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Preface

This special edited book series of Springer Proceedings in Mathematics and
Statistics contains 13 selected papers presented at the Third International Con-
ference on Numerical Analysis and Optimization: Theory, Methods, Applications
and Technology Transfer (NAOIII-2014) held during January 5–9, 2014, at Sultan
Qaboos University (SQU), Muscat, Oman. The NAO conference series is held
once every 3 years at SQU: the first conference (NAO-2008) was held on April
6–8, 2008, and the second conference (NAOII-2011) was held on January 3–6,
2011. The NAO conference will hopefully become a forum where prominent
mathematicians, worldwide experts and active researchers gather and meet to share
their knowledge on new scientific methodologies and simulate the communication
of new innovative ideas, promote scientific exchange and discuss possibilities of
further cooperation, networking and promotion of mobility of senior and young
researchers and research students. NAOIII-2014 was inaugurated by the Under-
Secretary of the Ministry of Higher Education, Vice Chancellor of SQU and
Ambassador of Italy to the Sultanate. The conference was sponsored by SQU,
The Research Council of Oman, The International Center for Theoretical Physics
(ICTP, Italy), German University of Technology (GUtech) in Oman, AMPL (USA),
Al-Anan Press (Oman) and Al-Roya Newspaper (Oman). Twenty world leading
researchers gave keynote lectures. In total, 40 international participants contributed
talks. After the conference, selected contributed papers were invited to submit for
publication in a special issue of the following international journals: Optimization
Methods and Software, International Journal of Operational Research and SQU
Journal for Science. More information is available at http://conference.squ.edu.
om/nao. Thirteen of the keynote papers were selected for this edited proceedings
volume, each of which was accepted after a stringent peer review process by
independent reviewers. We wish to express our gratitude to all contributors. We
are also indebted to many anonymous referees for the care taken in reviewing the
papers submitted for publication.

Muscat, Oman Mehiddin Al-Baali
Arcavacada di Rende, Italy Lucio Grandinetti
Muscat, Oman Anton Purnama

v

http://conference.squ.edu.om/nao
http://conference.squ.edu.om/nao




Contents

A Conic Representation of the Convex Hull of Disjunctive Sets
and Conic Cuts for Integer Second Order Cone Optimization . . . . . . . . . . . . . 1
Pietro Belotti, Julio C. Góez, Imre Pólik, Ted K. Ralphs,
and Tamás Terlaky

Runge–Kutta Methods for Ordinary Differential Equations . . . . . . . . . . . . . . . 37
J.C. Butcher

A Positive Barzilai–Borwein-Like Stepsize and an Extension
for Symmetric Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Yu-Hong Dai, Mehiddin Al-Baali, and Xiaoqi Yang

Necessary Optimality Conditions for the Control of Partial
Integro-Differential Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Leonhard Frerick, Ekkehard W. Sachs, and Lukas A. Zimmer

The AMPL Modeling Language: An Aid to Formulating
and Solving Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
David M. Gay

An Interior-Point �1-Penalty Method for Nonlinear Optimization . . . . . . . . . 117
Nick I.M. Gould, Dominique Orban, and Philippe L. Toint

An �1-Penalty Scheme for the Optimal Control of Elliptic
Variational Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
M. Hintermüller, C. Löbhard, and M.H. Tber

Reduced Space Dynamics-Based Geo-Statistical Prior
Sampling for Uncertainty Quantification of End Goal Decisions . . . . . . . . . . . 191
Lior Horesh, Andrew R. Conn, Eduardo A. Jimenez,
and Gijs M. van Essen

Solving Multiscale Linear Programs Using the Simplex
Method in Quadruple Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Ding Ma and Michael A. Saunders

vii



viii Contents

Real and Integer Extended Rank Reduction Formulas
and Matrix Decompositions: A Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Nezam Mahdavi-Amiri and Effat Golpar-Raboky

Distributed Block Coordinate Descent for Minimizing Partially
Separable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
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A Conic Representation of the Convex Hull
of Disjunctive Sets and Conic Cuts for Integer
Second Order Cone Optimization

Pietro Belotti, Julio C. Góez, Imre Pólik, Ted K. Ralphs, and Tamás Terlaky

Abstract We study the convex hull of the intersection of a convex set E and a
disjunctive set. This intersection is at the core of solution techniques for Mixed
Integer Convex Optimization. We prove that if there exists a cone K (resp., a cylinder
C) that has the same intersection with the boundary of the disjunction as E, then the
convex hull is the intersection of E with K (resp., C).

The existence of such a cone (resp., a cylinder) is difficult to prove for general
conic optimization. We prove existence and unicity of a second order cone (resp.,
a cylinder), when E is the intersection of an affine space and a second order
cone (resp., a cylinder). We also provide a method for finding that cone, and
hence the convex hull, for the continuous relaxation of the feasible set of a Mixed
Integer Second Order Cone Optimization (MISOCO) problem, assumed to be the
intersection of an ellipsoid with a general linear disjunction. This cone provides
a new conic cut for MISOCO that can be used in branch-and-cut algorithms for
MISOCO problems.
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1 Introduction

We consider the very general class of Mixed Integer Convex Optimization problems,
which can be formulated as min{c�x : x ∈ E ,x ∈ Z

p×R
n−p}, where E is a closed

convex set. Solving such a problem often requires finding the convex hull of the
intersection of E with a disjunction A ∪B, where A and B are two half-spaces.
In the first part of this paper, using proper disjointness, nonempty, and boundedness
assumptions on the intersection E ∩ (A ∪B), we prove that conv(E ∩ (A ∪B)) is
the intersection of E with an appropriate cone K .

In the second part of this paper, we apply our result to a specific subclass of
optimization problems where the set E is the intersection of an affine space and
a second order cone. In order to establish a mindset that encompasses both mixed
integer convex problems and mixed integer conic problems, we explicitly describe
E as the intersection of a cone and an affine subspace. Note that any mixed integer
convex problem can be described as a mixed integer conic optimization (MICO)
problem and vice versa, since the former is a superset of the latter and any convex
problem can be turned into a conic one by adding an auxiliary variable. Therefore,
we consider problems of the form:

minimize: c�x

subject to: Ax = r (MICO) (1)

x ∈K

x ∈ Z
l×R

n−l,

where A∈R
m×n, c∈R

n, r ∈R
m, K is a convex cone, and the rows of A are linearly

independent.
MICO problems comprise a wide range of discrete optimization problems. A

very important class of MICO is the class of mixed integer second order cone
optimization (MISOCO) problems, which find applications in engineering, finance,
and inventory problems [3, 10, 16, 20]. Theoretically, the integrality constraint can
be tackled by means of a generic branch-and-bound algorithm. However, experience
with mixed integer linear optimization (MILO) has shown that the development of
methods for generating valid inequalities for the problem can improve the efficiency
of the algorithm significantly [12]. The aim of this paper is the development of conic
cuts for MICO problems.1

MICO problems are a class of non-convex optimization problems in which
the non-convexity comes from the integrality of a subset of variables. Such non-
convexity can be dealt with by means of disjunctive methods, which partition the
set of feasible solutions into two or more feasible subsets. Disjunctive methods

1A cone is called a conic cut if it cuts off some non-integer solutions but none of the feasible integer
solutions.
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in mixed integer linear optimization have been studied extensively during the past
decades [4, 5, 13, 17]. The contribution of this paper is twofold. First, we introduce
conditions for the existence of a conic inequality arising as a disjunctive inequality
for the general case of MICO that yields the convex hull of the intersection between
a convex set and a disjunctive set (defined below). Second, we describe a procedure
to find such a cut in the MISOCO case. The latter result allows us to generate second
order cones for tightening the continuous relaxation of the MISOCO problem.

This paper is organized as follows. In Section 2 we present a brief review of
the previous work done in MICO. Then, in Section 3 we derive conditions for the
existence and unicity of the convex hull of the intersection between a disjunctive set
and a closed convex set. In Section 4 we consider the special case of MISOCO: we
introduce the disjunctive conic cut and a procedure to find it. We then compare our
disjunctive cut with the conic cut introduced in [1] in Section 5. We provide some
concluding remarks in Section 6.

Notation

Sets are denoted by script capital letters, matrices by capital letters, vectors by
lowercase letters, and scalars by Greek letters. For a matrix M, Mij is the (i, j)
element, while Mj is the jth column. For a vector v, its ith component is denoted
as vi. For any two sets S1 and S2, the expression S1 ⊂S2 is used to denote that
S1 is a proper subset of S2. The notation ri(•) is used to refer to the relative interior
of a set.

2 Literature Review

There have been several attempts to extend some of the techniques developed for
MILO to the case of MICO. For the MISOCO case, one approach uses outer linear
approximations of second order cones. Vielma et al. [25] used the polynomial-
size polyhedral relaxation introduced by Ben-Tal and Nemirovski [9] in their
“lifted linear programming” branch-and-bound algorithm for MISOCO problems.
Krokhmal and Soberanis [19] generalized this approach for integer p-order conic
optimization. Drewes [15] presented subgradient-based linear outer approximations
for the second order cone constraints. This allows one to approximate the MISOCO
problem by a mixed integer linear problem in a hybrid outer approximation branch-
and-bound algorithm.

Stubbs and Mehrotra [24] generalized the lift-and-project algorithm of Balas et
al. [6] for 0-1 MILO to 0-1 mixed integer convex problems. Later, Çezik and Iyengar
[11] investigated the generation of valid convex cuts for 0-1 MICO problems and
discussed how to extend the Chvátal-Gomory procedure for generating linear cuts
for MICO problems and the extension of lift-and-project techniques for MICO
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problems. In particular, they showed how to generate linear and convex quadratic
valid inequalities using the relaxation obtained by a project procedure. Later,
Drewes [15] reviews the ideas proposed in [11] and [24] and applies them to
MISOCO.

Atamtürk and Narayanan [1, 2] proposed two procedures for MISOCO problems
that generate valid second order conic cuts. They first studied a generic lifting
procedure for MICO [2], and then [1] extended the mixed integer rounding [22]
procedure to the MISOCO case. The main idea in [1] is to reformulate a second
order conic constraint using a set of two-dimensional second order cones. In this
new reformulation the set of inequalities are called polyhedral second-order conic
constraint. The authors used polyhedral analysis for studying these inequalities
separately. This allowed the derivation of a mixed integer rounding procedure,
which yields a nonlinear conic mixed integer rounding. A generalization of the use
of polyhedral second-order conic constraints is presented by Masihabadi et al. [21].

Dadush et al. [14] studied the split closure of a strictly convex body and present
a conic quadratic inequality. The conic quadratic inequality is introduced to present
an example of a non-polyhedral split closure. In particular, the authors showed
that it is necessary to consider conic quadratic inequalities in order to be able
to describe the split closure of an ellipsoid. This independently obtained conic
quadratic inequality coincides with the conic cut for MISOCO problems presented
in Section 4.1.

3 The Convex Hull of a Disjunctive Convex Set

We focus on the convex hull of the intersection of a full-dimensional closed convex
set E ⊆ R

n, n > 1 with a disjunctive set. Consider a disjunctive set of the form

A ∪B, (2)

where A = {x ∈ R
n | a�x ≥ α} and B = {x ∈ R

n | b�x ≤ β} are two half-spaces
with a,b ∈ R

n, and (a,α), (b,β ) are not proportional, i.e., �η ∈ R such that a =
ηb, α = ηβ . This section presents a characterization of the convex hull of the set
E ∩ (A ∪B).

Let A = = {x ∈ R
n | a�x = α} and B= = {x ∈ R

n | b�x = β} denote the
boundary hyperplanes of the half-spaces A and B, respectively. Throughout this
paper, we assume the following about the sets E , A , and B:

Assumption 1. A ∩B∩E is empty.

Assumption 2. E ∩A = and E ∩B= are nonempty and bounded.
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3.1 Disjunctive Conic Cut

Let us recall the definition of a convex cone, as given by Barvinok [7, page 65].

Definition 1 (Convex Cone). A set K ⊆ R
n is a convex cone if 0 ∈K and if for

any two points x,y ∈K and for any θ ,ϑ ≥ 0, we have z = θx+ϑy ∈K .

Remark 1. Observe that we can define a set ˆK as a translated cone if there exists
a vector x∗ ∈ ˆK , called the vertex of ˆK , such that for any θ ,ϑ ≥ 0 and x,y ∈ ˆK ,
x∗+(θ (x− x∗)+ϑ(y− x∗)) ∈ ˆK . One can use the translation K = {y ∈ R

n | y =
x− x∗,x ∈ ˆK } to get a cone K in the sense of Definition 1. Although translated
cones arise naturally in this setting, we assume w.l.o.g. that all cones have a vertex
at the origin unless otherwise specified.

Definition 2. A closed convex cone K ⊂ R
n with dim(K ) > 1 is called a

disjunctive conic cut (DCC) for the set E and the disjunctive set A ∪B if

conv(E ∩ (A ∪B)) = E ∩K .

The following proposition gives a sufficient condition for a convex cone K to
be a disjunctive conic cut for the set E ∩ (A ∪B).

Proposition 1. A convex cone K ⊂ R
n with dim(K )> 1 is a DCC for E and the

disjunctive set A ∪B if

K ∩A = = E ∩A = and K ∩B= = E ∩B=. (3)

Figure 1 illustrates Proposition 1, where the set E ⊂ R
3 is the epigraph of a

paraboloid. Before proving Proposition 1, we first provide a set of lemmas that will
make the proof more compact. To begin, let us recall the definition of a base of a
cone presented by Barvinok [7, page 66].

Definition 3 (Base of a Cone). Let K ⊂ R
n be a convex cone. A set L ⊂K is

called a base of K if 0 /∈L and for every point u ∈K , u �= 0, there is a unique
v ∈L and λ > 0 such that u = λv.

We can use Definition 3 to state Lemma 1, which shows a key relationship
between the cone K and the hyperplanes A = and B=.

Lemma 1. Consider a half-space G = {x ∈R
n | g�x≤ ρ}. Assume that E ∩G = is

nonempty, bounded, and does not contain the origin 0. If there exists a convex cone
K ⊆ R

n, with dim(K )> 1 and K ∩G = = E ∩G =, then E ∩G = is a base of K .

Proof. From the assumptions in the lemma, we have that 0 /∈K ∩G = = E ∩G =.
We may assume w.l.o.g. that 0 ∈ G . First, since K ∩G = = E ∩G = is bounded we
know that there exists no ray of K parallel to G =. Now, let us suppose that E ∩G =

is not a base for K . From Definition 3 we know that there must exist a point x such
that x∈K but there exists no point x̂∈ E ∩G = for uniquely representing x as λ x̂ for
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Fig. 1 Illustration of a disjunctive conic cut as specified in Proposition 1. (a) A =, B=, and E . (b)
The cone yielding conv(E ∩ (A ∪B)). (c) E ∩K . (d) conv(E ∩ (A ∪B))

some λ > 0. Then, there is a ray in K parallel to the hyperplane G =. This implies
that the set K ∩G = is unbounded, which contradicts the boundedness assumption
of E ∩G =. Therefore, E ∩G = is a base for K . �

The result of Lemma 1 allows us to show that K is a pointed cone, which is an
important result for our further development.

Lemma 2. Any convex cone K satisfying Lemma 1 must be pointed.

Proof. Assume that K is not pointed. This means that K contains a line. Hence,
there exist two vectors r̂, r̄ ∈K \ {0} such that r̂ = −r̄. Additionally, we have that
μ r̂+ ν r̄ ∈K , for any μ ,ν > 0. Now, since E ∩G = is a base of K , there exists a
point x̂∈ E ∩G = in the ray defined by r̂ such that x̂= μ r̂, for some μ > 0. Similarly,
there exists a point x̄∈ E ∩G = in the ray defined by r̄ and ν > 0∈R such that x̄= ν r̄.
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Given that G = is an affine set, we have

γ x̂+(1− γ)x̄ ∈ G =, ∀γ ∈ R.

Expressing x̂ and x̄ in term of r̂ and r̄ gives

γ x̂+(1− γ)x̄ = γ(μ r̂)+ (1− γ)(ν r̄)

=−γ(μ r̄)+ (1− γ)(ν r̄)

= ν r̄− γ(μ+ν)r̄.

Hence, if γ = 0, then ν r̄ ∈ K . On the other hand, if γ < 0, we get that
ν r̄− γ(μ + ν)r̄ ∈K , since it is a point on the ray defined by r̄. Finally, if γ > 0,
then ν r̄− γ(μ + ν)r̄ = ν r̄ + γ(μ + ν)r̂ ∈K , since it is a positive combination of
two points in the cone K . Hence, K ∩G = contains a whole line, which contradicts
the assumption that K ∩G= is bounded. �

We can now prove that the vertex of the cone K belongs exclusively to either
A or B. Observe that this does not mean that the set A ∩B is empty, but that the
vertex of K is not contained in it even when A ∩B is nonempty.

Lemma 3. Let K ⊆R
n be a convex cone, with dim(K )> 1, such that E ∩A = =

K ∩A = and E ∩B= =K ∩B=. Then the origin x∗ = 0 is either in A or in B,
but not in A ∩B.

Proof. First, consider the case when x∗ ∈ A =. Then, we have that x∗ ∈ E ∩A =,
since E ∩A = = K ∩A =. Hence, from Assumption 1, we have that x∗ /∈ B.
Similarly, we have that if x∗ ∈B=, then x∗ /∈A .

Second, assume that neither A = nor B= contain x∗. By Lemma 1 and Assump-
tion 2 we have that E ∩A = and E ∩B= are bases of the cone K . Additionally,
by Lemma 2 we know that the cone K is pointed. Let x be a unit length vector
defining a ray of K . Then, there are two points x̂ ∈ E ∩A = and x̄ ∈ E ∩B= such
that x̂ = μx and x̄ = νx for some μ ,ν > 0.

We prove first that x∗ ∈A ∪B. Let us assume to the contrary that x∗ ∈ ¯A ∩ B̄,
where the bar denotes the complement set. Let y = γx for γ ≥ 0 be a point in the
ray defined by x. Then, for any γ < min{ν,μ} we have that y ∈ ¯A ∩B̄, and w.l.o.g.
we may assume that ν < μ . Note that we cannot have ν = μ as, by Assumption 1,
A ∩B ∩E = /0. Additionally, for any γ ≥ ν we have that y ∈B, so the point x̂ is
contained in the half-spaceB, andA ∩B∩E �= /0, which contradicts Assumption 1.

Now, we prove that x∗ /∈A ∩B. Let us assume to the contrary that x∗ ∈A ∩B,
and let y = γ x̄+(1− γ)x̂ for some 0 ≤ γ ≤ 1. Then, we have that y ∈A or y ∈B.
When ν < μ , set γ = 1 such that y= x̄ and we have y∈A ∩B=∩E . Similarly, when
μ < ν , set γ = 0 such that y = x̂ and we have y ∈A =∩B∩E . Hence, x∗ ∈A ∩B
implies A ∩B∩E �= /0, which contradicts Assumption 1. �

We are able now to show that E ∩ (A ∪B) ⊂K . This will facilitate the proof
of the relation conv(E ∩ (A ∪B))⊆ E ∩K .
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Lemma 4. Let K ⊆ R
n be a convex cone, with dim(K )> 1, for which (3) holds.

Then:

(E ∩A )⊂K and (E ∩B)⊂K .

Proof. We start showing that if E ∩A = is a single point, then E ∩A ⊆K . First,
if E ∩A = is a single point, then 0 ∈ E ∩A =, otherwise dim(K ) = 1. The last
statement follows from the assumption E ∩A = =K ∩A =. Henceforth, we obtain
in this case that E ∩A = = {0}. Now, it is clear that E ∩A = ⊆ E ∩A , hence we
need to show that E ∩A ⊆ E ∩A =. Assume to the contrary that there exists a point
x ∈ E ∩A such that x /∈ E ∩A =. Additionally, consider a point y ∈ E ∩B= such
that the vertex 0 is not contained in the line induced by x and y, which implies that
y /∈ E ∩A . Note that the point y exists because dim(K ) = 1. Then x, y are in E , and
a�x > 0 > a�y. Additionally, from convexity of E we have that for any 0 ≤ γ ≤ 1
the point γx+(1− γ)y ∈ E . Thus, there exists a convex combination z of x and y
with a�z = 0, i.e. z in (E ∩A =) \ {0}, which contradicts that E ∩A = is a single
point. Henceforth, we obtain that E ∩A = E ∩A = ⊆K . Similarly, if E ∩B= is a
single point, then one can show that E ∩B = E ∩B= ⊆K . Note that E ∩A = and
E ∩B= cannot be single points simultaneously, which follows from Assumption 1
and dim(K )> 1.

Now, we prove that if E ∩A = is not a single point then (E ∩A ) ⊆ K . Let
us assume to the contrary that there exists a vector x such that x ∈ (E ∩A ) but
x /∈K . First, by the separation theorem,2 there exists a hyperplane H separating x
and K that contains a ray of K , denoted by Kr, and does not contain x. Here the
assumption of dim(K )> 1 is needed, since the hyperplane H does not exist when
dim(K ) = 1.

From Lemma 3 we know that 0 ∈A or 0 ∈B. On the one hand, if 0 /∈ E ∩B=,
then it follows from (3), Assumption 2, Lemma 1, that the set E ∩B= is a base for
the cone K . Hence, there exists a vector w ∈ E ∩B= that defines the ray Kr. On
the other hand, if 0 ∈ E ∩B=, then we know that E ∩B= = {0}. In this case, one
can take w = 0, since 0 ∈Kr.

Given that the set E is convex, λx+(1− λ )w ∈ E for all 0 ≤ λ ≤ 1. On the
other hand, since w is a point on a face of K , we have that λx+(1−λ )w /∈K for
0 < λ ≤ 1. Furthermore, since x ∈ (E ∩A ) and A ∩B∩E = /0, we have a�x≥ α
and a�w < α . Hence, from the equation a�(λx+(1−λ )w) = λa�x+(1−λ )a�w,
there exists a λ ∈ (0,1] such that a�(λx +(1− λ )w) = α . Therefore, there is a

2Lemma 8.2 in Barvinok [7, page 65] and Theorems 11.3 and 11.7 in Rockafeller [23, pages 97
and 100].
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vector x̂ = λx+(1−λ )w for some λ ∈ (0,1], such that x̂ ∈ E ∩A =, but x̂ /∈K ,
which contradicts condition (3). Hence, (E ∩A )⊆K . Analogously, one can prove
that (E ∩B)⊆K when (E ∩B) is not a single point.

Recall that the sets E ∩A = and E ∩B= are disjoint and nonempty. Then, by
condition (3) we have that E ∩A �= K and E ∩B �= K , and the result of the
lemma follows. �

Now we present the proof of Proposition 1.

Proof (Proof of Proposition 1). We first prove that conv(E ∩ (A ∪B)) = E ∩K .
Consider a point x ∈ (E ∩A )∪ (E ∩B). Then, from Lemma 4 we have that x ∈
E ∩K . Now, consider any two points x,y ∈ (E ∩A )∪ (E ∩B). Then, since both
K and E are convex, for any 0 ≤ λ ≤ 1 we have λx+(1−λ )y ∈ E ∩K . Hence,
conv(E ∩ (A ∪B))⊆ E ∩K .

Consider a point x ∈ E ∩K . First, if x ∈ E ∩A or x ∈ E ∩B, we have that
x ∈ conv(E ∩ (A ∪B)). Assume then that x /∈ (E ∩A )∪ (E ∩B), which implies
x ∈ ( ¯A ∩B̄∩K ). Furthermore, there are two vectors x̂ ∈ E ∩A = and x̄ ∈ E ∩B=

such that, for some μ ,ν ≥ 0, x̂ = μx and x̄ = νx. This last statement follows from
Lemma 1 directly if E ∩A = and E ∩B= are not single points. Now, if one of
the intersections is a single point, in the proof of Lemma 4 we showed that such
intersection must be the vertex of K . In this case, the statement follows from
applying Lemma 1 to the remaining intersection. From Lemma 3, the vertex of the
cone is either in A or B but not in both. Assume w.l.o.g. that the vertex of the cone
is in B. Then, ν < 1 < μ and there exists a γ ∈ (0,1) such that γν+(1− γ)μ = 1.
Hence, we can write

γ x̄+(1− γ)x̂ = γνx+(1− γ)μx

= (γν+(1− γ)μ)x
= x.

Therefore, x can be expressed as a convex combination of two points in (E ∩A =)∪
(E ∩B=). Hence, any point x∈ (E ∩K ) can be written as a convex combination of
two points in (E ∩A )∪ (E ∩B). Thus, (E ∩K ) ⊆ conv(E ∩ (A ∪B)). Finally,
since the subset relation is valid in both directions, this proves that (E ∩K ) =
conv(E ∩ (A ∪B)). Finally, since (E ∩A =) and (E ∩B=) are compact sets, then
it follows from Lemma 1 and Lemma 8.6 in Barvinok [7, page 67] that K is closed.

�
We close the analysis by showing that if a coneK exists satisfying the conditions

of Proposition 1 exist, then it is unique.

Lemma 5. If a closed convex cone K exists, with dim(K ) > 1, satisfying
property (3), then K is unique.
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Proof. Assume to the contrary that there are two different cones K1 and K2 that
satisfy property (3). Let v1 ∈K1 be the vertex of K1 and v2 ∈K2 be the vertex of
K2. Now, we may assume w.l.o.g. that v1 = 0.

First, we prove that if either E ∩A = or E ∩B= is a single point, then K1 =K2.
Since dim(K1)> 1 and dim(K2)> 1, we have that E ∩A = and E ∩B= cannot be
both single point sets. Let u ∈ E , and assume that E ∩A = = {u}, then K1∩A = =
{u} and K2 ∩A = = {u}. Now, if u �= v1, then we have that K1 = {θu | θ ≥ 0},
which implies that the set E ∩B= is a single point. Thus, we have that u= v1. On the
other hand, if u �= v2, then we have that K2 = {y ∈ R

n | y = v2 +θ (u− v2),θ ≥ 0},
which also implies that the set E ∩B= is a single point. Hence, we have that u = v2.
Therefore, we have that v1 = v2, and since E ∩B= = K1 ∩B= = K2 ∩B= and
K2∩B= is a base for K1 and K2, we obtain that K1 =K2. A symmetric argument
would show that K1 =K2 if E ∩B= = {z}.

Second, we show that if {v1,v2}∩ (A =∪B=) = /0, then v1 ∈K2 and v2 ∈K1.
Assume to the contrary that v1 /∈K2. Here use a similar argument to the one in the
proof of Lemma 4. Note that dim(K2)> 1. By the separation theorem, there exists a
hyperplaneH separating v1 and K2 properly such that v1 /∈H . From Lemma 1, we
know that the sets E ∩A = and E ∩B= are bases forK2. Hence, there exists a vector
w∈ E ∩B= such that the extreme ray Rw = {v2+γ(w−v2) | γ ≥ 0} of K2 is in H .
Additionally, by Lemma 3 we have that v1 is either in A or B but not in A ∩B.
Let us assume that v1 ∈A . Given that K1 is convex, λv1 +(1−λ )w ∈K1 for all
0≤ λ ≤ 1. On the other hand, since w is a vector on an exposed face of K2, for 0 <
λ ≤ 1 we have λv1 +(1−λ )w /∈K2. Furthermore, since v1 ∈A , by Assumption 1
we have a�v1 ≥ α and a�w < α . Hence, from the equation a�(λv1 +(1−λ )w) =
λa�v1 +(1−λ )a�w, we may obtain 0 < λ ≤ 1 such that a�(λv1 +(1−λ )w) = α .
Therefore, there exists a vector u = λv1 +(1−λ )w for some 0 < λ ≤ 1, such that
u ∈ K1 ∩A =, but u /∈ K2, which contradicts K1 ∩A = = K2 ∩A =. When we
assume v1 ∈B, we get a contradiction in a similar manner. Hence, we obtain that
v1 ∈K2. Using a similar argument one can prove that v2 ∈K1.

Third, we show that if v1 �= v2, then they cannot be both in A or in B. Assume
to the contrary that v1 ∈A and v2 ∈A . Note that if α > 0, then we have v1 /∈A ,
thus we assume that α ≤ 0. On the one hand, since v1 ∈K2 we have that Rv1 =
{(1− θ )v2 | θ ≥ 0} ⊆K2. Hence, if a�v2 ≤ 0, then Rv1 ⊆ A which implies that
Rv1 is parallel toA =, and we obtain that A =∩K2 is unbounded. On the other hand,
since v2 ∈K1 we have that Rv2 = {θv2 | θ ≥ 0} ⊆K1. Hence, if a�v2 ≥ 0, then
Rv2 ⊆ A , which implies that Rv2 is parallel to A =, and we obtain that A = ∩K1

is unbounded. Hence, if v1 ∈ A and v2 ∈ A , then we obtain a contradiction to
Assumption 2. Similarly, we can prove that v1 and v2 cannot be simultaneously in
B.

Finally, we show that if v1 and v2 are in different half-spaces and {v1,v2} ∩
(A = ∪B=) = /0, then this contradicts the assumption that K1 ∩A = = K2 ∩A =

and K1 ∩B= = K2 ∩B=. Assume that v1 ∈ A and v2 ∈ B. Recall that in this
case v1 ∈K2 and v2 ∈K1, thus the set Rv1 = {(1−θ )v2 | θ ≥ 0} ⊆K2 and Rv2 =
{θv2 | θ ≥ 0} ⊆ K1. Now, since dim(K1) > 1 and B= ∩K1 is a base of K1,
there is at least one extreme ray Rw = {γw | γ ≥ 0} of K1 such that v2 /∈Rw and
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Fig. 2 Example of
unbounded intersections

w ∈K1∩B= =K2∩B= is a vector in the boundary of K1. Now, if w ∈ ri(K2),
then, since K2∩B= is bounded and is a base of K2, we have that w∈ ri(K2∩B=).
Thus, in this case there exists a vector u ∈K2∩B= such that u /∈K1∩B=, which
contradicts K1∩B= =K2∩B=.

Assume now that w is a vector on the boundary of K2. Since w ∈K2, we have
that {v2 + γ(w− v2) | γ ≥ 0} ⊆K2. Moreover, since v2 ∈ B and w ∈ B=, there
exists a γ̂ > 1 such that a�(v2 + γ̂(w−v2)) = α . However, since w is on the extreme
ray Rw of K1 and v2 /∈Rw, then the vector (v2 + γ̂(w− v2)) /∈K1. This contradicts
the assumption K1∩A = =K2∩A =. A symmetric argument is valid if we assume
that v1 ∈B and v2 ∈A . Hence, since v1 and v2 cannot be in different half-spaces,
then v1 = v2. In conclusion, we have that K1 =K2, since E ∩A = and E ∩B= are
bases for K1 and K2, which proves that the disjunctive conic cut is unique. �

Figure 2 illustrates how Lemma 5 fails when the intersections E ∩A = or E ∩B=

are unbounded. In this case, one can see that K ∩E is the convex hull of E ∩ (A ∪
B). The other two cones K1 and K2 have the same intersections with A = and B=

as the convex set E . However, the intersections K1 ∩ E and K2 ∩ E fail to give
conv(E ∩ (A ∪B)). Indeed, K1 and K2 are not even valid for the convex hull.

Another important case to consider here is when the set E ∩ (A ∪B) is of
dimension n = 1. Figure 3a illustrates this case. In particular, we can see that the
uniqueness in Lemma 5 fails in this case too. Observe the cone K1 in Figure 3b and
the cone K2 in Figure 3c, which are given by two half-lines. These two cones have
the same intersections with A = and B= as the set E . However, the intersections
E ∩K1 and E ∩K2 differ from conv(E ∩ (A ∪B)). In this case, the cone K in
Figure 3c, given by a line, is such that E ∩K = conv(E ∩ (A ∪B)).

3.2 Disjunctive Cylindrical Cut

Let us now present the definition of a convex cylinder.
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Fig. 3 Example when the set E ∩ (A ∪B) has dimension n = 1. (a) A =, B=, and E . (b) Cone
K1 does not give conv(E ∩(A ∪B)). (c) Cone K2 does not give conv(E ∩(A ∪B)). (d) K ∩E =
conv(E ∩ (A ∪B))

Definition 4 (Convex Cylinder). Let D ⊆R
n be a convex set and d0 ∈R

n a vector.
Then, the set C = {x ∈ R

n|x = d+σd0,d ∈D ,σ ∈R} is a convex cylinder in R
n.

Definition 5. A closed convex cylinder C is a disjunctive cylindrical cut for the set
E and the disjunctive set A ∪B if

conv(E ∩ (A ∪B)) = C ∩E .

The following proposition gives a sufficient condition for a convex cylinder C
to be a disjunctive cylindrical cut. The result and proofs for the cylinder case are
similar to the cone case, still we provide them for completeness.

Proposition 2. A convex cylinder C is a disjunctive cylindrical cut for E and the
disjunctive set A ∪B if

C ∩A = = E ∩A = and C ∩B= = E ∩B=. (4)
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Fig. 4 Illustration of a disjunctive cylindrical cut as specified in Proposition 2. (a) A =, B=, and
E . (b) The cylinder C yielding conv(E ∩ (A ∪B)). (c) E ∩C . (d) conv(E ∩ (A ∪B))

Figure 4 illustrates Proposition 2, where the set E is the epigraph of a paraboloid.
Before proving Proposition 2 we first provide a set of lemmas that will ease to
understand the proof. First, let us define the base of a cylinder in a similar way as
the base of a cone is defined in [7].

Definition 6 (Base of a Cylinder). Let C ⊂R
n be a convex cylinder. A set D ⊂C

is called a base of C if, for every point x ∈ C , there is a unique d ∈ D and σ ∈ R

such that x = d+σd0.

Lemma 6. Consider a half-space G = {x ∈R
n | g�x≤ ρ}. Assume that E ∩G = is

nonempty and bounded. If C ∩G = = E ∩G =, then E ∩G= is a base for C .

Proof. Let C be a cylinder such that C ∩G= = E ∩G =. Observe that if g�d0 = 0
then for any x̂ ∈ C ∩G = we have that {y ∈ R

n | y = x̂+σd0,σ ∈ R} ⊆ C ∩G =,
which is an unbounded set. Hence, g�d0 �= 0 because C ∩G = = E ∩G = is bounded.
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Now, let us assume that E ∩G = is not a base for C . Then, from Definition 6 we
know that there exists a point x ∈ C such that there exists no point x̄ ∈ E ∩ G =

that represents x as x̄ + σd0 for some σ ∈ R. Thus, {y ∈ R
n | y = x + σd0,σ ∈

R}∩ E ∩G = = /0. However, with σ̂ = (ρ − g�x)/g�d0 we obtain that x+ σ̂d0 ∈
C ∩G = = E ∩G = whenever g�d0 �= 0. Therefore, the relation {y ∈ R

n | y = x+
σd0,σ ∈ R}∩E ∩G = = /0 is true only if g�d0 = 0. Hence, if E ∩G = is not a base
for C , then we have that E ∩G = is unbounded, which contradicts the boundedness
assumption of E ∩G =. Now, if g�d0 �= 0, then given an x ∈ C we have that {y ∈
R

n | y = x+σd0,σ ∈ R}∩E ∩G = = x+ σ̂d0. Hence, for x̄ = x− σ̂d0, we obtain
that x is uniquely defined by x̄E ∩G = and −σ̂ as x = x̄− σ̂d0. Therefore, E ∩G = is
a base for C . �

The next lemma states the relationship between the cylinder C and the intersec-
tions of E with the half-spaces A and B.

Lemma 7. Let C ⊂ R
n be a convex cylinder C , for which (4) holds. Then

(E ∩A )⊂ C and (E ∩B)⊂ C .

Proof. We prove first that (E ∩A ) ⊆ C . Let us assume to the contrary that there
exists x ∈ (E ∩A ) such that x /∈ C . First, by the separation theorem, there exists a
hyperplaneH = {y∈R

n | h�y = η} separating x from C . From the definition of C
we have that h�d0 = 0. Now, let H be a supporting hyperplane of C , which implies
that H ∩C is an exposed face of C . Note that for any ŷ ∈H ∩C the inclusion
{y ∈ R

n | y = ŷ + σd0,σ ∈ R} ⊆ H ∩C must hold. Additionally, according to
Definition 6, by Assumption 2, and Lemma 6, the sets E ∩A = and E ∩B= are
bases for C . Hence, there exists a point w ∈ E ∩B= such that w ∈H , and w is in
an exposed face of C .

Convexity of E implies λx+(1−λ )w∈ E for any λ ∈ [0,1]. On the other hand,
the point w is in an exposed face of C , so λx+(1−λ )w /∈ C for 0 < λ ≤ 1. Since
x ∈ (E ∩A ) and A ∩B∩E = /0, we have that a�x≥ α and a�w < α . Hence, from
the equation a�(λx+ (1− λ )w) = λa�x+(1− λ )a�w, there must exist a value
0 < λ ≤ 1 such that a�(λx+(1−λ )w) = α . Therefore, for some 0 < λ ≤ 1 there
is a point x̂ = λx+(1−λ )w, such that x̂ ∈ E ∩A =, but x̂ /∈ C , which contradicts
condition (4). Hence, (E ∩A )⊆ C . One can prove (E ∩B)⊆ C analogously.

Recall that the sets E ∩A = and E ∩B= are disjoint and nonempty. Then,
condition (4) implies that E ∩A �= C and E ∩B �= C , and the result of the lemma
follows. �

Now we can present the proof of Proposition 2.

Proof (Proof of Proposition 2). First, consider a vector x ∈ (E ∩A )∪ (E ∩B).
Then, Lemma 7 implies that x ∈ E ∩C . Consider any two points x,y ∈ (E ∩A )∪
(E ∩B). Then, since both C and E are convex, for all 0 ≤ λ ≤ 1 the convex
combination λx+(1−λ )y∈ E ∩C . Hence, conv(E ∩ (A ∪B)) ⊆ (E ∩C ).

Consider now a point x ∈ (E ∩C ). First, if x ∈ (E ∩A ) or x ∈ (E ∩B), we
have that x ∈ conv(E ∩ (A ∪B)). Suppose then that x /∈ (E ∩A ) ∪ (E ∩B).
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Then, x∈ ( ¯A ∩B̄∩C ). Furthermore, by Lemma 6 there are two vectors x̂∈E ∩A =

and x̄∈ E ∩B= such that x = x̂+μd0 and x = x̄+νd0, for some μ ,ν ∈R. Note that
μ and ν must have opposite signs, since x /∈ (E ∩A )∪ (E ∩B), otherwise one of
the equalities x = x̂+ μd0 or x = x̄+νd0 would not be true. Let us assume w.l.o.g.
that ν > 0 and μ < 0. Then, we have that x = λ x̂+(1−λ )x̄, where λ = ν/(ν−μ)
and 0 < λ < 1. In other words, x is a convex combination of x̂ and x̄. Since x is
an arbitrary point we have that any point x ∈ (E ∩C ) can be written as a convex
combination of two points in (E ∩A )∪ (E ∩B). As a conclusion, we have that
(E ∩C )⊆ conv(E ∩(A ∪B)). Finally, since (E ∩A =) and (E ∩B=) are compact
sets, then it follows from Lemmas 6 and 11 that C is closed. �
Lemma 8. If a convex cylinder C with property (4) exists, then C is unique.

Proof. Assume that there exist two different cylinders C1 = {x ∈ R
n | x = d1 +

γd1
0,d

1 ∈D1,γ ∈R} and C2 = {x ∈R
n | x = d2 +σd2

0,d
2 ∈D2,σ ∈R} that satisfy

Definition 5. Then, we have that C1∩A = = C2∩A = and C1∩B= = C2∩B=.
Given that C1 �= C2 there must exist a point x̂ that belongs only to one cylinder,

and w.l.o.g. we assume that x̂∈C1 and x̂ /∈C2. Observe that if x̂∈A ∩B, then there
exists a point x̄ ∈ C1 such that either x̄ ∈ A = ∩B or x̄ ∈ A ∩B=, which implies
that x̄ ∈ E ∩A ∩B, contradicting Assumption 1.

Let us begin assuming that x̂ ∈ ¯A ∩ B̄. Then, given that E ∩A = is a base for
both cylinders there exists a γ̂ ∈ R such that x̂ = d̂1 + γ̂d1

0 for some d̂1 ∈ E ∩A = =
C1 ∩A = = C2 ∩A =. On the other hand, since E ∩B= is a base for C1, there
exists γ̄ ∈ R such that x̂ = d̄1 + γ̄d1

0 for some d̄1 ∈ E ∩B= = C1 ∩B=. Hence,
x̂ = λ d̄1 +(1− λ )d̂1 where λ = γ̂/(γ̂ − γ̄) ≤ 1, since γ̂ and γ̄ must have opposite
signs. Additionally, given that the two cylinders are convex we get that d̄1 /∈ C2.
Then, C1∩B= �= C2∩B=, which is a contradiction.

Let us assume now that x̂∈A and x̂ /∈B. By the separation theorem, there exists
a hyperplane H = {x ∈ R

n | h�x = η} separating x̂ from C2. By the definition
of a cylinder, we have h�d2

0 = 0. Now, let H be a supporting hyperplane of C2,
which implies that H ∩C2 is an exposed face of C2. Note that for any ŷ ∈H ∩C2

we have that {y ∈ R
n | y = ŷ + σd2

0,σ ∈ R} ⊆ H ∩C2. Additionally, we know
that the sets E ∩A = and E ∩B= are bases for C2. Hence, there exists a point
w ∈ C2∩E = E ∩B= such that w ∈H , and w is in an exposed face of C2.

Convexity of C1 implies that for any λ ∈ [0,1], λ x̂+(1−λ )w∈C1. On the other
hand, since w ∈H is a point in an exposed face of C2, λ x̂+(1− λ )w /∈ C2 for
0 < λ ≤ 1. Since x̂ ∈ A ∩C1 and A ∩B ∩C1 = /0, we have that a�x̂ ≥ α and
a�w < α . Hence, from the equation a�(λ x̂ + (1− λ )w) = λa�x̂ + (1− λ )a�w,
there exists a value 0 < λ ≤ 1 such that a�(λ x̂+(1−λ )w) = α . Therefore, there
exists a point x̄ = λ x̂+(1−λ )w for some 0 < λ ≤ 1, such that x̄ ∈ C1 ∩A =, but
x̄ /∈ C2, which is a contradiction. An analogous argument can be used when x̂ ∈B
and x̂ /∈A . �

As mentioned at the beginning of Section 1, Propositions 1 and 2 are rather
general in that they apply to any convex set E . However, their hypotheses, (3)
and (4), are hard to satisfy and hence limit their applicability. To explore the full
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potential of this result remains the subject of future research. In this paper we
demonstrate the power of this tool by exploring a class of MICO, the class of
MISOCO problems, for which the assumptions are satisfied under mild conditions.

In the general setting, cone K or cylinder C of Propositions 1 and 2 can
be used as a conic cut in MICO problems. For example, in Branch-and-Cut
algorithms if either K or C exists for a disjunctive set, then K or C can be
used to help tightening the description of a MICO problem. For practical use
of this methodology, one needs to prove that a cone K or cylinder C exists
that satisfies Definitions 2 or 5, respectively, and one needs to provide an easy
to compute algebraic representation of the cone or cylinder. In the following
section we analyze MISOCO problems, where the feasible set E comes from the
intersection of a second order cone and an affine space. Given that for this case
we can prove the existence of the cone and we can give a method to compute its
algebraic representation, the resulting conic cut can be embedded in Branch-and-
Cut algorithms to solve MISOCO problems.

4 The Convex Hull of the Intersection of an Ellipsoid
and a Disjunctive Set

In the remainder of the paper, we turn our attention to the convex hull conv(E ∩(A ∪
B)) in a special case of (1) where K is a Lorentz cone, i.e., K = L

n. Therefore E
is an ellipsoid resulting from the intersection of a second order cone and an affine
space. Consider, for example, the problem

minimize: 3x1 +2x2 +2x3 +x4

subject to: 9x1 +x2 +x3 +x4 = 10
(x1,x2,x3,x4) ∈ L

4

x4 ∈ Z.

(5)

The feasible set of Problem (5) can be represented as an ellipsoid in R
3 in terms

of the variables x2, x3, x4, as shown in Figure 5. In general, we consider the n-
dimensional ellipsoid

E = {x ∈R
n|x�Qx+ 2q�x+ρ ≤ 0}, (6)

where Q ∈ R
n×n is a symmetric positive definite matrix, x,q ∈ R

n, and ρ ∈ R.
The main goal of this section is to show the existence of the cone K or cylinder

C , as defined in Definitions 2 or 5, in order to use Proposition 1 or 2 for finding
conv(E ∩(A ∪B)). We are interested in two cases. In the first case, the hyperplanes
A = and B= are parallel (Section 4.1), while the two hyperplanes are in a general
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Fig. 5 The feasible region of Problem (5)

position in the second case (Section 4.2). In both cases, we are able to show that
conv(E ∩ (A ∪B)) is obtained by intersecting E with a scaled second order cone
K or a cylinder C and we show how to construct them.

4.1 Parallel Disjunctions

In this section, we consider a disjunctive set A ∪B such that A = {x ∈ R
n|a�x≥

α} and B = {x ∈ R
n|a�x ≤ β}, i.e., the hyperplanes A = and B= are parallel.

We may assume w.l.o.g. that ‖a‖= 1. We illustrate this case by using Problem (5),
where one can use A = {x ∈ R

4|x4 ≥ 0} and B = {x ∈ R
4|x4 ≤ −1} to define a

disjunctive set A ∪B. Figure 6a shows the hyperplanes defining this disjunctive set
A ∪B along with the feasible set of Problem (5).

4.1.1 Geometry of E and the Hyperplanes A =, and B=

We begin this analysis by recalling some results from [8], where the authors study
several properties of quadrics. A quadric is defined as

Q =
{

x|x�Qx+ 2q�x+ρ ≤ 0
}
, (7)
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Fig. 6 The convex hull of the intersection of a parallel disjunction and an ellipsoid. (a) A =, B=,
and E . (b) conv(E ∩ (A ∪B)). (c) The cone yielding conv(E ∩ (A ∪B))

where Q ∈ R
n×n is symmetric, q,x ∈ R

n and ρ ∈ R, and is denoted by the triplet
Q = (Q,q,ρ). Note that under this definition, E is a quadric with a positive definite
matrix Q. We first recall Theorem 3.2 of [8], which defines a uniparametric family
of quadricsQ(τ) parametrized by τ ∈R having the same intersection with two fixed
parallel hyperplanes. This result is stated here as Theorem 1.

Theorem 1 ([8]). Consider an ellipsoid E = (Q,q,ρ) and two parallel hyper-
planes A = = (a,α) and B= = (a,β ). The uniparametric family of quadrics Q(τ)
parametrized by τ ∈ R and having the same intersection with A = and B= as
ellipsoid E is given by

Q(τ) = Q+ τaa�

q(τ) = q− τ α+β
2

a

ρ(τ) = ρ+ ταβ .
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From Theorem 1, for any τ ∈ R the quadric Q(τ) is such that Q(τ)∩A = =
E ∩A = and Q(τ)∩B= = E ∩B=. Hence, from Lemma 3 we need to investigate if
there exists a value τ̄ such that Q(τ̄) is a two-sided cone one side of which, denoted
by K , satisfies the conditions of Proposition 1 with a vertex x∗ /∈ ¯A ∩ B̄ or a
convex cylinder C that satisfies the conditions of Proposition 2. As a result, we
obtain that the intersections K ∩ E or C ∩ E would be the convex hull for E ∩
(A ∪B). Figures 6b, c illustrate the convex hull of E ∩ (A ∪B) and the four sets
E ,A =,B=,K for Problem (5).

Now, let us assume first that we are given a τ such that Q(τ) is non-singular.
Under this assumption one can rewrite the quadric set Q(τ) in (7) as

{
x
∣∣∣(x+Q(τ)−1q(τ))�Q(τ)(x+Q(τ)−1q(τ))≤ q(τ)�Q(τ)−1q(τ)−ρ(τ)

}
.

(8)
From (8), one can easily verify that the quadric Q(τ) is empty if the matrix Q(τ)
is positive definite and q(τ)�Q(τ)−1q(τ)−ρ(τ) < 0. Belotti et al. [8] prove that
the quadric Q(τ) defines a cone if Q(τ) is a non-singular symmetric matrix with
exactly one negative eigenvalue and q(τ)�Q(τ)−1q(τ)−ρ(τ) = 0. They also prove
that for any τ ∈R, the matrix Q(τ) has at most one negative eigenvalue and at least
n− 1 positive eigenvalues. Therefore, we need to focus on Q(τ) to explore those τ
values for which q(τ)�Q(τ)−1q(τ)−ρ(τ) = 0.

Let us define the vectors ua = Q−1/2a and uq = Q−1/2q, where Q−1/2 is the
unique symmetric square root of Q−1. Then, from Theorem 1 we can get the
following expression, which is derived in Section 3.2.1 in [8]:

q(τ)�Q(τ)−1q(τ)−ρ(τ)

=
(α−β )2‖ua‖2

4(1+ τ ‖ua‖2)
τ2 +

(
4‖ua‖2 (

∥∥uq
∥∥2−ρ)− (α+β + 2u�a uq)

2 +(α−β )2
)

4(1+ τ ‖ua‖2)
τ

+
4(
∥∥uq

∥∥2−ρ)
4(1+ τ ‖ua‖2)

. (9)

Hence q(τ)�Q(τ)−1q(τ)− ρ(τ) is the ratio of two polynomials in τ . Two
remarks are in order: first, note that at value τ̂ =−1/‖ua‖2, the denominator of (9)
becomes zero. Additionally, at τ̂ , the matrix Q(τ) is positive semidefinite with one
zero eigenvalue. Lemma 3.3 in [8] characterizes the behavior of Q(τ) at τ̂ . There
are two main ranges in this characterization. On the one hand, for τ > τ̂ , the matrix
Q(τ) is positive definite. On the other hand, for τ < τ̂ , the matrix Q(τ) is indefinite
with one negative eigenvalue.

Second, for any τ �= τ̂ , q(τ)�Q(τ)−1q(τ)−ρ(τ) becomes zero only at the roots
τ̄1, τ̄2 of the numerator of (9). Let f be a function of τ that denotes the quadratic
function in the numerator of (9). Hence, both roots τ̄1, τ̄2 of f are less than or equal
to τ̂ [8]. Then, from Lemma 3.3 in [8] the two roots τ̄1, τ̄2 correspond to the cones
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or the cylinders in the family of Theorem 1. A characterization of the family Q(τ)
for τ ∈ R depending on the geometry of E and the hyperplanes A =, and B= is
presented in Theorem 3.4 of [8], which we recall here.

Theorem 2 ([8]). Depending on the geometry of E , A , and B, Q(τ) can have the
following shapes for τ ∈ R:

• f (τ) has two distinct roots τ̄1 < τ̄2 and τ̄2 < τ̂: this is the general case, Q(τ̂) is
a paraboloid, and Q(τ̄1),Q(τ̄2) are two cones.

• f (τ) has two distinct roots τ̄1 < τ̄2, and τ̄2 = τ̂: the two hyperplanes are
symmetric about the center of E . Q(τ̄1) is cone and Q(τ̄2) is a cylinder.

• The two roots τ̄1, τ̄2 of f (τ) are equal, and τ̄2 < τ̂: the discriminant of f (τ) is
zero, which means that one of the hyperplanes intersects E in only one point.
Q(τ̂) is a paraboloid and Q(τ̄2) is a cone.

• The two roots τ̄1, τ̄2 of f (τ) coincide with τ̂: this is the most degenerate case as
both hyperplanes intersect E in only one point, and as such they are symmetric
about the center of E . In this case Q(τ̂) is a line.

4.1.2 Building a Disjunctive Conic Cut

We can use the geometrical analysis of Section 4.1.1 to build a conic cut to convexify
the intersection of a MISOCO problem with a parallel disjunction. To simplify the
analysis, we separate the cylinder and conic cases.

Cylinders: First, we study the families Q(τ), τ ∈R described in the second and
fourth cases in Theorem 2, where there is a cylinder C at Q(τ̂). In particular, C is
given by Q(τ̄2) in these cases. From Eq. (7), we have that

Q(τ̄2) =
{

x ∈ R
n
∣∣∣ x�Q(τ̄2)x+ 2q(τ̄2)

�x+ρ(τ̄2)≤ 0
}
, (10)

where Q(τ̄2) is a positive semidefinite matrix. Hence, it follows from (10) that the
quadric Q(τ̄2) is a convex set and Proposition 2 proves that C ∩ E is the convex
hull of E ∩ (A ∪B). Finally, notice that the cylinder C described by (10) can be
represented in terms of a second order cone, for that reason we classify C as a conic
cut in this section.

Cones: Now we focus on the cones described in the first and third cases of
Theorem 2. Our strategy is to show that the quadrics Q(τ̄1) and Q(τ̄2) can be
written as the union of two convex cones. Then, we derive a criterion to identify
which cone gives the convex hull of E ∩ (A ∪B).

Consider the roots τ̄i �= τ̂ , i = 1,2, and let x(τ̄i) = −Q(τ̄i)
−1q(τ̄i). Recall from

Section 4.1.1 that Q(τ̄i) is a symmetric and non-singular matrix that has exactly
one negative eigenvalue. Then, Q(τ̄i) can be diagonalized as U(τ̄i)D(τ̄i)U(τ̄i)

�,
where U(τ̄i) is an orthogonal matrix and D(τ̄i) is a diagonal matrix having the
eigenvalues of Q(τ̄i) in its diagonal. Let the index ji be such that D(τ̄i)ji,ji < 0, and let
W(τ̄i) = U(τ̄i)D̄(τ̄i)

1/2, where D̄(τ̄i)l,k = |D(τ̄i)l,k|. Thus, we may write Q(τ̄i) in
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terms of W(τ̄i) as follows:

{
x ∈ R

n

∣∣∣∣(x− x(τ̄i))
�W(τ̄i)i�=ji W(τ̄i)

�
i�=ji

(x− x(τ̄i))≤
(

W(τ̄i)
�
ji (x− x(τ̄i))

)2
}
,

where W(τ̄i)i�=ji has the columns of W(τ̄i) that are different from ji. Now, let us
define the sets Q(τ̄i)

+, Q(τ̄i)
− as follows:

Q(τ̄i)
+ ≡

{
x ∈ R

n
∣∣∣
∥∥∥W(τ̄i)

�
i�=ji

(x− x(τ̄i))
∥∥∥≤W(τ̄i)

�
ji (x− x(τ̄i))

}
, (11)

Q(τ̄i)
− ≡

{
x ∈ R

n
∣∣∣
∥∥∥W(τ̄i)

�
i�=ji

(x− x(τ̄i))
∥∥∥≤−W(τ̄i)

�
ji (x− x(τ̄i))

}
, (12)

which are two second order cones. These two cones satisfy the general definition
of a cone with the vertex at x(τ̄i) presented in Remark 1. It is easy to verify that
Q(τ̄i) = Q(τ̄i)

+ ∪Q(τ̄i)
−. Also, it is clear from (11) and (12) that Q(τ̄i)

+ and
Q(τ̄i)

− are two convex sets. This shows that the quadrics Q(τ̄1) and Q(τ̄2) can be
written as the union of two convex cones.

Given the convex cones, we need a criterion to identify which cone gives the
convex hull of E ∩(A ∪B). First, we choose one of the two quadricsQ(τ̄i), i= 1,2.
For this purpose we can use Lemma 3, thus we need to verify if at least one of Q(τ̄i),
i = 1,2 contains a cone with a vertex x(τ̄i) /∈A ∩B. This criterion is presented in
Lemma 9. The interested reader can review the proof in section “Proof of Lemma 9”
in Appendix 1.

Lemma 9. The quadricQ(τ̄2) found at the larger root τ̄2 of f (τ) in the family Q(τ)
of the first and third case of Theorem 2 contains a cone that satisfies Definition 2.

From Lemma 9, we reduce the choices to the cones Q(τ̄2)
+ and Q(τ̄2)

−. We
now decide between the two cones using the sign of W(τ̄2)

�
1 (−Q−1q−x(τ̄2)). Thus,

we choose Q(τ̄2)
+ if W(τ̄2)

�
1 (−Q−1q− x(τ̄2)) > 0, and we choose Q(τ̄2)

− when
W(τ̄2)

�
1 (−Q−1q−x(τ̄2))< 0. Finally, it follows from Proposition 1 that the selected

cone gives the convex hull for E ∩(A ∪B). Note that if W(τ̄2)
�
1 (−Q−1q−x(τ̄2)) =

0 the center of the ellipsoid E coincides with the vertex of the selected cone. In this
case the feasible set is a single point, so by identifying this unique solution the
problem is solved. This completes the procedure.

We have shown that for all the cases in Theorem 2, we can find a cone K or
a cylinder C that satisfies Definitions 2 or 5, respectively. Hence, by combining
Theorem 2 with Propositions 1 and 2 we can provide a procedure to find the convex
hull of E ∩ (A ∪B), where the disjunctive set A ∪B is such that the hyperplanes
A = and B= are parallel. Thus, we have given easy to compute procedures to
identify disjunctive conic cuts, and disjunctive cylindrical cuts in the respective
cases of Theorem 2.
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Fig. 7 Convex hull of the intersection between a non-parallel disjunction and an ellipsoid. (a)
A =, B=, and E . (b) conv(E ∩ (A ∪B)). (c) The cone yielding conv(E ∩ (A ∪B))

4.2 General Disjunctions

Some of the results in Section 4.1 can be extended to general disjunctive sets A ∪B,
where A = {x ∈ R

n|a�x ≥ α} and B = {x ∈ R
n|b�x ≤ β} are defined such that

there exists no κ ∈ R such that b = κa.
An important example of general disjunction is given by complementarity

constraints, usually described in the form xixj = 0 and hence equivalent to the
disjunction xi = 0∨ xj = 0. An example of disjunctive cuts separated for problems
with complementarity constraints is given by Júdice et al. [18], who study a problem
where complementarity constraints are the only nonlinear ones, and whose relax-
ation yields an LP. Disjunctive cuts are separated using violated complementarity
constraints by observing that both variables are basic and then applying a disjunctive
procedure to the corresponding tableau rows.

We may assume w.l.o.g. that ‖a‖= ‖b‖= 1. These disjunctive sets are illustrated
in Figure 7a for Problem (5) using A = {x ∈ R

4 | 0.45x3 + 0.89x4 ≥ 0} and B =
{x ∈ R

4 | x4 ≤−1} to define the disjunctive set A ∪B.
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4.2.1 Geometry of E and the Hyperplanes A = and B=

We begin this analysis recalling Theorem 4.1 in [8]. This theorem defines a
family of quadrics Q(τ) for τ ∈ R such that Q(τ)∩A = = Q ∩A = and Q(τ)∩
B= =Q∩B=.

Theorem 3 ([8]). Consider an ellipsoid E = (Q,q,q0) and two nonparallel hyper-
planes A = and B=. The uniparametric family of quadrics Q(τ) parametrized by
τ ∈R and having the same intersection with A = and B= as the ellipsoid E is given
by

Q(τ) = Q+ τ
ab�+ ba�

2

q(τ) = q− τ βa+αb
2

ρ(τ) = ρ+ ταβ . (13)

We need to investigate if there is a value τ̄ in the family of Theorem 3 for which
Q(τ̄) is a coneK or a cylinderC . Thus, either K ∩E or C ∩E will give the convex
hull for E ∩ (A ∪B). Figure 7b, c illustrate this for the example in Problem (5).

Note that in Theorem 3, Q(τ) has a rank-2 update. This opens the possibility
of having a matrix with two negative eigenvalues. However, it can be verified that
under the assumption of Q being positive definite, Q(τ) can have at most one non-
positive eigenvalue [8, § 4]. This property reduces the case of general disjunctive
sets to the same set of geometrical objects that were considered in Section 4.1.1.

For any vector d, define ud =Q−1/2d. Using this notation, we get from Theorem 3
the following [8, § 4]:

q(τ)�Q(τ)−1q(τ)−ρ(τ) = f (τ)
g(τ)

, (14)

where

g(τ) = τ2
((

u�a ub

)2−‖ua‖2 ‖ub‖2
)
+ 4u�a ubτ+ 4

and

f (τ) =τ2
[
‖ua‖2 (β + u�b uq)

2 + ‖ub‖2 (α+ u�a uq)
2

+((u�a ub)
2−‖ua‖2 ‖ub‖2)(

∥∥uq
∥∥2−ρ)− 2u�a ub(u

�
a uq +α)(u�b uq +β )

]

+ 4τ
[
u�a ub(

∥∥uq
∥∥2−ρ)− (α+ u�a uq)(β + u�b uq)

]
+ 4

[∥∥uq
∥∥2−ρ

]
,

(15)
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which are two quadratic functions in τ . Let the two roots of g(τ) be denoted as τ̂1

and τ̂2, and we may assume w.l.o.g. that τ̂1 ≤ τ̂2. It is proven in [8, § 4] that at
these two values Q(τ) is a positive semidefinite matrix with one zero eigenvalue.
Now, let the roots of f (τ) be denoted as τ̄1 and τ̄2, and we may also assume w.l.o.g.
that τ̄1 ≤ τ̄2. It is easy to verify that (14) becomes zero for these two values when
Q(τ̄i) is non-singular, i = 1,2. Additionally, in [8, §4] it is shown that the situations
τ̂1 < τ̄1 < τ̂2, or τ̂1 < τ̄2 < τ̂2, are only possible when the quadric Q is a single point,
which is a trivial case. We use these observations in Theorem 4 to summarize the
behavior of the family Q(τ) when the quadric Q is not a single point, based on the
values τ̂1, τ̂2, τ̄1, τ̄2. The interested reader can review the details of this theorem in
[8, §4.2].

Theorem 4 ([8]). Depending on the geometry of E , A , and B, Q(τ) can have the
following shapes for τ ∈ R:

• f (τ) has two distinct roots τ̄1 < τ̄2 such that τ̂2 < τ̄1, or τ̄2 < τ̂1, or τ̄1 < τ̂1 ≤
τ̂2 < τ̄2: this is the general case, Q(τ̂1) and Q(τ̂2) are paraboloids, and Q(τ̄1)
and Q(τ̄2) are cones.

• f (τ) has two distinct roots τ̄1 < τ̄2, and exactly one of them coincides with either
τ̂1 or τ̂2: this case has two possibilities. First, Q(τ̂1) is a cylinder and Q(τ̂2) is
a paraboloid. Second, Q(τ̂2) is a cylinder and Q(τ̂1) is a paraboloid. In both
situations we have that either Q(τ̄1) is a cylinder and Q(τ̄2) is a cone or that
Q(τ̄2) is a cylinder and Q(τ̄1) is a cone.

• f (τ) has two distinct roots τ̄1 < τ̄2 such that τ̄1 = τ̂1 and τ̄2 = τ̂2: in this case
both hyperplanes contain the center −Q−1q of the ellipsoid E . Both quadrics
Q(τ̂1) and Q(τ̂2) are cylinders.

• The two roots of f (τ) coincide, and either τ̄1 = τ̄2 < τ̂1 or τ̂2 < τ̄1 = τ̄2: in this
case the discriminant of f (τ) is zero, which implies that one of the hyperplanes
intersects E in only one point. We have that Q(τ̄1) is a cone and the quadrics
Q(τ̂1), Q(τ̂2) are two paraboloids.

• The two roots of f (τ) coincide and either τ̄1 = τ̄2 = τ̂1 or τ̂2 = τ̄1 = τ̄2: in this
case both hyperplanes intersect E in only one point. Then, either Q(τ̂1) is a
line and Q(τ̂2) is a paraboloid or Q(τ̂2) is a line and Q(τ̂1) is a paraboloid.

4.2.2 Building a Disjunctive Conic Cut

Using the results of the geometrical analysis of Section 4.2.1 we give now the
guidelines to build a conic cut to convexify the intersection of a MISOCO feasible
set with a general disjunction.

First of all, observe that from Assumption 1 the third case in Theorem 4 cannot
occur. Hence, this case is not considered for building a cut for general disjunctions.
We classify the remaining cases as cylinders and cones.

Cylinders: We look at the cylinders C in the families Q(τ) described in the
second and fifth cases of Theorem 4 of [8]. Observe that in general, C can be found
at either τ̂2 or τ̂1. This can be decided by comparing τ̂2 or τ̂1 with the roots τ̄1 and
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τ̄2 using the criteria described in Theorem 4. Let τ̂ be a value such that Q(τ̂) is a
cylinder. From Eq. (7) it is easy to verify that Q(τ̂) is a convex set. Consequently,
from Proposition 2 we get that C ∩E is the convex hull of E ∩ (A ∪B). Finally,
note that the cylinder C can be represented in terms of a second order cone. For that
reason, we classify C as a conic cut in this section too.

Cones: We need to focus now on the cones described in the first and fourth cases
of Theorem 4. Let τ̄i �= τ̂1, τ̂2, i = 1,2. In these two cases Q(τ̄i) is symmetric and
non-singular matrix with exactly one negative eigenvalue. This is a similar situation
as the first and third cases of Theorem 2. From the analysis in Section 4.1.2 it
follows that Q(τ̄i) =Q(τ̄i)

+∪Q(τ̄i)
−, where Q(τ̄i)

+,Q(τ̄i)
− are the second order

cones (11) and (12). Observe that x(τ̄i) =−q(τ̄i)
�Q(τ̄i) is the vertex of Q(τ̄i)

+ and
Q(τ̄i)

−. Then, using Lemma 3 we can verify if there is a cone in Q(τ̄i)
+,Q(τ̄i)

−,
i = 1,2, that satisfies Definition 2. In particular, we need to prove that there is one
x(τ̄i), i = 1,2, that is either in A or B. This criteria is stated in Lemma 10.

Lemma 10. Let the two roots τ̄i, i = 1,2 of f (τ) be different from τ̂1, and τ̂2. Then,
in the first and fourth cases of Theorem 4, the cone Q(τ̄2) contains a convex cone
that satisfies Definition 2.

The proof of Lemma 10 is presented in section “Proof of Lemma 10” in
Appendix 1. Now we can define a procedure to identify a conic cut. We need
to identify which of the cones Q(τ̄2)

+,Q(τ̄2)
− gives the conic cut. For this

purpose we use the sign of W(τ̄2)
�
1 (−Q−1q− x(τ̄2)). Hence, we choose Q(τ̄2)

+

if W(τ̄2)
�
1 (−Q−1q− x(τ̄2)) > 0, and we choose Q(τ̄2)

− when W(τ̄2)
�
1 (−Q−1q−

x(τ̄2))< 0. This completes the procedure.
In summary, excluding the third case in Theorem 4, we have shown that it is

possible to find a cone K or cylinder C satisfying Definitions 2 or 5 for all the
relevant cases in Theorem 4. Hence, combining Theorem 4 with Propositions 1
and 2 we provided a procedure to find a disjunctive conic cut for E ∩ (A ∪B) for a
general disjunctive set A ∪B.

5 Disjunctive Conic Cut vs Nonlinear Conic Mixed Integer
Rounding Inequality

Atamtürk and Narayanan [1] present a procedure for generating a nonlinear conic
mixed integer rounding cut. Since this is a conic cut, we examine how it compares
to the disjunctive conic cut introduced here. For this purpose, let us consider the
following example

minimize: −x −y

subject to:

∥∥∥∥
x− 4

3
y− 1

∥∥∥∥ ≤ 4
3 − x

2 − y
2

x ∈ Z, y ∈ R.

(16)
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Fig. 8 An optimal solution
of problem (17)
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First, notice that the example in (16) is in the format used in [1], which is different
from the one in (1). The main difference is the way we write the conic constraint.
Despite this difference we can still construct a disjunctive conic cut, because the
feasible region of this problem is an ellipsoid in the (x,y) space.

Relaxing the integrality constraint, the resulting relaxation from problem (16) can
be solved easily (the KKT conditions give a 2×2 linear system). First, notice that
this relaxation is just a problem of minimizing a linear function over an ellipsoid.
Particularly, we can rewrite the relaxation of problem (16) as follows:

minimize: −x− y
subject to: 3

4 x2 + 3
4 y2− 1

2 xy− 4
3 x− 2

3 y+ 1≤ 0
x, y ∈ R.

(17)

The feasible set of this problem, which is an ellipsoid, is presented in Figure 8. The
optimal objective function value is −2.471, and the relaxed optimal solution for the
example in problem (16) is (x∗,y∗) = (1.402,1.069).

We can rewrite problem (16) in the following form:

minimize: −x −y
subject to: x +y +2t = 8

3√
(x− 4

3 )
2 +(y− 1)2 ≤ t

x ∈ Z, y ∈R, t ∈ R.

(18)

Figure 9 presents the feasible region of this equivalent problem. Using a branch-
and-bound procedure one can easily solve the mixed integer problem in (18), and
get that the optimal solution is (t∗,x∗,y∗) = (1/3,1,1) with the optimal cost of −2.
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Fig. 9 The feasible region of
the continuous relaxation of
problem (18)
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The problem reformulation (18) presents a case similar to the one studied in
Example 1 in [1], which shows how to obtain a nonlinear conic mixed integer
rounding inequality for the set

T0 =

{
(x,y, t) ∈ Z×R×R :

√
(x− 4

3
)2 +(y− 1)2 ≤ t

}
, (19)

which is the set of solutions satisfying the last constraint in (18). In general, the
procedure discussed by Atamtürk and Narayanan [1] focuses on generating the
convex hull for each polyhedral second-order conic constraint in the problem.
Then, by adding those new cuts they tighten the original formulation. In particular,
applying that procedure to the set in (19) they obtain the cut

√( x
3

)2
+(y− 1)2≤ t, (20)

which is a valid cut for the problem in (18).
Analyzing the relaxed solution showed in Figure 8, we can see that the solution

is not feasible for the integer problem. First, observe that if we use the disjunction
x ≤ 1∨ x ≥ 2 it is not possible to apply the disjunctive conic cut here, because the
line x= 2 does not intersect the set of feasible solutions that is an ellipsoid, violating
one of the assumptions in Section 3. However, we can still use the nonlinear conic
mixed integer rounding inequality procedure. Figure 10 shows the result of applying
the nonlinear conic cut (19) to the problem in (18). The point (t∗,x∗,y∗) = (1/3,1,1)
is the new optimal solution for the continuous relaxation of the resulting problem
with the cut added, which turns out to be optimal for the mixed integer problem.
The optimal objective value is −2.

Now, let us modify the first constraint in (18) as follows

x+ y+ 2t =
14
3
.
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Fig. 10 Nonlinear conic
mixed integer rounding
inequality
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Figure 11 shows the new feasible region. With this modification, the relaxed optimal
solution is (t∗,x∗,y∗) = (0.68,1.81,1.48), which is not feasible for the integer
problem. Now, for this example we can use the disjunction x≤ 1∨x≥ 2 and obtain
a disjunctive conic cut that can be represented in the (x,y) space as follows:

√
(y− 0.33x+ 0.22)2≤ 2.67− 0.93x. (21)

Observe that the nonlinear conic mixed integer rounding inequality (20) stays the
same, since we have not modified the conic constraint. Figure 11 shows these
two cuts and highlights the difference between applying the nonlinear conic mixed
integer rounding inequality and the disjunctive conic cut to the modified problem.
More specifically, the disjunctive conic cut gives the convex hull of the intersection
between the disjunction x ≤ 1∨ x ≥ 2 and the feasible set of problem (18). This
is not the case for the nonlinear conic mixed integer rounding inequality (20). The
new optimal solution for the relaxed problem when either of the cuts is applied is
(t∗,x∗,y∗) = (0.71,2.0,1.25). In particular, we can see that any of the cuts is enough
to find the optimal solution. The optimal value for the objective function is −3.25.

Finally, we perform an additional test modifying the first constraint in (18) as
follows:

x+ y+ 2t = 8.

In this case we use the disjunction x≤ 2∨ x≥ 3. Then, we can obtain a disjunctive
conic cut that can be represented in the (x,y) space as follows:

√
(y− 0.33x+ 1.33)2≤ 6.04− 1.21x.
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Fig. 11 The Disjunctive
conic cut and the Nonlinear
conic mixed integer rounding
inequality cutting off the
relaxed optimal solution
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Fig. 12 The nonlinear conic
mixed integer rounding
inequality fails to cut off the
optimal solution for the
relaxed problem
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For this example the nonlinear conic mixed integer rounding inequality (20) fails
to eliminate the continuous optimal solution found for the relaxed problem, as
illustrated in Figure 12. Thus, there is no gain in adding this cut to the problem.
However, the disjunctive conic cut is violated by the current fractional solution, and
the addition of the disjunctive conic cut is enough to find the integer solution for the
problem.
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6 Concluding Remarks

In this paper, we analyzed the convex hull of the intersection of a convex set E and
a linear disjunctive set A ∪B. This analysis is done for general convex sets. We
assume the existence of a convex cone K (resp. a convex cylinder C ) that has the
same intersection with the boundary A =, B= of the disjunction as E . Given the
cone K (resp. cylinder C ), we proved that the convex hull conv(E ∩ (A ∪B)) is
E ∩K (resp. E ∩C ). Additionally, we were able to prove that if K (resp. a cylinder
C ) exists, then it is unique.

We then showed the existence of such a cone K (resp. a cylinder C ) for
MISOCO problems. We consider the feasible set of the continuous relaxation of
a MISOCO problem, assumed to be an ellipsoid, intersected with a general linear
disjunction. We showed that in this case K is a second order cone, and provided
a closed formula to describe K (resp. a cylinder C ) for MISOCO problems. This
cone provides a novel conic cut for MISOCO and because it gives the convex hull
of the disjunction, it is the strongest possible cut for MISOCO problems. Having a
closed form for this disjunctive conic cut makes them ready to use. The development
of an efficient Branch-and-Cut software package for MISOCO problems is the
subject of ongoing research.
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Appendix 1: The Proofs of Lemmas 9 and 10

For the sake of simplifying the algebra of these proofs we use the following
observation. If Q � 0 and the quadric Q is not single point, Q can be transformed
to a unit hypersphere {y ∈R

n | ‖y‖2 ≤ 1} using the affine transformation

y =
Q1/2(x+Q−1q)√∥∥uq

∥∥2−ρ
. (22)

Observe that this transformation preserves the inertia of Q, hence the classification
of the quadric is not changed. Additionally, observe that if we apply the same
transformation to two parallel hyperplanes, the resulting hyperplanes are still
parallel. Hence, throughout this proof, if Q� 0, we assume w.l.o.g. that the quadric
Q is a unit hypersphere centered at the origin. In this case, we have that the positive
definite matrix Q of Section 4 is the identity matrix, the vector q is the zero vector,
ρ =−1. Additionally, given Assumption 2 and the assumption that ‖a‖= ‖b‖= 1,
we have that |α| ≤ 1, and |β | ≤ 1. Finally, recall Assumption 1, then we may assume
w.l.o.g. that α > β .
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Proof of Lemma 9

From Section 4.1 we have that τ̂ = −1, and the numerator of the right-hand side
of (9) reduces to

f (τ) = τ2 (α−β )2

4
+ τ(1−αβ )+ 1.

Recall from Section 4.1.1 that the quadrics Q(τ̄1) and Q(τ̄2) in the family {Q(τ) |
τ ∈R}, are computed using the roots τ̄1 and τ̄2 of the function f (τ). Particularly, we
have that

τ̄1 = 2

(
αβ − 1−

√
(1−α2)(1−β 2)

(α−β )2

)
,

τ̄2 = 2

(
αβ − 1+

√
(1−α2)(1−β 2)

(α−β )2

)
,

where τ̄1 ≤ τ̄2. Note that if α = β , then f (τ) is a linear function. In this case we
would have that A ∪B =R

n and it is easy to verify that conv(Q∩ (A ∪B)) =Q.
However, recall that our assumption is β �= α . Hence, for the rest of this proof we
assume w.l.o.g. that α > β , which results from Assumption 1.

The vertices of the cones Q(τ̄1) and Q(τ̄2) are x(τ̄i) = −Q(τ̄i)
−1q(τ̄i), i = 1,2.

We can express x(τ̄i) in terms of a, α , and β as follows:

x(τ̄i) =−Q(τ̄i)
−1q(τ̄i) =−

(
I− τ̄i

(1+ τ̄i)
aa�

)(
−τ̄i

(α+β )
2

a

)

= τ̄i
(α+β )

2

(
1− τ̄i

(1+ τ̄i)

)
a

= τ̄i
(α+β )
2(1+ τ̄i)

a.

Consider the inner product

a�x(τ̄i) =−a�Q(τ̄i)
−1q(τ̄i) = τ̄i

(α+β )
2(1+ τ̄i)

a�a = τ̄i
(α+β )
2(1+ τ̄i)

.

Note that if α =−β then a�x(τ̄i) = 0. Recall from Theorem 2 that in that case Q(τ̄1)
is a cylinder. For that reason, we assume that α �=−β for the rest of this proof.

Next, note that since A = and B= are parallel, then A ∩B = /0. Then, we need
to show that in the first and third cases of Theorem 2 the vertex x(τ̄2) cannot be
in the set A ∩B. Assume to the contrary that x(τ̄2) ∈ A ∩B. Now, since we are
analyzing the first and third cases of Theorem 2 we know that τ̄2 < −1. Thus, if
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a�x(τ̄2)< α and a�x(τ̄2)> β , then

τ̄2(β −α)> 2α and τ̄2(α−β )< 2β . (23)

Substituting τ̄2 in (23) we obtain that

√
(1−α2)

(1−β 2)
= 1. The last inequality is possible

only if either α =−β or α = β . Hence, in the first and third cases of Theorem 2 the
vertex x(τ̄2) cannot be in the set A ∩B.

Thus, since the intersections Q(τ̄2)∩A = and Q(τ̄2)∩B= are bounded, then
one of the following two cases holds:

• Case 1: Q+(τ̄2)∩A = = E ∩A = and Q+(τ̄2)∩B= = E ∩B=;
• Case 2: Q−(τ̄2)∩A = = E ∩A = and Q−(τ̄2)∩B= = E ∩B=.

Consequently, we have that one of the cones Q+(τ̄2) and Q−(τ̄2) found at the root
τ̄2 satisfy Proposition 1.

�

Proof of Lemma 10

Recall from Section 4.2.1 that the quadrics Q(τ̄1) and Q(τ̄2) in the family {Q(τ) |
τ ∈ R} of Theorem 4 are computed using the roots of the function (15), which in
this case simplifies to

f (τ) =
(
(αβ − a�b)2− (1−α2)(1−β 2)

)
τ2 + 4(a�b−αβ )τ+ 4.

The roots of f (τ) are

τ̄1 = 2

(
αβ − a�b−√

(1−α2)(1−β 2)

(αβ − a�b)2− (1−α2)(1−β 2)

)
=

2

αβ − a�b+
√
(1−α2)(1−β 2)

,

τ̄2 = 2

(
αβ − a�b+

√
(1−α2)(1−β 2)

(αβ − a�b)2− (1−α2)(1−β 2)

)
=

2

αβ − a�b−√
(1−α2)(1−β 2)

,

where τ̄1 ≤ τ̄2.
Also, recall that the classification of the quadricsQ(τ̄1) and Q(τ̄2) is done based

on the ratio f (τ)/g(τ), where g(τ) simplifies in this case to

g(τ) = ((a�b)2− 1)τ2 + 4a�bτ+ 4.

Note that if (a�b)2− 1 = 0, then we obtain that g is an affine function with a zero
at −1. However, since ‖a‖ = ‖b‖ = 1, in this case we either obtain that a�b =
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cos(0), which implies that a = b, or we obtain that a�b = −cos(0), which implies
that a =−b. This is the case when we have parallel hyperplanes, which was already
analyzed in section “Proof of Lemma 9” in Appendix 1 and will not be considered
in the rest of this proof. Now, the roots of g(τ) are

τ̂1 =− 2
a�b+ 1

< 0 and τ̂2 =− 2
a�b− 1

> 0.

The vertex of the cone Q(τ̄2) is x(τ̄2) = −Q(τ̄2)
−1q(τ̄2). We can express x(τ̄2)

in terms of a, b, α , and β as follows:

x(τ̄2) =−Q(τ̄2)
−1q(τ̄2)

=−
(

I− (aa�+ bb�)τ̄2
2 − (a�bτ̄2

2 + 2τ̄2)(ba�+ ab�)
(1− (a�b)2)τ̄2

2 − 4a�bτ̄2− 4

)(
−τ̄2

βa+αb
2

)

=
τ̄2
((
(α− a�bβ )τ̄2− 2β

)
a+

(
(β − a�bα)τ̄2− 2α

)
b
)

(1− (a�b)2)τ̄2
2 − 4a�bτ̄2− 4

.

Consider the inner products

a�x(τ̄2) =
τ̄2
(
(1− (a�b)2)ατ̄2− 2(a�bα+β )

)

(1− (a�b)2)τ̄2
2 − 4a�bτ̄2− 4

and

b�x(τ̄2) =
τ̄2
(
(1− (a�b)2)β τ̄2− 2(a�bβ +α)

)

(1− (a�b)2)τ̄2
2 − 4a�bτ̄2− 4

.

