
Studies in Theoretical and Applied Statistics 
Selected Papers of the Statistical Societies

Maurizio Carpita
Eugenio Brentari
El Mostafa Qannari    Editors 

Advances 
in Latent 
Variables
Methods, Models and Applications



Studies in Theoretical and Applied
Statistics
Selected Papers of the Statistical Societies



Series Editors

Societa Italiana di Statistica (SIS)

Spanish Society of Statistics and Operations Research (SEIO)

Société Française de Statistique (SFdS)

Sociedade Portuguesa de Estatfstica (SPE)

Federation of European National Statistical Societies (FENStatS)

More information about this series at
http://www.springer.com/series/10104

http://www.springer.com/series/10104


Maurizio Carpita � Eugenio Brentari
El Mostafa Qannari
Editors

Advances in Latent
Variables
Methods, Models and Applications

123



Editors
Maurizio Carpita
University of Brescia
Dept. of Economics and Management
Brescia
Italy

Eugenio Brentari
University of Brescia
Dept. of Economics and Management
Brescia
Italy

El Mostafa Qannari
Oniris Nantes National College
Dept. of Chemometrics and Sensometrics
Nantes
France

ISSN 2194-7767 ISSN 2194-7775 (electronic)
ISBN 978-3-319-02966-5 ISBN 978-3-319-02967-2 (eBook)
DOI 10.1007/978-3-319-02967-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2015934840

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Preface

The Italian Statistical Society (Società Italiana di Statistica - SIS) promotes every
2 years an international specialized statistical conference. The meeting focuses on
both methodological and applied statistical research.

The SIS 2013 Statistical Conference “Advances in Latent Variables. Methods,
Models and Applications”, held in June 19–21, 2013 at the Department of Eco-
nomics and Management of the University of Brescia, focused on advances in
statistical methods and models for analyses with unobservable variables. Recently,
an increasing interest has been devoted to this topic, from both methodological and
applied points of view. Indeed, the latent variable approach allows us to effectively
model complex real-life phenomena in a wide range of research fields.

The SIS 2013 Statistical Conference brought together statisticians from different
research fields who exchanged experiences related to the analysis of latent variables
and to the investigation of the relationships among them. The meeting was attended
by 317 Italian and foreign scholars, who proposed 205 papers, which were accepted
after a review process and presented in different sessions of the conference (5
plenary, 1 invited, 22 specialized, 16 solicited, 12 spontaneous and 1 poster).
During the 3 days of the meeting, several special events took place: a special track
on “Space and Space–Time Models: Methods and Environmental Applications”
organized by the GRASPA-SIS group and devoted to the environmental statistics,
the “Sensory Sessions” organized by the “Centro Studi Assaggiatori di Brescia” and
the “International Academy of Sensory Analysis”, the invited session on “Latent
Models” organized by the Federation of European National Statistical Societies
(FENStatS), and “The BES Day” on the measure of equitable and sustainable well-
being organized by the Italian National Institute of Statistics (Istituto Nazionale di
Statistica - ISTAT).

The 25 papers included in this book were selected from 38 extended versions
presented at the SIS 2013 Meeting. A careful double-blind review process was
adopted. We are grateful to the members of the Scientific Committee and to the 76
referees for their very helpful assistance. For convenience, the volume is organized

v



vi Preface

in seven parts: these only serve to orient the reader since methods, models and
applications presented in the 25 papers overlap in some cases.

Finally, we would like to thank Alice Blanck and Carmina Cayago from Springer
for their valued assistance in preparing this volume.

Brescia, Italy Maurizio Carpita
Brescia, Italy Eugenio Brentari
Nantes, France El Mostafa Qannari
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Identification of Clusters of Variables and
Underlying Latent Components in Sensory
Analysis

Evelyne Vigneau

Abstract
The Clustering of Variables around Latent Variables (CLV) approach aims to
identify groups of features in a data set and, at the same time, to identify the pro-
totype, or the latent variable, of each group. The procedure makes it possible to
search for local groups or directional groups. Moreover, constraints on the latent
variables may be added in order to introduce, if available, additional information
about the observations and/or the variables. This approach is illustrated in two
different contexts encountered in sensory analysis: (1) the clustering of sensory
descriptors by taking into account their redundancy; and (2) the segmentation of
a panel of consumers according to their liking, by taking into account external
information about the products and the consumers.

Keywords
Clustering of variables • Sensory analysis • Segmentation of consumers
• L-shaped data

1 Introduction

The clustering of variables may be relevant for a broad set of issues in sensory
analysis. For instance, in hedonic studies, how many segments of consumers are
there in the population under investigation? In quantitative descriptive analysis,
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2 E. Vigneau

could the list of attributes be reduced by selecting a subset of terms and finding
the redundant attributes?

The Clustering of Variables around Latent Variables (CLV) is an approach
that may be used in such a context. However, there is already a wealth of work
on cluster analyses for variables, most of them being hierarchical. They vary
according to both the nature of the variables at hand and, the choice of the
measure of similarity between the variables. Considering quantitative variables only,
most of the algorithms use Pearson’s correlation coefficient between the variables,
and sometimes the square of this coefficient. With some exceptions, such as the
likelihood linkage analysis [7], the most common approaches could be qualified as
empirical descriptive methods. Beside the great majority of hierarchical techniques
based on similarity (or dissimilarity) matrices, the SAS Varclus procedure [12], the
diametrical clustering method [3] and the CLV approach [15] are constructed on
linear factor analysis. Moreover, the Varclus procedure and the CLV approach can
both be used when it is desirable to merge strong positive or negative associated
variables or, alternatively, when the aim is to separate anti-correlated variables.
However, the underlying clustering strategies differ: the Varclus procedure is
based on a divisive hierarchical algorithm, whereas the CLV method uses both an
ascendant hierarchical algorithm and a partitioning algorithm. More importantly, the
CLV approach consists of maximizing well-defined criteria (see Sect. 2.2) while the
Varclus procedure does not. This feature enables the CLV approach to be used in
a wide range of situations by introducing various constraints in the optimization
problem (see Sects. 2.3–2.5). Finally, the specificity of the CLV is not only the
determination of a partition of the variables but also the explicit definition of a latent
variable associated with each cluster. From this point of view, it can be considered
a method suitable for the extraction of a simple structure from a dataset, and is an
alternative to the principal components rotation techniques, like Varimax [6].

In principle, the CLV approach consists of determining K clusters of variables
and, simultaneously, K latent variables, such that the variables in each cluster are
related as much as possible to the corresponding latent component. Nevertheless, the
CLV methodology includes a collection of specific situations that will be detailed in
Sect. 2. Illustrative case studies, in the context of sensory studies, will be presented
in Sect. 3.

2 Methodology

2.1 Data Structure and Notation

Let us consider the n � p data matrix, X. The aim is to split the p variables
into a finite number, K , of clusters. If X contains the scores of acceptability of p
consumers regarding n products (as in Sect. 3.2), a segmentation of the panel will be
achieved. If the p variables are the sensory attributes of n products (as in Sect. 3.1),
the clusters can be used as the basis of a selection procedure. The X-variables are
centered. Optionally, they can be standardized by their standard deviation.
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Fig. 1 Organization of the
data: the variables in X are to
be clustered, the Xr and Z
blocks contain additional
information (if this is
available) which can be
introduced within the CLV
clustering procedure

Additional data may also be available on the n observations. These are arranged
in a matrix Xr of size n � q (where “r” stands for right, as illustrated in Fig. 1).
For instance, the Xr matrix can be associated with the experimental factors used
for the formulation of the products or with their physico-chemical characterization
(as in Sect. 3.2). Finally, if additional information is available on the variables to be
clustered, another block of data, denoted Z, is considered (Fig. 1). The matrix Z is
of size p �m. In the case study presented in Sect. 3.2, Z allows socio-demographic
information about the p consumers to be taken into account.

2.2 CLV for the Clustering of the X-Variables

We consider first the case where only the block of the X-variables is available.
In this simple situation, two objectives for the clustering of the variables may be
distinguished: if the aim is to separate variables that are highly, but negatively,
correlated, each cluster must be defined locally around a latent variable that has
the same orientation as the variables in the cluster; on the contrary, if the aim is
to group together correlated variables in the same cluster, whatever the sign of the
correlation coefficient, each cluster is to be defined directionally around a new axis.

Both cases are associated with a maximization problem [15]. The criterion to be
maximized (1) involves the covariance between the variables and the latent variables
for local groups:

S D
KX

kD1

pX

jD1
ıkj cov.xj ; ck/ with ctk ck D 1 (1)

For directional groups, the criterion in (2) involves the squared covariance:

T D
KX

kD1

pX

jD1
ıkj cov2.xj ; ck/ with ctk ck D 1 (2)

In (1) and (2),K stands for the number of groups in the partition, xj represents the
j th variable and ck the latent variable associated with the kth group. ıkj is an indicator
equal to 1 if the variable j belongs to the group k, and equal to 0 otherwise.

It is noteworthy that, in the case of the local groups, the latent variable ck
in a cluster Gk is proportional to the mean of the variables of this cluster. For
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directional groups, the optimum value of T within each cluster is obtained when the
latent variable ck in Gk is the first normalized principal component of the variables
belonging to this cluster.

2.3 CLV with External Information on the Observations

Let us consider the situation where additional information on the observations
is available, for instance in external preference mapping when, as well as the
acceptability scores in X, the products have been described by a trained sensory
panel using q attributes (Xr). The CLV, with the criterion defined in (1) or (2), can
be designed in such a way that each latent component in each segment of consumers,
now denoted tk , is a linear combination of the sensory attributes, as in (3):

tk D Xr ak with atk ak D 1 (3)

Thus, segmentation and external preference mapping can be achieved simultane-
ously. This procedure is much more straightforward than the usual method, which
consists of separate steps of analysis: (1) a clustering of the consumers according to
their acceptability scores and (2) a Principal Components Analysis of the sensory
data. Finally, linear models are fitted in order to predict the mean acceptability
scores in each cluster of consumers as a function of the first two sensory principal
components. Using the criterion S in (1) with the constraint in (3), the hedonic
segments are directly defined with reference to the sensory space. Case studies
related to this situation have been presented in [14] and [16], for instance.

With the linear constraint in (3), it can be shown that the latent variable in each
cluster is, in fact, the first PLS regression component of a PLS1 regression (in the
case of local groups) or a PLS2 regression (in the case of directional groups).

2.4 CLV with External Information on the Variables

External information is often available on the variables to be clustered. This external
information (Z) may be the a priori knowledge of the characteristics of each
variable.

For the clustering of the variables, in such a way that clusters of X-variables
are related as much as possible to the external data, intermediate matrices must be
defined [17]. In each group Gk , we consider the product matrix Pk D Xk Zk, where
Xk and Zk are formed by taking into account only the variables belonging to Gk .
Thus, Pk may be regarded as the X-information weighted by something from the
Z-information, or, if Z is centred, as an interaction matrix.

Finally, the group latent variable, denoted �k in this case, is expressed as a linear
combination of the P-variables.

�k D Pk uk with utk uk D 1 (4)
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2.5 CLV with External Information on Both the Observations
and the Variables

This is a straightforward extension, mixing the strategies described in Sects. 2.3 and
2.4. Because of the L-shaped structure of the data matrices (Fig. 1), the clustering
procedure is called the L-CLV. Two latent components are now determined in each
cluster of variables: (1) the first, tk , is defined in the space spanned by the co-
variables in Xr; and (2) the second, �k, is associated with the external information
in Z. The criterion to be maximized in each cluster involves the covariance between
these two latent components. It is defined by:

SZXr D
KX

kD1
cov.tk; �k/ with tk D Xrak and �k D Pk uk; where Pk D Xk Zk

(5)

Normalization constraints are set on the loadings vectors ak and uk , as in (3) and (4).
The maximization of the criterion in (5) can also be presented as the maximization,
in each cluster, of the quantity utk Zt

k Xt
k Xr ak. In this way, it turns out that the L-

CLV approach has many similarities with L-PLS regression [9]. Nevertheless, with
the L-CLV, a specific triplet involving the three types of information is diagonalized
and updated within each cluster Gk .

2.6 Algorithmic Point of View

The maximization of the CLV criteria, given in (1), (2) or (5), possibly subject to the
constraints (3) or (4), may be achieved by an iterative alternating procedure whose
monotonicity can be proven (except for the criterion in (5) for which it could only
be observed based on experimental results). From an initial partition of the variables
intoK clusters, the two basic steps of the algorithm can be described as follows: (1)
estimation of the group latent variables as indicated at the end of Sects. 2.2–2.5, (2)
allocation of the variables to a cluster if its (squared) coefficient of covariance with
the latent variable of this cluster is higher than with the other latent variables. For
the criterion in (5) the variables considered in the allocation step are the P-variables
instead of the X-variables.

In addition, within the CLV framework, we advocate the choice of the initial
partition for the partitioning algorithm described above, on the basis of the results
of a hierarchical procedure. In fact, the CLV criteria can also be involved in a hier-
archical clustering process. Moreover, the advantage of performing a hierarchical
algorithm before the partitioning algorithm is that the variation of the clustering
criterion in the course of the hierarchy provides help in the choice of the number of
clusters that can be retained.

All the CLV procedures have been implemented in an R-package, ClustVarLV,
freely available on the CRAN Website [13].
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3 Illustrative Examples

3.1 Clustering of Sensory Attributes in Sensory Profiling

In descriptive sensory profiling, the selection of attributes aims to provide a reduced
list of terms by selecting the relevant and non-redundant attributes [11]. The initial
list may be long, with, for instance, 30–50 attributes, organized a priori in various
categories of sensory perception (odor, texture, flavor, off-flavor, etc).

Let us consider a case study [2] dealing with the sensory analysis of 12 varieties
of apple from South Africa and New Zealand. The apples were peeled and quartered,
and then assessed according to the 43 sensory descriptors listed in Table 1. The
objective of the clustering of the 43 sensory attributes was to identify synthetic
sensory latent traits using group latent variables. As directional groups of variables
were sought, the CLV procedure was performed using the criterion T (2).

One of the outputs of the CLV is a graph showing the variation of the clustering
criterion when passing from a partition into K clusters to a partition into (K-1)
clusters. As shown in Fig. 2, the criterion clearly jumps when passing from four to
three clusters. This means that there is a significant loss with only three clusters,
and that four clusters should be retained. The four groups contained 12, 14, 12
and 5 attributes, respectively. The membership of the groups and the correlation
coefficient of each sensory descriptor with its group latent variable are indicated
in Table 1. Four main sensory latent traits were thus highlighted. The first latent
variable (associated with the first group) was related to the internal odor and color
of the apples, and had a gradient from green apple type to red apple type. The
second latent variable also had a gradient from green to red apples but was related to
their flavor. The third latent variable mainly gave information about the texture. The
internal appearance and flavor attributes belonging to this group had a rather clear
link with the texture of the apples. The last latent variable was related to bitterness,
an undesirable taste for an apple.

Since each CLV latent variable is associated with a subset of the observed sensory
descriptors, the underlying sensory traits are easy to interpret. More precisely, the
CLV approach aims to identify a perfect simple structure, in the sense that each
variable has exactly one non-zero loading for one latent variable. Bernaards and
Jenrich [1] have shown that if this perfect simple structure exists, orthomax rotations
(including Varimax) are able to retrieve it. This is a very interesting theoretical
result. However, from an empirical point of view, we considered the results of the
Varimax (orthogonal rotation) and Promax (oblique rotation) techniques [6] for the
apple sensory data. In practice, the number of components of the loading matrix
before rotation must be fixed. This is quite a complex problem. We considered
solutions with four rotated components based on eleven selected sensory attributes:
three from the group G1 (“iogreen”, “ioredap”, “iagreen”), three from G2 (“flgreen”,
“flredap”, “flsweet”), three from G3 (“txcrisp”, “txjuicy”, “iajuicy”) and two from
G4 (“flbitte”, “asbitte”). It turned out that neither the Varimax rotation nor the
Promax rotation led to the expected partition. Using the Varimax rotation, the
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Fig. 2 Variation of the clustering criterion (delta) during the CLV procedure applied to the sensory
attributes of apples

four groups obtained were {“iogreen”, “ioredap”, “iagreen”, “flgreen”, “flredap”},
{“iajuicy”, “txcrisp”, “txjuicy”}, {“flbitte”, “asbitte”} and {“flsweet”}. In this
solution, the internal odor and the flavor characteristics of the green/red apples
were mixed, but the sweet flavor was set alone. With the Promax rotation, the
four expected subgroups were better retrieved, except that the flavour “flgreen” was
associated with the texture group instead of with “flredap” and “flsweet”.

As illustrated in this case study, the CLV method is a simple strategy, which
seems to provide results that make sense. Besides the identification of clusters of
variables, the latent variables associated with the clusters give rise to a reduction in
the dimensionality of the problem.

3.2 L-CLV for the Segmentation of Consumers

In order to identify the main “drivers of liking” of consumers regarding the
sensory (or physico-chemical) properties of products of interest, different strategies
for External Preference Mapping [10] may be adopted. The CLV procedure, as
described in Sect. 2.3, is a simple approach to answer the question. Moreover,
socio-demographic, usage and attitudinal information about the consumers is often
collected by means of a questionnaire in an attempt to gain a greater understanding
of the segmentation in the light of consumer characteristics. For a better and
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straightforward integration of all the available information for the purpose of
segmentation, the CLV has been extended to the L-CLV approach (Sect. 2.5).

Data collected in 2009 [4] are used to illustrate the L-CLV method. During
the project mentioned, 25 juice prototypes were obtained by mixing one of five
juices (apple, blood orange, orange, pineapple and pomegranate) with one of five
freshly-squeezed berry fruit juices (strawberry, raspberry, blackberry, redcurrant and
blueberry). The mixing proportions were 80 and 20 %.

Three blocks of information were collected and organized in an L-shaped
structure, as illustrated in Fig. 1. The core data matrix, X, contained the hedonic
scores, on a nine-point scale, of p D 69 consumers regarding the n D 25 juice
mixes. The external data matrix, Xr, which gave additional information on the
products, contains two parts: the amounts of five chemical compounds (sugar, malic
acid, citric acid, ascorbic acid and total polyphenols) in the juices, and the factors
of the mixture design. The responses of the consumers to a usage and attitude
questionnaire were coded in the matrix Z. This included the usual demographic
characteristics, information on the consumption of fruit and fruit juice (when, how,
etc.), liking assessments for 24 different fruits and for nine types of fruit juice,
criteria sought for fruit juices, opinions on new foods, and opinions on berry fruit. In
total, 97 questions were taken into account, which is much greater than the number
of items considered in a previous work [17]. Twenty-one of these questions were
qualitative items coded by means of dummy variables, so that Z finally contained
m D 126 columns.

Regarding the evolution of the L-CLV criterion, two main segments of consumers
emerged, but a finer partition into four segments (Seg1–Seg4) was retained. These
segments contained 15, 20, 23 and 11 consumers, respectively. Comparing these
with the partition into two segments, it turns out that Seg2, Seg3 and Seg4 were
aggregated into a mega-segment whereas Seg1 remained separate.

Among the outputs of the L-CLV procedure, the loadings associated with the
external information on the products (ak) and with the consumer background
descriptors (uk) were especially interesting. Figure 3 gives the (standardized)
loadings associated with the five chemical compounds or related to the type of
fruit mixed. Clearly, the type of berry fruit used (S, R, BLK, RC or BLU) did not
segment the panel. In contrast, the nature of the main juice (A, BO, O, P or PG) led
to different profiles of liking or disliking. The first segment was formed by those
consumers who did not reject the juices made with pomegranate. On the contrary,
the consumers in Seg2 and Seg3 clearly rejected the juices with pomegranate. A
difference between these latter two segments was related to juices with pineapple.
Regarding the fourth segment, it seems that these consumers did not like juices made
from apple or pomegranate.

Concerning the consumer attributes, the relatively high number of items makes
it rather difficult to scrutinize the loadings vectors of each segment. We have chosen
to illustrate the results regarding the age and gender of the consumers as well as
their criteria for juices. For instance, from Fig. 4 it can be seen that the consumers
in Seg1, who liked juices based on pomegranate (contrary to those in the other
segments) but did not much like juices with orange, were not the youngest students.
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Fig. 3 Loadings associated with the chemical compounds (sugar, malic acid, citric acid, ascorbic
acid, polyphenols) and the design factors (A: apple, BO: blood orange, O: orange, P: pineapple, PG:
pomegranate for the main juice, and S: strawberry, R: raspberry, BLK: blackberry, RC: redcurrant
and BLU blueberry for the co-fruit)

Fig. 4 Loadings associated with chosen attributes for the consumers, i.e. age category, gender
and criteria regarding fruit juice (13 items: 5 “must be” items (must be refreshing_j.refresh,
nutritious_j.nutri, healthy_j.healthy, organic_j.organic, high % of fruit_j.highp); 5 “I read” items
(I read the label_j.label.y, the percentage of fruit_j.pfruit.y, the expiration date_j.expd.y, the
ingredients_j.ingred.y, the nutritional facts_j.nutri.y); and 3 items of choice which are pulpy vs
liquid_j.pulpy, multi-fruit vs single fruit_j.multi-fruit, enriched vs natural_j.enriched)

They stated that they read the label and the expiration date, thought that juices had to
be healthy, and preferred liquid and natural juices to pulpy and enriched juices. The
consumers in Seg2, who liked juices with pineapple, said that they paid attention to
the percentage of fruit in a juice. The number of men in Seg3 was rather high. These
consumers did not seem to pay much attention to fruit juices. Finally, in Seg4 there
was a higher proportion of women than in the other groups. These consumers said
that juices had to be organic, that, unlike people in Seg1, they preferred enriched
and pulpy juices, and, not surprisingly, that they did not much appreciate juices
with apple.
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The segmentation of the panel obtained when neither the external information
about the products nor the external information collected about the consumers was
taken into account did not distinguish between Seg3 and Seg4. However, even
though people belonging to the fourth segment represented only 16 % of the panel,
their attitude to fruit juice was less neutral than that of people in Seg3, and was,
more or less, opposite to that of people in Seg1.

Conclusion

The CLV approach has been demonstrated as attractive for explorative data
analysis, and complementary to Principal Components Analysis or Factor
Analysis, for instance. In the context of sensory analysis, the use of the CLV
approach can provide answers to several common issues, from the reduction
of the number of attributes necessary for the sensory description of the
products to the analysis of the preference of the consumers. However, its field
of application is not restricted to the sensory domain (see, for instance, in
vibrational spectroscopy [18] or in the health domain [5, 8]).

One of the specificities of the CLV approach is that each cluster is associated
with a latent variable. Thus, the CLV is not only a clustering method but also
a useful way of reducing the dimensionality and identifying the perfect simple
structures in a data set. Moreover, the interpretability of these latent variables can
be made easier by the use of external information on the observations and/or the
variables.

In particular, the L-CLV procedure has been developed specifically to address
the question of the segmentation of consumers, with a better capacity for
interpretation in terms of sociological and behavioral parameters, and in relation
to the sensory or compositional key-drivers.
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A Lexical-Based Approach
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Abstract
We present a lexical-based investigation into the corpus of the opera omnia of
Seneca. By applying a number of statistical techniques to textual data we aim to
automatically collect similar texts into closely related groups. We demonstrate
that our objective and unsupervised method is able to distinguish the texts by
work and genre.
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1 Introduction

We present a lexical-based investigation into the corpus of the opera omnia of
Seneca. By applying a number of statistical techniques to textual data, we aim to
automatically organize the texts in such a way that those works that share a relevant
amount of lexical items are considered to be very similar to each other and get
automatically collected into closely related groups.
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In order to detail the lexical similarities and differences between the texts, we
apply a technique that is able to highlight the words that mostly characterize one or
more texts in comparison to the others.

The paper is organized as follows. Section 2 presents the data that we used.
Section 3 details our method for clustering the data and performing principal
component analysis. Section 4 shows and evaluates the results. Section 5 reports
a number of conclusions and introduces our future work.

2 Data

Lucius Anneus Seneca (4 BC–65 AD) was a Roman Stoic philosopher, statesman
and gramatis. He is considered to be among the most important authors of the
Classical era of Latin literature. His tragedies (most of which are based on Greek
original texts) are the only complete Latin tragedies extant. The corpus of the opera
omnia of Seneca is quite diverse in terms of both literary genres featured and
topics addressed. This motivates its clustering analysis, aimed to collect together
those texts that feature a similar lexicon, checking if the results are consistent with
differences in literary genre and topics.

The corpus featuring the opera omnia of Seneca is taken from the lexicon of the
Stoics provided by [15]. The corpus comprises 23 works, among which are eight
tragedies, ten dialogues and the full text of Apocolocyntosis, Epistulae morales,
Naturales quaestiones, De clementia and De beneficiis (divided into seven books).
Two tragedies of disputed attribution (Hercules Oetaeus and Octavia) are provided
as well. The size of the corpus is approximately 364,000 words. All texts come
from authoritative editions. For more details, see [15], XV–XVI. The corpus is fully
lemmatized.

3 Method

We applied two statistical techniques to textual data, namely clustering and principal
component analysis.

All the experiments were performed with the R statistical software [14]. In
particular, we used the “tm” package to build and analyze the document-term
matrices that are employed for clustering [4, 5]. Distance and similarity measures
provided by the package “proxy” were used as well [12].

3.1 Clustering

Clustering methods can be applied to several different kinds of data, among which
are textual data, whose “objects” are occurrences of words in texts. As far as word
sense disambiguation is concerned, clustering lies on the theoretical assumption
stated by Harris’ Distributional Hypothesis, according to which words that are
used in similar contexts tend to have the same or related meanings [9]. This basic
assumption is well summarised by the famous quotation of Firth [6]:
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You shall know a word by the company it keeps.

In this work, we apply hierarchical agglomerative clustering in order to compute
and graphically present similarity/dissimilarity between texts. As we deal with
texts instead of occurrences of words, this led us to slightly modify the two basic
theoretical assumptions mentioned above. Thus, here we assume that

1. texts that feature a similar (distribution of) lexicon tend to address the same or
related topics (Harris-revised);

2. you shall know a text by the words it keeps (Firth-revised).

These two assumptions are reflected in our clustering method, which compares the
texts by computing their distance in terms of similarity as follows:

Data Cleaning. We remove punctuations and function words from input data.
All characters were translated to lower case. In particular, we remove all (both
coordinative and subordinative) conjunctions, prepositions, pronouns and those
adverbs that cannot be reduced to another lemma (like diu, nimis and semper);

Hierarchical Agglomerative Clustering Analysis: Distance. Clustering analysis
is run on document-term matrices by using the cosine distance d.i; i 0/ D 1 �
cosf.xi1, xi2; : : : ; xik/; .xi 01; xi 02; : : : ; xi 0k/g. The arguments of the cosine function
in the preceding relationship are two rows, i and i 0, in a document-term matrix; xij

and xi 0j provide the number of occurrences of word j .j D 1; : : : ; k/ in the two
texts corresponding to rows i and i 0 (profiles).

Zero distance between two documents holds when two documents with the same
profile are concerned (i.e. they have the same relative conditional distributions of
terms). In the opposite case, if two texts do not share any word, the corresponding
profiles have distance 1;

Hierarchical Agglomerative Clustering Analysis: Clustering. We run a com-
plete linkage agglomeration method. While building clusters by agglomeration, at
each stage the distance (similarity) between clusters is determined by the distance
(similarity) between the two elements, one from each cluster, that are most distant.
Thus, complete linkage ensures that all items in a cluster are within some maximum
distance (or minimum similarity) of each other.

Roughly speaking, according to our clustering method, works that share a high
number of lemmas with similar distribution are considered to have a high degree of
similarity and, thus, fall into the same or related clusters.

3.2 Principal Component Analysis

While clustering computes and represents the degree of similarity/dissimilarity
between texts by clusters, it does not inform about which features distinguish one
text from the other. These features are those properties that make two texts similar
or dissimilar to each other.
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As our method is highly lexical-based, the features that we consider are words
(either lemmas or forms). In order to know which words distinguish one or more
texts from the others, we apply the principal component analysis technique.

Principal component analysis is a method used to retrieve a structure built
according to one or more latent dimensions. This structure can be defined by using
different features: in our case, the features are words, which are used as bag-of-
words representations of texts. Such representations of texts get mapped into a
vector space that is assumed to reflect the latent dimension structure.

We follow the Principal Component Analysis (PCA) presentation (described
e.g. by [11]) and produce contribution biplots that graphically represent a vector
space [8, p. 67]. Starting from an I � J term-document matrix Y (whose values
were previously standardized by column, in order to overcome the size differences
between texts), a reduction of the column (document) space can be achieved by
using principal component analysis and considering dimensions which relate texts
that show high correlation in their term distributions.

A singular value decomposition (SVD) of Y=.IJ/1=2 is then performed

S D Y=.IJ/1=2 D UDˇV0

where U and V are matrices containing respectively the left and the right singular
vectors and Dˇ is a diagonal matrix containing the singular values in decreasing
order.

The SVD allows the calculation of coordinates U for terms and G D J 1=2VDˇ

for documents. By considering the first two columns of U and G, we have the
coordinates with respect to the first two principal components.

The squares of the elements in Dˇ divided by their total inform about the amount
of variance explained by the principal components. By considering the squared
values of the coordinates of terms we obtain their contribution to principal axes.

4 Results and Evaluation

The results on Seneca’s works are reported by a genre-based order: first the
dialogues, then the tragedies and, finally, the opera omnia.

4.1 Dialogues

Figure 1 presents the clustering plot for the ten dialogues of Seneca.
According to agglomerative hierarchical clustering, each text starts in its own

cluster, and pairs of clusters are merged as one moves up the hierarchy by an always
lower degree of similarity. Clustering ends once all the texts are collected into one
common cluster, in this case showing that the dialogues of Seneca are dissimilar at
the height of 0.20 (i.e. similar at 0.80).
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Fig. 1 Clustering the
dialogues

For instance, the three books of De ira (which are clustered together) are dissim-
ilar from De providentia, from the three Consolationes and from De tranquillitate
animi at the height of 0.18 (i.e. similar at 0.82), while they are dissimilar from each
other at the height of 0.07 (i.e. similar at 0.93). Among the three books of De ira,
the second and the third are closer to each other than to the first one.

In Fig. 1 we can see that the three books of De ira are clustered apart from the
other dialogues. Principal component analysis is able to answer the question about
what makes De ira different from the other dialogues. As our method is lexical-
based, this question concerns the words (in this case, the lemmas) that distinguish
De ira from the other dialogues.
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Figure 2 is a contribution biplot that presents the results of the principal
component analysis performed on the term-document matrix of the dialogues of
Seneca. In particular, the biplot represents the rows and the columns of the term-
document matrix through a graph whose axes are the two first principal components,
as we observed that these are able to explain over the 90 % of the total variance
among texts.1

The first principal component gets graphically represented on the horizontal axis
of the contribution biplot and it is able to explain alone most of the variance (0.876).
As all the dialogues polarize in the same direction (the rightside of the biplot),
the first principal component describes a dimension that is common to all the texts
involved.

The second principal component is reported on the vertical axis of the biplot
and it explains the 0.026 of the variance among texts. This component describes
a dimension that is able to detail what mostly characterize one or more texts in
comparison to the others.

For instance, the verb sum is placed right in the center of the vector (approxi-
mately at height 0.0 on the vertical axis). This means that sum is a kind of a “neuter”
lemma, which is common to all the texts and does not characterize any of them in

Fig. 2 Principal component analysis of the dialogues

1In more detail, the first two principal components explain the 0.902 of the variance, this proportion
resulting from the sum of the explaining power of each of the two components (respectively, 0.876
and 0.026).



Clustering the Corpus of Seneca: A Lexical-Based Approach 19

comparison to the others. Instead, the lemmas iniuria, ira and irascor are moved
from the center and characterize the three books of De ira, which are all set apart
from the other dialogues in the biplot.

Although the second principal component explains just the 0.026 of the total
variance among texts, it is still able to report meaningful differences, which allow
to recognize the specific lexical features that distinguish De ira from the other
dialogues.

4.2 Tragedies

Figure 3 reports the clustering plot for the eight tragedies of Seneca plus the two
ones of disputed attribution.

Fig. 3 Clustering the
tragedies
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The long lasting debate about the attribution to Seneca of the Hercules Oetaeus
and the Octavia has led to the generally assumed conclusion that the Hercules
Oetaeus is much probably original, while the Octavia is an imitation of the tragic
style of Seneca.2 This is reflected by our results too. Indeed, the Hercules Oetaeus
is collected into the cluster of the original tragedies and, in particular, it is clustered
together with the Hercules (which is not surprising, because these two tragedies
cover a much similar topic). Conversely, the Octavia is clustered apart from the
other tragedies (like the Oedipus).

Figure 4 shows the results of the principal component analysis performed on
the tragedies. The lemmas that characterize the Octavia in comparison to the other
tragedies are coniunx, nero, nutrix, octavia, and seneca. These words summarize
well the contents of this fabula praetexta that tells the story of Octavia, who was
the first wife (coniunx) of the emperor Nero. Further, one of the main arguments in
favour of considering the Octavia a not original tragedy of Seneca is that one of the
characters of the story is named Seneca, which is again reflected by our principal
component analysis.

Fig. 4 Principal component analysis of the tragedies

2About the attribution of the Hercules Oetaeus see [3, 10, 13]. On the Octavia see [1, 2, 7, 17].
Among the contributions in favour of the authenticity of both the tragedies see [16].
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4.3 Opera Omnia

Figure 5 presents the results of clustering the opera omnia of Seneca.
Texts get organized into two main clusters, one including the tragedies and

the other featuring the dialogues and the other writings. Within the latter, the
Apocolocyntosis is clustered apart from the other works and all the seven books
of De beneficiis get clustered together.

The Apocolocyntosis is a menippean satyre (a kind of mixture of prose and
poetry) and it is indeed a text quite different from the others of Seneca: it is, thus,
not surprising that it belongs to a separate cluster.

Fig. 5 Clustering the opera
omnia
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The fact that the tragedies are set apart from the other works and that all the
books of De beneficiis and all those of De ira are clustered together shows that our
method is able to distinguish texts not only by genre but also by single work.

Figure 6 presents the results of the principal component analysis performed on
the opera omnia of Seneca. The seven books of De beneficiis deviate from the other
works and are characterized by the following lemmas: beneficium, gratia, gratus,
ingratus and reddo.

Along all our experiments we observed that De consolatione ad Polybium was
always clustered separately from the other two consolationes. Figure 7 reports the
contribution biplot that highlights the lexical features of these three texts, showing
that De consolatione ad Polybium is characterized by the lemmas bonus, caesar,
dolor, fortuna and frater, while De consolatione ad Marciam and De consolatione
ad Helviam matrem are distinguished by filius, locus, mater, vir and vivo. The three
texts share an high average relative frequency of lemmas like animus, homo and
natura.

The biplot reported in Fig. 7 looks different from those presented so far, as it
features a massive central black area formed by those lemmas that are shared by
the three consolationes. Although such an area was present also in all the biplots
reported above, it was always removed for presentation purposes. In this case, we
left the black area in on purpose, in order to show how big is the number of lemmas
with similar relative frequency that are shared by these three texts which, indeed,
appear as clustered very close to each other in Fig. 5.

Fig. 6 Principal component analysis of the opera omnia
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Fig. 7 Principal component analysis of the three Consolationes

5 Discussion and FutureWork

The main feature of our method is that it provides an objective and unsupervised
analysis of textual data. Our results can be replicated and the method is open to be
refined in order to achieve better results.

The R software allows an efficient managing of big amounts of data. This gave
us the opportunity to perform always full-text analyses, instead of grounding our
experiments on manually selected excerpts built in a subjective fashion.

At first, our method wants to quantify and verify (or not) previous intuition-based
assumptions on the evidence provided by textual data. For instance, our results do
not just show that the tragedies of Seneca are different from his dialogues (which is
indeed neither a new nor a really interesting fact), but they report objectively how
much different the tragedies are from the dialogues and how much different they are
from each other according to their lexical features.

Then, our fully data-driven approach does not only add empirical evidence to
subjective intuitions about texts, but it allows also to bring to light previously
overlooked relations between texts, like in the case of the relation between De
consolatione ad Polybium and the other two consolationes.

Further, such a method can also be used for authorship attribution purposes, like
in the case of the Octavia. However, this may lead to promising results just in those
cases where the works of disputed attribution differ from the original ones by lexical
features. If differences concern other linguistic properties of the texts (ranging from
syntax to semantics and, more generally, to literary style), a lexical-based approach
is not the best fitting one.
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As mentioned above, all our results were driven by the assumption that “you
shall know a text by the words it keeps”. This entails that the texts involved in our
experiments get clustered according to their lexical properties. In this context, thus,
saying that one work is close to another means that they share a relevant amount of
(non-function) words showing a similar distribution. In light of the results achieved,
such a basic assumption seems to be working, as the organization of texts that
automatically results from applying our method corresponds to the different works
and genres involved in the several experiments performed.

In the near future, we want to refine our method both by providing a more fine-
grained subdivision of data and by exploiting higher layers of linguistic annotation
of texts.

As the former is concerned, we shall organize the data according to the sub-parts
of the texts (books, chapters etc.): for instance, we should provide one separate file
for each letter of the Epistulae morales.

As for the latter, we first want to compare the texts by distribution of Parts of
Speech (PoS) and colligations (i.e. co-occurrences of PoS). At the higher level, we
have to exploit syntactically annotated data (produced by parsers, or made available
in treebanks) in order to compare the texts by phrases and/or chuncks instead of
single words. And finally, we can use second-order features as well (like semantic
descriptions of lexical items provided by Latin WordNet) to enhance the information
provided by words.
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Modelling Correlated Consumer Preferences

Marcella Corduas

Abstract
The CUB model is a mixture distribution recently proposed in literature for
modelling ordinal data. The CUB parameters may be related to explanatory
variables describing the raters or the object of evaluation. Although various
methodological aspects of this class of models have been investigated, the
problem of multivariate ordinal data representation is still open. In this article
the Plackett distribution is used in order to construct a bivariate distribution from
CUB margins. Furthermore, the model is extended so that the effect of rater
characteristics on their stated preferences is included.

Keywords
CUB models • Food quality • Ordinal data • Plackett distribution

1 Introduction

The level of consumer satisfaction with products and services is often investigated
by complex surveys. In such a context, respondents may be requested to rate several
attributes and to express their preferences by means of a Likert scale. In addition,
interviewees may belong to different categories since they are usually stratified
according to relevant features such as geographic location or gender.

The statistical analysis of this type of data traditionally relies on Generalized Lin-
ear Models which offer a fundamental framework for methodological developments
and empirical applications [21, 22].
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In this article we consider an alternative class of models, denoted CUB, which
has been recently introduced in literature [6, 28] in order to represent ordinal data.
In particular, the attention will be focussed on the problems related to the joint
modelling of correlated preferences. This is a very common situation arising in
consumer surveys since interviewees are generally unable to describe objectively
their perceptions and then they tend to give hedonically based judgements rather
than specific and thoughtful evaluations. For this reason, the ratings concerning
connected items are often correlated and a multivariate approach is needed in order
to understand the authentic map of consumer preferences.

In this respect, despite the CUB model has proved to be a successful statistical
tool for describing the judgements on a single item in food quality studies [2,15,19],
the problem of multivariate ordinal data representation within this class of models
is still open.

This article moves a first step in such a direction. In particular, we introduce
the Plackett’s bivariate distribution with CUB margins and we discuss how the
distribution parameters can be related to the subject’s covariates. Finally, we
illustrate an application of the proposed method to data from the EuroSalmon
project [7].

2 The Plackett Distribution with CUBMargins

A bivariate Plackett random variable .X; Y / is characterised by the following joint
cumulative distribution function:

H.x; yI / D M.x; y/ � ŒM 2.x; y/ � 4 . � 1/F.x/G.y/�1=2
2. � 1/ ; (1)

where  2 .0;1/. Here, F.x/, x 2 Sx, and G.y/, y 2 Sy , are the pre-defined
marginal distributions. FinallyM.x; y/ D 1C .F.x/CG.y//. � 1/ [20,31]. The
parameter  is a measure of association between X and Y ; in particular,  D 1

implies that X and Y are independent, whereas  < 1 and  > 1 refer to negative
and positive association, respectively.

The distribution H.x; yI / satisfies the Fréchet bounds: maxfF.x/ C G.y/ �
1; 0g � H.x; yI / � minfF.x/;G.y/g where the lower and upper bounds are
attained when  ! 0 and  !1, respectively.

The original derivation of the Plackett distribution moves from considering the
case of continuous margins and observing that one can always construct a joint
cumulative distribution H.x; yI / having the property that when it is cut by lines
parallel to the x and y axes, anywhere, the probabilities in the four quadrants viewed
as a contingency table have a cross-product ratio which remains constant for any
choice of the cutting points .x; y/.

The problem goes back to the earlier contribution of Yule [33], Pearson [26],
Pearson and Heron [27] who lively debated about the probability model with
constant association coefficient, its capability to reproduce the bivariate Normal
and, therefore, to model frequency surfaces in actual practice. The genesis of
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the distribution that Plackett introduced later, in 1965, is strictly related to that
debate. The differences with the Normal distribution are mainly due to the fact
that Plackett’s model with Normal margins is characterized by the skewness of the
conditional distributions, the nonlinearity of its regressions and, by definition, by
the fact that the invariance property of the association coefficient is not verified (as
follows by earlier Pearson’s results [26], Mosteller [25], and Goodman [10]).

Despite the constraints established over the possible shapes of H.x; yI /,
the Plackett’s distribution family has found numerous applications with reference
to various type of models for continuous and discrete data. In the latter case,
the distribution describes the latent random variable from which a contingency
table is derived by a discretization process. In this regards, overcoming the initial
dimensional limit to the bivariate or trivariate random variables, Molenberghs [23]
successfully extended it to the multivariate case. Furthermore, Molensberghs and
Lesaffre [24] exploited that result and proposed a modelling approach to take into
account the dependence of the global cross ratios from explanatory variables using
the Dale model [5].

Although marginal distributions are usually supposed to be continuous, the
derivation of the Plackett distribution holds with convenient premises in the
discrete case. In this regards, Genest and Neslehova [9] extensively discussed the
consequences of using copula distributions when the marginal distributions are not
continuous. One of the main result, remarked in that article, concerns the fact that
common association measures for a discrete copula distribution, such as Kendall �
and Spearman correlation, may depend on the margins, so that the  parameter can
not be estimated or interpreted by means of those measures.

In the rest of this article, we assume that .X; Y / is a discrete bivariate random
variable with support Sxy D f.x; y/ W x D 1; 2; : : : ; mIy D 1; : : : ; mg and the
margins are described by CUB models. Moreover, we will refer to the probability
mass distribution implied by (1) as:

h.x; yI / D
1X

rD0

1X

sD0
.�1/rCsH.x � r; y � sI /:

2.1 TheMarginal Distributions

We briefly introduce the definition of the CUB distribution of the random variable
X (similarly, the following results apply to Y ). In particular, X � F.xI�x/ with
�x D .�x; �x/0 (and Y � G.yI�y/) is characterised by the distribution function:

F.xI�x/ D �x
xX

jD1

�
m� 1
j � 1

�
.1��x/j�1�m�j

x C .1��x/ x
m
; x D 1; 2; : : : ; m;

(2)

where �x 2 .0; 1�, �x 2 Œ0; 1� and m > 3 [11]. Statistical properties and
extensions of CUB models have been widely investigated in literature, as reviewed
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by Corduas et al. [3]. In particular, CUB models provide a useful parametrization for
a model-based clustering approach by means of the Kullback–Leibler divergence
[1]. In addition, special situations due to shelter choices and the presence of
over-dispersion in the data can be taken into account [12, 14]. The framework of
CUB models can also be generalized in order to exploit intra-class correlation of
respondents originated from a hierarchical structure of data [13]. Finally, modelling
is feasible in practice since an efficient algorithm for the maximum likelihood
estimation has been implemented in R [16, 29].

The formulation of the CUB probability mass distribution highlights the role of
the two characterising parameters:

p.xI�x/ D �x
�
m � 1
x � 1

�
.1 � �x/x�1�m�x

x C .1 � �x/ 1
m
; x D 1; 2; : : : ; m:

(3)

The weight �x determines the contribution of the Uniform distribution in the
mixture, therefore, .1 � �x/ is interpreted as a measure of the uncertainty which
is intrinsic to any judgment. Besides, the parameter �x , characterises the shifted
Binomial distribution and .1 � �x/ denotes the degree of liking (feeling) expressed
by raters with respect to the item.

The mixture distribution (3) is rather flexible since it is capable of describing
distributions having very different shapes in terms of asymmetry and kurtosis [28].
For a given � 2 .0; 1�, the peakedness increases as � approaches the borders of
the parameter space whereas the distribution is symmetric for � D 0:5, negatively
skewed when � < 0:5 and positively skewed when � > 0:5.

The graphical representation of the estimated CUB parameters in the unit square
provides a useful tool in order to interpret the results from empirical analyses in
terms of the above mentioned unobserved components: the uncertainty and the
feeling.

Moreover, the influence of external factors, w, in the final judgement can be
taken into consideration by relating the model parameters�x and/or �x to significant
covariates describing the raters, by means of a logistic link function [30]. For this
aim, two further relations are added:

.�x jwi / D Œ1C exp.�wiˇx/�
�1 ; .�x jwi / D Œ1C exp.�wi�x/�

�1

where, with an obvious notation, ˇx and �x are the parameter vectors, and wi is
the i -th row of the regressor matrices associated to the i -th rater. In general, in the
univariate case, the covariates affecting the � and � parameters may not be the same.

Denoting with ıx D .ˇ0
x;�

0
x/

0 the parameters of the CUB margins, the presence
of covariates leads to F.xI ıx/ and G.yI ıy/ so that the Plackett cumulative
distribution (1) becomesH.x; yI ; ıx; ıy/ where log. / D wi�.

In the following section, we will denote the association parameter as  .�/ in
order to highlight the dependency from the � parameters.
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2.2 The Estimation

Given an observed sample of ordinal data, .xi ; yi /, for i D 1; 2; : : : n, the estimation
is performed by means of the IFM (Inference For the Margins) method [17, 18].
This is a method which is particularly useful for models where the dependence
structure can be separated from univariate margins. As described above, this is the
case of the Plackett distribution family where the marginal distributions originate
from univariate CUB models and the parameter  can be estimated separately
from margins. Specifically, the estimation is performed by means of a two-stage
estimation procedure. The first stage involves maximum likelihood from univariate
margins, and the second stage involves the maximum likelihood estimation of  .�/
with the univariate parameters held fixed from the first stage.

Thus, the model (1) with CUB margins is estimated as follows. Firstly, the log-
likelihoods:

l1.ıx/ D
nX

iD1
log .p.xi I ıx// I l2.ıy/ D

nX

iD1
log

�
p.yi I ıy/

�
; (4)

are separately maximised to get estimates: Oıx and Oıy . Secondly, the log-likelihood:

l.�I Oıx; Oıy/ D
nX

iD1
log

�
h.xi ; yi I .�/; Oıx; Oıy/

�
; (5)

is maximised to get O� and then O by means of the previous mentioned relationship.
This two step procedure can be associated to the use of the jackknife method for

estimation of the standard errors of the parameters and functions of the parameters.
In such a way, the analytic derivatives to obtain the asymptotic covariance matrix of
the vector of parameter estimates are not needed. Furthermore, since each inference
function derives from some log-likelihood of a marginal distribution, the inference
can be obtained by the existing EM algorithm implemented for the CUB models.

3 An Empirical Application

In order to exemplify the use of the proposed model for a real case study we consider
the distribution of ratings that consumers expressed about two types of commercial
smoked salmon. The data originates from a large survey which was carried out
during the Euro-salmon project and which involved consumers’ panels from various
European countries [4, 7]. This data set was analysed by Piccolo and D’Elia [30]
who estimated the univariate CUB models for the 30 products and introduced both
product and subject features as covariates affecting the CUB parameters.

In the present study, we consider the ratings that 230 Italian consumers and 618
consumers from France, Belgium and Germany gave about two types of smoked
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salmon, PROD19 and PROD24, using a 9 points Likert scale (1D dislike extremely,
9 D like extremely). We expect consumers from the last three mentioned countries
to be generally more trained to taste and recognise the quality of smoked salmon
with respect to Italian consumers because of the higher frequency of use of such
a product. Moreover, as for other food products, national cooking traditions and
foodpairing might affect the development of consumer abilities to appreciate certain
flavours and tastes.

According to the FAO Globefish report [8], Italy is one of the larger importing
countries in Europe with about 6,000 tonnes of imported product in 2005. The
national production, about 1,200 tonnes, is completely absorbed by local market.
The per capita consumption is rather low (0.13 kg) compared with that of France
(0.42 kg), Belgium (0.47 kg) and Germany (0.28 kg). Although UK was included in
the consumer panel of the Eurosalmon project, the data concerning the ratings of
UK interviewees were not considered in the following analysis. The present case
study has been in fact focussed on contrasting Italian consumer ratings with those
of respondents living in countries with high per capita consumption of smoked
salmon. In this regard, we notice that per capita consumption of such a product
in UK is only 0.12 kg, in spite of the fact that UK is the third producer of smoked
salmon in Europe. In addition, we recall that Sémenou et al. [32] studied consumer
behaviour across various European countries and highlighted that Italian consumers
place great importance on product appearance (the orange colour and the translucent
appearance) rather than on spoilage indicators confirming that Italian consumers are
generally less trained to taste smoked salmon.

The first type of smoked salmon, PROD19, originated from Scotland, has the
following sensory features: orange and homogeneous colour, medium intensity of
odour, firm texture, medium level of salt. The second one, PROD24, originated from
Norway, is less salty than the other product. Moreover, it has an intense orange
and homogeneous colour, translucent appearance, low odour, firm and crunchy
texture. The sensometric study proved that PRO19 is generally less appreciated than
PROD24 [32].

Firstly, we considered the two products separately and we estimated the CUB
models for each margin introducing a dummy variable representing the consumer
country of origin in order to explain both the feeling and the uncertainty parameter
(Table 1). Specifically, the dummy variable has value 1 when the respondent is
French/Belgian/German, and is 0 when he/she is Italian.

The estimated CUB distributions clearly show how the shape of the marginal
distribution varies depending on the respondents’ country of origin (Fig. 1).

Specifically, Italian consumers express their judgments with lower uncertainty
with respect to the other group. Moreover, considering the feeling parameter
estimates, it is evident that PROD24 confirms its attractiveness to consumers with
respect to PROD19. The value .1 � O�/ of PROD24 is always higher than that
estimated for PROD19.

However, French, Belgian and German consumers tend to distinguish better
between the two products. Consumers from those countries show a higher degree
of appreciation of PROD24 than that expressed by Italian consumers. Yet, the
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Table 1 Results (country: ITA D Italy BFG D Belgium, France, Germany)

X=PROD19 Ǒ
x0 D 0:394 Ǒ

x1 D �1:162 O�x:ITA D 0:597 O�x:BFG D 0:317

.SE D 0:284/ .SE D 0:360/

O�x0 D �0:293 O�x1 D 0:513 O�x:ITA D 0:427 O�x:O D 0:555

.SE D 0:086/ .SE D 0:140/

Y=PROD24 Ǒ
y0 D 1:023 Ǒ

y1 D �1:072 O�y:ITA D 0:7356 O�y:BFG D 0:488

.SE D 0:313/ .SE D 0:353/

O�y0 D �0:644 O�y1 D �0:239 O�y:ITA D 0:344 O�x:BFG D 0:293

.SE D 0:095/ .SE D 0:102/

Conditional joint O ITA D 1:761 O BFG D 2:189

Distribution .SEjack D 0:343/ .SEjack D 0:314/

Fig. 1 CUB models (Italian consumers D solid line, Others D dashed line)

reverse statement applies when PROD19 is considered. Notwithstanding the positive
judgement, French, Belgian and German consumers are less attracted by that
product than Italian consumers.

Thus, we jointly model the ratings concerning the appreciation of the two
products and again we consider the consumer country of origin as a meaningful
covariate to describe the preferences.

In Fig. 2 the conditional joint probability distributions of the ratings about the
two considered items is illustrated given the country of origin. The values of the
estimated  parameters are both positive and rather close, although the consumers
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Fig. 2 Joint probability distribution of PROD19 and PROD24 (left panel: Italian consumers; right
panel: Others

from Italy seems to show a lower level of association between the ratings that they
express.

Furthermore, we evaluated the probability that a consumer will assign a rate over
5 to both products. The probability that Italian consumers are satisfied with both
types of smoked salmon is 0.35 whereas the analogous probability for the other
group is only 0.28. This is the effect of the appreciation that Italian consumers
generally show towards both the products whereas consumers from the other
countries seem more critical.

Concluding Remarks

The results described in the previous section encourage further studies on the
proposed model for correlated ordinal data. On the one hand, CUB models
represent an effective statistical tool which helps to identify the role of two
latent components: the uncertainty of respondents in rating product attributes
and the strength of attraction each attribute arouses. On the other hand, the
joint modelling of ratings allows the study of the bonds that connect consumer
preferences about alternative products providing further insights into consumer
behaviour.

Further research is needed in order to implement the approach to the k-variate
case. The Plackett distribution has in fact been generalised by Molenberghs
[23]. However, the definition of such a distribution becomes computationally
cumbersome for high-dimensional applications and because of the discrete
nature of the involved random variables.
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Further attention may also be paid to alternative modelling approaches, such
as random effect modelling, which exploits the possible hierarchical structure of
the data in order to take the intra-correlation at cluster level into account.
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Modelling Job Satisfaction of Italian Graduates

Stefania Capecchi and Silvia Ghiselli

Abstract
Different models have been implemented to observe worker conditions, abilities,
leadership, decision-making attitudes and other related concerns. This paper
aims to investigate the job satisfaction of a large sample of Italian graduates
with a model-based approach derived by a mixture distribution. Sample data
have been collected in the 2010 AlmaLaurea survey on graduates employment
conditions, 5 years after their degree. We highlight several issues which are
effective in assessing the performance of the academic system and detecting
graduates’ responses towards labour market using CUB models approach. A spe-
cific contribution of this paper consists in emphasizing the possibility to achieve
immediate interpretation and visualization of the main relationships between
responses concerning job satisfaction and characteristics of the interviewees.

Keywords
Job satisfaction • Ordinal data • CUB models

1 Introduction

The relationship between job satisfaction and worker characteristics has been
heavily researched over the years in various domains such as Sociology, Economics
and Management Sciences [28], mostly in the field of industrial-organizational
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Psychology and in the goal-setting theory [27]. The positive link between workers’
satisfaction and their productivity levels initially motivated these analyses. Since the
early 1970s many definitions of job satisfaction have been proposed and different
models have been introduced [30]. A frequently quoted statement explicates
job satisfaction through a behavioural variable: “(. . . ) a pleasurable or positive
emotional state resulting from the appraisal of one’s job or job experiences” [19].

In labour market dynamics job satisfaction has become a leading determinant of
productivity, mobility, unionism, etc., and can be considered both an explicative
variable of job performance and a dependent one, based on individual as well
objective conditions [8]. Though job satisfaction could be analyzed as an element of
job performance it cannot be related only to incentives, especially to economic ones.
Indeed, the incentives sometimes act as counterproductive [26], so job satisfaction
has to be investigated as a relevant issue for individuals’ general life well-being
[3, 18]. To study such a phenomenon, a collection of adequate data is needed so to
analyze individual attitudes and satisfaction through an ordinal scale, according to
the level of agreement of the respondent. Questions used to measure job satisfaction
are usually related to an overall dimension and also to several specific items (such
as income level, education/job mismatches, overqualification, and so on).

The main objective of the paper is to introduce a model-based approach to job
satisfaction to investigate and check the significance of important relationships
of the responses with subjects’ covariates. In this respect, graphical devices are
introduced to effectively visualize different facets of the estimated models.

The paper is organized as follows: in the next section, the notation and main
properties of CUB models are introduced. After a brief mention about data collec-
tion, Sect. 3 examines global job satisfaction and its components with a special
reference to their relationships. Then, in Sect. 4 we consider the effect of some
subjects’ covariates on the expressed satisfaction, with respect to final grades and
typology/sector of work. Some concluding remarks end the work.

2 CUBModels

In recent years remarkable advances have been made in the analysis of categorical
ordinal data [1,29] and most of them rely on Generalized Linear Models [21,22]. A
different paradigm has been proposed with the introduction of CUB models [24]:
a comparison between these approaches, with reference to job satisfaction, has
been conducted by [9]. Further extensions have been exploited to take into account
real data problems as in case of hierarchical, shelter and overdispersion effects
[13–15]. These models have been used with efficacy in presence of ordinal data
expressing preference and evaluation, and collected in different circumstances, as
discussed by [5] and [16], among others. Hereafter, we apply CUB models to explain
the responses about job satisfaction and measure their possible relationships with
selected covariates.

CUB models are generated by a class of discrete probability distributions which
takes into account two latent components pertaining to the response, denoted as
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feeling and uncertainty. More specifically, these latent variables are modelled as a
shifted Binomial and a discrete Uniform random variable, respectively.

Let the response variable Y take values in f1; : : : ; mg, where m > 3 for
identifiability constraints [11]. Then, we collect a sample .y1; y2; : : : ; yn/0 where
yi is the rating expressed by the i th subject, for i D 1; 2; : : : ; n, on an m point
scale. Moreover, let xi and wi , i D 1; : : : ; n, be subjects’ covariates selected for
explaining feeling and uncertainty, respectively.

The general formulation of a CUB model is:

Pr.Y D yjxi;wi / D �i
 
m� 1
y � 1

!
.1 � �i /y�1�m�y

i C .1 � �i / 1
m
; (1)

with y D 1; 2; : : : ; m, and two logistic links for the systematic components:

logit.�i / D xiˇI logit.�i / D wi� I i D 1; : : : ; n I (2)

where logit�1
�
z
� D �1C e�z

	�1
, for any real z.

We support the interpretation of the parameters .�; �/ in terms of uncertainty
and feeling components, respectively. Each respondent answers thoughtfully or with
a completely uncertain behaviour, with propensities measured by � and 1 � � ,
respectively. As a consequence, .1��/ is a measure of uncertainty. In a rating survey
.1� �/may be considered as a measure of agreement to the item. The meaning of �
changes according to the empirical framework since that parameter is determined
by the frequency of responses with low degree of agreement (liking, approval).
In general, the � parameter has been related to degree of perception, measure of
closeness, assessment of proficiency, rating of concern, index of selectiveness, pain
threshold, personal confidence, subjective probability, and so on. In our context,
.1 � �/ is the level of satisfaction of the respondent.

Although � and � may be related to the mean level and variability of the ordinal
response, respectively, such an interpretation may be considered as a partial one and,
in some circumstances, also misleading. Indeed, the expectation of a CUB random
variable is a non-linear function of both parameters and thus infinitely many pairs
.�; �/ would give the same mean value. In addition, if we compute the variance
or the mean difference of the distribution (1) we get a non-monotone relationship
with respect to � . As a consequence, the parameter � cannot be strictly related to a
dispersion aspect of the random variable. Instead, if we measure the heterogeneity
of the CUB distribution with respect to .1 � �/ we get a regular increase over the
whole parameter space and for any fixed �. In fact, it is possible to prove that the
parameter � is formally related to the heterogeneity Gini index [10, 12].

