs with Elementary Polarizations 145

The number of nodes in XH , card(XH), is called the size of Γ . If the eval-
uation mapping ϕ takes values in the set {−1, 0, 1} only, the network is said to
be with elementary polarization of symbols (an NePEP for short).

A configuration of an NPEP Γ , as defined above, is a mapping C : XH −→
2V ∗

which associates a set of strings over V with each node x of the graph. A
component C(x) of a configuration C is the set of strings that can be found in
the node x of this configuration, hence, a configuration can be considered as a
list of the sets of strings which are present in the nodes of the network at a given
moment.

A computation of Γ consists of alternatingly applying an evolutionary step
and a communication step. When changing by an evolutionary step, each com-
ponent C(x) of the configuration C is changed in accordance with the set of
evolutionary rules Mx associated with the node x thus yielding the new config-
uration C ′, and we write C =⇒ C ′ if and only if

C ′(x) = Mαx
x (C(x)) for all x ∈ XH .

In a communication step, each node processor x ∈ XH sends out copies of all
its strings, but keeping a local copy of the strings having the same polarization
to that of x only, to all the node processors connected to x, and receives a copy
of each word sent by any node processor connected with x providing that it has
the same polarization as that of x, thus yielding the new configuration C ′ from
configuration C, and we write C C ′,

C ′(x) = (C(x) \ {w ∈ C(x) | sign(ϕ(w)) �= πx}) ∪⋃
{x,y}∈EG

({w ∈ C(y) | sign(ϕ(w)) = πx}),

for all x ∈ XH . Here sign(m) is the sign function which returns +1, 0,−1,
provided that m is a positive integer, is 0, or is a negative integer, respectively.
Note that all strings with a different polarization than that of x are expelled.
Further, each expelled word from a node x that cannot enter any node connected
to x is lost.

In the following, we will only use the evaluation function ϕ with ϕ(λ) = 0
and ϕ(aw) = ϕ(a)+ϕ(w) for all a ∈ V and w ∈ V ∗, i.e., the value a string is the
sum of the values of the symbols contained in it; we write ϕs for this function.

Given an input word w ∈ T ∗, the initial configuration C0 of Γ for w is
defined by C

(w)
0 (nin) = {w} and C

(w)
0 (n) = ∅ for all other nodes x ∈ XH \{nin}.

The computation of Γ on the input word w ∈ V ∗ is a sequence of configurations
C

(w)
0 , C

(w)
1 , C

(w)
2 , . . . , where C

(w)
0 is the initial configuration of Γ on w, C

(w)
2i =⇒

C
(w)
2i+1 and C

(w)
2i+1 C

(w)
2i+2, for all i ≥ 0.

As results we take all terminal strings appearing in the output cell nout

during a computation of Γ . In fact, in [1] this variant was called with terminal
extraction. On the other hand, we may require a special output where only the
terminal strings appear, which we will consider as the standard variant.

146 R. Freund et al.

3 Main Result

In this section we now show our main result how a given CPM5 can be simulated
by an NePEP (with terminal extraction) with only 7 (5) cells provided that for
a given input string w ∈ T ∗ we start with the initial string q1w in the input
cell, where q1 is the initial state of the CPM5. In order to start with the input
string w directly we would have to add two more nodes to carry out this initial
procedure of adding the initial state q1.

Theorem 2. For any CPM5 M = (Σ,T,Q, q1, q0, R) in normal form there
exists a standard NePEP with only seven cells Γ = (V, T,H,R, φs, i1, i0) being
able to simulate the computations of M .

Proof. Let n = |T |, m = |Q|, 0 ≤ i ≤ m and 0 ≤ k ≤ n. We define

V = T ∪ {q0i , q̂+i , q̂−
i ,X−

i ,D0
i ,D+

i , D̂+
i | 0 ≤ i ≤ m}

∪ {q−
k,i, q̂

0
k,i | 0 ≤ k ≤ n, 0 ≤ i ≤ m}

∪ {A−
i,k, A0

i,k | 0 ≤ k ≤ n, 0 ≤ i ≤ m}
∪ {A0

k, A+
k , Â+

k , Ǎ+
k | 0 ≤ k ≤ n} ∪ {ε−}

The evaluation φs for the symbols in V corresponds to the superscript of the
symbol, i.e., for αz ∈ V with z ∈ {+, 0,−} we define φs(α0) = 0, φs(α+) = +1,
φs(α−) = −1, and, moreover, for a ∈ T , we take φs(a) = 0.

The communication graph H consists of the set of nodes {1, 2, 3, 4, 5, 6, 7}
and of the following set of undirected edges:
{{1, 2}, {1, 3}, {1, 4}, {1, 5}, {4, 5}, {4, 6}, {6, 7}}.

Node 1 is the input and node 7 is the output node.

For the seven nodes i, 1 ≤ i ≤ 7, the corresponding evolutionary processors
N (i) are defined as follows:

α(1) = α(3) = α(4) = α(7) = ∗, α(2) = r and α(5) = α(6) = l.
π(1) = π(7) = 0, π(2) = π(4) = π(5) = − and π(3) = π(6) = +.
For the types of rules in the rule sets Mi we have M1,M3,M4 ⊂ SUBV ,

M2 ⊂ INSV , M5,M6 ⊂ DELV , and M7 = ∅, i.e., M7 could be assumed to be
any type of rules.

Processor 1 has polarization (charge) 0 and uses substitution rules to con-
tribute to the simulation of insertion and deletion rules of M :

Insertion : qs → qjak(1 ≤ l ≤ k) Deletion : qsak → qj(1 ≤ i ≤ s)

1.1 : q0s → q−
k,j 1.7 : q0s → X−

s

1.2 : q−
l,j → q0l−1,j 1.8 : A−

i,l → A0
i+1,l

1.3 : A0
l → Â+

l 1.9 : A0
i,l → Â0

i,l

1.4 : A0
l → Ǎ+

l 1.10 : D0
i → D̂+

i

1.5 : q0l,j → q̂0l,j 1.11 : D̂+
i → D+

i

1.6 : Â+
l → A+

l 1.12 : A−
i,l → q̂+j

1.13 : q̂+j → q̂−
j

Computational Completeness of Small NEPs with Elementary Polarizations 147

Processor 3 has polarization (charge) +1 and uses substitution rules to con-
tribute to the simulation of insertion and deletion rules of M :

Insertion : qs → qjak(1 ≤ l ≤ k) Deletion : qsak → qj(1 ≤ i ≤ s)

3.1 : A+
l → A0

l+1 3.5 : D+
i → D0

i−1, i > 0
3.2 : q̂0l,j → q−

l,j , l > 0 3.6 : Â0
i,l → A−

i,l

3.3 : q̂00,j → q0j 3.7 : D+
0 → ε−

3.4 : Ǎ+
l → a0

l

Processor 4 has polarization (charge) −1 and uses substitution rules to con-
tribute to the simulation of deletion rules of M only:

Deletion : qsak → qj

4.1 : a0
l → A−

0,l

4.2 : X−
s → D+

s

4.3 : q̂−
j → q0j , j > 0

4.4 : q̂−
0 → q+0

Processor 2 has polarization (charge) −1 and only contains the single inser-
tion rule 2.1: λ → A+

0 .
Processor 5 has polarization (charge) −1 and only contains the single deletion

rule 5.1: ε− → λ.
Processor 6 has polarization (charge) +1 and only contains the single deletion

rule 6.1: q+0 → λ.
The proof closely follows the idea from [1] (Theorem 2), which is itself based

on the rotate-and-simulate method. We recall the main steps of that proof below.
The configuration of M is represented as qsw, s ≥ 0, where qs is the current

state. Suppose that qs → qjak is the associated instruction. Then the following
evolution is performed in Γ (for readability, we omit the superscripts (charges)
of the symbols):

qsw ⇒∗ qk,jwA0 ⇒∗ qk−1,jwA1 ⇒∗ qk−t,jwAt ⇒∗ q0,jwAk ⇒∗ qjwak

As in the classical rotate-and-simulate method, A0 is appended to the
string and then the indices of qk,j (respectively A0) are decreased (respectively
increased) simultaneously. When the first index of qk,j reaches zero, its initial
value is stored as an index of Ak, allowing to produce the right symbol ak after-
wards.

The instruction qsak → qj is simulated in the following way:

qsakw ⇒∗ DsA0,kw ⇒∗ Di−1A1,kw ⇒∗ Di−tAi,kwA ⇒∗

⇒∗ D0As,kw ⇒∗ εAs,kw ⇒∗ εqjw ⇒ qjw

148 R. Freund et al.

Here the state symbol qs is replaced by Ds and the first symbol ak by A0,k.
Then in a loop the index of D decreases, while the first index of A increases.
At the end of this loop the string D0As,kw is obtained, hence the information
about the state s has been transferred to the symbol A, so it now encodes the
state and the current symbol of the machine M . Based on this information, the
new state qj is chosen. Finally, symbol D0 is transformed to symbol ε, which is
further deleted.

We remark that it could be possible that another symbol from the string is
transformed to A0,k (not necessarily the first one). In this case the computation
will not yield a valid result because the state symbol will not be present in the
first position and the corresponding symbol ε will never be erased, see [1] for
more details.

Now we explain the simulation in more details. We start with the remark
that in each step only one symbol of a string w can be changed (by substitution,
insertion or deletion) yielding w′. This implies that |φ(w)−φ(w′)| ≤ 2. In many
cases this allows us to predict the change in the polarization (and thus the
communication to another node), based on the above difference and the current
node polarization.

Assume that the string q0sw is present in node 1. First, we suppose that
there is an instruction qs → qjak in M . Then, only the rule 1.1 is applicable,
producing the string q−

k,jw. Since the initial string had neutral polarization, this
rule application changes the polarization of the string to negative and during
the communication step this string is sent to nodes 2, 4 and 5. In node 5 there
is no rule applicable to this string, so it will never exit this node. In node 4, rule
4.1 can be applied several times, but this will further decrease the value of the
string, which will remain negative, so it will never be able to get out of nodes 4
and 5.

In node 2 the insertion rule 2.1 is applied yielding q−
k,jwA+

0 . Clearly, this
string has a neutral polarization, so it will return back to node 1. Next, we
discuss the evolution of strings of form q−

k−t,jwA+
t , 0 ≤ t ≤ k − 2 in node 1:

q−
k−t,jwA+

t ⇒1.2 q0k−t−1,jwA+
t ⇒3.1q

0
k−t−1,jwA0

t+1 ⇒1.5

⇒1.5 q̂0k−t−1,jwA0
t+1 ⇒1.3 q̂0k−t−1,jwÂ0

t+1 ⇒3.2

⇒3.2 q−
k−t−1,jwÂ+

t+1 ⇒1.6 q−
k−t−1,jwA+

t+1

During first two steps only rules 1.2 and 3.1 are applicable (and they change
the polarization of the string). Next, rules 1.3, 1.4 and 1.5 are applicable. It
can be easily seen that if 1.3 is applied yielding the string q0k−t−1,jwÂ+

t+1, then
no more applicable rule is present in node 3. If rule 1.4 is applied then the
only possible continuation is the application of the sequence of rules 3.4 and 1.5
yielding the string q̂0k−t−1,jwa0

t+1 in node 1. Clearly, there are no more applicable
rules and this string cannot evolve anymore.

So, rule 1.5 has to be applied. Next, there is a choice between the application
of 1.3 and 1.4. In case of the application of 1.4, either 3.4 or 3.2 is applicable. The

Computational Completeness of Small NEPs with Elementary Polarizations 149

first application yields to the case discussed before, while the second application
produces the following evolution not yielding any result:

q̂0k−t−1,jwǍ+
t+1 ⇒3.2 q−

k−t−1,jwǍ+
t+1 ⇒1.2 q0k−t−2,jwǍ+

t+1 ⇒3.4

⇒3.4 q0k−t−2,jwa0
t+1 ⇒1.5 q̂0k−t−2,jwa0

t+1

So, on the fourth step rule 1.3 should be applied. Then the only applicable
rule is 3.2. Now, if rule 1.6 is not applied, then on the next step (after the
application of 1.2) no more rules will be applicable to the corresponding string
in node 3.

Hence, the procedure described above permits to evolve the string q−
k,jwA+

0

into q−
1,jwA+

k−1. Now, the sequence described above produces the string q−
0,jwA+

k ,
which cannot evolve anymore. However, another evolution now becomes possible
(by choosing 1.4 instead of 1.3):

q−
1,jwA+

k−1 ⇒1.2 q00,jwA+
k−1 ⇒3.1 q00,jwA0

k ⇒1.5 q̂00,jwA0
t+1 ⇒1.4

⇒1.4 q̂00,jwǍ0
k ⇒3.3 q0j wǍ+

k ⇒3.4 q0j wa0
k

We remark that if rule 3.4 is applied instead of 3.3, then corresponding string
cannot evolve. This concludes the discussion of the simulation of the rule qs →
qjak of M .

Now consider that there is an instruction qsak → qj in M to be simulated.
Then, only rule 1.7 is applicable, producing the string X−

s w. Since the initial
string had neutral polarization, this rule application changes the polarization of
the string to negative and during the communication step this string is sent to
the nodes 2, 4 and 5. In node 5 there is no rule applicable to this string, so it
will never exit this node. In node 2, rule 2.1 can be applied yielding X−

s wA+
0 in

node 1 to which no further rule is applicable.
In node 4 rules 4.1 and 4.2 are applicable. If 4.2 is applied, then the polar-

ization of the resulting string is positive and the string will be lost. Hence 4.1
should be applied, yielding X−

s A−
0,kw′ (w = akw). Now again both rules 4.1 and

4.2 are applicable. This time using rule 4.2 allows to obtain the neutral string
D+

s A−
0,kw′ which further goes to node 1. In the other case, the corresponding

string will always be negative.
Now let us consider the evolution of strings of type D+

s−tA
−
t,kw′, 0 ≤ t ≤ s−1

being in node 1. Using the same technique as in the case above the decrement of
the index of D and the increment of the index of A is performed, with the rules
1.8, 1.9, 1.10, 1.11, 2.5, and 2.6 now having a similar function as the rules 1.2,
1.5, 1.3, 1.6, 2.1, and 2.2. Hence, we obtain:

D+
s−tA

−
t,kw′ ⇒1.8 D+

s−tA
0
t+1,kw′ ⇒2.5 D0

s−t−1A
0
t+1,kw′ ⇒1.9

⇒1.9 D0
s−t−1Â

0
t+1,kw′ ⇒1.10 D̂+

s−t−1Â
0
t+1,kw′ ⇒2.6

⇒2.6 D̂+
s−t−1A

−
t+1,kw′ ⇒1.6 D̂+

s−t−1A
−
t+1,kw′ ⇒1.11 D+

s−t−1A
−
t+1,kw′

It can easily be verified that the few possible variations of the computa-
tion above (not using rule 1.9 or using 1.12 instead of 1.9) immediately yield

150 R. Freund et al.

strings that cannot evolve anymore. Hence, we obtain that from D+
s A−

0,kw′ only
the string D+

0 A−
s,kw′ can be obtained (in node 1). At this point two rules are

applicable: 1.8 and 1.12. Using rule 1.8 yields D+
0 A0

s+1,kw′ in node 3, where
only rule 3.7 is applicable, yielding ε−A0

s+1,kw′. However, the last string is nega-
tive, so it is lost during the communication step. The other possibility gives the
following evolution:

D+
0 A−

s,kw′ ⇒1.12 D+
0 q̂+j w′ ⇒3.7 ε−q̂+j w′ ⇒1.13 ε−q̂−

j w′ ⇒4.3 ε−q0j w′ ⇒5.1 q0j w′

We remark that last two operations can be done in a reverse order (if the
string first travels to node 5 and then to node 4). The additional application of
rule 4.1 traps the string in nodes 4 and 5.

Finally, we show how a terminal string is obtained as a result. We can assume
that the last instruction of M is an instruction of type qsak → q0. Then rule 4.4
produces the word q+0 w′, which being positive is sent to node 6, where rule 6.1
is applied producing a neutral string w′, which further arrives in node 7.

Corollary 1. For any CPM5 M = (Σ,T,Q, q1, q0, R) in normal form there
exists a NePEP with terminal extraction with five cells Γ = (V, T,H,R, φs, i1, i0)
being able to simulate the computations of M .

Proof. The assertion can be easily proved by deleting nodes 6 and 7 from the
previous construction, as well as by adding the rule q00 → ε− to processor 1.

4 Conclusion and Future Research

In this paper we have improved the number of cells necessary to obtain compu-
tational completeness with networks of polarized evolutionary processors with
elementary polarizations −1, 0, 1 of symbols to seven. In the case of not requiring
a special output node and just taking all terminal strings as results even only
five nodes have been shown to be sufficient.

The construction given in this paper, like the previous ones for networks of
polarized evolutionary processors makes intensive use of the control given by the
structure of the communication graph. On the other hand, in [1] the results were
obtained for several specific regular graph structures as complete graphs, star-
like and even linear graphs. Hence, an interesting question for future research
arises when asking for the ingredients and the number of cells needed to obtain
computational completeness for variants of networks of polarized evolutionary
processors based on such specific graph structures. Finally, we also may look
for reducing the number seven (five for the case of terminal extraction) of cells
needed to obtain computational completeness with networks of polarized evolu-
tionary processors with elementary polarizations −1, 0, 1 of symbols.

Computational Completeness of Small NEPs with Elementary Polarizations 151

References

1. Alhazov, A., Freund, R., Rogozhin, V., Rogozhin, Y.: Computational completeness
of complete, star-like, and linear hybrid networks of evolutionary processors with
a small number of processors. Nat. Comput. 15(1), 51–68 (2016)

2. Alhazov, A., Krassovitskiy, A., Rogozhin, Y.: Circular post machines and P sys-
tems with exo-insertion and deletion. In: Gheorghe, M., Păun, G., Rozenberg, G.,
Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 73–86. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28024-5 7

3. Alhazov, A., Mart́ın-Vide, C., Rogozhin, Y.: On the number of nodes in universal
networks of evolutionary processors. Acta Informat. 43(5), 331–339 (2006)

4. Alhazov, A., Mart́ın-Vide, C., Rogozhin, Y.: Networks of evolutionary processors
with two nodes are unpredictable. In: Loos, R., Fazekas, S.Z., Mart́ın-Vide, C.
(eds.) LATA 2007. Proceedings of the 1st International Conference on Language
and Automata Theory and Applications. Report, vol. 35/07, pp. 521–528. Research
Group on Mathematical Linguistics, Universitat Rovira i Virgili, Tarragona (2007)

5. Arroyo, F., Canaval, S., Mitrana, V.: Popescu, Ş: On the computational power
of networks of polarized evolutionary processors. Inf. Comput. 253(3), 371–380
(2017)

6. Arroyo, F., Gómez Canaval, S., Mitrana, V., Popescu, Ş.: Networks of polarized
evolutionary processors are computationally complete. In: Dediu, A.-H., Mart́ın-
Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370,
pp. 101–112. Springer, Cham (2014). doi:10.1007/978-3-319-04921-2 8

7. Castellanos, J., Mart́ın-Vide, C., Mitrana, V., Sempere, J.M.: Solving NP-complete
problems with networks of evolutionary processors. In: Mira, J., Prieto, A. (eds.)
IWANN 2001. LNCS, vol. 2084, pp. 621–628. Springer, Heidelberg (2001). doi:10.
1007/3-540-45720-8 74

8. Castellanos, J., Mart́ın-Vide, C., Mitrana, V., Sempere, J.M.: Networks of evolu-
tionary processors. Acta Inform. 39(6–7), 517–529 (2003)

9. Freund, R., Rogozhin, Y., Verlan, S.: Generating and accepting P systems with
minimal left and right insertion and deletion. Nat. Comput. 13(2), 257–268 (2014)

10. Manea, F., Mart́ın-Vide, C., Mitrana, V.: Accepting networks of evolutionary word
and picture processors: a survey. Sci. Appl. Lang. Methods 2, 525–560 (2010)

11. Mart́ın-Vide, C., Pazos, J., Păun, G., Rodŕıguez-Patón, A.: A new class of symbolic
abstract neural nets: tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON
2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002). doi:10.1007/
3-540-45655-4 32

12. Popescu, S.: Networks of polarized evolutionary processors with elementary polar-
ization of symbols. In: NCMA 2016, 275–285 (2016)

13. Post, E.L.: Formal reductions of the general combinatorial decision problem. Am.
J. Math. 65(2), 197–215 (1943)

14. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2010)

15. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3.
Springer, Heidelberg (1997)

http://dx.doi.org/10.1007/978-3-642-28024-5_7
http://dx.doi.org/10.1007/978-3-319-04921-2_8
http://dx.doi.org/10.1007/3-540-45720-8_74
http://dx.doi.org/10.1007/3-540-45720-8_74
http://dx.doi.org/10.1007/3-540-45655-4_32
http://dx.doi.org/10.1007/3-540-45655-4_32

Recognizing Union-Find Trees Built Up Using
Union-By-Rank Strategy is NP-Complete

Kitti Gelle and Szabolcs Iván(B)

Department of Computer Science, University of Szeged, Szeged, Hungary
{kgelle,szabivan}@inf.u-szeged.hu

Abstract. Disjoint-Set forests, consisting of Union-Find trees, are data
structures having a widespread practical application due to their effi-
ciency. Despite them being well-known, no exact structural characteri-
zation of these trees is known (such a characterization exists for Union
trees which are constructed without using path compression) for the case
assuming union-by-rank strategy for merging. In this paper we provide
such a characterization by means of a simple push operation and show
that the decision problem whether a given tree (along with the rank info
of its nodes) is a Union-Find tree is NP-complete, complementing our
earlier similar result for the union-by-size strategy.

1 Introduction

Disjoint-Set forests, introduced in [10], are fundamental data structures in many
practical algorithms where one has to maintain a partition of some set, which
supports three operations: creating a partition consisting of singletons, querying
whether two given elements are in the same class of the partition (or equivalently:
finding a representative of a class, given an element of it) and merging two
classes. Practical examples include e.g. building a minimum-cost spanning tree
of a weighted graph [4], unification algorithms [17] etc.

To support these operations, even a linked list representation suffices but
to achieve an almost-constant amortized time cost per operation, Disjoint-Set
forests are used in practice. In this data structure, sets are represented as directed
trees with the edges directed towards the root; the create operation creates n
trees having one node each (here n stands for the number of the elements in the
universe), the find operation takes a node and returns the root of the tree in
which the node is present (thus the same-class(x, y) operation is implemented
as find(x) == find(y)), and the merge(x, y) operation is implemented by
merging the trees containing x and y, i.e. making one of the root nodes to be a
child of the other root node (if the two nodes are in different classes).

In order to achieve near-constant efficiency, one has to keep the (average)
height of the trees small. There are two “orthogonal” methods to do that: first,
during the merge operation it is advisable to attach the “smaller” tree below the

Research was supported by the NKFI grant no. 108448.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 152–163, 2017.
DOI: 10.1007/978-3-319-60252-3 12

Union-Find Tree Recognition is NP-Complete 153

“larger” one. If the “size” of a tree is the number of its nodes, we say the trees
are built up according to the union-by-size strategy, if it’s the depth of a tree,
then we talk about the union-by-rank strategy. Second, during a find operation
invoked on some node x of a tree, one can apply the path compression method,
which reattaches each ancestor of x directly to the root of the tree in which they
are present. If one applies both the path compression method and either one of
the union-by-size or union-by-rank strategies, then any sequence of m operations
on a universe of n elements has worst-case time cost O(mα(n)) where α is
the inverse of the extremely fast growing (not primitive recursive) Ackermann
function for which α(n) ≤ 5 for each practical value of n (say, below 265535),
hence it has an amortized almost-constant time cost [22]. Since it’s proven [9] that
any data structure maintaining a partition has worst-case time cost Ω(mα(n)),
the Disjoint-Set forests equipped with a strategy and path compression offer a
theoretically optimal data structure which performs exceptionally well also in
practice. For more details see standard textbooks on data structures, e.g. [4].

Due to these facts, it is certainly interesting both from the theoretical as well
as the practical point of view to characterize those trees that can arise from a
forest of singletons after a number of merge and find operations, which we call
Union-Find trees in this paper. One could e.g. test Disjoint-Set implementations
since if at any given point of execution a tree of a Disjoint-Set forest is not a
valid Union-Find tree, then it is certain that there is a bug in the implementation
of the data structure (though we note at this point that this data structure
is sometimes regarded as one of the “primitive” data structures, in the sense
that it is possible to implement a correct version of them that needs not be
certifying [20]). Nevertheless, only the characterization of Union trees is known
up till now [2], i.e. which correspond to the case when one uses one of the union-
by- strategies but not path compression. Since in that case the data structure
offers only a theoretic bound of Θ(log n) on the amortized time cost, in practice
all implementations imbue path compression as well, so for a characterization to
be really useful, it has to cover this case as well.

In this paper we show that the recognition problem of Union-Find trees is
NP-complete when the union-by-rank strategy is used, complementing our ear-
lier results [13] where we proved NP-completeness for the union-by-size strategy.
The proof method applied here resembles to that one, but the low-level details
for the reduction (here we use the Partition problem, there we used the more
restricted version 3−Partition as this is a very canonical strongly NP-complete
problem) differ greatly. This result also confirms the statement from [2] that the
problem “seems to be much harder” than recognizing Union trees. As (up to our
knowledge) in most of the actual software libraries having this data structure
implemented the union-by-rank strategy is used (apart from the cases when one
quickly has to query the size of the sets as well), for software testing purposes
the current result is more relevant than the one applying union-by-size strategy.

Related Work. There is an increasing interest in determining the complexity of
the recognition problem of various data structures. The problem was considered

154 K. Gelle and S. Iván

for suffix trees [16,21], (parametrized) border arrays [8,14,15,19], suffix arrays [1,
7,18], KMP tables [6,12], prefix tables [3], cover arrays [5], and directed acyclic
word- and subsequence graphs [1].

2 Notation

A (ranked) tree is a tuple t = (Vt,roott,rankt,parentt) with Vt being the
finite set of its nodes, roott ∈ Vt its root, rankt : Vt → N0 mapping a
nonnegative integer to each node, and parentt : (Vt − {roott}) → Vt map-
ping each nonroot node to its parent (so that the graph of parentt is a
directed acyclic graph, with edges being directed towards the root). We require
rankt(x) < rankt(parentt(x)) for each nonroot node x, i.e. the rank strictly
decreases towards the leaves.

For a tree t and a node x ∈ Vt, let children(t, x) stand for the set {y ∈
Vt : parentt(y) = x} of its children and children(t) stand as a shorthand for
children(t,roott), the set of depth-one nodes of t. Also, let x �t y denote that
x is a (non-strict) ancestor of y in t, i.e. x = parentk

t (y) for some k ≥ 0. For x ∈
Vt, let t|x stand for the subtree (Vx = {y ∈ V : x �t y}, x,rankt|Vx

,parentt|Vx
)

of t rooted at x. As shorthand, let rank(t) stand for rankt(roott), the rank
of the root of t.

Two operations on trees are that of merging and collapsing. Given two trees
t = (Vt,roott,rankt,parentt) and s = (Vs,roots,ranks,parents) with Vt

and Vs being disjoint and rank(t) ≥ rank(s), then their merge merge(t, s)
(in this order) is the tree (Vt ∪ Vs,roott,rank,parent) with parent(x) =
parentt(x) for x ∈ Vt, parent(roots) = roott and parent(y) = parents(y)
for each nonroot node y ∈ Vs of s, and

rank(roott) =

{
rank(t) if rank(s) < rank(t),
rank(t) + 1 otherwise,

and rank(x) = rankt(x), ranks(x) resp. for each x ∈ Vt − {rootr}, x ∈ Vs

resp.
Given a tree t = (V,root,rank,parent) and a node x ∈ V , then

collapse(t, x) is the tree (V,root,rank,parent′) with parent′(y) = root
if y is a nonroot ancestor of x in t and parent′(y) = parent(y) otherwise. For
examples, see Fig. 1.

Observe that both operations indeed construct a ranked tree (e.g. the rank
remains strictly decreasing towards the leaves).

We say that a tree is a singleton tree if it has exactly one node, and this node
has rank 0.

The class of Union trees is the least class of trees satisfying the following two
conditions: every singleton tree is a Union tree, and if t and s are Union trees
with rank(t) ≥ rank(s), then merge(t, s) is a Union tree as well.

Analogously, the class of Union-Find trees is the least class of trees satisfying
the following three conditions: every singleton tree is a Union-Find tree, if t and

Union-Find Tree Recognition is NP-Complete 155

s: r2

1 1 1 1

0 0 0 0

x

z

t:

0 0

2 y

(a) Trees s and t

r3

1 1 1 1

0 0 0 0

x

z
0 0

2 y

(b) t′ = merge(s, t)

r3

1 1 1

1

0 0 0 0

x

z

0 0

2 y

(c) t′′ = push(t′, x, y)
r 3

1 1 1 1

0 0 0

0x z

0 0

2 y

(d) t′′′ = collapse(t′′, z)

Fig. 1. Merge, collapse and push.

s are Union-Find trees with rank(t) ≥ rank(s), then merge(t, s) is a Union-
Find tree as well, and if t is a Union-Find tree and x ∈ Vt is a node of t, then
collapse(t, x) is also a Union-Find tree.

We say that a node x of a tree t satisfies the Union condition if

{rankt(y) : y ∈ children(t, x)} = {0, 1, . . . ,rankt(x) − 1}.

Then, the characterization of Union trees from [2] can be formulated in our
terms as follows:

Theorem 1. A tree t is a Union tree if and only if each node of t satisfies the
Union condition.

Note that the rank of a Union tree always coincides by its height. (And, any
subtree of a Union tree is also a Union tree.) In particular, the leaves are exactly
those nodes of rank 0.

156 K. Gelle and S. Iván

3 Structural Characterization of Union-Find Trees

Suppose s and t are trees on the same set V of nodes, with the same root root
and the same rank function rank. We write s � t if x �s y implies x �t y for
each x, y ∈ V .

Clearly, � is a partial order on any set of trees (i.e. is a reflexive, tran-
sitive and antisymmetric relation). It is also clear that s � t if and only if
parents(x) �t x holds for each x ∈ V − {root} which is further equivalent to
requiring parents(x) �t parentt(x) since parents(x) cannot be x.

Another notion we define is the (partial) operation push on trees as fol-
lows: when t is a tree and x �= y ∈ Vt are siblings in t, i.e. have the same
parent, and rankt(x) < rankt(y), then push(t, x, y) is defined as the tree
(Vt,roott,rankt,parent

′) with

parent′(z) =

{
y if z = x,

parentt(z) otherwise,

that is, we “push” the node x one level deeper in the tree just below its former
sibling y. (See Fig. 1.)

We write t 	 t′ when t′ = push(t, x, y) for some x and y, and as usual, 	∗

denotes the reflexive-transitive closure of 	.

Proposition 1. For any pair s and t of trees, the following conditions are equiv-
alent:

(i) s � t,
(ii) there exists a sequence t0 = s, t1, t2, . . . , tn of trees such that for each

i = 1, . . . , n we have ti = push(ti−1, x, y) for some depth-one node x ∈
children(ti−1), moreover, children(tn) = children(t) and tn|x � t|x
for each x ∈ children(t),

(iii) s 	∗ t.

Proof. (i)⇒(ii). It is clear that � is equality on singleton trees, thus � implies
	∗ for trees of rank 0. Assume s � t for the trees s = (V,root,rank,parent)
and t = (V,root,rank,parent′) and let X stand for the set children(s) of
the depth-one nodes of s and Y stand for children(t). Clearly, Y ⊆ X since by
s � t, any node x of s having depth at least two has to satisfy parent(x) �t

parent′(x) and since parent(x) �= root for such nodes, x has to have depth
at least two in t as well. Now there are two cases: either root = parent(x) =
parent′(x) for each x ∈ X, or parent(x) ≺t parent

′(x) for some x ∈ X.
If parent′(x) = root for each x ∈ X, then X = Y and we only have to

show that s|x � t|x for each x ∈ X. For this, let u, v ∈ V (s|x) with u �s|x v.
Since s|x is a subtree of s, this holds if and only if x �s u �s v. From s � t this
implies x �t u �t v, that is, u �t|x v, hence s|x � t|x.

Now assume parent(x) ≺t parent
′(x) for some x ∈ X. Then parent′(x) �=

root, thus there exists some y ∈ Y with y �t parent
′(x). By Y ⊆ X, this y is a

member of X as well, and ranks(y) = rankt(y) > rankt(x) = ranks(x), thus

Union-Find Tree Recognition is NP-Complete 157

s′ = push(s, x, y) is well-defined. Moreover, s′ � t since parents′(z) �t z for
each z ∈ V : either z �= x in which case parents′(z) = parent(z) �t z by s � t,
or z = x and then parents′(z) = y �t parent

′(x) �t x = z also holds. Thus,
there exists a tree s′ = push(s, x, y) for some x ∈ children(s) with s′ � t;
since children(s′) = X − {x}, by repeating this construction we eventually
arrive to a tree tn with |children(tn)| = |Y |, implying children(tn) = Y by
Y ⊆ children(tn).

(ii)⇒(iii). We apply induction on rank(s) = rank(t). When rank(s) = 0,
then s is a singleton tree and the condition in ii) ensures that t is a singleton
tree as well. Thus, s = t and clearly s 	∗ t.

Now let assume the claim holds for each pair of trees of rank less than
rank(s) and let t0, . . . , tn be trees satisfying the condition. Then, by con-
struction, s 	∗ tn. Since rank(tn|x) < rank(tn) = rank(s) for each node
x ∈ children(tn), by tn|x � t|x we get applying the induction hypothesis that
tn|x 	∗ t|x for each depth-one node x of tn, thus tn 	∗ t, hence s 	∗ t as well.

(iii) ⇒ (i). For 	∗ implying � it suffices to show that 	 implies � since
the latter is reflexive and transitive. So let s = (V, r,rank,parent) and
x �= y ∈ V be siblings in s with the common parent z, rank(x) < rank(y)
and let t = push(s, x, y). Then, since parents(x) = z = parentt(y) =
parentt(parentt(x)), we get parents(x) �t x, and by parents(w) =
parentt(w) for each node w �= x, we have s � t.

�
The relations � and 	∗ are introduced due to their intimate relation to Union-

Find and Union trees (similarly to the case of the union-by-size strategy [13],
but there the push operation itself was slightly different):

Theorem 2. A tree t is a Union-Find tree if and only if t 	∗ s for some Union
tree s.

Proof. Let t be a Union-Find tree. We show the claim by structural induction.
For singleton trees the claim holds since any singleton tree is a Union tree as
well. Suppose t = merge(t1, t2). Then by the induction hypothesis, t1 	∗ s1 and
t2 	∗ s2 for the Union trees s1 and s2. Then, for the tree s = merge(s1, s2)
we get that t 	∗ s. Finally, assume t = collapse(t′, x) for some node x. Let
x = x1 � x2 � . . . � xk = roott′ be the ancestral sequence of x in t′. Then,
defining t0 = t, ti = push(ti−1, xi, xi+1) we get that t 	∗ tk−2 = t′ and t′ 	∗ s
for some Union tree s applying the induction hypothesis, thus t 	∗ s also holds.

Now assume t 	∗ s (equivalently, t � s) for some Union tree s. We show the
claim by induction on the height of t. For singleton trees the claim holds since
any singleton tree is a Union-Find tree.

Now assume t = (V,root,rank,parent) is a tree and t 	∗ s for some Union
tree s. Then by Proposition 1, there is a set X = children(s) ⊆ children(t)
of depth-one nodes of t and a function f : Y → X with Y = {y1, . . . , y�} =
children(t)−X such that for the sequence t0 = t, ti = push(ti−1, yi, f(yi)) we
have that t�|x � s|x for each x ∈ X. As each s|x is a Union tree (since so is s),
we have by the induction hypothesis that each t�|x is a Union-Find tree. Now let

158 K. Gelle and S. Iván

X = {x1, . . . , xk} be ordered nondecreasingly by rank; then, as s is a Union tree
and X = children(s), we get that {rank(xi)} = {0, 1, . . . ,rank(root) − 1}
by Theorem 1. Hence for the sequence t′i defined as t′0 being a singleton tree
with root root and for each i ∈ {1, . . . , k}, t′i = merge(t′i−1, t�|xi

), we get that
t� = t′k is a Union-Find tree. Finally, we get t from t� by applying successively
one collapse operaton on each node in Y , thus t is a Union-Find tree as well.

�

4 Complexity

In order to show NP-completeness of the recognition problem, we first make a
useful observation.

Proposition 2. In any Union-Find tree t there are at least as many rank-0
nodes as nodes of positive rank.

Proof. We apply induction on the structure of t. The claim holds for singleton
trees (having one single node of rank 0). Let t = merge(t1, t2) and suppose the
claim holds for t1 and t2. There are two cases.

– Assume rank(t1) = 0. Then, since rank(t1) ≥ rank(t2) we have that
rank(t2) is 0 as well, i.e. both t1 and t2 are singleton trees (of rank 0).
In this case t has one node of rank 1 and one node of rank 0.

– If rank(t1) > 0, then (since roott1 is the only node in Vt = Vt1 ∪ Vt2 whose
rank can change at all, in which case it increases) neither the total number of
rank-0 nodes nor the total number of nodes with positive rank changes, thus
the claim holds.

Let t = collapse(s, x) and assume the claim holds for s. Then, since the
collapse operation does not change the rank of any of the nodes, the claim
holds for t as well. �

In order to define a reduction from the strongly NP-complete problem
Partition we introduce several notions on trees:

An apple of weight a for an integer a > 0 is a tree consisting of a root node
of rank 2, a depth-one node of rank 0 and a depth-one nodes of rank 1.

A basket of size H for an integer H > 0 is a tree consisting of H+4 nodes: the
root node having rank 3, H + 1 depth-one children of rank 0 and one depth-one
child of rank 1, which in turn has a child of rank 0.

A flat tree is a tree t of the following form: the root of t has rank 4. The
immediate subtrees of t are:

– a node of rank 0, having no children;
– a node of rank 1, having a single child of rank 0;
– a node of rank 2, having two children: a single node of rank 0 and a node of

rank 1, having a single child of rank 0;
– an arbitrary number of apples,

Union-Find Tree Recognition is NP-Complete 159

4

3

000001

0

0

2

111110

2

1110

2

01

0

1

0

0

This is an apple

of weight 5

This is a basket

of size 5

This is an apple

of weight 3

This part is constant

in a flat tree

Fig. 2. A flat tree.

– and an arbitrary number of baskets for some fixed size H.

(See Fig. 2.)
At this point we recall that the following problem Partition is NP-complete

in the strong sense [11]: given a list a1, . . . , am of positive integers and a value
k > 0 such that the value B =

∑m
i=1 ai

k is an integer, does there exist a partition
B = {B1, . . . , Bk} of the set {1, . . . , m} satisfying

∑
i∈Bj

ai = B for each 1 ≤
j ≤ k?

(Here “in the strong sense” means that the problem remains NP-complete
even if the numbers are encoded in unary.)

Proposition 3. Assume t is a flat tree having k basket children, each having
the size H, and m apple children of weights a1, . . . , am respectively, satisfying
H · k =

∑
1≤i≤m ai.

Then t is a Union-Find tree if and only if the instance (a1, . . . , am, k) is a
positive instance of the Partition problem.

Proof. (For an example, the reader is referred to Fig. 3.)

4

3

00000001

0

0

3

00000001

0

0

2

11110

2

11110

2

1110

2

110

2

10

2

01

0

1

0

0

Fig. 3. The initial flat tree t corresponding to the Partition instance (1, 2, 3, 4, 4, k =
2). The size of each basket is (1 + 2 + 3 + 4 + 4)/k = 7.

Suppose I = (a1, . . . , am, k) is a positive instance of the Partition problem.
Let H stand for the target sum

∑
ai

k . Let B = {B1, . . . ,Bk} be a solution of I,
i.e.,

∑
i∈Bj

ai = H for each j = 1, . . . , k. Let x1, . . . , xk ∈ children(t) be the

160 K. Gelle and S. Iván

nodes corresponding to the baskets of t and let y1, . . . , ym ∈ children(t) be the
nodes corresponding to the apples of t.

We define the following sequence t0, t1, . . . , tm of trees: t0 = t and for each
i = 1, . . . , m, let ti = push(ti−1, yi, xj) with 1 ≤ j ≤ k being the unique index
with i ∈ Bj . Then, children(tm) consists of x1, . . . , xk and the three additional
nodes having rank 0, 1 and 2. Note that the subtrees rooted at the latter three
nodes are Union trees. Thus, if each of the trees tm|xj

is a Union-Find tree, then
so is t.

Consider a subtree t′ = tm|xj
. By construction, t′ is a tree whose root has

rank 3 and has

– H + 1 children of rank 0,
– a single child of rank 1, having a child of rank 0,
– and several (say, �) apple children with total weight H.

We give a method to transform t′ into a Union tree. First, we push ai rank-0
nodes to each apple child of weight ai. After this stage t′ has one child of rank
0, one child of rank 1 and � “filled” apple children, having a root of rank 2, thus
the root of the transformed t′ satisfies the Union condition. We only have to
show that each of these “filled” apples is a Union-Find tree.

Such a subtree has a root node of rank 2, ai depth-one nodes of rank 1 and
ai + 1 depth-one nodes of rank 0. Then, one can push into each node of rank 1
a node of rank 0 and arrive to a tree with one depth-one node of rank 0, and ai

depth-one nodes of rank 1, each having a single child of rank 0, which is indeed
a Union tree, showing the claim by Theorem2.

For an illustration of the construction the reader is referred to Fig. 4.
For the other direction, suppose t is a Union-Find tree. By Theorem 2 and

Proposition 1, there is a subset X ⊆ children(t) and a mapping f : Y → X
with Y = {y1, . . . , y�} = children(t) − X such that for the sequence t0 = t,
ti = push(ti−1, yi, f(yi)) we have that each immediate subtree of t� is a Union-
Find tree and moreover, the root of t� satisfies the Union condition.

The root of t has rank 4, t� has to have at least one child having rank 0,
1, 2 and 3 respectively. Since t has exactly one child with rank 0 and rank 1,
these nodes has to be in X. This implies that no node gets pushed into the
apples at this stage (because the apples have rank 2). Thus, since the apples are
not Union-Find trees (as they have strictly less rank-0 nodes than positive-rank
nodes, cf. Proposition 2), all the apples have to be in Y . Apart from the apples,
t has exactly one depth-one node of rank 2 (which happens to be a root of a
Union tree), thus this node has to stay in X as well. Moreover, we cannot push
the baskets as they have the maximal rank 3, hence they cannot be pushed.

Thus, we have to push all the apples, and we can push apples only into
baskets (as exactly the baskets have rank greater than 2). Let x ∈ X be a basket
node, let t′ stand for t�|x and let {y′

1, . . . , y
′
j} ⊆ Y be the set of those apples that

get pushed into x during the operation. Then, the total number of nodes having
rank 0 in t′ is H + 2 + j (j of them coming from the apples and the other ones
coming from the basket) while the total number of nodes having a positive rank
is 2 + j + A where A is the total weight of the apples in {y′

1, . . . , y
′
j}. Applying

Union-Find Tree Recognition is NP-Complete 161

4

3

2

11110

2

110

2

10

00000001

0

0

3

2

11110

2

1110

00000001

0

0

2

01

0

1

0

0

(a) Apples of size 3 and 4 are pushed into the first basket, apples of size 1, 2 and 4 are
pushed into the second basket.

4

3

2

000011110

2

00110

2

010

1

0

0

3

2

000011110

2

0001110

1

0

0

2

01

0

1

0

0

(b) The apples get filled from the baskets’ surplus rank-0 leaves.
4

3

2

1

0

1

0

1

0

1

0

0

2

1

0

1

0

0

2

1

0

0

1

0

0

3

2

1

0

1

0

1

0

1

0

0

2

1

0

1

0

1

0

0

1

0

0

2

01

0

1

0

0

(c) The filling of the apples is pushed a level deeper and we have a Union tree.

Fig. 4. Pushing t of Fig. 3 into a Union tree according to the solution 3+4 = 1+2+4
of the Partition instance.

Proposition 2 we get that A ≤ H for each basket. Since the total weight of all
apples is H · k and each apple gets pushed into exactly one basket, we get that
A = H actually holds for each basket. Thus, I is a positive instance of the
Partition problem. �
Theorem 3. The recognition problem of Union-Find trees is NP-complete.

Proof. By Proposition 3 we get NP-hardness. For membership in NP, we make
use of the characterization given in Theorem 2 and that the possible number of
pushes is bounded above by n2: upon pushing x below y, the depth of x and
its descendants increases, while the depth of the other nodes remains the same.
Since the depth of any node is at most n, the sum of the depths of all the nodes is
at most n2 in any tree. Hence, it suffices to guess nondeterministically a sequence
t = t0 	 t1 	 . . . 	 tk for some k ≤ n2 with tk being a Union tree (which also
can be checked in polynomial time). �

5 Conclusion, Future Directions

We have shown that unless P = NP, there is no efficient algorithm to
check whether a given tree is a valid Union-Find tree, assuming union-by-rank

162 K. Gelle and S. Iván

strategy, since the problem is NP-complete, complementing our earlier results
assuming union-by-size strategy. A very natural question is the following: does
there exist a merging strategy under which the time complexity remains amor-
tized almost-constant, and at the same time allows an efficient recognition algo-
rithm? Although this data structure is called “primitive” in the sense that it
does not really need an automatic run-time certifying system, but we find the
question to be also interesting from the mathematical point of view as well. It
would be also an interesting question whether the recognition problem of Union-
Find trees built up according to the union-by-rank strategy is still NP-complete
if the nodes of the tree are not tagged with the rank, that is, given a tree without
rank info, does there exist a Union-Find tree with the same underlying tree?

References

1. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M.: Inferring strings from graphs
and arrays. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp.
208–217. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45138-9 15

2. Cai, L.: The recognition of Union trees. Inf. Process. Lett. 45(6), 279–283 (1993)
3. Clément, J., Crochemore, M., Rindone, G.: Reverse engineering prefix tables. In:

Albers, S., Marion, J.-Y. (eds.) 26th International Symposium on Theoretical
Aspects of Computer Science. STACS 2009, vol. 3 of LIPIcs, pp. 289–300. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009)

4. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, New York (2001)

5. Crochemore, M., Iliopoulos, C.S., Pissis, S.P., Tischler, G.: Cover array string
reconstruction. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp.
251–259. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13509-5 23

6. Duval, J.-P., Lecroq, T., Lefebvre, A.: Efficient validation and construction of bor-
der arrays and validation of string matching automata. RAIRO - Theor. Inf. Appl.
43(2), 281–297 (2009)

7. Duval, J.-P., Lefebvre, A.: Words over an ordered alphabet and suffix permutations.
Theor. Inf. Appl. 36(3), 249–259 (2002)

8. Duval, J.-P., Lecroq, T., Lefebvre, A.: Border array on bounded alphabet. J.
Autom. Lang. Comb. 10(1), 51–60 (2005)

9. Fredman, M., Saks, M.: The cell probe complexity of dynamic data structures. In:
Proceedings of the Twenty-first Annual ACM Symposium on Theory of Comput-
ing, STOC 1989, pp. 345–354. ACM, New York (1989)

10. Galler, B.A., Fisher, M.J.: An improved equivalence algorithm. Commun. ACM
7(5), 301–303 (1964)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

12. Gawrychowski, P., Jez, A., Jez, �L.: Validating the Knuth-Morris-Pratt failure func-
tion, fast and online. Theory Comput. Syst. 54(2), 337–372 (2014)

13. Gelle, K., Iván, S.: Recognizing Union-Find trees is NP-complete. CoRR,
abs/1510.07462 (2015)

14. I, T., Inenaga, S., Bannai, H., Takeda, M.: Counting parameterized border arrays
for a binary alphabet. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA
2009. LNCS, vol. 5457, pp. 422–433. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00982-2 36

http://dx.doi.org/10.1007/978-3-540-45138-9_15
http://dx.doi.org/10.1007/978-3-642-13509-5_23
http://dx.doi.org/10.1007/978-3-642-00982-2_36
http://dx.doi.org/10.1007/978-3-642-00982-2_36

Union-Find Tree Recognition is NP-Complete 163

15. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Verifying and enumerating
parameterized border arrays. Theoret. Comput. Sci. 412(50), 6959–6981 (2011)

16. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Inferring strings from suffix
trees and links on a binary alphabet. Discr. Appl. Math. 163(Part 3), 316–325
(2014)

17. Knight, K.: Unification: a multidisciplinary survey. ACM Comput. Surv. 21(1),
93–124 (1989)

18. Kucherov, G., Tóthmérész, L., Vialette, S.: On the combinatorics of suffix arrays.
Inf. Process. Lett. 113(22–24), 915–920 (2013)

19. Weilin, L., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Verifying a border array
in linear time. J. Comb. Math. Comb. Comput. 42, 223–236 (2000)

20. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.
Comput. Sci. Rev. 5(2), 119–161 (2011)

21. Starikovskaya, T., Vildhøj, H.W.: A suffix tree or not a suffix tree? J. Discr. Algo-
rithms 32, 14–23 (2015)

22. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM
22(2), 215–225 (1975)

Self-attraction Removal from Oritatami Systems

Yo-Sub Han1, Hwee Kim1, Trent A. Rogers2, and Shinnosuke Seki3(B)

1 Department of Computer Science, Yonsei University,
50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea

{emmous,kimhwee}@yonsei.ac.kr
2 Department of Computer Sceince and Computer Engineering,

University of Arkansas, Fayetteville, AR 72701, USA
tar003@uark.edu

3 Department of Computer and Network Engineering,
University of Electro-Communications,

1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan
s.seki@uec.ac.jp

Abstract. RNA cotranscriptional folding refers to the phenomenon in
which an RNA transcript folds upon itself while being synthesized (tran-
scribed). Oritatami is a computational model of this phenomenon, which
lets its transcript, a sequence of beads (abstract molecules) fold cotran-
scriptionally via interactions between beads according to its ruleset. In
this paper, we study the problem of removing self-attractions, which lets
a bead interact with another bead of the same kind, from a given ori-
tatami system without changing its behavior. We provide an algorithm
for that with overhead linear in the delay parameter, which should be
considerably smaller than the length of its transcript. We also show that
this overhead is tight.

1 Introduction

Self-assembly is the process by which relatively simple components coalesce to
form intricate and complex structures. Studying self-assembling systems can pro-
vide us with insights into everything from designing nanophotonic devices [11] to
the origins of life [14]. A number of theoretical models of self-assembly have been
proposed [2,12,15] and some models of self-assembly have been implemented in
the laboratory to algorithmically build structures out of DNA [3,6,13]. One

Y.-S. Han—Supported by International Cooperation Program (2017K2A9A2A08
000270) and Basic Science Research Program (2015R1D1A1A01060097) by NRF
of Korea.
Kim was supported by NRF (National Research Foundation of Korea) Grant funded
by the Korean Government (NRF-2013-Global Ph.D. Fellowship Program).
T.A. Rogers—This author’s research was supported by the National Science Foun-
dation Graduate Research Fellowship Program under Grant No. DGE-1450079, and
National Science Foundation grants CAREER-1553166 and CCF-1422152.
S. Seki—In part supported by JST Program to Disseminate Tenure Tracking System
No. 6F36 and JSPS KAKENHI Grant-in-Aid for Young Scientists (A) No. 16H05854.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 164–176, 2017.
DOI: 10.1007/978-3-319-60252-3 13

Self-attraction Removal from Oritatami Systems 165

Fig. 1. RNA origami [9]: the cotranscriptional folding of an RNA tile in a laboratory.
The gray spiral is a DNA sequence (template), the orange molecule attaching is the
RNA polymerase, and the blue output of the polymerase is the RNA transcript. (Color
figure online)

proposed model of self-assembly is called Oritatami (folding in Japanese) [8],
which seeks to capture the fundamental dynamics of cotranscriptional folding.
Transcription is the first step in gene expression in which an RNA polymerase
attaches to a DNA sequence and sequentially produces RNA nucleotides (A, C,
G, U) (see Fig. 1). Cotranscriptional folding refers to the folding of RNA during
transcription. That is, as the RNA is transcribed, its nucleotides interact with
each other via hydrogen bonds, resulting in the folding of the RNA.

Geary, Rothemund, and Andersen harnessed the power of cotranscriptional
folding in order to self-assemble nanoscale tiles out of RNA (RNA origami [9]).
Oritatami is a theoretical model to study the computational aspect of cotran-
scriptional folding. It models a single strand of RNA as a “strand” of abstract
molecules, or beads. Each bead is of a certain type taken out of a finite alphabet
Σ. The bead types along with a set of attraction rules specify which beads are
attracted to one another. In addition, each oritatami system has a parameter
called the delay δ. It models the speed at which cotranscriptional folding occurs.
The folding of an oritatami system proceeds by “looking ahead” at the next δ
beads on the strand and folds them so as to create the largest number of bonds.
We can see in [1] an oritatami system of delay 3 fold a motif called glider.

The class of oritatami systems implementable in the laboratory by the cotran-
scriptional folding of RNA is limited by the properties of RNA. More specifically,
the attraction rules of oritatami systems are limited by the types of allowable inter-
actions between RNA nucleotides. Therefore, laboratory implementation may
require to alter the system so that it fits certain criteria required for experimen-
tal implementation. For example, a physical implementation of oritatami systems
might rely on the Watson-Crick complementarity (G-C and A-U). If we wanted to
implement an oritatami system in this setting which had a rule specifying a bead
type is attracted to itself, the self-attraction would need to be removed.

In addition to providing tools to make oritatami systems physically realiz-
able, our results are the first set of results to show an oritatami system being
“simulated” by another oritatami system with a different set of properties. Sim-
ulation has played an important role in determining the relative power of classes
of systems in tile assembly and determining how classes of tile systems relate to
each other [4,7]. In addition, the notion of simulation in tile assembly has given
rise to a rich study of intrinsic universality [5,10,16] which has provided us with
a deeper understanding of tile assembly. The results in this paper are a first step
towards using “simulation” to develop a better understanding of the model.

166 Y.-S. Han et al.

In this paper, we examine the removal of rules specifying that a bead type is
attracted to itself, which we call self-attraction rules, from Oritatami systems.
Given a system Ξ, the goal of self-attraction removal is to create another system
Ξ ′ such that Ξ ′ behaves in the same way as Ξ, Ξ ′ produces the same set of
conformations as Ξ, and Ξ ′ does not contain any self-attraction rules.

2 Preliminaries

Let Σ be a finite set of bead types. A bead of type a is called an a-bead. By Σ∗

(resp. Σω), we denote the set of finite (one-way infinite) sequences of bead types
in Σ. A sequence w ∈ Σ∗ can be represented as w = b1b2 · · · bn for some n ≥ 0
and bead types b1, b2, . . . , bn ∈ Σ, where n is the length of w and denoted by
|w|. The sequence of length 0 is denoted by λ. For 1 ≤ i, j ≤ n, the subsequence
of w ranging from the i-th bead to j-th bead is denoted by w[i . . . j], that is,
w[i . . . j] = bibi+1 · · · bj ; w[i . . . j] = λ if i > j. This notation is simplified as w[i]
when j = i, referring to the i-th bead of w. For k ≥ 1, w[1 . . . k] is called a prefix.

y

xO

Fig. 2. Triangular lattice.

Oritatami systems fold their transcript, a sequence
of beads, over the triangular lattice (Fig. 2) cotran-
scriptionally by letting nascent beads form as many
hydrogen-bond-based interactions (h-interactions) as
possible according to their own interaction rules. Let
T = (V,E) be the triangular grid graph. A directed
path P = p1p2 · · · in T is a possibly-infinite sequence
of pairwise-distinct points p1, p2, . . . ∈ V such that
{pi, pi+1} ∈ E for all i ≥ 1. Its i-th point pi is referred
to as P [i]. Provided it is finite, by |P |, we denote the
number of points in it.

