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Preface 

This volume contains revised versions of selected papers presented during the 
biannual meeting of the Classification and Data Analysis Group of SocietA 
Italiana di Statistica, which was held in Bologna, September 22-24, 2003. 

The scientific program of the conference included 80 contributed papers. 
Moreover it was possible to recruit six internationally renowned invited speak- 
ers for plenary talks on their current research works regarding the core topics 
of IFCS (the International Federation of Classification Societies) and Wolf- 
gang Gaul and the colleagues of the GfKl organized a session. Thus, the 
conference provided a large number of scientists and experts from home 
and abroad with an attractive forum for discussions and mutual exchange 
of knowledge. 

The talks in the different sessions focused on methodological developments 
in supervised and unsupervised classification and in data analysis, also pro- 
viding relevant contributions in the context of applications. This suggested 
the presentation of the 43 selected papers in three parts as follows: 

CLASSIFICATION AND CLUSTERING 

Non parametric classification 
Clustering and dissimilarities 

MULTIVARIATE STATISTICS AND DATA ANALYSIS 

APPLIED MULTIVARIATE STATISTICS 

Environmental data 
Microarray data 
Behavioural and text data 
Financial data 

We wish to express our gratitude to the authors whose enthusiastic par- 
ticipation made the meeting possible. We are very grateful to the reviewers 
for the time spent in their professional reviewing work. We would also like to 
extend our thanks to the chairpersons and discussants of the sessions: their 
comments and suggestions proved very stimulating both for the authors and 
the audience. 

We also thank the Italian Minister0 dell'Istruzione, dell'Universit8 e della 
Ricerca for partially supporting the pubblication of this volume. 



VI Preface 

Special thanks are also due to  the local organizing committee: G. Gal- 
imberti, L. Guidotti, A. Lubisco, S. Mignani, P. Monari, A. Montanari, M. 
Pillati, G. Soffritti, to  the University of Bologna for financial support and 
hospitality, and to the many persons who, in an unofficial form, strongly 
contributed to the organization of the conference. 

We would finally like to  thank Dr. M. Bihn and her colleagues from 
Springer-Verlag, Heidelberg, for the excellent cooperation in publishing this 
volume. 

Roma, Bologna 
October 2004 

Maurizio Vichi 
Paola Monari 

Stefania Mignani 
Angela Montanari 
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Multi-Class Budget Exploratory Trees 

Massimo Aria 

Dipartimento di Matematica e Statistica, 
Universitii degli Studi di Napoli Federico 11, Italy 
aria@unina.it 

Abstract. This paper provides a new method to grow exploratory classification 
trees in multi-class problems. A two-stage algorithm, using recursively the latent 
budget model, is proposed to find ever finer partitions of objects into prior fixed 
number of groups. A new rule to assign the class labels to the children nodes 
is considered to deal with fuzzy data. Then, a software prototype namely E. T. 
Exploratory Trees, developed in the Matlab environment, is proposed to show the 
main features of the methodology through several interactive graphic tools l .  

1 Introduction 

During the last few years, classification has shown a great success in many 
different fields such as medical science, customer satisfaction, pattern recogni- 
tion, text mining, etc. In this context, tree methods have played an  important 
role since the monography of Breiman et al. (1984). Later, new algorithms 
such as C4.5 (Quinlan, 1993), QUEST (Quick Unbiased Eficent Statistical 
Tree, Loh and Shih, 1997), Two-Stage (Mola and Siciliano, 1992), FAST (Fast 
Algorithm for Statistical Trees, Mola and Siciliano, 1997), LBT (Latent Bud- 
get Trees for Multiple Classification, Siciliano, 1999) have been proposed to 
improve classification trees. 
In ordinary classification problems, each observation belongs to  only one class 
of target (response) variable. Often, the problem concerns the analysis of 
fuzzy data  where objects cannot be placed in distinct groups without strain, 
and as consequence the interest moves to  the evaluation of the strength with 
which an observation falls into a particular class rather than another one. For 
example, when we classify a set of documents, the same document (i.e. a sci- 
entific paper) may be relevant to  more than one topic. This kind of problem is 
called multi-class problem. There are many tree algorithms designed to  han- 
dle single-class problems, but few for multi-class data (Zhang, 1998). Until 
now, common technique, which could be applied to  the multi-class problems, 
consists of the decomposition of data into multiple independent binary clas- 
sification problems. 

'The present paper is financially supported by MIUR Funds 2001 awarded to 
R. Siciliano (Prot. N. 2001134928). 



4 Aria 

A segmentation procedure consists of a recursive (r-way or binary) par- 
tition of N cases into subgroups where the response variable is internally 
homogeneous and externally heterogeneous. In terms of methodological con- 
tributions and applications of tree-based methods, an important distinction 
is made between exploratory trees - which describes the relationships among 
the variables with respect to the given response that can be numerical (re- 
gression tree) or categorical (classification tree) - and decision trees - which 
allows to assign a response value or a class to a new observed case for which 
only the measurements of the predictors are known (Brieman et al., 1984). 
In our case, the main aim is to grow exploratory trees enabling to understand 
which iterations among predictors (and between predictors and response) are 
the most important to describe the classification of objects. 
The principal feature of two-stage segmentation is that a predictor is not 
merely used as generator of splits but it plays in the analysis both a global 
role - evaluating the global effect on the response - and a local role - evalu- 
ating the local effect of any splitting variable that can be generated by the 
predictor, using statistical indexes (the r index of Goodman and Kruskal, the 
conditional entropy, etc), modeling (logistic regression, latent budget model, 
etc) or factorial analysis (non symmetric correspondence analysis, discrimi- 
nant analysis, etc)(Siciliano et al., 2000). Main goals are those one to accel- 
erate the growing procedure by selecting the most significant predictors and 
to enrich the statistical interpretation within each node of the tree. 
In the following, an innovative supervised classification methodology is pro- 
posed to deal with multi-class response, defining a fuzzy partitioning criterion 
based on a probabilistic approach, the latent budget method. 

2 Multi-Class Budget Trees 

In this paper, a new approach is introduced, namely Multi-Class Budget Trees 
(MCB), to design trees dealing with multi-class response. The idea is to 
use latent budget model, in a two-stage criteria, to define the best split to 
each node of the tree. Particularly, the methodology consists of a two-stage 
recursive algorithm. In the first stage, it selects the best predictor on the bases 
of a predictability measure, while in the second step, it identifies, through 
latent budget model, the latent typologies of observations summarizing the 
original groups. These are explained by the best predictor selected in the first 
stage. 

2.1 Latent Budget Model 

The Latent Budget Model (LBM) is a reduced-rank probability model to 
decompose a table of compositional data through a mixture of K positive 
factorial terms (called latent budgets), weighted by mixing parameters, satis- 
fying restrictions likewise conditional probabilities (de Leeuw et al., 1991). 
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Notation and definition. Let (Y, X )  a multivariate random variable where 
X is the vector of M predictors (XI ,  ..., X,, ..., X M )  and Y is the criterion 
variable taking values in the set of prior classes C = (1, . . . , j, . . . , J )  . 
Let F a cross table obtained by the I modalities of a predictor X ,  and the 
J modalities of the response Y. Let pij any relative frequency of cell ( i , j )  
with C i C j p i j  = 1 for (i = 1, ..., I) and ( j  = 1 ,..., J ) ,  while z i p i j  = p i ,  
and xi pij = p.j are the marginal row and column frequencies of F .  
Let P = D;'F a (I x J )  matrix of observed budgets attained dividing each 
element of F by its row marginal frequency. 
The LBM approaches the observed budgets through the theoretical budgets 

where the conditional probabilities njlk, with ( j  = 1, ..., J ) ,  represent the k-th 
latent budget and where the conditional probabilities xkli, with (k = 1, ... , K), 
are the mixing parameters of the i-th modality of the predictor X,. 
In the matrix notation the model can be written as 

II = AB' ( 2 )  

where Il is a ( I  x J )  matrix of theoretical budgets, A is a ( I  x K )  matrix of 
mixing parameters n+ and B is a ( J  x K )  of latent budgets ~ l k  

The estimation. The model parameters can be estimated by a weighted 
least-squares method (Aria et al., 2003) minimizing the loss function: 

where W is the weight matrix used in the estimation procedure. 
This estimation method has no distributional assumptions and is as well a 
way to generalize two different approaches to latent budget analysis: Condi- 
tional and Unconditional LBM. In the first case, when the matrix W = I, 
we have the classical approach where the parameters can be interpreted as 
conditional probabilities. Particularly the mixing parameter nkli is the con- 
ditional probability of the generic element with the 2-th attribute to fall into 
the k-th latent budget whereas the generic component njik is the conditional 
probability of the element in the k-th latent budget to assume the P t h  at- 
tribute. On the contrary in the second case, when W = D ~ - ~ ~ ~  in order to  
take into account the row marginal frequencies, we have a special case of the 
weighted version of mixture model presented by Mooijaart et al. (1999) that 
can be understood as a supervised double-layer neural network with linear 
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constraints. 
The identification. A problem, well known in literature, is that the Latent 
Budget Model is not identifiable. In this case, it means that the Weighted 
Least-Squares estimation method produces unique solution for 17 but not for 
A and B.  
Using the matrix notation, the identifiability problem of LBM can be seen as 
following: 17 = AB' = AT-'TB' = 28' . 
This implies that exist infinite ( K  x K )  matrices T which give infinite dif- 
ferent matrices 2 and B for the same matrix 17. In the MCB methodology, 
the stabilizing algori thm (Aria et al., 2003) is applied to identify an unique 
solution for the latent budget model. The key idea is to use a method based 
on the structure of the class of Metropolis algorithm to identify the opti- 
mal solution choosing the matrix T ,  which maximizes the sum of chi-square 
distances among the latent budgets. 

2.2 Multi-Class two-stage criterion 

The MCB methodology consists of a two-stage recursive partition criteria 
which uses conditional latent budget models to define the best split of ob- 
jects in classification field when the response is multi-class. The purpose is 
to choose, at each node, the most explicative predictor (or a subgroup of 
predictors) respect to the Y variable. Then a conditional LBM is applied to 
find the best partition of the observations in K groups, where K represents 
the number of latent budgets. We can choose different strategies for the anal- 
ysis from which depends the measure of K. A first way is to use K = 2 or 
K = 3 in order to obtain respectively a binary or a ternary tree. A second 
way to proceed should imply not to fix a value for K but to  choose, a t  each 
node, the most parsimonious model for the data analyzed. In both cases, the 
methodology grows a classification tree characterized by a sequence of latent 
budget models assigned recursively to the internal nodes of the tree. 
The partitioning algorithm, applied recursively to each internal node of the 
tree, is summarized in the following schema: 

Stage 1. Predictors selection 
A subset of best predictors (XI ,  ..., X,, ..., Xv) ,  with V < M, is selected 
from X maximizing the global relative impurity index -y~lx, proposed 
by Mola and Siciliano (1992). This measure, based on the r index of 
Goodman and Kruskal, allows to consider the global role played by the 
predictor in the explanation of the response. 

Stage 2. Split definition 
Latent budget model is applied on the matrices obtained by the cross 
of each best predictor X, and the response. The best model is chosen 
minimizing the dissimilarity index  of Clogg and Shihadeh (1994) that 
measures the goodness of fit as the proportional distance between the 
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theoretical and the observed budgets: 

argmin D(Fy,xv) + LBM(Fy,x*)  
xv (5) 

with (v = 1, ..., V), where L B M ( F y , x * )  is the best model, and 

is the dissimilarity index of a LBM model for the cross table F obtained 
from Y and the predictor Xu. 

Split interpretation. In the field of classification trees, as the LBM estima- 
tions can be seen like conditional probabilities, it allows to give a primary role 
to  the parameters in the definition and the interpretation of the partition. 
Focalizing the attention on binary trees, choosing K = 2, the matrix A with 

2 dimensions ( I  x K) with Ckzl  rilk = 1, the I modalities of the best pre- 
dictor X* are summarized in 2 latent budgets (representing the two children 
nodes). In other words the i-th modality is assigned to k-th budget which is 
linked to the highest mixing parameter. This means that the objects fall into 
the left node when they assume modalities with a ~ i l k = l  2 0.5 while all the 
other cases will fall in the right node: 

with (i = 1, ...., I). 

Assignment of class labels. The assignment of the class labels to each 
terminal node is given measuring the distance of a latent budget from the 
independence hypothesis represented by the mean budget of the matrix P 

When a j modality of Y expresses a positive measure of d j jk  this means that 
it will play an important role in the definition of the k-th child node. On 
the contrary, when d j lk  measure is not positive, the j modality does not take 
place in the explanation of the k-th child node. In other words, a general rule 
to assign class labels to a node can be so defined: 
let the j class label of the response (with j = 1, . .. , J ) :  

- if d j lk=l  > 0 then the j class label is assigned to the left node; 
- if d j lkZ2  > 0 then the j class label is assigned to the right node 

Differently from the classical methodologies which force the informative struc- 
ture of the data giving to each terminal node only one class label (in multi- 
class problems too), the MCB method overcomes this matter assigning, to 
each node, one or more class labels, specifying also the strength with which 
each of them contributes to describe the identified pattern. 
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3 E.T. software and application 

The primordial role and advantage of segmentation can be associated to the 
use of a tree graph to describe relations among variables (exploratory tree) 
as well as later on to classify new cases (decision tree). General purpose and 
specialized statistical software have been implementing numerical procedures 
and standard interfaces to get and describe the results of the analysis. But a 
lack of attention has been paid on the visualization aids associated to a tree 
graph and also to the numerical results obtained by a segmentation routine 
within each node of the tree. To fill in this empty, it has been proposed an 
interactive software, namely E.T. Exploratory Trees (see fig. 2 ) ,  developed 
in MATLAB environment and characterized by an intensive use of graphical 
tools and computational procedures in order to  apply two-stage segmentation 
routines in a new fashion. E.T.,  described by Aria (2003) and Aria and Sicil- 
i a n ~  (2003), can be seen as an ideal software for learning from trees, allowing 
an interactive exploration of data by discovering patterns using colors (see 
fig. l ) ,  by clicking within the node to  describe local results (see fig. 2), by 
merging modeling and trees2 . 
To show an applicative example of the Multi-Class Budget Tree methodol- 
ogy with the E.T. software, a dataset taken from a Survey of the Bank of 
Italy about Family Budgets a t  the year 2000 is considered3. This consists of 
1998 observations where interest pertains to the study of the kind of invest- 
ment preferred by the head of the family. The response variable summarizes 
five variables concerning the different forms of investment preferred: banking, 
postal, bond, share, cash or none preferred form. Several different typologies 
of investors correspond to this response, such as classical investor (banking, 
postal, bond), modern investor (share) and investor without preferences. 25 
categorical predictors have been considered, 11 of them are about the social- 
demographical condition (age, education, etc.) while 14 concern the econom- 
ical situation (salary, save, properties, etc.) of the head of the family. 
The results of the analysis are shown in the following figure. Particularly, 
figure 1 contains the multi-class exploratory tree explaining the iterations 
among the predictors and the response. To give an example of the ability 
of E.T. to  browse the graph, figure 2 shows a description of the node 13 
obtained by a simple click of the mouse. Figure 3 clarify how the split and 
the class labels are defined through the MCB methodology. We can see that 
the modalities of the best predictor Region (with 5 modalities: North-West, 
North-East, Middle, South, Islands) fall into the left or into the right node 
on the bases of the measure of mixing parameters linked to them. Looking 
at  the table of latent budgets, the label classes 1,2,6 are joined to the left 
node instead of the 3,4,5 which are associated to the right node. It means 
that,  the left node is characterized by all the families which prefer to invest 

2 ~ h e  latest version of the E.T. software can be required to  the author by ernail. 
3http://~w~,bancaditalia.it/statistiche/ibf 
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by banking and postal systems (old style family from the South and Islands). 
On the contrary, the right node is characterized by all the other families that 
invest their money by share and bond (modern style family from the North 
and Middle). 

Fig. 1. The Multi-Class Budget Exploratory Tree (Family Budget Survey) 

Fig. 2. The GUI of E.T. software and the description of node 13 (Family Budget 
Survey) 
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Fig. 3. The mixing parameters and the latent component matrices of the node 13 
(Family Budget Survey) 
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Abstract. In this paper we examine some nonparametric evaluation methods to 
compare the prediction capability of supervised classification models. We show also 
the importance, in nonparametric models, to eliminate the noise variables with 
a simple selection procedure. It is shown that a simpler model usually gives lower 
prediction error and is more interpretable. We show some empirical results applying 
nonparametric classification models on real and artificial data sets. 

1 Introduction 

In this article we examine evaluation methods of supervised classification 
models in a nonparametric context. More precisely, we are addressing two 
fundamental tasks: 

examine some nonparametric evaluation methods to compare the predic- 
tion capability of classification models; 

0 show that the use of a selection procedure in order to eliminate the noise 
variables can provide a more capable and interpretable model. 

These tasks have particular relevance in a Data Mining problem. Often 
in this case, objective of the analysis is to predict correctly the class of new 
observed cases and consequently we are interested in the models having the 
greatest prediction capability. With this respect, we have to evaluate the 
prediction capability of each classification model, ensuring the evaluation 
comparability with other concurrent models. We are also interested to  obtain 
reliable and interpretable models, which can be obtained removing the noise 
variables. This could be a difficult task with non-parametric classification 
models and in particular with aggregate predictors. 

We deal with these specific evaluation problems in the following para- 
graphs using a simulation approach with well known machine-learning and 
artificial data-sets. 
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2 Nonparametric estimators of predictive performance 

The most used measure of prediction capability of a nonparametric classifi- 
cation model is the error-rate, defined as the ratio between the number of 
misclassified cases, given by the classifier, and the total number of cases exam- 
ined. The error-rate of the classifier on the entire population is named "true 
error-rate". It is usually unknown because we can observe the true class of 
the cases only on a sample. In a sample, the error-rate of a classifier obtained 
considering the same data used to estimate the model is named "apparent 
error-rate" or "re-substitution error-rate" . 

The apparent error-rate is a poor estimator of future performance. Usu- 
ally the apparent error-rate is an optimistic estimator of the true error-rate: 
using Neural Networks or Aggregated Classification Trees (for example AD- 
ABOOST), often it is possible to obtain a null apparent error-rate. This 
situation is named over-fitting and usually leads to disastrous results on new 
data. 

To obtain a more realistic value of the true error-rate we have to obtain 
an estimate on independent data-sets. Given a complete data-set with one 
classification variable Y and s predictorsX1, Xz,  . .., X,, we split it in two 
parts: a training set with N cases and a test set with H cases. 

Training - set = {(yi, xil, xiz, . . . , xi,)) i = 1,2, ... N (1) 

Test - set = {(yz, xi1, xiL2, . . . , xiS))  h = 1,2, ... H (a] 
Fixed a classification model M, the predicted class for the i-th case is: 

Using the test-set, an estimate of the prediction error can be obtained as the 
misclassification rate: 

When the data-set is very large, we can split randomly in two data-sets 
(training and test set) without loss of information, obtaining both a stable 
classifier and a reliable estimation Pe (M) of the prediction error. On the 
contrary, when data-set is of small-medium size, we have to use the same 
data for the model building and its assessment. 

In this situation, we can consider several different methods to estimate 
the prediction error: 

Using all data-set we obtain the apparent error (AE). 
0 Splitting the data set in several folds we can calculate cross-validation 

(CV) estimators, for example, Leave-one-out or K-fold CV. In the last 
approach the cases are randomly split into a partition of K mutually 
exclusive test-sets of approximately equal size. The model is estimated 



Methods to Compare Nonparametric Classifiers 13 

K times, excluding each time one tests-set and testing the model on the 
excluded cases, obtaining K error-rates. Averaging these values we obtain 
the k-fold cross-validation error-rate. 
We can achieve a more stable cross-validation estimator, the Replicated 
CV (RCV), averaging CV estimates obtained starting from different ran- 
dom partitions of the data set. 
The Holdout (H) estimator is obtained splitting randomly the data-set 
in 2 parts: one part (for example 213 of data-set) used as training data 
while the other part used as an independent test-set on which calculate 
the error-rate estimation. 
The Holdout Random Resampling (HRR) is calculated averaging different 
Holdout estimates obtained from repeated random splits (> 100) of the 
data  set. 
Bootstrap estimators (B) (for example 0,632 Bootstrap) are obtained av- 
eraging estimates calculated on several bootstrapped data-sets. 

All previous methods (except AE) could be stratified, i.e. the same per- 
centage of cases in each class is maintained into the test-set as observed in 
the data-set. This procedure usually reduces the estimator's variability. In 
presence of classes with very small frequencies of cases, we could consider 
the opportunity to introduce a cost function which weights differently the 
error-rate of each class. In this paper we will not analyse this possibility. 

3 Comparison of predictive performance estimators 

To compare several estimators of the predictive performance of a classifier, 
we could evaluate their bias and variability. Several authors have considered 
this problem and many empirical results are reported in literature. 

Kohavi (1995) reviewed some methods, including H, CV and B, comparing 
these approaches on a variety of real data-sets. He showed that k-fold CV with 
moderate k (10-20) reduces the variance while increasing the bias; greater 
values of k give less biased estimator but higher variability. With small sample 
size, reducing the value of k increases bias and variability. Bootstrap has low 
variance but extremely large bias on some problems, while H usually performs 
worse than CV. 

We conducted a large number of simulations on real and simulated data- 
sets, to compare the variability and the bias of the methods introduced in 
the previous paragraph. 

For example, in Figure 1 we show the whisker plots of stratified 10-fold CV 
estimator replicated 50 times changing randomly the partition. The model 
used is the classifier ADABOOST C4.5 applied to the well known SPAM 
data-set (UCI repository: 4601 e-mail messages, 57 predictors, 1 dummy = 

spam/no spam). The range of the 10-fold CV is (4.37-5.35). We can note that 
the 10-fold CV, which correspond to the means (indicated with squares) of 
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Fig. 1. 10-fold CV replicated 50 times for ADABOOST-C4.5 (Spam Data-set) 
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replication 

Fig. 2. 10-fold CV and HRR replicated 50 times for ADABOOST-C4.5 
Data-set). 

(Hepatitis 

10 values, are slightly influenced by the sample variability. Figure 2 shows a 
comparison between stratified HRR (66% training-34% test, replicated 200 
times) and stratified 10-fold CV, both replicated 50 times, using the classi- 
fier ADABOOST C4.5 applied to Hepatitis-data (155 cases, 19 predictors, 1 
dummy). The HRR variability is smaller than 10-fold CV. In this case the 
value of the apparent error is 0 and the Leave-one-out error is 14.19. We 
used also a simulated data-set with 10000 cases, 7 predictors, 5 classes. We 
drew 500 times a sample of 200 cases. On each sample we estimated the 



Methods to Compare Nonparametric Classifiers 15 

classifier, the true error-rate (as the performance of the estimated classifier 
on the complete data-set), the 10-fold CV, the 10-fold R-CV, the HRR. In 
this simulation we have observed that stratified HRR and 10-fold R-CV give 
always better results than simple CV. Moreover the estimates of HRR and 
R-CV are quite similar in terms of bias and variance. From these results it 
is clearly inadequate to compare classifiers on the basis of a simple method 
as CV or H, because the conclusion about the predictive performance of a 
classifier could depend strongly on the sample drawn. With medium-small 
size data-set, we suggest to  use an estimation method based on a sufficiently 
large number of replications (as HRR or R-CV). 

4 Methods for variable selection in nonparametric 
classification models 

It is not pointed out, in the machine-learning literature, that eliminating the 
noise variables it can be obtained a more capable and interpretable model. In 
this literature the prevalent approach consists of including all the variables 
in the model and then using a pruning procedure to  reduce its complexity. 

On the contrary, our aim is to investigate if removing the "noise" variables 
it is possible to increase the prediction capability of nonparametric classifiers. 
This objective requires a strategy for the selection of the variables to  discard, 
in order to  individuate the model with the best predictive performance. 
We can choose essentially between two different approaches: 

consider indexes built from the observed joint distribution of each predic- 
tor with the class, independently from the choice of a classifier; 
consider the contribution of each variable to  the prediction capability of 
the classifier. 

In the first approach we can use, for example, indexes based on the entropy 
(see Yao et al. 1999). A well known index is the Information Gain which 
evaluates the worth of a predictor X by measuring the information gain with 
respect to the class Y. Another common index is the Gain Ratio. Both these 
indexes increase their value when the partition induced by the predictor X 
reduces the entropy. Moreover, these indexes are usually calculated over all 
cases of the data set. 

In the second approach we consider indexes which compare the prediction 
performance of classifiers on different groups of variables. Such indicators are 
generally specific for every single method and they make difficult the com- 
parison among different methods. On the other hand, to  be able to  compare 
several models, as usually requested in a Data Mining context, it is necessary 
to individuate measures applicable to several types of classifiers. 

As starting point in the definition of such measure, it is possible to  con- 
sider the effect obtained, dropping a single variableXj, on the classification 
error of a test sample. Such effect can be measured by the difference between 
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the classification error-rate for the model without the predictor X j  and the 
classification error-rate for the full model. For example, we can consider the 
following index to evaluate the irrelevance of a predictor: 

Sj = err(Xj)  - er r  ( 5 )  
The index depends on the method used to estimate the true error-rate 

and a high value of Sj indicates a great influence of the predictor X j  on the 
classification error. Negative values of Sj point out noise predictors, whose 
elimination increases the predictive capability of the model. 

We can build another index based on the margins calculated by the model. 
The margin for the i-th case on the test sample, mi, is defined as the difference 
between the probability to belong to the true class and the maximum of the 
probabilities to belong to another class (see Hastie et al. 2001). 

mi = Pr  (true class) - max Pr  (other class) (6) 
With aggregated classifiers based on majority vote criterion, for instance 

Adaboost and Bagging, the margin is defined as the difference between the 
proportion of votes for the true class and the maximum proportion of votes 
among the other classes. The relevance of this notion in classification prob- 
lems is evident, for example, if we search a bound for the true error using 
aggregated classifiers (Schapire et al., 1998) or if we look for the optimal 
separating hyperplanes in the Support Vector Machines theory. 

We can start with some initial considerations: when the margin is nega- 
tive, the case is misclassified. Keeping fixed the classification error, a model 
can be preferred to another one if it has a lower sum, in absolute terms, of 
negative margins and an higher sum of positive margins (in fact, in this case, 
the probability of allocation of a case to the wrong class decreases). The clas- 
sification error outlines only the number of misclassified cases without any 
information about the ambiguousness of the assignment of the cases to the 
classes. We can consider different indices based on the margins calculated on 
the test sample cases: the sum of all margins; the sum of negative margins; 
the sum of positive margins; the sum of the probabilities of the misclassi- 
fied cases. We observed the relation between the error-rate and indices based 
on the margins analysing an artificial data-set replicated 200 times. When 
the percentage of error rate increases on the test set, the sum of the total 
margins, positive margins and negative margins decrease while the sum of 
probabilities of the misclassified cases rises. 

An index to evaluate the irrelevance of a predictor is: 

where mi(Xj) is the margin corresponding to the i-th case of the test set, 
obtained by the model excluding variable X j  while mi corresponds to the full 
model. 
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Fig. 3. Comparison between mrj and 6, (ADABOOST-C4.5 on Hepatitis data-set). 
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This index assumes high values when, dropping the variable X J ,  the sum 
of margins xi m i ( X j )  is small. When the reduced model performs better 
than the full model we have m r j  < 0 and there is a strong indication to drop 
the variable X j  if jointly m r j  < 0 and 6, < 0 .  

The joined analysis of the two indicators gives some information on the 
relative contribution of the single variables to  the prediction capability. In 
Figure 3 we show the comparison between the indices m r j  and 6j applied to 
Hepatitis-data using ADABOOST C4.5. Each point represents the relevance 
of one predictor. It can be noted that also fixing the value of 6, we can have 
very different values of m r j .  Moreover, in the plot we can individuate the 
predictors which downgrade the performance of the model as the points with 
lower coordinates (in our example, variables 5, 4 and 10).  

5 Relevance of variable selection in prediction accuracy 
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Sometimes the data-set includes a very large number of variables and few 
cases, for example in microarray data analysis. In this case, having a small 
number of variables improves the interpretability of the model and further- 
more, eliminating noise variables, produces a more stable and accurate clas- 
sifier. In the machine learning literature this aspect is undervalued and it 
is supposed that for nonparametric classifiers there is no need to select the 
variables (only procedures of tuning and pruning are studied to  avoid over- 
fitting problems). Nevertheless often it is possible to obtain better results 
in terms of prediction capability using only a subset of variables. For ex- 
ample, considering Hepatitis-data and classifier C4.5, we have found that 
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step of backward selection 

Fig. 4. Backward selection (NaiveBayes and C4.5 on Hepatitis data-set). 

Pf (C4.5) = 20.94 when we use all variables and PE (C4.5) = 15.41 using 
only 5 selected variables. 

To individuate and drop the noise variables for a classifier, we could ob- 
serve if the prediction error decreases in the reduced model (Sj < 0). In 
our analysis we have used a backward selection procedure to eliminate the 
variables. 

We used the Hepatitis data-set, in which 155 hepatitis patients are clas- 
sified as 'Lsurvival" or "non survival" (19 covariates, 6 quantitative, include 
missing values). In the original study of the Stanford Medical School it was 
used a logistic model with only 4 covariates. The same data set has been 
analysed by Breiman (2001): using a Random Forest model with all vari- 
ables he achieves an error-rate of 12.3, while a higher error-rate of 17.4 was 
obtained using the logistic regression with all variables. Is the error-rate esti- 
mator accurate? Is it possible to obtain a better result using a subset of the 
variables? 

Using a stratified HRR replicated 200 times we obtain the following es- 
timates of the error-rate: 18.9 for logistic regression and 17.2 for Random 
Forest. Then, we have not a significative difference about their prediction 
capability. These results are definitively more reliable than the Breiman's 
results, considering what we have shown in par. 3. 

We have applied two other models, Nai've Bayes and C4.5, to the same 
data set, and we have adopted a backward procedure for the variable selection 
based on the index Sj. In Figure 4 we show the trend of the classifier's error- 
rate (estimated with stratified HRR) when we drop recursively one variables 
at a time. 

In both cases we can note that the backward procedure selects a better 
model than the full model. Adopting as index of predictor irrelevance mrj we 
do not find better results, as it is shown in the table 1, where we consider the 
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selected C4.5 models on Hepatitis data,  because high margins d o  not imply 
low error-rate. 

Index Number of included variables Prediction Error Sum of margins 

6j 6 15.38 28.77 
mr, 10 18.53 28.52 

Table 1. Selected C4.5 models on Hepatitis data, using mrj and 6,. 

6 Conclusions 

We can expose some final considerations about the  previous results. We 
point out tha t  stratified R-CV and stratified HRR are very effective meth- 
ods to  estimate the  prediction capability of the  nonparametric classifier for 
small/medium data-sets. We can also strongly suggest t o  consider a selection 
procedure t o  individuate the  most accurate and interpretable model. Wi th  
this respect, the  use of an  index based on the  error-rate seems preferable to  
an  index based on margins and this selection procedure could improve greatly 
the  predictive capability of the  classifier. 
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Abstract. In this paper the problem of cell classification using gene expression 
data is addressed. One of the main features of this kind of data is the very large 
number of variables (genes), relative to the number of observations (cells). This 
condition makes most of the standard statistical methods for classification difficult 
to employ. The proposed solution consists of building classification rules on subsets 
of genes showing a behavior across the cells that differs most from that of all the 
other ones. This variable selection procedure is based on suitable linear transforma- 
tions of the observed data: a strategy resorting to independent component analysis 
is explored. Our proposal is compared with the nearest shrunken centroid method 
(Tibshirani et al. (2002)) on three publicly available data sets. 

1 Introduction 

The recent advances in biotechnology have yielded an ever increasing interest 
in genome research. The novel cDNA microarray technology allows for the 
monitoring of thousands of genes simultaneously and it is being currently 
applied in cancer research. The data from such experiments are usually in 
the form of large matrices of expression levels of p genes under n experimental 
conditions (different times, cells, tissues . . . ), where n is usually less than 100 
and p can easily be several thousands. Due to the large number of genes and 
to  the complex relations between them, a reduction in dimensionality and 
redundancy is needed in order to allow for a biological interpretation of the 
results and for subsequent information processing. 

In this paper the problem of supervised classification of cells is addressed. 
The particular condition p >> n makes most of the standard statistical meth- 
ods difficult to  employ from both analytical and interpretative points of view. 
For example, including too many variables may increase the error rate in clas- 
sifying units outside the training set and make the classification rules difficult 
to  interpret. The inclusion of irrelevant or noisy variables may also degrade 
the overall performances of the estimated classification rules. There is a vast 
literature on gene selection for cell classification; a comparative study of sev- 
eral discrimination methods in the context of cancer classification based on 
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filtered sets of genes can be found in Dudoit et al. (2000). Variable selection in 
this context has also biological foundations: most of the abnormalities in cell 
behavior are due to irregular gene activities. It is then important to employ 
tools that allow to highlight these particular genes. 

The proposed solution consists of building classification rules on genes 
selected by looking at the tails of the distributions of gene projections along 
suitable directions. Since gene expression profiles are typically non-gaussian, 
it seems relevant to catch not only the linear (second-order) aspects of the 
data structure but also the non-linear (higher-order) ones. For this reason, 
our proposal focuses on searching the less statistically dependent projections. 
These directions are obtained by independent component analysis (Hyvarinen 
et al. (2001)). 

2 Independent component analysis 

Independent component analysis is a recently developed method originally 
proposed in the field of signal processing, as a solution to the so called "blind 
source separation" problem. In this context the purpose is to recover some 
independent sources by the observation of different signals, that are assumed 
to be linear mixtures of these unknown sources. 

Subsequently this method has been applied to image analysis, time series 
analysis and gene expression data analysis. In this latter context, much em- 
phasis has been posed on the ability of ICA in finding so-called functional 
genomic units, each of which contains genes that work together to accomplish 
a certain biological function. 

Denote by xl ,xz,  ... x, the m observed variables which are supposed to 
be modelled as linear combinations of k latent variables s l ,  s2, ..., sk: 

xi = ails1 + ai2.52 + ... + ai,sk for all i = 1, ..., m (1) 

where the aij (j  = 1, ..., k) are real coefficients. The sj are assumed to be 
mutually statistically independent. 

The ICA transformation can be put in the following compact notation: 

X = AS. (2) 

Since it describes how the observed data are generated by a mixing process 
of hidden components, the matrix A is often called mixing matrix. The only 
requirement on A is that it is a full column rank matrix. However, it is easy 
to verify that if the data are supposed to be sphered, the mixing matrix must 
be an orthogonal one. 

The estimation of the independent latent sources is performed by search- 
ing for a linear transformation of the observed variables 

s = wx. (3) 
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such that the mutual statistical dependence between the estimated sources 
is minimized. 

The statistical dependence between k variables s l ,  . . . sk can be quan- 
tified by the mutual information I ( s l ,  . . . , sk). Restricting the attention to 
sphered data, minimizing I ( s l , .  . . , s k )  is equivalent to maximizing the sum 
of the marginal negentropies J ( s j )  since: 

and the joint negentropy J ( s l ,  . . . , sk) is a constant (see Hyvarinen et al. 
(2001) for details). As negentropy is the Kullback-Leibler divergence between 
a probability density function and a gaussian one with the same covariance 
matrix, the less dependent directions are the most non-gaussian ones. This 
implies that it is not sufficient to take into account the information in the 
covariance matrix, but it is necessary to consider also higher-order relations. 
For this reason, ICA allows to explore not only the linear structure of the data,  
but also the non-linear one. It should be stressed that the core assumption 
of ICA is the existence of mutual independent components. However, it is 
interesting to note that even if this assumption does not hold, the method 
can be interpreted as a particular projection pursuit solution. 

3 Gene selection in cell classification: a solution based 
on ICA 

As already mentioned above, the aim of this paper is to propose a method 
to select subsets of genes that could be relevant for cell classification. This 
selection is performed by projecting the genes onto the directions obtained 
by ICA: thus, the p genes are considered as units and the n cells as variables. 
In practice, any other linear transformation method, such as singular value 
decomposition (SVD) (Wall et al. (2003)), could be employed. The use of 
ICA is consistent with the fact that gene expression profiles usually exhibit 
non-gaussianity. In particular, the distribution of gene expression levels on 
a cell is "approximately sparse", with heavy tails and a pronounced peak in 
the middle. Due to this particular feature, the projections obtained by ICA 
should emphasize this sparseness. Highly induced or repressed genes, that 
may be useful in cell classification should lie on the tails of the distributions 
of Sj ( j  = 1,. . . , k ) .  Since these directions are as less dependent as possible, 
they may catch different aspects of the data structure that could be useful 
for classification tasks. 

The proposed solution is based on a ranking of the p genes. This ranking 
is obtained as follows: 

k independent components dl ,  . . . , Sk with zero mean and unit variance 
are extracted from the training set; 
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for gene 1 (1 = 1, .  . . , p ) ,  the absolute score on each component is 
computed. These k scores are synthesized by retaining the maximum one, 
denoted by g l :  gl = maxj IiljI; 
the p genes are sorted in increasing order according to  the maximum 
absolute scores {h l ,  . . . , h,) and for each gene the rank r(1) is computed. 

We suggest to use the subset of genes located in the last m positions of this 
ranking (with m << p) to build any classification rule, that is {I : r(1) 2 m). 
The rationale behind this is that these m genes show, with respect to a t  least 
one of the components, a behavior across the cells that differs most from that 
of the bulk of the genes. 

The proposed strategy relies on the choice of suitable values for both the 
number of components and the number of genes. If the goal is to build a 
classification rule on a manageable set of genes that accurately classifies the 
cells, a plausible criterion to select the optimal number of components consists 
in selecting the value of k which yields the smallest estimated error rate with 
the smallest number of genes (in this way the value of m is chosen implicitly). 
In practice, this criterion may be implemented by considering several values 
for the number k of components. For each value of k the ranking is computed 
and a sequence of classification rules is built for several values of m (with 
m << p). For each of these classification rules the error rate is estimated, and 
the minimum is determined. Finally, the value of k is chosen such that it 
achieves this minimum rate with the smallest number of genes. (in case that 
more than one value is selected, the smallest one is obviously preferred). 

4 Applications to real data sets 

In this section the proposed strategy is applied to three publicly available 
data sets: the lymphoma data set of Alizadeth et al. (2000), the small round 
blue cell tumor data set of Khan et al. (2001) and the leukemia data set of 
Golub et al. (1999). 

We run our gene selection procedure (both ICA and SVD based ones) for 
k ranging from 1 to 10. For each value of k, we tried 30 different values of 
the number m of selected genes, ranging from p to 1. 

The performances of classification rules based on subsets of genes selected 
according to our proposal are compared with those obtained by the nearest 
shrunken centroid (SC) method (Tibshirani et al. (2002)). This method is 
based on an enhancement of the nearest centroid classifier and its main fea- 
ture is that the class centroids are shrunken toward the overall centroid in 
order to reduce the effect of noisy genes. Classification is made to the nearest 
shrunken centroid. This shrinkage procedure performs automatic gene selec- 
tion. In particular, if a gene is shrunken to zero for all classes, then it is 
dropped from the prediction rule. In order to compare the results of our gene 
selection procedure with those obtained through the shrunken centroids, the 
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nearest centroid method is used in class prediction, but any other postpro- 
cessing classifier could be applied. 

We implemented our procedure in R code, resorting to the libraries pamr 
and f astICA to perform nearest shrunken centroid classification and inde- 
pendent component analysis, respectively. 

Given the small number of cells in each data set, the classification error 
rates are estimated by balanced cross-validation for each of the compared 
procedures. However, when comparing the estimated error rate curves, the 
following difference should be taken into account. In our procedure (both the 
ICA and the SVD version) each cross-validation training set is used to extract 
Ic components, according to which the sequence of nested gene subsets of given 
sizes is created (therefore, this sequence may vary from one training set to 
another); the cells in the corresponding cross-validation test set are finally 
classified on the basis of these subsets of variables. Differently, in pamr the 
sequence of nested gene subsets is unique, being based on the whole training 
set, and each cross-validation training set differs from the others only with 
respect to the class centroids. Therefore, the variability in gene ranking due 
to training set perturbations is not taken into account when evaluating the 
SC method performances. 

4.1 Lymphoma data set 

The data set contains gene expression levels for p =4026 genes in 62 cells and 
consists of 11 cases of B-cell chronic lymphocytic leukemia (B-CLL), 9 cases 
of follicular lymphoma (FL) and 42 cases of diffuse large B-cell lymphoma 
(DLBCL). The gene expression data are summarized by a 4026x62 matrix. 
Missing data were imputed by a 15 nearest-neighbors algorithm. 

Number of genes 

0 5 10 15 20 25 30 

Steps 

Fig. 1. Lymphoma data set: cross-validated misclassification rates. The axis at the 
top of the plot indicates the number of genes retained at  each step. 
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4026 1817 1522 1249 519 401 72 26 19 10 5 
ICA 0.016 0.016 0.016 0.016 0.016 0.000 0.000 0.000 0.032 0.048 0.081 
SVD 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.065 
SC 0.016 0.016 0.032 0.065 0.065 0.065 0.097 0.210 0.194 0.306 0.323 

Table 1. Lymphoma data set: cross-validated misclassification rates for different 
values of m ( k  = 7 for ICA, k  = 2 for SVD). 

Figure 1 displays the results obtained with k=7 components for ICA and 
for k=2 components for SVD. The graph shows that gene selection by suitable 
projections gives better performances than those achievable by the nearest 
shrunken centroid method, which is based on marginal gene selection. More- 
over, the ICA-based procedure performs better than the SVD one, since it 
allows to achieve a zero cross-validated error rate by reducing the number of 
genes from 4026 to just 26. For this number of genes the shrunken centroids 
estimated error rate is dramatically higher (0.210, as shown in Table 1). 

In order to understand the reason why the SC method is outperformed, we 
focused our attention on the last 5 genes surviving the elimination procedure. 
As far as the SC method is concerned (Figure 2), it seems that this procedure 
may not always be able to identify genes that discriminate between all of the 
classes; it also tends to select genes that are highly correlated (correlations 
between these genes range between 0.70 and 0.98). On the other hand, the 
ICA based solution in this case selects genes that make the class structure 
more evident (Figure 3). It is interesting to remind that the information about 
class membership is not taken into account in extracting the components (and 
hence in building the gene ranking). 

4.2 Small round blue cell tumor data set 

The data set contains gene expression levels for p =2038 genes in 63 cells and 
consists of 8 cases of Burkitt lymphoma, 23 cases of Ewing sarcoma, 12 cases 
of neuroblastoma and 20 cases of rhabdomyosarcoma. 

ICA 0.048 0.032 0.016 0.000 0.000 0.016 0.000 0.000 0.016 0.016 0.111 
SVD 0.048 0.032 0.016 0.016 0.000 0.000 0.000 0.000 0.000 0.016 0.032 

Table 2. Small round blue cell tumor data set: cross-validated misclassification 
rates for different values of m ( k  = 6 for both ICA and SVD). 

As Table 2 shows, all the three methods are able to accurately predict 
the classes, but the ones based on ICA and SVD achieve this result with a 
lower number of genes (16 and 15 respectively, against 33 for SC method). 
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Fig. 2. Lymphoma data set: scatter plot matrix of the last 5 genes surviving the 
shrinkage procedure (A=DLCL, .=FL, O=CLL). 

Fig. 3. Lymphoma data set: scatter plot matrix of the last 5 genes of the ranking 
obtained by ICA (A=DLCL, .=FL, O=CLL). 
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These optimal solutions have 7 genes in common. With this data set it is 
particularly evident that the use of suitable subsets of genes instead of the 
whole set yields better classification performances. 

4.3 Leukemia data set 

The data set contains gene expression levels for p =6817 genes in 72 cells 
and consists of 38 cases of B-cell acute lymphoblastic leukemia, 9 cases of 
T-cell acute lymphoblastic leukemia and 25 cases of acute myeloid leukemia. 
According to Dudoit et al. (2002), three preprocessing steps were applied: (a) 
thresholding, (b) filtering and (c) base 10 logarithmic transformation. Step 
(b) has been slightly strengthen in order to make stricter the exclusion crite- 
rion for genes with low variability across the cells, by using for each gene the 
goth percentile and the loth percentile instead of its maximum and minimum 
values respectively. The number of genes retained for the analysis is 2226. As 
shown in Table 3, none of the three methods is successful in accurately pre- 
dict the class membership. However, our strategy allows to  achieve a smaller 
minimum error rate (0.028) than that of the SC method (0.042). It is worth 
noting that these minimum values are referred to approximately the same 
number of selected genes. 

2226 262 37 29 27 20 17 13 10 6 3 
ICA 0.042 0.042 0.028 0.028 0.042 0.042 0.056 0.111 0.194 0.333 0.528 
SVD 0.042 0.042 0.042 0.042 0.028 0.056 0.083 0.153 0.153 0.306 0.403 
SC 0.042 0.056 0.056 0.042 0.056 0.083 0.097 0.167 0.194 0.194 0.333 

Table 3. Leukemia data set: cross-validated misclassification rates for different 
values of m ( k  = 7 for ICA and k = 5 for SVD). 

5 Conclusions and open issues 

As the preliminary results on these real data sets show, the proposed strat- 
egy seems to represent a useful tool to detect subsets of relevant genes for 
supervised cell classification based on microarray data. However, some as- 
pects deserve further research. 

For example, some alternatives to the proposed criterion for building the 
ranking could be investigated. 

Firstly, in the proposed strategy all the Ic estimated components are as- 
sumed to be equally important, since the definition of ICA implies no ordering 
of the independent components. It is possible, however, to introduce an order 
among them: Hyvarinen et al. (2001) suggest as ordering criteria the norm 
of the columns of the mixing matrix or the value of suitable non-gaussianity 
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measures on the estimated components. These criteria could be adopted to 
weight each component during the construction of the gene ranking (for ex- 
ample, by increasing the importance of the most non-gaussian ones). 

Secondly, it can be noted that gl is equivalent to the distance of gene 1 
from the (zero) mean vector in the space of the k components in terms of the 
Minkowski metric 

1 / X  

( 5 )  

with X -+ oo. It  could be interesting to evaluate the sensitivity of the proce- 
dure and the robustness of the gene ranking to the choice of different values 
for X or of different distance measures. 

Moreover, the issues concerning the choice of both the number k of the 
components and the number m of retained genes should be examined in more 
depth. 

Finally, the interaction between the proposed selection method and other 
classifiers could be explored. 
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Abst rac t .  Methods for comparing and combining classification trees based on 
proximity measures have been proposed in the last few years. These methods could 
be used to analyse a set of trees obtained from independent data sets or from re- 
sampling methods like bootstrap or cross validation applied to the same training 
sample. In this paper we consider, as an alternative to the pruning techniques, a 
modified version of a consensus algorithm we have previously proposed that com- 
bines trees obtained by bootstrap samples. This consensus algorithm is based on a 
dissimilarity measure recently proposed. Experimental results are provided to illus- 
trate, in two real data sets, the performances of the proposed consensus method. 

1 Introduction 

Classification trees represent non parametric classifiers that exploit the local 
relationship between the class variable and the predictors (Breiman et al. 
1984). Tree-based methods are notoriously unstable: small perturbations in 
their training sets may result in large changes in the constructed classifier. 
This is due to the hierarchical structure of those methods; furthermore, a mul- 
tiplicity of structures can also derive from different greedy search algorithms 
used for identifying trees, or from different pruning methods. 

Model uncertainty is a problem common to many data analyses. In the 
literature there are two approaches to the model uncertainty problem: com- 
bine model predictions or choose a single model. Several authors have shown 
that combining multiple versions of unstable classifiers, such as trees, results 
in reduced test set error rate: these include bagging, boosting and Bayesian 
model averaging (Breiman 1996, Freund and Schapire 1996, 1999). The main 
effect of these techniques is to reduce the variance of the classifier even if 
they do not allow interpreting and exploring the data structure through an 
alternative tree. A different solution consists in exploring a set of plausible 
models in order to select good models which may reveal different aspects of 
the data (Chipman et al. 2001). 

Furthermore, some methodologies have been introduced to  identify a con- 
sensus of different classification trees. The purpose of the different consensus 
methods proposed in literature has been either to recover an hypothetical 
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true classification or to summarize at best the set of classifications obtained 
from the analysis of different data sets. 

Given a set of binary trees T = {Ti, i = 1 , .  . . , m),  a consensus tree 
can be obtained for instance by combining those parts of the considered 
trees about which there is general agreement. Starting with the root node 
labelled k = 1, the node k (k > 1) of the consensus tree can be splitted 
on the variable that occurred most frequently a t  node k among the set T. 
If the most frequent event at node k is not to split, then the consensus 
tree will not split a t  k. If two or more variables tie for the most frequent 
split, then one solution is to pick a tied variable a t  random or, alternatively, 
ties can be broken by conditioning on previous splitting variables in the path 
(Shannon and Banks, 1999). Alternatively, Shannon and Banks (1999) derive 
a single tree that is central with respect to a group of trees and propose 
an algorithm for combining a sample of classification trees using maximum 
likelihood estimation which results in a single, interpretable tree. 

Another way to obtain a consensus tree is to grow a tree which results 
similar as much as possible to the trees of T according to specific proximity 
measures between classification trees (Miglio and Soffritti 2003, 2004). 

In this paper we study the performance of a modified version of an al- 
gorithm proposed by Miglio and Soffritti (2003) to identify a consensus tree 
when the set of classification trees is obtained by using resampling methods 
like bootstrap or cross-validation, in order to detect if such tree can represent 
a valid alternative to the ones obtained through pruning techniques. 

In Section 2 we describe the consensus algorithm proposed by Miglio and 
Soffritti (2003) together with some modifications that have been introduced 
to robustify this procedure. Section 3 reports the results of applications to 
two real data examples and concluding remarks. 

2 Proximity-based consensus methods 

The consensus algorithm we consider in this paper is based on the dissimi- 
larity measure proposed by Miglio and Soffritti (2004). This measure takes 
into account the partitions associated to the trees, their predictive power 
and the predictors used at each split. When two classification trees have to 
be compared, all these aspects (the structure, the partition and the predictive 
power) should be simultaneously considered. In fact, trees having the same 
distance with respect to their structures can show a very different predictive 
power. On the other hand, trees with the same predictive power can have 
very different structures. The proposed measure is defined as follows: 

where mho and mok denote the number of units which belong to the h-th leaf 
of Ti and to the k-th leaf of Tj, respectively; the introduction of the relative 
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frequency of each leaf weights the discrepancies proportionally to  the number 
of their observations. a i h  and o l j k  measure the dissimilarities between the 
paths of the two trees; they can be defined to  penalize structural differences 
between trees based on where these occur (for more details see Miglio and 
Soffritti 2004). sib and sjk are similarity coefficients whose values synthesize 
the similarities shk between the leaves of Ti and those of Tj, defined so as to 
take into account the partitions and the predictive powers of the trees; for 
instance, a possible definition for sib is sib = max{shk, k = 1 , .  . . , K), where 

mhk is the number of objects which belong both to the h-th leaf of Ti and to 
the k-th leaf of Tj; chk = 1 if the h-th leaf of Ti has the same class label as 
the k-th leaf of Tj, and chk = 0 otherwise. 

The maximum value of 6(Ti, T,) can be reached when the difference be- 
tween the structures of Ti and Tj is maximum and the similarity between 
their predictive power is zero. The normalizing factor for 6(Ti, Tj) is equal to 

and the normalized version of the proposed dissimilarity is thus: 

A (Ti, Tj) = 
6 (Ti, Tj) 

max6 (Ti, T j ) '  

Miglio and Soffritti (2003) proposed a procedure to  identify a tree Tc which 
summarizes as much as possible the information contained in the observed set 
of trees T = {Ti, i = 1, . . . , m).  This purpose has been pursued by searching 
for the tree Tc which minimizes the following objective function: 

where A(T,, Ti) is the proximity between the consensus tree and a generic 
tree of T computed according to measure (4). The Wi (i = I ,  . . . , m )  are 
researcher-supplied, nonnegative weights such that they sum to  1; two pos- 
sible ways to  choose Wi are: (i)  give trees the same weight (Wi = l / m  for 
i = 1, . . . , m);  (ii) use an inverse function of the error rate of Ti. 

Generally, finding the tree Tc which minimizes V(T,) is computationally 
intensive; accordingly, a numerical algorithm has to be used. The following 
algorithm searches for the consensus tree among the trees belonging to T 
and to  those that can be obtained by deleting nodes from the trees of T. 
Specifically, the proposed algorithm is composed of three main steps. 
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1. For each tree Ti E T ,  the sub-trees obtained considering only the paths of 
length r (starting with r = 1) and the corresponding leaves are identified; 
let TT = {Tjr, j = 1 , .  . . , z,} be the set of trees obtained in this way. 

2. For each tree Tj' E TT, V(Tjr) is computed, where 

is the weighted sum of the dissimilarities between the generic sub-tree of 
length r ,  TJ , and the trees of T.  

3. The tree of TT for which the value of V(Tjr) results minimum is selected; 
this tree is T,', the consensus tree of length r; r is set equal to r + 1; if 
this value is not greater than r,,, , the length of the longest path present 
in trees of T ,  then the algorithm will return to step 1; otherwise it will 
stop. 

The output of this algorithm is a sequence of consensus trees and of values 
of the objective function {T,', V(T,') r = 1, . . . , r,,,). The value of V(T,') 
indicates the dissimilarity between T l  and the observed set of trees T; the 
tree T,' with the minimum value of V(T,') will be the consensus tree T,. 

The number of trees considered in this search depends on m and r,,,, so 
the solution identified by the algorithm will be optimal only if the number of 
observed trees is high and/or their paths are long. 

For this reason, we have modified the algorithm previously proposed to 
extend the search to more trees. This purpose can be pursued in different 
ways. In this paper we analyse the following solution: whenever a sub-tree 
Tjr evaluated by the algorithm is composed by more than one path of length 
r, the analysis is extended by examining not only T; but also every tree 
obtained from T; considering separately each single path of length r .  

Another solution, not analysed in detail in the following, which is similar 
to the one proposed by Miglio (1996), is to consider all the split defining 
questions involved in the m trees of T as possible splits for the identification 
of T,. F'urthermore, in order to robustify the search of the consensus tree, the 
objective function defined by equation ( 5 )  has been modified by considering 
the median dissimilarity instead of the mean. Finally we propose to  determine 
the consensus trees T,', for r = 1 , .  . . , r,,,, using only those instances that 
are classified in the same way by at least the 70% of the trees; in this way we 
exclude those instances that probably lie on the boundaries of the decision 
rules. This threshold value could be changed according to the researcher's 
aims and/or to the properties of the analysed data set. 

3 Experimental results and concluding remarks 

In this section we show the performance of the proposed algorithm studying 
two real classification problems. In the first the objective is to correctly iden- 
tify benign from malignant breast tumors (Mangasarian and Wolberg 1990). 
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It  is a two-class problem. Each of the 699 instances consists of 9 cell attributes 
each of which is measured on a 1-10 scale plus the class variable. The class 
labels 1 and 2 denote benign and malignant breast tumors respectively; high 
predictor values correspond to worse health conditions. The Wisconsin Breast 
Cancer Database is in the UCI repository (ftp.ics.uci.edu/pub/machine- 
learning-databases) of machine learning databases and was obtained from 
the University of Wisconsin Hospitals. 

The second data set analysed through the proposed algorithm concerns 
with the classification of radar returns from the ionosphere (Sigillito et  al. 
1989). The targets of this radar database, collected by a system in Goose Bay, 
Labrador, were free electrons in the ionosphere: good radar returns are those 
showing evidence of some type of structure in the ionosphere, while bad re- 
turns are those that do not; this is the class variable. Each of the 351 instances 
in the data base is described by 34 continuous attributes corresponding to the 
complex values returned by the system for a given complex electromagnetic 
signal. The ionosphere database is in the UCI repository of machine learning 
databases and was obtained from the Johns Hopkins University. 

For the breast cancer problem we generated 60 training sets of 600 ob- 
servations, bootstrapping a reduced data set (we considered only 683 ob- 
servations without missing values). In the second real data set we used 300 
observations to  obtain bootstrap samples while the remaining observations 
were used as test set to  evaluate the performance of the proposed consensus 
method. The bootstrap trees were fit using a procedure like CART (Breiman 
et al. 1984) implemented in GAUSS, with the Gini criterion for splitting. 

As previously described, the consensus trees were determined by using 
only those instances that were classified in the same way by a t  least the 70% 
of the trees; in this way we excluded the 5% of the observations in the first 
example and the 1% in the second one. 

The algorithm was applied using two different systems of weights: giving 
the trees the same weight (W, = l / m  for i = 1 , .  . . , m) and with weights in- 
versely related to their error rates. We considered also two different objective 
functions V: the mean and the median dissimilarity. 

The results are summarized in Table 1 and Table 2. In the first example, 
the different choices of weights and of objective functions led to the same 
results. The tree with the minimum mean and median dissimilarity from the 
60 trees of T among 131 possible consensus trees is also the one with the 
minimum test set error rate (see Table 1). This tree shows a performance 
similar to the ones obtained through a bagging procedure applied to the 
bootstrap trees: its test set error rate is slightly lower than the mean value 
of the test set error rates associated to  these trees. 

In the second example the results were the same by using the two systems 
of weights, while changed if the mean or the median objective function was 
considered; they are summarized in Table 2. Thus, for this second example, 
a different choice of the objective function lead to a slightly different consen- 
sus tree. From the bootstrap trees and following the proposed algorithm we 
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r r,  Consensus measure Test set error rate (%) 
1 6  0.058 7.30 

Table 1. Values of the consensus measure and of the error rate for the consensus 
trees identified by the algorithm for the breast cancer example. 

Consensus measure 
r z, T,' Mean Median Test set error rate (%) 
1 6 Ti, T2 0.1857 0.1750 0.157 

T3 0.1858 0.1540 0.137 
2 24 Ti, T2 0.0897 0.0750 0.118 

Tg 0.0888 0.0755 0.098 
3 65 Tg 0.1062 0.0815 0.118 

T39 0.1120 0.0565 0.118 
4 39 T13 0.1277 0.0780 0.118 

T37 0.1274 0.0800 0.118 
5 1 TI 0.1292 0.0820 0.118 

Table 2. Values of the consensus measure and of the error rate for the consensus 
trees identified by the algorithm for the ionosphere example. 

identified 136 possible consensus trees. The minimum test set error rate is 
related to the tree with the longest path (level) equal to 2 and the minimum 
value of the mean objective function. It is important to underline that these 
different results depend on only one of the 51 observations belonging to the 
test set. The three consensus trees identified at the second level differ only on 
the value of the variable involved in the first split, while the consensus trees 
identified at the next level are extensions of the second tree of the previous 
one. Table 3 shows some descriptive measures of the dissimilarity values be- 
tween pairs of trees computed between bootstrap trees and consensus trees 
within each level and using a set of constant weights. Also this information 
could be used, with the test set error rate, to evaluate the preferable consen- 
sus tree. In this example we could use the best consensus tree of the second 
or third level (T6 and T 3  respectively). Furthermore, the consensus tree T6 
at the second level shows performances similar to the bagging procedure and 
error rates lower than the mean test set error rate of bootstrap trees. 

From the comparison between the consensus tree identified by the pro- 
cedure and the ones obtained through pruning methods, the first one has 
a more simple structure and a better accuracy than the others. So, when 
trees obtained from bootstrap samples are available, the illustrated strategy 
could represent an alternative to pruning techniques. The obtained results 
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r T,' Minimum Maximum Median Mean St. dev. 
1 T I ,  T2 0.0850 0.4410 0.1750 0.1857 0.0981 

T3 0.0830 0.3950 0.1540 0.1858 0.0791 
2 T I ,  Tz 0.0000 0.3480 0.0750 0.0897 0.0939 

Tg 0.0000 0.3480 0.0755 0.0888 0.0928 
3 Ts 0.0000 0.3780 0.0815 0.1062 0.1027 

T39 0.0000 0.3460 0.0565 0.1120 0.0876 
4 TI3 0.0080 0.3610 0.0780 0.1277 0.0861 

Table 3. Some descriptive measures of the dissimilarity values computed between 
bootstrap trees and consensus trees for the ionosphere example. 

seem promising, but more real and simulated da ta  sets should be analysed to  
obtain a wider evaluation of the performances of the  considered algorithm. 
Further investigation should regard also the  choice of the  instances t o  be 
considered by the  algorithm in the search of the consensus tree, which seems 
a crucial aspect of the  proposed strategy. 
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Abstract. Binary classification algorithms are often used in situations when one 
of the two classes is extremely rare. A common practice is to oversample units of 
the rare class when forming the training set. For some classification algorithms, like 
logistic classification, there are theoretical results that justify such an approach. 
Similar results are not available for other popular classification algorithms like 
classification trees. In this paper the use of balanced datasets, when dealing with 
rare classes, for tree classifiers and boosting algorithms is discussed and results from 
analyzing a real dataset and a simulated dataset are reported. 

1 Introduction 

In the application of statistical classification algorithms it is supposed that 
a set of information is available and it is used to obtain a rule for classifying 
new units. This dataset, the training set or design set, contains, for each unit, 
information about the class to which it belongs and some relevant attributes. 
It is reasonable to expect that a good selection of the training set could have 
a role in obtaining a good classification algorithm. 

A critical situation occurs when in a two class problem it is a przori known 
that the probability that a unit belongs to a class is close to  zero (ie., it is a 
rare class). When this happens, a popular choice is to include in the training 
set more units that belong to the rare class in order to have a balanced sample 
where the number of units in the two classes are similar, ie., a disproportion- 
ate stratified sample is selected with strata defined by the categories of the 
variable of interest. This is the solution recommended in applying classifica- 
tion algorithms to data mining problems: Berry & Linoff (2000, p. 197), for 
instance, in their book suggest "oversampling [...I by taking more of the rare 
outcomes and fewer of the common outcome". A similar suggestion is in Sas 
(1998). In many practical instances this suggestion corresponds to including 
in the training set all the units of the rare class and getting a sample includ- 
ing roughly the same number of units from the other class. This strategy of 
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dealing with rare classes seems to be the standard one among data mining 
practitioners. 

In the machine learning literature there have been recently some studies 
aimed to develop new and more efficient strategies to deal with imbalance in 
the two classes. Some promising procedures suggest using re-sampling from 
the rare class or sampling specific units from the frequent class (for a review, 
see Japkowicz (2000)). We will not consider here these techniques, since the 
main aim of the paper is to discuss the appropriateness of the simple strategy 
of stratifying the training sample with respect to the classification variable, 
when events are rare. We then will compare this solution with even simpler 
alternative strategies that can be basically derived by ignoring the imbalance 
in the two classes and using standard random sampling from the available 
dataset. 

Oversampling the rare class has sound theoretical justifications a t  least 
in the case of regression models for binary dependent variables (i.e., logistic 
regression). These results will be reviewed in section 2. Similar theoretical 
results are not available for other classification algorithms. In section 3, we 
will compare the simple strategy of oversampling the rare class with other 
simple strategies for the selection of the training set in order to evaluate 
their effects on the performances of some popular classification algorithms, 
i.e., tree classifiers and the boosting algorithm (by combining prediction from 
several weak classifiers). Finally, some preliminary results from the analysis 
of real and simulated datasets will be presented (section 4). 

2 The effect of stratifying the sample by the 
classification variable in logistic classification 

The aim of logistic regression is to model the response variable Y that,  for the 
ith unit, takes the value 1 with probability .iri and 0 with probability 1 - .iri, 
and it is assumed that 

where xi is a vector of characteristics of the ith unit and p is a parameter 
vector. 

The parameters can be estimated using the available data by maximizing 
the appropriate likelihood function. The classification of new units could be 
achieved by estimating the probability .iri by 

where f i  are the parameter estimates, and by classifying as Y = 1 those units 
which have estimated ni greater than a threshold (typically 0.5). 
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When data are obtained by a disproportionate stratification of the sam- 
ple by the Y variable (e.g., a larger sample from the rare stratum Y = 1) 
maximum likelihood leads to inconsistent estimates of the P vector. More 
specifically, the first element of this vector, ,& (the intercept), is biased while 
the other components of the vector p are estimated consistently. Including in 
the sample a higher proportion of cases with Y = 1 can affect estimates of -;r 

and consequently the ability of correctly classifying new units. 
This problem has been faced by Prentice and Pyke (1979) in the context 

of case-control studies and by Cosslett (1981) in econometric applications of 
qualitative dependent variable models. The main results of these papers can 
be summarized as follows: 

1. the bias of is 

Where 7 is the proportion of Y = 1 in the population and ij is the 
proportion of Y = 1 in the sample. If 7 is known then one can get unbiased 
estimates of p. Note that in classification problems this correction implies 
the use of a corrected threshold to classify new units on the basis of 
estimated T ;  

2. data on rare events are more informative (i.e., the variance of f i  gets 
smaller if there are more data for which Y = 1); hence collecting more 
Y = 1 is a good strategy; 

3. balancing the sample (y  = 0.5) is very often a good strategy (close to  the 
optimal, see, Cosslett (1981)). 

At least in the case of logistic classification there are theoretical results 
to  justify balancing the sample when ones and zeros are not balanced in 
the population but it is important to  bear in mind that the classification 
algorithm must be adjusted to take into account possible bias in the estimates. 

3 Training set selection with tree classifiers and 
boosting algorithms 

In this section, we will evaluate the performance of some binary classification 
algorithms used in data mining, i.e. classification trees and combination of 
weak tree classifiers by the boosting algorithm, under alternative strategies 
to deal with a rare class. Unlike the case of logistic classification, for these 
algorithm theoretical results are not available. We will draw some preliminary 
and tentative evidence from the analysis of two examples evaluating different 
strategies of sampling for each of the two family of models considered. 

To this aim, a real dataset and a simulated example with a (relatively) 
rare class will be analyzed. In both cases alternative strategies for selecting 
(or weighting) the training set will be used. 
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The first dataset is the one proposed for the COIL Challenge 2000 (see the 
web site http://www.liacs.nl/ putten/library/cc2000/). The goal is to predict 
whether a customer is interested in buying a caravan insurance policy using 86 
variables on customer characteristics which include product usage data and 
socio-demographic information. The training set contains 5822 records (and 
the test set contains 4000 records), including the information about whether 
or not they have a caravan insurance policy. The percentage of events, i.e. of 
customers, that have insurance policy in the training set is about 6%. 

The second dataset is a simulated one; it consists of 10000 records (5000 
to train the algorithm and 5000 to test it) with three variables, X = [xl, x2IT 
and y. The two x's are generated from a bivariate normal distribution with 

and the y takes on the value 1 for the positive elements of a normal distribu- 
tion with 

and zero otherwise. In this case, the training set contains about 3% of ones 
(events). 

Both the datasets are split randomly in two sub-samples (the training set 
and the test set) and here we assume that the quality of alternative algorithms 
are to be judged by their performances in the test set. This choice is possible 
and reasonable in our example because of the large size of the dataset; but 
note that availability of large datasets are typical when applying classification 
algorithms to data mining problems. 

When using classification tree algorithms (Hastie, Tibshirani and F'ried- 
man (2001)) we will adopt the usual strategy of randomly partitioning the 
training set into two subsets, the first subset is used for the splitting algo- 
rithm, the second one for the pruning algorithm. 

Evaluation of prediction accuracy of a classification is usually done by the 
overall error, defined as the number of misclassified records over the number 
of records in the test set. However, especially in the case of rare events, this 
indicator can be misleading if not useless. In fact, if the percentage of events 
is very low, we can get a low overall rate by simply predicting every single 
record as a non-event, and this is, clearly, meaningless. 

It can be worth introducing alternative criteria to evaluate the perfor- 
mance of the classifiers, to take into account the different propensity toward 
false positive errors (predicting an event when the unit is actually a non 
event) and false negative errors (predicting a non event when the unit is an 
event); in data mining literature, those errors are evaluated using different 
measures, for instance Precision (P) which is the proportion of well predicted 
events over the total number of predicted events and Recall (R) which is the 
proportion of events well predicted over the total number of events in the 
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test set. Let us consider the confusion matrix 

Predicted 

overall error, Precision and Recall are defined by 

Actual 
Events 
Non-Events 
Total 

overall error = n1o + no1 P = 
no0 R = 

no0 

n noo + nlo noo + no1 

Events Non events I Total 
noo no1 Ine = no0 + 7201 

A more general measure, F, has been introduced (Joshi (2002)) to  combine 
Precision and Recall defined as the armonic mean of the two measures: 

1210 7211 

no = noo + nlo nl = no1 + rill 

Another tool for evaluating performances of a classification algorithm, widely 
used in data mining applications, is the Lift curve. The Lift curve is built as 
follows : (a) sort the test set by the estimated scores, i e . ,  the estimated prob- 
ability of being in one of the two classes, using all the available records (also 
those in the test set: for classification trees such a measure is, for each termi- 
nal node, the proportion of events predicted correctly in the training set); (b) 
split all the units into groups defined by the percentiles of the distribution of 
the scores; (c) for each percentile calculate the proportion of events predicted 
to  be in the class defined by each percentile. Plotting this measure against the 
percentiles gives a function that should theoretically be monotone decreasing 
(empirically one can observe some exception to this pattern). Interpretation 
of the Lift curve is quite simple since it measures how the classification al- 
gorithm improves over a prediction made without any classification model. 
Therefore, when comparing alternative classifiers by the Lift curve, the higher 
the curve the better the performance of the algorithm. 

We will use different strategies to select the training set for two different 
classification algorithm. 

The first family of algorithm considered are classification trees and the 
selection of the training set is as follows: 

(i) the entire training set is used for training the classifier; in this case 
the training sample is a simple random sample and events and non-events 
are not balanced (T not-bal); 

(ii) a random sub-sample of non-events (zeros in our examples) is selected 
in order to  obtain a balanced training set, with the same number of events 
and non-events; in this case the size of the training set used to  estimate the 
tree is smaller than the size used in (i) but the proportion of events (which 
are the more informative data) is higher ( T  bal); 

ne = n10 + 1111 

n 
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(iii) the selection is as in (ii), but a correction is applied in order to 
take into account the different ratio between the probability (assumed to be 
known) of being a member of the rare class and the proportion of units from 
the rare class in the sample. This correction, in principle similar to that one 
suggested by the theoretical results for logistic classification, consists of not 
using the level 0.5 as a threshold to classify the units into one of the two 
classes in the validation set. The new threshold will be the proportion of 
events in the original data set (T  bal-corr). 

A second family of classification models used, is a combination of clas- 
sification trees by the boosting algorithm (Hastie, Tibshirani and Friedman 
(2001)). Boosting is an iterative procedure that, at  each step, estimates on 
the same data a new classifier (in our case we use trees), but in each iteration 
the algorithm puts more weight on observation that a t  the previous iteration 
were misclassified. At the end the new classifier will be a weighted average 
of the single classifications (giving more weight to the classifiers with lower 
error). 

As we have done for trees, we implemented different strategies of sam- 
pling, in particular it seems reasonable to rely upon a more general definition 
of misclassification errors. The standard boosting algorithm uses the overall 
error as a measure of wrong classification of records. In our case, with a small 
number of events, it seems reasonable to consider other measures of misclas- 
sification error. We have used the following strategies: 

(iv) use of a standard boosting algorithm, starting from a not balanced 
training set, and using the overall misclassification error for each iteration 
of the algorithm. The choice of a not balanced training set is based on the 
observation that at each iteration of the algorithm the effect of possible poor 
classification of the (rare) events will lead to a training set, at  the next step, 
that will include more events, and it could therefore implicitly take into ac- 
count imbalance in the training sets (B not-bal); 

(v) use of a new boosting algorithm that takes into account rare classes. 
In this case, the misclassification error used for the algorithm is no longer the 
overall error, but we consider two different kinds of error taking into account 
either false positive or false negative at each iteration, and the weight of each 
record at each iteration is a weighted average of the two errors (B rare); 

(vi) use of the standard boosting algorithm starting from a balanced train- 
ing set, using the same correction as in (iii) for the prediction of the classes 
for the units in the training set at each iteration. For each tree we correct the 
threshold used to get events classified in the validation set, by multiplying it 
by an estimate of the proportion of non-events. As we have seen in (ii) and 
in (iii) this strategy uses a larger but not balanced training set (B bal-corr). 
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Tree - not bslanced 

Bmslmo - not balanced 
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B006bng - rare 
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Fig. 1. Lift functions from alternative training set selection for caravan data (left) 
and simulated data (right) 

4 Results and conclusions 

Figure 1 presents the Lift function for the two datasets considered. It 
is worth noting that for balanced tree with or without correction the lift 
function is exactly the same, because the difference between the two models 
consists only in the choice of the threshold. Results shown in Table 1 and 
Figure 1 can lead to  some preliminary and very cautionary conclusions and 
can suggest some directions for future work. 

As expected, the overall prediction accuracy is not a good measure of 
performance; it is easy to get a low error rate by classifying all the units as 
members of the more frequent class. The results show that, at  least for the 
Caravan dataset, if one only focus on overall error, we can see that there 

Table 1 shows the overall error, Recall, Precision and F for the best model 
obtained using the 6 strategies. The first part of the Table refers to  the 
Caravan dataset, while the second part to  the simulated dataset. The missing 
elements in the table, refer to  non defined values: the Precision is not defined 
when the prediction classifies all the record as non-events, therefore neither 
F is defined. 

(i) T 
(ii) T 
(iii) T 
(iv) B 
(v) B 
(vi) B 
Table 1. Different measures of prediction accuracy for 6 algorithms in the two 
datasets. T=tree, B=boosting 

not-bal. 
balanced 
bal. corr. 
not-bal. 
rare 
bal. corr. 

caravan dataset 
overall recall precision F 
0.0595 0.0000 - - 

0.3837 0.0989 0.6723 0.1725 
0.0595 0.0000 - - 
0.0705 0.2105 0.0672 0.1019 
0.0967 0.1366 0.1176 0.1264 
0.0597 0.0000 - - 

simulated dataset 
overall recall precision F 
0.0232 0.4666 0.3153 0.3763 
0.0818 0.1882 0.8108 0.3056 
0.0234 0.4347 0.1801 0.2548 
0.0236 0.4340 0.2072 0.2805 
0.0286 0.3400 0.3063 0.3223 
0.0256 0.3924 0.2793 0.3263 



46 Scarpa and Torelli 

are no models with an overall error lower than the proportion of events in 
the test set and we could improve the classifier by classifying all the units 
as non events. Note that F and the Lift function will suggest instead using 
the boosting. For the simulated dataset, the overall error leads to a model 
obtained using the strategy (i). As we have already noted, to select the best 
strategy is more sensible to consider the value of F. This will lead us to 
conclude that a classification tree using balanced dataset and correcting the 
threshold is the best choice. But note that, instead, if we select the best 
strategy by looking at the Lift curve we would select the boosting algorithm. 

The results from the analysis of the two datasets presented does not al- 
low us to clarify which approach should be preferred over the others, and 
the main conclusion is that, unlike in the logistic case, the simple strategy 
of sampling with stratification by the classification variable is not as good as 
expected and its possible benefits are still unclear even after applying reason- 
able corrections. Suggesting the use of balanced sample as a panacea when a 
class is extremely unfrequent, as is often done in data mining applications of 
classification algorithms, has no theoretical foundation nor empirical support. 

The role of boosting when classes are not balanced should be clarified 
by further analysis: it seems that its use can lead to better classifiers, but 
note that we base our conclusions only upon the analysis of two datasets 
where, by the way, the predictive power of the algorithms is very low. A 
more thorough analysis of the problem here considered by using also other 
classification techniques to be applied to larger and more complex datasets 
can be fruitful. Also considering the impact of data quality when selecting 
the training set deserve further investigation. 

Moreover, in future work, strategies proposed in the machine learning 
literature, which are based oh resampling the rare (or the frequent) class, 
deserve more attention and a comparison between them and strategies sug- 
gested by sound statistical theory can be extremely useful. 
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Abstract. In a statistical survey, the treatment of missing data needs the adop- 
tion of particular precautions considering that each decision has an impact on the 
analysis results. In this paper we propose a strategy based on Classification and 
Discrimination methods conducted on symbolic data and it enables us to extract 
both compatibility rules and to impute data in order to reconstruct the informa- 
tion. The strategy makes use of tools developed in statistical methods fields for the 
analysis of complex structures named symbolic objects. The starting point is the 
use of the Symbolic Marking for the determination of the rules (complex units) for 
the construction of the Edit plane. The following phase is the construction of the 
symbolic matrix and the last phase will be the reconstruction of the missing data 
by comparing symbolic objects through the application of a suitable dissimilarity 
measure based on "Minkowski L1" weighted distance. The proposed strategy has 
been applied to a real case of 100 manufacturing enterprises located in the South 
Italy. 

1 Introduction 

The treatment of missing data needs the adoption of particular precautions 
considering that each decision has an impact on the analysis results. In a 
statistical survey, we can have Total (MRT) or Partial (MRP) missing data. 

In this paper we will refer to MRP. In order to  correctly consider the 
possible solutions for the reconstruction of missing information, it is necessary 
to  separate the missing data characterization criteria (by using the Edit of the 
compatibility plane, that is to  say association rules among variables) from the 
information reconstruction criteria (by using the more effective Imputation 
met hods). 

The proposed strategy is based on Classification and Discrimination meth- 
ods conducted on symbolic data and it enables us to extract both compati- 
bility rules and to  impute data in order to  reconstruct the information. 
The innovative parts of the strategy concern two aspects. The first one shows 
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the possibility to extract from data the necessary rules for the construction of 
the Edit plane; the second one concerns the possibility to impute data com- 
paring complex units (not elementary units), extracted for the construction 
of the plane. It is so possible to reduce the computational weight of the donor 
imputation. The strategy makes use of tools developed in statistical methods 
fields for the analysis of complex structures named symbolic objects, meaning 
with this label both the definition of the characteristics of the constitutive 
elements and the connections able to link each unit with the related object. 
The starting point is the use of the Symbolic Marking (Gettler-Summa, et al. 
1998) for the determination of the rules (complex units) in order to construct 
the Edit plane. The following phase is the creation of the symbolic matrix 
of a modal generic element and the last phase will be the reconstruction of 
the missing data by comparing symbolic objects through the application of a 
suitable dissimilarity measure (Bruzzese, Davino, 2002) based on "Minkowski 
L1" weighted distance. The proposed strategy has been applied to a real 
case; we have reconstructed the missing data related to a survey conducted 
on a manufacturing enterprises. A sample formed by 100 units has been in- 
terviewed about a very important topic: how the most important economic 
factors influence the efficiency of the enterprises located in the South Italy. 

2 Symbolic objects for missing data treatment 

The limits of the methodologies usually used in a classical context for the 
imputation of missing answers are the computational weight with 2n * (n - 1) 
comparisons for each single variable and the discriminating choice of the 
variables minimum set. It is possible to overcome these limits by defining the 
compatibility plane through the construction of conceptual models described 
in symbolic object terms. These objects can be built by using expert opinion 
(Balbi & Verde, 1998), or by using acquired knowledge on surveys done in 
several editions (Grassia &Muratore 2001). 

