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    Chapter 1   
 Introduction to Interdisciplinary Perspectives 
to Creativity and Giftedness                     

     Roza     Leikin      and     Bharath     Sriraman   

      Invention, innovation, originality, insight, illumination and imagination are core 
elements of the individual and societal progress along human history from ancient 
times till the modern society. While these phenomena are often considered as indi-
cators of creativity and talent in science, technology, business, arts, and music; they 
are also basic mechanisms of learning. Till the past decade mathematical creativity 
and giftedness were overlooked in the educational research. Luckily lately more 
attention is paid to their nature and nature. For example, in 2010 International Group 
of Mathematical Creativity and Giftedness (  igmcg.org    ) was established following 
fi ve international conferences of the community of research mathematicians, math-
ematics educators and educational researchers. During the last decade several books 
and edited volumes were devoted to the constructs of mathematical creativity and 
mathematical talent, their identifi cation and development (see commentary for ref-
erences). Still there are many open questions remain and researches debate the 
question of inborn character of creative talents vs. possibility of developing creativ-
ity and ability in all students. The current volume presents international panorama 
of the research of creativity and giftedness, refl ects the state of the art in the fi eld 
and provides a broad range of views on the phenomena of creativity and giftedness 
with special attention to creativity and giftedness in mathematical. 

 Part I of the volume focuses on different aspect of creativity in mathematics and 
beyond. A group of studies presents possible ways of defi ning and evaluation math-
ematical creativity applied in empirical studies conducted in primary school (Pitta- 
Pantazi), in secondary school (Lev and Leikin), in undergraduate mathematics 
(Savic et al.), and in courses for mathematics teachers (Palsdottir and Sriraman; 
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Voica and Singer). Some researchers describe types of mathematical tasks 
 appropriate for the evaluation and development of mathematical creativity. Palsdottir 
and Sriraman argue that mathematical modeling may be viewed as a creative math-
ematical activity, while Voica and Singer analyze problem-posing and constructive 
activities as facilitators of the development of creativity in mathematics. Palsdottir 
and Sriraman examine the views of a group of Icelandic high school teachers about 
modeling activities, and characterize ways in which they implement them in the 
classroom. Voica and Singer analyze participants’ creativity through focus on stu-
dents’ cognitive variety and novelty and demonstrate that creative interactions of 
the participants increase their problem-solving and problem-posing expertise. Pitta- 
Pantazi and Lev and Leikin examined relationship between creativity and gifted-
ness. Lev and Leikin introduce a model for the evaluation of mathematical creativity 
using multiple solution tasks and Savic et al. introduces an assessment tool for 
evaluation of mathematical creativity that can be implemented in an introductory 
proof course. 

 Several chapters in the book present theoretical perspectives on mathematical 
creativity, on general creativity and the relationship between them. Karwowski and 
Dziedziewicz present a typological model of creativity made up of creative abilities, 
openness to experiences, and independence and suggest its consequences for early 
mathematics education. The authors pay special attention to the role of visual and 
creative imagination and on new ways of enhancing mathematical creativity using 
heuristic rhymes. Tan and Sriraman highlight the role of convergence in developing 
creativity and mathematical capacity, distinguish between convergence  in  diver-
gence  for  emergence as three creativity mechanisms and argue that continuity, inter-
action and complementarity are three principles of experience that lead to the 
development of creativity. Hersh and John-Steiner address some psychological 
sources that motivate creative mathematicians, analyze their cognitive and mathe-
matical strategies that lead to mathematical insight, and provide examples of cre-
ative breakthroughs in the teaching of mathematics. The authors argue that the 
pursuit of novelty, unrestricted by any other prescribed goal or objective, radically 
speeds up evolutionary adaptation. Mann and Chamberlin stress importance of 
affect in the production of creative outcomes in mathematical problem solving. In 
their view anxiety, aspiration(s), attitude, interest, and locus of control, self-effi cacy, 
self-esteem, and value are major factors that affect creative problem solving. 
Iconoclasm is discussed by the authors as instrumental construct to the production 
of creative outcomes. In the chapter by Haught and Stokes creativity follows com-
petency and the product called creative must be both novel and appropriate to its 
domain. they argue that paired constraints can make very young children competent 
in mathematics and college students more creative in composition. Beghetto and 
Schreiber ask “What propels creativity in learning?” They discuss abductive reason-
ing as a special form of creative reasoning that is triggered by states of genuine 
doubt that represent opportunities for creative learning. 

 Part II of the book devoted to research on mathematical giftedness and the educa-
tion of mathematically gifted students. Clearly when discussing giftedness the 
authors also touch upon creativity while using different research paradigms and 
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research methodologies. Leikin, Leikin & Waissman and Cropley, Westwell & 
Gabriel provide Neuro-scientifi c analysis of mathematical creativity and giftedness. 
Leikin et al. present an empirical study that uses event related potentials methodol-
ogy to analyze brain activity related to solving mathematical problems by students 
of different levels of mathematical abilities. To analyze relationships between math-
ematical creativity and giftedness they employ distinctions between insigh-based 
(i.e. creative) and learning-based (routine) problem solving. Cropley et al. provide 
meta-analysis of studies on psychological and neuro-scientifi c perspectives on 
mathematical creativity and giftedness. They discuss how these approaches can 
inform our understanding of creativity as a component of giftedness in general and 
how giftedness manifests in mathematics in the creative-productive sense. As men-
tioned above Lev and Leikin and Pitta-Pantazi describe empirical studies that ana-
lyze relationship between mathematical creativity and giftedness. Pitta-Pantazi 
summarizes series of studies regarding identifi cation of mathematically gifted stu-
dents and the relation between mathematical creativity, intelligence and cognitive 
styles. Chapters by Leikin et al. and Lev and Leikin introduce distinctions between 
high achievements in mathematics, general giftedness and superior performance in 
mathematics. They stress that excellence in school mathematics and general gifted-
ness are interrelated but different in nature personal characteristics related to math-
ematical giftedness. 

 As described above, while Palsdottir and Sriraman and Voica and Singer suggest 
approaches to teaching mathematics that develops creativity in all students, Tan and 
Sriraman and Hersh and John-Steiner provide theoretical perspectives on mathe-
matics teaching that leads to creative production in mathematics and beyond. The 
last but not least important, Karp provides theoretical analysis of mathematically 
gifted education from political perspective. He stresses that “practice of recognizing 
certain children as more gifted than others and selecting them accordingly becomes 
inevitably a focus of public attention, frequently giving rise to disagreements, fi nd-
ing itself at the heart of political discussions, sometimes instigating such discus-
sions, and sometimes refl ecting already existing confl icts” (p. 239). 

 The analysis performed by Karp refl ects hidden (political and educational) 
debate between the different authors that contributed their chapters to this volume. 
As one can see, some authors believe creativity is a characteristic of gifted individu-
als while others think it can be developed in all students; some believe that creativity 
is an outcome of the learning process whereas other believe creativity leads to 
development of mathematical profi ciency. We trust that the readers will enjoy and 
be intrigued when reading this book. We hope that readers will hear authors’ voices, 
will understand their positions and will be encouraged to perform further research 
that will shed more light on the nature and nurture of giftedness and creativity, the 
relationship between them, the approaches to education of gifted as well as teaching 
with and for creativity.   

1 Introduction to Interdisciplinary Perspectives to Creativity and Giftedness



       

   Part I 
   Perspectives on Creativity 
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    Chapter 2   
 Creativity, Imagination, and Early 
Mathematics Education                     

     Maciej     Karwowski     ,     Dorota     M.     Jankowska    , and     Witold     Szwajkowski   

    Abstract     In this chapter, we draw heavily on a new typological model of creativity 
and show its consequences for early maths education. According to this model, 
creativity is made up of three interrelated components: creative abilities (mainly 
creative imagination and divergent thinking), openness to experiences, and indepen-
dence. This model is our starting point for the description of the importance and 
organization of the Mathematical Creative Problem Solving Model. We describe the 
assumptions, aims, and elements of this model, as well as demonstrate the practical 
and methodological aspects of supporting the development of mathematics. We also 
focus on the role played by visual and creative imagination and on new ways of 
enhancing mathematical creativity using heuristic rhymes.  

  Keywords     Typological model of creativity   •   Creativity   •   Visual and creative imagi-
nation   •   Mathematical creative problem solving   •   Mathematical heuristic rhymes  

2.1        Introduction 

 In knowledge-based society, creativity is perceived as a source of innovation and 
progress (Sawyer  2006 ). Concurrently, innovativeness is frequently equaled with 
mathematical thinking when it comes to engineering and invention (Wang and 
Shang  2014 ), but also with regard to teaching mathematics (see inventive mathe-
matical thinking; Harskamp  2014 , p. 371). The psychology of creativity proposes a 
search for connections not just between innovation and creativity but also between 

 The preparation of this chapter was supported by grants from the National Science Centre, Poland 
(UMO-2011/03/N/HS6/05153) and the Polish Ministry of Science and Higher Education (Iuventus 
Plus Program, 0193/IP3/2015/73). 
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those two and imagination – the Imagination–Creativity–Innovation (ICI) model 
(see Beghetto  2014 ). As creativity and imagination are interdisciplinary constructs 
(Gillson and Shaley  2004 ; Glăveanu  2010 ), they have many connotations that are 
sometimes contradictory (Kaufman  2009 ). This is why we start this chapter by 
defi ning them with reference to the typological model of creativity (Karwowski 
 2010 ; Karwowski and Lebuda  2013 ) and the conjunctional model of creative imagi-
nation (Dziedziewicz and Karwowski  2015 ). Those defi nitional solutions will be 
the basis for the analysis of relations between the constructs we are interested in this 
chapter and will serve as reference points in the description of the role of heuristic 
rhymes in Mathematics Creative Problem Solving.  

2.2     The Typological Model of Creativity 

 The history of psychological research on creativity is usually divided into two peri-
ods (see Sawyer  2006 ): before and after 1950, which is when Joy Paul Guilford 
delivered his breakthrough address during the Convention of the American 
Psychological Association (Guilford  1950 ; Kaufman  2009 ). As is widely known, 
Guilford perceived divergent thinking as the intellectual operation responsible for 
creative thinking, with several important characteristics, namely: (1) fl uency, under-
stood as the ability to come up with many ideas; (2) fl exibility, or the ability to cre-
ate solutions that are qualitatively diverse; (3) originality, responsible for producing 
rare and untypical ideas; and (4) elaboration – the ability to develop ideas (Guilford 
 1967 ). The number of empirical studies grew after Guilford’s address, and the 
understanding of creativity as an egalitarian characteristic also became widespread. 
For example, humanist psychologists (Fromm  1959 ; Maslow  1959 ; Rogers  1970 ) 
considered it not only as a characteristic of eminent creators but also – to a greater 
or lesser extent – as a trait commonly found in the entire population. 

 Attempts undertaken by researchers and theoreticians to defi ne creativity most 
frequently came down to two characteristics of its product – newness, associated 
with originality (Cropley  2001 ; Boden  2004 ), and value (utility) (Cropley  1999 ; 
Runco  2009 ). Thus, creativity is defi ned as activity that leads to the emergence of 
new (original) and useful products (Amabile  1983 ). With time, creativity began to 
be identifi ed with a compound of personal traits. Aside from divergent thinking, the 
mechanisms considered by researchers to be key for creating include creative imag-
ination (Khatena  1975 ; LeBoutillier and Marks  2003 ) as well as personality charac-
teristics: primarily openness to experiences (Dollinger and Clancy  1993 ; Feist  1998 ; 
Perrine and Broderson  2005 ) and independence (Batey and Furnham  2006 ; Eysenck 
 1994 ; Nickerson  1999 ; Stravridou and Furnham  1996 ). Numerous studies of this 
kind made it possible to more thoroughly determine the conceptual range of creativ-
ity, but they also resulted in the emergence of a  sui generis  “hybrid of creativity” – a 
system of cooperating elements (traits) related to creative behaviors, which reveals 
the complexity and multilayer character of this phenomenon. The proposed typo-
logical model of creativity (Karwowski  2010 ; Karwowski and Lebuda  2013 ) is an 
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attempt to systematize the relations between and among these traits. According to 
this model, the following hypothetical dimensions determine creativity: (1) creative 
abilities (cognitive dispositions that determine the effectiveness of generating, 
developing, and implementing solutions characterized, among other things, by a 
high level of originality and value, divergent thinking, and imaginative abilities); (2) 
openness (appreciation of intellect, willingness to meet new people and cultures, as 
well as learning); and (3) independence (a personality dimension marked by non-
conformism and low agreeableness as well as readiness to oppose the situationally 
evoked infl uence of the group and external factors). The model implies the special 
importance of four creativity types, labeled and defi ned as follows: complex creativ-
ity (a combination of creative abilities, openness, and independence), subordinate 
creativity (a combination of creative abilities and openness with low independence), 
rebellious creativity (a combination of creative abilities and independence with low 
openness), and self-actualizing creativity (a combination of openness and indepen-
dence with low creative abilities). Initial empirical analyses (Karwowski  2010 ) indi-
cate their specifi c determinants (different parental attitudes as well as social and 
economic status), school functioning patterns (grades and satisfaction with learn-
ing), creativity styles, creative self-effi cacy beliefs, and perceptions of the climate 
for creativity.  

2.3     The Conjunctional Model of Creative Imagination 

 Long before the Guilford address, Francis Galton conducted the fi rst documented 
study into imagination and analyzed individual differences in the clarity of repre-
sentations produced by scientists (Galton  1880 ; Holt  1964 ). Almost concurrently, 
Théodule A. Ribot ( 1906 ) coined the concept of creative imagination. Soon after, 
Lev S. Vygotsky ( 1930 /2004, 1931/1998) proposed the combinatorial (creative) 
imagination theory. The 1960s saw the emergence of further holistic conceptualiza-
tions of creative imagination (e.g., Rozet  1977 /1982; Ward  1994 ). As research and 
theories developed, similarly as in the case of creativity, attention was drawn to the 
complexity of creative imagination. Its constitutive factors (properties) were indi-
cated: the vividness (clarity) of images (“The weirdness of visions lies in their sud-
den appearance in their vividness while present, and in their sudden departure” 
Galton  1883 , p. 121), the ability to manipulate the resulting images (“People can 
assign novel interpretations to ambiguous images which have been constructed out 
of parts or mentally transformed” Finke et al.  1989 , p. 51), as well as the originality 
(newness) and value of those images (“Activity that results not in the reproduction 
of previously experienced impressions or actions but in the creation of new images 
or actions is an example of […] creative or combinatorial behavior” Vygotsky 
 1930 /2004, p. 9). These dimensions contributed to the development of the conjunc-
tional model of creative imagination (Dziedziewicz and Karwowski  2015 ), whereby 
creative imagination was defi ned as the ability to create and transform mental 
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representations based on the material of past observations, but signifi cantly tran-
scending them. 

 In this model, the hypothetical dimensions of creative imagination are: vivid-
ness – the ability to create expressive and highly complex images, originality – abil-
ity to create unique images, and transformative ability – the ability to transform 
images. The model is conjunctional – that is, the combination of its three dimen-
sions allows the typological analysis focusing on the four basic types of imaginative 
creative abilities: (1) creative imaging ability (high vividness of imagery, high origi-
nality, and high transformative ability), (2) pro-creative imaging ability (high origi-
nality and high transformative ability), (3) passive imaging ability (high vividness 
of imagery and high originality), and (4) vivid imaginative abilities (high vividness 
and high transformative ability).  

2.4     Creativity and Imagination 

 Implicit and lay theories of creativity defi ne divergent thinking and imaginativeness 
as traits of creative individuals (e.g., Montgomery et al.  1993 ). The 1960s mark the 
point when fi rst correlational studies appeared. They measured the strength and 
direction of the relation between imaginativeness (visual and creative) and creativ-
ity (Schmeidler  1965 ). Researchers mainly focused on the relation between imagi-
nativeness and creative abilities primarily via divergent thinking (e.g., Gonzales 
et al.  1997 ). Much less frequently did they analyze the relation of imagination with 
personality factors, such as openness and independence (Khatena  1975 ; Schmeidler 
 1965 , among others). The results of these analyses reveal the existence of a relation 
between creative imagination and creativity, yet the strength of this relation depends 
on the examined domain. The combination of imaginativeness with elements of 
creative attitude (openness, independence) is evidently weaker than its relation with 
divergent thinking, especially in the domains of vividness and originality (see 
Dziedziewicz et al.  2013 ; Schmeidler  1965 ). On the one hand, this confi rms the 
legitimacy of including creative imagination in the creative abilities factor in the 
typological model of creativity. On the other hand, though, this relation is so weak 
( r  = .2–.4) that it is justifi able to consider these traits separately as relatively inde-
pendent facets of creativity. 

 Further in this chapter, imaginative abilities (creating original images and trans-
forming them) will be analyzed in conjunction with divergent thinking as creative 
abilities. This will render it possible to conduct detailed and systematized analysis 
of the role of creativity in Mathematics Creative Problem Solving in the domain of 
cognitive (creative imagination and divergent thinking) and personality (openness, 
independence) components.  

M. Karwowski et al.
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2.5     Creativity in Mathematics or Mathematical Creativity? 

 The important question discussed among creativity scholars (e.g., Baer  1998 ; Chen 
et al.  2006 ; Kaufman and Baer  2005 ; Plucker  1998 ) is whether a general  c  factor – 
analogous to the  g  factor (Jensen  1998 ) associated with creativity in multiple and 
diverse domains, including mathematics (see Kaufman  2009 , p. 57) – does indeed 
exist. Creativity is associated with a particular domain in the situation when 
researchers focus on a creative product (Plucker  2004 ). Consolidating the domain- 
specifi c and domain-general perspectives, Kaufman and Baer ( 2005 ) proposed the 
Amusement Park Theoretical Model (APT), which was meant to be the “Aristotelean 
golden mean.” 

 The APT model inspired us to create profi les of mathematical creativity on the 
basis of the typological model of creativity. After Kaufman and Baer, we defi ned the 
general thematic framework as the “problem-solving domain,” whereby mathemat-
ics became the chosen fi eld and solving word problems became the microdomain. 
We claim that solving problems refl ects the nature of mathematical thinking (see 
Silver  1994 ). Moreover, word problems are used in mathematics education – which 
is why we decided to refer to them as well. Furthermore, the analysis of their role in 
mathematics education frequently emphasizes the creative use and performance of 
particular mathematical operations. 

 In the early stages of mathematical education, word problems are commonly of 
a practical character. Generally, they are simple stories referring to childhood expe-
riences that end with a question one needs to fi nd the only correct answer to (closed 
questions), after analyzing the information that a given story contains, the data, the 
unknown, and the relations between them. The stories resemble brain-teasers, which 
are known to have a solution, and the only task at hand is to fi nd it. If we assumed 
that creativity is about producing original (new) and useful solutions, it would be 
diffi cult to speak about creative solutions to word problems because they are known 
to mathematicians and even more so to their authors. Hence, it is the way of working 
towards the solution – that is, defi ning the problematic situation presented, compe-
tences associated with hypothesizing, and planning ways to test the hypotheses – 
that will provide evidence of the creativity of children solving this type of exercises. 
On each of the listed stages of mathematical creative problem solving, creative 
abilities as well as personality factors (openness and independence) will play a sig-
nifi cant role (Table.  2.1 ).

   Importantly, the way children solve word problems is signifi cantly infl uenced by 
the way they formulate a particular mathematical problem. In the early stages of 
education, word problems are frequently built using simple and “round” numbers. 
The predictable form of such problems raises the (fully legitimate!) temptation to 
guess the result. 

 Example 
 Dorothy and Alex have 12 chocolate bars in total. Dorothy has two more bars 
than Alex. How many bars does Alex have? 

2 Creativity and Math



12

   Table 2.1    Examples of manifestations of mathematical creativity in the process of solving word 
problems   

 Mathematical 
creative problem 
solving 

 Mathematical creativity 

 Creative abilities  Openness  Independence 

 Understanding 
mathematical 
problems 

 The ability to defi ne 
the mathematical 
problem illustrated in 
the task from multiple 
perspectives 

 Tolerance to 
information that is 
incomplete, poorly 
defi ned, or polysemous 

 Constructing one’s 
own internal language, 
where mathematical 
concepts indispensable 
for solving the problem 
are set out and 
explained 

 The ability to clearly 
visualize the situation 
presented in the task 
as well as vividly 
capture dependency 
relationships across 
data 

 Recognition of the 
potential value 
resulting from 
becoming acquainted 
with ways other than 
one’s own of 
perceiving and 
describing the 
mathematical problem 
illustrated in the task at 
hand 

 Separating the 
meanings of 
mathematical concepts 
from the meanings of 
everyday language 

 Generating 
possible solutions 

 The ability to 
formulate multiple and 
frequently atypical 
hypotheses referring 
to the possible 
solutions to the 
mathematical problem 
illustrated in the task 
at hand 

 Cognitive curiosity that 
results in readiness to 
become acquainted 
with possible ways of 
solving the problem 

 Courage in questioning 
commonly accepted 
rules and principles in 
order to fi nd new and/
or atypical ways of 
solving the 
mathematical problem 

 The ability to create 
original images that 
render it possible to 
break away from 
typical solutions to the 
mathematical problem 
and use analogies in 
order to fi nd new ones 

 Ease in analyzing new 
information and ways 
of solving the 
problematic situation 
presented in the task at 
hand 

 Autonomy and 
perseverance in 
searching for possible 
solutions to the 
problematic situation 

 Planning for 
action 

 Flexibility in applying 
various strategies of 
solving the problem 

 Openness to the 
verifi cation of all 
possible solutions to 
the problem 

 Strong belief in the 
success of the 
undertaken activities 
aimed at solving the 
problem 

 The ability to 
transform images of 
possible solutions to 
the problematic 
situation illustrated in 
the task at hand 

 The acceptance of 
variability in applying 
the various problem- 
solving strategies 

 The ability to critically 
assess attempts – one’s 
own and other people’s 
–to solve the problem 
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  Instead of counting, many pupils confronted with the above problem will respond 
that Alex has 5 bars and Dorothy has 7, without even being aware that they have 
guessed the result by making an intuitive attempt to come up with a single number, 
because the problem is structured in such a way that the number of potential solu-
tions is signifi cantly reduced. In this situation, it is necessary to refl ect on whether 
guessing at the answer can be considered as a manifestation of creative ability. 
Another question to consider is this: what is the value (usefulness) – even the sub-
jective value, for the pupils themselves – of solving the problem with the trial-and- 
error method, which disregards the way towards the solution and, instead, focuses 
solely on the solution itself? When solving word problems with this method, stu-
dents frequently do not consider the relationships between the given and the 
unknown. They attempt to quickly reach the goal (the solution) and usually act 
thoughtlessly. The heuristic solution pattern anticipates the understanding of the 
essence of the mathematical problem illustrated by the task. It also anticipates fi nd-
ing the way to use the solution again in an analogous problematic situation. 

 Let us consider what would happen if the problem was formulated as follows: 

  As it appears, in this case the method of guessing fails entirely even though we 
are dealing with exactly the same mathematical problem – the only difference is that 
numbers are no longer easy to calculate mentally. As a result of adopting the tactics 
of guessing at solutions to simple problems, those students who have learned to 
thoughtlessly follow this approach, regarding it as verifi ed and effective, fail to 
understand the sense and purpose of general methods of solving a particular type of 
problems. Still less motivated are they to develop such methods. 

 What can be done to encourage children to solve problems in accordance with 
the heuristic scheme, which aims at the creative pursuit and discovery of ways to 
solve problems? We propose a “tablet of changes” – an instructional method whose 
aim is to create an educational situation conducive to making sense of certain math-
ematical concepts and operations independently. A simple task that should not pose 
a problem for any child at a particular stage of development is the starting point in 
this table. The purpose of solving this task is to strengthen self-effi cacy and thereby 
to encourage children to attempt to solve further, more and more diffi cult problems. 
However, the most important aim is to devise a practical illustration of the relations 
between various branches and aspects of mathematics that will render it possible to 
consolidate the previously learned concepts and computational techniques. 
Realizing what the solution to the fi rst problem of each row is makes it possible to 
apply the same method of solving the mathematical problem in the case of the 
remaining problems (Table  2.2 ).

 Example 
 Dorothy and Alex have 5 and 2/5 of a chocolate bar in total. Dorothy has 1 and 
1/3 of a bar more than Alex. How many bars does Alex have? 

2 Creativity and Math
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   The problems in the tablet of changes are placed in four columns and four rows. 
Four is a number that everyone recognizes without making calculations. Therefore, 
sixteen problems in a 4 × 4 columnar format do not make an impression of being a 
large number that is hard to grasp, but that number is suffi cient to conduct compe-
tence profi le assessment of children within the range of problems they face solving. 
It makes it possible to assess the stage at which diffi culties may begin to occur with 
regard to problem interpretation, the way of coding the solution, making calcula-
tions, or possibly even a combination of various types of complexity. 

 Moving along the tablet of changes to the right, along the rows, we encounter 
problems characterized by the same extent of conceptual diffi culty but more and 
more complex when it comes to calculations. Moving downwards along the col-
umns, we encounter problems with a similar degree of calculative complexity but 
more and more diffi cult when it comes to the concepts whose understanding they 
require. Problems in rows are usually characterized by similar wording and refer to 
the same objects in order not to distract children towards insignifi cant aspects but to 
keep them focused on each described mathematical problem, on the presented data, 
on the question posed, and on response interpretation. Such a form also renders it 
possible to explain to children that the purpose is to solve sixteen different problems 

   Table 2.2    Tablet of changes – dividing fractions   

 Six chocolate bars 
were divided equally 
among three people. 
How much 
chocolate did each 
person receive? 

 Six chocolate bars 
were divided equally 
among four people. 
How much 
chocolate did each 
person receive? 

 Two and a half 
chocolate bars were 
divided equally 
among fi ve people. 
How much chocolate 
did each person 
receive? 

 Two and a half 
chocolate bars were 
divided equally among 
seven people. How 
much chocolate did 
each person receive? 

 Solution:  Solution:  Solution:  Solution: 
 A group of four 
people have eight 
chocolate bars. How 
much chocolate will 
each person get? 

 A group of six 
people have eight 
chocolate bars. How 
much chocolate will 
each person get? 

 A group of three 
people have one and a 
half chocolate bar. 
How much chocolate 
will each person get? 

 A group of three people 
have two and a half 
chocolate bars. How 
much chocolate will 
each person get? 

 Solution:  Solution:  Solution:  Solution: 
 Fifteen chocolate 
bars were divided 
into three equal 
portions. How much 
chocolate is there in 
each portion? 

 Fifteen chocolate 
bars were divided 
into four equal 
portions. How much 
chocolate is there in 
each portion? 

 One and two thirds of 
a chocolate bar was 
divided into fi ve equal 
portions. How much 
chocolate is there in 
each portion? 

 One third of a chocolate 
bar was divided equally 
into three fourths of a 
portion. How much 
chocolate is there in 
each portion? 

 Solution:  Solution:  Solution:  Solution: 
 A single portion is 
made up of two 
chocolate bars. How 
many such portions 
can be made from 
fi ve chocolate bars? 

 A single portion is 
made up of two 
chocolate bars. How 
many such portions 
can be made from 
fi ve chocolate bars? 

 A single portion is 
made up of one and 
one third of a 
chocolate bar. How 
many such portions 
can be made from fi ve 
chocolate bars? 

 A single portion is made 
up of one and a half 
chocolate bars. How 
many such portions can 
be made from three 
fi fths of a chocolate 
bar? 

 Solution:  Solution:  Solution:  Solution: 
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because there are different versions of the same problem or problems. This may 
prevent premature discouragement from making an effort. 

 Tables of examples may be used at various stages of education because it is not 
necessary for children to solve all the problems in a given table right away. The 
exercise may be limited to one or two rows/columns, depending on students’ skills, 
and then resumed after some time. Thanks to the possibility of using the same tablet 
of changes in a group of children with diverse levels of mathematical competence, 
this method enables the individualization of math classes.  

2.6     Mathematical Heuristic Rhymes 

 Rhythm accompanies people throughout their lives. It is a constant and obvious ele-
ment of nature, revealing itself in the cyclical character of astronomical phenomena, 
for example in the circadian rhythm that results from the Earth revolving around its 
own axis and determines the timing of human activity and rest. It is therefore not 
only a natural component of the course of human life but also an important way of 
perceiving the world. Colloqiual language uses the evocative concept of “being 
thrown off balance,” which refers to undesirable disturbance or destruction of the 
rhythmic pattern of an activity. After all, rhythm gives a sense of order, predictabil-
ity, and security. Already in prenatal life we feel and remember the rhythm of our 
mothers’ hearts and that is why newborns calm down when they are placed on their 
mothers’ chest. Rhythm is also present in many basic forms of human activity. We 
breathe, walk, and run rhythmically. The language we use also has a particular 
rhythm and melody (Patel and Daniele  2003 ). It is hard to imagine the effective 
performance of these activities without proper rhythm. However, we rarely realize 
the omnipresence of rhythm and most frequently associate it with dance, music, and 
poetry. Similarly to mathematics, it is not associated with creativity (Kaufman and 
Baer  2004 ), and conversely: mathematics is rarely associated with rhythm. Yet, this 
domain is replete with rhythms, for instance decimal rhythm in the positional sys-
tem, the alteration of even and odd numbers, or number multiples. This is why the 
reference to students’ natural sense of rhythm and the use of rhythmical rhymes in 
early mathematics education has multiple positive functions. Counting itself stems 
from rhythmical indication of objects, so it is hard to fi nd better justifi cation for 
combining structures that operate on the principle of rhythm, such as rhymes, with 
learning mathematics. The idea of combining a rhyme with mathematical concepts 
appeared as early as the nineteenth century in the stories of the famed Mother Goose 
(Bellos  2010 ):

     As I was going to St Ives,  
  I met a man with seven wives,  
  Every wife had seven sacks,  
  Every sack had seven cats,  
  Every cat had seven kits.  
  Kits, cats, sacks, wives,  
  How many were going to St Ives?    
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   Rhymes perform many functions in early mathematics education. In a natural 
way, they draw attention to the content about to be revealed and provoke children to 
anticipate or at least expect such words in consecutive lines that will rhythmically 
fi t into the pattern and rhyme with those the children have already heard. This is 
why, frequently, there is no need to read the fi nal word of a rhyme to children: they 
are able to deduce it from the previously heard content and fi nish saying it, espe-
cially that rhyme is an additional indicator. This develops in children the sense of 
rhythm and order that will be important in shaping their mathematical abilities in 
the future. It also fuels the sense of satisfaction, positively infl uences self- assessment 
and intrinsic motivation, and thus activates further active listening. Using rhymes in 
teaching mathematics also helps practice memorization and encourages imaginative 
creation of images, which makes it easier, for example, to assimilate abstract math-
ematical concepts. Moreover, when revealing a mathematical problem in many situ-
ational contexts, rhymes enhance its comprehension and teach thinking fl exibility. 

 In early mathematical education, rhythm is helpful not just in combination with 
profi ciency in counting. The ability to identify rhythm, associated with the way of 
measuring time and calendric calculations, is also important. Equally important is 
noticing geometric regularity on all dimensions: linear (e.g., the repetition of a 
sequence of items positioned in a series), surface (e.g., system design on a ball), or 
spatial (e.g., the regularity of architectural elements). The development of students’ 
active sense of rhythm is one of the most important tasks for early mathematics 
education. The fact that rhythm is omnipresent in children’s lives does not mean that 
they are able to give proper rhythm to the activities they perform. The ability to sing 
rhythmically and make appropriate use of pause, whose length results directly from 
the song’s rhythm, may serve as an example. Many individuals encounter a problem 
with deciding when to begin singing the next phrase because they are unable to 
reproduce its rhythm by themselves when it is not chimed or accentuated for them. 
Reading or repeating good rhymes (including mathematical ones) promotes the 
development of an active sense of rhythm in children, even though this task is not 
always easy. Unfortunately, it happens that the authors of rhymes do not make this 
task any simpler because they frequently fail to observe the elementary principles of 
balanced and predictable distribution of accents or proper number of syllables in 
each line. This is why it seems crucial to select correct educational rhymes that 
should, among other things, (1) be made up of lines with the same number of syl-
lables or repetitions in accordance with an easily comprehensible key, (2) be read-
able in the sense that accentuated syllables should make up a recognizable rhythmical 
pattern (somewhat resembling a melody), (3) include an intelligible idea, story, 
anecdote, or humor that will be clear to children, use word play, or include a surpris-
ing punch-line, as well as (4) be concise, but interesting or amusing to children even 
when the rhymes are read repeatedly (Szwajkowski  2011 ). 

 In order to stimulate students’ mathematical creativity, it is a good idea to com-
bine rhymes with solving diverse word problems. A good rhyme written into the 
content of a word problem may make it easier for children to remember and elicit 
information that is crucial for solving that problem. Additionally, thanks to the 
attractive form, it may also encourage students to face the presented mathematical 
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problem. If, additionally, the problem will be constructed in a way that renders mul-
tiple solutions possible, the problem itself may become even more contextually 
interesting and motivating. 

 Below is an example of a mathematical heuristic rhyme (The rhyme is followed 
by a picture of hamster and cookies in four colors: 2 green - apple, 7 orange – 
orange, 4 red – cherry, 6 blue – “berry”):

  HAMSTER COOKIES  

       Hamster George who was so cute  
  Got some cookies made of fruit:  
  He bought apple, orange, cherry,  
  And one more that ends with ‘berry.’  
  Never ate so much before -  
  He had just eleven more!  
  Just two fl avors he left behind  
  How many ate he and of what kind?    

   The heuristic scheme of this problem fosters active learning. The rhyme makes it 
possible for children to independently discover data. It may also interestingly illus-
trate a problematic situation when mathematical data needed to solve the problem 
are provided after or during the reading of its content. Finally, children actively and 
creatively seek possible problem solutions. 

 Let us analyze a model way of seeking possible solutions. It is not a simple one, 
as when the problem is approached on a heuristic level. A number of solutions exist 
and they can be reached through a number of stages of elimination and inference.  

 Data:  The hamster bought 2 apple cookies, 7 orange ones, 4 cherry ones, and 
6 berry ones

 Looking for potential solutions:  The hamster bought a total of 19 cookies 
(2 + 7 + 4 + 6 = 19). Since he had 11 left, he must have eaten 8 (19–11 = 8). He 
could not have any apple cookies left because they do not add up to 11 when 
taken together with any of the remaining fl avors. Consequently, he surely ate 
2 apple cookies. He could not have any cherry or berry cookies left because 
there are not enough of them in total (4 + 6 = 10). He may have had orange and 
cherry cookies left (7 + 4 = 11), which would mean that he ate 2 apple cookies, 
4 cherry ones, and any two of all orange and berry ones, which leaves 3 more 
possibilities.

The hamster may have had orange and cherry cookies left (7 + 4 = 11), 
which would mean that he ate 2 apple and 6 berry cookies. It is also possible 
that orange and cherry cookies were left, which would mean that the hamster 
ate 2 apple cookies, 4 cherry ones, and any two of orange and berry ones, 
which leaves 3 more possibilities.
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     Observing children when they are solving such a problem opens many possibilities 
for analyzing various aspects of mathematical creativity, such as fl exibility in applying 
various strategies of dealing with an open mathematical problem (e.g., searching for 
a possible solution using a functional method – that is, by manipulating objects – or 
searching for solutions with the use of a drawing or symbolic calculative method) or 
the ability to formulate original hypotheses that refer to the probability of one of 
those solutions to occur (e.g., response to the question of why the hamster ate 
cookies of only two fl avors, namely apple and orange, when he had the opportunity 
to try all four?). Based on a class conducted using a mathematical heuristic rhyme, 
the teacher can indicate the strengths and weaknesses of creatively solving open 
mathematical problems; such a class also allows the teacher to infer her or his 
students’ mathematical creativity profi le. Tasks of this type also foster students’ 
integration with their teacher because they create many opportunities to follow 
students’ reasoning as well as support this process by means of asking additional 
questions and providing guidelines. 

 The result of observing a group of 9- and 10-year-old children solving this prob-
lem indicates that solving the fi rst part of the problematic situation, namely answer-
ing the question of how many cookies the hamster ate, is quite simple. The possibility 
of providing the answer to this question relatively quickly encourages children to 
perform further inquiries into the problem and to seek to answer the second part of 
the mathematical problem that refers to the kind of cookies the hamster ate, namely 
to the stage of analyzing various solutions and drawing conclusions. The conclusion 
that the hamster could not have any apple cookies left because they do not add up to 
11 with any of the remaining fl avors, so he surely ate 2 apple cookies, is not so 
certain, but the children reached this conclusion by modelling various situations 
with the aid of disks and a specially prepared board that featured the hamster while 
performing simple calculations. These calculations did not constitute an end in 
itself, but were an activity that supported making conclusions.  

2.7     Mathematical Creative Problem Solving 

 At the end of this chapter, let us present a mathematics class interaction using a 
tablet of changes and a mathematical rhyme. We have prepared this interaction with 
early mathematical education in mind, and this is why we used the so-called balance 
beam – an original teaching aid that makes it easier for children to move from the 
level of concrete things (counting particular objects) to the symbolic level (numerical 
record of calculations). 

 A balance beam is a small device that resembles scales with weights in form of 
colorful disks. The disks are identical in dimensions and weight. They have holes in 
the middle thanks to which it is possible to easily place them on the scales’ pins in 
defi ned positions. As Fig.  2.1  shows, the distance between the pins and the center of 
the scales is a multiple of the disk’s diameter.
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   Sample interactions with the use of the balance beam are carried out according 
to consecutive steps of mathematical creative problem solving: (1) understanding 
mathematical problem; (2) generating possible solutions; (3) planning for action. In 
the beginning, thanks to a short rhyme, children become acquainted with the general 
principles of balance beam’s operation and in this way they familiarize themselves 
with the mathematical problem that relates to the equilibrium condition (Fig.  2.2 ).

   Our experiences with the use of the balance beam show that children do not 
experience problems in applying the number of disks. They also notice that the 
farther away the disk is from the middle, the more weight it applies to a particular 
side of the scales. 

 While practicing with the balance beam, children have an opportunity to experi-
ment and test their hypotheses in practice. Solving simple problems provided by the 
teacher (see Fig.  2.3 ), they have a chance to independently comprehend the equilib-
rium condition and verify its correctness by arranging the disks in a way that renders 
it possible to make a calculation.

   Finding a solution to a mathematical problem, such as the equilibrium condition 
on the balance beam, is an interesting challenge for children. It is an excellent exer-
cise in mathematical creativity, because solving it requires generating a new amount 
that is a product of the number of disks and their distance from the middle of the 
scales.  

  Fig. 2.1    Balance beam       

“This is to believe in :
scales are really, truly even
when the sides on both those ends
weigh the same and when none bends.

Disks give weight,
but which, my mate, 
weigh much heavier: in the middle, 
or away? Now, that’s a riddle! 

How to measure weight transitions
in these very cool positions?”

  Fig. 2.2    Mathematical rhyme about the balance beam       
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2.8     Conclusion 

 Creativity is usually analyzed within the domain of art and is not often considered 
to be an important part of mathematical thinking or math education (Sriraman  2004 , 
 2005 ). Math, by contrast, is highly algorithmic and is often perceived by teachers 
and students as not allowing much space for heuristics or creative thinking. In this 
chapter, we intended to show the possibilities of using creative thinking while solv-
ing mathematical problems and the possibilities of using creative tasks to enhance 
children’s mathematical abilities. 

 The methods described in this chapter were deduced from the theoretical models 
of creativity and imagination we started with. We have especially focused on using 
heuristic rhymes and the process of mathematical problem solving as illustrations of 
simultaneous engagement of creative abilities, openness, independence, and differ-
ent aspects of creative imagination, especially vividness, originality, and transfor-
mativeness. Both heuristic rhymes and creative problem solving of mathematical 
problems are being intensively introduced within classes taught by teachers we 
cooperate with; the effects are promising. We do hope that the methods described 
above as well as similar attempts at developing children’s creativity in the domain 
of mathematics will enhance both their creative abilities and imagination as well as 
improve their school achievement. Future studies will assess the effectiveness of 
these methods.     
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Chapter 3
Formative Assessment of Creativity 
in Undergraduate Mathematics: Using 
a Creativity-in-Progress Rubric (CPR) 
on Proving

Milos Savic, Gulden Karakok, Gail Tang, Houssein El Turkey, 
and Emilie Naccarato

Abstract Creativity is one of the most important aspects of mathematicians’ work 
(Sriraman 2004), whether it is an enlightenment that is somewhat unexpected or a 
product that is aesthetically pleasing (Borwein, Liljedahl & Zhai 2014). There are 
studies in the primary and secondary levels on mathematical creativity of students 
(e.g., Leikin 2009; Silver 1997), and recent efforts have included mathematical cre-
ativity in K-12 education standards (e.g., Askew 2013). However, there is little 
research in undergraduate mathematics education on creativity. The project 
described in this chapter introduces an assessment framework for mathematical cre-
ativity in undergraduate mathematics teaching and learning. One outcome of this 
project is a formative assessment tool, the Creativity-in-Progress Rubric (CPR) on 
proving, that can be implemented in an introductory proof course. Using multiple 
methodological tools on a case study, we demonstrate how implementing the CPR 
on proving can help researchers and educators to observe and assess a student’s 
development of mathematical creativity in proving. We claim if mathematicians 
who regularly engage in proving value creativity, then there should be some explicit 
discussion of mathematical creativity in proving early in a young mathematician’s 
career. In this chapter, we also outline suggestions on how to introduce mathemati-
cal creativity in the undergraduate classroom.
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3.1  Introduction

Though creativity is an important aspect of professional mathematicians’ work 
(Borwein et al. 2014), it is a complicated subject for mathematics educators to 
research, given that there are over 100 different definitions of creativity (Mann 
2006). A considerable amount of literature concentrates on mathematical creativity 
at the primary and secondary levels (e.g., Silver 1997; Lev-Zamir and Leikin 2011). 
However, our examination of research at the tertiary, or post-secondary, level 
revealed little discussion of how students are creative or how creativity can be  
fostered in undergraduate courses, particularly in proving or proof-based courses. 
Given that the students in tertiary courses are the next generation of mathematicians, 
engineers, or math educators, developing their mathematical creativity is crucial. 
Mann (2006) stated that avoiding the acknowledgment of creativity could “drive the 
creatively talented underground or, worse yet, cause them to give up the study of 
mathematics altogether” (p. 239). Although Mann referenced secondary students, 
this recognition is important for young mathematicians at all levels, including post-
secondary students.

Aiming to spark discussions about creativity at the tertiary levels, our focus in 
valuing creativity during the proving process yielded a Creativity-in-Progress 
Rubric on Proving (see Table 3.1). The rubric is intended to be used as a formative 
assessment, so that students can improve their metacognition in proving, and 
eventually, their final proofs. We begin this discussion by introducing the pertinent 
literature and theoretical framework involved. The rubric is introduced with 
explanations of its two main categories: Making Connections and Taking Risks. Two 
case studies are presented to further illustrate these categories. Finally, we discuss 
observations of the case studies, implications of utilizing the rubric as a formative 
assessment, suggestions of additional ways of implementing it in a proof-based 
tertiary course, and provide future research with the rubric.

3.2  Background

3.2.1  Perspectives of Creativity

Researching an individual’s creativity and the ways in which to enhance it has been 
an endeavor yielding many definitions and approaches. For example, Kozbelt et al. 
(2010) provided a summary of contemporary theories through a meta-analysis and 
outlined ten major perspectives of creativity: Developmental, Psychometric, 
Economics, Stage and Componential Process, Cognitive, Problem Solving and 
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Expertise-Based, Problem Finding, Evolutionary, Typological, and Systems. All of 
these theoretical approaches focus mainly on domain-general creativity, or “the cre-
ative ability to generate divergent or original ideas in a wide variety of domains” 
(Hong and Milgram 2010, p. 272). However, Baer (1998) cautioned against study-
ing only general creativity practices; instead he advocated for research in domain- 
specific creativity. Plucker and Zabelina (2009) built on this idea: “some even argue 
that creativity is not only domain-specific, but that it is necessary to define specific 
ability differences within domains and even on specific tasks” (p. 6).

In both domain-specific and domain-general studies, creativity researchers either 
focus on the end product as original and useful (Runco and Jaeger 2012), or on a 
process that involves convergent or divergent thinking (Guilford 1967). Even 
though researching the creative process creates difficult hypotheses for testing 
(Torrance 1966), researching the creative product may not provide full understand-
ing of the development of creativity, or may not reflect the creativity used to reach 
that product. For example, Pelczer and Rodriguez (2011) pointed out that “it is 
important that when judging the creativity of a student we pay attention also to the 
process by which [s/]he arrived to the results and not only to the final problem” 
(p. 394).

Viewing personal creativity as a product or a process brings up the following 
question: For whom is the product or process creative? This issue has been acknowl-

Table 3.1 Creativity-in-Progress Rubric (CPR) on proving
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edged through the discussion of relative and absolute creativity. Relative creativity 
is described as “the discoveries by a specific person within a specific reference 
group, to human imagination that creates something new” (Vygotsky 1982, 1984; as 
cited by Leikin 2009, p. 131). That is, a person may create something that is new to 
him/her or to his/her peers in a given subculture, but it may not be new to the com-
munity of more knowledgeable others. Absolute creativity, on the other hand, con-
siders discoveries at a global level, such as the proof of Fermat’s Last Theorem by 
Andrew Wiles (1995). In the education field, Liljedahl (2013) stated, “students have 
moments of creativity that may, or may not, result in the creation of a product that 
may, or may not, be either useful or novel” (p. 256). Thus, it is reasonable that the 
“relative creativity” perspective has been implemented frequently in previous edu-
cational creativity research (e.g., Liljedahl and Sriraman 2006; Leikin 2009).

3.2.2  What Is Mathematical Creativity?

Early researchers aimed to define mathematical creativity by focusing on experts. 
For example, Hadamard (1945) explored mathematical creativity of prominent 
mathematicians across the world through the use of surveys by mail. He theorized 
that the four stages the psychologist Wallas (1926) conjectured were applicable in 
describing the work of a mathematician. The four stages are preparation (thoroughly 
understanding the problem), incubation (when the mind solves a problem subcon-
sciously and automatically), illumination (internally generating an idea after the 
incubation process), and verification (determining if that idea is correct).

However, Guilford (1950) found Hadamard’s stages “superficial from the psy-
chological point of view” (p. 451). He was concerned that these stages were not 
providing sufficient detail about the mental processes that occur. Guilford, then, 
created a list of testable factors that were later refined by other researchers: fluency, 
flexibility, originality, and elaboration. Fluency refers to the “number of ideas gen-
erated in response to a prompt” (Silver 1997, p. 76). Flexibility is the ability to shift 
approaches when the current approach is unproductive for generating a response to 
a prompt (Silver 1997). Originality (or novelty) is described as the ability to create 
a unique production or an unusual thought (Torrance 1966). Elaboration refers to 
the ability to produce a detailed plan and generalize ideas (Torrance, ibid). These 
factors of creativity have been used at the primary and secondary stages of school-
ing to determine students’ levels of creativity (e.g., Balka 1974; Leikin 2009).

3.2.3  Mathematical Creativity at the Tertiary Level

There are on-going efforts to introduce challenging tasks in tertiary mathematics 
courses (e.g., through implementation of new pedagogical strategies such as inquiry- 
based learning (Smith 2006) or realistic mathematics education (Gravemeijer and 
Doorman 1999)). Such tasks are useful to elicit students’ mathematical creativity 
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(Leikin 2014). Zazkis and Holton (2009) suggested mathematical problems that 
could challenge students at this level to possibly promote creative processes, and 
provided an outline of the importance of mathematical creativity. However, we 
know little about how to explicitly value tertiary students’ creativity when such 
mathematical problems are implemented.

An essential aspect in tertiary mathematics is to ask students to communicate 
their reasoning through written proofs. Alcock and Weber (2008) stated that “a 
central unresolved issue in mathematics education is that of how to help students 
develop their conceptions of proof and ability to write proofs” (p. 101). While there 
is research about proving from many different perspectives (e.g., Selden and Selden 
1995; Harel and Sowder 1998; Weber 2001), few have investigated mathematical 
creativity in proving (e.g., Leikin 2014).

To address this need, our research group developed a formative assessment tool 
that could be used to promote each student’s development of mathematical creativ-
ity on a given mathematical task in a proof-based course and to examine this devel-
opment over the duration of the course. The Creativity-in-Progress Rubric (CPR) on 
Proving can inform both students and teachers about the progression that a student 
is making in developing his/her own mathematical creativity.

3.3  Creativity-in-Progress Rubric on Proving

3.3.1  Development of CPR on Proving

Development of the CPR on Proving was motivated by the aforementioned studies, 
as well as our investigation of mathematicians’ perspectives on students’ mathemat-
ical creativity in tertiary level courses (Karakok et al. 2016). We interviewed six 
active research mathematicians (with pseudonyms Drs. A-F), who teach undergrad-
uate and graduate level mathematics courses, and asked them about the role of 
mathematical creativity in proving, in teaching mathematics, and in students’ learn-
ing. The mathematicians in our study also examined three student-created proofs of 
a theorem in number theory (Birky et al. 2011) using a domain-general creative 
thinking rubric (Rhodes 2010) created by the American Association of Colleges and 
Universities (AAC&U). This domain-general rubric was created to record growth 
and value creativity in a broad range of interdisciplinary student work samples. We 
utilized the mathematicians’ ideas to modify the AAC&U rubric to make it domain- 
specific to mathematics. Our modification was also influenced by Leikin’s (2009) 
rubric on mathematical creativity in problem solving, since the proving process is 
considered a subset of the problem-solving process (Furinghetti and Morselli 2009). 
We leveraged these ideas to develop a rubric (Savic et al. 2015) which we then 
refined using students’ interview data (Tang et al. 2015).

Our development and refinement of the CPR on Proving were grounded in two 
of the ten aforementioned perspectives of creativity: Developmental and Problem 
Solving and Expertise-Based (Kozbelt et al. 2010). The primary assertion of the 
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creativity theories in the Developmental perspective is that creativity develops over 
time, and the main focus of investigation is a person’s developing process of creativ-
ity. This perspective also emphasizes the role of the environment surrounding a 
student, in which interactive elements occur to enhance a student’s creativity. The 
second perspective that helped shape our project is Problem Solving and Expertise- 
Based, which emphasizes the role of an individual’s problem-solving process and 
also argues that “creative thought ultimately stems from mundane cognitive pro-
cesses” (Kozbelt et al. 2010, p. 33). This particular idea highlights that during prob-
lem solving or proving, implementing seemingly “mundane” tasks (such as finding 
relevant examples or representing the same concept in multiple ways) help the 
development of creativity by laying the foundations for creativity in novel situa-
tions. For example, Kozbelt et al. (2010) noted that “archival study of individual 
creative episodes of eminent scientists has generated a number of computational 
models of the creative process” (p. 33). These computational models included key 
components such as problem-solving processes, heuristics (ways that experts solve 
problems), and tasks. Furthermore, this perspective underscores the use of open- 
ended problems to challenge students’ thinking processes, providing opportunities 
for students to use experts’ ways of solving problems to be creative in such novel 
situations.

Overall, the CPR on Proving was developed from a relative, domain-specific 
approach, focusing on an individual student’s progress on tasks and the develop-
ment of his/her creativity over time. The next section provides a brief description of 
each of the categories developed.

3.3.2  Categories and Levels of the CPR on Proving

The CPR on Proving has two categories: Making Connections and Taking Risks, 
which are divided into subcategories that are reflective of the different aspects of 
creativity found in prior research. For each subcategory, the rubric provides three 
general levels: Beginning, Developing, and Advancing, each of which serves as a 
marker along the continuum of a student’s progress in that subcategory. This con-
tinuum among levels of the rubric communicates the possible states of growth. Our 
research group acknowledges that some students may exhibit qualities that place 
them further along in one level, or in between two levels. Hence, the continuum of 
levels for each subcategory allows for a better approximation of placing proving 
attempts on the rubric based on the work provided. The user of the rubric can indi-
cate the corresponding level by tracing the arrow using a highlighter or a marker (for 
example, see Fig. 3.2 in Sect. 3.4).

The descriptions of the subcategories in Table 3.1 are derived from either the 
research literature on creativity, quotes from our study of creativity with mathema-
ticians (Karakok et al. 2015), or both. The description of the rubric is followed by 
two case studies in Sect. 3.4, which will provide further examples for each 
subcategory.
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3.3.2.1  Making Connections

During the proving process, a student should be encouraged to make connections 
from previously learned material and apply these connections to new tasks. This 
category originated from the AAC&U Creative Thinking Rubric (Rhodes 2010) 
category Connecting, Synthesizing, Transforming, where a milestone level is 
achieved by a student who “connects ideas or solutions into novel ways” (p. 2). In 
our prior studies (Karakok et al. 2015; Tang et al. 2015), mathematicians com-
mented that connecting ideas from other areas of mathematics was a crucial process 
in their work. For example, Dr. C. said,

[F]inally I found some nice books in an area totally unrelated to mine, in matrix theory, and 
at some point I realized that I could apply this [aspect of Matrix Theory] that no one ever 
thought of applying to differential equations before and solved my problem … [I]n the 
process of applying it, I think I created … some new connections.

We define the category, Making Connections, as the ability to connect the prov-
ing task with definitions, theorems, multiple representations, and examples from the 
current course that a student is in, and possible prior experiences from previous 
courses. In this category, we consider making connections: between definitions/
theorems, between representations, and between examples. Each of these subcate-
gories is described below.

Between Definitions/Theorems To enhance connection-making abilities, students 
should make use of definitions/theorems previously discussed in the course and 
perhaps, from other courses. Dr. A, one of the mathematicians in our previous study 
(Karakok et al. 2015) stated, “Somehow your mind has to spread out a little bit to 
see…connections to other theorems you could use…That’s creativity also.” The 
way in which students use previous definitions/theorems in their proving processes 
defines the Beginning, Developing, or Advancing levels.

At the beginning level, a student recognizes some relevant (or irrelevant) defini-
tions/theorems from the course or textbook (or resources related to the course) with 
no evidence of explicit attempts to connect those definitions/theorems to the task 
during the current proving process. For example, a student might list definitions 
related to a concept (e.g., function, onto, 1–1) that s/he has read in the task without 
providing any evidence of connecting these definitions to the proof in his/her 
attempts. At the developing level, a student recognizes some relevant definitions/
theorems from the course or textbooks (or resources related to the course) with 
evidence of an attempt to connect these to the task during the proving process. At 
the advancing level, a student implements definitions/theorems from the course 
and/or other resources outside the course in his/her proving. While discussing cre-
ativity in the post-secondary classroom, Dr. E stated, “I think when students realize 
that they can solve these problems with things that are not just in this section. It can 
be from some other part of the course. Be somewhat creative.” So, at the advancing 
level, a student not only recognizes relevant definitions and theorems, but also 
explicitly illustrates using them.
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Between Representations Creating or using multiple representations can be impor-
tant for solving or understanding problems. The National Council of Teachers of 
Mathematics (2000) referred to a representation as one way a student might depict 
his/her mathematical thinking. Other researchers have emphasized making connec-
tions among and between representations of a concept, such as representing a func-
tion as a table, graph, verbally and symbolically (Carlson et al. 2010). The 
connections students make between representations is also important for their 
development of mathematical creativity. For instance, Dr. F said, “[Creativity] is 
primarily to look at things differently. For example, notice that some equations 
result in some geometry, with that some geometry connects to some algebra.” In this 
subcategory, students may not always make broad connections across the two fields 
of geometry and algebra, but perhaps attempt to utilize representations within each 
field.

Representations include written work in the form of diagrams, graphical dis-
plays, and symbolic expressions. We also include linguistic expressions, either oral 
or written, as a form of a lexical representation. For example, a student can write, 
“the intersection of sets A and B,” or orally state “A intersect B is the set of common 
elements between A and B.” A Venn Diagram, the symbolic representation A B∩ , 
the set notation {x|x Aandx B∈ ∈ }  (which is also a symbolic representation), are 
other possible representations a student can use to depict his/her mathematical 
thinking about the concept of intersection. Note the last two representations are in 
the same category (i.e., symbolic), but they are still considered to be two different 
representations.

At the beginning level, a student is able to provide a representation with no evi-
dence of attempting to connect it to another representation. At the developing level, 
a student should recognize connections between some representations and attempt 
to connect them to the proving task on hand. Students on this level may not recog-
nize all the related representations of a mathematical object, but at least demonstrate 
connections to more than one representation. At the advancing level, a student 
should utilize and implement different representations in his/her proving process, 
hence making explicit connections between the different possible representations of 
a mathematical concept and applying these connections to their proof attempt.

Between Examples This subcategory refers to students’ scratch work or “play 
time” where they experiment with different ideas to attempt the task. They can do 
this by creating examples, comparing and contrasting examples, or by providing 
counterexamples that are sufficient to disprove a claim. Students usually practice 
with examples as a method to understand the definition of a concept or to validate 
the verity of a mathematical statement. Doing so could help students to develop 
their creativity. Dr. A, for example, stated:

Thinking to yourself: ‘Can I make up a little example that’ll help me get a sense of this?’ 
‘Is there something I can try to do that will help me get my hands on this new concept?’ 
And, again, I think that is a creative process.
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However, students need to further their example generation to see possible con-
nections to a pattern, which is somewhat of a difficulty for students (Dahlberg and 
Housman 1997). Merely asking students to create examples does not necessarily 
lead to a proof production. As Iannone et al. (2011) state, “[I]f example generation 
is to be a useful pedagogical strategy, more nuance is needed in its implementation” 
(p. 11). Thus, in this subcategory we aim to push students to make connections 
between examples to generalize to a key idea, or pattern.

At the beginning level, a student generates one or two specific examples with no 
attempt to connect them. However, at the developing level, a student recognizes a 
connection between the generated examples. At the advancing level, a student uti-
lizes the key idea synthesized from generating examples. One way to see this is 
when students recognize patterns from examples and symbolize these patterns for-
mally to assist in the proving process.

3.3.2.2  Taking Risks

During the proving process, a student should be encouraged to explore concepts, 
create new ideas, and evaluate those attempts in order to ultimately create a valid 
proof. Those explorations require a student to take risks during the proving process. 
The category Taking Risks originated from the AAC&U Creative Thinking Rubric 
(Rhodes 2010), where the highest level is achieved by a student who “[a]ctively 
seeks out and follows through on untested and potentially risky directions or 
approaches to the assignment in the final product” (p. 2). The category and the 
forthcoming subcategories were also influenced by our interviews with mathemati-
cians about the proving process (Karakok et al. 2015; Tang et al. 2015). For exam-
ple, Dr. B, stated:

[O]ccasionally when you are trying to prove something, you know where you want to go, 
so it’s just a matter of trying several different things, and seeing what fits in order to get you 
there. But other times, you don’t know where you are going. Proving means you’re saying, 
“There is this problem, and I’m going to try this approach and this approach. I don’t even 
know what the next step should be.” So I think the creativity part of it affects the proof 
differently.

Therefore, we define the category Taking Risks as the ability to actively attempt 
a proof, perhaps using multiple proof approaches and/or techniques, posing ques-
tions about reasoning within the attempts, and evaluating those attempts. The five 
subcategories, Tools and Tricks, Flexibility, Perseverance, Posing Questions, and 
Evaluation of the Proof Attempt, are described below.

Tools and Tricks We found through interviewing mathematicians that creativity 
also can involve creating tools or tricks in the proving process. Dr. E stated, “You 
can be very creative about the way in which you approach the question, either with 
new tools or with a really good idea for a partial result.” Using these tools or tricks 
can be original to the student or the course, thus leading to relative creativity in their 
proving. A common example of a tool or trick that is original is involved in the 
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proof of the theorem, “There are infinitely many prime numbers.” One must assume 
a finite amount of prime numbers, p pn1, ,… , and create a new number ( )p pn1 1×¼× +  
that is larger than the largest prime pn  which one then shows is still prime. The 
usual question asked by students when presented with this proof is, “Where did this 
come from?” This new number is an example of an unexpected object (tool) created 
to assist with creation of the proof.

The creation of an entirely new tool or trick is creative, and we believe it is evi-
dence of a risk taken; however, the tool or trick need not be original to be considered 
in line with creative thought. Adapting a previous tool or trick to new contexts is 
also considered unconventional. At the beginning level, a student uses a tool or trick 
that is algorithmic or conventional. Conventional solutions are “generally recom-
mended by the curriculum, displayed in textbooks, and usually taught by the teach-
ers” (Leikin 2009, p. 133). For example, if an instructor presented the trick that you 
should “add zero” while completing a square, a student at the beginning level would 
employ the same trick in a proof that required completing the square. At the devel-
oping level, a student uses a tool or trick that is model-based or partly unconven-
tional. If the student used that trick in a new context or in a proof that did not require 
completing the square in the same course, the student would be considered develop-
ing. For example if the student had to prove 4 5 1| n −( )  for every natural number n
, and in the inductive case wrote 5 1 5 1 1 5 11k k+ − = − +( ) − , then the student would 
be considered at the developing level. Finally, at the advancing level, a student 
 creates a tool or trick that is unconventional for the course or the student. If a student 
thought of “adding zero” without any prompting or previous knowledge in the 
course, this would be considered advancing.