Next, we show that in the first and fourth cases of Theorem 4 the vertex x(τ̄2)
cannot be in the set A ∩B. Assume to the contrary that x(τ̄2) ∈ A ∩B. Note
that τ̂1 and τ̂2 are the roots of (1− (a�b)2)τ2− 4a�bτ − 4 = −g(τ). Now, since
we are analyzing the first and fourth cases of Theorem 4 we know that τ̂2 < τ̄1,
or τ̄2 < τ̂1, or τ̄1 < τ̂1 < τ̂2 < τ̄2. Even more, since 1− (a�b)2 ≥ 0 we have that
(1− (a�b)2)τ̄2

2 − 4a�bτ̄2− 4≥ 0. Thus, if a�x(τ̄2)< α and b�x(τ̄2)> β , then

(a�bα−β )τ̄2 <−2α and (a�bβ −α)τ̄2 >−2β . (24)

Substituting τ̄2 in (24) we obtain that α√
1−α2

= − β√
1−β 2

, which implies that α =

−β . This is possible if τ̄2 = τ̂1, which is not in the cases being considered. Hence,
in the first and fourth cases of Theorem 4 x(τ̄2) cannot be in the set A ∩B.

Similarly, we can show that in the first and fourth cases of Theorem 4 the
vertex x(τ̄2) cannot be in the set A ∩B. In particular, if a�x(τ̄2) > α and b�
x(τ̄2)< β , then
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(a�bα−β )τ̄2 >−2α and (a�bβ −α)τ̄2 <−2β . (25)

Substituting τ̄2 in (25) we obtain that α√
1−α2

=− β√
1−β 2

. This implies that τ̄2 = τ̂1,

which is not in the cases being considered. Hence, the vertex x(τ̄2) cannot be in the
set A ∩B.

Thus, since the intersections Q(τ̄2)∩A = and Q(τ̄2)∩B= are bounded, then
one of the following two cases is true:

• Case 1: Q+(τ̄2)∩A = = E ∩A = and Q+(τ̄2)∩B= = E ∩B=.
• Case 2: Q−(τ̄2)∩A = = E ∩A = and Q−(τ̄2)∩B= = E ∩B=.

Consequently, we have that one of the cones Q+(τ̄2), Q−(τ̄2) found at the root τ̄2

satisfies Proposition 1. �

Appendix 2: Additional Lemma

Lemma 11. Let C ⊂ R
n be a cylinder with a compact base. Then C is closed.

Proof. Let D be a compact base for C = {x∈R
n|x= d+σd0,d ∈D ,σ ∈R} and let

u∈R
n be a vector such that u /∈ C . Our goal is to show that there is a neighborhood

U of u such that U ∩C = /0.
Let δ = max{‖u− x‖ | x ∈D}> 0 be the maximum distance from a point x ∈D

to u. Let us choose σo =(δ+1)/‖d0‖ and let B be the open ball of radius 1 centered
at u. Define the set C1 = {x ∈ R

n | x = d+σdo,d ∈ D ,σ ≤ −σo}∪{x ∈ R
n | x =

d+σd0,d ∈D ,σ ≥ σo}. Then, we have that B∩C1 = /0.
Let X =D× [−σo,σo], and consider the map h :X �→R

n, defined by h(σ ,x) =
x+σdo. Since D and [−σo,σo] are compact we have that X is compact. Since h is
continuous in X we have that the image h(X ) is a compact set as well, and hence
closed in R

n. Furthermore, note that h(X ) ⊂ C , thus u /∈ h(X ). Hence, there is a
neighborhood N of u such that N ∩ h(X ) = /0. Let U = B ∩N , then for any
σ ∈ R we have that U ∩ (σd0 +D) = /0. This proves that the complement of C is
open, thus C is closed. �
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Runge–Kutta Methods for Ordinary Differential
Equations

J.C. Butcher

Abstract Since their first discovery by Runge (Math Ann 46:167–178, 1895), Heun
(Z Math Phys 45:23–38, 1900) and Kutta (Z Math Phys 46:435–453, 1901), Runge–
Kutta methods have been one of the most important procedures for the numerical
solution of ordinary differential equation systems. This survey paper ranges over
many aspects of Runge–Kutta methods, including order conditions, order barriers,
the efficient implementation of implicit methods, effective order methods and strong
stability-preserving methods. Finally, applications to the analysis and implementa-
tion of G-symplectic methods will be discussed.

Keywords Runge–Kutta methods • Order conditions • Taylor series • Rooted
trees • Elementary differentials • Low order methods • Order barriers •
B-series • Effective order • Implicit methods • Singly-implicit methods •
Efficient implementation • Strong stability preserving methods • G-symplectic
methods

1 Introduction to Runge–Kutta Methods

Differential equations, especially initial value problems, are a vital component in
mathematical modelling. However, since the majority of the differential equations
arising in physics, engineering and other areas of application do not have analytical
solutions, numerical methods become necessary.

One of the most important classes of methods for obtaining numerical approx-
imations is the class of Runge–Kutta methods, which dates from the work of
Runge in 1895 [18]. The idea is to study the Taylor series for the solution to a
generic problem and to compare this series with the series produced by a particular
numerical scheme which contains unspecified parameters. The parameters are then
determined to force the two series to agree for as many terms in the expansions as
possible.
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The generic initial value problem generally takes one of three forms. These are

y′(x) = f (x,y(x)), y(x0) = y0, f : R×R→R (1)

y′(x) = f (x,y(x)), y(x0) = y0, f : R×R
N →R

N (2)

y′(x) = f (y(x)), y(x0) = y0, f : RN →R
N (3)

The standard problem (1) was used in the derivation of methods in [18] and other
pioneering papers. But, derivations using this Ansatz cannot be trusted above order
4 because some of the order conditions found from an analysis based on (3) are
absent in a scalar analysis. Hence, we must revert to an N dimensional problem,
such as (2) or (3). The first correctly derived fifth order method was due to Nyström
[17]. The order conditions based on these model problems are identical, but it will
be simpler to use the autonomous formulation (3), even though it is convenient in
practical applications to use (2).

The classical Euler method can be written as a formula for progressing from an
approximation yn−1 ≈ y(xn−1) = y(x0 +(n− 1)h) to the next step value yn:

yn = yn−1 + hf (yn−1), h = xn− xn−1. (4)

The method given by (4) can be made more accurate by using either the mid-
point or the trapezoidal rule quadrature formula:

yn = yn−1 + hf
(
yn−1 +

1
2 hf (yn−1)

)
, (5)

yn = yn−1 +
1
2 hf (yn−1)+

1
2 hf

(
yn−1 + hf (yn−1)

)
. (6)

These methods, from Runge’s 1895 paper [18], are “second order” because the error
in a single step behaves like O(h3). At a specific output point the accumulated error
is O(h2). In 1900, Heun [14] took these ideas further and gave a full explanation of
order 3 methods and in 1900, Kutta [15] gave a detailed analysis of order 4 methods.

In the early days of Runge–Kutta methods the aim was to find explicit methods
of higher and higher order. Later the aim shifted to finding methods that seemed to
be optimal in terms of local truncation error and to finding built-in error estimators.

With the emergence of stiff problems as an important application area, attention
moved to implicit methods, such as those based on Gaussian quadrature, which have
superior stability properties compared with explicit methods. In contrast to the use
of computationally demanding implicit methods, strong stability-preserving (SSP)
explicit methods may sometimes be more efficient.

The structure of this paper is as follows. Section 2 describes the formulation of
Runge–Kutta methods and their representation using tableaux. This is followed in
Section 3 by a review of Runge–Kutta order theory and in Section 4 by a description
of how methods up to order 4 are constructed. In Section 5 the order barrier result on
the non-existence of methods with s = p > 4 is established; in Section 6, the theory
is given an algebraic, or B-series, emphasis and, in Section 7, implicit methods
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and their efficient implementation are introduced. This is followed in Section 8 by
an introduction to SSP methods. Finally we will consider the role of Runge–Kutta
methods and their associated algebraic structures, in the analysis of G-symplectic
general linear methods. This will include, in Section 9, a B-series analysis of the
order conditions for a sample method and, in Section 10, Runge–Kutta methods
will be derived for the practical implementation of starting methods.

2 Formulation of Methods

In carrying out a single step, we evaluate s stage values Y1,Y2, . . . ,Ys, together with
s stage derivatives F1,F2, . . . ,Fs, using the formula Fi = f (Yi).

Each Yi is found as y0 plus a linear combination of the Fj:

Yi = y0 + h
s

∑
j=1

aijFj ≈ y(x0 + cih)

and the approximation at x1 = x0 + h is found from

y1 = y0 + h
s

∑
i=1

biFi ≈ y(x0 + h).

This procedure for approximating y1 is repeated to obtain y2, y3, . . . , yn.
We represent the method by a tableau:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

,

or, if the method is explicit, by the simplified tableau

0
c2 a21
...

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

.
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As examples, the Runge methods (5) and (6) have the tableaux

0
1
2

1
2

0 1

,

0

1 1
1
2

1
2

.

3 The Order Conditions

3.1 Taylor Expansion of the Exact Solution

The analysis presented here is from [2], following the work of Gill [11] and Merson
[16]. To obtain a series for the exact solution, we need formulae for the second,
third, . . . , derivatives. These are easily found using the chain rule:

y′(x) = f (y(x)),

y′′(x) = f ′(y(x))y′(x)

= f ′(y(x))f (y(x))),

y′′′(x) = f ′′(y(x))(f (y(x)),y′(x))+ f ′(y(x))f ′(y(x))y′(x)

= f ′′(y(x))(f (y(x)), f (y(x)))+ f ′(y(x))f ′(y(x))f (y(x)).

This process will become increasingly complicated as we evaluate higher derivatives
and we look for a systematic pattern.

Write f = f (y(x)), f′ = f ′(y(x)), f′′ = f ′′(y(x)), . . . . We can now write the terms
in y′(x), . . . ,y′′′(x) in a compact style. At the end of each line is a diagram showing
the tree-like structure of each term.

y′(x) = f, f

y′′(x) = f′f, f′
f

y′′′(x) = f′′(f, f) + f′f′f. f′′
ff

f′
f′
f

The various terms have a structure related to rooted trees. Because of this
connection, we will introduce the set of all rooted trees and some functions on this
set.
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Let T denote the set of rooted trees:

T =

{

, , , , , , , , . . .

}

We identify the following functions on T. Write t as a typical tree
|t| order of t = number of vertices
σ(t) symmetry of t = order of automorphism group

t! density or factorial of t; sometimes written γ(t)
α(t) number of ways of labelling with an ordered set
β (t) number of ways of labelling with an unordered set

F(t)(y0) elementary differential
We will give examples of these functions based on a specific tree

t =

|t| = 7 7
65

1 2 43

σ(t) = 8

t! = 63 7
33

1 1 11

α(t) = |t|!
σ(t)t! = 10

β (t) = |t|!
σ(t) = 630

F(t) = f′′
(
f′′(f, f), f′′(f, f)

)
f′′

f′′f′′
f f ff

In Table 1, these functions are given for trees up to order 4. Note that the function
Φ(t), with values given in the final row of Table 1, will be explained in Section 3.2.

Table 1 Functions on trees to order 4

t

|t| 1 2 3 3 4 4 4 4

σ (t) 1 1 2 1 6 1 2 1

t! 1 2 3 6 4 8 12 24

α(t) 1 1 1 1 1 3 1 1

β (t) 1 2 3 6 4 24 12 24

F(t) f f′f f′′(f, f) f′f′f f′′′(f, f, f) f′′(f, f′f) f′f′′(f, f) f′f′f′f
Φ(t) ∑bi ∑bici ∑bic2

i ∑biaijcj ∑bic3
i ∑biciaijcj ∑biaijc2

j ∑biaijajkck
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The formal Taylor expansion of the solution at x0 + h is

y(x0 + h) = y0 +∑
t∈T

α(t)h|t|

|t|! F(t)(y0)

and, using the known formula for α(t), we can write this as

y(x0 + h) = y0 +∑
t∈T

h|t|

σ(t)t!
F(t)(y0). (7)

Our aim will now be to find a corresponding formula for the result computed by one
step of a Runge–Kutta method. By comparing these formulae term by term, we will
obtain conditions for a specific order of accuracy.

3.2 Taylor Expansion for Numerical Approximation

We need to evaluate various expressions which depend on the tableau for a particular
method. These are known as “elementary weights”.

We use the example tree we have already considered, to illustrate the construction
of the elementary weightΦ(t). First label the vertices i, j, k, . . . , o as shown:

t =
i

kj

l m on

Now form the sum

Φ(t) =
s

∑
i,j,k,l,m,n,o=1

biaijajlajmaikaknako,

where the factor bi indicates that i is the label attached to the root. Furthermore,
factors such as aij indicate that the rooted tree contains an edge from i to j.

Simplify by summing over l,m,n,o, noting, for example, that ∑s
l=1 ajl = cj. This

gives

Φ(t) =
s

∑
i,j,k=1

biaijc
2
j aikc2

k

Expressions for Φ(t) up to order 4 trees are given in Table 1. The formal Taylor
expansion of the computed solution at x0 + h is

y1 = y0 +∑
t∈T

β (t)h|t|

|t|! Φ(t)F(t)(y0)
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and, using the known formula for β (t), we can write this as

y1 = y0 +∑
t∈T

h|t|

σ(t)
Φ(t)F(t)(y0). (8)

3.3 Order Conditions

To match the Taylor series (7) and (8) up to hp terms we need to ensure that

Φ(t) =
1
t!
,

for all trees such that

|t| ≤ p.

These are the “order conditions”.

4 Construction of Low Order Explicit Methods

We will attempt to construct methods of order p = s with s stages for s = 1,2, . . . .
We will find that this is possible up to order 4 but not for p≥ 5.

The usual approach will be to first choose c2,c3, . . . ,cs and then solve for
b1,b2, . . . ,bs. (Recall that c1 = 0.) After this, solve for those of the aij which can
be found as solutions to linear equations.

The order equations for specific orders can now be given, together with some
sample solutions for p = 2 and p = 3. In the case of p = 4, further details are given.

Order 2

b1 + b2 = 1,

b2c2 =
1
2 .

0

c2 c2

1− 1
2c2

1
2c2

0
1
2

1
2

0 1

0

1 1
1
2

1
2
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Order 3

b1 + b2 + b3 = 1,

b2c2 + b3c3 =
1
2 ,

b2c2
2 + b3c2

3 =
1
3 ,

b3a32c2 =
1
6 .

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

0
2
3

2
3

2
3 0 2

3
1
4

3
8

3
8

0
2
3

2
3

0 −1 1

0 3
4

1
4

Order 4

b1 + b2 + b3 + b4 = 1, (9)

b2c2 + b3c3 + b4c4 =
1
2 , (10)

b2c2
2 + b3c2

3 + b4c2
4 =

1
3 , (11)

b3a32c2 + b4a42c2 + b4a43c3 =
1
6 , (12)

b2c3
2 + b3c3

3 + b4c3
4 =

1
4 , (13)

b3c3a32c2 + b4c4a42c2 + b4c4a43c3 =
1
8 , (14)

b3a32c2
2 + b4a42c2

2 + b4a43c2
3 =

1
12 , (15)

b4a43a32c2 =
1

24 . (16)

To solve these equations, treat c2,c3,c4 as parameters, and solve for b1,b2,b3,b4

from (9), (10), (11), (13). Now solve for a32,a42,a43 from (12), (14), (15). Finally
use (16) to obtain a consistency condition on c2,c3,c4. The outcome of this analysis
is that c4 = 1.

We will prove a stronger result in another way.
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Lemma 1. Let U and V be 3× 3 matrices such that

UV =

⎡
⎢⎢⎣

w11 w12 0

w21 w22 0

0 0 0

⎤
⎥⎥⎦ , where

[
w11 w12

w21 w22

]
is non-singular,

then either the last row of U is zero or the last column of V is zero.

Proof. Let W = UV . Either U or V is singular. If U is singular, let x be a non-
zero vector such that xTU = 0. Therefore xTW = 0 and it follows that the first two
components of x are zero. Hence, the last row of U is zero. The second case follows
similarly if V is singular.

We will apply this result with specific U and V . Let

U =

⎡
⎢⎢⎣

b2 b3 b4

b2c2 b3c3 b4c4

∑i biai2− b2(1− c2) ∑i biai3− b3(1− c3) ∑i biai4− b4(1− c4)

⎤
⎥⎥⎦ ,

V =

⎡
⎢⎢⎣

c2 c2
2 ∑j a2jcj− 1

2 c2
2

c3 c2
3 ∑j a3jcj− 1

2 c2
3

c4 c2
4 ∑j a4jcj− 1

2 c2
4

⎤
⎥⎥⎦ .

It is found that

UV =

⎡
⎢⎢⎣

1
2

1
3 0

1
3

1
4 0

0 0 0

⎤
⎥⎥⎦ .

Using Lemma 1, we conclude that b4 = 0, c2 = 0 or c4 = 1. However, the first two
options are impossible because they contradict (16) and we conclude that c4 = 1 and
the last row of U is zero. The construction of fourth order Runge–Kutta methods
now becomes straightforward.

In his famous 1901 paper, Kutta classified all solutions to the fourth order
conditions, for s = 4. In particular we have his famous method:

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6
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5 Order Barriers

We will review what is achievable up to order 8. In Table 2, Np is the number of
order conditions to achieve this order. Furthermore, Ms = s(s+ 1)/2 is the number
of free parameters to satisfy the order conditions for the required s stages.

Table 2 Minimum number
of stages for a given order

p Np s Ms

1 1 1 1

2 2 2 3

3 4 3 6

4 8 4 10

5 17 6 21

6 37 7 28

7 115 9 45

8 200 11 66

We will now present the first order barrier result, [3].

Theorem 1. There does not exist an explicit Runge–Kutta method with s stages and
order p, where s = p = 5.

Proof. Let b̂j = ∑5
i=1 biaij, j = 1,2,3,4 and let

U =

⎡
⎢⎢⎢⎣

b̂2 b̂3 b̂4

b̂2c2 b̂3c3 b̂4c4

∑i b̂iai2− 1
2 b̂2(1− c2) ∑i b̂iai3− 1

2 b̂3(1− c3) ∑i b̂iai4− 1
2 b̂4(1− c4)

⎤
⎥⎥⎥⎦ ,

V =

⎡
⎢⎢⎢⎣

c2 c2
2 ∑j a2jcj− 1

2 c2
2

c3 c2
3 ∑j a3jcj− 1

2 c2
3

c4 c2
4 ∑j a4jcj− 1

2 c2
4

⎤
⎥⎥⎥⎦ ,

then

UV =

⎡
⎢⎢⎢⎣

1
6

1
12 0

1
12

1
20 0

0 0 0

⎤
⎥⎥⎥⎦ .



Runge–Kutta Methods for Ordinary Differential Equations 47

Using Lemma 1, we deduce that c4 = 1. Now use the lemma again with

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

b2(1− c2) b3(1− c3) b5(1− c5)

b2c2(1− c2) b3c3(1− c3) b5c5(1− c5)

∑i biai2(1− c2) ∑i biai3(1− c3) ∑i biai5(1− c5)

−b2(1− c2)
2 −b3(1− c3)

2 −b5(1− c5)
2

⎤
⎥⎥⎥⎥⎥⎥⎦
,

V =

⎡
⎢⎢⎢⎣

c2 c2
2 ∑j a2jcj− 1

2 c2
2

c3 c2
3 ∑j a3jcj− 1

2 c2
3

c5 c2
5 ∑j a5jcj− 1

2 c2
5

⎤
⎥⎥⎥⎦ ,

then

UV =

⎡
⎢⎢⎢⎣

1
6

1
12 0

1
12

1
20 0

0 0 0

⎤
⎥⎥⎥⎦ .

It follows that c5 = 1. Since we already know that c4 = 1, we obtain a contradiction
from

0 =∑bi(1− ci)aijajkck=
1

120 .

By modifying the details slightly, we can prove that s = p≥ 5 is never possible. The
proof that s = p+ 1 is impossible when p ≥ 7 is more complicated. The proof that
s = p+ 2 is impossible when p≥ 8 is much more complicated.

6 Algebraic Interpretation

We will introduce an algebraic system [4] which represents individual Runge–Kutta
methods and also compositions of methods. This centres on the meaning of order
for Runge–Kutta methods and leads to a possible generalisation to “effective order”.

Denote by G the group consisting of mappings of (rooted) trees to real numbers
where the group operation is defined according to the algebraic theory of Runge–
Kutta methods or to the (equivalent) theory of B-series.

We will illustrate this operation in Table 3, where we also introduce the special
member E ∈G.

Gp will denote the normal subgroup defined by t �→ 0 for |t| ≤ p. If α ∈ G, then
this maps canonically to αGp ∈ G/Gp.
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Table 3 The group operation (αβ )(t) and the values of E(t)

r(ti) i ti α(ti) β (ti) (αβ )(ti) E(ti)

1 1 α1 β1 α1 +β1 1

2 2 α2 β2 α2 +α1β1 +β2
1
2

3 3 α3 β3 α3 +α2
1β1 +2α1β2 +β3

1
3

3 4 α4 β4 α4 +α2β1 +α1β2 +β4
1
6

4 5 α5 β5 α5 +α3
1β1 +3α2

1β2 +3α1β3 +β5
1
4

4 6 α6 β6 α6 +α1α2β1 +(α2
1 +α2)β2 +α1(β3 +β4)+β6

1
8

4 7 α7 β7 α7 +α3β1 +α2
1β2 +2α1β4 +β7

1
12

4 8 α8 β8 α8 +α4β1 +α2β2 +α1β4 +β8
1

24

If α is defined from the elementary weights for a Runge–Kutta method, then
order p can be written as

αGp = EGp.

Effective order p is defined by the existence of β such that

βαGp = EβGp.

The computational interpretation of effective order is that the sequence of steps,
corresponding to α , is preceded by a starting step corresponding to β , with a
finishing step corresponding to β−1 inserted at the completion of the calculation.
This is equivalent to many steps all corresponding to βαβ−1. Thus, the benefits of
high order can be enjoyed by high effective order.

To analyse the conditions for effective order 4 we can, without loss of generality,
assume that β (t1) = 0. The details are

i (βα)(ti) (Eβ )(ti)
1 α1 1

2 β2 +α2
1
2 +β2

3 β3 +α3
1
3 + 2β2+β3

4 β4 +β2α1 +α4
1
6 +β2 +β4

5 β5 +α5
1
4 + 3β2+ 3β3 +β5

6 β6 +β2α2 +α6
1
8 +

3
2β2 +β3 +β4 +β6

7 β7 +β3α1 +α7
1
12 +β2 + 2β4+β7

8 β8 +β4α1 +β2α2 +α8
1
24 +

1
2β2 +β4 +β8

Of these eight conditions, only five are conditions on α . Once α is known, there
remain three conditions on β .
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The five order conditions, written in terms of the Runge–Kutta tableau, are

∑bi = 1,

∑bici =
1
2 ,

∑biaijcj =
1
6 ,

∑biaijajkck =
1
24 ,

∑bic
2
i (1− ci)+∑biaijcj(2ci− cj) =

1
4 .

7 Implicit Runge–Kutta Methods

Given the existence of order barriers, it is natural to ask whether these barriers
also apply to implicit methods. Even though explicit methods, and the solution
of the order conditions, become increasingly complicated as the order increases,
everything becomes simpler for implicit methods.

For example, the following method has order 5:

0

1
4

1
8

1
8

7
10 − 1

100
14
25

3
20

1 2
7 0 5

7

1
14

32
81

250
567

5
54

This method has limited applications and we will consider instead methods where
A is a full lower triangular matrix.

If all the diagonal elements are equal, we get the DIRK methods of R. Alexander
[1] and others. The following third order L-stable method illustrates what is possible
for DIRK methods

λ λ
1
2 (1+λ )

1
2 (1−λ ) λ

1 1
4(−6λ 2 + 16λ − 1) 1

4(6λ
2− 20λ + 5) λ

1
4(−6λ 2 + 16λ − 1) 1

4(6λ
2− 20λ + 5) λ

,

where λ ≈ 0.4358665215 satisfies 1
6− 3

2λ+3λ 2−λ 3 = 0. Methods of this type have
a limited value in practical computation and instead we will consider a more general
family of methods.



50 J.C. Butcher

7.1 Singly Implicit Runge–Kutta Methods

The main advantage of the DIRK methods is that the stages can be computed
independently and sequentially from equations of the form

Yi− hλ f (Yi) = a known quantity.

Each stage requires the same factorised matrix I− hλJ , where J ≈ ∂ f/∂y, to
permit solution by a modified Newton iteration process.

A SIRK method is characterised by the equation σ(A) = {λ}. That is, A has a
one-point spectrum. We will consider the possible implementation of SIRK methods
in an efficient manner. The secret lies in the inclusion of a transformation to Jordan
canonical form in the computation.

Suppose the matrix T transforms A to canonical form as follows:

T−1AT = A,

where

A = λ (I− J) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 0 · · · 0 0

−λ λ 0 · · · 0 0

0 −λ λ · · · 0 0
...

...
...

...
...

0 0 0 · · · λ 0

0 0 0 · · ·−λ λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Consider a single modified Newton iteration, in which the same approximate
Jacobian J is used for each stage. Assume the incoming approximation is y0 and
that we are attempting to evaluate

y1 = y0 + h(bT⊗ I)F,

where F is made up from the s subvectors Fi = f (Yi), i = 1,2, . . . ,s.
The implicit equations to be solved are

Y = 1⊗ y0 + h(A⊗ I)F,

where 1 is the vector in R
n with every component equal to 1 and Y has subvectors

Yi, i = 1,2, . . . ,s.
The modified Newton process consists, in each iteration, of solving the linear

system

(Is⊗ I− hA⊗J )D = Y− e⊗ y0− h(A⊗ I)F,
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Table 4 Components of implementation costs

Without transformations With transformations

LU factorisation s3N3 N3

Transformation s2N

Backsolves s2N2 sN2

Transformation s2N

and then updating Y → Y−D. To benefit from the SI property, write

Y = (T−1⊗ I)Y, F = (T−1⊗ I)F, D = (T−1⊗ I)D,

so that

(Is⊗ I− hA⊗J )D = Y− e⊗ y0− h(A⊗ I)F.

Table 4 summarises the costs of this process. We see that the use of transformations
enables the very high LU factorisation cost to be reduced to a level comparable to
BDF methods. Also the back substitution costs are also reduced to the same work per
stage as for DIRK or BDF methods. By comparison, the additional transformation
costs are insignificant for large problems.

To gain the full benefit of SI methods, we will show how stage order s can be
achieved. This would mean that

s

∑
j=1

aijφ(ci) =

ˆ ci

0
φ(t)dt,

for φ any polynomial of degree s− 1. This implies in turn that

Ack−1 =
1
k

ck, k = 1,2, . . . ,s, (17)

where the vector powers are interpreted component by component.
It can be verified that (17) is equivalent to

Akc0 =
1
k!

ck, k = 1,2, . . . ,s. (18)

From the Cayley–Hamilton theorem

(A−λ I)sc0 = 0,

and hence

s

∑
i=0

(
s
i

)
(−λ )s−iAic0 = 0.
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Substitute from (18) and it is found that

s

∑
i=0

1
i!

(
s
i

)
(−λ )s−ici = 0.

Hence each component of c satisfies

s

∑
i=0

1
i!

(
s
i

)(
− x
λ

)i
= 0,

which can be written

Ls

( x
λ

)
= 0,

where LS denotes the Laguerre polynomial of degree s.
Let ξ1, ξ2, . . . , ξs denote the zeros of Ls so that

ci = λξi, i = 1,2, . . . ,s.

For methods defined in this way, a suitable choice of the transformation T is known.
This is

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L0(ξ1) L1(ξ1) L2(ξ1) · · · Ls−1(ξ1)

L0(ξ2) L1(ξ2) L2(ξ2) · · · Ls−1(ξ2)

L0(ξ3) L1(ξ3) L2(ξ3) · · · Ls−1(ξ3)
...

...
...

...

L0(ξs) L1(ξs) L2(ξs) · · · Ls−1(ξs)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The question now is, how should λ be chosen?
Unfortunately, to obtain A-stability, at least for orders p > 2, λ has to be

assigned a value requiring that some of the ci lie outside the interval [0,1]. This
effect becomes more severe for increasingly high orders and can be seen as a
major disadvantage of these methods. However, there are two ways in which SIRK
methods can be generalised to overcome this disadvantage.

The first generalisation is to add additional diagonally implicit stages [8], so that
the coefficient matrix becomes

⎡
⎣ Â 0

W λ I

⎤
⎦ ,
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where the spectrum of the p× p submatrix Â is

σ(Â) = {λ}

For s− p = 1,2,3, . . . , we get improvements to the behaviour of these methods.
A second generalisation is to replace “order” by “effective order”, [9]. This

allows us to locate the abscissae where we wish.

8 Strong Stability-Preserving Methods

Ordinary differential equation systems, formed by semi-discretisation applied to
time-dependent partial differential equations, can impose heavy computational
demands. Because these systems are at least mildly stiff, the use of implicit methods
is often appropriate. However, it might be more economical to use explicit methods,
but with a severe restriction on the stepsize.

Assume that for sufficiently small h

‖Y + hf (Y)‖ ≤ ‖Y‖. (19)

If (19) holds for h≤ H, then for the Euler method,

‖yn‖ ≤ ‖yn−1‖, h≤ CH, (20)

where C = 1.
A Runge–Kutta is said to be “strong stability-preserving” (SSP; also known as

“total variation diminishing” or TVD) [20] if (19) implies that (20) holds for some
C > 0.

For the second order method, (6), the stages and the output are given by

Y1 = yn−1,

Y2 = yn−1 + hf (Y1) = Y1 + hf (Y1), (21)

yn = yn−1 +
1
2 hf (Y1)+

1
2 hf (Y2) =

1
2 yn−1 +

1
2 (Y2 + hf (Y2)). (22)

Given that h≤ H, (21) implies that ‖Y2‖ ≤ ‖yn−1‖ and from (22) we have

‖yn‖ ≤ 1
2‖yn−1‖+ 1

2‖Y2 + hf (Y2)‖ ≤ 1
2‖yn−1‖+ 1

2‖Y2‖ ≤ ‖yn−1‖.

Note that if this analysis is attempted for the second order method (5) based on
the midpoint rule, so that
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Y1 = yn−1,

Y2 = yn−1 +
1
2 hf (Y1) = Y1 +

1
2 hf (Y1),

yn = yn−1 + hf (Y2) = (1−θ )(Y1− θ
2(1−θ)hf (Y1))+θ (Y2 +θ−1hf (Y2)),

(23)

it is not possible to obtain a similar result. No choice of the parameter θ is possible
in the interval (0,1) (so that the addition of the two terms in (23) would be a convex
combination) which also satisfies − θ

2(1−θ) ≥ 0. Hence, this method is not SSP.
The Shu–Osher transformation used in the systematic analysis of the SSP

property was introduced in [21]. See also [12] for recent developments of methods
possessing SSP.

9 Order Analysis for G-Symplectic Methods

Symplectic Runge–Kutta methods have become important in recent years because
of their ability to preserve symplectic behaviour of Hamiltonian systems and to
conserve quadratic invariants; refer to [19]. If a method satisfies the condition

biaij + bjaji = bibj, i, j = 1,2, . . . ,s,

then for a problem (3) such that 〈Y,Qf (Y)〉, where Q is symmetric, the value of
〈yn,Qyn〉 is constant, just as, for the exact solution, 〈y(x),Qy(x)〉 is conserved.

Although multi-value methods are incapable of preserving quadratic invariants or
symplectic behaviour, a more general conservation law is satisfied in G-symplectic
methods; refer to [5, 6, 10, 13].

If instead of a Runge–Kutta method, we were to use a two value method, such as

Y1 = yn−1 + zn−1, F1 = f (Y1),

Y2 =
2
3 hF1 + yn−1− zn−1, F2 = f (Y2),

Y3 =
2
5 hF1− 3

10 hF2 +
1
2 hF3 + yn−1− 1

5 zn−1, F3 = f (Y3),

yn =
1
3 hF1− 3

8 hF2 +
25
24 hF3 + yn−1,

zn =
1
3 hF1 +

3
8 hF2− 5

24 hF3− zn−1,

(24)

it is possible to obtain many of the geometric benefits of symplectic Runge–Kutta
methods but at a lower computational cost. For this particular method, the conserved
quantity is 〈yn,Qyn〉− 〈zn,Qzn〉.

To investigate the order of (24) and show that it is equal to 4, it will be sufficient
to analyse only the first step. We need to choose suitable Taylor series for y0 and z0

expanded about y(x0) in the form
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y0 = ϕh(y(x0)),

z0 = ψh(y(x0)),

so that, to within O(h5),

y1 = ϕh(y(x1)),

z1 = ψh(y(x1)).

It will be verified that the choices of y0 and z0 given in Table 5 achieve this
purpose. Shown in this table are the coefficients of y0 and of h|ti|F(ti)(y0)/σ(ti),
i = 1,2, . . . ,8. as well as the coefficients in the case of the other quantities used in
the calculation. In each case the elementary differentials f, f′f, . . . are evaluated at
y(x0).

A calculation of ϕh(y(x1)) and ψh(y(x1)), respectively, in each case expanded
in Taylor series about x0, yields coefficients identical with the series for y1 and z1

respectively. This verifies that the order of the method (24) is 4.

10 Implementation of G-Symplectic Methods

In the implementation of (24) and similar methods it is necessary to construct a
starting method with a single input and two outputs which match the B-series
coefficients given for y0 and z0 in Table 5. It is convenient to do this in two
steps. First a Runge–Kutta, with tableau given by (25), to produce the series for
y0 = ϕhy(x0) and secondly a mapping χh = ψh ◦ ϕ−1

h to be used to calculate
z0 = χhy0. Because the coefficient of y(x0) in the Taylor expansion of χh is zero
and not one, as for a standard Runge–Kutta method, the tableau representing the
second step in the process has to be interpreted appropriately. This modification is
indicated by the additional 0 in the final row of the tableau for χh shown in (26).

0

− 7
135 − 7

135
7

135 − 1
2

149
270

135
224 0 − 135

224

(25)

0

− 13
30 − 13

30

− 1
10 − 67

1170 − 5
117

− 51
100 − 1330607

2366000 − 626773
3380000

432837
1820000

0 − 1863
1768

4245
4784

855
656 − 56875

64124

(26)
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The details are easily confirmed using Table 6, where the entries for ϕh and χh are
calculated as the elementary weights of (25) and (26), respectively, andψh = χh◦ϕh

is found from the composition formula shown to order 4 in Table 3.

Table 6 Taylor coefficients for components of starting method

y hf h2f′f 1
2 h3f′′(f, f) h3f′f′f 1

6 h4f′′′(f, f, f) h4f′′(f, f′f) 1
2 h4f′f′′(f, f) h4f′f′f′f

ϕh(y) 1 0 − 1
32 − 7

4320
149

8640 − 49
583200

1043
1166400 − 1043

1166400 0

χh(y) 0 1
4 − 1

16 − 49
960 − 5

192
2543
57600

89
3840

211
11520 − 1

256

ψh(y) 0 1
4 − 1

16 − 49
960 − 13

384
2543
57600

193
7680

619
34560

163
69120

In simulations reported in [7], the method (24), equipped with the starting process
described in this section, was shown to act in a similar way to a symplectic Runge–
Kutta for millions of time steps.
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A Positive Barzilai–Borwein-Like Stepsize
and an Extension for Symmetric Linear Systems

Yu-Hong Dai, Mehiddin Al-Baali, and Xiaoqi Yang

Abstract The Barzilai and Borwein (BB) gradient method has achieved a lot of
attention since it performs much more better than the classical steepest descent
method. In this paper, we analyze a positive BB-like gradient stepsize and discuss
its possible uses. Specifically, we present an analysis of the positive stepsize for
two-dimensional strictly convex quadratic functions and prove the R-superlinear
convergence under some assumption. Meanwhile, we extend BB-like methods for
solving symmetric linear systems and find that a variant of the positive stepsize is
very useful in the context. Some useful discussions on the positive stepsize are also
given.

Keywords Unconstrained optimization • Barzilai and Borwein gradient method •
Quadratic function • R-superlinear convergence • Condition number

1 Introduction

Consider the unconstrained quadratic optimization problem,

min f (x) =
1
2

xTAx−bTx, (1)
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where A ∈ Rn×n is a real symmetric positive definite matrix and b ∈ Rn. The
(negative) gradient method for solving (1) takes the negative gradient as its search
direction and updates the solution approximation iteratively by

xk+1 = xk−αk gk, (2)

where gk = ∇f (xk) and αk is some stepsize. Denote sk−1 = xk− xk−1 and yk−1 =
gk − gk−1. Since the matrix Bk = α−1

k I, where I is the identity matrix, can be
regarded as an approximation to the Hessian of f at xk, Barzilai and Borwein [2]
choose the stepsize αk such that Bk has a certain quasi-Newton property:

Bk = arg min
B=α−1I

‖Bsk−1− yk−1‖, (3)

where ‖ · ‖ means the two norm, yielding the long stepsize

αBB1
k =

sT
k−1sk−1

sT
k−1yk−1

. (4)

An alternative way is to approximate the inverse Hessian by the matrix Hk = αkI
and solve

Hk = arg min
H=αI

‖sk−1−Hyk−1‖, (5)

which gives the short stepsize

αBB2
k =

sT
k−1yk−1

yT
k−1yk−1

. (6)

Comparing with the steepest descent (SD) method, which was due to Cauchy
[4], the Barzilai–Borwein (BB) method often requires less computational work and
speeds up the convergence greatly. Due to its simplicity and efficiency, the BB
method has been extended or generalized in many occasions or applications. For
example, Raydan [17] designed an efficient global Barzilai and Borwein algorithm
for unconstrained optimization by incorporating the nonmonotone line search by
Grippo et al. [15]. In the context of neural network, Dai and Liao [12] considered
the one-delay method, that consists in the model

dx(t)
dt

=−P∇f (x(t)), t ≥ 0, (7)

where

P = I +
ssT

sTy
. (8)
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Here, s = x(t− Δ t)− x(t− 2Δ t), y = ∇f (x(t−Δ t))−∇f (x(t− 2Δ t)), and Δ t is
the time delay. One advantage of the above model is that, if some modification
is made so that the denominator in (8) is greater than zero, each eigenvalue of
P will be not less than one, which makes the model not slower than the gradient
neural network. The algorithm of Raydan was further generalized by Birgin et al.
(2000) for minimizing a differentiable function on a closed convex set, yielding an
efficient projected gradient methods. Efficient projected algorithms based on BB-
like methods have also been designed (see Serafini et al. [18] and Dai and Fletcher
[10]) for special quadratic programs arising from training support vector machine.
The BB method has also received much attention in finding sparse approximation
solutions to large underdetermined linear systems of equations from signal/image
processing and statics (for example, see Wright et al. [20]).

Several attention have been paid to theoretical properties of the BB method in
spite of the potential difficulties due to its heavy nonmonotone behavior. These
analyses proceed in the unconstrained quadratic case (this is also the case in this
paper). Specifically, Barzilai and Borwein [2] present an interesting R-superlinear
convergence result for their method when the dimension is only two. For the general
n-dimensional strong convex quadratic function, the BB method is also convergent
(see Raydan 1993) and the convergence rate is R-linear (see Dai and Liao 2002).
Further analysis on the asymptotic behavior of BB-like methods can be found in
[8, 9].

One disadvantage of the BB stepsize, however, is that it may become negative for
non-convex objective functions. In this case, one remedy used in [17] is to restrict
the BB stepsize into some interval like [10−30,1030]. The setting of such interval
seems very artificial. The main purpose of this paper is to analyze the following
positive stepsize

αk =
‖sk−1‖
‖yk−1‖ . (9)

This stepsize is exactly the geometrical mean of the long BB stepsize and the short
BB stepsize. Here we should remark that the stepsize (9) has been noticed by the
authors for several times (see (4.28) in [7], an unpublished preprint [9] therein,
Dai and Yang [13], or Cheng and Dai [5]). This stepsize has also been noticed
by Al-Baali [1]. Vrahatis et al. [19] directly replaced the Lipschitz constant L in
the constant stepsize 1

2L by the estimate ‖yk−1‖
‖sk−1‖ , yielding a stepsize similar but not

identical to (9). Nevertheless, there is no any theoretical analysis for the stepsize (9)
yet.

For simplicity, we refer to the gradient method (2) with the stepsize formula (9)
as method (9). In the quadratic case, since sk−1 =−αk−1gk−1 and yk−1 = Ask−1, an
equivalent expression of formula (9) is

αk =
‖gk−1‖
‖Agk−1‖ . (10)
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Therefore formula (10) can be regarded with the one-retard extension of the stepsize
considered in [13],

αDY
k =

‖gk‖
‖Agk‖ . (11)

Interestingly enough, for the gradient method with the stepsize formula (11), it
was shown in [13] that the stepsize (11) will eventually tend to the stepsize that
minimizes the modulus ‖I− αA‖ (this stepsize is called the optimal stepsize in
[14]). More exactly,

liminf
k→∞

αDY
k =

2
λ1 +λn

, (12)

where λ1 and λn are the minimal and maximal eigenvalues of the matrix A,
respectively. Simultaneously, the eigenvectors corresponding to λ1 and λn can be
recovered from

gk

‖gk‖ +
gk+1

‖gk+1‖ and
gk

‖gk‖ −
gk+1

‖gk+1‖ ,

respectively.
Though simple, the two-dimensional analysis has a special meaning to the BB

method. As was just mentioned, the BB method is significantly faster than the SD
method in practical computations, but there is still lack of theoretical evidences
that explain why the BB method is better than the SD method in the n-dimensional
case. Nevertheless, the notorious zigzagging phenomenon of the SD method is well
known to us; namely, the search directions in the SD method usually tend to two
orthogonal directions when applied to any-dimensional quadratic functions. Unlike
the SD method, however, the BB method will not produce zigzags due to its R-
superlinear convergence in the two-dimensional case. This explains to some extent
the efficiency of the BB method over the SD method. In this paper, we shall also
analyze the convergence properties of method (9) for two-dimensional quadratic
functions.

The rest of this paper is organized as follows. In the next section, we devote
ourselves into the analysis of method (9) in the two-dimensional case. After giving
some basic analysis in Section 2.1, we will establish the R-superlinear convergence
of method (9) under some assumptions in Section 2.2. Then we make some
discussions in Section 2.3. In the third section, we provide the use of the BB-
like methods for solving symmetric linear systems. A typical numerical example is
presented in Section 3.1, which shows that BB-like gradient methods are still very
useful for solving symmetric systems. Specifically, we will see that formula (9)
has a stronger ability to approximate the eigenvalues (except the signs) of a
symmetric (but not necessarily positive definite) matrix A than the BB stepsizes,
since formula (53) is more efficient. Some related discussions on the topic are made
in Section 3.2. Finally, concluding remarks are given in the last section.
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2 Analysis of Method (9) for Solving (1)

2.1 Some Basic Analysis on Method (9)

We focus on method (9) for minimizing the quadratic function (1) with n = 2.
In this case, since the method is invariant under translations and rotations, we
assume without loss of generality that

A =

[
1 0
0 λ

]
, b = 0, (13)

where λ ≥ 1. Assume that x1 and x2 are given with

g(i)1 �= 0, g(i)2 �= 0, for i = 1 and 2. (14)

To analyze ‖gk‖ for all k≥ 3, we denote gk = (g(1)k , g(2)k )T and define

qk =

(
g(1)k

)2

(
g(2)k

)2 . (15)

Then it follows that

‖gk‖2 =
(

g(2)k

)2(
1+ qk

)
,

αk =
‖sk−1‖
‖yk−1‖ =

‖gk−1‖
‖Agk−1‖ =

√
1+ qk−1√
λ 2 + qk−1

.

Noticing that xk+1 = xk−αk gk and gk = Axk, we have that

gk+1 = (I−αkA)gk. (16)

Writing the above relation in componentwise form,

(
g(1)k+1

g(2)k+1

)
=

([
1

1

]
−
√

1+ qk−1√
λ 2 + qk−1

[
1

λ

])(
g(1)k

g(2)k

)

=

⎡
⎢⎣

√
λ 2+qk−1−

√
1+qk−1√

λ 2+qk−1 √
λ 2+qk−1−λ

√
1+qk−1√

λ 2+qk−1

⎤
⎥⎦
(

g(1)k

g(2)k

)
.
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Therefore we get for all k ≥ 2,

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
g(1)k+1

)2
=

(
√
λ 2 + qk−1−

√
1+ qk−1)

2

λ 2 + qk−1

(
g(1)k

)2
,

(
g(2)k+1

)2
=

(
√
λ 2 + qk−1−λ

√
1+ qk−1)

2

λ 2 + qk−1

(
g(2)k

)2
.

(17)

In the case that λ = 1, which means that the object function has sphere contours,
the method will take a unit stepsize α2 = 1 and give the exact solution at the third

iteration. If g(1)2 = 0 but g(2)2 �= 0, we have that q2 = 0 and hence by (17) that g(1)k = 0

for k ≥ 3 and g(2)4 = 0, which means that the method gives the exact solution in at

most four iterations. This is also true if g(2)2 = 0 but g(1)2 �= 0 due to symmetry of

the first and second components. If g(1)1 = 0 but g(2)1 �= 0, we have that q1 = 0 and

g(2)3 = 0. Then by considering x2 and x3 as two starting points, we must have gk = 0

for some k ≤ 5. The symmetry works for the case that g(2)1 = 0 but g(1)1 �= 0. Thus,
similarly to the analysis for the BB method in [8], we may assume that λ > 1 and the
assumption (14) holds, for otherwise the method has the finite termination property.

On the other hand, if (14) holds, then we will have g(1)k �= 0 and g(2)k �= 0 for all k≥ 1
and hence qk is always well defined.

Now, substituting (17) into the definition of qk+1, we can obtain the following
recurrence relation

qk+1 =

( √
λ 2 + qk−1−

√
1+ qk−1√

λ 2 + qk−1−λ
√

1+ qk−1

)2

qk

=

(
(
√
λ 2 + qk−1−

√
1+ qk−1)(

√
λ 2 + qk−1 +λ

√
1+ qk−1)

(λ 2− 1)qk−1

)2

qk

=

(
λ − qk−1 +

√
τ(qk−1)

λ + 1

)2
qk

q2
k−1

, (18)

where τ is the following quadratic function

τ(w) = (1+w)(λ 2 +w), where w≥ 0. (19)

To proceed with our analysis, we denote Mk = logqk and

h(w) =
λ −w+

√
τ(w)

λ + 1
, where w≥ 0. (20)

It follows from the recurrence relation (18) that

Mk+1 = Mk− 2Mk−1 + 2logh(qk−1). (21)
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2.2 R-Superlinear Convergence of Method (9)

Lemma 1.2.1 Assume that λ > 1. The function h(w) in (20) is monotonically
increasing for w ∈ [0,+∞). Further, we have that

h(w) ∈
[

2λ
λ + 1

,
λ + 1

2

)
, for any w≥ 0. (22)

Proof. By the definition of τ in (19), we have that

(τ ′)2− 4τ = (λ 2− 1)2. (23)

Then by direct calculations, we get

h′(w) =
−1+

1
2
τ−

1
2 τ ′

λ + 1

=
(τ ′)2− 4τ

2(λ + 1)τ
1
2 (τ ′+ 2τ

1
2 )

=
(λ 2− 1)2

2(λ + 1)(τ
1
2 τ ′+ 2τ)

. (24)

Thus we see that h′(w) > 0 for w ≥ 0, which indicates that h(w) is monotonically
increasing. Noticing that

h(0) =
2λ
λ + 1

and lim
w→∞h(w) =

λ + 1
2

,

we know that (22) holds. This completes our proof. �
Lemma 1.2.2 Assume that λ > 1. Consider the function

ψ(w) =
wh′(w)
h(w)

, where w≥ 0, (25)

where h(w) is given in (20). Then ψ(w) ≥ 0 for all w ≥ 0. Further, it reaches its
maximal value at wmax = λ and

ψmax := ψ(wmax) =
1
2
−
√
λ

λ + 1
. (26)

Proof. The nonnegativity of ψ(w) over [0,+∞) is obvious due to Lemma 1.2.1. To
analyze the maximal value of ψ(w) for w > 0, by setting ψ ′(w) = 0 and noting that
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h′(w) �= 0 for λ �= 1, we can get that

1
w
− h′(w)

h(w)
=−h′′(w)

h′(w)
. (27)

Direct calculations show that

1
w
− h′(w)

h(w)
=

1
w
−
−1+

1
2
τ−

1
2 τ ′

λ −w+ τ
1
2

=
λ + τ

1
2 − 1

2
wτ−

1
2 τ ′

w(λ −w+ τ
1
2 )

=
λτ+ τ

1
2 (τ − 1

2
wτ ′)

wτ(λ −w+ τ
1
2 )

=
2λτ+ τ

1
2
[
2λ 2 +(λ 2 + 1)w

]

2wτ(λ −w+ τ
1
2 )

. (28)

On the other hand, noticing that τ ′′ = 2, we have by (23) and direct calculations that

(λ + 1)h′′(w) =−1
4
τ−

3
2
[
(τ ′)2− 2ττ ′′

]
=−1

4
(λ 2− 1)2τ−

3
2 .

The above relation indicates that h(w) is a concave function. It follows from this
relation and (24) that

− h′′(w)
h′(w)

= τ−
1
2 (1+

1
2
τ−

1
2 τ ′). (29)

Substituting (28) and (29) into the Equation (27) and noticing that τ ′ = 1+λ 2+2w,
we can get

2λτ+ τ
1
2
[
2λ 2 +(λ 2 + 1)w

]
= w

(
λ −w+ τ

1
2

)(
1+λ 2+ 2w+ 2τ

1
2

)
. (30)

The relation (30) is equivalent to

(λ −w)
[
−w(1+λ 2+ 2w)+ 2λτ

1
2 + 2τ

]
= 0.

Substituting τ = (1+w)(λ 2 +w) into the above relation yields

(λ −w)
[
2λ 2 +(1+λ 2)w+ 2λτ

1
2

]
= 0. (31)

Thus, to meet (27), which is equivalent to (31), we must have that w = λ . Since
ψ(0) = 0 and ψ(w) > 0 for w > 0, we know that ψ(w) must reach its maximal
value at its unique stationary point w = λ . Therefore wmax = λ . Noticing that
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h(λ ) =
√
λ and h′(λ ) =

(
√
λ − 1)2

2(λ + 1)
√
λ
,

we can deduce (26). �
In addition to the function ψ(w) in (25), we consider the function

φ(w) =

⎧⎪⎨
⎪⎩

logh(w)− logh(1)
logw , if w > 0 but w �= 1;

h′(1)
h(1) , if w = 1.

(32)

Lemma 1.2.3 For the function φ(w) defined in (32), we have that

0 < φ(w)≤ ψmax, for all w > 0,

where ψmax is given by (26).

Proof. It is obvious that φ is continuous in (0,+∞) and continuously differentiable
over (0,1)∪ (1,+∞). Due to Lemma 1.2.1, we can also see that φ(w) tends to zero
when w tends to zero or when w tends to +∞. Further, by setting the derivative of
φ(w) to be zero, we know that the optimal w∗ that maximize φ(w) over (0,1)∪
(1,+∞) must satisfy

φ(w∗) =
w∗h′(w∗)

h(w∗)
.

Consequently, by Lemma 1.2.2, we have for w > 0,

0 < φ(w) ≤max{φ(w∗),φ(1)} = max{ψ(w∗),ψ(1)} ≤ ψmax.

This completes our proof. �
Now, noticing the relation (21) and using the definition of φ , we can get that

Mk+1 = Mk− 2(1−φ(qk−1))Mk−1 + 2logh(1). (33)

By Lemma 1.2.3, we know that the coefficient of Mk−1 belongs to the interval

(
−2,−1− 2

√
λ

λ + 1

]
. (34)

This interval, however, cannot enable us to find some suitable parameter γ such
that the sequence of |Mk + γMk−1| is monotonically increasing with k. To do so,
we have to strengthen the upper bound of φ(w) in Lemma 1.2.3. Meanwhile, we
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still need some suitable assumption on the initial value of M1 and M2 similarly
to Lemma 1.2.4. Based on this reason, we directly work with the recursive
relation (21). Pick γ to be any root of the equation γ2− γ+ 2 = 0; namely,

γ =
1±

√
7i

2
, (35)

where i is the imaginary unit (sometimes i is also used as an index, but it is easy for
the reader to tell). We have the following lemma.

Lemma 1.2.4 Consider the sequence {Mk} satisfying (21). Denote ξk = Mk+
(γ− 1)Mk−1, where γ is given in (35). If

|ξ2|> 2log
λ + 1

2
, (36)

there exist some positive constants c1 and c2 such that

|ξk| ≥ c12k−2 + c2, for all k ≥ 2. (37)

Proof. It follows from the definition of ξk, the relation (21) and the choice of γ that

ξk+1 = γMk− 2Mk−1 + 2logh(qk−1) = γ ξk + 2logh(qk−1).

Noticing that |γ| = 2 and by Lemma 1.2.1, | logh(qk−1)| < log λ+1
2 , we have from

the above relation that

|ξk+1| ≥ 2 |ξk|− c2, (38)

where c2 = 2log λ+1
2 . The relation (38) is equivalent to

|ξk+1|− c2 ≥ 2(|ξk|− c2) . (39)

Denoting c1 = |ξ2|− c2, which is strictly greater than zero by assumption, we can
know from the repeated use of (39) that (37) holds. �

Notice that |γ− 1|= 2 and hence

|ξk| ≤ |Mk|+ 2|Mk−1| ≤ 3max{|Mk|, |Mk−1|}.

This with (37) gives that

max{|Mk|, |Mk−1|} ≥ 1
3

(
c12k−2 + c2

)
, for all k ≥ 2. (40)
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Lemma 1.2.5 Consider the sequence {Mk} satisfying (21). Under the same
assumption in Lemma 1.2.4, we have for all k ≥ 2 that

max
−1≤i≤3

Mk+i ≥ 1
3

c12k−2− 4log
λ + 1

2
(41)

and

min
−1≤i≤3

Mk+i ≤−1
3

c12k−2 + 4log
λ + 1

2
. (42)

Proof. It follows from the recursive relation (21) that

Mk+2 =−Mk− 2Mk−1 + 2logh(qk)+ 2logh(qk−1). (43)

We focus on the relation (40). If there exists some i = 0 or 1 such that

Mk−i ≥ 1
3

(
c12k−2 + c2

)
,

then it is obvious that (41) holds. Otherwise, we must have that

Mk−i ≤−1
3

(
c12k−2 + c2

)

holds for some i = 0 or 1. In this case, noticing Lemma 1.2.1, we can see from (21)
and (43) (with k− 1 replaced with k− i) that the following relation

Mk−i+j ≥ 2
3

(
c12k−2 + c2

)− 4log
λ + 1

2

holds for j = 2 or 3. As a matter of fact, we can use the relation (21) if Mk−i+1 ≥ 0
or the relation (43) otherwise. Therefore (41) must be true. The proof of (42) is
similar. �

The above lemma indicates that there must exist two subsequences of {Mk}
which tend to +∞ and −∞, respectively, at a geometrical rate. Then we are able
to show that both the components of the gradient tend to zero R-superlinearly and
hence the whole gradient norm is R-superlinearly convergent.

Theorem 1.2.6 Consider method (9). Assume that (14) and (36) hold. Then the
sequence of the gradient norm {‖gk‖} converges to zero and the convergence is
R-superlinear.

Proof. First, noticing that αk ∈ (λ−1,1) for any k, we know from (16) that

|g(i)k+1| ≤ (λ − 1)|g(i)k | (44)
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holds for i = 1 and 2 and all k≥ 1. Let us focus on the second component of gk. By
the second relation in (17), it is not difficult to prove that

|g(2)k+1| ≤
(λ 2− 1)qk−1√

λ 2 + qk−1(
√
λ 2 + qk−1 +λ

√
1+ qk−1)

|g(2)k |

≤ (λ 2− 1)qk−1

2λ 2 |g(2)k |

< (λ − 1)qk−1|g(2)k |. (45)

Combining (44) and (45), we can get that

|g(2)k+5| ≤ (λ − 1)5
(

min
−1≤i≤3

qk−1

)
|g(2)k |,

which, with Mk = logqk and the relation (42), yields

|g(2)k+5| ≤ (λ − 1)5 exp

(
−1

3
c12k−2 + 4log

λ + 1
2

)
|g(2)k |.

Similarly, we can build

|g(1)k+5| ≤
1
2
(λ + 1)(λ − 1)5 exp

(
−1

3
c12k−2 + 4log

λ + 1
2

)
|g(1)k |.

Thus we can obtain for all k,

||gk+5|| ≤ 1
2
(λ + 1)(λ − 1)5 exp

(
−1

3
c12k−2 + 4log

λ + 1
2

)
||gk||. (46)

Therefore we can see that ‖gk‖ converges to zero and the convergence is
R-superlinear. �

2.3 Some Discussions

Comparing the above two-dimensional analysis for method (9) with those for the
BB method, we can see that the analysis in this paper is more difficult. The current
analysis requires an assumption on the initial points, that is (36), so that we can
prove the divergence of a subsequence of {Mk} (see Lemma 1.2.4). Then we are
able to show that there are two subsequences of {Mk} which tend to +∞ and
−∞, respectively (see Lemma 1.2.5). A direct implication of this result is that
there are two subsequences of {αk} which converges to the two eigenvalues of the
matrix A. Finally, we can establish the R-superlinear convergence for method (9)
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in the two-dimensional case. Although our numerical observations show that the
assumption (36) is not necessary, we do not know yet whether this assumption can
be removed or not.

Since by Lemma 1.2.1, the last term in the recursive relation (21) is bounded
above and below, we may think that the properties of the sequence {Mk} are similar
to the one satisfying the linear recursion relation Mk+1 = Mk − 2Mk−1. The latter
is exactly what Barzilai and Borwein [2] obtained for the BB method. Therefore,
we might feel that method (9) itself performs not better than the BB method. An
illustrative example is as following. Consider the 1000-dimensional example

A = diag(1 : 1000), b = zeros(1000,1). (47)

Here and below diag and zeros are standard matlab languages. The starting point
and the stopping criterion are

x1 = ones(1000), ‖gk‖ ≤ 10−12, (48)

respectively. It was found that, to reach the stopping criterion, the BB1 method, the
BB2 method, and method (9) require 590, 697, and 1,139, iterations, respectively.

Nevertheless, when applied the BB method for general nonconvex optimization,
it is possible that sT

k−1yk−1 < 0, in which case some truncations are often done.
For example, by projecting the BB stepsizes onto the interval like [10−30,1030].
With the help of the stepsize (9), we may now consider, for example, the following
possibilities

ᾱBB1
k = max

{
sT

k−1sk−1

sT
k−1yk−1

,
‖sk−1‖
‖yk−1‖

}
(49)

and

ᾱBB2
k = max

{
sT

k−1yk−1

yT
k−1yk−1

,
‖sk−1‖
‖yk−1‖

}
. (50)

It is easy to see that if sT
k−1yk−1 > 0, ᾱBB1

k = αBB1
k and ᾱBB2

k reduces to the
stepsize (9). However, if sT

k−1yk−1 ≤ 0, the stepsize (9) will be used instead. Theo-
retically, by the analysis in [7], it is not difficult to see that all the stepsizes (9), (49),
and (50) possess the so-called Property (A) and hence the corresponding gradient
methods are R-linearly convergent for any-dimensional strictly convex quadratic
functions. More numerical experiments are still required to test the efficiency of the
proposed variants.
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3 Solving Symmetric Linear Systems

This section aims to expose another good property of the stepsize (9). More exactly,
if the Hessian matrix A is only symmetric, but not necessarily positive definite, we
will find that formula (9) has stronger ability to approximate the eigenvalues (except
the signs) of A than the formulae (4) and (6).

3.1 A Typical Numerical Example

In this section, we shall consider the symmetric linear system

Ax = b, (51)

where A ∈ Rn×n is assumed to be symmetric and invertible and b ∈ Rn. It is obvious
that if A is symmetric positive definite, the unconstrained quadratic optimization
problem (1) is equivalent to the linear system (51). In this subsection, however, we
only assume A to be symmetric, but not necessarily positive definite. As BB-like
gradient methods have achieved great success in various aspects, there seem not
many studies on the methods for solving symmetric linear systems.

For easy illustration, for any dimension n, we define the n-dimensional vector v
with v(i) = (−1)ii and consider the following example

A = diag(v), b = zeros(n,1).

Here again, diag and zeros are standard matlab languages. In the context of linear
systems, we define gk = Axk− b, which is exactly the derivative of the quadratic
function in (1). The starting point and the stopping criterion are

x1 = ones(n) and ‖gk‖ ≤ 10−6, (52)

respectively. In practical computations, we consider the following five values of n:
n = 10,20,30,40,50.

Firstly, we tried the naive use of the classical steepest descent method, that is, the
method (2) with the stepsize

αSD
k =

gT
k gk

gT
k Agk

,

and found that the norm ‖gk‖ goes to infinity at a fast rate and cannot converge at all.
Secondly, we tested the two choices, (4) and (6), of the Barzilai–Borwein

methods. They are denoted by BB1 and BB2, respectively. In this case, the steepest
descent stepsize is used for the first iteration. In Table 1, we listed the number of
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Table 1 Comparing different methods for symmetric linear systems

n

Method 10 20 30 40 50

BB1 1,117 2,806 2,568 2,948 4,685

BB2 238 499 1,138 2,104 2,345

(53) 147 426 607 687 847

iterations required by each method for each problem. It is remarkable to see that
both BB1 and BB2 can provide a solution satisfying the stopping criterion in (52).
Further, unlike the unconstrained optimization, where it is believed that BB1 is
preferable to BB2, the BB2 method requires significantly fewer iterations than the
BB1 method does.

Now, we think of how to make use of the stepsize (9) for solving the symmetric
linear system (51). Due to its equivalent definition (10) of the stepsize, it is easy
to see that α2

k is an approximation to some inverse eigenvalue of the matrix A2.
To decrease the components of the residual vector gk corresponding to the negative
eigenvalues of A, we need to design a mechanism how to choose the sign of the
stepsize αk. An easy way is to consider the function

sign(a) =

{
1, if a≥ 0;
−1, otherwise.

Then we calculate the stepsize in the following way

αk = sign(sT
k−1yk−1)

‖sk−1‖
‖yk−1‖ . (53)

In other words, the stepsize (53) aims to approximate the inverse eigenvalue of the
matrix A based on the sign of the inner product sT

k−1yk−1. If sT
k−1yk−1 is greater

than or equal to zero, it tends to estimate the inverse of the positive eigenvalues;
otherwise, if sT

k−1yk−1 is less than zero, it goes to approximate the inverse of the
negative eigenvalues. The iterations required by the method (53) are denoted in
Table 1 in the row “(53)”. Again, the steepest descent stepsize is used for the first
iteration. From the table, we can see that the new method performs much efficient
than the BB1 and BB2 methods.

3.2 Some Discussions

It is obvious that more numerical experiments with symmetric linear systems are
needed to check the efficiency of the new method. Nevertheless, the above example
is typical, which explains that the new method performs much better than the BB1
and BB2 methods. The example also provides some reason of directly using the BB1
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and BB2 stepsizes in the context of optimization, instead of truncating them to be
some tiny positive numbers like αmin = 10−30 as mentioned in the introduction. The
first author once found that the direct use of the negative BB stepsizes can reduce
the number of iterations.

As there have been a lot of Barzilai–Borwein-like gradient methods in the context
of optimization, we do not know yet whether there exists more efficient stepsizes
in the gradient method for solving symmetric linear systems. Another issue is the
application of the new stepsize in nonlinear systems. Cruz et al. [6] built an efficient
gradient algorithm for nonlinear systems based on the BB stepsizes. Can we improve
their gradient algorithms by using our new stepsize?

Finally, an important theoretical question related to the new method (or the BB1
and BB2 methods) is, does the new method converge for general symmetric linear
systems? Although our numerical experiments show that the answer might be yes,
it seems very difficult for us to provide a proof.

4 Concluding Remarks

In this paper, we have analyzed a positive BB-like gradient stepsize and discussed its
possible uses. We provide an analysis of the positive stepsize for two-dimensional
strictly convex quadratic functions and prove the R-superlinear convergence under
the assumption (36). It is not known yet whether the assumption (36) can be
removed or not. At the same time, we have extended BB-like methods for solving
symmetric linear systems and found that a variant of the positive stepsize, that
is (53), is very useful in the context. More numerical experiments are required
to examine the efficiency of the stepsize (53) for symmetric linear systems. The
convergence of BB-like methods in this context is also not known to us in theory.

From the discussions in Sections 2.3 and 3.2, we have seen two possibilities to
deal with the case where the BB stepsizes are negative. The first is by truncation
[for example, see (49) and (50)]. The second is still to use the BB stepsize even
when negative values of the BB stepsize have been detected due to the successful
numerical example in Section 3.1. On the whole, the proposition of the positive
stepsize (9) might provide much room in finding more efficient and reasonable BB-
like gradient methods.
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Necessary Optimality Conditions for the Control
of Partial Integro-Differential Equations

Leonhard Frerick, Ekkehard W. Sachs, and Lukas A. Zimmer

Abstract In this paper we derive necessary optimality conditions for optimization
problems with partial integro-differential equations. We use the concept of mild
solutions coming from semi-group theory for evolution equations. The application
considered is a model for a cell adhesion process which leads to a two-dimensional
system of nonlinear partial integro-differential equations. The objective function is
of tracking type with the coefficients in the integral operators as unknown control
or design variables. We derive necessary optimality conditions in the form of an
adjoint system of partial integro-differential equations.

Keywords Partial integro-differential equations • Optimal control • Applications

1 Introduction

Non-local models in the form of partial integro-differential equations (PIDEs) arise
in various fields and become more and more important.

In mechanics, the peridynamics theory was introduced in order to model surfaces
with cracks. In finance, in particular for option pricing, existing models were
extended with Lévy processes in order to model jumps, like those that occurred
during the financial crisis in 2007. Recent work on numerical treatment of such
jump-diffusion PIDEs or the corresponding calibration problems can be found, for
example, in Andersen and Andreasen [1], Matache et al. [10], Cont and Voltchkova
[4], Briani et al. [3], Sachs and Strauss [11], or Schu [12]. Many biological models
benefit from non-local terms. Biological applications of PIDEs are discussed, for
example, in Armstrong et al. [2] or Gerisch [7].

First, we take a closer look at a motivating example: In biology, cell adhesion
describes the binding between two cells or between a cell and the extracellular
matrix through certain proteins, called cell-adhesion molecules. Cell adhesion
is responsible for tissue formation, tissue stability and—in case of loss of the
adhesion—cell breakdown. In 1962, Steinberg showed that two different cell
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populations can aggregate in four different ways: mixing, engulfment, partial
engulfment and complete sorting [2]. Steinberg proposed that the way they aggre-
gate depends on differences in the cell’s adhesion properties and the cell’s surface
tension (the differential adhesion hypothesis).

Armstrong et al. published a continuous model that describes cell adhesion in
2006, where they stress that all previous models were discrete ones [2]. Continuous
models have an advantage over their discrete counterparts since these models can
handle huge cell populations—they are scalable. Furthermore, it is quite difficult
to perform analysis for discrete models. Armstrong et al. describe the adhesion
driven cell-movement with a non-local term, which results in an integro-differential
equation.

Without considering cell birth and cell death, mass conservation implies

ut(t,x) =−Jx(t,x)

for the variation of cell concentration u in x over time. Armstrong et al. split up the
flux of the cells J in

random diffusion J(d) =−D(ux) and adhesive forces J(a) =
φ
R

uF,

where D is the diffusion coefficient, φ is a viscosity related constant, R the sensing
radius of the cells and F the force that is acting on the cells within that radius. The
force acting on the cell at x, that is created by a cell at position x+ y, is given by

f (x) = αg(u(x+ y))ω(y),

where g describes the nature of the forces and their dependence on the local cell
density at x+y. The authors provide two possible examples for g: a simple linear one
(g(u) = u) and one of logistic form (g(u) = u(1−u/M) for u < M and 0 otherwise).
The function ω(y) describes how the direction and magnitude of the force alters
according to y (thus, ω is an odd function), a simple example would be ω(y) =
sign(y). In that case, ω only provides the direction, not the magnitude of the force.
α is a positive parameter reflecting the strength of the adhesive force between the
cells. The total force F is derived as the sum of the local forces

F(x) =
ˆ R

−R
αg(u(x+ y)ω(y)dy.

Together with random diffusion, we obtain the model of Armstrong et al. in one
dimension and for one population:

ut = Duxx− (uK(u))x = Duxx− uxK(u)− uK(u)x (1)
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with

K(u)(x) =
φ
R

ˆ R

−R
αg(u(x+ y)ω(y)dy.

With the two transformations τ := D
R2 t and ξ := x

R , a non-dimensional version
can be formulated (see [2, Section 2]): If u solves (1), then

v(τ,ξ ) :=
Rφ
D

u(
R2

D
τ,Rξ )

is the solution of

vτ = vξξ − (vκ(v))ξ , (2)

with

κ(v)(ξ ) = α
ˆ 1

−1
v(ξ + ζ )ω(ζ )dζ .

The remaining non-dimensional parameter α is a measure for the adhesion strength.
Armstrong et al. showed that, if α is below a certain threshold, no cell aggregation
will occur.

Finally, we present the model of Armstrong et al. for two populations in two
space dimensions:

ut = Δu−∇ · (uKu(u,v)),

vt = Δv−∇ · (vKv(u,v)),
(3)

with

Ku(u,v) =
ˆ 1

0

ˆ 2π

0
rη(θ )[Suguu(u(x+ rη(θ )),v(x+ rη(θ )))Ωuu(r)

+Cguv(u(x+ rη),v(x+ rη(θ )))Ωuv(r)]dθ dr,

Kv(u,v) =
ˆ 1

0

ˆ 2π

0
rη(θ )[Svgvv(u(x+ rη(θ )),v(x+ rη(θ )))Ωvv(r)

+Cgvu(u(x+ rη),v(x+ rη(θ )))Ωvu(r)]dθ dr

and the outer unit normal η . When observing two cell populations, a distinction is
made between homogeneous and heterogeneous cell adhesion. The parameters Su,
Sv and C represent the self-adhesive strength of u, the self-adhesive strength of v
and the cross-adhesive strength between u and v, respectively. Armstrong et al. find
suitable parameter combinations for the system (3) to model all four different cell
aggregations that Steinberg proposed.
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Optimal Control Problem with Non-local Operators

We consider a control problem for the one-dimensional two population model. The
objective of the control problem is to determine the optimal adhesion parameters
to model an observed cell aggregation. Instead of constant adhesion parameters, we
consider them to be time-dependent.

Armstrong et al. simulate the model on an interval with periodic boundary
conditions. Hence, we choose Ω = (a,b) with a,b ∈ R, a < b. We choose a least
square function, which results in the following control problem:

1
2

ˆ
Ω

(
u(T,x)− uobs(x)

)2
+
(
v(T,x)− vobs(x)

)2
dx. (4a)

The functions u(·, ·) and v(·, ·) solve the initial value problem

ut = uxx− (uKu(u,v))x, u(0,x) = u0(x), u(t,a) = u(t,b),

vt = vxx− (vKv(u,v))x, v(0,x) = v0(x), v(t,a) = v(t,b),
(4b)

with periodic boundary conditions and integral operators

Ku(u,v)(t,x) =
ˆ 1

−1
Su(t)u(t,x+ y)ω(y)+C(t)v(t,x+ y)ω(y)dy,

Kv(u,v)(t,x) =
ˆ 1

−1
Sv(t)v(t,x+ y)ω(y)+C(t)u(t,x+ y)ω(y)dy,

where ω ∈ L1([−1,1]) is a given desired odd function and u0, v0 ∈H1(Ω) are initial
values.

The functions uobs and vobs are cell aggregations that have been observed at
time T. The goal is to choose the parameter functions Su, Sv and C in such a way
that the solutions u and v of the integro-differential equation system (4b) are closest
to the observed cell aggregations at time T.

In order to be able to compute the optimal parameters, we derive and formulate
necessary optimality condition.

The outline of the paper is as follows. In the next section, we will formulate a
control problem in a Banach space subject to a semilinear evolution equation and
will introduce the concept of a mild solution of such an equation. We derive an
approach to formulate necessary first order optimality conditions using the adjoint
equation in Banach spaces. Section 3 provides our main result, the formulation of
the necessary optimality conditions for the two population adhesion model in one
dimension. We conclude with a summary of the results.
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2 Necessary Optimality Conditions in Banach Spaces

In the following, let X and L be real Banach spaces and let a time interval [0,T] be
given. X is the range space of the abstract function u, L is the space of the control
function λ and Λ ⊂ L is a nonempty, closed and convex set of admissible control
functions. We require the control functions in L = (C(0,T))d to be continuous in
order to apply the existence and uniqueness theorems from literature.

In this section, we consider a control problem for a semilinear evolution equation

ut +Au = F(u,λ ), t ∈ (0,T), u(0) = u0 (5)

with an abstract function u with u(t) ∈ X and control function λ ∈Λ .
Let the operator A : D(A) ⊂ X → X be the generator of an analytic semigroup.

For α ∈ [0,1) we define Xα = D(Aα). The space (Xα ,‖ ·‖α ), with ‖u‖α := ‖Aαu‖,
is a Banach space. Let

F : Xα ×Rd → X (6)

be a semilinear mapping depending on the values of the state u(t) and the control
λ (t). We have D(A) = X1 ⊂ Xα = D(Aα), hence, F is of lower order than A, and
Equation (5) is indeed semilinear.

Furthermore, let there be a t0 > T > 0 such that t �→ ‖F(u(t),λ (t))‖ is integrable
on (0, t0) for a continuous function u : [0,T]→ Xα and λ ∈ L. In conclusion, the
inequality

´ t0
0 ‖F(u(s),λ (s))‖ds < ∞ holds.

Finally, let an initial value u0 ∈ Xα be given.
Let Z := C([0,T],Xα) be the space of continuous functions u : [0,T]→ Xα . The

space Z equipped with the corresponding uniform norm, ‖u‖Z = supt∈[0,T] ‖u(t)‖Xα ,
is a Banach space.

A local solution u ∈ Z∩C1((0,T),X) of (5) with u(t) ∈ D(A) on (0,T) is called
a strong solution. We introduce a weaker concept, the mild solution.

Definition 1. A function u ∈ Z = C((0,T),Xα ) is called a mild solution of (5) on
(0,T) if it solves the integral equation

u(t) = e−tAu0 +

ˆ t

0
e−(t−s)AF(u(s),λ (s))ds (7)

for all t ∈ (0,T).

Remark 1. If A does not meet the condition Reσ(A) > 0, let Xα = D(Aα1 ), with
A1 := A+aI and a > 0 being the smallest value fulfilling Reσ(A1)> 0. The norms
‖ · ‖α are equivalent for different values of a.

For a broader introduction to semigroup theory, we refer to Engel and
Nagel [5, 6], and Henry [8]. We refer to the latter for existence results for semilinear
evolution equations in the subsequent discussion.
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We obtain the control problem

min
λ∈Λ

J(u,λ ) =
ˆ T

0
g(t,u(t),λ (t))dt+ h(u(T))

s.t. G(u,λ ) = 0, (u,λ ) ∈ Z×Λ ,
(8)

with a continuous and convex objective functional J : Z×L→R with h : Xα →R
and g : [0,T]×Xα×Rd →R. The constraint G : Z×L→ Z,

G(u,λ )(t) = u(t)− e−tAu0−
ˆ t

0
e−(t−s)AF(u(s),λ (s))ds = 0,

represents the integral equation (7). In brevity, the spaces were chosen as follows:

Z = C([0,T],Xα), Λ ⊂ L = (C(0,T))d .

To formulate the necessary optimality conditions, we assume the following:

Assumption 1. (i) J is Fréchet-differentiable on Z×L.
(ii) F is continuously Fréchet-differentiable on Xα ×Rd.

(iii) F is locally Lipschitz-continuous with respect to u.
(iv) There exists a K ∈ C[0,∞) such that for every t > 0

‖F(u,λ )‖X ≤ K(t)(1+ ‖u‖Xα)

Remark 2. The local existence and uniqueness of a mild solution of (5) follows
from the continuity of λ ∈ L and Assumption 1 (ii) and (iii): for fixed λ ∈ L define
F̃λ : (0,T)× Xα → X, F̃λ (t,u) = F(u,λ (t)) and consider the evolution equation
ut +Au = F̃λ (t,u) (cf. Henry [8, Section 3.3]). Assumption 1 (iv) yields the global
existence (cf. Henry [8, Corollary 3.3.5])

Assumption 1 (ii) yields the continuous Fréchet-differentiability of G on Z×L
with derivative dG(u,λ ) : Z × L → Z, for a detailed proof see Zimmer [13].
Furthermore, we obtain for the partial derivative with respect to u the following
result.

Theorem 1. Let Assumption 1 (ii) be true. Then the partial derivative

duG(u,λ ) : Z → Z, duG(u,λ )(Δu) = Δu−
ˆ ·

0
e−(·−s)AduF(u(s),λ (s))Δu(s)ds,

is an isomorphism.

Proof. Consider for given right-hand side v ∈ Z the inhomogeneous equation

Δu =

ˆ ·

0
e−(·−s)AduF(u(s),λ (s))Δu(s)ds+ v. (9)
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If v = 0, then the uniqueness of solutions yields that Δu = 0 is the only solution. For
0 �= v ∈ Z we look at

y =
ˆ ·

0
e−(·−s)AduF(u(s),λ (s))(y(s)+ v(s))ds. (10)

Define the mapping F̃ : (0,T) × Xα → X, F̃(t,y) = duF(u,λ )(y + v(t)), which
is continuous and linear, hence, Lipschitz-continuous in y. Thus, a unique mild
solution y ∈ Z exists and replacing Δu := y + v in (10) shows that Δu satisfies
Equation (9). Therefore, duG(u,λ ) is an isomorphism. �

With a similar argument as in the proof of Theorem 1 we can show that
H : Z → Z,

H(φ)(t) =
ˆ t

0
e−(t−s)Aφ(s) ds,

is an isomorphism. Furthermore,

H∗(φ)(s) =
ˆ T

s
e−(t−s)A∗φ(t) dt

which can be proofed using Fubini’s theorem.
We derive the necessary optimality conditions based on a result by Zowe and

Kurcyusz [14]:

Theorem 2. Let Assumptions 1 be true for an optimal state and optimal control
(ū, λ̄ ) ∈ Z×Λ , then

(
dλ J(ū, λ̄ )+ dλG(ū, λ̄ )∗(l)

)
(λ − λ̄)≥ 0, λ ∈Λ , (11)

where l ∈ Z∗ is the unique solution of the adjoint equation

duG(ū, λ̄ )∗l =−duJ(ū, λ̄ ). (12)

Alternatively, l ∈ Z∗ is uniquely defined by

l(v) =−duJ(ū, λ̄ )(duG(ū, λ̄ )−1v) ∀v ∈ Z. (13)

Proof. Zowe and Kurcyusz consider in [14] the following optimization problem

min f (x), x ∈ C, g(x) ∈ K

where f : X → R, g : X → Y with a closed convex set C ⊂ X and a cone K ⊂ Y.
In our case this reads as

min J(u,λ ), λ ∈Λ , G(u,λ ) = 0,
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with J : Z×L→ R, G : Z×L→ Z, Λ ⊂ L is a closed convex set and

X = Z×L, Y = Z, C = Z×Λ , K = {0Z}.

A point x̄ is a regular point in the sense of Zowe and Kurcyusz, if

g′(x̄)C(x̄)−K(g(x̄)) = Y

where

C(x̄) = {λ (c− x̄) : c ∈ C,λ ≥ 0}, K(y) = {k−λy : k ∈ K,λ ≥ 0}.

In our case we have

C(ū, λ̄ ) = Z×Λ(λ̄ ), K(G(ū, λ̄ )) = 0Z.

This means that we have a regular point (ū, λ̄ ), if

duG(ū, λ̄ )Z + dλG(ū, λ̄ )Λ(λ̄ ) = Z.

In other words, for each v ∈ Z we have to find a u ∈ Z and μ ∈Λ(λ̄ ) such that

duG(ū, λ̄ )u = v− dλG(ū, λ̄ )μ . (14)

Choosing, for example, μ = 0, this holds due to Theorem 1 in our paper.
By [14, Theorem 4.1] there exists a Lagrange multiplier y∗ ∈ Y∗, i.e. by definition

[14, (1.1)] we have

(i) y∗ ∈ K+ = {y∗ ∈ Y∗ : 〈y∗,k〉 ≥ 0 ∀k ∈ K},
(ii) 〈y∗,g(x̄)〉= 0,

(iii) f ′(x̄)− g′(x̄)∗y∗ ∈ C(x̄)+.