For a given m, there is one-to-one correspondence among CUB probability
distributions and the parameters .�; �/. Then, we may represent each CUB model as
a point in the unit square with coordinates .1��; 1��/ corresponding to uncertainty
and satisfaction, respectively, in our study. We can summarize several estimated
models as a collection of points in the parameter space and check for possible
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effects of covariates when time and circumstances are different. In addition to this
representation, other graphical devices are convenient to emphasize the relationships
between uncertainty or feeling and the relevant covariates (as we experiment in
Sects. 3–4). Finally, if prediction issues have to be pursued, selected profiles of
distribution functions for given covariates of respondents may also be plotted.

From an inferential point of view, the estimation procedure is obtained by the
Maximum Likelihood method exploiting the EM algorithm [23], as specified for
CUB models in [25]. Detailed information on computational aspects can be found in
[17]; the R program used in the present study is freely available.

The validation of CUB models with covariates (for uncertainty and/or feeling)
is achieved by considering the parameter significance and the increase of the log-
likelihood function when covariates are inserted in the standard model. In that
regard, Wald and likelihood ratio tests may be exploited; often, AIC and BIC criteria
have been used.

From a fitting point of view, if the sample size .n/ is moderate or large, as
it happens in our data set, traditional X2 measures are not effective since they
tend to reject adequate fitting even in case of empirical and estimated distributions
nearly overlapping. Thus, we prefer relying on dissimilarity indexes or using an
observed/predicted table where prediction of ordinal data have been obtained by
some location index (as modal values, median, expectation).

3 Global Satisfaction and Its Components

The analyzed data set is a subset of the archive of AlmaLaurea Inter-University
Consortium, which now covers 64 Italian universities and accounts for about 78%
of Italian graduates well distributed from a geographical point of view. In a broad
sense, it is representative of the whole population of graduates. Our research
concerns the survey carried out in 2010 and refers to 59% of all graduates in the
period May–August 2005 [2, 6]. In addition to a global satisfaction rating, data set
includes responses to several facets of job satisfaction as listed in Table 1 and also
covariates concerning personal, socio-demographic and economic variables.

The survey refers to the students who obtained their degree according to the
former Italian university education system and are employed after 5 years from

Table 1 Job satisfaction items

1. Security of the job 8. Involvement in the decisional processes

2. Coherence with studies 9. Flexibility of time

3. Acquisition of professionalism 10. Availability of free time

4. Prestige 11. Workplace

5. Connection with cultural interests 12. Relationships with co-workers

6. Social utility 13. Expectation of future gains

7. Independence or autonomy in the job 14. Perspectives of career
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Table 2 Average of job satisfaction and items, with corresponding missing values

Components Missing Average Components Missing Average

Global satisfaction 5 7:57

Security 5 6:74 Involvement 15 7:54

Coherence 3 6:92 Flexibility 14 7:06

Professionalism 14 7:66 Free time 10 6:19

Prestige 20 7:10 Workplace 63 7:46

Cultural interests 4 7:27 Co-workers 581 8:02

Social utility 37 7:37 Future gains 117 6:53

Autonomy 12 7:83 Career perspectives 139 6:57

their graduation. All statistical analyses have been performed on 17;387 validated
questionnaires where the job satisfaction items are based on a modified 9-point
response scale (1Dvery dissatisfied, 9Dvery satisfied).

In Table 2, for each item, the number of missing data and the average of job
satisfaction responses are reported. Notice that the large number of missing data for
the item “Relationships with co-workers” is mainly due to single workers. Anyway,
the percentage of missing values is not so relevant. In this respect, univariate
CUB models for each item on the complete subset have been estimated.
Since, for a given m, ML estimates are invariant with respect to sample size, it is
possible to visualize the estimated CUB models on the same parameter space, as
in Fig. 1. This analysis confirms that the estimated CUB models are not coincident
(that is the differences among estimated parameters are always significant); in fact,
even if we add confidence regions on the parametric representation in Fig. 1 they
never overlap. All items present a high level of satisfaction since, for all estimated
models, it turns out that .1 � O�/ > 0:744. Instead, uncertainty is more dispersed
since .1 � O�/ 2 .0; 0:6�.

In this representation, “Availability of free time”, “Expectation of future gains”
and “Perspectives of career” get the lowest satisfaction. “Security of the job”,
“Relationships with co-workers” and “Coherence with studies” are considered
very satisfying, comparatively. With regard to the indecision in the answers, we
observe that respondents are more uncertain about “Security of the job”, “Coherence
with studies” and “Availability of free time”. Finally, we observe that the global
satisfaction is not a mere average of expressed satisfaction for the different facets.

Hitherto, analyses have been pursued by comparing the univariate distributions
of ratings expressed for both global and facets of job satisfaction. The closeness
of points in the parameter space (as depicted in Fig. 1) implies a similar shape
of distribution but not necessarily a strong relationship among the corresponding
facets. Indeed, a multivariate analysis based on CUB models is not widespread yet
[7] whereas a multivariate analysis adapted to ordinal data should be applied, as
pursued by [4, 20], for instance.

However, in the context of CUB models, it is possible to interpret the response to
global satisfaction as the multifacet result of the different features, and to introduce
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Fig. 1 Estimated CUB models of global job satisfaction and 14 items

these aspects as covariates in the model. Assuming a constant uncertainty in this
model (this approximation may be fairly accepted with our data set), if we denote the
global satisfaction and the items with Y and Y .j /; j D 1; 2; : : : ; 14, respectively,
we fit a model (1) where the specification (2) is given by:

�i D �I logit.�i / D �0 C
14X

jD1
�j Y

.j /
i I i D 1; : : : ; n : (3)

Adopting a stepwise strategy, based on both significance of parameters and
increase in log-likelihood functions, we sequentially upgrade a standard CUB model
(without covariates) for job satisfaction which presents a log-likelihood function
estimated at maximum as �27;006, with n D 16;547 complete observations.

It turns out that all items are largely significant to explain the global satisfaction
but “Flexibility of time” and “Perspectives of career”: such a model increases log-
likelihood function up to �21;300. In addition, since all covariates have the same
range, the estimated �j parameters express the importance of a single component
to contribute to the global job satisfaction. In Table 3 we report the facets which
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Table 3 A CUB model of global job satisfaction as a function of significant items

Facets Estimates O�j Facets Estimates O�j Facets Estimates O�j
Professionalism �0:100 (0.007) Involvement �0:040 (0.006) Social utility �0:034 (0.004)

Prestige �0:127 (0.007) Co-workers �0:054 (0.007) Coherence �0:023 (0.004)

Autonomy �0:145 (0.006) Future gains �0:065 (0.005) Security �0:047 (0.003)

Cultural interests �0:067 (0.006) Workplace �0:033 (0.005) Free time �0:011 (0.004)

Asymptotic standard errors in parentheses

are significant to explain the global job satisfaction. In this model, we get O� D
0:993 (0.001) and O�0 D 3:735 (0.060). The facets are ordered according to their
contribution to improve the log-likelihood function.

Thus, “Acquisition of professionalism”, “Prestige”, “Independence or autonomy
in the job”, “Connection with cultural interests”, “Involvement in the decisional
processes”, “Relationships with co-workers” are the most relevant features whereas
“Coherence with studies”, “Security of the job”, “Availability of free time” exert
a minor (although significant) impact. Notice that “Expectation of future gains” is
scored as the 7th.

Model (3) confirms the theory that job satisfaction is a very complex latent
variable, not strictly related to monetary compensation. Its expression is the final
outcome of several causes (subjective and objective, related to workplace and
colleagues), each of them contributing with separate but significant impacts.

4 Covariates Effects on Job Satisfaction

To better understand the expressed job satisfaction, we present a selection of results
focused on the effects of gender, grades and typology of work.

First, we check if Gender exerts a significant effect on the responses by means of
model (1) where:

logit.�i / D ˇ0 C ˇ1 Genderi I logit.�i / D �0 C �1 Genderi I i D 1; 2; : : : ; n

and Genderi D 0 or 1 if the i th subject is men or woman, respectively.
In Table 4 we list the sign (if significant) of the estimated Ǒ1 and O�1 parameters

to measure the impact of Gender on uncertainty and satisfaction, respectively. It
turns out that the significant effect of uncertainty is greater for women (except
for “Social utility” and “Autonomy”) and their satisfaction is significantly greater
for the facets “Security”, “Coherence”, “Cultural interests”, “Social utility”, “Free
time”, and “Workplace”.

Let SC D log.Grade/ be a score variable for the final grade; for convenience, we
denote summa cum laude as 112. Then, the best estimated CUB model with score as
a covariate implies the following relationship for the level of satisfaction:

1 � �i D logit�1
� � 95:547C 40:996 SCi � 4:472 SC2i

�
; i D 1; 2; : : : ; n:
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Table 4 Sign of estimated parameters for Gender covariate in CUB models for all items

Components Uncertainty Satisfaction Components Uncertainty Satisfaction

Security � � Involvement � C
Coherence ı � Flexibility � C
Professionalism � ı Free time C �
Prestige � C Workplace � �
Cultural interests ı � Co-workers � ı
Social utility C � Future gains � C
Autonomy � C Career perspectives � C

� negative effect, C positive effect, ı non statistically significant
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Fig. 2 Global satisfaction as a function of grades, estimated by a CUB model

Gender is also a significant covariate for determining a shift in the uncertainty of
the responses (women are more uncertain); however, the shape of the relationships
between satisfaction and final grade is the same for both genders.

Figure 2 illustrates the level of the job satisfaction as function of final grades.
As expected, the function is asymmetric since students receiving low scores are
generally older and conclude their University training with some difficulties: when
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Fig. 3 CUB models for job satisfaction as functions of contract typology and gender

they get a degree, they are often already employed and such a result may improve
their career. As a consequence, they manifest a greater satisfaction in the job despite
the achieved low scores. On the contrary, students receiving very high scores are
often clever in their professional abilities; some of them obtain jobs adequate to
their skills and express a greater job satisfaction. Otherwise, the overqualification
can be a possible explanation of a lower satisfaction expressed by respondents
with high degree scores. Ceteris paribus, graduates with scores around 97 show
the minimum job satisfaction. These general considerations have been empirically
checked in the selected data set; specifically, the correlation between age at degree
and grade is �0:21 .

In Fig. 3, we describe how contract typology affects the expressed satisfaction.
In particular a permanent position, that allows for a sense of security for long-
term individual and family planning (as declared by 69% of the sample), generates
a higher level of satisfaction for both men and women. The significance of this
covariate is verified by defining a dummy covariate: “permanent” versus all other
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Fig. 4 CUB models for job satisfaction as functions of contract typology, sector and gender

typologies of job. We found that job security affects both uncertainty and feeling
parameters (people with permanent job are less uncertain and more satisfied as
clearly shown in Fig. 3) whereas Gender is significant only for uncertainty in the
expressed satisfaction (women are more uncertain in any case). The well separated
95% confidence regions plotted around estimated models suggest significant differ-
ences among genders, sector and typology of contract.

Figure 4 summarizes the estimated CUB models of job satisfaction when
covariates are Full-time/Part-time (denoted on the plot as Fu/Pa), Public/Private
(Pu/Pr) and Gender (Wo/Me). It is evident that the main discrimination is Full-
time versus Part-time, with the second one characterized by a greater uncertainty.
Regarding Full-time jobs, the satisfaction expressed by women is higher, whereas
in Private sector the effect of Gender is evident: women are a bit more satisfied.
Finally, in all cases, to work in the Public sector generates more satisfaction than in
the Private one.
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Concluding Remarks

The results so far discussed motivate the flexibility and versatility of CUB models
as a different paradigm for the analysis of job satisfaction data. More specifically,
a remarkable added value of the approach is the possibility to represent the
estimated models in a proper parameter space and to see how they are modified
with respect to subgroups and/or covariates by using several different graphical
displays (for instance, the study of feeling as a function of selected covariates,
the location of estimated CUB models related to different characteristics of
respondents, and so on).

In any case, the consideration that all models contain an uncertainty com-
ponent is a relevant one since this presence may alter the interpretation of the
observed data if we summarize all information by some average or other location
indexes.

Finally, if we adhere to the logic of CUB models, we are implicitly accepting
that all data related to job satisfaction may be effectively summarized by just few
parameters within a specific class of discrete mixture distributions, so to improve
interpretation, prediction and classification.
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Identification of Principal Causal Effects Using
Secondary Outcomes

Fabrizia Mealli, Barbara Pacini, and Elena Stanghellini

Abstract
Unless strong assumptions are made, identification of principal causal effects
in causal studies can only be partial and bounds (or sets) for the causal effects
are established. In the presence of a secondary outcome, recent results exist to
sharpen the bounds that exploit conditional independence assumptions (Mealli
and Pacini, J. Am. Stat. Assoc. 108:1120–1131, 2013). More general results,
though not embedded in a causal framework, can be found on concentration
graphs with a latent variable (Stanghellini and Vantaggi, Bernoulli 19:1920–
1937, 2013). The aim of this paper is to establish a link between the two settings
and to show that adapting results contained in the latter paper can help achieving
identification of principal casual effects in studies with more than one secondary
outcome. An empirical illustrative example is also provided, using data from a
real social job training experiment.
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1 Introduction

Causal inference studies, including randomized clinical trials, are often subject to
possible post-assignment complications. Those include noncompliance to assigned
treatment, censoring of primary outcomes due to death, missing outcome data, and
can be thought of as selection processes not under experimental control.

If the causal problem is formalized using the potential outcome framework, also
known as the Rubin Causal Model [12], the presence of intermediate variables can
be represented by means of a stratification of units into latent classes (also named
principal strata, [5]) defined by the joint value of the intermediate variables under
each possible treatment level.

The goal of the causal analysis is usually that of identifying and estimating the
so called principal causal effects, that is, contrasts of features of the distribution of
potential outcomes under different treatment levels, conditional on a latent stratum.
The identification of the outcome distributions conditional on the latent classes is
thus crucial. Without strong assumptions, such as exclusion restriction assumptions
(ER), these distributions are typically only partially identified. However, identifica-
tion results exist [11], that exploit conditional independence assumptions between
two outcomes (only one of which may be of primary interest). More general
results, though not embedded in a causal framework, can be found in studies on
concentration graphs with a latent variable [14].

The main contribution of the paper is to formally bridge the two settings and
show how these results on concentration graphs can be adopted and adjusted to solve
identification problems in causal studies in the presence of intermediate variables.

The paper is organized as follows: the potential outcome framework with one
intermediate binary variable and multiple outcomes is presented in Sect. 2, and it
is related to a general structure with a single binary latent variable and multiple
discrete variables. Section 3 contains the main new results of identifiability of
causal quantities of interest and includes some examples to explain the potential
applicability of our results. Section 4 discusses the relevant problem of label
swapping in our causal framework. An illustrative empirical example is reported
in Sect. 5, where data from of a real social job training experiment are analyzed.
Concluding remarks and directions for future research are provided in section
“Concluding Remarks”.

2 Framework and Notation

Let us introduce the potential outcome framework. Throughout the paper we will
make the stability assumption (SUTVA; [13]) that there is neither interference
between units nor different versions of the treatment. Under SUTVA, let Zi be a
binary treatment assignment for unit i (Zi D 0 if unit i is assigned to the control
group,Zi D 1 if unit i is assigned to the treatment group).

We denote by Di.z/ a potential intermediate binary variable for unit i when
assigned to treatment z, which is, without loss of generality, assumed to be an
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indicator equal to 1 if a specific post-treatment event happens and 0 otherwise. The
units under study can be stratified into the following four subpopulations, according
to the value of the two potential indicatorsDi.0/ and Di.1/:

11 D fi W Di.1/ D Di.0/ D 1g;
10 D fi W Di.1/ D 1;Di .0/ D 0g;
01 D fi W Di.1/ D 0;Di .0/ D 1g;
00 D fi W Di.1/ D Di.0/ D 0g:

Because only one of the two potential indicators is observed, these four subpopula-
tions are latent, in the sense that in general it is not possible to identify the specific
subpopulation a unit i belongs to. Let Ui represent the latent group to which subject
i belongs, Ui D f11; 10; 01; 00g.

Depending on the type of post-treatment event that variable D represents, the
four groups may have different interpretations; we give a couple of examples. When
the intermediate variable represents the treatment receipts in the presence of non-
compliance (also known as instrumental variable setting), the four subpopulations
are denoted as compliers, for whom Di.z/ D z for z 2 f0; 1g; never-takers, for
whom Di.z/ D 0 for z 2 f0; 1g; always-takers, for whom Di.z/ D 1 for z 2 f0; 1g;
and defiers, for whom Di.z/ D 1 � z for z 2 f0; 1g [2]. In the presence of
censoring due to death, the intermediate variable is an indicator of survival, so
that the four subpopulations are usually denoted as always-survivors, survivors only
under treatment, survivors only under control, and never-survivors.

We define four potential outcomes for a k-variate binary outcome,

Yi .z; d / D ŒYi1.z; d /; Yi2.z; d /; � � � ; Yik.z; d /�
0;

for all possible combinations of treatment assignment and intermediate binary
variable, z 2 f0; 1g and d 2 f0; 1g. However, for every subject i , only two of the
four potential outcomes are potentially observed, namely, Yi .z;Di .z//, z 2 f0; 1g,
the other two potential outcomes being a priori counterfactuals [5]. In order to avoid
the use of such counterfactuals, we let the k-variate binary outcome variable depend
only on treatment assignment: Yi .z/.

In what follows we will maintain the following assumptions:

Assumption 1 Random assignment: Zi is randomly assigned, implying that

Zi ?? Di.1/;Di .0/;Yi .1/;Yi .0/;

that is,

Zi ?? Ui;Yi .1/;Yi .0/; 8i:
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Random assignment of Zi usually holds by design in randomized experiments.
Sometimes it is assumed to hold conditional on pre-treatment covariates. However,
without loss of generality, we avoid the use of covariates in this paper.

Assumption 2 Nonzero effect of Z on D: 0 < jE.Di.1/�Di.0//j < 1.

This assumption essentially implies that the latent variable Ui may take on at least
two values and can be verified from the data [2].

In a causal inference problem, causal estimands of interest are typically causal
effects conditional on the values of U (contrasts of summaries of Y.1/ and Y.0/
within a latent group). For example, the effect of the instrument on compliers in
the instrumental variable setting (usually interpreted as the causal effect of the
receipt of the treatment), or the effect of the treatment on the quality of life in the
subpopulation of always-survivors, in the case of censoring by death, are common
quantities of interest. To this extent, we usually need to identify the distribution of
one or more outcome variables under Z D 1 and Z D 0. We introduce the joint
distribution of potential outcomes:

P ŒYi .z/ D .y1; y2; � � � ; yk/jUi D u� (1)

for z D f0; 1g, u D f11; 10; 01; 00g:
In the following, we assume that the focus of the analysis are intention-to-treat

(ITT) effects on a single outcome, let this be the first outcome, Y1, for each latent
subgroup, which are defined as:

EŒYi1.1/� Yi1.0/jUi D u� u 2 f11; 10; 01; 00g: (2)

The data we can observe are Zi , Dobs
i D Di.Zi / and Yobs

i D Yi .Zi /, so that
the distributions that are asymptotically revealed by the sampling process are the
following:

P ŒYobs
i D .y1; y2; � � � ; yk/jZi D z;Dobs

i D d�; P ŒDobs
i D d jZi D z�:

We can observe four different groups of units, defined by the observed values of
Z and Dobs, O.Z;Dobs/; each group results from a mixture of two latent strata, as
shown in Table 1.

Table 1 Correspondence between observed and latent groups

Observed subgroups O.Z;Dobs/ Latent strata

O.1; 1/ D fi W Zi D 1;Dobs
i D 1g 11 or 10

O.1; 0/ D fi W Zi D 1;Dobs
i D 0g 00 or 01

O.0; 1/ D fi W Zi D 0;Dobs
i D 1g 11 or 01

O.0; 0/ D fi W Zi D 0;Dobs
i D 0g 10 or 00
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In general, a concentration graph can be used to represent the conditional
independencies in the joint distribution of Yi .z/ and Ui , after conditioning on Dobs

i

and Zi , i.e. of P ŒYi .z/ D .y1; y2; � � � ; yk/; Ui D ujZi D z;Dobs
i D d�, for

z D f0; 1g, and d D f0; 1g:
In case we do not exploit restrictions across arms (i.e., across values of Z,

such as exclusion restrictions, [11]), the distributions of variables to be identified
(within each of the four observed groups) can be generically denoted by P ŒYi D
.y1; y2; � � � ; yk/;Wi D w�, with W a latent binary variable.

To avoid complex notation, we omit the suffix i in the sequel. We therefore
denote with Y D .Y1; : : : Yk/ the k-variate outcome, and with W the binary latent
variable. We then consider the distribution of .Y;W / for observed groups (Z D z;
Dobs D d ), with W a latent binary variable taking values on a defined subset of U .
For example, when z D 1 and d D 1,W is a latent binary variable taking on values
in f11; 10g.

Under suitable conditional independence restrictions, it is possible to identify the
joint distribution of .Y;W / within each observed group.

Once the outcome distributions are identified, solving a causal problem requires
to estimate distributions involved in the causal estimands and contrast them across
arms, conditional on the same value of U , so that it is fundamental to be able to
identify the labels of different latent groups, i.e., the strata membership, as will be
shown in Sect. 4.

Recent results on identification of models with one latent binary variable allow
for conditional associations between the observable variables (see [1, 14]). Next
section contains a review of these results together with a list of concentration graphs
corresponding to identified models that can be of interest in our causal context.

3 Some Identification Results

Let GK D .K;E/ be an undirected graph with node set K D f0; 1; : : : ; kg and
edge set E D f.s; j /g whenever vertices s and j are adjacent in GK , 0 � s <

j � k. A discrete random variable is associated to each node as follows: to node
0 the latent binary random variable W is associated, while to nodes 1; : : : ; k the
observable outcome random variables Y1; : : : ; Yk are associated. A concentration
graphical model is a family of joint distributions of the variables .Y;W / satisfying
the Markov property with respect to GK , namely that the joint distribution of the
random variables factorizes according to GK ; see [8] for definitions and concepts.

Let M.�/ D fP� W � 2 �g be a family of probability distributions over the
observable variables with parameter space � and  W � ! P� the parametrization
map. A model is generically identified if  is finite-to-one almost everywhere in the
parameter space (see for details [1]). When the mapping is one-to-one everywhere
in the parameter space, then the model is strictly identifiable. Strict identification
is also known as global identification. For generically identified models, a precise
characterization of the values leading to the same P� ; and of the null measure subset
where identifiability breaks down, is essential to perform correct analysis [4].
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Conditions for (generic/strict) identification of graphical models with one latent
variable have been given in [1, 14]. Different from the former, the latter paper
focuses on binary latent structures only, but provides explicit expression of the
subspace where identifiability breaks down in generically identified models. The
conditions of the two papers overlap only partly, but we here refrain from comparing
them.

A common problem that arises when dealing with discrete latent variable models
is known as “label swapping”. This implies that two models with a relabelling of the
latent classes generate the same marginal distribution over the observable variables.
Therefore, in a binary latent variable model, the parametrization map is at most two-
to-one. In the following we refer to strictly identified models as to models that are
strictly identified up to label swapping. Awareness of this ambiguity is necessary
when interpreting the results. However, in this causal setting, randomization allows
us to identify labels across different observed groups, as we will discuss in next
section.

It is well-known that the binary latent class model, see Fig. 1a, is strictly
identified if and only if k � 3, see [7, 10]. Strictly identified models that allow for
conditional associations among the observable variables require k � 4. In Fig. 1b
the concentration graph corresponding to the most complex strictly identified model
with k D 4 is presented (see [14], for details). More complex models are useful
because they imply less restrictive conditional independence assumptions.

To give some examples, consider an open-label encouragement randomized
study, aimed at assessing the effects of a new drug on an outcome. The new drug
is known to have some frequent side effects, such as headaches and muscle aches.
Noncompliance is present, but, to simplify the example, we hypothesize that the
subjects in the control group cannot have access to the new drug. Because treatment
is not blinded, we cannot rule out effect of encouragement on the outcomes, that is
exclusion restrictions do not hold. Suppose, however, that it is plausible to assume
that the three outcomes (primary outcome and the two indicators of side effects) are
conditionally independent, given compliance status (U ) and treatment assignment
(Z). That is, after conditioning on Z and U , the implied model has conditional
independence graph as in Fig. 1a.

Consider now the same setting as in the previous example, where there are three
binary indicators of side effects. Suppose that, in a specific setting, side effects can
be plausibly associated as shown in the graph (with Y2 independent of Y4 given

a b

Fig. 1 Concentration graphs corresponding to (a) a latent class model for k D 3 and (b) the most
complex strictly identified model for k D 4
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a b

Fig. 2 Concentration graphs with k D 5 observables corresponding to (a) a strictly identified
model and (b) a generically identified model

Y3 andW ), but are independent of the primary outcome, conditional on compliance
status and treatment assignment. That is, after conditioning onZ and U , the implied
model has conditional independence graph as in Fig. 1b.

In Fig. 2a the most complex strictly identified model with k D 5 is presented. The
model can represent a social randomized experiment with noncompliance and where
the exclusion restriction of the random assignment is questioned. A random subset
of subjects are offered participation in a training program, while the other subset
is denied participation. Both groups are tracked at baseline, and at five subsequent
waves to gather information on their employment status. It is plausible that, for
the dynamics of the labor market, employment statuses at non adjacent waves are
independent, conditional on all other nodes. The implied model, after conditioning
on Z and U , has conditional independence structure as in Fig. 2a.

Even more complex association structures allow identification and could be
plausible description of empirical settings. An example of a generically identified
model is in Fig. 2b. The models fails to be identified in a subspace of null measure,
the expression of which can be derived using the results in [14] and is here omitted
for brevity.

4 Identification of the Levels of the Latent Variable

The problem of label swapping reflects into the problem of exactly identifying the
levels of U across observed groups. In this context, this is particularly necessary as
principal effects are defined as contrasts of (features) of the outcome distributions
across arms, conditional on the same value of U . Here, identification of the levels of
the latent variable may be achieved due to randomization and assuming that P.U D
u/ varies with u, i.e. P.U D i/ ¤ P.U D j / for all i; j 2 .11; 01; 10; 00/. In fact,
randomization guarantees that U has the same distribution in both treatment arms
(Z D 0 andZ D 1) and, from the observed groups (see Table 2), the distribution of
U can be identified in both treatment arms. Therefore, given the two distributions
we can identify the labels, again if the four values of U have different probabilities.

If the usually invoked monotonicity assumption is maintained (D.1/ � D.0/),
identification of the distribution of U is easier. Monotonicity rules out the presence
of the f01g latent stratum, so that the subgroup proportions can be identified as
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Table 2 Sample sizes, observed and latent groups in Job Corps data

Dobs Dobs Dobs

Z 0 1 Z 0 1 Z 0 1

0 3275 0 0 {00,10} � 0 NT, C �
1 1471 3545 1 {00} {10} 1 NT C

P ŒU D 11� D P ŒDobs D 1jZ D 0�, P ŒU D 00� D P ŒDobs D 0jZ D 1�, and
P ŒU D 10� D 1 � P ŒU D 11�� P ŒU D 00�.

When monotonicity is not plausible, however, we can still identify the labels,
as the distribution of U is the same for Z D 0 and Z D 1. For example, thank
to randomization, P ŒU D 11� D P ŒU D 11jZ D 1� D P ŒU D 11jZ D 0�:

P ŒU D 11jZ D 1� is identifiable because it is equal to P ŒU D 11jZ D 1;Dobs D
1�P ŒDobs D 1jZ D 1� C P ŒU D 11jZ D 1;Dobs D 0�P ŒDobs D 0jZ D 1� D
P ŒU D 11jZ D 1;Dobs D 1�P ŒDobs D 1jZ D 1� and these are identifiable
quantities. Analogously, P ŒU D 11jZ D 0� is identifiable because it is equal to
P ŒU D 11jZ D 0;Dobs D 1�P ŒDobs D 1jZ D 0�C P ŒU D 11jZ D 0;Dobs D
0�P ŒDobs D 0jZ D 0� D P ŒU D 11jZ D 0;Dobs D 1�P ŒDobs D 1jZ D 0�:

Given the identification of outcome distribution within strata and treatment arm and
the identification of labels, we can identify the contrasts in (2) for each principal
stratum (each level of the latent variable).

5 An Illustrative Empirical Example

For illustrative purposes, a randomized study with noncompliance, where the
exclusion restriction of the random assignment has been questioned, is analyzed.
The study is the National Job Corps (JC) Study, a randomized experiment performed
in the mid-1990s to evaluate the effects of participation in JC (D), a large job
training program for economically disadvantaged youths aged 16–24 years [3]. A
random sample of eligible applicants was randomly assigned into treatment and
control groups (Z), with the second group being denied access to JC for 3 years.
Both groups were tracked at baseline, soon and at 12, 30 and 48 months after
randomization. Previous works have concentrated on global ITT effects, i.e., effects
of being assigned to enroll in Job Corps (e.g., [9,16]). However, noncompliance was
present, as only 68 % of those assigned to the treatment group actually enrolled in JC
within 6 months from assignment. When estimating the effect on compliers, the ER
for never-takers was always maintained (e.g., [6]). The ER for never-takers rules out
any effect of assignment on the outcomes for those who do not take the treatment.
However being denied enrollment in JC, as opposed to deciding not to accept the
offer to enroll, may, in principle, affect the labor market behavior of never-takers,
especially in the short-term. For example, the denial may encourage applicants to
temporarily look for alternative forms of training, possibly reducing their job search
intensity.

Here, we concentrate on the following binary variables: smoking habits at
12th month (CIG12), employment indicators at 12th (W12), 30th (W 30) and
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48th month (W 48); we use only observations where all the outcomes and the
treatment indicator are not missing (N=8291). The three employment indicators are
plausibly associated, with the employment indicator at 12th month independent of
the indicator at 48th month, given the indicator at 30th month, compliance status
and treatment assignment. The employment indicators are plausibly assumed to
be independent of smoking habits at 12th month conditional on compliance status
and treatment assignment. Thus, conditioning on Z and D, the implied model
corresponds to the concentration graph in Fig. 1b and is a strictly identified model,
as in [14].

By design, in the study there are only two latent groups, namely compliers
(C) and never-takers (NT), and we can observe three different subgroups of units,
with only the subgroup O.0; 0/ resulting from a mixture of two latent strata, as
shown in Table 2. Once identified, the outcome distributions involved in the causal
estimands (ITT effects in our example) have been estimated by maximum likelihood
and contrasted across arms, conditional on the same value of U (i.e., within a
latent group). The proposed model is well fitting the data, as the LRT against the
saturated model is 6.411 with 3 degrees of freedom (p-value 0.0932). Notice that,
by the identification results of [14], the asymptotic distribution of the test is well
approximated by a chi-squared distribution.

Results are summarized in Table 3, where the estimated distributions of each
outcome variable, under treatment and under control, and the estimated ITT effects
are reported, for compliers and never-takers respectively.

Table 3 Estimated outcome distributions and estimated ITT effects for compliers and never-
takers. Maximum likelihood estimates and standard errors

Compliers

Z=0 Z=1 ITTC
P.W12 D 1/ D 0:44 P.W12 D 1/ D 0:36 �0.08

(0.01) (0.01) (0.01)

P.W 30 D 1/ D 0:53 P.W 30 D 1/ D 0:58 0.04

(0.01) (0.01) (0.01)

P.W 48 D 1/ D 0:60 P.W 48 D 1/ D 0:62 0.02

(0.01) (0.01) (0.01)

P.CIG12 D 1/ D 0:49 P.CIG12 D 1/ D 0:50 0.01

(0.01) (0.01) (0.01)

Never-takers

Z=0 Z=1 ITTNT

P.W12 D 1/ D 0:49 P.W12 D 1/ D 0:44 �0.05

(0.03) (0.01) (0.03)

P.W 30 D 1/ D 0:31 P.W 30 D 1/ D 0:54 0.23

(0.03) (0.01) (0.03)

P.W 48 D 1/ D 0:38 P.W 48 D 1/ D 0:61 0.22

(0.03) (0.01) (0.03)

P.CIG12 D 1/ D 0:60 P.CIG12 D 1/ D 0:48 �0.13

(0.03) (0.01) (0.03)
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Focussing on the outcome variables of main interest, i.e. employment indicators,
results point to a negative effect of assignment on employment for compliers in
the short-run, confirming lock-in effects of those participating in the program (see,
e.g., [6, 15]); while the effect becomes positive at month 30th. For never-takers we
found a negligible negative effect of assignment on employment in the short-run,
possibly due to a reduced search intensity of the never-takers denying participation
and therefore looking for alternative training. The positive effect at both subsequent
waves for never-takers can be partly attributed to these different forms of training,
maybe better targeted to single individuals. This is also in line with former results
(see [6]), which showed that never-takers are better educated and with longer labour
market experience.

Concluding Remarks

Conditional independence assumptions are naturally embedded in studies on
causality and graphical models are natural tools to entail those assumptions.
We have proposed a way to take into account, within causal inference, results
on identification pertaining to graphical models with one binary latent variable.
Graphical models with one binary latent variable have been shown to describe
principal stratification settings, where principal strata within observed groups
take the form of a latent binary variable. Therefore, identification results for
concentration graphs can be adapted and extended for identification of principal
strata effects.

Importantly, our proposal allows one to use conditional independence struc-
tures that vary across observed groups, thereby providing a powerful tool that can
flexibly adapt to many empirical settings. Directions for future research include
the study of procedures to optimize the choice of secondary outcomes and for
model specification and checking.
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Dynamic Segmentation of Financial Markets:
AMixture Latent Class Markov Approach

Francesca Bassi

Abstract
The latent class approach is innovative and flexible and can provide suitable
solutions to several problems regarding the development of marketing strategies,
because it takes into account specific features of the data, such as their scale of
measure (often ordinal or categorical, rather than continuous), their hierarchical
structure and their longitudinal component. Dynamic segmentation is of key
importance in many markets where it is unrealistic to assume stationary segments
due to the dynamics in consumers’ needs and product choices. In this paper, a
mixture latent class Markov model is proposed to dynamically segment Italian
households with reference to financial products ownership.

Keywords
Dynamic segmentation • Financial products • Latent class models • Life
cycle • Mover-stayer model

1 Introduction

The latent class (LC) approach is flexible and can provide solutions to several
problems regarding the definition and the development of marketing strategies,
because it takes into account specific features of the data, such as their scale of
measure (often ordinal or categorical, rather than continuous), their hierarchical
structure and their longitudinal component. In the recent literature some studies
can be found on segmentation performed on hierarchically structured data [3, 4],
less attention is devoted to longitudinal data and dynamic segmentation as noted by
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[15]. Dynamic segmentation instead is of key importance in many markets where
it is unrealistic to assume stationary segments due to the dynamics in consumers’
needs and product choices.

In this paper a mixture LC Markov (LCM) model is proposed to dynamically
segment the Italian market with reference to financial products ownership. The
standard LCM model was previously applied successfully in marketing (see, among
others, [8]). The estimation of a mixture LCM model, specifically of the mover-
stayer model [12, 13], has several advantages with respect to the estimation of a
standard LCM model: it allows to achieve a better model fit and to identify customer
segments more precisely, improving knowledge of market dynamics, as results in the
paper demonstrate. Moreover, a paper by [11] shows that if unobserved heterogene-
ity in the initial state and in transition probabilities of the latent chain is not taken
into account, model measurement component can be estimated with larger bias.

The data used in the paper are collected by the Bank of Italy with the Survey
on Household Income and Wealth and refer to a representative sample of Italian
families. Ownership of 13 financial products from 2002 to 2010 and household
characteristics referring to the same period are considered. The study of household
savings has always had relevance in the economic international literature [5] but
it became even more important in recent years and especially in Italy, country
where the proportion of income devoted by families to savings has always been
substantially high. In the last years, however, such relative amount constantly
diminished: in our reference period we observe a proportion of savings over income
of Italian families of 13.8 % at the beginning of 2002 and of 9.8 % at the end of
2010 [10].

The paper is organized as follows. Section 1.1 introduces the traditional and
mixture LCM model. Section 2 describes the survey and the data. Section 3 provides
results comparing the traditional and the mixture LCM model and the section
“Concluding Remarks” concludes.

1.1 The LCMarkovModel

Let us consider the simplest formulation of latent class Markov (LCM) models [16],
which assumes that true unobservable transitions follow a first-order Markov chain.
As in all standard latent class model specifications, local independence among
the indicators is assumed, i.e., indicators are independent conditionally on latent
variables.1

Let Xit denote a latent variable which categories indicate segment belonging at
time t for a generic sample household i , i D 1; ::; n. Yijt is a binary observed variable
assuming value 1 if household iowns financial product j , j=1,. . . , J at time t , and
assuming value 0 otherwise; Yijt are the LCM model indicators. P .Xi1 D l1/ is

1In the LC model with one indicator per latent variable, the assumption of local independence
coincides with the Independent Classification Error (ICE) condition.
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the probability of the initial state of the latent Markov chain, i.e., the probability
that household i belongs to segment l1 at time 1 and P .XitC1 D ltC1jXit D lt / is
the transition probability between state lt and state ltC1 from time t to tC1, with
t D 1,. . . ,T � 1, where T represents the total number of consecutive, equally
spaced time-points over which a household is observed, i.e., the probability that
household imoves from segment lt to segment ltC1 over the two survey waves.
Besides, let P

�
Yijt D 1jXit D lt

�
be the probability of owning financial product j at

time t , given that household iat time tbelongs to segment lt , this is also called model
measurement component.

It follows that P .Y.1/; : : : Y.T // is the proportion of units observed in a generic
cell of the T -way contingency table. For a generic sample household i , a first-order
LCM model is defined as:

P .Yi1 D 1; : : : YiT D 1/ D
KX

l1

: : :

KX

lT

�P.Xi1 D l1/
TY

tD2
P.Xit D lt jXit�1 D lt�1/

JY

jD1

TY

tD1
P.Yijt D 1jXit D lt /

(1)

where lt varies overK latent classes.
In a LCM model with concomitant variables, latent class membership and latent

transitions are expressed as functions of covariates with known distribution [6]:
P .Xi1 D l1jZi1 D z1/, where z1 is a vector containing the values of covariates
for household iat time 1, estimates covariates effects on the initial state and
P .Xit D lt jXit�1Zit D zt /, where zt is a vector containing the values of covariates
for household iat time t , estimates covariates effects on latent transitions. Equa-
tion (2) specifies a first-order LCM model with concomitant variables.

P .Yi D yjZi D z/

D
KX

l1

: : :

KX

lT

P.Xi1 D l1jZi1 D z1/
TY

tD2
P.Xit D lt jXit�1 D lt�1;Zit D zt /

JY

jD1

TY

tD1
P.Yijt D 1jXit D lt / (2)

Typically, conditional probabilities are parameterized and restricted by means of
logistic regression models. Parameters can be estimated via maximum likelihood
using the E-M algorithm [7].

A mixture LCM assumes the existence in the population of non directly
observable groups following latent chains with different initial state probabilities
and different transition probabilities; the groups can be assumed to have also
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different response probabilities; the model can be extended to include time-varying
and time-constant covariates [14]. A special case of a mixture LCM model is the
mover-stayer model: there is a group of movers who have positive probabilities
of moving from one state to another over time, and a group of stayers who do
not change latent state. For this last group, transition probabilities between two
different states are imposed equal to 0. A two-mixture fist-order LCM model with
concomitant variables has the following form:

P .Yi D yjZi D z/

D
KX

l1

: : :

KX

lT

2X

wD1
P.W D w/P.Xi1 D l1jZi1 D z1; W D w/

TY

tD2
P.Xit D lt jXit�1 D lt�1;Zit D zt ; W D w/

JY

jD1

TY

tD1
P.Yijt D 1jXit D lt ; W D w/ (3)

where W is a binary latent variable dividing the population into two unobservable
groups following over time different latent chains and with a different measurement
model component. The mover-stayer model is obtained assuming, for lt ¤ lt�1, that
P .Xit D lt jXit�1 D lt�1; W D 2/ D 0:

2 The Data

The data on financial product ownership by Italian households is collected with
the Survey on Household Income and Wealth conducted by the Bank of Italy. The
survey gathers information on income, savings, consumption expenditure and real
wealth of Italian households, as well as on household composition, demographic
characteristics and labour force participation [9]. In the paper the sample of 1,834
households who participate in all waves from 2002 to 2010 is considered.

Information on five equally-spaced (2 years) time points on ownership of 13
financial products and on family characteristics such as form of tenure dwelling,
number of household members, number of income recipients, geographical area,
gender, age, educational qualification, work status and branch of activity sector
of the head of household is used. Previous studies by the Bank of Italy show
that financial activities diffusion among Italian families vary with the selected
covariates [1].

Table 1 lists the percentage of households holding, in the five measurement
occasions, the 13 financial activities: certificates of deposits (CD), repos (CT), post
office certificates (BFP), Treasury bills up to 1-year maturity (BOT), fixed-rate
long term Treasury bonds (BTP), bonds (OBB), mutual funds (QFC), individually
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Table 1 Ownership of
financial assets by type,
percentage of households,
2002–2010

2002 2004 2006 2008 2010

CD 2:3 2:4 2:6 2:9 3:2

PCT 0:9 0:7 1:1 1:7 0:9

BFP 5:9 5:8 6:9 6:5 5:9

BOT 10:1 6:9 8:1 10:2 8:5

BTP 2:7 2:9 2:8 2:6 2:9

OBB 7:7 8:7 8:4 10:4 11:2

QFC 12:6 12:5 12:1 8:7 8:8

GP 2:6 2:0 1:7 0:7 1:0

TE 1:3 1:2 1:1 1:4 1:9

COOP 2:2 2:9 2:5 2:8 2:7

DEP 88:5 89:0 90:7 90:9 85:6

SHA 10:6 8:7 8:8 7:4 6:7

CCT 3:9 3:7 3:8 3:0 2:9

managed portfolios (GP), foreign securities (TE), loans to cooperatives (COOP)
and bank or postal deposits (DEP), shares and other equities (SHA), floating
rate Treasury certificates indexed to BOTs (CCT). The 13 variables used in this
study represent all financial investment opportunities aggregating variables with
negligible frequencies.

It is interesting to note that our observational interval covers the first period
immediately after the economic crisis of 2008. As shown in [2], the crisis has
intensified the trends already under way, as confirmed by the further decline in the
saving rate and the deterioration in the financial situation of low-income households,
young people and tenants. The percentage of income devoted to savings by Italian
households decreased from 12.0 % at the beginning of 2008 to 9.8 % at the end
of 2010. Between 2002 and 2008, the incidence of ownership of postal and bank
deposits rose from 88.5 to 90.9 %, in 2010 it decreased to 85.6 %. The proportion
of households owning bonds, investment funds and other risky assets declined from
38 % in 2002 to 33.7 % in 2010. The decline from 2008 to 2010 was especially
evident for BOTs.

The distributions of financial assets by family characteristics from 2002 to 2010
show that financial strategies depend on household structure and socio-economic
environment and an interaction between ownership, household situation and time,
suggesting an analysis of the market in terms of dynamic segmentation.

3 Results

A latent class Markov model with a first order latent Markov chain and 13 binary
indicators for each time point was specified. The model assumes a time-constant
measurement component in order to ensure that segments remain the same in the
market; moreover, this assumption guarantees identifiably. The model was estimated
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starting with one latent class per each latent variable and then the number of classes
was increased till the Bayesian Criterion Index (BIC) began to raise. In order to
avoid local maxima, each model was estimated several times with different sets of
starting values.2 The best fitting model was that with five latent classes for every
time point. On this model, the assumption of time-constant transition probabilities
was accepted by means of the conditional test (	L2 D 70, 	df D 80). Next,
covariate effects both on the initial state in 2002 and on transitions probabilities
were introduced.

Table 2 presents estimation results for model measurement component: average
over the period segments’ sizes,3 segments’ sizes in the five survey waves and
response probabilities. The largest group (53.44 %) is composed of households
owning only a bank or postal deposit and very few forms of other assets showing

Table 2 Standard LCM
model estimation: at each
wave and average over the
period segments’ sizes and
segments’ profiles
(percentages)a,b

1 2 3 4 5

Size

2002 15:56 48:04 7:33 10:36 18:71

2004 12:68 42:39 7:87 9:93 17:12

2006 11:45 54:49 8:21 9:85 16:00

2008 10:81 55:76 8:40 9:90 15:13

2010 10:47 56:51 8:59 9:99 14:44

Average 12:20 53:44 8:08 10:01 16:28

Profile

DEP 24:92 99:70 98:54 99:33 99:96
BFP 0:95 1:81 47:96 3:33 5:79

COOP 0:00 0:24 17:69 4:17 4:10

BOT 0:00 1:19 3:53 60:27 11:48

BTP 0:00 0:06 0:77 12:98 8:43

CCT 0:09 0:07 1:96 20:19 7:52

CD 0:25 0:95 5:32 5:13 7:30
PCT 0:00 0:05 0:55 0:98 5:23
OBB 0:00 1:25 13:60 17:49 34:41
QFC 0:00 2:29 11:37 8:95 47:11
GP 0:00 0:67 0:56 0:62 6:72
TE 0:00 0:20 1:16 0:54 6:65
SHA 0:00 0:87 7:59 3:81 41:29

aTo help interpretation, some meaningful percentages
appear in bold
bThe 13 binary variables are all significant indicators
of the five-classes corresponding latent variable

2Model estimation was performed with Latent Gold 4.5 Syntax [14].
3Latent classes dimensions over time changes due to switching between segments according to the
first-order Markov chain.
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that they rely heavily on liquid savings forms for transactional purposes; 16.28 %
of families owns a deposit and one or more risky financial assets, with a quite
diversified portfolio; the group with dimension 12.20 % is that comprising the
poorest households: they do not own any kind of financial asset, moreover, a
great percentage does not even hold a deposit. A segment with dimension 10.01 %
contains households that mainly possess state bonds (as well as deposits). Finally,
8.08 % of families owns a deposit and has made some investment in less risky
financial assets such as postal bonds and loans to cooperatives, they avoid risky
assets. To help interpretation, we ranked segments in the table in ascending order
of product penetration rates, from households owning only bank or postal deposits
to households owning more sophisticated financial products. Segment sizes show a
dynamics over time: segments 5 (more risky assets) and 1 (only a few with deposits)
decrease, segments 2 (only deposits) and 3 (less risky assets) increase while segment
4 (state bonds) slightly decreases.

Table 3 lists transition probabilities. A large percentage of households remained
in the same segment over two waves as it is indicated by the numbers on the diagonal
of the table. However, the switching that occurs can explain changes in segments’
dimension over time.

Estimation results from the standard latent class Markov model show that a high
percentage of families do not change segment over two subsequent survey waves.
This evidence suggests to specify a mover-stayer latent class Markov model in order
to better identify segments, mobility patterns and their determinants. Also in this
case, the best fitting model is with five latent classes, a first-order stationary latent
chain and constant over time and over the two latent groups response probabilities.
Covariates affecting the initial state and transition probabilities of the latent chain
were introduced and only those with a significant effect retained. This model has on
our data a better fit, in terms of the BIC index equal to 37,335, than the standard
LCM model for which the BIC index was equal to 37,595.4

Table 3 Standard LCM
model estimation: transition
probabilities (percentages)a

1 2 3 4 5

1 77:52 21:57 0:91 0:00 0:00

2 2:97 93:06 0:44 2:58 0:95

3 0:00 5:65 94:35 0:00 0:00

4 0:00 10:54 3:10 81:13 5:23

5 0:00 9:23 0:63 2:63 87:50

aAll effects in the model log-linear representa-
tion are statistically significant

4Due to the sparse and unbalanced nature of the contingency table, the classical statistics to evaluate
model fit, X2 and L2, do not have asymptotic ¦2 distribution and then cannot be used. Using various
statistics based on the information criterion (BIC, AIC, AIC3) the mixture LCM model performs
better than the standard one.
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Estimation identifies that 65 % of households are movers and 35 % are stayers
over the entire period. Belonging to the subpopulations of movers or stayers
significantly depends on head of household’s educational condition (less educated
heads—no title and elementary school—show a higher probability to be stayers),
on head of household’s age (youngest heads, till 49, have a higher probability to
be movers), on the number of income recipients (families with no, 1 or 3 and more
income recipients tend to be stayers), on head of household’s professional condition
(among professionals, business owners and retired heads we observe more stayers)
and economic activity sector (among people not working we observe more stayers).

The five segments are slightly different from those identified by the traditional
LCM model: 11.67 % of families belongs to segment 1 (they do not own any kind of
financial asset and only a small fraction—20.70 %—has a bank or postal deposit);
53.40 % of families has only a bank or postal deposit and very few other financial
products (segment 2); segment 3 (deposits and postal bonds) is composed of 4.86 %
of families; 14.89 % of households invests in state bonds and loans to cooperatives
(segment 4) and 15.18 % is interested in more risky financial assets. The mixed
LCM model identifies segment 3 as that of families who own postal bonds in a
great percentage (76.04 %) and bank or postal accounts; the standard LCM model
identified segment 3 as that of families who invest in less risky assets such as postal
bonds and loans to cooperatives and have a postal or bank account. In the last years
the postal service in Italy has become very attractive as an opportunity to invest
family savings and it is very plausible that there is a segment of its loyal clients.
The identification of the five market segments by the mixed LCM model seems
more sensible than that obtained estimating the standard LCM model at least for
this country.

The two classes of movers and stayers are highly correlated with the initial state:
the ¦2 test has a p-value lower than 0.0001. Movers are more likely to be in segment
2 (59.45 % vs. 42.16 %), stayers are more likely to be in segments 3 (6.59 % vs.
3.93 %) and 5 (32.53 vs. 11.69); the difference among proportions of movers and
stayers in segments 1 and 4 is not statistically significant. Magidson et al. [11] states
that when the latent classes are highly associated with the initial state of the latent
chain, not taking into account unobserved heterogeneity, i.e., estimating a standard
LCM model, inflates estimates of model measurement component.

Table 4 lists estimated transition probabilities for the sub-sample of movers.
Segment 1 (only a few with deposits) is the most unstable one, segment 2 (only

Table 4 Mixture LCM
model estimation: movers’
transition probabilities
(percentages)a

1 2 3 4 5

1 59:73 38:34 1:93 0:00 0:00

2 4:95 89:07 0:94 3:11 1:93

3 3:33 15:19 79:73 1:00 0:75

4 0:00 12:21 1:97 85:82 0:00

5 0:00 20:64 1:11 3:61 74:64

aAll effects in the model log-linear representa-
tion are statistically significant
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Table 5 Mixture LCM model estimation: covariate effects on initial state (effect coding)

Segment 1 2 3 4 5

HOUSE

Owners �25:76a �24:00a 34:21a 40:53a �24:17a

Tenants �24:17a �24:14a 33:84a 39:82a �25:36a

Redemption 75:13a 73:65 �102:71 �120:61 74:54

Usufructuaries �25:20a �24:71a 34:65 40:26 �25:00
AGE

� 34 0:18 0:26 0:93a �1:01a �0:37
35–49 �0:52a 0:03 0:61a �0:39 0:28

50–64 �0:07 �0:14 �0:70a 0:57a 0:34a

� 65 0:41a �0:15 �0:84a 0:83a �0:25
GENDER

Male �0:46a �0:19a 0:55a �0:16 0:25a

Female 0:46a 0:19a �0:55a 0:16 �0:25a

AREA

North �1:17a �0:31a �0:04 0:63a 0:89a

Centre �0:63a �0:17 0:54a 0:30 �0:03
South 0:18a 0:48a �0:49a �0:93a �0:86a

RECIPIENTS

0 90:60a 89:37 �99:64 �81:67 1:33

1 �22:22a �21:61a 24:31a 20:14a �0:61a

2 �23:25a �21:85a 24:87a 20:49a �0:26
3 �23:02 �21:82 24:40 20:54 �0:09
� 4 �22:11 �24:09 26:06 20:50 �0:36
WORK

Blue-collar 60:39 21:48 �162:33 56:46 24:00

Office 12:61a �26:10 25:77 10:10a �22:39a

Manager 10:68a �25:64 25:58 10:91a �21:53a

Professional 17:34 �20:43 31:60 16:56 �45:07
Business owner �125:83 103:37 26:97 �113:76 109:25

Self-employed 11:88 �26-26 26:21 10:01 �21:84
Retired 12:92 �26-43 26:21 9:72 �22:42

asignificant at 0.05 level

deposits) is the most stable one and also the most attractive one in the sense that
it attracts over time clients from all other segments. There is no switching between
the segments 4 and 5 and segment 1; these are the most different groups in terms of
financial behavior.

Table 5 lists covariates’ significant effects on the initial state. Families who are
owners or tenants of their house are more likely to be in segments 3 (postal bonds)
and 4 (state bonds) and less likely to be in segments 1 (only a few with deposits),
2 (only deposits) and 5 (more risky assets); families with a house with redemption
are more likely to be in segment 1; families who are usufructuaries are more likely
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to be in segment 1, less likely in segment 2. Households with the youngest heads
(� 34) are more likely to own postal bonds, less likely to invest in state bonds;
when the head is between 35 and 49 the probability to be in segment 3 is higher
while it is lower to be in group 1; households with head between 40 and 64 are
more likely to invest in state bonds and more risky financial assets and less likely
to be in segment 3; households with the oldest heads tend to be in segment 4 and
not in segment 3. Families in the North are more prone to invest in state bonds
and more risky assets, less likely to belong to segments 1 and 2; families living
in the Centre are more likely to be in segment 3, less likely to be in segment 1
and families in the South are more likely not to have any kind of financial asset
or to hold only deposits, less likely to be in all other segments. This evidence is
quite consistent with socio-economic differences across Italy. For what concerns
the gender, with a male head of household the probability is higher to belong to
segments 3 and 5 and lower to segments 1 and 2; the opposite is true when the
head is a woman. Households financially more active are those with one and two
income recipients, they are more likely to be in segments 3 and 5, less likely to be in
the other segments. Economic activity sector of the head of household has a small
but statistically significant evidence on segment belonging, specifically, households
with head in industry and trade are more prone to belong to segments 1 and 4, less
prone to belong to segment 5.

The set of covariates that significantly affects switching probabilities is slightly
different (Table 6). Families with head of household with no educational title are
more likely to move towards segments 1, 2 and 4, not towards segments 3 and
5; households with heads with primary school have a higher probability to move

Table 6 Mixture LCM model estimation: covariate effects on destination state (effect coding)

Segment 1 2 3 4 5

EDUCATION

No certificate 8:08a 6:69a �10:14a 4:50a �9:13a

Primary school �0:16 �1:34a 2:50a �1:72a 0:72

Lower-second. �1:44a �1:57a 2:42a �1:14a 1:72a

Upper-second. �2:51a �1:93 2:69 1:20a 2:96

University �3:97a �1:86 2:54 �0:44 3:73

AREA

North �0:84a �0:17 �0:02 0:19 0:85a

Centre �0:32 �0:11 �0:33 0:34 0:41

South 1:16a 0:28a 0:34 �0:53a �1:26a

0 17:58 �7:87 10:75 �12:26 �8:19
1 1:58 0:90a �4:67 1:36a 0:84

2 1:08 0:72a �4:53 1:62a 1:12a

3 0:43 0:61 �3:43 1:98 1:29

� 4 �19:81 5:65 1:88 7:31 4:97

asignificant at 0.05 level
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towards segment 3, lower towards segments 2 and 4; households with heads with
lower-secondary school have a higher probability to move to segments 1, 2 and
4, lower to segments 3 and 5; when the head has a upper-secondary or university
degree, the probability is lower to move to segment 1. For area of the country where
the family lives, where values on covariates imply a greater probability to belong to
an initial state, the model shows that the same covariates’ values imply also a greater
probability to switch to this state. Only few parameters are statistically significant
for the number of income recipients: households with one and two incomes have
higher probability to move to segments 2 and 4.

Concluding Remarks

In the paper a mover-stayer first-order LCM model is estimated to dynamically
segment the Italian market of financial products ownership. Estimation results
show the existence of five different groups of households with different levels
of activity in the financial market. Around 11 %, on average in the 8-year period
considered, of families belongs to a group owning almost no financial asset (only
a small percentage of families has a bank or postal deposit). The largest group
(53 %) has only deposits and is almost not at all interested in other financial
products. The smallest group (5 %) of households concentrates investment in less
risky assets such as postal bonds, beyond having bank or postal deposits. A 15 %
of families is interested almost only in states bonds, over deposits. Finally, the
most active group in the market (15 % of households) owns mainly more risky
financial assets such as shares, certificate of deposits, mutual funds, repos, bonds,
individually managed portfolios, foreign securities.

The above groups can be well considered market segments since they satisfy
the required properties. Groups are substantial, they are stable since they are the
same over time, they are identifiable due to the fact that there is a significant effect
of covariates on the initial state. The groups can easily be reached by marketers
(accessible) and their characteristics immediately suggest marketing strategies
(actionability).

Tenure dwelling, area of the country where the family lives, number of income
recipients, age, gender and economic activity sector of the head of household
significantly affect segment membership. Results are consistent with previous
research [1] and with well known difference of socio-economic conditions across
the country and Italian families.

The mover-stayer LCM model takes into account unobserved heterogeneity,
identifying two subpopulations: one composed of households who never change
segment over the period (35 % of stayers) and one of movers. Belonging to the
subpopulations of movers or stayers significantly depends on the number of
income recipients and on various characteristics of the head of the household
(age, education, profession, economic activity sector).
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Longitudinal Fuzzy Poverty
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Abstract
The traditional approach to poverty measurement utilises only monetary vari-
ables as indicators of individuals’ intensity of the state of deprivation, causing
measurement errors of the phenomenon under investigation. Moreover, when
adopted in a longitudinal context, this approach tends to overestimate transition
poverty. Since poverty is not directly observable, a latent definition can be
adopted: in such a conception is possible to use Markov chain models in their
latent acceptation. This chapter proposes to use Latent class Markov models
which allow taking into account more observed (manifest) variables. We define
those variables via monetary and non-monetary fuzzy indicators.
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1 Introduction

The conceptualisation and assessment of poverty involves at least four dimensions:
multiple aspects covering both monetary and non-monetary deprivation; diverse
statistical measures in order to capture different facets of poverty; the time-
dimension; and comparability over space and time. This chapter addresses the
time-dimension of poverty, which involves two types of measures: (1) measures
of poverty trend over time at the aggregate level; (2) measures of persistence or
otherwise of poverty at the micro level. In particular, attention is focused on the
distinction between transitory and persistent poverty, which cannot be distinguished
in a traditional cross-sectional analysis, see Hoy and Zheng [9], and Costa and De
Angelis [8] for the most recent contributions to the issue.

Moreover, according to Verma and Gagliardi [15] “. . . The main measurement
problem in the assessment of poverty trends is the definition of the poverty threshold
and its consistency over time. The main measurement problem in the assessment
of persistence of poverty concerns the effect of random measurement errors on the
consistency of the individuals’ observed poverty situation at different times. . . ”

In fact, poverty is not directly observable from sample surveys, especially when
monetary variables are collected as indicators of individuals’ intensity of the state of
deprivation: this causes measurement errors in the phenomenon under investigation.
Moreover, when adopted in a longitudinal context, the traditional approach tends
to overestimate transition poverty, since small changes in the measured income or
consumption expenditure can result in an individual crossing the poverty line. To
overcome these problems Betti [2] adopted a latent definition for poverty: in such a
conception it is possible to use Markov chain models to correct measurement error
in panel data.