Flexibility In the category Making Connections, we discussed recognizing the need 
to use a proof technique used on previous proofs on a new proof. Flexibility is the 
ability to shift approaches in proving a theorem or claim. This idea was adapted 
from Silver’s (1997) definition of flexibility for problem solving. For example, a 
student might begin a proof using a direct proof, but then shift to a proof by contra-
diction if the student did not find the first technique helpful. Dr. D found this ability 
helpful during her proof attempts, “If it doesn’t work you say ‘let me try something 
different and use some information I gathered to [come] up [with] something that 
might be more useful.’”

In this subcategory continuum, at the beginning level, a student attempts one 
proof technique in his/her proof. At the developing level, a student acknowledges 
the possibility of using different proof techniques, but does not act on it. Finally, at 
the advancing level, a student acts on different proving approaches. A student at the 
advancing level would act on multiple proof techniques, perhaps because the stu-
dent did not find the initial proof technique(s) helpful, or s/he wanted to attempt a 
more efficient proof.

Perseverance Perseverance is a quality that many mathematicians possess either 
consciously or sub-consciously, and that many instructors want their students to 
exhibit in their courses. In his seminal work on problem solving, Schoenfeld (1992) 
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pointed out that students “give up working on a problem after a few minutes of 
unsuccessful attempts even though they might have solved it had they persevered” 
(p. 359). Dr. B echoes the importance of perseverance in his statement:

[T]he creativity part is, ‘ok I know I’m going to get this far, and I want to get here, kind of 
four steps down, but somehow able to pinpoint the key idea,’ so that’s part of the creative 
process… sometimes it’ll just be a matter of trying various [ideas] to get that [next] step.

We identify perseverance in a proving process of a student when he/she is con-
tinuing to engage in the proving process no matter the hardship. Time is not an 
aspect of our definition of perseverance; rather the engagement with key aspects and 
the challenges of the proof is the gauge of perseverance. According to Thom and 
Pirie (2002), perseverance is a “sense (i.e. intuitive and experiential) in knowing 
when to continue with, and not to give up too soon on a chosen strategy or action” 
(p. 2). Therefore, to develop creativity in proving, perseverance is needed.

At the beginning level, a student demonstrates perseverance by engaging with 
the proving process minimally. For example, a student would not finish his/her first 
proving attempt, and would not try any other proof attempt. At the developing level, 
a student would continue to engage with surface level features of the proving pro-
cess, but there is no evidence of engagement with the key ideas of the proof. Finally, 
at the advancing level, a student perseveres by engaging with key ideas of the proof. 
S/he may or may not have a final valid proof, but is engaging with the key ideas or 
reasoning for the proof.

Posing Questions In the proving process, there are certain times when a question 
can lead to a creative thought. Dr. B acknowledged that, while researching, he asks 
himself, “What do I need to do in order to make that step so the rest of it is down-
hill?” Pelczer and Rodriguez (2011), citing Jensen (1973), stated that if students 
want to be creative, they “should be able to pose mathematical questions that allow 
exploration of the original problem” (p. 384). Posing questions can occur through-
out the proving process, but there are different qualities of questions that students 
can pose.

At the beginning level, a student will recognize that a question should be asked 
(perhaps with a question mark next to his/her proof), but will not formulate a full 
question. At the developing level, a student will pose a clarifying question about a 
statement of a definition or theorem, for example to clarify terms used within a theo-
rem statement. Finally, at the advancing level, a student will pose a clarifying ques-
tion about the reasoning in the proof.

Evaluation of the Proof Attempt We define a successful proof as a correct proof 
which “establishes the truth of a theorem” (Selden and Selden 2003, p. 5). A suc-
cessful proof is neither a necessary nor sufficient condition for a creative proof 
attempt. That being said, understanding the key ideas that make a proof attempt 
successful or unsuccessful can provide insight for future proof attempts. Key ideas 
are defined by Raman (2003) as, “a heuristic idea which one can map to a formal 
proof with appropriate sense of rigor. It … gives a sense of understanding and 
conviction. Key ideas show why a particular claim is true” (p. 323). For example, 
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Dr. D stated that she re-evaluated a result to find a visual application and ended up 
“go[ing] back to the drawing board because the stuff that we thought we proved was 
wrong. My thinking about [a] different way to visualize it and seeing something 
completely unexpected got us there.”

At the beginning level, a student is one who only checks work locally, that is, for 
small errors or typos. At the developing level, a student recognizes a successful or 
unsuccessful proof attempt without identifying the key idea that makes the attempt 
successful or unsuccessful. A student may look at his/her proof, realize that it is 
incorrect, but not realize exactly why the proof is incorrect. Finally, an ability to 
recognize the key idea in a proof attempt, successful or unsuccessful, describes an 
advancing-level in this subcategory.

In the next section, we provide two students’ proving attempts on two different 
tasks to illustrate student work that falls into various levels of these subcategories.

3.4  Case Studies

The data presented in this section was collected in Spring 2014 at a large research 
university in the United States. In an inquiry-based, introduction-to-proof course, 
24 students were given LiveScribe pens, a data collection tool capable of capturing 
audio and written work in real time (For details on LiveScribe pens, see Savic 2015). 
Use of this technology was an intentional attempt to capture the processes of stu-
dents’ proof development, including scratch work and verbal expressions. All stu-
dents were required to do and turn in their homework using the pen and special 
paper; all homework was downloaded to the professor’s computer for both grading 
and analysis. The LiveScribe pen data was examined for the eight students that par-
ticipated in an exit interview to relate exit interview data with performance through-
out the semester. Our research group narrowed the data analysis to five proving 
tasks that we jointly agreed could elicit creativity in the proving process. Those 
tasks were coded using the CPR on Proving. Here we report on two of those five 
tasks.

Theorem 29 is stated: “If 3  divides the sum of the digits of n , then 3  divides n ”. 
This theorem was the third theorem in the number theory section of the course, 
located after the definition of even and odd numbers, divisibility, (Definition S: 
a b b na for somen| ⇔ = ∈ ) and the following theorems (27 and 28): “If m  and 
n  are even numbers, prove that m n+  and m n⋅  are even numbers” and “If a b|  
and a c| , then a br cs| +( )  for any r s, ∈ .” respectively. We will refer to Theorem 
29 as the “digit” theorem. The other task is the second theorem on the second test: 
“If 3 divides a natural number n , then n  is a trapezoidal number.” A trapezoidal 
number, defined on the test, is a natural number that can be expressed as the sum of 
two or more consecutive natural numbers. We will refer to Theorem 2 of Test 2 as 
the “trapezoid” theorem.
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To demonstrate the aspects of mathematical creativity in proving that the CPR 
reveals, we focus on two students in the course, Greg and Marty. At the end of 
Spring of 2014, Greg was a mathematics major with enough credits to be a fourth- 
year student; Marty was a fourth year dual-major in Economics and History. When 
coding students’ work for one proof task, we used a holistic approach to focus on 
the students’ entire collection of attempts rather than each individual attempt. For 
instance, we coded Greg’s four attempts of the digit theorem (see Fig. 3.1) rather 
than each individual attempt. We present both students’ proving attempts for both 
theorems.

3.4.1  The Digit Theorem

All of the proving attempts by Greg for the digit theorem are located in Fig. 3.1. The 
LiveScribe Pen time-stamped each recording so we were able to see that the student 
attempted this proof at least four times (Fig. 3.1 Lines 1–7, Lines 8–12, Lines 
13–28, and Lines 29–37) over two days. Figure 3.2 provides the aggregation of our 
coding of all of these attempts. We provide an explanation for the coding of each 
subcategory (written in italics) below.

Between Definitions/Theorems We observed that Greg used Definition S (Line 20) 
and Theorem 28 (Lines 7 and 22) and tried to implement both into his proving 
attempts. Therefore, since he implemented definitions and theorems in his proving 
attempts, we coded his work as “advancing”. This is indicated with the dark arrow 
in Fig. 3.2.

Fig. 3.1 Greg’s proving process for the digit theorem
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Between Representations Greg also had two symbolic representations for the natu-

ral number n a a a a an
n

n
n

i

n

i: 10 10 10 101
1

1
1

0
0

3
1

+ +…+ + ≡−
−

=
∑  (Lines 34 and 36). We 

observed that he used connections between these two representations in his proving 
process, but it is unclear how the second representation was helpful to his attempt. 
Thus, his work is categorized in the “advancing” level, yet not as complete as in 
Between Definitions/Theorems.

Between Examples Greg explored an example, n = 123  (Lines 4–7), and when he 
tried to factor a 3  from 9n  (Line 19), he generated examples (Lines 23–28). Since 
he used the key idea generated from “123” (Lines 17–19), he demonstrated an 
“advancing” level in our coding.

Tools and Tricks Greg used a notation “ ≡3 ”, which means “equivalent modulo 3,” 
that was unconventional for the course because it had not been previously discussed. 
He also used the trick of rewriting 10 as 9 1+  and 100 as 99 1+  (Lines 4 and 5). 
Therefore, we coded Greg’s work as “advancing.”

Flexibility On Line 3, he indicated that the proof might be approached using induc-
tion, but largely used direct proof, hence he acknowledged the possibility of a dif-
ferent approach with no further examination. For this reason we coded his work in 
the “developing” level.

Perseverance Greg engaged with key ideas of the proof (Lines 17–22), and also 
created many proving attempts, so he was coded as “advancing” in this 
subcategory.

Posing Questions There were no questions posed either in his written or oral 
recorded work. Due to this lack of evidence, no levels were assigned to this subcat-
egory of his work.

Fig. 3.2 Levels of Greg’s work on the digit theorem
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Evaluation of the Proof Attempt Though he recognized unsuccessful attempts by 
crossing them out, there is no explicit acknowledgment of the key idea(s) that made 
the attempt unsuccessful, thus his work was coded as “developing.” However, the 
multiple evaluations of his proving contributed to the arrow being closer to 
advancing.

For the digit theorem, all of Marty’s attempts are demonstrated in Fig. 3.3. Marty 
attempted the proof first (Fig. 3.3 Lines 1–2), and attempted the proof again two 
days later (Fig. 3.3 Lines 3–8). In Fig. 3.4, we present the summary of our coding 
of Marty on the digit theorem.

As it can be observed in Fig. 3.3, Marty’s demonstrated proof process was brief. 
Thus, we share descriptions for some of the subcategories. Marty recognized but did 
not implement the definition of divisibility by stating that a b k+( ) = 3  (Line 7). 
Also, he wrote “need clarification,” (Line 1) which was recognition to pose a ques-
tion without fully formulating the question. Those two actions provided evidence 
for the positioning of the arrows in between the “beginning” and “developing” lev-
els for the subcategories of Between Definitions/Theorems and Posing Questions. 
For other subcategories, we only observed “beginning” level actions, with the 
exception of the Tools and Tricks subcategory. Marty’s work did not provide evi-
dence for this subcategory, so no level is indicated.

Fig. 3.3 Marty’s proving process for the digit theorem

Fig. 3.4 Levels of Marty’s work on the digit theorem
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3.4.2  The Trapezoid Theorem

The proving attempts of the trapezoid theorem from Greg are presented in Fig. 3.5, 
while the levels coded for Greg are in Fig. 3.6.

In the Making Connections category, Greg implemented definitions for trapezoi-
dal (Line 12) and odd numbers (Line 14) in his proof, and attempted to use both 
definitions in his proving (“developing” in Between Definitions/Theorems). He used 
a representation of a trapezoidal number (Line 12) and attempted to connect it to the 
definition of a trapezoidal number (“developing” in Between Representations). 
Finally, he generated some examples (Lines 5–8), but there was no indication that 
he recognized a connection between his examples so as to generate a key idea to use 
in the proof attempt (“beginning” in Between Examples).

In the Taking Risks category, Greg did not use a trick or tool or pose a question 
(both left blank in the rubric). He acted on two different proving approaches, namely 
direct proof and induction (“advancing” in Flexibility). Greg continued to engage 
with the surface level, but not the key ideas, of the proof (“developing” in 
Perseverance). Finally, he evaluated his first proof attempt but did not recognize the 
key idea that made it unsuccessful (“developing” in Evaluation of the Proof Attempt).

Fig. 3.5 Proving attempts of Greg on the trapezoid theorem

Fig. 3.6 Levels of Greg’s work on the trapezoid theorem
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Marty’s proving attempts for the trapezoid theorem are located in Fig. 3.7.  
The levels coded for Marty are in Fig. 3.8.

Note that Marty produced examples in his proving (Lines 23–31), and used those 
examples to find the key idea (lines 18 and 21). We did not see any evidence of the 
subcategories Tools and Tricks and Posing Questions. Also, Marty’s work was 
placed in “advancing” levels for many of the other subcategories, despite the  
production of an incorrect proof.

Overall, we noticed that Marty mostly demonstrated “beginning” level actions 
on both categories (Making Connections and Taking Risks) for the digit theorem 
(see Fig. 3.4) with the exception of no level for the subcategory Tools and Tricks of 
the Taking Risks category. As shown in Fig. 3.8, he had mostly “advancing” level 
actions on both categories (Making Connections and Taking Risks) for his work on 
the trapezoid theorem, with the exception of no levels for subcategories, Tools and 

Fig. 3.7 Proving attempts of Marty on the trapezoid theorem

Fig. 3.8 Levels of Marty’s work on the trapezoid theorem
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Tricks and Posing Questions. Greg, on the other hand, had “advancing” level actions 
for the Making Connection subcategories and mostly “developing” for the Taking 
Risks for the digit theorem (see Fig. 3.2), with the exception of no level for subcat-
egory Posing Questions. For the trapezoid theorem, Greg’s work had varying levels 
of actions for subcategories: mostly “developing” for Making Connections, and 
varying levels between mid- “developing” to high- “advancing” for Taking Risks 
(see Fig. 3.6).

3.5  Discussion

In this section, we delineate some observations and provide hypotheses that were 
generated from the case studies in the previous section. Specifically, we highlight 
the following: (i) the similarity between the coded levels of some categories between 
the two students; (ii) the connection between students’ work and their perspectives 
on creativity; (iii) the fact that correctness was not taken into consideration while 
coding; and (iv) the association between some of the subcategories in the rubric. In 
addition, we suggest some teaching practices that complement the CPR on Proving.

3.5.1  Remarks on the Coding of Students’ Work

The coding of Greg and Marty’s work illustrates the evaluation of the whole proving 
process rather than the final product. This analysis highlighted how two students’ 
different proving processes on the same task could be coded at the same level for a 
subcategory. For example, both students’ differing processes were coded “advanc-
ing” for the subcategory Flexibility on the trapezoid theorem, but there was varia-
tion in the number of proof attempts and approaches between Greg and Marty. We 
developed our rubric intentionally to capture such instances to stress the valuing of 
assessing individual student’s work.

Our second observation is that both students’ coded work had some alignment 
with their perceived notion of creativity as they shared it in the exit interview con-
ducted at the end of the semester. For example, Greg stated that mathematical cre-
ativity is “coming up with the little tricks that make each proof flow.” He utilized 
modular arithmetic (Lines 34 and 36 in Fig. 3.1), which was unconventional for the 
course, and thus we considered it a “trick.” Marty, on the other hand, defined math-
ematical creativity as “start[ing] from a different place or us[ing] a different method. 
You know, induction, contradiction, all those sorts of things.” This description was 
observed in his proving attempts of the trapezoid theorem, since he first attempted 
to disprove this task using a counterexample, then shifted his approach to two 
different direct proofs (Fig. 3.7), thereby demonstrating an “advancing” level of 
Flexibility. This possible link between students’ perceived notion of creativity and 
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their proof attempts requires further investigation. However, we hypothesize that 
students’ use of the CPR on their proof attempts could potentially help them to 
reach their creative potentials by illuminating other aspects of the proving process 
that students may not have focused on.

In our data, incorrect final proofs did not associate with less potential for math-
ematical creativity. Marty’s work for the trapezoid theorem is an incorrect proof, 
however many of his actions in his proving attempts were coded in the Taking Risks 
category as “advancing.” The CPR on Proving was designed to purposefully remove 
judgment of validity in order to encourage students to take risks and to be engaged 
in the proving process. Also, it is possible that some students can be relatively cre-
ative while being incorrect, which is a sentiment shared by one of our interviewed 
mathematicians, Dr. F:

I will risk it and say that [a proof] doesn’t have to be correct to be creative. But at least it 
[the proof] should be fixable. It can happen that you have an original idea and you mess up 
details, which is not surprising because if it is an original idea then it means that you haven’t 
practiced that, [so] you would make mistakes.

Some subcategories can help develop or enhance other subcategories in a stu-
dent’s proving process. Greg demonstrated “advancing” level actions in the Tools 
and Tricks and Perseverance subcategories of Taking Risks for the digit theorem 
(Fig. 3.2). In the coding analysis, we noticed that his evaluation actions for each of 
his individual attempts combined with his perseverance contributed to his overall 
“developing” level of Flexibility on this task. Similarly, our analysis of Marty’s dif-
ferent attempts indicated that his process of evaluation of each attempt and his over-
all perseverance allowed him to demonstrate advancing level actions of flexibility. 
Noticing such overlaps with the subcategory of Perseverance, and subcategories 
Flexibility and Evaluation, we revised the category of Taking Risks and eliminated 
Perseverance subcategory (for details see Karakok et al. 2016). It is also possible to 
think there are overlaps between the categories of Making Connections and Taking 
Risks. For instance, Greg took a risk to employ a trick from a previous course to 
prove the digit theorem, thereby making a connection. However, these  subcategories 
include unique elements and actions which help distinguish them from each other, 
such as utilization of a “trick” in Greg’s example. The user can leverage those 
unique elements to improve or enhance his/her proving process.

We believe that it is possible for a student to engage in proving attempts that do 
not necessarily exhibit all advancing-level actions but still demonstrate relative cre-
ativity. Reflection on each subcategory of the CPR on Proving can help develop a 
student’s creative potential for proving. For instance, a student might approach a 
proof with one technique (a “beginning” level in Flexibility), without creating any 
Tools and Tricks, but persevere in the process at the advanced level by creating 
many examples and generalizing them to gain an understanding of the key idea of 
the proof (advancing level in Between Examples). Another example comes from 
Marty, his work did not have any evidence of actions to be coded in the Tools and 
Tricks subcategory, but showed the potential of creativity in his proving.
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3.5.2  Teaching Implications

The CPR on Proving was created for instructors’ or students’ use. For each subcat-
egory, instructors can evaluate their students’ proving attempts and decide which 
part of the continuum the work could be placed. Once trained on how to use the 
rubric, students can also do this for their own and also for their peers’ work. Our 
intention is that if an instructor or a student evaluates proving attempts, s/he can 
hopefully see what needs to be improved or worked on during future tasks (attempts).

We have found that the use of the CPR on Proving may not elicit all of the sub-
categories for certain tasks. For example, the rubric may not be very useful for 
either a student or instructor in examining work on a routine task or typical exercise 
(as opposed to Schoenfeld’s (1982) definition of a problem). However, a task that 
can be proved using several different proof techniques can challenge students to be 
creative in their explorations during their proof attempts. Both theorems used in the 
case studies are examples of such tasks (e.g., Zazkis and Holton 2009; Leikin 2014). 
The use of CPR on Proving could also help in the scenario of “getting stuck” or 
encountering a proving impasse (Savic 2015), since most students “[produce] either 
no solution, incomplete solutions, or the ‘standard’ ones” (Zazkis and Holton 2009, 
p. 349).

Mathematicians such as Pólya (1954) have noted the importance of guessing 
theorems as a creative endeavor. Therefore, we suggest engaging students in the 
process of creating conjectures, posing problems, or solving open-ended tasks 
(Silver 1997; Brown and Walter 2005) with the CPR on Proving. Asking students to 
conjecture can challenge them to create examples in order to generalize, can encour-
age them to ask questions about their conjectures, or to evaluate the key ideas that 
make their conjectures true or false. Use of the CPR on Proving while students are 
engaged in these tasks may both improve their proving process and increase their 
potential for mathematical creativity.

The CPR on Proving provides an opportunity for teachers to be informed on stu-
dents’ proving processes. However, it is crucial that the instructor does not use the 
rubric to label or categorize students’ level of creativity in broader generality. This 
might cause students to feel less creative, and perhaps consequently do poorly in a 
proof course. We recommend an open discussion on the rubric between the instructor 
and the students early on to unpack the meaning of each category, subcategory and 
underlying levels, and demonstrate the usage of the rubric. Some suggestions might 
include an instructor using the CPR on Proving after a student demonstrates his/her 
proof attempt in class, or having students discuss their own creative proof attempts 
using laminate copies of the rubric (for re-use) with dry- erase markers. Also, the 
CPR does not have to be utilized in its entirety. It might be appropriate for an instruc-
tor or a student to focus on one subcategory in order to highlight certain areas of 
improvement. For example, it might be useful for the students to examine an unsuc-
cessful or successful proof and ask them to reflect on the key ideas that made it so. 
This would help them in the Evaluation of the Proof Attempt.

Lastly, we suggest creating an environment in the classroom where creativity can 
be nurtured. This includes allowing students to make mistakes, perhaps even  valuing 
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and discussing them in class. In order to successfully achieve this, students’ grades 
may not be penalized as frequently for making mistakes (see Burger and Starbird 
(2012) for similar suggestions). Instructors could be explicit about the tasks for 
which they expect students to provide a correct proof and those for which they 
expect students to explore freely without judging correctness. Incorrectness, as we 
have seen in both Greg and Marty’s work, and as Dr. F stated above, can be a cata-
lyst for creativity.

3.6  Conclusion

The development, and subsequent implementation, of our rubric is meant to start a 
discussion to encourage and promote mathematical creativity in the tertiary level. 
We do not claim that this rubric encompasses all the behaviors that can lead to math-
ematical creativity. Furthermore, we recognize that there may be other subcatego-
ries, so it is not our intention to limit the discussion of the process of creativity with 
these subcategories. The intention of the CPR on Proving is to make the behaviors 
that mathematicians themselves exhibit during their pursuit of new ideas explicit to 
the students.

As a research group, our overall goal for the Creativity-in-Progress Rubric (CPR) 
on Proving is to help tertiary students reflect on their proving processes, and hope-
fully, alleviate potential proving difficulties that are common to most students at the 
post-secondary level. Guilford (1975) highlighted the importance of reflection, stat-
ing that “the student [should] be taught about the nature of his[/her] own intellectual 
resources, so that [s/]he may gain more control over them” (p. 120). The function of 
the rubric, as we see it, is not to determine students’ exact levels of creativity, nor to 
state that one student is or is not creative. Instead, our rubric is about fostering 
growth. It is about encouraging students to engage in behaviors that mathematicians 
claimed may lead to mathematical creativity. We believe crucial actions that can 
lead to the potential for mathematical creativity in proving are embedded in the 
advancing levels of the rubric. Regardless of the school level of the student:

It must not be forgotten that the basic law of children’s creativity is that its value lies not in 
its results, not in the product of creation, but in the process itself. It is not important what 
children create, but that they do create, that they exercise and implement their creative 
imagination. (Vygotsky 2004, p. 72)
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    Chapter 4   
 Teacher’s Views on Modeling as a Creative 
Mathematical Activity                     

     Gudbjorg     Palsdottir     and     Bharath     Sriraman    

    Abstract     In this chapter we examine mathematical modeling activities presented in 
high school textbooks in Iceland with respect to how teachers utilize such activities. 
We fi rst argue on the basis of the existing literature that mathematical modeling may 
be viewed as a creative mathematical activity. We ask whether the institutionalization 
of mathematical modeling through school textbooks in the form of activities convey 
the creative aspect of modeling. To answer the question, we examine the views of a 
group of Icelandic high school teachers about modeling activities, and ways in which 
they implement them in the classroom. Preliminary results indicate that teacher’s use 
a dialogic and practical approach to modeling activities as opposed to a strictly math-
ematical approach. We discuss their views within the Icelandic context.  

  Keywords     Mathematical modeling   •   Mathematical creativity   •   Modeling tasks   • 
  Math textbooks   •   Inservice teachers   •   Iceland  

4.1       Introduction 

 The experiential world of the twenty-fi rst century student and teacher is character-
ized by complex systems such as the Internet, multi-medias, sophisticated comput-
ing tools, global markets, virtual realities, access to online educational environments, 
etc., and emerging fi elds such as bio-informatics and mathematical genetics, cryp-
tography, mathematical biology, etc., which call for different mathematical skills 
such as the ability to model complex systems and problem solving. Mathematical 
modeling can be considered as a creative mathematical creativity for many reasons. 
Modeling in its true sense requires understanding a real situation, be it a natural 
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phenomenon like the fl ow of water or social phenomenon such as the spread of 
information via Twitter, in order to create a “model” that both validates empirical 
data and is useful for predictive purposes. In one sense modeling can be considered 
to be tautological since modeling means to create a model, and a model is the result 
of modeling. There are other defi nitional issues that arise. For instance a model is 
the realization or interpretation of an axiomatic system in pure mathematics. In 
other words given a set of axioms, a model allows one to understand and properly 
understand otherwise abstract properties. In mathematics education modeling is 
often understood as an aspect of problem solving (English and Sriraman  2009 ) 
whereas others view problem solving as an aspect of modeling (Lesh and Doerr 
 2003 ). In other words modeling can be categorically viewed as an umbrella terms 
that practically includes everything- ranging from the realization of an axiomatic 
system, to problem solving, to something “applied” or having a predictive purpose 
to understand real world phenomena. Given this confusion that abounds on what 
modeling is, it is natural that teachers often have to rely on textbooks that prescribe 
modeling in the form of diagrams and associated activities. For the purpose of this 
chapter modeling is viewed as a creative mathematical activity because it is often 
open-ended, ambiguous (requiring the modeler to make assumptions), time con-
suming, and interpretive (Sriraman  2005 ). Numerous curricular documents in the 
U.S., U.K., Australia extol the virtues of modeling as a means to prepare students to 
think fl exibly and creatively when faced with real world problems (Lesh and Doerr 
 2003 ; English  2006 ). Similarly in Iceland, it is highlighted in the national curricu-
lum guide that in our society many activities are based on the utilization of mathe-
matics and therefore the students both need mathematical literacy and to be able to 
use mathematics as a living tool in understanding mathematical problems and seek-
ing solutions by applying creative thinking, refl ection, arguments and the presenta-
tion of mathematical models. In the competence of being able to ask and answer in 
and with mathematics it is expected of tenth grade students to:

•      express themselves about mathematical topics and reality by using the language of 
mathematics, verbally explain to others their thoughts about it, seek solutions and pres-
ent mathematical problems invarious mathematical forms by applying creative thinking, 
refl ection and reasoning, present, analyse, interpret and evaluate mathematical models,  

•   fi nd, propose and defi ne mathematical problems, both related to everyday life and math-
ematical issues, evaluate solutions, for example with the aim of forming generalisations 
from them,  

•   set up, interpret and critically scrutinise a mathematical model of real conditions; this 
may include calculation, drawings, graphs, equations and functions, (Ministry of 
Education, Science and Culture  2013 , p. 218)    

   This century the focus in the Icelandic national curricula has much been on 
mathematical thinking and mathematical processes. The curriculum is divided into 
processes and content. The new one has the competence criteria for mathematics 
arranged in seven categories: (1) Being able to ask and answer in and with mathe-
matics, (2) being able to use the language and tools of mathematics, (3) work meth-
ods and application of mathematics, (4) numbers and calculation, (5) algebra, (6) 
geometry and measurement, (7) statistics and probability. Modeling is not a concept 
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in focus but the ideas modeling is based on are clearly present as can been seen in 
the writings about the main objectives of mathematics:

•       Mathematics helps us to describe circumstances precisely and to explain causation 
within them ,  interpret data ,  and to predict and infl uence development  (Ministry of 
Education, Science and Culture  2013 , p. 216)    

   In the general literature on creativity numerous defi nitions can be found. Craft 
( 2002 ) uses the term life wide creativity to describe the numerous contexts of day- 
to- day life in which the phenomenon of creativity (c) manifests. Other researchers 
have described creativity as a natural survival or adaptive response of humans in an 
ever-changing environment. Richards ( 1993 ) uses the term everyday creativity” 
(“little c”) to describe such activities as improvising on a recipe. It is generally 
accepted that works of extraordinary creativity can be judged only by experts within 
a specifi c domain of knowledge. For instance, Andrew Wiles’ proof of Fermat’s Last 
Theorem could only be judged by a handful of mathematicians within a very spe-
cifi c subdomain of number theory. Taking the view of Craft and Richardson we 
view creativity as “little c” or “ordinary/every day creativity” as being relevant for 
the school setting.  

4.2     Modeling as a Creative Mathematical Activity 

 In general, there is a paucity of literature in mathematics education which views 
modeling from a creative viewpoint. However there is some literature which views 
modeling as a creative aspect of problem solving. English and Sriraman ( 2009 ) sug-
gested four salient points for the incorporation of modeling in the curriculum, 
namely

    1.    It provides a new way of looking at quantities in realistic settings requiring accu-
mulations, probabilities, frequencies, ranks, and vectors.   

   2.    Modeling goes beyond traditional word problems in the sense that it involves a 
cyclic process of interpreting the problem information, selecting relevant quanti-
ties, identifying operations that may lead to new quantities, and creating mean-
ingful representations (Lesh and Doerr  2003 ).   

   3.    Modeling is ubiquitous with other disciplines such as economics, information 
systems, social and environmental science which incorporate powerful mathe-
matical models for dealing with a range of complex problems   

   4.    Modeling problems facilitate small group work and present teachers with an 
opportunity to let students pose questions, resolve issues and confl icts that arise 
as students develop models.    

  Taken as a whole, mathematical modeling incorporates fl uency, fl exibility, elabo-
ration and originality which are the basic constructs of creativity. These constructs 
are also applicable to teacher’s conceptions of creativity. Lev-Zamir and Leikin 
( 2013 ) analyzed teacher’s declarative conceptions of mathematical creativity in 
teaching and found a mismatch between declarations and actions. These researchers 
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suggested that the mismatch could be explained in terms of deep beliefs versus sur-
face beliefs. In other words while a teacher may espouse a fl exible approach to 
teaching and learning, their practice may reveal otherwise. 

 Another aspect of viewing modeling as a creative activity is the possibility of 
allowing teachers to engage in problem posing. Following the suggestion of 
Stoyanova and Ellerton ( 1996 ) problem-posing situations can be free; semi- 
structured or structured. When presented with a modeling cycle from a textbook 
(Fig.  4.1 ), mathematics education researchers have the possibility of letting teachers 
engage in problem posing- i.e., to create problems that would meet the criteria of the 
modeling cycle depicted. This makes it a semi-structured situation in that not every 
problem can be subsumed under the modeling cycle. This was the approach of this 
particular research with high school teachers- to make them verbalize viable and 
non-viable situations that could be considered as “creative” modeling activities.

   As mentioned in the introduction there are different approaches to modeling 
found in textbooks- this can vary from contrived situations with data presented in 
order for students to procedurally use functions to somehow model the date by try-
ing different regression equations, or it can be completely open ended tasks requir-
ing teachers to guide students into productive ways of thinking about the situation. 
Given this disparity in the ways modeling is incorporated in the classroom, we con-
ducted a study with in-service teachers in Iceland in order to answer the following 
question:

    1.    What are teachers’ views of modeling as a creative activity in their classroom?      

4.3     Methodology 

 In order to answer the question above high school teachers in Iceland were invited 
to participate in a series of workshops on modeling organized by the authors. Four 
newly graduated teachers and one experienced teacher agreed to participate in these 
workshops on a voluntary basis. The authors wanted to get some knowledge of the 
teachers’ ideas on modeling when discussing them and when using them in planning 
teaching. The initial goal of the workshops was for teachers to collaborate and make 
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a teaching plan on modeling activities for their students. There were three work-
shops for 2 h each. In the fi rst workshop, the focus was on the concept of modeling, 
namely how were teachers working with modeling with their students, and what 
they thought was the meaning of modeling? In the next workshop the focus was on 
how the teachers could collaborate on creating a project on mathematical modeling? 
The last workshop was concentrated on planning and making a concrete modeling 
project for incorporation in the classroom. The discussions were informal and led 
by the fi rst author with the purpose of getting a picture of the teachers’ understand-
ing of modeling. All the teachers participated actively and they created a project on 
modeling they were going to use in their teaching. We present important elements 
in the discussion that emerged from the workshops. By centering the discussion 
around what teachers considered to be modeling and modeling as a creative activity 
we were unconsciously using the Freirean notion that “through dialogue, the 
teacher-of-the-students and the students-of-the- teacher cease to exist and a new 
term emerges: teacher-student with student-teachers. The teacher is no longer 
merely the one-who-teaches, but one who is himself taught in dialogue with the 
students, who in turn while being taught also teach. They become jointly responsi-
ble for a process in which all grow (Freire  2005 , p. 264).  

4.4     Results 

 Based on the guidelines of the national curriculum, the role of the teacher is to cre-
ate a meaningful learning environment where the students are researching problems 
they fi nd interesting. In the curriculum materials that the teachers in this study were 
using, there is a focus on connecting mathematics to the society and the students’ 
interest. In the tasks, emphasis is put on giving the students opportunity to develop 
the use of mathematical processes. In the material for the tenth grade there is a 
chapter on models. There the students are presented various models and the concept 
to mathematize as seen in the modeling cycle in Fig.  4.1 . Building on that, students 
are supposed to create their own models for various topics from daily life, as shar-
ing, estimating pollution, designing and predicting the growth of the population 
(Palsdottir and Gunnarsdottir  2007 , pp. 42–47). This is the context in which the 
teachers were working in their classroom and hence important for the reader to 
know. We now present some of the teacher’s views on modeling as a creative activ-
ity. We describe in thick detail what transpired in each workshop and distill impor-
tant elements from the dialogue that occurred between the participants and the 
authors. 

 In the fi rst workshop both authors were present and we discussed the objective of 
our study and why the teachers were invited and what we had planned for them. All 
the teachers were using the same curriculum materials and we asked them how they 
were using the chapter in the textbook on modeling. The intention was to make it 
easier for the teachers to give examples of their teaching on the topic and so the 
other teachers could refer to their experience about the use of same modeling tasks 
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from the textbook. We were surprised to fi nd that none of the teachers had been 
using this chapter but they all knew about the modeling cycle in the chapter. They 
had been using the picture of the cycle in their teaching when they were working 
with open themes about mathematics in real world. The modeling cycle was seen as 
a lens through which students could look at the world. They said that they were not 
using the chapter from the curriculum material because t hey didn ’ t fi nd the con-
tent very important  and that it was more interesting to do some of the content in a 
creative collaboration with the students and in open group work projects with the 
students. When asked, the teachers also admitted that they had not seen modeling as 
a vital part of the curriculum. Although they knew it was clearly stated in the national 
curriculum guide, they were aware that students were not tested on it in the national 
tests. The teachers were not explicitly using the concept of model or modelling but 
they were aware of the notion of mathematization and expressing this by using the 
terms -generalizing and looking at a structure. They expressed the view that when 
working with models it is best for them to make their own tasks that are close to the 
students’ daily lives. They like the picture in the textbook of mathematizing but they 
did not connect the cycle with the tasks from daily life. One of the teachers’ said “It 
is hard to work with tasks that are created by somebody else”. In this case “tasks” 
referred to themes from the real world that connected to their students’ lives and not 
tasks found in the book. 

 They wanted to give the students some opportunities to be creative and say that 
it is important for the students’ motivation in their mathematical learning. For the 
teachers models were- “reiknilíkön” – models to calculate things. The teachers gave 
examples of projects that are mostly about money and not about things from nature 
and the development of the society. One example was given of an environmental 
issue involving the use of disposable diapers in society. They expressed the view 
that modeling was about seeing structure in problems from daily life and that the 
students should fi nd or be given an open task or a concept to dig into. Again the 
examples that were given related to “costs of living, prices of goods etc” because 
their opinion was that students did not have a realistic idea about the cost of daily 
living. 

 The second author introduced a task based the problem of interpreting a will in 
which certain proportional relationships had to be met. The purpose of using a con-
crete task was to see if the teachers would consider it to meet the criteria of a cre-
ative modeling activity. The teachers were curious about the problem and they found 
the task interesting and speculated about the mathematics in their discussion. They 
were thinking about how to interpret the conditions and how it could be calculated. 
They were addressing some of the modeling aspects and interested to hear and dis-
cuss others ways and solutions. When probed on whether this could be considered a 
modeling activity, there was no consensus on the criteria that needed to be applied 
to make the determination. 

 At the second workshop the teachers exchanged ideas on projects. For them 
planning the starting point when working on modeling was to decide what could be 
interesting for the students to research. We started by looking through the chapter on 
models in the textbook. For them many of the tasks were exotic and strange. They 
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also felt that it would be much better and more attractive to make their own projects 
that were open. The ideas that appeared were on import of goods to Iceland, the cost 
of starting a new school, the cost and planning of Christmas and environmental 
things. For the teachers the solutions to these scenarios were students making mod-
els as formulas for growth. Christmas was coming so the teachers decided to work 
with the Christmas as a theme at the next workshop. They felt it important to make 
their own project and wanted to be creative, searching for work that would be chal-
lenging for them. 

 At the third workshop the teachers met in an excited state since they had all been 
thinking about the Christmas theme and how it could fi t in their time schedule. They 
had not discussed with their students but reported that now the students were start-
ing to think and discuss about Christmas traditions so this theme would interest their 
students. They all were looking forward to planning and hear what the other teach-
ers’ ideas about this theme. They started with the idea to fi nd out about how much 
families were spending on Christmas. They discussed ideas about creating realistic 
scenarios of families or friends by making different groups of students representing 
different types of families or friends (with variations in the number of members and 
age). There was more discussion about the social aspects of this task and very little 
focus on the mathematical content of such a task. They soon found out that the 
theme needed to be narrowed down and in the end they made a task where a group 
of three to fi ve students should make a plan for Christmas dinner, the three course 
menu and fi nd out about the cost of buying the ingredients/raw materials for this 
group. The task consisted of the group having to decide what to buy and fi nd out 
about the prices of things. They were later supposed to use the information to make 
a formula for the cost of the whole menu and each course so they could determine 
the cost for different group sizes. The general idea was to involve the entire class to 
discuss the information gathered by different groups to get a realistic idea about 
costs of such a dinner and to be more conscious about spending. Again, in this dis-
cussion there was very little thinking about modeling as the mathematical theme but 
more a discussion of practical things, the process of planning- i.e., the use of web-
pages, spreadsheets and arithmetic to fi nd the relevant information. When reminded 
of modeling by the fi rst author, they expressed that the information could be used to 
generalize and give examples of models that could be used to fi nd out about the cost 
of a Christmas dinner for different group sizes and different menus. There was also 
a discussion about socio-economic status and the types of menus served. An ethical 
dimension came up with respect to displaying expensive menus to students from 
different socio-economic circumstances. In general, the teachers were conscious 
that any discussion about realistic problems brought an element of ethics which is 
an important consideration for any classroom with students from different socio- 
economic backgrounds and different traditions.  
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4.5     Discussion 

 Based on these workshops with the high school teachers we realized that there is no 
clear consensus on what is considered to be a creative modeling activity. By allow-
ing the teachers to engage in a dialogue with each other and with us, it became clear 
that the modeling cycle represented in the textbooks did not necessarily play a big 
role in shaping teacher’s views but it was used in a more practical sense. As found 
in the work of Lev-Zamir and Leikin ( 2013 ) teacher’s declarative statements about 
creativity did not always coincide with the types of problem situations that were 
discussed. Tasks that revolved around calculating costs can be viewed as a proce-
dural activity. Most of the teachers viewed models as something used in applied 
mathematics. However the dialogism between teachers and the researchers revealed 
that there was consensus in the need to give their students space to be creative which 
could in turn affect their interest. The teachers’ goal was to inspire their students and 
help them to collaborate and connect their mathematical learning with their daily 
life. To this end models were viewed as one way in which this could be achieved. 
Even though teachers voiced the necessity to make appropriate tasks to motivate 
deeper mathematical thinking, as we have presented in these fi ndings the tasks were 
more practical and not mathematically challenging. These views coincide with the 
recommendations on the four salient points for the incorporation of modeling in the 
curriculum (English and Sriraman  2009 ). 

 The teachers were aware of their ideas behind modeling without using the term 
“modeling” and saw that as a way for children to be creative. Modeling was some-
thing that called for them to come up with their own applied problems and not use 
problems from a book. For the teachers it was obvious or a fact that children should 
mathematize from problems that the teacher’s created based on the contextual envi-
ronment. This was the reason why they were not keen on using problems from the 
book. The modeling cycle served as a framework within which they were free to 
create their own problems. Teachers also believed for students to be creative there 
was a need for group work and free space. The word “creative” did not occur in the 
teacher’s vocabulary and discourse when referring to modeling but very often words 
that were synonymous to it were mentioned. In other words creativity and mathe-
matics were seen as being disjoint until the authors started using the word in refer-
ence to teachers creating their own problems and conferring ownership of the 
problems to the teachers. In the teacher’s discussion on what constitutes a creative 
task there was less emphasis on modeling but more on group tasks about daily life 
with a lot of freedom for students to decide and be creative but maybe not so much 
on the mathematics, more on the ways to work with the tasks and how to present the 
results. 

 The teachers were interested in improving their teaching and viewed these work-
shops as an opportunity to get new ideas to better their teaching of the content. They 
also stated that it was important to have students that like to do mathematics and that 
according to their experience working with problems from daily life was interesting 
to achieve this goal. One teacher suggested “the starting point in math teaching 
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could be daily life, and everything could be built up from that”. This view is quite 
consistent with realistic mathematics education (Freudenthal  1972 ) and being con-
scious of the mathematical content that needed to be addressed. Another teacher 
said “it matters what kind of a message teachers give their students” and the neces-
sity to use suffi cient time on tasks to allow students to elicit their thinking and dis-
cuss their ideas with each other. The Freirean notion of dialogism was very strong 
in terms of both the teacher and the students learning from each other in a modeling 
activity. The fi ndings in terms of creativity research, the focus on daily life and 
problems associated with costs and living suggest that teachers emphasized “little 
c” creativity (Richards  1993 ) to their students. The teachers were concerned about 
their students, were able to involve their students in meaningful discussions. 
Modeling for mathematics education researchers revolves around big data sets 
about larger societal concerns (whale population, deforestation, etc.) but for these 
teachers it was more about understanding the world around the students focused on 
problems from daily life. This fi nding suggests that the modeling problems in the 
textbook are not necessarily relevant to teachers given their contexts. One criticism 
of a modeling-based curricula is the emphasis on predicting the future through 
regression models but as we have seen in this study, a teacher is more concerned 
about the here and now relevant to 13–15 year olds.     
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    Chapter 5   
 The Prominence of Affect in Creativity: 
Expanding the Conception of Creativity 
in Mathematical Problem Solving                     

     Eric     L.     Mann     ,     Scott     A.     Chamberlin    , and     Amy     K.     Graefe   

    Abstract     Constructs such as fl uency, fl exibility, originality, and elaboration have 
been accepted as integral components of creativity. In this chapter, the authors dis-
cuss affect (Leder GC, Pehkonen E, Törner G (eds), Beliefs: a hidden variable in 
mathematics education? Kluwer Academic Publishers, Dordrecht, 2002; McLeod 
DB, J Res Math Educ 25:637–647, 1994; McLeod DB, Adams VM, Affect and 
mathematical problem solving: a new perspective. Springer, New York, 1989) as it 
relates to the production of creative outcomes in mathematical problem solving 
episodes. The saliency of affect in creativity cannot be underestimated, as problem 
solvers require an appropriate state of mind in order to be maximally productive in 
creative endeavors. Attention is invested in commonly accepted sub-constructs of 
affect such as anxiety, aspiration(s), attitude, interest, and locus of control, self- 
effi cacy, self-esteem, and value (Anderson LW, Bourke SF, Assessing affective 
characteristics in the schools. Lawrence Erlbaum Associates, Mahwah, 2000). A 
new sub-construct of creativity that is germane and instrumental to the production 
of creative outcomes is called iconoclasm and it is discussed in the context of math-
ematical problem solving episodes.  
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5.1         Introduction 

 Mathematics is a human endeavor. Yet, it is often portrayed in the K-12 classroom 
as a tool to communicate information or help answer questions encountered in daily 
life, overshadowing the creativity that spawned the rules and algorithms children 
work so diligently to master. Studies of the creative works of eminent mathemati-
cians often mention curiosity and a willingness to embrace challenge as necessary 
attributes of creativity. Movshovitz-Hadar and Kleiner ( 2009 ) stress the importance 
of courage as well - both the social courage needed to take a risk and the intellectual 
courage to follow a path not knowing if the end result will bring success or failure. 
Several examples offered by Movshovitz-Hadar and Kleiner include the work of 
Janos Bolyai and Nicolai Loabachevsky. Both had the intellectual courage to ask, 
“What if parallel lines do meet?” and the social courage to share their work with the 
world. Both were discouraged from pursing this line of study. Bolyai was discour-
aged by both his father and Gauss who claimed to have made the same discovery 
earlier but did not seek to publish for fear of controversy. Loabachevsky was named 
the “madman of Kazan” when his manuscript was rejected by the St. Petersburg 
Academy of Sciences. Yet their courage to persist provided the geometric basis for 
the understanding of physical time and space (Cannon et al.  1997 ). For a more in- 
depth discussion of courage and mathematical creativity and several more examples 
of mathematical creations initially viewed as heretical see Movshovitz-Hadar and 
Kleiner. 

 A seminal work in mathematical creativity is Hadamard’s ( 1945 ) essay,  The 
Psychology of Intervention in the Mathematical Field , in which he summarizes and 
extends the work of others seeking to understand the process of mathematical 
thought. In that work, Hadamard discusses various types of mathematical minds and 
the products that they may create. He classifi ed these mathematical minds as either 
logical (those that follow predetermined conventions, routines, or procedures) or 
intuitive (those that are often guided by common sense). One of the challenges for 
intuitive problem solvers, according to Hadamard, is that they need to have the cour-
age to share their answers with peers and the mathematical community. As an exam-
ple, Hadamard describes a situation in which a student, “guided by common sense, 
knew the right answer to my question, but did not feel he was allowed to give it and 
did not realize that …[it] could be easily translated into a rigorous and correct 
proof” (p. 105–106). He also shares a note found in Riemann’s papers that read, 
“These properties of ς(s)…are deduced from an expression of it which, however, 
[sic] I did not succeed in simplifying enough to publish it” (p. 118). In the fi rst 
example the student’s lack of courage resulted in a lost opportunity to develop his 
mathematical talent and understanding. In the second example, Riemann’s courage 
in sharing his work, even though he had not arrived at a publishable-ready expres-
sion, brought new insight to the study of prime numbers. For more on the search for 
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a proof for the properties of the Riemann Zeta function, see the Clay Mathematics 
Institute’s Millennium Problems. 1  

 The difference between Hadamard’s student and Riemann or Bolyai and Gauss 
was the courage to take a risk, to ask a question, to act on intuition, and to share 
ideas. Without that courage, potentially creative mathematical ideas remain 
unknown and unexplored; students are left to follow systematic solution paths with-
out exploring the synthesis of thought that is necessary to develop mathematical 
understanding (Hadamard  1945 ). Hadamard refers to intuitive problem solvers 
working with almost reckless abandon in seeking solutions, and he borrows 
Poincaré’s terminology when he refers to them as “bold cavalrymen of the advance 
guard seeking conquests” (p. 106). 

 Conquests are rarely achieved by simply doing what has always been done. 
Rather, mathematical conquests are gained by some level of risk taking (reckless 
abandon) and the courage to pursue a line of thought or an approach that often chal-
lenges iconic (conventional or traditional) practices and beliefs, hence an iconoclas-
tic view of mathematical creativity. In this chapter the authors propose iconoclasm 
as a necessary fi fth component in developing an understanding of mathematical 
creativity.  

5.2     Creativity and Mathematics 

 Analysis of the literature affi rms the fact that creativity is multifaceted in the fi eld 
of mathematics education (Mann  2006 ,  2009 ; Sriraman  2006 ). Nevertheless, four 
components that recur in nearly all creativity literature are fl uency, fl exibility, origi-
nality, and elaboration. In this section, these four components are discussed. 

 Fluency, or the number of relevant responses that can be created by any one indi-
vidual, is an indicator of creativity. Often compared to brainstorming, fl uent think-
ers are able to generate many ideas, possibilities, and potential approaches to fi nding 
solutions to a problem. Generation of ideas is the focus here, though once com-
pleted, creativity assessment evaluations do consider the relevancy of the responses. 
For example, in scoring a stimulus response on the Torrance ®  Tests of Creative 
Thinking fi gural forms (Torrance et al.  2008 ), the evaluator is instructed to score 
responses based on the relevancy and meaningfulness of the response. 

 Flexibility in thinking (Krutetski  1976 ; Torrance  1966 ) is considered one’s abil-
ity to think about a problem solving task from more than one perspective and/or to 
reverse mental processes. It is not uncommon for problem solvers working on a task 
to be constrained by a preconceived solution path. This is especially true when the 
predominant “view of school mathematics is one of rules and procedures, memori-
zation and practice, and exactness in procedures and answers” (Linquist  1997 , p. xiv). 

1   http://www.claymath.org/millenium-problems/riemann-hypothesis 
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This is a limited view of mathematics in which mathematical creativity does not 
have the freedom to develop. 

 Ervynck ( 1991 ) outlined the development of mathematical creativity as a series 
of stages with algorithmic activity as precursors to creative activities. When produc-
ing creative solutions, it is necessary to be able to draw on the foundational knowl-
edge of the technical and computational aspects of mathematics. However, when the 
emphasis does not transition to the next stage of development, the student is stuck 
in the view of mathematics as a world of right and wrong answers (Ginsburg  1996 ). 
When this happens, fl exibility is generally precluded and individuals are locked into 
searching for the “right” solution path rather than looking for multiple paths to a 
solution. With suffi cient mathematical knowledge and experience, fl exible thinkers 
can evaluate the results for appropriateness  and  elegance. Developing adaptive 
expertise (National Research Council  2000 ) is important for successful learning: 
“Adaptive experts are able to approach new situations fl exibly … they don’t simply 
attempt to do the same things more effi ciently; they attempt to do things better” 
(p. 48). Developing the ability to be fl exible in one’s approach to problem solving is 
essential for creative development. As an example, if a mathematical problem was 
provided in which most problem solvers used number sense to solve the problem, a 
fl exible thinker may revise an initial solution to fi nd a more effi cient approach or 
look for connections to other mathematical domains such as statistics and probabil-
ity or algebra. A highly fl exible individual may chart new waters simply by having 
the courage asking ‘what if’ in looking for a better approach. Questioning the valid-
ity of Euclid’s fi fth postulate, the parallel postulate, was a signifi cant ‘what if’ that 
challenged centuries of mathematical study and created new discoveries in mathe-
matics with many applications in a universe much bigger than the ancient Greeks 
ever imagined. Flexible thinkers lend themselves to highly creative solutions due to 
their ability to think ‘in addition’ to the manner in which others might typically 
think. 

 Often the concepts of fl exibility and fl uency are confused. While fl uency is con-
sidered the number of responses generated, fl exibility is focused on the variety of 
approaches that an individual is able to use in solving a problem. From a research/
assessment perspective, blurred lines between constructs can be problematic; in 
practice, the two constructs go hand-in-hand. As an example, the National Council 
of Teachers of Mathematics ( 2014 ) position statement on procedural fl uency invokes 
a focused perspective on fl exibility, calling it,

  …the ability to apply procedures accurately, effi ciently and fl exibly, to transfer procedures 
to different problems and contexts; to build or modify procedures from other procedures … 
building on familiar procedures as they create their own informal strategies and 
procedures. 

   Originality, the ability to create novel responses, was initially considered the 
only measure of creativity (Chassell  1916 ) and is likely the most regularly used 
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synonym by those not familiar with creativity research. It may be common for 
teachers to only see highly creative products in mathematics classrooms as ones that 
are original or novel. The ability to create novel products (e.g., physical models, 
mathematical models, or on-paper prototypes) serves as one piece of evidence that 
creative potential exists. Along with the aforementioned manifestations of 
 originality, it is important to note that mathematical processes, procedures, and 
algorithms also can be highly original. A view of originality as something new to the 
world on par with the works of Euler, Gauss, Cantor, and da Vinci, among many 
others, is a narrow view of the construct. Attaining this level of creative recognition, 
legendary Big-C status, (Csikszentmihalyi  1999 ) is a complex task often not 
achieved in a creator’s lifetime. Kaufman and Beghetto ( 2009 ) offered a broader 
view in their Four C Model of Creativity that presents different dimensions of cre-
ativity and originality. In this model, the developmental progression of creativity is 
recognized as inherent in the learning process:

•    Mini-c: Novel and personally meaningful interpretation of experiences, actions, 
and events.  

•   Little-c: Everyday expressions of novel and task appropriate behaviors, ideas, or 
products  

•   Pro-c: Expert expressions of novel and meaningful behaviors, ideas, or 
products  

•   Big-C: Legendary novel and meaningful accomplishments, which often redirect 
an entire fi eld of study or domain    

 Assessments attempting to identify creative potential in individuals are focused 
on the mini-c and little-c levels of creativity. Society, however, generally assesses 
Pro-c and Big-C. As a short side conversation, some debate exists about whether a 
problem’s solution needs to be useful and utilitarian to be considered creative. On 
one hand, Amabile ( 1996 ) asserts that a solution needs to be appropriate to the task, 
and Torrance ( 1966 ,  2008 ) asserts that solutions need to be interpretable, meaning-
ful, and have relevant ideas. Sriraman ( 2006 ), however, argues that problem solving 
solutions can be highly theoretical and not have any immediate or direct applica-
tions. It may be the case that the application of a highly theoretical solution will 
realize its signifi cance long after created (e.g., many decades), thus substantiating 
Sriraman’s point. 

 For several years, creativity in mathematics was comprised of only fl uency, fl ex-
ibility, and originality (Haylock  1997 ; Kim et al.  2003 ; Tuli  1980 ). More recently, 
the notion of elaboration (Imai  2000 ) was connected to creativity in mathematics. 
Elaboration pertains to the ability of an individual to provide depth beyond what 
most problem solvers can provide in an explanation. Individuals with a high degree 
of elaborative skill may identify and be capable of expounding on intricacies of a 
solution that many peers may not recognize.  
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5.3     Affect and Creativity 

 Positive affect (feelings, emotions, dispositions and beliefs) have been associated 
with the creative process (Eubanks et al.  2010 ; Leu and Chiu  2015 ). Much of the 
research in this area is focused on developing a work place environment to encour-
age creativity (Amabile et al.  2005 ; Bledow et al.  2013 ) and in the fi eld of social 
psychology (Baas et al.  2008 ; Jauk et al.  2014 ; Nijstade et al.  2010 ). A common 
premise in these studies is that affective states play a signifi cant role in stimulating 
creative thinking and is a factor that can be infl uenced. 

 Amabile et al. ( 2005 ) studied the relationship between an individual’s affective 
state and their daily creative activities in the work place. Their fi ndings suggest that 
affect plays a more prominent role in organizational theories of creativity than pre-
viously thought and that these fi ndings might extend beyond the study of creativity 
in the work place to a broader concept of the nature of creativity. 

 In their Dual Pathway to Creativity Model, Nijstad et al. ( 2010 ) theorized that 
creativity could be achieved via a fl exibility pathway or a persistence pathway. The 
fl exibility pathway acknowledges prior work in assessing fl exibility, fl uency, and 
originality with respect to creativity. This pathway is associated with breaking away 
from habitual thinking and the ability to switch fl exibly between multiple approaches 
to a task. The persistence pathway acknowledges that creative ideas may also 
emerge as a result of hard work and systematic, in-depth explorations of a few per-
spectives. While one might infer that these two pathways are somewhat diametri-
cally opposed, Nijstad, De Dreu, Reitzschel and Baas suggest that the creative 
individual may switch between pathways over the course of solving a problem. 
Applications of this model in seeking to improve creativity in the work place are 
readily apparent as are connections to several of the Mathematical Practices in the 
Common-Core State Standards – Mathematics (National Governors Association 
Center for Best Practices and Council of Chief State School Offi cers  2010 ). 

 While most of the work in this area is recent, Fiest’s 1998 meta-analysis of 
personality and creativity concluded, “that in general, a “creative personality” does 
exist and personality dispositions do regularly and predictably relate to creative 
achievement” (as cited in Runco  2014 , p. 267). Seminal work done by Donald 
MacKinnon at the Institute for Personality Assessment and Research (IPAR) still 
holds true today (Runco  2014 ). MacKinnon identifi ed lability as a measure of 
creativity. His colleague, Harrison Gough noted that, “though there is a facet of high 
ego strength in this scale [lability], an adventurous delighting in the new and differ-
ent and a sensitivity to all that is unusual and challenging, the main emphasis seems 
to be on an inner restlessness and inability to tolerate consistency and routine” 
(as citied in Runco  2014 , p. 269). 

 The inability to tolerate consistency and routine is mirrored in Goldin’s ( 2009 ) 
issues of integrity and intimacy. When mathematics is taught as mainly a series of 
rules and procedures, serious issues of integrity may arise for the child. She writes, 
“at some level, I would conjecture, the child  knows  that something is missing…
children who have greater mathematical ability and potential for developing 
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inventiveness are likely to have the more serious integrity issues around conceptual 
understanding” (p. 190). Eventually these integrity issues result in one of three 
outcomes for the child: (1) take a risk and pose a question, (2) accept the lack of 
meaning, or (3) assume that I am not good with math. Mathematical problem solving 
is an intimate task, one in which the individual invests a signifi cant amount of atten-
tion and energy in seeking a solution. It takes social courage to present a new 
approach or idea publicly, especially when it may challenge the accepted truth as 
conveyed by the teacher or textbook. 

 Goldin’s ( 2009 ) concluding thoughts connect to MacKinnon’s construct of 
lability (see Runco  2014 ), to Nijstad et al. ( 2010 ) Dual Pathway to Creativity Model, 
and to Movshovitz-Hadar and Kleiner ( 2009 ) discussion of courage. She writes:

  Thoughtful attention [to] the affective domain can result, over many years, in a kind of 
 strength of  purpose in the pursuit of mathematical understanding. Then the growing child 
builds affective structures that literally last a lifetime, enabling continuing curiosity and 
mathematical persistence and perseverance, representing essential information, evoking 
powerful problem-solving heuristics and learning strategies, stimulating inventiveness and 
following out the resulting ideas, and promising the continuing thrill and long-term satis-
faction associated with the achievement of new mathematical insights (p. 193). 

5.4        Mathematical Problem Solving 

 In his work,  Mathematics as a Creative Art , Halmos ( 1983 ) wrote:

  Mathematics – this may surprise you or shock you some – is never deductive in its creation. 
The mathematician at work makes vague guesses, visualizes broad generalizations, and 
jumps to unwarranted conclusions. He arranges and rearranges his ideas, and he becomes 
convinced of their truth long before he can write down a logical proof. The conviction is not 
likely to come early – it usually comes after many attempts, many failures, many discour-
agements, and many false starts (p 256–257). 

   Mathematical problem solving (MPS) differs from the mathematical exercises 
on which K-16 students spend time working to develop mathematical technical 
skills, exercises often comprised of repetitive tasks in which students are asked to 
fi nd answers to a series of short, similar exercises. MPS tasks used to develop cre-
ativity are not dissimilar from the work of mathematicians as described by Halmos. 
Indeed they “are ones for which students have no memorized rules, nor for which 
they perceive there is one right solution method. Rather, the tasks are viewed as 
opportunities to explore mathematics and come up with reasonable methods for 
solution” (Hiebert et al.  2000 , p. 8). 

 As with the construct of mathematical creativity, MPS continues to be studied 
and the basic concept expanded. MPS simultaneously enjoys and suffers from mul-
tiple operational defi nitions. Chamberlin ( 2008 ) in a survey of 20 mathematics edu-
cation experts from North America, Europe, and Israel, refi ned the conception of 
MPS in a Delphi Study, ultimately defi ning it as comprised of both processes and 
characteristics. The most commonly agreed upon processes were: (1) engaging in 
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cognition, (2) seeking a solution, (3) communicating ideas, (4) engaging in iterative 
cycles, (5) defi ning mathematical goals, and (6) mathematizing situations to solve 
problems. Regarding characteristics, the best problem solving tasks can: (1) be 
solved with more than one tool and more than one approach, (2) be used to assess 
level of understanding, and (3) require the implementation of multiple algorithms 
for a successful solution.  

5.5     Iconoclasm 

 “Dare to be a radical, but don’t be a damn fool,” (Baron as cited in Runco  2014 , 
p. 275). In his writing about the relationships between creativity, personality and 
motivation, Runco shares with his reader descriptors of the creative individual from 
a variety of scholars such as independent, non-conformist, rebellious, unconven-
tional, norm-doubting, and contrarian. Also in 2014, the authors 2  proposed adding 
iconoclasm to fl exibility, fl uency, originality, and elaboration as components to 
measure creative potential. Iconoclasm differs from the four previous components 
in that they are manners through which creative products are manifested during 
mathematical problem solving episodes, while iconoclasm is an affective state that 
must be met for creativity to emerge. 