In our case this leads to an l̃ ∈ K+ = Z∗ where (ii) holds trivially since g(x̄) = 0. For
the third condition note that

C(ū, λ̄ )+ = Z+×Λ(λ̄ )+ = {0Z}×{λ ∗ ∈ L∗ : 〈λ ∗,λ − λ̄〉 ≥ 0 ∀λ ∈Λ}.

Hence,

duJ(ū, λ̄ )− duG(ū, λ̄ )∗ l̃ = 0

and

〈dλ J(ū, λ̄ )− dλG(ū, λ̄ )∗ l̃,λ − λ̄〉 ≥ 0 ∀λ ∈Λ .

Setting l =−l̃ ∈ K− = Z∗ concludes the proof of Equations (11) and (12).
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With u and v from Equation (14) (with μ = 0) and the invertibility of duG(ū, λ̄ )
we obtain

− duJ(ū, λ̄ )(duG(ū, λ̄ )−1v) =−duJ(ū, λ̄ )u = (duG(ū, λ̄ )∗l)u

= l(duG(ū, λ̄ )u) = l(v).

�
Remark 3. Zowe and Kurzyucz provide in [14, Theorem 4.1] the existence of a
nonempty bounded set of Lagrange multipliers for a regular point x̄. To apply their
result to our control problem (8), the surjectivity of duG(ū, λ̄ ) would be sufficient.
However, the injectivity implies the uniqueness of the Lagrange multiplier l ∈ Z∗.

The next result is based on a similar result of Hu and Peng [9, Theorem 3.3], for
semilinear stochastic evolution equations.

Theorem 3. The linear functional l ∈ Z∗ in the setting outlined above is given by

l(v) =
ˆ T

0
〈ρ(t),v(t)〉dt (15)

where H−∗(p)(t) = ρ(t) (i.e. p(t) = H∗(ρ)(t) =
´ T

t e−(s−t)A∗ρ(s)ds) and p ∈ Z,

p(s) = e−(T−s)A∗(−duh(ū(T)))+
ˆ T

s
e−(t−s)A∗duF(ū(t), λ̄ (t))∗p(t)dt, (16)

is the mild solution of the final value problem

−pt +A∗p = duF(ū, λ̄ )∗p, t ∈ (0,T), p(T) =−duh(ū(T)).

Proof. From (13) follows

l(v) =−duJ(ū, λ̄ )(Δu) =−〈duh(ū(T)),Δu(T)〉, (17)

where Δu ∈ Z solves the equation

Δu(t) =
ˆ t

0
e−(t−s)A(duF(ū(s), λ̄ (s))Δu(s)

)
ds+ v(t).

For brevity we set F̄(s) = duF(ū(s), λ̄ (s)). Setting

v(t) =−H(F̄(·)Δu(·))(t)+ v̂(t)
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with H discussed after Theorem 2 we obtain

Δu(t) =
ˆ t

0
e−(t−s)Av̂(s)ds. (18)

Equations (17) and (18) lead to

l(v̂) = l(v)+ l(H(F̄(·)Δu(·)))

=−〈duh(u(T)),Δu(T)〉+
ˆ T

0
〈ρ(t),H(F̄(·)Δu(·))(t)〉dt

=−〈duh(u(T)),Δu(T)〉+
ˆ T

0
〈H−∗(p)(t),H(F̄(·)Δu(·))(t)〉dt

=−〈duh(u(T)),Δu(T)〉+
ˆ T

0
〈p(t), F̄(t)Δu(t)〉dt

=−
ˆ T

0
〈duh(ū(T)),e−(T−s)Av̂(s)〉ds+

ˆ T

0
〈F̄(t)∗p(t),Δu(t)〉dt

=−
ˆ T

0
〈duh(ū(T)),e−(T−s)Av̂(s)〉ds+

ˆ T

0
〈F̄(t)∗p(t),

ˆ t

0
e−(t−s)Av̂(s)ds〉dt

and applying Fubini’s theorem to the second term yields

l(v̂) =−
ˆ T

0
〈e−(T−s)A∗duh(ū(T)), v̂(s)〉ds

+

ˆ T

0
〈
ˆ T

s
e−(t−s)A∗F̄(t)∗p(t)dt, v̂(s)〉ds

=

ˆ T

0
〈e−(T−s)A∗(−duh(ū(T)))+

ˆ T

s
e−(t−s)A∗F̄(t)∗p(t)dt, v̂(s)〉ds.

By comparing the above to (15) we obtain (16) which concludes the proof. �

3 Necessary Optimality Conditions for the Non-local
Adhesion Model

Given the results of the previous section, our aim in this section is to calculate
the necessary optimality conditions for the non-local adhesion model for two
populations in one space dimension (4).
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Let Ω be a real interval (a,b). We set

X := (L2(Ω))2, L := (C(0,T))3, and convex and closed Λ ⊂ L.

Set α = 1/2 and let the operator A : D(A) ⊂ (L2(Ω))2 → (L2(Ω))2 be defined as
the self-adjoint extension of −Dxx with domain of definition D(A) = (H2(Ω))2 ⊂
(L2(Ω))2. Then, A is the generator of an analytic semigroup and X1/2 = D(A1/2) =
(H1(Ω))2. Therefore, we choose

Z = C([0,T],(H1(Ω))2).

Let ν := (u,v)∈ Z be a vector of the functions u and v and let λ := (Su,Sv,C)∈ L
be a vector of time-dependent adhesion parameters.

The operator K : (L2(Ω))2×R3 → (L2(Ω))2×2 is defined as

K (ν ,λ ) =
(

K(u,v,Su,C) 0
0 K(v,u,Sv,C)

)
,

with K : (L2(Ω))2×R2 → L2(Ω),

K(u,v,S,C)(x) =
ˆ 1

−1
Su(x+ y)ω(y)+Cv(x+ y)ω(y)dy.

Finally, we define the semilinear mapping F : (H1(Ω))2×R3→ (L2(Ω))2 as set
in (6) as

F(ν,λ ) :=−Dx
(
K (ν,λ )ν

)
.

Lemma 1. The mappings

K : (L2(Ω))2×R3 → L2(Ω) and K : (H1(Ω))2×R3 → H1(Ω)

are well defined and linear. The mappings

K : (L2(Ω))2×R3 → (L2(Ω))2×2, K : (H1(Ω))2×R3 → (H1(Ω))2×2

and

F : (H1(Ω))2×R3 → (L2(Ω))2

are well defined. F is locally Lipschitz-continuous with respect to ν and continu-
ously Fréchet-differentiable on (H1(Ω))2×R3 with

dF(ν,λ )(Δν ,Δλ ) =−Dx
(
K (ν,λ )Δν

)−Dx
(
K (Δν,λ )ν

)−Dx
(
K (ν,Δλ )ν

)
.

We omit a detailed proof but add several comments.
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Remark 4. (i) The continuity of the control functions comes here into play, because
it ensures

´ t0
0 ‖F(u(s),λ (s))‖ds < ∞, and with the results of Henry [8], we derive

the local existence of a unique solution of (4b).
(ii) The periodic boundary conditions of (4) have also to be included in the
definition of the spaces. Consider for k ∈ N (Hk

Ω )
2 the space of |Ω |-periodic

functions whose restrictions to Ω are in (Hk(Ω))2. Without loss of generality, let
Ω = [−π ,π ]. For s≥ 0 the Sobolev-space of 2π-periodic functions is defined as

(Ĥs
2π)

2 := {ν ∈ (L2
2π)

2 : ‖ν‖(Ĥs
2π)

2 :=
∞

∑
k=−∞

(1+ |k|2)s|ν̂(k)|2 < ∞},

where ν̂ is the Fourier transform of ν . Since the Fourier transform is an isometry,
(Ĥs

2π)
2 is a Hilbert-space for s≥ 0 and (Ĥk

2π)
2 = (Hk

2π)
2 for k ∈N. We obtain that

(H1(Ω))2 together with the boundary conditions is equal to (Ĥ1
2π)

2 and (H1
Ω )

2.

We can now formulate (4) in the framework of (8)

min
λ∈Λ

J(ν ,λ ) =
1
2

∥∥ν(T;λ )−νobs
∥∥2
(L2(Ω))2

s.t. G(ν ,λ ) = ν− e−·Aν0−
ˆ ·

0
e−(·−s)AF(ν(s),λ (s))ds = 0

(ν ,λ ) ∈ C([0,T],(H1(Ω))2)×Λ .

(19)

It is easy to see that Assumption 1 (i) is fulfilled for a tracking type objective
function with

dJ(ν,λ )(Δν ,Δλ ) =
ˆ
Ω

(
ν(T,x;λ )−νobs(x)

)TΔν(T,x)dx. (20)

Assumptions 1 (ii) and (iii) are met by Lemma 1 and we obtain the partial derivatives
of G,

dνG(ν,λ )(Δν) = Δν−
ˆ ·

0
e−(·−s)A[Dx

(
K (ν ,λ )Δν

)
+Dx

(
K (Δν ,λ )ν

)
]ds

and

dλG(ν,λ )Δλ =−
ˆ ·

0
e−(·−s)ADx

(
K (ν ,Δλ )ν

)
ds.

We need to verify Assumption 1 (iv). For the norm of F follows componentwise

‖(F(ν,λ )
)

1‖L2(Ω) ≤ ‖K(u,v,λ)Dxu‖L2(Ω) + ‖K(Dxu,Dxv,λ)u‖L2(Ω)

≤ c1‖Dx(u)‖L2(Ω) + c2‖u‖L2(Ω)
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≤ c3
(‖Dx(u)‖L2(Ω) + ‖u‖L2(Ω)

)

= c3‖u‖H1(Ω).

Analogously for the second component ‖(F(ν,λ )
)

2‖L2(Ω) ≤ c4‖v‖H1(Ω). Finally,
‖F(ν,λ )‖(L2(Ω))2 satisfies

‖F(ν,λ )‖(L2(Ω))2 ≤ c5‖ν‖(H1(Ω))2 ≤ c5(1+ ‖ν‖(H1(Ω))2).

Theorem 2 provides a Lagrange multiplier l and we can formulate the necessary
optimality conditions of the control problem (19). First, we find a representation of
the adjoint l ∈ Z∗ =

(
C([0,T],(H1(Ω))2)

)∗
.

Lemma 2. The linear functional l ∈ (
C([0,T],(H1(Ω))2)

)∗
in the setting outlined

above is given by

l(φ ) =
ˆ T

0

ˆ
Ω
π(t,x)Tφ (t,x)dxdt (21)

where π = (p,q) ∈ L2([0,T],(H1(Ω))2) is the solution of the final value problem

−π t = Dxxπ+K (ν,λ )Dxπ−K (Dxπ ·ν,λ )id
π(T,x) = νobs(x)−ν(T,x), π(t,a) = π(t,b)

(22)

for all (t,x) ∈ (0,T)×Ω . Here id is the identity and a ·b is the Hadamard product
or entrywise product of vectors a and b. The problem (22) is equivalent to

− pt = pxx + pxKu(u,v)−Ku(pxu,qxv),

− qt = qxx + qxKv(u,v)−Kv(pxu,qxv),

p(T,x) = uobs(x)− u(T,x), p(t,a) = p(t,b),

q(T,x) = vobs(x)− v(T,x), q(t,a) = q(t,b).

Proof. Since A =−Dxx is a self-adjoint operator, Theorem 3 yields

−π t = Dxxπ+ duF(ū, λ̄ )∗π, t ∈ (0,T)

π(T) = νobs−ν(T,x), π(t,a) = π(t,b).

In the following we will derive a representation of duF(ū, λ̄ )∗π . We consider

〈π,duF(ū, λ̄ )Δν〉=
ˆ
Ω
−π(x)T

(
Dx

(
K (ν ,λ )Δν

)
+Dx

(
K (Δν ,λ )ν

))
dx.
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In the following, we isolate Δν in every summand. We present the procedure for the
first component only, the same approach can be applied to the second component
analogously.

〈p,(duF(ū, λ̄ )Δν)1〉
=
´
Ω −p(x)

(
Dx

(
Δu(x)Ku(u,v)(x)

)
+Dx

(
u(x)Ku(Δu,Δv)(x)

))
dx.

Integration by parts and the periodic boundary condition of p and Δu yield

ˆ
Ω
−p(x)Dx

(
Δu(x)Ku(u,v)(x)

)
dx =

ˆ
Ω

Dxp(x)Ku(u,v)(x)Δu(x)dx.

With
ˆ
Ω

f (x)g(x+ y)dx =
ˆ
Ω

f (z− y)g(z)dz =
ˆ
Ω

f (x− y)g(x),

for f , g ∈ L2(Ω) and with the anti-symmetry of ω we derive

ˆ 1

−1

ˆ
Ω

Dxp(x)Suu(x)Δu(x+ y)ω(y)dxdy

=

ˆ 1

−1

ˆ
Ω

Dxp(x− y)Suu(x− y)Δu(x)ω(y)dxdy

=

ˆ
Ω
−Δu(x)

ˆ 1

−1
SuDxp(x+ y)u(x+ y)ω(y)dydx.

Therefore,

ˆ
Ω

Dxp(x)u(x)Ku(Δu,Δv)(x)dx

=

ˆ
Ω
−Δu(x)

ˆ 1

−1
SuDxp(x+ y)u(x+ y)ω(y)dy

−Δv(x)
ˆ 1

−1
CDxp(x+ y)u(x+ y)ω(y)dydx.

Eventually, with Fubini’s lemma, integration by parts, the equation above and the
periodicity of u, v and Δu we obtain

ˆ
Ω
−p(x)Dx

(
u(x)Ku(Δu,Δv)(x)

)
dxdt =

ˆ
Ω

Dxp(x)u(x)Ku(Δu,Δv)(x)dx
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=

ˆ
Ω
Δu(x)

ˆ 1

−1
−SuDxp(x+ y)u(x+ y)ω(y)dy

+Δv(x)
ˆ 1

−1
−CDxp(x+ y)u(x+ y)ω(y)dydx.

Overall, we have

〈p,(duF(ū, λ̄ )Δν)1〉=
ˆ
Ω

(
Δu(x)

(
Dxp(x)Ku(u,v)(x)

−
ˆ 1

−1
SuDxp(x+ y)u(x+ y)ω(y)dy

)

−Δv(x)
ˆ 1

−1
CDxp(x+ y)u(x+ y)ω(y)dy

)
dx,

〈q,(duF(ū, λ̄ )Δν)2〉=
ˆ
Ω

(
Δv(x)

(
Dxq(x)Kv(u,v)(x)

−
ˆ 1

−1
SvDxq(x+ y)v(x+ y)ω(y)dy

)

−Δu(x)
ˆ 1

−1
CDxq(x+ y)v(x+ y)ω(y)dy

)
dx

and altogether

〈π ,duF(ū, λ̄ )Δν〉=
ˆ
Ω
Δν(x)T

(
K (ν,λ )(x)Dxπ(x)

−K (Dxπ ·ν,λ )(x)id(x)
)

dx = 〈Δν ,duF(ū, λ̄ )∗π〉.

Hence, duF(ū, λ̄ )∗π =K (ν ,λ )Dxπ−K (Dxπ ·ν,λ ). �
Since in our case dλ J(ν,λ )(Δλ ) = 0, the inequality (11) reduces to

0≤ dλG(ν,λ )∗(l)(Δλ ) = l
(
dλG(ν ,λ )(Δλ )

)
,

with Δλ = λ − λ̄ . Substituting φ = dλG(ν ,λ )(Δλ ) with its actual representation
leads to

l
(
Dx

(
K (ν ,Δλ )ν

))
=

ˆ T

0

ˆ
Ω
π(t,x)T

(
Dx

(
K (ν ,Δλ )(t,x)ν(t,x)

))
dxdt.

The Riesz representation theorem yields componentwise
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(l(φ ))1 =

ˆ T

0

ˆ
Ω

p(t,x)

(
Dx

(
u(t,x)K(u,v,ΔSu,ΔSv,ΔC)(t,x)

))
dxdt

=

ˆ T

0

(ˆ
Ω

ˆ 1

−1
p(t,x)Dx

(
u(t,x)u(t,x+ y)

)
ω(y)dydxΔSu(t)

+

ˆ
Ω

ˆ 1

−1
p(t,x)Dx

(
u(t,x)v(t,x+ y)

)
ω(y)dydxΔC(t)

)
dt

=

ˆ T

0

(ˆ
Ω

p(t,x) ˆKu(ν)(t,x)dx
)T
Δλ (t)dt

= 〈
ˆ
Ω

p(x) ˆKu(ν)(x)dx,Δλ 〉(C(0,T))3 ,

with ˆKu(ν)(x) ∈ (C(0,T))3 defined as

ˆKu(ν)(t,x) =

⎛
⎝

Dx
(
u(t,x)K(u,v,e1)(t,x)

)
0

Dx
(
u(t,x)K(u,v,e3)(t,x)

)

⎞
⎠

where ei is the ith unit vector in (C(0,T))3. Analogously, for the second component
holds

(l(φ ))2 = 〈
ˆ
Ω

q(x) ˆKv(ν)(x)dx,Δλ 〉(C(0,T))3

with

ˆKv(ν)(t,x) =

⎛
⎝

0
Dx

(
v(t,x)K(v,u,e2)(t,x)

)
Dx

(
v(t,x)K(v,u,e3)(t,x)

)

⎞
⎠ .

The adjoint l(φ ) can be represented with ˆK (ν)(x) ∈ (L2(0,T)3×2),

ˆK (ν)(t,x) =
(

ˆKu(ν)(t,x) ˆKv(ν)(t,x)
)
,

as

l
(
dλG(ν,λ )(Δλ )

)
=

ˆ T

0

(ˆ
Ω

ˆK (ν)(t,x)π(t,x)dx
)T
Δλ (t)dt

= 〈
ˆ
Ω

ˆK (ν)(x)π(x)dx,Δλ 〉(C(0,T))3 .



Necessary Optimality Conditions for the Control of PIDEs 93

As a result, we obtain the necessary optimality conditions for the control prob-
lem (19):

Corollary 1. Given optimal controls λ̄ ∈ Λ and the corresponding optimal state
ν̄ ∈ L2([0,T],(H1(Ω))2), the equation

〈
ˆ
Ω

ˆK (ν̄)(x)π(x)dx,λ − λ̄〉 ≥ 0 (23)

holds for all λ ∈ Λ , where π ∈ L2([0,T],(H1(Ω))2) is a solution of the final value
problem

−π t = Dxxπ+K (ν ,λ )Dxπ−K (Dxπ ·ν,λ )id
π(T,x) = νobs(x)−ν(T,x), π(t,a) = π(t,b).

Armstrong et al. suggest for the numerical treatment of their model (4b) to use
an explicit finite volume method over time to obtain a system of ODEs. For the
diffusion term, a central differencing scheme is used, while Armstrong et al. use a
high order upwinding scheme with flux limiting for the advection term. The integral
is calculated directly by summing over the enclosed points and the time integration
uses an explicit trapezoidal scheme [2]. The same scheme could be used to treat the
adjoint final value problem numerically and is work in progress.

4 Summary

We introduced a system of nonlinear parabolic partial integro-differential equations
as it appears in an application in biology. We considered an optimization problem,
where the objective function is of tracking type functional and the controls are
time-dependent adhesion parameter functions. In the sequel we derived necessary
optimality conditions for an optimal point which include adjoint differential equa-
tions. It turned out that these are also partial integro-differential equations type
which evolve backwards in time with final conditions coming from the tracking
type of objective function.
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The AMPL Modeling Language: An Aid to
Formulating and Solving Optimization Problems

David M. Gay

Abstract Optimization problems arise in many contexts. Sometimes finding a
good formulation takes considerable effort. A modeling language, such as AMPL,
facilitates experimenting with formulations and simplifies using suitable solvers
to solve the resulting optimization problems. AMPL lets one use notation close
to familiar mathematical notation to state variables, objectives, and constraints
and the sets and parameters that may be involved. AMPL does some problem
transformations and makes relevant problem information available to solvers. The
AMPL command language permits computing and displaying information about
problem details and solutions returned by solvers. It also lets one modify problem
formulations and solve sequences of problems. AMPL addresses both continuous
and discrete optimization problems and offers some constraint-programming facil-
ities for the latter. More generally, AMPL permits stating and solving problems
with complementarity constraints. For continuous problems, AMPL makes first
and second derivatives available via automatic differentiation. The freely available
AMPL/solver interface library (ASL) facilitates interfacing with solvers. This paper
gives an overview of AMPL and its interaction with solvers and discusses some
problem transformations and implementation techniques. It also looks forward to
possible enhancements to AMPL.

Keywords Mathematical Programming • Linear Programming • Nonlinear Pro-
gramming • Automatic Differentiation

1 Introduction

Science is all about models and data—theories (models) that explain observed
data and make predictions about data that may be observed later. Science makes
engineering possible and has led to many developments that heavily influence
modern human life. Many kinds of models are useful. Some involve mathematical

D.M. Gay (�)
AMPL Optimization Inc., 900 Sierra Place SE, Albuquerque, NM 87108-3379, USA
e-mail: dmg@ampl.com
http://www.ampl.com

© Springer International Publishing Switzerland 2015
M. Al-Baali et al. (eds.), Numerical Analysis and Optimization, Springer
Proceedings in Mathematics & Statistics 134, DOI 10.1007/978-3-319-17689-5_5

95

mailto:dmg@ampl.com
http://www.ampl.com


96 D.M. Gay

structures, such as distributions or differential equations, to which one can devote
lifetimes of study. Simpler models, involving only finite numbers of variables,
equations, inequalities, and objectives and described by finitely many parameters
and sets, have a surprisingly wide range of uses. When one studies a new area,
choices for suitable models may be far from obvious, and it may be necessary
to try many models. Statistics is largely about comparing candidate models and,
particularly with exploratory data analysis, finding suitable ones.

Algebraic modeling languages, such as the AMPL language considered in
this paper, facilitate formulating, comparing, changing, and deriving results from
a subset of the class of “simpler” models outlined above in which equations,
inequalities, objectives, and derived sets and parameters are expressed algebraically.
In short, AMPL is focused on mathematical programming problems, such as
constrained optimization problems of the form

minimize f (x) (1a)

s.t. �≤ c(x)≤ u, (1b)

with x ∈ R
n and c : Rn → R

m, possibly with some components of x restricted to
integer values.

2 AMPL Design Principles

AMPL is meant to make it easy to transcribe models from mathematical notation,
such as one might write by hand on paper or white board, to the AMPL language.
We sought to make the language both close to elementary algebraic notation and
easy to enter on an ordinary computer keyboard. As explained below, AMPL was
created at Bell Labs, in the then Computing Sciences Research Center, where such
languages as C [26, 27], aC++ [29], and awk [1, 2] had been created, so AMPL uses
some of the same notational conventions as these languages, such as square brackets
for subscripts. Models often have sets of variables and constraints, and AMPL
allows one to have various kinds of subscripted entities. In model entities, such
as constraints and objectives, all subscripting is explicit, in part to make meaning
of these entities clear. AMPL is a declare-before-use language, so one can read a
model from top to bottom without worrying about the meaning of something whose
properties are given later.

An AMPL model can represent a whole class of problems. For example, a linear
objective might be specified by the declarations

set S;
var x{S} >= 0;
param p{S};
minimize Cost: sum{i in S} p[i]*x[i];
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in which the objective is named “Cost” and is a transcription of

∑
i∈S

pixi.

Thus a model can involve sets (such as S) over which entities, such as parameters
and variables, e.g., p and x, are indexed, and can be stated without regard to
the values that its sets and parameters will have in a particular problem to be
solved, i.e., an instance. The AMPL language consists of three sub-languages:
one for declarations, such as the set, var, param, and objective (minimize)
declarations above, a simplified language in “data sections” for giving values to sets
and parameters, and a command language for modifying values, solving problems,
and writing results in various ways. While AMPL permits commingling declarations
and instance data, AMPL also makes it easy to separate pure models from instance
data.

AMPL does not solve problems by itself (except when AMPL’s problem
simplifications—its presolve—result in a solved problem), but instead writes files
with full details of the problem instances to be solved and invokes separate solvers.
The AMPL/solver interface library [19], whose source is freely available, provides
problem details to solver interfaces, which interact with particular solvers to find
solutions and return them to AMPL.

Often one needs to solve sequences of problems, with the solution of one problem
providing data used in the next problem. Sometimes this involves updating set
and parameter values. AMPL only instantiates or recomputes problem entities as
needed, effectively using lazy evaluation to help speed up processing.

While parts of the AMPL language are general purpose, other parts, such as
the presolve phase and computation of reduced costs, are tailored to mathematical
programming. AMPL is meant for use with both linear and nonlinear problems; its
internal use of sparse data structures allows AMPL to be useful with some very large
problem instances.

3 AMPL History

AMPL arose in part because of Karmarkar’s linear-programming algorithm [24]. At
the time, there was much interest at the Computing Sciences Research Center in
“little languages,” e.g., for graphing data, solving least-squares problems, drawing
figures, etc. While Karmarkar’s algorithm seemed to promise faster solutions of
some linear programming problems, we thought a “little language” to express such
problems would help make the algorithm useful in practice. I had known Bob
Fourer since the mid-1970s, when we both worked at the NBER Computer Research
Center in Cambridge, Massachusetts—Bob had done his undergraduate work at
the nearby Massachusetts Institute of Technology. He had subsequently obtained a
Ph.D. at Stanford University under George Dantzig and had published a nice paper
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[10] arguing for modeling languages. Bob was now a professor at Northwestern
University and, as I learned when I saw him at a meeting, was coming up for a
sabbatical. My management arranged for Bob to spend his sabbatical at Bell Labs
in the 1985–1986 academic year, during which he, Brian Kernighan, and I worked
on the first version of AMPL. (We were aware of GAMS [5], but GAMS was not yet
generally available and, anyway, we thought we could do a better language design.
Such other modeling languages as AIMMS [4] and MPL [28] came along later.)
Brian wrote the first implementation of AMPL; I wrote a preprocessor to transform
data sections to a simpler, now defunct, format for the original AMPL processor.

Our first technical report on AMPL [13] appeared in 1987. In revised form, it
eventually appeared in Management Science [14]. By then, I had written a new
implementation to facilitate various extensions we had in mind, such as handling
nonlinearities.

Since the late 1970s I had been aware of Kedem’s work [25] on forward
automatic differentiation (AD), which provides a mechanical way to compute
analytically correct derivatives, and I was thinking of adding such facilities to
AMPL. I mentioned this to Andreas Griewank when I saw him in 1988 at the
International Symposium on Mathematical Programming (ISMP) in Tokyo, and
he told me about the more efficient “reverse” automatic differentiation. (He has
subsequently written much more about AD; see [22] for pointers to AD history and
[23] for more on AD in general.) Reverse AD computes a function and its gradient
with work proportional to that of computing the function alone, whereas forward
AD, like straightforward symbolic differentiation, can turn a function evaluation
involving n arithmetic operations into a computation involving O(n2) operations.
Both avoid the truncation errors inherent in finite differences. Ever since the Tokyo
ISMP, I have been a fan of reverse AD. AMPL itself uses reverse AD to compute
nonlinear reduced costs, but most AD happens in the solver interface library. See
[17] for more on first derivative computations in this regard and [18] for some details
of finding and exploiting partially separable structure when doing Hessian (second
derivative) computations.

By the early 1990s we had enough material to write a book on AMPL [15]. We
continued adding facilities to AMPL and added much new material to the second
edition [16] of the book.

The “dot-com bubble burst” of 2001 threw a monkey wrench into AMPL devel-
opment, but did cause creation of the AMPL Optimization company. Eventually
I went to work at Sandia National Labs in Albuquerque, New Mexico, where I
worked on AMPL support after hours (and without pay). Brian became a professor
at Princeton. The three co-authors continued (and continue) to interact via E-mail.
When we got an NSF SBIR grant for some new work on AMPL, I left Sandia to
work for the AMPL company (and get some pay). Bob Fourer retired somewhat
later from Northwestern University and now also works full time for the AMPL
company.
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4 Some Simple Declarations and Commands

Here is a simple example of some declarations, commands, and a little data section:

param p;
param q = p + 10;
data; param p := 2.5;
display p, q;

The third line is the data section, which gives a value to p that is used in the “display”
command, which produces output

p = 2.5
q = 12.5

Data sections are good for conveying single values as well as tables of data, but
data sections have relaxed quoting rules and other simplifications that preclude the
appearance of expressions. The “let” command, by contrast, can involve general
expressions. For example,

let p := 17; display p, q;

gives

p = 17
q = 27

Notice that q was automatically recomputed.
AMPL can be used in batch mode (reading from a file) or interactive mode

(reading from the standard input). Prompts are given in interactive mode. Doing
the above exercise in interactive mode, one would see

ampl: param p;
ampl: param q = p + 10;
ampl: data; param p := 2.5;
ampl: display p, q;
p = 2.5
q = 12.5
ampl: let p := 17; display p, q;
p = 17
q = 27

5 Simple Sets

To illustrate some simple sets and an error, here is a continuation of the above
interactive-mode session.

ampl: set A; set B;
ampl: set C = p .. q;
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ampl: display A;
Error executing "display" command:

no data for set A
ampl: data; set A := a b c; set B := c d;
ampl data: display A, B, C;
set A := a b c;

set B := c d;

set C := 17 18 19 20 21 22 23 24 25 26 27;

The prompt “ampl data:” indicates data-section mode; the “display” command
causes AMPL to revert to model/command reading mode. Here are examples of
some set operations:

ampl: display A intersect B, A union B;
set A inter B := c;

set A union B := a b c d;

display A diff B, A symdiff B;
set A diff B := a b;

set A symdiff B := a b d;

6 Iterated and Recursive Expressions

Often it is useful to use iterated expressions, such as iterated sums. Here are some
iterated expressions and a recursive definition, illustrated with the help of “print”
commands.

ampl: print sum {i in 1..4} i;
10
ampl: print prod {i in 1..4} i;
24
ampl: param fac{ i in 1..9 }
ampl? = if i == 1 then 1 else i*fac[i-1];
ampl: print max{i in 1..9}
ampl? abs(fac[i] - prod{j in 2..i} j);
0
ampl: display fac, {i in 1..9} prod{j in 2..i} j;
: fac prod{j in 2 .. i} j :=
1 1 1
2 2 2
3 6 6
4 24 24
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5 120 120
6 720 720
7 5040 5040
8 40320 40320
9 362880 362880
;

7 Example Model: diet.mod

The diet model in the AMPL book [16] provides a short but complete example
of a model for choosing what foods to buy. The model involves sets NUTR and
FOOD of nutrients and foods, subscripted parameters f_min, f_max, and cost
that specify minimum and maximum amounts of each food to buy and how much
one unit of each food costs, a doubly subscripted parameter amt that tells how
many units of each nutrient are provided by one unit of each food, and subscripted
parameters n_min and n_max that give lower and upper bounds on the amounts
of each nutrient that the foods we buy are to provide. The objective is to satisfy the
nutritional requirements at minimal cost by choosing suitable values for the decision
variables Buy.

set NUTR;
set FOOD;

param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];

param n_min {NUTR} >= 0;
param n_max {i in NUTR} >= n_min[i];

param amt {NUTR,FOOD} >= 0;

var Buy {j in FOOD} >= f_min[j], <= f_max[j];

minimize Total_Cost:
sum {j in FOOD} cost[j] * Buy[j];

subject to Diet {i in NUTR}:
n_min[i] <= sum{j in FOOD} amt[i,j]*Buy[j]

<= n_max[i];

data; set NUTR := A B1 B2 C ;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ;

param: cost f_min f_max :=
BEEF 3.19 0 100
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CHK 2.59 0 100
FISH 2.29 0 100
HAM 2.89 0 100
MCH 1.89 0 100
MTL 1.99 0 100
SPG 1.99 0 100
TUR 2.49 0 100 ;

param: n_min n_max :=
A 700 10000
C 700 10000
B1 700 10000
B2 700 10000 ;

param amt (tr):
A C B1 B2 :=

BEEF 60 20 10 15
CHK 8 0 20 20
FISH 8 10 15 10
HAM 40 40 35 10
MCH 15 35 15 15
MTL 70 30 15 15
SPG 25 50 25 15
TUR 60 20 15 10 ;

The data section above illustrates some tabular input formats. AMPL also has
“table” declarations and “read table” and “write table” commands for reading data
from, and writing data to, external repositories, such as databases and spreadsheets.

8 Sample Session

Here is an example of solving the above problem instance.

ampl: model diet.mod; data diet.dat;
ampl: solve;
MINOS 5.51: optimal solution found.
6 iterations, objective 88.2
ampl: display Buy;
Buy [*] :=
BEEF 0
CHK 0

FISH 0
HAM 0
MCH 46.6667
MTL 1.57618e-15
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SPG 8.42982e-15
TUR 0

;

The resulting menu is not very satisfactory: 46 2
3 packages of macaroni and cheese

(“MCH”). We probably want to buy only whole packages, which we can do by using
integer variables:

ampl: redeclare var Buy{j in FOOD}
ampl? integer >= f_min[j] <= f_max[j];
ampl: solve;
MINOS 5.51: ignoring integrality of 8 variables
MINOS 5.51: optimal solution found.
4 iterations, objective 88.2

Since MINOS (the default solver) does not deal with integer variables, we need to
use a solver that only allows integer variables to have integer values. Many solvers
can do this; here, we use CPLEX:

ampl: option solver cplex; solve;
CPLEX 12.6.1.0: optimal integer solution;

objective 88.44
4 MIP simplex iterations
0 branch-and-bound nodes
ampl: display Buy;
Buy [*] :=
BEEF 0
CHK 2

FISH 0
HAM 0
MCH 43
MTL 1
SPG 0
TUR 0

;

9 Analyzing Infeasibility

Formulating a good model is often an iterative process: we repeatedly try a
formulation, examine its consequences, then modify it. As a simple example, the
diet above is still not very satisfactory, so we could change the data to provide
positive lower bounds on the amounts of each food bought. Here is file “diet2.dat”
from the AMPL book:

set NUTR := A B1 B2 C NA CAL ;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ;
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param: cost f_min f_max :=
BEEF 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2.89 2 10
MCH 1.89 2 10
MTL 1.99 2 10
SPG 1.99 2 10
TUR 2.49 2 10 ;

param: n_min n_max :=
A 700 20000
C 700 20000
B1 700 20000
B2 700 20000
NA 0 40000
CAL 16000 24000 ;

param amt (tr):
A C B1 B2 NA CAL :=

BEEF 60 20 10 15 938 295
CHK 8 0 20 20 2180 770
FISH 8 10 15 10 945 440
HAM 40 40 35 10 278 430
MCH 15 35 15 15 1182 315
MTL 70 30 15 15 896 400
SPG 25 50 25 15 1329 370
TUR 60 20 15 10 1397 450 ;

By using a “reset data” command, we can keep the current model but associate a
fresh set of data with it.

ampl: reset data; data diet2.dat;
ampl: solve;
CPLEX 12.6.1.0: integer infeasible.
1 MIP simplex iterations
0 branch-and-bound nodes
No basis.

There are various approaches to diagnosing infeasibility. Sometimes it is helpful
just to see which constraints are infeasible and what variables are at lower or upper
bound at the variable values where the solver detected infeasibility. For example,

ampl: option solver minos; solve;
MINOS 5.51: ignoring integrality of 8 variables
MINOS 5.51: infeasible problem.
9 iterations
ampl: display Diet.lb, Diet.body, Diet.ub, Diet.slack;
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: Diet.lb Diet.body Diet.ub Diet.slack :=
A 700 1993.09 20000 1293.09
B1 700 841.091 20000 141.091
B2 700 601.091 20000 -98.9086
C 700 1272.55 20000 572.547
CAL 16000 17222.9 24000 1222.92
NA 0 40000 40000 7.27596e-12
;

Here, Diet.lb, Diet.body, and Diet.ub correspond to �, c(x) and u in (1b),
and the constraint slack Diet.slack corresponds to min(u−c(x), c(x)−�). Most
of the constraints are satisfied as inequalities (i.e., they have positive slacks), but
the B2 constraint has a decidedly negative slack, while the NA (sodium) constraint
is essentially satisfied as an equality (with a slack of about 7.3× 10−12) and
Diet.body is approximately at its upper bound. Increasing the upper bound on
the sodium constraint might help:

ampl: let n_max[’NA’] := 50000; solve;
MINOS 5.51: ignoring integrality of 8 variables
MINOS 5.51: optimal solution found.
5 iterations, objective 118.0594032

so allowing more sodium is one way to remove the infeasibility.
Another way to diagnose infeasibility is by finding an irreducible infeasible set

(IIS) of constraints and variable bounds that are mutually inconsistent; see [6, 30]
and the references therein for more details. Some solvers nowadays have facilities
for finding an IIS. With CPLEX, for example,

option cplex_options ’iisfind=1’; solve;

would also implicate the B2 and sodium constraints.

10 A Nonlinear Example

AMPL allows general nonlinear expressions in constraints and objectives. The
“largest small hexagon” problem [21] provides a small example of an interesting
nonlinear optimization problem. Here is a lightly edited variant of a little AMPL
model, “pgon.mod,” that describes the problem and has long been available as http://
www.netlib.org/ampl/models/pgon.mod:

# Maximum area for unit-diameter polygon of N sides.
# The following model started as a GAMS model by
# Francisco J. Prieto.

param N integer > 0 default 6;
set I = 1..N;

http://www.netlib.org/ampl/models/pgon.mod
http://www.netlib.org/ampl/models/pgon.mod
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param pi = 4*atan(1.);

var rho{i in I} <= 1, >= 0 # polar radius (distance
# to fixed vertex)

:= 4*i*(N + 1 - i)/(N+1)**2;

var theta{i in I} >= 0 # polar angle (measured from
# fixed direction)

:= pi*i/N;

subject to cd{i in I, j in i+1 .. N}:
rho[i]**2 + rho[j]**2

- 2*rho[i]*rho[j]*cos(theta[j]-theta[i])
<= 1;

subject to ac{i in 2..N}:
theta[i] >= theta[i-1];

subject to fix_theta: theta[N] = pi;
subject to fix_rho: rho[N] = 0;

maximize area:
.5*sum{i in 2..N}

rho[i]*rho[i-1]*sin(theta[i]-theta[i-1]);

The # character introduces a comment that extends to the end of the line. The “:=
expression” phrases specify initial guesses for the variables. Perhaps surprisingly,
the solution is not the regular N-gon. Figure 1 depicts a solution for N = 6.

11 Slices

AMPL’s basic indexing notation introduces one new dummy variable for each
component of the tuples that comprise a set. For example,

set S dimen 2;

declares a set of pairs, and

{(i,j) in S}

is an “indexing” in which dummy variables i and j assume the values of the first
and second components of each pair in the set. Sometimes one wants a “slice” of a
set of tuples, i.e., an indexing in which some components are given by expressions
valid in the context of the indexing. For example,

s.t. c{a in A}:
sum{(i,j) in S: i == a} x[i,j] == 1;
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Fig. 1 Solution of
pgon.mod for N = 6
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2
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4
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is a constraint declaration with a sum that effectively involves a slice. AMPL’s slice
notation allows one to put desired values directly into the indexing notation. The
above example has the same effect as

s.t. c{a in A}:
sum{(a,j) in S} x[a,j] == 1;

but the latter is easier to read and can be much faster, since internally S is split into
a set of one-dimensional sets. For a set S of n members, this can turn an O(n2)
computation into an O(n) computation. A few years ago I saw an example in which
changing the former to the latter reduced problem instantiation time from four hours
to a minute.

12 Iterated Unions

In various contexts, it is useful to construct sets by iterating over computed set
expressions and forming their union. For example, given the declaration

set A dimen 2;

of a set of pairs, the declaration

set J = union{(i,j) in A} {j};
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forms the set J of second components of the pairs in A. For forming iterated unions
of singleton sets, such as {j} above, the setof operator provides simpler syntax
that achieves the same effect:

set J = setof{(i,j) in A} j;

As an example where setof is useful, here is a little model for choosing a convex
combination of classifiers that is “best” in a least-squares sense.

set A dimen 2; # (observation, classifier) pairs
param E{A}; # signed, weighted predictions
set I = setof {(i,j) in A} i; # observations
set J = setof {(i,j) in A} j; # classifiers
param y{I} in {1,-1}; # y[i] = 1 ==> "yes",

# -1 ==> "no"
var x{J} >= 0; # weights on classifiers
set B = {(i,j) in A: y[i]*E[i,j] < 0};
# B = mis-classified pairs
minimize errsq: sum{i in I}

(sum{(i,j) in B} y[i]*E[i,j]*x[j])^2;
s.t. convex: sum{i in J} x[i] = 1;

More elaborate iterated unions are sometimes useful. For example, the following
fragment from a mesh-untangling model declares the set of directed edges of some
boxes.

set P; # points
set Boxes within {P,P,P,P,P,P,P,P};
set Edges = union {(a,b,c,d,e,f,g,h) in Boxes} {

(a,b), (a,d), (a,e),
(b,c), (b,a), (b,f),
(c,d), (c,b), (c,g),
(d,a), (d,c), (d,h),
(e,h), (e,f), (e,a),
(f,e), (f,g), (f,b),
(g,f), (g,h), (g,c),
(h,g), (h,e), (h,d)};

Products of matrices appear surprisingly rarely in the mathematical programming
problems one sees in practice, but the sparse product of sparse matrices is easily
expressed with the help of an iterated union (via setof ) and slice notation:

set IJ dimen 2; param A{IJ};
set JK dimen 2; param B{JK};
set IK = setof{(i,j) in IJ, (j,k) in JK} (i,k);
param C{(i,k) in IK} =

sum{(i,j) in IJ: (j,k) in JK} A[i,j]*B[j,k];



AMPL: A Language for Optimization Problems 109

13 AMPL Flexibility Goals

We have sought to make AMPL useful in various contexts. For developing models,
it can be helpful to use AMPL interactively, typing commands at it. For longer
computations, “batch” mode, in which AMPL reads everything from specified files,
can be convenient. We have long had some experimental graphical user interfaces
(GUIs) and have recently put considerable effort into developing a new “integrated
development environment” (IDE); see http://ampl.com/products/ide/.

The AMPL language itself is primitive recursive, but AMPL has facilities for
importing libraries of functions implemented in other languages. A README file
about these facilities and some examples appear in http://www.netlib.org/ampl/
solvers/funclink. (At times, http://www.ampl.com/netlib/ampl/solvers/funclink may
be more up to date.) A library that includes more than 300 functions from the GNU
Scientific Library (http://www.gnu.org/software/gsl/) is available in source and
binary form at http://ampl.com/resources/extended-function-library/. AMPL’s im-
ported function facilities also allow AMPL to import “table handlers” for reading
data from and writing data to external repositories, such as spreadsheets and
databases. Details on using the table facilities appear in http://ampl.com/resources/
database-and-spreadsheet-table-handlers/. Details on writing your own table han-
dlers are in http://ampl.com/NEW/TABLES/. The tableproxy table handler permits
accessing data on remote machines and facilitates mixing 32- and 64-bit versions
of AMPL and data providers on the same machine. See http://ampl.com/NEW/
TABLEPROXY/.

In various ways, we have sought to make it convenient for AMPL to interact
with its host environment (operating system). A general “shell” command allows
one to run arbitrary programs. AMPL’s printing commands (print for unformatted
printing, printf for formatted printing, and display for labeled printing) can
have their output directed to files, which may either be created afresh or appended
to. The remove command is for deleting files. “Pipe” functions provide a simple
way for AMPL to interact with external programs: AMPL writes function arguments
to the standard input of an external program, and the program returns the function
value by writing to its standard output. A program implementing a “pipe” function
must flush its output buffers before reading new function arguments, which can be
awkward.

The currently popular operating systems all provide an “environment” of name-
value pairs that programs can see and manipulate. The names are “environment
variables.” AMPL’s “option” command operates on these environment variables
and exports them to solvers (which are invoked as separate processes) and “shell”
commands (which also are invoked as separate processes). AMPL’s behavior is
affected by some options. When starting execution, AMPL acquires values for these
options from the incoming environment if present there and provides default values
for them if not. Most solvers also are affected by environment variable values.
Conventionally, the AMPL interface to a solver named mysolver would look at

http://ampl.com/products/ide/
http://www.netlib.org/ampl/solvers/funclink
http://www.netlib.org/ampl/solvers/funclink
http://www.ampl.com/netlib/ampl/solvers/funclink
http://www.gnu.org/software/gsl/
http://ampl.com/resources/extended-function-library/
http://ampl.com/resources/database-and-spreadsheet-table-handlers/
http://ampl.com/resources/database-and-spreadsheet-table-handlers/
http://ampl.com/NEW/TABLES/
http://ampl.com/NEW/TABLEPROXY/
http://ampl.com/NEW/TABLEPROXY/
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the environment variable named mysolver_options, which could be specified
in an AMPL session by “option mysolver_options” commands, such as

option cplex_options ’advance=2 lpdisplay=1 \
prestats = 1 \
primalopt’

" aggregate=1 aggfill=20";

option solver knitro,
knitro_options "maxit=30";

Strings may be quoted by single or double quotes. For option values, adjacent strings
are concatenated.

Currently under development is “AMPL API,” another way for AMPL to interact
with external programs. See http://ampl.com/products/api/.

14 Interaction with Solvers

AMPL’s “solve” command proceeds by writing a “.nl file” (a file whose name
ends with “.nl”) containing

• problem statistics
• coefficients for linear expressions
• expression graphs for nonlinear expressions
• initial guesses (primal and dual)
• suffixes (builtin or user declared).

Solvers return solution results to AMPL by writing a “.sol” file for AMPL to read.
This file contains a “solve_message” and status code and may contain updated
primal and dual variable values. It may also contain suffix values, which are
auxiliary values associated with individual variables, constraints, objectives and
problems, such as basis status for variables and constraints.

15 Problem Transformations

AMPL’s presolve phase [11] derives and propagates bounds with directed roundings
and may fix variables, remove constraints (e.g., inequalities that are never tight),
resolve complementarities, turn nonlinear expressions into linear expressions (after
fixing relevant variables), simplify convex piecewise-linear expressions, and convert
nonconvex piecewise-linear expressions into equivalent systems of integer variables
and SOS-2 [3] constraints. It also processes “defined variables,” which in effect are
named common expressions. For example, the declarations

http://ampl.com/products/api/


AMPL: A Language for Optimization Problems 111

param N integer > 0;
set I = 1 .. N;
var x{I}; var y{I};
var dot = sum{i in I} x[i]*y[i];

declares independent variables x and y and defined-variable dot, which is the inner
product of x and y. Constraints and objectives could involve dot, but the solver would
only see x and y as independent variables.

16 Spline Example

A referee asked about splines. I do not recall anyone wanting to use splines
with AMPL, but the following illustration of constructing a spline approximation
provides an example of using some of the facilities sketched above. We will use an
imported function called bspline that, given a spline degree, a set of breakpoints
and weights on B-spline basis functions (see chapter X of [7]) and a point x
sufficiently within the breakpoints that all relevant basis functions are defined,
computes the value of the spline at x and the first derivatives of this value with
respect to x, the weights, and the breakpoints. The derivatives facilitate choosing
the weights to fit specified data. The derivatives are handled by the ASL and do not
explicitly appear in the following model.

param N default 3; # degree of splines
param ND; # ND+1 = number of data points
set SD = 0 .. ND; # indices of data points
param xd{SD}; # ordinates of data points
param fd{SD}; # function values at data points

check{i in 1 .. ND}: xd[i-1] < xd[i];

param NI >= 1; # number of intervals for
# x in bspline(n,x,...)

set SK = -N .. NI + 3; # indices of knots
set SW = 1 .. NI + N; # indices of B-spline weights
param wrange = xd[ND] - xd[0];
param b0{i in SK} = xd[0] + i*wrange/NI;
var b{i in SK} := b0[i]; # spline knots
var w{i in SW}; # spline weights

function bspline;
var s{i in SD} =

bspline(N, xd[i], {j in SK} b[j], {j in SW} w[j]);

minimize ssq: sum{i in SD} 0.5*(fd[i] - s[i])^2;
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s.t. resid{i in SD}: s[i] == fd[i];

problem SSQ: b, w, ssq;
problem NLS: b, w, resid; option presolve 0;

It might be good to add constraints that would keep the breakpoints ordered, but
for the solvers used in the sample session shown below, this turns out not to be
needed. To find values for b and w so bspline(n, xd[i],. . .) approximates
fd[i] in a least-squares sense, we can either use an unconstrained solver with
problem SSQ or a least-squares solver with problem NLS; least-squares solvers,
such as nl2 (discussed in [19] and based on NL2SOL [8]) solve equations in a
least-squares sense. For such solving, it is often necessary to turn AMPL’s presolve
off to prevent it from satisfying some equations exactly.

For an example session, let us fit a cubic spline to the sine function. Suppose the
above model appears in file bspline.mod and that file sine.fit contains

model splined.mod;
param pi = 4*atan(1);
data;
param ND := 21; param NI := 5;

let{i in SD} xd[i] := 2*pi*(i/ND);
let{i in SD} fd[i] := sin(xd[i]);
fix{i in -N .. -1} b[i];
fix{i in NI+1 .. NI+N} b[i];

Here is a session fitting the data both ways with the above model and setup files:

ampl: include spline.fit
ampl: load bspline.dll;
ampl: option solver nl2; solve;
nl2: Relative Function Convergence;

function = 5.40485704e-06
RELDX = 8.12e-05; PRELDF = 1.94e-11;
NPRELDF = 1.94e-11
19 func. evals; 16 grad. evals

ampl: printf "%.3g\en", max{i in SD} abs(s[i]-fd[i]);
0.00109
ampl: problem SSQ;
ampl: option reset_initial_guesses 1, solver snopt;
ampl: solve;
SNOPT 7.2-8 : Optimal solution found.
80 iterations, objective 5.404937356e-06
Nonlin evals: obj = 67, grad = 66.
ampl: printf "%.3g\en", max{i in SD} abs(s[i]-fd[i]);
0.00109
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Both solvers achieved about the same residual sum of squares and maximum fit
error on the set of sample points.

The problem of choosing b and w to fit best in a least-squares sense is a separable
nonlinear least-squares problem [20], as the w variables appear linearly, and a
separable solver probably would be faster and somewhat more robust. At any rate,
after determining b and w, we could fix them (causing them to retain their current
values and be treated as parameters) and deal with some application where the spline
just found would be useful.

Source for bspline.dll is too long to include with this paper, but is
available as

http://www.ampl.com/netlib/ampl/solvers/examples/bspline.c

17 Implementation Techniques

AMPL’s implementation is an exercise in practical computer science. Parsing
proceeds via the venerable Unix tools lex and yacc, which build up expression
graphs that are subsequently manipulated. Declared names are associated with
unique “symbols” found by hashing. Hashing is also used in a “compile” phase
to find common expressions. The compile phase lifts invariant subexpressions out
of inner loops. With the help of dependency graphs, entities are only instantiated
or updated when needed—lazy evaluation. When appropriate, cleanup routines are
registered, so they can be invoked either when an operation completes normally or
when it is interrupted by an error, such as an invalid subscript or missing data. Error
handling proceeds via longjmp. Some things are reference-counted, and sparse-
matrix techniques make processing large, sparse models feasible. AMPL is written
(and debugged) in C++, but for porting to various platforms, the AMPL source code
is converted to portable C with the help of cfront (the original C++ “compiler”).

18 Wish List

There are many improvements we hope to make to AMPL and its associated
ASL (solver-interface library). Just when and whether these improvements will be
available remains to be seen. Functions expressed directly in AMPL would turn
AMPL from a primitive-recursive language to a Turing-complete language. When
conveyed to solvers via the ASL, they would allow providing callbacks to solvers,
e.g., for influencing branching decisions in integer programming. They would also
find some use in AMPL models. Ordered sets of tuples would sometimes be useful.
While AMPL already facilitates solving sequences of related problems, updating
entities could sometimes be done more efficiently. AMPL has long had some
facilities for constraint programming, but allowing variables in subscripts remains
to be done. When there is just one objective (for multi-objective optimization,

http://www.ampl.com/netlib/ampl/solvers/examples/bspline.c
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AMPL allows one to declare several objectives, including indexed collections of
objectives), AMPL’s presolve could exploit duality. (It already does reductions for
complementarity.) AMPL has long permitted some declarations related to stochastic
programming, but corresponding extensions to the ASL need to be completed
and examples of their use need to be created. Facilities supporting semi-definite
programming and multi-level optimization would be useful. We have long wanted
AMPL to be able to carry on two-way conversations with solvers, so after a problem
has been solved, a slightly modified problem could be conveyed just by telling the
solver of changes to the existing problem. Units (of distance, time, charge, etc.)
might help catch or avoid some mistakes. For some mathematical research, such
data types as rational, complex, and complex rational could be helpful. Facilities for
parallel evaluations in the ASL would be useful. Constructs for parallelism might
also be useful in AMPL itself.

19 Other AMPL Facilities

This paper provides an overview of AMPL, but gives little or no detail about various
useful AMPL facilities:

• drop, restore (affecting what constraints and objectives a solver sees)
• fix, unfix (affecting the variables a solver sees)
• named problems and environments
• suffixes
• tables and table handlers
• column-generation syntax (e.g., node and arc)
• complementarity constraints [9]
• subscripted sets versus tuples
• constraint programming [12]

The AMPL web site (http://www.ampl.com) provides pointers to more detail on the
above topics, including

• the AMPL book (and free PDF files for it)
• examples (models and data)
• descriptions of new facilities
• a new IDE
• a new API
• Try AMPL! and NEOS for free web-based use
• course licenses
• trial licenses
• downloads

– student binaries
– ASL (solver-interface library) source

http://www.ampl.com
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– example solver interfaces
– “standard” table handler (binaries, source)
– papers, reports, talk slides

20 Concluding Remarks

Mathematical programming models, such as (1), are useful in many contexts.
Formulating good models is often an iterative process: you test a formulation, assess
how well it works, modify it, and test again. The AMPL modeling language can
assist in this endeavor. Its associated interface library (ASL) provides automatically
derived details to solvers, such as sparsity information and derivatives.
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An Interior-Point �1-Penalty Method
for Nonlinear Optimization

Nick I.M. Gould, Dominique Orban, and Philippe L. Toint

Abstract We describe a mixed interior/exterior-point method for nonlinear
programming that handles constraints by way of an �1-penalty function. The
penalty problem is reformulated as a smooth inequality-constrained problem that
always possesses bounded multipliers, and that may be solved using interior-point
techniques as finding a strictly feasible point is trivial. If finite multipliers exist
for the original problem, exactness of the penalty function eliminates the need to
drive the penalty parameter to infinity. If the penalty parameter needs to increase
without bound and if feasibility is ultimately attained, a certificate of degeneracy is
delivered. Global and fast local convergence of the proposed scheme are established
and practical aspects of the method are discussed.

Keywords �1-Penalty • Interior point • Elastic variables • Nonconvex
optimization

1 Introduction

A typical nonlinear programming problem is to

minimize
x∈Rn

f (x) subject to cE (x) = 0, cI (x)≥ 0, (1)
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involving smooth, possibly nonlinear and nonconvex, equality and inequality
constraints. Here f : Rn → R, cE : Rn → R

nE and cI : Rn → R
nI , where E =

{1, . . . ,nE } and I = {nE + 1, . . . ,nE + nI }. We propose an infeasible interior-
point approach for (1) that embeds the set of variables into a higher dimensional
space for which the constraints have a nonempty and easily locatable interior.

A common way to solve (1) is to build the corresponding �1-penalty function
and to

minimize
x∈Rn

φ P(x;ν) := f (x)+νϑ P(x), ϑ P(x) := ∑
i∈E
|ci(x)|+ ∑

i∈I
c−I (x), (2)

where c−I (x) :=max[0,−cI (x)] componentwise, for some sufficiently large penalty
parameter ν > 0. As we will see in Section 2, (2) is equivalent to the smooth problem

minimize
x∈Rn,s∈RnC

φ S(x,s;ν) := f (x)+νϑ(x,s)

subject to ci(x)+ si ≥ 0, si ≥ 0, i ∈ C
ϑ(x,s) = ∑

i∈E
(ci(x)+ 2si)+ ∑

i∈I
si

(3)

involving nC additional elastic variables s ∈R
nC —i.e., penalized slack variables—

where C := E ∪I and nC := nE + nI . This problem only involves inequality
constraints, and it is trivial to pick s sufficiently large so that (x,s) is strictly feasible
for (3). Note also that had (1) been a convex optimization problem, (3) inherits this
property. In other words, adding elastic variables preserves convexity. This is at
variance with other types of infeasible methods, such as those based on the addition
of slack variables, e.g., [5, 36].

An immediate possibility is to apply an interior-point method to (3), i.e.,

minimize
x∈Rn, s∈RnC

φ B(x,s;μ ,ν) := φ S(x,s;ν)− μ ∑
i∈C

log(ci(x)+ si)− μ ∑
i∈C

logsi, (4)

for a sequence of barrier parameters, {μk}, converging to zero from above.
A theoretical investigation of the properties of φ B and the problem (4) forms the
basis of Section 2. The global and local convergence properties of two standard
trust-region methods for solving (4), for fixed (μ ,ν) are considered in Section 3.
Section 4 provides global and local convergence properties of the method. Algo-
rithmic variations, improvements, and extensions are described in Sections 5 and 6.
Numerical experience is reported in Section 7 and conclusions drawn in Section 8.

The use of the transformation to the �1-penalty function to solve (1) is, of course,
well known. The equivalence between the optimality conditions for nonconvex
nonlinear programming problems and related penalty functions was first reported by
Pietrzykowski [33], and the results subsequently strengthened by Charalambous [7],
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Han and Mangasarian [24], Coleman and Conn [9], Bazaraa and Goode [3] and
Huang and Ng [28]. See also [14, Chapters 12 and 14]. In Section 2, we shall see
how this equivalence is inherited by (3).

Although a constraint qualification condition is not required to conduct the
convergence analysis, degeneracy is indicated by a diverging sequence of penalty
parameters in the following sense. If the penalty parameter diverges yet feasibility
is attained, our method delivers a certificate of degeneracy by explicitly providing
Fritz-John multipliers. The relation satisfied by those multipliers characterizes
failure of the Mangasarian and Fromovitz constraint qualification condition.

The approach taken in this paper has its genesis in the work of Mayne and
Polak [31], more recently extended by Herskovits [26], Lawrence and Tits [29] and
Tits et al. [34], all of whom also reformulate (1) so as only to involve inequality
constraints. Indeed, our basic approach coincides with theirs on setting s to zero.
However, we prefer not to do this, as the resulting problem then has no obvious
initial feasible point. Armand et al. [2] investigated the reformulation

minimize
x∈Rn, s∈RnI

f (x) subject to cI (x)+ s≥ 0, s = 0, (5)

for convex, inequality-constrained problems in which the resulting equality con-
straints s = 0 are handled by penalization. This idea was refined by Armand [1]
to give (3) in the convex, inequality-constrained case, which was then solved by
minimizing a sequence of (convex) barrier functions like (4).

The present approach is also related to the so-called elastic mode used by Boman
[4] and in the SNOPT package of Gill et al. [17], where it is used in a sequential
quadratic programming framework as a fallback strategy to relax the constraints
in case the current quadratic subproblem appears to be infeasible, unbounded or
to have unbounded multipliers. In such a case, once the elastic mode has been
triggered, it persists until convergence.

A related approach is investigated by Chen and Goldfarb [8] with an �2 exact
penalty function in a linesearch context. In that approach, a sequence of equality-
constrained problems must be solved.

Other methods with an interior-point flavour include the primal–dual filter
method of Wächter and Biegler [36], implemented in the IPOPT package, the
primal–dual trust-region and linesearch methods of Byrd et al. [5] and Waltz
et al. [37], implemented in the commercial package KNITRO, and the primal–dual
linesearch method of Vanderbei and Shanno [35] implemented in the commercial
package LOQO. Those methods typically add slack variables to convert general
inequality constraints into bound constraints.

The notation used in the sequel is as follows. If q ≥ 0 and v ∈ R
q, we shall

denote its i-th component by a subscript vi. If S ⊆ {1, . . . ,q}, we write vS for the
subvector of v whose components are the vi, i ∈S . Likewise, if M ∈ R

q×p, MS is
the submatrix of M whose rows are indexed by S . In an algorithmic context, the
value taken by the vector v at iteration k will be denoted by a superscript vk and
its i-th component is vk

i . A sequence indexed by the set N of nonnegative integers
whose general term is vk is denoted {vk} and a subsequence indexed by the infinite
index set K ⊆ N is denoted {vk}K .
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As exceptions to the above, if eE and eI are vectors of ones of dimension nE

and nI , respectively, we define two vectors e0
E = (eE ,0) and e0

I = (0,eI ) in R
nC ,

and let e = e0
E + e0

I . Wherever appropriate, the notation ep denotes the vector of all
ones in R

p and similarly, 0p denotes the zero vector of Rp. In addition, IE and II
are identity matrices of dimensions nE and nI , respectively.

2 Equivalent Smooth Formulation of the Exact Penalty

It is well known that (2) may be reformulated as a smooth problem [16, §4.2.3].
To see this, consider first an equality constraint ci(x) = 0. The penalty contribution
from this constraint, ν|ci(x)|, may be expressed as ν[ri + si], where ci(x) = ri− si

and (ri,si) ≥ 0, or alternatively as ν[ci(x) + 2si], where ci(x) + si ≥ 0 and si ≥
0. Now turning to an inequality constraint ci(x) ≥ 0, its penalty contribution,
νmax(−ci(x),0), may be expressed as νsi, where ci(x) = ri− si and (ri,si) ≥ 0, or
alternatively as νsi, where ci(x)+si ≥ 0 and si≥ 0. Thus the minimization of φ P may
be expressed as (3). Notice that for given x, any set of values si ≥ max(−ci(x),0)
provides an initial feasible point for the enlarged feasible region involving (x,s),
and that this point lies in the strict interior if si > max(−ci(x),0) for all i ∈ C . The
central idea of this paper will then be to apply a primal–dual interior-point method
to solve (3). A number of equivalent smooth reformulations of the penalty problem
appear in [23].

A nonlinear problem of the form (1) is said to satisfy the Mangasarian and
Fromovitz [30] constraint qualification (MFCQ) at a feasible point x∗ if the vectors
{∇ci(x∗)}i∈E are linearly independent and if there exists a direction d �= 0 such that

∇ci(x
∗)Td = 0 for i ∈ E and ∇ci(x

∗)Td < 0 for i ∈A ,

where A = {i ∈I | ci(x∗) = 0} is the set of active indices at x∗.
We denote the full vector of constraints by c : Rn → R

nC . The Lagrangian
associated with problem (1) is

L(x,λ ) = f (x)− cE (x)
TλE − cI (x)TλI , (6)

where λE ∈ R
nE , λI ∈R

nI
+ and λ = (λE ,λI ). A vector z = (x,λ ) is a first-order

critical point for (1) if it satisfies the Karush-Kuhn-Tucker (KKT) conditions

∇f (x)− JT
E (x)λE − JT

I (x)λI = 0 (7a)

CI (x)λI = 0 (7b)

cE (x) = 0 (7c)

cI (x),λI ≥ 0. (7d)
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Here and elsewhere JE (x) and JI (x) are the Jacobian matrices of cE (x) and
cI (x), respectively, while a capitalized (e.g.) CI (x) denotes the diagonal matrix
whose entries are the components of the vector (e.g.) cI (x). Under a constraint
qualification condition, and in particular under the MFCQ, conditions (7) are
necessary for optimality of z.

If x∗ is a first-order critical point for (1), let Λ∗ be the set of all associated
Lagrange multipliers, i.e, the (possibly empty) set of all vectors (λE ,λI ) satis-
fying (7). The MFCQ being satisfied at x∗ is equivalent to Λ∗ being nonempty and
bounded [15].

If x is feasible for (1), we say that it is a Fritz-John point if there exist
(γ,λE ,λI ) �= (0,0,0) with γ ≥ 0 such that (x,γ,λE ,λI ) satisfies (7) with (7a)
replaced by

γ∇f (x)− JT
E (x)λE − JT

I (x)λI = 0. (8)

It is easy to see that if γ > 0, (x,λE /γ,λI /γ) is in fact first-order critical. This
would occur, e.g., if the MFCQ held at x. If, on the other hand, γ = 0, x is a feasible
point where the MFCQ fails to hold [30].

The Lagrangian for problem (3) is

L (x,s,y,u;ν) = φ S(x,s;ν)− (c(x)+ s)Ty− sTu, (9)

where the Lagrange multipliers y = (yE ,yI ) ∈ R
nC
+ and u = (uE ,uI ) ∈ R

nC
+ are

associated with the constraints c(x)+s≥ 0 and s≥ 0 of (3), respectively. The vectors
vP = (x,s) and vD = (y,u) contain primal and dual variables/Lagrange multipliers
for (3), respectively.

The gradient of φ S(x,s;ν) may be expressed as

∇φ S(x,s;ν) =
[
∇f (x)

0

]
+ν∇ϑ(x,s) =

[
∇f (x)

0

]
+ν

[
JT
E (x)eE
e+ e0

E

]
, (10)

while the 2nC × (n+ nC ) Jacobian of the constraints of (3) with respect to vP is

JS(vP) =

⎡
⎢⎢⎣

JE (x) IE 0
JI (x) 0 II

0 IE 0
0 0 II

⎤
⎥⎥⎦=

[
J(x) IC

0 IC

]
, (11)

where the nC × n Jacobian matrix of the full vector of constraint functions c(x) is
such that J(x)T =

[
JE (x)T JI (x)T

]
. There is an intimate connection between the

Lagrange multipliers λ for (1) and the multipliers y for (3). To keep later results
concise, we formalize this as follows.
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Definition 1. For a given, fixed, value ν ≥ 0 of the penalty parameter, and given
vectors x, y and λ , we define the shifted multipliers

y(λ ,ν) := (λE +νeE ,λI ) = λ +νe0
E (12a)

and λ (y,ν) := (yE −νeE ,yI ) = y−νe0
E , (12b)

i.e., the vectors where the multipliers corresponding to the nonlinear equality
constraints of (1) and (3) have been shifted by ±νeE .

We may now express the KKT conditions for (3) as

∇f (x)− JT(x)λ (y,ν) = 0 (13a)

νeE − (yE −νeE )− uE = 0 (13b)

νeI − yI − uI = 0 (13c)

(C(x)+ S)y = 0 (13d)

Su = 0 (13e)

c(x)+ s,s,y,u≥ 0. (13f)

A first-order solution of

minimize
x∈Rn, s∈RnC

ϑ(x,s) subject to c(x)+ s≥ 0 and s≥ 0 (14)

is attained at a point (x,s) for which

JT(x)(ȳ− e0
E ) = 0 e− (ȳ− e0

E )− ū = 0

(C(x)+ S)ȳ = 0 Sū = 0 (15)

(c(x)+ s,s)≥ 0 (ȳ, ū)≥ 0

where ȳ and ū are Lagrange multipliers associated with the inequality constraints
c(x)+ s ≥ 0 and s ≥ 0, respectively. It is important to recognize that such an x is
also a critical point for the infeasibility measure (2), ϑ P(x), for the true constraints.

Theorem 1. If (x,s) satisfies (15), then x is a first-order critical point of ϑ P(x).

Proof. A first-order critical point for ϑ P(x) satisfies JT(x)λ = 0, where the general-
ized gradient λ satisfies

λi =

⎧
⎪⎪⎨
⎪⎪⎩

−1 if ci > 0 (i ∈ E )

0 if ci > 0 (i ∈I )

1 if ci < 0

(16)

λi ∈
{
[−1,1] if ci = 0 (i ∈ E )

[0,1] if ci = 0 (i ∈I )
(17)
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(see, for example, [11, Example 11.4.1].) Let (ȳ, ū) satisfy (15), and define (λ ,u) =
(ȳ− e0

E , ū) so that (15) becomes

JT(x)λ = 0, (18a)

(C(x)+ S)(λ + e0
E ) = 0, (18b)

c(x)+ s,s≥ 0, (18c)

λ + u = e, (18d)

Su = 0 (18e)

λ + e0
E ,u ≥ 0, (18f)

We have established (18a), so it remains to show that the given λ satisfies (17).
Firstly, then, consider an index i for which ci(x)+si > 0. In this case (18b) shows

that λi =−1 if i∈ E or λi = 0 if i∈I . In either case, (18d) then ensures that ui > 0,
and hence ci(x)> 0 since necessarily (18e) shows that si = 0. These are the first two
possibilities in (17). Since ci(x)+ si ≥ 0, it remains to consider indices for which
ci(x)+ si = 0. In this case ci(x) =−si and thus (18e) implies that ci(x)ui = 0. If si �=
0, ci(x)< 0 so that ui = 0, and hence λi = 1 from (18d). This is the third possibility
in (17). By contrast, if si = 0, then immediately ci = 0. But (18d) and (18f) ensure
that λi ∈ [−1,1] if i ∈ E and λi ∈ [0,1] if i ∈ E for any i, giving the final two
possibilities in (17). �

Note that for any x ∈R
n, x is feasible for (1) if and only if (x,0) is feasible for (3)

and cE (x) = 0.
The reformulated problem (3) is surprisingly regular, for we have the following

result.

Theorem 2. Suppose that (x,s) is a feasible point for (3) and that c is continuously
differentiable in an open neighbourhood of x. Then MFCQ is satisfied at (x,s).

Proof. Let d = (0n,−e). There are no equality constraints, and checking the
remaining requirement that JA (x,s)d < 0 for active constraints is trivial given the
form (11) of JS(vP). �

As a consequence, all sets of Lagrange multipliers associated with first-order
critical points are bounded.

Note that the MFCQ condition is satisfied at every feasible (x,s) and not only
at local solutions of (3), regardless of any constraint qualification being satisfied
for (1). Of course Theorem 2 may have been anticipated, since the same is true
for (2)—for this problem, the set of corresponding sub-gradients of the non-
differentiable constraint norms is automatically bounded [14, §14.3].

Since any constraint qualification is a property of the algebraic description of
a feasible set, Theorem 2 holds true for (14) as well. There thus always exist
multipliers satisfying (15).

Some of the results we will establish later require that the far stronger linear
independence constraint qualification (LICQ)—that the rows of (11) corresponding
to active indices are independent—be satisfied for (3). To obtain LICQ on (3), one
may unfortunately need to have as strong an assumption as the active constraint
gradients being linearly independent over the whole feasible set.
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In the following, we are taking advantage of MFCQ being satisfied for (3) but for
generality, are not tacitly assuming that MFCQ is satisfied for (1).

We start with the following fundamental assumption.

Assumption 2.1. The functions f , cE and cI are continuously differentiable over
an open set containing the feasible set of (1).

We now examine the relationships between stationary points of (1) and (3). The
following results are adaptations or variations of results of [31]. Our first result gives
an important property of solutions to (3).

Theorem 3. If Assumption 2.1 is satisfied, if (vP,vD) is a first-order critical point
for (3) with fixed penalty parameter ν > 0 and if cE (x) = 0 and cI (x) ≥ 0, then
s = 0.

Proof. If i ∈ E , ci(x) = 0 and from (13d), we have siyi = 0. It cannot be that
si > 0 since then yi = 0 and (13b) would imply ui = 2ν and consequently (13e)
gives that si = 0, which is a contradiction. Therefore sE = 0. For i ∈ I , if
ci(x) = 0, as before (13c) and (13e) guarantee that si = 0. Otherwise, ci(x) > 0
and (13f), (13d), (13c) and (13e) successively imply that ci(x)+ si > 0, that yi = 0,
that ui = ν and finally that si = 0. Hence we also have sI = 0, which completes the
proof. �

This first result confirms intuition about the reformulation that led to (3), namely
that all the elastic variables should eventually vanish if a critical point which is also
feasible for (1) has been found.

The following result connects systems (7) and (13) and parallels results from [31]
and [34, Proposition 3].

Theorem 4. If Assumption 2.1 is satisfied, if (vP,vD) is a first-order critical point
for (3) with fixed penalty parameter ν > 0 and if cE (x) = 0 and cI (x)≥ 0, then the
shifted vector (x,λ (y,ν)) from (12b) is a first-order critical point for (1).

Proof. Primal feasibility with respect to the linear constraints and non-negativity
of x follows directly from the assumption. The dual feasibility condition (13a)
readily implies that (7a) is satisfied with the given multipliers. The feasibility con-
ditions (7c), (7d) are satisfied by (13f) and our assumptions. Moreover, Theorem 3
gives that s = 0, and hence (13d) implies (7c) as λI (y,ν) = yI by definition. �

Conversely, we now show that provided there exist finite Lagrange multipliers
for (1) and for sufficiently large values of the penalty parameter, every stationary
point of (1) is a stationary point of (3).

Theorem 5. If Assumption 2.1 is satisfied, suppose x∗ is a first-order critical point
for (1) for which the Lagrange multipliers λ ∗ are finite. Then for all ν ≥ ‖λ ∗‖∞, the
shifted primal–dual vector (vP,vD), where vP = (x∗,0) and vD = (y(λ ∗,ν),νe−λ ∗)
from (12a), is a first-order critical point for (3).
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Proof. Because λ ∗ ≥ 0, the smallest value of ν for which λ ∗E +νeE ≥ 0, νeE −λ ∗E ≥
0 and νeI −λ ∗I ≥ 0 is given by ‖λ ∗‖∞. For any ν ≥ ‖λ ∗‖∞, the proof is completed
by a straightforward verification that the given primal–dual vector satisfies (13)
using the assumed conditions (7). �

Note that Theorem 5 deals with one particular critical point and one particular,
possibly out of many, vector of Lagrange multipliers associated with it. A standard,
but stronger, assumption to ensure boundedness of the multipliers in Theorem 5 is
to impose MFCQ on (1) [15].

3 The Full Algorithm

As we have already suggested, an appealing way to solve the reformulated
problem (3) is to (approximately) minimize a sequence of logarithmic barrier
functions (4) for a sequence {μk} of positive barrier parameters whose limit is zero
and, in this case, a possibly increasing sequence {νk} of positive penalty parameters.

For convenience, we define (primal) first-order Lagrange multiplier estimates

y(x,s) := μ(C(x)+ S)−1e, u(s) := μS−1e, (19)

where, as before, a capital letter denotes the diagonal matrix whose diagonal is
the vector denoted by the corresponding lowercase letter. Using these multiplier
estimates, the gradient of the barrier function with respect to vP = (x,s) is

∇φ B(vP;μ ,ν) =
[
∇f (x)− JT(x)(y(x,s)−νe0

E )

νe− (y(x,s)−νe0
E )− u(s)

]
. (20)

Given fixed values of the barrier and penalty parameters μ ,ν ≥ 0, primal and dual
vectors vP = (x,s) and vD = (y,u) and primal–dual vector v = (vP,vD), we also define
the primal–dual functionΦ : Rn+3nC →R

n+3nC as

Φ(v;μ ,ν) :=

⎡
⎢⎢⎣

∇f (x)− JT(x)(y−νe0
E )

νe− (y−νe0
E )− u

(C(x)+ S)y− μe
Su− μe

⎤
⎥⎥⎦ . (21)

As is well known, the first-order criticality conditions for (4) are equivalently
described by the primal–dual system

Φ(v;μ ,ν) = 0, (c(x)+ s,s,y,u)≥ 0. (22)

In addition, observe that the KKT conditions (13) for (3) are simply (22) with μ = 0.
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Algorithm 3.1 Prototype algorithm—outer iteration
Step 0. Let the forcing functions εD(·), εC(·) and εU(·) be given, and let κν > 0. Choose
x0 ∈ R

n, s0 ∈ R
nC
+ such that c(x0)+ s0 > 0, initial dual estimates y0,u0 ∈ R

nC
+ , and penalty

and barrier parameters ν0 and μ0 > 0, and set k = 0.

Step 1. Inner Iteration: choose a suitable scaling norm ‖.‖Pk+1 and find a new primal–dual
iterate vk+1 = (xk+1, sk+1,yk+1,uk+1) satisfying

∥∥∥∥
[
∇f (xk+1)− JT (xk+1)(yk+1−νke0

E )

νke− (yk+1−νke0
E )−uk+1

]∥∥∥∥
[Pk+1]

≤ εD(μk) (23a)

‖(C(xk+1)+Sk+1)yk+1−μke‖ ≤ εC(μk) (23b)

‖Sk+1uk+1−μke‖ ≤ εU(μk) (23c)
(
c(xk+1)+ sk+1, sk+1) > 0 (23d)

and
(
νk[e+ e0

E ]+κνe,νk[e+ e0
E ]+κνe

)≥ (
yk+1,uk+1) > 0 (23e)

by (for example) approximately minimizing (4).

Step 2. Select a new barrier parameter, μk+1 ∈ (0,μk] such that limk→∞ μk = 0. If necessary,
adjust the penalty parameter, νk. Increment k by one, and return to Step 1.

We call ε(·) a forcing function if ε(μ) > 0 for all μ > 0 and ε(μ) ↓ 0 as μ ↓ 0
[32]. Since the Hessian of the logarithmic barrier function (4) can be highly ill-
conditioned, it is vital that we dynamically (and implicitly) scale the variables to
mitigate this effect. At iteration k, we shall measure variables using a norm, say
‖ ·‖Pk , designed to achieve this, and gradients in the dual norm, denoted ‖ ·‖[Pk]. We
shall return to this shortly. We summarize our algorithm as Algorithm 3.1.

The required upper bounds on the dual variables (yk+1,uk+1) in (23e) are simply
those ultimately implied by (13b), (13c) and (13f), with a little elbow room provided
by κν > 0 to allow for finite termination of the inner iteration. Crucially, although
the primal multiplier estimates yk+1 = y(xk+1,sk+1) and uk+1 = u(sk+1) might be
used in (23), there is no necessity that this be so.

The update of the barrier parameter in Step 2 may follow traditional rules but
should ultimately allow for a superlinear decrease if fast asymptotic convergence is
sought—this issue is addressed in Section 4.3.

The penalty parameter update appears in Step 2 of the algorithm for clarity, but
a practical implementation might make provision for updates of νk inside the inner
iteration and possibly to allow occasional decreases of ν . A suitable update for the
penalty parameter is less obvious, but we shall discuss alternatives in Section 3.2.
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3.1 The Trust-Region Inner Iteration

In order to address concretely the practical aspects of Algorithm 3.1, we use trust-
region models that incorporate exact second-order derivative information. In order
to be able to do this, we must replace Assumption 2.1 by the following assumption.

Assumption 3.1. The functions f , cE and cI are twice continuously differentiable
over an open set covering all iterates encountered by Algorithm 3.1.

Given a strictly feasible point vP, a typical primal–dual interior-point trust-region
method for solving (4) attempts to find an improved point vP + d = (x+ dx,s+ ds),
where d = (dx,ds) approximately solves the primal–dual subproblem

minimize
d∈B(Δ )

∇vPφ
B(vP;μ ,ν)T d+ 1

2 dTHPD(v)d subject to ‖d‖P ≤ Δ , (24)

where ‖ · ‖P is an appropriate scaling norm, the primal–dual Hessian is defined by

HPD(v) =

[
H(x,λ (y,ν))+ JT(x)Θ(v)J(x) JT(x)Θ(v)

Θ(v)J(x) Θ(v)+US−1

]
, (25)

with

Θ(v) = Y(C(x)+ S)−1, (26)

for some suitable strictly positive primal–dual multiplier estimates u and y, where

H(x,λ ) = ∇xxf (x)−∑
i∈C

λi∇xxci(x) = ∇xxL(x,λ ) (27)

is the Hessian of the Lagrangian (6), and λ (y,ν) is defined by (12b). Under standard
assumptions on these estimates and as convergence occurs, the difference between
∇2φ B(vP;μ ,ν) and HPD(v) is insignificant [11, Theorem 13.9.1].

Besides the step-computing procedure, our trust-region algorithm is quite stan-
dard. The step d is accepted or rejected based on how much of the reduction in (4)
predicted by (24) is actually achieved—a poor prediction results in a reduction in
the trust-region radius, Δ , while an accurate one may be rewarded by an increase in
Δ . Since the logarithmic barrier function is undefined outside (or on the boundary)
of the shifted feasible region {(x,s) | c(x)+ s ≥ 0 and s ≥ 0}, any step vP + dP

outside this region is automatically rejected, and the trust-region radius reduced. See
[11, Chapter 13] for more details. Unlike other trust-region interior-point methods
such as KNITRO [5], no direct attempt is made to enforce feasibility by imposing
extra constraints on the trust-region subproblem.

We may find an approximation to the solution to (24) using the Generalized
Lanczos Trust-Region GLTR method of [19]. This method requires that, at each
iteration, we solve “preconditioning” systems of the form (now dropping suffices PD)
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K(v)d ≡
[

P+ JT(x)Θ(v)J(x) JT(x)Θ(v)
Θ(v)J(x) Θ(v)+US−1

][
dx

ds

]
=

[
rx

rs

]
≡ r (28)

for appropriate right-hand sides r and where Θ(v) is defined in (26). Here P is a
suitable “preconditioning” approximation to H, and can range from the naive (P= I)
to the sophisticated (P = H), but must be chosen so that K(v) is positive definite. As
[10] explains, the preconditioner used defines the scaling norm appropriate for the
trust-region in (24) and the dual norm appropriate to measure progress towards dual
feasibility. In particular the dual norm satisfies ‖r‖2

[P] = dTr, where d is the solution
to (28).