A conformation instance, or configuration, is a triple (P,w,H) of a directed
path P in T, w ∈ Σ∗ ∪ Σω, and a set H ⊆ {

(i, j)
∣
∣ 1 ≤ i, i + 2 ≤ j, {P [i], P [j]}

∈ E} of h-interactions. This is to be interpreted as the sequence w being folded
in such a manner that its i-th bead w[i] is placed on the i-th point P [i] along
the path and the i-th bead interacts with the j-th bead if and only if (i, j) ∈ H.
Configurations (P1, w1,H1) and (P2, w2,H2) are congruent provided w1 = w2,
H1 = H2, and P1 can be transformed into P2 by a combination of a translation,
a reflection, and rotations by 60o. Given a configuration (P,w,H), the set of all
configurations congruent to it, denoted by [(P,w,H)], is called its conformation.
We refer to w as its primary structure. A ruleset H ⊆ Σ × Σ is a symmetric
relation over the set of pairs of bead types, that is, for all bead types a, b ∈ Σ,
(a, b) ∈ H implies (b, a) ∈ H. An h-interaction (i, j) ∈ H is called valid with
respect to H, or simply H-valid, if (w[i], w[j]) ∈ H. This conformation is H-valid
if all of its h-interactions are H-valid. For α ≥ 1, this conformation is of arity α
if the maximum number of h-interactions per bead is α, that is, if for any k ≥ 1,∣
∣{i | (i, k) ∈ H}∣∣ +

∣
∣{j | (k, j) ∈ H}∣∣ ≤ α and the equation holds for some k. By

C≤α, we denote the set of all conformations of arity at most α.

Self-attraction Removal from Oritatami Systems 167

a

b b′

a′ a

b b′

a′ a

b b′

a′ a

b b′

a′
ab a

b
a

b

=⇒
a

b

b′ b′
b′

=⇒
a

b

b′

=⇒
a

b

Fig. 3. Folding of a glider motif by a delay-3 deterministic oritatami system. (Color
figure online)

Oritatami systems grow conformations by elongating them under their own
ruleset. For a finite conformation C1, another finite conformation C2 is an elon-
gation of C1 by a bead b ∈ Σ under a ruleset H, written as C1

H→b C2,
if there exists a configuration (P,w,H) of C1 such that (Pp,wb,H ∪ H ′) is
a configuration of C2, where p ∈ V is a point not along the path P and
H ′ ⊆ {

(i, |P | + 1)
∣
∣ 1 ≤ i ≤ |P | − 1, {P [i], p} ∈ E, (w[i], b) ∈ H}

. This operation
is recursively extended to the elongation by a finite sequence of beads as: for any
conformation C, C

H→
∗
λ C; and for a finite sequence of beads w ∈ Σ∗ and a bead

b ∈ Σ, a conformation C1 is elongated to a conformation C2 by wb, written as
C1

H→
∗
wb C2, if there is a conformation C ′ that satisfies C1

H→
∗
w C ′ and C ′ H→b C2.

An oritatami system over an alphabet Σ is a 6-tuple Ξ = (Σ,w,H, δ, α, σ),
where H is a ruleset, δ ≥ 1 is a parameter called delay, and σ is an H-valid initial
seed conformation of arity at most α, upon which its transcript w ∈ Σ∗ ∪ Σω

is to be folded by stabilizing beads of w one at a time so as to minimize energy
collaboratively with the succeeding δ − 1 nascent beads. The energy U(C) of a
conformation C = [(P,w,H)] is defined to be −|H|; the more h-interactions a
conformation has, the more stable it becomes. The set F(Ξ) of conformations
foldable by this system is recursively defined as follows: the seed σ is in F(Ξ);
and provided that an elongation Ci of σ by the prefix w[1 . . . i] is foldable (i.e.,
C0 = σ), its further elongation Ci+1 by the next bead w[i + 1] is foldable if

Ci+1 ∈ argmin
C∈C≤αs.t.

Ci
H→w[i+1]C

min
{

U(C ′)
∣
∣
∣ C

H→
∗
w[i+2...i+k] C ′, k ≤ δ, C ′ ∈ C≤α

}
. (1)

The bead w[i + 1] and h-interactions it forms are said to have been stabilized
according to Ci+1. A conformation foldable by Ξ is terminal if none of its elon-
gations is foldable by Ξ. The oritatami system Ξ is deterministic if for all i ≥ 0,
there exists at most one Ci+1 that satisfies (1). Thus, a deterministic oritatami
system folds into a unique terminal conformation.

Example 1 [1]. See Fig. 3 for a delay-3 oritatami system Ξ to fold a motif called
glider. Its transcript is a repetition of a • bb′ •a and its ruleset is {(a, a′), (b, b′)}.
Its seed is colored in red. The first 3 beads, a•b, are transcribed and elongate the
seed by the seed in all possible ways. The a-bead cannot form any h-interaction

168 Y.-S. Han et al.

or the second bead is inert w.r.t. the ruleset. The third bead, b, can interact
with the b′-bead in the seed but for that, the a-bead must be located to the east
of the previous a′-bead; it is thus stabilized there. Then the next bead, b′, is
transcribed. After the three steps, the third bead, b, is stabilized. It is not until
then that its h-interaction with the b′-bead is also stabilized.

2.1 Self-attraction-free Oritatami System

A bead type a ∈ Σ is self-attractive according to a ruleset H if (a, a) ∈ H. An
oritatami system is free from self-attraction, or self-attraction-free, if no bead
type in its alphabet is self-attractive according to its ruleset.

We formulate the problem of removing self-attraction from a given oritatami
system without changing the behavior in Problem 1. An isomorphism between
conformations must be introduced. Conformations C1 and C2 are isomorphic if
there exist an instance (P1, w1,H1) of C1 and an instance (P2, w2,H2) of C2

such that P1 = P2 and H1 = H2.

Problem 1 (Self-attraction removal). Let Ξ be an oritatami system. Design a
self-attraction-free oritatami system Ξ ′ such that a conformation is foldable by
Ξ if and only if the isomorphic conformation is foldable by Ξ ′.

Replacing the beads in the seed and transcript with pairwise distinct bead
types provides a trivial solution, but is not desirable.

The following approach to Problem1 called bead type modification is promis-
ing: When a bead type a is found self-attractive, it is modified as a1, a2, . . . , at.
The ruleset is then modified so as not to allow for any self-attraction but to
let a bead interact with any of its modifications; for example, if we make three
copies a1, a2, a3 of a bead a, none of (a1, a1), (a2, a2), (a3, a3) is in the ruleset
but all of (a1, a2), (a2, a3), and (a3, a1) are in it. Moreover, these modifications
are to look to non-a beads as if they were identical, or the ruleset should be
modified so. More precisely, for any b
= a, the modified ruleset should include
the rules (a1, b), (a2, b), (a3, b) if and only if (a, b) is in the original ruleset.

We propose a subproblem of Problem1 based on this approach and establish
the measure for the efficiency of the modification. It employs a subscript-erasing
homomorphism h : Σ′ → Σ defined as h(xi) = x for x ∈ Σ and i ≥ 1.

Problem 2 (Self-attraction removal by bead type modification). Solve
Problem 1 on an oritatami system Ξ = (Σ,w,H, δ, α, σ) so that the resulting
self-attraction-free system Ξ ′ = (Σ′, w′,H′, δ, α, σ′) also satisfies the following
properties:

1. Σ′ = {xi | x ∈ Σ, 1 ≤ i ≤ c(x)} for a positive integer c(x) for x.
2. H′ = {(xi, yj) | (x, y) ∈ H, x
= y} ∪ {(xi, xj) | (x, x) ∈ H, i
= j}.
3. h maps the primary structure of σ′ to that of σ and h(w′) = w.

We use the copying ratio c = max c(x) to measure the efficiency of Ξ ′.

Self-attraction Removal from Oritatami Systems 169

3 Bead Type Modification Based on the Event Horizon

The bead stabilization is a local optimization. By definition, the stabilization of
a bead in a delay-δ system is not affected by any bead outside the circle of radius
δ + 1 centered at the bead stabilized previously. The circle is so called the event
horizon. Beads on its circumference can affect the process not geometrically but
energetically by interacting with the bead transcribed most recently. The event
horizon can encompass at most 3(δ + 1)(δ + 2) beads.

The event horizon varies from step to step; in the i-th step is centered at
the i − 1-th bead ai−1, which was stabilized previously. The nascent fragment
aiai+1 · · · ai+δ−1 folds so as to stabilize ai most stably inside the horizon. During
this search, the bead ai+δ−1, which was just transcribed and hence is at the tip
of the fragment, can observe every point in and on the horizon, if any, unless
being hindered by other beads geometrically. The region observable by the bead
ai+δ−1 is never widening but just narrowing as steps go by.

We use bead type modification along the transcript to remove self-attraction.
Prior to the transcription of a bead of self-attractive type a ∈ Σ, an event horizon
is queried for another a-bead, and if there is, then modified the bead to be
transcribed into a1
∈ Σ. Later, if another a-bead is about to be transcribed inside
a horizon provided with both an a-bead and an a1-bead, then modify its type as
a2
∈ Σ; without any a1-bead around, the new type a2 need not be introduced
but an a1-bead can be transcribed next. No more than 3(δ + 1)(δ + 2) + 1
modifications are needed per bead type due to the size of an event horizon.

Algorithm 1 is an implementation of the idea for deterministic oritatami sys-
tems that are finite in the sense that their transcript is finite. Transient systems
need be simulated in line 16 so that auxiliary rules which let a subscripted bead
bind to an unsubscripted one are introduced in line 10 but eliminated in the end.

Lemma 1. Let C = [(P, u,H)] be a conformation that is not H-valid. For any
v ∈ h−1(u), the isomorphic conformation C ′ = [(P, v,H)] is not H′-valid.

Proof. Being H-invalid means that an a-bead interacts with b-bead in C though
(a, b)
∈ H. Since v ∈ h−1(u), the corresponding interaction in C ′ is between an
ai-bead and bj-bead for some i, j. By definition, (ai, bj)
∈ H′. �

Corollary 1. If an elongation of the seed σ by w[1 . . . i] is not H-valid, then its
isomorphic conformation obtained by elongating σ′ by w′[1 . . . i] is not H′-valid.

The inverse of the statement in Lemma 1 is not always true. Imagine in the
conformation C, an a-bead is bound with another a-bead. Providing these beads
with the same subscript results in an H′-invalid conformation. Preventing them
from being subscripted identically actually yields a valid conformation.

Lemma 2. Let C = [(P, u,H)] be an H-valid conformation. For any v ∈
h−1(u), the conformation C ′ = [(P, v,H)] is H′-valid if for all (i, j) ∈ H,
h(v[i]) = h(v[j]) implies v[i]
= v[j].

170 Y.-S. Han et al.

Algorithm 1. Removing self-attractions from a deterministic finite oritatami
system
Require: A given oritatami system Ξ = (Σ, w, H, δ, α, σ) is deterministic.
1: c ← 3(δ + 1)(δ + 2) + 1
2: w′ ← w
3: Σ′ ← {ai | a ∈ Σ, 1 ≤ i ≤ c}
4: for all (a, a) ∈ H do
5: Htemp ← H ∪ {(ai, aj), (aj , ai)

∣∣ 1 ≤ i < j ≤ c
}

6: end for
7: for all (a, b) ∈ H such that a �= b do
8: Htemp ← Htemp ∪ {(ai, bj), (bj , ai)

∣∣ 1 ≤ i, j ≤ c
}

9: end for
10: for all (a, c) ∈ H do
11: Htemp ← Htemp ∪ {(a, ci), (ci, a)

∣∣ 1 ≤ i ≤ c
}

12: end for
13: σ′ ← 3-color(σ)
14: Ξ ′ ← (Σ′, w′, Htemp, δ, α, σ′)
15: for i = 1 to |w| do
16: Simulate Ξ ′ to compute the event horizon of the max(1, i−δ+1)-th step, at which

the i-th bead is transcribed
17: a ← w′[i]

18: m ← min

{
k ≥ 1

∣
∣∣
∣

no ak-bead is in the horizon and
for all max(1, i−δ+1) ≤ j < i, w′[i] �= ak

}

19: w′[i] ← am

20: end for
21: H′ ← Htemp \ (H ∪ {(a, ci), (ci, a)

∣
∣ 1 ≤ i ≤ c

})

22: return The self-attraction-free oritatami system (Σ′, w′, H′, δ, α, σ′)

Now we show that the resulting system Ξ ′ behaves as the given system Ξ
does. For 0 ≤ i ≤ |w|, let Ci = [(Pi, wσw[1 . . . i],Hi)] be the unique conformation
foldable by Ξ among all the elongations of the seed σ by the transcript’s prefix
w[1 . . . i], where wσ is the primary structure of σ. That is, C0 = σ. The seed
σ′ of Ξ ′ is obtained from σ via the function 3-color, which gives subscripts 0,
1, or 2 to beads of a given conformation so as for adjacent beads not to share
a common subscript based on the 3-colorability of the triangular grid graph. It
is hence H′-valid due to Lemma 2 so that it is foldable by Ξ ′. As an inductive
hypothesis, assume that C ′

i be the unique conformation foldable by Ξ ′ among
all the elongations of the seed σ′ by the subscripted transcript’s prefix w′[1 . . . i]
and C ′

i be isomorphic to Ci. Corollary 1 justifies that the stabilization of the
(i + 1)-th bead in Ξ ′ counts out any elongation of C ′

i by w′[i + 1 . . . i + δ] or by
its prefix that is isomorphic to an H-invalid elongation of Ci. On the contrary,
an elongation of C ′

i by w′[i + 1 . . . i + δ] or by its prefix isomorphic to an H-
valid elongation of Ci is H′-valid due to Lemma 2 because line 18 of Algorithm 1
prevents any nascent bead in w′[i + 1 . . . i + δ] from being transcribed in the
sight of another bead of identical type. Therefore, only the elongation of σ′ by
w′[1 . . . i + 1] that is isomorphic to Ci+1 is foldable by Ξ ′. This concludes the
inductive proof.

Self-attraction Removal from Oritatami Systems 171

4 On Deterministic Finite Oritatami Systems

The quadratic copying ratio in Algorithm1 can be reduced to linear. Algorithm1
is overly cautious; it forbids an ai-bead to be transcribed inside a horizon with an
ai-bead because an ai-bead is not self-attractive while its original was. It suffices
to guarantee that in at least one of the most stable elongations of each foldable
conformation, not both of a beads interacting with each other are modified as
ai. The other elongations may get less stable but it does not affect the behavior
of the resulting system because a given system is deterministic so that the next
bead is to be stabilized uniquely point-wise and interaction-wise no matter which
of the most stable elongations is referred to.

The modified algorithm is implemented as Algorithm2. A given oritatami
system Ξ = (Σ,w,H, δ, α, σ) is deterministic so that, for each 0 ≤ i ≤ |w|,
there exists at most one foldable elongation of the seed by the transcript’s prefix
w[1 . . . i]; let us denote it by Ci. After setting c rather linearly, Algorithm2
runs as Algorithm 1 up to line 14. It then chooses arbitrarily for each k one
representative elongation Ek of Ck−1, according to which the next bead w[k] is
stabilized in the given system. The i-th bead is transcribed at the max(1, i−δ+1)-
th step and it is involved in the stabilization of the previous at most δ − 1 beads
until it is stabilized at the i-th step. By the i-th execution of the outer for-loop
in line 4, the first i − 1 beads of w have been already subscripted somehow; the
remaining beads have not been given subscripts yet. The inner for-loop examines
how the i-th bead is bound to preceding (already-subscripted) beads in the j-th
representative for all max(1, i− δ +1) ≤ j ≤ i and chooses a proper subscript m
out of the set I. All of the representatives Emax(1,i−δ+1), . . . , Ej may have to be
considered because the i-th bead may not be bound to the same bead in all of

Algorithm 2. Linear-cost self-attraction removal from a deterministic finite
oritatami system
Require: A given oritatami system Ξ = (Σ, w, H, δ, α, σ) is deterministic.
1: c ← 4δ + 2
2: Run Algorithm 1 from line 2 up to line 14
3: Simulate Ξ and arbitrarily choose one representative Ek = (Pk, wk, Hk) among the

most stable elongations of Ck−1 by w[k . . . k+δ−1] for all 1 ≤ k ≤ |w|.
4: for i = 1 to |w| do
5: a ← w′[i]
6: udone ← wσw′[1 . . . i − 1]
7: for j = max(1, i − δ + 1) to i do
8: I ← {1, 2, . . . , c} \ {� | udone[k] = a� for some (k, |wσ| + i) ∈ Hj}
9: end for

10: w′[i] ← amin I

11: end for
12: H′ ← Htemp \ (H ∪ {(a, ci), (ci, a)

∣∣ 1 ≤ i ≤ c
})

13: return The self-attraction-free oritatami system (Σ′, w′, H′, δ, α, σ′)

172 Y.-S. Han et al.

them. Note that the i-th bead can interact with 5 beads in the first representative
but with at most 4 beads in the others. Therefore, 4δ + 2 subscripts suffice.

Lemma 3. The following statements hold:

– For 1 ≤ i ≤ |w| + 1, the elongation C ′
i−1 of σ′ by w′[1 . . . i − 1] that is

isomorphic to Ci−1 is foldable by Ξ ′;
– For 1 ≤ i ≤ |w|, the elongation E′

i of C ′
i−1 by w′[i . . . i + δ − 1] that is

isomorphic to the i-th representative chosen in line 3 is H′-valid.

Theorem 1. Given a deterministic finite oritatami system Ξ of delay δ, we can
solve Problem 2 for Ξ with the copying ratio c = 4δ + 2.

5 Lower Bounds on Copying Ratio

Having established a linear upper bound on the copying ratio at least for deter-
ministic oritatami systems, now we examine the lower bound. First, we propose a
nondeterministic finite oritatami system Ξnd such that removing self-attraction
from it requires a number of new bead types linearly proportional to the length
of its transcript (Theorem 2). Based on it, we will design a deterministic finite
oritatami system Ξnd of delay δ, which requires a copying ratio linear in δ to
free itself from self-attraction by bead type modification (Theorem3). This lower
bound asymptotically matches the upper bound established in Theorem1.

(b)

(c)

b[1] b[i−1] b[i]

(a)

b[1] b[i+j
2 −1] b[i+j

2]

b[i+j
2 +1]

b[1] b[j] b[i+j−1
2]

b[i+j+1
2]

b[i]

b[i]

b[j]

a[2(i+j−3)+3]

Fig. 4. Three examples of a part of Ci
j for δ = 1. (a) Illustration of a part of Ci

i . (b)
The case when i + j is even. (c) The case when i + j is odd.

The transcript of Ξnd is w = (b•2δ+1)t for some t ≥ 1 and the seed of Ξnd

is empty. Its ruleset is a singleton {(b, b)}, making b-beads self-attractive and
•-beads inert. By b[i], we denote the i-th b-bead in w. See Fig. 4 for some of
the conformations Ci

j foldable by this system, where δ is set to 1, in which
b[i] is bound to b[j]. Starting from the first bead, b[1], this system can stretch
its transcript straight rightward arbitrarily far and switch it back anywhere.
The first δ + 2 inert beads after b[1] can be stabilized anyhow because it is
not until they are stabilized that the next interactive bead, b[2], is transcribed.
Stretching them straight rightward is just one possibility. Being stabilized thus,

Self-attraction Removal from Oritatami Systems 173

they keep b[1] out of the event horizon at the transcription of b[2]. Otherwise,
b[1] can lie in the horizon and pull b[2] next to it and bind. Thus, for arbitrary
i ≥ 1 and j > i, this system can fold into a conformation Ci

j in which b[i]
is bound to b[j]. Consequently, in order to remove the self-attraction (b, b) by
bead-type modification, these b-beads must be modified with pairwise-distinct
indices, arising the need for the copying ratio �|w|/(2δ + 2)�.
Theorem 2. For a given delay δ and n ∈ N, there exists a nondeterministic
finite oritatami system Ξnd of delay δ whose transcript is of length n such that
any solution Ξ ′

nd to Problem 2 for Ξnd requires a copying ratio c ≥ �|w|/(2δ+2)�.
The proof of Theorem 2 along with the fact that an oritatami system is only

allowed a finite number of unique bead types yield the following result on the
impossibility of removing self-attraction from infinite oritatami system.

Corollary 2. There exists an infinite oritatami system Ξ such that there is no
solution to Problem 2 for Ξ.

Now we give a lower bound for the copying ratio for deterministic systems.

Theorem 3. For a given delay δ, there exists a deterministic finite oritatami
system Ξd of delay δ such that any solution Ξ ′

d to Problem 2 for Ξd requires the
copying ratio c ≥ �δ/4�.

We use delay δ = 4t. The transcript of Ξd is similar to the transcript of
Ξnd for Theorem 2, having periodic appearance of a self-attractive bead x. Note
that conformations in Ξnd forces the self-attractive bead to have interactions
with all other beads of the same type. We want the same phenomenon to hap-
pen in Ξd. Unlike Ξnd, a deterministic system stabilizes each bead at a unique
point, so it is not possible to force all possible x beads to interact in the final
conformation, since the conformation is planar. Instead, we use the most stable
elongations during transcription. First, we design elongations to geometrically
force all possible x beads to interact. Second, we prove that these elongations
are indeed the most stable elongations to stabilize each bead. Third, we prove
that all (x, x) interactions in these elongations are necessary for the system.

When we use bead type modification to remove a self-attractive rule (x, x),
one (x, x) interaction in the original system may be removed in the resulting
system if we modify interacting beads to the same bead type. If we want to
maintain the interaction in the resulting system, we need to modify the beads
into distinct types, say x1 and x2. On the other hand, interactions that are not
self-attractive cannot be modified by bead type modification. The fact that we
cannot remove unnecessary rules freely makes it challenging to design Ξd.

For every 2i − 2nd bead, we assign an elongation Ci that mimics behaviors
of conformations of Ξnd—proceed straight right, make a single right turn and
proceed straight left. In detail, the transcript has two parts: The first part wh

of length δ with the repeated x every fourth bead, and the second part wt of
length δ − 5 with distinct bead types for each bead. Given that x is repeated
every fourth bead, it is straightforward to see that the set of these elongations is

174 Y.-S. Han et al.

Fig. 5. A list of elongations when t = 4 and δ = 16. The seed is given by three confor-
mations σb, σp, σr, which are represented by brown, purple and red colors respectively.
Two parts wh and wt of the transcript are represented by black and cyan colors respec-
tively. The blue line represents beads already stabilized in the transcript. Thick dotted
lines represent special interactions. (Color figure online)

sufficient to force all possible x beads to interact. We need basic rules between
the primary structure and the seed for the primary structure to proceed straight.
In addition, we design the system so that the nascent beads for 2i− 2nd bead in
Ci has interaction strength Si = 3t+ i− 1. Figure 5 is an illustration of different
elongations C1 to C7 when δ = 16 and t = δ/4 = 4. The bead x[i] denotes the ith
bead x in the transcript, and the bead y[i] denotes the ithe bead. To meet the
required strength of interactions, we use beads at the very last of each elongation
to have special interactions with the seed. Note that a special interaction in one
elongation never appears in any other elongations, since the coordinate of a bead
in wt is distinct for all elongations. The last elongation C2t−1 is also the final
conformation of the system.

First, we claim that each Ci is the most stable elongation while stabilizing
y[2i−2]. If we compare Ci to Cj where j < i, Sj is less than Si and beads after
the primary structure of Cj cannot give additional special interactions. Thus,
any elongation from Cj is less attractive than Ci. If we compare Ci to Cj where

Self-attraction Removal from Oritatami Systems 175

j > i, special interactions at the end of the primary structure of Cj makes Sj

greater than Si, but these end beads are too far to allow interactions to stabilize
y[2i−2]. Thus, the part of Cj until the last bead of Ci is less attractive than Ci,
which makes Ci most stable.

Second, we claim that all (x, x) interactions are necessary for Ξd to fold
into the last elongation C2t−1. Suppose we compare Ci to Ci+1 while stabiliz-
ing y[2i−2]. Note that the coordinate of y[2i−2] differs in Ci and Ci+1. Since
C2t−1 is the final conformation, y[2i−2] should be stabilized following the coor-
dinate in Ci+1. Now, since Si and Si+1 differs just by 1, if we remove some
(x, x) interactions in Ci+1, either y[2i−2] is stabilized following the coordinate
in Ci, or the system becomes nondeterministic. Thus, all (x, x) interactions are
necessary. Since there are t different x beads, the lower bound of the copying
ratio is t = δ/4.

References

1. dailymotion.com/video/x3cdj35 oritatami-folding-turing-0-abc school
2. Aggarwal, G., Goldwasser, M.H., Kao, M.Y., Schweller, R.T.: Complexities for

generalized models of self-assembly. In: Proceedings of SODA 2004, pp. 880–889
(2004)

3. Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-
bearing seed for nucleating algorithmic self-assembly. PNAS 106(15), 6054–6059
(2009)

4. Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat, S., Patitz, M.J.,
Schweller, R.T., Summers, S.M., Winslow, A.: Two hands are better than one
(up to constant factors): self-assembly in the 2HAM vs. aTAM. In: Proceedings of
STACS 2013, vol. 20, pp. 172–184. LIPIcs (2013)

5. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.:
The tile assembly model is intrinsically universal. In: Proceedings of FOCS 2012,
pp. 302–310 (2012)

6. Evans, C.: Crystals that count! Physical principles and experimental investigations
of DNA tile self-assembly. Ph.D. thesis, California Institute of Technology, June
2014

7. Fochtman, T., Hendricks, J., Padilla, J.E., Patitz, M.J., Rogers, T.A.: Signal trans-
mission across tile assemblies: 3D static tiles simulate active self-assembly by 2D
signal-passing tiles. Nat. Comp. 14(2), 251–264 (2015)

8. Geary, C., Meunier, P.E., Schabanel, N., Seki, S.: Programming biomolecules that
fold greedily during transcription. In: Proceedings of MFCS 2016, vol. 58, pp.
43:1–43:14. LIPIcs (2016)

9. Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture
for cotranscriptional folding of RNA nanostructures. Science 345(6198), 799–804
(2014)

10. Hendricks, J., Patitz, M.J., Rogers, T.A.: Universal simulation of directed systems
in the abstract tile assembly model requires undirectedness. In: Proceedings of
FOCS 2016, pp. 800–809 (2016)

11. Miyazono, A.G.E., Faraon, A., Rothemund, P.W.K.: Engineering and mapping
nanocavity emission via precision placement of DNA origami. Nature 535(7612),
401–405 (2016)

http://www.dailymotion.com/video/x3cdj35_oritatami-folding-turing-0-abc_school

176 Y.-S. Han et al.

12. Padilla, J.E., Patitz, M.J., Schweller, R.T., Seeman, N.C., Summers, S.M.,
Zhong, X.: Asynchronous signal passing for tile self-assembly: fuel efficient compu-
tation and efficient assembly of shapes. Int. J. Found. Comput. S. 25(4), 459–488
(2014)

13. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biol. 2(12), 424 (2004)

14. Schulman, R., Yurke, B., Winfree, E.: Robust self-replication of combinatorial
information via crystal growth and scission. PNAS 109(17), 6405–10 (2012)

15. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute
of Technology, June 1998

16. Woods, D.: Intrinsic universality and the computational power of self-assembly. In:
Proceedings of MCU 2013, vol. 128, pp. 16–22 (2013)

One-Time Nondeterministic Computations

Markus Holzer and Martin Kutrib(B)

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{holzer,kutrib}@informatik.uni-giessen.de

Abstract. We introduce the concept of one-time nondeterminism as a
new kind of limited nondeterminism for finite state machines and push-
down automata. Roughly speaking, one-time nondeterminism means
that at the outset the automaton is nondeterministic, but whenever it
performs a guess, this guess is fixed for the rest of the computation. We
characterize the computational power of one-time nondeterministic finite
automata (OTNFAs) and one-time nondeterministic pushdown devices.
Moreover, we study the descriptional complexity of these machines. For
instance, we show that for an n-state OTNFA with a sole nondetermin-
istic state, that is nondeterministic for only one input symbol, (n + 1)n

states are sufficient and necessary in the worst case for an equivalent
deterministic finite automaton. In case of pushdown automata, the con-
version of a nondeterministic to a one-time nondeterministic as well as
the conversion of a one-time nondeterministic to a deterministic one turn
out to be non-recursive, that is, the trade-offs in size cannot be bounded
by any recursive function.

1 Introduction

The concept of nondeterministic machines was introduced in the seminal paper
of Rabin and Scott [13] on finite automata and their decision problems from 1959.
Hopcroft [10] writes in his survey “Automata Theory: Its Past and Future” about
the nondeterministic finite automaton (NFA) model in the above mentioned
paper:

“It was shown that this model was equivalent to the deterministic one. The
fact that two models which were so different gave rise to the same sets,
along with the fact that both were equivalent to the regular expression
notation, indicated that these models were fundamental. This paper was
very influential in shaping automata theory . . . ”

Nondeterminism turned out to be a very fruitful concept in different areas of
computer science like, for example, computability theory, complexity theory,
automata theory, formal language theory, etc., to mention only a few. Two of
the most prominent problems related to nondeterminism are the P versus NP
problem (see, for example, [5]) and the LBA problem (see, for example [6]).
The former problem is listed as one of the ten Millennium Problems from the

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 177–188, 2017.
DOI: 10.1007/978-3-319-60252-3 14

178 M. Holzer and M. Kutrib

Clay Mathematics Institute, Cambridge, Massachusetts, USA, which is the sole
computer science problem in that list.

Although NFAs are as powerful as deterministic one, as already mentioned
above, the former model can offer exponential saving in space compared with
deterministic finite automata (DFAs), that is, given some n-state NFA one can
always construct a language equivalent DFA with at most 2n states [13]. This
so-called powerset construction turned out to be optimal, in general. That is, the
bound on the number of states is tight in the sense that for an arbitrary n there
is always some n-state NFA which cannot be simulated by any DFA with less
than 2n states [11,12]. It is worth mentioning that Moore’s NFA contains a sole
nondeterministic state, while Meyer and Fischer’s nondeterministic automaton
has n−1 nondeterministic states. In both NFAs the nondeterministic branching,
that is, the maximal number of transitions with the same label leaving a state,
is bounded by two, thus by a constant. This can be seen as a first indication
that not all NFAs make equal use of nondeterminism. In fact, nondeterminism
is a resource and its usage can be accurately quantified. There are several pos-
sibilities to do so. For instance, one is to count the number of nondeterministic
moves during the computation, while another one depends on the number of the
successor states and is called branching and guessing. Results on these quantifi-
cations are subsumed under the name limited nondeterminism in the literature,
see, for example, [1] for a survey.

Here we give a new interpretation of nondeterminism. On the one hand, we
are still interested in the power of nondeterminism with respect to computations
and conciseness, but on the other hand, its usage should be heavily restricted.
The restriction we are introducing is that of one-time nondeterminism, which
means that at the outset the automaton is nondeterministic, but whenever it
performs a guess, this guess is fixed for the rest of the computation. This is
a clear change on the semantics of nondeterminism. We will study this new
concept for finite automata and pushdown machines. Although one-time nonde-
terminism does not increase the accepting power of ordinary finite state devices,
their conciseness is even greater than that of ordinary nondeterministic finite
automata compared to deterministic ones. In general, an n-state one time non-
deterministic finite automaton (OTNFA) can be simulated by an (n+1)nk·n

-state
deterministic finite automaton, where k is the size of the input alphabet. In gen-
eral this bound is over-counted. A slightly better estimate is obtained by using
the notion of the degree of nondeterminism d for finite state devices, which is
defined as the product of all non-zero size successor sets of a state. Formally
d(M) =

∏
(q,a)∈Q×Σ
|δ(q,a)|�=0

|δ(q, a)|, where Q is the set of states, Σ the input alpha-

bet, and δ the nondeterministic transition function of M . A better upper bound
on the above mentioned simulation of an OTNFA M is then (n + 1)d(M). This
bound is tight in a special case, because we can give an example of an n-state
OTNFA M of nondeterministic degree d(M) = n such that (n + 1)n states are
sufficient and necessary in the worst case for an equivalent deterministic finite
automaton. For pushdown automata the results on the descriptional complexity
are even more dramatic. First of all it is shown that one-time nondeterministic

One-Time Nondeterministic Computations 179

pushdown automata (OTNPDA) accept exactly the union closure of the deter-
ministic context-free languages. This is a well-known language family which
properly lies between the deterministic context-free languages and the context
free ones. We utilize this characterization and show that the trade-offs between
OTNPDAs and deterministic ones, as well as between ordinary nondeterminis-
tic pushdown automata and OTNPDAs are non-recursive. That is, the bound
between two equivalent machines of different types cannot be bounded by any
recursive function. This is quite exceptional because the use of nondeterminism
is highly restricted to the bare necessities.

2 Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR. For the length of w we write |w|. For the number of occurrences of a
symbol a in w we use the notation |w|a. Set inclusion is denoted by ⊆ and strict
set inclusion by ⊂. We write 2S for the power set and |S| for the cardinality of
a set S.

We recall some notation for descriptional complexity. Following [9] we say
that a descriptional system S is a set of finite descriptors such that each D ∈ S
describes a formal language L(D), and the alphabet alph(D) over which D rep-
resents a language can be deduced from D. The family of languages represented
(or described) by S is L (S) = {L(D) | D ∈ S }. For every language L, the set
S(L) = {D ∈ S | L(D) = L } is the set of its descriptors in S. A complexity
measure for a descriptional system S is a total recursive mapping c : S → N.

Finite automata or (deterministic) pushdown automata can be encoded over
some fixed alphabet such that their input alphabets can be extracted from the
encodings. The sets of these encodings are descriptional systems S1 and S2, and
L (S1) is the family of regular languages and L (S2) is the family of (deter-
ministic) context-free languages. Examples for complexity measures for finite
automata or pushdown automata are the total number of symbols, that is, the
length of the encoding (length), or, in the former case, the number of states and,
in the latter case, the product of the number of transition rules and the maximal
number of symbols pushed in one step.

Here we only use complexity measures that are recursively related to length.
If there is a total recursive function g : N × N → N such that, for all D ∈ S,
length(D) ≤ g(c(D), |alph(D)|), then c is said to be an s-measure. If, in addition,
for any alphabet Σ, the set of descriptors in S describing languages over Σ is
recursively enumerable in order of increasing size, then c is said to be an sn-
measure. Clearly, the number of states is an sn-measure for finite automata.

Whenever we consider the relative succinctness of two descriptional sys-
tems S1 and S2, we assume that the intersection L (S1) ∩ L (S2) is non-empty.
Let S1 and S2 be descriptional systems with complexity measures c1 and c2,
respectively. A total function f : N → N is an upper bound for the increase in
complexity when changing from a descriptor in S1 to an equivalent descriptor

180 M. Holzer and M. Kutrib

in S2, if for all D1 ∈ S1 with L(D1) ∈ L (S2), there exists a D2 ∈ S2(L(D1))
such that c2(D2) ≤ f(c1(D1)). If there is no recursive upper bound, then the
trade-off for changing from a description in S1 to an equivalent description in S2

is said to be non-recursive. Non-recursive trade-offs are independent of particular
sn-measures.

3 One-Time Nondeterministic Finite Automata

We investigate one-time nondeterministic finite automata. The basic idea is
that at the outset the automaton is nondeterministic. But whenever it performs
a guess, this guess is fixed for the rest of the computation.

A nondeterministic finite automaton (NFA) is a system M = 〈Q,Σ, δ, q0, F 〉,
where Q is the finite set of internal states, Σ is the finite set of input symbols,
q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and δ : Q × Σ →
2Q is the transition function. A configuration of a finite automaton M is a
tuple (q, w), where q ∈ Q and w ∈ Σ∗. If a is in Σ and w in Σ∗, then we write
(q, aw)
M (p,w) if p is in δ(q, a). As usual, the reflexive transitive closure of
M

is denoted by
∗
M . The subscript M will be dropped from
M and
∗

M if the
meaning is clear. Then the language accepted by M is defined as

L(M) = {w ∈ Σ∗ | (q0, w)
∗
M (p, λ) for some p ∈ F }.

A state q is nondeterministic on a letter a in M , if |δ(q, a)| ≥ 2, and state q is
nondeterministic in M , if it is nondeterministic on some letter a ∈ Σ. Moreover,
a state q is reachable in M if there is an input word w with (q0, w)
∗

M (q, λ).
Without loss of generality we assume that any state of a (non)deterministic finite
automaton is reachable.

A finite automaton M is partial deterministic (partial DFA) if and only if
|δ(q, a)| ≤ 1, for all q ∈ Q and a ∈ Σ, and the device M is deterministic (DFA)
if and only if |δ(q, a)| = 1, for every q ∈ Q and a ∈ Σ. In these cases we simply
write δ(q, a) = q′ for δ(q, a) = {q′} assuming that the transition function is a
(partial) mapping δ : Q×Σ → Q. Observe, that every partial DFA can be made
complete by introducing a non-accepting sink state. So, any DFA is complete,
that is, the transition function is total, whereas for partial DFAs and NFAs it is
possible that δ maps to the empty set.

Next, the idea of one-time nondeterministic finite automata is formalized as
follows: let M = 〈Q,Σ, δ, q0, F 〉 be an NFA and

(q0, w) = (q0, a0w0)
M (q1, w0) = (q1, a1w1)
M · · ·

M (qn, wn−1) = (qn, anwn)
M (qn+1, wn) = (qn+1, λ),

be a computation of M on input w = a0w0 ∈ Σ+. A computation is permissible
if and only if (qi, ai) = (qj , aj) implies qi+1 = qj+1, for all 0 ≤ i < j ≤ n, or the
computation is trivial, that is, it consists of (q0, λ) only. Now, M is said to be
one-time nondeterministic if and only if it may only perform permissible com-
putations. In this case we call M a one-time nondeterministic finite automaton

One-Time Nondeterministic Computations 181

(OTNFA). A word w is permissible acceptable by M if there is a permissible
computation that ends in an accepting state of M . The language accepted by
an OTNFA M is

Lp(M) = {w ∈ Σ∗ | word w is permissible acceptable by M }.

In order to illustrate the definitions we continue with an example.

Example 1. Consider the NFA M with a single nondeterministic state depicted
on the left of Fig. 1. It is easy to see that M accepts all words where the next to
last letter is an a, that is, the language (a+ b)∗a(a+ b). When interpreting M as
an OTNFA, then only permissible computations are allowed. This means, that
for the sole nondeterministic state either the a-self-loop from state 1 to itself or
the a-transition leading form state 1 to 2 can be used during the computation,
but not both. Thus, we can think of doing a computation either in the finite
automaton M ′ or M ′′ shown in the middle of or on the right of Fig. 1. Therefore,
the language accepted by the OTNFA M is equal to b∗a(a + b), because the
automaton in the middle does not accept anything. �

1 2

3

a, b

a

a, b

1 2

3

a, b

a, b

1 2

3

b

a

a, b

Fig. 1. Left: the NFA M with a sole nondeterministic state accepting the language
(a + b)∗a(a + b). Interpreting M as an OTNFA results in accepting b∗a(a + b). Middle:
partial DFA M ′ built from M by choosing the a-self-loop on the state 1 and deleting all
other a-transitions leaving state 1. Right: partial DFA M ′′ built from M by choosing
the a-transition from state 1 to 2 and deleting all other a-transitions from state 1.

The following statement is trivial since the permissible computations of an
NFA are a subset of all possible computations. The strictness of the inclusion
follows by the above given example.

Lemma 2. Let M be a nondeterministic finite automaton. Then the inclusion
Lp(M) ⊆ L(M) holds, and there is a device M such that it is proper. �

Before we consider the computational power of OTNFAs in more detail, we
need some further notation. Let M = 〈Q,Σ, δ, q0, F 〉 be an NFA. An automaton
M ′ = 〈Q′, Σ′, δ′, q′

0, F 〉 is compatible with M if and only if (i) Q′ = Q, (ii)
Σ′ = Σ, (iii) q′

0 = q0, (iv) F ′ = F , and (v) δ′(q, a) ⊆ δ(q, a), for every q ∈ Q
and a ∈ Σ. If M ′ is compatible with M , then we write M ′ ≺ M . We further
define that M ′ is non-empty compatible with M , if and only if M ′ is compatible

182 M. Holzer and M. Kutrib

with M and δ(q, a) = ∅ implies δ′(q, a) = ∅, for every q ∈ Q and a ∈ Σ.
If M ′ is non-empty compatible with M , then we write M ′ ≺ne M . Note that
every automaton is (non-empty) compatible with itself. Obviously, M ′ ≺ne M
implies M ′ ≺ M , but the converse implication does not hold in general. Both
automata M ′ and M ′′ depicted in Fig. 1 are non-empty compatible with M
shown in the same figure on the left; for short M ′ ≺ne M and M ′′ ≺ne M . Now
we are ready for the next theorem.

Theorem 3. Let M be an OTNFA. Then Lp(M) =
⋃

M ′∈Dne(M) L(M ′), where
Dne(M) = {M ′ | M ′is a partial DFA withM ′ ≺ne M }.
Proof. The inclusion from left to right is seen as follows: let M = 〈Q,Σ, δ, q0, F 〉.
Consider any word w ∈ Lp(M). Since w belongs to the language in question,
there is a permissible computation of the form (q0, λ), if w = λ or

(q0, w) = (q0, a0w0)
M (q1, w0) = (q1, a1w1)
M · · ·

M (qn, wn−1) = (qn, anwn)
M (qn+1, wn) = (qn+1, λ)

with qn+1 ∈ F , suitable a0, a1, . . . , an in Σ, and words w0, w1, . . . , wn in Σ∗.
It is not hard to see that there is a partial DFA M ′ = 〈Q,Σ, δ′, q0, F) with
M ′ ≺ne M satisfying δ′(qi, ai) = qi+1, for 0 ≤ i ≤ n—the non-used transitions
during the considered computation are appropriately induced by the OTNFA M .
Therefore, the word w is accepted by the partial DFA M ′, that is, w ∈ L(M ′).
Thus, w belongs to

⋃
M ′∈Dne(M) L(M ′), since M ′ ∈ Dne(M). This shows that

Lp(M) ⊆ ⋃
M ′∈Dne(M) L(M ′).

For the converse inclusion we argue as follows: let M ′ be any partial DFA
from Dne(M). Consider a word w ∈ L(M ′). As above, there is a computation of
the form (q0, λ), if w = λ or

(q0, w) = (q0, a0w0)
M (q1, w0) = (q1, a1w1)
M · · ·

M (qn, wn−1) = (qn, anwn)
M (qn+1, wn) = (qn+1, λ)

with qn+1 ∈ F , suitable letters a0, a1, . . . , an in Σ, and words w0, w1, . . . , wn

in Σ∗. Since this is a deterministic computation one can interpret it as a per-
missible computation of M , since M can simulate every step of the partial
DFA M ′. Therefore we conclude that w ∈ Lp(M), hence Lp(M) ⊇ L(M ′).
Note that the given argumentation holds for every M ′ ∈ Dne(M) and therefore
Lp(M) ⊇ ⋃

M ′∈Dne(M) L(M ′). This proves the stated claim. �

Theorem 3 shows that OTNFAs accept only regular languages, because they
are closed under finite union. Although OTNFAs do not improve the computa-
tional power of ordinary finite automata, the question on the descriptional com-
plexity of these devices arises. The statement of Theorem 3 give us some hint,
that the relative succinctness compared to ordinary finite state devices may be
enormous, since the union on the right-hand side of Lp(M) =

⋃
M ′∈Dne(M) L(M ′)

runs over a large number of different M ′ from Dne(M). In fact, our intuition is
supported by the next result, which states a very large upper bound.

One-Time Nondeterministic Computations 183

Theorem 4. Let M be an n-state OTNFA with a k-letter input alphabet. Then
(n + 1)nk·n

states are sufficient for a DFA to accept the language Lp(M).

Proof. Let M = 〈Q,Σ, δ, q0, F 〉. Then Lp(M) =
⋃

M ′∈Dne(M) L(M ′) by
Theorem 3, where Dne(M) = {M ′ | M ′ is a partial DFA withM ′ ≺ne M }. In
order to accept the union on the right-hand side by a DFA, we apply the stan-
dard cross-product construction [14]. To this end, we complete the involved par-
tial automata from Dne(M), which results in ordinary DFAs with at most n + 1
states. Then the upper bound on the number of states for any DFA accept-
ing Lp(M) is (n + 1)|Dne(M)|. Thus, it remains to obtain an upper bound on the
size of Dne(M).

An automaton M ′ in Dne(M) is constructed from M by cycling trough all
states q and letters a and distinguishing the following cases: (i) if δ(q, a) = ∅,
then δ′(q, a) = ∅, (ii) if δ(q, a) = {p}, then δ′(q, a) = {p}, and (iii) if δ(q, a) =
{p1, p2, . . . , pk}, for k ≥ 2, then δ′(q, a) = {pi}, for some i with 1 ≤ i ≤ k. Since
|δ(q, a)| ≤ n, for every state q and letter a, we conclude that the size of Dne(M) is
bounded from above by nk·n. Hence we get the stated upper bound of (n+1)nk·n

states for a DFA accepting the language Lp(M). �

It turns out that the upper bound on the number of states of a DFA accept-
ing Lp(M), for a OTNFA M , is more accurate the better we can determine the
size of Dne(M). A greater precision is obtained by defining the nondetermin-
istic degree d(M) of an OTNFA M with state set Q and input alphabet Σ as
d(M) =

∏
(q,a)∈Q×Σ
|δ(q,a)|�=0

|δ(q, a)|. Then it is easy to see that the following lemma

holds.

Lemma 5. Let M be an OTNFA. Then |Dne(M)| = d(M). �

Hence we can reformulate the upper bound given in Theorem4 as follows:

Corollary 6. Let M be an OTNFA with nondeterministic degree d(M). Then
any DFA that accepts the language Lp(M) needs at most (n + 1)d(n) states. �

In the remainder of this section we obtain that the bound stated in the previ-
ous corollary can be reached already for a OTNFA with a sole nondeterministic
state, that is nondeterministic for only one input symbol.

Theorem 7. There is a n-state OTNFA M with a sole nondeterministic state,
that is nondeterministic only for one input symbol, and has nondeterministic
degree n, such that (n + 1)n states are sufficient and necessary in the worst case
for a DFA to accept the language Lp(M).

Proof. The upper bound of (n + 1)d(n) states for a DFA accepting the lan-
guage Lp(M) follows from Corollary 6. For the lower bound we argue as follows:
consider the OTNFA whose transition function δ on the letters a, b, c, and d is
depicted in Fig. 2.

By the ≺ne-relation the OTNFA M gives rise to several partial DFAs Mj , for
1 ≤ j ≤ n, where Mj = 〈{1, 2, . . . , n}, {a, b, c, d}, δj , 1, {n}〉 and the transition

184 M. Holzer and M. Kutrib

1 2 3 4 . . . n − 1 n
a, b, d

b, c

d

d

d

d

a a a a a

a

c, d d b, c, d b, c, d b, c, d b, c

Fig. 2. The transition function δ of the OTNFA M .

function δj is equal to δ on the letters a, b, and c, and for the letter d we have
δj(i, d) = {j}, if i = 1, δj(i, d) = {i}, if 2 ≤ i < n, and δj(i, d) is undefined
otherwise. These partial DFAs M1,M2, . . . ,Mn are the basic building blocks in
the cross-product construction for the (ordinary) DFA M ′ accepting the lan-
guage Lp(M). Define the DFA M ′ = 〈Q′, {a, b, c, d}, δ′, q′

0, F
′〉, where the set of

states is equal to Q′ = ({1, 2, . . . , n}∪{−})n, the initial state is q′
0 = (1, 1, . . . , 1),

and F ′ = { f ∈ Q′ | f [i] = n, for some 1 ≤ i ≤ n }, where f [i] refers to the ith
component of f ∈ ({1, 2, . . . , n} ∪ {−})n. The transition function is given by
δ′(f, a) = (δ1(f [1], a), δ2(f [2], a), . . . , δn(f [n], a)), for every f ∈ Q′ and a ∈ Σ.
Here we assume that whenever some δi(f [i], a) is undefined, then the component
is set to −. In order to prove our statement we need to show that the DFA M ′

is minimal. The proof that every state in M ′ is reachable and defines a dis-
tinct equivalence class utilizes some results from semigroup theory since one can
identify the states of M ′ with partial mappings from [n] to [n]. �

4 One-Time Nondeterministic Pushdown Automata

Now we turn to generalize the definitions of OTNFAs to pushdown automata.
Nondeterministic pushdown automata are well known for capturing the context-
free languages.

Let Σ be an alphabet. For convenience, we use Σλ for Σ ∪ {λ}. A nondeter-
ministic pushdown automaton (NPDA) is a system M = 〈Q,Σ, Γ, δ, q0,⊥, F 〉,
where Q is a finite set of internal states, Σ is the finite set of input symbols, Γ is
a finite set of pushdown symbols, δ is a mapping from Q×Σλ×Γ to finite subsets
of Q × Γ ∗ called the transition function, q0 ∈ Q is the initial state, ⊥ ∈ Γ is the
so-called bottom-of-pushdown symbol, which initially appears on the pushdown
store, and F ⊆ Q is the set of accepting states.

A configuration of a pushdown automaton is a triple (q, w, γ), where q is the
current state, w the unread part of the input, and γ the current content of the
pushdown store, the leftmost symbol of γ being the top symbol. On input w the
initial configuration is defined to be (q0, w,⊥). If p, q are in Q, a is in Σλ, w is
in Σ∗, γ and β are in Γ ∗, and Z is in Γ , then we write (q, aw,Zγ)
M (p,w, βγ),

One-Time Nondeterministic Computations 185

if the pair (p, β) is in δ(q, a, Z). In order to simplify matters, we require that
during any computation the bottom-of-pushdown symbol appears only at the
bottom of the pushdown store. Formally, we require that if (p, β) is in δ(q, a, Z),
then either β does not contain ⊥ or β = β′⊥, where β′ does not contain ⊥, and
Z = ⊥. As usual, the reflexive transitive closure of
M is denoted by
∗

M . The
subscript M will be dropped whenever the meaning remains clear. The language
accepted by M with accepting states is

L(M) = {w ∈ Σ∗ | (q0, w,⊥)
∗ (q, λ, γ), for some q ∈ F and γ ∈ Γ ∗ }.

An NPDA is a deterministic pushdown automaton (DPDA), if there is at
most one choice of action for any possible configuration. In particular, there
must never be a choice of using an input symbol or of using λ input. Formally, a
pushdown automaton M = 〈Q,Σ, Γ, δ, q0,⊥, F 〉 is deterministic if (i) δ(q, a, Z)
contains at most one element, for all a in Σλ, q in Q, and Z in Γ , and (ii) for
all q in Q and Z in Γ : if δ(q, λ, Z) is not empty, then δ(q, a, Z) is empty for all a
in Σ.

Now we turn to one-time nondeterministic pushdown automata (OTNPDA).
As before, whenever such an automaton performs a guess, this guess is fixed for
the rest of the computation. Let M = 〈Q,Σ, Γ, δ, q0,⊥, F 〉 be an NPDA and, for
qi ∈ Q, ai ∈ Σλ, 0 ≤ i ≤ n, and Zi ∈ Γ , βi ∈ Γ ∗, 1 ≤ i ≤ n,

(q0, a0w0,⊥)
M (q1, w0, β1) = (q1, a1w1, Z1γ1)
M (q2, w1, β2γ1) =
(q2, a2w2, Z2γ2)
∗

M (qn, wn−1, βnγn−1) = (qn, anwn, Znγn)

be a computation of M on input a0w0 ∈ Σ+. The computation is defined to
be permissible if and only if, (i) the equality (qi, Zi) = (qj , Zj) implies either
ai = aj = λ or ai = λ and aj = λ, and (ii) the equality (qi, ai, Zi) = (qj , aj , Zj)
implies qi+1 = qj+1 and βi+1 = βj+1, for all 0 ≤ i < j ≤ n − 1. A word w
is permissible acceptable by M if on input w there is an accepting permissible
computation. The language accepted by an OTNPDA M is

Lp(M) = {w ∈ Σ∗ | word w is permissible acceptable by M }.

In order to derive the relationships of OTNPDAs, NPDAs, and DPDAs, we
generalize the characterization of OTNFAs to pushdown automata. The notation
as well as Theorem 3 is straightforwardly adapted. So, we obtain:

Theorem 8. Let M be a OTNPDA. Then Lp(M) =
⋃

M ′∈D(M) L(M ′), where
Dne(M) = {M ′ | M ′ is aDPDAwithM ′ ≺ne M }.

So, the family of languages accepted by OTNPDAs is included in the (finite)
union closure of the deterministic context-free languages. Conversely, the union
of a finite number of languages accepted by DPDAs is accepted by an NPDA
whose first transition is a nondeterministic choice of which of the DPDAs is
to be simulated. Subsequently, the NPDA simulates the chosen DPDA. In this
way, the nondeterministic situation at the beginning is never reached again and,

186 M. Holzer and M. Kutrib

thus, the NPDA is in fact a OTNPDA. We conclude that the union closure of
the deterministic context-free languages is included in the family of languages
accepted by OTNPDAs.

Corollary 9. The family of languages accepted by OTNPDAs and the union
closure of the deterministic context-free languages are identical. �

This characterization together with known results shows that the computa-
tional capacity of OTNPDAs is strictly in between the NPDAs and DPDAs.

Theorem 10. L (DPDA) ⊂ L (OTNPDA) ⊂ L (NPDA).

For establishing non-recursive trade-offs the following general result is useful
that is a slightly generalized and unified form of a result of Hartmanis [4].

Theorem 11 [9]. Let S1 and S2 be two descriptional systems for recursive lan-
guages such that any descriptor D in S1 and S2 can effectively be converted into
a Turing machine that decides L(D), and let c1 be a measure for S1 and c2 be
an sn-measure for S2. If there exists a descriptional system S3 and a property P
that is not semi-decidable for descriptors from S3, such that, given an arbitrary
D3 ∈ S3, (i) there exists an effective procedure to construct a descriptor D1

in S1, and (ii) D1 has an equivalent descriptor in S2 if and only if D3 does not
have property P , then the trade-off between S1 and S2 is non-recursive.

By measuring the amount of ambiguity and nondeterminism in pushdown
automata in [7,8] infinite hierarchies in between the deterministic and nonde-
terministic context-free languages are obtained. Intuitively, the corresponding
language families are close together. Nevertheless, there are non-recursive trade-
offs between the levels of the hierarchies.

In the following we show non-recursive trade-offs between nondeterministic
and OTNPDAs automata as well as between OTNPDAs deterministic pushdown
automata by reduction from the non-halting problem for Turing machines on
empty tape. To this end, histories of Turing machine computations are encoded
into strings, a technique introduced in [3]. It suffices to consider deterministic
Turing machines with one single tape and one single read-write head. Without
loss of generality and for technical reasons, we assume that the Turing machines
cannot print blanks, can halt only after an odd number of moves, accept by
halting, and visit an infinite number of squares if they do not halt.

Let Q be the state set of some Turing machine M , where q0 is the ini-
tial state, T ∩ Q = ∅ is the tape alphabet containing the blank symbol, and
Σ ⊂ T is the input alphabet. Then a configuration of M can be written as
a word of the form T ∗QT ∗ such that t1t2 · · · tiqti+1 · · · tn is used to express
that M is in state q, scanning tape symbol ti+1, and t1, t2 to tn is the sup-
port of the tape inscription. Dependent on the Turing machine M we define
the following two languages. Let a, b, $, # /∈ T ∪ Q, n ≥ 0, and wi ∈ T ∗QT ∗,
0 ≤ i ≤ 2n + 1 are configurations of M . Then language LM,0 contains all words
of the form $w0$wR

1 $w2$wR
3 $ · · · $w2n#wR

2n+1#a, where w0 is an initial configu-
ration with empty tape of the form w0 = q0 and w2i is the successor configu-
ration of w2i−1, 1 ≤ i ≤ n, and language LM,1 contains all words of the form

One-Time Nondeterministic Computations 187

$w0$wR
1 $w2$wR

3 $ · · · $w2n#wR
2n+1#b, where w2i+1 is the successor configuration

of w2i, 0 ≤ i ≤ n. As an immediate observation we obtain the next corollary.