The novelty of the chapter consists of: (i) using Latent class Markov models
which allow taking into account more observed (manifest) variables; and (ii):
defining those variables via monetary and non-monetary fuzzy indicators.

The chapter is composed of five sections. After the present introduction, Sect. 2
describes the latent class Markov models recently proposed in the literature and
used for analysing poverty dynamics in this chapter. Section 3 describes the fuzzy
set approach to measure monetary and non-monetary (multidimensional) poverty
cross-sectionally. Section 4 reports the results of the empirical analysis conducted
on the 4 year balanced panels form EU-SILC waves 2006–2009 for France, Italy
and United Kingdom, while the final section “Concluding Remarks and Further
Research” concludes the chapter.

2 Latent ClassMarkovModels

A Markov chain is a discrete-time stochastic process characterized by the basic
assumption that the next state only depends on the current state, regardless of the
whole past history: these processes are suitable whenever one wants to model a
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situation where the future is independent of the past, given the present. A natural
extension of Markov chains are the Hidden Markov Models or Latent Class Markov
Models [5]: such models are characterized by an unobservable discrete Markov
process and by a sequence of observable responses, which could be defined on a
discrete or continuous support.

The unobservable process is called “hidden” or “latent” since we only observe
the output responses, and each of these responses is a deterministic or stochastic
function of the current latent state. Therefore, Latent Class Markov Models may be
seen as a bivariate stochastic process where two basic assumptions hold:

P.Xt jXt�1; Xt�2 : : : X1; Yt / D P.Xt jXt�1/ (1)

P.Yt jXt; Xt�1 : : : X1; Yt�1; Yt�2 : : : Y1/ D P.Yt jXt/ (2)

the latent state at the current moment, given the one at the immediately previous
moment, is independent of the all previous states, and the observed output at the
current moment, given the corresponding latent state, is independent of all previous
observations.

In our study, latent variables are considered as the real individual’s states, i.e.
the latent meaning of variable under investigation, whilst output variables are
considered as responses affected by errors, because they are collected by a survey.

Latent Class Markov Models are divided into discrete and continuous, according
to their support. In discrete Latent Class Markov Models, two fundamental matrices,
along with an initial vector, need to be estimated: a matrix for transition probabilities
between latent states, a matrix for response probabilities (i.e. probabilities of
observing responses, given the latent state) and a vector for initial probabilities of
being in each latent class. Rabiner and Juang [12] give an exhaustive overview of
methods and problems related to these models, providing applications on speech
recognition.

In continuous Latent Class Markov Models, the matrix of conditional response
probabilities is replaced by a matrix containing the response distribution parameters,
conditionally on each latent state.

In this chapter we focus attention on application of Latent Class Markov
Models to panel data [1, 10], i.e. an extension of the hidden Markov structure
for univariate time series towards models describing more individual processes.
This feature marks the difference in terminology between Hidden Markov Models
and Latent Class Markov Models. The first typically refers to data structures with
long time series and small number of individuals, whereas the second typically
refers to data structures with a large number of individuals and few instants of
time.

Moreover, we will handle the effects of some covariates on the output responses,
by using these models in a regression contest. Generalized Linear Models [11]
are a generalization of ordinary linear regression, which allows for non-normally
distributed response variables: regression can be fitted for response variables
belonging to exponential family, by means of some link functions transforming
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the expected value in a linear predictor. We will extend these procedures to Latent
Class Markov Models for multiple output sequences by supposing that the observed
responses of Markov process are affected by a set of known variables; finally, an
expected value of output variable given the latent state and the value of covariates
will be obtained. Above models will be applied to longitudinal data from a panel
survey, i.e. a survey repeated on the same sample over time, suitable whenever the
goal is to study the dynamic population processes along with estimates of particular
parameters such as net and gross changes in the population. Some device such as a
rotating scheme may be used in a panel in order to maintain representativeness of
the sample.

We will use the Expectation-Maximization (EM) algorithm in order to estimate
model parameters. It is a two-steps algorithm in which at first a conditional
expectation of model log-likelihood is computed, according to the current values
of parameters, and then a new estimation of parameters is obtained by maximizing
this function; the two steps are iteratively repeated till convergence.

3 FuzzyMeasures of Monetary and Non-Monetary
Deprivation

In the traditional approach, poverty is characterized by a simple dichotomization of
the population into poor and non-poor defined in relation to some chosen poverty
line. This poverty line may represent a certain percentage of the mean or the median
of the income distribution. This approach presents two main limitations: firstly, it is
unidimensional, since it refers to only one proxy of poverty; and secondly, it divides
the population into a simple dichotomy.

However, poverty is a complex phenomenon that cannot be reduced solely to
monetary dimension but it must also take account of non–monetary indicators of
living conditions; moreover, it is not an attribute that characterises an individual
in terms of presence or absence, but is rather a predicate that manifests itself in
different shades and degrees.

The fuzzy approach considers poverty as a matter of degree rather than an
attribute that is simply present or absent for individuals in the population. An
early attempt to incorporate the concept of poverty as a matter of degree at
methodological level was made by Cerioli and Zani [6] who drew inspiration from
the theory of Fuzzy Sets. Subsequently, Cheli and Lemmi [7] proposed the so called
Totally Fuzzy and Relative (TFR) approach in which the membership function—
quantitative specification of individuals’ or households’ degrees of poverty and
deprivation—is defined as the distribution function of income, normalised (linearly
transformed) so as to equal 1 for the poorest and 0 for the richest person in the
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population. Betti and Verma [4] defined the membership function of monetary and
non-monetary deprivation for any individual i as:


i;K D
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where X is the equivalised income in the monetary deprivation, or the overall score
s in the non-monetary deprivation; w� is the sample weight of individual of rank �
(� D 1; : : : ; n/ in the ascending distribution, and ˛K (K = 1, 2) are two parameters.
Each parameter ˛K is estimated so that the mean of the corresponding membership
function is equal to the at-risk-of-poverty rate computed on the basis the official
Eurostat poverty line (60 % of the median income). The monetary based indicator
has been termed as Fuzzy Monetary (FM), while the non-monetary indicator as
Fuzzy Supplementary (FS).

4 Empirical Analysis

In the present chapter we have used data from the EU Statistics on Income and
Living Conditions (EU-SILC) survey, distributed by Eurostat. The EU-SILC survey
is designed to collect detailed information on the income of each household member,
on various aspects of the material and demographic situation of the household, and
for producing structural indicators on social cohesion. EU-SILC surveys involve a
rotational panel design conducted annually in each country. The national sample
designs and sizes have been determined primarily for the purpose of estimation
and reporting of indicators at the national level, with limited breakdown by major
socio-demographic subgroups of the population. It provides two types of annual
data: (i) cross-sectional data; and (ii) longitudinal data, pertaining to individual-level
changes over time, observed annually over a 4 year period for each person.

In the present work we have used the longitudinal 2009 data set covering years
from 2006 to 2009. For each wave, we have calculated the FM and the FS measures
according to Eq. (1); moreover, following Betti et al. [3], we have reduced the total
number of items (supplementary variables) adopted for constructing the overall non-
monetary measures (FS) into meaningful dimensions. Exploratory and confirmatory
factor analyses, as proposed in Whelan et al. [16], allow us to achieve this objective.
We have applied such procedures to three EU countries—France, Italy and United
Kingdom—obtaining six dimensions:

1. FS1 D Basic lifestyle;
2. FS2 D Consumer durables;
3. FS3 D Housing amenities;
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Table 1 Mean poverty and deprivation measures in cross-sectional and balanced panel samples

H_cs FM FS FS1 FS2 FS3 FS4 FS5 FS6

FR_06 13.2 12.7 13.4 10:1 6.1 5.2 29:8 11:2 17.0

FR_07 13.1 12.4 13.1 9:8 5.6 5.2 30:1 10:9 16.5

FR_08 12.7 11.9 12.8 9:7 5.3 6.0 7:0 10:5 16.2

FR_09 12.9 11.9 12.7 9:8 5.1 5.9 8:1 7:0 17.4

IT_06 19.6 19.8 18.5 15:7 6.9 5.8 24:3 14:4 21.5

IT_07 19.8 19.8 17.6 14:6 6.2 5.6 26:9 14:8 22.8

IT_08 18.7 18.6 17.0 15:0 6.0 5.4 26:3 13:7 21.6

IT_09 18.4 18.4 16.8 13:9 5.3 6.0 9:4 7:3 21.1

UK_06 19.0 17.9 18.0 12:8 6.5 7.1 27:3 13:3 17.4

UK_07 18.6 16.9 16.7 13:1 5.9 6.1 22:8 9:4 16.2

UK_08 18.7 17.7 17.9 13:3 6.1 6.0 26:4 13:5 14.8

UK_09 17.3 17.0 17.7 13:3 5.8 5.8 27:4 13:8 15.0

4. FS4 D Financial situation;
5. FS5 DWork & Education;
6. FS6 D Health related.

Table 1 reports average poverty and deprivation measures for the three countries
under study; column H_cs shows the percentage of poor individuals (the at-risk-
of-poverty rate) based on the cross-sectional SILC samples and published by
Eurostat. All the remaining columns are based on the balanced 4 year panels:1

those averages are weighted by SILC target variable RB064 (Longitudinal weight,
4 year duration), which lets the balanced panels be representative of the population
present continuously in the country over the period. This variable is constructed
via a calibration procedure based on a set of post-stratification variables (see
[13] for details). It is possible to observe that, in the case of France and UK,
FM (and FS) differs significantly from H_cs: the tests have been performed by
estimating measures’ standard errors with JRR method [14]. There are at least
two explanations: (i) “longitudinal” population may differ from cross-sectional
population; (ii) longitudinal weights RB064 have been calibrated by Eurostat using
variables which are not so highly correlated to monetary poverty. This leads to a new
source of measurement errors, which could be corrected by the latent dimension
intrinsic in the Markov models.

Generalized Linear Models have been used to fit the data: we have started
by modelling FM and FS singularly as Gamma-distributed response variables
with inverse canonical link function, and then we have put them together in a
bivariate model, i.e. a model with a shared hidden Markov chain and two response
variables.

1These balanced panels are the base for the analysis via Latent class Markov Models.
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Table 2 Best set of covariates

Country Sex Age Education level Marital status Macro-region

FR
p p p p

–

IT
p p

UK
p p

–

We also have tried to insert FS1–FS6, but their distributions are not suitable to
be fitted as Gamma variable, therefore they need some appropriate transformations
to be implemented in further research work. Latent class Markov models need to
be initialised with starting values for parameters: as initial values we have used
parameters obtained from a similar analysis carried out according to the traditional
approach. Covariates introduced into the models were: sex, age, education level and
marital status; macro-regions have also been introduced for Italy.

For each state, we have tested all combinations of covariates, in order to find the
best model by minimising Akaike Information Criterion (AIC). The influence of
covariates is measured on the bivariate FM-FS response variable. In Table 2 the best
set of covariates is described.

The final model for France includes sex, education level, age and marital status:
a lowest education level and a marital status in the set of “widowed”, “separated”
and “divorced” have a strong negative effect on both FM and FS poverty status; the
female gender has also a double negative effect, although lower; conversely, an age
between 35 and 64 has a positive effect on FM and a negative one on FS poverty
status.

The final model for Italy includes sex and education level: particularly, female
gender and lowest education level have a negative effect on both FM and FS poverty
status. Models with macro-region covariate were also tried, but they have a higher
AIC. The final model for UK includes the education level again, along with the
age; the first has the same effect described before, while the latter has two different
effects, one for 35–64 years old people and one for 65 or more years old people.
They both have a negative effect on FM poverty status, compared to the 0–34
baseline category; on FS poverty status the effect of 35–64 category is still negative,
but the effect of 65+ is positive instead, compared to the 0–35 baseline category.
Latent state only affects the magnitude of coefficients, but it does not affect their
sign.

Table 3 reports initial and transition probabilities estimated via Latent class
Markov models. These refer to bivariate models with shared hidden Markov chain
and with covariates included. Initial non-poverty probability is higher in France
(85.7 %) than in UK and Italy (81.8 % and 79.7 % respectively). Transition matrices
show high probabilities of remaining in the non-poor state (around 98 %) and
low probabilities of moving towards the poor state for all countries. Conversely,
transition probabilities from poor to non-poor state vary from 12.2 % for Italy to
14.4 % for UK.
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Table 3 Initial and transition probabilities, Latent class Markov models

Country Latent states Initial probabilities Transition probabilities

Poor Non-poor

FR Poor 0.143 0.871 0.129

Non-poor 0.857 0.020 0.980

IT poor 0.203 0.878 0.122

Non-poor 0.797 0.020 0.980

UK poor 0.182 0.856 0.144

Non-poor 0.818 0.029 0.971

Concluding Remarks and Further Research

The above empirical evidence shows the benefit of the use of Latent class
Markov models in longitudinal poverty analysis, since this result was not clear
from simply observing cross-sectional analysis along time. However, a possible
limitation in utilising Markov models in analysing poverty dynamics consist in
the fact that a Markov chain status at time t depends only on status at time t-1,
while the status of a poor unit at time t may depend on its situation in previous
periods as well.

Since this is the first attempt to apply Latent class Markov models for
measuring longitudinal fuzzy poverty, we aim to improve the present chapter
from a theoretical point of view by identifying a larger set of link functions which
could better fit the manifest variable distributions, and improve the work from an
empirical point of view by performing a full comparative analysis among the 27
EU countries, and including in the models the non-monetary dimensions FS1–
FS6.
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A Latent Class Approach for Allocation
of Employees to Local Units

Davide Di Cecco, Danila Filipponi, and Irene Rocchetti

Abstract
In 2011, the Italian Business Register has been reshaped as a database of single
workers microdata. Determining the workplace of each individual provides the
National Statistical Institute (NSI) with huge information potential. Unfortu-
nately, the administrative sources at our disposal do not always allow a reliable
determination of the workplace of each worker. We present a probabilistic
methodology to assign a workplace to each employee by assigning him to
one of the local units of the enterprise he works for. We used a Latent Class
Model to estimate the probability of each employee to belong to each local unit.
We assumed the total number of employees per local unit as a constraint. A
computationally intensive optimization problem has been solved for each of the
ca. 200 thousands multilocated enterprises. The results refer to year 2011.

Keywords
Administrative data • Latent class analysis • Linear programming

1 Introduction

The 2011 Census Industry provided an opportunity for a methodological and
conceptual revision of the Italian Business Register (hereafter BR). That process
resulted in widening the BR information content, thanks to the use of new
administrative sources, that made possible to release data on individual workers,
while formerly only enterprise data were available. By doing so, we created
a so-called Linked Employer-Employee Database (LEED). This data structure
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defines a direct relationship between employees and enterprises. The traditional
BR information concerning employment and employment composition at enterprise
level (e.g. gender and age composition) can then be reconstructed by summing over
the individual information.

In the traditional BR, our possibilities in terms of geographical information
were limited to statistics on enterprises by local areas. In the new setting, where
a worker-level variable indicating the workplace is available, we can associate a
geographical information to all variables in that record, thus enhancing substantially
our information capability. At the very least, we could disseminate statistics on
demographic characters of the employees (gender, age, . . . ) and of their job (type of
contract, salary, . . . ) by local areas (municipalities or even finer areas). At a deeper
level, it is easy to see the potential for spatial–temporal statistical analysis of such a
database of microdata.

However, while the workplace determination is immediate for workers of
enterprises consisting of a sole local unit, this is not the case for multilocated
enterprises, which represent over one third of the total employment. In fact, as we
will see in the next section, none of the available administrative sources can be used
to identify with certainty the local unit to which each individual belongs.

As a consequence, the process is split into two steps: at a macro level, the NSI
produces the usual information on local units through the Local Units Register
(LUR), using information from administrative sources and statistical surveys on
local unit structure of enterprises. Then, at a micro level, we use a probabilistic
methodology to assign each worker to a single local unit in consistency with the
aggregated information provided by the LUR.

In the present work we focus on the second step. We illustrate the probabilistic
approach based upon Latent Class Analysis (see [1]), to associate to each individual,
his probability of working in each local unit. Then, we describe the optimization
algorithm that is used to assign the employees so to conform with the LUR
information.

This paper is organized as follows: All the statistical and administrative sources
used in the process are described in Sect. 2. The probabilistic method developed
is presented in Sect. 3. In Sect. 4 some conclusions are drawn and possible future
works are discussed.

2 Statistical and Administrative Sources

Since 2011, some new administrative sources are being considered for the realiza-
tion of the BR, and integrated in its production process.

Of these, the most important is the EMENS database, managed by the Social
Security Authority. The EMENS records monthly employer declarations on job
positions for all employees. Each record refers to a single job contract and reports
a number of information on the type of contract (fixed term, permanent, . . . ), as
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well as relevant events that occurred during the year (number of worked days per
month, number of days in maternity leave, sick leave, . . . ). In particular, the number
of worked days is used to assign to each job contract a weight q 2 Œ0; 1�, which
is defined as the proportion of worked days during the year. The importance of
these weights will be explained in the next section. The available information for
the identification of the workplace is the municipality where the employee works.

Secondly, the National Insurance Agency (INAIL) records declarations made
by the enterprises about their employees, as beneficiaries of compulsory insurance
against work-related accidents and diseases. The variable of interest for us is the
workplace (address) where each worker is insured.

Finally, the Tax Register provides us all legal places of residence of persons
holding an Italian tax code. The addresses of the workers of the multilocated
enterprises have been geocoded.

Summarizing, the administrative variables of interest are the following:

• individual workplace’s municipality (according to EMENS);
• individual workplace’s address (according to INAIL);
• individual permanent address (sourced by the Tax Register).

An exploratory analysis, carried out by comparing EMENS with INAIL, revealed
the existence of many mismatches with regards to the workplace. We observed two
kind of issues:

coverage issues: a large number of employees is not covered by any of the two
sources. INAIL, in particular, covers just about 60 % of the workers recorded by
the BR;
coherence issues: the two sources do not agree on about 40 % of the individual
workplaces.

As said, the NSI produces, in a separate process, a yearly enterprises database, the
Local Unit Register (LUR), based on administrative data and on a survey addressed
to the larger enterprises. The LUR reports, for each enterprise, the active local units,
their geocoded locations, and their yearly mean number of employees.

The production of the LUR is a long-standing well-established process, based on
reliable information on local units structure. In fact, it includes clerical review of the
survey results for the larger enterprises. For these reasons, we bind the employees
workplace allocation process to the LUR; that is, the allocation is forced to fit the
yearly mean number of employees by local units as reported by the LUR.

The EMENS and INAIL information, aggregated at a local unit level, differs
considerably from the values provided by the LUR. For example, some minor
municipalities having local units according to the LUR are absent from both INAIL
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and EMENS. The low quality of the administrative sources, together with the
requirement of consistency with the LUR, convinced us of the necessity of a
probabilistic approach.

3 Methodology

Although we deal, essentially, with a problem of imputation of partial missing
information, the approach we developed is strictly related to Record Linkage works,
(see e.g. [2] and [3]). Given a multilocated enterprise, the BR provides the list of
workers of that enterprise, while the LUR provides the list of the active local units.
We consider all the possible couples, employee-potential local unit of membership,
and choose the “correct” ones (we would say the correct links in a Record Linkage
context). To formalize things, in a multilocated enterprise with n employees and k
active local units, let us denote as

• Uj , j D 1; : : : ; k, its local units;
• Pi , i D 1; : : : ; n, its employees;
• qi , i D 1; : : : ; n, the yearly mean weights associated to the employees.

For each enterprise, we construct the cartesian product of fPi giD1;:::;n and
fUj gjD1;:::;k , and, for each of the n � k pairs

�
Pi ; Uj

�
, we record the values of

the following three indicators:

• D1.i; j /—indicating whether workplace’s municipality of employee Pi ,
recorded in EMENS, coincides with address municipality of local unit Uj
recorded in the LUR. In detail, D1.i; j / 2 f1; 2; 3g where D1.i; j / D 1 if
the Emens municipality is missing, 2 if the municipality is different, and 3 if the
municipality is the same.

• D2.i; j /—measuring the coherence between the address of Employee’s work-
place, as reported by Inail, and local unit’s address, as recorded by LUR.
D2.i; j / 2 f1; 2; 3; 4g, where 1 indicates that Inail information is missing, 2
indicates that the municipality is different, 3 indicates that the municipality is the
same, and 4 indicates that local unit’s address is recorded as the workplace by
Inail.

• D3.i; j /—measuring the distance between the geocoded employee’s residence
and the geocoded local unit’s address. In this case, we categorize the distance
into four classes corresponding to indicator values 1,2,3,4 from the farthest to
the closest distance respectively.
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The probability for the i -th employee Pi to belong to the j -th local unit Uj ,
i.e., the probability of the couple .Pi ; Uj / of being correct, has been estimated
through a Latent Class Model. In this model, each couple .Pi ; Uj / represents a
unit. The number of latent classes has been fixed to 2, under the assumption that
a two-dimensional latent structure underlies the analyzed phenomenon, one class
indicating the individual “membership” and the other one indicating the individual
“non membership”.

We could have chosen a different number of Latent Classes, as in [3], with the
aim of investigating whether different latent structure assumptions could be made.
But, in our case, the decision framework of the problem is somehow different from a
typical Record Linkage problem as described in Fellegi–Sunter’s theory. In fact, we
do not have to define a “critical area”, as we do not have the possibility of a clerical
review of the so-called “uncertain links”. We just have to assign each employee to
a local unit in such a way that the yearly average total number of employees, given
by the sum of the weights of the employees assigned to that local unit, coincides
with that reported in the LUR. For this reason, once the probabilities of each couple
of being correct have been estimated, we approached the allocation problem simply
as an optimization problem, where the quantity to be maximized is the sum of the
probabilities of the accepted couples .Pi ; Uj /. The idea of using algorithms from
Operational Research for the optimal allocation in a Record linkage problem dates
back at least to [2], but there the author still use them in combination with thresholds
deriving from Fellegi–Sunter’s theory, to define the certain and uncertain links.

3.1 The Latent Class Model

If we denote with

• L the latent variable with two classes c D 1; 2;
• �c the prior probability to belong to the latent class c;
• �s;rs jc the probability for variable Ds , s D 1; 2; 3 to assume modality rs

conditionally to L D c

then, the posterior probability pi;j .c/ for the pair .Pi ; Uj / to belong to the class c
conditionally to the observed values d.i; j / D .d.i; j /1; d.i; j /2; d.i; j /3/ of the
variablesD D .D1;D2;D3/ is

pi;j .c/ D P.L D c j D D d.i; j // D
�Q3

s

Q
r
Rs
s
�
I fds.i;j /Drsg
.s;rs jc/

�
�c

P2
cD1

�Q3
s

Q
r
Rs
s
�
I fds.i;j /Drsg
.s;rs jc/

�
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Each triple of possible values for the indicators D1, D2, D3 is called a pattern.
Since the three indicators have respectively 3, 4, and 4 modalities, we have 48
possible patterns. The total number of free parameters to be estimated is equal to
the number of free (� parameters) for each Latent Class, plus the number of free
prior probability (� parameters), that is, in our model, .2C 3C 3/ � 2C 1 D 17.

As the BR has millions of local units and millions of employees, we have
several billions of possible couples .Pi ; Uj /. For that reason, we drawn a sample
of enterprises and estimated the model on the subset of couples coming from the
enterprises of that sample. The model has been estimated various times on different
samples of different sizes to test for the robustness of the estimates, and, as a matter
of fact, they resulted to be very stable across different samples.

We used an EM algorithm to find the ML estimates of the 17 model parameters.
However, we just report in Table 1 the posterior probabilities obtained for each
possible pattern, as they have a clearer role in the interpretation of the model, and
are central for the second part of our methodology.

In fact, analyzing Table 1, we can see that higher values of the indicators
correspond to higher posterior probabilities for Latent Class 1. That is, whenever
D1 and D2 indicate a coherence between the workplace reported in our sources
and the local unit’s location, and D3 indicates that the local unit is close to the
individual residence, we have a higher posterior probability for that class. Moreover,
the estimated probabilities in many cases are very close to 0 or very close to 1.
This fact denotes a good “latent class separation” (see [1]). A common approach
to quantify latent class separation in posterior classification is based on entropy
indexes. One of the most common indexes is proposed by [5] and is defined as a
weighted average of individual’s posterior probabilities:

E D 1 �
Pn

iD1
PC

cD1�pi .c/ logpi .c/

n logC
;

where pi .c/ is unit i ’s posterior probability of membership in latent class c, and
C is the number of latent classes. E ranges between 0 and 1, with larger values
indicating better latent class separation. In our results we get E D 0:9, indicating
a very good grade of separation between the two classes. Secondly, the (ranking of
the) values Opi;j .1/ obtained for the patterns are perfectly consistent with common
intuition. In fact, couples of individual and local units confirmed as correct by
EMENS and INAIL have higher posterior probabilities, which decrease as the two
sources disagree. The farther the local unit from the employees residence, the lower
the probability. Moreover, the importance of that distance, i.e., of D3, is far lower
than that of the other two indicatorsD1 and D2, and that is highly desirable.

These evidences allowed us to heuristically identify Latent Class 1 as the one
characterizing “membership” of the employee to the local unit. Hence, the estimated
posterior probability Opi;j .1/ of a couple .Pi ; Uj / of belonging to Latent Class 1 has
been interpreted as the probability that the worker Pi belongs to the local unit Uj ,
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Table 1 The estimated posterior probabilities of belonging to the two Latent Classes condition-
ally on the values of .D1;D2;D3/.

D1 D2 D3 Opi;j .1/ Opi;j .2/ D1 D2 D3 Opi;j .1/ Opi;j .2/
1 1 1 0.3734 0.6265 2 3 1 0.5788 0.4211

1 1 2 0.0545 0.9454 2 3 2 0.1173 0.8826

1 1 3 0.2284 0.7715 2 3 3 0.4058 0.5941

1 1 4 0.6687 0.3312 2 3 4 0.8231 0.1768

1 2 1 0.1035 0.8964 2 4 1 0.4952 0.5047

1 2 2 0.0112 0.9889 2 4 2 0.0866 0.9133

1 2 3 0.0542 0.9457 2 4 3 0.3277 0.6722

1 2 4 0.2812 0.7187 2 4 4 0.7687 0.2312

1 3 1 0.9441 0.0558 3 1 1 0.9641 0.0358

1 3 2 0.6206 0.3793 3 1 2 0.7224 0.2775

1 3 3 0.8936 0.1063 3 1 3 0.9304 0.0695

1 3 4 0.9828 0.0171 3 1 4 0.9891 0.0108

1 4 1 0.9235 0.0764 3 2 1 0.8391 0.1608

1 4 2 0.5387 0.4612 3 2 2 0.3353 0.6646

1 4 3 0.8571 0.1428 3 2 3 0.7215 0.2784

1 4 4 0.9761 0.0238 3 2 4 0.9464 0.0535

2 1 1 0.0461 0.9538 3 3 1 0.9986 0.0013

2 1 2 0.0046 0.9953 3 3 2 0.9866 0.0133

2 1 3 0.0234 0.9765 3 3 3 0.9973 0.0026

2 1 4 0.1409 0.8590 3 3 4 0.9996 0.0003

2 2 1 0.0092 0.9907 3 4 1 0.9981 0.0018

2 2 2 0.0009 0.9992 3 4 2 0.9813 0.0186

2 2 3 0.0046 0.9953 3 4 3 0.9963 0.0036

2 2 4 0.0308 0.9691 3 4 4 0.9994 0.0005

that is, as the probability of .Pi ; Uj / of being a correct couple. In the following,
these probabilities will be denoted simply as pi;j .

3.2 The Allocation Process

Formally, a Generalized Assignment Problem (GAP) needs to be solved in the aim
of assigning individuals to a sole local unit. For each enterprise, we aim at finding
the xi;j 2 f0; 1g i D 1; : : : ; n j D 1; : : : ; k maximizing

kX

jD1

nX

iD1
pi;j xi;j
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subject to the constraints:

nX

iD1
xi;j qi D nj 8j D 1; : : : ; k (1)

and

kX

jD1
xi;j D 1 8i D 1; : : : ; n (2)

where xi;j D 1 if employee Pi is assigned to the j -th local unit Uj and nj
represents the fixed number of employees to be assigned to the j -th local unit given
by the LUR. The problem has been solved separately for each of the about 200
thousand multilocated enterprises utilizing a specific SAS routine (see [4]). The
biggest enterprises, leading to a cartesian product of billions of possible couples
.Pi ; Uj /, required a form of blocking strategy; that is, we restricted the optimization
problem to the local units of a single region (or province or smaller areas when
necessary) and went on iteratively. In detail, let nr1 ; nr2 ; : : : be the total number of
employees to be assigned to the local units of region 1,2,: : : according to the LUR,
and let k1; k2; : : : be the corresponding number of local units per region. Then we
solve the optimization problem for the first region with the following constraints:

nX

iD1
xi;j qi D nr1 8j D 1; : : : ; k1

kX

jD1
xi;j � 1 8i D 1; : : : ; n

substituting (1) and (2) above, and go on with the second region with the remaining
n � nr1 employees.

4 Discussion and FutureWorks

Our method provides an estimate of employees’ workplace using an unsupervised
probabilistic model conditioned to an accurate information coming from the LUR.
As a result, we integrated our LEED database with an individual variable indicating
the workplace. This information can be used to produce several statistics on
demographic and job characters of the employees by geographical areas.

We show that the latent class approach to estimate the probability that a worker
belongs to a specific local unit works well. However, accurate estimation of error
rates for different statistical domains are not available. Here, resembling the Record
Linkage literature, the error rate is composed by “false match”, i.e., workers



A Latent Class Approach for Allocation of Employees to Local Units 91

assigned to a wrong local unit, and “false non-match”, i.e., workers not assigned
to the correct local units. If the set OM contains the couples .Pi ; Uj / identified as
matching, the set OU contains the couples identified as non-matching, and U and
M are, respectively, the sets containing the false and the true matches, then the
false match rate is given by P.U j OM/ and the false non-match rate is given by
1�P.M j OU /. Winkler in [6] demonstrated that, if a properly chosen training dataset
is available, then we could obtain accurate estimates of error rates. At the moment
of this writing, no benchmark is available. As data from the 2011 Population Census
will be available, it would be possible to estimate the error rate.

The Latent Class approach proposed in this paper has been applied to 2011 data.
However, we need to produce the same information yearly. The allocation process
described in Sect. 3.2 does not ensure that each single worker would be assigned to
the most probable local unit, because of the assumed constraints. This fact may give
room to implausible changes of workplace for the same individual from one year to
another. To insure coherent individual data over time we are exploring the possibility
of using longitudinal information. This could be handled by modeling the latent
class membership over time with a Hidden Markov Models (see Latent Transition
Analysis in [1]) to estimate not only the latent class membership probabilities, but
also the transitions probabilities in latent class membership.
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Finding Scientific Topics Revisited

Martin Ponweiser, Bettina Grün, and Kurt Hornik

Abstract
The publication of statistical results based on the use of computational tools
requires that the data as well as the code are provided in order to allow to
reproduce and verify the results with reasonable effort. However, this only allows
to rerun the exact same analysis. While this is helpful to understand and retrace
the steps of the analysis which led to the published results, it constitutes only
a limited proof of reproducibility. In fact for “true” reproducibility one might
require that the essentially same results are obtained in an independent analysis.
To check for this “true” reproducibility of results of a text mining application
we replicate a study where a latent Dirichlet allocation model was fitted to
the document-term matrix derived for the abstracts of the papers published
in the Proceedings of the National Academy of Sciences from 1991 to 2001.
Comparing the results we assess (1) how well the corpus and the document-term
matrix can be reconstructed, (2) if the same model would be selected and (3) if
the analysis of the fitted model leads to the same main conclusions and insights.
Our study indicates that the results from this study are robust with respect to
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slightly different preprocessing steps and the use of a different software to fit the
model.

Keywords
Latent Dirichlet allocation • Replication • Reproducibility • Topic model

1 Introduction

Reproducibility of research results is a topic which has recently received increased
interest [6, 8]. To ensure easy reproducibility of statistical analyses, data and code
are often made available. This allows to rerun the exact same procedures using
in general the complete same software environment in order to arrive at the same
results [9]. However, as Keiding points out “it ridicules our profession to believe that
there is a serious check on reproducibility in seeing if somebody else’s computer
reaches the same conclusion using the same code on the same data set as the
original statistician’s computer did [7, p. 377].” True reproducibility therefore would
require that an independent analysis arrives at the same results and conclusions, i.e.,
one might only claim that a result is reproducible, when approximately the same
results are obtained if the data preprocessing as well as the model fitting steps are
essentially the same, but not necessarily identical. This would imply that the results
are robust to small changes in the data preprocessing and model fitting process.

In the following we perform an independent reanalysis of the text mining appli-
cation published by Griffiths and Steyvers in 2004 [4, in the following referred to as
GS2004]. GS2004 use the latent Dirichlet allocation [LDA, 1] model with collapsed
Gibbs sampling to analyze the abstracts of papers published in the Proceedings of
the National Academy of Sciences (PNAS) from 1991 to 2001. LDA was introduced
by Blei and co-authors as a generative probabilistic model for collections of discrete
data such as text corpora. Because PNAS is a multidisciplinary, peer-reviewed
scientific journal with a high impact factor, this corpus should allow to discover
some of the topics addressed by scientific research in this time period.

We try to reproduce the results presented in GS2004 using open-source soft-
ware with respect to (1) retrieving and preprocessing the corpus to construct
the document-term matrix and (2) fitting the LDA model using collapsed Gibbs
sampling. In our approach we rerun the analysis without access to the preprocessed
data and use different software for model fitting and different random number
generation. This allows us to assess if the results are robust to changes in the data
retrieval and preprocessing steps as well as the model fitting.

2 Retrieving and Preprocessing the Corpus

In order to reconstruct the corpus web scraping techniques were employed to
download the abstracts from the PNAS web page. We ended up with 27,292
abstracts in the period 1991–2001 and with 2,456 in 2001, compared to 28,154 in
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Table 1 Summary of the document-term matrices constructed from the abstracts of the PNAS
from years 1991 to 2001 by GS2004 and in our replication study

GS2004 Replication

Vocabulary size 20,551 20,933

Total occurrence of words 3,026,970 2,924,594

Average document length (in terms) 107.51 107.16

1991–2001 and 2,620 in 2001 used by GS2004. This means that we essentially were
able to obtain the same number of abstracts. The slight deviations might be due to
the fact that our data collection omitted (uncategorized) commentaries, corrections
and retractions.

GS2004 did not provide any information if only the abstracts were used or the
abstracts combined with the titles. We decided to leave out the paper title for each
document because this led to a document-term matrix closer to the one in GS2004.
In a first preprocessing step we transformed all characters to lowercase. GS2004
used any delimiting character, including hyphens, to separate words and deleted
words which belonged to a standard “stop” list used in computational linguistics,
including numbers, individual characters and some function words. We built the
document-term matrix with the R [12] package tm [2, 3] and a custom tokenizing
function which we deduced from the few exemplary terms in the original paper. Our
tokenizer treats non-alphanumeric characters, i.e., characters different from “a”–“z”
and “0”–“9”, as delimiters. This step also implicitly strips non-ASCII characters
from our downloaded corpus in Unicode encoding, thereby marginally reducing the
information in abstracts which contain characters that are widely used in scientific
publications, such as those from the Greek alphabet. The minimum word length was
set to two and numbers and words in the “stop” list included in package tm were
removed. GS2004 further reduced the vocabulary by omitting terms which appeared
in less than five documents and we also performed this preprocessing step.

The characteristics of the final document-term matrices are compared in Table 1.
Despite the fact that the original set of documents was not the same and a number
of preprocessing steps were not clearly specified or slightly differently performed,
the final document-term matrices are quite similar with respect to vocabulary size,
total occurrence of words and average document length.

3 Model Fitting

GS2004 fit the model using their own software [13]. We use the R package
topicmodels [5] with the same settings with respect to number of topics, number
of chains, number of samples, length of burn-in interval and sample lag. The
implementation of the collapsed Gibbs sampler in the package was written by
Xuan-Hieu Phan and coauthors [10].
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Fig. 1 Estimated marginal log-likelihoods for each number of topics and chain (circles). The
average marginal log-likelihoods are joint with lines

3.1 Model Selection

The number of topics are selected by GS2004 using the marginal log-likelihoods
determined by the harmonic mean method. Their results are shown in Fig. 3 of their
paper and they decide that 300 topics are a suitable choice. For comparison our
results are given in Fig. 1. The figure essentially looks quite similar and would lead
to the same decision. In the following the topic model fitted with 300 topics is used
for further analysis.

3.2 Scientific Topics and Classes

GS2004 used the 33 minor categories which are assigned to each paper to validate
whether these class assignments correspond to the differences between the abstracts
detected using the statistical analysis method. Using only the abstracts from 2001 we
determined the mean topic distribution for each minor category. The most diagnostic
topic was then determined as the one where the ratio of the mean value for this
category divided by the sum over the mean values of the other categories was
greatest. The results are shown in Fig. 2, which corresponds to Fig. 4 in GS2004.
Note that our figure includes all 33 minor categories, whereas in the figure in
GS2004 category “Statistics” is missing. Again a high resemblance between the
two results can be observed. For comparison the five most probable words for
the topic assigned to minor category “Ecology” are “species”, “global”, “climate”,
“co2” and “water” in GS2004 and “species”, “diversity”, “marine”, “ecological”
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Fig. 2 Mean values of the topic assigned to each of the 33 minor categories based on all abstracts
published in 2001. Higher probabilities are indicated with darker cells. The abbreviations “BS”,
“PS” and “SS” denote the major categories Biological, Physical and Social Sciences

and “community” in our replication study. This topic also has high mean values for
the minor categories “Geology” and “Geophysics” in both solutions.

3.3 Hot and Cold Topics

In a next step GS2004 analyze the dynamics of the topics using a post hoc
examination of the mean topic distribution estimates for each year from 1991 to
2001. A linear trend was fitted to each topic over time and the estimated slope
parameters were used to identify “hot” and “cold” topics. The five topics with the
largest positive and negative slopes in our model are given in Fig. 3. This figure
corresponds to Fig. 5 in GS2004 except that they only show the three “hottest” and
“coldest” topics. A comparison of results using the twelve most probable words of
each topic indicates that matches for the three topics in GS2004 can be identified
among the five topics identified by our model, even though the order of the topics
is not identical. The coldest topic detected in each of the analyses is remarkably
similar, as indicated by a comparison of the twelve most probable words, which are
given in Table 2.
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Fig. 3 Dynamics of the five hottest and five coldest topics from 1991 to 2001, defined as those
topics that showed the strongest positive and negative linear trends

Table 2 The twelve most
probable words for the
coldest topic

GS2004 Replication

cdna cdna

Amino Sequence

Sequence Amino

Acid Acid

Protein Protein

Isolated Isolated

Encoding Encoding

Cloned Cloned

Acids Expressed

Identity Identity

Clone Clone

Expressed Deduced

3.4 Tagging Abstracts

Each sample of the collapsed Gibbs sampling algorithm consists of a set of
assignments of words to topics. These assignments can be used to identify the
role words play in documents. In particular this allows to tag each word in the
document with the topic to which it was assigned. Our results are given in Fig. 4.
The assignments are indicated by the superscripts. Words which do not have a
superscript were not included in the vocabulary of the document-term matrix. The
shading was determined by averaging over several samples how often the word was
assigned to the most prevalent topic of the document. This should be a reasonable
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Fig. 4 A PNAS abstract tagged according to topic assignments. The shading indicates how often
a word was assigned to the most prevalent topic of the document. Higher frequencies are indicated
by darker shades

estimate even in the presence of label switching. Again a comparison to Fig. 6 in
GS2004 indicates that both taggings strongly resemble each other.

Conclusions

The complete analysis presented in GS2004 was reproduced by collecting the
data using web scraping techniques, applying preprocessing steps to determine
the document-term matrix and fitting the LDA model using collapsed Gibbs
sampling. The fitted model was analyzed in the same way as in GS2004: the topic
distributions of the minor categories were determined and the most prevalent
topics for each minor category are compared with respect to their weight assigned
to the minor categories. In addition time trends of the topics were fitted and words
in documents were tagged based on the topic assignments from the LDA model.
Further results from this replication study and a detailed description of the code
used for this analysis are given in [11], except for the use of a slightly different
tokenizer. The tokenizer used in [11] is the default in package tm 0.5.1.

Certainly small deviations can be observed between the two results obtained
in each of the analyses. However, in general the conclusions drawn as well as the
overall assessment are essentially the same. This leads to the conclusion that the
study could be successfully reproduced despite the use of completely different
tools and a different text database.

Acknowledgements This research was supported by the Austrian Science Fund (FWF) under
Elise-Richter grant V170-N18.

Computational Details

For the automated document retrieval from the public PNAS archive
(http://www.pnas.org/) we employed Python 2.6.6 with the web scraping
framework Scrapy 0.10.3, and additional libraries pycurl 7.19.0-3+b1 and
BeautifulSoup 3.1.0.1-2. Texts that were only available as PDF files were converted
to plain text with pdftotext 0.12.4.

http://www.pnas.org/
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The main programming and data analysis were conducted in R 2.15.3 with pack-
ages tm 0.5-8.3, topicmodels 0.1-9, lattice 0.20-13, xtable 1.7-1 and Rmpfr 0.5-1.

Calculations for model selection and model fitting were delegated to a computer
cluster running the Sun Grid Engine at WU (Wirtschaftsuniversität Wien).
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ADirichlet Mixture Model for Compositions
Allowing for Dependence on the Size

Andrea Ongaro and Sonia Migliorati

Abstract
The Dirichlet is the most well known distribution for compositional data, i.e.
data representing vectors of proportions. The flexible Dirichlet distribution (FD)
generalizes the Dirichlet one allowing to preserve its main mathematical and
compositional properties. At the same time, it does not inherit its lack of
flexibility in modeling the dependence concepts appropriate for compositional
data. The present paper introduces a new model obtained by extending the basis
of positive random variables generating the FD by normalization. Specifically,
the new basis exhibits a more sophisticated mixture (latent) representation,
which leads to a twofold result. On the one side, a more general distribution
for compositional data, called EFD, is obtained by normalization. In particular,
the EFD allows for a significantly wider differentiation among the clusters
defining its mixture representation. On the other side, the generalized basis
induces a tractable model for the dependence between composition and size: the
conditional distribution of the composition given the size is still an EFD, the size
affecting it in a simple fashion through the cluster weights.
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1 Introduction

In many disciplines data consist of vectors of proportions, thus being subject to unit-
sum constraints. This entails many new issues, among which the search for a suitable
model defined on the simplex which allows for appropriate forms of dependence.
Some proposals for managing such type of data can be found in [1–5, 7]. Recently
a new distribution on the simplex has been proposed (see [6]): the flexible Dirichlet
(FD). Such distribution generalizes the well known Dirichlet one overcoming its
main drawback, i.e. its extreme independence structure, but preserving many of its
mathematical and compositional properties.

The FD shows an important independence property for compositional data
modeling: compositional invariance. Given a D-dimensional random vector Y with
positive components (basis) and the corresponding normalized version X D Y=Y C
(composition) where Y C DPD

iD1 Yi (size), the basis is compositionally invariant if
X is independent of Y C. Such property is relevant from an applicative point of view
as often in real data, compositions are not affected by size, e.g. rock compositions or
chemical composition of goods or of biological tissues. Moreover it is very useful
from a mathematical one since properties of the simplex distribution are more easily
derived from the basis ones, for example joint moments and explicit expressions for
the density.

Nevertheless there are setups where it is of interest to study some forms of
dependence between the composition and the size. This is the case, for example,
of family household budgets: when focusing on the proportions of total expenditure
spent on different commodity groups (i.e. housing, foodstuffs, clothing or luxury
goods), it is reasonable to expect that the composition is significantly affected by
the size.

In the present paper we propose a generalization of the FD which allows
to incorporate such type of dependence. Our aim is to perform a preliminary
investigation of the model to understand some key features and evaluate its potential.
In particular, after briefly recalling the definition of the FD (Sect. 2), we introduce
the new model in Sect. 3. This is defined by extending the mixture structure of the
FD basis (Sect. 3.1). Then, we analyze the distribution of the corresponding size
and composition focusing on the benefits in terms of added flexibility in cluster
modeling (Sect. 3.2). Section 4 is devoted to the study of the effect of the size on the
composition within the new model. A final discussion is given in Sect. 5.

2 The Flexible Dirichlet Distribution

The FD distribution derives from the normalization of a basis Y of positive
dependent random variables obtained by starting from the usual basis of independent
equally scaled gamma random variables (i.e. the Dirichlet basis) and randomly
allocating to the i th component a further independent gamma random variable.
Formally:
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Yi D Wi CZi U i D 1; : : : ;D (1)

where the random variables Wi � Ga.˛i ; ˇ/ are independent, U � Ga.�; ˇ/
is an independent gamma random variable with the same scale parameter as the
Wi ’s. Moreover Z D .Z1; : : : ; ZD/ � M u.1;p/ is a multinomial random vector
independent of U and of the Wi ’s which is equal to ei with probability pi , where ei
is a vector whose elements are all equal to zero except for the i th element which is
one. Here the vector p D .p1; : : : ; pD/ is such that 0 � pi < 1 and

PD
iD1 pi D 1,

˛i > 0 and � > 0.
The FD distribution is then defined as the distribution of the composition X D

Y=YC and its density function can be expressed as:

fFD.xI˛;p; �/ D �
�
˛C C ��

QD
rD1 � .˛r/

 
DY

rD1
x˛r�1r

!
DX

iD1
pi

� .˛i /

� .˛i C �/x
�
i (2)

with x 2 S D D
n
x W xi > 0 ; i D 1; : : : ;D; PD

iD1 xi D 1
o

and ˛C D PD
iD1 ˛i .

The FD contains the Dirichlet distribution as the inner point � D 1 andpi D ˛i=˛C,
8i D 1; : : : ;D. Notice that the distribution of X does not depend on the scale
parameter ˇ as a consequence of well known properties of the gamma random
variable. Moreover, it can be shown that under the FD model the composition X
and the size Y C are independent (compositional invariance).

A key feature of the FD is that its distribution function FDD.xI˛;p; �/ can be
written as a finite mixture of Dirichlet distributions DD.xI˛C �ei /, i.e.:

FDD.xI˛;p; �/ D
DX

iD1
piD

D.xI˛C �ei /: (3)

Such mixture representation, among other aspects, allows for a variety of different
shapes for the density, including multi-modality.

Many relevant properties of the FD can be found in [6], namely the distribution
of marginals, conditionals and subcompositions, some fruitful representations and
expressions of joint and conditional moments. Moreover the model is closed under
components permutation and amalgamation. The latter property, implies that the
composition obtained by amalgamating (i.e. summing up) some components is still
FD distributed. A further and particularly relevant feature of the FD model is its
ability of modeling most types of independence relevant for compositional data.
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3 An Extension of the Flexible Dirichlet

3.1 The Basis

The random allocation scheme defining the FD basis (see Sect. 2) can be extended
assigning a different gamma random variable Ui to each component of the basis.
Thus, let us consider the basis

Yi D Wi CZiUi (4)

where the gamma random variables Ui � Ga.�i ; ˇ/ are independent and indepen-
dent of W D .W1; : : : ;WD/ and Z D .Z1; : : : ; ZD/, which are defined as in (1).
Here the vector � D .�1; : : : ; �D/ has positive elements.

By conditioning on Z, it is possible to prove that the distribution function of the
basis (4) FY.yI˛;p;�; ˇ/ admits the following representation:

FY.yI˛;p;�; ˇ/ D
DX

iD1

8
<

:Ga.yi I˛i C �i ; ˇ/
Y

r¤i
Ga.yr I˛r ; ˇ/

9
=

;pi (5)

i.e. it is a finite mixture of random vectors with independent gamma components.
This allows to derive the corresponding density, which has the form:

fY.yI˛;p;�; ˇ/ D ˇ˛
C

QD
rD1 � .˛r/

e�ˇyC

DY

rD1
y˛r�1r

DX

iD1
.ˇyi /

�i
� .˛i /

� .˛i C �i /pi :
(6)

Furthermore, as the gamma moments have a simple explicit form, i.e. if W �
Ga.˛; ˇ/ then:

E.W n/ D ˛Œn�

ˇn
;

where xŒn� is the factorial x.xC 1/ : : : .xC n� 1/ with xŒ0� D 1, the joint moments
of Y can be explicitly computed:

E

"
DY

iD1
Y
ni
i

#
D ˇ�nC

DY

rD1
˛Œnr �r

DX

iD1

.˛i C �i /Œni �
˛
Œni �
i

pi (7)

where ni ’s are arbitrary nonnegative integers and nC DPD
iD1 ni .
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3.2 The Size and the Composition

The mixture representation (5) allows to derive an explicit expression for the
corresponding composition and size densities. More specifically, conditionally on
Z D ei , X D Y=YC is a DD.˛i / where ˛i D ˛ C �iei independent of
Y C � Ga.˛C C �i ; ˇ/. Thus the distribution of .X; Y C/ can be written as

FX;YC.x; yC/ D
DX

iD1
DD.xI˛i /Ga.yCI˛C C �i ; ˇ/pi : (8)

From (8), marginal and conditional distributions of X and Y C can be easily derived.
In particular, the distribution of the size Y C is:

FYC.yC/ D
DX

iD1
Ga.yCI˛C C �i ; ˇ/pi :

This is a quite general parametric family being a mixture of gamma random
variables with arbitrary shape parameters and a common scale parameter ˇ. The
latter still represents a scale parameter for the mixture model. Furthermore, by
varying ˛C, � and p, many different shapes can be obtained. For example, multi-
modality can be accounted for, as for ˛ > 1 the random variable W � Ga.˛; ˇ/
is unimodal. The moments of Y C can be easily computed as mixtures of gamma
moments:

EŒ.Y C/ni /� D
DX

iD1

.˛C C �i /Œni �
ˇni

pi :

In particular, mean and variance take the form:

E.Y C/ D ˛C C N�
ˇ

Var.Y C/ D ˛C C N� C s2�
ˇ2

where N� DPD
iD1 �ipi and s2� D

PD
iD1.�i � N�/2pi :

Moreover, (8) implies that the distribution of X, called extended flexible Dirichlet
and denoted by EFD.˛;p;�/, has a Dirichlet mixture representation

DX

iD1
DD.xI˛i /pi ; (9)

with ˛i D ˛C �iei , which leads to the density
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fEFD.xI˛;p;�/ D 1
QD
rD1 � .˛r/

 
DY

rD1
x˛r�1r

!
DX

iD1

� .˛i /� .˛
C C �i /

� .˛i C �i / x
�i
i pi :

(10)

The main difference with respect to the FD density (2) is that the EFD model entails
different exponents �i for the xi power terms.

Analogously to the FD model, joint moments of the EFD can be straightfor-
wardly computed from the Dirichlet ones thanks to the mixture representation (9):

E

"
DY

iD1
X
ni
i

#
D

DY

iD1
˛
Œni �
i

DX

rD1

.˛r C �r /Œnr �
˛
Œnr �
r .˛C C �r /ŒnC�

pr (11)

where nC and xŒn� are defined in Sect. 3.1.
For example, the first moment of the EFD takes the simple form

E.Xi / D ˛i
DX

rD1

pr

˛C C �r C �i
pi

˛C C �i i D 1; : : : ;D:

Another relevant property of the FD distribution carries over to the EFD,
namely closure under permutation: if X � EFD.˛;p;�/ then any permutation
of (the components of) X is EFD with parameters obtained by applying the same
permutation to ˛, p and �. This implies a symmetry of the distribution with respect
to the components which allows the statistical analyses to be unaffected by the
particular order chosen to form the composition. Notice that many widespread
models for compositional data do not share such property, see for example [1, 3, 7].

A first important advantage of the EFD over the FD is a larger flexibility in
modeling the implied cluster structure. The FD model can be viewed as composed
byD (Dirichlet distributed) clusters, each with weightpi . The parameter � regulates
the extent of the common differences among all clusters: the larger � the larger each
i th component of the i th cluster with respect to the i th component of the other
clusters (i D 1; : : : ;D). Thus, only one parameter determines how far apart the D
clusters are from each other in a completely symmetric fashion.

By introducing the �i ’s a much larger variety of clusters is clearly reachable, as
the cluster structure can be modeled separately to some extent. Specifically, let us
consider the effect of the �i ’s on the cluster means. In the EDF model the mean
vector �i of the generic i th cluster is .˛ C �iei /=.˛C C �i /. It follows that each
�i only affects the corresponding i th cluster mean. Moreover, by increasing �i such
mean vector varies, monotonically and continuously componentwise, from ˛=.˛C/
to the i th vertex ei . In other words, �i dictates how far the i th cluster mean is from
the common barycenter ˛=.˛C/ in the direction of the i th vertex of the simplex.

To illustrate, compare the FD model with equal ˛i ’s and pi ’s shown in Fig. 1
(corresponding to an EFD with equal �i ’s) with the EFD model with the same ˛i ’s
and pi ’s but different �i ’s shown in Fig. 2.
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Fig. 1 FD density (left) and contour plots (right) with ˛ D .10; 10; 10/, p D .1=3; 1=3; 1=3/ and
� D .20; 20; 20/

Fig. 2 EFD density (left) and contour plots (right) with ˛ D .10; 10; 10/, p D .1=3; 1=3; 1=3/

and � D .5; 20; 50/

In particular, different �i ’s allow to break the symmetry of the clusters so that the
distance between the vertexes and the cluster barycenters can be quite different.

4 Dependence Between Composition and Size

Within the EFD.˛;p;�/ model the dependence between composition and size can
be investigated computing the distribution of XjY C D yC. Remarkably, from (8)
one can see that such conditional distribution is still an EFD. Furthermore it displays
a simple dependence on the size. Specifically, we have that XjY C D yC �
EFD.˛;p0.yC/;�/ where
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p0
i .y

C/ / .yC/�i pi
� .˛C C �i / ; i D 1; : : : ;D: (12)

It follows that the cluster structure is unaltered in the sense that the cluster
barycenters remain the same. The size influences only the probabilities p0

i .y
C/’s

defining the weights of the clusters and such influence is regulated by the �i ’s.
The form (12) of the updated weights allows to show that equality of the �i ’s

is the only case of compositional invariance. More precisely, if �i D � 8i , it is
immediate to see that the p0

i .y
C/’s are independent of yC (and coincide with the

pi ’s). On the other hand, if the basis is compositional invariant, then p0
i .y

C/ does
not depend on yC and, therefore, the ratio p0

i .y
C/=p0

r .y
C/ does not either 8i ¤ r .

Since such ratio is proportional to .yC/�i��r , then �i D �r 8i ¤ r .
The relevant hypothesis of compositional invariance can be therefore easily

expressed and tested within the EFD model and it is equivalent to testing appro-
priateness of the FD model (2).

Let us now investigate what type of dependence is implied by the EFD when the
�i ’s are not all equal. In particular, consider the relative effect of yC on the weights
of two generic clusters as measured by the probability ratio p0

i .y
C/=p0

r .y
C/. The

size has no influence, i.e. p0
i .y

C/=p0
r .y

C/ D pi=pr , if and only if �i D �r .
Otherwise such ratio is a monotone function of yC with range .0;1/, being
increasing if �i > �r and decreasing in the opposite case. Therefore the �i ’s dictate
how yC affects the structure of weights in the following simple form: the larger yC
the higher the weights associated with high values of the �i ’s.

The effect of the size on the updating mechanism of the weights can be better
illustrated graphically. So let us consider a simple situation where the �i ’s are
increasing: � D .3; 4; 5/. Then, Fig. 3 shows how the total weight moves from
the cluster on the right bottom (corresponding to the lowest �i ) to the cluster on the
left bottom (characterized by the highest �i ) as yC increases.

To get a concrete interpretation of the size effect entailed by the model, consider
the following example relative to household budgets. Suppose that commodities are
grouped into three types from the most essential to the more luxury ones. Then,
we may figure there are three expenditure patterns (clusters), the i th pattern being
characterized by families with a higher proportion of expenditure on the i th type
than the other families. The EDF model reasonably assumes that an increase in
the total absolute expenditure Y C implies a shift of the importance of the patterns
towards the more luxurious ones.

The dependence between composition and size can be further investigated
through the conditional mean (regression on yC) which takes the form:

E
�
Xi jY C D yC	 D 1

c

 
˛i

DX

rD1
.yC/�r dr C �i .yC/�i di

!
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Fig. 3 EFD contour plots with ˛ D .2; 2; 2/, p D .1=3; 1=3; 1=3/, � D .3; 4; 5/ for increasing
values of the size: yC D 1; 5; 8; 15; 30; 70

where

di D pi

� .˛C C �i /.˛C C �i / i D 1; : : : ;D

and

c D
DX

rD1

.yC/�r pr
� .˛C C �r / :

Figure 4 shows the behavior of such regression functions for the same parameter
configuration of Fig. 3.

The regression functions have a pattern similar to the weights p0
i .y

C/: as yC
increases the relevance of the various components changes, shifting from the first to
the second and then to the third. In particular, the first component (corresponding to
the smallest �i ) and the last one (corresponding to the largest �i ) are monotone while
the second is bell-shaped. To better understand the regression function behavior, we
report an example with more components in Fig. 5.

The “shifting” effect is confirmed as well as a common “bell-shaped” form for
all the middle components.
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Fig. 4 Conditional mean of X1 (dashed line), X2 (dotted line) and X3 (solid line) with ˛ D
.2; 2; 2/, p D .1=3; 1=3; 1=3/, � D .3; 4; 5/
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Fig. 5 Conditional mean of X1 (solid thick line), X2 (dotted line), X3 (dotdashed line), X4
(dashed line) and X5 (solid thin line) with ˛ D .2; 2; 2; 2; 2/, p D .1=5; 1=5; 1=5; 1=5; 1=5/,
� D .3; 8; 15; 22; 30/

5 Discussion

The EFD model loses some convenient properties of the FD such as closure under
amalgamation and various simple representations. Nevertheless, our analysis shows
that it remains mathematically rather tractable and sufficiently easy to interpret.

Furthermore, the EFD exhibits relevant advantages over the FD in at least two
directions: modeling cluster structure and dependence on the size. In particular, the
EFD cluster structure is shown to substantially extend the FD one, by removing
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symmetry constraints entailed by the latter. Moreover, the EFD, unlike the FD,
enables to model both independence and dependence on the size. The former case
corresponds to the FD. It follows that the relevant hypothesis of independence
(compositional invariance) can be conveniently formulated and tested within the
EFD. The dependence form implied by the EFD as well as the meaning of the
influential parameters are quite easy to grasp and to deal with. This is partly due
the useful property that, under the EFD model, the conditional distribution of the
composition given the size still has an EFD distribution.

Further investigation is needed to fully understand the EFD behavior in terms
of theoretical properties such as distributions of marginals and conditionals and
dependence structure.