In this paper our aim is to build symbolic objects from the current data 
survey. 
A symbolic object s is defined by a triplet (a,R,d) (Diday, 1998), where: 

d=(dl ,..., dj  ,... , d,) is the description of the object, formed by the values 
assumed by a set of p descriptors, Y=(Y1 ,..., Yj ,..., Y,); 
a is an identification function; 
R=(R1, ..., Rj, ..., R,) is the relation used for the comparison between 
the description given at a conceptual level, (in purpose) from d and the 
individual observations. 

The descriptors of a symbolic object can be interval, categorical, multi-modal 
variables and they can show several modalities in the description of each 
object. The boolean function a assumes values (0, 1) and allows to deter- 
mine those elements that are included by the description d and to build the 
extension of the object s (ext(s)). 
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Table 1. A symbolic data array with integer frequency distributions 

Z 

Therefore, we start from the identification of the structural characteristics 
that allow to  divide the observed sample and to  build the related symbolic 
objects. 
Let's consider a set of units obtained from a questionnaire E  = {1,2,. . . .Q) 
consisting of a unit subset with complete answers E l  = {1,2,. . . .N) and by 
a subset made up of incomplete units Eg = {N+l,N+2..  . .Q) with E l  ,E2 
S E and EInE2  = 0. 

E l  and E 2  are both answer categories. I t  is important to  specify that 
in this context the continuous variables are transformed in intervals and the 
word "category" is extended to these intervals. If from the E dataset we 
build some symbolic objects (case clusters), the elementary units of the set E  
are no more single observations but a collection of them built by considering 
common characteristics. Thus, the symbolic data matrix will be: 

Therefore, the generic symbolic object assertion built by the database 
will be described by modal variables (Bock & Diday 2000): 

nk n L  

where pjm = 
nk.. 

"s the related weight of y j ,  (relative frequency or prob- 
ability), m-th modality of Y j .  
If we also consider the implications inside the object, assuming zf-then logical 
rules (Agrawal et al., 1993), the symbolic assertion will be: 

"" 

( A )  i ( B )  
(2) 

with A,C C Y and AnC = 0 where A is the set of the antecedent cate- 
gories (possible, independent and exclusive) and C is the set of consequent 
categories. Objects belonging to E l  show values in comparison with the de- 
scriptors of the (A) expression and of the (C) consequence, while the objects 
in Eg show values only in comparison with (A). Therefore, the extension in 

( n , ,  L )  I ,... ",.. 
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E l  of a generic symbolic object s is a case cluster whose behaviour can be 
used for the case answers imputation (or case clusters) of the E 2  dataset. 

3 Imputation procedure steps 

In this section, we are going to show how to build symbolic objects and how 
to impute the answers. Selection of those descriptors able to define the ex- 
pression and the consequence of the objects. For the objects construction we 
will use a clustering strategy, while for the selection of descriptors able to  
define the expression and the consequence we will use the symbolic mark- 
ing technique (Gettler-Summa, et al. 1998). This method was conceived as 
an help to the interpretation of the most important Multidimensional Data 
Analysis techniques (factorial and clustering), and it gives a description of 
the characteristics of the partition clusters in k, considering the logical rela- 
tionships (and, or, if-t hen) among the categories of the clusters descriptors. 
The procedure determines some marking cores, in other words some cores of 
identical observations related to a set of "characterising" variables: 

mc, : [Yl = ylm] A ..... A [Yr = yrml] 

with r 5 P 
The union of G marking cores mc, (expressed as logical AND), based on 

the disjunction element OR , is the description of the k group: 

k : mcl V mcz V ...... V mc, V ... ... V mcG 

By using the MGS algorithm, that is based on a supervised algorithm 
(this uses a step by step selection procedure with ascending strategy), it is 
possible to evaluate the discriminating power of each descriptor and then to 
obtain rules expressed in if-then form. This can be obtained thanks to  the 
maximization of the two indexes: 

1. Rec = Card[extk(mc,)] 
2. Deb= C a r d [ e ~ t ~ ( , , ~ ) ]  

where mc, is a generic marking that is a subset k belonging to El char- 
acterised by the same categories of one or more descriptors. The Rec index 
is the percentage of elements belonging to k able to satisfy the conditions 
defined by the marking; the Deb index is the percentage of elements able to  
satisfy the marking, but it does not belong to k. 

3.1 The imputation of missing data 

In order to impute to (single cases or clusters) E 2  objects some values for 
the missing records, it is necessary to determine, through a suitable sym- 
bolic distance, the E l  object with minimum distance. This object has to be 
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the most similar in the (A) expression to  E2  objects. In the literature on 
the subject, many symbolic dissimilarity measures among objects have been 
proposed (Bock and Diday, 2000; Bocci and Rizzi, 2000); it is important to 
consider in this case a measure able to assume a maximum value when two 
objects have no characteristic in common. In the following, we use a proper 
dissimilarity measure based on the "Minkowski L?" weighted distance, giv- 
ing an equal weight to all the variables. The distance between two objects is 
given by the distance between the expressions and the consequences. Objects 
having missing records have values only related to  the descriptors of the ex- 
pression. Therefore, it is necessary to calculate all the distances between the 
objects in E l  and in E 2  in order to impute to the objects in E 2  the values 
of the consequence descriptors of those objects that are the most similar in 
E l .  Let's consider two generic objects s= A --+ C of E l  and st= A' of E 2  
characterised by the same variables in A expression. The distance between s 
and s' calculated according to  (A) and (A') is given by: 

#IAl 
, C d ( ~ ,  

d ( s ,  s ) = a = 1  a?lAl with s # s' 

where (# A )  is the number of variables in A and the distance between Y ,  and < is based on the comparison between frequency distributions as follows: 

where mj is the number of categories of 5. 
The distance between the two objects vary from 0 and 1. The distance 

is zero if the two objects have the same probability distribution and it is 1 
if they are completely different. To the missing records will be imputed the 
values assumed by the descriptors in the consequence of the donor object 
with minimum distance. 
If S are the objects of E2 = {N+l,N+2.. . .Q} ,  a relative measure of the loss 
of information in data  reconstruction is given by: 

where d j  is the distance between the object that has missing data ( s ' )  and 
the "donor" object ( s ) ,  n,.. is the cases number in the object and r j  is the 
records number to impute for each object on the total number of record to 
impute. If each object is formed by a single case it (5) will be: 

This index changes from 0 and 1. 
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NO Varlable NO Varlable 
I L~ne 01 h~s~ness  10 Pudltlng 

A n d m  farm 11 lntermedlate product 
Year 01 beglnnng 12 Number 0 f C ~ s t o m e ~  
Type alenterpnse 13 Revenues 
Palttopabon at pool 14 The Trend of proceeds 
Partlcipabon at lndustnal zone 15 Interest ralo on loans (short term) 
other m c e  16 Interest a le  on loans (long term) 
Numberof employees 17 Request forcredt not obtained horn the bank  
Trademak 18 Ava~lablllty to pay higher rates ~n order to obtaln credl 

Table 2. The variables 

var-13 var-15 Vai-16 var-17 var-18 2 5.7 
VBT 12 YBT 13 VN 14 ver 15 ver 16 ver_18 2 5.7 

Total 35 100.0 

Table 3. The possible combinations of the missing fields 

. . 
Markdl  N. % V-Tat Mod. Varlable 

5 7 69 3.605 

4 An example of imputation on real data 

3.021 NO Var-11 

The proposed strategy has been implemented in order to impute the missing 
data in a dataset coming from a survey conducted on a sample of 100 manu- 
facturing enterprises of the Naples province and related to the lend on usury 
topic. 

As shown in the following (Table 2), we have 18 variables, where the last 
six are very important questions (Revenues, Rate of interest, etc.) 

Of 100 records, 65 are complete records e 35 are missing records. 
For the missing fields we have done a frequency distribution of the possible 

combinations of the missing fields. 
After having done a cluster analysis on units having full field, from the 

8 classes we have extracted 22 marking cores characterised by the same de- 
scriptors modality with missing fields. For example we show the first marking 
on the class number 1: 

If we consider the characteristics of the first class, we can assume that: 
IF 

Line of business= canning indus t ry  O R  textile indus t ry  O R  t a n  indus t ry  

Rec 5 38.46 
Deb 0 0 00 

2.727 E 15 000 000 Var-13 
0.870 NO Var-17 

Table 4. The first marking of the class 1 
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Table 5. The symbolic data matrix 

AND Juridical form = Srl OR Spa, AND Year of beginning= 8-15 . . . . . . 
THEN 

Intermediate product = NO AND Revenues=15.000.000 A AND Re- 
quest for credit not obtained from the banks=NO 

We have extracted the marking and built the symbolic objects matrix ex- 
pressed in modal form composed by 22 rows (modal objects) and 18 columns 
(Tab.4). 

For each record showing missing data, using the formula (4), we have 
calculated the distance from the 22 objects for the variables having full fields, 
by choosing as donor the object having minimal distance. The imputation has 
been done both for the reconstruction of the symbolic matrix, giving to the 
receiving unit the distribution of the donor object and in the traditional data 
matrix, giving to the receiving unit the modality of the donor object with 
higher frequency. 

The loss of information index is 0,132 and it can be considered a good 
result. 

5 Conclusions and future developments 

The proposed strategy has the following advantages: 

1. The minimum distance is not calculated between the receiving unit and 
each donor unit, but it is calculated only between the receiving objects 
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(single units or clusters) and the donor objects. In computational terms 
the weight is reduced. 

2. The  choice of matching variables is not optional but it is an analysis 
result. 

3. The variables distribution form is well kept by assigning more than a 
value with the related weights (relative frequencies or probability). 

4. It can be used for naturally complex data. 

Future developments concern the possibility to  treat, a t  the same time, 
several types of variables (multi-nominal, modals, continuous and interval 
variables) without making transformations on them and the possibility to  
match a-priori knowledge with knowledge mined by extracted rules. 

Further important aspects to  develop are the construction of a multiple 
text for the evaluation of the marking union, the validation of the robustness 
method and the application of other distances (not symbolic even) for the 
choice of the donor object. 

References 

ARKHIPOFF 0. (1996): La qualite' de l'information et sa precision, Colloque de 
1'ISEOR. 

BALBI, S., GRASSIA M.G. (2003): Meccanismi di accesso a1 mercato del lavoro 
degli studenti di Economia a Napoli - Profili dei laureati attraverso tre indagini 
ripetute in Transizione Universitd- Lavoro: la definizione delle competenze, 
Cleup. 

BALBI S., VERDE R. (1998): Structuring Questionnaires as Symbolic Objects: a 
New Tool for Improving Data Quality in Surveys, 111 International Seminar 
on New Techniques and Technologies - N T T S ,  Sorrento. 

BARCAROLI G. (1993): Un approccio logico formale a1 problema del controllo e 
della correzione dei dati statistici, Quaderni di Ricerca, n.9, ISTAT. 

BOCK H., DIDAY E. (2000): Analysis of Symbolic Data, Springer - Verlag,. 
BOCCI L., RIZZI A. (2000): Misure di prossirnit& nell'analisi dei dati simbolici, in 

Atti della X L  Riunione Scientifica della societd Italiana di Statistica, Sessioni 
Plenarie e specializzate, Firenze 26-28 aprile 2000, 91-102. 

BRUZZESE D., DAVINO C. (2003): Post Analysis of Association Rules in a Sym- 
bolic Framework, Atti della XLI  Riunione Scientifica della societd Italiana di 
Statistica, Milano 5-7 giugno 2003, 63-66. 

GRASSIA, M.G., MURATORE, M.G. (2001): The contribution of symbolic objects 
theory to errors prevention in CAT1 questionnaires, IV International Seminar 
on  New Techniques and Technologies - NTTS, Creta 

GETTLER-SUMMA M. (1998): MGS i n  SODAS: Marking and Generalization by 
Symbolic Objects i n  the Symbolic Oficial Data Analysis Software, Cahier9935, 
Universite Dauphine LISE CEREMADE - Paris. 

LITTLE, R.J.A., RUBIN, D.B. (1987): Statistical analysis with missing data, New 
York, Wiley &Sons. 

MASSRALI M., GETTLER-SUMMA M., DIDAY E. (1998): Extracting knowledge 
from very large databases, Kesda '98, Luxembourg. 



A Collinearity Based Hierarchical Method 
to Identify Clusters of Variables 

Annalisa Laghil and Gabriele Soffritti2 

Servizio Controllo di Gestione e Sistemi Statistici 
Regione Emilia-Romagna, Bologna, Italy 
alaghi@regione.emilia-romagna.it 
Dipartimento di Scienze Statistiche 
UniversitB di Bologna, Italy 
soffritt@stat.unibo.it 

Abstract. The most frequently used hierarchical methods for clustering of quanti- 
tative variables are based on bivariate or multivariate correlation measures. These 
solutions can be unsuitable in presence of uncorrelated but collinear variables. In 
this paper we propose a hierarchical agglomerative algorithm based on a similarity 
measure which takes into account the collinearity between two groups of variables. 
Its main theoretical features are described and its performance is evaluated both 
on simulated and real data sets. 

1 Introduction 

Hierarchical clustering methods can be used to identify groups of either statis- 
tical units or variables, or both (Anderberg (1973), Hartigan (1975), Nicolau 
and Bacelar-Nicolau (1998), Gordon (1999), Soffritti (1999), Soffritti (2003)). 
Many methods for clustering of units have been proposed and widely dis- 
cussed in the statistical literature but only few solutions deal with identifying 
groups of variables. 

Aiming a t  clustering variables, the starting point of most of the agglomer- 
ative algorithms is a symmetric proximity (similarity or dissimilarity) m x m 
matrix P = [pij],  where pij is the proximity between the i-th and j-th vari- 
ables to be classified, and m is the number of variables observed on n units. 
When all the variables are quantitative the most frequently used hierarchical 
methods implement some of the classical algorithms (eg.  single linkage, av- 
erage linkage between groups (UPGMA), complete linkage), using a suitable 
transformation of Pearson's correlation coefficient rij to  measure the similar- 
ity between Xi and X j :  usually lrijI or r&( which allow to take into account 
only the magnitude of the linear relationship and not its direction. A strategy 
recently proposed by Vigneau and Qannari (2003) allows to cluster variables 
taking into consideration also the sign of the correlation coefficients; their so- 
lution is suitable when negative correlations indicate disagreement between 
variables. 
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As described in Soffritti (1999), most of these methods seem not to be 
completely satisfactory. In fact, they take into consideration only bivariate 
correlations; besides, some of them (e.g. single, UPGMA and complete link- 
age) ignore the correlations existing within each group of variables. The use 
of multivariate association measures between two sets of variables can over- 
come these drawbacks. Soffritti (1999) considered hierarchical methods based 
on some multivariate association measures already proposed in the statisti- 
cal literature, and introduced a new measure which resulted more suitable 
to identify hierarchical groupings of variables. However, since all those mea- 
sures are functions of the squared canonical correlations between two groups 
of variables, they can't detect, for instance, non linear relationships and fail 
also in identifying properly collinearity relations. 

In this paper we focus our attention on the analysis of the collinear re- 
lations existing among a set of m variables in a data matrix n x m X; in 
fact, since collinear variables contain similar and redundant information, they 
should be classified together. Furthermore, as it is stressed by Belsley (1991), 
collinearity is concerned with numerical or geometric characteristics of a given 
data matrix X whether or not it is used in a regression context. After a short 
description of the main differences between collinearity and correlation, we 
propose a hierarchical agglomerative algorithm based on a similarity measure 
which takes into account the collinearity between two groups of variables. We 
discuss the main theoretical features of the proposed solution and illustrate 
the results obtained from the analysis of some simulated and real data sets. 

2 An association measure based on collinearity 

It is well known from the statistical literature (Belsley 1991) that collinear- 
ity and correlation are not the same thing. Considering, for simplicity, the 
bivariate case, two variables are collinear if they lie almost on the same line, 
that is, if the angle between them is small or, equivalently, the cosine of this 
angle is high. But a small angle between two vectors is not equivalent to a 
high correlation between them: a high correlation surely implies a low angle, 
but the converse need not be true (Belsley 1991, p. 20). In fact the geometric 
interpretation of the statistical concept of correlation between two vectors is 
simply the cosine of the angle between the two corresponding mean-centred 
variables. Therefore the use of an association measure among variables based 
on collinearity instead of correlation seems particularly suitable whenever the 
comparison with the mean values for each variable is not proper or relevant, 
for instance in the analysis of relative variations or binary variables. It can 
also be shown that in some cases (see Section 3) two vectors can become 
arbitrarily collinear while remaining completely uncorrelated. 

Among the several approaches proposed to diagnose the presence of colli- 
nearity relations and to measure their degree, the one that resulted more 
successful and can also be formulated out of a regression context is based on 



A Collinearity Based Hierarchical Method 57 

the eigensystem of C = Y ' Y  (Belsley 1991), where Y is the n x m matrix 
obtained by scaling each column of X to have unit length, and thus C contains 
the cosines of the angles between each pair of variables. 

Suppose the m variables are now divided in two groups G1 and G2,  com- 
posed by m l  and m2 variables respectively (ml  + m2 = m ) ,  and let Y1 and 
Y2 be the submatrices of Y (respectively n x m l  and n x m2)  referred to G1 
and G2. The following partition of the matrix C can thus be introduced: 

where C l l  = YI1Y1 and Cz2= Y2'Y2 are the matrices (respectively m l  x m l  
and ma x m2)  of the cosines of the angles between each pair of variables within 
the two groups, and Cla=  Y11Y2 is the m l  x m2 matrix of the cosines of the 
angles between each variable in G1 and each one in G2. 

Assuming without loss of generality that m l  2 m2, a similarity measure 
between G1 and G2 based on the amount of the collinearity between the two 
groups of variables can be obtained by applying the multivariate association 
measure already proposed by Soffritti (1999) to the matrix of the cosines C 
considered in its partitioned form, as follows: 

where C;  denotes the k-th eigenvalue of c ~ c ~ ~ c ~ c ~ ~ ;  C: also represents 
the squared cosine of the angle between the k-th pair of variables obtained 
from a modified version of canonical correlation analysis, in which linear 
combinations of the variables belonging to each group are identified in such 
a way that cosines of the angles are maximized instead of correlations, and 
with the constraints of unit length instead of unit variance. 

The theoretical properties of this measure are analogous to the ones of 
the measure proposed by Soffritti (1999); it lies in the [O, l / m l ]  interval, and 
takes into account both the overall collinearity between groups of variables 
(expressed by means of the sum of the squared cosines of the angles between 
pairs of the quasi-canonical variables identified as previously described) and 
the numbers of variables within the two groups. In this way the association 
between G1 and G2 is set equal to a mean squared cosine for each pair of 
variables, one from GI  and one from G2. Furthermore, when groups composed 
by single variables are examined (ml = m2 = l), measure (2) gives the 
squared cosine of the angle between pairs of starting variables; when m l  > 
m2 = 1, it reduces to the uncentered multiple squared correlation coefficient 
of the variable belonging to G2 on the ones present in G1 (Belsley 1991, p. 
29). 

The proposed measure also allows a different definition, based on the 
links between canonical correlation and principal component analysis (Muller 
1982) slightly modified so as to take into account collinearity relations among 
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variables instead of correlation ones. In fact, every variable belonging to GI 
and G2 can be transformed to produce zero cosines within the two groups, 
and reproduce all the collinearity relations between groups by means of a 
modified version of principal component analysis, in which linear combina- 
tions of the variables from each group are identified in such a way that lengths 
are maximized instead of variances, with the constraints of orthogonality in- 
stead of incorrelation. If the ml variables in GI are substituted by the ml 
corresponding quasi-principal components obtained as just described, and the 
same is made for the m2 variables in G2, the new cosine matrix computed 
with respect to the so obtained ml +m2 quasi-principal components will have 
the following form: 

where I,, and I,, are identity matrices of order ml and m2 respectively, 
and C*12 is the ml x m2 matrix of the cosines lcij of the angles between 
pairs of quasi-principal components, one from GI and one from G2. It can 
be demonstrated (Soffritti 1999) that measure (2) is also equal to the aver- 
age of the mlm2 squared cosines of the angles between each quasi-principal 
component obtained from the set G1 and each one from G2: 

Measure (2) can be used to identify hierarchical groupings of variables. At 
the first step of the hierarchical process, when equation (2) is computed be- 
tween pairs of variables, it gives the square of the cosine of the corresponding 
angles. At the other steps, when the groups are composed by more than one 
variable, equation (2) is used to measure the amount of collinearity between 
groups. 

3 Examples of applications to real and simulated data 

The proposed method has been applied to simulated data matrices X, with 
n = 500 and m = 9, generated so as to contain two groups of variables. The 
first four variables have been obtained, as described in Soffritti (1999), in 
such a way to have given values for Pearson's correlation coefficient. Matrices 
R1 and C1 contain the correlation coefficients and the cosines of the angles 
between each pair of variables, respectively: 

1.000 .796 .I35 ,399 1.000 ,797 ,137 .401 
1.000 .348 .250 1.000 ,349 .251 

1.000 .787 
1.000 
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As all the mean values of these variables are very close to zero, every corre- 
lation coefficient assumes a value which is very similar to the corresponding 
cosine. The remaining five variables have been generated so as to  be collinear 
but not correlated. This result has been obtained by considering five orthonor- 
ma1 vectors (uk, k = 1, ... , 5 )  belonging to the orthogonal complement of i in 
Rn, where i is the vector of n ones (Belsley 1991, p. 20); then, five variables 
have been defined as linear combinations of i and one orthonormal vector: 
xk = i + akuk, k = 1, . . ., 5. These variables have unit mean value; they are 
also perfectly uncorrelated: in fact, as x&xh = (i + akuk)'(i + f fhuh)  = n for 
every k # h, the covariance between xk and x h  is zero. The angle between 
xk and xh, akh, depends on n and on the values of the coefficients crk and 
a h  by the following relation: akh = cosP1[n(n + c~;)-O.~(n + CE:) -~ .~] ;  thus in 
this way it is possible to define variables becoming arbitrarily collinear while 
remaining absolutely uncorrelated, depending on the values of n and of the 
coefficients ak .  For instance, when n = 500, if crk = 0.2 for every k, the angle 
a between each pair of variables will be 0.725, and cos(a) = 0.999; if a k  = 50 
for every k, a = 80.4, and cos(a) = 0.17. 
Several data matrices have been generated as just described by controlling 
the collinearity within the second group through different values of a k ,  k = 

1, ..., 5 while keeping constant the correlations among the first four variables. 
Specifically, each data matrix has been obtained fixing a value for a1 and 
computing the remaining coefficients as multiple of a l ,  in this way: a k  = 

kak  for k = 2, ..., 5. This procedure has been repeated for increasing values 
of 01, starting from 4 up to  38, step 2. 
All the methods based on simple and canonical correlations described in 
Section 1 always failed in recovering the cluster structure present in all these 
data matrices because of the zero correlations within the second group, while 
the proposed procedure succeeded in all the considered situations. 

The proposed procedure has been applied also to a real data matrix, 
which contains the relative variations between 1996 and 1997 of six variables 
for the twenty Italian regions; the variables are: XI = gross domestic product; 
X z  = gross value added; X g  = expenditure for final domestic consumptions; 
X4 = internal demand; X 5  = present population; X 6  = resident population. 
The data are taken from the ISTAT (Italian National Statistical Institute) 
web site (www.istat.it), where many other indicators can be downloaded. 
Matrices R and C contain the correlation coefficients and the cosines of the 
angles between each pair of variables, respectively: 
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Fig. 1. Scatter plots of (X5, XG) and of (X3, X4) for the twenty Italian regions. 



A Collinearity Based Hierarchical Method 

1 2 3 4 5 
(X5 X6) (X3 X4) (X1 X2)  (XI  X2 X3 X4) ( X I  X2 X 3  X 4  X 5  X6) 

Fig. 2. Values assumed by measure (2) at the five steps of the aggregation process 
(groups of variables in brackets) for the real data example. 

From the comparison between the values of each correlation coefficient and 
the corresponding angle it emerges that on one hand X5 and Xs are highly 
correlated and collinear (r5,s = .96; c 5 , ~  = .97), while on the other hand X Q  
and X4 are uncorrelated but almost collinear (r5,s = -.00; c3,4 = .94). The 
reasons of this difference are well explained by the scatter plots in Fig. 1; 
the first is referred to  X5  and X 6 ,  and clearly shows a linear dependence 
between the relative variations of the two variables (dashed lines identify 
the centroid of the data,  while straight lines crossing in (0,O) the absence of 
variation for both variables); in the second scatter plot, referred to X 3  and 
X4, the relative variations result to be clearly uncorrelated, but a t  the same 
time they are also positive for each region, thus giving a high value of the 
cosine c3,4 Therefore every measure based on correlation does not identify 
any cluster structure between these two variables, while the measure defined 
in equation (2) does. The correlation coefficient seems to be inadequate in 
the analysis of the considered data matrix as it is not correct to evaluate the 
arithmetic mean values of the relative variations computed for the Italian 
regions. 

The results obtained by applying the proposed procedure to  this real data 
matrix are synthesized in Fig. 2: the variables which have been aggregated a t  
each step of the hierarchical process and the corresponding values of measure 
(2) are indicated on X and Y axes, respectively. The similarity measure 
assumes decreasing values with maximum variation between the third and 
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the fourth steps of the aggregation process, suggesting a partition of the 
six variables in three groups: the first is composed by the variations of the 
population variables, the second by those of expenditure for final domestic 
consumptions and of internal demand, and the third by the variations of gross 
domestic product and gross value added. 

4 Concluding remarks and directions of future research 

The main drawback of the proposed procedure is that it can produce non 
monotonic aggregation processes: after each new aggregation, the maximum 
value of measure (2) can result higher than the one obtained at the previous 
step. However, as demonstrated by Soffritti (1999) in a study which compares 
seven multivariate association measures, it is the one less affected by this 
drawback. 
We are currently examining some specific collinearity schemes already con- 
sidered in a regression context and further data structures in order to give a 
wider evaluation of the performance of the proposed method. 
Finally, we are studying an objective criterion to establish the number of clus- 
ters and further ways of measuring the similarity between groups of variables 
based on collinearity. 
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Abstract. Dynamic time warping (DTW) is a technique for aligning curves that 
considers two aspects of variations: horizontal and vertical, or domain and range. 
This alignment is an essential preliminary in many applications before classification 
or functional data analysis. A problem with DTW is that the algorithm may fail 
to find the natural alignment of two series since it is mostly influenced by salient 
features rather than by the overall shape of the sequences. In this paper, we first 
deepen the DTW algorithm, showing relationships and differences with the curve 
registration technique, and then we propose a modification of the algorithm that 
considers a smoothed version of the data. 

1 Introduction 

Functional data analysis involves the extension of classical statistical pro- 
cedure to data where the raw observation xi is a curve. In practice, these 
curves are often a consequence of a preliminary interpolating process applied 
to discrete data sequences. In calculating the dissimilarity between curves the 
main problem is that the starting time for each sequence may be arbitrary or 
there may be a sort of physiological or meteorological timescale that relates 
non linearly to physical time. More abstractly, the values xi(tj) of sequences 
i = 1 , .  . . , N at time t j  ( j  = 1, .  . . ,Ti) may differ because of two types of 
variation. The first is the range variation due to the fact that the values of 
two series XI  and 2 2  may simply differ at points of time at which they can be 
compared. The second is the less familiar domain variation which is exhibited 
when XI and 2 2  should not be compared at a fixed value of t but at times 
t l  and t2 a t  which the two values are essentially in comparable states. Fig. 1 
shows two examples in which domain variation occurs. Fig. l a  illustrates 6 
recordings of the X-axis position of a subject's right hand while signing one 
of the 95 words in Australian Sign Language (Bay, 1999). The starting time 
for each record is arbitrary, so it is essential to find a common timescale to 
combine information across records. Fig. l b  shows the rainfall intensity mea- 
sured by 5 raingauges in the Cortina dlAmpezzo area (Morlini and Orlandini, 
2001). These five raingauge stations are distributed over a rectangular area 
of about 19 km x 8 km and have a different elevation. In comparing these 
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Fig. 1. Examples of curves in which domain variation occurs. (a) Recordings of the 
X-axis position of a subject's right hand while signing the word alive in Australian 
Sign Language. (b) Rainfall intensity measured by 5 rain gauges in the Cortina 
d'Ampezzo area (Northern Italian Alps). 

curves we need to consider that weather is driven by factors that are timed 
differently for different spatial locations. 

The problem of transforming the arguments of curves before functional 
data analysis is referred to by Silverman (1995) and Ramsay and Li (2003) 
as curve registration, while in the engineering literature as time warping. 
In particular, dynamic time warping (DTW) is a technique for computing a 
dissimilarity measure between two warped series which has been applied in 
many different fields like data mining, finance and manufacturing. Although 
DTW has been successfully used, especially in speech recognition (Rabiner 
and Juang, 1993), it can produce incorrect results when aligning, for exam- 
ple, two values which are identical but the first is a part of a rising trend in 
series 1 and the second is a part of a falling trend in series 2. An additional 
problem is that the algorithm may fail to find the natural alignment of two 
sequences simply because a salient feature (i.e. a peak, a valley, an inflection 
point, a plateau) in one series is slightly higher or lower than its correspond- 
ing feature in the other sequence. This may rise when the overall shapes of 
the series are identical, but data are noisy. Both these problems occur since 
DTW only considers the single values of each sequences and since the algo- 
rithm has few constrains. In this paper, rather then imposing constrains (as, 
among others, in Myers et al., 1980) we introduce a modification of DTW 
which considers smoothed estimates of the values of the series. These esti- 
mates are obtained by smoothing each sequence with splines and are aimed 
to find new points which are less noisy and depend on the overall shape of 
the series. For a different approach to measure the dissimilarity among series 
and methodological problems related to this task, we refer to Piccolo (1990). 

2 Dynamic time warping and curve registration 

To align two sequences xi(tj) and simultaneously measure the dissimilarity 
between them, the DTW algorithm first implies the construction of a TI x T2 
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matrix M in which the generic element ( r ,  c) is the distance d(xl( t , ) ,xz( tc))  
between the value of sequence 1 a t  time t, and the value of sequence 2 at  
time t,. Note that the series xi(t) may be vector valued, as would be the case, 
for example, if they indicate position in two or three dimensional space or 
simultaneous aspects of a single phenomenon. At this stage of DTW any dis- 
tance may be used in the construction of the matrix M. Each element (r ,  c) 
corresponds to  the alignment between points xl(t,) and x2(tc). The dissimi- 
larity between xl  and x2, also called dynamic time warping cost (DTWC) is 
defined as follows: 

l-Y-7- 
DTWC = min \j di/  K 

k = l  

where max(T1, T2) I K 5 TI + T2 - 1 and dk (k = 1 , .  . . , K )  are elements of 
M subject to: 

1. Boundary conditions for k = 1 and k = K :  dl = d(x l ( t l ) ,x2( t l ) )  and 
d~ = d(xl(Tl) ,  xz(T2)). This requires the first and the last addends in 
the sum to  be diagonally opposite corner elements of M. 

2. Continuity constrains for k = 2 , .  . . , K - 1: given dk = d(xl(t,), xz(tc)) 
then dk-1 = d(xl(tp),x2(t ,))  where r - p 5 1 and c - y 5 1. This 
condition restricts two successive elements dk in the summation to  be 
adjacent (including diagonally) elements in M. 

3. I\/Ionotonicity constrain for k = 2 , .  . . , K - 1: given dk = d(xl (t,), x2(tc)) 
then dk-1 = d(xl(tp),  x2( ty))  where 0 5 r - p and 0 < c - y. This forces 
the couple of points for which the distance is taken into account in ( I )  to 
be monotonically spaced in time. 

Note that if TI = T2, any distance between x l ( t )  and x2(t) ,  with no warp- 
ing, can be seen as a special case of ( I ) ,  where each dl, = d(xl(t,),x2(t,)) 
is constrained such that r = c. Without this constrain, the DTWC is a dis- 
similarity measure, since the triangular inequality property does not hold. 
While finding this measure of dissimilarity, the DTW algorithm indirectly 
solves the alignment problem between each pair of sequences. The curve reg- 
istration problem, as referred by Ramsay and Li (1998), is somehow different, 
since the aim is to align a family of curves xi(t j)  to a target function y,  by 
minimizing a fitting criterion between the xi( t j )  and y .  For this aim, a time 
warping strictly increasing function is defined. As shown in Fig. 2a, by finding 
the elements dk of M which minimize the dissimilarity (1) between x l  and 
x2 we find a warping path, instead. From this path we cannot draw the two 
warping functions to  align x l  to 2 2  and to  align xz to X I ,  since a single point 
on one time series may map onto a large subsection of the other series (see 
Fig. 2b). In order to find two monotonic - not strictly increasing - warping 
functions one could eliminate the boundary condition dK = d(xl (TI), x2 (T2)) 
and restrict the continuity constrain such that r - p = 1 for aligning x l  to  2 2  

and such that c - y = 1 for aligning x2 to x l  (the pictorial representation of 
the resulting steps in the path is reported in Fig. 3b). With this restriction, 
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Fig. 2. (a) Example of distances included in the DTWC. (b) The warping path. 

Fig. 3. Pictorial representations of step-paths (a) The DTW step (b) Step with 
restrictions on the continuity constrains. (c) Step without the continuity constrains. 

however, the DTWC turns asymmetric. So we cannot define a t  the same time 
a dissimilarity measure and a warping function without eliminating the con- 
tinuity constrain of the warping path (as illustrated in Fig. 3c). One could 
reduce the number of singularities, that is the number of points of one se- 
ries mapping onto a plurality of points of the other series, by imposing other 
constrains on the DTW (Rabiner and Juang, 1993). Yet the weakness of this 
algorithm should be not ascribed to the number of singularities but to the 
fact that, especially when the data are noisy, these singularities may be due 
to range rather than to domain variation. In order to affect the reason of sin- 
gularities rather than simply their number, we propose a different approach 
which is aimed to smooth the data before applying DTW and to  obtain points 
which are less noisy and depend on the overall shape of the series. These new 
points are obtained by smoothing each sequence by a piecewise linear or cu- 
bic spline. For a different approach, but with similar aims, we refer to  Keogh 
and Pazzani (1998). An open problem remains the choice of the smoothing 
parameter X or the number of knots k .  Since as X and k increase, the number 
of singularities gets larger, one should keep these values as small as possible 
consistent with obtaining a reasonable degree of smoothing for the data and 
for the problem at hand. In the following section we design two experiments 
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Fig. 4. Dendrogram of the group average cluster analysis (excluded the last 3 
levels) for the Synthetic Control Chart Data Set. 

for clustering series on the basis of their DTWC and we indirectly measure 
the validity of our approach and find reasonable values for X and k on the 
basis of the clustering results. 

3 Experimental results 

The validity of the smoothing step before applying the DTW algorithm is 
studied in this section by means of a synthetic and a real data set taken 
from the UCI KDD archive (Bay, 1999). The first is the Synthetic Control 
Chart data set consisting of 600 time series of control charts synthetically 
generated. There are 100 series of length 60 for each of the following classes: 
normal (n) , cyclic (c) , increasing trend (it), decreasing trend (dt) , upward 
shift (us), downward shift (ds). Without warping, both the k-means and the 
hierarchical cluster analyses aren't able to distinguish class n from c, class 
i t  from us  and dt from ds. We wrote a Matlab program for randomly choos- 
ing 10 series for each class, smoothing each series, implementing the DTW 
algorithm and successively clustering the series on the basis of the DTWC 
between each pair of sequences. Fig. 4 shows the dendrogram (excluded the 
last 3 levels) obtained with the group average hierarchical cluster analysis 
and a cubic spline smoother with X = 0.10. For exactly 6 groups there is 
only one misclassified series. For the same data, dendrograms are similar, 
but slightly worse in that for exactly 6 groups there is more than 1 mis- 
classified sequence, for cubic splines with 10 equally spaced knots and for 
different values of X ranging from 0.20 to 0.02. A simulation study changing 
100 times the series to be classified, using a smoothing spline with X = 0.10 
and obtaining dendrograms with different hierarchical methods, shows that 
the aggregation steps may vary remarkably and, in some instances, cyclic 
series remain isolated until the upper levels. 
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Raw data Piecewise linear spline Cubic smoothing spline 
t = 0.01 t = 0.10 t = 0.20 X = 0.02 X = 0.04 X = 0.07 

Single linkage 0.047 0.800 0.727 0.050 0.047 0.556 0.498 
Complete linkage 0.497 0.556 0.800 0.800 0.497 0.497 0.498 
Average linkage 0.497 0.727 0.560 0.556 0.497 0.727 0.560 
Ward method 0.497 0.727 0.727 0.727 0.497 0.727 0.560 

Table 1. Correct Rand index between the actual partition in 3 groups and the 
partitions obtained with DTW applied to raw and smoothed data (ASL Data Set). 

In these and other dendrograms, the optimal cut (Zani, 2000, pp. 218- 
222) achieves a partition in more than 6 groups (for example, 10 groups with 
a unique series belonging to class c and 5 homogeneous groups with series 
belonging to the other classes). The comparison of the dendrograms achieved 
with raw data shows that for fixed cuts corresponding to 10 and 15 clusters, 
the groups achieved with previous smoothing are more homogeneous (the 
average number of different series in each group being smaller). For 6 groups, 
the averages of the correct Rand index (Hubert and Arabie, 1985) between 
the correct partition and the partitions obtained with DTW applied to raw 
data and DTW applied to smoothed data show that the last partitions are 
more similar to the actual one. 

The second data set is the Australian Sign Language (ASL), consisting 
of the x, y, and z positions of a volunteer naive Auslan signer's right hand 
(there are more measurements in the database which we do not consider in 
this work). The positions are captured by using position trackers and instru- 
mental gloves. For each word, 27 records are present. Here we consider the 81 
records relative to the words alive (E), all (L) and answer (R). Records have 
different lengths (the average being 57), so Euclidean distance cannot be a 
benchmark in this example. We compare DTW in its original formulation 
with DTW applied to smoothed data. We consider raw variables and gridded 
data estimates obtained with tensor product splines. Since we are dealing 
with spatial data, rather than smoothing each dimension of the records sep- 
arately, we use vector valued splines. Table 1 reports the correct Rand index 
between the partition in 3 groups obtained with different splines and differ- 
ent hierarchical clustering methods and the actual partition in 3 groups. The 
parameter t in the piecewise linear splines is the given tolerance (De Boor, 
1999). 

With cubic splines with too much flexibility results are identical to  those 
obtained with no smoothing while with X = 0.07 or X = 0.02 results are better 
or at least identical. All piecewise linear splines lead to more homogeneous 
partitions, with respect to  those obtained with raw data. With the complete 
linkage, the best values for t are 0.1 and 0.2 while for the single and the 
average linkage the value leading to the most homogeneous partition is 0.01. 
The original Rand index (Rand, 1971) confirms these results. Besides, as 
shown in Fig. 5b e Fig. 5c for the average linkage method, the aggregation 
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Fig. 5. Dendrograms of the average linkage method (excluded the last 3 levels) for 
the ASL data set. (a) Raw data. (b) Smoothed data with piecewise linear spline 
(t = 0.2). ( c )  Smoothed data with piecewise linear spline ( t  = 0.1). 

steps lead to partitions in more than 5 groups in which in each cluster all 
series belong to the same class. This is verified for more than 6 clusters for 
DTW applied to original data (Fig. 5a). 
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4 Conclusions 

DTW is an easy to implement technique which allows registration of curves 
before computing dissimilarities between them. This algorithm seems partic- 
ularly promising in data mining problems, since it does not require the def- 
inition of a non-linear transformation of the argument t in sequences xi(tj). 
Besides, it can be applied to  vector valued curves and to  sequences of differ- 
ent lengths. Despite its limitations, like the computational time required for 
computing M, it should be a routine part of a functional data analysis that  
combines information across curves. The main objective of this work was to  
improve the DTW algorithm in order to  limit the distortion in the warping 
of curves and moderate the importance of salient features in noisy data. The 
choice of the smoothing parameters should be data  dependent and the dis- 
similarity measures are of course influenced by their values. In our studies 
results have been shown to  be more accurate, with respect to  those obtained 
with DTW in its original formulation, for different values of these parame- 
ters. Future works include the way of making the choice of X automatically, 
to speed up the algorithm for massive data sets and to  obtain p-values for 
the modified Rand index (Hubert and Arabie, 1985, pp. 210-211). 
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Abstract. The Authors consider the general problem of similarity and dissimi- 
larity measures in Symbolic Data Analysis. First they examine the classical def- 
initions of elementary event, assertion object, hierarchical dependences and logi- 
cal dependences, then they consider some well-known measures resemblance mea- 
sures between two objects (Sokal-Michener, Roger-Tanimoto, Sokal-Sneath, Dice- 
Czekanowski-Sorenson, Russel-Rao). For resemblance measures based on aggrega- 
tion functions, the authors consider the proposals of Gowda-Diday, De Baets et al., 
Malerba et al., Vladutu et al., and Ichino-Yaguchi. 

1 Introduction 

The analysis of symbolic data has led to a new branch of Data Analysis 
called Symbolic Data Analysis (SDA) where the objects considered are new 
entities for which the representation as point in S = Yl x Y2 x . . . x Yn 
(which usually reduces to  8") no longer holds. In SDA features characterizing 
symbolic objects may take more than one value, or may be in the form of 
interval data or be qualitative data or subsets of qualitative data. Symbolic 
data can also be used after clustering in order to  summarize a huge set of 
data to  describe, for exploratory purposes, the obtained clusters and their 
internal variation. Another important source of symbolic objects comes from 
relational databases in order to  study a set of units whose description needs 
the merging of several relations. 

A crucial issue in the adaptation of standard statistical techniques to  sym- 
bolic data lays in the specification of resemblance measures between objects. 
Various techniques that have been developed for exploratory data analysis 
and multidimensional classification manage to handle almost exclusively nu- 
merical variables. In the last decade there has been a flurry of activity aimed 
at extending these techniques to  symbolic data (Nagabhushan et al. 1995), 
(Lauro et al., 2000) (PQrinel and Lechevallier, 2000), (Mali and Mitra 2003). 

This paper presents a series of well-established similarity and dissimilarity 
indexes for binary symbolic objects. Some distance measures will be suggested 

*This paper is common job of both the Authors. Paragraphs 1 and 4 are referred 
to A. Rizzi, while paragraphs 2 and 3 to L. Nieddu 
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for binary symbolic objects that could also be useful for probabilistic symbolic 
objects. In section 2 the definition of symbolic data will be recalled, while in 
section 3 several resemblance measures will be considered. In section 4 the 
due conclusions will be drawn. 

2 Symbolic data analysis 

2.1 A symbolic object is defined as a description that is expressed as a con- 
junction of statements regarding the values assumed by the variables. Let 
R be the set of observed objects, each one characterized by p variables 
yi,i = 1 , .  . . , p .  Formally a variable yi : R -+ Oi can be considered as a 
function, where Oi is the observation set of yi. The variable yi may be mea- 
sured on a nominal, ordinal, interval, ratio or absolute scale. 

An elementary event is an event of the type e = [yi E V,] indicating 
that variable yi takes values in V,  Oi. The elementary event e can be 
true or false, therefore a mapping of the type e = R -, {true, false) can 
be associated to the elementary event e. An assertion object is composed 
by the logical conjunction of elementary events: a = Ai [yi E V,]. Again a 
mapping of the type a= R + {true, false) will be associated to the assertion 
object a. Boolean assertion objects can be used to provide, via the logical 
conjunction of elementary events, a precise description of a concept. The 
extension of each assertion object a on the set R is defined as the subset of R 
for which the assertion a is true. To actually represent data, the description of 
concepts by Boolean assertions must take into account various types of logical 
dependencies between variables, such as Hierarchical dependences (mother- 
daughter) and Logical dependences (cfr. section 3). 

3 Similarity and dissimilarity measures 

3.1 A dissimilarity measure D on a set of elements E is a real valued function 
D : E x  E -, !R such that D(a,a)  5 D(a,b) = D(b,a) < ca Va,b E E. 
Usually D(a, a) = 0 and D(a, b) E [0, 11. A dissimilarity measure for which 
D(a, a )  = 0 and that fulfils the triangle inequality is called a metric or 
distance2. Furthermore it is called an ultrametric if it fulfils the condition: 
D(a, b) 5 max {D(a, c), D(c, b)) b'a, b, c E E. Obviously an ultrametric it is 
also a metric. Analogously a similarity measure S on a set of elements E is a 
real valued function S : E x E -+ 8 such that 0 5 S(a,  b) = S(b, a )  5 S(a ,  a )  
Va, b E E and usually S(a,  b) E [0, 11. 

If a resemblance measure fulfils an inequality dual to the ultrametric con- 
dition (i.e. S(a,  b) > min {S(a,c),S(c, b)) Va, b,c E E )  it is named an 
ultraminima. 

2Sometimes it is named a semi-metric or semi-distance, and the terms "metric" 
and "distance" are left for those dissimilarities fulfilling the definiteness condition 
(see for instance, Rizzi, 1985 or Esposito et al. 2000) 
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Given a similarity measure S on E x E, and a strictly decreasing function 
[ in [0, 11 then the mapping D(a ,  b) = [ [S(a,  b)] is a dissimilarity index. 
Conversely, if [ is also non-negative in [0, 11, then the quantity S ( a ,  b) = 

( [D(a,  b)] is a similarity index. Usual transformations are ((x) = max(x) - x 
or [(x) = Jw or [(x) = cos(9Ox). 
3.2 Given two symbolic objects, a = Ai [yi E ail and b = Ai [yi E bi] the dis- 
similarity between these two objects can be computed aggregating the com- 
parison functions, which are dissimilarities measures computed independently 
for each variable. The usually applied aggregation function is the general- 
ized Minkowski metric. To compute comparison functions for each variable, 
agreement-disagreement indices can be used (De Carvalho 1994) according 
to the following table: Where b is the complementary set of bk in the domain 

Table 1. agreement-disagreement table 

01, and n(ak) is a function that accounts for the description potential (DP) 
of ak and that can be defined as: 

if the variable is integer, nominal or ordinal 
if the variable is a continuous interval. 

where the symbols E and represent the upper and the lower bounds of 
an interval of the real line. According to the previous definitions, classical 
similarity and dissimilarity indexes have been extended for symbolic data. 
Namely, some similarity measures are: 

Sokal-Michener 

Jaccard 

a i s  = f (+ + &) 1 occhiai-Driver- Kulczynski Is = J ( a + a ) ( a + ~ )  
Kroeber 

, 

Russel-Rao similarity index is peculiar, since in all the other indexes when 
the D P  of (ak n bk) (i.e. the D P  of what is not in a,+ or in bk) is considered 
in the index then it is present both a t  the numerator and a t  the denomina- 
tor of the fraction. Roger-Tanimoto and Sokal-Sneath indexes double weight 
mismatches (i.e.ak n b and ci) and the former ignores conjoint absence (i.e. ci). 

S = a+p+D+1.6 a+ 

S = A  
a+P+'7 

a+ Roger-Tanimoto I S = a+6+2&+y) I ~ u s s e l - ~ a o  S= a+P+y+1.6 a 

Sokal-Sneath 

Dice-Czekanowski- 
Sorenson 

S = a+2;YP+y) 

S = &  
2a+P+y 
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On the other hand Dice-Czekanowski-Sorenson index double weights conjoint 
presence without considering conjoint absence. 

Kulczynski and Occhiai-Driver-Kroeber can be considered, respectively, as 
the arithmetic and geometric mean of the quantities a / ( a  +P) and a / ( a +  y)  
which represent the proportion of agreements on the marginal distributions. 

It is worth noticing that, except for Sokal-Michener, Roger-Tanimoto and 
Russel-Rao, all the other indexes are indeterminate if a = ,B = y = 0, which 
could occur even if in very special cases, such as, for instance, when a k  and 
bk are two degenerate intervals. 

Analogous dissimilarity measures can be obtained from the previous one 
simply considering the dissimilarity index D = 1 - S. 

Another class of resemblance measures for symbolic objects is based on 
the notion of DP of a symbolic object a and do not require a variable-wise 
function and an aggregation function to obtain an aggregate resemblance 
measure. 

Gowda and Diday have proposed various types of similarity and dissim- 
ilarity measures (see Gowda and Diday 1992). To overcome some disadvan- 
tages of the previous measure, Ravi and Gowda (1999) have proposed modi- 
fied resemblance measures which can be used on symbolic data composed of 
qualitative and quantitative values. Dissimilarity between two symbolic ob- 
jects, a and b, can be computed, variable-wise, considering the contributions 
of three components which incorporate different types of dissimilarities due 
to: 

position, (defined for quantitative data): represents the relative positions of 
the two features values on the real line and can be computed, for interval 
data, as Dp(ak, bk) = cos [90 (1 - lak - bkI /uk)] where uk is the length of 
the maximum interval for the k-th feature; 

span, is due to the relative dimensions of the feature values without taking 
into account their intersection and is calculated, for interval data and 
for qualitative data as D,(ak, b k )  = cos (45 [T (ak) + n- (bk)] /T  (ak $ bk)) 
where $ is the Cartesian join operator; 

content, takes into account the common part of the two features and can be 
calculated as D,(ak, b k )  = cos [90n (ak fl bk) /n- (ak @ bk)]. 

Dissimilarity is then computed, for quantitative interval data as D(ak ,  bk) 
= Dp(ak, bk)+Ds (ak, bk) while for qualitative data as D(ak ,  bk) = D, (ak,  bk)+ 
Dc(ak, bk). 

De Baets et al. (2001) have examined twenty-eight measures of similarity 
between crisp subsets of a finite universe proposing a class of rational simi- 
larity measures based on the cardinality of the sets involved that, according 
to the notation used in Table 1, can be written as: 

r m i n { p , y ) + s m a x { P , y ) + t a + u S  
S(a,  b) = r,r',s,s',t,s',u,u' E ( 0 ,  1) . 

r1 min {p, y) + s1 max {p ,  7 )  + t l a  + ulb 
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To obtain a reflexive similarity index the conditions t = t' and u = u' 
must hold3. Indeterminacy cases are handled setting the index to  1. Besides 
the usual properties that should be verified by a similarity index, De Baets 
et al. suggest three other boundary conditions, regarding similarity to  the 
empty set, similarity to the universe and similarity between complementary 
sets. The only two indexes that verify all the three boundary conditions are 
obtained for r = s = r' = 0, s' = t = t' = u = u' = 1 and r = s = 0, 
r1 = S' = t = t' = u = u' = 1, the second one being the well known Sokal- 
Michener simple matching coefficient. 
3.4 An effort to  empirically compare dissimilarity measures for Boolean sym- 
bolic objects has been carried out by Malerba et al. (2001). The data set 
considered for testing is the well-known Abalone Fish dataset, available from 
the Machine Learning Repository (University of California a t  Irvine), con- 
tains 4177 records of Abalone fishes described by nine mixed attributes. This 
dataset is usually used to  predict the age of an abalone fish using attributes 
like sex, weight, shell weight etc (see Malerba et al. 2001)~ .  The argument sus- 
tained in the paper of Malerba et al. is that,  considered that the performance 
of techniques such regression-tree on the abalone fish dataset is quite high, 
the eight attributes are sufficient to predict the age of an abalone. They then 
"expect that the degree of dissimilarity between crustacean computed on the 
independent attributes do actually be proportional to the dissimilarity in the 
dependent attribute" (Malerba et a1 2001). Abalone data have been aggre- 
gated into nine symbolic objects using SODAS software5 and the performance 
of ten dissimilarity indexes (including De Carvalho's, Ichino and Yaguchi's 
and Gowda and Diday's) have been compared. It  is not clear, however, how 
the proportionality of the degree of dissimilarity stated above should still 
hold when the 4177 abalone fishes have been grouped into symbolic objects. 

Vladutu et a1 (2001) have proposed a distance for symbolic data  in the 
context of Generalized Radial Basis Function networks. The proposed dis- 
tance is tailored only for discrimination purposes, i.e. a training set where 
data have previously been assigned to one of N classes is assumed to be 
available. The use of this type of distance even if proved useful on a number 
of test-sample (Vladutu et a1 2001) is restricted to  supervised learning where 
it reduces to a distance between row profiles in a matrix where the rows are 
the possible values of the character and the columns are the classes. 

Let a be a symbolic object: the definition of DP varies according to the 
type of symbolic object considered (constrained or unconstrained). For an 
unconstrained symbolic object the D P  is given by ~ ( a )  = 17Tj"1~  (aj)  while 

3 ~ o m e  of the measures that can be obtained for particular choices of the coeffi- 
cients are well known in the literature: for instance, the choice r = s = u = u' = 0 ,  
r' = s' = t = t' = 1 gives the Jaccard's index, while the choice r = s = u = 0 ,  
r' = s' = t = t' = u' = 1 yields the Russel-Rao 

4Detailed information on the dataset are also available at 
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/abalone/abalone.names 

5http://www.cisia.com/download.htm 
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for a constrained Boolean symbolic object the definition needs to be slightly 
modified in order to take into account hierarchical and logical dependences. 
For dependences of the type if (yj E sj)  then (yi E si) the DP becomes n(a) = 

lTjp=ln (aj) - n(al) where n(al) is the DP of the incoherent restriction of a 
which includes all the description vectors fulfilling a and are incoherent. 

For a hierarchical dependence of the type if (yj E s j )  then (yi E {NA)), 
the DP becomes n(a) = n(aj  U NA)17jP,l,j+in(aj) - n(al) - n(al') where 
yi takes values in an enlarged domain containing, as a category, the label 
"NA", n(al) is the DP including all description vectors where yi 6 NA 
even if the assumption of the relation is true, and n(atl) is the DP in- 
cluding all vectors where yi E NA even if the "if" part of the relation is 
false. This extended definition of DP can be applied to  the determination of 
dissimilarity measures which are a trivial extension of Ichino & Yaghuchi's 
(Ichino and Yaguchi 1994) distance such as D(a, b) = (n(a $ b) - n(a n b) + 
y [2n(a fl b) - n(a) - n(b)])/ R y [O, 0.51 where R can be equal to 1, or be 
the potential of the entire domain of the p variables or n(a $ b). For the first 
two choices of the dissimilarity measures are equivalent and the triangular 
inequality does not hold. The third choice for ends up in a metric. 

It is worth noticing that the previous dissimilarities are closely related to 
the concept of symmetric difference between two sets. Indeed an interesting 
class of distances based on the idea of symmetric difference can be applied to 
the computation of dissimilarity for symbolic data. Let p be a measure for 
a set, a possible distance between two sets ak and bk could be D(ak ,  bk) = 
p(ak - bk) where ak - bk denotes the symmetric difference, and if p coincides 
with the DP then the previous quantity, for qualitative datasets, reduces 
to D(ak, bk) = n(ak $ bk)  - n(ak fl bk) which is also a liable option for 
a dissimilarity measure for interval data, for it is equivalent to Ichino and 
Jaguchi's distance when y = 0. This distance is easily extended to compare 
two functions fa, and f b k  (which could be, for instance, two density functions 
for probabilistic symbolic objects) defined over an interval Ok: D(ak ,  bk) = 

J I f a k  - f b k  I d~ 
0 k 

A distance assuming values in [O, 11 is: 

that, when applied to functions defined over the same set, reduces to: 
D(ak, bk) = J l f a k  - f b k  I J max (fa, - f b k )  d ~ .  

Ok 0 k 

The previous distance can be slightly modified, taking into account the 
measure of the domain 0 of the sets 
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All the quantities proposed can be used on single features of symbolic 
data or on the whole symbolic object considering the notion of DP, which, 
for a boolean symbolic object a = A:'~ [yi E ail can be considered a measure 
of the volume of the Cartesian product x:='=,ai. Another way to compute dis- 
similarity between symbolic objects as dissimilarity between sets is to use the 
Hausdorff distance, which was initially defined to compare two sets. Given 
the function h(A, B )  = supaEA infbEB Ijb - all, the Hausdorff distance be- 
tween two sets A and B both in R p  is defined as max{h(A, B) ,  h (B,  A)). 
In the particular case of vectors of intervals this distance can be computed 
as D(a,  b) = Cy=l max {jbi - a i l ,  lzi -a i l ) ,  that,  reduces to the city-block 
distance for degenerate intervals corresponding to  points in IFZP. 

4 Conclusions 

Symbolic data analysis has been introduced by E. Diday in the late 80's. In 
the last decade we have had many papers, national and international research 
groups and specific international research to implement adequate software. 
The well-known SODAS project has produced a prototype software for SDA 
implemented by 17 institutions of 9 European countries. All these researches 
have a common ground: a resemblance measure between two or more symbolic 
objects. The measure of resemblance is different for Booleans objects and for 
different kinds of variables or probabilistic objects. The choice of the methods 
to  synthesize different resemblance measures is another crucial point in SDA. 

The problem of data codification is open particularly with regard to the 
stability of the conclusions that can be deduced from the data set. 

Often the objects are characterised by different kinds of variables many 
of which have been studied for the first time in Statistics just with reference 
to this type of analysis (for instance algebra of intervals). 

We believe that SDA can improve the approach to explain data. We need 
to process these data to  reduce our information and to gain some understand- 
ing of the phenomenon under consideration. SDA has specific applications in 
Data mining and, particularly, in the elaboration of large data sets. In these 
researches the stability of the conclusions is very important when new revi- 
sions of the data are considered or the data are slightly changed. 

SDA has had many kinds of applications but it is still not very well 
known by scholars, particularly in the Anglo-Saxon academic world, and the 
applications are generally done in academic circles and refer to  classical data, 
such as Fisher's Iris. I t  is very complicated to obtain data from firms because 
of privacy issues and it is also very complicated to codify large data sets in 
the logic of SDA. 

It  is our specific opinion that SDA can find very important applications 
in different sectors of the economy, social sciences, technology and in many 
other important branches of research. The Software is not yet well known to 
different people in firms. The heavy formalization of SDA can limit the use by 
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scholars not specifically expert in mathematics and particularly in abstract 
algebra. 
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Abstract. In market segmentation, Conjoint Analysis is often used to estimate 
the importance of a product attributes at the level of each single customer, clus- 
tering, successively, the customers whose behavior can be considered similar. The 
preference model parameter estimation is made considering data (usually opinions) 
of a single customer at a time, but these data are usually very few as each cus- 
tomer is called to express his opinion about a small number of different products 
(in order to simplify his/her work). In the present paper a Constrained Clusterwise 
Linear Regression algorithm is presented, that allows simultaneously to estimate 
parameters and to cluster customers, using, for the estimation, the data of all the 
customers with similar behavior. 

1 Introduction 

Conjoint analysis (CA) is one of many techniques for handling situations in 
which a decision maker has to deal with options that simultaneously vary 
across two or more attributes. By CA we can estimate the structure of a con- 
sumer's preference (i.e., estimate preference parameters such as part-worths, 
importance weights, . . . ), given his or her overall evaluations of a set of alter- 
natives that are prespecified in terms of levels of different attributes (Green 
and Srinivasan (1990)). Let's think, for example, to a new product to  be in- 
troduced in an existing competitive array, or to possible changes in current 
product: how consumers might react? The product can be described by K 
attributes (characteristics), which can assume a certain number of levels each. 
Each combination of these attribute levels represents a particular product, 
that, here, is called profile or ~ t i m u l u ~ .  In the full profile technique for data 
collection, a sample of respondents is asked to judge (for example to rate on a 
0 - 10 scale) a complete set of alternative products, usually obtained consid- 
ering a factorial design of the attribute levels. In the data analysis step, the 
importance weight for each attribute of the products is analytically deter- 
mined, according to one of the possible conjoint preference model. If a vector 
model is assumed, the I-th respondent's preference for the j-th stimulus, ylj, 
is given by: 
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where wlk denotes the 1-th respondent's importance weight for each of the 
K attributes and xjk is k-th attribute level in the j-th stimulus. 

Ordinary Least Squares (OLS) applied to the data of each respondent 
allow to estimate the importance weights wlk, and the estimation is as much 
better as much greater the number of "observations" (that is stimuli) is. But 
the greater the number of stimuli, that is the number of products to  judge, 
the less reliable the judges. So the problem is: how these estimates can be 
improved, in terms of degrees of freedom, that is in terms of number of "ob- 
servations", without increasing the number of stimuli each respondent has to 
judge? A way could be to estimate parameters for groups rather than indi- 
viduals, by pooling together data from "similar" respondents. That is, if we 
could cluster "similar" respondents we could use all the data corresponding to 
clustered units to estimate the parameters of a single model. The homogene- 
ity inside clusters has to concern model parameters and not data themselves. 
Therefore, we should, on one side, estimate each single model parameters in 
order to cluster similar respondents, but, on the other, we should find simi- 
larity among respondents before estimating model parameters. How to solve 
for this problem? 

2 Conjoint analysis versus constrained clusterwise linear 
regression 

As far as the final goal of CA is market segmentation, by clusterwise linear 
regression (CLR) (Spath (1979)) we can simultaneously solve for the optimal 
feasible partition of respondents, and the parameters of the respondent's 
preference model in each group. 

Generally, when we speak about classification of linear relationships we 
think to a model of the type: 

where: 
yi is the ith observation of the dependent variable, i = 1,2,  . . . , n; 
xik is the ith observation of the kth regressor, i = 1,2, .  . . , n, k = 1,2,  . . . , K ;  

is the kth regression coefficient in cluster c,  lc = 1,2,  . . .  , K, c = 
1,2; . .  ,C;  

1 if unit i belongs to cluster c 
sic= 

0 otherwise 
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In such a model the parameters to be estimated are: the number of clusters 
C ,  the coefficients of regression in each cluster and the membership of each 
unit to clusters. Starting from a K+1 -dimensional n-sample, (do not confuse 
n, that is the total number of observations, with L, number of respondents, 
or J, number of stimuli; of course, n = J * L) and considering a random 
starting partition of units, the "All Substitution at a the Same Time" (ASST) 
algorithm proposed in Plaia (submitted) moves, at each iteration, from a 
cluster to  another, all the units that, changing cluster, reduce the objective 
function (3): 

that is reduce the sum of the squares of errors over the C clusters. 
For example in Fig. 1, unit P moves from cluster 2 to cluster 1 if this 

reduces the objective function (3). In particular, differently from Spath's ex- 
change algorithm, the ASST one considers, at each iteration, all the exchanges 
which cut down the objective function (3), respecting the constraint on the 
minimum number per cluster: this constraint guarantees for parameters es- 
timability inside each cluster (the estimation is repeated at the end of each 
iteration). 

The procedure stops as soon as the solution becomes stable, that is when 
no more exchanges can reduce (3). 

This algorithm improves Spath's Exchange algorithm as the number of 
iterations to converge is less than 1/60 of Spath's, as shown in Plaia (sub- 
mitted). 

In order to  be applied instead of CA, a contiguity constrain has to be 
added to ASST algorithm: that is, while trying to improve the partition ac- 
cording to (3), each group of J observations which represent the opinion of a 
single respondent has to  remain in the same cluster. This represents a consid- 
erable reduction in the number of feasible partitions from the unconstrained 
case. The proposed methodology has been tested by means of a number of 
Monte-Carlo simulations, as it will be better explained in the following sec- 
tions. 

3 Constrained clusterwise linear regression 

Given an n-sample with a generic (K+l)-dimensional element (yi, xil ,  xi2, . . . , 
xiK), where xil ,  xi2,. . . , X ~ K  are independent variables and yi is the depen- 
dent variable, we can say that the problem of "constrained clusterwise linear 
regression" (CCLR) consists in finding an appropriate number of clusters of 
the observations, say C ,  such that respondents inside each cluster are homo- 
geneous in the sense that their preference model, and therefore its parameters 
are similar. 
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Fig. 1. Exchange algorithm. 

The procedure can be summarized as follow: 

STEP 1 
I Set C = 1 and estimate model (2) parameters. 

I1 Compute sample coefficient of determination RfY1. If RZt1 2 6, we 
conclude that a single preference model is common to all respondents. 
If R:,, < 6 go to STEP 2 (6 is a threshold for the coefficient of 
determination, for example 6 = 0.8). 

STEP 2 
I Set C = 2 and choose an initial random bipartition respecting the 

contiguity constraints: that is all the data corresponding to  a respon- 
dent must belong to the same cluster. 

I1 Estimate the two preference model parameters. 
I11 Apply ASST algorithm in order to optimize the bipartition, while 

respecting the contiguity constraint. 
IV Compute the two coefficients of determination RiV1 and Riy2. If both 

of them are greater than or equal to 6, we conclude that C = 2 is the 
most appropriate number of clusters: the optimal partition has been 
found. If at least one of the two coefficients of determination is lower 
that 6, go on to STEP 3. 

STEP 3 
I Choose an initial random bipartition, respecting the contiguity con- 

straints, for the cluster whose coefficient of determination is lower 
than 6 (if there are more than one, consider only the first cluster). 

I1 Estimate preference model parameters in each cluster. 
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I11 Apply ASST algorithm in order to  optimize the C-partition (C = 3 
the first time we pass through STEP 3),  while respecting the conti- 
guity constraint. 

IV Compute the coefficients of determination R$,l, R&z,  . . ., R$,, . If 
these are all greater than or equal to 6, we conclude that C is the 
most appropriate number of clusters: the optimal partition has been 
found. If at  least one of the coefficients of determination is lower that 
6, go back to  the beginning of STEP 3. 

As a result we have estimated both the number of clusters C ,  that is the 
number of preference model, the membership of each respondent to  clusters, 
and the preference model parameters. 

4 Simulations and results 

In order to study the performances of the proposed methodology, Monte- 
Carlo simulation has been used, according to the parameters in Table 4. 

Considering a product described by 6 attributes (K = 6)) 4 2-level and 2 
3-level, a 16 trials orthogonal main effect factorial design (Addelman (1962)) 
has been considered (Table 4); the design defines the 16 stimuli each of the 
1,000 respondents has to  judge (n=16,000), on a 0-10 scale. We also suppose 
that the actual number of clusters can be 2, 3 or 4: these looks like a sensible 
number of clusters with only 1,000 respondents, but can be changed without 
compromising CCLR. 

Variables Levels 
N. of respondents 1,000 
N.  of attributes 6 

4 2-level, 2 3-level 
N.  of stimuli 16 
N. of clusters 2. 3. 4 

Table 1. Simulation parameters 

Algorithm outline: 

1. Generate data for a given number of clusters (2, 3, or 4),  that  is generate 
E from a Normal(0,l) and vector P from Uniform, get y according to 
model (2)) and rescale y on a 0 - 10 scale. 

2. Generate a random starting size-2 partition, respecting the contiguity 
constrain. 

3. Estimate model parameters inside each cluster, by OLS. 
4. Redefine the partition by applying ASST algorithm, respecting the con- 

tiguity constrain. 
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Table 2. Orthogonal main effect factorial design 

5. Repeat steps 3-4 until the partition becomes stable. 
6. Increase the number of groups if at least one of the coefficients of deter- 

mination (of regression model inside clusters) is lower than a predefined 
level (R2 < 0.8), with a new starting partition obtained dividing ran- 
domly, in two groups, the group whose coefficient of determination is 
lower than 0.8 and go to step 3, otherwise, go to the next step. 

7. Repeat steps 2-6 for 5 times (in order to verify if a different starting point 
can lead to a different solution). 

At the end of step 6 an "optimal" partition is gained. The algorithm is 
applied with all the considered cluster sizes (2, 3 and 4). 

The results reported in Table 4 refer to 750 runs of the outlined algorithm: 
that is, 50 runs (steps 1-6), each replicated with 5 random starting size- 
2 partition (step 7) for each of the considered cluster sizes (2, 3, 4). The 
estimated "optimal" partition is compared with the true one by means of 
the index proposed by Rand (1971), bounded between 0 and 1 (0 means two 
completely different partitions, 1 two identical partitions). 

Table 4 also shows the percentage of success of the procedure, that is the 
number of times the right number of clusters is found, and the ratio between 
the mean (over all the clusters) coefficient of determination for the "optimal" 
partition and the true mean coefficient of determination. With the true num- 
ber of clusters equal to 2, the percentage of success is total, as the obtained 
partition is identical to the true one, and therefore parameter estimate is the 
best. With the true number of clusters equal to 3, the percentage of success 
is 88.66%, with an obtained partition identical to the true one; in the 11.34% 
of cases the estimated number of clusters is 2 (underestimate), but with an 
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True number Estimated Number of Clusters 
of clusters 2 3 4 

% success 100% 
2 Rand index 1 

Mean coefficient of 
determination rate 1 

% success 11.34% 88.66% 
3 Rand index 0.89 1 

Mean coefficient of 
determination rate 0.94 1 

% success 22.40% 77.60% 
4 Rand index 0.91 1 

Mean coefficient of 
determination rate 0.96 1 

Table 3. Percentage of success and mean values of the indices for the comparison 
of partitions 

"optimal" partition that is always very similar to  the true one (Rand index 
is about 0.9); the ratio between the mean coefficient of determination for the 
"optimal" partition and the true mean coefficient of determination is very 
high as well, so the procedure underestimates the number of clusters because 
two groups in the simulated data were very similar. 

To better understand this underestimation, let us consider Fig. 2. The 
1000 respondents should correctly be partitioned in four clusters, as four 
regression lines are present (Fig. 2 a) .  Actually, two regression lines fit well 
too, as the two regression coefficients, RI = 0.8434 and Ri = 0.8394 show 
(Fig. 2 b).  Of course, even if with just two regression lines we reach our aim 
(a  good fit), the Rand index cannot have a high value (close to I ) ,  as many 
couples of units belonging to different clusters according to the first partition 
will be in the same cluster in partition 2 (all the couples made by one unit 
of cluster 1 (or 3) and one of cluster 2 (or 4)). 

With the true number of clusters equal to 4, the percentage of success is 
77.60%) with an obtained partition identical to the true one; in the 22.40% 
of cases the estimated number of clusters is 3 (underestimate), but with an 
"optimal" partition that is always very similar to the true one (Rand index 
is about 0.9); the ratio between the mean coefficient of determination for the 
"optimal" partition and the true mean coefficient of determination is very 
high as well, so again, the procedure underestimates the number of clusters 
because two groups in the simulated data were very similar. Finally, it is 
important to  highlight that only an overestimate of the number of clusters 
represents a real fault for the algorithm, but this never happens. 

So we can conclude that,  if the objective is to find the partition with the 
fewest number of clusters, that provides a satisfactory fit to the data,  the 
Constrained Clusterwise Linear Regression always gets it. 
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Fig. 2. Example of misclassification? 

5 Conclusions 

This paper proposed a new method, based on ASST algorithm proposed in 
Plaia (submitted), called Constrained Clusterwise Linear Regression, to be 
used instead of Conjoint Analysis. Differently from CA, CCLR allows to find, 
simultaneously, both the optimal feasible partition of respondents and the 
parameters of respondent's preference model in each cluster of the partition. 

Simulation results have shown the algorithm good performance for an 
example consisting in a 1,000 respondent sample who have to express their 
opinion about a 6 attribute product. Of course, CCLR can be applied to 
different sample sizes and to product described by a diverse number of at- 
tributes, without loosing its potentiality. 
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Abstract. In this paper a crossed clustering algorithm is proposed to partitioning 
a set of symbolic objects in a fixed number of classes. This algorithm allows, at  
the same time, to determine a structure (taxonomy) on the categories of the object 
descriptors. This procedure is an extension of the classical simultaneous clustering 
algorithms, proposed on binary and contingency tables. It is based on a dynamical 
clustering algorithm on symbolic objects. The optimized criterion is the 4' distance 
computed between the objects description, given by modal variables (distributions) 
and the prototypes of the classes, described by marginal profiles of the objects set 
partitions. The convergence of the algorithm is guaranteed at a stationary value of 
the criterion, in correspondence of the best partition of the symbolic objects in r 
classes and the best partition of the symbolic descriptors in c groups. An application 
on web log data has allowed to validate the procedure and suggest it as an useful 
tool in the Web Usage Mining context. 

1 Introduction 

In Symbolic Data Analysis (SDA) framework, a generalization of cluster- 
ing dynamic algorithm (Diday, 1971, Celeux et al. 1989) has been proposed 
(Chavent, 1997; Chavent et al., 2003; De Carvalho et  al., 2001; Verde et  
al., 2000) in order to  partition a set E of symbolic objects (hereafter de- 
noted So 's) ,  described by multi-valued variables (interval, multi-categorical, 
modal), in a predefined number k of homogeneous clusters. Like in the clas- 
sical clustering algorithm, the optimized criterion is a measure of the  best 
fitting between the partition and the classes representation of such partition. 
The first phase of the clustering process consists of choosing a suitable clus- 
ters representation. Due to the nature of the symbolic data, we propose to  
represent the classes by means of prototypes which summarize the whole infor- 
mation of the SO'S belonging to  each class. Each prototype is even modelled 
like a SO. Furthermore, depending on the type of the cluster representation, 
every object of E is assigned to  a class according its proximity to  prototype. 
In SO clustering methods, several distances and dissimilarity measures have 
been proposed as allocation (or assignment) functions. In particular, whereas 
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both SO's and prototypes are described by interval variables, the most suit- 
able distance, defined between intervals, seems to be the Hausdroff distance 
(Chavent et al., 2003); while, if they are described by modal variables, the 
dissimilarity measure can be chosen among classical distances between distri- 
butions (e.g. qb2) or, applying to context dependent measures (De Carvalho 
et al., 2001). Finally, if the SO descriptors are symbolic variables of different 
nature (interval, multi-categorical, modal) it possible to homogeneize them 
in modal ones. 
The convergence of the algorithm to a stationary value of the criterion is 
guaranteed by the consistency between the type representation of the classes 
and the properties of the allocation function. Different algorithms, even re- 
ferring to the same scheme, have been proposed depending on the nature of 
the SO descriptors and on the allocation function. 
Generalized dynamic algorithm on symbolic objects has already found inter- 
esting applications in different contexts of analysis, for instance in: clustering 
archaeological data, described by multi-categorical variables; looking for ty- 
pologies of waves, characterized by intervals values; analyzing similarities 
between the different shapes of micro-organism, described by both multi- 
categorical and intervals; comparing social-economics characteristics in dif- 
ferent geographical areas with respect to the distributions of some variables 
(e.g.: economics activities; income distributions; worked hours; etc). 
The main advantage of using a symbolic cluster algorithm is surely in com- 
paring and clustering aggregated and structured data. In this perspective, a 
generalization of crossed clustering algorithm (Govaert, 1977, 1995) to sym- 
bolic data can appear interesting in this context of analysis and it is here 
proposed too. Such algorithm performs iteratively a cluster on the rows and 
on the variables of a symbolic data table. 

2 General scheme of dynamical clustering algorithm 

Let E a set of symbolic objects s described by p symbolic variables yj ( j  = 
1 , .  . . , p )  and a weight ,us > 0. According to the standard dynamic clustering 
algorithm (Celeux et a1.,1989) we look for the partition P E P k  of E in 
k classes, among all the possible partitions P k ,  and the vector L E Lk of 
k prototypes (gl, .  . . , gi, . . . , gk) representing the classes in P, such that, a 
criterion A of fitting between L and P is minimized: 

A(P*,  L*) = Min{A(P, L) I P E Pk, L E Lk} 

This criterion is defined as the weighted sum of the dissimilarities S(xs, gi) 
between the descriptions of the SO's of E collected in a vector x, and the 
prototype gi representing the cluster Ci, for all the clusters Ci (i = 1, ..., k) 
and for all the objects s of Ci: 
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A(P ,  L) = p,.S2(xS, g,) where: C, E P, gi E A 
i=l sEC, 

The dynamic algorithm is performed in the following steps: 

a)  Initialization: a random partition P = (C1, . . . , Ck) of E is performed. 
b) representation step: 

for j=l  to  k,  find gh associated to  Ch such that: 
Czs ECh ps .S2 (x, , gh) is minimized 

c) allocation step: 
test - 0 
for all x, do 

find m such that C,, is the class of s of E 
find 1 such that: 1 = arg rninh,l ,,.., k S(x,, gh) 
i f l # m  

test - 1; C1 - C1 U {x,) and Cm c Cm - {x,} 
d) if test = 0 then stop, else go to  b) 

Then, the first choice concerns with the representation structure by pro- 
totypes (gl,  . . . ,gk) for the classes {CI, . . . , Ck) E P. 
The criterion A(P ,  L) is an additive function on the k clusters and the N 
elements of E. Therefore, A decreases under the following conditions: 

0 uniqueness of the affectation cluster for each element of E; 
uniqueness of the prototype gh which minimizes the criterion A for all 
the cluster Ch (for h = 1, . . . , k) of the partition P of E. 

3 Crossed dynamical clustering algorithm 

The proposed crossed dynamical clustering algorithm aims a t  finding a struc- 
ture in the symbolic data.  The data are collected in a symbolic data  table 
X = [ X 1 , .  . . , X u , .  . . , XP]. Along the rows of X we find the descriptions of the 
SO'S x, (s = 1, ..., N) of E, while the columns of Xu contain the distributions 
of the symbolic variables y, (u = 1, . .. , p). We assume all the y,'s are multi- 
categorical ones. We denote with V, and V = UEZl V, the set of categories 
of the symbolic variable y, and the complete set of the several categories of 
the p variables, respectively. 

The general scheme of the dynamical algorithm, described above, is fol- 
lowed to  cluster the rows of the symbolic data table X in a set of homogeneous 
classes, representing typology of SO'S and to group categories of the symbolic 
variables. According to the aim of obtaining rows partition, a classification 
of the symbolic descriptors is accomplished. Some authors (Govaert, 1977, 
Govaert and Nadif, 2003) proposed the maximization of the X2 criterion be- 
tween rows and columns of a contingency table. In our context we extent 
the crossed clustering algorithm to look for the partition P of the set E in r 
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classes of objects and the partitions Q in c column-groups of V, according to 
the Q2 criterion on symbolic modal variables: 

where: Qv is the partition associated to the modal variable yv and Q = 
(Ql , . . . , Qc) = (UEz1 Qy , . . . , UE=l Q; , . . . , UEzl Qx, ). It worth to notice 
that the optimized criterion A is additive. 

The cells of the crossed tables can be modelled by marginal distributions 
(or profiles) summarizing the classes descriptions of the rows and columns. 
A(P, Q, G) is consistent with the criterion of the clustering algorithm. 

Such that it allows to optimize iteratively the two partitions P and Q, as 
well as the related representation G. 

Xlvl . . ' xlvj . . ' XIv, 

g11 " ' g1c 
. . . , XP) J G = 

. . .  Qrl ' ' '  Qrc 

ZNv, ' ' ' XNV, ' ' ' XN~,,, 

The value gik of the matrix G ,  counting in the set of rows belonging to 
the class Pi and the set of columns belonging to the class Qk, is computed 
by the following formula: 

The marginal profiles of G matrix is denoted as: 

The 42 distance between a row vector of X and the row vector gi = 
(gil,. . . , gic) of G is computed with respect to the aggregated 5,'s rows 
5: = (5:1,. . . ,5:,) belonging to the partition Qv, for each variable y,, where: 
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The q52 distance between a column vector of X and the column vector 
gk = (gll;, . . . , g,k) of G is computed with respect to the aggregated ?j's 
columns ?j = ( g l j , .  . . , ZTj) belonging to the partition P, where: 

The Crossed Dynamic Algorithm is performed in the following steps: 

a)  Initialization; a random partition P = ( P I , .  . . , P,) of E and p random 
partitions (Q" = (Q';, . . . , Qx), v = 1 , .  . . ,p )  are chosen. 

b) Block model representation step: 
The prototype table G is computed by the formula (1). 

c) Row allocation step: 
testrow - 0; 
for all objects s of E do 

Such that Pi is the class of s, find i* which verifies : 
i* = arg mini,l ,,,,,, d(?,, gi) where d is defined by (3) 
if i* # i 

test-row - 1; Pi* - Pi* u { s )  and Pi c- P, - { s )  
d) Block model representation step: 

The prototype table G is computed by the formula (1). 
e) Column allocation step: 

test-column - 0 
for all variables y, do 
for all categories j of V" do 

Such that Q i  is the class of j ,  find j* which verifies : 
j* = arg mink=l ,,,,,, q5(2j, gk)  where 4 is defined by (4) 
if j* # j test-column t 1; QL, t Qi. u { j )  and Qy t Q; - { j )  

f )  if test-row = 0 and t es t -co lumn = 0 then stop, else go to  b) 

According to the inertia decomposition theorem we obtain the relations : 

In row allocation step b) the partition Q and the prototype block model 
stay fixed, while the criterion d(P, Q, G) = El='=l ESGpi xs. .d2(fiS, gi) de- 
creases. By the relation (5) the criterion @'(P, Q) increases. 
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In column allocation step e) the partition P and the prototype block 
model stay fixed, while the criterion A(P, Q, G) = xjEgx ~ . j d ~ ( ? j ,  g k )  

decreases. By the relation (6) the criterion (P2(p, Q) increases. Therefore, 
globally, the criterion (P2(P, Q) increases in each step of the process. 