Corollary 12. For any deterministic Turing machine M , both languages LM,0

and LM,1 are deterministic context-free languages, such that their deterministic
pushdown automata can effectively be constructed from M . �

In order to apply Theorem 11, we use the family of deterministic one-tape
Turing machines as descriptional system S3, and for the property P we take the
property of not halting on empty tape. Recall that this property is indeed not
semi-decidable for deterministic one-tape Turing machines. Next, given an arbi-
trary deterministic one-tape Turing machine M , that is, a descriptor D3 ∈ S3, we
must construct a nondeterministic pushdown automaton, that is, a descriptor D1

in S1, that has an equivalent one-time nondeterministic pushdown automaton,
that is, a descriptor in S2, if and only if M halts on empty tape.

So, given a deterministic one-tape Turing machine M , we use a new symbol c
and define LM = ((LM,0 ∪ LM,1)c)∗. By Corollary 12 and the effective closures
of the context-free languages under union and marked Kleene star, we derive
that LM is a context-free language, such that its nondeterministic pushdown
automaton D1 can effectively be constructed from M . It remains to be shown
that LM is accepted by a one-time nondeterministic pushdown automaton if and
only if M halts on empty tape. The next lemma shows that LM is accepted even
by a deterministic pushdown automaton if M halts on empty tape.

Lemma 13. Let M be a deterministic Turing machine that halts on empty tape.
Then language LM is accepted by some DPDA.

In order to disprove that LM is accepted by a OTNPDA if M does not halt
on empty tape Ogden’s lemma for deterministic context-free languages is used
(see, for example, [2]). Then one can show the following result.

Lemma 14. Let M be a deterministic Turing machine that does not halt on
empty tape. Then language LM is not accepted by any OTNPDA.

So, we have shown the following theorem.

Theorem 15. The trade-off between nondeterministic pushdown automata and
one-time nondeterministic pushdown automata is non-recursive. �

The proof of the second non-recursive trade-off between one-time nonde-
terministic pushdown automata and deterministic pushdown automata follows
along the lines of the first non-recursive trade-off. Again, we apply Theorem11
but now with a simplification of the language LM . More precisely, given a
deterministic one-tape Turing machine M , we define L′

M = LM,0 ∪ LM,1. By
Corollary 12, both languages LM,0 and LM,1 are deterministic context-free lan-
guages, such that their deterministic pushdown automata can effectively be con-
structed from M . So, L′

M is accepted by a one-time nondeterministic pushdown
automaton that can effectively be constructed from M . As before, it remains to

188 M. Holzer and M. Kutrib

be shown that L′
M is accepted by a deterministic pushdown automaton if and

only if M halts on empty tape. If M halts on empty tape, Lemma 13 says that
LM is accepted by some DPDA. Since the deterministic context-free languages
are closed under intersection with regular sets, this implies that L′

M is accepted
by some DPDA either.

Lemma 16. Let M be a deterministic Turing machine that does not halt on
empty tape. Then language L′

M is not accepted by any DPDA.

Thus, we have also shown the following non-recursive trade-off.

Theorem 17. The trade-off between one-time nondeterministic pushdown
automata and deterministic pushdown automata is non-recursive. �

References

1. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke,
D.: Descriptional complexity of machines with limited resources. J. Univ. Comput.
Sci. 8(2), 193–234 (2002)

2. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Read-
ing (1978)

3. Hartmanis, J.: Context-free languages and turing machine computations. Proc.
Symp. Appl. Math. 19, 42–51 (1967)

4. Hartmanis, J.: On Gödel speed-up and succinctness of language representations.
Theoret. Comput. Sci. 26, 335–342 (1983)

5. Hartmanis, J.: Gödel, von Neumann and the P=? NP problem. Bull. EATCS 38,
101–107 (1989)

6. Hartmanis, J., Hunt III., H.B.: The LBA problem and its importance in the theory
of computing. In: Complexity of Computing, SIAM AMS Proceedings, vol. 7, pp.
1–26 (1974)

7. Herzog, C.: Pushdown automata with bounded nondeterminism and bounded
ambiguity. Theoret. Comput. Sci. 181, 141–157 (1997)

8. Herzog, C.: Die Rolle des Nichtdeterminismus in kontextfreien Sprachen. Doctoral
dissertation, Universität Frankfurt (1999). (in German)

9. Holzer, M., Kutrib, M.: Descriptional complexity - an introductory survey. In:
Scientific Applications of Language Methods, pp. 1–58. Imperial College Press
(2010)

10. Hopcroft, J.: Automata theory: its past and future. In: Yu, S. (ed.) A Half-Century
of Automata Theory, pp. 37–47. World Scientific (2001)

11. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Proceedings of the 12th Annual Symposium on Switching and
Automata Theory, pp. 188–191. IEEE Computer Society Press (1971)

12. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Com-
put. 20, 1211–1219 (1971)

13. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3, 114–125 (1959)

14. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

Kuratowski Algebras Generated by Factor-,
Subword-, and Suffix-Free Languages

Jozef Jirásek Jr.1,2, Matúš Palmovský1, and Juraj Šebej2(B)

1 Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia

jirasekjozef@gmail.com, palmovsky@saske.sk
2 Faculty of Science, Institute of Computer Science,

P.J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia
juraj.sebej@gmail.com

Abstract. We study Kuratowski algebras generated by suffix-, factor-,
and subword-free languages under the operations of star and comple-
mentation. We examine 12 possible algebras, and for each of them, we
provide an answer to the question whether or not it can be generated by
a suffix-, factor-, or subword-free language. In each case when an algebra
can be generated by such a language, we show that this language may
be taken to be regular, and we compute upper bounds on the state com-
plexities of all the generated languages. Finally, we find generators that
maximize these complexities.

1 Introduction

The famous Kuratowski’s 14-theorem states that, in a topological space, repeat-
edly applying the operations of closure and complement to any given set can pro-
duce at most 14 distinct sets [6,12]. Kuratowski’s theorem in the settings of for-
mal languages has been studied by Brzozowski et al. [2]. It has been shown that
repeatedly applying Kleene closure and complementation to a given language
produces again up to 14 distinct languages. Moreover, all formal languages have
been classified according to the structure of the algebras they generate under
Kleene closure and complementation. It has been proved that there are precisely
12 such algebras, and even more, each of them can be generated by a binary
regular language.

Recently, Kuratowski algebras generated by certain restricted classes of lan-
guages have been investigated. Brzozowski et al. [4] proved that prefix-, suffix-,
factor-, and subword-closed languages can generate at most 8 languages under
the above mentioned operations. They also gave an example of a regular language

M. Palmovský—Research supported by VEGA grant 2/0084/15 and grant APVV-
15-0091. This work was conducted as a part of PhD study of Matúš Palmovský at
the Faculty of Mathematics, Physics and Informatics of the Commenius University
in Bratislava.
J. Šebej—Research supported by VEGA grant 1/0142/15 and grant APVV-15-0091.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 189–201, 2017.
DOI: 10.1007/978-3-319-60252-3 15

190 J. Jirásek Jr. et al.

in each of these four classes which generates 8 languages, and also maximizes
their state complexities.

In [10], Kuratowski algebras generated by prefix-free languages have been
investigated in detail. For each of the 12 possible algebras, the following questions
have been answered:

1. Can this algebra be generated by a prefix-free language?
2. Can this algebra be generated by a regular prefix-free language?
3. Can this algebra be generated by a regular prefix-free language of an arbitrary

state complexity?
4. What are the maximal state complexities of languages generated in this alge-

bra by a prefix-free regular language?
5. Is there a prefix-free regular generator which maximizes all of these complex-

ities at the same time?

In this paper, we answer the same questions for suffix-, factor-, and subword-
free languages. For each of these three classes and each of the 12 algebras, if the
algebra can be generated by a language in this class, we give an example of a
regular generator. We discuss state complexities of all the generated languages.

If an algebra can be generated by a prefix-free language, then it can also
be generated by a suffix-free language, and vice versa. However, we show that
there are algebras which are generated by a prefix- (or suffix-) free language, but
cannot be generated by any factor-free language. One interesting conclusion is
that while in the prefix-free case, if an algebra can be generated by a prefix-free
language, the answer to question 5 is always yes, for suffix-free languages this is
not always the case.

2 Preliminaries

We assume that the reader is familiar with basic notions in formal languages
and automata theory. For details, the reader may refer to [9,13,14].

If Σ is a finite alphabet, then Σ∗ is the set of strings over Σ, including the
empty string ε. The length of a string w is denoted by |w|. A language is any
subset of Σ∗. The complement of a language L is the language Lc = Σ∗ \ L.
The concatenation of languages K and L is KL = {uv | u ∈ K and v ∈ L}.
The Kleene closure, or star, of L is defined as L∗ = ∪i≥0L

i, while the positive
closure of L is L+ = ∪i≥1L

i, where L0 = {ε} and Li+1 = LiL. To simplify the
exposition, we use an exponent notation, so for example, Lc∗ and L∗c∗ stand for
(Lc)∗ and ((L∗)c)∗, respectively.

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, ·, s, F)
defined in a usual way. A state qd of an NFA A is called a dead state if no string
is accepted by A from qd, that is, if q · w ∩ F = ∅ for each string w. We say
that (p, a, q) is a transition in NFA A if q ∈ p · a. We also say that the state p
has an out-transition on a, and the state q has an in-transition on a. An NFA
is non-exiting if its final states have no out-transitions, and it is non-returning
if its initial state does not have any in-transitions.

Kuratowski Algebras Gen. by Factor-, Subword-, and Suffix-Free Languages 191

An NFA A is a deterministic finite automaton DFA if for each state q and
each input symbol a, the set q · a has exactly one element. The state complexity
of a regular language L, sc(L), is the smallest number of states in any DFA for
L. It is well known that a DFA is minimal with respect to the number of states
if all its states are reachable and pairwise distinguishable.

Every NFA A = (Q,Σ, ·, s, F) can be converted to an equivalent DFA A′ =
(2Q, Σ, ◦, {s}, F ′), where F ′ = {S ∈ 2Q | S ∩ F �= ∅} and S ◦ a = S · a for
each S in 2Q and each a in Σ. We call the DFA A the subset automaton of the
NFA A. The subset automaton may not be minimal since some of its states can
be unreachable or equivalent to other states. To prove distinguishability of states
of the subset automaton, the following notions from [3] are useful.

A state q of the NFA A is said to be uniquely distinguishable if there is a
string w which is accepted by A from and only from the state q. Next, we say
that a transition (p, a, q) is a unique in-transition if there is no state r different
from p such that (r, a, q) is a transition in A. Finally, we say that a state q is
uniquely reachable from a state p if there is a sequence of unique in-transitions
(pi−1, ai, qi) for i = 1, 2, . . . , k such that p0 = p and pk = q.

If a uniquely distinguishable state q of an NFA A be uniquely reachable
from a state p, then the state p is uniquely distinguishable as well. Next, if two
subsets of a subset automaton of an NFA A differ in a uniquely distinguishable
state of A, then the two subsets are distinguishable. It follows that if a uniquely
distinguishable state of an NFA A is uniquely reachable from any other state of
A, then the subset automaton of A does not have equivalents states.

If u, v, w, x ∈ Σ∗ and w = uxv, then u is a prefix of w, x is a factor of w,
and v is a suffix of w. If w = u0v1u1 · · · vnun, where ui, vi ∈ Σ∗, then v1v2 · · · vn
is a subword of w. A prefix v (suffix, factor, subword) of w is proper if v �= w.

A language L is prefix-free if w ∈ L implies that no proper prefix of w
is in L. Suffix-, factor-, and subword-free languages are defined analogously. A
language L is weakly-prefix-closed if w ∈ L implies that each non-empty prefix of
w is in L. It is known that a minimal DFA for a prefix-free (suffix-free) language
is non-exiting (non-returning) [7,8].

A language is (positive-)closed if it is closed under positive closure, that is, if
L = L+. It is open, if its complement is closed, and it is clopen if it is both closed
and open. The terms Kleene-closed and Kleene-open are defined analogously.
The (positive) interior of a language L is L⊕ = Lc+c. The Kleene interior is
L� = Lc∗c. Notice that L is open iff L = L⊕. Next, for every language L, L+ is
closed and L⊕ is open.

Let B(L) be the family of all languages generated from L by positive closure
and positive interior; see [2, Subsect. 4.1]. Let D(L) be the family of all languages
generated from L by complementation and Kleene closure. Let E(L) be the
family of all languages generated from L by Kleene closure and Kleene interior.
It is shown in [2, Lemma 20] that

D(L) = E(L) ∪ {M | M c ∈ E(L)}. (1)

192 J. Jirásek Jr. et al.

Moreover, if L is neither open nor closed, then by [2, Lemma 22],

E(L) = {L} ∪ {M ∪ {ε} | M ∈ B(L) and M is closed}
∪ {M \ {ε} | M ∈ B(L) and M is open}.

For each language L, the family D(L) has at most 14 distinct languages, and
Table 2 in [2, p. 312] describes 12 possible algebras, each of which is generated
by a regular language. Notice that there is an oversight in cases (2a) and (2b):
In case (2a) we should have ε /∈ L, |E(L)| = 3, |D(L)| = 6, and it is generated
by {a}. In case (2b) we should have ε ∈ L, |E(L)| = 4, |D(L)| = 8, and it
is generated by {ε, a} [1]. Here we show a modified table in which we do not
display |D(L)|, and instead of |E(L)|, we display the set E(L). We assume that
L is a prefix-free (suffix-, factor-, subword-free) language and use the facts that
M+ ∪ {ε} = M∗ and M \ {ε} = M if ε /∈ M . Notice that by (1), we only need
to know the state complexities of the languages in E(L).

Table 1. Classification of languages by the structure of (E(L),∗ ,�); cf. [2, p. 312].

Case Necessary and sufficient conditions E(L) Regular
generator

(1a) L is clopen; ε ∈ L L, L \ {ε} a∗

(1b) L is clopen; ε /∈ L L, L ∪ {ε} a+

(2a) L is open but not clopen; ε /∈ L L, L∗, L+ a

(2b) L is open but not clopen; ε ∈ L L, L \ {ε}, L∗, L+ a ∪ ε

(3a) L is closed but not clopen; ε /∈ L L, L⊕, L⊕ ∪ {ε} aaa∗

(3b) L is closed but not clopen; ε ∈ L L, L ∪ {ε},
L⊕, L⊕ ∪ {ε}

aaa∗ ∪ ε

(4) L is neither open nor closed; L+ is
clopen and L⊕+ = L+

L, L∗, L+, L⊕ a ∪ aaa

(5) L is neither open nor closed; L⊕ is
clopen and L+⊕ = L⊕

L, L∗, L⊕ ∪ {ε}, L⊕ aa

(6) L is neither open nor closed; L+ is
open but L⊕ is not closed;
L⊕+ �= L+

L, L∗, L+,
L⊕, L⊕∗, L⊕+

G :=
a ∪ abaa

(7) L is neither open nor closed; L⊕ is
closed but L+ is not open;
L+⊕ �= L⊕

L, L∗, L⊕ ∪ {ε}, L⊕,
L+⊕ ∪ {ε}, L+⊕

(a ∪ b)+ \
G

(8) L is neither open nor closed; L⊕ is
not closed and L+ is not open;
L+⊕ = L⊕+

L, L∗, L⊕,
L+⊕ ∪ {ε}, L+⊕

a ∪ bb

(9) L is neither open nor closed; L⊕ is
not closed and L+ is not open;
L+⊕ �= L⊕+

L, L∗, L⊕,
L+⊕ ∪ {ε}, L+⊕,
L⊕∗, L⊕+

a ∪ ab ∪ bb

Kuratowski Algebras Gen. by Factor-, Subword-, and Suffix-Free Languages 193

3 Factor-Free and Subword-Free Languages

In this section we investigate Kuratowski algebras generated by factor- and
subword-free languages. In [10] we have already shown that algebras in cases (2b),
(3a), (3b), (4), and (7) cannot be generated by a prefix-free language. Therefore
these cases cannot be generated by a factor- or subword-free language either.
We examine all the remaining cases and either show that the algebra cannot
be generated by any factor-free (and therefore also any subword-free) language,
or we give an example of a subword-free (and therefore also factor-free) regular
generator. Moreover, the given generators maximize the state complexities of all
the generated languages. We begin by stating several helpful observations.

Proposition 1. Let n ≥ 3. If L is a factor free language over Σ with sc(L) = n,
then sc(L∗) ≤ n − 1 if |Σ| ≥ 2 and sc(L∗) = n − 2 if |Σ| = 1.

Proof. Let A = ({s, 1, 2, . . . , n−3, qf , qd}, Σ, ·, s, {qf}) be a minimal non-return-
ing and non-exiting DFA for L with the dead state qd. Construct a DFA for L∗

from A by making the state qf initial and the state s non-initial, and by replacing
each transition (qf , a, qd) with (qf , a, s · a). In the resulting DFA, the state s is
unreachable, so sc(L∗) ≤ n− 1. In the unary case, we must have L = {an−2}, so
sc(L∗) = n − 2. �

Since the language L⊕ contains those strings of L that cannot be expressed
as a concatenation of strings of Lc, we get the next proposition.

Proposition 2.
(a) Let K ⊆ L ⊆ Σ∗ and K be weakly-prefix-closed. Then K ⊆ L⊕.
(b) Let L ⊆ Σ∗ and Γ = L ∩ Σ. Then Γ ⊆ L⊕.
(c) Let L ⊆ Σ∗ and Γ = L ∩ Σ. If L is a factor-free language different from

{ε}, then L⊕ = Γ and L+⊕ = L⊕+ = Γ+.

Proof. (a) Since K is weakly-prefix-closed, every non-empty prefix of every string
in K is in K as well. Therefore, no string in K can be expressed as a concate-
nation of strings in Lc. Hence K ⊆ L⊕. Claim (b) follows directly from (a).

(c) We have Γ ⊆ L⊕ by (b). The empty string and strings in Σ \ Γ are not
in L, therefore they are not in L⊕. Let w ∈ L and |w| ≥ 2. Since L is factor-
free, no symbol occurring in w is in L. It follows that w can be partitioned into
one-symbol strings that are in Lc. Hence w /∈ L⊕, so L⊕ = Γ and L⊕+ = Γ+.
Since Γ+ ⊆ L+ and Γ+ is weakly-prefix-closed, we have Γ+ ⊆ L+⊕ by (a). Let
w be a string in L+ which contains a symbol in Σ \ Γ . Then w must contain at
least two such symbols. Therefore we can split w into substrings, each of which
contains exactly one symbol in Σ \ Γ. These strings cannot be in L+, therefore
w ∈ L+⊕. Hence L+⊕ = Γ+, so L+⊕ = L⊕+. �

Now we examine the individual cases of possible Kuratowski algebras gener-
ated by factor- and subword-free languages. Our aim is to get the results that
are summarized in Table 2. In each case we first recall sufficient and necessary
conditions from Table 1, and then we discuss the case in detail.

194 J. Jirásek Jr. et al.

Table 2. Binary subword-free generators of Kuratowski algebras maximizing complex-
ities of generated languages. Cases (2b), (3a), (3b), (4), (6), (7), and (9) cannot be
generated by any factor- or subword-free language.

Case E(L) Upper bounds on
state complexities

Subword-free generator

(1a) L, L \ {ε} 2, 1 {ε}
(1b) L, L ∪ {ε} 1, 2 ∅
(2a) L, L∗, L+ 3, 2, 3 {a} over {a, b}
(5) L, L∗, L⊕ ∪ {ε} n, n − 1, 2, 1 {an−2} over {a, b}
(8) L, L∗, L⊕, L⊕∗, L⊕+ n, n − 1, 3, 2, 3 {a, bn−2}

(1a) L is clopen; ε ∈ L (1b) L is clopen; ε /∈ L
If a factor-free language contains a non-empty string, then it is not closed. It
follows that the only two clopen factor-free languages are ∅ and {ε}, which gives
the results in the first two rows of Table 2.

(2a) L is open but not clopen; ε /∈ L
Let L be a factor-free language over an alphabet Σ such that ε /∈ L, L = L⊕

and L �= L+. By Proposition 2, we have L⊕ = L ∩ Σ. Hence, we must have
∅ �= L ⊆ Σ, so sc(L) = 3. Moreover, every such language satisfies the conditions
in case (2a). If L = Σ, then L∗ = Σ∗ and L+ = Σ+, so sc(L∗) = 1 and
sc(L+) = 2. Otherwise, sc(L∗) = 2 and sc(L+) = 3. The language {a} over
{a, b} mets the upper bounds (3, 2, 3) and {a} as a unary language meets the
upper bounds (3, 1, 2). Row (2a) in Table 2 displays the binary case.

(5) L is neither open nor closed; L⊕ is clopen and L+⊕ = L⊕

Let L be a factor-free language over an alphabet Σ satisfying the conditions in
case (5). Then L �= {ε}, and by Proposition 2, we have L⊕ = L ∩ Σ. Since L⊕

is closed, we must have L⊕ = ∅, so sc(L⊕) = 1 and sc(L⊕ ∪ {ε}) = 2. Next,
by Proposition 1, sc(L∗) ≤ n − 1 if |Σ| ≥ 2, and sc(L∗) ≤ n − 2 if |Σ| = 1.
The binary generator {an−2} meets the upper bounds (n, n − 1, 2, 1). In the
unary case, the upper bounds (n, n − 2, 2, 1) are met by the unary subword-free
generator {an−2}. Row (5) in Table 2 displays the binary case.

(6) L is neither open nor closed; L+ is open but L⊕ is not closed; L⊕+ �= L+

Let L be a factor-free language satisfying (6). In particular, we have L �= ∅, L �=
{ε}, and L+ is open. Notice that ua ∈ L implies a ∈ L because otherwise we
would have u ∈ L+c and a ∈ L+c, so L+ would not be open. It follows that L
contains no string of length at least two. Hence L ⊆ Σ. However then L = L⊕, a
contradiction with the assumption that L is not open. Therefore the Kuratowski
algebra in case (6) cannot be generated by any factor-free language.

(8) L is neither open nor closed; L⊕ is not closed; L+ is not open; L+⊕ = L⊕+

Let L be a factor free language satisfying (8). By Proposition 1, we have sc(L∗) ≤
n − 1. Let Γ = L ∩ Σ. Then L⊕ = Γ by Proposition 2. Since L⊕ is not closed,

Kuratowski Algebras Gen. by Factor-, Subword-, and Suffix-Free Languages 195

we must have Γ �= ∅. Therefore sc(L⊕) = sc(Γ) = 3, sc(L⊕∗) = sc(Γ ∗) ≤ 2,
and sc(L⊕+) = sc(Γ+) ≤ 3. Next, let L = {a, bn−2}. Then L⊕ = {a}, so L is
not open. Since we have aa ∈ L+ \ L and aa ∈ L⊕+ \ L⊕, the languages L and
L⊕ are not closed. Since bn−2 ∈ L+ \ L+⊕, the language L+ is not open. By
Proposition 2, L⊕+ = L+⊕. Hence {a, bn−2} is a binary subword-free generator
of case (8), and notice that it maximizes all the corresponding complexities. In
the unary case, we must have L = {an−2}. Then L⊕ = ∅ or L⊕ = L, so L does
not satisfy (8). Row (8) in Table 2 displays the binary case.

(9) L is neither open nor closed; L⊕ is not closed; L+ is not open; L+⊕ �= L⊕+

If L is a factor-free language satisfying (9), then L �= {ε}. However, then L+⊕ =
L⊕+ by Proposition 2, so L cannot generate case (9).

4 Suffix-Free Languages

Now we turn our attention to suffix-free languages. Since reversal commutes
with complementation and star, whenever an algebra is generated by a prefix-
free language, it is also generated by a suffix-free language. However, while the
complexities of L∗ and L∗c∗ in the prefix-free case are at most n and 2n−3 +
2, respectively, for a suffix-free language, the complexity of L∗ may be up to
2n−2 +1, and the complexity of L∗c∗ is not known. The exact complexity of this
combined operation is not known even in the general case of regular languages
[11].

Surprisingly, we need the language L∗c∗ only in case (9), and this is the only
case which is left open in this paper. In every other case, we are able to compute
the maximal complexities of all the generated languages. Next, again surpris-
ingly, the complexities of L⊕, L⊕+, and L⊕∗ are at most n, and a DFA for L⊕

can be obtained from a DFA for L just by omitting the non-final states. Finally,
it is interesting that in most cases, all the complexities cannot be maximized by
a single generator.

We start with a very useful Cmorik’s lemma which helps us easily prove
the suffix-freeness of our generators. Then we state and prove some observations
concerning suffix-free languages; let us recall that a minimal DFA for a suffix-free
language is non-returning.

Lemma 3 [5, Lemma 1]. Let A be a non-returning DFA that has a unique final
state. If each state of A, except for the dead state, has at most one in-transition
on every input symbol, then L(A) is suffix-free.

Lemma 4. Let ε /∈ L and L ∩ Σ = ∅. Then L⊕ = ∅ and L+⊕ = ∅.
Proof. If L = ∅, then L⊕ = ∅. Otherwise let w be a non-empty string in L. Then
w can be partitioned into one-symbol strings that are in Lc. Thus w /∈ L⊕, and
we have L⊕ = ∅. If L∩Σ = ∅, then also L+ ∩Σ = ∅, and by the same argument
L+⊕ = ∅. �

Lemma 5. Let n ≥ 3 and L be a suffix-free language accepted by a minimal
non-returning DFA A = ({s, 1, 2, . . . , n − 2, qd}, Σ, ·, s, F). Then

196 J. Jirásek Jr. et al.

(a) sc(Lc+) ≤ n;
(b) sc(L⊕) ≤ |F | + 2;

(c1) L is open if and only if F = {1, 2, . . . , n − 2};
(c2) if L is open, then sc(L+) ≤ sc(L);
(d) sc(L⊕+) ≤ n;
(e) L+ is open if and only if L+ is weakly-prefix-closed;
(f) sc(L+) ≤ 2n−2 + 1 and sc(L∗) ≤ 2n−2 + 1.

Proof. (a) Let w ∈ Σ∗. If w ∈ Lc then w ∈ Lc+. If w ∈ L and some non-empty
prefix u of w is in Lc, that is, w = uv with u �= ε and u ∈ Lc, then v ∈ Lc since
L is suffix-free. Hence w ∈ Lc+. It follows that an n-state DFA for Lc+ can be
constructed from A as follows:

• interchange final and non-final states of A;
• in each final state p of the resulting DFA, except for the initial state, replace

each out-transition (p, a, q) with the loop (p, a, p).
(b) Since L⊕ = Lc+c, we get an n-state DFA for L⊕ by complementing the

DFA obtained in case (a). It follows that all non-final states of A, except for the
initial state s, are dead in the DFA for L⊕, so sc(L⊕) ≤ |F | + 2.

(c1) The language L is open if and only if L = L⊕. By the construction in
case (b), this holds if and only if F = {1, 2, . . . , n − 2}.

(c2) To get an NFA for L+, we add the transitions (q, a, s · a) for each final
state q and each input symbol a. If s · a = qd, then we can remove the transition
(q, a, qd) since it is not used in any accepting computation. Otherwise, we have
s · a ∈ F, and we must have q · a = qd because otherwise L would not be suffix-
free. Hence we can remove the transition (q, a, qd) for the same reason as above.
The resulting automaton is deterministic and has n states.

(d) We have L⊕ ⊆ L, so L⊕ is a suffix-free language. Since L⊕ is open, we
get sc(L⊕+) ≤ n by (c2) and (b).

(e) Assume that L+ is open. Let w ∈ L+, w = uv and u �= ε. If w ∈ L, then
v /∈ L and also v /∈ L+, since is L is suffix-free. Thus v ∈ L+c, and therefore
u /∈ L+c since L+ is open. Hence u ∈ L+. If w = w1w2 · · · wk with k ≥ 2 and
wi ∈ L, and u is a non-empty prefix of w, then u = w1w2 · · · wi−1x where x is a
non-empty prefix of wi. As shown above, we have x ∈ L+. Therefore u ∈ L+. It
follows that L+ is weakly-prefix-closed.

Conversely, assume that L+ is weakly-prefix-closed. Suppose for a contradic-
tion that there is a string w in L+ such that w /∈ L+⊕. Then w = w1w2 · · · wk

with k ≥ 2 and wi ∈ L+c and wi �= ε. Since L+ is weakly-prefix-closed, we must
have w1 ∈ L+, a contradiction.

(f) To get an NFA for L+ from the DFA A, we first remove the dead state d,
and then we add the transition (q, a, s · a) for each final state q and each input
symbol a such that s · a �= d. The resulting NFA is non-returning, so its subset
automaton is non-returning and it has at most 2n−2 +1 reachable states. To get
a DFA for L∗, we only make the initial state of the subset automaton final. �

Now we inspect the individual cases of possible Kuratowski algebras gener-
ated, this time, by suffix-free languages. Our aim is to get the results shown in
Table 3. Cases (1a) and (1b) are analogous to the previous section.

Kuratowski Algebras Gen. by Factor-, Subword-, and Suffix-Free Languages 197

Table 3. Suffix-free generators of Kuratowski algebras maximizing complexities of
corresponding generated languages. Cases (2b), (3a), (3b), (4), and (7) cannot be gen-
erated by any suffix-free language

Case E(L) Upper bounds on
state complexities

Suffix-free
generator

(1a) L, L \ {ε} 2, 1 ε

(1b) L, L ∪ {ε} 1, 2 ∅
(2a) L, L∗, L+ n, n, n Fig. 1

(5) L, L∗, L⊕ ∪
{ε}, L⊕

n, 2n−2 + 1, 2, 1 Fig. 2

(6) L, L∗, L+,
L⊕, L⊕∗, L⊕+

n, 2n−3 +
2, 2n−3 + 2,
n − 1, n − 1, n − 1

Fig. 3 (top) Fig. 3
(bottom)

(8) L, L∗, L⊕, L+⊕ ∪ {ε}, L+⊕ n, 2n−2 + 1,
n − 1, n − 1, n − 1

Fig. 4 (top) Fig. 4
(bottom)

(9) L, L∗,
L+⊕ ∪ {ε}, L+⊕,
L⊕, L⊕∗, L⊕+

n, 2n−2 + 1,
23n logn, 23n logn,
n − 1, n − 1, n − 1

Fig. 5 (top) ?
Fig. 5 (bottom)

(2a) L is open, L is not closed, ε /∈ L
Since L is open, we have sc(L+) ≤ n by Lemma 5 (c2). To get an n-state DFA
for L∗, we only make the initial state s final in the DFA for L+ obtained in
Lemma 5 (c2). Let L be the ternary suffix-free language accepted by the DFA
shown in Fig. 1. By Lemma 5 (c1), L is open. Since aa ∈ L+ \L, L is not closed.
Thus L satisfies the conditions (2a). We have sc(L) = sc(L∗) = sc(L+) = n since
the final states in {1, 2, . . . , n − 2} can be distinguished by strings in b∗, and in
the case of L∗, the final states s and n − 2 are distinguished by c. This gives the
results in row (2a) of Table 3.

s 1 2 . . . n−3 n−2 qd

a, b, c

a b b b b

c

Fig. 1. A suffix-free generator of the Kuratowski algebra in case (2a); the transitions
not shown are going to the dead state qd.

(5) L is neither open nor closed; L⊕ is clopen and L+⊕ = L⊕

Since L is neither open nor closed, we have L �= ∅ and L �= {ε}. Thus ε /∈ L. Next
L⊕ ⊆ L, so L⊕ is suffix-free. Moreover L⊕ is assumed to be clopen, therefore
L⊕ = ∅ or L⊕ = {ε}. Since ε /∈ L, we must have L⊕ = ∅. Hence sc(L⊕ ∪{ε}) = 2
and sc(L⊕ \ {ε}) = 1. Next we have sc(L∗) ≤ 2n−2 + 1 by Lemma 5 (f). Let

198 J. Jirásek Jr. et al.

L be the language accepted by the DFA A shown in Fig. 2. By Lemma 3, L is
suffix-free. We can show that L is the desired generator.

s 1 2 . . . n−3 n−2 qd

a, b, c

a b

c

b

a, c

b b

a, c a

b

Fig. 2. A suffix-free generator of the Kuratowski algebra in case (5); the transitions
not shown are going to the dead state qd.

(6) L is not open, L is not closed, L+ is open, L⊕ is not closed, L⊕+ �= L+

Let L be accepted by a minimal DFA A = ({s, 1, . . . , n− 2, qd}, Σ, ·, s, F). First,
we prove that sc(L∗) ≤ 2n−3 +2 in this case. If L satisfies the conditions in case
(6), then L+ is open. By Lemma 5 (e), L+ is weakly-prefix-closed. Construct an
NFA N for L+ from A by adding the transitions (q, a, s · a) for each final state
q and each input symbol a.

In the subset automaton of the NFA N , each reachable non-final subset,
except for the initial subset, must be dead since L+ is weakly-prefix-closed. We
can show that no reachable subset contains two final states of A. Hence the
subset automaton has at most |F | · 2n−|F |−2 reachable pairwise distinguishable
states. This is at most 2n−3 + 2, and to meet this bound, |F | must be 1 or 2. To
get a DFA for L∗, we make the initial state final in the subset automaton of the
NFA N .

Now consider L⊕. By Lemma 5 (b), we have sc(L⊕) ≤ |F | + 2. Thus sc(L⊕)
is maximal if F = {1, 2, . . . , n−2}. However, then L would be open by Lemma 5
(c1). Therefore we have sc(L⊕) ≤ n − 1. Notice that if n ≥ 6, then there is no
language that maximizes both the complexities of L+ and L⊕.

We can show that the suffix-free generator accepted by the DFA A shown in
Fig. 3 (top) maximizes the complexities of L+ and L∗, and the suffix-free genera-
tor accepted by the DFA B shown in Fig. 3 (bottom) maximizes the complexities
of the remaining languages in E(L).

(8) L is neither open nor closed; L⊕ is not closed; L+ is not open; L+⊕=L⊕+

Let L be a suffix-free generator in case (8). We can show that the complexities
of the generated languages are as in the corresponding row of Table 3. Similarly
as in case (6) we can show that the upper bounds on the complexity of L∗ and
L⊕ cannot be met by a single generator. The suffix-free generator accepted by
the DFA A shown in Fig. 4 (top) maximizes the complexity of L∗, and the suffix-
free generator accepted by the DFA B shown in Fig. 4 (bottom) maximizes the
complexities of the remaining languages in E(L).

Kuratowski Algebras Gen. by Factor-, Subword-, and Suffix-Free Languages 199

A: s 1 2 . . . n−3 n−2 qd

a, b, c

a a

b

a, b a, b a, b

c

B: s 1 2 3 4 . . . n−2 qd

a, b, c, d

a

c

a b b b b

d d de

Fig. 3. Suffix-free generators of the Kuratowski algebra in case (6); the transitions not
shown are going to the dead state qd.

A: s 1 2 . . . n−3 n−2 qd

a, b, c

a a, c

b

a, b

c

a, b

c
c

c a

B: s 1 2 3 . . . n−2 qd

a, b, c, d

c

a

d b b b

d

Fig. 4. Suffix-free generators of the Kuratowski algebra in case (8); the transitions not
shown are going to the dead state qd.

A: s 1 2 . . . n−3 n−2 qd

a, b, c

a a, c

b

a, b a, b a, b

c c c

c

B: s 1 2 3 . . . n−2 qd

a, b, c, d

b

a

b

c

b

c c

d d d

Fig. 5. Suffix-free generators of the Kuratowski algebra in case (9); the transitions not
shown are going to the dead state qd.

(9) L is neither open nor closed; L⊕ is not closed; L+ is not open; L+⊕ �= L⊕+

Since the complexity of L∗c∗ is not known for suffix-free languages, this part of
case (9) remains open. The suffix-free generator accepted by the DFA A shown
in Fig. 5 (top) maximizes the complexity of L∗, and the suffix-free generator

200 J. Jirásek Jr. et al.

accepted by the DFA B shown in Fig. 5 (bottom) maximizes the complexities of
L⊕, L⊕∗, L⊕+.

5 Conclusions

We investigated Kuratowski algebras generated by factor-, subword-, and suffix-
free languages under the operations of star and complement. For each of these
three classes and each of the 12 possible algebras we either showed that this
algebra cannot be generated by a language in this class, or we gave a regular
generator. For each of the possible algebras, we gave upper bounds on the state
complexities of the generated languages. For factor- and subword- free languages,
all the upper bounds can be met simultaneously by a single generator.

This also holds for cases (1a), (1b), (2a), and (5) for suffix-free languages. In
cases (6) and (8), not all upper bounds can be met simultaneously. We gave exam-
ples of generators maximizing each of the upper bounds separately. In case (9),
we were unable to find an automaton maximizing the complexity of L+⊕ ∪ {ε}
and L+⊕, here we only gave upper bounds.

References

1. Brzozowski, J.A.: Kuratowski algebras generated from L by applying the operators
of Kleene closure and complement. Personal communication (2016)

2. Brzozowski, J.A., Grant, E., Shallit, J.: Closures in formal languages and
Kuratowski’s theorem. Internat. J. Found. Comput. Sci. 22(2), 301–321 (2011)

3. Brzozowski, J., Jirásková, G., Liu, B., Rajasekaran, A., Szyku�la, M.: On the state
complexity of the shuffle of regular languages. In: Câmpeanu, C., Manea, F., Shallit,
J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 73–86. Springer, Cham (2016). doi:10.
1007/978-3-319-41114-9 6

4. Brzozowski, J.A., Jirásková, G., Zou, C.: Quotient complexity of closed languages.
Theory Comput. Syst. 54(2), 277–292 (2014)

5. Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In:
Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.)
MEMICS 2011. LNCS, vol. 7119, pp. 94–102. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-25929-6 9

6. Fife, J.H.: The Kuratowski closure-complement problem. Math. Mag. 64, 180–182
(1991)

7. Han, Y., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theor. Comput. Sci. 410(27–29), 2537–2548 (2009)

8. Han, Y., Salomaa, K., Wood, D.: Operational state complexity of prefix-free regular
languages. In: Ésik, Z., Fülöp, Z. (eds.) Automata, Formal Languages, and Related
Topics, pp. 99–115. Institute of Informatics, University of Szeged, Szeged (2009)

9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory Languages and
Computation. Addison-Wesley, Boston (1979)

10. Jirásek, J., Šebej, J.: Kuratowski algebras generated by prefix-free languages. In:
Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 150–162. Springer,
Cham (2016). doi:10.1007/978-3-319-40946-7 13

http://dx.doi.org/10.1007/978-3-319-41114-9_6
http://dx.doi.org/10.1007/978-3-319-41114-9_6
http://dx.doi.org/10.1007/978-3-642-25929-6_9
http://dx.doi.org/10.1007/978-3-642-25929-6_9
http://dx.doi.org/10.1007/978-3-319-40946-7_13

Kuratowski Algebras Gen. by Factor-, Subword-, and Suffix-Free Languages 201

11. Jirásková, G., Shallit, J.: The state complexity of star-complement-star. In:
Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 380–391. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31653-1 34

12. Kuratowski, K.: Sur l’operation Ā de l’analysis situs. Fundam. Math. 3, 182–199
(1922)

13. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston
(2012)

14. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A., et al. (eds.) Handbook
of Formal Languages, Volume 1 Word, Language, Grammar, pp. 41–110. Springer,
Heidelberg (1997)

http://dx.doi.org/10.1007/978-3-642-31653-1_34

Branching Measures and Nearly Acyclic NFAs

Chris Keeler and Kai Salomaa(B)

School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada
{keeler,ksalomaa}@cs.queensu.ca

Abstract. To get a more comprehensive understanding of the branch-
ing complexity of nondeterministic finite automata (NFA), we introduce
and study the string path width and depth path width measures. The
string path width on a string w counts the number of all complete com-
putations on w, and the depth path width on an integer � counts the
number of complete computations on all strings of length �. We give an
algorithm to decide the finiteness of the depth path width of an NFA.
Deciding finiteness of string path width can be reduced to the corre-
sponding question on ambiguity.

An NFA is nearly acyclic if any computation can pass through at most
one cycle. The class of nearly acyclic NFAs consists of exactly all NFAs
with finite depth path width. Using this characterization we show that
the finite depth path width of an m-state NFA over a k-letter alphabet
is at most (k + 1)m−1 and that this bound is tight. The nearly acyclic
NFAs recognize exactly the class of constant density regular languages.

1 Introduction

Finite automata are a fundamental model of computation that has been exten-
sively studied since the 1950s. The last decades have seen much work on the
descriptional complexity, or state complexity, of regular languages [8,9,25].

The degree of ambiguity of a nondeterministic finite automaton (NFA) A
on a string w is the number of accepting computations of A on w. Raviku-
mar and Ibarra [19] have first studied systematically the size-trade-offs between
NFAs of different degrees of ambiguity. Leung [15] has shown that general NFAs
can be exponentially more succinct than polynomially ambiguous NFAs, and
Hromkovič and Schnitger [11] have established a descriptional complexity sepa-
ration between polynomially ambiguous and finitely ambiguous NFAs.

The degree of ambiguity is defined in terms of the number of accepting
computations, and does not directly limit the total amount of nondetermin-
ism in a computation. The computation of an unambiguous NFA may include
an unbounded number of nondeterministic steps, as long as at each nondeter-
ministic step, only one choice can lead to acceptance. The tree width 1 (a.k.a. leaf
size) measure counts the number of leaves of the computation tree [10,17,18].
Other measures of nondeterminism for finite automata have also been consid-
ered [6–8,10,18].
1 Note that this is not the same as the graph theory notion of tree width.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 202–213, 2017.
DOI: 10.1007/978-3-319-60252-3 16

Branching Measures for NFAs 203

We study a measure called string path width that counts the number of
complete accepting and non-accepting computations of an NFA on a given string.
The string path width can be viewed as a blending between the tree width
measure and the degree of ambiguity. For certain NFAs, the string path width is
the same as tree width, and for others the same as ambiguity. In fact, Goldstine
et al. [6] have defined ‘ambiguity’ as the number of complete computations, which
coincides with our notion of string path width. The degree automata [13] extend
these notions by considering the ratio of the number accepting computations
and the number of all computations on a given string.

To get a more comprehensive understanding of the degree of branching2 of an
NFA, we introduce the depth path width measure, which counts the total number
of complete computations on all inputs of a given length. We establish necessary
and sufficient conditions for an NFA to have infinite depth path width. These
conditions are based on the existence of cycles satisfying certain requirements.
This characterization yields a polynomial time algorithm to decide whether or
not the depth path width of an NFA is bounded. Finiteness of string path width
can be decided with existing algorithms from the literature [24].

It is well known that acyclic finite automata characterize exactly the finite
languages. We characterize regular languages having bounded depth path width
by an extension of acyclic NFAs, called nearly acyclic NFAs. An NFA A is said
to be nearly acyclic if A, roughly speaking, it does not contain two distinct cycles
where a state of one cycle is reachable from the other cycle.

We show that there exists an m-state nearly acyclic NFA over a k-letter
alphabet having depth path width (k + 1)m−1, and that this is an upper bound
for all m-state NFAs over a k-letter alphabet having finite depth path width.
Finally, we show that nearly acyclic NFAs recognize exactly the regular languages
of bounded density [21]. For nearly acyclic DFAs we have a stronger correspon-
dence: any DFA recognizing a bounded density language must be nearly acyclic.

2 Preliminaries

Here we recall and introduce some notation and definitions. More information
on finite automata can be found e.g. in [22,25]. The set of strings over a finite
alphabet Σ is Σ∗, and ε is the empty string. The cardinality of a finite set F is
denoted |F | and N is the set of non-negative integers.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F)
where Q is the finite set of states, Σ is the input alphabet, δ : Q×Σ → 2Q is the
transition function, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states.
The transition function δ is in the usual way extended as a function Q×Σ∗ → 2Q,
and the language recognized by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅}. If
|δ(q, b)| ≤ 1 for all q ∈ Q and b ∈ Σ, the automaton A is a deterministic
finite automaton (DFA). Note that we allow NFAs and DFAs to have undefined
2 Here and in the title of the paper by “branching” we mean an informal notion of path
expansion in computations. A specific technical notion called branching is considered
by Goldstine et al. [7].

204 C. Keeler and K. Salomaa

transitions. Our definition does not allow multiple start states or ε−transitions.
Unless otherwise mentioned, we always assume that an NFA does not have any
unreachable states.

A (state) path of the NFA A with underlying string w = b1b2 · · · bk, bi ∈ Σ,
i = 1, . . . , k, k ≥ 0, is a sequence of states (p0, p1, . . . , p�), where pj ∈ δ(pj−1, bj),
j = 1, . . . �, and either � = k, or, � < k and δ(p�, b�+1) = ∅. That is, the path must
read the entire underlying string unless it encounters an undefined transition.
Two paths are equal if and only if they have the same sequence of states and
underlying string.

A path beginning in the start state q0, is a computation of A on the under-
lying string w. A computation (q0, p1, . . . , p�) is a complete computation on a
string b1b2 · · · bk if � = k. An accepting computation is a complete computation
that ends in an accepting state of F . The set of all (not necessarily complete)
computations of A on the string w is denoted compA(w).

Intuitively, a computation of A on a string w is a sequence of states that A
reaches when started with the initial state and the symbols of w are read one
by one. A complete computation ends with a state reached after consuming all
symbols of w. An incomplete computation ends with a state where the transition
on the next symbol of w is undefined.

The length of a path C1 = (p0, p1, . . . , p�) is |C1| = � (the number of tran-
sitions). The catenation of C1 and a path C2 = (p�, p

′
1, . . . p

′
m) is C1 · C2 =

(p0, . . . , p�, p
′
1, . . . p

′
m). That is, paths C1 and C2 can be catenated if C1 ends

with the first state of C2.
A path (p0, p1, . . . , pk), k ≥ 1, with underlying string b1b2 · · · bk is a cycle if

p0 = pk. A cycle with one transition from a state to itself is called a self-loop. (A
path of length zero with no transitions is not a cycle.) An NFA with no cycles
is called an acyclic NFA (aNFA).

Cycles that are obtained from each other by a cyclical shift are said to be
equivalent: For 0 < i < k, the above cycle (with p0 = pk) is equivalent to the
cycle (pi, . . . , pk, p1, . . . pi−1, pi) having underlying string bi+1 · · · bkb1 · · · bi.

We define path trees that represent all computations of an NFA on all strings
of a given length. Note that this is different than the notion of computation
trees [10,17], which represent all computations of an NFA on a given string w.
For � ∈ N, the path tree of an NFA A = (Q,Σ, δ, q0, F) of depth �, TA,�, is a finite
tree where the nodes are labelled by elements of Q and the edges are labelled by
elements of Σ, defined inductively as follows:

– TA,0 consists of a single node labelled by q0.
– Consider � ≥ 1 and let leaf(� − 1) be the set of leaf nodes of TA,�−1 having

distance � − 1 from the root. If an x ∈ leaf(� − 1) is labelled by q ∈ Q, then
for each c ∈ Σ and q′ ∈ δ(q, c), in the tree TA,� we add to node x a child y
labelled by q′, and the edge between x and y is labelled with c.

The pruned path tree of depth �, T p
A,�, is obtained from TA,� by recursively

removing all leaf nodes which have distance smaller than � from the root node.
The degree of ambiguity of an NFA A on a string w, da(A,w) [8,19], is the

number of accepting computations of A on w, and the tree width of A on w,

Branching Measures for NFAs 205

tw(A,w) [10,17], is the number of (not necessarily complete) computations of A
on w. Note that Hromkovič et al. [10] call this “leaf size”. Tree width is usually
defined as the number of leaves of the computation tree of A on w. This quantity
is identical to the cardinality of the set compA(w).

For � ≥ 0, the degree of ambiguity (respectively, tree width) of A on strings
of length � is defined as da(A, �) = max{da(A,w) | w ∈ Σ�} (respectively,
tw(A, �) = max{tw(A,w) | w ∈ Σ�}). Strictly speaking, using common practice,
we use da(A, ·) (and tw(A, ·)) to denote two different functions where one takes
a string and the other an integer as argument.

The ambiguity (respectively, the tree width) of the NFA A is said to be finite
if the above values are bounded for all � ∈ N, and in this case, the degree of
ambiguity (respectively, the tree width) of A is denoted dasup(A) (respectively,
twsup(A)).

3 String Path Width and Depth Path Width

We consider measures that count the number of complete computations on a
given string and on all strings of given length, respectively.

In the following, A = (Q,Σ, δ, q0, F) is always an NFA. The string path width
of A on a string w ∈ Σ∗, SPW(A,w), is defined as the number of complete
computations of A on w. For � ∈ N, the string path width of A on strings of
length � is SPW(A, �) = max{SPW(A,w) | w ∈ Σ�}, and when this value is
bounded, the string path width of A is denoted SPWsup(A).

Example 1. For the NFA A1 given in Fig. 1:

– SPW(A1, ab) = 2, complete computations {(0, 1, 0), (0, 1, 2)}
– SPW(A1, aaaa) = 1, complete computations {(0, 1, 0, 1, 0)}
– Generally, SPW(A1, (ab)x) = x + 1, x ∈ N �

0 1 2

a

a,b

b

a,b

Fig. 1. NFA A1

In fact, Goldstine et al. [6] have defined ‘ambiguity’ as the number of complete
computations, which coincides with our notion of string path width. The string
path width can be viewed as a blend between ambiguity and tree width in the
sense of the following lemma. Since string path width counts only complete
computations while tree width counts all computations, the string path width
of an NFA A on a string w will always be at most the tree width of A on w.

206 C. Keeler and K. Salomaa

Lemma 1. Consider an NFA A = (Q,Σ, δ, q0, F) and let w ∈ Σ∗.

(i) da(A,w) ≤ SPW(A,w) ≤ tw(A,w).
(ii) If A has no undefined transitions, that is, δ(q, b) �= ∅ for all q ∈ Q, b ∈ Σ,

then SPW(A,w) = tw(A,w).
(iii) If all states of A are final, then SPW(A,w) = da(A,w).

Since string path width is, in the sense of Lemma1 (iii), a special case of
degree of ambiguity, from algorithms and bounds for ambiguity we get cor-
responding results for string path width. This is established using the trans-
formation of the following lemma. In general, the transformed automaton is
not equivalent to the original. Note that Lemma 1 (ii) gives a correspondence
between string path width and tree width, but this cannot be used in a similar
way because the corresponding transformation changes the string path width of
the NFA.

Lemma 2. Given an NFA A = (Q,Σ, δ, q0, F), we can construct in linear time
an NFA A′ such that da(A′, w) = SPW(A,w) for all strings w ∈ Σ∗.

Using Lemma 2, and the results by Weber and Seidl [24], we get:

Corollary 1 [24]. Let A = (Q,Σ, δ, q0, F) be an NFA.

(i) In time O(|Q|6 · |Σ|), a random-access-machine can decide whether or not
SPWsup(A) is finite, and in the positive case, SPWsup(A) ≤ 5

|Q|
2 · |Q||Q|.

(ii) The growth rate of SPW(A, �) is either bounded by a constant, polynomial
in �, or exponential in �. If the growth rate is polynomial, the degree of the
polynomial can be decided in O(|Q|6 · |Σ|) time.

(iii) It can be decided in O(|Q|4 · |Σ|) time whether or not the growth rate of
SPW(A, �) is exponential.

Also, it is known that for a fixed k and a given NFA A it can be decided in
polynomial time whether dasup(A) (and consequently whether SPWsup(A)) is at
least k, but the question for degree of ambiguity becomes PSPACE-complete if
k is part of the input [3].

Next we introduce the depth path width of an NFA as the number of all
complete computations of a given length. This metric can be viewed as a broader
version of the string path width; while the string path width counts the number
of computations on a specific string, the depth path width considers all strings
of the same length.

Consider an NFA A = (Q,Σ, δ, q0, F) and let � ∈ N. The depth path width of
A on strings of length � is

DPW(A, �) =
∑

w∈Σ�

SPW(A,w).

The depth path width of the NFA A is defined as DPWsup(A) =
sup
�∈N

(DPW(A, �)).

Branching Measures for NFAs 207

Example 2. For the DFA A2 = (Q,Σ, δ, q0, F) given in Fig. 2:

– DPW(A2, 1) = 2, complete computations (0, 0) on a, (0, 1) on b.
– Generally, DPW(A2, �) = � + 1, � ∈ N. �

0 1

a

b

a

Fig. 2. DFA A2

Directly from the definition it follows that for NFAs over a unary alphabet,
the notion of depth path width coincides with string path width.

We give the necessary and sufficient conditions for an NFA to have unbounded
depth path width. For this we use the correspondence between depth path width
and the number of leaves in path trees (defined in Sect. 2).

Lemma 3. Consider an NFA A and � ∈ N. The value DPW(A, �) is equal to
the number of leaves of the pruned path tree T p

A,�.

Intuitively, the conditions of Theorem1 mean that q1 and q2 belong to a cycle
and the state q1 has another transition to a state q3 such that the computations
originating from q3 are defined on infinitely many strings. Here q3 may or may
not belong to the same cycle as q1 and q2. If q2 = q3, then the alphabet symbols
a and b must be distinct.

Theorem 1. Consider an NFA A = (Q,Σ, δ, q0, F). The depth path width of A
is unbounded if and only if the following holds:

There exist q1, q2, q3 ∈ Q and a, b ∈ Σ, where q2 �= q3 or a �= b, such that

(i) q2 ∈ δ(q1, a) and state q1 is reachable from q2, and,
(ii) q3 ∈ δ(q1, b) and the language of the NFA A′ = (Q,Σ, δ, q3, Q) is infinite.

Proof. First assume that conditions (i) and (ii) hold. Let C1 be a computation
from q0 to q1 (recall that we assume that NFAs have no unreachable states). Let
C2 be a cycle from q1 back to q1 that begins with the transition on a to q2.

To show that DPWsup(A) is infinite, it is sufficient to show that for all M ∈ N

there exists � such that DPW(A, �) ≥ M . By condition (ii) there exists a path
CM having length M · |C2| that begins in q1 with the transition on b to q3. Now
A has M different computations of length |C1| + M · |C2|:

C1 · Ci
2 · Di, i = 0, 1, . . . , M − 1,

where Di is an initial part of the path CM having length (M − i) · |C2|. Note
that the above are all distinct computations because the transitions from q1 to
q2 on a and from q1 to q3 on b are distinct.

208 C. Keeler and K. Salomaa

We sketch the proof in the “only if” direction: If DPWsup(A) is infinite, using
Lemma 3 we see that the number of leaves of the pruned path tree T p

A,� can be
chosen arbitrarily large for sufficiently large �. When some state of A repeats on
a path from the root to a leaf, we get a cycle and states satisfying conditions (i)
and (ii). �

The conditions of Theorem 1 yield a polynomial time algorithm to test
whether the depth path width of an NFA is infinite.

Theorem 2. If A is an NFA with m states over an alphabet Σ, we can decide
in time O(|Σ| · m5) whether or not the depth path width of A is infinite.