Even more importantly, inferential aspects should be tackled. In particular, direct
maximization of the likelihood is not feasible due to the presence of several local
maxima. Yet, the finite mixture structure of the EFD allows the estimation to be
fulfilled via E–M algorithm, where the usual M-step is implemented by means of
a Newton–Raphson scheme. However, a preliminary analysis shows that the choice
of the starting values for the E–M is crucial, requiring at least a multiple points
starting strategy. Indeed, a substantial improvement of the initial values choice can
be expected by devising an ad hoc initial clustering procedure which exploits the
particular features of the context, i.e. the compositional nature of data and the
peculiar mixture structure implied by the model. The first aspect could be dealt with
by adopting suitable transformations of data, such as the symmetric representation
of theD-dimensional simplex as a regular simplicial polytope in R

D�1. The second
one could be used to the correct labeling of the initial groups by associating them to
the appropriate corresponding mixture components.

Finally, an analysis of the EFD as prior for categorical data is worth exploring,
as it is easily seen to be conjugate with respect to multinomial sampling.
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A Latent Variable Approach toModelling
Multivariate Geostatistical Skew-Normal Data
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Abstract
In this paper we propose a spatial latent factor model to deal with multivariate
geostatistical skew-normal data. In this model we assume that the unobserved
latent structure, responsible for the correlation among different variables as well
as for the spatial autocorrelation among different sites is Gaussian, and that
the observed variables are skew-normal. For this model we provide some of
its properties like its spatial autocorrelation structure and its finite dimensional
marginal distributions. Estimation of the unknown parameters of the model is
carried out by employing a Monte Carlo Expectation Maximization algorithm,
whereas prediction at unobserved sites is performed by using closed form
formulas and Markov chain Monte Carlo algorithms. Simulation studies have
been performed to evaluate the soundness of the proposed procedures.
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1 Introduction

Although a large variety of spatial data sets (on radioactive contamination, rainfalls,
winds, etc.) contain measurements with a considerable amount of skewness,
its modelling still remains an issue. For instance, with regard to radiological
monitoring, in [5], disregarding any physically-based modelling approach, it is
argued on the necessity of developing mapping algorithms for emergency detection
taking into consideration the skewness in the data. A boost to these developments
came from the Spatial Interpolation Comparison (SIC) 2004 (see [11]) in which,
whereas the routine scenario could easily be modelled using a Gaussian random
field, the emergency scenario, which mimics an accidental release of radioactivity,
needs to be modelled taking properly into account that, due to the presence of
extreme measurements, the data are positively skewed. Just to cite a few works,
to deal with skewed measurements coming from radioactive monitoring, [18]
and [15] propose copula-based geostatistical approaches, whereas [9] argues that
the structuring of extreme values can be faced in a coherent manner by using
the class of Hermitian isofactorial models. Moreover, [4] proposes a Gaussian
anamorphosis transformation to deal with skewed data coming from contaminated
facilities, and [19] argues in favor of a Bayesian approach pointing out that both the
Gaussian copula and the non-Gaussian 2-copula models are inappropriate to model
strongly skewed radioactivity measurements. Other works dealing with skewed
radiological measurements are [27], which is concerned with the estimation of the
variogram and the development of optimal sampling plans, [7], which proposes a
dynamic spatial Bayesian model for non-Gaussian measurements from radioactivity
deposition, as well as the works in [22, 28] and [32]. On the other hand, a general
approach developed to cope with some types of univariate non-Gaussian spatial data
(including skew data) has been proposed in [8] by defining a family of transformed
Gaussian random fields that provides an alternative to trans-Gaussian kriging.

Whereas in the univariate case, that is, in presence of just one regionalized
variable, spatial modelling and prediction have been extensively studied for different
types of non-Gaussian data, in particular skew data, in a multivariate non-Gaussian
context only a limited number of works have been published. Among these, [26]
and [25] extend to multivariate geostatistical non-Gaussian data the modelling
approach of [10], whereas [6] proposes a hierarchical Bayesian approach to
model Gaussian, count, and ordinal variables, by designing a Gibbs sampler with
Metropolis-Hastings steps. Other works dealing with multivariate spatial data are
those in [33], which explores the use of the Bayesian Maximum Entropy approach
in presence of both continuous and categorical regionalized variables, and in [31],
which uses Markov chain Monte Carlo methods for the Bayesian modelling of
multivariate counts.
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In this paper, to model skewness in a multivariate (that is, in presence of more
than one regionalized variable) geostatistical context, we propose an alternative
approach based on the use of the skew-normal distribution. Our modelling approach,
which extends some of the ideas in [24] (see also [35]), is based on the skew-normal
distribution [2, 3] and on a latent Gaussian factor structure. Just to give some
examples, this approach might prove useful in the modelling of the radiological
data in [16] or the data related to the Fukushima disaster (data are available from
TEPCO at http://www.tepco.co.jp) where more than one radiological measurement
has been collected for each sampling site. Apart from providing a much greater
flexibility with respect to the traditional Gaussian random fields, it is possible to
show that our model has all its finite-dimensional marginal distributions belonging
to the family of the closed skew-normal distribution [13, 14]. It must be mentioned
that the modelling construction proposed here is substantially different from some
of the most popular constructions based on the skew-normal distribution that have
recently appeared in the literature to model univariate skewed spatial data, like those,
for instance, of [1, 20] and [17] (for a critical discussion on these constructions
see [24]).

The paper is organized as follows. The model and its properties are presented
in Sect. 2 and in Sect. 3, respectively. In Sect. 4 we present the estimation and
prediction procedures and some simulation results, and in section “Conclusions” we
make some final comments. More technical results are presented in the Appendix.

2 AMultivariate Closed Skew-Normal Geostatistical Model

In the following we define a model for geostatistical multivariate skewed data
exploiting the ideas in [24] and in [25], by building the model on an unobserved
latent Gaussian spatial factor structure. Let yi .xk/, i D 1; : : : ; m, k D 1; : : : ; K ,
be a set of geo-referenced data measurements relative to m regionalized variables,
gathered at K spatial locations xk . Each of these m measured variables can be
viewed as a partial realization of a particular stochastic process Yi .x/, i D 1; : : : ; m,
x 2 R

2. We assume that these stochastic processes are given by

Yi .x/ D ˇi CZi .x/C !iSi .x/ ; i D 1; : : : ; m; (1)

where ˇi and !i are unknown constants, representing, respectively, an intercept
and a scale parameter, and Zi .x/ and Si .x/ are latent processes. In particular, for
every i D 1; : : : ; m, Zi .x/ is a mean zero stationary Gaussian process, whereas for
every i D 1; : : : ; m, and for each x 2 R

2, Si .x/ is an independent random variable
distributed as a skew-normal [2], that is, Si .x/ � SN .0; 1; ˛i /, which means that,
for every x 2 R

2, the density of Si .x/ is given by fSi .s/ D 2�1.sI 1/˚.˛i s/, for
�1 < s < 1, where ˛i 2 R, �1.�I 1/ is the scalar normal density function with
zero mean and unit variance, and ˚.�/ is the scalar N.0; 1/ distribution function.

http://www.tepco.co.jp
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Let us note that, for each i D 1; : : : ; m, and for every x 2 R
2, conditionally on

Zi .x/, the random variable Yi .x/ has a skew-normal distribution, that is,

Yi .x/ jZi .x/ � SN
�
ˇi CZi .x/ ; !2i ; ˛i

�
; (2)

which means that we can write its density as

f .yi .x/jzi .x// D 2 �1
�
yi .x/� ˇi � zi .x/I!2i

�
˚

�
˛i

!i

�
yi .x/� ˇi � zi .x/

��
;

where �1. � I �2/ is the scalar normal density function with zero mean and positive
variance �2. Moreover, for each i D 1; : : : ; m, and for every x 2 R

2, the (scalar)
random variable Yi .x/ has a (marginal) skew-normal distribution, that is,

Yi .x/ � SN

�
ˇi ; &

2
i C !2i ; ˛i!i

.q
&2i
�
1C ˛2i

�C !2i
�
; (3)

where &2i D Var ŒZi .x/�.
A similar result holds also for the other marginal distributions of the process.

Indeed, with some algebra it is possible to show that all finite dimensional marginal
distributions of the (weakly and strongly stationary) multivariate spatial process
.Y1 .x/ ; : : : ; Ym .x//

T , for x 2 R
2, are closed skew-normal (CSN). This implies,

for instance, that, for each i D 1; : : : ; m, the univariate spatial process Yi .x/, for
x 2 R

2, has all its finite-dimensional marginal distributions belonging to the CSN
family (see the Appendix), and that, for any fixed spatial location x 2 R

2, the
random vector .Y1 .x/ ; : : : ; Ym .x//

T has a multivariate CSN distribution [13, 14].
In principle, these results make the approach very appealing since they allow, due
to the stationarity of the processes, to empirically check some of the distributional
properties of the model. For instance, for a given set of observations, the empirical
distribution of yi .xk/, k D 1; : : : ; K , for any given i D 1; : : : ; m, can be compared
with the marginal skew-normal distribution in (3).

For the latent part of the model, that is, for the stationary Gaussian processes
Zi .x/, i D 1; : : : ; m, we assume that

Zi .x/ D
PX

pD1
aipFp .x/ ; (4)

where aip are m � P real coefficients, and Fp .x/, p D 1; : : : ; P , are
P � m non-observable spatial processes (common factors) responsible for the
cross-correlations in the model. The processes Fp .x/, p D 1; : : : ; P , are assumed
zero mean, stationary, and Gaussian with covariance function
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Cov
�
Fp .x/ ; Fq .xC h/

	 D


�.h/; p D q;
0; p ¤ q;

where h 2 R
2 and �.h/ is a real spatial autocorrelation function common to all

factors with �.0/ D 1 and �.h/! 0, as khk ! 1. Similarly to the classical linear
factor model, this latent linear structure is responsible for a specific correlation
structure among the processes Zi.x/. In particular, for each i D 1; : : : ; m, the
covariance functions are given by Cov ŒZi .x/ ; Zi .xC h/� D PP

pD1 a2ip�.h/,
whereas the cross-covariance functions are given by Cov

�
Zi .x/ ; Zj .xC h/

	 DPP
pD1 aipajp�.h/. Taking h D 0, we find that Var ŒZi .x/� D PP

pD1 a2ip and

Cov
�
Zi .x/ ; Zj .x/

	 DPP
pD1 aipajp.

3 Variograms and Cross-Variograms

Let us consider here the correlation structure of the observable processes, induced by
the latent factor model. For the observable stochastic processes Yi .x/, i D 1; : : : ; m,
we can show that

E ŒYi .x/� D ˇi C !iıi
�
2

�

� 1
2

; Var ŒYi .x/� D &2i C !2i
�
1 � 2

�
ı2i

�
;

where ıi D ˛i=
q
1C ˛2i , and, for h ¤ 0,

Cii .h/ D Cov ŒYi .x/ ; Yi .xC h/� D &2i �.h/: (5)

Note that if �.h/ D �.�h/ we have that Cii.h/ D Cii.�h/. Furthermore, Cii.1/ D
0 andCii.0/ ¤ Cii.0C/ D &2i , that is, the covariance functionCii.h/ is discontinuous
at the origin.

On the other hand, for h ¤ 0, the variogram of the observable Yi .x/ takes the
form

�ii .h/ D 1

2
Var ŒYi .xC h/ � Yi .x/� D !2i

�
1 � 2

�
ı2i

�
C &2i Œ1 � �.h/� ; (6)

which is, similarly to the covariance function, discontinuous in zero. In fact, we
have that �ii .0/ D 0 and �ii

�
0C� D !2i Œ1 � .2=�/ı2i �. Note that �ii .1/ D Cii.0/.

To visually asses Formula (6), Fig. 1 shows the form taken by the variogram �ii .h/
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Fig. 1 The graphs show the shape of the theoretical variogram �ii .h/ given in Formula (6), for a
Cauchy autocorrelation function with both parameters equal to 1, and for different values of the
other parameters: (left) ! D 0:5, & D 1; (middle) ˛ D 2, & D 1; (right) ˛ D 2, ! D 0:5. The
solid line in the three graphs corresponds to the same set of parameter values. The line in the first
graph corresponding to ˛ D 0 gives the variogram in the case of a Gaussian process

for different values of the parameters, in the case of a Cauchy spatial autocorrelation
function �.h/ D �

1 C .khk =�/2 	��, with � D 1 and � D 1. As we can see, the
nugget of the variogram decreases for decreasing values of ! and for values of the
skewness parameter ˛ departing from zero.

For any two stochastic processes Yi .x/ and Yj .x/, with i ¤ j , it is easy to show
that

Cij .h/ D Cov
�
Yi .x/ ; Yj .xC h/

	 D Cov
�
Zi .x/ ; Zj .xC h/

	 D &ij�.h/; (7)

where &ij D PP
pD1 aipajp D Cov

�
Zi .x/ ; Zj .x/

	
. Note that Cij .h/ D Cji .h/ and

that if �.h/ D �.�h/, then Cij .h/ D Cij .�h/.
For the cross-variogram between Yi .x/ and Yj .x/, with i ¤ j , we obtain

�ij .h/ D 1

2
Cov

�
Yi .xC h/ � Yi .x/ ; Yj .xC h/ � Yj .x/

	 D &ij Œ1 � �.h/� :
(8)

4 Estimation and Prediction

Assuming to know the numberP of common factors and the spatial autocorrelation
function �.h/, the model depends on the parameter vector #� D .ˇ;A;!;˛/,
where ˇ D .ˇ1; : : : ; ˇm/

T , A D .a1; : : : ; am/
T with ai D .ai1; : : : ; aiP /

T , ! D
.!1; : : : ; !m/

T , and ˛ D .˛1; : : : ; ˛m/
T . Note that, similarly to the classical factor

model, our model is not identifiable. Indeed, there are two groups of orthogonal
transformations of the matrix A, given by permutation matrices and by some special
reflection matrices, that leave the model unchanged [30]. However, this is the only
indeterminacy in the model and can easily be faced.
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In the following, we will further assume to know the parameters ! and ˛. In
this case, by resorting to Markov chain Monte Carlo (MCMC), and in particular
to the Metropolis-Hasting algorithm, a likelihood based estimation procedure for
the parameter # D .ˇ;A/ can be developed by exploiting the Monte Carlo
Expectation Maximization (MCEM) algorithm. Let F D .F1; : : : ;FP /

T , where
Fp D

�
Fp.x1/; : : : ; Fp.xK/

�T
, p D 1; : : : ; P , and let y D .y1; : : : ; ym/

T , where
yi D .yi .x1/; : : : ; yi .xK//

T , i D 1; : : : ; m. Whereas the marginal log-likelihood
l.#/ D lnf .yI#/ is not available due to the presence of multidimensional integrals
in the derivation of the marginal density f .yI#/, the complete log-likelihood based
on the joint distribution f .y;FI#/ is easily given by

lc.#/ D ln f .y; FI#/ D ln
�
f .yjFI#/ � f .F/�

D ln

( 
mY

iD1

KY

kD1

f .yikIZik; ˇi /

!
� f .F/

)

D ln

8
<

:

 
mY

iD1

KY

kD1

2 �1
�
yik�ˇi�ZikI!2i

�
˚

�
˛i

!i
.yik�ˇi�Zik/

�!
�
0

@
PY

pD1

f .Fp/

1

A

9
=

; ;

(9)

where yik D yi .xk/ and Zik D Zi.xk/. In this situation, the marginal log-likelihood
l.#/ D lnf .yI#/ can be maximized by resorting to the Monte Carlo Expectation
Maximization (MCEM) algorithm (see, for instance, [23] and [12]).

At the sth iteration, the MCEM algorithm involves three steps: S-step, E-step
and M-step. In the first step (S-step), Rs samples F.r/, r D 1; : : : ; Rs , are
drawn from the (filtered) conditional distribution f .FjyI# s�1/, where # s�1 is the
guess of the parameter # after the .s � 1/th iteration. These samples can be
collected by using some Markov chain Monte Carlo (MCMC) procedure based
on the Metropolis-Hustings algorithm. In the second step (E-step) the following
approximation of the conditional expectation of the complete log-likelihood is
computed

Qs .# ;# s�1/ D OE Œlnf .y;FI#/jy� D 1

Rs

RsX

rD1
ln f

�
y;F.r/I#�:

The last step (M-step) supplies as the new guess # s the value of # which maximizes
Qs .# ;# s�1/.

Although convergence results for this algorithm are not available, it is neverthe-
less possible to show that the “average” complete likelihood which is maximized
in the M-step of the MCEM algorithm is concave and admits a unique local
(and global) maximum. This result allows to safely implement standard numerical
maximization techniques.
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Assuming as known all parameters of the model, prediction of the observable
processes Yi .x/ at an unobserved spatial location (or at an unobserved set of spatial
locations) can be carried out either by exploiting some of the properties of the CSN
distribution, or by implementing some MCMC algorithm. On the other hand, for the
prediction of the unobserved common factors Fp .x/, we need to resort to MCMC
algorithms. In the case in which we are interested in predicting a common factor on
a large set of spatial locations (maybe on a grid), instead of carring out an MCMC
run at each spatial location, we can carry out an MCMC run only at the sampling
points (that is, only at those points for which we gathered observations), and then
exploit a linear property similar to Kriging, and also similar to that found by [34] in
a univariate framework, to obtain predictions at all other spatial locations.

To asses the goodness of the MCEM estimation procedure we performed some
simulation studies. To give some examples, in Fig. 2 we show the results of some
simulation analyses. For these analyses we considered m D 2 and P D 1,
that is, two observable variables and one latent common factor F .x/. In the first
two simulation experiments we considered a powered exponential (stable) spatial
autocorrelation function �.h/ D exp

� � .� khk/� 	, with � D 10�5 and � D
1:5, whereas in the last two experiments we considered a Cauchy autocorrelation
function with � D 7;000 and � D 1. For any given set of parameter values #� and
a given spatial autocorrelation function �.h/, we simulated 50 realizations from the
model over K D 25 equally spaced fixed sampling points located on the nodes of
a grid. For each simulated realization, we run the MCEM estimation algorithm,
assuming as unknown only the parameters a11, a21, ˇ1 and ˇ2. Each time, we
considered 800 iterations of the MCEM algorithm, and at each step of the algorithm
we considered 800 MCMC samples (of which 400 burn-in). As shown in Fig. 2,
despite some possible distortion (which could be due to the modest sample size),
the sampling distributions look quite reasonable. However, though our simulation
experiments gave us reassuring results, we feel that more efforts should be made
to fully investigate the theoretical inferential properties of the proposed inferential
procedure.

As far as the computational load of our estimation procedure is concerned,
implementing our algorithm with the help of the OpenBUGS software [21] using
the package R2WinBUGS in R [29], and using standard commercial personal
computers, the computing times are still demanding. Just to give an example,
with 25 observations on a grid simulated assuming the powered exponential
autocorrelation function and the value of the parameters used to obtain the simulated
distributions in the second row of Fig. 2, one iteration of the MCEM algorithm
(with an MCMC sample size of 800) took 41 s. Increasing the size of the grid
to 49 observations, the computing time increases to 102 s. Let us note that much
of the time is needed for the maximization step of the MCEM algorithm. In the
former case, the time needed to generate the MCMC sample was less than 1 second,
whereas the time needed by the maximization step was 40 s. Thus, to obtain one
MCEM estimate, using 800 iterations of the MCEM, takes more than 9 h, and to
obtain a simulated distribution, based on 50 replicates, of the MCEM estimator (that
is, one row of Fig. 2) takes several days.
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Fig. 2 The histograms show the simulated univariate marginal sampling distributions of the
MCEM estimator of the parameters a11, a21, ˇ1 and ˇ2 (from left to right) in a model with
m D 2 and P D 1 obtained in four simulation experiments (from top to bottom). The vertical
solid lines represent the true parameter values, whereas the vertical dashed lines represent the
empirical means over the 50 simulated realizations. For the spatial autocorrelation function �.h/
we chose a powered exponential model with � D 0:00001 and � D 1:5 in the first two simulation
experiments (first two rows), and a Cauchy model with � D 7;000 and � D 1 in the last two
simulation experiments (last two rows). The parameters ˛1 and ˛2 were fixed equal to: �1 and 1
(first row); 2 and 2 (second row); �1 and 1 (third row); 2 and 2 (fourth row). For all four simulation
experiments, the other parameters where equal to: a11 D 2, a21 D �0:7, ˇ1 D 1, ˇ2 D 2, !1 D 1,
!2 D 1
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Conclusion

In this work we have proposed and studied a model for the analysis of multi-
variate geostatistical data showing some degree of skewness. Our geostatistical
model based on latent factors can be considered as an extension to skewed non-
Gaussian data of the classical geostatistical proportional covariance model.

By framing our model in a hierarchical context, that is, by extending to
the multivariate case the model-based geostatistical approach in [10], it would
be possible to extend the present work to deal with regionalized variables of
different kind. Instead of assuming that the conditional distributions of Yi .x/
given Zi .x/ are all skew-normal, we might assume, for different values of
i D 1; : : : ; m, that they are of different type. For instance, [25] considers a model
in which some of the (conditional) distributions, of the observable regionalized
variables, are Poisson whereas some others are Gamma. In this way, we could
obtain a model for non-Gaussian data flexible enough to account for observable
regionalized variables showing different departures from normality.

On the other hand, a generalization in a different direction might involve the
introduction of more spatial scales as in the classical linear model of coregion-
alization. This would supply a more flexible spatial autocorrelation structure in
which the latent processes Zi .x/, which are behind the level of the observable
regionalized variables Yi.x/, are not constrained to have proportional covariance
and cross-covariance functions. However, the high level of complexity of this
generalization would require a large amount of data to be detected and would
pose serious inferential problems.

As regard to the model presented in this work, we presented a computationally
intensive likelihood based inferential procedure, exploiting the capabilities of
the MCEM algorithm. It must be noted that with this procedure we estimated
just some of the parameters of the model, assuming the others as known. In
particular, we assumed as known the parameters ! D .!1; : : : ; !m/

T and
˛ D .˛1; : : : ; ˛m/T that characterize the shape of the skew-normal (conditional)
distributions. In this way we avoided many of the well known inferential
problems posed by the estimation of the parameters of the skew-normal distri-
bution. Although in this work we did not discuss any inferential procedure for
these parameters, these can nevertheless be calibrated comparing the theoretical
marginal distributions and the theoretical variograms with the corresponding
empirical counterparts. From a computational perspective, although we checked
the feasibility of our estimation procedure for reasonable sample sizes and for
different parameter values, it must be remarked that in more complex situations
the computational burthen might increase considerably.
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Appendix

In this appendix we report some distributional results regarding the observable
processes Yi .x/. Let us first recall some definitions. Following, for instance, [2],
we say that a random vector Y D .Y1; : : : ; Yn/

T has an extended skew-normal
distribution with parameters �, ˙ , ˛ and � , and we write Y � ESNn.�;˙ ;˛; �/,
if it has probability density function of the form

f .y/ D �n.y � �I˙ / � ˚.˛0 C ˛TD�1.y � �//=˚.�/; for y 2 R
n; (10)

where � 2 R
n is a vector of location parameters, �n. � I˙ / is the

n-dimensional normal density function with zero mean vector and (positive-
definite) variance-covariance matrix ˙ having elements �ij,˚.�/ is the scalar N(0,1)
distribution function, D D diag.�11; : : : ; �nn/1=2 is the diagonal matrix formed with
the standard deviations of the scale matrix ˙ , ˛ 2 R

n is a vector of skewness
parameters, and � 2 R is an additional parameter. Moreover, ˛0 D �.1C˛TR˛/1=2

where R is the correlation matrix associated to ˙ , that is, R D D�1˙ D�1. Clearly,
this distribution extends the multivariate normal distribution through the parameter
vector ˛, and for ˛ D 0 it reduces to the latter. When � D 0, also ˛0 D 0 and (10)
reduces to

f .y/ D 2 � �n.y� �I˙ / � ˚.˛TD�1.y� �//; for y 2 R
n: (11)

In this case we simply say that Y has a skew-normal distribution and we write, more
concisely, Y � SNn.�;˙ ;˛/.

According to [13] and [14], we say that the n-dimensional random vector Y D
.Y1; : : : ; Yn/

T has a multivariate closed skew-normal distribution, and we write Y �
CSNn;m.�;˙ ;Dc; �;�/, if it has probability density function of the form

f .y/ D 1

˚m.0I �;�CDT
c ˙ Dc/

��n.yI�;˙ /�˚m.DT
c .y��/I �;�/; for y 2 R

n;

(12)

where: m is an integer greater than 0; � 2 R
n; ˙ 2 R

n�n is a positive-definite
matrix; Dc 2 R

n�m is an n � m matrix; � 2 R
m is a vector; � 2 R

m�m is a
positive-definite matrix; and �n. � I�;˙ / and ˚n. � I�;˙ / are the probability
density function and the cumulative distribution function, respectively, of the
n-dimensional normal distribution with mean vector � and variance-covariance
matrix ˙ .
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Though, as we have already noticed, the multivariate finite-dimensional marginal
distributions of the multivariate spatial process .Y1 .x/ ; : : : ; Ym .x//

T , for x 2 R
2,

are not skew-normal (in the sense of [2]), it is possible to show that they are
closed skew-normal, according to the definition of [13]. This implies that, for
any given i D 1; : : : ; m, each univariate spatial process Yi .x/ has all its finite-
dimensional marginal distributions that are closed skew-normal. To see this (see also
[24]), consider n spatial locations x1; : : : ; xn, and the corresponding n-dimensional
random vector Y D .Yi .x1/; : : : ; Yi .xn//T . Recalling that for any given x 2 R

2 we
can write Yi.x/ D ˇiCZi .x/C!iSi.x/, the vector Y can be written as Y D ˇi1nC
ZCD!S DWCV, where W D ˇi1nCZ, V D D!S, Z D .Zi .x1/; : : : ; Zi .xn//T ,
S D .Si .x1/; : : : ; Si .xn//T and D! is the n � n diagonal matrix with !i on
the diagonal. Now, since Si .x/, for x 2 R

2, are independently and identically
distributed as CSN1;1.0; 1; ˛i ; 0; 1/, according to Theorem 3 of [14], we have that
S � CSNn;n.0; In;D˛; 0; In/, where D˛ is the n � n diagonal matrix with ˛i on
the diagonal. On the other hand, since Z follows a multivariate normal distribution
with mean 0 and covariance matrix ˙Z with entries given by Cov

�
Zi.x/; Zi .x C

h/
	 D &2i �.h/, we also have that Z � CSNn;1.0;˙Z; 0; 0; 1/. Moreover, being W

distributed as a multivariate normal with mean ˇi1n and covariance matrix ˙Z , we
can write that W � CSNn;1.ˇi1n;˙Z; 0; 0; 1/, and using Theorem 1 of [14] we can
also write that V � CSNn;n.0;D!2 ;D˛=!; 0; In/, where D!2 is the n � n diagonal
matrix with !2i on the diagonal, and D˛=! is the n�n diagonal matrix with ˛i=!i on
the diagonal. Thus, considering that Y DWCV, we can conclude, using Theorem 4
of [14], that Y � CSNn;nC1.ˇi1n;˙Z C !2i In;D�; 0;��/, for some matrices D�
and ��.
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Modelling the Length of Stay of Geriatric
Patients in Emilia Romagna Hospitals Using
Coxian Phase-Type Distributions
with Covariates
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Abstract
The attention placed on healthcare systems has been constantly increasing in
recent years. This is especially true for geriatric services: older people often have
complex medical and social needs and the proportion of elderly in the population
is currently rising. In this paper we apply the Coxian phase-type distribution to
model the length of stay of geriatric patients admitted to 19 geriatric wards at
hospitals in the Emilia-Romagna region in Italy for the years 2008–2011. The
results confirm previous research carried out on patients in the UK and extends
the research by allowing the influence of patient characteristics, available on
admission, to be taken into account as covariates.
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1 Introduction

In the last 15 years the proportion of elderly people has increased across all
European countries. This means a growth of the service for the health care system
dedicated to the people aged more than 65 years, in particular an increase in the
expenditure due to an overall increase in patient length of stay (LoS) in hospital.
In Italy in 2012 the elderly people comprise 37% of the admissions to hospital
consuming nearly half .49%/ of the LoS days. It has been estimated [4] that in
2050 the ageing of the population will produce an increase of 4–8 % of the GDP
across Europe. In contrast, recent years in Italy has also seen the closure of several
pediatric wards replaced by geriatric wards. The modeling of hospital wards and
patient activity can be addressed by focusing on techniques that consider the length
of stay that patients experience in hospital. In particular, the study of duration
of stay of geriatric patients in hospital has led to the modeling of survival data
using a two term mixed exponential distribution. Further work has resulted in the
successful representation of this distribution using a Coxian phase-type distribution
along with key patient characteristics known on admission to hospital [11]. The
purpose of the research presented in this paper is to use the Coxian phase-type
distribution to consider patient length of stay of the elderly population in hospitals in
the Emilia-Romagna region in Italy for data recorded more recently between 2008
and 2011. By doing so, the survival data will be represented as different stages of
care presenting an opportunity to investigate the different streams of care through
the system, and the characteristics involved that influence this. The results can also
offer insight into the needs and behavior of this growing cohort of elderly patients
found in almost all European hospitals.

2 The Coxian Phase-TypeDistribution

Past investigations of modelling length of stay have led to the discovery that
a two-term mixed exponential model produces a good representation of patient
length of stay [13, 14]. Since then further research has endeavoured to improve
the mixed exponential models with the incorporation of more complex compart-
mental systems and more sophisticated stochastic models such as the Coxian
phase-type distribution. The Coxian phase-type distributions are a subset of the
widely used phase-type distributions introduced by Neuts in 1975, they have the
benefit of overcoming the problem generality within phase-type distributions by
only requiring 2n � 1 parameters to describe a distribution requiring n phases,
whereas the general phase-type distribution requires n2 C 2 [15]. The Coxian
phase-type distributions have been used in a variety of settings: from component
failure data [6] and the length of treatment for patients at risk of suicide to prisoner
remand times and the lifetime of male rats [5]. Marshall et al. [12] used the Coxian
phase-type distribution to model the career progression of students at university
where the process can be thought of as a series of transitions through latent phases
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Fig. 1 Coxian phase-type distribution

until the event of leaving the university occurs. However most applications of the
Coxian phase-type distribution has been made in modelling the length of time spent
in hospitals in particular McClean et al. [9] showed that the Coxian phase-type
distribution was appropriate for describing the length of time United Kingdom
geriatric patients spent in care. The distributions have also been used to model the
stages of progression of the patients from first entering the hospital through to the
individual leaving due to recovery or death. The transitions through the ordered
transient states could correspond to the stages in patient care such as diagnosis,
assessment, rehabilitation and long-stay care where the patients eventually will
then reach the absorbing state of the Coxian phase-type distribution which will
correspond to them leaving the hospital through discharge, transfer or death [5].

Methodologically speaking, the Coxian phase-type distribution represents the
time to absorption of a finite latent Markov chain in continuous time where there
is a single absorbing state and the stochastic process starts in a transient state. It
describes the probability P.t/ that the process is still active at time t and differs
from the general phase-type distribution in that the transient states (phases) of the
model are ordered (see Fig. 1). The process begins in the first phase and either
moves sequentially through the phases or into the absorbing state. In other terms, a
Coxian phase-type distribution results when the transient states have a natural order
and only forward transitions between them may occur. These phases may be used to
describe the stages of a process until termination, in which the transition rates need
to be estimated.

The transient states in this model could have some real world meaning attached to
them, for example within a hospital environment each of the stages could be thought
of as the progression of treatment: the first state could be admittance, followed by
diagnosis, treatment and rehabilitation. During each state the individual can leave
hospital due to discharge, transfer or death.

Definition 1 Let .X.t/I t � 0/ be a latent Markov chain in continuous time with
states 1; 2; : : : ; n; nC 1 and X.0/ D 1. For i D 1; 2; : : : ; n � 1 the probability that
a patient will move from one phase to the next phase in the system, during the time
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interval ıt may be written as

probfX.t C ıt/ D i C 1jX.t/ D ig D �iıt C o.ıt/ (1)

and likewise for i=1,2,. . . ,n, the probability that a patient, during the time interval
ıt , will leave the system completely and enter the absorbing phase may be written as

probfX.t C ıt/ D nC 1jX.t/ D ig D 
iıt C o.ıt/: (2)

The states 1,2,. . . ,n are latent (transient) states of the process and state n+1 is the
absorbing state, while �i represents the rates of movement from state i to state (i+1)
and 
i is the rates of transition from state i to the absorbing state (n+1).

The time until the absorption T D ft � 0jX.t/ D nC 1g is said to have a Coxian
Phase Type distribution, and the probability density function of T can be written as
follow:

f .t/ D pexp.Qt/q (3)

where Q is the matrix of transition rates between states1,

Q D

0
BBBBB@

�.�1 C 
1/ �1 0 : : : 0 0

0 �.�2 C 
2/ �2 : : : 0 : : :

: : : : : : : : : : : : : : : : : :

0 0 0 : : : �.�n�1 C 
n�1/ �n�1
0 0 0 : : : 0 �
n

1
CCCCCA

(4)

q D �Qe D .
1; 
2; : : : ; 
n/T , p D .1; 0; : : : ; 0/ and e D .1; 1; : : : ; 1/
The survival function is given by

S.t/ D pexp.Qt/e: (5)

The number of parameters in a Coxian phase-type distribution is equal to 2n�1. The
Coxian family is dense in the class of all distributions on Œ0;1� and is appropriate
for estimating long-tailed distributions.

Gardiner et al. [8, 18] reformulate the probability density function (3) in the
following terms.

Let

ık D �k C 
k (6)

be the hazard rates in transient states, for k D 1; 2; : : : ; n � 1 and ın D 
n.

1The expression exp.A/ denotes the so-called matrix exponential exp.A/ D Pinf
kD0

Ak

kŠ
linked to

the solutions of differential equations defining Markov chains in continuous time.
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Moreover, let

pk;kC1 D �k

�k C 
k (7)

be the probabilities of transition from k �! k C 1, k D 1; 2; : : : ; n � 1, and
pn;nC1 D 1.

Suppose we observe the event times of m individuals t D .t1; : : : ; tm/ from a
Coxian phase-type distribution with n transient states.

Let X be the covariate information matrix: X D .x1; : : : ; xm/ where xi D
Œx1i ; x2i ; : : : ; xli�

T . In previous work the covariates were incorporated in generalised
linear models, see for example Faddy and McClean [7] and McClean et al. [10].
In Gardiner’s approach, it is possible to introduce the covariate effects into the
distribution.

Let

ıki D ık.xi / D ı0kexp.�xTi ˇ/ (8)

be the hazard rate of the i -th individual into the k-th phase, where ˇ D
Œˇ1; ˇ2; : : : ; ˇl �

T is the coefficient vector. In this way the conditional mean
time is log-linear in x, that is log.E.T jxi/ D a0 C xTi ˇ, where a0 D 1

ı01
C

Pn
kD2.

Qk�1
jD1

pj;jC1

ı0k
/.

The likelihood function of (2) becomes:

L.t jX; ı0;ˇ;p/ D
mY

iD1
pŒexp.	i Pti /�.�	i Pe/ D

mY

iD1
pexp. QQi ti / Qqi (9)

where

�i D

0

BB@

�ı1i 0 : : : 0

0 �ı2i : : : 0

W W W W
0 0 : : : �ıni

1

CCA

and

P D

0

BB@

1 �p12 0 : : : 0

0 1 �p23 : : : 0
W W W W
0 0 0 : : : 1

1

CCA

QQi D 	iP and Qqi D �	iPe D .p1;nC1ı1i ; p2;nC1ı2i ; : : : ; pn;nC1ıni/
T . The

likelihood function (9) is given by:
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mY

iD1
p exp

0

BB@exp.�xTi ˇ/

0

BB@

�ı01 p12ı01 : : : 0

0 �ı02 : : : 0

W W W W
0 0 : : : �ı0n

1

CCA ti

1

CCA �

�

0

BB@exp.�xTi ˇ/

0

BB@

.1 � p12/ı01

.1 � p23/ı02
W
ı0n

1

CCA

1

CCA : (10)

The stability of the maximum likelihood estimates is in doubt unless some
structural simplifications can be made. The authors used the Bayesian methods
proposed in Ausín [1–3], incorporating covariates into the model and extending the
Bayesian method to fit the Coxian phase-type regression model.

It was then assumed without loss of generality that ı01 � ı02 � : : : � ı0m. One
way of incorporating this ordering restriction was to represent the hazard rates of
the model as follows :

ı0k D ı01�2�3 : : : �k; 0 < �j � 1; j; k D 2; 3; : : : ; n (11)

as proposed in [1–3]. The transition probabilities can be obtained from � D
.�1; : : : ; �n/ where �k is the total probability of exiting from transient state k.

�1 D 1 � p12
�2 D p12.1 � p23/
W
W

�n�1 D p12p23 : : : pn�2;n�1.1 � pn�1;n/

�m D p12p23 : : : pn�2;n�1pn�1;n:

(12)

Instead of the parameters .n; ı01;ˇ;p/, the new parametrization .n;�;ı01;ˇ;
/

allows us to find a solution more stable using a MCMC framework, as shown in
Tang et al. [18]. For example, for a Coxian phase-type distribution with two phases,
the survival function with the new parametrization becomes:

S.t/ D .1 � �2/ exp.�ı01t/C �2

1 � �2 fexp.�ı01�2t/ � �2 exp.�ı01t/g D

D
�
1 � �2

1 � �2
�

exp.�ı01t/C
� �2

1 � �2
�

exp.�ı01�2t/:
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Several routines are implemented for the Coxian phase-type distribution. A
well known optimisation function is the Nelder Mead algorithm using maximum
likelihood techniques to determine the transition rates within the distribution. The
EM-algorithm is also used having the advantage of preserving the structures of
zeroes. In general, Matlab, C, SAS and R softwares can be used to fit the Coxian
phase-type distribution. Payne et al. [16] investigated the efficiency of fitting the
Coxian phase-type distributions to healthcare data using these programs. They
concluded that SAS was their software package of choice but that the Matlab and
EMpht programs consistently had a high rate of convergence. Gardiner [8] coded
their approach in SAS using PROC SEVERITY [17].

3 The Data

The data used in this paper consists of the ordinary admissions of 66,728 patients
aged 65 years or older to every geriatric ward of the acute care hospitals (19 geriatric
wards in total) operating in the North-East Italian Region of Emilia-Romagna
between 2008 and 2011. The data was provided by the Italian Health Care Ministry
and it is a subset of a large administrative data set covering all of Italy’s geriatric
wards. Individual Hospital Discharge Charts (HDC) are reported in the data set
including patient information (gender, age, and residence), the hospital (regional
code), the treatments received during hospitalization including information such as
Disease Related Group (DRG), principal and secondary diagnoses and procedures,
data of admission and so on. Patients aged 85 years or older represents 50% of all
patients in the data set. Approximately 42% (27,838 patients) of patients were male
with only 2:7% of patients not living in the Emilia-Romagna Region. Eighty-three
percent (55,401 patients) of patients were admitted to the department of geriatric
medicine from emergency admission; 12% (8,078) had emergency GP admission,
2% (1,451) were transferred from another institute and the remaining 2:4% (1,798)
had a planned admission or other. Approximately one quarter of patients were
admitted for surgery (16,878 patients). Chronic patients represent approximately
30% of all patients. Moreover 31% (20,756 patients) of the admitted patients had
a principal diagnosis of circulatory system, 20% (12,921 patients) as respiratory
system problems, 9% (5,676 patients) problems of the digestive system, and 7%
(4,787 patients) were admitted with cancer. The destination of patients on departure
from hospital could be one of several possibilities: the patient may return home;
transfer to a nursing home, residential home, another ward, or other hospital; or
may die while in hospital. Outcome was coded to describe three locations: home,
transfer, or death. Approximately 70% of patients left the geriatric ward to return
home; 13% died while the remaining 17% transferred. The highly right skewed
patient length of stay distribution is illustrated in Fig. 2. The average length of
stay is nine days (SD = 5.502) and median eight. It is interesting to note that the
maximum value is 30 days with no further tail of the distribution beyond this one
month point. A logrank test was conducted to compare the survival distributions
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Table 1 Results for log-rank test

Variable Chi-Squared Df Sig

Gender 18.944 1 < 0:0001

Outcome 1490.325 2 < 0:0001

Way of Admission 172.559 4 < 0:0001

Chronic 56.403 1 < 0:0001

Surgery 654.236 1 < 0:0001

Principal Diagnostic Group 616.764 4 < 0:0001

Ward 7046.536 18 < 0:0001

for length of stay according to the separate patient characteristics. Table 1 shows
that, for all variables (except for place of residence), we reject the null hypothesis
of equality for the survival function across all categories.

4 The Results

We first estimate Coxian phase-type distributions to model the patient length of
stay of the geriatric patients in Emilia-Romagna. The second part of the work is
devoted to extending previous work by introducing the covariates into the Coxian
phase-type distribution using the Gardiner approach. The EM-algorithm was used to
estimate the simple Coxian phase-type distribution, and a SAS routine implemented
to estimate the model with covariates.

4.1 The Coxian Phase-Type Distribution for the Distribution
of the Length of Stay of Emilia-Romagna’s Geriatric Patients

We implemented the actual fitting of the distribution by coding the EM-algorithm
to perform iteratively in C. In each iteration, the new parameter estimates are
calculated by solving a system of homogeneous linear differential equations using
the Runge-Kutta method of fourth order. The programme was stopped when there
was no further significant contribution made with the addition of another phase.
The Akaike information criterion (AIC) was then calculated and used to find the
most appropriate model to represent the data.The results show that the four phase
Coxian distribution most suitably represents length of stay of geriatric patients
within the Emilia-Romagna Region. At this stage, we carried out a verification
of the fitted Coxian phase-type distribution to ensure it is the best model to
describe the data set. This was done by separately fitting the alternative Lognormal,
Weibull, Log-Logistic, Generalized Beta, Burr XII, Dagum distributions and Coxian
phase-type distribution (with 4 phases) to the data set. A comparison of the fitted
distributions and corresponding Akaike information criterion (AIC) values was
carried out as reported in Table 2.
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Table 2 Comparison of the commonly used distributions against Coxian phase-types to describe
length of stay at the hospital

Distribution N.Parameters �2Loglikelihood AIC

Lognormal 2 407177.40 407181.40

Weibull 2 404885.60 404889.60

Log-Logistic 2 406026.00 406030.00

Generalized Beta 2 403022.40 403026.40

Burr XII 2 403309.80 403313.80

Dagum 3 404190.00 404196.00

Coxian 7 384870.00 384884.00

Fig. 2 Length of stay of geriatric patients in the Emilia-Romagna region, 2008–2011

The lowest AIC value corresponds to the Coxian phase-type distribution with
four phases thus indicating that it fits the data better than the other models.

Table 2 and Fig. 2 show that the fitted distribution represents the length of stay
data well2. By illustrating the four phase Coxian distribution with the parameter
values, it can be seen that no patients leave the first phase through the absorbing

2The length of stay for patients at geriatric ward can be considered as “regular” due to the ageing
process: in general this processes could be well fitted by a Coxian phase type distribution as in [7].
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Table 3 Fitted Coxian phase-type distributions for patient length of stay by outcome

Destination Phases Parameter estimates

Whole population 4 
1 D 0:000000; 
2 D 0:006868;


3 D 0:036456; 
4 D 0:289186

�1 D 0:553111; �2 D 0:543983; �3 D 0:25273

Home 6 
1 D 0:001341; 
2 D 0; 
3 D 0,


4 D 0; 
5 D 0; 
6 D 4:224514

�1 D 0:302514; �2 D 0:298179;

�3 D 0:625320; �4 D 4:22370; �5 D 4:224372

Death 4 
1 D 0:1669483; 
2 D 0:0021845;


3 D 0:1281496; 
4 D 0:2958138

�1 D 0:1402335; �2 D 0:2936308; �3 D 0:1677260

Transfer 6 
1 D 976:62; 
2 D 0; 
3 D 0:002500;


4 D 0:184324; 
5 D 000003; 
6 D 0:352500

�1 D 250570:55; �2 D 0:371965; �3 D 0:369465;

�4 D 0:187698; �5 D 0:352497

Fig. 3 Length of stay of geriatric patients in the Emilia-Romagna region, 2008–2011

stage (transfer, discharge or death). Patients leave the second state at a very fast
rate either through leaving the hospital or moving into another stage of care, the
majority of patients continuing through to the third and fourth stages. This suggests
that the second phase represents a short acute stay with the remainder of patients
all requiring further treatment and or rehabilitation in phase two before leaving the
hospital in the later phases.

The Coxian phase-type distribution was then fitted to the three destination
groups; home, transfer and death. The results for each of the outcome groups are
displayed in Table 3 and Fig. 3. From the graphs it is apparent that the length of stay
for the three outcomes is represented well by the distribution, with the parameter
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values shown in Table 3. For home and transfer the most suitable representation
for the data was the six phase Coxian distribution. For the home group it can be
noted that the vast majority of patients went through all the stages of care with only
some leaving at the first stage. This could potentially be because those individuals
who make it through the first stage (which could be a treatment phase) need a lot
of rehabilitation before they can leave for home and so they all progress through
to the final sixth phase before leaving the hospital. This outcome group perhaps
could collapse down into a two phase distribution considering that all patients after
the first state progress to the final stage with the first state possibly representing
treatment and the last, rehabilitation. For the transfer group it was found that it
too was most suitably represented by the six phase Coxian distribution however by
contrast patients leave the hospital from any stage of the process apart from the
second state. This suggests that further treatment in a different hospital or indeed
a lack of available beds could occur at any stage and so patients are required
to be transferred. For the death group however it was found to be most suitably
represented by the four phase Coxian distribution, with patients passing away at
any stage. This is very different to the other two outcome groups but perhaps
there is a logical and reasonable representation for it. This agrees with previous
research where the transfer and home outcome groups in general have a length of
stay distribution which has more phases than that of the death outcome group. This
could be because the transfer patients are having to wait for available beds in their
new destination while those returning home may have to wait until not only they are
in a suitable condition to return home but also until suitable care and resources are
available to them at their own home.

4.2 The Gardiner Approach: Adding the Covariates

Using the approach by Gardiner et al. [8,18] the Emilia-Romagna data set was found
to be best represented by a two phase Coxian model which can be further refined
slightly by incorporating patient covariates.

It also provides insight into which covariates play a significant part in the patients
length of stay. The results can be seen in Table 4. On the basis of the estimates of
the 2-phase model, all patients start in state 1 and almost all of them transit from
state 1 to state 2. The total probabilities of exiting from state 1 and 2 were 0.675 and
0.325 respectively. Length of stay (LoS) is positively associated with admission into
a public hospital, admissions for respiratory disease and admissions with surgery.
As expected, the effect of the outcome for home and death on LoS were estimated
respectively �0.054 and �0.322, corresponding to an expected decrease in LoS of
0.948 and 0.72 times the LoS of those who transfer. The expected LoS for patients
who were admitted as an emergency was 0.95 times the LoS of patients not admitted
as an emergency. Moreover the results show that admissions into public hospitals
increased the expected LoS by 1.093 times that of private or credited hospitals.
Respiratory disease led to an increase in LoS by 1.063 times the LoS of patients with
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Table 4 Including covariates into the Coxian phase-type distribution

Parameter Estimate Stand. error t Value Pr > jt j
ı01 1.486 0.052 85.61 < :0001

�2 0.969 0.017 58.27 < :0001

�2 0.325 0.002 162.51 < :0001

Out:home �0.054 0.004 �13.42 < :0001

Out:death �0.322 0.007 �45.75 < :0001

ER �0.052 0.004 �12.74 < :0001

Hosp:pub 0.089 0.007 12.60 < :0001

Dis: Respiratory 0.061 0.004 16.35 < :0001

Surgery 0.057 0.004 15.70 < :0001

other kinds of disease. Finally, surgical patients had longer LoS: the expected LoS
for surgical patients was 1.059 times the LoS of patients without surgical admission.

Conclusion

The Coxian phase-type distribution is used to represent geriatric patient length of
stay in the Emilia-Romagna hospitals for the period of 2008–2011. The results
show that the Coxian phase-type distribution suitably represents the data and
it also shows a similar pattern of stages of care according to the outcome of
the patient on leaving hospital from previous research. The results suggest that
patients who are discharged home from hospital will not tend to leave in the first
phase but instead will continue through to the final stage with the Coxian phase-
type distribution tending to have more phases for this group than for the group
of individuals who passed away while in hospital. It is the same for the transfer
patients where both of these outcome groups have more phases than the death
group.

The paper also considers the incorporation of patient covariates into the
Coxian phase-type distribution. This allows the survival time to be modelled in
relation to the patient information and identifies which variables have a signif-
icant influence on patient length of stay. The incorporation of the covariates in
the model results in a Coxian phase-type distribution with fewer phases required
to represent the survival distribution. It is therefore reasonable to consider the
covariates as providing better insight into the length of stay distribution where
their presence reduces the need of a higher phase Coxian. The earlier results of
the significance of the destination variable are also confirmed by the results of
the covariate model that has destination as a significant covariate in the two phase
Coxian model.
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Pathway Composite Variables: A Useful Tool
for the Interpretation of Biological Pathways
in the Analysis of Gene Expression Data

Daniele Pepe and Mario Grassi

Abstract
Biological pathways represent a useful tool for the identification, in the intricate
network of biomolecules, of subnetworks able to explain specific activities
in an organism. The advent of high-throughput gene expression technologies
allowed to analyze simultaneously the expression of thousands of genes. Pathway
analysis is often used to give a meaning to the set of differentially expressed
genes. However, classical analyses generate a list of pathways that are over-
represented or perturbed (depending on the approach used), but they do not
consider, in many cases, the role of the connections between the biomolecules
(genes or proteins) in the explanation of the biological phenomena studied. In this
note we propose a fine-tuned method, based on Structural Equation Modeling
principles, to discover pathway modules eventually able to characterize, in a
network perspective, the mechanisms of the pathogenesis of a disease. The
procedure relies on the concepts of shortest path, to find the initial modules, and
of pathway composite variable, to improve and facilitate the interpretation of the
modules proposed. The method was tested on microarray data of frontotemporal
lobar degeneration with ubiquitinated inclusions.
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1 Introduction

Recently a new way to consider pathological phenomena has taken hold. As reported
by Barabasi et al. [1] “the phenotypic impact of a defect is not determined solely by
the known function of the mutated gene, but also by the functions of components
with which the gene and its products interact and of their interaction partners, i.e., by
its network context.” Therefore, the disease observed would be a consequence of the
interdependencies between various perturbed processes that interact in a complex
network. A useful concept to analyze microarray data, following the principle of
Barabasi, is the one of biological pathways.

A biological pathway could be defined as a set of proteins and other biomolecules
that interact with each other to perform a specific activity in an organism. We
can have different biological pathways that involve gene regulation, metabolic
processes, and signal transduction cascades. With the availability of biological
pathway databases such as Kyoto Encyclopedia of Genes and Genomes (KEGG) [2]
or Biocarta (ww.biocarta.com), several resources have been developed to analyze
gene expression data. Pathway analysis allows to give a meaning to the list of
differential expressed genes (DEGs) found in microarray data in the context of
biological networks. Many approaches exist as reported by Khatri et al. [3]. The
Signaling Impact Analysis (SPIA) [4] is a Pathway Topology (PT)-based approach
that permits also to consider the way in which the genes are connected between
them, differently from other classical pathway analysis methods. SPIA allows to
individuate biological perturbed pathways but it is not able to propose modules that
could explain the phenotype observed. In this note we propose a procedure based on
the graph-theoretic implementation of Structural Equation Modeling (SEM) [5], for
testing and identifying perturbed pathway models. The selection of the proper model
relies on classical network analysis as shortest-path and k-core, in the introduction
of the concept of Pathway Composite Variables (PCV) and in use of co-citation
analysis. In summary, in confirmatory SEM framework, it is necessary to start from
a model. For each pathway a model was achieved finding the shortest paths between
the DEGs connected by other microarray genes as in the approach used by Pepe
et al. [6], grouping the not-DEGs using the concept of k-core in a unique variable
(PCV), and finally, improving the model adding connections that result co-cited in
literature.

2 Methods

All analyses below described were performed using samr, SPIA, graphite, igraph,
lavaan, CoCiteStats packages of the statistical software R [7].
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2.1 Differential Analysis

For the selection of DEGs, we used the Significance Analysis of Microarray (SAM)
procedure. This is a statistical technique for finding significant genes in a set of
microarray experiments by a set of gene-specific t-tests based on the permutations
[8]. The cutoff for the significance is determined by a tuning parameter delta,
chosen by the user and based on the false discovery rate (FDR) [9]. Furthermore,
it is possible to choose a minimum fold change, i.e. the ratio between the gene
expression level of the experimental group against the control group. The method
was chosen for its reproducibility and reliability in the detection of microarray-
derived lists of differentially expressed genes.

SPIA procedure has been used for the selection of perturbed pathways. It
combines the evidence obtained from the classical enrichment analysis with the
actual perturbation on a given pathway under a given condition. A global probability
value (pG) is calculated for each pathway, incorporating parameters, such as the log
fold-change of the DEGs, the statistical significance of the set of pathway genes and
the topology of the signaling pathway.

2.2 Generation of Pathway Models by PCVs

A biological pathway can be considered as a directed graph G D .Y; E/ where
Y is the list of genes or nodes and E is the list of edges that could represent
reactions, regulations (activation/inhibition), and signals. Therefore, it is possible
to see a pathway as a causal model, where the direction of edges represent the
influence of a gene on another. Our approach consists in obtaining a model of
the perturbed pathways starting from the DEGs. For model generation we tried to
understand how a DEG communicates with another DEG. Therefore, we found the
shortest paths between any couple of DEGs in the graph pathway, composed by
other microarray genes. We indicated the microarray genes, DEGs, and not-DEGs in
the following way: MG D fmg1; mg2; : : : ;mgmgI DEG D fdeg1; deg2; : : : ; degng
and NDEG D fndeg1; ndeg2; : : : ; ndegm�ng where MG D DEG _ NDEG and
DEG ^ NDEG D f;g.

Each shortest path could be represented as a list of nodes Yk D .yi ; yiC1; : : : ;
yj�1; yj / and a list of the corresponding edges Ek D .ei.iC1/; : : : ; e.j�1/j /, where
.yi ; yj / 2 DEG; .yiC1; : : : ; yj�1 2 .DEG _ NDEG/IYk 	 Y andEk 	 E:

The shortest paths for each pathway constitute (k D 1; : : :; K/ subgraphs Gk D
.Yk; Ek/ of the original pathway, G D .Y;E/. To obtain a more significant model
we grouped the not-DEGs using the concept of coreness, a measure often used to
identify the core proteome [10]. The k-core of a graph is the maximal subgraph in
which each vertex has at least degree k, where the degree of a vertex is defined as
the number of edges incident to the vertex. In other words, the k-core of a graph is
defined as the unique subgraph obtained by keeping the nodes with a degree of k.
The coreness of a vertex is k if it belongs to the k-core but not to the (k+1)-core [11].
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To evaluate the goodness of the clustering we used the Database for Annotation,
Visualization and Integrated Discovery (DAVID) [12, 13], an integrated biological
knowledgebase and analytic tool aiming at systematically extracting biological
meaning from large gene/protein lists. Submitting the list of genes for each k-core
found, we looked for the biological processes in which the genes are involved. This
is possible by Gene Ontology (GO), a controlled vocabulary composed of >38,000
precise defined phrases called GO terms that describes the molecular actions of gene
products, the biological processes in which those actions occur and the cellular
locations where they are present [14]. At each core was attributed the relative
biological processes, but it would have been possible to choose also the cellular
components or the molecular function. Each core identified, as previously described,
was inserted in the module substituting the nodes and the edges relative to the genes
that characterize the core.

2.3 SEM Analysis

As reported by Grace et al. [5], one of the main step in SEM framework is to indicate
a causal diagram summarizing hypothesized causal connections among variables.
In our case the causal models were represented by the pathway models previously
defined, G D .Y;E/ embedded in structural equations of observed genes Y and
covariance structure of unmeasured genes U . This can be written compactly in a
matrix form as [15]:

Y D BY C U and COV.U / D ‰
where B defines the path coefficients of directed edges between observed genes,
and ‰ the covariance matrix of bi-directed edges between unmeasured genes.

To insert the cores in a SEM model, we generate the Pathway Composite
Variables (PCVs) by Principal Component Analysis (PCA) on the set of genes
belonging to each core. If the number of genes in the core set is much larger
than the number of samples (p>>n), a sparse PCA (sPCA) is performed [16]. A
PCV represents a group of genes (in our case not-DEGs that connect DEGs) in
a pathway model obtained on the basis of the k core to which they belong. The
biological identification of a PCV is possible looking for the more represented
GO term associated to the genes that allowed to define the PCV. The principal
component scores of the first principal component (PC1) are considered as values
that characterize a PCV. Only PCVs for which the PC1 represents 50 % or more
of the total variance are considered. This step allowed to improve and simplify
the interpretability of the model generated. The module so obtained was estimated,
evaluated and modified in SEM framework.

Briefly, the structural equations specification induces structure on the covariance
matrix of the joint distribution of the genes Y as:

†.�/ D .I � B/�1‰.I � B/�T
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where � D .ˇI / is the list of the free parameters in the model of dimension
t: The unknown parameters are estimated so that the implied covariance matrix
†.�/ is close to the observed sample covariance matrix S by using the Maximum
Likelihood Estimation (MLE) criterion.

For the evaluation of the fitting we used the Standardized Root-Mean-square
Residual (SRMR), a measure based on the differences between observed values (s/
and model values (�) of the covariance matrix:

SRMR D
Pp

jD1
Pp

kD1.sjk � �jk/
2=sjjskjk

p.p C 1/=2
SRMR values less than 0.10 are considered an adequate fitting approximation of the
model to the data, whereas values <0.05 may be judged as a good fit.

The respecification of the model was based on the inclusion of additional directed
or bi-directed connections. All the original edges in the model were considered true
as the KEGG database is manually curated by experts. The criteria used for the
refinement were based on the combination of modification indexes (MI, an estimate
of the decrease in the 2-score statistic that would result by freeing each fixed
(D 0) parameter in the model), z-tests (Dparameter estimate/standard error) of the
MLE, combined with co-citation analysis. In synthesis, a path coefficient is added
when, it is proposed by MI and it is possible to reveal a connection based on the
co-citation analysis. This analysis is based on the concept that two genes, cited
in the same papers, are very likely connected to each other. However, one of the
principal question about the co-citation analysis is if the co-occurrences in titles
and abstracts actually reflect meaningful relationships between genes. We assumed
that the answer to this question is “yes”, also considering previous articles that treat
this topic [17]. Different types of measures can be used to evaluate if two genes are
connected [18]. We chose the Jaccard index, defined as the ratio between the articles
(extracted from PubMed) where the two genes are co-cited together, divided by the
union of the articles where the genes are cited together and singularly. A connection
was considered acceptable if the Jaccard index, normalized for the number of genes,
resulted greater than 0.5 [19]. The edges are added/deleted until a SRMR < 0.10 is
reached. A multiple group analysis was performed on the final model to verify if it
differed between the biological groups in the microarray. The test is based on the
comparison of the fitted covariance matrix for each group, as reported below:

H0 W †1.�/ D †2.�/ vs:H1 W †1.�/ ¤ †2.�/
subjected to 
1 ¤ 
2. In the “null” model (H0), the estimates of the covariances
are constrained to be equal across groups; in the “alternative” model (H1/, the
estimates covariances are allowed to differ across groups. Statistical significance is
determined by comparison of LRT chi-square (2diff) values of fit at given degree
of freedom (d.f.diff). If there is significant difference .p � value < 0:05/ in the
chi-squared goodness-of-fit index between two models, it is possible to concluded
that the groups differ significantly for one or more specific gene-gene relationships
(edges).