4 Application 

An application of the dynamical algorithms on symbolic data is here shown 
in the context of the Web Usage Mining (Sauberlich and Huber, 2001). It has 
been performed on the Web Logs Data, coming from the HTTP log files by 
the INRIA web server (Lechevallier et al., 2003). This study aims to detect 
the behavior of the users and, at the same time, to check the effectiveness of 
the structure of the site. Behind the research of typologies of users, we have 
defined a hierarchical structure (taxonomy) over the web pages, at different 
levels of the directories. The data set concern the set of page views by visitors 
which visited the INRIA site from the lSt to the 15th of January, 2003. 
Globally, the database contained 673.389 clicks (like page views in an user 
session), which were already filtered from robot/spider entries and accesses of 
graphic files. An important aspect in the analyzing of logfiles is the navigation 
which is a set of clicks relative to the same user. 
A further cleaning of the analyzed logfile has been performed in order to 
keep only the navigations on both URL: www.inria.fr and www-sop.inria.fr. 
Moreover, only long navigations (duration 2 60s, the ratio durationlnumber 
of clicks 2 4sec. and number of visited pages 2 10) has been taken into 
account for the analysis. The selected navigations were 2639, corresponding 
to 145643 clicks. For sake of brevity, we have restrained our analysis just to 
two web sites a t  the highest level. The visited pages were collected in semantic 
topics according to  the structure of the two web sites. In particular the clicks 
on the web site www.inria.fr were referred to 44 topics; while the clicks on the 
web site www-sop.inria.fr, to 69 topics. Thus, we have considered the 2639 
as symbolic objects described by two symbolic multi-categorical variables: 
www.inria. fr and www-sop.inria.fr having 44 and 69 categories respectively. 
The data have been collected in a symbolic tables where each row contains 
the descriptions of a symbolic object (navigation), the distribution of the 
visited topics on the two websites. Following our aim to study the behavior 
of the INRIA web users, we have performed a symbolic clustering analysis 
to identify homogeneous typology of users according to the sequence of the 
visited web pages or, better, according to the occurrences of the visited pages 
of the several semantic topics. 

The results of the navigation set partition in 12 classes and of the topics 
one in 8 classes, constituted by the two partitions Q' and Q2, are shown in 
the Table 1. 
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Table 1. Topic descriptions groups 

For example, the Topic-5 associated to the group Q 5  is composed by two 
subgroups, one for each website, Q ~ = { t r a v a i l l e r ,  f o rmat ion ,  valorisat ion)  for 
the website www and Q ~ = { f o r m a t i o n ,  recherche) for the website sop. 

It is worth to notice as the 8 topics groups correspond to different typology 
of information. In particular, the 8 groups can be identified as follows: 

T-group 1 -+ I N T R A N E T ;  T-group 2 -+ Scientific information: Conferences, 
project activities; T-group 3 -+ Dissemination; T-group 4 -+ dias; T-group 5 + 

Training; T-group 6 -+ Research activity; T-group 7 + Headquarter (www.inria. fr);  
T-group 8 + Headquarter - Sophia research activity. 

From the classification, Table 2, we can remark that:  the topics-group 2 
represents the set of the most visited topics by the users; the users of the class 
8 have visited this group attentively more than the others; the topics-group 
1 represents the set of topics specially visited by the users of the class 3; 
the topic group 1 contains the internal internet users of INRIA. Therefore, 
analyzing the classes of navigations, we note that:  the class 3 contains the 
navigations with an high number of visited pages; the users of this class have 
visited different topic groups (1,2,6 and 7); the class 4 contains the navigations 
which have been visited only the topics group 5. This topics group represents 
the general topics of INRIA (training, researchers, scientific meetings, etc.) 

This application on real data must be considered as a brief example of an 
automatic clustering on structure complex data aiming to perform simulta- 
neously typologies of navigations and groups of topics, homogenous from a 
semantic point of view. 

An extension of our approach to more web sites or to several symbolic 
variables would be able to take into account a hierarchical structure of com- 
plex data descriptors. According to our example, in the clustering process, if 
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Navigation- 2 
Navigation- 3 
Navigation- 4 
Navigation- 5 
Navigation- 6 
Navigation- 7 
Navigation- 8 
Navigation- 9 
Navigation-10 
Navigation-1 1 

Table 2. Contingence table of the navigations and topic groups 

rubriques at lower level of the web architecture are grouped in homogeneous 
topics, their belonging to a higher level of the web site must be made save. 

In conclusion, the most relevant difference of the crossed clustering algo- 
rithm on complex data with respect to the one on classical data, is surely in 
its extension to multi-valued categorical variables with an associated hierar- 
chical structure. 
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Abstract.  Centrosymmetric matrices have been recently studied on an algebraic 
point of view: properties like the existence of the inverse, the expression of the 
determinant and the eigenspaces characterisation in the case of square matrices have 
been object of interest. The theoretical results obtained for this class of matrices 
find applications in many fields of statistics. 
In this study, we introduce two classes of centrosymmetric matrices that are used 
in probability calculus and time series analysis, namely, the transition matrices for 
the classification of states of periodic Markov chains and the smoothing matrices 
for signal extraction problems. 

1 Introduction 

A matrix C E Rmxn of generic element cij, i = 1,. . . , m and j = 1 , .  . . , n, is 
rectangular centrosymmetric (Weaver, 1985), if 

A centrosymmetric matrix is symmetric with respect to  its geometric cen- 
ter and can be equivalently defined as  the matrix C E I W " ~ "  satisfying the 
relation 

C = EmCEn 

where Ek E R k x k  is the permutation matrix with ones on the cross diagonal 
(bottom left to  top right) and zeros elsewhere, i.e. of generic element eij = 1 
if i + j = k + 1 and eij  = 0 otherwise, for i, j = 1,. . . , k. 

Centrosymmetric matrices can be found in many applications in statis- 
tics and time series analysis. The most commonly known are: the symmetric 
Toeplitz matrices R E Rmxm of generic element rij = ri+k,j+k = rji, i ,  j = 

1 , .  . . , m ,  k = 1 , .  . . ,m - 1 for the autocorrelation of stationary time series 
(see Trench, 1997); the commutation matrix Kmn E RmnXmn such that  
K,,uecA = K , , v e c ~ ~ ,  where uecA is the vector obtained by stacking 
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the column of the matrix A one underneath the other (see Magnus and 
Neudecker, 1979). Furthermore, Iosifescu (1980) and Kimura (1957) transi- 
tion matrices for some Markov chain in genetic problems are centrosymmet- 
ric. Recently, (rectangular) centrosymmetric matrices also can be viewed as a 
particular case of (generalized) reflexive matrices whose properties have been 
recently employed in linear least-squares problems (Chen, 1998). 

In this study we derive some properties of centrosymmetric matrices which 
find application in two different statistical problems, that are the classification 
of the states of a finite Markov chain, and the filtering of time series in a 
process of signal extraction. 

2 Properties of centrosymmetric matrices 

Centrosymmetric matrices inherit desirable properties from the properties of 
the permutation matrices Ek which are: (a) symmetric (b) orthogonal and 
(c) reflections, i. e. 

(4 T ( 2 )  -1 
E k  = E k  - Ek and E: "k 

where Ik is the identity matrix of order k and Er and E;' stand for the 
transpose and the inverse of Ek, respectively. Useful references concerning 
the properties of centrosymmetric matrices can be found in Andrew (1998). 
However, the main characteristic of the set 

of square centrosymmetric matrices of order n is that it is an algebra 
(Weaver, 1985). In fact, let C ,  C1, C2 ,  C 3  E C, and a E K. Then, the 
following properties characterising Cn as an algebra hold: 

1. C 1 +  Cz E Cn. 
2. C 1 + C 2  = C 2 + C 1 .  
3. C 1 +  (C2 + C3) = (C1+  C2)  + C3. 
4. 30 C,, C l  + 0 = C1. 
5. 3 - C1 E C,, C1 + (-C1) = 0. 
6. ClC2 E Cn. 
7. c1 (c2c3) = ( C l c 2 )  c 3 .  
8. C1 (C2 + C3) = C1C2 + C1C3. 
9. ( c 1  + c z )  c3 = c1c3 + c 2 c 3 .  
10. a (C1C2) = (QCI)  C2 = ( C l a )  C2 = C I  (aC2) = (C1C2) a E C,. 

A further relevant property of centrosymmetric matrices is their invari- 
ance with respect to the linear transformation (Dagum and Luati, 
2003) t : RmXn -+ ItmXn, such that cij H c,+l_i,,+l-j, for i = 1,. . . ,m and 
j = 1 , .  . . , n or equivalently, C H E,CE,. 
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The property of square centrosymmetric matrices of being an algebra 
is crucial both on an algebraic and on a statistical point of view. Purely 
algebraically speaking, centrosymmetric matrices are the most general struc- 
tured matrices, respect to some symmetry, to constitute an algebra. In fact, 
neither the spaces of symmetric (C  ER"'", cji = cij) or squared persymmet- 
ric (C c R n x n ,  c3i = ~,+ l - i ,~+l - j )mat r ices  are closed respect to the row- 
column matrix product, i e .  they do not satisfy 6. Nevertheless, matrices 
that are both persymmetric and symmetric, so-called bisymmetric, consti- 
tute a proper subalgebra of C,. On a statistical point of view, we will show 
that the property of being an algebra is relevant in the convergence theory 
for periodic Markov chains that describe problems of gambler ruin in the case 
of fair play. At the same way, invariance under the t-transformation is crucial 
for smoothing matrices associated to linear estimators of the non stationary 
mean of time series. 

3 Statistical applications of centrosymmetric matrices 

Markov chains. Markov chains are stochastic processes {Xt)t=l, . , , ,T that 
describe systems evolving among various states in a probabilistic manner. 
The probability of the system to be in a state i = 1, .  . . , k ,  at  time t ,  depends 
only on the state of the system a t  time t - 1, i e .  

Usually, Markov chains are represented by transition matrices P E R k x k  
whose generic elements pij are the probabilities of moving from the state i, 
to the state j in one time, i .e .  

According to the nature of such probabilities, many kinds of Markov chains 
can be defined, each with different characteristics. We are interested here to 
a particular class of Markov processes, namely random walks with absorbing 
or reflecting barriers that are of the form Xt  = Xt-1 + ~ t ,  ~t N NID (0, 02) 

with states, say b, that are absorbing barriers if P (Xt = b I Xt-1 = b)  = 1 or 
superior/inferior ( f )  reflecting barriers if P (Xt  = b f 1 I Xt-1 = 6 )  = 1. 

These processes are often associated to gambler ruin problems where it is 
of interest to  understand how transition probabilities modify in the long run. 
To give an example, let k - 1 be the number of coins between two players, A 
and B, each having a coin in their hand. They simultaneously reveal wether 
the coins are head or tails. If both are head or tails, then A wins both coins, 
if they are different, the two coins are won by B. The game stops when one 
player possesses all the coins and the other nothing (absorbing barriers) and 
start again if the looser is somehow refunded (reflecting barriers). 
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The k x k transition matrix associated to a random walk with absorbing 
barriers is - - 

where 7ro = 7rk-1 = 1 and each remainder 7ri E (0, l ) ,  representing the proba- 
bility of winning i - 1 coins, depends on the starting state i .  In other words, 
playing to the infinite certainly leads to the ruin of one gambler. 

If P is centrosymmetric, then it follows by 6 and by the elementwise 
convergence that the limit matrix is centrosymmetric as well. This implies 
that, starting from i coins, in the case of fair game the long-time average 
probability of ruin is equal to that of winning, i.e. 

P =  

lim Pn = 
n-m 

One may ask how many steps are needed for the game to stop. To this 
purpose, the matrix P is usually studied through three matrices obtained 
after rearranging the matrix P such that the r absorbing states are in the first 
rows: in our examples, r = 2 and the states are ordered as 0, k - 1,2,  . . . ,  k- 2. 

1 0 0 . . .  0 0 0 
q 0 p . . .  0 0 0 
0 q 0 . . .  0 0 0 
. . . . . . . . . . . . . . . . . . . . .  
0 0 0 . . . q  0 p 
0 0 0 . . .  0 0 1 - - 

7.r~ 0 0 . . .  0 0 1-7r2 
. . . . . . . . . . . . . . . . . . . . .  

Hence 

where p = pi,i+l, q = 1 - p = pi,i-l and there are two absorbing states such 
that, once entered, they cannot be left. These are the state corresponding 
to zero coins and that corresponding to all the k - 1 coins. In this way, 
the rows and columns of P are the states corresponding to the number of 
coins possessed by A, and therefore i , j  = 0 ,1 , .  .. , k - 1. For p = q = 1 2 

(fair game with equal probability of winning, p, or loosing, q), the matrix 
P is centrosymmetric and, by 6, so is Pn, whose generic element ply) = 

P (Xt+, = j I Xt = i) represents the probability of passing from the state i 
to the state j after n steps. Denoting by lim Pn the matrix of generic element 

n+m 

lim the following holds (Doob, 1990) 
71-00 

. . .  I 0 0  0 0 0  
7rl 0 0 . . .  0 0 1-7rl 1 

where I, E RrXr is the identity matrix representing the probability of transi- 
is the null matrix of the tran- tion from the r absorbing states, 0 E RrX "-' ' 

sition probabilities from an absorbing to a non absorbing state, R E Rk--'Xr 



Centrosyinmetric Matrices in Statistics 101 

gives the probabilities of moving from a non absorbing state to  an absorb- 
ing one, and the elements of Q E I W ~ - ' ~ " '  are the transition probabilities 
among non absorbing states. If P is centrosymmetric, then it is easy to see 
that Q and R are centrosymmetric and (from 6 ,  8 and using the properties of 
E) so are: the fundamental matrix N = ( I k - r  - Q)-', the vector rn = N w ,  
where w is a vector of ones and the matrix A = N R ,  that are employed 
in the study of the properties of the Markov chain associated to  P .  In fact, 
nij is the expected number of transitions in the state j before an absorbing 

k - r  
state is reached, starting from the state i ;  mi = C is the expected number 

j=1 

of transitions in the state i before an absorbing state is reached; a,j is the 
probability of being absorbed in the state j starting from a non absorbing 
state i. 

The centrosymmetric structure of the fundamental matrix N and equiva- 
lently of Q and P reveals to be very helpful when the theoretical properties of 
the process are studied in a purely algebraic way, by means of the eigenvalues 
of the associated transition matrix (Feller, 1950). In fact, the spectrum of cen- 
trosymmetric matrices has been widely studied and many results have been 
obtained based on a decomposition of any centrosymmetric matrix in a block 
matrix orthogonally similar to a block-diagonal matrix whose eigenvalues can 
be immediately calculated (see Cantoni and Butler, 1976). 

The transition matrix associated to a random walk with reflecting bar- 
riers, describing a gambler ruin problem when the looser is refunded and can 
start playing indefinitely, has the following form 

and, as in the preceding case, for p = q = ' (fair game case) P eCk. It follows 
from 1, 6, 7 and 10 that the matrix $ [P + P2 + + P n )  is centrosym- 
metric and for n + cc it converges to a centrosymmetric matrix with rows 
all equal and elements strictly positive (see Doob, 1990). Each row is the 
equilibrium vector which gives the long-run probabilities of each state after n 

m 

steps. The centrosymmetric structure of the limit matrix lim C Pm, as 
n+" m=l 

n 
well as that of the matrices In+; C Ph, representing the average amount of 

n= 1 
time spent in each state during the first n transitions, is preserved by virtue 
of the fact that the set Cn is an algebra. 
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Time series. In time series analysis, a useful way to estimate the trend 
underlying the data is by fitting locally a polynomial function, such that 
any fitted value at a time point t depends only on the observations cor- 
responding to  time points in some specified neighborhood of t .  Such a fit- 
ting curve is smooth by construction. Let us denote a time series as the set 
{(tj ,  y j ) ,  j = 1, . . .  , N )  where each target point t j  is the time the observa- 
tion yj is taken. Any transformation s acting on the time series to produce 
smooth estimates is a smoother. Usually s depends on a smoothing param- 
eter, say q,  which is selected according to the variability of the data and 
the amount of smoothing desired. The value of the smoothing parameter de- 
termines the number of observations averaged to obtain each estimate. In 
particular, if r] + 0, then the neighborhoods are made of only one observa- 
tion and the result of the smoothing is an interpolation, whereas if q --, co, 
then all the observations are considered and smoothing produces a constant 
line corresponding to the mean of the series. Once that the smoothing pa- 
rameter is fixed, any smoother becomes linear and can be represented by 
a squared matrix, let us call it S ,  in such a way that s : RN + RN,  
y - yl = Sy,  where y E RN is an N-dimensional vector corresponding 
to the input data and yl E RN is the N-dimensional vector representing the 
smoothed values. Let now whj, h , j  = 1,. . . , N ,  denote the generic element 
of the smoothing matrix S. The whi7s are the weights to be applied to the 
observations yj, j = 1, ..., N, to get the estimate ijh, for each h = 1, ..., N ,  

N 
ie. ijh = whjyj. These weights depend on the shape of the weight func- 

j=1 
tion associated to any smoother. Once the smoothing parameter has been 
selected, the whj's for the observations corresponding to points falling out 
of the neighborhood of any target point are null, such that the estimates of 
the N - 2m central observations are obtained by applying 2m + 1 symmetric 
weights to the observations neighboring the target point. The estimates of 
the first and last m observations can be obtained by applying asymmetric 
weights of variable length to the first and last m observations respectively: 

m 

$h = C wh,h-jyh-j , h = m + 1,. . . , N - m (central observations) 
j=-m 

mp 

i& = C w P r y r  , p = l , . . . , m  (initial observations) 
r=l 

mn 

C q = C W q , ~ + ~ - r Y ~ + l - z , ~ = N - m + l  , . . . ,  N (finalobservations) 
2=1 

where 2m + 1 is the length of the time invariant symmetric filter and m, 
and m, are the time-varying lengths of the asymmetric filters. Hence, the 
smoothing matrix S has the following structure, 
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where 0 is a null matrix and Wa, WS, Waf are submatrices whose dimen- 
sions are shown in parentheses. In particular, WS is a (2nz + 1)-diagonal 
matrix (in the same sense of a tridiagonal matrix) and its row elements are 
the symmetric weights of the moving average to be applied to  central obser- 
vations while the rows of the matrices Wa and wa' are the sets of asym- 
metric weights for the first and last observations, respectively. Smoothing 
matrices are centrosymmetric and their submatrices of symmetric weights 
are rectangular centrosymmetric. Furthermore, the submatrices of asymmet- 
ric weights for the first and last observations are the t-transform of each other 
wa = t ( W a f ) .  

The relevant properties in time series filtering are 6 and 7, since matrix 
product is equivalent to linear filters convolution. In particular, 6 assures 
that if A and B are smoothing matrices, then AB is a smoothing matrix 
as well. The same holds when repeatedly smoothing a vector of observations 
by the same filter; in this case, property 7 is applied. These properties are 
crucial for the construction and study of filters resulting from the convolution 
of well-known systems of weights. 

4 Concluding remarks 

We illustrated some applications of centrosymmetric matrices in statistics. 
Particularly, the emphasis was in the classification of states of finite Markov 
chains and in the filtering of time series. 

We showed that random walk with absorbing or reflecting barriers de- 
scribing gambler ruin problems in the case of fair game are represented by 
transition matrices P E C k .  Since Ck is an algebra, the centrosymmetric struc- 
ture of P is preserved when taking its power, limit and linear combinations. 
This allows an easy study of the theoretical properties of the process based 
on the spectral analysis of P and gives information on the characteristics of 
the equilibrium distribution contained in the (centrosymmetric) limit matrix. 

Concerning time series, we showed that smoothing matrices S are cen- 
trosymmetric and invariant respect to a linear transformation t that consists 
in reverting the order of the row and columns of the matrix. The role of this 
transformation in time series filtering is crucial since the two submatrices of 
S whose rows represent the asymmetric weights for the first and last observa- 
tions are one the t-transform of the other. The consequences of this relation 
are important from both computational and theoretical viewpoints. In fact, 
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on a computational point of view, it allows to halve the dimension of any 
smoothing problem by considering only m instead of 2m asymmetric filters. 
In particular, this reduction is substantial, especially when dealing with long 
filters that asymmetrically weight a considerable number of initial and end 
observations. On the other hand, theoretically, it becomes significant when 
asymmetric weights are derived on the basis of assumptions that are different 
from those corresponding to symmetric weights. 

In further research, we intend to investigate the statistical properties of 
classes of matrices which are somehow related to centrosymmetric matrices, 
such that: centro-antisymmetric matrices ( C  E I R ~ ~ " ,  -cij = ~ m + l - i , ~ + l - j ) ,  
centro-Hermitian matrices ( C  €CrnXn, cij = ~,+l- i , ,+l-~) ,  persymmet- 
ric matrices ( C  d R r n X n ,  cji = crn+l-i,,+l-j), centro-orthogonal matrices 
( C  E I R ~ ~ ~ ,  C-l  = 
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Abstract. Parameter and latent score estimates of structural equation models 
with latent variables may be obtained by the use of the PLS (Partial Least Squares) 
algorithm. The program PLS-VB, developed in Visual Basic Application as an Excel 
add-in for this purpose, is presented. Its use for the selection among competing 
models is also considered. 

1 The reference model, preliminary analysis and PLS 

Structural equation models with latent variables are typically used when the 
main attention is given to the analysis of the relationship among p latent 
variables Y, ,  j = 1 , .  . . ,p ,  (unobservable conceptual constructs) and to the 
evaluation of their scores (the unknown values for each of the n individual 
cases). To this purpose the observations on the so-called manifest variables 
are available; it is assumed that these proxy variables are measured on a 
common scale and are connected to the corresponding latent variables by a 
linear function, following the classical Factor Analysis approach with oblique 
(non-orthogonal) latent factors. This situation typically arises in the analysis 
of questionnaire data, collected for psychological or socio-economical surveys. 
The reference model consists of two fundamental relations: the first one con- 
cerning the relationships among latent variables, the second being the so- 
called measurement model, relating each latent variable to the corresponding 
pj ( j  = 1 , .  . . , p) manifest indicators Xjh (h = 1, .  . . ,p i ) .  
The q < p (q 2 1) latent variables depending on no other variable are called 
"exogenous", while the remaining (p - q) latent variables, which at least de- 
pend on another one, are called "endogenous". 
The PLS-VB programme considers "recursive" models of the following type 

where the generic endogenous Yj may depend only on the previous endoge- 
nous or exogenous variables; the covariance matrix of the equation errors cj 
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is assumed to be diagonal. We will also consider measurement models of the 
so-called "reflective" type, where the manifest variables are functions of the 
latent and not vice-versa, that is 

where I j h  are the average reference values and ~ j h  the measurement errors. 
Distributional hypotheses concern null-average and no mutual correlation of 
the random variables Yj, &jh ( j  = 1,. . . ,p ,  h = 1, .  . . , p j )  , Cj ( j  = q + 1, . . . ,p) .  
Preliminary to the inference stage is the exploratory analysis, which regards 
the so-called scale reliability study, to verify whether the measurement mod- 
els are correctly specified. To this aim, as suggested in the psychometric 
literature, despite some criticism, both Cronbach a index is used, in order to 
evaluate the internal coherence of each scale describing each latent concept Yj 
( j  = 1 , .  . . ,p) ,  as well as the a zf i t e m  deleted index, to evaluate the marginal 
contribution of each observable variable Xjh to the latent Yj, h = 1 , .  . . , p j .  
When these indices give evidence that the internal coherence of each scale 
is not achieved or that some observable variable Xjh is redundant then the 
measurement model should be reformulated. In particular, let s3h and s: be 
the variance estimates respectively of the manifest variables Xjh and of the 
group totals Ti = CF=l  Xjh (with values tij = C?=, xijh); the reliability 
indices are then evaluated as: 

where ~ j 2 ( ~ )  = S; + ~3~ - 2 [C;=, tijzijh - (x;=l tij) (Cy=l xijh) In] / (n - 
and j = 1, .  . . ,p ,  h = 1 , .  . . ,Pi .  
Once the exploratory study has been performed, the estimation of model (1) 
is considered. It is well known that models described by equations (1) and 
(2) usually depend on several parameters and moreover the involved man- 
ifest variables are typically highly correlated (quasi collinearity); for these 
main reasons, the PLS algorithm, first proposed in Wold (1985) and fur- 
ther extended by Lohmijller (1989), seems to be the most appropriate, also 
considering the predictive character of this approach, which gives a solution 
proposal to the problem of score indeterminacy. 
Following the PLS approach, our programme first estimates the scores of the 
latent variables then the pjk parameters ( j  = q + 1 , .  . . , p ,  k = 1 , .  . . , j - 1) 
and performs tests of hypotheses on these parameters making it possible to 
select only significant relationships. In other words, the parsimonious final 
model may be selected by considering those models containing also redun- 
dant relationships, which empirical evidence will show not significant. 
In order to introduce the PLS algorithm, the causal relationships among 
latent variables may be specified by the following matrix notation, corre- 
sponding to (1) 
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where the elements of the sub-matrices I? and B, of dimensions (p - q) x q and 
(p - q) x (p - q),  are the coefficients p j k  ( j  = q + l , .  . . , p ,  k = 1 , .  . . , j- 1). To 
describe causal relationship among the p latent variables, the square matrix 
T = {tjk), with values tjk = 1 if Yi depends on Yk and tjk = 0 otherwise, 
can be defined. 
Since we consider models of the recursive type, the elements on the diagonal 
and in the upper triangular part of T are zeroes, as well as those in the first 
q rows (corresponding to the exogenous variables) though belonging to  the 
lower triangular part. Note that the matrix [I'lB] corresponds to  the last 
(p - q) rows of T. 
For any specified causal structure of the model and starting from the initial 
vector of weights w y )  = (1 ,0 , .  . . , o)', the PLS-VB programme loops through 
the following steps: 

latent score computation = Ch WJ~L-') (Xjh - Zjh) (with manifest 
variables) 
instrumental variable definition Zj = CEZl rjkYk (by adjacent variables; 
T j k  = *1) 

weight vector wjr) updating, according to the following formula 

and where r j k  = max (tjk,  tkj) . sign [Cov (Y,,  Yk)], see Lohmoller (1989). 
Observe that the computation of the latent scores Yj produces non standard 
latent values as a linear combination, with normalized weights, of the cor- 
responding manifest variables, in a way analogous to the Lohmoller (1989) 
proposal, pp. 29-30. 
This procedure ensures the model identifiability, since, as observed also in 
Lohmoller (1989), p. 222, fixing the scale of the latent variables is sufficient 
to assure their unique definition. In the PLS-VB programme, here introduced, 
only manifest variables measured on the same scale are considered. 
The iterations continue until weight convergence is achieved; the parame- 
ters Pjkr Xjh  are then estimated via Ordinary Least Squares, according to  
the relations (1) and (2). The scores Y;, expressed in the original scale, 
can be obtained (cp., for example, Zanella et al., 2002), remembering that 

= -yi, as y,rj = yj +Ch wjhxijh, where yj  = Ch wjhZjh are the latent 
means. 
Finally, to allow an easier reading, the program expresses the scores and 
their mean values in centesimal units, by the following transformation Qij = 

100 (YG - zmin) / (xmax - z m i n ) ,  where zmi, and zmaX are the limit values of 
the common scale of measurement adopted for the manifest variables. 
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2 Model selection 

As previously mentioned, for any assigned model structure the PLS-VB pro- 
gramme computes the ,Bjk parameters, once the latent scores have been cal- 
culated. We will choose the model which, among all competing structural 
models, is characterized by the scores given by the PLS procedure and best 
describes the linear relationship between exogenous and endogenous vari- 
ables. It may be identified by the following selecting procedure. In order to 
identify the most parsimonious model, you need to specify first the r "tar- 
get" variables, which are assumed, among the (p - q) endogenous, to be of 
primary interest with regard to the problem under investigation. 
These variables, which correspond, for simplicity sake, to the last r equations 
of the model (I) ,  will be considered as basic reference in the criterion adopted 
to evaluate the model performance. Note that the model is substantially ex- 
pressed by means of the pjk coefficients, estimated, via OLS regression, con- 
sidering the latent scores being observed values. 
In particular, the adopted criterion suggests to choose, among the models 
with significant non zero /Ijk coefficients, the one which attains the minimum 
of the following function: 

where 6; ((j = p - r + 1 , .  . . ,p)  are the residual variances of the regression 
models relating the r "target" variables Yj to the corresponding regressors, 
amounting to gj  2 0; note that when gj = 0 we have 6; = Var (Y,).  
It can be pointed out that (3) resembles the BIC criterion structure (Schwarz, 
1978), reformulation of the well known AIC by Akaike, which takes into 
account a penalty term depending on the model complexity; moreover, it is 
also equivalent to compare the residual variance proportions. 
In Boari, Cantaluppi (2003) a complete example, regarding the Customer 
Satisfaction analysis of a public railway service, is shown. 

3 Programme description 

Once installed the plsvb.xla add-in tool, the application may be started 
with a new job referring to a data set previously loaded or typed in the Excel 
sheet (see Figure 1). Note that the first line data range should include the 
variable names, which the program will use in the subsequent phases, while 
the first column is (not necessarily) devoted to contain an individual identi- 
fication field (case or number name). 
The current job may be resumed at the point where we decided to hide the 
dialog box in each of the following steps. Furthermore, whenever a step has 
been completed, one may press the "Next" Button to advance to  the next 
available step. 
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Fig. 1. Starting a new job. 

Fig. 2. Input step and outer model definition. 

Step 1 defines the data range, the manifest variables to be considered in the 
analysis, the extent of their scale (assumed to be common to all the X ob- 
servable variables) and the number of Y latent variables, see Figure 2(a). As 
displayed in Figure 2(b), Step 2 describes the so-called outer (or measure- 
ment) model, expressing the reflective relationships between the latent and 
the corresponding observable variables. Cronbach's Alpha Button produces 
a report (see Figure 3) concerning the reliability analysis of the single scales 
(the groups of observable variables linked to each latent variable); the " a  if' 
statistic (alpha if item deleted) is also printed for all the scales containing 
more than two proxy variables. 
The next two steps are devoted to the inner (causal or path) model specifi- 
cation. 
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I aifdeleted I I Cronbach a I 

Fig. 3. Reliability analysis report. 

Yvw Xvar Num Ava Var 
1 X7 2 3.1862 1.1460 
1 X8 2 2.5315 1.3943 
2 X5 2 3.2132 11984 
2 X6 2 3.3514 1.3732 
3 X9 4 2.8709 1.2453 
3 XI 0 4 3.0420 1.4018 
3 XI1 4 2.7207 1.2501 
3 XI 2 4 2.3123 1.4323 
4 XI 4 2.9850 0.4425 
4 X2 4 2.4234 0.6063 
4 X3 4 3.3273 0.5160 
4 X4 4 2.9730 0.8095 

Fig. 4. Inner model definition. 

=if 

78.46% 
81.58% 
75.59% 
77.89% 
58.43% 
62.98% 
66.97% 
69.88% 

During Step 3 (see Figure 4,a) the latent variables are classified by selecting 
from the following list: Exogenous, Endogenous, Of Interest and Ignored. The 
latent variables "Of Interest" are those Endogenous variables with respect to 
which the G statistic, see (3), is computed (by summing up the Gj statistics 
referring to the corresponding linear regression sub-models), whereas an "Ig- 
nored" latent variable will be excluded (together with all its corresponding 
observables) from the subsequent analyses. 
In Step 4 (see Figure 4,b) relationships among the latent variables are de- 
fined, by filling the T matrix of dependencies: a unitary value means that the 
corresponding column variable is connected to the corresponding row vari- 
able through an oriented arrow, while a null value means no relationship (a 
double click toggles between these values). 
The fixed constant E ,  used by the program to terminate the iteration proce- 
dure of the PLS algorithm, can also be redefined. 
The "PLS Report" Button produces the final reports (see Figure 5 for a com- 
prehensive view) displaying model parameter estimates as well as all statistics 
needed to check model fitting (see Bay01 et al., 2000 and Lohmoller, 1989, 
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Fig. 5. A comprehensive view of PLS output. 

Fig. 6. Outer model estimates. 

Fig. 7. Inner model estimates, 

for an in-depth description), assuming normally distributed scores. 
The various reports will be stored in proper worksheets automatically cre- 
ated by the programme. The last one produced (as displayed in Figure 9) 
contains the latent score estimates, expressed in the original scale, as well as 
in centesimal and standard units. 
The following technical requirements are a t  least necessary for PLS-VB pro- 
gramme properly run: Win95198 or Windows NT and Microsoft Excel 2000. 
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Fig. 8. Inner model relationships (original scale). 

Fig. 9. Latent score estimates in different scales. 

The  authors wish to  thank Dr. Riccardo Martiradonna, chairman of Media- 
soft Srl, Milan, Italy, for his contribution to  the realization of the programme, 
that  we believe to  be of great interest to  the scientific community. 
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Abstract. Web usage mining has to face the problem that parts of the underlying 
logfiles are created by robots. While cooperative robots identify themselves and 
obey to the instructions of server owners not to access parts or all of the pages on 
the server, malignant robots may camouflage themselves and have to be detected 
by web robot scanning devices. We describe the methodology of robot detection 
and show that highly accurate tools can be applied to decide whether session data 
was generated by a robot or a human user. 

1 Introduction 

The first web robots appeared in 1993 (The Web Robots Pages): "MOMspi- 
der" by Roy T .  Fielding (indexing, statistics), "Wanderer" by Matthew Gray 
(measuring web growth), and "JumpStation" by J.  Fletcher (indexing). At 
these times, most problems of robot deployment appeared in the area of 
overloaded web servers or waste of bandwidth. Although, in 1993, the web 
community was "small" compared to nowadays, the increasing use of robots 
led to the standard for robot exclusion (Koster (1994)). Cooperative robots 
follow these guidelines and are - in general - easy to detect. Malignant robots 
ignore these guidelines and may even apply stealth technologies. 

Today, one of the most important concerns in web robot detection is un- 
ethical content usage ( e g ,  unauthorized usage of US Government's National 
Weather Service (NWS) forecast data (Anaconda), extraction of mail ad- 
dresses for spamming (Ipaopao.com)), and other forms of unexpected usage 
(bots that sign up email accounts for spamming (Captcha)). Additionally, 
robot requests decrease web server speed, may distort logfiles (at least 16% 
of the web traffic originates from robots (Menascd et al. (2000))), and thereby 
influence serious web mining. 

Today's most widely used technologies for robot detection can be divided 
into four major categories: Simple methods (checking the [agent] and [IP ad- 
dress] fields in logfile entries, checking of requests for robots. txt (Arlitt et 
al. (2001)), traps (embedding of HTML code that looks like a link, but indeed 
is invisible for a real user (Mullane (1998))), web navigation behavior analysis 
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(trying to find implicate log characteristics based on the objectives of the dif- 
ferent robots (Almeida et al. (2001))) and - as an improvement - navigational 
pattern modeling (defining session attributes and applying data/web mining 
algorithms that decide in favor of the absencelpresence of robot visits based 
on the calculated attribute values (Tan and Kumar (2000,2001)))). With the 
simple methods cooperative robots can be detected. The only problem is 
the actuality of the robot lists as the number of web robots increases and 
changes of the identification information can occur and have to  be updated. 
This technology is unable to detect malignant robots. Traps can detect ma- 
lignant robots because trapfile lists can be created with files that would never 
be requested by human users. If there are such requests they originate from a 
robot - if not - one cannot be sure whether site visits of robots have occurred. 
If files from the trapfile list have been requested by an unidentified robot a 
malignant robot has been found. Web navigation behavior analysis can de- 
tect robots - malignant ones as well as new and/or known but modified ones 
- based on the different ways how human beings and robots access informa- 
tion contained in web sites. A robot detection tool RDT (Bomhardt (2002)) 
- a specialized web data preprocessing software enabling the researcher to 
effectively work with and understand large logfile data - one of the main re- 
quirements to build accurate prediction models - combines web navigational 
behavior analysis with navigational pattern modeling. 

In the following the robot detection process will be divided into two main 
phases: Web Data Preprocessing with the substeps sessionizing, session label- 
ing, and calculation of session attributes (feature vector) and Robot Mining 
with the substeps robot detection model development and deployment. The 
robot mining phase is well supported by different software systems like the 
SAS Enterprise Miner. With the robot detection tool RDT we fill the pre- 
processing gap and enable researchers to quickly gain accurate input for the 
robot mining phase. With this support, they can focus on model developing. 

2 Web data preprocessing for robot detection 

Every webserver can at least write a logfile that lists all HTTP-requests in the 
order they occur. Each HTTP-request is represented by a single line in the 
logfile using the combined logfile format (Apache) which most HTTP servers 
can create. Each logfile entry consists of the following nine fields: [IP address] 
[name] [login] [date] [request] [status] [size] [referrer] [agent] with [IP address] 
as client IP  address, [name] as name of the user (usually unused), [login] as 
login-name of the basic HTTP-authentication, [date] as date and time of the 
request, [request] as HTTP-request containing the request method, the URL 
of the requested resource (page), and the desired HTTP-protocol, [status] as 
3-digit status code returned by the server, [size] as number of bytes actually 
returned by the server, [referrer] as URL of the referencing page and [agent] 
as name of the client agent (e.g., "Mozilla/4.75[en] (WinNT;U)" ) . Request, 
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referrer and agent are provided by the client and are unreliable for analysis. 
The other fields are generated by the web server and, therefore, trustworthy. 
The structure of the examined web site is another source of information. It  
is used for the calculation of advanced session attributes in the later model. 

2.1 Sessionizing 

The first step - sessionizing - combines single requests (=logfile entries) into 
user sessions. Berendt et  al. (2001) give an overview over the different types 
of sessionizers and their performance. We use a timeout based heuristics 
where requests with the same agent and IP address are grouped together 
as long as the maximum idle time between two requests is smaller than 30 
minutes (according to Catledge and Pitkow (1995)). Here, navigation path 
construction (Gaul and Schmidt-Thieme (2000)) can also be applied. For a 
common user session, requests can be divided into two groups: main requests 
as a result of an user action and auxiliary requests automatically issued by 
browsers to retrieve objects referenced by the main request (images, java 
applets). The set of requests of one pageview span one main request and its 
auxiliary requests. We define every requested HTML resource as main request 
and assign the remaining requests to the main requests corresponding to  their 
referrers. Requests without suitable main request contained in the session are 
treated as main requests. 

2.2 Session labeling 

Session labeling describes the operation of assigning a session to  a human 
user or a robot. Robots issued by unregistered users are unable to  login into 
a website as they do not know the necessary username and password. So 
every session with a login name can be classified as user session. This has 
to be considered if you run your own administrative robots that use H T T P  
authentication. 

Some files are known to be never requested by real users. These may be 
some hidden linked files from traps (Mullane (1998)), robots. txt requested 
by robots following the robot guidelines (Koster (1994)) or typical files from 
worm attacks (eg . ,  cmd.exe for Nimbda (Heng)). All these files are stored in 
the trapj le  list and as requests for such files normally originate from a robot, 
they are used to reliably identify robots. 

Cooperative robots that obey to the robot exclusion standard (Koster 
(1994)) identify themselves with their own agent tag. These tags are contained 
in the robot agent list. The agent field in the request line is sent by the client 
and malignant robots could use it to camouflage themselves by sending a well 
known browser agent tag instead of their own. It is therefore impossible to 
build a "true" user agent list. But it is useful to have a c o m m o n  agent list 
that contains user agents to differentiate between known robot tags, common 
agent tags or unknown tags. 
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Some IP  addresses are known to be the home of spiders - for example the 
IP  addresses used by the google bots. These IPS can be saved in the robot IP 
list and so requests from those IPS can be identified as robots. 

There is a list of known robots available from h t t p :  //www . r o b o t s t x t  . 
org/wc/robots .html (The Web Robots Pages). Among other things, it con- 
tains the robot name, IP  and agent tag. For easier updates, this list is stored 
separately but used identically to the robot agent and robot I P  lists. 

You may consider all traffic originating from some special IPS to consist 
of user sessions (for example, your department's computer room). To achieve 
this, the tool checks the IP  against known IPS from the user IP list. We used 
the session labeling heuristics from figure 1. The algorithm first checks for 
sessions with given user names followed by the search for requests for files 
from the trapfile list and the examination of session agent and IP attributes. 
By default, sessions receive the user label. 

function Labelsession( Session ) 

{ 
if (session contains request with given login name) 

then return user; 
if (session contains request for file from trapfile list) 

then return robot; 
if (session agent is contained in the robot agent list) 

then return robot; 
if (session IP is contained in the robot IP list) 

then return robot; 
if (session IP is contained in the user IP list) 

then return user; 
return user; 
1 

Fig. 1. Session labeling heuristics 

2.3 Calculation of session attributes 

By session labeling a large percentage of robot visits can be detected. The 
next step is the calculation of session attributes (feature vector). Table 1 
presents a summary of the attributes calculated. Some attributes (e.g., AV- 
GREQTIME and STDREQDEV need sessions with at least two requests) 
have individual requirements and may therefore be missing for corresponding 
sessions. We included the attributes TOTALPAGES, %IMAGE, %HTML, 
TOTALTIME, AVGTIME, STDEVTIME, %ERROR, GET, POST, HEAD, 
OTHER, LENGTH, and XNOREFERRER (referrer="-" in Tan and Kumar 
(2000)) from Tan and Kumar (2000). The AVGREPEATED attribute is a 
modification of the "repeated" attribute from Tan and Kumar (2000). We left 
out %BINARY DOC, %BINARY EXEC, %ASCII, %ZIP, %MULTIMEDIA, 
and %OTHER because the file types of these attributes played a minor role 
for the examined websites and we think that they are sufficiently considered 
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within the %HTML and %IMAGE attributes. We excluded the NIGHT at- 
tribute because we think that the relevance found in Tan and Kumar (2000) 
results from well behaving search engine spiders that examine the websites 
during expected idle times. We do not expect this kind of gentleness from 
malignant robots and, therefore, left this attribute out. Our experience shows 

I I 1 within the same ~aeeview I 

- 
13* 

14* 

15* 
16* 

(*=cannot be calculated for every session) 

Table 1. Session Attributes. Gray columns correspond to attributes not found in 
Tan and Kumar (2000,2001). 

: 
MAXAVGWEWTI& 

" 
within the same pageview -- 
withb the same pageview - 
maximum average time bef;ween r@gheaJs ' . ' ' 

within &e aame Rage&e~ @ z 

STDREQDEV idaviation of thatime betweea two requestg 
STDEVTIME laveraee deviation of the time between two reauests 
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that modern spiders no longer seem to apply breadth-first search but instead 
use multiple non-contiguous spider sessions originating from different IPS (cp. 
the google bots) . 

The WIDTH and DEPTH parameters were replaced by a set of similar 
link coverage (LINKCOV) attributes (attributes no. 25-30). The considera- 
tion of link coverage parameters calculated for two pages can be difficult if 
one page contains two linked pages and the other 200. Therefore we added a 
minimum constraint for the consideration of pages within the calculation of 
these attributes. If a page contains less links than the minimum constraint, 
this page is sorted out and not considered for the calculation of link coverage 
parameters. In doing so, the parameters were calculable for most pages with- 
out a too strong influence on important link coverage attributes (especially 
the %MINDIVLINKCOV and %MINHTMLLINKCOV parameters). 

3 Improvement of data quality by RDT 

Improvement of data quality is used as generic term for activities as data 
cleansing, (re)structuring, and calculating derived information. The mass of 
web data forces the usage of mining tools for such tasks. Our web data pre- 
processing software RDT aims at supporting the improvement of data quality 
in connection with web robot detection. During our preprocessing work, we 
identified the following problems for which we were able to  suggest improve- 
ments. All of them are addressed by our robot detection tool RDT. 
Improvement of acquisition of derived information: The session labeling 
heuristics relies on the trapfile, robot agent, robot IP, and user IP  lists. 
These lists usually contain many similar entries ( t rap1  .html and t r ap2 .  
h tm1,Java l . l  and Javal.l.8,crawlerl0.googlebot.comandcrawlerl1. 
googlebot . com, 172.22.82.151 and 172.22.82.152). Administration can 
be highly improved by introducing regular expressions instead of full quali- 
fied expressions. Unknown user agents or clumsy selected regular expressions 
could lead to misclassifications caused by the robot agent or common agent 
list. This problem has been addressed by a robot detection tool function that 
alphabetically sorts all agents found in a logfile in one of three lists: unknown 
agents, robot agents, and common agents. This enables the researcher to 
quickly overlook the background knowledge classification quality in the area 
of the session agent field analysis. The robot detection tool RDT helps the 
user to modify the robot and common agent lists while viewing the classifica- 
tion result. Changes are immediately incorporated in the classification. This 
user-friendly approach enables the researcher to inspect the analysis results of 
several thousand different user agents. For convenience, the list of webrobots 
can be downloaded from the web and imported into the robot detection tool. 
Improvement of knowledge about site structure information: Some attributes 
in the feature vector (e.g. %AVGHTMLLINKCOV, %AVGDIVLINKCOV) 
rely on information about the site structure. Thus, a site spider was devel- 
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oped as part of our robot detection tool RDT which collects information for 
the calculation of the set of link coverage parameters. 
Improvement of data understanding: Data understanding is important when 
the information basis is huge and difficult to survey as for web mining. Log- 
files are hard to read for humans as they simply log requests successively. It  
is difficult to  see which requests belong to a specific session or pageview. For 
inspections of the navigation, the set of links contained in one page should be 
handy available. The robot detection tool RDT incorporates requirements of 
this kind by offering a site structure explorer that shows all links contained 
in the underlying web site and calculates site structure statistics (minimum, 
maximum, average and standard deviation of number of HTML links con- 
tained in each page and corresponding parameters for non-HTML links). Re- 
quests belonging to  the same session are written successively in the output log 
file. Optionally, sessions are separated by empty lines in the output log. The 
tool has an interactive mode where it displays every session found together 
with the contained requests, grouped into pageviews, and the calculated ses- 
sion attributes as session detail view. The tool also offers the possibility to  
access the lists holding background knowledge for the session labeling heuris- 
tics. Another option is that unknown agents may belong to  some new kind 
of robot or browser and that it is worth taking a closer look a t  such a ses- 
sion. The robot detection tool RDT supports this by the option to  display 
the session detail view for sessions with unknown agents. I t  is also obviously 
useful to show session details for those sessions with contradicting heuristics 
and prediction model results. The robot detection tool RDT enables this by 
providing a plug-in interface for prediction models. One can easily integrate a 
generated C score code from data mining tools like the SAS Enterprise Miner 
into the tool. By using this plug-in interface together with handcrafted de- 
cision rules, the tool can be used as flexible preprocessing support for other 
web mining applications like "filter all sessions with a t  least 4 pageviews". 
A session of a client using a non-robot agent but requesting a file from the 
trapfile list will be detected and presented to the researcher. 

4 Robot mining 

Prediction models using logistic regression, neural networks, and decision 
trees were applied for robot mining. Sessions containing only a single re- 
quest show many missing or constant values in their feature vector (TOTAL- 
PAGES, LENGTH, SITECOVERAGE, MAXREPEATED, AVGREPEAT- 
ED, AVGREQTIME, AVGTIME, MINAVGTIME, MAXAVGTIME, STD- 
REQDEV, STDEVTIME, MINSTDEV, MAXSTDEV), a s  several attributes 
require a t  least two requests for calculation. Therefore, we worked with 
three different datasets: all sessions, single-request-sessions, and 2-or-more- 
requests-sessions. We did not - like Tan and Kumar (2000) - generate a model 
for every number of pageviews as we worried about overfitting and too small 
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datasets. The models built from all sessions were used as baseline for the eval- 
uation of models combining single-request- and 2-or-more-requests-situations. 

The models were evaluated using standard metrics as misclassification 
rate, recall and precision. Let S be the set of all sessions, c : S -+ {0,1) a 
map assigning the true class label to each session (1 = robot, 0 = user) and 
2 : S -+ {0,1) a map assigning the predicted class label to  each session (for 
a given prediction model). Then misclassijication rate is defined as 

recall as 

and precision as 
I{. E SIc(s)  =E(s) = 111 

prec := 
~ { s E S ~ 2 ( s ) = l ) ~  ' 

For different datasets the misclassification rate can reasonably be compared 
only, if one takes into account its data set specific baseline value. The baseline 
value is the value that can be achieved by trivial models that always predict 
the label of the larger class. Let m E { O , l )  be the majority class label, usually 
the user class label. Then 

5 Empirical results 

For the evaluation of the robot detection tool RDT, we examined a logfile 
from an educational website (EDU) and another one from a medium sized 
online shop (SHOP). The EDU logfile had 790142 requests. 2905 different 
agents could be recognized. 58009 sessions where constructed from the raw 
data with 28534 identified robot sessions. The single-request-sessions dataset 
had a volume of 25573 sessions with 26,23% user sessions (which can be 
a hint that robots use "short" visits and return after session time-out has 
occurred). The 2-or-more-requests-sessions dataset had a volume of 32436 
sessions with 70,19% user sessions. The SHOP logfile contained 1150827 re- 
quests from which 52295 sessions could be built. 14068 of these sessions were 
robot sessions. Correlation analysis showed that our feature vector contained 
good prediction variables for both logfiles (cp. figure 2). Some attributes were 
strongly correlated with session labeling for both datasets (%HTML, %IM- 
AGE, %NOREFERRER, AVGREQTIME, %AVGHTMLLINKCOV, %MIN- 
HTMLLINKCOV, %MAXHTMLLINKCOV, %AVGDIVLINKCOV, %MIN- 
DIVLINKCOV, %MAXDIVLINKCOV) while others (STDREQDEV, %STA- 
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Correlation analysis 
User 

~ o b o t  1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 

Attribute no. from table I 
I 

~~-~duca~!t?!.!.!%!!~0"""B~5?2~logtil9 

Fig. 2. Correlation analysis. Gray columns correspond to attributes not found in 
Tan and Kumar (2000,2001). 

TUSZOO, %STATUS2XX, %STATUS304, %ERROR, HEAD) are only essen- 
tial to  one of the two logfiles. For the EDU logfile, the attributes %MAXDIV- 
LINKCOV, %AVGDIVLINKCOV, %MINDIVLINKCOV, %MAXHTML- 
LINKCOV, %AVGHTMLLINKCOV, %STATUS2XX, and %MINHTML- 
LINKCOV are very important. Especially the correlations of %MAXDIV- 
LINKCOV with session labeling (stronger than %IMAGE (one of the best 
attributes from Tan and Kumar (2001))) show that this attribute has to be 
taken into consideration because typical user sessions should have a high av- 
erage value for %MAXDIVLINKCOV (as an result of hitting a web page 
containing only non-HTML links to automatically loaded images). On the 
other hand, %IMAGE only reaches 100 for user sessions if they download 
multimedia files linked by external sites without hitting a HTML site. This 
situation is rare in contrast to robot sessions solely requesting multimedia 
files because most search indexes have specialized spiders for multimedia 
content that only examine multimedia files and not download any HTML 
file (e.g., "FAST-WebCrawler/2.2.10 (Multimedia Search)"). For the SHOP 
logfile, %IMAGE and %HTML are the strongest attributes followed by the 
set of link coverage attributes. The correlation of %ERROR, %STATUS200 
(OK), and %STATUS304 (not modified) with session labeling shows that 
user sessions contain primarily requests with the status code "OK" or "not 
modified". 

Very precise models can easily be build using the network part of the IP 
address or the %NOREFERRER attribute, as most robot traffic originates 
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from "friendly" search index robots. They do not use any stealth technologies 
and therefore issue an empty referrer field and periodically respider the site 
from the same IP  address range. Malignant robots are very unlikely to use 
the same IP  more than once and easily issue fake referrers. This is why we 
ignored corresponding attributes for model building. 

For logistic regression and neural networks algorithms missing values 
where replaced by the mean value of the corresponding attribute. Decision 
tree algorithms can handle missing values intrinsically, so no imputation was 
performed. Missing values within the attributes AVGTIME, MINAVGTIME, 
MAXAVGTIME, STDEVTIME, MINSTDEV, and MAXSTDEV could ap- 
pear as a recoding of the %NOREFERRER attribute as those attributes are 
among other things not calculable due to missing referrers. We examined this 
suspicion. Including the %NOREFERRER field improved the misclassifica- 
tion rates by 5% to 8%. On the other hand excluding the potentially recoded 
attributes resulted in about 0.2% increased misclassification rates showing 
that the suspicion was not justified. 

The datasets where split into 40% training data, 20% validation data and 
40% test data for model building. 

For the EDU logfile, table 2 shows the baseline misclassification rate to- 
gether with the mis, rec, and prec metrics calculated for the test datasets 
of all sessions, the single-request- and the 2-or-more-requests-sessions. For a 
combination of the best model for the single-request-sessions dataset and the 
2-or-more-requests-sessions dataset, we calculated a mis value of 0.0853%. 
During our research, we identified several typical kinds of robot and user ses- 
sions for this website (e.g. survey attendees, single pageview visits originating 
from search indexes, robot sessions with an extremely low or high number 
of requested pages). This is a strong hint that navigational patterns do exist 
and that they can be used as an indicator for distinguishing between user 
and robot sessions. 

Table 3 shows the results for the SHOP logfile. For a combined model, 
we calculated a mis value of 0.0654%. Again, we identified different typical 
kinds of user and robot sessions for this website. Additionally, we checked a 
dataset consisting solely of sessions with a t  least 3 pageviews. The generated 
prediction model, a neural network, achieved a mis value of 0.0157%, a rec 
value of 0.947 and a prec value of 0.954. For 3 or more pageviews, Tan and 
Kumar (2001) achieved (on a different dataset) precision above 82% and 95% 
recall, respectively. 

6 Conclusions and outlook 

The developed robot detection tool RDT enormously speeds up the pre- 
processing step within the overall web mining task. It's features enable re- 
searchers to efficiently produce high quality input data for the robot mining 
algorithms. The selected feature vector together with the low noise input 
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Table 2. Educational logfile: prediction quality 

No. 
1 
2 
3 

4 
5 
6 

7 
8 
9 

10 

No. 1 Dataset 1 model 1 misDasc 1 mis lrec 1 prec 
1 la11 sessions /neural network 10.2690 10.0721 10.85010.880 

Dataset 
all sessions 
all sessions 
all sessions 

2-or-more-requests-sessions 
2-or-more-requests-sessions 
2-or-more-requests-sessions 

single-request-sessions 
single-request-sessions 
single-request-sessions 

all sessions 

2 

3 
4 

5 

Table 3. Online shop logfile: prediction quality 

model 
logistic regression. 
neural network 
decision tree 

logistic regression 
neural network 
decision tree 

logistic regression 
neural network 
decision tree 

combination of 5 & 9 

da ta  lead to  highly accurate prediction models. As expected, the  generated 
models depend on the examined web site and confirm our decision to  support 
robot mining by web da ta  preprocessing devices as best fitting models have 
to  be generated for every web site. 

all sessions 

2-or-more-requests-sessions 
2-or-more-requests-sessions 

single-request-sessions - 

A methodological shortcoming of all approaches t o  robot mining so far is 
the usage of sessions as  underlying object structure: first, sessions are built, 
usually by making use of behavioral parameters as an empirical session time- 
out,  then, in a second step, prediction models for sessions are constructed. As 
robot sessions may differ considerably in parameters used for session build- 
ing, e.g., the session timeout, a two stage approach could further improve 
prediction quality as  well as conceptual understanding of the data :  a t  the 
first stage, a model for predicting crucial session building parameters (as 
timeout) is learned, then, a t  the second stage, sessions are built using the 
dynamically predicted session parameters from the first stage and analyzed 
by a prediction model for sessions as  before. We will address this issue in a 
forthcoming paper. 

misbase 
0.4919 
0.4919 
0.4919 

0.2981 
0.2981 
0.2981 

0.2623 
0.2623 
0.2623 

0.4919 

decision tree 

combination of 3 & 6 
neural network 

6 

7 
8 

decision tree 

neural network 
decision tree 

neural network 
single-request-sessions 

all sessions 
3 or more pageviews 

mis 
0.1196 
0.089 
0.0871 

0.0527 
0.0472 
0.0486 

0.1636 
0.1419 
0.1338 

0.0853 

0.4477 

0.2690 
0.1592 

0.2690 

0.2013 
0.2013 

0.4477 

rec 
0.889 
0.924 
0.938 

0.920 
0.927 
0.916 

0.940 
0.931 
0.962 

0.942 

prec 
0.871 
0.897 
0.891 

0.908 
0.919 
0.924 

0.854 
0.883 
0.871 

0.898 

0.0703 

0.0242 
0.0259 

0.1945 
0.818 

0.901 
0.954 

0.1743 

0.0654 
0.0157 

0.779 

0.902 
0.947 

0.832 

0.948 
0.950 

0.681 

0.901 

0.933 
0.924 

0.850 
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A second open problem that  robot mining and web usage mining have in 
common is the  adequate handling of dynamically created pages. 
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Abstract. Concerning the problem of estimating structural parameters and smooth- 
ing cells in complex contingency tables, we delineate a non standard approach - the 
"Constrained Fixed Point" - which is pseudo-Bayes (Agresti, 1990, pp. 466) and 
shares some basic ideas with the Prior Feedback Setup (Casella & Robert, 2002). 
Applied to a reference data set, it elicits a data-dependent prior which is structured 
according to the order-restricted log multiplicative model. It might be a practica- 
ble alternative to the full maximum likelihood (Ritov & Gilula, 1991) and intensive 
inferential tools as Gibbs sampling (Brink and Smith, 1996). 

1 Introduction 

In analyzing questionnaires, scaling of ordinal variables is often requested 
by cognitive and sociological scientists, for instance in "customer satisfac- 
tion" studies. Assuming a pair of quantities, which are continuous and dis- 
tributed according to  a bivariate normal but unobservable over latent dimen- 
sions, Goodman (1985, pp. 35-40) showed1 the  discretized distribution to  
have the  structure of the order-restricted log multiplicative model. He inter- 
preted (Goodman, 1991, pp. 1090) row and column parameters - the  row and 
column scores - in term of maximizing the "intrinsic association" parameter. 

Under multinomial sampling, for a R x C table of contingency, Brink et 
al. (1996) considered the  following specific version of the  order-restricted log 
multiplicative RC models (RRC): 

The parameter-scores u := (u l ,  u*, . . . , u ~ ) ,  v := (vl, v2,. . . , v c )  allow the  
possibility of incorporating an  overall trend, which reflect t he  order of the  
underlying categories, across the table with the  association parameter 4 de- 
termining the  sign and magnitude. Here, 8,, denotes the  usual cell-parameter. 

'He considered a more general setting, in which the marginal distributions are 
not necessarily normal 



The reference data set is reproduced (by Strole, see Agresti, 1990, pp. 
289) in table 1. 

Table 1. Parent's Socioeconomic Status cross-classified with Mental Health Status 
(in brackets: CFP cell estimates) 

In maximizing the likelihood (ML), technical difficulties could arise be- 
cause parameters functionally depend upon each other (Ritov & Gilula, 
1991). The likelihood may not be concave and have several local maxima. 
Instead, tools as the Gibbs sampling, although very flexible, are computa- 
tionally very intensive. Moreover, standard non ambiguous stopping rules 
could be difficult to establish. 

Concerning the problem of estimating the structural parameters of RRC 
model and smoothing the cell parameters, this work would compare a prac- 
ticable pseudo-Bayes approach (for general references, see Agresti, 1990, pp. 
466), over a reference data set against estimates of Gibbs sampling, and delin- 
eate developments. The proposed approach - the "Constrained Fixed Point" 
(CFP) (D'Epifanio, 1999) - shares some basic ideas with Prior Feedback 
(Casella & Robert, 2002, pp. 203-204). These approaches might be of practi- 
cal interest (Robert and Hwang, 1996) to perform consistent estimates nearly 
to ML whenever fast methods were available to calculate posterior means and 
variances. They could, perhaps, work even when pathological situations occur 
for the likelihood function (D'Epifanio, 1996). Within the bayesian perspec- 
tive, the empirical elicited prior might be, perhaps, shared by different people 
as a type of "standard" prior, to be used then in their specific data context, 
for benchmarking and comunicating results. For standard bayesian concepts 
and formulas, implicitly, we will refer to O'Hagan (1994). 

well 
mild 

moderate 
impaired 

2 The methodology 

... 
57(58.214) 
94(92.646) 
54(53.005) 
40(41.569) 

high 
64(63.635) 
94(95.434) 
58(56.579) 
46(45.809) 

2.1. RRC as a structured prior-belief model. The profile of the cell- 
parameters is considered as a "virtual" R.V. whose distribution belongs to 
the parametric class of Dirichlet's distribution. Instead of depicting RRC 
directly over the cell-parameters (see also Agresti et al, 1989 for more refer- 
ences), RRC is viewed as a looser working conjecture which can be depicted 
over the coordinate space of Dirichlet's priors. Within the class of Dirichlet's 
distributions, prior distributions can be specified which have expected values 
satisfying pattern of the model RRC. Our model is structured as follows: 

... 
57(57.177) 

105(105.550) 
65(63.673) 
60(60.374) 

... 
72(70.332) 

141(141.074) 
77(80.703) 
94(92.056) 

. . . 
36(35.929) 
97(95.539) 
54(56.294) 
78(77.634) 

low 
21(22.082) 
71(72.140) 
54(50.541) 
71(72.007) 
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Xi 1 Q "Ld' Mult(z; e), i = 1 , .  . . , n, ( the measurement model) 
O I m, a N Dirich(0; m, a ) ,  ( "the belief container model") 

mrs A,, := log - = p + a. + /3. + y,.., ("the RRC belief carrier model") 
mRC 

Xi denotes the (vectorized) random response, for a single case from the 
multinomial n'lult(x; Q), O,, := Pr{(X,),, = I ) ,  for a R x C table of categories 
( R  := 4, C := 6). Dirich(0; m,  a )  denotes the Dirichlet's distribution with the 
(vectorized) expectation m = E(O; m ,  a)  and the scalar hyper-parameter2 
a > 0. In this setting, the RRC belief model is viewed (using geometric 
terminology) as a sub-manifold (see also appendix 4.1) which is regularly 
embedded within the Dirichlet's model (the "container manifold"). 

To identify the RRC "belief-carrier" model, we used the (base-line) 
coordinate system where OR = pc = %c = 7~~ = YRC = yTc  = 

0, r := 1,. . . , R, s := 1,. . . , C  (so that /I = 0). Subsequent, by nor- 
malizing as $ := qh(1 - R)(1 - C ) ,  we used (see appendix 4.2 for de- 
tails) transformed scores 6, 6 satisfying the following constraint system: 
-1 = U I  < iiz < ... < UR = 0, -1 = 211 < 62 < ... < 6~ = 0. By using pos- 
itive increments, 6 := (d l , .  . . ,hR-l)  and r := (q, .  . . , T C - ~ ) ,  respectively 
for the row and column scores, the following linear constraints are satisfied: 
61 + .  . . , dR-1 = 1, TI + . . . , rc-1 = 1. Thus, we used the logistic coordinate: 
8 := (log(6,/61), r := 2, . .R - 1) and ? := (1og(rS/r?), s := 2, .., C - 1). 
Therefore, the profile of hyper-parameters y := (a ,  P, $,6,?) is a coordinate- 
point which identifies a specific instance of the RRC belief model. 

2.2. The Constrained Fixed Point: an overview. Over the coordinate 
space of Dirichlet's distributions, Constrained Fixed Point (CFP) approach 
uses data to determinate a point-coordinate that elicits a prior which is con- 
formed to the RRC belief model. Operationally, it leads to a "data-dependent 
prior" (Agresti, 1990, pp. 465-466). Adhering to a version of a principle of 
"least information", a t  the light of the actual current data,  C F P  searches, 
over the coordinate space of RRC, for that Dirichlet's distribution which 
would be, the more is possible, insensitive to  the Bayesian updating rules 
if it had actually used as prior3. By formally interpreting this principle, we 
would minimize the "residual from updating": 

2This would measure the strength of prior information; it could be interpreted 
as the "virtual" number of observation that the prior information would represent 
(Agresti et al., 1989) 

39, The less such a prior is updated, the more it already was accounted for by the 
information added by current data", conditional on the assumed model (D'Epifanio, 
1996, 1999). Intuitively, if a coordinate-point yo exists such that, for given w, 
6'0 = E(O; yo, w) actually satisfies (strictly) RRC (I) ,  then we should expect that 
E(O / 2,; yo, w) x E(Q; yo, w), almost surely, for sufficiently large sample size n. 
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Here, g denotes the observed contingency table; E(O; y, w), Var(O; y, w), 
E ( O  I c; y, w) and Var(O I g; y, w) denote the ( R x C )  matrices whose (rs)-th 
component is, respectively, the expectation, the variance, the updated expec- 
tation and the updated variance of the cell (rs)-th. For the sake of simplicity, 
we considered w here given4. As a specific instance (the more general formu- 
lation is sketched in appendix 4.3.), we used an euclidean distance, weighted 
across all the category-cells as follows: 

Assuming that coordinate y* exists that E ( O  I g; y*, w) E E(O; y*, w), 
by using standard formulas, we could see that denominator would be pro- 
portional, for any components, to E(Q,, I g; y' , w) (1 - E(Q,, I g; y* , w) which 
is an estimate of the cell-variance. Roughly speaking, denominator might 
be interpreted as a sample approximation of Var[E(O,,Ig; y, w)], w.r.t. the 
predictive distribution given (y, w). 

3 Application 

Since the Dirichlet's model is conjugate to the binomial, analytic formu- 
- - 

las are available which easily and very quickly calculate posterior expecta- 
tions and variances, at each temporary coordinate-point y(9) of RRC man- 
ifold. Subsequent, using iterated geometric projections of weighted varia- 
tions due to updating, efficient numerical analytic procedures yield sequence 
y(q), q := 1 , 2 , .  . . to run over the coordinate space of RRC, until it converges 
whenever the vector of the "variation due to updating" (see also appendix 
4.4) is orthogonal to the sub-manifold RRC. This is a necessary condition in 
order that the minimum residual from updating is reached. 

Asymptotics of unrestricted FP has been considered in other works (D'Epifanio, 
1996, 1999; see also Casella & Robert, 2002, pp. 204) 

4When also w (which determines the "shrinkage" effect) has to be deter- 
mined by data, a further criterion is necessary which is complementary to that 
of "least updating". Briefly, we considered the criterion which searches, over 
the full coordinate space (y, w), for that prior which - while residual from up- 
dating is minimized - assures also an equilibrium between "virtual relative in- 
formation gain from updating" and "virtual predicted relative cost". Formally, 
over the coordinate space of the RRC priors, we would, across all the cells, 
{Var(Q,,; y, w) - Var(Q,, lg; y, w)}/Var(Q,,; y, w) - interpreted as the virtual 
information gain - meets with Var(Q,, lg; y, w)/Var(Q,,; y, w) - the virtual loss. 
Coordinate-points for which the former is too small would imply the latter is too 
large. Across all the cells, it yields a non trivial system, whose solutions can have 
also, in general, a large sample interpretation (D'Epifanio, 1996) which is related 
to the Fisher's information 
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Written in S-plus, by starting from preliminary rough values and let- 
ting w := 1 (the least informative prior), a very fast procedure calcu- 
lated the scores u = (1, 2.4759, 2.72145, 4), v = (1, 1.02299, 2.30357, 3.030144, 
4.71107, 6), in the Brink and Smith parametrization5, the association q5 = 
0.09833725 (so that exp(4) = 1.103335) and w = 1659.016. It  calculated a 
= ( -2.918029, -1.766441, -2.208831), P = (-2.437090, -2.492935,-2.150683, 
-1.756379, -1.910129). 

Thus, we could check that the column and row scores, and the association 
parameter nearby meet with estimates of Gibbs sampling, as reported in 
figure 1. 

Fig. 1. Results from Gibbs sampling (Brink and Smith, 1996). Here, Beta := 4, 
mu := u, nu := u 

Let (y*, w*) denote the CFP solution. Conditional on the belief-carrier 
model RRC, the original table was recovered (see the values within brackets, 
in table 1) by using the cell estimates m;, := {E(O; (m, C)(y*, w*))),,. This 
C F P  smoother could be useful when zero counts or missing data occur, for 
instance, in sparse contingency tables. Of course, the pseudo-empirical Bayes 
predictor6 (see O'Hagan, 1994) E(O,, I g; y*, w*) = A*(f,, - m:,) + m:, 
(here, f,, := g,,/n denotes the actual observed relative frequency for the 
cell (r, s), and A* := is the shrinking factor) is more accurate than 
the previous smother. But, by construction from the C F P  perspective, their 
discrepancy would minimized if the prior-belief RRC model had reasonably 
adhered to  the actual data-generating process. 

'In the new parametrization, it calculated the logistic coordinates: 8 = 
(0.1435653 -1.6498580) and f = ( -4.026379463, -0.006500991, -0.573227125, 
0.265533869) 

GIt should work also if the prior-belief model was non adequate; in fact, au- 
tomatically, it would combine good characteristics of sample proportion and of 
model-based estimators (see also Agresti, 1990, pp. 466) 
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Fig. 2. Weighted residual from updating 

Using the "residuals from updating", types of graphical plots could be 
useful for some diagnostics. To study "discrepancies" of RRC over single 
cells, for instance, a plot as that of figure 2 would indicate - considering also 
the high value of w* - that the belief model RRC was adequate enough, 
perhaps apart from the cell (3,6) and a slight residual trend due to the rows. 

4 Appendix: some detail 

4.1 About a differential geometric setting. Let y denote a profile of 
identifiable parameters for the RRC belief-model. Recall (O'Hagaq1994) that 
(C),, := Var(O,,; m,  w) = & . m,,(l - m,,). The vector Vec (m, C) de- 
scribes, by varying the cell parameters m and the scalar w within the proper 
range, the geometrical container manifold, which depicts the model of Dirich- 
let's distributions, whose coordinate are provided by parameters (Vec m,  w). 
Within this container, the point (Vec m(y), w), whose coordinate are the 
(hyper-)parameters (7, w), describe the sub-manifold which depicts the RRC 
belief-model. Thus, the RRC belief-carrier model may be viewed as a specific 
sub-manifold which is embedded within the model of Dirichlet's distributions. 

4.2 About specification of order restriction. By using the transforma- 
tions ii = (u - R)/(R - 1) and 6 = (v - C ) / ( C  - I), scores were standardized 
so that -1 = 211 5 ii2 5 ... < iiR = 0, -1 = i j  1 < - vz - 5 ... 5 6~ = 0. Thus, we 
could rewrite: y,, = { d ( l -  R)(1 - C))ii,G, + d(1- R)Ciir + d(1- C)RG, + dRC. 
Therefore, recalling that p = 0 because ARC = 0, Xrs = {a,  + d ( 1  - R)Ciir) + 
{ P  + d ( 1 -  C)RG,) + &,G, = Fir + b, + +&,G,. Thus, RRC may be rewritten 
as: 
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-1 = < ii2 < ... < GR = 0, -1 = cl ijz < ... < 6c = 0, where 
4, := 4 ( l  - R)(1 - C ) ,  6,  := a, + 4(1 - R)CG,, 6, := P, + 4(1 - 
C)RV,. Now, by using non negative increments 6 := (61,. . . , SR-1) > 0 
and T := (r1, . . . , TG-1) > 0, we might re-parametrize the scores as fol- 
lows: iil = - 1 , G 2  = -1 + d l , .  . . , U R  = -1 + + . . .  ,bR-l ;  similarly, 
Gl  = - 1 , V 2  = -1 + r l , . . .  ,TG = -1 + TI + . . .  , T C - ~ .  Since iiR = 0 
we would have -1 + S1 + . . . + SR-l = 0, that is the linear constraint 

+ . . . + 6R-I = 1. Assuming now the increments are strictly positive 
(by relaxing the equality constraints), this constraint would be automat- 
ically fulfilled by using the ( R  - 2) logistic coordinates $ so that 6, = 

exp($,)/(l + exp(&)), r := 1, . . . , R - 1. Analogously, we would have 
TI + . . . , TC-1 = 1 and we might consider the ( C  - 2) logistic coordinates ? 

so that T, = exp(?,)/(l + x:z21 exp(?t)), s := 1, .  . . , C - 1. 

4.3 About a more general formulation. Let us consider the following 
multi-dimensional (column) vector valued operator: 

(7, w) A d m ,  m y ,  w) := 
Vet (E(@ I :; (m, C)(y, w)) - m(y, w)) [ Vet (2 Var(@ I LC; (m. L)(?,  w)) - E(-f, w)) 1 .  

Varying the coordinate-point p(y, w), the operator A, (m, C) (y, w) describes 
a vector field. Recalling notes (3) and (4), the full CFP-approach would search 
for solutions of the following problem: 

Here, W(y ,  w) denotes a definite positive weighting matrix. As a specific in- 
stance of this general formulation, explicitly, we could consider the following 
system: min,,, C,,,(A,,)2(y, w), where A,, denotes, for the cell (rs)-th,  the 
following weighted vector of variations: 

HereE [.] denotes the expectation with respect to the predictive distribu- 
tion of X. Recalling again note (4), note here that matching {Var(O,,) - 
Var(O,,l~))/Var(O,,) ( the "relative information gain from updating") with 
Var(O,, lg)/Var(O,,) (the "virtually predicted relative cost, given the data") 
would be formally equivalent to  match 2Var(0,,lg; y, w) with Var(O,,; y ,  w),  
by weighting each cell with the inverse of its variance Var(O,,), across all the 
cells of the table. The quantity {Var(O,,; y, w) - E[Var(O,,lX; y, w)]} may be 
interpreted as "the expected (over the sample space) predicted information 
gain, from updating". 

4.4 The computational process. Let P ( y ,  w) :=< a- a t >-I  
8(7,w) kFi1 

.[&I denote the coordinate projector of the full variation A,(y, - w) upon 



t he  tangent space of the  sub-manifold a t  p(y,  w). Here, [+I denotes the  a 7 , ~ )  
basic coordinate (row-)vector system, < . > the  usual inner product. The  
operator 

( 7 ' ~ )  - P ( Y ,  w ) [ w - ' / ~ A Z J ( Y , ~ )  

is a vector field which yields a vector over the  tangent space a t  coordinate- 
point (y, w). This vector field induces a dynamic over the  coordinate space, 
which yields the  following iterative process: 

(Y, ~ ) ( 4 + ~ )  = (Y, ~ ) ( 4 )  + . P ( ( ~ ,  W ) ( ~ ) ) [ W - ~ / ~ A Z J ( ~ ,  c ) ( ( ~ ,  ~ ) ( 4 ) ) .  

Here, p denotes the  step-length. Due t o  the  non-linearity, p should be suffi- 
ciently small t o  assure convergence. 

Provided this process converges, the  convergence-point would satisfy the  
orthogonal equation: P ( y ,  w) [w- ' /~A, (y, w)] = 0. T h e  convergence-point 
would be a CFP solutions, by checking that  the  process reduces distances 
progressively. 

References 

AGRESTI A. (1990): Categorical Data Analysis, Wiley, New York 
AGRESTI A., CHIANG C. (1989): Model-Based bayesian Methods for Estimat- 

ing Cell Proportions in Cross-Classification Table having Ordered Categories, 
Computational Statistics & Data Analysis, 7, 245-258 

BRINK A.M., SMITH A.F.M. (1996): Bayesian Modelling of the association in 
Contingency Tables. In: Forcina, Marchetti, Hatzinger, Galmacci (eds): Pro- 
ceedings of the 11th International Workshop on Statistical Modelling, 

CASELLA G, ROBERT C.P. (2002): Monte Carlo Statistical Methods (third print- 
ing), Springer, New York 

D'EPIFANIO G. (1996): Notes on A Recursive Procedure for Point Estimation, 
Test, Vol. 5, N. 1, pp.1-24 

D'EPIFANIO G. (1999): Properties of a fixed point method, 1999, Annales de 
L'ISl.JP, Vol. XXXXIII, Fasc. 2-3 

GOODMAN L. A. (1985): The 1983 Henry L. Rietz Memorial Lecture, The Annals 
of Statistics. Vol. 13, N.l, pp. 10-69 

GOODMAN L. A. (1991): Measures, Model, and Graphical Displays in the Analysis 
of Cross-Classified Data, Journal of the American Statistical association, Vol 
86, N. 416, pp. 1085-1111 

O'HAGAN A. (1994): Bayesian Inference, Kendall's Advanced Theory of Statistics, 
Vol. 2b, New York: John Wiley & Sons 

RITOV Y., GILULA Z. (1991): The Ordered-Restricted RC model for Ordered 
Contingency Tables: Estimation and Testing of fit. The Annals of Statistics, 
19, 2090-2101 

ROBERT C.P., HWANG G.J.T. (1996): Maximum Likelihood Estimation Under 
Order Restrictions by the Prior Feedback Method, Journal of the American 
Statistical association, Vol. 91, N. 433, pp.167-172 



PLS Typological Regression: 
Algorithmic, Classification and Validat ion 

Issues* 

Vincenzo Esposito Vinzi, Carlo N. Lauro, and Silvano Amato 

Dipartimento di Matematica e Statistica, 
UniversitA di Napoli LLFederico 11", Italy 
{vincenzo.espositovinzi; carlo.lauro; silamato)@unina.it 

Abstract. Classification, within a PLS regression framework, is classically meant 
in the sense of the SIMCA methodology, i.e. as the assignment of statistical units 
to a-priori defined classes. As a matter of fact, PLS components are built with 
the double objective of describing the set of explanatory variables while predicting 
the set of response variables. Taking into account this objective, a classification 
algorithm is developed that allows to build typologies of statistical units whose 
different local PLS models have an intrinsic explanatory power higher than the 
initial global PLS model. The typology induced by the algorithm may undergo a 
non parametric validation procedure based on bootstrap. Finally, the definition of 
a compromise model is investigated. 

1 Introduction 

PLS (Partial Least Squares or Projection to Latent Structures) methods cover 
a very broad area of statistical methods, from regression to generalised linear 
models, from data analysis to causal and path modelling. This paper aims a t  
taking into account classification aspects within PLS when a group structure 
is pursued. At present, classification in PLS is performed, in the SIMCA (Soft 
Independent Modelling of Class Analogy) approach (Wold et al. (1984)), in 
order to identify local models for possible groups of statistical units and to 
predict a probable class membership for new statistical units. 