Of particular concern, however, is that the matrix JT(x)Θ(v)J(x) in (28) might
be dense, making a direct factorization of K(v) unviable. Fortunately, upon defining
ξ :=Θ(v)(J(x)dx + ds), (28) may be rewritten as the sparser

[
P JT(x)

J(x) −Θ−1(v)−U−1S

][
dx

ξ

]
=

[
rx

−U−1Srs

]
(29)

where we recover ds =−U−1Sξ +U−1Srs.
Significantly K(v) is positive definite if and only if (29) has precisely nC negative

eigenvalues [18], so we can ensure that P is appropriate whenever an inertia-
calculating factorization (such as those given by the codes MA27 and MA57 of the
[25]) is used.

3.2 Updating Dual Variables and the Penalty Parameter

Given newly computed primal values v+P , we follow [10] and project candidate dual
variables v+D componentwise into the box [(yL,uL),(yU,uU)], where

yL = κl min
[
e,y,μk(C(x+)+ S+)−1e

]
,

yU = max
[
κue,y,κu(μk)−1e,κuμk(C(x+)+ S+)−1e

]
,

(30)

uL = κl min
[
e,u,μk(S+)−1e

]
, uU = max

[
κue,u,κu(μk)−1e,κuμk(S+)−1e

]
,

in order to ensure that the multipliers remain sufficiently positive and suitably
bounded. Here 0 < κl < 1 < κu, and values κl =

1
2 and κu = 1020 have proved

to be satisfactory. Note that the primal estimates (19), v+D = vD(v+P ), naturally lie in
the interval. However, as we have just mentioned, we usually prefer to use primal–
dual estimates v+D = vD + dD of the dual variables, where dD is the correction to
the dual variable estimates obtained from the trust-region subproblem (24). Our
convergence analysis is actually independent of how this is done, so long as the
resulting estimates lie in the box above.



Interior-Point �1-Penalty Method 129

The purpose of the penalty parameter is to force satisfaction of the equality and
inequality constraints for (1). Introducing decreasing sequences {ηk

E } and {ηk
I }

converging to zero, we increase νk whenever

‖cE (xk)‖> ηk
E or ‖c−I (xk)‖> ηk

I . (31)

Refining further, we also increase νk whenever

‖yk+1−νke0
E ‖ ≤ γνk (32)

is violated, for some preset γ ∈ (0,1). Then one possibility is to update νk using

νk+1 =

{
max[τ1νk,νk + τ2] if (31) is satisfied or (32) is violated,

νk otherwise,
(33)

for some preset constants τ1 > 1 and τ2 > 0, following rules suggested by Mayne
and Polak [31] and Conn et al. [11].

Remarkably, the convergence results of Section 4.2 are independent of the
particular form of the sequences {ηk

E } and {ηk
I } besides the fact that they are

sequences of positive numbers converging to zero. In practice, all such sequences
might not be equally efficient and those converging to zero at a reasonable rate
should be chosen.

4 Convergence Analysis

In this section, we discuss the convergence properties of Algorithm 3.1 for the
solution of (1). We consider, in turn, the global convergence of the inner iteration,
of the outer iteration, and fast local convergence issues. In order to derive suitable
convergence results for the convergence of our interior-point method, we make the
following additional assumptions.

Assumption 4.1. The logarithmic barrier function φ B(x,s;μ ,ν) for problem (3),
defined in (4), is bounded below over the set {(x,s) | c(x)+ s ≥ 0, s ≥ 0} for all
μ > 0

Assumption 4.2. The iterates remain in a regionΩ over which the first and second
derivatives ∇f (x), ∇xxf (x), ∇ci(x) and ∇xxci(x) (i ∈ C ) remain uniformly bounded.

4.1 Convergence of the Inner Iteration

Each inner iteration—Step 1 of Algorithm 3.1—proceeds by computing a vector
of primal vk

P = (xk,sk) and dual variables vk
D = (yk,uk) satisfying (23) by means
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of the method described in [10]. We devote this section to verifying that the
assumptions required by this method are satisfied in the present case, and to recalling
the main convergence properties of the resulting inner iteration. We shall only be
concerned with exact derivatives of the quantities involved, but the aforementioned
inner iteration makes provision for inexact Hessian matrices provided they satisfy
appropriate regularity and asymptotic properties.

As we already mentioned, we must require the following condition on the
preconditioning matrices Pk chosen during Step 1 of Algorithm 3.1.

Assumption 4.3. Each preconditioning matrix Pk is both bounded from above in
norm, and such that the smallest eigenvalue of the matrix K from the system (28) is
uniformly positive for all iterates encountered.

For simplicity, we consider the matrix Pk fixed during an inner iteration, although
this need not be the case [10]. Let an outer iteration index be denoted by k
and the successive values taken by a generic vector v during the inner iterations
corresponding to this outer iteration be denoted by vk,j, j = 1,2, . . . The following
assumption introduces upper bounds on the sequences of multipliers.

Assumption 4.4. For all k ≥ 0, there exists a constant κD(k) depending only on k
such that

yk,j ≤ κD(k)max((C(xk,j)+ Sk,j)−1e,e) uk,j ≤ κD(k)max((Sk,j)−1e,e). (34)

In view of MFCQ, requiring that the Lagrange multipliers remain bounded is very
reasonable for fixed (μk,νk). Indeed, if (23e) were to be imposed for every inner
iteration, Assumption 4.4 would automatically be satisfied.

Armed with the above assumptions, the next result corresponds to [10,
Theorem 2].

Theorem 6. Under Assumptions 2.1–4.4, the inner iteration procedure corre-
sponding to outer iteration k of Algorithm 3.1 generates a sequence {(xk,j,sk,j)}
satisfying

lim
j→∞

‖∇φ B(vk,j
P ;μk,νk)‖[Pk] = lim

j→∞
‖∇φ B(vk,j

P ;μk,νk)‖= 0.

Proof. It is readily verified that Assumptions 3.1–4.4 imply Assumptions A1–A8 of
[10] and thus global convergence of the inner iteration. Theorem 2 of [10] concludes
the proof. �

Theorem 6 shows that the inner-iteration termination test will be satisfied after
a finite number of iterations if primal multiplier estimates yk+1 = y(xk+1,sk+1) and
uk+1 = u(sk+1) are used. If we plan to use other dual variables, we require an extra
assumption, namely that the primal–dual estimates converge to their ideal, primal,
values when convergence takes place.
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Assumption 4.5. The inner iteration produces dual sequences {uk,j} and {yk,j} sat-
isfying limj→∞ ‖uk,j−μk(Sk,j)−1e‖= 0 and limj→∞ ‖yk,j−μk(C(xk,j)+Sk,j)−1e‖= 0
whenever limj→∞ ‖∇φ B(vk,j

P ;μk,νk)‖[Pk] = 0.

With this additional assumption, we obtain the following result.

Theorem 7. Under Assumptions 3.1–4.5, the inner iteration procedure corre-
sponding to outer iteration k of Algorithm 3.1 generates a sequence {(vk

P,v
k
D)}

satisfying the stopping conditions (23) after finitely many steps.

Proof. The stated assumptions allow us to use Theorem 4 of [10] to deduce
that the sequence {(vk,j

P ,vk,j
D )} generated by Algorithm 3.1 ultimately satisfies

limj→∞Φ(vk,j;μk,νk) = 0 and limj→∞(c(xk,j)+ sk,j,sk,j,yk,j,uk,j) ≥ 0 and thus indi-
rectly that limj→∞

(
yk,j +νke0

E ,u
k+1

) ≤ νk
(
e+ e0

E ,e+ e0
E

)
. Thus (23) is satisfied

after finitely many steps, since Lemma 2 of [10] shows that the ‖.‖[Pk+1] and
Euclidean norms are equivalent for fixed k. �

The numerical method suggested in Sections 3.1–3.2 to tackle the inner iteration
satisfies the assumptions stated here, and thus guarantees global convergence of each
inner iteration.

4.2 Convergence of the Outer Iteration

We now study the convergence of the outer iteration algorithm. We concentrate on
the case where the penalty parameter is updated as in Section 3.2. Our first task is to
show that although we are measuring the violation of dual feasibility in (23a) in the
‖·‖[Pk+1] norm, this actually allows us to make deductions in the Euclidean norm. To
do this, we need to be slightly more restrictive in the choice of our forcing functions
εD, εC and εU, and we make the following assumption.

Assumption 4.6. The forcing functions εD, εC and εU satisfy the bounds

εC(μ)≤ κcμ , εU(μ)≤ κcμ , εD(μ)≤ κdμ
1
2+γ

k
, (35)

for some constants κc ∈ (0,1) and κd > 0 and sequence {γk}> 0.

We then have the following result.

Lemma 1. Suppose that the iterates vk+1 = (xk+1,sk+1,yk+1,uk+1) are generated
by Algorithm 3.1, and that Assumptions 4.2, 4.3 and 4.6 hold. Then there exist
constants μmax and κ > 0 for which ‖v‖ ≤ κ(νk + κν)/

√
μk‖v‖[Pk+1] for all

μk ≤ μmax and all vectors v, and, additionally, ‖v‖ ≤ κ(νk +κν)(μk)γ
k

whenever
‖v‖[Pk+1] ≤ εD(μk).

Proof. The requirements (23b) and (35) imply that (ci(xk+1) + sk+1
i )yk+1

i ≥ (1−
κc)μk. Combining this bound with the required upper bound from (23e) reveals
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ci(x
k+1)+ sk+1

i ≥ (1−κc)μk

yk+1
i

≥ (1−κc)μk

2νk +κν
>

(1−κc)μk

2(νk +κν)
. (36)

Similarly, (23c) and (23e) and (35) give that sk+1
i ≥ (1− κc)μk/(2νk + κν) >

(1 − κc)μk/(2(νk + κν)). But the form of the Jacobian in (11) together with
Assumptions 4.2, 4.3 and 4.6 are sufficient to allow us to invoke [10, Lemma 4.1]
to deduce that

‖v‖[Pk+1] ≥ κ2 min

(
min
i∈C

ci(xk+1)+ sk+1
i√

μk
, min

i∈C
sk+1

i√
μk

, 1

)
‖v‖ (37)

for some κ2 > 0 and all v. Combining (36)–(37), we see that

‖v‖[Pk+1] ≥ κ2 min

(
(1−κc)

√
μk

2(νk +κν)
, 1

)
‖v‖ ≥ κ2(1−κc)

√
μk

2(νk +κν)
‖v‖

for all μk ≤ μmax := (2κν/(1−κc))
2, which is the first required bound when κ :=

2/(κ2(1−κc)). The remaining bound follows directly from the first and (35). �
In the following results, we shall be concerned with limit points v∗P = (x∗,s∗)

and v∗D = (y∗,u∗), of the primal and dual sequences respectively, generated by
Algorithm 3.1. In order to easily make connections with Theorem 4, we shall be
using the shifted limit point (x,λ (y∗,ν∗)) as defined in (12b).

We first consider the case where the penalty parameter remains bounded.

Lemma 2. Suppose Assumptions 3.1 and 4.2–4.6 hold, Algorithm 3.1 generates
infinite sequences {vk

P} and {vk
D}, and the penalty parameter νk is updated finitely

many times to reach its final value ν∗. Then the sequence {(sk,yk,uk)} is bounded.
Moreover, if {xk} has a limit point and if (v∗P ,v∗D) is any limit point of {vk}, then
s∗ = 0 and the shifted limit point (x∗,λ (y∗,ν∗)) is a first-order critical point for (1).

Proof. By assumption, there exists a positive integer k∗ such that νk = ν∗ for all k≥
k∗. The updating rule (33) then implies that ‖cE (xk)‖≤ηk

E and ‖c−I (xk)‖≤ηk
I .

Consequently, lim
k→∞

cE (x
k) = 0 and lim

k→∞
cI (xk)≥ 0.

We first show that {sk} is bounded. Assume by contradiction that sk
i → ∞ for

some i ∈ C along some subsequence. By using the forcing property of the functions
εD(·), εU(·) and εC(·), Lemma 1 and the fact that μk ↓ 0, from (23c), we must have
uk

i → 0 and from (23a), {yk
i } must be bounded. Hence, (23b) imposes ci(xk)→−∞,

which is a contradiction. Thus {sk}must be bounded. Moreover, for all k≥ k∗, (23e)
implies that {(yk,uk)} satisfies the bounds (yk

i ,u
k
i ) ∈ [0,κν + 2ν∗] for i ∈ E and

(yk
i ,u

k
i ) ∈ [0,κν +ν∗] for i ∈I .

Suppose that limk∈K vk = (v∗P ,v∗D). Along the subsequence defined by K , (23b)–
(23d), the forcing property of the function εD(·), Lemma 1 and the fact that μk ↓ 0
together guarantee that
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lim
k∈K

[
∇f (xk+1)− JT(xk+1)(yk+1−νke0

E )

νke− (yk+1−νke0
E )− uk+1

]

=

[
∇f (x∗)− JT(xk+1)(y∗ −ν∗e0

E )

νke− (y∗−ν∗e0
E )− u∗

]
= 0

as well as (C(x∗)+ S∗)y∗ = 0 and S∗u∗ = 0. Thus (v∗P ,v∗D) satisfies (22) with μ = 0
and the assumptions of Theorems 3 and 4. �

Next, we consider the consequences of an unbounded penalty parameter.

Lemma 3. Suppose Assumptions 3.1 and Assumptions 4.2–4.6 hold. Let {vk
P} and

{vk
D} be sequences generated by Algorithm 3.1. Assume the penalty parameter

νk is updated infinitely many times at iterations k ∈ K . Then the subsequence
{(yk,uk)}K is unbounded. In addition any limit point v∗P = (x∗,s∗) of {vk

P}
solves (14) and x∗ is a first-order critical point of ϑ P(x).

Proof. Along K , (33) implies νk+1 ≥ νk + τ2 with τ2 > 0 and thus {νk}K → ∞.
Since νk is nondecreasing, the whole sequence {νk}→ ∞.

Now suppose that {vk
D}K is bounded and thus has a limit point v∗D. In particular,

there are vectors y∗ and u∗ such that {yk
E }K ′ → y∗ and {uk}K ′ → u∗ for some

K ′ ⊆K , and thus both ‖yk‖ ≤ 2‖y∗‖ and ‖uk‖ ≤ 2‖u∗‖ for all sufficiently large
k ∈K ′. But then the triangle inequality, the stopping condition (23a) and Lemma 1
give that

√
nCνk−1− (‖yk‖+ ‖uk‖)≤ ‖νk−1e− yk

E − uk
E ‖ ≤ κ(νk−1 +κν)(μk−1)γ

k

and this combines with the bounds on ‖yk‖ and ‖uk‖ to give

(
√

nC −κ(μk−1)γ
k
)νk−1 ≤ (‖yk‖+ ‖uk‖)+κκν(μk−1)γ

k

≤ 2(‖y∗‖+ ‖u∗‖)+κκν(μk−1)γ
k

(38)

for all sufficiently large k ∈K ′. Taking the limit of (38) as k→ ∞ then contradicts
the unboundedness of {νk−1}. Thus {vk

D}K is unbounded.
To prove the second part of the lemma, we now suppose that {vk

P} has a limit
point v∗P . Define ȳk+1 = yk+1/νk and ūk+1 = uk+1/νk. Then the stopping rules (23)
and Lemma 1 give

∥∥∥∥∥∥

⎡
⎣

1
νk∇f (xk+1)− JT(xk+1)(ȳk+1− e0

E )

e− (ȳk+1− e0
E )− ūk+1

⎤
⎦
∥∥∥∥∥∥
≤ κp(μk)γ

k
(39a)

∥∥∥∥(C(xk+1)+ Sk+1)ȳk+1− μk

νk e

∥∥∥∥ ≤
εC(μk)

νk . (39b)
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∥∥∥∥Sk+1ūk+1− μk

νk e

∥∥∥∥ ≤
εU(μk)

νk (39c)

(
c(xk+1)+ sk+1,sk+1) > 0 (39d)

([
1+

κν
ν0

]
e+ e0

E ,
[
1+

κν
ν0

]
e+ e0

E

)
≥ (

ȳk+1, ūk+1) > 0 (39e)

where κp := κ(1+κν/ν0). Since (39e) implies that (ȳk+1, ūk+1) is bounded, there is
a subsequenceK ′ ⊆K for which limk∈K ′→∞(ȳk+1, ūk+1) = (y∗,u∗). Taking limits
of (39) as k ∈K ′ → ∞ (and thus μk → 0 and νk → ∞) shows that (x∗,s∗,y∗,u∗)
satisfies (15), and hence (x∗,s∗) is a first-order critical point of ϑ(x,s) subject to
c(s)+ s≥ 0 and s≥ 0. The remaining result follows directly from Theorem 1. �

Finally, (32) yields a certificate of failure of the MFCQ whenever the penalty
parameter diverges and yet the iterates approach a feasible point.

Lemma 4. Suppose that Assumptions 3.1 and 4.2–4.6 hold. Let {vk
P} and {vk

D} be
sequences generated by Algorithm 3.1. Assume (31) holds for only a finite number of
iterations but the penalty parameter νk is updated infinitely many times at iterations
k ∈K . If, in addition, the sequence {vk

P} has a limit point v∗P , x∗ is a feasible Fritz-
John point of (1) and therefore the MFCQ fails to hold at x∗.

Proof. As in Lemma 3, the sequences {yk}K and {uk}K are unbounded, and from
our assumptions, ‖cE (xk)‖ ≤ ηk

E and ‖cI (xk)−‖ ≤ ηk
I for infinitely many k ∈K .

By taking limits, we see that x∗ is feasible.
Since {νk} → +∞ but increases in νk are not due to lack of progress towards

feasibility, (32) must be violated infinitely many times. Let αk+1 := max{‖yk+1
E −

νkeE ‖,‖yk+1
I ‖}. We have from (32) that αk+1 = Ω(νk) for all k ∈ K . We now

define ȳk+1
E :=(yk+1

E −νkeE )/αk+1, ȳk+1
I := yk+1

I /αk+1, and ūk+1 := uk+1/αk+1. By
construction, ‖(ȳk+1

E , ȳk+1
I )‖∞ = 1 for all k ∈K . Let ȳ∗ = (ȳ∗E , ȳ

∗
I ) be a limit point

of the latter sequence. Upon scaling the stopping conditions (23) by αk+1 and taking
limits as k→ ∞, we see that {ūk+1} must also remain bounded so that, reducing to
a further subsequence if necessary, (8) is satisfied with γ = 0, together with (7c),
(7d). Moreover, since ‖ȳ∗‖∞ = 1 by construction, there is at least one nonzero
multiplier, which proves that x∗ is a feasible Fritz-John point of (1). Combining
those conditions, we obtain

∑
i∈E

ȳ∗i ∇ci(x
∗)+ ∑

i∈A (x∗)
ȳ∗i ∇ci(x

∗) = 0,

where A (x∗) is the set of active inequality constraints at x∗. By application of
Motzkin’s transposition theorem [30], the latter is equivalent to failure of the MFCQ

at x∗. �
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To summarize, Lemmas 2–4 lead to the following global convergence result.

Theorem 8. Suppose that Assumptions 3.1 and 4.2–4.6 hold. Let {vk
P} and {vk

D} be
sequences generated by Algorithm 3.1, and that x∗ is a limit point of {xk}. Then
either {νk} remains bounded, and x∗ is a first-order critical point for the nonlinear
programming problem (1), or {νk} diverges, and x∗ is a first-order critical point of
the infeasibility ϑ P(x).

4.3 Fast Asymptotic Convergence

We examine in this section the superlinear convergence properties of iterates
generated by Algorithm 3.1 in the regular case where LICQ is satisfied for simplicity,
although past research suggests that similar convergence properties could be derived
under MFCQ [39].

The framework is that of Gould et al. [20, 21]. From Theorem 8, we assume that
Algorithm 3.1 generates a sequence {vk} from which a convergent subsequence
{vk}K may be extracted, where K is an infinite index set, whose limit point v∗ =
(v∗P ,v∗D) is feasible, and hence for which the penalty parameter νk is only updated
finitely many times. We denote its final value by ν∗ > 0, and let λ ∗ = λ (y∗,ν∗).
We consider indices k ∈K sufficiently large that νk = ν∗ and for related positive
quantities α and β , we write α = O(β ) if there is a constant κ > 0 such that α ≤ κβ
for all β sufficiently small. We write α = o(β ) if α/β → 0 as β → 0. We also write
α =Θ(β ) if α = O(β ) and β = O(α).

From Lemma 2, we have that s∗ = 0, which enables us to conveniently formulate
our assumptions in terms of (1) instead of (3). In particular, all the bound constraints
on s in (3) are active and we may thus define the set of active indices in the
nonlinear constraints of (3) as A ∪E where A = {i ∈I | ci(x∗) = 0}. We make
the following standard assumptions on (1).

Assumption 4.7. The gradients {∇ci(x∗) | i ∈A ∪E } are a linearly independent;

Assumption 4.8. The strong second-order sufficiency conditions for (1) are satis-
fied at (x∗,λ ∗), i.e., dT∇xxL(x∗,λ ∗)d > 0 for all d �= 0 such that ∇ci(x∗)Td = 0 for
all i ∈A ∪E ;

Assumption 4.9. ‖λ ∗‖∞ < ν∗ and λ ∗i > 0 for all i ∈A ;

Assumption 4.10. The functions f , cE (x) and cI (x) are C 3 over the intersection
of an open neighbourhood of x∗ with the feasible set of (1).

Lemma 5. The penalty problem (3) satisfies LICQ, the strong second-order suf-
ficient condition and strict complementarity at v∗ with a value of the penalty
parameter equal to ν∗ if and only if 4.7–4.9 are satisfied. Moreover, if 4.10 holds,
the objective and constraint functions for (3) are C 3 in an open neighbourhood
of v∗P .
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Proof. Define the |A |× n matrices JA (x∗) and EA as the rows of JI (x∗) and II
corresponding to indices in A , respectively. The active part of (11) is

JS
A (x∗,0) =

⎡
⎢⎢⎣

JE (x∗) IE 0
JA (x∗) 0 EA

0 IE 0
0 0 II

⎤
⎥⎥⎦ , (40)

and has full row rank by Assumption 4.7.
Because the variables s appear linearly in the Lagrangian (9), its Hessian with

respect to primal variables vP = (x,s) is

∇vPvPL (v;ν) =
[
∇xxL (v;ν) 0

0 0

]
=

[
∇xxL(x,λ (y,ν)) 0

0 0

]
,

where L(x,λ ) is the Lagrangian (6) and λ (y,ν) is defined by (12b), hence imposing
the strong second-order sufficient condition on (3) at v∗ amounts to Assumption 4.8.
The requirement on d follows from (40).

Since cE (x∗) = 0 and s∗ = 0, strict complementarity on (3) imposes y∗i > 0 for
all i ∈A ∪E and u∗i > 0 for all i ∈ C . Eliminating u∗i using (13b), (13c) gives y∗ <
ν∗(e+ eE ), which is in turn equivalent to the bound ‖λ ∗‖∞ < ν∗ on the multipliers
λ ∗ ≡ λ (y∗,ν∗) = y∗ −ν∗e0

E associated with (1). The final part is immediate. �
Under Assumption 4.9, the central trajectory approaches its end point non-

tangentially to active constraints [38]. Differentiating the primal–dual system with
respect to μ yields an explicit expression of the tangent vector v̇(μ)

∇vΦ(v;μ ,ν)v̇(μ) =

⎡
⎣

0
0

−e2nC

⎤
⎦ . (41)

As μ ↓ 0, this tangent vector converges to a nonzero limit vector v̇(0). As will
appear in Theorem 4.3, the individual components of v̇(0) are relevant to fast local
convergence issues.

Slightly strengthening (35), we assume in this section that the forcing functions
in Algorithm 3.1 have the following asymptotic form

Assumption 4.11. εD(μk)=Θ((μk)γ
k+1) and εC,U(μk)=Θ(μk), where 0<γk<1

for all sufficiently large k ∈K .

The only changes in Algorithm 3.1 are that a step is computed according to

∇vΦ(vk;μk,ν∗)dN =−Φ(vk;μk,ν∗), (42)
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and that the barrier parameter is updated using

μk+1 =Θ
(
(μk)τ

k
)

where 1+ ετ ≤ τk ≤ 2
1+ γk+1 − ετ . (43)

From Assumptions 4.7–4.9, the Jacobian in (42) remains uniformly nonsingular.
Upon defining the set of nonzero components of the tangent vector (41) to the

primal–dual central path at v∗,

J = {i = 1, . . . ,n+ 2nC | v̇(0)i �= 0}, (44)

and under the above assumptions, Algorithm 3.1 fits in the framework of Gould
et al. [20, 21] and we obtain the following results, which we state without proof.
The first result states that the Newton step dN defined in (42) is strictly feasible and
vk + dN satisfies the stopping conditions (23) with barrier parameter μk.

Theorem 9 ([20], Theorem 6.2). Under Assumptions 4.7–4.11 for k ∈ K suffi-
ciently large, the stopping conditions (23) are satisfied at vk+1 with μ = μk, and

‖Φ(vk+1;μk,ν∗)‖= o(μk). (45)

The next result states the precise rate of convergence, not only in the error in
norm, but in some individual components, defined by (44), of the error. It states that
the same rate takes place in individual components of the complementarity residuals

ΦC(v;μ ,ν) =
[
(C(x)+ S)y− μe

Su− μe

]
. (46)

Theorem 10. Under Assumptions 4.7–4.11, assume that the complete sequence
{vk} converges to v∗, then the sequence {Φ(vk+1;μk,νk)} converges to zero and
we have the asymptotic expansions

vk+1 = v∗+ μkv̇(0)+ o(μk) and ΦC(vk+1;μk,ν∗) =−μke+ o(μk).
(47)

As a consequence, the asymptotic convergence rate is described by

|vk+2
i − v∗i |

|vk+1
i − v∗i |τk =Θ(1) i ∈J , and

|ΦC
i (v

k+2;μk+1,ν∗)|
|ΦC

i (v
k+1;μk,ν∗)|τk =Θ(1) i=1, . . . ,2nC ,

(48)

for k sufficiently large, where τk is as in (43), which implies that the iterates vk+1

and the residuals in complementarity converge componentwise Q-superlinearly to
their limit, along the given components. The remaining components i �∈J satisfy
|vk+1

i − v∗i |= o(μk) and Φi(vk+1;μk,ν∗) = o(μk).
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As a consequence of Theorem 4.3, a Q-rate of convergence which is as close to
quadratic as desired, and which takes place not only in norm but in all the indicated
components, is achievable by constructing the sequence {γk} so it converges to zero,
by choosing ετ � 0 and by selecting τk equal to its upper bound in (43).

5 Implicit Elastics Variant

Suppose that our inner-iteration trust-region algorithm has produced a new approx-
imation (xk,j,sk,j) to the minimizer of the barrier function φ B(x,s;μk,νk). Since
φ B(x,s;μ ,ν) is a separable function of s, we might then aim to improve on (xk,j,sk,j)
by finding the (global) minimizer s(x) of φ B(x,s;μ ,ν) for the given x = xk,j.
Replacing (xk,j,sk,j) by the improvement (xk,j,s(xk,j)) is an example of what is
known as a magical step, and fortunately the use of such steps does not interfere with
global convergence of the underlying algorithm—see, for example, [11, §10.4.1].

To compute the elastics s(x), note that s(x) necessarily satisfies componentwise

r(s(x)) ≡ ∇sφ B(x,s(x);μ ,ν) = ν(e+ e0
E )− y(x,s(x);μ)− u(s(x);μ) = 0. (49)

We summarize the properties of (49) in the next result, whose proof is elementary.

Lemma 6. Let Assumption 3.1 be satisfied, the function r(s(x)) be defined by (49)
where x is fixed and the multiplier estimates be given by (19). We then have the
following properties:

1. r(s) is a separable function of s,
2. r(s(x)) has a unique root, s(x), for which (x,s(x)) lies in the interior of the

feasible set of (3),
3. s(x) is twice continuously differentiable for max(0,−ci(x))< s(x)< ∞.

In our case, a simple calculation reveals that the magical correction for s is given
(componentwise) by

sk,j
i =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μk

2νk −
ci(xk,j)

2
+

√(
ci(xk,j)

2

)2

+

(
μk

2νk

)2

for i ∈ E

μk

νk −
ci(xk,j)

2
+

√(
ci(xk,j)

2

)2

+

(
μk

νk

)2

for i ∈I .

As we have just suggested, we may improve upon a given (x,s) by replacing it by
the “magical” (x,s(x)). However, this is somewhat inefficient as x is chosen without
regard to what s(x) might result. This suggests a better approach might be to treat
the elastic variables as implicitly dependent on x throughout the inner iteration.
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With this in mind, in this section we present an implicit elastics alternative
to Algorithm 3.1. Since we know from Lemma 6 that s(x) is (at least) twice
continuously differentiable, we might instead minimize

ψ(x)≡ φ B(x,s(x);μ ,ν) (50)

solely as a function of the variables x. Here φ B(·) is as defined by (4), and we have
hidden the dependency of ψ(·) on μ and ν for brevity. In practice, in addition to
the reduction in dimension this suggests, the definition of s(x) should help to keep
the constraints a comfortable distance from their boundaries, preventing steps from
being repeatedly cut back. We now show that a classical trust-region algorithm for
the minimization of ψ(x) is well defined.

For future reference, we give the derivatives of (50) in the following result.

Lemma 7. Under Assumption 4.2, the first and second derivatives of (50) are

∇xψ(x) = ∇f (x)− JT(x)σ(x) and (51a)

∇xxψ(x) = H(x,σ(x))+ μJT(x)
[
(C(x)+ S(x))2 + S(x)2]−1

J(x), (51b)

= H(x,σ(x))+ JT(x)
[
(C(x)+ S(x))Y−1(x)+ S(x)U−1(x)

]−1
J(x)

where H(x,σ) is given by (27) and we have defined the estimates

y(x) := y(x,s(x)) = μ(C(x)+ S(x))−1e, (52a)

u(x) := u(s(x)) = μS−1(x)e and (52b)

σ(x) = y(x)−νe0
E . (52c)

Proof. Elementary calculations with (49) prove (51a). We note from (49) that
∇xr(s(x)) = 0, implying (C(x)+S(x))−2(J(x)+∇xs(x)) =−S−2(x)∇xs(x). Extract-
ing ∇xs(x) from this identity gives

∇xs(x) =−[
I +(C(x)+ S(x))2S−2(x)

]−1
J(x),

which combines with (52c) to yield

∇xσ(x) =−μ(C(x)+ S(x))−2(J(x)+∇xs(x)) = μS−2(x)∇xs(x)

and finally, (51b). The second expression for (51b) follows from (52a)–(52b). �
Note that the second term in the right-hand side of (51b) is positive semi-definite.
A typical primal–dual trust-region method for minimizing ψ(x) computes a

correction d to the current solution estimate x so as to (approximately)
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minimize
d

∇ψ(x)T d+ 1
2 dTB(x,σ)d subject to ‖d‖M ≤ Δ , (53)

where the trust-region radius Δ > 0. The primal–dual approximation B(x,σ)

BPD(x,σ) = H(x,σ)+ JT(x)
[
Θ−1(x)+ S(x)U−1]−1

J(x), (54)

where

Θ(x) = Y(C(x)+ S(x))−1, u≈ u(x)> 0, y≈ y(x)> 0, σ ≈ σ(x) (55)

(c.f. (26)). Note also thatΘ−1(x)+ S(x)U−1 is a diagonal matrix.
As in Section 3.1, lengths of steps and gradients should be measured in norms

that reflect curvature. The trust-region norm ‖w‖2
M ≡ 〈w,Mw〉 depends on a suitable

symmetric, positive-definite approximation M to B(x,σ), and we shall use

M = P+ JT(x)
[
Θ−1(x)+ S(x)U−1]−1

J(x), (56)

where as before, P can range from simple (P = I) to sophisticated (P = H(x,σ)). To
be specific, we shall assume that, at the termination of the k-th inner-iteration, the
following assumption is satisfied.

Assumption 5.1. Each matrix Mk is defined by (56), where P = Pk satisfies
Assumption 4.3.

The counterpart of the preconditioning system (28) is here that

Mdx = rx (57)

for some given rx. If we define ds = −
[
Θ(x)+US−1(x)

]−1
J(x)Θ(x)dx, we see

that (57) is equivalent to (28) in the case that rs = 0. Because ∇vPφ B(x,s(x);μ ,ν) =
(∇xψ(x),0) when s = s(x), we may replace (23a) with ‖∇ψ(xk+1)‖M−1

k+1
≤ εD(μk).

The resulting trust-region method is entirely standard, except that any trial value
x for which s(x) is undefined or infeasible will be rejected and the trust-region radius
retracted.

Identities (49), (55) and (52c) directly imply that the Hessian matrix of the model,
BPD(x,σ), is bounded.

Lemma 8. The Lagrange multiplier estimates satisfy the bounds

0 < y(x)< ν(e+ e0
E ), 0 < u(x)< ν(e+ e0

E ), −νe0
E < σ(x)< νe. (58)

In view of the required approximations (55) and Lemma 8, we make the further
reasonable assumption.

Assumption 5.2. For given ν , the multiplier estimates y, u and σ are bounded.
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Given this assumption, we now show that our model Hessian remains bounded. To
this end, let δi = 1 if i ∈ E and 0 otherwise.

Lemma 9. Under Assumptions 4.2 and 5.2, the primal–dual Hessian approxima-
tion (54) remains bounded for fixed values of μ > 0 and ν > 0.

Proof. Since (54) implies that

‖BPD(x,σ)‖ ≤ ‖H(x,σ)‖+ ‖J(x)‖‖JT(x)‖‖[Y−1(C(x)+ S(x))+U−1S(x)
]−1 ‖,

and as Assumptions 4.2 and 5.2 ensure that ‖H(x,σ)‖, ‖J(x)‖ and ‖JT(x)‖ are
bounded, it remains to show that the (diagonal) entries si(x)/ui +(ci(x)+ si(x))/yi

of the diagonal matrix Y−1(C(x)+ S(x))+U−1S(x) are bounded away from zero.
But combining (52a) and (52b) with (58) shows that

ci(x)+ si(x)>
μ

ν(1+ δi)
and si(x)>

μ
ν(1+ δi)

and

and this together with 5.2 gives the required lower bound on those entries. �
We summarize the results of this section by stating Algorithm 5.1.
The convergence properties of Algorithm 5.1 are summarized in Theorem 11,

which we state without proof since this result is a direct parallel of Theorem 8.

Algorithm 5.1 Prototype algorithm—outer iteration (implicit elastics)
Step 0. Let the forcing functions εD(·), εC(·) and εU(·) be given, and let κν > 0. Choose
x0 ∈ R

n, s0 ∈ R
nC
+ such that c(x0)+ s0 > 0, initial dual estimates y0,u0 ∈ R

nC
+ , and penalty

and barrier parameters ν0 and μ0 > 0, and set k = 0.

Step 1. Inner Iteration: find a new primal–dual iterate (xk+1, s(xk+1),yk+1,uk+1) satisfying

∥∥∇f (xk+1)− JT (xk+1)(yk+1−νke0
E )

∥∥
M−1

k+1
≤ εD(μk) (59a)

‖(C(xk+1)+S(xk+1))yk+1−μke‖ ≤ εC(μk). (59b)

‖S(xk+1)uk+1−μke‖ ≤ εU(μk) (59c)

(
c(xk+1)+ s(xk+1), s(xk+1)

)
> 0 (59d)

and
(
νk[e+ e0

E ]+κνe,νk[e+ e0
E ]+κνe

)≥ (
yk+1,uk+1) > 0 (59e)

for some suitable scaling norm ‖.‖Mk+1 by (for example) approximately minimizing (50).

Step 2. Select a new barrier parameter, μk+1 ∈ (0,μk] such that limk→∞ μk = 0. Update the
penalty parameter νk according to the rule (33). Increment k by one, and return to Step 1.
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Theorem 11. Suppose that Assumptions 3.1, 4.2, 4.4–4.6 and 5.1 hold. Suppose
that x∗ is a limit point of the sequence {xk} generated by Algorithm 5.1. Then
either {νk} remains bounded, and x∗ is a first-order critical point for the nonlinear
programming problem (1), or {νk} diverges, and x∗ is a first-order critical point of
the infeasibility ϑ P(x). In the first case, the multipliers {σ(xk)} generated converge
to λ (y∗,ν∗) defined in (12). If additionally νk is updated whenever (32) is violated,
if (31) holds only for a finite number of iterations and if {νk} diverges, x∗ is a
feasible Fritz-John point for (1) and the MFCQ fails to hold at x∗.

In addition to the reasons mentioned earlier in this section, this alternative is
attractive in that it empirically stabilizes the algorithm. In contrast with Algo-
rithm 3.1, it also helps prevent infeasible steps from being generated and repeatedly
cut. Indeed, it is easy to see from (55) and (58) that

ci(x)+ si(x)>
μ

ν(1+ δi)
≥ μ

2ν
, and si(x)>

μ
ν(1+ δi)

≥ μ
2ν

.

so long as s(x) exists.
For completeness, in view of Lemma 9 and [10, Theorem 4], it is straightforward

to show the following result, which again we state without proof.

Theorem 12. Under Assumptions 3.1, 4.2, 4.4–4.6 and 5.1, the implicit-elastic
inner iteration procedure outlined in this section generates {(xk+1,s(xk+1),yk+1,
uk+1)} satisfying the inner-iteration stopping conditions (59) for iteration k of
Algorithm 5.1 after finitely many steps.

Fast convergence properties of Algorithm 5.1 may be derived as in Section 4.3.

6 Practical Considerations, Enhancements and Refinements

We might distinguish linear equations AEx = bE, where AE has full row rank,
from the remaining constraints by including them in the general statement (1). We
consider this case since in practice we may aim to find and maintain feasible points
for such simple constraints before treating the nonlinear ones, and also to reflect the
generality that must be addressed by a practical implementation. Note that explicit
treatment of the linear equations preserves the MFCQ.

Explicit linear inequality constraints AIx ≥ bI , including the special case of
simple bounds might also be treated directly instead of being penalized. In this case,
the objective function of the barrier problem incorporate logarithmic terms to treat
the linear inequalities. The Jacobian of the constraints is such that

JS(vP)
T =

⎡
⎣

JE (x)T JI (x)T AT
E AT

I 0 0
IE 0 0 0 IE 0
0 II 0 0 0 II

⎤
⎦ . (60)
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Unfortunately, MFCQ is no longer automatically satisfied even in the special case
of simple bounds, as it requires that there is a vector d in the nullspace of AE such
that aT

i di < 0 for each active inequality aT
i x≥ bi. A condition such as LICQ on (1) is

sufficient for this, and provides a consistent context with Section 4.3.
The convergence theory remains essentially unaltered. The preconditioning

matrices Pk used in (23a) and in the trust region must this time be uniformly second-
order sufficient, which essentially amounts to uniform positive definiteness on the
nullspace of the matrix AE [10], on which they define uniformly equivalent norms.
The seminorms used in (23a) and the trust region are dual of each other and allow
for efficient treatment of the linear constraints.

As mentioned earlier, finding an initial strictly feasible estimate (x0,s0) for (3) is
trivial. Any value s0 > max[0,−c(x0)] is acceptable. In practice, only those si (or ri,
depending on the formulation chosen) that are required to be positive because of the
initial x need be retained, although it is actually prudent to keep those for which si

(or ri) needs to be larger than some “small” positive value (say, 0.1). More generally,
it may be beneficial to track each sk,j

i as the iteration progresses and to remove it as
soon as the corresponding ci(xk,j) is sufficiently positive. Doing so does not affect
the convergence results described in this paper, as there can only be a finite number
of these removals.

In the presence of two-sided inequality constraints cL
i ≤ ci(x) ≤ cU

i the obvious
penalty term νmax(cL

i − ci(x),ci(x)− cU
i ,0) may be replaced by νsi, where si is

required to satisfy si + cU
i − ci(x) ≥ 0, si + ci(x)− cL

i ≥ 0 and si ≥ 0. Thus a single
elastic variable suffices, rather than the pair that might have been anticipated if
ci(x) ≥ cL

i and ci(x) ≤ cU
i had been considered separately. If we wish to improve

the value of φ B(vP;μ ,ν) using a magical step, or to use the implicit-elastic approach
of Section 5, the defining equation

r(x)≡ ν(e+e0
E )−μ [C(x)−CL+S(x)]−1e−μ [CU−C(x)+S(x)]−1e−μS−1(x)e= 0

for the s(x) for a two-sided inequality may be reduced to a cubic equation. While it
is possible to give an explicit formula for the required root, in practice it is just as
easy to use a safeguarded univariate Newton method to find it.

There may be some virtue in adding an upper bound sU on the elastic variables
in order to prevent c(x) and s simultaneously diverging to infinity. Of course it is
far from obvious what globally a good value for sU might be, but the simple choice
of max(10,2s0) has proved to be sufficient in early experiments. The resulting two-
sided bound 0≤ s≤ sU may then be handled exactly as above.

7 Numerical Experience

Algorithm 5.1 has been implemented as a prototype Fortran 95 module in the
GALAHAD optimization library of Gould et al. [22]. The inner iteration stopping
tolerances are chosen as εD(μ) = εC(μ) = μ1.01. The outer iterations stop as soon
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as the residuals of (23a)–(23c) with μk = 0 fall under 1.0e−5. The initial barrier
parameter is set to μ0 = 1 and is updated by simply dividing it by 10 at each outer
iteration. The initial penalty parameter is set to ν0 = 1 and we choose τ1 = 10
and τ2 = 1 in (33). The initial guess x0 specified in the model is honoured and
initial elastic variables are chosen so that r(s(x0)) = 0 in (49) and all multipliers are
initialized to their primal values. The parameters in the updating rule for the penalty
parameter (31)–(32) are ηk

E = ηk
I = (μk)1.1.

Trust-region subproblems (24) are solved by means of the Generalized Lanczos
Trust-Region method GLTR of [19] with a preconditioner of the form (28).
The block P in (29) is chosen as a band of semi-bandwidth 5 of the Hessian
H(x,λ (y,ν)). A Cholesky factorization of the coefficient matrix of (29) is then
attempted. If it fails, P is replaced by P + δ I for increasing values of δ > 0.
On unsuccessful trust-region steps, a backtracking linesearch is performed along
the trust-region step as described by Conn et al. [11]. Prior to solution, problem
variables are scaled so they are all O(1) initially, i.e., assuming non-negativity
bounds only on the variables for simplicity, the initial (x0,s0) is replaced with
(x̄0, s̄0) where x̄0

i = x0
i /max(1,x0

i ) and s̄0
i = s0

i /max(1,s0
i ) for all i. Similarly,

ci(x) is replaced with ci(x̄)/max(1,‖∇ci(x̄0)‖∞) for all i and f (x) is replaced with
f (x̄)/max(1,‖∇f (x̄0)‖∞).

Numerical results on the Hock and Schittkowski [27] collection are reported in
Table 1. The table headers are, from left to right, the problem name, final objective
function value, final primal feasibility, final dual feasibility, final complementarity
measure, total number of iterations and running time. The tests were run under
OSX on a dual-core Intel Core2 Duo processor and GALAHAD was compiled
with the Intel Fortran Compiler version 10.1. A maximum number of 1,000 inner
iterations was imposed. Residuals are measured as in Algorithm 5.1. The only
failure, on HS87, is indicated by a trailing “F” and is due to the objective function
being discontinuous. On HS89, the algorithm stops at a critical point of the �1

infeasibility measure in the sense of Lemma 3, which is indicated by a trailing
“I” in the table. While the results in terms of number of iterations are overall not
directly competitive with those of polished production software such as IPOPT
[36] or KNITRO [5, 6], they are promising in terms of robustness. Though it is
not our goal to conduct a complete comparison here, we note that KNITRO 6.0.0
also terminates at an infeasible point on HS89. IPOPT 3.3 is able to solve HS89
to optimality. Both IPOPT and KNITRO were run with all default settings. Our
method takes a rather large number of iterations on a few problems. This behaviour
is consistently due to difficulties in reducing dual infeasibility, presumably because
of inadequate Lagrange multiplier estimates rather than to degeneracy since the final
penalty parameter is never large. We delay extensive benchmarking until we have
explored the benefits of all options mentioned in Sections 5 and 6. The full Hessian
and banded preconditioners performed almost identically on this problem collection.
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Table 1 Results on the Hock and Schittkowski test set

Name Obj Pfeas Dfeas Comp Its

HS1 5.182E−08 0.0E+00 6.1E−08 1.8E−07 39

HS2 4.941E+00 0.0E+00 1.3E−09 1.4E−07 18

HS3 1.778E−07 0.0E+00 0.0E+00 1.8E−07 6

HS4 2.666E+00 0.0E+00 6.6E−10 1.8E−07 8

HS5 −1.913E+00 0.0E+00 9.4E−09 1.9E−07 8

HS6 0.000E+00 2.9E−08 1.8E−15 6.4E−06 8

HS7 −1.732E+00 7.4E−08 2.3E−10 3.2E−06 15

HS8 −1.000E+00 2.2E−11 2.2E−11 1.8E−07 8

HS9 −5.000E−01 0.0E+00 7.8E−07 1.8E−08 13

HS10 −9.999E−01 0.0E+00 1.0E−07 1.9E−06 10

HS11 −8.498E+00 0.0E+00 1.2E−06 3.2E−06 11

HS12 −2.999E+01 0.0E+00 1.3E−10 1.8E−07 11

HS13 9.641E−01 5.9E−06 2.6E−09 1.8E−07 57

HS14 1.393E+00 1.0E−08 1.2E−06 8.9E−06 15

HS15 3.065E+02 0.0E+00 7.5E−08 2.0E−07 15

HS16 2.500E−01 0.0E+00 1.9E−07 1.9E−07 14

HS17 1.000E+00 0.0E+00 5.9E−12 2.9E−06 18

HS18 5.000E+00 0.0E+00 5.9E−07 2.0E−07 14

HS19 −6.961E+03 0.0E+00 5.4E−07 1.8E−07 61

HS20 3.819E+01 0.0E+00 6.0E−09 1.8E−07 15

HS21 −9.995E+01 0.0E+00 1.2E−18 1.8E−07 13

HS22 1.000E+00 0.0E+00 2.4E−09 1.9E−07 11

HS23 2.000E+00 0.0E+00 2.7E−07 1.8E−07 31

HS24 −9.999E−01 0.0E+00 6.6E−10 1.8E−07 16

HS25 4.312E−12 0.0E+00 1.5E−08 1.8E−07 30

HS26 1.405E−07 6.6E−06 3.2E−06 6.7E−06 11

HS27 3.999E−02 9.2E−10 1.3E−09 6.3E−06 15

HS28 0.000E+00 1.5E−16 2.5E−13 1.8E−07 6

HS29 −2.262E+01 0.0E+00 1.1E−14 5.6E−06 18

HS30 1.000E+00 0.0E+00 7.4E−09 2.1E−07 9

HS31 6.000E+00 0.0E+00 5.5E−07 2.5E−07 20

HS32 1.000E+00 2.4E−10 9.9E−13 1.8E−07 14

HS33 −4.585E+00 0.0E+00 1.3E−08 1.8E−07 19

HS34 −8.339E−01 0.0E+00 9.8E−06 1.1E−06 21

HS35 1.111E−01 0.0E+00 5.0E−16 1.8E−07 8

HS36 −3.299E+03 0.0E+00 1.9E−08 2.1E−07 21

HS37 −3.455E+03 0.0E+00 6.0E−12 1.8E−07 25

HS38 7.876E+00 0.0E+00 1.0E−07 1.8E−07 9

HS39 −1.000E+00 7.7E−08 1.3E−08 3.2E−06 18

HS40 −2.500E−01 6.1E−09 2.6E−10 3.2E−06 101

(continued)
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Table 1 (continued)

Name Obj Pfeas Dfeas Comp Its

HS41 1.925E+00 4.0E−10 4.5E−09 2.1E−07 11

HS42 1.385E+01 1.2E−06 1.2E−08 2.0E−07 11

HS43 −4.399E+01 0.0E+00 2.4E−08 2.4E−07 14

HS44 −1.499E+01 0.0E+00 1.8E−15 1.8E−07 13

HS45 1.000E+00 0.0E+00 2.5E−09 1.8E−07 10

HS46 3.746E−08 1.9E−11 6.9E−06 1.8E−08 897

HS47 5.341E−08 4.5E−06 1.2E−06 9.4E−06 23

HS48 0.000E+00 0.0E+00 1.7E−16 1.8E−07 6

HS49 2.315E−05 1.1E−16 5.2E−06 1.8E−07 10

HS50 9.094E−13 5.3E−15 2.3E−09 1.8E−07 8

HS51 0.000E+00 0.0E+00 8.0E−17 1.8E−07 6

HS52 5.326E+00 1.3E−07 1.8E−15 6.5E−06 8

HS53 4.093E+00 5.5E−11 1.9E−12 1.8E−07 15

HS54 −9.080E−01 2.2E−09 2.6E−08 2.1E−07 11

HS55 6.333E+00 3.0E−11 4.5E−07 1.8E−07 27

HS56 −2.362E+00 6.6E−10 2.6E−06 3.2E−06 560

HS57 3.064E−02 0.0E+00 3.6E−06 2.6E−07 15

HS59 −6.749E+00 0.0E+00 3.7E−08 1.8E−07 10

HS60 2.189E+00 5.9E−13 1.0E−11 1.8E−07 18

HS61 −1.436E+02 7.8E−08 2.8E−12 1.8E−07 9

HS62 −2.627E+04 9.0E−09 2.4E−08 1.8E−07 16

HS63 9.617E+02 2.7E−09 2.5E−09 1.8E−07 22

HS64 6.303E+03 1.3E−07 6.6E−06 3.2E−06 18

HS65 9.535E−01 0.0E+00 5.5E−08 3.1E−07 14

HS66 5.181E−01 0.0E+00 7.8E−10 1.8E−07 22

HS67 −1.162E+03 0.0E+00 6.8E−09 2.0E−07 9

HS68 4.650E−05 3.1E−08 7.5E−07 1.1E−06 10

HS69 7.923E−03 3.1E−09 1.3E−07 4.7E−07 13

HS70 1.870E−01 0.0E+00 7.7E−06 2.0E−07 82

HS71 1.701E+01 2.1E−07 1.6E−07 4.1E−07 434

HS72 1.831E+01 6.2E−06 4.5E−07 1.8E−07 30

HS73 2.989E+01 1.6E−09 9.9E−09 1.1E−06 18

HS74 5.126E+03 1.5E−09 1.4E−08 2.2E−07 20

HS75 5.174E+03 4.0E−10 9.4E−09 1.8E−07 20

HS76 −4.681E+00 0.0E+00 2.8E−16 2.0E−07 8

HS77 2.415E−01 1.0E−07 1.7E−06 3.2E−06 19

HS78 −2.919E+00 3.2E−07 1.3E−09 1.8E−07 9

HS79 7.877E−02 8.8E−08 9.2E−10 1.8E−07 7

HS80 5.394E−02 1.6E−09 8.8E−09 1.8E−07 85

(continued)



Interior-Point �1-Penalty Method 147

Table 1 (continued)

Name Obj Pfeas Dfeas Comp Its

HS81 5.394E−02 2.2E−07 1.1E−06 4.4E−07 29

HS83 −3.066E+04 0.0E+00 2.5E−10 1.9E−07 14

HS84 −5.279E+06 0.0E+00 6.1E−09 1.8E−07 42

HS85 −2.215E+00 0.0E+00 2.8E−08 1.9E−07 23

HS86 −3.234E+01 0.0E+00 4.0E−09 1.1E−06 16

HS87 4.778E−03 1.0E−09 1.0E+02 1.3E−07 584f
HS88 1.362E+00 0.0E+00 9.5E−10 3.2E−06 31

HS89 0.000E+00 1.3E−01 0.0E+00 1.3E−16 25i
HS90 1.362E+00 0.0E+00 7.0E−10 3.2E−06 43

HS91 1.362E+00 0.0E+00 3.2E−06 3.2E−06 83

HS92 1.362E+00 0.0E+00 7.5E−10 3.2E−06 44

HS93 1.350E+02 0.0E+00 5.1E−08 2.4E−07 20

HS95 1.562E−02 0.0E+00 9.3E−07 1.1E−06 13

HS96 1.562E−02 0.0E+00 9.3E−07 1.1E−06 13

HS97 4.071E+00 0.0E+00 3.1E−08 1.9E−07 18

HS98 3.135E+00 0.0E+00 4.5E−08 2.6E−07 22

HS99 −8.310E+08 1.9E−07 7.3E−07 1.8E−07 9

HS100 6.806E+02 0.0E+00 3.7E−09 1.9E−07 36

HS101 1.809E+03 0.0E+00 3.1E−07 1.8E−07 36

HS102 9.118E+02 0.0E+00 1.5E−07 1.8E−07 41

HS103 5.436E+02 0.0E+00 2.3E−06 1.8E−07 42

HS104 3.951E+00 0.0E+00 1.9E−08 1.8E−07 24

HS105 1.044E+03 0.0E+00 7.8E−07 1.8E−07 16

HS106 7.049E+03 0.0E+00 1.7E−07 2.4E−07 28

HS107 5.055E+03 6.1E−09 4.5E−09 2.6E−07 24

HS108 −8.660E−01 0.0E+00 8.5E−07 1.8E−07 21

HS109 5.362E+03 6.2E−12 4.1E−07 1.8E−07 68

HS110 −4.577E+01 0.0E+00 2.2E−06 1.8E−07 10

HS111 −4.776E+01 3.4E−11 8.8E−06 1.8E−07 483

HS112 −4.776E+01 3.0E−09 3.8E−07 1.8E−07 24

HS113 2.430E+01 0.0E+00 3.6E−07 7.9E−07 14

HS114 −1.768E+03 9.7E−09 3.0E−06 1.8E−07 235

HS116 9.758E+01 0.0E+00 1.8E−07 1.8E−07 31

HS117 3.235E+01 0.0E+00 2.4E−06 1.8E−06 21

HS118 6.648E+02 0.0E+00 8.4E−15 1.8E−07 25

HS119 2.449E+02 2.2E−10 7.2E−06 2.3E−07 23
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8 Concluding Remarks

Clearly, we recognize that the particular approach adopted in this paper is not the
only possible one. Another possibility is to use the �∞ penalty function

φ(x,ν) = f (x)+νmax
i∈E

|ci(x)|+νmax
i∈I

(−ci(x),0) (61)

instead of (2). As before, it is easy to show that this may be reformulated as

minimize
x∈Rn, s∈R

f (x)+νs

subject to ci(x)+ s≥ 0, (i ∈ E ∪I )

s− ci(x)≥ 0, (i ∈ E )

s≥ 0

involving a single “elastic” variable s. Once again one might apply an interior-point
algorithm to such a problem, and again it is trivial to find an initial interior point.
The advantage now is clearly this formulation involves significantly fewer surplus
variables. The �∞ approach is also examined in the elastic mode in [4].

We believe the method presented in the present paper is appropriate for a variety
of degenerate nonlinear programs, and in particular problems for which the MFCQ

fails to hold at a solution. At variance with some other methods, the method
proposed here is not only able to identify such a solution, but it also delivers a
certificate of failure of the MFCQ. This is in line with, e.g., the method proposed
in [8].

A substantial advantage of the present approach is that it specializes adequately to
the solution of structured degenerate problems, such as mathematical programs with
complementarity constraints and mathematical programs with vanishing constraints.
Extension of our algorithm to such cases is the subject of current research [12, 13].
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An �1-Penalty Scheme for the Optimal Control
of Elliptic Variational Inequalities

M. Hintermüller, C. Löbhard, and M.H. Tber

Abstract An �1-penalty scheme in function space for the optimal control of elliptic
variational inequalities is proposed. In an L2-tracking context, an iterative algorithm
is proven to generate a sequence which converges to some weakly C-stationary
point and, under certain conditions, even to a strongly stationary point of the
original problem. In the case of point tracking control, where the objective contains
pointwise function evaluations of the state variable, a modified model problem with
constraints on the dual variable associated with the variational inequality constraint
is introduced and an auxiliary problem that penalizes not only the complementarity,
but also the state constraint, is analyzed. Passing to the limit with the penalty
parameter in the stationarity system of the auxiliary problem yields some weak
form of a C-stationarity system for the original problem if the additional dual
constraints are not active. Finally, numerical results obtained by the new algorithms
are documented.

Keywords Optimal Control of Variational Inequalities • �1-Penalty Methods in
Function Space • Point Tracking • Stationarity Conditions for MPECs in Function
Space

1 Introduction

In this work we analyze a penalty scheme for the optimal control of variational
inequalities, i.e. for problems of the type
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Minimize J(y,u) = j(y)+
ν
2
‖u‖2

L2(Ω) (1a)

over (y,u) ∈ Y×Uad (1b)

subject to ∀z ∈ K, 〈Ay− u− f ,z− y〉H−1(Ω) ≥ 0, (1c)

where Uad ⊂ L2(Ω) is the non-empty, convex, and closed set of feasible controls
u, Ω ⊂ R

n is an (open) domain, n ∈ N, and L2(Ω) is the usual Lebesgue space of
square integrable functions (cf. [2]). The cost of the control action is ν > 0, the
set K �= /0 is convex and closed, A is linear, bounded, and coercive such that the
variational inequality (1c) admits a unique solution for every u ∈ Uad and given
f ∈ L2(Ω). Here, Y is a suitable Banach space for the state variable y such that
the solution operator of (1c) maps from Uad into Y, and the summand j(y) in the
objective may, for instance, implement the difference of the state variable y to a
given desired state, either in the L2-norm, or in a finite set of tracking points. A
more precise definition of the problem data is given in Assumptions 1 and 2 below,
respectively.

The constraint (1c) is prototypical for a broad range of problems, such as
energy minimization problems or free boundary problems, that can be modeled by
variational inequalities. In rather abstract form they have been analyzed since the
1960s. A comprehensive study and a survey on the literature on this subject can be
found, for instance, in [10, 20, 29].

In optimal control problems, resulting, e.g., from engineering sciences, one
typically can influence a system by a control mechanism, which aims to minimize
an objective depending on the state of the system as well as on the control action.
Similarly, in inverse problems, a parameter that plays the role of a control variable,
has to be determined from (defective) measurements associated with the state y,
either on the (whole) domain (L2 tracking), or in certain predefined locations (point
tracking). A classical work on optimal control of systems governed by partial
differential equations is [21], but, in recent years, numerous extensions on the
analysis and numerical treatment of such problems have been contributed to the
literature.

When one aims to control variational inequalities, the inherent non-smoothness
of the solution operator associated with the variational inequality (VI) results
in constraint degeneracy. Moreover, considering the reduced control problem
(written in u), one is confronted with a challenging non-smooth and non-convex
minimization problem. In finite dimensions, problems of this structure are termed
mathematical programs with equilibrium constraints (MPECs); compare [23, 27].
For characterizing stationarity of a feasible point of the MPEC, the classical
Karush-Kuhn-Tucker theory cannot be applied due to the aforementioned constraint
degeneracy. Depending on the problem instance, but also depending on the utilized
mathematical tools alternative stationarity systems have been derived. A hierarchy
of such stationarity conditions in finite dimensions can, e.g., be found in [30].
These concepts were transferred to function space in [14] and later also in
[12, 13, 19]. Concerning the choice of mathematical tools, we mention that penalty
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and smoothing methods as well as concepts from convex or set-valued analysis and
generalized differentiation have been used in order to derive stationarity conditions
for MPECs in function space; see, e.g., [5, 24–26] in addition to the aforementioned
references.

In the literature one often finds classical L2-tracking type control problems.
In this paper, however, inspired by point measurements (e.g., obtained by sensors
mounted at fixed locations within a region of interest), we study point tracking of
solutions of variational inequalities. We mention that point measurements naturally
occur, for instance, in mathematical finance; see, e.g., [1]. Mathematically this
in general requires more than H1

0(Ω)-regularity of the VI-solution, in order to
justify evaluations of the state at isolated points within a domain of interest. Such
an increased regularity then has various analytical implications on the regularity
of associated dual quantities and requires new analytical as well as numerical
considerations. For VIs involving second-order elliptic partial differential operators,
a stationarity system for control problems with point tracking objectives has been
derived in [8].

Since stationarity systems of MPECs are typically non-smooth and, thus, hard
to solve numerically, the algorithmic treatment of MPECs is delicate. In function
space, penalty and smoothing approaches have been analyzed in [8, 15, 31], a
relaxation method can be found in [14], and a descent method has been implemented
in [16]. All of these approaches apply some type of relaxation and/or smoothing of
the control problem or the VI constraint. Consequently, the solution process depends
on parameters which need to be taken to their limits in order to approach some
type of stationary point of the original problem. Only, [16] may operate without
smoothing, depending on properties of the iterates generated by the associated
algorithm. Here, smoothing is only applied when the solution y of (1c) is non-
differentiable as a function of u.

In this paper, we extend the elastic mode algorithm of Anitescu et al. [4] to the
function space setting. One of the interesting aspects of this algorithm is related
to the fact that it relies on an �1-type penalty approach which, under appropriate
conditions, acts as an exact penalty method. Thus, a finite penalty parameter suffices
to obtain a solution of the original problem. As, upon discretization, the condition
number of the underlying stationarity system typically scales adversely with respect
to increasing penalty parameter, the exactness of the penalization is attractive as it
allows to keep this parameter (and hence conditioning) bounded. Here we extend
and study this method for L2-tracking as well as for the point-tracking case, which
require separate analyses.

The rest of the text is structured as follows: Section 2 treats the L2-type control
of variational inequalities. In order to develop an efficient solution algorithm for
this problem class, we begin with the analysis of a penalty method in function
space in Section 2.1. In contrast to other available penalty schemes for MPECs,
this method does not smoothen the original problem but directly penalizes the
critical complementarity condition in the variational inequality. In particular, we
prove solvability of the auxiliary problem and consistency of the penalty scheme.
Section 2.2 contains stationarity conditions for the auxiliary problem as well as a
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limiting stationarity system for the MPEC. In [4], the authors treat MPECs in a finite
dimensional context, which is more general than a finite dimensional version of
the problem treated here. Under certain conditions, strong stationarity of a solution
obtained after a finite number of iterations (i.e., γ updates) is proven. The notion
of strong stationarity is hereby based on the definition of active and biactive sets.
In contrast to the finite dimensional case, where these are specified according to
the set of indices where certain solution vectors are zero, it is not straightforward to
define the zero set of objects in H1

0(Ω) or H−1(Ω) (see [2] for the definition of these
spaces). We give a definition that allows us to prove strong stationarity of feasible
first order points of the auxiliary problem in Section 2.3.

In Section 3, we consider point tracking subject to variational inequalities, i.e.,
the functional j : Y →R is given by j(y) = 1

2 ∑w∈I(y(w)−yw)
2 where I ⊂Ω is finite

and for all w ∈ I, yw ∈R. Although the smoothing method of [8] can be understood
as an iterative algorithm, that finds limiting ε-almost C-stationary points (or, in the
finite dimensional world, C-stationary points) in the limit, we construct a method
that penalized the critical complementarity constraint. In contrast to the analysis in
the first part of this paper, we have to account for regularity questions that arise from
the function evaluations in the objective functional. In particular, in Section 3.1 we
modify the problem class and prove consistency of a penalty scheme. We show that
a weak version of C-stationarity holds for limits of first order points of the auxiliary
problem in Section 3.2.

Finally, we document numerical results obtained by an algorithm associated with
our analytic approach. We start with the description of the solution algorithm in
Section 4 and provide two examples in Section 5.

Notation

For a measurable subset ω ⊂Ω ⊂R we denote the characteristic function χω :Ω →
{0,1}, χω(w) = 1 if w ∈ ω and else χω(w) = 0, and the averaged characteristic
function by χ̄ω : Ω → {0,1}, χ̄ω(w) = 1

|ω| if w ∈ ω and else χω(w) = 0.
Here, we assume that the Lebesgue measure |ω | of ω is positive. If Ω is a
Lipschitz domain, we denote the usual Lebesgue, Hilbert, and Sobolev spaces
by L2(Ω),H1

0(Ω),W1,q
0 (Ω), where q ≥ 1, and the dual spaces by H−1(Ω) =

(H1
0(Ω))∗, W−1,q′(Ω) = (W1,q

0 (Ω))∗, where q′ = q
q−1 . For their definition and

further properties, we refer to [2]. The scalar product in a Hilbert space X is denoted
by round brackets (·, ·)X . If X is a Banach space, then the duality pairing of an object
x∗ ∈ X∗ with an object x ∈ X is denoted by 〈x∗,x〉X∗ . We set
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(
H1

0(Ω)
)
+

:= {v ∈ H1
0(Ω) |v ≥ 0 almost everywhere (a.e.) on Ω},

(
H−1(Ω)

)
+

:= {ψ ∈ H−1(Ω) |∀v ∈ K : 〈ψ ,v〉H−1(Ω) ≥ 0}.

For a bounded linear operator A : X → Y, where X and Y are Banach spaces,
the corresponding adjoint operator is denoted by A∗ : Y∗ → X∗. For a non-empty,
convex, and closed subset U ⊂ L2(Ω), we denote the projection operator which
maps an element f ∈ L2(Ω) to its (uniquely defined) projection onto U by ProjU :
L2(Ω)→ U. Throughout the text, C > 0 denotes a generic constant that may take
different values in different situations.

2 The L2-Tracking Case

In the present section we analyze the optimal control problem (1) under the
following assumptions:

Assumption 1. For n ∈ N, Ω ⊂ R
n is an open bounded domain; the functional

j : L2(Ω)→R is weakly lower semi-continuous, bounded from below and continu-
ously Fréchet differentiable; the set of feasible controls is given by the box constraint

Uad = {v ∈ L2(Ω) |u ≤ v≤ u},

where u,u ∈ L2(Ω)∪ {−∞,∞} satisfy u < u a.e. in Ω ; ν ≥ 0 and, if Uad is not
bounded in L2(Ω), then ν > 0. The feasible set K in the variational inequality is
given by K =

(
H1

0(Ω)
)
+

; the operator A : H1
0(Ω)→H1

0(Ω) is linear, bounded, and

coercive; and f ∈ L2(Ω).

The canonical example for j is the L2-tracking objective j(y) = 1
2 ‖y− yd‖2

L2(Ω)

where yd ∈ L2(Ω) is a given desired state. We restate problem (1) with the com-
plementarity formulation of the variational inequality (see, e.g., [29, Prop. 4:5.6]) in
the constraint, as follows:

Minimize J(y,u) := j(y)+
ν
2
‖u‖2

L2(Ω) (2a)

over (y,u,ξ ) ∈ H1
0(Ω)×Uad×H−1(Ω) (2b)

subject to Ay− u− ξ = f in H−1(Ω), (2c)

y≥ 0 in H1
0(Ω), ξ ≥ 0 in H−1(Ω), and 〈ξ ,y〉H−1(Ω) = 0. (2d)

Below, whenever it is clear from the context, we leave off H1
0(Ω) and H−1(Ω)

within the inequalities in (2d).
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2.1 Solvability and Consistency of the Penalization Scheme

For a penalty parameter γ > 0, we define the following auxiliary problem:

Minimize Jγ(y,u,ξ ) := j(y)+
ν
2
‖u‖2

L2(Ω) + γ〈ξ ,y〉H−1(Ω) (3a)

over (y,u,ξ ) ∈ H1
0(Ω)×Uad×H−1(Ω) (3b)

subject to Ay− u− ξ = f , y≥ 0, ξ ≥ 0. (3c)

Given the non-negativity of y and ξ , the term γ〈ξ ,y〉H−1(Ω) penalizes the �1-norm
(i.e., the absolute value) of the constraint 〈ξ ,y〉H−1(Ω) = 0. Note that the auxiliary
problem is in general non-convex. We also mention here that a related penalty
approach in finite dimensions was considered in [4].

The following lemma is needed to prove solvability and consistency of the
penalty scheme.

Lemma 1. We consider a bounded sequence (uk)k∈N ⊂ L2(Ω) and (yk,ξk)k∈N ⊂
H1

0(Ω)×H−1(Ω) such that for all k ∈N,

Ayk− ξk = uk + f in H−1(Ω), yk ≥ 0, ξk ≥ 0, 〈ξk,yk〉H−1(Ω) ≤ C, (4)

where Ω , A, and f satisfy Assumption 1. Then, there exists a subsequence (also
denoted by (yk,ξk)k∈N) such that

uk ⇀ u in L2(Ω), ξk ⇀ ξ in H−1(Ω), yk ⇀ y in H1
0(Ω),

and the limit (y,u,ξ ) ∈ H1
0(Ω)×L2(Ω)×H−1(Ω) satisfies

Ay− ξ = u+ f in H−1(Ω), y≥ 0, ξ ≥ 0,

liminf{〈ξk,yk〉H−1(Ω) |k ∈N} ≥ 〈ξ ,y〉H−1(Ω) ≥ 0.

If in particular limk→∞〈ξk,yk〉H−1(Ω) = 0, then (y,u,ξ ) is the solution of the
complementarity problem (2c), (2d) and we have the following strong convergences,

yk → y in H1
0(Ω), ξk → ξ in H−1(Ω).

Proof. We test the equation in (4) with yk and use the coercivity of A (see
Assumption 1) to obtain the estimate

C‖yk‖2
H1

0(Ω) ≤〈Ayk,yk〉H−1(Ω) = (uk + f ,yk)L2(Ω) + 〈ξk,yk〉H−1(Ω)

≤(‖uk‖L2(Ω) + ‖f‖L2(Ω))‖yk‖H1
0(Ω) + 〈ξk,yk〉H−1(Ω). (5)
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The bounds on 〈ξk,yk〉H−1(Ω) and on uk according to the assumptions thus yield a
uniform bound on ‖yk‖H1

0(Ω), and further, on

‖ξk‖H−1(Ω) = ‖Ayk− uk− f‖H−1(Ω) ≤ C. (6)

We now consider a subsequence still denoted by (yk,uk,ξk) with weak limit (y,u,ξ )
in H1

0(Ω)×L2(Ω)×H−1(Ω). The limit satisfies y≥ 0, ξ ≥ 0 and it holds that

0 = Ayk− ξk− uk− f ⇀ Ay− ξ − u− f in H−1(Ω). (7)

We thus have Ay− ξ − u− f = 0 in H−1(Ω). The compact embedding of H1
0(Ω)

into L2(Ω) yields strong convergence of (yk)k∈N to its limit y in L2(Ω). Hence, the
product (uk,yk)L2(Ω) converges to (u,y)L2(Ω) and the weak lower semi-continuity of

z �→ 〈Az,z〉H−1(Ω) in H1
0(Ω) yields that

liminf
k∈N

〈ξk,yk〉H−1(Ω) = liminf
k∈N

〈Ayk,yk〉H−1(Ω)− (uk,yk)L2(Ω)− (f ,yk)L2(Ω)

≥ 〈Ay,y〉H−1(Ω)− (u,y)L2(Ω)− (f ,y)L2(Ω) = 〈ξ ,y〉H−1(Ω) ≥ 0.

This proves the first part of the assertion. We know from (4) and (7) that

0 = Ay− u− ξ− f − (Ayk− uk− ξk− f ) = A(y− yk)− (u− uk)− (ξ − ξk).

Using yk− y as test function, and the coercivity of A, we obtain that

C‖y− yk‖2
H1

0(Ω) ≤ (u−uk,y−yk)L2(Ω) + 〈ξ−ξk,y−yk〉H−1(Ω).

The first product in the last term converges to zero as k → ∞ owing to the weak
convergence of u−uk to zero, and the strong convergence of y−yk to zero in L2(Ω).
The second product can be expressed as

〈ξ−ξk,y−yk〉H−1(Ω) = 〈ξ ,y〉H−1(Ω)−〈ξk,y〉H−1(Ω)−〈ξ ,yk〉H−1(Ω)+〈ξk,yk〉H−1(Ω).

The mixed terms in the middle both converge to 〈ξ ,y〉H−1(Ω). If we have the addi-
tional assumption that 〈ξk,yk〉H−1(Ω)→ 0 for k→ ∞, then we have 〈ξ ,y〉H−1(Ω) = 0
by the first part of the lemma, and thus, 〈ξ − ξk,y− yk〉H−1(Ω)→ 0 for k→ ∞. This

shows that ‖y− yk‖2
H1

0(Ω)→ 0, i.e. the strong convergence of (yk)k∈N to y in H1
0(Ω)

and thus also the convergence of (ξk)k∈N to ξ = Ay− u− f in H−1(Ω).

Note that although in the solution of the variational inequality the slack variable ξ
satisfies ξ ∈ L2(Ω), we cannot guarantee this regularity for ξk in the auxiliary
problem. An attempt to prove convergence of the slack variables in L2(Ω) thus
fails in our setting.
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Given Ω , A, and f due to Assumption 1 we denote the feasible set of (3) by

F := {(y,u,ξ ) ∈ H1
0(Ω)×L2(Ω)×H−1(Ω) |Ay− u− ξ = f , y≥ 0, ξ ≥ 0}.

Note that F does not depend on the penalty parameter γ .
With this preparation, we can state the following existence result:

Proposition 1. If Assumption 1 holds, then for every penalty parameter γ > 0,
problem (3) has a solution (yγ ,uγ ,ξγ).

Proof. The objective Jγ is bounded from below on the feasible set F . Assume that
(yk,uk,ξk)k∈N is an infimizing sequence, i.e. for all k∈N, (yk,uk,ξk)∈F is feasible
and

lim
k→∞

Jγ (yk,uk,ξk) = inf{Jγ(y,u,ξ ) |(y,u,ξ ) ∈F}=: M.

Since the sequence of objective values
(
Jγ(yk,uk,ξk)

)
k∈N is bounded from above

owing to its convergence and since the first summands j(yk) +
ν
2 ‖uk‖2

L2(Ω) are

bounded from below, we infer that
(
γ〈ξk,yk〉H−1(Ω)

)
k∈N

is bounded from above.

The sequence (uk)k∈N is then bounded by Assumption 1. This follows immediately,

when Uad is bounded, or follows from the uniform bound on
(
ν
2 ‖uk‖2

L2(Ω)

)
k∈N

,

when ν > 0. The feasibility of (yk,uk,ξk) ∈F then guarantees that (4) is satisfied
such that we can apply the first part of Lemma 1. This yields a subsequence with
weak limit (y,u,ξ ) which is feasible and ensures that liminf{〈ξk,yk〉H−1(Ω) |k ∈
N} ≥ 〈ξ ,y〉H−1(Ω). The weak lower semi-continuity of j and the norm ‖·‖L2(Ω)
imply the optimality of the limit as follows:

M ≥ liminf
k∈N

j(yk)+ liminf
k∈N

ν
2
‖uk‖2

L2(Ω) + liminf
k∈N

γ〈ξk,yk〉H−1(Ω) ≥ Jγ (y,u,ξ ).

The next proposition states consistency of the penalty scheme.

Proposition 2. Assume that (γk)k∈N ⊂ R with γk > 0 and γk → ∞ for k → ∞,
and that for every k ∈ N, (yk,uk,ξk) solves (3) with γ = γk and Ω , A and f from
Assumption 1. Then there exists a subsequence, still denoted by (yk,uk,ξk)k∈N such
that

yk → y� in H1
0(Ω), uk ⇀ u� in L2(Ω), ξk → ξ � in H−1(Ω)

and (y�,u�,ξ �) solves the optimal control problem (2).

Proof. For all k ∈ N and a tuple (y,u,ξ ) satisfying the complementarity prob-
lem (2d), optimality of (yk,uk,ξk), feasibility of (y,u,ξ ) ∈ F and the definition
of Jγk imply that

Jγk (yk,uk,ξk)≤ Jγk(y,u,ξ ) = J(y,u).
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Given the boundedness of j and of ν
2 ‖·‖2

L2(Ω) from below, one derives the uniform
boundedness of γk〈ξk,yk〉H−1(Ω). Then, in the same way as in the proof of
Proposition 1, we may infer that ‖uk‖L2(Ω) ≤C. Lemma 1 thus yields a subsequence
with weak limit (y�,u�,ξ �). Since Uad is closed and convex, it is weakly closed and
thus contains the weak limit u� ∈ Uad . The convergence of γk → ∞ implies that
〈ξk,yk〉H−1(Ω)→ 0 and the second part of Lemma 1 proves feasibility of (y�,u�,ξ �)
in (2) and the strong convergence of yk and ξk. Moreover, using the weak lower semi-
continuity of J, the non-negativity of the penalty term and optimality of (yk,uk,ξk)
for the auxiliary problem, we obtain that for any feasible (y,u,ξ ) it holds that

J(y�,u�)≤ liminf{J(yk,uk) |k ∈N} ≤ liminf{Jγk(yk,uk,ξk) |k ∈ N}
≤ liminf{Jγk(y,u,ξ ) |k ∈ N}= J(y,u).

Therefore (y�,u�) is feasible and optimal and thus a solution of (2).

2.2 First Order Stationarity

In order to derive first order stationarity conditions for the penalized problem (3)
we aim to apply [34, Thm. 3.1] and thus have to guarantee the respective constraint
qualification (regularity of solutions in the sense of [34, p. 51]).

We define the following spaces and mappings:

X = H1
0(Ω)×L2(Ω)×H−1(Ω), Y = H−1(Ω)×H1

0(Ω)×H−1(Ω),

C = H1
0(Ω)×Uad×H−1(Ω), K = {0}×K× (

H−1(Ω)
)
+
,

g : X → Y, g(y,u,ξ ) = (Ay− u− ξ− f ,y,ξ ).

For a subset S of a vector space V and an element z∈ V , S(z) denotes the conical hull
of S−{z}; see, e.g. [34]. With these denotations, we can formulate the following
statement on regularity of feasible points (and in particular of solutions) of the
auxiliary problem.

Proposition 3. Under Assumption 1, every feasible point x̄ = (yγ ,uγ ,ξγ) of prob-
lem (3) with penalty parameter γ > 0 is regular in the sense of [34], i.e. it holds that
g′(x̄)C (x̄)−K (g(x̄)) = Y.

Proof. The inclusion g′(x̄)C (x̄)−K (g(x̄)) ⊂ Y is generically satisfied. Assume
that z = (z1,z2,z3) ∈ Y. We aim to show that there exist c ∈ C (x̄) and k ∈K (g(x̄))
such that g′(x̄)c− k = z. Note that C (x̄) = H1

0(Ω)×Uad(uγ )×H−1(Ω), where
Uad(uγ) = {β (c̃u−uγ) |β ≥ 0, c̃u ∈Uad}. Due to the feasibility of x̄ for problem (3),
it holds that g(x̄) = (0,yγ ,ξγ ). We therefore have

K (g(x̄)) =
{
(0,ky−βyγ ,kξ−βξγ) |ky ∈ K,kξ ∈

(
H−1(Ω)

)
+
,β ≥ 0

}
. (8)
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The Fréchet derivative of g in x̄ applied to c = (cy,cu,cξ ) ∈ C(x̄) reads

g′(yγ ,uγ ,ξγ )(cy,cu,cξ ) = (Acy− cu− cξ ,cy,cξ ). (9)

We choose cu = 0 ∈ Uad(uγ) and define (ky,kξ ) ∈ K× (
H−1(Ω)

)
+

as the solution
to the complementarity problem

Aky− kξ = z1 + cu−Az2 + z3 ∈ H−1(Ω), ky ≥ 0, kξ ≥ 0, 〈kξ ,ky〉H−1(Ω) = 0.

Then, with β = 0, cy = z2 + ky and cξ = z3 + kξ , it holds that

g′(x̄)

⎛
⎝

cy

cu

cξ

⎞
⎠−

⎛
⎝

0
ky−βyγ
kξ −βξγ

⎞
⎠=

⎛
⎝

Aky+Az2−cu−kξ−z3

ky + z2− ky

kξ + z3− kξ

⎞
⎠=

⎛
⎝

z1

z2

z3

⎞
⎠ .

Proposition 3 yields the following proposition on the existence of multipliers pγ ,
ϑγ and τγ corresponding to the equality constraint, and the nonnegativity constraints
on y and on ξ in (3c), respectively, and on necessary first order conditions for
optimal points of the auxiliary problem.

