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Preface to the Third Edition

The third edition accomplishes several purposes. First, it updates the use of SAS® software to
current practices. Since the last edition was published more than 10 years ago, numerous sets of
example statements have been modified to reflect best applications of SAS/STAT® software.

Second, the material has been expanded to take advantage of the many graphs now provided by
SAS/STAT software through ODS Graphics. Beginning with SAS/STAT 9.3, these graphs are
available with SAS/STAT—no other product license is required (a SAS/GRAPH® license was
required for previous releases). Graphs displayed in this edition include:

� mosaic plots

� effect plots

� odds ratio plots

� predicted cumulative proportions plot

� regression diagnostic plots

� agreement plots

Third, the book has been updated and reorganized to reflect the evolution of categorical data
analysis strategies. The previous Chapter 14, “Repeated Measurements Using Weighted Least
Squares,” has been combined with the previous Chapter 13, “Weighted Least Squares,” to create
the current Chapter 14, “Weighted Least Squares.” The material previously in Chapter 16,
“Loglinear Models,” is found in the current Chapter 12, “Poisson Regression and Related Loglinear
Models.” The material in Chapter 10, “Conditional Logistic Regression,” has been rewritten, and
Chapter 8, “Logistic Regression I: Dichotomous Response,” and Chapter 9, “Logistic Regression
II: Polytomous Response,” have been expanded. In addition, the previous Chapter 16, “Categorized
Time-to-Event Data” is the current Chapter 13.

Numerous additional techniques are covered in this edition, including:

� incidence density ratios and their confidence intervals

� additional confidence intervals for difference of proportions

� exact Poisson regression

� difference measures to reflect direction of association in sets of tables

� partial proportional odds model

� use of the QIC statistic in GEE analysis
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� odds ratios in the presence of interactions

� Firth penalized likelihood approach for logistic regression

In addition, miscellaneous revisions and additions have been incorporated throughout the book.
However, the scope of the book remains the same as described in Chapter 1, “Introduction.”

Computing Details

The examples in this third edition were executed with SAS/STAT 12.1, although the revision was
largely based on SAS/STAT 9.3. The features specific to SAS/STAT 12.1 are:

� mosaic plots in the FREQ procedure

� partial proportional odds model in the LOGISTIC procedure

� Miettinen-Nurminen confidence limits for proportion differences in PROC FREQ

� headings for the estimates from the FIRTH option in PROC LOGISTIC

Because of limited space, not all of the output that is produced with the example SAS code is shown.
Generally, only the output pertinent to the discussion is displayed. An ODS SELECT statement is
sometimes used in the example code to limit the tables produced. The ODS GRAPHICS ON and
ODS GRAPHICS OFF statements are used when graphs are produced. However, these statements
are not needed when graphs are produced as part of the SAS windowing environment beginning
with SAS 9.3. Also, the graphs produced for this book were generated with the STYLE=JOURNAL
option of ODS because the book does not feature color.

For More Information

The website http://www.sas.com/catbook contains further information that pertains to
topics in the book, including data (where possible) and errata.
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Chapter 1

Introduction

Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scale of Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Sampling Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Overview of Analysis Strategies . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Randomization Methods . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.2 Modeling Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Working with Tables in SAS Software . . . . . . . . . . . . . . . . . . . . . 8
1.6 Using This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Overview

Data analysts often encounter response measures that are categorical in nature; their outcomes
reflect categories of information rather than the usual interval scale. Frequently, categorical data are
presented in tabular form, known as contingency tables. Categorical data analysis is concerned with
the analysis of categorical response measures, regardless of whether any accompanying explanatory
variables are also categorical or are continuous. This book discusses hypothesis testing strategies
for the assessment of association in contingency tables and sets of contingency tables. It also
discusses various modeling strategies available for describing the nature of the association between
a categorical response measure and a set of explanatory variables.

An important consideration in determining the appropriate analysis of categorical variables is their
scale of measurement. Section 1.2 describes the various scales and illustrates them with data sets
used in later chapters. Another important consideration is the sampling framework that produced
the data; it determines the possible analyses and the possible inferences. Section 1.3 describes the
typical sampling frameworks and their ramifications. Section 1.4 introduces the various analysis
strategies discussed in this book and describes how they relate to one another. It also discusses the
target populations generally assumed for each type of analysis and what types of inferences you
are able to make to them. Section 1.5 reviews how SAS software handles contingency tables and
other forms of categorical data. Finally, Section 1.6 provides a guide to the material in the book for
various types of readers, including indications of the difficulty level of the chapters.
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2 Chapter 1: Introduction

1.2 Scale of Measurement

The scale of measurement of a categorical response variable is a key element in choosing an
appropriate analysis strategy. By taking advantage of the methodologies available for the particular
scale of measurement, you can choose a well-targeted strategy. If you do not take the scale of
measurement into account, you may choose an inappropriate strategy that could lead to erroneous
conclusions. Recognizing the scale of measurement and using it properly are very important in
categorical data analysis.

Categorical response variables can be

� dichotomous
� ordinal
� nominal
� discrete counts
� grouped survival times

Dichotomous responses are those that have two possible outcomes—most often they are yes and no.
Did the subject develop the disease? Did the voter cast a ballot for the Democratic or Republican
candidate? Did the student pass the exam? For example, the objective of a clinical trial for a
new medication for colds is whether patients obtained relief from their pain-producing ailment.
Consider Table 1.1, which is analyzed in Chapter 2, “The 2 � 2 Table.”

Table 1.1 Respiratory Outcomes

Treatment Favorable Unfavorable Total
Placebo 16 48 64
Test 40 20 60

The placebo group contains 64 patients, and the test medication group contains 60 patients. The
columns contain the information concerning the categorical response measure: 40 patients in the
Test group had a favorable response to the medication, and 20 subjects did not. The outcome in this
example is thus dichotomous, and the analysis investigates the relationship between the response
and the treatment.

Frequently, categorical data responses represent more than two possible outcomes, and often these
possible outcomes take on some inherent ordering. Such response variables have an ordinal scale
of measurement. Did the new school curriculum produce little, some, or high enthusiasm among
the students? Does the water exhibit low, medium, or high hardness? In the former case, the order
of the response levels is clear, but there is no clue as to the relative distances between the levels.
In the latter case, there is a possible distance between the levels: medium might have twice the
hardness of low, and high might have three times the hardness of low. Sometimes the distance is
even clearer: a 50% potency dose versus a 100% potency dose versus a 200% potency dose. All
three cases are examples of ordinal data.

An example of an ordinal measure occurs in data displayed in Table 1.2, which is analyzed in
Chapter 9, “Logistic Regression II: Polytomous Response.” A clinical trial investigated a treatment
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1.2. Scale of Measurement 3

for rheumatoid arthritis. Male and female patients were given either the active treatment or a
placebo; the outcome measured was whether they showed marked, some, or no improvement at the
end of the clinical trial. The analysis uses the proportional odds model to assess the relationship
between the response variable and gender and treatment.

Table 1.2 Arthritis Data
Improvement

Sex Treatment Marked Some None Total
Female Active 16 5 6 27
Female Placebo 6 7 19 32
Male Active 5 2 7 14
Male Placebo 1 0 10 11

Note that categorical response variables can often be managed in different ways. You could
combine the Marked and Some columns in Table 1.2 to produce a dichotomous outcome: No
Improvement versus Improvement. Grouping categories is often done during an analysis if the
resulting dichotomous response is also of interest.

If you have more than two outcome categories, and there is no inherent ordering to the categories,
you have a nominal measurement scale. Which of four candidates did you vote for in the town
council election? Do you prefer the beach, mountains, or lake for a vacation? There is no
underlying scale for such outcomes and no apparent way in which to order them.

Consider Table 1.3, which is analyzed in Chapter 5, “The s � r Table.” Residents in one town
were asked their political party affiliation and their neighborhood. Researchers were interested in
the association between political affiliation and neighborhood. Unlike ordinal response levels, the
classifications Bayside, Highland, Longview, and Sheffeld lie on no conceivable underlying scale.
However, you can still assess whether there is association in the table, which is done in Chapter 5.

Table 1.3 Distribution of Parties in Neighborhoods

Neighborhood
Party Bayside Highland Longview Sheffeld
Democrat 221 160 360 140
Independent 200 291 160 311
Republican 208 106 316 97

Categorical response variables sometimes contain discrete counts. Instead of falling into categories
that are labeled (yes, no) or (low, medium, high), the outcomes are numbers themselves. Was the
litter size 1, 2, 3, 4, or 5 members? Did the house contain 1, 2, 3, or 4 air conditioners? While the
usual strategy would be to analyze the mean count, the assumptions required for the standard linear
model for continuous data are often not met with discrete counts that have small range; the counts
are not distributed normally and may not have homogeneous variance.

For example, researchers examining respiratory disease in children visited children in different
regions two times and determined whether they showed symptoms of respiratory illness. The
response measure was whether the children exhibited symptoms in 0, 1, or 2 periods. Table 1.4
contains these data, which are analyzed in Chapter 14, “Weighted Least Squares.”
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4 Chapter 1: Introduction

Table 1.4 Colds in Children
Periods with Colds

Sex Residence 0 1 2 Total
Female Rural 45 64 71 180
Female Urban 80 104 116 300
Male Rural 84 124 82 290
Male Urban 106 117 87 310

The table represents a cross-classification of gender, residence, and number of periods with colds.
The analysis is concerned with modeling mean colds as a function of gender and residence.

Finally, another type of response variable in categorical data analysis is one that represents survival
times. With survival data, you are tracking the number of patients with certain outcomes (possibly
death) over time. Often, the times of the condition are grouped together so that the response
variable represents the number of patients who fail during a specific time interval. Such data are
called grouped survival times. For example, the data displayed in Table 1.5 are from Chapter 13,
“Categorized Time-to-Event Data.” A clinical condition is treated with an active drug for some
patients and with a placebo for others. The response categories are whether there are recurrences,
no recurrences, or whether the patients withdrew from the study. The entries correspond to the time
intervals 0–1 years, 1–2 years, and 2–3 years, which make up the rows of the table.

Table 1.5 Life Table Format for Clinical Condition Data
Controls
Interval No Recurrences Recurrences Withdrawals At Risk
0–1 Years 50 15 9 74
1–2 Years 30 13 7 50
2–3 Years 17 7 6 30
Active
Interval No Recurrences Recurrences Withdrawals At Risk
0–1 Years 69 12 9 90
1–2 Years 59 7 3 69
2–3 Years 45 10 4 59

1.3 Sampling Frameworks

Categorical data arise from different sampling frameworks. The nature of the sampling framework
determines the assumptions that can be made for the statistical analyses and in turn influences the
type of analysis that can be applied. The sampling framework also determines the type of inference
that is possible. Study populations are limited to target populations, those populations to which
inferences can be made, by assumptions justified by the sampling framework.

Generally, data fall into one of three sampling frameworks: historical data, experimental data,
and sample survey data. Historical data are observational data, which means that the study
population has a geographic or circumstantial definition. These may include all the occurrences of
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1.4. Overview of Analysis Strategies 5

an infectious disease in a multicounty area, the children attending a particular elementary school,
or those persons appearing in court during a specified time period. Highway safety data concerning
injuries in motor vehicles is another example of historical data.

Experimental data are drawn from studies that involve the random allocation of subjects to different
treatments of one sort or another. Examples include studies where types of fertilizer are applied to
agricultural plots and studies where subjects are administered different dosages of drug therapies.
In the health sciences, experimental data may include patients randomly administered a placebo or
treatment for their medical condition.

In sample survey studies, subjects are randomly chosen from a larger study population. Investigators
may randomly choose students from their school IDs and survey them about social behavior;
national health care studies may randomly sample Medicare users and investigate physician
utilization patterns. In addition, some sampling designs may be a combination of sample survey
and experimental data processes. Researchers may randomly select a study population and then
randomly assign treatments to the resulting study subjects.

The major difference in the three sampling frameworks described in this section is the use of
randomization to obtain them. Historical data involve no randomization, and so it is often difficult
to assume that they are representative of a convenient population. Experimental data have good
coverage of the possibilities of alternative treatments for the restricted protocol population, and
sample survey data have very good coverage of the larger population from which they were
selected.

Note that the unit of randomization can be a single subject or a cluster of subjects. In addition,
randomization may be applied within subsets, called strata or blocks, with equal or unequal
probabilities. In sample surveys, all of this can lead to more complicated designs, such as stratified
random samples, or even multistage cluster random samples. In experimental design studies, such
considerations lead to repeated measurements (or split-plot) studies.

1.4 Overview of Analysis Strategies

Categorical data analysis strategies can be classified into those that are concerned with hypothesis
testing and those that are concerned with modeling. Many questions about a categorical data set
can be answered by addressing a specific hypothesis concerning association. Such hypotheses
are often investigated with randomization methods. In addition to making statements about
association, you may also want to describe the nature of the association in the data set. Statistical
modeling techniques using maximum likelihood estimation or weighted least squares estimation
are employed to describe patterns of association or variation in terms of a parsimonious statistical
model. Imrey (2011) includes a historical perspective on numerous methods described in this book.

Most often the hypothesis of interest is whether association exists between the rows of a contingency
table and its columns. The only assumption that is required is randomized allocation of subjects,
either through the study design (experimental design) or through the hypothesis itself (necessary
for historical data). In addition, particularly for the use of historical data, you often want to control
for other explanatory variables that may have influenced the observed outcomes.
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6 Chapter 1: Introduction

1.4.1 Randomization Methods

Table 1.1, the respiratory outcomes data, contains information obtained as part of a randomized
allocation process. The hypothesis of interest is whether there is an association between treatment
and outcome. For these data, the randomization is accomplished by the study design.

Table 1.6 contains data from a similar study. The main difference is that the study was conducted
in two medical centers. The hypothesis of association is whether there is an association between
treatment and outcome, controlling for any effect of center.

Table 1.6 Respiratory Improvement

Center Treatment Yes No Total
1 Test 29 16 45
1 Placebo 14 31 45

Total 43 47 90
2 Test 37 8 45
2 Placebo 24 21 45

Total 61 29 90

Chapter 2, “The 2 � 2 Table,” is primarily concerned with the association in 2 � 2 tables; in
addition, it discusses measures of association, that is, statistics designed to evaluate the strength of
the association. Chapter 3, “Sets of 2 � 2 Tables,” discusses the investigation of association in sets
of 2 � 2 tables. When the table of interest has more than two rows and two columns, the analysis
is further complicated by the consideration of scale of measurement. Chapter 4, “Sets of 2 � r and
s � 2 Tables,” considers the assessment of association in sets of tables where the rows (columns)
have more than two levels.

Chapter 5 describes the assessment of association in the general s � r table, and Chapter 6, “Sets of
s � r Tables,” describes the assessment of association in sets of s � r tables. The investigation of
association in tables and sets of tables is further discussed in Chapter 7, “Nonparametric Methods,”
which discusses traditional nonparametric tests that have counterparts among the strategies for
analyzing contingency tables.

Another consideration in data analysis is whether you have enough data to support the asymptotic
theory required for many tests. Often, you may have an overall table sample size that is too small or
a number of zero or small cell counts that make the asymptotic assumptions questionable. Recently,
exact methods have been developed for a number of association statistics that permit you to address
the same hypotheses for these types of data. The above-mentioned chapters illustrate the use of
exact methods for many situations.

1.4.2 Modeling Strategies

Often, you are interested in describing the variation of your response variable in your data with a
statistical model. In the continuous data setting, you frequently fit a model to the expected mean
response. However, with categorical outcomes, there are a variety of response functions that you
can model. Depending on the response function that you choose, you can use weighted least
squares or maximum likelihood methods to estimate the model parameters.
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Modeling Strategies 7

Perhaps the most common response function modeled for categorical data is the logit. If you have
a dichotomous response and represent the proportion of those subjects with an event (versus no
event) outcome as p, then the logit can be written

log
�

p

1 � p

�

Logistic regression is a modeling strategy that relates the logit to a set of explanatory variables
with a linear model. One of its benefits is that estimates of odds ratios, important measures of
association, can be obtained from the parameter estimates. Maximum likelihood estimation is used
to provide those estimates.

Chapter 8, “Logistic Regression I: Dichotomous Response,” discusses logistic regression for
a dichotomous outcome variable. Chapter 9, “Logistic Regression II: Polytomous Response,”
discusses logistic regression for the situation where there are more than two outcomes for the
response variable. Logits called generalized logits can be analyzed when the outcomes are nominal.
And logits called cumulative logits can be analyzed when the outcomes are ordinal. Chapter
10, “Conditional Logistic Regression,” describes a specialized form of logistic regression that is
appropriate when the data are highly stratified or arise from matched case-control studies. These
chapters describe the use of exact conditional logistic regression for those situations where you
have limited or sparse data, and the asymptotic requirements for the usual maximum likelihood
approach are not met.

Poisson regression is a modeling strategy that is suitable for discrete counts, and it is discussed in
Chapter 12, “Poisson Regression and Related Loglinear Models.” Most often the log of the count
is used as the response function.

Some application areas have features that led to the development of special statistical techniques.
One of these areas for categorical data is bioassay analysis. Bioassay is the process of determining
the potency or strength of a reagent or stimuli based on the response it elicits in biological
organisms. Logistic regression is a technique often applied in bioassay analysis, where its
parameters take on specific meaning. Chapter 11, “Quantal Bioassay Analysis,” discusses the use
of categorical data methods for quantal bioassay. Another special application area for categorical
data analysis is the analysis of grouped survival data. Chapter 13, “Categorized Time-to-Event
Data,” discusses some features of survival analysis that are pertinent to grouped survival data,
including how to model them with the piecewise exponential model.

In logistic regression, the objective is to predict a response outcome from a set of explanatory
variables. However, sometimes you simply want to describe the structure of association in a set of
variables for which there are no obvious outcome or predictor variables. This occurs frequently for
sociological studies. The loglinear model is a traditional modeling strategy for categorical data and
is appropriate for describing the association in such a set of variables. It is closely related to logistic
regression, and the parameters in a loglinear model are also estimated with maximum likelihood
estimation. Chapter 12, “Poisson Regression and Related Loglinear Models,” includes a discussion
of the loglinear model, including a typical application.