Proof. Algorithm 1 checks the conditions of Theorem1. Creating the copy of

Algorithm 1. Deciding if an NFA has infinite depth path width
1: Let A = (Q, Σ, δ, q0, F) be an NFA where |Q| = m.
2: Create a copy of A and call it A′, where all states of A′ are final.
3: Create a distance matrix M , where M [q, q′] is the minimum distance from state

q ∈ Q to state q′ ∈ Q.
4: infinityCondition = False
5: for all q1 ∈ Q do
6: for all q2 ∈ δ(q1, a) and q3 ∈ δ(q1, b) such that (q2 �= q3 or a �= b) do
7: if M [q2, q1] �= ∞ then
8: Set initial state of A′ to be q3
9: if L(A′) is infinite then
10: infinityCondition = True
11: end if
12: end if
13: end for
14: end for
15: return infinityCondition

the NFA A takes Θ(m + |δ|) time. Creating the adjacency matrix takes Θ(m3)
time and Θ(m2) space using the Floyd-Warshall algorithm [5]. The two for all
statements multiply the inner complexity by Θ(m3), as there are m3 triples
of the form (q1, q2, q3). Checking whether L(A′) is infinite takes O(m + |δ|)
time using Tarjan’s Strongly Connected Components algorithm [23]. So the
worst-case runtime is O(m + |δ| + m3 + m3 · (m + |δ|)) which simplifies to
O(|Σ| · m5). �

4 Depth Path Width of Nearly Acyclic NFAs

We want to derive an upper bound for the finite depth path width of an m-state
NFA. First we develop bounds for the depth path width measure of acyclic NFAs
where the depth path width is naturally guaranteed to be finite.

Branching Measures for NFAs 209

Proposition 1. Let A be an m-state unary aNFA. Then DPWsup(A) ≤(m−1
� m−1

2 �
)
.

Note that the result of Proposition 1 indicates that the largest possible depth
path width of an m-state aNFA is obtained by strings of length, roughly, m
divided by two.

We now extend the result for arbitrary alphabet sizes.

Theorem 3. Let A be an m-state aNFA. Then

DPWsup(A) ≤ sup
� m−1

2 �≤�≤m−1

k� ·
(

m − 1
�

)
.

The upper bound can be improved for acyclic DFAs (aDFA).

Corollary 2. For an aDFA D with m states and k alphabet characters, the
depth path width of D is at most km−1.

It is easy to verify that an NFA A does not satisfy the conditions of Theorem 1
if and only if A does not have two non-equivalent cycles where one is reachable
from the other. (Two cycles are equivalent if they are obtained from each other
by a cyclical shift, see Sect. 2.) This condition forms the basis for the following
definition.

Definition 1. An NFA A is nearly acyclic (naNFA) if it does not have two
non-equivalent cycles, C1 and C2, such that a state of C2 is reachable from a
state of C1. An naNFA with a deterministic transition function is called a nearly
acyclic DFA (naDFA).

By Theorem 1, Definition 1 gives the most general class of NFAs that have
finite depth path width. The influence of cycles that are reachable from one
another is considered in a more general way by Msiska and van Zijl [16].

The limitation on the reachability between cycles implies a limitation on the
number of (non-equivalent) cycles in a nearly acyclic NFA.

Lemma 4. An m-state naNFA has at most (m − 1) cycles.

The naNFAs with a maximal number of acyclic transitions and one self-loop
on the initial state turn out to be useful for obtaining bounds for depth path
width.

Definition 2. An m-state initial self-loop maximal nearly acyclic NFA, an
imax-naNFA, over an alphabet Σ has the set of states {0, 1, . . . ,m − 1} where 0
is the start state, there exists a transition on each alphabet symbol from i to j
for all 0 ≤ i < j ≤ m − 1, and 0 has a self-loop.

The transitions of an imax-naNFA are uniquely determined, except for the
self-loop on the initial state, which can be on an arbitrary element of Σ. (If
needed we could specify the symbol labelling the self-loop.) Also, for purposes
of depth path width, the set of final states can be arbitrary. In Fig. 3 illustrating
an m-state imax-naNFA, we use m − 1 as the only final state.

We calculate the depth path width of imax-naNFAs as a function of the
number of states and alphabet size.

210 C. Keeler and K. Salomaa

0 1 m-2 m-1
c1, . . . , ck

c1, . . . , ck

c1, . . . , ck

c

c1, . . . , ck

. . . c1, . . . , ck

Fig. 3. An m-state imax-naNFA with alphabet {c1, . . . , ck}.

Lemma 5. An m-state imax-naNFA over a k-letter alphabet has depth path
width (k + 1)m−1.

Since acyclic DFAs are a special case of nearly acyclic DFAs, we can use the
value acquired in Corollary 2 as a lower limit on the upper bound for the depth
path width of an naDFA.

Theorem 4. For m ∈ N, there exists an m-state nearly acyclic DFA over a
k-letter alphabet having depth path width km−1.

Lemma 5 gives the depth path width of imax-naNFAs. From Lemma4 we
recall that an naNFA can have multiple cycles, however, it seems plausible that
an m-state imax-naNFA could have maximal depth path width among all m-
state naNFAs. This is established in the following lemmas.

Lemma 6. Let A be an naNFA with (one or more) cycles of length at least two.
Then there exists an naNFA A′ with the same number of states over the same
alphabet where all cycles are self-loops and DPWsup(A′) ≥ DPWsup(A).

Consider an m-state naNFA B where all cycles are self-loops. We can define
an injective mapping from the set of computations of B having length � to the
length � computations of an m-state imax-naNFA A. This then implies that the
depth path width of B is at most that of A, and the observation is the basis for
the following lemma.

Lemma 7. Let A be an m-state imax-naNFA over alphabet Σ and let B be
an m-state naNFA over Σ where all cycles are self-loops. Then DPWsup(B) ≤
DPWsup(A).

Now we get a tight upper bound for the depth path width of an m-state
naNFA.

Theorem 5. If A is an m-state naNFA over a k-letter alphabet, then
DPWsup(A) ≤ (k + 1)m−1. For each m, k ≥ 1, there exists an m-state naNFA
Bimax over a k-letter alphabet such that DPWsup(Bimax) = (k + 1)m−1.

Branching Measures for NFAs 211

Proof. By Lemma 6, A can be converted to an m-state naNFA A′ over the same
alphabet without decreasing the depth path width where all cycles in A′ are
self-loops. Let Bimax be an m-state imax-naNFA over the same alphabet. Now

DPWsup(A) ≤ DPWsup(A′) ≤ DPWsup(Bimax) = (k + 1)m−1,

where the second inequality follows from Lemma 7 and the equality from
Lemma 5. The equality also establishes the second claim of the theorem. �

4.1 Languages Recognized by NaNFAs

Acyclic NFAs recognize the family of finite languages and, similarly, the nearly
acyclic NFAs recognize a proper subfamily of the regular languages. The density
of a language L ⊆ Σ∗ is defined as the function dL(�) = |L ∩ Σ�|, � ∈ N.

Proposition 2 (Shallit [21]). The density of a regular language L over Σ is
bounded, that is dL(�) ∈ O(1), if and only if L can be represented as a finite
union of regular expressions xy∗z, where x, y, z ∈ Σ∗.

The nearly acyclic NFAs recognize exactly the constant density languages.

Theorem 6. A regular language L has constant density if and only if L is recog-
nized by a nearly acyclic NFA.

Proof. Suppose that L ⊆ Σ∗ is recognized by an m-state naNFA A. We show
that dL(�) ≤ m3 · |Σ|m for all � ∈ N. For � ≤ m − 1 there is nothing to prove.

Consider then strings of length � ≥ m. For each w ∈ Σ� accepted by A,
fix one accepting computation Cw. Since A is nearly acyclic and � ≥ m, the
computation Cw must pass through exactly one cycle. Thus, we can write w =
wprefwcycwsuf where wcyc is the maximal substring of w that in the computation
Cw is “processed” by transitions of the cycle, and |wpref · wsuf | ≤ m − 1. The
number of strings of length at most m−1 is upper bounded by |Σ|m. In a string
of length at most m−1 the cycle can occur in at most m locations and, according
to Lemma 4, A has at most m cycles and, furthermore, each cycle (equivalence
class) can be started in at most m positions.3 Once a particular cycle and its
position in the “acyclic part” of the computation (consuming the prefix wpref and
suffix wsuf) are chosen, the length of the computation in the cycle is determined
by the total length �. Thus, the number of accepted strings of length � is upper
bounded by the constant m3 · |Σ|m.

Conversely, if L has constant density then, by Proposition 2, L can be repre-
sented as a finite union of regular expressions of the form xy∗z, x, y, z ∈ Σ∗. An
naNFA with one cycle recognizes xy∗z, and the languages recognized by naNFAs
are clearly closed under union. �

By considering unary regular languages it is easy to see that a constant den-
sity language can be recognized by an NFA that is not nearly acyclic. However,
for DFAs, we get the implication also in the converse direction.
3 This is a conservative upper bound chosen to keep the argument simple. If A were
to have m cycles, the length of the cycles naturally could not be m.

212 C. Keeler and K. Salomaa

Theorem 7. Any DFA recognizing a constant density language must be nearly
acyclic.

As a corollary, we get that determinizing an naNFA must result in a nearly
acyclic DFA. This could of course also be seen using a direct construction but it
would require some effort.

Corollary 3. Let A be an naNFA and let D be the DFA obtained from A using
the subset construction. Then D is nearly acyclic.

5 Conclusion

We have given an algorithm to decide whether the depth path width of an NFA
is unbounded, and characterized automata with bounded depth path width as
the class of nearly acyclic NFAs. We have given an upper bound for the finite
depth path width of an m-state NFA over an alphabet of size k and shown that
this bound is tight.

Nearly acyclic NFAs extend the class of acyclic NFAs that characterize the
class of finite languages. A tight state complexity bound for determinizing acyclic
NFAs is known [20]. From Corollary 3 we know that determinizing a nearly
acyclic NFA always results in a nearly acyclic DFA. Establishing the worst-
case size blow-up of determinizing a nearly acyclic NFA is a topic for future
research. The size blow-up is at least as great as the exponential lower bound
for determinizing unary (nearly acyclic) NFAs having cycles of different prime
lengths [4].

Minimization of NFAs is PSPACE-complete [9] and remains NP-hard even
for restricted subclasses of acyclic NFAs [1]. A linear time minimization algo-
rithm for acyclic DFAs is given by Bubenzer [2] and incremental minimization
techniques for acyclic NFAs have been considered e.g. by Lamperti et al. [14].
A topic for future work could be also to extend such methods for nearly acyclic
NFAs.

Acknowledgments. Research supported by NSERC grant OGP0147224. Full version
of the work can be found in [12].

References

1. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. J.
Comput. Syst. Sci. 78(1), 198–210 (2012)

2. Bubenzer, J.: Cycle-aware minimization of acyclic deterministic finite-state
automata. Discrete Appl. Math. 163, 238–246 (2014)

3. Chan, T.-H., Ibarra, O.: On the finite valuedness problem for sequential machines.
Theoret. Comput. Sci. 23, 95–101 (1983)

4. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

Branching Measures for NFAs 213

6. Goldstine, J., Leung, H., Wotschke, D.: On the relation between ambiguity and
nondeterminism in finite automata. Inform. Comput. 100, 261–270 (1992)

7. Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in
regular languages. Inform. Comput. 86(2), 261–270 (1990)

8. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke,
D.: Descriptional complexity of machines with limited resources. J. Univ. Comput.
Sci. 8(2), 193–234 (2002)

9. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata - a survey. Inform. Comput. 209(3), 456–470 (2011)

10. Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communica-
tion complexity method for measuring nondeterminism in finite automata. Inform.
Comput. 172(2), 202–217 (2002)

11. Hromkovič, J., Schnitger, G.: Ambiguity and communication. Theory Comput.
Syst. 48(3), 517–534 (2011)

12. Keeler, C.: New metrics for finite automaton complexity and subregular language
hierarchies. QSPACE. https://qspace.library.queensu.ca/handle/1974/15329

13. Kintala, C.M.R., Pun, K.Y., Wotschke, D.: Concise representations of regular lan-
guages by degree and probabilistic finite automata. Math. Syst. Theory 26(4),
379–395 (1993)

14. Lamperti, G., Scandale, M., Zanella, M.: Determinization and minimization of
finite acyclic automata by incremental techniques. Softw. Pract. Exp. 46(4), 513–
549 (2016)

15. Leung, H.: Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)

16. Msiska, M., van Zijl, L.: Interpreting the subset construction using finite sublan-
guages. In: Proceedings of Prague Stringology Conference 2016, pp. 48–62 (2016)

17. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity of finite tree width NFAs.
J. Automata Lang. Comb. 17(2–4), 245–264 (2012)

18. Palioudakis, A., Salomaa, K., Akl, S.G.: Quantifying nondeterminism in finite
automata. Ann. Univ. Bucharest Informatica 62(2), 89–100 (2015)

19. Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata
to the succinctness of their representation. SIAM J. Comput. 18(6), 1263–1282
(1989)

20. Salomaa, K., Yu, S.: NFA to DFA transformation for finite languages over arbitrary
alphabets. J. Automata Lang. Comb. 2(3), 177–186 (1997)

21. Shallit, J.: Numeration systems, linear recurrences, and regular sets. Inf. Comput.
113(2), 331–347 (1994)

22. Shallit, J.: Second Course in Formal Languages and Automata Theory. Cambridge
University Press, Cambridge (2009)

23. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

24. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theoret.
Comput. Sci. 88(2), 325–349 (1991)

25. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997)

https://qspace.library.queensu.ca/handle/1974/15329

Square on Deterministic, Alternating,
and Boolean Finite Automata

Ivana Krajňáková(B) and Galina Jirásková

Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia
{krajnakova,jiraskov}@saske.sk

Abstract. We investigate the state complexity of the square opera-
tion on languages represented by deterministic, alternating, and Boolean
automata. For each k such that 1 ≤ k ≤ n − 2, we describe a binary lan-
guage accepted by an n-state DFA with k final states meeting the upper
bound n2n − k2n−1 on the state complexity of its square. We show that
in the case of k = n − 1, the corresponding upper bound cannot be met.
Using the DFA witness for square with 2n states where half of them are
final, we get the tight upper bounds on the complexity of the square
operation on alternating and Boolean automata.

1 Introduction

Square is a basic unary operation on formal languages which is defined as
L2 = {uv | u ∈ L and v ∈ L}. It is known that if a language L is accepted
by a deterministic finite automaton (DFA) of n states, then the language L2

is accepted by a DFA of at most n2n − 2n−1 states [7]. This upper bound was
proven to be tight in the binary case by Rampersad [8]. If the minimal DFA
for L has more than one final state, then this upper bound cannot be met. In
such a case the upper bound is n2n−k2n−1, where k is the number of final states
in the minimal DFA for L [10].

In this paper we study the state complexity of the square of languages
accepted by DFAs with more final states. Our motivation comes from the paper
by Fellah et al. [3] on alternating finite automata (AFAs). They provided an
upper bound 2n + n + 1 on the complexity of the square of a language repre-
sented by an n-state AFA. A language is accepted by an n-state AFA if and only
if its reverse is accepted by a DFA with 2n states where 2n−1 of them are final
[1,3,5]. It follows that to prove the tightness of the upper bound 2n + n + 1, we
need to find a language represented by a DFA with half of the states final which
is hard for the square operation on DFAs.

Research supported by grant VEGA 2/0084/15 and grant APVV-15-0091. This work
was conducted as a part of PhD study of the first author at Comenius University in
Bratislava.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 214–225, 2017.
DOI: 10.1007/978-3-319-60252-3 17

Square on Deterministic, Alternating, and Boolean Finite Automata 215

The problem seems to be interesting per se. Previously in [2], we tried to use
Rampersad’s binary witness for square [8] with k final states instead of original
one. We were able to show the reachability of n2n − k2n−1 states in the subset
automaton of an NFA for its square. However, to prove distinguishability a third
letter was needed, so the binary case was left open. Surprisingly, in [2], we were
unable to prove the tightness of the upper bound in the case of n−1 final states.

Here we solve both these open problems. We describe a binary language
accepted by an n-state DFA with k final states meeting the upper bound
n2n−k2n−1 on the state complexity of its square providing that 1 ≤ k ≤ n−2. In
the case of k = n−1, we prove that the corresponding upper bound (2n+2)2n−2

cannot be met. To show it, we consider two cases. If the initial state is final, then
we get the upper bound (n + 2)2n−2, and we show that it is tight in the binary
case. If the initial state is not final, then the upper bound is (n + 3)2n−2 and is
tight in the ternary case. The tight bound for binary languages is (n+3)2n−2−1
in this case. This solves the complexity of square on DFAs completely. The binary
alphabet is optimal since it is known that in the unary case, the tight upper
bound is 2n − 1 [8].

Using these results we are able to describe a binary language accepted by
an n-state AFA such that every AFA for its square has at least 2n + n + 1
states. This proves the tightness of the upper bound 2n + n + 1 given in [3]. We
also consider Boolean finite automata (BFA) [1], and get the tight upper bound
2n + n for the square on BFAs. To prove these results, we take the reversal of a
language accepted by a DFA with 2n states with half of them final meeting the
corresponding upper bound for square on DFAs. Then this language is accepted
by an n-state BFA, and we are able to prove that every BFA for its square has
at least 2n + n states. By more careful analysis of the number of final states in
DFA for its square, we get the lower bound 2n + n + 1 for the square operation
on AFAs. Our result can be extended for the concatenation operation just by
concatenating two of our automata with different number of states. This provides
an alternative proof of the tightness of the upper bound 2m + n + 1 for the
concatenation operation on alternating automata with m and n states [4].

2 Preliminaries

Let Σ be a finite alphabet of symbols. Then Σ∗ denotes the set of words over Σ
including the empty word ε. A language is any subset of Σ∗. The concatenation
of languages K and L is the language KL = {uv | u ∈K and v ∈L}. The square
of a language L is the language L2 = LL. The cardinality of a finite set A is
denoted by |A|, and its power-set by 2A. The reader may refer to [9] for details.

A nondeterministic finite automaton (NFA) is a quintuple
A = (Q,Σ, ◦ , I, F), where Q is a finite set of states, Σ is a finite non-empty
alphabet, ◦ : Q×Σ → 2Q is the transition function which is naturally extended to
the domain 2Q×Σ∗, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final
states. The language accepted by A is the set L(A) = {w ∈ Σ∗ | I ◦ w ∩ F �= ∅}.
For a symbol a, we say that (p, a, q) is a transition in NFA A if q ∈ p ◦a, and for

216 I. Krajňáková and G. Jirásková

a word w, we write p
w−→ q if q ∈ p ◦ w. An NFA A is deterministic (DFA) (and

complete) if |I| = 1 and |q ◦ a| = 1 for each q in Q and each a in Σ. We write
p · a = q instead of p ◦ a = {q} in such a case. The state complexity of a regular
language L, sc(L), is the smallest number of states in any DFA for L.

Every NFA A = (Q,Σ, ◦, I, F) can be converted to an equivalent DFA
A′ = (2Q, Σ, · , I, F ′), where R · a = R ◦ a for each R in 2Q and a in Σ, and
F ′ = {R ∈ 2Q | R ∩ F �= ∅}. We call the DFA A′ the subset automaton of the
NFA A. The subset automaton may not be minimal since some of its states may
be unreachable or equivalent to other states.

A Boolean finite automaton (BFA) is a quintuple A = (Q,Σ, δ, gs, F), where
Q is a finite non-empty set of states, Q = {q1, . . . , qn}, Σ is an input alphabet,
δ is the transition function that maps Q × Σ into the set Bn of Boolean functions
with variables {q1, . . . , qn}, gs ∈ B is the initial Boolean function, and F ⊆ Q
is the set of final states. The transition function δ is extended to the domain
Bn × Σ∗ as follows: For all g in Bn, a in Σ, and w in Σ∗, we have δ(g, ε) = g; if g =
g(q1, . . . , qn), then δ(g, a) = g(δ(q1, a), . . . , δ(qn, a)); δ(g, wa) = δ(δ(g, w), a).
Next, let f = (f1, . . . , fn) be the Boolean vector with fi = 1 iff qi ∈ F . The lan-
guage accepted by the BFA A is the set L(A) = {w ∈ Σ∗ | δ(gs, w)(f) = 1}.

A Boolean finite automaton is called alternating (AFA) if the initial function
is a projection g(q1, . . . , qn) = qi. For details, the reader may refer to [1,3,5,6,9].
The Boolean (alternating) state complexity of L, bsc(L)(asc(L)), is the smallest
number of states in any BFA (AFA) for L. It is known that a language L is
accepted by an n-state BFA (AFA) if and only if the language LR is accepted
by an 2n-state DFA (with 2n−1 final states). We state it in the next two facts.

Fact 1 (cf. [3] Theorem 4.1, Corollary 4.2 and [5], Lemma 1). Let L be
a language accepted by an n-state BFA (AFA). Then the reversal LR is accepted
by a DFA of 2n states (of which 2n−1 are final).
�
Corollary 2. If L is a regular language, than bsc(L) ≥ log(sc(LR))� and
asc(L) ≥ log(sc(LR))�.
�
Fact 3 (cf. [5], Lemma 2). If LR be accepted by a DFA A of 2n states, then
L is accepted by an n-state BFA. If LR be accepted by a DFA A of 2n states of
which 2n−1 are final, then L is accepted by an n-state AFA.
�

3 Square on DFAs

Let us begin with the precise method of construction an NFA for the square of
some languages accepted by a minimal DFA with n states.

Construction 4. (DFA A −→ NFA N for L2(A))
Let A = ({q0, q1, . . . , qn−1}, Σ, ·, q0, FA) be a minimal DFA. We construct NFA
N = ({q0, q1, . . . , qn−1} ∪ {0, 1, . . . , n − 1}, Σ, ◦, I, FN) as follows:

(a) take A and add a copy of A with the state set {0, 1, . . . , n − 1};
(b) for each symbol a and each state qi with qi ·a ∈ FA, add transition (qi, a, 0);

Square on Deterministic, Alternating, and Boolean Finite Automata 217

(c) the set of initial states of N is I = {q0} if q0 /∈ F , and I = {q0, 0} otherwise;
(d) the set of final state of N is FN = {j ∈ {0, 1, . . . , n − 1} | qj ∈ FA}.
Proposition 5 (Upper Bound). Let L be a language with sc(L) = n, and let
the minimal DFA for L have k final states. Then sc(L2) ≤ n2n − k2n−1.

Proof. Let L be accepted by DFA A = ({q0, q1, . . . , qn−1}, Σ, ·, q0, FA) and let
|FA| = k. Construct an NFA N for L2 as described above. Since A is deter-
ministic, every reachable subset in the subset automaton of N is in the form of
{qi} ∪ S, where S ⊆ {0, 1, . . . , n − 1}. Furthermore, if qi is a final state of A,
then 0 ∈ S because of the used construction. It follows that subsets containing
a final state of A and missing 0 are unreachable. Hence the subset automaton of
N has at most n2n − k2n−1 reachable states.
�

Notice that the upper bound given by above proposition is maximal if k = 1,
and it is n2n − 2n−1 in this case. The binary witness language meeting this
bound was presented by Rampersad in 2006 [8].

Theorem 6 [8, Theorem 1]. For every integer n ≥ 3, there exists a DFA M
with n states such that the minimal DFA accepting the language L2(M) has
n2n − 2n−1 states.
�
Unfortunately, the square of Rampersad’s automaton with k final states does
not meet the upper bound on the state complexity in the general case. Here we
provide the binary witness automaton with k final states that meets the upper
bound n2n − k2n−1.

Theorem 7. Let n ≥ 3 and 1 ≤ k ≤ n− 2. Then there exists a minimal n-state
DFA A with k final states defined over a binary alphabet such that every DFA
for L(A)2 has at least n2n − k2n−1 states.

Proof. Let us take n-state DFA A = ({q0, q1, . . . , qn−1}, Σ, ·, q0, FA) with k final
states shown in Fig. 1. Notice that q0 and q1 remain non-final with every k in
this DFA and there are two cycles; one on a, (q0, q1, . . . , qn−1), of length n and
the second on b, (q2, q3, . . . , qn−1), of length n − 2.

Let us build an NFA N for L(A)2 as in Construction 4. An example of NFA
N if n = 6 and k = 2 is shown in Fig. 2.

We observe that there are only two types of states reachable in the subset
automaton of N :

• {qi} ∪ S, where S ⊆ {0, 1, . . . , n − 1} and 0 ≤ i ≤ n − k − 1;
• {qi, 0} ∪ S, where S ⊆ {1, . . . , n − 1} and n − k ≤ i ≤ n − 1.

We denote this family of sets as R. We can see that in R there are exactly
(n − k)2n + k2n−1 = n2n − k2n−1 sets. Our goal is to show that the sets in R
are reachable and also pairwise distinguishable in the subset automaton of N
for L(A)2.

218 I. Krajňáková and G. Jirásková

q0 q1 q2 . . . qα qα+1 . . . qn−1

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

Fig. 1. A witness DFA A with k final states meeting the bound n2n − k2n−1, where
α = n − k − 1.

q0 q1 q2 q3 q4 q5

0 1 2 3 4 5

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a
b

a, ba, b

Fig. 2. NFA N for square of L(A), if n = 6 and k = 2.

Let us start with reachability. We use mathematical induction by number of
elements in set/state. The sets with one and two elements are reachable, because:

−→ {q0} a−→ {q1} a−→ · · · a−→ {qn−k−1} a−→ {qn−k, 0},

{qn−k, 0} b−→ {qn−k+1, 0} b−→ · · · b−→ {qn−2, 0} b−→ {qn−1, 0},

{qn−1, 0} a−→ {q0, 1} b−→ {q0, 0},

{q0, 1} a−→ {q1, 2} b−→ {q0, 3} b−→ {q0, 4} b−→ · · · b−→ {q0, n − 1} b−→ {q0, 2},

{q0, (j − i) mod n} ai

−→ {qi, j} for i = 0, 1, . . . , n − k − 1 and j = 0, 1, . . . , n − 1.

Assume now that every set in R with t elements is reachable. We show that
then every set in R of size t + 1 is reachable. Let S = {qi, s1, s2, . . . , st} be our
desired set in R of size t + 1, where qi ∈ Q and 0 ≤ s1 < s2 < · · · < st ≤ n − 1.
We deal with three cases:

(1) We show the reachability of sets of the second type, so let n − k ≤ i ≤ n − 1
and therefore s1 = 0. We can write i as i = α + β, where α = n − k − 1 and
0 ≤ β ≤ k, so our desired set is S = {qα+β , 0, s2, s3, . . . , st}.

Let s2 = 1, and take the set {qα+β−1, 0, s3 −1, . . . , st −1}, which is in R and
is reachable because it has t elements. Then we have

{qα+β−1, 0, s3 − 1, . . . , st − 1} a−→ {qα+β , 0, 1, s3, . . . , st} = S.

Square on Deterministic, Alternating, and Boolean Finite Automata 219

Let s2 ≥ 2 and take the set {qα, s2 · bn−1−β − 1, . . . , st · bn−1−β − 1}, which
is in R and is reachable because it has t elements. Then we have

{qα, s2 · bn−1−β − 1, . . . , st · bn−1−β − 1} a−→ {qα+1, s2 · bn−1−β , . . . , st · bn−1−β}
bβ−1

−−−→ {qα+β , 0, s2 · bn−2, . . . , st · bn−2} = {qα+β , 0, s2, . . . , st} = S.

(2) Next we show the reachability of sets of the first type in the next two steps.
Let i = 0. We distinguish between three cases of s1.

Firstly let s1 = 0. We start from the set reached previously in (1) to achieve S

in case of s2 = 1 by {qn−1, 0, s3 −1, . . . , st −1, n−1} a−→ {q0, 0, 1, s3, . . . , st} = S.
Otherwise, if desired s2 ≥ 2, we reach S using previously reached set

{q0, 0, 1, s3 − s2 + 1, . . . , st − s2 + 1} a−→ {q1, 1, 2, s3 − s2 + 2, . . . , st − s2 + 2}
bn−2

−−−→ {q0, 0, 2, s3 − s2 + 2, . . . , st − s2 + 2} bs2−2

−−−→ {q0, 0, s2, . . . , st} = S.

Secondly let s1 ≥ 1. Then the set S′ = {qn−1, 0, s2−s1, . . . , st−s1} is reached

in (1). If s1 = 1, then S′ a−→ S, otherwise s1 ≥ 2, and S′ aabn−2bs1−2

−−−−−−−−→ S.

(3) Let 1 ≤ i ≤ n − k − 1. Now we can reach the remaining sets of the first type

using sets achieved in (2) like this {q0, (s1−i) mod n, . . . , (st−i) mod n} ai

−→
{qi, s1, . . . , st} = S.

Let us continue with proving distinguishability of reached sets. Note that in
N we have

{n − 1} b−→ {2} a−→ {3} bn−2

−−−→ {3} abn−2

−−−−→ {4} abn−2

−−−−→ · · · abn−2

−−−−→ {n − 1}.

This means that the word w = b(abn−2)n−3 is accepted from the state n − 1.
Let us read w from a different state t, 2 ≤ t ≤ n − 2. First we have t ◦ b ∈
{3, 4, . . . , n − 1}. Next {3, 4, . . . , n − 1} ◦ (abn−2)n−3 = {0}, so w is not accepted
from t. Similarly, reading w from {0, 1} results in the set {0}, thus w is not
accepted from {0, 1} either. Moreover, w is not accepted from {qi}, because
{qi} ◦ w ⊆ {qj , 0}, where either j = 0 if i < n − 1, or j = n − 1 if i = n − 1.
Therefore w is accepted by N from and only from the state n − 1. Notice that
each state t in {1, 2, . . . , n−1} has exactly one in-transition on a going from the
state t−1, so the word an−1−tw is accepted by N only from state t, 0 ≤ t ≤ n−2.
It follows that two sets {qi}∪ S and {qj}∪ T in R are distinguishable if S �= T .

Now consider two distinct subsets {qi} ∪ S and {qj} ∪ S in R. Without loss
of generality, we have 0 ≤ i < j ≤ n − 1. We will discuss three cases:

(1) Let i = 0 and j = 1. Then

{q0} ∪ S
(abn−2)n−2

−−−−−−−→ {q0, 0} a−→ {q1, 1} an−k−1

−−−−−→ {qn−k, 0, n − k},

{q1} ∪ S
(abn−2)n−2

−−−−−−−→ {qn−1, 0} a−→ {q0, 1} an−k−1

−−−−−→ {qn−k−1, n − k}.

Now we can distinguish these sets because they differ in the element from
the second automaton copy.

220 I. Krajňáková and G. Jirásková

(2) Let i = 0 and j ≥ 2. Then

{q0} ∪ S
bn−1−ja−−−−−→ {q1} ∪ S1,

{qj} ∪ S
bn−1−ja−−−−−→ {q0} ∪ S′

1.

If the subsets S1 and S′
1 are the same, then we continue as in (1), otherwise

we continue as in case of S �= T .
(3) Let i ≥ 1. Then

{qi} ∪ S
an−j

−−−→ {qi+(n−j)} ∪ S1,

{qj} ∪ S
an−j

−−−→ {q0} ∪ S′
1.

Similarly as in (2), if the subsets S1 and S′
1 are the same we continue as in

(1) or (2), otherwise we continue as in case of S �= T .
�

3.1 Square if |F | = n − 1

Recall that the automaton in the proof of Theorem7 must have at least two
non-final states. We show that for every language L accepted by an n-state DFA
A = (Q,Σ, ·, q0, F) with a single non-final state, the state complexity of L2 never
meets the upper bound set in Proposition 5. In particular, we show:

(a) if q0 ∈ F , then sc(L2) ≤ (n + 2)2n−2 and this bound is tight if |Σ| ≥ 2;
(b) if q0 /∈ F , then sc(L2) ≤ (n + 3)2n−2 and this bound is tight if |Σ| ≥ 3.

First, we consider the case of |F | = n − 1 and q0 ∈ F .

Lemma 8. Let n ≥ 3 and let L be a regular language accepted by an n-state
DFA A = (Q,Σ, δ, q0, F) with n − 1 final states, where q0 ∈ F . Then sc(L2) ≤
(n + 2)2n−2, and this bound is tight if |Σ| ≥ 2.

Proof. The formula for the upper bound is based on the observation that q0 is
initial and also accepting in A, so the initial state in the subset automaton for
L(A)2 is {q0, 0}. It follows that for every i ∈ {0, 1, . . . , n − 1} if {qi} ∪ X is
reachable, then i ∈ X. So we consider the following family R of possible sets in
the subset automaton for L(A)2 :

R =
{{q0, 0} ∪ X | X ⊆ {1, 2, . . . , n − 1}} ∪
{{q1, 1} ∪ X | X ⊆ {0, 2, 3, . . . , n − 1}} ∪
{{qi, 0, i} ∪ X | 2 ≤ i ≤ n − 1,X ⊆ {1, 2, . . . , n − 1} \ {i}}

.

This family consists of (n + 2)2n−2 sets. Hence sc(L2) ≤ (n + 2)2n−2. To prove
the tightness of this upper bound, we introduce the DFA A shown in Fig. 3 and
we show that every DFA for L(A)2 has at least (n+2)2n−2 states. Notice that A
has the same structure as the DFA in the Fig. 1, so the proof continues similarly
as the proof of Theorem 7.
�

Square on Deterministic, Alternating, and Boolean Finite Automata 221

q0 q1 q2 q3 . . . qn−1

a

b

a

b

a, b a, b a, b

a

b

Fig. 3. A witness DFA A with n−1 final states meeting the bound (n+2)2n−2, where
q0 ∈ F .

Now we consider the case where |F | = n − 1 and q0 /∈ F .

Lemma 9. Let n ≥ 3. Let L be a regular language accepted by an n-state DFA
A = (Q,Σ, ·, q0, F), where |F | = n − 1 and q0 /∈ F . Then sc(L2) ≤ (n + 3)2n−2,
and the bound is tight if |Σ| ≥ 3. The bound (n + 3)2n−2 − 1 can be met by a
binary language.

Proof. We start with the upper bound. Suppose we have constructed an NFA
N from the DFA A as described in Construction 4. Consider the corresponding
subset automaton of N . We first show that two distinct subsets of this automa-
ton, {qi}∪S and {qj}∪S, where {i, j} ⊆ S are equivalent. If a word w is rejected
from state {qi} ∪ S then s

w−→ 0 for each element s in S. It follows that w is
rejected from {qj}∪S because {qj}∪S

w−→ {q0, 0}. Likewise, if w is rejected from
{qj}∪S then w is rejected from {qi}∪S. Excluding these equivalent subsets gives
us the family R of (n+3)2n−2 reachable and pairwise distinguishable subsets of
the subset automaton of N , which is:

R ={{q0} ∪ X | X ⊆ {0, 1, . . . , n − 1}} ∪
{{qi } ∪ X | X ⊆ {0, 1, . . . , n − 1}, 0 ∈ X, i /∈ X}.

To prove the tightness of this upper bound, we introduce the DFA B shown
in Fig. 4 and we show that every DFA for L(B)2 has at least (n + 3)2n−2 states.
Construct an NFA N for the square of L(B)2 as described in Construction 4.
Let us show that each set in R is reachable in the subset automaton of N and
that all these sets are pairwise distinguishable.

q0 q1 q2 q3 . . . qn−2 qn−1
a

b

a, b a, b a, b a, b a

b

a

b

Fig. 4. A binary DFA B with sc(L2(B)) = (n + 3)2n−2 − 1.

222 I. Krajňáková and G. Jirásková

We prove the reachability by induction on the size of subsets. The basis,
where |S| ≤ 2, holds true up to one set, namely {q0, n − 1}, since we have

−→ {q0} a−→ {q1, 0} b−→ {q2, 0} b−→ · · · b−→ {qn−2, 0} b−→ {q0, 0},

{qn−2, 0} a−→ {qn−1, 0, 1} b−→ {qn−1, 0, 2} b−→ · · · b−→ {qn−1, 0, n − 2} b−→ {qn−1, 0},

{qn−1, 0} a−→ {q0, 1} b−→ {q0, 2} b−→ · · · b−→ {q0, n − 2}.

We deal with {q0, n − 1} later. Now assume that each set in R of size t is
reachable. Let S = {qi, s1, s2, . . . , st} be a set of size t+1. Consider several cases.

(1) Let i = 1, so s1 = 0. Then {q0, s2 −1, . . . , st −1} a−→ {q1, 0, s2, . . . , st}, where
the former set of size t is reachable by induction hypothesis.

(2) Let 1 ≤ i ≤ n − 2, so S = {qi, 0, s2, s3, . . . , st}.

If s2 = 1, then {qi−1, 0, s3 − 1, . . . , st − 1} a−→ S.

If s2≥2and st ≤n−2, then {qi−1, 0, s2 − 1, . . . , st − 1} b−→ S.

If s2≥2and st =n−1, then {qi−1, 0, s2−1, . . . , st−1−1, n−1} b−→ S.

This induction step with case (1) as the basis proves case (2) by induction
on i.

(3) Let i = n − 1, so S = {qn−1, 0, s2, s3, . . . , st}. Consider two cases of st.

If st ≤ n−2, then {qn−2, 0, s3−s2, . . . , st−s2} abs2−1

−−−−→ S.

If st = n − 1, then {qn−2, 0, s3−s2, . . . , st−1−s2, n−2} abs2−1

−−−−→ S.

The starting set is reachable by induction on t in both cases.
(4) Let i = 0, so S = {q0, s1, s2, . . . , st}. We consider four cases of s1 and st:

If s1=0, st ≤n−2, then {qn−1, 0, n−1, s3−s2, . . . , st−s2} abs2−1

−−−−→ S.

If s1=0, st =n−1, then {qn−1, 0, n−1, s3−s2, . . . , st−1−s2, n−2} abs2−1

−−−−→ S.

If s1≥1, st ≤n−2, then {qn−1, 0, s2−s1, . . . , st−s1} abs1−1

−−−−→ S.

If s1≥1, st =n−1, then {qn−1, 0, s2−s1, . . . , st−1−s1, n−2} abs1−1

−−−−→ S.

The starting sets are considered in case (3).

This proves reachability. To prove distinguishability, notice that the word bn

is accepted by NFA N only from state n−1. It follows that an−1−tbn is accepted
only from state t, 0 ≤ t ≤ n − 1. Hence two sets {qi} ∪ S and {qj} ∪ T are
distinguishable if S �= T . Consider two sets {qi} ∪ S, {qj} ∪ S where 0 ≤ i <
j ≤ n − 1 and assume that {i, j} � S. Let i = 0 and S ⊆ {0, 1, . . . , n − 1}. Then
j /∈ S and we have

{q0} ∪ S
an−1−jbn

−−−−−−→ {q0, 0} a−→ {q1, 0, 1},

{qj} ∪ S
an−1−jbn

−−−−−−→ {qn−1, 0} a−→ {q0, 1},

where the resulting states differ in state 0. If i ≥ 1, then we use an−j to get the
case above.

Square on Deterministic, Alternating, and Boolean Finite Automata 223

Up to now, we reached all sets in R except for {q0, n − 1}. This set remains
unreachable because of the inability to reach it by a nor b from other state.
Hence sc(L2(B)) = (n + 3)2n−2 − 1. To reach the set {q0, n − 1}, we add one
more symbol to B. We define the transitions on the symbol c as follows:

δ(q0, c) = q0; δ(qi, c) = qi+i if 1 ≤ i ≤ n − 2; δ(qn−1, c) = q0.

Denote the resulting DFA over {a, b, c} by C. Then in the corresponding subset
automaton for L2(C) the set {q0, n− 1} is reachable from {q0, n− 2} by c. Thus
sc(L2(C)) = (n + 3)2n−2.
�

As a corollary of the two lemmas above, we get the next result.

Corollary 10. Let n ≥ 3 and L be a language over Σ accepted by an n-state
DFA in which n − 1 states are final. Then sc(L2) ≤ (n + 3)2n−2, and this bound
is tight if |Σ| ≥ 3. The bound (n + 3)2n−2 − 1 is met by a binary language.
�

We tested the state complexity of square on all binary automata with 3, 4
and 5 states where the initial state is the only non-final state. But we did not
find any binary automaton with the state complexity of its square greater than
(n + 3)2n−2 − 1. The following result shows that this lower bound is tight for
every n ≥ 4 on a binary alphabet.

Theorem 11. Let n ≥ 4 and L be a binary language accepted by an n-state
DFA in which n − 1 states are final. Then sc(L2) ≤ (n + 3)2n−2 − 1, and this
bound is tight.

Proof Idea. We already showed the witness language with sc(L2) ≥ (n+3)2n−2−1
in Lemma 9. It remains to show that the upper bound (n + 3)2n−2 cannot be
met in binary case.

The reason of missing the upper bound by one was not reaching the {q0, n−1}
in the subset automaton for the square in the first place. So to find a harder DFA
for square than B in Fig. 4 we need to reach all possible distinguishable states.
We found out that our desired automaton must have certain transitions to reach
them. For example, transitions on a must form a permutation and transitions
on b are exactly as in DFA B in Fig. 4. But these certain transitions plus our
original restrictions for this case counteract our effort to distinguish these states.
It follows that if some subset automaton for the square has (n+3)2n−2 reachable
states, many of them are equivalent. Thus the state complexity (n + 3)2n−2 − 1
is the best that we can do.
�

3.2 Square on Unary DFAs

To complete the overview about the square operation on deterministic automata
we should not forget unary alphabets. We refer to the paper by Rampersad [8]
once again. Notice that the complexity of square in this case is exponentially
smaller than in the binary case.

Theorem 12 [8, Theorems 3 and 4 with k = 2]. Let L be a unary language with
sc(L) = n. Then sc(L2) ≤ 2n − 1 and the bound is tight.

224 I. Krajňáková and G. Jirásková

4 Square on AFAs and BFAs

Fellah et al. in [3, Theorem 9.3] showed that if a language K is accepted by
an m-state AFA and a language L is accepted by an n-state AFA, then the
language KL is accepted by an AFA of at most 2m +n+1 states. It follows that
2n + n + 1 is an upper bound for the square on AFAs. Here we use our results
from the previous section to prove tightness of this upper bound. For the square
on BFAs, we get the tight upper bound 2n +n. Recall that asc(L) is the smallest
number of states in any AFA for L and bsc(L) is defined analogously.

Theorem 13 (Square on AFAs). Let n ≥ 2. Let L be a regular language over
Σ with asc(L) = n. Then asc(L2) ≤ 2n +n+1, and the bound is tight if |Σ| ≥ 2.

Proof. From given upper bound from [3, Theorem 9.3] we know that asc(L2) ≤
2n + n + 1. For tightness, let LR be the language accepted by the DFA A
defined in the proof of Theorem7 with 2n states where half of the state are
final, that is, k = 2n−1. By Fact 3, L is accepted by AFA with n states.
Using Theorem 7 we know that sc((LR)2) = 2n22

n − 2n−122
n−1. By Corollary 2,

asc(L2) ≥ log(sc((LR)2))� = 2n + n.
Suppose for a contradiction that L2 is accepted by an AFA with 2n + n

states. By Fact 1, the language (L2)R is accepted by a 22
n+n- state DFA with

22
n+n−1 final states. It follows that the minimal DFA for (L2)R has at most

22
n+n−1 final states. However, the minimal DFA for the language (L2)R has

2n22
n−2n−122

n−1 = 2n−122
n

+2n−122
n−1 states, where 2n−122

n−1
+2n−122

n−1−1

of them are non-final. Thus the number of final states in the minimal DFA for
(L2)R is 2n−1(22

n

+ 22
n−1) − 2n−1(22

n−1
+ 22

n−1−1), and since n ≥ 2, we get

2n−1(22
n

+ 22
n−1) − 2n−1(22

n−1
+ 22

n−1−1) =

22
n

2n−1(1 +
1
2

− 1
22n−1 − 1

22n−1+1
) >

22
n+n−1(1 +

1
2

− 1
4

− 1
4
) = 22

n+n−1.

Hence the minimal DFA for (L2)R has more than 22
n+n−1 final states, a contra-

diction. It follows that asc(L2) ≥ 2n + n + 1.
�
Theorem 14 (Square on BFAs). Let n ≥ 2. Let L be a regular language over
Σ with bsc(L) = n. Then bsc(L2) ≤ 2n + n, and the bound is tight if |Σ| ≥ 2.

Proof. The upper bound follows from the upper bound 2m+n on the complexity
of the concatenation operation on BFAs [5, Theorem 4]. Let LR be a language
accepted by DFA A from Fig. 1 with 2n states and one final state. By Fact 3, L
is accepted by an n-state BFA. We are able to determine the state complexity
of (LR)2 using Theorem 7: sc

(
(LR)2

)
= 2n · 22

n − 22
n−1. By Corollary 2,

bsc(L2) ≥ log
(
2n · 22

n − 22
n−1

)� = 2n + n.

�

Square on Deterministic, Alternating, and Boolean Finite Automata 225

5 Conclusions

We studied the state complexity of the square of languages represented by deter-
ministic, alternating, and Boolean finite automata. First, for each k such that
1 ≤ k ≤ n − 2, we showed that the upper bound n2n − k2n−1 on the square of
languages represented by n-state DFAs with k final states is tight in the binary
case. Then we analysed the case of n − 1 final states, where we proved that
the bound (2n + 2)2n−2 cannot be met. We provided the tight upper bound
(n + 2)2n−2 for the case when the initial state is final and we found a binary
witness. When the initial state is the only non-final state, we obtained the upper
bound (n + 3)2n−2 with a ternary witness. In the binary case we proved that
the tight upper bound is (n + 3)2n−2 − 1.

Finally, we used our results on the square on DFAs to describe binary witness
languages meeting the upper bounds 2n + n + 1 and 2n + n for square on alter-
nating and Boolean finite automata, respectively. Our results can be extended
for the concatenation operation just by concatenating two of our automata with
different number of states. This provides an alternative solution for the open
problem stated by Fellah et al. in [3].

References

1. Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite
automata, and sequential networks. Theor. Comput. Sci. 10, 19–35 (1980).
http://dx.doi.org/10.1016/0304-3975(80)90069-9

2. Čevorová, K., Jirásková, G., Krajňáková, I.: On the square of regular languages. In:
Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 136–147. Springer,
Cham (2014). http://dx.doi.org/10.1007/978-3-319-08846-4 10

3. Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite
automata. Int. J. Comput. Math. 35(1–4), 117–132 (1990). http://dx.doi.org/
10.1080/00207169008803893

4. Hospodár, M., Jirásková, G.: Concatenation on deterministic and alternating
automata. In: Bordihn, H., Freund, R., Nagy, B., Vaszil, G. (eds.) NCMA 2016,
vol. 321, pp. 179–194. Österreichische Computer Gesellschaft, books@ocg.at (2016)

5. Jirásková, G.: Descriptional complexity of operations on alternating and boolean
automata. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR
2012. LNCS, vol. 7353, pp. 196–204. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30642-6 19

6. Leiss, E.L.: Succint representation of regular languages by boolean automata.
Theor. Comput. Sci. 13, 323–330 (1981)

7. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Doklady 11, 1373–1375 (1970)

8. Rampersad, N.: The state complexity of L2 and Lk. Inf. Process. Lett. 98(6),
231–234 (2006). http://dx.doi.org/10.1016/j.ipl.2005.06.011

9. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston
(2012)

10. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic oper-
ations on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994).
http://dx.doi.org/10.1016/0304-3975(92)00011-F

http://dx.doi.org/10.1016/0304-3975(80)90069-9
http://dx.doi.org/10.1007/978-3-319-08846-4_10
http://dx.doi.org/10.1080/00207169008803893
http://dx.doi.org/10.1080/00207169008803893
http://dx.doi.org/10.1007/978-3-642-30642-6_19
http://dx.doi.org/10.1007/978-3-642-30642-6_19
http://dx.doi.org/10.1016/j.ipl.2005.06.011
http://dx.doi.org/10.1016/0304-3975(92)00011-F

A Pumping Lemma for Ordered Restarting
Automata

Kent Kwee and Friedrich Otto(B)

Fachbereich Elektrotechnik/Informatik, Universität Kassel, 34109 Kassel, Germany
{kwee,otto}@theory.informatik.uni-kassel.de

Abstract. While stateless ordered restarting automata accept exactly
the regular languages, it is known that ordered restarting automata with
states accept some languages that are not even growing context-sensitive.
In fact, the class of languages accepted by these automata is an abstract
family of languages that is incomparable to the (deterministic) linear
languages, the (deterministic) context-free languages, and the growing
context-sensitive languages with respect to inclusion, and the emptiness
problem is decidable for these automata. These results were derived using
a Cut-and-Paste Lemma for ordered restarting automata that is based
on Higman’s theorem. Here we extend the arguments used in that proof
to actually derive a real Pumping Lemma for these automata. Based on
this Pumping Lemma, we then prove that the finiteness problem is also
decidable for these automata, and that the only unary languages these
automata accept are the regular ones.

Keywords: Restarting automaton · Ordered rewriting · Pumping
lemma · Finiteness problem

1 Introduction

The ordered restarting automaton (ORWW-automaton for short) was introduced
in [9], where its deterministic variant was extended into a device for recognizing
picture languages. An ORWW-automaton (for words) has a finite-state con-
trol, a tape with end markers that initially contains the input, and a window
of size three. Based on its state and the content of its window, the automaton
can either perform a move-right step, a rewrite/restart step, or an accept step.
While the deterministic variant of the ORWW-automaton characterizes the reg-
ular languages, it has been observed that the nondeterministic variant is more
expressive. In fact, the nondeterministic ORWW-automaton and the languages it
accepts have been studied in some detail in [6], where it is shown that the class of
languages accepted by ORWW-automata forms an abstract family of languages,
that is, it is closed under union, intersection (with regular sets), product, Kleene
star, inverse morphisms, and non-erasing morphisms (see, e.g., [3]). However,
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 226–237, 2017.
DOI: 10.1007/978-3-319-60252-3 18

A Pumping Lemma for Ordered Restarting Automata 227

it is neither closed under complementation nor under reversal. Further, it is
incomparable to the (deterministic) linear, the (deterministic) context-free, and
the growing context-sensitive languages with respect to inclusion, as it contains
a language that is not even growing context-sensitive, while on the other hand,
it does not even include the deterministic linear language { ambm | m ≥ 1 }.
In addition, it was shown that the emptiness problem is decidable for ORWW-
automata. Several of these results were derived from a Cut-and-Paste Lemma
for ORWW-automata that is based on Higman’s Theorem [2].

Here we continue the study of nondeterministic ORWW-automata, where we
are particularly interested in the expressive capability of ORWW-automata and
their algorithmic properties. The Cut-and-Paste Lemma of [6] states that, for
each ORWW-automaton M , a non-empty factor can be cut from the suffix of
each sufficiently long word accepted by M such that the resulting shorter word
is accepted by M , too. Thus, in comparison to the Pumping Lemma for regu-
lar languages (see, e.g., [3]), the Cut-and-Paste Lemma just covers the case of
pumping with exponent zero. Here we also present a real Pumping Lemma for
ORWW-automata that takes care of the case of pumping with positive expo-
nents. However, in contrast to the Cut-and-Paste Lemma, which applies to the
suffix of a sufficiently long word, the Pumping Lemma applies to the prefix of a
sufficiently long word. Then, based on both these lemmas, we show that finite-
ness is decidable for ORWW-automata, and we show that each unary language
that is accepted by an ORWW-automaton is necessarily regular.

This paper is structured as follows. In Sect. 2, we introduce the ORWW-
automaton and restate the known results on the class of languages it accepts.
Then, in Sect. 3, we present the announced Pumping Lemma, which is derived
from Higman’s theorem similar to the Cut-and-Paste Lemma. In Sect. 4, we
give two applications of this lemma by showing that finiteness is decidable for
ORWW-automata and that all unary languages that are accepted by ORWW-
automata are necessarily regular. The paper closes with Sect. 5, which summa-
rizes our results in short and states a number of open problems.

2 Definitions and Known Results

An ordered restarting automaton (ORWW-automaton) is a one-tape machine
that is described by an 8-tuple M = (Q,Σ, Γ,�,�, q0, δ, >), where Q is a finite
set of states containing the initial state q0, Σ is a finite input alphabet, Γ is a
finite tape alphabet such that Σ ⊆ Γ , the symbols �,� �∈ Γ serve as markers
for the left and right border of the work space, respectively,

δ : (Q × ((Γ ∪ {�}) · Γ · (Γ ∪ {�}) ∪ {��})) → 2(Q×MVR)∪Γ ∪ {Accept}

is the transition relation, and > is a partial ordering on Γ . The transition relation
describes three different types of transition steps:

(1) A move-right step has the form (q′,MVR) ∈ δ(q, a1a2a3), where q, q′ ∈ Q,
a1 ∈ Γ ∪{�}, and a2, a3 ∈ Γ . It causes M to shift the window one position to

228 K. Kwee and F. Otto

the right and to change from state q to state q′. Observe that no move-right
step is possible, if the window contains the symbol �.

(2) A rewrite/restart step has the form b ∈ δ(q, a1a2a3), where q ∈ Q, a1 ∈
Γ ∪{�}, a2, b ∈ Γ , and a3 ∈ Γ ∪{�} such that a2 > b holds. It causes M to
replace the symbol a2 in the middle of its window by the symbol b and to
restart, that is, the window is moved back to the left end of the tape, and
M reenters its initial state q0.

(3) An accept step has the form δ(q, a1a2a3) = Accept, where q ∈ Q, a1 ∈
Γ ∪ {�}, a2 ∈ Γ , and a3 ∈ Γ ∪ {�}. It causes M to halt and accept. In
addition, we allow an accept step of the form δ(q0,��) = Accept.

If δ(q, u) = ∅ for some state q and a word u, then M necessarily halts, when
it is in state q with u in its window, and we say that M rejects in this situation.
Further, the letters in Γ � Σ are called auxiliary symbols.

If |δ(q, u)| ≤ 1 for all q and u, then M is a deterministic ORWW-automaton
(det-ORWW-automaton), and if Q = {q0}, that is, if the initial state is the
only state of M , then we call M a stateless ORWW-automaton (stl-ORWW-
automaton) or a stateless deterministic ORWW-automaton (stl-det-ORWW-
automaton), as in this case the state is actually not needed.

A configuration of an ORWW-automaton M is a word αqβ, where q ∈ Q
is the current state, |β| ≥ 3, and either α = λ (the empty word) and β ∈
{�} · Γ+ · {�} or α ∈ {�} · Γ ∗ and β ∈ Γ · Γ+ · {�}; here αβ is the current
content of the tape, and it is understood that the window contains the first
three symbols of β. In addition, we admit the configuration q0 � �. By
M we
denote binary relation that M induces on the set of configurations, and
∗

M is
the reflexive transitive closure of this relation. A restarting configuration has the
form q0 � w �; if w ∈ Σ∗, then q0 � w � is also called an initial configuration.
Further, we use Accept to denote the accepting configurations, which are those
configurations that M reaches by an accept step.

Any computation of an ORWW-automaton M consists of certain phases. A
phase, called a cycle, starts in a restarting configuration, the head is moved along
the tape by MVR steps until a rewrite/restart step is performed and thus, a new
restarting configuration is reached. If no further rewrite operation is performed,
any computation necessarily finishes in a halting configuration – such a phase is
called a tail. By
c

M we denote the execution of a complete cycle, and
c∗
M is the

reflexive transitive closure of this relation. It can be seen as the rewrite relation
that is realized by M on the set of restarting configurations.

An input w ∈ Σ∗ is accepted by M , if there is a computation of M which
starts with the initial configuration q0�w � and which ends with an accept step.
The language consisting of all input words that are accepted by M is denoted
by L(M). Further, by L(ORWW) we denote the class of all languages that are
accepted by ORWW-automata.

As each cycle ends with a rewrite operation, which replaces a symbol a by a
symbol b that is strictly smaller than a with respect to the given ordering >, each
computation of M on an input of length n consists of at most (|Γ |−1) ·n cycles.
Thus, M can be simulated by a nondeterministic single-tape Turing machine in
time O(n2).

A Pumping Lemma for Ordered Restarting Automata 229

The following technical result has already been used in [6] without stating or
proving it explicitly. As below we will use it again, we present it in some detail.