146 D. Pepe andM. Grassi

2.4 Microarray Data

The data were relative to a microarray experiment that analyzes various brain
regions of patients affected by frontotemporal lobar degeneration with ubiquitinated
inclusions (FTLD-U) in presence of the mutation in the progranulin gene. Two
groups were selected: one affected by FTLD with mutation in the progranulin gene
(15 samples) and the other constituted by the control (17 samples). Data are freely
available at Gene Expression Omnibus (GEO) [20] database with ID GSE13162.

3 Results

For our analysis we used normalized expression values submitted in the database.
In the first step, SAM analysis was performed using a delta value of 1.03 and a
minimum fold-change of 2. The number of over-expressed genes was of 207 while
the number of down-regulated genes 244. Using this list of DEGs, the SPIA analysis
found seven important pathways for the explanation of the role of the progranulin
mutation on the FTLD-U, as showed in Table 1. Most of the dysregulated pathways,
as the MPAK signalling pathway, the calcium signalling pathway, the gap junction,
and the extracellular matrix (ECM)receptor interaction, confirm the analysis of
Plotkin et al. [21]. To illustrate our method we chose the pathway of the ECM-
receptor interaction. The ECM consists of a complex mixture of structural and
functional macromolecules and serves an important role in tissue and organ
morphogenesis and in the maintenance of cell and tissue structure and function.
Specific interactions between cells and the ECM are mediated by transmembrane
molecules, mainly integrins, a family of glycosylated, heterodimeric transmembrane
adhesion receptors. In addition, integrins function as mechanoreceptors and provide
a force-transmitting physical link between the ECM and the cytoskeleton. The role
of ECM in the pathogenesis of dementia is well described in literature [22–24].

To generate the SEM causal model, the ECM-receptor interaction was trans-
formed in a direct graph of 87 nodes and 651 edges. Then a marginalization was

Table 1 Pathways obtained by SPIA on FTLD-U data�

Name pathway pSize NDE pNDE tA pPERT pGFdr Status

Glutamatergic synapse 77 11 0.000 �6:557 0.064 0.006 Inhibited

GABAergic synapse 60 10 0.000 0:632 0.804 0.017 Activated

Calcium signaling pathway 166 17 0.000 0:072 0.993 0.021 Activated

Amphetamine addiction 55 8 0.001 �2:685 0.457 0.047 Inhibited

Gap junction 85 10 0.001 5:216 0.454 0.047 Activated

MAPK signaling pathway 235 18 0.001 �5:802 0.253 0.047 Inhibited

ECM-receptor interaction 82 7 0.022 6:150 0.015 0.047 Activated
�pSize D number of genes in the pathway; NDE D number of DEGs in the pathway; pNDE D
p-value of the enrichment; tA D total perturbation; pPERT D p-value of the perturbation; Status
D direction of the perturbation; pGFdr = global p-value corrected by the Fdr
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Table 2 Genes belonging to the set of shortest paths between DEGs

Entrez id Official name Gene name Type of gene

22987 Sv2c synaptic vesicle glycoprotein 2C DEG

284217 LAMA1 laminin, alpha 1 Not-DEG

3371 TNC tenascin C DEG

9899 SV2B synaptic vesicle glycoprotein 2B DEG

9900 SV2A synaptic vesicle glycoprotein 2A DEG

960 CD44 CD44 molecule Not-DEG

3909 LAMA3 laminin, alpha 3 Not-DEG

3685 Itgav integrin, alpha V Not-DEG

3675 ITGA3 integrin, alpha 3 Not-DEG

3688 Itgb1 integrin, beta 1 Not-DEG

6696 SPP1 secreted phosphoprotein 1 DEG

7058 thbs2 thrombospondin 2 DEG

6382 sdc1 syndecan 1 Not-DEG

1287 COL4A5 collagen, type IV, alpha 5 DEG

3912 LAMB1 laminin, beta 1 Not-DEG

performed, deleting all genes that did not belong to the microarray experiment,
obtaining a new graph with 82 nodes and 567 edges. To understand how DEGs
were connected between them, a subgraph was extracted by the union of all shortest
paths between DEGs. The new graph was composed by 15 nodes and 39 edges.
Table 2 contains the information about the 15 genes found. The creation of the
PCVs via PCA was obtained by computing the coreness of the not-DEGs. The
algorithm returned two cores: (1) one constituted by entrez id genes 3688, 3912,
3909, 3675, 284217, 3685; (2) the other constituted by entrez id genes 6382 and 960.
To identify the cores, a search by DAVID on the database GO was performed. Using
the information of the biological processes, the two cores were identified as cell
adhesion and response to organic substance respectively. The variances explained
by the first components for each PCV were of 54 and 93 % respectively. The new
PCV model was composed by nine nodes and ten edges. The initial fitting of the
SEM was poor (SRMRD0.203). The re-specification of the model was possible
using the co-citation analysis, taking in consideration the value, corrected for the
number of genes, of the Jaccard index. In this way three edges were added and
the fitting indices of the new model resulted adequate (SRMRD0.079). Figure 1
represents the final model.

The two-group analysis of the final pathway was significant (2 diff (df)D 44.7
(17), p - value < 0:001 of H0: †1 D †2 subjected to 
1 ¤ 
2/. The analysis of
gene-gene connections present in the model, revealed a strong presence of integrins
incorporated in the PCV identified as cell adhesion. Functions for integrins and their
ECM protein ligands are linked to neurovascular unit development, homeostasis
and disease [25]. For example, down-regulation of the integrin protein beta 1 is
correlated with elevated degradation of ECM proteins [26]. In addition, the role of
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Fig. 1 Final PCV model for ECM pathway. Green nodes are DEGs, yellow nodes are the PCVs.
Blue edges are KEGG edges while red were added after co-citation analysis. The name of genes
are reported using the Entred notation

the proteins synaptic vesicle glycoproteins (SVs) is reported in neurological diseases
[27]. Therefore, the model can be considered noteworthy both from a biological and
statistical point of view.

4 Discussion

This note illustrates a new pipeline based on the SEM framework for the analysis
of perturbed biological pathways. The procedure was applied to a microarray
experiment that analyzes the effect of the progranulin gene on patients affected by
FTLD-U. Starting from DEGs, a causal model for the ECM-receptor interaction
pathway was generated. Then not-DEGs were grouped using the concept of
coreness. The identity of each core was unveiled looking for the GO biological
processes in which the core-genes are involved. A PCV for each core was created
by PCA and then integrated in the model. In particular two PCVs were found: cell
adhesion and response to organic substance. At the end of process, the model so
obtained, was tested with SEM. The initial fitting was not good. For this reason,
it was necessary to respecify the model. MI integrated with co-citation analysis
allowed to add three edges, attaining a good fitting. Two-group analysis showed that
the model differed significantly between affected and not-affected individuals, The
goodness of the procedure was confirmed by the analysis of the genes in the model.
For example, the strong presence of integrins, included in the cell adhesion PCV,
is an important signal as they are associated to neurovascular unit development,
homeostasis and diseases [24]. It is very important also the presence of SV genes, a
possible marker for neurological diseases [27]. These results confirm the validity of
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the procedure for the selection of the perturbed pathway modules also considering
their interpretation from a biological point of view. The approach described above,
although powerful, presents some limitations. In fact, the insertion of the PCVs in
the pathway model brings to the loss of biological information about the connections
between the genes involved in each PCVs. Furthermore, the clustering of not-
DEGs using the concept of the k-core does not always lead to an easy biological
interpretation of the PCVs generated. However, the procedure could represent a
more general approach where the user could use different clustering methods based
on statistical and/or topological principles [28]. In addition, the identification of
the clusters could be adapted to the needs of the user. We used the GO terms,
but it would have been also possible to use other biological evidences as the PIR
superfamily [29] or the Disease Ontology (DO) [30] terms. In conclusion, we
believe that our approach, based on the PCVs and SEM, represents a powerful and
versatile tool for making perturbed models more interpretable and versatile.
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A Latent Growth Curve Analysis in Banking
Customer Satisfaction

Caterina Liberati, Paolo Mariani, and Lucio Masserini

Abstract
Customer satisfaction for banking services is, arguably, a construct that develops
and changes over time for a number of different endogenous and exogenous
factors (modification of customers contract terms, transparency of banking trans-
actions and financial services, bank charges, customer relationships, changes
of market conditions an so on). Measuring change requires a longitudinal per-
spective: it can be carried out collecting measurements on the same individuals
across multiple time points. The aim of this paper is to analyze the dynamic
customer satisfaction of particular sub-groups of clients estimating a Latent
Growth Curve Model. Results show interesting behavior differences to address
strategic management decisions

Keywords
Customer satisfaction • Latent growth • Curve model • Banking services •
Dynamic patterns • Latent variables

1 Introduction

Nowadays, every financial institution measures Customer Satisfaction (CS) with a
high level of precision, in order to monitor client changing needs. It is known, in fact,
that customer concerns and wishes change continuously. That induces businesses
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to monitor effectiveness of their marketing promotions, testing their customer
satisfaction by surveys on field. The idea pursued is simple: satisfied customers tend
to diffuse a positive image of the bank thereby reinforcing competitive strength.
The marketing literature is replete with models on the measurement of customer
perceptions of service quality [6, 18]. Studies have also examined the relationship
of customer satisfaction and customer loyalty with service quality [1, 6, 7, 22].
Even in the banking sector, research has examined the impact of service quality
on customer satisfaction and loyalty [10, 15]. Reference model of those studies
are works of [17, 18]; which represents satisfaction as customer response to the
perceived discrepancies between pre-consumption expectations and product/service
effective performance [16]. According to such framework, marketing researches are
based on cross-sectional surveys, because they are less costly to perform respect to
the panel interviews, even though the information gained are incomplete. Despite,
longitudinal studies on CS effects have found a positive relationship between
customer retention, firm revenues, and share-holder value, few studies have been
done on panel data: the impact on the share of wallet still remains elusive [5].
Generally speaking, longitudinal satisfaction data is hard to obtain even though a
longitudinal view seems to be necessary. An analysis of time-series data, in fact,
allows a firm to compare itself with itself over time, and provides useful in-sights
about how customer perceptions of changes in service performance affect their
global evaluations of service quality [4].

According to such remarks we performed a longitudinal analysis via a Latent
Growth Curve Model (LGCM), focusing our attention on the dynamic aspect of CS.
Our sample was collected in three different waves (T1, T2 and T3) interviewing
27,000 customers1 each time. Due to privacy concerns, it was possible to analyze
the overall data but it was not possible to obtain longitudinal information on
individual customers interviewed (as in panel data). In order to overcome this limit,
we performed an a priori segmentation based on employment status, educational
qualification, gender and age. Segmentation is the act of defining meaningful sub
groups of individuals or objects [20]. At its aim, it is reducing the number of
entities being dealt with into a manageable number of groups that are mutually
exclusive and share well defined characteristics. These approaches can be split into
(1) a priori, the groups are selected from a population in advance based on known
characteristics and declared as ‘segments’ (e.g. socio-demographic characteristics)
and (2) post hoc, the empirical investigation through multivariate statistical analysis
used to identify segments [8]. We found a coherent solution in terms of estimates
and practical descriptions. The easiness of replication makes such an approach a
valid alternative for segmentation analysis.

1Each wave has little more than an annual basis. Design of the sampling applied yearly, has selected
subjects through a simple random sampling among retail clients that in a year have had contact
with the bank at least five times, or, have had experience with the contact center and/or the bank’s
website. Therefore the sample obtained is not a cohort but a pseudo-panel.



A Latent Growth Curve Analysis in Banking Customer Satisfaction 153

2 Latent Growth CurveModel

During the last 30 years, growth curve modeling has become popular in the analysis
of longitudinal and panel data [11, 12, 19] for the study of individual change.
Growth curve analysis assumes individual growth patterns as represented by curves
of the same functional form and with randomly varying parameters for describing
differences in trajectories across individuals. The growth curve model can be
approached from several perspectives. The Latent Growth Curve Modeling (LGCM)
approach under the Structural Equation Modeling (SEM) framework adopts a
latent variable view and assumes the existence of continuous underlying or latent
trajectories for each individual. Growth trajectories are observed indirectly with the
repeated measures [2] and individual differences both in the initial status and in
the growth rate are included into the model as latent variables [13]. Latent variable
means for the intercept and slope factors describe the mean growth whereas inter-
individual differences in the parameters describing the growth curve are modeled as
the (co)variances of the intercept and slope factors. Several benefits are associated
with the use of LGCM over competing methods, such as the possibility of testing
hypotheses about specific trajectories, the incorporation of both time-varying and
time-invariant covariates and all the typical advantages of SEM, including the
ability to evaluate the adequacy of models using model fit indices, the ability to
account for measurement error by using latent repeated measures and the ability
to deal effectively with missing data. The general latent growth curve model, for
the repeated measure outcome variable yi for individual i = 1,. . . , n observed at
occasion t = 1,. . . , T, may be expressed in matrix notation in terms of a confirmatory
factor model, where the latent factors represent the latent curve components [3]:

yi D������i C """i (1)

Here, yi is a T � 1 vector containing the set of T repeated measures of the
outcome variable y for individual i , ���i is an m � 1 vector of latent factors, ��� is a
T � m matrix of factor loadings and """i is T � 1 vector of residuals. Elements of
��� are fixed to represent hypothesized trajectories, where each column of loadings
represents a specific aspect of change. The conditional vector of latent variables
can be expressed in terms of a mean and individual deviations from the means, as
follows:

���i D 


� C��� xi C ���i (2)

where 


� is an m � 1 vector of factor means, xi is a k � 1 vector of explanatory
variables for the latent variables, ��� is m � k matrix of regression coefficients
between the latent factors and the observed explanatory variables and ���i is anm� 1
vector of residuals. Finally, the variances and covariances of observed variables is
contained in a T � T matrix, ˙̇̇ , and can be expressed as follows:

˙̇̇ D���������0 C���" (3)
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where ��� is an m � m covariance matrix of the equation errors term, ���i , among the
latent trajectory factors and���" is T � T covariance matrix of residuals, """i .

3 Results

The managing board of an Italian bank, with a distribution network throughout the
country, wanted to analyze its competitive positioning in retail services after a loss in
the market share in some regions and a contraction of the average customer lifetime
respect to the past. Therefore a survey has been conducted three times, sampling
27,000 retail customers each wave. The questionnaire was framed according to
SERVQUAL model, therefore, with five dimensions to analyze perceived quality
and expectation of the banking service. All the scores were measured by a Likert
scale 1 to 10. A primary descriptive analysis showed a homogeneous distribution
across different ages, sex, education and profession segments. This reflects the
Italian ‘banking population’: more than 60 % of the sample is between 26 and
55 years old; the sample is equally distributed between genders and showed a
medium low level of education. It is, also, well distributed across the different
professional segments employees 24 %, pensioners 22 %, housewives 14 %. The
Latent Growth Curve Model is estimated with Mplus 5.21, using the Maximum
Likelihood (ML) method with robust standard errors [14]. The final results are
obtained after estimating several competing models. Selection is pursued firstly by
considering the null model, which assumes no overall variability in the mean level
of satisfaction and no change over time [21], thus by estimating only the intercept,

1, and a common disturbance variance (�"). Because the null model is generally
used only as a basis for comparison with more complicated models, inter-individual
variability in latent growth factors (intercepts and slopes) is further evaluated and
finally, customers-level covariates are introduced as far as they help in explaining
intercepts and slopes variability. The first model evaluated is an unconditional linear
random intercept (�1i ) and fixed slope model (�2i ), defined specifying the following
equations for the vector of latent variables:

�1i D 
1 C �1i (4)

�2i D 
2 (5)

Here, 
1 is the mean level of satisfaction at Time 1,�1i represents individuals’
deviations from the mean intercept whereas 
2 is the constant mean slope. This
model is based on the reasonable idea that customers have different level of
satisfaction at Time 1 but the same growth rate. The significant intercept variance
(�11 D 0:075; P < 0:001) indicates the presence of intra-individual variability in
customer satisfaction at the initial status, thus confirming our hypothesis.

Because the random intercept model does not provide an adequate fit (2 D
354:190; df D 4; P < 0:001), variability in the linear slope factor is investigated,
in order to evaluate the hypothesis that also the rate of change in satisfaction varies
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across customers. This model differs from the previous one only for specifying the
slope variance parameter to be random, by introducing the residuals, �2i , while the
equation that defines the random intercept remains the same (thus not shown):

�2i D 
2 C �2i (6)

The results show a significant value both for the intercept (�11 D 0:107; P <

0:001) and for the slope variance (�22 D 0:031; P < 0:001), resulting in a better
model fit (2 D 235:6194; df D 1; P < 0:001) so the hypothesis that customers
satisfaction differs in both baseline level and growth rate seems to be more realistic.
For this model, the estimated covariance between the intercept and slope growth
factors is �0:027 (i.e., correlation of �0:461), indicating that the initial level of
customer satisfaction is highly and negatively correlated with the rate of change.
For evaluating whether the linear growth rate is adequate for these data, the model
is further modified allowing for a more flexible estimation of the growth trajectory
over time by setting the third factor loading free. Freely estimating the time scores
allows the shape of the growth trajectory to be determined by data. This change
produces a better model fit (2 D 126:462; df D 1; P < 0:001) and shows that the
growth trajectory is not exactly linear. For this model the variances of the random
intercept (�11 D 0:553; P < 0:001) and slope (�22 D 0:483; P < 0:001) are still
significant whereas covariance of the intercept and slope growth factors is estimated
to be �0:473 (i.e., correlation of �0:916).

Inter-individual differences in the growth curve factors (intercepts and slopes) are
accounted for after introducing customers-level predictors variables into the random
intercept and slope model with freely estimated time scores, with the following form
for the vector of latent variables:

�1i D 
1 C ���1xi C �1i (7)

�2i D 
2 C ���2xi C �2i (8)

Here, xi is the common vector of customers-level explanatory variables whereas
���1 and ���2 are the vectors of the associated regression coefficients for the random
intercept and slope equations, respectively. The mean level of satisfaction at Time
1 is 
1 D 7:347 whereas the slope is positive (
2 D 0:062; P < 0:001) and
shows a moderate increase in customer satisfaction over time. The covariance of the
intercept and slope growth factors is �0:430 (i.e., correlation of �0:981), indicating
that at Time 1 customers more satisfied than average tend to have a lower growth
rate. This seems to reveal that customers more satisfied have a lower or even a
negative growth rate in satisfaction than less satisfied customers. This is a typical
tendency that happens ‘if marketers raise expectations too high, the buyer is likely
to be disappointed’ [9]. The trajectories estimated from the conditional random
effects model are graphically represented in Fig. 1 for the sub-groups of clients
(Employment position, Education, Age groups and Gender).
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Fig. 1 Estimated trajectories from the conditional random effects model

Differences in baseline customer satisfaction are observed for some Employment
position, Education, Age groups and for Gender. More specifically, about
Employment position, the baseline satisfaction is significantly higher for
Workman (C0:116), Retired (C0:220) and Housewives (C0:195) but lower for
Entrepreneur/Professional (�0:109), Executives (�0:116) and Students (�0:282),
compared to the Employee chosen as the reference category. As regard Education,
the baseline satisfaction is significantly higher for Middle school (C0:213), Primary
school (C0:465) and No title (C0:369) but lower for University degree (�0:243),
compared to High school chosen as the reference category. Moreover, about Age
groups, the baseline satisfaction is significantly higher for customers with age Less
than 25 years (C0:184), 25–35 years (C0:029), 47–59 years (C0:032) and, above
all, for customers with More than 59 years (C0:246), compared to 36–46 years
chosen as the reference category. Finally, Males (�0:141) show a lower level of
satisfaction compared to Females. As a consequence, the residual intercept variance
not accounted for by the predictor variables is reduced but it still remains significant
(�11 D 0:425; P < 0:001). Also, differences in random slopes are observed
in growth rate for some Employment position, Education, Age groups and for
Gender. About Employment position, a higher rate of change is observed for Retired
(C0:123) and Students (C0:178) whereas it is lower for Entrepreneur/Professional
(�0:086), compared to the Employee chosen as the reference category. As regard
Education, a positive effect on the slope is observed only for University degree
(C0:155) whereas a negative effect is observed for Primary school (�0:207) and
No title (�0:364), compared to High school chosen as the reference category. As
regard Education, a positive effect on the slope is observed only for University
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degree (C0:155) whereas a negative effect is observed for Primary school (�0:207)
and No title (�0:364), compared to High school chosen as the reference category.
Moreover, about Age groups, a negative effect is observed for customers with age
Less than 25 years (�0:337) and with More than 59 years (�0:228), compared
to 36–46 years chosen as the reference category. Finally, Males (C0:179) have
a higher rate of change compared to Females. As a result, the residual slope
variance not accounted for by the predictor variables is reduced but it still remains
significant (�22 D 0:451; P < 0:001). The final model provides an adequate
overall fit (2 D 951:775; df D 17; P < 0:001), is characterized by low average
residuals (RMSEA = 0.047; SMR = 0.012) and by a satisfactory incremental fit
index (CLI = 0.920).

Conclusions

The dynamic analysis allowed us to monitor the satisfaction and expectations
over time, illustrate the effects of some medium-term interventions, evaluate
any changes to the strategy. The dynamic analyses are fundamental tool for
planning, to assign the right targets at different branches thanks to the fact of
identifying the strengths and weaknesses in service provision by the performance
of the perceptions and evaluations over time. In our case the bank’s management,
conscious of the loss of competitiveness in some areas and on some types of
customers (employees), tried to find an economic solution for the bank in terms
of investments. The results show that, although the analyzed segments react
differently to stimuli to which they are subject, there is a clear sign of the
changing needs which, if not recognized by the bank, could make it hard the
future growth or even make it probable a decline in economic performance.
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Non-Metric PLS PathModeling: Integration
into the Labour Market of Sapienza Graduates

Francesca Petrarca

Abstract
Non-Metric Partial Least Squares Path Modeling is a recent methodology based
on the concept of Optimal Scaling applied to PLS Path Modeling algorithms.
We adopted Non-Metric PLS Path Modeling to analyse a large administrative
dataset containing nominal and ordinal variables using a specialized R package
now available. We suggest a model in order to perform a preliminary quantitative
study of the job success of Sapienza University of Rome graduates in terms of
quality of work.

Keywords
Optimal scaling • PLS path modeling • Structural equation models • Categori-
cal variables • Administrative archive • Economics education research

JEL classifications: C100, C390, A200.

1 Introduction

This paper has the following purposes:

1. to give a short presentation of the UNI.CO archive [2], which is the up-to-date
complete administrative database of the integration into the Italian labour market
of Sapienza graduates;

2. to study indicators of job success and to estimate their relationship with
educational and job curricula.

F. Petrarca (�)
Department of Economics, University of Roma Tre, Via Silvio D’Amico, 77, 00145,
Rome, Italy
e-mail: francesca.petrarca@uniroma3.it

© Springer-Verlag Berlin Heidelberg 2014
M. Carpita et al. (eds.), Advances in Latent Variables, Studies in Theoretical
and Applied Statistics, DOI 10.1007/10104_2014_16, Published online: 12 November 2014

159

mailto:francesca.petrarca@uniroma3.it


160 F. Petrarca

3. to model job success as a latent variable in PLS-PM framework;
4. to assess the effectiveness of Non-Metric approach [13] to Partial Least Square

Path Modeling (PLS-PM) in the analysis of variables observed on different
measurement scales.

The general framework is the study of the subordinate and para-subordinate
employment offered to the Sapienza graduates by the Italian labour market. The
aim is to extract from the information contained in the database, indicators that have
an impact on the job position after graduating.

The goal is to define and measure the possibility of getting a good job position,
i.e., satisfactory, well paid, stable over time, with possibility of improvements in
career, consistent with university curriculum.

This study is based on the data of the UNI.CO archive1 which contains the joint
integration of the Sapienza graduates’ archive and the Italian Ministry of Labour
archive (known as Compulsory Communication (CO)). The integration of the two
archives has produced a remarkable improvement in the quality of the information
contained in the dataset with contributions entirely additional in respect of those
provided singularly by each of them.

Measuring job qualifications is not an easy task, both in absolute or in relative
terms [6]. In literature many indicators have been studied (e.g. index of job
desirability [8], job quality index [12]).

In this paper we are interested in studying two new composite indicators [1]
that are related to the possibility of the success in terms of Sapienza graduates best
employment status.

In the International Standard Classification of Occupations (ISCO) a highly
qualified position is identified with ISCO1 (managers) and ISCO2 (intellectual and
scientific professions). Our indicators quantify the concept of job success using the
definition of optimal and quasi-optimal contract based on the ISCO classification of
job quality and on a minimum continuative duration of the job. The two indicators
that we want to study are:

• An optimal contract: a contract that offers a permanent and highly qualified
position (by ISCO Classification) with an actual duration of at least 8 months.

1 The UNI.CO archive has been generated by an experimentation started in 2012 with the aim
of establishing the integration of administrative archives. The results of the preliminary analysis
of this new archive can be found in a first report (to be published) based on the Compulsory
Communications archive for the study of labour demand for Sapienza graduates edited by
the UNI.CO workgroup under the supervision of Giorgio Alleva. This group is composed of
researchers coming from Sapienza University of Rome, Italian Ministry of labour and Italia
Lavoro. For the Sapienza University: Pietro Lucisano, Carlo Magni, Silvia Massimi, Francesca
Petrarca, Alessandro Sanzo, Bruno Sciarretta and Eleonora Renda. For the Italian Ministry of
labour: Daniele Lunetta and Maurizio Sorcioni and for Italia Lavoro Giuseppe De Blasio. The
workgroup was supported by a Scientific and Technical Committee of the Sapienza University
composed of: Giorgio Alleva, Tiziana Catarci, Rosalba Natale and Cristiano Violani.
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• A quasi-Optimal contract: a contract that offers a highly qualified position (by
ISCO Classification) with an actual duration of at least 8 months.

The threshold of at least 8 months comes from D.lgs.181/2000 that considers in a
status of unemployment workers with a job contract of less than 8 months.

The concept of a good job is rather theoretical and it needs a quantification in
order to be inferred from data.

The class of the PLS methods [4, 5] seems to be the most suitable methodology
to tackle this kind of problems because their capability to:

– quantify the latent variables (LVs) representing unobservable constructs;
– provide an estimate of the LVs for each observation;
– work without distributional hypotheses.

The last point is important because in the social sciences it is often the case that
the distributions of the variables are asymmetric and very far from the Gaussian
distribution.

Our suggestion is to measure the concept of good job defining it as a latent vari-
able in PLS-PM framework. Our analysis is based on a dataset of variables which
are observed on different measurement scales (numerical, ordinal and nominal).
An interesting possibility to address this issue has been recently offered by a new
procedure called Non-Metric Partial Least Squares (NM-PLS) [13] which is based
on the implementation of the optimal scaling method applied to PLS algorithms.
NM-PLS extends the applicability of PLS methods to data measured on different
measurement scales, as well as to variables linked by non-linear relationships. A
distinctive feature of these algorithms is that they provide a new metric both to non-
metric and to metric variables. In this paper we adopted the term non-metric data to
refer to ordinal and nominal variables.

The structure of this paper is as follows. In Sect. 2 we present a brief description
of PLS-PM, the main feature of the NM-PLS and the assessment procedure adopted
by this method. In Sect. 3 we discuss the dataset adopted and the model suggested.
In Sect. refrisultati we discuss the results taking into account the assessment of the
model and the quantification procedure. Section “Conclusions” draws conclusions.

2 PLS-PM

The Partial Least Square can be viewed as a set of methods for analysing multiple
relationships between various blocks of variables. In particular the most common
application of PLS-PM is the calculation of indices to quantify some key concepts
or constructs called latent variables (LVs) that cannot be measured directly. One
can analyse these concepts combining and summarizing a set of information that
in some way reflect the meaning of the concept. The latent variables are indirectly
measured by means of variables which can be observed/measured called manifest
variables (MVs). The manifest variables are divided in blocks which reflect to some
extent the latent construct they are associated with.
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The PLS methods are part of Structural Equation Models (SEM) [3, 10] that
include a number of statistical methodologies meant to estimate a network of causal
relationships, based on a theoretical model, linking two or more latent concepts,
each measured by means of a number of observable indicators.

PLS-PM estimates the network of linear relations among the MVs and their own
LVs, and among the LVs inside the model, through a system of inter-dependent
equations based on simple and multiple regressions. The corresponding conceptual
model can be represented by path diagrams where the LVs are represented by circles,
the MVs by rectangles and the dependence relationships among the variables by
arrows.

The difference between PLS-PM and SEM is that the first has been introduced
as a component-based estimation procedure [16] and the second as confirmatory
approach based on the estimation of the covariance matrix [9].

The PLS-PM is considered as a soft-modeling approach because it does not
require strong assumptions with respect to the distributions, the sample size and the
measurement scale. So the inferential approach is based on resampling technique
that allow to obtain empirical distributions of the parameters. In the PLS-PM the
outer weights, linking each MV to corresponding LV, are estimated by an iterative
algorithm in which the latent variable scores are obtained through the alternation
of the outer and inner estimations of the LVs. The PLS-PM consists of two sub-
models:

• the structural model (or inner model) where the relationships among latent
variables are established;

• the measurement model (or outer model) where the relationships between each
latent variable and its block of manifest variables are established.

No formal proof of convergence of the general algorithm has been provided
until now even though in some cases the PLS-PM loop is proven to converge
monotonically, and the convergence is always reached in practice, for details on
the convergence of the procedure refer to [7, 11].

The only two hypotheses underlying PLS models are:

• Each variable is measured on a interval (or ratio) scale;
• Relations between variables and latent constructs are linear and, consequently,

monotone.

Therefore, standard PLS methods cannot handle data which are measured on a scale
which does not have metric properties, nor non-linear relationships.

To overcome this problem a recent technique called Non-Metric Partial Least
Squares (NM-PLS) algorithm has been set up, [13]. It consists in a new class of PLS
algorithms that allow the PLS iteration to work as an optimal scaling algorithms,
calculating iteratively both scaling and model parameters.
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2.1 NM-PLSPM

The Non-Metric PLS Methods are so called thanks to their capability to provide
optimally scaled data (Ox) with a new metric structure, which does not depend on
the metric properties of the raw data (x�). In other words, NM-PLS methods yield a
metric to non-metric data, and a new metric to metric data, linearizing the relations
between variables and latent constructs, as required by the hypotheses of standard
PLS models, [13].

The NM-PLS algorithms optimize criteria under two sets of parameters: the
model parameters and the scaling parameters constrained to the restrictions due
to the scaling level chosen for each raw variable x�. In the NM-PLS framework
the quantifications are not determined by an external criterion but are obtained
by the optimal quantifications method with respect to a latent construct called
Latent Criterion (LC) which is represented by an unknown vector (centered by
construction), for which we use the generic symbol �x� . For the NM-PLS, three
levels of scaling are adopted according to measurement scale of the variables:
nominal, ordinal and polynomial (or functional). A scaling (numeric) value [13]
is assigned to each of the K categories (or distinct values) �k .k D 1; : : : ; K/ of x�,
such that:

• it is coherent with the chosen scaling level;
• it optimizes the model criterion.

In this way, each raw variable x� is transformed as Ox / QX� where �0 D
.�1; : : : ; �K/ is the vector of optimal scaling parameters. The matrices QX are the
indicator matrices of the different categories of variables and they define a space
in which the constraints imposed by the scaling level are respected. For example,
at nominal scale level grouping property is preserved while ordinal scale level
preserves grouping and order properties. The symbol / means that the left side of
the equation corresponds to the right side normalized to unitary variance. The raw
data x� are transformed by different real functions (scaling functions)Q.x��; �x�/,
one for each scaling level, which generate the optimal scaled value Ox for each
observations. The scaling functionsQ optimize the criterion

arg max
�

cor2
� QX�; �x�

�

under the constraints chosen for the x�.
The resulting scaling values for the different x� are the least square regression

coefficients of X on � which correspond to the average of �x� conditioned to x�
categories. The geometric representation of the scaled variable Ox, normalized to
unitary variance, can be obtained projecting �x� on the space defined by the columns
of QX.
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2.2 Assessment of theModel

In the PLS-PM frame, due to the fact that the model does not require distributional
assumptions, the estimates of the parameter variability are obtained empirically by
means of a bootstrap procedure. The validation of the quality of the model can
also be studied by the evaluation of a few indicators that we briefly discuss in the
following [4, 14].

For the measurement model the loadings represent the correlations between
a latent variable and its indicators whereas the communalities are the squared
correlations. They represent the amount of variability explained by a latent variable
(e.g. a loading greater than 0.7 means that more than 0:72 
 50% of the variability
in an indicator is explained by its latent variable). Therefore a value around 0.7 or
more is usually considered good for the loadings. The average communality (Av:C )
represents how much of the block variability is reproducible by the latent variable
and the average variance extracted (AVE) represents the amount of variance that
a latent variable captures from its manifest variables in relation to the amount of
variance due to measurement errors. A good value of AVE index is at least 0.50
which means that 50 % or more of the variance is accounted for.

For the structural model, the goodness of fit indexes taken into account are: the
determination coefficients (R2), the redundancy index and the average redundancy
(Av:R). The R2 represents the amount of variance in the endogenous latent variable
explained by its independent latent variables. The redundancy index represents the
amount of variance in an endogenous block of MVs explained by its independent
latent variables. High redundancy means high ability to predict. The average
redundancy represents the percentage of the variance in the endogenous block that
is predicted from the independent LVs associated to the endogenous LV. This index
and the R2 index are available only for the endogenous construct.

An index that takes into account the model performance in both the measurement
and structural model and thus provides a single measure for the overall prediction
performance is the GoF that asses the goodness of fit of the whole model. GoF is
calculated as the geometric mean of the average communality and the average R2

value.

3 Dataset andModel

In this paper we take into account a sub-set of the UNI.CO archive: we consider
only the master degree graduates of the Sapienza University who belong to
the engineering disciplinary sector. Moreover we consider only graduates that
subscribed more than one contract during the three years after graduation (458
statistical units).

In this preliminary study we propose a model in which the Job Success depends
on the Educational and Job curricula. The set of manifest variables for each of
the three latent variables representing Job Success, Educational Curriculum (Edu.
Curr.) and Job Curriculum (Job Curr.) are described in Table 1. In the Job Success
block are included as manifest variables only the two composite indicators: Optimal
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and Quasi-Optimal. In our model all the manifest variables are treated as reflective
i.e., the LVs are to be considered as the cause of the MVs belonging to its own
block. We performed a Non-Metric PLSPM analysis on the model by using the
option centroid for the inner weight estimation (this choice only considers the sign
of the correlations between a LV and its adjacent LVs). As shown in Fig. 1 our
model relates Job Success with Edu. Curr. and Job Curr. and also it analyses the
relationship between Educational and Job curricula.

Table 1 Set of manifest variables for each latent variable

LVs MVs Description Scale

Edu. Curr. Age Class of age at university graduation Numerical

Final grade Final university grade Numerical

Average grade Average graduation grade Numerical

Isee Indicator of economic equivalent situation: it
measures the economic status of the families

Ordinal (5)

Job Curr. N_cn Class of number of job relationships Ordinal (13)

gg_work Class of number of worked days Ordinal (7)

gg_isco12 Class of number of worked days with high
professional position

Ordinal (7)

gg_al243 Class of number of worked days with an
actual duration of the contract of at least 8
months

Ordinal (7)

gg_CTI Class of number of worked days with a
permanent contract

Ordinal (7)

Job success Optimal The graduate has got optimal contract Nominal

Quasi-optimal The graduate has got a quasi-optimal
contract

Nominal

In brackets the number of levels for each ordinal variable are reported

Fig. 1 Path diagram depicting our model
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4 Discussion of the Results

We performed a NM-PLSPM analysis on the model described in Sect. 3 using a
code written in the R language by Russolillo and described in [13], details about
the PLS-PM in R are given in [14, 15]. A new improved version of the PLS-PM
R package, containing the non metric extension, will be available shortly when the
present test phase will be completed.

The iterative algorithm of the Partial Least Square Path Modeling separately
estimates the several blocks of the measurement model and then, in a second step,
estimates the structural model coefficients. In the Non-Metric PLSPM the standard
PLS-PM procedure is combined with optimal scaling methods, during the cycles
of iteration the model and the scaling parameters are alternately optimized in a
modifies PLS-PM loop where the quantification phase is added.

In our case the convergence of the algorithm has been achieved after only nine
cycles.

In Fig. 2 we report, for all the variables, the plots of the raw values versus the
scaling values obtained at the end of the convergence of the iterative procedure.
These plots show that all the non-metric manifest variables are properly quantified
using monotone transformations of the quantitative MVs.

As matter of comparison, we have performed the basic analysis by PLS-
PM (without optimal scaling) replacing all the categorical variables with dummy
variables, produces in many cases a non monotonic relationship between the dummy
and the LV score with a non clear interpretation of the results. In the following we
report the results coming from the application of the NM-PLSPM to our model.

We start now to examine the results of the outer model. The values of the
parameters of the outer model with corresponding 95 % confidence intervals built
by means of 1,000 bootstrap samples are reported in Table 2. In the block of Edu.
Curr. we have for all the MVs high loadings with the exception of the manifest
variable Isee (0.29). Thus we could consider removing this variable from the
model. Moreover the empirical validation of the model shows that this value is not
significant. The block of Edu. Curr. is positively affected by all the its MVs with the
exception of Age that is negatively correlated. This is a trivial fact because the older
the graduates the less is the study success. In the block of Job Curriculum we find
a similar situation to the one found in the previous block. Only for N_cn we have a
very small values of the loadings (0.11). Also in this case the bootstrap procedure
indicates a non significant value. We have checked that removing Isee and N_cn
from the model, the GoF increases from 0.42 to 0.46. All the MVs in this block are
positively correlated with the own LV with the exception of N_cn that is negative.
In the block of Job Success we have high loadings for all the MVs.

The Optimal and Quasi Optimal indicators are discriminant to the construction
of the Job Success block, see Table 2. In fact, the weights of the MVs quantified
at nominal scaling, which reflect the variability of the corresponding LV explained
by the categories of the MVs, have high values particularly in the case of the Quasi
Optimal indicator.
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Fig. 2 Values of the original variable plotted versus corresponding optimal scaling values

Results of the structural model with corresponding 95 % confidence intervals
built by means of 1,000 bootstrap samples are reported in ctab:3. The path
coefficient from Edu. Curr. to Job Curr. is moderately small (0.30) indicating a
feeble influence of educational curriculum on job experiences. In the case of the
regression of Job Success in respect of Edu. Curr. and Job Curr. we see that, while
the Job Curr. influences the Job Success very much (0.75), the Edu. Curr. has a small
coupling with Job Success and a negative sign (�0:07). The bootstrap intervals for
the path coefficient of Edu. Curr. to Job Success contain the value zero, so this
coefficient is not significant a 5 % confidence level, see Table 3. It is also interesting
that the indirect effect of Edu. Curr. to Job Success i. e. the path: Edu. Curr.�Job
Curr.�Job Success, gives a positive contribution of 0.17 which is not negligible.

The results of this regression suggest to analyse a simpler inner model in which
Edu. Curr. is linked with Job Curr. and Job Curr. with Job Success. This path follows
the natural temporal sequence from Edu. Curr. to Job Curr. and then to Job Success
of a standard student. We have checked this model and the results are substantially
unchanged.
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Table 2 Main results of the measurement (outer) model: the weights and loadings (�) are shown

LVs MVs Weights � Std. Error perc.025 perc.975

Edu. Curr.

Age �0:10 �0:80 0.12 �0:85 �0:70
Final grade 0:11 0:93 0.13 0:88 0:96

Average grade 0:12 0:94 0.13 0:89 0:96

ISEE 0:04 0:29 0.16 �0:10 0:47

Job Curr.

N_CN �0:06 �0:11 0.12 �0:28 0:14

GG Work 0:23 0:78 0.03 0:70 0:82

GG ISCO12 0:42 0:74 0.03 0:68 0:78

GG al243 0:26 0:78 0.03 0:70 0:82

GG_CTI 0:25 0:57 0.05 0:45 0:66

Job success

Optimal 0:27 0:82 0.03 0:76 0:86

Quasi optimal 0:33 0:89 0.02 0:85 0:92

For the loadings the corresponding 95 % confidence intervals built by means of 1,000 bootstrap
samples are reported

Table 3 Results of the structural (or inner) model with corresponding 95 % confidence intervals
built by means of 1,000 bootstrap samples

Paths R2 ˇ Std. Error perc.025 perc.975

Edu. Curr. ! Job Curr. 0.09 0.30 0.04 0.21 0.37

Edu. Curr.! Job success 0.54 �0:07 0.03 �1:08 0.02

Job Curr. ! Job success 0.75 0.02 0.72 0.79

The R2 and the path coefficients (ˇ) are shown

In Table 3 we also reported the R2 values of the endogenous latent variables for
each regression in the structural model. We haveR2 D 0:09 for the regression where
the endogenous variable is Job Curr. and a higher value R2 D 0:54 in the case of
the endogenous variable Job Success. The value 0.09 for the first R2 is rather low
but it is confirmed by the bootstrap procedure as well as the corresponding path
coefficient. Moreover, it should be taken into account that high values of R2 are not
expected because our endogenous manifest variables (Optimal and Quasi Optimal)
in the block of Job Success are binary and they are analysed together with nominal,
ordinal and numerical variables. The values of the main goodness indices obtained
from our model are reported in Table 4. The average redundancy for Job Success
indicates that Edu. and Job Curricula predict 40 % of the variability Job Success
indicators whereas the average redundancy for Job Curriculum indicates that Edu.
Curriculum predicts lower value of 3 % of the variability of Job Curriculum. The
AVE index shows good values for all our constructs except for Job Curriculum.
Finally, we obtained that the whole prediction power of the model is GoFD 0:42:
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Table 4 Results of the main indices for the evaluation of the model

LVs Type Av.C Av.R AVE

Edu. Curr. Exogenous 0.62 0.62

Job Curr. Endogenous 0.42 0.03 0.42

Job success Endogenous 0.73 0.40 0.73

GoF 0.42

Average Communalities (Av.C), Average Redundancy (Av.R), AVE and GoF are shown

Conclusions

We have presented one of the first statistical analysis based on the data of
the UNI.CO archive which is the more complete administrative archive of the
Sapienza graduates available to date.

In this study, the NM-PLS have demonstrated a great adaptability to handle a
large dataset with numerical, nominal and ordinal variables therefore confirming
that the NM-PLS approach makes the PLS methodology even more flexible. The
manifest variables are properly quantified by the optimal scaling technique that
is adopted in this new procedure and it is implemented in the new R package.

The model studied in this paper to the aim of analysing the job success, taking
into account the fact that the database is large and that it contains non-metric
variables, gives a satisfactory representation of the data variability.

The high values of the measurement model have confirmed that the Optimal
and Quasi Optimal indicators are discriminant to the construction of the Job
Success block. We have seen that two variables (Isee and C_cn) can be removed
without reducing the capacity of the model to explain the variance and also
the structural inner model can be reduced to a model with a simpler structure
where the path among the LVs becomes Edu. Curr., Job Curr. and Job Success.
We have found that the age of graduation influences negatively the final job
success, therefore the early conclusion of the scholastic career positively affects
the success in the labour market. The overall frame that arises from this study is
that the scholastic path of Sapienza engineering graduates does not seem to have
a great direct influence to the aim of getting a satisfactory job.

However the model adopted in this preliminary work, that it has been chosen
for its simplicity, probably does not contain the needed flexibility to explain
the large quantity of information contained in UNI.CO archive. A model with
more complex structure capable to recognize new composite indicators of the
job success is under study.
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Single-Indicator SEMwith Measurement Error:
Case of Klein I Model

Adam Sagan and Barbara Pawełek

Abstract
Structural models with latent variables are one of the dominant analytical
approaches in social sciences. They constitute a combination of two types of
models: confirmatory factor analysis and regression analysis. The aim of this
study is to respecify Klein I model by taking into account the econometric and
psychometric perspective in the construction of the structural model with latent
variables. It involves the introduction latent variables and inclusion of measure-
ment errors into the model. The authors used the SEM approach to estimate an
econometric model with measurement errors, identities and constraints imposed
on model parameters.

Keywords
Klein I model • Measurement error • Single-indicator latent variable

1 Introduction

The evaluation of measurement errors is inevitably related to the modelling of
economic phenomena. It combines two parallel research traditions. The first is
related to the econometric modelling of complex economic relationships, their
causal interpretation, and the stability and equilibrium of economic systems. The
second tradition is derived from the psychometric analysis with latent variables
representing theoretical constructs and traits, where reliability assessment and
measurement error is crucial for development of attitude scales.
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Combining these two traditions is associated on the one hand with a stronger
focus on the problem of exogeneity and causality in psychometric modelling,
on the other—with the necessity to take into account the measurement errors in
economic and econometric models. Treatment economic constructs, as error—free
manifest variables without explicit measurement errors specification, may lead to
negatively biased regression coefficients and broadening the confidence intervals
for the parameters.

The aim of the paper is to: (1) reformulate the Klein I model of US economy as
model with latent variables with single indicators, and (2) estimate the (hypotheti-
cal) measurement errors of single-indicator economic latent variables.

It provides an opportunity to integrate psychometric and econometric tradition
in estimation of economic models using standard SEM framework and software.
Additionally, the respecification is aimed at using the SEM approach in estimating
econometric models with measurement errors, identities and restrictions imposed
on model parameters.

The structure of the paper is as follows: in the first part, the research traditions
in use of latent variables in economic models are presented, linking the evolution of
econometric and psychometric approaches in this field. The second part presents the
problems of estimation and identification of latent variable models with unit loading
indicators. The third part is devoted to the presentation of Klein I model on the basis
of contemporary methods of its estimation. The fourth part presents the simulation
study of estimation of measurement error of single-indicator latent variables and
reformulation of Klein I model as a model with single-indicator latent variables
with measurement error. In the simulation, three methods are used for estimation
of error variances in measurement models: modification indices, two-step approach
and AIC/BIC-based specification search. The last part presents a short discussion
and suggestion for further research.

2 Latent Variables in Economic Models

In the econometric literature the term latent variable has various connotations.
Historically it was introduced by Koopmans [16] referring to stochastic distur-
bances in simultaneous equation model. Kmenta [15] distinguishes three main
classes of latent variables in econometric models: (1) variables for which exact
measurements do not exist and are represented by error-contaminated substitutes,
(2) unobservable variables that can be represented by proxies, and (3) variables
that are intrinsically not measurable. From this point of view we can distinguish
five types of unobservables in econometric modelling that can cause three sources
of errors in the models: (1) disturbances (errors in equation) that represent latent
causes that give rise of unexplained variance of endogenous variables, (2) latent
response variables (errors in measurement) that are continuous perfect substitute
for imperfect binary or ordinal indicators, (3) errors of measurement (errors in
variables) that reflect unexplained variance of indicator by true latent variable
that are defined as common variance of its indicators, (4) common factor latent
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variable that reveals common variance of reflective indicators in true-score model
of measurement, and (5) unobserved heterogeneity due to omitting contextual or
group-level factors in the model (errors in population).

In econometric tradition, the first two latent variables are thoroughly discussed
in the literature [1, 15, 24]. Disturbance term as latent variable is very important for
endogeneity analysis and testing the assumption of uncorrelatedness of instrumental
variables (as proxies) with disturbance term and therefore IV does not explain
variance in the 2SLS residuals [3]. Latent response variables are key concepts
in econometric discrete choice probit models in preference modelling, in the
framework of random utility models [19]. Unobserved heterogeneity is also taken
into account in economic behavior and microeconometric models of panel data
[6]. The last two classes of latent variables were paid less attention in economic
literature. Economic variables were regarded as error-free (without measurement
error term) and as manifest variable (not intrinsically latent). Seminal works of
Zellner [25] and Goldberger [7] introduced the concept of a latent variable in
economic literature and opened space for integration psychometric and econometric
perspectives in SEM.

Latent variable (�) with reflective indicators is identified as a common variance
factor and consists of measurement building block of SEM as confirmatory factor
analysis (CFA). Identification of CFA model is based on three-indicator rule that
says that model is identified if latent variable is measured by at least three of its
manifest indicators (assuming no correlation between latent variables). This model
is sometimes defined as a multiple effect indicators model or a model with effect
indicators (in the cause-effect relationship indicators are dependent (effect) variable
that is caused by the latent variable).

In economic models latent variables with formative indicators are even more
popular. However, the identification of a latent variable with formative indicators
(composite latent variable) is more problematic. Generally, identification of a
formative latent variable is based on 2C rule that involves for identification another
latent variable with reflective indicators or the same latent variable with reflective
indicators (as in MIMIC rule).

SEM model combines two types of models: confirmatory factor analysis (mea-
surement part) and regression/path analysis (structural part). It links psychometric
tradition with econometric. The use of structural models in psychometrics and
social studies involves mainly problems of estimation of random and systematic
measurement errors of theoretical constructs and the associated issues of reliability
and validity of scales. Confirmatory factor analysis allows for the construction
of a composite reliability model and the use of numerous indicators of the so-
called greatest lower bound (GLB) of accuracy in the analysis of the reliability of
measurement. The structural part of the model related to analysis of the relationship
between theoretical constructs (these models are also known as causal models)
draws most on the achievements of econometrics [10]. Especially causal claims
seem to be a controversial issue in economic application of SEM that are echoed in
the framework of simultaneous equation models. The causality inference is rooted
in many methodological traditions and approaches as endogeneity testing using
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Fig. 1 Traditions in SEM modelling

2SLS and IV estimation along with Sargant and Bassman test [3], assessment of
relevance of and control for background conditions, direct and indirect effects in
moderational-mediational framework [4], building SEM models in the potential-
outcome framework (counterfactual analysis) in latent difference model in quasi-
experimental and true-experimental setting [23]. It deals with theoretical model
specification problems [22] resulting from the models substantive error (error of
approximation) or a statistical error (error of estimation) and understanding of
the role of the relationship between the theoretical data-explaining model and the
stochastic process generating data (DGP) and the assumptions associated with it
(relating to distribution type, independence and heterogeneity) [11].

Identification of causal relationships in non-experimental research in these
models is carried out on the basis of the principle of common cause and the
causal Markov condition [21] by testing the effects of mediation and the conditional
independence of variables and input of instrumental variables into the model [2]. In
SEM, analysis of the potential (counterfactual) effects in experimental approaches
is made usually by means of latent difference models [23]. Figure 1 displays the
traditions in integrations of psychometric SEM (structural equation modelling) and
econometric SEM (simultaneous equation modeling) in development of integrated
SEM models.

3 Single-Indicator Latent Variables withMeasurement Error

The special type of a latent variable in economic modelling is a latent variable with
an error term measured by one indicator (single-indicator latent variable). The main
problem in the use of single indicator measurement models is connected with the
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estimation of measurement error variance. Single indicator models (with a reflective
indicator) constitute a special type of models with latent variables. This type of
model is less common in psychological or marketing research where multi-item
scales are commonly used, but are popular in sociology and economics.

The introduction of single-indicator latent variables may be due to the following
reasons: (1) the assumed lack of measurement error, (2) the assumption that the
formative indicator fully determines the measured phenomenon (taking account of
the unexplained variance of the latent variable) or it reflects it without measurement
error, (3) parcelling of the indicators in hierarchical second-order SEM, (4) the use
of summated rating scale, (5) a wish to obtain Thurstonian simple structure, (6)
elimination of possible distractions from measurement part of model, (7) selecting
the “single best indicator” of the latent variable.

Introducing the single-indicator construct into structural equations and estima-
tion of the so called partially latent structural regression model [14] may result in
several solutions. First, the attempt to estimate such a model with error measurement
variance as a free parameter, which causes the problem with model identification.
The second approach is to set the error variance as a fixed parameter based on
prior knowledge or estimates. Third solution suggests making a wider range of
simulations and estimation of the alternative models for testing the impact of the
assumptions about measurement errors for the obtained solutions.

A single indicator measurement model assuming the lack of measurement error
is identified using the ULI (unit loading indicator) approach. It means that factor
loading is set as one and the error variance is zero.

Error variance estimation for single-indicator latent variables arises from the
basic equation of the measurement model.

�x D �2 � � C ıx; (1)

where �x—indicator variance, �—factor loading, �—latent variable variance, ıx—
error variance. Using equation (1) one can point out that error variance is a function
of indicator variance and measurement reliability:

ıx D .1 � ˛/ � �x; (2)

Reliability coefficient of latent variable has the following formula:

˛ D �2 � �
�x

: (3)

The structural equation model containing measurement errors for single indicator
is shown in Fig. 2.

Latent variables representing measurement error d1 and e1 are also called errors-
in-variables (EIV), and the variable z1 constituting the latent variable representing
the disturbance associated with unexplained variance of the dependent variable
is also known as an error-in-equations (EIE). Failure to take account of the
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Fig. 2 Single-indicator latent variable with measurement error

measurement error in the model leads to getting biased regression parameters,
in which the “true” values of the regression or correlation coefficients between
latent variables are attenuated by the unreliability of the indicators. The bias of
regression parameters results from a correlation of the random component with
the independent variable. In addition, failure to account for the measurement error
causes underestimation of the coefficient of determination and reduction in models
explanatory power [16, p. 17].

4 Klein I Model with Latent Variables

An attempt to apply the SEM methodology to economic research began from
the consideration of selected classical econometric models for macroeconomic
phenomena. The model of the U.S. economy constructed by Klein in the forties
(so-called Klein I model) was taken into account. Klein I model is often cited in
works from the field of econometrics as an example of the simultaneous equations
system. The analysis presented in this paper assumes the following formula of Klein
I model:

C D ˛1 C ˛2P C ˛3P�1 C ˛4W C �1; (4)

I D ˛5 C ˛6P C ˛7P�1 C ˛8K�1 C �2; (5)

Wp D ˛9 C ˛10E C ˛11E�1 C ˛12t C �3; (6)

Y D C C I CG � T; (7)

P D Y �W; (8)

K D K�1 C I; (9)

W D Wp CWg; (10)

E D Y C T �Wg; (11)

where C—consumption, I—investments, W—total wage bill, Wp—private wage
bill, Wg—government wage bill, P—profits, K—capital, E—private sector output,
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Y—income, T—indirect taxes, t—time variable, G—government spending, �1, �2,
�3—random components.

Thus formulated model (4)–(11) consists of three stochastic equations (4)–
(6) and five identity equations (7)–(11). The variables include eight endogenous
variables (C, I, Wp, Y, P, K, W, E) and seven pre-determined ones (Wg, G, T, t,
P�1, K�1, E�1). The Klein’s model assumes the manifest variables only (without
measurement errors), and it has been estimated by means of: full information
maximum likelihood method (FIML), limited information maximum likelihood
method (LIML), three-stage least squares method (3SLS) and two-stage least
squares method (2SLS).

In order to estimate the values of variables C, I, G, P, Wp and Wg, Klein [13,
pp. 135–141] used 31 macroeconomic variables. For example the consumption
formula consists of following composites: [13, pp. 135–136]:

C D C1 C C2
C3

; (12)

where C1—consumer expenditures on goods and services (in billions of 1934
dollars), C2—individuals’ net imputed rent (in billions of 1934 dollars), C3—
average consumers’ outlay.

Statistical data used by Klein to calculate the consumption level (one of the
endogenous variables in Klein I model) in the United States in 1920–1941 were
derived from source works [20, p. 873], [18, p. 735], [17, p. 145]. After performing
calculations on the original data, more accurate estimations of consumption than
those which are included in the work of Klein [13] were obtained. The results of
calculations performed on the basis of original data differ by C= � 0:1 for years
1927, 1929, 1932, 1933 and 1935 compared to data in Klein work [13, p. 135]
subsequently used by many authors in their works (cf. e.g. [5, p. 10], [8, pp. 563–
564], [9, p. 950]). After converting the original data as rounded by the Klein one
obtains the same values for variable C as those published by Klein in 1950.

The differences noted between the considered sets of consumption values were
one of the reasons for undertaking research, some results of which are presented in
this paper. In our opinion these differences justify reviewing Klein I model I in the
context of a measurement error.

5 Klein I Model Estimation with Observed Variables

Specification of Klein I model [13] in the area of structural modelling involves FIML
(Full Information Maximum Likelihood) or FILGRV (Full Information Generalized
Least Residual Variance) methods of estimation. The use of identity equations in
the model results in the lack of identification of the model caused by the failure to
satisfy the rank rule for the observed and implied covariance matrix.

In order to identify the structural model, observable endogenous variables in the
model are treated as latent variables, of which only dependent latent variables asso-
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Table 1 Behavioral equations estimation using SEM and GRETL packages

ML GLS-ML LIML FIML 3SLS

Parameters Mplus Statistica GRETL GRETL GRETL

Int 16:68 – 17:148 18:343 16:441

P 0:162 0.370 �0:223 �0:232 0:125

P-1 0:221 0.330 0:396 0:386 0:163

W 0:725 0.870 0:823 0:802 0:790

Int 26:17 – 22:591 27:264 28:178

P 0:090 0.370 0:075 �0:801 �0:013
P-1 0:750 0.710 0:680 1:052 0:756

K-1 �0:176 0.168 �0:168 0:148 �0:195
Int 2:930 – 1:526 5:794 1:797

E 0:320 0.140 0:434 0:234 0:400

E-1 0:239 0.236 0:151 0:285 0:181

t 0:179 0.182 0:132 0:235 0:150

Own research based on estimation in Mplus 7.0, Statistica 10, and GRETL
Int intercept, P profits, P-1 profits in t-1, W wages, K-1 capital in t-1, E private sector output, E-1
private sector output in t-1, t time

ciated with consumption (C), investment (I) and wages (Wp) are measured by unit
loading indicator (ULI). In addition, due to the larger number of dependent latent
variables with respect to manifest variables, starting values for the disturbances
parameters were set by the researchers. Determining the initial values causes the
implied covariance matrix to be positive definite in the first iteration steps in the
Newton-Raphson algorithm. However, its use is associated with biased 2 statistics
and standard errors (normality assumption of indicator distribution and small sample
size). Additionally, the assumption of independence of observation in Klein I model
is violated [12, pp. 164–170].

Table 1 presents the results of estimation of behavioral equations with the
observed variables only. In order to compare the estimations, both SEM programs
(Statistica and MPLUS) and econometric package GRETL were used. The param-
eters depicted in Table 1 shows that there exist minor differences with respect to
strength of the parameters when statistical packages and methods of estimation are
compared. The direction and significance of relationship is comparable across both
SEM packages and GRETL solution.