Besides the logit and log counts, other useful response functions that can be modeled include
proportions, means, and measures of association. Weighted least squares estimation is a method of
analyzing such response functions, based on large sample theory. These methods are appropriate
when you have sufficient sample size and when you have a randomly selected sample, either
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8 Chapter 1: Introduction

directly through study design or indirectly via assumptions concerning the representativeness
of the data. Not only can you model a variety of useful functions, but weighted least squares
estimation also provides a useful framework for the analysis of repeated categorical measurements,
particularly those limited to a small number of repeated values. Chapter 14, “Weighted Least
Squares,” addresses modeling categorical data with weighted least squares methods, including the
analysis of repeated measurements data.

Generalized estimating equations (GEE) is a widely used method for the analysis of correlated
responses, particularly for the analysis of categorical repeated measurements. The GEE method
applies to a broad range of repeated measurements situations, such as those including time-
dependent covariates and continuous explanatory variables, that weighted least squares doesn’t
handle. Chapter 15, “Generalized Estimating Equations,” discusses the GEE approach and
illustrates its application with a number of examples.

1.5 Working with Tables in SAS Software

This section discusses some considerations of managing tables with SAS. If you are already
familiar with the FREQ procedure, you may want to skip this section.

Many times, categorical data are presented to the researcher in the form of tables, and other times,
they are presented in the form of case record data. SAS procedures can handle either type of data.
In addition, many categorical data have ordered categories, so that the order of the levels of the
rows and columns takes on special meaning. There are numerous ways that you can specify a
particular order to SAS procedures.

Consider the following SAS DATA step that inputs the data displayed in Table 1.1.

data respire;
input treat $ outcome $ count;
datalines;

placebo f 16
placebo u 48
test f 40
test u 20
;

proc freq;
weight count;
tables treat*outcome;

run;

The data set RESPIRE contains three variables: TREAT is a character variable containing values
for treatment, OUTCOME is a character variable containing values for the outcome (f for favorable
and u for unfavorable), and COUNT contains the number of observations that have the respective
TREAT and OUTCOME values. Thus, COUNT effectively takes values corresponding to the cells
of Table 1.1. The PROC FREQ statements request that a table be constructed using TREAT as
the row variable and OUTCOME as the column variable. By default, PROC FREQ orders the
values of the rows (columns) in alphanumeric order. The WEIGHT statement is necessary to tell
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1.5. Working with Tables in SAS Software 9

the procedure that the data are count data, or frequency data; the variable listed in the WEIGHT
statement contains the values of the count variable.

Output 1.1 contains the resulting frequency table.

Output 1.1 Frequency Table

Frequency
Percent
Row Pct
Col Pct

Table of treat by outcome

treat

outcome

f u Total

placebo 16
12.90
25.00
28.57

48
38.71
75.00
70.59

64
51.61

test 40
32.26
66.67
71.43

20
16.13
33.33
29.41

60
48.39

Total 56
45.16

68
54.84

124
100.00

Suppose that a different sample produced the numbers displayed in Table 1.7.

Table 1.7 Respiratory Outcomes

Treatment Favorable Unfavorable Total
Placebo 5 10 15
Test 8 20 28

These data may be stored in case record form, which means that each individual is represented
by a single observation. You can also use this type of input with the FREQ procedure. The only
difference is that the WEIGHT statement is not required.

The following statements create a SAS data set for these data and invoke PROC FREQ for case
record data. The @@ symbol in the INPUT statement means that the data lines contain multiple
observations.

data respire;
input treat $ outcome $ @@;
datalines;

placebo f placebo f placebo f
placebo f placebo f
placebo u placebo u placebo u
placebo u placebo u placebo u
placebo u placebo u placebo u
placebo u
test f test f test f
test f test f test f
test f test f
test u test u test u
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10 Chapter 1: Introduction

test u test u test u
test u test u test u
test u test u test u
test u test u test u
test u test u test u
test u test u
;

proc freq;
tables treat*outcome;

run;

Output 1.2 displays the resulting frequency table.

Output 1.2 Frequency Table

Frequency
Percent
Row Pct
Col Pct

Table of treat by outcome

treat

outcome

f u Total

placebo 5
11.63
33.33
38.46

10
23.26
66.67
33.33

15
34.88

test 8
18.60
28.57
61.54

20
46.51
71.43
66.67

28
65.12

Total 13
30.23

30
69.77

43
100.00

In this book, the data are generally presented in count form.

When ordinal data are considered, it becomes quite important to ensure that the levels of the rows
and columns are sorted correctly. By default, the data are going to be sorted alphanumerically. If
this isn’t suitable, then you need to alter the default behavior.

Consider the data displayed in Table 1.2. Variable IMPROVE is the outcome, and the values
marked, some, and none are listed in decreasing order. Suppose that the data set ARTHRITIS is
created with the following statements.

data arthritis;
length treatment $7. sex $6. ;
input sex $ treatment $ improve $ count @@;
datalines;

female active marked 16 female active some 5 female active none 6
female placebo marked 6 female placebo some 7 female placebo none 19
male active marked 5 male active some 2 male active none 7
male placebo marked 1 male placebo some 0 male placebo none 10
;

If you invoked PROC FREQ for this data set and used the default sort order, the levels of the
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1.5. Working with Tables in SAS Software 11

columns would be ordered marked, none, and some, which would be incorrect. One way to change
this default sort order is to use the ORDER=DATA option in the PROC FREQ statement. This
specifies that the sort order is the same order in which the values are encountered in the data set.
Thus, since ‘marked’ comes first, it is first in the sort order. Since ‘some’ is the second value for
IMPROVE encountered in the data set, then it is second in the sort order. And ‘none’ would be third
in the sort order. This is the desired sort order. The following PROC FREQ statements produce a
table displaying the sort order resulting from the ORDER=DATA option.

proc freq order=data;
weight count;
tables treatment*improve;

run;

Output 1.3 displays the frequency table for the cross-classification of treatment and improvement
for these data; the values for IMPROVE are in the correct order.

Output 1.3 Frequency Table from ORDER=DATA Option

Frequency
Percent
Row Pct
Col Pct

Table of treatment by improve

treatment

improve

marked some none Total

active 21
25.00
51.22
75.00

7
8.33

17.07
50.00

13
15.48
31.71
30.95

41
48.81

placebo 7
8.33

16.28
25.00

7
8.33

16.28
50.00

29
34.52
67.44
69.05

43
51.19

Total 28
33.33

14
16.67

42
50.00

84
100.00

Other possible values for the ORDER= option include FORMATTED, which means sort by the
formatted values. The ORDER= option is also available with the CATMOD, LOGISTIC, and
GENMOD procedures. For information on the ORDER= option for the FREQ procedure, refer to
the SAS/STAT User’s Guide. This option is used frequently in this book.

Often, you want to analyze sets of tables. For example, you may want to analyze the cross-
classification of treatment and improvement for both males and females. You do this in PROC
FREQ by using a three-way crossing of the variables SEX, TREAT, and IMPROVE.

proc freq order=data;
weight count;
tables sex*treatment*improve / nocol nopct;

run;

The two rightmost variables in the TABLES statement determine the rows and columns of the
table, respectively. Separate tables are produced for the unique combination of values of the other
variables in the crossing. Since SEX has two levels, one table is produced for males and one table
is produced for females. If there were four variables in this crossing, with the two variables on the
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12 Chapter 1: Introduction

left having two levels each, then four tables would be produced, one for each unique combination
of the two leftmost variables in the TABLES statement.

Note also that the options NOCOL and NOPCT are included. These options suppress the printing
of column percentages and cell percentages, respectively. Since generally you are interested in row
percentages, these options are often specified in the code displayed in this book.

Output 1.4 contains the two tables produced with the preceding statements.

Output 1.4 Producing Sets of Tables

Frequency
Row Pct

Table 1 of treatment by improve

Controlling for sex=female

treatment

improve

marked some none Total

active 16
59.26

5
18.52

6
22.22

27

placebo 6
18.75

7
21.88

19
59.38

32

Total 22 12 25 59

Frequency
Row Pct

Table 2 of treatment by improve

Controlling for sex=male

treatment

improve

marked some none Total

active 5
35.71

2
14.29

7
50.00

14

placebo 1
9.09

0
0.00

10
90.91

11

Total 6 2 17 25

This section reviewed some of the basic table management necessary for using the FREQ procedure.
Other related options are discussed in the appropriate chapters.
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1.6 Using This Book

This book is intended for a variety of audiences, including novice readers with some statistical
background (solid understanding of regression analysis), those readers with substantial statistical
background, and those readers with a background in categorical data analysis. Therefore, not all of
this material will have the same importance to all readers. Some chapters include a good deal of
tutorial material, while others have a good deal of advanced material. This book is not intended to
be a comprehensive treatment of categorical data analysis, so some topics are mentioned briefly for
completeness and some other topics are emphasized because they are not well documented.

The data used in this book come from a variety of sources and represent a wide breadth of
application. However, due to the biostatistical background of all three authors, there is a certain
inevitable weighting of biostatistical examples. Most of the data come from practice, and
the original sources are cited when this is true; however, due to confidentiality concerns and
pedagogical requirements, some of the data are altered or created. However, they still represent
realistic situations.

Chapters 2–4 are intended to be accessible to all readers, as is most of Chapter 5. Chapter 6 is
an integration of Mantel-Haenszel methods at a more advanced level, but scanning it is probably
a good idea for any reader interested in the topic. In particular, the discussion about the analysis
of repeated measurements data with extended Mantel-Haenszel methods is useful material for all
readers comfortable with the Mantel-Haenszel technique.

Chapter 7 is a special interest chapter relating Mantel-Haenszel procedures to traditional nonpara-
metric methods used for continuous data outcomes.

Chapters 8 and 9 on logistic regression are intended to be accessible to all readers, particularly
Chapter 8. The last section of Chapter 8 describes the statistical methodology more completely
for the advanced reader. Most of the material in Chapter 9 should be accessible to most readers.
Chapter 10 is a specialized chapter that discusses conditional logistic regression and requires
somewhat more statistical expertise. Chapter 11 discusses the use of logistic regression in
analyzing bioassay data.

Parts of the subsequent chapters discuss more advanced topics and are necessarily written at a
higher statistical level. Chapter 12 describes Poisson regression and loglinear models; much of the
Poisson regression should be fairly accessible but the loglinear discussion is somewhat advanced.
Chapter 13 discusses the analysis of categorized time-to-event data and most of it should be fairly
accessible.

Chapter 14 discusses weighted least squares and is written at a somewhat higher statistical level
than Chapters 8 and 9, but most readers should find this material useful, particularly the examples.
Chapter 15 describes the use of generalized estimating equations. The opening section includes a
basic example that is intended to be accessible to a wide range of readers.

All of the examples were executed with SAS/STAT 12.1, and the few exceptions where options and
results are only available with SAS/STAT 12.1 are noted in the “Preface to the Third Edition.”
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Chapter 2

The 2 � 2 Table
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2.1 Introduction

The 2 � 2 contingency table is one of the most common ways to summarize categorical data.
Categorizing patients by their favorable or unfavorable response to two different drugs, asking
health survey participants whether they have regular physicians and regular dentists, and asking
residents of two cities whether they desire more environmental regulations all result in data that can
be summarized in a 2 � 2 table.

Generally, interest lies in whether there is an association between the row variable and the column
variable that produce the table; sometimes there is further interest in describing the strength of that
association. The data can arise from several different sampling frameworks, and the interpretation
of the hypothesis of no association depends on the framework. Data in a 2 � 2 table can represent
the following:

� simple random samples from two groups that yield two independent binomial distributions
for a binary response

Asking residents from two cities whether they desire more environmental regulations is an
example of this framework. This is a stratified random sampling setting, since the subjects
from each city represent two independent random samples. Because interest lies in whether
the proportion favoring regulation is the same for the two cities, the hypothesis of interest is
the hypothesis of homogeneity. Is the distribution of the response the same in both groups?
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16 Chapter 2: The 2 � 2 Table

� a simple random sample from one group that yields a single multinomial distribution for the
cross-classification of two binary responses

Taking a random sample of subjects and asking whether they see both a regular physician
and a regular dentist is an example of this framework. The hypothesis of interest is one of
independence. Are having a regular dentist and having a regular physician independent of
each other?

� randomized assignment of patients to two equivalent treatments, resulting in the hypergeo-
metric distribution

This framework occurs when patients are randomly allocated to one of two drug treatments,
regardless of how they are selected, and their response to that treatment is the binary outcome.
Under the null hypothesis that the effects of the two treatments are the same for each patient,
a hypergeometric distribution applies to the response distributions for the two treatments.

� incidence densities for counts of subjects who responded with some event versus the extent
of exposure for the event

These counts represent independent Poisson processes. This framework occurs less fre-
quently than the others but is still important.

Table 2.1 summarizes the information from a randomized clinical trial that compared two treatments
(test and placebo) for a respiratory disorder.

Table 2.1 Respiratory Outcomes

Treatment Favorable Unfavorable Total
Placebo 16 48 64
Test 40 20 60

The question of interest is whether the rates of favorable response for test (67%) and placebo
(25%) are the same. You can address this question by investigating whether there is a statistical
association between treatment and outcome. The null hypothesis is stated

H0WThere is no association between treatment and outcome.

There are several ways of testing this hypothesis; many of the tests are based on the chi-square
statistic. Section 2.2 discusses these methods. However, sometimes the counts in the table cells are
too small to meet the sample size requirements necessary for the chi-square distribution to apply,
and exact methods based on the hypergeometric distribution are used to test the hypothesis of no
association. Exact methods are discussed in Section 2.3.

In addition to testing the hypothesis concerning the presence of association, you may be interested
in describing the association or gauging its strength. Section 2.4 discusses the estimation of the
difference in proportions from 2 � 2 tables. Section 2.5 discusses measures of association, which
assess strength of association, and Section 2.6 discusses measures called sensitivity and specificity,
which are useful when the two responses correspond to two different methods for determining
whether a particular disorder is present. And 2 � 2 tables often display data for matched pairs;
Section 2.7 discusses McNemar’s test for assessing association for matched pairs data. Finally,
Section 2.8 discusses computing incidence density ratios when the 2 � 2 table represents counts
from Poisson processes.
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2.2 Chi-Square Statistics

Table 2.2 displays the generic 2 � 2 table, including row and column marginal totals.

Table 2.2 2 � 2 Contingency Table

Row Column
Levels 1 2 Total

1 n11 n12 n1C
2 n21 n22 n2C

Total nC1 nC2 n

Under the randomization framework that produced Table 2.1, the row marginal totals n1C and
n2C are fixed since 60 patients were randomly allocated to one of the treatment groups and 64 to
the other. The column marginal totals can be regarded as fixed under the null hypothesis of no
treatment difference for each patient (since each patient would have the same response regardless
of the assigned treatment, under this null hypothesis). Then, given that all of the marginal totals
n1C, n2C, nC1, and nC2 are fixed under the null hypothesis, the probability distribution from the
randomized allocation of patients to treatment can be written

Prfnij g D
n1CŠn2CŠnC1ŠnC2Š

nŠn11Šn12Šn21Šn22Š

which is the hypergeometric distribution. The expected value of nij is

Efnij jH0g D
niCnCj

n
D mij

and the variance is

V fnij jH0g D
n1Cn2CnC1nC2

n2.n � 1/
D vij

For a sufficiently large sample, n11 approximately has a normal distribution, which implies that

Q D
.n11 �m11/

2

v11

approximately has a chi-square distribution with one degree of freedom. It is the ratio of a squared
difference from the expected value versus its variance, and such quantities follow the chi-square
distribution when the variable is distributed normally. Q is often called the randomization (or
Mantel-Haenszel) chi-square. It doesn’t matter how the rows and columns are arranged; Q takes
the same value since

jn11 �m11j D jnij �mij j D
jn11n22 � n12n21j

n
D
n1Cn2C

n
jp1 � p2j

where pi D .ni1=n1C/ is the observed proportion in column 1 for the i th row.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 
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A related statistic is the Pearson chi-square statistic. This statistic is written

QP D

2X
iD1

2X
jD1

.nij �mij /
2

mij
D

n

.n � 1/
Q D

.p1 � p2/
2

f.1=n1C C 1=n2C/pC.1 � pC/g

where pC D .nC1=n/ is the proportion in column 1 for the pooled rows.

If the cell counts are sufficiently large, QP is distributed as chi-square with one degree of freedom.
As n grows large, QP and Q converge. A useful rule for determining adequate sample size for
both Q and QP is that the expected value mij should exceed 5 (and preferable 10) for all of the
cells. While Q is discussed here in the framework of a randomized allocation of patients to two
groups, Q and QP are also appropriate for investigating the hypothesis of no association for all of
the sampling frameworks described previously.

The following PROC FREQ statements produce a frequency table and the chi-square statistics
for the data in Table 2.1. The data are supplied in frequency (count) form. An observation
is supplied for each configuration of the values of the variables TREAT and OUTCOME. The
variable COUNT holds the total number of observations that have that particular configuration.
The WEIGHT statement tells the FREQ procedure that the data are in frequency form and names
the variable that contains the frequencies. Alternatively, the data could be provided as case records
for the individual patients; with this data structure, there would be 124 data lines corresponding to
the 124 patients, and neither the variable COUNT nor the WEIGHT statement would be required.