Lemma 1. For each ORWW-automaton M , there exists an ORWW-automaton
M ′ that accepts the same language as M , but that performs accept steps only at
the left sentinel.

Proof. Let M = (Q,Σ, Γ,�,�, q0, δ, >) be an ORWW-automaton. To obtain
the automaton M ′ = (Q′, Σ, Γ ′,�,�, q′

0, δ
′, >′), we take Q′ = Q, q′

0 = q0, and
Γ ′ = Γ ∪ {∗}, where ∗ is a new symbol. Further, we extend > to >′ by taking
a >′ ∗ for all a ∈ Γ . Finally, we define the transition relation δ′ of M ′ as follows,
where a ∈ Γ ∪ {�}, b ∈ Γ , c ∈ Γ ∪ {�}, and q ∈ Q:

δ′(q0,��) = δ(q0,��),
δ′(q, abc) = δ(q, abc), if δ(q, abc) �= Accept,
δ′(q, abc) = {∗}, if δ(q, abc) = Accept,
δ′(q, ab∗) = {∗},
δ′(q0,�∗ d) = Accept for all d ∈ Γ ∪ {�, ∗}.

Obviously, M ′ performs an accept step only at its left sentinel. The automaton
M ′ can simulate M step by step until M accepts, in which case M ′ writes
the letter ∗. In the following cycles, whenever M ′ detects an occurrence of the
symbol ∗, it copies this symbol to its left-hand neighbour. It follows that L(M) ⊆
L(M ′). On the other hand, if M ′ accepts on input w, then it can do so only
because it has been able to simulate an accepting computation of M on input w,
as the first ∗-symbol can only be produced by M ′ on reaching a configuration in
which M would accept. Thus, L(M) = L(M ′) holds. �

While nondeterministic ORWW-automata are quite expressive as we will see
below, the deterministic variants are fairly weak.

Theorem 2 [5,11].

(a) For each det-ORWW-automaton M = (Q,Σ, Γ,�,�, q0, δ, >), there exists
a stateless det-ORWW-automaton M ′ = (Σ,Γ ′,�,�, δ′, >′) such that
L(M ′) = L(M) and |Γ ′| = |Q| · |Γ |2 + 2 · |Γ |.

(b) For each DFA A = (Q,Σ, q0, F, ϕ), there is a stl-det-ORWW-automaton
M = (Σ,Γ,�,�, δ, >) such that L(M) = L(A) and |Γ | = |Q| + |Σ|.

(c) For each stl-det-ORWW-automaton M with an alphabet of size n, there
exists an NFA A of size 2O(n) such that L(A) = L(M) holds.

(d) For each n ≥ 1, there exists a regular language Bn ⊆ {0, 1,#, $}∗ such that
Bn is accepted by a stl-det-ORWW-automaton over an alphabet of size O(n),
but each NFA for accepting Bn has at least 2n states.

Lemma 3 (Cut-and-Paste Lemma) [6].
For each ORWW-automaton M , there exists a constant Nc(M) > 0 such that
each word w ∈ L(M), |w| ≥ Nc(M), has a factorization w = xyz satisfying all
of the following conditions:

(a) |yz| ≤ Nc(M), (b) |y| > 0, and (c) xz ∈ L(M).

230 K. Kwee and F. Otto

In addition, the constant Nc can be determined from M effectively.

Theorem 4 [6]. L(ORWW) is closed under union, intersection, product, Kleene
star, inverse morphisms, and non-erasing morphisms, but it is neither closed
under the operation of reversal nor under complementation.

Using the Cut-and-Paste Lemma it is easily seen that the deterministic lin-
ear language { ambm | m ≥ 1} is not accepted by any ORWW-automaton.
On the other hand, there exists a language that is accepted by an ORWW-
automaton, but that is not even growing context-sensitive. Thus, we have the
following incomparability results, where DLIN denotes the deterministic linear
languages, that is, those languages that are accepted by deterministic one-turn
pushdown automata, LIN is the class of linear languages, CFL and DCFL are the
classes of context-free and deterministic context-free languages, CRL is the class
of Church-Rosser languages [8], and GCSL is the class of growing context-sensitive
languages [1].

Corollary 5. The language class L(ORWW) is incomparable to the language
classes DLIN, LIN, DCFL, CFL, CRL, and GCSL with respect to inclusion.

Also from the Cut-and-Paste Lemma the following decidability result follows.

Theorem 6 [6]. The emptiness problem for ORWW-automata is decidable.

The following result was given without proof in [6], pointing out that the
construction for the deterministic case (see Theorem 2 (c)) can be extended
accordingly. In fact, a simpler construction is presented in [7].

Theorem 7 [6]. Let M = (Σ,Γ,�,�, δM , >) be a stl-ORWW-automaton. Then
L(M) is a regular language.

3 A Pumping Lemma for ORWW-Automata

Here we derive our main result, the Pumping Lemma for ORWW-automata.

Definition 8. Let M = (Q,Σ, Γ,�,�, q0, δ, >) be an ORWW-automaton. The
transition relation δ can be presented by a set of five-tuples of the form
(q, a1, a2, a3, o), where q ∈ Q, a1 ∈ Γ ∪ {�}, a2 ∈ Γ , a3 ∈ Γ ∪ {�}, and
o ∈ Γ ∪ Q ∪ {Accept}. Here a tuple (q, a1, a2, a3, q

′) with q′ ∈ Q represents the
move-right transition (q′,MVR) ∈ δ(q, a1, a2, a3), a tuple (q, a1, a2, a3, b) with
b ∈ Γ represents the rewrite/restart transition b ∈ δ(q, a1, a2, a3), and a tuple
(q, a1, a2, a3,Accept) represents the accept transition δ(q, a1, a2, a3) = Accept.
We introduce an alphabet Ω the letters of which are in 1-to-1 correspondence to
these five-tuples.

Let w ∈ L(M) and let C be an accepting computation of M on input w.
With each integer i, 1 ≤ i ≤ |w|, we associate a word σC

i ∈ Ω∗ that corre-
sponds to the sequence of operations that M executes within the computation C
at position i, that is, when the i-th letter is in the middle of the window. Let

A Pumping Lemma for Ordered Restarting Automata 231

σC
i = tj1tj2 . . . tjs

, where tjr
∈ Ω for all 1 ≤ r ≤ s. If tjr

= (q1, a1, a2, a3, o1)
and tjr+1 = (q2, b1, b2, b3, o2), then a1 ≥ b1, a2 ≥ b2, and a3 ≥ b3. In addition, if
o1 = q′ ∈ Q, that is, it represents a move-right operation, then a2 = b2, and if
o1 = b ∈ Γ , that is, it represents a rewrite/restart operation, then a2 > b = b2.
Now the pattern τC

i ∈ Ω∗ is the word that is obtained from σC
i by condensing

consecutive identical letters into a single letter.

Observe that it is only MVR operations that may be condensed.

Example 9. Consider the following accepting computation C of an ORWW-
automaton M :

q0�aaa�
M q0�a1aa�
M �q0a1aa�
M �a1q0aa�

M q0�a1aa1�
M �q0a1aa1�
M �a1q0aa1�
M Accept.

This computation consists of two cycles and an accepting tail that are described
by the following sequences of operations:

c1 = (q0,�, a, a, a1),
c2 = (q0,�, a1, a, q0), (q0, a1, a, a, q0), (q0, a, a,�, a1),
c3 = (q0,�, a1, a, q0), (q0, a1, a, a1, q0), (q0, a, a1,�,Accept).

For the first position, we thus get the sequence of operations

σC
1 = (q0,�, a, a, a1)(q0,�, a1, a, q0)(q0,�, a1, a, q0),

which yields the pattern τC
1 = (q0,�, a, a, a1)(q0,�, a1, a, q0), while for the sec-

ond position we get the sequence of operations

σC
2 = (q0, a1, a, a, q0)(q0, a1, a, a1, q0) = τC

2 .

For the third position we have σC
3 = (q0, a, a,�, a1)(q0, a, a1,�,Accept) = τC

3 .

For two patterns τC
1 and τC

2 , we write τC
1 � τC

2 if τC
1 is a scattered subword

of τC
2 , that is, if τC

1 = ω1ω2 . . . ωm for some ω1, ω2, . . . , ωm ∈ Ω, then there are
words y0, y1, . . . , ym ∈ Ω∗ such that τC

2 = y0ω1y1ω2y2 . . . ym−1ωmym. The next
lemma is the main step towards the proof of the Pumping Lemma.

Lemma 10. Let M = (Q,Σ, Γ,�,�, q0, δ, >) be an ORWW-automaton that
accepts at the left sentinel, let Cxz be an accepting computation of M for the
input xz, and let Cuv be an accepting computation of M for the input uv. If the
pattern τCuv

|u| of the computation Cuv at position |u| is a scattered subword of the

pattern τCxz

|x| of the computation Cxz at position |x|, that is, τCuv

|u| � τCxz

|x| , and if
these two patterns contain the same rewrite operations, then xv ∈ L(M).

Proof. We construct an accepting computation C ′ for the input xv from the
given computations Cxz and Cuv. The sequences of cycles (C1, C2, . . . , Cα) of
Cxz and (D1,D2, . . . , Dβ) of Cuv are considered as working lists that are used for
constructing the cycles of C ′ that have their rewrite operations in the prefix x or

232 K. Kwee and F. Otto

x1 . . . xm−1 xm z1 . . .

y0
t1
y1
t2
...

u1 . . . un−1 un v1 . . .

t1
t2
t3
t4
...

Fig. 1. The inputs xz and uv with the patterns τCxz
|x| (left) and τCuv

|u| (right)

in the suffix v of the input xv, respectively. As τCuv

|u| � τCxz

|x| , these patterns can be

written as τCuv

|u| = t1t2 . . . tr with t1, t2, . . . , tr ∈ Ω and τCxz

|x| = y0t1y1 . . . yr−1tryr

for some y0, y1, . . . , yr ∈ Ω∗ (see Fig. 1). As both patterns contain the same
rewrite operations, the factors y0, y1, . . . yr only consist of MVR operations.

For constructing the computation C ′ on input xv, we start by taking C ′ to
be the empty sequence of cycles. Now we consider the cycles of Cxz one after
another (see Fig. 2).

x1 . . . xm−1 xm z1 . . .

y0
c0

t1
c1

t1c2

y1

y1
c3

t2
c4

t3

u1 . . . un−1 un v1 . . .

t1
d1

t1
d2

t1
d3

t2

t3
d4

t3
d5

Fig. 2. The cycles of the computations Cxz (left) and Cuv (right). Each line represents
a cycle, where the operation executed at the last position of x (left) or u (right) is
displayed. The arrows labelled ci represent initial parts of cycles executed within the
prefix of the tape initially containing x (left), and the arrows labelled dj represent final
parts of cycles executed within the suffix of the tape initially containing v (right)

Let Ci be the cycle currently considered.

– If Ci is a short cycle, that is, a cycle that executes a rewrite step within a
proper prefix of x, then we just append it to C ′ (see the cycle c2 in Fig. 2).

– If Ci contains a rewrite operation at position |x|, then this operation corre-
sponds to the letter tl for some 1 ≤ l ≤ r. Again we append this cycle to C ′

(see the cycle c3). As both patterns contain the same rewrite operations,
which must occur in the same relative order in both patterns, we see that the
rewrite operation tl can also be executed at this point in the computation C ′.

A Pumping Lemma for Ordered Restarting Automata 233

– If Ci is a cycle that executes a rewrite step within the suffix z of xz, then
this cycle contains a MVR operation at position |x|. If this operation does
not correspond to one of the letters t1, t2, . . . , tr in the pattern τCxz

|x| , we skip
this cycle without appending it to C ′.

– Finally, let Ci be a cycle that executes a rewrite step within the suffix z
of xz, but the MVR operation executed at position |x| corresponds to the
letter tl for some 1 ≤ l ≤ r. By c0 we denote the prefix of the cycle Ci up to
position |x| − 1. Further, let Di1 ,Di2 , . . . , Diν

be all those cycles of Cuv that
contain the MVR operation tl at position |u|, and for all 1 ≤ j ≤ ν, let dj

be the suffix of the cycle Dij
that starts with the operation tl at position |u|.

We now combine the prefix c0 of Ci with the suffix dj of Dij
for all 1 ≤ j ≤ ν

(see c0 and d1, d2, d3 in Fig. 2). As the same operation tl is applied in the
cycle Ci at position |x| as in the cycles Di1 ,Di2 , . . . , Diν

at position |u|, we
see that c0d1, c0d2, . . . , c0dν is a sequence of possible cycles of M . We append
this sequence of cycles to C ′.

– Any further cycle Ci+s, s ≥ 1, that also executes a MVR operation at position
|x| which corresponds to the letter tl of the pattern τCxz

|x| , is skipped (see c1
in Fig. 2).

Figure 3 illustrates the result of the construction above. Finally, the compu-
tation C ′ is completed by attaching the accepting tail computation from Cxz to
it. Recall that M accepts with the left sentinel in its window. It is now easily
seen that C ′ is an accepting computation of M for the input xv. �

x1 . . . xm−1 xm v1 . . .
c0

t1
d1

c0
t1

d2

c0
t1

d3

c2

c3
t2

c4
t3

d4

c4
t3

d5

Fig. 3. The computation C′ for input xv

Next we consider a special case of the above lemma.

Lemma 11. Let M = (Q,Σ, Γ,�,�, q0, δ, >) be an ORWW-automaton that
accepts at the left sentinel, let w ∈ L(M), let C be an accepting computation of M
for the input w, and let 1 ≤ i < j ≤ |w| be indices such that τC

i (w) � τC
j (w) and

these two patterns contain the same rewrite operations. Then w can be written
as w = xyz, where |x| = i and |y| = j − i, such that xyyz ∈ L(M). In fact, there
exists an accepting computation C ′ for xyyz satisfying τC′

i (xyyz) = τC′
j (xyyz).

234 K. Kwee and F. Otto

Proof. If we choose x1 = xy, y1 = z, u1 = x, and v1 = yz, we can apply
Lemma 10 to the factorizations w = xyz = x1y1 and w = xyz = u1v1. Thus,
we obtain an accepting computation C ′ of M for the input x1v1 = xyyz. From
the construction of C ′ in the proof of the above lemma we see that the patterns
τC′
i (xyyz) and τC′

j (xyyz) coincide. �
Finally, we need the following notion that has already been considered in [10]

under the name of det-MVR1-form for general restarting automata.

Definition 12. An ORWW-automaton M = (Q,Σ, Γ,�,�, q0, δ, >) is said to
have deterministic MVR operations if, for all q ∈ Q and all a, b, c ∈ Γ ∪{�,�},
δ(q, abc) contains at most a single MVR operation.

Lemma 13. For each ORWW-automaton M = (Q,Σ, Γ,�,�, q0, δ, >), there
exists an ORWW automaton M ′ with deterministic MVR operations that accepts
the same language as M . If M accepts at the left sentinel, then so does M ′.

Proof. Using a variant of the well-known powerset construction, the ORWW-
automaton M ′ can be defined as M ′ = (2Q, Σ, Γ,�,�, {q0}, δ′, >), where, for
all ∅ �= S ⊆ Q and all a, b, c ∈ Γ ∪ {�,�},

T(S,abc) = { q ∈ Q | ∃s ∈ S : (q,MVR) ∈ δ(s, abc) }, and

δ′(S, abc) =

⎧
⎪⎨

⎪⎩

Accept, if ∃s ∈ S : δ(s, abc) = Accept,
(⋃

s∈S δ(s, abc) ∩ Γ
) ∪ {(T(S,abc),MVR)}, if T(S,abc) �= ∅,

(⋃
s∈S δ(s, abc) ∩ Γ

)
, if T(S,abc) = ∅.

�
The next lemma is the second technical main result.

Lemma 14. Let M be an ORWW-automaton with deterministic MVR opera-
tions that accepts at the left sentinel. From M a constant N(M) > 0 can be
computed such that, for each w ∈ L(M) satisfying |w| ≥ N(M) and each accept-
ing computation C of M on input w, there are indices 1 ≤ i < j ≤ |w| such that
τC
i (w) � τC

j (w) and these patterns contain the same rewrite operations.

Proof. Let M = (Q,Σ, Γ,�,�, q0, δ, >) be an ORWW-automaton with deter-
ministic MVR operations that accepts at the left sentinel, and let n = |Γ |.
Further, let w ∈ L(M) and let C be an accepting computation of M on input w.
The MVR operations executed at a position 1 ≤ k ≤ |w| − 1 only depend on the
prefix of length k + 1 of w. As M has deterministic MVR operations, the MVR
operation that can be executed at position k is uniquely determined by that
prefix, if it exists at all. For this reason a different MVR operation can become
applicable at position k only if that prefix has been modified by a rewrite oper-
ation. This, however, can happen at most (k + 1) · (n − 1) times. Therefore, the
pattern τC

k (w) contains at most (k + 1) · (n − 1) + 1 MVR operations. Addition-
ally, it contains at most n − 1 rewrite operations. Therefore, τC

k (w) has length

A Pumping Lemma for Ordered Restarting Automata 235

at most (k + 1) · (n − 1) + n + 1 = k · (n − 1) + 2n. Finally, we extend each
pattern τC

k (w) into the word ηC
k (w) = akτC

k (w)sk where ak is the input letter
at position k and sk is the final letter produced by C at position k. Higman’s
theorem [2] (see, also [4,12]) implies there exists a computable constant N(M)
such that, if |w| ≥ N(M), then there are indices 1 ≤ i < j ≤ N(M) such that
ηC

i (w) is a scattered subsequence of ηC
j (w). This means that ai = aj and si = sj ,

and that τC
i (w) is a scattered subsequence of τC

j (w). As in both positions the
letter ai = aj is rewritten into the letter si = sj , and as each rewrite operation
at position i occurs in τC

i (w) and therewith also in τC
j (w), we see that τC

i (w)
and τC

j (w) contain exactly the same rewrite operations. �
Now we can state and prove the announced Pumping Lemma.

Theorem 15 (Pumping Lemma). For each ORWW-automaton M there exists
a computable constant Np(M) > 0 such that each word w ∈ L(M), |w| ≥ Np(M),
has a factorization w = xyz satisfying all of the following conditions:

(a) |xy| ≤ Np(M), (b) |y| > 0, and (c) xymz ∈ L(M) for all m ≥ 1.

Proof. Let M be an ORWW automaton. By Lemma1 we may assume that M
only accepts at the left sentinel. Further, by Lemma13, we can convert M into
an equivalent ORWW-automaton M1 that is MVR-deterministic and that only
accepts at the left sentinel. Then Lemma 14 implies that a constant Np(M) can
be computed such that, for each w ∈ L(M1) = L(M) satisfying |w| ≥ Np(M),
and each accepting computation C of M1 on input w, there are indices 1 ≤
i < j ≤ Np(M) such that τC

i (w) � τC
j (w) and these patterns contain the same

rewrite operations. Hence, by Lemma 11, w can be factored as w = xyz such that
|xy| ≤ Np(M), |y| > 0, xyyz ∈ L(M1) = L(M), and τC′

|x| (xyyz) = τC′
|xy|(xyyz),

where C ′ is the accepting computation of M1 for input xyyz that is obtained
from the computation C. Using Lemma 11 repeatedly we obtain that xymz ∈
L(M1) = L(M) holds for all m ≥ 1. �

4 Applications of the Pumping Lemma

In [6] we have used the Cut-and-Paste Lemma to prove that emptiness is decid-
able for ORWW-automata. Here we show that also finiteness is decidable for
ORWW-automata using both, the Cut-and-Paste Lemma and the Pumping
Lemma.

Theorem 16. The following finiteness problem is decidable:
INSTANCE: An ORWW-automaton M.
QUESTION: Is the language L(M) finite?

Proof. Let M = (Q,Σ, Γ,�,�, q0, δ, >) be an ORWW-automaton, let Nc(M) be
the corresponding constant from the Cut-and-Paste Lemma for M , and Np(M)
be the corresponding constant from the Pumping Lemma for M . We claim that

236 K. Kwee and F. Otto

L(M) is finite iff it does not contain any word w such that Np(M) ≤ |w| ≤
Np(M) + Nc(M).

Indeed, if L(M) contains a word w such that Np(M) ≤ |w| ≤ Np(M) +
Nc(M), then the Pumping Lemma tells us that L(M) is infinite. Conversely, if
L(M) is infinite, then it contains a word w of length at least Np(M). Assume
that w is the shortest word with these properties. If |w| ≤ Np(M) + Nc(M),
then there is nothing to prove. On the other hand, if |w| > Np(M) + Nc(M),
then we can apply the Cut-and-Paste Lemma to w, which yields a factorization
w = xyz such that |yz| ≤ Nc(M), |y| > 0, and xz ∈ L(M). Thus, |w| > |xz| =
|w| − |y| ≥ |w| − Nc(M) > Np(M), which contradicts our choice of w. Hence,
we see that L(M) is infinite iff it contains a word w such that Np(M) ≤ |w| ≤
Np(M) + Nc(M). �

The next result, which is also derived from the Pumping Lemma, shows that
ORWW-automata only accept unary languages that are regular.

Theorem 17. For each ORWW-automaton M , if the language L(M) is unary,
then it is already regular.

Proof. Let M be an ORWW-automaton with input alphabet Σ = {a}, and let
α = Np(M) be the constant from the Pumping Lemma for M . For all integers c
and d satisfying 0 ≤ d < α! and 0 < c ≤ α, we let Sd,c ⊆ N be defined as follows:

Sd,c := {n ≥ α | n ≡ d mod α! and an+c·i ∈ L(M) for all i ∈ N }.

By definition { an | n ∈ Sd,c } ⊆ L(M) for all pairs (d, c). On the other hand, if
an ∈ L(M) for some n ≥ α, then there exists an integer d, 0 ≤ d < α!, such that
n ≡ d mod α!. By the Pumping Lemma there also exists an integer c, 0 < c ≤ α,
such that an+c·i ∈ L(M) for all i ∈ N. Hence, it follows that n ∈ Sd,c.

If Sd,c �= ∅, it can be represented as the linear set Sd,c = {min (Sd,c) + i · α! |
i ∈ N }. Therefore, if ψ : Σ∗ → N denotes the Parikh mapping defined by an �→ n
(n ≥ 0), then

ψ(L(M)) = {n < α | an ∈ L(M) } ∪
⋃

d,c

Sd,c,

which shows that ψ(L(M)) is a semi-linear subset of N. Thus, it follows that
L(M) is indeed a regular language. �

Actually, it can be shown that a regular expression can be determined for the
language L(M) of an ORWW-automaton M that has a unary input alphabet.

5 Concluding Remarks

We have established a Pumping Lemma for ORWW-automata that nicely com-
plements the Cut-and-Paste Lemma for these automata presented in [6]. Observe
that the Cut-and-Paste Lemma tells us that we can cut from the suffix of a suf-
ficiently long word, while the Pumping Lemma tells us that we can pump within

A Pumping Lemma for Ordered Restarting Automata 237

the prefix of a sufficiently long word. This effect is clearly demonstrated by the
language L = { ambn | m ≥ n } ∈ L(ORWW) [6], as from a word ambm ∈ L,
where m is a sufficiently large integer, the Cut-and-Paste Lemma yields a word of
the form ambm−i, and the Pumping Lemma gives words of the form am+c·ibm.
From the Pumping Lemma we have then derived the solvability of the finite-
ness problem for ORWW-automata and the fact that the only unary languages
accepted by these automata are the regular ones.

However, there still remain many open questions. For example, is it true that
ORWW-automata only accept languages that are semi-linear? Further, given an
ORWW-automaton M and a regular language R (for example, through a DFA),
it can be checked whether L(M) is contained in R, as this is the case iff L(M)∩Rc

is empty. However, it is still open whether the converse inclusion (that is, is R
contained in L(M)) can be checked. A special case is the universality problem,
that is, given an ORWW-automaton M with input alphabet Σ, is L(M) all
of Σ∗? Finally, one may ask whether ORWW-automata yield more succinct
representations for unary languages than deterministic ORWW-automata.

References

1. Dahlhaus, E., Warmuth, M.: Membership for growing context-sensitive grammars
is polynomial. J. Comput. Syst. Sci. 33, 456–472 (1986)

2. Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc.
2, 326–336 (1952)

3. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

4. Karandikar, P., Schnoebelen, P.: Generalized Post embedding problems. Theory
Comput. Syst. 56, 697–716 (2015)

5. Kwee, K., Otto, F.: On some decision problems for stateless deterministic ordered
restarting automata. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol.
9118, pp. 165–176. Springer, Cham (2015). doi:10.1007/978-3-319-19225-3 14

6. Kwee, K., Otto, F.: On the effects of nondeterminism on ordered restart-
ing automata. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 369–380. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8 30

7. Kwee, K., Otto, F.: Nondeterministic ordered restarting automata (2017, Submit-
ted)

8. McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal
languages. J. Assoc. Comput. Mach. 35, 324–344 (1988)

9. Mráz, F., Otto, F.: Ordered restarting automata for picture languages. In: Geffert,
V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS,
vol. 8327, pp. 431–442. Springer, Cham (2014). doi:10.1007/978-3-319-04298-5 38

10. Mráz, F., Plátek, M., Procházka, M.: On special forms of restarting automata.
Grammars 2, 223–233 (1999)

11. Otto, F.: On the descriptional complexity of deterministic ordered restarting
automata. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS,
vol. 8614, pp. 318–329. Springer, Cham (2014). doi:10.1007/978-3-319-09704-6 28

12. Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with Higman’s
lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol.
6756, pp. 441–452. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22012-8 35

http://dx.doi.org/10.1007/978-3-319-19225-3_14
http://dx.doi.org/10.1007/978-3-662-49192-8_30
http://dx.doi.org/10.1007/978-3-662-49192-8_30
http://dx.doi.org/10.1007/978-3-319-04298-5_38
http://dx.doi.org/10.1007/978-3-319-09704-6_28
http://dx.doi.org/10.1007/978-3-642-22012-8_35

Concise Representations of Reversible Automata

Giovanna J. Lavado(B) and Luca Prigioniero(B)

Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy
{lavado,prigioniero}@di.unimi.it

Abstract. We present two concise representations of reversible
automata. Both representations have a size which is comparable with
the size of the minimum equivalent deterministic automaton and can be
exponentially smaller than the size of the explicit representations of cor-
responding reversible automata. Using those representations it is possible
to simulate the computations of reversible automata without explicitly
writing down their complete descriptions.

1 Introduction

Reversibility is a fundamental principle in physics: in thermodynamics a trans-
formation is reversible if, after occurring, it can be inverted in order to recover
the original state of the system. In the study of computations, reversibility means
that each elementary step can be inverted, thus recovering the previous state of
the system. In other words, every configuration must admit at most one prede-
cessor. As shown by Landauer, the irreversibility in computation leads to heat
dissipations [8], while Toffoli proved that it is ideally possible to build sequential
circuits with zero internal power dissipation [12]. This observation suggested to
study reversible computations in which there is no loss of information.

Reversibility has been studied on various computational models. In the case
of general devices as Turing machines, Bennet proved that each machine can be
simulated by a reversible one [1], while Lange, McKenzie, and Tapp proved that
each deterministic machine can be simulated by a reversible machine which uses
the same amount of space [9]. As a corollary, in the case of a constant amount
of space, this implies that each regular language is accepted by a reversible two-
way deterministic finite automaton. Actually, this result was already proved by
Kondacs and Watrous [5]. In the case of one-way automata, the situation is differ-
ent1. The class of languages accepted by reversible automata is a proper subclass
of the class of regular languages. For example, the regular language a∗b∗ cannot
be accepted by any reversible automaton [11], even if multiple initial states are
allowed. Classical automata, namely automata with a single initial state and a
set of final states, have been considered in the works by Holzer, Jakobi, and
Kutrib [3,6,7]. In particular, in [3] the authors gave a characterization of regular

1 From now on, we will consider only one-way automata. Hence we will omit to specify
“one-way” all the times.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 238–249, 2017.
DOI: 10.1007/978-3-319-60252-3 19

Concise Representations of Reversible Automata 239

languages which are accepted by reversible automata. This characterization is
given in terms of the structure of the minimum deterministic automaton, i.e., the
smallest deterministic automaton accepting the language under consideration.
Furthermore, they provide an algorithm that, in the case the language is accept-
able by a reversible automaton, allows to transform the minimum deterministic
automaton into an equivalent reversible automaton, which in the worst case
is exponentially larger than the given minimum automaton. In spite of that,
the resulting automaton is minimal, namely there are no reversible automata
accepting the same language with a smaller number of states. However, it is not
necessarily unique, in fact there could exist different reversible automata with the
same number of states accepting the same language. Further results concerning
minimality and reducibility for reversible automata have been proved in [10].

Due to the above mentioned exponential state gap between deterministic
automata and equivalent reversible automata, an explicit representation of a
minimal reversible automaton can be exponentially larger than the represen-
tation of the corresponding minimum deterministic automaton. However, the
minimal reversible automaton produced by the construction in [3] is obtained by
creating copies of some parts of the minimum automaton. So, its transition table
contains repeated patterns. Thus, it is interesting to investigate whether it is
possible to obtain a concise representation of it, by avoiding to repeat those pat-
terns. This is the aim of this paper, where we present two concise representations
of reversible automata, which can be used to simulate reversible computations
without explicitly writing down the description of the reversible automaton.

The first representation is based on a parameter β which is equal to the
maximum number of incoming transitions with a same letter in each state of the
given deterministic automaton A. Given β and A it is possible to simulate the
computations of a reversible automaton A′ equivalent to A, without explicitly
representing it. The drawback of this simple representation is that even when the
given automaton A is minimum, the simulated reversible automaton A′ is not
necessarily minimal. This motivates us to search a different concise representa-
tion, which exploits a result shown in [10]. The authors have proved that all the
minimal reversible automata accepting a language have the same “state struc-
ture”, in the sense that for each state q of the minimum deterministic automa-
ton they should contain exactly the same number c(q) of states equivalent to q.
The second representation is given by the minimum deterministic automaton A
accepting the language under consideration and such function c. We prove that,
using such representation, it is possible to simulate the behaviour of a minimal
reversible automaton equivalent to A without explicitly representing it. Both
representations have polynomial size with respect to the size of the given deter-
ministic automaton A and require a precomputation (of the parameter β and of
the function c, respectively) which can be performed in polynomial time.

2 Preliminaries

In this section we recall some basic definitions and results useful in the paper.
For a detailed exposition, we refer the reader to [4]. Given a set S, let us denote

240 G.J. Lavado and L. Prigioniero

by #S its cardinality and by 2S the family of all its subsets. Given an alphabet Σ,
|w| denotes the length of a string w ∈ Σ∗ and ε the empty string.

A deterministic automaton is a tuple A=(Q,Σ, δ, qI , F), where Q is the set
of states, Σ is the input alphabet, qI ∈ Q is the initial state, F ⊆ Q is the set
of accepting states, and δ : Q × Σ → Q is the partial transition function. The
function δ can be extended to words in a standard way. The language accepted
by A is L(A) = {w ∈ Σ∗ | δ(qI , w) ∈ F}. The reverse transition function of A is
the function δR : Q × Σ → 2Q, with δR(p, a) = {q ∈ Q | δ(q, a) = p}. A state
p ∈ Q is useful if p is reachable, i.e., there is w ∈ Σ∗ such that δ(qI , w) = p,
and productive, i.e., if there is w ∈ Σ∗ such that δ(p,w) ∈ F . When the set of
states Q is finite, the automaton A is said to be a deterministic finite automaton
(dfa). In this paper we only consider automata with all useful states.

We say that two states p, q ∈ Q are equivalent if for all w ∈ Σ∗, δ(p,w) ∈ F
exactly when δ(q, w) ∈ F . Two automata A and A′ are said to be equivalent if
they accept the same language, i.e., L(A) = L(A′). By minimal automaton (in a
certain family of automata) we mean an automaton with a minimal number of
states. When the minimal automaton is unique (e.g., for the family of all dfas
accepting a certain regular language) we call it minimum.

A strongly connected component (scc) C of a dfa A = (Q,Σ, δ, qI , F) is a
maximal subset of Q such that in the transition graph of A there exists a path
between every pair of states in C. We introduce the relation ≺ on the set of sccs
of A, such that, for two such components C1 and C2, C1 ≺ C2 when no state in
C1 can be reached from a state in C2, but a state in C2 is reachable from a state
in C1. As usual, if C1 ≺ C2 or C1 = C2 we write C1 � C2. It can be verified
that � is a partial order.

Given a dfa A = (Q,Σ, δ, qI , F), a state r ∈ Q is said to be irreversible
when #δR(r, a) > 1 for some a ∈ Σ, otherwise r is said to be reversible. The dfa
A is said to be irreversible if it contains at least one irreversible state, otherwise
A is reversible (rev-dfa). As pointed out in [7], the notion of reversibility for
a language is related to the computational model under consideration. In this
paper we only consider dfas. Hence, by saying that a language L is reversible,
we refer to this model, namely we mean that there exists a rev-dfa accepting L.
The following result presents a characterization of reversible languages:

Theorem 1 [3, Theorem 2]. Let L be a regular language and M =(Q,Σ, δ, qI , F)
be the minimum dfa accepting L. Then, L is accepted by a rev-dfa if and only
if there do not exist useful states p, q ∈ Q, a letter a ∈ Σ, and a string w ∈ Σ∗

such that p �= q, δ(p, a) = δ(q, a), and δ(q, aw) = q.

According to Theorem1, a language L is reversible exactly when the minimum
dfa accepting it does not contain the forbidden pattern consisting of two transi-
tions on a same letter a entering in a same state r, with one of these transitions
arriving from a state in the same scc as r. An algorithm to convert a minimum
dfa M into an equivalent rev-dfa, if any, was obtained in [3]. Furthermore, the
resulting rev-dfa is minimal.

Concise Representations of Reversible Automata 241

3 A Simple Concise Representation

In this section we present our first concise representation. Let us start with a
construction for simulating a dfa by an equivalent rev-dfa, in which we use the
information about the maximum number of incoming transitions with respect
to a same letter in the irreversible states.

Let A = (Q,Σ, δ, qI , F) be a dfa with all useful states and let β be the
maximum number of transitions on a same letter incoming in a state of Q,
i.e., β = max {#δR(q, a) | q ∈ Q, a ∈ Σ}. We observe that β > 1 if and only
if A is irreversible. We define the following automaton with infinitely many
states A∞ = (Q′, Σ, δ′, q′

I , F
′), where Q′ = Q×N, q′

I = 〈qI , 0〉, F ′ = F ×N and
the transitions are defined as follows: let δ(q, a) = p and δR(p, a) = {qj1 , . . . , qjk},
k ≥ 1 for q, p ∈ Q, a ∈ Σ. For x ≥ 0:

δ′(〈q, x〉, a) =

{
〈p, x〉 k = 1
〈p, xβ + i − 1〉 otherwise (1)

where i ∈ {1, . . . , k} is such that q = qji .
Notice that, if δ′(〈q, x〉, a) = 〈p, y〉 then x ≤ y. Roughly speaking, the idea

of the construction is to use the second component of the states in A∞ as label
in order to distinguish different copies of a state reached from an irreversible
transition in A. The formula used for the second component allow us to obtain
this goal, as we will prove in Theorem2.

We denote by A′ the automaton obtained by restricting A∞ to useful states.
We prove that A′ simulates A and that it is finite if and only if A does not
contain the forbidden pattern.

Theorem 2. Let A = (Q,Σ, δ, qI , F) be a dfa and A′ = (Q′, Σ, δ′, q′
I , F

′) be
the automaton obtained by applying the above construction to A, restricted to
useful states. Then: (a) L(A′) = L(A), (b) A′ is reversible.

Proof.(a) It is enough to observe that each state 〈q, x〉 ∈ Q′ is equivalent to
q ∈ Q.

(b) We have to prove that for each a ∈ Σ, 〈q̄1, x1〉 �= 〈q̄2, x2〉 implies that
if both δ′(〈q̄1, x1〉, a) and δ′(〈q̄2, x2〉, a) are defined then they are different.
Observe that δ′(〈q̄i, xi〉, a) (i ∈ {1, 2}) can be undefined only if δ(q̄i, a) is
undefined. We consider the following cases:
– If q̄1 = q̄2 and x1 �= x2 then δ(q̄1, a) = δ(q̄2, a) = p for some p ∈ Q,

otherwise M would be nondeterministic. Let δR(p, a) = {qj1 , . . . , qjk},
k ≥ 1. Then there exists i such that q̄1 = q̄2 = qji . Considering (1),
δ′(〈q̄1, x1〉, a) = 〈p, y1〉 and δ′(〈q̄1, x2〉, a) = 〈p, y2〉. If k = 1 then y1 = x1

and y2 = x2, otherwise y1 = x1β + i − 1 and y2 = x2β + i − 1.
Since x1 �= x2 we get y1 �= y2. Hence, 〈p, y1〉 �= 〈p, y2〉.

– If q̄1 �= q̄2 and δ(q̄1, a) = p1 �= δ(q̄2, a) = p2 then, in A′ the states
δ′(〈q̄1, x1〉, a) = 〈p1, y1〉 and δ′(〈q̄2, x2〉, a) = 〈p2, y2〉 are different regard-
less of the values of y1 and y2.

242 G.J. Lavado and L. Prigioniero

qI q1

q2

q3 q4

q5

a

a
b

b

a

b
a

a
b

b

a

c

qI , 0 q1, 0

q2, 0 q2, 1

q3, 0 q4, 0 q3, 1 q4, 1

q5, 0 q5, 1 q5, 2 q5, 3

a

ab b

a a

a

a

b
a

a

b

b b b b

a a a a

c

Fig. 1. A dfa where β = 2 and an equivalent rev-dfa

– If q̄1 �= q̄2 and δ(q̄1, a) = δ(q̄2, a) = p, let δR(p, a) = {qj1 , . . . , qjk}, with
k > 1. Then, there exist i, i′, with i �= i′ such that q̄1 = qji and q̄2 = qji′ .
Considering (1), δ′(〈q̄1, x1〉, a) = 〈p, y1〉 and δ′(〈q̄2, x2〉, a) = 〈p, y2〉, where
y1 = x1β+i−1 and y2 = x2β+i′−1. In the case x1 = x2, since i �= i′, we
get y1 �= y2. In the case x1 �= x2, and supposing, without loss of generality,
x1 > x2, we get βx1 ≥ βx2+β, and hence βx1 > βx2+β−1 ≥ βx2+i′−1
(notice that i′ ≤ β). Then y1 = x1β + i − 1 ≥ x1β > x2β + i′ − 1 = y2.
This implies that 〈p, y1〉 �= 〈p, y2〉.

Hence, δ′(〈q̄1, x1〉, a) �= δ′(〈q̄2, x2〉, a). This allow us to conclude that A′ is
reversible. �

Theorem 3. The automaton A′ = (Q′, Σ, δ, q′
I , F

′) obtained by applying the
above construction to a dfa A = (Q,Σ, δ, qI , F) is infinite if and only if A
contains the forbidden pattern.

Two examples related to the previous construction are shown in Figs. 1 and
2, where β = 2. Let us apply the construction to transform the dfa shown in
Fig. 1 through an equivalent rev-dfa. Given for instance δ(q3, b) = q5, we have
δR(q5, b) = {q3, q4}, k > 1 and i = 1. Then δ′(〈q3, 1〉, b) = 〈q5, 2〉. Now we apply
the same construction to the dfa in Fig. 2. Given for instance δ(q1, b) = q2,
we have δR(q2, b) = {qI , q1}, k > 1 and i = 2. Then δ′(〈q1, 0〉, b) = 〈q2, 1〉.
This time taking δ(q2, a) = q3, we have δR(q3, a) = {q1, q2}, k > 1 and i = 2.
Then δ′(〈q2, 1〉, a) = 〈q3, 3〉. Actually, the simulation of a computation on a
string does not require the explicit construction of the automaton A′. In fact,
once we have β the computation of the automaton can be obtained, using the
transition table of A and (1). For instance on aba we have the following steps:
q′
I

a→〈q1, 0〉 b→〈q2, 1〉 a→〈q3, 3〉.

Concise Representations of Reversible Automata 243

Notice that the second components in the states having a same q are not
necessarily consecutive numbers, in the sense that, it is possible to have some
gaps in the numbering as illustrated in Fig. 2 (states of the form 〈q3, x〉 in the
automaton on the right).

qI

q1

q2

q3

b

a ab
a

qI , 0

q1, 0

q2, 0

q3, 0

q2, 1

q3, 1

q3, 3

a

b

a

b

a

a

Fig. 2. A dfa where β = 2 and an equivalent rev-dfa

We point out that the automaton A′ can be simulated without explicitly
constructing its transition table. Indeed to simulate A′ it is enough to know the
value of β, which can be computed from the transition table of A, and to follow
the transitions of A applying (1) to compute the states reached by A′. So, a
concise representation of A′ is given by the value of β and the automaton A. We
will discuss later in this section how to compute β and how much the value of
the second component of a state of A′ can be large.

Even when applied to a minimum dfa, the above construction produces a
rev-dfa which is not necessarily minimal as illustrated in Figs. 3 and 4: in Fig. 3
a minimum dfa M and an equivalent minimal rev-dfa (obtained by applying
the algorithm in [3]) are shown. Notice that the minimal rev-dfa contains five
states which are equivalent to q7. Instead Fig. 4 shows the rev-dfa A′ obtained
by the above construction (notice that β = 3). In particular, A′ contains six
states equivalent to q7.

In Theorem 3 it has been stated that when a dfa A does not contain the for-
bidden pattern, the automaton A′ obtained by applying the above construction
is finite. Furthermore, by Theorem2, A′ is reversible and, as already observed,
not necessarily minimal. Hence, it is interesting to know what is the maximum
value of the second component in a state of A′. In order to give a bound we will
use the following lemmata.

Lemma 4. If a dfa A contains less than two reversible states, then it contains
the forbidden pattern.

Lemma 5. Let A′ = (Q′, Σ, δ′, q′
I , F

′) be the automaton obtained by applying
the above construction to a dfa A = (Q,Σ, δ, qI , F) which does not contain the
forbidden pattern. Given w ∈ Σ∗ and q = δ(qI , w), consider q0, q1, . . . , qm ∈ Q,
a1, a2, . . . , am ∈ Σ such that w = a1 · · · am, q0 = qI , qm = q, and qi = δ(qi−1, ai),
for i = 1, . . . ,m. Then δ′(q′

I , w) = 〈q′
I , x〉, where βk−1 ≤ x < βk, and k = #{i ∈

{1, . . . , m} | #δR(qi, ai) > 1}.

244 G.J. Lavado and L. Prigioniero

q7

b

b
a

b
b

b
a

b, a
b, a

a

b

b
a

b b

b
a

b
a

b, a b, a b, a b, a

a

Fig. 3. A minimum dfa and an equivalent minimal rev-dfa

q′
I

q7, 0 q7, 1 q7, 2 q7, 3 q7, 4 q7, 5

b

b
a

b b

b
a

b
a

b
a

b
a

b
a

b
a

a

Fig. 4. A nonminimal rev-dfa obtained from the minimum dfa in Fig. 3

As a consequence of Lemma 5, the value of the second components of states
of A′ is smaller than βk, where k is the maximum number of irreversible states
that on a path from the initial state are reached by “irreversible transitions”.
Considering Lemma 4, we obtain:

Concise Representations of Reversible Automata 245

Corollary 6. If a dfa A does not contain the forbidden pattern, then the max-
imum value of the second component of a state of A′ obtained by applying the
above construction to A is smaller than β#Q−2.

Observe that, the maximum value of the second component in a state of A′ is
reached when in each irreversible state r of A, the maximum number of incoming
transitions for a same letter a is equal to β, i.e., #δR(r, a) = β. Two examples
have been shown in Figs. 1 and 2. The dfa on the left of Fig. 2 has a path from
qI to q3 reading the string w = aba containing all irreversible states.

We also observe that β has an important role in the construction, so we
believe useful to outline how β can be computed. Given a dfa A = (Q,Σ, δ, qI , F)
containing only useful states, we assume that δ resides in a transition table T
of size #Q · #Σ. The key observation is that a state is irreversible with respect
to a symbol when it occurs more than one time in a column of T . Hence, the
problem can be reduced to find the maximum number of occurrences of a state
in a column of T , that requires time O(#Q) for each symbol. So, the overall
time is O(#Q · #Σ), which is linear in the cardinality of Q when the alphabet
is fixed.

4 Another Concise Representation

The drawback of the representation described in Sect. 3 is that the reversible
automaton is not necessarily minimal. In this section we give a different rep-
resentation which avoids such problem. To state it, some properties related to
minimal rev-dfas are useful. In [3] it has been observed that there are reversible
languages having several nonisomorphic minimal rev-dfas, while in [10, Lem-
mas 2 and 3] the following result has been proved:

Lemma 7. Let M = (Q,Σ, δ, qI , F) be the minimum dfa accepting a reversible
language L. Then there exists a function c : Q → N such that for each state q ∈
Q, in any rev-dfa equivalent to M there are at least c(q) copies of q, and
in any minimal rev-dfa equivalent to M there are exactly c(q) copies of q.
Furthermore, if p, q ∈ Q are in the same scc, then c(p) = c(q).

As a consequence of Lemma 7, all the minimal rev-dfas accepting L have
the same “state structure”, in the sense that they should contain exactly c(q)
states equivalent to the state q of M .

Here we present an easy way to compute the value of c(q), for each q ∈ Q, that
is summarized in Algorithm 1. The algorithm firstly transforms the transition
graph of M by decomposing it in sccs, replacing each scc by a single state, and
linking with an edge two sccs C′ and C′′, with C′ �= C′′, if there exist two states
p ∈ C′ and q ∈ C′′ such that δ(p, a) = q for some symbol a. This is summarized
in line 1. After that, the obtained acyclic graph SM can be sorted in topological
order (�, line 2). For further details about these constructions see, for example,
[2, Chap. 23].

Then, all c(q) are computed by analyzing the sccs in topological order in the
following way (lines 3–9): when a scc C is considered, first of all the algorithm

246 G.J. Lavado and L. Prigioniero

Algorithm 1. Computation of c(p) for each p ∈ Q.
1: Let SM be the graph representing the sccs of the transition graph of M
2: Let LSM be the list of the sccs of M sorted by topological order �
3: for all sccs C ∈ LSM do
4: max c ← 1
5: for all states q ∈ C do
6: for all letters a ∈ Σ do
7: max c ← max{max c,

∑
p∈δR(q,a)\C c(p)}

8: for all states q ∈ C do
9: c(q) ← max c

10: return c

computes for each state q ∈ C the maximum number of transitions on a same
symbol a entering in q from sccs different from C, where a transition from p
to q is counted c(p) times, i.e., the algorithm computes

∑
p∈δR(q,a)\C c(p), for

all q ∈ Q and a ∈ Σ and stores the maximum of all such values (lines 5–7).
This value is assigned as c(q) to each q ∈ C (lines 8–9). Note that, analyzing
the sccs in topological order, the value of c(p) is used for all the states p in the
set δR(q, a)\C when the algorithm is going to compute c(q), for q ∈ C. Obviously,
for each state q in the first scc CqI , δR(q, a) \ CqI = ∅.

If M does not contain the forbidden pattern, then for each q ∈ CqI , c(q) =
1 and the set δR(r, a) \ CqI is empty for any r ∈ CqI . As a consequence, the
instruction at line 7 does not produce any increment of max c for any state in
the scc under consideration.

It is easy to see that Algorithm 1 works in polynomial time: it is well known
that operations at lines 1 and 2 require time O(#V + #E), where V and E
are, respectively the set of vertices and the set of edges of the graph under
consideration. So, in our case, the time for compute SM and LSM is O(#Q).
From line 3 to 9 the algorithm analyzes, the incoming transitions to each state q.
This can be done in time O(#Q) assuming that Σ is fixed. So, the Algorithm 1
uses O(#Q) time.

The following property will be useful for the construction:

Lemma 8. Let δR(p, a) = {qj1 , . . . , qjk}, k ≥ 1, p, qj1 , . . . , qjk ∈ Q, and a ∈ Σ.
Then

∑i−1
h=1 c(qjh) + x < c(p), for i = 1, . . . , k, 0 ≤ x < c(qji).

We are now ready to present the construction which leads to our second concise
representation. Let M =(Q,Σ, δ, qI , F) be a minimum dfa accepting a reversible
language L. We define the following dfa A′ = (Q′, Σ, δ′, q′

I , F
′), where Q′ =

{〈q, x〉 | q ∈ Q, 0 ≤ x < c(q)}, q′
I = 〈qI , 0〉, F ′ = {〈q, x〉 | q ∈ F, 0 ≤ x <

c(q)}, and the transitions are defined as follows: let δ(q, a) = p and δR(p, a) =
{qj1 , . . . , qjk}, k ≥ 1 for q, p ∈ Q, a ∈ Σ. Then:

δ′(〈q, x〉, a) = 〈p,
∑
h<i

c(qjh) + x〉, (2)

where i ∈ {1, . . . , k} is such that q = qji and 0 ≤ x < c(q).

Concise Representations of Reversible Automata 247

qI

q1

q2

q3

b

a ab
a

qI , 0

q1, 0

q2, 0

q3, 0

q2, 1

q3, 1

q3, 2

a

b

a

b

a

a

Fig. 5. A dfa and an equivalent minimal rev-dfa

qI q1

q2

q3 q4

q5

a

a
b

b

a

b
a

a
b

b

a

c

qI , 0 q1, 0

q2, 0 q2, 1

q3, 0 q4, 0 q3, 1 q4, 1

q5, 0 q5, 2 q5, 1 q5, 3

a

ab b

a a

a

a

b
a

a

b

b b b b

a a a a

c

Fig. 6. A dfa and an equivalent minimal rev-dfa

Notice that by Lemma 8, this function δ′ is well defined. We will prove that A′

is a minimal rev-dfa equivalent to M .
Two examples related to the construction are shown in Figs. 5 and in 6. Let

us apply the construction to the minimum dfa M in Fig. 5. The topological order
� of the sccs of M clearly is qI � q1 � q2 � q3 and the number of copies c(q)
of a state q ∈ Q follows the sequence of Fibonacci [3, Example 9]. In particular,
c(qI) = c(q1) = 1, c(q2) = 2, c(q3) = 3. Given for instance δ(q1, b) = q2,
δR(q2, b) = {qI , q1}, then δ′(〈q1, 0〉, b) = 〈q2, c(qI) + 0〉 = 〈q2, 1〉. Now we apply
the construction to the minimum dfa M in Fig. 6. Consider the following number
of copies c(q): c(qI) = c(q1) = 1, c(q2) = c(q3) = c(q4) = 2 and c(q5) = 4.
For instance, given δ(q4, b) = q5, δR(q5, b) = {q3, q4}, we have δ′(〈q4, 0〉, b) =
〈q5, c(q3) + 0〉 = 〈q5, 2〉.

248 G.J. Lavado and L. Prigioniero

Note that, even in this case, it is possible to simulate a computation of the
rev-dfa A′ without explicitly constructing it: given a letter and knowing the
state 〈state, index〉 in which the automaton is, it is always possible to obtain the
next state. As example, consider the minimum dfa showed in Fig. 6 (on the left)
and the input string abbab. So, the computation of the simulated rev-dfa passes
through the following states: 〈qI , 0〉 a→ 〈q1, 0〉 b→ 〈q2, 1〉 b→ 〈q3, 1〉 a→ 〈q4, 1〉 b→
〈q5, 3〉.
Theorem 9. Let M = (Q,Σ, δ, qI , F) be a minimum dfa accepting a reversible
language L and let c(q) be the number of states equivalent to q ∈ Q in any min-
imal rev-dfa equivalent to M . Let A′ = (Q′, Σ, δ′, q′

I , F
′) be the dfa obtained

by applying the construction to M , then: (a) L(A′) = L, (b) A′ is reversible,
(c) A′ is minimal.

Proof. The proof of (a) and (b) is similar to Theorem2. To prove (c), we observe
that, by Lemma 8, A′ contains at most c(p) copies of any state p ∈ Q. However
since A′ is reversible, by Lemma 7 it should contain at least c(p) copies of p.
Hence we conclude that A′ is a rev-dfa containing exactly c(p) copies of each
state p of the minimum dfa M . According to Lemma 7 this implies that A′ is
minimal. �

According to the results in this section, given a minimum dfa M , after com-
puting c(q) for each state q of M , we can simulate a minimal rev-dfa A′ equiva-
lent to M , without explicitly representing it, starting from the initial state q′

I and
using (2) at each step to compute the next state. Since A′ can have exponentially
many states with respect to M , this avoids to write down a large description.

5 Conclusion

We have presented two concise representations of a reversible automaton A′

equivalent to a given dfa. Both of them allow to simulate the rev-dfa with-
out explictly writing down its transition table which, in the worst case, can be
exponentially larger. The first representation in Sect. 3 requires an easy pre-
computation of a parameter β, but the obtained automaton is not necessarily
minimal. Instead, the second representation in Sect. 4 requires the more involved
precomputation of the function c, but the obtained automaton is minimal. Both
precomputations can be done in polynomial time.

Even when the rev-dfa A′ obtained from a minimum dfa A in the first
representation is not minimal, its size is not too far from the size of a minimal
rev-dfa in the following sense. In Lemma 5 we gave an upper bound of the
maximum value of the second component in a state of A′, i.e., βkp , where kp

is the maximum number of irreversible states on a path in A from the initial
state qI to p. Since A′ is reversible we have c(p) ≤ βkp (Lemma 7). Furthermore,
in the path at least two copies of each irreversible state should be created to
obtain a reversible automaton. Then, 2kp ≤ c(p) ≤ βkp . This implies that A′

has a polynomial number of states with respect to the number of states of A if
and only if each minimal rev-dfa equivalent to A has a polynomial number of
states.

Concise Representations of Reversible Automata 249

Acknowledgements. We are indebted with the anonymous referees for valuable
suggestions.

References

1. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532
(1973)

2. Cormen, T.H.: Introduction to Algorithms. MIT Press, Cambridge (2009)
3. Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite

automata. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 276–287. Springer,
Cham (2015). doi:10.1007/978-3-319-21500-6 22

4. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

5. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
FOCS, pp. 66–75. IEEE Computer Society (1997)

6. Kutrib, M.: Aspects of reversibility for classical automata. In: Calude, C.S.,
Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808,
pp. 83–98. Springer, Cham (2014). doi:10.1007/978-3-319-13350-8 7

7. Kutrib, M.: Reversible and irreversible computations of deterministic finite-state
devices. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS,
vol. 9234, pp. 38–52. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48057-1 3

8. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5(3), 183–191 (1961)

9. Lange, K., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J.
Comput. Syst. Sci. 60(2), 354–367 (2000)

10. Lavado, G.J., Pighizzini, G., Prigioniero, L.: Minimal and reduced reversible
automata. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS,
vol. 9777, pp. 168–179. Springer, Cham (2016). doi:10.1007/978-3-319-41114-9 13

11. Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol.
583, pp. 401–416. Springer, Heidelberg (1992). doi:10.1007/BFb0023844

12. Toffoli, T.: Reversible computing. In: Bakker, J., Leeuwen, J. (eds.) ICALP
1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). doi:10.1007/
3-540-10003-2 104

http://dx.doi.org/10.1007/978-3-319-21500-6_22
http://dx.doi.org/10.1007/978-3-319-13350-8_7
http://dx.doi.org/10.1007/978-3-662-48057-1_3
http://dx.doi.org/10.1007/978-3-319-41114-9_13
http://dx.doi.org/10.1007/BFb0023844
http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1007/3-540-10003-2_104

State Complexity of Unary SV-XNFA
with Different Acceptance Conditions

Laurette Marais1,2(B) and Lynette van Zijl1

1 Department of Computer Science, Stellenbosch University,
Stellenbosch, South Africa

2 Meraka Institute, CSIR, Pretoria, South Africa
laurette.p@gmail.com

Abstract. Unary self-verifying symmetric difference automata were
introduced in [1], with an upper bound of O(2n) and lower bound of
2n−1 − 1 for state complexity. Implicit in the interpretation of self-
verifying acceptance for the symmetric difference case was the assump-
tion that no state could be both an accept state and a reject state.
We present another interpretation of acceptance more aligned to the
equivalence of symmetric difference automata to weighted automata over
GF(2), where states that both accept and reject are allowed, and we give
a tight bound of 2n−1 − 1 for state complexity for both interpretations
of acceptance.