On the other hand, PLS Discriminant Analysis (PLS-DA, Sjostrom et al. 
(1986)) is performed in order to sharpen the separation between groups of 
statistical units, by hopefully rotating PCA (Principal Components Analysis) 
components such that a maximum separation (Barker and Rayens (2003)) 
among classes is obtained, and to understand which variables carry the class 
separating information. 

Actually, PLS components are built by trying to find a proper compro- 
mise between two purposes: describing the set of explanatory variables and 
predicting the response ones. A PLS-based classification should well benefit 
from such a property in the direction of building typologies with an intrinsic 

'This paper is financially supported by the EU project ESIS IST-2000-21071. 
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prediction power. This approach may go further than the classical SIMCA 
method, that works on the reassignment of units to predefined classes, and 
may be further exploited to identify group structures in PLS Path Modelling. 

Namely, this paper proposes a PLS Typological Regression (PLS-T) with 
the objective to identify, in a PLS regression framework with a real depen- 
dence structure between measured variables, a classification of the statistical 
units in a certain number of classes oriented to a better prediction of the 
response variable(s). PLS-T shares the same feasibility of PLS regression to 
data structures showing critical features such as missing data, non-normality, 
reduced number of units with respect to the number of explanatory variables, 
a high degree of multi-collinearity. These features explain why, in the follow- 
ing, PLS framework has been preferred to any simultaneous solution based 
on a singular value decomposition. 

The typology is identified by means of a data-driven approach based on 
cluster analysis and PLS regression. This approach aims a t  defining a method- 
ology for improving prediction in PLS regression through the identification 
of a group structure of the statistical units. 

In order to assess the stability of the method, the identified classes undergo 
a bootstrap-based validation procedure (section 4). 

In PLS-T, whose algorithm is given in section 3, two groups of variables 
are assumed to be observed on n statistical units; data are collected in ma- 
trices X = ( x r , .  . . , xp) and Y = (y,, . . . , y,) of n rows and p and q columns 
(variables) respectively. Furthermore, the existence of a dependence relation- 
ship between X and Y is assumed, namely: 

Y = f ( X ) + V  (1) 

where f (.) is a linear function and V is an error matrix. If matrix X is not 
well conditioned (rank(X) < p or multi-collinearity among columns of X 
is present) OLS solution leads to unstable estimates. In order to  cope with 
this problem, several solutions exist: Ridge Regression, Principal Components 
Regression or Partial Least Squares Regression (Wold et al. (1984)) are just 
few examples. de Jong (1993) shows that PLS outperforms other methods 
when multi-collinearity is present among Y columns and/or information in 
X relevant to Y is contained in eigenvectors of X associated to its lowest 
eigenvalues. 

Actually, PLS searches for two sets of weights, W = [wl, wz, . . . , w,] and 
Z = [zl, zz, . . . , z,] for X and Y respectively, such that pairwise covariances 
between components tl = Xwl and ul = Yzl are maximised V1 = 1,2, . . . , m. 
Relation in equation (1) is then exploited by using component matrix T :  

Y = T C  + V(,) (2) 

where T = XW and C = (TtT)- 'T'Y is the coefficient matrix from the 
OLS regression of Y on T; V(,) is the error matrix associated to the m- 
components model. The number of PLS components to retain in the above 
expression is usually selected by means of cross-validation (e.g. Tenenhaus 
(1998)). 
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2 Classification and discrimination with PLS 

The SIMCA approach runs, at  first, a global PCA or PLS regression (accord- 
ing to the available data structure) on the whole dataset in order to identify 
G groups of units. Local models are then estimated for each class. 

Once the classes have been identified, the prediction of class membership 
for a new statistical unit is based on its normalised distances from local 
models by means of: 

where e i j , i  is the squared residual of the i-th unit on the j-th variable for 
the g-th PLS local model. The i-th unit is assigned to the g-th model (g = 

1 , 2 ,  . . . , G) if DM odX.Ni < J F ~ - , ( ~ ~ ,  k2), where the critical value is chosen 
according to a Fisher-Snedecor distribution with k1 = m, and k2 = n - 2 
degrees of freedom (df) and to a significance level a.  The assumption that 
DM0dX.N follows a Fisher-Snedecor distribution is not completely proved 
and the df are empirically fixed (see on the matter Eriksson et al. (1999); for 
an asymptotic distribution of PLS components, Lazraq and Clkroux (2001)). 

The SIMCA approach enforces the composition of the classes to  be the 
same as the one initially chosen on the basis of the global model. Furthermore, 
it computes the distance of each unit from the model with respect to  the 
explanatory variables only and, in order to  compute the class membership 
probabilities, refers to  a distribution of this distance whose shape and degrees 
of freedom are not yet clearly defined and hidden in SIMCA software. 

On the other hand, PLS-DA consists in a classical PLS regression where 
the response variable is a categorical one (replaced by the corresponding set 
of dummy variables) expressing the class membership of the statistical units. 
Therefore, PLS-DA does not allow for other response variables than the one 
needed for defining the classes. As a consequence, all measured variables play 
an explanatory role with respect to  the supervised classification. 

In both SIMCA and PLS-DA, the features of PLS regression are not to- 
tally exploited as the classification is not optimized with respect to  prediction. 

3 PLS typological regression: the algorithm 

The objective pursued by PLS Typological Regression (PLS-T, firstly pre- 
sented by Lauro and Esposito Vinzi (2002)) is to identify, in a non symmet- 
rical framework, a classification of the statistical units in G classes oriented 
to a better prediction of the response variables. Then, on the basis of this 
classification, a compromise PLS model that is more coherent with the G 
local models is searched for. The adopted criterion consists in splitting the 
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PLS global model (considering all statistical units as a single class) into a set 
of G local models (considering a classification in G classes of the statistical 
units). The local models shall perform better in terms of distance of the units 
from the corresponding local models as well as in terms of the explanatory 
power for the dependent variables. 

The PLS-T algorithm consists of the following steps: 

Perform a PLS global model on all units and retain the significant com- 
ponents. 
Perform a cluster analysis (e.g. k-means algorithm) for identifying a group 
structure of the units in G classes based on the PLS components from the 
global model. As usual in any clusterwise regression method, the choice 
of the number of classes G is critical and still represents an open issue. 
In PLS-TI being faithful to the data-driven approach, it is chosen on the 
basis of a preliminary hierarchical cluster analysis based on the global 
PLS components. In order to lower the sensitivity of the method to the 
initial choice, G may be consolidated on the basis of the compromise 
model discussed in section 3.1. 
Perform a PLS local model for each of the G previously identified classes. 
Compute distances of units from local models according to: 

that is a normalised distance, where v$i is the square of the i-th residual 
on the Ic-th dependent variable for the g-th PLS model, and R ~ ( T ( S ) ,  yk )  
is the redundancy index for the k-th dependent variable in the PLS model 
with m, retained components in ~ ( g ) .  

DMo~Y.N,' ,~ is the normalised distance, with respect to the q response 
variables ykls ,  of each unit i belonging to the n, units in the g-th class 
from the related PLS model with m, retained components. 
The weighting of DMo~Y.N,' ,~ attempts to take into account relevant 
issues for each local model as to the different number of components 
being retained (m,), the different number of units being included in each 
class (n,) and the different explanation power (R~(T(,) ,  yk) )  provided by 
each local model for each response variable. 
Reassign each unit to the nearest local model. 
If there is any change in the composition of the classes implying a modi- 
fication in the local models, then repeat steps 3 to 5 otherwise go ahead. 
Describe the obtained classes by means of the characterising explanatory 
variables by means of the VIP index, defined as: 
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The interpretation of classical tools, such as the VIP (Variable Importance 
in the Projection) index inside PLS regression, is shown to  be very useful 
for describing the local models in terms of the characterising explanatory 
variables for each class. By keeping in mind that the mean of squared 
VIP's is equal to 1, those explanatory variables showing a VIP greater 
than 1 are considered to be relevant. 

8) Search for a compromise model (see section 3.1), i.e. a model that ,  with 
respect to  the initial global model, is more coherent with the local ones. 

If convergence in step 6 is not attained, either a different number of classes 
may be selected in step 3 or a class of floating units may be further identified. 

3.1 The compromise model 

Once local models have been identified and local components ~ 2 1  have been 
computed, there might be the need to search for a compromise model, that 
is a global model oriented to local models previously identified in PLS-T. 
Namely, the compromise model shall have a higher predictive power for the 
q dependent variables than the global model initially estimated. 

Firstly, a common number m of components need to be retained for all 
local models; f i  is selected as the maximum number of components retained 
for the different local models, i.e. m = maximl ,  m a , .  . . , mc), so as not to 
lose relevant information from each class. If one model requires substantially 
more components than the others, the suspect arises that other classes exist. 

Secondly, a new matrix T is built by stacking the G PLS local score ma- 
trices. A PLS Regression of Y *  (i.e. Y with the rows being sorted according 
to the class membership of the units) on T is performed (Figure 1) in order 
to yield the compromise model. 

Figure 2 provides with a geometrical interpretation of the first two PLS 
components for the initial global model ( t l  and t 2 ) ,  the first PLS components 
for the classes (e.g. tpl) and t p ) )  and for the compromise model ( t l ) .  

This procedure leads to the following predictive compromise model for 
the generic k-th dependent variable for the statistical units in class g: 

y,k = x + residual 

where &'s are the coefficients of the compromise model 
the coefficients in equation (2) for the global model. It is 
the s-th component compromise score for the i-th unit 

defined similarly to 
worth noticing that 
in the g-th class is 

= Cr.!l dsht%! where t?! = Wz1 zu,hjsj,i. 
It is now possible to  express the prediction of yk for the i-th unit, accord- 

ing to the compromise model, in terms of the explanatory variables xj's: 
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Fig. 1. Construction of the matrices for the search of the compromise model. 

The above expression may well be used in order to assign new units with 
an a-priori unknown class membership to one of the G classes. The following 
steps need to be performed: 

P 
1) Compute the scores th,new = C whjxj,,,, of the new units on the m 

3=1 

components in the global model. 
2) Project the barycenters of the G classes previously identified by PLS-T 

on the same m components. 
3) In the space spanned by the m components, compute the distance between 

the new units and the barycenters of the classes. 
4) Assign each new unit to the nearest class (local model). 
5 )  Once the class membership is known, compute the predictions for the 

dependent variables according to the compromise model. 
6) Re-assign the new units to the nearest classes according to the scores 

from the compromise model. 
7) Reiterate steps 1) through 6) until convergence. 

This procedure further enhances the interest of the compromise model. 
Coherently with the nature of PLS-T, it aims at a class assignment oriented 
towards a better prediction. 

4 Validation issues 

The local models identified by PLS-T may be validated by means of a non 
parametric procedure (Amato, 2003). A bootstrap-based test is proposed for 
the coefficients cgkh7s related to the h-th PLS component for the prediction 
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Fig. 2. PLS-T geometrical representation. 

of yk's in the g-th local model. In order to test whether they are signifi- 
cantly different from the global model coefficients ckh in Ch, the following 
hypotheses are set: 

where 7kh's and ygkh's are the parameters estimated by ckh's and cgkh's. 
Let F ( y , q  be the empirical distribution of the observed dependent vari- 

ables in Y and the global model PLS components in T. The validation pro- 
cedure consists of the following steps: 

1) draw B (e.g. greater than 1000) samples (with replication) from 
2) for any b = 1 '2 , .  . . , B, split each resample into G subsets and compute 

the PLS coefficients cikh7s. 
b 3) compute the differences: d:kh = ckh - cgkh. 

4) build the Monte Carlo approximation &(BOOT) of the dikh distribution. 

The a-th and the (1 - a)-th percentiles of F ~ ( ~ ~ ~ ~ )  define the bootstrap 
decision area for the test in (3) with a nominal 2a  significance level. 

The procedure may be similarly replicated for any set of coefficients in 
the local models as well as in the compromise one. 

5 An application on Linnerud data and conclusions 

The interpretation aspects of PLS-T are shown and discussed by means of an 
application on the well known Linnerud data (Tenenhaus, 1998) related to 3 
physical - explanatory - (weight, waist, pulse) and 3 athletic performance - 
dependent - (fixed-bar traction, press-ups, jumps) variables observed on 20 
units. Table 1 shows the explanation power, R2 index, and the characterising 
variables, V I P  index, for each class (G=2) and for the initial global model. 
The two classes identified by PLS-T clearly improve the goodness of the 
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results as well as the interpretation. All R2's increase considerably and each 
class is well characterised by different explanatory variables. For instance, 
the role of pulse is recovered in class 1 with respect to the global model. 

Table 1. PLS-T on Linnerud Data: Predictive Power and Characterising Variables. 

R2 
Traction 

Press-ups 
Jumps 

Finally, the fifth column of Table 1 shows how the compromise model 
outperforms the global one in terms of its predictive power. The bootstrap- 
based procedure proposed in section 4, whose application details are omitted 
for the sake of brevity, validates the local models. 

The proposed PLS Typological Regression has shown to  be very useful in 
searching for a proper group structure of the statistical units. Namely, local 
PLS models are defined so as to perform better than the single global one 
in terms of predictive power. Moreover, insights on the explanatory role of 
specific variables are given. Finally, the identification of a compromise model 
turns out to be very interesting both in providing an overall picture of the 
dependence relationships based on the group structure, and in predicting the 
class membership of new units. 
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Abstract. This paper establishes a general framework for metric scaling of any dis- 
tance measure between individuals based on a rectangular individuals-by-variables 
data matrix. The method allows visualization of both individuals and variables as 
well as preserving all the good properties of principal axis methods such as principal 
components and correspondence analysis, based on the singular-value decomposi- 
tion, including the decomposition of variance into components along principal axes 
which provide the numerical diagnostics known as contributions. The idea is in- 
spired from the chi-square distance in correspondence analysis which weights each 
coordinate by an amount calculated from the margins of the data table. In weighted 
metric multidimensional scaling (WMDS) we allow these weights to be unknown 
parameters which are estimated from the data to maximize the fit to the original 
distances. Once this extra weight-estimation step is accomplished, the procedure 
follows the classical path in decomposing a matrix and displaying its rows and 
columns in biplots. 

1 Introduction 

We are concerned here with methods that transform a rectangular data ma- 
trix into a graphical representation of the rows (usually individuals, or sub- 
jects) and columns (usually variables, or objects). A typical example of a 
visualization is the biplot (Gabriel, 1971; Gower & Hand, 1996) in which a 
distance approximation is achieved with respect to the individuals, while the 
variables are depicted by arrows defining biplot axes allowing estimation of 
the original data values. 
An example is shown in Figure 1, where data on 12 countries and five vari- 
ables on different scales are mapped to a biplot where (squared) distances 
between countries are standardized Euclidean distances of the form: 

where xi and xi are the i-th and j-th rows of the matrix and D, is the diagonal 
matrix of standard deviations s k .  The factors l/sk are standardizing factors 
which can alternatively be regarded as weights assigned to each variable in 
the calculation of the distance between countries. In correspondence analysis 



142 Greenacre 
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Fig. 1. Data matrix on 12 European community countries in 1990, showing five 
economic indicators: Unemployment Rate (%), Gross Domestic Product per Head 
(index), Private Consumption per Head (index), Change in Private Consumption 
(%) and Real Unit Labour Cost (index). The principal component biplot on stan- 
dardized data is shown on the right, with vectors indicating biplot axes for each 
variable. 

(CA) of a table of frequencies we have a similar distance function, where the 
weights for the rows and the columns in the chi-square distance function are 
proportional to the inverses of the corresponding row and column margins of 
the table. 

In general we can define the weighted Euclidean (squared) distance: 

where D,contains weights wk, to be determined by a process still to be 
described. 

In several contexts, the practitioner is more interested in distance mea- 
sures which are non-Euclidean. A good example of this is in ecological studies 
where the data are species-abundances at different sites where equal area- or 
volume-sampling has been conducted. In this case, ecologists almost always 
prefer the Bray-Curtis dissimilarity measure, since it has an immediate and 
simple interpretation, with values from 0 (exactly the same species composi- 
tion) to 100 (no species in common at all). The Bray-Curtis index dij between 
samples i and j with species abundances denoted by {nik) and {njk) is de- 
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Such a dissimilarity measure is simple to understand, but non-Euclidean (see 
Gower & Legendre, 1986). Often nonmetric MDS is used to  analyse these 
indices (see, for example, Field, Warwick & Clarke, 1982), but our interest 
here is in metric MDS since there are many relevant spin-offs in the classical 
metric approach, most importantly the natural biplot framework thanks to  
the singular value decomposition, as well as the convenient breakdown of vari- 
ance across principal axes of both the rows and columns which provide useful 
numerical diagnostics in the interpretation and evaluation of the results. The 
idea will be to  approximate the distances of choice, however they are defined, 
by a weighted Euclidean distance. The weights estimated in this process will 
be those that are inherently assigned to the variables by the chosen distance 
function. 
In Section 2 we shall summarize the classical MDS framework with weights. 
Then in Section 3 we describe how any distance measure between individuals 
can be approximated by a weighted Euclidean metric. In Section 4 we give 
some examples of this approach and conclude with a discussion in Section 5. 

2 Weighted multidimensional scaling 

Our main interest is in weighting the variables in the definition of distances 
between the individuals, but exactly the same technology allows weighting of 
the individuals as well to differentiate their effect on determining the even- 
tual solution space. Since the weighting of the individuals serves a different 
purpose from the weighting of the variables, we shall use the terms mass 
for an individual and weight for a variable (in correspondence analysis the 
term mass is used exactly in the sense used here). Both individual masses 
and variable weights will be included in our description that follows. This 
description is essentially that of the geometric definition of correspondence 
analysis (see Greenacre, 1984, chapter 2), the only difference being that the 
weights on the variables are unknown, to  be determined, and not prescribed. 

Suppose that we have a data matrix Y ( n  x m) ,  usually pre-centred with 
respect to rows or columns or both. Let D, (n  x n )  and D, (m x m )  be 
diagonal matrices of row (individual) masses and column (variable) weights 
respectively. With no loss of generality the row masses are presumed to  have 
a sum of 1. The rows of Y are presumed to  be points in an  m-dimensional 
Euclidean space, structured by the inner product and metric defined by the 
weight matrix D,. The solution, a low-dimensional subspace which fits the 
points as closely as possible, is established by weighted least-squares, where 
each point is weighted by its mass. The following function is thus minimized: 
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where yi, the i-th row of P, is the closest low-dimensional approximation of 
yi  . The function In(*,*) stands for the inertia, in this case the inertia of the 
difference between the original and approximated matrices. The total inertia, 
which is being decomposed or "explained" by the solution, is equal to I(Y).  
As is well-known (see, for example, Greenacre, 1984, Appendix), the solution 
can be obtained neatly using the generalized singular value decomposition 
(GSVD) of the matrix Y .  Computationally, using an ordinary SVD algorithm, 
the steps in finding the solution are to first pre-process the matrix Y by 
pre- and post-multiplying by the square roots of the weighting matrices, 
then calculate the SVD and then post-process the solution using the inverse 
transformation to obtain principal and standard coordinates. The steps are 
summarized as follows: 

1 . s = D ~ / ~ Y D ; / ~  ( 5 )  
2 .  S = U D , V f  (6) 

3 . Principal coordinates of rows: F = D;~ /~uD,  (7)  

4 . Standard coordinates of columns: G = D,'/~v (8) 

The columns (variables) are conventionally depicted by arrows and the 
rows (individuals) by points. A two-dimensional solution, say, would use the 
first two columns of F and G. The total inertia is the sum of squares of the 
singular values @:+a;+. . . , the inertia accounted for in two-dimensional 
solution is the sum of the first two terms a:+ai while the inertia not ac- 
counted for (formula (4)) is the remainder of the sum: a:+ai+. . . . Apart 
from this simple decomposition of the variance in the data matrix, there is 
another benefit of the least-squares approach via the SVD, namely a further 
breakdown of inertia for each point along each principal axis. Since this de- 
composition applies to points in principal coordinates, we show it for the row 
points in Table 1 (a similar decomposition can be shown for column points 
in principal coordinates by merely scaling the standard coordinates by their 
respective singular values). 

3 Computing the variable weights 

We now consider the case when a general distance function is used to measure 
distance or dissimilarity between individuals, not necessarily a Euclidean- 
imbeddable distance. Using conventional MDS notation let us suppose that 

is the observed dissimilarity between individuals i and j based on their 
description vectors xi and x j .  We use d:j = d:j(w) to indicate the weighted 
Euclidean distance based on (unknown) weights in the vector w.  The problem 
is then to find the weights which give the best fit to the observed dissimi- 
larities, either minimizing fit to distances (least-squares scaling, or LSS) or 
to squared distances (least-squares squared scaling, or LSSS). As always it is 
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Principal axes 
1 2 ... p 

Table 1. Decomposition of inertia of n row points along all p principal axes of the 
matrix. Each row adds up to the inertia of a point, the mass (ri) times squared 
distance (da)  of the point to the centre, while each column adds up the principal 
inertia Xk= a: of the corresponding axis. Rows and columns expressed relative to 
their respective totals constitute the contributions, or numerical diagnostics used 
to support the interpretation of the solution space. 

easier t o  fit t o  squared distances, which is the  approach we take here. Thus  
the  objective function is: 

minimize Xi Cj (6;; - d: ( w ) ) ~  over all w > O 

that  is, 

minimize xi Cj(6:; - C wk(xik - xjk)2)2 over all w 2 0 .  
k 

Ignoring for the  moment the non-negativity restriction on w ,  the  problem 
can be solved by least-squares regression without a constant as follows: 

Define S = ~ e c ( 6 2 ~ )  as the 1/2n(n-l) vector of given squared distances, t ha t  
is the half-triangle of distances strung out as a vector. 

0 Define X = [(zik - x ~ ~ ) ~ ]  as the l l2n(n-l)  x rn  matrix of squared differences 
between the values of a variable, for each pair of individuals. 
Fit  the  multiple regression model 6 = X w  + e which has least-squares 
solution w = ( x ' x ) - ' ~  . 

In our experience it frequently occurs that  t he  weights calculated with- 
out constraints turn  out to  be positive. However, when this is not the  case, 
minimisation has to  be performed with constraints: 
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minimize (6 - XW)' (6 - Xw) subject to w 2 0 (9) 

This is a quadratic programming problem (see, for example, Bartels, 
Golub & Saunders, 1970) which can be solved with standard software, for ex- 
ample function nlregb in S-PLUS (1999) - see also www.numerical.rl.ac.uk/qp 
/qp.html. 

In the regression described above the masses assigned to the individuals 
can be taken into account by performing weighted least-squares regression, 
with the weights assigned to each (i, j)-th element equal to the product rirj 
of the corresponding masses. That is, define the l/zn(n-l)xl/zn(n-1) diagonal 
matrix D,, with these products down the diagonal and then minimize the 
quadratic form (6 - Xw)'D,,(6 - Xw),  which in the unconstrained case gives 
solution w = (XID,,X)-'D,,6 . 
The goodness of fit of the weighted Euclidean distances to the original dis- 
tances can be measured by the usual coefficient of determination R2. Our 
visualization of the original data matrix passes through two stages of approx- 
imation, first the fitting of the distances by estimating the variable weights, 
and second the matrix approximation of the GSVD to give the graphical dis- 
play of the weighted Euclidean distances and the associated biplot vectors 
for the variables. 

4 Application: Bhattacharyya (arc cos) distance 

This research was originally inspired by an article in the Catalan statisti- 
cal journal Questiio by Vives & Villaroya (1996), who apply Intrinsic Data 
Analysis (Rios, Villaroya & Oller, 1994) to visualize in the form of a bi- 
plot a compositional data matrix, specifically the composition in each of the 
41 Catalan counties (comarques) of eight different professional groups. This 
analysis is based on the Bhattacharyya distance between counties: 

where the function arc cos is the inverse cosine. The same authors report 
that their results are almost identical to those of correspondence analysis. 
Applying weighted MDS to the same data the weights are estimated to be 
the following for the eight professional groups: 

Weights estimated by fitting to Bhattacharyya distances 

Pro&Tec PersDir ServAdm Com&Ven Hot&Alt Agr&Pes 
1.9 4.6 5.7 1.9 2.0 1.6 

Weights implied by correspondence analysis 

Pro&Tec PersDir ServAdm Com&Ven Hot&Alt Agr&Pes 
9.6 49.4 8.8 8.5 10.0 8.1 

Indust ForArm 
2.4 263.0 

Indust ForArm 
0.9 41.1 
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It is interesting to see that the variable "ForArm" (forces armades in 
Catalan, i.e. armed forces) receives much higher weight than the others, very 
similar to  the situation in CA where it is weighted highly because of very 
low relative frequency and thus low variance. The arc cos distance inherently 
weights this variable highly as well even though this is not a t  all obvious from 
its definition in (10). 

The fit of the weighted Euclidean distances to the arc cos distances is 
excellent: sum-of-squared distances, SSD = 9.570, with sum-of-squares due 
to regression, SSR = 9.327 (97.5%) and sum-of-squares due to error, SSE = 

0.243 (2.5%). 
In Figure 3 we see the form biplot of the results. The form biplot scales the 

rows (counties) in principal coordinates so that we can interpret the inter-row 
distances, and the columns (professional categories) in standard coordinates. 
Projecting the rows onto the biplot axes defined by the column vectors will 
give an approximation to the original percentages in the data matrix. The 
alternative is to plot the results as a covariance biplot where the rows are in 
standard coordinates and the columns are in principal coordinates, in which 
case the covariance structure amongst the columns is displayed. 

Finally, in Table 2 we have the contributions to inertia that are the spin- 
off of our approach - we show the contributions for the column points. The 
columns of Table 1 relative to their sums (the principal inertias, or squared 
singular values) are given in the columns headed CTR, for each of the two 
dimensions, often called the absolute contributions in correspondence analysis. 
The rows of Table 1 relative to  their sums (the inertias of the column points) 
are given in the columns headed COR. 

Fig. 2. Comparison of estimated weights to fit optimally to arc cos distances and 
correspondence analysis weights. 
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Fig. 3. Form biplot of 41 Catalan counties (in principal coordinates) and 8 profes-
sional categories (in standard coordinates)
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CTR COR 

24 304 
5 308 

243 754 
47 604 
4 1  280 

636 907 
0 1 
0 0 

CTR 

4 6 
2 

4 6 
24 
8 9 

1 0 5  
676  

8 

COR 

318 
7 7  
7 8  

1 6 8  
328 

8 2  
997 
1 4  8 

F'rindpd inertias 0 .0203 0 . 0 1 1 1  
c/o o f  total) ( 5 7 . 1 % )  ( 3 1 . 1 % )  

Table 2. Decomposition of inertia of 8 column points along first two principal axes. 
The principal inertias (eigenvalues, or squared singular values) are decomposed 
amongst the points as given in the columns CTR, given in LLpermills", for example 
the first axis is determined mostly by points Agric&Pesc (63.6%) and ServAdm 
(24.3%). These are the columns of Table 1 relative to their totals. The inertia of a 
point is decomposed along the principal axes according to the values in the columns 
COR. These are the rows of Table 1 relative to their totals, and are also squared 
correlations (angle cosines) of the points with the principal axes. Thus the point 
Indust is mostly explained by the second axis, while ForAnn  is not well explained 
by either axis and also plays hardly any role in determining the two-dimensional 
solution, even with the large weight assigned to it. The column QLT refers to quality 
of display in the plane, and is the sum of the COR columns. 
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Abstract. In this paper, we focus on algorithms for Robust Procrustes Analysis 
that are used to rotate a solution of coordinates towards a target solution while 
controlling outliers. Verboon (1994) and Verboon and Heiser (1992) showed how 
iterative weighted least-squares can be used to solve the problem. Kiers (1997) 
improved upon their algorithm by using iterative majorization. In this paper, we 
propose a new method called "weighted majorization" that improves on the method 
by Kiers (1997). A simulation study shows that compared to the method by Kiers 
(1997), the solutions obtained by weighted majorization are in almost all cases of 
better quality and are obtained significantly faster. 

1 Introduction 

In exploratory data analysis, quite often situations arise where for the same 
objects two sets of coordinates are derived that may be approximate rotations 
of each other. For example, principal components analysis applied to two 
different samples yields two sets of components that may be rotations of 
each other. Also, in the area of multidimensional scaling, two dissimilarity 
matrices of the same objects may yield two configurations where most points 
are approximate rotations of each other with the exception of a few outlying 
objects. 

For this reason, procedures that aim at detecting such possible similarities 
in two coordinate matrices are welcome. Procrustes analysis (see Hurley and 
Cattell (1962)) deals with the problem of fitting a set of points, say matrix 
X, to a target coordinate matrix Y by a rotation matrix T, in such a way 
that XT resembles Y as closely as possible. 

The starting point in the ordinary Procrustes problem is to minimize the 
badness-of-fit function 
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where Y and X are n x k known coordinate matrices, T is a k x k (unknown) 
rotation matrix and eij is the residual of the model. Note that by restricting T 
to be a rotation matrix, the shape of X is preserved. This restriction amounts 
to requiring that T be orthonormal, that is, TT' = TIT = I. Green (1952), 
Cliff (1966), and Schijnemann (1966) provided a solution for the rotation 
matrix T that minimizes (1). 

A disadvantage of least-squares modelling is that outliers may have a large 
influence on the rotation. To down-weight the effect of large residuals, sev- 
eral proposals exist in the literature, see, for instance, Huber (1964), Beaton 
and Tukey (1974) and Mosteller and Tukey (1977). In particular, Verboon 
(1994) proposed a robust form of Procrustes analysis, considering the sum of 
absolute residuals, L,(T) = x:=, x:=, e,l, and solved it by using iterative 
majorization. For details on iterative majorization, see De Leeuw (1992,1994), 
Heiser (1995), Borg and Groenen (1997), Kiers (2002). Verboon (1994) also 
proved that his algorithm is the same as iterated reweighted least-squares, 
because it requires iteratively minimizing the majorizing function 

where the superscript 0 is used to indicate the estimates from the previous 
iteration. It is not difficult to see that p R ( T , T 0 )  is (up to a constant) a 
weighted least-squares function in the residual eij and thus in T .  Therefore, 
it suffices to look at the weighted Procrustes problem 

with weights vlij = l/le$1, assuming that leyjl > 0. If all the weights wij are 
equal, then Lwp,,,(T) is minimized by the standard least-squares Procrustes 
Analysis solution. However, when minimizing (3), the weights will generally 
not all be the same and a nonstandard procedure is needed. 

Kiers (1997) discusses an iterative majorization algorithm for weighted 
Procrustes analysis, which improves upon Verboon (1994). Even though the 
method by Kiers converges much faster than Verboon's (1994), it can still 
be quite slow, especially in the case of big differences between the residu- 
als. In this paper, we propose an adaptation of the method by Kiers (1997) 
called weighted majorization and apply it to robust Procrustes analysis. We 
show that the method by Kiers can be seen as a special case of weighted ma- 
jorization. Finally, we present a small simulation study on the computational 
efficiency and quality of the new weighted majorization approach for robust 
Procrustean analysis. 
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2 The method by Kiers (1997) 

In this section, we discuss the method by Kiers (1997) in some detail and 
show when this method may become slow. 

The weighted least-squares Procrustes loss function in (3) may be written 
as 

where e is the n k  vector with residuals eij and D w  is an n k  x n k  diagonal 
matrix with elements wij on the diagonal. 

The heart of majorization methods consists of a proper majorizing in- 
equality. Let m be the overall maximum value of W, so that m = maxij wij. 
Then, Kiers (1997) applies the inequality 

which was first used by Heiser (1987) in the context of iterative majorization. 
This inequality holds because the matrix D w  - m I  is negative semi-definite. 
With further expansions and some rearranging we get 

Define cl = meO'eO - e O ' ~ , e O  and a = e0 - m-lDweO. Now we can write 
a majorizing inequality for (4) as 

Lwproc(T) = elDwe 5 m(e - z)'(e - z) - mz'z + cl = ,u(T, To). (7) 

Expression (7) shows the strength of the method by Kiers: the original 
weighted least-squares problem has been transformed in an unweighted one 
(since m is a constant) for which an analytical solution is available by the 
SVD. In addition, the method by Kiers is very general: it is applicable to 
any weighted least-squares model which has for the unweighted case an easy 
least-squares solution or fitting algorithm available. Despite its generality, the 
method by Kiers can be very slow for particular structures of weights. To see 
why this is so, we first note that zi has elements 

Then, we can write 
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n k

( e _ Z)'(e - z) =

= E X > ; - x ^ ) 2 =t r (R - XT')'(R - X T ' ) -
*=i j=i

where

From (9) we see that x^tj is fitted to the convex combination [1—Wij/m]ŷ  t°+
(uiij/mi)yij for all i, j . Remember that m is the overall largest weight wij so
that 0 < Wij < m implies 0 < Wij/m < 1. Now, if there is a single weight
Wij within the matrix that is much larger than all the other weights, then
for those ij we have w^/m <§; 1, so that x? t° dominates yij. In other words,
when updating the majorizing function /x(T, T°), x^tj is fitted mostly to the
previous iteration x°'t° and only to a minor extent to j / ^ - . The consequence
is that the more deviant the largest w^ is from the other weights, the slower
the algorithm by Kiers (1997) will be.

3 Weighted majorization

The main idea of weighted majorization is to apply the majorization inequal-
ity (5) rowwise. The corresponding majorizing inequality can be obtained
from (5) by adding a subscript for row i, that is,

(e, - e?)'(DWi - mil)(ei - e°) < 0, (10)

where DWi is the diagonal matrix of the vector of row weights w^ with ele-
ments Wij and rrij is defined as the maximum row value of Wj. The inequality
still holds since DWi — rrijl is negative semi-definite.

The first consequence of weighted majorization is that instead of a single
majorizing function for all the residuals, now we have different majorizing
functions for each of the n rows. So, expanding (10) in the same way as (6)
and summing over all rows gives

ei - 2 2J mie/[ei° - mi
 xDWie°] + 2 J CH

, (11)
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with cli = miepleE) - e p / ~ ~ , e E ) .  The second consequence is that the elements 
r i j  are constructed differently, and this is just the core of the improvement 
in our method, as it will be shown in a moment. We need at  first some 
additional notations: we let c = C:==, ci and define a matrix Z containing 
rows zi = eg - m:'~,~ep. Moreover, we collect the maximum row values mi 
in a diagonal matrix D m ,  where m = (ml ,  mz, . . , m,). Then we may express 
p1 ( T ,  TO) as 

The only important part of (12) is 

with 

W . .  (310 W i j  r . . -  1 - J^ Xi t j  +-yij. 
zJ  - [ m i ]  mi 

If there are big differences among the weights, the effect is limited only to 
the single row to  which the large weight belongs, since the term wij/mi now 
depends on the denominator mi ,  that is, the largest weight per row, while 
in Kiers (1997) it depends on the overall largest weight. Comparing (9) to 
(14) shows that in the special case of D m  = in1 (thus all maximum row 
weights are the same) weighted majorization coincides with the method by 
Kiers (1997). 

The weighted majorization algorithm will to  a large extent fit xttj to  the 
data yij, and in those rows with high weights will fit x:tj to  the values of the 
previous iteration. By definition, wij/mi 2 wij/m implying that in weighted 
majorization x i t j  is fitted more to yij than to  xglty compared to  the method 
by Kiers, so that the method by Kiers is expected to be slower than ours. 
Another property of weighted majorization is that its majorizing function is 
always smaller than or equal to the one by Kiers (1997), that is, 

The proof can be found in Groenen et al. (2003). 
The optimal T in (13) can be found in one step by computing an appro- 

priate singular value decompositioil in each iteration. Expanding (13) and 
taking the constraint TIT = TT1 = I into account shows that 

t r  ( R  - XT1)'Dm ( R  - XT') 

= t r  RIDmR + t r  T X ' D m X T 1  - 2tr TIXDmR 
= t r  R I D m R  + t r  X I D m X  - 2tr T I X D m R  

= cz - 2tr T I X D m R .  
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The result in (12) allows us to write 

where S = XDmR and c3 = c- t r  ZIDmZ. It is easy to realize that minimiz- 
ing p l (T ,  T o )  over T is equivalent to maximizing the term tr  T'S. According 
to Ten Berge (1993), the upper bound of tr T'S is attained at T = KL' if 
one defines the singular value decomposition (SVD) of S as S = KAL' with 
K and L' orthonormal matrices (that is, K'K = L'L = I) and A diagonal. 

4 Some numerical results 

To see how much the proposed method of weighted majorization improves 
upon the method by Kiers (1997), we set up a small simulation study. The 
data X and Y are generated as follows: X is drawn from the standard normal 
distribution, T was drawn randomly and orthonormal and Y was obtained as 
Y = X T .  As we are in the robust context, we also added errors and outliers 
to X.  

In this simulation, we varied the following factors: the size of known ma- 
trices X and Y ,  n (n = 20,40), k (k = 2,4,8),  the proportion of error 
(0, . l ,  .5, I ) ,  and the number of outliers (O%, lo%, 20%), following Verboon 
and Heiser (1992). In particular, the errors on X were proportional to the 
standard deviations of the columns, while outliers were created by choosing 
randomly p rows of X and multiplying them by -10. The different combina- 
tions yield 72 different data sets. For each data set, we ran the algorithm by 
Kiers and weighted majorization 100 times, so that a total number of 7200 
comparisons were made. In every comparison, we used the same Y ,  X ,  and 
the same initial random T. Both algorithms were stopped whenever difference 
in LwProc(T) between two subsequent iterations was smaller than lo-'. 

We studied two aspects in our comparison: efficiency and quality of the 
solution. We define the relative efficiency of the two methods as 

number of iterations in Kiers (1997) 
relative efficiency = 

number of iterations in weighted majorization 

Of course, measuring efficiency only makes sense for those runs that stop at 
the same local minimum. We defined the latter to be the case if both loss 
function values had at least four decimal places equal. In this way, 377 of 
the 7200 runs were selected to compute the relative efficiency. On average, 
weighted majorization was about 14.5 times faster than the method by Kiers. 
In a single case, both methods used exactly the same number of iterations, 
in about 4% of the cases, weighted majorization was slower than the method 
by Kiers, and in the remaining 96% of the runs, weighted majorization was 
faster than the method by Kiers (up to a factor 131). 

It turns out that robust Procrustes analysis suffers from many local min- 
ima. Therefore, to study the quality of the solution, we adopted a multistart 
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strategy, consisting of selecting the best solution out of one hundred random 
starts. Of the 72 different data sets, the weighted majorization approach 
yielded the lowest local minimum in 98% of the cases and equal loss func- 
tion values in the other 2%: weighted majorization was never worse than the 
method by Kiers. The set up of our simulation study produced six data sets 
with zero error, that necessarily have a minimum with zero loss. Weighted 
majorization found two zero loss solutions, two cases with a slight nonzero 
loss (respectively 0.03 and 0.05)) and two with strongly nonzero solutions 
(0.09 and 0.1). The method by Kiers found a strongly nonzero loss in all six 
cases. 

The results seem to  indicate that weighted majorization yields superior 
quality solutions. In cases where the two algorithms reach the same local 
minimum, weighted majorization is much faster than the method by Kiers. 

5 Conclusions 

In this paper, we presented a new application of the weighted majorization 
algorithm to robust Procrustes analysis, and compared it to the one pro- 
posed by Kiers (1997). We proved that the method by Kiers is a special case 
of weighted majorization. The methods coincide if the minimum absolute 
residual per row is the same for all rows (which hardly happens). Numerical 
results indicate that our method converges on average 14 times faster to  a 
solution and yields in almost all cases better quality solutions. The weighted 
majorization method proposed here is not limited to  robust Procrustes analy- 
sis only. In fact, it can be applied to any decomposition model that minimizes 
least-squares error with differential weights and that can be solved easily in 
a diagonal metric D (see Groenen et al. (2003)). 
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Abstract. Generalized linear modelling (GLM) is a versatile statistical technique, 
which may be viewed as a generalization of well-known techniques such as least 
squares regression, analysis of variance, loglinear modelling, and logistic regression. 
In many applications, low-order interaction (such as bivariate interaction) terms are 
included in the model. However, as the number of categorical variables increases, 
the total number of low-order interactions also increases dramatically. In this pa- 
per, we propose to constrain bivariate interactions by a bi-additive model which 
allows a simple graphical representation in which each category of every variable is 
represented by a vector. 

1 Introduction 

Generalized linear modelling (GLM) is a versatile statistical technique, which 
may be viewed as a generalization of well-known techniques such as least 
squares regression, analysis of variance, loglinear modelling, logistic regres- 
sion (Nelder and Wedderburn (1972); McCullagh and Nelder(1989)). In this 
paper, we limit ourselves to categorical predictor variables. Then, GLMs may 
consist of main effects, bivariate, and higher-order interactions. Since higher 
order interactions are generally difficult to interpret, we consider only bi- 
variate interactions here. Note that as  the number of categorical variables m 
increases, the total number of bivariate interactions increases to m(m - 1)/2. 
Let the number of categories for variable j be K j .  Then, the total num- 
ber of interactions parameters equals Cy=l C&+, KjK1.  As the number of 
categories increases, it becomes increasingly more difficult to interpret the 
estimated interaction parameters because there are so many of them. Our 
aim here is to provide a simple graphical representation to facilitate the in- 
terpretation of all bivariate interactions. To reach this goal, we impose rank 
restrictions on the bivariate interactions, thus leading to a bi-additive model. 

For two categorical variables, van Eeuwijk (1995), De Falguerolles and 
Francis (1992) and Gabriel (1996) have provided algorithms for a bi-additive 
model within GLM. Here we propose a bi-additive model for more than two 
categorical predictors. To some extent, the proposed model can be seen as a 
generalization of multiple correspondence analysis to GLM. 



160 Groenen and Koning 

2 Generalized bi-additive modelling 

Let us introduce some notation needed for generalized linear modelling 
(GLM). Let y be the dependent vector of n objects that needs to be predicted 
by m categorical variables. Also, let the categorical variable j be represented 
by the indicator matrix G j  with a zero-one variable for each category with 
gijk = 1 if observation i falls in category k of variable j and gijk = 0 other- 
wise. Let the number of categories of variable j be denoted by K j  and gij be 
row i of G j .  

The central idea behind GLM is that the distribution of the dependent 
variable belongs to a given family of distributions (popular choices are the 
Normal, Poisson, binomial, gamma, and inverse Gaussian families). This 
leaves some freedom, which allows the distribution to vary from object to 
object. Especially, the expectation pi of the dependent variable may differ 
from object to object, and is assumed to depend on the values taken by 
the predictor variables through the linear predictor qi (examples are given 
below). Finally, the inverse of the link function g(pi) = qi relates the lin- 
ear predictor to pi. Some standard link functions are the logarithm, power, 
logistic, identity, and probit (McCullagh and Nelder(1989)). 

A simple linear predictor may be specified by g = c + xy=l gga j ,  where 
c is an overall mean and aj is a vector of main effect for variable 3 .  However, 
we are interested in bivariate interactions as well, so that we need the linear 
predictor 

m m-l m 

where Bj l  is the K j  x Kl matrix of bivariate interactions between variables 
j and I. It is easily verified that gdjBjlgil selects the appropriate row and 
column element that corresponds to the categories of the variables j and 1 
of object i. Note that summation over j > 1 or j < I gives the same results, 
because one can always choose Bjl = Bij so that g:jBjlgil = gi1Bljgij. We 
can obtain more insight and compact notation by joining the effects of all 
variables. Let G be the super indicator matrix with all m variables next to 
each other, that is, G = [GI,  G2,  . . . , Gm], gi be row i of G ,  and a be the 
vector of all main effects. Finally, all bivariate interaction effects are joined 
into the symmetric partitioned block matrix 

The diagonal blocks are zero because j # I. Then, we may write 
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The basic idea of this paper is to impose constraints on the interaction 
terms B j l .  The type of constraint that we consider is the one of common 
rank-reduction, that is, to require that 

with Y j  a Kj x p  matrix and Y1 a K L  x p  matrix being of rank not higher than 
p > 0. Such rank constraints are similar to the ones used in multiple corre- 
spondence analysis, joint correspondence analysis, or homogeneity analysis. 
This rank constrained bi-additive model can be expressed as 

To avoid that Yj also estimates main effects, we impose the restriction that 
Yj has column mean zero. This restriction also implies that Bjl = YjYI has 
zero row and column mean, which is a restriction that is usually imposed on 
bivariate interactions to ensure uniqueness. We shall refer to the matrix Yj 
as the in teract ion generat ing matrix of variable j ,  and to  the kth column of 
Y j  as the kth dimension of interaction generators belonging to the categor- 
ical variable j .  To fit this model, we have developed a prototype in MatLab 
that optimizes the likelihood by iterated weighted least squares and iterative 
majorization. 

Note that standard likelihood theory applies to model (3))  and hence we 
may employ the likelihood ratio test to determine the rank p. From this 
perspective, it is relevant to know the degrees of freedom associated to the 
rank p model. Observe that the parameters in the rank p model are the 
constant term c, the main effect vectors aj and the elements of the interaction 
generating matrix Yj. Hence, the number of parameters in this model equals 

However, we have also imposed several restrictions on these parameters. Each 
of the m main effect vectors and each of the p dimensions of the m in- 
teraction generators should add up to  zero. Moreover, the interaction gen- 
erating matrices Yj can be rotated simultaneously by a single orthonor- 
ma1 rotation matrix T (with T'T = TT' = I) without affecting Bjl since 
BJ1  = Y j Y i  = Y j T T I Y I  for all j and 1. Therefore, without loss of general- 
ity, we impose the restriction that Cj Yj is orthogonal thereby making the 
rotation of the Y j ' s  unique. This restriction implies fixing p(p - 1)/2 of the 
elements of the the Yi l s .  Summarizing, the number of restrictions in the rank 



162 Groenen and Koning 

The difference in number of parameters and number of restrictions 

is the degrees of freedom associated to the rank p model. Let n be the number 
of unique observed combinations of categories. If the data are presented in a 
contingency table and all cells have a nonzero observation, then n is equal to 
the number of cells. Now, the residual degrees of freedom dfres is obtained 
by n - dfmodel. 

There are several related models in the literature. In the simple case of 
only two categorical variables, our model is equivalent to the bi-additive mod- 
els of Van Eeuwijk (1995), De Falguerolles and Francis (1992), and Gabriel 
(1996). For the case of the identity link and the normal distribution, this 
model has been discussed by, amongst others, Mandel (1971) and Denis and 
Gower (1996). For three-way tables, several decomposition models have been 
proposed, see, for example, Becker and Clogg (1989) and Siciliano and Mooi- 
jaart (1997). De Rooij (2001) proposes a decomposition model using squared 
weighted Euclidean distances for three-way tables. The model proposed in 
this paper differs from these dimension reduction models in that we allow for 
more than two or three categorical predictor variables and that it operates 
on all bivariate interactions simultaneously. In addition, our model does not 
require that all cells of the m-way table are observed; some or many cells 
may be empty. 

3 Application: lung cancer in China 

Lung cancer is one of the leading causes of death in the People's Republic of 
China. It has been estimated that in the year 2025, the number of new cancer 
cases in China will reach three million, of which two million are associated 
with smoking, and the remaining one million attributable to other causes 
(Peto (1994); Peto, Chen and Boreham (1996)). 

A number of epidemiological studies have investigated the association 
between lung cancer and smoking in China. In Liu (1992), a meta-analysis 
is presented of eight case-control studies conducted in Beijing, Shanghai, 
Shenyang, Nanjing, Harbin, Zhengzhou, Taiyuan, and Nanchang. Table 1 
cross-classifies a total of 4081 lung cancer cases and 4338 controls according 
to smoking behaviour and city. In this paragraph, we investigate the relation 
between smoking and lung cancer in China by applying the generalized bi- 
additive model introduced in the previous section to the data in Table 1. 
Note that m = 3, K1 = 2, Kz = 2, and Kg = 8, and hence Cj"(Kj - 1) = 
1 + 1 + 7 = 9 .  
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City 
Lung Bei- Shang- Shen- Nan- Har- Zeng- Tai- Nan- 
cancer Smoker 1 jing hai yang jing bin zhou yuan chang 1 Total 

yes yes 1 126 908 913 235 402 182 60 104 1 2930 
yes no 1 3 5  497 336 58 121 72 11 2111121 
no yes 1 100 688 747 172 308 156 99 89 ( 2359 
no no 1 61 807 598 121 215 98 43 36 ( 1979 

Total 1 322 2900 2594 586 1046 508 213 250 1 8419 

Table 1. Frequencies of occurrence of lung cancer for (non) smokers in eight Chi- 
nese cities (taken from Liu (1992), see also Tabel 3.3 in Agresti (1996), p. 60). 

Model Deviance dfres p 
Main effects 457.1 22 .OOOO 
Bi-additive interaction model, rank 1 35.7 13.0007 
Bi-additive interaction model, rank 2 5.4 5 .3690 

Table 2. Summary of fit for different models, using the Poisson family of distribu- 
tions and the log link function on the data of Table 1. 

Table 2 summarizes the fit of three models when using the Poisson family 
of distributions and a log link function. The main effects model may be 
regarded as a special case of model (3) with rank p = 0. Next, adding a 
first dimension of bilinear interactions to each variable yields model (3) with 
rank p = 1. Finally, adding a second dimension of bilinear interactions to 
each variable yields model (3) with rank p = 2. Adding further dimensions 
would lead to models with degrees of freedom exceeding 32, the degrees of 
freedom of the saturated model; such models are unidentified, and have no 
statistical use. Note that the three models in Table 2 are nested, and thus 
may be compared as usual by means of the likelihood ratio test (that is, by 
relating differences in deviance to the chi-square distribution corresponding 
to the difference in degrees of freedom). Obviously, the rank 2 model is to be 
preferred, as it is the only model that fits the data. 

Applying the rank 2 bi-additive decomposition model to the Chinese lung 
cancer-smoking data yields the estimation results listed in Table 3. These 
results are visualized in Figure 1, where Panel (a) shows the main effects and 
Panel (b) gives the vectors for the interaction generators Yj. 

Figure 1 may be interpreted as follows. To see the size of the interac- 
tion effect, project the vector of one category onto a category of a different 
variable. For example, Taiyuan is characterized by having more nonsmokers 
than smokers, when corrected for the main effects of smoking. The reason 
is the nonsmoking vector projects highly on the vector of Taiyuan. Long 
vectors lead to longer projections and thus to a stronger interaction effect. 
Conversely, short vectors have short projections, indicating a small inter- 
action effect. Therefore, the cities Beijing, Harbin, Nanjing, Zengzhou, and 
Shenyang will only have small interaction effects with the other variables. 
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Variable Category 

a. Main effects 

Nanchang 

Lungcan 

Yes 
Smoking 

-.5 0 .5 
Dimension 1 

b. Plot of interaction effects 

Fig. 1. Representation of the bi-additive decomposition model of the Chinese lung 
cancer-smoking data. Panel (a) shows the main effects and Panel (b) the decompo- 
sition of the interactions in two dimensions. 

In Figure 1, three Chinese cities relatively stand out: Nanchang, Taiyuan 
and Shanghai. Nanchang was badly battered after the Communist takeover, 
but reinvented itself as a centre of modern steel and chemical industry (Leff- 
man, Lewis and Atiyah (2000), p. 52). Taiyuan's extensive coal mines were 
constructed by the Japanese in 1940; serious industrialization began after the 
Communist takeover and today it is the factories that dominate, relentlessly 
processing the region's coal and mineral deposits (Leffman, et al. (2000)' p. 

Main Interaction generators 
Variable Cateaorv effects Dim 1 Dim 2 - " 

Overall mean c 5.005 
Lung cancer Yes 0.410 -0.494 -0.169 

No -0.410 0.494 0.169 
Smoking Yes -0.124 -0.055 -0.413 

No 0.124 0.055 
City Beijing -0.727 -0.015 

Shanghai 1.557 0.348 
Shenyang 1.406 0.124 
Nanjing -0.121 0.004 
Harbin 0.472 0.047 
Zengzhou -0.239 0.081 
Taiyuan -1.270 -0.342 
Nanchana -1.078 -0.248 

Table 3. Estimation results obtained by applying the rank 2 bi-additive decompo- 
sition model to the Chinese lung cancer-smoking data. 
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2 , , , 
Smoker 

-.5 0 5 
D~menston 1 

a. Plot of interaction effects b. Interaction effects conditioned 
on having lungcancer 

Fig. 2. Interaction terms conditioned on category 'yes' of the variable 'lung cancer'. 
Panel (a) shows the projections of all other categories on category 'yes' of the 
variable 'lung cancer' and Panel (b) the values of the interactions. 

225). After forty years of stagnation, Shanghai seems certain to recapture 
its position as East Asia's leading business city, a status it last held before 
World War I1 (Leffman, et al. (2000), p. 337). 

Recall that Table 1 was compiled by Liu (1992) from the results of eight 
different case-control studies investigating lung cancer in China. In this re- 
spect, the interactions between the variable Lung Cancer on one hand and 
the variables Smoking and City on the other hand are of primary interest. 
Thus, to gain insight into the causes of lung cancer in China, we should 
project each category of the variables Smoking and City onto the category 
Yes of the variable Lung Cancer, as indicated in Panel (a) of Figure 2. Panel 
(b) visualizes the interaction values according to the bi-additive interaction 
model for the categories of Smoking and City conditioned on having lung 
cancer. As to  be expected, smoking is clearly a risk factor for obtaining lung 
cancer. However, Panel (b) of Figure 2 seems to  suggest that there is also an 
environmental risk factor, as the interaction between the industrial cities of 
Nanchang and Taiyuan on one hand and the presence of lung cancer on the 
other hand is much higher than the interaction between the leading business 
city Shanghai and the presence of lung cancer. 

4 Conclusions 

We have proposed a new model for representing two-way interactions for a 
GLM with more than two categorical predictor variables, where we constrain 
the two-way interactions to have reduced rank. Each category is represented 
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by a vector in a plot. The interaction effect between two categories of differ- 
ent predictor variables is obtained by projecting the vector of one category 
onto the vector of another. Categories of the same variable should not be 
compared within the plot, but only by looking at the main effects. The main 
advantage of the bi-additive interaction model is that interactions between 
several variables can be visualized in a relatively simple display, even when 
the total number of categories is large. In future publications we intend to 
study the stability of the estimated parameters either through the bootstrap 
or by theoretical derivations. 
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Abstract. An overview is presented of the various procedures available for model 
selection in three-mode models, especially the Tucker2 model, the Tucker3 model 
and the Parafac model. Various procedures will be reviewed such as selecting from 
a hierarchy, three-mode scree plots, deviance plot, sums of squares partitioning, 
bootstrap and jackknife procedures. 

1 Introduction 

Whereas model selection is difficult in any context, in three-mode analysis 
it is even more complicated due to different models and the lack of a clear 
stochastic context. Moreover, in the beginning there was the Tucker3 model 
(Tucker (1966)) for which only the, already difficult, choice of components 
for each mode had to be made (within-model choice), now also the choice has 
to be made of the proper model (between-model choice). In many cases, the 
type of model is dictated by the nature of the data and in other cases one 
particular class of models is required, but generally which model within a class 
is the most appropriate is not known. To find a proper model, considerations 
of parsimony, stability, expected validity in new data sets have to be taken 
into account. Various tools for evaluating models both for the within-model 
choice and the between-model choice will be discussed in this paper. 

In this paper we will concentrate on component models and their selection. 
For this class of models, methods are available for selecting models within 
the class of component models which pay attention to  the relative fit of 
models with different numbers of components and to the fit of different, but 
comparable models. A second approach to  model selection, which is especially 
useful when the search is narrowed down to  a limited number of candidate 
models is to use resampling to assess the stability of the fit of the models and 
jackknife procedures to assess the predictive validity. Pioneering work was 
done by Harshman and DeSarbo (1984) in introducing split-half procedures 
for the Parafac model and this work was taken up and extended by Kiers and 
Van Mechelen (2001). 
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2 Degrees of freedom 

Central to model comparison is the concept of degrees of freedom. For mod- 
elling three-way interactions in an ANOVA context Gower (1977) proposed 
to use Mandel (1971)'s idea of simply counting the number of parameters 
and subtracting them from the number of independent data points to  derive 
at the appropriate degrees of freedom. Weesie and Van Houwelingen (1983) 
were the first to use this approach to the degrees of freedom when fitting 
three-mode models. They discussed the degrees of freedom for the Tucker3 
model, but the principle can readily be extended to the Tucker2 and Parafac 
models. 

3 Selecting a Tucker model 

Timmerman and Kiers (2000) suggested a model-selection procedure, (the 
DifFit procedure), analogous to Cattell's scree plot for two-mode com- 
ponent analysis. In particular, they based the selection on choosing the 
model with the lowest residual sum of squares (or deviance sum of squares), 
within the class of models with the same sum of numbers of components 
(S = P + Q + R). Their procedure was designed to be equivalent to Cat- 
tell's eigenvalue larger than one criterion in two-mode PCA. To visualise the 
procedure proposed by Timmerman & Kiers, it is proposed to construct a 
version of Cattell's scree plot, the Three-mode scree plot, in which the de- 
viance of each model is plotted versus the sum of numbers of components S. 
The DifFit is then essentially a way to define the convex hull in the Three- 
mode scree plot and the models which are taken into consideration are those 
on the convex hull. The evaluation of the deviance together with the degrees 
of freedom is an alternative to the Timmerman & Kiers' approach (First used 
in three-mode analysis by Kroonenberg and Van der Voort (1987).) In this 
case, the deviance of each model is plotted versus the degrees of freedom df 
(Deviance plot). Also in this plot, a convex hull can be drawn to connect 
favoured models (see e.g. Murakami and Kroonenberg, 2003). 

Even though the three-mode scree plot and the deviance plot are designed 
to assist choosing between Tucker models differing in number of components, 
it is equally possible to include models from another model classes, such as 
the appropriate Tucker2 models and Parafac models. 

4 Selecting a Parafac model 

In theory, selecting a Parafac model is much simpler than a Tucker model 
because all modes have the same number of components, so that there are 
only a few models possible; models with more than four components are 
relatively rare. Because the Parafac model is a model with restrictions, often 



Selecting Three-Mode Models 169 

only model with a limited number of components fit the data. Effectively, one 
tries to the fit the largest possible Parafac model, in contrast with Tucker 
models, where one seeks an adequate model for describing the variability. 
Harshman (1984) gives a whole catalogue of considerations how to search for 
the maximal Parafac model, amongst others using a type of scree plot and 
split-half analyses. 

Bro (1998, p. 113-122) proposed an approach for selecting the number 
of Parafac components using the principle of core consis tency to assess how 
many Parafac components the data can sustain (see also Bro, 2003). It is 
assessed how far away the core array derived from the Parafac components 
is from a superdiagonal core array. The Degree of superdiagonality may also 
be used for the same purpose (see Anderson and Henrion (1999)). It is equal 
to the sum of squares of the superdiagonal elements divided by the total sum 
of squares of the core elements. All three measures will be equal to 1 in the 
superdiagonal case. 

5 Selecting from a hierarchy 

In two papers Kiers (1988, 1991a) discussed the comparison between several 
different three-mode component models. He showed explicitly how several 
three-mode models fit into the hierarchies. The starting point of the hierarchy 
is that one mode is singled out as the reference mode.  First, the number of 
components to adequately describe this mode is determined via a Tucker1 
analysis. The fit of this solution is the standard against which the other 
models are held, and for the other models the extent to which they succeed 
approaching this fit with far less parameters is evaluated. 

6 Model stability and predictive power 

In complex models, such as three-mode models, generally no distributional as- 
sumptions are or can be made and therefore standard errors cannot be deter- 
mined. Since the development of high-speed computers, computer-intensive 
procedures have been developed to find non-parametric estimates of the pa- 
rameters of arbitrary distributions and their standard errors. 

6.1 Bootstrap procedures 

The fundamental principle of the bootstrap procedure, that the observed dis- 
tribution is the best estimate of the population distribution, was established 
by Efron (1979). Given this principle, sampling from the observed distribu- 
tion is the best one can do bar sampling from the population distribution. 
Therefore, in order get an estimate for a population parameter one repeatedly 
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samples with replacement from the observed distribution with equal proba- 
bility for all data points. For each such sample the value of the estimator 
for the parameter is calculated and the mean value of the estimates is the 
best estimate for the population parameter and the standard deviation of the 
estimates is its standard error. Such an approach can be extremely time con- 
suming especially in three-mode methods where the estimation of the model 
parameters is already iterative. However, it is the only way to  get standard 
errors for the parameters estimates and it gives a t  the same time information 
on the position of the observed results with respect to the sampling distribu- 
tion. Kiers (submitted) is the most update source on bootstrap procedures 
for three-mode analysis. 

6.2 Jackknife procedures and predictive power 

Another concern in model building is the question how the model found will 
stand up in new samples. Apart from having the data of a similar study, 
the replication issue has to be solved internally in the data set itself. The 
basic idea behind this approach, the jackknife, is to develop the model on 
a part of the data and then estimate the values of those data points which 
were not involved in the estimation. Subsequently, the estimated value is 
compared to the originally observed value and when across the whole data 
set such differences are small the parameter estimates are said to have good 
predictive power. The predictive power of a model is generally estimated by 
the predictive residual error sum of squares (PRESS)  and it is calculated by 
comparing the values of all original data points with their estimated values 
on the basis of models with certain data points left out. Louwerse, Smilde 
and Kiers (1999) suggested a strategy to minimise the number of models that 
have to be inspected to find models with sufficiently low P R E S S  values. 

There are several ways to carry out jackknife procedures in three-mode 
analysis. For instance Riu and Bro (2003) delete a complete level at a time. 
Their aim was to use the jackknife estimation of standard errors and to search 
for outliers, but not to assess predictive power of the model a t  hand. To do so 
in their case would have been difficult because no reliable and stable estimates 
can be calculated for the parameters in the component matrix associated with 
the removed level. A more subtle version of this proposal was put forward 
by Louwerse et al. (1999), based on Eastment and Krzanowski (1982). They 
also removed complete slices but developed a sophisticated way to combine 
the results of leaving each (group of) slices in turn so that the predictive 
power could be assessed. In that paper it was also proposed to remove each 
data point in turn (or several of them a t  the same time) by declaring it to be 
missing, use the basic missing data Expectation-Maximisation algorithm to 
estimate the missing data point and compare this estimate with the observed 
value. In principle, this procedure is what is required, the only drawback is 
that to leave out single data points is very time consuming for large data sets. 
A possible compromise, is to leave out a level of an (in principle) stochastic 
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mode, but in order t o  be able to  estimate the  associated parameters in the  
component matrix not all elements of the  slice associated with this level are 
deleted together but only a random half of them. The  other half is deleted 
in the  next step, so that  all elements of the da ta  array are eliminated once. 
In this way, there are always da ta  points in a slice to  estimate the  associated 
parameter values in the  component matrix. The  estimation procedure is then 
the  same as  in Louwerse et al. (1999) , i.e. via a n  E-M approach. 

7 Conclusion 

In this paper we have given an  overview of the  selection of three-mode models 
indicating tha t  considerations about the  relative goodness-of-fit, the  stability, 
and predictive validity all play a role. Although not emphasized in this brief 
overview, model comparisons can be made within the same family of models, 
across different families of models, and a t  a more detailed level within a 
particular member of family. In the latter case one can investigate the  fit 
within the  model itself t o  assess whether all parts  of the  model fit equally well. 
The  fact tha t  we are dealing with three rather than two modes complicates 
the  choice of a n  adequate model in almost all aspects, and therefore it cannot 
be stated too emphatically that  there goes nothing above the  availability of 
solid substantive theory t o  guide us in the  process of selection. 
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Abstract. Many real world phenomena are better represented by non-precise data 
rather than by single-valued data. In fact, non-precise data represent two sources 
of variability: the natural phenomena variability and the variability or uncertainty 
induced by measurement errors or determined by specific experimental conditions. 
The latter variability source is named imprecision. When there are information 
about the imprecision distribution the fuzzy data coding is used to represent the 
imprecision. However, in many cases imprecise data are natively defined only by the 
minimum and maximum values. Technical specifications, stock-market daily prices, 
survey data are some examples of such kind of data. In these cases, interval data 
represent a good data coding to take into account the imprecision. This paper aims 
at describing multiple imprecise data by means of a suitable Principal Component 
Analysis that is based on specific interval data coding taking into account both 
sources of variation. 

1 Introduction 

Generally, in statistical analysis, we handle single-valued variables; however, 
in many cases, imprecise data  represent a variable coding that better pre- 
serves the variables information. This paper deals with variables that cannot 
be measured in a precise way. Therefore, in order to  represent the vagueness 
and uncertainty of the data,  we propose to  adopt a set-valued coding for the 
generic variable Y,  instead of the classical single-valued one. An interval [ y ]  
is a coding able to  represent a continuous and uniformly dense set y  c EX, 
under the hypothesis that the distribution of Y is uniform or unknown over 
the interval. Under these assumptions, any point E y  represents an ad- 
missible numerical coding of Y and the interval numerical coding [ y ]  of y  is 
given by: 

[YI = b i n  ( Y ) ,  (Y)l = [g, 4, 
where - y and jj indicate the interval lower bound and upper bound, respec- 
tively. 
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The treatment of interval data is a very fascinating problem in Statistics, 
it allows to take into account the natural variability of phenomena under 
investigation and the other sources of variability, separately. 

This paper proposes a generalization of Principal Component Analysis 
(PCA) to interval data. 

We shortly remind the aim of PCA "...each point can be considered as a 
vector in  the p dimensional space ... The goal of the PCA is  to look for the 
best axis, the best plane or the best subspace to represent the projections of 
the distances among any generic couple of points with minimum distortion." 
(Lebart et al. 1995). This allows to visualize data as points in reduced sub- 
spaces and to analyze the points proximity in terms of their location with 
respect to the center of gravity. Dealing with interval data, the above defini- 
tion does not fit anymore and proper definitions and data treatments must 
be introduced. 

It is worth noticing that statistical units described by interval variables are 
no longer represented by points in Rp but as segments in R, parallelograms in 
R2 and boxes in higher dimensional spaces. As a consequence, other aspects 
than the location can be investigated in the analysis, i.e.: boxes size and 
shape. 

The example in section (4) describes a situation where data are natively 
generated as interval-valued and any punctual coding should induce a severe 
loss of information. 

2 Intervals and boxes 

Interval data numerical notation adopted in this paper is mainly derived from 
the Interval Arithmetic (IA) notation (Hickey et al. 2001). 

The generic interval-valued variable [XI is represented in the following 
notation: 

where inf[X] := X and sup[X] := 7 indicate the interval lower bound and 
upper bound, respectively. The set of all boxes of dimension p is denoted by 
IIRp (Kearfott 1996). 

A generic row interval vector [x] - ([x]~, . . . [ X ] ~ , .  . . , [XI,) corresponds to 
a p-dimensional box and is generally identified with the (nonempty) set of 
points between its lower and upper bounds, [x] = (2 E Rp I a: 5 5 5 T ) ,  so 
that a vector x E Rp is contained in a box [x], i.e., 5 E x - (2 5 5 5 5), 
where 5 represents a generic (arbitrary) point in a box x. The set of vertices 
of a box x represents the polytope S and corresponds to the 2p combinations 
of 3 and :. Combining all the vertices of S, we define the vertices matrix z, 
having 2p rows and p columns, that satisfies the following symmetric relation: 
Z H X. 
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Single valued variables represent a special case of interval variables. An 
interval of zero width [x] = [x, XI, called thin box, is identified with the unique 
point x it contains. 

Interval boxes can also be described in terms of midpoints and radii (or 
ranges) vectors that are defined as functions of min and max, as follows: 

1 
rad([x]) = A([x]) = - (S - x). 

2 

We will introduce some very basic definitions of the Interval Arithmetic. 
They allow to define the mean interval. 

The arithmetic operators in the IA framework are defined according to the 
following basic principle: let [xIi and [xIi, be two generic bounded intervals 
in IR and let xi E [xIi and xi? E [ x ] , ~  be two generic values, if [y] = [ x ] ~ O [ X ] ~ I  
then xioxit = y E [y],V(xi, xi/) ,  where O indicates any generic operator. 

Sum of [ x ] ~  and [ x ] ~ ,  is defined as: 

or equivalently in terms of midpoints and ranges we have 

The difference between two intervals is defined as [y] = [x]i - [ x ] i ~  = [ ( s  - 
- xi,), ( z  - X ~ I ) ] .  The computation of the product between two intervals corre- 
sponds to  t h e  min and max values i11 the set of all possible products between 
( 3 ,  c )  and (xi!, q): [y] = [x]i * [x]il = [y, v]. Writing the product formula in 
extended notation we have: - y = min{(xi - * zi,), (3 * zi,), ( z  * - xi!), (c * zi,)) 
and % = max{(xi * xi,), (xi * F),  ( c  * xi,), (z * zi,)). The same definition - - 
holds for the division of two generic intervals and can be generalized to  the 
case in which one interval is a tiny interval. 

Taking into account the definitions of sum and product we define the 
mean interval [z] as: . n 

where [ x ] ~  C R Vi E (1,. . . , n) .  

Interval matrices. An interval matrix is a n x p matrix [XI whose - entries 
[%I i j  = [:.. 23 ' Zij] (i  = 1, .  . . , n; j = 1 , .  . . , p )  are intervals and X E [XI is a 
generic single valued data matrix satisfying the following X 5 2 5 x. The 
notation for boxes is adapted to interval matrices in the natural component- 
wise way. 

The vertices matrix associated to the generic interval matrix [XI will be 
noted as Z and has n x 2 P  rows and p columns. 
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As shown in the above definitions, statistical units described by interval 
variables can be numerically represented in different ways. The choice of the 
representation affects the global analysis results. 

3 Midpoints-Ranges PCA (MR-PCA) 

PCA on interval-valued data can be resolved in terms of ranges, midpoints 
and inter-connection between midpoints and radii (Palumbo and Lauro 2003). 
The basic idea behind this proposal consists in the definition of the variance 
for interval variables based on the the notion of distance between intervals 
(Neumaier 1990) : 

The quantity 

vaq.] ([x]) := n-' C d(xi, [XI)" 

represents the variance for interval variables, where [x] indicates the mean 
interval vector obtained by the (1). The generalization of the above definitions 
to matrices is: 

The variance decomposition for interval-valued data suggests facing the 
PCA problem singly; the terms (XX)  and A([x])'A([x]) are two standard 
var-cov matrices computed on single-valued data. Two independent PCA's 
could be singly exploited on these two matrices that do not cover the whole 
variance. We propose a solution that takes into account the residual vari- 
ance ( P A ( [ X ] ) ~  +I A ( [ x ] ) ' ~ )  and, at the same time, allows getting a logical 
graphical representation of the statistical units as a whole. 

Standardization 
Moving from (2), we define the Standard Deviation for interval-valued vari- 

ables Let o: be the variance of the generic [XIj variable: o j  = @ is the 

standard deviation of [XIj and the square diagonal p x p matrix C has the 
generic term aj. The standardized interval matrix: [Y] = {XC-', A([x])C-') 
assuming [XI to be centered and divided by fi. 

Let us denote the correlation matrix by R :  

where (Y'A([Y])) and (A([Y])'Y) have the same diagonal elements. A note- 
worthy aspect is given by the decomposition of the total inertia. In fact, 
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t r (R)  = p and we observe that the quantity t r ( ~ / ~ )  and the quantity 
~~(A([z ] ) 'A( [z ] ) )  are the partial contributions to the total inertia given by 
midpoints and ranges, respectively. A residual inertia is given by 2 t r ( ~ / ~ ( [ ~ ] ) )  

M i d p o i n t s  a n d  R a n g e s  analysis  
We first consider a partial analysis based on the matrix of centers (or mid- 
points) values. This is a classical PCA on the interval midpoints whose solu- 
tions are given by the following eigensystem: 

where u& and A& are defined under the usual orthonormality constraints. 
Similarly to the PCA on midpoints, we solve the following eigensystem 

to get the ranges PCA solutions: 

with the same orthonormality constraints on A& and u& as in eq. (6) and 
with m = [1, . . . , p ] .  Both midpoints and ranges PCA's admit an independent 
representation. Of course, they have different meanings and outline different 
aspects. The quantity Em (A; + A;) < p but it does not include the whole 
variability because the residual inertia, given by the midpoints-radii inter- 
connection, has not yet been taken into account. 

Globa l  analysis  a n d  graphical  represen ta t ions  
Hereinafter, we propose a reconstruction formula that takes into account the 
three components of the variance (3). The interval bounds over the Principal 
Components (PC's) are derived from the midpoints and ranges coordinates, 
if PC's of ranges are superimposed on the PC's of midpoints. This can be 
achieved if ranges are rotated proportionally to their connections with mid- 
points. 

There exist several rotation techniques, we verified the properties of many 
of them. In this paper, as orthogonal congruence rotation criterion, we pro- 
pose to maximize the congruence coefficient proposed by Tucker between 
midpoints and radii: 

Verified under several different conditions, this rotation technique ensured 
best results in most cases. The computation of the rotation matrix T = 

[ t l , .  . . , tl, . . . , tp] can be done in several different ways. We choose the one 
based on the iterative algorithm proposed by (Kiers and Groenen 1996). 
Let $J; = XU; be the midpoints coordinates on the ath axis. The interval- 
described statistical units reconstruction on the same axis is given by the 
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rotated radii on u:. In mathematical notation: 4': = T(A([X])u:). The 
interval projection is obtained as: 

Like in single-valued PCA, also in interval-valued variables PCA, it is 
possible to define some indicators that are related to interval contribution. 

Measures of explanatory power can be defined with respect to the partial 
analyses (midpoints and radii) as well as with respect to the global analysis. 
Let us remind that the variability associated to each dimension is expressed 
by its related eigenvalue. 

The proportion of variability associated to the first dimension is given by: 

where A; and A? represent the first eigenvalues related to the midpoints and 
radii, respectively. They express a partial information; in fact, there is a 
residual variability that depends on the midpoints and radii connection that 
cannot be explicitly taken into account. 

In spite of the role they assume in classical PCA, in MR-PCA the 
squared cosines have an important role to evaluate the achieved results. 
Squared cosines, also called "relative contributions" represent the amount 
of the original distances displayed on the factorial plane. From the classi- 
cal PCA, we define these quantities as the ratio between the vector norms 
in the Principal components space and the original norms computed in RP: 
SqCosi = CPZ1 y&/ Ca(CP=l y i , j ~ j , ~ ) ~ ,  where a E [I, . . . , p] represents the 
set of eigenvectors with respect to which we intend compute the relative con- 
tributes. It is obvious that 0 < SqCos < 1, in the case of a = [I,  . . . , p] the 
s q c o s  = 1. 

In the case of interval-data, squared cosines are defined as: 

S ~ C O S  = Ea (I %,a I + I $*Iya I ) ~  
E;=l(I &,j I + l r ad ( [~ ] ) i , j  

where y!fi,, and +*I,, are defined in (9) and are centered variables. Differently 
from the case of single-valued data, the condition a = 1, .  . . , p  does not ensure 
that SqCos = 1. In most cases, we get squared cosines less then one even 
if we consider the whole set of the eigenvectors (u l ,  u2, . . . , up ) .  Due to the 
effects of the rotation, it may happen that SqCos > 1. In such a case the 
SqCos reveals that the rectangle associated to the element is oversized with 
respect to its original size. 

The radii rotation is obtained in the sense of a "least squares" analysis and 
this rotation does not ensure that the total variance is completely represented 
by the principal components. A measure of goodness-of-fit allows to evaluate 
the quality of the representation. We propose to adopt a generalization of 
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the R2 index obtained as the ratio between the variance defined with respect 
to the principal components and the variances in the original IIRP space. 
Variances are determined by the formula in (3). 

4 Application: Italian peppers dataset 

This section shows the results obtained by the method described in section 3. 
Data are reported in the table (1) and refer to some characteristics describing 
eight different species of Italian peppers. 

Table 1. Italian peppers dataset 

Data are natively defined as interval-valued variables, they represent some 
of the chemio-physical characteristics of eight different species of Italian pep- 
pers. This is a good example of data in which we can distinguish two different 
sources of variability: variability among different species; variation admitted 
inside one specific breed. Variation associated to each species is represented 
by the range: difference between the maximum and the minimum value. 

The correlation decomposition in the three parts: midpoints, ranges and 
the congruence between midpoints and ranges is reported in the tables be- 
low. Taking into account that the total inertia is equal to  p, let we analyze 
the variance components. The trace of the midpoints correlation matrix is 
equal to  1.973 and corresponds to 49.32% (1.973/4.000 = 0.4932) of the total 
variance. 

Id 
Corno di Bue 
Cuban 
Cuban Nano 
Grosso di Nocera 
Pimiento 
Quadrato D'Asti 
Sunnybrook 
Yolo Wonder 

Midpoints variance part (C) 

Protein -0.221 
Lipid -0.468 ,173 .612 .341 

Glucide -0.352 ,177 ,341 ,429 

Hz0 Protein 

The ranges variability is equal to  0.534 and corresponds to 13.35% of the 
total variability. 

90.45 
90.46 
87.89 
90.91 
89.92 
91.31 
89.65 
90.80 

0.67 
0.97 
0.89 
0.52 
0.61 
0.74 
0.85 
0.73 

93.15 
91.55 
91.40 
92.55 
93.43 
92.99 
92.58 
94.26 

0.95 
1.11 
1.25 
0.80 
1.09 
0.90 
1.50 
1.30 

Lipid 
0.23 
0.24 
0.28 
0.21 
0.23 
0.20 
0.20 
0.20 

Glucide 
0.30 
0.33 
0.35 
0.27 
0.24 
0.27 
0.28 
0.25 

5.07 
6.42 
6.80 
5.98 
5.23 
6.64 
5.52 
4.39 

7.76 
7.65 
9.91 
7.58 
7.94 
7.10 
8.52 
7.34 
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Ranges variance part (R) 

Protein 

The residual part, corresponding to the connection between centers and 
ranges, is the complement to p. In this case this quantity is equal to 
(4 - 1.973 - 0.534) = 1.493 and corresponds to the 37.32% of the total 
variance. 

Range-midpoints co-variance part (CR) 

The correlation matrix, resulting from the element-wise sum of the partial 
matrices, can be interpreted as a classical symmetric correlation matrix. It 
has values equal to one on the main diagonal and values between -1 and 1 
otherwise. 