The CHISQ option in the TABLES statement produces chi-square statistics.

data respire;
input treat $ outcome $ count;
datalines;

placebo f 16
placebo u 48
test f 40
test u 20
;

proc freq;
weight count;
tables treat*outcome / chisq;

run;

Output 2.1 displays the data in a 2 � 2 table. With an overall sample size of 124, and all expected
cell counts greater than 10, the sampling assumptions for the chi-square statistics are met. PROC
FREQ prints out a warning message when more than 20% of the cells in a table have expected
counts less than 5. (You can specify the EXPECTED option in the TABLE statement to produce
the expected cell counts along with the cell percentages.)
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Output 2.1 Frequency Table

Frequency
Percent
Row Pct
Col Pct

Table of treat by outcome

treat

outcome

f u Total

placebo 16
12.90
25.00
28.57

48
38.71
75.00
70.59

64
51.61

test 40
32.26
66.67
71.43

20
16.13
33.33
29.41

60
48.39

Total 56
45.16

68
54.84

124
100.00

Output 2.2 contains the table with the chi-square statistics.

Output 2.2 Chi-Square Statistics

Statistic DF Value Prob

Chi-Square 1 21.7087 <.0001

Likelihood Ratio Chi-Square 1 22.3768 <.0001

Continuity Adj. Chi-Square 1 20.0589 <.0001

Mantel-Haenszel Chi-Square 1 21.5336 <.0001

Phi Coefficient -0.4184

Contingency Coefficient 0.3860

Cramer's V -0.4184

Fisher's Exact Test

Cell (1,1) Frequency (F) 16

Left-sided Pr <= F 2.838E-06

Right-sided Pr >= F 1.0000

Table Probability (P) 2.397E-06

Two-sided Pr <= P 4.754E-06

Sample Size = 124

The randomization statistic Q is labeled “Mantel-Haenszel Chi-Square,” and the Pearson chi-
square QP is labeled “Chi-Square.” Q has a value of 21.5336 and p < 0:0001; QP has a value
of 21.7087 and p < 0:0001. Both of these statistics are clearly significant. There is a strong
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20 Chapter 2: The 2 � 2 Table

association between treatment and outcome such that the test treatment results in a more favorable
response outcome than the placebo. The row percentages in Output 2.1 show that the test treatment
resulted in 67% favorable response and the placebo treatment resulted in 25% favorable response.

The output also includes a statistic labeled “Likelihood Ratio Chi-Square.” This statistic, often
written QL, is asymptotically equivalent to Q and QP . The statistic QL is described in Chapter
8 in the context of hypotheses for the odds ratio, for which there is some consideration in Section
2.5. QL is not often used in the analysis of 2 � 2 tables. Some of the other statistics are discussed
in the next section.

2.3 Exact Tests

Sometimes your data include small and zero cell counts. For example, consider the data in Table 2.3
from a study on treatments for healing severe infections. Randomly assigned test treatment and
control are compared to determine whether the rates of favorable response are the same.

Table 2.3 Severe Infection Treatment Outcomes
Treatment Favorable Unfavorable Total
Test 10 2 12
Control 2 4 6
Total 12 6 18

Obviously, the sample size requirements for the chi-square tests described in Section 2.2 are not
met by these data. However, if you can consider the margins (12, 6, 12, 6) to be fixed, then the
random assignment and the null hypothesis of no association imply the hypergeometric distribution

Prfnij g D
n1CŠn2CŠnC1ŠnC2Š

nŠn11Šn12Šn21Šn22Š

The row margins may be fixed by the treatment allocation process; that is, subjects are randomly
assigned to Test and Control. The column totals can be regarded as fixed by the null hypothesis;
there are 12 patients with favorable response and 6 patients with unfavorable response, regardless of
treatment. If the data are the result of a sample of convenience, you can still condition on marginal
totals being fixed by addressing the null hypothesis that the patients are interchangeable; that is,
the observed distributions of outcome for the two treatments are compatible with what would be
expected from random assignment. That is, all possible assignments of the outcomes for 12 of the
patients to Test and for 6 to Control are equally likely.

Recall that a p-value is the probability of the observed data or more extreme data occurring under
the null hypothesis. With Fisher’s exact test, you determine the p-value for this table by summing
the probabilities of the tables that are as likely or less likely, given the fixed margins. Table 2.4
includes all possible table configurations and their associated probabilities.
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Table 2.4 Table Probabilities
Table Cell

(1,1) (1,2) (2,1) (2,2) Probabilities
12 0 0 6 0.0001
11 1 1 5 0.0039
10 2 2 4 0.0533

9 3 3 3 0.2370
8 4 4 2 0.4000
7 5 5 1 0.2560
6 6 6 0 0.0498

To find the one-sided p-value, you sum the probabilities that are as small or smaller than those
computed for the table observed, in the direction specified by the one-sided alternative. In this case,
it would be those tables in which the Test treatment had the more favorable response:

p D 0:0533C 0:0039C 0:0001 D 0:0573

To find the two-sided p-value, you sum all of the probabilities that are as small or smaller than that
observed, or

p D 0:0533C 0:0039C 0:0001C 0:0498 D 0:1071

Generally, you are interested in the two-sided p-value. Note that when the row (or column) totals
are nearly equal, the p-value for the two-sided Fisher’s exact test is approximately twice the p-value
for the one-sided Fisher’s exact test for the better treatment. When the row (or column) totals are
equal, the p-value for the two-sided Fisher’s exact test is exactly twice the value of the p-value for
the one-sided Fisher’s exact test.

The following SAS statements produce the 2 � 2 frequency table for Table 2.3. Specifying the
CHISQ option also produces Fisher’s exact test for a 2 � 2 table. In addition, the ORDER=DATA
option specifies that PROC FREQ order the levels of the rows (columns) in the same order in which
the values are encountered in the data set.

data severe;
input treat $ outcome $ count;
datalines;

Test f 10
Test u 2
Control f 2
Control u 4
;

proc freq order=data;
weight count;
tables treat*outcome / chisq nocol;

run;

The NOCOL option suppresses the column percentages, as seen in Output 2.3.
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Output 2.3 Frequency Table

Frequency
Percent
Row Pct

Table of treat by outcome

treat

outcome

f u Total

Test 10
55.56
83.33

2
11.11
16.67

12
66.67

Control 2
11.11
33.33

4
22.22
66.67

6
33.33

Total 12
66.67

6
33.33

18
100.00

Output 2.4 contains the chi-square statistics, including the exact test. Note that the sample size
assumptions are not met for the chi-square tests: the warning beneath the table asserts that this is
the case.

Output 2.4 Table Statistics

Statistic DF Value Prob

Chi-Square 1 4.5000 0.0339

Likelihood Ratio Chi-Square 1 4.4629 0.0346

Continuity Adj. Chi-Square 1 2.5313 0.1116

Mantel-Haenszel Chi-Square 1 4.2500 0.0393

Phi Coefficient 0.5000

Contingency Coefficient 0.4472

Cramer's V 0.5000

WARNING: 75% of the cells have expected counts less
than 5. Chi-Square may not be a valid test.

Fisher's Exact Test

Cell (1,1) Frequency (F) 10

Left-sided Pr <= F 0.9961

Right-sided Pr >= F 0.0573

Table Probability (P) 0.0533

Two-sided Pr <= P 0.1070

Sample Size = 18
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SAS produces both a left-tail and right-tail p-value for Fisher’s exact test. The left-tail probability
is the probability of all tables such that the (1,1) cell value is less than or equal to the one observed.
The right-tail probability is the probability of all tables such that the (1,1) cell value is greater than
or equal to the one observed. Thus, the one-sided p-value is the same as the right-tailed p-value in
this case, since large values for the (1,1) cell correspond to better outcomes for Test treatment.

Both the two-sided p-value of 0.1070 and the one-sided p-value of 0.0573 are larger than the
p-values associated with QP (p D 0:0339) and Q (p D 0:0393). Depending on your significance
criterion, you might reach very different conclusions with these three test statistics. The sample
size requirements for the chi-square distribution are not met with these data; hence the p-values
from these test statistics with this approximation are questionable. This example illustrates the
usefulness of Fisher’s exact test when the sample size requirements for the usual chi-square tests
are not met.

The output also includes a statistic labeled the “Continuity Adj. Chi-Square”; this is the continuity-
adjusted chi-square statistic suggested by Yates (1934), which is intended to correct the Pearson
chi-square statistic so that it more closely approximates Fisher’s exact test. In this case, the
correction produces a chi-square value of 2.5313 with p D 0:1116, which is certainly close to
the two-sided Fisher’s exact test value. And using half of the continuity-corrected chi-square
approximates the one-sided Fisher’s exact test well. However, many statisticians recommend that
you should simply apply Fisher’s exact test when the sample size requires it rather than try to
approximate it. In particular, the continuity-corrected chi-square may be overly conservative for
two-sided tests when the corresponding hypergeometric distribution is asymmetric; that is, the two
row totals and the two column totals are very different, and the sample sizes are small.

Fisher’s exact test is always appropriate, even when the sample size is large.

2.3.1 Exact p-values for Chi-Square Statistics

For many years, the only practical way to assess association in 2 � 2 tables that had small or zero
counts was with Fisher’s exact test. This test is computationally quite easy for the 2 � 2 case.
However, you can also obtain exact p-values for the statistics discussed in Section 2.2. This is
possible due to the development of fast and efficient network algorithms that provide a distinct
advantage over direct enumeration. Although such enumeration is reasonable for Fisher’s exact test,
it can prove prohibitive in other instances. See Mehta, Patel, and Tsiatis (1984) for a description
of these algorithms; Agresti (1992) provides a useful overview of the various algorithms for the
computation of exact p-values.

In the case of Q, QP , and a closely related statistic, QL (likelihood ratio statistic), large values of
the statistic imply a departure from the null hypothesis. The exact p-values for these statistics are
the sum of the probabilities for the tables that have a test statistic greater than or equal to the value
of the observed test statistic.

The EXACT statement enables you to request exact p-values or confidence limits for many of
the statistics produced by the FREQ procedure. See the SAS/STAT User’s Guide for details about
specification and the options that control computation time. Exact computations might take a
considerable amount of memory and time for large problems.
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24 Chapter 2: The 2 � 2 Table

For the Table 2.3 data, the following SAS statements produce the exact p-values for the chi-square
tests of association. You include the keyword(s) for the statistics for which to compute exact
p-values, CHISQ in this case.

proc freq order=data;
weight count;
tables treat*outcome / chisq nocol;
exact chisq;

run;

First, the usual table for the CHISQ statistics is displayed (not re-displayed here), and then
individual tables for QP , QL, and Q are presented, including test values and both asymptotic and
exact p-values, as shown in Output 2.5. Output 2.6, and Output 2.7.

Output 2.5 Pearson Chi-Square Test

Pearson Chi-Square Test

Chi-Square 4.5000

DF 1

Asymptotic Pr >  ChiSq 0.0339

Exact      Pr >= ChiSq 0.1070

Output 2.6 Likelihood Ratio Chi-Square Test

Likelihood Ratio Chi-Square
Test

Chi-Square 4.4629

DF 1

Asymptotic Pr >  ChiSq 0.0346

Exact      Pr >= ChiSq 0.1070

Output 2.7 Mantel-Haenszel Chi-Square Test

Mantel-Haenszel Chi-Square Test

Chi-Square 4.2500

DF 1

Asymptotic Pr >  ChiSq 0.0393

Exact      Pr >= ChiSq 0.1070

QP = 4.5 with an exact p-value of 0.1070 (asymptotic p D 0:0339). Q D 4:25 with an exact
p-value of 0.1070 (asymptotic p D 0:0393). QL is similar, with a value of 4.4629 and an exact
p-value 0.1070 (asymptotic p D 0:0346). Thus, a researcher using the asymptotic p-values in
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this case may have found an inappropriate significance that is not there when exact p-values are
considered. Note that Fisher’s exact test provides an identical p-value of 0.1070, but this is not
always the case.

Using the exact p-values for the association chi-square versus applying the Fisher’s exact test is a
matter of preference. However, there might be some interpretation advantage in using the Fisher’s
exact test since the comparison is to your actual table rather than to a test statistic based on the
table.

2.4 Difference in Proportions

The previous sections have addressed the question of whether there is an association between the
rows and columns of a 2 � 2 table. In addition, you may be interested in describing the association
in the table. For example, once you have established that the proportions computed from a table are
different, you may want to estimate their difference.

Consider Table 2.5, which displays data from two independent groups.

Table 2.5 2 � 2 Contingency Table

Yes No Total Proportion Yes
Group 1 n11 n12 n1C p1 D n11=n1C
Group 2 n21 n22 n2C p2 D n21=n2C

Total nC1 nC2 n

If the two groups are arguably comparable to simple random samples from populations with
corresponding population fractions for Yes as �1 and �2, respectively, you might be interested in
estimating the difference between the proportions p1 and p2 with d D p1 �p2. You can show that
the expected value with respect to the samples from the two groups having independent binomial
distributions is

Efp1 � p2g D �1 � �2

and the variance is

V fp1 � p2g D
�1.1 � �1/

n1C
C
�2.1 � �2/

n2C

for which a consistent estimator is

vd D
p1.1 � p1/

n1C
C
p2.1 � p2/

n2C

A 100.1 � ˛/% confidence interval for .�1 � �2/ is written
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d ˙

�
z˛=2
p
vd C

1

2

�
1

n1C
C

1

n2C

��

where z˛=2 is the 100.1 � .˛=2// percentile of the standard normal distribution; this confidence
interval is based on Fleiss, Levin, and Paik (2003). These confidence limits include a continuity
adjustment to the Wald asymptotic confidence limits that adjust for the difference between the
normal approximation and the discrete binomial distribution. They are appropriate for moderate
sample sizes—say cell counts of at least 8.

For example, consider Table 2.6, which reproduces the data analyzed in Section 2.2. In addition
to determining that there is a statistical association between treatment and response, you may be
interested in estimating the difference between the proportions of favorable response for the test
and placebo treatments, including a 95% confidence interval.

Table 2.6 Respiratory Outcomes

Favorable
Treatment Favorable Unfavorable Total Proportion
Placebo 16 48 64 0.250
Test 40 20 60 0.667
Total 56 68 124 0.452

The difference is d D 0:667 � 0:25 D 0:417, and the confidence interval is written

0:417˙

(
.1:96/

�
0:667.1 � 0:667/

60
C
0:25.1 � 0:25/

64

�1=2
C
1

2

�
1

60
C

1

64

�)
D 0:417˙ 0:177

D .0:241; 0:592/

A related measure of association is the Pearson correlation coefficient. This statistic is proportional
to the difference of proportions. Since QP is also proportional to the squared difference in
proportions, the Pearson correlation coefficient is also proportional to

p
QP .

The Pearson correlation coefficient can be written

r D

(
.n11 �

n1CnC1

n
/=

�
.n1C �

n1C
2

n
/.nC1 �

nC1
2

n
/

�1=2)
D

n
.n11n22 � n12n21/=Œ.n1Cn2CnC1nC2/�

1=2
o

D Œn1Cn2C=nC1nC2�
1=2d

D .QP =n/
1=2

For the data in Table 2.6, r is computed as

r D Œ.60/.64/=.56/.68/�1=2.0:417/ D 0:418
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The FREQ procedure produces the difference in proportions and the continuity-corrected Wald
interval. PROC FREQ also provides the uncorrected Wald confidence limits, but the Wald-based
interval is known to have poor coverage, among other issues, especially when the proportions grow
close to 0 or 1. See Newcombe (1998) and Agresti and Caffo (2000) for further discussion.

You can request the difference of proportions and the continuity-corrected Wald confidence limits
with the RISKDIFF (CORRECT) option in the TABLES statement. The following statements
produce the difference along with the Pearson correlation coefficient, which is requested with the
MEASURES option.

The ODS SELECT statement restricts the output produced to the RiskDiffCol1 table and the
Measures table. The RiskDiffCol1 table produces the difference for column 1 of the frequency
table. There is also a table for the column 2 difference called RiskDiffCol2, which is not produced
in this example.

data respire2;
input treat $ outcome $ count @@;
datalines;

test f 40 test u 20
placebo f 16 placebo u 48
;

ods select RiskDiffCol1 Measures;
proc freq order=data;

weight count;
tables treat*outcome / riskdiff (correct) measures;

run;

Output 2.8 displays the value for the Pearson correlation coefficient as 0.4184.
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Output 2.8 Pearson Correlation Coefficient

Statistics for Table of treat by outcomeStatistics for Table of treat by outcome

Statistic Value ASE

Gamma 0.7143 0.0974

Kendall's Tau-b 0.4184 0.0816

Stuart's Tau-c 0.4162 0.0814

Somers' D C|R 0.4167 0.0814

Somers' D R|C 0.4202 0.0818

Pearson Correlation 0.4184 0.0816

Spearman Correlation 0.4184 0.0816

Lambda Asymmetric C|R 0.3571 0.1109

Lambda Asymmetric R|C 0.4000 0.0966

Lambda Symmetric 0.3793 0.0983

Uncertainty Coefficient C|R 0.1311 0.0528

Uncertainty Coefficient R|C 0.1303 0.0525

Uncertainty Coefficient Symmetric 0.1307 0.0526

Output 2.9 contains the value for the difference of proportions for Test versus Placebo for the
Favorable response, which is 0.4167 with confidence limits (0.2409, 0.5924). Note that this
table also includes the proportions of column 1 response in both rows, along with the continuity-
corrected asymptotic confidence limits and exact (Clopper-Pearson) confidence limits for the row
proportions, which are based on inverting two equal-tailed binomial tests to identify the �i that
would not be contradicted by the observed pi at the .˛=2/ significance level. See Clopper and
Pearson (1934) for more information.