 Iconoclasm pertains to affect (feelings, emotions, dispositions, and beliefs) more 
than it does to cognition, though the two are intricately intertwined. In essence, if 
one perceives either restrictive policies within an educational environment (such as 
strict adherence to textbook solution methods) or the classroom teacher (with all the 
“right” answers) as the ultimate authority, then the individual’s creative abilities will 
likely be curtailed. As iconoclasm pertains to the world of psychology of mathemat-
ics, MPS, and creativity, it may be considered unthinkable to challenge conventions 
in MPS as perhaps less than effi cient. As an example, a teacher of young elementary 
students may be stuck with a partial products method to multiply several digit 
numerals because the textbook expects students to learn multiplication in that man-
ner. However, a promising young mathematician may fi nd a more effi cient and 
insightful manner to conduct multiplication and share it with the class. When this is 
done, the act of iconoclasm has occurred. 

 Another way in which iconoclasm varies from the previous four subcomponents 
of creativity is that it precedes creative product output rather than being manifested 
in the products. That is to say that without iconoclasm, the remaining four sub con-
structs would never be considered germane to the study of mathematical creativ-
ity because, although there would continue to be mathematical products, few would 
be creative. 

 Mathematical problem solvers that have substantial levels of iconoclasm are 
theoretically more likely to recognize novel solutions, possibly because they may 
not experience (or have learned to embrace) high levels of anxiety, common to 

2   Chamberlin and Mann  2014 . 
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many others, when solving a problem. Additionally, such problem solvers may 
choose not to employ commonly accepted algorithms simply to deviate from peer 
problem solvers, and they may do it with relatively low anxiety (a higher level of 
intellectual courage). Moreover, they may be inclined to share their solution(s) with 
peers with very little fear of how they will be perceived (high level of social 
courage). 

 Iconoclasm has its roots in religion and technically translates to the breaking of 
icons. The interpretation of iconoclasm from centuries ago pertains to tearing down 
or attacking cherished idols, a rebellious act viewed as dissension or heresy. More 
recently, the term iconoclast has surfaced and pertains to the person that precipitates 
or originates an act of iconoclasm. The two applications of iconoclasm, in religion 
and in the mathematical problem solving sense, converge in that in each instance, 
the commonality is courage to deviate from what is expected, while the default is to 
accept commonly held beliefs, such as algorithms, without question. In the religious 
context, courage is required to challenge cherished idols and is often undertaken at 
great risk to personal safety. Though situations in mathematical settings (e.g., a 
mathematics classroom) may not be life threatening, a problem solver also needs 
courage to deviate from the norm in order to identify  potentially  creative solutions 
and then to share such solutions with peers and teachers. The term  potentially  is 
important here – not all creative attempts at solving a problem will be successful – 
but having the courage to share an approach offers opportunities for collaboration 
and discourse that may eventually result in a successful solution (Halmos’s vague 
guesses, broad generalizations, unwarranted conclusions). 

 For example, if two students are solving the same problem and the student with 
the higher degree of iconoclasm is confi dent in sharing a highly creative problem 
solving solution (e.g., one that is particularly original/novel with respect to the 
“taught” methods or other approaches in the classroom), then the teacher's willing-
ness to listen to the solution and provide constructive feedback rewards the attempt 
and encourages further exploration. On the contrary, the student with a low degree 
of iconoclasm may be fearful that the teacher will not be receptive to an alternate 
solution, so the student may have little impetus to follow through or invest the 
energy in producing and/or sharing a highly creative response. If unsuccessful, it is 
not unreasonable to assume this student labels either the problem as too hard or his 
abilities as inadequate – both of which are unfortunate and avoidable outcomes. 
While the second student may benefi t from observing the teacher’s interactions with 
the fi rst student, encouraging a more iconoclastic approach to future mathematical 
problem solving activities, it is all too common to see students disengage with an 
“I’m just not good at math” attitude when struggling with a problem. The teacher is 
thus challenged to use all the pedagogical skills at his or her disposal to encourage 
students to “solve problems in novel ways and post new mathematical questions of 
interest to investigate” (Johnsen and Sheffi eld  2012 , p. 16). 

 In short, the teacher or learning facilitator needs to create a favorable environ-
ment (Amabile et al.  2005 ; Bledow et al.  2013 ; Goldin  2009 ; Hiebert et al.  2000 ; 
Merkel et al.  1996 ) for individuals to manufacture creative products. In this climate, 
all students benefi t. However, in situations in which the teacher does  not  create a 
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climate conducive to the emergence of creative products, it is likely that only 
students with a high degree of iconoclasm will be inclined to develop creative prod-
ucts, despite the fact that students with low levels of iconoclasm may have similar 
levels of creative potential. This is because individuals that are not fearful of higher 
authorities or peers likely have lower levels of anxiety, higher self-effi cacy and self- 
esteem, and a better attitude about mathematical problem solving. 

 Fluency, fl exibility, originality, and elaboration are manners in which creative 
products are measured and have been investigated to a large degree. Individuals that 
study creativity in mathematics value creative output by asking whether such prod-
ucts were highly novel (original), added to the number of solutions (fl uency), exhib-
ited high degrees of fl exibility in thinking, or added to the depth of explanations 
(elaboration). Runco and Albert’s ( 1986 ) Threshold Theory of Creativity found a 
relationship between creativity and intelligence up to a point (~120 IQ). Feldhusen 
and Westby ( 2003 ) determined that an individual’s knowledge base is the funda-
mental source of his or her creative thought. Bern ( 2008 ), writes about his efforts to 
understand the neurological base of creativity in his non-technical book,  Iconoclast : 
 A Neuroscientist Reveals How To Think Differently . Bern’s book reviews the lives of 
several well-known iconoclasts and introduces the reader to the fi eld of neuroeco-
nomics, a multi-disciplinary discipline less than two decades old, that seeks to 
understand human choice and decision making (for a brief history of neuroeconom-
ics see Glimcher et al.  2009 ). While Bern does mention creativity briefl y, there is no 
connection made to creativity research literature. That said Sternberg ( 2009 ) fi nds 
merit in Bern’s work, especially the recognition of iconoclasticty as a quality that 
can be developed, a necessary condition to the study of means to develop creativity 
by encouraging iconoclasm. Combined, these various approaches to understanding 
the nature of creativity suggest that a combination of some degree of intelligence, 
knowledge, and iconoclasm are necessary for creative products to emerge from 
problem solvers. While there is a body of research to support the fi rst two conclu-
sions, research is needed to develop the means to assess an individual’s level of 
iconoclasm in mathematical problem solving situations and to explore the relation-
ships with other contributing factors. 

5.5.1     Examples of Iconoclasm in Mathematics 

 It appears as though iconoclasm has always been a trait of creative mathematics 
because each novel revolutionary mathematical idea is met with skepticism, and it 
often requires signifi cant time for the fi eld to accept the new paradigm (Movshovitz- 
Hadar and and Kleiner  2009 ). Negative numbers, for example, were initially thought 
to be a pointless idea and therefore not relevant to mathematics. The Chinese were 
originally credited with conceiving the idea of negative numbers, though the Greeks 
(Diophantus, specifi cally) used them with some degree of regularity to explore con-
cepts in what is now known as algebra some 500 years later (Rogers  2014 ). In 620 
CE, the Indians saw use for them in the context of fortunes and debts. Despite Greek 
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use of negative numbers, Europeans were not wholly accepting of them until around 
1400 AD (Rogers). As recent as the 1800s, only 200 years ago, some such as Carnot 
(in 1803) and Busset (in 1843) did not accept negative numbers as a workable con-
cept in mathematics (Boyé  no date ). In fact, Busset saw negative numbers as the 
reason that mathematics was diffi cult to teach. Busset went so far as to mention that 
mental aberrations, such as the concept of negative numbers, might prevent gifted 
minds from studying mathematics (Boyé). It is thus readily apparent that a signifi -
cant portion of mathematics, commonly accepted by today’s mathematicians and 
introduced to students in grade 6 (Common Core Standards Writing Team  2012 ), 
was, at one time, a subject of much debate. 

 A characteristic that mathematically creative individuals may possess is icono-
clasm. This is because they may feel more comfortable or less anxious posing solu-
tion paths to problem solving tasks that are not commonly accepted solutions than 
peers without similar levels of courage. Few have discussed the reason for the emer-
gence of creative output. In other words, why does a mathematical problem solver 
pursue highly creative solutions? This is the point at which iconoclasm, as a neces-
sary aspect of creativity, begins to take meaning. Within the construct of icono-
clasm, individuals seek creative and innovative solutions to mathematical problems 
because they feel that the currently agreed upon solutions are not adequate or they 
are convinced that their solution can add to the body of knowledge in a particular 
mathematical content area. In some cases, iconoclastic problem solvers (i.e., those 
with high degrees of iconoclasm) may seek innovative solutions because they want 
to stand out among colleagues. Few educational psychologists have contemplated 
the reason why creative products emerge from individuals. In considering one’s 
motive to create a new solution, the psychological constructs of affect in MPS 
(McLeod and Adams  1989 ), such as feelings, emotions, and dispositions, are con-
sidered relative to why individuals are creative. With the commonly used con-
structs of creativity (e.g., fl uency, fl exibility, originality, and elaboration), the 
discussion of why creativity emerges is rarely considered. With motivation being 
the sum-total of affect (Anderson and Bourke  2000 ), the theory of iconoclasm sud-
denly warrants serious consideration as a component of creativity because it explains 
why problem solvers create solutions to tasks. More specifi cally, problem solvers 
with high degrees of iconoclasm may be motivated to be different and/or more effi -
cient, explicit, or novel than peers. 

 Giftedness, like mathematical problem solving, has many conceptions. A com-
monly accepted conception of giftedness is Renzulli’s Three-Ring Conception of 
Giftedness ( 1978 ) in which he defi ned it as being comprised of above average 
ability, task commitment, and creativity. Regarding task commitment, Renzulli 
( 1998 ) uses the terms perseverance, determination, dedication, high levels of 
interest, enthusiasm, and fascination, all of which are components of motivation. 
Subsequently, Renzulli added co-cognitive traits through his Operation Houndstooth 
(Renzulli  2002 ) research. Each of the six areas outlined by Renzulli in Operation 
Houndstooth (i.e., optimism, courage, romance with a discipline, sensitivity to 
human concerns, vision, and physical/mental energy) has a strong connection to the 
affective domain and adds fuel to the discussion of why problem solvers seek solutions. 
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Baer and Kaufman’s Amusement Park Theory of Creativity ( 2005 ) seconds this 
notion with initial requirements for the emergence of creativity, or as they call it, the 
‘ticket into the park,’ which includes intelligence, motivation, and the environment.  

5.5.2     Relationship of Iconoclasm to Fluency, Flexibility, 
Originality, and Elaboration 

 Given an established relationship between iconoclasm and motivation, one may 
wonder about the interrelationship between iconoclasm and the remaining four 
components of creativity (i.e., fl uency, fl exibility, originality, and elaboration). The 
theory of iconoclasm as a fi fth construct of creativity in mathematics helps research-
ers understand the connection of the remaining four. This is because it explains the 
motive for creativity as Forgeard and Mecklenberg ( 2013 ) attempted. Critical to 
their work was the component of intrinsic motivation in relation to the generation of 
creative products. Further, they utilized the concept of pro-social motivation (Grant 
and and Berg  2010 ), which Forgeard and Mecklenberg distinguish as “one’s desire 
to contribute to other peoples’ lives” (pp. 255, 257). When iconoclasm is viewed 
relative to motivational factors, for example pro-social motivation, its relationship 
to the four subcomponents of creativity is revealed; the iconoclast has an intrinsic 
need to fi nd a better solution. Prior to realizing that iconoclasm may have this degree 
of interaction with the model of creativity, the four accepted sub-constructs were 
largely disparate facets (with the exception of fl exibility and fl uency in thinking). 

 While examples abound of iterative improvements in things that were once 
“good enough” in the our daily life (e.g. each new generation of cell phones is more 
effi cient, multidimensional, smaller, and faster), often in a classroom setting fi nding 
the anticipated answer by a prescribed path is highly valued. The motive for indi-
viduals seeking more than one solution, or fl uency, to a problem may be to identify 
the most effi cient solution, thus placing themselves in a position to capitalize on the 
most sophisticated and quickest method in future situations. In many cases, the 
impetus for fl uency, or a greater number of options in solution paths, pertains to 
problem solvers wanting more options than they currently have. To accomplish this 
objective, problem solvers may need to be iconoclastic and challenge the system 
(e.g., teacher or textbook) in order to identify a greater number of solution paths. In 
many cultures, be it a country, classroom, or work environment, it may be unaccept-
able to challenge a system that is already producing  adequate  results. Iconoclastic 
problem solvers, however, may feel that “good enough” just is  not  good enough and 
thus seek a more effi cient solution path than what their environment accepts. 
Fluency and fl exibility are intricately intertwined in the respect that individuals may 
seek novel perspectives because they feel the process may prove fruitful in a par-
ticularly original solution path. The solution path may have positive social out-
comes thus reinforcing the decision to challenge the system. 
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 The use of multiple representations may help develop an increased number of 
solution paths. As an example, van Dyke and Craine ( 1997 ) suggest that algebra has 
at least four representations (i.e., verbal statement or text, equation, table of values, 
and graph) that can be utilized to solve a problem. Elaboration during problem solv-
ing may provide opportunities to create new solutions because, in explaining solu-
tions, fl aws may be uncovered. Ideally, through this process, novel solution paths 
are precipitated. After all, if the previous solutions were acceptable and worked 
well, the impetus to explore additional representations may only emerge if there are 
reasons to examine the processes used in depth. 

 In identifying such inadequacies in commonly accepted solutions or algorithms, 
creative problem solvers are intrinsically driven, or have a motivation, (Forgeard 
and and Mecklenburg  2013 ) to identify a more creative, sophisticated, or innovative 
solution because the need exists, if only from a pro-social perspective. They may 
also develop the solution out of pure enjoyment or aesthetic appreciation of math-
ematics as Krutetskii ( 1976 ) suggests. Csikszetentmihalyi ( 2014 ) writes, “the cre-
ative person cannot be entirely invested in the commonly accepted conceptual 
confi gurations of his or her domain…a creative person should be dissatisfi ed with 
the state of knowledge and be motivated to search for alternatives” (p. 164). This 
dissatisfaction may manifest itself in a young child inventing her own multiplication 
and division algorithms (Ambrose and et al.  2003 ) or in a seasoned mathematician 
questioning a long accepted “truth” in mathematics and disputing it. 3  Alternatively, 
highly creative individuals in mathematics may opt not to seek alternate solutions in 
MPS situations if they perceive the problem as uninteresting, lacking challenge, and 
thus unworthy of devoting additional creative and cognitive resources or if they are 
suffi ciently pleased with the solution provided. In this respect, the iconoclastic 
nature of a creative problem solver must be awakened to realize a need for a  better  
solution.   

5.6     Areas for Future Research 

 One of the aspects of educational psychology that makes it a well-respected disci-
pline is the reluctance of the fi eld to accept newly proposed theories without empiri-
cal evidence to substantiate them. Consequently, researchers interested in iconoclasm 
in mathematical problem solving have several options. Foremost among them is the 
development of an instrument to investigate whether iconoclasm, in the form of 
challenging commonly accepted algorithms, is something that mathematics prob-
lem solvers will embrace when faced with a relatively ineffi cient solution. The work 
of Leu and Chiu (2015) and Tjoe ( 2015 ) are moving the fi eld in this direction. 
Chamberlin ( 2010 ) has developed the Chamberlin Affective Instrument for 

3   Euler’s sum of power conjecture stood for almost 200 years before a short paper (two sentences) 
was published in the Bulletin of the American Mathematical Society disproved the theory (Lander 
and and Parkin  1966 ). 
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Mathematical Problem Solving (Chamberlin and Powers  2013 ), and the authors are 
now working to construct and validate an integrated assessment tool. Paper and 
pencil assessments often lack the “intimacy” needed to understand the thought pro-
cess and affective engagement involved in creative problem solving activities. 
Krutetskii’s ( 1976 ) approach of having mathematical problem solvers create solu-
tions, look at their solutions for evidence of creativity, and then interview such indi-
viduals in an attempt to understand their thought process is diffi cult to use with 
large sample sizes, yet offers the opportunity to explore deeply the level of icono-
clasm in individual responses. In the end, the construct of iconoclasm needs to be 
empirically tested, and while several prospective approaches appear to exist for 
such an investigation, multiple studies are needed.     

  Note   An earlier version of this chapter was presented as a concept paper at the 8th International 
Conference on Creativity in Mathematics and Education of Gifted Students, Denver, Colorado. 
2014.  
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Chapter 6
When Mathematics Meets Real Objects: How 
Does Creativity Interact with Expertise 
in Problem Solving and Posing?

Florence Mihaela Singer and Cristian Voica

Abstract The paper analyzes the results of activities undertaken by Mathematics 
students enrolled in a pre-service teacher-training program. Students were given the 
task to describe the way of building a figure from which one could get a box, to 
identify the geometric properties that allow producing the box, and to propose new 
models from which new boxes can be obtained. For creativity analysis, a cognitive 
flexibility framework has been used, within which students’ cognitive variety, 
cognitive novelty, and their capacity to make changes in cognitive framing are 
analyzed. The analysis of some specific cases led to the conclusion that creativity 
manifestation is conditioned by a certain level of expertise. In the process of building 
a solution for a nonstandard problem, expertise and creativity support and mutually 
develop each other, enabling bridges to the unknown. This interaction leads also to 
an increase in expertise. Moreover, in order to get individual relevant data, the iden-
tification of creativity should take place based on tasks situated in the proximal 
range of the person’s expertise but exceeding his/her actual level of expertise at a time.

Keywords Mathematical creativity • Modelling • Cognitive flexibility • Expertise

6.1  Introduction

What is the relationship between expertise and creativity? This is a question that has 
generated lots of controversy in literature over time. Some authors (eg Diezmann 
and Watters 2000) argue that expertise is a precondition for creativity. Other authors 
(eg Craft 2005), accepting the existence of “small c creativity”, say the contrary, 
arguing that because creativity can occur in any person, we must accept a spectrum 
of knowledge – therefore of expertise, in connection with creativity (Craft 2005).
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We started our project with the intention to answer the question: How does 
students’ mathematical creativity manifest in a context in which technology and 
modelling interact with theoretical mathematics? Our study was initiated by the fact 
that we noticed very different behaviors in terms of creativity when placing a group 
of students - prospective mathematics teachers in a context of problem solving and 
problem posing that involves modelling. Thus, while progressing with our analysis, 
another question became dominant, which actually includes the previous one: 
How does creativity interact with expertise in problem solving and posing? As a 
result, we intend to study the link between creativity and expertise in a complex 
situation, which occurs in a context combining problem solving, problem posing, 
and modelling.

6.2  Framework

6.2.1  Problem Solving and Problem Posing

In his well-known book How to Solve It, Pólya (1945) identified four steps in solv-
ing a problem: (i) understanding the problem; (ii) developing a plan; (iii) carrying 
out the plan; and (iv) looking back. Subsequently, lots of frameworks have been 
developed for studying the problem solving process (eg Schoenfeld 1992).

We have found a variety of approaches for studying problem posing in the litera-
ture, as well (eg Brown and Walter 2005; Jay and Perkins 1997; Singer et al. 2015). 
In this paper, we accept Silver’s position, stating that problem posing refers to the 
generation of (completely) new problems, and also to the re-formulation/modifica-
tion of given problems (Silver 1994). We specifically address here the context of 
problem modification.

A conceptual cognitive framework for problem solving, with various applica-
tions in problem posing was developed by Singer and Voica (2013). This framework 
highlights four operational categories: decoding, representing, processing, and 
implementing (Singer and Voica 2013).

6.2.2  Mathematics Modelling

Mathematical modelling can be seen as a process of translating between the real 
world and mathematics in both directions (Borromeo Ferri 2006). In recent years, 
the following description of an ideal modelling process (according to Blum and 
Leiss 2007) is frequently discussed: starting from a real world situation, this is 
simplified and/or structured: one thus arrives to a real model of the situation. This is 
transposed in a mathematical language, thus generating a mathematical model. 
The processing of the mathematical model leads to some results, which are then 
interpreted and validated into the real situation.
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In the present study, students had to describe mathematically a real object – 
therefore to build a mathematical model of the real object, and then to extend the 
model so that to design new more complex objects. Using Kaiser and Sriraman’s 
(2006) terminology, this type of task is framed into realistic or applied modelling 
(solving real world problems, understanding of the real world, promotion of model-
ling competencies).

6.2.3  Creativity

Creativity had long been viewed as a domain-general phenomenon. However, 
recently, new evidence show that creativity is not only domain-specific, but it even 
seems to be task specific within content areas (eg Baer 2012).

There is no consensus concerning the definition of creativity and its framework 
of study; there is no consensus in studying mathematical creativity either. There is 
however certain consensus regarding the difference between (advanced) research 
mathematicians creativity –considered as “extraordinary” or “absolute” creativity, 
and creativity in school mathematics – part of “everyday” or “relative” creativity  
(eg Craft 2003; Lev and Leikin 2013; Sriraman 2005). In addition, “big “C” creativity” 
and “small “c” creativity” are largely discuss (eg Bateson 1999; Gardner 2008).

Usually, creativity is studied starting from Torrance’s tests, which is based on 
four related components: fluency, flexibility, novelty, and elaboration. Starting from 
here, various frameworks for studying creativity have been generated, usually 
adapted to specific types of tasks.

For problem solving context, Leikin (2013) uses multiple-solution tasks as a lens 
to observe creativity. The interplay between individual and expert solution space is 
an expression of creativity and the dimensions of her model are originality, fluency 
and flexibility, which are aggregated into creativity score by a research-based and, 
subsequently refined, scoring technique.

The construct of spaces of discovered properties is at the core of a new frame-
work (Leikin and Elgrabli 2015), advanced to explore the complex relationship 
between creativity and knowledge in the context of an investigation task set in a 
dynamic geometry environment. The discovered properties were assessed from the 
point of view of their novelty, complexity of auxiliary constructions, and the com-
plexity of their proofs.

For problem posing context, Kontorovich and Koichu suggested a framework 
based on four “facets”: resources, heuristics, aptness, and social context in which 
problem posing occurs (Kontorovich and Koichu 2009). A more recent refinement 
of this framework has integrated task organization, knowledge base, problem pos-
ing heuristics and schemes, group dynamics and interactions, and individual consid-
erations of aptness as parameters in analyzing creativity in problem posing situation 
(Kontorovich et al. 2012).

A different approach to creativity, one based on organizational theory, has been 
taken by Voica and Singer (2011, 2013). Their framework relies on the concept of 
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cognitive flexibility. Cognitive flexibility is described by: cognitive variety, cognitive 
novelty, and changes in cognitive framing. Cognitive variety manifests in the 
formulation of different new problems/properties from an input stimulus; cognitive 
novelty captures the innovative aspect in the posed problem – its distance from the 
starting element; while changes in the participant’s mental frame refer to shifts in 
the “on-focus” elements during the problem posing. Thus, cognitive flexibility 
arises as a complex, non-linear interplay between these dimensions. Consequently, 
the construct of cognitive flexibility opens up the possibility to capture different ways 
of being creative, namely through the differing loads on the three dimensions.

In the present study, we use the cognitive-flexibility framework in analyzing 
data. We consider that this framework better corresponds to our case, in which 
communication tasks related to problem solving, problem posing and modeling of 
problem situations occur. By using this framework, we can capture, beyond math-
ematical creativity, implications related to communication and social interactions 
reflected in problem posers’ cognitive approach.

6.2.4  Experts Versus Novices

Expertise implies the existence and use of two types of knowledge: explicit knowl-
edge of facts, principia, formulae pertaining to the domain, and implicit knowledge 
of how to operate with them (Sternberg 1998).

Glaser (1999) argued that, because self-monitoring – the ability to observe and, 
if necessary, reshape one’s performance – is a hallmark of expertise, this skill should 
be emphasized in instruction. How to arrive at doing these in the real classroom? 
Although a very tempting concept from the point of view of artificial intelligence, 
the idea of expertise was not very much explored in psychology in relation to educa-
tion. The criteria developed by Glaser (1988) for comparing experts and novices are 
still valid. Glaser characterizes expertise through six features (“generalizations” in 
Glaser’s terminology: knowledge organization and structure, depth of problem rep-
resentation, theory and schema change, proceduralized and goal oriented knowl-
edge, automaticity, and metacognitive self-regulatory skills; because we use these 
features further, we detail them below.

• In terms of knowledge structure and organization, the expert has structured infor-
mation items that are integrated into previous knowledge organizations so that 
they are rapidly selected from memory in large units, while novices possess 
punctual knowledge, consisting of isolated elements that display a superficial 
understanding of domain-specific key concepts and terms. (A)

• Regarding the complexity of problem-solving representation, the novice solves a 
task starting from its surface features, while the expert makes interferences and 
identifies principles underlying the surface structures. (B)

• In changing thinking schemes, the expert amends his/her own knowledge theo-
ries, and develops schemes that facilitate more advanced thinking, while novice 
manifests rigidity in changing a thinking scheme. (C)
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• In terms of goal-oriented procedural knowledge, the expert displays functional 
knowledge, while novice possesses information without clearly understanding 
the applicability conditions. (D)

• In terms of automation that reduces the concentration of attention, an expert can 
focus attention while alternates between basic capacity and higher levels of strat-
egy and understanding, using automate thinking to achieve good performance, 
while novices have difficulty in sharing attention, they frequently get lost in 
details and are unable to concentrate on essential facts. (E)

• Regarding metacognitive capacities of self-regulation, the expert check rapidly 
and intuitively the solution to a problem, proves accuracy in judging its diffi-
culty, in assessing own knowledge and understanding, can ask questions, predict 
the outcome of the work, and use time effectively, while the novice tackles a 
linear approach, without looking ahead, and without controlling timing and work 
outcomes. (F)

6.2.5  Expertise and Creativity

During this study, we have started by exploring students’ creativity and we came up 
by analyzing the students’ level of expertise. We therefore ask ourselves: what is the 
relationship between these concepts? There are conflicting views about it, depend-
ing on how creativity is defined, but also depending on the domain being surveyed. 
We will further refer to creativity in school mathematics. For Diezmann and Watters, 
for example, for a student to be creative, he/she needs some intellectual autonomy 
and expertise (Diezmann and Watters 2000). Expertise is therefore seen as a neces-
sary precondition for the manifestation of creativity. In his studies, Baer nuanced 
this relationship: he admits as obvious that some degree of expertise is important for 
the expression of creativity, but the question is what kind of expertise is required in 
a particular domain (Baer 1998, 2010).

On the other hand, Craft (2005) admits that every student is capable of creative 
manifestations; the consequence would be that expertise is not absolutely necessary 
for the manifestation of creativity or, at least, that we should accept a spectrum of 
knowledge at different levels.

6.3  Method

6.3.1  Sample and Task

The data comes from students in mathematics – prospective teachers who have 
received the same task during a Mathematics Education course. The task (listed in 
Annex) had two parts. In the first part, students approached a task of communication 
(“telephoned” description of a geometric configuration – Fig. 6.1.) consisting of 
producing a list of instructions based on which an interlocutor who did not have 
access to seeing the configuration have to reproduce it. After finishing this activity, 
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students had to interact with the person “at the other end (of the phone)”, and to 
improve the instruction list taking into account the received feedback and, eventually, 
to validate the new list of instructions with another partner (the validation consisted 
of that the partner was able to make an object that meets certain geometric 
properties).

In the second part of the task, students explored geometric properties of the 
given configuration, and tried to develop generalizations.

For the first part, students could work in groups of two, while for the second they 
had to work individually. There were students who preferred to work alone for the 
entire task. To solve the task, the students had a period of three weeks. In total, 26 
students responded to this task: they constitute our sample for research.

6.3.2  A Modeling Context

The task proposed to students involves a modelling process. This is because, in a 
first phase of the task, properties related to the technological process for obtaining 
the box are to be interpreted in mathematical terms; thus one builds the mathemati-
cal model of the real object. In the second phase, this model was faced up with the 
possibility of extension, which allows obtaining new objects of the same category. 
The validation of the new mathematical proposals was made by obtaining geometric 
configurations and the actual construction of new boxes.

In achieving the mathematical model, students were exposed to a context of 
communication and social interaction, which led to the description of the model in 
an implementable technological manner (the students listed the steps of a techno-
logical process). This is another argument for interpreting the task as being a model-
ling one.

6.4  Results

6.4.1  What Elements of the Geometrical Configuration  
Were Relevant for Students?

Students’ instruction lists and their recommendations for constructions show that 
they focused on the decomposition of the given figure in certain components. 
We briefly present the elements that students highlight in formulating instructions 

Fig. 6.1 The images 
initially showed to students 
(the box was presented as 
physical object, in the 
classroom)
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for (telephoned) reproduction of the given figure and for obtaining the box. (A 
broader discussion on the results presented in this paragraph is found in Pelczer 
et al. 2015). We have seen a variety of starting approaches. Below, there are a few 
selected. In the issued instruction lists, students frequently showed some networks/
tessellations of the plan, which guided the construction achievement. Most often, 
there is about a network of circles or plane coverage with squares and circles 
inscribed or circumscribed to them. Figure 6.2 shows three configurations that stu-
dents perceived within the initial figure, namely: A) network of circles; B) squares 
and inscribed circles; C) squares and circumscribed circles.

A particular situation occured in the response given by one of the teams who 
used GeoGebra (although this software is not recommended by the curriculum). 
The team Miron & Ana included Fig. 6.3 in their solving. Here, the first figure 
shows a plan coverage with squares and circles inscribed and circumscribed to 
them, while the second figure (“clean and ready to cut”) only highlights a pattern of 
circles.

a b c

Fig. 6.2 Configurations that students perceived within the initial figure: (a) network circles;  
(b) squares and inscribed circles; (c) squares and circumscribed circles

Fig. 6.3 Drawings made by Miron and Ana using GeoGebra
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6.4.2  What Geometric Properties Do Students Identify?

For identifying geometrical properties it is not enough for the students to observe 
the initial configuration because the task statement does not contain data about 
the figure; they need to translate facts related to the technological process into 
a mathematical language. Therefore, in describing the configuration, students had 
to identify dominant perceptual elements of the mathematical model.

For example, students have noticed that to obtain the box, some parts of the 
figure should coincide when overlapped. “Perfect” overlap was expressed in some 
cases through congruence. There are also cases where students retain from overlap-
ping parts of the figure only the equality of their areas: the mathematical property 
identified in this case is “weak” because it does not translate, in mathematical terms, 
the complexities of the real object. In other words, in this case the properties sug-
gested by students do not allow a unique characterization of the given configuration, 
but have degrees of freedom that lead to a broader class of configurations. 
Consequently, two categories of properties that students remark within the given 
configuration occur: strong properties and weak properties.

More precisely

Strong property: is part of a mathematical model that uniquely characterizes the 
initial figure from which the box is obtained. In other words, it is a property 
belonging to a minimal set of necessary and sufficient conditions that ensure 
identical reproduction of the object.

Weak property: expresses mathematical features necessary but not sufficient, of the 
given figure. In other words, it provides a class of possible configurations of the 
given basic elements in which the initial configuration is found, but one can find 
there other configurations as well.

Table 6.1 shows the geometrical properties identified by the students from our 
sample through the model specifications that allow building the box. For the clarity 
of presentation, we organized the students identified properties into 5 categories of 
content. We have also selected some significant comments of students for the char-
acterization of the respective property. They reveal types of constraints identified in 
the mathematical model, which conditioned the making of the box.

Most students identify, in the given configuration, equal circles and regular poly-
gons. Out of these, some remain in the straightedge-and-compass constructability, 
ie they focus on polygons that can be built in this way. Table 6.1 shows separately 
content categories inscribed/circumscribed and regular polygons. Although this 
seems to be a redundancy, because any regular polygon is an inscriptible one, we 
distinguished among these categories because while some students consistently use 
circles to build polygons, others operate with regular polygons without needing the 
support of a circle.
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Table 6.1 Dominant features of the mathematical model used for building the box

Dominants identified by students Weak properties Strong properties

Highlighting  congruence The lateral faces (“lenses”) 
have equal surfaces.

Lateral faces of the box are 
congruent figures.

“When pasting the figure it 
should perfectly 
overlap” – Paul

“The figures formed by the 
intersections of circles are 
all congruent each other – so 
we can put perfectly on each 
other and form the sides of 
the box” – Andreea

The number of “convex 
lens” is even.

Interior arches are congruent 
with each other and are 
congruent with large arcs on 
the circles.

“Because they overlap two 
by two” – Paul

“Interior arches are equal to 
itself – otherwise, bonding 
would not be 
possible” – Catalin

Emphasis on geometric 
transformations

The plane figure has 
“stability” in rotations 
towards the centers of the 
circles – Cristina

Figure axis of symmetry is 
the common chord
“If you fold on the dotted 
line, figures overlap” – Anca

The figure has as a 
symmetry line the centers 
line. – Dana

“It helps to assemble the 
box” – Rodica

The faces of the box have 
symmetry axes. – Madalina

The second circle is a 
translation of the first 
circle – Adriana

The squares used have sides 
equal to the diameter of the 
initial circle – ie one can 
use the circle inscribed in 
the square.

Emphasizing tessellations

Highlighting inscribed/
circumscribed polygons

Some polygons are cyclic. The property of 
inscriptibility essentially 
intervenes in the square.

“In a circle a polygon can 
be inscribed” (Georgeta)

“The Square fits” perfectly 
“in a circle” – Andreea

Emphasis on regular polygons Square Regular polygons can be 
constructed with compass 
and straightedge.

“We can see equidistant 
points corresponding to a 
square” – Catalin

“In fact, the essential 
property in the construction 
of this figure is breaking 
the circle into four equal 
arcs, namely the opportunity 

to build the angle 
p
2
.  

Reformulated, it is 
constructible regular 
polygons” – Miron. (Miron 
states this without being 
asked a generalization at this 
stage.)

“Square is a regular 
polygon” – Gabriela
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6.4.3  What Changes Do Students Propose to the Initial Figure 
to Get Other Boxes?

The second task proposed to students required from them to alter the initial figure to 
get two new boxes of different shapes. To meet this requirement, students had to 
consider the mathematical model (reached by identifying the properties of the origi-
nal figure), to extend/modify the model, and to validate the new model by effec-
tively obtaining new boxes. Table 6.2 shows the dominants of the mathematical 
models used by the students in our sample to develop other types of boxes, different 
from the original. The dominants are given in terms of geometric properties that 
students perceived as essential in guiding the transfer from the initial object to new 
constructions.

Table 6.2 Dominants of the mathematical model used by students in the generation of new boxes

Dominant used by students
Solution – the 
modified box

Nr of stud 
arriving to 
the solution Comment

Focus on the net of a solid icosahedron 1 Concentration on the 
final product, they 
just keep the idea of 
container.

dodecahedron 1
parallelepiped 1
(regular) octahedron 2
right-regular 
pyramid with 
congruent edges

1

cylinder 1
Plan coverage with regular 
polygons

triangular box 1 Students use 
tessellations with 
squares or equilateral 
triangles.

“spectacle case” box 3
hexagonal box 1
“heart-shaped box” 1

Focus on inscriptibile/
circumscriptibile polygons

regular octagon 1 Metric aspects are 
ignored; for the first 
three cases, the 
common chord is a 
diagonal in polygons, 
not a side.

regular dodecagon 1
regular 16-gon 1
equilateral triangle 1
regular hexagon 1

Emphasis on the use of a 
regular polygon

regular pentagon 2 To achieve the figure, 
students use practical 
tools (ruler to scale, 
protractor, square 
ruler) or technology 
(GeoGebra)

regular hexagon 2
regular octagon 1

Focus on constructability with 
compass and straightedge

regular pentagon and 
hexagon

1 Students presented 
effective (ideal) 
constructions, using 
onlycompass and 
straightedge

regular hexagon and 
octagon

8
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We have identified three types of approaches used by students in modifying the 
initial given figure.

 (a) A Theoretical Approach
This approach is characterized by “perfect” figures: the students that adopted 

this approach propose changes related to the idea of regular polygon that can be 
constructed with compass and straightedge. Typically, students who have this 
approach minimally change the initial context, they just change the number of 
sides. In general, these students did not pay attention to the practical purpose of 
the task, focusing on the rigor of the mathematical constructions.

 (b) A Technological Approach
Students who adopt this approach are not interested in the rigorous construc-

tion of the figure because they have alternative instruments (ruler, protractor, or 
square ruler; graphic computer programs), and the focus is on obtaining the 
final product. For these students, the practical verification (even if there are 
flaws in combining the elements to obtain the product) replaces proof and 
argumentation.

 (c) Focus on plane figures, with no analogical 3D transfer
Some students retain from the task only that we want to form “a container”. 

These students went back to their basic knowledge (such as the classical net 
pattern of a cylinder or octahedron), actually neglecting the task constraints.

6.5  Discussion

6.5.1  Some General Comments

We will comment on the geometric properties identified by students (Table 6.1) and 
on their perceptual clues in generating new boxes (Table 6.2) from the view of mod-
eling. We note that geometric transformations have not been used to generate new 
configurations: they just remained at the level of the language used by students to 
describe the mathematical model. The properties that highlight the congruence of 
elements of the original figure was obtained by the mathematical translation of a 
technological process (the effective realization of the box), while the students who 
relate to an unfolded net of a solid as a way of generating new “products” seem to 
retain only this aspect – ie that the connection plane-space goes through unfolding 
and make a transfer conditioned by this stereotype.

Most of the students’ proposed changes (18 new proposals) are based on regular 
polygons, constructible with compass and straightedge. In fact, starting from square 
(seen as a regular constructible polygon), students undergo a process of generaliza-
tion and propose in 8 out of the 9 cases, boxes that use regular hexagons and regular 
octagons. For these students, we found a certain automatism: they use an algorithm 
corresponding to a general property (constructability of polygons with compass and 
straightedge).
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Plane tessellation with regular polygons as a dominant feature of the mathemati-
cal model represents a creative potential, yet untrained in the Romanian school. 
Some students retain that, following the instructions indicated by them, a square 
coverage of the plane appears as background. Subsequently, they do coverage plane 
with squares or equilateral triangles and, starting from this background, they pro-
pose new geometric configurations that can lead to obtain boxes.

The weak properties identified by students appear in an incomplete mathematical 
modelling. However, they allow more degrees of freedom, because they can lead to 
a wider class of geometrical configurations: therefore, they have the potential to 
facilitate a more creative approach. Strong properties usually lead to a mathematical 
model very well-articulated. The existence of this model seems to be sufficiently 
rigid to direct the solution and push students towards a theoretical approach. We 
note that, the more theoretically advanced is the mathematical model (as in the case 
of the theorem of characterization of regular constructible polygons), the stronger it 
controls generalizations. As a result, although in this case many potential solutions 
appear, they follow the same pattern, they are in the same equivalence class, so once 
the student has demonstrated mastery of this instrument, his/her results cannot be 
recorded as cognitive variety.

6.5.2  A Few Case Studies

The sample of students used for this study is relatively small. Therefore, a quantita-
tive analysis would not be relevant. On the other hand, we try to understand the 
relationship between creativity and expertise. Both features can be better captured 
by analyzing individual student responses. Therefore, we further include case stud-
ies in which students discuss how they have responded to the task, from two per-
spectives: proven expertise in the formulation of solutions, and their degree of 
creativity. We will try every time to identify, in student’s cognitive behavior, evi-
dence for the criteria that distinguish between novice and expert, detailed in Sect. 
6.2.4, and the cognitive flexibility components, within the framework used to iden-
tify creativity. In some cases it was possible to make, for a student, clear distinctions 
novice – expert or creative – uncreative. There are also situations where, based on 
available data, we could not make such distinctions.

6.5.2.1  Case 1 (Emilian)

Emilian identifies the following geometric properties of the given figure: the points 
on the two circles are equidistant, forming two squares; the interior arches are con-
gruent with the “proper” arches; inner arcs do not intersect (except their ends). 
These conditions define the initial geometric configuration, which shows that 
Emilian is able to infer the necessary and sufficient conditions underpinning this 
configuration.
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In modifying the configuration, Emilian first tries to customize to the triangular 
case – this shows specific behavior in problem solving. He realizes that, in this case, 
one of the identified conditions regarding the arcs (condition which is automatically 
checked in the given configuration!) cannot be met. He has a moment of doubt (he 
writes: “I think the box cannot be made, at least not in this way”), then he returns 
and delete/cut out some of these comments. He has a few paragraphs originally 
written, on which he returned and cut out. This behavior, on the type “step back” of 
observing own solving process, is also obvious in the analysis of the list of instruc-
tions. Initially, it contained 13 items; subsequently, based on observations made on 
the person who followed these instructions, the list was reformulated. Even if the 
task did not require (explicitly) this experiment being rebuilt (ie the new list of 
instructions to be proposed to another person), based on the new observations made, 
the list of instructions was changed again. This behavior shows, from a cognitive 
view, that Emilian has the ability to change his thinking schemes. The changes pro-
posed by Emilian – boxes using regular hexagon and regular octagon denote abstract 
mathematical thinking. Even if Emilian do not explain why “skip” over the case of 
polygons with 5 or 7 sides, the fact that he began his analysis with the case of tri-
angle proves understanding of the restrictions imposed by the constructability with 
compass and straightedge. The avoidance of certain numbers shows that Emilian 
possesses structured information (results about constructability with compass and 
straightedge), which he activates in this case. All these bring evidence for the exis-
tence of a certain way of structured organization of knowledge. Emilian obtains the 
figures through constructions made using only compass and straightedge, and 
claims that in the hexagonal box type, he checked his conjecture by building the 
box; thus proving purposely oriented procedural knowledge.

Once the checking made for one of the boxes, Emilian seems convinced that the 
other box fulfills the requirements without any supplementary checking. He thus 
expands the observed properties to the octagonal box, proving metacognitive capac-
ities of self-regulation.

Previous comments show that Emilian proves theoretical expertise: he shows 
abstract thinking, he explicitly identify necessary and sufficient geometrical condi-
tions allowing the construction of the object. In other words, his expertise compels 
him to assume a rigorous mathematical modeling of the object. To what extent does 
he show creativity in solving the task? The fundamental element to which Emilian 
refers is a regular polygon constructible with compass and straightedge. Once this 
frame built (mentally) – shaped by defining geometric properties (ie necessary and 
sufficient), he manages to identify and further modify essential elements (in this 
case – the number of sides of the polygon) and generate new valid configurations; 
this is about the capacity of changing an initial mental frame within the persistence 
of his assumed mathematical model. Emilian includes proof of the impossibility of 
building a triangular box in his response, by the same process. Subsequently, he 
generates boxes of different number of sides (6 and 8). This approach, of inductive 
type (starts with the minimum possible number of sides continues by varying the 
number) suggests that Emilian knows that the generalization process can be contin-
ued. We interpret this behavior as specific to cognitive variety. This shows that 
Emilian approaches creatively the given task.
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6.5.2.2  Case 2 (Andreea)

The solving proposed by Andreea focuses on the technological process. Her instruc-
tions state, first, the materials necessary to achieve the box construction and are very 
detailed (“make notches using the cutter – but do not cut (!) the arches inside, so we 
can easily bend them”). Unlike Emilian, her constructions use ruler to scale and 
square ruler. This shows that Andreea is not interested in the mathematical “theo-
retical/abstract” aspect of the task, but of the pragmatic ones. She intuitively identi-
fies the geometric properties that allow obtaining the box, which she formulate 
using a common language (such as “so we can put perfectly one on each other and 
form the lateral sides of the box”, “the square perfectly falls in a circle”, etc.). 
Andreea proves a type of goal oriented procedural knowledge.

Andreea identifies a defining property of the initial configuration – namely, that 
the marked points on the two circles determine a square in each. She claims that the 
square “fits perfectly in a circle” (meaning that it is a cyclic polygon), and that this 
applies to any regular polygon; as a result, we can use any regular polygon instead 
of the square, the only changes being that the number of lateral sides of the box 
increases and the box shape changes. In other words, Andreea identifies principles 
underlying the original structure – ie the property that the used polygons should be 
regular.

Andreea proves effectiveness in solving the task. She does not question construc-
tability – as Emilian, but construction: for this, she neglects the details of the figure, 
focusing on the property she found as dominant, and generate (for example) a non- 
rigorous drawing, yet very clear in respect to information transmitted (Fig. 6.4). 
This shows that Andreea can develop her thinking schemes by synthesizing 
information.

As evidence of her technological orientation skills, Andreea uses GeoGebra to 
get the figures she suggested. The existence of this universal tool – GeoGebra 
ensures Andreea that the construction can be made for an arbitrary number of sides 
of regular polygons. Once generated the plane configuration, Andreea seems con-
vinced that the effective realization of the box doesn’t bring any difficulty – it is 
made similarly with the original case. This shows metacognitive capacities of self- 
regulation – it is no needed to recheck something that works analogically!

Fig. 6.4 Representation 
made by Andreea to 
explain how to obtain a 
pentagonal box
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Is Andreea creative? We will further analyze this issue, to show that the answer 
is affirmative. Andreea succeeds to understand the properties of the original figure, 
even if sometimes her language is too approximate from a strictly mathematical 
view. For example, she notices that the arches that appear in the initial figure are 
equal, and the common side of the squares determines “congruent arcs on both 
sides” – ie, she notices the symmetry of the figure. Starting from the fact that the 
square is a regular polygon, Andreea says that we can use for the requested con-
struction any regular polygon, but it is difficult to identify the centers of the circle 
describing the inner arcs. This looks as she evolves within a well-defined frame, but 
she does not pay attention to metric details because she can use a tool (GeoGebra) 
for every conceivable situation. Once the frame built, the variations she proposes 
(changing the number of sides of polygons consistently) show capacity of frame 
change.

In her response, Andreea includes only one box – namely, a pentagonal box. 
However, we concluded that she displays, in fact, cognitive variety: once a property 
with potential for generalization (ie the regularity of the polygons) determined, 
Andreea knows that she can unrestrictedly change the number of points of divi-
sion – ie she can get many (new) models of boxes! She is not “restricted” in the 
construction of these new boxes, as the used instrument (GeoGebra) allows unre-
stricted freedom to vary a parameter of the geometric configuration (ie number of 
sides).

6.5.2.3  Case 3 (Paul)

Paul is prolific in identifying geometrical properties of the given configuration. He 
sets out 10 geometric properties, some of which are “dependent” (can be deduced 
from the properties listed above) – and, consequently, could be missing. We inter-
pret his desire to formulate more geometric properties than necessary as an argu-
ment for the fact that Paul can change his thinking schemes and to focus in turn on 
some other aspects of the given geometric configuration.

Paul expresses the properties of the given configuration in two language regis-
ters. On the one hand, Paul connects the geometric context of the initial figure with 
a strong mathematical result, such as the theorem of characterization of regular 
polygons constructible with straightedge and compass (ie a regular polygon with n 
sides is built if and only if n pk= 2 P , where the product contains only prime dis-
tinct Fermat numbers). The correlation of these properties with the context (in 
which the constructability with compass and straightedge was not explicitly stated) 
suggests that Paul has a knowledge organization of expert type, because he can 
quickly select, from memory, that specific information which is necessary and use-
ful in solving the current task.

On the other hand, Paul seems that he does not only want to identify and convey 
properties, but he also wants to explain them suggestively. In this respect, he uses 
intuitive descriptions or names, such as “biconvex lens”, “the box resembles to a 
cuboid covered with two blankets bond in the corners”. For Paul, the link between 
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theory and practice is much stronger than for Emilian or Andreea. This is reflected 
in the plasticity of language and in the fact that, unlike other colleagues, he moves 
from the general result (ie the theorem of constructability of a regular polygon) to 
the concrete situation in which the theorem is applied. Paul’s expertise doubles and 
supports his creativity. He is prolific in identifying properties of the given figure, 
which indicates cognitive variety. Moreover, although he does not explicitly state, 
he seems convinced that one can build a box by distorting the initial figure such as 
circles become ellipses (see Fig. 6.5). If this was indeed his intention, Paul shows 
reframing, therefore a high level of creativity.

6.5.2.4  Case 4 (Dana)

Dana has generated a list of instructions containing eight items. Her instruction list 
starts from two secant circles and from the symmetrical points of the centers of the 
circles to the intersection points. Subsequently, she builds arcs of circles with cen-
ters in these points. Dana’s instructions and comments do not specify whether the 
initial circles are equal, or if quadrilaterals obtained are squares. Dana implicitly 
assumes, however, that these conditions are met. In fact, if we follow her instruction 
list (with the supplementary hypothesis of congruence of the initial circles), we get 
a box in which the base is a rectangle (see Fig. 6.6) Dana is however not aware of 
this fact that could lead her to an immediate generalization; she is focused only on 
the figure and she believes that in this way, she gets squares, regardless of the dis-
tance between the centers of the two circles.

For the initial figure, Dana notes that “the intersection of the two squares is 
another square having as side the radius of the two circles”. She breaks down the 
initial figure into “small” squares (as in Fig. 6.7), and then she generates new 
figures, made of triangles, which keep the “zigzag” pattern.

It seems that Dana retains only surface features of the task (ie a specific pattern 
of squares that cover, in her perception, the initial figure) and uses this pattern for 
another geometric figure – ie equilateral triangle. Not coincidentally, the figures 

Fig. 6.5 Paul’s drawing, which suggests that he may use an elliptical figure for getting a box
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generated by Dana (as alternatives to the given figure) no longer contain circles or 
circle arcs: Dana identifies only superficially the geometric figure baseline (the 2 
circles have equal radii; we built two symmetrical squares; their intersection is also 
a square; the figure has two symmetry axes), and none of them is about the built 
arches. All this shows that Dana is rather novice in exploring the task.

Dana retains only one aspect – namely, that in the end, we obtain a container. The 
background she identified, consisting of matching squares arranged diagonally, sug-
gests the use of figures previously known, representing the unfolded net of some 
regular polyhedron (octahedron and icosahedron).

We can say that Dana denotes cognitive novelty because her chosen changes are 
significantly far from the initial context. However, she thus slides out of the problem 
frame due to insufficient understanding of the geometric properties of the given 
figure (her generated construction leads to circumscribed rhombuses and inscribed 
rectangles, missing the condition of equal circles). At a careful analysis, we note 
that, in fact, she exploits a simple regular easily identifiable pattern. This is a rele-
vant case for the situation that creativity does not advance too much because exper-
tise is missing (in the Glaser’s sense). Apparently, this is in contradiction with the 
fact that Dana is a student with high academic results. Perhaps her learning is often 
a surface one, based on memorization and not on depth analysis of mathematical 
contexts – but we do not have more data to advance this hypothesis.

Fig. 6.6 The figure 
generated following Dana’s 
instructions

Fig. 6.7 Dana’s patterns identified in the initial figure and applied to the figure she generated
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6.5.2.5  Case 5 (Georgeta)

The structure generated by Georgeta differs from those of all his colleagues. All the 
other students in our sample have generated a list of instructions specifying (and 
numbering) the steps. Georgeta has designed its instructions as a descriptive prose. 
Many of her instructions are non-essential and unclear. For example, there are indi-
cations of the colors to be used for certain details of figure and comments like “com-
mon part of the two circles must be quite large, but smaller than the radius”. By this, 
she proves superficial understanding of key concepts and terms. Georgeta believes 
that the defining geometrical property of the given configuration is that “in a circle 
can be inscribed any geometric figure, more exactly, polygons”. These statements 
have shown us that she is novice. As a change from the original, Georgeta proposes 
the drawing of Fig. 6.8, in which an unfolded cylinder appears. She insists that it 
causes a box, while it has no other geometric properties compared to the initial 
context.

With the proposed change, Georgeta depart significantly from the given pattern. 
Is this evidence of cognitive novelty? We incline to think it is not.

6.5.2.6  Case 6 (Cristina)

Cristina’s instruction list starts from the description of three special “preliminary” 
constructions with compass and straightedge: the midpoint of a segment, the per-
pendicular from a point on a line, the circle inscribed in a square. Her instructions 
contain 11 items: most of them are synthetically formulated. Cristina gives in her 
instruction list “milestones” – brief indications to verify the construction accuracy. 
This ability to synthesize the information transmitted, but also to keep a protective 
attitude towards the reader, proves the goal oriented procedural knowledge – which 
is guiding the solver.

Cristina equally proves synthetic when she identifies geometrical properties of 
the given configuration: they refer to invariance through symmetries and rotations. 
These properties are seen in relation to the final object (the box); for example, 
the symmetry to the common chord is the condition that “causes the box to have 

Fig. 6.8 The change 
proposed by Georgeta
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walls – when bending the box, the walls have to overlap”. The element through 
which Cristina seems to modify the initial configuration is the coverage of the plane 
with figures of the same shape. For the given figure, the background she perceives 
is a tessellation with congruent squares. Cristina keeps this tessellation as a way 
of generating a new box (Fig. 6.9a) or use a tessellation with equilateral triangles 
(Fig. 6.9b).

Cristina keeps a method similar to that of her instruction list for drawing the 
inside arcs. More precisely, these are arcs of the circles circumscribed to squares or 
equilateral triangles from the tessellation. Cristina works with a weaker condition: 
in the second proposal, the arcs are no longer symmetrical towards the common 
chord, and this is why the sides of the box do not perfectly match. In principle, this 
weakening of a condition could allow a bigger number of possible solutions (at the 
expense of object’s “perfection”). Could this be an evidence for creativity?

The weakening of conditions is actually a gap in her response, to the extent that 
she is not aware of the consequences: she actually did not realize the implications, 
even if she made the box and so checked that it can be built. Specifically, Cristina is 
unaware that in the new construction, the sides of the box do no longer “perfectly” 
overlap, as happens in the initial model.

6.5.2.7  Case 7 (Adelina)

Adelina preferred to solve alone the whole task (not in a team of two, as most of her 
colleagues did). Her list of instructions contains 10 items; the language used is not 
mathematically rigorous, but instructions can be easily followed. Her instructions 
are focused on obtaining the figure, not on getting the box: once the figure drawn, 

Fig. 6.9 Cristina’s drawings for getting new boxes
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Adelina believes that her mission was accomplished. Adelina identifies only two 
geometric properties of the initial configuration, namely: 1. quadrilateral deter-
mined by the points of intersection of the two circles of the figure and the centers of 
the circles is a square; 2. the circles have been divided into four equal parts.

Even if the mathematical model described by Adelina is incomplete (it does not 
say anything about the inner circle arcs), her instruction list shows that she internal-
ized the context and can give directions to complete its reproduction. This shows us 
that Adelina displays functional knowledge.

To change the initial figure, Adelina proposes the models shown in Fig. 6.10.
Adelina achieved a first product resulting from a correct mathematical modeling, 

whose shape is found even among usual items around us (a spectacle case), although 
she does not mentioned this as such. The utility of the obtained product indicates 
transfer capacities (Gardner 1993). The second product obtained – also by a correct 
mathematical modeling, has, in addition, aesthetic value. The fact that these new 
objects have practical and aesthetic values is another argument for her procedural 
functional knowledge. Compared to its peers, Adelina proposes very different mod-
els. So we can say that she denotes cognitive novelty. For her both new models, she 
keeps the same background (easily to identify congruent squares) and the same way 
of building arches (parts of the circumscribed circles to such squares). Adelina 
evolves within a well-defined framework and manages to make substantial changes 
to it, while keeping it consistent.

6.5.2.8  Case 8 (Anca)

Anca has generated a list of six initial instructions. In her instructions, she implicitly 
assumes that the person to follow the list knows some mathematical concepts, at 
least at a basic level (eg perpendicular lines, reflective symmetry of a point, square 
circumscribed to a circle, etc.). At the end of this list, Anca includes a commentary 

Fig. 6.10 Adelina’s proposals for new boxes
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under the title “philosophy of the instructions,” in which she claims the construction 
accuracy. She also includes extensive comments on the difficulties faced by people 
to whom he proposed making the box: some of these difficulties arise from misun-
derstandings on mathematical concepts. The fact that Anca redesigned not just the 
lists of instructions, but the entire solution to the task as a whole (she asked to resub-
mit a new version of solving the whole task, because she believed that she can better 
explain how to solve it) shows, on the one hand, her capacity of changing thinking 
schemes, and, on the other hand, she proves metacognitive capacities of self- 
regulation. Anca prefers to describe metrically the geometric properties of the given 
configuration: she expresses the lengths of the various segments as function of the 
radius of the initial circles (Fig. 6.11).

Typically, the quantitative metric approach of a configuration is a barrier to gen-
eralization/transfer because quantitative information limits the chance of identified 
generic properties. Anca proposes three modifications to the initial configuration: 
she replaces squares with regular octagons, with regular dodecagon, respectively 
with regular 16-gons. For the new situations, she explains how regular polygons can 
be built with straightedge and compass (mainly building bisectors of angles, but she 
does not perform the constructions, including only schematic representations of 
them). Anca possesses goal oriented procedural knowledge.

We note that Anca manages to overcome the “barrier” of metric results and iden-
tifies a property with potential for generalization – ie “square is a regular polygon.” 
Perhaps, she sees regular polygons in quantitative context (lengths of sides and 
measures of angles), not in a qualitative one (invariance over symmetries and rota-
tions). The focus on a particular property of the initial configuration, which allows 
generalization shows that Anca may overcome interferences and identify principles 
underlying the surface structures. We may ask where her “jump over hexagon” 
comes from – ie why Anca, unlike the majority of students who have generalized 
based on the idea of a regular polygon did not consider the case of hexagon. A pos-
sible answer is suggested by the way she imagine the new boxes (Fig. 6.12). Anca 
keeps as invariant the configuration of two equal circles that intersect over arches of 
90°. She then divides each of these circles in a same number of congruent arcs, such 
as the intersection points of circles to be the dividing points. Therefore, her self- 
imposed restriction (the relative position of the two circles) requires dividing the 
number of points to be multiple of 4.

Fig. 6.11 Notations made 
by Anca for the metric 
description of the initial 
configuration
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Anca is thoughtless in tracing the arcs of the circle. She proposes a construction 
described in metric terms that he believes is generally applicable (Fig. 6.13), but 
which cannot be applied in all the described cases. Because of this, the “lenses” 
Anca obtained shows no symmetry and the boxes imagined do not close “perfectly” 
(as in Cristina’s case).

Anca evolves in a well-defined cognitive frame and makes changes in this frame, 
varying the number of sides of polygons. She also proves cognitive variety – by 
her new generated models. Anca identifies a general process of obtaining new 
configurations – namely, for a given configuration, doubling the number of points of 
division by building bisectors of angles. In this way, the idea that implicitly appears 
is that the number of sides may vary indefinitely – which is another argument for 
cognitive variety.

6.5.2.9  Case 9 (Miron)

Miron’s instruction list begins with mentioning a list of the necessary materials and 
continues in some detail (eg: he mentions the fact that two distinct points determine 
a line, and lists basic compass and straightedge constructions, such as drawing a 
segment determined by two points). The proper list of instructions contains 14 
items. The instructions contain milestones – indications on how the solver can 

Fig. 6.12 Anca’s imagined configurations for her new boxes

Fig. 6.13 The construction 
pattern of the inner circle 
arcs indicated by Anca
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verify his/her construction. Miron proves very synthetic in identifying the essential 
elements of the given figure:

In fact, the essential property in the construction of this figure is the possibility of breaking 
the circle into four equal arcs, namely the opportunity to build the angle π/2. Reformulated, 
it is about constructible regular polygons.

He thus proves that he can mobilize thinking schemes, easily moving from the 
original context to a generalized representation of it. He recalls the theorem about 
regular polygons constructible with straightedge and compass (“A regular polygon 
with n sides is constructive Û = ¼n p p pk

r2 1 2 ,  where pi  are distinct prime 
Fermat numbers- ie 2 12m + ”), proving that he can rapidly select from memory 
items of structured information when needed. Miron notes that the square obviously 
satisfies the theorem conditions, but the instruction list for the initial figure are 
specific to this case and are not useful in the generalizations that follow. Miron’s 
proposed new cases are those of a regular hexagon and regular octagon. He presents 
the constructions steps in a highly synthetic and generalized formulation:

• We choose n equally-spaced points on the circle (how exactly to do that depends on n, 
but it is always possible).

• For any two consecutive, we build another circle that contains them and has the same 
radius as the initial (a compass and straightedge elementary construction in at most 
four steps).

• We now have a “star” with n corners inside the initial circle. We choose any of the other 
circles and repeat the procedure (of the construction of another “star” inside it).

• We reached the desired figure that can be cut.

When putting the construction into act, he uses GeoGebra to make the “classi-
cal” compass and straightedge construction (to specify the division of a circle into 
n equal arcs). The technology in this case is just a good instrument (it has accuracy 
and shortens time) that replaces physical objects such as paper, straightedge and 
compass, keeping all valences of the ideal construction.

He alternates schemes and procedures which he combines in a manner that 
focuses on optimization and getting results simultaneously. Miron proves metacog-
nitive capacity of self-regulation, high transfer capacity and, in general, the type of 
expertise of a mathematician.

Comparing to how another student (Andreea) used GeoGebra, we can see that 
Miron – with mathematics expertise, used the software as only a support to enhance 
and concentrate the force of the theory, while Andreea – with a rather pragmatic 
expertise uses the facilities of the software in actual construction without questioning 
the geometric accuracy. Figure 6.14 shows the images used by Miron to construct 
the regular octagon-based box.