Glucide 
0.284 
0.294 

Hz0  
Protein 
Lipid 

Glucide 

Global correlation matrix 

1.000 

Protein 
Lipid -0.183 1 .OOO .553 

Glucide -0.060 ,456 

The figure (1) shows the midpoints (a) and ranges (b)  variables. Circles 
indicate the maximum norm that can be represented, determined according 
to the correlation decomposition. Let us consider the midpoints variables, in 
the present example the maximum variability is 0.612 (corresponding to the 
Lipid variable); this implies that the maximum variable length is = 
0.782. As the two graphics represent a part of the total variance, radii are 
5 1. The interpretation of the graphical results can be done following the 
usual rules adopted in the case of single-valued data, singly for midpoints 
and ranges. Figure (2) displays the initial solution (a) and the final solution 
(b)  obtained after the rotation. In this case the algorithm stopped after 4 
iterations. The residual variance resulted to be 0.178 that is equivalent to 
4.45% of the total inertia. This little part of residual variance indicates the 
good result obtained by the analysis. The percentage of inertia associated 
to the first two principal components is equal to 79.33%. In table (4) we 
summarized the most important analytical results necessary for a correct 
interpretation. The first two columns refer to the SqCos with respect to the 
first two factors singly considered. The third one represents the quality of the 

H z 0  
0.391 
0.339 
0.3481 0.301 
0.2841 0.294 

0.2921 0.214 
0.2141 0.409 

Protein 
0.339 
0.400 

Lipid 
0.348 
0.042 
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Fig.1. (b) Ranges 

151 

Fig. 1. (a) Midpoints 

.lA 
4 5 -1 0 1 2 

Fig. 2. (a) Initial solution 

4 -2 4 0 1 2 

Fig.2. (b) Final solution 

representation on the factorial plane spanned by the first two factors. Taking 
into account the SqCos, we observe that Grosso dz Nocera and Cuban Nano 
have the highest values. The segment traced inside each rectangle represents 
the rotated range and indicate which variables have mainly contributed to 
the ranges orientation. Referring to Grosso dz Nocera and Cuban Nano, we 
observe that, with respect to the first factorial plan, their sizes and shapes 
were characterized by the same variables, but with opposite versus. 

Sometimes, the complexity of interval data can generate unclear graphical 
representations, when the number of statistical units is large, because boxes 
representation, either in the original Rp variable space and even more in the 
R2 subspaces, can cause a severe overlapping of the statistical units, making 
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any interpretation difficult. Alternatively, instead of representing boxes in the 
RP space, Lauro and Palumbo (2003) proposed to adopt the parallel axes as 
the geometric space where to visualize statistical units described by set-valued 
variables. Parallel axes can be defined as a visualization support derived 
from the parallel coordinates schema, firstly proposed by Inselberg (1999), 
who exploits the projective geometry properties consisting in the definition 
of duality between the Rn Euclidean space and a system of n parallel axes 
in R2. It can be proved that these relationships correspond to a duality point 
t, line; each point in Rn corresponds to (n-1)-segments polygonal line in 
the projective R2 parallel coordinates system. With respect to  other graphic 
visualization methods for complex data, the most interesting aspect in the 
proposal is the relevance given to the possibility of comparing syntheses of 
statistical units, as well as single variables on different parallel axes systems. 

Corno di Bue 
Cuban 
Cuban Nano 
Grosso di Nocera 
Pimiento 
Quadrato d'Asti 
Sunny brook 
Yolo Wonder 

5 Conclusion and perspective 

The above presented method is based on a data coding procedure (midpoints 
and ranges) that transforms interval data into punctual data to perform the 
treatment and recovers intervals when data are graphically represented. In 
other words, it is based on the coding process: Interval -+ Punctual -, Inter- 
val. The same approach with a different data coding has been presented by 
Cazes et al. (1997); they propose a PCA analysis on the vertices matrix Z. On 
the same vertices data structure, Lauro and Palumbo (2000) introduced a co- 
hesion constraint matrix and a system of vertices weighting. Both approaches 
represent the boxes on the factorial plan by means of the Maximum Covering 
Area Rectangles (MCAR) that are obtained as the rectangle recovering all 
the vertices belonging to the same interval valued statistical unit. The major 
drawback of these approaches consists in producing oversized MCAR's. On 
the other hand, the vertices coding assumes an ordinary PCA on the vertices 
matrix preserving the possibility of using standard interpretation tools. 

Table 2. SqCos and Absolute Contribution for Italian Peppers dataset 

Cos2 

Total 

F l + F l  
0.498 
0.700 
1.008 
1.028 
0.414 
0.742 
0.567 
0.875 

F 1 
0.048 
0.632 
0.979 
0.358 
0.396 
0.646 
0.187 
0.704 

Abs.Contr. 
F2 
0.450 
0.068 
0.029 
0.670 
0.019 
0.097 
0.380 
0.171 

F1% 
0.34 

12.50 
46.09 
4.25 
5.48 

18.69 
2.31 

10.34 
100.00 

F1% 
7.05 
6.33 
1.65 

22.92 
0.25 

21.67 
27.12 
13.01 

100.00 
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A direct treatment of interval data should avoid the loss of information 
due to  the coding in the data structure. There are two possible approaches 
to  jointly treat interval data taking into account both midpoints and ranges. 

An approach for the direct treatment of interval data was proposed by 
Giordani and Kiers (2004). They present a model named Principal Compo- 
nents for Fuzzy data (PCAF), where interval data can represent a special 
case. The advantage of this approach consists in the possibility of treating 
fuzzy numbers, however the formalization of the method substantially corre- 
sponds to the vertices approach proposed by Cazes et al. (1997). In fact, they 
propose an alternate iterative algorithm to minimize the quantity: 

K 

n2 = I X  - x*12 + C I I ( X +  S H ~ A )  - ( x *  + S * H ~ A ) I J * ,  (12) 
k=l 

where x and X* are the matrices of the observed and estimated midpoints, 
respectively. Matrices S and S* have n rows and p columns and represent 
the observed and the estimated spread (or ranges), respectively. The matrix 
H contains only -1 and 1 values and has no relevance from the point of view 
of the model and permits to  combine all the (min, max) vertices (like in the 
proposal by Cazes et al.). The matrix A is a weight diagonal matrix with 
generic term Xj. In case of A = I, the minimization of the second term in the 
left hand side of (12) corresponds to the analysis of Cazes et  al.. We refer 
the interested readers to the cited paper for further details about the model 
estimation procedure. However, it is interesting to notice that results shown 
in the Giordani and Kiers example are very similar to the ones obtained 
by Cazes et al., in fact, they were obtained using the same well known (to 
intervallers) Ichino and Yaguchi's oil data set. 

A more promising approach is the one based on the Interval Arithmetic 
principles (Neumaier 1990). IA provides us suitable methods for the direct 
treatment of the interval variables. As expected, in this context, eigenval- 
ues, eigenvectors, principal components are intervals. This makes the results 
consistent with the nature of the original data and enriches the data inter- 
pretation and visualization, because it preserves the formal aspects of the 
single-valued PCA. However, it requires high complexity in both numerical 
and computing aspects. 

The eigenanalysis of an interval matrix implies that the matrix should be 
strictly regular. An interval matrix is said to be regular (Jansson and Rohn 
1999) if every matrix x E [XI has full rank and it is said to  be strongly regular 
if the following condition holds: p (Ix-'~A([x])) < 1, where p(.) indicates the 
spectral radius. Given a generic square matrix, p (M)  is defined as: 

p ( M )  := max {/XI : X an eigenvalue of M }  

From a statistical point of view, the regularity property has a remarkable 
significance. Let us assume that the matrix [C] = [x]'[x] is a p x p variance- 
covariance interval matrix; then the covariance midpoints matrix satisfies 
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2 = X'X and  the  matrix A[E] represents the  variance and  covariance ranges 
matrix. The  regularity condition implies tha t ,  for any couple of variables 
[xIj and [xIj,, with j ,  j' = 1, . . . , p, the  range is lower than the  midpoint 
variability. I t  is quite intuitive tha t  this condition is very restrictive and the  
direct application of the  interval arithmetic can be exploited only in cases of 
intervals representing very small da ta  perturbations. In addition, a proposal 
by Marino and Palumbo (2003) in the  interval multiple regression context, 
based on the  optimization/perturbation theory, seems very promising also for 
Interval PCA. The  statistical properties and its interpretability are  subjects 
of actual investigation. 
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Abstract. The indeterminacy of the Structural Models, i.e. the arbitrariness of 
latent scores, due to the factorial nature of the measurement models, is, in the 
dynamic context, more problematic. We propose an alternative formulation of the 
Structural Dynamic Model, based on the Replicated Common Factor Model (Haa- 
gen e Oberhofer, 1999), where latent scores are no more indeterminate. 

1 Introduction 

It is well known that the causality principle of the Factor Analysis Model 
(FA) (i.e. to express the indicators as a function of the latent variables) leads 
to indeterminacy of latent scores (Guttman (1955)), with important conse- 
quences on the classificatory validity of the latent variables (Schoenemann 
and Haagen (1987); Haagen (1991)). The same problem arises in the Struc- 
tural Equation Models with reflective blocks (SEM) (Vittadini (1989)) and 
also in the Structural Dynamic Models with latent variables (SDL) (Haagen 
and Vittadini (1994)), because both use FA as a measurement model. More- 
over Haagen and Vittadini (1994) proved that the dynamics increases the 
indeterminacy. The SDL will be presented in Section 2, while the problem of 
indeterminacy in SDL will be discussed in Section 3. 
It follows that only the introduction of alternative models to  the FA as mea- 
surement models allows us to definitely overcome indeterminacy. To avoid 
arbitrariness of common factors, some authors have proposed an estimation 
procedure which inverts the natural relationship among variables, expressing 
the latent variables as a linear combination of the indicators. For example, 
Schoenemann and Steiger (1976) proposed the Regression Component De- 
composition method (RCD), successively extended to SEM by Haagen and 
Vittadini (1991) and applied to some different contexts (Vittadini (1999)). 
This proposal, however, can not be considered a model, because the solu- 
tions can not be interpreted as causes of the indicators. Instead Haagen and 
Oberhofer (1999) introduced an alternative model to the FA, entitled the 
Replicated Common Factor Model (RCFM), (successively extended to SEM 
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by Vittadini and Haagen (2002)), which solves the indeterminacy of common 
factors asymptotically. 
Nevertheless, no proposal has been made in the dynamic context, except by 
Minotti (2002), who introduced a correction of the Kalman filter by means 
of RCD, providing, a t  every time interval t ,  (t=1, ..., T),  unique values for the 
latent variables. This new method will be described in Section 3. However, 
as illustrated previously, the proposal is not a model. Thus, the problem of 
indeterminacy in the SDL can not be considered definitively overcome. 
As an alternative, which overcomes the indeterminacy of latent scores asymp- 
totically, we propose a new version of the SDL based on the RCFM. The 
extension of the RCFM to the dynamic context will be presented in Section 
4. The new model has been applied to an experiment of the Department of 
Physics, University of Milan. The application will be described in Section 5. 
Some conclusions will be given in Section 6. 
Section 1 is to be attributed to Vittadini, as well as the supervision of the 
paper; Sections 2-6 were developed by Minotti. 

2 The SDL 

The SDL, introduced by Otter (1985) as a dynamic generalization of SEM, 
is the stationary version of the Stochastic Linear State Space Model from 
Systems Engineering, i.e. it is a linear model with latent variables, where the 
observations are represented by a single multivariate time series. The SDL 
consists of a transition equation, which describes the temporal relationships 
among the latent variables, and a measurement equation, that relates the 
latent variables to the observed variables: 

where t t  = [qt, c&] are respectively ml  endogenous and mz exogenous latent 
variables distributed as normal random variables with finite covariance ma- 
trix Xct (Eo ,., N(p ,  Vco)); Wt and v t  = [etr St] are respectively m = ml  +m2 
and p = pl + p2 latent errors, normally distributed and mutually non cor- 
related (for every t ) ,  with null expected value and time-invariant covariance 
matrices Ew and Ev; ut is a vector of q deterministic inputs; Ao, A l l  B ,  C 
and D are time-invariant matrices of respectively (m x m) ,  (m x m) ,  (m x q), 
(p x m) and (p x q) parameters (with invertible Ao); zt = [yt, xt] are p indi- 
cators respectively of the q t  and the qh,, with covariance matrix Xz,. 
The reduced form of the SDL is obtained pre-multiplying (1) by A,', i.e.: 

expressed in a compact notation as 
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where wt is a vector of m latent errors with null expected value and time- 
invariant covariance matrices Cw = A , ' C ~ ( A ~ ' ) ' .  
In the following, the deterministic inputs u t  will be omitted, which is not 
an essential restriction, given that they can always be included among the 
observable variables. 
The parameter identifiability of the SDL has been extensively studied by 
many authors, who proposed some conditions for the local identifiability (Bor- 
dignon and Trivellato (1992); Otter (1992)). The estimation of the  parameters 
and the latent scores can be obtained by means of a recursive procedure (as 
illustrated in Haagen and Vittadini (1994)). 

3 The indeterminacy in the SDL and the first solution 

Haagen and Vittadini (1994) discussed the indeterminacy of the SDL so- 
lution by using the Guttman's result (1955), introduced for the FA. They 
demonstrated that ,  if the following equality holds 

there exist arbitrary vectors 6, which satisfy (2). 
These solutions, called "true solutions", have the following structure: 

where f t l t - l  is the efficient predictor for E,, based linearly on {zl,  ..., zt-I}, 
A 

E t l t  is the Kalman estimator of E,, updated on the basis of the last obser- 
A 

vations z t ,  K t  = C;t,t-l C1C;: is the Kalman gain, Zt = C&,,-, is the 

forecasting of zt by (2), Pt = (I - K t C ) F t  with FtFi = E Z t ,  wt is an arbi- 

trary vector of m variables and E[wt]  = 0, = 0, C,, = I - C'CZ,~C. 
It follows that,  as in the static context (FA and SEM), the latent scores ob- 
tained by means of the Kalman filter are not unique, due to  the arbitrary 
term P t w t .  Moreover Haagen and Vittadini (1994) demonstrated that in the 
SDL indeterminacy increases, due to the recursive procedure of Kalman fil- 
ter, which spreads indeterminacy in time (the indeterminacy of it influences 

A 

Et+', <t+z, ...). In addition to this, Minotti (2002) observes that in the dy- 
namic context defining Zt by (2) makes the situation worse. 
As a first attempt of solution, Minotti (2002) proposed a correction of the 
Kalman filter by means of RCD, described in detail in the following. 
Referring to the formulation of Haagen and Vittadini (1991), the RCD pro- 
vides a t  each date t the following decomposition of xt: 

which leads to a definition of the "latent" variables &,  called components, 
as a linear combination of the observed variables xt 
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where Lg, = c ~ ~ C ~ ( C ~ C ; ~ ~ ~ ) - '  and Ct can be calculated as a factor 
loading matrix by means of a factor extraction method (Schoenemann and 
Steiger (1976)). 
By means of an analogous decomposition of y t ,  we obtain Lqt.  The matrix 

provided by the RCD is then introduced in the Kalman filter instead of C. 
Under the assumption that A, E[&] and Ec, are known, the first step of the 
Kalman filter at each time t becomes: 

where C w  is defined in Section 2. 
In the second step we update on the basis of the new observations zt: 

- 
where Zt = L;'&~,-~, K t  = 8z t l , - 1 (~ i ) -1~ ; : .  

The solution f ,  is unique by construction. The indeterminacy of the dynamic 
solution derives in fact from the arbitrary term P twt  in (7) ,  with C u t  # 0, 
and the definition of the forecasting Zt in the Kalman filter by model (2), 

A 

where 2t = Ctt l t - l .  In the alternative solution, substituting matrix C by 
L;' in the definition of $, which we indicate by 4 ,  to distinguish the two 
cases, allows avoiding the arbitrariness of the "latent" scores, due to both 
the factorial nature of the measurement models and the dynamics, because 
the Guttman's result (1955) is no longer appropriate. Guttman considers 
models like (2), in which the indeterminacy of the 6, and vt results from 
the impossibility of identifying m f p  basis vectors, where only p observable 
variables are available. The RCD, on the contrary, provides a definition of 
the latent variables as a linear combination of the observable variables, so 
that indeterminacy vanishes. Hence, if E[&,] and XEo are known, the RCD 
introduced in the recursive procedure of the Kalman filter obtains a unique 
approximation for "latent" scores. 
Otherwise, since EIEo] and CEO are often not known, we consider at the first 
step t = l  the estimate El by (9). Following this procedure we eliminate also 
the indeterminacy which is due to the not unique estimate of t l .  
However, the new method proposed cannot be considered a model, because 
the solutions provided cannot be interpreted as causes of the indicators. From 
here we derive the necessity of the formulation of a proper Structural Dynamic 
Model with unique latent scores. 
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4 A new version of the SDL based on RCFM 

In analogy with the proposal of Vittadini and Haagen (2002) for the static 
case, we present an alternative formulation of the SDL, by extending the 
RCFM of Haagen and Oberhofer (1999), which we will first describe. 
The different assumption of the RCFM to the common FA is that every object 
i, (i=1, ..., N),  can be observed R-times (i.e, we have repeated observations for 
every object). Thus we obtain the following model equation: 

where the r-th repetition is denoted with the index r, (,)zi is a p x 1 vector 
of observable variables, C is a p x m matrix of factor loadings, ti is a m x 1 
vector of common factors and does not depend on r, (,)vi is a p x 1 vector of 
specific factors. 
Moreover, further assumptions are: 

with d j  > 0 , j  = 1 ,..., p. 
By writing equation (14) in a compact notation, we get the RCFM: 

where R Z  = ((l)z', ..., ( R )  z')' (pR x I ) ,  RC = (C', ..., C')' (pR x m ) ,  6 = 

(<I ,  . . . r  tm) '  ( m  x 11, RV = ( ( l )v l ,  . . . , (R) v')' (PR x 1). 
Equation (21) represents a Common Factor Model with pR observable vari- 
ables and m common factors; the number of parameters is fixed. 
Haagen and Oberhofer (1999) demonstrated that,  for given C and D, the in- 
determinacy vanishes as R + m, so that RCFM solves the indeterminacy of 
common factors asymptotically. In fact Haagen and Oberhofer (1999) demon- 
strated that in the RCFM 

e.g. the regression estimator of factor scores, can always be written as: 

R with iZ = $ C,=l (,) z, and converges to E in quadratic mean as R -+ m. 

Moreover they demonstrated that the covariance matrix of the arbitrary part 
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wt , i.e. the arbitrariness C,, -+ 0 as R -+ CQ. 

Assuming that a t  every time interval t ,  (t=1, ... T),  each object i, (i=1 ..., N), 
can be observed R-times on vector zt,  we reformulate the SDL through the 
RCFM as follows (with no distributional assumptions): 

with Et = [vt, 491 (m X 11, A (m x m), wt (m x I) ,  RZt = [(1)4, ...,( R) .:I1 
(PR x I),  R C  = (C1, ..., C1)l (PR x m), R V ~  = ( ( l ) ~ : ,  ..., (R) 4 ) '  (PR x I) ,  
Et = ( h ,  -, &,)I (m x 1). 
At time t = l  we propose estimating El by means of (22). At time t ,  (t=2, ..., T), 
supposing that A and R C  are known, 6, is estimated by means of the Kalman 
filter, which in the first step becomes: 

A 

In the second step ~ , l t - l  is updated on the basis of the new observations ~ z t :  

A 

where R2t =R CEtlt-l and R K ~  = X- R ~ ' X i i ,  of dimension (m x pR). Etlt-1 
As R -+ CQ the solution il is unique and satisfies the fundamental hypothesis 
of the FA indicated in (19), as we demonstrate in the following. 
In fact, with reference to model (21) we have: 

Then, under the hypothesis that R -t cc and substituting El by the (22) and 
R C  by the (30), equation (21) can be rewritten as: 

where Pcl is the projector onto the space spanned by El  and QEl = I - PC,. 
Consequently, as R -+ co, both causes of indeterminacy of the SDL, indicated 
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in Section 3, vanish and the estimates for the latent variables, provided by 
the Kalman filter, become unique. 
By the end, it should be noted that the (15) and the (16) are also fundamental 
hypotheses of the FA, while the replicability of the observations and the (20) 
are the basis for the RCFM. The (17) and the (18) are instead not essential; 
the model proposed can be surely extended to a more general case. 
We conclude that,  by using the new formulation of the SDL expressed in 
the (22)-(23) and under the assumption to consider a t  the first step t = 1 
the estimator 2, defined by (22), the indeterminacy of the SDL is definitely 
overcome. 

5 The application 

The application regards an experiment of the Department of Physics, Univer- 
sity of Milan. The goal of the experiment is the measurement of the system 
temperature of a radiometer for microwaves astronomy. Different level of sys- 
tem temperature are observed a t  different times due to  the effect of different 
operating temperature. At each time t the experiment is repeated 2,000 times 
at  the same conditions, i.e. the observed variable, which measures the "true" 
variable with white noise, is collected 2,000 times. 
In order to obtain, a t  each time t ,  unique values for the "true" measure un- 
derlying the observations, the model proposed in (24) and (25) is applied. 
The application corresponds to the theoretical issues of the model proposed. 
In fact, first of all we have, a t  the same time t ,  several replications (under 
equal conditions) of the same observed variable. Therefore, the assumptions 
inherent to  the replicability of observations are respected. Secondly, the mea- 
surement model (25) is a model with errors in variables, (i.e. a particular case 
of the FA), with replicated observations. By the end, the (24) represents the 
relation between the measure of interest a t  time t and the same measure a t  
time t-1. For sake of simplicity, we have supposed that passing from time t 
to t-1 occurs with a constant change of temperature, i.e. the "true" measure 
a t  time t differs from the "true" measure at  time t-1 of a constant, which 
represents the change of temperature between time t and t-1. 

6 Conclusions 

The model proposed, which provides unique latent scores in a dynamic con- 
text, seems to be a reasonable alternative to  the SDL, because it not only 
represents a statistical model, but it definitely overcomes the latent score 
indeterminacy. 
The question is whether the consideration R + cc is realistic. The main in- 
teresting issue is that the result of Haagen and Oberhofer (1999) is not only 
valid for R -t cc , but also for finite R, if R increases. Simulation studies to  
verify the empirical validity of the RCFM show that the estimates converge 
for R=50 (Taufer, 1992). 
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The applicability of this model to real problems is surely limited by the as- 
sumption that the vectors of latent variables do not depend on replications. 
A field of application always compatible with the assumption is the case of 
physical experiments, where it is not difficult to produce a large number of 
replications. 
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Abstract. In condition of uncertainty regarding a random phenomenon, particu- 
larly in decision making and risk analysis, valuable information may be provided 
by "experts" in terms of subjective probability distributions for a random variable. 
In this paper, some ideas about this topic are discussed. 

1 Introduction 

In the course of the last forty years, numerous algorithms - axiomatic proce- 
dures, as well as Bayesian models - have been proposed to solve the 'expert 
problem': typically, to  aggregate the individual functions from experts in a 
combined probability distribution (for a critical review up to the nineties, see 
Clemen and Winkler (1999)). 

However, the most recent studies on this topic have only marginally a p  
proached the problem within the framework of multivariate statistical anal- 
ysis. The attention of researchers has been principally oriented towards the 
estimation of unknown quantities (risks or events) and has conceptually fol- 
lowed the guidelines of classical statistical inference, based on distribution 
models and likelihood functions. 

The development of experimental and social research, where these meth- 
ods can find useful applications, has however highlighted certain contradic- 
tions, above all when we wish to combine heterogeneous information coming 
from different sources characterized by different degrees of reliability. Since all 
sources of information (research centers, experts, privileged witnesses) pro- 
duce data (generally estimates of unknown parameters) or models (generally 
probability distributions) related to one or more variables, combining hetero- 
geneous information introduces at least three kinds of problems intrinsic to 
multivariate analysis: 

- the calibration of individual information by an aggregator (or expert) called 
to evaluate its degree of reliability and interdependence; 

- the formulation of a combined model which represents the synthesis of 
models and/or parameters produced by each source of information; 

- the measure of spread in the density data set due to  discrepancies between 
the different sources of information and the combined distribution. 
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The formulation of an unifying model in the context of the combining 
of information from experts can find some strong analogies with the Con- 
joint Analysis, from which it can adopt some interesting technical solutions 
(Allenby et al. (1995)). Moreover, the two approaches could reciprocally ex- 
change useful investigative tools. The Combining of Information, as well as 
the Conjoint Analysis, is carried out at an individual level for each subject. 
In order to predict preferences or other responses, at the disaggregate level 
individual response has to be performed separately and predictive accuracy 
calculated for each subject. Only afterwards, can the individual results be 
combined to describe an overall model (Hair et al. (1998)). In this context, 
calibration is essential for determining corrections with respect to the aggre- 
gator's scale. In the presence of multivariate information (or measurements) 
the aggregator must develop a system of summated scales, for which sev- 
eral variables are joined in a composite measure to represent an estimation 
of the unknown quantities. The calibration techniques become tools for as- 
sessing reliability and incorporating scales referred to different experts in the 
aggregator 's combined curve. 

The aim of this work is to explore the meaning of some concepts, criteria 
and results about the subject, point out some remarks and submit them to 
the discussion. The substance of the considerations presented in the following 
sections of the paper is independent at all of the procedure chosen for ag- 
gregating information from the experts. Not so examples and graphs, which 
need an algorithm for calculation: the reference, here, is the Bayesian com- 
bining model proposed by Morris (1977), where the calibration function - 
which encapsulates the investigator's state of knowledge with regard to  each 
expert's probability assessment ability and the degree of reciprocal correla- 
tion among the experts - is specified by using a fiducial procedure (Monari 
and Agati (2001)).] 

2 About the meaning of the combined distribution 

"The [...I combined probability distribution - Clemen and Winkler (1999) 
write - can ideally be viewed as representing a summary of the current state 
of expert opinion regarding the uncertainty of interest". 

The question is: what kind of summary should we expect from a combin- 
ing algorithm? The summary curve must, in a way, 're-draw' the individual 
components (and so reflect each opinion) or must 'pass among' the experts' 
judgments (and so be a compromise between them)? Certainly, the answer 
to this question can depend, to some extent, on the purposes and the context 
of the expert consulting. But on this answer it depend what we may expect 
from an aggregation algorithm: so, let us reason about a simple example, a t  
least to clarify the alternative. 

Two experts are perceived as unbiased and equally informative by the 
consultant: let us suppose both experts' densities for the uncertain quantity 
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are Normal, with equal variances but locations such that the overlapping area 
is very small. In a situation such as this, "it might seem more reasonable to 
have a bimodal posterior distribution reflecting the two experts7 opinions 
[than a compromise distribution, which puts almost all of the probability 
density in a region that neither of the individual experts thought likely a t  
all]" (Clemen and Winkler (1999)). 

However, let us think of the n experts7 distribution as n informative points 
in a geometric space: is the real aim of a synthesis line to  pass through each 
single point, or rather to interpolate the scatter of points? So, even in a 
border-line example like the 'two-experts problem7, it can not be denied that 
a density which re-draws the experts' curves adds little or nothing to what is 
already in the curves themselves: it is the synthesis - a sufficient synthesis, 
which does not involve the loss of relevant information - that reflects the 
'tendency line' of the phenomenon and so enables the information provided 
by the experts to become knowledge for the consultant. 

Indeed, it is so for any problem regarding statistical sets. And, by looking 
at the question in such a light, the distribution synthesizing n density func- 
tions plays, in a sense, the same role as a mean with respect to n observations. 
It is no coincidence that the first synthesis algorithm - the linear opinion 
pool, proposed by Laplace (The'orie analytique des probabilite's, 1812) - re- 
sults in a distribution which averages the (weighed) individual components1. 

3 Measuring the spread in a 'density-data set'? 

When a subject performs a modelized aggregation process, the synthesis curve 
usually results from the various interacting of several parameters: some as- 
sessed by the experts, others by the consultant. So it can happen that deeply 
different density-data sets yield a same synthesis curve: and - it is worth un- 
derlining - this is an eventuality whatever the model chosen for combining 
may be. 

Let us consider - by way of an example only - the following two situ- 
ations, where two experts, Q1 and Q2, consulted about a random quantity 
6' E O,  provide Normal densities g, (.), g2(.) characterized as follows: 

- locations ml = 1.6, m2 = 1.4; variances ul - v2 = 1.57 (situation "A"); 
- locations ml  = 3.1, m2 = -0.1; variances ul - u2 = 2.70 (situation "B"). 

Now, the difference between the two situations is clear: the locations as- 
sessed by the experts are very close in "A", whereas they are rather distant 
in "B"; besides, the variances are higher in "B" than in "A" (Fig. 1). But 
if, in both situations, a Bayesian-fiducial model (Morris (1977); Monari and 
Agati (2001)) is adopted for combining the two densities and the experts 

'And, as concerns the puzzling 'two-experts problem', if this was the real situ- 
ation it would be advisable to consult at least a third expert. 
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are assumed as unbiased and equally informative2 (with a linear correlation 
coefficient r = 0.3), the resulting combined curves hA(0) and hB(e) turn out 
to be nearly coincident, with the same arithmetic mean and the same vari- 
ance: in particular, if the consultant's prior is hypothesized as Uniform, the 
arithmetic mean is 1.5 and the variance 1.525. 

SITUATION "A" SITUATION "B" 

SYNTHESIS DISTRIBUTIONS 

Fig. 1. Different density-data sets can yield a same synthesis curve. 

The synthesis distribution is the same in both situations, but its 'repre- 
sentativeness' towards the individual components is different: and measuring 
the 'representative strength' of the obtained final density can be not less 
relevant than constructing the density itself. So, the information which a 
combined distribution carries about a random phenomenon could be reason- 
ably and usefully integrated by a measure of the 'density-data set' spread, 
which gauges how 'distant' the experts' densities are, on average, from the 
synthesis density. In general terms, let us denote with: 

- gi(O) and h(O), respectively, the density function from expert Qi, for i = 
1,2, ..., n, and the combined density function; 

- KL(gi : h) := J, gi(9) . In[gi(0)/h(O)] do the Kullback-Leibler divergence 
(Kullback and Leibler (1951)) of gi(.) with respect to h(.); 

- J(gi, h) the Jeffreys distance (Jeffreys (1946)) between gi(.) and h(.),  which 
can be written as, 

2So the calibration parameters assessed by the consultant are the same for both 
experts. In the case in point, by adopting the notation used in Monari and Agati 
(2001), the following positions have been fixed: t l  = t z  = 0.5, sl = sz = 2. 
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The quantity expressed by (1) is the symmetric version of the Kullback- 
Leibler divergence, so that it can be read just as a measure of distance be- 
tween the curve provided by expert Q, and the curve resulting from the 
aggregation process: it is, in a sense, the analogue of the absolute deviation 
of a data point from the median of a data set. So, a natural way to measure 
the dispersion of the gi (.)s set could be to compute the distance J(gi ,  h) for 
each function gi(,)  and then average these (non-negative) values, i.e. 

The expression (2) - substantially, an analogue of an average absolute 
deviation from the median - turns out to be zero when each gi(6) coincides 
with h(6), and take values higher the more distant the experts densities are 
from the synthesis curve: it measures how far each density gi(.) would be 
from the combined curve if all the n densities were equally distant from it. 

In situations "A" and "B", J = 0.044 and J = 1.747 are obtained respec- 
tively. To give an operational meaning and intuitive interpretation to  these 
quantities, it can help to know that a value J = Jo measures the Jeffreys dis- 
tance between N ( 0 , l )  and N ( p ,  1) where p = a: so, the value = 0.044 
reflects the distance between two Normal densities, both having standard 
deviation 1 but locations, respectively, 0 and 0.20 (= a); instead, the 
value J = 1.747 corresponds to the distance between N ( 0 , l )  and N(1.32, l ) .  

Now, the measure (2), gauging the spread of the gi(.)s set with respect to a 
'mean' density h( . ) ,  highlights a particular aspect of the expert consulting: it 
captures, in a sense, the link between the input (the experts' curves) and the 
output (the combined curve) of the aggregation process, thus constituting 
a natural complement of the final function h( . ) .  A different but not less 
important aspect of the expert consulting can be pointed out by a quantity 
which, leaving aside the reference to the combined density (and, consequently, 
to any calibration parameter the consultant may introduce in the model), 
describes the density-data set before the aggregation is performed. 

To this end, let us consider the overlapping area Ail between two densities, 
gi(6) and g1 (6): it is the geometric expression of the "transvariation area" 
(Gini and Livada (1955)) and may be calculated as, 

Ail = P(6) do where iV(6) = min(gi(B), gi(6)) (3) 

Measure (3) ranges from 0 (when the two curves do not overlap) to  1 
(when they are perfectly coincident). If such a measure is computed for each 
of the n(n - 1) /2  pairs of densities (gi, gl) where i # 1, the experts' curves 
set can be described in terms of average transvariation area A and standard 
deviation s ( A ) ,  that is, 
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A =  1 C Ail 
n ( n  - 1112 i#l 

The value of (4) measures how much overlap there would be between any 
two experts' densities if the curves of all the pairs were equally overlapped3. 
In particular, A = 0 if and only if Ail = 0 for each pair (gi,gl); it is A = 1 
if and only if Ail = 1 for each pair (gi,gl), i.e. if and only if the experts' 
curves are all coincident. As far as s(A) is concerned, its meaning is, neither 
more nor less, that of a measure of spread: in the case in point, it gauges how 
different the transvariation areas Ail are from the average A. 

Figure 2 highlights the relevance of s(A) by comparing two situations, 
(a) and (b), both characterized by four Normal densities gi(0) provided by 
as many experts: for each of the two situations, the averages mi and the 
standard deviations si are presented in Table 1. In both the cases, the average 
overlapping area gives A = 0.406: it is the standard deviation that  allows us to  
distinguish between the former (s(A) = 0.144) and the latter (s(A) = 0.420)~.  

Situation (a): Situation(b): 

Table 1. Situations (a) and (b): averages and standard deviations of four Normal 
densities. 

4 About the combined effect of some aggregation 
parameters on the synthesis distribution spread 

A (positive) dependence among experts, which is reflected in the tendency 
to report distributions characterized by a large transvariation area, is the 
rule rather than the exception in empirical studies: it arises from factors such 
as common training, shared experience and information, similar assumptions 

3 ~ t  is just worth noting that the average A of the areas Ail does not coincide, in 
general, with the overlapping area A I ~ . . . ~  of the n curves considered all together. 

4More generally, when the averages A don't coincide, the different variability of 
two or more sets of overlapping areas can be measured by the variation coefficient 
VC(A) = s(A)/A 
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A,,=A,,= 0.610 
A,, = A,, = 0.292 
A,,=A,,=0.317 

A =  0.406, s(A) = 0 144 

SITUATION (a) 

A = 0.406, s(A) = 0.420 

SITUATION (b) 

Fig. 2. Description of the situations (a) and (b) in terms of average overlapping 
area A and standard deviation s(A).  

and analysis techniques. A negative dependence, due (for example) to oppo- 
site training, is less frequent, but not impossible: in such a case, the experts 
will be inclined to give densities characterized by a small transvariation. Now, 
if two experts - who are perceived as equally informative by the consultant 
- submit identical distributions, it is reasonable to expect that, all the other 
things being equal, the provided information is more redundant the stronger 
the perceived positive dependence between the experts: coherently, the syn- 
thesis distribution should be more spread the more the dependence is strong. 
The Bayesian-fiducial algorithm shows such a behavior. But is the behavior of 
the spread always so, even when the locations of the curves do not coincide? 

The graph in Figure 3 shows, for (seven) different pairs of experts' loca- 
tions ml and rn2 - particularly, for distances d = Iml - ma/ = 0, l, ..., 6 
-, how the variance of the synthesis distribution changes a s  the linear cor- 
relation coefficient r between the two experts' performances moves from 
-0.9 to +0.9.5 The combined density has been obtained by using the 
Bayesian-fiducial procedure and admitting that: a )  both experts were unbi- 
ased and equally informative (therefore both have been calibrated with equal 
"weights"); b)  their densities were Normal with equal variances (vl = v:! = 1); 
c)  the consultant's prior was Uniform. Briefly, it is worth noting that: 

- as r moves away from -0.9 and approaches +0.9, the spread always in- 
creases when d = 0 only. When d > 0, the spread increases, reaches its 
maximum for some value r M  < +0.9 (which is smaller the greater the 
distance d between the two locations), and then decreases: substantially, 
a (relatively) high positive correlation can lead to an increase of concen- 
tration of the synthesis curve when compared with a situation of absent 
or weak dependence. So, the non-coincidence of the experts' judgments 
has the effect of down-regulating the increase of the spread caused by 

5To be more precise, in the Bayesian-fiducial model r measures the dependence 
among the experts in terms of linear correlation between log-odds transforms of the 
experts' performance indicators (Monari and Agati (2001)). 
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linear correlation coefficient r 

Fig. 3. Effect of changes in the degree of linear correlation between two experts on 
the spread of the synthesis distribution, for various distances between the individual 
locations. The two experts are perceived by the consultant as unbiased and equally 
informative. 

an increase of the (positive) correlation between the experts: this effect 
is stronger the greater the distance between the locations of the curves. 
It is reasonable, indeed, that a serious discrepancy of opinions is 'more 
informative' when it comes from experts which have a very similar back- 
ground, a common knowledge, and use the same analysis techniques, that 
when it arises from experts judged as independent or weakly dependent; 

- also the changes in the spread as r moves away from -0.9 and approaches 
+0.9 are smaller the greater d: that is, the spread of the synthesis curve 
is more indifferent to changes in r the greater the discrepancy between 
experts' judgments; 

- the correlation degree r being equal, the spread is smaller the greater the 
distance d: i.e., a synthesis distribution resulting from non-coinciding 
curves, all the other things being equal, is less spread than a synthesis 
of coinciding judgments. Actually, it is the heterogeneity between the 
experts' judgments, rather than the homogeneity, to yield a more con- 
centrated curve. 
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5 About the behavior of some information measures in 
a sequential expert consulting 

When, in a sequential consulting process, an investigator uses selecting and 
stopping rules which are founded on some synthetic measure of information 
(Agati (2004)), it may be useful to know how two traditional measures behave 
at the various stages of the procedure: in particular, the Kullback-Leibler 
divergence of the synthesis curve at stage k with respect to the synthesis a t  
stage zero (and a t  the previous stage), and the Fisher observed information 
(i.e., a second-order estimate of the spherical curvature) at the maximum of 
the synthesis function. 

To this end, let us consider the following border-line example: four experts, 
who are perceived as unbiased, equally informative and independent by the 
consultant, submit absolutely identical (also for the locations) distributions. 
Each expert gives the same information: the curvature of the synthesis func- 
tion catches this aspect of the consulting and so increases, a t  each stage, in 
the same measure (Fig. 4): at the fourth stage, it is four times as much as 
it was a t  the first stage. The 'informative value' of the four experts, yet, is 
not always the same for the investigator: once he has consulted the first one, 
the judgments of the others are nothing but confirmations; the Kullback- 
Leibler divergence (Fig. 5),  reflecting the situation from this point of view, is 
a concave function of the consulting stage. 

+ Fisher observed information 
with respect to stage zero 

+ Fisher observed information 
with respect to the previous stage 

0 I 11 ill IV 

STAGE 

Fig. 4. The behavior of the Fisher observed information at the various stages of a 
sequential consulting. 

6 Concluding remarks 

The paper submits to  the discussion some considerations about the topic of 
the expert use. In particular, the role of the combined density is investigated, 
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1.394 

1.277 

with respect to stage zero 

-A- Kullback-Leibler divergence 1 with respect to the previous stage 

0 I 11 111 IV 

STAGE 

Fig. 5. The behavior of the Kullback-Leibler divergence at the various stages of a 
sequential consulting. 

also in order to define the sort of output we expect from an aggregation algo- 
rithm; the suitability of measuring the density-data set spread is underlined 
and some measures are proposed; the effects of the various interacting of 
correlation and distance between experts' locations are analyzed and, finally, 
the behavior of two traditional information measures a t  the various stages of 
a sequential consulting process is shown. 
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Abstract. Nonparametric techniques have only recently been employed in the es- 
timation procedure of finite population parameters in a model-assisted framework. 
When complete auxiliary information is available, the use of more flexible meth- 
ods to predict the value taken by the survey variable in non sampled units allows 
building more efficient estimators. Here we consider a general class of nonparamet- 
ric regression estimators of a finite population mean. Four different nonparametric 
techniques that can handle multivariate auxiliary information are employed, their 
properties stated and their performance compared by means of a simulation study. 

1 Introduction 

Availability of auxiliary information to estimate parameters of interest of 
a survey variable has become fairly common: census data, administrative 
registers, remote sensing data and previous surveys provide a wide and grow- 
ing range of variables eligible to be employed to increase the precision of 
the estimation procedure. A simple way to incorporate known finite popula- 
tion means (or totals) of auxiliary variables is through generalized regression 
estimation (Sarndal et al. (1992)). This method has been proposed within 
a model-assisted approach to inference. By model-assisted is meant that a 
working model 6 describing the relationship between the auxiliary variables 
and the survey variable is assumed. Then estimators are sought to have de- 
sirable properties like asymptotic design unbiasedness and design consistency 
over repeated sampling from the finite population, irrespective of whether the 
working model is correctly specified or not, and to be particularly efficient if 
the model holds true. 

Generalized regression estimation implies rather simple statistical models 
for the underlying relationship between the survey and the auxiliary variables: 
essentially a linear regression model. The efficiency of the procedure relies on 
a good prediction of the values taken by the survey variable in non sampled 
units. As a consequence, introduction of more general models and flexible 
techniques to obtain the above predictions seems of great interest in particular 
when auxiliary information is available for each unit of the population. 

The first attempt to consider more general working models through a 
nonparametric class of models for < is within the model-based approach to 
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inference. In particular, kernel smoothing is adopted by Kuo (1988) in order 
to obtain estimators of the distribution function and the total of a survey 
variable using a single auxiliary variable. Dorfman (1993), Chambers et al. 
(1993) and Dorfman and Hall (1993) study and extend these techniques to 
allow models to be correctly specified for a larger class of regression functions. 

Breidt and Opsomer (2000) first consider nonparametric models for E 
within a model-assisted framework and obtain a local polynomial regression 
estimator as a generalization of the ordinary generalized regression estimator. 
Such a technique is not easily extendable to multivariate auxiliary informa- 
tion. The problem of the curse of dimensionality makes kernel methods and 
local polynomials inefficient in more than, say, two dimensions. Further at- 
tempts to handle multivariate auxiliary information make use of Recursive 
Covering in a model-based perspective as in Di Ciaccio and Montanari (2001). 
Within a model-assisted framework, Generalized Additive Models have been 
employed to this end by Opsomer et al. (2001); Breidt et al. (2003) have 
recently proposed the use of penalized splines, while Montanari and Ranalli 
(2003) consider Neural Networks in the more general context of model cal- 
ibration. Introduction of nonparametric methods has shown to supply good 
improvements in the prediction of the value of the variable of interest in non 
sampled units. This feature increases the efficiency of the resulting estima- 
tors when compared with the classical parametric ones, in particular when 
the underlying functional relationship is rather complex. In this paper we 
employ different nonparametric methods to estimate the regression function 
of the survey variable; predicted values are then used to obtain regression- 
type estimators within a model-assisted framework. A multivariate scenario is 
handled by means of Neural Networks (NN), Recursive Covering with the al- 
gorithm DART (Friedman (1996)), Multivariate Adaptive Regression Splines 
(MARS; Friedman (1991)) and Generalized Additive Models (GAM; Hastie 
and Tibshirani (1990)). The theoretical properties of the various estimators 
are stated and their performance explored through a simulation study. 

2 Nonparametric regression estimators and their 
properties 

Consider a finite population U = (1 , .  . . , N). For each unit in the population 
the value of a vector x of Q auxiliary variables is available, for example from 
census data, administrative registers, remote sensing or previous surveys; 
hence, the row vector xi = (x l i , .  . . , x+, . . . , xQi) is known Vi E U. A sample s 
of elements is drawn from U according to a without replacement probabilistic 
sampling plan with inclusion probabilities ni and nij, 'di, j E U. Let Si = 1 
when i E s and Si = 0 otherwise; then we have that E (&)  = ni, where 
expectation is taken with respect to the sampling design. Let n be the size 
of the sample. The survey variable y is observed for each unit in the sample, 
hence yi is known V i  'i s. The goal is to estimate the population mean of the 
survey variable, i.e. Y = N-' CiGu y i  
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The generalized regression estimator of the population mean, 

iEU i E s  

is derived under a linear regression model for <, i.e. Ec(yi) = zip, where the 
last expectation is taken with respect to the model; estimates of P are sought 
to account for the sampling plan. Prediction for the values of y on the non 
sampled units is given by zip, where = ( x i , ,  x:x~/T~)- '  CiEs $yi/ni. 
This estimator is asymptotically design unbiased and consistent for Y under 
mild assumptions (see e.g. SLndal et al. (1992)). Apart from its simplicity, 
estimator (1) has gained great popularity since only population means of the 
auxiliary variables have to be known to effectively calculate it. This is a less 
restrictive condition than that of complete auxiliary information required for 
any nonparametric regression estimators we will consider next. Therefore, a 
larger amount of information is needed for a more complex modelling of the 
data. Breidt and Opsomer (2000) propose a model-assisted nonparametric 
regression estimator based on local polynomial smoothing. A nonparametric 
superpopulation model is assumed for which EE(yi) = m(xi) ,  where m(.)  is 
a smooth function of a single auxiliary variable x .  A local polynomial kernel 
estimator of degree p is employed to obtain predictions of y for non sampled 
units. Let Kh(u)  = hklK(u /h) ,  where K denotes a continuous kernel func- 
tion and h is the bandwidth. Then, a sample based design consistent predic- 
tion for the unknown m(xi)  is given by mi  = e:(XJsi WsiXs i ) - 'XJs iWsiys ,  
where el = (1 ,0 , .  . . ,0) '  is a column vector of length p+ 1, y, = (yl, . . . , y,)', 
Wsi = d i a g { ~ j ~ l ~ h ( x j  - xi))jEs and Xsi = (1, (xi - xi),  . . . , (xi - xi)P)jEs. 
Then, the local polynomial regression estimator for the population mean is 
obtained from (1) replacing xi$ with h i ,  i.e. 

Estimator (2) has been proved to be asymptotically design unbiased and con- 
sistent for Y and has shown good gains in efficiency with respect to  the classi- 
cal generalized regression estimator (Breidt and Opsomer (2000)). However, 
as noted in the introduction, the problem of the sparseness of the regressors' 
values in the design space makes this estimator inefficient when even a few 
auxiliary variables are considered. To overcome this limitation we now con- 
sider different nonparametric techniques introduced in literature and known 
to handle multivariate settings and explore their relative behavior in a finite 
population inference setting. 

Following Breidt and Opsomer approach, we assume a general model <, 
while allowing for multivariate auxiliary information. That  is we consider < 
such that EE(yi) = f (x i ) ,  where f (.) is a continuous function of the argument. 
Then, a general class of nonparametric regression estimators is defined to  be 
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where the predictions f*(xi) can be obtained by means of a nonparametric 
technique. Generally speaking, any nonparametric technique can be adopted. 
Here, we consider four methodologies and compare the performance of the re- 
sulting estimators in different settings. As previously introduced, we consider 
NN, DART, MARS and GAM. Notation works as follow: neural networks 
provide predictions fNN (xi), DART fDART (xi) and so forth. Resulting es- 

timators of the mean will be denoted as GN, YDART and similarly for the 
other nonparametric techniques. In what follows, it is useful to introduce the 
following class of difference estimators 

iEU i€s 

where f*(xi) is the nonparametric prediction obtained if all the popula- 
tion values for y were available (population prediction). 

To assess the design properties of the class of estimators in (3), we will 
use the traditional finite population asymptotic framework (see e.g. Isaki and 
Fuller (1982)) in which both the population U and the sampling design p(s) 
are embedded into a sequence of such populations and designs indexed by 
v, {U,,p,(.)), with v --, co. Both the size of the population, N,, and of the 
sample, n,, go to infinity as v 4 co. Subscript will be dropped for ease of 
notation. To prove our results, we make the following technical assumptions. 

A l .  The population and the sample based predictions are such that 

i€U 
A2. The sampling plan is such that the class of difference estimators in (4) 
satisfies a central limit theorem, fi(?* - Y) k N ( 0 ,  v(?*)), where 

Assumption A1 ensures that both the population and the sample based pre- 
dictions have a regular asymptotic behavior and that their difference de- 
creases with v. This assumption depends on the distribution of the xi ,  as 
well as on the complexity parameters each nonparametric method depends 
on. A1 suggests that a consistent way of getting sample based predictions 
is to account for the sampling plan. Montanari and Ranalli (2003) include 
the inclusion probabilities in the minimization procedure that provides pre- 
dictions fNN(xi)  and show conditions under which the quantity in (5) is 
Op(n-') for NN. Opsomer et al. (2001) argue that A1 is satisfied for GAM 
under conditions similar to those in Bredit and Opsomer (2000) if additive 
local polynomials are considered. Detailed conditions for MARS and DART 
have not been assessed. A reasonable approach, however, seems to calculate 
predictions by a weighted MARS or DART procedure with weights given by 
the normalized inverse value of the inclusion probabilities, i.e. rescaled sam- 
pling weights in order to sum up to one. Not accounting for the sampling plan 
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would provide predictions whose limit in design probability differs form the 
population predictions considered above. This would not affect the consis- 
tency of the estimator if f*(zi )  is properly redefined, while, as it will become 
clear in what follows, different limiting population predictions may affect its 
efficiency. A central limit theorem as required in A2 can be established for 
a difference estimator, as well as for the Horvitz-Thompson estimator, for 
commonly used fixed sample size designs in reasonably behaved finite pop- 
ulations. For example in simple random sampling without replacement this 
would hold if yl , y2, . . . , y ~ ,  were observations from i.i.d. variates with finite 
(2 + l)-th moment, for some l > 0. Conditions for simple random sampling 
as well as for other common sampling schemes are given in Thompson (1997; 
chapter 3). 

In summary, feasibility of the class of estimators (3) involves the behavior 
of the population under consideration as well as the nonparametric technique 
adopted. From a strictly practical point of view, conditions A1 and A2 im- 
ply some basic regularity requirements: highly skewed populations and the 
presence of extreme outliers might harm the accuracy of the mentioned non- 
parametric techniques in general and in inference for finite populations as a 
particular case. The following theorem shows that the class of nonparametric 
regression estimators in (3) is design consistent and shares the asymptotic 
distribution of the difference estimator in (4). 

Theorem 1. Under assumptions A1-A2, the class of nonparametric re- 
gression estimators Y, is design &-consistent for Y in the sense that 

Y* - Y = ~ , ( n - ' / ~ ) ,  and has the following asymptotic distribution: 

(Y, - F)/ Ja GN(O,  1) 
with V(Y,) given in equation (6). 

Proof. Design consistency follows from rewriting Y, as 

- 
by A1 and by noting that the leading term is Y, - Y = ~ , ( n - l / ~ )  by A2. 
Convergence in distribution then follows from convergence in probability. 

3 Simulation study 

The simulation has been conducted in order to  compare the behavior of the 
various estimators in a multivariate setting. Regression functions have been 
generated as Q Q 

( x )  = a ( + bqxq) + cqq/(xq - zq)(xql - z q ~ ) ,  
q = l  

(7) 
454' 

where the number of auxiliary variables Q has been set equal to  3 and 
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0 each auxiliary variable x,, for q = 1,2 ,3  has been generated from a Beta 
distribution with parameters g, and h, drawn from a uniform distribution 
in the interval [I;  101; 

0 a ,  bo, b, (q = 1,2,3) and c,,, (q, q' = 1,2,3) are randomly drawn from 
uniform distributions in the intervals [O; 41, [-5; 51, [-5; 51 and [-50; 501, 
respectively. 

Two hundreds finite populations of size N = 1000 were generated by first 
drawing the values of a ,  bo, b,, c,,, , g,, h,, for all q and q'. Secondly, con- 
ditionally on the latter, we extracted 1000 values for the auxiliary variables 
and rescaled the values of the systematic component obtained from equation 
(7) in order to have a constant variance equal to 8 for all populations. More- 
over, the value of c,,, for q # q' in (7) was appropriately rescaled to have 
populations with no interactions (I=O, i.e. an additive model), with interac- 
tions contributing for one third to the variance of the systematic component 
(I=l) and interactions contributing for two thirds (I=2). This setting allowed 
to generate models with different levels of nonlinearity, with or without first 
order interactions and with different levels of asymmetry for the auxiliary 
variables. Finally, we added i.i.d. N(0; 2) errors to the rescaled values of the 
systematic component f (x): this implied that the signal to noise ratio took 
value 4:1, thereby ensuring that the signal would explain 80% of the total 
variability of y. The value of the determination index R2 for a linear regres- 
sion of y on XI, 2 2  and x3 had been calculated for each generated population. 

For each population, 1000 simple random samples without replacement of 
size n = 100 were extracted and the following estimators calculated (note that 
since the sampling plan is self-weighting, predictions can be simply calculated 
on the sample data): 

0 y, the sample mean, i.e. the Horvitz-Thompson unbiased estimator; 
0 YR, with p estimated by ordinary least-squares; 
0 YNN, with predictions obtained by means of the splus function m e t 0  

and by setting the number of units in the hidden layer and the weight 
decay parameter as follows: (3,0.05), (6,0.15), (12,0.15), (6,0.2), (12,0.2); 
the weight decay parameter is analogous to ridge regression introduced 
for linear models as a solution to collinearity. Larger values of it tend to  
favor approximations corresponding to small values of the parameters of 
the net and therefore shrink the weights towards zero to  avoid overfitting. 

0 YGAM, with predictions obtained through an additive splines model by 
means of the splus function garno. The number of degrees of freedom 
for the splines have been set equal to the values: 2, 3, 4, 5; 
YDART, with predictions computed by means of the AVE procedure 
(Friedman (1996)) with the default trimming factor and with the mini- 
mum number of units in the terminal region and the approximating strat- 
egy in the terminal region (l=linear and c= constant) set as follows: (10,1), 
(1579, (20,1), ( 5 , ~ ) ;  



Nonparametric Methods in Survey Sampling 209 

YMARS, with predictions computed by means of MARS 3.6, the original 
collection of Fortran subroutines developed by J.H. Friedman. The max- 
imum interaction level has been fixed to 1 and with the following values 
of the number of basis functions: 5, 10, 15, 20. 

4 Main results and conclusions 

The performance of an estimator is evaluated by the scaled mean squared 
error defined to be ~ m s e ( ~ * )  = m's'e(~*) / [0.2m's 'e(o) ] ,  where -(Y*) is the 
Monte Carlo design mean squared error and the 0.2 coefficient is implied by 
the signal to noise ratio employed in generating the population values. In this 
way we compare the mean squared error of an estimator with that of an esti- 
mator that perfectly captures the behavior of the signal, and whose left vari- 
ation is only due to the irreducible error of the noise. Hence, the smaller the 
value taken by Smse is, the more efficient the estimator. The values of Smse 
for each estimator reported in Table 1 are averaged over populations with R2 
belonging to selected intervals and different level of interactions (1=0,1,2); 
each mean is coupled with the coefficient of variation of the averaged values. 
Biases of estimators are all negligible and not reported. As expected, the effi- 

Table 1. Averages and coefficients of variation of scaled mean squared errors of 
the estimators for intervals of R2 and proportions of first order interactions. 

ciency of the generalized regression estimator is highly related to the value of 
R2 in the population. GAM estimators are always the most efficient when an 
additive model has been employed to generate the population; in fact, values 
of Smse are stable and close to one in all cases except when the degrees of 
freedom are too few for non linear relationships. On the other hand, GAM's 
performance is extremely poor when interaction terms are used to generate 
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the population values. Therefore, when interactions are suspected another 
nonparametric method should be used. 

The efficiency of the other nonparametric estimators does not seem to 
be as affected by the presence of interactions. The performances of NN and 
MARS are quite similar, while DART is less stable when there are too few 
units for a local linear fit. The little impact of the choice of the number of 
hidden units for NN once a weight decay penalty is employed is noticeable. 
Therefore, when careful model selection cannot be conducted, NN can be 
recommended, since this penalization procedure provides more stable predic- 
tions over different values of the tuning parameters. 
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Abstract. The development of Internet-based business has pointed out the im- 
portance of the personalisation and optimisation of Web sites. For this purpose 
the study of users behaviours are of great importance. In this paper we present a 
solution to the problem of identification of dense clusters in the analysis of Web 
Access Logs. We consider a modification of an algorithm recently proposed in so- 
cial network analysis. This approach is illustrated by analysing a log-file of a web 
portal. 

1 Introduction 

The analysis of usage behaviour on the Web has acquired an always greater 
importance in the development of Web strategies, mainly in the field of e- 
commerce. Web personalisation can be defined as any action whose aim is 
to optimise the profitability of a site both from the owner and from the user 
viewpoint. Personalisation based on Web Usage Mining or Web Log Mining 
has several advantages comparing with more traditional techniques: the type 
of input is not a subjective description of the users, since log-files contain 
detailed information about the usage of a Web site. Web Usage Mining has 
been developed in order to extract interesting patterns in Web access logs 
(Srivastava et. al. (2000); Mobasher et al. (2002)). 

Many statistical packages nowadays contain useful tools for handling web 
data. In this paper we illustrate a new approach. The data consist of a set 
of units (the I.P. addresses) on which one relational variable is measured. 
This forms a network, i.e., a set of units and relation(s) defined over it (see 
Wasserman et al. (1994)). The huge increase in the amount of data avail- 
able on Internet has outstripped our capacity to meaningfully analyse such 
networks and run into significant computational barriers in large networks. 

Some help in the analysis may derive by two classical social network the- 
ories. First the small-world literature has shown that there is a high degree of 
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local clustering in the networks (see e.g. Kochenet al. (1989)); this suggests 
that an approach for studying the structure of large networks would involve 
first the identification of local clusters and then the analysis of the relations 
within and between clusters. Second, literature on peer influence shows that, 
based on an endogenous influence process, close units tend to converge on 
similar attitudes (see e.g. Friedkin (1998)) and thus clusters in a small-word 
network should be similar along multiple dimensions. 

In this paper we present a solution to the problem of identification of dense 
clusters in the analysis of Web access logs, by considering a modification of an 
algorithm proposed by Moody (2001) in the field of social network analysis. 
The principal advantage regards the possibility of handling a huge amount 
of data in a short time; in fact, in order to build up the groups only influence 
variables, which represent the position of the units, are considered. This re- 
sults in a reduced and more flexible structure on which different techniques 
such as blockmodeling (see Schoier (2002)) may be used. The advantage of 
blockmodeling is that a differentiated structure for the degree of similarity 
within and between cluster is allowed. 

2 Identifying dense clusters in large networks 

We illustrate our approach on the basis of the log-files of the Web site 
www.girotondo.com, a non dynamical portal for children comprising seven 
different sections containing 362 jhtml pages are. The period of observation 
is from the 29th November 2000 to the 18th January 2001. 

. . .  
212.75.0.22-[08/Jan/2001:10:14:39+0100]GET / HTTP/1.1 
212.75.0.22-[08/Jan/2001:10:14:41+0100]GET /picts/index-03.gif HTTPl1.1 304 
212.75.0.22-[08/Jan/2001:10:14:41+0100]GET /picts/indcx-02.gif HTTP/1.1 304 
212.75.0.22-[08/Jan/2001:10:14:41+0100]GET /picts/index-0l.gif HTTP/1.1 304 
212.75.0.22-[08/Jan/2001:10:14:41+0100]GET /picts/index-04.gif HTTP/1.1 304 
213.136.136.60-[08/Jan/2001:22:50:01+0100] GET /favolando/11~00/picts/09.swf HTTPI1.0 
209.55.1.99-[08/Jan/2001:22:50:01+0100] GET /picts/indexBl.gif HTTP/1.0 

. . .  
Table 1. Example of a log-file 

The original file contained 300'000 records, each of which corresponds to 
a line in the log-file. Records of log-files containing auxiliary information (e.g. 
.gif, .jpeg. files) are ignored. This first cleaning produces a file as in Table 2. 

We then proceed with a re-codification of the Web pages by associating, 
according to their alphabetical order, the URLs with numbers 1 to 362 for 
easier handling. 

Then we consider only the pages which have been visited by at least 5 I.P. 
addresses. This reduces our analysis over 117 pages. Furthermore we consider 
two fields in the original log-file: the I.P. address and the code corresponding 
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Table 2. The first cleaning of a log-file 

Table 3. Part of the index file 

to the visited page. Each I.P. address corresponds to at  least one viewed 
page. After a further preprocessing phase, a file of 1000 I.P. addresses with 
the relative set of viewed pages has been considered. 

This allows to build up a matrix X of dimension 1000 x 117 where the 
lines represent the I.P. addresses and each column represent one of the 117 
pages selected for the aim. The coefficient is 1 if the page has been viewed 
by the I.P. address, 0 otherwise. According to the social network theory (see 
Wasserman, (1994)) this corresponds to a 2-mode matrix. The next step is 
to produce a 1-mode matrix on the basis of a suitable relation between I.P. 
addresses. 

We consider the following relation: the I.P. addresses vi and vj are in 
relation if they have visited a t  least 35 pages in common. The number defining 
the relation (in our case 3 5 )  must be a number that discriminates nodes that 
have a relation from nodes that have not a relation. In particular it must be 
not too small and not too large: 35 appear as a suitable value. The set of 
nodes together with the above relation can be interpreted as a network that 
can be represented as a finite graph G(V, E) where V represents the set of 
nodes (in our case the I.P. addresses) and E the set of pairs of adjacent nodes: 
vi is in relation to  vj if and only if (vi, vj) E E. In other words, elements of 
E are edges with adjacent nodes a t  their extremities. 

The set of all nodes adjacent to node vi is called its neighbourhood. A 
path in the network is defined as an alternating sequence of distinct nodes 
and edges which begin and end with nodes and in which each edge is incident 
with its preceding and following nodes. The node vi can reach the node vj i f  
there is a path in the graph starting with vi and ending with vj. The length 
of a path from vi to vj is given by the number of edges in the path. The 
distance between vi and vj is the minimal lenght of a path from vi to  vj. A 
network is connected if there is a path between all pairs of nodes. When the 
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ties are concentrated within subgraphs (a subgraph is a graph whose nodes 
and edges form a subset of the nodes and edges of a given graph G) the 
network is clustered. 

The level of clustering depends on the uniformity of the ties distributed 
throughout the network. In order to efficiently analyse a large network, as is 
our case, it is suitable first to individuate local clusters and then to analyse 
the internal structures of the clusters and relations between them. 

Given the adjacency 2-mode matrix X and the relation defined above, we 
may produce a 1-mode matrix x of dimension 1000 x 1000 where lines and 
columns represent I.P. addresses and the coefficient &j for i, j = 1, . . . ,1000 
is the number of pages which have been viewed by both I.P. addresses vi and 
v j .  

This matrix can be transformed into a binary matrix X* representing an 
adjacency matrix, by setting 

1 if g i j  > 35 
i , j  = 1,. . .  ,1000 

0 otherwise 

The 1-mode matrix X* (I.P. addresses x I.P. addresses) can be obtained 
via the program UCINET (Borgatti et al. (1999)). Of course the diagonal 
coefficients are 1, but this information is not of interest and will be ignored. 

Table 4. Adjacency matrix 

At this point we introduce a matrix Y, called influence matrix, of dimen- 
sion N x m where N is the number of I.P. addresses (in our case N = 1000), 
and m represents the number of components describing the reciprocal influ- 
ences. A reasonable assumption is to set m = 3. This corresponds to  assume 
that each user associated to an I.P. address may be influenced by the be- 
haviour of three other users, identified by their I.P. addresses. 

In order to build the matrix Y we use a modified version of the Recursive 
Neighbourhood Mean (RNM) algorithm , proposed by Moody (2001). Our 
algorithm has been implemented in SAS. The Modified Recursive Neighbour- 
hood Mean (MRNM) algorithm consists in the computation of a suitable 
weightted mean by iteration, and generalises the RNM algorithm. This can 
be described as follows: 

1. We assign to each I.P. address of the network, corresponding to a line of 
the influence matrix Y, a random number issued from a uniform distribu- 
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tion in ( 0 , l )  for each of the m coefficents of the line. We obtain a matrix 
Y(') (N x m) made of random numbers. 

2. The matrix Y ( ~ + ' )  is defined by 

where Li is the subset of 1 , .  . . , N corresponding to  the I.P. adresses which 
are in relation with the address vi, and 5ij is the number of pages viewed 
by both vi and vj. 

3. Repeat n times Step 2. 

Remark 1. For iij = 1, the algorithm corresponds to the classical RNM al- 
gorithm. 

This procedure requires as input the list of adjacences, that is, the pairs 
of nodes vi, vj such that x; = 1. 

In an ideal situation Y = lim,,, ~ ( " 1 .  However n = 7 suffices to get a 
stable matrix. 

I.P. I Y I  1 Y2 1 Y.3  lcluster 
138.222.202.1110.4881b425510.53591 1 

Table 5. Summary of MRNM procedure 

In Table 5 are reported the three columns of the matrix Y and the results 
of the Ward's minimum variances cluster analysis, carried out on the basis of 
the three components of Y. In such a way we obtain a clear clustering that 
reveals a structure of three groups as one can see from Figure 1. 

The first cluster, which contains most of elements, is made up by the I.P. 
addresses which have a high frequency of relations, the second one, up on the 
left, is identified by I.P. addresses which have not many relations while the 
third one by I.P. addresses which have few relations. The two isolated I.P. 
addresses are referred to those that have no relation with other I.P. addresses. 

3 Conclusions 

In this paper we have presented a solution to the problem of identification of 
dense clusters in the analysis of Web access logs, by considering a modification 
of an algorithm known from social network analysis. Following the cluster 
analysis eventually block-modelling techniques can be applied. In doing so 
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Fig. 1. Clustering according to MRNM algorithm 

we have obtained an useful tool to study and profile customers in terms of 
their browsing behaviour and personal information. This allows us to build 
up useful business intelligence for the improvement of Web sites and the 
development of systems when data sets are large or even huge. 
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Abstract. Graphics are a good means for exploring and presenting data and for 
evaluating models. Statistical models are valuable for testing ideas and for estimat- 
ing relationships between variables. The two complementary approaches need to be 
integrated more strongly, especially in the analysis of large data sets. 

1 Introduction 

Graphical displays of data are good for suggesting ideas, for highlighting 
features and for identifying structure. They are also useful for judging results 
of models, mainly by providing tools for exploring residuals effectively. They 
are not appropriate for testing theories. A scatterplot may imply a linear 
relationship between two variables, but the correlation coefficient measures 
the strength of the relationship. This example illustrates the complementary 
strengths and weaknesses of the two approaches: graphics are more general 
(the scatterplot might show a non-linear relationship or some outliers, both 
of which would lead to  a low value of r) but less specific (what exactly is 
the association we see?). It is always possible to think of graphics which can 
be used to check model results; it is not always easy to find an appropriate 
model for assessing ideas arising from a graphic display. 

Take the example of a scatterplot. Suppose there appears to be a dis- 
tinctive group of outliers, how should this be tested? The group may be 
distinctive because it is far away from the rest of the data or it may be dis- 
tinctive because it forms a special pattern different from the rest of the data 
(e.g. data parallel to the main body of data, separate, though quite close). 
Perhaps linking to other displays will suggest an explanation for the group 
of data. How that should then be tested is not necessarily obvious, especially 
in a large data set, where many different variables may be considered to see 
if they can explain the observed features. 

Figure 1 shows a set of plots from the well-known bank data set (Roberts 
1979). The scatterplot shows current salary against age for employees. The 
employees involved in security have been selected in the barchart of jobs. 
From the bar chart of gender we can see that they are all male, while the 
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scatterplot shows that they are older and lower-paid. Interestingly, we can 
also see that they are paid pretty much the same irrespective of age and that 
one appears to earn less than the others. 

CII Cle Ext MBe Office Scy Tcl Female Male 

Fig. 1. A scatterplot of current salary v. age and barcharts of job category and 
gender with the security staff selected 

Although the difference is slight, the point stands out because of the 
lack of variability in the salaries of the other security staff. Graphically the 
obvious thing to do next is to zoom in on the area of interest. Figure 2 shows 
the new scatterplot view (with unselected points drawn smaller to improve 
discrimination) and we can see that there are perhaps two levels of salary 
and the one clear outlier. 

Testing these conclusions statistically would not be entirely straightfor- 
ward and we might also ask if it would be appropriate. Perhaps more back- 
ground information would be useful, such as whether there are really two 
levels of employment. In this example we could argue that the results are con- 
clusive and also consistent with what we might expect for security guards, so 
there is no particular need for testing. But if the results were not so clear-cut 
and if we had insufficient additional information to validate the conclusions, 
then it would be more difficult to decide how to proceed. 
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Fig. 2. A magnification of the selected points in the scatterplot of Figure 1 

2 Combining graphics and models 

There are many situations where graphics and models fit together. If we 
were interested in the gender distribution by age in the bank data set, then 
we could estimate a smoothed rate by age and plot it with bootstrapped 
confidence intervals. We could compare the smooth with a model in which 
the rate was constant. 

If we were interested in the gender distribution by job category, we could 
use a spine plot with females highlighted for our graphic display and a chi- 
square test of independence of the two variables for a statistical test. This kind 
of example shows again the complementary strengths of the two approaches. 
The graphic may suggest different gender rates, but without test significance 
we should be careful not to  draw firm conclusions. On the other hand, if the 
test is highly significant, we would want to know why, and we can see that 
readily from the graphic. 

Graphics are often rightly criticised for being open to  subjective interpre- 
tation, which is why it is important to  confirm any conclusions drawn with 
statistical modelling. Models are criticised more for whether the assumptions 
on which they are based may be deemed to hold or not. The validity of the 
chi-square distribution for the test statistic used in comparing two categorical 
classifications is a typical case. When there are many categories in one vari- 
able, it is quite likely that a t  least one has low frequency and correspondingly 
low expected values under the independence model. A graphics display can 
show if this is a problem and clarify what needs to  be done about it perhaps 
aggregating related groups or comparing only groups above a certain size. 

3 Looking at a larger data set 

Of course, the bank data set is rather small (only 474 cases and 9 variables). 
Any analytic approach should do well. Looking at  the kind of data set we 
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come across in Data Mining is substantially more difficult. Take the Needham 
Lifestyle Survey data set (available from the website www.bowlingalone.com) 
discussed in Robert Putnamss book Bowling Alone (Putnam 2000). 3000 to 
3500 different Americans were interviewed in each year over 20 years provid- 
ing a data set with a total of 85000 individuals and almost 400 questions. 

Amongst other things respondents were asked on a scale of 1 to  6 whether 
they disagreed (1) or agreed (6) with the statement I would do better than 
average in a fist fight. Responses were doubtless influenced by age and by 
gender, but possibly by other factors as well, for instance marital status, 
social standing and the interview year. In his book Putnam considers average 
responses by US State, assuming, not unreasonably, that age and gender need 
not be controlled for. 

Building statistical models in large data sets may be strongly affected by 
patterns of missings amongst the variables. With surveys over a number of 
years this is particularly relevant. Assumptions of missing a t  random should 
be made with care. A good example is the Fistfight question itself. We can 
see from linking missings to a barchart of year that the question was not 
asked in the first year (1975), which accounts for over 80% of the missings 
on that variable. The other few hundred are spread fairly randomly over the 
other years. 

Linking barcharts of possible factors of interest here (fistfight, age, gender, 
year, state, churchgoing, marital status and number of children a t  home) 
turns out to be very informative. Clearly the State question was not asked 
in the years 1980-1984 and age was not asked in 1980. Marital status is also 
a more recent question (in the early years of the study only married people 
were asked, so the question was not necessary), and was first asked in 1981. 
Interestingly, it has only been asked regularly since 1991. To get a better 
picture of the multivariate pattern of missings we can first use missing value 
plots and then fluctuation diagrams. Figure 3 displays individual bars for 
each variable (sex and year are not included as they are never missing) with 
the proportion missing represented by the white section to the right. It is 
clear that if the number of children at home is missing so is marital status 
(almost always). We should not assume that there are no missings in the 
churchgoing and fistfight questions when the number of children at home is 
missing. It is possible that with such a large data set the resolution of the 
screen will not be good enough to display a small proportion of highlighted 
cases. In fact querying the display reveals that there are 124 highlighted out 
of 1502 missings for churchgoing and 142 highlighted out of 4175 missings for 
fistfight. 

A more complete picture of the multivariate pattern of missings can be 
achieved with fluctuation diagrams showing the numbers of cases missing si- 
multaneously on sets of variables. Figure 4 shows the patterns for five of the 
variables in Figure 3 (Marital status has been ignored because it is missing 
so often). When all rectangles are drawn with area proportional to size, the 
cell for which all cases are non-missing on the five variables dominates. To 
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Fig. 3. A missing value plot for six variables with the missings for the variable 
number of children at home selected 

assess the combinations with smaller counts we have to zoom in. Censored 
zooming involves limiting the maximum size of a rectangle and drawing the 
boundary of any limited rectangle in red. In the software MANET (Hofmann 
(2000)) censored zooming can be performed interactively so that comparisons 
a t  different levels of resolution can be made. Fluctuation diagrams are com- 
plicated displays and need interactive querying and linking for effective use. 
The left-hand diagram in Figure 4 shows that there are distinct patterns of 
missings. The right-hand diagram permits a more detailed comparison (the 
first two cells in the top row have red boundaries). 

Fig. 4. Fluctuation diagrams for five variables. In the diagram on the left a rect- 
angle with area proportional to count is drawn for each of the possible 32 combi- 
nations of missing/non-missing. On the right censored zooming has been used to 
better compare the patterns. The same selection applies as in Fig 3 

Patterns of missing in large surveys are an important issue, especially 
when comparing models. For instance, a model including the above variables 
and marital status would perforce be based on far fewer cases than a model 
without marital status. 
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Graphics can also be valuable for exploring possible model structures. 
In a survey data set there are usually many ordered categorical variables 
and hardly any continuous variables. For both types it is useful to see if 
linear, single parameter model contributions might suffice. Figure 5 shows a 
spineplot of year with the numbers definitely disagreeing with the fistfight 
question highlighted. There appears to be a fairly steady decline, which could 
indeed be modelled as a linear function. (Due to the size of the data set, 
the hypothesis of a linear model would be rejected by a test. Even smallish 
deviations from linearity would provide sufficient evidence to  reject.) 

Fig. 5. A spineplot of year with those definitely disagreeing with the fistfight 
statement selected 

4 Modelling a larger data set 

A simple linear model in the explanatory variables, which also treats the re- 
sponse as linear from definitely disagree to definitely agree, finds all variables 
significant (the usual problem in large data sets) but finds gender and age 
to be substantially more important than interview year and state. Here is an 
initial model: 

Ideg. of freedomlSums of squares 
Gender I 1 I 18964 

13422 
State 
Year 
Error 64599 138238 
Total 64566 171769 

Males are on average one point more aggressive than females and respon- 
dents' aggressiveness declined by about one point for every 35 years. Even 
in this simple model some 20,000 cases are excluded because of missing val- 
ues, mostly due to the State variable. However, State was the factor of most 
interest in the book, so it has to stay in. 

Displaying and assessing the full results of such models is tricky. Even 
displaying three of the five variables involved in this model simultaneously is 
problematic. Figure 6 shows a mosaic plot of age (aggregated into subgroups) 
and gender with the response definitely disagree highlighted. 
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Fig. 6. A mosaic plot o f age groups by increasing age with males above, feme 
below and the people who responded definitely disagree to the fistfight question 
highlighted 

The differences between males and females and a strong increase with 
age are clearly visible, but the detailed breakdown of the responses including 
all 6 answers is not given and the state and interview year effects are also 
not included. Despite the significance of the individual coefficients the overall 
model criteria are not particularly good. R2 is only 19.5%. A histogram of 
predicted values in Fig 7 is very revealing. Hardly any 1's are predicted (the 
most frequent choice in the data) and no 5's or 6's. 

Fig. 7. Predicted values from the initial model. 

Graphics can be used in other ways to evaluate the quality of individual 
models, both through a variety of residual plots or through a range of di- 
agnostic plots. Such displays are well-known and need no further discussion 
here (although the use of smoothers to assess the local fit of a model, as sug- 
gested in Cook and Weisberg (1999), deserves to be more widely used). But 
in applications like the Bowling Alone study it is not the evaluation of indi- 
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vidual models which is of most importance, it is the choice of an  acceptable 
model amongst many. Not only can a large number of models reasonably be 
investigated (only a few of the several hundred variables have been referred 
to  here), but modern computing power makes this a feasible option. We need 
ways of comparing models, not just on a single criterion such as AIC or BIC, 
but in terms of the patterns of residuals, the variables included and the es- 
timated coefficients. Global criteria are valuable for determining a subset of 
best models, but are not so helpful in discriminating between models within 
such a subset. Two kinds of graphics would be advantageous, for global and 
for local analyses. The global display could be a scatterplot of all models on 
two critical measures (say deviance and degrees of freedom) to  aid in defin- 
ing a best subset and to offer interactive access to  both other criteria and 
to  the individual models. (The TwoKey plot for association rules (Unwin et  
a1 (2001)) illustrates the idea in a related context.) The local displays for 
examining smaller groups of neighbouring models might be based on parallel 
coordinates as proposed in Unwin et a1 (2003). 

5 Further work 

Large data sets require a different analytic approach than classical small 
data  sets. Large numbers of cases make many results significant even though 
differences are small and large numbers of variables make it easy to  find some 
significant result somewhere. Graphics can assist in sifting through the results 
and in interpreting them, but there is much work to  be done in displaying 
effectively many variables simultaneously. On the modelling side we need 
more ideas on finding the right models to  evaluate graphical insights. 
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Abstract. Most of the papers on calibration are based on either classic or bayesian 
parametric context. In addition to the typical problems of the parametric approach 
(choice of the distribution for the measurement errors, choice of the model that links 
the sets of variables, etc.), a relevant problem in calibration is the construction 
of confidence region for the unknown levels of the explanatory variables. In this 
paper we propose a semiparametric approach, based on simplicia1 depth, to test 
the hypothesis of linearity of the link function and then how to find calibration 
depth confidence regions. 

1 Introduction 

Statistical calibration, broadly used in chemistry, engineering, biometrics and 
potentially useful in several practical applications, deals with the inference on 
the unknown values of explanatory variables given a vector of response vari- 
ables. This is generally done using a model identified through a preliminary 
calibration experiment (general references on calibration are Brown (1993), 
Sundberg (1999)). 

In Section 2 we describe the multivariate calibration problem and in 
particular the difficulties in the construction of confidence regions in a para- 
metric context; in Section 3, using a semi parametric approach, it is proposed 
a new methodology based on simplicial depth, able to  overcome some prob- 
lems of the parametric approach. 

3The contents of this paper have been shared by both Authors. In particular 
Section 2 is due to S.Salini and Section 3 is due to D.Zappa. 



226 Zappa and Salini 

2 Multivariate Calibration: the parametric approach 

In univariate calibration the properties of the classical and the inverse esti- 
mators are known. Most of these results may be extended also to the multi- 
variate context where the main and relevant problem is the construction of 
multivariate confidence regions (Salini 2003, 11). 

Following Brown (1993), we consider two steps. 
1) The calibration step. We run an experiment of n observations on q 

response variables Y 1, Y 2 ,  ... , Y, and p explanatory variables X 1 ,  X2,  ... , X, 
in order to identify the transfer function that links the two sets of variables. 
Suppose that the transfer function is a linear model. Let E be a matrix 
of random variables (r.v.s) to represent the measurement errors. Then the 
calibration model is: 

Yl = l a T + x ~ +  E~ (1) 

where is l ( n  x 1) the unit vector, B ( p  x q) and a (q  x 1) a matrix and a 
vector of parameters respectively. 

2) The prediction step. Analogously to the previous step, suppose that a 
matrix Y2(m x q) of response variables is available, the prediction model is 

where we are interested on the unknown values t ( p  x 1) of X. 
Let El i  and Ezj  be the i-th and the j-th column of El and E2 ,  re- 

spectively. It will be assumed that E (Eli) = E (Ezj) = 0,  E (EliEE) = 

E (EzjE6) = I?, Eli, EZj - N (O,I'), and that the errors Ezj are not corre- 
lated with Eli.  