Output 2.9 Difference in Proportions

Column 1 Risk Estimates

Risk ASE
(Asymptotic) 95%
ConfidenceLimits

(Exact) 95%
ConfidenceLimits

Row 1 0.6667 0.0609 0.5391 0.7943 0.5331 0.7831

Row 2 0.2500 0.0541 0.1361 0.3639 0.1502 0.3740

Total 0.4516 0.0447 0.3600 0.5432 0.3621 0.5435

Difference 0.4167 0.0814 0.2409 0.5924

Difference is (Row 1 - Row 2)

The asymptotic confidence limits include a continuity correction.
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Another way to generate a confidence interval for the difference of proportions is to invert a score
test. For testing goodness of fit for a specified difference �, QP is the score test. Consider that
Efp1g D � and Efp2g D � C�. Then you can write

QP D
.n11 � n1C O�/

2

n1C O�
C
.n1C � n11 � n1C.1 � O�//

2

n1C.1 � O�/
C

.n21 � n2C. O� C�//
2

n2C. O� C�/
C
.n2C � n21 � n2C.1 � O� ��//

2

n2C.1 � O� ��/

D Z˛
2

D 3:84

for ˛ D 0:05. You then identify the � so that QP � 3:84 for a 0.95 confidence interval, which
requires iterative methods. This Miettinen-Nurminen interval (1985) has mean coverage somewhat
above the nominal value (Newcombe 1998) and is also appealing theoretically (Newcombe and
Nurminen 2011). The score interval is available with the FREQ procedure, which produces a
bias-corrected interval by default (as specified in Miettinen and Nurminen 1985).

The following statements request the Miettinen-Nurminen interval, along with a corrected Wald
interval. You specify these additional confidence intervals with the CL=(WALD MN) suboption
of the RISKDIFF option. Adding the CORRECT option means that the Wald interval will be the
corrected one.

proc freq order=data;
weight count;
tables treat*outcome / riskdiff(cl=(wald mn) correct) measures;

run;

Output 2.10 contains both the Miettinen-Nurminen and corrected Wald confidence intervals.

Output 2.10 Miettinen and Nurminen Confidence Interval

Confidence Limits for the Proportion
(Risk) Difference

Column 1 (outcome = f)

Proportion Difference = 0.4167

Type 95% ConfidenceLimits

Miettinen-Nurminen 0.2460 0.5627

Wald (Corrected) 0.2409 0.5924

The Miettinen-Nurminen confidence interval is a bit narrower than the corrected Wald interval. In
general, it might be preferred when the cell count size is marginal.

But what if the cell counts are smaller than 8? Consider the data in Table 2.3 again. One asymptotic
method that does well for small sample sizes is the Newcombe hybrid score interval (Newcombe
1998), which uses Wilson score confidence limits for the binomial proportion (Wilson 1927) in its
construction. You compute these limits by inverting the normal test that uses the null proportion for
the variance (score test) and solving the resulting quadratic equation:
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.p � P /2

P.1 � P /
D
z˛=2

2

n

The solutions (limits) are

 
p C z2˛=2=2n ˙ z˛=2

r�
p.1 � p/C z2

˛=2
=4n

�
=n

!
=
�
1C z2˛=2=n

�
You can produce Wilson score confidence limits for the binomial proportion in PROC FREQ by
specifying the BINOMIAL (WILSON) option for a one-way table.

You then compute the Newcombe confidence interval for the difference of proportions by plugging
in the Wilson score confidence limits PU1; PL1 and PU2; PL2, which correspond to the row 1 and
row 2 proportions, respectively, to obtain the lower (L) and upper .U ) bounds for the confidence
interval for the proportion difference:

L D .p1 � p2/ �

q
.p1 � PL1/2 C .PU2 � p2/2

and

U D .p1 � p2/C

q
.PU1 � p1/2 C .p2 � PL2/2

The Newcombe confidence interval for the difference of proportions has been shown to have good
coverage properties and avoids overshoot (Newcombe 1998); it’s the choice of many practitioners
regardless of sample size. In general, it attains near nominal coverage when the proportions are
away from 0 and 1, and it can have higher than nominal coverage when the proportions are both
close to 0 or 1 (Agresti and Caffo 2000). A continuity-corrected Newcombe’s method also exists,
and it should be considered if a row count is less than 10. You obtain a continuity-corrected
confidence interval for the difference of proportions by plugging in the continuity-corrected Wilson
score confidence limits.

There are also exact methods for computing the confidence intervals for the difference of pro-
portions; they are unconditional exact methods which contend with a nuisance parameter by
maximizing the p-value over all possible values of the parameter (versus, say, Fisher’s exact test,
which is a conditional exact test that conditions on the margins). The unconditional exact intervals
do have the property that the nominal coverage is the lower bound of the actual coverage. One
type of these intervals is computed by inverting two separate one-sided tests where the size of each
test is ˛=2 at most; the actual coverage is bounded by the nominal coverage. This is called the tail
method. However, these intervals have excessively higher than nominal coverage, especially when
the proportions are near 0 or 1, in which case the lower bound of the coverage is 1� ˛=2 instead of
1 � ˛ (Agresti 2002).

The following PROC FREQ statements request the Wald, Newcombe, and unconditional exact
confidence intervals for the difference of the favorable proportion for Test and Placebo. The
CORRECT option specifies that the continuity correction be applied where possible, and the
NORISK option suppresses the rest of the relative risk difference results.
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proc freq order=data data=severe;
weight count;
tables treat*outcome / riskdiff(cl=(wald newcombe exact) correct );
exact riskdiff;

run;

Output 2.11 displays the confidence intervals.

Output 2.11 Confidence Intervals for Difference of Proportions

Statistics for Table of treat by outcome

Statistics for Table of treat by outcome

Confidence Limits for the Proportion (Risk) Difference

Column 1 (outcome = f)

Proportion Difference = 0.5000

Type 95% ConfidenceLimits

Exact -0.0296 0.8813

Newcombe Score (Corrected) -0.0352 0.8059

Wald (Corrected) -0.0571 1.0000

The continuity-corrected Wald-based confidence interval is the widest interval at .�0:0571; 1:000/,
and it might have boundary issues with the upper limit of 1. The exact unconditional confidence
interval at (�0.0296, 0.8813) also includes zero. The corrected Newcombe interval is the narrowest
at (�0.0352, 0.8059). All of these confidence intervals are in harmony with the Fisher’s exact test
result (two-sided p D 0:1071), but the corrected Newcombe interval might be the most suitable for
these data.

2.5 Odds Ratio and Relative Risk

Measures of association are used to assess the strength of an association. Numerous measures of
association are available for the contingency table, some of which are described in Chapter 5, “The
s� r Table.” For the 2� 2 table, one measure of association is the odds ratio, and a related measure
of association is the relative risk.

Consider Table 2.5. The odds ratio (OR) compares the odds of the Yes proportion for Group 1 to
the odds of the Yes proportion for Group 2. It is computed as

OR D
p1=.1 � p1/

p2=.1 � p2/
D
n11n22

n12n21

The odds ratio ranges from 0 to infinity. When OR is 1, there is no association between the row
variable and the column variable. When OR is greater than 1, Group 1 is more likely than Group 2
to have the Yes response; when OR is less than 1, Group 1 is less likely than Group 2 to have the
Yes response.
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Define the logit for general p as

logit.p/ D log
�

p

1 � p

�

with log as the natural logarithm. If you take the log of the odds ratio,

f D logfORg D log
�
p1.1 � p2/

p2.1 � p1/

�
D log fp1=.1 � p1/g � log fp2=.1 � p2/g

you see that the odds ratio can be written in terms of the difference between two logits. The logit
is the function that is modeled in logistic regression. As you will see in Chapter 8, “Logistic
Regression I: Dichotomous Response,” the odds ratio and logistic regression are closely connected.

Since

f D logfn11g � logfn12g � logfn21g C logfn22g

a consistent estimate of its variance with usefulness when all nij � 5 (preferably � 10) is

vf D

�
1

n11
C

1

n12
C

1

n21
C

1

n22

�
so a 100.1 � ˛/% confidence interval for OR can be written as

exp.f ˙ z˛=2
p
vf /

The odds ratio is a useful measure of association regardless of how the data are collected. However,
it has special meaning for retrospective studies because it can be used to estimate a quantity called
relative risk, which is commonly used in epidemiological work. The relative risk (RR) is the risk of
developing a particular condition (often a disease) for one group compared to another group. For
data collected prospectively, the relative risk is written

RR D
p1

p2

You can show that

RR D OR �
f1C .n21=n22/g

f1C .n11=n12/g

or that OR approximates RR when n11 and n21 are small relative to n12 and n22, respectively. This
is called the rare outcome paradigm. Usually, the outcome of interest needs to occur less than 10%
of the time for OR and RR to be similar. However, many times when the event under investigation is
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a relatively common occurrence, you are more interested in looking at the difference in proportions
rather than at the odds ratio or the relative risk.

For a retrospective study, estimates for p1, p2, and RR are not available because they involve the
unknown risk of the disease, but the OR estimator for p1.1 � p2/=p2.1 � p1/ is still valid.

For cross-sectional data, the quantity p1=p2 is called the prevalence ratio; it does not indicate risk
because the disease and risk factor are assessed at the same time, but it does give you an idea of the
prevalence of a condition in one group compared to another.

It is important to realize that the odds ratio can always be used as a measure of association, and
that relative risk and the odds ratio as an estimator of relative risk have meaning for certain types of
studies and require certain assumptions.

Table 2.7 contains data from a study about how general daily stress affects one’s opinion on a
proposed new health policy. Since information about stress level and opinion were collected at the
same time, the data are cross-sectional.

Table 2.7 Opinions on New Health Policy

Stress Favorable Unfavorable Total
Low 48 12 60
High 96 94 190

To produce the odds ratio and other measures of association from PROC FREQ, you specify the
MEASURES option in the TABLES statement. The ORDER=DATA option is used in the PROC
FREQ statement to produce a table that looks the same as that displayed in Table 2.7. Without this
option, the row that corresponds to high stress would come first, and the row that corresponds to
low stress would come last.

data stress;
input stress $ outcome $ count;
datalines;

low f 48
low u 12
high f 96
high u 94
;

proc freq order=data;
weight count;
tables stress*outcome / chisq measures nocol nopct;

run;

Output 2.12 contains the resulting frequency table. Since the NOCOL and NOPCT options are
specified, only the row percentages are printed. You can see that 80% of the low stress group were
favorable, while the high-stress group was nearly evenly split between favorable and unfavorable.
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Output 2.12 Frequency Table

Frequency
Row Pct

Table of stress by outcome

stress

outcome

f u Total

low 48
80.00

12
20.00

60

high 96
50.53

94
49.47

190

Total 144 106 250

Output 2.13 displays the chi-square statistics. The statisticsQ andQP indicate a strong association,
with values of 16.1549 and 16.2198, respectively. Note how close the values for these statistics are
for a sample size of 250.

Output 2.13 Chi-Square Statistics

Statistic DF Value Prob

Chi-Square 1 16.2198 <.0001

Likelihood Ratio Chi-Square 1 17.3520 <.0001

Continuity Adj. Chi-Square 1 15.0354 0.0001

Mantel-Haenszel Chi-Square 1 16.1549 <.0001

Phi Coefficient 0.2547

Contingency Coefficient 0.2468

Cramer's V 0.2547

Output 2.14 contains the measures of association. Chapter 5 contains more information about these
measures, which include Somers’ DC jR = .p1 � p2/ and gamma = (OR�1)/ (ORC1) for the 2 �
2 table.
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Output 2.14 Measures of Association

Statistic Value ASE

Gamma 0.5932 0.1147

Kendall's Tau-b 0.2547 0.0551

Stuart's Tau-c 0.2150 0.0489

Somers' D C|R 0.2947 0.0631

Somers' D R|C 0.2201 0.0499

Pearson Correlation 0.2547 0.0551

Spearman Correlation 0.2547 0.0551

Lambda Asymmetric C|R 0.0000 0.0000

Lambda Asymmetric R|C 0.0000 0.0000

Lambda Symmetric 0.0000 0.0000

Uncertainty Coefficient C|R 0.0509 0.0231

Uncertainty Coefficient R|C 0.0630 0.0282

Uncertainty Coefficient Symmetric 0.0563 0.0253

Output 2.15 displays the odds ratio information.

Output 2.15 Odds Ratio

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% ConfidenceLimits

Case-Control (Odds Ratio) 3.9167 1.9575 7.8366

Cohort (Col1 Risk) 1.5833 1.3104 1.9131

Cohort (Col2 Risk) 0.4043 0.2389 0.6841

Sample Size = 250

The odds ratio value is listed beside “Case-Control” in the section labeled “Estimates of the
Relative Risk (Row1/Row2).” The estimated OR is 3.9167, which means that the odds of a
favorable response are roughly four times higher for those persons with low stress than for those
persons with high stress. The confidence intervals are labeled “Confidence Limits” and are
95% confidence intervals by default. To change them, use the ALPHA= option in the TABLES
statement.

The values listed for “Cohort (Col1 Risk)” and “Cohort (Col2 Risk)” are the estimates of relative
risk for a cohort (prospective) study. Since these data are cross-sectional, .p1=p2/ does not
represent relative risk. However, the value 1.5833 is the ratio of the prevalence of favorable
opinions for the low stress group compared to the high stress group. (The value 0.4043 is the
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prevalence ratio of the unfavorable opinions of the low stress group compared to the high stress
group.)

Table 2.8 contains data that concern respiratory illness. Two groups having the same symptoms of
respiratory illness were selected via simple random sampling: one group was treated with a test
treatment, and one group was treated with a placebo. This is an example of a cohort study since the
comparison groups were chosen before the responses were measured. They are considered to come
from independent binomial distributions.

Table 2.8 Respiratory Improvement

Treatment Yes No Total
Test 29 16 45
Placebo 14 31 45

The following statements are submitted to produce chi-square statistics, odds ratios, and relative
risk measures for these data. The ALL option has the same action as specifying both the CHISQ
and the MEASURES options (and the CMH option, discussed in Chapter 3).

data respire;
input treat $ outcome $ count;
datalines;

test yes 29
test no 16
placebo yes 14
placebo no 31
;

proc freq order=data;
weight count;
tables treat*outcome / all nocol nopct;

run;

Output 2.16 displays Q D 9:9085 and QP D 10:0198, as well as the two-sided p D 0:003 for
Fisher’s exact test. Clearly, there is a strong association between treatment and improvement.

Output 2.16 Table Statistics

Frequency
Row Pct

Table of treat by outcome

treat

outcome

yes no Total

test 29
64.44

16
35.56

45

placebo 14
31.11

31
68.89

45

Total 43 47 90
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Output 2.16 continued

Statistic DF Value Prob

Chi-Square 1 10.0198 0.0015

Likelihood Ratio Chi-Square 1 10.2162 0.0014

Continuity Adj. Chi-Square 1 8.7284 0.0031

Mantel-Haenszel Chi-Square 1 9.9085 0.0016

Phi Coefficient 0.3337

Contingency Coefficient 0.3165

Cramer's V 0.3337

Fisher's Exact Test

Cell (1,1) Frequency (F) 29

Left-sided Pr <= F 0.9997

Right-sided Pr >= F 0.0015

Table Probability (P) 0.0011

Two-sided Pr <= P 0.0029

Output 2.17 displays the estimates of relative risk and the odds ratio (other measures of association
produced by the ALL option are not displayed here). Two versions of the relative risk are supplied:
one is the relative risk of the attribute corresponding to the first column, or the risk of improvement.
The column 2 risk is the risk of no improvement. The relative risk for improvement is 2.0714, with
a 95% confidence interval of (1.2742, 3.3675).

Note that if these data had been obtained retrospectively, the odds ratio would be used to
represent the association between group and outcome, but it would not represent the relative
risk since the proportions with improvement are 0.64 and 0.31 for test and control, and so the
rare outcome paradigm does not apply. Note that, in this case where 0:25 < p1; p2 < 0:75,
log OR=4 � .p1 � p2/, where log OR=4 D 0:35 and .p1 � p2/ D 0:33.

Output 2.17 Odds Ratio and Relative Risk

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% ConfidenceLimits

Case-Control (Odds Ratio) 4.0134 1.6680 9.6564

Cohort (Col1 Risk) 2.0714 1.2742 3.3675

Cohort (Col2 Risk) 0.5161 0.3325 0.8011

Sample Size = 90
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2.5.1 Exact Confidence Limits for the Odds Ratio

Section 2.3 discussed Fisher’s exact test for assessing association in 2 � 2 tables that were too
sparse for the usual asymptotic chi-square tests to apply. You may want to compute the odds ratio
as a measure of association for these data, but the usual asymptotic confidence limits would not be
appropriate because, again, the sparseness of the data violates the asymptotic assumptions.

You can obtain exact confidence limits for the odds ratio by using the FREQ procedure. The
computation is based on work presented by Thomas (1971) and Gart (1971). These confidence
limits are conservative by having higher than nominal coverage; the confidence coefficient is not
exactly 1 � ˛, but it is at least 1 � ˛.

Consider the severe infection data in Table 2.3. To compute an odds ratio estimate for the odds of
having a favorable outcome for the treatment group compared to the control group, you submit the
following statements, including the EXACT statement with the OR keyword.

data severe;
input treat $ outcome $ count;
datalines;

Test f 10
Test u 2
Control f 2
Control u 4
;

proc freq order=data;
weight count;
tables treat*outcome / nocol;
exact or;

run;

Output 2.18 displays the estimate of the odds ratio, which is 10. Test subjects have 10 times higher
odds for the favorable response than the control subjects.

Output 2.18 Odds Ratio (Case-Control Study)

Statistics for Table of treat by outcome

Statistics for Table of treat by outcome
Odds Ratio (Case-Control Study)

Odds Ratio 10.0000

Asymptotic Conf Limits

95% Lower Conf Limit 1.0256

95% Upper Conf Limit 97.5005

Exact Conf Limits

95% Lower Conf Limit 0.6896

95% Upper Conf Limit 166.3562
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The exact confidence limits for the odds ratio are (0.6896, 166.3562), indicating low precision.
Note that the exact confidence bounds are much wider than the asymptotic ones, and they are in
harmony with the Fisher’s exact test p D 0:1071 by including the value 1.00 for no association.

2.6 Sensitivity and Specificity

Some other measures frequently calculated for 2 � 2 tables are sensitivity and specificity. These
measures are of particular interest when you are determining the efficacy of screening tests for
various disease outcomes. Sensitivity is the true proportion of positive results that a test elicits
when performed on subjects known to have the disease; specificity is the true proportion of negative
results that a test elicits when performed on subjects known to be disease free.