He does no need to identify the initial figure geometric properties that allow the 
construction of the box (of the type: symmetry, congruency) because he internalized 
a general scheme available for construction. This scheme – the constructability 
theorem – offers the individual cases to perform the initial construction and the 
pattern that allows generalization. In these circumstances, we can ask how creative 
is a solution induced by the in-depth knowledge of a strong theorem. Perhaps the 
given context is not enough challenging for him to provoke creativity.
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6.5.3  Comparative Remarks

We will look in more detail into the cases presented above.
Emilian, Andrei and Paul proved validated task-related expertise because their 

cognitive behavior allowed checking the assumed criteria that confront expert- 
novice abilities. However, their type of expertise is manifested in different ways: 
Emilian proves metacognitive capacity for self-regulation and general use of 
problem- solving tactics; Andreea is a practitioner expert type focused on a techno-
logical approach, showing high procedural and goal-oriented knowledge; Paul 
proved stronger transfer skill for making connections between theory and practice 
than Emilian and Andreea, and has developed a meta-cognitive capacity to explain 
the identified properties using suggestive expressions.

We note that in all these three cases, students manifested a creative behavior:
Emilian firstly investigates the case of a box with a triangular base, he identifies 

arguments by showing the impossibility of construction, and then he generalizes. 
Andreea includes a single new model box (pentagonal). She however indicates a 
construction with potential of generalization, performed with a “universal” instru-
ment – GeoGebra: she is confident that this process will work for any number of 
sides, and therefore she does not need to include other cases. Paul is prolific in 
identifying properties, showing cognitive variety. Through drawings, he suggests a 
substantial change frame, because he finally replaces circles with ellipses. Paul 
recalls a general result, regarding the polygon constructability with straightedge and 
compass; once identified the theoretical background, he particularizes the theorem 
and provides two new constructions.

Dana and Georgeta behave as novices. The properties they identified with respect 
to the initial configuration are weak properties. Dana identifies a pattern and appears 
to extend this pattern to generate new boxes. Georgeta relates to unfolding a solid 
and proposes as a new model an unfolded net of a cylinder. At a first view, Dana and 
Georgeta seem more creative because their proposals are significantly far from the 
initial model. They yet focus on superficial aspects, such as a simple pattern of 

Fig. 6.14 Miron’s images obtained using GeoGebra
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squares distribution and/or the idea of container, and this lack of consistency shows 
that, in fact, they do not behave mathematically creative.

It would be expected that weak properties, allowing more degrees of freedom, 
have the potential to facilitate a more creative approach. However, we found that 
they actually lead to an insufficiently consolidated frame (probably caused by an 
insufficient level of expertise), instead of leading to spectacular generalizations.

The above comments suggest the conclusion that expertise seems to be a precon-
dition for creativity. We will show that this statement should be at least nuanced.

The data available for Cristina, Adelina and Anca did not allowed us to consider 
them experts in every sense of the word. Rather, they have a moderate level of 
expertise, having characteristics of expert behavior, but also novice features. For 
example, Cristina is not aware of the consequences of weakening some require-
ments; Adelina shows a superficial understanding of some of the concepts used; and 
Anca based her constructions on metric inputs, but which may not apply in certain 
situations. We classified the proposals of the three students as creative. Cristina 
proposes two new boxes, totally different proving cognitive variety. Adelina’s pro-
posals have functional and aesthetic valences, and are very different from all the 
other proposals. Anca suggests a construction of a generalized manner that allows 
many more new products, thus showing cognitive variety.

Therefore Cristina, Anca and Adelina behave creatively. It seems that a 
rather moderate level of expertise allows expression of their creativity.

To verify this hypothesis, we consider the case of Miron. Obviously, Miron is the 
expert par excellence. He summarizes, in his solving, the problem nature, he quickly 
selects items he needs from memory, and “closes” the problem by applying a gen-
eral result that solves a whole class of problems of the same type. Moreover, he 
“hijacks” a tool like GeoGebra using it for a compass and straightedge construction, 
and including it in his theoretical approach.

In his case, his high level of expertise as related to the task practically cancels the 
problem. In this case, it becomes legitimate to ask if does make sense to put the 
question of a creative answer in Miron’s case Why did this question arise? Because 
Miron, by mastering powerful mathematical tools, manages to reduce a problem 
that for others is complex to schemes automatically activated. For this reason, 
because the solution is based on results already known to him, his creative contribu-
tion is at most in appropriately correlating concepts and procedures, ie in small 
changes well controlled within a cognitive frame clearly emphasized from the 
beginning. Meanwhile, cognitive novelty, and cognitive variety are practically 
undetectable. As a result, we believe that, in the Miron’s case, we cannot detect 
creativity on this task. We make the assumption that facing more complex tasks that 
would require a higher level of expertise, Miron could be highly creative. This 
hypothesis was confirmed by the information later obtained about him, beyond this 
task. We learned that Miron is already included in a mathematics research program 
and that he has already published original results.
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Therefore, the determination of creativity should happen at a level that exceeds 
the person’s expertise at that moment. It appears as a corollary that creativity is not 
an absolute parameter. The manifestation of creativity depends on the context, as 
confirmed by other studies.

6.6  Conclusions

In this paper, we have studied how students’ creativity manifests in a complex con-
text that involves modeling, problem solving and problem posing. A first conclusion 
refers to how students use the defining elements perceived in an initial given figure. 
We have seen that these elements are further used for generalization and transfer. 
So, the way in which students perceive the initial figure is fundamental for solving 
the task and for posing new coherent modifications.

A second conclusion refers to the relationship creativity – expertise. The students 
that seemed more creative at a first sight, proving that they are novices in the domain, 
produced either non-functional or inappropriate objects. Conversely, students who 
showed a high degree of expertise utilized strong mathematical results (such as 
constructability with compass and straightedge) and made incremental changes by 
varying a simple parameter (in our example, the number of sides of regular 
polygons).

The analysis of some specific cases led to the conclusion that creativity manifes-
tation is conditioned by a certain level of expertise. In the process of building a 
solution for a nonstandard problem, expertise and creativity support each other and 
enable bridges to the unknown, mutually developing each other. This interaction 
leads also to an increase in expertise.

We have seen that, because contextualization, it is practically not possible to find 
tasks that would allow discerning creativity for a broad range of skills. If the task is 
at a cognitive level accessible to a majority, a person with high level of expertise will 
make appeal to tools that automatize the response; if the task is challenging for a 
person with a high level of expertise, then it is not cognitively accessible to a larger 
sample, in order to make comparisons.

We unravel from here that a possible method of training excelling students is 
through practicing tasks appropriate to their level of mathematical abilities, but con-
taining nonstandard challenging components, in order to train metacognitive self- 
regulation capabilities through creative leaps.

Therefore, to create the context in which a student can advance, it is necessary to 
determine the type of task for which he/she manifests expertise and to integrate this 
task in a challenging context. Our study shows that this approach seems to work for 
advanced students. Further research will focus on a methodology to check if it may 
work for students of any level.
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 Annex

 The Given Task

From the figure below one can get a “fantasy box” [a.n. the box was presented 
“physically” by the teacher].

 

 I. The first two questions constitute a group task (2 people). For this part, the group 
members will receive the same score.

 1. Write specific instructions for constructing this figure. The instructions will 
contain only words, no drawings, diagrams or pictures.

 2. Give these instructions to another person who does not know what you want 
to achieve. Ask that person to follow instructions. Do not interact with that 
person, do not give indications, or help. Note (or record) what happens. If the 
person has difficulty in representing the figure, or something unforeseen hap-
pens, it’s OK: this only shows that your instructions are not enough precise 
and should be reviewed. You will not be penalized if the first set of instruc-
tions is not quite accurate.

 (a) Write a report as detailed as possible (but no longer than 3 pages!) about 
what happened;

 (b) Write a revised instruction list and possibly repeat the experiment with 
another person.

 II. Answer the following 3 questions individually.

 3. What geometric properties are used in the construction of this box? Explain 
your answer.

 4. The fantasy-box has a “squared” shape ☺. How could you modify the origi-
nal drawing to get boxes of other shapes? Build two new figures and make 
sure you can get boxes starting from the figures you indicated.

 5. Do the proposed figures above use other geometric properties than the ones 
of the original box? Explain your answer, and if it is yes, please specify 
which are these properties.
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    Chapter 7   
 Constraints, Competency and Creativity 
in the Classroom                     

     Catrinel     Haught-Tromp      and     Patricia     D.     Stokes   

    Abstract     Constraints defi ne domains, specifying goal criteria and accepted means 
of meeting them. Competency, the ability to problem solve in a domain, depends on 
mastering basic constraints. Creativity follows competency, as the product called 
creative must be both novel and appropriate to its domain. In this chapter, we dis-
cuss and demonstrate how different kinds of constraints affect early competency in 
mathematics and later creativity in composition. Applications of our constraint 
model to other do mains are also suggested.  

  Keywords     Creativity   •   Constraints   •   Competency   •   Education   

  Constraints defi ne domains, specifying goal criteria and accepted means of meeting 
them. Competency, the ability to problem solve in a domain, depends on mastering 
basic constraints. Creativity follows competency, the product called creative must 
be both novel and appropriate to its domain. In this chapter, we discuss and demon-
strate how paired constraints made very young children very competent in math and 
college students more creative in composition. Applications of the constraint model 
to other domains are also suggested. Since all readers will not be familiar with the 
problem-solving literature, defi nitions precede applications and suggestions. 
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7.1     Defi nitions 

7.1.1     Constraint Pairs and Problem Space 

 The dictionary defi nes constraints as restrictions or confi nements. In contrast, the 
problem-solving model presented in this paper (Reitman  1965 ; Simon  1973 ; Stokes 
 2006 ,  2014b ) considers constraints as pairs. One of the pair satisfi es the dictionary 
defi nition – it precludes something. The other expands the defi nition – it directs 
search for and promotes a substitute. This solution-by-substitution process takes 
place in what Newell and Simon ( 1972 ) called a problem space. A problem space 
has three parts, an initial state, a goal state, and between the two, a search space in 
which a solution path is constructed. Table  7.1  presents a simplifi ed problem space 
for mastering single digit addition.

   The initial state (4 + 5 = x) is the given problem. The goal (solve for x) has a cri-
terion: solve with the most effi cient strategy. In the search space, the preclude col-
umn orders addition strategies identifi ed as least (guess) to most (retrieve) effi cient 
by Siegler and Jenkins ( 1989 ). Each is paired (in the corresponding promote col-
umn) with its substitute (the next most effi cient strategy). As the table shows, mas-
tery of single digit addition is constraint based: less effi cient strategies are precluded, 
more effi cient ones are promoted. 1  

 For tasks that require creativity, a similar set of steps applies. Here, the solution 
stems from a nondeterministic process: at each step there are multiple options, and 
choice to be made. In computational parlance, the same initial state can yield several 
different outcomes (Johnson-Laird  1988 ) – unlike, say, addition or multiplication, 
where the same input can only yield one correct outcome, via a deterministic pro-
cess. The goal (generate a creative output) has a criterion: for the task at hand, fi nd 
something novel and, at lower levels, useful or appropriate, and at higher ones, 
generative or infl uential. 2  In the search space, one precludes often-used, less effi -
cient strategies with unexpected, lower-probability, hence more effi cient ones.  

1   This does not mean that the less effi cient strategies disappear. Rather, the distribution of strategies 
shifts so that the more effi cient ones are used more often. 
2   Generative means leading to variations, i.e., other solutions; infl uential means expanding a 
domain (Stokes  2006 ). 

   Table 7.1    Simplifi ed problem space for single digit addition   

 Parts  Description 

 Initial state  4 + 5 = x 
 Search space  Preclude  Promote 

 Guess  →  Count all 
 Count all  →  Count on 
 Count on  →  Count from higher addend 
 Counting  →  Retrieve from memory 

 Goal state  Solve for x using the most effi cient strategy 
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7.1.2     Constraints and Domains 

 Domains, well-developed areas of skill, are defi ned by agreed-upon/recognized 
goal, source, subject and task constraints (Stokes and Fisher  2005 ).  Goal constraints  
are performance or stylistic criteria that must be met for an equation or composition 
to be considered correct and perhaps, at higher levels, elegant or creative. 3  S ource 
constraints  provide elements to be worked with (promote) or against (preclude). 
 Subject constraints  specifi c content or motif.  Task constraints  govern materials and 
their application. 

 Competency, or the ability to problem-solve in a domain, begins with mastering 
the basic constraints that constitute a domain. Competency in mathematics includes 
counting and calculation. As a later section will delineate, competency in composi-
tion involves vocabulary and grammar. Creativity necessarily follows competency: 
a solution or composition must be appropriate, as well as novel, in its domain.   

7.2     Applications: Constraints in Our Classrooms 

 Both of us applied the constraint model in the classroom. One used it to create an 
early math curriculum; the other, to help students become more creative in writing. 
For each example, we delineate the problem, the solution, the outcome, and, impor-
tantly, the next steps. The “next steps” section demonstrates how paired constraints 
can help refi ne or continue curriculum and lesson plan development. 

7.2.1     Creating a Math Curriculum 

  The Problem     The catalyst for creating the new curriculum was the place-value 
problem. The term place-value is self explanatory: the value of each digit in a multi- 
digit number is determined by its placement. For example, in a two-digit number, 
the digit on the left is a ten, the digit on the right is a one. The problem is that 
American children, who call the number 13 “thirteen,” mistake the 3 as being of 
greater value than the 1. Japanese, Chinese, and Korean children, who use an explicit 
base-10 count and call the same number “ten-three,” do not make the same mistake 
(Fuson  1990 ; Miura and Okamoto  2003 ). To show how “ten-three” fi ts in the Asian 
(Korean, Chinese, Japanese) counts, Table  7.2  shows the numbers and number 
names from 1 through 29. Notice there are only ten number names (1–10), which 
combine to form the higher numbers. Notice too that ten appears in every number 
above ten: 11 is  ten -one; 21 is two- ten -one.  

3   The initial state in a problem space is a prior goal constraint. It is the preclude half of the con-
straint pair which promotes its substitute, the new goal constraint. 
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 In contrast to American children who think of numbers as chains of ones (21 
means 21 ones), Asian children think of numbers as tens and ones (21 means 2 tens 
and 1 one). For children who think this way, place-value is not a problem.

    The Solution     The proposed solution (to the place-value problem and by extension 
to multi-digit addition and subtraction problems) was not simply to introduce an 
explicit base-10 count, but to embed it in a curriculum that taught children to think 
mathematically, in large meaningful patterns. Table  7.3  shows the problem space. 
The initial state was current curricula. The goal state, a new curriculum, had a crite-
rion: thinking in numbers, symbols, and patterns.  

  The fi rst pair (which involve source constraints) precluded the English language 
count and promoted an explicit base-10 count. The next three are task constraints 
designed to further satisfy the new goal criterion. Non-numeric meant videos with 
cartoon characters, work sheets with stories, and word problems that can distract 
children from the strictly numeric. The single manipulative was meant, like the 
abacus, to make base-10 numbers and patterns tangible and concrete. 

 Figure  7.1  shows the manipulative, called the count-and-combine chart, with the 
numbers 1 through 10. Notice that 10 is represented both as 10 “one” blocks and as 
a single “ten” block.

   Table 7.2    Explicit base-10 count   

 Ones  Tens  Twenties 

 10   Ten   20  Two- ten  
 1  One  11   Ten -one  21  Two- ten -one 
 2  Two  12   Ten -two  22  Two- ten -two 
 3  Three  13   Ten -three  23  Two- ten -three 
 4  Four  14   Ten -four  24  Two- ten -four 
 5  Five  15   Ten -fi ve  25  Two- ten -fi ve 
 6  Six  16   Ten -six  26  Two- ten -six 
 7  Seven  17   Ten -seven  27  Two- ten -seven 
 8  Eight  18   Ten -eight  28  Two- ten -eight 
 9  Nine  19   Ten -nine  29  Two -ten -nine 

   Table 7.3    Problem space for new math curriculum   

 Parts  Description 

 Initial state  Current curricula 
 Search space  Preclude  Promote 

 English language count  →  Explicit base-10 count 
 Non-numeric  →  Numbers, symbols, patterns 
 Multiple manipulatives  →  Single manipulative 
 Split practice  →  Continuous, focused practice 

 Goal state  New curriculum 
 Criterion: thinking in numbers, symbols, and patterns 
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   The numbers, number names, symbols, and colored boxes representing ones are 
all moveable. Children began by reciting the rows. The top row is read “number one 
same as word one equals one block.” They continued by recombining the blocks 
creating addition combinations for each number. Figure  7.2  shows two of eight pos-
sible combinations for the number 4. 4  As the numbers increased in value, so did the 
possible combinations.

   Figure  7.3  shows a count-and-combine chart with the numbers 10–15 (ten-fi ve). 
As in Fig.  7.1 , ten is represented as a unit, by a single block marked “10.” There are 
other similarities. In each chart, the block pattern mirrors the reiterations in the 
count: four equals 4 one blocks; ten-four equals one 1 ten block and 4 one blocks. 

4   The six combinations are: 4, 2 + 2, 3 + 1, 1 + 3, 2 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, and 1 + 1 + 1 + 1. 

1 = One =

2 = Two =

3 = Three =

4 = Four =

5 = Five =

6 = Six =

7 = Seven =

8 = Eight =

9 = Nine =

10 = Ten = = 10

  Fig. 7.1    Count-and-combine chart for numbers 1–10       

+          =   4

+         =   4

  Fig. 7.2    Two addition 
combinations for 4       

10 = Ten = 10

11 = Ten-one = 10

12 = Ten-two = 10

13 = Ten-three = 10

14 = Ten-four = 10

15 = Ten-five = 10

  Fig. 7.3    Count-and-combine chart for numbers 10–15       
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Later on, the children learned that 44 (four-ten-four) equals 4 ten blocks and 4 one 
blocks. They also learned to add tens to tens, before adding ones to ones, and to take 
tens away from tens, before taking ones from ones. To clarify what “take away” 
meant, children physically took away the same number of ten and one blocks from 
either side of the minus sign. The blocks left over were the remainder.

    The Outcome     The children were tested at the end of the school year. Did those 
using the new curriculum learn more math than a comparison group using the 
 district curriculum ( New Jersey Mathematics: Scott Foresman – Addison Wesley )? 
Yes. On place-value, single- and double-digit addition and subtraction, and number 
line estimation, children taught with the new curriculum ( Only the NUMBERS 
Count   ©  ) outperformed those in the comparison group (Stokes  2013 ,  2014a ). On 
number line estimation, they performed as well as Chinese students of the same 
ages (Siegler and Mu  2008 ). In sum, they became highly competent at thinking in 
numbers, symbols, and patterns.  

  The Next Step     The next step was expanding the curriculum to second grade. The 
problem became how to teach multiplication and division. The solution was again 
derived from the Asian classroom. This time we  precluded  our multiplication table 
and  substituted , in its place, the Chinese table. Like the count-and-combine charts, 
the table is chanted. The chant defi nes the key difference in the learning: children do 
not count (“two, four, six …”), they multiply (“two-twos are four, two-threes are six 
…”). The table itself is much simpler than ours. The simplicity suggested two new 
uses: to visually demonstrate the “fl ips” 5  (2 × 3 is the same as 3 × 2) in division and, 
more importantly, how division un-does multiplication. This expansion is being 
piloted as this chapter is being written. So far, so good.   

7.2.2     Making Composition More Creative 

  The Problem     When an essay or a presentation for work is due, many of us – chil-
dren and adults – fi nd ourselves stuck in old “solutions.” When a friend’s birthday 
is coming up, we struggle to create a message that says what we mean. What makes 
that new Word document, white sheet of paper, or blank greeting card so intimidat-
ing? There are several possibilities. One, there are too many possible solution paths: 
choice is stressful. Two, without constraints we all repeat what has worked best in 
the past: familiar solutions surface sooner than novel ones (Maltzman  1960 ; Runco 
 1986 ; Ward  1969 ), the most-traveled path prevails. 6   

 Language in general and fi gurative language in particular (Glucksberg and Haught 
 2006 ; Haught  2013 ,  2014 ) is a prime example of creativity, which operates within a 

5   This is the term children already used to indicate that addends could be reversed, i.e., 2 + 3 is the 
same as 3 + 2. 
6   This is called operant conditioning. 
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given set of constraints. But, you ask, what about artistic freedom? Indeed, an uncon-
strained fi eld does invite free, unencumbered exploration. By chance alone, you 
 might  stumble upon an unexpected, fortuitous turn of phrase. But most of the time, 
the most-traveled path will prevail, drawing you into prosaic, formulaic phrasing. 

 The problem is obvious: how can we make composing more creative? 

  The Solution     The strategy we suggest is straightforward: seek and embrace con-
straints. Remember, constraints do two things. They limit search along those pre-
dictable (albeit reliable) old paths, precluding widely-used associations. They direct 
search along less-traveled paths, promoting in-depth exploration of unexpected, 
surprising associations. Tables  7.4  presents a generalized problem space for creative 
composition. The initial state is the clichéd, the goal is the creative. To actually 
reach the goal, each of the pairs must be further specifi ed. For example, imagine the 
cliché to be precluded is “Once upon a time….” The opening suggests, of course, a 
fairy tale. Substituting “3 am, again…” suggests several quite different tales: one 
about insomnia, another about surveillance, a third about what?  

   The Outcome     Constraints work especially well for professionally literary compo-
sition. Members of OULIPO (the Ouvroir de Littérature Potentielle) self-impose 
formal and combinatorial constraints on their writing. For example, they have suc-
cessfully excluded specifi c letters – see Perec’s ( 1969 ) 300-page novel, which 
excluded the letter E – , allowed a single vowel, and replaced each noun with the 
seventh noun after it in the dictionary. 7  Theodore Geisel, well-known as Dr. Seuss, 
wrote  Green Eggs and Ham  in response to a challenge: write a children’s book 
using only 50 words. In his novels (one of which 8  won a Nobel Prize), Jose Saramago 
precludes quotation marks around conversations. The constraint makes the reader 
pay very close attention to the phrasing that identifi es a speaker.  

 What about the non-professional writer? Do constraints work as well? It seems so. 
When college students were asked to generate creative sentences in response to 
pictures or words, their outputs were judged more creative for pictures (Haught  2015 ). 

7   For more examples and a history of OULIPO, see Becker ( 2012 ) 
8   The History of the Siege of Lisbon 

   Table 7.4    Problem space for creative composition   

 Parts  Description 

 Initial state  Clichéd composition 
 Search 
space 

 Preclude  Promote 
 Existing, clichéd associations  →  Novel, unexpected associations 
 Too large a search space  →  Narrower, more focused search space 
 Superfi cial exploration of many 
alternatives 

 →  In-depth exploration of fewer 
alternatives 

 ‘Blank page’-induced writer’s block  →  Constraint-induced creative writing 
 Goal state  Creative composition 

7 Constraints, Competency and Creativity in the Classroom



112

Pictures proved more provocative, more suggestive than words, “worth a thousand” 
of them, as the saying goes. For example, pictures of a LION, a STRAWBERRY, 
and a HARP produced sentences like “The harp had a strawberry- colored lion 
carved in its post.” The words alone led to sentences like “I ate a strawberry while 
listening to harp music and watching a lion at the zoo.” In short, the search space 
was constrained by the visual representations, which in turn guided the construction 
of the sentences. 

 College students also wrote more creative rhymes for a special occasion – a 
birthday or anniversary – when their task was constrained by including a given noun 
(Haught-Tromp  2016 ). You should try this yourself. How would you say  I love you  
in a two-line rhyme that must include the noun  vest ? How could you express  I am 
sorry  in a rhyme that includes the noun  shirt ? Here are what two participants wrote:

      We belong together like a sweater and vest.   
   “I love you” and I’ll write it across my chest.    

    Here is a wool shirt for you to keep.   
   I am sorry, and so is the sheep.     

   Interestingly, even after removing the constraint of a given noun, the rhymes 
were more creative. Mere practice with a constraint seems to help, even immedi-
ately after it is explicitly removed. 

 In another study, preliminary results indicate that rhymes required to start with a 
given letter of the alphabet were more creative than those written without the con-
straint. The fi rst letter appears to have acted as an anchor, precluding search for 
rhymes starting with any of the other 25 letters of the English alphabet, promoting 
more effi cient search within a given, narrower fi eld. 

  The Next Step     We have examined externally imposed (the student examples) and 
internally imposed constraints (the professional writers). The pair pose two interest-
ing questions. One, can we teach students to use their own constraints? Two, can we 
teach students to use the professional writers constraints?  

 To answer the fi rst question, college students were instructed to write down the 
fi rst concrete nouns that came to mind (the internal constraint), and then incorporate 
those nouns in greeting-card type rhymes (the external constraint). The internal con-
straint led to more creative greetings than those written by students using only the 
external constraint. To convey  Thank you  in a rhyme that also incorporates a self- 
generated word ( sunfl ower ,  dog) , two participants wrote:

      Thank you for making my life a beautiful   sunfl ower   ;   
   You sure do have some magical power.    

    Thank you   dog  ;   
   Stay solid like a log.     

   The external constraint alone yielded mostly uninspired rhymes, of the sort:

      Thank you for being so great ,  
   It’s something I really appreciate.     

   But, interestingly, once again, when students fi rst worked with both constraints 
(external and internal), and then with only the external constraint, their rhymes in 
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the latter exercise were more creative than when they had never been introduced to 
an internal constraint. Students seem to have continued to seek constraints, after 
being initiated into the practice of using them, which they liked and which enhanced 
creativity. 

 To answer the second question, students rewrote their own short memoirs using 
the constraints described and used by A.S. Byatt, Italo Calvino, and Milan Kundera. 
The students were surprised at how easy it was to “try on” another writer’s con-
straints, and importantly, at how much more imaginative their stories had become. 

 More next steps are suggested in the next section.   

7.3     Suggestions: Using Constraints in Your Classroom 

 For tasks that are largely unrestricted, especially those that require creativity, impos-
ing constraints can help. We include several examples.

•    In literary composition, the challenge of developing an essay on a given theme 
can be overcome by anchoring it with a set of semantic (e.g., include a given set 
of words) or formal (e.g., start with a given letter of the alphabet) constraints.  

•   Again in composition, teach your students how to create their own constraints. 
They can begin by practicing (as shown in the preceding section) with combined 
internal (student-generated) and external (teacher-generated) constraints. They 
can also practice using constraint pairs to (1) identify elements in their current 
writing style, (2) pick specifi c elements to preclude, and (3) specify substitutes.  

•   In developing vocabulary, parsing sentences can provide a useful structure. Once 
the parts of the sentence are diagrammed, students can be asked to suggest mul-
tiple substitutions for nouns, verbs, adjectives. How many ways can this sentence 
be expanded, made more specifi c, more interesting?

  

Sally baked cookies
today chocolate chip

twenty

/ /
/ /

/



   

•     In art, a set of small canvas boards with the same cartoon (a subject constraint) 
to be painted in different styles (a task constraint) or in different color combina-
tions (also a task constraint) can be a catalyst for creativity. The search space 
could be narrowed further by specifying a style or palette the student does not 
usually employ.  

•   In history, a seemingly dry series of texts, dates, people, and events can come to 
life within the framework of a beautiful constraint: have the students immerse 
themselves and become active participants in critical events like the trials of 
Socrates or Anne Hutchinson. “Reacting to the Past,” a program created by Mark 
Carnes at Barnard College, uses just this constraint to facilitate student engage-
ment and improve critical thinking, problem solving and communication skills 
(Carnes  2014 ).    
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 Not to be ignored are those inevitable classroom constraints (time, technology, 
assessment needs) that are not obviously occasions for incrementing creativity. Our 
suggestion is to make these constraints the “preclude” half of a constraint pair. 
What can be promoted as a direct result of such a constraint? Let’s focus on testing, 
on using a required assessment tool for pedagogical purposes. Research shows that 
there are advantages to testing. Test-enhanced learning refers to the fi nding that 
taking a test on studied material produces both better learning and retention than 
re- studying the material for the same amount of time as the test (Roediger and 
Karpicke  2006 ; McDaniel et al.  2007 ). So, some suggestions for all testing on all 
topics:

•    Retrieving is more effective than re-reading. Test frequently.  
•   Give immediate feedback, which has also shown to enhance competency 

(Brosvic and Epstein  2007 ).  
•   Incorporating “teaching-the-test” into regular lesson plans. This will make your 

teaching more variable and more effective (Stokes  2013 ).  
•   Frame questions that preclude rote memorization and promote meaningful 

understanding.    

 Whether your challenge is enhancing competency or creativity, think in terms of 
paired constraints. Start by fi lling in the blank problem space below. Identify the 
initial state and the goal state. Defi ne what each constraint pair precludes and what 
it promotes, and remember, every solution path starts with a single substitution 
(Table  7.5 ).   

7.4     Conclusions and Concluding Caveats 

 Our conclusions are two. 
 First, paired constraints are tools that can help teachers  design  curricula and les-

sons to help students develop competency and creativity. Second, re-iterative use of 
paired constraints (to  re-design  that lesson plan) can help keep your thinking and 
your teaching new. 

 Our caveats are also paired. Learning to use paired constraints is like all learn-
ing – it takes time and practice. Persistence pays off. The payoff could be fi nding a 
new path to a creative solution. Faced with a frustrating outcome, don’t cut 
 exploration short and go back to where you started. Chances are you’ll only embark 

   Table 7.5    Problem space for ________________________   

 Parts  Description 

 Initial state 
 Search space  Preclude  Promote 
 Goal state 
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on another, equally frustrating search down yet another – or, sometimes, the same! – 
well-traveled path. 

 Take your time. Practice.     
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    Chapter 8   
 Convergence in Creativity Development 
for Mathematical Capacity                     

     Ai-Girl     Tan      and     Bharath     Sriraman   

    Abstract     In this chapter, we highlight the role of convergence in developing cre-
ativity and mathematical capacity. We renew our understanding of creativity from 
the relations of three creativity mechanisms: Convergence  in  divergence  for  emer-
gence, and three principles of experience: Continuity, interaction and complemen-
tarity. Convergence in the context of creativity development is an incidence of 
learning for capacity building and knowledge construction. Examples of convergent 
processes in learning are: setting a plan, having a structure, and possessing coordi-
nated capacity to complete a task. To elaborate, we refer to theories of development 
and creativity on how people develop their capacity in convergence (e.g., collabora-
tion), through mathematical learning (e.g., with coherence, congruence), and for 
creativity (e.g., imagination). We make reference to convergent creativity of an emi-
nent mathematician  Srinivasa Ramanujan  (1887–1920) for a refl ection on develop-
ing creativity and building capacity for good life.  

  Keywords     Convergence   •   Mathematics   •   Collaboration   •   Creativity  

8.1       Introduction 

8.1.1     Scope of the Chapter 

 This chapter comprises three parts. In the fi rst part we present our assumptions, 
mechanisms and principles of creativity and creativity development. In the second 
part we review briefl y contemporary views on creativity development and 

        A.-G.   Tan      (*)
  Nanyang Technological University Singapore (National Institute of Education) , 
  1 Nanyang Walk ,  Singapore   637616 ,  Singapore   
 e-mail: aigirl.tan@nie.edu.sg  

    B.   Sriraman    
  Department of Mathematical Sciences ,  The University of Montana , 
  Missoula ,  Montana ,  USA    

mailto:aigirl.tan@nie.edu.sg


118

knowledge construction. We refl ect on the role of convergent creativity in develop-
ing capacity through learning a subject matter. In the third part we draw preliminary 
conclusions that convergent creativity is essential for knowledge construction and 
for good life. We make reference to the legend-like encounters of a mathematician 
 Srinivasa Ramanujan  (1887–1920) for some elaboration on convergent creativity, 
knowledge construction, and mathematical capacity. In addition we refer to the 
works of  Vadim Krutetskii  (1917–1991) who developed a systematic means of pro-
moting convergent thinking in highly able students. Even though our inquiry into 
convergent creativity in this chapter is preliminary, we consider refl ecting on con-
vergent creativity an important aspect of developing high ability in education.  

8.1.2     Assumptions, Mechanisms, and Principles 

 Convergence in creativity is a basis of knowledge construction. It is necessary for 
creativity development. We propose four assumptions of convergent creativity in the 
context of creativity for capacity building and knowledge construction: (a) 
Convergence is a mechanism of creativity; complementing divergence and emer-
gence, two other mechanisms of creativity. (b) Creativity is an incidence of learning 
(Guilford  1950 ); and learning is a continual, interactive and developmental experi-
ence (Dewey  1937 /1997). (c) Our basic words are relational to the objects, people, 
and intelligent systems (Buber  1937 ). (d) The world of knowledge and meanings is 
constructed through self-discovery (Sundararajan and Raina  2013 ) and in collabora-
tion (Zittoun et al.  2007 ). The fi rst two assumptions are related to mechanisms and 
principles of creativity. The last two assumptions concern construction in the rela-
tional worlds of human wisdom, traditions and affordances (what the environment 
offers). To lead a balance life, convergent  in  creativity takes developing coordinated 
abilities (structure) and collaborative capacity as core activities in learning. In the 
world of mathematics, convergent thinking forms the basis of reasoning required to 
discover invariant principles or properties, as well as to formulate generalizations 
from seemingly different situations by focussing on structural properties during 
abstraction (Sriraman  2003 ,  2004a ,  b ,  c ). 

 As a mechanism, convergence complements divergence and emergence, the two 
other mechanisms of creativity. While convergence and divergence involves a posi-
tional change of a set of elements, emergence is about a change of the very set of a 
system of elements (Kastenhofer  2007 , p. 363). Tan ( 2014 ) uses a preposition “ in ” 
to represent complementarity of the mechanisms and their continuous and interac-
tive experience. Briefl y, we can consider divergence (e.g., variation and differentia-
tion) as part of  multiplicity  and  variety  in natural and psychological life. Convergence 
is “getting ready” to transform  randomness  to create patterns in the spirit of uphold-
ing the good (Nishitari  1991 ). The transition of convergence  in  divergence can be 
 spontaneous  or  goal-directed  which involves  open  acceptance of realities as they 
are, as well as  effortful  preparation, selection, and cross-checking what is in the 
mind with what is acceptable. From a mathematical viewpoint, convergent thinking 
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is a vital aspect of moving the fi eld forward, when patterns from seemingly different 
sets of examples suggest abstractions that reveal structural invariances-when this 
occurs, seemingly random ideas cohere to form the basis of deep theorems. It is 
common amongst mathematicians to use the term “beauty” in an aesthetic sense 
when a result coheres properties from different areas (Brinkmann and Sriraman 
 2009 ), and this can be viewed in terms of convergent thinking . Although classical 
examples abound (e.g., Sriraman  2005 ), a modern example is the Modularity theo-
rem established by Andrew Wiles, that connects the areas of elliptic curves with 
modular forms. 

 Knowing (the present, tacit) and knowledge (the past, domain-relevant) guides 
emergence of new experiences (Cropley  2006 ). Tan ( 2014 ) recommends the propo-
sition “ for ” to represent the direction to which “convergence  in  divergence” heads, 
adhering to the continual, interactive, and complementary principles (Bohr  1950 ; 
Dewey  1937 /1997). Creative learning can be spontaneous and goal-directed. In 
experiencing creative learning the principle of interaction intercepts and unites with 
the principle of continuity (Dewey  1937 /1997). Interaction precedes and mediates 
development of knowledge and capacity of creativity (Ponomerav  2008a ). 
Interception is an example of convergence in divergence for emergence of any novel 
experience. With reference to the principle of complementarity, perception and 
emotion which are qualitatively different from logical thinking enrich our creativity 
experiences. Generating novel ideas (Sternberg and Lubart  1999 ) is in coordination 
with recognizing the best idea (Amabile  1983 ), getting ready for construction of 
meanings. In capacity building (emergence) following the principle of interaction 
(Dewey  1937 /1997) convergence serves as a pulling force of cross-domain infl u-
ences in learning. Spontaneous learning complements goal-directed learning. 
Actions and activities are in coherence with the affordances, and in congruence with 
the minds of the actor and the audience (Glaveanu  2011 ). In everyday life, we 
undertake multiple complementary roles (e.g., the actor and the audience) and 
maintain congruence in these role-identities. The actor in action sets up the plan, 
coordinates his(her) abilities, transforms him(her)self and the environment when s/
he encounters the activity with the audience to which s/he is part. S/he emerges with 
joy, contentment, and inspiration to bring his(her) audience to witness the beauty of 
his(her) creative (inter)action. 

 Emergence is about becoming (Rogers  1961 ), and bringing something into exis-
tence (Frankl  1984 ). In creative production, the motivated person identifi es a theme 
of interest ( convergent thinking ). S/he proceeds to ideation ( divergent thinking ) and 
applying domain-relevant knowledge to select the best idea ( convergent thinking ). 
New ideas or variabilities are refi ned with reference to domain-relevant knowledge 
(Amabile  1983 ). Creative products that are acceptable emerge after a series of itera-
tive convergent processes such as seeing limits, zeroing on the potential, and draw-
ing on the “correct” conclusions (Cropley  2006 ). As stated earlier mathematics as a 
fi eld provides astonishing examples of this process. Teaching experiments with high 
school students indicate that this is not limited to professional mathematicians given 
the right pedagogical conditions in the classroom (Sriraman  2005 ).   
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8.2     Creativity Development 

8.2.1     Developing Capacity 

 In the fi eld of psychology, after the Second World War there have been conscious 
efforts to remove the “ fear ” of conducting scientifi c investigations on human cre-
ativity (see Guilford  1950 ). A call to restore the “ faith ” in humanism renewed dia-
logues on sciences for the good. Spaces were created for interdisciplinary sharing of 
conceptions of creativity. During this period, some psychologists presented their 
views of creativity (e.g., Carl Rogers and Joy Guilford) and designed tests to iden-
tify creative talent (see Guilford  1957 ). Subsequent efforts were observed in con-
structing measurements (e.g., Torrance Tests of Creative Thinking, see Torrance 
 1966 ), and proposing models (e.g., a componential model of creativity, e.g., Amabile 
 1983 ) and theories of creativity (e.g., a three-systems theory, Csikszentmihalyi 
 1988 ). Decades later, these unassumingly “small” efforts received attention and 
have since served as a preliminary knowledge base that have supported continuous 
efforts to create possibilities in developing people’s creative potential. 

 Towards the end of the twentieth century, there were social movements to develop 
potentials of all people under the policies of “the no child left behind” and “every 
child matters” and the like in different parts of the world. Creativity as a potential of 
every person has been a widely accepted belief. Movements of nurturing creativity 
and developing talents rallied supports. Consequently, the number of policies for 
creative education and creative industries grew sporadically. Some societies set up 
collaborative plans and rolled out programs to nurture all including the vulnerable 
(e.g., in 2004 Singapore declared herself as an inclusive society) and the talented 
regardless of their backgrounds. In the United Kingdom efforts to encourage imagi-
nation and nurture creativity were observed in the classroom (Craft  1999 ). Creativity 
was acknowledged as a key to innovation and social-economic transformation in 
Asia such as China, Hong Kong, Korea, Japan, Singapore, and Taiwan. In these 
societies, one saw an exponential rate of people investing in the capacity to use 
creative digital devices in their everyday communication compatible to the rate of 
marketing electronic devices and smart-phone technologies. The adjective of “cre-
ative” has been accepted as an everyday vocabulary. More often than not investing 
in creativity has been linked to economic development sometimes leading to nega-
tive consequences for society, e.g., Korea (Sriraman and Lee  2016 ). 

 For nearly 15 years, efforts have been seen in converging knowledge of creativity 
in the fi eld of psychology. Within the fi rst 6 years of the twenty-fi rst century, two 
annual reviews on creativity were released. The fi rst annual review by Runco ( 2004 ) 
used the four-Ps framework (Rhodes  1961 , person, process, product and press or 
environment) to organize the contents of the past creativity research. The second 
annual review by Hennessey and Amabile ( 2010 ) followed the line of thought of a 
systems approach and constructed a model to orientate the continuously increase 
number of studies on creativity which had blurred the disciplinary and cultural 
boundaries of the fi eld of psychology of creativity. The renaissance of the studies of 
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creativity overshadowed the previously negative sentiments of uncovering the truth 
of the humans’ potentials. Instead, there have been efforts to outline fl ourishing 
conditions for and concise understanding of nurturing creativity. In Kaufman and 
Beghetto’s ( 2009 ) four-c framework, there emerged familiar terms such as Big- 
creativity (or historical creativity), professional creativity (or domain-relevant cre-
ativity), little or everyday creativity, and transformational creativity or mini-creativity. 
Their framework suggested that mini-c and little-c are within all persons. Not all 
people will persist in pursuing professional c. Rarely, a person has the golden oppor-
tunity to experience his (her) own Big-c. The factors and conditions that infl uence 
the unfolding of professional c and Big c are complex, and are beyond one person’s 
control. Glaveanu ( 2011 ) based on the knowledge of cultural psychology rewrote 
the language of the four Ps to the fi ve 5As (action, activity, artefact, audience, and 
affordance). In essence, the person in his(her) social-cultural realm is an actor and 
an audience, whose action and activity are infl uenced by the affordance (or what the 
environment offers). With reference to positive and humanistic psychologies and 
Zen Buddhist philosophy, Tan ( 2012 ) advocates nurturing creativity for constructive 
growth, ethical practices, and the good. 

 Creativity is about generating novel and useful ideas (Sternberg and Lubart 
 1999 ), bringing something to being (May  1975 ) and fl ourishing humanness (Frankl 
 1984 ). In the literature, the genre of  novel  best represents life. Novel is constructed 
in “the zone of direct contact with the inconclusive present day reality” (Bakhtin 
 1981 , p. 39). In life, humans continuously interact with the others, share their 
knowledge, and experience novelties. Collaboration that generates conceptual con-
fl icts creates ruptures in the existing knowledge systems and opportunities for 
knowledge innovation. Conceptual convergence in iteration accommodates con-
fl icts and transforms them to shared knowledge. Accommodation is a form of adapt-
ing by modifying cognitive structures to fi t the otherness. As an incident of learning, 
developing capacity is converging broad-based sensing, perceiving and feeling of 
the world and the “correct”, systematic, logical and goal-directed processes of rep-
resenting the world (Ponomerav  2008a ). 

 According to Ponomerav ( 2008b ), throughout our life, we experience develop-
ment of multiple forms of knowledge.  Contemplative-explanatory  knowledge 
emerges from the curiosity and philosophical needs of society. It grows out of prac-
tice, common-sense, life experience, work of literature and art, and so on. The per-
son contemplates and records everyday knowledge; and describes it with reference 
to some existing theory.  Empirical knowledge  relates directly with concrete objects 
and integral events. It assists in solving practical problems.  Active-transformative  
knowledge takes empirical models and transforms into abstract-analytical knowl-
edge. It builds systems of modelling. We never cease to grow our coordinated abili-
ties to react, represent (plan), recall, and reproduce meanings and knowledge. The 
world of knowledge we construct “mirrors” the diversity, order, and creativity of the 
world in which we live. Creative cultural divergence is based on internal persuasive 
discourse, which “is freely developed and allows for new voices to join in and par-
ticipate.” (Hsu  2012 , p. 108) Creative persons possess creative qualities, abilities or 
characteristics (see Guilford  1950 ) which include but are not exclusive to sensitivity 
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to problems, ideational fl uency, fl exibility of set, ideational novelty, synthesizing 
ability, reorganizing or redefi ning ability. Knowledge construction and innovation is 
a mean and an end of creativity development. In creating, we are motivated to gen-
erate and explore (Ward et al.  1999 ) and coordinate abilities which include motivat-
ing, domain- relevant processing (knowledge, techniques) and creativity-relevant 
processing (ideation, breaking sets) (Amabile  1983 ). In each phase of creating, 
there exists a “ continuum ” of sub-processes (Lubart  2001 ).  

8.2.2     Constructing the World of Knowledge 

 Knowledge construction is a social-historical, cultural, and over-generational 
endeavour. It is a convergence  in  divergence  for  emergence experience in the human 
world throughout our life span. In the fi eld of psychology, convergent creativity in 
the context of knowledge construction has been elaborated by eminent psycholo-
gists, Jean Piaget (1896–1980), Lev Vygotsky (1896–1934), and John Dewey 
(1859–1952), to name but a few. A child prior to language acquisition constructs the 
world of knowledge by using his(her) senses, feeling, perception, and movement 
(Ponomerav  2008a ). Scaffolding is an example of social-cultural  convergence  when 
the adult enters into the zone of proximal development of the child and guides 
his(her) development (Vygotsky  1978 ). Creative teaching is dependent upon  con-
gruence  in teacher roles and a process of  coherence  in assessment, activity and 
instruction. Teachers adopt multiple roles in everyday classrooms. They possess 
multiple role-identities.  Congruence  as an instance of convergence in divergence in 
creative teaching (Tan  2015a ) is about relevant, multiple teacher role-identities that 
are combined as a co-ordinated competency and that guides the dissemination of 
knowledge and skills.  Coherence  is another instance of convergence  in  divergence 
of creative teaching (Tan  2015a ) taking the process of delivery of effective instruc-
tion as a mean and an end towards creative learning. The teachers design the lessons 
of the day according to the needs and styles of the learners. 

  Convergence  signifi es the readiness to transit to the capacity of constructing a 
structure, designing a plan, or coordinating abilities. According to Rich et al. ( 2013 ), 
convergent cognition refers to a  common underlying conceptual base  in which the 
relationship is unifi ed, interconnected, and interdependent. Immediately after a 
baby is born, s/he is ready to  imitate  movement of gestures that s/he notices 
(Rizzolatti and Craighero  2004 ). S/he is curious to feel and touch any objects or 
people who appear before him(her). The new born is prepared to relate to the care-
givers. S/he is motivated to fulfi l his(her) needs. S/he has the potential to acquire 
knowledge in everyday life and in various domains. S/he is intuitively alert to learn 
about all things that come before him (her).  Imitation  is a signifi cant  convergent  
capacity that a child has since s/he is born. Through  imitation  s/he relates to the 
caregivers and people around him(her). Further, the child has the ability to organize 
information available and accessible to him(her). If the information fi ts into his(her) 
cognitive structures, s/he assimilates it; otherwise, s/he modifi es his(her) cognitive 
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structures to accommodate the new information. Organisation and adaptation 
(assimilation, accommodation) are  convergent  processes in constructing the world 
of knowledge, mental models, structures, coordinated abilities, or internal plans. 
“Operation” or structure is a reality referring to the child’s deductive capability 
(Piaget  1928 ).  

8.2.3     Everyday Learning 

 The authors are in favour of a “ middle way ” (moderate) and a continuum approach 
to convergence in creativity (see Tan  2014 ). Observing the practice of moderation in 
life we adhere to cultivating good conducts and avoiding dogmatism. We are con-
tented with suffi cient, optimal and balanced conditions in life. On becoming a per-
son, we make appropriate effort to carry out what we deem as important for ourselves 
and for the people around us. With an understanding of continuum, we bridge the 
seemingly dichotomous discourses of divergence versus convergence such as a 
divergent task (list as many usages as possible for a “paper clip”) versus a conver-
gent task (At a cold and icy night a tired man reaching home had his dinner and 
switched off all the lights before he went to bed. The next morning he woke up and 
found himself walking through his residence full of dead bodies. What caused 
deaths of the residents in the man’s home? (see e.g., Nielsen et al.  2008 ). We postu-
late that the underlying creative process and action of generating and exploring 
likely common but the transformation of creative structures in interaction with 
accumulative, coordinated, and integrative information creates variations in forms 
creativeness and types of knowledge. 

 Learning in everyday life and classroom shall regard congruence in roles and 
coherence in contents and process of learning (Tan  2015a ). In a newspapers article 
released on August 24, 2015, a story of twin cubs which were born, with 4 h apart 
in the Zoo of Washington attracted the attention of a home tutor. According to the 
article, the mother panda gave birth to the fi rst cub in 2005, the second in 2012, 
which unfortunately died 6 days later, and the third in 2013. A decade after the fi rst 
cub was born, twin cubs arrived after the mother panda successful went through the 
process of inseminated fertilization from frozen and lived sperms of two different 
male panda living in China and the United States of America. 

 To understand the information reported in the article, the adult adopted a  conver-
gen t approach to posing questions related to factual knowledge, accuracy of infor-
mation, and drawing “correct” conclusions (Cropley  2006 ). The child displayed 
some traces of coordinated abilities in reading the text, relating his previous reading 
on the same theme months ago, and in imagining how life can be better for both the 
adult and cub pandas in the zoo of Washington and in his home country (Singapore). 
Variability in generating (Cropley  2006 ) questions were used to assist the child to 
grasp accurately factual information of the article: (a) Who was the author of the 
article? (b) Where did the Panda cub deliver? (c) What were the names of the offi -
cials in the zoo who spoke to the reporter? (d) How many cubs have the panda 
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delivered since 2005? (e) How many of her off-springs survived? (f) How far was 
apart from her fi rst delivery to the present deliveries? Variability in exploring 
(Cropley  2006 ) aimed to guide the child to conclude what he read. It went beyond 
the individual panda in the article and discussed about the endanger species in the 
world. As a matter of fact, according to the article, there are about 1600 of them in 
the wild life, and 300 in captivity. Those who live in captivity have a low rate of 
fertility. The child who read the newspapers article answered the questions and 
penned down three sentences summarizing the essence of the article. He experi-
enced some disequilibrium especially in understanding the term “twin” and the 
word “survived”. Guided by the adult, he related the number “two” to the word 
“twin”, the operation of “subtraction” to the early dead of the 6 day old panda. 
Learning is a cycle of rhythm of life, relating abstract ideas (e.g., death, survive) to 
concrete experiences (e.g., panda in the Singapore zoo), and interests of the child 
(e.g., reproduction). The joy of discovery in the cycle of romance from free ques-
tioning guides the child to the next cycle of learning appreciating the need to learn 
the language of a discipline such as mathematics (Woodhouse  2012 ). Improvisation 
is novel as new behaviour emerged in the in-between space and through collective 
interaction (Sawyer  1999 ). The child summarized the essence of the article and 
improvised the life in the wildlife and in the zoo. He imagined how the cubs played 
with their mother, and how he observed them playing taking the role as a visitor of 
the zoo at home and in the bamboo forest far away.   

8.3     Classroom (Mathematical) Learning 

 Convergent thinking plays an important role in mathematical learning. Many early 
learning processes such as sorting, counting, stacking, categorizing converge into 
the abstraction of ordinality and cardinality, and the basis for the generalization of 
number. As students progress through mathematics, the structures they encounter 
become increasingly abstract (sets, relations and so on) with generalization as a key 
feature of mathematical thinking. In a sense abstraction and generalization can be 
viewed as a convergence of thinking of different properties of mathematical objects 
and the ability to eliminate superfi cial similarities to focus on structural similarities. 
Vadim Krutetskii ( 1976 ) analyzed the generalization ability of both “normal” and 
gifted students in a series of experiments. Krutetskii viewed the ability to generalize 
as one manifestation of the creativity of the individual. He hypothesized that “stu-
dents with different abilities are characterized by differences in degree of develop-
ment of both the ability to generalize mathematical material and the ability to 
remember generalizations” (Krutetskii  1976 , p. 84). One of the attributes of stu-
dents who were able to generalize mathematical ability was the ability to switch 
from a direct to a reverse train of thought (reversibility), which capable students 
performed with relative ease. The mathematical context in which this reversibility 
was observed was in transitions from usual proof to proof via contradiction (reduc-
tio ad absurdum), or when moving from a theorem to its converse. 
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 Krutetskii studied 19 students with varying mathematical abilities. The problems 
used by Krutetskii in his experiments met the following criteria. (1) The problems 
were of graded diffi culty; (2) The problem sets consisted of simple problems as well 
as some that required “mathematical creativity”; (3) Some problems were simply 
put to evaluate skill mastery. These problems were based on new material that stu-
dents had encountered in their curriculum. Based on his experiments with the 19 
students, Krutetskii concluded that more “capable” students were able to rapidly 
and broadly form mathematical generalizations. He noted that these “capable” stu-
dents were able to discern the general structure of the problems before they solved 
them. The “average” students were not always able to perceive common elements in 
problems, and the “incapable” students faired poorly in this task. These results led 
Krutetskii to examine “gifted” students separately followed by an examination of 
incapable students. The fi nal experiment was a study of 24 “gifted”, 22 “average” 
and 8 “incapable” students. Based on these series of experiments Krutetskii identi-
fi ed four levels of generalization as a function of the ability of the students. The 
researcher will quote directly from Krutetskii’s writings.

   Level 1: Cannot generalize mathematical material according to essential features 
even with help from the experimenter and after a number of intermediate single- 
type practice exercises.  

  Level 2: generalizes mathematical material according to the essential features with 
the experimenter’s help and after a number of single-type practice exercises, with 
individual inaccuracies and errors.  

  Level 3: generalizes mathematical material according to essential features, indepen-
dently, but after some single-type exercises and with insignifi cant errors. Proper 
faultless generalization comes with insignifi cant promptings and leading ques-
tions from experimenter.  

  Level 4: generalizes mathematical material correctly and immediately, “on the 
spot”, without experiencing diffi culties, without help from experimenter, and 
without special practice in solving problems of a single type (Krutetskii  1976 , 
pp. 254–255).    

 Krutetskii came to the conclusion that in order for students to correctly formulate 
generalizations, they had to abstract from the specifi c content, and single out simi-
larities, the structures and relationships. The ability to generalize consists of two 
aspects: (1) subsuming a particular case under a known general concept; and (2) the 
ability to deduce the general from particular cases (in this instance the generality is 
unknown). The work of Krutetskii has subsequently been extended by Sriraman 
( 2002 ,  2003 ,  2004a ,  b ,  c ) in the contexts of number theory and combinatories where 
high school students were able to distill convergent properties such as Steiner 
n-tuples, the Dirichlet principle and Diophantine n-tuples. In all these experiments 
the principle of “convergence  in  divergence  for  emergence” became exemplifi ed 
and supports strong evidence to Tan’s ( 2015b ) theory of convergent thinking for 
fostering creativity. Moreover the case study of Ramanujan presented in the con-
cluding section of this chapter provides a compelling account of convergent creativ-
ity that unifi ed the study of infi nite series, continued fractions and geometric 
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function theory into “convergent” formulae that still provide number theorists fod-
der a century later- even though this may be construed as an extreme case, it none-
theless illustrates our argument for fostering convergence in creativity 
development.  

8.4     Conclusion 

 This chapter elaborates the mechanisms of convergence  in  divergence for emer-
gence with reference to  knowledge-induced  creativity which has its base in  effortful  
creativity (Cropley  2006 ; Tan  2015b ). Our assumptions for convergent creativity 
include learning is a way of life to develop capacity of mankind for the good, ethics, 
universal values, health, positivity, and possibility. Learning for life goes beyond 
effortful commitment, knowledge-induced engagement, and domain-relevant pro-
cesses. Learning  in  practice takes convergence  in  divergence as a core basis for 
emergence. Throughout our life, we master meta-theoretical strategies (selection, 
optimization, and compensation, Baltes  1987 ), meta-awareness (imagination, and 
imitation), meta-regulation (broaden-and-build theory, Fredrickson  2001 ), and so 
on. We construct different types of knowledge (e.g., contemplative, explanatory, and 
empirical, Ponomerav  2008b ) and show varying forms of creativity (e.g., mini-, 
everday, and professional, Kaufman and Beghetto  2009 ). Mathematical learning 
and creativity is a life engagement. It is about thinking and feeling the world through 
mathematical symbols, representations, and language. The ultimate aim of mathe-
matical learning and creativity is good life, ethical relations, and healthy living. Our 
understanding of convergence  in  creativity in mathematical learning and creativity 
is a cultural and disciplinary boundary crossing endeavour. Table  8.1  outlines the 
main points of convergent creativity for capacity building.

8.4.1       A Novel-Like Legend 

 This chapter presents our preliminary thoughts on convergent thinking, creativity, 
and mathematical learning. The chapter regards creativity as an incidence of learn-
ing (Guilford  1950 ), and learning as a way of life to build capacity to discover 

   Table 8.1    Convergent creativity for building capacity   

 Mechanism  Principle  Process  Structure 

 Convergence  Continuity  Self-discovery  Imagination (intuition) 
 Divergence  Interaction  Collaboration  Tradition 

 Cross-domain knowledge 
and knowing 

 Emergence  Complementarity  Imitation 

A.-G. Tan and B. Sriraman



127

meanings in life. Learning is both personalized and collaborative in inquiring into 
the good (Tan  2012 ) and in acquiring knowledge from the human society. 
Particularly, we wish to understand convergent creativity in light of capacity build-
ing and knowledge construction in the context of learning a subject matter (e.g., 
mathematics). Our refl ections on convergent creativity orientate around a legend of 
the world renowned mathematician,  Srinivasa Ramanujan Iyengar  (1887–1920). 
We regard as fortunate to come across abundant narrations and analyses of 
Ramanujan’s life and work freely accessible in the Internet including those from 
eminent people such as G. H. Hardy (1877–1947), Bruce C. Berndt (1939–), and 
George E. Andrews (1938–) (see Berndt  n.d. ; Andrews  n.d.-a ,  n.d.-b ). In this chap-
ter, we specifi cally make reference to a British mathematician, Hardy’s ( 1937 ) 
inspirational account on Ramanujan’s mathematical capacity, his unique method of 
inquiry, and convergent creativity in mathematics.

  It was his insight into algebraical formulae, transformation of infi nite series, and so forth, 
that was most amazing. On this side most certainly I have never met his equal, and I can 
compare him only with Euler or Jacobi. He worked … by induction from numerical exam-
ples … (W)ith his memory, his patience, and his power of calculation he combined a power 
of generalization, a feeling for form, and a capacity for rapid modifi cation of his hypothe-
ses, that were often rally startling, and made him, in his own peculiar fi eld, without a rival 
in his day. (Hardy  1937 , 149) 

   At the early years of development, Ramanujan encountered traditional wisdom 
( divergence  in cultural traditions, see Hsu  2012 ) and showed interests in numbers. 
According to Hardy ( 1937 ), Ramanujan grew up in a Brahmin family of a high 
caste. He adhered to all observations in his caste, and remained strictly a vegetarian 
practitioner until the end of his life. Ramanujan, who was once a clerk turned an 
extraordinary mathematician, showed at his early years (before 10) his exceptional-
ity in mathematics. His talent in mathematics was recognized at the age of 12 and 
13. Only at the age of 16 he was exposed to George Schoobridge Carr’s volumes ( A 
synopsis of elementary results in pure and applied mathematics) . Carr’s volumes 
were an inspiration for Ramanujan to establish formulae. With no other resources, 
each solution was like a piece of research to him. Ramanujan credited his achieve-
ments in arriving at the formulae to the gifts he received from the goodness of 
Namakkal in his dreams. It was believed that Carr’s volumes contributed to the 
unfolding of full powers in mathematics in Ramanujan. With some encouragement 
from people in his homeland, India, Ramanujan wrote and sent his voluminous 
work to great mathematicians in the United Kingdom. In his twenties, Ramanujan 
left for England and had since worked closely with Hardy. His talents in mathemat-
ics fl ourished further in the new environment in which he engaged in intensive and 
daily sharing of his discoveries with his mentor: “… he was showing me half a 
dozen new ones almost every day … .” (Hardy  1937 , p. 146). 

 Travelled to Cambridge and worked with colleagues in the Trinity College, 
Ramanujan and his mentor(s) combined their personal (imagination) and social 
resources (collaboration), funds of knowledge (including contemplative- explanatory, 
empirical, and active-transformative, Ponomerav  2008b ), and sources of creativity 
(e.g., professional and Big, Kaufman and Beghetto  2009 ). Together they resolved 
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conceptual confl icts and brought their knowledge in mathematics to convergent cre-
ativity. Ramanujan’s algebraic formulae and transformation of infi nite series orien-
tated the direction of his creations, and served as heuristics to design meanings (see 
Cropley  2006 ). Ramanujan was a great master of hypergeometric series and con-
tinual fractions (Hardy  1937 ); creating new series and patterns beautifully which 
was therapeutic, meaningful, and spiritual to him. Life was the beauty of mathemat-
ics ( emergence ). In Hardy’s ( 1937 ) account, Ramanujan’s was enthusiastic to gener-
ate and share with him novel theorems: “… he was a mathematician anxious to get 
on with the job … ” (p. 146) Proofi ng his own theorems and inquiring into the 
process of creating novel theorems were not in his list of priory and interest. Hardy, 
the British mentor showed Ramanujan the importance to derive proofs to verify his 
own discoveries. Ramanujan’s determination to overcome challenges and to main-
tain enthusiasm in mathematics served as an exemplifi ed case of inquiry into  con-
vergent creativity  (see Craft  1999 ). To elaborate we cite Hardy’s account on 
Ramanujan’s convergent creativity: “It was his insight into algebraical formulae, 
transformation of infi nite series, and so forth, that was most amazing. … He worked, 
…, by induction from numerical examples; all his congruence properties of parti-
tions, for example, were discovered in this way. But with his memory, his patience, 
and his power of calculation he combined a power of generalization, a feeling for 
form, and a capacity for rapid modifi cation of his hypotheses …” (Hardy  1937 , 
p. 149). 