1 Introduction

In [1] we showed how the concepts of symmetric difference finite state automata
(XNFA) and self-verifying acceptance (SV) could be combined, resulting in self-
verifying symmetric difference finite automata (SV-XNFA). We also provided an
upper bound of O(2n) on state complexity for n-state SV-XNFA in the unary
case, as well as a lower bound of 2n−1 − 1. XNFA are useful in practice, with
applications in, for example, cryptography [2], and succinctly recognize groups
of languages that cannot be recognized succinctly by NFAs [3]. SV-NFAs are
interesting per se [4], and so we present a comparison between SV-NFAs and
SV-XNFAs.

It is customary for XNFA states to reflect the parity of the symmetric dif-
ference operation with the requirement that any state in the equivalent deter-
ministic automaton (XDFA) contain an odd number of final XNFA states [5].
For SV-XNFA, we extended this to both the accepting state set F a and the
rejecting state set F r, requiring that an SV-XDFA state contain an odd number
of either of the two final state sets, but not both. The implicit assumption was
that an SV-XNFA state must itself either accept or reject or do neither, which
is consistent with self-verification for union automata [4] and automata theory
in general, where any particular state usually cannot both accept and reject.

In this paper we examine this implicit assumption more closely. We call the
interpretation of SV-XNFA acceptance where it is required that F a ∩ F r = ∅
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 250–261, 2017.
DOI: 10.1007/978-3-319-60252-3 20

State Complexity of Unary SV-XNFA with Different Acceptance Conditions 251

disjunctive acceptance and we define so-called GF(2)-acceptance, where we allow
F a ∩ F r to be non-empty. The result is that a final state may be an accept
state, a reject state, or it may be both, and we show the implications of this
interpretation in Sect. 3. We present various results for SV-XNFA for each of
these forms of acceptance, finally showing that 2n−1 − 1 is indeed a tight bound
for the state complexity of both forms of acceptance.

2 Preliminaries

Definition 1. An SV-XNFA with disjunctive acceptance is an SV-XNFA as
defined in [1], i.e. a 6-tuple N = (Q,Σ, δ,Q0, F

a, F r), where Q,Σ, δ and Q0 are
defined as for XNFA, and F a and F r are the accept states and reject states,
respectively, with the following requirement: for each input string w in Σ∗, there
exist an odd number of paths ending in accept states, and zero or an even number
of the paths ending in reject states, or vice versa. This is consistent with the
parity acceptance typically applied to XNFA. Furthermore, F a ∩ F r = ∅.

The transition function δ : Q × Σ → 2Q (where 2Q represents the power set
over Q) can be extended to strings in the Kleene closure Σ∗ of the alphabet:

δ∗(q, w0w1 . . . wk) = δ(δ(. . . δ(q, w0), w1), . . . , wk).

For convenience, we write δ(q, w) to mean δ∗(q, w).
The choice of F a and F r for a given SV-XNFA N is called an SV-assignment

of N . An SV-assignment where either F a or F r is empty, is called a trivial SV-
assignment. Otherwise, if both F a and F r are nonempty, the SV-assignment is
non-trivial. An SV-assignment that results in a language that is not the empty
language or the universal language is called an interesting SV-assignment. For a
detailed introduction to unary SV-XNFA, the interested reader is referred to [1].

XNFA have been shown to be equivalent to weighted automata over the finite
field (Galois field) of two elements, or GF(2) [5,6]. Let N = (Q,Σ, δ,Q0, F) be
a unary XNFA with n states and Σ = {a}. We can represent the transition
function δ : Q×Σ → 2Q as an n×n matrix M over GF(2) whose (p, q)-th entry
represents the weight (1 or 0) of the transition from p to q. Such a matrix has a
characteristic polynomial c(X) = det(XI − M), where I is the identity matrix.
Note that in [1] we used column vectors to represent the transitions from one
state to another. In this paper we use row vectors as described, because it allows
for a more intuitive presentation of the matrix and vector multiplication that
follows. However, the results are identical, since any matrix and its transpose
have the same characteristic polynomial.

We encode the initial states Q0 as a vector of length n of elements in GF(2),
namely v(Q0) = [q00 q01 ... q0n−1], where q0i = 1 if qi ∈ Q0 and q0i = 0
otherwise. Similarly, we encode the final states as an n-length vector, v(F) =
[qF0 qF1 ... qFn−1]. We abuse notation by letting δ : Q × Σ → 2Q (a function to
sets of states) and δ : Q×Σ → Z

n
2 (a function to vectors of length n over GF(2))

depending on the context. Then the weight of a word wk of length k is given by

Δ(wk) = v(Q0)Mkv(F)T .

252 L. Marais and L. van Zijl

In fact, v(Q0)Mk is a vector that encodes the XNFA states reachable from the
initial states after reading k letters, or equivalently, it encodes the XDFA state
that is reached from the initial state after reading k letters. That is, Δ(w) =
δ(w)v(F)T .

The important advantage of this interpretation is the fact that one can per-
form a change of basis on the transition matrix and initial and final state vectors
of an XNFA to produce an equivalent XNFA. This ability is essential in, for
example, minimisation algorithms for XNFA [6].

Let N ′ = (Q,Σ, δ′, Q′
0, F

′) be an XNFA, with transition matrix M ′ =
A−1MA for some non-singular n × n matrix A, and let Q′

0 and F ′ be such
that v(Q′

0) = v(Q0)A and v(F ′)T = A−1v(F)T . Then

Δ′(wk) = v(Q′
0)(M

′k)v(F ′)T

= v(Q0)A(A−1MA)kA−1v(F)T

= v(Q0)(Mk)v(F)T

= Δ(wk).

Now, if we require for SV-XNFA that F a and F r be disjunct, a similar change
of basis where v(F ′a)T = A−1v(F a)T and v(F ′r)T = A−1v(F r)T would not
necessarily result in an equivalent SV-XNFA, since the resulting F ′a and F ′r

might not be disjunct. Given M ′ and Q′
0, it might be possible to choose another

F ′a and F ′r that are disjunct so that the result is an SV-XNFA, but it is not
immediately clear that such a choice would always be possible nor that the
language would be preserved [7].

This brings us to the interpretation of SV-XNFA acceptance that excludes the
requirement that F a and F r be disjunct. The result is that any SV-XNFA state
is allowed to be both an accept and a reject state, or one or neither, as long as
the SV-condition is met, i.e. that every word is either explicitly accepted by the
automaton or explicitly rejected, but not both. We call this GF(2)-acceptance,
since it is consistent with the interpretation of XNFA as weighted automata over
GF(2) because a change of basis results in an equivalent XNFA (see Sect. 3).

Definition 2. An SV-XNFA with GF(2)-acceptance is an SV-XNFA as defined
in [1], i.e. a 6-tuple N = (Q,Σ, δ,Q0, F

a, F r), where Q,Σ, δ and Q0 are defined
as for XNFA, and F a and F r are defined as in the disjunctive acceptance case,
but without the requirement that F a ∩ F r = ∅.

Note that an SV-assignment for disjunctive acceptance is also an SV-
assignment for GF(2)-acceptance, but the reverse is not necessarily true, since
the latter may involve assigning some states to both F a and F r.

2.1 Unary XNFA: Matrices and Polynomials Over GF(2)

Unary XNFA have been shown to be equivalent to linear feedback shift registers
(LFSRs) [3]. We now give some relevant results from [2] relating LFSRs, and
hence unary XNFA, to matrices and polynomials over GF(2).

State Complexity of Unary SV-XNFA with Different Acceptance Conditions 253

Any n × n matrix M over GF(2) has a characteristic polynomial c(X) =
det(XI − M). On the other hand, every polynomial c(X) over GF(2) is the
characteristic polynomial of some matrix M of the form shown in Fig. 1. M is
said to be the companion matrix of c(X). The following theorem further relates
matrices and polynomials over GF(2).

M =

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 . . . 1
c0 c1 . . . cn−2 cn−1

Fig. 1. Companion matrix of c(X)

M ′ =

A1 0 . . . 0

0 A2 . . . 0
...

...
...

...

0 0 . . . Am

Fig. 2. Block diagonal matrix of com-
panion matrices

Theorem 1 [2]. Every matrix M over GF(2) is similar to a matrix M ′ of the
form shown in Fig. 2, where each of the submatrices Ai is a companion matrix
of a polynomial that is irreducible over GF(2) or of a power of a polynomial that
is irreducible over GF(2), and the 0’s are 0 submatrices of appropriate sizes.

Each c(X) over GF(2) is associated with a certain cycle structure. Specifi-
cally, the properties of the characteristic polynomial of a unary XNFA N allow
conclusions about the possible length of the cycle of states of its equivalent XDFA
ND (see [1] in particular, as well as for example [2,3,8]). The choice of initial
states for an XNFA determines which cycle in its polynomial cycle structure is
the equivalent XDFA.

We say that a matrix M has an SV-assignment if some XNFA with M as its
transition matrix has an SV-assignment.

In the rest of this paper, we consider only unary SV-XNFA with non-singular
matrices, whose cycle structures do not include transient heads, i.e. states that
are only reached once before a cycle is reached. By Lemma 1 of [1], this means
that we only consider matrices with a characteristic polynomial c(X) = Xn +
cn−1X

n−1 + ... + c1X + c0 that does not have X as a factor, and hence c0 = 1.

2.2 Unary XNFA: Linear Recurrences Over GF(2)

Since the structure of an XDFA is cyclic, for any state dk of the XDFA that
is reached after k letters have been read, there is some integer l so that, if
v(dk) = v(Q0)Mk for some k, then v(dk) = v(Q0)M l+k. That is, l is the length
of the cycle to which dk belongs. This means that given any v(dk) = v(Q0)Mk

for some k, v(dk−i) = v(Q0)Mk−i is well-defined.
We introduce the notion of linear recurrences with respect to XNFA to pro-

vide more information about how XDFA states occur together in a cycle. A linear
recurrence over a finite field has a characteristic polynomial [9]. Specifically, the

254 L. Marais and L. van Zijl

polynomial c(X) = Xn + cn−1X
n−1 + ... + c0 characterises the linear recurrence

st = cn−1st−1+cn−2st−2+...+c0st−n. Let c(X) be the characteristic polynomial
of

1. a transition matrix M for an n-state XNFA N ,
2. a linear recurrence over GF(2), namely st = Σn

i=1cn−ist−i.

Let s̄t = [st0 st1 ... stn−1] be a vector of length n of elements in GF(2). Then,

[st0 st1 ... stn−1] = cn−1[st0−1 st1−1 ... stn−1−1] +
cn−2[st0−2 st1−2 ... stn−1−2] + ...+

c0[st0−n st1−n ... stn−1−n].
(1)

That is, s̄t = cn−1s̄t−1 + cn−2s̄t−2 + ... + c0s̄t−n.
Let s̄0 = v(Q0). The linear recurrence and the behaviour of the XNFA are

both characterised by c(X), so s̄1 = v(Q0)M . In general s̄k = v(Q0)Mk. We
therefore have

v(dt) = v(Q0)M t

= s̄t

= cn−1s̄t−1 + cn−2s̄t−2 + ... + c0s̄t−n

= cn−1v(Q0)M t−1 + cn−2v(Q0)M t−2 + ... + c0v(Q0)M t−n

= cn−1v(dt−1) + cn−2v(dt−2) + ... + c0v(dt−n).

(2)

Therefore, dt =
⊕n

i=1 cn−idt−i.

2.3 Notation

In this paper we let s̄i refer to either the vector representing some set of states,
or the set of states themselves, depending on the context. We use the symbol ⊕
and its sigma notation equivalent

⊕
to denote the boolean XOR operation when

applied to boolean ones and zeroes, and the symmetric difference set operation
when applied to sets, and specifically sets of states.

3 Main Results

This section presents results on SV-XNFA with both disjunctive acceptance and
GF(2)-acceptance. We start by giving an example, to which we will refer back
in the rest of the section, as various notions are discussed.

Example 1. Let N be an SV-XNFA with Q0 = {q0}, F a = {q0, q1} and F r =
{q2, q3} and with its transition matrix being the companion matrix M for the
polynomial c(X) = X4 + X3 + X2 + 1 given in Fig. 1. Let the matrices A and
M ′ (also shown in Fig. 3) be related to M in the sense that M ′ = A−1MA.
For now we only say that N ′ and N ′′ are SV-XNFA derived from N (both
have M ′ as their transition matrix), and their equivalent XDFA’s are given in
Figs. 5 and Fig. 6, respectively, with a double edge indicating an accept state and
a thick edge indicating a reject state.

State Complexity of Unary SV-XNFA with Different Acceptance Conditions 255

M =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 1

A =

1 0 0 1
0 1 1 0
0 1 1 1
0 1 0 1

M ′ =

0 1 0 0
1 0 0 1
1 1 1 0
0 0 1 0

Fig. 3. Example 1: matrices M , A and M ′

q0start

q1

q2

q3

q1, q2,
q3

q0, q1,
q2

q0, q2,
q3

Fig. 4. ND

q0, q3start

q1, q2

q1, q2,
q3

q1, q3

q1

q0

q0, q2,
q3

Fig. 5. N ′
D

q0, q3start

q1, q2

q1, q2,
q3

q1, q3

q1

q0

q0, q2,
q3

Fig. 6. N ′′
D

Our first lemma provides a way to determine, given any cycle, whether an SV-
assignment is possible.

Lemma 1. Let (d1, d2, ..., dm) be a cycle representing an XDFA where di ⊆ Q
for 1 ≤ i ≤ m, and Q is the set of states of the equivalent XNFA. Given either
disjunctive acceptance or GF(2)-acceptance, the cycle has an SV-assignment if
and only if for some some choice of QF ⊆ Q, where pj = 1 for all qj ∈ QF and
pj = 0 otherwise, then

m∧

i=1

⊕

qj∈di

pj = 1 (3)

Proof. The expression in Eq. 3 can only evaluate to 1 if every XDFA state di
contains an odd number of XNFA states that result in a value of 1. This means
that for some choice of QF , an odd number of its elements must be present in
every XDFA state. For disjunctive acceptance, QF represents those XNFA states
that must be assigned to either F a or F r for the cycle to have an SV-assignment.

For GF(2)-acceptance, QF represents those XNFA states that must be
assigned to either F a or F r but not both for the cycle to have an SV-assignment.
That is, every XDFA state must contain an odd number of states that contribute
to the count of either F a or F r but not both, so that one but not both of the
counts sum to an odd number. 	

Since p ∧ p = p, we also have the following corollary.

256 L. Marais and L. van Zijl

Corollary 1. For 0 ≤ k ≤ m,

m∧

i=1

⊕

qj∈di

pj =
m∧

i=1

⊕

qj∈di

pj ∧
⊕

qj∈dk

pj . (4)

We assign some index l > m to a repeated state and generalise in the following
way for any L ⊆ {m + 1,m + 2, ...}:

m∧

i=1

⊕

qj∈di

pj =
m∧

i=1

⊕

qj∈di

pj ∧
∧

l∈L

⊕

qj∈dl

pj . (5)

Example 2. Consider an XNFA with Q0 = {q0, q3} and the transition matrix
given in Fig. 3. Then the states of the equivalent XDFA are those shown in the
cycles of Figs. 5 and 6, which leads to the following expression:

(p0 ⊕ p3) ∧ (p1 ⊕ p2) ∧ (p1 ⊕ p2 ⊕ p3) ∧ (p1 ⊕ p3) ∧ (p0 ⊕ p2 ⊕ p3) ∧ p0 ∧ p1. (6)

If we choose choose QF = {q0, q1}, the expression becomes the following:

(1 ⊕ 0) ∧ (1 ⊕ 0) ∧ (1 ⊕ 0 ⊕ 0) ∧ (1 ⊕ 0) ∧ (1 ⊕ 0 ⊕ 0) ∧ 1 ∧ 1 = 1. (7)

We can assign F a = {q1} and F r = {q0}, and for now we only note that it
is an SV-assignment given either disjunctive acceptance or GF(2)-acceptance.
Figure 6 corresponds to this choice of final states. 	

Example 3. Consider again the XNFA and equivalent XDFA in Example 2. The
characteristic polynomial of M is c(X) = X4 + X3 + X2 + 1, so state transition
behaviour is characterised by st = st−1 + st−2 + st−4. Let s̄t = {q1, q2}, then

s̄t−1 + s̄t−2 + s̄t−4 = {q0, q3} ⊕ {q1} ⊕ {q0, q2, q3}
= {q1, q2}
= s̄t.

	

The following two lemmas shed more light on linear recurrences in XDFA cycles.

Lemma 2. The RHS (right hand side) of the linear recurrence st = cn−1st−1 +
cn−2st−2 + ... + c0st−n of a polynomial c(X) = Xn + cn−1x

n−1 + ... + c1x + c0
has an odd number of terms if X + 1 is a factor of c(X) and an even number
otherwise.

Lemma 3. Let d1 be any state in an XDFA cycle of an equivalent XNFA
with state set Q and let the cycle be characterised by the linear recurrence
st =

∑n
i=1 cn−ist−i. Let σ1 =

⊕
qj∈d1

pj for some choice of QF ⊆ Q so that

State Complexity of Unary SV-XNFA with Different Acceptance Conditions 257

pj = 1 if qj ∈ QF and pj = 0 otherwise. Furthermore, let T ⊆ {2, ..., n} be the
set of indices such that d1 =

⊕
k∈T dk. Then

σ1 =
⊕

k∈T

σk. (8)

In the case where the cycle length m ≤ n, it is possible that d1−i = d1−j for some
i, j. We assign to the l-th duplicate of a state dk (including any occurrences of
d1 itself) the index lm + k, referring to it as dlm+k.

Theorem 2. An XNFA N with characteristic polynomial c(X) = Xn +
cn−1x

n−1 + ... + c1x + c0 has no SV-assignment, given either disjunctive accep-
tance or GF(2)-acceptance, if X + 1 is not a factor of c(X).

Proof. From the discussion in Sect. 2.2, we know that the state transition behav-
iour of N is described by st = cn−1st−1 + cn−2st−2 + ... + c0st−n.

That is, in its equivalent XDFA ND, each state is the ⊕-sum of some number
of states in its cycle. Consider any cycle of ND and let d1 be any state in the
cycle. Let T = {2, ..., n} and let T1 ⊆ T be the set of indices so that

d1 =
⊕

di, i ∈ T1.

If m > n, we use Eq. 3 from Lemma 1 as well as Lemma 3 to determine if the
cycle has an SV-assignment. Since Lemma 1 applies to both disjunctive and
GF(2)-acceptance, the rest of the proof applies similarly.

m∧

i=1

⊕

qj∈di

pj =
m∧

i=1

σi

= σ1 ∧
∧

i∈T1

σi ∧
∧

i∈T\T1

σi

=
⊕

i∈T1

σi ∧
∧

i∈T1

σi ∧
∧

i∈T\T1

σi.

If m ≤ n, we let K = {i ∈ T1| i > m} and use Eq. 5 from Corollary 1 and
Lemma 3 in the following way:

m∧

i=1

⊕

qj∈di

pj =
m∧

i=1

⊕

qj∈di

pj ∧
∧

i∈K

⊕

qj∈di

pj

=
m∧

i=1

σi ∧
∧

i∈K

σi

= σ1 ∧
∧

i∈T1

σi ∧
∧

i∈T\T1

σi

=
⊕

i∈T1

σi ∧
∧

i∈T1

σi ∧
∧

i∈T\T1

σi.

258 L. Marais and L. van Zijl

In both cases, if c(X) does not have X + 1 as a factor, then by Lemma 2, |T1|
is even. Therefore,

⊕
i∈T1

σi ∧ ∧
i∈T1

σi = 0, and so the cycle does not have an
SV-assignment. 	

Having shown that a characteristic polynomial with X + 1 is a necessary con-
dition for a matrix to have an SV-assignment, we now prepare the ground for
showing in Theorem 3 that it is also a sufficient condition. We first determine
that performing a change of basis on an SV-XNFA always results in another SV-
XNFA, albeit in different ways for disjunctive acceptance and GF(2)-acceptance.

Lemma 4. Given GF(2)-acceptance, for any n-state XNFA N with transition
matrix M , if N has an SV-assignment, then there is an N ′ with transition matrix
M ′ that is similar to M , so that N ′ has an SV-assignment and N and N ′ accept
the same language. Hence, if N has an (interesting) SV-assignment, then so
does N ′.

Proof. If M ′ is similar to M , then M ′ = A−1MA for some non-singular n × n
matrix A. We encode the initial states as the vector v(Q0) = [q00 q01 ... q0n−1],
where q0i = 1 if q0i ∈ Q0 and q0i = 0 otherwise. Similarly, we let v(F a) =
[qa0 qa1 ... qan−1] and v(F r) = [qr0 qr1 ... qrn−1], where qai

and qri indicate
membership to F a and F r respectively.

We define the following functions, where the SV-constraint is choosing F a

and F r in such a way that accept(N, ak) �= reject(N, ak) for any k.

accept(N, ak) = v(Q0)(Mk)v(F a)T

reject(N, ak) = v(Q0)(Mk)v(F r)T

Now, we choose the initial states Q′
0, and final states F ′a and F ′r so that v(Q′

0) =
v(Q0)A, v(F ′a)T = A−1v(F a)T and v(F ′r)T = A−1v(F r)T . Then

accept(N ′, ak) = v(Q′
0)(M

′k)v(F ′a)T

= v(Q0)A(A−1MA)kA−1v(F a)T

= v(Q0)(Mk)v(F a)T

= accept(N, ak)

and

reject(N ′, ak) = v(Q′
0)(M

′k)v(F ′r)T

= v(Q0)A(A−1MA)kA−1v(F r)T

= v(Q0)(Mk)v(F r)T

= reject(N, ak).

By assumption, F a and F r are an (interesting) SV-assignment for N , and so
F ′a and F ′r are an (interesting) SV-assignment for N ′. Furthermore, N and N ′

accept the same language. 	

State Complexity of Unary SV-XNFA with Different Acceptance Conditions 259

Lemma 5. Given disjunctive acceptance, for any n-state XNFA N with transi-
tion matrix M , if N has an SV-assignment, then there is an N ′′ with transition
matrix M ′ that is similar to M , so that N ′′ has an SV-assignment, but N and
N ′′ do not necessarily accept the same language.

Proof. We construct N ′′ so that Q′′
0 = Q′

0 as in Lemma 4. However, we let
F ′′a = F ′a \F ′r and F ′′r = F ′r \F ′a. That is, F ′′a is the set of states that occur
in F ′a but not in F ′r and vice versa for F ′′r, so that F ′′a ∩F ′′r = ∅. Recall from
Lemma 1 that for F ′a and F ′r to be an SV-assignment for GF(2)-acceptance,
there must be some QF so that an odd number of XNFA states in each XDFA
state are either accept or reject states but not both. F ′′a and F ′′r are precisely
those states, and so are an SV-assignment for disjunctive acceptance.

However, it is possible that F ′a ⊂ F ′r or vice versa, and so it is possible
that F ′′a or F ′′r is empty even if F ′a and F ′r are non-empty. So although F ′′a

and F ′′r are an SV-assignment, clearly N ′′ does not necessarily accept the same
language as N . 	

Example 4. Let N be the SV-XNFA with matrix given in Fig. 1. Then the equiv-
alent XDFA ND is the cycle as shown in Fig. 4. Note that in this cycle, both
disjunctive acceptance and GF(2)-acceptance place the same constraints on pos-
sible SV-assignments, since the XNFA states each appear alone in XDFA states
and therefore must accept or reject but cannot do both.

We use non-singular matrix A as shown in Fig. 1, and we perform two changes
of basis: as described in Lemma 4 to get an XNFA N ′, and as described in
Lemma 5 to get an XNFA N ′′

D. Both N ′ and N ′′ have transition matrix M ′

(Fig. 3). The equivalent XDFA N ′
D with GF(2)-acceptance is the cycle as shown

in Fig. 5, with F ′a = {q1, q3} and F ′r = {q0, q3}. Note, for example, that the
state {q0, q2, q3} accepts, because it contains an odd number of accept states,
i.e. q3, and an even number of reject states, i.e. q0 and q3. The XDFA N ′′

D with
disjunctive acceptance is shown in Fig. 6, with F ′′a = {q1} and F ′′r = {q0}.

The following lemma asserts the existence of SV-assignments for certain
matrices.

Lemma 6. Any matrix M that is a block diagonal matrix of companion matri-
ces, with characteristic polynomial c(X) = (X +1)φ(X), has an SV-assignment,
given either disjunctive or GF(2)-acceptance.

Theorem 3. Given either disjunctive acceptance or GF(2)-acceptance, any
matrix M with characteristic polynomial c(X) = (X + 1)φ(X) has an SV-
assignment.

Proof. By Theorem 1, M is similar to some block diagonal matrix M ′ with the
companion matrices of factors of c(X) on the diagonal. By Lemma6, M ′ has an
SV-assignment given either disjunctive acceptance or GF(2)-acceptance. There-
fore, by Lemma 4 M has an SV-assignment given GF(2)-acceptance, and by
Lemma 5 M has an SV-assignment given disjunctive acceptance. 	

260 L. Marais and L. van Zijl

The following theorem follows directly from Theorems 2 and 3.

Theorem 4. Any matrix M has an SV-assignment given either disjunctive
acceptance or GF(2)-acceptance, if and only if its characteristic polynomial has
X + 1 as a factor.

Along with Theorem 4, Lemma 7 and Theorem 5 that follow provide the grounds
for concluding that 2n−1 − 1 is a tight bound on the state complexity of unary
SV-XNFA for both disjunctive acceptance and GF(2)-acceptance.

Lemma 7. For an XNFA with a characteristic polynomial c(X) with degree n
that has X + 1 as a factor, the longest possible cycle has length 2n−1 − 1.

Proof. Suppose c(X) has two irreducible factors, φ1 = X + 1 and φ2, where
φ2 is an irreducible polynomial with degree n − 1. By Theorem 1 of [1], if φ2

is primitive it has a single cycle of length 2n−1 − 1, and together with X + 1
induces a cycle for c(X) of the same length. If it is non-primitive it has cycles
of length b where b is a factor of 2n−1 − 1, inducing cycles of length b for c(X)
together with X + 1. Hence, the maximum cycle length is 2n−1 − 1.

Now suppose that c(X) has three irreducible factors, φ1 = X+1, φ2 of degree
k ≤ n− 2 and φ3 of degree n−k − 1, with k > n−k − 1. Cycles of c(X) induced
together with X +1 can only produce at most cycles of length 2k −1 < 2n−1 −1.
Consider the cycle induced by φ2 and φ3. Since it will have greatest possible
length if 2k and 2n−k−1 are relatively prime, we assume this to be the case. The
cycle induced has length lcm(2k −1, 2n−k−1 −1) = (2k −1)∗ (2n−k−1 −1). That
is,

(2k − 1) ∗ (2n−k−1 − 1) = 2n−1 − 2k − 2n−k−1 − 1

< 2n−1 − 1.

Cycles of c(X) are induced by pairs of factors of c(X), and so if c(X) had more
irreducible factors, they would have smaller degree and so would induce even
shorter cycles. Therefore, 2n−1 − 1 is the longest possible cycle for a polynomial
c(X) of degree n that has X + 1 as a factor. 	

Theorem 5. Given either disjunctive acceptance or GF(2)-acceptance, for any
n ≥ 2, there is a language Ln so that some n-state SV-XNFA accepts Ln and
the minimal SV-XDFA that accepts Ln has 2n−1 − 1 states.

Proof. Theorem 7 of [1] gives a proof of the statement with regards to disjunctive
acceptance. Since any SV-assignment for disjunctive acceptance is also an SV-
assignment for GF(2)-acceptance, it is also a proof for the statement with regards
to GF(2)-acceptance. 	

4 Conclusion

We have shown a close similarity between SV-XNFA with two different accep-
tance conditions, namely disjunctive acceptance and GF(2)-acceptance. In par-
ticular, they have the same state complexity bound of 2n−1 − 1. Disjunctive

State Complexity of Unary SV-XNFA with Different Acceptance Conditions 261

acceptance shares a typical requirement of most other finite state automata,
i.e. that a state cannot both accept and reject. However, for self-verification in
unary XNFA, this removes the equivalence known between XNFA and weighted
automata over GF(2), since a so-called change of basis does not preserve the lan-
guage. This has implications for operations such as minimisation, which depend
upon it [6]. GF(2)-acceptance does preserve the equivalence, but results in the
need for SV-XNFA states that both accept and reject. Whereas for disjunctive
acceptance, neutral states are non-final, since they neither accept nor reject,
GF(2)-acceptance introduces the notion of neutral final states that both accept
and reject. While this is perhaps counter-intuitive, it allows for SV-XNFA that
behave more predictably.

References

1. Marais, L., Zijl, L.: Unary self-verifying symmetric difference automata. In:
Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 180–
191. Springer, Cham (2016). doi:10.1007/978-3-319-41114-9 14

2. Stone, H.S.: Discrete Mathematical Structures and their Applications. Science
Research Associates, Chicago (1973)

3. Van Zijl, L.: Nondeterminism and succinctly representable regular languages. In:
Proceedings of the 2002 Annual Research Conference of the South African Institute
of Computer Scientists and Information Technologists. SAICSIT 2002, Republic
of South Africa, South African Institute for Computer Scientists and Information
Technologists, pp. 212–223 (2002)

4. Jirásková, G., Pighizzini, G.: Optimal simulation of self-verifying automata by deter-
ministic automata. Inf. Comput. 209(3), 528–535 (2011). Special Issue: 3rd Inter-
national Conference on Language and Automata Theory and Applications (LATA
2009)

5. Vuillemin, J., Gama, N.: Compact normal form for regular languages as Xor
automata. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 24–33. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02979-0 6

6. Merwe, B., Tamm, H., Zijl, L.: Minimal DFA for symmetric difference NFA. In:
Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 307–318.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31623-4 24

7. Van der Merwe, B.: Private communication (2017)
8. Dornhoff, L.L., Hohn, F.E.: Applied Modern Algebra. Macmillan Publishing Co.,

Inc., London (1978)
9. McEliece, R.J.: Finite Fields for Computer Scientists and Engineers, vol. 23.

Springer Science & Business Media, Berlin (1987)

http://dx.doi.org/10.1007/978-3-319-41114-9_14
http://dx.doi.org/10.1007/978-3-642-02979-0_6
http://dx.doi.org/10.1007/978-3-642-31623-4_24

Reset Complexity of Ideal Languages
Over a Binary Alphabet

Marina Maslennikova(B)

Ural Federal University, Ekaterinburg, Russia
maslennikova.marina@gmail.com

Abstract. We prove PSPACE-completeness of checking whether a
given ideal language serves as the language of reset words for some
automaton with at most four states over a binary alphabet.

Keywords: Ideal language · Synchronizing automaton · Reset word ·
Reset complexity · PSPACE-completeness

Introduction

Regular languages admit compact representations by different tools: determinis-
tic and nondeterministic finite automata, syntactic monoids, regular expressions,
etc. Each of these tools gives rise to the corresponding complexity measure of
regular languages. Along with these general tools, there are more specific devices
for representing regular languages from some special classes. One of such classes
is formed by ideal regular languages. A language I ⊆ Σ∗ is called a two-sided
ideal (or simply an ideal) if I is non-empty and Σ∗IΣ∗ ⊆ I. In what follows
we consider only languages which are regular, thus we drop the adjective “regu-
lar”. Thus, the expression “ideal language” (or simply “ideal”) always means a
regular two-sided ideal language.

Let A = 〈Q,Σ, δ〉 be a deterministic finite automaton (DFA), where Q is the
state set, Σ stands for the input alphabet, and δ : Q×Σ → Q is the totally defined
transition function defining the action of the letters in Σ on Q. The function δ
is extended uniquely to a function Q × Σ∗ → Q, where Σ∗ stands for the free
monoid over Σ. The latter function is still denoted by δ. In the theory of formal
languages the definition of a DFA usually includes the initial state q0 ∈ Q and
the set F ⊆ Q of terminal states. We use these ingredients when dealing with
automata as devices for recognizing languages. A language L ⊆ Σ∗ is recognized
by an automaton A = 〈Q,Σ, δ, q0, F 〉 if L = {w ∈ Σ∗ | δ(q0, w) ∈ F}. We
denote by L[A] the language recognized by the automaton A .

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exists a word w ∈ Σ∗

whose action leaves the automaton in one particular state no matter at which

The author acknowledges support by the Russian Foundation for Basic Research,
grant no. 16-01-00795, the Ministry of Education and Science of the Russian Feder-
ation, project no. 1.3253.2017, and the Competitiveness Enhancement Program of
Ural Federal University.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 262–273, 2017.
DOI: 10.1007/978-3-319-60252-3 21

Reset Complexity of Ideal Languages Over a Binary Alphabet 263

state in Q it is applied: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any word w with this
property is said to be reset for the DFA A . For the last 50 years synchronizing
automata have received a great deal of attention. For a brief introduction to the
theory of synchronizing automata we refer the reader to the surveys [8,10].

In the present paper we focus on some complexity aspects of the theory of
synchronizing automata. We denote by Syn(A) the language of reset words for a
given automaton A . It is well known that Syn(A) is regular [10]. Furthermore,
it is an ideal in Σ∗. On the other hand, every regular ideal language I serves
as the language of reset words for some automaton. For instance, the minimal
automaton recognizing I is synchronized exactly by I [4]. Thus synchronizing
automata can be considered as a special representation of ideal languages. Effec-
tiveness of such a representation was addressed in [4]. The reset complexity rc(I)
of an ideal language I is the minimal possible number of states in a synchroniz-
ing automaton A such that Syn(A) = I. Every such automaton A is called a
minimal synchronizing automaton (for brevity, MSA). Let sc(I) be the number
of states in the minimal automaton recognizing I. For every ideal language I,
we have rc(I) ≤ sc(I) [4]. Moreover, for each n ≥ 3, there exists a language
In such that rc(In) = n and sc(In) = 2n − n [4]. Thus the representation of
an ideal language by means of a synchronizing automaton can be exponentially
more succinct than the “traditional” representation via the minimal automaton.
This resembles the well-known property of nondeterministic finite automata (for
brevity, NFAs): for each n ≥ 3, there is an n-state NFA N such that every DFA
recognizing the same language as N has at least 2n − 1 states [6,7].

The following question arises: how hard is it to check that a given synchro-
nizing DFA B is an MSA for a given ideal I (I is assumed to be given by a
synchronizing DFA A with Syn(A) = I)? Another question related to the pre-
vious one is the following: how hard is it to verify the inequality rc(I) ≤ � for
a given ideal I and a given � ∈ N? The inequality rc(I) ≤ � means that there
exists a synchronizing DFA B with at most � states such that Syn(B) = I. The
aforementioned questions are trivial for automata over a unary alphabet, thus in
what follows we deal with alphabets that have at least two letters. The problem
of checking the equality Syn(B) = I is equivalent to the problem of checking
the equality Syn(A) = Syn(B) for two given synchronizing automata A and
B. The complexity of the latter problem has been studied in [5]. It is well known
that the equality of the languages recognized by two given DFAs can be checked
in time polynomial of the size of automata. However, the problem of checking
the equality of the languages of reset words of two synchronizing DFAs turns out
to be PSPACE-complete [5]. Recall that the problem of checking the equality
of languages recognized by two given NFAs is PSPACE-complete as well [9]. In
this context we again find that synchronizing automata share some properties
of nondeterministic finite automata.

We state formally the SYN-EQUALITY problem:
–Input: synchronizing automata A and B.
–Question: is Syn(A) = Syn(B)?

264 M. Maslennikova

In [5] SYN-EQUALITY has been proved to be PSPACE-complete. In the
present paper we provide a more transparent proof of PSPACE-hardness of
this problem. In particular, it allows us to strengthen the result of [5] concerning
the problem of evaluating the reset complexity of a given ideal language.

We state formally the RESET-INEQUALITY problem:

–Input: synchronizing DFA A over Σ, � ∈ N.
–Question: is rc(Syn(A)) ≤ �?

In [5] RESET-INEQUALITY has been shown to be PSPACE-complete
for � = 3 and enough large input alphabet (with at least five letters). In the
present paper we significantly strengthen this result and prove that RESET-
INEQUALITY, restricted to a binary alphabet, remains PSPACE-complete
even for � = 4. Note that RESET-INEQUALITY is trivial for DFAs over a unary
alphabet and, furthermore, RESET-INEQUALITY can be solved in polynomial
of the size of A time for � = 1 and � = 2 in the general case [5]. Thus the only
question that remains open concerns the complexity of RESET-INEQUALITY
for � = 3 in the case of a binary alphabet.

The paper is organized as follows. In Sect. 1 we introduce some definitions and
preliminary results. In Sect. 2 we provide a modified proof of PSPACE-hardness
of SYN-EQUALITY. Section 3 contains the main result about PSPACE-
completeness of the problem RESET-INEQUALITY in the case of a binary
alphabet.

1 Preliminaries

A state s of a DFA A = 〈Q,Σ, δ〉 is said to be a sink if δ(s, a) = s for all a ∈ Σ.
If the transition function δ is clear from the context, we write q . w instead of
δ(q, w) for q ∈ Q and w ∈ Σ∗. This notation extends naturally to any subset
H ⊆ Q by putting H . w = {δ(q, w) | q ∈ H}.

Recall that a word u ∈ Σ∗ is a prefix (suffix or factor, respectively) of a word
w if w = us (w = tu or w = tus, respectively) for some t, s ∈ Σ∗. A reset word
for a DFA A is called minimal if none of its proper prefixes nor suffixes is reset.

Due to [5, Corollary 1] we have the following proposition.

Proposition 1. SYN-EQUALITY is in PSPACE.

To prove that SYN-EQUALITY is a PSPACE-complete problem we reduce the
following well-known PSPACE-complete problem to the complement of SYN-
EQUALITY. This problem deals with checking emptiness of the intersection of
languages recognized by DFAs from a given collection [2].

FINITE AUTOMATA INTERSECTION

–Input: given n DFAs Mi = 〈Qi, Σ, δi, qi, Fi〉, for i = 1, . . . , n.
–Question: is

⋂
i L[Mi] 	= ∅?

Since FINITE AUTOMATA INTERSECTION is known to be PSPACE-
complete even in the case of a binary alphabet, we may assume that |Σ| = 2, in
particular, let Σ be {a, b}.

Reset Complexity of Ideal Languages Over a Binary Alphabet 265

2 PSPACE-hardness of SYN-EQUALITY

The proof of PSPACE-hardness of SYN-EQUALITY is based on the same idea
as the proof from [5]. However, our modified construction allows us to reduce the
number of letters from 5 to 4. We provide a sketch of the proof of PSPACE-
hardness for the sake of completeness.

Given an instance of FINITE AUTOMATA INTERSECTION, we can
assume without loss of generality that each initial state qi has no incoming
edges and qi /∈ Fi. Indeed, excluding the case for which the empty word ε is in
L[Mi] we can always build a DFA M ′

i = 〈Q′
i, Σ, δ′

i, q
′
i, Fi〉, which recognizes the

same language as Mi, such that the initial state q′
i has no incoming edges. This

can easily be achieved by adding a new initial state q′
i to the state set Qi and

defining the transition function δ′
i by the rule: δ′

i(q
′
i, c) = δi(qi, c) for all c ∈ Σ

and δ′
i(q, c) = δi(q, c) for all c ∈ Σ, q ∈ Qi. Furthermore, we may assume that

the sets Qi, for i = 1, . . . , n, are pairwise disjoint. Also we can suppose that
any letter from Σ does not belong to

⋂
i L[Mi]. Otherwise, we add a new initial

state q′′
i to each M ′

i and put δi(q′′
i , c) = q′

i for all c ∈ Σ. This assumption will be
of use in Sect. 3.

To build an instance of SYN-EQUALITY from the DFAs Mi, i = 1, . . . , n,
we construct a DFA A = 〈Q,Δ,ϕ〉 with Q =

⋃n
i=1 Qi ∪ {s, h}, where s and h

are new states not belonging to any Qi. We add two new letters x and z to the
alphabet Σ and let Δ = Σ ∪ {x, z}. The transition function ϕ of the DFA A is
defined by the following rules:

ϕ(q, c) = δi(q, c) for all i = 1, . . . , n, q ∈ Qi and c ∈ Σ;
ϕ(q, x) = qi for all i = 1, . . . , n, q ∈ Qi;
ϕ(q, z) = s for all i = 1, . . . , n, q ∈ Fi;
ϕ(q, z) = h for all i = 1, . . . , n, q ∈ Qi \ Fi;
ϕ(h, c) = s for all c ∈ Δ;
ϕ(s, c) = s for all c ∈ Δ.

The resulting automaton A is shown schematically in Fig. 1. The action
of letters from Σ on the states p ∈ Qi is not shown. Denote by Gi the set
Qi \ (Fi ∪ {qi}). All the states from the set Gi are shown as the node labeled by
Gi. All the states from the set Fi are shown as the node labeled by Fi.

The constructed automaton is synchronizing, for example, by the word zz.
It can be easily seen that by the definition of the transition function ϕ we get
ϕ(Q,w) ∩ Qi 	= ∅ if and only if w ∈ (Σ ∪ {x})∗. Consider the language

I = (Σ ∪ {x})∗z Δ+.

From the observations above and the definition of ϕ we obtain Lemma 1.

Lemma 1.
⋂n

i=1 L[Mi] = ∅ if and only if Syn(A) = I.

We omit the proof of Lemma 1 because of space constraints.

266 M. Maslennikova

h s

.qi Gi Fi

Δ

x

z

Δ

z z

x

x

Fig. 1. Automaton A

sp1 p2

x,Σ Δ

Δz

Fig. 2. Automaton B

Now we build a 3-state automaton B = 〈P,Δ, τ〉 (see Fig. 2). Its state set
is P = {p1, p2, s

′}, where s′ is a unique sink state. It is easy to verify that I
serves as the language of reset words for B. Furthermore, I does not serve as
the language of reset words for a synchronizing automaton of size at most two
over the same alphabet Δ. So B is an MSA for I and rc(Syn(B)) = 3.

Lemma 2. Syn(B) = I.

Finally, by Lemmas 1 and 2, we have the following claim.

Lemma 3.
⋂n

i=1 L[Mi] = ∅ if and only if Syn(A) = Syn(B).

3 PSPACE-completeness of RESET-INEQUALITY

We have reduced the problem FINITE AUTOMATA INTERSECTION to the
complement of SYN-EQUALITY. By construction of DFAs A and B, we have
Δ = {z, a, b, x}. Now we are going to study the complexity of checking the
inequality rc(I) ≤ � in the case of a binary alphabet. First we build DFAs C =
〈C, {μ, λ}, ϕ2〉 and D = 〈D, {μ, λ}, τ2〉 over a binary alphabet {μ, λ} with unique
sink states ζ1 and ζ2 respectively. It turns out that the constructions of C and
D preserve the equality of reset languages. More precisely, Syn(A) = Syn(B) if
and only if Syn(C) = Syn(D). Let J = Syn(C). We will prove that rc(J) > 4 if

and only if
n⋂

i=1

L[Mi] 	= ∅. It allows to obtain the desired result about PSPACE-

completeness of RESET-INEQUALITY for a binary case alphabet.

Reset Complexity of Ideal Languages Over a Binary Alphabet 267

In order to construct C = 〈C, {μ, λ}, ϕ2〉 and D = 〈D, {μ, λ}, τ2〉 we apply a
recoding technique which has been used in [1,3,5]. Namely, we define morphisms
h : {λ, μ}∗λ → Δ∗ and h : Δ∗ → {λ, μ}∗λ preserving the property of being a reset
word for the corresponding automaton. Since the definitions of morphisms differ
from those described in [5], we present them here. Let d1 = z, d2 = a, d3 = b
and d4 = x. We put h(μkλ) = dk+1 for k = 0, . . . , 3 and h(μkλ) = d4 = x for
k ≥ 4. Every word from the set {λ, μ}∗λ can be uniquely factorized by words
μkλ, k = 0, 1, 2, . . . , whence the mapping h is totally defined. We also consider
the morphism h : Δ∗ → {λ, μ}∗λ defined by the rule h(dk) = μk−1λ.

Now we take the constructed above DFA B = 〈P,Δ, τ〉 with the state set
P = {p1, p2, s

′}. We build D = 〈D, {μ, λ}, τ2〉 with a unique sink state ζ2.
We associate each state pi of the automaton B with a 4-element set of states

Pi = {pi,1, . . . , pi,4} of the automaton D . Namely, the states pi,2, pi,3, pi,4 are
copies of the state pi associated with pi,1. The action of the letter μ is defined in
the following way: τ2(pi,k, μ) = pi,k+1 for k ≤ 3, and τ2(pi,4, μ) = pi,4. We put
D = P1 ∪ P2 ∪ {ζ2}, where ζ2 is a unique sink state. The action of the letter λ
is defined by the rules:

– if τ(pi, dk) = s′, then τ2(pi,k, λ) = ζ2;
– if τ(pi, dk) = pj , then τ2(pi,k, λ) = pj,1.

The latter rule means that if there is a transition from pi to pj labeled by the
letter dk, then there is a transition from pi,1 to pj,1 labeled by the word μk−1λ.

The DFA C is constructed in an analogous way. Figure 3 illustrates the
automata D (left) and C (right). The actions of μ and λ are shown by solid
and dotted arrows, respectively. For compactness, we do not show some transi-
tions labeled by λ in C . Nevertheless, the action of λ is defined on each state in
C . The resulting automata C and D have 4(|Q|−1)+1 and 9 states respectively,
where |Q| is the cardinality of the state set of A .

Lemma 4. Syn(A) = Syn(B) if and only if Syn(C) = Syn(D).

Proof. It is convenient to organize the DFA D as a table. The set Pi is called
the i-th column of the set D. For each k = 1, . . . , 4, the set Rk = {p1,k, p2,k}
is called the k-th row of the set D. The k-th row contains copies of all states
corresponding to the k-th letter from Δ. The i-th column contains the state pi,1
corresponding to the state pi and its copies pi,2, pi,3, pi,4. Each state from the
i-th column maps under the action of μ to a state from the same column. For
k ≤ 3, the row Rk maps under the action of μ to the next row Rk+1. The 4-th
row is fixed by μ, that is, τ2(R4, μ) = R4. The state set D maps under the action
of λ to a subset of R1 ∪ {ζ2}. The DFA C has the same properties.

Assume that Syn(A) 	= Syn(B). From the proof of Lemma1 it follows that
the word w = xw′z with w′ ∈ ⋂

i L[Mi] is reset for A and it is not reset for B.
Thus h(w) ∈ Syn(C) and h(w) 	∈ Syn(D). So Syn(C) 	= Syn(D).

Assume now that Syn(A) = Syn(B). We show that every minimal reset
word of C is reset for D and every minimal reset word of D is reset for C . Let
u be a minimal reset word of C . Any word u ∈ {μ}∗ is not in Syn(C) since μ

268 M. Maslennikova

p1,1

p1,2

p1,3

p1,4

p2,1

p2,2

p2,3

p2,4

ζ2z

a

b

x

qi,1

qi,2

qi,3

qi,4

Gi,1

Gi,2

Gi,3

Gi,4

h1

h2

h3

h4

Fi,1

Fi,2

Fi,3

Fi,4

ζ1

Fig. 3. The automata D (left) and C (right)

brings each column to its subset. Thus u contains some factor from {λ}+. The
automaton C possesses a unique sink state ζ1. Hence C is synchronized to ζ1.
Furthermore, all transitions leading to ζ1 are labeled by λ, and ζ1 is fixed by μ
and λ. Thus if u does not end up with λ, then it is not a minimal reset word.
We have u ∈ {λ, μ}∗λ, i.e., u = u′λ for some u′ ∈ {λ, μ}∗. Let us note that
λ2 appears in u as a factor (otherwise, u /∈ Syn(C)). If the last letter of u′ is
λ and λ2 is not a factor of u′, then u /∈ Syn(C). If λ2 is a factor of u′, then
by the definition of the transition functions of C and D we have u ∈ Syn(C)
and u ∈ Syn(D). So the inclusion Syn(C) ⊆ Syn(D) takes place. The opposite
inclusion Syn(D) ⊆ Syn(C) is verified analogously. �

Lemma 4 implies PSPACE-completeness of the problem SYN-EQUALITY
restricted to a binary alphabet.

Theorem 1 (Theorem4, [5]). SYN-EQUALITY restricted to a binary alphabet
case is PSPACE-complete.

As a corollary, we immediately obtain the following statement.

Proposition 2 [5]. Let � be a positive integer number and A a synchronizing
DFA. The problem of checking the inequality rc(Syn(A)) ≤ � is in PSPACE.

So we reduced FINITE AUTOMATA INTERSECTION to the complement
of SYN-EQUALITY restricted to a binary case alphabet as follows. For an
arbitrary instance of FINITE AUTOMATA INTERSECTION one may build
the corresponding automata C and D over a binary alphabet {λ, μ} such that
n⋂

i=1

L[Mi] 	= ∅ if and only if Syn(C) = Syn(D).

The set of all words synchronizing a fixed subset H ⊆ D of the state set of
D is defined as follows:

R(H) = {v ∈ {λ, μ}∗ | H . v = {ζ2}}.

Reset Complexity of Ideal Languages Over a Binary Alphabet 269

Since ζ2 is a unique sink state in D , any reset word for D maps any subset of D
to {ζ2}. Let us note that

R({p2,1}) = R({p2,2}) = R({p2,3}) = R({p2,4});
R({p1,2}) = R({p1,3}) = R({p1,4}).

These equalities imply that the language of reset words of D ′ coincides with the
language of reset words of D (see Fig. 4). Indeed, due to the equalities above we
can merge states p2,1, p2,2, p2,3, p2,4 into a unique state p2 and merge states p1,2,
p1,3, p1,4 into a unique state p0. Solid arrows still denote the action of μ while
dotted arrows stand for λ. In what follows we consider the DFA D ′ instead of D .

p1p0 p2 ζ2

μ

μ

μ

μ
λ

λ
λ

λ

Fig. 4. The automaton D ′

A standard tool for finding the language of reset words of a given DFA
K = 〈Q, δ,Σ〉 is the power automaton P(K). Its state set is the set Q of
all nonempty subsets of Q, and the transition function is defined as a natural
extension of δ to the set Q × Σ (the resulting function is also denoted by δ),
namely, δ(S, c) = {δ(q, c) | q ∈ S} for S ⊆ Q and c ∈ Σ. If we take the set Q
as the initial state and singletons as final states in P(K), then we obtain an
automaton recognizing Syn(K). It is easy to see that if all singletons are merged
into a unique sink state s, the resulting automaton still recognizes Syn(K).
Throughout the paper the term power automaton and the notation P(K) refer
to this modified version.

Lemma 5. Let J = Syn(C). The equality
n⋂

i=1

L[Mi] = ∅ takes place if and only

if rc(J) ≤ 4.

Proof. Let E = 〈P, {λ, μ}, γ〉 be an MSA for J . Assume that
n⋂

i=1

L[Mi] = ∅.

By Lemma 1 we get that Syn(A) = Syn(B) = I with I = (Σ ∪ {x})∗zΔ+.
By Lemma 4 we have J = Syn(C) = Syn(D ′). Let us note that λ3 ∈ Syn(D ′).
Furthermore, λ, λ2 	∈ Syn(D ′). It means that P . λ3

� P . λ2
� P . λ � P . Hence

|P | ≥ 4. Therefore, rc(J) ≥ 4. On the other hand, Syn(D ′) = J . Thus D ′ is an
MSA for J = Syn(C), i.e., rc(J) = 4.

Let us assume now that
n⋂

i=1

L[Mi] 	= ∅. We are going to show that rc(J) > 4

in this case. Let u be a minimal reset word for C . By the arguments from the

270 M. Maslennikova

proof of Lemma 4 and by the construction of C , one may note that u can be
factorized as u = u′λ for some u′ ∈ {μ, λ}+. Also λ2 is necessarily a factor of u.
Moreover, by the definition of the transition function of C we have λ3 ∈ J while
λ, λ2 /∈ J . From the arguments above it follows that every MSA for J has at
least 4 states. Arguing by contradiction, let us assume that there exists a 4-
state automaton E = 〈P, {λ, μ}, γ〉 with Syn(E) = J . Without loss of generality
suppose that P = {0, 1, 2, 3}. We define the action of λ on the state set P . Since
λ3 ∈ Syn(E) and λ, λ2 	∈ Syn(E), there is a unique up to isomorphism way to
define the action of λ on the states from the state set P (see Fig. 5).

30 1 2 λ
λλ λ

Fig. 5. The action of λ in E

The word λ2μλ is in Syn(C), i.e., λ2μλ ∈ J . By the definition of the action
of λ in E we get that γ(P, λ2) = {2, 3}. On the other hand, λ2μ 	∈ Syn(C),
thus λ2μ 	∈ Syn(E). Hence {2, 3} under the action of μ maps to a two-element
subset which is translated by λ into {3}. So we need to guarantee the equality
γ({2, 3}, μ) = {2, 3}. The action of μ at states 2 and 3 can be defined in two
possible ways such that the last equality is true (see Fig. 6).

30 1 2 λ

μμ

λλ λ
30 1 2 λ

λ, μ

μ

λ λ

Fig. 6. The action of μ at states 2 and 3 in the DFA E

Note that λμλ 	∈ Syn(C). Therefore, λμλ is not a reset word for E . Since we
have γ({1, 2, 3}, λμλ) = {3} for each variant from Fig. 6, the word λμλ should
map the state 0 to a state different from 3. However γ(0, λ) = 1, thus 1 under
the action of μ maps to either 0 or 1. All in all, for each variant from Fig. 6, we
get two ways to define the image of 1 under the action of μ (see Fig. 7).

It remains to define the image of 0 under the action of μ. Let us note that
μ2λ2 	∈ Syn(C). Since γ({2, 3}, μ2λ2) = {3}, one of the equalities, γ(0, μ) = 0 or
γ(0, μ) = 1, is required to take place. Furthermore, we have γ({1, 2, 3}, μ2λ2) =
{3} in the third and forth variants from Fig. 7. It means that there exists the
only possibility to put γ(0, μ) = 0 for these variants. So we have six automata
over the alphabet {λ, μ} shown in Fig. 8. It remains to check whether J could
coincide with the set of reset words for one of these DFAs.

Reset Complexity of Ideal Languages Over a Binary Alphabet 271

30 1 2 λ

μμ

λλ λ

μ

30 1 2 λ

λ, μ

μ

λ λ

μ

30 1 2 λ

μμμ

λλ λ
30 1 2 λ

μ

λ, μ

μ

λ λ

Fig. 7. Possible ways to define the action of μ at 1 in E

30 1 2 λ

μμμ

λλ λ

μ
E1

30 1 2 λ

λ, μ

μ

μ

λ λ

μ
E2

30 1 2 λ

μμμ

λλ λ

μ
E3

30 1 2 λ

λ, μ

μ

μ

λ λ

μ
E4

30 1 2 λ

μμμμ

λλ λ

E5

30 1 2 λ

μ μ

λ, μ

μ

λ λ

E6

Fig. 8. Possible candidates for E

The DFA E1 from Fig. 8 is isomorphic to D ′ for which we have Syn(D)′ =

Syn(D). So Syn(E1) = Syn(D). By the assumption
n⋂

i=1

L[Mi] 	= ∅, hence by

Lemmas 1 and 4 we have J = Syn(C) 	= Syn(D). Therefore, E1 is not an MSA
for J . For E1 and E2 the equality Syn(E1) = Syn(E2) takes place. It can be easily
checked by the construction of power automata P(E1) and P(E2) (see Fig. 9). It
implies that E2 cannot be an MSA for J .