Often, a standard screening method is used to determine whether disease is present and compared to
a new test method. Table 2.9 contains the results of a study investigating a new screening device for
a skin disease. The distributions for positive and negative results for the test method are assumed
to result from simple random samples from the corresponding populations of persons with disease
present and those with disease absent.

Table 2.9 Skin Disease Screening Test Results

Status Test + Test � Total
Disease Present 52 8 60
Disease Absent 20 100 120

Sensitivity and specificity for these data are estimated by

sensitivity D .n11=n1C/
:
D Pr.TestC jdisease present/

and

specificity D .n22=n2C/
:
D Pr.Test � jdisease absent/

For these data, sensitivity = 52/60 = 0.867 and specificity = 100/120 = 0.833.

You can generate these estimates plus their exact confidence intervals by using PROC FREQ with
the RISKDIFF option.

data screening;
input disease $ outcome $ count @@;
datalines;

present + 52 present - 8
absent + 20 absent - 100
;

proc freq data=screening order=data;
weight count;
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tables disease*outcome / riskdiff;
run;

Output 2.19 displays the results. The sensitivity is the Column 1 Estimate for Row 1, 0.8667, with
exact confidence limits (0.7541, 0.9406).

Output 2.19 Sensitivity Estimate and Confidence Interval

Statistics for Table of disease by outcome

Statistics for Table of disease by outcome
Column 1 Risk Estimates

Risk ASE
(Asymptotic) 95%
ConfidenceLimits

(Exact) 95%
ConfidenceLimits

Row 1 0.8667 0.0439 0.7807 0.9527 0.7541 0.9406

Row 2 0.1667 0.0340 0.1000 0.2333 0.1049 0.2456

Total 0.4000 0.0365 0.3284 0.4716 0.3278 0.4755

Difference 0.7000 0.0555 0.5912 0.8088

Difference is (Row 1 - Row 2)

The specificity is the Column 2 Estimate for Row 2, 0.8333, with exact confidence limits (0.7544,
0.8951), as displayed in Output 2.20.

Output 2.20 Specificity Estimate and Confidence Interval

Column 2 Risk Estimates

Risk ASE
(Asymptotic) 95%
ConfidenceLimits

(Exact) 95%
ConfidenceLimits

Row 1 0.1333 0.0439 0.0473 0.2193 0.0594 0.2459

Row 2 0.8333 0.0340 0.7667 0.9000 0.7544 0.8951

Total 0.6000 0.0365 0.5284 0.6716 0.5245 0.6722

Difference -0.7000 0.0555 -0.8088 -0.5912

Difference is (Row 1 - Row 2)

You may know the underlying percentage of those subjects with and without the disease in a
population of interest. You may want to estimate the proportion of subjects with the disease among
those who have a positive test. You can determine these proportions with the use of Bayes’ theorem.

Suppose that the underlying prevalence of disease for an appropriate target population for these
data is 15%. That is, 15% of the population have the disease and 85% do not. You can compute
joint probabilities by multiplying the conditional probabilities by the marginal probabilities:

Pr.T;D/ D Pr.T jD/ � Pr.D/
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Table 2.10 contains these results.

Table 2.10 How Test Should Perform in General Population

Status Test + Test � Total
Disease Present 0:867.:15/ D 0:130 0:133.:15/ D 0:020 0.15
Disease Absent 0:167.:85/ D 0:142 0:833.:85/ D 0:708 0.85
Total 0:130C 0:142 D 0:272 0:020C 0:708 D 0:728

The values in the row titled “Total” are Pr(Test +) and Pr(Test �), respectively. You can now
determine the probability of those subjects with the disease among those with a positive test:

Pr.DjT / D
Pr.T;D/

Pr.T /

Thus, Pr (disease|Test +) = 0.130/0.272 = 0.478 and Pr(no disease|Test �) = 0.708/0.728 = 0.972.
See Fleiss, Levin, and Paik (2003) for more detail, including the calculation of false negative and
false positive rates.

2.7 McNemar’s Test

The 2 � 2 table often contains information collected from matched pairs, experimental units
for which two related responses are made. The sampling unit is no longer one individual but a
pair of related individuals, which could be two locations on the same individual such as left and
right eyes or two occasions for the same individual, such as before and after measurements. For
example, in case-control studies, cases are often matched to controls on the basis of demographic,
environmental, or genetic characteristics; interest lies in determining whether there is a difference
between control exposure to a risk factor and case exposure to the same risk factor. Another
example of matched pairs is husband and wife voting preference. Measurements at two different
time points can also be considered a matched pair, such as before and after measurements.

Data from a study on matched pairs are represented in Table 2.11. The n11 in the (1,1) cell means
that n11 pairs responded Yes for both Response 1 and Response 2; the n21 in the (2,1) cell means
that n21 pairs responded Yes for Response 1 and No for Response 2.

Table 2.11 Matched Pairs Data
Response 1

Response 2 Yes No Total
Yes n11 n12 n1C
No n21 n22 n2C

Total nC1 nC2 n

The question of interest for such data is whether the proportion of pairs responding Yes for
Response 1 is the same as the proportion of pairs responding Yes for Response 2. This question
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cannot be addressed with the chi-square tests of association of previous sections, since the relevant
counts are marginal totals rather than cell counts.

The question is whether

p1 D
n1C

n

and

p2 D
nC1

n

are the same. Recognizing that .p1 � p2/ D .n12 � n21/=n, McNemar (1947) developed a
chi-square test based on the conditional binomial distribution of .n12; n21/ to address this situation,
and so only the off-diagonal elements are important in determining the test statistic.

QM D
.n12 � n21/

2

.n12 C n21/

and is approximately chi-square with one degree of freedom.

Table 2.12 displays data collected by political science researchers who polled husbands and wives
on whether they approved of one of their U.S. senators. The cell counts represent the number of
pairs of husbands and wives who fit the configurations indicated by the row and column levels.

Table 2.12 State Senator Approval Ratings

Husband Wife Approval
Approval Yes No Total

Yes 20 5 25
No 10 10 20

Total 30 15 45

McNemar’s test is easy to compute by hand.

QM D
.5 � 10/2

.5C 10/
D 1:67

Compared to a chi-square distribution with 1 df, this statistic is clearly nonsignificant.

The FREQ procedure computes McNemar’s test with the AGREE option in the TABLE statement
(see Chapter 5 for other analyses available with the AGREE option for tables of other dimensions).
The following SAS statements request McNemar’s test. The ODS SELECT statement is used to
restrict the output to that test.

data approval;
input hus_resp $ wif_resp $ count;
datalines;
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yes yes 20
yes no 5
no yes 10
no no 10
;

ods select McNemarsTest;
proc freq order=data;

weight count;
tables hus_resp*wif_resp / agree;

run;

Output 2.21 displays the output that is produced. QM D 1:67, the same value as computed
previously.

Note that McNemar’s test is identical to the Mantel-Haenszel test in Chapter 3 and Chapter 6
when matched pairs are treated as strata. Also, .n12=n21/ is the adjusted odds ratio for the within
matched pairs association between exposure (for what is compared within matched pairs) and
response for a conditional logistic regression model as described in Chapter 10.

Output 2.21 McNemar’s Test

Statistics for Table of hus_resp by wif_resp

Statistics for Table of hus_resp by wif_resp
McNemar's Test

Statistic (S) 1.6667

DF 1

Pr > S 0.1967

Exact p-values are also available for McNemar’s test. You would include the statement

exact mcnem;

in your PROC FREQ invocation. The computations work in a similar fashion to those for the
chi-square tests of association; the exact p-value is the sum of the probabilities of those outcomes
with aQM greater than or equal to the actual one (or more extreme than .n12; n21/ for the binomial
distribution with .n12 C n21/ D nM fixed and � D 0:5).

2.8 Incidence Densities

The 2 � 2 table can also represent incidence densities, in which you have counts of subjects who
responded with an event versus extent of exposure for that event. These counts often follow the
Poisson distribution. Some examples are:

� colony counts for bacteria or viruses
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� accidents or equipment failure

� incidences for disease

Table 2.13 is based on the U.S. participants in an international study of the effect of a rotavirus
vaccine in nearly 70,000 infants on health care events (hospitalizations and emergency room visits).
Subjects received three doses of the vaccine or a placebo at 4- to 12- week intervals. They were
followed for one year (Vesikari et al. 2007). Table 2.13 displays the failures (hospitalizations or
emergency room visits) and the person-years of exposure since not all subjects were in the study
for an entire year.

Table 2.13 Vaccine Study Results for U.S.

Treatment Events Person Years
Vaccine 3 7500
Placebo 58 7250

It is of interest to compute the ratio of incidence densities (IDR) of events for vaccine compared to
placebo. Consider Table 2.14.

Table 2.14 Vaccine Study

Treatment Events Person Years
Vaccine nv Nv
Placebo np Np

You can assume that np and nv have independent Poisson distributions with expected values �pNp
and �vNv, respectively, particularly if the time to event has an exponential distribution; see Chapter
13. You are interested in whether the incidence densities �v and �p are the same, which can be
addressed by seeing whether the incidence density ratio (IDR) is equal to 1; you determine this by
evaluating its confidence limits. When the counts are small, such as the count of 3 in Table 2.13,
then the exact confidence limits are appropriate.

Because nv given .nv C np/ has the conditional binomial distribution (under the assumption that
nv and np are independent Poisson),

Bin
�
n D nv C np; P D

�vNv

�pNp C �vNv

�

then

P D

�v

�p

�
Nv

Np

�
�v

�p

�
Nv

Np

�
C 1
D

RC

RC C 1
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You then compute p D nv=.nv C np/ to produce a 100.1� ˛/% confidence interval .PL; PU / for
P . If you want the exact confidence interval for the incidence density ratios, you compute the exact
confidence interval for the binomial proportion P . Use

Npp

.1 � p/Nv

as an estimator for R, and then

�
PL

.1 � PL/C
;

PU

.1 � PU /C

�
serves as a 100.1 � ˛/% confidence interval for the IDR.

The following SAS statements compute the exact binomial confidence intervals for the binomial
proportion P in the table and output them to a SAS data set.

data vaccine2;
input Outcome $ Count @@;

datalines;
fail 3 success 58
;

ods select BinomialCLs;
proc freq;

weight count;
tables Outcome / binomial (exact);

ods output BinomialCLs=BinomialCLs;
run;

The following SAS/IML® statements then produce the exact confidence interval for the IDR.

proc iml ;
Use BinomialCLs var{LowerCL UpperCL};
read all into CL;
print CL;
q = { 3, 7500, 58 , 7250 };
C= q[2]/q[4];
P= q[1]/ (q[1] + q[3]);
R= P/ ((1-P) *C) ;
CI= CL[1]/((1-CL[1])*C) || CL[2]/((1-CL[2])*C) ;
print r CI;

quit;

The IDR that compares vaccine failure to placebo is 0.05000 with an exact confidence interval of
(0.01002, 0.15355). Obviously the vaccine is much more effective than the placebo. The percent
rate reduction in failures, a quantity often used in the assessment of vaccines, is computed as
100(1–IDR)=95% with (84.645%, 98.998%) as the exact 0.95 confidence interval.

You can also use the GENMOD procedure to compute the exact confidence interval for the IDR, as
illustrated on page 392.
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2.9 Sample Size and Power Computations

Sample size and power computations are often an integral part of the analysis of 2 � 2 tables, for
example, when a certain power is required for the comparison of a test treatment and an active
control in a clinical trial setting. You might need to address a question such as the following:

What sample size per treatment is needed to have 0.80 power for the comparison between
the test treatment and the active control at the two-sided ˛ D 0:05 significance level (given
that the sample sizes are equal for these two treatments)?

However, the topic of sample size and power computations is beyond the scope of this book.
See Fleiss, Levin, and Paik (2003) for a discussion of the methodology involved, and see the
documentation for the POWER procedure in SAS/STAT software for how to implement with
SAS. In particular, the TWOSAMPLEFREQ statement of PROC POWER enables you to compute
sample sizes and power for the Pearson chi-square test, likelihood ratio chi-square test, and Fisher’s
exact test.
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Sets of 2 � 2 Tables
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3.1 Introduction

The respiratory data displayed in Table 2.8 in the previous chapter are only a subset of the data
collected in the clinical trial. The study included patients at two medical centers and produced the
complete data shown in Table 3.1. These data comprise a set of two 2 � 2 tables.

Table 3.1 Respiratory Improvement

Center Treatment Yes No Total
1 Test 29 16 45
1 Placebo 14 31 45

Total 43 47 90
2 Test 37 8 45
2 Placebo 24 21 45

Total 61 29 90

Investigators were interested in whether there were overall differences in proportions with
improvement; however, they were concerned that the patient populations at the two centers
were sufficiently different that center needed to be accounted for in the analysis. One strategy
for examining the association between two variables while adjusting for the effects of others is
stratified analysis.

In general, the strata may represent explanatory variables, or they may represent research sites or
hospitals in a multicenter study. Each table corresponds to one stratum; the strata are determined
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by the levels of the explanatory variables (one for each unique combination of the levels of the
explanatory variables). The idea is to evaluate the association between the row variable and the
response variable, while adjusting, or controlling, for the effects of the stratification variables. In
some cases, the stratification results from the study design, such as in the case of a multicenter
clinical trial; in other cases, it may arise from a prespecified poststudy stratification performed to
control for the effects of certain explanatory variables that are thought to be related to the response
variable.

The analysis of sets of tables addresses the same questions as the analysis of a single table: is there
an association between the row and column variables in the tables and what is the strength of that
association? These questions are investigated with similar strategies involving chi-square statistics
and measures of association such as the odds ratios; the key difference is that you are investigating
overall association instead of the association in just one table.

3.2 Mantel-Haenszel Test

For the data in Table 3.1, interest lies in determining whether there is a difference in the favorable
rates between Test and Placebo. Patients in both centers were randomized into two treatment groups,
which induces independent hypergeometric distributions for the within-center frequencies under
the hypothesis that treatments have equal effects for all patients. Thus, the distribution for the two
tables is the product of these two hypergeometric distributions. You can induce the hypergeometric
distribution via conditional distribution arguments when you have postrandomization stratification
or when you have independent binomial distributions from simple random sampling.

Consider the following table as representative of q 2 � 2 tables, h D 1; 2; : : : ; q.

Table 3.2 hth 2 � 2 Contingency Table

Yes No Total
Group 1 nh11 nh12 nh1C
Group 2 nh21 nh22 nh2C
Total nhC1 nhC2 nh

Under the null hypothesis of no treatment difference, the expected value of nh11 is

Efnh11jH0g D
nh1CnhC1

nh
D mh11

and its variance is

V fnh11jH0g D
nh1Cnh2CnhC1nhC2

n2
h
.nh � 1/

D vh11

One method for assessing the overall association of group and response, adjusting for the
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stratification factor, is the Mantel-Haenszel (1959) statistic.

QMH D

˚Pq

hD1
nh11 �

Pq

hD1
mh11

	2Pq

hD1
vh11

D

˚Pq

hD1
.nh1Cnh2C=nh/.ph11 � ph21/

	2Pq

hD1
vh11

where phi1 D nhi1=nhiC is the proportion of subjects from the hth stratum and the ith group who
have a favorable response. QMH approximately has the chi-square distribution with one degree
of freedom when the combined row sample sizes (

Pq

hD1
nhiC D nCiC) are large, for example,

greater than 30. This means that individual cell counts and table sample sizes may be small, so long
as the overall row sample sizes are large. For the case of two tables, such as for Table 3.1, q D 2.

The Mantel-Haenszel strategy potentially removes the confounding influence of the explanatory
variables that comprise the stratification. It can provide increased power for detecting association in
a randomized study by comparing like subjects with like subjects. It can also remove the bias that
can occur in an observational study from inbalances in confounding factors, but possibly at the cost
of decreased power. In some sense, the strategy is similar to adjustment for blocks in a two-way
analysis of variance for randomized blocks; it is also like covariance adjustment for a categorical
explanatory variable.

QMH is effective for detecting patterns of association across q strata when there is a consistent
tendency to expect the predominant majority of differences fph11 � ph21g to have the same sign.
For this reason, QMH is often called an average partial association statistic. QMH may fail to
detect association when the differences are in opposite directions and are of similar magnitude.
QMH as formulated here is directed at the nh11 cell; however, it is invariant to whatever cell is
chosen. For an overview of Mantel-Haenszel methods, see to Landis et al. (1998).

Mantel and Fleiss (1980) proposed a criterion for determining whether the chi-square approximation
is appropriate for the distribution of the Mantel-Haenszel statistic for q strata:

min

("
qX
hD1

mh11 �

qX
hD1

.nh11/L

#
;

"
qX
hD1

.nh11/U �

qX
hD1

mh11

#)
> 5

where .nh11/L = max.0; nh1C � nhC2/ and .nh11/U=min.nhC1; nh1C/. The criterion specifies
that the across-strata sum of expected values for a particular cell has a difference of at least 5 from
both the minimum possible sum and the maximum possible sum of the observed values.

3.2.1 Respiratory Data Example

For the data in Table 3.1, there is interest in the association between treatment and respiratory
outcome, after adjusting for the effects of the centers. The following DATA step puts all the
respiratory data into the SAS data set RESPIRE. (The indicator variable N_RESPONSE is created
for use in future computations described below.)
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data respire;
input center treatment $ response $ count @@;
n_response=(response='y');
datalines;

1 test y 29 1 test n 16
1 placebo y 14 1 placebo n 31
2 test y 37 2 test n 8
2 placebo y 24 2 placebo n 21
;

Producing a Mantel-Haenszel analysis from PROC FREQ requires the specification of multiway
tables. The triple crossing CENTER*TREATMENT*RESPONSE specifies that the data consists
of sets of two-way tables. The two rightmost variables TREATMENT and RESPONSE determine
the rows and columns of the tables, respectively, and the variables to the left (CENTER) determine
the stratification scheme. There will be one table for each value of CENTER. If there are more
variables to the left of the variables determining the rows and columns of the tables, there will be
strata for each unique combination of values for those variables.

proc freq order=data;
weight count;
tables center*treatment*response /

nocol nopct chisq cmh(mf);
run;

The ORDER=DATA option specifies that PROC FREQ order the rows and columns according to
the order in which the variable values are encountered in the input data. The CHISQ option specifies
that chi-square statistics be printed for each table. The CMH option requests the Mantel-Haenszel
statistics for the stratified analysis; these are also called summary statistics. The MF option in the
TABLES statement requests the Mantel-Fleiss criterion.