 Hardy admitted that his discovery of Ramanujan was a romantic incident in his 
life time. He was able to understand Ramanujan’s brilliance, and was ready to 
openly listen to Ramanujan’s generative variabilities daily and to critically build up 
his capacity in fi nding proofs. Ramanujan’s joy of imagination was substantiated by 
Hardy’s persistence in searching for proofs. “A mathematician usually discovered a 
theorem by an effort of intuition; the conclusion strikes him as plausible, and he sets 
to work to manufacture a proof.” (Hardy  1937 , p. 151) Coordinated abilities of gen-
erating theorems and of proving the theorems systematically are essential to remove 
any fallacy and to confi rm accuracy of one’s imagination.   

8.5     Convergence in Creativity for Good Life 

 Inquiry into the good requires a continual renewal of  moderate attitudes  towards the 
external infl uences ( continuity ). It is about living  in  the tradition and contemporary 
knowledge, as well as living  with  self-discovery (Sundararajan and Raina  2013 ) and 
openness in collaboration (Jarczak  2011 ). We refl ect on  convergence , a mechanism 
of creativity and a core of  effortful  endeavour. Convergent thinking exists in  effortful  
creativity (Cropley  2006 ), which is knowledge-i nduced . Effort on a  continuum  of 
the action or process is likely a matter of the degree of intensiveness. Likewise, on 
a  continuum  of knowing and knowledge is likely the common underlying process 
and action of creating, while emergence of variations in terms of forms and func-
tions is likely dependent on how accumulative, coordinated, and integrative 
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information interacts with and makes senses to the persons who use it. Tacit knowl-
edge (Polanyi  1968 ), people’s conceptions (Sternberg  1985 ), what is in the person’s 
mind or the like is a basic of scientifi c knowledge (see Polanyi  1968 ). Creative 
thoughts share commonalities of  goal-directed  thoughts ( complementarity ), which 
occur during problem solving, planning, reasoning, and decision making, and  spon-
taneous  thoughts, which includes mind-wandering (Mok  2014 ) and memory pro-
cessing (Christoff et al.  2008 ). Collaboration in knowledge convergence involves 
the like-minded people with epistemic curiosity in resolving conceptual confl ict and 
in committing to iterative refi nement of shared knowledge (Jarczak  2011 ). 

 For convergent creativity to emerge, it is essential for a person to possess the 
structure of creative agency. In learning, humans are agents of change (Bandura 
 2001 ), actors innovators of knowledge-based activities. Humans as agents are reac-
tive, pro-active, refl ective, and creative. We are able to predict or think ahead of time 
and space (Bandura  2001 ). We understand the social cultural world not only when 
we take conscious and effortful actions but also when we observe how  interactions  
unfold when we are with other people or part of shared systems. Born into the living 
human world, we sense, observe, and model the others. We develop meta-strategies 
to optimize opportunities and compensate our shortcoming (Baltes  1987 ). Humans 
are receivers of accumulative expertise, knowledge, and skills. We create our own 
world of knowledge. An essence of creativity development is to shape, orientate, 
and lead life to its fullest (Cropley  2006 ). Our seeing and knowing orientates our 
direction to develop humanism within and without. We put in intensive  efforts  to 
develop coordinated abilities, collaborate with the others, synthesize resources, set 
up plans, and relate to the good and ethics. 

 In narrating the great Indian genius in mathematics, Hardy ( 1937 ) revealed his 
wisdom to recognize the invaluable gift of Ramanujan. Ramanujan built up his 
capacity in multiple aspects in mathematics mainly through self-absorption in and 
joy of doing mathematics. He enjoyed a prolonged duration in the romantic phase 
of learning (Woodhouse  2012 ) and his absorbed mind was at all times engrossed in 
the stage generating novelties and exploring discoveries (Ward et al.  1999 ). The pre- 
inventive structures of mathematics went through rounds of transformations and 
emerged as novel formulae and series. Hardy admitted the reservoir of Ramanujan’s 
unprecedented imagination. In his narration, Hardy ( 1937 ) noted how Ramanujan 
instantly saw a pattern in a number (e.g., 1729) as “a sum of two cubes in two dif-
ferent ways” (p. 147). It was evident that Ramanujan possessed convergent capacity 
to generate varying types of  knowing-knowledge  (contemplative, explanatory, 
empirical, and active-transformative, Ponomerav  2008b ). He had the capacity to 
coordinate abilities (e.g., imagination) and to transform tacit knowledge (e.g., the 
number plate of a cab) instantly to scientifi c knowledge (e.g., the series patterns). As 
a critical contemporary and mentor, Hardy identifi ed Ramanujan inadequate capac-
ity to derive proofs for some of his imaginations particular in the analysis of number 
theory. Hardy attributed this Ramanujan’s incapacity to the insuffi cient instructions 
and mentorship he received in his early years of education. Our inquiry into 
Ramanujan’s creativity development seems to concur preliminary to the critical 
refl ections of scientifi c creativity that formal education can be important to  transform 
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creatively some forms of knowledge (e.g., analysis). Freedom of imagination and 
transformation is essential for other forms of knowledge creation. It is imperative 
and immediate for educators and scientists to examine the good of schooling and a 
claim that formal education limits creativity capacity. Likewise it is essential to 
investigate the importance of freedom of thought that enhances creative imagination 
in varying incidents. Future refl ections shall focus on imagination as a prerequisite 
of creativity (Vygotsky  2004 ), its roles in convergent creativity, and its possibilities 
for knowledge construction. 

8.5.1     Final Words 

 In generating theorems, functions, and series, Ramanujan attained the supreme joy 
compatible to the spiritual unity with Namakkal. He reached a high level of imagi-
nation, self-discovery, and spontaneous cognition. Convergence in creativity unfolds 
and consolidates after a series of iterations of imagination (divergence) and/or anal-
ysis (convergence). We are hopeful that under fl ourishing conditions knowledge- 
 induced  convergence in creativity not only a source of domain-relevant capacity but 
also a reservoir for self-care and wellness. Convergent creativity has its underlying 
processes in spontaneous and controlled cognition (Mok  2014 ) as well as in creative 
imagination and creative collaborations (Hardy  1937 ). The continuous appreciation 
of “the loss notebook of Ramanujan” and its subsequent renewals in knowledge of 
mathematics has remained amazing evidence of convergent creativity. Our next 
journey of refl ections on convergent creativity shall focus on how to re-construct the 
conditions for imaginative creativity that Ramanujan enjoyed in India and those for 
analytical creativity that he experienced in England. Refl ections on how fl ourishing 
conditions enhanced convergent creativity can be a key to support full development 
of human potentials in the presence of positive affordances (what the environments 
offer for ethical practices). Our views on convergent creativity can serve as a gentle 
reminder for a meaningful journey of creativity development not only in the world 
of mathematical abstractions but also in the relational and humanized world.   

8.6     Remarks 

 The compilation of this chapter is evidence of an interdisciplinary cooperation 
between a psychologist-educator and a mathematician-educator, going beyond their 
own fi elds of specialization into a genuine understanding of creativity and gifted-
ness in learning.     
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    Chapter 9   
 The Origin of Insight in Mathematics                     

     Reuben     Hersh      and     Vera     John-Steiner   

    Abstract     This paper has four objectives: (1) to address some psychological sources 
that motivate creative mathematicians to do sustained research, (2) to use case stud-
ies and self-reports to identify cognitive and mathematical strategies, (3) to give 
inspiring examples of creative breakthroughs in the teaching of mathematics, (4) to 
report on a startling recent discovery in artifi cial intelligence, with thought- 
provoking implications for the management of human intelligence: the pursuit of 
novelty, unrestricted by any other prescribed goal or objective, radically speeds up 
evolutionary adaptation.  

  Keywords     Creativity   •   Mathematics   •   Clarence Stephens   •   Potsdam model   •   Moore 
method  

   The study of creativity increased dramatically in the last 30 years. It moved from the 
study of genius, started by Galton in the nineteenth century, to wide-ranging inquiry, 
both into major innovations and contributions in the arts and sciences, and into cre-
ative behavior in everyday life. Most of the studies have been carried out by social 
scientists, but there is increasing interest in other disciplines to examine insight, 
discovery, and long-term or transformative contributions. 

 The leading mathematician Terence Tao challenges the myth that one has to be a 
genius to make contributions to mathematics.

  In order to make good and useful contributions to mathematics, one does need to    work hard     , 
   learn one’s fi eld well     , learn    other fi elds      and    tools      ,     ask questions      ,     talk to other mathemati-
cians     , and    think about the “big picture .”     And yes, a reasonable amount of  intelligence , 
   patience     , and    maturity      is also required. But one does  not  need some sort of magic “genius 
gene” that spontaneously generates  ex nihilo  deep insights, unexpected solutions to prob-
lems, or other supernatural abilities. 

   His comments agree with the psychologist Howard Gardner ( Creating Minds , 
 1993 ), who emphasizes the long apprenticeship of people engaged in creative work, 
their early attempts to develop a new approach, and their protracted commitment to 
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solving interesting problems, in order to achieve signifi cant changes and even trans-
formations (John-Steiner ( 1997 )). Tao points out that

  The number of interesting mathematical research areas and problems to work on is vast – 
far more than can be covered in detail just by the “best” mathematicians, and sometimes the 
set of tools or ideas that you have will fi nd something that other good mathematicians have 
overlooked, especially given that even the greatest mathematicians still have weaknesses in 
some aspects of mathematical research. As long as you have education,   interest    , and a rea-
sonable amount of talent, there will be some part of mathematics where you can make a 
solid and useful contribution. It might   not be the most glamorous part of mathematics    , but 
actually this tends to be a healthy thing; in many cases the mundane nuts-and-bolts of a 
subject turn out to actually be more important than any fancy applications. 

9.1       Psychological Sources of Creativity 

 In a classic study, Getzels and Jackson ( 1962 ) found that gifted adolescents had 
parents who encouraged their offspring’s adventurous spirits and enthusiasm for 
life. Once these students focused on a particular area, they learned to join skill and 
discipline to their sense of wonder. In the life story of contributors to science and art 
we often hear of lonely childhoods where reading, solving problems, or studying 
nature fi lled a gap caused by illness or social isolation. Such people like to read 
biographies of “distant teachers,” whose experiences replenish a desire to go beyond 
the known 

 Closely related to the curiosity of creative people is their intensity, which can 
make them stay with a problem that others would abandon as too diffi cult. Einstein 
recalled how at age 5 he attempted to understand how a compass worked and 
guessed that “something deeply hidden had to be behind things” (Schillp  1970 , 
p. 5). In a study of successful competitors in the international Mathematical 
Olympiad, the author Steve Olson found that the competitors revealed “an extraor-
dinary capacity for mental focus; they were willing to stay with a problem for hours, 
or even days” (Olson  2004 , p. 63 in Hersh and John-Steiner  2011 , p. 23). If there’s 
one quality young mathematicians share it’s this power of concentration. In a book 
about prodigies Feldman and Goldsmith ( 1986 ) write of a similar tendency of 
intense dedication, self-confi dence, and “a mixture of adult and child-like qualities” 
(p. 12). Ellen Winner ( 1996 ), in her book  Gifted Children , describes young  prodigies 
who already as preschoolers displayed an intense fascination with numbers. One 
such child, KyLee, looked for numbers wherever he went. His memory for numbers 
was also astounding. The computer provided him with additional ways to pursue 
his interest in addition, word problems, and other arithmetic operations. He called 
himself “the number boy.” 

 Many mathematically gifted children score high on spatial tests. Some are also 
high-scorers on verbal tests. They enjoy taking toys apart and trying to fi gure out 
how machines work. Their memory for numbers is often impressive. 

 Their persistence and curiosity can lead to early success in mathematical tasks, 
and to rewards, like honors classes in mathematics, specialized summer camps, and 
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local, state, national, and international competitions. All of these contribute to an 
individual’s self-confi dence. Gifted young people spend more time alone than with 
their peers, and their specialized interests can contribute to isolation, so opportuni-
ties for contact with others who share their interests are important. 

 Some young mathematicians are fortunate in receiving exceptional instruction in 
their early adolescence. Richard Courant was encouraged by his teacher who preferred 
to lead his students to discoveries on their own, rather than teaching them formulaic 
approaches. The exceptional instruction at the Lutheran Gymnasium in Budapest, 
Hungary, produced some famous mathematicians. The best known of them was John 
von Neumann. In recollecting their mathematics teacher László Rátz the physicist 
Eugene Wigner wrote, “He loved teaching; he knew his subject and how to kindle 
interest in it. He imparted the deepest understanding. Many…teachers had great skill, 
but no one could invoke the beauty of the subject like Rátz” (Wigner  1992 , p. 50). 

 Independence and willingness to fi nd their own way of solving problems can be 
the beginning of the lifelong courage, to go beyond the accepted method of solving 
a mathematical problem (Gustin ( 1985 )). Many young people with mathematical 
gifts fi nd the ordinary classroom a diffi cult setting. It concentrates on memorizing 
algorithms, rather than innovative problem solving and deeper knowledge of 
mathematical abstraction. Mathematics classes at specialized schools like the 
Bronx High School of Science in New York City provide for analogical reasoning, 
discovery of patterns and ways of expanding them. Not all mathematically gifted 
children become mathematicians; many choose other sciences or engineering as 
their future profession. 

 In his book  Creativity , Mihaly Csikszentmihalyi ( 2009 ) identifi ed ten character-
istics of creative individuals. These characteristics can be contradictory. The fi rst 
one is high energy coupled with ability to work quietly. This relates to intensity 
mentioned above. Creativity tests often measure fl uency. Creative individuals con-
fronted with a challenging task can produce a lot of associations and problem solv-
ing strategies. But the chemist Linus Pauling commented that one of the secrets of 
effective problem solving is to both come up with a lot of ideas and also to know 
how to get rid of most of them. In a related vein, Hadamard ( 1945 ) wrote, “Good 
mathematicians, when they make them [errors], which is not infrequent, soon per-
ceive and correct them. I make many more of them than my students do; only I 
always correct them so that no trace of them remains in the fi nal result. The reason 
for that is whenever an error has been made, insight…warns me that my calcula-
tions do not look as they ought to” (p. 49). 

 Playfulness is another characteristic listed by Csikszentmihalyi, which he cou-
ples with its opposite, ability to concentrate for long periods of time. In an interest-
ing study with male and female physics graduate students, the Danish anthropologist 
Hasse ( 2002 ) found that men engaged in more playful explorations of physical con-
cepts, while females remained more focused on acquiring knowledge in their 
domain. This difference reaches back to childhood, where boys often like rigorous 
play activities and joking with each other, while girls may prefer long conversations. 
Male mathematicians enjoy jokes and stories about their colleagues, one way in 
which they construct their sense of belonging to a shared tradition. 
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 Innovative work is not always rewarded, particularly in its early stages. So it is 
important to enjoy the work itself. In speaking about their research, many mathema-
ticians convey a deep sense of joy and aesthetic pleasure in resolving diffi cult prob-
lems with elegant and clear solutions. One of the most fully documented 
mathematical discoveries is Andrew Wiles’ solution of Fermat’s Last Theorem. The 
philosopher of mathematics Emily Grosholz ( 2011 ) describes his motivation as 
follows:

  On the one hand, we have a narrative about an episode in the life of one man (in a commu-
nity of scholars) who, inspired by a childhood dream of solving Fermat’s Last Theorem, 
and fortifi ed by enormous mathematical talent, a stubborn will, and the best number theo-
retical education the world could offer, overcame various obstacles to achieve truly heroic 
success. Indeed, the most daunting and surprising obstacle arose close to the end, as he 
strove to close a gap discovered in the fi rst draft of his proof. (p. 21) 

   It took Wiles seven years and the help of a collaborator to reach his fi nal result. 
He didn’t let the mathematical community know that he was working on this prob-
lem and that it was taking him such a long time. While much of the work was done 
in solitude, he was using a great variety of previous results and strategies developed 
by his predecessors. Csikszentmihalyi characterizes creative work as both deeply 
rooted in the traditions of established knowledge together with a willingness to go 
beyond what is known – A trajectory which in Wiles’ case was nourished by “a stub-
born will.”  

9.2     Cognitive Strategies in Mathematical Problem Solving 

 One frequently used strategy in developing new insights is  extending the domain . 
Geometers in the nineteenth century confronted the challenge posed by Euclid’s 
parallel axiom. In Göttingen, Germany, Carl Friedrich Gauss, one of the great math-
ematicians of his era, had a close friend from Hungary, Farkas Bolyai, with whom 
he shared ideas about this axiom. In 1799 Gauss wrote to Bolyai about his efforts to 
try to prove this axiom, and bemoaned his diffi culty in doing so. Bolyai worked on 
this problem while he taught mathematics for 47 years at Maros-Vásárhely. We now 
know that direct attempts to prove this axiom cannot work. Bolyai wrote in his 
autobiography: “I was obsessed with this problem to the point where it robbed me 
of my rest, [and] deprived me of my tranquility” (Halsted  1955 , p. xi). 

 Bolyai’s son János studied mathematics with his father. His mastery was very 
rapid, and he pushed his father to present him with increasingly diffi cult material. 
At age 15 he went to Vienna to study engineering. Then he entered the military. 
While posted as a captain at Temesvár, he continued to work on the problems that 
had preoccupied his father and Gauss. He had the simple but profound insight that 
in deriving the consequences of denying Euclid’s parallel postulate, he was not 
arriving at the expected contradiction. On the contrary, he was creating a whole new, 
radically different and unimagined “geometry.” (For instance, the sum of the angles 
of a triangle is not equal to two right angles, as in Euclidean geometry: it can take 
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on ANY value LESS than two right angles.) In presenting this work to his father, 
who originally warned him against devoting himself to this topic, he expressed his 
sense of gratitude and closeness to the elder Bolyai, “In certain regards I consider 
you as a second self” (Halsted, xxviii). His father was eager to have these results 
published rapidly and he attached them as an Appendix to his own major work the 
Tentamen. He also added some of his own refl ections and a comparison of Bolyai 
János’ work with that of Lobatchevsky, who also developed what he called “imagi-
nary geometry.” His ideas were basically the same as those of Bolyai. Gauss 
responded to Bolyai’s work by agreeing to its validity because it corresponded to 
some of his own, unpublished work.

  While these mathematicians started their work by extending the domain of geometry, in the 
process of their endeavors they created a whole new subfi eld, non-Euclidean geometry. The 
problem itself pushes the thinker to a new paradigm beyond the boundaries of the one domi-
nating the fi eld at the start of their work. 

   The achievement of Bolyai and Lobachevsky became integrated into three- 
dimensional Euclidean geometry when the Italian geometer Beltrami discovered 
that the axioms of non-Euclidean geometry are satisfi ed by the “geodesics” (lines of 
shortest connection) on a certain saddle-shaped surface called a “pseudosphere.” 
This interpretation proved that the seemingly anti-intuitive or meaningless non- 
Euclidean geometry actually is consistent (free of self-contradiction), at least if we 
are confi dent that Euclidean geometry itself is consistent. 

 Still another remarkable interpretation of non-Euclidean geometry was discov-
ered by the great French analyst Henri Poincare. Poincare was motivated to study 
non-Euclidean geometry by a striking insight he experienced while stepping onto a 
bus on a geology fi eldtrip (an anecdote often repeated, as in Hadamard  1945 ). He 
suddenly “saw” that the transformation rules of non-Euclidean geometry are just the 
ones he needed for a totally different problem: the rules for transforming the “theta- 
Fuchsian functions.” 

 Poincare’s model of non-Euclidean geometry is more exotic even than Beltrami’s 
pseudosphere. In the “upper half of the complex plane” (the complex numbers 
whose imaginary part is positive) he defi nes a new kind of “straight line.” Of course, 
this is not “straight” in the usual sense of the word, but it does satisfy the axioms for 
a “straight line” in non-Euclidean geometry. The key point is to defi ne distance 
along the “straight lines.” 

 If A and B are two points in this upper half-plane then Poincare’s non-Euclidean 
“straight line” from A to B is defi ned to be an arc of the semi-circle through A and 
B which has its center on the “boundary” (the line y = 0). (There is exactly one such 
semi-circle.) Now, he wants the distance to be “additive,” meaning that if C is any 
point between A and B, the “distance” (which we are trying to defi ne) from A to C 
plus the “distance” from C to B should equal the total “distance” from A to B. Also, 
since he doesn’t want to allow points to reach the boundary, he wants the “distance” 
from any point to an end point of its semicircle to be infi nite. 

 Poincare’s distance formula for his model of non-Euclidean geometry is some-
what complicated, unless you have studied projective geometry. In projective 
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 geometry, one meets a thing called the “cross ratio”; it is a certain algebraic expres-
sion involving four collinear points, and is important because it is a projective 
“invariant.” (Under a projective transformation, distances and angles may change, 
but the cross ratio remains the same.) Poincare constructs the semicircle with the 
center on the real axis through A and B. This semicircle cuts the real axis at two 
points, call them U and V. A and B have projections on the real axis, call them A′ 
and B′. The distance between A and B is defi ned to be half of the logarithm of the 
cross ratio of A′, B′, U,V. It works; you can check it out. (There is an exception if A 
and B happen to be on a Euclidean straight line perpendicular to the real axis. In that 
case, the Poincare non-Euclidean distance is taken to be the same as the regular 
Euclidean distance.)  

    

  Diagram taken from Meschkowski, “Noneuclidean Geometry” (Meschkowski ( 1964 ))  

    One hard thing to accept or get used to about this half-plane model of Poincare’s 
is just that it is a half-plane. In order to get this convenient, easily constructed model, 
he mapped the non-Euclidean plane onto a half-plane. One just feels ill at ease, 
uncomfortable, cutting off or throwing away the other half, the lower half-plane, 
which is simply forgotten about; it is not needed or useful in this model. The 
discomfort is because of a breaking of symmetry, the symmetry in the ordinary 
complex plane between the upper and lower halves, has been broken, by throwing 
away the lower half, and defi ning a new distance in the upper half. 

 Jacques Hadamard ( 1945 ) quoted a remark of Souriau that “in order to invent, 
one must  think aside ” (p. 48). This strategy applies to the Ph. D. thesis of Reuben 
Hersh, which deals with a “mixed initial value boundary problem” for signal 
propagation. A vibrating medium (say, a string or a membrane) is being shaken in a 
prescribed way at its boundary, and its position and velocity are prescribed at the 
beginning of the motion (“initially”). The standard approach was to think of such 
problems as initial value problems, with an extra complication due to the boundary 
input. Hersh’s breakthrough was to approach it the  opposite  way – to get rid of the 
initial-value aspect, and then solve a pure boundary problem. In the next few years 
he found that this trick worked much more generally than in his original assignment. 
For instance, he could analyze heat diffusion with boundary input just as well as 
signal propagation. 

 A widespread strategy in the sciences and in mathematics is to  make sense of 
anomalous ,  unexpected results . Hersh’s work on random evolution was motivated 
by such puzzlement – the need to clarify something obscure and tantalizing. With 
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the probabilist Richard Griego and the functional analyst Einar Hille they came 
across a little known result of the famous probabilist, Mark Kac. He had found a 
probabilistic solution of a certain partial differential equation, the telegraph equa-
tion – in itself, a rather special result of limited importance, but tantalizing, because 
it seemed to be anomalous, unexpected. Probabilistic methods had been well devel-
oped and well recognized in two of the three main classical types of partial differ-
ential equations – the parabolic and the elliptic. The third type, the hyperbolic, did 
not have a probabilistic version. There seemed to be good reasons why this was so, 
and nobody was trying to use probability in the fi eld of hyperbolic equations. But 
the telegraph equation is a hyperbolic equation! It was a very special little example, 
but it seemed weird and unexpected, like fi nding a jungle fruit growing in the desert. 
After serious effort, Hersh saw the basic principle underlying this example, and 
spelled it out explicitly. This not only gave a different and better explanation of 
Kac’s example, it opened up the road to many other examples, and even better, it 
opened up the road to using probabilistic tools like the central limit theorem to 
prove diffi cult results about partial differential equations. With several different col-
laborators, it took years of steady work to complete harvesting the fruits of this one 
creative breakthrough. 

 A related strategy is “ bisociation ” invented by Arthur Koestler ( 1964 ) in an infl u-
ential work on creativity. He dealt with creativity in general, not just mathematical 
creativity. The word bisociation is not often used in writing about mathematics edu-
cation, but it is well known that mathematical advances often come about by linking 
ideas or methods from different parts of mathematics. An example is “probabilistic 
potential theory,” where a random process such as Brownian motion is brought 
under potential theory (the theory of equilibria of continuous media). Kakutani, 
Courant-Friedrichs-Lewy, and Doob are among the most famous contributors. The 
key is that even though the sample path of a Brownian particle is almost always 
extremely rough and irregular, its expected value turns out to be beautifully smooth 
and well-behaved. 

 The subject of algebraic geometry went through successive transformations, 
each of which demanded a deep creative insight by a brilliant mathematician. 
Solomon Lefschetz became famous for work which he described as piercing the 
great whale of algebraic geometry with the harpoon of algebraic topology (Lefschetz 
( 1924 )). Later on Andre Weil and Oscar Zariski put algebraic geometry into axiom-
atic form, using the methods and concepts of abstract algebra created by Emmy 
Noether with Emil Artin. And still later the famous conjectures by Weil about the 
solutions of Diophantine equations were proved through the transformation of the 
subject by Alexandre Grothendieck, which involved basing it on a new abstract 
“theory of categories” that had originally been created as an alternative to set 
theory. 

 Of course, we cannot attempt here to spell out the details of these mathematical 
theories. We merely mention them, for those who may already be acquainted with 
them, as examples of creative advances in mathematics. In the case of probabilistic 
potential theory, we do give a reference to a popular article by Reuben Hersh and 
Richard J. Griego ( 1969 ). 
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 It is important to recognize that there can be creative leaps in mathematical expo-
sition as well as in research. For example, the whole book by Richard Courant and 
Herbert Robbins ( 1979 ),  What is mathematics ? is a great creative accomplishment, 
even though all the mathematics it presents was already well-known to experts. 
Making it accessible to general readers was not a routine task! The Chauvenet Prize 
of the Mathematical Association of America and the Steele Prize of the American 
Mathematical Society are awarded annually to recognize signifi cant accomplish-
ments in mathematical exposition. 

 Creative thinkers use  analogical reasoning ,  intuition ,  metaphors ,  synthesis , and 
a combination of different  representational modalities  including graphic approaches. 
These approaches are used in creative teaching as well as in mathematical research.  

9.3     Creativity in Mathematics Teaching 

 It is essential to realize that every act of problem-solving, even at the elementary 
level, involves an element of creativity. A mathematical problem starts with some 
given material, and a request for information related to that material. If the desired 
information can be obtained by extracting it from the material presented by a simple 
observation, or by a well-practiced calculation, then the problem is an exercise, 
rather than a genuine problem. Most routine schoolwork does not require the stu-
dent to solve problems. But problem contests, from the lowest level to the highest, 
require creative acts by the contestants. In plane geometry, it is often necessary to 
add a “construction line” to the given diagram. In many problems, it is required to 
“bring in” some idea or method not mentioned in the statement of the problem. If 
the needed construction line or method is very similar to ones that the student has 
previously seen, we would call it an easy problem. But even an easy problem 
demands some creativity from its solver. 

 The alienation of many students from school mathematics is in part the result of 
constant formulaic approaches rather than problem solving ones. Educators are pushed 
hard to teach correct outcomes by the present emphasis on prescribed competencies to 
be achieved by a certain grade level. Under this model of education, students do not 
learn the cognitive strategies so crucial to discovery. There have been pushes against 
such a narrow approach at both the K-12 and college levels. Our book  Loving and  
 Hating Mathematics  describes a few of these approaches. 

 One of the reforms is to use problems taken from everyday experiences, such as 
shopping, or fi xing and dividing food. Jere Confrey, a well-known Piagetian 
mathematician, uses the mixing of concentrates to make lemonade as a way to teach 
proportions. Children shift from one kind of drink to another, changing the 
quantities and learning about ratios. These concrete physical activities are 
combined with mathematical tools such as data tables and other representations. 
The Dutch mathematician Hans Freudenthal also used day-to-day experiences: 
recording the weather, using a calendar, or making frequency distributions of favor-
ite pets. The best known U.S. program using some of these ideas is Everyday 
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Mathematics, based in Chicago. It uses everyday activities, which may be carried 
out either by the whole class, by small groups, or by individuals. There are many 
opportunities for the children to discuss their strategies with each other. 

 Freudenthal was a leading researcher on Lie groups and algebras, who turned his 
attention to mathematics history and pedagogy. He called his approach to teaching 
“realistic mathematics”. He created an institute of mathematics education in Utrecht. 
The emphasis was practical problem solving, rather than drilling of addition and 
multiplication. This approach was developed by Catherine Fosnot and her collabo-
rators in New York. Their program also emphasizes problem solving, and fi guring 
out how certain procedures work, thereby deepening children’s thinking. By reject-
ing a traditional approach, they encourage analogies and imagination, while also 
assisting children in fi nding precise solutions. 

 The severe underrepresentation of minority youth in mathematical programs in 
higher education was a challenge for Robert Moses who had been a famous leader 
in the struggle for voting rights in Mississippi. He also had studied graduate math-
ematics with Willard Quine at Harvard. He decided that basic algebra skill is a 
fundamental civil right, and he has developed new teaching methods to elevate the 
algebra skills of students in the ghettoes of Atlanta and Jackson. His approach 
includes a focus on the emotional aspects of learning mathematics. His program 
includes community participation, peer instruction, and the development of a strong 
self-concept by learners.

  Young tutors…are modeling what they themselves have learned. They have changed by 
being forced to slip under the rigid requirements of the present federal legislation affecting 
schools, the Algebra Project is contributing to greater mastery, self-confi dence, and self- respect 
in students who might otherwise have turned off and dropped out of school. 

 But as Moses warns, “A network of tradition for this, involving teachers, students, and 
community, isn’t established in one fell swoop. You go around it and around it, and you 
keep going around it and deepening it. You keep returning to it until all of the implications 
of what you are doing become clear and sink in.” (Hersh and John-Steiner  2011 , p. 314) 

   The math educator Uri Treisman used a creative approach to understand the 
difference between the ways two ethnic groups at the University of California, 
Berkeley studied calculus. Ethnographic observation revealed that while Black 
students studied by themselves, Chinese students worked together in group sessions. 
They got together for meals, asked each other questions, helped each other with 
homework, and critiqued each other’s approaches. Based on these fi ndings, Treisman 
organized workshop communities where students met in addition to their regular 
classes. Students were approached with respect. Their groups were referred to as 
honors programs rather than as remedial intervention. The Treisman model was 
very successful and has been adopted in several universities. 

 Group interaction is a neglected feature in the literature on mathematical prepa-
ration and discovery. Our book provides several examples of the impact of informal 
mathematical communities where participants rely on conversation, advice, and 
sometimes heated arguments to bring the discipline to life. 

  Loving and   Hating Mathematics  describes two contrasting unusual approaches 
to teaching mathematics at the college level, by Robert Lee Moore in Austin, Texas, 
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and Clarence Stephens in Potsdam, New York. The “Moore Method” is famous for 
producing an amazing number of fi rst-class researchers. Moore’s students were 
assigned to prove a succession of theorems in point-set topology, with no hints or 
guidance from the professor, no access to texts or references, and no cooperation or 
communication between students outside of class. It worked wonderfully well for 
those who could survive it. Clarence Stephens was a veteran of traditionally Black 
colleges at Prairie View, Texas and Morgan State in Baltimore. He had a fantasti-
cally successful career at Potsdam, a state college in far northern New York, almost 
in Canada. His methodology was the direct opposite of Moore’s. He dared to believe 
that every student who has a sincere desire to learn mathematics can do so, “under 
the right conditions.” His success seems to prove he was right. The right conditions? 
Allowing the student all the time he/she needs to absorb and master mathematical 
concepts and methods, and a teacher who has complete confi dence that the student 
will succeed. While Moore focused on the cognitive aspects of discovery, Stephens 
emphasized the importance of the emotional aspects of learning, particularly mutual 
respect and self-confi dence. 

 A similar emphasis is advocated by Nel Noddings. She taught mathematics in 
public schools in New Jersey before she became dean of the college of education at 
Stanford University. There she advocated a radically different philosophy of educa-
tion. “We are overly reluctant to face the fact that human interests vary widely and 
that many highly intelligent people are just not attracted to mathematics…I don’t 
know what talents and interests are lost under such coercion, what levels of confi -
dence are eroded, what nervous habits develop, what rationalizations are concocted, 
or what evils are visited on the next generation as a result of our benevolent insis-
tence” (Noddings  1993 , pp. 8–9). 

 All of these ventures had features in common: audacity, self-confi dence, inde-
pendent thinking, and courage to follow through and persist in one’s vision. These 
characteristics of creativity are amply illustrated in the growing literature in this 
fi eld. 

 In summary, teaching a challenging discipline like mathematics requires new 
visions and sustained creative innovations by teachers. 

 We hope that reading about the innovative work of major contributors to mathe-
matics education may help some classroom teachers to see how to experiment and 
break out of the habitual. New insights could be adapted to the classrooms of young 
learners. They might join the fun of pursuing innovative solutions, rather than being 
held to formulaic answers.  

9.4     New Insights from Computer Science 

 The relentless push toward assessment, with “setting of objectives”, and “metrics” 
to measure the approach to an objective, is a plague of modern bureacracy, in educa-
tion even more than in other realms. . Endless testing and assessing of students, 
teachers, schools, and school systems inhibits creativity and spontaneity. Many 
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educators and social thinkers object to this strait jacket, and argue that it is often 
counterproductive. A sensational new development in artifi cial intelligence adds 
tremendous support to their cause.

  Ken Stanley and Joel Lehman, professors of computer science, in a series of papers and a 
book (“Why Greatness Cannot Be Planned: The Myth of the Objective”) give fascinating 
reports of experiments in artifi cial evolution. When evolution was pushed to maximize the 
approach to some objective, it failed. Discarding the pressure for that objective, and reward-
ing novelty – what might, in human terms, be called creativity – dramatically speeded up 
the improvement. 

   One experiment was simulating rats trapped in a maze. Trying to get closer to the 
exit resulted in failure. Trying more and more different directions led quite quickly 
to escape! The next example is a two-legged robot that must learn to walk and bal-
ance. Rewarding efforts that looked like approaching a solution got disappointing 
results. Rewarding novel and different attempts reached success much faster 
(Stanley and Lehman ( 2011 ,  2015 )). 

 Of course, in situations where the approach to the desired result is not hampered 
by booby traps or misleading improvements that lead nowhere, reward for decreas-
ing the distance to the objective may be successful. But imporant, diffi cult tasks, 
such as improving the outcome of a course of instruction, often don’t succeed under 
such a simplistic strategy. Looking for novelty may bring unexpected progress and 
breakthroughs. 

 This welcome support from computer science will improve our chance of restor-
ing sanity to the administration of education in our country and the world.  

9.5     Conclusions 

 In examining the emergence of insight in mathematics, we have relied on some 
frequently occurring strategies of discovery. These included extending the domain, 
thinking aside, reversing a habitual approach, making sense of anomalous results, 
bisociation, analogical reasoning, intuition, metaphors, synthesis, and a combina-
tion of different representational modalities. In teaching, recent innovators have 
broken out of the rigid memorization of algorithms and rely instead of “rely in” it 
should be “rely on” connecting real life experiences of students with mathematical 
problem solving. They also consider the student as a whole person whose emotions, 
self-concept, and reliance on the teacher’s confi dence in them are as important as 
the cognitive strategies that they are exposed to. 

 Contemporary life has introduced computers to all aspects of our existence. They 
also play a signifi cant role in mathematical discovery and proof. This chapter ended 
with an example from this newly developing area of mathematics. Contemporary 
experimentation in many subfi elds of mathematics attests the vibrancy of this, one 
of the oldest fi elds of knowledge.     
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    Chapter 10   
 Creativity in Doubt: Toward Understanding 
What Drives Creativity in Learning                     

     Ronald     A.     Beghetto      and     James     B.     Schreiber   

    Abstract     What propels creativity in learning? In this chapter, we discuss a long- 
standing—yet often overlooked—form of reasoning that helps address this ques-
tion. That form of reasoning is called abductive reasoning (introduced by the early 
American Pragmatist, Charles Sanders Peirce). Abductive reasoning represents a 
special form of creative reasoning that is triggered by states of genuine doubt. 
Genuine doubt occurs whenever our everyday habits and beliefs fall short in making 
sense of a situation. In the context of learning, genuine doubt occurs anytime a 
learner is unable to inductively or deductively reason through an academic task or 
situation. As we will discuss, these states of doubt represent opportunities for cre-
ative learning. Specifi cally, our aim in this chapter is to demonstrate, by way of 
example, how abduction and creativity work together in every day learning. We will 
also discuss how understanding this link will help clarify efforts aimed at support-
ing creativity in the classroom, expand current conceptions of creativity, and pro-
vide directions for research on creativity in educational settings.  

  Keywords     Creativity   •   Learning   •   Motivation  

   What propels creativity in learning? One way to approach this question is to take a 
step back and briefl y consider a few reasons why people engage in the act of learn-
ing. In some cases learning is unintentional (e.g., we learn vicariously from an older 
sibling that touching a hot stove is a bad idea). In other cases learning is intentional 
and intrinsically motivated (e.g., we are interested in making fresh ricotta cheese, so 
we purchase the requisite ingredients, a recipe book, and perhaps watch several 
 Youtube  videos that walk us through the steps of ricotta cheese making). In still 
other cases, such as school based learning, learning is intentional but extrinsically 
or even hedonistically motivated. Put simply, we are motivated to learn what our 
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teacher wants us to learn because we fear the punishment of not learning (e.g., low 
grades, social ridicule, disappointing our parents, guilt) or we seek the perceived 
benefi ts (e.g., high marks, social recognition, praise, and some future benefi ts). 

 What, if any, role does creativity play in this process? In the above cases, creativ-
ity may seem counter productive to learning. When learning about the dangers of a 
hot stove, how could creativity possibly play a role? Similarly, when learning how 
to make ricotta cheese, why would someone want to put a new spin on the informa-
tion if all they want to do is simply reproduce the same taste and texture of that style 
of cheese? Moreover, if someone wants to get a good grade from a math teacher, 
why risk the grade by straying away from what the teacher expects? 

 We agree that in some cases, attempting to demonstrate creativity may not be 
necessary. Indeed, a sign of an accomplished creator is knowing when and when not 
to be creative (Kaufman and Beghetto  2013 ). That said, there is an important differ-
ence between attempting to be creative and the kind of creative reasoning that we 
argue needs to occur at some point in the process of personally meaningful learning. 
What then are the circumstances that propel creativity in learning? The purpose of 
this chapter is to address this question. 

 We open the chapter by providing a brief context for our argument. Next, we 
discuss how states of doubt trigger “micromoment opportunities” (Beghetto  2013 ) 
for creative reasoning and how the concept of abductive reasoning can shed impor-
tant light on the role that creativity plays in meaningful learning experiences in 
formal school environments. We then provide classroom examples to help illustrate 
the process. We close with a discussion of how the ideas presented herein can help 
clarify efforts aimed at supporting creativity in the classroom, expand current con-
ceptions of creativity, and provide directions for research on creativity in traditional 
and non-traditional educational settings. 

10.1     Creativity in the Context of Learning 

 Scholars have long recognized a tight association between creativity and learning 
(see Beghetto  2016a  for an overview). In fact, some scholars have argued that cre-
ativity and learning represent essentially the same phenomenon (Guilford  1967 ). 
We view creativity and learning as separate, but tightly interconnected processes. 
Along these lines creativity is part of the learning process and learning can result in 
creative contributions (Beghetto  2016a ,  b ). With respect to the fi rst part of this rela-
tionship, the focus is on the more subjective experience of creativity (Beghetto 
 2007 ; Guilford  1967 ; Stein  1953 ; Vygotsky 1967/ 2004 ). Specifi cally, this is the 
view that subjective or mini-c creativity involves the new and personally meaning-
ful interpretations of experiences, actions or events (Beghetto and Kaufman  2007 ). 
As such, when students learn something new and personally meaningful they are, 
by defi nition, engaging in a creative act. This process like other more objective cre-
ative processes is a combinatorial process (Mumford et al.  2012 ; Rothenberg  1996 ). 
A full description of the creative learning process has been described elsewhere 
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(Beghetto  2016a ); however, the aspects most germane to the goal of this chapter are 
worth highlighting. 

 The creative learning process starts with students attempting to make sense of a 
new, discrepant learning stimulus in light of what they already know. If successful, 
the creative combination of the new stimulus and the learner’s prior knowledge will 
result in a new and personally meaningful understanding. This process refers to the 
more subjective or intra-psychological aspect of creative learning (Beghetto  2016a ), 
wherein creativity serves the act of learning. We would therefore argue that anytime 
someone learns something new and personally meaningful they have engaged in a 
creative process (See also Beghetto and Kaufman  2007 ; Guilford  1950 ; Littleton 
and Mercer  2013 ; Piaget  1973 ; Sawyer  2012 ; Vygotsky 1967/ 2004 ). 

 The more subjective or intra-psychological process of creativity in the service of 
classroom learning is of most interest in the present chapter. That said it is worth 
noting that a full expression of creative learning also includes the more objective, 
inter-psychological sphere of the process. This refers to cases where students’ sub-
jective insights are shared and make a creative contribution to the learning of others 
(Beghetto  2016a ,  2007 ). As has been argued elsewhere (Kaufman and Beghetto 
 2009 ), all forms of creativity have their genesis in more subjective (or mini-c) 
insights and interpretations. In the context of classroom learning, the progression 
from more subjective (mini-c) insights to more objective (little-c) creative contribu-
tions usually occurs as a result of receiving feedback from teachers and peers 
(Beghetto  2007 ; Beghetto and Kaufman  2014 ). When this happens, the intra- 
psychological process of creativity in learning has moved beyond the individual and 
made a creative an inter-psychological contribution to the learning of others 
(Beghetto  2016a ). 

 The question at this point is: What triggers or propels the subjective (and even 
inter-subjective) creative process in learning? We would argue with Charles S. Peirce 
(and other pragmatists, such as John Dewey) that the creative process is triggered by 
a state of doubt. We would further argue that the creative process that is triggered in 
these moments of doubt represents a special form of reasoning called abductive 
reasoning, which in turn can result in creative resolution and the development of a 
new and personally meaningful understanding. We represent this logic schemati-
cally in Fig.  10.1 .

    The schematic represented in Fig.  10.1  elaborates on aspects of the creative 
learning model presented in Beghetto ( 2016a ). Specifi cally, Fig.  10.1  zeros-in on 
the more micro-motivational and micro-reasoning process experienced by students 
engaged in creative learning. As displayed in Fig.  10.1 , this motivational process 
starts with a discrepant learning stimulus (i.e., something that differs from a student’s 
prior understanding and expectations). If the learning stimulus is not  discrepant then 
it will be ignored or simply incorporated into what students already know. If how-

Discrepant
Stimulus State of Doubt

Creative
(Abductive)
Reasoning

Creative
Resolution

Personal
Understanding

  Fig. 10.1    Role of creativity in personal understanding       
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ever the learner experiences a discrepant event they are moved into state of doubt. 
This state of doubt serves as the motivational engine for creativity in support of 
learning. As will be discussed in the following section, a state of doubt triggers a 
special kind of creative reasoning (called abductive reasoning) that allows learners 
to resolve their doubt by generating a new and personally meaningful understand-
ing. Importantly, this new understanding is never fi nalized. It is always open to 
revision and modifi cation. 

 Prior to elaborating on this process of creativity in doubt, it is worth stressing a 
few key aspects of our argument. We assert that all new and personally meaningful 
understanding results from this creative process. That said we do recognize that 
there are cases where it may appear (to external observers) that students have learned 
something new. One example would be a student who memorizes an algorithm for 
solving a particular type of mathematical problem. Prior to memorizing the algo-
rithm, the student was not able to successfully solve a set of problems. After memo-
rizing the algorithm, the student can solve problems the teacher provides with 100 % 
accuracy. In many cases this may pass the basic test of behavioral learning. That is, 
a student who could not solve a particular type of problem can now perform the 
desired behavior of accurately solving such problems. We would argue along the 
lines of John Searle’s Chinese Room argument (Cole  2014 ) that simply being able 
to perform a task is not the same thing as having a meaningful understanding. 

 As the philosopher John Searle persuasively demonstrated in his thought experi-
ment refuting Alan Turning’s test of machine intelligence (i.e., a machine being able 
to pass as a human), a person who does not speak a word of Chinese could be locked 
away in a room, receive questions written in Chinese through a slot in the door, and 
using an algorithm, could appear to understand Chinese by producing accurate writ-
ten responses written using Chinese characters. The same can be said of the student 
who memorizes a mathematical algorithm. The appearance of a correct response is 
not suffi cient to make a claim that the student understands the content, task, or pro-
cedure (Beghetto and Plucker  2006 ). One of the best ways for students to demon-
strate their understanding is to provide a response that is both original (at least in the 
context of the classroom) and task appropriate (i.e., meets the contextually specifi c 
task constraints). The combination of originality and task appropriateness as defi ned 
in a particular context represent the core defi ning elements of creativity (Beghetto 
and Kaufman  2014 ; Plucker et al.  2004 ). 

 Our focus in this chapter is on the intra-psychological process that drives the 
development of a learner’s new and personally meaningful understanding. We also 
recognize that the viability of a learner’s personal understanding, particularly in a 
classroom environment, should go through the process of being tested through 
interactions with others and the external environment (see Beghetto  2016a ,  b ). In 
fact, as we mentioned earlier, the process of doing so can result in making a creative 
contribution to the learning of others.  
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10.2     Creativity in Doubt 

 In order to understand the role that we see doubt playing in the creative process, we 
need to briefl y highlight a few concepts that we adapted from the work of Charles 
Sanders Peirce and the Semioticians following in his footsteps. Specifi cally, we will 
highlight sign action, genuine doubt, and reasoning. Each is briefl y described in the 
sections that follow. 

10.2.1     Sign Action 

 In order to understand the role that a state of doubt plays in creative reasoning, we 
fi nd it helpful to situate it in the semiotic process of sign action. Put simply, sign 
action as the linking among signs, the object of the sign, and the interpretant 
(reaction to a sign on the person interpreting it). Houser ( 1987 ) provides a nice 
example of the three components, a sign, its object, and the interpretant (Fig.  10.2 ).

   When you fi rst examined the crude drawing of a bottle with skull and cross-
bones, you may have made the quick interpretation of death or poison in the bottle 
before reading further. Sign action occurs quickly and most anything can be a sign. 
Indeed, anything that stands for or represent something else can be a sign (see 
Pharies  1985  for examples). Similarly, anything can also be an object of signifi ca-
tion. The fl exibility of possibilities for signs and objects of interpretation opens up 
almost endless possibilities. The interpretant is the effect that a sign has on the 
person interpreting it, which can include feelings, actions, and thoughts. 

 This semiotic process occurs in everyday teaching and learning. Consider an 
example from mathematics. Teachers typically provide students with practice prob-
lems after having introduced a mathematical concept. A common way of checking 
understanding is to call on students to share their solutions and procedure for attain-

  Fig. 10.2    Example of sign 
action       
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ing those solutions. The students’ solutions and procedures (signs) represents stu-
dents’ understanding (object) and the teacher makes a determination whether to 
move on or allot more time to providing additional instruction and practice (inter-
pretant). In many cases, this routine is  straightforward and the meaning making (or 
semiosis) moves forward without diffi culty. But this is not always the case. Consider 
a student who provides a correct answer (sign), which initially signifi es understand-
ing (object), but the student’s unusual explanation raises doubt on the part of the 
teacher that the student actually understands the procedure or concept (interpretant). 
In instances where routine semiosis is disrupted by doubt, a more complex sign rela-
tion is enacted. As will be discussed, these disruptions are signifi ers of creative 
potential (Beghetto  2013 ).  

10.2.2     Genuine Doubt and Complex Sign Relations 

 Genuine doubt is a key mechanism in the development of new ideas, whether they 
are personal and subjective or life altering. Day to day our sign models work, our 
beliefs are stable, and we happily move from moment to moment. When we encoun-
ter a moment where we are in doubt, genuine doubt, we have a chance at developing 
new signs and, thus, new beliefs. Genuine doubt comes about when a “functioning 
habit is interrupted” (Burks  1946 , p. 303). It arises from experience and is naturally 
embedded in relevant contexts and situations. When people experience genuine 
doubt they engage in a more complex process of sign relations (see Fig.  10.3 ).

   When you go to a medical doctor, for instance, the symptoms you arrive with are 
the signs. The Immediate object might be a common disease that is associated with 
the symptoms you currently have. The Dynamic object is the actual disease that has 
caused the condition. The Immediate interpretant is the actual diagnosis, the 
Dynamic is the prognosis by the doctor and potentially a prescription, and the Final 
is the true diagnosis (Fig  10.3 : adapted from Houser  1987 ). How does genuine 
doubt occur in such a system? Consider the following example. 

Sign

Immediate

Immediate
Dynamic

Dynamic
Final 

Object     Interpretant

  Fig. 10.3    Complex sign system       
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 At 13 months, Jim’s daughter started solids and one day while eating boiled 
carrots, something went wrong and she could not drink or eat anything. This was a 
sign which led the family doctor to wonder if there was an allergy, but wanted her 
to go to the hospital. At the hospital, the doctors realized a carrot was stuck in her 
esophagus. Thus the sign action started again quickly, and they decided the Dynamic 
was that it was simply stuck and prescribed staying in the hospital a bit longer to 
wait for it to move. At this point, the complex sign system seemed complete. The 
carrot did not move (creating doubt) and a new sign action process began from this 
genuine doubt. The doctors had a new Immediate interpretant of an esophageal 
stricture for the stuck carrot. This further led to a new Dynamic Interpretant of 
surgery. 

 This process of genuine doubt also occurs in the context of teaching and learn-
ing. For example, when a student provides an unexpected response during a class-
room discussion, it can raise genuine doubt on the part of teachers and the student’s 
peers. This tends to occur in the modal pattern of classroom discourse, which 
involves the teacher asking known-answer questions, students attempting to provide 
expected responses, and teachers evaluating students on whether they match what 
the teacher expects to hear and how the teacher expects to hear it (Beghetto  2013 ). 
When this happens, a rupture occurs in the relationship between what was expected 
and what is now being experienced. These micromoment ruptures occur in everyday 
teaching and learning situations and represent moments of creative opportunity 
(Beghetto  2013 ). In this way, the experience of doubt serves as a signifi er of creative 
potential. 

 There are a couple of ways to respond to doubt in such situations. One way is to 
simply ignore it. This often happens when teachers are so focused on attaining 
some predetermined response or moving along in the lesson plan that they end up 
dismissing the unexpected and, in turn, inadvertently close off opportunities for 
creative expression and new meaning making. This “closing off” approach, also 
called “killing ideas softly” (Beghetto  2013 ), resolves doubt and moves along a 
more predetermined path of sense making. Another way is to try to make meaning 
out of these moments. Doing so requires a special form of reasoning, called 
Abductive reasoning.   

10.3     Abductive Reasoning 

 Most people are aware of two kinds of reasoning, inductive and deductive (Burks 
 1946 ). Deductive reasoning is used to draw conclusions based on premises that we 
believe to be true (e.g.,  All people need water to survive, I am a person; therefore, I 
need water to survive ). Inductive reasoning is used to make an inference from a 
sample to a whole (e.g.,  Edward likes to read novels by Stephen King. I therefore 
assume that if I buy him Stephen King’s new novel, he’ll like it ). In most cases, 
deductive and inductive reasoning are suffi cient for moving through the routines of 
everyday learning and life. Indeed, deduction and induction predominate in 

10 Creativity in Doubt



154

traditional instruction. Students are basically told the basic facts or rules pertaining 
to some academic subject area (e.g., “any number times zero is zero”) and asked 
repeatedly to apply that (deductive) reasoning to specifi c examples (e.g., “what is 
three times zero?”). Similarly, students are encouraged try out and test the viability 
of their understanding (inductive reasoning). 

 Peirce, however, argued that there is a third kind of reasoning: Abductive reason-
ing (CP 5.145). Of the three, abduction is the only one that generates new ideas 
(Burks  1946 ) and it is the mode that gets triggered by states of genuine doubt. 
Abduction typically arises when our existing knowledge is insuffi cient to explain 
what we are experiencing. In short, our existing theory of what should happen 
fails us. 

 Johannes Kepler, for instance,  expected  that the orbit of planets would be circular 
since he  believed  that the universe was harmonious and circles are more harmonious 
than ellipses or any other geometrical form. To his surprise, he could not make the 
observed orbits conform to circles and was forced to propose a new hypothesis 
about the harmoniousness of the universe (Abductive reasoning). 

 Although abductive reasoning is less common than deductive and inductive rea-
soning, it is important that educators not overlook it. Doing so will come at the 
expense of opportunities to develop new, creative ideas. This is easier said than done 
in many classrooms. One reason this happens is because moments of genuine doubt 
are not seen as opportunities for creative expression (or Abductive reasoning), but 
rather as disruptions that need to be resolved and eliminated, rather than explored 
and capitalized on (Beghetto  2013 ). We would argue that the micromoment ruptures 
caused by experiences of genuine doubt serve as key opportunities to support abduc-
tive reasoning and, in turn, creative expression and deeper learning. In order to 
understand how this happens, it will be helpful to take a closer look at abductive 
reasoning and the different forms it can take. 

10.3.1     Forms of Abductive Reasoning 

 As we have discussed, when students (or teachers) experience genuine doubt it is an 
opportunity to engage in abductive reasoning. Abductive reasoning can take many 
forms. Shank and Cunningham ( 1996 ) have, for instance, described an elaboration 
of Peirce’s types of reasoning by identifying six modes of abduction. The six modes 
of abduction are part of a larger framework comprised of a total of ten types of rea-
soning (six modes of abduction, three modes of induction, and one of deduction). In 
the context of our discussion we will narrow our focus on the six forms of abduction 
adapted from descriptions in Cunningham and his colleagues (Arici et al.  1998 ; 
Cunningham et al.  2002 ; Shank and Cunningham  1996 ). The six forms of abductive 
reasoning are “systematically related to each other” (Shank and Cunningham  1996 ), 
but we will discuss them separately to help illustrate each one. We feel it worth not-
ing that although the forms we discuss are in a particular order, abductive reasoning 
can be (and often is) non-linear in nature.  
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10.3.2     Six Forms of Abductive Reasoning 

 Imagine two students. Both are very strong students and continually challenge 
themselves with complex and diffi cult problems. One student is struggling with a 
new, diffi cult math problem. The other is trying to fi nd information on the internet 
to write a report on school dropouts. Both students feel stuck and are experiencing 
a state of genuine doubt about what they know in relation to these two problems. 
Both engage in abductive reasoning as an effort to resolve this doubt. A person 
using abductive reasoning need not go through all six forms to resolve doubt, but for 
our purposes we will use all six to illustrate the similarities and differences. 

10.3.2.1     Omen and Hunch 

 The fi rst form is an omen or hunch. This is a tentative form of reasoning. Our stu-
dent trying to solve a diffi cult math problem notices a portion of a problem that 
seems to point to a possible way to solve the problem. This portion of the problem 
serves as an omen of possibility. Once she starts work on the problem she may 
decide to abandon the approach if it is no longer helpful in making progress toward 
a solution. The omen, however, points to a possible future path of resolution. An 
omen, therefore, is an observable sign that is resolved in future acts of inquiry, 
engagement or observation. Sometimes an Abductive inference is more implicit. 
In such cases it would be considered a hunch. Our student searching the Internet for 
information about dropouts may have a hunch that clicking a link on the sociology 
of education might lead to relevant information. Again, a hunch is a tentative form 
of reasoning, but may payoff in resolving the state of doubt experienced by the 
student.  

10.3.2.2     Symptom 

 A symptom is the next form of abductive reasoning. Our student who is working the 
challenging math problem may feel like it is not clear what general strategy applies 
to solving this specifi c problem. So she has to make an inference based on the 
“symptoms” of the problem. She may see a feature of the problem that reminds her 
of problems she has solved in the past using regrouping strategies. Symptoms are 
sign-actions that involve making an inference about whether some specifi c thing in 
our present experience or observation has possible resemblance to some more gen-
eral case. The Abductive inference of symptom is based on one’s prior experiences 
(e.g., the student’s prior experience with regrouping strategies). Our student search-
ing the Internet for information for a report on school dropouts may come across a 
specifi c item of information about school truancy. He will need to decide if truancy 
is a symptom of dropping out and therefore worth following.  
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10.3.2.3     Metaphor and Analogy 

 The next form of abduction is a metaphor or analogy. Our math student may con-
tinue to run into dead ends even after reading and re-reading her notes and text-
books, watching explanatory YouTube videos, and asking family members to help. 
In all cases, the specifi c problem does not make sense to her. As she thinks about it 
some more, however, she starts to see a resemblance to her favorite video game. It's 
a strategic war game that involves the grouping and re-grouping of troops. It is 
through this resemblance that she is able to develop a new understanding of the 
problem. In this way, a metaphor/analogy serves as a type of abductive inference 
that occurs from manipulating a resemblance to create or discover a new way of 
thinking, a new rule, or new way of understanding. Returning to our example of the 
student searching the internet for information for his report on school dropouts, at 
some point he runs into a dead end. He is having little success in locating relevant 
information. As he thinks about the issue some more he sees dropping out as being 
related to similar issues impacting runaways. He then uses running away as a meta-
phor for dropping out and this new connection helps him move forward in his 
research.  

10.3.2.4     Clue 

 A clue is the next type of abductive reasoning. Our math student fl ips through her 
old homework folder and happens upon earlier problems she worked on. The way 
she solved those previous problems shares a resemblance to the current problem and 
thereby provides a “clue” or potential path for solving the new problem. Unlike a 
symptom, the clue is a sign that indicates some past state of affairs that has led to 
the clue (i.e., the previously solved problem). The student working on the school 
drop out report may view teen pregnancy as clue to the cause of school dropouts. He 
may ask himself, “Is there any connection between the two or is it just a 
coincidence?”  

10.3.2.5     Diagnosis/Scenario 

 The next type of abductive inference is a diagnosis or scenario. The student working 
on the diffi cult math problem may start to see a pattern in this problem as compared 
to other problems she has worked on. She may then reason that this problem repre-
sents a larger class of problems that share similar features. She then comes up with 
a possible rule or strategy for how she might solve the current problem. A diagnosis 
or scenario is a form of abductive reasoning that involves combining individual 
observations into a more coherent judgment or scenario. Similarly, our Internet user 
is now moving toward tentative accounts of the cause of dropouts and is attempting 
to unite these accounts in a more unifi ed form like a narrative or scenario. He starts 
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to put together a narrative or scenario of dropping out based on the various factors 
he has identifi ed.  

10.3.2.6     Explanation 

 The fi nal form of abduction is explanation. The student working on the math prob-
lem has never seen a problem exactly like this one, but based on her observation of 
this problem and previous problems she has solved she might be able to put forth a 
tentative explanation that this problem is part of a larger class of problems that 
require regrouping strategies to solve. Explanations are therefore a type of abduc-
tive reasoning used to form a general rule or explanation. This form of abduction 
seems closest to what Josephson and Josephson ( 1996 ) call “reasoning to the best 
explanation” (p. 5). Our internet user, may eventually propose an explanation for 
school dropouts that is consistent, coherent, and parsimonious. Such explanations 
can then become fodder for inductive testing and deductive elaborations. 

 Taken together these six forms of Abductive reasoning help generate new possi-
bilities that serve to resolve states of doubt and can promote personal understand-
ing. Abductive reasoning can therefore be thought of as a form of reasoning that 
helps promote new and personally meaningful insights or what has been called 
mini-c creativity (Beghetto and Kaufman  2007 ). Of course, in the context of learn-
ing, such insights need to be tested and vetted in the context of the classroom 
(Beghetto  2016a ). The feedback and support provided by this process can result in 
deeper learning and little-c creative contributions to the learning of students’ peers 
and even their teachers (Beghetto  2013 ,  2016a ). 

 Recalling Fig.  10.1 , our focus in this chapter is to illustrate how learning stimuli 
can trigger states of doubt that, in turn, can be resolved through abductive (or cre-
ative) reasoning which resolve doubt and lead to new and personally meaningful 
understanding. The next section provides an example of this process.    

10.4     An Example of Abductive Reasoning in Creative 
Learning 

 In what follows we provide an example of creative learning (adapted from Schreiber 
 2001 ). We start by briefl y describing the context and then briefl y apply each of the 
elements in Fig.  10.1  to the example. 
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10.4.1     Context 

 Early in Jim’s (second author) career, he was part of a problem based learning 
experiment with 30 entering students who took all courses in a PBL format. One of 
the problems for the Physics component was a twist on the traditional egg drop in 
elementary school. The students were given the task to protect a can of soda that 
was going to be fl ung out of a trebuchet. Each student was provided fi ve pieces of 
paper, 2 ft of tape, one 6 oz. plastic cup, one can of soda, 2 ft of string, and two paper 
bags. These were the specifi c constraints related to the task at hand. Each of these is 
an object with interpretations related to the students’ experience. The contextual 
constraint was the fact they were told this at the moment they had to complete the 
task with no prep time to solve the inherent problem in the task.  