To find the confidence region for J, the most favorable situation is when 
p=q. Supposing that the variables X are standardized, it may be shown that 

where &, B are the maximum likelihood estimators of ( a ,  B ) .  ( 7 
As the log-likelihood function of the mean sample vector y2, conditional 

to [ is: 

1 (g2<)  a (y2 - a - B ~ [ ) ~ I ? - ~  (g2 - a  - B ~ F )  m, 

replacing a, B ,  I? by their maximum likelihood estimate &,B,s respec- 
tively, we have the maximum likelihood estimator for t as : 

T 
where S l  = (y1 - xB) (y1  - XB). To find a confidence region for t, 
using (3) and (4), the 100(1- y)% prediction ellipsoid for the unknown levels 
t is the volume 
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where K =: F1-y,q,v and Fl-y,q,v is the upper 100(1 - y)% point of the 
standard F distribution on q and v degrees of freedom, c (E) = + + 
ET(XTX)-I[ and S (q x q) is the pooled matrix of S1 and S2. It may be .. .. -1 .. 
shown that the volume ( 5 )  is convex only when the matrix C = BS B T  - 
K(XTX)- I  is positive definite and even so it may collapse to  a point, the 
estimate (4). 

When q > p ,  the ML estimator is a function of (4) and of a quantity that 
depends on an inconsistency diagnostic statistic. It may be shown that the 
left part of (5) may be decomposed in 

where R is a measure of the consistency of y2 to estimate < ,  while V may be 
used to  find confidence region for E. Note that R = 0 _wken p = q, because 
tc is the solution of the system of equations y2 = G + BEc. 

Williams conjectured that Q and R have approximate F distribution as 
follows 

and then the statistical significance of R may be tested. The confidence 
region (5) may have an anomalous behavior with respect to  R (Brown 1993, 
pag. 89): the width of the region increases as R decreases and decreases as R 
increases. Alternative techniques to find a calibrating confidence region are 
based on profile likelihood. The resulting regions have the desirable property 
to be expanded as R increases and to be reduced as R decreases. Unfortu- 
nately even in this case, we may obtain boundless confidence regions. Some 
very recent parametric proposals are due to Bellio (2002) and Mathew and 
Sharma (2002). In these papers accurate confidence regions are reported and 
in the latter the problem of finding joint confidence regions is treated only 
when the response and the explanatory variables have the same dimensions, 
or when the explanatory variable is one-dimensional. Another recent pro- 
posal is based on Kalman filter theory. Under certain hypothesis on the error 
measurement correlation matrix (Salini (2003)) Kalman filter may be used to 
upgrade the statistical information relative to the classical estimator so that 
it can be dynamically adjusted to give an update posterior estimate. 

3 A proposal: semiparametric depth calibration regions 

Most of the statistics reported in the previous paragraph have distributional 
properties mainly based on the assumption of multinormality. The problems 
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connected to this assumption (or more generally to any parametric assump- 
tion) are well known and additionally in multivariate calibration it has been 
shown that the problem of finding an empty calibration confidence region 
may exists. Some of these problems may be overcome by a nonparametric 
approach. Our proposal will exploit the results of the data depth method 
proposed by Liu and Singh (1993). References and some applications of data 
depth may be found e.g. in Zappa (2002). For the sake of readability of the 
rest of the paper some preliminaries, comments and description of notation 
are needed. 

Generally speaking a depth function, D(., .), is an application D(., .) : 
Rk x 3 -+ lR1, where 3 is a class of distributions on the Bore1 sets of Rk.  In a 
recent paper of Zuo and Serfling (2000) the basic properties that D(.,  .) should 
possess are reported. Among them probably the most relevant property is 
that D(., .) should be affine invariant, that is, for any non singular matrix A 
and any constant vector b, D(Ax + b; = D(x, F,). 

There are several notions of depth functions. We will focus on the simpli- 
cia1 depth. Let {zl, . . . , z,) c E, E Rk a sample of n k-dimensional obser- 
vations, with n > k. S[&,, . . . , qk+,] will stand for the simplex with vertices 
{q,, . . . , zizi,+,) for any i set of k + 1 different points taken from n. Then, for 
any point z in lRk, the sample simplicial depth a t  z, SD(z), is defined as the 
number of simplexes that include z. In particular the relative rank, TG,, (z*), 
of a new observation z" with respect to the empirical distribution G, that is 

TG,,, (z*) = #{zilSD(zi) < SD(z*) , for i =I, ..., n) / (n  + I ) ,  (7) 

is a measure of how much outlying 9 is with respect to the data cloud E,. A 
relevant property of the simplicial depth is given by theorem 6.2 of Liu and 
Singh (1993) that will be used in the following . Synthetically, consider two 
samples, X = {xl, x2, ..., xn) from distribution G and Y = {yl, y2, ..., ym) 
from distribution F .  Let Q(Gxv,, Fy,,,) = Cjm==l r ~ ~ , ( y ~ )  where rGXT,(yj) 
is the proportion of xi's having, with respect to the distribution G, SDG(xi) < 
SDG(YJ and let Q(Gx,,, G )  = E[Q(Gx,, FY,,~)IX]. Then 

Some additional notation, that will be used in the rest of the paper, must 
be presented. For every set A, C E,, it will be defined by convex hull 
the intersection of all the possible convex subsets of 2, containing A,. Let 
{A:, , A:,, ..., A:?") a set of subsets of 5, such that Ai l  > A:, > ... > A:w. 
co(A;) will be the convex polytope connecting the vertices of the convex hull 
containing A: such that Vz c A: 
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and A, = {A,, , A,, , ..., A,_) will be the collection of sets of E, such that 
co(AE,) = A,% for i = 1 , 2  ,... ,w with A,% n A Z J  = 0 and Uy=lAzt C Z, . 

The most popular approach to  multivariate calibration passes through 
two steps: 1) the application of data reduction techniques in order to reduce 
the complexity of the problem; 2) the implementation of parametric or non- 
parametric extrapolation methods to find a functional relationship between 
the set of variables. Criticism to this approach is mostly focused on the loss 
of information that the implementation of these techniques implies and on 
the assumption of linearity. These are the main two reasons that support 
the following proposal where: 1) all the information included in the set of 
variables will be used and 2) a preliminary test is run in order to  verify if 
the hypothesis of linear relationship between the set of variables is true. The 
counterpart of this approach is the relevant computational effort needed. At 
present no sufficiently powerful (fast and reliable) software has been prepared 
and most of the available algorithms (alike the ours) have been programmed 
for research reasons or may be operatively used when the dimension of the 
dataset is not too large 4 .  

Consider an asymmetric relationship between two sets of multivariate 
variables, Y, X. For the sake of graphical representability we will focus on the 
case p = q. In the following we will give some details on the extension to  the 
case p # q .  Suppose that {Qy,  By,  Gylx ,e ,  O )  is the parametric probabilistic 
space of Y, where 8 E O is a parameter vector (or matrix of parameters). 
Suppose that a transfer function g : Qx -. fly exists and that measurement 
errors mask the true g. We will approximate g by a function f (X, 8, E) where 
E is a matrix of r.v.s.. As most of the calibrating models are supposed to  be 
linear (see §2), then it turns out to be relevant to study the 'degree of linearity' 
of f or more extensively its (at least locally) 'degree of invertibility'. 

Let us first define what functional f we consider and then how to  test if 
f is linear. Consider the following symbolic transformation 

where for each convex polytope Ax, E Ax,  i = 1 , 2 ,  ..., w, we take the set 
A;" with elements in Y matching the vertices of Ax% and then we consider 

f the polytope co(A$?) = Ay,. If co-'(Ay) exists then Ax -+ Ax is a 1:l 
application. If the points left after the (w - 1)th  polytope are less then q + 1, 
they will be considered as a unique set simply transferred through f to the 
corresponding data in Y. 

If f is linear and in the not statistical case where the r.v. E does not 
exists, we will obtain a result similar to the one given in Fig.lb where B is a 
matrix of known coefficients. If we introduce the disturbance E N  N2(0, a21) ,  

4We ourself have implemented a software to draw the co( . )  function and to 
simulate the overall proposal (see. Zappa and Salini (2003)). 
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Fig. 1. Convex hulls of (a)  X ; (b )  Y = XB ; (c) Y = XB + E l  where El  comes 
from E l w N ( 0 ,  & I )  ; ( d )  Y = XB + E2 where E2 comes from E l w N ( 0 ,  & I )  ; (e)  

P = XB using case (b) and the least squares estimate for B 

from Fig lc , ld  it emerges that (8) will reproduce with a good approximation 
the true Ay only when the contribution of the r.v.s is small that is when the 
explanatory variables are well identified and only errors likely due to  measure- 
ment errors give low contribution to distortion. This is the typical calibration 
problem where the calibrating sample is generally accurately chosen. 

To test i f f  is a t  least locally linear, making use of Liu's Q statistics and 
recalling that it has the properties to be invariant i f f  is affine, proceed as 
follows. For each element Ax% E Ax, using (8) compute the sets Ay,, A;". 
Then compute 

where mxi(my,) is the number of elements in Ax,(Ayi), ni is the number of 
samples in X(Y)  after having peeled off the set Ax, (A;,), and G:n(Gk) is 
the empirical distribution of X(Y) without the set Ax, ( A % ) .  Suppose that the 
paired samples in {X,Y} are independent. We wish to  compare Q(GCn, AY,) 
with Q(G;%, Ax,) (which has the role of conditioning value). Using theorem 
6.2 of Liu and Singh (1993) we may state the following result: 

The proof of (9) is resides in the sum of independent normal variables. 
For small samples the distribution in (9) should be premultiplied by the 
ratio (my% /mX,): this is needed because the set Ayt may not have the same 
cardinality of the corresponding Ax,. As the dataset increases, under Ho, 
this ratio is almost 1. 

Then the test on linearity may be formulated as: 

Ho : c = 0 then f is a linear application 
HI : c # 0 then f is not a linear application 
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' /  

' I  

culrbrutron set 

Fig. 2. Data depth calibration set. (At the left: co(X); at the right c o ( P  = XB)) 

Note that the above procedure may be implemented for any combination 
of p ,  q. Some problems may exist only for p < q. Ax% must have a t  least 
q + 1 vertices otherwise we cannot build a convex set in Oy. A conservative 
solution is to search for q -p  additional points, possibly internal to  the region 
defined by the convex hull of Ax" , such that volume of the corresponding 
hull Ay, is the largest. The results of a simulation based on 500 replications 
of (9) under the hypothesis of existence of linearity is reported in Zappa and 
Salini (2003). It has been noticed that the convergence of (9) to  a normal 
distribution is matched even when n is as small as 10. 

If the non parametric procedure is tested to  be appropriate, then a stan- 
dard parametric calibrating model may be implemented. In Fig.2 how to find 
a "data depth calibration set" is illustrated. 

The procedure is: 

1) Compute Y = XB and apply (8). 
2) Consider a new observation y*: find the smallest simplex (with q + 1 

vertices) in Oy that contains y*. 
3) Through f-' find the corresponding simplex in Rx: this will be called 

the data depth calibration set. 
4) Find in Ox the convex hull that contains a pre-chosen (1 - a ) %  of points. 

It will be interpreted as the fiducial region for the depth calibration set. 
Translating this region so that the depth calibration set is a t  the centre 
will result in the fiducial region for E :  alike the fiducial approach on the 
construction of confidence region, we are (1 - a ) %  sure of being right 
in this particular case, regarding the observations as fixed and setting 
up regions based on some belief in the values of the parameters that have 
generated those observations. This is the typical calibration context where 
a calibration experiment is run under well controlled conditions. 

To find the calibrating depth region when q < p, use the vertices of the 
calibration depth region plus additional, possibly internal, p - q points such 
that the simplex in Rx is the smallest. 
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4 Conclusions 

A semiparametric procedure to build calibration confidence regions has been 
proposed. It may be used to test the very common hypothesis of linear re- 
lationship among the set of variables and it has the property to use all the 
information available to build the 'calibrating confidence region'. It may be 
used for any combination of p and q and the resulting region is limited and 
not empty (unlike what happens sometimes using the classical parametric 
approach). Further research is needed to solve some problems. First of all the 
computational effort needed: the algorithm is very time consuming and faster 
procedure must be implemented. A general form must be defined for the H I  
(the aim is to measure the power of the test) and it must be shown if the 
family of f to be tested in Ho include only the linear model or other locally 
linear models. If the convex hull are each inside the others, it means that the 
link f is invertible: to what family does the link function belong to? Finally 
it must be measured up to what degree the random error disturbs the identi- 
fication of the (supposed true) linear link and some simulations must be run 
to compare the classical and our new approach. A prospective can be the use 
of non parametric approach also in the estimation problem: either classical 
smoothing techniques, artificial neural networks or Kalman filter theory can 
be useful in presence of complexity and non normal error distributions. 
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Abstract. Synthetic indices are useful tools used to summarize multivariate infor- 
mation by means of a single value. In the environmental framework these indices are 
frequently proposed both for measuring pollution and for measuring the associated 
risks. The drawback of using synthetic indices is, however, that some important 
information about their components is lost. In this paper we propose to save and 
interpret these components by transforming them into compositional data. The 
interpretation of compositions is performed conditionally on the meteorology. In 
particular, much attention is directed towards explaining the absence of specific 
pollutants in the index determination. 

1 Introduction 

Synthetic indices for summarizing complex phenomena are relatively pop- 
ular tools that permit synthetic information and comparisons in space and 
time. Decision makers need synthetic evaluations of the situations to be mon- 
itored, rather than masses of data. The adoption of a synthetic index pays 
however an informative cost, since the specific contribution of its different 
components is lost. This drawback is particularly upsetting for decision mak- 
ers themselves, who would need going back to the index components a t  the 
moment when special policies ought to be undertaken. Synthetic air quality 
indices are a typical example of this duality. They are becoming a common 
tool for monitoring air quality, but suffer from the difficulty of having hidden 
their determinants. 

Synthetic evaluations of air pollution in a city, obtained by means of air 
quality indices as synthetic measures (Ott and Hunt, 1976; Bruno and Cocchi, 
2002), can be constructed by successively selecting the maximum (or another 
percentile) of an ordered set of values. Since a percentile isolates a single 
value of a distribution, each index value is due to the contribution of only 
one pollutant. For each value of the index it is possible to go back to the 
pollutant which gave rise to the index value. For a set of air quality indices 
it is possible to count the number of times that each pollutant determines 
the daily value. The framework for further analyses is therefore the one of 
compositional data. 
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In this work we propose a method for recovering and interpreting the 
information about the pollutant which give rise to the synthetic value of the 
index. It consists of analyzing the compositional data derived from a set of 
air quality indices with special reference to: 

- quantifying the influence of meteorological variables on pollutant com- 
positions; 

- overcoming the problem of zero values in compositional data. 
Section 2 describes a class of air quality indices and illustrates the idea 

of saving the information about the components by using compositional data 
theory. An introduction to compositional data is given in Section 3, with 
particular attention to the methods for dealing with zero values. A case of 
study is proposed in Section 4 where the air pollution in the city of Bologna 
is analyzed, where the usual techniques for compositional data cannot be 
directly used because of the presence of many zero values. A nonparametric 
analysis aiming a t  detecting the meteorological conditions under which each 
pollutant produces the index value is performed in Section 5. Some concluding 
remarks are included in Section 6. 

2 The air quality index structure 

In this paper the synthetic quality index for air pollution suggested in Bruno 
and Cocchi (2002) is analyzed. The aim of a synthetic air quality index varies 
from monitoring the performance of a single site to monitoring the behav- 
ior of a set of similar sites, or of an extended metropolitan area. When a 
set of sites is available, the data at disposal refer to three dimensions to be 
reduced: time, space and type of pollutant. The temporal dimension is re- 
moved first, since the pollution data are collected hourly, but daily values are 
the most popular syntheses for measuring air quality. The aggregating func- 
tions to use are suggested by national laws (e.g.  for Italy the D.M. Ambiente 
15/4/1994 and the D.M. Ambiente 16/5/1996 state the following time ag- 
gregations: daily mean for sulphure dioxide and total suspended particulate 
and daily maxima for nitrogen dioxide, carbon monoxide and ozone). The 
second step is the aggregation over one of the two remaining dimensions: for 
the scope of this paper, choosing one of the two possible directions for ag- 
gregation is sufficient. In what follows we aggregate according to the spatial 
dimension, obtaining the maximum values between monitoring sites for each 
pollutant. Given the choice above, the remaining step consists of aggregat- 
ing between pollutants. Before obtaining the final index value a further data 
transformation is required, consisting in the application of a standardization 
function. This is mainly required by the differences in measurement scale and 
in severity on health effects. A continuous scale is used, and the standardizing 
transformation can be based on the segmented linear function proposed by 
Ott and Hunt (1976): 
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f ( Y )  = 
bc+l - b, 

(Y - a,i) + b, for c = 1, ..., C ;  Vi = 1, ..., N ( 1 )  
U(c+l)i - aci 

where Y denotes the concentration value obtained by former aggregations, 
a,i represents the threshold that define the different classes of air quality 
for each pollutant in the different units of measure and b, represents the 
standardized threshold. The threshold a,i is settled exogenously according to 
expert evaluations. 

The index value is finally obtained as the maximum between the stan- 
dardized pollution syntheses: 

where k, i and h index respectively the sites, the pollutants and the time 
occurrences within the predefined time interval. Function qh permits to ag- 
gregate pollutant i over time. Function f represents the "standardizing func- 
tion". 

The daily air quality index depends on the concentration of just one pollu- 
tant and the choice of maxima as aggregation functions aims a t  highlighting 
severe episodes. 

2.1 Obtaining compositional data from daily air quality indices 

The values of the daily index of air pollution I I M ( ~ )  represent the severity 
of air pollution in a city, by means of the choice of maxima instead of other 
aggregating functions as percentiles or means. The advantage of this index 
is that, with a single value, it is able to represent a complex and multivari- 
ate scenario, and can be used to compare different situations in space or in 
time. Unfortunately, it has the drawback of loosing information about the 
determination of the value index, which are needed to better understand the 
pollution phenomena. 

As a tool for recovering and interpreting the information about the pol- 
lutants that gave rise to each synthetic value, we introduce the variable 
"monthly pollutant composition", i.e. the number of days per month in which 
a pollutant determines the air quality index. This new variable will be ana- 
lyzed in the next sections. 

3 Compositional data 

In this section we summarize the basics concepts of compositional data anal- 
ysis and sketch the problem of zero values in compositions. 

Compositional data are vectors of proportions describing the relative con- 
tribution of each of N categories to the whole. Recent theoretical develop- 
ments in the field of the statistical analysis of compositional data revealed 



238 Bruno et al. 

a broad field of applications, among which environmental applications (Bill- 
heimer et al., 2001). 

Let y = (y l ,  ..., yi, ..., yN)' denote a N-part composition, where yi 
represents a n dimensional vector of i-th constituent proportions, yi = 

(yilr ..., yij, ...,gin)'. The elements of y satisfy the two following constraints: 

N 

yij 2 0 ,  for a l l i =  1 ,..., N ; j = l ,  ..., n; and xyij = l f o r e a c h j =  1 ,..., n. 
i=l 

In this case, standard multivariate statistical techniques cannot be ap- 
plied, since the presence of unit-sum constraints leads to a covariance matrix 
with at least one negative value in each row (Aitchison, 1986). A transforma- 
tion of each yi is thus suggested to avoid this problem. In order to achieve 
a new support defined in the N - 1 dimension, a link function K( . )  is pro- 
posed: zij = K(yij/yNj), with i = 1, ..., N - 1, j = 1, ..., n ,  where y ~ j  is 
the benchmark composition for each observation j = 1, ... , n.  By means of 
the ratio y i j l y ~ j ,  the dimensionality of the component space is preserved. 
Function K( . )  is chosen to ensure that the resultant vector has real compo- 
nents. Aitchison (1982, 1986) first proposed a log-transformation for K (.) , 
but logarithmic transformations are undefined when zeroes exist in the data. 

3.1 T h e  problem of zeroes in compositional data analysis 

In statistical literature, two explanations for the occurrence of zero values are 
given. These can be "rounding" or "essential" zeroes. Rounding zeroes derive 
from problems in the measurement process, whereas essential zeroes are due 
to the occurrence of zero values in the underlying data generating process (see 
Fry et al., 1996). In order to overcome the problem of treating essential zeroes, 
Rayens and Srinivasan (1991) suggested a Box-Cox transformation. Box-Cox 
transformed data usually follow a nearly multivariate normal distribution and 
can be treated using standard techniques. 

4 The investigation of air quality index composition 

Air pollution and meteorology data are regularly collected in urban ar- 
eas. The proposal of this paper is checked by means of data collected in 
the Bologna area (years 1995-2001). The pollutants considered are: carbon 
monoxide (CO), nitrogen dioxide (NOz), ozone (03) ,  total suspended par- 
ticulate (TSP) and sulphure dioxide (SO2). Many monitoring stations are 
present in the city: 7 monitoring sites have been operating until 1997 and 6 
are present since 1998. 

The meteorological variables measured at Bologna airport are: tempera- 
ture (daily maxima, minima and average), humidity (daily maxima, minima 
and average), pressure, wind speed, wind direction, rainfall. Their correspond- 
ing monthly syntheses have been computed for further analyses. By means 
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of an additional variable, the year of measurement, we have taken into con- 
sideration the structural change in the monitoring network. 

4.1 The emergence of an exceess of essential zeroes 

Each monthly composition of the index, ie. the contribution of one or more 
pollutants, may be null: some components are indeed essential zeroes, as 
shown in Table 1, where NO2 never appears as an essential zero. On the 
contrary, in the computation of these compositions SO2 never contributes to 
the determination of the air quality index. For this reason we will not take 
into consideration this pollutant in the following analyses. 

CO=O TSP=O 03=0 NOz=O Occurrence 

Table 1. Essential zeroes in monthly air quality index 

Compositions of monthly air quality indices have been obtained, where a 
large amount of essential zeroes occur, specially for some pollutants. This high 
occurrences of zero values is typical of air pollution, where some pollutants 
can be prevailing in determining the values of the indices. In this case, Box- 
Cox transformations do not solve the problem of non normality and the 
maximum likelihood estimates of the transforming parameter (Bruno et al., 
2003) lead to data that are not normally distributed. 

In a situation of structural exceedance of essential zeroes, attention moves 
towards explaining the conditions under which essential zero values occur. 
The solution proposed for identifying conditions for essential zeroes relies on 
nonparametric techniques. 

5 A nonparametric approach for identifying essential 
zeros 

In this section the problem of essential zeroes is faced by means of nonpara- 
metric techniques, proposing CART regression trees (Breiman et al., 1993) as 
a tool to characterize essential zeroes with respect to the main environmental 
features. 

A CART regression tree is built through a process known as binary recur- 
sive partitioning. This is an iterative process which splits data  into partitions, 
and then splits them up further on each of the branches. The algorithm breaks 
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up the data, using every possible binary split performed by every explanatory 
variable. It chooses the split that minimizes the sum of the squared devia- 
tions from the mean in the separate parts. The process continues until each 
node reaches a specified minimum node size and becomes a terminal node. 
To obtain the right sized tree a pruning step based on 1-SE rule is performed 
(Breiman et al., 1993). 

Our goal is to explain responses on a continuous dependent variable 
(monthly pollutant composition) and to quantify the influence of meteoro- 
logical variables on the pollutant compositions. A regression tree was built 
for each pollutant composition. 

In Figure 1 the regression tree for ozone monthly composition is reported. 

0, mean composrtm 

standard enor 
0.12 0.01 0.82 0.41 
0.16 0.03 0.15 0.26 

Fig. 1. Regression tree for ozone monthly composition. 

In this Figure, 0 3  monthly compositions constitute the dependent vari- 
able. Monthly maximum temperature is the first splitting variable: when it is 
less than about 25"C, then O3 composition is predicted as very close to zero. 
The successive split is determined by choosing monthly average humidity as 
the discriminant variable. When this variable assumes a value higher than 70 
per cent of humidity, ozone monthly compositions have a mean value very 
close to zero. This terminal node contains 37 cases. In Table 1, 32 ozone val- 
ues out of the 84 were identified as essential zeroes: the tree standard error 
rate, estimated by cross-validation, is about 0.006. 

Figure 2 reports the regression tree where TSP monthly composition is 
the dependent variable. In this tree, monthly average temperature is selected 
as the first splitting variable. Four essential zeroes are detected when monthly 
average temperature is higher than 17°C and humidity is less than 61 per 
cent. Other 12 cases belong to a terminal node characterized by monthly 
average humidity higher than 61 per cent and pressure higher than 1014 
hPa. In this case the tree standard error rate, estimated by cross-validation, 
is about 0.004. 

In Table 1, 68 months report essential zeroes for CO composition. The 
regression tree for CO is able to isolate these zero values mainly according 
to meteorology. We describe the structure of this tree without reporting it 
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Fig. 2. Regression tree for total suspended particulate monthly composition. 

graphically. The first split is due to average temperature: in correspondence 
of an average temperature higher than 15OC, 38 essential zero values occur. 
For the remaining 46 compositions, the following split is due to the reference 
year. If the year of reference is successive to 1998, 18 essential zero values are 
recognized as essential zero. Indeed, 1998 has been the year of monitoring sites 
relocation. Other important splits are due to wind conditions: average wind 
speed greater than 2 m/s and wind direction less than 217" (ie. coming from 
the west direction) segregate further 9 essential zero values. When the wind 
direction is greater than 217" the very special average wind speed between 
2 m/s and 2.2 m/s occur we observe further 5 essential zeroes. The tree 
standard error rate estimated by cross-validation is less than 0.0003. 

The NO2 monthly composition never assumes essential zero values, and 
its regression tree can be interpreted essentially with respect to low values. 
The summary of the tree description, which is not reported, states that NO2 
monthly composition has its lowest values when the temperature is higher 
than 29°C and the monthly average humidity is lower than 65 per cent. The 
tree standard error rate is about 0.007. 

6 Conclusions 

In this paper, we face the problem of integrating meteorological informa- 
tion within air quality index evaluations. Aggregations by time, space and 
pollutants are needed to obtain a synthetic index, but they suffer from loos- 
ing information about the most influent pollutants and the relationship be- 
tween pollutants and meteorology. For this reason, we construct new variables 
as compositional data.  Unfortunately, the common compositional techniques 
cannot be applied due to a strong presence of essential zero values. Our pro- 
posal is to use nonparametric techniques as regression trees for quantifying 
the influence of meteorology on air quality indices composition. The high 
overall dependence of pollutant compositions on temperature and humidity 
is highlighted: essential zeroes of TSP and CO compositions mainly depend 
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on these meteorological characteristics. These results confirm the knowledge 
about the  relationship between air pollution and meteorology. In particular, 
ozone essential zero cases are characterized by low temperatures and high 
humidity, meaning that ,  under these meteorological conditions, ozone never 
features as  the pollutant which determines the  value of the  air quality index. 
NOz composition is high when temperature assumes low values and humidity 
is high. 
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Abstract. In this work we propose the use of Vector Autoregressive Models 
(ST-VAR) and Generalized Vector Autoregressive Models (ST-GVAR) for spatio- 
temporal data in which relations among different sites of a monitoring network are 
not exclusively dependent on the distance among them but take also into account 
intensity and direction that a phenomenon measured on the whole network has on 
a single site of the network. We present an application of these models using data 
of fifteen italian meteorological locations of Mediterranean Basin. 

1 Introduction 

Since there are in nature phenomena whose spatial diffusion is not exclusively 
dependent on the distance among different sites of the monitoring network, in 
this work we propose the use of VAR models for spatio-temporal data which 
take into account intensity and direction that a phenomenon measured on 
the whole network has on a single site. This means that relations among ob- 
served sites are not necessarily symmetric and/or bi-directional. The models 
proposed are suitable for the analysis of environmental data and, particularly, 
for meteorological phenomena. In this paper we present an application of the 
models proposed using data of solar radiation and sunshine duration, where 
with solar radiation we mean solar energy measured i n  a certain t ime instant 
b y  the instrument and with sunshine duration we mean time interval during 
which there i s  not cloudiness. 
There are two different kind of interest in the study of solar radiation. The 
first one is related to environmental problems. In fact the level of solar ra- 
diation is strictly connected with the presence of pollutants which, beside 
worsen the quality of the air we breathe, cause the rarefaction of the ozone 
reducing the ability of the stratosphere to hold the UV-C waves, the most 
dangerous for human health. Hence monitoring the level of solar radiation is 
important for checking a possible increase of this level in time due to many 
different phenomena that have to be kept under control. 
The second kind of interest is from a statistical point of view. The level of 
solar radiation measured in a certain time instant on a single site, depends 
on the behaviour of those nearby as a function of cloud amount (Law of 
Angstrom). Streams and humidity rate cause the movement of clouds and 
then the intensity of solar radiation measured in a given site. For this reason 
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we need suitable models to understand and predict solar radiation and, in 
general terms, for all the phenomena whose spatial diffusion is not exclusively 
dependent on the distance among sites. 
The proposed models explain solar radiation a t  time t ,  in a given site, as a 
linear function of past observations in the same site, of past and simultaneous 
observations of the remaining sites and of the simultaneous observations of 
the pure exogenous component sunshine duration. Since the models proposed 
need that the observed sites define a climatic area, in the application we used 
spatio-temporal data of fifteen meteorological sites - as reported in Section 
3 - which satisfy the condition required. The paper is organised as follow: 
in Section 2 we write the models proposed, in Section 3 we describe the 
data used, in Section 4 we give some empirical results and in Section 5 some 
conclusions and future works. 

2 The models 

The two models proposed distinguish in accordance with the use of the si- 
multaneous spatial component (Naccarato, 2001). The first one, called ST- 
VAR(K), does not include the simultaneous spatial component and, with 
reference to a spatial network with S sites, is defined as: 

where yt is the vector of the observations in the S sites at time t ,  u t  is the error 
vector and A1, .  . . , AK are the coefficient matrices, non-symmetric, in which 
the diagonal elements are the time autoregressive effects of the model while 
the extra-diagonal elements are the spatio-temporal autoregressive effects 
(e.g. kai j ,  k = 1 , .  . . K, is the effect that the phenomenon collected at time 
t - k on site i has on the phenomenon collected on site j at time t ) .  
Using matrix notation we can write the model ST-VAR(K) as: 

uec ( y T )  = ( I s  B zT) uec ( B T )  + uec (uT) 
with CZ)ec(u~) = (C, 8 IT )  and C, = a21s. 
The second model, called ST-GVAR(K), includes simultaneous spatial effect 
and is defined as: 

whereWo is a matrix in which the diagonal elements are zero and the extra- 
diagonal elements represent the simultaneous spatial effect among sites. 
Using matrix notation we can write the model ST-GVAR(K) as: 

uec ( y T )  = ( I s  B zT) uec (A;' B ) ~  + (A;' 4 I T )  uecuT 
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T 
with error covariance matrix given by ( R  @ IT),  where f l  = A ~ ' c ~  (A,') . 
In the case of ST-GVAR(K) model the OLS estimates are not consistent 
because of spatial correlation among errors in different sites a t  the same 
time. For this reason, under the assumption that the process is normally 
distributed, we will use ML estimates. Even if ST-VAR(K) and ST-GVAR(K) 
models do not impose neither hi-directional nor symmetric relations among 
each pair of sites, they require a high number of parameters to  be estimated. 
If the phenomenon has a spatial structure which is repeated in time, we can 
formalize a constrained model which takes into account this structure. In 
this way it is possible to reduce the number of unknown parameters. The 
constrained ST-VAR(K) model is: 

vec (yT) = (IS 8 zT) R 9 + uec (uT) (5) 

where uec (BT) = R eT, R is a [S(SK + I ) ,  MI matrix of known coefficient, 
with rank r ( R )  = M and 9 is a [M, 11 vector of unknown and unconstrained 
parameters with M < S (SK + 1). 
To obtain the analytic form of the ML estimates for the model ST-GVAR(K) 
in the form (4), we need to define the following vectors: 

Hence model (4) becomes: 

uec (yT) = (IS 8 zT) 77 + (A,' 8 IT) uecuT 

If the constrains are of the form p = R 9  + r it can be shown that the ML 
constrained estimator of 9 is: 

8 = [ R ~ H ~  (0-' @ ZZT)  H R ]  -' R T H  (R-' @ z") vecYT 

- [ R T ~ T  (R-' @ ZzT) HR]- '  R " H ~  (12-I @ ZZT) HI- (7) 

with H = a \ B p T ,  q = uec {[A,' (a ,  A' , .  . . , A K ) ] ~ ) .  

3 Description of the data 

The data used in our application are daily spatio-temporal series of solar radi- 
ation and sunshine duration concerning the fifteen italian meteorological sites 
of Mediterranean Basin - Pisa San Giusto (Ol), Elba (02), Pianosa (03), Vigna 
di Valle (04), Roma Ciampino (05), Ponza (06), Napoli Capo di Chino (07), 
Capo Palinuro (08), Messina (Og), Ustica ( lo) ,  Trapani Birgi (1 I ) ,  Pantelleria 
(12), Cagliari Elmas (13), Capo Bella Vista (14), Olbia Costa Smeralda (15) 
- during the period 1 january 1991 - 31 december 1998. Considering sunshine 
duration as variable the sites, whose behaviour is homogeneous with respect 
to  this variable, have been chosen using cluster analysis and in particular the 
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non-hierarchical algorithm of K-means fixing five groups. The method has 
been applied to the data collected in 1991 on 50 meteorological sites in Italy; 
the stability of the partitions during the years has been verified applying the 
algorithm to the data for every year of the series. Moreover, the fifteen sites 
obtained are under the influence of streams coming from the English Channel 
and the Gulf of Gascony which determine the main movements of the clouds 
- in the North-South direction - on the Tyrrhenian sea. For these reasons the 
fifteen sites define a climatic area. 
First of all, we carried out the analysis of global and partial autocorrelations 
of solar radiation series in each site to underline a possible non-stationarity in 
mean of the phenomenon. For all the series considered, the estimated global 
autocorrelation function goes to zero very slowly and in a straight way; the 
partial autocorrelation is in practice one at lag 1 and almost zero elsewhere 
and the estimated inverse autocorrelation goes to -3 a t  lag 1. In the ST- 
VAR(K) model the non-stationarity in mean is eliminated transforming the 
variable using first order differentiation and the differentiated series showed 
an autoregressive scheme of second order (AR(2)) for all the sites. Spatio- 
temporal effects for lags greater than two were also taken into account but 
their inclusion in the models was not significant. Including in the model si- 
multaneous spatial effect - using hence ST-GVAR(K) model (6) - the data 
do not show non-stationarity in mean probably due to the fact that simulta- 
neous spatial effect underline the long term trend effect. In this case we used 
the original series and the model ST-GVAR(2). 

4 Results 
As noted before, the main problem on the use of models proposed is the 
number of parameters to be estimated. 

I ! ! ! ! ! ! ! ! !  ! ! ! ! ! ! I  

high 

Table l a  
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Table l b  

In our application, besides the parameters relative to the spatio-temporal 
effects, we had to consider even those of the pure exogenous component sun- 
shine duration. To reduce the number of these parameters, we used a priori 
information about meteorological features of the climatic area. In particu- 
lar, the fifteen sites are under continuous and predominant influence of the 
streams coming from the English Channel and the Gulf of Gascony, which 
cause the movements of clouds in the same directions for two or three days; 
hence we assumed that the spatio-temporal effect of the phenomenon is con- 
stant in the same period. This is equivalent to suppose that the extra-diagonal 
elements of the matrix Az are the same as those of the matrix A1.  To verify 
this hypothesis of constancy in time of the spatial relations we used the Like- 
lihood Ratio Test and on the basis of the results of this test, we put all the 
constrains of constancy in time of the spatial relations among the sites. In 
Table l a  and l b  we show the estimated coefficient matrices for ST-VAR(2) 
wrote as 2 

yt = Q + G P ~ + C A ~ Y ~ - ~ + ~ ~  
k=P 

where Co is the coefficient matrix of the exogenous variable. 
In matrix AZ we reported in bold the parameters which remain constant 

between lag 1 and lag 2. As we can see the number of parameters to  be esti- 
mated is reduced and the model fit well the data (R2 = 0.77). To take into 
account the effect that the phenomenon measured on the whole network a t  
time t has on a single site a t  the same time, we considered also the simulta- 
neous observations of solar radiation. Hence we used the model ST-GVAR(2) 
in the form 
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where the original series are not differentiated supposing that the simulta- 
neous observations could underline the long term trend effect. The results of 
the Likelihood Ratio Test underlined that, if it is still possible to consider 
valid the hypothesis of constancy of the relations from lag 1 to lag 2, it is 
not convenient to constrain to this hypothesis the simultaneous coefficients. 
In Table 2a, 2b and 2c we show the estimated coefficient matrices obtained 
maximazing the log-likelihood function. 

Table 2b 
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Table 2c 

Again (Table 2a) in matrix A2 we reported in bold numbers the parameters 
which remain constant between lag 1 and lag 2. Also in this case the number of 
parameters to be estimated is reduced and the fitting to the data is improved 
(R2 = 0.85). It must be noted that at  lag 2 there are spatial effect among 
farer sites that were not at  lag 1 as those among sites 4 - 5 and sites 11 - 12 
as shown in matrix A2. 

5 Conclusions 

In this work we presented two models - ST-VAR(K) and ST-GVAR(K) that 
are very flexible and appropriate to understand the directional effects in the 
analysis of meteorological phenomena. However, to use this models we need a 
priori knowledge on the spatio-temporal structure of the phenomenon under 
study. To face this problem, in our application we used the results of the 
cluster analysis as well as information about the movements of the clouds 
on the target area and their constancy over time. It is worth to note that 
the estimated spatio-temporal coefficients of the two models are in accor- 
dance with the main movements of clouds in the Mediterranean Basin. In 
particular they capture the effects of the main movements of clouds in the 
NW - SE direction as those from Tuscany Archipelago and Sardinia to the 
south of Italy. This fact is evident looking at  the matrices of spatio-temporal 
coefficients where, after ordering the meteorological sites from the north to  
the south, we can see that almost all the under-diagonal elements are zero. 
Moreover, the models proposed point out that the spatial effects may change 
as a function of the temporal lag considered; as noted in our application, it is 
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not possible to hold the constancy constrain for the relations among all the 
sites and, in particular, using generalized model we can see that  a t  lag 2 there 
are spatial effects among farther sites. As future works, we are trying to  gen- 
eralize the models proposed to  make them independent from a priori knowl- 
edge of the spatio-temporal structure of the phenomenon under study. This 
could be done defining classes of models for different spatio-temporal struc- 
tures through partial spatio-temporal autocorrelation functions. Moreover, it 
would be possible to consider many different climatic areas simultaneously 
in order to  analyze relations among them.. This would imply putting differ- 
ent types of constrains in the models and hence building mixed coefficient 
matrices. 
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Abstract. Formulation and evaluation of environmental policy depend upon a 
general class of latent variable models known as multivariate receptor models. Es- 
timation of the number of pollution sources, the source composition profiles and 
the source contributions are the main interests in multivariate receptor modelling. 
Different approaches have been proposed in the literature when the number of 
sources is unknown (explorative factorial analysis) and when the number and type 
of sources are known (regression models). In this paper we propose a flexible ap- 
proach on the use of multivariate receptor models that takes into account the extra 
variability due to the spatial dependence shown by the data. The method proposed 
is applied to Lombardia air pollution data. 

1 Introduction 

Interest around the  identification of main pollution sources and their compo- 
sitions needed t o  implement air pollution control programs has increased in 
the  past decade. Observing the quantity of various pollutants emitted from 
all potential sources is virtually impossible.For this reason multivariate recep- 
tor models are used to analyze concentrations of airborne gases or particles 
measured over time in order to  gain insight about the  unobserved pollution 
sources. When the  number and the  composition of the  sources are unknown, 
factor analytic approaches have been employed in order t o  identify pollution 
sources. As in the  factor analysis models the  choice of the  number of sources 
(factors) t o  be used in receptor models is pivotal. The  number of sources is 
often chosen using ad- hoc methods suggested in the  literature. Park,  Henry 
and Spiegelman (1999) provide a review with discussion of several of these 
methods. Once a model with k sources has been fitted, interest often lies in 
describing the  composition of each pollution source and the  amount of pollu- 
tion emitted from each of them. To make sound decisions from the  data ,  it is 
necessary to  make statistical inference about the  fitted model; however sta- 
tistical tools for such data  have not received much attention in the  literature. 
Pollution da ta  collected over time and/or space often exhibit dependence 
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which needs to be accounted for in the procedures for inference on model 
parameters. In this paper we present a flexible approach to multivariate re- 
ceptor models that take into account the spatial dependence exhibited by 
the data and we show the usefulness of the procedure using air pollution 
data from Lombardia area.The paper is organized as follow: in Section 2 we 
restate the model from a statistical point of view, Section 3 contains the 
methodological issues related to spatial covariance estimation, in Section 4 
we present an application of the proposed model to air pollution data and 
in Section 5 some concluding remarks and some possible future developments. 

2 The model 

The basic multivariate receptor model used in the literature can be written 
as follow: 

where yt is a p vector of concentrations of ambient particles observed a t  time 
t ,  A is a p x k matrix of non-negative source compositions (source profile ma- 
trix) and ft is a k-vector of non-negative pollution source contributions. Two 
different approaches have been used in the literature. When the number and 
nature of the pollution sources are known (this means that A is known), the 
pollution source contributions can be estimated using regression or measure- 
ment error models. Instead when all or some of the elements of the matrix A 
are not known, it is possible to estimate the pollution source contributions 
using linear factor analysis models. The use of factor analytic techniques re- 
quires additional assumptions on the model. The unknown number of sources 
(factors) k ,  is the first obstacle because A and f depend on k in the model 
(1). Secondly, the parameters in model (1) are not uniquely defined, even 
under the assumption that k is known. This means that there are other pa- 
rameterization~ that produce the same data. This is called nonidentifiability 
in latent variable models and additional restrictions on the parameters are 
required to remove it. Park et al. (2001) discussed a wide range of identifia- 
bility conditions for multivariate receptor models when the number of sources 
k is assumed to be known. In a receptor modeling feasibility study Javitz, 
Watson, Guertin and Muller (1988) expressed the need for future develop- 
ment of a physically meaningful hybrid model which could be used with only 
partial source composition information and pointed out the importance of 
estimates of uncertainties associated with the model which are necessary for 
inference. The use of a flexible latent variable model allows the researcher to 
incorporate physical constrains, past data or other subject matter knowledge 
in the model and guarantees valid model fits using only limited information 
about the relationship between the observed ambient species and the pollu- 
tion sources. The main difference between multivariate receptor models used 
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in the literature and linear factor analysis models is that the observations 
in a pollution data set are rarely if ever independent. Multivariate recep- 
tor models, in fact, are used to model data that exhibit temporal and/or 
spatial dependence. Several potential hazards arise when factor analysis ig- 
nores dependence structure, most of them related to invalidity of inferential 
techniques. In this paper we make the assumption of temporal stationarity 
because of the lack of auxiliary variables such as meteorological ones and 
hence we focus on spatial dependence. 

3 Spatial covariance estimation 

We need some additional notation in order to formulate the general problem 
of spatial covariance estimation for multivariate space-time data. Let 

be a multivariate spatio-temporal process with 

Y (s, t )  = ( y l  (s, t ) ,  ..., Y ~ ( s ,  t ) ) T  (3) 

We assume that Y can be observed a t  a collection of sites S = (s l ,  ..., s,) 
and for a collection of times T = ( t l ,  ..., t M )  and write yi for an observed 
realization of Y . If Y is temporally ergodic we can define the q x q matrix 
valued spatial covariance function of Y as 

and we can estimate spatial covariance between pairs of monitored sites by 
averaging over time. With spatial trend estimated by site means , a spatial 
covariance matrix I? can be estimated as: 

where is the spatial mean vector. Given an estimate of I?, it is important in 
many spatial modelling problem to estimate valid (non-negative definite) co- 
variance function for Y based on the information in I?. Following the method 
suggested by Nott and Dunsmuir (1998), one way to achieve this goal is by 
reproducing I? a t  monitored sites and then describing conditional behaviour 
given monitoring sites values by a stationary process or collection of a sta- 
tionary processes. To describe the idea of Nott and Dunsmuir, we need some 
more notation. Let {W(s); s E be a multivariate zero mean, stationary 
Gaussian process with q components, 
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with covariance function R(h). Let W denote the vector 

and write C for the covariance matrix of W .  Also write the nq x q cross- 
covariance matrix between W and as W (s) as 

If we observe values of the process at the monitored sites , W = w  say, then for 
an arbitrary collection of sites we can write down the joint distribution of W 
at these sites.These are the finite dimensional distributions of a random field 
which describes the conditional behaviour of W(.) given W = w ,  and such a 
random field has a representation: 

where S((s) is a zero mean Gaussian process with covariance function: 

To obtain a valid non-negative definite covariance function, which reproduces 
the empirical spatial covariance matrix r at the monitored sites, is to replace 
w in the above representation by a random vector W* which has zero mean 
and covariance matrix I' independent of 6(s). Intuitively we are constructing 
a process with covariance matrix I' at the monitored sites but with the con- 
ditional distribution given values at monitored sites the same as those of the 
stationary random field W(s). It must be noted that the covariance function 
of W(s) is not the model used for the unconditional covariance but is part of 
a construction to obtain valid, non-negative definite non -stationary spatial 
covariance function model for Y: 

This covariance function reproduces r (that is, evaluating (10) at (s, u ) )  = 
(si, sj)  gives Fij)) since c(si) is simply the i-th column of C .  Hence one simple 
way of constructing a non -negative definite estimate of spatial covariance is 
to fit a stationary model to r and to then compute (10) with R(u,  s) ,  C ,  c(s)  
and c(u)  evaluated according to the fitted stationary process. 

4 A case study of air pollution 

We apply the model to air pollution data in the Milano- Bergamo districts. 
In particular we consider the daily observation of CO, NOX, NO2 and SO2 
obtained from 23 monitoring sites for two months, june and december 2000, 
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(Figure 1). We consider as reference days the 1st of june and the 15th of 
december and the plots of the original data are shown in Figure 2. 

First of all analyzing the time series of pollutants for each sites, we verified 
the temporal stationarity of the data. After data reconstruction and spatial 
trend analysis we estimate the spatial covariance matrix using the above 
proposed method. For the analysis we assume only limited information on the 
source profile matrix A that yields an identified model. From past studies we 
know that there are three major pollution sources for this type of data: vehicle 
exhaust, industrial emissions and non-industrial emissions, so we applied the 
model with k=3 sources (factors) for each variable. As we can see in Table 1 
the analysis carried out with k=3 sources is quite satisfying, with cumulative 
variance explained ranging from 81.5 % (NOX) to 96.5 % (S02) for the 1st 
of june and 97,5 %(N02) to 98,5 % (NOX) for the 15th of december. 
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NOX 

Fig. 2. Plot of the original data 

Then, we can say that the model with k=3 sources is appropriate to de- 
scribe the data we used for the analysis and this is in accordance with past 
information about this kind of data. Carrying out the analysis without taking 
into account the dependence exhibited by the data could be very misleading. 
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lSt June 

I 1 giugno 

NOX 
LI 

I 15 dicembre 

NOX 

Table 1. Importance of factor - Cumulative Variance 

Fig. 3. Plot of factors for each variable 

5 Conclusions 

Identification of major pollution sources and their contributions can be as- 
sessed by a class of latent variable models known as multivariate receptor 
models. Air quality data exhibit temporal and/or spatial dependence that is 
often ignored a t  the expense of valid inference. In this paper we incorporate 
dependence structure shown by the data estimating a non-stationary spa- 
tial covariance matrix for multivariate space-time data where a given spatial 
covariance matrix is reproduced at a collection of monitored sites and con- 
ditional behaviour, given monitored site values, is described by a stationary 
process. In this way it is possible to fit a multivariate receptor model that 
is uniquely identified and the model parameter estimates have meaningful 
interpretation. A possible extension for future works is to introduce meteoro- 
logical variables in the model that play an important role in the explanation 
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of the air pollution. Moreover it would be interesting to compare the results 
obtained using other methods for the estimation of the spatial covariance 
matrix. 
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Abstract. This paper describes an application of Caged (Cluster Analysis of Gene 
Expression Dynamics) to a data set of gene expression temporal profiles from Sac- 
caroinicys Cerevisiae. The goal of the analysis is to identify groups of genes with 
similar temporal patterns of expression during the cell cycle. We show that Caged 
groups gene expression temporal profiles into meaningful clusters and identifies 
genes with a putative role in the cell cycle. 

1 Introduction 

Several applications of genome-wide clustering methods focus on the tempo- 
ral profiling of gene expression patterns measured in temporal experiments. 
Temporal profiling offers the possibility of observing the cellular mechanisms 
in action and tries to  break down the genome into sets of genes involved in 
the same or related processes. However, standard clustering methods, such 
as the hierarchical clustering method of Eisen et al. (1998) or the self or- 
ganizing maps (Tamayo et a1.,1999), analyse the data  generated from these 
experiments under the assumption that the observations for each gene are 
independent and identically distributed (iid). Gene expression data  collected 
from temporal experiments are the realizations of a time series, where each 
observation may depend on prior ones (Box and Jenkins,l976; West and 
Harrison, 1977). However, standard similarity measures currently used for 
clustering gene expression data,  such as correlation or Euclidean distance, 
are invariant with respect to the order of observations: if the temporal order 
of a pair of series is permuted, their correlation or Euclidean distance will 
not change. 
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A second critical problem of clustering approaches to gene expression 
data is the arbitrary nature of the partitioning process. This operation is 
often done by visual inspection, by searching for groups of genes with sim- 
ilar expression patterns. Permutation tests are sometimes used to validate 
the partitions found by this procedure (Eisen et al. 1998), and a bootstrap- 
based validation technique is presented in Kerr and Churchill (2001). The gap 
statistic of Tibshirani et al. (2001) is also used to find the optimal number of 
groups in the data. 

CAGED (Cluster Analysis of Gene Expression Dynamics) is a model based, 
Bayesian clustering procedure developed by Ramoni et al. (2002) to cluster 
gene expression profiles measured with microarrays in temporal experiments. 
Contrary to popular clustering methods, CAGED takes into account explic- 
itly the fact that expression profiles in temporal experiments may be serially 
correlated and uses a model-based, Bayesian procedure to identify the best 
grouping of the gene expression data in an automated way. An important 
property of CAGED is that it automatically identifies the number of clusters 
and partitions the gene expression time series in different groups on the basis 
of the principled measure of the posterior probability of the clustering model. 
In this way, CAGED allows the investigator to assess whether the experimen- 
tal data convey enough evidence to support the conclusion that the pattern 
of a set of genes is significantly different from the pattern of another set of 
genes. This feature is particularly important because decades of cognitive sci- 
ence research have shown that the human eye tends to overfit observations by 
selectively discounting variance and "seeing" patterns in randomness (Kahne- 
man et al. 1982). By contrast, a recognized advantage of a Bayesian approach 
to model selection is the ability to automatically constrain model complexity 
and to provide appropriate measures of uncertainty. 

We apply CAGED to cluster a data set of gene expression temporal profiles 
from Saccaromicys Cerevisiae. The goal of the analysis is to detect those genes 
whose transcript levels vary periodically within the cell cycle. Cell cycle is a 
very complex ordered set of events that consists of several phases culminating 
in cell growth and division into daughter cells (mitosis). During this period, 
the cell is constantly synthesizing RNA, producing protein and growing in 
size. In the GI phase, the cell increases in size, produces RNA and synthesizes 
proteins. The next step is the synthesis phase S in which DNA replication 
occurs. This phase is followed by the G2 phase in which the cell continues 
to grow and to produce new proteins, and by the mitosis (M phase). Many 
genes are involved in DNA synthesis, budding and cytokinesis that occur 
only once per cell cycle. In addition, many of these genes are also involved 
in controlling the cell cycle itself. For this reason, the expression levels of the 
genes that have a regulatory role in cell cycles are expected to show periodical 
behaviors across time and to present at least one peak during the phase in 
which they are activated. The data were originally analyzed by Spellman et 
al., (1988), using Fourier models, and the authors identified several clusters 
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by visual inspections. We show that Caged finds automatically clusters of 
gene expression temporal profiles that exhibit periodic behavior. 

The next section gives a brief description of the model based clustering 
procedure that is implemented in CAGED. Section 3 provides details of the 
analysis and conclusions and suggestions for further work are in Section 4. 

2 Caged 

The clustering method implemented in CAGED is based on a different concept 
of similarity for time series: two time series are similar when they are gen- 
erated by the same stochastic process. Therefore, the components of CAGED 
are a model describing the dynamics of gene expression temporal profiles, a 
metric to decide when two gene expression temporal profiles are generated 
by the same stochastic process, and a search procedure to efficiently explore 
the space of possible clustering models. 

CAGED models gene expression temporal profiles by autoregressive equa- 
tions (West and Harrison, 1977). Let Sj = {xJ1,. . . , x j t , .  . . , x jn )  denote a 
stationary time series. An autoregressive model of order p, say AR(p), for the 
time series can be described in matrix form as x j  = XjPj + ~ j ,  where x j  is 
the vector ( x ~ ( , + ~ ) , .  . . , ~ j , ) ~ ,  X j  is the (n - p) x (p + 1) regression matrix 
whose tth row is (1, xj(t-l), . . . , xj(t-p)) for t > p, Pj is the vector of autore- 
gressive coefficients and c j  the vector of uncorrelated errors that are assumed 
normally distributed with expected value E(ejt) = 0 and precision rj, for any 
time point t .  Given the data, the model parameters can be estimated using 
standard Bayesian procedures, and details are in Ramoni et al. (2002). 

To select the set of clusters, CAGED uses a novel model-based Bayesian 
clustering procedure. A set of clusters C1,.  . . , C,, each consisting of mk 
time series, is represented as a model A&. The time series assigned to each 
cluster are treated as independent realizations of the dynamic process rep- 
resented by the cluster, which is described by an autoregressive equation. 
The posterior probability of the model Mc is computed by Bayes theorem 
as P(hfcly) cc P(h/l,)f(xlM,) where P(Mc)  is the prior probability of Mc 
and f (xlM,) is the marginal likelihood. Assuming independent uniform prior 
distributions on the model parameters and a symmetric Dirichlet distribu- 
tion on the cluster probability pk, the marginal likelihood of each cluster 
model MC can be easily computed in closed form by solving the integral: 
f (xlM,) = J f (xlB,) f (Bc)dBc. In this equation, 8, is the vector of parame- 
ters that describe the likelihood function, conditional on a clustering model 
&Ic, and f (B,) is the prior density. In this way, each clustering model has 
an explicit probabilistic score and the model with maximum score can be 
found. In practice, we assume that each clustering model has the same prior 
probability so that the marginal likelihood f (xl&l,) is the scoring metric of 
the clustering model Mc. 

As the number of clustering models grows exponentially with the number 
of time series, CAGED uses an agglomerative search strategy, which iteratively 
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merges time series into clusters. The procedure starts by assuming that each 
of the m gene expression time series is generated by a different process. Thus, 
the initial model Mm consists of m clusters, one for each time series, with 
score f (xlMm). The next step is the computation of the marginal likelihood 
of the m(m - 1) models in which two of the m profiles are merged into 
one cluster, so that each of these models consists of m - 1 clusters. The 
model Mm-l with maximal marginal likelihood is chosen and the merging 
is rejected if f(xlMm) 2 f ( ~ l M , - ~ )  and the procedure stops. If f (xlMm) 
< f ( ~ l M ~ - ~ )  the merging is accepted, a cluster Ck merging the two time 
series is created, and the procedure is repeated on the new set of m - 1 time 
series that consist of the remaining m - 2 time series and the cluster profile. 
Although the agglomerative strategy makes the search process feasible, the 
computational effort can be extremely demanding when the number of time 
series is large. To further reduce this effort, we use a heuristic strategy based 
on a measure of similarity between time series. 

The intuition behind this strategy is that the merging of two similar time 
series has better chances of increasing the marginal likelihood. The heuristic 
search starts by computing the m(m-  1) pair-wise similarity measures of the 
time series and selects the model Mm-1 in which the two closest time series 
are merged into one cluster. If the merging increases the marginal likelihood, 
the two time series are merged into a single cluster, a profile of this cluster 
is computed by averaging the two observed time series, and the procedure is 
repeated on the new set of m - 1 time series. If this merging is rejected, the 
procedure is repeated on the two time series with second highest similarity 
until an acceptable merging is found. If no acceptable merging is found, the 
procedure stops. Note that the clustering procedure is actually performed 
on the posterior probability of the model and the similarity measure is only 
used to increase the speed of the search process and to limit the risk of falling 
into local maxima. Similarity measures implemented in CAGED are Euclidean 
distance, correlation and cross correlation. Empirical evaluations have shown 
that the accuracy loss of this heuristics is limited (Sebastiani and Ramoni, 
2001; Sebastiani et al., 2003). Compared to other clustering methods such 
as hierarchical clustering or self organizing maps, CAGED identifies the set 
of clusters with maximum posterior probability without requiring any prior 
input about the number of clusters and avoids the risk of overfitting. 

Standard statistical diagnostics are used as independent assessment mea- 
sures of the cluster model found by the heuristic search. Once the procedure 
terminates, the coefficients pk of the AR(p) model associated with each clus- 
ter Ck are estimated by Bayesian Least Squares, while 6: = RSSk/(nk - p) 
is the estimate of the within-cluster variance and RSSk is the within cluster 
residual sum of squares. The parameter estimates can be used to  compute the 
fitted values 2ik, for the series in each cluster, from which we compute the 
residuals xik -2ik. If AR(p) models provide an accurate approximation of the 
processes generating the time series, the standardized residuals should behave 
like a random sample from a standard normal distribution. A normal proba- 
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Fig. 1. Histogram of the standardized residuals for the time series assigned to 
Cluster 1. 

bility plot, or the residual histogram per cluster, can be used to assess normal- 
ity. Departures from normality cast doubt on the autoregressive assumption, 
so that some data transformation, such as a logarithmic transformation, may 
be needed. Plots of the fitted values versus the observed values and of the fit- 
ted values versus the standardized residuals in each cluster provide further di- 
agnostics. To choose the best autoregressive order, we repeat the clustering for 
different autoregressive orders, p = 0,1, .  . . , w for some preset w, and compute 
a goodness-of-fit score defined as s = cq+ C nk log(nk - q) - C nk log(RSSk), 
where c is the number of clusters, nk the total number of time points in clus- 
ter Ck. We introduced this score in Ramoni et al. (2002) to generalize the well 
known AIC goodness-of-fit criterion of Akaike (1973) to a set of autoregres- 
sive models. We choose the autoregressive order that maximizes the goodness 
of fit score. 

3 Application 

3.1 Materials 
The data we analyze are expression levels of genes from the budding yeast 
Saccaromyces Cerevisiae that were collected on spotted cDNA microarrays. 
Data were drawn from time courses during the cell cycle after synchroniza- 
tion by alpha factor arrest in 18 time points. The original data set is available 
at http://genome-www.stanford.edu/Saccharomyces and consists of expres- 
sion profiles of 6178 genes. About 1500 expression profiles had missing data 
and, because the shortness of time series would make traditional imputation 
methods not very reliable, those gene expression profiles were disregarded. 
To reduce the noise, we excluded those time series in which the ratio between 
the minimum and maximum expression level did not exceed 2. This filter is 
justified by the fact that significant biological events are characterized by at  
least a 2-fold change, see Sebastiani et al., (2003) for a discussion and further 
references. With this filter we selected 1574 temporal profiles. 

3.2 Methods 
We analyzed the data set with CAGED. The software is freely available and 
can be downloaded from http://www.genomet hods.org/caged. Details about 
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the software are described in Sebastiani et al., (2003). For selecting the most 
probable cluster model given the data, the user needs to specify the autore- 
gressive order, the distance to be used during the heuristic search, a threshold 
on the Bayes factor that determines the odds for merging similar time series, 
and some prior hyper-parameters. We performed the analysis several times 
varying both the hyper-parameters and the autoregressive order. Among the 
available similarity measures, Euclidean distance always lead to cluster mod- 
els with greater marginal likelihood. The Bayes Factor was set to 10 so that 
an aggregation occurs only if the model in which the clusters are merged is 10 
times more probable than the model in which they are separated. This choice 
is recommended in Kass and Raftery (1995) to force the model selection to- 
ward significant dependencies. We also run some sensitivity analysis to prior 
settings that lead to set the prior precision to 10. Once the parameters were 
chosen, the last step was the choice of the autoregressive order by comparing 
the goodness of fit of clustering models induced by different autoregressive 
orders. The model that best fitted the data was an autoregressive model of 
order 2. Therefore, the method found a temporal dependency in the data: 
each observation of a gene expression time series depends on its two imme- 
diate predecessors. This model fits the data better than the autoregressive 
model of order 0, in which observations are assumed to be marginally in- 
dependent. Goodness of fit statistics confirm that autoregressive models of 
order 2 provide a good fit. As an example, Figure 1 shows the standardized 
residuals for the cluster of time series in Figure 2 (Cluster 1 in the topleft 
panel). The symmetry confirms that the model assumptions are reasonable. 

3.3 Results 
CAGED merged the 1574 genes time series into 13 distinct clusters and by 
querying the Geneontology database (http://www.geneontology.org/), genes 
assigned to each cluster were annotated by their biological processes. Five of 
the thirteen clusters have periodical profiles, while four of the clusters have 
at least one spike of expression during the cell cycle, and two clusters group 
genes that are systematically upregulated or downregulated during the cell 
cycle. Two clusters group genes that do not appear to have cell-cycle related 
change of expression. Among the clusters found by the algorithm, particularly 
noteworthily are four clusters in which either a periodical trend is detected 
(Cluster 1 and 2 in Figure 2) or only one spike is detected (Cluster 3 and 
4 in Figure 2). All genes belonging to these clusters are strongly cell cycle 
regulated. Cluster 1 contains 18 genes that spike at 7 and 70 minutes, so that 
one can conjecture that they are coregulated during the M/G1 transition 
of the cell cycle. Peak expressions occur in early G1 phase that consists of 
growth and preparation of chromosomes for replication. Most of the genes 
are involved in cell wall, which is laid out during the division of the cell. Five 
of the 18 genes have unknown functions, and the fact that they are merged 
into a cluster of genes involved with cell wall suggests that they may have 
the same function. Cluster 2 contains 66 genes that are characterized by two 
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Cluster 3 Cluster 4 

Fig. 2. Plot of the gene expression profiles assigned to significant clusters by 
CAGED. 

spikes at time 21 minutes and 77 minutes and, because of the time shift, 
the conjecture is that these genes are involved in the S/G2 phase. A large 
proportion of these genes have DNA replication and repair functions, thus 
confirming the conjecture that the cluster groups genes involved in the S/G2 
phase. The third cluster contains four genes that are systematically down 
regulated during the cell cycle. All genes have a role in cell fusion. The six 
genes assigned to Cluster 4 are down regulated during the first hour and then 
spike a t  about 70 minutes. The functions of the genes assigned to this clusters 
have already been associated with the cell cycle, and include cell fusion, cell 
cycle arrest, and completion of separation. 

4 Conclusions 

Several applications of genome-wide clustering methods focus on the temporal 
profiling of gene expression. The intuition behind this analytical approach is 
that genes showing a similar expression profile over time are acting together, 
because they belong to the same, or similar, functional categories. The nov- 
elty and strength of the clustering algorithm implemented in CAGED is that 
it takes into account the dynamic nature of gene expression data in tempo- 
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ral microarray experiments and the  analysis presented in this paper confirms 
the  capability of CAGED t o  detect groups of gene expression temporal pro- 
files with periodical patterns and genes having related functions in a complex 
event such as the  cell cycle. 
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Abstract. We illustrate the use of a mixture of multivariate Normal distribu- 
tions for clustering genes on the basis of Microarray data. We follow a hierarchical 
Bayesian approach and estimate the parameters of the mixture using Markov chain 
Monte Carlo (MCMC) techniques. The number of components (groups) is chosen 
on the basis of the Bayes factor, numerically evaluated using the Chib and Jelaizkov 
(2001) method. We also show how the proposed approach can be easily applied in 
recovering missing observations, which generally affect Microarray data sets. An 
application of the approach for clustering yeast genes according to their temporal 
profiles is illustrated. 

1 Introduction 

Microarray experiments consist in recording the expression levels of thou- 
sands of genes under a wide set of experimental conditions. The expression 
of a gene is defined as its transcript abundance, i.e. the frequency with which 
the gene is copied to induce, for example, the synthesis of a certain protein. 
One of the main aims of researchers is clustering genes according to sim- 
ilarities between their expression levels across conditions. A wide range of 
statistical methods (see Yeung et al. (2001) for a review) have been proposed 
for this purpose. Standard partitioning or hierarchical clustering algorithms 
have been successfully applied by a variety of authors (see, for instance, Spell- 
man et al. (1998) and Tavazoie et al. (1999)) in order to identify interesting 
gene groups and characteristic expression patterns. However, the heuristic 
basis of these algorithms is generally considered unsatisfactory. 

Microarray data are affected by several sources of error and often contain 
missing values. Outcomes of standard clustering algorithms can be very sen- 
sitive to anomalous observations and the way missing ones are imputed. A 
second generation of studies (see, for example, Brown et al. (2000) and Hastie 
et al. (2000)) sought further progress through more sophisticated and ad-hoc 
clustering strategies, employing resampling schemes, topology-constrained 
and/or supervised versions of partitioning algorithms, and "fuzzy" versions 
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of partitioning algorithms that can perform particularly well in the absence 
of clear-cut "natural" clusters. Recently, an increasing interest has been de- 
voted to the model-based approach in which the data are assumed to be 
generated from a finite mixture (Fraley and Raftery (1998)). The main ad- 
vantage is represented by straightforward criteria for choosing the number of 
components (groups) and imputing missing observations. 

In this paper we show how Bayesian hierarchical mixture models may be 
effectively used to cluster genes. As in Yeung et al. (2001), we assume that the 
components of the mixture have multivariate Normal distribution with possi- 
bly different shape, location and dimension. An important issue is the choice 
of the number of components. We use the Bayes factor (Kass and Raftery 
(1995)), numerically computed through the Chib and Jelaizkov (2001) ap- 
proach, as a selection criterion. We also outline how our approach may be 
used to recover missing data, which are frequent in Microarray datasets. 
Details on the model are given in Section 2. In Section 3, we describe the 
Bayesian estimation of the parameters, while in Section 4 we illustrate the 
model selection problem. Finally, in Section 5, we present an application of 
the proposed approach to the analysis of a Microarray study performed to 
identify groups of yeast genes involved in the cell cycle regulation. 

2 The model 

Let S be the number of experimental conditions and x = (xi . . . xs)' be the 
vector of the corresponding expression levels for a gene. We assume that the 
distribution of such a vector is a mixture of Normal distributions. that is 

where K is the number of components of the mixture, pk is the mean of the 
k-th component, Ek its variance-covariance matrix and nk its weight. In a 
Bayesian context, we also assume that: 
0 the number of components K is a priori unknown and uniformly dis- 

tributed in the interval [l; Kmax], where Kmax is a suitable integer; 
0 the vector x = (nl . . . nK)' has Dirichlet distribution with parameters 

P i , . .  . , PK; 
0 the p k l s  are independent and have Normal distribution N(v ,  L?); 
0 the E k l s  are independent and have inverse Wishart distribution IW(e", v) 

where 8 is an S x S symmetric, positive definite scale matrix, and v is a 
precision parameter; 

0 Y, a, 3 and v have noninformative improper prior (Jeffreys (1939)) with 
density f (v) = 1, f (L?) = 1, f (8) = 1 and f (v) = 1, V v, L?, 8 and v. 

This setting gives rise to the hierarchical model presented in Figure 1, where 
p and E denote, respectively, pi , .  . . , p~ and E l , .  . . , E K .  We follow the 
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Fig. 1. Directed acyclic graph for the hierarchical mixture model. 

usual convention that square boxes represent fixed or observed quantities and 
circles represent unknowns. 

3 Bayesian estimation 

3.1 Bayesian estimation without missing data 

Let X be the n x S data matrix, where n is the number of genes. The com- 
plexity of the mixture model presented here requires MCMC methods to 
approximate the joint posterior distribution of the parameters. For compu- 
tational reason, we introduce the latent allocation variables z = ( z l  . . . z,), 
where zi indicates the component to which the i- th gene belongs; note that 
p(z i  = k)  = rr, a priori. Conditionally on z, the observations xi's are inde- 
pendent with conditional distribution N ( p Z t ,  E,,), given z, p, E. 

For a fixed number K of components, the sampler we consider performs 
the following operations for a suitable number of times, T, after allowing for 
a burn-in period: 

update v ,  0, c" and v,  in turn, through separate Metropolis-Hastings 
steps. For example, to update v we draw v* from an appropriate proposal 
distribution q(u*Iv) and accept it as the new value of the parameter vector 
with probability 

0, S and v are updated in a similar way. 
update p, E, .rr and z ,  in turn, through separate Gibbs steps. For example, 
to  update p, we draw, independently for each k ,  a new value p;E from the 
full conditional distribution of p, given all the other parameters: 
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-1 -1 where fi = ( E i l n k  + f2 ) and C = h(22 i1  xi + f l - l v ) ,  with 
nk being the number of genes currently allocated to the k-th group. The 
new parameter value p; is accepted with probability 1. 22, T and z are 
updated in a similar way, drawing their values from the corresponding full 
conditional distributions. 

The main purpose of inference, here, is to estimate the posterior membership 
probabilities p(zi = klxi). These can be estimated from the MCMC output 

where zit) is the value of zi at sweep t and 6(.) denotes the indicator function. 
Membership probabilities provide a soft or fuzzy partition in which genes may 
not be univocally assigned to one component. However, it is possible to derive 
a standard (hard) partition by assigning each gene to the component which 
maximizes the membership probability. By averaging over the sweeps, we can 
also obtain estimates of the parameters of the model. For instance, the means 
of the clusters can be estimated as jik = Ct=l pk ( t ) / ~ .  

3.2 Bayesian estimation with missing data 

In missing data problems, both the parameters and the missing values are 
unknown. Since their joint posterior distribution is typically intractable, we 
can simulate from it iteratively, through the data augmentation (DA) algo- 
rithm: we sample from the distribution of the missing values, conditional on 
the current value of the parameters, and then we sample from the distribution 
of the parameters, conditional on the value imputed to the missing observa- 
tions. Let us split xi into two subvectors, x4 and x r ,  which refer, respectively, 
to the observed and unobserved expression levels for gene i. Let also X, and 
X, denote, respectively, the observed and unobserved expression levels for 
all the n genes. The DA algorithm consists in iterating the following steps: 

I-step (imputation step): given the current values z ( ~ ) ,  p(t), E(t) of the pa- 
rameters, draw a new value x:+') for the missing observations from 
its conditional predictive distribution p(X,IX,, z ( ~ ) ,  p(t), E ( ~ ) ) .  This is 
straightforward since, for each i, xr can be drawn independently from a 
N ( p z i ,  Ezi), conditioned on x f .  

P-step (posterior step): given x:"), draw z(~+') ,  p(t+l) and dt+') from 
their complete data posterior p(z, p ,  EIX,, x:")) as within the sampler 
described in Section 3.1. 
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As before, estimates of the missing data, as well as of the parameters of 
the model, can be obtained by averaging over the sweeps of the algorithm 
(Tanner and Wong (1987)), e.g.: 

4 Model selection 

To select the number of components we make use of the Bayes  factor (BF).  
Denote by MK the mixture model a t  issue when K components are used and 
by p ( K )  its prior probability. The BF between two models, say MK and ML, 
is defined as 

where p(X1K) and p(K1X) are, respectively, the marginal likelihood and pos- 
terior probability of model MK (Kass and Raftery (1995)). The larger is BLK,  
the greater is the evidence provided by the data in favor of ML.  

Direct computation of the BF is almost always infeasible and different 
algorithms have been proposed to estimate it. For example, the well-known 
Reversible Jump (RJ) algorithm (Green (1995)), which draws samples from 
the joint posterior distribution of the number of components and model pa- 
rameters, allows to  estimate p(K1X) as the proportion of times the algorithm 
visited model &IK. However, when dealing with so many observations as in 
a typical Microarray study, RJ  is expected to perform badly as the posterior 
distribution of the parameters is likely to be very peaked and this makes it 
hard to jump from one model to another. Therefore, we follow the approach 
of Chib and Jelaizkov (2001). They show that the marginal likelihood of each 
model can be obtained as the product of the likelihood and the prior distri- 
bution of the parameters, divided by the posterior distribution and this holds 
for all parameter values, i.e.: 

where OK is a short hand notation for the parameters z, p, E under the model 
with K components. So, by substituting an estimate to p(OKIX, K )  for a 
suitable chosen O K ,  say eK, we can estimate the marginal likelihood of &IK, 
p(X1K) and so the BF. Chib and Jelaizkov (2001) showed that a suitable 
estimate of P(eK lX, K) may be obtained on the basis of the Metropolis- 
Hastings output for sampling OK from its posterior distribution under model 
&IK; such an algorithm uses as acceptance probability for moving from OK 
to a proposed 0; 
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where q(6;10K) is the proposal distribution from which 6; is drawn. In fact, 
we have 

that, consequently, may be estimated through 

where 6z1) ,  . . . ,6p") is a sample from p(OKIX, K )  and OF), . . . , oP'~) is 
a sample from q(oK leK, K) . 

Chib and Jelaizkov (2001) also suggested to split the parameters into 
blocks, which are updated separately (as illustrated in Section 3.1), to in- 
crease the estimator efficiency. The point eK in practice is chosen as a point 
of high posterior density, generally the posterior mean of OK, in order to 
maximize the accuracy of the approximation. 

5 Application 

We show an application of the proposed approach to a real Microarray experi- 
ment on a yeast genome (the Saccharomyces cerevisiae), aimed a t  identifying 
groups of genes involved in the cell cycle and, therefore, characterized by 
periodic fluctuations in their expression levels. Data refer to n = 696 genes 
observed a t  S = 12 consecutive times during the cell division cycle. A full 
description of the experiment, carried out by Spellman et al. (1998), and 
complete data sets are available at http://cellcycle-www.stanford.edu. 

The results reported here correspond to 50,000 sweeps of the MCMC 
algorithm described in Section 3, including a burn-in of 5,000 sweeps. The 
algorithm seems to mix well over the parameter space and the burn-in seems 
to be more than adequate to achieve stationarity. This can be seen, for ex- 
ample, in Figure l (a) ,  which shows the traces of T against the number of 
sweeps (for sake of clarity, data are plotted every 10 sweeps), for the model 
with K = 3 components. 

The estimated marginal loglikelihood is plotted in Figure l (b)  against 
different values of K .  It is immediately evident that the model with K = 

3 components is favored. The BF of this model against the second most 
favored model, the one with 4 components, is B3,4 = 98716, implying an 
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Fig. 2. (a) Traces of 7r against the number of sweeps for the model with three 
components and (b) marginal loglikelihood for models with up to six components. 

-0- Grou 3 v 

Fig. 3. Mean expression profiles for the three groups. 

overwhelming evidence in favor of the model with K = 3, compared to  any 
other model. 

The  estimated weights we obtained for the 3 groups of genes are respec- 
tively .rr = (0.012, 0.373, 0.615)', resulting in a large group including approx- 
imately 428 genes, an intermediate group with 244 genes and a residual one 
made of just 8 genes. 

Figure 3 shows the estimated mean expression profiles for the three groups 
of genes. The  results we found are in accordance with those obtained by Holter 
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et  al. (2000) using a standard value decomposition of the da ta  matrix X. Two 
dominant periodic patterns, corresponding to  the  two larger groups, can be 
recognized. These periodic patterns are out of phase with respect to  each 
other and the  maxima and minima in each of them occur a t  the same time 
as  the maxima and minima in the two main patterns found by Holter et  al. 
(2000). 
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Abstract. We apply a methodology for clustering data from the British House- 
hold Panel Survey (BHPS) on employment and family trajectories of women. We 
represent life courses as sequences on a monthly time scale and we apply opti- 
mal matching analysis to compute dissimilarities between individuals. We then use 
standard clustering algorithms to identify distinctive groups. As the interpretation 
and presentation of cluster analysis of life-course data is an important and still 
unresolved issue, we elaborate on possible approaches for how to best illustrate the 
composition of groups. Our results are interpreted in light of the socio-demographic 
literature. 

1 Introduction 

In this paper we apply methods for clustering individual life courses. The  
central idea is t o  develop a method with which we can identify clusters of 
individuals who follow similar life-course trajectories, in terms of family and 
employment, during early adulthood. To do this we use da ta  from the British 
Household Panel Survey on women born 1960 t o  1968. The  main rationale 
for our strategy is that  these pathways are the outcome of 1) complex plan- 
ning and strategies made by individuals and their families as  a means to  
best combine family and working life, and 2) unforeseen life-course contin- 
gencies or events that  shape lives with long-lasting effects (see i.e. Siegers 
et al., 1991). I t  is thus important t o  be able t o  study complex life-course 
trajectories as  they actually occur, and to  obtain ideal-types of trajectories 
that  can be meaningfully interpreted and analysed. This is of course one of 
the main challenges in life-course research, which up  t o  now has remained 
largely unsolved, and has lead many t o  adopt qualitative approaches as  an 
alternative t o  the quantitative tradition. (see i.e. Dex, 1991). 

*The authors have equally contributed to this work. However, A. Aassve and 
F.C. Billari drafted Section 1, R. Piccarreta drafted Section 2, F.C. Billari and R. 
Piccarreta drafted Section 3 
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Using a sequence-type representation together with sequence analysis is 
the main methodological contender in the study of complex trajectories of 
the life course (see Abbott, 1995). In this paper, we follow women over the 
age span 13-30, excluding cases with missing information. For each woman 
we build, on a monthly time scale, a sequence-type representation of three life 
course domains: employment, co-resident partnership, , and childbearing. We 
analyse data on 578 women, each of them with 204 time points. In particular, 
employment (W) and partnership status (U) for each month are represented 
in a dichotomous manner, while for fertility, according to the number of 
children, each woman has 4 possible states (from 0 to 3 children and over). 
The states in the sequences are obtained by combining the categories of the 
involved domains. For example, U means in a certain period a woman has 
a partner (does not employment and has no children), WU means a woman 
is employed and has a partner and 1WU means a woman is employed, has 
a partner and has one child. The employment and partnership status can 
change in either direction at any time, while for fertility, once a number of 
children is reached, women cannot reverse to a lower number of children. All 
life course combinations yield a total number of 16 states. 

Table 1. Life course states possible during each month. 

2 Clustering sequences 

Frequencies of specific sequences will in general be very low. As a result 
they cannot be described by simple descriptive statistics. The main issues 
addressed in this paper are 1) how can one best obtain clusters of life course 
sequences and 2) how can one represent the obtained clusters in a meaningful 
way. As far as 1) is concerned, the application of standard (hierarchical) 
algorithms necessitate the definition of a distance (dissimilarity) matrix. In 
the Social Sciences Optimal Matching Analysis (OMA) has become a widely 
accepted criterion to measure dissimilarity between sequences (Abbott, 1995). 
The basic idea of OMA is to measure the dissimilarity between two sequences 
by properly quantifying the effort needed to transform one sequence into 
another. In the most elementary approach, a set composed of three basic 
operations to transform sequences is used, 0 = { L ,  6, a}, where: 



Sequence Analysis of BHPS Life Course Data 277 

insertion (L): one state is inserted into the sequence; 
deletion (6): one state is deleted from the sequence; 
substitution (a): one state is replaced by another one. 