Output 3.1 and Output 3.2 display the frequency tables and chi-square statistics for each center.
For Center 1, the favorable rate for test treatment is 64%, versus 31% for placebo. For Center 2,
the favorable rate for test treatment is 82%, versus 53% for placebo. Q (the randomization statistic
discussed in Chapter 2) for Center 1 is 9.908; Q for Center 2 is 8.503. With 1 df, both of these
statistics are strongly significant.

Output 3.1 Table 1 Results

Frequency
Row Pct

Table 1 of treatment by response

Controlling for center=1

treatment

response

y n Total

test 29
64.44

16
35.56

45

placebo 14
31.11

31
68.89

45

Total 43 47 90
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Output 3.1 continued

Statistic DF Value Prob

Chi-Square 1 10.0198 0.0015

Likelihood Ratio Chi-Square 1 10.2162 0.0014

Continuity Adj. Chi-Square 1 8.7284 0.0031

Mantel-Haenszel Chi-Square 1 9.9085 0.0016

Phi Coefficient 0.3337

Contingency Coefficient 0.3165

Cramer's V 0.3337

Output 3.2 Table 2 Results

Frequency
Row Pct

Table 2 of treatment by response

Controlling for center=2

treatment

response

y n Total

test 37
82.22

8
17.78

45

placebo 24
53.33

21
46.67

45

Total 61 29 90

Statistic DF Value Prob

Chi-Square 1 8.5981 0.0034

Likelihood Ratio Chi-Square 1 8.8322 0.0030

Continuity Adj. Chi-Square 1 7.3262 0.0068

Mantel-Haenszel Chi-Square 1 8.5025 0.0035

Phi Coefficient 0.3091

Contingency Coefficient 0.2953

Cramer's V 0.3091

Following the information for the individual tables, PROC FREQ prints out a section titled
“Summary Statistics for treatment by response Controlling for center.” This includes tables
containing Mantel-Haenszel (MH) statistics, estimates of the common relative risk, and the
Breslow-Day test for homogeneity of the odds ratio.
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Output 3.3 Summary Statistics

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 18.4106 <.0001

2 Row Mean Scores Differ 1 18.4106 <.0001

3 General Association 1 18.4106 <.0001

Mantel-Fleiss Criterion 36.0000

To find the value of QMH, read the value for “General Association.” The other statistics pertain to
the situation where you have sets of tables with two or more rows or columns; they are discussed in
Chapter 4, “2 � r and s � 2 Tables” and Chapter 6, “Sets of s � r Tables.” However, they all reduce
to the MH statistic when you have 2� 2 tables and use the CMH option in its default mode (that is,
no SCORE= option specified). Note that the General Association statistic is always appropriate for
sets of 2 � 2 tables regardless of the scores used.

QMH for these data is QMH D 18:4106, with 1 df. This is clearly significant. The associations in
the individual tables reinforce each other so that the overall association is stronger than that seen in
the individual tables. There is a strong association between treatment and response, adjusting for
center. The test treatment had a significantly higher favorable response rate than placebo.

The information in the rest of the summary statistics output is discussed later in this chapter. Note
that for these data, the Mantel-Fleiss criterion is satisfied:

2X
hD1

mh11 D 21:5C 30:5 D 52

2X
hD1

.nh11/L D 0C 16 D 16

2X
hD1

.nh11/U D 43C 45 D 88

so that .52 � 16/ � 5 and .88 � 52/ � 5.

Sometimes the direction of the effect being assessed with the MH statistic is not apparent, especially
when some of the cell counts are small. The following measure serves to quantify the effect and its
direction; it is a weighted average of the difference of proportions for the first and second rows of
the tables, averaged across the set of tables.

d D

P
hwh.ph11 � ph21/P

hwh

where wh D .nh1Cnh2C=nh/.
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One way to produce d is to use the GLM procedure to fit a model to the responses represented by
a (0, 1) response variable with group and strata as the explanatory variables and then form d by
computing a group difference with the ESTIMATE statement. Here, you fit a linear model based
on the previously created variable N_RESPONSE, which takes the value 1 for Yes and 0 otherwise,
and include CENTER and TREATMENT as the explanatory variables. The following ESTIMATE
statement produces an estimate of d . Since the GLM procedure orders the levels of the effects
alphanumerically, the coefficients [–1 1] form the difference of placebo from test, averaged across
center.

proc glm;
class center treatment;
freq count;
model n_response=center treatment;
estimate 'direction' treatment -1 1;

run;

Output 3.4 displays the results from the ESTIMATE statement, with d= 0.3111. The test treatment
has an average proportion of Yes outcomes that is 0.3111 higher than the comparable proportion
for placebo across centers. However, note that the associated standard error is inappropriate since
the GLM procedure assumes homogeneous variance. This computing device is suitable only for
determining the distance measure, not its standard error.

Output 3.4 Direction Estimate

                                     Dependent Variable: n_responseDependent Variable: n_response

Parameter Estimate
Standard

Error t Value Pr > |t|

direction 0.31111111 0.06884899 4.52 <.0001

You can construct an appropriate confidence interval d ˙ z˛=2
p
vd for this measure based on the

binomial distribution where

vd D

Pq

hD1
w2
h

�
p�

h11
.1�p�

h11
/

nh1C
C

p�
h21

.1�p�
h21

/

nh2C

�
.
P
hwh/

2

and

p�hi D
.nhi1 C 0:5/

.nhiC C 1/

Note that this computation includes a continuity correction for the variance. For these data, the
difference measure and confidence interval is 0.3111˙ 0.1343.

3.2.2 Health Policy Data

Another data set discussed in Chapter 2 was also a subset of the complete data. The
health policy data displayed in Table 2.7 comes from a study that included inter-
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views with subjects from both rural and urban geographic regions. Table 2.7 dis-
plays the information from the rural region, and Table 3.3 includes the complete data.

Table 3.3 Health Policy Opinion Data

Residence Stress Favorable Unfavorable Total
Urban Low 48 12 60
Urban High 96 94 190

Total 144 106 250
Rural Low 55 135 190
Rural High 7 53 60

Total 62 188 250

If you ignored region and pooled these two tables, you would obtain Table 3.4.

Table 3.4 Pooled Health Policy Opinion Data

Stress Favorable Unfavorable Total
Low 103 147 250
High 103 147 250
Total 206 294 500

There is clearly no association in this table; the proportions for favorable opinion are the same for
low stress and high stress. For this table, QP and Q take the value 0, and the odds ratio is exactly
1. These data illustrate the need to consider the sampling framework in any data analysis. If you
note the row totals in Table 3.3, you see that high stress subjects were more prevalent for the urban
region, and the low stress subjects were more prevalent for the rural region. This oversampling
causes the pooled table to take its form, even though favorable response is more likely for low
stress persons in both regions.

The fact that a marginal table (pooled over residence) may exhibit an association completely
different from the partial tables (individual tables for urban and rural) is known as Simpson’s
Paradox (Simpson 1951, Yule 1903).

The following statements request a Mantel-Haenszel analysis for the health policy data.

data stress;
input region $ stress $ outcome $ count @@;
n_outcome=(outcome='f');
datalines;

urban low f 48 urban low u 12
urban high f 96 urban high u 94
rural low f 55 rural low u 135
rural high f 7 rural high u 53
;

proc freq order=data;
weight count;
tables region*stress*outcome / chisq cmh nocol nopct;

run;
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Output 3.5 and Output 3.6 display the results for the individual tables. The urban region has a Q
of 16.1549 for the association of stress level and health policy opinion; the Q for the rural region
is 7.2724. The rate of favorable response is higher for the low stress group than for the high stress
group in each region.

Output 3.5 Table 1 Results

Frequency
Row Pct

Table 1 of stress by outcome

Controlling for region=urban

stress

outcome

f u Total

low 48
80.00

12
20.00

60

high 96
50.53

94
49.47

190

Total 144 106 250

Statistic DF Value Prob

Chi-Square 1 16.2198 <.0001

Likelihood Ratio Chi-Square 1 17.3520 <.0001

Continuity Adj. Chi-Square 1 15.0354 0.0001

Mantel-Haenszel Chi-Square 1 16.1549 <.0001

Phi Coefficient 0.2547

Contingency Coefficient 0.2468

Cramer's V 0.2547

Fisher's Exact Test

Cell (1,1) Frequency (F) 48

Left-sided Pr <= F 1.0000

Right-sided Pr >= F 3.247E-05

Table Probability (P) 2.472E-05

Two-sided Pr <= P 4.546E-05
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Output 3.6 Table 2 Results

Frequency
Row Pct

Table 2 of stress by outcome

Controlling for region=rural

stress

outcome

f u Total

low 55
28.95

135
71.05

190

high 7
11.67

53
88.33

60

Total 62 188 250

Statistic DF Value Prob

Chi-Square 1 7.3016 0.0069

Likelihood Ratio Chi-Square 1 8.1976 0.0042

Continuity Adj. Chi-Square 1 6.4044 0.0114

Mantel-Haenszel Chi-Square 1 7.2724 0.0070

Phi Coefficient 0.1709

Contingency Coefficient 0.1685

Cramer's V 0.1709

Fisher's Exact Test

Cell (1,1) Frequency (F) 55

Left-sided Pr <= F 0.9988

Right-sided Pr >= F 0.0041

Table Probability (P) 0.0029

Two-sided Pr <= P 0.0061

From Output 3.7 you can see that QMH has the value 23.050, which is strongly significant. Stress
is highly associated with health policy opinion, adjusting for regional effects.
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Output 3.7 Summary Statistics

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 23.0502 <.0001

2 Row Mean Scores Differ 1 23.0502 <.0001

3 General Association 1 23.0502 <.0001

Note that, for these tables, d D 0:2335. The favorable proportion is 0.2335 higher on the average
for the low stress groups than for the high stress groups across the regions.

3.2.3 Soft Drink Example

The following data come from a study on soft drink tastes by a company interested in reactions to
a new soft drink that was being targeted for both the United States and Great Britain. Investigators
poststratified on gender because they thought it was potentially related to the response. After
receiving a supply of the new soft drink and being given a week in which to try it, subjects were
asked whether they would want to switch from their current soft drinks to this new soft drink.

Table 3.5 Soft Drink Data
Switch?

Gender Country Yes No Total
Male American 29 6 35
Male British 19 15 34
Total 48 21 69
Female American 7 23 30
Female British 24 29 53
Total 31 52 83

The following statements produce a Mantel-Haenszel analysis.

data soft;
input gender $ country $ question $ count @@;
datalines;

male American y 29 male American n 6
male British y 19 male British n 15
female American y 7 female American n 23
female British y 24 female British n 29
;

proc freq order=data;
weight count;
tables gender*country*question /

chisq cmh nocol nopct;
run;
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Output 3.8 and Output 3.9 display the table results for males and females.

Output 3.8 Summary Statistics for Males

Frequency
Row Pct

Table 1 of country by question

Controlling for gender=male

country

question

y n Total

American 29
82.86

6
17.14

35

British 19
55.88

15
44.12

34

Total 48 21 69

Statistic DF Value Prob

Chi-Square 1 5.9272 0.0149

Likelihood Ratio Chi-Square 1 6.0690 0.0138

Continuity Adj. Chi-Square 1 4.7216 0.0298

Mantel-Haenszel Chi-Square 1 5.8413 0.0157

Phi Coefficient 0.2931

Contingency Coefficient 0.2813

Cramer's V 0.2931

Fisher's Exact Test

Cell (1,1) Frequency (F) 29

Left-sided Pr <= F 0.9968

Right-sided Pr >= F 0.0143

Table Probability (P) 0.0112

Two-sided Pr <= P 0.0194
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Output 3.9 Summary Statistics for Females

Frequency
Row Pct

Table 2 of country by question

Controlling for gender=female

country

question

y n Total

American 7
23.33

23
76.67

30

British 24
45.28

29
54.72

53

Total 31 52 83

Statistic DF Value Prob

Chi-Square 1 3.9443 0.0470

Likelihood Ratio Chi-Square 1 4.0934 0.0431

Continuity Adj. Chi-Square 1 3.0620 0.0801

Mantel-Haenszel Chi-Square 1 3.8968 0.0484

Phi Coefficient -0.2180

Contingency Coefficient 0.2130

Cramer's V -0.2180

Fisher's Exact Test

Cell (1,1) Frequency (F) 7

Left-sided Pr <= F 0.0385

Right-sided Pr >= F 0.9881

Table Probability (P) 0.0267

Two-sided Pr <= P 0.0602

As indicated by Q for males (5.8413) and Q for females (3.8968), there is significant association
in both tables between country and willingness to switch. However, look at QMH in Output 3.10.
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Output 3.10 Summary Statistics

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 0.0243 0.8762

2 Row Mean Scores Differ 1 0.0243 0.8762

3 General Association 1 0.0243 0.8762

QMH takes the value 0.024, thus not detecting any association between country and willingness
to switch, after adjusting for gender. However, if you examine the individual tables more closely,
you see that the association is manifested in opposite directions. For males, Americans are
overwhelmingly favorable, and the British are a little more favorable than unfavorable. For
females, Americans are very opposed, while the British are mildly opposed.

One way to determine whether the association is in the same direction is through graphical means.
Plotting the differences of the binomial proportions across tables tells you what is going on
visually. You can generate this plot with the PLOTS=RISKDIFFPLOT option in the TABLES
statement of PROC FREQ. Additionally, you can examine the odds ratios plot, requested with
the ODDSRATIOPLOT option. The suboption LOGBASE=2 specifies that the horizonal axis be
presented on the log scale.

ods graphics on;
proc freq order=data;

weight count;
tables gender*country*question / riskdiff(cl=(wald) correct) measures

plots=(riskdiffplot oddsratioplot(logbase=2));
run;
ods graphics off;

Output 3.11 displays the proportion difference graph, which clearly shows that the nature of the
association is completely different for males and females.
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Output 3.11 Direction of Association for Soft Drink Data – Proportion Differences

Output 3.12 displays the odds ratios, which also illustrate that the nature of the association is the
opposite for males and females.

Output 3.12 Direction of Association for Soft Drink Data – Odds Ratios

Thus, for these data, QMH fails to detect an association because the association is of opposite
directions with roughly the same magnitude. As discussed previously, QMH has power against
the alternative hypothesis of consistent patterns of association; it has low power for detecting
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association in opposite directions. However, regardless of these matters of power, the method
always performs at the specified significance level (or less) under the null hypothesis of no
association in all q strata, so it is always valid.

Generally, the power of QMH isn’t a problem because if there is association, it is usually in the
same direction across a set of tables, although often to varying degrees. However, you should
always examine the individual tables, especially if your results are puzzling, to determine whether
you have a situation in which the association is inconsistent and the QMH statistic is not very
powerful. A graph can point this out easily.

3.3 Measures of Association

Section 2.5 discusses the odds ratio as a measure of association for the 2�2 table. You can compute
average odds ratios for sets of 2 � 2 tables. For the hth stratum,

ORh D
ph1=.1 � ph1/

ph2=.1 � ph2/
D
nh11nh22

nh12nh21

so ORh estimates  h, the population odds ratio for the hth stratum. If the  h are homogeneous,
then you can compute the Mantel-Haenszel estimator for the common odds ratio  .

O MH D
qX
hD1

nh11nh22

nh

. qX
hD1

nh12nh21

nh

The standard error for this estimator is based on work by Robins, Breslow, and Greenland (1986)
in which they provide an estimated variance for log O MH. The 100%.1 � ˛/ confidence interval
for O MH is�

O MH � exp.�z˛=2 O�/; O MH � exp.z˛=2 O�/
�

where

O�2 D OvarŒlog. O MH/�

D

P
h.nh11 C nh22/.nh11 nh22/=n

2
h

2
�P

h nh11 nh22=nh
�2

C

P
hŒ.nh11 C nh22/.nh12 nh21/C .nh12 C nh21/.nh11 nh22/�=n

2
h

2
�P

h nh11 nh22=nh
� �P

h nh12 nh21=nh
�

C

P
h.nh12 C nh21/.nh12 nh21/=n

2
h

2
�P

h nh12 nh21=nh
�2

Another estimator of  is the logit estimator. This is a weighted regression estimate with the form

O L D exp

(
qX
hD1

whfh

. qX
hD1

wh

)
D expf Nf g

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Homogeneity of Odds Ratios 63

where fh D log ORh and

wh D

�
1

nh11
C

1

nh12
C

1

nh21
C

1

nh22

��1

You can write a 100.1 � ˛/% confidence interval for O L as

exp

8<: Nf ˙ z˛=2
"

qX
hD1

wh

#�1=29=;
The logit estimator is also reasonable but requires adequate sample sizes (all nhij � 5); it
has problems with zero cells for the nhij , in which case you should proceed cautiously. The
Mantel-Haenszel estimator is not as sensitive to sample size.

Logistic regression provides a better strategy for estimating the common odds ratio and produces
a confidence interval based on maximum likelihood methods. This topic is discussed in Chap-
ter 8, “Logistic Regression I: Dichotomous Response” and Chapter 10, “Conditional Logistic
Regression.”

3.3.1 Homogeneity of Odds Ratios

You are generally interested in whether the odds ratios in a set of tables are homogeneous. There are
several test statistics that address the hypothesis of homogeneity, one of which is the Breslow-Day
statistic.