10.4.2     Element 1: Discrepant Stimulus 

 In the context of the egg drop problem, students are confronted with a task that uses 
familiar objects in an unfamiliar context. Students often fi nd these kinds of learning 
situations compelling because they catch their attention. In this way, ill-defi ned 
problems can serve as a “discrepant stimulus” (i.e., something different than what is 
expected), which can trigger creative learning (Beghetto  2016a ). As we have argued, 
such a stimulus can also put students into a state of genuine doubt.  

10.4.3     Element 2: Genuine Doubt 

 The constraints of the egg drop problem (no prep time to solve the problem) can 
generate a state of genuine doubt. Genuine doubt is an uncomfortable state that 
motivates resolution. As we discussed it can be resolved by ignoring it or engaging 
in Abductive reasoning.  

10.4.4     Element 3: Abductive Reasoning 

 We will focus on one student’s reasoning, whom we will call Barry, to illustrate how 
the six forms of abductive reasoning were used to resolve doubt and resulted in 
creative resolution and new understanding.

    1.    Omen/Hunch- “The parachute was like the fi rst thing..” “I was thinking maybe I 
could crumple up some paper.” Here the student has some hunches—some initial 
possibilities.   
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   2.    Symptom- “I was thinking the cup might catch some air [distance and height], so 
I needed to be concerned about that…[velocity and force as it hit the ground].” 
The distance and height are symptoms of being fl ung out of a full size trebuchet 
and lead to more inferences about what might happen when it lands.   

   3.    Metaphor/Analogy “I was thinking about…I did it in our physics class, …it was 
an egg thing..we had multiple steps to crack the egg, …separate the yolk [Rube 
Goldberg contest]..but then went back to parachute. Roll the parachute like a 
sleeping bag, except not quite.” Here Barry is trying to use other experiences as 
analogies to move ahead in the process.   

   4.    Clue- “The bags are kind of small and that probably wouldn’t work..I said hey 
wait I have two bags.” The two bags are a clue for the student as the progress 
toward a solution occurs.   

   5.    Diagnosis/Scenario- “Paper comes down in the shape of the can so that when it 
hits [absorbs force]..all the can will slide or something and most of the impact 
will go to the paper…and the cup will pull the parachute out.” (Fig.  10.4 ).   

   6.    Explanation “So to protect the can will be protected after landing..by the paper 
and …the cup will pull the bags out and the parachute will slow it down…This 
will protect the can.” Here, Barry has a more complete explanation of how it 
should all work.    

At this point, Barry just tested the design—the student was done talking. The can 
was fi red from the trebuchet and the student did have conclusive statement. “I am 
pretty happy and my idea worked.. [Where was the major impact?]. Bottom of the 
cylinder and it didn’t really do that much, that ground didn’t really.” Later, students 
wrote formal research papers on the physics of their designs.  

  Fig. 10.4    Reproduced drawing of tested soda can protection system       
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10.4.5     Elements 4 and 5: Creative Resolution 
and New Understanding 

 The students were allowed to have their mini-c moments and work through their 
own understanding of the problem and the constraints without faculty telling them 
what to do or not to do. This was personally meaningful, and many of the designs 
would be considered Little-C creativity because the faculty were impressed with the 
designs. Yet, the rigor and understanding of physics was not ignored or watered 
down. It was crucial to their written work later and the discussion that occurred 
post- trebuchet launching. 

 Taken together, this example illustrates the role that abductive reasoning can play 
in creative learning. Specifi cally, how one student (Barry) experienced a state of 
genuine doubt, which in turn triggered various forms of abductive reasoning and 
resulted in deeper understanding of physics.   

10.5     Concluding Thoughts 

 In this chapter our goal was to argue that creative learning can be triggered from the 
experience of doubt. The resolution of doubt is a key motivator in the creative pro-
cess allowing for abduction to occur. We believe that our description of this process 
provides creativity researchers and learning theorists with a new way of thinking 
about the subjective motivational processes that can drive and support creative 
learning. We encourage researchers and practitioners to explore this process and 
examine whether and how this conceptualization contributes to existing and new 
models of supporting creative learning. 

 We also acknowledge that these creative learning opportunities are sometimes 
missed or even dismissed in practice. This is particularly the case when moments of 
doubt are ignored or predetermined paths are forced on such moments. When this 
happens, the abductive process is short-circuited and opportunities for cultivating 
creative learning are missed. Yet another direction for future research and practice 
should therefore focus on helping to identify and cultivate the potential of such 
opportunities and examine whether doing so simultaneously promotes creative 
thinking and deeper understanding. 

 Much of this work can occur in traditional and non-traditional educational set-
tings. In the context of more traditional classrooms, work is needed to empirically 
examine when and how teachers allow for the moment of doubt to blossom and how 
they engage with students during these moments. Projects in mathematics and sci-
ence classrooms are great starting points as well as projects exploring this process 
in other domains and across all grade levels. There are also ample opportunities for 
conducting such work in non-traditional educational settings such as workplaces, 
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museums, archeological dig sites, and crimescene investigation. We hope that the 
ideas shared in this chapter inspire researchers and practitioners to develop and test 
out these ideas. Doing so can lead to developing much needed insights into how to 
simultaneously support creativity and learning across disciplines and across the 
lifespan.     
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    Chapter 11   
 What Is Special About the Brain Activity 
of Mathematically Gifted Adolescents?                     

     Roza     Leikin     ,     Mark     Leikin    , and     Ilana     Waisman   

    Abstract     This paper addresses the neuro-cognitive characterization of super math-
ematically gifted high school students. The research population consisted of three 
groups of students excelling in mathematics: super mathematically gifted (S-MG), 
generally gifted students who excel in school mathematics (G-EM), and students 
who excel in school mathematics but are not identifi ed as being generally gifted 
(NG-EM). An Event Related Potentials (ERP) research methodology was employed 
to examine behavioral and electrophysiological measures associated with insight- 
based and learning-based problem solving. Forty-two male adolescents participated 
in the study. Analysis of the electrical potentials evoked when solving these two 
distinct types of problems revealed three types of neuro-effi ciency effects, which 
highlight the different characteristics of electrical activity of super mathematically 
gifted students. These characteristics are predominantly task-dependent, emerge at 
different stages of the task and are refl ected in different scalp topography.  

  Keywords     Problem solving   •   Giftedness   •   Excellence in mathematics   •   Super- 
gifted in mathematics   •   Event Related Potentials (ERP)   •   Neuro-effi ciency effect  

11.1       Rationale 

 Super-gifted (S-G) individuals are considered to be at the extreme end of the intel-
ligence continuum and are signifi cantly more advanced than those individuals iden-
tifi ed as generally gifted (Silverman  1989 ). Because of the great variability within 
the gifted range, it is important to distinguish between levels of giftedness (Goldstein 
et al.  1999 ). 
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 Extensive neuroscience research has explored brain activity during mathemati-
cal processing related mainly to computational skills (eg, Santens et al.  2010 ) as 
well as research examining the neurobiological basis of individual differences in 
general intelligence (eg, Deary et al.  2010 ). Additionally, several studies discuss the 
differences in the brain organization of gifted and mid-ability students (eg, O’Boyle 
 2008 ). However, to the best of our knowledge, no study has yet examined the brain 
activity of the gifted student who exhibits superior excellence in mathematics (here-
inafter referred to as S-MG) associated with mathematical problem solving. 

 This study examined brain activity using Event Related Potentials (ERP) during 
mathematical problem solving. It attempts to ascertain both the behavioral (accu-
racy and reaction time) and the electrophysiological measures (the strength and 
scalp distribution of ERPs) that distinguish S-MG students from generally gifted 
students who excel in school mathematics (G-EM) and from those students excel-
ling in mathematics who are not identifi ed as being generally gifted (NG-EM).  

11.2     Background 

11.2.1     Gifted and Super-Gifted Students 

 Giftedness is often defi ned as an unusually high ability or unusually high intelli-
gence that exceeds a certain cut-off score (Winner  2000 ). Most of the identifi cation 
methods for levels of intellectual giftedness are based on Intelligence Quotient (IQ) 
levels. Most commonly, gifted intelligence is characterized by an IQ that exceeds 2 
Standard Deviations (SD) above the population mean (usually 130). Super-gifted 
students (cf. extremely-gifted, exceptionally gifted or profoundly gifted) are defi ned 
by an IQ score above 145 or at least 3 SD above the mean (Feldman  2003 ). These 
super- gifted (S-G) individuals appear in the population at a ratio of less than 1:1000 
(Gross  2009 ; Vaivre-Douret  2011 ; Silverman  2009 ). Silverman ( 1989 ) defi ned the 
S-G individuals as those whose performance is signifi cantly beyond the norm of the 
gifted. 

 Extremely gifted children, who are reported to have exceptionality in talking, 
reading and imagination, tend to develop much earlier in these fi elds than their peers 
of average ability (Hollingworth  1942 ; Vaivre-Douret  2011 ). Highly gifted students 
display intrinsic motivation during problem solving, whereas students of average 
ability are motivated extrinsically (Kanevsky  1995 ; Gross  2009 ). The highly gifted 
possess advanced analogical thinking and acquisition of new information, apply 
different problem solving strategies (Sternberg  1981 ) and exhibit a faster processing 
speed on cognitive tasks (Steiner and Carr  2003 ; Paz-Baruch et al.  2014 ). All the 
aforementioned characteristics are heightened in S-G individuals (Gross  2009 ). The 
S-G possess a striking ability for “dual processing” – the ability to process two sets 
of information simultaneously and in parallel (Gross  2009 ). It is found that S-G 
students have superior working memory as compared to their moderately gifted and 
non-gifted counterparts (eg,  Leikin et al. 2014 ). Note, however, that this population 
of mathematically super-gifted individuals has not been suffi ciently studied. We 
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chose to investigate not only the cognitive or affective characteristics of super-gifted 
individuals but also to compare their ability to solve different types of mathematical 
problems relative to other groups of mathematically able students.  

11.2.2     Studying Mathematics in High School 

 One of the central topics in the school curriculum is Euclidean geometry, which is 
concerned with geometric fi gures and their properties (NCTM  2000 ). Geometrical 
reasoning is usually associated with mutually related visual and logical components 
(Fischbein  1993 ), and one of the essential topics included in the school geometry 
program is the concept of area of fi gures and their measurement (Clements et al. 
 1997 ). The students’ conceptual understanding of the above-mentioned topic is 
facilitated by comparing the areas of two fi gures (Kospentaris et al.  2011 ). Another 
signifi cant topic of study in the school mathematics curriculum is function, which is 
one of the fundamental concepts in mathematics, in general, and in school algebra, 
in particular (Da Ponte  1992 ). Through the study of functions, students can perform 
translations between their different representations (Janvier  1987 ). At the same 
time, insight-based problems are not part of the high school mathematics curricu-
lum. These problems have a relatively simple solution but it is diffi cult to discover 
(Kershaw and Ohlsson  2004 ). Furthermore, these problems are usually unfamiliar 
to solvers and require a great cognitive effort to fi nd a solution (Mayer  1995 ). Insight 
is considered to be a central trait of giftedness (Davidson  2003 ). 

 In the present study, we examined the behavioral and neuro-cognitive measures 
related to the solving of both learning-based and insight-based mathematical prob-
lems by students with different levels of general giftedness, who all excel in 
mathematics.  

11.2.3     Neuro-Cognitive Activity Associated with Mathematical 
Thinking and Operations 

 Considerable research has investigated the neural basis of mathematical cognition. 
However, the majority of these studies have dealt with the brain areas activated dur-
ing number processing and simple arithmetic in normal and abnormal populations 
(eg, Arsalidou and Taylor  2011 ). The special fronto-parietal brain network associ-
ated with mathematical processing has been identifi ed in several fMRI studies (eg 
Dehaene et al.  2003 ). It was demonstrated that the parietal cortex plays an important 
role in tasks involving arithmetic problem solving (eg Zamarian et al.  2009 ) and that 
it supports more complex mathematical processing such as algebraic equations, 
geometry proof generation, and calculus (Anderson et al.  2011 ; Sohn et al.  2004 ). 
The processes of advanced mathematical problem solving were found to be 
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associated with the frontal cortex (eg Anderson et al.  2011 ). It was shown that as the 
complexity of the problems increases, more brain areas are involved in the solving 
process (Zamarian et al.  2009 ). 

 As to electrophysiological research, some ERP studies of arithmetic demon-
strated a late positive wave peaking between 500 and 1000 ms, which has been 
explained as retrieving or calculating an answer (eg, Galfano et al.  2004 ). It was 
found that its strength intensifi es as problem complexity increases (Núñez-Peña 
et al.  2006 ). Note, however, that this positive wave appeared after the N400 compo-
nent, the maximum of which is achieved over the anterior electrode sites. This ante-
rior negativity is frequently interpreted as an indicator of a mismatch between the 
given answer and the preceding question or is thought to be connected to the 
involvement of working memory and attention resources (eg, Niedeggen et al. 
 1999 ). Additionally, both N400-like and P500-700 components appeared to be 
related to insight-based problem solving (eg, Dietrich and Kanso  2010 ). 

 Though there is extensive research into the neural basis of mathematics, the issue 
of individual differences in mathematical processing has not been studied suffi -
ciently. Moreover, there has been almost no research on the neuro-cognition of 
mathematical problem solving among intellectually gifted individuals.  

11.2.4     Neuro-Cognitive Research on Giftedness 

 The brains of gifted individuals demonstrate enhanced development and activation 
of the right hemisphere, ability to activate task-appropriate regions in a well- 
orchestrated and coordinated manner, and better brain connectivity (O’Boyle  2008 ; 
Prescott et al.  2010 ). 

 There is strong empirical evidence showing that individuals with higher intelli-
gence exhibit lower mostly-frontal brain activation (neural effi ciency hypothesis) 
compared with less intelligent individuals (Neubauer and Fink  2009 ). Note that 
neural effi ciency might appear when individuals solve tasks of low to moderate dif-
fi culty. When the complexity of tasks rises to an elevated level of diffi culty, highly 
intelligent individuals seem to devote more cortical resources as compared to less 
intelligent individuals (Dunst et al.  2014 ). 

 EEG studies showed that whereas the latencies of the P3 ERP component were 
negatively correlated with intelligence (Beauchamp and Stelmack  2006 ), the ampli-
tudes of P3 were positively correlated (De Pascalis et al.  2008 ). Gevins and Smith 
( 2000 ) have also shown that values of amplitude of brain activation as well as topo-
graphic patterns of activation are associated with levels of general intelligence. For 
example, high-ability participants showed greater parietal activity and less prefrontal 
activity than their low-ability counterparts (Jausovec and Jausovec  2004 ). Moreover, 
highly intelligent participants exhibited more brain activity in the early stages of task 
performance, while average individuals did so in the later stages of task processing 
(Jausovec and Jausovec  2004 ). Zhang et al. ( 2015 ) demonstrated that mathemati-
cally gifted adolescents exhibit a highly integrated fronto-parietal network. 
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 Even so, until recently, most research on the gifted population has used non- 
mathematical problems and has not differentiated between general giftedness and 
excellence in mathematics.   

11.3     The Study 

11.3.1     The Goal of the Study 

 The goal of the present study was to examine differences in behavioral and electro-
physiological measures associated with mathematical problem solving among 
excelling in mathematics students who vary in their level of general giftedness (NG- 
EM and G-EM) and exhibit superior performance in mathematics (S-MG).  

11.3.2     Participants and Sampling Procedure 

 In this paper we report fi ndings that focus on ERP measures associated with the 
problem-solving performance of right-handed male individuals. This was a partial 
group from an initial sample of about 200 students chosen out of a much larger 
potential research population of 1200 students from 10th–11th grade (16–18 year 
olds) who studied mathematics in school in either high-level (HL) or regular-level 
(RL) classes. The sampling procedure was directed towards implementing the dis-
tinctions between G and EM characteristics as well as those of S-MG. 

 For the purpose of narrowing down the sample, the large preliminary research 
population of 1200 students was examined using Raven’s Advanced Progressive 
Matrix Test (RPMT) (Raven et al.  2000 ) for general intelligence and the SAT-M test 
(Scholastic Assessment Test in Mathematics) for mathematical excellence. Although 
previous studies showed a high correlation between SAT-M and Raven Tests, a high 
SAT-M score does not necessarily indicate high intelligence (Frey and Detterman 
 2004 ). We used a shortened Raven Test containing 30 items with a 15-min time limit 
together with a short version of the SAT-M Test that contains 35 items with a time 
limit of 30 min (Zohar  1990 ). 

  G factor:  The students were characterized as generally gifted (G) providing they 
studied in classes for gifted students (identifi ed by a national examination as having 
IQ > 130 in the third grade). The Raven Test was employed for two purposes: For 
validation of the G factor in students from the classes for generally gifted students 
and for exclusion of students with a high score on Raven Test from a NG (identifi ed 
as non-gifted) group of participants. A Raven score of 28 out of 30 was set as a 
lower border for inclusion in the G group (to ensure that 1 % of population was 
included in the G group). 
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  EM factor : Mathematics is a compulsory subject in Israeli high schools and stu-
dents can be placed in one of three levels of mathematics: high, regular and low. The 
level of instruction is determined by students’ mathematical achievements in earlier 
grades. The differences in instruction at the high level (HL) differ from that at the 
regular level (RL) in terms of the depth of the learning material and the complexity 
of the mathematical problem-solving involved. All 1200 students studied mathe-
matics at HL or RL. Students who were ultimately included in the EM group learned 
HL mathematics and had scores higher than 90 out of 100. An SAT-M score above 
26 out of 35 was chosen as a control measure for the EM sampling (2 % of general 
poplation). 

  S-MG students:  An additional fi fth group of participants included 7 “super 
mathematically- gifted” (S-MG) students who were described by mathematics pro-
fessors as being students with extraordinary mathematical abilities. While learning 
in high school (10th-12th grades), these students also took mathematics or com-
puter science classes at a university, achieving a mean score above 95, or were 
members of the International Computer Science Olympiad team. These students 
comprise 1/20,000 of their age-group in the overall Israeli population. 

 In line with the goal of the study, we formed three research groups of students 
excelling in mathematics according to their level of general giftedness (G-EM and 
NG-EM) and their superior performance in mathematics (S-MG) (Table  11.1 ).

11.3.3        Tests and Experimental Procedure 

 There were two tests which corresponded to the school mathematics curriculum and 
to the skills necessary for attaining/achieving success in mathematical problem 
solving: 

 Area-related test: Participants received a drawing of a geometric object. Part of 
this drawing was shaded. The participants had to determine what area of the draw-
ing was shaded or what the area of the geometric object was in reference to the 
shaded part. 

 Function-related test: Participants received a graph of a mathematical function 
followed by an equation. They had to determine whether the graph and the equation 
represented the same function 

 An insight-based test was specially designed to analyse brain activity associated 
with solving unfamiliar problems (eg, Sternberg and Davidson  1995 ). This test 

   Table 11.1    The groups of students who excel in school mathematics   

 G-EM  NG- EM  S-MG 

 Insight-based test  17  17  7 
 Learning-based tests  Area related test (geometry)  18  17  7 

 Function related test (algebra)  19  16  7 

   G-EM  Gifted Excelling in Mathematics,  NG-EM  Non-Gifted Excelling in Mathematics,  S-MG  
Super-Gifted in Mathematics  
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 contained problems that had a simple solution that is not easy to discover. Sometimes 
the answer is counterintuitive and sometimes the solution strategy seems to belong 
to a different branch of mathematics than that which is required by the problem. 

 Each test included 60 tasks. The tests proved to be reliable (Cronbach’s alpha 
>0.7) (Leikin et al.  2013 ). Computerized tests were designed and administered 
using E-Prime software (Schneider et al.  2002 ). All tasks were presented in the 
center of the computer screen and displayed in black characters on a white back-
ground. According to Polya’s theory (Polya  1957 ) of strategies of problem solving, 
each task was presented in several windows (stages) that appeared consecutively. 
Each task on the function-related test was presented in two windows (S1 – introduc-
tion of task condition, and S2 – answer verifi cation). Each task on the area-related 
and insight-based tests was presented in three windows (S1 – introduction of task 
condition, S2 – question presentation, and S3 – answer verifi cation). 

 The sequence of events and an example of the tasks are presented in Fig.  11.1 .

11.3.4        Electrophysiological Recording and Analysis 

 Scalp EEG data were continuously recorded using a 64-channel BioSemi ActiveTwo 
system (BioSemi, Amsterdam, The Netherlands) and ActiveView recording soft-
ware. Pin-type electrodes were mounted on a customized Biosemi head-cap, 
arranged according to the 10–20 system. Two fl at electrodes were placed on the 
sides of the eyes in order to monitor horizontal eye movement. A third fl at electrode 
was placed underneath the left eye to monitor vertical eye movement and blinks. 

  Fig. 11.1    The sequence of events and examples of the tasks       
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Data were recorded using an average-reference on-line. During the session, elec-
trode offset was kept below 50 μV. The EEG signals were amplifi ed and digitized 
with a 24 bit AD converter. A sampling rate of 2048 Hz (0.5 ms time resolution) was 
employed. Figure  11.2  depicts the location of the electrodes.

   ERPs were analyzed offl ine using the Brain Vision Analyzer software (Brain- 
products). ERPs were Zero Phase Shift fi ltered offl ine (bandpass: 0.53 Hz–30 Hz) 
and referenced to the common average of all electrodes. Epochs with amplitude 
changes exceeding ±80 μV on any channel were rejected. Ocular artifacts were cor-
rected using the Gratton et al. ( 1983 ) method. The ERP waveforms were time- 
locked to the onsets of S1, S2 and S3. The averaged epochs for ERP (for which only 
the correct answers were averaged) included a 200 ms pre-stimulus baseline. Each 
condition resulted in at least 40 trials per participant.  

11.3.5     Data Analysis and Statistics 

 Due to the small number of S-MG participants (N = 7), we performed a non- 
parametric (Kruskal-Wallis) test in order to examine specifi c characteristics of 
S-MG students (as compared to G-EM and NG-EM) with consequent Mann- 
Whitney tests for pair-wise comparison between the groups. For the pair-wise com-
parisons,  p -values were adjusted for multiple comparisons according to the 
Bonferroni adjustment. 

  Behavioral data analysis  was applied to Accuracy (Acc) (in %) and Reaction 
time correct responses (RTc). RTc was calculated as the mean time spent for verifi -
cation of an answer (stage S3 for Area-related and Insight-based tests or S2 for 
Function-related test) in all trials on the test per person. 

 In  electrophysiological data analysis  the scalp surface was divided into nine 
topographical regions (see Fig.  11.2  for details) and the mean amplitude of the sin-
gle electrodes within each electrode site was averaged in each of the defi ned time 

  Fig. 11.2    Location of the 
electrodes and selected 
electrode sites       
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frames (Table  11.2 ). We report herein the signifi cant results associated with late 
potentials in anterior and posterior sites which were found to be involved in math-
ematical processing (eg, Anderson et al.  2011 ):  Anterior left  (AL);  anterior middle  
(AM);  anterior right  (AR);  posterior left  (PL);  posterior middle  (PM);  posterior 
right  (PR) (Fig.  11.2 ).

11.4         Results 

11.4.1     Behavioral Findings 

 Generally speaking, S-MG students demonstrated the highest Acc and the lowest 
RTc as compared to their G-EM and NG-EM counterparts (Fig.  11.3 ). Non- 
parametric analysis revealed between-group differences in Acc and RTc on all the 
tests. Subsequent between–group comparisons found that S-MG students had sig-
nifi cantly higher Acc and signifi cantly lower RTc as compared to NG-EM students 
on all the tests. At the same time, the differences in behavioral measures between 
the two groups of gifted students (S-MG and G-EM) were found only on the Area- 
related and Function-related tests, which are based mostly on school curriculum 
(learning-based tests). In this case, S-MG students were signifi cantly more accurate 
and quicker (even if marginally) than the G-EM participants. In turn, the differences 
between G-EM and NG-EM groups were found only in the accuracy measure on the 
Insight-based test, which is not a learning-based test. The Acc in G-EM was margin-
ally signifi cantly higher as compared to NG-EM students. Note that in this context, 
the insight-based test appeared to be very sensitive to the factor of general gifted-
ness: S-MG and G-EM individuals performed this test better than NG-EM.

   Table 11.2    Electrophysiological data analysis   

 Test  Stage 

 Time frames 
for statistical 
analysis (ms) 

 Between group 
comparisons  Measures 

 Insight-based  S1, S2, S3  250–500, 
500–700, 
700–900 

 S-MG vs. G-EM 
vs. NG-EM 

 Mean Amplitude in: AL, 
AM, AR, and PL, PM, 
and PR, separately 

 Area-related  S1, S2, S3 
 Function- 
related 

 S1, S2  300–500, 
500–700, 
700–900 

   AL  anterior left,  AM  anterior middle,  AR  anterior right,  PL  posterior left,  PM  posterior middle,  PR  
posterior right  
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11.4.2        Electrophysiological Findings 

 The signifi cant differences in the mean amplitudes at the anterior and posterior sites 
between the study groups appeared in all three tests reported in this study but at dif-
ferent stages. Pair-wise comparisons showed that there were signifi cant differences 
mostly between S-MG and the other two groups and to a lesser extent between the 
G-EM and NG-EM groups. On the other hand, generally speaking, these differences 
varied considerably in accordance with such variables as the type of test, stage, time 
interval and electrode sites. 

 On the insight-based test the lowest electrical potentials were found for S-MG 
students compared to the other study groups. The differences between the mean 
amplitudes of the electrical potentials of the S-MG and of the NG-EM students were 
obtained at S2 and S3. For example, a notable effect was obtained at S3 in the pos-
terior left site (PL) during the time period of 250–500 ms ( H (2)  =  6.904,  p <  .05 
 U  = 12.672,  p  < .05). At the same time, the signifi cant differences in mean ampli-
tudes between the S-MG and G-EM groups appeared only at S2. For example, the 
effect was shown in the anterior right site (AR) during the time period of 500–700 
ms ( H (2)  =  6.253,  p <  .05 for S-MG vs. G-EM  U  = 12.050,  p  < .05 and for S-MG vs. 
NG-EM  U  = 12.756,  p  < .05). The G-EM participants did not signifi cantly differ 
from the NG-EM students. 

 On the area-related test, the results obtained at S2 and S3 were noticeably differ-
ent. At S2, the results were mostly similar to those on the insight-based test: S-MG 
participants demonstrated signifi cantly lower electrical potentials compared to the 

Insight-based Area-related Function-related
A

cc

H (2) = 9.588** H(2) = 7.121* H(2) = 6.113*

S-MG vs. NG-EM U = 15.239*

G-EM vs. NG-EM  U = 9.118+
S-MG vs. NG-EM U = 13.504*

S-MG vs. G-EM U =12.560+

S-MG vs. NG-EM U =12.460+

R
T

c

H (2) = 6.525* H(2) = 7.234* H(2) = 12.668**

S-MG vs. NG-EM U =13.311*
S-MG vs. G-EM U =11.595+

S-MG vs. NG-EM U =14.723*

S-MG vs. G-EM U =16.444**

S-MG vs. NG-EM U =19.286**

*p £. 05,**p £.01 (with Bonferroni correction), +p < .05 (without Bonferroni correction)  

Acc – Accuracy, RTc –Reaction  time for correct responses

  Fig. 11.3    Between-group differences for Acc and RTc revealed by mathematical tests       
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two other groups, while the G-EM group did not differ signifi cantly from the 
NG-EM group. For example, the effect was shown in the posterior right site (PR) 
during the time period of 500–700 ms ( H (2)  =  10.172,  p <  .01 for S-MG vs. G-EM 
 U  = 16.167,  p  < .01 and for S-MG vs. NG-EM  U  = 16.235,  p  < .01). At the same time, 
at S3, S-MG participants did not differ from the G-EM participants, but both 
“gifted” groups (S-GM and G-EM) signifi cantly differed from the NG-EM group. 
For example, the effect was achieved in the posterior middle site (PM) during the 
time period of 700–900 ms ( H (2)  =  7.291,  p <  .05 for S-MG vs. NG-EM  U  = 13.126, 
 p  < .05 and for G-EM vs. NG-EM  U  = 8.690,  p  < .05). 

 On the function-related test, the differences in mean amplitudes were found only 
at S1 and related to the distinction between the G-EM and NG-EM students and 
between the S-MG and NG-EM students. For example, these differences were 
obtained in the posterior middle site (PM) during the time period of 500–700 ms 
( H (2)  =  9.583,  p <  .01 for G-EM vs. NG-EM  U  = 10.151,  p  < .05 and for S-MG vs. 
NG-EM  U  = 15.196,  p  < .05). More interestingly, in the anterior left site (AL), the 
S-MG group demonstrated relatively high electrical potentials as compared to the 
G-EM group in the early time interval (300–500 ms) ( H (2)  =  6.826,  p <  .05, 
 U  = 13.729,  p  < .05). 

 Finally, note that there was one more interesting fi nding: Generally, the S-MG 
participants demonstrated the lower mean electrical potentials compared to the 
G-EM group, while the G-EM students were characterized by lower activation com-
pared to the NG-EM group. These last differences, however, were signifi cant only 
on the learning-based tests; ie, function-related and area-related tests.   

11.5     Discussion 

11.5.1     Three Types of Neuro-Effi ciency 

 The results of the study show that, in general, there was a neuro-effi ciency effect 
related to both superior mathematical abilities and general giftedness. The electrical 
potentials evoked in S-MG participants were lower compared to those of the G-EM 
and NG-EM groups. The electrical activity in G-EM students was often lower than 
that of the NG-EM students. These differences were signifi cant in many cases. 
These fi ndings are consistent with the neuro-effi ciency hypothesis (Neubauer and 
Fink  2009 ), whicha brighter individuals show more effi cient brain functioning 
(mostly frontal) than less intelligent individuals on tasks with the same cognitive 
demands. 

 Our study contributes meaningfully to the understanding of the connection 
between expertise in solving mathematical problems, general giftedness and the 
neuro-effi ciency effect which is characterized by an inverse relationship between 
the accuracy of task performance and the strength of brain activation. While several 
previous studies examined the strength of brain activity as a function of the level of 
expertise (eg, Kelly and Garavan  2005 ), they demonstrated inconsistent results. We 
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distinguished between levels of intelligence and levels of expertise (excellence in 
mathematics). This distinction allowed us to refi ne our understanding of the neuro- 
effi ciency effect. 

 At some of the electrode sites and problem-solving stages, there were three dif-
ferent types of neuro-effi ciency related to G and EM factors (see Table  11.3 ).

   The fi rst type appears as  an accumulative characteristic  of S-MG students. In 
these cases, non-signifi cant differences were found between the strength of the elec-
trical potential of G-EM and NG-EM students and between S-MG and G-EM stu-
dents. These differences, however, only become signifi cant when comparing the 
S-MG and the NG-EM groups. For example, this type of neuro-effi ciency effect was 
found for the insight-based test at S3, and for the area-related test at S2. 

 The second type is  a unique characteristic  of S-MG students .  In these cases, 
signifi cant differences are obtained when comparing the S-MG and G-EM groups 
as well as the S-MG and NG-EM groups. The G-EM and NG-EM students exhibit 
very similar values on the examined measures. This type of neuro-effi ciency effect, 
which indicates behavioral and/or electrophysiological characteristics that are spe-
cifi c for the S-MG students, was found on the insight-based and the area-related 
tests at S2. 

 The third type of neuro-effi ciency effect is  a general giftedness-related 
 characteristic , in which signifi cant differences are revealed when comparing the 
S-MG and NG-EM as well as the G-EM and NG-EM students. The G-EM and 
S-MG groups exhibit very similar values on the examined measures. This type of 
neuro- effi ciency effect is associated with G factor. The general giftedness-related 
characteristics were found on the function-related task at S1 and on the area-related 
test at S3.  

    Table 11.3    Three types of neuro-effi ciency effects   

 Characteristic  Insight-based test  Area-related test  Function-related test 

  Accumulative    S3    S2  
 S-MG > NG-EM  PL 250–500 ms  AR 250–500 ms 
 S-MG ~ G-EM  AL 500–700 ms 
 G-EM ~ NG-EM 
  Unique    S2    S2  
 S-MG > G-EM  AR 500–700, 

700–900 ms 
 AR 500–700 ms 

 S-MG > NG-EM  AM 500–700 ms 
 G-EM ~ NG-EM  PR 500–700 ms 

 PM 250–500, 500–700 
ms 

  Giftedness related    S3    S1  
 S-MG > NG-EM  PM 250–500, 

500–700, 
 PM 500–700, 
700–900 ms 

 G-EM > NG-EM  700–900 ms 
 S-MG ~ G-EM  AM 700–900 ms 

   AL  anterior left,  AM  anterior middle,  AR  anterior right,  PL  posterior left,  PM  posterior middle  

R. Leikin et al.



177

11.5.2     Task-Dependency of the Effects 

 Leikin et al. ( 2014 ) described the relationship between the strength and the distribu-
tion of electrical activity and the topic of the mathematical tests. In this paper, we 
demonstrate that the types of neuro-effi ciency effects were task-dependent (Fig.  11.4  
and Table  11.3 ).

   Giftedness-related characteristics were found in the learning based (area- and 
function-related) tasks: Both G-EM and S-MG groups evoked signifi cantly lower 
electrical potentials as compared to NG-EM group in the middle electrode sites. 
Furthermore, we show that in order to excel in mathematics students do not have to 
be generally gifted, although excellence in mathematics is related to and enhanced 
by general giftedness (c.f. Grabner et al.  2006  for expert chess players). 

 Three groups of participants achieved high accuracy scores on the learning-based 
tests that were relatively easy for EM students. No signifi cant differences between 
G-EM and NG-EM groups were found in the behavioral measures, since the stu-
dents in these two groups exhibited similar performance. However, the electrical 
potentials evoked in NG-EM students were larger compared to those of G-EM stu-
dents. Thus, our fi ndings demonstrate the possibility of distinguishing between 
gifted students and non-gifted students in the EM group on the basis of neuro- 
cognitive measures. 

 On the learning-based tasks, extending the excellence continuum did not affect 
the strength of the brain activation. On the contrary, insight-based tasks revealed 
differences between S-MG and G-EM. 

  Fig. 11.4    Topographical maps of electrical potentials in S-MG, G-EM and NG-EM students at 
S2 in the 500–700 ms       
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 The unique characteristic of S-MG was found on the insight-based and area- 
related tests only during the presentation of a question (ie, S2) in the right and 
middle electrode sites. According to this characteristic, the mean amplitude for 
S-MG was signifi cantly lower compared to both G-EM and NG-EM. Accordingly, 
we speculate that being gifted is not suffi cient for possessing effi ciency in brain 
functioning. Compared to learning-based tasks, the insight-based ones seemed to 
exemplify more diffi cult tasks, since they are not familiar to the solver and require 
a specifi c, non-learned approach to the solving (Sternberg and Davidson  1995 ). 

 Previous studies demonstrated the relationship between neuro-effi ciency and the 
diffi culty of the task (Dunst et al.  2014 ; Neubauer and Fink  2009 ). Dunst et al. 
( 2014 ) showed that more intelligent individuals exhibited higher brain activity in 
the more diffi cult tasks than less bright ones did. Our study refi nes these fi ndings. 
We found that on the insight-based test, S-MG showed the lowest mean amplitudes 
compared to the other two groups, while there were no signifi cant differences 
between G-EM and NG-EM participants. The relative diffi culty of insight-based 
tasks for G-EM students compared to the S-MG group may be interpreted such that 
G-EM students did not achieve the highest level of giftedness and expertise in 
mathematics. 

 Additionally, the unique characteristic of S-MG was found only at the question 
presentation stage. Note that some studies have reinforced the issue of the relation-
ships between brain activity, intelligence and the stage of task performance 
(eg Jausovec and Jausovec  2004 ). We hypothesize that the lowest electrical activity 
in S-MG students appeared during S2 because they started solving the problem at S1. 

 To summarize: Our study presents three types of neuro-effi ciency effects associ-
ated with insight-based and learning-based problem solving in three groups of 
excelling in mathematics students. These three types of neuro-effi ciency effects 
relate to such variables as the type of test, stage of the test, giftedness and level of 
excelling in mathematics. Seemingly, these fi ndings allow us to distinguish mathe-
matically gifted individuals from the general pool of students who excel in mathe-
matics and to identify this group as individuals who are super-gifted in 
mathematics.      
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    Chapter 12   
 Psychological and Neuroscientifi c Perspectives 
on Mathematical Creativity and Giftedness                     

     David     H.     Cropley     ,     Martin     Westwell    , and     Florence     Gabriel   

    Abstract     Creativity and giftedness have long been linked together in the literature, 
particularly where giftedness is conceived, not in the analytically focused sense of 
schoolhouse giftedness (e.g. Renzulli  1978 ), but in the sense of creative-productive 
giftedness that emphasizes the generation and production of ideas. Creativity has a 
well-established foundation in the psychological literature, and a growing body of 
work derived from neuroscientifi c approaches. How do these contrasting psycho-
logical and neuroscientifi c approaches inform our understanding of creativity as a 
component of giftedness in general? How is giftedness manifest in mathematics in 
the creative-productive sense? What do psychology and neuroscience tell us about 
the process of fostering mathematical giftedness specifi cally? 

 In this chapter, we examine fi rst general aspects of creativity and giftedness, not-
ing that Treffi nger’s (2004)  fi ve themes  provide a framework for understanding the 
connection between creativity and giftedness. Having established that creativity and 
giftedness are connected through these fi ve themes, we then turn attention fi rst to a 
psychological view of factors that are important for understanding mathematical 
creativity and giftedness, followed by a neuroscientifi c examination of the same. 

 The chapter concludes with the notion that  mathematical  creativity and gifted-
ness can be thought of as a special case of the intersection of creativity and gifted-
ness more generally, and that creativity and giftedness – mathematical or 
otherwise – can be characterized by a series of  dualities . Elements of the person, the 
cognitive processes employed, the outcome and the environment associated with 
mathematical creativity and giftedness are unique to this domain, and the blending 
of psychological and neuroscientifi c approaches offers the best means for under-
standing and fostering this ability.  
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12.1       Creativity and Giftedness 

 To understand  mathematical  creativity and giftedness, it is fi rst necessary to exam-
ine the long association between general creativity and giftedness that has left its 
mark on the research literature. Treffi nger ( 2004 ) outlines the parallel development 
of interest in creativity research, usually attributed to Guilford ( 1950 ), and gifted-
ness, but also explains how these two topics have intersected over the last 60 years. 
This intersection is, again, attributable to the infl uence of Guilford and his work on 
intelligence (Guilford  1959 ), as well as the contributions of key creativity research-
ers such as E. Paul Torrance (e.g. Torrance  1972 ), who worked at the interface of 
creativity and giftedness. 

 Treffi nger ( 2004 ) makes the case that the association of creativity and giftedness 
is more than simply a result of the overlapping interests of researchers active in both 
fi elds, as might be expected. In fact, he argues that there are fi ve  themes  that provide 
the rationale for the close association between creativity and giftedness (p. xxiv):

    1.     Defi nition : not only have both topics attracted signifi cant attention in their own 
right, as researchers seek to defi ne them, but the process of defi ning both creativ-
ity and giftedness gives rise to questions of how they are related to each other, 
and how the two fi elds intersect;   

   2.     Characteristics : both creativity and giftedness prompt research into how they 
are manifest in people, and how these indicators might be measured;   

   3.     Justifi cation : both give rise to questions of how they contribute to education;   
   4.     Assessment : both generate wider questions of measurement – not only how they 

are manifest in people, but also, for example, what measureable outcomes they 
lead to. Do both, for example, result in measureable improvements to student 
outcomes in school?   

   5.     Nurture : both creativity and giftedness provoke questions of development – can 
they be nurtured deliberately and successfully?    

  Treffi nger ( 2004 ) also makes the important point that these questions and issues 
are, by no means, settled. While a great deal of progress has been made across all 
fi ve themes, for both creativity and giftedness there remain, nevertheless, many 
unresolved issues. Not least among these are questions of the roles that creativity 
and giftedness play in specifi c application domains such as mathematics (see, for 
example, Sriraman  2008 ), as well as their more general, and domain-independent, 
characteristics. 

 In order to lay a foundation for a discussion of mathematical creativity and gift-
edness, we will use Treffi nger’s fi ve themes as a framework for reviewing more 
recent research on the intersection of creativity and giftedness. The material used by 
Treffi nger ( 2004 ) to address the fi ve themes, and contained in the edited volume 
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(Treffi nger and Reis  2004 ), generally covers research up to 1993. In the present 
chapter, we will focus also on more recent works to summarize key fi ndings on 
creativity and giftedness. We also constrain our review of material in one other 
important way. The purpose of the present chapter is to provide  psychological  and 
 neuroscientifi c  perspectives on mathematical creativity and giftedness. Accordingly, 
we draw primarily from the  psychological  literature of creativity and giftedness, as 
opposed to other sources, such as educational research. 

12.1.1     Defi nition 

 Treffi nger ( 2004 ) drew attention to two contrasting aspects of how creativity is 
defi ned, in particular in relation to giftedness. Citing Delcourt ( 1993 ), he noted “the 
importance of non-cognitive dimensions of creative productivity” (p. xxv), while 
Sternberg and Lubart ( 1993 ) also highlight similar dimensions, such as motivation. 
Conversely, he also incorporated elements of cognitive processes in his discussion 
of creativity and giftedness, noting that both Sternberg and Lubart ( 1993 ) and Runco 
( 1993 ), link divergent thinking to discussions of creativity and giftedness. 

 Almost concurrently, Cropley ( 1994 ) had noted a shift in conceptualizations of 
giftedness that strengthened the relationship to creativity. In particular, this rein-
forced the importance of non-cognitive factors (e.g. motivation) in conceptualiza-
tions of giftedness, in addition to cognitive factors. Cropley ( 1994 ) argued that “true 
giftedness” could only be seen in the interaction of creativity with  conventional  
intelligence. This model of giftedness was built around Renzulli’s ( 1986 ,  2011 ) 
“three-ring conception” of giftedness, which highlights the  interaction  of: (a) 
above-average ability; (b) task commitment, and; (c) creativity as contributors to 
giftedness. What stands out in Renzulli’s model, as in the other defi nitional research 
(e.g. Preckel et al.  2006 ), is that both giftedness, and creativity, involve elements of 
cognition, elements of motivation, elements of the infl uence of the environment, 
and an understanding of what is produced, and to what purpose. 

 The importance of cognitive processes as a component of both creativity and 
giftedness was also explored by Naglieri and Kaufman ( 2001 ), who examined the 
PASS (Planning, Attention, Simultaneous and Successive) Theory – a cognitive pro-
cessing approach to children’s abilities – as an explanatory tool for aspects of cre-
ativity. They note that planning, in particular, plays an important role in creativity, 
and also draw attention to another important element of the cognitive process. 
Naglieri and Kaufman ( 2001 ) cite the Finke et al. ( 1992 )  Geneplore  model that 
recognizes  two aspects  of cognition – a generative phase followed by an exploratory 
phase. 

 These contrasting defi nitional approaches to creativity and giftedness highlight 
the fact that both cognitive and non-cognitive factors are important in each, provid-
ing multiple points of intersection between creativity and giftedness.  
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12.1.2     Personal Characteristics 

 The second of Treffi nger’s ( 2004 ) fi ve themes concerned the characteristics – in 
particular, the personal characteristics – that serve as indicators of both creativity 
and giftedness. Treffi nger, however, also noted an important shift in emphasis that 
strengthens the link between creativity and giftedness. Like Cropley ( 1994 ) he saw 
a shift away from more quantitative conceptualizations of creativity (e.g. “How cre-
ative are you?”, p. xxvi) to a more qualitative conceptualization, i.e. “How are you 
creative?” (p. xxvi). In many respects, this shift refl ects the distinction already dis-
cussed as an element of the defi nition of creativity, and therefore giftedness. Both, 
in other words, are not defi ned, or manifest, simply in terms of a quantifi ed pro-
cess – divergent thinking, for example – but instead are characterized by personal 
characteristics such as motivation, feelings and other personal properties such as a 
tolerance for ambiguity. Treffi nger ( 2004 ) makes a further, crucial, point. This char-
acterization of both creativity and giftedness may involve not only cognitive abili-
ties and personality traits, but may be represented better by  style preferences  (p. 
xxvi), implying a more malleable and  dispositional  nature to creativity and gifted-
ness, as well as factors that are specifi c to particular kinds of applications. 

 Creativity and giftedness intersect therefore not only in the kinds of characteris-
tics that they share in common, but also in the fact that these characteristics may be 
open to development, improvement and enhancement.  

12.1.3     Justifi cation 

 Treffi nger ( 2004 ) makes a compelling case for the interrelationship of creativity and 
giftedness. Not only are they linked in the way each can be characterized – in terms 
of themes – but also the content of those themes further deepens the links. Thus, 
while both are defi ned in terms of the same cognitive processes and personal 
 qualities, creativity is, according to Renzulli (e.g.  2011 ), one of the  components of  
giftedness. From the point of view of the  justifi cation  of the importance of creativity 
and giftedness in education specifi cally, Renzulli’s three-ring conception – above 
average ability, task commitment and creativity – is especially critical. If giftedness 
is  not  tied to a restrictive defi nition of high IQ – a facility for doing well in standard-
ized tests – but instead is more broadly conceived of in terms of abilities that include, 
for example, artistic or psychomotor ability, then the justifi cation for an interest 
in giftedness in education becomes similarly broadened. In the same way, the 
inclusion of creativity and task motivation expands  who  can be gifted, and  how  they 
are gifted, meaning that giftedness in education is no longer an issue of a small 
minority of those students with exceptional IQs. Creativity makes giftedness a topic 
of broad importance in education. 

 Even if the focus is only on creativity, as a component of giftedness, there is a 
great deal of research that examines the value of creativity in an educational context. 
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Creativity is important in education not simply as a teachable skill, or as a vital 
component of giftedness, but because it engenders qualities that are of wider benefi t 
to students. Sternberg ( 2007 ) provides perspectives as to why this might be the case. 
Conceiving creativity as a  habit , he discusses the keys to developing that habit. 
Many of these are essential not only to the ability to think creatively, but as charac-
teristics of resilient, effective and successful individuals. Whether the ability to 
identify and overcome obstacles, for example, drives, or is driven by, creativity, 
individuals who possess this ability are not only in a better position to be creative, 
but are inherently more resistant to the ups and downs that they will encounter in 
life. Therefore, an educational process that fosters creativity, and the keys that help 
develop the habit, not only gives the individual the best chance of expressing his or 
her giftedness across a broad range of application domains including mathematics, 
but also prepares them better for life outside of the educational process.  

12.1.4     Assessment 

 Renzulli’s three-ring model ( 1986 ,  2011 ) is emerging in this discussion as a key 
framework for understanding the relationship between creativity and giftedness. So 
much so, that it is worth illustrating diagrammatically (Fig.  12.1 ).

   Notwithstanding the fact that the model, as well as the thrust of research referred 
to earlier, represents a shift from more purely quantitative characterizations of 
giftedness and creativity, to more qualitative and less restrictive notions, there is 
still considerable interest in the assessment – that is, the measurement – of the 
components of giftedness. 

 It will be no surprise that approaches to assessment follow a similar pattern to the 
defi nitions of creativity and giftedness reported earlier. In other words, there is a 

Creativity

Above-
Average 
Ability

Task 
Commitment

  Fig. 12.1    Renzulli’s 
three-ring conception of 
giftedness       

 

12 Psychological and Neuroscientifi c Perspectives on Mathematical Creativity…



188

considerable body of research in creativity, for example, that addresses assessment 
by drilling down to the level of cognitive processes, or personal qualities. This has 
been tackled by many researchers in the fi eld of creativity (for a summary of meth-
ods see, for example, Cropley  2015 ). However, at the intersection of creativity and 
giftedness, Kaufman et al. ( 2012 ) give the topic of measurement a comprehensive 
treatment, while Reis and Renzulli ( 1991 ) tackle the topic from a more specifi c 
point of view, in relation to the  products  – i.e. the outputs – of student creativity. 

 Assessment, in relation to creativity, and therefore giftedness, is about much 
more than just the cognitive aspects or process. To quantify creativity and giftedness 
requires us to quantify not only how people  think , but also how they feel and who 
they are, and, what they produce. In psychology, it is no surprise that the cognitive 
processes and personal characteristics have received a great deal of attention. Less 
attention has been given to the outcomes of creativity, although it is understood that, 
as a minimum, a product must be both novel and effective if it is to be regarded as 
creative (see Cropley et al.  2011 , Cropley and Kaufman  2012  for discussions of the 
assessment of creative products). 

 Neuroscience, and its associated tools such as electroencephalography (EEG) 
and functional magnetic resonance imaging (fMRI), is emerging as a game-changer 
in relation to questions of assessment in creativity and giftedness, in particular 
for cognitive aspects of each. Coupled with improved measures of non-cognitive 
factors, researchers have an expanding toolkit of measures with which to gain a 
deeper understanding of creativity, giftedness, and their intersection, not least in 
mathematics.  

12.1.5     Nurture 

 Treffi nger ( 2004 ) raises the issue of development in relation to creativity and gifted-
ness. This is frequently discussed in creativity literature through the question “Can 
creativity be taught?” In fact, there seems to be widespread and general agreement 
in the mainstream literature that creativity is  not  (Cropley  2015 ) the “expression of 
a divine spark”, but is “best thought of as an accessible, although statistically 
uncommon, characteristic of people and products.” (p. 228). Pioneers of the fi eld, 
for example Torrance ( 1972 ), were in no doubt that creativity can be nurtured, and 
Cropley ( 2015 ) suggests that the correct question is not “can creativity be taught?”, 
but “are we teaching it right?” (p. 229). 

 The issue of nurture and creativity has been covered extensively. Different pro-
grams and strategies have been reviewed (e.g. Cropley and Urban  2000 ), while the 
effectiveness of creativity training has been dissected in various ways. Wallach 
( 1985 ), for example, writing in the context of creativity testing and giftedness, 
argues that the effects of training programs are very narrow and specifi c, and diffi cult 
to generalize, while Treffi nger et al. ( 1993 ) suggested that there is scant evidence 
to support benefi cial effects of creativity training. Despite this, there is mounting 
evidence in more recent studies, (e.g. Scott et al.  2004a ,  b ) to support the effi cacy of 
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deliberate nurturing of creativity. A more extensive discussion of the issues of cre-
ativity training is given in Cropley ( 2015 ). 

 From the point of view of giftedness, and the three-ring model, while it may be 
true that above-average ability cannot be taught, per se, nurture remains important. 
If teaching creativity is a more causal, quantitative expression of nurture, then 
 encouraging  and  supporting  an above-average ability represents a more  qualitative  
expression in relation to giftedness. Neither creativity nor giftedness is fi xed and 
unchangeable. 

 Before leaving the issue of nurture, one other important, contributing factor is 
worth noting. Many researchers in creativity, for example Sternberg and Lubart 
( 1993 ), Isaksen et al. ( 1999 ,  2001) , stress the importance of the organizational and/
or social  climate  – the culture, in other words – in supporting the development of 
creativity. Nurture is not only an issue of  how  creativity and giftedness are nurtured, 
but also the  context , or circumstances, in which they are nurtured.   

12.2     A Psychological Perspective on Mathematical Creativity 
and Giftedness 

12.2.1     The Four Ps of Creativity 

 The literature of creativity and giftedness that was explored earlier suggested that 
the two topics have a shared history, not only because they were of parallel interest 
to pioneering researchers, but also because they are subject to a set of common 
concerns – Treffi nger’s fi ve  themes  ( 2004 ) – that bind them together in terms of how 
they are defi ned, what characterizes them in people, why they are important, how 
they are assessed, and how they are nurtured. In addition, Renzulli’s three-ring 
model ( 1986 ,  2011 ) linked creativity and giftedness together more explicitly, recog-
nizing the former as a key contributor to the latter. 

 Throughout that discussion, we noted certain characteristics that defi ned aspects 
of both creativity and giftedness. These can be restated now:

•    The  Person : aspects of personality – motivation for example – were a recurring 
feature of defi nitions, characteristics and assessment;  

•   The  Process : cognitive processes, in particular divergent thinking, featured as 
important elements of the different themes;  

•   The  Product : the nature of the output of the creative process was noted as an 
important element of assessment;  

•   The  Climate : the organizational and social environments that surround the gifted 
individual were recognized as critical to the success of creative endeavors, and 
efforts to nurture both.    

 The characteristics noted above are, in fact, the elements of a widely used frame-
work, developed in the fi eld of psychology, for understanding creativity (e.g. 
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Kaufman  2009 ). The so-called “4Ps” – Person, Process, Product and Press 
(Climate) – were defi ned by Rhodes ( 1961 ), building on the work of Barron ( 1955 ). 
The 4Ps describe the psychological resources of the individual (Person) that support 
creativity, and therefore, giftedness; the special forms of thinking that give rise to 
creativity (Process); the novel and effective outputs and outcomes of creativity and 
giftedness (Product), and; the infl uence of the environment in which the creative 
and gifted individual operates and is taught (Press).  

12.2.2     Domains of Creativity 

 A second important concept derived from the literature of psychological creativity 
research is that of  domain . A long-standing debate in the psychological literature 
examines the question of whether creativity is  domain - general  – namely, indepen-
dent of the particular area of application – or  domain - specifi c  – that is, strongly tied 
to the area of application. While this debate continues to fl ourish, there is a broad 
consensus that creativity is, in fact, both! This has important implications for the 
question of mathematical creativity and giftedness. 

 One way of making sense of the question of domain is to examine the implica-
tions for training. This has particular ramifi cations for mathematical creativity and 
giftedness in an educational context. 

 In relation to creativity, Baer ( 1998 ) made a distinction between  cognitive con-
tent domains , into which he placed mathematics, and  task content domains , for 
example, poetry. He found evidence that creative performance in these domains was 
highly variable, and in fact, found that there is frequently a negative correlation – in 
other words, a person who is creative in a task content domain may be uncreative in 
a cognitive content domain. This suggests not only that creativity is domain- specifi c, 
but that mechanisms for developing it must be domain-specifi c as well. 

 Ludwig ( 1998 ) made a similar point fi nding that creativity can be divided with 
respect to the psychological demands of the fi eld. He categorized these fi elds, in 
general terms, as either  investigative  or  artistic , and characterized mathematics as 
 impersonal , in contrast to  emotive , in terms of the psychological demands placed on 
the individual. Ludwig’s categorizations also support the idea that training must be 
similarly differentiated – the way in which mathematical creativity should be devel-
oped, is different from the way in which artistic creativity should be developed. 

 Whether domain-general, or domain-specifi c, the guiding framework for under-
standing the salient issues, and for formulating particular strategies, remains the 
4Ps. If mathematical creativity is distinct from artistic creativity, for example, then 
the manner in which it is understood, developed and expressed nevertheless remains 
characterized in terms of the person, the process, the product and the press. The 
uniqueness of mathematical creativity therefore exists, if it exists at all, at the level 
of differences in certain aspects of personality, cognition, output and environment, 
and not, as sometimes seems to be suggested, in a wholly different model. 
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 In contrast to domain-specifi c views, Plucker ( 1998 ) defended a more balanced 
approach to creativity and domains. He suggested that domains may be better 
understood through a distinction between quantity and quality. The amount of origi-
nality, in other words, may be general in nature, while the quality of that originality 
may be domain-specifi c. This mixed concept is supported by more recent discus-
sions such as Baer ( 2010 ,  2012 ) or the so-called  Amusement Park Theory  (Baer and 
Kaufman  2005 ). Importantly, this mixed view remains informed by the 4Ps. Thus, 
while the generation of novelty may be general in nature, the  exploration  of that 
novelty – recalling the  Geneplore  model (Finke et al.  1992 ) – may be far more spe-
cifi c in nature, impacted by values and attitudes that are specifi c to the particular 
task, and specifi c to the particular setting. 

 Psychological research in creativity, and giftedness, therefore offers a specifi c 
domain such as mathematics a conceptual framework – the 4Ps – that should play a 
key role in organizing and guiding research and understanding. 

 As we turn our attention to neuroscientifi c perspectives on mathematical creativ-
ity and giftedness, we will focus on one particular slice of the 4Ps framework –  pro-
cess . In doing so, we will suggest that the cognitive processes associated with 
creativity have two features that are important for the present discussion.

    1.     Process  is a combination of both  divergent  thinking and  convergent  thinking;   
   2.     Divergent thinking  is more domain-general in nature, while  convergent thinking  

is more specifi c to a particular domain such as mathematics.    

  From a neuroscientifi c perspective, cognitive processes, and especially, the oscil-
lation between divergent and convergent thinking in creativity, offers particular 
opportunities for expanding understanding of core psychological concepts of cre-
ativity and giftedness, not least in an application domain such as mathematics.   

12.3     A Neuroscientifi c Perspective on Mathematical 
Creativity and Giftedness 

12.3.1     Neuroscience and Creativity 

 The application of cognitive neuroscience is a relatively recent yet increasingly 
popular methodology for the study of creativity (Dietrich and Kanso  2010 ; Gonen- 
Yaacovi et al.  2013 ; Sawyer  2011 ). There are huge potential benefi ts to embracing 
this approach; however, currently the lack of consensus and the inconsistency of 
defi nitions, measures, and experimental procedures represent a stumbling block 
(Beaty et al.  2014 ; Fink et al.  2014 ). 

 Obviously, the multiple defi nitions of creativity (i.e. a cognitive state or event; a 
personality trait; the creative expertise one has; or a measure lifetime creative 
achievement; Fink and Benedek  2014 ) pose problems when trying to compare stud-
ies. Further to this, the lack of agreement over how to measure creativity and the 
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diversity of experimental procedures presents a direct challenge to the use of neuro-
science within this sphere. There are a large number of measures used when testing 
creativity, including: divergent thinking tasks in which participants have to come up 
with original ideas for open problems; insight tasks which involve misleading prob-
lem representations that need to be restructured; remote association problems 
requiring loose associations to fi nd semantic relations that are non-obvious; and the 
production of creative stories, paintings, metaphors, melodies (Dietrich and Kanso 
 2010 ; Fink and Benedek  2014 ). In their paper published in 2010, Arden and her 
colleagues (Arden et al.  2010 ) reviewed 45 published neuroscientifi c studies of cre-
ativity, and they found nearly as many tests as there were studies. 

 These teething troubles are to be expected from a young fi eld such as this; nev-
ertheless, neuroscience in creativity is already showing its worth. A notable exam-
ple is the debunking of the neuro-myth that the right hemisphere is responsible for 
creative thought (Yoruk and Runco  2014 ). Time and again, studies have shown that 
creativity is not a localized function, but is an emergent feature arising from a dif-
fuse network of neurons across both hemispheres (Sawyer  2011 ). Furthermore, the 
brain regions that are activated when engaged in creative tasks overlap with regions 
that are activated during everyday tasks, demonstrating that creativity is not a spe-
cial, discrete brain function, but is related to and reliant upon many everyday cogni-
tive skills (Sawyer  2011 ). 

 The main neuroscientifi c procedures that have been applied to creativity are elec-
troencephalography (EEG) and functional magnetic resonance imaging (fMRI). 
There are well-documented benefi ts and drawbacks to these techniques, and they 
are broadly complementary. Both techniques are non-invasive procedures for 
assessing brain activity, while fMRI has higher spatial resolution than EEG, and 
EEG has better temporal resolution. An fMRI machine uses a magnetic fi eld to 
measure the ratio of oxygenated to deoxygenated blood in a given region – the 
blood oxygen level dependent (BOLD) signal. An increase in the BOLD signal 
indicates an increase in brain activity. This is because neuronal activation stimulates 
an increase in blood fl ow, which is faster than the rate at which neurons can use the 
oxygen being, supplied, thus the BOLD signal to rises. This signal has a high spatial 
resolution, which allows brain activity to be accurately mapped. EEG is a method 
for recording electrical activity of the brain, particularly oscillations in electrical 
activity. These neural oscillations can be observed over a wide range of frequencies, 
with different frequency bands (e.g. the “alpha” band at 8–12 Hz and the “beta” 
band at 13–30 Hz) corresponding to particular types of brain activity. To interpret 
the EEG output, the signal is typically transformed to reveal the power associated 
with each frequency band. This information is then commonly used to determine if 
there has been an event-related synchronization (ERS; power increases relative to 
the baseline level) or resynchronization (ERD; power decreases) of the neural 
oscillations. 

 Cognitive psychology studies have shown that creativity involves many cogni-
tive processes, including defocused attention, cognitive control, fl exibility, fl uency 
and working memory (Dietrich  2004 ). EEG and fMRI research lends neuroscien-
tifi c support to the behavioral evidence that higher cognitive abilities and executive 
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functions play an important role in creativity (Beaty et al.  2014 ). It has been well 
established from EEG-based studies that the power of neural oscillations in the 
alpha band decreases (i.e. ERD) during tasks that require higher cognitive abilities 
(Neubauer and Fink  2009 ). Creativity has also been linked to variations in alpha 
power. A recently conducted review on divergent thinking showed that alpha power 
varies as a function of creativity-related task demands, the originality of ideas and 
the general level of creativity of the participants (Fink and Benedek  2014 ). In addi-
tion, fMRI-based studies have shown that executive functions and creativity activate 
the same brain areas, namely the prefrontal and parietal regions of the neocortex 
(Beaty et al.  2014 ; Gonen-Yaacovi et al.  2013 ). Benedek and his colleagues ( 2014 ) 
further highlighted the role of the prefrontal cortex in the creative process by show-
ing that the activation of the left inferior frontal gyrus increased with the creative 
quality of divergent thinking responses.  