By the assumption c 	∈
n⋂

i=1

L[Mi] for all c ∈ Σ. It means that b 	∈ L[Mj]

or, equivalently, δj(qj , b) ∈ Qj \ Fj for some index j. Take the word xbz. By
the definition of the transition function ϕ of A we have ϕ(Q,xbz) = {h, s}, so
xbz 	∈ Syn(A). By the definition of the morphism h : Δ∗ → {λ, μ}∗λ we have
h(xbz) = μ3λμ2λλ. By the definition of the transition function ϕ2 of C we get
ϕ2(qj,1, μ3λμ2λ) = ϕ2(qj,1, μ2λ) = pt,1, where pt = δj(qj , b) and pt 	∈ Fj . Hence

272 M. Maslennikova

s

0123

023 123

13 23

03

μ λ

μ

λλ

μ

μλ

μλ

μ

λ

λ, μ s

0123

023 123

13 23

0203

μ λ

μ

λλ

μ

μλ

μλ
μ

μ

λ

λ

λ, μ

Fig. 9. The power automata P(E1) and P(E2)

ϕ2(qj,1, μ3λμ2λλ) = ϕ2(pt,1, λ) = h1. So we obtain that μ3λμ2λλ 	∈ Syn(C).
Therefore, μ3λμ2λλ 	∈ J , but it is easy to see that μ3λμ2λλ ∈ Syn(E3). Hence
E3 can not be an MSA for J . Analogously, E4 can not be an MSA for J as well.

Note that (μλ)3 ∈ Syn(E5) and (μλ)3 ∈ Syn(E6). By the definition of the
morphism h : {λ, μ}∗λ → Δ∗, we have h((μλ)3) = (h(μλ))3 = a3. But the word
a3 is not reset for A (see Fig. 1). By the definition of the transition function
of C it implies that h(a3) 	∈ Syn(C), that is (μλ)3 	∈ J . In this way neither E5,
nor E6 can be an MSA for J . We have considered all possible candidates for a
4-state MSA for J . Each automaton Ei cannot be chosen as an MSA for J . Also
it is known that rc(J) ≥ 4. Finally, we have rc(J) > 4. �

Now we are in position to state the main result of the paper. Lemma5 and
Proposition 2 imply the following theorem.

Theorem 2. RESET-INEQUALITY restricted to a binary alphabet is
PSPACE-complete for � = 4.

References

1. Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and
digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
55–65. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15155-2 7

2. Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Symposium
on Foundations of Computer Science, pp. 254–266. IEEE, New York (1977). doi:10.
1109/SFCS.1977.16

3. Martygin, P.: Computational complexity of certain problems related to carefu-
uly synchronizing words for partial automata and directing words for nonde-
terministic automata. Theory Comput. Sci. 54(2), 293–304 (2014). doi:10.1007/
s00224-013-9516-6. In: Ablayev, F. (ed.), Springer

http://dx.doi.org/10.1007/978-3-642-15155-2_7
http://dx.doi.org/10.1109/SFCS.1977.16
http://dx.doi.org/10.1109/SFCS.1977.16
http://dx.doi.org/10.1007/s00224-013-9516-6
http://dx.doi.org/10.1007/s00224-013-9516-6

Reset Complexity of Ideal Languages Over a Binary Alphabet 273

4. Maslennikova, M.I.: Reset complexity of ideal languages. In: Bieliková, M. (ed.)
International Conference on SOFSEM 2012, vol. II, pp. 33–44. Institute of Com-
puter Science Academy of Sciences of the Czech Republic (2012). arXiv:1404.2816

5. Maslennikova, M.: Complexity of checking whether two automata are synchro-
nized by the same language. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.)
DCFS 2014. LNCS, vol. 8614, pp. 306–317. Springer, Cham (2014). doi:10.1007/
978-3-319-09704-6 27

6. Meyer, A.R., Michael, J.F.: Economy of description by automata, grammars, and
formal systems. In: 12th Annual Symposium on Switching and Automata Theory,
pp. 188–191. IEEE, New York (1971). doi:10.1109/SWAT.1971.11

7. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Com-
put. C–20(10), 1211–1214 (1971). IEEE, New York

8. Sandberg, S.: 1 homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005). doi:10.1007/
b137241

9. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In:
Aho, A.V. (ed.) Proceedings of the 5th Annual ACM Symposium on Theory of
Computing STOC 1973, pp. 1–9. ACM, New York (1973). doi:10.1145/800125.
804029

10. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-88282-4 4

http://arxiv.org/abs/1404.2816
http://dx.doi.org/10.1007/978-3-319-09704-6_27
http://dx.doi.org/10.1007/978-3-319-09704-6_27
http://dx.doi.org/10.1109/SWAT.1971.11
http://dx.doi.org/10.1007/b137241
http://dx.doi.org/10.1007/b137241
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1007/978-3-540-88282-4_4

2-State 2-Symbol Turing Machines with Periodic
Support Produce Regular Sets

Turlough Neary(B)

Institute of Neuroinformatics, University of Zürich and ETH Zürich,
Zürich, Switzerland

tneary@ini.phys.ethz.ch

Abstract. We say that a Turing machine has periodic support if there
is an infinitely repeated word to the left of the input and another infi-
nitely repeated word to the right. In the search for the smallest universal
Turing machines, machines that use periodic support have been signif-
icantly smaller than those for the standard model (i.e. machines with
the usual blank tape on either side of the input). While generalising
the model allows us to construct smaller universal machines it makes
proving decidability results for the various state-symbol products that
restrict program size more difficult. Here we show that given an arbi-
trary 2-state 2-symbol Turing machine and a configuration with periodic
support the set of reachable configurations is regular. Unlike previous
decidability results for 2-state 2-symbol machines, here we include in our
consideration machines that do not reserve a transition rule for halting,
which further adds to the difficulty of giving decidability results.

1 Introduction

The search for Turing machines with small states-symbol products has received
attention for a number of different variations of the model [2,8,12,13]. The vari-
ant that has received the most attention is what we call here the standard
model [1,5,6,11] (single-tape Turing machines with the usual blank symbol and
a specially reserved halt instruction). As one might expect if we generalise the
standard model or the type of encoding it may use we can give machines with
smaller state-symbol products. One generalisation used in the literature is to
allow periodic support (an infinitely repeated word to the left of the input and
another infinitely repeated word to the right). Universal machines that use such
a generalisation are call weakly universal. Watanabe gave a number of small
semi-weakly universal machines [13] (a repeated word only appears on one side
of the input). Later, Cook [2] gave small weakly universal machines that simulate

This work is supported by Swiss National Science Foundation grant numbers 200021-
153295 and 200021-166231. The author thanks the anonymous reviewers for their
careful reading of the paper and their helpful comments.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 274–286, 2017.
DOI: 10.1007/978-3-319-60252-3 22

2-State 2-Symbol Turing Machines 275

the cellular automaton Rule 110, and these were improved upon in [7] to give
weakly universal machines for the state-symbol pairs of (6, 2), (3, 3) and (2, 4).

For the standard model a number of authors have given lower bounds on the
size of the smallest possible universal Turing machines by proving the halting
problem decidable for machines with the following state-symbol pairs: (2, 2) [4,9],
(3, 2) [10], (2, 3) (claimed by Pavlotskaya [9]), (1, n) [3] and (n, 1) (trivial), where
n � 1. Unfortunately, these results do not provide lower bounds relevant to
the weak and semi-weak machines mentioned above, and while generalising the
encoding can simplify the task of finding machines with smaller state-symbol
products the task of giving decidability results becomes more difficult. In this
work we give decidability results for 2-state 2-symbol machines with periodic
support. Our main result is as follows:

Theorem 1. Given an arbitrary 2-state, 2-symbol, single-tape Turing machine
with periodic support, the set of reachable configurations from an arbitrary con-
figuration is regular.

This result implies the decidability of many questions for 2-state 2-symbol
machines with periodic support such as (1) Will a computation halt? (2) Does
word w appear on the tape during a computation? (3) Given a number x does
a computation enter a repeating sequence of configurations of length x? The
halting property in question 1 is the standard way of signaling the end of a
computation in Turing machines. Each of the properties in (2) and (3) above
have been used as a means to signal the end of a computation in universal
machines [2,12]. The weakly universal machines in [2,7] use the appearance of
a special word to simulate a halting Turing machine and so our results show
that there exists no 2-state 2-symbol weakly universal machine that ends its
computation in this way. Our proof does not assume that there is a transition
rule reserved for halting which further adds to the difficulty when compared to
previous decidability proofs for 2-state 2-symbol machines.

The layout of the paper is as follows: In Sect. 2 we explain notation and give
some definitions including definitions for two types of computation, periodic
and semi-periodic, and we then show that if a computation is periodic or semi-
periodic the set of reachable configurations is regular. In Sect. 3 we reduce the
number of cases to be considered leaving the cases only in Fig. 1 to be solved,
and in Sect. 4 we solve the Fig. 1 cases to prove Theorem 1.

2 Turing Machines with Periodic Support

Definition 1. A Turing machine with periodic support is a tuple M =
(Q,Σ, f, l, r). Here Q = {q1, . . . q|Q|} and Σ are the finite sets of states and
tape symbols respectively, and l, r ∈ Σ∗ are the left and right blank words
respectively, where |r| > 0 and |l| > 0. The transition function is of the form
f : Q × Σ → Σ × {L,R} × Q.

276 T. Neary

We write f as a list of transition rules. Each transition rule is a quintuple
(qx, σ1, σ2, d, qy), with initial state qx, read symbol σ1 ∈ Σ, write symbol σ2 ∈ Σ,
move direction d ∈ {L,R} and next state qy.

Definition 2. A configuration c of a Turing machine with periodic support has
the form c = uqxα v where qx is the current state, the tape head is reading the
symbol α, and the words u, v ∈ Σ∗.

For a machine with periodic support, when the tape head moves to the right of
v the word r is appended to the right of v and when the tape head moves to the
left of u the word l is prepended to the left of u. When l = r = 0 we have the
classic Turing machine with blank symbol 0. We write c1 � c2 to denote that
configuration c2 is obtained via a single Turing machine computation step on c1
and we write c1 �∗ ct if there exists a sequence of 0 or more computations steps
of the form c1 � c2 � . . . ct−1 � ct. We say that ct is reachable from c1 and call
c1 � c2 � . . . ct−1 � ct a computation sequence.

We label each Turing machine tape cell with an index. The cell with index
i, which we will call cell i, has cell i − 1 immediately to its left and cell i + 1
immediately to its right. The position function p(t) gives the index of the cell
being read by the tape head at time t. The rightmost position up to time t is a
cell index Pr(t) = max

t′�t
(p(t′), pr) and the leftmost position up to time t is a cell

index Pl(t) = min
t′�t

(p(t′), pl), where pl and pr are respectively the leftmost and

rightmost cells occupied by the input w.

Definition 3 (Periodic computation). Let M be a Turing machine with
periodic support. The computation of M is periodic if there is a sequence s of
transition rules and a time t, such that sequence s is executed between times
t + i|s| and t + (i + 1)|s| for all i ∈ N, where |s| is the number of rules in s.

Lemma 1. If a computation is periodic, then {ci|c1 �∗ ci} is a regular set.

Proof. After t time steps M has gone through a sequence of configurations c1 �
c2 � . . . ct. There are two possible cases for the repeated sequence s, the sequence
has either an equal or unequal number of left and right instructions. If there is
an equal number of left and right instructions then after a further |s| time steps
we get ct, ct+1, . . . , ct+s where ct and ct+s are identical. So in this case the set
of configurations reachable from c1 is the finite regular set {c1, c2, . . . , ct+s−1}.

If the number of left and right instructions in s are not equal, then we need
only consider the case where there are more right than left instructions (as the
case of more left than right instructions is symmetric). At time t we have a
configuration ct = uu1 qx,1α1 v1 such that the tape head visits the leftmost
symbol in u1 but does not revisit any symbol in u. Between times t and t + s
sequence s is executed giving the configuration sequence ct � ct+1 � . . . ct+s

where ct+i = uui qx,iαi vi for 0 � i < s and ct+|s| = uu′u1 qx,1α1 v1. In con-
figuration ct+|s| the words u1 and v1 must appear immediately to the left and
right of the tape head position as the sequence of symbols read when execut-
ing s in the |s| time steps following ct+|s| is identical to the sequence of sym-
bols read in the |s| time steps following ct. Since the tape head will not visit

2-State 2-Symbol Turing Machines 277

any cell to the left of the leftmost symbol in u1 when executing s the word u′

is not revisited by the tape head and is not altered for the remainder of the
computation. For each subsequent execution of s another u′ is placed on the
tape and so on iteration j + 1 of s we get a configuration sequence of the form
ct+|s|j � ct+|s|j+1 � ct+|s|j+2 � . . . ct+|s|(j+1) where ct+|s|j+i = u(u′)jui qx,iαi vi
and 0 � i < s. So the set of configurations reachable from c1 is the regular set
{c1, c2, . . . , ct} ∪ ui(u′)∗ui qx,iαi vi where 0 � i < s. �
Lemma 2. Let M be a 2-state, 2-symbol Turing machine with periodic support.
If, when M is started on a configuration c1, there exists an m ∈ N such that on
more than |r|2m+1 occasions the tape head of M is over a cell Pr(t) and does
not visit cell Pr(t) − m after time t, then the set {ci|c1 �∗ ci} is regular.

Proof. Let uu′ qxαvr be a configuration at time t with |u′| = m and the tape
head over cell Pr(t). If no cell to the left of Pr(t)−m is visited after time t, then
the future computation depends only on u′ qxαvr . By definition of Pr(t) no cell
to the right of the tape head’s location at symbol α has yet been read and so
vr must be a suffix of r. As a result, there are only |r|2m+1 possible values for
u′ qxαvr. So, after |r|2m+1 times where the tape head is over cell Pr(t) and no
longer visits cell Pr(t) − m, there are two times tj and tk that have the same
value for u′ qxαvr. Since the future computation depends only on u′ qxαvr, the
sequence of transition rules executed between times tj and tk are repeated ad
infinitum. So from Lemma 1 the set {ci|c1 �∗ ci} is regular. �
Using a similar argument to the one used in Lemma 2 we get Comment 1.

Comment 1. Let M be a 2-state, 2-symbol Turing machine with periodic sup-
port. If, when M is started on a configuration c1, there exists an m ∈ N such
that on more than |l|2m+1 occasions the tape head of M is over a cell Pl(t) and
does not visit cell Pl(t) + m after time t, then the set {ci|c1 �∗ ci} is regular.

Comment 2. Let M be a Turing machine with periodic support. If M started
on configuration c does not make at least 2 consecutive right moves an inifinite
number of times and at least 2 consecutive left moves an infinite number of
times, then it either enters a loop or gives a computation of the type describe by
Lemma 1 or Comment 1, and so the set of reachable configurations is regular.

Definition 4 (Semi-periodic computation). Let M be a Turing machine
with periodic support. The computation of M is semi-periodic if there are 2x+2
sequences of transition rules, sr, sl, e1, e2 . . . ex, h1, h2 . . . hx, such that there is a
time z where the sequence

S = (sr)i+1e1(sl)i+1h1(sr)i+1e2(sl)i+1h2 . . . (sr)i+1ex(sl)i+1hx

is executed between times t(i) and t(i + 1) for all i ∈ N, where t(i) = z +
(i2+i)x

2 (|sr| + |sl|) + i(|e1h1e2h2 . . . exhx|), f(sr) = m, f(sl) = −m, 0 � f(ei) <
m, −m < f(hi) � 0, and −m < f(S) � 0 where f(s) = (number of right
instructions in sequence s)−(number of left instructions in sequence s). Also,
for every instruction sequence y that is a prefix of sl we have f(y) � −m, and
for every instruction sequence y that is a prefix of sr we have f(y) � m.

278 T. Neary

Lemma 3. If a computation is semi-periodic, then {ci|c1 �∗ ci} is a regular set.

Proof. At time t(i) the sequence S is about to be executed by M for the (i+1)th

time. The configuration at time t(i) is given below on the left side of (1). From S
in Definition 4 the execution begins with (sr)i+1, and so between times t(i)+|sr|k
and t(i)+ |sr|(k +1) we execute the sequence sr, for 0 � k � i. In Eq. (1) during
the execution of each sr the tape head does not move to the left of the word ur,1

or to the right of the word vr,1, and so since sr has more right move than left
move instructions we can use an argument similar to the one used in Lemma 1
to show that after k iterations of sr (|sr|k time steps) the configuration on the
right side of Eq. (1) is produced. Continuing on, the left side of Eq. (2) gives the
configuration after i iterations of sr, and one further iteration of sr gives the
configuration on the right. In the configuration on the right of Eq. (2) the word
ve1,1 = vr′,1ve′

1
, where vr′,1 is the length |vr,1|−m word that appears immediately

to the right of the tape head after the last sr in (sr)i+1 has executed (recall that
each sr shifts the tape head m cells to the right in the word vr,1). The leftmost
(sr)i+1 instruction sequence in S has now completed and so e1, the next sequence
in S, executes.

In Eq. (3) we show the |e1| times steps that complete the execution of e1. Before
we proceed we explain the presence of the word u′

1 (the length f(e1) prefix of u′)
that appears in the configuration on the right of Eq. (3). Immediately following the
execution of e1 we execute the sequence (sl)i+1, and as usual we give words ul,1 and
vl,1 suchthatduringtheexecutionofeachsl thetapeheaddoesnotmovetothe leftof
ul,1 or to the rightofvl,1.FromDefinition 4weknowthat executinge1 shifts the tape
head f(e1) cells to the right. So fromEq. (3) after the execution of e1 (before thefirst
sl is about toexecute) the tapehead isat leastf(e1) cells to the rightof the rightmost
u′ subword in (u′)i+1. For every prefix y of sl we have f(y) � −m and so when
executing sl the tape head does not visit cells more than m positions to the left of its
initial locationwhen it began sl. So since |u′| = m and the initial tape head location
is at least f(e1) cells to the right of the rightmost u′, the leftmost f(e1) symbols in
the rightmost u′ (i.e. the prefix word u′

1) are not entered when executing the first sl
and so we have u′

1 to the left of ul,1 in Eq. (3). Note that in Eq. (3) permitting the
tape head to enter cells to the left of ue1,1 when executing e1 will not effect the value
of u′

1, as it is only possible to iterate sl if u′
1 is a prefix of u′ (see Eq. (4)) and so the

prefix value ofu′
1 is implied by the fact that (sl)i+1 is executed immediately after e1.

uh′
1
ur,1 qr,1αr,1 vr,1(v

′)ive′
1

�|sr|k uh′
1
(u′)kur,1 qr,1αr,1 vr,1(v

′)i−kve′
1

(1)

uh′
1
(u′)iur,1 qr,1αr,1 vr,1ve′

1
�|sr| uh′

1
(u′)i+1ue1,1 qe1,1αe1,1ve1,1 (2)

uh′
1
(u′)i+1ue1,1 qe1,1αe1,1ve1,1 �|e1| uh′

1
(u′)iu′

1ul,1 ql,1αl,1vl,1ve′
2

(3)

uh′
1
(u′)iu′

1ul,1 ql,1αl,1vl,1ve′
2

�|sl|k uh′
1
(u′)i−ku′

1ul,1 ql,1αl,1vl,1(v
′)kve′

2
(4)

uh1,1 qh1,1αh1,1vh1,1(v
′)i+1ve′

2
�|h1| uh′

2
ur,1 qr,1αr,1vr,1v′

1(v
′)ive′

2
(5)

uh′
n

ur,1 qr,1αr,1vr,1v′
n(v

′)ive′
n

�|sr|k uh′
n
(u′)kur,1 qr,1αr,1vr,1v′

n(v
′)i−kve′

n
(6)

The execution of sequence (sl)i+1 as shown in Eq. (4) proceeds in a manner
similar to that of (sr)i+1. The main difference is that sl has more left move than
right move instructions and so each successive sl sequence begins m cells further
to the left. Following the execution of (sl)i+1, the sequence h1 is executed as

2-State 2-Symbol Turing Machines 279

shown in Eq. (5). In the configuration on the left of Eq. (5) the word uh1,1 =
uh′

1
u′
1ul′1 , where ul′1 is the length |ul,1| − m word that appears immediately to

the left of the tape head after the last sl in (sl)i+1 has executed (recall each
sl shifts the tape head m cells to the left in the word ul,1). The word v′

1 that
appears in the configuration on the right of Eq. (5) is the length f(h1) suffix of
v′ and its presence can be explained in a manner similar to that of u′

1 in the
previous paragraph. Continuing with the execution of sequence S, on the right
side of Eq. (5) following the execution of h1 the configuration is ready to allow
the next (sr)i+1 sequence to execute. Note that unlike the configuration on the
left of Eq. (1), the configuration on the right of Eq. (5) has the word v′

1 to the
left of (v′)i. This implies that (v′)i is a prefix of v′

1(v
′)i as to execute (sr)i+1 we

must have the word (v′)i to the right of vr1,1. This prefix property holds for each
v′
j word produced by executing a hj sequence. Similarly all words of the form

(u′)iu′
j share a suffix that allows (sr)i+1 to execute, where u′

j is a word produced
by executing an ej sequence (see Eq. (3)). Returning to Eq. (5), at the right end
of the configuration ve′

2
is of the correct form to allow e2 to execute at the end

of the (sr)i+1 scan right, and following this we once again scan left with (sl)i+1

where uh′
2

allows the execution of h2. So the process of scanning right with (sr)i+1

and left with (sl)i+1 is repeated with the nth scan right given in Eq. (6). This
continues until the sequence S is completed for the value i, whereupon S begins
for i + 1. The configurations for the nth iteration of S can be obtained from the
configurations for the first iteration of S simply by increasing the number of u′

and/or the number of v′ words in each configuration. So the set of configurations
reachable by M is the union of the finite set of configurations before the first
iteration of S and the configurations indicated in Eqs. (1) to (6). �

3 Reducing the Number of Cases Through Symmetries

There are 4096 possible 2-state 2-symbol machines and in this section we show
how to reduce the number of cases to the 378 machines given in Fig. 1. Eq. (7)
below gives the form of an arbitrary 2-state 2-symbol Turing machine where
σi ∈ {0, 1}, dj ∈ {L,R} and qk ∈ {qa, qb}. In the sequel we denote each possible
machine as a triple (Σ,D,Q) where Σ = {σ1, σ2, σ3, σ4}, D = {d1, d2, d3, d4},
and Q = {q1, q2, q3, q4}. Each Σ, D and Q has 16 possible values and here we
show how to reduce the number of cases under consideration to 6, 7, and 9,
respectively (see Tables 1 to 3). We do this by identifying symmetries using the
notion of regular equivalent machines which we define below, and we also solve
some of the simplest cases from Σ, D and Q.

qa, 0, σ1, d1, q1 qa, 1, σ2, d2, q2 qb, 0, σ3, d3, q3 qb, 1, σ4, d4, q4 (7)

Before we proceed we give some preliminary definitions and notation. Given a set
with two elements {y, z} we define y = z and z = y. Given w = w0w1 . . . wm ∈
{0, 1}∗, we write w = w0w1 . . . wm to denote the word obtained by flipping each

280 T. Neary

bit wi ∈ {0, 1} in w. We define three functions greverse, gb-flip and gs-flip each of
which map a configuration c = uqxα v to another configuration as follows

greverse(c) = v qxα u gb-flip(c) = uqxα v gs-flip(c) = uqxα v

where if w = w0w1 . . . wm then w = wmwm−1 . . . w0.

Definition 5. Given Turing machines M and M ′ with periodic support, we
say that M and M ′ are regular equivalent if for every computation sequence
c1 � c2 � . . . ct of M there is a computation sequence g(c1) � g(c2) � . . . g(ct) of
M ′ and vice versa, where g ∈ {greverse, gb-flip, gs-flip}.
Showing one direction of the equivalence is sufficient to prove that a pair of
machines are regular equivalent as each function from g is its own inverse. Com-
ment 3 follows from Definition 5 as regularity is closed under g, and used with
Lemma 4 reduces the number of cases for Theorem 1.

Comment 3. Let M be a Turing machine with periodic support such that the
set of configurations reachable from any arbitrary configuraiton is regular. Then
if Turing machines M and M ′ are regular equivalent, for every configuration of
M ′ with periodic support, the set of configurations reachable for M ′ is regular.

Lemma 4. Let M be an arbitrary 2-state, 2-symbol Turing machine with peri-
odic support. Then applying any one of the mappings in Eqs. (8) to (10) to all
transition rules in M gives a regular equivalent Turing machine M ′.

fd-flip(qx, σ, σ′,D, qy) → (qx, σ, σ′,D, qy) (8)

fb-flip(qx, σ, σ′,D, qy) → (qx, σ, σ′,D, qy) (9)
fs-flip(qx, σ, σ′,D, qy) → (qx, σ, σ′,D, qy) (10)

Proof. To prove this lemma we show that for each mapping on M given by
Eqs. (8) to (10) there is a g ∈ {greverse, gb-flip, gs-flip}, such that for each com-
putation sequence c1 � c2 � . . . ct of M there is a computation sequence
g(c1) � g(c2) � . . . g(ct) of M ′ satisfying Definition 5 (recall that it is suffi-
cient to prove only one direction of the equivalence). For each of the trans-
lations in Eqs. (8), (9) and (10) we set g to greverse, gb-flip, or gs-flip, respec-
tively. For example, if we apply the translation in Eq. (8) to M , then for each
computation sequence c1 � c2 � . . . ct of M there is a computation sequence
greverse(c1) � greverse(c2) � . . . greverse(ct) of M ′. Each of the three cases (i.e.
applying Eqs. (8), (9) or (10)) can easily be verified using an inductive argument
showing that if M gives ci � ci+1 then M ′ gives g(ci) � g(ci+1). �

It is a straightforward matter to apply the mappings in Lemma4 to the
cases in Tables 1 to 3 to show that every case not given in the tables is regular
equivalent to a case that is in the tables. Applying the mapping in (9) to machines
for Σ1, Σ2, Σ3 and Σ4 gives machines for the Σ cases (1, 1, 1, 1), (1, 1, 0, 1),

2-State 2-Symbol Turing Machines 281

(1, 1, 1, 0) and (1, 1, 0, 0) respectively1. Applying the mapping in (10) to Σ2, Σ3

and Σ5 gives the Σ cases (0, 1, 0, 0), (1, 0, 0, 0), and (1, 0, 0, 1) respectively, and
applying the mapping (9) and then (10) to Σ2 and Σ3 gives cases (0, 1, 1, 1) and
(1, 0, 1, 1) respectively. We have now shown that 9 of the 10 possible Σ values
not given in Table 1 are regular equivalent to cases in the table, and now the only
case not covered is (0, 1, 0, 1). For Σ = (0, 1, 0, 1) the read symbol is the same
as the write symbol for each transition rule and so it never changes the tape
contents. It follows that if machines for the case (0, 1, 0, 1) enter the same cell
more than twice they enter a loop and so computations for this case either loop
or scan in one direction only never making 2 consecutive moves in the opposite
direction and are thus covered by Comment 2.

Table 1. The 16 possible cases for the 4
read symbols in (7) reduced to 6 cases.

Σ1 Σ2 Σ3 Σ4 Σ5 Σ6

σ1 = 0 0 0 0 0 1
σ2 = 0 0 0 0 1 0
σ3 = 0 0 1 1 1 1
σ4 = 0 1 0 1 0 0

Table 2. The 16 possible cases for the
4 move values in (7) reduced to 7 cases.

D1 D2 D3 D4 D5 D6 D7

d1 = L L L R L L L
d2 = L L R L L R R
d3 = L R L L R L R
d4 = R L L L R R L

Table 3. The 16 possible cases for the 4 next state values in (7) reduced to 9 cases.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

q1 = qa qb qa qa qb qb qb qb qb

q2 = qb qa qb qb qa qa qb qb qb

q3 = qa qa qa qb qa qb qa qa qb

q4 = qa qa qb qa qb qa qa qb qa

Applying the mapping in (8) to cases D1 to D7 in Table 2 gives 7 regular
equivalent cases. The remaining cases, (R,R,R,R) and (L,L,L, L), need not be
included in Table 2 as they are covered by Comment 2.

The 16 possible cases for Q are reduced to the 9 given in Table 3 by omitting
the 7 cases where q1 = q2 = qa or q3 = q4 = qb. These 7 cases are not included in
Table 3 as the behaviour for these cases is easily explained. To see this note that
when we have q1 = q2 = qa state qa is a trap state where if we enter qa we never
again enter state qb and so from that point on the computation is essentially
that of a 1-state 2-symbol Turing machine. Taking the case q1 = q2 = qa, if the
pair of transition rules for qa both have the same write symbol (i.e. σ1 = σ2)
1 Note that applying mapping (9) to machines of the form given by Eq. (7) also flips

the read symbols and so applying it to Σ = (σ1, σ2, σ3, σ4) gives (σ2, σ1, σ4, σ3)
instead of (σ1, σ2, σ3, σ4).

282 T. Neary

or shift direction (i.e. d1 = d2), or if the write symbol is the same as the read
symbol for both rules (i.e. σ1 = 0, σ2 = 1) then when the machine enters qa the
computation is periodic and from Lemma 1 this means that the set of reachable
configurations is regular. For the remaining cases of q1 = q2 = qa we need only
consider machines with the rules qa, 0, 1, R, qa and qa, 1, 0, L, qa as such machines
are regular equivalent to all remaining cases for q1 = q2 = qa. When in state qa
this machine scans right changing 0’s to 1’s until it reads a 1, and then it scans
left changing 1’s to 0’s until it reads a 0, and this left scan right scan behaviour
is repeated ad infinitum giving a semi-periodic computation. So from Lemma3
the set of reachable configurations for machines with q1 = q2 = qa is regular.
The same argument is applicable to the case q3 = q4 = qb.

Q1 Q2 Q3

Q4 Q5 Q6

Q7 Q8 Q9

Location of each Qi case within
each (Σi, Dj) 3 × 3 block below

Σ1

Σ2

Σ3

Σ4

Σ5

Σ6

D1 D2 D3 D4 D5 D6 D7

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

C C C

C

C

B B B

B B

B B B

B B B

B B

B B B

B B B

B B

B B B

B B B

B B

B B B

B B B

B B

B B B

B B B

B B

B B B

B B B

B B

B B B

B B

B B

B B

B B

B B

B B

B B B

B

B B

B B B

B

B B

B B

B

B B B

B B

B

B B B

B

B B

B B B

B B

B B B

B B

B

B

B B

B B B

B

B B

B B

B

B B B

B

B B

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A

A A

A

A A

A

A A

A

A A

A

A

A A

A

A

A A

A

A

A A

A A

A A

A A

A A

A

B

B

B

B

C

C

C C

C

B B

B

B

B B

B

B B

B B

B

C C C

C B B C

B

C B B

B

C C

B

B

C

C

C C

C

B B B

B C

B

B E

B

B B

B B

B

B B B

E B

B

B C

B

B B

B B B

B

C

Fig. 1. An overview of the 378 cases given by Tables 1 to 3, which were obtained from
the reduction in the number of cases given in Sect. 3. Each small square in the above
figure represents a Turing machine. There is a 3 × 3 block of small squares for each
(Σi, Dj) pair which gives the 9 possible values for Qi. Letter A indicates a reduction to
a symmetric case, B is for machines that have periodic computations, C is for machines
that give semi-periodic computations, and E is for machines that are binary counters.

2-State 2-Symbol Turing Machines 283

4 Solving Cases in Fig. 1

4.1 Case A: Reduce the Number of Cases Using Symmetries

From Comment 3 we know that if a pair of machines M and M ′ are regular
equivalent we need only consider one of the two machines in our list of open cases.
Table 4 shows that if the square in Fig. 1 for a machine (Σi,Dj , Qk) contains an
A then it is regular equivalent to another machine in the figure whose square
does not contain an A. This means that we need not consider Case A machines
because by solving the remaining cases each machine in Case A will be regular
equivalent to a case that has been solved.

Table 4. Lemma 4 mappings that map each A case in Fig. 1 to a non-A case in Fig. 1.
The mappings given on the left of each row are applied to the cases in that row to show
that each case is regular equivalent to another case in Fig. 1. Here Q′ ∈ {Q1, Q2, . . . Q9},
Qm ∈ {Q2, Q5, Q6, Q9}, Ql ∈ {Q6, Q8, Q9}, and Qp ∈ {Q5, Q8, Q9}. Keep in mind
Footnote 1 when applying fb-flip.

fs-flip (Σ1, D3, Q
′) (Σ1, D4, Q

′) (Σ6, D3, Q
′) (Σ6, D6, Ql)

fb-flip (Σ5,D2, Q
′) (Σ5,D4, Q

′) (Σ5,D5, Qm) (Σ6,D2, Q
′)

(Σ6,D5, Q5)
fs-flip, fb-flip (Σ4, D3, Q

′) (Σ4, D4, Q
′) (Σ4, D7, Qp) (Σ6, D4, Q

′)

fs-flip, fd-flip (Σ6, D5, Ql) (Σ6, D7, Ql)

fb-flip, fd-flip (Σ5, D6, Qm) (Σ5, D7, Qm) (Σ6, D6, Q5) (Σ6, D7, Q5)

fs-flip, fb-flip, fd-flip (Σ4,D5, Qp) (Σ4,D6, Qp)

4.2 Cases B: Machines that Give Periodic Computations

In Fig. 1, if the square for a machine (Σi,Dj , Qk) contains a B then the machine’s
computation is periodic. From Lemma2 and Comment 1, periodicity can be
proved by showing that a machine eventually scans right never again visiting cell
i − m after it visits cell i, or alternatively that the head scans left never again
visiting cell i+m after cell i. To achieve this we consider what happens after the
tape head attempts to scan in the opposite direction after either �2 consecutive
right moves or �2 consecutive left moves. Comment 2 allows us to consider only
machines that make consecutive left moves and consecutive right moves. As an
example of the above technique we show that after machine (Σ5,D6, Q8) (given
in (11)) makes 2 or more consecutive left moves it scans left for the rest of the
computation never again visiting cell i + 3 after it visits cell i.

qa, 0, 0, L, qb qa, 1, 1, R, qb qb, 0, 1, L, qa qb, 1, 0, R, qb (11)

If the tape head is about to make a right move that follows �2 consecutive left
moves then either the configuration has the form given on the left of (12) or

284 T. Neary

it has the form given on the left of (13) (where σ′
i, σ

′
−i ∈ {0, 1}). On the right

of (12) we see that after 4 time steps the configuration has the same form as the
configuration on the left side of (13) (so we need consider only the case in (13)).
On the right of (13) we see that after 3 time steps the tape head is now reading
σ′

−1, one cell to the left of its original position. If σ′
−1 = 0 the tape head will

move left again to make its second consecutive left move and so if we wish to
make a right move in the future it will follow �2 consecutive left moves and we
will repeat the entire sequence of steps we have just described. Alternatively, if
σ′

−1 = 1 then we have the same case as the left side of (13) and the 3 steps
in (13) are repeated. For both cases (12) and (13) the process repeats with the
tape head moving left never visiting cell i + 3 after it has entered cell i, and so
from Comment 1 the computation is periodic. The technique given here can be
applied to all B cases in Fig. 1 to show that they have periodic computations.

. . . σ′
−2σ

′
−1 qa1 10σ′

1σ
′
2σ

′
3 . . . �4 . . . σ′

−2σ
′
−1 qb1 01σ′

1 σ′
2σ

′
3 . . . (12)

. . . σ′
−2σ

′
−1 qb1 01σ′

1σ
′
2σ

′
3 . . . �3 . . . σ′

−4 qbσ′
−1 011σ′

1σ
′
2σ

′
3 . . . (13)

4.3 Cases C: Machines that Give Semi-periodic Computation

From the proof of Lemma 3 a semi-periodic machine operates by scanning right
using a repeating sequence of rules that print a repeating pattern until some
sequence of symbols is met on the tape that causes the machine to end the scan
right, and following this the machine scans left printing out another repeating
pattern until it meets another sequence of symbols on the tape that causes
the scan left to end. The entire process is then repeated. The behaviour of the
machine when ending a rightward scan depends on the sequence of symbols it
reads when it ends the scan right. The scan length increases with each subsequent
pass and the sequence of symbols that ends each scan is provided by the blank
word that is repeated to the right of the input. Since there is only a finite number
of positions at which a scan right can end in relation to the right blank word
the behaviour of the machine at the end of scans to the right becomes periodic
over time. This can be seen in Definition 4 and Lemma 3 where the first scan
right ends with e1, the second scan ends with e2, the third with e3, and so on
until scan x which ends with ex. Following scan x the process is repeated with
e1 ending the next scan right. The same is true for scans left with the sequence
h1, h2, . . . hx being repeated once for every x scans to the left. When a 2-state 2-
symbol machine is executing a semi-periodic computation the patterns it prints
during leftward and rightward scans have length � 2 and the behaviour at the
end of left and right scans are repeated periodically as described above. For this
reason it is straightforward to determine when a 2-state 2-symbol machine is
executing a semi-periodic computation.

As an example let us consider the machine (Σ6,D6, Q3) given in (14). It is
easy to determine the behaviour of this machine just by looking at its instruc-
tions. The machine scans left in state qa reading 0’s and printing 1’s to the tape
until it reads a 1, then it scans right in state qb reading 1’s and printing 0’s until
it reads a 0, and then it begins another scan left in qa. We now show how this

2-State 2-Symbol Turing Machines 285

behaviour matches the behaviour of the sequence S given in Definition 4. In the
scans mentioned above the growth to the left depends on the position of 1’s in
the left blank word as each 1 terminates a scan left, and similarly the growth to
the right depends on the position of 0’s in the right blank word. Since the left
and right blank words are repeated periodically the growth is periodic for some
constant number of scans right, this constant is the x value in sequence S. We set
sequences sr and sl so that f(sr) = m and f(sl) = −m (see Definition 4) where
m is the growth over the x scans left and right during an iteration of S, and this
means that during iteration i of S, scans right have the form (sr)i+1 and scans
left have the form (sl)i+1. To account for the growth between successive left and
right scans during a single iteration of S, we define each ej and hj so that the
extra distance traveled between each successive execution of (sr)i+1 or (sl)i+1

during S is considered part of ej or hj . This completes our explanation of how to
give the 2x+2 sequence that define S in Definition 4. All the machines for Case C
can be shown to be semi-periodic using similar analysis to that given above.

qa, 0, 1, L, qa qa, 1, 0, R, qb qb, 0, 1, L, qa qb, 1, 0, R, qb (14)

4.4 Cases E: Binary Counters

The two binary machines in Fig. 1 compute in a similar manner and so we will
just look at machine (Σ5,D6, Q3) given in (15). Below we show (Σ5,D6, Q3)
incrementing from 4 to 8. The left most 1 is not part of the number and the
most significant bit is on the right. To increment a number the machine scans
right in qb changing 1’s to 0’s until it reads a 0 which it changes to a 1 and
it then scans left in qa until it reads a 1, which signals the beginning of the
next increment. It is easy to see that when started on any configuration the
set of configurations generated by this machine is regular as it generates all
possible strings and the scans left and right that increment the number have
a simple form. If the machine has periodic support then the set of reachable
configurations remains regular. The repeated words on the left have no effect
on the computation as the tape head can not move left over a 1. On the right
when each blank words becomes part of the computation it effects the form of
only a constant number of bits at the right end of the number and so the set of
reachable configurations is regular.

qa1 0010 �2 qa1 1010 �4 qa1 0110 �2 qa1 1110 �8 qa1 0001

qa, 0, 0, L, qa qa, 1, 1, R, qb qb, 0, 1, L, qa qb, 1, 0, R, qb (15)

References

1. Baiocchi, C.: Three small universal Turing machines. In: Margenstern, M.,
Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1–10. Springer, Heidelberg
(2001). doi:10.1007/3-540-45132-3 1

2. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40
(2004)

http://dx.doi.org/10.1007/3-540-45132-3_1

286 T. Neary

3. Hermann, G.: The uniform halting problem for generalized one state Turing
machines. In: Proceedings, Ninth Annual Symposium on Switching and Automata
Theory (FOCS), pp. 368–372. IEEE Computer Society Press, October 1968

4. Kudlek, M.: Small deterministic Turing machines. TCS 168(2), 241–255 (1996)
5. Minsky, M.: Size and structure of universal Turing machines using tag systems. In:

Recursive Function Theory, Symposium in Pure Mathematics, vol. 5, pp. 229–238
(1962)

6. Neary, T., Woods, D.: Four small universal Turing machines. Fundam. Inform.
91(1), 123–144 (2009)

7. Neary, T., Woods, D.: Small weakly universal Turing machines. In: Kuty�lowski,
M., Charatonik, W., G ↪ebala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 262–273.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03409-1 24

8. Neary, T., Woods, D.: The complexity of small universal Turing machines: a survey.
In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.)
SOFSEM 2012. LNCS, vol. 7147, pp. 385–405. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-27660-6 32

9. Pavlotskaya, L.: Solvability of the halting problem for certain classes of Turing
machines. Math. Notes (Springer) 13(6), 537–541 (1973)

10. Pavlotskaya, L.: Dostatochnye uslovija razreshimosti problemy ostanovki dlja
mashin T’juring. Problemi kibernetiki, pp. 91–118 (1978). (in Russian)

11. Rogozhin, Y.: Small universal Turing machines. TCS 168(2), 215–240 (1996)
12. Wagner, K.: Universelle Turingmaschinen mit n-dimensionale band. Elektronische

Informationsverarbeitung und Kybernetik 9(7–8), 423–431 (1973)
13. Watanabe, S.: 5-symbol 8-state and 5-symbol 6-state universal Turing machines.

J. ACM 8(4), 476–483 (1961)

http://dx.doi.org/10.1007/978-3-642-03409-1_24
http://dx.doi.org/10.1007/978-3-642-27660-6_32
http://dx.doi.org/10.1007/978-3-642-27660-6_32

State Complexity of Suffix Distance

Timothy Ng(B), David Rappaport, and Kai Salomaa

School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
{ng,daver,ksalomaa}@cs.queensu.ca

Abstract. The neighbourhood of a regular language with respect to the
prefix, suffix and subword distance is always regular and a tight bound
for the state complexity of prefix distance neighbourhoods is known.
We give upper bounds for the state complexity of the neighbourhood
of radius k of an n state DFA (deterministic finite automaton) language
with respect to the suffix distance and the subword distance, respectively.
For restricted values of k and n we give a matching lower bound for the
state complexity of suffix distance neighbourhoods.

1 Introduction

Distances between strings and languages are used in many applications [4,7,9,
10]. Perhaps the most commonly used distance, the Levenshtein distance (a.k.a.
the edit distance), is defined in terms of the number of substitution, insertion
and deletion operations needed to transform one string into another. The prefix
distance [3,11] of strings x and y is the sum of the lengths of the suffixes of x
and y after their longest common prefix. The suffix distance (respectively, the
subword distance) of two strings is defined analogously in terms of the longest
common suffix (respectively, subword) of the strings.

Calude et al. [2] have shown that additive quasi-distances preserve regularity
in the sense that a neighbourhood of a regular language is always regular. The
edit distance is the best known example of additive distances. However, not
all regularity preserving distances are additive. The prefix, suffix, and subword
distances are not additive, but are known to preserve regularity [3].

In general, since the 90’s there has been much work on the state complexity
of regular languages. Recent surveys on the descriptional complexity of regu-
lar languages include [5,6,12]. For regularity preserving distances an important
question is to determine the state complexity of the distance, that is, what is the
optimal size of a DFA (deterministic finite automaton) recognizing a neighbour-
hood of radius k of an n state DFA language. In the context of error correction
this can be viewed also as the descriptional complexity of error detection [14].
The descriptional complexity of error systems has been considered from a dif-
ferent point of view by Kari and Konstantinidis [8]. They establish upper and
lower bounds for the size of DFAs needed to recognize a given error system.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 287–298, 2017.
DOI: 10.1007/978-3-319-60252-3 23

288 T. Ng et al.

A neighbourhood of a language recognized by a DFA A with respect to the
prefix distance, roughly speaking, can be recognized by simulating the computa-
tion of A and, for each non-final state, keeping track of the shortest path (up to
the radius of the neighbourhood) to a final state of A. Additionally, we just need
a number of error states equal to the radius of the neighbourhood. This means
that prefix distance is an “inexpensive” operation in terms of state complexity.
A tight lower bound for the state complexity of prefix distance neighbourhoods
is known both for general regular languages and for finite languages [15,16].

On the other hand, suffix distance (and subword distance) neighbourhoods
are considerably more “difficult”, that is, more expensive in terms of state com-
plexity, to recognize by a DFA because the computation has no way of knowing
where the longest common suffix begins. This means that the computation has to
be inherently nondeterministic and as can, perhaps, be expected the state com-
plexity of the neighbourhood depends exponentially on the size of the original
DFA and the radius of the neighbourhood.

This paper shows that the suffix distance neighbourhood of radius k of an n
state DFA language over an alphabet of size � ≥ 2 can be recognized by a DFA
with �k−1

�−1 + 2n − 1 states when k < n. If A recognizes a finite language, the

upper bound for the state complexity of the neighbourhood is �k−1
�−1 + k · 2� n

2 �.
We give matching lower bound constructions both for general regular languages
and for finite languages using a binary alphabet in the case when n is roughly
equal to 2 · k. For k > n, we show that the suffix distance neighbourhood can
be recognized by a DFA with (k − n) + 2n+1 − 2 states and give matching lower
bound constructions for both general regular languages and finite languages over
an alphabet of size n+1. We show also that for the class of suffix-closed languages,
the neighbourhood is recognized by a DFA with at most n + k + 1 states and
that this bound is tight for all k ∈ N. Finally, we derive an upper bound for
the state complexity of subword distance neighbourhoods but it remains open
whether the bound is tight.

2 Preliminaries

We recall some basic definitions on regular languages and distance measures.
For all unexplained notions on finite automata and regular languages the reader
may consult the textbook by Shallit [17] or the survey by Yu [18]. A survey of
distances is given by Deza and Deza [4].

In the following Σ is always a finite alphabet, the set of strings over Σ is Σ∗

and ε is the empty string. The set of nonnegative integers is N0. The cardinality
of a finite set S is denoted |S| and the powerset of S is 2S . A string w ∈ Σ∗ is
a subword of x if there exist strings u, v ∈ Σ∗ such that x = uwv. If u = ε, then
w is a prefix of x. If v = ε, then w is a suffix of x.

A deterministic finite automaton (DFA) is a tuple A = (Q,Σ, δ, q0, F) where
Q is a finite set of states, Σ is an alphabet, δ is a partial function δ : Q×Σ → Q,
q0 ∈ Q is the initial state, and F ⊆ Q is a set of final states. We extend the

State Complexity of Suffix Distance 289

transition function δ to a partial Q × Σ∗ → Q in the usual way. A DFA A is
complete if δ is defined for all q ∈ Q and a ∈ Σ.

A string w ∈ Σ∗ is accepted by A if δ(q0, w) ∈ F . The language recognized
by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}. Two states p and q of A are equivalent
if δ(p,w) ∈ F if and only if δ(q, w) ∈ F for every string w ∈ Σ∗. A DFA A is
minimal if each state q ∈ Q is reachable from the initial state and no two states
are equivalent.

A nondeterministic finite automaton (NFA) is an extension of a DFA where
the transition function is allowed to be multivalued, that is, δ is a function
Q × Σ → 2Q.

Note that our definition of a DFA allows some transitions to be undefined,
that is, by a DFA we mean an incomplete DFA. It is well known that, for a regular
language L, the sizes of the minimal incomplete and complete DFAs differ by
at most one. The constructions in this paper are more convenient to formulate
using incomplete DFAs but our results would not change in any significant way
if we were to require that all DFAs are complete. The (incomplete deterministic)
state complexity of a regular language L, sc(L), is the size of the minimal DFA
recognizing L.

2.1 Distances and Neighbourhoods of Regular Languages

We recall definitions of the distance measures used in the following. Generally,
a function d : Σ∗ × Σ∗ → [0,∞) is a distance if it satisfies for all x, y, z ∈ Σ∗,
the conditions d(x, y) = 0 if and only if x = y, d(x, y) = d(y, x), and d(x, z) ≤
d(x, y) + d(y, z). The neighbourhood of a language L of radius k with respect to
a distance d is the set

E(L, d, k) = {w ∈ Σ∗ | (∃x ∈ L)d(w, x) ≤ k}.

Let x, y ∈ Σ∗. The prefix distance of x and y counts the number of symbols
which do not belong to the longest common prefix of x and y [3]. It is defined by

dp(x, y) = |x| + |y| − 2 · max
z∈Σ∗

{|z| | x, y ∈ zΣ∗}.

Similarly, the suffix distance of x and y counts the number of symbols which do
not belong to the longest common suffix of x and y and is defined

ds(x, y) = |x| + |y| − 2 · max
z∈Σ∗

{|z| | x, y ∈ Σ∗z}.

The subword distance measures the similarity of x and y based on their longest
common continuous subword and is defined

df (x, y) = |x| + |y| − 2 · max
z∈Σ∗

{|z| | x, y ∈ Σ∗zΣ∗}.

The term “subword distance” is taken from Choffrut and Pighizzini [3]. However,
“subword distance” has also been used for a distance defined in terms of the
longest common noncontinuous subword [13].

290 T. Ng et al.

It is known that neighbourhoods of regular languages with respect to the
prefix, suffix and subword distance are always regular [3,15]. We refer to the size
of the minimal DFA recognizing the radius k neighbourhood of an n state DFA
language with respect to a distance X simply as the state complexity of distance
X. Tight bounds for the state complexity of the prefix distance are known [15].
Optimal bounds for the size of an NFA recognizing a suffix distance, or subword
distance, neighbourhood of a regular language are also known [15]. The bounds
on the size of the NFAs imply the following upper bounds for deterministic state
complexity of suffix distance and subword distance, respectively.

Proposition 1. Suppose L is a regular language recognized by a DFA with n
states and k ∈ N. Then

sc(E(L, ds, k)) ≤ 2n+k − 1 and sc(E(L, df , k)) ≤ 2(k+1)n+2k − 1.

Finally, we define the function ψA : Q → N0 to give the length of the shortest
path from the initial state q0 to the state q. Formally, ψA is defined by

ψA(q) = min
w∈Σ∗

{|w| | δ(q0, w) = q}.

Note that under this definition, ψA(q0) = 0 for the initial state q0.

3 State Complexity of Suffix Neighbourhoods

In this section, we consider the deterministic state complexity of suffix distance
neighbourhoods. First, we construct a DFA for the neighbourhood of an n-state
DFA of radius k with respect to the suffix distance ds, when k < n and then
give a matching lower bound when k =

⌊
n
2

⌋
for an n state DFA.

Proposition 2. Let n > k ≥ 0 and L be a regular language recognized by a DFA
with n states over an alphabet Σ, with |Σ| ≥ 2. Then there is a DFA recognizing
E(L, ds, k) with at most |Σ|k−1

|Σ|−1 + 2n − 1 states.

Proof. Let L be recognized by the DFA A = (Q,Σ, δ, q0, F) with |Q| = n.
We construct a DFA A′ = (Q′, Σ, δ′, q′

0, F
′) that recognizes the neighbourhood

E(L, ds, k). First, let us consider what it means if w ∈ E(L(A), ds, k). If w is
in the neighbourhood, then this means that there exists a word x recognized by
A such that d(w, x) ≤ k. In other words, we can write w = w′z and x = x′z
for words w′, x′, z ∈ Σ∗ such that |w′| + |x′| ≤ k. However, when A′ reads w, it
is not known when such a common suffix z might begin. A common suffix may
begin in each of the first k symbols of w, so A′ must keep track of and compute
all possible common suffixes that begin on each of the first k symbols of w.

We define the state set

Q′ = {0, . . . , k} × 2Q

State Complexity of Suffix Distance 291

and we define the initial state by q′
0 = (0, {q ∈ Q | ψA(q) ≤ k}). The set of final

states is given by

F ′ = {0, . . . , k} × {P ⊆ Q | P ∩ F
= ∅}.

In other words, a state (i, P) of A′ is final if and only if P contains a final state
of A.

The state set consists of subsets of the original state set with a counter
component. The operation of the machine begins by counting the first k steps
of computation. On the ith step of the initial k steps, the machine reaches a
state containing those states reachable from direct transitions from the set of
states from the (i − 1)th computation step and adds every state reachable from
q0 within k − i steps and the counter component is incremented. After the kth
computation step, no further steps need to be counted and the counter is no
longer incremented since states are no longer added to the existing state sets.

The transition function δ′ is defined for a ∈ Σ by

– δ′((i, P), a) = (i + 1,X) for 0 ≤ i ≤ k − 1, where X is defined as

X = {δ(p, a) | p ∈ P} ∪ {q ∈ Q | ψA(q) ≤ k − (i + 1)},

– δ′((k, P), a) = (k, {δ(p, a) | p ∈ P}).

We now show that reading a word w ∈ Σ∗ reaches the state (i, P) if and only
if there exists a word x ∈ Σ∗ such that w = w′z and x = x′z where |w′| ≤ i,
|x′| ≤ k − i and δ(q0, x) ∈ Q.

First, suppose that δ′(q′
0, w) = (i, P). We write w = w′z with w′, z ∈ Σ∗

which may possibly be empty. By definition, δ′(q′
0, w

′) = (|w′|, P ′) if |w′| ≤ k
and P ′ contains all states q such that ψA(q) ≤ k − |w′|. In other words, these
are states δ(q0, x′) where x′ ∈ Σ∗ is of length ≤ k − |w′|. Choose q′ to be one
of these states and consider the state δ(q′, z) = q. Since q′ ∈ P ′ and δ′(q′

0, w) =
δ′((|w′|, P ′), z) = (i, P), we have q ∈ P . Thus, there exists a word x = x′z such
that |x′| ≤ k − i and δ(q0, x) ∈ P .

Now, conversely, suppose that for an input word w = w′z with |w′| ≤ i,
there exists a word x = x′z with |x′| ≤ k − i such that q = δ(q0, x) ∈ P .
Since |x′| ≤ k − i, let q′ = δ(q0, x′) and we have ψA(q′) ≤ k − i. Then this
means we have δ′(q′

0, w
′) = (|w′|, P ′) with q′ ∈ P ′. Since δ(q′, z) = q, we have

δ′((|w′|, P ′), z) = (i, P) with q ∈ P as desired.
Thus, δ(q′

0, w) ∈ F ′ if and only if there exists x ∈ L such that |w′| + |x′| ≤ k
for w = w′z and x = x′z.

However, not all (k+1) ·2n states in {0, . . . , k}×2Q are reachable. Note that
for i < k, the only words that can be read to reach a state (i, P) are those of
length exactly i. However, there are only |Σ|i words of length exactly i. Thus,
the maximum number of reachable states for 0 ≤ i < k is

k−1∑

i=0

|Σ|i =
|Σ|k − 1
|Σ| − 1

.

292 T. Ng et al.

Furthermore, the state ∅ ⊆ Q is unreachable. Thus, A′ has at most |Σ|k−1
|Σ|−1 +2n−1

reachable states. �
The statement of Proposition 2 assumes that the cardinality of the alphabet

is at least two. For suffix distance neighbourhoods of unary languages we have
the following bounds. We note that in the unary case the suffix distance coincides
with the prefix distance and leave the easy proof for the reader.

Lemma 1. Let A be an n state DFA over a unary alphabet and k ∈ N. Then

sc(E(L(A), ds, k)) ≤

⎧
⎪⎨

⎪⎩

n if L(A) is infinite and n > 2k,

max{1, n − k} if L(A)is infinite and n ≤ 2k,

n + k if L(A) is finite.