The absence of error variances in original models (where only manifest variables
are used), disabled the evaluation of measurement errors in the model. Therefore,
Authors propose a simulation approach in the assessment of measurement error
of single-indicator latent variables that reflect economic categories in the Klein I
model.
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6 Simulation of Measurement Errors for Single Indicators
of Klein I Model

Estimation of the measurement error in Klein I model with single indicators of latent
variables was carried out on the basis of three methods: (1) modification indices
(MI) and expected parameter change (EPC), (2) two-step method (T-S), and (3)
specification search (SS) minimizing the AIC and BIC information criteria. The
results of comparative analysis are depicted in Table 2.

Table 2 shows the estimations of the variance of the measurement errors for
the simulations (based on modification indices, in the two-step approach and for
exploratory search for the best model specification). The MI and EPC suggest
adding the error covariance between Wp and T indicators to diminish 2 statistic and
improve the overall goodness of fit of the model. The negative sign of covariance
suggests that it may be due to the omitted variable that has an opposite influence on
both indicators.

In the two-step approach during the first step, a model with zero error variance
for indicators (which is identical to the classical structural model without latent
variables) was estimated, while during the second step, error variances were
estimated for fixed parameters of the structural model (with constraints arising from
the previously estimated model). This approach shows that constructs of private
sector output (E-1) and capital (K-1) are measured with a significant amount of error.
The third approach involved exploratory specification search for error variances for
the indicators that minimize AIC and BIC information criteria. Figure 3 shows the
result of AIC and BIC-based simulation of errors for E-1 indicator.

Due to the fact that in single indicator CFA the error variance is a function of
factor loading, the simulation looked for such combinations of level of error terms

Table 2 Measurement errors
of estimates

Variables MI T-S SS

C – 0.042 0.000

I – 0.000 0.000

Wp �0.539 0.000 0.000

P-1 – 0.000 0.000

K-1 – 0.237 0.200

E-1 – 0.591 0.600

Wg – 0.000 0.000

T �0.539 0.000 0.000

G – 0.039 0.000

Own research based on estimation in
Mplus 7.0
C consumption, I investment, Wp pri-
vate wage bill, P-1 profits in t-1, K-1
capital in t-1, E-1 private sector output
in t-1, Wg government wage bill, T
indirect taxes, G government spending
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Fig. 3 AIC/BIC-based specification search

and loadings for the factor E-1 that minimize the overall AIC/BIC criterion in the
model. Both criteria converge on the minimum with the level of error variances
equal 0.6. The similar approach (not presented) was used for the specification search
of measurement error for capital factor (K-1). The simulation confirms the result
obtained by the two-step approach.

Comparing the models log-likelihoods it should be noted that the introduction
of measurement errors for the lagged endogenous variables LK-1 and LE-1 (which
turned out to be statistically significant) allowed an (only small) improvement in the
fit of Klein I model (compared to the model with zero error variances) of 1 % (2

statistic for “error-free” model was 215.785, compared to 214.523 in the model with
measurement errors minimizing AIC).

On the basis of the simulated estimates, the respecified Klein I model with
measurement errors was developed.

7 Application of Latent Variables in Klein I Model

Figure 4 depicted the maximum likelihood estimation of the single-indicator
Klein I model with measurement errors within the framework of SEM graphical
presentations.

Factor loadings and regression coefficients are marked as ( ) and identity
equations as (�). For example:LY �LGCLI �LT CLC . Dotted arrows (Ü)
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Fig. 4 Klein I model with latent variables and measurement errors. (*) Significant parameters
(p < 0:05)

indicate the dummy paths introduced for identification purposes. The parameters of
structural equations are similar to the original Klein model.

The large amount of measurement error for E-1 economic construct (private
sector output) and relatively smaller for K-1 (capital) show potential measurement
unreliability.

Concluding Remarks

The integration of psychometric and econometric traditions in modelling with
latent variables is a promising way of development economic and social models
with single indicators. The first, places special emphasis on the interpretation
of economic constructs in terms of latent variables (measured by a single
indicator or multiple indicators) with an explicitly stated measurement error.
The second, is related to the methodologically correct specification of causal
structural dependencies between constructs.

The results show that even in the relatively simple Klein I model the economic
aggregates are contaminated with error terms and isolation of error may improve
the model interpretation and obtain unbiased structural parameters and their
standard errors.

It provides the way for further research on respecification of economic macro-
models, which, without taking into account the quality of construct measurement,
may mask insignificant relationships between variables.
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Investigating StockMarket Behavior Using
aMultivariate Markov-Switching Approach

Giuseppe Cavaliere, Michele Costa, and Luca De Angelis

Abstract
By stressing the latent nature of expected return and risk, we develop a two-step
procedure for obtaining new insights about the properties of financial returns.
The first step consists in achieving a time-invariant classification of stocks
into homogenous groups under the risk-return profile, thus providing innovative
measures of expected return and risk. In the second step, we investigate the
dynamic behavior of the stocks belonging to each group by using multivariate
Markov-switching models. We find evidence of different dynamic features across
groups of stocks and common dynamic properties within groups which can be
exploited for both interpretative and predictive purposes.

Keywords
Latent variables • Markov-switching • Mixture models • Multivariate
analysis • Risk-return profile

1 Introduction

Latent variables have been extensively used in both theoretical and empirical
research and cover a wide range of academic and operational fields. However,
despite the relevant progresses made in the last years, the usefulness of latent
variables in financial studies is still largely unexplored.

By taking into account the unobservable (i.e., latent) nature of expected return
and risk, in this paper we propose a two-step method for the analysis of stock

G. Cavaliere • M. Costa • L. De Angelis (�)
Department of Statistical Sciences, University of Bologna, Via Belle Arti, 41,
40126 Bologna, Italy.
e-mail: giuseppe.cavaliere@unibo.it; michele.costa@unibo.it; l.deangelis@unibo.it

© Springer-Verlag Berlin Heidelberg 2014
M. Carpita et al. (eds.), Advances in Latent Variables, Studies in Theoretical
and Applied Statistics, DOI 10.1007/10104_2014_3, Published online: 28 October 2014

185

mailto:giuseppe.cavaliere@unibo.it
mailto:michele.costa@unibo.it
mailto:l.deangelis@unibo.it


186 G. Cavaliere et al.

market behavior. Specifically, the first step consists in achieving a time-invariant
classification of the stocks into homogenous groups under the (latent) risk-return
profile. This is done by employing mixture models [12], which allow the classifica-
tion of multivariate data following a model-based approach and the determination
of M groups using the information provided by a set of observable indicators. One
important feature of this step is that, by means of statistical methods, we are able
to determine the number of mixture components, M , i.e., to define the number of
groups of stocks characterized by different financial features [2].

The second step of our procedure aims at investigating the dynamic behavior
of the stocks belonging to each group. Latent variables play a relevant role also
in the analysis of time series dynamics. In particular, Markov-switching (MS)
models, which are characterized by a (dynamic) latent variable component where
an unobserved Markov process drives the data generating process, are particularly
suitable for describing correlated data that exhibit distinct dynamic patterns during
different time periods. Since the seminal work of Hamilton [9] many contributions
and extensions have been developed for analyzing financial variables. Among
many others, Rydén et al. [13], Haas et al. [8], Guidolin and Timmermann [7],
Gallo and Otranto [5], Al-Anaswah and Wilfling [1], and De Angelis and Paas
[3] show that MS models are useful for investigating regime switching of returns
and volatilities in stock markets and are able to capture many stylized facts of
return series. In particular, the MS representation allows us to (1) endogenously
detect the various stock market regimes, represented by the K (latent) states of
the unobservable Markov process, using model selection methods, (2) interpret
the different regimes on the basis of the switching parameters, and (3) obtain the
probabilities of switching from one regime to another. These achievements may
provide a valuable help in the development of an early warning predictive system.

2 A Two-Step Procedure for Investigating StockMarket
Behavior

In this section, we briefly outline our two-step procedure for (1) obtaining the
different groups of stocks, i.e., portfolios, and (2) investigating their dynamic
behavior using latent variable models. In the first step we resort to mixture models
in order to make inference about the latent variable of interest and the subsequent
classification of the stocks into a certain number of groups, M . Once obtaining the
M groups, in the second step we focus on the analysis of the dynamics of the stock’s
return series within each of the M groups.

2.1 Definition of the Groups

Consider a set of N stocks and, for each stock, consider a set of Q indicators zk;h,
for k D 1; : : : ;Q and h D 1; : : : ; N based on the unconditional distribution of the
returns. In order to obtain the stock’s classification, we use a mixture model where
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the probability (density) distribution of stock return h is given by:

f .zh/ D
MX

yD1
�y

QY

kD1
f .zk;hjy/ (1)

where y D 1; : : : ;M denotes the time-constant latent variable which is charac-
terized by M mixture components and is assumed to explain all the relationships
among the indicators. That is, the observed variables, zk , are assumed to be
independent conditionally on the groups. For each group, the term �y denotes
the (prior) probability of belonging to a given group, where

PM
yD1 �y D 1.

The conditional distributions, f .zk;hjy/, for k D 1; : : : ;Q, are assumed to be
Gaussian with (conditional) mean 
y.zk/ and variance �2y.zk/.

1 The parameters are
estimated by maximizing the associated log-likelihood function using the iterative
procedure of the EM algorithm. The stock’s classification is achieved using the
Bayes’ theorem, thus according to the modal rule: arg maxyD1;:::;M h.yjzh/, where
h.yjzh/ denotes the posterior probabilities h.yjzh/ D �yf .zhjy/=f .zh/.

Model selection is a well-known open issue in mixture modeling since there is
no commonly accepted indicator for choosing the number of mixture components.
For instance, information criteria, such as the Bayesian information criterion (BIC),
are shown to consistently select the number of components, but they tend to
underestimate M in small samples. Hence, we decide to rely on the Akaike
information criterion (AIC) which, besides being a widespread and easy to compute
procedure, also has the known tendency to never underestimateM . Within our two-
step approach, dealing with more groups considerably eases the analysis at both
interpretative and computational levels. In particular, selecting more groups tends
to reduce the misclassification error and facilitates the analysis of the dynamic
behavior at the second step since low-dimensional multivariate MS models are
easier to estimate and their results are easier to interpret.

2.2 Analysis of the Dynamic Behavior

For t D 1; : : : ; T , we consider themy-dimensional vector of returns rt , wheremy is
the number of stocks classified into a specific group y, y D 1; : : : ;M . Furthermore,
we consider a vector of explanatory variables xt , which can be divided into two
sub-vectors xt D Œx0

1;t ; x
0
2;t �

0, where x1;t and x2;t are the q1 switching and q2 non-
switching exogenous regressors, respectively.

Thus, a general MS model specification for the vector of returns rt belonging to
group y is given by:

1The normality assumption in mixture models is well established since the Gaussian distribution
can be used as a cluster shape prototype, given that return distributions can be closely approximated
by a Gaussian mixture.
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rt D 
St C
q1X

iD1
ˇi;St x1;i;t C

q2X

jD1
ˇj x2;j;t C "t (2)

where St D 1; : : : ; K denotes the discrete latent process governed by a Markov
chain with K regimes and 
St is the vector of my switching intercepts. In the
following, the innovations "t are assumed to be Gaussian distributed with zero
mean and switching covariance matrix ˙St , i.e., "t � N.0;˙St /. Nevertheless, the
innovations may have a more general probability density function. For instance, we
may assume that "t is either distributed as a Student-t with �St degrees of freedom,
i.e., "t � t.0;˙St ; �St /, or a Generalized Error Distribution with �St degrees of
freedom, i.e., "t � GED.0;˙St ; �St /.

The specification in (2) allows for different MS models. For instance, when xt
includes only the lagged values of rt , we obtain the MS VAR model by Krolzig [11];
or, when xt D ¿, the MS model simplifies to the hidden Markov model (see, e.g.,
[13]).

3 Empirical Analysis

We apply the two-step procedure outlined in Sect. 2 to analyze the dynamic behavior
of the N D 30 stocks included in the Dow Jones (DJIA) index at the end of 2012.
We analyze the monthly return series from March 1993 to December 2012. The
results are obtained using the Latent GOLD 4.5 Syntax module [14].

3.1 Definition of the Groups

In the first step of the procedure, we consider Q D 6 indicators, zk , based on
the unconditional distribution of the returns. We proxy the expected return-risk
profile by using the following six indicators: mean return, mean return during
crises, standard deviation, standard deviation during crises, 90th percentile, and 5th
percentile. The crises are endogenously detected using two conditions: (1) the return
of the DJIA index is below its 5th percentile, (2) the standard deviation of the return
distribution of the DJIA index computed on the period is greater than 1.5 times
the standard deviation of the DJIA index return series. The detected crisis periods
are the following: June–September/2001, April/2002–February/2003, May/2008–
February/2009, May–August/2010, and May–September/2011.

According to the AIC, a Gaussian mixture model with M D 6 components is
detected, thus indicating the presence of six groups of stocks (i.e., portfolios). The
interpretation of the (latent) risk-return profile of each group can be obtained on the
basis of the estimated conditional means for each indicator. A summary of the results
and the corresponding risk-return interpretations of the six groups are reported in
Table 1. In particular, as reported below Table 1, we are able to detect the portfolio
with the lowest level of risk (group 4), the portfolio characterized by the lowest
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Table 1 Results for the Gaussian mixture model with M D 6 components and risk-return
interpretation of the groups (Step I)

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Group size 0:070 0:231 0:231 0:231 0:134 0:102

Indicators

Mean 0:022 0:591 0:638 0:759 1:017 1:500

StdDev 11:296 6:877 8:201 5:827 10:990 9:154

VPerc �15:704 �10:801 �12:947 �8:617 �17:284 �12:843
ICPerc 11:532 8:518 10:020 7:533 14:098 12:290

MeanCrisis �10:017 �3:441 �5:458 �2:235 �5:577 �3:307
StdDevCrisis 17:861 8:476 10:287 5:655 12:438 9:367

Interpretation of the groups:

• Group 1: lowest expected return and highest level of risk
• Group 2: moderate expected return and low level of risk
• Group 3: moderate expected return and moderate level of risk
• Group 4: lowest level of risk
• Group 5: high expected return-high risk profile
• Group 6: highest expected return and moderate level of risk

expected return and the highest risk levels (group 1), and the portfolio with the
highest expected return profile (group 6).

3.2 Analysis of the Dynamic Behavior

By considering the return series of the stocks classified into the six different groups,
in the second step of the procedure we evaluate the dynamic behavior within each
group using multivariate MS models specified in (2).2

In Tables 2, 3, and 4 we show the results for groups 5, 1, and 4, respectively,
which are particularly interesting from a risk profile viewpoint.3 Specifically, groups
1 and 5 are both characterized by the highest risk profiles but different expected
return levels, whereas group 4 is characterized by the lowest level of risk. The
results from Tables 2, 3, and 4, where regimes are ordered ascending according to
the values of the switching intercepts, 
St , show evidence of relevant differences
across groups: specifically, (1) different number of regimes and switching and
non-switching regressors, (2) diverse interpretation of the regime profiles, and (3)
unsynchronized regime dynamics.

2Note that following a two-step approach implies adding misclassification error to the analysis.
However, for the Gaussian mixture model with M D 6 components, the misclassification error at
the first step is small, namely 0.002.
3The results for the other groups are not reported due to space constraints but are available from
the authors upon request.
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Table 2 Results for the MS model for group 5 (high return-high risk profile)
rt D 
St C ˇ1pbt�1 C ˇ2rt�1 C "t ; "t � N.0;˙St /; St D 1; : : : ; 5

Stocks: HP: Hewlett-Packard; JPM: JP Morgan Chase & Co.; INT: Intel; CIS: Cisco Systems

St D 1 St D 2 St D 3 St D 4 St D 5

HP 
St �7:833��� �4:317��� 0.637 7:848��� 6:656���

ˇ1 �1:233���

ˇ2 �0:103��

JPM 
St �7:239�� �0:473 �0:755 7:673��� 8:386���

ˇ1 �3:646���

ˇ2 �0:110���

INT 
St �6:630�� 2:892� �1:003 �0:740 14:212���

ˇ1 �1:235���

ˇ2 �0:024
CIS 
St �10:215��� 3:710�� �0:225 4:981�� 12:588���

ˇ1 �0:367���

ˇ2 0.020

˙St
� �2HP;St 175:00��� 58:73��� 41:69��� 95:91��� 160:96���

�2JPM;St 258:38��� 8:73��� 44:55��� 71:41��� 29:33���

�2INT;St 200:37��� 90:58��� 44:12��� 236:16��� 47:19���

�2CIS;St 232:27��� 94:09��� 65:57��� 105:55��� 41:35���

P St�1 D 1 0:612��� 0.078 0.002 0.002 0:307���

St�1 D 2 0.080 0:508��� 0.002 0:246��� 0:164��

St�1 D 3 0:044�� 0.000 0:948��� 0.001 0.007

St�1 D 4 0.002 0:521��� 0.002 0:474��� 0.002

St�1 D 5 0:178�� 0.004 0:186�� 0:201��� 0:431���

�Significant at 10 %; ��significant at 5 %; ���significant at 1 %;
�Covariances �jj 0 ;St not reported for space constraints

First, we consider the two groups of stocks characterized by high levels of risk,
namely groups 1 and 5.

Table 2 reports the results for group 5 which includes myD5 D 4 stocks:
Hewlett–Packard (HP), JP Morgan Chase & Co. (JPM), Intel (INT), and Cisco
Systems (CIS). For this group, we estimate a MS model with K D 5 latent states
with x1;t D ¿ (no switching regressors) and x2;t D fpbt�1; rt�1g (two non-
switching regressors: the price/book value ratio at time t � 1 and the first order
autoregressive component).4 The estimated values of 
St and ˙St , as well as the

4In the second step of the procedure, we select the best model according to different methods. In
particular, as in the first step, we consider the AIC for determining the number of latent states K .
Then, we also consider the significance levels of the regression coefficients to decide (1) whether
a variable should be included or not in the MS model and (2) whether it should be included as
switching or non-switching regressor. Furthermore, regressor selection and the overall fitting of
the model is also evaluated using likelihood ratio tests [6] and Lagrange multiplier-type tests for
omitted autocorrelation and omitted regressors [10].
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Table 3 Results for the MS model for group 1 (lowest expected return and highest level of risk):
rt D 
St C ˇ1;.St /pbt�1 C ˇ2;.St /rt�1 C ˇ3;.St /dpt�1 C "t ; "t � N.0;˙St /; St D 1; : : : ; 4

Stocks: ALC: Alcoa; BoA: Bank of America

St D 1 St D 2 St D 3 St D 4

ALC 
St �11:55 �1:316 �0:475 2:139��

ˇ1 �1:801��

ˇ2 �0:009
ˇ3 8.587

BoA 
St �21:69��� �4:623�� 0.021 2:883���

ˇ1;St 1.539 �15:88��� 5:389��� �5:801���

ˇ2;St 0:324��� �0:368��� �0:486��� 0:135�

ˇ3;St �80:88��� 61:42��� 43:06��� �21:96��

˙St �2ALC;St 826:83�� 175:63��� 77:82��� 48:03���

�2BoA;St 48:68�� 67:61��� 15:90��� 47:85���

�ALC;BoA;St 185:25�� �14:80 21:95��� 14:75��

P St�1 D 1 0:388��� 0:335�� 0.064 0.213

St�1 D 2 0.081 0:740��� 0.003 0:176��

St�1 D 3 0.024 0.026 0:695��� 0:255���

St�1 D 4 0.030 0.003 0:272��� 0:695���

�Significant at 10 %; ��significant at 5 %; ���significant at 1 %

transition probabilities in matrix P in Table 2, allow us to interpret the features of
the five latent states, i.e., the characteristics of the five regimes. In particular, St D 1
represents the crisis regime since is characterized by large negative intercepts,

StD1, and the highest conditional variances, �2StD1. On the other hand, state 5 is
a bull regime. The transition probabilities in matrix P show that, conditionally at
being in state 1 at time t � 1, at time t the latent process may remain in the crisis
regime with a probability of 0.612, or may switch directly to the bull regime with
a probability of 0.307. The third latent state, St D 3, is characterized by small
conditional means and relatively low variances. Its persistence probability, i.e., the
probability of staying in the same regime from time t � 1 to time t , is close to 0.95,
which corresponds to an expected regime duration of approximately 19.4 months.
Hence, this state can be interpreted as a (long) lateral phase. The states 2 and 4
are somehow connected since the latent Markov chain often visits these two states
sequentially, see the transition probabilities in matrix P .

Table 3 shows the results for group 1, which includes myD1 D 2 stocks, namely
Alcoa (ALC) and Bank of America (BoA). For this group, the best MS model
is characterized by K D 4 regimes and the presence of mixed switching and
non-switching regressors, which are denoted by ˇi;.St / (see Table 3), where dpt�1
denotes the dividend-price ratio at time t � 1. As can be noticed from the results
reported in Table 3, in the first equation of the system (ALC) all the included
regressors are non-switching and only the price/book value ratio regressor is found
significant at a 5 % level. Conversely, the second equation in the system (BoA)
requires all regressors to be switching. As for the interpretation, we observe that the
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Table 4 Results for the MS model for group 4 (lowest risk profile)
rt D 
St C ˇ1;.St /pbt�1 C ˇ2;.St /rt�1 C ˇ3;.St /dpt�1 C "t ; "t � N.0;˙St /; St D 1; : : : ; 5

Stocks: 3M: 3M; CHEV: Chevron; COC: Coca Cola; EXX: Exxon Mobil; J&J: Johnson &
Johnson; P&G: Procter & Gamble; WMT: Wal Mart Stores

St D 1 St D 2 St D 3 St D 4 St D 5

3M 
St �2:904��� �1:227 1:396��� 2:516�� 2:251��

ˇ1 �0.156

ˇ2 �0:118��

ˇ3 14:91

CHEV 
St �0:549 �0:443 0:541 2:037��� 2:518�

ˇ1 �2:497���

ˇ2;St �0:142 0:237��� �0:241��� �0:090 �0:316���

ˇ3 11:87��

COC 
St �6:421��� �1:080 0:925�� 4:830��� 8:681���

ˇ1 0:146���

ˇ2 �0:047
ˇ3 34:14���

EXX 
St 0:019 �0:037 0:283 2:334��� 4:806���

ˇ1;St �1:114 �0:510 �1:551��� �1:859�� �5:193���

ˇ2 �0:060
ˇ3 �1:715

J&J 
St �3:525��� �2:832��� 0:920�� 5:070��� 11:004���

ˇ1 0:098

ˇ2;St �0:073��� 0:642��� �0:216��� �0:399��� �0:351���

ˇ3;St 7:602 �35:24��� 31:38��� 57:90�� 48:18���

P&G 
St �5:804��� �1:276�� 0:710� 5:622��� 9:929���

ˇ1 �0:002
ˇ2 �0:144���

ˇ3 19:83���

WMT 
St �2:452 �2:300��� 1:104�� 2:756��� 6:908��

ˇ1 0:315�

ˇ2 �0:117��

ˇ3 39:49��

˙
�
St

�23M;St 30:08��� 47:57��� 17:59��� 61:80��� 12:46��

�2CHEV;St
53:66��� 26:11��� 27:94��� 12:64��� 25:77��

�2COC;St
56:74��� 15:73��� 12:27��� 19:65��� 39:90��

�2EXX;St
25:22��� 43:38��� 16:64��� 14:85��� 12:61��

�2J&J;St 61:30��� 2:99��� 10:35��� 6:69��� 3:08��

�2P&G;St 69:01��� 10:55��� 10:70��� 6:74��� 15:45��

�2WMT ;St 87:90��� 8:40��� 23:78��� 36:31��� 88:80��

P St�1 D 1 0:528��� 0:026 0:212��� 0:056 0:178���

St�1 D 2 0:002 0:124� 0:792��� 0:002 0:080�

St�1 D 3 0:061�� 0:195��� 0:540��� 0:203��� 0:001

St�1 D 4 0:206��� 0:212��� 0:299��� 0:234��� 0:049

St�1 D 5 0:170 0:003 0:069 0:754��� 0:003

�Significant at 10 %; ��significant at 5 %; ���significant at 1 %;
�Covariances �jj 0;St not reported for space constraints
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coefficients ˇ1;St for states 2 and 4 are negative, as expected from a theoretical point
of view: high (low) values of pb indicate a possible overvaluation (undervaluation)
of the company which may lead to a decrease (increase) in expected returns. On
the other hand, state 3 is characterized by ˇ1;StD3 > 0, whereas ˇ1;StD1 is not
significant. Therefore, during regime St D 3 that can be interpreted as a lateral
market phase, the operators seem to expect that BoA stock price will continue to rise
despite the overvaluation of the company. In other words, the stock is overvalued
in operators’ expectations and this mechanism may generate speculative bubbles.
The coefficients ˇ3;St are expected to be positive since an increase (decrease) in
the dividend yield (w.r.t. the stock price) usually leads to an increase (decrease)
in the expected return. However, the results in Table 3 show negative values for
states 1 and 4 which can be interpreted as the crisis and the positive regimes,
respectively. Therefore, during the “most extreme” regimes, operators seem to
expect less dividend yield at time t than the yield distributed at time t � 1. This
effect is understandable during crisis market phases but is quite surprising during
positive phases. The coefficients of the autoregressive component,ˇ2;St , are negative
for states 2 and 3 and positive for states 1 and 4. Thus, we find evidence of a positive
autocorrelation during the crisis and positive market phases and the alternation of
positive and negative returns during lateral phases represented by states 2 and 3. The
transition probabilities in matrix P show a relative high level of regime-persistence:
the probabilities of staying in the same regime from time t � 1 to time t are close to
0.70 for all states, except for state 1, which has a probability of 0.388. Moreover, the
significant off-diagonal values show that the latent Markov chain tends to switch to
a neighboring state, except in the case of St�1 D 2 where it may switch directly to
St D 4 with probability of 0.176.

Finally, in Table 4, we analyze the results for the myD4 D 7 stocks classified
into group 4, which is characterized by the lowest level of risk. The best model
is the MS model with K D 5 regimes which includes both switching and non-
switching regressors (see Table 4). According to the estimates of 
St , ˙St and
P , we can interpret the five different regimes. Specifically, we interpret state 1 as
the crisis/negative regime, St D 2 as a slightly negative phase which precedes the
lateral phase represented by state 3, while states 4 and 5 denote the positive phase
and the bull regime, respectively. The ˇi;.St / coefficients can be easily interpreted as
done above. The signs of the estimates of these coefficients are all consistent with
the financial theory, except for ˇ1 in the COC equation, ˇ3;StD2 in the J&J equation
and ˇ1 in the WMT equation, although the latter is significant only at a 10 % level.

The endogenous detection of financial market regimes and the estimation of
regime-switching probabilities may substantially help monitoring the financial
system and developing early warning predictive systems. As an example of the
potential usefulness of this two-step approach in monitoring and disclosing financial
crises, consider the estimated (smoothing) probabilities for the crisis regimes, i.e.,
the probability of being in the crisis state 1 at time t conditional on the observed
return series, Prob.St D 1jr1; : : : ; rT /. In Fig. 1, we show these probabilities for the
three MS models considered in Tables 2, 3, and 4 with respect to the period 2007–
2012. As can be observed from Fig. 1, the group with the lowest risk profile (group
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Fig. 1 Estimated (smoothing) probabilities for the crisis regime in the period 2007–2012
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4) can be used to promptly detect the beginning of the so-called “sub-prime crisis”
started at the end of 2007.5

Conclusions and Future Developments

In this paper we propose a two-step procedure involving latent variables for
analyzing the distribution of stock returns. The aim of the first step is to obtain a
time-invariant classification of the stocks which share a similar expected return-
risk profile. In the second step we employ multivariate MS models to investigate
the dynamic features of the different groups. By analyzing the monthly return
distribution of the DJIA stocks, we find evidence of six groups characterized by
different risk-return profiles. The analysis of the groups’ dynamic behavior shows
the presence of common dynamics within groups and contrasting behavior across
groups, thus confirming the usefulness of the two-step procedure proposed in
this paper. Indeed, the two-step approach provides much more flexibility than
a single-step procedure based on a mixture of MS models, since allows the
estimation of MS models which can be characterized by a different number
of latent states (regimes). Therefore, the proposed two-step procedure enables
the detection of the different dynamic features across groups which may not be
detected using a single-step procedure.

Albeit very appealing for its potential, this approach presents some open
issues which should be investigated in further research. Since the determination
of the number of groups in the first step as well as the definition of the number of
regimes in the second step of the procedure plays a crucial role in our analysis,
in future work, we intend to consider and compare alternative indicators for
the determination of M and K . Moreover, we will compare our proposal with
alternative procedures, including a single-step procedure by estimating a mixture
of MS models (see, e.g., [4]), thus checking how the two-step method is suitable
and preferable. Furthermore, it can be of interest to consider alternative observed
variables zk in the mixture model estimated in the first step of the procedure.
Finally, we also plan to consider other probability density functions for "t in
the MS model specification, e.g., Student-t or GED distributions as discussed in
Sect. 2.2.

Acknowledgements We thank Giampiero Gallo, Attilio Gardini and the three anonymous referees
for their useful comments. Financial support from Italian PRIN 2010–2011 grant “Multivariate
statistical models for risk assessment” is gratefully acknowledged.

5Note that the posterior probabilities for the crisis/negative regime across groups are not truly
comparable but allows us to gather information on the development of the latest crisis, which can
be extremely useful as early warning indicator.
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AMultivariate Stochastic Volatility Model
for Portfolio Risk Estimation

Andrea Pierini and Antonello Maruotti

Abstract
A Multivariate Latent Stochastic Volatility Factor Model is introduced for the
estimation of volatility and optimal allocation of stocks portfolio in a Markowitz
type portfolio. Returns on a set of 5 banks among the best capitalized banks’
stocks traded on the Italian stock market (BIT) between 1 January 1986 and 31
August 2011 are modeled. Computational complexities arising in the estimation
step are dealt by simulation-based methods, introducing a Griddy Gibbs sampler.
The association structure among time-series is captured via a factor model, which
reduces the computational burden required in the estimation step.

Keywords
Factor model • Griddy Gibbs • Markowitz portfolio • Stochastic volatility
model

1 Introduction

Volatility modelling plays an important role in the analysis of financial time
series. The persistence of volatility phenomenon is the most well-established effect
exhibited by financial time series. Indeed, the variance of returns exhibits high serial
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autocorrelation, which becomes evident by looking at periods of high volatility,
with large changes in assets returns being followed by large ones as well, and at
periods of low volatility in which small changes are followed by small ones. As this
observation obviously is of great interest, capturing this effect could be challenging.
This is the reason why stochastic volatility (SV) models have bee introduced and
undergone a lot of research during the last two decades. Since the seminal papers
by [14, 15], the univariate SV model has been widely used and several estimation
methods have been introduced (see e.g. [3, 10, 13]). Nevertheless, as pointed out
by e.g. [2], assets are linked together or influenced by common unobserved factors,
which render the univariate approach too restrictive. It is then crucial to extend the
univariate SV model to the multivariate case in order to capture the covariation
effect. Several alternatives can be considered to describe the time evolution of the
joint distribution of different assets (see e.g. [1, 7, 11]).

In this paper we aim at providing a multivariate SV model, based on a latent
structure, in which covariation is accounted for via a factor model. Appropriately
accounting for covariation is crucial in terms of portfolio diversification and asset
allocation. Indeed, the ultimate goal of this paper is to provide indications on
portfolio diversification with minimum risk, in a Markovitz framework.

Parameters estimation could be cumbersome and inference becomes therefore
hard. This has lead to a substantial development of sampling-based methods in order
to obtain parameter estimates, such as rejection sampling, Markov Chain Monte
Carlo and Monte Carlo integration (see e.g. [3, 8, 12]). To reduce the computational
burden often involved in sampling procedures, we adopt a nested Griddy Gibbs as
sampler. In this way, we avoid the need of simulated density that mimic the shape
of the preceding one and of guaranteeing the dominance (as imposed by [10]).

The proposed SV model is then applied to a subset of 5 banks among the best
capitalized banks’ stocks traded on the Italian stock market (BIT) between 1 January
1986 and 31 August 2011.

The paper is organized as follows. In Sect. 2 we introduce the model, while its
computational aspects are discussed in Sect. 3. Section 4 briefly introduces the data,
and the obtained results. Section “Conclusions” concludes.

2 Model Summary

In the following, we consider the SV parameterization introduced in [8,9]. Let rt D
.r
.1/
t ; : : : ; r

.n/
t / an array of n stock returns, in which r.i/t is the return for the i -th

asset at time t and at D a.1t ; : : : ; aKt/ the vector of K common factors at time t ,
t D 1; : : : ; T . The SV parameterization we consider sets

rt D �t C�at C et (1)



.i/
t D ˇ.i/0 C ˇ.i/1 r.i/t�1 C : : :C ˇ.i/p r.i/t�p (2)
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e
.i/
t D

q
h
.i/
t �

.i/
t (3)

log.h.i/t / D ˛.i/0 C ˛.i/1 log.h.i/t�1/C v.i/t : (4)

In this factor model, the matrix � is a constant (n � K) matrix of factor
loading with K < n, �t D .


.1/
t ; : : : ; 


.n/
t /

0, the errors et � N.0;E/ are serially
and mutually independent of all other error terms. The errors �.i/t and v.i/t , i D
1; : : : ; n are serially and mutually independentN.0; 1/ and N.0; �2;.i/v /, E.at / D 0,
Cov.at / D I . We have also j˛.i/1 j < 1, so that the factor log-volatility processes are

stationary. Furthermore, ˇ.i/ D .ˇ.i/1 ; : : : ; ˇ.i/p / are fixed regression parameters.
It follows from this model that the marginal distribution of the returns is

multivariate Gaussian with mean —t and covariance �Ht�
0 C E, where Ht D

diag.h.1/t ; : : : ; h
.n/
t /. Of course, it should also be noted that more complicated

dynamics could be introduced in the latent SV process and for our purpose there
is no need to estimate at .

Jacquier et al. [9] proposed to use MCMC methods to estimate model parameters.
However, the method has not been implemented for a multivariate financial
portfolio. In the following we provide computational details to obtain parameter
estimates.

3 Computational Details

Let us denote with !.i/ D .�
2;.i/
v ; ˛

.i/
0 ; ˛

.i/
1 /

0 and h.i/ D .h
.i/
1 ; : : : ; h

.i/
T /, r

.i/ D
.r
.i/
1 ; : : : ; r

.i/
T /, i D 1; : : : ; n. The likelihood function can be written as:

f .r.i/ j ˇ.i/; !.i// D
Z

RT
f .r.i/ j X.i/; ˇ.i/; h.i//f .h.i/ j !.i//dh.i/: (5)

To tackle this estimation problem we use the MCMC method as in [8].
Let’s describe the steps of the algorithm that implements the MCMC method.

First step: for each return i the optimal lag p of the Eq. (2) is selected, independently
from the other returns, according to the AIC criterion, fixing v.i/t D 0.
Second step: for each return i the following likelihood function, related to the
Eqs. (1)–(4) with v.i/t D 0, is maximized to find the MLE parameters as in [6]:

�L.ˇ.i/; !.i// D T �1
nX

tD1
a
.i/
t =
Qh.i/t C log. Qh.i/t / (6)

where

a
.i/
t D r.i/t � 
.i/tQh.i/t D log.h.i/t / D ˛.i/0 C ˛.i/1 Qh.i/t�1

(7)
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These parameter estimations are chosen as the initial values for the conditional
posterior distributions used by the MCMC iterations.
Third step: Steps 1,2 are repeated for each intrinsic values i corresponding to the
return i , given by P=E.i/ � EPS.i/, where P=E.i/ is the Price to Earnings ratio and
EPS.i/ is the Earning per share.

As the intrinsic value is considered to give indication on the return, the obtained
parameter estimates are chosen as the prior distribution parameters used to define
the conditional posterior distributions needed by the MCMC iterations.

Let’s call these prior parameters as follow:
ˇ0;.i/ D .ˇ

0;.i/
1 ; : : : ; ˇ

0;.i/
p /0 and their variances A0;.i/ D diag.�2

ˇ
0;.i/
1

; : : : ; �2
�0;.i/

/ for

the mean parameters,!0;.i/ D .�2;0;.i/v ; ˛
0;.i/
0 ; ˛

0;.i/
1 /0 andC0;.i/ D diag.�2

˛
0;.i/
0

; �2
˛
0;.i/
1

/

for the volatility parameters.
Moreover the prior distributions are hypothesized multivariate normal for ˇ.i/ �

N.ˇ0;.i/; A0;.i// and ˛.i/ � N.˛0;.i/; C 0;.i//, inverted Chi squared for �2;.i/v , that’s to
say T �=�2;.i/v � 2T , with � a scale parameter.
Fourth step: We consider simulation-based methods. The MCMC Gibbs sampling
estimation of the model (1)–(4), after combining the prior distributions with the
likelihood using the Bayes’ rule, consists in drawing random samples from the
conditional posterior distributions

f .ˇ.i/jr.i/; x.i/; h.i// � N.ˇ�;.i /; A�;.i //
f .h

.i/
t jr.i/; x.i/; h.i/; ˇ.i/; !.i//

f .˛.i/jh.i/; �2;.i/v / � N.˛�;.i /; C �;.i //
f .d=�

2;.i/
v jh.i/; ˛.i// � 22T�1

(8)

in a sequence from initial value of the conditioning variables, with step by step
substitutions of the new sampled values to the previous ones, until a number of
iteration g is reached.

That’s is to say, at the MCMC Gibbs iteration j with j D 1; : : : ; g:

1. we draw a random sample Œj �ˇ
.i/ from: f .ˇ.i/jr.i/; x.i/;Œj�1� h.i//

2. we draw a random sample Œj �h
.i/
t from: f .h.i/t jr.i/; x.i/;Œj�1� h.i/�t ;Œj � ˇ.i/;Œj�1� !.i//

3. we draw a random sample Œj �˛
.i/ from: f .˛.i/jŒj �h.i/;Œj�1� �2;.i/v /

4. we draw a random sample Œj ��
2;.i/
v from: f .d=�2;.i/v jŒj �h.i/;Œj � ˛.i//

This completes a MCMC Gibbs iteration and current parameters values are

.Œj �ˇ
.i/;Œj � h

.i/
1;:::;t ;Œj � ˛

.i/;Œj � �
2;.i/
v /

In this way we obtain random samples fŒj �ˇ.i/gjDg0;:::;g ,fŒj �h.i/gjDg0;:::;g
fŒj �˛.i/gjDg0;:::;g , fŒj ��2;.i/v gjDg0;:::;g that can be used to make inference.



AMultivariate Stochastic Volatility Model for Portfolio Risk Estimation 201

Our estimations are the point estimation sample means of the previous random
samples after eliminating the first g0 � 1 values, that’s to say

Ǒ.i/ D 1
g�g0

P
jDg0;:::;g Œj � ˇ

.i/

Oh.i/t D 1
g�g0

P
jDg0;:::;g Œj � h

.i/
t

Ǫ .i/ D 1
g�g0

P
jDg0;:::;g Œj � ˛

.i/

O�2;.i/v D 1
g�g0

P
jDg0;:::;g Œj � �

2;.i/
v

The value of g0 is chosen so that the estimation . Ǒ.i/; Oh.i/; Ǫ .i/; O�2;.i/v / of the
parameters .ˇ.i/; h.i/; ˛.i/; �2;.i/v / is stable in the sense that after g0 the means
obtained by adding one by one the successive random sample of the Gibbs are
almost identical.

In the Eq. (8) the Bayes’ rule gives A�;.i / D
�PT

tD1 x
.i/
0;t x

.i/0

0;t C .A0;.i//�1
��1

,

x
.i/
0;t D x.i/t =

q
h
.i/
t

ˇ�;.i / D A�;.i /
�PT

tD1 x
.i/
0;t r

.i/
0;t C .A0;.i//�1ˇ0;.i/

�
, r.i/0;t D r.i/t =

q
h
.i/
t ,

C �;.i / D
�PT

tD2 y
.i/
t y

.i/0

t =�
2;.i/
v C .C 0;.i//�1

��1
, y.i/t D .1; ln.h.i/t //0

˛�;.i / D C �;.i /
�PT

tD2 y
.i/
t ln.h.i/t /=�

2;.i/
v C .C 0;.i//�1˛0;.i/

�

d D T �CPT
tD2 v2;.i/t , r.i/t is the compound return,x.i/j;t is its lagged value.

The posterior distribution f .h.i/t jr.i/; x.i/; h.i/; ˇ.i/; !.i// is a non standard one
even if its density is known up to a normalizing constant [8].

Therefore a nested Gibbs sampler of type Griddy is implemented in the following
way:

1. a grid of values for h.i/t is selected, say, h.i/t;1 � h
.i/
t;2 � : : : � h

.i/
t;m;

its posterior distribution is evaluated on this values to obtain ws D
f .h

.i/
t;s jr.i/; x.i/; h.i/�t ; ˇ.i/; !.i//, s D 1; : : : ; m.

2. The ws are used to obtain an approximation of the inverse cumulative distribution
function of f .h.i/t;s jr.i/; x.i/; h.i/�t ; ˇ.i/; !.i//.

3. A uniform random variable between 0 and 1 is drawn and transformed via the
preceding step 2 to obtain a random drawn for h.i/t .

Fifth step: the estimation .Ovi;i .T C 1j˝T //i2f1;:::;ng of the volatility matrix .vi;i .T C
1j˝T //i2f1;:::;ng, that’s to say vi;i .T C 1/ D h

.i/
TC1,will be obtained in the following

way, at the iteration j of the Gibbs sampler, j D g0; : : : ; g:

1. we draw a random sample v.i/TC1 from N.0;Œj � �
2;.i/
v / and the Eq. (4) with Œj �ˇ

.i/

is used to compute Œj �h
.i/
TC1;
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2. we draw a random sample �.i/TC1 from N.0; 1/ to obtain e.i/TC1 D
q
Œj �h

.i/
TC1�

.i/
TC1

and the Eq. (2) with Œj �˛
.i/ is used to compute Œj �r

.i/
TC1;

In this way we obtain a random sample fŒj �h.i/TC1gjDg0;:::;g and a random sample

fŒj �r .i/TC1gjDg0;:::;g that can be used to make inference.
Our estimation is the point forecast of the previous two random samples, that’s
to say Oh.i/TC1 D 1

g�g0
P

jDg0;:::;g Œj �h
.i/
TC1 and Or.i/TC1 D 1

g�g0
P

jDg0;:::;g Œj �r
.i/
TC1.

Sixth step: To estimate the off-diagonal elements of V , we consider the multivariate
Latent Factor model (see [4]).
Seventh step: The Markowitz problem can be foretasted at time T C 1 using the
preceding estimation of vi;j and r.i/ that we called Ovi;j .T C1/ and Or.i/TC1, by solving
through a quadratic programming method, the following:

min�2Rf� 0 OV .T C 1/� W � 0 � 1 D 1; � 0 � OrTC1 D Rp; � � 0g (9)

where � D .�1; : : : ; �n/ and Rp 2 Œminfi WiD1;:::;ng Or.i/TC1;maxfi WiD1;:::;ng Or.i/TC1�.

4 Data and Results

The model is applied to a subset of the entire stocks’ universe among the series of
data regarding the best capitalized 5 banks’ stocks traded on the Italian stock market
(BIT) between 1 January 1986 and 31 August 2011. Data are shown in Fig. 1.

This figure shows the histograms and the fitted normal density. Even if the
empirical distributions of the returns are symmetry and uni-modal, the fitted normal
curves are not enough similar to the empirical counterparts in the tails. Tests of
Jarque–Bera for normality reject the null hypothesisH0 of normality at 95%.

Moreover tests Ljung–Box for the squared of residuals e.i/t of Eqs. (1)–(2), reject
the null hypothesis H0 of no ARCH effects at 95%. Therefore it is necessary
to include the Eqs. (3)–(4), that’s to say the SV model part, in order to obtain
an unconditional distribution of the residuals e.i/t that has heavier tails, an excess
of kurtosis with respect to a gaussian distribution. This is in agreement with the
financial data in hand.
With respect to the model (1)–(2) setting v.i/t � 0,where r.i/t is the intrinsic value,
the explanatory variables x.i/j;t are the lagged values r.i/t�j and the exogenous variable

z.i/t is the market index, we give the optimal lags in Table 1, which minimize the
AIC.

The posterior distribution parameters, calculated as means of the last g�g0 D100
iterations of sampling from the MCMC posterior conditional distribution are as
follows (Tables 2 and 3):

From Table 2 it can be seen that Ǒ.i/0 ' 0 so there is no constant term in the mean

Eqs. (1)–(2). As Ǒ.i/k ¤ 0; k > 0 it can be said that return is dependent on its past
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Fig. 1 Data description

Table 1 Optimal AIC lags

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Opt. lag

Unicredit �722:66 �722:05 �720:16 �719:8 �718:43 1

BPM 758:76 758:63 760:19 761:65 760:82 2

Credito Emiliano 530:94 531:82 533:74 535:72 536:67 1

Intesa 219:81 175:05 167:33 161:86 102:65 5

Mediobanca 606:37 607:66 599:84 588:03 580:52 5

Table 2 Ǒ�;.i/ D . Ǒ.i/
0 ; : : : ;

Ǒ.i/
p /

0 posterior distribution parameters (stock i )

i Ǒ.i/
0

Ǒ.i/
1

Ǒ.i/
2

Ǒ.i/
3

Ǒ.i/
5

Ǒ.i/
5

1 �0:0012 0:0322 0 0 0 0

2 �0:0039 �0:2394 �0.1512 0 0 0

3 �0:0018 �0:1528 0 0 0 0

4 �0:0026 �0:6606 �0.0108 �0.0783 0.1415 0.3238

5 0:0016 �0:0050 �0.0874 �0.1363 �0.1751 �0.2782

values. Moreover, from Table 3 it can be seen that the volatility is dependent from
its past as each Ǫ .i/1 ¤ 0 in the Eq. (4). Lastly O�2;.i/v > 0 is not negligible so the

SV model, which introduces v.i/t , is capable to improve a pure ARCH model for the
volatility.

The estimated variance-covariance (risk) matrix is given in Table 4.
As expected, it can be seen in Table 4 that 0:47 < Ovi;j < 0:70; i ¤ j , so there are

positive correlations among the series. Indeed the series belong to the same sector.
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Table 3 O!.i/ D .O�2;.i/v ; Ǫ .i/0 ; Ǫ .i/1 /0 posterior distribution parameters (stock i )

i O�2;.i/v Ǫ .i/0 Ǫ .i/1
1 2.3661 �0.00023698 0.98773

2 3.1517 �0.0063111 0.9798

3 2.2379 �0.0028054 0.99625

4 1.6529 �0.044743 0.86632

5 2.1015 �0.077245 0.7201

Table 4 Covariance risk matrix estimation

0

BB@

Ov1;1 � � � Ov1;n
:
:
:

: : :
:
:
:

Ovn;1 � � � Ovn;n

1

CCA

TC1j˝T

D

2:3211 0:6257 0:59352 0:69577 0:6879

0:6257 1:6836 0:47016 0:55623 0:54937

0:59352 0:47016 1:7268 0:56166 0:60608

0:69577 0:55623 0:56166 1:6892 0:6187

0:6879 0:54937 0:60608 0:6187 1:6936

Table 5 Latent factor loadings estimates

Series O�1
O�2

Unicredit 0.8176 0.33716

BPM 0.65679 0.26308

Credito Emiliano 0.37386 0.85376

Intesa 0.70746 0.34807

Mediobanca 0.66952 0.41672

It can be seen that the variances dominate the covariances which are all positive.
Thus, it is possible to find portfolios that have lower risk than either single asset.
Among those ones we choose the minimum risk portfolio.

In order to provide further insights on the association structure we may look
at the estimated latent factors (Table 5). The first latent factor can be associated
with Unicredit, BPM and Intesa San Paolo, whilst the second one is mainly related
to Credito Emiliano. This can be seen in Fig. 2, where we call Component i the
O�i ; i D 1; 2 and the numbers are the stocks in the same order of Table 5.

The possible double clustering suggested by the Fig. 2 could drive another
portfolio diversification in order to take into consideration the different dependency
(loading) each stock’s return has of the common latent factors.

Of course, as a central issue, we have to solve the quadratic programming of
Markowitz in order to optimize our portfolio. We propose the following optimal
(with minimum risk) fractions to invest in each stock as the numerical solution of
the optimization problem given in the Eq. (9) (Table 6).

By depicting the optimal fractions in Fig. 3, it can be seen that a good
diversification among the stocks is obtained.

The optimal fractions O�.i/ give a risk of 0.90724 and a monthly portfolio return
of 0.035194. Different portfolio choice are possible that can get greater return or
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Fig. 2 Latent factor loadings

Table 6 O�.i/ optimal (with minimum risk) fractions

Series Unicredit BPM Credito Emiliano Intesa Mediobanca

O�.i/ 0.10474 0.2493 0.23337 0.21036 0.20222

Fig. 3 Optimal fractions

better latent shocks warranty at the expense of a greater risk. Thus in a risk averse
view, an investor should choose the minimum risk portfolio suggested.
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Conclusions

We have conducted an empirical investigation of stochastic volatility of major
Italian banks, by introducing a computational feasible algorithm based on simu-
lation techniques. The proposed estimation methodology is easily implementable
and this is an important step forward on multivariate volatility estimation, since
the likelihood function of stochastic volatility models is not easily calculable. The
procedure proposed in this work attempts to combine the simplicity of the factor
model with the sophistication of stochastic volatility procedures. Open problems
remain, primarily in the modelling of multivariate heavy-tailed or skewed error
distributions, as well as the computational burden required in the estimation
step in the modelling of high dimensional data. In time, further significant
developments can be achieved by introducing a time-varying latent structure such
as parsimonious hidden Markov models, which are able to reduce the curse of
dimensionality of the considered problem and account for well-know stylized
facts arising in the stock returns modelling.
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A Thick Modeling Approach to Multivariate
Volatility Prediction

Alessandra Amendola and Giuseppe Storti

Abstract
This paper proposes a modified approach to the combination of forecasts
from multivariate volatility models where the combination is performed over a
restricted subset including only the best performing models. Such a subset is
identified over a rolling window by means of the Model Confidence Set (MCS)
approach. The analysis is performed using different combination schemes, both
linear and non linear, and considering different loss functions for the evaluation
of the forecasting performance. An application to a vast dimensional portfolio
of 50 NYSE stocks shows that (a) in non-extreme volatility periods the use
of forecast combinations allows to improve over the predictive accuracy of the
single candidate models (b) performing the combination over the subset of most
accurate models does not significantly reduce the accuracy of the combined
predictor.

Keywords
Forecast combination • Multivariate volatility • Thick modeling • Weights
estimation

1 Introduction

The econometric and statistical literature has been recently paying much attention
to the analysis of model uncertainty in multivariate volatility models. So far, most
of the research efforts in this field have been dedicated to the evaluation of the
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forecasting performance focusing on problems such as the choice of the loss
function and of the volatility proxy used for the evaluation of forecasts. In particular,
Patton and Sheppard [14] and Laurent et. al [13] have analyzed the effects that the
quality of the proxy can have on the ranking of forecasting models implied by a
given loss function. Both these papers, however, do not investigate the possibility
of combining volatility forecasts from different models as a way for improving the
forecast accuracy.

In this paper we focus on the application of forecast combination techniques
as a tool for dealing with model uncertainty in multivariate volatility prediction
for vast dimensional portfolios. Under this respect it is important to remark that
the dimension is a critical variable. The risk of model misspecification is indeed
particularly sizeable in large dimensional problems. In this setting, it is well known
that the need for reducing the number of parameters usually requires the formulation
of highly restrictive assumptions on the volatility dynamics that, in most cases, are
applied without any prior testing (see e.g. Pesaran et al. [16]).

Despite the undoubted relevance of this issue, the statistical problems related
to the application of forecast combination techniques in multivariate volatility
prediction have been largely left unexplored by the statistical and econometric
literature. As a consequence of this, in most applications the standard approach
is still to select the “best” specification from those that are available according
to some sensible criterion. Granger and Jeon [10] refer to this strategy as a thin
modelling approach, opposed to a thick modelling strategy that does not require
the identification of a single best performing model but combines forecasts from
different alternative specifications. Adopting a thin modelling strategy can lead to
an information loss due to the fact that, discarding all the suboptimal models, we
also neglect the additional information set on which they depend. On the other side,
a problem with the thick approach is that, if the number of competing candidate
predictors is large, combining forecasts requires the estimation of a large number of
parameters. This cannot be done efficiently unless a large number of past forecasts is
available. Also, combining forecasts generated from a possibly large set of different
models requires taking some additional choices related to the combination scheme,
which is the blending function through which individual forecasts are combined,
and to the procedure used for the estimation of combination weights. Finally, in the
specific case of volatility, as it will be later discussed in more detail, a further source
of uncertainty is related to the choice of the proxy used for approximating the latent
volatility.

In addition to the problems we have just discussed, there is also a concern about
robustness since the presence of some outlying predictors, e.g. very bad performers,
could introduce some bias in the estimation of the combination weights assigned to
each model. In order to deal with this issue a possible solution could be to consider,
for forecast combination, only a subset of models that are performing significantly
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better than the others according to some appropriately chosen criterion. Under this
respect, De Pooter et al. [5] suggest to select these models by the Model Confidence
Set (MCS) approach [11].

The combination of volatility forecasts, in an univariate setting, has already been
investigated by Amendola and Storti [1] who have proposed a GMM procedure
for the estimation of the combination weights. This procedure has been later
generalized to a multivariate setting [2]. More recently, the same authors have
proposed and empirically compared some alternative combination strategies for
multivariate volatility forecasts by considering the same dataset including 50 NYSE
stocks which has been used in this paper [3]. Aim of this work is to investigate the
profitability, for the prediction of vast dimensional conditional variance matrices, of
forecast combination schemes in which the combination involves only a restricted
set of best performing models rather than all the potential candidate models. In
particular, we extend to the multivariate volatility case, the approach that has been
proposed by De Pooter et al. [5]. This choice is expected to give the most relevant
advantages in applications where a large set of candidate models is available. More
precisely, we expect it to reduce the computational time required as well as to
increase the efficiency in the estimation of the combination parameters.

The paper is structured as follows. Section 2 illustrates the combination functions
used in the paper while the estimation of combination weights is discussed in Sect. 3.
Section 4 presents the results of an empirical application to stock market data and
concludes.

2 ReferenceModel and Combination Functions

2.1 The Data Generating Process

The data generating process (DGP) is assumed to be given by

rt D St zt t=1,. . . ,T (1)

where zt
iid� .0; Ik/, St is any (k �k) positive definite (p.d.) matrix such that StS

0

t DQHt D Var.rt jI t�1/, QHt D C.H1;t ; : : : ;Hn;t Iw/, Hj;t is a symmetric p.d. (k � k)
matrix and I t denotes the information available at time t . In practice the Hj;t are
forecasts of the conditional covariance matrix of rt generated by the j -th candidate
model. The function C.:/ is an appropriately chosen combination function and w is
a vector of combination parameters. The weights assigned to each candidate model
depend on the values of the elements of w but do not necessarily coincide with them.
The DGP in (1) is very general and nests a wide range of multivariate volatility
models as special cases.
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2.2 The Linear Combination Function

Among all the possible choices of C.:/, the most common is the linear combination
function

QHt D w1H1;t C : : :C wnHn;t wj � 0 (2)

where w is the vector of combination weights. A potential drawback of this
specification is related to the fact that we need to assume that the weights wj
are non-negative, in order to guarantee that the estimated combined predictor QHt

is a well defined positive definite conditional variance matrix. However, such an
assumption can be highly restrictive. It automatically implies that the combined
volatility forecast of a single asset i is directly proportional to the volatilities
predicted by each of the candidate models. The same obviously holds for conditional
covariances. Also, in this paper we do not impose any constraint on the value of the
sum of the weights wj . In the early time series literature on forecasts combination
it was customary to impose the convexity constraint

Pn
jD1 wj D 1 which implies

that QHt is defined as a convex linear combination of candidate forecasts. However it
can be easily shown that ignoring this constraint allows to correct for the presence
of bias in the candidate predictors.

It is worth noting that Eq. (2) could be further generalized by including a .k �k/
matrix of intercepts on the right hand side. A parsimonious way of doing this would
be to use matrices of rank one

QHt D aa0 C w1H1;t C : : :C wnHn;t wj � 0 (3)

where a is a k-dimensional vector of parameters. This solution has two important
advantages. First, it keeps the number of parameters reasonable and linear in n.
Second, QHt is guaranteed to be positive definite if at least one of theHj;t is positive
definite. A more parsimonious solution is to adopt a targeting strategy in which the
intercept matrix (aa0) in (3) is replaced by the matrix

NH D 1

T

TX

tD1

0

@˙t �
nX

jD1
wjHj;t

1

A (4)

where ˙t is an appropriately chosen volatility proxy, such as a realized covariance
matrix, and the weights wj are constrained to satisfy the condition min.eig. NH// �
0. This solution would not require the estimation of any additional parameters other
than the model weights.
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2.3 The Square-Root Combination Function

Alternatively, in order to get rid of the positivity constraint on the wj , the linear
combination function can be replaced by an alternative scheme known as the square
root combination function. This is based on a linear combination of Cholesky
factorizations of the candidate forecasts of the conditional covariance matrix.
Differently from the previous linear function, the square root combination (for St )
is not directly performed on the Hj;t but on the Sj;t

St D w1S1;t C : : :C wnSn;t (5)

with QHt D StS
0

t and Hj;t D Sj;tS
0

j;t . As in the linear case, in low dimensional
problems equation (5) could be further generalized by adding a matrix of intercepts.
This could be introduced in a similar fashion as already discussed for the linear
combination functions. In particular the intercept matrix could be specified as a rank
one matrix of parameters or alternatively a two-stage targeting procedure could be
used. In the latter case the matrix of intercepts could be expressed as

NS D 1

T

TX

tD1

0

@Lt �
nX

jD1
wj Sj;t

1

A (6)

where the matrix Lt is obtained from the Cholesky decomposition of ˙t . It is
important to remark that, differently from what observed for the linear case, we
don’t need to impose any constraints on the estimated wj .

3 Estimation of the Combination Parameters

The combination functions depend on the vector of unknown parameters given by
w D .w1; : : : ;wn/0. An obvious approach to the estimation of these parameters
is based on a direct minimization of an appropriately defined loss function with
respect to the unknown combination parameters. For this purpose a wide range of
different loss functions could be used but, in any case, a proxy of the latent volatility
is required. A measure of forecasts accuracy is then based on the comparison of
a proxy of the unobserved conditional covariance matrix, such as the Realized
Covariance estimator, with the combined predictor QHt .

In general, lack of accuracy of the chosen volatility proxy could result into a
biased measure of predictive accuracy and, henceforth, into a biased model ranking.
However, Laurent et al. [13], generalizing a similar result obtained by Patton [15] for
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univariate volatility prediction, have identified a class of robust loss function where
robustness should be evaluated in terms of invariance of the models ranking with
respect to inaccuracies in the volatility estimator used for the evaluation of forecast
performance.

More precisely, the estimates of the combination weights wj are obtained by
solving the following optimization problem:

Ow D argmin
w

TX

tD1
L.˙t Iw/;

where Ow D . Ow1; : : : ; Owk/0,L.�/ is an appropriately chosen loss function and f˙tgTtD1
is a symmetric positive semi-definite realized covariance matrix of dimension n
recorded at time t

˙t D
n�X

iD1
r
.i/
t .r

.i/
t /

0

where n� is the number of equally spaced intervals of length � within the trading
day and r.i/t denotes the log-return over the i -th interval.