12.3.2     Divergent Thinking: Convergent Thinking 

 The processes of creative thinking, transfer of knowledge, and problem solving 
share certain characteristics. In familiar situations, these processes are not necessar-
ily useful unless there is a change and a different approach is warranted. In unfamil-
iar situations, creative thinking, transfer and problem solving become the difference 
between being disabled by “not knowing” and being willing to “have a go” at a task. 
From each starting point, there are a number of possibilities that may be followed. 
Some of these pathways might immediately be obvious but others will be obscured 
by too much knowledge, insuffi cient knowledge or a range of other reasons, such as 
the individual’s appetite for risk, that prevent the identifi cation and pursuit of a par-
ticular direction. 

 In unfamiliar situations, the individual or group will generate possible options 
and then test each idea for its utility. For example, when solving a mathematical 
problem, it will not be obvious which knowledge and expertise should be applied to 
the task. It is also true of reading between the lines of a novel or fi lm where the 
unspoken themes start to become apparent to the reader/viewer, or a nascent theory 
about “whodunit” emerges – a possible pathway for the narrative tested out as new 
information becomes available. 

 Prevalent defi nitions of the creative process emphasize the two steps of genera-
tive, novel thinking followed by a consideration of the value or appropriateness of 
that novel idea. “Creativity is the ability to produce work that is both novel (i.e. 
original, unexpected) and appropriate (i.e. useful, adaptive concerning task con-
straints).” (Sternberg and Lubart  1999 ). 

 Divergent thinking can help provide insight to reveal the elegant solution to a 
mathematical problem as the alternative to a graceless but effective sledgehammer 
arithmetic approach. If there is really only one way of completing the task then 
divergent thinking may contribute to ineffi cient thinking and this is often seen in 
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gifted individuals who may be slower to respond to simple questions than their 
classmates (Gross  2004 ). 

 Divergent thinking is the fi rst step in a creative response to a problem where 
there are multiple possibilities, as is the case in most real-world problems. It pro-
vides students with different options when they do not immediately see the 
algorithm(s) to deploy. It promotes students to ask themselves “How might I do 
this?” rather than “Can I do this?” and then answer with “Well, it depends…” – a 
starting point for divergent thinking. This is in line with fi ndings from the research 
of Carol Dweck at Stanford University: when educators focus on whether or not 
students can successfully undertake a task, they engender a fi xed mindset and the 
students focus on their performance (e.g., “Can I do this?”) and their grades tend to 
stagnate or decrease over time. When educators focus on students’ development, 
they engender a growth mindset and students focus on their effort (e.g., “How might 
I do this?”) and their grades tend to improve (Blackwell et al.  2007 ; Murphy and 
Dweck  2009 ; Paunesku et al.  2015 ). 

 The divergent thinking will produce some ideas that will be quickly discounted 
and others that will stand up to testing through critical, convergent thinking that 
applies the new thoughts to the problem at hand. A particular option may be seem 
promising but might fall at the last hurdle. The creative, gifted mathematician does 
not throw it all in and start again. They might undertake more divergent thinking to 
explore ideas about where they might have gone wrong or what might need to be 
added or changed to get beyond the current impasse. 

 This apparent two-step model of creative thinking (i.e., divergent thinking fol-
lowed by convergent thinking) hides a third subtle step that is potentially crucial – 
the switch. 

 Students who step into divergent thinking may be trapped there, continuing to 
generate so many possibilities but not able to turn their own convergent thinking 
onto the problem. They continue to produce suggestion after suggestion, meeting 
the novelty criteria of creativity without determining utility and value. They may 
fi nd the plethora of options they have generated to be over whelming. To stop think-
ing in this way and to start thinking in a more critical and convergent way may 
require an intentional switch to take place. That is for students to recognize that they 
need to turn their attention to the completion of the task and try out some of the 
ideas they have generated. Of course, it is likely that in solving an unfamiliar and 
complex problem, and individual or group may go through a number of cycles of 
divergent thinking followed by convergent thinking, back to divergent thinking and 
so on. The judgment as to when and whether to switch from divergent to convergent 
and back again becomes an important part of the overall process. Too much switch-
ing would be ineffective but too little could lead to excessive ineffective persistence 
in the convergent phase as well as the over exuberant idea generation in the diver-
gent phase. 

 The divergent, generative step involves “both the retrieval of existing knowledge 
from memory and the combination of various aspects of existing knowledge into 
novel ideas” (Paulus and Brown  2007 ). Common ideas are generated readily after 
which cognitive processes support the generation of more novel ideas (Beaty and 
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Silvia  2012 ; Benedek et al. 2012). While there is still much research to be done 
(e.g., see Fink and Benedek  2014 ) it appears that divergent thinking is associated 
with regions of the brain known to control retrieval and selection of semantic con-
cepts (for example the left inferior frontal gyrus) and areas of the medial temporal 
lobe and superior temporal gyrus known to play an essential role in the recollection 
of facts and events. Decreased activation in the right temporoparietal region is also 
observed which helps focus attention and prevent distraction. This is in line with 
fi ndings from the EEG that indicate increased power in the alpha band in frontal 
regions during divergent thinking tasks, indicating increased internal attention 
(Fink and Neubauer  2006 ). This enhanced internal attention is considered to be at 
its greatest during mental imagery, making fl oating associations and imagination 
(Cooper et al.  2003 ,  2006 ). 

 Convergent thinking brings the many strands and associations to bear on the task 
at hand. Inappropriate or useless ideas are eliminated and ideas that are meaningful 
and useful are selected for retention. Testing ideas and putting them into practice 
requires quite different thinking and changes where the emphasis on brain activity 
takes place. There is a switch from an internal to an external focus of attention that 
can be seen in changes in power of the EEG in regions of the brain with less in alpha 
and more beta bands. There is greater activation in control mechanisms of the dor-
solateral prefrontal cortex as students demonstrate more directed, convergent think-
ing and employ more of their executive functions. In addition, monitoring for 
performance (e.g., that the idea is meaningful for the task and is likely to lead to the 
desired outcome) is apparent through increased activity in the anterior cingulate 
(Howard-Jones et al.  2005 ). This is quite different to divergent thinking in which 
control must be released to some extent.   

12.4     Concluding Thoughts, Future Research 

 The literature of psychological research on creativity and giftedness supports a 
robust conceptual framework for understanding these topics both in general terms, 
and in relation to specifi c areas of application. The 4Ps framework – Person, Process, 
Product and Press – serves as a means for understanding domain-specifi c research 
in creativity and giftedness, for directing lines of enquiry, and, most importantly for 
allowing a comparison of, so to speak,  apples with apples . 

 Mathematical creativity and giftedness can be thought of as a  special case  of the 
broader intersection of creativity and giftedness. Certain attributes, behaviors, val-
ues and conditions support creativity, and by extension, giftedness, regardless of 
domain. Thus, the personality trait  openness to experience  is consistently linked to 
higher levels of creativity among individuals, whereas the trait  conscientiousness  
shows differences that seem to depend on whether the domain is more  investigative  
or  artistic . 

 How creativity is manifest in outcomes – the product – also exhibits the same 
blend of domain-generality and domain-specifi city. The literature consistently 
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 supports novelty and effectiveness as core characteristics of creative product, how-
ever, what constitutes  novel , or  effective , may be far more dependent on the specifi c 
domain. 

 The environment, or Press, also plays a dual role. That the press itself is a factor 
in helping or hindering creativity is clear, however, the specifi cs of what constitutes 
a facilitatory environment may differ for mathematicians in comparison to artists. 

 Finally, the cognitive processes that are central to creativity show the same dual-
ity. Divergent thinking is unequivocally a core of creativity – the ability to generate 
ideas, measured in terms of fl uency, fl exibility and elaboration, is critical – however, 
the manner in which those ideas are evaluated and analyzed – convergent thinking – 
depends for more explicitly on domain-specifi c factors. Process, furthermore, lends 
itself to neuroscientifi c perspectives on mathematical creativity and giftedness, with 
techniques such as functional magnetic resonance imaging (fMRI) lending them-
selves to peering inside the mind of the creative mathematician. 

 Future research directions in mathematical creativity and giftedness can be con-
sidered from a range of complementary perspectives offered not only by the psy-
chology of creativity and the discipline neuroscience, but also by the additional 
strands of cognitive science and education. For example, the systematic nature of 
4Ps framework offered by psychological creativity research gives researchers the 
tools and techniques needed to deepen the understanding of creative and gifted cog-
nition, as well as a deeper, and possibly more causal, understanding of the impact of 
personal (e.g. motivation) and environmental factors on the development of creative 
and gifted outcomes in mathematics. However, perhaps a more signifi cant and pro-
ductive avenue for future research in mathematical creativity and giftedness will be 
the  integration  not only of psychological and neuroscientifi c tools and techniques, 
but also the application of these across all 4Ps as a single, interacting system of fac-
tors that contribute to creative/gifted outcomes in mathematics. In other words, 
future research will not study cognition, for example,  in isolation , even from the 
two intersecting perspectives, but instead will study creativity and giftedness as an 
emergent property of the interaction of elements of the person, cognitive process, 
and the environment that lead to specifi c outcomes. 

 At a more discipline-specifi c level, imaging studies offer the potential to develop 
a deeper understanding of the nature of the “switch” referred to earlier, along with 
the mechanisms that might control it. While researchers might expect some dorso-
lateral prefrontal cortex activation to take control of the dampening of divergent 
thinking and to promote convergent thinking, there is a chance that this phenome-
non might be diffi cult to catch in functional MRI because of the temporal resolution 
of the technique (often over hundreds of milliseconds). 

 There are also more specifi c questions that address the cognitive aspects of prob-
lem solving and creativity. What are the shared characteristics and/or processes of 
effective versus creative problem solvers, especially in the domain of mathematics? 
Is creativity the same as problem solving, or does the latter require the addition of 
some factor (e.g. knowledge)? 

 Finally, from the point of view of education: What if we let students in on the 
secret? Does sharing the structure of creativity with mathematics students help them 
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to be more creative (and/or better problem solvers in complex, unfamiliar and non- 
routine situations)? Are some frameworks more helpful than others? Would knowl-
edge of the frameworks give teachers, students (and parents) a metacognitive 
language that enables or improves their learning conversations?     
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Chapter 13
What Have We Learned About Giftedness 
and Creativity? An Overview of a Five Years 
Journey

Demetra Pitta-Pantazi

Abstract The aim of this chapter is to offer an overview of a series of studies con-
ducted at the University of Cyprus, regarding the definition and identification of 
mathematically gifted students, the relation between mathematical creativity, prac-
tical and analytical abilities, as well as the relation between giftedness, creativity 
and other cognitive factors such as, intelligence and cognitive styles. During our 
research in the field of giftedness and creativity we developed material for nurturing 
primary school mathematically gifted students and also explored the possibilities 
that technology may offer in the development of mathematical creativity. Although 
our research is still evolving, this chapter offers a glimpse of some of our most 
important findings.

Keywords Mathematical giftedness • Mathematical creativity • Identification of 
mathematical giftedness • Cognitive factors • Intelligence • Cognitive styles

13.1  Introduction

Despite the increased interest in the field of mathematical giftedness and creativity, 
a number of issues are still open to debate. In this chapter we will present and dis-
cuss the findings from 5 years of research in the field of mathematical giftedness 
and creativity. All of the studies that we present were conducted by a group of 
researchers from the University of Cyprus, the majority of whom looked at primary 
school students between the ages of 10 to 12 years old. These studies addressed the 
issue of defining mathematical giftedness; suggested a process for the identification 
of mathematically gifted students; investigated the different characteristics of gifted 
and non-gifted students; looked into the self-perceptions of mathematically gifted 
students; explored the relationship between creativity and giftedness; studied the 
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relationship between giftedness, creativity and intelligence; and studied the impact 
of a computer environment in the development of creativity. A smaller number 
of studies investigated university students’ cognitive styles and their relation to 
mathematical creativity. In the light of the findings from all of the aforementioned 
studies, implications for researchers, policy makers, curriculum developers, teachers 
and teacher educators will be discussed.

13.2  Mathematical Giftedness

13.2.1  Description and Identification of Giftedness

13.2.1.1  Theoretical Background

The identification of gifted students has long been an issue causing great debate in 
the field of research on giftedness (Van Tassel-Baska 2000; Ziegler 2009). The lack 
of a commonly accepted theoretical foundation of giftedness caused a delay in the 
progress of understanding giftedness. As a result, the absence of a clear definition of 
mathematical giftedness, along with the heterogeneous nature of gifted students 
concerning the range of abilities they demonstrate, make the identification of math-
ematically gifted students extremely challenging (Hoeflinger 1998).

Traditionally, researchers defined giftedness as high general intelligence, mea-
sured by high IQ scores (Hollingworth 1942; Terman 1924; Winner 1997). 
According to Preckel et al. (2006), these uni-dimensional approaches define gifted-
ness exclusively on the basis of high general intelligence. The first definition of 
giftedness, given by Terman in 1925, suggested as an identification criterion, the use 
of IQ scores above 140. It was, Leta Hollingworth who invented the concept of 
above-level testing for the profoundly gifted (Stanley 1990) and for many years, she 
used the Stanford-Binet Intelligence Scale (Terman 1916). Leta, set the bar for the 
profoundly gifted at 180 IQ, 5 standard deviations (s.d.) above the mean (Silverman 
1991). Some years later, there was a shift, with researchers defining giftedness 
based on social needs by taking into account societal or educational needs. For 
instance, Sternberg and Davidson (1986) stated that giftedness is “something we 
invent, not something we discover. It is what one society or another wants it to be, 
and hence its conceptualisation can change over time and place” (p.3).

Contemporary conceptualisations of giftedness acknowledge the multidimen-
sionality of the phenomenon (Gardner 1991; Sternberg and Davidson 2005) and 
debate in favor of a broader definitions beyond traditional notions of IQ (Lohman 
2009). Multidimensional definitions of giftedness integrate several factors to 
describe the concept. In particular, Renzulli (1978) proposed as basic components 
of giftedness: above average ability; task commitment; and creativity. In addition to 
this, in Sternberg’s (2003) WICS model, giftedness is viewed as a combination of 
wisdom, intelligence and creativity. Tannenbaum’s (2003) Star Model refers to five 
factors: superior intelligence; exceptional special aptitude; non-intellective 
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 facilitators; environmental influences; and chance, or luck – which are considered to 
interact to produce high levels of productivity, and which are all necessary for 
becoming a “gifted” individual (Al-Shabatat 2013).

In line with the multi-dimensional definition of giftedness is also the Gagné’s 
(1991) differentiated model of giftedness and talent. According to Gagné (2003), 
giftedness describes the possession and use of untrained and spontaneously 
expressed natural abilities in five aptitude domains: intellectual, creative, socioaf-
fective, perceptual/motor, and others. The degree of these abilities needs to place the 
individual in the top 10 % of people of the same age. The development and level of 
expression of these natural abilities are to some extent inherent, and can be observed 
in many of the tasks that a child may be occupied with. They can be observed more 
easily and directly in young children, where the influence of environmental factors 
and formal schooling has not yet had a great impact on them. However, they may 
still be apparent in older children who have not been given the same opportunities 
or appropriate schooling as their more fortunate peers. Talent designates the supe-
rior performance of the individual in one or more fields of human activity, in our 
case mathematics. Talent emerges from natural abilities, and is a consequence of the 
students’ learning experience. Therefore, according to this theory, natural abilities 
could be developed in the right circumstances, and be transformed into talents in a 
specific domain. Again, the individual needs to be in the top 10 % of age-peers who 
have been receiving training in mathematics. Although this model is comprehensive 
and detailed, there is not much empirical data to support it. Gagné (2005) suggested 
that future research should try to explore the applicability of this model in specific 
fields of talent.

The variety of definitions of giftedness proposed over the years resulted in the 
development of various identification methods and means of measuring giftedness. 
Hoeflinger (1998) suggested that four principles should guide the selection or devel-
opment of identification tools: (a) Multiple criteria approach; (b) the context and 
purpose of the identification tool; (c) inclusiveness; and (d) flexibility and continu-
ity in the process of identification. In the identification tool that we developed, we 
tried to address these four principles.

The first principle suggests that multiple criteria should be used in the identifica-
tion tool. This is based on the fact that most definitions (eg Renzulli’s definition) 
include diverse dimensions to describe giftedness. It is therefore impossible to sam-
ple all behaviours using only one test (Salvia and Ysseldyke 2001). For this reason, 
a combination of valid, reliable, objective and sensitive tools should be used to col-
lect information about students (Coleman 2003; Davis and Rimm 2004). Similarly, 
recent studies suggest that giftedness models should use different tools to measure 
cognitive aspects of learning (Ziegler 2009) and creativity (Mann 2006). As a result, 
intelligence tests, achievement tests, creativity tests, school grades, rating scales, 
past accomplishments, portfolios, interviews, teacher nominations, parent nomina-
tions, peer nominations, and self-reports are included in the list of multiple criteria 
used for identification purposes.

The context and purpose of identification tools are considered to be important 
factors in the development of appropriate tools. For instance, in our research 
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 program the purpose was to identify mathematically gifted students and not gener-
ally gifted students. Therefore, the identification should focus on mathematical 
abilities, performance and interest (Coleman 2003). In the development of the iden-
tification system, special attention should be given to the context of selection instru-
ments in order to ensure that they highlight the mathematical strengths and 
weaknesses, cognitive abilities and patterns of behaviour of mathematically gifted 
students.

Inclusiveness is the third principle, which prevents what Birch (1984) called a 
“narrow identification”. This principle ensures that identification tools are not 
biased in any way by gender, race, colour, socioeconomic status, or geographical 
location.

The final principle for developing such tools refers to the flexibility and continu-
ity of the process for identifying gifted students whose abilities may not be imme-
diately apparent, but who are likely to develop such abilities in the right circumstances 
(Davis and Rimm 2004).

Recent trends regarding the identification of giftedness turn to psychological 
models to explain and describe the construct of giftedness (Shavinina 2009). 
Considering giftedness as a psychological construct results in the proposal of new 
models of giftedness that incorporate cognitive processes instead of traits found in 
gifted individuals. The field of cognitive psychology has produced theories that map 
cognitive structures and processes in an effort to understand the human mind. 
According to experiential structuralism theory (Demetriou et al. 2002), the human 
mind is organized into three levels. The first level involves a set of environment- 
oriented Specialized Capacity Systems (SCSs) (the qualitative–analytic, the quanti-
tative–relational, the causal–experimental, the spatial–imaginal, and the verbal–
propositional). The second level involves a set of higher-order control structures 
governing self-understanding, self-monitoring, and self-regulation, which is called 
a hypercognitive system. The third level involves processes and functions underly-
ing the processing of information (speed of processing, control of processing and 
storage). Shavinina (2009) suggests that scientists should study individuals’ cogni-
tive experiences, referring to a system of available psychological mechanisms that 
form the basis of our understanding of the world, and which determines the specific-
ity of our intellectual activity. Such psychological mechanisms could be considered 
the specialized capacity systems as described in experiential structuralism theory 
(Demetriou et al. 2002).

Another significant issue that is involved in the identification of mathematical 
giftedness concerns the nature of the relationship between giftedness and creativity. 
A number of researchers argued about the relationship between mathematical gift-
edness and creativity (eg Sriraman 2005), and many stressed the importance of this 
relationship in the identification of mathematically gifted. However, due to the 
problematic nature of empirical evidence, this relationship is still ambiguous (Klavir 
and Gorodetsky 2009). Various researchers consider creativity as an essential com-
ponent of giftedness (eg Renzulli 1978). As it was mentioned earlier on, Renzulli’s 
model is comprised by three overlapping circles: creativity, above-average ability 
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and task commitment, stipulating that the intersections denote giftedness. On the 
contrary, some researchers view giftedness as a prerequisite of creativity (Usiskin 
2000), and suggest that mathematical giftedness does not necessarily imply mathe-
matical creativity (Leikin 2008; Sriraman 2008; Usiskin 2000). A third perspective 
regarding the relationship of giftedness and creativity is suggested by researchers 
who use the terms giftedness and creativity as synonyms (eg Krutetskii 1976). This 
perspective is grounded on the fact that gifted and creative individuals share com-
mon personality and intellectual characteristics (Piirto 1998).

The relationship between creativity and giftedness is also expressed in other 
models. The Triarchic Theory of Intelligence is comprised of analytical, creative 
and practical abilities (Sternberg 2005) and suggests that creativity is one of the 
central components of intelligent human behavior (Leikin and Pitta 2013). 
Furthermore, the comprehensive model of giftedness (Milgram and Hong 2009) 
considers creative talent as one of two distinct types: expert talent and creative talent 
(Leikin and Pitta 2013). While these share different types of abilities, expert talent 
involves more analytical or practical thinking ability than creative thinking ability 
(Leikin and Pitta 2013). In addition, the Actiotope Model and the ideas of 
Csikszentmihalyi and Wolfe (2000) suggest that the location of creativity is not 
limited to an individual’s mind, but rather that it is also embedded in a system where 
an individual interacts with a cultural domain and a social field (Leikin and Pitta 
2013). It should be noted that, despite of the differences between the models and the 
impact they make on different factors that contribute to the development of talent, 
all researchers agree that interaction between personality traits and environmental 
factors determine, to a great extent, the realization of creative talent (Leikin and 
Pitta 2013).

Consequently, a shift of research on giftedness should lead to a new approach to 
the identification of a gifted population, one that will have as its basis both models 
of giftedness and contemporary cognitive models. As well as encompassing high 
level mathematical abilities, this approach should also incorporate other factors 
such as natural abilities (specialized cognitive abilities), cognitive functions (eg, 
memory and processing), intelligence and creative ability (see Fig. 13.1).

Mathematical
Giftdness

High
Natural Abilities

High Mathematical
Abilities

Mathematical
Creativity

Fig. 13.1 Proposed components of mathematical giftedness
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13.2.1.2  Our Results

From the studies that we have carried out (Kontoyianni et al. 2011; Pitta-Pantazi 
et al. 2011, 2012) we found guidance mainly in three theoretical frameworks: (a) 
Gagné’s (2003) differentiated model of giftedness and talent, (b) Renzulli’s (1978) 
model of giftedness and (c) experiential structuralism theory (Demetriou et al. 
2002). These models were not adopted in their entirety, but we selected and 
combined some of their main aspects. This resulted in the creation of a new theo-
retical domain specific model for mathematical giftedness, which we then tested 
(Fig. 13.2).

The model that we suggest in our studies (Kontoyianni et al. 2011; Pitta-Pantazi 
et al. 2011, 2012) is fairly simple and serves three purposes: It describes what math-
ematical giftedness is; proposes its constituent factors; and indicates which natural/
cognitive abilities may predict or influence it. The model is also fairly economical, 
since it rests on a rather small number of operational factors whose relationship is 
also clearly stated.

The proposed model suggests that the fundamental components of mathematical 
giftedness are mathematical abilities and mathematical creativity. Mathematical 
abilities are defined by the SCSs: (a) spatial abilities; (b) quantitative abilities; (c) 
qualitative abilities; (d) verbal abilities; and (e) causal abilities (Kontoyianni et al. 
2011; Pitta-Pantazi et al. 2011, 2012). Mathematical creativity is defined in terms of 
fluency, flexibility and originality. Although all our studies suggest that mathemati-
cal giftedness is constituted by mathematical abilities and mathematical creativity, 
our analysis of the results showed that mathematical abilities contribute more to 
mathematical giftedness than mathematical creativity (Kontoyianni et al. 2011; 
Pitta-Pantazi et al. 2011, 2012). Furthermore, all of our studies confirmed that cer-
tain natural/cognitive abilities, and specifically fluid intelligence and self- 
perceptions, are necessary but not sufficient conditions for predicting mathematical 
giftedness (Kontoyianni et al. 2011; Pitta-Pantazi et al. 2011, 2012). This means, 
that an individual with high fluid intelligence and strong self-perceptions may or 
may not be mathematically gifted. On the other hand, all individuals who are math-
ematically gifted have high fluid intelligence and self-perceptions.

In a further study (Kontoyianni et al. 2013) we extended this investigation by 
examining whether the identification of mathematically gifted students by means of 
an IQ test or a self-produced mathematics and creativity test would produce the 
same group of students. To achieve this, we examined 359 4th, 5th and 6th grade stu-
dents with the WASI IQ test and with a domain specific self-produced mathematics 
and creativity test. Our analysis once more confirmed that fluid intelligence is a 
predictor of mathematical giftedness; however different groups of students were 
identified by the two types of test. It appears that although some students may have 
a high fluid intelligence, they do not exhibit mathematical giftedness. On the other 
hand, all students who exhibited mathematical giftedness had a high fluid intelli-
gence. The variance between the two groups of students, those with high fluid intel-
ligence scores and those with high scores in the mathematical giftedness and 
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creativity test, could be explained by students’ performance in specific task 
categories.

Apart from the predictive power of IQ testing, in another study we investigated 
the predictive power of a self-report questionnaire which investigated students’ self- 
perceptions (Kontoyianni et al. 2011; Pitta-Pantazi et al. 2012). The study was con-
ducted again with 9 to 12 year old students who had to complete a self-report 
questionnaire with 20 statements on a 5-point Likert type scale. The results of the 
study suggested that students’ self-perceptions of mathematical behavior can be 
described across five dimensions: (a) learning characteristics; (b) interest or curios-
ity; (c) social-emotional characteristics; (d) creativity; and (e) mathematical reason-
ing. Most importantly, the results revealed that the self-report questionnaire that we 
had developed could predict mathematical giftedness, which was defined based on 
the theory explained earlier, in terms of mathematical ability and creativity.

Part of our research also included the comparison of creative ability in mathe-
matically gifted and mathematically non-gifted students (Kontoyianni et al. 2011). 
Gifted and non-gifted students were asked to respond to multiple solution tasks and 
were assessed based on the number of correct responses provided (fluency), the dif-
ferent mathematical ideas employed (flexibility) and the originality of their 
responses (uniqueness). The qualitative analysis of the results revealed that both 
groups of students were able to provide more than one correct solution. However, 
gifted students were able to provide more advanced, sophistigated, complicated and 
unique solutions.

13.2.2  Programs to Support the Gifted

Nowadays, there is a wide range of provisions to be considered when catering for 
mathematically gifted students in elementary school classrooms. These include 
acceleration, enrichment, differentiation, curriculum compacting, mentorships, and 
competitions. However, in Cyprus, where we have been carrying out our research 
studies, very limited programs for mathematically gifted elementary school stu-
dents are provided. It can be argued that promising Cypriot students are prevented 
from realizing their full potential, and consequently our country does not benefit 
from their potential capabilities.

For this reason, one of the aims of the project was to design an enrichment pro-
gram made up of inviting and challenging tasks that require analytical, creative and 
practical skills. In this manner, gifted students would have the opportunity to explore 
topics in more depth, draw out generalizations, and create new problems and solu-
tions related to the topics under investigation. Therefore, we developed a mathemat-
ical curriculum specifically for the gifted, in which the activities are organized 
across the following five strands: Number; Algebraic Reasoning; Geometry; 
Measurement; Data Analysis; and Probability. These activities were facilitated with 
the use of technology. Nevertheless, the effectiveness of this enrichment program 
has not yet been tested.
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13.3  Mathematical Creativity

Creative performance is an essential part of doing mathematics (Pehkonen 1997), 
and mathematical creativity has recently come to be considered as a necessary skill 
that may and should be enhanced in all students (Mann 2005; Pelczer and Rodríguez 
2011). As Lev-Zamir and Leikin (2011) point out: “we consider developing math-
ematical creativity in each student to be one of the purposes of school mathematics 
education” (p. 1). However, mathematical creativity is a complex construct and, as 
such, it has been defined and measured in various ways. According to Mann (2005), 
myriad definitions of creativity in mathematics have been promulgated (Chamberlin 
and Mann 2014). Many researchers have argued that to date there is no single well- 
accepted definition of mathematical creativity, nor any means by which it can best 
be measured (Mann 2006; Sriraman 2009).

Yet, a widely accepted definition of creativity is provided by Torrance (1994). 
Torrance (1974) defines fluency, flexibility and originality as the main characteris-
tics of creative individuals. Fluency is identified as the ability to produce many 
ideas, while flexibility refers to the number, degree and focus of methods/approaches 
observed in a solution. Originality refers to the likelihood of holding extraordinary, 
new and unique ideas (Gil et al. 2007). Several definitions regarding mathematical 
creativity (e.g Ervynck 1991; Gil et al. 2007; Krutetskii 1976; Silver 1997) are 
based on the Torrance’s (1974) concepts of fluency, flexibility and originality 
(Torrance 1995).

13.3.1  The Relationship Between Mathematical Creativity 
and Mathematical Ability

13.3.1.1  Theoretical Background

According to Silver (1997) “creativity is closely related to deep, flexible knowledge 
in content domains” (p. 750). Considering that (a) the creative application of knowl-
edge in various circumstances (Sternberg 1999), (b) the suggestion of original solu-
tions (Shriki 2010) and (c) the ability to find numerous and distinctively different 
answers in mathematical tasks (Sriraman 2005), are amongst important external 
behaviors that an individual may exhibit that indicate deep mathematical under-
standing, then, it is not surprising that mathematical creativity is closely related to 
deep knowledge in the specific domain (Mann 2005). However, what is not clear 
(and research results are conflicting) is the structure of the relationship between 
mathematical creativity and mathematical ability.

The results of a number of studies that examined this relationship varied depend-
ing on the instruments used, the populations studied and the specific domain that 
was examined (Bahar and Maker 2011; Mann 2005). Some of these studies found 
no correlation between the two constructs (Baran et al. 2011; Haylock 1987), while 
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others provided evidence that the two constructs were related (Bahar and Maker 
2011; Sak and Maker2006). Furthermore, a number of studies (eg Bahar and 
Maker 2011; Sak and Maker 2006) examined the nature of this relationship. 
According to the results of some of these studies (Bahar and Maker 2011; Sak and 
Maker 2006), regression analysis verified that the fluency, flexibility, elaboration 
and originality or the mathematical creativity total score were significant predictors 
of mathematical ability. On the other hand, other researchers suggested that 
mathematical knowledge is vital for the development of mathematical creativity 
(eg Mann 2005; Nakakoji et al. 1999). For example, according to Mann (2005), 
mathematical achievement is the most significant predictor of creative mathematical 
performance.

Therefore, there is no agreement as to whether there is a correlation between 
mathematical creativity and ability (eg Haylock 1997; Sak and Maker 2006) or in 
which way the two concepts are related. As a result, two relative questions arise: Is 
there a correlation between mathematical ability and mathematical creativity? Are 
mathematical abilities prerequisites of mathematical creativity, or vice versa?

13.3.1.2  Our Results

In a few of our studies (Kattou et al. 2011, 2013) we investigated the relationship 
between mathematical ability and mathematical creativity, and examined the struc-
ture of this relationship. Mathematical ability was considered as a multidimensional 
construct comprised of: (a) quantitative ability (number operations and pre- algebra), 
(b) causal ability (cause and effect relationships), (c) spatial ability (paper folding, 
perspective and rotation abilities), (d) qualitative ability (processing similarities and 
differences) and (e) inductive and deductive abilities. Mathematical creativity was 
measured with the use of mathematical multiple solution tasks and students’ flu-
ency, flexibility and originality in these tasks. Therefore, mathematical creativity 
was seen as a domain specific type of creativity.

The first step in our investigation was to examine whether there was a correlation 
between mathematical ability and mathematical creativity. This was triggered by 
the contradictory results regarding the relationship between these two constructs 
(Haylock 1997; Jensen 1973 in Haylock 1987). For this, we used Confirmatory 
Factor Analysis to investigate the relationship and structure of mathematical ability 
and mathematical creativity. The first quantitative analysis we carried out showed 
that there was a statistically significant positive correlation between mathematical 
creativity and mathematical ability. In other words, if a student’s mathematical abil-
ity is high, then his mathematical creativity is also high; as mathematical ability 
decreases, mathematical creativity also decreases and vice versa. Once this conclu-
sion was reached, it was important to investigate the relationship between and the 
structure of these two constructs. Two Models were tested, Model 1 was based on 
Balka’s idea (1974, in Mann 2005) which implies that mathematical ability is a 
subcomponent of mathematical creativity, and Model 2 was guided by the Integrated 
Thinking Model (Iowa Department of Education 1989), which implies the reverse 
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relationship, that mathematical creativity is one of the subcomponents of mathemat-
ical ability. The statistical analyses that we conducted revealed that the model that 
best fitted our data was Model 2, which suggests that mathematical creativity is a 
subcomponent of mathematical ability. This result is in line with the results of other 
researchers who suggest that mathematical creativity is a prerequisite of mathemati-
cal ability (Leikin 2007; Mann 2005), and that mathematical creativity may predict 
mathematical ability (Bahar and Maker 2011; Sak and Maker 2006).

In another one of our studies (Kattou et al. 2011, 2013) the reverse relationship 
was also examined, specifically whether mathematical creativity constitutes a pre-
dictor of mathematical ability. To do this we identified groups of 4th, 5th and 6th grade 
students which were characterized by different levels of mathematical ability, and 
examined whether these groups also presented different levels of mathematical cre-
ativity. The results revealed that mathematical ability may be predicted by students’ 
mathematical creativity, and also that the level of mathematical ability depends on 
the level of mathematical creativity.

These results were further supported by another of our studies (Cleanthous et al. 
2010) which explored the differences in mathematical abilities amongst three 
groups of 9–12 year old students: High IQ and Low Creativity students ( H LIQ C ), 
Low IQ and High Creativity students ( L HIQ C ), and High IQ and High Creativity 
students ( H HIQ C ). Students’ IQ was measured with the WASI test, their creativity 
with mathematics multiple solution tasks test, and mathematical ability with a 
mathematics test. The results revealed that H HIQ C  students had the highest scores 
in all tests and were able to explain their answers. Interestingly enough, H HIQ C  and 
H LIQ C  students did not only have statistically significant differences in their math-
ematical creativity test, but they also had statistically significant differences in all 
aspects of their mathematics ability test.

Apart from the relationship between mathematical creativity and mathematical 
ability, we also wanted to explore the relationship of mathematical ability to other 
types of abilities, such as practical and analytical, which were described by 
Sternberg’s (1997, 1999, 2005) theory of successful intelligence, and we turn now 
to these issues.

13.3.2  The Relationship Between Creative, Practical 
and Analytical Abilities

13.3.2.1  Theoretical Background

Sternberg (1997, 1999, 2005), in his theory of successful intelligence, considers 
creativity as one of three intellectual components, along with analytic and practical 
thinking. Examining students’ analytical abilities involves investigating their abili-
ties to analyze, judge, compare and contrast, evaluate and assess. Examining stu-
dents’ practical abilities entails investigating their abilities to apply, use, put into 
practice, implement, employ and render practical what they know. Finally, 
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examining students’ creative abilities implies looking at students’ abilities to create, 
discover, imagine if…, predict and invent (Sternberg and Grigorenko 2004). 
Although, this theory has long been established, the number of studies conducted 
specifically in mathematics is quite limited (Sternberg et al. 2006).

The studies that have been carried out to validate Sternberg’s triarchic model 
(Sternberg et al. 1996, 1999, 2001) used Confirmatory Factor Analysis to compare 
alternative models of the data. These studies suggest that analytical, practical and 
creative abilities are relatively distinct. Sternberg (2003) claims that although they 
derive from the same information processing-component there is no reason to 
expect these three types of thinking to be completely independent. However, they 
appear to be sufficiently different that one should not conclude that traditional intel-
ligence (which is often measured through analytic tasks) implies high levels of cre-
ative or practical abilities, or vice versa. Nonetheless, it is suggested that in order to 
survive in the world, everyone has to have at least some ability to think analytically, 
practically and creatively.

Findings about the relationship of these three kinds of abilities – analytical, prac-
tical and creative – are conflicting. In particular, in Sternberg and his colleagues’ 
(1999) earlier studies, the researchers used Confirmatory Factor Analysis and found 
that the three factors of abilities were not correlated. In another study, Sternberg and 
his colleagues (2001) suggested that there is an intercorrelation among the analyti-
cal, practical and creative factors. The researchers claim that this conflict appears 
because different instruments were used in these studies.

13.3.2.2  Our Results

In one of the studies (Pitta-Pantazi et al. 2010) that we conducted, we investigated 
6th grade students’ analytical, practical and creative abilities with nets and three- 
dimensional rectangular arrays of cubes. The confirmatory analysis that we con-
ducted showed that the mathematical tasks may be categorized based on Sternberg’s 
triarchic theory as analytical, practical and creative abilities. These three types of 
abilities were not hierarchically related. Our analysis also illustrated that students 
appear to have stronger analytical and practical abilities, while their creative abili-
ties appear to be the weakest of the three.

Apart from the relationship of creative ability to other types of abilities such as 
analytical and practical abilities, another issue we considered to be worth exploring 
was the relationship between creative ability and other cognitive factors such as 
intelligence, memory, information processing and cognitive styles. We will address 
these matters in the following section.
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13.3.3  The Relationship Between Creativity and Several Other 
Cognitive Factors (Intelligence, Memory, Information 
Processing, Cognitive Styles)

13.3.3.1  Theoretical Background

In recent years, researchers have investigated the relationship between general cre-
ative ability and several cognitive and psychological factors, such as intelligence, 
memory, information processing, prior knowledge and abilities (eg Sheffield 
2009; Sternberg and O’Hara 1999). However, there is a lack of corresponding 
research on domain specific creativity and in particular, mathematical creativity. 
Furthermore, in these studies no attempt has been made to ascertain the effect of a 
combination of cognitive factors on mathematical creativity. Therefore, despite the 
increased research attention on mathematical creativity during the last 10 years, to 
date it is not yet clear which cognitive variables affect the appearance of mathemati-
cal creativity.

Regarding the relationship between creativity and intelligence, contrasting 
results have been proposed. On the one hand, a statistically significant relationship 
was found between the two concepts (eg Ripple and May 1962; Srivastava and 
Thomas 1991), whereas on the other hand creativity was found to be independent of 
intelligence (eg Getzels and Jackson 1962). Recently, research interest has focused 
on the structure of the relationship between creativity and intelligence. Gardner 
(1993) proposed that intelligence constitutes a superset of which creativity is a sub-
set, whereas, Sternberg and Lubart (1995) considered intelligence to be a subset of 
creativity. Furthermore, other researchers considered intelligence and creativity as 
to be overlapping sets (eg Sternberg 1985), or even disjoint sets (eg Torrance 1974).

The importance of memory in creative thinking is also highlighted by a number 
of researchers (eg Guilford 1962, in Mann 2006). Guilford (1962, in Mann 2006) 
stressed the importance of organizing, retrieving and applying information where 
appropriate, in an effort to emphasize the importance of memory in creative think-
ing. In addition to this, information processing has been proposed as a characteristic 
of creative thinkers, given that it involves flexibility on switching between concep-
tual systems (Sternberg and O’Hara 1999).

Research results regarding the relationship between cognitive styles and creativ-
ity appear also to be contradictory. Cognitive styles are defined as “an individual’s 
characteristic and consistent approach to organising and processing information” 
(Tennant, cited in Riding 1997). Different cognitive styles have been identified and 
proposed by mathematics educators and cognitive psychologists. Some researchers 
claim that there is no relationship between cognitive styles and creativity (eg, Kirton 
1989), while other researchers argue that cognitive styles are associated with cre-
ativity, or even predict it (eg, Martinsen and Kaufmann 1999; Sternberg 2012; 
Woodman and Schoenfeldt 1990). This discrepancy may be due to a number of 
reasons, such as the cognitive style distinction used and the type of creative  behavior 
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under investigation. Thus, there appeared to be a need to further examine this 
 relationship and this was a line of research that we pursued.

Our choice to adopt a certain cognitive psychologist’s approach and more 
 specifically Kozhevnikov’s (2007) cognitive style distinction, was dictated by the 
fact that there is recent neuropsychological evidence which supports the existence 
of this distinction, thus strengthening the validity of this cognitive style construct 
(Kozhevnikov 2007). More specifically, Blazhenkova and Kozhevnikov (2009) 
 suggests that there are three different dimensions of cognitive style: a verbal style 
and two types of visual cognitive style (spatial imagery and object imagery cogni-
tive styles). These three dimensions of cognitive style are consistent with current 
neuroscience research data which suggest that apart from the verbal areas of the 
brain, the visual areas of the brain are further divided into two functionally and 
anatomically independent systems: one concerned with the appearance of individ-
ual objects and the other with spatial relations between objects and components of 
objects (Anderson et al. 2008).

Some research evidence has connected object imagery to creative performance. 
Kunzdorf (1982) found that object imagery facilitated performance in creative pro-
duction. Other researchers have connected this performance to spatial visualization. 
Blazhenkova and Kozhevnikov (2009) argues that Einstein’s creativity relies on his 
spatial visualization. They also argue that spatial visualizers’ ability to analyse an 
object part-by-part makes it clearer and more explicit in their mind. This allows 
them to manipulate spatial images flexibly and make numerous transformations 
(Kozhevnikov et al. 2005). In addition to this, the same researchers support the idea 
that spatial visualizers have simple images, free of any detail. On the other hand, it 
is argued that object visualizers’ detailed images may be an obstacle to flexible 
transformations. In addition to this, there have been some hints in the literature that 
creativity may also be connected to verbal cognitive style. For example, Blazhenkova 
and Kozhevnikov (2009) report the case of the famous mathematician Poincare’ 
who “demonstrated an abundance of clearly written sequential text and formulas, 
without any lines being crossed out or any diagrams drawn” (p. 658). Therefore, we 
felt that further research was needed to investigate the relationship between these 
cognitive styles and creative mathematical performance.

13.3.3.2  Our Results

In one of our studies (Pitta-Pantazi et al. 2013) we investigated the relationship 
between prospective primary school teachers’ creative process and their spatial, 
object and verbal cognitive styles. Participants’ mathematical creativity was mea-
sured in terms of fluency, flexibility and originality through the administration of a 
mathematical test composed of mathematical multiple solution tasks. The partici-
pants’ cognitive styles were measured using the Object-Spatial Imagery and Verbal 
Questionnaire (OSIVQ) (Blazhenkova and Kozhevnikov 2009). Our results sug-
gested that whereas visual cognitive styles (spatial and object imagery) were statis-
tically significant predictors of the participants’ mathematical creativity, verbal 
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cognitive style was not. Furthermore, the analysis also yielded the fact that spatial 
imagery cognitive style was related to all three aspects that make up creativity- flu-
ency, flexibility and originality- whereas the verbal cognitive style was negatively 
related to flexibility.

In another study (Pitta-Pantazi and Christou 2010), we investigated the relation-
ship of 11 years old students’ spatial and object visualization to their analytical, 
creative and practical abilities in three dimensional geometry. The analysis we con-
ducted showed that object visualization was related to the students’ creative abilities 
in nets, whereas their spatial visualization was related to their practical abilities in 
three-dimensional arrays of cubes. Furthermore, high and low spatial visualisers 
differed in their practical abilities in three-dimensional arrays whereas high and low 
object visualisers differed in their creative abilities in nets

Despite research studies which looked into various cognitive factors that may 
affect mathematical creativity, a crucial issue that is still open to debate is whether, 
and in what way, teaching approaches may enhance mathematical creativity. Of 
course teaching method may be of various types. In one of our studies we investi-
gated the influence of the use of technology in enhancing students’ mathematical 
creativity.

13.3.4  Interventions to Enhance Creativity Through the Use 
of Technology

13.3.4.1  Theoretical Background

In the literature we come across two conflicting views regarding the relationship 
between creativity and technology (Clements 1995). One view is that technology 
enhances only uncreative, mechanistic thinking. The second view is that technology 
is a valuable tool in creative production (Clements 1995). This second view of the 
role of technology agrees with the argument, proposed by the National Advisory 
Committee on Creative and Cultural Education (1999) that technology enables stu-
dents to find new modes of creativity. According to Yushau et al. (2005), “a proper 
use of various technologies especially computers in the teaching and learning of 
mathematics has the potential of helping learners to develop their creativity” (p. 1).

Similarly, several researchers argue that technology can promote students’ math-
ematical creative abilities (Clements 1995; Dunham and Dick 1994; Mevarech and 
Kramarski 1992; Pardamean and Evelin 2014; Sinclair et al. 2013; Subhi 1999) and 
that technology may construct a suitable educational environment to enhance the 
emergence of creative behaviour (eg Betz 1996). According to Dodge (1991), cre-
ative computing provides learners the opportunities for fluency, flexibility, associa-
tion and testing. Opportunities for fluency include the generation of numerous ideas, 
knowing that only a few will be valuable (Dodge 1991). According to Yang and 
Chin (1996), instant feedback, speed, range of information, interactivity and per-
sonalization are some of the facilities that new technologies offer, motivating 
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 learners to think creatively in a short time. With regard to flexibility, technology 
offers the opportunity to shift between different perspectives; in other words to 
exchange representations or views of the same construct (Dodge 1991). According 
to Guilford, the ability to redefine a situation, that is to see and give alternative 
interpretations of familiar objects, is considered as a trait of creative behaviour 
(Guilford 1959). The potential of association refers to the ability of putting dispa-
rate elements together in order to make new combinations (Dodge 1991). Yushau 
et al. (2005) argue that lacking the ability to recognize and connect mathematical 
concepts in different situations is an obstacle that inhibits mathematical creativity 
(Yushau et al. 2005). Hence, technology enables learners to develop complex ideas 
by connecting information about the same concept from various sources (Loveless 
2003).

The results of empirical studies indicate that technological environments enhance 
students’ creative abilities. In particular, Mevarech and Kramarski (1992) found that 
students who participated in problem solving activities using the Logo environment 
had higher creative scores in specific parts of the Torrance Test of Creative Thinking 
(TTCT) than students who participated in a Guided Logo environment. Subhi’s 
(1999) research extended these results and indicated that problem solving via the 
Logo environment can enhance creativity in all figural and verbal domains of 
TTCT. Moreover, Pardamean and Evelin (2014) found that after 8 weeks of Logo 
programming learning, the experimental group had significantly higher scores com-
pared to the control group on all figural creativity factors, especially in flexibility 
and originality. Furthermore, in a study by Dunham and Dick (1994) students who 
used graphing calculators appeared to be more flexible problem solvers.

However, it appears that most of the previous studies conducted about the impact 
of technology on students’ creative abilities are “results oriented”. In other words, 
they focused on whether a certain software environment could or could not enhance 
students’ creative abilities. Therefore, although much work has been done in this 
area, little attention has been given to the ways in which technology can enhance 
mathematical creative abilities and processes.

13.3.4.2  Our Results

In one of our research studies (Sophocleous and Pitta-Pantazi 2011) we offered 
primary school students the opportunity to work in a technologically- enhanced 
three-dimensional geometry software environment. The qualitative results that we 
collected showed that as a result of the students’ interaction with the 3D software 
their creative ability in terms of fluency, flexibility and originality was enhanced. 
What was interesting in this study was the specific processes that facilitated creativ-
ity. Specifically students’ appeared to be more able to imagine, synthesize and elab-
orate. These three processes of imagination, synthesis and elaboration seemed to 
have enabled students to provide more creative solutions.
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13.4  Concluding Remarks

Our research journey in mathematical giftedness and creativity has offered some 
interesting results but at the same time left or even led to a large number of open 
issues. For instance a new model and tool for the identification of mathematical 
giftedness has been proposed. This model complies with Davidson’s (2009) princi-
ples for the development of identification tools: (a) it is based on previous research 
studies and empirical data; (b) its components are clearly specified; (c) it explains, 
describes and predicts giftedness; (d) it is fairly economical and comprehensible; 
and is (e) useful and appropriate for education. However, future research could actu-
ally improve this model and identification tool even further. For instance, the iden-
tification tool may become even more economical and new tasks may be identified 
which will allow the identification of mathematically gifted students of other ages, 
either younger (possibly from 5 year olds) or older (possibly 15 and 18 year olds) 
students. We believe that on the one hand, the early prognosis of such students may 
give us the possibility to offer them greater support sooner while identification of 
older students may allow us to support these students before taking decisions for 
their professional life. Another direction of future research regarding the form of the 
identification tool could be its modification to a more economical version. Such ver-
sion would be even more easily applicable in school classrooms and supportive to 
teachers’ work.

Regarding mathematical creativity, our work has yielded some very interesting 
results regarding its relationship with giftedness as well as with other cognitive fac-
tors such as intelligence and cognitive styles. What is still unclear is the most effec-
tive way to facilitate mathematical creativity and this is one of the future research 
directions that we may take. The utilization of various methods, tools and technolo-
gies will have a serious role to play in this investigation.

The need of today’s society for highly creative people who will do not simply 
have access or hold a large amount of information which they conceptually under-
stand, but who can actually put this knowledge and understanding in use to produce 
new knowledge has to be one of the main aims of our educational systems. For this, 
we will have to ensure the effectiveness of any programs which proclaim that they 
enhance mathematical creativity.

Lastly but not least, the work we have done regarding the development of materi-
als and methods of teaching mathematically promising students has not yet been 
completed (and we do not feel that it will be ever completed). We will continue 
investigating ways that may facilitate promising students to reach their true poten-
tial with a variety of approaches and tools. These findings should also be put into 
teacher education courses (both pre-service and in-service) so that teachers are 
more educated and prepared to identify and train mathematically promising 
students.
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    Chapter 14   
 The Interplay Between Excellence in School 
Mathematics and General Giftedness: 
Focusing on Mathematical Creativity                     

     Miriam     Lev     and     Roza     Leikin    

    Abstract     Observation that the interrelations between mathematical creativity, 
mathematical expertise and general giftedness are vague is what motivated a large- 
scale study that explores the relationship between mathematical creativity and 
mathematical ability. The study employs Multiple Solution Tasks (MSTs) as a tool 
for the evaluation of mathematical creativity in high-school students. We discuss the 
links between mathematical creativity, excellence in school mathematics and gen-
eral giftedness as refl ected in an empirical study of senior high-school students in 
Israel, which implemented the MST tool. The study demonstrated that between- 
group differences are task-dependent and are a function of mathematical insight 
integrated in the mathematical task.  

  Keywords     Mathematical creativity   •   Multiple Solution Tasks (MST)   •   General 
giftedness   •   Excellence in mathematics  

14.1       Introduction 

 The study brought forth in this paper is part of large-scale multidimensional exami-
nation of mathematical giftedness (e.g. Leikin et al.  2014a ,  b ,  c ; Paz-Baruch et al. 
 2014 ; Waisman et al.  2014 ) which introduced a distinction between general gifted-
ness (G factor) and excellence in school mathematics (EM factor) in order to deepen 
understanding into the construct of mathematical ability. The part of the study pre-
sented herein explored the construct of high mathematical ability from the viewpoint 
of mathematical creativity. The study is based on the observation that questions 
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pertaining to the nature of mathematical creativity and its link to mathematical abili-
ties are still open. Since Krutetskii’s ( 1976 ) seminal study of mathematical abilities, 
only a small number of empirical studies have been conducted on the characteriza-
tion of high mathematical abilities as they relate to mathematical creativity (e.g., 
Leikin  2013 ). The study presented in this paper incorporates the views of Ervynck 
( 1991 ), Krutetskii ( 1976 ), Polya ( 1973 ), and Silver ( 1997 ), who claimed that solving 
mathematical problems in multiple ways is closely related to mathematical creativity 
and that mathematical insight is an integral component of mathematical creation. 
The present study employed a model for the evaluation of mathematical creativity 
using Multiple Solution Tasks (MSTs) that explicitly require solving a mathematical 
problem in different ways (Leikin  2009 ,  2013 ).  

14.2     Theoretical Background 

 The words “Intelligent”, “Gifted”, and “Talented” are used almost synonymously 
and are described in terms of remarkable achievement. The defi nition of general 
giftedness has transformed over the years. Existing approaches to general giftedness 
can be divided into two main types:  quantitative  and  qualitative . Generally speak-
ing, individuals are considered to be gifted if their IQ score is higher than the aver-
age by two standard deviations, or more, for a given age (e.g., IQ ≥ 130) (Piirto 
 1999 ). Identifying gifted students by means of psychometric tools is useful because 
these tools are objective, inexpensive and easy to apply. Interestingly, a high IQ is 
also an accepted measure of intelligence in the fi elds of mathematics, logic and 
insight (Piirto  1999 ). This observation ultimately led to our decision to include gen-
eral giftedness (G factor) as one of the independent variables in our study. 

 In the 1980s and 1990s a number of researchers strongly criticized the psycho-
metric tool for the identifi cation of giftedness. This critique noted the lack of a 
relationship between creativity and giftedness. Some suggested an extension of the 
concept of giftedness, claiming that a gifted student is different from other students 
not only in quantitatively but qualitatively as well. For example, Marland ( 1972 ) 
proposed a broad, multidimensional defi nition of giftedness, which used other mea-
sures besides IQ alone. He referred to the gifted student as a well-rounded achiever 
with potential in numerous spheres including: general intellectual ability, specifi c 
academic aptitude (shown in academic subjects such as math, science and lan-
guage), creative thinking, and leadership ability, talent in the visual arts, musical 
ability and the ability to dance. Renzulli ( 1978 ) included in his defi nition of gifted-
ness non-intellectual elements as well. According to the theory of the three rings, he 
suggested that giftedness is the combination of high cognitive ability, perseverance 
and creativity in performing tasks. A person is defi ned as gifted if, and only if, all 
these characteristics are found together. 

 Mathematical giftedness is a specifi c personal characteristic related to high abil-
ity in mathematics, though both constructs do not have a precise defi nition. High 
ability in mathematics is usually refl ected in the high level of mathematical perfor-
mance which yields high mathematical achievements (Krutetskii  1976 ; Piirto  1999 ). 
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Krutetskii ( 1976 ) defi ned mathematical ability as that aspect of a person’s character 
that allows him to cope with tasks better and faster. Children with high abilities in 
mathematics are different from other children by virtue of their cognitive efforts 
such as intake and processing of mathematical information, logical thinking and 
thinking with mathematical symbols, simplifi cation of mathematical concepts, 
quick and expanded inclusion of objects, mathematical relationships and opera-
tions, the ability to understand the structure of a problem before solving it and the 
ability to reverse the sequence of thought (Krutetskii  1976 ; Paz-Baruch, et al.  2014 ; 
Waisman, et al.  2014cc ; Leikin et al.  2014a ,  b ,  c ). High ability in mathematics is 
usually related to solving complex mathematical problems, whereas mathematical 
achievement tests are often an insuffi cient indicator of high ability in mathematics, 
as they do not contain such problems (Davis and Rimm  2004 ). Children with high 
ability in mathematics use more effi cient strategies for solving complex problems 
than children with normal ability in mathematics (Geary and Brown  1991 ). 

 High ability in mathematics is connected to mathematical creativity which is also 
(like high mathematical ability or mathematical giftedness) not well defi ned (Leikin 
 2009 ; Leikin and Pitta-Pantazi  2013 ; Sriraman  2005 ). Leikin ( 2009 b) suggested 
that analysis of creativity in schoolchildren requires the distinction between  relative  
and  absolute  creativity: absolute creativity relates to historical achievements and 
discoveries at a global level (“historical works” in terms of Vygotsky  1930 /1984) 
while relative creativity refers to mathematical creativity exhibited by school stu-
dents when evaluated in relation to their own previous experiences and to the per-
formance of their peers who have similar educational histories (Leikin  2009 ,  2013 ). 
Our study explored relative creativity, which refers to mathematical creativity 
exhibited by school students; the evaluation of the originality of their solutions was 
done through a relative perspective on creativity. 

 Mathematical creativity in school mathematics is usually associated with prob-
lem solving or problem posing (e.g., Silver  1997 ). Following Torrance ( 1974 ), Silver 
( 1997 ) suggested developing creativity through problem solving as follows.  Fluency  
is developed by generating multiple mathematical ideas, multiple answers to a math-
ematical problem (when such exist), and exploring mathematical situations. 
 Flexibility  is advanced by generating new mathematical solutions when at least one 
has already been produced.  Originality  is advanced by exploring many solutions to 
a mathematical problem and generating a new one. Ervynck ( 1991 ), who considered 
creativity to be a critical component of problem solving, pointed to three different 
levels of creativity: Level 1 contains an algorithmic solution to a problem, Level 2 
involves modeling a situation, and Level 3 makes use of the problem’s internal struc-
ture. Ervinck’s level 3 of creativity actually refers to the ability of a person to per-
form original, non-algorithmic and, often, insight-based solutions. 

 As mentioned earlier, the current study utilizes a model for evaluation of creativ-
ity using MSTs (Leikin  2009 ,  2013 ). Based on Torrance ( 1974 ), the model consid-
ers three components of creativity – fl uency, fl exibility, and originality. For 
evaluation of originality, the model combines Ervynck’s ( 1991 ) insight-related lev-
els of creativity with conventionality of the solutions; together they comprise stu-
dents’ educational history in mathematics.  
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14.3     The Model for Evaluation of Creativity with MSTs 

  A multiple solution task  (MST) is an assignment in which a student is explicitly 
required to solve a mathematical problem in different ways. Solutions to the same 
problem are considered to be different if they are based on: (a) different representa-
tions of some mathematical concepts involved in the task, (b) different properties 
(defi nitions or theorems) of mathematical objects within a particular fi eld, or (c) 
different properties of a mathematical object in different fi elds (see the defi nition 
and various examples of MSTs in Leikin  2007 ,  2009 ). See example of the task and 
its solution in Fig.  14.1 .

     Figure  14.3  presents three tasks from the test reported in this paper. We used 
model for the evaluation of mathematical creativity by means of MSTs. This model 
was introduced in Leikin ( 2009 ) and then employed and validated in Levav- 
Waynberg and Leikin ( 2012a ,  b ) and in Guberman and Leikin ( 2012 ). The exact 
description of the scoring scheme can be found in Leikin ( 2013 ). Figure  14.2  sum-
marizes the scoring scheme.  

  Fig. 14.1    Examples of solution methods used by the students for a calculation problem       
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Tasks: Solve the problem in at 
least 3 different ways

Possible solutions Originality 
score

Task characterization

P1.  Calculation: 12 1.75
4
´ =

1.1 The distributive law: 
in decimal numbers; 
in common fraction.

1.2 Vertical multiplication 
in decimal numbers.

1.3 Arithmetic progression.
1.4 Net multiplication
1.5 Reduced multiplication

(see Figure 1)

0.1

0.1

1
1

10

Routine arithmetic 
problems

Solution 1.5 is an 
insight-based solution: 

2
1

4
× 1.75

= ( 2 +
1

4
) ( 2 −

1

4
)

P2. Jam problem: Mali produces 
strawberry jam for several 
food shops. She uses big jars 
to deliver the jam to the 
shops. One time she 
distributed 80 liters of jam 
equally among the jars. She 
decided to save 4 jars and to 
distribute jam from these jars 
equally among the other jars. 
She realized that she had 
added exactly 1/4 of the 
previous amount to each of 
the jars. How many jars did 
she prepare at the start?

2.1 System of equations 
with two variables.

2.2 Equation with one 
variable.

2.3 Numerical: Fractions/ 
Percentages.

2.4 Logical - insight-based 
solutions.

2.5 Solutions with a 
diagram.

See Appendix 1.2

0.1

0.1 or 10 
(depending on 

type of the 
equation)

1

10

1 or 10 
(depending on 

type of the 
diagram)

Routine word problem 

Solutions 2.3, 2.4, 2.5 
are non-routine for 
secondary mathematics 
(no use of variables)

Solution 2.4 is based on 
the view of the problem 
structure:  4 jars include 
1/4 of all the jam. Thus 
there were 20 jars.

P3. 

1434
1443

yx
yx

3.1 Algebraic combination.
3.2 Substitution.
3.3 Comparison/ 

subtraction/ addition/ 
division of equations

3.4 Graphing.
3.5 Solutions with 

determinants.
3.6 Symmetry based 

consideration
3.7 Trial and error (as the 

first solution).
See Appendix 1.3 

0.1

0.1

0.1

1

1

10

0.1

Routine tasks  - System 
of equations

Solutions 3.1, 3.2, 3.3, 
3.4 are learned in school.

Solution 3.6 is an 
insight-based one: The 
exchange of variables 
does not change the 
system which has only 
one solution:  x=y=2

+
+

=
=

  Fig. 14.3    Three tasks from the test reported in this paper       

Fluency Flexibility Originality Creativity
Sc

or
es

 p
er

 so
lu

tio
n

1

101Flx - for the first solution
10iFlx - solutions from a 

different group of 
strategies

1iFlx - similar strategy but a 
different representation

1.0iFlx - the same strategy, the 
same representation

%1510 PiOr or for insight/ 
unconventional solution

%40%151 PiOr or for model-
based/ partly 
unconventional solution 

%401.0 PiOr or for algorithm-
based/ conventional 
solution

iii OrFlxCr

Total 
score Flu=n n

i iFlxFlx 1
n
i iOrOr 1

n
i ii OrFlxCr 1

n is the total number of appropriate solutions
%100)(= nmP

j
where jm is the number of students who used strategy j

= =

=
=

=

=

=

=

<

<

≤

≥

×

×= = == = =∑ ∑ ∑

.