For every n, k ∈ N there exists an n state unary DFA A recognizing a finite
language such that sc(E(L(A), ds, k)) = n+k. For values n, k ∈ N where n > 2k
there exists a unary DFA A with n states recognizing an infinite language such
that sc(E(L(A), ds, k)) = n.

For a constant size alphabet, the bound of Proposition 2 is significantly better
than the bound implied by known results on nondeterministic state complexity
in Proposition 1. Next we show that, at least for some values of the radius k, the
bound of Proposition 2 is tight.

Lemma 2. Let k =
⌊

n
2

⌋
. Then there exists a DFA An with n states over a

binary alphabet such that

sc(E(L(An), ds, k)) ≥ 2k + 2n − 2.

Proof. Let An = (Qn, {a, b}, δn, 0, {0}), shown in Fig. 1. �

0start 1 · · · k

k + 1· · ·n − 1

a, b a, b a, b

b

a, ba, b

a, b

Fig. 1. The DFA An.

The following theorem then follows from Proposition 2 and Lemma 2.

State Complexity of Suffix Distance 293

Theorem 1. Let n > k and let L be a regular language recognized by an n-
state DFA over an alphabet Σ with |Σ| ≥ 2. Then a DFA recognizing E(L, ds, k)
requires at most |Σ|k−1

|Σ|−1 + 2n − 1 states. There is a family of DFAs with n states
over a binary alphabet which reaches this bound when k =

⌊
n
2

⌋
.

Now we will consider the case when the distance k is greater than the number
of states n of the given DFA and give a matching lower bound.

Proposition 3. Let k > n > 0 and L be a regular language recognized by a DFA
with n states over an alphabet Σ with |Σ| ≥ 2. Then there is a DFA recognizing
E(L, ds, k) with at most (k − n) + 2n+1 − 2 states.

Proof. Let A = (Q,Σ, δ, q0, F) with |Q| = n. Then we follow the construction
given in the proof of Proposition 2 to obtain the DFA A′ = (Q′, Σ, δ′, q′

0, F
′)

that recognizes the neighbourhood E(L(A), ds, k) with k > n. We note that
ψA(q) ≤ n for all q ∈ Q and thus by the definition of the transition function,
we have for 0 ≤ i ≤ k − n and all words w of length i, δ(q0, w) = (i, Q). This
gives us k −n states. Then on the following n steps, we proceed as in the rest of
Proposition 2. This suggests that there are at most |Σ|n−1

|Σ|−1 states. However, in
this case, there are far fewer states than this.

To consider how many states there are, we observe that the above bound
requires that each word of length i > k−n reaches a different state (i, P), giving
us a total of |Σ|i−(k−n) states for each i. Then we must consider how many
different subsets P ⊆ Q are reachable. Recall that by definition, all states q
with ψA(q) ≤ k − i are contained in P for (i, P). Thus, on step i, two states
(i, P) and (i, P ′) both P and P ′ contain the subset {q ∈ Q | ψA(q) ≤ k − i}.
Then if P and P ′ are different, they must contain different subsets of the set
{q ∈ Q | ψA(q) > k − i}.

Let j be the size of the set {q ∈ Q | ψA(q) > k − i}. Then in order for
each word of length i to reach a different state, we must have |Σ|i−(k−n) ≤ 2j

different subsets. This means that we must have at least (i − (k − n)) · log2 |Σ|
states q with ψA(q) > k − i on step i of a computation on A′. In other words, for
each 1 ≤ i ≤ maxq∈Q ψA(q), there are at least log2 |Σ| states q with ψA(q) = i.
However, since k > n, the number of states of A are further restricted by this
condition.

Let � = maxq∈Q ψA(q). Then there are at most k − n
log2 |Σ| + |Σ|

n
log2 |Σ| −1
|Σ|−1

reachable states for words of length up to k. We observe that this is maximized
when |Σ| = 2. That is, for any alphabet of size at least 2, the maximum is
achieved when we have for each i exactly one state q such that ψA(q) = i. This
gives us a maximum of 2n − 1 reachable states of the form (i, P) for i < k.

After the kth step of computation, there are 2n − 1 reachable states of the
form (k, P) as usual. This gives us a total of at most (k −n)+2n+1 −2 states. �

We will show that the bound from Proposition 3 is reachable for a family of
n state DFAs over an alphabet of size n + 1.

294 T. Ng et al.

Lemma 3. Let k > n > 0. Then there exists a DFA Bn with n states over an
alphabet of size n + 1 such that

sc(E(L(An), ds, k)) ≥ (k − n) + 2n+1 − 2.

Proof. Let Bn = (Qn, Σn, δn, 0, {0}), shown in Fig. 2, with Σn = {a0, a1, . . . , an}
and the transition function is defined by

δ(i, aj) = i + 1 mod n for all 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n, and i
= j.

�

0start 1 2 · · · n − 1
Σn − a0 Σn − a1 Σn − a2 Σn − an−2

Σn − an−1

Fig. 2. The DFA Bn.

Proposition 3 and Lemma 3 can then be summarized in the following theorem.

Theorem 2. Let k > n and let L be a regular language recognized by an n-
state DFA over an alphabet Σ with |Σ| ≥ 2. Then a DFA recognizing E(L, ds, k)
requires at most (k − n) + 2n+1 − 2 states. There is a family of DFAs with n
states over an alphabet of size n + 1 which reaches this bound.

3.1 State Complexity of Subword Distance

Now, we give an upper bound on the deterministic state complexity of subword
neighbourhoods by giving a construction for a DFA for the neighbourhood of
radius k with respect to the subword distance df . In the construction we again
assume that the cardinality of the alphabet is at least two. For unary alphabets,
the subword distance coincides with the suffix distance and a tight bound is
obtained from Lemma 1.

Proposition 4. Let n > k ≥ 0 and L be a regular language recognized by a DFA
with n states over the alphabet Σ with |Σ| ≥ 2. Then there is a DFA recognizing
E(L, df , k) with at most |Σ|k−1

|Σ|−1 + (k + 2) · 2n·(k+1) states.

The bound of Proposition 4 is significantly better than the bound implied by
nondeterministic state complexity [14] (in Proposition 1) for a fixed alphabet Σ.
However, we do not know whether the bound is the best possible.

State Complexity of Suffix Distance 295

4 State Complexity of Suffix Distance on Subregular
Languages

Here, we consider the state complexity of neighbourhoods with respect to the
suffix distance of languages which belong to subregular language classes. First,
we consider neighbourhoods of finite languages.

Proposition 5. Let n > k ≥ 0 and L be a finite language recognized by a DFA
with n states over a binary alphabet. Then there is a DFA recognizing E(L, ds, k)
with at most 2k + k · 2�n

2 � − 1 states.

Proof. We use the construction for A′ from the proof of Proposition 2. Observe
that, as is the case for general regular languages, not all (k + 1) · 2n states that
are defined are reachable. Recall that the states of A′ are pairs (i, P) where i is
a counter from 0 to k and P is a subset of states of A and that a word w reaches
a state (i, P) if and only if there exists a word x ∈ Σ∗ such that w = w′z and
x = x′z where |w′| ≤ i, |x′| ≤ k − i and δ(q0, x) ∈ Q. We also note that for
i < k, any state (i, P) with P ⊆ Q is reachable on a word of length exactly i.
This gives us at most

∑
i<k 2i = 2k − 1 reachable states of the form (i, P) for

i < k.
It remains to show how many states of the form (k, P) with P ⊆ Q are

reachable. Since P is a subset of the set of states of A, we would like to know how
many different subsets P exist such that (k, P) is reachable. Since A recognizes
a finite language, there exists at least one state q of A with ψA(q) = i that is
reachable on some string of length i and is not reachable on any string of length
j > i.

Recall that A recognizes a finite language and in each state (k, P) of A′, the
set P is a subset of states of A. First, we observe that the above property does
not hold for subsets P ⊆ Q in states of the form (i, P) with i < k. To see this,
we consider some i and observe that every state q ∈ Q with ψA(q) ≤ k − i is in
some subset P with (i, P) reachable for all i < k by definition. Hence, why we
can narrow our focus only to those states of the form (k, P).

Let (k, T) be a state that is reached on a word w of length k. Since A′ is
deterministic, there are up to 2k possible such states.

Let Ri ⊆ Q denote the set of states of A that are not contained in any state
P ⊆ Q, where (k, P) is reachable on a word of length greater than k+ i. In other
words, Ri is the set of states of A which become unreachable in A on a word of
length i. We note that Ri must contain at least one element, since A recognizes
a finite language.

We write T = R ∪ S, where R ⊆ ⋃
0≤i≤k Ri and S ⊆ Q \ R. We have

|Q\R| ≤ n−k, since k < n. From this, we can see that to maximize the number
of states that are reachable, each Ri must contain at most one element. This
gives us a total of 2n−k possible subsets S.

Then for each set T = R ∪ S that is reachable on a word of length k, there
is a state Ti = (R \ ⋃i

j=0 Rj) ∪ S that is reachable on a word of length k + i for
1 ≤ i ≤ k. Since each Ri has one element, each subset S is contained in up to

296 T. Ng et al.

k different subsets of Q that are reachable in A′. This gives k · 2�n
2 � possible

subsets that can be reached on each string of length greater than k.
Thus, A′ can have up to |Σ|k−1

|Σ|−1 + k · 2�n
2 � − 1 states in total. �

The statement of Proposition 5 assumes that the alphabet is binary. A tight
bound is known from Lemma 1 also for finite languages.

Lemma 4. Let k =
⌊

n
2

⌋
. Then there exists a DFA Cn with n states over a

binary alphabet recognizing a finite language such that

sc(E(L(Cn), ds, k)) ≥ 2k + k · 2�n
2 � − 1.

Proof. Let Cn = (Qn, {a, b}, δn, 0, {n − 1}), shown in Fig. 3. We construct the
DFA C ′

n recognizing the neighbourhood by using the construction from Propo-
sition 2. �

0start 1 · · · k k + 1 · · · n − 1
a, b a, b a, b b a, b a, b

Fig. 3. The DFA Cn.

We can summarize the results of Proposition 5 and Lemma 4 as follows:

Theorem 3. Let L be a finite language recognized by an n-state DFA over an
alphabet Σ with |Σ| ≥ 2 and k ≤ n. Then a DFA recognizing E(L, ds, k) requires
at most |Σ|k−1

|Σ|−1 + k · 2�n
2 � − 1 states. There is a family of DFAs with n states

over a binary alphabet which reaches this bound when k =
⌊

n
2

⌋
.

Now, we show that if k > n, the lower bound coincides with the upper bound
for regular languages.

Theorem 4. Let L be a finite language recognized by an n-state DFA over an
alphabet Σ with |Σ| ≥ 2 and k > n. Then a DFA recognizing E(L, ds, k) requires
at most (k − n) + 2n+1 − 2 states. There is a family of DFAs with n states over
an alphabet of size n which reaches this bound.

Proof. Let Dn = (Qn, Σn, δn, 0, {0}), shown in Fig. 4, with Σn = {a0, a1, . . . ,
an−1} and the transition function is defined by

δ(i, aj) = i + 1 for all 0 ≤ i < n − 1, 0 ≤ j ≤ n − 1, and i
= j.

�
Next, we consider the class of suffix-closed languages [1]. A language L is

suffix-closed if wx ∈ L implies x ∈ L. It is well known that the class of suffix-
closed languages is a subclass of the regular languages. We will give a tight
bound on the size of the DFA for neighbourhoods of suffix-closed languages with
respect to the suffix distance.

State Complexity of Suffix Distance 297

0start 1 2 · · · n − 1
Σn − a0 Σn − a1 Σn − a2 Σn − an−2

Fig. 4. The DFA Dn.

Theorem 5. Let L be a suffix-closed language recognized by an n-state DFA.
Then a DFA recognizing E(L, ds, k) requires at most n + k + 1 states. For each
n ∈ N there exists an n-state DFA En recognizing a suffix-closed language such
that the state complexity of E(L(En), ds, k) is n + k + 1 for all k ∈ N.

The DFA En is shown in Fig. 5.

0start 1 2 · · · n − 1
a a a a

b

b

b

b

Fig. 5. The DFA En.

5 Conclusion

The state complexity of radius k prefix distance neighbourhoods of an n state
DFA language depends linearly on n and on k [15]. As we have seen, the corre-
sponding bounds for the suffix and the subword distance neighbourhoods depend
exponentially on n and k and, furthermore, coming up with matching lower
bounds is considerably more involved.

For suffix distance neighbourhoods where the radius k equals, roughly, half
of the number of states n, we have given a matching lower bound construction
based on a binary alphabet. However (and perhaps curiously), the construction
does not seem to extend, at least not directly, for other values of the radius when
k < n.

The precise state complexity of subword distance neighbourhoods remains
open. We do not have a lower bound construction matching the upper bound of
Proposition 4 for the state complexity of subword distance neighbourhoods.

References

1. Brzozowski, J., Jirásková, G., Zou, C.: Quotient complexity of closed languages.
Theory Comput. Syst. 54(2), 277–292 (2014)

2. Calude, C.S., Salomaa, K., Yu, S.: Additive distances and quasi-distances between
words. J. Univers. Comput. Sci. 8(2), 141–152 (2002)

298 T. Ng et al.

3. Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of rela-
tions. Theoret. Comput. Sci. 286(1), 117–138 (2002)

4. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2009)
5. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. To

appear in Computer Science Review, September 2015. arXiv:1509.03254v1 [cs.FL]
6. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite

automata—a survey. Inf. Comput. 209, 456–470 (2011)
7. Han, Y.-S., Ko, S.-K., Salomaa, K.: The edit distance between a regular language

and a context-free language. Int. J. Found. Comput. Sci. 24, 1067–1082 (2013)
8. Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. J.

Automata Lang. Comb. 9, 293–309 (2004)
9. Kari, L., Konstantinidis, S., Kopecki, S., Yang, M.: An efficient algorithm for com-

puting the edit distance of a regular language via input-altering transducers. CoRR
abs/1406.1041 (2014)

10. Konstantinidis, S.: Computing the edit distance of a regular language. Inf. Comput.
205, 1307–1316 (2007)

11. Kutrib, M., Meckel, K., Wendlandt, M.: Parameterized prefix distance between reg-
ular languages. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.)
SOFSEM 2014. LNCS, vol. 8327, pp. 419–430. Springer, Cham (2014). doi:10.1007/
978-3-319-04298-5 37

12. Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal
languages. Bull. EATCS 111, 70–86 (2013)

13. Lothaire, M.: Algorithms on words. In: Applied Combinatorics on Words. Encyclo-
pedia of Mathematics and it’s Applications, vol. 105. Cambridge University Press,
New York (2005)

14. Ng, T., Rappaport, D., Salomaa, K.: State complexity of neighbourhoods and
approximate pattern matching. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168,
pp. 389–400. Springer, Cham (2015). doi:10.1007/978-3-319-21500-6 31

15. Ng, T., Rappaport, D., Salomaa, K.: State complexity of prefix distance. In:
Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp. 238–249. Springer, Cham (2015).
doi:10.1007/978-3-319-22360-5 20

16. Ng, T., Rappaport, D., Salomaa, K.: State complexity of prefix distance of subreg-
ular languages. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS,
vol. 9777, pp. 192–204. Springer, Cham (2016). doi:10.1007/978-3-319-41114-9 15

17. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, Cambridge (2009)

18. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, pp. 41–110. Springer, Heidelberg (1997)

http://arxiv.org/abs/1509.03254v1
http://dx.doi.org/10.1007/978-3-319-04298-5_37
http://dx.doi.org/10.1007/978-3-319-04298-5_37
http://dx.doi.org/10.1007/978-3-319-21500-6_31
http://dx.doi.org/10.1007/978-3-319-22360-5_20
http://dx.doi.org/10.1007/978-3-319-41114-9_15

The Quotient Operation on Input-Driven
Pushdown Automata

Alexander Okhotin1(B) and Kai Salomaa2

1 St. Petersburg State University, 14th Line V.O., 29B,
Saint Petersburg 199178, Russia
alexander.okhotin@spbu.ru

2 School of Computing, Queen’s University,
Kingston, ON K7L 2N8, Canada

ksalomaa@cs.queensu.ca

Abstract. The quotient of a formal language K by another language
L is the set of all strings obtained by taking a string from K that ends
with a suffix from L, and removing that suffix. The quotient of a reg-
ular language by any language is always regular, whereas the context-
free languages and many of their subfamilies, such as the linear and the
deterministic languages, are not closed under the quotient operation.
This paper establishes the closure of the family of input-driven push-
down automata (IDPDA), also known as visibly pushdown automata,
under the quotient operation. A construction of automata representing
the result of the operation is given, and its state complexity with respect
to nondeterministic IDPDA is shown to be m2n+O(m), where m and n is
the number of states in the automata recognizing K and L, respectively.

1 Introduction

Let K and L be formal languages over some alphabet Σ. Then, the right-quotient
of K by L is the following formal language, denoted by K · L−1.

K · L−1 = {u | ∃v ∈ L : uv ∈ K }

The left-quotient operation is defined symmetrically.

L−1 · K = { v | ∃u ∈ L : uv ∈ K }

The family of regular languages is closed under quotient with any language: as
shown by Ginsburg and Spanier [6], if K is a regular language, then the languages
K · L−1 and L−1 · K are both regular, regardless of L. For formal grammars,
Ginsburg and Spanier [6] showed that for every context-free language K and a
regular language L, their quotients are again context-free. On the other hand, if
both arguments can be any context-free languages, then their quotient need not
be context-free: indeed, for K = a{ b�a� | � � 1 }∗ and L = { amb2m | m � 1 }∗,

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 299–310, 2017.
DOI: 10.1007/978-3-319-60252-3 24

300 A. Okhotin and K. Salomaa

their quotient satisfies K−1L∩ b∗ = { b2
n | n � 1 }. Besides just the non-closure,

it is known that every recursively enumerable set is representable as a quotient
of two context-free languages [8].

For an important subfamily of grammars, the LR(k) grammars, which are
equivalently defined by deterministic pushdown automata (DPDA)—it is known
that they are closed under right-quotient with regular languages, but not closed
under left-quotient with finite languages [5]. Another classical subfamily of LL(k)
grammars is not closed under both right- and left-quotient with regular lan-
guages [18]. On the other hand, the family of languages recognized by pushdown
automata with one stack symbol (the one-counter languages) is surprisingly
closed under quotient [9].

This paper investigates the quotient operation for one of the most impor-
tant subclasses of pushdown automata: the input-driven pushdown automata
(IDPDA). These automata were introduced in the work of Mehlhorn [10] and of
von Braunmühl and Verbeek [4], and are characterized by the following restric-
tion: their input alphabet is split into three disjoint classes of symbols, on which
the automaton must push one symbol onto the stack (left brackets), or must pop
one symbol off the stack (right brackets) or may not touch the stack (neutral
symbols). The model defined by Mehlhorn [10] was deterministic (DIDPDA); von
Braunmühl and Verbeek [4] introduced its nondeterministic variant (NIDPDA)
and presented a novel determinization construction. Furthermore, Mehlhorn [10]
and von Braunmühl and Verbeek [4] presented efficient algorithms for simulating
these automata.

Later, Alur and Madhusudan [1] reintroduced IDPDA under the name of
visibly pushdown automata and pointed out their applications to verification;
their work revived the interest in the model. One of the theoretical contributions
of Alur and Madhusudan [1] is the study of the succinctness of description by
input-driven automata. In particular, they proved that determinizing an n-state
NIDPDA requires 2Θ(n2) states in the worst case, and initiated a systematic
study of their closure properties.

In the follow-up work, the state complexity of the main language-theoretic
operations on IDPDA was determined. The precise number of states necessary
to represent concatenation, Kleene star and reversal by deterministic IDPDA
(DIDPDA) was later determined by the authors [14]. For Boolean operations, the
state complexity results were obtained by Han and Salomaa [7] and by Piao and
Salomaa [16]. Recently, the authors [15] established the closure of IDPDA under
the edit distance operation. For more details on the descriptional complexity of
input-driven automata, an interested reader is directed to a fairly recent survey
paper [12].

This paper investigates the quotient operation on IDPDA. The main result is
that the family of languages recognized by IDPDA is closed under the quotient.
If both argument languages consist only of well-nested strings, then so does their
quotient, and the construction of an IDPDA for that quotient is straightforward.
In the general case, without the well-nestendness condition, the closure is estab-
lished by a more involved construction: given a pair of NIDPDA with m and n

Quotient Operation on Input-Driven Pushdown Automata 301

states, a construction of a (3m+m2n)-state NIDPDA recognizing their quotient
is described in Sect. 3.

The rest of the paper establishes a close lower bound to this construction. The
general plan of the lower bound argument, explained in Sect. 4, is to construct
witness languages of a special form, so that the task of constructing them is
basically a problem of finding witness NFA (nondeterministic finite automata)
for the state complexity of a certain unconventional operation on languages. This
operation has been named palindromic quotient, and the NFA state complexity
problem for it is solved in Sect. 5. The results are adapted to NIDPDA in the
final Sect. 6

2 Input-Driven Automata

The input alphabet of an input-driven pushdown automaton (IDPDA) [1,2,10]
is split into three disjoint sets of left brackets Σ+1, right brackets Σ−1 and
neutral symbols Σ0. If the input symbol is a left bracket from Σ+1, then the
automaton always pushes one symbol onto the stack. For a right bracket from
Σ−1, the automaton must pop one symbol. Finally, for a neutral symbol in
Σ0, the automaton may not use the stack. In this paper, symbols from Σ+1

and Σ−1 shall be denoted by left and right angle brackets, respectively (<, >),
whereas lower-case Latin letters from the beginning of the alphabet (a, b, c, . . .)
shall be used for symbols from Σ0. Input-driven automata may be deterministic
(DIDPDA) and nondeterministic (NIDPDA).

Under the original definition used by Mehlhorn [10] and by von Braunmühl
and Verbeek [4], input-driven automata operate on input strings, in which the
brackets are well-nested. When an input-driven automaton reads a left bracket
(< ∈ Σ+1), it pushes a symbol onto the stack. This symbol is popped at the exact
moment when the automaton encounters the matching right bracket (> ∈ Σ−1).
Thus, a computation of an input-driven automaton on any well-nested substring
leaves the stack contents untouched.

For instance, in Fig. 1, the fragment of the computation beginning in the state
q4 and ending in the state q12 processes a well-nested substring b<<cd>e>, and
therefore ends with the same stack contents as in which it began (in this case,
the empty stack).

s'
s''

s s s' s'
s''

s'
s''

s' s' s''' s'''

>
>b

c d
e< >

<
<

a q6q0
q1 q2

q3
q5 q12

q7 q9
q10 q11

q8

>

q4
<

f
q13 q14

Fig. 1. A sample computation of an IDPDA on an ill-nested string.

302 A. Okhotin and K. Salomaa

The more general definition of input-driven automata proposed by Alur and
Madhusudan [1] also allows ill-nested input strings, such as the whole string
<a>>b<<cd>e><f in Fig. 1. For every unmatched left bracket, the symbol
pushed to the stack when reading this bracket is never popped, and remains
in the stack to the end of the computation; in the figure, this is the case with
the symbol s′′′ pushed in the state q12. An unmatched right bracket is read
with an empty stack: instead of popping a stack symbol, the automaton merely
detects that the stack is empty and makes a special transition, which leaves the
stack empty. The latter happens in the state q3 in the figure, where the special
transition upon an unmatched right bracket leads the automaton to the state q4.

Definition 1 (von Braunmühl and Verbeek [4]; Alur and Madhusu-
dan [1]). A nondeterministic input-driven pushdown automaton (NIDPDA) over
an alphabet ˜Σ = (Σ+1, Σ−1, Σ0) consists of

– a finite set Q of states, with set of initial states Q0 ⊆ Q and accepting states
F ⊆ Q;

– a finite stack alphabet Γ , and a special symbol ⊥ /∈ Γ for the empty stack;
– for a neutral symbol c ∈ Σ0, a transition function δc : Q → 2Q gives the set

of possible next states;
– for each left bracket symbol < ∈ Σ+1, the behaviour of the automaton is

described by a function δ< : Q → 2Q×Γ , which, for a given current state,
provides a set of pairs (q, s), with q ∈ Q and s ∈ Γ , where each pair means
that the automaton enters the state q and pushes s onto the stack;

– for every right bracket symbol > ∈ Σ−1, there is a function δ> : Q × (Γ ∪
{⊥}) → 2Q specifying possible next states, assuming that the given stack
symbol is popped from the stack (or that the stack is empty).

A configuration is a triple (q, w, x), with the current state q ∈ Q, remaining input
w ∈ Σ∗ and stack contents x ∈ Γ ∗. Possible next configurations are defined as
follows.

(q, cw, x) 	A (q′, w, x), c ∈ Σ0, q ∈ Q, q′ ∈ δc(q)
(q, <w, x) 	A (q′, w, sx), < ∈ Σ+1, q ∈ Q, (q′, s) ∈ δ<(q)

(q, >w, sx) 	A (q′, w, x), > ∈ Σ−1, q ∈ Q, s ∈ Γ, q′ ∈δ>(q, s)
(q,>w, ε) 	A (q′, w, ε), > ∈ Σ−1, q′ ∈ δ>(q,⊥)

The language recognized by A is the set of all strings w ∈ Σ∗, on which the
automaton, having begun its computation in the configuration (q0, w, ε), eventu-
ally reaches a configuration of the form (q, ε, x), with q ∈ F and with any stack
contents x ∈ Γ ∗.

An NIDPDA is deterministic (DIDPDA), if there is a unique initial state
and every transition provides exactly one action.

As shown by von Braunmühl and Verbeek [4], every n-state NIDPDA operat-
ing on well-nested strings can be transformed to a 2n2

-state DIDPDA. Alur and
Madhusudan [1] proved that 2Ω(n2) states are necessary in the worst case, and

Quotient Operation on Input-Driven Pushdown Automata 303

also extended the transformation to handle ill-nested inputs, with the resulting
DIDPDA using 22n2

states.
For more details on input-driven automata and their complexity, the readers

are directed to a recent survey [12].

3 Closure Under the Quotient

In this section, it is proved that the language family defined by input-driven
automata is closed under the quotient operation.

For the class of regular languages, it is well-known that they are closed under
quotient with any language. Indeed, if K is recognized by a deterministic finite
automaton (DFA), then, from each state q of this DFA, it is the case or not the
case that the DFA accepts some string from L beginning from q. Depending on
this, q is relabelled as accepting or rejecting, and the resulting DFA recognizes
exactly the quotient K · L−1.

Turning to input-driven automata, as long as all strings in L are well-nested,
the same property still holds. That is, an n-state DIDPDA recognizing K can
be transformed to an n-state DIDPDA recognizing the quotient K ·L−1, simply
by relabelling its states.

Given an arbitrary pair of NIDPDA, A and B, the goal is to construct a
new NIDPDA C that recognizes their quotient, L(A) · L(B)−1. Whenever the
automaton A accepts a string uv, and the other automaton B accepts the string
v, the simulating automaton should therefore accept u. If none of the brackets in
the u-part of uv match any brackets in the v-part, then the simulation proceeds
like in the case of finite automata, without using any extra states. In the general
case, the string u may have unmatched left brackets, v may have unmatched right
brackets, and these brackets match each other in uv; thus, the computation of A
may rely on the data transferred from u to v in the stack symbols. The simulating
automaton C is given only u, with its unmatched left brackets, and while doing
so, it has to guess the string v and imagine the computations of both A and B
on this guessed v.

In the computation of C on u, these imaginary computations on v are traced
backwards, so that whenever a left bracket (<) in u matches a right bracket
(>) in v, the simulating automaton C, upon reading u up to that left bracket,
tracks the imaginary computations of A and B that begin from the matching
right bracket (>) in v and accept in the end of v. As C finishes reading the string
u, its imaginary computations on v are backtracked to their beginning at the
boundary between u and v. Then, at this point C ensures that B’s computation
is in its initial configuration, whereas the actual simulated computation of A on
u smoothly continues into the imaginary computation of A on v. Thus, C finally
verifies that a string v and a computation on it that it has been guessing actually
do exist; and accordingly C accepts u.

This idea is implemented in the following construction.

304 A. Okhotin and K. Salomaa

Lemma 1. Let K be a language recognized by an NIDPDA A with the set of
states P and with the pushdown alphabet Γ , and let L be another language recog-
nized by an NIDPDA B with the set of states Q and with the pushdown alpha-
bet Ω. Then, the quotient K · L−1 is recognized by an NIDPDA C with the
set of states (P × {0, 1}) ∪ P ∪ (P × P × Q) and with the pushdown alphabet
(Γ × {0, 1}) ∪ Γ ∪ {#} ∪ (Γ × P × Q).

Proof (a sketch). At the first phase of the computation of C on an input string
u, the simulation of the computations of A and B on its imaginary continuation
v has not yet been started. This means that C assumes that all left brackets read
so far are either going to have a matching right bracket in u, or are unmatched
both in u and in v.

Thus, at the first phase, C simply simulates the operation of A on a prefix
of u, while maintaining a single extra bit of data: whether the stack is empty
or not. This is represented in states of the form (p, d), where p ∈ P is the state
of A, and d ∈ {0, 1}, with d = 0 representing stack emptiness. While in these
states, C uses stack symbols of the form (s, d), with s ∈ Γ and d ∈ {0, 1}, which
also carry the information on whether this stack symbol is at the bottom of the
stack (d = 0). This allows the simulating automaton to enter a state of the form
(p, 0) upon popping the last symbol from the stack, and thus always be aware
of its stack’s emptiness.

Every time C reads a left bracket (<), it nondeterministically guesses whether
this bracket has a matching right bracket (>) in v. If C guesses that this is not
the case, it pushes the same stack symbol as A would push (that is, C pushes
(s, 0) or (s, 1), if A would push s), and continues its computation in a state of
the form (p, 0) or (p, 1). If later, while still at the first phase, C encounters a
matching right bracket and pops that symbol, it again behaves as A would do,
remaining in a state from P × {0, 1}.

At some point, C may read a left bracket (<) and decide that it has a matching
right bracket in v, so that A operating on uv would transfer some stack symbol
s from the left bracket (<) to the right bracket (>). If this guess is correct, then
this left bracket is unmatched in u, and thus C will never have a chance to pop
the stack symbol it pushes at this moment; for that reason, it pushes a special
stack symbol (#) that will cause immediate rejection if it is ever popped. At the
same time, C guesses the computations of A and B on a suffix of v containing
the matching right bracket (>) and the neighbouring well-nested substrings, and
enters the second phase of the simulation in a state from P × P × Q.

In the second phase, C uses triples of the form (p, p̃, q̃) as states, and, while
reading the input string u from left to right, it also guesses an imaginary string v
from right to left, along with the computations of A and of B on that imaginary
string. According to this plan, the first component of each triple, p ∈ P , is the
state of the ongoing simulation of A on the prefix of u read so far. The other two
components are the states of A and B processing v. To be precise, the second
component, p̃ ∈ P , is a state, beginning from which A accepts a suffix of v
guessed in the course of this simulation, whereas q̃ ∈ Q is a state of B, beginning
from which it accepts the same guessed suffix of v.

Quotient Operation on Input-Driven Pushdown Automata 305

When C nondeterministically decides to move to the second phase along with
reading a left bracket (<), it guesses A’s and B’s computations on the last suffix
of the imaginary second part of the string. If C’s stack is empty—that is, if C
is in a state (p, 0)—then the last suffix of v is of the form x>y, where x is a
well-nested string, the right bracket (>) following x is the one that matches the
current left bracket (<) in u, and y is a concatenation of a descending string and
an ascending string (that is, a concatenation of well-nested strings and right
brackets, followed by well-nested strings and left brackets). All right brackets in
y are then unmatched both in u and in the earlier part of v, and accordingly, C
may enter any state (p′, p̃, q̃) satisfying the following conditions:

1. upon reading this left bracket (<) in the state p, A pushes some stack symbol
s ∈ Γ and enters the state p′;

2. the automaton A, having begun its computation on x>y in the state p̃ and
with s on the stack, accepts;

3. the other automaton B, having begun its computation on x>y in the state q̃
and with the empty stack, accepts as well.

In the other case, if C’s stack is not empty, and it is therefore in a state (p, 1),
the suffix of v is of the form x>y, where both x and y are well-nested, and the
above three conditions remain the same.

Transitions of C in a state (p, p̃, q̃) are defined as follows. A right bracket (>)
cannot be read in this state, and if it is encountered, C rejects.

Upon reading a neutral symbol c ∈ Σ0, the simulation of A in the first
component continues, while the last two components stay unchanged.

When reading a left bracket (<), the automaton C again has to guess whether
this bracket has a matching right bracket (>) in v. In case it does, C pushes the
stack symbol (#) that will cause rejection if popped, and advances the simulation
in all three components of the state in the same way as it did when entering the
second phase. On the other hand, if C nondeterministically guesses that this left
bracket (<) has a matching bracket in u, it suspends the simulation of A and B
on the imaginary suffix v, pushing a triple (s, p̃, q̃) onto the stack, where s is the
stack symbol in the ongoing simulation of A on u. Then, C enters a state p′ ∈ P
and begins processing the current well-nested substring of u in the state from
P , simulating only A.

When this well-nested substring ends, C reads the matching right bracket
(>) in u and pops the triple (s, p̃, q̃) from the stack. Then, it resumes the second
phase of the simulation in the state (p′′, p̃, q̃), where p′′ is the next state in the
ongoing simulation of A on u.

The precise correctness statement of the construction takes the following
form. When the simulating NIDPDA, after having read a string t<1u1 . . . <huh ∈
Σ∗, where t is any string, u1, . . . , uh are well-nested strings and <1, . . . , <h are
unmatched left brackets in this string, is in a state (p, p̃, q̃) and has stack contents
(sh, ph, qh) . . . (s1, p1, q1), this means that, first, there exists a computation of A
on the string t<1u1 . . . <huh that pushes each symbol si on the corresponding left
bracket <i, and reaches the state p after reading t<1u1 . . . <huh, and second,

306 A. Okhotin and K. Salomaa

there exists a string of the form v = vh>h . . . v1>1w, where v1, . . . , vh are well-
nested strings, >1, . . . , >h are right brackets and w ∈ Σ∗ is any string that has
no matching right brackets (>) to any left brackets (<) in t, so that A, having
begun its computation on v in the state p̃, with the stack contents sh . . . s1, after
popping each right bracket >i will be in the corresponding state pi, and will
accept in the end, whereas B, having begun its computation on the same string
v in the state q̃ and with the empty stack, will be in the state qi after each right
bracket >i, and will accept the string as well.

The correctness statement could be proved by induction on the length of the
computation.

Finally, accepting states are of the form (p, p, q0), that is, A finishes reading
u in the state p, and A accepts v beginning in the state p, and also B accepts v
beginning in the state q0. Then, C recognizes exactly the desired quotient. �

This proves the closure under right-quotient. Since the family of languages
recognized by input-driven automata is closed under reversal (where, in the
reversed string, left brackets become right brackets and vice versa [2]) the closure
result also extends to the left-quotient operation.

Theorem 1. The family of languages recognized by input-driven pushdown
automata is closed under right-quotient and left-quotient.

4 Plan for a Lower Bound Argument

The construction given in the previous section uses 3m+m2n states to represent
the quotient, and it turns out that it cannot be much improved upon. A lower
bound on the state complexity of the quotient of NIDPDA shall be proved using
witness languages of the following general form.

Fix an alphabet of labels, Γ . The first language contains nested sequences of
brackets with the matching brackets having identical labels; it is a subset of the
following base language.

K0 = {<a1 . . . <am
>am

. . . >a1 | m � 0, a1, . . . , am ∈ Γ }

All strings in the second language consist of right brackets (>), which are to be
erased by the quotient operation. Thus, the second language is a subset of the
following language.

L0 = {>am
. . . >a1 | m � 0, a1, . . . , am ∈ Γ }

An automaton A recognizing a subset K ⊆ K0 performs two tasks. First,
upon reading each bracket <a, it pushes the symbol a to stack, and upon reading
a bracket >a it ensures that the symbol being popped is a; doing this task does
not require any states. Second, it operates on the string as a DFA, ensuring that
it belongs to a certain regular language.

The second automaton B recognizes a subset L ⊆ L0 essentially as a DFA.

Quotient Operation on Input-Driven Pushdown Automata 307

Then, the quotient K · L−1 contains a string of the form <a1 . . . <am
if the

whole string <a1 . . . <am
>am

. . . >a1 is in K, whereas its second half >am
. . . >a1

belongs to L.
In order to construct efficient witness languages of this form, it is convenient

to reformulate them in terms of finite automata, and to consider a related state
complexity problem for finite automata. Let every left bracket (<a) labelled with
a symbol a ∈ Γ be regarded as a symbol a, and let every right bracket (>a) be
regarded as ã, from a marked copy of the alphabet ˜Γ = { ã | a ∈ Γ }. Then the
associated state complexity problem for finite automata over Γ ∪ ˜Γ ∪ {#} is
concerned with the complexity of the following palindromic quotient operation
on languages with respect to NFAs.

PQ(K,L) = { a1 . . . am | a1 . . . am#ãm . . . ã1 ∈ K, ãm . . . ã1 ∈ L }

Lemma 2. Let K ⊆ Γ ∗# ˜Γ ∗ and L ⊆ ˜Γ ∗ be any languages, and define the
corresponding languages over the alphabet of brackets as follows.

K ′ = {<a1 . . . <am
>am

. . . >a1 | a1 . . . am#ãm . . . ã1 ∈ K }
L′ = {>am

. . . >a1 | ãm . . . ã1 ∈ L }
Then:

1. if K is recognized by an m-state NFA, then K ′ is recognized by an m-state
NIDPDA;

2. if L is recognized by an n-state NFA, then L′ is recognized by an n-state
NIDPDA;

3. if K ′ · (L′)−1 is recognized by an N -state NIDPDA, then PQ(K,L) is recog-
nized by an N -state NFA.

In particular, to prove the third part, one can directly transform an IDPDA
recognizing the quotient K ′ · (L′)−1 to an NFA recogizing the palindromic quo-
tient PQ(K,L) by eliminating all transitions by right brackets and by ignoring
all symbols pushed to the stack upon reading left brackets.

5 The Lower Bound for NFA

In order to apply Lemma2, the task is now to determine the state complexity
of the palindromic quotient operation with respect to NFAs. The tools for doing
this are well-known.

Definition 2 (Birget [3]). Let L ⊆ Σ∗ and S = {(x1, y1), . . . , (xm, ym)},
xi, yi ∈ Σ∗, i = 1, . . . ,m. The set S is a fooling set for L, if

1. xiyi ∈ L for all 1 � i � m,
2. xiyj
∈ L or xjyi
∈ L for all 1 � i < j � m.

The nondeterministic state complexity of a regular languate L, nsc(L), is the
minimal number of states of any NFA recognizing L.

308 A. Okhotin and K. Salomaa

Lemma 3 (Fooling set lemma [3]). If a regular language L has a fooling set
of cardinality k, then nsc(L) � k.

For an alphabet Σ define ˜Σ = {ã | a ∈ Σ}. For a string w = a1 · · · ak, ai ∈ Σ,
1 � i � k, let w̃ = ã1 · · · ãk.

Consider an alphabet Ω = Σ ∪ ˜Σ ∪ {#}, where #
∈ Σ ∪ ˜Σ. For K,L ⊆ Ω∗

define
PQ(K,L) = {w ∈ Σ∗ | w#w̃R ∈ K, w̃R ∈ L}.

The lower bound for the state complexity of the operation PQ(·, ·) will be used
for obtaining a lower bound for the state complexity of quotient of input driven
languages. For this reason the alphabet is partitioned into sets Σ, ˜Σ and {#}
which play the roles of left brackets, right brackets and neutral symbols, respec-
tively.

Lemma 4. If A is an NFA with n states and B an NFA with m states, the
language PQ(L(A), L(B)) has an NFA with n2 · m states.

Proof. The language PQ(L(A), L(B)) can be recognized by an NFA C operating
as follows. On input w ∈ Σ∗, C simulates in parallel (i) a computation of A from
a start state to a state q1, (ii) a computation of A in reverse starting from a final
state on the string w̃, ending in a state q2, and (iii) a computation of B from a
final state in reverse on the string w̃ ending in a state p. Thus, the states of C
are triples (q1, q2, p) where q1, q2 are states of A and p is a state of B. A state
(q1, q2, p) is accepting if A has a transition on # from q1 to q2 and p is a start
state of B.

Now C has n2 · m states and, by the choice of the final states, it is clear that
L(C) = PQ(L(A), L(B)). �

Lemma 5. Let Σ = {a, b, c} and Ω = Σ ∪ ˜Σ ∪ {#}. For n,m ∈ N there exist
regular languages K and L over the alphabet Ω with nsc(K) = n and nsc(L) = m
such that

nsc(PQ(K,L)) � n2 · m.

Proof. Define

K = {u1#u2# · · · #u� | ui ∈ Ω∗, |ui|a + |ui |̃b ≡ 0 mod n, i = 1, . . . , �},

L = {v ∈ ˜Σ∗ | |v|c̃ ≡ 0 (mod m)}.

Note that the definition allows some of the substrings ui to be empty which
means that the strings of K may begin or end with # and have consecutive
occurrences of #.

The language K is recognized by an NFA A = (Ω,Q, 0, 0, δ) where Q =
{0, 1, . . . , n − 1} and the transitions of δ are defined by setting

1. δ(i, a) = δ(i,˜b) = i + 1 for i = 0, . . . , n − 2, and δ(n − 1, a) = δ(n − 1,˜b) = 0,
2. δ(i, b) = δ(i, c) = δ(i, ã) = δ(i, c̃) = i for i = 0, . . . , n − 1,
3. δ(0,#) = 0 and δ(i,#) is undefined for i = 1, . . . , n − 1.

Quotient Operation on Input-Driven Pushdown Automata 309

The automaton A is, in fact, an incomplete DFA having a cycle of length n
where the cycle counts the sum of the numbers of symbols a and ˜b modulo n.
Transitions on # are defined only when the current sum has a value divisible by
n. This means that A checks that in the substring between two occurrences of
the sum of the numbers of occurrences of a and ˜b must be divisible by n and
A recognizes exactly the language K.

It is clear that L has an NFA with a cycle of length m that simply verifies
that the input is in {ã,˜b, c̃}∗ and counts the number of occurrences of symbols
c̃ modulo m.

For establishing the lower bound for the nondeterministic state complexity
of PQ(K,L) we define

S = {(aibjck, an−ibn−jcm−k) | 0 � i, j � n − 1, 0 � k � m − 1}.

The set S has cardinality n2 · m and to prove the claim, by Lemma 3, it is
sufficient to verify that S is a fooling set for PQ(K,L).

For any pair (aibjck, an−ibn−jcm−k) of S we have aibjck · an−ibn−jcm−k ∈
PQ(K,L) because with w = aibjckan−ibn−jcm−k we have w#w̃R ∈ K and
w̃R ∈ L due to the observations that |w|a + |w|̃b = n, |w̃|a + |w̃|̃b = n and
|w̃|c̃ = m.

Next consider two distinct elements of S, (aibjck, an−ibn−jcm−k) and
(arbsct, an−rbn−scm−t), where (i, j, k)
= (r, s, t). Denote w = aibjck ·
an−rbn−scm−t. If k
= t, w
∈ PQ(K,L) because |w̃|c̃
≡ 0 mod m. If i
= r
then |w|a + |w|̃b = i + n − r
≡ 0 mod n and, consequently, w#w̃R
∈ K and
w
∈ PQ(K,L). Similarly, if j
= s then |w̃|a + |w̃|̃b = j + n − s
≡ 0 mod n and
again w#w̃R
∈ K. �

6 The State Complexity of the Quotient

The results on the number of states in NIDPDA needed to represent the quotient
are put together in the following theorem.

Theorem 2. In order to represent the quotient of an m-state NIDPDA by an
n-state NIDPDA, it is sufficient to use an NIDPDA with 3m + m2n states. In
the worst case, it is necessary to use at least m2n states.

This gives the state complexity of m2n + O(m).
If the goal is to construct a deterministic automaton, one possible solution is

to determinize the constructed NIDPDA. However, that would produce as many
as 2Θ(m4n2) states. Previously, for some operations, such as the concatenation, a
much more succinct direct construction of a DIDPDA was defined [14] using the
idea of computing behaviour functions of the given DIDPDA [11]. Investigating
whether there is a significantly better construction of a DIDPDA for a quotient
of two DIDPDAs is left as an open problem. A possible starting point is the DFA
state complexity of the palindromic quotient operation defined in this paper.

Another open problem concerns the state complexity of the quotient for the
intermediate unambiguous IDPDA model [13].

310 A. Okhotin and K. Salomaa

Acknowledgement. The authors are grateful to the anonymous reviewers for many
pertinent comments and suggestions; the implementation of some of them is deferred
until the full version of this paper.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: ACM Symposium on
Theory of Computing, STOC 2004, Chicago, USA, pp. 202–211, 13–16 June 2004

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56, 3 (2009)
3. Birget, J.-C.: Intersection and union of regular languages and state complexity.

Inf. Process. Lett. 43, 185–190 (1992)
4. von Braunmühl, B., Verbeek, R.: Input driven languages are recognized in log n

space. Ann. Discret. Math. 24, 1–20 (1985)
5. Ginsburg, S., Greibach, S.A.: Deterministic context-free languages. Inf. Control

9(6), 620–648 (1966)
6. Ginsburg, S., Spanier, E.H.: Quotients of context-free languages. J. ACM 10(4),

487–492 (1963)
7. Han, Y.-S., Salomaa, K.: Nondeterministic state complexity of nested word

automata. Theoret. Comput. Sci. 410, 2961–2971 (2009)
8. Hartmanis, J.: Context-free languages and Turing machine computations. In: Pro-

ceedings of Symposia in Applied Mathematics, vol. 19, pp. 42–51. AMS (1967)
9. Latteux, M., Leguy, B., Ratoandromanana, B.: The family of one-counter languages

is closed under quotient. Acta Inform. 22(5), 579–588 (1985)
10. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.

In: Bakker, J., Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 422–435.
Springer, Heidelberg (1980). doi:10.1007/3-540-10003-2 89

11. Okhotin, A.: Input-driven languages are linear conjunctive. Theoret. Comput. Sci.
618, 52–71 (2016)

12. Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata.
SIGACT News 45(2), 47–67 (2014)

13. Okhotin, A., Salomaa, K.: Descriptional complexity of unambiguous input-driven
pushdown automata. Theoret. Comput. Sci. 566, 1–11 (2015)

14. Okhotin, A., Salomaa, K.: State complexity of operations on input-driven push-
down automata. J. Comput. Syst. Sci. 86, 207–228 (2017)

15. Okhotin, A., Salomaa, K.: Edit distance neighbourhoods of input-driven pushdown
automata. In: Weil, P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 260–272. Springer,
Cham (2017). doi:10.1007/978-3-319-58747-9 23

16. Piao, X., Salomaa, K.: Operational state complexity of nested word automata.
Theoret. Comput. Sci. 410, 3290–3302 (2009)

17. Salomaa, K.: Limitations of lower bound methods for deterministic nested word
automata. Inf. Comput. 209, 580–589 (2011)

18. Wood, D.: A further note on top-down deterministic languages. Comput. J. 14(4),
396–403 (1971)

http://dx.doi.org/10.1007/3-540-10003-2_89
http://dx.doi.org/10.1007/978-3-319-58747-9_23

Author Index

Almagor, Shaull 3
Anselmo, Marcella 16

Bensch, Suna 65
Broda, Sabine 77
Brzozowski, Janusz A. 89

Dassow, Jürgen 33
Davies, Sylvie 89
Dimitrijevs, Maksims 102

Faran, Rachel 114
Fernau, Henning 128
Freund, Rudolf 140

Gelle, Kitti 152
Giammarresi, Dora 16

Han, Yo-Sub 164
Hoeberechts, Maia 65
Holzer, Markus 177

Iván, Szabolcs 152

Jirásek Jr., Jozef 189
Jirásková, Galina 214

Keeler, Chris 202
Kim, Hwee 164
Konstantinidis, Stavros 45
Krajňáková, Ivana 214
Kuperberg, Denis 3
Kupferman, Orna 3, 114
Kuppusamy, Lakshmanan 128

Kutrib, Martin 177
Kwee, Kent 226

Lavado, Giovanna J. 238

Machiavelo, António 77
Madonia, Maria 16
Marais, Laurette 250
Maslennikova, Marina 262
Moreira, Nelma 77

Neary, Turlough 274
Ng, Timothy 287

Okhotin, Alexander 299
Otto, Friedrich 226

Palmovský, Matúš 189
Prigioniero, Luca 238

Raman, Indhumathi 128
Rappaport, David 287
Reis, Rogério 77
Rogers, Trent A. 164
Rogojin, Vladimir 140

Salomaa, Kai 202, 287, 299
Šebej, Juraj 189
Seki, Shinnosuke 164

van Zijl, Lynette 250
Verlan, Sergey 140

Yakaryılmaz, Abuzer 102

	Preface
	Organization
	Contents
	Invited Papers
	Sensing as a Complexity Measure
	1 Introduction
	2 Preliminaries
	3 The Sensing Cost of Regular Languages of Finite Words
	4 The Sensing Cost of -Regular Languages
	5 Monitoring
	References

	Avoiding Overlaps in Pictures
	1 Introduction
	2 Preliminaries
	3 Overlaps in Strings and in Pictures
	4 Unbordered Pictures
	5 Non-overlapping Sets of Pictures
	References

	Descriptional Complexity and Operations -- Two Non-classical Cases
	1 Introduction
	2 Definitions and Notations
	3 Number of Accepting States
	4 Syntactic Complexity Measures for Context-Free Languages
	5 Conclusion
	References

	Applications of Transducers in Independent Languages, Word Distances, Codes
	1 Introduction
	2 Terminology
	3 t-Independent Languages: Classic and Antimorphic
	4 Algorithmic Questions About Independent Languages
	5 The Embedding Question
	6 The Minimum Distance Question
	7 Cost of Converting Between Transducer Types
	8 t-Undescribable Independences and New Directions
	9 Concluding Remarks
	References

	Contributed Papers
	On the Degree of Nondeterminism of Tree Adjoining Languages and Head Grammar Languages
	1 Introduction
	2 Notational Conventions
	3 Tree Adjoining Grammars (TAGs)
	3.1 Degree of Nondeterminism for TAGs

	4 Modified Head Grammars (MHGs)
	4.1 Degree of Nondeterminism for MHGs

	5 Conclusions
	References

	On the Average Complexity of Strong Star Normal Form
	1 Introduction
	2 Regular Expressions and -NFAs
	3 Strong Star Normal Form
	4 Asymptotic Average Complexity
	5 Average Sizes: Concrete Results
	5.1 Counting Letters
	5.2 Size of -Follow Automata

	6 Experimental Results
	7 Conclusions
	References

	Most Complex Non-returning Regular Languages
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Syntactic Semigroup
	5 Number and Complexities of Atoms
	6 Other Operations
	7 Conclusions
	References

	Uncountable Realtime Probabilistic Classes
	1 Introduction
	2 Background
	3 Our Results
	3.1 Unary Languages
	3.2 Generic Alphabet Languages

	References

	A Parametrized Analysis of Algorithms on Hierarchical Graphs
	1 Introduction
	2 Preliminaries
	3 Compression of Hierarchical Graphs
	3.1 Applications
	3.2 Not All Problems Are Compressible

	4 Nondeterministic Compression of Hierarchical Graphs
	4.1 Applications

	References

	Graph-Controlled Insertion-Deletion Systems Generating Language Classes Beyond Linearity
	1 Introduction
	2 Preliminaries
	2.1 Graph-Controlled Insertion-Deletion Systems

	3 Properties of Closure Classes
	4 Describing Closure Classes of Linear Languages
	5 Reducing Components for Certain Closure Classes
	6 Summary and Future Challenges
	References

	Computational Completeness of Networks of Evolutionary Processors with Elementary Polarizations and a Small Number of Processors
	1 Introduction
	2 Prerequisites
	2.1 Insertion, Deletion, and Substitution
	2.2 Post Systems and Circular Post Machines
	2.3 Networks of Evolutionary Processors with Elementary Polarizations

	3 Main Result
	4 Conclusion and Future Research
	References

	Recognizing Union-Find Trees Built Up Using Union-By-Rank Strategy is NP-Complete
	1 Introduction
	2 Notation
	3 Structural Characterization of Union-Find Trees
	4 Complexity
	5 Conclusion, Future Directions
	References

	Self-attraction Removal from Oritatami Systems
	1 Introduction
	2 Preliminaries
	2.1 Self-attraction-free Oritatami System

	3 Bead Type Modification Based on the Event Horizon
	4 On Deterministic Finite Oritatami Systems
	5 Lower Bounds on Copying Ratio
	References

	One-Time Nondeterministic Computations
	1 Introduction
	2 Preliminaries
	3 One-Time Nondeterministic Finite Automata
	4 One-Time Nondeterministic Pushdown Automata
	References

	Kuratowski Algebras Generated by Factor-, Subword-, and Suffix-Free Languages
	1 Introduction
	2 Preliminaries
	3 Factor-Free and Subword-Free Languages
	4 Suffix-Free Languages
	5 Conclusions
	References

	Branching Measures and Nearly Acyclic NFAs
	1 Introduction
	2 Preliminaries
	3 String Path Width and Depth Path Width
	4 Depth Path Width of Nearly Acyclic NFAs
	4.1 Languages Recognized by NaNFAs

	5 Conclusion
	References

	Square on Deterministic, Alternating, and Boolean Finite Automata
	1 Introduction
	2 Preliminaries
	3 Square on DFAs
	3.1 Square if |F|=n-1
	3.2 Square on Unary DFAs

	4 Square on AFAs and BFAs
	5 Conclusions
	References

	A Pumping Lemma for Ordered Restarting Automata
	1 Introduction
	2 Definitions and Known Results
	3 A Pumping Lemma for ORWW-Automata
	4 Applications of the Pumping Lemma
	5 Concluding Remarks
	References

	Concise Representations of Reversible Automata
	1 Introduction
	2 Preliminaries
	3 A Simple Concise Representation
	4 Another Concise Representation
	5 Conclusion
	References

	State Complexity of Unary SV-XNFA with Different Acceptance Conditions
	1 Introduction
	2 Preliminaries
	2.1 Unary XNFA: Matrices and Polynomials Over GF(2)
	2.2 Unary XNFA: Linear Recurrences Over GF(2)
	2.3 Notation

	3 Main Results
	4 Conclusion
	References

	Reset Complexity of Ideal Languages Over a Binary Alphabet
	1 Preliminaries
	2 PSPACE-hardness of SYN-EQUALITY
	3 PSPACE-completeness of RESET-INEQUALITY
	References

	2-State 2-Symbol Turing Machines with Periodic Support Produce Regular Sets
	1 Introduction
	2 Turing Machines with Periodic Support
	3 Reducing the Number of Cases Through Symmetries
	4 Solving Cases in Fig.1
	4.1 Case A: Reduce the Number of Cases Using Symmetries
	4.2 Cases B: Machines that Give Periodic Computations
	4.3 Cases C: Machines that Give Semi-periodic Computation
	4.4 Cases E: Binary Counters

	References

	State Complexity of Suffix Distance
	1 Introduction
	2 Preliminaries
	2.1 Distances and Neighbourhoods of Regular Languages

	3 State Complexity of Suffix Neighbourhoods
	3.1 State Complexity of Subword Distance

	4 State Complexity of Suffix Distance on Subregular Languages
	5 Conclusion
	References

	The Quotient Operation on Input-Driven Pushdown Automata
	1 Introduction
	2 Input-Driven Automata
	3 Closure Under the Quotient
	4 Plan for a Lower Bound Argument
	5 The Lower Bound for NFA
	6 The State Complexity of the Quotient
	References

	Author Index