Proposition 4. Every solution (yγ ,uγ ,ξγ ) of problem (3) with penalty parameter
γ > 0 and Assumption 1 is a first order point for problem (3), i.e., there exists a
multiplier tuple (pγ ,ϑγ ,τγ ) ∈ Y� such that the following conditions hold:

Ayγ − uγ − ξγ − f = 0 in H−1(Ω), (10a)

yγ ≥ 0, ξγ ≥ 0, (10b)

A�pγ + j′(yγ )+ γξγ−ϑγ = 0 in H−1(Ω), (10c)

uγ −ProjUad

(
1
ν

pγ

)
= 0 in L2(Ω), (10d)

γyγ − pγ− τγ = 0 in H1
0(Ω), (10e)

ϑγ ≥ 0, 〈ϑγ ,yγ〉H−1(Ω) = 0, τγ ≥ 0, 〈ξγ ,τγ 〉H−1(Ω) = 0. (10f)

For a first order point (yγ ,uγ ,ξγ ) of the auxiliary problem (3) with the multiplier
vector (pγ ,ϑγ ,τγ ) we define

λγ := ϑγ − γξγ and μγ := τγ − γyγ . (11)

We will show that for γk → ∞, there exist accumulation points of (λγk)k∈N and
(μγk)k∈N which play the role of the multipliers λ and μ in the C-stationarity system
for the MPEC (1). The following lemma provides the required uniform bounds and
thus prepares the proof of this convergence result.



An �1-Penalty Scheme for the Optimal Control of Elliptic Variational Inequalities 161

Proposition 5. Assume that besides the standard Assumption 1, γ > 0 is given
and that (yγ ,uγ ,ξγ ) ∈ X is a first order point of problem (3) with multiplier tuple
(pγ ,ϑγ ,τγ ) ∈ Y�. If

∥∥uγ
∥∥

L2(Ω)
≤ C and 〈ξγ ,yγ〉H−1(Ω) ≤ C, then the following

estimates hold with a constant C > 0 that does not depend on γ:

〈λγ ,μγ 〉H−1(Ω) ≥ 0,
∥∥μγ

∥∥
H1

0(Ω)
≤ C, 0≤ γ2〈ξγ ,yγ 〉H−1(Ω) ≤ C, (12a)

∥∥λγ
∥∥

H−1(Ω)
≤ C, −C ≤ γ〈ξγ ,μγ 〉H−1(Ω) ≤ 0. (12b)

Proof. Given the feasibility of first order points and the uniform bound on
∥∥uγ

∥∥
L2(Ω)

and on 〈ξγ ,yγ〉H−1(Ω), we can utilize (5) and (6) in the proof of Lemma 1 and

derive uniform bounds on
∥∥yγ

∥∥
H1

0 (Ω)
and on

∥∥ξγ
∥∥

H−1(Ω)
. Multiply the adjoint

equation (10c) by pγ and use the coercivity of A∗ and the definition of λγ to obtain
the estimate

c
∥∥pγ

∥∥2
H1

0(Ω)
≤ 〈A∗pγ ,pγ〉H−1(Ω) = 〈λγ ,pγ〉H−1(Ω)−

(
j′(yγ),pγ

)
L2(Ω)

.

The fact that j : L2(Ω)→R is continuously Fréchet-differentiable by Assumption 1
yields that

|(j′(yγ ),pγ
)

L2(Ω)
| ≤ ‖j′(yγ )‖L (L2(Ω),R)

∥∥pγ
∥∥

L2(Ω)
≤ C

∥∥pγ
∥∥

L2(Ω)
.

This yields the estimate

c
∥∥pγ

∥∥2
H1

0(Ω)
−〈λγ ,pγ〉H−1(Ω) ≤ C

∥∥pγ
∥∥

H1
0(Ω)

.

Since pγ =−μγ by (10e) and the definition of μγ , we can write

c
∥∥μγ

∥∥2
H1

0(Ω)
+ 〈λγ ,μγ〉H−1(Ω) ≤ C

∥∥μγ
∥∥

H1
0(Ω)

. (13)

The definition of λγ and μγ in (11) yields, together with the complementarity and
sign conditions in (10f), that

〈λγ ,μγ〉H−1(Ω) = γ2〈ξγ ,yγ 〉H−1(Ω) + 〈ϑγ ,τγ 〉H−1(Ω) ≥ 0.

This is the first estimate in (12a). Together with (13) it additionally guarantees the
second bound in (12a). We plug the expression for the dual pairing 〈λγ ,μγ〉H−1(Ω)

into (13) and obtain

c
∥∥μγ

∥∥2
H1

0 (Ω)
+ γ2〈ξγ ,yγ〉H−1(Ω) + 〈ϑγ ,τγ 〉H−1(Ω) ≤ C

∥∥μγ
∥∥

H1
0(Ω)

≤ C,
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and in particular, the last bound in (12a). We once again employ the adjoint equa-
tion (10c) to bound

∥∥λγ
∥∥

H−1(Ω)
=
∥∥A∗pγ + yγ − yd

∥∥
H−1(Ω)

≤C. Finally, making use

of (10e) and the complementarity 〈τγ ,ξγ 〉H1
0(Ω) = 0, we have

γ〈ξγ ,μγ 〉H−1(Ω) = γ〈ξγ ,−pγ〉H−1(Ω) = γ〈ξγ ,τγ − γyγ〉H−1(Ω) =−γ2〈ξγ ,yγ 〉H−1(Ω)

and thus the same estimates hold for both terms and we proved (12b).

Assume that (γk)k∈N ⊂ R with γk > 0 and γk → ∞ for k → ∞, and that for
every k ∈ N, (yk,uk,ξk,pk,ϑk,τk) satisfies (10) with γ = γk. If (‖uk‖L2(Ω))k∈N and
〈ξk,yk〉H−1(Ω) are bounded, then we can apply Proposition 5 to obtain the uniform
boundedness of the sequences

(‖pk‖H1
0(Ω))k∈N, (‖λk‖H−1(Ω))k∈N, (‖μk‖H1

0(Ω))k∈N and γ2
k 〈ξk,yk〉H−1(Ω).

Then, one can extract subsequences with weak limits p�, λ � and μ�. Additionally,
the last bound in (12a) implies that 〈ξk,yk〉H−1(Ω) → 0 for k→ ∞. The second part

of Lemma 1 thus yields the strong convergences of yk → y� in H1
0(Ω) and ξk → ξ �

in H−1(Ω). Using the compact embedding of H−1(Ω) into L2(Ω) we find that
pk→ p� in L2(Ω) and so, the continuity of the projection operator ProjUad

: L2(Ω)→
L2(Ω) gives that uk = ProjUad

( 1
ν pk

)→ ProjUad

( 1
ν p�

)
= u� in L2(Ω). This yields the

following corollary:

Corollary 1. With the notation and under the assumptions of the previous para-
graph and in particular, under the condition that (uk)k∈N is bounded in L2(Ω),
there exists a subsequence of (yk,uk,ξk,pk,ϑk,τk)k∈N (denoted the same) such that

yk → y� in H1
0(Ω), uk → u� in L2(Ω), ξk → ξ � in H−1(Ω)

pk ⇀ p� in H1
0(Ω), ϑk− γkξk ⇀ λ � in H−1(Ω), τk− γkyk ⇀ μ� in H1

0(Ω).

We are now ready to prove limiting stationarity conditions.

Theorem 1. With the notation and under the assumptions of Corollary 1, the limit
point (y�,u�,ξ �,p�,λ �,μ�) satisfies the following conditions:

Ay�− u�− ξ � = f in H−1(Ω),

(14a)

ξ � ≥ 0, y� ≥ 0, 〈ξ �,y�〉H−1(Ω) = 0, (14b)

A∗p�+ j′(y�)−λ � = 0 in H−1(Ω),

(14c)
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u�−ProjUad

(
1
ν

p�
)
= 0 in H1

0(Ω),

(14d)

μ�+ p� = 0 in H1
0(Ω),

(14e)

〈λ �,y�〉H−1(Ω) = 0, 〈μ�,ξ �〉H−1(Ω) = 0, 〈λ �,μ�〉H−1(Ω) ≥ 0. (14f)

Proof. The second part of Lemma 1 yields the feasibility of (y�,u�,ξ �,p�,λ �,μ�)
for problem (2) as stated in (14a)–(14b). Moreover the limit point satisfies the
adjoint equation (14c) owing to weak continuity of A∗, the continuity of j′ and
the definition of λk. The continuity of the projection operator and the strong
convergence of pk to p in L2(Ω) as well as the definition of μk and (10e)
directly resolve to (14d) and (14e). The dual pairing 〈ξk,pk〉H−1(Ω) converges
to −〈ξ �,μ�〉H−1(Ω) = 〈ξ �,p�〉H−1(Ω). On the other hand, the uniform bound on(
γk〈ξk,pk〉H−1(Ω)

)
k∈N

from (12b) in Proposition 5 implies that

−〈ξ �,μ�〉H−1(Ω) = lim
k→∞

〈ξk,pk〉H−1(Ω) = 0.

Similarly, we infer from the complementarity of ϑk and yk in (10f) and from the
uniform bound on (γ2

k 〈ξk,yk〉H−1(Ω))k∈N in (12b) that

〈λ �,y�〉H−1(Ω) = lim
k→∞

〈ϑk,yk〉H−1(Ω)− γk〈ξk,yk〉H−1(Ω) = 0.

Finally, (12a) in Proposition 5 implies that liminf{〈λk,μk〉H−1(Ω) |k ∈ N} ≥ 0 and
we employ the adjoint equation in order to show that

〈λ �,μ�〉H−1(Ω) ≥ liminf{〈λk,μk〉H−1(Ω) |k ∈ N} ≥ 0 (15)

as it is postulated in (14f): Firstly, basic considerations ensure the following
estimate,

liminf{−〈Apk,pk〉H−1(Ω) |k ∈N}=− limsup{〈Apk,pk〉H−1(Ω) |k ∈ N}
≤ − liminf{〈Apk,pk〉H−1(Ω) |k ∈ N}.

The weak lower semi-continuity of the mapping v �→ 〈Av,v〉H−1(Ω) then results in

− liminf{〈Apk,pk〉H−1(Ω) |k ∈ N} ≤ −〈Ap�,p�〉H−1(Ω).
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Secondly we infer the convergence (j′(yk),pk)L2(Ω) → (j′(y�),p�)L2(Ω) from the

continuity of j′ and the strong convergence of yk to y in L2(Ω). Now we examine
the limit inferior in (15):

liminf{〈λk,μk〉H−1(Ω) |k ∈N}
= liminf{−〈Apk,pk〉H−1(Ω)−

(
j′(yk),pk

)
L2(Ω)

|k ∈ N}
= liminf{−〈Apk,pk〉H−1(Ω) |k ∈N}− (

j′(y�),p�
)

L2(Ω)

≤−〈Ap�,p�〉H−1(Ω)−
(
j′(y�),p�

)
L2(Ω)

= 〈λ �,μ�〉H−1(Ω).

This yields the sign condition in (14f).

The conditions stated in Theorem 1 are weaker than the C- or strong stationarity
conditions that are known from the literature, cf. [15, 24, 33]. But, as, e.g., in [15],
the analysis here is constructive in the sense that it suggests an iterative solution
algorithm for the MPEC. We show in the subsequent section that under certain
conditions, such solutions are strongly stationary.

We end this section by comparing the system in Theorem 1 with the ones
obtained in [15], or [19] where several approaches to deriving stationarity have been
investigated, respectively. In fact, in [15] the complementarity relations (14f) are
augmented by relations guaranteeing that λ � is zero in a dual sense on an inner ε-
approximation of the inactive set with respect to y� and p� = 0 on the corresponding
active set. These conditions thus yield a “sharper” system when compared to the
one in Theorem 1. The system in [19, Sec. 4] is either equivalent to the one in
Theorem 1 or even stronger. The latter ambiguity is due to alternatives with respect
to the additional conditions on λ �. We note, however, that the numerical realization
of the approach in [19, Sec. 4] would require to solve a sequence of MPECs, which
is computationally potentially very demanding. In [19, Sec. 3] Mordukhovich’s
limiting calculus is applied for deriving the stationarity system. The resulting
conditions are weaker than the ones in Theorem 1 in the sense that the last relation
in (14f) is replaced by a limsup-condition along certain approximating sequences,
but it may be stronger depending on which alternative, i.e. (42), (43), or (44) of
[19] is relevant. Finally, we point out that in our case—and this is perhaps one of the
appealing aspects of the �1-penalty technique—strong stationarity (which represents
a sharper system than all systems mentioned before) may be achieved. This is the
subject of the next section.

2.3 Remarks on Exactness of the Penalty Scheme
and on Strong Stationarity

In [4] the authors assume an algorithm that finds second order points of the
penalized problem for a sequence (γk)k∈N of penalty parameters with limk→∞ γk =∞.
It terminates as soon as the penalized complementarity is satisfied exactly, i.e.,
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if 〈ξk,yk〉H−1(Ω) = 0. Theorem 4 in [4] says that if this algorithm does not terminate
after a finite number of steps then every accumulation point of the generated
sequence of solutions (xk)k∈N is either infeasible for the original MPEC or fails to
satisfy MPEC-LICQ (which requires that an MPEC satisfies the linear independence
constraint qualification (LICQ) when the product condition 〈ξ ,y〉H−1(Ω) = 0 is
omitted, cf. [4, Def. 2]). If no control constraints are active on the biactive set
where y = 0 and ξ = 0 simultaneously, then an analogue to the MPEC-LICQ in
function space is satisfied in every feasible point. In particular, when there are no
control constraints, this constraint qualification is satisfied. This means that in the
special case discussed here, and if the elastic mode penalty method in the sense of
Anitescu et al. [4] computes second order points of the auxiliary problem, then after
a finite number of steps the iterate is feasible for the original problem. Theorem 2
in [4] proves that any first order point of the auxiliary problem which is feasible
for the MPEC is in fact strongly stationary. In total, the two theorems thus indicate
exactness of the penalty method (if second order points are computed), which means
that for every finite-dimensional restriction of the MPEC (2), it computes a strongly
stationary point after a finite number of iterations.

This fact provokes the question whether it is possible to prove exactness of the
penalty scheme also in function space and, indeed, we prove here the counterpart
of Anitescu et al. [4, Thm. 2] in function space. It is not clear how the second
ingredient, namely the convergence of a sequence of second order points, can be
utilized to prove a result that is analog to [4, Thm. 4]. Moreover, the non-convexity
in the objective of the auxiliary problem seems to preclude second order conditions.

We define the zero set of a function y in H1
0(Ω) in the same way as, e.g., in [28]:

Utilizing a quasi-continuous representative ỹ of y, see, e.g., [7], we set

Af (y) := {ỹ = 0}= {x ∈Ω | ỹ(x) = 0}. (16)

Since the quasi-continuous representative is unique up to capacity zero, cf. [7,
Lemma 6.55], this definition is also unique up to a set of capacity zero. In general we
abbreviate {y=f 0} := {x∈Ω | ỹ(x) = 0}, {y>f 0} := {x∈Ω | ỹ(x)> 0}, etc. as sets
defined up to set of capacity zero. We may thus understand Af (y) without specifying
ỹ, as the set where any representative is zero quasi everywhere (q.e.), such that in
contrast to the set {y = 0} which is defined in the sense of almost everywhere, the
set Af (y) is defined in the sense of quasi everywhere.

Since any feasible ξ is non-negative, it can be interpreted as a positive measure,
[3] and we define the finely active set utilizing the fine topology [3, Sec. 6.3] as it is
done in the preprint [33]:

Af (ξ ) := {ξ =f 0} :=
⋃
{ω ⊂Ω |ω finely open, ξ (ω) = 0}. (17)

This set is the union of finely open sets, and thus finely open.
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Its complement f-supp(ξ ), the fine support of ξ , is used to define the fine strongly
active set Af

s and the finely biactive set Bf up to a set of capacity zero as follows:

Af
s(y,ξ ) := f-supp(ξ )∩Af (y) = (Ω \Af (ξ ))∩Af (y), (18)

Bf (y,ξ ) := Af (y)∩Af (ξ ). (19)

At first, we prove two lemmas which appear in a similar form in [33].

Lemma 2. Assume that v ∈ H1
0(Ω) and ζ ∈ H−1(Ω) are both non-negative, and

that the dual pairing 〈ζ ,v〉H−1(Ω) = 0. Then, it holds that v = 0ζ -almost everywhere
on Ω and in particular,

ζ ({x ∈Ω |v(x)> 0}) = 0.

Proof. The complementarity conditions v ≥ 0, ζ ≥ 0, 〈ζ ,v〉H−1(Ω) = 0 are equiva-
lent to the variational inequality

∀z ∈ H1
0(Ω), z≥ 0 : 〈ζ ,z− v〉H−1(Ω) ≥ 0.

Consider a compact subset C ofΩ and a smooth function χC ∈C∞0 (Ω) with compact
support in Ω which takes values in the interval [0,1] and is equal to 1 on C. We set
z = (1−χC)v ∈H1

0(Ω). Since z≥ 0, the assumptions yield 〈ζ ,z−v〉H−1(Ω) ≥ 0. On
the other hand, we can write z− v = −χCv ≤ 0 and infer that 〈ζ ,z− v〉H−1(Ω) ≤ 0
from the signs of ζ and −χCv. These two inequalities imply 〈ζ ,χCv〉H−1(Ω) = 0.
We write the dual pairing as a finite integral with respect to the measure ζ ,

0 = 〈ζ ,χCv〉H−1(Ω) =

ˆ
Ω
χCvdζ ,

and employ the non-negativity of χCv to obtain that χCv = 0ζ -almost-everywhere,
which in turn means that v = 0ζ -almost-everywhere on arbitrary compact sets C ⊂
Ω . Finally, Ω is the countable union of compact sets, e.g. of all closed balls with
rational midpoints and rational radii inΩ , and the σ -additivity of 〈ζ , ·〉H−1(Ω) yields
the assertion.

Lemma 3. For ξ ∈ (
H−1(Ω)

)
+

and y ∈ K with y = 0ξ -a.e. it holds that

{v ∈H1
0(Ω) |v = 0 ξ -a.e.}= {v ∈ H1

0(Ω) |v = 0 q.e. on Af
s(y,ξ )}.

Proof. Assume that z ∈ {v ∈ H1
0(Ω) |v = 0 ξ -a.e.}. We thus know that ξ ({z �=f

0}) = 0, and the set {z �=f 0} can be supposed to be finely open because it is
quasi-open and differs only by a set of capacity zero from its fine interior (cf. [3,
Thm. 6.4.13]). Hence, (17) guarantees that {z �=f 0} ⊂ {ξ =f 0} = Ω \ f-supp(ξ )
and one can infer from (18) that
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cap
({z �=f 0}∩Af

s(y,ξ )
)≤ cap

({z �=f 0}∩ f-supp(ξ )
)
= 0.

This proves that the first set is included in the second one in the assertion. Now
consider z ∈ {v ∈ H1

0(Ω) |v = 0 q.e. on Af
s(y,ξ )}. It holds that

cap
({z �=f 0}∩ f-supp(ξ )∩A(y)

)
= 0

and thus, ξ
({z �=f 0}∩ f-supp(ξ )∩A(y)

)
= 0. Since

{z �=f 0} ⊂ ({z �=f 0}∩ f-supp(ξ )∩A(y)
)∪{ξ =f 0}∪{y >f 0},

and ξ ({ξ =f 0}) = 0 as well as ξ ({y >f 0}) = 0 we can infer that ξ ({z �=f 0}) = 0.

The next theorem is the counterpart of Anitescu et al. [4, Thm. 2].

Theorem 2. Assume that (yγ ,uγ ,ξγ ) is a first order point for (3) with multipliers
(pγ ,ϑγ ,τγ ) and that (yγ ,uγ ,ξγ ) is feasible for problem (2) with Assumption 1. Then
(yγ ,uγ ,ξγ) is strongly stationary for problem (2) in the sense that for

(y,u,ξ ,p) = (yγ ,uγ ,ξγ ,pγ), λ = ϑγ − γξγ , μ = τγ − γyγ ,

the assertions (14a)–(14e) and the following complementarity and sign conditions
hold:

∀φ ∈ H1
0(Ω), φ = 0 q.e. on Af (y) : 〈λ ,φ〉H−1(Ω) = 0, (20)

∀φ ∈H1
0(Ω), φ≥0 q.e. on Bf (y,ξ ), φ=0 q.e. on Af

s(y,ξ ) :

〈λ ,φ〉H−1(Ω) ≥ 0, (21)

μ = 0 q.e. on Af
s(y,ξ ), (22)

μ ≥ 0 q.e. on Bf (y,ξ ). (23)

Proof. The condition on feasibility of (y,u,ξ ) for the original problem (2) directly
implies (14a), (14b). Equations (14c)–(14e) result from the definition of λ and μ
and the first order stationarity conditions (10c)–(10e). For φ ∈ H1

0(Ω) with φ = 0
q.e. on Af (y) we have

〈λ ,φ〉H−1(Ω) = 〈ϑγ ,φ〉H−1(Ω)− γ〈ξγ ,φ〉H−1(Ω). (24)

The non-negativity of ϑγ permits us to interpret it as a measure and we can split the
dual pairing 〈ϑγ ,φ〉H−1(Ω) into the following integrals,

〈ϑγ ,φ〉H−1(Ω) =

ˆ
Ω
φdϑγ =

ˆ
Af (y)

φdϑγ +
ˆ
{y>f0}

φdϑγ .
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The first integral vanishes because φ = 0 q.e. on Af (y). By Lemma 2, the
complementarity and sign conditions on y and ϑγ imply that ϑγ ({y >f 0})) = 0, and
so the second integral also vanishes. In the same way, the dual pairing 〈ξγ ,φ〉H−1(Ω)

is split into

〈ξγ ,φ〉H−1(Ω) =

ˆ
Ω
φdξγ =

ˆ
Af (y)

φdξγ +
ˆ
{y>f0}

φdξγ ,

and with the same arguments as above we observe that, together with 〈ξγ ,φ〉H−1(Ω),

〈λ ,φ〉H−1(Ω) vanishes. This proves (20). Consider φ ∈ H1
0(Ω) with φ ≥ 0 q.e.

on Bf (y,ξ ) and φ = 0 q.e. on Af
s(y,ξ ). We reuse (24) and again analyze the two

summands separately. With the disjoint decomposition Af (y) =
(
Af (y)∩Af (ξ )

) ∪̇(
Af (y)∩ (Ω \Af (ξ ))

)
and the definition of Af

s(y,ξ ) and Bf (y,ξ ) in (18) and (19) it
is possible to split the first summand into

〈ϑγ ,φ〉H−1(Ω) =

ˆ
{y>f0}

φdϑγ +
ˆ

Af
s(y,ξ )

φdϑγ +
ˆ

Bf (y,ξ )
φdϑγ .

The first integral vanishes with the same argument as above. The conditions on φ
imply that the second one is zero and the third one is non-negative. Replacing ϑγ by
ξγ in the representation above we immediately obtain that 〈ξγ ,φ〉H−1(Ω) = 0 because

ξγ({y >f 0})+ ξγ(Bf (y,ξ )) = ξγ ({y >f 0} ∪̇Bf (y,ξ )) = ξγ(Af (y)) = 0.

This proves (21). We now turn our attention to μ = τγ − γyγ . To begin with, it is

clear that yγ = y vanishes q.e. on the fine strongly active set Af
s(y) as well as on the

finely biactive set Bf (y,ξ ) both of which are a subset of Af (y), the fine zero set of
y. Lemma 2 guarantees that μγ = 0ξγ -a.e. which by Lemma 3 implies that μγ = 0

q.e. on Af
s(y). This yields (22). On the finely biactive set Bf (y,ξ ), we now know that

μ = τγ q.e. which is non-negative q.e. on Ω . We thus have the claimed sign of μ on
the biactive set from (23).

3 Point Tracking Control Problem

In this section we consider point tracking subject to a variational inequality. In fact,
we assume that a finite set of tracking points I and desired values yw ∈ R (for w ∈ I)
are given and that the mapping j : Y → R in the objective is defined by

j : C(Ω̄ )→ R, j(y) =
1
2 ∑w∈I

(y(w)− yw)
2.
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In the lower level problem, we consider an additional constraint on the slack variable
ξ which restricts, for instance in an application where the elastic deformation of
a membrane is modeled by the variational inequality, the force that the elastic
membrane exerts on the obstacle in the contact region. We choose the state
space W1,q

0 (Ω) which embeds into C(Ω̄ ) if q is larger than the dimension of the
computational domainΩ .

3.1 Model Problem, Penalty Scheme: Solvability
and Consistency

Consider the problem

Minimize J(y,u) =
1
2 ∑w∈I

(y(w)− yw)
2 +

ν
2
‖u‖2

L2(Ω) (25a)

over (y,u,ξ ) ∈W1,q
0 (Ω)×Uad×Ξad (25b)

subject to Ay− u− ξ = f , y≥ 0, (y,ξ )L2(Ω) = 0, (25c)

with the following data: For an open bounded domain Ω ⊂ R
n, n ∈ N, we consider

aij ∈ L∞(Ω) (i, j ∈ {1, . . . ,n}) collected in the matrix (aij) ∈ L∞(Ω)n×n such that for
all ζ ∈R

n and x ∈Ω ,

ζ�(aij(x))ζ ≥ ΣA|ζ |2, |(aij(x))ζ | ≤ CA|ζ |, (26)

where ΣA,CA > 0, and we define the bounded and uniformly elliptic differential
operator A : H1

0(Ω)→H−1(Ω) by

A =−
n

∑
i,j=1

∂
∂xi

aij
∂
∂xj

=−div((aij)∇·). (27)

If the dimension of the problem is at most 2, i.e., Ω ⊂ R
n, n ∈ {1,2}, then we

assume that Ω is a Lipschitz domain and q ∈ (2,Q) with Q > 2 from [8, 22]. If the
dimension of the problem is larger than 2, i.e.Ω ⊂R

n, n∈N, n≥ 3, then we assume
that ∂Ω ∈ C1, that the coefficients (aij) of the operator A defined in (27) satisfy
additionally aij ∈ C(Ω̄ ) and that q > n is given due to the regularity result in [29,
Thm. 5:2.5 (i)]. Then, by Bensoussan et al. [6, Thm. 4.2] and Gröger [11, Thm. 3],
respectively, the operator A : W1,q

0 (Ω)→ W−1,q(Ω) is invertible with continuous

inverse operator A−1 : W−1,q(Ω)→ W1,q
0 (Ω). The set of feasible controls is given

by the box constraint

Uad = {v ∈ L2(Ω) |u ≤ v≤ u},
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where u,u ∈ L2(Ω)∪ {−∞,∞} satisfy u < u a.e. on Ω , ν ≥ 0 and, if Uad is not
bounded in L2(Ω), then ν > 0, and f ∈ L2(Ω).

We collect these definitions in the following assumption.

Assumption 2. The quantitiesΩ , A, Uad, I, (yw)w∈I , q > n are given as specified in
the previous paragraph and in the beginning of Section 3, and it holds that

−f ∈ Uad, Ξad = {v ∈ L2(Ω) |0 ≤ v≤ φ} with φ ∈ L2(Ω), φ > 0 a.e. on Ω .
(28)

By use of an infimizing sequence argument, the solvability of the problem class
stated above can be argued: Given the weak closedness of the (non-empty) set Uad×
Ξad in L2(Ω)×L2(Ω) and the compact embedding of L2(Ω) into W−1,q(Ω), the
continuity of the solution operator A−1 : W−1,q(Ω)→W1,q

0 (Ω) yields the feasibility
of an accumulation point of an infimizing sequence of J over the feasible set. The
fact that the point evaluation mapping δw : W1,q

0 (Ω)→ R,δw(z) := z(w) in the first
term of J is linear and bounded and the weak lower semi-continuity of the norm
mapping in the second part gives the optimality of such accumulation points. This
proves the following proposition.

Proposition 6. Under Assumption 2, problem (25) has a solution.

We propose the following regularized and penalized version of problem (25):

Minimize J̃γ,r(y,u,ξ ) =
1
2 ∑w∈I

 
Br(w)

(y− yw)
2 dx+

ν
2
‖u‖2

L2(Ω) (29a)

+
γ
2

∥∥(y)−
∥∥2

L2(Ω)
+ δ (γ)(y,ξ )L2(Ω) (29b)

over (y,u,ξ ) ∈ H1
0(Ω)×Uad×Ξad (29c)

subject to Ay− u− ξ = f . (29d)

Here, r > 0 is an averaging parameter that serves in the same way as in [8]: We
define Br(w) = {x ∈ Ω | |x−w| < r} and approximate the point tracking term in
the original problem by the integrals in the first summand of J̃γ,r. In difference to
the �1-penalty from Section 2, we also penalize the constraint y ≥ 0 here to avoid
a constraint degeneracy. A lack of complementarity in (y,ξ )L2(Ω) contributes in the

term δ (γ)(y,ξ )L2(Ω) to the objective, involving a mapping δ : R>0 → R
>0 with

δ (γ)→ ∞ for γ→ ∞.
The following two lemmas guarantee boundedness and convergence properties

that are necessary to prove solvability and consistency of the auxiliary problem (29).
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Lemma 4. For all γ,δ = δ (γ),r > 0 and y ∈ W1,q
0 (Ω), u ∈ L2(Ω) and ξ ∈ Ξad

from Assumption 2, the objective functional J̃γ,r satisfies

J̃γ,r(y,u,ξ )≥−δ (γ)
2

2γ
‖φ‖2

L2(Ω) .

Proof. The lower boundedness of J̃γ,r is non-trivial only on the account of its last
term. Since ξ ∈ Ξad is non-negative, the product (y,ξ )L2(Ω) satisfies

(y,ξ )L2(Ω) ≥
ˆ
{y<0}

yξ dx≥−∥∥(y)−
∥∥

L2(Ω)
‖ξ‖L2(Ω) ≥−

∥∥(y)−
∥∥

L2(Ω)
‖φ‖L2(Ω) .

(30)
For all feasible (y,u,ξ ) we thus have

J̃γ,r(y,u,ξ )≥ γ2
∥∥(y)−

∥∥2
L2(Ω)

− δ (γ)∥∥(y)−
∥∥

L2(Ω)
‖φ‖L2(Ω) . (31)

The analysis of the right-hand side, which is a quadratic function in
∥∥(y)−

∥∥
L2(Ω)

,
then yields the assertion: For v≥ 0 it holds that

γ
2

v2− δ (γ)‖φ‖L2(Ω) v≥−δ (γ)
2

2γ
‖φ‖2

L2(Ω) . (32)

Lemma 5. Let (uk)k∈N and (ξk)k∈N be sequences in L2(Ω) that converge weakly to
u and ξ ∈ L2(Ω), respectively. Then, the sequence (yk)k∈N defined by yk =A−1(uk+

ξk + f ) converges strongly in W1,q
0 (Ω) to y = A−1(u+ξ+ f ) and for every sequence

(rk)k∈N ∈ R
>0 with rk → 0, we have that

∑
w∈I

 
Brk (w)

(yk(x)− yw)
2 dx→ ∑

w∈I

(yk(w)− yw)
2.

Proof. The compact embedding of L2(Ω) into W−1,q(Ω) and the continuity of A−1

as a mapping from W−1,q(Ω) to W1,q
0 (Ω) shows the first assumption. We then use

the embedding of W1,q
0 (Ω) into C(Ω̄) and [8, L. 2.10] to prove the second assertion.

Lemma 4 guarantees the existence of a feasible infimizing sequence of J̃γ,r, and
Lemma 5 allows to derive the existence of a solution for the auxiliary problem by
use of the typical Weierstraß-argument. This yields the following proposition.

Proposition 7. Under Assumption 2, problem (29) has a solution for any set of
parameters r,γ,δ (γ)> 0.

The following assumption on the parameters for the auxiliary problem is
motivated by the dependence of the lower bound on the objective from Lemma 4.
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Assumption 3. In our penalty scheme we use positive sequences (rk)k∈N,
(γk)k∈N ⊂ R with rk → 0, γk → ∞ for k → ∞, and a mapping δ : R>0 → R

>0

which satisfies limγ→∞ δ (γ) = ∞ and limγ→∞ δ (γ)2

γ = 0.

The following lemma on a strong-weak lower semi-continuity property will be
helpful in the proof of consistency of the penalty scheme.

Lemma 6. Let (rk)k∈N, (γk)k∈N ⊂ R and δ : R>0 → R
>0 satisfy Assumption 3 and

for each k ∈ N assume that (yk,uk,ξk) solves the auxiliary problem (29) where
Assumption 2 holds true. If yk → y� in W1,q

0 (Ω) and uk ⇀ u� in L2(Ω), then

J(y�,u�)≤ liminf{J̃γk,rk(yk,uk,ξk) |k ∈N}. (33)

Proof. We examine the summands of J̃γk,rk(yk,uk,ξk) separately. Lemma 5 yields
that

lim
k→∞

1
2 ∑w∈I

 
Brk (w)

(yk− yw)
2 dx =

1
2 ∑w∈I

(y�(w)− yw)
2.

From the weak lower semi-continuity of the norm ‖·‖L2(Ω) : L2(Ω) → R we
infer that

liminf{ν
2
‖uk‖2

L2(Ω) |k ∈N} ≥ ν
2
‖u�‖2

L2(Ω) .

Now we use the estimate (32) in the proof of Lemma 4 to see that for all k ∈ N,

γk

2

∥∥(yk)−
∥∥2

L2(Ω)
+ δ (γk)(yk,ξk)L2(Ω) ≥−

δ (γk)
2

2γk
‖φ‖2

L2(Ω) .

Hence, Assumption 3 leads to

liminf
{γk

2

∥∥(yk)−
∥∥2

L2(Ω)
+ δ (γk)(yk,ξk)L2(Ω) |k ∈ N

}

≥ liminf{−δ (γk)
2

2γk
‖φ‖2

L2(Ω) |k ∈ N}= lim
k→∞

−δ (γk)
2

2γk
‖φ‖2

L2(Ω) = 0.

Summing up the terms yields the assertion.

Note that for s, t > 0 and the function h : R→ R defined by h(v) = sv2− tv it
holds that if v,κ > 0 are given such that h(v)≤ κ , then

v≤
√
κ
s
+

t2

4s2 +
t

2s
. (34)

Now we prove consistency of the penalty scheme.
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Proposition 8. Let (rk)k∈N, (γk)k∈N ⊂R and δ : R>0 →R
>0 satisfy Assumption 3,

and for each k ∈ N assume that (yk,uk,ξk) solves the auxiliary problem (29) with
Assumption 2. Then, there exists a subsequence such that for k → ∞, it holds that
yk → y� in W1,q

0 (Ω), uk ⇀ u� in L2(Ω) and ξk ⇀ ξ � in L2(Ω) and the limit

(y�,u�,ξ �) ∈W1,q
0 (Ω)×Uad×Ξad solves problem (25).

Proof. The weak convergence of a subsequence of (uk)k∈N and (ξk)k∈N is due to
the boundedness of Uad (resp. the term ν

2 ‖uk‖2
L2(Ω) in the objective J̃γk,rk , cf. (35)

below) and Ξad. We denote the weak limits by u� and ξ �, respectively, and note
that yk := A−1(uk + ξk + f ) converges to y� = A−1(u� + ξ � + f ) in W1,q

0 (Ω) due
to the compact embedding of L2(Ω) into W−1,q(Ω) and the continuity of A−1 :
W−1,q(Ω)→W1,q

0 (Ω). The weak limits u� and ξ � are feasible owing to the weak
closedness of Uad and Ξad in L2(Ω) and y� satisfies the partial differential equation
in (25c). For all k ∈ N it holds that

γk

2

∥∥(yk)−
∥∥2

L2(Ω)
− δ (γk)

∥∥(yk)−
∥∥

L2(Ω)
‖φ‖L2(Ω) ≤ J̃γk,rk (yk,uk,ξk).

The fact that (y,u,ξ ) = (0,−f ,0) is feasible for the auxiliary problem for all penalty
and averaging parameters yields the uniform bound

J̃γk,rk(yk,uk,ξk)≤ J̃γk,rk(0,−f ,0) =
1
2 ∑w∈I

y2
w +

ν
2
‖f‖2

L2(Ω) =: κ . (35)

We apply formula (34) for s = γk
2 , t = δ (γk)‖φ‖L2(Ω), v =

∥∥(−yk)−
∥∥

L2(Ω)
and κ as

defined above to derive that

∥∥(yk)−
∥∥

L2(Ω)
≤
√

2κ
γk

+
δ (γk)2

γ2
k

‖φ‖2
L2(Ω) +

δ (γk)

γk
‖φ‖L2(Ω) .

By Assumption 3 we thus have limk→∞
∥∥(yk)−

∥∥
L2(Ω)

≤ 0, i.e., y� ≥ 0. To complete

feasibility of the limit point we prove the complementarity of y� and ξ �. The strong
convergence of yk → y� in L2(Ω) and the weak convergence of ξk ⇀ ξ � as well as
feasibility of y� and ξ � yields that

lim
k→∞

(ξk,yk)L2(Ω) = (ξ �,y�)L2(Ω) ≥ 0.

Since all other terms in the auxiliary objective J̃γk,rk(yk,uk,ξk) are non-negative, we
derive the uniform bound

δ (γk)(ξk,yk)L2(Ω) ≤ J̃γk ,rk(yk,uk,ξk)≤ 1
2 ∑w∈I

y2
w +

ν
2
‖f‖2

L2(Ω)
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from (35) and so, δ (γk) → ∞ implies that limk→∞ (ξk,yk)L2(Ω) ≤ 0. In order to
prove optimality of the limiting element, we assume that (y,u,ξ ) is feasible for
problem (25). Then, for every k ∈N, (y,u,ξ ) is feasible for the respective penalized
auxiliary problem (29). Utilizing Lemma 5 for the (constant) sequence (y)k∈N we
infer from the fact that the penalization terms vanish in (y,u,ξ ) that

J(y,u) = lim
k→∞

J̃γk,rk(y,u,ξ ) = liminf{J̃γk,rk(y,u,ξ ) |k ∈ N}.

The optimality of (yk,uk,ξk) additionally yields that J̃γk,rk (y,u,ξ )≥ J̃γk,rk(yk,uk,ξk)
and we hence have

J(y,u) = liminf{J̃γk,rk (y,u,ξ ) |k ∈ N} ≥ liminf{J̃γk,rk(yk,uk,ξk) |k ∈ N}.

We finally utilize Lemma 6 to obtain

J(y,u)≥ liminf{J̃γk,rk(yk,uk,ξk) |k ∈ N} ≥ J(y�,u�).

3.2 First Order Stationarity Conditions

In the same way as in Section 2 we use [34, Thm. 3.1] to derive a system of first
order conditions for the auxiliary problem (29) and perform a limiting analysis to
derive necessary first order conditions for the original problem.

For

x = (y,u,ξ ) ∈ C = H1
0(Ω)×Uad×Ξad ⊂ X = H1

0(Ω)×L2(Ω)×L2(Ω)

define g : X → Y = H−1(Ω) by g(y,u,ξ ) = Ay− u− ξ − f . Then, the constraint
set in problem (29), which does not depend on the parameters γk,εk, is described
by {x ∈ C |g(x) ∈ {0} ⊂ H−1(Ω)}. In order to show that Y ⊂ g′(xk)C (xk) (where
xk = (yk,uk,ξk), and C (xk) is the conical hull of C − xk) assume that z ∈ Y. Choose
cu ∈ Uad, cξ = 0, and cy = A−1(f + cu + z) to obtain that

g′(yk,uk,ξk)(β (cy− yk),β (cu− uk),β (cξ − ξk)) =β (Acy− cu− cξ − f ) = z,
(36)

and thus, every feasible point (yk,uk,ξk) ∈ H1
0(Ω)×Uad×Ξad of (29) is regular in

the sense of [34, Eq. (1.4)]. This yields the following result.

Proposition 9. If (y,u,ξ ) ∈ H1
0(Ω)×Uad×Ξad is optimal for the auxiliary prob-

lem (29) with Assumption 2 and parameters (γ,r,δ ) ∈ (R>0)3, then there exist
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p ∈ H1
0(Ω) and τ = (τ)+ + (τ)− ∈ H1

0(Ω) such that the following first order
conditions hold:

A�p+∑
w∈I

(y−yw)χ̄Brk (w)
+γ (y)−+ δξ =0 in H−1(Ω), (37a)

u−ProjUad

(
1
ν

p

)
=0 in L2(Ω), (37b)

p+ τ− δy =0 in H1
0(Ω), (37c)

〈ξ ,(τ)+〉H−1(Ω) = 0, 〈ξ −φ ,(τ)−〉H−1(Ω) =0. (37d)

Note that τ is split into its positive part, which is the multiplier for the non-
negativity condition on ξ , and its negative part, which corresponds to the upper
bound on ξ .

We now turn our attention to limiting first order conditions. Let (rk)k∈N,
(γk)k∈N ⊂ R and δ : R>0 → R

>0 satisfy Assumption 3 and assume that for every
k ∈N, (yk,uk,ξk) ∈H1

0(Ω)×Uad×Ξad is feasible for problem (29) with parameters
(γk,rk,δ (γk)) and under Assumption 2. Moreover, let pk ∈ H1

0(Ω) and τk ∈ H1
0(Ω)

be given such that the first order conditions (37) hold. We define

λk =−γk (yk)−− δ (γk)ξk, μk = (τk)+− δ (γk)yk. (38)

Proposition 10 below yields uniform bounds and hence the existence of accumu-
lation points of the sequence (yk,uk,ξk,pk,λk,μk)k∈N. In its proof, we need the
following assumption.

Assumption 4. We assume the following uniform upper bounds:

δ (γk)
3

γk
≤ C, (39a)

(
δ (γk)φ + γk (yk)− ,(τk)−

)
L2(Ω)

≤ C, (39b)

‖uk‖L2(Ω) ≤ C. (39c)

Note that since we are free to choose δ : R>0 → R
>0, the first assumption (39a)

can be guaranteed a priori. The second bound can be understood as an implication of
a convergence rate of

∥∥(−yk)−
∥∥

L∞(Ω)
and (39a) (see [22]). Or, if the upper constraint

on ξ is chosen such that it is not active in the iterates (and in the solution), then
(τk)− = 0 guarantees (39b). The third bound is satisfied if Uad is bounded in L2(Ω),
and apart from that, a typical assumption that becomes important in the analysis of
merely stationary points.

We observe that

〈(yk)− ,yk〉H−1(Ω) =
(
(yk)− ,yk

)
L2(Ω)

=
∥∥(yk)−

∥∥2
L2(Ω)

. (40)
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Proposition 10. With the notation from above, let Assumption 4 hold true. Then,
we have the following uniform bounds:

‖yk‖W1,q
0 (Ω)

≤ C, ‖ξk‖L2(Ω) ≤ C, ‖pk‖H1
0(Ω) ≤ C, ‖λk‖H−1(Ω) ≤ C,

for some constant C ≥ 0 which does not depend on k.

Proof. The admissible set Ξad directly yields the uniform bound on (ξk)k∈N in
L2(Ω). Then, the primal equation (29d) and the embedding of L2(Ω) into W−1,q(Ω)

provides a bound for yk in W1,q
0 (Ω). Utilizing the definition of λk in (38), the adjoint

equation (37a) reads

A�pk−λk =−∑
w∈I

(yk− yw)χ̄Brk (w)
.

Testing with pk yields the estimate

c‖pk‖2
H1

0(Ω) ≤ 〈A�pk,pk〉H−1(Ω) = 〈λk,pk〉H−1(Ω)−∑
w∈I

 
Brk (w)

(yk− yw)pk dx,

with 0 < c. The uniform bound on yk in W1,q
0 (Ω), which embeds continuously into

L∞(Ω), then gives the estimate

c‖pk‖2
H1

0(Ω)−〈λk,pk〉H−1(Ω) ≤ C‖pk‖H1
0(Ω) , (41)

where 0 < c ≤ C. In order to obtain a bound on ‖pk‖H1
0(Ω), we provide an upper

bound for the dual pairing 〈λk,pk〉H−1(Ω). The definition of λk in (38) and (37c)
yield that

〈λk,pk〉H−1(Ω) =γk〈(yk)− ,τk〉H−1(Ω)− γkδ (γk)〈(yk)− ,yk〉H−1(Ω)

+ δ (γk)〈ξk,τk〉H−1(Ω)− δ (γk)
2〈ξk,yk〉H−1(Ω).

The second term on the right-hand side can be simplified using (40). Furthermore
we split τk = (τk)++(τk)− and use the complementarities in (37d) to obtain that

〈λk,pk〉H−1(Ω) = γk〈(yk)− ,(τk)+〉H−1(Ω) + γk〈(yk)− ,(τk)−〉H−1(Ω)

− γkδ (γk)
∥∥(yk)−

∥∥2
L2(Ω)

+ δ (γk)〈φ ,(τk)−〉H−1(Ω)− δ (γk)
2〈ξk,yk〉H−1(Ω).

(42)
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We drop the first product as it is certainly not positive and estimate

〈λk,pk〉H−1(Ω) ≤ 〈γk (yk)−+ δ (γk)φ ,(τk)−〉H−1(Ω)

−γkδ (γk)
∥∥(yk)−

∥∥2
L2(Ω)

− δ (γk)
2〈ξk,yk〉H−1(Ω).

(43)

The first term is bounded by (39b) in Assumption 4. Note that although the term
−γkδ (γk)

∥∥(yk)−
∥∥2

L2(Ω)
is clearly not positive, we rather keep it in the estimate and

further analyze the sum

γkδ (γk)
∥∥(yk)−

∥∥2
L2(Ω)

+ δ (γk)
2 (ξk,yk)L2(Ω) ,

which we need to bound from below. Similarly as in the proof of Proposition 6, we
estimate

δ (γk)
2 (ξk,yk)L2(Ω) ≥−δ (γk)

2 ‖φ‖L2(Ω)

∥∥(yk)−
∥∥

L2(Ω)

and study a quadratic function h̄γk(v) = γkδ (γk)v2− δ (γk)
2 ‖φ‖L2(Ω) v. We hence

find that h̄γk(v)≥ h̄γk

(
δ (γk)
2γk ‖φ‖L2(Ω)

)
and so

γkδ (γk)
∥∥(yk)−

∥∥2
L2(Ω)

+ δ (γk)
2 (ξk,yk)L2(Ω) ≥−

δ (γk)
3

4γk
‖φ‖2

L2(Ω) . (44)

The last term is bounded from below by (39a) in Assumption 4, and so, the dual
pairing 〈λk,pk〉H−1(Ω) from (43) is bounded from above. Plugging this into (41), we
have

c‖pk‖2
H1

0(Ω)− C̃ ≤ C‖pk‖H1
0(Ω) ,

i.e., a uniform bound on ‖pk‖H1
0(Ω). One can then derive the boundedness of the

sequence (‖λk‖H−1(Ω))k∈N from the adjoint equation (37a).

The next lemma prepares the limiting analysis of a sequence of first order points.

Lemma 7. Under the conditions of Proposition 10 it holds that

δ (γk)
∣∣∣γk

∥∥(yk)−
∥∥2

L2(Ω)
+ δ (γk)(ξk,yk)L2(Ω)

∣∣∣≤ C, (45)

lim
k→∞

δ (γk)
∥∥(yk)−

∥∥
L2(Ω)

= 0, (46)

lim
k→∞

δ (γk)(ξk,yk)L2(Ω) = 0. (47)
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Proof. The estimates (44) and (39a) guarantee that

−δ (γk)
(
γk
∥∥(yk)−

∥∥2
L2(Ω)

+ δ (γk)(ξk,yk)L2(Ω)

)
≤ δ (γk)

3

4γk
‖φ‖2

L2(Ω) ≤ C. (48)

Using the expression (42) for 〈λk,pk〉H−1(Ω) in (41) and the uniform boundedness
of ‖pk‖H1

0(Ω) one derives that

−γk〈(yk)− ,(τk)+〉H−1(Ω) + δ (γk)
(
γk
∥∥(yk)−

∥∥2
L2(Ω)

+ δ (γk)〈ξk,yk〉H−1(Ω)

)

≤ C+ 〈γk (yk)−+ δ (γk)φ ,(τk)−〉H−1(Ω).

The non-negativity of the first term on the left-hand side, and the uniform bound on
the last term on the right-hand side from Assumption 4 thus yield that

δ (γk)
(
γk
∥∥(yk)−

∥∥2
L2(Ω)

+ δ (γk)〈ξk,yk〉H−1(Ω)

)
≤ C.

Combined with (48) this proves (45). Estimating

〈ξk,yk〉H−1(Ω) ≥−‖φ‖L2(Ω)

∥∥(yk)−
∥∥

L2(Ω)

we obtain that

δ (γk)
(
γk
∥∥(yk)−

∥∥2
L2(Ω)

− δ (γk)‖φ‖L2(Ω)

∥∥(yk)−
∥∥

L2(Ω)

)
≤ C.

Then Equation (34) for s = γk, t = δ (γk)‖φ‖L2(Ω), κ = C
δ (γk)

and v =
∥∥(yk)−

∥∥
L2(Ω)

gives the bound

∥∥(yk)−
∥∥

L2(Ω)
≤
√

C
δ (γk)γk

+
δ (γk)2

4γ2
k

‖φ‖2
L2(Ω) +

δ (γk)

γk
‖φ‖L2(Ω) .

Therefore,
∥∥(yk)−

∥∥
L2(Ω)

→ 0 for k→∞, and, owing to the convergence δ (γk)2

γk → 0,

we even have δ (γk)
∥∥(yk)−

∥∥
L2(Ω)

→ 0. We utilize this convergence to see that from

δ (γk)〈ξk,yk〉H−1(Ω) ≥−δ (γk)‖φ‖L2(Ω)

∥∥(yk)−
∥∥

L2(Ω)

it follows that

liminf
k→∞

δ (γk)〈ξk,yk〉H−1(Ω) ≥ liminf
k→∞

−δ (γk)‖φ‖L2(Ω)

∥∥(yk)−
∥∥

L2(Ω)
= 0. (49)
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Assume, on the other hand, that limsup{δ (γk)〈ξk,yk〉H−1(Ω) |k∈N}= 2ε > 0. Then
we have a subsequence denoted the same and a natural number K ∈ N such that for
all k≥ K it holds that δ (γk)〈ξk,yk〉H−1(Ω) > ε . This implies

δ (γk)
(
γk
∥∥(yk)−

∥∥2
L2(Ω)

+ δ (γk)〈ξk,yk〉H−1(Ω)

)
> δ (γk)γk

∥∥(yk)−
∥∥2

L2(Ω)
+ δ (γk)ε

which is a contradiction to the boundedness of the term on the left-hand side. We
thus have limsup{δ (γk)〈ξk,yk〉H−1(Ω) |k ∈N}≤ 0, which yields, together with (49),
the convergence in (47).

Theorem 3. With the notation of Assumptions 2–4 let (yk,uk,ξk) ∈H1
0(Ω)×Uad×

Ξad be a first order point for problem (29) with parameters (γk,rk,δ (γk)) and let pk ∈
H1

0(Ω), τk ∈ H1
0(Ω) be the respective multipliers for every k ∈ N. Moreover, let

λk,μk be given by (38). Then there exists a subsequence of first order points (denoted
the same) with

yk → y in W1,q
0 (Ω), uk → u in L2(Ω), ξk ⇀ ξ in L2(Ω),

pk ⇀ p in H1
0(Ω), λk ⇀ λ in W−1,q′(Ω).

The limit point (y,u,ξ ,p,λ ,μ) satisfies the following conditions:

Ay− u− ξ = f , (50a)

u ∈ Uad, ξ ∈ Ξad, (50b)

y≥ 0, 〈ξ ,y〉H−1(Ω) = 0, (50c)

A∗p+∑
w∈I

(y(w)− yw)δw−λ = 0, (50d)

〈λ ,y〉W−1,q′ (Ω)
= 0. (50e)

If (ξk)k∈N is a (sub-)sequence such that ξk < φ a.e. on Ω for all k ∈ N and

limk→∞ δ (γ)3

γk
= 0, then it holds additionally that

μk ⇀ μ in H1
0(Ω), (ξ ,μ)L2(Ω) = 0, liminf{〈λk,μk〉H−1(Ω) |k ∈ N} ≥ 0.

(50f)

Proof. We start with similar arguments as in the proof of Proposition 8 on consis-
tency of the penalty scheme. The bound on (‖pk‖H1

0(Ω))k∈N from Proposition 10

yields a weak limit p ∈ H1
0(Ω) of a subsequence of (pk)k∈N, and the strong

convergence of this subsequence in L2(Ω) guarantees that

uk = ProjUad

(
1
ν

pk

)
→ ProjUad

(
1
ν

p

)
= u ∈Uad.
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The slack constraint set Ξad is bounded and weakly closed, which means that
(ξk)k∈N contains a subsequence with weak limit ξ ∈ Ξad and

yk = A−1(uk + ξk + f )→ A−1(u+ ξ + f ) =: y in W1,q
0 (Ω)

for k→ ∞. We employ the adjoint equation (37a) and the definition of λk in (38) to

derive the convergence of (λk)k∈N as follows. Firstly, A∗ : W1,q′
0 (Ω)→ W−1,q′(Ω)

is a bounded linear operator and as such weakly continuous such that A∗pk ⇀ A∗p
in W−1,q′(Ω). Owing to the convergence of (yk)k∈N to y in W1,q

0 (Ω) we can apply
Lemma 5 to obtain that

λk = A∗pk +∑
w∈I

(yk− yw)χ̄Brk (w)
⇀ A∗p+∑

w∈I

(y(w)− yw)δw = λ in W−1,q′(Ω).

We hence showed (50a), (50b) and (50d). The non-negativity of the limit state y
in (50c) follows from (46) in Lemma 7: Since yk → y for k→ ∞ we have

∥∥(−y)+
∥∥

L2(Ω)
= lim

k→∞
∥∥(−yk)+

∥∥
L2(Ω)

= 0.

The convergence (47) in Lemma 7 implies that

〈ξ ,y〉H−1(Ω) = lim
k→∞

〈ξk,yk〉H−1(Ω) = 0.

This proves (50c). We next analyze the dual pairing

〈λ ,y〉W−1,q′ (Ω)
= lim

k→∞
〈λk,yk〉W−1,q′ (Ω)

.

The definition of λk in resolves to

|〈λk,yk〉W−1,q′ (Ω)
|=|γk

∥∥(−yk)+
∥∥2

L2(Ω)
+ δ (γk)(ξk,yk)L2(Ω) |.

The term on the right-hand side converges to zero by (45) in Lemma 7 and we thus
proved (50e). In the second part of the assertion, it holds for all k ∈N that ξk−φ < 0
and

(
ξk−φ ,(τk)−

)
L2(Ω)

= 0, which indicates that (τk)− = 0. This implies that

μk = (τk)+− δ (γk)yk = τk− δ (γk)yk =−pk

and we infer the weak convergence of μk to μ = −p in H1
0(Ω) from the

respective convergence of the adjoint state variables pk. We write (ξ ,μ)L2(Ω) =

limk→∞ (ξk,μk)L2(Ω) and compute

(ξk,μk)L2(Ω) =
(
ξk,(τk)+− δ (γk)yk

)
L2(Ω)

=−δ (γk)(ξk,yk)L2(Ω) .
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Using (47) in Lemma 7 we directly obtain that (ξ ,μ)L2(Ω) = 0. Finally, for all k∈N,
the definition of λk and μk in (38) yields

〈λk,μk〉H−1(Ω) =
(−γk (yk)−− δ (γk)ξk,(τk)+− δ (γk)yk

)
L2(Ω)

=−γk
(
(yk)− ,(τk)+

)
L2(Ω)

+ γkδ (γk)
∥∥(yk)−

∥∥2
L2(Ω)

+ δ (γk)
2 (ξk,yk)L2(Ω)

≥ δ (γk)
(
γk
∥∥(yk)−

∥∥2
L2(Ω)

+ δ (γk)(ξk,yk)L2(Ω)

)
.

The bound from Lemma 7 resolves to

liminf{〈λk,μk〉H−1(Ω) |k ∈ N} ≥ −C,

but one can consider (48) to refine this estimate and derive (50f) by the assumption

that limk→∞ δ (γ)3

γk = 0.

4 Algorithm

In this section, we set up a function space algorithm according to the penalty
schemes discussed above. In fact, we provide a path-following method for the solu-
tion of optimal control problems of the type (1) in function space, cf. Algorithm 1. In
this connection, the so-called path is a sequence of first order points xk = (yk,uk,ξk)
of the auxiliary problem (3) or (25), with respective multiplier vectors Λk for a
sequence of penalty parameters (γk)k∈N ⊂ R

>0 with γk → ∞ for k→ ∞ and, in the
point tracking case, δ : R>0 → R

>0 and (rk)k∈N ⊂ R
>0. We choose (γk)k∈N =

(γ · (δγ)k)k∈N for an initial penalty parameter γ > 0 and a factor δγ > 1. The
sequence (xk,Λk)k∈N is computed in steps 6 or 10 of the outer loop (Algorithm 1) by
the subroutine solvePenMPECwhich will be referred to as the inner loop. In each
iteration, the multipliers λk, μk that occur in the stationarity systems (14) and (50)
are reconstructed from (yk,uk,ξk,pk), see steps 7, 8/11, 12. Then, the norm of the
residual pertinent to the conditions in (14) and (50) is computed in step 14.

The break criterion for the outer loop relies on a sufficient decrease of the residual
by means of a prescribed r̄ > 0. In case that the break criterion is not satisfied, the
penalty parameter is increased and the corresponding auxiliary problem is solved.
Since we proved the convergence only on a subsequence, it may happen that the
chosen sequence of penalty parameters is not suitable. We indicate this by defining
a maximum number of iterations M, and act on the assumption that the sequence
does not converge if M is reached and the residual pertinent to C-stationarity of
the suggested solution is not satisfactory small. In this case we reset γ to a fixed
value (here γ0) and decrease δγ in step 20. Note that the algorithm thus selects an
alternative subsequence in line 20 in the infinite loop from line 3 to 21. This step is
in practice performed only very rarely.
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Algorithm 1 solveMPEC

Input: Either data for problem (2) or,
if point tracking problem (PT=true), data for problem (25),
initial values for y,u,ξ

1: Choose 0 < r̄� 1, γ = γ0 > 0, δγ > 1 and M ∈N, set i := 1.
2: If PT, set δ = γ1/3, r = γ−1.
3: loop
4: while i≤M do
5: if PT then
6: (y,u,ξ ,p,τ) = solvePenPT(DATA,γ ,δ , r,y,u,ξ )
7: Set λ := A∗p+∑w∈I(y(w)− yw)δw according to (50d).
8: Set μ := (τ)+−δy according to (38).
9: else

10: (y,u,ξ ,p) = solvePen(DATA,γ ,y,u,ξ )
11: Set λ := A∗p+ j′(y) according to (14c).
12: Set μ :=−p according to (14e).
13: end if
14: Compute rγ =residual(y,u,ξ ,p,λ (,μ ,τ)) due to (14) or (50)
15: if rγ ≤ r̄ then
16: return y, u, ξ .
17: end if
18: Set γ = δγ · γ , i = i+1, and, if PT, set δ = γ1/3, r = γ−1.
19: end while
20: Reset γ = γ0 and if PT, set δγ = 8δγ+1

9 , δ = γ1/3, r = γ−1.
21: end loop

The auxiliary problems (3) and (29) can be solved with standard optimization
tools for problems with smooth objective and linear constraints. In our numerical
test computations, we discretize the auxiliary stationarity systems and solve the
resulting finite dimensional complementarity system by a damped semi-smooth
Newton method (cf. [9, 17, 32]).

5 Numerical Tests

5.1 Numerical Results for an L2-Tracking Problem

We consider an example from [14, Example 6.1].

Example 1. We use the Laplace operator A =−Δ =−∇ ·∇ : H1
0(Ω)→H−1(Ω) on

the square domain Ω = (0,1)× (0,1) and

z1(x1) =−4096x6
1+ 6144x5

1− 3072x4
1+ 512x3

1,

z2(x2) =−244.140625x6
2+ 585.9375x5

2− 468.75x4
2+ 125x3

2,
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y∗(x1,x2) =

{
z1(x1)z2(x2) in (0,0.5)× (0,0.8),
0 else,

u∗(x1,x2) = y∗(x1,x2),

ξ ∗(x1,x2) = 2max{0,−|x1− 0.8|− |(x2− 0.2)x1− 0.3|+ 0.35}.

The data f ,yd is set to

f =−Δy∗ − u∗− ξ ∗, yd = y∗+ ξ ∗−νΔu∗.

The parameter for the cost of the control is ν = 1, there are no constraints on the
control, and the objective functional is defined by

J(y,u) =
1
2
‖y− yd‖2

L2(Ω) +
ν
2
‖u‖L2(Ω) .

The solution y = u = p, the multiplier ξ =−λ , and the strongly active and biactive
sets are shown in Figure 1.

We discretize the state as well as the control space by use of P1-finite elements
on a (regular) triangulation of the domain Ω . The MPEC solver can be run on a
fixed mesh, or, in order to improve the efficiency of the method, it can be run
on gradually refined meshes, optionally also with an a posteriori error estimation
procedure from [18] which adaptively adjusts the discretization to the solution of the
concrete problem. On each refinement level, the optimization routine (Algorithm 1)
is employed with r̄ = 10−6, γ = 10−3, δγ = 1.5 and M = 500.

Figure 2 shows the convergence history of the �1-penalty scheme for Example 1
on two different meshes. The L2-error of the control is plotted in black, and the
residual is plotted in gray in a logarithmic scale against the value of the penalty
parameter γ . The errors and residuals of the respective last steps of the algorithm are
not plotted, because the extremely small residual (around 10−15, see also Figure 3)
spoils the scale. The three plots correspond to mesh sizes of 2−3 (49 free nodes), 2−4

(225 free nodes) and 2−5 (961 free nodes) on the square domain. Note that we
choose a quite small initial value for the penalty parameter γ and avoid a tuning
of parameters to fit certain test examples. All graphs in Figure 2 thus start with
a sequence of more or less unreasonable solutions until a penalty parameter of
around 10−1 is reached. When using this penalty scheme on fixed meshes without
an adaptive or uniform refinement loop, the initial value should thus be increased.
Especially in the first row, the discretization error can be seen: At some point, the
L2-error of u [i.e., the distance of the discrete control to the exact control in L2(Ω)],
denoted by eγ , does not decrease anymore while the solution of the discrete problem
is not yet found, while the residual rγ still decreases. This indicates that if one aims
to compute an approximation of the function space solution, then the break criterion
for the penalty method should be linked to the mesh size.
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Fig. 1 Solution graphs for Example 1, showing y (= u, upper left), ξ (=−λ , upper right), and the
active sets (lower plot). The inactive set is depicted in light gray, the strongly active set in medium
gray, and the biactive set in dark gray

Figure 3 shows the convergence history of the algorithm including successive
mesh refinement. The two plots show the data pertinent to uniformly refined
meshes (left) and adaptive refinement (right). Every plot shows the number of nodes
[= number of degrees of freedom (DOF)] in the mesh in black and outer iterations
on the horizontal axes. On a fixed mesh (i.e., for a constant number of nodes), the
outer loop increases the penalty parameter γ until the residual that belongs to the
C-stationarity system rγ = residual(x,Λ) in an iterate (x,Λ) (gray graph) is
below a level r̄ (dotted in gray). Then, the mesh is refined by bisection of every
triangle or due to the estimator and thus the number of nodes increases. We cut
each plot after 100 outer iterations. The L2-norm of the error in the control variable
eu = ‖u�− uk‖L2(Ω) in an iterate uk is plotted in black. Its value combines the
discretization error with the error in optimality. More specifically, it decreases when
γ is increased until the discretization error is reached, but when the mesh is refined
and the iterate uk is prolongated (by local interpolation) to the larger finite element
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Fig. 2 Convergence history for the elastic mode algorithm 1 without multigrid/adaptive refine-
ment. The convergence of the error (eγ , black) and the residual (rγ , gray) are plotted against γ for
Example 1 on three different meshes
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Fig. 3 Convergence history for the elastic mode algorithm 1 with multigrid/adaptive refinement
applied to Example 1. The left plot shows the convergence of the error (eγ , black) and the residual
(rγ , gray) plotted against the outer iterations for the uniform method, the right plot refers to the
respective data in the adaptive method

space, eu increases. Moreover, the error graph indicates that together with finer
meshes (with increasing DOF), we obtain smaller discretization errors. In this plot
we did not cut the last steps and see the sudden decrease of the residual on each
mesh. This indicates that the algorithm in fact finds an exact solution to the discrete
problem, cf. Section 2.3.
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5.2 Numerical Results for a Point Tracking Problem

Example 2. We now consider the L-shaped domain Ω = (−1,0) × (−1,1) ∪
(−1,1)× (0,1). The set of tracking points is

I = {(−0.5,−0.5),(−0.5,0),(−0.5,0.5),(0,0.5),(0.5,0.5)}

and we want the state variable to take the values yw = 1 for w ∈ {(−0.5,−0.5),
(−0.5,0)}, yw =−0.1 for w∈{(−0.5,0.5),(0,0.5)} and yw = 0 for w = (0.5,0.5).
The parameter belonging to the control costs is set to ν = 0.01, the force acting on
the state is defined by

f (x1,x2) = 0.5+ 0.5(x1− x2).

There are no control constraints. The solutions calculated by our algorithm are
depicted in Figure 4. The example again admits a biactive set, and the solutions
have a low regularity (consider, for instance, λ on the right-hand side, middle row
in Figure 4). For the penalty method 1 we choose r̄ = 10−5, γ0 = 0.01, δγ = 1.5,
and M = 300.

We again start with a test of the algorithm on fixed meshes with different
complexity. Figure 5 shows the convergence of the residuals for Example 2 on
a mesh with 833 nodes (bright gray graph, h = 2−4 on the L-shaped domain),
with 3,201 nodes (dark gray graph, h = 2−5) and with 12,545 nodes (black graph,
h = 2−6). The algorithm shows a clearly mesh independent convergence. Note that
since we do not know the exact solution, we do not plot L2(Ω)-errors of the control
variable, but instead use the residuals as an error measure.

Figure 6 shows the convergence history of the overall algorithm for both uniform
(left) and adaptive mesh refinement (right). The structure here is the same as in
Figure 3: We plot the outer iterations of Algorithm 1 and the mesh refinement steps
on the horizontal axis. The black line shows the number of nodes and thus indicates
the refinement steps that are performed as soon as the residual is below r̄.

The residual shows a similar trend as in Figure 3 on the L2-tracking case. It
decreases until, at a certain value of γ , the iterate “falls” into the solution and the
outer loop breaks in fact with a residual that is far below its bound r̄. The adaptive
method (right plot) has an advantage because of its capability of a rather accurate
detection of the active sets. The sudden increase of the residual in the left plot comes
from a reset of γ to γ0: The upper bound M in Algorithm 1 is reached, and the
solution pertinent to the new (small) penalty parameter is of course a bad candidate
for a solution of the C-stationarity system.
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Fig. 4 Solution graphs for Example 2, showing y (upper left), u (upper right), ξ (middle left), λ
(middle right) and the active sets (lower plot). The inactive set is depicted in light gray, the strongly
active set in medium gray, and the biactive set in dark gray
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Fig. 5 Convergence history
of the residuals of the
C-stationarity system for the
elastic mode algorithm 1
without multigrid/adaptive
refinement plotted against the
value of the penalty
parameter γ . The subscript
values in the labels of the
graphs give the complexity of
the problem which they
belong to
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applied to Example 2. The left column shows the convergence of the residual rγ (gray) and DOF
(black) plotted against the outer iterations for the uniform method, the right column refers to the
residual in the adaptive method
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Reduced Space Dynamics-Based Geo-Statistical
Prior Sampling for Uncertainty Quantification
of End Goal Decisions

Lior Horesh, Andrew R. Conn, Eduardo A. Jimenez, and Gijs M. van Essen

Abstract The inversion of large-scale ill-posed problems introduces multiple chal-
lenges. These include, identifying appropriate noise model, prescription of suitable
prior information, design of an informative experiment, uncertainty quantification,
incorporation of heterogeneous sources of data, and definition of an appropriate
optimization scheme. In the context of flow in porous media, subsurface parameters
are inferred through the inversion of oil production data (a process called history
matching). In this study, the inherent uncertainty of the problem is mitigated
by devising efficient and comprehensive approaches for prior sampling. Despite
meticulous efforts to minimize the variability of the solution space, the distribution
of the posterior may remain intractable. In particular, geo-statisticians may often
propose large sets of prior samples that regardless of their apparent geological
distinction are almost entirely flow equivalent. As an antidote, a reduced space
hierarchical clustering of flow relevant indicators is proposed for aggregation of
these samples. The effectiveness of the method is demonstrated both with synthetic
and field scale data. In addition, numerical linear algebra techniques that exploit the
special structure of the underlying problems are elucidated.

Keywords Uncertainty quantification • Reduced space • Dynamic indicator •
Prior sampling • Geo-statistics • Hierarchical clustering • Goal-oriented predic-
tion • Dynamic similarity • History matching.

1 Introduction

History matching in the context of multi-phase flow in porous medium is an ill-
posed problem as the measured data do not convey sufficient information for
complete and stable recovery of the underlying subsurface parameters [21, 58].
Part of the missing information can be supplemented by incorporation of additional
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independent information, for example seismic data, gravity, electromagnetic survey
information, and additional log data; or prescribing structure information based
upon a-priori knowledge either in the form of regularization or re-parametrization.
Complementary, improved experimental design [18–20, 26, 31, 32, 53] and handling
of model mis-specification errors [15, 22–24, 44] can improve upon the utility of
observable data.

Each of these resolutions introduces various challenges. Information from het-
erogeneous sources of data (potentially related to different physical entities) may be
seemingly conflicting [17, 33, 47, 55, 56]. When it comes to imposition of structure,
mathematical interpretation of abstractly described structural notions is far from
trivial. This often leads to situations where ad-hoc structural regularization schemes
are utilized, which introduce non-desired bias to the solutions [25, 34, 38, 54].
Furthermore, there is a computational cost and increased complexity typically
associated with these tasks. Moreover, the supplemental information, even when
extremely useful, is unlikely to accurately and completely resolve the ill-posed
nature of the problem, so as a result we are led to focus our attention and efforts
towards development of computationally efficient means to realize uncertainty. This
is of great relevance in the course of reservoir management, as useful decision-
making requires comprehensive realization of this uncertainty.

1.1 The Role of the Prior in Bayesian Inference

We begin our discussion with a description of the history matching problem in
Bayesian inference terms and then identify the role of the prior and its sampling in
realization of the posterior distribution. Let m = {κ ,φ ,ρ , · · · } represent the model
parameters (permeability, porosity, seal factor, etc.), x = {p,S, · · ·} stand for the
state parameters (pressure, saturation, etc.) and y = {pc,qc, · · ·} define the controls
(controlled point pressure, injected water rate, etc.). Further let us assume that the
observed production data, d, is linked to the model parameters and the controls
through the following observation operator

d = g(m,x,y)+ ε,

where ε comprises both model mis-specification error and measurement noise. The
link between the model prior distribution and the inference posterior is given by the
Bayes theorem

π(m|d) = π(d|m)π(m)

π(d)
,

where π(m) stands for the model m prior probability, π(d|m) and π(m|d) are
conditional probabilities of the likelihood and posterior, respectively, and π(d)
represents the marginal probability.
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Proper realization of the inferred model posterior π(m|d) is essential for any
consequent decision-making processes, and can be regarded as an intermediate stage
that supports the decision/prediction/control process G(π(m|d)) and its respective
distribution π(G(π(m|d))).

1.2 Prior Sampling

Prior sampling provides means for exploration of uncertainty associated with model
parameters under consideration. However, since typically the distribution is a non-
trivial one, the decision as to which samples should be considered is critical. In the
context of reservoirs, in most cases, these samples are generated by geologists (or
geo-statisticians) who embody in those their own personal subjective interpretation
of the geology (geological concept). Traditionally, for uncertainty quantification,
one considers mainly parameters that are not controlled by the underlying algorithm,
i.e. the history matching process in our case. Nonetheless, the history-matching
problem is ill-posed and nonlinear, thus, an exact definition of the adjustable
variables is a moving target, as the large null space renders many parameters
redundant. Furthermore, since the search space is usually characterized by multiple
local minima, exploration of the search space can be carried out via consideration
of multiple starting points. Without a consistent imposition of structure the features
that geologists introduce in the process are typically not retained throughout the
history matching process, as the conventional optimization problem formulation
is agnostic to such considerations. Consequently, the initial postulated structure
(as introduced in the sampled prior) is no longer honored when the data itself is
(superficially) well-matched. This is a serious impediment upon the veracity of the
results produced, particularly since it is the ensuing predictions that are usually
of primary importance. Given that even the most ample efforts to account for the
ill-posed nature of the problem may almost always yield solutions that inherently
involve uncertainty, we focus our attention towards efficient means for quantification
of such uncertainty.

1.3 Flow Equivalence

Based upon structural information and geostatistical reasoning, geologists produce
multiple model realizations to account for prior uncertainty. However, many
seemingly notable geological (static) variations result in little, if any, measurable
impact upon flow patterns (i.e., the dynamics). For large-scale, nonlinear problems
of non-trivial probability distributions a large set of geological prior models is
seemingly required in order to capture uncertainty. Fortunately, this large set
contains much redundancy from the point of view of the flow behavior. We provide
below (Figure 1) an example where two distinct geological models of different
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Fig. 1 Two distinct reservoir models that include six producing wells and six injection wells. Red
indicates high permeability whereas blue corresponds to low permeability regions

permeability distributions display nearly identical production rates and pressures
(Figure 2), for a particular period in time (500 days) and a given set of controls.1

This example demonstrates how multiple distinct reservoir models may corre-
spond to similar production behavior. Yet, we must be careful as to the implications
of such a comparison. By virtue of history matching, it is sometimes possible to
update two distinct models so that they will equally honor the data for a given time
window. The updated models may still differ from each other significantly, either
because the inversion forced each of them to move into different local minima, or
simply due to the large null space associated with the problem. Unless the models
are essentially equivalent and consistent in terms of flow dynamics, their future
forecast (i.e., production measures following the history matching period) may
differ drastically. An indication of such a situation is provided by the very different
production forecasts and predicted net present values that the two models (Figure 1)
provide, as can be seen after the first 500 days (Figure 2).

1.4 Proposition

For the above reasons, our overall goal in this study is to provide effective
methods for pre-screening geological models prior to the history matching process.

1Note that often appropriate integration of structure is not exercised in the course of history
matching, consequently, in standard practice the emphasis is on data misfit minimization alone.
Such an approach is obviously far from desirable. More generally there are various circumstances
whereby the dynamical equivalence of distinct geological models may be observed.
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Ideally, each geo-statistical prior realization (sample) would undergo a history
matching procedure and the variability of their forecasts would be factored for
operational decisions. However, the history matching process is computationally
intensive; hence, given a large number of possible scenarios, this option is imprac-
tical. Fortunately, often many (static) geological scenarios are almost equivalent in
some sense, so the challenge is to characterize each distinct scenario.

Our proposition is to cluster prior realizations into flow-equivalent sets, thereby,
identifying far fewer representatives whilst still being able to predict the same range
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Fig. 2 Extended duration production rates and pressures forecasts for the two distinct reservoir
models above. Continuous lines represent simulated production measurements of the first model,
whereas the dashed lines represent the simulated measurements of the second model
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of future production, reliably. As a link between the static geology and the dynamics
as captured by the geophysics we propose considering dynamic fingerprints, such
as mass fluxes and time of flight.

2 Previous Art

Uncertainty could be captured by a joint distribution function [13]; however, in
the context of large-scale problems this option is also computationally infeasible.
Several alternative strategies can be identified in the literature.

2.1 Heuristics and Ensemble Methods

One approach is to quantify uncertainty by the rather naive means of considering
very few extreme cases, such as low, medium, and high, for which few samples of
the posterior distribution are computed. While this approach is appealing compu-
tationally, it is far from reflecting reliably the posterior distribution of problems
of high dimensions. Recently, ensemble methods have also become popular. In
these approaches one typically extracts approximations to the first and second
moments, in the hope that these will adequately represent the posterior distribution
[1, 14, 39, 40]. One of the main appeals of these methods is that the computation can
be performed on distributed systems. However, variability of geological structures,
such as channels, cannot be captured by first and second moment and, even more
fundamentally, the question of the desired sample size dimension to adequately (i.e.,
providing globally reliable estimates) capture complex posterior distributions is a
bone of contention.

2.2 Model Agnostic Approaches

One remedy to the above concern is consideration of multi-point geo-statistics
[10, 16]. Some of the more successful applications of the approach was through
the utility of a kernel transformation to a higher dimensional space, in which
co-distances between aggregated field production were computed [48, 51, 52].
However, this approach introduces several difficulties; first, complete simulation
is required for each realization and this requires computation that can be orders
of magnitude more expensive than required by the methods proposed in this study.
The second difficulty raises a more fundamental issue. While the concept of a kernel
transformation is popular in the machine learning community, it is typically used for
model-agnostic problems, which is appropriate when one is incapable of deriving
concrete links between the data and the desired entity to be classified. For problems
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already suffering from a deficiency of reliable admissible information in the form
of observable data, disregard of available knowledge, in the form of the governing
physics, makes little sense. Another limitation of model agnostic approaches is the
lack of spatial separation. When only field level production data is considered the
information is often too rudimentary for many operational decisions.

2.3 Physics Based Approaches

The last category consists of methods that exploit the physics of the problem, such as
reduced physics (for example, proper orthogonal decomposition, [5, 6, 42], dynamic
mode decomposition [49], streamlines, [3, 7, 11, 37]) and the proposed methodology
of this paper. With all these methods a physics-based link between computationally
appealing entities and the desired output is usefully exploited. In the context of
uncertainty quantification, we shall mention a few approaches. The method of [57]
is one in which only a single model is history matched, while multiple realizations
are ranked with respect to streamlines properties such as time of flight and flow rate.
Idrobo et al. [35] considered an approximated (binary) swept volume measure based
on streamlines to characterize the model dynamics. Møyner et al. have developed
an interactive fast simulation tool for well placement screening under multiple
scenarios, [41]. Of course, other choices for capturing the dynamics can be sought.

3 Methodology

3.1 Flow Indicators

An appropriate choice of a flow indicator lays at the core of the proposed
workflow for identification of model flow equivalence. There are numerous potential
candidates for this task, such as mass fluxes and time of flight. We shall describe the
utility of mass fluxes for this purpose. As is well-known, the basis of flow in a porous
medium is Darcy’s law

vα =−Kκα

μα
(
∇
(
pα + pαcap

)− gρα∇z
)
,

which is essentially a conservation of momentum relation that can be derived
through homogenization of the Navier Stokes equations. Here ρα is the mass density
per phase.2 It provides links between the pressure, p, the pressure difference and the
fluid velocity, v. K is an absolute permeability tensor describing how amenable the

2The references to α are phase references not power indices.
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porous medium is to flow, κα is a dimensionless relative permeability parameter
indicative of the ease of flow for one phase due to the presence of another phase.
This parameter is a major source of nonlinearity. The fluid viscosity is per phase
and is given by μα . The overall pressure is a composite of the phase pressure, pα ,
the capillary pressure, pαcap, and the vertical pressure drop caused by gravity. For
a situation where the friction (K, κ and μ) and the pressure are maintained fixed,
the velocity is proportional to pressure difference. For future reference we shall
reformulate Darcy law in terms of the phase mass fluxes, Fα .

Fα =−K
ρακα

μα
(
∇
(
p+ pαcap

)− gρα∇z
)
.

For a more comprehensive overview covering multi-phase settings, the reader is
referred to [2, 43].

A link between these physical entities (mass fluxes) and measurable production
can be determined by application of an appropriate observation operator, P̃, upon
the mass conservation equation, (1), below, that states that a change in mass in a
given domain can be attributed to the total influx and outflux of mass through the
volume and to any mass coming from any external sources.

∂ (ϕac)

∂ t
−∇ ·Fc = ρcqc (1)

Here the component mass fluxes, Fc, link to the phase mass fluxes, Fα through the
total mass fraction χcα via

Fc =
Nα

∑
α=1

χcαFα

and the component accumulations relates the link between the phase mass densities,
ρα , the phase saturations Sα , and the total mass fraction matrix, χcα via

ac =
Nα

∑
α=1

χcαSαραc = 1, . . .,Nc

P̃

(
∂ (ϕac)

∂ t
−∇ ·Fc

)
= P̃(ρcqc) .

As the right-hand side represents volumetric flow rate, the observation operator,
P̃, is often linear (or at least approximately linear). Once we have established
that mass fluxes and production measurements are closely related, we remark
that since mass fluxes provide a detailed (grid resolution) vector map of flow,
they offer superior insights for distinguishing between model dynamics compared
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with production information (which is sparsely distributed spatially). This point is
actually subtle. On the one hand, there are situations in which models of similar
production output would be decreed unnecessarily different if judged by their mass
fluxes alone. On the other hand, if not differentiated, such situations are much more
likely to manifest undesired behavior similar to the one illustrated in Figure 2,
that is, production measurements would coincide for a giving period, but then
later diverge (see, for example, Figure 2 after 500 days). Clearly, we would still
want to regard such models as distinct, and thereby, better off relying upon the
information this flow indicator is offering, rather than the limited one suggested
by production alone. Other virtues that mass fluxes offer as a flow indicator are
their insensitivity to flow isolated permeability regions as well as to vorticity effects
(which, however, are unlikely for reservoir forces and velocities). And of course,
as opposed to permeability (or any other static model parameter), mass fluxes do,
naturally, account for the underlying physics.