  Fig. 14.2    Scoring scheme for evaluation of creativity (Based on Leikin  2013 )       

 

 

14 The Interplay Between Excellence in School Mathematics and General Giftedness:…



230

14.4     The Study 

 The study aims to examine relationships between mathematical ability and mathe-
matical creativity. For this purpose we distinguish between general gifted (G factor) 
and excellence in mathematics (EM factor) to examine mathematical creativity in 
four groups of students differing in the combination of G and EM factors. We asked: 
How are different combinations of G and EM factors related to mathematical 
creativity? 

 The test items were validated during the pilot study (Leikin and Lev  2013 ), with 
the aim of examining the construct validity of the test. There were two variants of 
the test. The validation procedure demonstrates that “parallel” problems in the dif-
ferent variants of the tests provided us with equivalent information in terms of 
 correctness and creativity components within each group. The between-group com-
parison was performed across the “parallel” tasks after examination of their 
equivalence. 

 A research sample of 184 10th–12th grade students (aged 16–18) was selected 
from a population of ~1200 adolescents who took part in the sampling procedure. 
The procedure was directed towards investigation of the combined effect of excel-
lence in school mathematics (EM factor) and general giftedness (G factor) on math-
ematical creativity. 

 Students for G groups were mainly chosen from classes for gifted students 
(IQ > 130) and based on their scores on a shortened Raven’s Advanced Progressive 
Matrix Test (RPMT) containing 30 items with a time limit of 15 min (Raven et al. 
 2000 ; for the short version used in the study – Zohar  1990 ). A score of 27 out of 30 
affi rmed that G group participants represent 1 %, at the most, of any given age 
group. 

 Mathematics is a compulsory subject in Israeli high schools, and students can be 
placed in one of three levels of mathematics: high level (HL), regular level (RL) and 
low level (LL). Students who were sampled as EM studied mathematics at HL with 
scores above 92. NEM students studied mathematics at RL with scores above 90 or 
at HL with scores below 85. Additionally, EM was examined using the shortened 
version of the SAT-M exam (Scholastic Assessment Test in Mathematics, version 
taken from Zohar  1990 ) containing 35 items with a time limit of 30 min. Scores 
above 26 ensured that EM group students could be regarded as representing approx-
imately 1 % of the general population. The detailed description of the sampling 
procedure can be found in Paz-Baruch, et al. ( 2014 ) and Waisman, et al. ( 2014 ). 

 Sampling procedure led to the construction of four experimental groups (totaling 
184 students) determined by a combination of EM and G factors:  G-EM group  
included students who were identifi ed as generally gifted and excelling in mathe-
matics (N = 38);  G-NEM group  included students who were identifi ed as generally 
gifted but did not excel in mathematics (N = 38);  NG-EM group : students excelling 
in mathematics who are not identifi ed as generally gifted (N = 51);  NG-NEM group : 
students excelling in mathematics who are not identifi ed as generally gifted (N = 57). 
All participants were paid volunteers. They and their parents signed consent forms. 
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The study received the approval of the Israel Ministry of Education and of the ethi-
cal committee of the University of Haifa. 

 The MST creativity test was administrated at the schools attended by students 
from the research sample. If a student from the research sample studied in a particu-
lar class, all students in the class took the test. Hence, the test was administered to 
665 11th–12th grade students (aged 16–18) in order to address the concept of rela-
tive creativity. Of 665 students, 184 belonged to the research sample and 481 served 
as a reference group for the research sample. As stated above, the differences among 
the four groups of participants were designed to examine the effects of G and EM 
factors on students’ problem-solving performance and their creativity in solving the 
problems. 

 The time allotted for the test was an hour and a half. Creativity components were 
evaluated according to the model described above. Accordingly, the originality 
score was evaluated on a relative basis with respect to solutions produced by each 
of the participants in the reference groups and based on the level of insight embed-
ded in the solution. Correctness of the solution to a problem was evaluated accord-
ing to the complete solution produced by the student to the problem. For each 
complete solution a student received 25 points. The fact that other solutions to the 
problem appeared to be incomplete did not affect the correctness score. The stu-
dents were asked explicitly to solve each problem in as many ways as possible. 

 Between-group differences were examined for each problem and each of the 
creativity components for G factor, EM factor and interactions between G × EM fac-
tors using the MANOVA test. Pair-wise differences were examined with compari-
son of column means test.  

14.5     Findings and Discussion 

 Not surprisingly, for all of the problems (P1, P2 and P3) the highest fl uency and 
fl exibility were exhibited by students from the G-EM group and the lowest fl uency 
and fl exibility appeared in the group of NG-NEM students. G-NEM and NG-EM 
revealed similar fl uency and fl exibility. All students from the G-EM group solved all 
three problems correctly, and 36 out of 38 students produced at least  two solutions  
each. Table  14.1  demonstrates correctness and creativity scores attained by students 
from the different groups, and between-group differences found on the different 
examined criteria. We fi rst describe the fi ndings related to each one of the problems 
and then discuss the problem-dependency of the results and provide possible expla-
nations for our fi ndings. 

 Students from all research groups except the NG-NEM group solved the arith-
metic calculation problem (P1) correctly and produced at least two solutions. In the 
G-EM, NG-EM and G-NEM groups, over 70 % of the students produced at least 
two different solutions to the problem. The difference appeared in the ability to 
 successfully produce three different solutions by students from these three research 
groups: 16 % in G-EM group, 10.5 % in G-NEM group and 2 % in NG-EM group. 
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Students from the NG-NEM group received the lowest scores on all the examined 
criteria while two students did not succeed in solving this problem correctly and 
only 31 % of these students produced at least two different solutions. These differ-
ences are refl ected in different fl exibility scores achieved by the students from these 
three groups. We found a signifi cant effect of G factor on fl uency, originality and 
creativity associated with solving P1, whereas EM factor affected fl uency only 
(Table  14.1 ). Analysis of the pair-wise differences (Table  14.2 ) showed that for the 
originality and creativity criteria G-EM students’ scores were signifi cantly higher 
than those of NG-NEM students in fl uency, originality and creativity.

   The Jam problem appeared to be the most complex one for study participants. 
There were students from all four research groups who were unable to solve the Jam 
problem correctly, so that the mean correctness score on this problem was lower 
than 25. The G-EM students received the highest mean scores on all of the param-
eters examined: most of them solved P2 correctly. At least two different solutions 
(which is an indicator of fl exibility in problem-solving) were produced by 65.5 % of 
G-EM students, about 26 % of G-EM and NG-EM students and about 16 % of 
NG-NEM students. NG-EM students received higher scores than G-NEM students 
for correctness, fl uency and fl exibility, whereas G-NEM received higher scores on 
originality and creativity of the solutions. Both G and EM factors had signifi cant 
effects on correctness, fl uency and fl exibility, while originality and creativity asso-
ciated with solving Jam problem were affected signifi cantly by G factor only. The 
G-EM group exhibited signifi cantly higher fl uency, fl exibility, originality and over-
all creativity than students from the other three groups. G-EM students were signifi -
cantly more accurate than their peers from the two NEM groups. Additionally, 
among NG students NG-EM students were signifi cantly more fl uent and fl exible 
than NG-NEM students when solving P2.

   When solving the system of equations all G-EM students solved this problem 
correctly and thus received the highest mean score of 25, as well as the highest 
scores on all of the creativity components criteria. In the other research groups 1–2 
students did not succeed in solving the problem. The mean fl uency score in the two 
groups of G students (G-EM and G-NEM) was higher than 3, whereas in the 
research groups of non-gifted students the mean fl uency score was lower than 3. 
Two different solutions to this problem were produced by 95 % of G-EM students, 
about 89 % of G-NEM and NG-EM students and 70 % of NG-NEM students. Both 
G and EM factors had signifi cant effects on the fl exibility, originality and creativity, 
though the effects of G factor were stronger than those of EM factor. Moreover, a 
signifi cant interaction between EM and G factors in students’ fl exibility was related 
to solving the system of equations: EM factor strengthened the effect of G factor, so 
that gifted students who excel in school mathematics are signifi cantly more fl exible 
than their non-gifted counterparts, while no signifi cant differences appear in the 
fl exibility of EM and NEM students among NG students. This interaction demon-
strates that excellence in mathematics strengthens the effect of giftedness. 
Consequently, among EM and NEM students, G-group students were more fl uent 
when solving P3; G-EM students were more fl exible than students from the other 
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three study groups; and G-EM students were more original than students from the 
two groups of NG students. 

 Naturally, G students had higher scores on all the examined criteria than NG 
students, and EM students scored higher than NEM students on all the criteria. 
However, these differences were not always statistically signifi cant and, moreover, 
G and EM factors had different effects on correctness, fl uency, fl exibility, original-
ity, and creativity associated with solving these three problems. Both G and EM 
factors had a signifi cant effect on the correctness of solutions produced for P2, stu-
dents’ fl uency when solving P1 and P2, their fl exibility when solving P2 and P3 and 
their originality and creativity associated with P3. The effect of G factor on original-
ity and creativity was stronger than that of EM factor. Furthermore, only G factor 
signifi cantly affected fl uency related to P3, and originality and creativity related to 
P1 and P2. Additionally, we found a signifi cant interaction between G and EM fac-
tors related to fl exibility of solving P3. Table  14.2  summarizes signifi cant effects of 
G and EM factors on all the examined criteria as well as pair-wise group differences 
on the three problems. 

 Effects of G factor differed from the effects of EM factor in originality and cre-
ativity related to the ability to produce non-algorithmic (original) solutions. In all 
the cases in which EM factor had signifi cant effects on correctness, fl uency, fl exibil-
ity and originality, G factor also affected these characteristics of problem solving. 
Additionally to the common effects of G and EM factors, G factor only affected 
students’ fl uency related to solving P3 as well as originality and creativity associ-
ated with solving P1 and P2. Additionally, we found signifi cant interaction between 
G and EM factors on the fl exibility associated with solving P3 in different ways: 
while the fl exibility scores of NG-EM and NG-NEM students were similar, the fl ex-
ibility scores of G-EM students were signifi cantly higher than those of G-NEM, 
NG-EM and NG-NEM students. That is, EM factor signifi cantly strengthened the 
effect of G factor on students’ fl exibility when solving P3. 

 Examination of the pair-wise between-group differences demonstrated that these 
differences are task dependent. All three tasks – P1, P2, P3 – revealed signifi cant 
differences between G-EM and NG-NEM students in all the creativity components 
(except fl exibility associated with P1). P3 showed that among students who did not 
excel in mathematics generally gifted students were more fl uent, fl exible and origi-
nal when solving symmetrical systems of equations. P1 revealed differences 
between G-NEM and NG-NEM students in fl uency only. Consistent with the pilot 
study (Leikin and Lev  2013 ), P2 appeared to be the most powerful MST in revealing 
between-group differences. In contrast to the effects revealed by P1 and P3 together, 
P2 revealed differences only in accuracy between G-EM and G-NEM students, 
G-EM and NG-NEM students, NG-EM and NG-NEM students. P2 demonstrated 
that mathematical expertise (expressed in excellence in school mathematics) 
increases fl uency, fl exibility and originality among gifted students (differences 
between G-EM vs. G-NEM students), increases fl uency among NG students (differ-
ences between NG-EM vs. NG-NEM students); whereas G factor increases fl uency, 
fl exibility and originality among EM students (differences between G-EM vs. 
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NG-EM students). No differences were revealed between G-NEM and NG-EM stu-
dents for all the tasks in all the examined criteria. 

 Differences between the effects of G and EM factors, revealed when the students 
solved P1, P2 and P3, are related to the differences in the possibility to produce 
algorithmic or insight-based solutions to the problems. P1, which was the simplest 
task (all participants solved it correctly), could be easily solved in several ways by 
students in all the study groups; and only 3 (of 30 examined) pair-wise between- 
group differences appeared to be signifi cant. Solving systems of linear equations 
(P3) is taught in school using several algorithms, while solving symmetrical sys-
tems of equations using symmetry is not included in the curriculum. P3 showed 6 
pair-wise between-group differences and was the only task that showed differences 
in fl exibility and originality of G and NG students who did not excel in mathemat-
ics. In contrast, P2 was less algorithmic and required modeling activities for solving 
the problem. The problem had several insight-based solutions that required an 
understanding of the structure of the problem (Ervynck  1991 ). Thus, this problem 
demonstrated signifi cant differences between G-EM and G-NEM students, and 
between G-EM and NG-EM students. 

 Consistent with our pilot study (Leikin and Lev  2013 ), this research demon-
strated the complex relationship between knowledge, giftedness and creativity 
(emphasized by Vygotsky  1930 /1984). This study demonstrates that the distinction 
between excellence in school mathematics and general giftedness, which is the core 
idea of the examination of mathematical creativity in this study, confi rms that exper-
tise in mathematics is a prerequisite for a person to be creative (effects of EM fac-
tor). At the same time, we demonstrate that general giftedness has a meaningful 
effect on students’ mathematical creativity and especially on originality in problem 
solving. Our study shows that correctness in solving mathematical problems is an 
insuffi cient criterion when examining students’ mathematical abilities and that fl u-
ency and fl exibility in solving mathematical problems are affected by both gifted-
ness and expertise. In turn, originality and overall creativity are mainly infl uenced 
by general giftedness, while mathematical expertise can strengthen the effect of 
general giftedness.     
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    Chapter 15   
 Mathematically Gifted Education: Some 
Political Questions                     

     Alexander     Karp    

    Abstract     This chapter is devoted to political questions in mathematics education. 
The practice of recognizing certain children as more gifted than others and selecting 
them accordingly becomes inevitably a focus of public attention, frequently giving 
rise to disagreements, fi nding itself at the heart of political discussions, sometimes 
instigating such discussions, and sometimes refl ecting already existing confl icts. 
Without attempting an exhaustive analysis, the author describes certain episodes, 
aspects, and slogans of such political battles, while posing some questions for fur-
ther study.  

  Keywords     The politics of mathematics education   •   Equity   •   Mathematically gifted 
education   •   Mathematics for all   •   Elite  

15.1       Introduction 

 Lenin once made a remark that became famous: “It is impossible to live in society 
and to be free from society” (Lenin  1905 ). What he had in mind, and what his fol-
lowers or enemies took this statement to mean for over half a century, did not neces-
sarily coincide, and certain interpretations of this statement are diffi cult to agree 
with. It cannot be denied, however, that educational processes that infl uence thou-
sands and tens of thousands of people cannot simply ignore what is happening in 
society and in their country as a whole. The identifi cation of the mathematically 
gifted in education is in this sense unfree, but refl ects the infl uence of certain forces, 
groups, and social classes—and the way in which infl uence is embodied in practice 
and in the life of a country and society is precisely what is usually called politics. 
Consequently, the history of teaching the mathematically gifted turns out to be 
intertwined with politics and even with political maneuvering. 
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 The literature on mathematics education contains frequent complains to the 
effect that “there is not a long tradition within the mainstream of mathematics edu-
cation of both critically and rigorously examining the connections between mathe-
matics as an area of study and the larger relations of unequal economic, political and 
cultural power” (Apple  2000 , p. 243). It is indeed noteworthy that, although studies 
that are in one way or another devoted to the politics of mathematics education are 
not few in number, they usually do not deal with teaching the mathematically gifted. 
Gervasoni and Lindenskov ( 2011 ), who devote a chapter to students with “special 
rights” to mathematics education, diligently list whom they have in mind: these 
groups include the historically disadvantaged and the visually and hearing impaired 
and in general all those who underperform in mathematics due to their exclusion 
from quality mathematics teaching and learning. But the mathematically gifted do 
not make it onto their list. No special rights are relegated to them. Nor, indeed, is it 
commonly asserted in ordinary conversation that the mathematically gifted have a 
right to a different kind of education because they are different. Their special educa-
tion is usually justifi ed at most by the needs of society and the state, but not by their 
human rights. 

 The understanding of the aims of mathematically gifted education, its place and 
its role, as well as all the procedures associated with it, are shaped by the interaction 
of existing political forces, refl ect the outcomes of this interaction, and not infre-
quently give rise to explicitly political discussions and confl icts. Perhaps the most 
controversial questions today surround the understanding of how mathematically 
gifted education is related to and coexists with mathematics education in general. 
Tannenbaum ( 2000 ) not without irony noted “that American society is never inter-
ested in teaching both the most and the least successful achievers at the same time.” 
Changes in interests should likely also be explained by changes in the political 
situation, but in any case the beginning of the third millennium can hardly be 
considered a period of special attention to the gifted. 

 It is impossible and probably useless to discuss all of the signifi cant details and 
episodes pertaining to this issue that have taken place over the course of decades, if 
not centuries, here. Below, we will attempt to examine only a few aspects of the 
problem, without claiming to carry out a comprehensive analysis of what has trans-
pired. Let us repeat that literature on the politics of mathematically gifted education 
is very scarce; consequently, the aim of this paper is to pose questions rather than to 
provide exhaustive answers to them. In most cases below, the discussion will focus 
on Russia and the United States, with which the author is most familiar.  

15.2     Certain General Considerations 

 Although mathematically gifted individuals were valued centuries, if not millennia 
ago, the actual idea of teaching the mathematically gifted appeared relatively 
recently. The reason for this, of course, is that specifi cally mathematical talent was 
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not differentiated from a general conception of talent, and also the fact that the aims 
of education were by no means always seen as they are now; but probably an even 
more important factor is that previously the structure of society and the understanding 
of this structure were very different from what they are today (Karp  2009 ). 

 The class of which the Russian poet Alexander Pushkin (1799–1837) was a part 
has probably been studied better than any other in nineteenth century Russia 
(Rudensky and Rudensky  1976 ). It is not diffi cult to determine that among its 29 
graduates, in addition to Pushkin, there were at least two other signifi cant poets 
(Delvig and Küchelbecker), a prominent diplomat (Gorchakov), a noteworthy par-
ticipant of the opposition movement (Pushchin), several very high-ranking govern-
ment and military offi cials (Korf, Kornilov Lomonosov, Maslov, Matyushkin, 
Steven), and several other individuals who simply rose through the ranks to become 
generals or attained some equivalent rank (Volkhovsky, Danzas, Komovsky, Yudin, 
Yakovlev). We need not even mention those not listed above, who also included 
highly gifted individuals: it is clear that even a very selective class in our own time 
would unlikely be able to boast anything comparable. And yet there was almost no 
formal selection of students for this class (to be sure, it was the fi rst class in a new 
educational institution, and of course those who decided to send their children there 
were in some way different from everyone else). Many of the teachers, as well as the 
curriculum of the school as a whole, were by all appearances quite decent, but still 
the remarkable outcome of this class will become more comprehensible only once 
we take note of the fact that other classes in this or other privileged institutions also 
graduated individuals who subsequently occupied prominent positions in society. 
Society was structured in such a way that such positions were distributed among a 
very narrow group of individuals. Persons who did not belong to this group simply 
had no possibility of attaining the rank of general, and even to become a published 
poet was something that very many were unable to do if only because of their own 
illiteracy (which of course does not mean that had that not been the case, there 
would have been many poets of Pushkin’s caliber). Nor was there any evident need 
to attract gifted individuals on a mass scale: they might manage to break into the 
ranks, as did the Ukrainian poet Taras Shevchenko, for example, but this could hap-
pen only in exceptional cases—it was usually not a deliberately sought objective. 

 The appearance of mathematically gifted education in itself presupposes a social- 
political revolution, with a different view of the need for an elite and its formation. 
Indeed, it would be more precise to speak of a series of revolutions: although the 
French Revolution was an important milestone, certain steps were taken much later, 
and all of them took place within the context of intense political struggles. 

 Below, we will discuss certain goals of mathematically gifted education that are 
directly connected with politics; for now, let us merely note the importance both of 
the overall worldview and of the conceptions of society and education that are prev-
alent in the country in which mathematically gifted education arises, and among 
particular groups within such a country; such views are often inseparable from 
political views. 
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 Gallagher ( 2008 ) lists the basic “engines of change” thanks to which gifted 
education develops (or fails to develop). Among them he includes:

•    Legislation, that is, laws and statutes enacted by the state;  
•   Court decisions, more important for children with disabilities than for gifted 

children, but still present and exerting a certain infl uence;  
•   Administrative rule making—a category in which he includes practical rules 

formulated in response to court decisions or enacted laws;  
•   Professional initiatives—a category in which he includes scientifi c and other 

publications by individual professionals or groups of professionals, such as the 
NCTM.    

 In addition, he singles out what he calls “advocacy initiatives,” a category in 
which he includes all conceivable reports prepared by various interest groups. 

 All of these are indeed possible channels through which political infl uences are 
transformed into real changes. Naturally, in different countries these “engines of 
change” may also look different, and even more importantly, there may be others in 
addition to the ones listed above. The resolutions of the Central Committee of the 
Communist Party of the Soviet Union or even simply a word from the head of state 
was no less important in the USSR than any law. 

 Researchers of the political struggle surrounding the education of the gifted, of 
course, must study documents that pertain to all of the aforementioned categories; 
but such researchers must not confi ne themselves to these categories. The goal of 
such researchers is to understand why certain aspects of educational practices attract 
special public attention, how hot political issues are transformed in the world of the 
school, and what mechanisms interconnect the political and the educational. 
Consequently, it may be necessary also to analyze documents that have only a par-
tial relation to mathematically gifted education, as well as to bear in mind that far 
from everything in politics is entrusted to paper and thus preserved in the form of a 
written document. In some cases, researchers must place their trust merely in indi-
rect evidence, and in others they must analyze multiple varied sources, attempting 
to reconstruct the characteristics of a bygone era, and only then to try to understand 
what happened with mathematically gifted education.  

15.3     Mathematically Gifted Education as a Means 
for Creating a New Elite 

 The usual rhetoric employed in promoting education of the mathematically gifted, 
as indeed education of the gifted in general, emphasizes the need to prepare a new 
labor force capable of meeting the challenges of the future. Today’s world has 
become used to the fact that innovations in technology come very rapidly, and con-
sequently it is natural to desire that new people should appear who are capable of 
handling it. 
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 This was not the case even a half-century ago: what likely sounded more persua-
sive then were arguments about competing with other countries, which one hears 
today as well. Economic, and in large measure also military rivalry, motivated the 
search for individuals who would be capable, for example, of forging a “nuclear 
shield for the homeland,” as they said in the USSR. Schools with an advanced 
course of study in mathematics in the USSR were created in large part precisely in 
order to prepare such a labor force and the infl uence of scientists who were directly 
connected with the military-industrial sphere was very substantial (Karp  2011a ; 
Kukulin and Maiofi s  2015 ). Nor is it a coincidence that reforms in American educa-
tion (even if they did not pertain exclusively to the education of the gifted) are 
associated with the Sputnik, that is, with a direct military threat from the USSR (Fey 
and Graeber  2003 ). 

 The actual idea of preparing a technological elite appeared much earlier (Belhoste 
and Chatzis  2007 ). The schools created by the revolution in France on the one hand 
refl ected the developments already attained toward this objective, and on the other 
hand spurred and accelerated them. Other countries followed suit and started to 
concern themselves with the selection (even if it was not always so broad) and 
preparation of mathematically educated specialists. They pertained fi rst and fore-
most to the preparation of military experts: examples of mathematically advanced 
educational institutions dedicated to this task can be found around the world, from 
the United States to Tunisia (Abdeljaouad  2014 ; Rickey  2001 ). Lyceums, gymnasia, 
and later schools with other names, too, began preparing personnel for such special-
ized education. 

 Although such educational institutions cannot be said to belong entirely to the 
category of schools dedicated to mathematics gifted education (if only because stu-
dents were admitted to these schools by no means on the basis of their mathematical 
giftedness alone), they nonetheless facilitated the formation of a tradition that was 
important for mathematics gifted education. To a certain degree, it became tradi-
tional to use workers who had been prepared using advanced mathematics curricula 
for carrying out general administrative functions, and not just for solving technical 
and technological problems. 

 An analysis of surviving documents (Karp  2011a ,  b ,  c ) shows that in establishing 
Russian schools with an advanced course of study in mathematics, Nikita 
Khrushchev, who was then at the head of the country, was thinking not only about 
competing with a foreign adversary, but also about strictly domestic objectives. He 
saw a danger in the emerging new class (Djilas  1957 ) of party workers (which ulti-
mately overthrew him) and was thinking about ways to limit its infl uence, and at the 
very least not to allow it to transfer its infl uence by inheritance. This was what gave 
rise to his numerous arguments—including those which he articulated at meetings 
of the Presidium of the Central Committee of the Communist Party of the Soviet 
Union—about the fact that too many children of top offi cials were becoming top 
offi cials, and obtaining a higher education before doing so. Schools with advanced 
study of mathematics were clearly seen as sources of new personnel, which would 
thus be capable of helping him in the emerging struggle with the party elite. 
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 To be sure, subsequently these good intentions did not entirely pan out. 
Restrictions established for various reasons on different categories of citizens (non- 
party members, Jews, and others) thwarted the careers of the graduates of the newly 
created schools, sometimes at their earliest stages. Nor could the manner in which 
people were promoted because of their giftedness but provoke irritation on the part 
of those who had achieved their positions as a result of having spent many years 
playing by the rules of the workplace. Consequently, there emerged grounds for 
political opposition, and for an attitude of suspicion toward the education of the 
mathematically gifted. Tellingly, however, these schools were never actually shut 
down. 

 In the United States, schools for the gifted also (at least in theory) serve as an 
alternative to private schools in preparing a future elite. Admission to New York 
City’s specialized high schools, for example, is based only and exclusively on the 
results of a test whose purpose is to determine students’ readiness for a heightened 
level of education. At the same time, researchers note that private schools remain 
the main “feeders” for top colleges (Morgan  2002 ): among schools that enroll that 
greatest percentages of graduates in the most prestigious colleges, private schools 
are clearly in the lead, while the best schools for the gifted rank twentieth to thirtieth 
and even below. Moreover, one regularly hears the charge, which will be discussed 
below, that test-based admissions are in fact biased (in addition, there also exists a 
principled anti-elitism, according to which it is not the manner in which an elite is 
formed that’s not right—whether on the basis of birth or achievements—nor the 
potential for a monopoly on power or property in the hands of an elite, but the very 
acknowledgement of the fact that there are tasks at which not everyone is equally 
successful). 

 In any case, it is clear that proclaiming the aim of forming a new elite on the basis 
of giftedness (including mathematical giftedness), while signaling a certain step 
forward in the public consciousness, does not in itself mean that the formulated aim 
is achieved. For our purposes, however, it is important to note that this is evidently 
one of the most important areas of political struggle.  

15.4     On the Politics of Developing Mathematics Curricula 

 While the politicized nature of the formation of an elite in society is not open to 
doubt, the politicization of the development of mathematics curricula might seem 
more questionable. Yet discussions about the mathematics for the gifted turn out to 
be a part of discussions about mathematics for all people in general. Schubring 
( 2012 ) thoroughly analyzes the arguments of those who believe that the study of 
pure mathematics is in general appropriate only for a narrow elite. As an example of 
such views, he cites Damerow et al. ( 1986 , p. 4):

  Traditionally, mathematics curricula were developed for an elite group of students who 
were expected to specialize in the subject, and to study mathematics subsequently at higher 
levels in a tertiary institution. 
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   Thus, the arguments construct the following chain of reasoning: pure mathematics 
is only needed by a small group of people (which largely coincides with the 
mathematically gifted), so that by giving pure mathematics a dominant role in 
 education, we neglect the interests of the overwhelming majority—to which only 
the applications of mathematics are important—for the sake of this small group. 
And at this point, of course, the issue becomes a political one. 

 Schubring ( 2012 ) demonstrates that it is erroneous to regard German gymnasia, 
which established many traditions in the teaching of mathematics, as strictly elitist 
institutions, and he also asks whether mathematics for all can ever ignore general 
questions, confi ning itself to minor applied ones:

  Given all the emphasis on improving the quality of mathematics teaching it is the more 
astonishing that it is taken for granted in the entire movement of “mathematics for all” that 
mathematics has to be one of the key pillars of school education. One speaks there of 
“universalisation” of primary schooling and likewise of universalisation of secondary 
schooling, but it is never refl ected that mathematics is presupposed to constitute a basic 
element of that universe. (p. 446) 

   Schubring ( 2012 ) points out that the appearance of organized mathematics 
education was connected precisely with professional needs. Discussions of mathe-
matically gifted education should not lose sight of the fact that such education did 
not by any means arise as a study of abstract mathematical concepts. We have 
already mentioned the French Grandes Écoles, which played a crucial role in the 
development of mathematics education, including the education of the gifted. It is 
evident from its name that the École Polytechnique was not an institution aimed 
exclusively at pure mathematics. 

 In more recent times, Soviet schools with an advanced course of study in math-
ematics developed in the context of a movement toward “polytechnization,” that is, 
the establishment of a link between education and actual labor: schoolchildren had 
to spend part of the time working in factories or laboratories, acquiring a profes-
sional, and not just a general education. Schools with an advanced course of study 
in mathematics grew out of classes devoted to preparing computer programmers 
(Karp  2011a ). 

 It is likewise not diffi cult to name contemporary American programs and schools 
for the mathematically gifted in which enormous attention is paid to mathematical 
modeling and to applied mathematics (to name just one example, see the COMAP 
website   www.comap.org    , which provides useful information about events for 
schoolchildren). But the fact is that in order to study mathematical modeling, a stu-
dent must possess suffi ciently strong knowledge of mathematics, and not just some 
specialized fi eld of mathematics, but mathematical methods and techniques of 
thought, analysis, and deduction in general. 

 Thus, there are no grounds for equating mathematically gifted education with 
pure mathematics. To be sure, any curriculum for the mathematically gifted must be 
advanced and challenging, and not just “for all”, but specifi cally for them (which 
likely renders it too diffi cult for certain other students); but this is a completely 
different issue.  
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15.5     Politics in Schools for the Mathematically Gifted 

 We have already discussed the Soviet government’s equivocal attitude toward 
schools with an advanced course of study in mathematics. Fields Medal winner 
Sergey Novikov ( 1996 ) wrote that “it is no secret that… the powers that be, often 
not without reason, found a spirit of dissent within the student population of special 
schools,” which they attributed to “international imperialism and Zionism” (p. 34). 
And indeed, while these schools had been envisioned as institutions in which Soviet 
skilled workers would be forged, they produced skilled workers whom it was diffi cult 
to describe as Soviet. 

 Of course, the restrictions mentioned above contributed to the students’ discon-
tent. But they were hardly its only source. A teacher from a school with an advanced 
course of study in mathematics, whom we interviewed, and who had once been a 
student at the same school himself, said of his school: “It was a territory of free-
dom” (Karp  2010 ). The territory was free because free discussion was permitted on 
it. It was expected that the discussion would concern only mathematics and physics, 
but things did not always work out that way. Yet general discussions, especially 
discussions about historical-political topics, could lead to confrontations with the 
authorities. Naturally, this did not happen automatically—schools with an advanced 
course of study in mathematics produced many people who faithfully served the 
regime, without entering into any confl icts with it. But such confl icts did sometimes 
occur. 

 In connection with this, two questions may be posed. The fi rst question—which 
may even be posed specifi cally about Soviet schools for the mathematically gifted—
concerns all open expressions of discontent with the political regime at such schools. 
Something about this topic is detailed, for example, in Sossinsky ( 2010 ). We know 
of notable fi gures in the Soviet dissident movement who worked at schools with 
advanced study of mathematics, for example, Anatoly Yakobson, one of the editors 
of the illegal periodical “Chronicle of Current Events” and a teacher at Moscow’s 
School No. 2. On the other hand, certain events are clearly not suffi ciently well 
known, for example, the shutting down of Leningrad’s School No. 121, whose grad-
uates distributed fl yers calling for the creation of a democratic (and not a Soviet) 
form of socialism, for which they received long prison sentences (Alexeeva  2012 ). 

 The second question is more general: how is the formation of mathematical 
talent connected with non-mathematical subjects, including political-historical 
interests? Graduates from schools with an advanced course of study in mathematics 
(Bunimovich  2012 ; Pakhomov  2013 ) point out the important role played in their 
lives and educations by the humanities and, if not by direct involvement in political 
movements, then at least by political interests and contacts with people involved in 
politics. On the other hand, Pakhomov ( 2013 ), who describes the admiration and 
enthusiasm with which he listened to a reading by the later famous songwriter and 
dissident Yuli Kim, who was a teacher at Kolmogorov’s boarding school at the time 
and was later fi red from there for political reasons, adds that such feelings were 
shared by approximately 10–15 % of the students; and he even observes that 
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 approximately such a percentage of the scientifi c intelligentsia feels a need to study 
the humanities in general. 

 It is unlikely that any quantitative estimates are possible (at least, at present)—
evidently, among mathematically gifted people, there have been and are both abso-
lutely apolitical individuals and ones who are quite politically active. We can also 
observe periods when political activity among mathematicians, including beginning 
mathematicians, is growing, and periods when it is waning. All of this, in our view, 
deserves special study.  

15.6     On Equity, Genuine and Fictive 

 And yet probably the most controversial political issue today concerns the relation-
ship between education for all and mathematically gifted education. Should the 
gifted be singled out at all? If yes, then how? Does not singling out the gifted mean 
declaring the rest ungifted, with the consequence that the ungifted will not receive 
any education at all? Does the term “mathematically gifted” merely cover up old 
racist approaches, and is the selection of the mathematically gifted merely a polite 
expression of segregation? These are just the fi rst, although perhaps the most impor-
tant, questions around which political discussions fl are up. 

 These discussions are not new and have accompanied mathematics gifted educa-
tion over the whole course of its history. Already in 1978, the decision to create the 
North Carolina School for Science and Mathematics was accompanied by debates 
in the state senate, which culminated in a vote that ended up in a tie: exactly half of 
the senators supported the creation of the school, and the same number were against 
it, considering it an infringement of the principle of equity. The decision to create 
the school was fi nally made by the lieutenant governor, who presides over the state 
senate in North Carolina (Vogeli  1997 ). But this did not, of course, diminish the 
importance of the struggle for equity. 

 Equity in education and specifi cally in mathematics education in today’s world 
is both an economic issue, since failure to prepare a work force automatically 
diminishes the effectiveness of a country’s economy, and a political issue, since of 
course people cannot put up with the fact that they are effectively being assigned to 
second-rate place in life. As Croom ( 1997 ) explains, “Equity in mathematics educa-
tion implies fairness, justice, and equality for all students so that they may achieve 
their full potential, regardless of race, ethnicity, gender, or socioeconomic status” 
(p. 2). 

 This requires further comment, since, although people have been talking about 
equity in mathematics education for decades and it is unlikely that anyone is openly 
against it, equity is by no means necessarily understood in the same way by differ-
ent people, and consequently debates and confl icts stem not only from the fact that 
agreement over words does not always translate into agreement over deeds, but also 
from the fact that agreement over words may merely cover up fundamental differ-
ences in the way in which these words are understood. 

15 Mathematically Gifted Education: Some Political Questions



248

 Here it must again be reiterated that the vast contemporary literature on equity in 
mathematics education is largely concerned with discussing how students cannot 
obtain even a basic education and how they may be helped to do so. Meanwhile, 
students’ potentials vary, and it is necessary to discuss precisely the possibility of 
attaining all levels. Less has been written on this topic (this has begun to change 
only in relatively recent years), and different ideas are often misleadingly inter-
changed, as when, for example, the notion that everyone should have access to high- 
quality mathematics education and that practically everyone can and should obtain 
it at a certain level is equated with the idea that everyone can attain the highest level 
and “be like Einstein.” Alas, there are no grounds whatsoever for believing that, 
even given unlimited fi nancial resources, it will be possible to produce as many 
Einsteins as we wish. 

 In general, as Linchevski et al. ( 2011 ) correctly point out, equity and quality 
often appear to some to be in confl ict with each other. Furthermore, quality is often 
equated with the amount of material studied or with the speed with which students 
complete assignments. Consequently, we can say—exaggerating, alas, only 
slightly—that from such a perspective, the rote memorization of “recipes” for solving 
differential equations becomes high-quality education, while the rote memorization 
of how to fi nd the y-intercept of the graph of a linear function becomes education of 
a lower quality. And the struggle for equality turns into a struggle against teaching 
differential equations, and for making everyone concentrate on the rote memoriza-
tion of the y-intercept rule—even while allowing certain individual students to help 
those who cannot wrap their heads around this rule (which will supposedly lead the 
helpers also to grasp this rule—which is not especially complicated to begin with—
even better). 

 One can fi ght for equity at different levels, and to break up education at the upper 
levels is easier than to rebuild the lower ones—but this is unlikely to help in any way 
to attain the aforementioned goal of all students achieving their full potential. At one 
time, the political objective was formulated differently: to offer education to all at 
least formally. This objective was in a certain sense quantitative. It may be said 
(with a number of qualifi cations) that in many countries (although, again, far from 
everywhere) it has been realized. Schubring ( 2012 ) notes:

  The process of universalising schooling in general and the teaching of mathematics in par-
ticular is continuing – in industrialised and in developing countries. After primary school-
ing has been universalised – for Western countries basically already during the 19th century, 
and for developing countries quite recently, now secondary schooling is becoming univer-
salised, in the sense of extending the age limit of compulsory schooling. (p. 457) 

   Niss ( 2015 ) points out that until relatively recently Danish high schools still 
admitted only 6–7 % of students from their age groups. Such critical problems in 
mathematics education as the recognition of the possibility of mathematical talent 
in women (recall, for example, the biographies of Sofi a Kovalevskaya and Emmy 
Noether and the diffi culties they experienced) have at least formally been resolved 
(although of course with caveats and not everywhere). 
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 This process, however, does not mean that everything has been expanded and 
improved. The Hungarian educators Halmos and Varga ( 1978 ) made the following 
remark about the consequences of the establishment of general rather than selective 
schools: “It goes without saying that the last 4 years of this general school could 
offer less to every pupil than what the fi rst 4 years of the earlier 8-grade secondary 
school could give to a highly selected population of the same age” (p. 225). 
Instruction at general schools “for all” obviously differs from instruction at schools 
attended by 6–7 % or even 10–15 % of the students. It probably cannot be otherwise, 
but it absolutely does not mean that we must become reconciled to the fact that 
quantitative growth has not necessarily been accompanied by qualitative 
improvement. 

 The current period is precisely a time when what is important is quality, under-
stood precisely as the realization of the students’ potential. The importance of the 
new task consists in the fact that educators must struggle less against formal prohi-
bitions than against factors that are much more diffi cult to change. We are not talk-
ing merely about economic or educational inequality. It is evident that schoolchildren 
from poor and poorly educated families have, generally speaking, fewer possibili-
ties for developing their mathematical talents than children from families that are 
rich and educated. It is clear that the struggle (including the political struggle) for 
achieving a certain minimum level of wealth and education for all citizens is useful 
for mathematically gifted education also. But its development also faces obstacles 
whose overcoming calls for reforms that are less global in character. 

 Walker ( 2003 ) cites the following episode:

  A Black student excelled in her general level Algebra course. At the end of each quarter 
students are evaluated, on the basis of grades, to determine if they should be moved into a 
higher or lower level course. When an administrator asked why the student had not been 
moved to a higher level course her teacher replied that she needed the student to remain in 
the course because she was a good infl uence on, and a good role model for, the other stu-
dents in the class (who were predominantly black and Latino/a). (p.16) 

   This episode is far from unique, and such episodes occurred not only half a cen-
tury ago (Walker  2014 ), but also in much more recent times (Martin  2006 ). In such 
cases, students are regarded not as separate individual personalities with their own 
peculiarities and needs, but merely as representatives of their group and race (in the 
instance above, the student was a  useful  representative). Such a form of racism (usu-
ally delicately referred to as accepting stereotypes) stands in the way of education 
over and above economic and purely educational factors. It is important to struggle 
against it and to overcome it—both by working with teachers and, above all, by 
creating and promoting programs and examples that undermine such stereotypes. 

 Ebanks et al. ( 2012 ) cite numerous statistics about racial imbalances in elite pub-
lic schools, noting that while African-Americans constitute 32 % of the student 
population in New York City’s public schools, at Stuyvesant High School (one of 
the most prestige specialized high schools in the country) only 1.2 % of the students 
are African-American, while 72 % are Asian, and 24 % are White. This issue was 
already brought up 20 years ago, in 1996, when the Association of Community 
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Organizations for Reform Now (ACORN) began publishing its  Secret Apartheid  
reports. These reports cited statistics about racial imbalances and argued in particu-
lar that “developing the skills and academic competence to compete successfully for 
admission to Stuyvesant or Bronx Science requires course work which is not avail-
able to most black and latino students in the public schools.” They also proposed 
certain measures for rectifying the situation, the most important of which was the 
following:

  Suspend the competitive testing for the specialized high schools. Until the Board of 
Education can show that the students of each middle school in the system have had access 
to curricula and instruction that would prepare them for this test regardless of their color or 
economic status, the current test for the specialized high schools must remain permanently 
suspect as the product of an institutional racism inappropriate to an educational system in a 
democracy (ACORN  n.d. ) 

   These proposals gave rise to equally passionate objections. A paper by Hart 
( 1997 ), entitled “Destroying Excellence,” is representative. Unambiguously calling 
his opponents bandits and comparing them to the ebola virus, which had just 
recently been discovered, the author states that when he was a student at Stuyvesant, 
there were almost no Asians among the students, and there were not many children 
from Catholic and Protestant families, either. The overwhelming majority were 
Jewish—and why? Because they performed best on exams: “the schools wanted the 
best students, and the entrance exams don’t lie.” 

 Without entering into a discussion of whether it is true that “exams don’t lie,” we 
will note that it is impossible to overlook the fact that these honest exams produced 
completely different results at different times—Jewish students became substan-
tially fewer, and Asian students substantially more numerous, even proportionally 
to the population of the city, which indicates that the results of the exams were 
determined not only by students’ ability to study well going forward, but also by 
other factors. 

 In the late 1990s, despite an intense campaign, the proposition to abolish entrance 
exams for New York City’s elite public schools—until the system should become 
fair in the opinion of those who opposed it—fell through. The idea of now depriving 
Asian students from comparatively poor families who have prepared well for an 
entrance exam of the possibility of receiving an education at an advanced level truly 
does not seem to be the best means of fi ghting for equity in the education of the 
gifted. Reducing the number of programs for the gifted, or eliminating them alto-
gether, seems even less well suited to this purpose: the destruction of these fre-
quently—and as many believe, rightly—criticized programs would merely mean 
that there would be no alternative at all to private schools. 

 At the same time, the fact that the curriculum and support for high quality teach-
ing at many schools with a predominantly African-American or Latino population 
are inadequate to the existing challenges, and thus do not allow students to prepare 
for admission to elite schools, is confi rmed by numerous studies (Kozol  2005 , is just 
one example of such works). Ebanks et al. ( 2012 ) discuss the effects of special 
interventions that help students better to prepare for the entrance exams to such 
schools. This and numerous other examples of interventions aimed at helping the 
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potentially mathematically gifted undoubtedly deserve to be championed, although 
of course one can hardly hope that they will quickly and completely remedy the 
existing state of affairs. The ongoing debates, however, are not limited to purely 
methodological or organizational considerations. 

 One vivid manifestation of the politicized nature of mathematics education may 
be seen in the wish to create a separate mathematics for the oppressed—“ mathematics 
as a weapon of struggle ,” as Gutstein ( 2012 ) puts it. The Palestinian mathematics 
educator Fasheh ( 1997 ) expresses perplexity at the fact that, regardless of who has 
ruled the Palestinian territories—Great Britain, Jordan, Israel, or the Palestinian 
Authority—mathematics curricula have not differed appreciably. He concludes: “I 
personally believe that the math we teach or study has lost its life, its soul, and its 
connectedness to the realities in both the immediate and wider worlds” (p. 24). After 
exclaiming, “What is the purpose of teaching geometry, in particular, if ordering the 
place in which people live is not one of our primary concerns?!” (p. 25), he con-
cludes: “My basic argument here is that every curriculum should have—as part of 
its design—enough room to include the realities and personal experiences and 
expressions of the people following the curriculum as part of the on-going discus-
sions in math classes” (p. 26). 

 The key words here are “enough room,” because  some  room for the personal 
experiences and expressions of the people will inevitably be found in almost any 
curriculum. What we have in this case is specifi cally a call for the creation of a spe-
cial course in mathematics based on personal experiences, that is, for every indi-
vidual group and every separate people. 

 Similar ideas have been expressed in different countries. One of the fundamental 
and undoubtedly correct ideas of mathematics (and any other) education—that one 
must make use of students’ personal experience—has been blown up to such pro-
portions that it has given rise to the notion the children should be taught cardinally 
different courses in mathematics depending on their culture (and this word has also 
been understood in different ways). Meanwhile, strangely enough no one argues 
that students of Anglo-Saxon descent should necessarily focus on Alfred the Great 
when studying trigonometry, or that Jewish students should necessarily concentrate 
on the discussion of gefi lte fi sh recipes during algebra classes, even though argu-
ments similar to these have been made about students of African or Latin American 
descent with relative frequency. There is no evidence that this has helped the devel-
opment and education of the mathematically gifted, however. 

 There has also been talk about a cultural struggle of sorts taking place within 
schools themselves. Fordham and Ogbu ( 1986 ) published a highly infl uential paper 
in which they contended that an important obstacle to the improvement of African- 
American students was the students’ fear that their schoolmates would accuse them 
of “acting white” and betraying their own culture. However, the conclusions reached 
in this paper, which gave rise to numerous responses and discussions, have not been 
confi rmed or have been confi rmed only in small part by other studies. Tyson et al. 
( 2005 ), for example, demonstrated that African-American teenagers are quite ori-
ented toward good results and that peer pressure that might prevent them from 
achieving such results was by no means prevalent in schools. Walker ( 2012 ) also 
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gave examples of how, on the contrary, peer groups facilitated the achievement 
of good results. 

 Discussions concerning this topic have taken place mainly in the academic 
sphere, although they have spilled out to the broader public. However, they refl ect 
the controversial nature of questions about education (including mathematics 
education) and the importance of equity in education for political struggles in 
contemporary society.  

15.7     Conclusion 

 The aim of this article has been to list and elucidate existing problems, without try-
ing to offer solutions to them, which in any case cannot be simple. If we look at 
statistics about the sizes of various demographic groups in general and those 
involved in one way or another in mathematically gifted education and translate 
them into plain language, we can say that the giftedness of thousands of talented 
children is not recognized and not supported, and consequently suppressed. 
This state of affairs cannot be considered acceptable, and the fury directed at claims 
about the fairness of the existing system, and the intensity of the political fi ghts 
in general, is understandable. At the same time, revolutionary changes of this 
situation—such as would rectify everything overnight—are hardly possible. In the 
words of a Russian poet, “labor and persistence are truer” (Mandel’shtam  1917 ). 
To this end, formulating slogans and determining a direction for this labor seem 
especially important. No new segregation, no matter what terms are used to cover it 
up, can be benefi cial for discovering every child’s potential. The problem is, 
precisely, that many capable children, despite all kinds of rhetoric, in practice are 
given no access even to comparatively elementary mathematics classes, such as 
algebra, and additional explanations that they have no need for algebra—that what 
they need instead is something special, or that they themselves do not want to study 
algebra, as it were, as a sign of protest—are hardly useful. 

 The tendency to see gifted education as being in a certain sense an impediment 
to education for all seems profoundly misguided. In reality, high-quality educa-
tion—that is, education that is oriented toward students and the discovery of their 
potential—is possible only given the existence of a suffi cient number of qualifi ed 
teachers, whose preparation in fact commences when they themselves are school-
children (or more precisely, their preparation can be irremediably doomed at this 
stage). The mere demand that children should be taught well, or even the publica-
tion of a sensible curriculum or set of standards (which is no simple matter), cannot 
create the conditions under which such a demand might be realized or such a 
curriculum implemented. Given the existence of a sensible curriculum, a highly- 
professional teacher will be able to create conditions under which capable students 
will be able to prepare for more advanced mathematics education and, most impor-
tantly, will be able to understand themselves and to recognize their own interests 
in and possibilities for such an education. Without fi xing general mathematics 

A. Karp



253

 education, it is impossible to achieve a genuinely successful mathematically gifted 
education, to which thousands of potentially highly-gifted schoolchildren have 
no access at present; but general education must be fi xed by relying on those 
institutions—including institutions involved in mathematically gifted education—
which are best prepared mathematically and pedagogically. 

 Having sketched a picture of the political fi ghts surrounding mathematically 
gifted education above, we have not given an answer to the most important ques-
tions, since we have not demonstrated how mathematically gifted education is 
connected with various social-economic groups and their positions on other issues. 
Of course, there is little reason to expect, in the spirit of so-called vulgar sociology, 
such as was widespread in the USSR during the 1920s, that we will be able to 
identify certain relations that will hold true at all times, for example, that workers 
support advanced study of mathematics, while merchants do not (or vice versa). 
Nonetheless, we can make certain observations and draw certain conclusions. It is 
clear, for example, that the so-called defense ministries (that is, those responsible 
for manufacturing weapons) in the USSR supported the creation of specialized 
physics-mathematics boarding schools for the gifted (Pakhomov  2013 ). It is clear 
that even the structuring of mathematics classes—in terms of how much attention 
they devote to actual mathematics vs. how much attention they devote to ideological 
discussions—depends on a state’s general stance and ambitions of world dominance 
(Karp and Lee  2010 ). 

 In our opinion, there is a need for more and more detailed clarifi cation of the 
views of all the participants of contemporary discussions about the politics of 
advanced study of mathematics (and, indeed, all study of mathematics): the views 
expressed among teachers, teacher educators, business representatives, and various 
sectors of the parent population in general. This, however, is a goal for other 
studies.     
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    Chapter 16   
 Commentary on Interdisciplinary Perspectives 
to Creativity and Giftedness                     

     Bharath     Sriraman      and     Roza     Leikin   

    Abstract     In this commentary, we analyze the 14 chapters of the book for interdis-
ciplinary themes that unravel and are applicable to mathematics education. In par-
ticular, attention is given to interdisciplinary perspectives on the constructs of 
creativity and giftedness. Dominant themes from clusters of chapters are 
highlighted.  

  Keywords     Mathematical giftedness   •   Creativity   •   Psychology of creativity   • 
  Creativity in mathematics education   •   Mathematical creativity   •   Research advances  

16.1       Interdisciplinary Perspectives to Creativity 

 A watershed moment for the domain of creativity research in psychology was the 
speech by Joy Guilford at the American Psychological Association meeting in 1950 
(Kaufman and Sternberg  2007 ), because it spawned research that continues to grow 
six decades later. Even though creativity has been unfairly criticized by some in 
educational circles as the “wastelands of psychology”, it is a legitimate domain of 
research within the APA and continues to inform both education and educational 
psychology today. Indeed numerous curricular documents and national reports (e.g., 
NACCCE  1999 ) extol the need to incorporate creativity given the knowledge based 
economy that their countries fi nd themselves in, and the need to capitalize on human 
capital in ways different from industrial societies. 

 Unlike psychology, mathematics education does not as of yet have a “watershed” 
moment which has created growing interest in creativity. There have been sporadic 
papers that have reported on creativity in some journals and books, but not any 
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 sustained efforts to study it systematically. Creativity is often relegated as the pur-
view of professional mathematicians or for students with extraordinary ability inter-
ested in mathematical contests. In fact many teachers view it as a form of 
extra-curricular activity, separate from daily academic subjects (Aljughaiman and 
Mowrer-Reynolds  2005 ). In the U.S. and elsewhere “creativity” is used as a psycho-
metric marker for the identifi cation of students with high abilities in mathematics, 
science, the arts etc. The label “gifted” is very often is applied to such students since 
“creativity” has continued to be viewed as one possible indicator of high potential 
following Sidney Marland’s ( 1972 ) landmark report. The use and/or misuse of these 
terms as synonyms and numerous writings addressing their relationships is already 
found in the existing literature (e.g., Haavold  2016 ; Leikin et al.  2009 ; Sriraman 
 2005 ; Sriraman and Haavold  in press ). 

 Given this disclaimer, this book does not attempt any further differentiation or 
expositions of subtlety in how the terms “high ability”, “gifted”, “creativity” or talent 
ought to be used in mathematics education research. What the book does is to 
 present current research on these constructs and their inter-relationships as interdis-
ciplinary and informative to mathematics education. In doing so two major strands 
are unraveled, the fi rst being the construct of creativity through nine chapters that 
interweave both general notions as well as particular notions applicable to mathe-
matics education from the perspectives of psychology, philosophy, mathematics and 
mathematics education. 

 Haught and Stokes explore the idea of domain constraints which call for devel-
oping competencies to overcome the basic constraints in the domain. These compe-
tencies take the form of novel problem solving. This idea is explored through young 
children in math and college students in composition. The ideas in this chapter can 
be further stretched to what Robert Root-Bernstein calls n-epistemological aware-
ness, i.e., the awareness of those at the frontiers of their fi eld of the constraints that 
need to be overcome to solve problems (Root-Bernstein  1996 ). Mathematics pro-
vides numerous examples that such domain constraints spurs creativity in the form 
of new tool development. For example homological algebra was developed to 
answer basic questions in number theory which young students can comprehend, 
but solving these problems requires sophistication that is only obtained in graduate 
level education. Many of the early work on integrals required the likes of John 
Wallis, Lord Brouncker and Fermat to use interpolation techniques that overcome 
the constraint of not having the binomial theorem available (Sriraman and Lande  in 
press ). Today these integrals are easily solved due to the tools that were subse-
quently developed. John-Steiner and Hersh continue this vein of thought by address-
ing some of the psychological factors that spur mathematicians to pursue research 
for extended time periods. They identify both coping skills and report on how arti-
fi cial intelligence has implications for the pursuit of novelty and may help “man-
age” or “navigate” human intelligence in fruitful directions. Their chapter also has 
implications for teaching in mathematics classrooms. Beghetto and Schreiber pur-
sue a different motivating strand from the perspective of pragmatist philosophy 
of Charles Saunders Peirce. Their focus is on abductive reasoning which often is 
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investigated in mathematics education studies but in this chapter the reader is asked 
to view it as an aspect of creative reasoning. In other words when conditioned 
responses to situations fall short of being able to tackle a new “situation” (academic 
or otherwise), genuine doubt sets it which can propel creative learning. In their 
chapter current conceptions of creativity are expanded and some recommendations 
are made for further research on creativity in educational settings. 

 The fi ve other chapters in the section of creativity have more of a mathematics 
education fl avor to them. Karwowski and Dziedziewicz address creativity in early 
mathematics learning. They do so by drawing on a typological model of creativity 
consisting of the triad of creative abilities, openness and independence. Heuristic 
rhymes are given as an example of enhancing mathematical creativity. Their chapter 
occurs at the start of the book because it gives a very in depth overview of the his-
tory of creativity research as well as clears up misconceptions about the “water-
shed” moment widely considered in the U.S. They point out that it was Francis 
Galton who studied individual differences in the imagination and representations of 
scientists in the late nineteenth century. It is ironic that Galton’s name is synony-
mous with psychometrics when in fact he initiated the study of human imagination! 
Mann and Chamberlin provide an overview of affective studies and its connection 
to creativity. They propose the new sub construct: iconoclasm which helps research-
ers better understand mathematical problem solving episodes. Both these chapters 
extend the categories of fl uency, fl exibility, originality and elaboration which are 
invoked frequently due to the ubiquity of divergent thinking tests as a measure of 
creativity. 

 Two other chapters address pre-service and in-service teachers in Romania and 
Iceland respectively. Both these chapters report on task based activities used with 
these particular groups and implications for teacher educators on how creativity is 
understood. In the former case, Voica and Singer fi nd a relationship between exper-
tise, creativity and the processes of problem solving and posing, in that they develop 
in tandem with each other. Palsdottir and Sriraman argue modeling tasks provide an 
avenue for in service teachers to foster creativity in the classroom. Yet their study 
reports that teachers do not use the modeling activities as intended by the textbooks. 
The views of teachers reported in this chapter indicate that a dialogic and practical 
approach to modeling activities is preferred to a strictly mathematical approach. 
Interestingly enough these fi ndings from the Icelandic context corroborate the 
social-communicative nature of creativity described by Voica and Singer in their 
work. Given the excessive emphasis on divergent thinking in creativity research, 
Tan and Sriraman propose convergence as equally important in the context of math-
ematics. In their chapter they summarize psychological theories of development and 
creativity to argue how people develop their capacity in convergence (e.g., collabo-
ration), through mathematical learning (e.g., with coherence, congruence), and for 
creativity (e.g., imagination). Taken as a whole this section of the book provides a 
reader with numerous avenues for further development which are commented on in 
the concluding section.  
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16.2     Interdisciplinary Perspectives on Giftedness 

 Five chapters of the book address the notion of giftedness from the viewpoints of 
neuroscience, classrooms, political landscapes, and its relationship to creativity. 
The neuroscience perspective is quite new to the fi eld of mathematics education and 
would help support advocacy for mathematical enrichment. Again in the U.S. a 
quagmire for mathematics gifted education has been the fi ndings of the ongoing 
Study of Mathematically Precocious Youth (SMPY) started at Johns Hopkins in 
1971, which introduced the idea of above-level testing for the identifi cation of 
highly gifted youth, labeled as “mathematically precocious” (Sriraman and Haavold 
 in press ). For too long this label has been loaded with connotations and associated 
with psychometric testing. A different and much needed topography is provided by 
Leikin, Leikin and Waissman where the neuro-cognitive characterization of super 
mathematically gifted high school students, generally gifted students who excel in 
school mathematics and students who excel in school mathematics but are not iden-
tifi ed as being generally gifted (NG-EM) are compared to highlight differences 
when solving two distinct types of problems. These authors report on three types of 
neuro-effi ciency effects, which highlight the different characteristics of electrical 
activity of super mathematically gifted students. More importantly they relate these 
three types of neuro-effi ciency to variables such as type and stage of the test and 
giftedness. This chapter presents a different way of distinguishing mathematically 
gifted individuals from the general pool of students who excel in mathematics and 
the identifi cation of “super gifted” individuals based on their performance. 
Neuroscience has the potential to inform mathematics education in ways beyond 
traditional performance testing, which are typically a function of academic 
exposure. 

 Three of the chapters in this section address the relationship of giftedness and 
creativity. Cropley, Westwell and Gabriel explore how contrasting psychological 
and neuroscientifi c approaches inform our understanding of creativity as a compo-
nent of giftedness in general? In doing so a large body of literature synthesizing 
these constructs from a psychological and neuroscience viewpoint is undertaken. 
Even though their conclusion might seem to be “obvious”, it is important to note 
that they present a very coherent psychological view of the “intersecting” nature of 
these constructs in the domain of mathematics. An important duality is teased out to 
provide a robust framework for researchers interested in this paradigm. Pitta-Pantazi 
gives an overview of 5 years of studies conducted at the University of Cyprus that 
have addressed defi nitions of mathematical giftedness and its relationship to both 
ability and creativity. This chapter highlights the possibilities of technology for 
developing mathematical creativity in primary classrooms. Lev and Leikin provide 
the results of a large scale study which investigates the link between ability and 
creativity in the domain of mathematics by using Multiple Solution Tasks as an 
evaluative tool. 

 The fi nal chapter in this section takes on the political perspective in the education 
of the mathematically gifted. It is deliberately placed at the end of the book since it 
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tackles broader issues of equity that are pertinent to school systems worldwide. The 
reader learns about the political landscape in the U.S. as well as how this landscape 
was shaped in the former Soviet Union. Karp calls for the need of a better clarifi ca-
tion for issues of equity that surround the advanced study of mathematics.  

16.3     Concluding Thoughts 

 The book attempts to bring in chapters from different parts of the world from 
researchers who have spent substantial time in investigating questions of mathemat-
ical ability, mathematical creativity and mathematical giftedness. In doing so, some 
interdisciplinary perspectives from the neurosciences, psychology and philosophy 
emerge for consideration by mathematics educators. Do mathematical giftedness 
and mathematical creativity exist per se? The answer to this question is yes- and 
conclusively supported by a cross section of studies from psychological, psycho-
metric and neuroscientifi c viewpoints. In a study by Leikin and Lev ( 2013 ) gifted 
students scored much higher than other students on all measured criteria on all tasks 
in the mathematics creativity test. Similarly strong correlational relationships exist 
between mathematical ability and mathematical creativity with the latter subsumed 
as an aspect of the former (Kattou et al.  2013 ). In an attempt to validate a theoretical 
model for optimizing mathematical creativity in the classroom proposed by 
Sriraman ( 2005 ), Haavold ( 2016 ) found that internal motivation and an aesthetic 
sense of mathematics predicted creativity, when controlled for mathematical 
achievement. In terms of further research, divergent thinking need not become 
solely associated with creativity research as often seen in psychology. Secondly, 
both affect and reasoning are broad categories which can be focused towards the 
study of mathematical creativity as posited in some of the chapters. For example 
ongoing studies in mathematics such as those conducted in Cyprus focus on the 
relationship between visualization and creativity (Pitta-Pantazi et al.  2013 ). Given 
the domain specifi c nature of mathematics and the broad nature of both reasoning 
and affect (e.g., Feldhusen and Westby  2003 ), we view mathematics education as an 
appropriate fi eld within which more systematic and longitudinal studies can be 
 carried out. Interdisciplinary frameworks offer newer possibilities for further 
studies and it is hoped that this book is simply a start.     
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