For the evaluation of multivariate volatility forecasts we focus on the Euclidean
loss function

LE D vech.˙t �Ht/
0vech.˙t �Ht/

A discussion on the properties of different loss functions in predicting multivariate
volatility can be found in the paper by Laurent et al. [13] who show that this function
produces a ranking of the competing forecasts that is robust to the choice of the
volatility proxy.

4 Empirical Results

In this section we present the results of an application to a portfolio of 50 NYSE
stocks whose symbols have been reported in Table 1.

The dataset we use is composed of price quotations observed every minute, from
9.30 a.m. to 4.00 p.m., from October 1, 1997 to July 18, 2008.1 The raw-returns
are aggregated over 5 min intervals in order to obtain a time series of daily realized
covariance matrices. Furthermore, we use the available data to compute a time series
of daily open-to-close returns over the period of interest. Our choice of using open-
to-close returns follows the approach of Andersen et al. [4] who argue that the
overnight return can be interpreted as a deterministically occurring jump. Hence the

1The data are available online at www.tickdata.com.

www.tickdata.com
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Table 1 Symbols
identifying the 50 stocks
NYSE included in the
analyzed portfolio

ABT AZO CAH CAG F

AFL AVY CTL COST GCI

APD BHI CTAS DOV GPS

AA BAC C DOW GE

ALL BAX CLX DTE GIS

AXP BDX CMS EMN GPC

AIG BBBY KO EIX HNZ

ADI BMY CL ETR HPQ

APOL CPB CMA FDO HD

T COF CSC FISV HON

open-to-close return can be considered as the daily return adjusted for the overnight
jump.2

Our aim is (a) comparing the performances of different models in generating
one-step-ahead predictions of the conditional covariance matrix of daily returns
(b) evaluating the ability of forecast combinations to improve the performance
of the single candidate models (c) assessing the profitability of thick modelling
schemes based on the combination of forecasts generated from the subset of the
best performing models identified using the MCS approach.

The candidate models that have been considered for forecast evaluation can
be classified into two groups. The first group includes MGARCH models that do
not exploit intra-daily information and are fitted to time series of daily returns:
the Dynamic Conditional Correlation (DCC) model [6], the BEKK model [8], the
standard RiskMetrics (RM) and a Moving Covariance (MC) predictor. Differently,
the second group includes models directly fitted to time series of realized covariance
matrices: the Conditionally Autoregressive Wishart (CAW) model [9] and a realized
version of the RM (RRM) and MC estimators (RMC). The DCC and BEKK
models of order (1,1), following Engle et al. [7], have been estimated by Gaussian
composite quasi maximum likelihood while the CAW model has been estimated
by maximizing a Wishart quasi likelihood function. The value of the smoothing
parameter of the RM and RRM estimators has been set equal to � D 0:94, to
meet the indications of the RiskMetrics technical document [12]. The length of the
moving window for the calculation of the MC and RMC estimator has been set equal
to m D 100 which is a recurrent value among practitioners. The model parameters
are re-estimated approximately every month (22 days) over a rolling window of
length equal to 500 days.

The accuracy in predicting the conditional covariance matrix is assessed using
the Euclidean loss function and taking the 5-minute realized covariance matrix
as a proxy of the latent volatility. The unconditional volatility level within the

2The choice of a discretization interval equal to 5 min is a standard practice in the literature since it
usually guarantees a reasonable compromise between bias and variability of the realized covariance
estimator.
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Fig. 1 Estimated weights of the linear combined predictor including all models (over 93 re-
estimations)

out-of-sample forecasting period is subject to different level shifts. In particular we
identify a high volatility period, associated to the dot-com bubble, from April 13,
2000 to the end of March 2003, for a total of 737 observations, a long low volatility
period ending in July 2007, for a total of 1065 observations and, finally, a short high-
volatility period at the end of the sample period, loosely related to the sub-prime
crisis, from August 2007 to July 18, 2008, for a total of 244 observations. Since
it is well known that the dynamic properties of volatilities and correlations depend
on the unconditional level of volatility itself, a given model could be differently
able in predicting the conditional covariance matrix in calm and storm periods.
For this reason we have separately analyzed the forecast accuracy of our candidate
models and combined predictors in the three above described periods. For the sake
of brevity, we have not reported all the estimated combination weights but only
those related to the forecast combination considering all models and not including
an intercept. The estimated weights have been reported in Fig. 1, for the linear
combination scheme, and Fig. 2, for the Cholesky combination. In both cases our
analysis reveals that the weights assigned to the candidate models involved in the
combination are remarkably varying over time adapting to the sharp changes in the
volatility and correlation patterns that characterize the data of interest. This finding
confirms our intuition that the structure of the volatility process and, hence, of the
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Fig. 2 Estimated weights of the Cholesky combined predictor including all models (over 93 re-
estimations)

optimal combined predictor has been changing over time. For the linear combination
scheme, the results in Fig. 1 show that, on average, the CAW is the most influential
model in the central and final part of the forecasting period while, during the first
part of the period, its role is taken by the RMC, first, and the RRM predictor, later.
The RM and MC predictors are virtually excluded from the optimal predictor while
the BEKK and DCC based on daily the returns are regularly present in the optimal
combination even if their weights are in most cases lower than those assigned
to the predictors based on realized covariances. The weights from the Cholesky
combination scheme (Fig. 2) also show that the structure of the optimal predictor is
far from being stable over time. However, their interpretation is not as immediate as
that of the linear combination weights.

The results of the Model Confidence Set (MCS) based on the LE loss function
have been summarized in Table 2. Their analysis reveals evidence that, over period
2, the combined predictors are slightly improving over the candidate models. The
situation is reversed in the high volatility periods 1 and 3. Furthermore, it is
evident that the thick predictors based only on the models included in the MCS
are characterized by performances very similar to those of their more complex
counterparts based on the whole set of candidate models.
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Table 2 Average LE loss
function values (�104) over
period 1 (high volatility, dot
com), 2 (low volatility), 3
(high volatility, financial
crisis) and whole forecasting
period (all). (t ): combination
of the best performing models
included in the MCS for that
period. (a): combination over
all the candidate models. (i ):
denotes combined predictors
including a matrix of
intercepts. (c ): denotes linear
combination of Cholesky
decompositions of candidate
predictors (see Eq. (2)).
#.MCS/: number of models
included in the MCS. (�):
predictor included in the
MCS at level ˛ D 0:25

Predictor Period 1 Period 2 Period 3 All

DCC 4.1022 0.4073 1.6786* 1.8899

BEKK 4.0704 0.3937 1.5653 1.8578

RM 4.2977 0.3904 1.5378 1.9347

RRM 4.2924 0.3831 1.5712 1.9330

MC 3.8501* 0.3661* 1.4711* 1.7529

RMC 3.9997 0.3663* 1.5700 1.8187

CAW 3.8294* 0.3668 1.4218* 1.7399*

LEt 3.8637 0.3661 1.4402* 1.7541

LEti 4.0356 0.3953 1.4243* 1.8293

LEtc 3.8599 0.3656* 1.4392* 1.7523

LEtc;i 4.2740 0.4052 1.5046* 1.9299

LEa 3.8633 0.3654* 1.4346* 1.7529

LEai 4.1761 0.4414 1.4403* 1.9058

LEac 3.8888 0.3653* 1.4234* 1.7607

LEac;i 4.7827 0.9341 1.6600 2.4070

#.MCS/ 2 5 10 1
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Exploring Compositional Data with the Robust
Compositional Biplot

Karel Hron and Peter Filzmoser

Abstract
Loadings and scores of principal component analysis are popularly displayed
together in a planar graph, called biplot, with an intuitive interpretation. In case of
compositional data, multivariate observations that carry only relative information
(represented usually in proportions or percentages), principal component analy-
sis cannot be used for the original compositions. They first need to be transformed
using the centered logratio (clr) transformation. If outlying observations occur
in compositional data, even the clr (compositional) biplot can lead to useless
conclusions. A robust alternative biplot can be computed by using the isometric
logratio (ilr) transformation, and by robustly estimating location and covariance.
The robust compositional biplot has a big potential in many applications, like in
geology, analytical chemistry, or social sciences.

Keywords
Compositional data • Compositional biplot • Principal component analysis •
Robust statistics

K. Hron (�)
Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science,
Palacký University, 17. listopadu 12, Olomouc, Czech Republic

Department of Geoinformatics, Faculty of Science, Palacký University, 17. listopadu 50,
Olomouc, Czech Republic
e-mail: hronk@seznam.cz

P. Filzmoser
Department of Statistics and Probability Theory, Vienna University of Technology,
Wiedner Hauptstrasse 8-10, Vienna, Austria
e-mail: P.Filzmoser@tuwien.ac.at

© Springer-Verlag Berlin Heidelberg 2014
M. Carpita et al. (eds.), Advances in Latent Variables, Studies in Theoretical
and Applied Statistics, DOI 10.1007/10104_2014_1, Published online: 28 October 2014

219

mailto:hronk@seznam.cz
mailto:P.Filzmoser@tuwien.ac.at


220 K. Hron and P. Filzmoser

1 Compositional Data and Their Geometry

Compositional data frequently occur in many applied fields. They are characterized
by the fact that not the absolute reported information of the variables is relevant,
but their ratios contain the important information [15]. When analyzing a chemical
composition of a rock, not the absolute values of the mass of the compounds
(which depend on the size of the sample), but ratios provide a relevant picture of
the multivariate data structure. Compositional data (or compositions for short) are
popularly represented by proportions or percentages, i.e. as data with a constant sum
constraint. Any reasonable analysis of compositions should follow properties like
scale invariance (the information in a composition does not depend on the particular
units in which the composition is expressed) and subcompositional coherence
(information conveyed by a full composition should not be in contradiction with
that coming from a sub-composition), see e.g. [5] for details. Since the specific
properties of compositions naturally induce their own geometry (the Aitchison
geometry [7]) on the simplex, i.e. the sample space of compositions, the main effort
is devoted to express the compositions in orthonormal coordinates, where the usual
Euclidean rules already hold [6], and accommodate the standard statistical methods
for their analysis. Namely, standard statistical methods completely ignore the above
requirements since they rely on the usual Euclidean geometry in the real space [4].
Because all the relevant information in compositional data is contained in ratios
between the parts, it is natural that zero compositional parts are not allowed for the
analysis. According to the origin of zero values, either as a result of an imprecise
measurement of a trace element in the composition (i.e. rounding zeros) or the
result of structural processes (structural zeros), special care has to be taken prior
to a further processing of the observations [3, 14].

The Aitchison geometry forms a Euclidean vector space of dimension D � 1,
that makes it possible to express the compositions in coordinates with respect to
an orthonormal basis on the simplex. The corresponding mapping h W SD !
RD�1, that results in the real vector h.x/ D z D .z1; : : : ; zD�1/0, moves
the Aitchison geometry to the standard Euclidean geometry in the real space
isometrically. For this reason the mapping h is usually referred to as the iso-
metric logratio (ilr) transformation [7]. Among infinitely many possibilities how
to form the orthonormal basis on the simplex and construct the orthonormal
coordinates, one popular choice results in the .D � 1/-dimensional real vector
z D .z1; : : : ; zD�1/0,

zi D
r

D � i
D � i C 1 ln

xi

D�i

qQD
jDiC1 xj

; i D 1; : : : ;D � 1: (1)

Note that different ilr transformations are orthogonal rotations of each other [7].
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For most statistical methods, an interpretation of the compositional data analysis
in orthonormal coordinates is fully satisfactory. An exception is the biplot of princi-
pal component analysis which is related to the centered logratio (clr) transformation
[1], resulting for a composition x D .x1; : : : ; xD/0 in a real vector

y D .y1; : : : ; yD/0 D

0

B@ln
x1

D

qQD
iD1 xi

; : : : ; ln
xD

D

qQD
iD1 xi

1

CA

0

:

Elements of y represent coefficients with respect to a generating system of composi-
tions, i.e. the covariance matrix of a random composition y is positive semidefinite.
Consequently, the clr transformed data are not appropriate for a robust statistical
analysis, because the popular robust estimators can cope just with regular obser-
vations. Fortunately, there exists a linear relation between the clr coefficients and
orthonormal coordinates [like those from Eq. (1)], y D Vz. The columns of the
D � .D � 1/-matrix V D .v1; : : : ; vD�1/ are formed by the clr transformation of
the orthonormal basis vectors, resulting in coordinates z, concretely

vD�i D
r

i

i C 1
�
0; : : : ; 0; 1;�1

i
; : : : ;�1

i

�0
; i D 1; : : : ;D � 1:

The above properties of the matrix V imply isometry of the clr transformation.
Although measures of location and variability of a random composition can even

be expressed directly on the simplex, it is usually preferred to capture location and
variability of compositions directly in coordinates using the expectation � and the
covariance matrix ˙ . If a sample z1; : : : ; zn is given for the coordinate z, one usually
arrives at the arithmetic mean z D 1

n

Pn
iD1 zi and the sample covariance matrix

S D 1
n�1

Pn
iD1.zi � z/.zi � z/0.

However, also in the case of compositional data, outlying observations may
completely destroy results of a statistical analysis, compared to those obtained from
the homogeneous majority of observations in a data set. In addition, the specific
geometry of compositional data induces a different view of outliers compared to the
usual case. For example, now obviously an observation with high absolute values on
the compounds (parts) must not necessarily be an outlier, if the corresponding ratios
between its parts follow the dominant data behavior. For this reason, not only the
classical statistical methods, but even the robust ones cannot be applied directly to
raw compositional data. Particularly, this would lead to a mismatch of regular and
outlying observations.

Because of different representations of compositions in coordinates, the affine
equivariance of the corresponding robust estimators is crucial. The location estima-
tor t and the covariance estimator C are called affine equivariant, if for a sample
x1; : : : ; xn of n observations in RD�1, any nonsingular .D � 1/� .D � 1/ matrix A
and for any vector b 2 RD�1 the conditions
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t.Ax1 C b; : : : ;Axn C b/ D At.x1; : : : ; xn/C b;

C.Ax1 C b; : : : ;Axn C b/ D AC.x1; : : : ; xn/A0

are fulfilled.
In the following the Minimum Covariance Determinant (MCD) estimator [13] is

used, which is advantageous in particular for computational reasons [16]. The MCD
estimator shares the property of affine equivariance for both the resulting location
and covariance estimator. Conceptually, it looks for a subset h out of n observations
with the smallest determinant of their sample covariance matrix. A robust estimator
of location is the arithmetic mean of these observations, and a robust estimator of
covariance is the sample covariance matrix of the h observations, multiplied by a
factor for consistency at normal distribution. The subset size h can vary between
half the sample size and n. It will determine the robustness of the estimates and also
their efficiency.

2 Principal Component Analysis and the Compositional
Biplot

Principal component analysis (PCA) cannot directly be used for raw compositional
data; in addition, the proper estimation of location (t) and covariance (C) plays
an important role. Let C D GzLG0

z be a spectral decomposition of the estimated
covariance matrix C, with the diagonal matrix L of eigenvalues and the matrix Gz

of eigenvectors of C. Then PCA results in a linear transformation

z�
i D G0

z.zi � t/; (2)

of the coordinates into new variables (principal components) such that the first
principal component has the largest possible variance (accounts for as much of the
variability in the data as possible), and each succeeding component in turn has the
highest variance possible under the constraint that it is orthogonal to the preceding
components. Although both scores z�

i and loadings (columns of the matrix Gz)
of the principal components could also be interpreted directly in orthonormal
coordinates, it is rather common to transform the loadings back to the clr space,
Gy D VGz, where the matrix V comes from the linear relationship between ilr and
clr transformations (see Sect. 1) and the affine equivariance property of the MCD
estimator is utilized [9]. The scores in the clr space are identical to the scores of the
ilr space, except that the additional last column of the clr score matrix has entries of
zero. Finally, the transformed loadings and scores are used to construct the biplot of
clr transformed compositional data [2, also referred to as “compositional biplot”].
Although the purpose of the compositional biplot is the same as for the standard
covariance biplot [11], i.e. to provide a planar graph that represents a rank-two
approximation of both the observations (PCA scores, plotted as points) and variables
(loadings, rays) of multivariate data, its interpretation is different: The main interest
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is in the links (distances between vertices of the rays); concretely, for the rays i and
j (i; j D 1; : : : ;D) the link approximates the log-ratio variance var.ln xi

xj
/, forming

the variation matrix [1]

T D
�

var.ln
xi

xj
/

�D

i;jD1
:

This matrix can be estimated in a classical or in a robust way, by using the relation

T D Jdiag.VCV0/C diag.VCV0/J � 2VCV0;

where J denotes a D �D matrix of ones and C stands once again for the estimated
covariance matrix in orthonormal coordinates (preferably the robust one using the
MCD estimator).

Hence, from the form of the log-ratio variances we can see that when the vertices
coincide, or nearly so, then the ratio between xi and xj is constant, or nearly
so. Consequently, this characteristic replaces the thinking in terms of correlation
coefficients between two coordinates (standard variables). In addition, directions
of the rays in the biplot signalize where observations with dominance of the
corresponding compositional part are located.

3 Example

The theoretical results are applied to a real-world compositional data set, describing
relative contributions of six main leasure time activities (sport, reading, TV, PC,
music, outdoor activities) of 30 younger school age children (10–11 years old); the
original data (expressed in minutes) are quoted in [17]. The corresponding robust
compositional biplot is displayed in Fig. 1. From the data structure, some outlying
observations are clearly detectable (like 13, 16, 24, 25); nevertheless, they do not
influence the resulting loadings and scores of robust principal components in the
clr space. From the links between the vertices we can see that TV watching and
working with PC are quite strongly related, a similar conclusion can be observed
also from the link between sport and the other outdoor activities. This is quite a
logical output as both couples of leasure time activities are of similar nature and
one can thus expect a kind of stable proportional distribution between them. On the
other hand, music obviously represents quite an exceptional leasure time activity,
not related to the others.

For the sake of comparison, we form also the corresponding classical com-
positional biplot by replacing the robust estimates of location and covariance in
orthonormal coordinates by the arithmetic mean and the sample covariance matrix,
see Fig. 2. The first interesting feature to be observed from Fig. 2 is that the first
two classical principal components explain just 57:17% of the total variability of
the compositional data set, compared to 75:66% for the robust case. Only the
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Fig. 1 Robust compositional biplot of leasure time activities of younger school age children

two compositional parts music, reading are well reflected by this biplot, but the
information of the other parts is poorly represented. This is due to outliers which
have attracted the first two principal component directions. Also the positions
of outlier observations changed comparing to the robust compositional biplot.
While the role of 13, 16, 25 remained unchanged, the observation 24 moved into
the main data cloud. On the other hand, new “outliers” arise (like 1, 7, 9, 17),
nevertheless, their position is rather driven by the true outliers, detectable using
the robust version of the biplot. Thus, this biplot does not provide information
of the multivariate data structure of the data majority, but is heavily influenced
by some outliers. An interpretation would thus also be misleading, and it is even
counter-intuitive.
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Fig. 2 Classical compositional biplot of leasure time activities of younger school age children

Conclusions

The robust compositional biplot allows to display the inherent multivariate
structure of compositional data in form of a planar graph, even in presence of
outliers. The robust compositional biplot can also be used for the interpretation
of outlying observations [10]. Although the clr transformation of compositions is
still preferable for this purpose, as an alternative also orthonormal coordinates
may be used to construct a compositional biplot (even with the standard
interpretation according to [11]), if some prior information the studied problem
is available. For example, one possibility is to construct the ilr coordinates with
interpretation in sense of balances between groups of compositional parts, see
[8] for details. The compositional biplot (and preferably its robust version) can
be applied to real-world problems from various applied fields, and the obtained
results usually nicely follow previous expert knowledge [12].
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17. Těthalová, L.: Statistical analysis of compositional data using the CoDaPack software (in
Czech). Bachelor thesis, Palacký University (2013)



Sparse Orthogonal Factor Analysis
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Abstract
We propose a sparse orthogonal factor analysis (SOFA) procedure in which
the optimal loadings and unique variances are estimated subject to additional
constraint which directly requires some factor loadings to be exact zeros. More
precisely, the constraint specifies the required number of zero factor loadings
without any restriction on their locations. Such loadings are called sparse which
gives the name of the method. SOFA solutions are obtained by minimizing a
FA loss function under the sparseness constraint making use of an alternate
least squares algorithm. We further present a sparseness selection procedure in
which SOFA is performed repeatedly by setting the sparseness at each of a set
of feasible integers. Then, the SOFA solution with the optimal sparseness can
be chosen using an index for model selection. This procedure allows us to find
the optimal orthogonal confirmatory factor analysis model among all possible
models. SOFA and the sparseness selection procedure are assessed by simulation
and illustrated with well known data sets.
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1 Introduction

Factor analysis (FA) is a model that aims to explain the interrelationships among
observed variables by a small number of latent variables called common factors.
The relationships of the factors to observed variables are described by a factor
loading matrix. FA is classified as exploratory (EFA) or confirmatory (CFA). In
EFA, the loading matrix is unconstrained and has rotational freedom which is
exploited to rotate the matrix so that some of its elements approximate zero. In CFA,
some loadings are constrained to be zero and the loading matrix has no rotational
freedom [9].

One refers to a loading matrix with a number of exactly zero elements as being
sparse, which is an indispensable property for loadings to be interpretable. In EFA,
a loading matrix is rotated toward a sparse matrix, but the literal sparseness is not
attained, since rotated loadings cannot exactly be equal to zero. Thus, the user must
decide which of them can be viewed as approximately zeros. On the other hand,
some loadings are fixed exactly to zero in CFA. However, the problem in CFA is
that the number of zero loadings and their locations must be chosen by users. That
is, the users’ subjective decision is needed in both EFA and CFA.

In order to overcome these difficulties, we propose a new FA procedure, which is
neither EFA nor CFA. The optimal orthogonal factor solution is estimated such that
it has a sparse loading matrix with a suitable number of zero elements. Note that,
their locations are also estimated in an optimal way. The procedure to be proposed
consists of the following two stages:

(a) The optimal solution is obtained for a specified number of zero loadings.
(b) The optimal number of zero loadings is selected among possible numbers.

Stages (a) and (b) would be described in Sects. 2–4, respectively.
In the area of principal component analysis (PCA), many procedures, called

sparse PCA, have been proposed in the last decade (e.g. [8, 13, 16]). As in our FA
procedure, they obtain sparse loadings. However, besides the difference between
PCA and FA, our approach does not rely on penalty functions, which is the standard
way to induce sparseness in the existing sparse PCA.

2 Sparse Factor Problem

The main goal of FA is to estimate the p-variables �m-factors matrix ƒ containing
loadings and the p � p diagonal matrix ‰2 including unique variances from the
n-observation �p-variables .n > p/ column-centered data matrix X. For this goal,
FA can be formulated by a number of different objective functions, among which
we choose the least squares function

f D jjX � Fƒ0 � U‰jj2 (1)
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recently utilized in several works [1,4,14,15]. Here, F is the n�mmatrix containing
common factor scores and U is the n � p matrix of unique factor scores. The factor
score matrices are constrained to satisfy

n�1F0F D Im; n�1U0U D Ip; and F0U D mOp (2)

with Im the m �m identity matrix and mOp the m � p matrix of zeros.
We propose to minimize (1) over F;U;ƒ, and ‰ subject to (2) and

SP.ƒ/ D q; (3)

where SP.ƒ/ expresses the sparseness of ƒ, i.e., the number of its elements being
zero, and q is a specified integer.

The reason for our choosing loss function (1) is that we can define

A D n�1X0F (4)

to decompose (1) as

f D jjX�FA0�U‰� .Fƒ0�FA0/jj2 D jjX�FA0�U‰jj2Cnjjƒ�Ajj2: (10)

This equality is derived from the fact that .X�FA0 �U‰/0.Fƒ0 �FA0/ D nAƒ0 �
nAA0 � nAƒ0 C nAA0 D pOp is given using (2) and (4). In (10) only a simple
function jjƒ�Ajj2 is relevant to ƒ and thus can be easily minimized over ƒ subject
to (3) as seen in the next section. It is difficult for other objective functions of FA to
be rewritten into simple forms as (10). For example, the likelihood function for FA
includes the determinant of a function of ƒ which is difficult to handle.

3 Algorithm

For minimizing (1) subject to (2) and (3), we consider alternately iterating the update
of each parameter matrix.

First, let us consider updating ƒ so that (1) or (10) is minimized subject to (3)
while F;U, and ‰ are kept fixed. This amounts to minimizing g.ƒ/ D jjƒ � Ajj2
under (3), since of (10). Using ƒ D .�ij/ and A D .aij/, we can rewrite g.ƒ/ as

g.ƒ/ D
X

.i;j /2N

a2ij C
X

.i;j /2N?

.�ij � aij/
2 �

X

.i;j /2N

a2ij; (5)

where N denotes the set of the q pairs of (i; j / for the loadings �ij to be zero and
N? is the complement to N. The inequality in (5) shows that g.ƒ/ attains its lower
limit †.i;j /2Na2ij when the loading �ij with (i; j / 2 N? is set equal to aij. Further,
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the limit †.i;j /2Na2ij is minimal when N contains the (i; j / for the q smallest a2ij
among all squared elements of A. The optimal ƒ D .�ij/ is thus given by

�ij D
(
0 iff a2ij � a2Œq�
aij otherwise

(6)

with a2Œq� the q-th smallest value among all a2ij.
Next, let us consider the update of the diagonal matrix ‰. Substituting (2) in (1)

simplifies the objective function to

f D ntrSC ntrƒƒ0 C ntr‰2 � 2ntrX0Fƒ0 � 2trX0U‰ (100)

with S D n�1=2X0X the sample covariance matrix. Since (100) can further be
rewritten as jjn1=2‰ � n�1=2diag.X0U/jj2 C c with c a constant irrelevant to ‰ ,
the minimizer is found to be given by

‰ D diag.n�1X0U/; (7)

when F;U, and ƒ are considered fixed.
Finally, let us consider minimizing (1) over n � .m C p/ block matrix [F;U]

subject to (2) with ‰ and ƒ kept fixed. We note that (100) is rewritten as f D
c� � 2ntrB0X0ŒF;U� with B D Œƒ;U� an p � .m C p/ matrix and c� a constant
irrelevant to [F;U]. As proved in Appendix 1, f is minimized for

n�1X0ŒF;U� D B0CQ�Q0; (8)

where B0C is the Moore-Penrose inverse of B0 and Q�Q0 is obtained through the
eigenvalue decomposition (EVD) of B0SB:

B0SB D Q�2Q0; (9)

with Q0Q D Ip and 	2 the positive definite diagonal matrix. Rewriting (8) as
Œn�1X0F; n�1X0U� D B0CQ�Q0 and comparing it with (4) and (7), one finds:

A D B0CQ�Q0Hm (40)

‰ D diag.B0CQ�Q0Hp/ (70)

where Hm D ŒIm; mOp�
0 and Hp D ŒpOm; Ip�0.

The above equations show that ƒ and ‰ can be updated if only the sample
covariance matrix S.D n�1X0X/ is available. In other words, the updating of
[F;U] can be avoided when the original data matrix X is not given, That is, the
decomposition (9) gives the matrices Q and � needed in (40) and (70), with (40) being
used for (6). Further, the resulting loss function value can be computed without the
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use of X W (6) implies ƒ0A D ƒ0ƒ, and substituting this, (4), and B D Œƒ;U� into
(100) leads to f D ntrSC ntrƒƒ0 � 2ntrƒ0A� ntr‰2 D nftrS� tr.ƒƒ0C‰2/g D
n.trS � trBB0/. Then, the standardized loss function value

fS.B/ D 1 � trBB0=trS; (10)

which takes a value within [0,1], can be used for convenience instead of f .
The optimal B D Œƒ; ‰ � is thus given by the following algorithm:

Step 1. Initialize ƒ and ‰ .
Step 2. Set B D Œƒ; ‰ � to perform EVD (9).
Step 3. Obtain A by (40) to update ƒ with (6).
Step 4. Update ‰ with (70).
Step 5. Finish if convergence is reached; otherwise, go back to Step 2.

The convergence of the updated parameters in Step 5 is defined as the decrease
of (10) being less than 0.17. To avoid missing the global minimum, we run the
algorithm multiple times with random start in Step 1. The procedure for selection of
the optimal solution is described in Appendix 2. We denote the resulting solution of
B as OBq D Œ Oƒq; O‰q�, where the subscript q indicates the particular number of zeros
used in (3).

4 Sparseness Selection

Sparseness can be restated as parsimony: the greater SP.ƒ/ implies that fewer
parameters are to be estimated and the resulting loss function value is greater. Thus,
the sparseness selection means to choose a FA model with the optimal combination
of the attained loss function value and parsimony. For such model selection, we
can use the information criteria [10] which are defined using maximum likelihood
(ML) estimates. Although ML method is not used in our algorithm, we assume
that OBq D Œ Oƒq , O‰q] is equivalent to the ML-CFA solution which maximizes log
likelihood L.ƒ;‰/ D �0:5nflog jƒƒ0 C ‰2j C trS.ƒƒ0 C ‰2/�1g with the
locations of the zero loadings constrained to be those of Oƒq . This assumption would
be validated empirically in the next section. Under this assumption, we propose
to use an information criterion BIC [10] for choosing the optimal q. BIC can be
expressed as

BIC.q/ D �2L. Oƒq; O‰q/ � q lognC c# (11)

for OBq with c# a constant irrelevant to q. The optimal sparseness is thus defined as

Oq D arg min
qmin�q�qmax

BIC.q/ (12)
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and OB Oq is chosen as the final solution OB. Here, we set qmin D m.m�1)/2, since it
prevents ƒ from rotational indeterminacy if q goes below it. On the other hand, we
set qmax D p.m�1), since it prevents ƒ from having an empty column if q were
greater than the limit.

5 Simulation Study

We performed a simulation study to assess the proposed procedure with respect to
(1) identifying the true sparseness and the locations of zero loadings; (2) goodness
of the recovery of parameter values; (3) sensitivity to local minima; (4) whether
SOFA solutions are equivalent to the solutions of the ML-CFA procedure with the
locations of the zero elements in ƒ set to those obtained by SOFA.

We used the five types of the true ƒ shown in Table 1, which are desired to be
possessed by FA solutions. The first three types have simple structure, while the
remaining two have bi-factor simple structure as defined by [6]. For each type, we
generated 40 sets of fƒ; ‰ ; Sg by the following steps: (1) each diagonal element
of ‰ was set to u.0:11=2; 0:71=2/, where u.˛; ˇ/ denotes a value drawn from the
uniform distribution of the range [˛, ˇ]. (2) A nonzero value in ƒ was set to u(0.4,
1), while an element denoted by “r” in Table 1 was randomly set to zero or u(0.4, 1).
(3) ƒ was normalized so as to satisfy diag(ƒƒ0C‰2/ D Ip . (4) Setting n D 200p,
we sampled each row of X from the centered p-variate normal distribution with its
covariance matrix ƒƒ0 C ‰2. (5) Inter-variable correlation matrix S was obtained
from X. For the resulting data sets, we carried out SOFA: its algorithm was run
multiple times for each of q D qmin; : : :; qmax until the two equivalently optimal

Table 1 Three loading matrices of simple structure (left) and two ones of bi-factor structure
(right), with nonzero and zero elements denoted by # and blank cells, respectively

# r # r # r r # # # #

# r # # r r # # # #

# # # r r # # # #

# # # r r # r # r

r # r # r # r # r # r r

r # r # r # r # r # #

# r # r # r # # # #

# r # r # r # # # #

r r # r r # # # # r

r # r r # # r # r r

r # r r # # r # #

r # r r # # r # #

r r # # #

r r # # r

r r # # r r

r r #
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Table 2 Percentiles of index values for assessing the SOFA solutions

(B) Rate
(C) Difference to
the true value

(D) Difference to
ML-CFA

Percentile (A) BES R00 R## ƒ ‰2 ƒ ‰2

5 �0.133 0.843 0.972 0.013 0.023 0.002 0.004

25 �0.031 0.968 1.000 0.017 0.032 0.003 0.005

50 0.000 1.000 1.000 0.021 0.038 0.004 0.006

75 0.000 1.000 1.000 0.026 0.046 0.006 0.008

95 0.000 1.000 1.000 0.040 0.056 0.009 0.011

solutions are found by the procedure in Appendix 2. As done there, we use Lq for
the number of runs necessitated.

To asses the sensitivity of SOFA to local minima, we counted Lq and averaged
it over q for each data set. The sensitivity is indicated by Lq as described in
Appendix 2. The quartiles of the averagedLq values over 200 data sets were 89, 120,
and 155: the second quartile 120 implies that the 120 � 2 D 118 solutions (except
two equivalently optimal solutions) are local minimizers among 120 solutions for a
half of data sets. This demonstrates high sensitivity to local minima. Nevertheless,
good performances of the proposed procedure are shown next.

For each of 200 data sets, we obtained some index values to assess the correctness
of the Oq selected by BIC and the corresponding optimal solution OB Oq D Œ Oƒ Oq , O‰ Oq].
The percentiles of the index values over the 200 cases are shown in Panels (A), (B),
and (C) of Table 2. The first index is BES D . Oq � q/=q which assesses the relative
bias of the estimated sparseness from the true q. The percentiles in Panel (A) show
that sparseness was satisfactorily estimated, though it tended to be underestimated.
The indices R00 andR##in Panel (B) are the rates of the zero and non-zero elements
in the true ƒ correctly identified by Oƒ. Panel (B) shows that non-zero elements
have been exactly identified. The indices in Panel (C) are mean absolute differences

jj Oƒ Oq �ƒjj1=.pm/ and jj O‰2

Oq �‰2jj1=p, where jj � jj1 denotes the sum of the absolute
values of the elements of the argument. The percentiles of the differences show that
the parameter values were recovered very well.

For each data set, ML-CFA was also performed with the locations of the zero
loadings fixed at those in Oƒ Oq . For ML-CFA, we used the EM algorithm with [2]
formulas. Let ƒML and ‰ML denote the resulting ƒ and ‰ . Panel (D) in Table 2

shows the percentiles of jj Oƒ Oq � ƒMLjj1=.pm/ and jj O‰2

Oq � ‰2
MLjj1=p. There, we

find that the differences were small enough to be ignored, which validate the use of
ML-based BIC in SOFA.

6 Examples

We illustrate SOFA with two famous examples. The first one is a real data set known
as [6] twenty four psychological test data, which contain the scores of n D 145

students for p D 24 problems. The correlation matrix is available in [5], p. 124.
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Table 3 Solution for 24 psychological test data with empty cells standing for zero

Abilities ƒ

Variables (problems) 1 2 3 4  2
i

Spatial perception Visual perception 0.67 0.52

Cubes 0.43 0.79

Paper form board 0.52 �0:19 0.66

Flags 0.54 0.68

Verbal processing General information 0.56 0:59 0.31

Paragraph comprehension 0.58 0:58 0.31

Sentence completion 0.55 0:64 0.26

Word classification 0.62 0:35 0.47

Word meaning 0.59 0:60 0.26

Speed of performances Addition 0.26 0:16 0:80 0.25

Code 0.42 0:47 0.26 0.50

Counting dots 0.37 0:62 0.45

Straight-curved capitals 0.56 0:38 0.51

Memory Word recognition 0.36 0.46 0.64

Number recognition 0.34 0.45 0.67

Figure recognition 0.54 �0:15 0.35 0.55

Object-number 0.36 0:20 0.52 0.54

Number-figure 0.45 0:27 0.33 0.59

Figure-word 0.43 0.22 0.74

Mathematics Deduction 0.66 0.54

Numerical puzzles 0.58 0:30 0.55

Problem reasoning 0.65 0.56

Series completion 0.74 0.43

Arithmetic problems 0.54 0:21 0:40 0.49

From the EFA solution for the matrix, [7] found bi-factor structure using their
proposed bi-factor rotation with m D 4. We analyzed the correlation matrix by
SOFA with the same number of factors. The optimal SP.ƒ/ D 48 was found by
BIC. The solution is shown in Table 3. Its first column shows the abilities made
up by [5], p. 125, which are considered necessary for solving the corresponding
groups of problems. This grouping can be used to give clear interpretation of Oƒ: the
first, second, third, and fourth factors stand in turn for the general ability related
to all problems, the skill of verbal processing, the speed of performances, and
the accuracy of memory, respectively. It matches the bi-factor structure found by
[7]. However, our result allows us to interpret the factors simply by observing the
nonzero loadings, while [7] obtain reasonable interpretation only after considering
the loadings greater than or equal to 0.3 in magnitude. This choice is subjective and
likely to lead to suboptimal and misleading solutions.
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Table 4 Solution for the box
problem with empty cells
standing for zero

ƒ

Variables x y z  2
i

x2 0.95 0.08

y2 0.96 0.08

z2 0.94 0.09

xy 0.67 0.61 0.17

xz 0.64 0.64 0.17

yz 0.66 0.63 0.15

.x2 C y2/1=2 0.69 0.64 0.10

.x2 C z2/1=2 0.68 0.64 0.12

.y2 C z2/1=2 0.66 0.67 0.11

2x C 2y 0.68 0.67 0.08

2x C 2z 0.67 0.68 0.08

2y C 2z 0.66 0.68 0.09

log x 0.89 0.19

logy 0.87 0.23

log z 0.88 0.21

xyz 0.47 0.49 0.54 0.22

.x2 C y2 C z2/1=2 0.57 0.52 0.54 0.10

ex 0.71 0.48

ey 0.68 0.52

ez 0.71 0.49

The second example considers [12] box problem which gives simulated data
traditionally used as a benchmark for testing FA procedures. As described in
Appendix 3, we followed [12] to generate 20 variables using functions of 3 � 1
common factor vector [x; y; z�0, with the functions defined as in the first column
of Table 4. Those procedures gave the correlation matrix (Table 5) to be analyzed.
The ideal solution for this problem is the one such that variables load the factor(s)
used for defining the variables: for example, the fourth variable should ideally load
x and y. The SOFA solution with SP.ƒ/ D 27 selected by BIC is shown in Table 4,
where we find that the ideal loadings were obtained.
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7 Discussions

In this paper, we proposed a new FA procedure named SOFA (sparse orthogonal
factor analysis), which is neither EFA nor CFA. In SOFA, FA loss function (1)
is minimized over loadings and unique variances subject to the direct sparseness
constraint on loadings. This minimization algorithm alternately estimates the
locations of the zero loadings and the values of the nonzero ones. Further, the best
sparseness is selected using BIC. The simulation study demonstrated that the true
sparseness and parameter values are recovered well by SOFA, and the examples
illustrated that SOFA produces reasonable sparse solutions.

As stated already, a weakness of the rotation methods in EFA is that the user must
decide which rotated loadings can be viewed as potential zeros. Another weakness
of the rotation methods is that they do not involve the original data, because the
rotation criteria are functions of the loading matrix only [3]. Thus, the rotated
loadings may possess structure which is not relevant to the true loadings of the
underlying data. In contrast, SOFA minimizes (1) so that the FA model is optimally
fitted to the data set under the sparseness constraint, and thus can find the loadings
underlying the data set with a suitable sparseness.

Our proposed procedure of SOFA with the sparseness selection by BIC allows us
to find an optimal orthogonal solution with the best sparseness. If one tries to find
that optimal solution by CFA without any prior knowledge about the solution, CFA
must be performed over all possible models, i.e., over all possible locations of q
zero loadings with changing q from qmin to qmax. That is, the number of the models
to be tested is so enormous that it is unfeasible. An optimal model can, however,
be found by our procedure. It is thus regarded as an automatic finder of an optimal
orthogonal CFA model.

A drawback of SOFA is that its solutions are restricted to the orthogonal ones
without inter-factor correlations. It thus remains for future studies to develop a
sparse oblique FA procedure with the correlations included in parameters.

Acknowledgements The works were partially supported by Grant #4387 by The Great Britain
Sasakawa Foundation.

Appendix 1: Update of n�1X 0 [F,U]

We prove that c� � trB0X0ŒF;U� is minimized, or equivalently, trB0X0ŒF;U� is
maximized, for (8) subject to (2), supposing that the rank of XB is p. First, let
us consider maximizing trB0X0ŒF;U� under the constrains in (2) summarized in
n�1ŒF;U�0ŒF;U� D ImCp . The maximizer is given by

ŒF;U� D n1=2PQ0 C n1=2P?Q0? (13)



238 K. Adachi and N.T. Trendafilov

through the singular value decomposition of n � .mC p/ matrix n�1=2XB;

n�1=2XB D ŒP;P?�
�

�

mOm

� �
Q0

Q0?

�
D P�Q0: (14)

Here, [P;P?] and [Q;Q?] are n� .pCm/ and p� .pCm/ orthonormal matrices,
respectively, whose blocks P and Q consist of p columns, and � is a p�p diagonal
matrix [11]. Next, let us note that the rank of XB being p implies B being of full-
row rank, which leads to BBC D Ip . Using this fact in (14) we have n�1X D
n�1=2P�Q0BC, which is transposed and post-multiplied by (13) to give (8), since
of P0P? D pOp�m. Further, (8) is obtained with (9) followed from (14).

Appendix 2: Multiple Runs Procedure

The initial ƒ and ‰ in the SOFA algorithm (Sect. 3) are chosen randomly. Each
diagonal element of ‰ is initialized at u.0:11=2, 0:71=2/ with u.˛; ˇ/ a value drawn
from the uniform distribution of the range Œ˛; ˇ�. Each loading of ƒ D .�ij/ is set
to u.0:3; 1/, and the value �2Œq� is obtained that is the q-th smallest among all �2ij,

which is followed by transforming the loadings with �2ij � �2Œq� into zeros. Further,

the initial ƒ is normalized so as to satisfy diag(ƒƒ0 C‰2/ D Ip .
Let Bql D Œƒql; ‰ql] denote the solution of B resulting from the l-th run of

the SOFA algorithm for SP.ƒ/ set at a specified q, with l D 1; : : :; Lq . We regard
Bql� D Œƒql�; ‰ql�� with l� D arg min1�l�Lq fS.Bql/ as the optimal solution OBq ,
and define Bql being a local minimizer as	.Bql; Bql�/ D 0:5.jjƒql�ƒql�jj1=mpC
jj‰ql � ‰ql�jj1=p/ > 0:13, with jj � jj1 denoting the sum of the absolute values of
the elements of the argument. Here, the suitable Lq (number of runs) is unknown
beforehand. We thus employ a strategy in which Lq is initialized at an integer and
increased until fBqlI l D 1; : : :; Lqg include the two equivalently optimal solutions
Bql� and Bql# satisfying 	.Bql�; Bql#/ � 0:13 and l� D argmin1�l�Lf .‚l / with
l# ¤ l�. This procedure is formally stated as follows:

1. Set Lq D 50 and obtain l� D arg min1�l�Lq fS .Bql/

2. Go to 6, if 	.Bql�, Bql#/ � 0:13 is satisfied for l� ¤ l#; otherwise, go to 3.
3. Set Lq WD Lq C 1, and let Bql# be the output from another run.
4. Exchange Bql� for Bql# if fS.Bql#/ < fS.Bql�/.
5. Go to 6 if 	.Bql�, Bql#/ � 0:13 or Lq D 200; otherwise, go back to 3.

6. Finish with OBq set at Bql�.

In this procedure, except Bql� and Bql# , the rest Lq � 2 solutions are local
minimizers, thus the Lq value clearly indicates the sensitivity to local minima.
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Appendix 3: Box Problem Data

In the box problem, the 3�1 common factor score vector f D Œx; y; z�0 is supposed
to yield 20 � 1 observation vector x with x D �.x; y; z/ C ‰u, where �.x; y; z/
is the vector function with its 20 elements defined as in the first column of Table 4.
The original [12] box data matrix is 20� 20, whose rows are 20 realizations of x0 D
�0.x; y; z/ without unique factor ‰u. Here, x; y; z was set to the lengths, widths,
and heights of boxes, from which the name of the problem originates. However, the
20 � 20 data matrix does not suit the cases of n > p considered in this paper. We
thus simulated the 400 � 20 X based on x D �.x; y; z/ C ‰u with the following
steps: First, we set x; y, and z at u.1; 10/ to have 400 � 20ˆ whose rows are the
realizations of �0.x; y; z/. Second, we sampled each element of u from the standard
normal distribution to have 400�20U with its rows u0 and set the diagonal elements
of ‰ to 0:11=2. Third, we standardized the columns of ˆ so that their average and
variance were zero and one, and had X D ˆCU‰ whose inter-column correlations
are shown in Table 5.
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Adjustment to the Aggregate Association
Index to Minimise the Impact of Large Samples

Eric J. Beh, Salman A. Cheema, Duy Tran, and Irene L. Hudson

Abstract
The past few decades have seen a great deal of attention given to the development
of techniques to analysis the association between aggregated categorical data.
One of the most recent additions to this analysis has been the development of the
aggregate association index (AAI). One feature of the AAI is that its magnitude
is affected by the sample size; as the sample size increases so too does the
AAI, even when the marginal proportions remain unchanged. In this article, we
propose adjustments to the AAI to overcome the effect of increasing sample size.
The Adjusted AAI is shown to be more stable than the original AAI in response
to any increase in the sample size. Fisher’s criminal twin data (Fisher, J. R. Stat.
Assoc. Ser. A 98, 39–82, 1935) is used to demonstrate the adjustments.

Keywords
Aggregate association index • 2 � 2 tables • Pearson’s chi-squared statistics

1 Introduction

Discussions concerning the utility of aggregate data in 2�2 contingency tables have
a long history in the literature dating back to the social sciences [15]. It became
a topic of significant statistical discussion when [8], p. 48, discussed aggregate
data for a 2 � 2 table by saying “let us blot out the contents of the table, leaving
only the marginal frequencies”. In his discussion Fisher concluded that marginal
data is “ancillary information” in terms of estimating cell frequencies. Yates [19],
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p. 447 agreed with Fisher to some extent with the exception of extreme marginal
distributions. Plackett [16] and Berkson [4] determined the efficacy of marginal data
by disagreeing with Fisher.

More recently, the statistical, and allied disciplines, have seen an explosion of
new topics and techniques for the analysis of aggregate data all of which lies within
the framework of ecological inference. Fréchet [9] provided the upper and lower
bounds of cell values of contingency tables using marginal data. Recently, Dobra
and Fienberg [5] extended those bounds for higher dimensional contingency tables.
Goodman [11] is considered as the first serious attempt to model aggregate data.
Kousser [14] and Freedman et al. [10] presented some adaptations of Goodman’s
approach. King’s parametric and non-parametric models are considered as the
breakthrough in modelling aggregate data [13]. More recently [17] homogeneous
modelling approach is also important. However, all of the ecological inference
techniques require assumptions about the individual level data that cannot be
rigorously tested. Hudson et al. [12] demonstrated the effectiveness of a variety of
ecological inference strategies by considering early New Zealand gendered election
data and concluded that “these assumptions are either unrealistic or untestable”.
Wakefield [18], among many, is also another note able contributor in the area of
ecological inference.

Recently, Beh [1, 2], proposed the aggregated association index (AAI), which,
quantifies the strength of the association between the categorical variables when
only the marginal information, or aggregate data, is available. Rather than estimating
the cells (or some function of them) of multiple 2 � 2 contingency tables, the
purpose of the AAI is to quantify the likelihood that a statistically significant
association exists between the two dichotomous variables. Unlike the various
ecological inference techniques that are available, the AAI may be applied to the
analysis of a single 2 � 2 table.

One unfortunate characteristic of the AAI, whose basis is Pearson’s chi-squared
is that it increases as the sample size increases, given that Pearson’s chi-squared
statistic is susceptible to changes in the sample size of the contingency table.
Therefore, the true nature of the association between the variables can be masked by
the magnitude of the sample size. Recently, Beh et al. [3] presented two adjustments
to reduce the effect of increased sample size on the magnitude of the AAI. This paper
further explores and establishes a new adjustment to the AAI which is shown to be
more efficient at reducing the impact of the sample size on the index, and may be
considered when the relative marginal frequencies remain constant. A simple empir-
ical study of the AAI and its adjustments will be provided using [8] twin criminal
data which motivated his seminal discussion of the analysis of aggregate data.

2 The Aggregate Association Index

2.1 Notation

Suppose, no, is the original sample size of a 2 � 2 contingency table where nij

denotes its .ij/th cell frequency. Therefore, let pij D nij=no be the proportion of
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Table 1 A general 2� 2

contingency table
Column 1 Column 2 Total

Row 1 n11 n12 n1:

Row 2 n21 n22 n2:

Total n:1 n:2 no

classifications made into this cell for i D 1; 2 and, j D 1; 2. The ith row jth column

marginal frequencies are denoted by ni: D
2P

jD1
nij and n:j D

2P
iD1

nij respectively so

that
2P
iD1

2P
jD1

nij D
2P
iD1

ni: D
2P

jD1
n:j D no. Thus, let pi: D ni:=no and p:j D n:j =no

be the ith row marginal and jth column marginal proportions respectively. Let, also,
eij D ni:n:j =no, represents the expected cell frequency for .ij/th cell, when there
is no relationship between two variables. Table 1 gives the general form of a 2 � 2
contingency table.

When the cell frequencies of Table 1 are unknown, hence only the aggregate data
is available, [6] considered the upper and lower bounds of n11, as,

A1 D max .0; n:1 � n2:/ � n11 � min .n:1; n1:/ D B1:

Rather than considering, n11, much of the attention given to the ecological inference
techniques focuses to date on the conditional proportionP1 D n11=n1:, which is the
conditional probability of the classification of an individual into “Column 1” given
that it has been classified in “Row1”. Therefore the bounds of P1 are

L1 D max

�
0;
p:1 � p2:
p1:

�
� P1 � min

�
p:1

p1:
; 1

�
D U1: (1)

Beh [2] showed that when only marginal information is available, and a test of
association is made at the a level of significance, the bounds of P1 can be narrowed
to

L˛ .no/ D max

 
0; p:1 � p2:

s
¦2˛
no

�
p1:p2:

p:1p:2

�!

< P1 < min

 
1; p:1 C p2:

s
¦2˛
no

�
p1:p2:

p:1p:2

�!
D U˛ .no/ ; (2)

where ¦2˛ is the 1 � ˛ percentile of the chi-squared distribution with 1 degree of
freedom. Since we consider the case where each of the cell frequencies of Table 1 is
unknown, the proportion of interest, P1, is therefore also unknown. Despite this, [1,
2] demonstrated that Pearson’s chi-squared statistic can be expressed as a quadratic
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Fig. 1 A graphical display of the AAI

function of this proportion such that,

X2 .P1jp1:; p:1/ D no
�
P1 � p:1
p2:

�2 �
p1:p2:

p:1p:2

�
: (3)

2.2 The Index

Figure 1 provides a graphical representation of the quadratic relationship between
Pearson’s chi-squared statistic, (3), and the bounds of (1) and (2). Note that U˛
and L˛ in Fig. 1 refer to the extremes of (2). The null hypothesis of independence
between the dichotomous variables is rejected when the observed Pearson chi-
squared value (at some value of P1/ exceeds the critical value of ¦2˛ . Therefore,
the region under the curve, defined by (3), but lying above the critical line of
¦2˛, indicates where a statistically significant association exists between the two
variables, considering the marginal proportion only. The relative size of this region,
when compared with the total area under the curve, is quantified by

A˛ D 100
2

41 � ¦
2
˛ f.L˛ .no/ �L1/C .U1 � U˛ .no//g
kno

�
.U1 � p:1/3 � .L1 � p:1/3

�
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�
n
.U˛ .no/ � p:1/3 � .L˛ .no/ � p:1/3

o

�
.U1 � p:1/3 � .L1 � p:1/3

�

3

5 ; (4)

where kD 1

3p2:2

�
p1:p2:
p:1p:2

�
and 0 � A˛ < 100; see [2]. Equation (4) is referred to as

the aggregate association index, or more simply the AAI. It quantifies, for a given
˛, how likely a particular set of fixed marginal frequencies will enable the user to
conclude that there exists a statistically significant association between the variables.
If A˛
100 then, given only the aggregate data, it is highly likely that a significant
association exists. However, if A˛
0 it is highly unlikely that such an association
exists.

Equation (3) shows that the magnitude of Pearson’s chi-squared statistic is highly
dependent on the sample size, no. For example, if the original sample size of Table 1
is increased by a factor of C > 1 so that n D Cno, then Pearson’s statistic increases
by a factor of C . This has been long understood and prompted Pearson to consider
his phi-squared statistic. Everitt [7], p. 56, and many others, also discussed this
feature of the statistic. The impact of the sample size on AAI can be observed
by Eq. (4). As the sample size increases, U˛ .no/ and L˛ .no/ approaches to p:1.
Therefore, AAI approaches 100 as the sample size increases. We now propose a
simple strategy to ensure that the AAI is less affected by any increase in sample
size, when the marginal proportions are constant.

3 Adjusted Aggregate Association Index

The AAI defined by (4), can be expressed alternatively as, follows, see [3]

A˛ D 100
�
1 � f .no/

�
U1 �L1

U˛ .no/ �L˛ .no/
�

�
8
<

:
¦2˛ f.L˛ .no/� L1/C .U1 � U˛ .no//g
kno

�
.U1 � p:1/3 � .L1 � p:1/3

�

C
n
.U˛ .no/� p:1/3 � .L˛ .no/ � p:1/3

o

�
.U1 � p:1/3 � .L1 � p:1/3

�

9
=

;

3

5 ; (5)

where

f .no/ D U˛ .no/� L˛ .no/
U1 � L1 : (6)

Suppose the level of significance, ˛, at which a test of independence is made remains
fixed, as does the relative marginal proportions for the row and column categories.
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Multiplying the sample size by C > 1 does not change the relative marginal
information, although it does impact on the sample size and on the row and column
totals of the contingency table. Increasing the original sample size of Table 1, no, by
multiplying it by C > 1 will result in a new sample size n D Cno and an increased
Pearson’s chi-squared statistic. Thus, given a sample size that is a multiple of C , we
have,

A˛ .C / D 100

�
1 � f .Cno/

�
U1 �L1

U˛ .Cno/ �L˛ .Cno/

�

�
8
<

:
¦2˛ f.L˛ .Cno/� L1/C .U1 � U˛ .Cno//g

kCno
�
.U1 � p:1/3 � .L1 � p:1/3

�

C
n
.U˛ .Cno/� p:1/3 � .L˛ .Cno/ � p:1/3

o

�
.U1 � p:1/3 � .L1 � p:1/3

�

9
=

;

3

5 (7)

and,

f .Cno/ D U˛ .Cno/� L˛ .Cno/

U1 � L1 : (8)

As the sample size, no, increases by a factor of C > 1, this narrows the interval (2)
and therefore decreases the magnitude of f .Cno/, hence AAI increases, even
though the relative marginal information remains unchanged. Specifically, as C !
1, f .Cno/ ! 0C, and A˛ .C / ! 100. Similarly, as C ! 0C, f .Cno/ ! 1C,
and A˛ .C / ! 0. Therefore, to help minimise the impact increasing sample size
has on AAI, different specifications of f .no/, subject to 0 � f .no/ � 1, may be
considered as an alternative to (6). As a result, this adjusts AAI according to the
choice of f .Cno/ and leads to our adjusted AAI

A=˛ D 100
�
1 � f = .no/

�
U1 �L1

U˛ .n/ �L˛ .n/
�

�
8
<

:
¦2˛ f.L˛ .n/ � L1/C .U1 � U˛ .n//g
kn
�
.U1 � p:1/3 � .L1 � p:1/3

�

C
n
.U˛ .n/ � p:1/3 � .L˛ .n/ � p:1/3

o

�
.U1 � p:1/3 � .L1 � p:1/3

�

9
=

;

3

5 ; (9)

where f =.no/ is the adjustment of (6) and may be subjectively, or objectively,
determined so that 0 � f = .no/ � 1.



Adjustment to the Aggregate Association Index to Minimise the Impact of. . . 247

One possible adjustment to consider is a subjective choice of f =.no/ that remains
constant for all C . A conservative value, and one that [3] used, is f =.no/ D 0:5.

Another adjustment relies on a rearrangement of Eq. (2): as, U˛.no/�L˛.no/ D
2p2:

r
¦2˛
no

�
p1:p2:
p:1p:2

�
. Therefore, a second candidate for adjustment to (6) is to consider

f = .no/ D 2p2:

U1 �L1

s
¦2˛
no

�
p1:p2:

p:1p:2

�
:

In this case, the adjusted AAI, (7), is

A=˛ D 100
2

41 �
r
n

no

8
<

:
¦2˛ f.L˛ .n/ � L1/C .U1 � U˛ .n//g
kn
�
.U1 � p:1/3 � .L1 � p:1/3

�

C
n
.U˛ .n/ � p:1/3 � .L˛ .n/� p:1/3

o

�
.U1 � p:1/3 � .L1 � p:1/3

�

9
=

;

3

5 : (10)

Given the adjustment in (10), the relationship between the original AAI, (4), and its
adjusted AAI , (10), may be expressed as,

A=˛ D A˛
r
n

no
� 100

�r
n

no
� 1

�
:

Thus, if the original sample size is increased by a factor of C , where C > 1, so that
n D Cno, then

A=˛ D A˛
p
C � 100

�p
C � 1

�
: (11)

Hence, A=˛ < A˛ for any reasonably large C .
The following adjustment, now incorporates the rate of change of (3), the

transformation of Pearson’s chi-square statistic, with respect to the sample size. The
rate of change of (3) can be quantified as,

d

dno
X2 .P1jp1:; p:1/ D

�
P1 � p:1
p2:

�2 �
p1:p2:

p:1p:2

�
:

In order to take account of the impact of the sample size, we consider the ratio of
the average rate of change with respect to original and increased sample size. Let us
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denote this ratio by

D D .U˛ .no/ � p:1/2 C .L˛ .no/� p:1/2
.U˛ .n/ � p:1/2 C .L˛ .n/ � p:1/2

; (12)

where the numerator of (12) is the average rate of change of (3), with respect to
the original sample size, over the corresponding interval (2) of P1. Similarly, the
denominator considers this average rate of change given the increased sample size.

By simplifying Eq. (12), we see that it is simply the ratio of increased sample
size, n, to the original sample size, no, where,D D C D n=no. Thus, a generalised
version of adjustment (11), is

A==˛ D A˛
p
C � 100

�p
C � 1

�
�pD; (13)

whereD D 0 if no D n andD D C if n D Cno when C > 1. It is important to note
that this adjustment acts as a penalty on the transformation of Pearson’s chi-squared
statistic to reduce the impact of increased sample size on the original AAI, when the
marginal proportions are unchanged.

When there is no increase in the sample size from its original size, n, this
adjustment ensures that the adjusted AAI is equivalent to the original AAI, A˛ It
also preserves the association structure by ensuring that any increase in sample size
does not increase the Pearson chi-squared statistic or the AAI. Mathematically, this
characteristic is established by evaluating the effect of increased sample size, as
function of

p
C , on,A˛,A=˛ andA==˛ . By considering the rate of change, with respect

to
p
C , of the AAI, A˛ , given by Eq. (5), and the adjusted AAI’s of A=˛ and A==˛ ,

given by Eqs. (11) and (13) respectively, then

@A˛

@
p
C
>

@A
=
˛

@
p
C
>
@A

==
˛

@
p
C
:

As such any increase in the AAI due to an increase original sample size, n D Cno,
is reduced for A==˛ when compared with the original AAI and Eq. (11)

We may also note that @A
=
˛

@
p
C
DA˛�100�0 since 0�A˛ <100. Similarly, @A

==
˛

@
p
C
D

A˛ � 100� 1 < @A
=
˛

@
p
C
< @A˛

@
p
C

. We shall now empirically demonstrate this feature.