To each elementary operation wi, wi E 0, i=l,. . . , k ,  a specific cost can 
be assigned, c(wi). Suppose that k basic operations have to  be performed to 
transform one sequence into another one. Then, the cost of applying a series 
of k elementary operations can be computed as: 

The distance between two sequences can thus be defined as the minimum 
cost of transforming one sequence into the other one. This means that the 
computed distance takes into account the entire sequences. 

The assignment of costs (i.e. substitution costs) to transform one life sta- 
tus into the other one is challenging. We adopt a data-driven approach, using 
substitution costs that are inversely proportional to transition frequencies. 
We compute OMA distances using TDA (Rohwer and Potter, 2002). On the 
basis of the distance matrix defined with OMA, we apply different clustering 
algorithms to our data (single linkage, complete linkage, centroid, ward, me- 
dian). Here we choose the solution provided by Ward's algorithm, since the 
other algorithms tend to separate few clusters having very high sizes from 
small, residual clusters. Using standard criteria (analysis of R2, pseudo F 
and pseudo T statistics), we choose the 9-clusters partition (for a detailed 
description of the criteria to  choose a cluster solution, the interested reader 
can refer to  Jobson, 1992). 

The main remaining problem is how to meaningfully characterize clus- 
ters. This is particularly important because states are qualitative variables 
and their order in time is fundamental. A first possibility is to synthesize clus- 
ters with modal vectors: thus, for each period t ,  we consider the most frequent 
state (in the cluster). Since the number of states is very high, to  better rep- 
resent the modal vectors (as well as the sequences themselves) we introduce 
the notion of state-permanence-sequences (in the following slp-sequences). 
The state-sequence is the sequence of the states "visited" by an  individual 
(note that the ordering of the visits is important since some states can be 
visited more than once). The permanence-sequence is the sequence of the 
length of the periods an individual "remained" in each of the visited states. 
For example, the slpsequence of the sequence W-W-WU-WU-W-W is Wz- 
WU2-W2. Using the slprepresentation for the modal vectors, we have a first 
characterization of the clusters. 

Unfortunately, modal vectors are not necessarily observed sequences; oc- 
casionally it may happen that they are inconsistent. For example, the modal 
vector for the 8th cluster (cfr. Table 2) is 041-W32-2Ull-3U1-2U1-3U2-2U7- 
3Ul09 and is not consistent since it is not possible to  observe the s-sequence 
2U-3U-2U. In fact we have assumed the number of children can only increase. 
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This suggests that clusters should be synthesized by referring to "typical" se- 
quences, not being 'Lartificial". One possibility is to consider for each cluster 
its medoid (see e.g. Kauffman and Rousseeuw, 1990). This is the individual 
(sequence) which is less distant from all the other individuals in the cluster. 
The analysis of the s/p-sequences of the medoids permits a consistent char- 
acterization of the clusters. Moreover, it is possible to get a measure of the 
dispersion of sequences around the medoid (calculating the minimum, the 
maximum, the average distance). One can also measure the proportion of 
dissimilarity explained by each medoid by calculating the ratio between the 
average distance from the medoid and the total distance between sequences in 
a cluster. Notice that this is not possible when considering the modal vectors, 
since one cannot calculate the OMA distance between an observed sequence 
and an artificial one. Modal vectors and medoids are reported in Table 2. 

As we can see from Table 2, for some clusters the synthesis provided by 
the medoid is satisfactory (low - mean and maximum - distances from the 
medoid) whereas for others the dispersion around the medoid is high. To 
analyze clusters in more detail, we define the mean-s/p-sequences. Given an 
s-sequence, say sl, . . . , sh, common to nh cases, we attach the p-sequence 
m l ,  . . . , mh, mi being the average of (pil,. . . ,pinh). For each cluster we can 
evaluate the mean period of permanence in a certain state (for a given s- 
sequence). By analyzing medoids and mean-s/p-sequences, we noticed the 
following. 

Some clusters are characterized by short s-sequences. In these situations, 
the s-sequence of the medoid frequently coincides with the modal s-sequence. 
Moreover the p-sequence of the medoid is very similar to the mean-psequence 
of the modal s-sequence. Thus, the medoid adequately represents the cluster. 
Nevertheless, we do find other s-sequences with high frequency, which are dif- 
ferent from the medoid. To better represent a cluster (even in case when the 
medoid is a good synthesis) it may be sensible to evidence these sequences. 
At this aim, we choose a cut-off point, and individuate "representative" se- 
quences within a given cluster, i.e. s-sequences characterized by a frequency 
higher than the cut-off (in this preliminary analysis the cut-off was set equal 
to 0.1). 

A major difficulty is encountered when analyzing more heterogeneous 
clusters. For instance, some clusters are constituted by very long s-sequences. 
Individuals in these clusters tend to experiment many states (often different), 
and the medoid provides an unsatisfactory synthesis of sequences in the clus- 
ter. In these heterogeneous clusters, the problem lies in that the frequencies 
are very low (and generally well below the cut-off). Consequently there are no 
representative sequences. We notice that in these clusters the s-sequences are 
similar for the first states, but from a certain period onwards each individual 
follows a different path, thus being characterized by "peculiar" states (for 
higher periods). In order to individuate "common" paths in more heteroge- 
neous clusters we "prune" long s-sequences to evaluate whether there are a t  
least common "initial paths", i.e. short s-(sub)-sequences (regarding the first 
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Size: 50 Mean: 37.45 Max: 75.89 %: 31% 
Mo: 061-W1-01-W141 
Me: 063-W141 
Size: 100 Mean: 93.02 Max: 234.57 %: 28% 
Mo: Ol14-W44-WU46 
Me: 0116-W39-WU49 
Size: 56 : Mean: 54.79 Max: 119.52 %: 30% 
Mo: 055-W4o-WU1og 
Me: 063-W40-WU101 
Size: 107 Mean: 76.40 Max: 205.82 %: 28% 
Mo: 045-W101-WU3-W1-WU54 
Me: 046-Wl06-WU52 
Size: 88 Mean: 119.00 Max: 232.86 %: 26% 
Mo: 053-W53-WU50-1WU48 
Me: Os3-W56-WU54-1WU7-1U24 
Size: 62 Mean: 145.12 Max: 338.97 %: 26% 
Mo: 049-W39-1U10-2U106 

Mo: 047-W52-WU14-1WU2- WU3-1U1-WU1-1U2-1WUS-2WU77 
Me: 046-W58-WU26-1WU~-1U8-2U1-2WU16-2U9-2WU34 
Size: 29 Mean: 99.07 Max: 183.5 %: 22% 
Mo: 041-W32-2Ull-3U1-2U1-3U2-2U7-3U109 
Me: 042-W1o-lW4-1WU4- 1U~-2U2-2WU6-2U17-3U113 
Size: 24 Mean: 153.57 Max: 265.27 %: 21% 
Mo: 052-W33-04-WU1- 155-1W1-158 
Me: 059-Wan-WUi I-1Ws- 171-1Wfi-2Wa 

Table 2. Modal vectors and medoids for the clustersa. 

a Size is the number of sequences in the cluster, Mean and Max are the mean 
and the maximum distance between sequences in the cluster and the medoid. 
% is the proportion of the total dissimilarity within the cluster accounted 
from the medoid. 

states visited). To do this, we consider the longer sequences and remove last 
states, substituting them by a residual state "R". AS an example, consider 
the two s-sequences (sl ,  s 2 ,  s3, s4)  and (s l ,  s2, s3, s5),  both characterized by 
a low frequency. If we remove the last states in the sequences we obtain an 
s-sequence (s l ,  sz, s3, R), characterized by a higher frequency. In this way, we 
obtain shorter sequences characterized by higher frequencies, which are useful 
for description. We thus define an  algorithm, which "prunes" an s-sequence 
if it has a frequency lower than the cut-off. The algorithm starts by consider- 
ing longer sequences (i.e. long s-sequences), which are pruned and aggregated 
until the resulting s-sequence is characterized by a frequency higher than the 
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cut-off (as a further step in research we are interested in evaluating how to 
avoid the necessity to specify the cut-off). The algorithm ends when all the 
s-sequences have frequency higher than the cut-off. In this way, we find the 
characteristic sub(or initial)-s-sequences in a cluster. 

Proceeding in this way, we obtain a description both for clusters where 
representative sequences are present, and for more heterogeneous clusters 
in which pruning is necessary. The most frequent mean-s/psequences can 
be represented graphically in a "tree structure". For each cluster a tree is 
obtained. The nodes represent the states visited implying that each branch 
represents an s-sequence. The arrow connecting two (consecutive) states sl 
and s 2  (in a certain s-sequence) have length proportional to ml the average 
time of permanence in state sl before experimenting state sz. Due to space 
limitation we only report the trees describing clusters 1, 4 and 7. If the 
sequences have been pruned due to low frequency a final "R" node is reported. 

Fig. 1. Tree representation of mean-s/p-sequences for clusters 1, 4, and 7. 

3 An interpretation and discussion of results 

We now focus on the interpretation of our results. We interpret the results in 
terms of observed orientations towards employment (or LLcareer" in general) 
and family, keeping in mind "preference theory" as elaborated by Hakim (for 
a concise illustration of preference theory see Hakim 2002; 2003). According 
to Hakim, women tend to hold enduring orientations towards three distinct 
directions: mostly working life (about 20% of all women), mostly family life 
(about 20% of all women), combining employment and family (about 60% 
of all women). Hakim thus maintains that the majority of women in West- 
ern societies lie in the group that would prefer to combine employment and 
family. Of course Hakim's typology is on preferences, while we analyse actual 
behaviour. Let us look at our results in detail. 

As we have earlier noticed, characterising clusters is one of the most diffi- 
cult tasks in the analysis of life courses based on a sequence-type representa- 
tion. For this interpretation, we mainly refer to: 1) the medoid of each clus- 
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ter, together with the average and maximum distance (according to OMA) 
to individuals of the same cluster; and 2) the representation of each cluster 
described in the past section. 

Cluster 1 contains 8.7% of all women. Its medoid woman spends 63 months 
in the initial state, and subsequently 141 months working without interrup- 
tion, without any family formation event. The cluster is the most compact 
both in terms of average OMA distance to the medoid (37.45) and of dis- 
tance to the farthest member of the cluster (75.89). In this cluster we can 
see life courses of women who did not continue towards higher education (the 
medoid starts working just after age 18) and who do not combine employ- 
ment and family at  least in their twenties. This is also a general feature of 
women in the cluster since all of them spend most of their early adulthood 
without any family event. FOCUS o n  employment  is the main feature of this 
group, which clearly falls, in terms of observed behaviour, in the employment- 
oriented group of Hakim. 

Cluster 2 contains 17.3% of all women. This group is characterised by a 
late entry into the labour market, possibly due to long permanence in educa- 
tion. The medoid woman, has the highest age a t  entering the labour marked 
(about 23) for instance, subsequently starts working and works only for 39 
months, and then starts a partnership which lasts until age 30. The average 
OMA distance from the medoid is 93.02 and the maximum distance is 234.57, 
indicating that there is a noteworthy level of heterogeneity within the cluster. 
In fact, delayed en try  in to  the labour market  is the only clear commonality of 
this group, which cannot be clearly classified in terms of employment versus 
family orientation (although a higher share of women focuses on employ- 
ment). 

Cluster 3 contains 9.7% of all women. The life-course trajectory of the 
medoid of this cluster is similar in terms of types of events to the medoid of 
cluster 2, but there is a large difference in age at  entry into the labour market: 
here the medoid enters around age 18. The earlier entry in the labour market 
translates family events to an earlier age, and in general the period spent 
as working and without an own family is relatively short. The average OMA 
distance from the medoid is 54.80 and the maximum distance is 119.52, which 
indicates a relatively low heterogeneity within the cluster. Family formation 
without fertility seems to be the main characteristic of this group. This is 
a group for which we seem to observe the combination of employment and 
family. 

Cluster 4 contains 18.5% of all women, and is the most numerous. This 
cluster, when we look at the medoid woman, is characterised by an early entry 
into the labour market (before age 17), a long presence inside it without part- 
nership formation, and no significant presence of childbearing. The average 
OMA distance is 76.40 and the maximum distance from the medoid is 205.82. 
Looking a t  the more detailed description of the cluster, the general pattern 
is the length of the period spent before starting a family. Early en t ry  in to  the 
labour marke t  and delayed family formation are the main signs of this group. 
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The observed trajectories are consistent with a mostly employment-oriented 
strategy. 

Fertility events start appearing as a prominent feature in cluster 5, which 
represents 15.2% of all women. Here the medoid woman has a particularly 
interesting life course path. She enters the labour market around age 18, she 
works without interruptions for more than 4 years, and starting a partner- 
ship she combines employment and partnership for more than 4 years (up 
to about age 27). Then she has a child and 7 months after the birth of the 
child she leaves the labour market. At age 30, 2 and a half years after the 
birth of her first child she is still out of the labour market. So this is a typ- 
ical pattern of exit from the labour market during the first years of a child. 
The OMA distance from the medoid is 119.00 and the maximum distance 
is 232.86 indicating a relatively high heterogeneity within the cluster. Fam- 
ily formation and mixed work-family strategies are the main features of this 
group. The combination of employment and family for women in this cluster 
is a complex one with the possibility of leaving a job after the transition to 
motherhood. This would also be consistent with family orientation. 

Cluster 6 represents 10.7% of all women. The average OMA distance here 
is 145.11, and the maximum distance is 338.97, indicating a high hetero- 
geneity within the cluster. Life courses are typically complex: if we look at 
the medoid woman, she enters early the labour market (before age 17), she 
starts working but then interrupts work probably due to unemployment for 
2 months, before re-entering employment. After 19 months she starts a part- 
nership, and after 21 months she gives birth to a child. She then leaves the 
labour market (6 months after the birth of the first child) and subsequently 
gives birth to 2 other children without re-entering the labour market. Short 
labour market attachment before family formation is the main feature of clus- 
ter 6. In terms of Hakim's categorisation, this group contains trajectories that 
appear as family-oriented. 

Cluster 7 also represents 10.7% of all women. The medoid woman here 
enters the labour market before age 17, she then has about 5 years of con- 
tinuous employment and starts a partnership. After 2 years she gives birth 
to a child and subsequently she leaves the labour market and gives birth to 
a second child. After the birth of the second child she re-enters the labour 
market and starts a new employment career marked by a relatively long in- 
terruption (9 months). The average OMA distance from the medoid is 109.83, 
the maximum distance is 185.64. The main feature here is propensity to high 
fertility with discontinuous labour market attachment. This is a mainly family- 
oriented group although with repeated job spells. 

Cluster 8 represents a smaller subset of women, 5.0%, but refers to par- 
ticularly complex pathways, as seen from the medoid. The medoid woman 
starts employment at age 16 and a half, she is then employed for 10 months 
ad has a child without living with a partner (she thus gives birth being a sin- 
gle mother). However, 4 months after the birth she starts a partnership, and 
after 4 months she leaves the labour market, within 6 months she gives birth 
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to  a second child, and after 2 months again working, she does not employ- 
ment and gives birth to a third child without re-entering the labour market. 
The  average OMA distance from the medoid is 99.07, the  maximum distance 
is 183.5, which indicates a medium level of heterogeneity within the  clus- 
ter. However, single motherhood is not the only major feature of this group, 
where family orientation seems more a consequence of life-course contingen- 
cies rather than the outcome of deliberate planning. 

Cluster 9 represents 4.2% of all women. The  medoid woman starts  employ- 
ment a t  about age 19 and subsequently starts  a partnership. The  partnership 
is however dissolved a t  the birth of a child. The  woman then leaves employ- 
ment for 6 years, after which she starts  a new partnership; 6 months after she 
gives birth to  a second child. The  cluster is heterogeneous and the medoid 
is the least representative of all medoids, given that  the average OMA dis- 
tance from the medoid is 153.57 and the maximum distance is 265.27. We 
can see family  instabili ty as the main feature of this cluster. As most women 
remain attached to  the labour market, we could classify this cluster within 
the employment-oriented typology of Hakim. 

To interpret our data,  we referred t o  "preference theory" as elaborated by 
Hakim. Complementary to  Hakim's approach, our analytical strategy allows 
us to  analyse employment and family behaviour (strategies of combination 
implying different entries and exits from a job, instead of simultaneous com- 
bination for instance arise from our analysis) in a dynamic fashion rather 
than static orientation. For this reason, our categories are more complex 
than the three-group categorisation by Hakim, who however recognises the 
possible existence of sub-groups in her groups. In our future research, we aim 
a t  studying the determinants of life course pathways, together with their con- 
sequences. Sequence analysis and the representations we introduced in this 
paper are adequate tools for such endeavour. 
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Abstract. One of the most important problems among the methodological issues 
discussed in cluster analysis is the identification of the correct number of clusters 
and the correct allocation of units to their natural clusters. In this paper we use the 
forward search algorithm, recently proposed by Atkinson, Riani and Cerioli (2004) 
to scrutinize in a robust and efficient way the output of k-means clustering algo- 
rithm. The method is applied to a data set containing efficiency and effectiveness 
indicators, collected by the National University Evaluation Committee (NUEC), 
used to evaluate the performance of Italian universities. 

1 Introduction 

The forward search is a powerful general method for detecting multiple 
masked outliers and for determining their effect on models fitted to  data.  
The aim of this study is to  show how the forward search algorithm can be 
used to validate the output of a cluster analysis algorithm. The suggested 
approach enables us to  scrutinize in a robust and efficient way the degree of 
belonging of each unit to its appropriate cluster and the degree of overlap- 
ping among the different groups which have been found. As an illustration of 
the suggested approach, we tackle the problem of the performance university 
measurement. The data set considered in the analysis includes indicators, 
which derive from data  of the past census survey conducted by NUEC in 
2000, concerning 50 public universities of the academic year 1998-99. The 
variables have been actually defined using the information that each uni- 
versity usually has to collect for the National Statistical System and for the 
Ministry of Education and Research, and they have been proposed in 1998 by 
National University Evaluation Committee (NUEC) (ex Observatory for the 
Evaluation of University System until 1998) as a minimum set of indicators 
to perform efficiency evaluation of the universities activities (see details in 
Biggeri and Bini, 2001). Among the large number of the proposed indicators 
(29), in order to show how the new method works, we have selected only few 
of them. 

After the presentation, in section 2, of the data set used and the results 
of the classical cluster analyses, here conventionally named "traditional", the 



286 Bini 

application of the forward search and the comments of the results obtained are 
illustrated in section 3. Finally, the last section is devoted to  some concluding 
remarks. 

2 The data set and the traditional cluster analysis 

Starting from March 2000, the NUEC yearly conducts census surveys with 
the co-operation of all the 73 Italian universities, to implement a statistical in- 
formation system useful to monitor the university organization and carry out 
the requested evaluations. The information collected concern many aspects 
of the educational service (for the detailed list of variables and the data set, 
see the web site www.cnvsu.it). On the basis of this information, it is possible 
to compute a set of indicators (29) for the measurement and the evaluation 
of the performance of single units which produce this service. The set can be 
arranged in four classes (Ewell, 1999): Ou tcome  (ou tpu t )  indicators,  that 
should inform about the final results and the degree of quality of the teaching 
and research activities; Resources indicators,  i.e. indicators of resources 
as funds, staff, etc. available; Contextua l  indicators,  i.e. indicators of the 
context where the university is working, of the socio-economic environment; 
Process indicators,  that should inform about the organization, facilities 
and results of the teaching and research processes. 

To implement the present study on clustering the Italian universities in 
homogeneous groups of units, the data of the survey conducted in 2000 are 
used. They include a set of 50 public universities obtained by the exclusion 
of the private universities, since they did not received the most part of the 
ordinary resources from the MIUR, and of the universities established less 
than 6 years ago, because they do not have information available. Consid- 
ering the number of elementary units and the objective of this study, only 
the following indicators have been considered: graduation rate within insti- 
tutional time (XI) (outcome indicator); faculty/students ratio (X2), research 
funds (X3) and administrative staff per faculty (Xs) (resources indicators); 
private research grants per single member of faculty (X5) and expenditure 
for technical staff per "traditional funds" (X6) (process indicators). 

The "traditional" clustering techniques, usually, do not assure that units 
are allocated to the appropriate clusters, and this can lead to the problem 
of the incorrect assignment of policies to units belonging to "wrong" groups 
that causes with no doubt side effects and iniquity among interventions. The 
forward search applied to this algorithm can be used to solve this problem. 
Before to perform the cluster analysis, the inspection of the scatter plot ma- 
trix of the data shows that the distribution of some variables is highly skewed 
and that maybe some outliers are present in the data. We therefore proceed 
to estimate the values of the Box-Cox (1964) transformation parameters us- 
ing the robust procedure described in Riani and Atkinson (2001) (for details 
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Table 1. Centroids of groups from k-means algorithm 

Groups 
G I  
G2 
Go 

concerning the transformation parameters which have been found, see Riani 
and Bini, 2002). 

Given that the data appropriately transformed satisfy the multivariate 
normality assumption, the cluster analysis have been performed using the 
transformed data. We started according to classical approach using first the 
hierarchical and then the non-hierarchical methods. Several hierarchical clus- 
ter analyses (Krzanowski and Marriott, 1995) are performed on data set, us- 
ing different distances (Euclidean and Mahalanobis) and different linkages 
(single, complete and average). A reasonable clustering in terms of number 
of groups and degree of homogeneity among units in each group could be 
the one having 3 groups of units obtained with Euclidean distances and 
average linkages. Starting from this result, the study continues with the 
non-hierarchical k-means algorithm, using Euclidean distances and a starting 
number of groups equal to three. The method yields three clusters (GI ,  G2, 
G3), each one having respectively size of 18, 17, 15 units, and with specific 
characteristics, as it is outlined by the centroids of groups reported in Table 
1: G1 contains universities with high resources performance; into G2 there are 
universities with low resources and process performance; universities included 
in G3 have high global performance. Some graphical representations given in 
Figure 1, that plot units against the first three principal components as axes, 
allow us a further useful identification of the characteristics of groups, and 
also enable us to  identify the degree of possible overlapping among groups. 
The components correspond to the 68% of the total variance. In particular, 
their proportions are respectively equal to 30%, 19.6% and 18.4%. 

The degree of overlapping of the different clusters can be highlighted 
by plotting robust bivariate contours (Zani, Riani and Corbellini, 1998; 
Rousseeuw, Ruts and Tukey, 1999), containing the 50% of the data for each 
group which have been found (see Figure 1). They clearly show that the cen- 
tral parts for the 3 groups are separated in the space of the first two principal 
components, but overlap considerably in the space of the second and third 
principal components. 

As concerns the interpretation of these plots, the correlation histograms 
suggest that the first component is positively correlated with all variables. 
This means that it can be interpreted as a global performance indicator. Re- 
garding the second principal component, the universities with high scores in 
this dimension are those which have high rates of research funds, administra- 
tive personnel, expenditure for technical staff, and a lower rate of graduation, 

XI 
0,3500 

-0,8829 
0.5806 

x2 

0,1309 
-0,8775 

0,8375 

x3 

0,5938 
-0,2352 
-0.4459 

x4 

0,6304 
-0,4380 
-0,2600 

x5 

0,2787 
-0,5938 

0,3386 

Xt3 

-0,3780 
-0,3867 

0.8919 
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Fig. 1. Position of the units in the space of the first 3 principal components with 
univariate boxplots (main diagonal) and bivariate contours containing 50% of the 
data for each group. The black diamond denotes the position of the robust centroid 
for each group 

but bad performance in terms of private grants (X5 having negative sign). 
High values for the third principal component identify universities with very 
bad profile as concerns the research and private funds (X3 and X5 have nega- 
tive sign) and quite high values of graduation rate and faculty/student ratio. 

3 Robust validation of cluster analysis output through 
the forward search 

In most statistical analyses, it occurs that single or groups of observations 
may affect inappropriately the results obtained using statistical methods. 
Robust procedures clearly reveal this problem and they solve it by down- 
weighting or even discarding the influential units from the bulk of data. Very 
recently, a powerful general procedure based on the forward search through 
the data, as alternative approach to the traditional ones used to detect out- 
liers, has been proposed by Atkinson and Riani (2000) for generalized linear 
models, and by Atkinson, Riani and Cerioli (2004) for multivariate methods. 
It is able to identify observations, referred as outliers, which are different to 
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the majority of the data, and to determine their effects on inference made 
about the model or on results from statistical methods. They may be a few 
units or they may well form a large part of the data and indicate unsuspected 
structure which is often impossible to  be detected from a method applied to 
all the data. The feature of this new approach is that a t  each stage of the 
forward search it is fundamental to use information such as parameters and 
plots of Mahalanobis distances to guide to a suitable model. 

In the present paper we apply this algorithm (fs) to  cluster analysis, but 
to identify possible clusters (named tentative clusters) in the preliminary 
analysis, we perform the k-means algorithm as alternative method to the one 
adopted by the mentioned authors, and that we briefly summarize as follows: 
"In the preliminary analysis the data can be explored using scatter plots 
combined with forward plots of Mahalanobis distances of the units in order 
to find some tentative clusters. Groups of units are tentatively detected by 
looking a t  the behaviour of Mahalanobis distances a t  seemingly interesting 
points in the forward search. These often correspond to apparent separations 
in forward plots of distances, or of peaks in plots such as that of maximum 
distances of units within the subset ..." (see details in chapters 2 and 7 of 
Atkinson, Riani and Cerioli book). 

Hence, our starting point is the output which comes from a k-means 
cluster analysis using Euclidean distances. As a result we obtained three 
clusters of sizes 18, 17 and 15. We numbered the units arbitrarily within the 
groups. Questions of interest include whether the clusters are well separated 
and whether the units are correctly clustered. In the confirmatory stage of 
a cluster analysis we used the forward search with a few units in one of the 
tentative clusters. Let there be m units in the subset. We take as our next 
subset the units with the m+l  smallest distances. The process continues 
until all n units are included. During this process we monitor the distances 
of units of interest. If the units are correctly and strongly clustered, all units 
in a cluster will have distances that follow similar trajectories to each other. 
These trajectories will be markedly different from those of units in other 
clusters. Figure 2 is a plot of the distances for the 17 units of Group 2 from 
a search that starts by fitting some of the units in Group 2. 

We see that unit 20, which is the last to join the group, is far from the 
other units in Group 2 until it affects the estimated Mahalanobis distances 
by being used to estimate the parameters. Unit 28 steadily diverges from the 
group as the search progresses and units from other clusters are included in 
the subset used for estimation. We can also look a t  forward plots of distances 
for units in all groups. Figure 3 plots distances for all units for the search 
shown in Figure 2. The central three panels, for units in Group 2, separate 
out, by unit number, the 17 traces of distances we saw one on top of another 
in Figure 2. In the first panel of the row unit 20 stands out as different, as 
does, to a lesser extent, unit 28 in the second panel. Otherwise the units seem 
to have similar traces of their distances, which are generally rather different 
from those in the top row for units in Group 1. All units in Group 1 seem to 
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Fig. 2. Monitoring of Mahalanobis distances for the 17 units classified in group 2 
by the k-means algorithm 

Fig. 3. Forward plot of Mahalanobis distances divided into the 3 groups produced 
by the k-means algorithm. Each row refers to a group 

have a peak around m = 16 and decline thereafter. Unit 20 looks as if it might 
belong t o  this group, although its trace increases a t  the end. The traces in 
the last row, for units in Group 3, are again somewhat different, particularly 
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Fig. 4. Mahalanobis distances plots from m=15 for individual units from a search 
starting in group 2. The plotted percentage points are at 2.5%, 12.5%, 25%, 50% 
and the symmetrical upper points of the empirical distribution 

in the second panel, where they decline steadily. We can repeat these plots 
for searches starting in Group 1 and in Group 3 and so get a clearer idea of 
which units have distances that vary together and so form a natural cluster. 
We would indeed present these plots, but instead, we close with Figure 4 
which shows the trajectories for individual units during the search, starting 
with units in Group 2. The first panel of Figure 4 shows the distances for 
the first 15 units to  join. These are used to form a reference distribution. 
In the second panel of the first row we show the distance for unit 35 which 
joins when m = 16 against a background of the reference distribution. It 
has a sharp peak a t  m = 15, just before it joins, which however is as nothing 
compared to the peak for unit 20, which we have already discussed. The three 
units in the central row of panels all come from our tentative cluster 1 and 
all do behave similarly; they have broad peaks around m = 15 and then have 
distances that decrease markedly. The bottom row shows units 49, 14 and 
2, which join as m increases from 21 to 23. These traces are very similar to 
those in the second row, except that the distances do not decrease to such an 
extent later in the search. This analysis shows that Group 2 seems to  be a 
coherent cluster, apart from units 20 and 28. However, Figure 4 confirms the 
impression from some panels of Figure 3 that the current separation between 
Groups 1 and 3 is not satisfactory. 
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4 Concluding remarks 

We showed only few plots of our example and no more results about the 
new clustering obtained, but the purpose of this paper is not t o  answer sub- 
stantive questions about the clustering of units, due t o  this applied study. 
Instead it is two fold: 1) t o  propose the use of k-means algorithm t o  find some 
tentative clusters, rather than the  use of scatterplots combined with the  for- 
ward plots of Mahalanobis distances of the units, as  suggested by Atkinson, 
Riani and Cerioli (2004); 2) t o  show how the forward search enables us t o  ex- 
plore the  characteristics of individual units and so move towards a n  improved 
clustering. 
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Abstract. Text Mining (TM) is a competitive statistical technology to extract 
relevant information from huge textual unstructured databases (document ware- 
housing). In this paper, from an immense linguistic archive such as that coming of 
10 years of daily "La Repubblica", we describe several examples on the language 
productivity and the changes of language in the Nineties, with a particular attention 
of the use evolution of declining of verb mood, tense and person. 

1 Introduction 

Undoubtedly, the texts collected over a period of ten years from the daily 
press are particularly significant in relation t o  language usage and language 
change in the given period of time. They also constitute a concrete example 
of a huge document warehouse (over 22 million records a year), available for 
each newspaper, that  can be explored for various reasons, such as search for 
facts, events and personalities'. Among possible Text Mining (TM) appli- 
cations for the LLLa Repubblica" warehouse (Bolasco e t  al. (2002)), is also 
that  of extracting overall information of linguistic type on the behaviour of 
some classes of words (Balbi e t  al. (2002)), as  well as  that  of proceeding with 
statistical measurements that  may be used as  references in the study of other 
shorter texts, and compared with them (press reviews). Generally speaking, 
so far there have not been, for the Italian language, systematic statistics on 
the frequency of lexical units according to  the variation of linguistic kinds 

*The present research was funded by MIUR 2002 - C26A022374. The paper is a 
combined job of the two authors: paragraphs 1, 3.2, 4 were written by S. Bolasco, 
and paragraphs 2, 3.1, 3.3 were written by A. Canzonetti. 

'For example, RCS Ltd. collects all articles that appeared in the last 15 years in 
daily newspapers (Corriere della Sera, I1 Sole 24ore, ...) and manages the databases 
using text mining techniques in Information Extraction operations. 
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(formal/informal, writtenlspoken), with the exception of a few comparisons 
between some frequency dictionary (LIF e LIP: Giordano, Voghera 2002). 
Nor are data on the different probability of linguistic elements according to 
the variation of field (legal, economic, medical lexicon) available. Text Min- 
ing approach (Sullivan (2001)) may render these measurements much easier, 
accessible to all and standardised. 
Every text has its own "mark ,  a sort of DNA determined in the first place by 
the author, but also by the content (subject), the context of communication, 
medium used, as well as receiver. These sets of information, defined in the 
Taltac software as text imprinting (Bolasco, in Mazzara (2002)), constitute 
real and appropriate features that, once measured, can be very useful not 
only to identify in a univocal way the text itself, but above all to compare it 
with others. Today, the incredible increase in the availability of linguistic re- 
sources (dictionaries, grammars etc.) and computer-assisted tools to use them 
(parsers and categorisers such as taggers, grammatical and/or semantic lem- 
matisers), make it possible to reconstruct this "molecular text structurev2. 
In practice, text profiling identifies different word distribution according to 
parts of speech, number of letters, morphological characteristics, as well as the 
incidence of the various class of words (abstract nouns, adjectives with posi- 
tive (constructive) / negative (destructive) elements, cfr. DellaRatta (2003)) 
in order to reveal the syntactic structure of sentences, punctuation or other 
complexity elements of the discourse. 
In this paper we would like to describe first of all the chosen procedure to 
manage the "La Repubblica" document warehouse, then some basic statistics 
on classes of words to show the latter's robustness as well as some time-related 
trends. Subsequently some statistics will be compared with other kinds of lan- 
guage, in order to show the structural differentiation value and propose some 
initial quantitative references for further discussion. 
It is necessary to specify that the present job does not aim to arrive a t  an 
absolute measurement of some characteristics of the texts, but to define a 
methodology of comparison and appraisal of the similar ones. 

2 The procedure to build up the "La Repubblica" 
database 

In order to reconstruct the "vocabulary" of a daily over an extended period of 
time (ten years), the pre-processing and normalisation phase (a fundamental 
prerequisite of any TM operation) is crucial for good results. The extraction 
of articles from the CdRom archives of "La Repubblica" required special op- 
erations that can be summarised as follows. 
As every year of a daily generates a text file of approximately 140Mbytes, 

'Using Taltac software (Bolasco (2002)) it is possible to extract the imprinting 
by a single query. 
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it was difficult to process in acceptable time only one file of over 1.4 Giga- 
bytes. Therefore, the first phase was dedicated to the separate extraction of 
each year's vocabulary (by the Lexico2 software) and to the creation of one 
database (by using Microsoft Access) of the 10 vocabularies3, having previ- 
ously selected words with initial small and capital letters4. The second phase 
consisted in the grammatical tagging of small letters words with Taltac, gen- 
erating two sub-databases, one of recognised grammatical forms and one of 
un-recognised forms (broken or misspelled words, proper names with small 
letters etc.). In the third phase, with the aid of Text Mining techniques, based 
mostly on queries of morphological kind, over 20,000 words correctly spelled 
or resulting from linguistic productivity of proper names (derivations such as: 
ex-andreottiano, ipercraxismo, etc.) were identified. In this way, a final matrix 
of the kind of forms per year, which juxtaposes the vocabularies of the set 
of 291,649 recognised words in the years 1990-1999, was formed. This huge 
database (called Repgo), other than containing approximately 3 million cells 
of occurrences of every word per year, collects other informations useful to 
define the imprinting of the language of the press and to study some lexical 
evolutions of the Nineties. Every query on such material produces thousands 
of examples in terms of variety of inflected forms and, for the words with 
very low occurrences, also to tens or hundred of extracted inflected forms. 

3 Insights into the evolution of 1990s' Italian language 

3.1 Vocabulary growth 

The first considerations regard the process of growth of the vocabulary, which 
can be measured by comparing the collected vocabularies year by year with 
Rep90 (Table 1). Despite the great dimensions of the texts, in ten years the 
vocabulary doubles the words (from 143,000 to  291,000 different inflected 
forms), with an progressive annual growth rate5 that has decreased from 
22% in 1991 to 3% in 1999. Even after the extraction of 230 million occur- 
rences, we are far from exhausting the vocabulary (Figure 1) and there is no 
stability in terms of quantity of different words. In this perspective, the inci- 
dence of neologisms or forms that disappeared in the decade provides some 

3 0 n  this regard, in October 2003, this restriction was overcome, thanks to the 
increasing calculating capacity of the available computers. In fact, it is now possibile 
to reproduce the same database by processing the whole corpus as a single file of 
1,4 Gigabytes. 

4By this way we have separated proper names of persons, toponyms, companies 
and other entities and stored them in another database. 

'The rate (column "% Increases" in Table 1) corresponds to the ratio of the 
absolute increment (column "Increases" on the same table) and the amount of 
different words (column "Cumulative Sum of Different Words") referring to the 
previous year. 
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interesting points (see Bolasco and Canzonetti (2003)). 

Vocabolary growth 1 I _ a 0 O O 1  

O J  , . , . . , , , , 7 

90 91 92 93 94 95 96 97 98 99 
Year 

Fig. 1. Vocabulary growth curve. 

Year Cumulative sum of Increase % 
Different Words Increases 

1990 143.609 
1991 175;610 32,001 22.3 
1992 199,796 24,186 13.8 
1993 218,004 18,208 9.1 
1994 235,022 17,018 7.8 
1995 249,547 14,525 6.2 
1996 263,655 14,108 5.7 
1997 274,214 10,559 4.0 
1998 283,281 9,067 3.3 
1999 291,649 8,368 3.0 

Table 1. Vocabulary growth data 

3.2 Stable Trends 

3.2.1 Length of words 
The average length of words is an index of the complexity of the language, 
according to  the well-known Zipf's laws (Chiari (2002), pp. 69-77). This prop- 
erty has a stable distribution throughout the ten years. Observing the distri- 
bution of the different inflected forms (V) in Figure 2a, we can see how 10 
letters words constitute the modal value of the Italian language. 

Length (in letters) " IL Length (in IeIters) 

b 

Fig. 2. Distribution of different inflected forms and occurrences by length (in let- 
ters). 
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With reference to the distribution of the occurrences (N), we can observe 
a bimodal trend (Figure 2b). The minimum length of 4 letters is due to the 
specific distribution of articulate prepositions, which in Italian have the fol- 
lowing statistical distribution: 

Lunghezza V N 
3 letters 22 13 millions 
4 letters 13 3 millions 
5 letters 40 8 millions 

Table 2. Distribution of articulate prepositions 

The distributive anomaly is due to the fact that syllables made up of 3+2 
letters (i.e.: del+la/e/o, dal+la/e/o, nel+la/e/o, but also ne+gli, su+gli etc.) 
prevail on those of type 2+2 (al+la/e/o). This result is very stable even in 
short texts. 
The average length, in terms of arithmetic mean, is absolutely stable in the 
period (that referring to V - equal to 10.3 - reveals the richness of the 'LLa 
Repubblica" lexicon, independently from the number of the occurrences of 
the words; that relative to the amount of words (N) - equal to  5 - records 
the average value typical of the usage of that language). To the contrary, the 
variation of these average values from a corpus to the other points out the 
complexity of the text which can be inferred by comparing different kinds of 
language according to  the decreasing complexity (formal, written, standard, 
spoken), as shown by the mean values in Table 3. 

3.2.2 Profile of the grammatical categories 
More complex is the data related to parts of speech, as the results mentioned 
earlier on are related to the grammatical tagging free context done (that 
is to say list-based), which can only classify non-ambiguous inflected forms. 
This determines statistics that cannot be compared with others coming from 
entirely lemmatised texts6. To the contrary, it has the advantage of speed 
of calculation and of standard measurements. Therefore, the comparison be- 
tween the amounts presented here and those coming from other works would 
not be possible due to the different methods used to  calculate them. In our 
case, the rate of ambiguity of the words from Rep90 in the decade is stable 
and equal to  20.2% of the vocabulary (V) and to  56.2% of occurrences (N)7. 
Without counting the ambiguous forms, the incidence of the main parts of the 
discourse (nouns, verbs, adjectives and adverbs) turns out to  be extremely 

GPvloerover this comparisons are very difficult without homogenous criteria in 
the lemmatization process. 

 h he latter reduces to 34.9% by forcing the category of about thirty terms 
having very high frequency, like di, e,  a, in etc., ambiguous only in a theoretical 
way, as in fact more than 99% of their occurrences belong to only one category, for 
example the preposition in the case of the form di. 
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steady in the decade, considering as average values for the period under con- 
sideration those highlighted in bold in Table 3. The same table indicates the 
values found in other lexicons8. The trend in the variation between lexicons 
is illustrated in Paragraph 4. 

I Political I Rep90 I Standard I Spoken ] 

Verbs 
Adjectives 

1 

Table 3. Comparison between average length of words and main parts of speech in 
different lexicons (political language, press, standard language, spoken language)g 

3.3 Evolutive Trends 

b 
V l  N 

Verb tenses 
Other classes of lexical units in Rep90 are not steady throughout the decade. 
In verbs, for example, tense, mood and person present significant evolutions. 
Among verbal tenses, the present tense prevails (77%), as one could easily 
predict in newspaper articles, and increases by one percentage; the past tense 
(16%) decreases by 0.6%, whereas the future tense (6%) decreases by only 
0.3%. Seen in relative terms, the future tense decreases by 5.4% and the past 
tense by 3.5%, whereas the present tense increases by 1.2%: considering that 
the volumes of Rep90 are so vast, these variations are definitely relevant. 
In order to analyse these trends we used the IT index1' (cfr. Bolasco, 
Canzonetti (2003)) which allows to find which kinds of words have de- 
termined the aforesaid trends. The calculation of the IT index on the 

'The amount shown belong to homogeneous measurements carried out on the 

language 
c 

V l  N 

- - 
four corpus taking in account only not ambiguous inflected forms. 

'Source: political (formal): TPG, Bolasco (1996); standard language: Poli,f, Bo- 
lasco e Morrone (1998); spoken lexicon: LIP, De Mauro (1993). 

' O I T ~  = ITo(0ccl - Occ,/Occl + Occ,) 

lexicon 
d 

V l  N 

where: 
~ ~ l [ ( S c a r t o ~ n o r m j ) ( S c a r t o ~ n o r m j - l ) ]  - 1 

IT0 = 
2 

Scarto-normj is the difference between observed occurrence in the j-th period and 
mean occurrence, standardized regarding the absolute value; Occl is the normalized 
observed occurrence in the first period; Occ, is the normalized observed occurrence 
in the last period; n is the number of the years of the whole considered period. 
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verbal forms of the present tense revealed an increase in verbs of com- 
mon usage and of generic meaning in the ten years, vis a vis a decrease 
in verbs relating to formal language and having a more precise meaning 
(for instance: smettere-finire/cessare, diventare/divenire, arrivare/giungere, 
dire/affermare-dichiarare). This indicates that one of the reasons for the in- 
crease in the usage of the present tense, may lie in a simplification of language. 

The modes 
The analysis of the verb modes seems to confirm this hypothesis. In fact, the 
indicative mode is, as it is expected, the most widely used (62.8%). It  is sur- 
prising, though, that this is the only mode that increases in the decade under 
consideration (1.9% in relative terms), whereas other modes decrease, with 
variations comprised in a range which goes from the -8.2% of the participle 
to the -2.4% of the conjunctive1'. 
It is possible to summarize the above trends in tenses and modes in a graphic 
which illustrates a factorial analysis of the correspondences in the data de- 
riving from the imprinting. In Figure 3a the first factor characterizes quite 
clearly the time and it is possible to notice how the indicative and the present 
tense are typical of the last years, while the participle characterizes the be- 
ginning of the period. 

The verb persons and personal pronouns 
On analyzing verb subjects and personal pronouns, we can notice some in- 
teresting changes (Figures 3b and 4). 
Among verb subjects, the first person, singular and plural, records a growth 
in relative terms (42.5% singular, 15.2% plural). Moreover, it is possible to 
notice how the first singular is "overcoming" the first plural (cfr. Figure 4a). 
The use of the second singular person is increasing too (34%). The third per- 
son, the most used, is instead decreasing, but the third singular person shows 
a decrease rate that is lower than the plural person (respectively -0.8% and 
-9.1%). 
Among pronouns (Figure 4b), the use of the first person is still increasing, as 
it is also the case with the second person, although its use in absolute terms 
is very low. 
This seems to  suggest that direct speech is now the preferred form, probably 
because journalists tend to present interviews or quotations in their articles. 
Figure 3b confirms these results, as it shows in detail the positions assumed 
by the verb persons (in the corresponding pronouns and verb forms) on the 
first factorial plan. This shows the increasing use of singular pronouns in re- 
cent years as compared to the corresponding usages of plural pronouns. 

''It is curious to notice that the conjuntive is the mode with the lower decline 
rate. However, it is easy to assume that the descendent dynamics has been more 
evident in previous periods. 
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Passato ! 
Futurol 

gerundio : 
I 

I participio I I 

am-1 

I '90 1 
I '98 congiuntivo co"dizionale '91 I 
I . -I ........... F?caf!!r! ........ '97 ............ infinitoi... -92 ..................................... 1 

'94i '93 I 
! Presente I 

Fig. 3. Verb tenses and modes (a) and personal pronouns and verb persons (b) on 
the first factorial plain 

Fig. 4. Evolution of verb persons and personal pronouns 

The complex f o m s  
The analysis of the morphologic structure of words reveals an increase in the 
usage of complex forms: verb enclitics, derivations/alterations and forms con- 
stituted by prefix+stem+suffix (respectively 10.5%, 11.8% and 22.2% in rel- 
ative terms). This occurs despite the simple inflected forms (seen as entries of 
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the "basic language" in a dictionary), that show a slightly decrease through- 
out the 10 years under examination, however meaningful in absolute terms 
since such forms constantly represent over 99% of the occurrences. Along with 
syntactic simplification, there is a tendency to "agglutinate" some words as 
if they were one. This is shown by the average word length in Rep90, which 
is considerably higher in comparison with other lexicons (Table 3) which can 
be explained with the characteristics of press lexicon, which is particularly 
synthetic due to the quick impact it is meant to have on the readers. 

4 Avenues for further research 

In the light of these results, it is possible to notice how, in the Nineties, there 
is tendency to  use a simpler and more straightforward lexicon (present tense, 
indicative mode, first and second person) and to use complex forms. This 
transformation is due to a need for synthesis that does not compromise com- 
munication and understanding in so much as we deal with written concepts. 
The examples presented here show only a number of properties that consti- 
tute the imprinting of a text. Their robustness in terms of frequency stability, 
within the limits of the measurement of unambiguous inflected forms, is guar- 
anteed from the large size of frequency lexicons. The differences indicated in 
Table 3 (cf. Paragraph 3.2.2) are evidence of the fact that there exist differ- 
ent structural elements for each kind of language (political, press, standard, 
spoken). 
I t  is possible to find, for the occurrences, an expressive range that goes from 
the more formal language (the political language) to the more informal (spo- 
ken language), with an intermediate register in the middle (the language of 
the press and standard language). I t  is possible to  summarize this tendency 
as follows: an increasing usage of verbs (from 19% in the political language to 
30% in spoken language), a substantial stability for nouns, a decreasing us- 
age of adjectives (from 8.5% in political language to 4% in spoken language) 
and a greater preference for adverbs (from 3% in political language to 5% in 
spoken language). 
Regarding verb persons and personal pronouns, Figures 5 give further evi- 
dence for the existing distinction between "informal" languages (spoken and 
standard) and "formal" ones (press and political). With a few exceptions, 
the former are characterized by a wider use of the first and second person 
(singular and plural), whereas the latter is characterized by the use of the 
third person is important. 
If we organize this logic of measurement and comparison, it will be possible 
to  define the imprinting of reference for each language typology. These char- 
acteristics could be useful also for the automatic classification of texts, in so 
much as this is based on the similarity with the imprinting. Such a possibility 
is suggested in a study (Koppel et al. (2002)) which was carried out in order 
to recognize the gender of the author by analyzing some structural charac- 
teristics of a text. 
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Spoken Standard Press Political Spoken Standard Press Political 

Fig. 5. Verb persons (a) and personal pronouns (b) in lexicons 
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Abstract .  Multiple choice tests have been recently introduced in Italian Univer- 
sities as an instrument for evaluating students' performance. In our paper we ap- 
praise the objectiveness of such a classification, adopting a Dichotomous Rasch 
Model (RM, Rasch (1960)) that transforms, via a Simple Logistic Model (SLM), 
test scores into the general structure of correct and incorrect answers. As widely 
understood, measurement requires that the quantification assigned to the construct 
be independent of both the observer and the sample of respondents. Subsequently, 
we extend the analysis to the polytomous answers, by means of a Partial Credit 
Model (PCM, Masters (1982)), in order to further distinguish different levels of 
incorrectness, between the classification of the errors above. 

1 Introduction 

Quality assurance in testing involves many aspects of what is known in statis- 
tics as quality control procedures, while requiring the respect of the spe- 
cific nature of the data. This paper fits into such an analytical framework, 
as it aims to verify the adequacy of multiple-choice tests, recently intro- 
duced in Italian Universities, as a means of objectively evaluating -and hence 
classifying- undergraduate students' ability to master a scientific subject. In 
truth, outcomes consist in the evidence of the ability of scientific reasoning, 
the latter being a non observable or latent variable. Moreover, classical theo- 
ries definitions of the difficulty of items as the mere distribution of successes 
and failures is highly unsatisfactory in an educational processes. Indeed, as 
results so obtained rely on the respondents, they do not necessarily take into 
account the full ability in completing professional tasks. This approach does 
not seem consistent with the purposes of academic institutional duties, as a 
candidate is considered competent or proficient if fully able to perform pro- 
fessional and/or scientific tasks. For instance, a surgeon or an chemist who 
would learn to systematically skip some steps of her/his job would be socially 
unacceptable, despite the degree of relevance of the skipped steps themselves. 
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2 Methods and materials 

In grading, only the correct answers is highlighted, regardless the fact that 
in each item distractors may not always be equally wrong. Therefore, the 
multiple-choice format is considered a special test construction in which the 
answers are to be recoded and transformed into a dichotomous scoring func- 
tion. 'Fail' and 'pass' are the response alternatives and the probabilistic Di- 
chotomous Rasch Model (RM, Rash (1960)) is applied. On the teaching side, 
though, such a model is required to provide substantive insights in the stu- 
dents' developments not always expressed effectively by the grades. As a 
matter of fact, in the progress toward competence, students make mistakes a t  
different levels and to different degrees. The mere concept of failure might pro- 
vide an incomplete feedback, as it does not inform on the nature of the errors 
in reasoning and, subsequently, on the pathway of the improvements, in case 
they are possible. These considerations lead to the analysis of outcomes by 
means of a Partial Credit Model (PCM, Masters (1982)): the multiple-choice 
structure sometimes presents an inner item-specific hierarchy, not necessarily 
shared by the various items. The resulting classification of the inadequacy 
levels could be useful in defining the kind of educational counselling needed 
and the type of effort asked on the students' side to meet the required stan- 
dards. The sample is drawn from results of final examinations in a section 
of the course in General Psychology at the Faculty of Psychology a t  the 
University of Milano-Bicocca, and it consists of 149 undergraduates, mainly 
females (75.2%). Hereafter, for sake of simplicity, items labels are omitted 
and substituted by numerical codes, the test being composed of 30 questions 
on memory, learning and motivations. 

3 The internal structure of the outcomes assessment 

3.1 A measurement model for classifying performances 

The simplest response format records only two levels of performance on an 
item, a pair of exhaustive and mutually exclusive response alternatives. It is 
the most frequently used format for scoring outcomes of educational tests: 
it gives no credit for partially correct solutions. Such Rasch Dichotomous 
Model can be written as: 

for n = 1 , .  . . , N and i = 1 , .  . . ,I. Expression ( I ) ,  the Simple Logistic Model 
(SLM), gives the probability of a correct answer xni by the n-th subject when 
replying to the i-th item. Both the item difficulty ai and the person's ability 
Pn are measured along a shared continuum. Due to sufficiency properties, the 
estimation of the parameters Pn is independent of the hardness of the exam 
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(test free) and conversely the estimation of the parameters 6, is independent 
of the ability of each subject (sample free). Our response matrix is subjected 
to the dichotomous analysis through the WINSTEP software (Linacre (1991- 
2003)). 

We limit hereinafter the discussion to few diagnostic aspects, as an ac- 
curate reference to the extremely high number of testing procedures goes 
beyond the aims of our paper. The problem of evaluating model fit is solved 
in RM within the framework of the general multinomial model (Fischer and 
Molenaar (1995)). In particular, we are interested in chi-square fit statistics 
(Wright and Masters (1982)). The infit statistic is an information-weighted 
sum of the standardized residuals. In a RM the information relative to an 
observation is given by its variance; if the observation is not extreme, then 
the variance tends to increase, otherwise it falls. The infit of an item is a 
weighted sum across subjects: 

infit = x z : ~ w ~ ~ / ~  Wni 

where Z:i are the squared standardized residuals for subject n replying to  
item i, and Wni are the individual variances of residuals. The weighting op- 
eration lessens the impact of the unexpected responses that are farthest and 
enhances the ones that are closest to the persons' or item measure. 

The outfit is the unweighted sum of the squared residuals: 

. . 

outfit = Zni/N 

and, oppositely to the previous diagnostic, gives relatively more importance 
to distant unexpected responses rather than to  close ones (correspondingly, 
the infit and the outfit for each person are summed across items). In our 
sample, we adopt a rigorous criteria and decide to  remove from the model 
and to devote a special attention to  items and subjects not strictly respecting 
the requirements. Such an attitude is maintained even when in RM routine 
more attention is paid to aberrant infit statistics, causing more concern than 
large outfit ones (Bond (2001)), the reason being the relevance of the task 
of grading undergraduates. Both the items and the subjects' removals from 
the database meet other studies standard (Tesio and Cantagallo (1998)). Six 
items, equally split between the 'easy' and the 'difficult' questions, are to be 
excused as misfitting. Their outfit statistic is always positive; therefore, they 
arise almost systematically unexpected responses, since some of most able 
students (also due to  idiosyncrasies) fail them and/or, on the other hand, 
they are passed by the least able subjects. Among these troublesome items, 3 
do not match even the infit statistics: anomalous items are the most common 
source of large infit indexes and this seems the case in our sample. Multiple- 
choice answers are sometimes constructed with semantic biases, in order to  
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verify the ability of avoiding them, but this structure may turn out in a trap. 
Large infit statistics may, in fact, highlight items that sound ambiguous, 
representing an extraneous domain and capturing some peculiarity of the 
subjects' sample. As far as diagnostic procedures on persons are involved, 
we remove 38 students from the original 149 persons. As shown in Table 1, 
some students show an infit statistic larger than 2 in absolute value with 
an adequate outfit, as subjects number 48 and 56. Both students seem to 
be quite unsuccessful at a group of questions that are below in measure 
their ability levels, respectively +0.41 and +0.73; in other words they fail the 
easiest questions. The investigation of the individual problems in the scientific 
matter requires a diagnostic evaluation of the map of each student and deeper 
qualitative inspection to find out the reasons of gaps in fundamental concepts, 
if this turns out to be the case. Student 88 has an ability measure of -1.71. 
The standardized infit index, equal to 1.2, indicates a pattern of performance 
that closely approximates the predicted RM response pattern based on the 
student's ability estimate, since the expected value of the infit statistics is 1, 
whereas the outfit index exceeds the cut-off value of approximately 2. In this 
case, some of the few unexpected correct responses were obtained with a bit 
of guessing. 

3.2 Evaluating the adequacy of the examination test 

Subject Raw Measure Error Infit Outfit 
Number Score Zstd Zstd 

4 14 -0.12 0.41 0.3 2.1 
39 15 0.05 0.41 -2.4 -2.0 
48 18 0.55 0.41 -2.3 -1.6 
53 13 -0.29 0.42 1.9 1.4 
56 19 0.73 0.42 -2.3 -1.5 
61 3 -2.70 0.67 0.2 2.5 
63 17 0.38 0.41 1.7 1.1 
75 12 -0.470.42 1.5 1.0 

The group's average ability estimate, in logits equal to +0.16, is the first 
indicator that this exam is rather well-matched, being the value close to 0 
for a perfectly designed test. (An analogous piece of information is gathered 
on the whole sample of items and students, misfitting included, since the 
mean value is 0.05). The standard deviation of 1.22 for person estimates 
indicates smaller variation than the one with item measures, being the overall 
standard deviation equal to 1.77. The fitting items and students' measures 

Subject Raw Measure Error Infit Outfit 
Number Score Zstd Zstd 

88 6 -1.71 0.51 1.2 2.4 
89 10 -0.83 0.44 1.3 0.7 
97 10 -0.83 0.44 1.3 1.1 

105 10 -0.83 0.44 0.9 0.9 
107 10 -0.83 0.44 0.8 1.0 
111 13 -0.29 0.42 0.0 1.2 
146 8 -1.24 0.46 1.7 2.6 
149 20 0.90 0.43 1.6 3.6 

Table 1. Measures of ability, infit and outfit statistics, residuals relative to some 
misfitting students 
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are illustrated in Figure 1: the measures, in true interval logit units of the 
subjects' ability, share almost the same domain on the continuum as the 
measures pertaining the items. The evenly spread of questions along the 
variable (the vertical axis), with few gaps, indicates a linear, rather well 
defined or tested variable; in addition, subjects follow almost a bell-shaped 
distribution, as few of them gain either a low or a high score and the most part 
get an intermediate score. Person and item separation indexes are computed, 
defined as the ratios of the true spread of the measurement (i.e. the standard 
deviation of the estimates after subtracting from their observed variance the 
error variance attributable to their standard error of measurement) with their 
measurement error. 

Item dlfflsulty 
estimat.. 

I 
2 t B C T  

I 
X I 

I B B  
X l B B C  
X  I 
X  S I S  A  L P  

1 x  + 
I A C D  

X X I A B B  
XXX I 

C C D F C I P P T T V  
C C G C U P R  

I C S  

Fig. 1. Item-person map for the analysis of the multiple-choice test in General 
Psychology assessment, section on Learning and Memory. 

3.3 The differentiating power of the test among candidates of 
different abilities 

The requirement of internal consistency in latent trait theory, to which the 
measurement of an ability belongs, consists in the items in a test reflecting 
all the same unobservable variable. The counterpart of internal consistency 
on the subjects' side is unidimensionality. The latter is a single individual 
characteristic, the very one of interest, expressed by a unique value on a 
unique latent continuum (Andrich (2003)). It then follows that, in such a 
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probabilistic model as SLM, consistency on the persons' side is even more 
important, since the ordering of the subjects may be influenced only by the 
unique non observed dimension the test aims to measure. Therefore reliability 
is a separation reliability, whereas conventional indexes such as Cronbach 
Alfa take merely into account the variance of the subjects' total scores, as 
the greater this factor the greater the index. 

Let the mean and variance of the latent trait, the true ability in the 
studied scientific matter, be ,LL and a$ in the population. For each person, the 
ability can be written as: 

Pn = ,LL + en ( 4 )  

where 8, represents the individual departure from the population average. 
Once estimation is performed, the error of measurement for each subject E ,  

can be added in ( 4 ) :  

and, under the assumption of independence between Pn and E ,  in the popu- 
lation, the variance of actual abilities is given by: 

N A  N I  where 62 = Cn=l(Pn - , b i ) 2 / ( ~  - 1) and 6: = Cn=l[Ci=l eni(l - eni)]-' 
P 

are the estimates, respectively, of a? and a:. 
P 

In analogy with conventional indexes in test theory such as Cronbach 
Alpha, SLM reliability index r p  is constructed as the ratio of the true variance 
to the observed variance and estimated as the proportion of the observed 
sample variance which is not due to measurement error: 

This expression gives the proportion of dispersion reproducible by the model 
itself, that is the reliability as generally understood. 

On the other hand, the ratio: 

represents the standard deviation of the sample in standard error units. It al- 
lows to calculate, through appropriate algebraic transformations, the number 
of statistically distinct person strata identified by the examination (Wright 
and Master (1982)). In our sample, person reliability and person separation 
coefficient are respectively equal to 0.78 and 1.87. The spread of the person 
measure is fairly wide, and the students are classified in three group with dis- 
tinct levels of ability. On the item side, Rasch separation coefficient is 3.63, 
reliability 0.93; the greater the separation, the wider is the range of ability 
which can be measured by the scale and transformed into grades. 
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4 An insight in conceptualisation problems: the Partial 
Credit Model 

The similiarities or the elements of truth in several of the replies to a question 
in the test may confuse to a different extent a less than perfectly prepared 
student and the kind of educational counselling needed may vary accordingly. 
As a matter of fact, it is explained above how responses in multiple-choice 
tests may be incorrect, but still indicate some knowledge; therefore they are 
given partial credit towards a correct response. The amount of partial correct- 
ness varies across items. It follows that a straightforward extension of 'right 
or wrong' scoring is the identification, in our case, of one intermediate level 
of performance on each item; such an intermediate step is awarded partial 
credit for reaching it. Three ordered levels of performance are identified in 
each item, labelled 0 (no o 'absurd' response), 1 (incorrect answer but with 
some elements of knowledge) and 2 (appropriate answer). 

In order to understand a certain concept -and subsequently reply correctly- 
the students need to  have completed the steps from level 0 to 1, and from 
the latter to 2, in their studying towards the final examination. A general ex- 
pression for the probability for the subject n scoring x on item i, developed 
from (I), may be written as: 

for x = 0,1,.  . . ,mi .  The observation x in (9) is the count of the completed 
item steps. The numerator contains the difficulties of these completed steps, 
6i1,6iz,. . . , 6ix, while the denominator is the sum of all possible mi+l  possible 
numerators. The response matrix is submitted to the Partial Credit diagnos- 

Fig. 2. Probability curves for a well-functioning two-steps item, where the first 
step is still an incomplete level of competence, but with some sounds elements of 
truth. The distinction is valid for educational counseling only. 

tic procedure, through the same software mentioned above; due to  misfitting 
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statistics, only two items (namely 19 and 21) are to be excused. It should 
be noticed that they are a subset of the six items removed in the dichoto- 
mous study. A premise to the diagnostic interpretation should be posed: the 
Partial Credit Model points towards a 'mischievous' path taken during the 
students' conceptualisation process, since a partially correct answer implies 
elements of proper knowledge mixed up with completely extraneous domains 
of information. The parameters are estimated for the difficulties of each step 
of every item, as there are no shared rating scales (Wright, Masters, (1982)). 
The results show that, in 13 items out of 28, the progression from level 0 to 
1 is easier than the one from 1 to 2 (Sll < 612); in 2 items it is the same, 
while in the remaining 13 items the relation is the reverse (Sll > SI2). The 
implication is that in 50% of the questions difficulties arise from grasping 
the subject, in the remaining cases from a 'superimposition' of information 
that are not logically set in place. These results are relevant, nonetheless pro- 
viding an incomplete understanding, as they do not convey the source and 
the type of setback in gaining competence. An improvement can be obtained 
from extending the scale for each item, i.e. allowing a t  least one more step in 
the multiple choice test structure, in case confounding causes are identifiable. 
Rasch item separation coefficient is 4.35, corresponding to  6 strata, reliability 
0.95. On the students' ability side, the separation coefficient is equal to 2.02, 
identifying 3 strata, reliability 0.82. The troublesome point in the diagnostic 
procedure here is that the 37 misfitting subjects do not always coincide with 
the ones in the dichotomous analysis. In conclusion, the students are satis- 
factorily classified by the items, provided they fit, as a relevant number (at 
least 37 out of 149 in both models) do not. The grading systems holds and 
the weak point of the learning/teaching process is clearly identified, indicat- 
ing that the latter needs to be pinpointed with far higher precision, relying 
on the flexibility of the multiple choice structure and on other analytical 
instruments. 

References 

ANDRICH, D. (2003): An Index of Person Separation in Latent Trait Theory, the 
Traditional KR-20 Index, and the Guttman Scale Response Pattern. Eucation 
Research Perspective, 9:l,  90-1 0. 

BOND, T. and FOX, C.M. (2001): Applying the Rasch Model. Fundamental Mea- 
surements i n  the Human Sciences, Erlbaum, Mahawa. 

FISCHER, G.H. and MOLENAAR, I.W. (1995): Rasch Models. Foundations, Recent 
Developments, and Applications. Springer-Verlag, New York. 

MASTERS, G.N. (1982): A Rasch model for Partial Credit Scoreing. Psychomet- 
rica, 47, 149-1 74. 

RASCH, G. (1960): Probabilistic Models for some intellingence and attainment 
tests. [Danish Institute of Educational Research 1960, University of Chicago 
MESA Press 1980, MESA Press 19931, MESA Press, Chicago. 

TESIO L. and CANTAGALLO A. (1998): The Functional Assessment Measure 
(FAM) in closed traumatic brain injury outpatients: A Rasch-based psycho- 
metric study. Journal of Outcome Measurement, 2(2),79-96. 

WRIGHT, B.D. and MASTERS, G.N. (1982): Rating Scale Analysis. Mesa Press, 
Chicago. 



A New Approach in Business Travel Survey: 
Multivariate Techniques for Strata Design 

Andrea Guizzardi 

Dipartimento di Scienze Statistiche 
UniversitA di Bologna, Italy 
guizzardOstat.unibo.it 

Abstract. Business travel demand in official statistics is often measured by means 
of households/travellers survey. Such approach produces very little evidence about 
expenditure and demand structure because for that purpose others statistical units 
should be sampled. Enterprises - that actually buy business travels - are rarely inter- 
viewed. The application of CHAID technique to data from an explorative sampling 
survey on the Italian enterprises shows statistically significant relationships among 
business travel expenditure, enterprise size and economic sector. The multivariate 
analysis allows to derive the definition of the optimal strata design for survey on 
business travel through enterprises interviews. 

1 Measuring the role of tourism in economies 

Tourism is an important part of modern life-style and plays a crucial role in 
the world economy. In Europe, the tourism sector employs around 7 million 
people directly, which account for about 5% of total employment. Almost 
three times as many are indirectly involved through business connections 
with other related sectors. About 7% of total SMEs in Europe belongs to the 
tourism industry and 6.5% of the total turnover of European SMEs is gener- 
ated by the tourism industry (source http://europa.eu.int/comm/enterprise 
/services/tourism/tourismeu.htm). Tourism is a demand-side concept involv- 
ing a wide range of activities and different motivations to consume, mainly 
leisure or business but the hospitality should also consider training purposes 
(i.e. visiting students; see Tassinari 1994) and others travel motivations. De- 
veloped economies are generally mature markets for leisure tourism, therefore 
attention is gradually shifting towards business travels. The latter reduce sea- 
sonality, it is more valuable than leisure tourism and - because of business 
trends in management, market globalization and training activities - it shows 
a rate of growth that generally exceeds the overall tourism growth rate. 
Despite the sector importance, present-day statistics on tourism do not pro- 
vide sufficient business information, as pointed out in several official reports 
(see among others OECD 2001). This lack of information is a consequence 
of Eurostat (2000) suggestion to use household surveys for data collection. 
Such approach produces no or very little relevant data about business travels 
structure and costs limiting the possibility to evaluate indirect GDP, business 
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policy effects, employment consequences or to prepare a satellite account. The 
critical point is the tourism demand definition. Households represent only fi- 
nal demand; therefore they are not the optimal statistical units when the fo- 
cus is on travel as an intermediate goods. The decision to buy business travel 
is not generally taken by travellers themselves but by company managers 
(enterprises), who are the only subjects knowledgeable about travel costs, 
purchasing processes or travel policies. In order to provide a more complete 
statistical picture for this important sector it is necessary to collect informa- 
tion from both household and business surveys. Current official surveys on 
enterprises, monitors production costs but do not focus on travel cost. Fol- 
lowing the 2002-2004 Italian National Statistics Programme directives, a new 
survey on production costs is being carried out (periodical but more detailed). 
It collects information on enterprises travel expenditures but, actually, the 
only available information is the adopted questionnaire (see www.istat.it, key 
search: " rilevazione sulla struttura dei costi"). 
There are in fact substantial differences between techniques used for business 
surveys and those used for household surveys. Surveys of firms are designed 
as one-stage stratified simple random samples; techniques such as two-stage 
sampling, which minimize the costs of enumeration, are not required. Strati- 
fication usually has two dimensions: size and type of activity. However, busi- 
nesses are extremely heterogeneous compared with households. The largest 
businesses employ many thousands people and contribute enormously to eco- 
nomic activity; so they are usually included in the take all or completely enu- 
merated strata. In addition businesses undertake activities which have very 
differentiated characteristics (from agriculture to public administration), thus 
showing very different behaviors. 
It should be clear by now that referring to survey based on households or 
travellers in order to study business travel is theoretically not founded and 
technically inefficient. Taking enterprises as the population to be investigated 
has at least three advantages. First, the households/travellers' population is 
wider and less known than the enterprises' population. Second, enterprises 
are more informed about business trips and their real costs, which can be 
retrieved from business accountings. Finally, enterprises are generally more 
used to interact with statistical offices and can provide more reliable infor- 
mation. A better picture of the tourism sector can be obtained if leisure and 
business travels are considered separately, the first being a final consumption 
and the latter an intermediate consumption. Business travel should thus be 
investigated by surveying public and private organizations. A first step in this 
direction could be adding questions about business travel in current business 
surveys. However, there is little evidence for business travel expenditure de- 
pendence on enterprise's structural variables. Therefore it is not clear if the 
stratification variables used in current surveys on GDP and other production 
costs, are suitable as stratification variables for investigating travel costs. 
This work attempts to provide a preliminary answer to such question, by 
applying the CHAID technique to the results of an explorative survey on pri- 
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vate enterprises business travel expenditures. The first goal is to  model travel 
expenditure with respect to  business etherogeneity evaluating the relation- 
ship between travel expenditure and a set of structural variables commonly 
used as stratification variables in the national sampling survey of enterprises. 
CHAID build a tree which splits enterprises business travel expenditure into 
final nodes leading to  a statistically significant discrimination. These nodes 
can be seen as the optimal (post)stratification of a survey on business travel 
expenditure; with this perspective it is possible to evaluate whether Italian 
business surveys can be efficiently extended to survey business travel as a 
production cost. Finally a new approach to business travel survey, coherent 
with the intrinsic nature of the object studied (that is a productive input) is 
suggested. 

2 Data and stratification technique 

Data on business travel expenditure used in the present work were collected 
in November 2002 through a direct survey of Italian enterprises. Only enter- 
prises with more than 4 employees (in the service sector) and more than 9 
employees (in the industrial sector) were included in the study. Most small 
enterprises (e.g. shops or farms) have a productive process where business 
travel expenditure is very marginal. Agriculture and the public sector are 
not considered. agriculture. The resulting set was of 371,100 enterprises, a 
10% share of the total 3.8 million Italian enterprises which accounts for 55% 
of the total number of employees in Italy (data from the national archive 
of enterprises ASIA 2000). The selection was based on two different random 
samples; one among large enterprises (with more than 100 employees) and 
another among SME. In each sample the probability of selection was propor- 
tional to the size. Mail, fax and e-mail questionnaires were sent to  a sample 
of 1,600 firms, 113 of which were selected among SME and 213 among big 
enterprises to have a better coverage of the more relevants units. The statis- 
tical units list was the "annuario SEAT ed. 2001n, which covers almost two 
thirds of large enterprises population. In both samples the final response rate 
was 13% (206 completed questionnaires after telephone recall. 
CHAID methodology (Kass 1980) was employed in order to  identify 
heterogeneity across enterprises total expenditure in business travel (depen- 
dent variable) defined as all the costs recorded in company accounts as travel 
costs. This partition tree method was used to study the relationships with a 
set of possible predictor variables that may interact among themselves. These 
potential variables (splitting variables) have been chosen among those used 
in the Italian GDP survey. The number of employees (punctual), the ATECO 
1991 two-digit classification (NACE Rev. 1 section-class), the 2 macro-sectors 
(industry and construction; services) and the geographical areas (4 macro re- 
gions) have been analysed. 
CHAID allows to see whether a sample splitting based on these predictors 
leads to a statistically significant discrimination in the dependent measure. 
At the end of the tree building process a set of maximally different groups in 
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terms of overall travel expenditure is derived. Intervals (splits) are determined 
optimally for the independent variables so as to maximize the ability to ex- 
plain the business travel expenditure in terms of variance components. There- 
fore we propose to see CHAID results as the optimal stratification (based on 
predicting variables) for a survey on business travel expenditure. Statistical 
F-tests are carried out in order to evaluate splits significance. Tests are cor- 
rected conservatively for the fact that many possible ways of splitting the 
data a t  one time are examined. However, since some descriptive indications 
can be obtained from the tree structure, we allow for segmentation with a 
p-value less than 0,2. 

3 Results 

Results (see figure 1) show that enterprise size is the most important vari- 
able for describing differences in business travel expenditure. The partition 
found is significant at a very low p-value. Enterprises are split in 5 classes; 
as expected, average travel expenditure increases with enterprises size. The 
average business travel expenditure goes from 79.000 euro for the small size 
enterprises group up to 3 million euro for large enterprises. It is interesting to 
note that small expenditure enterprises have a size threshold of 90 employees 
which can be consider the optimal splitting point in a two strata sampling 
design. The value is very close to the enterprise size that in the national 
GDP survey represents the threeshold between the sample survey and the 
total survey. This group, as well as the group of large enterprises (with more 
than 687 employees), has a sample expenditure variability that - given the 
sample size - does not allow for other significant splits. For medium size en- 
terprises there is enough empirical evidence to show significant effects of the 
productive sector (ATECO) on travel expenditure. A general pattern is that, 
for a given enterprise size, services have a higher travel expenditure than 
industries. In particular, activities in R&D, computer and renting (ATECO 
sub-section k) show the higher average expenditure, while retail and whole- 
sale (sub-section g) show the lowest, because of the high frequency of short 
trips. In the industrial sector, the higher expenditure is in the sub-sections da 
"food drink and tobacco" and dk "Machinery construction, installation and 
maintenance". No significant effects were found for geographical location. In 
purely descriptive terms, southern enterprises expenditure is on average lower 
than that of other areas, for almost all sizes and ATECO classes. 

Although limited sample size does not allow for a very detailed anal- 
ysis, results provide sufficient evidence to counter the frequently advanced 
hypothesis of indipendence between productive sector and business travel 
expenditure (i.e. the fixed proportions between travel expenditures and en- 
terprises size; see amongst others G. Woollett, et al. 2002). The amount of 
expenditure varies also across sectors reflecting the fact that different pro- 
ductive processes need different kinds of business travel. Therefore the means 
of transport, the length of stay and the travel frequency vary across sectors. 
This information is relevant for business studies and for structural analysis of 
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c,db.dd,de,dg,di,dj da,dc.dk indust. senices - - 
Fig. 1. The CHAID tree for business travel expenditure (Euro x 1000) 

business travel expenditure especially in order to assess tourisms direct and 
indirect cross-sector impact. 

Official statistics should no longer ignore or downplay the role of the 
business travel as part of tourism sector. In order to provide a fuller picture, 
business travel costs should be considered among other production costs in 
official surveys to enterprises. This paper shows that this is feasible, a t  least 
from a technical point of view: the sampling design that appears to be optimal 
to survey business travel expenditure is indeed similar to those used in most 
current business surveys. 

4 Final remark 

Most surveys on enterprises' expenditure don't include travel as one of the 
investigated variables. At the same time, European statistics are not ade- 
quate for identifying the role of business travel as part of the tourism sector. 
In fact, such statistics do not differentiate between travel as final consump- 
tion (leisure travel) and travel as an intermediate consumption (business 
travel). This is because most surveys on travel behavior are made by in- 
terviewing travellers or households, which are asked about their leisure and 
business travels. The paper shows that the correct statistical units to measure 
business travel volume and cost are the enterprises themselves. Choosing an 
inadequate statistical unit leads to inaccurate measures. 
A significant improvement may thus be obtained including questions about 
business travel in current' business surveys on production costs. However, 
there was no evidence so far that this would be statistically "optimal" and 
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in particular if present stratifications used in business surveys are viable for 
investigating enterprises' travel behavior. In this paper a positive answer is 
given to this question. The application of a CHAID algorithm to the result 
of a sampling survey on business travel expenditure has shown significant 
causal relations between business travel expenditure and structural variables 
used in the GDP national survey as stratification variables. As for others 
business production costs, enterprise size and productive sector lead to a sig- 
nificant discrimination in the enterprise's travel expenditure. More in detail, 
the CHAID tree nodes obtained from the investigated sample can be used 
to construct an ex-post stratification design which appears to be optimal to 
survey business travel expenditure. Results indicate that the optimal strat- 
ification design found in this study is similar to those used in most current 
business surveys. For example, the first significant cut off point discrimi- 
nating travel expenditure behavior is 90 employees, a value which is very 
close to the enterprise size that in the national GDP survey represents the 
threshold between the sample survey and the total survey. A second result 
of this application of the CHAID algorhitm is that the productive sector 
in the ATECO classification appears to be a significant discriminating vari- 
able in business travel expenditure behavior. Different productive processes 
seem to need different kinds of business travel - a result that contradicts the 
frequently advanced hypothesis that travel expenditure and enterprises size 
vary in fixed proportions across economic sectors. Business travel is a sector 
with an increasing importance in most developed countries, given its sus- 
tainability, its high profitability and its lower seasonality compared to  leisure 
travel. Although limited sample size does not allow for a very detailed anal- 
ysis, the CHAID results of this study provide sufficient evidence to suggest 
that business travel expenditure could be easily included among other pro- 
duction costs in official business surveys. This development would provide a 
more adequate picture of the tourism and travel market, and a more detailed 
account of enterprises' production costs. 
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Abstract. The aim of the paper is to analyze, for both men and women, the role 
played by value orientation and social condition in the choice of the various forms of 
partnership (marriage and cohabitation) in some European countries that represent 
the varying diffusion of cohabitation and are characterized by different ideational 
dimensions. The data analyzed using classification trees were obtained from the 
European Fertility and Family Surveys; the trees, identified separately for men 
and women in each country, were compared using a modified version of a recently 
proposed proximity measure, aimed at evaluating whether decisional processes differ 
between genders and whether they are specific to the nations examined. 

1 Foreword 

Since the nineteen-sixties, family models in the industrialized world have 
changed radically; in particular, albeit with different intensities and time 
frames, cohabitation has become far more common, due to  both an increase 
in the period spent studying and therefore a delay in acquiring economic inde- 
pendence and the increased individual ethic, religious and political autonomy 
(Preston 1986). The importance of considering ideational factors as well as 
economic ones in an explanatory phase was discussed a t  length and demon- 
strated for a number of central European countries by Lesthaege and Moors 
(1996). Taking inspiration from Lesthaege and Moors, in this paper we aim 
to  analyze, for both men and women, the role played by human capital and 
value orientation on the choice of the various forms of partnership (marriage 
and cohabitation) in certain European countries. In particular, cohabitation 
will be assumed to  represent a type of partnership that,  a t  least theoretically, 
is associated to  a reduction in gender differences: the absence of pre-set roles 
should, in fact, make the relationship between partners more equal and free 
(Pasquini and Samoggia 2003a). 

2 Couples and values 

In order to examine the reasons that cause men and women to  choose to  
live together outside marriage, it was believed opportune to  study only those 
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countries in which cohabitation is not yet the norm as this makes it possible 
to identify the circumstances that motivate unconventional choices (Kiernan 
2000). Moreover, because ideal orientation is believed to be one of the most 
important factors in dictating the type of partnership, we decided to select 
the countries to be analyzed from the areas identified by Inglehart (1997), 
which are similar with regards to value orientation; within these areas the 
following nations were chosen: Italy, Spain, Switzerland, Slovenia, Hungary 
and Latvia (Pasquini and Samoggia 2003b). It goes without say that the six 
countries chosen are not representative of the area they belong to if considered 
singly, neither are they representative of Europe as a whole. They simply 
constitute a range of situations that we intend to investigate and compare 
with one another. Later in the paper reference will be made to the countries 
in the West and countries in the East; the former refers to  Italy, Spain and 
Switzerland, the latter to Slovenia, Hungary and Latvia. The data derive 
from the Fertility and Family Surveys conducted in the 1990s (Table 1). 