In (Figure 3) the singular value distribution of water, oil and both mass fluxes for
a controlled test case of ten distinct flow patterns is illustrated. It is evident from the
charts that mass fluxes have clearly identified the presence of ten distinct modes,
and thereafter, variations of these modes. For comparison, we also provide similar
singular value analysis of the pressure field and the saturation field (in Figure 4).
These results indicate that these flow indicators can potentially provide similar
qualitative results, however, distinguishably, they appear to be less discriminative
than the mass fluxes.

4 Reduced-Space Representation Eigen-Dynamics

Flow indicators, such as mass fluxes, capture chief characteristics of the dynamics,
yet, 4D vector fields are of a large dimension. Clustering in such a large dimensional
space is typically impractical. Instead, a reduced order representation is considered.
Let us assume that for each realization, i, mass flux (or any other suitable alternative
flow indicator) the corresponding vector fields, Fi(x,y,z; t), are computed.

We perform a singular value decomposition of the vector fields from all
realizations to subsequently enable a reduced order representation

UΣV� = [F1(x,y,z; t),F2(x,y,z; t), . . . ,Fn(x,y,z; t)]

Representation of each flux realization i, in the singular vector basis is obtained as

αi,j = Uj ·Fi(x,y,z; t), (ith realization, jth component)

Other than a trivial reduction through the truncation of components, αi,j, below
a prescribed threshold, the key element in reduction is the fact that the models are
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Fig. 3 Singular values spectrum for a set of fluxes for a set of 90 realizations of ten well-
distinguished flow patterns. Top to bottom: singular values of fluxes of water, fluxes of oil, fluxes
of water and oil

now represented by the product of a given (fixed) set of principle mass fluxes via
individual sets of coefficients. For most realistic scale problems, the dimension of
the coefficient space is of the order of the number of considered realizations (or
a truncation of which), in contrast with the dimension of the mass flux instances.
Figure 5 gives a simplified illustration if there are only three significant (principal)
components in the reduced representation.

Next, the distances between relevant representations of flow indicator character-
istics are quantified in the representation coefficient space (Figure 6). Once distances
between realizations are computed based on the similarity of flux in the representa-
tion coefficient space, clustering in the reduced space can be performed [28].

4.1 Hierarchical Clustering

In this study we consider an agglomerative (i.e., bottom-up) hierarchical clustering
construction. Initially, each realization, (i.e. representation coefficients) serves as
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90 realizations of ten well-distinguished flow patterns. Top to bottom: singular values of pressure,
water saturation, oil saturation, water and oil saturation

an independent cluster. Next, clusters are formed when a node and all of its sub-
nodes have consistent values larger than a given threshold. In such a case, all
leaves at or below the node are grouped into a cluster. Each link in a cluster tree is
characterized by inconsistency coefficients, which compares its height with average
height of other links of the same hierarchal levels. The higher the value of this
coefficient, the less similar the objects connected by the link. Different distance
measures can be considered for quantifying the distances between samples within
each cluster, and respectively, the distances between clusters. In some situations,
the choice of distance metric can be of cardinal importance in clustering. The
choice of hierarchical clustering is by no means exclusive. The advantage of this
clustering is that it offers the practitioner some level of control as to the granularity
of the obtained clusters. Thus, if a fine level of classification is desired, one can
use the output of the lowest level, whereas if only crude classification is required
the top levels can be used. Also, in terms of analysis, the tree structure that the
clustering process entails, called a dendrogram, offers excellent insight into the
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Fig. 5 A simplified illustration of flux representation using the singular basis vectors. The model
on the right top row is formed as a linear combination (first and second of notable value, while the
third is negligible) of the principal flux vectors. The model on the bottom right is formed in the
same fashion, but with a notable contribution from the first and the third vectors only

Fig. 6 Simplistic illustration of representation and distances of mass fluxes in a singular vectors
coefficient space

relative distances between members of each cluster. The vertical axis (see, for
example, Figure 7) is a measure of how similar nodes are in a given cluster level.
Once clustering is concluded, ideally, one can choose a single representative of each
cluster for further processing without losing any critical information.
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Fig. 7 Schematic illustration of a dendrogram chart. The height of the links corresponds to the
level of dissimilarity between the linked members

4.2 Induced Control Excitation (Modulations) for Enhanced
Reservoir Characterization

In practice, even a complete simulation of a single realization may be computation-
ally intractable, especially when one considers a long simulation time and/or a large
number of model samples. Under these circumstances, we would favor devising
some efficient manner in which we can approximate flow indicators, such as mass
fluxes. More importantly, we would like to be able to predict how models behave
(flow-wise) with respect to future control activation, rather than merely historic
ones. Data collection is conventionally performed either with fixed controls (e.g.,
fixed water injection rate or fixed controlled pressures at well sites), or more often,
the controls are prescribed in order to serve a direct production objective, such
as maximizing net present value, minimizing water production, or maximizing oil
production see, for example, [4, 8, 9, 12, 36, 45, 46, 50, 59]. Since the unnecessary
perturbation of controls may impair immediate production goals, in practice one
typically tends to disturb them as little as possible. The downside of such a strategy
is that the sensitivities describing the link between the model and the data are limited
to the (typically unknown) effective rank of the varying controls.

However, the sensitivity of the model parameters to the recorded data is an
essential component in the recovery of the subsurface attributes and dynamics. The
scope of the sensitivities (as can be measured by the corresponding singular value
spectrum) allows one to identify how a change in a model parameter influences
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Fig. 8 On the top row, the source is static, while the sensors are recording sequentially. On the
bottom row, a similar sensing sequence is given for a different source location. Through excitation
of the source throughout the entire data acquisition sequence, more non-redundant information
regarding the interaction between the source and the medium at different configurations can be
attained

the measurable data. The more comprehensive these sensitivities, the better our
capability to update or determine the model parameters from the available data.
In order to enhance sensitivity information, one can probe the medium (reservoir
subsurface in our context) via some controlled flow perturbations and its resulting
responses. This idea is inspired by medical imaging methodologies, in which the
object under investigation is probed through a sequence of source excitations, and
the response of the system to a broad range of configurations is examined. A chart
sequence that illustrates medical imaging data acquisition is shown in Figure 8.

Since the minimum required excitations for enhancing sensitivity can be rather
small (as long as their effect is measurable with respect to measurement noise) their
overall impact upon production is negligible and due to the insights they provide
into the subsurface, this procedure is generally cost effective. In the context of
simulation, for instance, when multiple realizations are evaluated, these induced
excitations of the controls cost almost nothing.

In the course of the simulation, rather than maintaining the control values fixed,
or contemplating minimal intervention, we propose prescribing a spanning set of
control excitations (modulations). The modulations can be performed canonically,
that is, while maintaining the complementary controls fixed, one or several controls
are changing at a time in a predetermined simple (e.g., off or on at a same fixed level)
manner. Each modulation should be short and relatively small in magnitude. Doing
so serves two purposes: firstly adverse influence upon production is minimized, and
secondly each well control and observables must satisfy clear (typically simple)
bounds, or otherwise a reactive measure (such as shutting down a well completely)
may result. Thus, invoking small modulations prevents a cascade of well constraint
violations. Clearly, to be able to regard the accumulated effects as negligible, our
prediction horizon must be finite.

Once the controls are prescribed, simulation can be performed. For sensitivity
computations, in addition to the simulation run, additional adjoint simulation is
performed. Note that in the simulation context, the overall simulation period for
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Fig. 9 A comparison of a model (left) recovered by conventional means (center), as opposed to
one which is able to benefit from the modulations (right)

the modulations is likely to be significantly shorter than the overall simulation time
using a conventional set of controls.

In the image above (Figure 9), an illustration of a simple 2D test model of 21 ×
21 grid blocks and wells deployed in a so-called nine spot pattern (five injectors and
four producers) is given. The red zones correspond to high permeability channels,
whereas the cyan colored area corresponds to less permeable regions.

As expected, due to the ill-posed nature of the problem, none of the recoveries
provided a perfect reconstruction of the true model. Given that the initial guess
(starting point for the history matching optimization process) was a uniform
permeability map (at the value of 1,000 mDarcy), the achieved recoveries are
regarded as relatively successful. Comparison of the two recoveries demonstrates a
major improvement of the estimated model using the modulations (right) in contrast
to the non-modulated model recovery (center). The non-modulated recovered model
suggests a high connectivity (high permeability) link between producer myprod2 and
myprod1, whereas in reality (as indicated by the true model illustrated above) no
such link exists. The true subsurface structure is much more evident for the model
estimated using the modulations [27].

5 Algebraic Computational Enhancements

Several computational bottlenecks may arise while dealing with big sample sets
for large models. The first is to efficiently handle situations where the size of
each realization is augmented. This could happen for a variety of reasons. For
instance, another well was placed, a new control setup was required, or simply a
consideration of a broader physical domain was desired. In order to address this
problem, we have developed a novel singular value decomposition augmentation
formulation that allows for the recycled use of previous computations. Next, and
complementary, one may ask how additional realizations can be added without
the need to recompute the singular value decomposition of the larger set. For this
problem, we propose a projection strategy. Lastly, there is the question as to what
would be a computationally tractable procedure for the extraction of a spanning
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set (since a representation only requires a spanning set) in situations where very
big sets of realizations of large dimension are considered. We have proposes in the
following a multi-level tournament based approach for distributed computation of
such a spanning set.

5.1 Singular Value Decompositions Row Augmentation

The singular value decomposition (SVD) is a key factorization form for a broad
range of numerical algorithms. Yet, for large-scale matrices its computation can
become intensive [min(mn2,m2n) flops for an m by n matrix]. In some situations,
one may compute the SVD of a given matrix, and later desire to compute the
SVD of its augmentation by rows. An example would be while dealing with
indicator realizations3 for geo-statistical screening. In this situation, computation
of the SVD of a given set of realizations has already been invested, yet, we wish
to account for their augmentation due to the addition of wells/time-steps/or an
extended domain. Rather than conducting a complete computation of the SVD of
the resulting augmented matrix we show how to utilize efficiently the information
from the original decomposition to derive what is needed.

Let A be an augmentation of the matrix A1 ∈R
m1×n by the matrix A2 ∈R

m2×n so
that

A =

[
A1

A2

]
∈ R

(m1+m2)×n.

In our context n is significantly smaller than m1 +m2. Let the compact SVD
decomposition of these matrices be given by

A1 = U1S1V�1
A2 = U2S2V�2 ,

where Ui ∈ R
mi×n,Si ∈ R

n×n,Vi ∈ R
n×n. We wish to determine the compact SVD

decomposition of the augmented matrix A

A = USV�.

By definition

A�A︸︷︷︸
K

V =
(

VS�U�
)(

USV�
)

V = VS2

3Indicator of the realization could be a function of the realization such as static properties, for
example, permeability or porosity, or alternatively, as we have already seen, a dynamic descriptor
such as mass flux or time of flight.
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and so by substitution

A�A︸︷︷︸
K

V =
[

A�1 A�2
][A1

A2

]
V =

⎡
⎢⎣A�1 A1︸ ︷︷ ︸

M1

+A�2 A2︸ ︷︷ ︸
M2

⎤
⎥⎦V = VS2.

Note that in our context we are not unduly concerned by the reduced conditioning
introduced by forming the normal equations. One can then solve the eigenvalue
problem

KV = VS2,

which is relatively small in size (run time complexity is only O
(
n3
)
). Then U is

given by

U = AVS−1 =
(

USV�
)

VS−1.

Note that here we can save some computation by utilizing the relatively small n
by n (number of columns) product when computing

A�1 A1 = M1

from the previous computations and therefore we retain it for future use. This
process can be repeated giving M1,M2, . . . ,Mk so that

[M1 +M2 + . . .+Mk]V = VS2

can be solved [29].
The superiority of the proposed approach is evident. In particular, in geo-

statistical screening, realizations may be available in relatively small batches and
a series of SVDs would be required for algorithmic computations. In the above full
rank matrices were assumed (often the case because of preprocessing) and compact
SVDs. Analogous results when either the matrices are not full rank or not effectively
(by virtue of truncation) full rank can be obtained in a straightforward manner.

5.2 Incremental Addition of Realizations

In situations where additional realizations are added to the problem, as opposed
to maintaining a fixed number of realizations while extending each in length as
discussed above, two options can be considered. One (rather inadequate) approach
would be to utilize the formulation above in its transposed form. Alternatively, since
our goal is to represent our set of realizations in a reduced space, other spanning
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sets than the singular vector basis are preferable. Considering such settings, instead
of recomputing the SVDs of the extended large-scale matrix, we subtract from
each new realization a projection of the current spanning set and are thus left
with a set of residuals (in addition to the original spanning set). Next the residuals
(which are orthogonal to the original set) are sorted according to their norm. As
needed, residuals smaller than a prescribed tolerance/threshold can be discarded. As
a consequence, it is now possible to sequentially add more and more realizations for
processing, without the need to recompute the SVDs of the entire set. It is important
to note that the resulting set does not correspond to a singular value decomposition
of the extended matrix, yet, it is a compact spanning representation.

5.3 Distributed Spanning Set Computation

Unlike the conventional numerical analysis context, in this section we wish to gen-
erate a spanning set rather than a basis, that can be used for compact representation
in situations where additional realizations are added. In some situations, the set of
realizations may be too large to be stored or processed on a single machine. We
shall assume that the effective rank of a matrix comprising of the realizations is far
smaller than the number of columns and that we know (at least approximately) what
that rank is. We shall assume further that a complete SVD computation of the matrix
is prohibitively expensive, and it is therefore desirable to resort to a distributed
computation of a small (approximate) spanning set. Thus, rather than computing
the SVD of a large matrix, our proposition is to distribute it into sub-matrices, and
leverage the (computationally much more tractable) SVDs of the separate parts.
More formally, let us assume that there is a set of n < m model realizations,
represented by the linear mapping A ∈ R

m×n. Further assume the effective rank
k is relatively small with k � n and that A possesses an approximate (typically
truncated) singular value decomposition such that

∥∥∥A−U(k)S(k)V(k)�
∥∥∥

2
≤ δk,

where δk is a small threshold. Our first task is to partition A into s subsets for which
we can effectively compute their SVDs

A = [A1,A2, . . . ,As] ,

while noting that the SVD of each can be computed (ideally in parallel) as

U1S1V�1 = A1, U2S2V�2 = A2, . . . , UsSsV�s = As.

Given these singular values, we maintain the top singular entries, making sure that
we have the option to include more than the rank. Thus

∑
i

ki = ks ≥ k,
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where ki is the effective rank of Ai. Further, we can re-orthogonalize the union of
the selected SVDs

[
U(k1)

1 S(k1)
1 V(k1)�

1 ,U(k2)
2 S(k2)

2 V(k2)�
2 , . . . ,U(ks)

s S(ks)
s V(ks)�

s

]

and perform a second truncation if needed. The output would be

kT ≤ ks

ordered spanning vectors. If required we can randomly mix the remaining vectors
for a further distributed processing. The entire process can be repeated until a
sufficiently small set is obtained [30].

As an example, we considered a set constructed from 50× 20 random vectors.
We added variability of an additional 20 entries artificially via a noisy linear
combination of the 50×20 set. The resulting 50×40 set was split into two 50×20
sets, see Figure 10. Finally, we ensured that more than 10 SVDs were retained from
each set. In Figure 11 the recovery of a truncated set is compared to the one obtained
through distributed computation of the truncated set. As can be observed in both
cases (bottom row, center and right) the error levels are comparable.

SVD of distributed sets
102

101

100

10-1

10-2

10-3

10-4

10-5

0 2 4 6 8 10 12 14 16 18 20

Fig. 10 Singular values of the two sets (blue and red). Note that although the cumulative number
of effective singular values is expected to be 20, the sum of significant singular values of both sets
is larger as some level of overlap in both sets is present
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Fig. 11 From left to right: true set, truncated set, and distributedly computed truncated set. In the
top row, the sets themselves, on the bottom, their error from the true set

6 Results

Having discussed conceptual and computational enhancements, we shall now
present some synthetic and field scale results for the geo-statistical prior sampling
problem.

6.1 Synthetic Results

6.1.1 Controlled Test Case

In order to test our hypothesis regarding the ability of flow indicators to identify, by
means of flow similarity in a reduced space, models that are likely to provide similar
production forecasts, we begin with a controlled test case.

For an egg shaped reservoir model (Figure 1) consisting of 60× 60× 7 grid
cells, eight injectors and four producers, we generated three sets of models,
each comprised of high, medium, and small variations of ten facies4 prototypes.
Using Petrel we have intentionally populated a mixed number of variations for each
model facie prototype. In order to compute flow indicators, for every realization
we used the control modulation strategy elucidated above, in Section 4.2. Since
we had 8 + 4 = 12 well controls to manipulate, we elected to use a canonical

4Areas with particular rock characteristics.
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excitation pattern in which every 5 simulation days one of the controls is modulated
sequentially. The specific choice of 5 days separation between one control change
and another was made based upon a systems and control perspective. The duration
was chosen to be larger than the rise time (90% of the step response) of the slowest
dynamic response to a step function in the field. Typically this would be an injector-
producer pair that are far apart. However, this is not necessarily the case. For the
egg shaped model under various facies configurations, that rise time was a little
less than 5 days. The total simulation time was therefore the number of controls to
be modulated by rise time = 12× 5 = 60 days. For assessment purposes, we have
also conducted a full blown simulation (i.e., 8 years of production profiles). In order
to confirm that the production measures of the controlled sets are indeed clustered
(i.e., several distinct geological models provide almost similar production output),
we first applied the proposed reduced space clustering procedure directly upon the
complete (8 years) simulation data. The dendrogram below (Figure 12) confirms the
validity of the approach, at least in this instance.

6.1.2 Flow Indicators Clustering Results

Following the reduced space clustering procedure described above, we have clus-
tered each of the three sets of models, based on their dynamics snapshots, as
provided by the control-modulated fluxes. The dendrogram for the mass flux
clustering of the small permeability variations is provided in Figure 13.

While obtaining a similar number (actually exactly the same in this case) of
clusters is indeed reassuring, we would still need to confirm that these clusters
correspond to different production scenarios. One way of doing so, which is feasible
for a small number of realizations, is to cross-match each leaf (lowest level in the

Dendogram of Water+Oil Production
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Fig. 12 A dendrogram of oil and water production measurements displays well-defined and
distinct separation between ten clusters. Obtaining this chart requires complete simulation and
is performed here only for assessment purposes
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Fig. 13 Dendrogram of reduced space mass flux clustering of the small permeability variations set

dendrogram) member against its counterpart in the production dendrogram. Another
approach, which is more illustrative, would be to observe the corresponding future
forecasts (production data) for each realization such that it is color-coded according
to the flow indicator clustering Figure 14 demonstrates that despite the use of a
narrow time window for the simulation (using control modulations) we were able
to consistently pick up long-term trends in the production data. Note that even
in-between flow-equivalent scenarios (including when they cross each other) are
clustered distinctly. This analysis can be performed on a field level, for each well
individually (see Figure 15, for Injector 1), or for an aggregation of several wells.
This flexibility allows us to reveal spatio-temporal correlations and consequently,
enables refined operational decision capability.

The rather distinct “rainbow” stripes indicate that realizations that were identified
as flow-equivalent indeed provided equivalent future forecasts. These results sug-
gests that for operational and business decisions associated with future production
forecasts, picking a single representative from each cluster for the computationally
intensive history matching process suffices. In situations where other decisions are
required, a similar framework can be followed, assuming appropriate indicators are
devised.

6.1.3 Are the Results Consistent as the Variations Grow?

Next, we need to ensure that the results are also consistent with respect to various
levels of variability within each of the prototypical models mentioned in the
setup phase. In order to make this assessment we have repeated the clustering
procedure for the set of models that involved both medium and high levels of
variations. The dendrograms (Figure 16) show that even for a set of high variations,
relatively well-defined clustering is obtained. More importantly, as expected, the
links within each cluster are longer, indicating a higher level of dissimilarity
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Fig. 14 BHP measurements forecast, color-coded according to the reduced space mass flux clus-
tering. One sees a clearly distinct “rainbow” of stripes, which even manage to resolve intertwines,
indicating that the realizations that were identified as flow-equivalent provide analogous future
production forecasts
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Fig. 15 BHP measurements forecast for injector # 1, color-coded according to the reduced space
mass fluxes clustering. Again one sees a clearly distinct “rainbow” of stripes that is able to
resolve intertwines, indicating that the realizations that were identified as flow-equivalent provide
analogous future production forecasts
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Fig. 16 Dendrograms for mass fluxes of low variation realizations (left) and high variations
(right). As expected the separation between clusters is becoming less distinct as variations grow
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Fig. 17 Left: a dendrogram based upon permeability (static geology), right: production profiles
from our full blown simulation color-coded according to the clustering given on the left

compared to such links in the low variations dendrogram. Also, the relatively shorter
links between each cluster indicate that the separation between clusters is not as
distinct as it was for the lower variations. Both results are consistent with our
expectations.

6.1.4 Could Static Geology Provide Similar Results?

The answer to the question above, at least to us, is obviously negative. However,
since there remain numerous groups that still attempt to do so, we decided to
demonstrate how reliance upon static geology, which is agnostic to the underlying
physics, is prone to failure. On the right of Figure 17, in the same manner as before,
we see production profiles from our full-blown simulation, color coded according
to the clustering given by the one on the left, a dendrogram, which is based upon
permeability (static geology).
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Evidently, at least based upon this synthetic and relatively simple example, a
model agnostic approach using static data is incapable of resolving all facets of flow
relevancy. For more sophisticated examples it is reasonable to postulate that the
results would be at least as poor. In the above dendrogram the clustering failed to
identify the intended ten flow equivalent patterns. Even worse, from observation
of the color-coded production profiles, it seems that the realizations of unique
dynamics are mixed up within the clusters. Clearly, prior sampling based upon these
representations will almost certainly fail to reliably reflect uncertainty distributions.

6.2 Field Scale Case

While the above results may seem striking, the outstanding question is whether the
proposed methodology would work for a more complex setup such as a real field. In
order to test our framework we have considered the Draugen field model, comprising
of 56 by 148 by 24 grid cells, seven injectors, 12 producers, and a simulation
horizon of 14 years. For this model, we generated 3,125 model realizations
spanning variations in: facies occurrences (80–92 %), with variogram major and
minor direction (3,000–9,000ft and 600–9,000 ft, respectively), variogram azimuth
(8–20◦), and variogram vertical range (5–25 ft), see Figure 18.

Once the models have been generated, we followed the proposed reduced space
clustering on the high-dimensional vector space of all reservoir dynamic scenarios
provided (Figure 19).

The rather distinct clusters obtained for this problem suggests that indeed good
separation was obtained for flow equivalent model realizations. It is important to
note here that for such a large number of realizations it is typically impossible
to plot production measures color-coded by the devised clusters, as the number
of line curves and colors becomes excessive to usefully visualize. Since often
managerial decisions are based upon the spread of production profiles, we can easily
determine whether such a spread was effectively captured by a small number of
representatives. In the two illustrations given in Figure 20, the reservoir oil and
water production for a long future horizon is provided, both using the complete
set (red) of 3,125 model realizations and with a representative set (blue), chosen
from each set of clusters. The order of magnitude smaller representative set, of 300
realizations, clearly captures very successfully the spread of the larger set.

In principle, more advanced statistical analysis can be performed using the
dynamics eigen-vector space, along with the clusters. For instance, the spread of the
realizations for each eigen-dynamic subspace can be visualized through projection.
Such analytical tools can be instrumental in the exploration of the variability space
for uncertainty quantification. Furthermore, they can essentially form a bridge
between prior sampling analysis and sample construction through synthesis.
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Facies Occurrence
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Fig. 18 Variations types of the Draugen field model
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Fig. 19 Dendrogram for the Draugen field model realizations. In this example, Time of Flight
is used as a flow indicator. The dendrogram indicates that even this flow measure is capable of
providing good separation between distinct flow patterns
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Fig. 20 Oil and water production for the Draugen field as captured by simulation of 3,125 model
realizations (red), and by 300 selected representatives (blue)
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7 Conclusions

In this study, we have developed a generic approach for geo-statistical prior sam-
pling using a reduced order dynamic representation and clustering. Our framework
is based upon the computation of flow indicators, which leverages our knowledge
regarding the underlying physics of the problem in order to capture the principle
dynamics efficiently. To ensure that the method is capable of dealing with the full
complexity of realistic scale problems we have developed several computational and
conceptual extensions. Rigorous assessment of the proposed prior sampling strategy
was carried out with a synthetic controlled test case as well as with a large-scale field
case. Results were extremely encouraging, suggesting potential functionality of the
approach and its related advancements to a broader range of problems.

8 Possible Next Steps and Recommendations

The proposed framework can readily be applied to well placement analysis. It would
be interesting to investigate how well it performs for such objective. The proposed
method seems to identify effectively flow similarity of different model realizations
and appears capable of grouping realizations that indeed correspond to similar future
forecasts. Another step forward would be to attempt to identify realizations that
are likely to provide similar future forecasts of their history matched models. The
history matching search space normally involves multiple local minima. Intuitively,
with high probability, the history matching process can be regarded as a contracting
operation w.r.t. the distances between the adjacent samples, i.e., two adjacent
samples are more likely to converge to the same local minimum of the active
search space than disparate samples (see Figure 21 for an illustrative explanation).

Fig. 21 An illustration of convergence of adjacent realizations through the history matching
process. The prior samples mi, mj, and mk converge (as m̂i, m̂j, and m̂k) to the same active space
of a local minimum, conversely, the sample ml, converges (m̂l) to the active space of another local
minima. The blue dashed lines represent region (optimization algorithm dependent) of attraction
of each local minima, aggregating realizations inside each region into the same local minima
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For many problems, these regions are rather broad, implying that many prior
samples that were regarded close in some sense are likely to provide similar
posterior predictions. Attempting to exploit such structure rigorously is definitely
challenging and worth further study.

Acknowledgements The authors wish to thank Ulisses Mello, Jorn van Doren, and Jan Dirk
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Solving Multiscale Linear Programs Using
the Simplex Method in Quadruple Precision

Ding Ma and Michael A. Saunders

Abstract Systems biologists are developing increasingly large models of
metabolism and integrated models of metabolism and macromolecular expression.
These Metabolic Expression (ME) models lead to sequences of multiscale linear
programs for which small solution values of order 10−6 to 10−10 are meaningful.
Standard LP solvers do not give sufficiently accurate solutions, and exact simplex
solvers are extremely slow. We investigate whether double-precision and quadruple-
precision simplex solvers can together achieve reliability at acceptable cost.

A double-precision LP solver often provides a reasonably good starting point
for a Quad simplex solver. On a range of multiscale examples we find that 34-digit
Quad floating-point achieves exceptionally small primal and dual infeasibilities (of
order 10−30) when no more than 10−15 is requested. On a significant ME model we
also observe robustness in almost all (even small) solution values following relative
perturbations of order 10−6 to non-integer data values.

Double and Quad Fortran 77 implementations of the linear and nonlinear
optimization solver MINOS are available upon request.

Keywords Flux balance analysis • Metabolic expression model • Multiscale
linear program • Simplex method • Quadruple precision • Gfortran libquadmath •
MINOS

1 Introduction

We consider the solution of large, multiscale linear programs (LPs) of the form

min
x

cTx s.t. �≤
(

x
Ax

)
≤ u, (1)
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where A is a sparse matrix whose entries, like the variables in x, may be of
widely varying magnitude. Such problems arise in systems biology in the modeling
of biochemical reaction networks, notably Metabolic Expression (ME) models
[20, 36]. Reliable solution methods are of such importance to systems biologists
that exact simplex solvers have been employed [20], even though the typical solution
time for an exact solver is measured in weeks for genome-scale models (compared to
minutes for a conventional solver using double-precision floating-point arithmetic).

Exact solvers are based on rational arithmetic. There has been considerable work
on their implementation and application to important problems [1, 2, 18, 32]. The
use of quadruple-precision floating-point has also been mentioned in passing [1, 18].

Let Single, Double, and Quad denote the main floating-point options, with about
7, 15, 16, and 34 digits of precision, respectively. Single is not useful in the present
context, and Double may not ensure adequate accuracy. This is the reason for
our work. On today’s machines, Double is implemented in hardware, while Quad
(if available) is typically implemented in a software library such as libquadmath [8].
Fortunately, the GCC Fortran compiler now makes Quad available via the real(16)
data type. We have therefore been able to make a Quad version of the Fortran 77
linear and nonlinear optimization solver MINOS [26, 27] using the gfortran
compiler. Our aim is to explore combined use of the Double and Quad MINOS
simplex solvers for the solution of large multiscale linear programs. We seek greater
efficiency than is normally possible with exact simplex solvers.

Kahan [16] notes that “carrying somewhat more precision in the arithmetic than
twice the precision carried in the data and available for the result will vastly reduce
embarrassment due to roundoff-induced anomalies.” He further notes that Quad
precision is unlikely to be adopted widely in the foreseeable future because of the
cost in CPU time and memory (especially cache) relative to Double, but in terms of
finding ways to avoid unexpected total loss of accuracy, “default evaluation in Quad
is the humane option.”

We apply the “humane” approach to difficult LP problems by using the Double
simplex solver first, saving the final solution, and warm-starting Quad simplex from
that point. For a sequence of related problems, warm-starting each problem in Quad
is simplest, but warm-starting in Double and then in Quad may be more efficient.

2 Motivating Applications

The Constraint-Based Reconstruction and Analysis (COBRA) approach [31, 33]
has been successfully applied to biological processes such as metabolism and
macromolecular synthesis, which when integrated result in inherently multiscale
models. In the COBRA approach, a biochemical network is represented by a
stoichiometric matrix S with m rows corresponding to metabolites and n columns
representing reactions. Mathematically, S is part of the ordinary differential equation
that governs the time-evolution of concentrations in the network:

d
dt

x(t) = Sv(t), (2)
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where x(t)∈Rm is a vector of time-dependent concentrations and v(t) ∈Rn is a
vector of reaction fluxes. With cTv being a biologically motivated objective function
(such as maximizing the growth rate at steady state), the constraint-based approach
constructs the following LP:

max
v

cTv (3a)

s.t. Sv = 0, (3b)

l≤ v≤ u, (3c)

where growth is defined as the biosynthetic requirements of experimentally deter-
mined biomass composition, and biomass generation is a set of reaction fluxes
linked in appropriate ratios [31].

The following applications have motivated our work.

Flux Balance Analysis (FBA). FBA is a mathematical and computational
approach widely used for studying biochemical reaction networks [30, 31]. The
biochemical networks reconstructed in FBA with a linear objective function
are essentially LPs as in (3), where the fluxes in vector v may have widely
varying values in the range 0–100 say, with small values such as vj = 10−10

being meaningful. With the increasingly large, sparse, and multiscale nature
of biochemical networks, a Quad solver has become more necessary, practical,
and even efficient.

ME models (FBA with Coupling Constraints). FBA has been used by Thiele
et al. [36] for the first integrated stoichiometric multiscale model of metabolism
and macromolecular synthesis for Escherichia coli K12 MG1655. The model
modifies (3) by adding constraints that couple enzyme synthesis and catalysis
reactions to (3b). Coupling constraints of the form

cmin ≤ vi

vj
≤ cmax (4)

become linear constraints

cminvj ≤ vi, vi ≤ cmaxvj (5)

for various pairs of fluxes vi,vj. They are linear approximations of nonlinear
constraints and make S in (3b) even less well-scaled because of large variations
in reaction rates. Quad precision is evidently more appealing in this case.

ME Models with Nonlinear Constraints. As coupling constraints are often
functions of the organism’s growth rate μ , O’Brien et al. [29] consider growth-
rate optimization nonlinearly with the single μ as the objective in (3a) instead
of via a linear biomass objective function. Nonlinear constraints of the form

vi

vj
≤ μ (6)
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represented as

vi ≤ μvj (7)

are added to (3b), where vi,vj,μ are all variables. Constraints (7) are linear if μ
is fixed at a specific value μk. O’Brien et al. [29] employ a binary search on a
discrete set of values within an interval [μmin,μmax] to find the largest μk ≡ μ∗
that keeps the associated linear program feasible. Thus, the procedure requires
reliable solution of a sequence of related LPs.

Flux Variability Analysis (FVA). After FBA (3) returns an optimal objective value
cTv∗=Z0 (3a), FVA examines how far a particular flux vj can vary within the
feasible region without changing the optimal objective significantly (if γ ≈ 1):

max
v

or min
v

vj

s.t. Sv = 0,

cTv≥ γZ0,

l≤ v≤ u,

(8)

where 0< γ < 1. Potentially 2n LPs (8) are solved if all reactions are of interest,
with warm starts being used when j increases to j+ 1 [12].

Other Challenging LPs. A set of difficult LP problems has been collected by
Mészáros [22], who names them problematic and notes that “modeling mistakes
made these problems “crazy,” but they are excellent examples to test numerical
robustness of a solver.” Our procedure for handling these problematic problems
seems appropriate for the systems biology models as well.

3 Algorithm and Implementation

The primal simplex solver in MINOS includes geometric-mean scaling of the
constraint matrix, the EXPAND anti-degeneracy procedure [10, 14], and partial
pricing (but no steepest-edge pricing, which would generally reduce total iterations
and time). Basis LU factorizations and updates are handled by LUSOL [9, 21]. Cold
starts use a Crash procedure to find a triangular initial basis. Basis files are used to
preserve solutions between runs.

For Double MINOS, floating-point variables are declared double precision (≈15
digits). For Quad MINOS, they are real(16) (≈34 digits). The LP data A,b,c,S, �,u
are stored in Quad even though they are not known to that precision. This allows
operations such as Ax and ATy to be carried out directly on the elements of A and
the Quad vectors x,y. If A were stored in Double, such products would require each
entry Aij to be converted from Double to Quad at runtime.

To achieve reliability on the Mészáros problems, we developed the following
three-step procedure for solving challenging examples of problems (1)–(8):

Step 1 (Cold start in Double with scaling) Apply Double MINOS with somewhat
strict options. Save a final basis file.
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Table 1 MINOS runtime
options (defaults and those
selected for Steps 1–3)

Default Step1 Step2 Step3
Double Double Quad Quad

Scale option 2 2 2 0

Feasibility tol 1e−6 1e−7 1e−15 1e−15

Optimality tol 1e−6 1e−7 1e−15 1e−15

LU factor tol 100.0 10.0 10.0 5.0

LU update tol 10.0 10.0 10.0 5.0

Expand frequency 10,000 100,000 100,000 100,000

Step 2 (Warm start in Quad with scaling) Start Quad MINOS from the saved file
with stricter Feasibility and Optimality tolerances. Save a final basis file.

Step 3 (Warm start in Quad without scaling) Start Quad MINOS from the second
saved file with no scaling but stricter LU tolerances.

Steps 1 and 2 are “obvious” and should usually be sufficient. In case Step 2
is interrupted, Step 3 provides some insurance and ensures that the Feasibility
and Optimality tolerances are imposed upon the original problem (not the scaled
problem).

Table 1 shows the default runtime options for Double MINOS and the options
chosen for Steps 1–3 above. The Feasibility tolerance δ1 is applied in absolute form.
Thus, a (possibly scaled) solution v is considered feasible for problem (3) if �−δ1≤
v ≤ u+ δ1. The Optimality tolerance δ2 is applied in a relative way. If the current
basic solution is of the form Sv≡ BvB+NvN = b and if BTy = cB for the nonsingular
basis matrix B, the current v is considered optimal if z≡ c−ATy has the correct sign
to within the tolerance (1+ ‖y‖∞)δ2.

For conventional Double solvers it is reasonable to set δ1 and δ2 in the range
10−6 to 10−8. For Quad MINOS we set δ1 = δ2 = 10−15 to be sure of capturing
accurately any fluxes vj as small as O(10−10).

4 Numerical Results

We report results from Double and Quad versions of the primal simplex solver in
MINOS. All runs were on a 2.93 GHz Apple iMac with quad-core Intel i7, using
the gfortran compiler with -O flag. Double MINOS uses 64-bit hardware floating-
point throughout. Quad MINOS uses 128-bit software floating-point throughout via
gfortran’s libquadmath library.

We applied our three-step procedure to three sets of LP problems. Table 2 lists the
problem dimensions and the norms of the optimal primal and dual solution vectors
x∗, y∗. Table 3 summarizes the results of Steps 1–3 for each problem.

All problems were input from files in the classical MPS format of commercial
mathematical programming systems [24] with 12-character fields for all data values.
This was a fortuitous limitation for the ME models, as we mention below. The MPS
files for these 14 LP models are downloadable from [25].
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Table 2 Three pilot models from Netlib [28], eight Mészáros problematic
LPs [22], and three ME biochemical network models [19, 35, 36]

Model m n nnz(A) max |Aij| ‖x∗‖∞ ‖y∗‖∞
pilot4 411 1,000 5,145 2.8e+04 9.6e+04 2.7e+02

pilot 1,442 3,652 43,220 1.5e+02 4.1e+03 2.0e+02

pilot87 2,031 4,883 73,804 1.0e+03 2.4e+04 1.1e+01

de063155 853 1,488 5,405 8.3e+11 3.1e+13 6.2e+04

de063157 937 1,488 5,551 2.3e+18 2.3e+17 6.2e+04

de080285 937 1,488 5,471 9.7e+02 1.1e+02 2.6e+01

gen1 770 2,560 64,621 1.0e+00 3.0e+00 1.0e+00

gen2 1,122 3,264 84,095 1.0e+00 3.3e+00 1.0e+00

gen4 1,538 4,297 110,174 1.0e+00 3.0e+00 1.0e+00

l30 2,702 15,380 64,790 1.8e+00 1.0e+09 4.2e+00

iprob 3,002 3,001 12,000 9.9e+03 3.1e+02 1.1e+00

TMA_ME 18,210 17,535 336,302 2.1e+04 5.9e+00 1.1e+00

GlcAerWT 68,300 76,664 926,357 8.0e+05 6.3e+07 2.4e+07

GlcAlift 69,529 77,893 928,815 2.6e+05 6.3e+07 2.4e+07

Dimensions of m× n constraint matrices A (= S for the ME models), and
size of the largest optimal primal and dual variables x∗, y∗

The Pilot Problems

These are economic models developed by Prof George Dantzig’s group in the
Systems Optimization Laboratory at Stanford University during the 1980s. They
are available from Netlib [28]. For the middle example (pilot), MINOS required
about 24 h on a DEC MicroVAX II during 1987, and did not perform reliably until
the EXPAND anti-degeneracy procedure was developed.

Line 1 for pilot in Table 3 shows that Double MINOS with cold start and scaling
required 16,060 primal simplex iterations and 5.7 CPU seconds. The final unscaled
primal solution x satisfied the bounds � and u in (1) to within O(10−6), and the dual
solution y satisfied the optimality conditions to within O(10−3).

Line 2 for pilot shows that Quad MINOS starting from that point with scaling
needed only 29 iterations and 0.7 s to obtain a very accurate solution (where Pinf =
10−99 means that the maximum primal infeasibility was 0.0).

Line 3 for pilot shows that in the “insurance” step, Quad MINOS warm-starting
again but with no scaling gave a full quad-precision solution at almost no cost:
maximum infeasibilities 0.0 and O(10−32). The final Double and Quad objective
values differ in the fourth significant digit, as suggested by removal of Step 1’s
O(10−3) dual infeasibility.

Results for the bigger problem pilot87 are analogous.
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Table 3 Iterations and runtimes in seconds for Step 1 (Double MINOS) and
Steps 2 and 3 (Quad MINOS)

Model Iterations Times Final objective Pinf Dinf

pilot4 1,571 0.1 −2.5811392602e+03 −05 −13

6 0.0 −2.5811392589e+03 −39 −31

0 0.0 −2.5811392589e+03 −99 −30
pilot 16,060 5.7 −5.5739887685e+02 −06 −03

29 0.7 −5.5748972928e+02 −99 −27

0 0.2 −5.5748972928e+02 −99 −32
pilot87 19,340 15.1 3.0171038489e+02 −09 −06

32 2.2 3.0171034733e+02 −99 −33

0 1.2 3.0171034733e+02 −99 −33
de063155 921 0.0 1.8968704286e+10 −13 +03

78 0.1 9.8830944565e+09 −99 −17

0 0.0 9.8830944565e+09 −99 −24
de063157 488 0.0 1.4561118445e+11 +20 +18

476 0.5 2.1528501109e+07 −27 −12

0 0.0 2.1528501109e+07 −99 −12
de080285 418 0.0 1.4495817688e+01 −09 −02

132 0.1 1.3924732864e+01 −35 −32

0 0.0 1.3924732864e+01 −99 −32
gen1 369,502 205.3 −1.6903658594e−08 −06 −12

246,428 9,331.3 1.2935699163e−06 −12 −31

2,394 81.6 1.2953925804e−06 −45 −30
gen2 44,073 60.0 3.2927907828e+00 −04 −11

1,599 359.9 3.2927907840e+00 −99 −29

0 10.4 3.2927907840e+00 −99 −32
gen4 45,369 212.4 1.5793970394e−07 −06 −10

53,849 14,812.5 2.8932268196e−06 −12 −30

37 10.4 2.8933064888e−06 −54 −30
l30 1,229,326 876.7 9.5266141574e−01 −10 −09

275,287 7,507.1 −7.5190273434e−26 −25 −32

0 0.2 −4.2586876849e−24 −24 −33
iprob 1,087 0.2 2.6891551285e+03 +02 −11

0 0.0 2.6891551285e+03 +02 −31

0 0.0 2.6891551285e+03 +02 −28

(continued)
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Table 3 (continued)

Model Iterations Times Final objective Pinf Dinf

TMA_ME 12,225 37.1 8.0051076669e−07 −06 −05

685 61.5 8.7036315385e−07 −24 −30

0 6.7 8.7036315385e−07 −99 −31
GlcAerWT 62,856 9,707.3 −2.4489880182e+04 +04 −05

5,580 3,995.6 −7.0382449681e+05 −07 −26

4 60.1 −7.0382449681e+05 −19 −21
GlcAlift 134,693 14,552.8 −5.1613878666e+05 −03 −01

3,258 1,067.1 −7.0434008750e+05 −09 −26

2 48.1 −7.0434008750e+05 −20 −22

Pinf and Dinf = final maximum primal and dual infeasibilities (log10 values
tabulated). Problem iprob is infeasible. Bold figures show Pinf and Dinf at
the end of Step 3. Pinf = 10−99 means Pinf = 0. Note that Pinf/‖x∗‖∞ and
Dinf/‖y∗‖∞ are all O(10−30) or smaller, even though only O(10−15) was
requested. This is an unexpectedly favorable empirical finding

The Mészáros Problems

The problematic LPs were provided as MPS files by Ed Klotz [17]. The first
two problems have unusually large entries in the constraint matrix A. The Step 1
Double MINOS solution has at best one digit of precision in the objective value
for de063155, and is quite erroneous for de063157. Nevertheless, the Steps 2 and 3
Quad solutions are seen to be highly accurate when the solution norms are taken
into account.

The gen* problems come from image reconstruction, with no large entries in A,
x, y, but highly degenerate primal solutions x. (In both Steps 1 and 2 for gen1, 60 %
of the iterations made no improvement to the objective, and the final solution has
30 % of the basic variables on their lower bound.) For gen1, warm-starting Quad
MINOS from the Step 1 basis gave an almost feasible initial solution (266 basic
variables outside their bounds by more than 10−15 with a sum of infeasibilities
of only O(10−8)), yet nearly 250,000 iterations were needed in Step 2 to reach
optimality. These examples show that Quad precision does not remove the need for
a more rigorous anti-degeneracy procedure (such as Wolfe’s method as advocated
by Fletcher [6]), and/or steepest-edge pricing [7], to reduce significantly the total
number of iterations.

Problem l30 behaved similarly (80 % degenerate iterations in Steps 1 and 2).
The tiny objective value is essentially zero, so we can’t expect the Steps 2 and 3
objectives to agree in their leading digits.

Problem iprob is an artificial one that was intended to be feasible with a very ill-
conditioned optimal basis, but the MPS file provided to us contained low-precision
data (many entries like 0.604 or 0.0422). Our Double and Quad runs agree that the
problem is infeasible. This is an example of Quad removing some doubt that was
inevitable with just Double.
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The Systems Biology ME Problems

Like the gen* problems, the ME models showed 40–60 % degenerate iterations in
Step 1, but fortunately not so many total iterations in Step 2. This is important for
FVA and for ME with nonlinear constraints, where there are many warm starts.

Problem TMA_ME developed by Lerman [19] has some large matrix entries |Sij|
and many small solution values vj that are meaningful to systems biologists. The ME
part of the model also contains small matrix entries. In Step 1, almost all iterations
went on finding a feasible solution, and the objective then had the correct order of
magnitude.

This was the first ME model that we used for Quad experiments (in April 2012).
The data S, c, �, u in (3) came as a Matlab structure with cj = 0, lj = 0, uj = 1,000
for most j, except c17533 = 1 (meaning maximize flux v17533), four variables had
smaller positive upper bounds, the last variable had moderate positive bounds,
and 64 variables were fixed at zero. We output the data to a plain text file. Most
entries of S are integers (represented exactly), but about 5,000 Sij values are of
the form 8.037943687315e−01 or 3.488862338191e−06 with 13 significant digits.
The text data was read into Double and Quad versions of a prototype Fortran 90
implementation of SQOPT [11].

For the present paper, we used the same Matlab data to generate an MPS file
for input into MINOS. Since this is limited to six significant digits, the values in
the preceding paragraph were rounded to 8.03794e−01 and 3.48886e−06 and in total
about 5,000 Sij values had O(10−6) relative perturbations of this kind. We have been
concerned that such data perturbations could alter the FBA solution greatly because
the final basis matrices could have condition number as large as 106 or even 1012

(as estimated by LUSOL). In comparing Quad SQOPT on Matlab data with Quad
MINOS on MPS data, we fortunately observe that the final objective values for
TMA_ME agree to five digits and match the results from SoPlex [34] and the exact
simplex solver QSopt_ex [32], as reported by Lerman [19]:

Optimal objective
SoPlex 80bit 8.703671403e−07 Matlab data
QSopt_ex 8.703646169e−07 Matlab data
Quad SQOPT 8.703646169e−07 Matlab data
Quad MINOS 8.703631539e−07 MPS data

More importantly, for the most part even small solution values are perturbed in only
the 5th or 6th significant digit. Let v and w be the solutions obtained by the two
Quad solvers on slightly different data. Some example solution values follow:

j 107 201 302
Quad SQOPT vj 2.336815e−06 8.703646e−07 1.454536e−11 Matlab data
Quad MINOS wj 2.336823e−06 8.703632e−07 1.454540e−11 MPS data
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Among all j for which max(vj,wj) > 10−15 (the feasibility tolerance), the largest
relative difference |vj−wj|/max(vj,wj) was less than 10−5 for all but 31 variables.
For 22 of these pairs, either vj or wj was primal or dual degenerate (meaning one
of them was zero and there are alternative solutions with the same objective value).
The remaining nine variables had these values:

j vj wj Relative difference
16383 6.0731e−07 2.0374e−06 0.70
16459 1.7090e−06 2.1778e−06 0.22
16483 2.4675e−06 5.9936e−07 0.76
16730 1.4432e−06 7.8685e−07 0.46
17461 1.7090e−06 2.1778e−06 0.22
17462 2.4675e−06 5.9936e−07 0.76
17478 6.0731e−07 2.0374e−06 0.70
17507 1.4432e−06 7.8685e−07 0.46
17517 8.7036e−07 2.9740e−06 0.71

We see that the vj, wj values are quite small (the same magnitude as the data
perturbation), and for each of the nine pairs there is about one digit of agreement.
In general we could expect thousands of small solution pairs to differ this much, yet
for almost all 17,535 pairs, there are at least five digits of agreement.

These observations about two forms of problem TMA_ME are welcome empir-
ical evidence of the robustness of this particular multiscale model. Quad solvers
can help evaluate the robustness of future (increasingly large) models of metabolic
networks by enabling similar comparison of high-accuracy solutions for slightly
different problems.

Problem GlcAerWT is an ME model from the detailed study by Thiele et al. [36].
Difficulties with solving TMA_ME and GlcAerWT led to the lifting technique of
Sun et al. [35] (and to problem GlcAlift).

After 33,000 iterations on GlcAerWT, Double MINOS began to report singu-
larities every 50–100 iterations following updates to the basis LU factors. After
another 30,000 iterations, MINOS terminated Step 1 with maximum infeasibility
O(104). Step 2 required significant work to achieve a reasonably accurate solution.
Step 3 quickly confirmed the final objective value with high accuracy considering
the O(107) primal and dual solutions norms.

Problem GlcAlift is a reformulated version of GlcAerWT in which some large
matrix entries cmax in (5) have been reduced via the lifting technique [35]. In Step 1,
Double MINOS again reported frequent singularities and required twice as many
iterations as GlcAerWT, but a near-optimal solution was found (allowing for the
primal and dual solution norms of O(107)), and Steps 2–3 were more efficient and
accurate. The objective function for both GlcA models is to maximize variable
v60069. The fact that the Step 1 objective values have no correct digits illustrates
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the challenge these models present and emphasizes the benefits that Quad precision
offers. Theoretically the optimal objectives for GlcAerWt and GlcAlift should agree.
We assume that the limited data precision in the MPS files is responsible for only
three-digit agreement. Fortunately the Tomlab interface used by Thiele et al. [36]
allows full double-precision data [37]. We can do the same for MINOS, as we did
for SQOPT.

5 Discussion

While today’s advanced LP solvers such as CPLEX, Gurobi, Mosek, and Xpress
[3, 5, 13, 23] are effective on a wide range of large and challenging linear opti-
mization models, the study by Thiele et al. [36] emphasizes the need for improved
reliability in solving FBA and ME models in systems biology. Fortunately, reformu-
lation [35] and careful use of the commercial solvers CPLEX and Gurobi permitted
successful analysis in Thiele et al. [36] of the GlcAerWT and GlcAlift models
discussed here, and we encourage this approach for Step 1 of our proposed three-
step procedure (Section 3). The bulk of the work in solving multiscale LP problems
can still be performed there by conventional Double solvers (possibly including
Barrier solvers with simplex “cross-over” to provide a basis).

Our aim has been to demonstrate that the Step 2 and 3 warm starts with
Quad solvers will be acceptably efficient, and that the accuracy achieved exceeds
requirements by a very safe margin. The “humane” approach of Kahan [16]—use
of Quad LP solvers—is certainly more efficient than applying exact simplex solvers,
even though the latter have proved their value in several applications [1, 2, 18, 20].

An intriguing question remains concerning the bold figures in Table 3. The primal
and dual solutions obtained with Quad precision are substantially more accurate
than the 10−15 requested. The same has been true for all of the classic set of
Netlib problems [28] that we have run. Kahan [16] explains that “perturbations get
amplified by singularities near the data.” He describes a “pejorative surface” of data
points where singularity exists, and expects loss of accuracy as data approaches
the surface. The volume surrounding the pejorative surface is the danger zone,
but: “Arithmetic precision is usually extravagant enough if it is somewhat more
than twice as [great] as the data’s and the desired result’s. Often that shrunken
volume contains no data.” We can surmise that Kahan has anticipated our observed
situation, wherein LP problems defined with double-precision data appear unlikely
to be too ill-conditioned for a Quad solver.

We believe that quadruple-precision solutions are now practical for multiscale LP
applications such as FBA and FVA models in systems biology [12, 30, 31, 36], and
that they justify increased confidence as systems biologists build ever-larger models
to explore new hypotheses about metabolism and macromolecular synthesis. Our
three-step procedure of Section 3 allows combined use of Double and Quad solvers
and should lead to solutions of exceptional accuracy in other areas of computational
science involving multiscale optimization problems. For example, Dattorro [4] has
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derived an approach to analog filter design that requires a Quad LP or nonlinear
solver to deal with a wide range of frequencies (which must be raised to the fourth
power). We look forward to implementing this approach, as well as treating the
nonlinear constraints (7) directly to take advantage of the nonlinear algorithms in
Quad MINOS.
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Real and Integer Extended Rank Reduction
Formulas and Matrix Decompositions: A Review

Nezam Mahdavi-Amiri and Effat Golpar-Raboky

Abstract We have recently developed an extended rank reducing process for
rank reduction of a matrix leading to various matrix decompositions contain-
ing the Abaffy-Broyden-Spedicato (ABS) and Wedderburn processes. Notably,
the extended process contains both the Wedderburn biconjugation process and the
scaled extended ABS class of algorithms. The process provides a general finite
iterative approach for constructing factorizations of a matrix and its transpose
under a common framework of a general decomposition having various useful
structures such as triangular, orthogonal, diagonal, banded and Hessenberg and
many others. One main new result is the derivation of an extended rank reducing
process for an integer matrix leading to the so-called Smith normal form. For this
process, to solve the arising quadratic Diophantine equations, we have proposed
two algorithms. Here, we report some numerical results on randomly generated test
problems showing a better performance of one algorithm, based on a recent ABS
algorithm, in controlling the size of the solution. We also report results obtained by
our algorithm on the Smith normal form having a more balanced distribution of the
intermediate values as compared to the ones obtained by Maple.

Keywords Linear systems • Matrix decomposition • Wedderburn rank
reduction • ABS Algorithms • Smith normal form • Quadratic Diophantine
equation

1 Introduction

Wedderburn was the first to use a rank reducing algorithm in reducing quadratic
forms [30]. Later, independently of him, Egervary also developed a rank reduction
procedure [9]. Egervary proved the basic theorem of rank reduction, which really is
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the only constructive characterization of the matter. The sufficient part of this result
was given in Wedderburn’s book [30], which was later extended to block matrices
by Guttman [18, 19]. Galantai [1, 13–15] established some results concerned with
the rank reduction algorithm developed by Egervary.

Recently, Golpar-Raboky and Mahdavi-Amiri [23] gave an extended rank
reduction formula transforming rows, columns or both rows and columns
simultaneously of a given matrix. The formula makes use of null space
transformations on rows and columns leading to the establishment of necessary and
sufficient conditions for rank reduction transformations. By repeatedly applying the
formula to reduce the rank, a general extended rank reducing process (GERRP) was
derived. The process provides a finite iterative approach for constructing a general
decomposition VT AP = Ω , with V, P and Ω having various useful structures such
as triangular, orthogonal, diagonal, banded, Hessenberg and others.

The main results established for the extended rank reduction formula and GERRP
are outlined below:

• The Wedderburn rank reduction formula is a special case of the extended rank
reduction formula. The formula provides a new formulation of the Wedderburn
rank reduction formula; see Section 2.

• GERRP computes all possible A-conjugate pairs as well as A-biconjugate pairs
(P,V), resulting in various matrix factorizations.

• GERRP provides new formulations for the biconjugation process associated
with the Wedderburn rank reduction and the scaled Abaffy-Broyden-Spedicato
(ABS) class of algorithms, to be explained later. Using the new formulations, we
establish new properties for the biconjugation process and the scaled extended
ABS algorithms.

• The new formulations assure that both the biconjugation process associated with
the Wedderburn rank reducing process and the scaled extended ABS class of
algorithms belong to our proposed class of algorithms.

• The scaled ABS algorithms contain the Wedderburn rank reducing process and
the biconjugation process.

• The biconjugation process produces all possible A-biconjugate pairs (P,V)
resulting in computation of a variety of matrix factorizations.

• A main result is the derivation of the extended rank reduction formula for integer
matrices. Similar properties of the extended rank reduction and GERRP are also
preserved for the integer case; see Section 3.

• An integer Wedderburn rank reduction formula and its associated integer bicon-
jugation process are developed. All properties we state for the extended rank
reduction process, the scaled ABS algorithms and the biconjugation process are
preserved for the integer case. Both the integer biconjugation process and the
scaled extended integer ABS class of algorithms are shown to be special cases of
the integer rank reducing process.

• The Smith normal form of an arbitrary integer matrix is computed by GERRP, as
well as the scaled extended integer ABS algorithm and the integer biconjugation
process. For the Smith normal form, having the need to solve a quadratic
Diophantine equation, we have proposed two algorithms for solving such
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equations. The first algorithm makes use of a special integer basis for the row
space of the matrix, and the second algorithm, with the intention of controlling the
growth of intermediate results and making use of our given conjecture, is based on
a recently proposed integer ABS algorithm; see Section 4. Some numerical results
are reported on randomly generated test problems showing a better performance
of the second algorithm in controlling the size of the solution. We also report
the results obtained by our proposed algorithm for the Smith normal form and
compare them with the ones obtained by using Maple, observing a more balanced
distribution of the values of the results obtained by our algorithm; see Section 5.

2 Extended Rank Reduction Formulas

Definition 1. A transformation f on Mm,n, the vector space of m× n matrices, is a
rank reduction formula, if for A ∈Mm,n, rank(f (A))< rank(A).

The extended rank reduction process (ERRP) introduced by Golpar-Raboky and
Mahdavi-Amiri [23] makes use of the null space transformations on rows and/or
columns of a given matrix. The formulas provide the necessary and sufficient con-
ditions for rank reduction transformations. Other existing rank reduction formulas
can now be derived as special cases of the extended rank reduction formulas.

Theorem 1 (Block Extended Rank k Reduction Formula). Let A ∈ Rm×n have
rank r and r≥ k, where k is a positive integer. Assume that Ḡ∈ Rm×m and G∈ Rn×n.
We have

rank(ḠAGT) = rank(A)− k (1)

if and only if one of the following conditions holds:

(i) G is nonsingular, dim(N(Ḡ)) = k and there is X ∈ Rn×k so that XTAT has rank
k and ḠT generates the null space of XTAT.

(ii) Ḡ is nonsingular, dim(N(G)) = k and there is Y ∈ Rm×k so that YTA has rank k
and GT generates the null space of YTA.

(iii) Dim(N(G)) = dim(N(Ḡ)) = k, and there are X ∈ Rn×k and Y ∈ Rm×k so that
YT AX is a nonsingular matrix, GT generates the null space of YT A, and ḠT

generates the null space of XTAT.

For k = 1, a rank one reduction formula is obtained as follows.

Corollary 1 (Extended Rank One Reduction Formula). Let A ∈ Rm×n be a
nonzero matrix, Ḡ ∈ Rm×m and G ∈ Rn×n. We have

rank(ḠAGT) = rank(A)− 1 (2)

if and only if one of the following conditions holds:

(i) (left rank reduction) G is nonsingular, dim(N(Ḡ)) = 1 and there is a vector
x ∈ Rn so that ḠT generates the null space of xTAT �= 0.
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(ii) (right rank reduction) Ḡ is nonsingular, dim(N(G)) = 1 and there is a vector
y ∈ Rm so that GT generates the null space of yTA �= 0.

(iii) (left-right rank reduction) Dim(N(Ḡ)) = dim(N(G)) = 1, and there are vectors
x ∈ Rn and y ∈ Rm so that yTAx �= 0, GT generates the null space of yTA, and
ḠT generates the null space of xT AT.

By repeatedly applying the extended rank reduction formula, we next present a rank
reducing processes so that the left, right and left-right reductions lead to upper
triangular, lower triangular and diagonal decompositions, respectively, naming it
to be the generalized extended rank reducing process (GERRP). In this process,
in addition to reducing rank, we produce the independent vectors vi ∈ Rm and the
independent vectors pi ∈ Rn to construct the general rank preserving transformation

VTAP =Ω , (3)

where rank(A) = r, V = (v1, · · · ,vr), P = (p1, · · · ,pr), withΩ accordingly intended
to have various useful structures.

Algorithm 1. General extended rank one reducing process (GERRP).
Let A∈Rm×n have rank r. Start with nonsingular matrices R1 ∈Rm×m and H1 ∈Rn×n

(basis for the null space of the null matrices). Let i = 1 and Ā1 = R1AHT
1 . Choose

one of the cases (a)−(c) and execute the case in all iterations.
While Āi �= 0 do
execute the chosen case:

(a) (left rank reducing process) Choose a nonsingular matrix Gi, a vector xi ∈ Rn

so that Āixi �= 0 and a matrix Ḡi, with dim(N(Ḡi)) = 1, so that ḠT
i generates the

null space of xT
i ĀT

i . Choose yi ∈ Rm such that yT
i Āixi �= 0.

(b) (right rank reducing process) Choose a nonsingular matrix Ḡi, a vector yi ∈ Rm

so that yT
i Āi �= 0 and a matrix Gi, with dim(N(Gi)) = 1, so that GT

i generates the
null space of yT

i Āi. Choose xi ∈ Rn such that yT
i Āixi �= 0.

(c) (left-right rank reducing process) Choose the vectors xi ∈ Rn, yi ∈ Rm so that
yT

i Āixi �= 0, and the matrices Gi and Ḡi, with dim(N(Ḡi)) = dim(N(Gi)) = 1,
so that GT

i generates the null space of yT
i Āi and ḠT

i generates the null space of
xT

i ĀT
i .

Let vi = RT
i yi, pi = HT

i xi, Hi+1 = GiHi, Ri+1 = ḠiRi, Āi+1 = Ri+1AHT
i+1 and

i = i+ 1.
End While.
Stop.

Note: The nonsingular matrices Ḡi or Gi can be used as permutation matrices when
we need to apply row or column interchanges, or as scaling matrices, to produce
various structured factorizations.

Assume that rank(A) = r, V = (v1, · · · ,vr) and P = (p1, · · · ,pr). Then, the
matrices V and P have rank r and VTAP is an r× r nonsingular matrix. Here, we
recall some properties of GERRP; see [23].
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Theorem 2. For GERRP, the followings hold.

(i) In the left reduction process, let the columns of RT generate a basis for the
null space of PTAT. Then, VT AP is an upper triangular matrix.

(ii) In the right reduction process, let the columns of HT generate a basis for the
null space of VTA. Then, VTAP is a lower triangular matrix.

(iii) In the left-right reduction process, let the columns of RT generate a basis for
the null space of PTAT and the columns of HT generate a basis for the null
space of VTA. Then, VTAP is a diagonal matrix.

For square matrices, the proposed extended formula can readily lead to conjuga-
tion and biconjugation and the corresponding decompositions.

Definition 2. Let A ∈ Rn×n,P ∈ Rn×n and V ∈ Rn×n. The pair (P,V) is said to be
A-conjugate if the matrix L = VTAP is lower triangular, and the pair (P,V) is said
to be A-biconjugate if D = VT AP is nonsingular diagonal.

Theorem 3. Let A ∈ Rn×n. GERRP (a) computes all possible AT-conjugate pairs,
GERRP (b) computes all possible A-conjugate pairs and finally GERRP (c)
computes all possible A-biconjugate pairs.

Remark 1. A more general reduction scheme for GERRP (c) is obtained by making
use of two extra parameters zi and z̄i to be explained next, even though we were not
able to prove that rank(A) = rank(VTAP) in the general case, in spite of the fact
that all our numerical experiments confirmed it to be true. Thus, in [23], we gave
the following conjecture.

• Conjecture. If zi ∈ Rm and z̄i ∈ Rn are so that yT
i Āiz̄i �= 0 and zT

i Āixi �= 0, with
pi = HT

i z̄i and vi = RT
i zi, then rank(VTAP) = rank(A).

We should point out that the proposed conjecture allows for the development of
some new effective algorithms for a variety of several factorizations such as banded
and Hessenberg as defined below.

Definition 3. A ∈ Rm×n is a banded matrix if and only if the nonzero elements of
A are located in a band around the main diagonal. If A is a banded matrix such that
ai,j = 0, for i− j > k or j− i > l, then A has lower bandwidth k and upper bandwidth
l. If k = n− 1 and l = 1, then A is a lower Hessenberg, and if l = n− 1 and k = 1,
then A is an upper Hessenberg matrix.

Now, we show how to choose the parameters for computing the banded and
Hessenberg factorizations. Let A ∈ Rn×n be strongly nonsingular (that is, the
determinant of every leading left principal submatrix of A is nonzero). For GERRP
(c), let H1 = I, R1 = I, xi = ei, yi = ei,

z̄i =

⎧
⎨
⎩

ei+k, i+ k≤ n

en, otherwise
, zi =

⎧
⎨
⎩

ei+l, i+ l≤ n

en, otherwise.
(4)
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Update Hi and Ri by

Hi+1 = Hi− HiATRT
i yixT

i Hi

yT
i RiAHT

i xi
, Ri+1 = Ri− RiAHT

i xiyT
i Ri

yT
i RiAHT

i xi
. (5)

Compute pi = HT
i z̄i and vi = RT

i zi. Then, VT AP =Ω is a banded matrix with lower
bandwidth k and upper bandwidth l, where V = [v1, · · · ,vn] and P = [p1, · · · ,pn]. For
k = n− 1 and l = 1, the matrix Ω is lower Hessenberg, and for k = 1 and l = n− 1,
the matrix Ω is upper Hessenberg.

In the following two subsections, we show that both the ABS algorithms and the
Wedderburn rank reducing process are special cases of our extended rank reduction
process. We end this section by giving a number of well-known matrix factorizations
obtained as special cases of our rank reducing process.

2.1 Relations to the ABS Algorithms

Classes of scaled ABS algorithms have been introduced for solving linear systems
of equations based on the basic ABS algorithms [2, 3, 26–29]. A major result of the
scaled ABS algorithms has been the derivation of scaled ABS class of algorithms for
linear Diophantine equations [10, 11, 26, 27]. An ABS method provides the general
solution of the system by computing a particular solution and a matrix with rows
generating the null space of the coefficient matrix.

Consider the following linear system,

Ay = b, y ∈ Rn, A ∈ Rm×n, b ∈ Rm, (6)

where A = [a1, · · · ,am]
T , with ai ∈ Rn, 1≤ i≤ m, and rank(A) is arbitrary.

The ABS methods compute the null space and a matrix factorion of A implicitly.
As a key component of the basic ABS method, an arbitrary and nonsingular

matrix H1 ∈ Rn×n, Spedicato’s parameter, originally is set as the basis for null space
of no equations. Given Hi, a matrix with rows generating the null space of the first
i−1 rows of the coefficient matrix, a basic ABS algorithm computes Hi+1, with rows
generating the null space of the first i rows of the coefficient matrix, by performing
the following step:

• Update the Abaffian matrix Hi by

Hi+1 = Hi− HiaiwT
i Hi

wT
i Hiai

with wi ∈ Rn (Abaffy’s parameter) satisfying wT
i Hiai �= 0.

• Determine xi (Broyden’s parameters) such that xT
i Hiai �= 0 and set pi = HT

i xi.
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• Compute si = Hiai, where ai ∈ Rn is the ith row of A (note that si �= 0 if and only
if ai is linearly independent of a1, · · · ,ai−1) [2].

Obviously, the original system (6) is equivalent to the following scaled system,

VTAy = VTb, (7)

where V, the scaled matrix, is an arbitrary nonsingular m by m matrix. It is obvious
that by replacing ai with ATvi in the above procedure, a particular solution ym+1 is
obtained, as applied to (7), and the rows of the resulting Hm+1 span the null space
of VTA or equivalently that of A.

Now, a tailored basic ABS algorithm as applied to A can be described as follows,
ri gives the rank of the first i− 1 rows of VTA.

Algorithm 2. The scaled ABS (SABS) algorithm for generation of the Hi.

(1) Let H1 ∈ Rn×n be an arbitrary nonsingular matrix. Let i=1 and ri = 0.
(2) Choose vi linearly independent of v1, · · · ,vi−1 and set si = HiATvi.
(3) If si = 0 (the ith row of VT A is dependent on its first i-1 rows) then let Hi+1 =

Hi, ri+1 = ri and go to (6).
(4) (si �= 0 and hence the ith row of VTA is independent of its first i-1 rows)

Compute the search vector pi by

pi = HT
i xi, (8)

where xi ∈ Rn is so that vT
i AHT

i xi �= 0.
(5) (Updating the null space generator) Update Hi by

Hi+1 = Hi− HiATviwT
i Hi

wT
i HiATvi

, (9)

where wi ∈ Rn is so that sT
i wi �= 0, and let ri+1 = ri + 1.

(6) If i = m then Stop (HT
m+1 generates the null space of A and rm+1 is its rank)

else let i = i+ 1 and go to (2).

Matrices Hi, which are generalizations of projection matrices, have been named
as Abaffians (due to Abaffy). Using Algorithm 2, we have an implicit matrix
factorization VTAP = L, where P = [p1, · · · ,pr] and L is a lower triangular matrix.
Choices of the parameters H1,vi,xi and wi determine particular methods within the
class so that various matrix factorizations are derived [2–4, 16, 26].
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Chen et al. [6] introduced a generalization of the ABS algorithms, called
extended ABS (EABS) class of algorithms for the real case, which differs from the
ABS algorithms only in updating the Abaffian matrices Hi. In the EABS algorithms,
the Abaffian matrices Hi are updated as follows:

• Hi+1 = GiHi, where Gi ∈ Rji+1×ji is such that we have Gix = 0
if and only if x = λHiai, for some λ ∈ R.

We next show that the scaled extended ABS class of algorithms can readily be
produced by GERRP.

Consider a scaled extended ABS algorithm on A with H1, n× n, nonsingular as
given in the beginning of the algorithm, the scale vectors vi, the Hi being updated as
Hi+1 = GiHi, and let pi = HT

i xi. Now, for GERRP, case (b), consider H1, vi and Gi

from the scaled extended ABS algorithm and let

R1 = I, Ḡi = I, yi = vi,Hi+1 = GiHi, pi = HT
i xi. (10)

Then, Ri+1 = ḠiRi = VT , where V is the scale matrix in the ABS algorithm.
Therefore, GERRP (b) produces the same result as the corresponding scaled
extended ABS algorithm applied to A. Thus, we have the following result.

Theorem 4. The scaled extended ABS class of algorithms is produced by GERRP.

Remark 2. We can also compute the scale vectors vi, step by step, using case (c).
Let A ∈ Rm×n, with rank m, and H1 ∈ Rn×n and R1 ∈ Rm×m be nonsingular and
arbitrary. Starting with i = 1, inductively choose the vectors xi ∈ Rn, yi ∈ Rm so that
yT

i RiAHT
i xi �= 0, and the matrices Gi and Ḡi, with dim(N(Ḡi)) = dim(N(Gi)) = 1,

so that GT
i generates the null space of yT

i RiAHT
i and ḠT

i generates the null space of
xT

i HiATRT
i . Compute

Hi+1 = GiHi,Ri+1 = ḠiRi, pi = HT
i xi, vi = RT

i yi. (11)

Then, let vi = RT
i yi. It means, we apply the ABS algorithm on A and AT simulta-

neously for computing Hi as the right Abaffian, pi as the right search vector, Ri as
the left Abaffian and vi as the left search vector. Later, we show how to compute the
new factorizations such as banded and Hessenberg by the ABS algorithms.

2.2 Relations to the Wedderburn Rank Reducing Process

Wedderburn showed that subtracting rank one matrices of the form β−1AxyTA from
a matrix A resulted in a matrix with rank one less than that of A if β = yTAx �= 0
[20, 30]. The converse is also true [20]. For a comprehensive investigative treatment
of the Wedderburn approach, see the work by Chu, Funderlic and Golub [7].

The following theorem gives a characterization of what we refer to as the
Wedderburn rank one reduction formula.
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Theorem 5 (Wedderburn Rank One Reduction Formula). Let A∈ Rm×n,u∈ Rn

and v ∈ Rm. The rank of the matrix

B = A−β−1uvT , (12)

is one less than that of A if and only if there are vectors x ∈ Rn and y ∈ Rm such that
u = Ax, v = ATy and β = yTAx �= 0.

Simultaneous multiple rank reduction is also possible. Cline and Funderlic [8]
proved a block version of the rank reduction formula in the following sense.

Theorem 6. Let A ∈ Rm×n have rank r and r ≥ k. Suppose U ∈ Rm×k, R ∈ Rk×k

and V ∈ Rn×k. We have

rank(A−UR−1VT) = rank(A)− rank(UR−1VT) = rank(A)− k (13)

if and only if there exist X ∈ Rn×k and Y ∈ Rm×k so that

U = AX, V = ATY,

with R = YTAX being a nonsingular matrix.

The first constructive characterization of rank reduction is due to Wedderburn (see
[30], pp. 68–69). Independently of him, Egervary [9] developed a rank reduction
procedure by proposing a general finitely terminating scheme unifying a variety of
processes occurring in the solution of linear equation systems. In this scheme, the
rank reduction formula (12) is repeatedly applied as follows. Let A1 = A. While
Ak �= 0, apply (12) repeatedly to generate a sequence of matrices {Ak} by using

Ak+1 = Ak−β−1
k AkxkyT

k Ak = (I−β−1
k AkxkyT

k )Ak = Ak(I−β−1
k xkyT

k Ak), (14)

for any vectors xk ∈ Rn and yk ∈ Rm for which βk = yT
k Akxk �= 0. The sequence deter-

mined by (14) must terminate in r = rank(A) iterations, since rank(Ak) decreases by
exactly one at every iteration k. The process is called a rank reducing process and
the Ak are called the Wedderburn matrices.

Any matrix pair (X,Y) of a rank reducing process can be transformed to a
biconjugate pair, (N,M), such that

Ω = MTAN (15)

is nonsingular and diagonal, by the biconjugation process:

nk = xk−
k−1

∑
i=1

< xk,mi >

< ni , mi >
ni, (16)
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mk = yk−
k−1

∑
i=1

< ni,yk >

< ni , mi >
mi, (17)

where < x,y >≡ yTAx.
As observed in [7], many of the fundamental processes of numerical linear

algebra and almost all matrix factorizations can be derived from the biconjugation
process.

Note that the Wedderburn rank one reduction formula (12) is a special case of
the extended rank one reduction formula (2). Choose G and Ḡ according to any one
of the following three cases:

1. G = I, Ḡ = (I− AxyT

yT Ax
),

2. G = (I− AT yxT

yT Ax
), Ḡ = I,

3. G = (I− AT yxT

yT Ax
), Ḡ = (I− AxyT

yT Ax
),

using x and y as in the Wedderburn formula. We then have ḠAGT = A− AxyT A
yT Ax

,
giving the Wedderburn rank one reduction formula (12).

Now, let {x1, · · · ,xr} and {y1, · · · ,yr} be vectors associated with the rank
reducing process, H1 = I, R1 = I,

Ḡi = I− RiAHT
i xiyT

i

yT
i RiAHT

i xi
, Ri+1 = ḠiRi = Ri− RiAHT

i xiyT
i Ri

yT
i RiAHT

i xi
, (18)

and

Gi = I− HiATRT
i yixT

i

yT
i RiAHT

i xi
, Hi+1 = GiHi = Hi− HiATRT

i yixT
i Hi

yT
i RiAHT

i xi
. (19)

We can show by induction that

Ak+1 = Ak−β−1
k AkxkyT

k Ak = Rk+1AHT
k+1, (20)

where βk = yT
k Akxk, mi = RT

i yi and ni = HT
i xi [17].

Then, we have the following results.

Theorem 7. The biconjugation process associated with the rank reducing process
is a special case of GERRP.

Theorem 8. The Wedderburn rank reducing process and the biconjugation process
are obtained by a scaled ABS algorithm applied to A or AT.

It was shown in [7] that the basic ABS method can be derived from the Wedderburn
rank one reducing process. However, we have recently shown that more general
ABS algorithms indeed include the Wedderburn rank reducing process [23] as a
special case.



Real and Integer Extended Rank Reduction Formulas and Matrix. . . 247

Now, exchange the roles of xi and yi and apply the above argument to AT . Then,
we have a scaled ABS algorithm resulting in NTATM =ΩT , a biconjugation process
on AT .

According to Theorem 3, we have the following result at hand.

Corollary 2. Let A ∈ Rn×n. The biconjugation process produces all possible
A-biconjugate pairs (P,V).

We observe that (18) is a special case of (11). Thus, the biconjugation process is a
special case of the scaled extended ABS algorithm on A.

Next, we show that by various choices of the parameters in the extended rank
reducing process, several well-known matrix decompositions are obtained.

2.3 Matrix Decompositions

According to Theorem 7, a biconjugation process is a special case of the case (c)
in GERRP. In [7], it was shown how to obtain the various factorizations such as
LU, Cholesky and QR by the biconjugation process. Here, we show the parameter
settings of GERRP for these factorizations as established by Mahdavi-Amiri and
Golpar-Raboky [23].

Theorem 9.

(i) (LU factorization) Let A∈ Rn×n be strongly nonsingular. The choices X = Y =
I,H1 = I and R1 = I are well defined and VT AP gives an LU factorization of A.

(ii) (Cholesky factorization) Let A∈ Rn×n be symmetric and positive definite. The
Cholesky factorization of A is obtained by letting X= Y= I, H1 = I and R1 = I.

(iii) (QR factorization) Let A have full column rank. The choices X = H1 =
In,n, R1 = Im,m and Y = A are well defined and we have V = QΨ , P = R−1

1 ,
where Ψ is a diagonal matrix and P = R−1

1 = R−1Ψ is an upper triangular
matrix. Furthermore, VTA =ΨR, AU = V and VT V =Ψ2 =Ω .

Proof.

(i) Use Theorem 7 here and Theorem 3.1 in [7].
(ii) Use Theorem 7 here and Theorem 3.3 in [7].

(iii) Use Theorem 7 here and Theorem 3.8 in [7]. �
For computing the singular value decomposition (SVD) of a general matrix,
however, the computing process is more complicated, because of the inherent
nonlinearity of the problem. The next result provides a characterization of the
problem in our context.
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Table 1 Matrix
factorizations associated with
the extended rank reduction
formula

A X Y H1 R1 Algorithm

n×n sn In In In In LDMT

n×n Arbitrary X ns ns Congruence

n×n pd-sy In In In In Cholesky

n×n In A In In QR

Let A ∈ Rm×n have rank r. Suppose that the vectors {x1, · · · ,xr} and {y1, · · · ,yr}
are right singular vectors and left singular vectors of A, respectively. In GERRP, let
H1 = I, R1 = I and starting with i = 1, inductively let Ri+1 and Hi+1 as defined
by (18) and (19). Then, GERRP, case(c), produces the SVD factorization of A [7].
There is no simple way to choose the xi and yi in computing the SVD factorization.
For numerical stability, one can choose the xi and yi by solving the following
problem:

Maximize yT
i Āixi

Subject to xT
i xi = 1, yT

i yi = 1,

where Āi = RiAHT
i [7].

Summary. We have demonstrated that the proposed extended rank one reducing
process provides a general framework for producing various well-known factor-
izations through the selection of appropriate parameters X and Y. Table 1 gives
a summary of some cases. We have assumed that the matrices X and Y satisfy
yT

i Āixi �= 0 and shown the choices of H1, R1, xi, yi, zi and z̄i for the corresponding
factorizations of A. We used the abbreviation ns for nonsingular, pd for positive
definite, sy for symmetric, and sn for strongly nonsingular.

3 Extended Integer Rank Reduction Formulas

A main result of extended rank reduction process has been the derivation of extended
rank reduction formulas for integer matrices; see Golpar-Raboky and Mahdavi-
Amiri [17]. The results given for the real case given in Section 2 appropriately hold
for the integer case as well.

Theorem 10 (Extended Integer Rank One Reduction Formula). Let A ∈ Zm×n

be a nonzero matrix, Ḡ ∈ Zm×m and G ∈ Zn×n. We have

rank(ḠAGT) = rank(A)− 1 (21)
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if and only if one of the following conditions holds:

(i) (left rank reduction) G is unimodular, dim(N(Ḡ)) = 1 and there is a vector x ∈
Zn so that ḠT generates the integer null space of xTAT �= 0.

(ii) (right rank reduction) Ḡ is unimodular, dim(N(G)) = 1 and there is a vector
y ∈ Zm so that GT generates the integer null space of yTA �= 0.

(iii) (left-right rank reduction) Dim(N(Ḡ)) = dim(N(G)) = 1, there are vectors x ∈
Zn and y ∈ Zm so that yTAx �= 0, GT generates the integer null space of yTA,
and ḠT generates the integer null space of xTAT.

The following algorithm contains the three cases (a)−(c) associated with the left,
right and left-right integer rank reductions. To preserve unimodularity of V and P,
only one of the three cases must be used in every iteration. Furthermore, in the left
reduction process we let Gi = I and in right reduction process we let Ḡi = I.

Algorithm 3. General extended integer rank one reducing process (GEIRRP).

(1) Let A∈ Zm×n have rank r. Start with nonsingular matrices R1 ∈ Zm×m and H1 ∈
Zn×n (bases for the integer null space of the null matrices). Let i = 1 and Ā1 =
R1AHT

1 . Below, choose one of the cases (a)−(c) and execute the case in all
iterations.

(2) While Āi �= 0 do
execute the chosen case, (a), (b) or (c), in step (1):

(a) Let Gi = I, choose xi ∈ Zn so that x1, · · · ,xi is a part of a unimodular
matrix and Āixi �= 0. Choose a matrix Ḡi, with dim(N(Ḡi)) = 1, so that
ḠT

i generates the integer null space of xT
i ĀT

i . Choose yi ∈ Zm such that
yT

i Āixi = gcd(Āixi).
(b) Let Ḡi = I, choose yi ∈ Zm so that y1, · · · ,yi is a part of a unimodular

matrix and yT
i Āi �= 0. Choose a matrix Gi, with dim(N(Gi)) = 1, so that

GT
i generates the integer null space of yT

i Āi. Choose xi ∈ Zn such that
yT

i Āixi = gcd(yT
i Āi).