Consider Table 3.6. The top table shows the expected counts mij for a 2 � 2 table, and the bottom
table shows how you can write the expected counts for the rest of the cells if you know the (1,1)
expected count m11.

Table 3.6 Odds Ratios
Yes No Total

Group 1 m11 m12 n1C
Group 2 m21 m22 n2C
Total nC1 nC2 n

Group 1 m11 n1C �m11 n1C
Group 2 nC1 �m11 n � n1C � nC1 Cm11 n � n1C
Total nC1 n � nC1 n

If you assume that the odds ratio takes a certain value,  D  0, then

m11.n � n1C � nC1 Cm11/

.nC1 �m11/.n1C �m11/
D  0

You can put this expression into the form of a quadratic equation and then solve for m11; once you
have m11, you can solve for the other expected counts.
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To compute the Breslow-Day statistic, you use  MH as  0 for each stratum and perform the
preceding computations for the expected counts for each table; that is, you compute the mhij .
Then,

QBD D

qX
hD1

2X
iD1

2X
jD1

.nhij �mhij /
2

mhij

Under the null hypothesis of homogeneity, QBD approximately has a chi-square distribution with
.q � 1/ degrees of freedom. In addition, the cells in all of the tables must have expected cell counts
greater than 5 (or at least 80% of them should). Note that a chi-square approximation for QMH
requires only the total sample size to be large, but the chi-square approximation for QBD requires
each table to have a large sample size. If the odds ratios are not homogeneous, then the overall odds
ratio should be viewed cautiously; the within-strata odds ratios should be emphasized.

The Mantel-Haenszel statistics do not require homogeneous odds ratios, so the Breslow-Day test
should not be interpreted as an indicator of their validity. See Breslow and Day (1980, p. 182)
for more information. Also, Chapter 8, “Logistic Regression I: Dichotomous Response,” provides
better test statistics than QBD to address homogeneity through goodness of fit statistics for logistic
regression models which invoke homogeneous odds ratios in their structure.

3.3.2 Coronary Artery Disease Data Example

Table 3.7 contains data that are based on a study on coronary artery disease (Koch, Imrey et al.
1985). The sample is one of convenience since the patients studied were people who came to a
clinic and requested an evaluation.

Table 3.7 Coronary Artery Disease Data

Sex ECG No Disease Disease Total
Female < 0.1 ST segment depression 11 4 15
Female � 0.1 ST segment depression 10 8 18
Male < 0.1 ST segment depression 9 9 18
Male � 0.1 ST segment depression 6 21 27

Investigators were interested in whether electrocardiogram (ECG) measurement was associated
with disease status. Gender was thought to be associated with disease status, so investigators
poststratified the data into male and female groups. In addition, there was interest in examining the
odds ratios.

The following statements produce the SAS data set CA and request a stratified analysis. The first
TABLES statement requests chi-square tests for the association of gender and disease status. The
second TABLES statement requests the stratified analysis, including the generation of odds ratios
with the MEASURES option.

data ca;
input gender $ ECG $ disease $ count;
datalines;

female <0.1 yes 4
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female <0.1 no 11
female >=0.1 yes 8
female >=0.1 no 10
male <0.1 yes 9
male <0.1 no 9
male >=0.1 yes 21
male >=0.1 no 6
;

proc freq;
weight count;
tables gender*disease / nocol nopct chisq;
tables gender*ECG*disease / nocol nopct cmh chisq measures;

run;

Output 3.13 contains the table of GENDER by DISEASE. Q takes the value 6.9444, and QP takes
the value 7.0346. Obviously there is a strong association between gender and disease status. Males
with symptoms are much more likely to have a confirmed diagnosis of coronary artery disease than
females. The idea to control for gender in a stratified analysis is a good one.

Note that you are controlling for confounding in this example. Confounding variables are those
related to both the response and the factor under investigation. In the respiratory data analysis,
the stratification variable (center) was part of the study design, and in the soft drink analysis, the
stratification variable (gender) was thought to be related to the response. Adjusting for confounding
is often required in epidemiological studies.

Output 3.13 GENDER � DISEASE

Frequency
Row Pct

Table of gender by disease

gender

disease

no yes Total

female 21
63.64

12
36.36

33

male 15
33.33

30
66.67

45

Total 36 42 78

Statistic DF Value Prob

Chi-Square 1 7.0346 0.0080

Likelihood Ratio Chi-Square 1 7.1209 0.0076

Continuity Adj. Chi-Square 1 5.8681 0.0154

Mantel-Haenszel Chi-Square 1 6.9444 0.0084

Phi Coefficient 0.3003

Contingency Coefficient 0.2876

Cramer's V 0.3003
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Output 3.13 continued

Fisher's Exact Test

Cell (1,1) Frequency (F) 21

Left-sided Pr <= F 0.9981

Right-sided Pr >= F 0.0075

Table Probability (P) 0.0056

Two-sided Pr <= P 0.0114

Output 3.14 and Output 3.15 display the individual tables results for ECG � disease status; included
are the table of chi-square statistics generated by the CHISQ option and only the “Estimates of the
Relative Risk” table part of the output generated by the MEASURES option.

Output 3.14 Results for Females

Statistic DF Value Prob

Chi-Square 1 1.1175 0.2905

Likelihood Ratio Chi-Square 1 1.1337 0.2870

Continuity Adj. Chi-Square 1 0.4813 0.4879

Mantel-Haenszel Chi-Square 1 1.0836 0.2979

Phi Coefficient 0.1840

Contingency Coefficient 0.1810

Cramer's V 0.1840

Fisher's Exact Test

Cell (1,1) Frequency (F) 11

Left-sided Pr <= F 0.9233

Right-sided Pr >= F 0.2450

Table Probability (P) 0.1683

Two-sided Pr <= P 0.4688

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% ConfidenceLimits

Case-Control (Odds Ratio) 2.2000 0.5036 9.6107

Cohort (Col1 Risk) 1.3200 0.7897 2.2063

Cohort (Col2 Risk) 0.6000 0.2240 1.6073
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QMH is 1.084 for females, with a p-value of 0.2979. The odds ratio for the females is OR = 2.2,
with a 95% confidence interval that includes 1. Those females with higher ST segment depression
levels had 2.2 times the odds of CA disease than those with lower levels.

Output 3.15 Results for Males

Statistic DF Value Prob

Chi-Square 1 3.7500 0.0528

Likelihood Ratio Chi-Square 1 3.7288 0.0535

Continuity Adj. Chi-Square 1 2.6042 0.1066

Mantel-Haenszel Chi-Square 1 3.6667 0.0555

Phi Coefficient 0.2887

Contingency Coefficient 0.2774

Cramer's V 0.2887

Fisher's Exact Test

Cell (1,1) Frequency (F) 9

Left-sided Pr <= F 0.9880

Right-sided Pr >= F 0.0538

Table Probability (P) 0.0417

Two-sided Pr <= P 0.1049

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% ConfidenceLimits

Case-Control (Odds Ratio) 3.5000 0.9587 12.7775

Cohort (Col1 Risk) 2.2500 0.9680 5.2298

Cohort (Col2 Risk) 0.6429 0.3883 1.0642

QMH takes the value 3.667 for males, with a p-value of 0.056. The odds ratio for the males is OR
= 3.5, with a 95% confidence interval that barely contains the value 1. Men with higher ST segment
depression levels had 3.5 times the odds of CA disease than those with lower levels.

Output 3.16 contains the QMH statistic, which takes the value 4.503 with a p-value of 0.0338. By
combining the genders, the power has been increased so that the association detected by QMH is
significant at the ˛ D 0:05 level of significance.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



68 Chapter 3: Sets of 2 � 2 Tables

Output 3.16 Stratified Analysis

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 4.5026 0.0338

2 Row Mean Scores Differ 1 4.5026 0.0338

3 General Association 1 4.5026 0.0338

Output 3.17 contains the estimates of the common odds ratios. O MH D 2:847 and O L D 2:859.
The confidence intervals do not contain the value 1. For the combined genders, persons with higher
ST segment depression levels had nearly three times the odds of CA disease than those with lower
levels.

Output 3.17 Odds Ratios

Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% ConfidenceLimits

Case-Control Mantel-Haenszel 2.8467 1.0765 7.5279

(Odds Ratio) Logit 2.8593 1.0807 7.5650

Cohort Mantel-Haenszel 1.6414 1.0410 2.5879

(Col1 Risk) Logit 1.5249 0.9833 2.3647

Cohort Mantel-Haenszel 0.6299 0.3980 0.9969

(Col2 Risk) Logit 0.6337 0.4046 0.9926

Common measures of relative risk are also printed by the FREQ procedure. However, since these
data do not come from a prospective study, these statistics are not relevant and should be ignored.

Finally, Output 3.18 displays the results of the Breslow-Day test. It does not contradict homogeneity
of the odds ratios for these data, with QBD D 0:215 and p D 0:6425.

Output 3.18 Breslow-Day Test

Breslow-Day Test for
Homogeneity of the Odds Ratios

Chi-Square 0.2155

DF 1

Pr > ChiSq 0.6425
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3.4 Exact Confidence Intervals for the Common Odds Ratio

Consider the data in Table 3.8. A small company initiated exercise programs at both of its locations,
downtown and a satellite office in a nearby suburb. The office program consisted of directed aerobic
activities such as running, walking, and bicycling, conducted under the guidance of an exercise
counselor. The home program consisted of a range of activities that were self-monitored. Each
employee signed an agreement to participate in a program and to check in monthly to ensure
continual effort. After a year, participants and non-participants underwent a cardiovascular stress
test to assess their fitness, and their result was recorded as good or not good depending on age-
adjusted criteria. The exercise counselor was interested in whether type of program was associated
with good test results.

Table 3.8 Cardiovascular Test Outcomes
Location Program Good Not Good Total
Downtown Office 12 5 17
Downtown Home 3 5 8

Total 15 10 25
Satellite Office 6 1 7
Satellite Home 1 3 4

Total 7 4 11

Interest lies in computing an odds ratio comparing good results for the office program compared
to the home program. However, the counts in these tables are too small to be able to justify the
asymptotic confidence limits for the odds ratio.

Exact counterparts are available. The exact confidence limits for the odds ratios are constructed
from the distribution of S D

P
h nh11, conditional on the marginal totals of the 2 � 2 tables.

This makes the assumption that the odds ratio is constant over the tables. Note that the confidence
coefficient for the exact limits is at least (1�˛). See Agresti (1992) for a comprehensive discussion.

These exact confidence limits can also be constructed by performing exact logistic regression,
which is discussed in Chapter 8. While the exact confidence limits will be identical, that method
also produces a regression-adjusted estimate of the odds ratio instead of the MH estimator produced
by PROC FREQ.

Zelen’s test is an exact analogue to the Breslow-Day test for equal odds ratios for sets of 2 � 2
tables. It is constructed in a similar fashion to Fisher’s exact test. The p-value is the sum of all
the table probabilities that are less than or equal to the observed table probability, where that sum
is computed for all tables with the same two-way fixed margins as the observed set of tables. See
Zelen (1971) and Hirji et al. (1996) for more information. Note that the test of the interaction of
location and program with exact logistic regression would serve the same purpose as Zelen’s test.

The following DATA step inputs the cardiovascular test data into the SAS data set EXERCISE.

data exercise;
input location $ program $ outcome $ count @@;
datalines;
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downtown office good 12 downtown office not 5
downtown home good 3 downtown home not 5
satellite office good 6 satellite office not 1
satellite home good 1 satellite home not 3
;

The following PROC FREQ statements request the exact analysis. The CMH(MF) option requests
that the Mantel-Fleiss criterion be produced for the CMH results. The COMOR option in the
EXACT statement requests the exact common odds ratio confidence limits, and the EQOR option
requests Zelen’s test.

proc freq order=data;
weight count;
tables location*program*outcome /cmh(mf);
exact comor eqor;

run;

The Mantel-Fleiss criterion has the value 4.6545, which is less than the proscribed limit of 5. This
result isn’t unexpected given the small numbers in the tables, and you would proceed cautiously in
reporting the CMH results.

Output 3.19 Mantel-Fleiss Criterion

Summary Statistics for program by outcome
Controlling for location

Summary Statistics for program by outcome
Controlling for location

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 5.5739 0.0182

2 Row Mean Scores Differ 1 5.5739 0.0182

3 General Association 1 5.5739 0.0182

Mantel-Fleiss Criterion 4.6545 Warning: Criterion < 5

The odds ratio is a valid measure of association for these data. Output 3.20 provides the MH
estimate of the common odds ratio as 5.8421 and both the asymptotic and exact confidence limits.
The exact limits (1.0486, 33.3124) are the appropriate confidence limits for the common odds ratio
for these data. In this case, these exact limits are wider than the asymptotic limits and have the
lower limit closer to 1 for no association.
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Output 3.20 Exact Confidence Limits

Common Odds Ratio

Mantel-Haenszel Estimate 5.8421

Asymptotic Conf Limits

95% Lower Conf Limit 1.3012

95% Upper Conf Limit 26.2296

Exact Conf Limits

95% Lower Conf Limit 1.0486

95% Upper Conf Limit 33.3124

Output 3.21 reports the Zelen test for homogeneity of the odds ratio; with a p-value of 1, there is
no evidence to the contrary.

Output 3.21 Zelen’s Test Results

Tests for Homogeneity of Odds
Ratios

Breslow-Day Chi-Square 0.6970

DF 1

Pr > ChiSq 0.4038

Zelen's Exact Test (P) 0.4917

Exact Pr <= P 1.0000
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Chapter 4

2 � r and s � 2 Tables
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4.1 Introduction

While 2 � 2 and sets of 2 � 2 tables are very common, many tables and sets of tables have other
dimensions. This chapter focuses on tables and sets of tables that also occur frequently: 2 � r
tables in which the column variable is ordinally scaled and s � 2 tables in which the row variable
is ordinally scaled. For 2 � r tables, there is interest in investigating a response variable with
multiple ordered outcomes for a single table or for a combined set of strata. For example, you may
be comparing a new treatment and a placebo on the extent of patient improvement that is rated as
none, some, or marked. For s � 2 tables, there is interest in the trend of proportions across ordered
groups for a single table or for a combined set of strata. For example, you may be comparing the
proportion of successful outcomes for different dosage levels of a new drug.

Section 4.2 addresses the 2 � r table, and Section 4.4 addresses the s � 2 table. Extensions of the
Mantel-Haenszel strategy address association in sets of tables with these characteristics. Sections
4.3 and 4.5 discuss these strategies for sets of 2 � r and sets of s � 2 tables, respectively.
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4.2 The 2 � r Table

Consider the data from Koch and Edwards (1988) displayed in Table 4.1. The information comes
from a randomized, double-blind clinical trial investigating a new treatment for rheumatoid arthritis.
Investigators compared the new treatment with a placebo; the response measured was whether there
was no, some, or marked improvement in the symptoms of rheumatoid arthritis when the active
treatment was administered.

Table 4.1 Combined Rheumatoid Arthritis Data
Improvement

Treatment None Some Marked Total
Active 13 7 21 41
Placebo 29 7 7 43
Total 42 14 28 84

As discussed in Chapter 1, “Introduction,” you want to use the information in the ordinal column
variable in forming a test statistic. This involves assigning scores to the response levels, forming
means, and then examining location shifts of the means across the levels of the row variable.

Define the mean for the Active drug group as

Nf1 D

3X
jD1

ajn1j

n1C

where a D faj g D .a1; a2; a3/ is a set of scores reflecting the response levels with a1 � a2 � a3
and at least one ‘�’ is a ‘<’. Then, if the null hypothesis H0 is no association whereby patients
would have the same responses regardless of the treatment assignment

Ef Nf1jH0g D

3X
jD1

�
aj
n1CnCj

n1Cn

�
D

3X
jD1

aj
nCj

n
D �a

It can be shown that

V f Nf1jH0g D
n � n1C

n1C.n � 1/

3X
jD1

.aj � �a/
2
�nCj
n

�
D
.n � n1C/va

n1C.n � 1/

where �a and va are the finite population mean and variance of scores a for the patients in the study.
The quantity Nf1 approximately has a normal distribution by randomization central limit theory, so
the quantity
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QS D
. Nf1 � �a/

2

f.n � n1C/=Œn1C.n � 1/�gva

D
. Nf1 � Nf2/

2

fn2=Œn1Cn2C.n � 1/�gva

D
. Nf1 � Nf2/

2˚
1
n1C
C

1
n2C

	˚
nva
.n�1/

	
approximately has the chi-square distribution with one degree of freedom. QS is called the mean
score statistic. By taking advantage of the ordinality of the response variable, QS can target the
alternative hypothesis of location shifts to the hypothesis of no association with fewer degrees of
freedom. While counterparts to Q and QP are useful for detecting general types of association (as
discussed in Chapter 5, “The s � r Table”), they are not as effective as QS in detecting location
shifts. QS is also a trend statistic for the tendency for the patients in one treatment group to have
better scores than the patients in the other treatment group.

A very conservative sample size guideline is the guideline used for the Pearson chi-square statistic
(that is, all expected values niCnCj =n D mij being greater than or equal to 5). However, one
of the advantages of the mean score statistic is that it has less stringent sample size requirements.
A more realistic but still conservative sample size guideline is to choose one or more cutpoints
j D .2; : : : ; .r � 1//, add the first through j th columns together and add the .j C 1/th through r th
columns together. If both of these sums are 5 or greater for at least one cutpoint in each row, then
the sample size is adequate.

For example, for Table 4.1, choose j D 2. Adding the first and second columns together yields the
sums 20 for the first row and 36 for the second; the remaining sums are just the third column cells
(21 and 7, respectively). Thus, according to this criterion, the sample size is adequate; also, the
added columns could differ for the two rows in order to satisfy this criterion.