Italy Spain Switzerland Slovenia Hungary Latvia 
Men 3.6 8.4 25.5 17.1 7.6 12.9 

Women 3.9 6.9 21.2 14.8 6.9 12.1 

Table 1. Incidence of cohabitation (100 couples). 

As far as the variables used to define the set of values are concerned, refer- 
ence was made to the materialism/post-materialism (national goals to strive 
for; 4 items), tradition/innovation (importance of marriage, of family and 
motherhood outside a stable partnership; 3 items), the reasons for splitting 
up (8 items) and the ethics of abortion (5 items), the sense of responsibility 
towards one's children (3 items) and religiosity (2 items). 

The analysis of the subject values and the type of partnership highlighted 
a stark difference between women and men. The former show more conserva- 
tive behavior (they more frequently practice their faith, adhere to materialist 
values and attribute greater importance to marriage and the family), however, 
they also show signs of a greater openness to change: the more widespread 
acceptance of birth outside a stable partnership and abortion indicate how in 
the countries analyzed a common female ideal model is forming, still strongly 
characterized by the presence of the principal conventional values, but with 
more innovative elements than those of their male counterparts. 

With regards to the partnership between value-orientations and  the fam- 
ily form adopted, it can be said that certain values are so strongly rooted 
(importance of the institution of marriage, the family and children) that they 
set aside the type of partnership chosen. Certain other values are associated 
to the various family types with a very clear bond in western countries and 
less evident ones in the East. due to the effect of both the weaker value model 
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that characterizes these nations and the different meaning assumed by cohab- 
itation: indeed, as is known, in the East the decision to live together outside 
marriage often derives from the economic impossibility to  get married. How- 
ever, in the West it is clear that partners who merely live together have ideals 
and behavior less closely linked to  tradition. For a more detailed description 
of these results, including figures, see Pasquini and Samoggia (2003b). 

3 The ideational dimension 

Multiple correspondence analysis was used to summarize the information con- 
cerning values. The variables considered active in the analysis are those relat- 
ing to religiosity, materialism/post-materialism and opinions. The modalities 
of certain context variables were then projected into the factorial space in or- 
der to better interpret the meaning of the new dimensions identified. Multiple 
correspondence analysis was performed separately on the countries examined 
in the study because, as shown by the descriptive analysis, active variables 
play different roles in the various situations. The exceptions are Italy and 
Spain, which are considered together as they appeared to be permeated by 
the same ideational context. Within each country or cultural area, the anal- 
ysis was conducted jointly for the two sexes as the cultural context within 
which the individuals live is characterized by the same value-orientation, re- 
gardless of the fact that it can influence men and womens orientation in 
different ways. On the basis of the multiple correspondences' results, the 
representation of subspace was defined as that identified by the first three 
factorial axes, which account for approximately 90% of the overall inertia. 
The results are synthesized in Table 2. 

Italy and Spain Switzerland Slovenia Hungary Latvia 
Axes r.i. Axes r.i. Axes r.i. Axes r.i. Axes r.i. 
Religiosity 64,4 Religiosity 53,6 Certainty 56,l Certainty 68,5 Certainty 58,7 
Dogmatism 20,6 Dogmatism 25,5 Tradition 32,3 Tradition 15,9 Tradition 23,5 
Tradition 6,O Tradition €48 Religiosity 5,5 Religiosity 7,l Sentimental 6,3 

Table 2. Axes identified by multiple correspondence analysis for each country, and 
revaluated inertia (r.i., expressed in %). 

It is interesting to observe how in the analyzed countries the axes were 
characterized by a meaning that was in part common to all (albeit of varying 
importance) and in part specific to each nation. The defined "religiosity" axis 
contrasts the typical positions of a rigid religious ethic with secular values. 
This axis is the most important in Italy, Spain and Switzerland, whereas 
in Slovenia and Hungary, where the religious tradition is less widespread, it 
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only occupies the third place and in Latvia it does not figure a t  all. The 
second most important dimension in Italy, Spain and Switzerland defined 
as "dogmatism" contrasts the ability to express an opinion to the questions 
posed with the incapacity to do so. A more detailed analysis, which made 
it possible to further investigate the meaning of the axis, revealed that the 
set of subjects who were unsure of their opinion seems to  be constituted by 
individuals who believe that certain practical situations cannot be judged a 
priori, but rather must be put into context before it is possible to express 
an opinion on the subject. It would therefore appear to  be an axis that 
contrasts possibilism, in other words the absence of stereotypes, with a sort of 
dogmatism. The "certainty" axis, which was the most important in Slovenia, 
Hungary and Latvia, contrasts those subjects who have already matured 
a well-established opinion with those who, on the contrary, having yet to 
conclude the process, are more uncertain. Subjects who were unable to answer 
do not appear to be characterized in any specific way by the illustrative 
variables considered and therefore for them the conflict between ideology and 
opinions detected amongst the doubtful in other countries does not appear 
to exist. This factor could be connected to a phenomenon of presentification, 
that refers to an exclusive interest in the present, which results in the inability 
to express opinions on matters with which one is not directly involved. The 
"tradition" axis, which was present for all countries, clearly contrasts the 
more traditional values with innovative ones. This factor is the third most 
important in Italy, Spain and Switzerland and the second most important in 
other countries. In Latvia, multiple correspondence analysis identified an axis 
that seems to be determined almost exclusively by opinions on the reasons 
for splitting up and the acceptance of abortion. This axis contrasts the more 
material reasons with sentimental ones. It therefore appears to represent the 
vision of a partnership intended on the one hand, as a sort of well-defined 
contract, that does not permit exceptions and, on the other, as a sharing of 
feelings. On the basis of these findings, it was defined the "sentimental" axis. 

In order to analyze how all these different aspects influence the choice 
between cohabitation and marriage in the considered countries, we have used 
classification trees (Breiman et al. 1984). The analysis has been performed 
separately not only by country but also by gender to highlight different deci- 
sional processes between males and females. The comparison between classi- 
fications trees has been performed using the dissimilarity measure proposed 
by Miglio and Soffritti (2004), which has been slightly modified so as to take 
into account the differences among predicted class probabilities. 

4 Proximity measures between classification trees 

The solutions proposed in the statistical literature to measure the proximity 
between classification trees differ on the features of a tree that they take 
into account; in fact, the comparison can be based on one or more of the 
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following aspects: the partitions associated to the trees, their predictions and 
their structures. 

The distance proposed by Shannon and Banks (1999) measures the 
amount of rearrangement needed to change one of the trees so that they have 
an identical structure; this distance considers only tree topology, and does not 
take into explicit consideration the partitions of the units and the predictions 
associated to each observed tree. Other measures have been proposed which 
compare classifiers with respect to their predictions (Cohen 1960) or the par- 
titions induced by the trees (Chipman et al. 2001) or both aspects (Miglio 
and Soffritti 2004). When two classification trees have to be compared, all the 
previously considered aspects (the structure, the partition and the predictive 
power) should be simultaneously considered. In fact, trees having the same 
distance with respect to  their structures can show a very different predictive 
power. On the other hand, trees with the same predictive power can have very 
different structures. For this reason, a dissimilarity measure which considers 
the structure and the predictive power a t  the same time has been proposed 
(Miglio and Soffritti 2004). It is defined as follows: 

where mho and mok denote the number of units which belong to the h-th 
leaf of Ti and to the Ic-th leaf of Tj, respectively; the introduction of the 
relative frequency of each leaf weights the discrepancies proportionally to the 
number of their observations. a i h  and a j k  measure the dissimilarities between 
the paths of the two trees; sib and s j k  are similarity coefficients whose values 
synthesize the similarities s h k  between the leaves of Ti and those of Tj, defined 
so as to take into account the partitions and the predictive powers of the trees; 
for instance, a possible definition for s i h  is s i h  = max{shk, k = 1, .  . . , K), 
where 

m h k  is the number of objects which belong both to the h-th leaf of Ti and to 
the k-th leaf of Tj; chk = 1 if the h-th leaf of Ti has the same class label as 
the k-th leaf of Tj, and chk = 0 otherwise. 

The coefficient defined by equation (2) can be slightly modified to take 
into account the difference among predicted class probabilities instead of class 
labels. This result can be obtained simply by changing the definition of the 
chk term as follows: chk = 1 - f h k ,  where fhk is a normalized dissimilarity 
index that compares the response variable frequency distributions of the h-th 
leaf of T, and the Ic-th leaf of Tj, respectively (Leti 1983, p. 529). Measure 
(1) has been also normalized (for more details see Miglio and Soffritti 2004). 

Except for the distance proposed by Shannon and Banks, all the solutions 
for the comparison between classification trees described in this Section have 
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to be applied to a single data set D: in fact they compare the partitions of 
the same set of units and/or the associated predictions. When two trees are 
obtained from two independent data sets containing the same predictors and 
class variables, it could be useful to compute the proximities between trees 
using each data set and to compare the so obtained results. 

5 Factors determining the choice of the type of 
partnership 

The results obtained are extremely interesting and highlight that decision 
making processes are strongly different between genders and specific to the 
various countries. It should also be pointed out that all the variables analyzed 
offer a considerable contribution in the explanatory phase. 

The variable that proved to be of greatest importance in the choice of the 
type of partnership is age: in fact it occupies a forefront position in the situa- 
tions observed almost always for men and often for women, with the exception 
of Italy and Spain, where the main role is played by the value-orientation. 
Cohabitation therefore appears as a mainly juvenile phenomenon that has 
only become common in recent generations. As with age, values also seem to 
exert a strong influence on decision making processes, appearing in almost 
all the classification trees analyzed. Religious spirit assumes a primary role in 
countries belonging to the Catholic area, Italy and Spain (where men are also 
influenced by the traditional mentality), and to a lesser extent in Switzerland. 
The ideational system also exerts its influence, albeit to a lesser extent, in 
the other nations examined. Exceptions include, on one hand, Hungarian and 
Latvian men who are not guided by any value, on the other, Latvian women 
who are noticeably conditioned by tradition. Human capital (education and 
professional activities) often appears among the explanatory variables and is 
always present in the observed subsets with the exceptions of Slovenians and 
Swiss men. However, the influence exerted on the choice of partnership dif- 
fers. For Swiss women, their professional life is the most important variable, 
showing how work and the consequential economic independence, permits 
them to opt for cohabitation if they desire. Although it plays a lesser role, 
human capital has the same effect on Italian and Spanish women. Its influ- 
ence in Hungary and Latvia is completely different, as those who are less 
well educated and do not work, or only work occasionally, tend to form free 
partnerships more frequently. 

Overall it can be concluded that in all the nations examined, cohabitation 
assumes the connotations of a juvenile phenomenon, but its meaning differs in 
the eastern and western countries examined. In the West, it mainly involves 
the more secularized, the less conventional and women with a high human 
capital, thus representing an innovative type of partnership that precedes 
or replaces marriage. In the East, on the other hand, partnerships outside 
marriage are associated with a value-orientation that has less weight and is 
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frequently in possession of a modest human capital: here they loose their in- 
novative meaning, often appearing to be the fruit of a forced choice connected 
to situations of particular social unease. 

The diversity in mens and womens decisional processes has been quan- 
tified through the proximity measure between classification trees described 
in the previous Section. Two trees have been built for each country, one for 
each gender, using the CHAID algorithm (Kass 1980) constrained to  produce 
binary trees. The samples used to  grow each tree have different sizes, so the 
minimum dimension of each leaf in a tree has been set proportional to  the 
corresponding sample size. In order to highlight possible different decision 
processes by gender in each country, the trees obtained from the analysis of 
male and female samples (DM and DF, respectively) have been compared, 
within the same country, by computing measure (1) and using the modified 
definition of the chk term given in the previous Section, as the proportion 
of marriages is much higher than cohabitations in each analyzed country. As 
each tree has been obtained from a different data set, the comparison be- 
tween trees based on measure ( I )  has been performed considering each data 
set used to grow the compared trees. In this way it is possible to  compare 
each pair of trees by means of two data sets. The so obtained results are 
summarized in Table 3. 

Italy and Spain Switzerland Slovenia Hungary Latvia 
By using DM 0.252 0.259 0.297 0.513 0.320 
By using DF 0.244 0.482 0.336 0.533 0.294 

Table 3. Values of D(TF,  T I M )  computed for each country by using both data sets. 

The least differences are detected in Italy and Spain, where the dissimilar- 
ity between males and females trees has resulted equal to  0.252 using the male 
sample, and equal to 0.244 using the female one. These results mean that the 
tree built to  describe the female behavior offers a discrete description of the 
male one, and vice versa the tree built to  describe the male behavior offers 
a discrete description of the female one. Thus in this area the importance of 
the religious spirit has such an important influence on the behavior of men 
and women as to  mitigate gender differences, which do however subsist, as 
shown by the varying influence of human capital. 

Different results have been obtained for instance from the analysis of the 
Switzerland data. When the comparison between males and females trees is 
performed by using the male sample the value of the dissimilarity is 0.259, 
while the same dissimilarity evaluated with respect to the females data set 
has resulted equal to  0.482. This is due to  the fact that in Switzerland male 
and female trees give different indications. In the female classification tree 
the variable with the strongest influence is occupation, which divides the 
collective data in two subsets characterized by different decisional processes. 
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The reduced distance observed in correspondence with the adoption of this 
tree for the male data set is justified by the fact that most Swiss men are 
employed and that the structure of the male tree is very similar to  that of 
the subtree of employed women. On the contrary, the structure of the branch 
of unemployed women has a different form. Among the Eastern European 
countries, Slovenia and Latvia show very close distances: here men and women 
are influenced by different value systems, which are instead completely non- 
existent for Latvian men. Lastly, Hungary records the greatest difference 
between the behavior of men and women; the latter being more sensitive t o  
both values and human capital, both irrelevant for men. 
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Abstract. The aim of this paper is to evaluate the student learning about Com- 
puter Science subjects. A questionnaire based on ordinal scored items has been 
submitted to the students through a computer automated system. The data col- 
lected have been analyzed by using a latent variable model for ordinal data within 
the Item Response Theory framework. The scores obtained from the model allow 
to classify the students according to the reached competence. 

1 Introduction 

Evaluation of students' learning and competence about a subject can be ob- 
tained by submitting them a test that contains a set of items related to some 
facets of the particular subject of interest. The analysis of the responses given 
by the examinees allows to evaluate their level of learning. The procedure of 
evaluation requires two different important steps. The first one consists of de- 
signing the test to be submitted to the students. The second one is dedicated 
to the evaluation of the student's ability considered as a latent construct. To 
this aim a model that expresses the latent construct in function of the item 
of the test can be determined. 
In this work we have analyzed the results of a computer test delivery in order 
to evaluate the ability of students of the Economics Faculty - Bologna Uni- 
versity - in solving Computer Science problems by using an Item Response 
Theory model. From the results obtained we can classify the students by 
giving them a vote ranging from 18 to 30+. 
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2 Assessing student ability 

2.1 Test  delivery a n d  data collection 

In the experimental results so far executed, data have been collected through 
a testing system that consists of a web application. In this way, different 
exams can be created according to the different sessions. Each question has 
been assigned at random and the student could read every question twice 
before answering. One answer for each question could be given. 
As for the test delivering, different areas of Computer Science have been 
involved. In particular, the test sessions have been organized by using a 
database that contains five different arguments: Glossary (computer science 
glossary), Fundaments (computability elements), Prolog (programming capa- 
bility), Prologl (the knowledge of syntax), Prolog2 (competence in problem 
formalization). Problems with different levels of complexity have been in- 
cluded in each argument (item). More in detail, the problem solving process 
contains a finite number of steps so that the ability of a student can be eval- 
uated on the basis of the step achieved, namely, higher steps achieved are 
related to higher ability. In this way, for the i-th item an ordinal score mi 

is assigned to the examinee who successfully completes up to step mi but 
fails to complete the step mi + 1. Following this procedure, a score ranging 
from 1 to 4 is assigned to each examinee for each item with respect to the 
solving level achieved (1= no correct answers, 2= correct answers only for 
preliminary problems, 3= correct answers also for intermediate problems, 4= 
all correct answers). Such a technique of assigning a score doesn't allow to 
get missing data. 

2.2 T h e  methodology 

The methodology used for evaluating an individual ability is the Item Re- 
sponse Theory (IRT) (Lord and Novick, 1968). It has been introduced in 
educational test field to deal with the case in which a single latent variable 
(students ability) is measured by means of a test consisting of a set of item. 
The main feature of IRT is that it allows to evaluate, simultaneously, the 
characteristics of the item, the difficulty and the discrimination power, and 
the students performance. The item difficulty parameter represents the point 
on the latent scale where a person has a 50% chance of responding positively 
to the scale item. The discrimination parameter describes the strength of an 
item's capability to distinguish between people with trait levels below and 
above the difficulty parameter. That is, IRT takes into consideration if an 
item is answered correctly and utilizes the difficulty and discrimination pa- 
rameters of the items when estimating ability levels. Thus, unlike the classical 
test theory in which an aggregate of item responses, the test score, is com- 
puted, the basic concept of IRT is the individual items so that people with 
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the same summed score but different response patterns may have different 
IRT estimated ability. A variety of probabilistic models have been developed 
within the IRT approach with the aim to formalize the relationships between 
the latent variable, also called latent trait, and the manifest variables. In this 
work we apply a particular IRT model called Proportional Odds model intro- 
duced to  treat the case of ordinal observed variables. The model is illustrated 
in Section 3. 

3 Model specification 

Let X I ,  x2,. . . , x p  be p ordinal observed variables representing the items 
of a questionnaire and let mi denote the number of categories for the i- 
th  variable. The mi ordered categories have probabilities ril (z) ,  ris (z) ,  . . . , 
rim% (z) ,  which are function of z, the latent factor representing the individ- 
ual's ability. They are known as category response functions. Indicating with 
xT = (xl , 22, . . . , xp) the complete response pattern of the r-th individual 
examined, we can define the unconditional probability of x, as: 

where h(z) is assumed to be a standard normal and r,(z) is the conditional 
probability g(x1.z). For g the conditional independence is assumed, that is 
when the latent variable is held fixed, the p observed variables are indepen- 
dent. In the case of ordinal observed variables it is defined as: 

where xis = 1 if a randomly selected person responds in category s of the 
i-th item and xi, = 0 otherwise and yi, = r i l ( z )  + ri2(z) + . . . + ri,(z) is 
the probability of a response in category s or lower on the variable i ,  yi, 
is known as cumulative response function. The model is defined in terms of 
a logit function of yi, and can be expressed in a general form within the 
generalized linear models framework as Moustaki (2000): 

The model so defined is called Proportional Odds Models (POM) and is very 
similar to  the well known Graded Response Model by Samejima (1969). It 
ensures that the higher the value of an individual on the latent variable, the 
higher the probability that individual belonging in the higher categories of 
an item. The intercept parameter cri, can be interpreted as the item dif icul ty  
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parameter whereas can be interpreted as the discrimination power pa- 
rameter. To define ordinality properly, the condition ail < aiz < . . . < aim, 

must hold. The parameters of the model are estimated using the maximum 
likelihood estimation by an E-M algorithm. At the step M of the algorithm a 
Newton-Raphson iterative scheme is used to solve the non-linear maximum 
likelihood equation. 
To score the individuals on the latent dimension we can refer to the mean of 
the posterior distribution of z defined as: 

where h = 1 , .  . . , n and n is the sample size. These values are normally 
distributed as given by the previous assumptions. 

4 Analysis and results 

4.1 Data description 

We have considered a sample of 256 students who have sustained the exam 
of Computer Science. As for the description of the computer test results, 
Table 1 shows the percentage and cumulative percentage distributions for 
each argument. 

l~ate~oriesl  Fundam Glossary Prolog Prologl Prolog2 ( 

Table 1. Percentage and Cumulative percentage distributions 

We can notice that Fundam and Glossary present the highest percentages 
in correspondence of the scores greater or equal to 3. On the contrary, for 
the three arguments concerning Prolog (that is Prolog, Prologl, Prolog2) 
the most frequent score is 2. It is interesting to notice that the 48% and 
the 31% of the students get the highest score (equal to 4) for, respectively, 
Fundam and Glossary, whereas for the arguments about Prolog less than the 
10% of the students gets a score equal to 4. These exploratory results seem 
to highlight that the items that assess the programming capability and the 
problem formalization are more complex to solve than the items related to 
the basic knowledge. 
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4.2 Model results 

The model estimated has 20 parameters, 3 difficulty parameters for each item 
and 5 discrimination parameters. The difficulty and discrimination parameter 
estimates for each item are reported in Table 2. We can notice that the items 
that tend to be more difficult are Prologl and Prolog2 since their difficulty 
parameters have very different values among the 3 categories and present the 
highest absolute values. This indicates that for the items Prologl and Pro- 
log2 it is very difficult for a student to get a high score and hence to have a 
good performance. On the other side, the item that seems to  have the lower 
difficulty is Glossary for the opposite reasons listed above. Furthermore we 
can observe that the item that presents the highest parameter discrimination 
is Prolog2 (1.740) followed by Prologl (1.068). Conversely, Fundam is the 
item with the lowest discrimination value (0.491). 

Item lcategory a,, s.e 
Fundam1 1 -2.51 1.48 

Prolog 

2 0.21 0.44 

3.27 0.56 

Table 2. Classification of students according to their performance 

As for the goodness of fit assessment, we can look a t  Table 3, that contains 
the frequency distribution of the response patterns. 

We can notice the data are sparse because, although the number of pos- 
sible response patterns are 256, only 145 response patterns are present in the 
data. Furthermore, 87 of them occur once, 35 occur twice and only 1 occurs 
9 times. For this reason, it is not feasible to carry out a global test. Instead, 
we have referred to the fits of the bivariate margins (Joreskog and Moustaki, 
2001) comparing the observed and expected frequencies (residuals) for each 
pair of responses. The residuals are not independent and so not a formal test 
can be applied. Nevertheless, if the model is correct, the residual in a single 
cell would have a chi-square distribution with one degree of freedom so that 
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Frequency No of response patterns No of cases 
1 87 87 

9 1 9 
Total 145 256 

Table 3. Frequency distribution of the response patterns 

a value greater than about 4 would indicate a poor fit. Thus, we can consider 
the sum of these residuals over all the cells of the two-way marginal table Sij 
and we can refer to the rule of thumb by which if: 

where mi and mj are, respectively, the categories of the variables i and j, 
then we get a bad fit for the mi x mj marginal table. As we can observe in 
Table 4, all the residuals present values less than 64 (4 x 4 x 4) so that the 
model gives an adequate description of the data for each couple of items. 

Table 4. Sum of Chi-square values for a pair of items from the two-way marginals 

Following this rule, we can build also an overall measurement of fit 
(Joreskog and Moustaki, 2001) given by the average of all the fit indices 
reported in Table 4 (we can consider the simple average of the fit indices be- 
cause the number of categories is the same for all the variables). This value 
is equal to 14.37 so that it seems to indicate a good fit of the model to the 
data. 

4.3 Student classification 

The students can be classified by obtaining a vote according to  the different 
levels of ability E(zlx) .  The votes are assigned by fixing two extreme values 
that indicate, respectively, the lowest level of ability to pass the exam and 
the highest level of ability. The range between these extreme values is divided 
into intervals of equal width. A ranked vote is associated to each of them. 
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On the basis of the indications derived by the expert (the professor of the sub- 
ject analyzed) from the previous exams, we decide that the student doesn't 
pass the exam if E(zlx) is smaller than -0.85 (@(z) = 0.20 where @ is the 
normal distribution function) and we assign the maximum score (30+) to  the 
students that get a value equal or greater than 1.65 (1 - @(z) = 0.05). The 
remaining votes are given by dividing the range from -0.85 to 1.65 into 12 
intervals of equal width and by associating them a score graduated from 18 
to 30. In this way we can get a rule for student classification that is not influ- 
enced by the performance of specific groups of students in different sessions. 
That is, the vote the student receives is independent from the votes given to 
the rest of the students so that it is possible that all the students in a session 
don't pass the exam and viceversa. 
In Table 5 the frequency distribution of the votes are reported. We can no- 
tice that in this session only almost 10% of the student don't pass the exam 
whereas the 2% of them get the maximum score. Looking a t  Figure 1 we can 
also notice that the distribution of the votes shows a slight negative skewness, 
to indicate that the students who get a vote ranging from 18 to  23 are the 
most part. 

Table 5. Classification of students according to their performance 

Vote 
< 18 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

30+ 

5 Conclusions 

ni' 
24 
18 
37 
26 
37 
26 
21 
15 
21 

5 
10 
6 
5 
5 

The analysis presented in this paper has allowed to obtain an evaluation of 
student ability concerning Computer Science problems by using a computer 
test delivery. An IRT model for ordinal observed variables (POM) has been 
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Fig. 1. Histogram of the expected posterior E(z lx )  

used with the aim to formalize the increasing level of complexity related 
to the test submitted to the students. Model estimation has highlighted in- 
equalities among the arguments involved in, both in term of difficulty and 
discrimination. This inequalities have led to evidence different levels of ability 
among the students analyzed. A student classification is also proposed based 
on both the values of the latent variable ability estimated through the model 
and the judge of the expert, the professor of the subject analyzed. 
This is a first analysis of student ability evaluation. Further developments can 
be considered by improving some aspects of the IRT model, like the goodness 
of fit problem, and by referring to different data sets in order to consolidate 
the results. Also a self-evaluation test can be introduced in the analysis. 
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Abstract. In this paper we address the problem of clustering functional data. In 
our applications functional data are continuous trajectories evolving over time. Our 
proposal is to cluster these trajectories according to their sequence of local extrema 
(maxima or minima). For this purpose, we suggest a new dissimilarity measure for 
functional data. We apply our clustering technique to the trajectories of the shares 
composing the MIB30 stock index computed at the Milan Stock Exchange Market, 
paralleling the contribution of Ingrassia and Costanzo in this Volume. 

1 Introduction 

Functional data analysis (FDA, for short) concerns the statistical analysis of 
data which come in the form of continuous functions, usually smooth curves. 
Let pi(t),  i = 1,. . . , n, be one of such functions. In our application t denotes 
time, although it might have a more general meaning. In practice, we collect 
information about pi(t) at a finite number of points, say Ti, and observe the 
data vector yi = (yil,. . . , yi~,) ' .  FDA works under the basic statistical model 

where tij is the time value at which observation j is taken for function i. The 
independent disturbance terms ti(tij) are responsible for roughness in yi. 

Although the goals of FDA are essentially the same as those of any sta- 
tistical analysis (including data description, dimension reduction and study 
of relationships), its tools are much different. Basically, in FDA each data 
function is seen as a single entity, rather than a collection of individual ob- 
servations. In this spirit the observed data vector yi is first converted into 
an estimate of its true functional form pi(t), which then becomes the input 
for subsequent analyses. Neither the observation times tij nor their number 
Ti need to be the same for all subjects. This makes FDA very different from 
both multivariate and multiway data analysis. Ramsay and Silverman (1997, 
2002) give a broad account of the theory and applications of FDA. 

In this paper we address the problem of clustering functional data, that 
is of detecting hidden group structures within a functional dataset. For this 
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purpose we suggest a new dissimilarity measure between functional data, 
based on the time values at which the extremal points, that is local maxima 
or minima, of each curve occur. Local extrema are also called "landmarks" 
or "structural points" of a curve. 

The issue of measuring the similarity between time trajectories is not a 
new one. In the time series literature, for instance, Piccolo (1990) suggests a 
metric based on the fitting of ARIMA models. We refer to Corduas (2003) for 
an overview of this and other related approaches. However, we do not follow 
this line because a parametric time series model imposes a much stronger 
structure than the basic functional model (1). Also the familiar L2 distance 
of functional analysis (Hall and Heckman (2002); Abraham et al. (2003)), 

is not appropriate in the present context, as it does not take curve shape 
into account. Indeed, it is not difficult to show that (2) provides a sensible 
criterion for clustering the functions pl( t ) ,  . . . , pn(t) only when they have 
approximately the same shape. 

Nonparametric clustering algorithms that allow for trajectory shapes are 
considered by Chiodi (1989) and by D'Urso and Vichi (1998) in the context 
of three-way data analysis. Chiodi (1991) and Heckman and Zamar (2000) 
suggest more general methods that can be applied when observation times 
may differ from unit to unit, as is the case in model (1). Our approach is 
different in that it rests on the landmark description of each curve and it 
shares some ideas with the growing field of symbolic data analysis (Billard 
and Diday (2003)). In this respect, our dissimilarity measure extends the one 
proposed by Ingrassia et al. (2003), where time is not considered explicitly. 

As shown by Gasser and Kneip (1995), landmarks are important tools for 
identifying the shape of a curve. Focusing on landmarks has some practical 
advantages too. First, it seems a natural approach for the purpose of describ- 
ing curves with oscillatory behaviour, such as many of those in our stock 
market dataset of 52, in contrast to the analysis of monotone growth curves. 
Second, it puts less emphasis on the rather delicate process of derivative 
estimation, which affects our dissimilarity measure only through the identifi- 
cation of local extrema. An additional bonus is that it is possible to attach an 
uncertainty measure to each landmark estimate. This allows the distinction 
between "true" and "spurious" extrema. Such inferential statements are ad- 
mittedly difficult in other clustering approaches, such as the one of Heckman 
and Zamar (2000). The extension to include inflection points is straightfor- 
ward, but it is not considered here. 

This paper is organized as follows. In 52 we give a brief overview of the 
Milan Stock Exchange dataset. Our dissimilarity measure for functional data 
is described in 53. In 54 we show this measure in action: the first application 
is to a simulated dataset with known clusters and the second one is to the 
Milan Stock Exchange dataset. 
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Fig. 1. Milan Stock Exchange dataset. Estimated trajectories of share prices. 

2 The Milan Stock Exchange dataset 

In 54 we apply our clustering technique to the trajectories of the shares 
composing the MIB30 stock index computed at the Milan Stock Exchange 
Market1, which is made up of the 30 most capitalized and traded companies 
on the Stock Market list. We consider share prices in the time interval starting 
on January 3rd, 2000, and ending on December 30th, 2002. The MIB30 basket 
varies periodically according to changes in the ranking of shares, so the actual 
sample size is greater than 30. We refer to the work of Ingrassia and Costanzo 
in this Volume, and to the web site www.borsaitalia.it ,  for more details 
about the MIB3O basket. We exclude from the dataset the shares that have 
very limited permanence in the basket, as well as those present only at the 
beginning and at  the end of the period. An additional problem is company 
incorporation during the observation period. We connect the trajectories of 
the shares of incorporating companies and we report them under the same 
heading. As a result, in our application n = 35 and 199 5 Ti 5 758, where 
Ti is the number of days of permanence of share i in the MIB3O basket. 

Although the available data are recorded daily at the closing time of the 
Stock Exchange Market, we think of share prices as continuous functions of 
time. This is quite reasonable since the exchange flow for the shares making 
up the MIB3O index is virtually continuous all over the day, and actual prices 
react almost immediately to such exchanges. Figure 1 shows the estimated 
smooth trajectories corresponding to the available sample of shares. 

Our focus is on clustering, that is on detecting unknown groups of similar 
curves. Figure 1 looks messy, apart from a general decrease in prices following 
the shock of September 2001. Hence visual inspection is not of great help. 

'The authors are grateful to Research & Development DBMS (Borsa Italiana) 
for supplying the data. 
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Instead, we follow an automatic classification approach based on the dissim- 
ilarity measure to be introduced in §3. We remark that the shape of each 
curve is important for the purpose of clustering shares. It is precisely the 
existence of upward or downward trends that guides the behaviour of market 
investors, while the metric distance between two share prices is not relevant 
in this context. Furthermore, the identification of local extrema is a major 
tool in the technical analysis of financial markets, which aims a t  improving 
profits through prompt detection of investment trends and turning points. 

3 Landmark identification and shape dissimilarity 

Our clustering algorithm starts with estimation of the unknown functions 
pi(t), i = 1 . .  . , n, in model (1). We perform this step by fitting a smoothing 
pspline curve Gi(t), for t E [til, tiTt], to each data vector yi (Ramsay and 
Silverman (1997, p. 60)). These estimated curves are the smooth functions 
shown in Figure 1. Smoothing psplines satisfy the penalized residual sum of 
squares criterion 

where X is a smoothing parameter and the penalty involves the pth order 
derivative of pi(t). For instance, popular cubic smoothing spline functions 
are psplines of order 2, penalizing the second derivative D2pi(t) - pr(t) .  
We choose to fit smoothing pspline curves of order 4 because this leads to  an 
estimate of pi(t) with smooth first and second derivatives. In the applications 
of 54 the smoothing parameter X is specified by fixing the number of degrees 
of freedom that are implicit in the smoothing procedure. 

The R function predict. smooth. Pspline provides the first derivative of 
Pi(t), say (t). This information is used to obtain the landmarks of pi(t). An 
ancillary but potentially useful step is to eliminate spurious extrema, that is 
the zeros of p:(t) which can be attributed to estimation error in model (1). For 
this purpose we compute an approximate 95% pointwise confidence interval 
for each value p:(tij) as follows. First, we recognize that p:(t) is a linear 
functional of pi(t). The high order penalty of the pspline fitting described in 
(3) implies that this functional is itself smooth. Hence, we can approximate 
it in the interval [til,tiT,] by regressing the estimates p:(tij) on a reduced 
number of basis functions. In the applications of 54 the basis dimension is 
obtained by retaining one time point out of 15, corresponding approximately 
to one day every three working weeks. Following Silverman (1985), we then 
apply standard least-squares theory and the central limit theorem to compute 
the required asymptotic confidence interval for p:(tij), j = 1, .  . . ,Ti. If the 
lower bound of this interval is greater than zero, we have confidence that 
pi(t) is actually increasing at time tij. Similarly, we treat pi(t) as decreasing 
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Fig. 2. Exemplification of (4). In this case dii = ( 1  1- 11+132-271+172-601)/3 = 5.7. 

when the upper bound of the confidence interval is negative. We have a 
local maximum when the derivative changes from positive to negative. The 
maximum is set equal to  the largest value of j2:(t) in the period where this 
change occurs. A similar reasoning applies to the detection of local minima. 

For simplicity, in what follows we consider only the information provided 
by maxima. Let Mi = {T~(~) ,  . . . , T:!} be the collection of time points where 
the estimated curve j&(t) has a local maximum, possibly after the exclusion 
of spurious ones. The number of such maxima is mi. We deal with boundary 
points by setting rii) = til if ,ui(t) is decreasing after the first observation 
time, and T:! =  ti^, if pi(t) is increasing before the last observation time. 
Under this assumption mi > 0 even if Pi(t) is a monotone function. 

We define a dissimilarity measure between two smooth curves ,ui(t) and 
,ul(t) by comparing the two sets Mi and Ml. Let 7::) be the element of Ml 

which is closest to  rji)), i.e. 

j =  1, ..., mi. 

We then suggest computing the average distance 

Figure 2 describes how (4) is computed in a simple example with mi = 3. 
Obviously, dil = 0 if pi(t) and pl( t )  have the same shape (implying that 
Ti = Z), SO also dii = 0. Finally, we adjust formula (4) for symmetry by 
taking 

6il = (dil + dli)/2 (5) 
as our dissimilarity measure. 

Alternatively, a scaled dissimilarity measure can be obtained by noting 
that dil = tiT, - til when both i and 1 are monotone curves, but with opposite 
trends. Hence, we may standardize 6il by replacing dil in (5) with d; = 
dil/(tiTt - til), and similarly for dli. 
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Fig. 3. Simulated dataset with four clusters of 10 curves. Each panel corresponds 
to a cluster (numbered clockwise). Black lines: template curves for the clusters; 
grey lines: estimated trajectories through the pspline method. 

4 Applications 

4.1 Simulated curves with four clusters 

Before reverting to our main application in $4.2, we check the performance of 
the dissimilarity index (5) in a simulated dataset with four known clusters of 
curves. Figure 3 summarizes this dataset. The black lines show the template 
curves representing the four clusters. These lines are chosen to  mimic the be- 
haviour of share prices in the Milan Stock Exchange dataset. Ten observation 
vectors for each cluster are then obtained by adding Gaussian random noise 
a t  Ti = 900 equally spaced time points in accordance to model (I) ,  after ran- 
dom displacement of the local extrema of the corresponding template curve. 
The grey lines are the resulting smooth trajectories estimated through the 
smoothing pspline criterion (3). Clusters are numbered clockwise. 

We focus on maxima, as in the application of $4.2. Figure 4 shows the 
average linkage dendrogram, using dissimilarity (5). The four existing clusters 
clearly appear from the dendrogram, with only one mis-classified unit (Curve 
8 from Group 1, labelled as GR.l.C.8 in the picture). This unit is the dashed 
grey trajectory in the top left panel of Figure 3. Random perturbation has 
made the shape of this curve rather different from the rest of its cluster: 
the curve decreases a t  the beginning of the period and its local maxima 
are located very close to those of the curves belonging to Group 4 (bottom 
left panel of Figure 3). Hence, mis-classification is not surprising for it. We 
conclude that our method reassuringly detects the underlying group structure 
we have introduced in the data. 
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Fig. 4. Simulated curves with four clusters. Average linkage dendrogram using 
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Fig. 5. Estimated smooth trajectory of the share price of Rolo Banca, with "spu- 
rious" (squares) and "true" (circles) local maxima. 

4.2 Milan Stock Exchange data 

We apply our clustering algorithm to the Milan Stock Exchange dataset, 
introduced in $2. We focus on local maxima since we aim at reducing the 
effect of the shock of September l l t h ,  2001. The first step of the algorithm 
identifies local maxima in the estimated smooth trajectories of Figure 1. We 
discriminate between "true" and "spurious" maxima through the inferential 
procedure sketched in 53. For instance, Figure 5 shows the details for Rolo 
Banca, a bank that belongs to the MIB3O basket up to June 2002. 

Figure 6 is the resulting average linkage dendrogram, when the dissimi- 
larity measure (5) is used as input. Now a broad structure with five fairly 
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Fig. 6. Milan Stock Exchange dataset. Average linkage dendrogram using (5). 

Table 1. Milan Stock Exchange dataset. Summary of the clusters in Figure 6, 
excluding Fiat and Generali. 

Summary 

Number of shares 
Average number of maxima in 2000 
Average number of maxima in 2001 
Average number of maxima in 2002 

distinct clusters emerges. The first cluster on the left includes the only two 
shares in the MIB3O basket (Fiat and Generali) that exhibit monotone de- 
creasing trend over all the study period. The subsequent clusters (numbering 
follows from left to  right in the dendrogram) are summarized in Table 1. 
Specifically, Group 2 is made up of five shares (Bulgari, etc.) that have a 
relatively large number of price maxima in 2002, while the opposite is true 
for the shares belonging to Group 3 (B. Commerciale Italiana, etc.). Then 
we observe a cluster of four shares (B. Fideuram, etc.) that exhibit positive 
behaviour a t  the beginning of the period, followed by a steady decrease in- 
terrupted by some bumps in 2002. Finally, the largest cluster is composed 
by shares showing more volatility, with a general decrease in prices after the 
shock of September 2001, but also with a number of maxima before and later. 

5 Concluding remarks 

5 
0.60 
0.80 
2.20 

This paper suggests a new dissimilarity measure between functional data, 
which can be used as input for hierarchical clustering algorithms. Our mea- 
sure is specifically intended to capture the similarity of function shapes, 
through the landmark description of each curve. This feature makes our ap- 

4 
4.00 
1.00 
0.00 

4 
1.75 
0.00 
1.00 

20 
1.70 
1.25 
1.60 
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proach appealing when clustering financial time series, since trend detection 
and identification of local extrema lead the behaviour of market investors. 

An additional bonus is inference on estimated landmarks. Here inference 
is performed through pointwise asymptotic confidence intervals for the first 
derivative. However, the actual coverage of these intervals might be affected 
by the specified amount of smoothing. Better approximations to  the true 
landmark description are currently under investigation. 
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Abstract. The hypothesis that financial variables are normally distributed is often 
rejected in both theoretical studies and extremely specific cases. In the "real" world 
of financial investors - where risk averse agents mainly hold government bonds, a 
few equities and do not hold derivatives - the normal distribution still plays a lead 
role. To show this result, in this paper we focus on a number of efficient portfolios 
subject to several constraints which make them close to the portfolios held by most 
of financial agents. A multivariate approach is proposed, which refers to the case of 
a financial asset manager who cannot only pay attention to the average return of 
all of his portfolios, but must evaluate the risks associated to each of his portfolios 
jointly. 

1 Introduction 

Since Fama's (1965) seminal work the financial markets literature has been 
overflowed by studies about skewness, kurtosis and tail-fatness in the distri- 
bution of financial returns (Affleck-Graves and McDonald, 1989; Campbell 
et al., 1997; Dufour et.  all 2003; Jondeau and Rockinger, 2003; Szego, 2002; 
Tokat et al., 2003). The unanimous conclusion states that financial returns 
are not normally distributed. This is an extremely relevant result since normal 
distribution represents the key assumption of the traditional (mean-variance) 
portfolio theory by Markowitz (1952) and of the usual measures of systematic 
risk by means of the p coefficient (Sharpe, 1964; Lintner, 1965). 

The purpose of the paper is to evaluate to what extent departure from 
normal distribution can influence risk management strategies. In particular 
our concern refers to  the usual trading activity of a common investor, who 
does not usually hold oversold accounts or derivatives, but mainly Treasury 
Bills and a few equities. Therefore we want to  analyze the role of normal 
distribution for a "normal" investor. 

The first step of the study concerns the univariate analysis of portfolio 
returns, by considering the global position of an investor or an asset manager. 
In the latter case, however, a multivariate extension is of great interest, since 
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it allows to consider the global portfolio not as a whole, but as a combina- 
tion of many single portfolios, all managed by the same decision unit. The 
asset manager cannot operate on the basis of the mean return of the global 
portfolio, but is constrained to consider all single positions. The statistical 
consequence is moving from a univariate analysis of a global portfolio to a 
multivariate analysis of single portfolios. 

The paper is organized as follows. The statistical approach is illustrated 
in Section 2; specifically, Section 2.1 deals with the univariate analysis which 
is generalized to multivariate portfolio analysis in Section 2.2. The empirical 
assessment of the validity of the normality hypothesis is carried out on Italian 
data in Section 3. Section 4 concludes. 

2 The basic set-up 

Let R = (R1, ..., Ri, ..., R,)' be the vector of the random returns on n fi- 
nancial variables. Our goal is to analyze the implications of the departure 
from the normal distribution (i.e. R - N(p, X) in the multivariate case - 
Ri - N(pi ,  0:)) i = 1, 2, ..., n,  in the univariate case), with particular empha- 
sis on the left tail of the distribution. 

Instead of focusing on the normality of n single returns, the first step 
of our analysis is to move from n individual financial variables to a mean- 
variance efficient portfolio Rp = Cy=l Ri .xi,where the fractions x l ,xz ,  ..., x, 
of the initial capital invested in assets 1,2, ..., n are obtained by solving the 
portfolio optimization problem 

min 0: = v(R,) = x, , xixjCov(Q, Rj) {x€xA) 2 , 3 = l ,  ..., m 

under the constraint 

E(Rp) = x E(Ri)  . xi = p,, given. 
i=l 

Note that the (realistic) non-negativity restriction on the weights xl  , x2, ..., x, 
rules out the possibility of short positions. In order to compare our analy- 
sis with the existing studies we also consider portfolio weights x l ,  x2, ..., x, 
chosen within the set 

xi 2 0, i = 1,2,  ... , n, which allow oversold positions1. In the following, an 
efficient portfolio with weights belonging to the convex polyhedron XA (XB) 
is denoted as 'portfolio A' ('portfolio B'). 

'Our approach can easily be generalized in order to include other types of asset 
allocations. As suggested by Ruszczyliski and Vanderbei (2003), one could also limit 
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3 Methodology 

3.1 Univariate framework 

As stressed in the previous section, our aim is to  analyze departure from 
normality not with respect to  original financial variables, but by referring to  
efficient portfolios. This choice represents a key issue since an analysis of the 
normality assumption performed on the basis of a set of individual assets is 
unlikely t o  provide useful results. 

Initially, we consider an asset manager who holds a set of m efficient 
portfolios and needs to  evaluate risks associated t o  a specific portfolio. Hence, 
the normality assumption corresponds to  

Rpl N(ppl ,  uij)  for 1 < j l m. 

Together with the assessment of the departure from normality by means of 
standard (univariate) tests, we need to  consider t o  which extent, in the case of 
financial variables, departure from normality is relevant when related to  the 
left tail of the distribution, as in the framework of Value-at-risk measurement. 
In order to  perform risk control we compare empirical frequencies t o  the 
expected values under normal distribution by measuring 

where RVJ represents the vth percentile of the empirical distribution of Rpl. 
Pv, measures the probability that a normally distributed asset return is 

smaller than the vth percentile of the asset return empirical distribution. 
Therefore, if Pvl > v, normal distribution leads to  overestimate the risk, 
while, for PvJ < v, normal distribution underestimates the risk. 

3.2 Multivariate framework 

Now, we evaluate the case of an asset manager who holds a set of m efficient 
portfolios and needs to  evaluate the related risks simultaneously. This implies 
generalizing the analysis to  a multivariate context 

In the multivariate framework, an important criterion for assessing deviations 
from normality is represented by the multivariate extension of the Jarque and 
Bera test (1987) proposed by Kilian and Demiroglu (2000). 

the exposure to particular assets by placing upper bounds on the xi's. Similarly, 
one could force at least a fraction 2 of the initial capital into a given group of 
assets (e.g. treasury bills). For space constraints we leave these extensions to future 
research. 
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Let Rp be a T x m matrix of T observations on returns of m efficient 
portfolios and let W = Rp . S-I where S is the Cholesky factor of RL.Rp. 
Clearly, W may be interpreted as a standardized form of Rp. Now consider 
the following multivariate extensions of the skewness and kurtosis statistics, 
respectively: 

where Wjt denotes the elements of the matrix W defined above; sk j  and k u j  
are the skewness and kurtosis measures for the individual efficient portfolios, 
based on the standardized data matrix. 

The Jarque-Bera multinormality test is: 

Furthermore, also in the multivariate context the left tail of the empirical 
distribution is compared to the left tail of the normal distribution in order 
to evaluate the reliability of risk measures related to normal distribution. In 
the multivariate framework the measure corresponding to (6) is 

for RUJ equal to the uth percentile of the empirical distribution of hj. 
Quantities PT, measure, under the hypothesis of multinormality, the 

probability to observe that, at  the same time, m portfolio returns are 
RPj < R,, v j .  

Moreover, multivariate extension also allows to  evaluate a further relevant 
risk indicator 

which, under the hypothesis of multinormality, measures the probability of 
observing in the m portfolios at least one return Rp, < R,, , j = 1, ..., m. 

Quantities P1, are of the greatest importance for the asset manager, who 
basically is not interested in the mean return of his global portfolio, but is 
rather concerned with all single positions of his clients. 

In order to control the risk of the m portfolios, we compare P I ,  and PT, 
to the empirical frequencies, f 1, and fT,, to observe, respectively, at least 
one return R,, < R,,, j  = 1, ..., m and, at the same time, the m portfolio 
returns Rpj < R,, Vj. If Pl,, > f l u ,  or PT, > fT,, normal distribution 
leads to overestimate the risk, while, for P1, < f l u ,  or PT,, < fT,,, normal 
distribution underestimates the risk. 
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Annual Efficient A Efficient B 
return Daily Weekly Monthly Daily Weekly Monthly 

,u 0.031 0.154 0.667 0.031 0.154 0.667 
8% a 0.042 0.121 0.353 0.018 0.078 0.300 

JB 1588 44.95 1.699 21.50 25.63 5.902 
p 0.000 0.000 0.428 0.000 0.000 0.052 

Table 1. Univariate analysis. Asset manager portfolio returns: mean, standard 
deviation, Jarque-Bera normality test. 

4 Empirical analysis and results 

According to Section 2, the  study of the  distribution of the  efficient portfolios 
is partitioned into two classes, A and B, where portfolios A are obtained under 
the constraints C:=l xi = 1 and xi > 0, while portfolios B are subject to  
C:=l xi = 1 only. 

The  da ta  refer t o  27 Italian stock returns over the  January 1990-June 
2003 period. The  sample contains the  main Italian equities as well a s  some 
smaller companies, randomly chosen2. Finally, 3-month Treasury Bills are 
considered as the risk-free asset. 

In order t o  take account of the  relevance of data  frequency in order to  
study normality in financial variables, daily, weekly and monthly da ta  are 
used. The  set of m efficient portfolios which compose the global asset manager 
portfolio, see Sections 2 and 3, are chosen by referring to  investors with 
different degrees of risk aversion. 

Table 1 summarizes the  results related t o  the  univariate analysis on dif- 
ferent types of asset manager portfolios (efficient A and B; daily, weekly and 
monthly data) having a n  annual expected return of 8%, 12% and 16%. Since 
in the  1990-2003 period the  average annual return of the  3-month Treasury 
Bills is equal to  7.77%, a n  efficient portfolio having a n  annual return of 8% 
is almost entirely composed of the  so-called risk free asset. 

'Acque potabili, Acquedotto De Ferrari, Aedes, Alleanza, Autostrada TO-MI, 
Capitalia, Banca Intesa, Bastogi, Bonifiche Ferraresi, Brioschi, Cementir, Uni- 
credit0 italiano, FIAT, Generali, IFIL, Mediobanca, Milano assicurazioni, Olcese, 
Olivetti, Perlier, Pirelli & CO., Pirelli S.p.A., Fondiaria-SAI, SMI, Snia, Telecom 
Italia, Banca Finnat. 
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Annual Efficient A Efficient B 
return Percentile Daily Weekly Monthly Daily Weekly Monthly 

Table 2. Univariate analysis. Asset manager portfolio returns: left tail analysis, 
percentage values. 

From Table 1 it is worth noting that univariate analysis detects departure 
from normality, as widely known in the financial market literature: on daily 
data the normality assumption is strongly rejected, while weekly data play 
an intermediate role and monthly data are generally normally distributed. 

Table 2 illustrates a further element of interest, which is given by the 
analysis of the left tail of the distribution, developed on the basis of Rl, 
R5, and Rlo, the lSt ,  5th and loth percentile of the empirical distribution 
of the efficient portfolio, as well as on the basis of the probabilities PuJ = 

Pr0b{Rpj < RUj lRpj N ( p p 3 ,  gEj)). 
Only the values for the lst percentile show the presence of a fat left tail, 

since PI < 1.00, while results for the 5th and loth percentiles indicate that 
the normal distribution leads to a slight overestimation of the risk associated 
to the asset manager portfolio. 

In the multivariate framework, the asset manager portfolios are not con- 
sidered as a whole, but as a combination of the m portfolios. We set m = 3, 
thus identifying three classes of risk aversion, where the first class is 'near risk 
free', with an annual return of 8%, while the second and the third class have 
an average annual return of 12% and of 16%, respectively. In the following, 
the global asset manager portfolio is equally composed of the three classes, 
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Efficient Frequency fT1 PTl f l l  PI1 fT5 PT5 f15 P15 JB p-value 
Daily 0.881 0.156 1.108 0.422 3.864 5.046 6.136 8.886 393.2 0.000 

A Weekly 0.850 0.176 1.133 0.961 2.660 3.616 7.648 10.53 339.2 0.000 
Monthly 0.617 0.048 0.617 1.310 1.852 1.505 8.025 10.79 51.77 0.000 

Daily 0.511 0.175 1.477 2.378 2.528 1.775 7.472 10.01 924.8 0.000 
B Weekly 0.425 0.122 1.558 3.915 1.133 1.194 8.782 11.32 125.7 0.000 

Monthly 0.000 0.087 1.235 3.478 0.617 0.904 9.259 12.41 11.85 0.065 

Table 3. Multivariate analysis. Asset manager portfolio returns: left tail analysis 
on the basis of probabilities (12)  and (13) ,  percentage values; Jarque-Bera multi- 
normality test. 

but different combinations are quite simple to obtain and do not require any 
further assumption. 

Table 3 shows how, differently from the univariate case, the multivariate 
Jarque-Bera test reveals departure from normality also for monthly data. The 
only exception is represented by the monthly efficient type B portfolio. 

However, even if the asset manager portfolios are not jointly normal, the 
Gaussian law provides an useful tool for risk control. Values PT,, (i.e. the 
probability that Rpj < R,, for all j = 1,2, ..., m), are, for the 5th percentile, 
generally higher than the respective empirical values, fT,. Multinormality, 
therefore, allows to correctly measure financial risk a t  the 95% confidence 
level, but seems to encounter some problems a t  the 99% level. 

Furthermore, the multivariate framework also allows to  obtain important 
information related to the single position of an individual investor: P1, (i.e. 
the probability that hj < RUj for at least one j = 1,2,  ..., m) measures 
the risk associated to one single investor and represents a more correct and 
adequate decision criterion. It is interesting to observe that P1, is gener- 
ally higher than the corresponding empirical values (fl ,)  also for the lst 
percentile, thus suggesting the irrelevance of left tail fatness. 

5 Conclusion 

Although in the last three decades its validity has been widely rejected be- 
cause of the strong leptokurtosis of financial variables, the normal distribu- 
tion is still the assumption underlying most of the methods used in empirical 
finance. 

To overcome this contradictory fact, in this paper we propose a multivari- 
ate statistical framework for evaluating whether departures from normality 
actually matter to 'normal' investors, i.e. agents who do not resort to deriva- 
tives or to particularly risky asset management strategies. 

Surprisingly, the results of the paper clearly show that even when simple 
standard mean-variance diversification techniques are used the normal distri- 
bution remains an important reliable and useful statistical tool for managing 
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financial risks. Moreover, the  empirical analysis shows tha t  the  normal distri- 
bution has a relevant role not only when one-week and  one-month horizons 
matter  t o  the  asset manager, but  even when there is a need for risk evaluation 
and asset management a t  daily frequency. 
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Abstract. We introduce functional principal component techniques for the statis- 
tical analysis of a set of financial time series from an explorative point of view. We 
show that this approach highlights some relevant statistical features of such related 
datasets. A case study is here considered concerning the daily traded volumes of 
the shares in the MIB30 basket from January 3rd, 2000 to December 30th, 2002. 
Moreover, since the first functional principal component accounts for the 89.4% 
of the whole variabilitity, this approach suggests the construction of new financial 
indices based on functional indicators. 

1 Introduction 

Functional domain supports many recent methodologies for statistical anal- 
ysis of data coming from measurements concerning continuous phenomena; 
such techniques constitute nowadays a new branch of statistics named func- 
tional data analysis, see Ramsay and Silverman (1997, 2002). Financial mar- 
kets offer an appealing field of application since the phase of dealing is con- 
tinuous and then the share prices, as well as other related quantities, are 
updated with a very high frequency. 

This paper focuses on functional principal component based approach to 
the statistical analysis of financial data. In finance principal component based 
techniques have been considered sometimes e.g. for construction of uncorre- 
lated indices in multi-index models, see Elton and Gruber (1973); moreover 
they have been suggested in high frequency trading models by Dunis et al. 
(1998). Here we show that the functional version provides an useful tool for 
the statistical analysis of a set of financial series from an explorative perspec- 
tive. Furthermore we point out as this approach suggests the possibility of 
the construction of stock market indices based on functional indicators. 

The analysis is here illustrated by considering the data concerning the 
daily traded volumes of the 30 shares listed in the MIB3O basket in the 
period January 3rd, 2000 - December 30th, 2002. 

The rest of the paper is organised as follows. In the next section we outline 
functional data modeling and give some details about functional principal 
component analysis; in Section 3 we introduce the MIB30 basket dataset and 
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present the main results of our analysis; finally in Section 4 we discuss further 
methodological aspects and open a problem concerning the construction of 
new stock market indices on the ground of the obtained results. 

2 Functional PCA 

Functional data are essentially curves and trajectories, the basic rationale 
is that we should think of observed data functions as single entities rather 
than merely a sequence of individual observations. Even though functional 
data analysis often deals with temporal data, its scope and objectives are 
quite different from time series analysis. While time series analysis focuses 
mainly on modeling data, or in predicting future observations, the techniques 
developed in FDA are essentially exploratory in nature: the emphasis is on 
trajectories and shapes; moreover unequally-spaced and/or different number 
of observations can be taken into account as well as series of observations 
with missing values. 

From a practical point of view, functional data are usually observed 
and recorded discretely. Let {wl, . . . , w,} be a set of n units and let yi = 

(yi(tl), . . . , yi(tp)) be a sample of measurements of a variable Y taken a t  p 
times t l ,  . . . , t, E 7 = [a, b] in the i-th unit wi, (i = 1 , .  . . , n ) .  As remarked 
above, such data yi (i = 1 , .  . . , n)  are regarded as functional because they 
are considered as single entities rather than merely sequences of individual 
observations, so they are called raw functional data; indeed the term func- 
tional refers to the intrinsic structure of the data rather than to  their explicit 
form. In order to convert raw functional data into a suitable functional form, 
a smooth function xi(t) is assumed to lie behind yi which is referred to as the 
true functional form; this implies, in principle, that we can evaluate x a t  any 
point t E 7 .  The set XT = {xl(t),  . . . ,xn( t )} tEl  is the functional dataset. 

In functional data analysis the statistical techniques posit a vector space 
of real-valued functions defined on a closed interval for which the integral 
of their squares is finite. If attention is confined to functions having finite 
norms, then the resulting space is a Hilbert space; however often we require 
a stronger assumption so we assume 'H be a reproducing kernel Hilbert space 
(r.k.h.s.), see Wahba (1990), which is a Hilbert space of real-valued functions 
on 7 with the property that, for each t E 7, the evaluation functional Lt, 
which associates f with f (t), Ltf 4 f (t), is a bounded linear functional. 

In such spaces the objective in principal component analysis of functional 
data is the orthogonal decomposition of the variance function: 

(which is the counterpart of the covariance matrix of a multidimensional 
dataset) in order to isolate the dominant components of functional variation, 
see e.g. also Pezzulli (1994). 
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In analogy with the multivariate case, the functional PCA problem is 
characterized by the following decomposition of the variance function: 

where X j ,  [j ( t )  satisfy the eigenequation: 

and the eigenvalues: 

are positive and non decreasing while the eigenfunctions must satisfy the 
constraints: 

The [j's are usually called principal component weight functions. Finally the 
principal component scores (of [(t))  of the units in the dataset are the values 
wi given by: 

:= (xi, t j j  = t ( t )xi ( t )dt  . (4) 

The decomposition (2) defined by the eigenequation (3) permits a reduced 
rank least squares approximation to the covariance function u.  Thus, the 
leading eigenfunctions [ define the principal components of variation among 
the sample functions xi. 

3 An explorative analysis of the MIB30 basket dataset 

Data considered here consist of the total value of the traded volumes of the 
shares composing the MIB30 index in the period January 3rd, 2000 - Decem- 
ber 30th, 2002, see also Costanzo (2003) for details. An important character- 
istic of this basket is that it is "open" in that the composition of the index is 
normally updated twice a year, in the months of March and September (ordi- 
nary revisions). However, in response to  extraordinary events, or for technical 
reasons ordinary revisions may be brought forward or postponed with respect 
to  the scheduled date; furthermore, in the interval between two consecutive 
revisions, the shares in the basket may be excluded due to  particular reasons, 
see the website www. borsaitalia.it for further details. 

Raw data  have been collected in a 30 x 758 matrix. There are 21 com- 
panies which have remaining in the basket for the three years: Alleanza, Au- 
tostrade, Banca Fideuram, Banca Monte Paschi Siena, Banca Naz. Lavoro, 
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Enel, Eni, Fiat, Finmeccanica, Generali, Mediaset, Mediobanca, Mediolanum, 
Olivetti, Pirelli Spa, Ras, San Paolo Imi, Seat Pagine Gialle, Telecom Italia, 
Tim, Unicredito Italiano; the other 9 places in the basket have been shared by 
a set of other companies which have been remaining in the basket for shorter 
periods. Such mixed trajectories will be called here homogeneous piecewise 
components of the functional data set and they will be referred a s  TI , .  . . , T9. 
An example, concerning TI, T2, T3 is given in Table 1. Due to the connection 

Date I T 1  T2 T 3  

Table 1. The homogeneous piecewise components T I ,  T2, T3. 

03/01/2000 
04/04/2000 
18/09/2000 
02/01/2001 
19/03/2001 
02/05/2001 
24/08/2001 
24/09/2001 
18/03/2002 
01/07/2002 
15/07/2002 
23/09/2002 
04/12/2002 

among the international financial markets, data concerning the closing days 
(as week-ends and holidays) are regarded here as missing data. 

In literature functional PCA is usual performed from the original data 
(xij); here we preferred to work on the daily standardized raw functional 
data: - z . .  - 2 .  

Zij := ( = 1 . 3 j = 1,. . . ,758) , 
Sj 

(5) 

AEM Banca Commerciale Italiana Banca di Roma 
AEM Banca Commerciale Italiana Banca di Roma 
AEM Banca Commerciale Italiana Banca di Roma 
AEM Banca Commerciale Italiana Banca di Roma 
AEM Italgas Banca di Roma 
AEM Italgas Banca di Roma 
AEM Italgas Banca di Roma 
AEM Italgas Banca di Roma 

Snam Rete Gas Italgas Banca di Roma 
AEM Italgas Capitalia 
AEM Italgas Capitalia 

Banca Antonveneta Italgas Capitalia 
Banca Antonveneta Italgas Capitalia 

where f j  and sj are respectively the daily mean and standard deviation 
of the e.e.v of the shares in the basket. We shall exhibit later how such 
transformation can gain an insight into the PC trajectories understanding. 
The functional dataset has been obtained from such data according to the 
procedure illustrated in Ramsay (2001). 

The trajectories of the first two functional principal components are plot- 
ted in Figure 1; they show the way in which such set of functional data varies 
from its mean, and, in terms of these modes of variability, quantifies the dis- 
crepancy from the mean of each individual functional datum. The analysis 
showed that the first PC  alone accounts for the 89.4% and the second PC 
accounts for the 6.9% of the whole variability. 
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Fig. 1. Plot of the first 2 functional principal components. 

The meaning of functional principal component analysis is a more compli- 
cated task than the usual multidimensional analysis, however here it emerges 
the following interpretation: 

i. The first functional PC is always positive, then shares with large scores of 
this component during the considered period have a large traded volume 
as compared with the mean value on the basket; it can be interpreted as 
a long t e r m  trend component .  

ii. The second functional P C  changes sign at  t = 431 which corresponds to  
September l l t h ,  2001 and the final values, in absolute value, are greater 
than the initial values: this means that shares having good (bad) perfor- 
mances before the September l l t h ,  2001 have been going down(rising) 
after this date; it can be interpreted as a shock component .  

This interpretation is confirmed by the following analysis of the raw 
data.  As it concerns the first PC, for each company we considered its min- 
imum standardized value over the three years zjmin) = minj=l,...,,ss zij 

(i = 1, .  . .  ,30).  In particular z,!~'") is positive (negative) when the traded 
volumes of the i-th share are always greater (less) than the mean value of the 
MIB30 basket during the three years. 

As for the second PC,  let Zgi be the average of the traded volumes of 
the i th  company over the days: 1, ..., 431 (i.e. before September l l t h ,  2001) 
and ZAL be the corresponding mean value after September l l t h ,  2001. Let us 
consider the variation per cent: 

If Si is positive (negative) then the i th  company increased (decreased) its 
mean e.e.v. after the September 11, 2001. Finally consider the scores on the 
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Mediaset 

O T ~  
0 

Autostrade 

Generali 
0 

Eni 
0 

Tim 
0 

Scores on Harmonic 1 

Fig. 2. Scores on the two first harmonics 

two first PCs given in (4), respectively w,!') and wj2) (see Figure 2). We 

observe that : i) companies with large positive (negative) value w;.') present 
a large (small) value than the mean during the entire considered period, i.e. 

(min) (2) of zi , see Table 2; zi) companies with large positive (negative) value w i  
show a large decrement (increment) after September l l t h ,  2001 (Day=431), 
i.e. of hi, see Table 3. Further details are given in Costanzo and Ingrassia 
(2004). 

4 Further remarks and methodological perspectives 

The results illustrate the capability of functional PCs to highlight statistical 
features of a set of financial time series as the subsequent analysis on the raw 
data has been also confirmed. 

As we remarked above, the functional data set has been here constructed 
using the standardized data (rij) defined in (5) rather than the original data 
(xij); Figure 1 shows how this approach clarifies the contribute of the PC  
trajectories with respect to the mean trajectory. For the sake of completeness, 
we point out that the first two PCs computed on the non standardized data 
(xij) explained respectively the 88.9% and the 7.1% of the whole variability; 
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Z!min) Company ":I) 

0.3294 Eni 73.743 
Telecom 
Tim 
Enel 
Generali 
Olivetti 
Unicredito 
T4 
Mediaset 
Seat Pagine Gialle 

Table 2. Comparison between z j m i " )  and w!') for some companies. 

b Company 4 ' . 2 

-80.20% Seat Pagine Gialle 14.998 
-58.50% Olivetti 13.149 
-47.08% Enel 9.283 

63.21% Unicredito -11.900 
83.10% Autostrade -5.273 

133.79% T9 -23.748 

Table 3. Comparison between 15i and w!2) for some companies. 

the plot of the scores on such two harmonics is practically the same of the 
one given in Figure 2. 

In our opinion, the obtained results open some methodological perspec- 
tives for the construction of new financial indices having some suitable sta- 
tistical properties. As a matter of fact, the construction of some existing 
stock market indices has been criticized by several authors, see e.g. Elton 
and Gruber (1995). For example, it is well known that the famous U.S. Dow 
Jones presents some statistical flaws, but, despite these drawbacks in the 
methodology used in their computation, it continues to be widely employed. 

In Italy, the MIB3O share basket is summarized by the MIB3O index which 
is calculated according to the formula: 

where pit is the current price of the i-th share a t  time t ;  pi0 is the base price 
of the i-th share which is the opening price on the day on which the updating 
of the index takes effect (multiplied, where appropriate, by an adjustment 
coefficient calculated by the Italian Exchange in the event of actions involving 
the i-th company's capital); qio is the base number of the shares in circulation 
of the i-th stock. The weight wio of the i-th share in (6) is given by the ratio 
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of the company's market capitalisation to the market capitalisation of all the 
companies in the basket. Finally ro is a factor with the base set equal to  one, 
used to maintain the continuity of the index when the basket is updated and 
the value 10,000 is the base of the index on December 31st, 1992. 

However such indices don't take into account the variability of the share 
prices (or of the traded volumes, or other related quantities) during any time 
interval (e.g. between two consecutive updating of the basket composition). 
Due to  the resulted presented above, the shares scores on this harmonic 
seem constitute a good ingredient for a new family of financial indices trying 
to  capture as most as possible of the variability of the prices in the share 
basket. This provides ideas for further developments of functional principal 
component techniques in the financial field. 
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Abstract. The spherically and elliptically symmetrical distributions are used in 
different statistical areas for different purposes such as the description of multi- 
variate data, in order to find alternatives to the normal distribution in multinor- 
mality tests and in the creation of statistical models in which the usual assumption 
of normality is not realistic. Some achieved results, open issues and some proposals 
for their use in applications, especially in the financial area, are here presented. 

1 Introduction 

Recently, a great attention has been devoted to the class of spherically and 
elliptically symmetrical distributions by statistical literature, both in the ap- 
plied and the theoretical fields. In this paper some of the main results achieved 
for such class of distributions are presented. We will see as the spherically and 
elliptically symmetrical distributions are used in different statistical areas for 
different purposes such as the description of multivariate data, in order to  
find alternatives to the normal distribution in multinormality tests and in the 
creation of statistical models in which the usual assumption of normality is 
not realistic. At last, an application of Capital Asset Pricing Model (CAPM) 
with elliptic errors is compared to  a CAPM with normal errors. 

2 Basic principles of the elliptically symmetric 
distributions 

A d x 1 random vector X = (XI ,  X 2 , .  . . , Xd)' is said to  have an elliptically 
symmetric distribution if its characteristic function is: 

where pdx l ,  Xdxd 2 0 and 4 are its parameters and it is written as 
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In particular, when pdxl = Od and Edxd = Id, X N ECd(O,Id,q5) it is 
called spherical distribution and it is written as X - Sd(q5). Its stochastic 
representation is: 

x = + R A ~ u ( ~ )  

where R is the random variable with R - F ( r )  in [0, oo) called the generat- 
ing variate and F ( . )  is called the generating c.d.f.. u ( ~ )  is a random vector 
uniformly distributed on the unit spherical surface in Rd called uniform base 
of the elliptical distribution, R and u ( ~ )  are independent and A'A = E. 
In general, a given random vector X ECd(p, E, 4) does not necessarily 
possess a density. However, if density of X exists it must be of the form: 

for some nonnegative function f (.) of a scalar variable. 
When f (x) = (2.rr)-n/2exp{-x/2), X has a multivariate normal distribution. 
Many of the characteristics and properties of the elliptically symmetric di- 
stributions can be found in Fang and Zhang (1990). 
The class of elliptical distributions includes various distributions such as sym- 
metric Kotz type distribution, symmetric multivariate Pearson type VII and 
symmetric multivariate stable law (Fang et al. (1989)). Examples below pro- 
vide some subclasses of elliptical distributions. 

Example  1 (Symmetric  Ko tz  t y p e  dis tr ibut ion)  Let X be distributed 
according to a symmetric Kotz type distribution with density: 

where Cd is a normalizing constant, r , s  > 0, 2N + d > 2 are parameters. 
When N = s = 1 and r = 112, the distribution reduces to a multivariate 
normal distribution and when N = 1 and r = 112 the distribution reduces 
to a multivariate power exponential distribution. This family of distributions 
was found to be useful i n  constructing models in  which the usual normality 
assumption is not applicable. 

Example  2 (Symmetric  mult ivariate  Pearson  t y p e  VII dis tr ibut ion)  
Let X be distributed according to a symmetric multivariate Pearson type VII 
distribution with density: 

where Cd is a normalizing constant, N > d/2, m > 0 are parameters. This 
subclass includes a number of important distributions as the multivariate 
t-distribution for N = (d + m)/2 and the multivariate Cauchy distribution 
for m = 1 and N = (d + 1)/2. 
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3 Tests of multivariate normality 

The tests to verify the multivariate normality are very important since many 
of the techniques of statistical inference are based on the hypothesis of mul- 
tivariate normality. 
One of the relatively simpler and mathematically tractable way to  find a sup- 
port for the assumption of multivariate normality is by using the tests based 
on Mardia's multivariate skewness and kurtosis measures: 

provided that the expectations in the expression of P l , d  and P 2 , d  exist. For 
the multivariate normal distribution P l , d  = 0  and P2 ,d  = d (d  + 2 ) .  The 
quantities ,bl,d and ,b2,d can be used to detect departure from multivariate 
normality. Mardia (1970) has shown that for large samples k l  = ~ ~ , b i , ~ / 6  fol- 
lows a chi-square distribution with degrees of freedom d (d  + l ) ( d  + 2 ) / 6  , 
and kz = {B2,d - d (d  + 2 ) ) / { 8 d ( d ( d  + 2 ) /n ) ' / '  follows a standard normal 
distribution. In order to deduce the limit distribution of Mardia's multiva- 
riate skewness and kurtosis measures many different methods have been used. 
Baringhaus and Henze (1992) show that in the peculiar case of an elliptical 
distribution the limit law of Mardia skewness measure is a weighted sum of 
two independent chi-square distributions. Klar (2002) gives a unified treat- 
ment of the limit laws of skewness measures and other statistics like mul- 
tivariate kurtosis which are closely related to components of the Neyman's 
smooth test of fit for multivariate normality. For assessing deviations from 
multivariate normality, Kilian and Demiroglu (2000) suggest a multivariate 
extension of Jarque-Bera test, obtained by combining skewness and kurtosis 
measures. Let Y n X d  matrix of observation and let W = Y S - I  where S  is 
the Cholesky factor of Y ' Y .  The multivariate extensions of the skewness and 
kurtosis statistics are respectively: 

where Wij denotes the elements of the matrix W defined above; in other 
words skj and kuj are the individual skewness and kurtosis based on the 
standardized residuals matrix. The Jarque-Bera multinormality test is: 
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Many tests for multinormality have been proposed and some of them were 
summarized by Fattorini (2000). Kuwana and Kariya (1991) using the sym- 
metric Kotz type distribution with N = 1, and r = 112 (that is the mul- 
tivariate exponential power distribution) verify the tests of multinormality: 
Ho : s = 1 vs H I  : 0 < s < 1 or HI : s > 1, where the alternative hy- 
potheses correspond respectively to thicker and thinner tailed distribution 
compared to the normal distribution and from it derives the unvaried lo- 
cally best test both in the case in which p is known and in the cases p 
or not, but with C always unknown. Naito (1999) infers a formula of ap- 
proximation for the power of the test of multinormality against elliptically 
symmetrical distribution and he gives examples for the symmetric Kotz type 
distribution, the Pearson type I1 and VII distribution. Manzotti et al. (2002) 
present and study a procedure for testing the null hypothesis of multivariate 
elliptically symmetry independently on the parameters that characterize the 
underling elliptically symmetric law. The procedure is based on the averages 
of some spherical harmonics over the projections of the scaled residual of the 
d-dimensional data on the unit sphere of Rd. The proposed statistic 2: has 
as limit distribution a X 2  independently by the parameters which define the 
underlying elliptical distribution. 

4 Multivariate non normal models 

The normal distribution has had an important role in the development of 
many techniques of multivariate modelling. It is well known that we often 
assume as true the multivariate normality of data. The elliptically symmetric 
distributions are an alternative to analyze multivariate data. Gomez et al. 
(2002) study a generalization of the dynamic linear model from the Bayesian 
point of view, which has been created using an elliptical joint distribution for 
the parameters and the errors of the model. In particular, the multivariate 
exponential power distribution is used. Solaro and Ferrari (2003) as well use 
a multilevel model assuming that the random consequences follow a multi- 
variate exponential power distribution. Moreover, the strength of iterative 
procedures of estimate of maximum likelihood is studied, using a simulation 
technique which exploits the stochastic representation of elliptical symme- 
tric distributions. Consider the d-equation Seemingly Unrelated Regression 
model 

where Y,  is a d x 1 vector of responses, Xi is a d x q design matrix of ex- 
planatory variables for every i, ,B is a q x 1 vector of regression coefficients, 
~i is a d x 1 error vector, and C is the d x d covariance matrix. We assume 
that (X:, . . . , XA) is of full rank and Xi is of the form 
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where xij  is a qj x 1 vector of explanatory variables for the response j for 
every i and q = Cj=,  qj .  Ng (2002) assumes that ( E ~ ,  . . . E,)) have a joint 
elliptically symmetric distribution with probability density function given by 
(1). The CAPM implemented in next section falls within this class. 

5 Applications 

The multivariate normality is largely inadequate in the financial data of re- 
turns, largely due to tail thickness. For example the Capital Asset Pricing 
Model, originally derived under the assumption of normality, is prevalently 
refused as a correct model of returns. The CAPM is formalized in the 
following equation: 

where Ri is the random rate return on asset i, Pi = cov[Ri, RM]/var[RM], 
RM is the rate on the market portfolio and rf is the risk-free rate. Defining 
ri = E[Ri] - r f ,  equation (2) can be written as ri = PirM. 
In this section CAPM assuming that the errors follow a multivariate exponen- 
tial power distribution is compared with a CAPM under normality assuntion. 
We create three efficient portfolios in mean-variance sense using daily data 
on Italian stock returns observed from January 2000 to June 2001, while 3 
months BOT are considered as the risk-free rate. 
In applying the CAPM, some care should be taken regarding the possibility 
of conditional heteroskedasticity in regression disturbances. A solution would 
be to correct r;,, = rt/6it for the conditional heteroskedasticity in prelimi- 
nary estimation step. We use a Garch(1,l) model. Table(1) and (3) report 
the results of estimating of CAPM: 

where rt is the 3-vector of portfolio excess returns, a and P are 3-dimensional 
parameter vectors, r ~ , t  is the excess market return and ~t is a 3-vector of 
errors, using unweighted and weighted excess returns under normal errors 
assumption. Table(2) and (4) test the null hypothesis of normality for re- 
siduals using the Mardia's multivariate skewness, kurtosis and Jarque-Bera 
test statistic. We find that estimates of a and P are lower using GARCH(1,l) 
conditional standard deviations weighted excess returns also relative their 
standard errors. Mardia's multivariate skewness Jarque-Bera test statistic 
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of multinormality are not reject but is reject Mardia's multivariate kurtosis 
both unweighted and weighted excess returns. Table(4) and (5) report the 
results of estimating of CAPM using unweighted and weighted excess returns 
under multivariate exponential power distribution assumption for errors. We 
do not find substantial differences except for portfolio 3 under GARCH(1,l)  
conditional standard deviations weighted excess returns. 

Table 1. Results of estimation of CAMP under normal errors assumption. 

U nweighted Excess Returns 

U nweinhted Excess Returns 

Portfolio 1 
Portfolio 2 
Portfolio 3 

Std.Error 

0.3729 
0.21674 
1.3352 

ai 

0.8474 
1.53833 
-3.3882 

- 

Table 3. Results of estimation of CAMP under normal errors assumption. 

G ARCH(1,l)conditional standard deviations weighted excess returns 

G ARCH(l,l)conditional standard deviations weighted excess returns 
1 Skewness test ]Kurtosis test 1 Jarque-Bera test ] 

IMeasure1 35185.77 1 1374.125 1 2898419 

,!?i 

0.73 
0.51021 
2.0807 

Jarque-Bera test 

1247871 
1 

Measure 
P-value 

Portfolio 1 
Portfolio 2 

Table 4. Tests the null of normality for residuals using the Mardia's multivariate 
skewness, kurtosis and Jarque-Bera test statistic. 

Std.Error 

0.1189 
0.6909 
0.4252 

Table 2. Tests the null of normality for residuals using the Mardia's multivariate 
skewness, kurtosis and Jarque-Bera test statistic. 

Skewness test 

8755.229 
1 

a; 

0.18572 
0.41846 

Kurtosis test 

1682.4023 
0 

Std.Error 

0.23039 
0.09712 

0.25209 
0.17717 

Std.Error 

0.07344 
0.03096 
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U nweighted Excess Returns 

Table 6. Results of estimation of CAMP under elliptical errors assumption. 

G ARCH(1,l)conditional standard deviations weighted excess returns 

6 Conclusion 

Portfolio 1 
Portfolio 2 
Portfolio 3 

In conclusion, we can say that  the elliptically symmetric distributions can be 
used in different statistical areas and for different purposes as, for instance, 
the description of multivariate data,  in order t o  show alternatives t o  multi- 
variate normal distribution in normality test and in the creation of statistic 
models in which the usual hypothesis of normality is not realistic. 
In this section CAPM assuming that  the errors follow a multivariate ex- 
ponential power distribution is compared with a CAPM under normality 
assumption. The standard estimator of this model is ordinary least squares 
which will be full efficient under normality, but not be full efficient if norma- 
lity fails. Various methods have been suggested to estimate the parameters 
when hypothesis of normality is rejected. In future work we will development 
MLEs using non-linear optimization algorithm. 

Table 5. Results of estimation of CAMP under elliptical errors assumption. 

Q'i 

0.8474 
1.53855 
-3.2347 

Std.Error 

0.07345 
0.03096 
0.07437 

Portfolio 1 
Portfolio 2 
Portfolio 3 
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