(c) Choose vectors xi ∈ Zn and yi ∈ Zm so that yT
i Āixi = gcd(Āi), and choose

matrices Gi and Ḡi, with dim(N(Ḡi)) = dim(N(Gi)) = 1, so that GT
i

generates the integer null space of yT
i Āi and ḠT

i generates the integer null
space of xT

i ĀT
i .

Let Hi+1 = GiHi, Ri+1 = ḠiRi, Āi+1 = Ri+1AHT
i+1,vi = RT

i yi,pi = HT
i xi and

i = i+ 1.
End While.

(3) Stop.

The properties of the extended integer rank reduction formula and GEIRRP are
similar to the ones for the real case presented in Section 2.

We next show that GEIRRP produces the so-called Smith normal form, making
use of simultaneous rank reduction transformations on A and AT .

Smith [25] proved that any integer matrix A with rank r can be transformed by
elementary row and column operations into the Smith normal form. Every matrix
A ∈ Zm×n of rank r is equivalent to a diagonal matrix Λ , given by
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Λ =

⎛
⎝
∑ 0

0 0

⎞
⎠ , ∑= diag(λ1,1, · · · ,λr,r),

where λi,i �= 0, i = 1, · · · ,r, and λ1,1 | · · · | λr,r, (λ | β means λ divides β ). Moreover,
the λi,i are unique, apart from their signs. The λi,i are known as invariant factors of
A.

Definition 4. A ∈ Zn×n is a unimodular matrix if and only if |det(A)|= 1.

Note that if A is unimodular, then A−1 is also unimodular.

Theorem 11. Let A∈ Zm×n have rank r. There exist unimodular matrices U ∈ Zn×n

and V ∈ Zm×m such that Λ(A) = (λi,j) = VTAU is a diagonal matrix in the Smith
normal form (elementary divisor normal form); that is, λi,j = 0, for i �= j and for
i = j > r, λi,i > 0, for 1 ≤ i ≤ r, and λ1,1 | λ2,2 | · · · | λr,r. The diagonal elements
(elementary divisors) of Λ(A) are uniquely determined.

Now, we are ready to present an algorithm for computing the Smith normal form
using GEIRRP.

Algorithm 4. The Smith normal form using GEIRRP (SNF-GEIRRP).

(1) Let A∈ Zm×n have rank r. Start with nonsingular matrices R1 ∈ Zm×m and H1 ∈
Zn×n (bases for the integer null spaces of the null matrices). Let i = 1 and Ā1 =
R1AHT

1 .
(2) While Āi �= 0 do

Choose the vectors xi ∈ Zn and yi ∈ Zm so that yT
i Āixi = gcd(Āi). Choose the

matrices Gi and Ḡi, with dim(N(Ḡi)) = dim(N(Gi)) = 1, so that GT
i generates

the integer null space of yT
i Āi and ḠT

i generates the integer null space of xT
i ĀT

i .
Let

Hi+1 = GiHi, Ri+1 = ḠiRi, Āi+1 = Ri+1AHT
i+1,

vi = RT
i yi,pi = HT

i xi, λi,i = vT
i Api, (22)

and i = i+ 1.
End While.

(3) Let r = i− 1, V = (v1, · · · ,vr), P = (p1, · · · ,pr). Configure the Smith normal
form of A as:

VTAP =Ω = (λ1,1, · · · ,λr,r).

(4) Stop.

We note that for the Smith normal form, in step (2) above we need to solve a
quadratic Diophantine equation of the form xTAy = gcd(A). In Section 4, we will
give two algorithms for solving such equations. In the remainder of this section, we
show that GEIRRP includes both the integer ABS and integer Wedderburn processes
as special cases.
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3.1 Producing the Integer ABS Algorithms

The ABS algorithms have been appropriated to derive the ABS class of algorithms
for linear Diophantine equations by Esmaeili, Mahdavi-Amiri and Spedicato [11]
and extended to the scaled integer ABS algorithms [28]. Each integer ABS algo-
rithm decides if the Diophantine system has an integer solution, and, if so, obtains
a particular solution along with an integer matrix with possibly dependent rows
generating the integer null space of the equations. In a recent work, Khorramizadeh
and Mahdavi-Amiri [22] have also presented a new class of extended integer ABS
algorithms for solving linear Diophantine systems by computing an integer basis for
the null space to control the growth of intermediate results. They also showed that
Rosser’s algorithm [24] and its generalization belong to the integer ABS class of
algorithms [21].

Consider the following linear system,

Ay = b, y ∈ Zn, A ∈ Zm×n, b ∈ Zm, m≤ n, (23)

which is equivalent to the following scaled system,

VTAy = VTb, (24)

where V is an arbitrary m by m unimodular matrix.
An integer ABS algorithm starts with a unimodular matrix H1, with its rows

generating the integer null space of the null matrix. If Hi is an integer matrix
and wi ∈ Zn is so that wT

i Hiai divides all components of Hiai, then it is clear that
Hi+1 defined by (9) is an integer matrix. Conditions for the existence of an integer
solution and determination of all integer solutions of a linear Diophantine system
were characterized, using the integer ABS algorithms, in [10, 11].

We next present the integer ABS class of algorithms (note that below, ri gives the
rank of the first i− 1 rows of A).

Algorithm 5. The integer ABS algorithm (IABS).

(1) Choose H1 ∈ Zn×n, arbitrary and unimodular. Let i=1, and ri = 0.
(2) Compute si = Hiai.
(3) If (si = 0 ) then let Hi+1 = Hi, ri+1 = ri and go to (6) (the ith equation is

redundant).
(4) {si �= 0} Compute δi = gcd(si) and pi = HT

i xi, where xi ∈ Zn is an arbitrary
integer vector satisfying sT

i xi = δi.
(5) Update Hi by

Hi+1 = Hi− HiaiwT
i Hi

wT
i Hiai

,

where wi ∈ Zn is an arbitrary integer vector satisfying sT
i wi = δi, and let ri+1 =

ri + 1.
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(6) If i = m then Stop (rm+1 is the rank of A) else let i = i+ 1 and go to (2).

In [16], we presented a new extended integer ABS (EIABS) class of algorithms
computing an integer basis for the integer null space of an integer matrix. The
method updates the so-called Abaffian matrices Hi as follows:

• Hi+1 = GiHi, where, Gi ∈ Zji+1×ji generates the integer null space of the vector
si = Hiai.

Similar to the real case discussed in Section 2, we have the following results.

Theorem 12. The scaled extended integer ABS (SEIABS) class of algorithms on A
and AT can both be derived by GEIRRP.

In [16], we showed how to choose the parameters of a scaled integer ABS
algorithm for computing the Smith normal form.

Theorem 13. The parameters of the SEIABS algorithm can be chosen so that the
algorithm generates the Smith normal form of an integer matrix.

Proof. See [16].

3.2 Producing the Integer Wedderburn Rank
Reducing Process

Here, we discuss a special case of the Wedderburn rank reduction formula for integer
matrices, as established by Golpar-Raboky and Mahdavi-Amiri [17] .

Theorem 14. Let A ∈ Zm×n,x ∈ Zn and y ∈ Zm so that 0 �= β = yTAx and β |
gcd(Ax)gcd(yTA). The matrix

B = A−β−1AxyTA (25)

is an integer matrix and has rank exactly one less than that of A.

Remark 3. There are some cases in which x and y can be found easily. Let yTAx =
gcd(Ax) or yTAx = gcd(yTA). Then, x and y satisfy the divisibility condition yTAx |
gcd(Ax)gcd(yTA). In [16], we presented two algorithms for solving the quadratic
Diophantine equation yTAx = gcd(A).

Now, by repeatedly applying the rank reduction formula (25), an integer rank
reducing process is obtained as follows. Let A ∈ Zm×n have rank r. Let A1 = A.
While Ak �= 0, apply (25) repeatedly to generate a sequence of matrices {Ak} by
using

Ak+1 = Ak−β−1
k AkxkyT

k Ak = (I−β−1
k AkxkyT

k )Ak = Ak(I−β−1
k xkyT

k Ak), (26)

for any vectors xk ∈ Zn and yk ∈ Zm, for which, βk = yT
k Akxk | gcd(Akxk)gcd(yT

k Ak).



Real and Integer Extended Rank Reduction Formulas and Matrix. . . 253

Integer Biconjugation Process: Let {x1, · · · ,xγ} and {y1, · · · ,yr} be integer
vectors so that yT

k Akxk = gcd(Ak), for k = 1, · · · ,r. Then,

nk = xk−
k−1

∑
i=1

< xk,mi >

< ni , mi >
ni, (27)

mk = yk−
k−1

∑
i=1

< ni,yk >

< ni , mi >
mi, (28)

are well-defined integer vectors, for k = 1, . . . ,r. Furthermore, any matrix pair (X, Y)
of an integer rank reducing process can be transformed to a biconjugate pair (N, M)
with

Ω = MT AN, (29)

as an integer diagonal matrix.
A main problem arising from the integer biconjugation process is finding integer

vectors xk and yk as a solution set of the quadratic Diophantine equation yT
k Akxk =

gcd(Ak). We will present two algorithms for solving such equations in Section 4.
The next two results can readily be established (see [17]).

Theorem 15. The integer biconjugation process associated with the rank reducing
process defined by (27) and (28) is a special case of GEIRRP.

Corollary 3. The integer biconjugation process is obtained by the scaled integer
ABS class of algorithms applied to A or AT.

Let us now choose the parameters of the biconjugation process defined by (18) based
on Algorithm 4. Then, the integer biconjugation process computes the Smith normal
form specially without the need to compute the matrices Gi, Ḡi, Ri and Hi as given
in Algorithm 6 below.

Algorithm 6. Smith normal form using the integer biconjugation process
(SNF-IBP).

(1) Let i = 1 and A1 = A.
(2) While Ai �= 0 do

Choose the vectors xi ∈ Zn and yi ∈ Zm so that βi = yT
i Aixi = gcd(Ai), and

compute

ni = xi−
i−1

∑
k=1

< xi,mk >

< nk , mk >
nk, mi = yi−

i−1

∑
k=1

< nk,yi >

< nk , mk >
mk.

Let Ai+1 = Ai−β−1AixiyT
i Ai and i = i+ 1.

End While.
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(3) Let r = i− 1, M = (m1, · · · ,mr), N = (n1, · · · ,nr). Configure the Smith normal
form of A as:

MT AN =Ω = (β1, · · · ,βr).

(4) Stop.

4 Solving Quadratic Diophantine Equations

Let A ∈ Zm×n, b ∈ Z, and consider the quadratic equation,

xTAy =
m

∑
i=1

n

∑
j=1

xiai,jyj = b, x ∈ Zm, y ∈ Zn, b ∈ Z, (30)

where x ∈ Zm and y ∈ Zn are solution vectors to be found. In [16], we showed that
(30) has integer solutions if and only if gcd(A) | b.

The quadratic equation (30) is equivalent to a linear Diophantine system and a
single equation as follows:

⎧⎨
⎩

Ay = d, gcd(A) = gcd(d) (a)

dTx = b (b).

Next, we present two algorithms for solving (30). These algorithms would first
compute an integer vector y so that gcd(Ay) = gcd(A), and set Ay = d. Then, x
is computed as a solution of the single linear Diophantine equation, xTAy = xTd = b
(this computation may be done by Rosser’s approach [21, 24]).

4.1 Divisibility Sequence Approach

Let A ∈ Zm×n have row rank r. One can always obtain a set of vectors bi ∈
Zn, 1 ≤ i ≤ n, as an integer basis for Zn, a divisible sequence m1, · · · ,mr so that
mi |mi+1, 1≤ i≤ r−1 and ci = mibi, 1≤ i≤ r, as a basis for the integer row space
of A (integer range of AT ). The ci form a divisibility sequence. A constructive proof
for this claim exists that provides the mi, bi and hence ci (see [5]); the mi and the ci

can be obtained by elementary operations. We can now present the algorithm using
the divisibility sequence.
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Algorithm 7. Solution of the quadratic equation by the divisibility sequence
(QEDS) approach.
Input: A ∈ Zm×n with row rank r, c1 (the first element of a divisibility sequence ci,
1≤ i≤ r, as the basis for the integer range of AT ) and b ∈ Zm.

(1) If gcd(A) � |b then declare that the quadratic equations lacks integer solution and
stop.

(2) Compute y so that cT
1 y = gcd(c1).

(3) Compute k = Ay.
(4) Solve the single Diophantine equation kTx = b (x and y are the solution vectors

for xTAy = b) else declare that the quadratic equations lacks integer solution.
(5) Stop.

4.2 The Integer ABS Approach Based on a Conjecture

The quadratic equation is solved by an integer ABS algorithm, named QEIABS,
with the intention of controlling the growth of intermediate results (see [22]). Using
our given conjecture based on the Dirichlet’s Theorem [12], a method is developed
based on recently proposed integer ABS algorithms [16].

Algorithm 8. Solution of the quadratic equation by the integer ABS (QEIABS)
algorithms.

(1) If gcd(A) � |b then declare that the quadratic equations lacks integer solution
and stop.

(2) Choose y1 ∈ Zn, arbitrary, H1 ∈ Zn×n, arbitrary and unimodular. Let i = 1.
(3) Compute si = Hiai.
(4) If si = 0 then let yi+1 = yi, Hi+1 = Hi, di = aT

i yi and go to (9).
(5) {si �= 0}Compute δi = gcd(si) and pi =HT

i zi, with zi ∈Zn any arbitrary integer
vector satisfying sT

i zi = δi. Compute wi ∈ Zn an integer vector satisfying
sT

i wi = δi.
(6) If i=1 then set d1 = aT

1 y1 else compute the smallest integer number ki among
ki = 0,1, . . . , |dli |− 1, such that

gcd(ki.δi + aT
i yi,dli) = gcd(δi,a

T
i yi,dli),

where 1≤ li < i is the largest index such that dli �= 0 and set di = kiδi + aT
i yi.

(7) Set αi = ki. Compute all pairs of integer numbers λi and θi so that αi = λiθi

and compute ti = yi + θiHT
i zi, where sT

i zi = λiδi. Choose ti with a minimal
value of ‖ti‖2, and let yi+1 = ti.

(8) Update Hi by
Hi+1 = Hi−Hiaiw

T
i Hi/δi.

(9) If i < m then set i = i+ 1 and go to (2) else ym+1 is a solution.
(10) Compute an integer vectors x ∈ Zn such that dTx = b.
(11) Stop.



256 N. Mahdavi-Amiri and E. Golpar-Raboky

5 Numerical Experiments

Here, we generate some random matrices of various size for testing the QEDS and
QEIABS algorithms. We also compute the Smith normal form of the generated
matrices and compare the results with the ones obtained by Maple. We will see
that the QEIABS algorithm outperforms the QEDS algorithm in controlling the size
of the obtained solutions, and the components of U and V in the Smith normal form
by our algorithm are more balanced than the ones obtained by Maple.

The random integer matrices are generated by Maple’s

RandomMatrix(m,n,generator =−2BL..2BL).

Table 2 shows the numerical results after finding the Smith normal form of A for
the randomly generated problems of increasing size. In this table, TN refers to test
number, m, n and BL are as defined above for the random integer matrices of Maple,
BL-QEIABS and BL-QEDS give the maximum bit lengths of the vectors x and y
computed by the QEIABS and QEDS algorithms, respectively.

We implemented the QEIABS algorithm, starting with y1 as the zero vector and
H1 as the identity matrix. The algorithms were implemented using Maple 9.5 and
the programs were executed on a Pentium 4 having 2.4 GHz processor and 5.12 MB
storage. The results in Table 2 show that in most of the test problems, the QEIABS
algorithm outperforms the QEDS algorithm significantly by having smaller mean
values of the bit lengths of the obtained results. In the few instances, on the contrary,
however, the outperformance of QEDS algorithm over QEIABS algorithm is not
significant.

The results for the Smith normal forms obtained for the same problems 1–7
of Table 2 using Algorithm 8 and the procedure ismith from Maple are given in
Table 3. The headings ‖VSNF‖2 and ‖USNF‖2 are Euclidean norms of V and U,
respectively, obtained by Algorithm QEIABS, and ‖VMaple‖2 and ‖UMaple‖2 are
Euclidean norms of V and U, respectively, obtained by ismith. The numerical results
show that Algorithm QEIABS generates a more balanced U and V as compared to
the ones obtained by ismith.

Table 2 Comparative results
for the QEIABS and QEDS
algorithms

TN m n BL BL-QEIABS BL-QEDS

1 5 5 13 7 13

2 7 8 9 9 11

3 8 16 4 2 1

4 9 9 11 7 12

5 10 12 11 3 2

6 12 17 3 4 3

7 19 17 4 7 9
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Table 3 Euclidean norms of unimodular matrices V and U produced by Algo-
rithm 8 and the ismith procedure of Maple

TN m n ‖VSNF‖2 ‖VMaple‖2 ‖USNF‖2 ‖UMaple‖2

1 5 5 2.3604E+006 0.2912E+014 3.1361E+006 0.3138E+009

2 7 8 3.0321E+006 0.6310E+07 2.0673E+004 0.8901E+011

3 8 16 899.8250 67.4070 135.4543 4,799.9348

4 9 9 3.3391E+004 0.1823E+008 2.0802E+005 0.6753E+008

5 10 12 119.8925 130.596 66.4436 1,365.5846

6 12 17 1.1157E+005 967.5534 179.9770 28,673.7232

7 19 17 1.8384E+006 0.3090E+008 1.5038E+007 28,262.9158

6 Conclusions

We presented extended rank reduction formulas transforming row and columns of
a matrix A. Using these formulas, we proposed a general extended rank reducing
process and developed a general finite iterative approach giving a unified treatment
of various iterative procedures occurring in matrix factorizations for A and AT .
The Wedderburn rank reduction process and the scaled extended ABS class of
algorithms were shown to be special cases of the general approach here. We also
showed a new general result that the biconjugate decomposition associated with the
Wedderburn rank reducing process belonged to the scaled ABS class of algorithms.
We presented extended integer rank reduction formulas and the associated general
extended integer rank reducing process (GEIRRP). Moreover, we presented the
integer Wedderburn rank reduction formula and its integer biconjugation process.
Then, we showed that the integer biconjugate process associated with the integer
Wedderburn rank reducing process belonged to the scaled integer ABS class of
algorithms, and hence was a special case of GEIRRP. We computed the Smith
normal form using GEIRRP as well as the scaled integer extended ABS algorithms
and the integer biconjugation process. For the Smith normal form, having the need
to solve a quadratic Diophantine equation, we presented two algorithms for solving
such equations. The first algorithm makes use of a special integer basis for the row
space of the matrix, and the second one, with the intention of controlling the growth
of intermediate results and making use of our given conjecture, is based on a recently
proposed integer ABS algorithm.
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Distributed Block Coordinate Descent
for Minimizing Partially Separable Functions

Jakub Mareček, Peter Richtárik, and Martin Takáč

Abstract A distributed randomized block coordinate descent method for
minimizing a convex function of a huge number of variables is proposed. The
complexity of the method is analyzed under the assumption that the smooth part
of the objective function is partially block separable. The number of iterations
required is bounded by a function of the error and the degree of separability, which
extends the results in Richtárik and Takác (Parallel Coordinate Descent Methods
for Big Data Optimization, Mathematical Programming, DOI:10.1007/s10107-015-
0901-6) to a distributed environment. Several approaches to the distribution and
synchronization of the computation across a cluster of multi-core computer are
described and promising computational results are provided.

Keywords Distributed coordinate descent • Empirical risk minimization • Sup-
port vector machine • Big data optimization • Partial separability • Huge-scale
optimization • Iteration complexity • Expected separable over-approximation •
Composite objective • Convex optimization • Communication complexity

1 Introduction

With the ever increasing availability of data comes the need to solve ever larger
instances of problems in data science and machine learning, many of which turn
out to be convex optimization problems of enormous dimensions. A single machine
is often unable to store the complete data in its main memory. This suggests the
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IBM Research – Ireland, Dublin, Ireland
e-mail: jakub.marecek@ie.ibm.com

P. Richtárik (�)
School of Mathematics, University of Edinburgh, Edinburgh, UK
e-mail: peter.richtarik@ed.ac.uk

M. Takáč
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need for efficient algorithms, which can benefit from distributing the data and
computations across many computers.

In this paper, we study optimization problems of the form:

min
x∈RN

[F(x) := f (x)+Ω(x)] , (1)

where f is a smooth, convex and partially block separable function, and Ω is a
possibly non-smooth, convex, block separable, and “simple” extended real valued
function. The technical definitions of these terms are given in Section 2.

1.1 Contributions

We propose and study the performance of a distributed block coordinate descent
method applied to problem (1).

In our method, the blocks of coordinates are first partitioned among C computers
of a cluster. Likewise, data associated with these blocks are partitioned accordingly
and stored in a distributed way. In each of the subsequent iterations, each computer
chooses τ blocks out of those stored locally, uniformly at random. Then, each
computer computes and applies an update to the selected blocks, in parallel, out
of information available to it locally. An update, which happens to be the residual in
data-fitting problems, is then transmitted to other computers, which receive it either
by the beginning of the next iteration or at some later time. In the former case,
we denote the methods “sychronous” and we analyse them in detail. In the latter
case, we denote the methods “asynchronous” and we include them for the sake of
comparison in Section 7.

The main contributions of this paper are, in no particular order:

1. Partial separability. This is the first time such a distributed block-coordinate
descent method is analyzed under the assumption that f is partially separable.

2. New step-length. Our method and analyse is based on an expected separable
overapproximation (ESO) inequality for partially separable functions and dis-
tributed samplings in Theorem 4 in Section 4. The length of the step we take in
each iteration is given by the optimum of this ESO.

3. Iteration complexity. We show that the iteration complexity of the method
depends on the degree of block separability of f : the more separable the instance,
the fewer iterations the method requires. The complexity results are stated in two
theorems in Section 5 and are of the order of O(log(1/ε)) for strongly convex F
and O(1/ε) for general convex F. At the same time, the separability also reduces
the run-time per iteration.

4. Efficient implementation. When we replace the natural synchronous commu-
nications between computers, as analysed in Section 5, with asynchronous
communication, we obtain a major speed-up in the computational performance.
An efficient open-source implementation of both synchronous and asynchronous
methods is available as part of the package http://www.code.google.com/p/ac-
dc/.

http://www.code.google.com/p/ac-dc/
http://www.code.google.com/p/ac-dc/
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Our method and results are valid not only for a cluster setting, where there really
are C computers which do not share any memory, and hence have to communicate
by sending messages to each other, but also for computers using the Non-Uniform
Memory Access (NUMA) architecture, where the memory-access time depends on
the memory location relative to a processor, and accessing local memory is much
faster than accessing memory elsewhere. NUMA architectures are increasingly
more common in multi-processor machines.

1.2 Related Work

Before we proceed, we give a brief overview of some existing literature on
coordinate descent methods. For further references, we refer the reader to [3, 5, 26].

Block-Coordinate Descent. Block-coordinate descent is a simple iterative
optimization strategy, where two subsequent iterates differ only in a single block
of coordinates. In a very common special case, each block consists of a single
coordinate. The choice of the block can be deterministic, e.g., cyclic [30], greedy
[25], or randomized. Recent theoretical guarantees for randomized coordinate-
descent algorithms can be found in [6, 12, 16, 19, 21, 29]. Coordinate descent
algorithms are also closely related to coordinate relaxation, linear and non-linear
Gauss-Seidel methods, subspace correction, and domain decomposition (see [2] for
references). For classical references on non-randomized variants, we refer to the
work of Tseng [17, 40–42].

Parallel Block-Coordinate Descent. Clearly, one can parallelize coordinate
descent by updating several blocks in parallel. The related complexity issues were
studied by a number of authors. Richtárik and Takáč studied a broad class of parallel
methods for the same problem we study in this paper, and introduced the concept of
ESO [26]. The complexity was improved by Tappenden et al. [39]. An efficient
accelerated version was introduced by Fercoq and Richtárik [5] and an inexact
version was studied in [37]. An asynchronous variant was studied by Liu et al.
[15]. A non-uniform sampling and a method for dealing with non-smooth functions
were described in [28] and [6], respectively. Further related work can be found in
[22, 32, 38, 43].

Distributed Block-Coordinate Descent. Distributed coordinate descent was
first proposed by Bertsekas and Tsitsiklis [3]. The literature on this topic was rather
sparse, c.f. [9], until the research presented in this paper raised the interest, which
lead to the analyses of Richtárik and Takáč [27] and Fercoq et al. [7]. These papers
do not consider blocks, and specialize our results to convex functions admitting a
quadratic upper bound.

In the machine-learning community, distributed algorithms have been studied
for particular problems, e.g., training of support vector machines (SVM) [31].
Google [4] developed a library called PSVM, where parallel row-based incomplete
Cholesky factorization is employed in an interior-point method. A MapReduce-
based distributed algorithm for SVM was found to be effective in automatic image
annotation [1]. Nevertheless, none of these papers use coordinate descent.
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2 Notation and Assumptions

In this section, we introduce the notation used in the rest of the paper and state our
assumptions formally. We aim to keep our notation consistent with that of Nesterov
[21] and Richtárik and Takáč [26].

Block Structure. We decompose RN into n subspaces as follows. Let U ∈RN×N

be the N × N identity matrix and further let U = [U1,U2, . . . ,Un] be a column
decomposition of U into n submatrices, with Ui being of size N × Ni, where
∑i Ni = N. It is easy to observe that any vector x ∈ RN can be written uniquely
as x = ∑n

i=1 Uix(i), where x(i) ∈ RNi . Moreover, x(i) = UT
i x. In view of the above,

from now on we write x(i) := UT
i x ∈ RNi , and call x(i) the block i of x.

Projection onto a Set of Blocks. Let us denote {1,2, . . . ,n} by [n], a set of blocks
S ⊆ [n], x ∈ RN , and let x[S] be the vector in RN whose blocks i ∈ S are identical to
those of x, but whose other blocks are zeroed out. Block-by-block, we thus have
(x[S])

(i) = x(i) for i ∈ S and (x[S])
(i) = 0 ∈ RNi , otherwise. It will be more useful to

us however to write

x[S] :=∑
i∈S

Uix
(i), (2)

where we adopt the convention that if S = /0, the sum is equal 0 ∈ RN .
Norms. Spaces RNi , i ∈ [n], are equipped with a pair of conjugate norms: ‖t‖(i)

and ‖t‖∗(i) := max‖s‖(i)≤1〈s, t〉, t ∈ RNi . For w ∈ Rn
>0, where R>0 is a set of positive

real numbers, define a pair of conjugate norms in RN by

‖x‖w =

[
n

∑
i=1

wi‖x(i)‖2
(i)

]1/2

, ‖y‖∗w := max
‖x‖w≤1

〈y,x〉=
[

n

∑
i=1

w−1
i (‖y(i)‖∗(i))2

]1/2

.

(3)

We shall assume throughout the paper that f has the following properties.

Assumption 1 (Properties of f ). Function f : RN → R satisfies:

1. Partial separability. Function f is of the form

f (x) = ∑
J∈J

fJ(x), (4)

where J is a collection of subsets of [n] and function fJ depends on x through
blocks x(i) for i ∈ J only. The quantity ω := maxJ∈J |J| is the degree of
separability of f .

2. Convexity. Functions fJ, J ∈J in (4) are convex.
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3. Smoothness. The gradient of f is block Lipschitz, uniformly in x, with positive
constants L1, . . . ,Ln. That is, for all x ∈RN, i ∈ [n] and t ∈ RNi ,

‖∇if (x+Uit)−∇if (x)‖∗(i) ≤ Li‖t‖(i), (5)

where ∇if (x) := (∇f (x))(i) = UT
i ∇f (x) ∈ RNi .

A few remarks are in order:

1. Note that every function f is trivially of the form (4): we can always assume
that J contains just the single set J = [n] and let fJ = f . In this case we would
have ω = n. However, many functions appearing in applications can naturally
be decomposed as a sum of a number of functions each of which depends on
a small number of blocks of x only. That is, many functions have degree of
separability ω that is much smaller than n.

2. Note that since fJ are convex, so is f . While it is possible to remove this
assumption and provide an analysis in the non-convex case, this is beyond the
scope of this paper.

3. An important consequence of (5) is the following standard inequality [20]:

f (x+Uit)≤ f (x)+ 〈∇if (x), t〉+ Li
2 ‖t‖2

(i). (6)

Assumption 2 (Properties of Ω ). We assume that Ω : RN →R∪{+∞} is (block)
separable, i.e., that it can be decomposed as follows:

Ω(x) =
n

∑
i=1
Ωi(x

(i)), (7)

where the functionsΩi : RNi → R∪{+∞} are convex and closed.

3 Distributed Block Coordinate Descent Method

In this section we describe our distributed block coordinate descent method
(Algorithm 1). It is designed to solve convex optimization problems of the form
(1), where the data describing the instance are so large that it is impossible to store
these in memory of a single computer.

Pre-processing. Before the method is run, the set of blocks is partitioned into C
sets P(c), c = 1,2, . . . ,C. Each computer “owns” one partition and will only store
and update blocks of x it owns. That is, the blocks i ∈ P(c) of x are stored on and
updated by computer c only. Likewise, “all data” relevant to these blocks are stored
on computer c. We deal with the issues of data distribution and communication only
in Section 6.
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Algorithm Schema 1: Distributed block coordinate descent

1 choose x0 ∈ RN

2 k←− 0
3 while termination criteria are not satisfied
4 xk+1 ←− xk

5 for each computer c ∈ {1, . . . ,C} in parallel do

6 sample a set of coordinates Z(c)
k ⊆ P(c) of size τ , uniformly at random

7 for each thread i ∈ Z(c)
k in parallel do

8 compute an update h(i)(xk)

9 xk+1 ←− xk+1 +Uih(i)(xk)

10 k←− k+1

Distributed Sampling of Blocks. In Step 6 of Algorithm 1, each computer c

chooses a random subset Z(c)
k of blocks from its partition P(c). We assume that

|Z(c)
k | = τ , and that it is chosen uniformly at random from all subsets of P(c) of

cardinality τ . Moreover, we assume the choice is done independently from all
history and from what the other computers do in the same iteration. Formally, we

say that the set of blocks chosen by all computers in iteration k, i.e., Zk = ∪C
c=1Z(c)

k ,
is a (C,τ)-distributed sampling.

For easier reference in the rest of the paper, we formalize the setup described
above as Assumption 3 at the end of this section (where we drop the subscript k,
since the samplings are independent of k).

Computing and Applying Block Updates. In Steps 7–9, each computer c

first computes and then applies updates to blocks i ∈ Z(c)
k to xk. This is done on

each computer in parallel. Hence, we have two levels of parallelism: across the
nodes/computers and within each computer. The update to block i is denoted by
h(i)(xk) and arises as a solution of an optimization problem in the lower dimensional
space RNi :

h(i)(xk)← arg min
t∈RNi

〈∇if (xk), t〉+ βwi

2
‖t‖2

(i) +Ωi(x
(i)
k + t). (8)

Our method is most effective when this optimization problem has a closed form
solution, which is the case in many applications. Note that nearly all information

that describes problem (8) for i ∈ P(c) is available at node c. In particular, x(i)k is
stored on c. Moreover, we can store the description of Ωi, norm ‖ · ‖(i) and the pair

(β ,wi), for i ∈ P(c), on node c and only there.
Note that we did not specify yet the values of the parameters β and w =

(w1, . . . ,wn). These depend on the properties of f and sampling Ẑ. We shall give
theoretically justified formulas for these parameters in Section 4.

Communication. Finally, note that in order to find h(i)(xk), each computer needs

to be able to compute∇if (xk) for blocks i∈ Z(c)
k ⊆ P(c). This is the only information
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that an individual computer can not obtain from the data stored locally. We shall
describe an efficient communication protocol that allows each node to compute
∇if (xk) in Section 6.

Assumption 3 (Distributed sampling). We make the following assumptions:

1. Balanced partitioning. The set of blocks is partitioned into C groups
P(1), . . . ,P(C), each of size s := n/C. That is,

a. {1,2, . . . ,n}= ∪C
c=1P(c),

b. P(c′)∩P(c′′) = /0 for c′ �= c′′,
c. |P(c)|=: s for all c.

2. Sampling. For each c ∈ {1, . . . ,C}, the set Ẑ(c) is a random subset of P(c) of size
τ ∈ {1,2, . . . ,s}, where each subset of size τ is chosen with equal probability.

We refer call the random set-valued mapping Ẑ := ∪C
c=1Ẑ(c) by the name (C,τ)-

distributed sampling.

4 Expected Separable Overapproximation

The following concept was first defined in [26]. It plays a key role in the complexity
analysis of randomized coordinate descent methods.

Definition 1 (ESO). Let Ẑ be any uniform sampling, i.e., a random sampling of
blocks for which Prob(i ∈ Ẑ) = Prob(j ∈ Ẑ) for all i, j ∈ [n]. We say that function f
admits an ESO with respect to sampling Ẑ, with parameters β > 0 and w ∈ Rn

>0, if
the following inequality holds for all x,h ∈RN :

E[f (x+ h[Ẑ])]≤ f (x)+ E[|Ẑ|]
n

(
〈∇f (x),h〉+ β

2 ‖h‖2
w

)
. (9)

For simplicity, we will sometimes write (f , Ẑ)∼ ESO(β ,w).

In the rest of this section we derive an ESO inequality for f satisfying Assump-
tion 1 (smooth, convex, partially separable) and for sampling Ẑ satisfying Assump-
tion 3 ((C,τ)-distributed sampling). This has not been done before in the literature.
In particular, we give simple closed-form formulas for parameters β and w, which
we shall use in Section 5 to shed light on the performance of the method.

We first need to establish an auxiliary result. We use [n] to denote {1,2, . . . ,n}.
Lemma 1. Let Ẑ = ∪C

c=1Ẑ(c) be a (C,τ)-distributed sampling. Pick J ⊆ [n] and
assume that |P(c) ∩ J| = ξ for some ξ ≥ 1 and all c. Let κ = κ(|Ẑ ∩ J|, i) be any
function that depends on |Ẑ∩ J| and i ∈ [n] only. Then

E

[
∑

i∈Ẑ∩J

κ(|Ẑ∩ J|, i)
]
= E

[
|Ẑ∩ J|

Cξ ∑
i∈J

κ(|Ẑ∩ J|, i)
]
. (10)
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Proof. Let us denote by J(c) = J∩P(c), ζ = |Ẑ∩ J| and ζ (c) = |Ẑ∩ J(c)|. Then

E

[
∑

i∈Ẑ∩J

κ(ζ , i)

]
= E

[
E

[
∑

i∈Ẑ∩J

κ(ζ , i) | ζ
]]

= E

[
E

[
E

[
∑

i∈Ẑ∩J

κ(
C

∑
c=1

ζ (c), i) | ζ (1), . . . ,ζ (C),
C

∑
c=1

ζ (c) = ζ

]
| ζ

]]

= E

[
E

[
E

[
C

∑
c=1

∑
i∈Ẑ(c)∩J(c)

κ(ζ , i) | ζ (1), . . . ,ζ (C)
]
|

C

∑
c=1

ζ (c) = ζ

]]

= E

[
E

[
C

∑
c=1

ζ (c)

ξ ∑
i∈∩J(c)

κ(ζ , i) |
C

∑
c=1

ζ (c) = ζ

]]

= E

[
C

∑
c=1

ζ
ξC ∑

i∈∩J(c)
κ(ζ , i)

]
= E

[
ζ
ξC∑i∈J

κ(ζ , i)

]
. �

The main technical result of this paper follows. This is a generalization of a result
from [26] for partially separable f and τ-nice sampling to the distributed (c > 1)
case. Notice that for C = 1 we have ξ = ω .

Theorem 4 (ESO). Let f satisfy Assumption 1 and Ẑ satisfy Assumption 3. Let1

ξ := max{|P(c) ∩ J| : c ∈ {1, . . . ,C}, J ∈ J }. Then (f , Ẑ) admits ESO with
parameters β and w given by

β = 1+
(ξ − 1)(τ− 1)
max{1,s− 1} +(C− 1)

ξτ
s
, (11)

and wi = Li, i = 1,2, . . . ,n.

Proof. For fixed x ∈ RN , define φ(h) := f (x+ h)− f (x)−〈∇f (x),h〉. Likewise, for
all J ∈J we define φJ(h) := fJ(x+ h)− fJ(x)−〈∇fJ(x),h〉. Note that

φ(h) = ∑
J∈J

φJ(h). (12)

Also note that the functions φJ and φ are convex and minimized at h = 0, where
they attain the value of 0. For any uniform sampling, and hence for Ẑ in particular,

and any a ∈ RN , one has E[〈a,h[Ẑ]〉] = E[|Ẑ|]
n 〈a,h〉, and therefore

E[φ(h[Ẑ])] = E[f (x+ h[Ẑ])]− f (x)− E[|Ẑ|]
n 〈∇f (x),h〉. (13)

1Note that ξ ∈ {!ωC ", . . . ,ω}.
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Because of this, and in view of (9) and the fact that as E[|Ẑ|] = Cτ ,2 we only need
to show that

E[φ(h[Ẑ])]≤ Cτ
n
β
2 ‖h‖2

w. (14)

Our starting point in establishing (14) will be the observation that from (6) used
with t = h(i) we get

φ(Uih
(i))≤ Li

2 ‖h(i)‖2
(i), i ∈ [n]. (15)

To simplify the proof, we shall without loss of generality assume that |P(c)∩J|=
ξ for all c∈ {1,2, . . . ,C} and J ∈J for some constant ξ > 1. This can be achieved
by extending the sets J ∈J by introducing dummy dependencies (note that the
assumptions of the theorem are still satisfied after this change). For brevity, let us
write θJ,Ẑ := |J∩ Ẑ| and h[i] := Uih(i). Fixing J ∈J and h ∈ RN , we can estimate

E[φJ(h[Ẑ])]
(2)
= E

[
φJ

(
∑
i∈Ẑ

h[i]

)]
= E

[
φJ

(
∑

i∈Ẑ∩J

h[i]

)]

= E

[
φJ

(
1
θJ,Ẑ
∑

i∈Ẑ∩J

θJ,Ẑh[i]

)]
≤ E

[
1
θJ,Ẑ
∑

i∈Ẑ∩J

φJ

(
θJ,Ẑh[i]

)]

(10)
= E

[
1
θJ,Ẑ

(
θJ,Ẑ
Cξ ∑

i∈J

φJ

(
θJ,Ẑh[i]

))]
=

1
Cξ

E

[
∑
i∈J

φJ

(
θJ,Ẑh[i]

)]

=
1

Cξ
E

[
∑

i∈[n]
φJ

(
θJ,Ẑh[i]

)]
. (16)

In the second equation above we have used the assumption that φJ depends on
blocks i ∈ J only. The only inequality above follows from convexity of φJ . Note
that this step can only be performed if the sum is over a nonempty index set, which
happens precisely when θJ,Ẑ ≥ 1. This technicality can be handled at the expense
of introducing a heavier notation (which we shall not do here), and (16) still holds.
Finally, in one of the last steps we have used (10) with κ(|Ẑ∩ J|, i)← φJ(θJ,Ẑh[i]).

2In fact, |Ẑ|= Cτ with probability 1.
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By summing up inequalities (16) for J ∈J , we get

E
[
φ(h[Ẑ])

]
(12)
= ∑

J∈J
E
[
φJ(h[Ẑ])

] (16)
≤ 1

Cξ ∑J∈J
E

[
∑

i∈[n]
φJ

(
θJ,Ẑh[i]

)]

(12)
=

1
Cξ

E

[
∑

i∈[n]
φ
(
θJ,Ẑh[i]

)] (15)
≤ 1

Cξ
E

[
∑

i∈[n]
Li
2 ‖θJ,Ẑh(i)‖2

(i)

]

=
1

2Cξ
E

[
θ 2

J,Ẑ ∑
i∈[n]

Li‖h(i)‖2
(i)

]
(3)
=

1
2Cξ

‖h‖2
wE

[
θ 2

J,Ẑ

]
. (17)

We now need to compute E[θ 2
J,Ẑ

]. Note that the random variable θJ,Ẑ is the sum of

C independent random variables θJ,Ẑ =∑C
c=1 θJ,Ẑ(c) , where θJ,Ẑ(c) has the simple law

Prob(θJ,Ẑ(c) = k) =

(
ξ
k

)(
s− ξ
τ− k

)
/

(
s
τ

)
.

We therefore get

E[θ 2
J,Ẑ ] = E[(

C

∑
c=1

θJ,Ẑ(c) )
2] = CE[(θJ,Ẑ(c) )

2]+C(C− 1)(E[θJ,Ẑ(c) ])
2

= C ξτ
s

(
1+ (ξ−1)(τ−1)

max{1,s−1}
)
+C(C− 1)

(
ξ
s τ
)2

. (18)

It only remains to combine (17) and (18) to get (14). �
Note that ESO inequalities have recently been used in the analysis of distributed

coordinate descent methods by Richtárik and Takáč [27] and Fercoq et al. [7].
However, their assumptions on f and derivation of ESO are very different and hence
our results apply to a different class of functions.

5 Iteration Complexity

In this section, we state two iteration complexity results for Algorithm 1. Theorem 5
deals with a non-strongly convex objective and shows that the algorithm achieves
sub-linear rate of convergenceO( 1

ε ). Theorem 6 shows Algorithm 1 achieves linear
convergence rate O(log 1

ε ) for a strongly convex objective.
However, we wish to stress that in high dimensional settings, and especially

in applications where low- or medium-accuracy solutions are acceptable, the
dependence of the method on ε is somewhat less important than its dependence
on data size through quantities such as the dimension N and the number of blocks n,
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and on quantities such as the number of computers C and number of parallel updates
per computer τ , which is related to the number of cores.

Notice that once the ESO is established by Theorem 4, the complexity results,
Theorems 5 and 6, follow from the generic complexity results in [26, 39],
respectively.

5.1 Convex Functions

Theorem 5 (Based on [39]). Let f satisfy Assumption 1 and sampling Ẑ satisfy
Assumption 3. Let xk be the iterates of Algorithm 1 applied to problem (1), where
parameters β and w are chosen as in Theorem 4 and the random sets Zk are iid,
following the law of Ẑ. Then for all k ≥ 1,

E [F(xk)−F∗]≤ n
n+Cτk

(
β
2
‖x0− x∗‖2

w +F(x0)−F∗
)
. (19)

Note that the leading term in the bound decreases as the number of blocks
updated in a single (parallel) iteration, Cτ , increases. However, notice that the
parameter β also depends on C and τ . We shall investigate this phenomenon in
Section 5.3 and show that the level of speed-up one gets by increasing C and/or τ
(where by speed-up we mean the decrease of the upper bound established by the
theorem) depends on the degree of separability ω of f . The smaller ω is, the more
speed-up one obtains.

5.2 Strongly Convex Functions

If we assume that F is strongly convex with respect to the norm ‖ · ‖w then the
following theorem shows that F(xk) converges to F∗ linearly, with high probability.

Definition 2 (Strong Convexity). Function φ : RN →R∪{+∞} is strongly convex
with respect to the norm ‖ · ‖w with convexity parameter μφ (w)≥ 0 if

φ(y) ≥ φ(x)+ 〈φ ′(x),y− x〉+ μφ (w)
2 ‖y− x‖2

w, ∀x,y ∈ domφ , (20)

where φ ′(x) is any subgradient of φ at x.

Notice that by setting μφ (w) = 0, one obtains the usual notion of convexity.
Strong convexity of F may come from f or Ω (or both); we write μf (w) (resp.
μΩ (w)) for the (strong) convexity parameter of f (resp. Ω ). It follows from (20)
that if f and Ω are strongly convex, then F is strongly convex with, e.g., μF(w) ≥
μf (w)+ μΩ (w).
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Theorem 6 (Based on [26]). Let us adopt the same assumptions as in Theorem 5.
Moreover, assume that F is strongly convex with μf (w)+μΩ (w)> 0. Choose initial
point x0 ∈ RN, target confidence level 0 < ρ < 1, target accuracy level 0 < ε <
F(x0)−F∗ and

K ≥ n
Cτ

β + μΩ (w)
μf (w)+ μΩ (w)

log

(
F(x0)−F∗

ερ

)
. (21)

If {xk} are the random points generated by Algorithm 1, then Prob(F(xK)−F∗ ≤
ε)≥ 1−ρ .

Notice that now both ε and ρ appear inside a logarithm. Hence, it is easy to
obtain accurate solutions with high probability.

5.3 Parallelization Speed-Up Is Governed by Sparsity

If we assume that ‖x0−x∗‖2
w # F(x0)−F∗, then in view of Theorem 5, the number

of iterations required by our method to get an ε solution in expectation is O( β
Cτε ).

Hence, the smaller β
Cτε is, the fewer are the iterations required. If β were a constant

independent of C and τ , one would achieve linear speed-up by increasing workload
(i.e., by increasing Cτ). However, this is the case for C = 1 and ω = 1 only (see
Theorem 4). Let us look at the general case. If we write η := ξ

s (this a measure of
sparsity of the partitioned data), then

β
Cτ

(11)
=

1+ (ξ−1)(τ−1)
max{1,s−1} +(C− 1) ξτs

Cτ
≤ 1+ ξ (τ−1)

s +(C− 1) ξτs
Cτ

=
1+η(τ− 1)+ (C− 1)ητ

Cτ
=

1+η(Cτ− 1)
Cτ

=
1

Cτ
+η

(
1− 1

Cτ

)
.

As expected, the first term represents linear speed-up. The second term represents
a penalty for the lack of sparsity (correlations) in the data. As Cτ increases, the
second term becomes increasingly dominant, and hence slows the speed-up from
almost linear to none. Notice that for fixed η , the ratio β

Cτ as a function of Cτ is
decreasing and hence we always get some speed-up by increasing Cτ .

Figure 1 (left) shows the speed-up factor ( Cτ
β ; high values are good) as a function

of Cτ for different sparsity levels η . One can observe that sparse problems achieve
almost linear speed-up even for bigger value of Cτ , whereas for, e.g., η = 0.2,
almost linear speed-up is possible only up to Cτ = 10. For sparser data with η =
0.01, linear speed-up can be achieved up to Cτ = 100. For η = 0.001, we can use
Cτ = 103. The right part of Figure 1 shows how sparsity affects speed-up for a fixed
number of updates Cτ . Again, the break-point of almost linear speed-up is visibly
present.
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Fig. 1 Speed-up gained from updating more blocks per iteration is almost linear initially and
depending on sparsity level η , may become significantly sublinear

Similar observations in the non-distributed setting were reported in [26].
The phenomenon is not merely a by-product of our theoretical analysis; it also
appears in practice.

5.4 The Cost of Distribution

Notice that in a certain intuitive sense, variants of Algorithm 1 are comparable, as
long as each iteration updates the same number Cτ of blocks. This allows us to
vary C and τ , while keeping the product constant. In particular, let us consider two
scenarios:

1. Consider C computers, each updating τ blocks in parallel, and
2. Consider 1 computer updating Cτ blocks in each iteration in parallel.

For the sake of comparison, we assume that the underlying problem is small
enough so that it can be stored on and solved by a single computer. Further, we
assume that F is strongly convex, μ(Ω) = 0 and s = n

C ≥ 2. Similar comparisons
can be made in other settings as well, but given the page restrictions, we restrict
ourselves to this case only.

In the iteration-complexity bound (21), we notice that the only difference is in
the value of β . Let β1 be the β parameter in the first situation with C computers,
and β2 be the β parameter in the second situation with one computer. The ratio of
the complexity bounds (21) is hence equal to the ratio

β1
β2

=
(1+ (ξ−1)(τ−1)

s−1 +(C− 1) ξτs )

1+ (ω−1)(Cτ−1)
Cs−1

.
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Table 1 Lower and upper
bounds on β1/β2 for a
selection parameters n,ω,C
and τ

n ω C τ β2 LB UB

106 102 10 50 1.049 1.0000086 1.4279673

107 102 10 50 1.005 1.0000009 1.0446901

108 102 100 100 1.009 1.0000010 1.9801990

Notice that ω
C ≤ ξ ≤ ω . The ratio β1/β2 is increasing in ξ . We thus obtain the

following bounds:

LB :=
1+ (ω−C)(τ−1)

n−C +(C− 1)ωτn
1+ (ω−1)(Cτ−1)

n−1

≤β1

β2
≤1+ (ω−1)(Cτ−C)

n−C +(C− 1)ωCτ
n

1+ (ω−1)(Cτ−1)
n−1

=: UB.

Table 1 presents the values of LB and UB for various parameter choices and
problem sizes. We observe that the value of β2 is around 1. The value of β1 depends
on a particular partition, but we are sure that β1 ∈ [β2 ·LU,β2 ·UB]. In Table 1,
UB is less than 2, which means that by distributing the computation, the method
will at most double the number of iterations. However, larger values of UB, albeit
UB � C, are possible for different settings of the parameters. For a different class
of functions f , an upper bound of 2 was proven in [27] and improved in [7] to the
factor 1+ 1/(τ− 1) whenever τ > 1.

Of course, if the problem size exceeds the memory available at a single computer,
the option of not distributing the data and computation may not be available. It
is reassuring, though, to know that the price we pay for distributing the data and
computation, in terms of the number of iterations, is bounded. Having said that, a
major complication associated with any distributed method is the communication,
which we discuss in the two following sections.

6 Two Implementations

Although our algorithm and results apply to a rather broad class of functions, we
focus on two important problems in statistics and machine learning in describing our
computational experience, so as to highlight the finer details of the implementations.

6.1 An Implementation for Sparse Least Squares

In many statistical analyses, e.g., linear regression, one hopes to find a solution
x with only a few non-zero elements, which improves interpretability. It has been
recognized, however, that the inclusion of the number of non-zero elements, ‖x‖0, in
the objective function raises the complexity of many efficiently solvable problems to
NP-Hard [8, 18]. Recently, a number of randomized coordinate descent methods try
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to handle the �0-norm directly [24], but only local convergence can be guaranteed.
Fortunately, the inclusion of the sum of absolute values, ‖x‖1, provides a provably
good proxy, which is also known as �1 regularization. There is a large and growing
body of work on both practical solvers for non-smooth convex problems, obtained
by such a regularization, and their convergence properties, when one restricts
oneself to a single computer storing the complete input. Such solvers are, however,
most useful in high-dimensional applications, where the size of the data sets often
exceeds the capacity of random-access memory of any single computer available
today.

Hence, the first implementation we present is a distributed coordinate-descent
algorithm for �1-regularized (“sparse”) least squares. The key components needed
by Algorithm 1 are the computation of Li, ∇if (xk), and solving of a block-wise
minimization problem. Note that∇if (x) =∑m

j=1−Aj,i(y(j)−Aj:x), where Aj: denotes
j-th row of matrix A, and Li = ‖A:i‖2

2. The only difficulty is that given the data
partition {P(c)}C

c=1, no single computer c is able to compute ∇if (x) for any i ∈
P(c). The reasoning follows from a simple observation: If we wanted to compute
∇if (xk) for a given xk from scratch, we would have to access all coordinates of xk,
vector y, and all non-zero elements of the input matrix A. This could be avoided by
introducing an auxiliary vector gk := g(xk) defined as

gk := Axk− y. (22)

Once the value of gk = g(xk) is available, a new iterate is

xk+1 = xk +
C

∑
c=1
∑

i∈Z
(c)
k

Uih
(i)(xk). (23)

and gk+1 = g(xk+1) can be easily expressed as

gk+1 = gk +
C

∑
c=1
∑

i∈Z
(c)
k

A:ih
(i)(xk)

︸ ︷︷ ︸
δg(c)

. (24)

Note that the value δg(c) can be computed on computer c as all required data are
available on computer c. Subsequently, gk+1 can be obtained by summation and the
formula for ∇if (x) will take the form ∇if (x) = AT

:ig = ∑m
j=1 Aj,ig(j). Once we know

how to compute ∇if (x) and Li, all that remains to be done is to solve the problem

min
t∈R

a+ bt+
c
2

t2 +λ |d+ t|, (25)

where a,b,d ∈ R and c,λ ∈ R>0, which is given by a soft-thresholding formula
t∗ = sgn(ζ )(|ζ |− λ

c )+− d, where ζ = d− b
c .
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6.2 An Implementation for Training SVM

Let us present another example implementation. The key problem in supervised
machine learning is the training of classifiers. Given a matrix A ∈ Rm×N , a
compatible vector y ∈ Rm, and constant γ > 0, the goal is to find a vector x ∈ RN

which solves the following optimization problem:

min
x∈RN

F(x) := γ‖x‖1︸ ︷︷ ︸
Ω(x)

+
m

∑
j=1

L (x,Aj:,y
(j))

︸ ︷︷ ︸
f (x)

, (26)

where Aj: again denotes j-th row of matrix A and L is a loss function, such as

LSL(x,Aj:,y
(j)) :=

1
2
(y(j)−Aj:x)

2, square loss, (SL)

LLL(x,Aj:,y
(j)) := log(1+ e−y(j)Aj:x), logistic loss, (LL)

LHL(x,Aj:,y
(j)) :=

1
2

max{0,1− y(j)Aj:x}2, hinge square loss. (HL)

The input (A,y) is often referred to as the training data. Rows of matrix A represent
observations of N features each and y are the corresponding classifications to train
the classifier on.

Square hinge loss is a popular choice of L , but is not smooth. It is well known
that the dual has the form [9, 33, 36]:

min
x∈Rm

F(x) :=
1

2λm2 xTQx− 1
m

xT1
︸ ︷︷ ︸

f (x)

+
m

∑
i=1
Φ[0,1](x

(i))

︸ ︷︷ ︸
Ω(x)

, (SVM-DUAL)

where Φ[0,1] is the characteristic (or “indicator”) function of the interval [0,1] and

Q∈Rm×m is the Gram matrix of the data, i.e., Qi,j = y(i)y(j)Ai:AT
j: . If x∗ is an optimal

solution of (SVM-DUAL), then w∗ = w∗(x∗) = 1
λm ∑

m
i=1 y(i)(x∗)(i)AT

i: is an optimal
solution of the primal problem

min
w∈RN

P(w) :=
1
N

N

∑
i=1

L (w,Ai:,y
(i))+

λ
2
‖w‖2, (27)

where L (w,Ai:,y(i)) = max{0,1− y(i)Ai:w}.
Our second example implementation is a distributed coordinate-descent algo-

rithm for SVM in the (SVM-DUAL) formulation. In this case, we define
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gk :=
1
λm

m

∑
i=1

x(i)k y(i)AT
i: . (28)

Then

∇if (x) =
y(i)Ai:gk− 1

m
, Li =

‖Ai:‖2

λm2 . (29)

The optimal step length is then solution of a one-dimensional problem:

h(i)(xk) = argmin
t∈R

∇if (α)t+
β
2

Lit
2 +Φ[0,1](α(i) + t) (30)

= clip[−α(i),1−α(i)]

(
λm(1− y(i)Ai:gk)

β‖Ai:‖2

)
, (31)

where for a < b

clip[a,b](ζ ) =

⎧⎪⎪⎨
⎪⎪⎩

a, if ζ < a,

b, if ζ > b,

ζ , otherwise.

The new value of the auxiliary vector gk+1 = g(xk+1) is given by

gk+1 = gk +
C

∑
c=1
∑

i∈Z
(c)
k

1
λm

h(i)(xk)y
(i)AT

i:

︸ ︷︷ ︸
δg(c)

(32)

and the duality gap G(xk) = P(gk)+F(xk) can be easily obtained [11, 33, 36] as

G(xk) =
1
m

m

∑
i=1

(L (gk,Ai:,y
(i))− x(i)k )+λ‖gk‖2. (33)

7 Per-iteration Complexity

Using the auxiliary vector gk, which was introduced in the previous section,
Algorithm 1 has two alternating and time-consuming sub-procedures, namely:

1. computation of an update ∑
i∈Z(c)

k
Uih(i)(xk) and the accumulation of gk: δg(c),

2. updating gk to gk+1.

Let us denote the run-time of the first sub-procedure by T1(τ), considering this
depends on τ , and the run-time of a second one by T2. We will neglect the rest
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of the run-time cost, such as managing a loop, evaluation of termination criteria,
measuring a computation time, etc. The total run-time cost TT is hence given by

TT = O

(
β

Cτ
(T1(τ)+T2)

)
(34)

where we consider the case when μΩ (w) ≡ 0 in (21). Let us now for simplicity
assume that the first sub-procedure is linear in τ , i.e., T1(τ) = τT1(1) =: τT1.
Then

TT = O

(
β

Cτ
(τT1 +T2)

)
. (35)

Numerical values of T1 and T2 could be estimated, given problem sparsity and
underlying hardware, or can be measured during the run.

Optimal Choice of Sampling Parameter τ . In the previous paragraph, we gave
an estimate of the complexity of a single iteration. In this paragraph, we answer the
question of how to choose a τ given times T1,T2. For variable β , we have more
options, but we stick to the most general one given in (11). Given that s ≥ 2, we
have

TT = O

(
1+ (ξ−1)(τ−1)

s−1 +(C−1) ξτs
C

(
r1,2 +

1
τ

)
T2

)
= O

((
s
ξC

+ τ
)(

r1,2 +
1
τ

))
,

(36)

where r1,2 =
T1
T2

is a work to communication ratio. The optimal parameter τ∗ can be
obtained by minimizing (36) and is given by

τ∗ =
√

s
r1,2 ξ C

. (37)

Therefore, smaller values of r1,2 imply that we should do more work in each
iteration, and hence bigger values of τ should be chosen. This is quite natural, as one
should tune the parameters in such a way that time spent in communication should
be in comparable with that of effective computation (Figure 2).

Fig. 2 An illustration of a naïve (PS) approach (left), which alternates between parallel regions,
where computations take place, and serial regions dedicated to MPI communications with other
computers. An alternative (FP) approach (right) dedicates the communication task to one thread
and uses other threads for computation



Distributed Block Coordinate Descent for Minimizing Partially Separable Functions 279

Fig. 3 Schematic diagram of
a standard reduce all
implementation. The goal is
to compute ∑C

c=1 δg(c). The
arrows show data flow
between computers

Message Passing Interface (MPI). In order to discuss finer details of the
implementations, we need to introduce the architecture we use. We use OpenMP
[23] for dealing with concurrency within a single computer and MPI [35] as the
abstraction layer for network communication. In MPI, one passes data from one
MPI process to another MPI process, which may run on another computer. (We
disregard the concept of groups for brevity.) Communication can involve any subset
of computers, which run MPI processes. Communication can be either blocking
(“synchronous”) or non-blocking (“asynchronous”). A collective operation involves
the communication among two or more MPI processes. An example of a collective
operation is a barrier, where computers wait until all of them reach the same
point in the algorithm. Another common collective operation is reduce all, which
is parametrized by an arbitrary operation that takes a set of elements and produces a
single element of the same type. This “reduce” operation is applied to all elements
of the particular type stored across all MPI processes and the result is returned to
all MPI processes. For example, let us assume that each computer stores a vector
δg(c) ∈ Rm and the goal is to sum it up, i.e., to compute δg(1,...,C) = ∑C

c=1 δg(c) and
to make this result available on each computer. Figure 3 shows a standard approach,
which leads to the desired result. From the performance point of view, however, the
use of reduce all should be minimized, as it involves an implicit synchronization
and leaves most of the computers idle throughout the collective operation.

This suggests the following range of progressively better-performing variants:
Alternating Parallel and Serial Regions (PS). The naïve implementation

alternates two sub-procedures. One, which is computationally heavy and is done
in parallel, but with no MPI communication, and another one, which is purely
communicational. As an easy fix, one can dedicate one thread to the communication
and other threads within the same computer to computation. We call this approach
Fully Parallel (FP). Figure 2 compares the naïve strategy (left) with the FP (right).

Reduce All (RA). As mentioned above, the use of reduce all operations signif-
icantly decreases the performance of many distributed algorithms. It is, however,
the preferred form of communication between computers close to each other in the
computer network, such as computers directly connected by a network cable. The
use of asynchronous methods is also preferred over synchronous methods.
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Fig. 4 Illustration of ASL
method for C = 4. During
k-th iteration, computer c

obtains its contribution δg(c)k
but asynchronically sends an

accumulated update δG(c)
k to

its successor

Asynchronous StreamLined (ASL). We propose another pattern of commu-
nication, where each computer in one iteration sends only one message to the
closest computer, asynchronously, and receives only one message from another
computer close-by, asynchronously. The communication hence takes place in a
ring. This tweak, however, requires a significant change in the algorithm. Figure 4
illustrates the data flow of messages at the end of iteration k for C = 4. We fix an
order of computers in a ring, denoting predR(c) and succR(c) the two computers
neighbouring computer c along the two directions on the ring. Computer c always
receives data only from computer predR(c) and sends data only to computer

succR(c). Let us denote by δG(c)
k the data, which computer c sends to computer

succR(c) at the end of iteration k. When computer c starts iteration k, it has already

received δG(predR(c))
k−1 .3 Hence the data, which will be sent at the end of iteration k by

computer c are:

δG(c)
k = δG(predR(c))

k−1 − δg(c)k−C + δg(c)k . (38)

It should be noticed that at the end of each iteration in the ASL procedure, each

computer has a different vector gk, which we denote g(c)k . The update rule is

g(c)k+1 = g(c)k + δg(c)k + δG(predR(c))
k − δg(c)k−C+1. (39)

The clear advantage of the ASL method is a decrease in communication time. On
the other hand, it comes with a cost of slower propagation of information. Indeed, it
takes C− 1 iterations to propagate information to all computers. It also comes with

bigger storage requirements, as at iteration k, we have to have all vectors δg(c)l for
k−C≤ l≤ k stored on computer c.

Asynchronous Torus (AST). There is a compromise solution, though, which
inherits many desirable features of both RA and ASL. This employs a toroidal
networking topology, which is common in high-performance computing (HPC) in
general, and HPC using InfiniBand networks [10], in particular. Let us assume that
C is a multiple of r ∈N, where r represents the width of a torus, i.e., C computers are
partitioned into subsets Ri each with size r. Each group Ri has a root computer. These
root computers aggregate updates from their respective groups, e.g., using a local

3For the start of the algorithm we define δg(c)l = δG(c)
l = 0 for all l < 0.
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Table 2 Summary of additional memory and computation require-
ments for strategies RA, SLA, AST

Strategy Memory for g’s Communication Extra computation

RA 2m Tra 0

SLA (2+C)m Tp2p 4m additions

AST (2+C/r)m Tp2p +Tra/r 8m additions

reduce all operation, in each iteration and exchange those update in an asynchronous
ring with two other adjacent root computers. Thus the communication between the
root nodes follows the ASL communication pattern. The AST approach decreases
the propagation time from C to C

r , additional storage is also decreased by factor r,
and the overall communication complexity remains low.

The Comparison. Changing from the FP approach to the PS approach does not
require much computational or storage overhead, but can reduce the idle time of
processors. However, changing from RA to SLA or AST brings significant storage
requirements, while it reduces both communication and idle time significantly.
Table 2 summarizes maximum memory requirements on each single node of the
cluster, time spent in communication, and amount of data transferred over the
network. Once the time spent in communication is measured or estimated, one can
pick the most appropriate strategy. Notice that the wall-clock time required for the
reduce all operation, Tra, is typically of the order O(logC) ·Tp2p, where Tp2p is the
time required by the point-to-point transmission.

8 Numerical Experiments

In this section we present numerical evidence of the efficiency of the distributed
(block) coordinate-descent method.

The Code. The code of the distributed (block) coordinate-descent solver is part
of our AC-DC library, available at http://code.google.com/p/ac-dc/. The library is
written in C++ using OpenMP. The extensive use of template classes, Boost::MPI,
and Boost.Serialization makes it easy to change the composite function and the
precision of the computation. Both wall-clock and CPU-time were measured using
Boost::Timers, which achieve nano-second accuracy on recent processors running
recent versions of Linux.

The Facility. Our empirical tests were conducted in UK’s HPC facility, HECToR,
equipped with multi-core computers connected using Infiniband [10]. In particular,
in Phase 3 of the facility, which is a Cray XE6 cluster, we have used up to 128
nodes, equipped with two AMD Opteron Interlagos 16-core processors and 32 GB
of memory each. This gave us 4,096 cores in total, interconnected using Cray
Gemini routers in a 3D torus. Each Gemini router was connected to processors and
random-access memory of two nodes via HyperTransport links. Each router is then

http://code.google.com/p/ac-dc/
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connected to ten other routers. In practice, the latency is about 1–1.5μs and the
capacity of each link is 8 GBs−1. The facility ran a Cray Linux Environment, based
on SuSE Linux.

SVM. One of the goals of this paper is to train huge sparse support-vector
machines (SVM) that do not fit into the memory of a single computer. In the machine
learning literature, one often performs experiments on instances of moderate size,
e.g., 100 MB [9, 34, 36]. Well-known instances of this scale include, e.g., CCAT
variant of RCV1 [13], Astro-ph [34], and COV [34]. In this section, we focus
on a larger dataset, known as WebSpam [14]. This dataset consists of 350,000
observations (rows) and 16,609,143 features (columns). The size of the instance
is 25 GB. Figure 5 shows the execution time and duality gap for WebSpam dataset,
using C = 16 MPI processes, with each process using 8 threads. τ is the number of
coordinates updated by one MPI process during one iteration. As expected, the main
run-time cost it not computing the updates, but updating g. Let us remark that ε is
usually not particularly small in the machine-learning community. In experimenting
with small ε , we just wanted to demonstrate that our algorithm is able to close the
duality gap within the limits of machine precision. The truly important measures
of the performance of the classifier, e.g., 0–1 loss or prediction error, are actually
within 10 % after the first minute, which is the first time we compute it. In practice,
a duality gap of 0.1 or 0.01 can be sufficient for machine learning problems.

Fig. 5 Evolution of duality
gap for the WebSpam dataset
for various choices of τ
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Fig. 6 Evolution of
F(xk)−F∗ in time. ASL-FP
significantly outperforms
RA-FP. The loss F is pushed
down by 25 degrees of
magnitude in less than 30 min
(3TB problem)
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Sparse Least Squares (LASSO). Next, we solved an artificial instance of sparse
least squares with a matrix of n= 109 rows and d = 5 ·108 columns in block-angular
form:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

A(1)
loc 0 · · · 0

0 A(2)
loc · · · 0

...
...

. . .
...

A(1)
glob A(2)

glob · · · A(C)
glob

⎞
⎟⎟⎟⎟⎟⎟⎠
. (40)

requiring 3 TB to store. Such matrices often arise in stochastic optimization. We
used 128 nodes with 4 MPI processes on each node. Each MPI process ran 8
OpenMP threads, giving a total of 4,096 hardware threads. Each node c stored two

matrices: A(c)
loc ∈R1,952,148×976,562 and A(c)

glob ∈ R500,224×976,562. The average number

of non-zero elements per row is 175 and 1,000 for A(c)
loc and A(c)

glob, respectively.

When communicating g(c)k , only entries corresponding to the global part of A(c)

need to be communicated, and hence in RA, a reduce all operation is applied to

vectors δg(c)glob ∈R500,224. In ASL, vectors with the same length are sent. The optimal
solution x∗ has exactly 160,000 nonzero elements. Figure 6 compares the evolution
of F(xk)−F∗ for ASL-FP and RA-FP.
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9 Conclusions

Overall, distributed algorithms can be both very efficient and easy to implement,
when one picks the right approach. The first steps taken by the present authors over
the past 2 years seem to have been validated by the considerable interest [7, 11, 27]
they have generated.
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Notation Glossary

Optimization problem

N Dimension of the optimization variable (1)
x,h Vectors in RN

F F = f +Ω (loss / objective function) (1)
F∗ Optimal value, we assume F∗ >−∞
f Smooth convex function (f : RN → R) (1)
Ω Convex block separable function (Ω :

RN →R∪{+∞})
(1)

Block structure

n Number of blocks
[n] [n] = {1,2, . . . ,n} (the set of blocks) Section 2
Ni Dimension of block i (N1 + · · ·+Nn = N) Section 2
Ui An Ni×N column submatrix of the N×N

identity matrix
Section 2

x(i) x(i) = UT
i x ∈ RNi (block i of vector x) Section 2

∇if (x) ∇if (x) = UT
i ∇f (x) (block gradient of f

associated with block i)
Section 2

Li Block Lipschitz constant of the gradient
of f

(5)

L L = (L1, . . . ,Ln)
T ∈ Rn (vector of block

Lipschitz constants)
w w = (w1, . . . ,wn)

T ∈Rn (vector of positive
weights)

‖x‖w ‖x‖w = (∑n
i=1 wi‖x(i)‖2

(i))
1/2 (weighted

norm associated with x)
(3)

Ωi i-th component of Ω =Ψ1 + · · ·+Ωn (7)
μΩ (W) Strong convexity constant of Ω with

respect to the norm ‖ · ‖w

(20)

μf (W) Strong convexity constant of f with respect
to the norm ‖ · ‖w

(20)

J Subset of {1,2, . . . ,n}
x[Z] Vector in RN formed from x by zeroing out

blocks x(i) for i /∈ Z
(2)
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Block samplings

ω Degree of partial separability of f Assumption 1
Ẑ,Zk Distributed block samplings (random sub-

sets of {1,2, . . . ,n})
Section 3

C Number of nodes (partitions) Section 3
τ # of blocks updated in 1 iteration within

one partition
{P(c)}C

c=1 Partition of [n] onto C parts

Algorithm

β Stepsize parameter depending on f and Ẑ
h(i)(x) h(i)(x) = (h(x))(i) =

argmint∈RNi 〈∇if (x), t〉 + βwi
2 ‖t‖2

(i) +

Ωi(x(i) + t)

(8)



Models for Optimization of Power Systems
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Abstract This chapter provides an overview of possible approaches that can be
outlined to model and analyze the decision problems encountered in different stages
of power production and delivery. The introduced models can be used for the control
of two of the most important activities in power system management: production
and transmission. In both cases, we describe how a single producer or an entire
system can draw benefits from using optimization techniques for fine-tuning the
expansion decisions to be taken. The theoretical basis for the analysis is drawn from
different branches of operational research and optimization, ranging from mixed
integer linear programming to stochastic programming and bilevel programming.

Keywords Distributed coordinate descent • Empirical risk minimization • Sup-
port vector machine • Big data optimization • Partial separability • Huge-scale
optimization • Iteration complexity • Expected separable over-approximation •
Composite objective • Convex optimization • Communication complexity

1 Management of Electrical Power Systems

Society depends on electricity for almost all its activities, from manufacturing to
business to leisure. Electricity is a secondary energy source as it must be generated
by converting primary energy sources, such as coal, natural gas, oil, solar, wind,
and water streams. Electricity requires an exact match of demand and supply at
any time: the limited storage possibilities make it necessary to generate electrical
power according to the current load and deliver it by transmission and distribution
networks. There is no difference in electricity generated by any two sources, which
implies that it is suitable for trading. However, it is characterized by bounds on
possibilities of transmission, which implies that there is not a global market.

The power industry has undergone an increasing pressure by governments, large
industries, and investors to privatize and deregulate in the quest for efficiency
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Fig. 1 Structure of an electrical power system

and increase of social welfare. Vertically integrated utilities, which were the past
standard structure for electricity generation and delivery, have nowadays assumed
a deregulated structure, which is introducing several challenges in planning and
operating power systems. The power industry is composed of four main activities:
generation, dispatch, transmission, and distribution, see Figure 1. For a detailed
explanation of the composition of a Power System and its possible developments,
the reader may refer to [49].

Generation is the production of energy from primary sources and represents
the first step of the process. Thermal generation plants use either coal or oil; in
Combined Cycle plants, two thermal sources in sequence are used, namely gas and
steam. Since the 1973 oil crisis there is a growing interest in the possibility of using
renewable sources. Because of the technological advances, exploitation of renew-
able sources has become more and more possible and has been incentivized by the
introduction of a regulatory system which subsidizes their usage. A clear example
of these rules is the obligation for the Generation Companies (GenCos) to provide
a percentage of their total generation using renewable sources. Alternatively, they
can purchase an equivalent amount of rights, named Green Certificates, for the part
of production not covered by usage of renewable sources. Similarly, GenCos are
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compelled to the purchase of Emission Permits, in proportion to the amount of
CO2 produced when using thermal sources. In the competition among GenCos the
entrance of a new actor is usually limited by the uncertainties on their return on
investments; it is also limited by the power that can be injected into the network,
therefore, in order to foster competition, major network upgrades may be necessary.

Dispatch is used to balance the electrical system in order to guarantee matching
between load and generation at any time: it is based on short-term forecasts of the
load and generation and may require the generation units to deviate from their initial
production plan, in order to eliminate possible unbalances between demand and
supply.

Transmission is the activity of transporting electricity from the generation units
to the consumption areas. Activities related to transmission and dispatch are usually
considered as a natural monopoly, to be operated on a fair and transparent basis
by an independent system operator (ISO). There are two different options for the
ownership of the transmission network: in the first model, named ISO-GridCo,
the ISO operates the network, whose property is left to many different network
companies or the State; in the second model, named TransCo, the ISO is also the
owner of the transmission system [7, 37].

Distribution is the last stage of the delivery process to the end user after gener-
ation and transmission. It is carried out at lower voltage compared to transmission.
This activity can be carried out by different actors, which also collect the usage fees
from end users.

In electricity markets exchanges are set by identifying a matching point and
the exchange price. Given bids and offers, the market is cleared by the so-
called market operator (MO), while guaranteeing the balance between demand and
supply. Exchange prices are defined in the day-ahead market matching offers from
generators and bids from consumers at each node of the network in order to develop
a classic supply-demand equilibrium price. Such match is performed on a hourly
basis and calculated separately for areas, according to the extent of congestion and
constraints binding the cross areas transmission. The prices calculated at each node
of the transmission network are supposed to reflect the marginal cost that the system
would bear for a unit load increase in a given location in correspondence of an
optimized power flow re-dispatch within the network. For this reason this price is
referred to as locational marginal price (LMP). The relatively low possibilities for
storage, counterbalanced by fluctuating demand and supply levels imply the need
for the TransCo or ISO to coordinate the dispatch of generating units to meet the
expected demand across the transmission network. The way electricity flows into the
transmission network is determined by physical laws, therefore the amount of losses
and congestions in a particular branch of the network will determine the responses
that GenCos will provide at each node of the network and, depending on the level
of load coverage, the related LMPs.

Before deregulation, most elements of the power industry were heavily reg-
ulated. Deregulation meant new challenges and new business structures for the
players involved in energy production and delivery. However, despite changes in
different structures, market rules, and uncertainties, the underlying requirements for
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power system operations to be secure, economical, and reliable remain the same
[3, 22, 26, 50]. This has increased the need for tools dedicated to offering support
to decisions in order to optimize and manage operations both under a single
GenCo perspective and under a wide system perspective. The former approach
typically pursues the objective of maximizing the profitability stemming from
energy productions from various sources. Typical decisions at this level reflect the
amount of power to be produced under a given time window, the choice of the fuel
sources and possible generation expansion plans encompassing different types of
generation units. The latter approach is mainly focused on optimizing the system
performance, reducing social costs or maximizing a social welfare function and
providing guarantees for reliable system operations, especially for what concerns
transmission and dispatch of power flows. This is accomplished by redirecting the
electricity flows to nodes where there is more need and withdraw it from nodes
where there is more generation capacity. In addition, long-term decisions planning
on upgrades of the network are considered at this level in order to avoid congestions
and reduce the costs bore by the community.

In this chapter we present three models, each reflecting to a different level
of granularity and details the optimization of the various problems related to the
electrical power system. We will start introducing a model for supporting the
planning of power generation expansion for a single power producer. Then we will
shift our focus on the network, introducing two models for grid upgrade, the former
based on a centralized perspective, in which the ISO plans the network expansion
problem taking as granted the reactions of the power producers injecting power in
the network, while the latter takes a decentralized perspective, where decisions on
generation expansion is included in the framework as reactions of the GenCos to the
decisions taken by the TransCo.

2 A Model for Generation Expansion Planning via
Time-Consistent Risk Averse Stochastic Programming

In the literature, models for power generation expansion have been proposed with
both a deterministic and a stochastic perspective (see, e.g., [2, 8, 17, 18, 25, 43–47]).
In this section we present a decision support model for a power producer who wants
to determine the optimal planning for investment in power generation capacity in a
long-term horizon (typically, 25 years or more). The power producer operates in a
liberalized electricity market, where rules are issued by the Regulatory Authorities
with the aim of promoting the development of power production systems with
reduced CO2 emissions. Indeed, CO2 emission allowances have to be bought by the
power producer as a payment for the emitted CO2. Moreover, the Green Certificate
scheme supports power production from renewable energy sources (RES), i.e. by
geothermal, wind, biomass, and hydro power plants, and penalizes production from
conventional power plants, i.e. CCGT, coal, and nuclear power plants. Every year a
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prescribed ratio is required between the electricity produced from RES and the total
electricity produced. If the ratio attained in a given year is less than the prescribed
one, the power producer has to buy Green Certificates in order to satisfy the related
constraint; on the contrary, if the realized ratio is greater than the prescribed one,
the power producer can sell Green Certificates in the market.

The power producer, assumed to be price-taker, aims at maximizing, the profit
over the planning period. Revenues from sale of electricity depend on the electricity
market price and on the amount of electricity sold, which is bounded above by the
power producer’s market share and also depends on the number of operating hours
per year of the power plants in the production system. Investment costs depend
on the plant rated power and on the investment costs per power unit: typically for
thermal power plants, rated powers are higher and unit investment costs are lower
than for RES power plants. For conventional power plants, variable generation costs
are highly dependent on the fuel prices. Revenues and costs associated with Green
Certificate scheme depend on the Green Certificate price, as well as on the actual
ratio between production from RES and total annual production realized by the
producer every year. Finally, costs for emitting CO2 depend on the price of the
emission allowances, as well as on the amount of CO2 emitted, that greatly varies
among production technologies.

We notice that the evolution of both electricity prices and fuel costs along the
planning period are not known at the time when the investment decisions have to be
done, therefore a risk is associated with the capacity expansion problem, due to the
uncertainty of prices and of demand (see [10]). Uncertainty is included in the model
by a multistage scenario tree representing the evolution of the uncertain information
on electricity prices and cost of fuels per year. Techniques to measure the quality
of using a stochastic multistage model over a deterministic one have attracted some
interest in recent research, see, e.g., [23].

The proposed decision support model determines the evolution of the production
system along the planning horizon. In order to take into account that power plants
greatly differ in terms of construction time and industrial life, the model determines
for every technology the number of power plants whose construction has to be
started in every year of the planning period. Each new power plant is then available
for production when its construction is completed and its industrial life is not ended.

The uncertainty is modeled by a three-stage scenario tree that represents the set
Ω of alternative scenarios assumed for the evolution of prices of electricity and costs
of fuels along the planning horizon. The scenario tree is defined by a set N of nodes
and by the sets Bn of successors (children nodes) of node n, n ∈ N. A leaf node has
no successors, i.e. its associated set Bn is empty. A probability value φn is associated
with every node n ∈ N. Each path NΩ

ω from the root node to a leaf node corresponds
to one scenario ω ∈ Ω and the probability pω of scenario ω equals the probability
of its leaf node. In full generality, the planning horizon is divided in to |S| stages (in
our case |S| = 3) and every stage s ∈ S is associated with the set of nodes NS

s . The
set In indicates the years of the planning horizon associated with node n.

In order to introduce the model, we define the following sets, parameters and
decision variables.
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Sets

S Set of stages in which the planning horizon is divided
Ω set of scenarios
N Set of nodes of the scenario tree
NS

s Set of nodes in stage s ∈ S
NΩ
ω Set of nodes on the path from the root to a leaf that defines scenario ω ∈Ω

Bn Set of successors (children nodes) of node n ∈ N
I Set of years in the planning horizon
In Set of years in node n ∈ N
KT Set of thermal power plants owned by the power producer at the beginning

of the planning horizon (i.e., in year 0)
KR Set of power plants using RES owned in year 0
K Set of all power plants owned in year 0 (i.e., K = KT ∪KR)
JT Set of candidate technologies for thermal power production
JR Set of candidate technologies for power production from RES
J Set of all candidate technologies (i.e., J = JT ∪ JR)

For instance, in the scenario tree depicted in Figure 2 N = {1,2, . . . ,21},
NS

3 = {6, . . . ,21} and NΩ
4 = {1,2,9}.