4 Empirical Study

Consider Table 2 as was originally studied by [8]. It cross-classifies 30 criminal
twins according to whether they are a monozygotic twin or a dizygotic twin, and also
informs on whether their same sex twin has been convicted of a criminal offence.
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Table 2 Fisher [8] criminal
twin data

Convicted Not convicted Total

Monozygotic 10 3 13

Dizygotic 2 15 17

Total 12 18 30

Pearson’s chi-squared statistic for Table 1 is 13.032, with a p-value of 0.0003,
which shows that there is a statistically significant association between the two
dichotomous variables. For this data P1 D 10=13 D :7692, hence 77 % of those
monozygotic criminal twins in the sample have a same sex sibling who has also
been convicted of a crime.

Beh [2] analysed Fisher’s twin data and established that, if only the aggregate
data were known, and testing the association at the 5 % level of significance, the
AAI of Eq. (4) is 61.83. Therefore, based only on analysis of the aggregate data of
Table 2, there is a 61.83 % chance of a statistically significant association between
the variables. This index can also be viewed using the adjusted AAI of Eq. (10)—or,
equivalently (11) since C D 1 (see [3]).

Suppose we now consider the case where larger samples than no D 30 were
selected, but where the marginal proportions of Table 2 remain the same. Figure 2
graphically shows the impact of the AAI as increases for C ranging from 1 to 20,
equivalent to a sample size ranging from 30 to 600. When, n D 30, A:05 D A

=
:05 D

61:83, and since C D 1, then D D 0, so that A==:05 D 61:83 This shows that the
adjusted versions of the AAI are identical to the original AAIAs the sample size
increases, such as for n D 600, the magnitude of the original AAI increases to
A:05 D 97:49 indicating that it is now extremely likely that an association exists
between the variables of Table 2 (given only the aggregate data).

Our aim is therefore to stabilise AAI as the sample size increases. This will allow
us to obtain a clearer indication of the true nature of the association by reducing the
impact of the magnitude of n, and can be achieved by the two proposed adjusted
AAI’s. As the sample size increases, these adjusted versions of A˛ do increase,
but more slowly than original A˛ . For example, at n D 600 .C D 20/, the first
adjustment given by Eq. (11), yields A=:05 D 88:77 Note that, this adjusted AAI can
be obtained from the original AAI by considering Eq. (11):

A
=
:05 D 97:49

p
20� 100

�p
20� 1

�
D 88:77

The newly proposed adjustment,A==:05 leads to 84.29 extent of association given only
the marginal data. This can directly be calculated via Eq. (13), which gives,

A
==
:05 D 97:49

p
20 � 100

�p
20� 1

�
�p20 D 84:29
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Fig. 2 Comparison of, A=:05, using the first adjustment (blue line), and the second adjustment, A==:05,
(green line), with the original AAI, A:05 (dashed line) as n increases

Figure 2 shows that the rate of change of both, A=:05 and A==:05is more stable, and less
than, the original AAI as C increases from 1 to 20.

5 Discussion

In this article we have presented two adjustments of the original AAI of a 2 � 2
contingency table that help to stabilise the association index for increases in the
sample size. We have demonstrated this empirically using [8] classic twin example
and shown that both adjustments do not inflate the magnitude of the index as
severely as the original index given increased sample size, One may view these
adjustments as simple ad hoc strategies for minimising the impact of sample
size when assessing the statistical significance of the association between two
dichotomous variables. However, this study provides only an introduction into how
adjustments to the AAI can be made. More comprehensive research still needs to
be undertaken to reveal the features of these, and other, adjustments. For example,
one area of that requires further investigation is establishing an f =.no/ that formally
minimises the rate of change of A=˛ , and hence provides a more stable index, as the
sample size increases.
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Graphical Latent Structure Testing

Robin J. Evans

Abstract
Many models with latent structure are just semi-algebraic sets, and have recently
begun to be studied from this perspective; this has shed much light on the
dimension, identifiability, and asymptotic statistical properties of these models.
Though most of the attention has been on equality constraints, some progress
has also been made on evaluating inequalities which might be used to test such
models. However, the mathematical complexity of these approaches seems to
have led to a gap between our theoretical understanding and the manner in which
these models are applied in practice. In this paper we make a plea for some
focus on finding simpler (in particular more graphical) and more computationally
feasible ways to express such constraints, even at the cost of a loss of statistical
power. Recent advances for directed acyclic graph models with latent variables
and phylogenetic models are given as illustrations.

Keywords
Graphical models • Inequalities • Latent variables • Phylogenetic trees

1 Introduction

Models based on unobserved or latent variables are widely used in psychology,
epidemiology, genetics, economics and other disciplines. In cases where the latent
variables themselves are of direct interest, it is generally necessary to fit such models
by explicitly including the latent structure and using, for example, the EM-algorithm
or an MCMC method with imputation. Problems with such methods are well
documented, and include non-identifiability of parameters in the latent structure,
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Fig. 1 The instrumental
variables (IV) model; U is
unobserved

Z X

U

Y

multimodal likelihoods, and non-standard asymptotic properties of seemingly
sensible estimators [see, e.g. 10, 12].

However, there are many examples in which the latent structure acts only as a
nuisance, inhibiting standard inferential methods through confounding or selection
bias. In such cases we advocate a constraint-based approach, meaning that testing
and inference should focus on the implications of the model on the observable
margin of the data. Even in cases in which it is necessary to model latent variables
explicitly, constraint-based tests provide a useful method for model checking. This
paper considers the observable implications of directed acyclic graph models with
various kinds of latent variables, and discusses some of the recent advances in our
understanding of these models.

As an example which is increasingly widely used in epidemiology and genetics,
consider the discrete instrumental variables (IV) model, pictured in Fig. 1 [8]. Given
random variables X; Y;Z;U under some joint distribution, the graph encodes the
assumption that Z and U are marginally independent, and that Y is independent of
Z conditional on X and U (for more details on directed graph models, see Sect. 2).
Typically, Z is randomized (or assumed to be randomized), and U represents all
possible sources of confounding between X and Y , whether understood or not.
Interest usually lies in the strength of the effect of X upon Y , which cannot be
estimated directly because of the confounding.

It usually makes little sense to try to model U explicitly, since we have no
sense of what state-space might be suitable; indeed when the observed variables are
binary, even if we assume the same is true ofU , then the full model is unidentifiable.
Instead we can ask whether there are any constraints over the observable margin
.Z;X; Y /which might allow us to test the validity of our modelling assumptions. In
fact it is well known that, in the case of discreteZ,X , Y , and making no assumption
about the state-space ofU , the observed probability distribution obeys the inequality
constraints

max
x

X

y

max
z
P.X D x; Y D y jZ D z/ � 1: (1)

This is the instrumental inequality, first derived by Pearl [17], and shown to be
complete in the binary case by Bonet [5]; it thus provides the only test of the binary
IV model, without making further assumptions.

In practice, however, this simple test is not widely applied in the applied literature
[13]. This paper seeks to present the instrumental inequality as a special case of
the much more general phenomenon of testable constraints which arise from latent
structure, and which do not involve explicit modelling of latent variables. We believe
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that more attention should be placed on using such observable constraints to validate
models, especially before attempting to fit or interpret latent variables. Similar
sentiments about the advantages of avoiding explicit modelling have been expressed
by, for example, Allman and Rhodes [1] and Silva and Ghahramani [20]. In order
to facilitate this approach it is essential that methods for finding constraints are easy
to understand and computationally feasible; in particular, we advocate graphical
methods for finding constraints.

To illustrate these ideas we present two examples of model classes in which
there has been much recent progress towards deriving constraints graphically:
marginalized directed acyclic graphs (with no assumption made about the latent
variables), and phylogenetic tree models. The remainder of the paper is organized
as follows: Sect. 2 looks at constraints on margins of directed acyclic graphs, and
Sect. 3 at phylogenetic trees; Sect. 4 considers some other examples, and Sect. 5
contains a discussion.

2 Directed Acyclic Graphs with Latent Variables

A directed acyclic graph G is a pair .V ;E /, where V is a collection of vertices, and
E is a collection of ordered pairs of distinct vertices, or edges. If .X; Y / 2 E we
write X ! Y , and say that X is a parent of Y . The set of parents of Y is denoted
paG .Y /. A path is a sequence of adjacent edges in a graph, without repetition of
vertices; for example, the graph in Fig. 1 contains the path �1 W Z ! X  U ! Y .
A path is directed from X to Y if all the arrows point away from X and towards Y .
A directed graph is acyclic if there is no directed path from a vertex to any of its
parents.

We can associate each vertexX with a random variable under some multivariate
distribution P ; let P admit a density f . For convenience, we abuse notation and
use X to refer to both the vertex and random variable. Similarly for sets of vertices
such as A or paG .X/, we will use the same notation for the collection of random
variables associated with those vertices. The factorization criterion for DAGs says
that P is in the model corresponding to the DAG G if the joint density factorizes
into univariate conditional distributions as

Q
X2V f .X j paG .X//.

For a path, � , internal vertices on � with two adjacent arrowheads are called
colliders (on �); other internal vertices are non-colliders. On the path �1 defined
above, X is a collider, and U a non-collider. A path from V to W is blocked by a
set of vertices C if either:

(i) there is a non-collider on � in C ; or
(ii) there is a collider on � which is neither in C , nor is there any directed path from

the collider to C .

Definition 1 For disjoint sets of vertices A;B;C , we say that A and B are
d-separated by C , if every path from any vertex in A to any vertex in B is blocked
by C . A probability distribution P obeys the global Markov property for a DAG G
if whenever A and B are d-separated by C in G , then A ?? B jC ŒP �.
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Fig. 2 A graph with a nested
constraint on the observed
distribution; U is unobserved

X1 X2 X3

U

X4

It is well known that (when a joint density exists) d-separation is equivalent to the
factorization criterion [23]. In particular, all constraints implied by a DAG model on
fully observed random variables may be interpreted as conditional independences.

2.1 Introducing Latent Vertices

If some of the variables in a DAG are unobserved, we may be interested in the
implications of the underlying graph for the observable margin. Let U � V
denote the set of latent or unobservable vertices; the observable margin is then
the distribution over V n U . In this section we will make no assumption about
the state-space of the latent variables. Some conditional independences will still
be observable: specifically, we can determine whether or not A ?? B jC if all
the variables in A [ B [ C are observed. In the graph in Fig. 2, X1 and X3 are
d-separated by X2, and since all these variables are observed, the independence
X1 ?? X3 jX2 holds in the observed marginal distribution.

The observed vertices of a graph may be partitioned into districts; X and Y lie
in the same district if there is a path between X and Y on which no two adjacent
vertices are both observable. The graph in Fig. 2 has three districts, fX2;X4g, fX1g
and fX3g. Latent variables and their incident edges will be drawn in red (see Fig. 1);
districts are then joined by red paths. Due to the arbitrary state-space of the latent
variables, without loss of generality we may consider only graphs in which none of
the latent variables have any parents.

2.2 Nested Constraints

Constraints other than conditional independences also arise, specifically nested
constraints and inequalities on the observed distribution. Nested constraints can be
understood graphically by iteratively removing vertices with no children (marginal-
izing) and splitting graphs into districts and their parents [see 19, 21]. Both these
operations lead to corresponding distributions which are identifiable from the
observed distribution, and therefore any independences which hold in the graphs
so obtained may be tested with data.

Here we give an example derivation of a nested constraint: full details are found
in Shpitser et al. [19]. Consider the district fX2;X4g from the graph in Fig. 2,
together with its parents fX1;X3g; edges not within the district, nor directed from
a parent to the district are removed. In this case the edge X2 ! X3 is dropped,
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Fig. 3 The graph from Fig. 2
after isolating the district
fX2;X4g

X1 X2 X3

U

X4

leaving the graph in Fig. 3. This operation corresponds to dividing the joint density
by f .x1/ � f .x3 j x2/, to yield

f �.x2; x4 j x1; x3/ � f .x1; x2; x3; x4/

f .x1/ � f .x3 j x2/ ; (2)

which is a new conditional probability density on X2;X4 jX1;X3; let the associated
distribution be P � (marginal distributions for X1 and X3 may be chosen arbitrarily
to form a full joint distribution).

In the graph in Fig. 3, X1 is d-separated from X4 by X3, so it must hold that
X4 ?? X1 jX3 under P � (indeed, this can be seen directly using the factorization
criterion). All quantities on the right hand-side of (2) can be estimated from data,
so one can test the constraint using, for example, a likelihood ratio test between the
model where the constraint is enforced and the model where it is not.

These nested constraints strictly generalize conditional independence, and we
conjecture that the constraints enumerated by the Markov properties of Shpitser et
al. [19] are complete, in the sense that there are no further algebraic constraints on
the joint distribution induced by these latent variable models.

2.3 Separation Criterion for Inequalities

Marginalized DAG models also induce inequality constraints. In general and at
present, deriving such bounds exhaustively is difficult and prohibitively compu-
tationally expensive other than for very small graphs; see, for example, Bonet
[5]. Since finding these bounds is an example of the NP-complete problem of
determining membership of projections of a convex polytope, there is reason to
believe that fast methods may not be obtainable in general [22].

Kang and Tian [15] give an algorithm for obtaining inequalities on causal effects
which can be used to derive bounds on the observed marginal distribution. Evans
[11] gives a graphical method based on a separation criterion (presented below),
analogous to d-separation. Neither of these methods will find all inequalities, but
both represent a step towards reducing the difficulties in finding such constraints.

Definition 2 Let A;B;C ;D 	 V be disjoint sets of observed vertices in a DAG
G . We say that A is e-separated from B by C , after deletion of D, denoted

A ?e B jC 6 j D;
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if A is d-separated from B by C in the induced subgraph obtained by deleting the
vertices in D.

Theorem 1 ([11], Theorem 4.2) Let G be a DAG and A;B;C ;D be sets
of observable vertices such that A ?e B jC 6 j D in G . Let P be a discrete
distribution which obeys the global Markov property for G ; then for any fixed
value of D D ı, there must exist a distribution P � such that P �.A;B; ı jC / D
P.A;B; ı jC / for all A;B;C , and under which A ?? B jC ŒP ��.

The proof of this result is partially constructive, and some examples are given in
Evans [11]. Applied to the IV model in Fig. 1, we can see thatZ ?e Y 6 j X , i.e. that
Z and Y are separated (unconditionally) after deleting X . Applying a slight exten-
sion of the Theorem (not given for brevity) yields precisely Pearl’s instrumental
inequality (1). The theorem also has two appealing and easy corollaries.

Corollary 1 Any e-separation implies a testable constraint on a joint distribution
over discrete random variables.

Corollary 2 If any two vertices are not joined by an edge, nor share a latent parent,
then a testable constraint exists for discrete random variables.

The corollaries demonstrate the simplicity of finding inequality constraints with
the e-separation criterion, especially in comparison to more direct computational
approaches. We remark that testing inequality constraints in finite samples is still no
trivial matter; see Ramsahai and Lauritzen [18] for an approach in the instrumental
variables case.

2.4 Other Inequalities

The three methods given above for finding constraints (d-separation, nested con-
straints and e-separation) are all fully graphical; consequently they are, in our view,
relatively easy to understand and work with. In contrast, other existing methods for
deriving such inequalities involve complex algorithms [15] or are computationally
infeasible for large graphs [5].

The full collection of inequalities associated with a marginalized DAG is, in
general, extremely complicated. Even for instrumental variables, the simplest model
containing a non-trivial inequality, if the instrument Z takes three states then the
instrumental inequality (and equivalently Theorem 1) no longer suffices to describe
the observed margin; instead we obtain additional inequalities such as

p01j1 C p00j2 C p01j0 C p11j1 C p10j0 � 2;

where pijjk D P.X D i; Y D j jZ D k/ [5]. Although the graphical approach
we have outlined does not yield a complete set of constraints, we contend that
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the simplicity and greater computational feasibility of this approach makes it more
suitable for practical use.

3 Phylogenetic Trees

A phylogenetic tree model is an idealized mathematical representation of an
evolutionary tree. It takes the form of a directed acyclic graph, G , in which each
vertex has precisely one parent, except for a single node known as the root; such a
graph is called a rooted tree. The vertices in G without children are known as leaves,
and are observed; the internal vertices are all unobserved. An example is given in
Fig. 4.

All the variables, both latent and observed, are assumed to have the same
state-space; we take the binary case for illustration. In order to distinguish between
different graph topologies, there has been much focus in the literature on finding
phylogenetic invariants; that is, polynomials which vanish under particular topolo-
gies [see, for example, 1, 3, 6].

The consequent results are highly graphical. Any internal edge h in the tree splits
the graph into exactly two pieces; let the observed vertices in each piece be denoted
A, B. Then defineMh to be the matrix whose .i; j /th entry corresponds to P.A D
i;B D j /. It is not hard to show that because the vertices adjacent to this edge
have only two states, the matrix Mh has rank at most two, and hence all its 3 � 3
minors must vanish. Note that this result acts as a form of weak independence, since
if A ?? B the matrix would have rank 1.

Consider the tree in Fig. 4, and let pijkl D P.X1 D i; X2 D j;X3 D k;X4 D l/

for i; j; k; l 2 f0; 1g; define

MfH1;H2g D

0

BB@

p0000 p1000 p0100 p1100

p0010 p1010 p0110 p1110
p0001 p1001 p0101 p1101
p0011 p1011 p0111 p1111

1

CCA I

this is the matrix corresponding to the only internal edge: H1 ! H2. If the model
holds, then this matrix has rank at most 2.

In fact Allman and Rhodes [1], Theorem 4, show that a binary phylogenetic
model is satisfied, up to inequalities, if and only if the above condition holds. In

Fig. 4 A phylogenetic tree
model with four leaves
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X2

H1 H2

X3

X4
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particular, this gives us a way to distinguish between any two tree topologies. The
beauty and utility of this result stems from the fact that we can test the plausibility
of a phylogenetic model using our data before ever having to actually fit any latent
variables; we need not worry about identifiability, local maxima, or other difficulties.
In addition, although the mathematics behind the results in this area are complex,
the condition is simple and easy to understand (as, hopefully, we have demonstrated
above).

3.1 Phylogenetic Inequalities

The model described by the constraints above is typically much larger than the
image of the latent variable model, because it fails to account for inequality
constraints. There has been much progress in determining such constraints, although
a full description is not available in general [3]. The main result along these lines is
also a graphical one: the removal of any internal vertex splits the leaves into three
groups, and the three-way tensor defined analogously to Me must satisfy certain
positivity conditions.

4 Other Models

There are other forms of graphical models with latent structure which induce
testable constraints. One example is the latent class model, which consists of a
single hidden variable of r states, and m observable children taking respectively
k1; : : : ; km states. An example with m D 5 is given in Fig. 5.

Similar results are available to those mentioned for phylogenetic models [12],
which are closely related objects. Though these equations are not exhaustive, they
are very easy to compute and fairly intuitive. It is therefore disappointing that such
constraints do not appear to be widely mentioned in the applied literature [see,
for example, 7, 16]. The focus instead seems to be on fitting models with varying
numbers of latent classes and comparing likelihood ratio statistics, even though
model singularities mean that in many examples the asymptotic null distribution
of such statistics is unknown.

One property which has been quite widely studied in the literature is the
MTP2 constraint, which applies when binary observed variables are assumed to
be monotonically related to a univariate latent variable [14]. A likelihood ratio test

Fig. 5 A latent class model
on five responses

H

X3X2X1 X4 X5
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was developed by Bartolucci and Forcina [4], but does not seem to be widely used.
Recently Allman et al. [2] have derived a complete semi-algebraic characterization
of the latent class model in the case of binary observed and latent variables; the
inequalities are closely related to MTP2 constraints.

Analogous results are available for factor analysis models, which concern
Gaussian latent and observed variables [9]; again, their adoption in the applied
literature seems limited.

5 Discussion

We end with a plea for the further development and dissemination of graphical
(or otherwise relatively simple) methods for determining hidden structure. Latent
variable models are widely used by researchers in myriad disciplines, both because
they may fit with current scientific theory, and because they often yield highly inter-
pretable results. It seems clear, however, that the mathematical theory underlying
these models, which has advanced rapidly in recent years, is not matched by applied
statistical practice.

Until and unless our structural tests and associated fitting methods are shown to
match the simplicity and intuitive appeal of the models themselves, the practice will
continue to lag behind the theory. It seems incumbent upon statisticians to bridge
this gap by presenting these methods as naturally as is possible, and developing
software which derives constraints and performs appropriate tests efficiently, even
at the expense of statistical power.
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Abstract
This paper compares the job quality of disabled and non-disabled graduates.
Equity in work is measured based on not only whether a graduate has a job but
also whether he/she has a good job. The Italian law favours disabled people by
often providing them a job; however, the quality of the job is not considered. In
this study, job quality is measured using a composite indicator (CI) comprising
three dimensions: economic, professional and work-life balance. The proposal
of the CI structure is original because the variables that compose the indicator
can be quantitative, ordinal or dichotomous. The results of our study show that
there is no difference in the job quality of disabled and non-disabled graduates;
however, there are differences within the two groups in terms of the greatest
dimension of the CI: economic dimension for the disabled group and professional
dimension for the non-disabled group. Disabled people have the guarantee of
a stable contract; however, their jobs are not consistent with their educational
qualifications.
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1 Job Quality and Equity in Work

A respectable job that meets workers’ competences and expectations is fundamental
for their dignity and the realization of their ambitions. Personal realization in a
working environment involves two steps: (1) to have a job and (2) to have a good
job.

This paper aims to analyse the job quality of students 3 years after graduating
from Padua University by focusing on the differences between the job quality of the
disabled and non-disabled graduates.

Our study concentrates on job quality rather than on having a job owing to the
following reasons: Firstly, this study refers to graduates 3 years after graduating
and only 4 % of them are still looking for a job. Secondly, Italian regulations
focus on improving the employment situation of disabled people. In fact, Law
68/1999 provides for the labour rights of the disabled, both as employees in
social cooperatives and companies and as self-employed people. Thirdly, public
competitions reserve a part of the available positions for disabled people or assign
priority to the disabled (ceteris paribus). Unfortunately, although the law can
promote the employment of disabled people, it cannot ensure the quality of their
jobs. Finally, this research focuses on graduates who obtained a university degree,
consequently have higher expectations from their jobs.

The way job quality is measured varies considerably across studies. In terms
of what characteristics are considered when measuring job quality, some studies
summarize job quality with a single variable, either objective, such as salary [14,
16], or subjective, such as job satisfaction [20, 22], while others suggest to consider
several constitutive dimensions (multi-faceted approach) [7]. Concerning how the
characteristics of job quality are measured, objective job attributes [18], subjective
job perceptions [10] or a mix of the two have been adopted [19].

In this study, job quality is considered a multifaceted concept, based on a limited
number of dimensions that can be described by objective and subjective indicators.

2 Data

This study was conducted on a sample of Italian students who graduated in 2007
and 2008. The data were obtained from the Agorà longitudinal survey on the career
outcomes of graduates from University of Padua [8]. Respondents were interviewed
after 6, 12 and 36 months from graduation using a Computer Assisted Telephone
Interview (CATI) tool. Workers were required to provide considerable information
regarding their current job, activities conducted by them when they were searching
for a job, their perception of skill and educational mismatch and evaluation of their
educational program.

A total of 2,885 people were interviewed 36 months after their graduation.
Among them, 2,436 people were employed and therefore only these people were
considered in this research.
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Furthermore, we conducted a survey to collect the same data that were collected
in the Agorà survey from all disabled graduates in 2004–2008. There were 307
disabled graduates during that period; however, many of them enrolled in a master
degree or moved to another location. Of the 108 disabled people contacted, 74 were
employed [2]. The disabled people were interviewed from 6 months to 5 years after
their graduation; however, most of them were interviewed 2 or 3 years after their
graduation.

The following analyses are relevant only when disabled graduates are compared
with non-disabled ones. These two groups show different structures, especially
with regard to their age and academic discipline; therefore, comparisons between
the two groups are not appropriate from a methodological perspective. To make
the two groups comparable, each disabled person was matched with one or two1

non-disabled person of the same gender, age (5 year classes), disciplinary area
(humanities, socio-economic, technical-scientific and life sciences) and type of
degree (bachelor or other). The non-disabled sample comprised 130 graduates
selected from the sample of Agorà-survey graduates, who were interviewed 36
months after graduating.

3 The Job Quality Indicator

Job quality is a multidimensional concept, which has been tentatively summarized
using a composite indicator (CI).

The structure of the CI is hierarchical: the multidimensional concept of job
quality comprises various dimensions. Each of these dimensions comprises several
elementary indicators, represented by variables that can be directly measured
(Fig. 1).

In our proposal, the aggregation method admits compensability: the CI is
a weighted mean of dimensions and each dimension is a weighted mean of
elementary indicators. This implies that poor performance in some indicators can

Level of elementary
indicators

Level of
dimensions

Overall level CI

D1

I11 I12

D2

I21 I22 I23

Fig. 1 Hierarchical structure of the composite indicator

1Occasionally, only one control can be found.
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be compensated for by sufficiently high values in other indicators. It is necessary to
discuss whether compensability among indicators should be permitted in the specific
concept for which the CI is designed [21]. To this end, we consider the mainstream
economic approach to job quality, which defends the existence of compensating
differentials in the labour market: workers with the same skills will be offered
different bundles of wage and disamenities, leading to the same job quality. Then,
workers will choose whatever combination best suits their preferences [19]; for
example, working in another location away from home in exchange for a better
wage or accepting a low wage in exchange of an interesting and professional job.
Given this approach, compensability is admissible.

The CI proposed herein comprises three dimensions [3]: economic, professional
and work-life balance. The economic dimension concerns the aspects related
to the economic exchange between worker and employer, which is generally
included in the formal employment contract. The professional dimension is
related to the characteristics of the job, which influences workers’ human
capital accumulation by enhancing their employability. The work-life balance
dimension involves the aspects that affect the workers’ personal life and work
relationships.

Each dimension comprises several elementary indicators. Table 1 shows the
original variables used for the construction of the elementary indicators.

As evident from Table 1, the nature of variables can differ: dichotomous, ordinal
and quantitative. The solutions often adopted in aggregating variables are either to
convert all the variables to the same scale (such as dichotomous variables) or to
attribute a numerical value to ordinal variables.

On the other hand, we propose to formulate every elementary indicator compos-
ing the CI as distance of the original variable from its minimum. The concept of
distance is usually used when referring to quantitative variables; however, it can be
extended to qualitative variables (dissimilarity). Therefore, the problem of different
units of measurement can be engaged by considering a distance/dissimilarity as the
new elementary indicator from which the CI can be built. A new concept of CI is
conceived: the CI is relative to the minimum from which it is desirable to move
away; this idea seems to particularly fit the field of CI as development measures of
a subject, conceiving the worst possible subject as ‘a calamity to leave as far behind
as possible’ [24].

As compensability is acceptable for our job quality CI, we must consider that the
elementary indicators (and, even if to a small extent, also the dimensions) used in the
construction of the CI could be correlated, so it is necessary to avoid the problem of
‘double counting’ the same phenomenon: for instance, if two variables composing a
dimension are correlated and we ignore such correlation, the phenomenon described
by the dimension weighs too much in the CI. To this aim, we consider also the
correlation between indicators/dimensions in our CI formulation.
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Table 1 Variables used in the construction of the composite indicator of job quality

Dimension Variable Description
Elementary
indicator

Economic Hourly wage Quantitative: monthly wage/# of monthly
working hours

(X - Xmin//R

Contractual
stability

Ordinal: permanent job; open-ended job
and self-employment; other (e.g.
temporary work)

(r(X))/(R- 1)

Professional Coherence
degree-work

Ordinal: 0 (not at all) to 9 (a lot) (r(X))/(R- 1)

Usefulness of
the degree

Ordinal: for performing your current job,
(i) the university degree that you hold is
specifically required, (ii) a graduate from
a different major could obtain similar
results, (iii) university degrees are not
necessary, a high school degree could
suffice, (iv) a qualification lower than
high school could suffice

(r(X))/(R- 1)

Enhancing skills Ordinal: to what degree can you exploit
your professional skills at work? (i) not
at all, (ii) Not much, (iii) Quite, (iv) Very
much

(r(X))/(R- 1)

Career
perspectives

Dichotomous: Yes, No yes=1, no=0

Team work Dichotomous: Yes, No yes=1, no=0

Supervision of
team work

Dichotomous: Yes, No yes D 1, no D 0

Work-life balance Working hours Quantitative: 1-(weekly working
hours-normalized 0–1)

(X - Xmin//R

Workplace
distance

Ordinal: the residence province, the
residence region, abroad or in an Italian
region (different from the residence
region)

(r(X))/(R- 1)

Note: The coding of some variables has been reversed because the CI formulation needs to express
all the variables in the same direction: high values correspond to a high job quality.
r.X/ D rank.X/; R D Range; Xmin D sample minimum

The final formulation of the CI is an extension of Gower’s generalized distance
[4, 9, 12, 17]:

CIC D
PJ

j

�j vj

Nj
.
PNj

iD1 liwi dcmi /
PJ

j

�j vj

Nj
.
PNj

iD1 liwi /
(1)

where j is the index of the dimensions and i is the index of the elementary
indicators composing each dimension; Nj is the number of indicators forming
the j-th dimension (this is necessary because in this way, the importance of a
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dimension does not depend on the number of indicators describing it); �j and vj

are the importance and correlation weights of the upper level of the structural
hierarchy, respectively, that is, the importance and correlation of each dimension,
respectively; li and wi are the importance and correlation weights at the lower level
for the elementary indicators; and dcmi is the dissimilarity measure of subject c from
minimum m with respect to variable i.

Referring to Gower’s proposal [12], for dichotomous variables, dcmi D 0 if
the c-th subject shares the same categorization as its ‘minimum’ for variable i
and dcmi D 1 if it does not. For quantitative variables, the distance is calculated
as the absolute value of the difference between the variable observed for subject
c and its minimum m, standardized by the range Ri W dcmi D .xci � xmi/=Ri. For
ordinal variables, the formulation is similar to the quantitative case: Ri W dcmi D
.rk.xci//=.Rki � 1/, where rk.xci/ is the rank of the c-th observation for the i-th
ordinal variable (the first rank is 0) and Rki is the number of categories of the
variable i. The distance dcmi varies between 0 and 1 so that it is standardized. The
overall CI has the same property.

The minimum to be considered for every indicator depends on the choice
between the theoretical or sample minimum. In our case, this choice is relevant
only for quantitative variables, given that theoretical and sample minimum for
dichotomous and ordinal variables are the same (zero). For the two quantitative
variables considered (working hours and hourly wage), we decided to use the sample
minimum (i.e. 1 h for working hours and 2 euros for hourly wage) because no
theoretical minimum has been universally established for these.

Correlation weight of each i-th indicator is a function of the correlation coeffi-
cients ril between that indicator and all the other indicators in the dimension (indexed
by l): wi D †l¤i.1�jrilj/. Correlation or cograduation measures have been used for
the computation of correlation weights, depending on the nature of the variables:

• two quantitative variables: the correlation coefficient is the common Bravais-
Pearson coefficient.

• two ordinal variables: the Spearman correlation is considered.
• two dichotomous variables: the Phi correlation coefficient is regarded in this case

[9].
• quantitative and dichotomous variable: the point-biserial coefficient [15] can be

applied.
• quantitative and ordinal variable: the multiserial coefficient of Jaspen [13] is

considered.
• ordinal and dichotomous variable: the rank biserial correlation coefficient [11]

suits this case.

Correlation weights are considered only for elementary indicators.
With regard to importance weights, we address whether unit weights or differ-

ential weights are more appropriate. Several authors demonstrate that unit weights
are preferable when the sample size is not large and/or a criterion measure is not
available. For instance, Bobko et al. [1] demonstrate with a meta-analysis that unit
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weights perform better than regression weights when the sample size is 75 or fewer
and/or when R2 is moderate or low. Given the size of our sample, unit weights do not
necessarily perform better than differential weights. Furthermore, given the object
of our study (job quality) and the population of interest (young graduates), we may
expect that the weights assigned to the three dimensions will differ significantly
one from the other. As a consequence, we compute differential weights. In order
to verify whether our differential weights differ from unitary weights, we calculate
the Spearman correlation between the rankings of the graduates sorted by the CI
obtained using the two weighting methods—differential and unitary weights. In
their meta-analysis based on fourteen studies and 3,182 participants, Bobko et al.
[1] show that the correlation between the expert and the unit-weighted composite
score is 0.99, with a credibility interval ranging from 0.94 to 0.99. In our case the
Spearman correlation is 0.87, a value that is noticeably lower than that obtained by
Bobko et al.

The definition of importance weights (calculated only for dimensions; equal
weights are used for elementary indicators) is based on a hybrid approach [6],
assuming that poor job quality may be a reason for job dissatisfaction. Respondents
were required to express the level of job satisfaction (on a range between 1 and 10)
with their job as a whole and by referring to a set of job characteristics. Weights
are calculated from the standardized regression coefficients obtained through the
ordinal logistic regression model, where the dependent variable is the overall job
satisfaction score and the explanatory variables are the satisfaction scores for the
job attributes considered in the dimensions. Each dimension is weighted using the
arithmetic mean of standardized regression coefficients that refer to the proper job
attributes. For example, for the economic dimension, we calculate the arithmetic
mean of the standardized regression coefficients referring to satisfaction for wage
and contractual stability. The weight for every dimension is then calculated by
dividing each arithmetic mean by the sum of the three means related to the three
dimensions.

The importance weights for the economic, professional and work-life balance
dimensions are 0.241, 0.602 and 0.157.

We have tested the stability of the CI with two trials: initially, the original sample
has been divided into two random sub-samples of equal size (without replacement)
and subsequently, the sample has been divided into three random sub-samples of
equal size and without replacement. The value of the CI and its dimension has
been calculated separately for each sub-sample. With regard to the weights, both
the importance and the correlation weights have been re-calculated for each random
sub-sample. The results have shown that the three dimensions are stable in the sub-
samples.

Moreover, the CI seems to actually measure what it was intended to measure
(content validity). It can be assumed that, in general, the job quality of job seekers
is lower than the job quality of the people who do not feel the need to change their
job. In fact, those who are not satisfied with their jobs will probably try to change it
in order to find a job that meets their expectations [5, 23]. We used the information
(obtained from responses to the questionnaire of the Agorà survey) regarding the
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intention to change job and the possible reasons of this choice. The question has
the following possible answers: 1. I have never thought about leaving my job.; 2. I
would leave to improve my compensation and the contractual arrangement; 3. I
would leave to improve the work content and to have more opportunities to use my
skills; 4. I would leave to work closer to home; 5. Another reason. We associated
some of the answers from those who had thought about leaving their jobs to the job
quality dimensions: in particular, the second answer corresponds to the economic
dimension, the third answer to the professional dimension, and the fourth answer
to the work-life balance dimension. The rationale for this validation procedure was
that people who have thought of leaving their jobs for a specific reason (e.g., to
improve their compensation) are likely to have a low score on the corresponding
dimension of the CI. Starting from the answers to the question presented above, we
calculated three dichotomous (dependent) variables, each of which is associated
with one dimension of the JQCI: economic reasons to leave the job (1 D yes,
0 D no), professional reasons to leave the job (1 D yes, 0 D no), work-life balance
reasons to leave the job (1 D yes, 0 D no). We performed a logistic regression
for each dichotomous variable using as explanatory variables the scores on the
three dimensions of the CI. We verified the content validity if, for instance, in the
regression where the dependent variable is the dummy “Economic reasons to leave
the job,” only the economic dimension (as the explanatory variable) is statistically
significant with a negative coefficient; that is, individuals considers leaving their
jobs for economic reasons because the economic dimension of their job quality is
low. Actually, the application of the three models show that only the dimension
associated with the dependent variable has a significant and negative coefficient.

4 Job Quality of Disabled and Non-Disabled Graduates

Table 2 shows the mean scores of the CI and of the dimensions and elementary
indicators for non-disabled and disabled graduates.

The most important result is that, on average, the CI is equal for the disabled and
non-disabled graduates; however, this result comes from different dynamics. The
economic dimension mean score is significantly higher for disabled graduates (0.55
vs. 0.44, p = 0.0001); this is probably because of the more favourable employment
contracts that are offered to disabled graduates thanks to the Italian law. We found
that 59 % of the disabled graduates work in the public sector (vs.10.8 % of the
non-disabled graduates) and 45.8 % of the disabled graduates passed a public
competition (vs.17.6 % of the non-disabled graduates) [2].

On the contrary, the professional dimension mean score is higher among the non-
disabled graduates and the difference is mostly owing to the lack of consistency
between the educational qualifications (university degree) of disabled graduates and
the nature of work done by them (0.18 among disabled vs. 0.58 among non-disabled
graduates, p < 0.0001).

Although the difference in the professional dimension mean score between the
disabled and non-disabled graduates is lower than the difference in the economic
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Table 2 Values of the mean scores of composite indicator, dimensions and elementary indicators
for non-disabled and disabled graduates

Indicator Non-disabled Disabled p-value

Composite indicator 0.54 0.54 0:934
Economic dimension 0.44 0.55 0:000
Elementary indicator of wage 0.26 0.25 0:760

Elementary indicator of contract 0.63 0.87 < 0:0001

Professional dimension 0.56 0.51 0:091
Elem. Ind. ‘Degree of specialization’ 0.68 0.68 0:894

Elem. Ind. ‘Coherence degree-work’ 0.58 0.18 < 0:0001

Elem. Ind. ‘Supervision of team work’ 0.34 0.25 0:215

Elem. Ind. ‘Career perspectives’ 0.41 0.44 0:693

Elem. Ind. ‘Being in a team work’ 0.68 0.86 0:003

Elem. Ind. ‘Enhancing skills’ 0.68 0.64 0:232

Work-life balance dimension 0.62 0.61 0:710
Elem. Ind. ‘Distance home-work’ 0.59 0.63 0:001

Elem. Ind. ‘Working hours’ 0.65 0.58 0:167

Note: p-value refers to the difference between non-disabled and disabled graduates

Table 3 Value of mean scores of composite indicator and its dimensions for disabled and
non-disabled graduates by gender

Disabled CI Economic Professional Work-life balance

Men 0:54 0:54 0:47 0:62

Women 0:55 0:55 0:54 0:60

p-value 0:178 0:732 0:052 0:837

Non-disabled

Men 0:57 0:46 0:61 0:60

Women 0:51 0:42 0:52 0:63

p-value 0:0173 0:222 0:0141 0:243

Note: p-value refers to the difference between men and women

dimension mean score, the CI results for the two groups are equal owing to the
higher weight of the professional dimension.

Note (Table 3) that job quality is significantly higher for non-disabled men
than non-disabled women, whereas this difference is negligible between disabled
men and women. This difference can be attributed to the professional dimension;
this is significantly higher among non-disabled men with respect to non-disabled
women, whereas the contrary can be observed among disabled men and women.
The majority of disabled women work in the public sector (71.4 % vs. 28.6 % among
disabled men) and more than a quarter of the disabled women work in the life
sciences area as nurses, physiotherapists or educators. These jobs are characterized
by good coherence with employees’ educational qualifications and consequently
higher job quality from the professional perspective.
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Table 4 Estimates of linear regression parameters on the composite indicator of job quality and
its dimensions by presence of disability

Disabled CI Economic Professional Work-life balance

Intercept �0:0963 �1:8562 �0:1527 0:7700�

Gender (Ref: Men)

Women 0:1534 0:5963 0:2904 �0:2125
Type of degree (Ref: 5 years single cycle)

Bachelor �0:1230 0:4270 �0:3135 �0:1422
Master degree �0:5514��� �2:1287�� �0:6213� �0:8087��

Disciplinary area (Ref: Humanities)

Life sciences 0:3617��� 0:6358 0:6846�� �0:1282
Socio-economic 0:3669�� 1:5148 0:3261 0:0677

Techn.-scientific 0:0763 2:3908�� 0:2429 �0:8621��

Degree grade (Ref: 91–100)

Grade <=90 �0:0453 �0:0937 �0:1393 0:3752

Grade>100 0:1707 0:8965 0:1552 0:3435

Working sector (Ref: Private)

Public sector 0:1307 0:8738 0:0382 �0:0012
R2 0:282 0:174 0:172 0:224
Non-disabled CI Economic Professional Work-life balance

Intercept 0:3421 0:1813 0:3069 0:8230�

Women �0:2125�� �0:2033 �0:3678�� 0:1425

Bachelor �0:2938 �0:8676 �0:2754 �0:0983
Master degree �0:2022 �0:5670 �0:1080 �0:3454
Life sciences 0:0869 0:4889 0:0568 �0:2128
Socio-economic 0:2314� 0:2098 0:4600�� �0:4407��

Techn.-scientific 0:3535�� 0:5773� 0:5206� �0:0962��

Grade <D 90 0:0994 �0:0641 0:4853� �0:3038
Grade >100 0:0100 0:0660 0:1025 �0:3278��

Public sector 0:1999 0:1137 0:2203 0:4267��

R2 0:116 0:079 0:132 0:133

Note: Dependent variable in regression is given by log (y/(1-y)), where y represents the composite
indicator or one of its dimensions. � D< 0:1I�� D< 0:05I��� D< 0:01.

These results are confirmed, ceteris paribus. In Table 4 the results of four linear
regression models of the logit of composite indicator and the logit of its dimensions
are shown. The results show that a degree in life sciences positively influences
job quality for disabled graduates. Moreover, no significant differences are evident
between disabled women and men in terms of job quality; however, significant
differences exist between non-disabled women and men in this regard.

The linear regression models also highlight the negative effect of a master degree
among disabled graduates both on the CI and its dimensions. Even if negative, these
effects are not significant among non-disabled graduates. The results indicate that a
higher specialization is not recognised, especially for disabled graduates.
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Conclusions

The conclusions of our study consider both the methodological approach and the
results.

A new formulation of Composite Indicator has been proposed to measure
complex phenomena at micro-level, that is dealing with individuals or small
groups of subjects (such as families). Information on single individuals can be
collected as quantitative, ordinal and dichotomous variables. Thus, one of the
main characteristics of this proposal is to consider variables of different nature.
Other features of our Composite Indicator are to take into account the correlation
among variables, and to express the overall measure in the form of a distance
from a minimum, maintaining at the same time the hierarchical form of the
Composite Indicator.

The usefulness of this approach is that it can be used both at macro and at
micro-level for measuring a wide range of complex phenomena, for example to
express development measures for various subjects (job quality, environmental
development,. . . ). It can be used not only for ranking aims, but also for rating,
to state where a subject is positioned in the range (0–1) of definition of the
Composite Indicator. Attention is paid on maintaining as much as possible both
the original nature of the variables and of its relations, and the original nature
of the multidimensional phenomenon. Finally, the formulation of our Composite
Indicator can be considered as a form of weighted mean, easily understandable
concept also for non-technical people, and this further expands its applicability.

From a methodological point of view, we are aware that our proposal does
not completely solve the problem of variables of different nature, because
the generalized distance used for the construction of the CI makes a sort of
quantification (i.e. ranks) of ordinal and dichotomous variables. Some fields
of research are approaching this problem (i.e.: some Multicriteria approaches,
Benefit of the Doubt method, Partial Order Theory) in ways that depart from
the classical approach. The proposed solutions are very interesting, but, at the
same time, not easily understandable for non-technical people. We prefer to
maintain the classical and simpler approach, also because more feasible in case
of compensability.

Our study considered graduates from the University of Padua and we com-
pared the job quality of disabled and non-disabled graduates. The job quality of
disabled and non-disabled graduates originates from different job dimensions;
although disabled graduates have the guarantee of contractual stability, they
experience a lack of consistency between the jobs offered to them and their
educational qualification (university education). Since the disabled and non-
disabled graduates were also matched in terms of their disciplinary areas, this
difference of consistency is not due to the different specializations between the
two groups.

With regard to the study and labour rights of the disabled, the Italian
legislation is one of the best in the world. However, it can only control objective
aspects of the job, such as the contract. It cannot control the consistency between
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jobs and educational qualifications, use of competences, and professionalism.
These intangible aspects cannot be imposed by law; they need to be instituted by
means of a culture pervading the whole society.
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Business Failure Prediction in Manufacturing:
A Robust Bayesian Approach to Discriminant
Scoring
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Abstract
This paper provides a methodological analysis of credit risk in manufacturing
firms. By using a representative sample of both healthy and bankrupted firms
during the period 2003–2009 we provide an in-depth comparison of the standard
discriminant approach for bankruptcy prediction based on a logistic regression
model and a Robust Bayesian Approach. We conclude that the use of a robust
GLM regression methodology enables us to provide a more accurate separation
between sound and unsound firms thus suggesting that this methodological
framework may be used to achieve a more reliable measure of firms credit
worthiness.
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1 Introduction

The study of a firm’s financial performance is relevant in the context of the
present economic downturn, as it allows us to understand whether significant threats
to economic recovery do exist and whether investment decisions by firms may
stimulate and sustain economic growth in the medium to long term. A firm’s
decision to invest may crucially be affected by its level of financial constraint. Thus,
an understanding of the distribution of such financial constraints is particularly
relevant with respect to innovative investment, which represents the key to business
success.

Indeed, although several definitions of credit or financial constraint have been
proposed by the relevant literature—[7] refer to a wedge between the internal and
external cost of funds, while [6] refers to a situation in which there is a wedge,
sometimes large, between the rate of return required by an entrepreneur investing
his own funds and that required by external investors—there is currently no general
agreement on how financially-constrained firms can be identified empirically. The
debate concerning the measurement of financial friction at the firm level may gain
interesting input from the field of business failure prediction. The main goal here
is to predict bankruptcy risk, i.e. to develop models of financial failure at the firm
level before this actually happens. Although business failure has long been debated
in both economic and accountancy research [4], accurate credit risk analysis has
become even more important today than it was in the past due to the recent global
financial crisis, which has demonstrated how difficult it is to measure and manage
business distress. In this contribution we provide a thorough analysis of credit risk
in manufacturing firms during the period 2003–2009 by combining the standard
discriminant analysis (DA) with the Forward Search [3] in a Bayesian perspective
framework as described by [8].

In the field of business failure prediction discriminant analysis has been widely
used. This approach is essentially based on the idea that a firm’s probability
of default may be estimated by using a set of key variables. These variables,
appropriately combined together, produce a range of quantitative scores, which can
be used as a classification tool when combined with an appropriate cut-off point.
We refer to the seminal work by [1] and further developments [2, 5], which employ
a linear discriminant model based on accounting data of failed and non-failed firms
in order to determine a firm’s bankruptcy risk. Ohlson [9] proposed a conditional
logistic model that has the advantage of overcoming problems associated with the
assumption of normality and equal covariances that, the linear discriminant model
could require. The peculiar feature of this approach is the way a model’s precision
is tested for by considering both classification and future prediction accuracy.
Classification accuracy is assessed on the original database, that is the data-set
used in order to specify the model. Following this, prediction accuracy is tested
for by using a new data set, in order to assess how well the model works for
future predictions. The use of the Forward Search coupled with a Bayesian probit
regression model allows us to detect multiple outliers more efficiently compared to
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traditional exploratory techniques, from now on we will call this method Robust
Bayesian Approach (RBA). In addition, the application of a Bayesian method to the
probit specification, on one hand, helps us with the right prior to estimate default
probabilities and, on the other hand, allows us to reduce interchange rates from one
step to another of the Forward Search, driving out smooth confidence curves and
potentially robustifying the algorithm.

2 Data Description

Our main sample of firms is derived from the tenth Unicredit Survey on Man-
ufacturing Firms (2009). This sample is composed of more than five thousand
firms representative of the manufacturing sector and extracted from the AIDA data
base. A rich set of information is collected by this survey, including firm-specific
characteristics, investment and innovative activities. This starting sample has been
inflated with a rich set of accounting data. The economic and financial information
derived from firms’ balance sheets has allowed us to derive the financial indexes
used in the credit scoring procedures which will be described in the following
sections. Bankruptcy data have been collected from the AIDA data base. We
extracted a sample of 150 firms which went bankrupt during the years 2005 and
2006. Balance sheet information refers to years 2003 and 2004 in order to have an
adequate time span difference (not less than 1 year) between the last relevant balance
sheet and the bankruptcy date.

3 The Logistic RegressionModel DA

We estimate the default probability of a firm by using a logistic discriminant
function defined as follows:

�.xi / D eˇ
0xi

1C eˇ0xi
D 1

1C e�ˇxi i D 1; : : : ; n: (1)

yi is our binary dependent variable, which assumes the value of 1 if we observe a
default event between years 2005 and 2006 and 0 otherwise and x1; : : : ; xk is the
vector of covariates, i.e. firm-specific characteristics and financial indexes which are
observed in years 2003 and 2004.

We have included a set of variables which are commonly considered good
predictors of the outcome event in the relevant literature:

– a measure of a firm’s leverage (LEV), the ratio of total debts to net capital, which
is expected to affect the default probability positively, as a highly-leveraged
structure may worsen the perceived financial risk;

– a measure of short-term indebtedness (CL_S), the ratio of current liabilities to
sales, whose expected sign is positive, given that a firm with a high short-term



280 M. Baussola et al.

debt may find it difficult to borrow additional resources to finance its short run
activities and, thus, may be close to insolvency;

– another similar indicator, the ACID ratio; this measures the extent to which
short-term debt is covered by short term liquidity. Creditors prefer a high ACID
ratio as it reduces their risk. We thus expect a negative sign;

– firm operating profitability (ROS), proxied by the ratio of operating margins to
sales. We expect a negative effect on the default risk, as the higher a firm’s
profitability the higher the flow of internal resources available to cover debt
exposure should be;

– the firm’s interest burden, proxied by the interest payment to sales (IR) ratio,
which is expected to positively affect the default probability given that a high
interest burden may worsen the financial risk associated with external finance.
We have used a dummy variable which assumes the value of 1 when a firm shows
an interest burden ratio higher than 5 %, which identifies the last 5 % of the IR
distribution, and 0 otherwise, in order to capture the effect of those firms which
are potentially financially constrained;

– finally, structural characteristics, captured by variables AGE (years) and SIZE,
proxied by a firm’s total assets (logarithmic values). We expect a negative effect
of both these variables, as agency costs related to indebtedness are expected to be
higher for those firms with a low reputation or contractual power, such as those
which are smaller or less well established.

We estimate default probabilities within one and 2 years. In the first case the
model is computed by using predictors observed in the year 2004, while in the
second case we use information for the year 2003.1 In both models our variables
present the expected signs, although it is worth noting that the explanatory power is
higher when information 2 years before bankruptcy is used. This evidence suggests
that the choice of an adequate lead time span is a relevant point and needs to be
taken into account. In our case, by using accounting information from 2 years prior
the default event, we can build a more accurate prediction model.

4 Robust Bayesian Approach, RBA

In evaluating prediction accuracy with standard logistic regression model, from now
on DA, there is no way of adjusting the cut-off point for the distribution in order
to reduce simultaneously the two types of classification errors, that is the error
of classifying a sound firm as unsound (Type I error) and the error of classify an
unsound firm as sound (Type II error).

In practice, as there is a trade-off between the two types of error, a pragmatic rule
is adopted depending on the specific aim of the classification and, therefore, on the

1Regression results available on request.
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Fig. 1 Standard DA—histogram of the probability of belonging to the group of healthy firms year
2003 (left panel) and year 2009 (right panel)

characteristics of the users of such financial information.2 Indeed, a bank which is
evaluating a firm’s financial position is probably more interested in minimizing the
cost of making a bad investment (Type II error) due to lending funds to a potentially
defaulting customer, whereas a shareholder in an innovative firm may be willing
to reduce the cost of under-investment (Type I error) resulting from not taking
advantage of an investment opportunity.

The application of standard logistic regression produces the frequency distribu-
tion of the estimated probabilities of belonging to the group of healthy firms given in
Fig. 1. The left panel of this figure, shows that all firms, apart few exceptions, have
an estimated probability of belonging to the group of healthy firms that is greater
than 0:9. A similar effect takes place for the estimated probabilities referred to year
2009 (right panel).

Given these limitations of standard DA, we show that the use of a RBA can
help us to better separate the two groups. As in the standard DA approach, we
use the same data referred to year 2003. The RBA underlying model is a probit
link function, which has some convenient statistical proprieties in the Bayesian
framework. Here ˚ is the standard normal cdf and the probability of default for
firm i which we denote with g.
i / is linked to the set of explanatory variables
previously described as follows: g.
i / D ˚�1.
i / with i D 1; : : : ; n: The steps of
the procedure are as follows: first we start with a robust subset of statistical units.
In order to achieve this purpose we use Least Trimmed Squares to find the best

2Our results, available on request, show that if a cutoff point of 0.02 is fixed, a Type II Error of 0.5
is obtained with the 2003 model (84 % of bankruptcy cases correctly predicted). However, as at
this cutoff point we also wrongly classify as unsound 16 % of healthy firms, we prefer to accept
a small increase in Type I Error in order to reach a better classification for the group of healthy
firms. Thus, a cutoff point of 0.04 seems to be a reasonable compromise (74 % of bankruptcy cases
correctly predicted and 90 % of sound firms correctly classified).
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statistical units belonging to group of healthy firms. We repeat the same procedure
to find the subset of the defaulted firms. At this point, we start the Forward Search
monitoring the deviance residuals and the misclassification index (mis) defined as
follows:

mis D
nX

i

.yi � O�.xi //2 (2)

where yi is a dichotomic variable which is equal to 0 if the firm is healthy or is
equal to 1 if the firm is defaulted, and O�.xi / is the estimated probability of default.
Fig. 3 shows the trajectory of the misclassification index along the Forward Search.
We pick the function minimum, corresponding to a specific subset, S�

min, before
the curve starts behaving chaotically, an anomalous behavior caused by lack of
convergence of the probit regression, as outliers enter the search. Using the subset
S�

min, we calculate the corresponding Ǒ coefficient of the probit regression. Then we
take Ǒ as a prior and we start the Forward Search using Bayesian probit regression
with the following posterior distribution:

�.ˇjy;X/ / jX 0X j1=2� ..2k � 1/=4/.ˇ0.X 0X/ˇ/�.2k�1/=4��k=2 �

�
nY

iD1
˚.x0

iˇ/
yi Œ1 � ˚.x0

iˇ/�
1�yi : (3)

From the Bayesian perspective we use Metropolis Hastings algorithm with a
Zellner’s prior (Marin et al. 2012) to obtain a sampling distributions of Ǒ. With
this distribution we are able to perform a sensitivity analysis along the credibility
interval of the ˇ parameter, unlike using point estimate obtained applying maximum
likelihood. Besides, we are also given the opportunity to introduce some (sensible)
prior information, which could help us to better discriminate candidate default firms.
In a way, exploring and analysing thoroughly the dataset in year 2003we can model
prior information to be applied to year 2009 proposal model. We can see that the
algorithm is working properly, both in the predictive stage and in the evaluation
phase, the separation between defaulted and healthy firms is quite high, as shown
respectively in Fig. 2, left panel, year 2003 and Fig. 2, right panel, year 2009. Table 1
and Fig. 2 show us the frequency distribution of the estimated probabilities of default
by the model using the classes .0; 0:1�; .0:1; 0:2�, : : : ; .0:9; 1� respectively for
years 2003 and 2009. In Fig. 3 we show the differences between the frequentist
implementation of the Forward Search and the Bayesian version of Forward Search.
In the first panel we see a chaotic behaviour on the right part of the graph: large
oscillations of the misclassification index are caused by either lack of convergence
or when the interchange rate of the units entering and exiting the Forward Search is
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Fig. 2 RBA—histogram of the probability of belonging to the group of the healthy firms,
evaluation stage—year 2003 (left panel), predictive stage—year 2009 (right panel). Note that the
estimated probabilities are highly separated

Table 1 Distribution of estimated probabilities of default

Year .0; 0:1�.%/ .0:1; 0:2�.%/ .0:2; 0:3�.%/ .0:3; 0:4�.%/ .0:4; 0:5�.%/

2003 3.94 1.03 0.66 0.85 0.79

2009 4.82 0.89 0.87 0.55 0.58

Year .0:5; 0:6�.%/ .0:6; 0:7�.%/ .0:7; 0:8�.%/ .0:8; 0:9�.%/ .0:9; 1�.%/

2003 0.58 0.66 1.24 1.93 88.31

2009 0.58 1.08 0.92 2.05 87.65
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Fig. 3 Monitoring of misclassification index—please note the chaotic behavior in the first panel
where algorithm convergence is missing and/or the interchange rate of units entering the Forward
Search is high

set too high. In the second panel we show the results using the Bayesian Forward
Search: we now see a smoother curve of the misclassification index which is both
the result of two conditions: the first is that now the algorithm is converging at every
step of the Forward Search, the second is that a low interchange rate between units
belong or not to the Search is obtained.
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Table 2 Ǒ Comparison between standard DA and RBA

Var. ǑstandardDA ǑRBA

Estimate P-value Estimate P-value

Constant 5.9096 0.0009 9.0086 8.78E�10

ACID �1.2726 0.0172 �2.0078 7.47E�07

LEV 0.0225 0.0002 0.0736 1.10E�10

CL_S 0.6633 0.1473 0.0848 0.4930

ROS �7.8080 0.0009 �12.3619 3.01E�10

dIR 1.0454 0.0085 3.0383 1.46E�10

L_TA �0.1504 <0.0001 �0.8082 4.26E�05

AGE �0.4106 0.0004 �0.1892 5.01E�15

dNW �2.0611 <0.0001 �3.6294 1.33E�16

dNE �1.2579 0.0002 �3.1568 1.79E�13

dC �0.5496 0.1130 �1.7431 5.86E�07

Conclusive Remarks

Although business failure has long been debated in both economic and accoun-
tancy research, accurate credit risk analysis has become even more important
today than it was in the past due to the recent global financial crisis, which
has demonstrated how difficult it is to measure and manage business distress.
This contribution represents a step forward with respect to standard discriminant
approach DA to credit scoring.

We have set up an appropriate default probability model which has been tested
by using both standard DA and RBA. Both methods provide good performances
in terms of expected signs and significance of the selected regressors (Table 2),
although it is worth noting that theP -values of the robust estimation show greater
significance levels.

However, the use of the Forward Search technique combined with a robust
GLM regression has allowed us to reach a separation between sound and unsound
firms which is more accurate compared to standard DA. This result also allows
us to overcome one of the main criticism of traditional logistic scoring applied
to bankruptcy prediction, i.e. the fact that it is inappropriate for predicting a rare
event, such as bankruptcy, as it requires the selection of an adequate proportion
of failed firms in the final sample, in order not to underestimate bankruptcy
probabilities.

It is worth stressing that the study of financial performance at the firm level
could not be limited to a simple separation between sound and unsound firms.
Indeed, a significant advance could be the attribution of specific credit worthiness
judgments within such a robust technique, also using different specifications, e.g,
multinomial logit.
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