Parameters

pω (–) Probability of scenario ω ∈Ω
pN

n (–) Probability of node n ∈ N
φn (–) Conditional probability of reaching node n ∈ N from its

predecessor
vJ

j,i,n (ke /GWh) Variable production cost of a thermal power plant of candidate
technology j ∈ JT in year i ∈ It in node n ∈ NS

s , s ∈ S
vK

k,i,n (ke /GWh) Variable production cost of thermal power plant k ∈ KT in
year i in node n

πE
i,n (ke /GWh) Market electricity price in year i in node n
πGC

i,n (ke /GWh) Green Certificate price in year i in node n

πCO2
i,n (ke /t) CO2 emission permit price in year i in node n

Mi,n (GWh) Demand in year i in node n up to the producer
Sj (years) Construction time of a power plant of candidate technology

j ∈ J
LJ

j (years) Industrial life of a power plant of candidate technology j ∈ J
Zj (–) Number of sites ready for constructing a power plant of

candidate technology j ∈ J
P

J
j (MW) Rated power of a power plant of candidate technology j ∈ J
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1

5

21 Scenario 16

0.2 20 Scenario 15

0.3

19 Scenario 140.2

18 Scenario 13

0.3

0.2

4

17 Scenario 12

0.2 16 Scenario 11

0.3

15 Scenario 100.2

14 Scenario 9

0.3
0.3

3

13 Scenario 8

0.2 12 Scenario 7

0.3

11 Scenario 60.2

10 Scenario 5

0.3

0.2

2

9 Scenario 4

0.2 8 Scenario 3

0.3

7 Scenario 20.2

6 Scenario 1

0.3

0.3

Fig. 2 Example for Scenario tree with assigned probabilities

HJ
j (h) Operating hours per year of a power plant of candidate

technology j ∈ J
νJ

j (–) Percentage of loss of a power plant of technology j ∈ J

E
J
j,i (GWh) Maximum energy produced by a power plant of technology

j ∈ J in year i ∈ I
θ J

j (t/GWh) CO2 emission rate of a thermal power plant of candidate
technology j ∈ JT
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Cj (Me /MW) Investment cost of a power plant of candidate technology j∈ J
Rj (ke ) Annualized investment cost of a power plant of candidate

technology j ∈ J
f J
j (ke ) Fixed production cost of a power plant of technology j ∈ J

vJ
j (ke ) Variable production cost of an RES power plant of candidate

technology j ∈ JR

LK
k (years) Residual life of power plant k ∈ K owned by the power

producer in year 0
P

K
k (MW) Rated power of power plant k ∈ K

HK
k (h) Operating hours per year of power plant k ∈ K

νK
k (–) Percentage of loss of power plant k ∈ K

E
K
k,i (GWh) Maximum energy produced by power plant k ∈K in year i∈ I
θK

k (t/GWh) CO2 emission rate of thermal power plant k ∈ KT

f K
k (ke ) Fixed production cost of power plant k ∈ K

vK
k (ke ) Variable production cost of RES power plant k ∈ KR

βi (–) Ratio “electricity from RES / total electricity produced” to be
attained in year i ∈ I

B (Me ) Budget available
r (–) Interest rate

Decision Variables

wj,i,n (–) Integer number of power plants of technology j ∈ J whose
construction is to start in year i ∈ In in node n ∈ N

Wj,i,n (–) Number of power plants of technology j ∈ J available for produc-
tion in year i ∈ In in node n ∈ N

EJ
j,i,n (GWh) Electricity produced by all power plants of technology j ∈ J in

year i in node n
EK

k,i,n (GWh) Electricity produced by existing power plant k ∈ K in year i in
node n

Gi,n (GWh) Green Certificates sold (Gi,n ≥ 0) or bought (Gi,n ≤ 0) in year i in
node n

Qi,n (t) CO2 produced in year i in node n

The decision variables wj,i,n, Wj,i,n, EJ
j,i,n, EK

k,i,n, Gi,n, and Qi,n are determined so
as to
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max ∑
ω∈Ω

pω ∑
n∈NΩ

ω

∑
i∈In

1

(1+ r)i

[
πE

i,n

(
∑
j∈J

EJ
j,i,n + ∑

k∈K
EK

k,i,n

)
+πGC

i,n Gi,n−πCO2
i,n Qi,n +

− ∑
j∈JT

vJ
j,i,nEJ

j,i,n− ∑
j∈JR

vJ
j,i,nEJ

j,i,n−∑
j∈J

(
Rj + f J

j

)
Wj,i,n +

− ∑
k∈KT

vK
k,i,nEK

k,i,n− ∑
k∈KR

vK
k,i,nEK

k,i,n − ∑
k∈K

f K
k

]

(1)
subject to

∑
n∈NΩω

∑
i∈In

wj,i,n ≤ Zj , j ∈ J, ω ∈Ω (2)

Wj,i,n = ∑
h∈NΩω

∑
l∈In∩[i−Sj−Lj+1,i−Sj]

wj,l,h,

j ∈ J, i ∈ I, n ∈ NΩ
ω , ω ∈Ω

(3)

∑
n∈NΩω

∑
i∈In

1
(1+ r)i

(
∑
j∈J

RjWj,i,n

)
≤ B, ω ∈Ω (4)

0≤EJ
j,i,n≤E

J
j,iWj,i,n , j∈ J , ∀i∈ I , n∈NΩ

ω , ω ∈Ω . (5)

0≤ EK
k,i,n ≤ E

K
k,i , k ∈ K , i ∈ I n ∈ NΩ

ω , ω ∈Ω (6)

∑
j∈J

EJ
j,i,n + ∑

k∈K

EK
k,i,n ≤Mi,n , i ∈ I , n ∈ NΩ

ω , ω ∈Ω (7)

Gi,n = ∑
j∈JR

EJ
j,i,n + ∑

k∈KR

EK
k,i,n−βi

(
∑
j∈J

EJ
j,i,n + ∑

k∈K

EK
k,i,n

)
,

i ∈ I, n ∈ NΩ
ω , ω ∈Ω

(8)
Qi,n = ∑

j∈JT

θ J
j ·EJ

j,i,n + ∑
k∈KT

θK
k ·EK

k,i,n , i ∈ I, n ∈ NΩ
ω , ω ∈Ω (9)

wj,i,n ∈ Z+ , j ∈ J , i ∈ I n ∈ NΩ
ω , ω ∈Ω (10)

The cost for investment in new power plants of technology j is annualized and
represented by RjWj,i,n with Rj computed by the usual formula for the periodic
payment of an annuity along LJ

j years, i.e.
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Rj =
CjPJ

j · r ·1000

1− ( 1
1+r)

LJ
j
, j ∈ J (11)

Constraints (2) guarantee that for every candidate technology j the total number
of new power plants constructed along the planning horizon is not greater than the
number Zj of sites ready for construction of a new power plant, i.e. sites for which
all administrative permits have been released. These upper bounds could also be
considered as varying from year to year. Constraints (3) determine for every year i
and node n the number of new power plants of technology j available for production,
i.e. those plants for which both construction is completed and industrial life is not
ended. The sum of the actualized annual equivalent investment costs, which depend
on the number of new power plants of each technology j available for production
in every year i and node n, is required by constraint (4) not to exceed the available
budget.

Bounds on electricity production are set by constraints (5) and (6). The annual
electricity production obtained by all new power plants of technology j is nonnega-

tive and bounded above by the product of the maximum annual production E
J
j,i of a

power plant of technology j, defined as

E
J
j,i =

1
1000

P
J
j HJ

j (1−νJ
j ), j ∈ J , ∀i ∈ I (12)

times the number of new plants of technology j available for production in year
i. The annual electricity production of power plant k is nonnegative and bounded

above by the maximum annual production E
K
k,i in year i with

E
K
k,i =

⎧
⎪⎨
⎪⎩

1
1000 P

K
k HK

k (1−νK
k ) if i≤ LK

k

0 if i > LK
k .

(13)

Parameters HJ
j and HK

k take into account possible plant breakdown and maintenance.
Notice that for some technologies, if selected, a lower bound to the annual electricity
production could be imposed in order to take into account technical limitations.

The electricity generated in year i cannot exceed the power producer’s demand
at node n in year i, as expressed in constraint (7). The amount of electricity Gi,n,
for which in year i under node n the corresponding Green Certificates are bought,
if Gi,n ≤ 0, or sold, if Gi,n ≥ 0, is defined by constraints (8), where βi is the
ratio, required in year i, between the electricity produced from RES and the total
electricity produced.

The amount Qi,n of CO2 emissions that the power producer must pay for in
year i under node n is defined by constraint (9), where θK

k and θ J
j are the CO2

emission rates of thermal power plant k ∈ KT and thermal power plant of candidate
technology j ∈ JT , respectively.
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A risk averse extension of the model (1)–(10) can be obtained by using a
risk measure that takes into account the potential losses of each decision. When
maximizing profits a widely accepted risk measure is the conditional value at risk
(CVaR) of profits, i.e. the barycentral value of profits in the worst α percentile
of cases, see [33] and [34]. We define the multi-stage CVaR in a nested fashion,
following the approach featured on Philpott et al. [27] and Rudloff et al. [39] which
iteratively solve a convex combination of performance and risk in the last stage,
using it as the performance measure for the previous stage. This approach has been
borrowed from dynamic programming and it has been used by several authors in
the stochastic programming framework (see, e.g., [27, 38, 39]). At every stage s
two auxiliary variables, ds

n and ηs, are defined, where ηs plays the same role as the
VaR at the optimal value of a two-stage CVaR constrained problem. We also denote
FN

n as the discounted value of profits in node n. Finally we denote parameters αs

and ρs as the stage-wise confidence parameter and weighting factor of performance
and risk, respectively. We use a weighting factor ranging between zero and one,
where zero denotes risk neutrality, which corresponds to neglecting risk, whilst
one defines complete aversion towards risk. Usage of a convex combination of the
present value of expected profits and CVaR is a standard procedure when striking
a balance between risk and performance (see, e.g., [10]) and it turns out to be a
particularly suitable approach when performance and risk are measured in the same
units (see, for example, [6, 10, 45–48]).

We have that our definition at stage three is given by

d3
m ≥ 0 d3

m ≥ η3n−FN
m n ∈ NS

2 , m ∈ Bn (14)

then for each node of stage two we define

d2
n ≥ 0 d2

n ≥ η2−KN
n n ∈ NS

2 (15)

where, for each node of stage two we have

KN
n = FN

n +(1−ρ3)

(
∑

m∈Bn

φmFN
m

)
+ρ3

(
η3n− 1

α3
∑

m∈Bn

φmd3
m

)
n ∈ NS

2 (16)

which defines the objective function at the third stage conditioned to reaching node
n ∈ NS

2 in stage 2. Objective function in stage one is given by

FS
1 +(1−ρ2)

⎛
⎝ ∑

n∈NS
2

φnKN
n

⎞
⎠+ρ2

⎛
⎝η2− 1

α2
∑

n∈NS
2

φnd2
n

⎞
⎠ (17)

Time inconsistency is one of the main drawbacks of using CVaR in a multi-
stage framework. Let the optimal solution of the risk averse multi-stage stochastic
problem be computed, let the optimal decisions be assigned to the corresponding
variables on the path from the root to node n in an intermediate stage and let the
problem be solved for the subtree emanating from node n. If the optimal values
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of the subtree problem coincide with those computed on the complete problem,
the solution is time consistent, otherwise it is time inconsistent. In other words,
an optimal policy is time consistent if and only if the future planned decisions
are actually going to be implemented. This property does not generally hold for
risk averse optimality problems. However, the CVaR modeling approach used in
this framework satisfies time consistency as it is characterized by properties stated
in [38], Theorem 1. The model can be used to analyze how the production mix
changes with different amounts of budget available to the GenCo. Let us assume
that the GenCo can install new plants pertaining to four different technologies:
Combined Cycle (CCGT), Coal, Wind, and Nuclear. Years from 1 to 5 define the
first stage of the model, years from 6 to 10 define the second stage, and years from 11
to 25 define the third stage. The decision to be taken is related to the expansion plan
of years 1–5. The power producer will consider how the decision taken for these 5
years will impact on future possible decisions depending on how the uncertainty on
energy prices and fuel costs will unveil. This recursive decisions are taken in years
6–10, and for each recursive decision related to a given realization of the random
events another set of possible reactions are considered depending on how prices will
evolve in years 11–25. Scenarios are generated to account for 1,296 possible final
joint realizations of the random variables. For further details on the implementation,
refer to [30].

We observe the effects of an increasing budget availability on the installation of
new power plants. For low amounts of budget, Combined Cycle is preferred over
Coal because of its higher and more stable productivity. When budget availability
increases, investments move towards wind technology, which has lower operational
cost but must be installed more extensively, and finally to coal. The effects of budget
increase on the Net Present Value of profits displays a monotonically increasing
behavior.

For what concerns the effects of shifts on risk aversion no production uncertainty
for renewable sources is considered. Therefore the model considers wind as a
production source yielding a higher level of profit stability, even though it comes
at the expense of a lower average production capacity. In the considered model,
coal is the most profitable technology but, at the same time, it bears a very uncertain
pattern for operational costs, while CCGT entails a more stable costs profile. As risk
aversion becomes higher, investments in coal are postponed to future years, in order
to exploit the knowledge on the unveiling scenarios, while investments in CCGT
increase. Net Present Value of profits decreases as the relative importance of risk
increases.

Possible other approaches to tackle the considered problem could encompass
the usage of a two-stage stochastic structure for the optimization problem. Such
approach would allow for consideration of various risk measures in order to define
different viewpoints to model the risk preferences of the power producer.
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3 A Centralized Framework for Power Generation
Capacity Expansion

Planning the expansion of power generation capacity is not only important under
a single investor perspective. Under a system perspective requirements on the
introduction of renewable sources, pollution control, and network stability have
an impact on how the additional capacity will be composed and its optimal
geographical distribution. In this section we describe a deterministic multiperiod
centralized model for Power Generation Capacity Expansion aiming at determining
the optimal generation mix of the entire power system. With perfect competition
among producers power demand is satisfied at the lowest aggregated operational and
investment costs, given the legal requirements on production from renewable energy
sources, as well as CO2 emission allowance costs. The system perspective, which
takes into account cumulated costs and how the production of a given generation
unit influences the production level of other generation units, requires the network
structure to be taken into account explicitly. In other words, it is not enough to take
into account the demand for each generation unit regardless of which part of the
network such demand comes from, but interconnections between nodes need to be
modeled explicitly, in order to understand how the global demand is reallocated
amongst the different generation units as the structure of the production capacity
changes. The model has many similarities and some major difference to the one
introduced in the previous section. The main differences are: the objective function
defined as a cost minimization, power demand constraints in peak hours, and the
modeling of power flows. As for the previous model, this approach considers
investment costs depending on the plant rated power and on the investment costs
per power unit. The regulator also wants to minimize possible costs linked to Green
Certificates and Emissions Permits for CO2 externalities. The following notation is
introduced.

Sets

I Set of years in the planning horizon
Z Set of nodes in the network
L Set of connecting lines
JT Set of candidate technologies for thermal power production
JR Set of candidate technologies for power production from RES
J Set of all candidate technologies (i.e., J = JT ∪ JR)
Jz Set of all candidate technologies in node z
KT Set of thermal power plants owned by the power producer at the beginning

of the planning horizon (i.e., in year 0)
KR Set of power plants using RES owned in year 0
K Set of all power plants owned in year 0 (i.e., K = KT ∪KR)
Kz Set of all power plants owned in year 0 in node z
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Parameters

Sj (years) Construction time of a power plant of candidate technology
j ∈ J

LJ
j (years) Industrial life of a power plant of candidate technology j ∈ J

Nj,z (–) Upper bound on power plants of candidate technology j ∈ J
that can be installed in area z ∈ Z

P
J
j (GW) Rated power of a power plant of candidate technology j ∈ J

HJ
j (h) Operating hours per year of a power plant of candidate

technology j ∈ J
νJ

j (–) Percentage of loss of a power plant of technology j ∈ J

E
J
j,i (GWh) Maximum energy produced by a power plant of technology

j ∈ J in year i ∈ I
θ J

j (t/GWh) CO2 emission rate of a thermal power plant of candidate
technology j ∈ JT

Cj (Me /MW) Investment cost of a power plant of candidate technology j∈ J
Rj (ke ) Annualized investment cost of a power plant of candidate

technology j ∈ J
f J
j (ke ) Fixed production cost of a power plant of technology j ∈ J

B (Me ) Budget available
LK

k (years) Residual life of power plant k ∈ K owned by the power
producer in year 0

P
K
k (GW) Rated power of power plant k ∈ K

HK
k (h) Operating hours per year of power plant k ∈ K

νK
k (–) Percentage of loss of power plant k ∈ K

E
K
k,i (GWh) Maximum energy produced by power plant k ∈K in year i∈ I
θK

k (t/GWh) CO2 emission rate of thermal power plant k ∈ KT

f K
k (ke ) Fixed production cost of power plant k ∈ K
βi (–) Ratio “electricity from RES / total electricity produced” to be

attained in year i ∈ I
σz,l Power transfer distribution factor related to link l ∈ L and to

node z ∈ Z
r (–) Interest rate
DP

z,i (GW) Power load in the peak hour of period i in zone z
DE

i (GWh) Energy load of period i
TRl (MW) Maximum capacity of transmission line l
TRl (MW) Minimum capacity of transmission line l
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Decision Variables

wj,i (–) Integer number of power plants of technology j ∈ J whose
construction is to start in year i ∈ Is

Wj,i (–) Number of power plants of technology j ∈ J available for produc-
tion in year i ∈ I

EJ
j,i (GWh) Electricity produced by all power plants of technology j ∈ J in

year i
PJ

j,i,z (GW) Power produced by a power plant of candidate technology
j ∈ J at time i ∈ I from node z ∈ Z

EK
k,i (GWh) Electricity produced by existing power plant k ∈ K in year i

PK
k,i,z (GW) power produced by an existing power plant of technology k ∈

K at time i ∈ I from node z ∈ Z
Gi (GWh) Green Certificates sold (Gi,n ≥ 0) or bought (Gi ≤ 0) in year i
Qi (t) CO2 produced in year i
TRl,i (MW) Power flow on transmission line l in period i

The model is as follows:

min ∑
i∈I

1

(1+ r)i

[
−πGC

i Gi +πCO2
i Qi + ∑

k∈KT

vK
k,iE

K
k,i + ∑

k∈KR

vK
k,iE

K
k,i +∑

k∈K

f K
k +

+∑
z∈Z
∑
j∈Jz

(
Rj + f J

j

)
Wj,i,z + ∑

j∈JT

vJ
j,iE

J
j,i + ∑

j∈JR

vJ
j,iE

J
j,i

]

(18)
subject to

∑
i∈I

wj,i,z ≤ Nj,z , j ∈ J, z ∈ Z (19)

Wj,i,z = ∑
l∈I∩[i−Sj−Lj+1,i−Sj]

wj,l,z z ∈ Z, j ∈ Jz, i ∈ I (20)

∑
z∈Z
∑
i∈I

1
(1+ r)i

(
∑
j∈J

RjWj,i,n

)
≤ B (21)

0≤ EJ
j,i ≤ ∑

z∈Zj

E
J
j,iWj,i,z j ∈ J, i ∈ I . (22)

0≤ EK
k,i ≤ E

K
k,i , k ∈ K, i ∈ I (23)

0≤ PJ
j,i,z ≤ P

J
j,iWj,i,z , z ∈ Z, j ∈ Jz, i ∈ I (24)
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0≤ PK
k,i,z ≤ P

K
k,i , z ∈ Z, k ∈ Kz, i ∈ I (25)

TRl,i =∑
z∈Z
∑

k∈Kz

σz,lP
K
k,i,z +∑

z∈Z
∑
j∈Jz

σz,lP
J
j,i,z−∑

z∈Z

σz,lD
P
z,i l ∈ L, i ∈ I (26)

TRl ≤ TRl,i ≤ TRl l ∈ L, i ∈ I (27)

∑
j∈J

EJ
j,i +∑

k∈K

EK
k,i = DE

i i ∈ I (28)

∑
z∈Z
∑
j∈Jz

PJ
j,i,z +∑

z∈Z
∑

k∈Kz

PK
k,i,z = ∑

z∈Z

DP
z,i i ∈ I (29)

Gi = ∑
j∈JR

EJ
j,i + ∑

k∈KR

EK
k,i−βi

(
∑
j∈J

EJ
j,i +∑

k∈K

EK
k,i

)

i ∈ I

(30)

Qi = ∑
j∈JT

θ J
j EJ

j,i + ∑
k∈KT

θK
k EK

k,i i ∈ I (31)

wj,i,z ∈ Z+ z ∈ Z, j ∈ Jz, i ∈ I. (32)

Parameter Rj is defined by (11) and E
J
j,i and E

K
k,i are defined by (12) and (13),

respectively. The objective function (18) accounts for providing electricity to
consumers at the minimum system total cost. Similarly to the previous model,
constraints (20) determine the number of new power plants of technology j available
for production in every year i, i.e. those plants for which both construction is
completed and industrial life is not ended. Bounds (22)–(25) impose restrictions
on total energy from each technology source and on power from plants at each
node. Constraint (26) defines the power flows taking into account the power transfer
distribution factors, that define how much of the power generated in all the nodes
connected to a given link flows in the link. Bounds on power flows in every line l
are defined by constraints (27). Constraints (28) and (29) define the balance for the
total energy in the system and for the total power delivered in peak hours of year i.
The model can be used to define the generation capacity expansion necessary to
satisfy the load of the entire system at minimum cost and to determine the impact
of different geographical distributions of generation plants on possible congestion
of transmission lines. Results for a test case based on the Italian power system show
how the optimal solution depends on the available budget. For lower levels of budget
a mix of coal and wind is preferred, as it does not need high installation investments.
Even though coal has a low operating cost, it also provides a low efficiency. For
an increasing amount of budget, wind and coal technologies are steadily replaced
by Combined Cycle and nuclear. Combined Cycle features higher investment and
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operational costs, but has a higher efficiency compared to coal, while nuclear has the
highest investment costs but relatively low operational costs. The test case assumed
that the total yearly load is shared with different proportions between the four
main market areas (north 40 %, center 25 %, south 20 %, Sardinia 5 %, and Sicily
10 %). In correspondence of a very high budget a nuclear plant is installed in every
area, which allows to cover the entire national load at minimum cost. In Sicily and
Sardinia the nuclear plants will produce much more energy than the local demand
and power needs to be transmitted to other areas, therefore inducing congestions
in the lines connecting Sicily and Sardinia to the other market areas. Summarizing,
this model can help in determining system expansion plans at minimum cost and
whether the adoption of these plans can be prevented by possible congestions of the
existing transmission lines.

4 A Leader-Followers Model of Power Transmission
Capacity Expansion in a Market Driven Environment

In this section we discuss a deterministic multiperiod model for analysis of
transmission grid expansion planning with competitive generation capacity planning
in electricity markets. The model considers a TransCo paradigm for the ownership
and operations of the network. The purpose of the model is to provide a tool for the
definition of the optimal grid upgrading program in a market driven environment.
Interplay between TransCo and several independent GenCos is treated as a leader-
followers Stackelberg game. Such game is expressed as the following sequential
decision pattern: the TransCo decides on the best possible upgrades of transmission
lines at time zero and the GenCos modify their production plans over time and
potential capacity expansion at time zero accordingly, reaching an equilibrium
together with the MO, which clears the market providing new LMP. GenCos’
reactions lead to a power production equilibrium that is properly taken into account
within the TransCo decision problem, which receives back new LMPs and planned
production used to determine the aggregated social costs, defined as the weighted
sum of costs paid by consumers and negative aggregated GenCo profits. Problem
of coordination of transmission expansion planning with competitive generation
capacity planning in electricity markets has been addressed by a quite large strand
of literature (see, e.g., [10, 16, 19, 21, 24, 41]), and usually solved by means of
different techniques, from plain usage of Linear Programs [12, 15], to hierarchic
approaches [1, 13, 14, 20, 31, 32, 40, 42] to Benders’ decomposition methods aiming
at computing shadow prices for LMPs and introduce cuts to prevent GenCos and
transmission companies expanding capacity in an uncoordinated manner [35, 36].
The model introduced in this section tackles the coordination problem using bilevel
programming techniques [4, 11]. Our aim is to find a method to obtain a global
optimal solution for the TransCo, given the responses provided by GenCos. LMPs
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are obtained by including first order conditions of the market clearing problem into
the TransCo problem.

The model defines a sequential game between three players: the TransCo, a
group of GenCos and the MO. The model is structured in two different, interrelated
decision levels that represent the sequential nature of the decisions up to each
player. Namely, the TransCo will take its decision on the transmission structure as
first mover, then each GenCo will decide on power production levels and potential
investments according to the choice made by the TransCo. Bids provided by each
GenCo are collected and sorted by a MO, which clears the market and sets the LMPs
according to load and bids submitted by GenCos.

Power is delivered to consumers spread over different nodes having different
load and power production capacity, which in turn depend on the amount of existing
and candidate generation units. The problem refers to a medium/long time horizon,
which we discretize in years. The modeling framework is displayed in Figure 3.
The two-level Stackelberg game involves only the network planner as the upper
level player and a group of power generating companies, whose bid-ask mechanism
with the consumers is mediated by a MO, as the lower level. The TransCo aims at
minimizing a social cost function, defined as the weighted sum of the total costs
up to the consumers and the negative sum of the GenCos aggregated profit. The
TransCo takes a decision on installation of new power transmission lines l which,
together with the existing transmission lines, will define bounds for new capacities
for the transmission corridors at time t. These bounds are used by the MO to define
how much power can be transferred between nodes in order to cover the peak hour
load of period t. Depending on the relative importance of consumers and GenCos,
congestions might or might not occur, leading to several different LMPs or just one,
respectively.

TRANSCO

GENCOs
Market
Operator

Upper Level

Lower Level

Xl

(pzt ,qikt)

(pzt ,qikt)

(bikt , qikt)

~

~

Fig. 3 Interdependencies between transmission company, generator companies and MO
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Bids are sent to the MO by the GenCos in form of a pair (bikt, q̃ikt) defining the
price bid at time t from generator k belonging to GenCo i and the related quantity,
respectively. The MO, given the power flow capacities defined by the TransCo, will
define the LMPs πzt for node z at time t and the accepted quantity qikt of power
generator i. GenCos aim at maximizing their profit by deciding how much power to
supply and whether to open new generation units. We assume that GenCos do not
influence LMPs through strategic bidding, so that their bids simply reflect a mark-
up on their marginal costs. The problem solved by the TransCo is described in the
following subsection

4.1 The TransCo Problem

TransCo aims at minimizing the weighted sum of aggregated costs up to consumers
and negative GenCo profits given the expansion investment budget. If the consumers
have a high importance in the aggregated social cost function, the TransCo will
add new lines to reduce congestion and let GenCos with low costs place a bid
in different areas, lowering the value of the accepted bids and, consequently, the
electricity prices. The problem is formalized as follows.

Sets

T Set of periods t (in every period we consider the peak hour load)
I Set of producers i
Z Set of nodes z
LE Set of existing transmission lines l
LC Set of candidate transmission lines l
KE

i,z Set of existing technologies k belonging to producer i in node z
KC

i,z Set of candidate technologies k of producer i in node z

Parameters

Cz,t (MW) Load in node z in period t
f L
l (e ) Investment cost for opening line l

H (e ) Total budget for lines expansion
ci,k (e /MWh) Generation marginal cost of technology k for producer i
α Weighting factor, ranging between 0 and 1, measuring the

relative importance of consumers and producers in the social
cost function minimized by the TransCo.
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Decision Variables

πz,t (e /MWh) LMP in node z at time t;
q̃i,k,t (MW) Power produced by GenCo i from generation unit k at time t;
Xl Binary variable taking value 1 if line l is built.

The TransCo model is as follows:

min
πz,t,q̃i,k,t,Xl

α ∑
t∈T
∑
z∈Z

Cz,tπz,t +

− (1−α)∑
t∈T

δ−t∑
z∈Z

⎛
⎝πz,t ∑

k∈KE
i,z∪KC

i,z

q̃i,k,t− ∑
k∈KE

i,z∪KC
i,z

ci,kq̃i,k,t

⎞
⎠

(33)

subject to

∑
l∈LC

f L
l Xl ≤ H (34)

(πz,t, q̃i,k,t) ∈Ω (X) z ∈ Z, k ∈ KE
i,z ∪KC

i,z, t ∈ T, i ∈ I (35)

Xl ∈ {0,1} l ∈ LC (36)

with X defining the vector whose components are Xl, l ∈ LC.
The objective function is the convex combination of total cost paid by the con-

sumers ∑t∈T ∑z∈Z Cz,tπz,t and the negative sum of the discounted operations profits

obtained by the GenCos ∑t∈T δ−t∑z∈Z

(
πz,t∑k∈KE

i,z∪KC
i,z

q̃i,k,t−∑k∈KE
i,z∪KC

i,z
ci,kq̃i,k,t

)
.

Inequality (34) is the budget constraint to investment cost for lines expansion.
Ω (X) represents the space of joint solutions of problems solved by the MO and
the GenCos, which are introduced in the following two subsections, parametrized
by vector X. Such set contains the possible equilibria for the involved GenCos and
for the MO. We have considered that the main objective of the TransCo is securing
a viable power transmission by removing congestion between market areas and,
more generally, reducing social costs. As such, investment costs have only been
considered as a constraint, without modeling the effects in the objective function.
The TransCo problem is solved by considering the reactions of two actors: the MO
and a group of GenCos. In what follows we define the problems of these two groups
of actors.

4.2 The Market Operator Problem

The main task of the MO is matching energy demand and supply at each time point
and determine Locational Marginal Prices. Let us introduce the following notation
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Parameters

bi,k,t (e /MWh) Price of sell bid of generation unit k belonging to GenCo i in
period t

Az,l Element of the incidence matrix of the transmission network
assuming value 1 if power in the transmission corridor l flows
towards node z and −1 if the flow is directed towards the
opposite direction

Cz,t (MW) Load in node z in period t
Bl Susceptance of line l
Xl Boolean parameter assuming value 1 if a line l is built
q̃i,k,t (MW) Power produced by generator k belonging to GenCo i at time

t
TRl,t (MW) Maximum capacity of transmission line l in period t
TRl,t (MW) Minimum capacity of transmission line l in period t
θ z Maximum voltage angle value for node z;
θ z Minimum voltage angle value for node z;

Decision Variables

qi,k,t (MW) Accepted bid for technology k of producer i in period t
TRl,t (MW) Power flow on transmission line l in period t
θz,t Voltage angle for terminal node in node z in period t

Market clearing conditions for the perfect competitive system considered for a
group of similar producers is given by the solution of the problem

min
qi,k,t,TRl,t

∑
i∈I
∑
t∈T
∑
z∈Z

∑
k∈KE

i,z∪KC
i,z

bi,k,tqi,k,t (37)

subject to

∑
i∈I

∑
k∈KE

i,z∪KC
i,z

qi,k,t + ∑
l∈LE∪LC

Az,lTRl,t = Cz,t z ∈ Z, t ∈ T (38)

0≤ qi,k,t ≤ q̃i,k,t z ∈ Z, k ∈ KE
i,z∪KC

i,z, t ∈ T, i ∈ I (39)

TRl,t = Bl

(
∑
z∈Z

Az,lθz,t

)
Xl l ∈ LC, t ∈ T (40)

TRl,t = Bl

(
∑
z∈Z

Az,lθz,t

)
l ∈ LE, t ∈ T (41)



310 P. Pisciella et al.

TRl,t ≤ TRl,t ≤ TRl,t l ∈ LE ∪LC, t ∈ T (42)

θ z ≤ θz,t ≤ θ z z ∈ Z, t ∈ T (43)

TRl,t ∈ℜ l ∈ LE ∪LC, t ∈ T (44)

θz,t ∈ℜ z ∈ Z, t ∈ T (45)

Solution of the introduced problem determines the accepted quantities minimiz-
ing the sum of the quantities times their bid prices. Constraint (38) ensures market
balance between demand and supply in each zone and its dual variable represents
the zonal LMP. Constraint (39) defines the upper bound for the accepted production
from each generator: the MO cannot accept more than what has been produced.
Each transmission line of a power network transmits power from its sending node
to its receiving node. The amount of transmitted power is proportional between
the difference of the voltage angles of these nodes. The principle underlying this
relation is similar to the one that stands between the flow of water through a pipeline
connecting two water tanks, with the flow level proportional to the difference of
height between the two tanks. This constant of proportionality is called susceptance
and denoted by Bl (see [9]). This relation is modeled by constraints (40) and (41),
which represent the power flow through candidate and existing lines. Since a line l
connects only two nodes, the sums in (40) and (41) will only consider the voltage
angles related to such two nodes. In other words, the coefficient Az,l will be zero if
link l is not connected to node z, otherwise it will take value 1 or -1 if the link models
an inflow or an outflow from node, z respectively. Finally θ z and θ z of the slack node
z are set to zero. Notice that the power flow equation (40) for the candidate line is
multiplied by a boolean parameter, which sets the transmission to zero when no line
is built in the considered transmission corridor.

4.3 The GenCo Problem

At the same level as the MO is the set of GenCos. These actors aim at maximizing
their own profit by submitting bids (bi,k,t, q̃i,k,t) to the MO and defining their optimal
expansion plan according to the grid structure. Notice how the structure of the
GenCo problem is simplified compared to the model shown in the previous section.
This simplification is made to include the GenCo problem as a part of an equilibrium
model whose goal is determining the upgrade of the transmission network. This
requires describing the GenCo problem with a lower level of details in order to
maintain the model tractable. The problem of the i-th GenCo involves the following
notation:
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Parameters

πz,t (e /MWh) Locational Marginal Price in node z at time t
δ Discounting factor
ci,k (e /MWh) Generation cost of technology k for producer i
f G
i,k (e ) Investment cost of technology k for producer i
Γ C

i,k (MW) Capacity of candidate technology k of producer i
Γ E

i,k (MW) Capacity of existing technology k of producer i
qi,k,t (MW) Accepted bid for technology k of producer i in period t

Decision Variables

Yi,k Binary variable set to 1 if producer i activates candidate
generation unit k

q̃i,k,t (MW) Power produced by generator k belonging to GenCo i at time t

Every GenCo has a capacity limit for both existing and candidate generators.
Such limits are expressed by the constraints

q̃i,k,t ≤ Γ E
i,k z ∈ Z, k ∈ KE

i,z, t ∈ T

and

q̃i,k,t ≤ Γ C
i,kYi,k z ∈ Z, k ∈ KC

i,z, t ∈ T

respectively.
Finally, the quantity sold by each GenCo cannot be larger than the quantity

accepted by the MO, i.e.

q̃i,k,t ≤ qi,k,t z ∈ Z, k ∈ KE
i,z ∪KC

i,z, t ∈ T.

The decision problem of GenCo i is therefore the following:

max
q̃i,k,t,Yi,k

∑
t∈T

δ−t∑
z∈Z

⎛
⎝πz,t ∑

k∈KE
i,z∪KC

i,z

q̃i,k,t− ∑
k∈KE

i,z∪KC
i,z

ci,kq̃i,k,t

⎞
⎠−∑

z∈Z
∑

k∈KC
i,z

f G
i,kYi,k

(46)
subject to

q̃i,k,t ≤ Γ C
i,kYi,k z ∈ Z, k ∈ KC

i,z, t ∈ T (47)
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q̃i,k,t ≤ Γ E
i,k z ∈ Z, k ∈ KE

i,z, t ∈ T (48)

0≤ q̃i,k,t ≤ qi,k,t z ∈ Z, k ∈ KE
i,z∪KC

i,z, t ∈ T (49)

Yi,k ∈ {0,1} k ∈ KC
i,z (50)

In this problem, πz,t represents the LMP in node z in period t and is defined as the
shadow price associated with constraint (38).

The solution of each GenCo problem changes according to the bid level accepted
by the MO in each node and the resulting Locational Marginal Price. The bound
qi,k,t on maximum accepted bid is defined in constraint (49) and can be understood
as a demand constraint at time t for power output up to generator k belonging to
GenCo i. This latter in turn depends on the possibility of transferring electricity
between different nodes. This mechanism establishes a hierarchical relation between
the decision up to each GenCo in terms of MW to provide to the market and
potential new installments and the decision taken by the TransCo in terms of opened
transmission lines. According to this relation we will refer to the GenCo problem as
GPi (πz,t,qi,k,t), where πz,t and qi,k,t are defined by the MO as a sequential response
to the decisions taken by the TransCo and as a concurrent response to the bids
offered by the GenCos.

The TransCo model can be solved using an approach based on the k-th best
algorithm [5] properly modified to allow treatment of binary variables in the lower
level (see [28]). The model can be used to study how budget availability or different
importance of consumers and producers can change the upgrade policy up to the
TransCo.

We tested our model on the classical 6-bus example from Garver (see [29] for the
details of the implementation).

First, we focus on how different budget availability up to the TransCo can
influence the components of the social cost function, namely profitability of the
GenCos and social costs up to consumers. Then we move our attention on how
the profitability of GenCos and social costs change when we shift the weighting
factor α , which measures the relative importance of consumers and producers in the
aggregate social cost function.

Results for different budget availability are displayed in Figures 4 and 6. The
weighting factor parameter α is set to 0.5, Figure 6 (left) shows us two distinct
effects of a budget increase. For smaller increases the effect is a convergence of
average (over periods) Locational Marginal Prices from different nodes, whilst for
larger increases the converged prices follow a common path downwards. This has
an impact on GenCos’ profits as explained later on.

Producers with larger availability of power plants with low marginal production
costs increase the production, eroding market shares from their competitors. Some
GenCos will experience a decrease of power sold as consumers can buy from
cheaper producers, while other GenCos will have an increase in sales and some
of them (A2 and A4 in Figure 4 left) will install new generation units with lower
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Fig. 6 Locational Marginal Prices for different choices of budget (weighting factor set to 0.5) and
weighting factor (budget set to 30 Me )

marginal costs compared to the competition. As a consequence of congestion
removal, prices will converge to a common point as it is shown in Figure 6 (left).
Also the consumers will benefit of such upgrade as they can buy energy for lower
prices. With increasing importance of consumers, the TransCo will eliminate the
large part of congestions allowing prices to decrease in all nodes of the grid. This
will decrease the overall GenCos’ profits, as it can be seen on the second portion of
the curves in Figure 4 (left), but it will lower to a greater extent social costs, as it
can be seen in Figure 4 (right). To analyze details on how power exchanges between
nodes are modified by different grid configurations see, [29].
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The effects of varying the weighting factor are displayed in Figures 5 and 6
(right). We have performed the analyses setting a value of 30 Million Euros for the
TransCo budget and shifted the values of α . The effect on the grid is an increasing
level of congestion removal. This implies an initial convergence of prices over
different nodes, as shown in Figure 6 (right) which, in turn allows more efficient
GenCos to increase their market share by opening new generation units with
lower marginal production costs. When the weighting factor approaches the unit
value (i.e., only consumers are important in the social cost function) the TransCo
will select a grid expansion plan which further penalizes GenCos as some zones
will have lower LMPs. This entails a profit decrease for some GenCos. Possible
variations to the introduced model could consist in the introduction of uncertainty
related to some parameters such as load or possible failures of lines, in order to
describe the level of security of the network. Network security should also be
addressed through the management of the N− 1 security issue, in order to evaluate
how the stability of the network persists when one or more elements fail to operate.

5 Conclusions

In this chapter we have analyzed the benefits of optimization techniques in planning
power system capacity expansions, both under a single producer perspective and
under a system-wide perspective. Different approaches have been considered,
depending on the nature and the goals of the problem to be analyzed and solved.
At a high level of granularity single producer perspective is considered. When there
is a single decision maker with high control on all the model’s required input data
it is possible to consider a decentralized approach focusing on the decisions to be
taken by the single producer. This approach has the undeniable benefit of allowing
a very detailed input structure, considering the main sources of uncertainty and
accounting for risk. Nevertheless, power system expansion planning is operated by a
multitude of actors. Therefore in the long run the reality of decision making is highly
distributed and the optimization problem solved by the single producer will not be
able to consider other agents’ decisions. In such cases it can be useful to extend
the viewpoint and also consider a system-wide approach to capacity expansion
decisions planning.

When considering a multi-player environment one needs to define whether to
consider a centralized approach, where a single regulator takes decisions on the
best expansion plan on a system perspective or consider an equilibrium approach
where each player takes her best decision reacting to other players’ decisions. The
centralized approach has been used to introduce the second model, which considers
the problem of power generation capacity expansion in a centralized system-wide
perspective, whilst the equilibrium-based approach has been used to set the focus
on the problem of transmission expansion, which is formulated as a Stackelberg
game in order to take into account the reactions of the producers to different
grid configurations. When the focus is moved from the single producer to the



Models for Optimization of Power Systems 315

system-wide interplay between several actors, the modeling and computational
difficulties tend to grow. This implies that each part of the equilibrium model is
described with a lower level of detail compared to the single producer case.
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On Chubanov’s Method for Solving
a Homogeneous Inequality System

Kees Roos

Abstract We deal with a recently proposed method of Chubanov for solving linear
homogeneous systems with positive variables. Our first aim is to show that the
performance of this method can be improved by a slight modification of Chubanov’s
so-called Basic Procedure. In theory this results in at least the same decrease of the
merit function used by Chubanov, but both in theory and in practice the decrease
may be much faster. Theoretical evidence for the speed-up follows from a lemma,
whereas some numerical experiments provide convincing computational evidence.
We also present a complete, somewhat simplified analysis of Chubanov’s Main
Algorithm, thereby including also some numerical experiments.

Keywords Linear homogeneous systems • Algorithm • Polynomial-time

1 Introduction

Let A be an m× n matrix with m < n, and rank(A) = m. Recently Chubanov [2–4]
presented a new algorithm that finds in polynomial time a solution of the system

Ax = 0, x > 0, (1)

or establishes that no such solution exists. In the algorithm the author uses a nonzero
vector y≥ 0 that is updated in each iteration and eventually serves to decide which
of the two cases occurs. If a positive solution exists, then such a solution can be
obtained from y.

A crucial tool in Chubanov’s approach is a result showing that as long as no
solution of (1) has been found, a “better” y can be constructed. Eventually this leads
to a “small” vector y, which induces a “cut” of the form xk ≤ 1

2 for some index
k. In the proof of this result he uses Farkas’s lemma. Now it is well-known that
this lemma is equivalent to the duality theorem for linear optimization; both results
are far from trivial but each of them can be easily derived from the other [1]. The
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first result in our paper is an elementary proof of the mentioned result that does not
depend on the Farkas lemma, which makes the analysis independent of the existing
theory of linear optimization (LO).

In hindsight, duality theory helps to understand the role of the vector y in
Chubanov’s approach. For this we recall a variant of Farkas’s lemma that is due
to Stiemke [14]. It states that (1) has no solution if and only if the system

ATu≥ 0, ATu �= 0 (2)

has a solution. Now one has y = ATu for some u if and only if PAy = 0, where PA

denotes the orthogonal projection onto the null space of A. It follows that system (2)
has a solution if and only if the system

PAy = 0, y≥ 0, y �= 0 (3)

has a solution. Chubanov’s algorithm can be viewed as a systematic search method
for a vector y satisfying (3). It will be convenient to call any such vector a dual
feasible vector.

Since (3) is homogeneous in y and y �= 0, we may restrict the search to vectors
y such that eTy = 1, where e denotes the all-one vector. If during this search it
happens that PAy> 0, then z=PAy is a positive solution of (1). This follows because
APA = 0, whence Az = 0. If this happens, we call the vector y primal feasible.

On the other hand, if y is not primal feasible then there must exist an index k such
that zk ≤ 0. In that case it becomes natural to look for a new y′ such that ‖PAy′‖ <
‖PAy‖. This is exactly what the so-called Basic Procedure (BP) of Chubanov does,
and [2, Lemma 2.1] shows how such an y′ can be found.

Of course, if (1) has a positive solution, then there is no y satisfying (3). A clever
finding of Chubanov is to stop the BP when a y has been found such that

2
√

n‖PAy‖ ≤max(y), 0 �= y≥ 0, (4)

where max(y) :=maxi(yi). In that case the vector y is said to be small. As Chubanov
showed, this happens after at most 4n3 iterations, which makes his BP strongly
polynomial. Any small vector y gives rise to a cut for problem (1) of the form xk ≤ 1

2 ,
where k is such that yk = max(y). Hence it can be used to reduce problem (1) to a
problem similar to (1), with A replaced by AD. Here D denotes the identity matrix
I with Ikk replaced by 1

2 . Thus Chubanov’s Main Algorithm (MA) in [2, 4] replaces
A by AD and then calls the BP again. If this yields a positive solution x for the new
system, then Dx is a positive solution of (1); otherwise, the BP will generate a new
vector y satisfying (4), and so on.

If A has integer (or rational) entries, then the number of calls of the BP is
polynomially bounded by the size of the matrix A, as follows by using a classical
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result of Khachiyan [9] that gives a positive lower bound on the positive entries of
a solution of a linear system of equations. As a result the algorithm solves problem
(1) in polynomial time [2, Theorem 2.1].

The aim of this short paper is twofold. We want to present the main ideas
behind Chubanov’s algorithm, thereby including a relatively simple analysis of
his complexity result. The outline is as follows. We start in the next section
by presenting an improved version of Chubanov’s BP. It does not improve the
complexity result in [2], but it speeds up implementations of Chubanov’s original
version drastically. This has been acknowledged in [4], which is an updated version
of Chubanov [2], and is confirmed by numerical results that we present in Section 5.
In Section 2.1 we recall Chubanov’s original method of generating cuts for problem
(1) from a small vector y generated by the BP. In [4] a more general method for
generating cuts has been discussed, which we present in Section 2.2. This method
is used in some of the numerical experiments in Section 5. It turns out that it
reduces the iteration number, but not necessarily the time required by the algorithm.
Section 2.3 contains the modified BP, and its analysis. Section 3 shows how the cuts
generated by the BP can be used to obtain a polynomial-time method for solving (1).
This method is more formally described in the MA, which is presented in Section 4,
where we include some lemmas that reduce the iteration bound by a factor n.

In Section 5 we report some numerical experiments, and we conclude with some
comments in Section 6.

2 Improved Basic Procedure

Let NA denote the null space of A, i.e., NA := {x : Ax = 0}, and

PA := I−AT (AAT)−1
A.

Note that our assumption rank(A) = m implies that the inverse of AAT exists. It
is obvious that APA = 0 and since PA is symmetric, also PAAT = 0. If x ∈ NA,
then PAx = x. On the other hand, if x ∈ N⊥A , then x = ATy for some y, whence
PAx = PAATy = 0. These properties resemble the well-known fact that PA is the
orthogonal projection of Rn onto NA. It follows that x satisfies Ax = 0 if and only if
PAx = x, and x is feasible for (1) if and only if PAx = x > 0.

2.1 Three Simple Lemmas

A simple result—crucial for the approach of Chubanov’s paper [2, 4]—is the
following lemma.

Lemma 1. If PAy > 0, for an arbitrary vector y, then z = PAy solves (1).
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Proof. This follows from Az = APAy = 0 and z > 0. �
The next lemma consists of the easy part of the aforementioned lemma of

Stiemke [14].

Lemma 2. If PAy = 0 holds for some nonzero y≥ 0, then (1) is infeasible.

Proof. Let PAy = 0 and 0 �= y ≥ 0. Suppose that x is feasible for (1). Then PAx =
x > 0. Since x > 0 and 0 �= y≥ 0, we have yTx > 0. We now may write

0 < yTx = yTPAx = xTPAy = 0.

This contradiction proves the lemma. �
Before stating the third lemma we note that if x is feasible for (1), then also

x′ = x/max(x) is feasible for (1), and this solution belongs to the unit cube, i.e.,
x′ ∈ [0,1]n. Hence, (1) is feasible if and only if the following system has a solution:

Ax = 0, x ∈ (0,1]n. (5)

The next lemma shows that if y satisfies 0 �= y≥ 0 and (4), then it gives rise to a cut.
More precisely, it induces an inequality that cuts off half of the unit cube in (5).

Lemma 3. Let y satisfy 0 �= y≥ 0 and (4), and let j be such that yj = max(y). Then
every feasible solution of (5) satisfies xj ≤ 1

2 .

Proof. Let x be feasible for (5). This means that PAx = x ∈ [0,1]n, which implies
that ‖x‖ ≤√n. Hence, using (4) and the Cauchy–Schwarz inequality, we may write

yjxj ≤ yTx = yTPAx = xTPAy≤ ‖x‖‖PAy‖ ≤ ‖x‖ max(y)
2
√

n
≤ 1

2 max(y) = 1
2 yj.

Since yj > 0, it follows that xj ≤ 1
2 . �

It will be convenient to call y small if (4) holds, and large otherwise. Of course,
this terminology is relative to the (current) matrix A. Note that ‖PAy‖ > 0 if y is
large. Moreover, if y is a dual feasible vector as defined by (3), then PAy = 0 and
hence y is small. Recall that y is primal feasible if PAy > 0 and in that case z = PAy
is a solution of (1), by Lemma 1. So we have shown that (1) has a solution if y is
primal feasible and it has no solution if y is dual feasible.

For future use we also state the following result.

Lemma 4. Let 0 �= y≥ 0 and 2n
√

n‖PAy‖ ≤ eTy. Then y is small.

Proof. By using eTy≤ nmax(y), we may write

2
√

n‖PAy‖ ≤ eTy
n
≤max(y), (6)

which implies (4). �
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2.2 More Cut-Generating Vectors

In the previous section it turned out that any small vector y induces a cut xj ≤ 1
2 , for

some j, for problem (5). Recently it was established by Chubanov [4] that also large
vectors y can serve this purpose. Fixing k he considered the LO-problem

max{xk : Ax = 0, x ∈ [0,1]n} .

The dual problem is

min
{

eTw : ATv+w≥ ek, w≥ 0
}
= min

{
eT [ek− u]+ : PAu = 0

}
.

The above equality uses again that u = ATv if and only if PAu = 0. Since PA is a
projection matrix we have P2

A = PA = PT
A. Given y and z = PAy, we therefore have

PA(y−z) = PA(y−PAy) = 0. Hence, if yk > 0, we may take u= y−z
yk

. It then follows
from the Duality Theorem for Linear Optimization that

xk ≤ eT
[

ek− y− z
yk

]+
. (7)

In particular we have

eT
[

ek− y− z
yk

]+
≤ 1

2
⇒ xk ≤ 1

2
. (8)

Criterion (8) for the cut xk ≤ 1
2 is weaker than (4) in the sense that if (4) gives rise

to a cut, then so does (8). This follows from ek− y
yk
≤ 0. Hence if yk = max(y) then

eT
[

ek− y− z
yk

]+
≤ eT [z]+

yk
≤
√

n‖ [z]+ ‖
yk

≤
√

n‖z‖
yk

=

√
n‖PAy‖

max(y)
.

Even tighter cuts can obtained in a simpler way, without using the Duality Theorem
for Linear Optimization. Let u be such that PAu = 0. If x is feasible, then Ax = 0,
which implies PAx = x. Therefore, uTx = uTPAx = (PAu)Tx = 0. Also using 0≤ x≤
e we may write

xk = eT
k x = xT(ek− u)≤ eT [ek− u]+ . (9)

Defining v = y− z we have PAv = 0, as we saw above. By substituting u = v
yk

in
(9) we obtain (7). More generally we may substitute u = αv, yielding xk ≤ q(α) for
every α ∈ R, where the function q(α) is defined by

q(α) := eT [ek−αv]+ = [1−αvk]
+ +∑

i�=k

[−αvi]
+ , α ∈ R.
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One may easily verify that q(α) is a nonnegative piecewise linear convex function
with a breakpoint at α = 0 and if vk �= 0 another breakpoint at α = 1

vk
. The

breakpoint at α = 0 yields the void inequality xk ≤ q(0) = 1. So only the breakpoint
at α = 1

vk
is of interest, which yields the inequality

xk ≤∑
i�=k

[−vi

vk

]+
. (10)

Of course, this new cut is nonvoid only if the right-hand side is less than 1, but then
it is always at least as tight as (7). The theoretical analysis below is based on the
weakest cut we have found, namely in Lemma 3. In the computational part of the
paper we also use the new cuts and demonstrate numerically that they are superior
to the cuts in Lemma 3.

To conclude this section we point out that the vector v has a nice geometric
interpretation: whereas z is the orthogonal projection of y onto the null spaxe of A,
v is the orthogonal projection of y onto the row space of A.

2.3 Search for a Small Vector

Note that inequality (4) is homogeneous in y. Since y is nonzero, without loss of
generality we may assume that eTy = 1. In the sequel we always assume that y is
nonnegative and normalized in this way.

Assuming that y is large relative to a given matrix A, we present in this section a
simple algorithm that generates a new vector y that is either primal feasible or dual
feasible or small, in at most 4n3 iterations. The algorithm closely resembles the BP
in [2, 4] but deviates at one particular point.

It is also convenient to use the vector z defined by z = PAy. Note that if z = 0 then
y is dual feasible, which by Lemma 2 implies that (1) is infeasible. On the other
hand, by Lemma 1, if z > 0, then z satisfies (1), and we are also done. So, if z is such
that the status of (1) is not yet decided, then z �= 0 and at least one component z is
not positive. In that case we may find a nonempty set K of indices such that

∑
k∈K

zk ≤ 0.

Denoting the k-th column of PA as pk, we have pk = PAek, where ek denotes the k-th
unit vector. We define

eK :=
1
|K| ∑k∈K

ek, pK := PAeK =
1
|K| ∑k∈K

pk. (11)



On Chubanov’s Method for Solving a Homogeneous Inequality System 325

Note that 0 �= eK ≥ 0, and eTeK = 1. If pK = 0 (pK > 0), then eK is dual (primal)
feasible and we are done. Hence, we may assume that pK �= 0. Using again that PA is
a projection matrix we obtain PAz = P2

Ay = PAy = z. This implies zTpk = zTPAek =
zTek = zk for each k. Thus we obtain

zTpK =
1
|K| ∑k∈K

zT pk =
1
|K| ∑k∈K

zk ≤ 0.

As a consequence, in the equation

‖z− pK‖2 =
(‖z‖2− zTpK

)
+
(‖pK‖2− zTpK

)
(12)

the two bracketed terms are both positive, because z and pK are nonzero and zTpK ≤
0. Therefore, we may define a new y-vector, denoted by ỹ, according to

ỹ = αy+(1−α)eK, α =
‖pK‖2− zTpK

‖z− pK‖2 =
pT

K(pK− z)
‖z− pK‖2 . (13)

Because of (12), α is well-defined and α ∈ (0,1). Since y≥ 0 and eK ≥ 0, we may
conclude that ỹ≥ 0 and, since eTy = eTeK = 1, also eT ỹ = 1.

The transformation (13) from y to ỹ is the key element in Algorithm 1. It iterates
(13) until y is small or primal feasible or dual feasible.

The only difference from the BP of Chubanov is that he always takes a singleton
for K. Usually larger sizes of K are possible; as we will see below, this may speed
up the BP. Theoretically this statement is justified by the following lemma, which
generalizes [2, Lemma 2.1] and [4, Lemma 2.1].

Lemma 5. Let z �= 0 and pK �= 0. With z̃ := PAỹ, one has

Algorithm 1: [y,z,case] =BASIC PROCEDURE(PA,y)

1: INITIALIZE: z = PAy; case = 0
2: while 2

√
n‖z‖ > max(y) and case = 0 do

3: if z > 0 then
4: case = 1 (y is primal feasible); return
5: else
6: if z = 0 then
7: case = 2 (y is dual feasible); return
8: else
9: find K �= /0 such that ∑k∈K zk ≤ 0

10: α = pT
K(pK − z)/‖z−pK‖2

11: y = αy+(1−α)eK

12: z = αz+(1−α)pK (= PAy)
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1
‖z̃‖2 ≥

1
‖z‖2 + |K| . (14)

Proof. We have

z̃ = αPAy+(1−α)PAeK = αz+(1−α)pK = pK +α(z− pK).

Hence,

‖z̃‖2 = α2‖z− pK‖2 + 2αpT
K(z− pK)+ ‖pK‖2.

The value of α that minimizes this expression is given in (13). It follows that

‖z̃‖2 = ‖pK‖2−
[
pT

K(z− pK)
]2

‖z− pK‖2 =
‖pK‖2‖z‖2− (zTpK)

2

‖pK‖2 + ‖z‖2− 2zTpK
≤ ‖pK‖2‖z‖2

‖z‖2 + ‖pK‖2 ,

where we used zT pK ≤ 0. Since PA is a projection matrix, ‖PAeK‖ ≤ ‖eK‖. So we
may write

‖pK‖2 = ‖PAeK‖2 ≤ ‖eK‖2 =

∥∥∥∥∥
1
|K| ∑k∈K

ek

∥∥∥∥∥
2

=
1

|K|2
∥∥∥∥∥∑k∈K

ek

∥∥∥∥∥
2

=
|K|
|K|2 =

1
|K| .

It follows that

1
‖z̃‖2 ≥

1
‖z‖2 +

1
‖pK‖2 ≥

1
‖z‖2 + |K| , (15)

as desired. �
Theorem 1. After at most 4n3 iterations the BP yields a vector y that is either small
(case = 0) or primal feasible (case = 1) or dual feasible (case = 2).

Proof. As before, we assume that eTy = 1, y ≥ 0, and z = PAy. If y is small, then
Algorithm 1 requires only 1 iteration. Otherwise y is large, which by Lemma 4
implies that

1
‖z‖2 < 4n3.

If during the execution of Algorithm 1 it happens that z > 0 or z = 0, then the
BP immediately stops. Otherwise, since |K| ≥ 1, each iteration of the while loop
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increases 1/‖z‖2 by at least 1. Hence, after at most 4n3 executions of the while loop
the algorithm yields a vector y that is primal feasible (case = 1) or dual feasible
(case = 2) or such that 1/‖z‖2 ≥ 4n3. In the last case y is small (case = 0). �

Since each execution of the while loop requires at most O(n) time, the BP will
require at most O(n4) time. It must be mentioned that for solving (1) one needs to
call the BP several times. Surprisingly, Chubanov was able to show that on average
the BP then will require only O(n3) time. We deal with this in the next section. For
some computational results, we refer to Section 5.1.

3 Exploration of Cuts from Small Vectors

Let y be a small vector relative to A, and let D denote the diagonal matrix that
arises from the identity matrix I when replacing Ikk by 1

2 , and where k is such that
yk = max(y) := maxi(yi). We conclude from Lemma 3 that (5) has a solution if and
only if the system

Ax = 0, D−1x ∈ (0,1]n (16)

has a solution. Obviously this is the case if and only if the system

ADx′ = 0, x′ ∈ (0,1]n, (17)

has a solution. Indeed, if x satisfies (16), then x′=D−1x satisfies (17) and conversely.
Hence we have reduced the problem of finding a solution of (5) to finding a solution
of (17), and this is in essence the same problem, except that the matrix A is replaced
by AD.

Suppose that we can find a vector y that is small relative to AD. Then we obtain
a second diagonal matrix, D1 say, with one of its diagonal entries 1/2, and the
remaining diagonal entries equal to 1, such that (17) has a positive solution if and
only if the system

ADD1x′′ = 0, x′′ ∈ (0,1]n.

has a solution. Note that DD1 is a diagonal matrix with either two entries on the
diagonal equal to 1/2 and all other entries 1, or one entry 1/4 and all other entries 1.

Proceeding in this way, after T steps we may conclude that finding a solution of
(5) is equivalent to finding a solution of a system of the form (16), where D is a
diagonal matrix whose diagonal entries are nonpositive powers of 2, say Dii = 2−ti ,
with

T =
n

∑
i=1

ti.
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Yet we observe that if a (positive) solution exists then T cannot become too large.
This can be understood by noting that the elements on the diagonal of D are upper
bounds for the respective entries xi in feasible solutions of (16). Hence we may
proceed as follows. We may restate (16) in the following way:

Ax = 0, 0 < xi ≤ 2−ti , 1≤ i≤ n. (18)

Any solution of the system (5) will also satisfy (18), and vice versa. Obviously the
closure of the feasible region of (18) is convex and bounded. Hence every feasible x
is a convex combination of basic feasible solutions. According to Khachiyan’s result
[9] there exists a positive number τ such that 1/τ =O(2size(A)) with the property that
the positive coordinates of the basic feasible solutions of this system are bounded
from below by τ . Here size(A) denotes the binary size of matrix A [9, 12, 13]. Now
let x be a (positive) solution of (18) and i an arbitrary index. There must exist a
vertex solution x′ whose i-th coordinate is positive and hence at least equal to τ .
Then αx+(1−α)x′ is positive for α ∈ (0,1), whereas its i-th coordinate becomes
larger than or equal to τ if α approaches zero. We conclude that we must have
τ ≤ 2−ti for each i. It follows that

τn ≤
n

∏
i=1

2−ti = 2−∑
n
i=1 ti = 2−T ,

which leads to the following upper bound for T:

T ≤ n log2
1
τ
= O(n · size(A)). (19)

We can now describe the idea underlying Chubanov’s algorithm. His Main Algo-
rithm (MA) repeatedly calls the BP. If the vector y generated by the BP is primal
or dual feasible, then the MA stops. Otherwise y generates a cut; in that case, the
BP is called again with the current A replaced by AD, where D incorporates all cuts
generated so far. The above reasoning makes clear that the number of calls of the
BP will be not larger than O(n · size(A)). Each iteration of the BP requires O(n)
time. Since the number of iterations of the BP is O(n3), we conclude that solving
(1) requires at most O(n5 · size(A)) time. In the next section we describe the MA in
more detail, as well as the version of the BP that was used by Chubanov. We also
demonstrate how a more careful analysis, which in essence is also due to Chubanov,
reduces the above bound on the time-complexity by a factor n.

4 Chubanov’s Main Algorithm

In essence Chubanov’s algorithm generates a sequence of pairs (d(i),y(i)), where y(i)

is large relative to AD(i), with D(i) = diag(d(i)), and eTy(i) = 1. The vectors d(i) are
constructed such that x≤ d(i) for each i. The sequence starts with d(0) = e and y(0)
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Algorithm 2: [ȳ,y,z,J,case] =CHUBANOV’S BASIC PROCEDURE(PA,y)

1: INITIALIZE: ȳ = 0; z = PAy; J = /0; case = 0
2: while 2

√
n‖z‖ > max(y) and case = 0 do

3: if z > 0 then
4: case = 1 (y is primal feasible); return
5: else
6: if z = 0 then
7: case = 2 (y is dual feasible); return
8: else
9: ȳ = y

10: find K such that ∑k∈K zk ≤ 0
11: α = pT

K(pK − z)/‖z−pK‖2

12: y = αy+(1−α)eK

13: z = αz+(1−α)pK (= PAy)

14: if case = 0 then
15: find a nonempty set J such that J ⊆ {

j : yj = max(y)
}

such that y(0) > 0 and eTy(0) = 1. If y(i) is primal feasible, i.e., z(i) := PAD(i)y(i) > 0
for some i ≥ 0, then x = D(i)z(i) is a positive solution for (1). On the other hand,
if z(i) = 0, then y(i) is dual feasible, and hence a certificate for infeasibility of (1).
Otherwise we construct y(i+1) by using (a slightly extended version of) the BP, as in
Algorithm 2, with the pair (PAD(i) ,y(i)) as input.

The extension concerns the new variables ȳ and J, and the fact that the initial
vector y is now input. The reason for the latter is that we want to explore knowledge
gathered in the vector y during a previous call of the BP in the next call. More
precisely, if the BP starts with a large vector y that is not primal or dual feasible,
then it generates a small vector. We start the next call of the BP with the last large
vector that was constructed during the last call. This is the vector ȳ defined in line 9.
As we will see later, this makes sense. It reduces the average number of iterations of
the BP by a factor n. If the BP generates a small vector y, then J is a set of indices,
each of which gives rise to a cut that halves the feasible region. Whereas Chubanov
takes for J always a singleton, we assume that |J|= O(1).

We are now ready to analyze the Main Algorithm (MA), Algorithm 3. In this
algorithm, AJ denotes the submatrix of A consisting of the columns indexed by the
elements in the index set J. The notations dJ and yJ are defined in a similar way.
The output of the algorithm is a 4-tuple [x,y,d,case], where the vector d is such that
D = diag(d) and case ∈ {1,2,3}. The meaning of these three cases is as follows:

case = 1: x is a solution of (1);

case = 2: y is a certificate for infeasibility of (1);

case = 3: d is a certificate for infeasibility of (1), due to Khachiyan’s
result.

When at the start of the BP the vector y is primal or dual feasible, then the BP
needs only one iteration with output case = 1 or case = 2. Then the MA will stop.
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Algorithm 3: [x,y,d,case] =MAIN ALGORITHM(A,τ)
1: INITIALIZE: d = e; y = e/n; x = 0; case = 0;
2: while case = 0 do
3: PA = I−AT(AAT )−1A
4: [ȳ,y, z,J,case] =Basic Procedure(PA ,y)
5: if case = 0 then
6: dJ = dJ/2
7: if min(dJ)< τ then
8: case = 3
9: else

10: AJ = AJ/2
11: if ȳ �= 0 then
12: y = ȳ

13: yJ = yJ/2
14: y = y/eT y

15: if case = 1 then
16: D = diag(d)
17: x = Dz

So let us assume that at the start of the BP y is not primal or dual feasible. Then
there are still two situations: y is either small or large. If y is small, the BP also
requires only one iteration. In that case y and z are not changed by the BP. Moreover,
at termination of the BP we have ȳ = 0 and the set J will be not empty. Hence
the MA will modify the current d and y by dividing their coordinates dj, yj, with
j ∈ J, by 2. As a consequence, the next call of the BP has input (PAD,Dy/eTDy),
with D = diag(d), with d and y updated as described. Following [2], when the BP
requires only one iteration, we call the corresponding iteration of the MA a fast
iteration. Note that a fast iteration occurs if and only if the BP yields ȳ = 0.

Next we focus on the case where y is large at the start of the BP, but not primal or
dual feasible. This will give rise to a so-called slow iteration of the MA. The BP then
outputs a small vector y, and the large vector ȳ that was generated just before y. It
also gives z = PAy and the index set J consisting of all j such that yj = max(y). Note
that y gives rise to new cuts xj ≤ 1/2, j ∈ J. The MA updates d and A accordingly.
But now the MA replaces y by ȳ before dividing its coordinates in J by 2, and hence
the next call of the BP uses as input (PAD,Dȳ/eTDȳ), with D as before.

An important question is whether y′ = Dȳ/eTDȳ is small or large relative to
AD. This question is hard to answer, but the next lemma provides some useful
information. At the end of the proof of this lemma it becomes clear why we use
the large vector ȳ instead of the small vector y. In this lemma D is a diagonal matrix
whose diagonal entries are positive and at most 1. The proof is essentially the same
as the proof of Lemma 3.2 in [2].

Lemma 6. Let ȳ be large relative to A, and y′ = Dȳ/eTDȳ, with D as just defined.
If z̄ = PAȳ and z′ = PADy′, then
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1
‖z̄‖2 −

1
‖z′‖2 < 8 |Q|n2,

where Q =
{

q : Dqq < 1
}

.

Proof. We start by proving ‖PADDȳ‖ ≤ ‖PAȳ‖. The projection matrix PAD is

PAD = I−DAT(AD2AT)−1AD.

Since PADDAT = 0 it follows that

PADDȳ = PAD
(
Dȳ−DATv

)
, ∀v.

Since PAD is a projection matrix, it does not increase the length of a vector.
Therefore,

‖PADDȳ‖ ≤ ‖Dȳ−DATv‖= ‖D(
ȳ−ATv

)‖ ≤ ‖ȳ−ATv‖,

where the last inequality follows because the entries on the diagonal of D are
positive and less than or equal to 1. Now taking v = (AAT)−1Aȳ we get ȳ−ATv =
PAȳ, whence we obtain ‖PADDȳ‖ ≤ ‖PAȳ‖.

From the definition of y′ it follows that

‖PADy′‖ ≤ ‖PAȳ‖
eTDȳ

.

Since eT ȳ = 1, and Dqq = 1 if q /∈Q, we may write

eTDȳ =
n

∑
q=1

Dqqȳq ≥ ∑
q/∈Q

Dqqȳq = ∑
q/∈Q

ȳq = 1−∑
q∈Q

ȳq.

It follows that

1
‖PADy′‖2 ≥

(eTDȳ)2

‖PAȳ‖2 ≥
(
1−∑q∈Q ȳq

)2

‖PAȳ‖2 ≥ 1− 2∑q∈Q ȳq

‖PAȳ‖2 .

By rearranging terms, we get

1
‖PAȳ‖2 −

1
‖PADy′‖2 ≤

2∑i∈Q ȳi

‖PAȳ‖2 ≤
2 |Q|max(ȳ)
‖PAȳ‖2 .

Finally, since ȳ is large we have 2
√

n‖PAȳ‖> max(ȳ)≥ 1/n. As a consequence we
may write
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max(ȳ)
‖PAȳ‖2 =

max(ȳ)
‖PAȳ‖

1
‖PAȳ‖ < 2

√
n ·2n

√
n = 4n2

and the lemma follows. �
We are ready to derive an improved upper bound for the total number of

iterations, as stated in the following theorem. The proof is as in [2], but adapted
to the case where |J|= O(1) (instead of |J|= 1).

Theorem 2. Assuming O(|J|) = 1, the total number of BP-iterations is
O
(
n3 log2 τ

−1).

Proof. As before, let T denote the number of iterations performed by the MA.
Moreover, let the i-th of these MA-iterations be followed by ni iterations of the
BP. Then the total number of BP-iterations is

N =
T

∑
i=1

ni. (20)

We denote the values of z=PAy at the start and end of the j-th BP-iteration during
the i-th MA-iteration as zij and ẑij, respectively.

For a fast MA-iteration we have ni = 1. Next we consider a slow MA-iteration.
Then we may write

ni =
ni

∑
j=1

1 = 1+
ni−1

∑
j=1

1≤ 1+
ni−1

∑
j=1

(
1

‖ẑij‖2 −
1

‖zij‖2

)
,

where the inequality is due to Lemma 5, since |K| ≥ 1. Since ẑij = zi,j+1 for 1≤ j <
ni, we get

ni ≤ 1+
ni−1

∑
j=1

(
1

‖zi,j+1‖2 −
1

‖zij‖2

)
= 1+

1
‖zi,ni‖2 −

1
‖zi1‖2 .

Let S denote the number of slow iterations, and let the corresponding indices be
is, with 1≤ s≤ S, such that

1≤ i1 < i2 < .. . < iS ≤ T.

Then we obtain

N ≤
T

∑
i=1

1+
S

∑
s=1

(
1

‖zis,nis
‖2 −

1
‖zis,1‖2

)
= T +

S

∑
s=1

(
1

‖zis,nis
‖2 −

1
‖zis,1‖2

)
.
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By rearranging the terms in the last sum we obtain

N ≤ T +
1

‖ziS,niS
‖2 −

1
‖zi1,1‖2 +

S−1

∑
s=1

(
1

‖zis,nis
‖2 −

1
‖zis+1,1‖2

)
.

Omitting the third term in the last expression, and also using that the last y-vector
generated by the BP is small, we obtain

N ≤ T + 4n3 +
S−1

∑
s=1

(
1

‖zis,nis
‖2 −

1
‖zis+1,1‖2

)
.

Now consider the bracketed term in the last sum. This term contains the last z-vector
in MA-iteration is and the first z-vector in MA-iteration is+1. If other iterations occur
between these two slow iterations, these are fast iterations, and their indices i satisfy
is < i < is+1. For the moment we may safely assume that D = I at the end of MA-
iteration is. Since the BP does not change the vector y during fast iterations, the y
vector at the start of MA-iteration is+1 has the form Dȳ/eTDȳ, where ȳ is the large
vector generated by the last BP-iteration during MA-iteration is, and where D is
the product of matrices Di = diag(di), where each di arises from the all-one vector
by replacing the Ji-entries by 1

2 , where is ≤ i < is+1. But this means that Lemma 6
applies. Hence we obtain

1
‖zis,nis

‖2 −
1

‖zis+1,1‖2 ≤ 8n2 |Q| ,

where Q is the set of entries in d smaller than 1.
If each Ji is a singleton, for is ≤ i < is+1, then |Q| equals at most is+1− is. But

we allow Ji to be larger, though not larger than O(1). In that case we obtain |Q| =
O(is+1− is). Substituting this we obtain

N ≤ T + 4n3+ 8n2O

(
S−1

∑
s=1

(is+1− is)

)
= T + 4n3+ 8n2O(iS− i1) .

Since iS− i1 < T we get

N ≤ T + 4n3+ 8n2O(T) .

Finally, using (19), we get the following upper bound for the total number of
iterations:

N ≤ n log2 τ
−1 + 4n3+ 8n2O

(
n log2 τ

−1)= O
(
n3 log2 τ

−1) . �
Since each BP-iteration requires O(n) time, the time-complexity for the BP

becomes O
(
n4 log2 τ−1

)
. We also need to take into account the time needed for

the computation of PA during each iteration of the MA. This can be done in O(n3)
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time [6, 12], and even faster with the Sherman-Morrisen-Woodbury formula [8].
Hence the MA needs about the same time as the BP or less, which means that the
total time-complexity of the algorithm is O

(
n4 log2 τ−1

)
= O

(
n4size(A)

)
.

5 Computational Results

5.1 Computational Results for the BP

In order to illustrate the effect of allowing the set K to be larger than a singleton
we refer to Figures 1 and 2. These figures were obtained by applying Algorithm 1
to a randomly generated matrix A of size 25× 50. In that case the algorithm needs
256 iterations if we take for K the singleton k for which zk is minimal. On the other
hand, if we take for K the set consisting of all indices k for which zk ≤ 0, the number
of iterations is only 25.

The black graphs in Figures 1 and 2 show, respectively, the behavior of 1/‖z‖2

and
√

n‖z‖/max(y) during the course of the algorithm if K is a singleton and the
grey graphs do the same when we take for K the larger set. Figure 1 makes clear
that if K is a singleton the increase in 1/‖z‖2 is on average 80, which is much larger
than 1, as guaranteed by Lemma 5. But if K consists of all k for which zk ≤ 0, the
increase per iteration is on average 2200, which is also much larger than guaranteed
by Lemma 5.

To compare Algorithm 1 and the original BP [2, 4] further we also present
Table 2. Each line gives the average number of iterations, the average time (in
seconds) and the average size of the set K, for a class of 100 randomly generated
problems with matrices A of size m× n as given in the first two columns. The
elements of A were randomly chosen in the intervals [−100,100], and uniformly
distributed. In all cases we used y = e/n as initial vector, where e denotes the all-
one vector.

0·103
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40·103

50·103

60·103

0 50 100 150 200 250 300

Fig. 1 Typical behavior of 1
‖z‖2 for K = {k} (black), where zk = min(z), and for K = {k : zk ≤ 0}

(grey)
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Fig. 2 Typical behavior of max(y)√
n‖z‖ for K = {k}, where zk = min(z) (black), and for K =

{k : zk ≤ 0} (grey)

Table 1 Comparison of the original and the new basic procedure

K = {k} , zk = min(z) K = {k : zk ≤ 0} Improvement factor

m n Iterations Seconds |K| Iterations Seconds |K| Iterations Seconds

5 10 14.8 0.0004 0.8 7.1 0.0003 2.0 2.1 1.7

25 50 650.4 0.0213 1.0 88.2 0.0038 8.2 7.4 5.6

125 250 47,965.1 3.0959 1.0 1,607.3 0.1991 32.5 29.8 15.6

625 1,250 997,796.8 1,546.3305 1.0 4,320.1 36.1645 228.3 231.0 42.8

We conclude from Table 1 that in the new approach the average size of the set K
is substantially larger than 1. Moreover, as expected, the improvement factor for the
average number of iterations is about the same as the average size of K. Finally, this
factor, as well as the improvement factor for the computational time, increases with
the size of A. For further computational evidence in favor of the new approach, we
refer to [4].

It should be noted that it is not at all excluded that for the new approach worst-
case examples exist where |K|= 1 in every iteration. But it can easily be understood
that the occurrence of this worst-case behavior will be a rare event. In fact, during
our experiments we encountered this event only for (very) small sizes of A, with
n ≤ 10. On the other hand, it might be worth investigating if it is possible to derive
an estimate for the average size of K in the new approach.

We repeated the same experiment with exactly the same set of randomly
generated problems as before, but now using the cuts (10) in Section 2.2. Table 2
shows the results. Comparing this table with Table 1 we see that in all cases
substantially smaller iteration numbers and computational times arise. The last two
columns in both tables demonstrate a similar effect of using larger sets K.

Note that the number of iterations decreases drastically when using the larger
sets K. This does not yield a similar decrease in computational time, however. This
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Table 2 Comparison of the original and the new basic procedure, with cuts from (10)

K = {k} , zk = min(z) K = {k : zk ≤ 0} Improvement factor

m n Iterations Seconds |K| |J| Iterations Seconds |K| |J| Iterations Seconds

5 10 1.2 0.0001 0.8 5.3 1.2 0.0001 1.7 5.5 1.0 1.1

25 50 25.1 0.0015 1.0 5.9 9.7 0.0007 8.6 9.5 2.6 2.4

125 250 2,446.6 0.1316 1.0 11.7 207.1 0.0193 37.3 20.6 11.8 6.8

625 1,250 64,392.6 6.1867 1.0 39.1 1,295.8 2.0168 206.6 110.8 49.7 3.1

is due to the fact that the computation of pK requires O(|K|n) time, which is a
factor |K| larger than when K is a singleton. We verified that if m = 625 then this
computation is responsible for about 80% of the time needed per iteration. This
explains the smaller reduction in computational time.

In Table 2 we also show the average number of cuts generated by the BP, i.e., the
average size of the set J. Since we checked for every index k if (10) yields a nonvoid
cut, these computations require O(n2) time. This also results in a negative effect on
the time required by the algorithm. By limiting the size of J, as in Theorem 2, we
might prevent this negative effect.

The above results, as well as the results in the next section, were obtained using
Matlab (version R2014a) on a Windows 7 desktop (Intel(R) Core(TM) i3 CPU,
3.2 GHz), with 8 GB RAM. For the computation of the projection matrix PA we
used the Matlab commands

[m,n] = size(A);
[Y,R] = qr(A’,0);
P = eye(n) - Y*Y’.

5.2 Computational Results for the MA

Using the same set of random problems as in the previous section we also ran the
MA. The results are presented in Table 3. Besides the usual quantities we include a
column that gives the two-norm of the error ‖Ax‖ in the solution, after rescaling x
such that eTx = 1. To compare computing times with a well-known solver we also
solved all problems with Sedumi [11, 15]; the average solution times for Sedumi
are given in the last column. To obtain these results we used the variant of the BP
with K = {k : zk ≤ 0} and with the tightest possible cuts, as in (10). The table
indicates that on average the Projection Method of Chubanov—equipped with the
improvements developed in this paper—is the winner.

It should be mentioned that the Sedumi times are rather stable, whereas the
behavior of Chubanov’s Projection Method is rather unpredictable. This is made
clear in Table 4, which shows the range of the solution times for Chubanov’s method
and Sedumi, respectively.
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Table 3 Computational behavior of the MA

Size(A) Iterations Accuracy Sizes K and J Time (s)

m n MA BP ‖Ax‖ |K| |J| Chubanov Sedumi

5 10 1.8 3.3 1.3e−14 1.9 5.3 0.0008 0.0167

25 50 3.4 39.1 1.1e−13 10.1 18.2 0.0036 0.0333

125 250 4.4 928.8 8.5e−13 39.5 72.3 0.1091 0.5375

625 1,250 6.2 4,590.0 1.2e−12 231.4 536.0 9.0458 43.0655

Table 4 Range of solution
times for Chubanov’s method
and Sedumi

Size(A) Range of solution times

m n Chubanov Sedumi

5 10 [0.0001, 0.0119] [0.0099, 0.0255]

25 50 [0.0006, 0.0267] [0.0191, 0.0534]

125 250 [0.0142, 1.0401] [0.2606, 0.7549]

625 1,250 [1.0911, 239.1962] [27.5789, 89.5803]

6 Conclusion

The BP of Chubanov arises from Algorithm 1 by using for the set K in line 9 a
single index with zk ≤ 0; a natural choice is to take k such that zk is minimal. In this
paper we allow K to be larger, e.g., the set of all k such that zk ≤ 0. We have shown,
both theoretically and computationally, that the new approach outperforms the BP
of Chubanov. Apparently this is because the average size of the set K in the new
approach is substantially larger than 1, at least in our test problems.

From our experiments we conclude that Chubanov’s MA, when equipped with
the new BP and the new cut criterion, is competitive with Sedumi.

It remains as a topic for further research to find out if more can be said on the
behavior of the size of the set K. If we could show that on average the size of K is a
certain fixed fraction of the dimension n, this might open the way to improving the
iteration bound of the MA.

Finally, as Chubanov mentions in [4], his BP resembles a procedure proposed
by Von Neumann, which has been described by Dantzig in [5]. This Von Neumann
algorithm has been elaborated further in [7] and more recently in [10]. It may be a
subject for further research to investigate if the idea developed in the current paper
can also be used to speed up Von Neumann’s procedure.
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