The following PROC FREQ statements generate QS . Note the use of the ORDER=DATA option
to ensure that the values for the variable RESPONSE are put in the correct order. If they are not,
the resulting statistics do not account for the intended ordering. Ensuring the correct sort order is
critical when you use statistics that assume ordered values.

data arth;
input treat $ response $ count @@;
datalines;

active none 13 active some 7 active marked 21
placebo none 29 placebo some 7 placebo marked 7
;

proc freq data=arth order=data;
weight count;
tables treat*response / chisq nocol nopct;

run;

The results are contained in Output 4.1.
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Output 4.1 Mean Score Statistic

Frequency
Row Pct

Table of treat by response

treat

response

none some marked Total

active 13
31.71

7
17.07

21
51.22

41

placebo 29
67.44

7
16.28

7
16.28

43

Total 42 14 28 84

Statistic DF Value Prob

Chi-Square 2 13.0550 0.0015

Likelihood Ratio Chi-Square 2 13.5298 0.0012

Mantel-Haenszel Chi-Square 1 12.8590 0.0003

Phi Coefficient 0.3942

Contingency Coefficient 0.3668

Cramer's V 0.3942

For a 2 � r table, the statistic labeled “Mantel-Haenszel Chi-Square” is QS . The scores (1, 2, 3)
are used for the response levels none, some, and marked in Table 4.1. QS takes the value 12.8590,
which is strongly significant. The active treatment performs better than the placebo treatment.

You can also produce QS by specifying the CMH option and generating the summary statistics,
which will be for just one stratum. QS is the statistic labeled “Row Mean Scores Differ” in the
resulting summary statistics table.

4.3 Sets of 2 � r Tables

Table 4.2 displays the data corresponding to Table 4.1 that have been broken out by gender.

Table 4.2 Rheumatoid Arthritis Data
Improvement

Gender Treatment None Some Marked Total
Female Active 6 5 16 27
Female Placebo 19 7 6 32
Total 25 12 22 59
Male Active 7 2 5 14
Male Placebo 10 0 1 11
Total 17 2 6 25
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These data comprise a set of two 2 � 3 tables. Interest lies in the association between treatment
and degree of improvement, adjusting for gender effects. Degree of improvement is an ordinal
response, since None, Some, and Marked are gradations of improvement.

Mantel (1963) proposed an extension of the Mantel-Haenszel strategy for the analysis of 2 � r
tables when the response variable is ordinal. The extension involves computing mean scores for the
responses and using the mean score differences across tables in the computation of a suitable test
statistic, much as the difference in proportions across tables was the basis of the Mantel-Haenszel
statistic.

Consider the following table as representative of q 2 � r tables, h D 1; 2; : : : ; q.

Table 4.3 hth Contingency Table

Level of Column Variable
1 2 . . . r Total

Group 1 nh11 nh12 . . . nh1r nh1C
Group 2 nh21 nh22 . . . nh2r nh2C
Total nhC1 nhC2 . . . nhCr nh

For the rheumatoid arthritis data in Table 4.2, r D 3 and q D 2. Under the null hypothesis of no
difference in treatment effects for each patient, the appropriate probability model is

Prfnhij g D
2Y
hD1

Q2
iD1 nhiCŠ

Q3
jD1 nhCj Š

nhŠ
Q2
iD1

Q3
jD1 nhij Š

Here, nhij represents the number of patients in the hth stratum who received the ith treatment and
had the jth response.

Suppose fahj g is a set of scores for the response levels in the hth stratum. Then you can compute
the sum of strata scores for the first treatment, active, as

fC1C D

2X
hD1

3X
jD1

ahjnh1j D

2X
hD1

nh1C Nfh1

where

Nfh1 D

3X
jD1

.ahjnh1j =nh1C/

is the mean score for Group 1 in the hth stratum. Under the null hypothesis of no association, fC1C
has the expected value

EffC1CjH0g D

2X
hD1

nh1C�h D ��
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and variance

V ffC1CjH0g D

2X
hD1

nh1C.nh � nh1C/

.nh � 1/
vh D v�

where �h D
P3
jD1.ahjnhCj =nh/ is the finite subpopulation mean and

vh D

3X
jD1

.ahj � �h/
2.nhCj =nh/

is the variance of scores for the hth stratum.

If the across-strata sample sizes nCiC D
Pq

hD1

Pr
jD1 nhij are sufficiently large, then fC1C

approximately has a normal distribution, and so the quantity

QSMH D
.fC1C � ��/

2

v�

approximately has a chi-square distribution with one degree of freedom. QSMH is known as the
extended Mantel-Haenszel mean score statistic; it is sometimes called the ANOVA statistic. You
can show that QSMH is a function of the weighted average of the differences in the mean scores of
the two treatments for the q strata.

QSMH D

˚Pq

hD1
nh1C. Nfh1 � �h/

	2Pq

hD1
nh1Cnh2Cvh=.nh � 1/

D

˚Pq

hD1
.nh1Cnh2C=nh/. Nfh1 � Nfh2/

	2Pq

hD1
.nh1Cnh2C=nh/

2 Nvh

where the

Nvh D

�
1

nh1C
C

1

nh2C

�
nhvh

nh � 1

are the variances of the mean score differences f Nfh1 � Nfh2g for the respective strata.

QSMH is effective for detecting consistent patterns of differences across the strata when the
. Nfh1 � Nfh2/ predominantly have the same sign.

Besides the guideline that the across strata row totals (nCiC) be sufficiently large, another guideline
for sample size requirements for QSMH is to choose cutpoints and add columns together so that
each stratum table is collapsed to a 2 � 2 table, similar to what is described in Section 4.2; the
cutpoints don’t have to be the same for each table. Then, you apply the Mantel-Fleiss criterion to
these 2 � 2 tables (see Section 3.2).

4.3.1 Choosing Scores

Ordinal data analysis strategies do involve some choice on the part of the analyst, and that is the
choice of scores to apply to the response levels. There are a variety of scoring systems to consider;
the following are often used.
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� integer scores

Integer scores are defined as aj D j for j D 1; 2; : : : ; r: They are useful when the response
levels are ordered categories that can be viewed as equally spaced and when the response
levels correspond to discrete counts. They are also useful if you have equal interest in
detecting group differences for any binary partition � j versus > j of outcomes for
j D 1; 2; : : : ; r . Note that if you add the same number to a set of scores, or multiply a set
of scores by the same number, both sets of scores produce the same test statistic because
multiplication is cancelled by division by the same factor in the variance and addition is
cancelled by subtraction of the same factor in the expected value. Thus, the integer scores (1,
2, 3, . . . ) and (0, 1, 2, . . . ) produce the same results. Integer scores were used in the analysis
of the arthritis data table in Section 4.2.

� standardized midranks

These scores are defined as

aj D
2Œ
Pj

kD1
nCk� � nCj C 1

2.nC 1/

The {aj } are constrained to lie between 0 and 1. Their advantage over integer scores is
that they require no scaling of the response levels other than that implied by their relative
ordering. For sets of 2 � r tables, they provide somewhat more power than actual midranks
since they produce the van Elteren (1960) extension of the Wilcoxon rank sum test (refer to
Lehmann 1975 for a discussion). Standardized midranks are also known as modified ridit
scores.

� logrank scores

aj D 1 �

jX
kD1

�
nCkPr
mDk nCm

�

Logrank scores are useful when the distribution is thought to be L-shaped, and there is
greater interest in treatment differences for response levels with higher values than with
lower values.

Other scores that are sometimes used are ridit and rank scores. For a single stratum, rank,
ridit, and modified ridit scores produce the same result, which is the categorical counterpart
of the Wilcoxon rank sum test. For stratified analyses, modified ridit scores produce van
Elteren’s extension of the Wilcoxon rank sum test, a property that makes them the preferred
of these three types of scores. A possible shortcoming of rank scores, relative to ridit or
modified ridit scores, is that their use tends to make the large strata overly influence the test
statistic. See page 167 for additional discussion on choosing scores.

You specify the choice of scores in the FREQ procedure by using the SCORES= option in
the TABLES statement. If you don’t specify SCORES=, then the default table scores are
applied. The column (row) numbers are the table scores for character data and the actual
variable values are used as scores for numeric variables. Other SCORES= values are RANK,
MODRIDIT, and RIDIT. If you are interested in using logrank scores, then you need to
compute them in a DATA step and make them the values of the row and column variables
you list in the TABLES statement.
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4.3.2 Analyzing the Arthritis Data

The FREQ procedure also produces the extended Mantel-Haenzsel statistics. You specify the
CMH option in the TABLES statement of PROC FREQ. Notice that the ORDER=DATA option is
specified in the PROC statement to ensure that the levels of RESPONSE are sorted correctly. The
columns will be ordered none, some, and marked; and the rows will be ordered active and placebo.

data arth;
input gender $ treat $ response $ count @@;
datalines;

female active none 6 female active some 5 female active marked 16
female placebo none 19 female placebo some 7 female placebo marked 6
male active none 7 male active some 2 male active marked 5
male placebo none 10 male placebo some 0 male placebo marked 1
;

proc freq data=arth order=data;
weight count;
tables gender*treat*response / cmh nocol nopct;

run;

Output 4.2 displays the frequency tables for females and males.

Output 4.2 Tables by Gender

Frequency
Row Pct

Table 1 of treat by response

Controlling for gender=female

treat

response

none some marked Total

active 6
22.22

5
18.52

16
59.26

27

placebo 19
59.38

7
21.88

6
18.75

32

Total 25 12 22 59

Frequency
Row Pct

Table 2 of treat by response

Controlling for gender=male

treat

response

none some marked Total

active 7
50.00

2
14.29

5
35.71

14

placebo 10
90.91

0
0.00

1
9.09

11

Total 17 2 6 25

Output 4.3 displays the table of Mantel-Haenszel statistics.
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Note that the table heading includes “Based on Table Scores” in parentheses. QSMH is the “Row
Mean Scores Differ” statistic. It has the value 14.6319, with 1 df, and it is clearly significant.

Note the small cell counts for several cells in the table for males. This is not a problem for QSMH
since the adequacy of the sample sizes is determined by the across strata sample sizes nCiC, which
are nC1C D 41 and nC2C D 43 for these data.

Output 4.3 Mantel-Haenszel Results

Summary Statistics for treat by response
Controlling for gender

Summary Statistics for treat by response
Controlling for gender

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 14.6319 0.0001

2 Row Mean Scores Differ 1 14.6319 0.0001

3 General Association 2 14.6323 0.0007

Total Sample Size = 84

If you can’t make the case that the response levels for degree of improvement are equally spaced,
then modified ridit scores are an alternative strategy. The following PROC FREQ invocation
requests that modified ridit scores be used in the computation of QSMH through the use of the
SCORES=MODRIDIT option in the TABLES statement.

proc freq data=arth order=data;
weight count;
tables gender*treat*response/cmh scores=modridit nocol nopct;

run;

Output 4.4 contains the table of CMH statistics based on modified ridit scores. QSMH takes
the value 15.004 with 1 df, which is clearly significant. Note that the different scoring strategies
produced similar results. This is often the case.

Output 4.4 Mantel-Haenszel Results for Modified Ridit Scores

Summary Statistics for treat by response
Controlling for gender

Summary Statistics for treat by response
Controlling for gender

Cochran-Mantel-HaenszelStatistics (ModifiedRidit Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 14.9918 0.0001

2 Row Mean Scores Differ 1 15.0041 0.0001

3 General Association 2 14.6323 0.0007

Total Sample Size = 84
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4.3.3 Rank Statistics for Ordered Data

The Mann-Whitney rank measure of association statistics are useful for assessing the association
between an ordinal outcome and a dichotomous explanatory variable. You may be interested in
computing the Mann-Whitney rank measure of association as a way of assessing the extent to
which patients with active treatment are more likely to have better response status than those with
placebo.

The Mann-Whitney estimator for the hth table is computed as

gh D

3X
jD1

phAj

�� jX
kD1

phPk

�
� 0:5phPj

�
D Pr.A > P/C 0:5Pr.A D P/

D

X
j

Pr.A D j /
˚
Pr.P � j / � 0:5Pr.P D j /

	
where A indicates active treatment and P indicates placebo.

Somers’ D is another measure of association that is appropriate for ordinally scaled data; it is
computed as

Somers’ D D
Pr.A > P/ � Pr.A < P/

Pr.A > P/C Pr.A < P/C Pr.A D P/

You can compute the Mann-Whitney statistic from Somers’ D as gh D .Somers’ D C 1/=2, and
the standard error of gh is the standard error of Somers’ D divided by 2. You can then write a test
of homogeneity of the Mann-Whitney statistics for the tables as

QH D
.gF � gM /

2

.vF C vM /

A general form of this statistic for q tables is

QH D

qX
hD1

.gh � Ng/
2=vh

where

Ng D

qX
hD1

.gh=vh/

� qX
hD1

.1=vh/

If homogeneity is not contradicted, then you can proceed with computing an estimator of the
common Mann-Whitney statistic. Two forms are available: Ng and Qg.
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Ng D

� MX
hDF

.gh=vh/

��� MX
hDF

.1=vh/

�

The estimate of the variance of Ng is

v Ng D

� MX
hDF

.1=vh/

��1

You construct a hypothesis test that the common Mann-Whitney estimator is equal to 0.5 with

Q Ng D . Ng � 0:5/
2=v Ng

Meanwhile,

Qg D

MX
hDF

whgh

� MX
hDF

wh

with wh D nh1nh2=.nh1 C nh2/.

The estimate of the variance of Qg is

v Qg D

MX
hDF

w2h.s.e..gh//
2

�� MX
hDF

w2h

�

The hypothesis test for the common Mann-Whitney estimator is performed as indicated for Qg.
The choice of Ng or Qg depends on sample size. In this instance, Qg would be a better choice since
the sample sizes are not large within strata. Both forms are appropriate when the same sizes are
adequate, and Ng can be more powerful. Note that Qg is similar to van Elteren’s test.

To generate these quantities, you use the FREQ procedure to compute the Somers’ D statistics and
output them to a SAS data set, and then use the IML procedure to generate the Mann-Whitney
statistics. First, the data are put into SAS data set ARTH2. Note that the placebo and active rows
have been switched so that placebo is now the first row of the tables.

data arth2;
input gender $ treat $ response $ count @@;
datalines;

female placebo none 19 female placebo some 7 female placebo marked 6
female active none 6 female active some 5 female active marked 16
male placebo none 10 male placebo some 0 male placebo marked 1
male active none 7 male active some 2 male active marked 5
;
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The following PROC FREQ statements request that Somers’ D be computed for each of the two
tables and that the two estimates and their standard errors be placed into SAS data set SOMEROUT.
PROC FREQ produces two forms of Somers’ D: Somers’ D.C jR/ and Somers’ D.RjC/. The
former treats the row variable as the independent variable and the column variable as the dependent
variable, and the reverse is true for Somers’D.RjC/. In this case, Somers’D.C jR/ is desired, and
that statistic is output with the SMDCR option in the OUTPUT statement.

proc freq data=arth2 order=data;
weight count;
tables gender*treat*response / measures scores=modridit;
output out=somerout smdcr;
ods output CrosstabFreqs=myFreqs;
run;

data ns;
set myFreqs; where _type_="110";

run;

Output 4.5 displays the contents of SOMEROUT.

Output 4.5 Data Set SOMEROUT

Obs gender _SMDCR_ E_SMDCR

1 female 0.46644 0.12352

2 male 0.39610 0.16375

The following SAS/IML statements generate the desired estimates.

proc iml;
use somerout var{_SMDCR_ E_SMDCR};
read all into combined;
use ns var{Frequency};
read all into total;
print total;
WH=(total[1,]#total[2,]) / (total[1,]+total[2,]) //

(total[3,]#total[4,]) / (total[3,]+total[4,]);
print wh;
GH=(combined[,1]+1)/2;
SEGH=(combined[,2])/2;
print wh GH SEGH;
QH= (GH[1] - GH[2])**2 / SSQ(SEGH);
pvalue=1-probchi(QH,1);
print GH SEGH QH pvalue;
gbar1=sum(GH / SEGH##2);
gbar2= sum (1/SEGH##2);
gtilde1=sum(GH # WH);
gtilde2=sum(WH);
gbar=gbar1/gbar2;
gtilde=gtilde1/gtilde2;
gtildevar=(sum(WH##2 # SEGH##2)) /((sum(WH))**2);
segtilde=sqrt(gtildevar);
qgtilde=(gtilde-.5)**2/gtildevar;
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gbarvar=inv (sum(1/SEGH##2));
qgbar=(gbar-.5)**2/gbarvar;
qgtilde=(gtilde-.5)**2/gtildevar;
print gbar gbarvar qgbar;
print gtilde gtildevar qgtilde;

quit;

Output 4.6 and Output 4.7 display the results.

The estimate of gF is 0.7332 with a standard error of 0.0618, and the estimate of gM is 0.6981 with
a standard error of 0.0819. QH is 0.1176 (p D 0:73), so homogeneity is not contradicted.

Output 4.6 Computations for Mann-Whitney Statistics

GH SEGH QH pvalue

0.7332176 0.0617604 0.1175713 0.7316837

0.6980519 0.0818762

Output 4.7 displays the estimate of Qg, the common Mann-Whitney estimator.

Output 4.7 Hypothesis Test Results

gtilde gtildevar qgtilde

0.7228052 0.0024777 20.035832

Here, Qg is 0.7228, with variance 0.002477, and Q Qg D 20:035, which is clearly significant with 1
df. The common estimator is not equal to 1/2. You can form a 95% confidence interval for Qg as
Qg ˙ 1:96 se. Qg/, which is 0:7228˙ 1:96.0:0497/ D 0:7228˙ 0:0974.

4.3.4 Colds Example

The data in Table 4.4 come from a study on the presence of colds in children in two regions (Stokes
1986). Researchers visited children several times and noted whether they had any symptoms of
colds. The outcome measure is the number of periods in which a child exhibited cold symptoms.

Table 4.4 Number of Periods with Colds by Gender and Residence

Periods With Colds
Gender Residence 0 1 2 Total
Female Urban 45 64 71 180
Female Rural 80 104 116 300
Total 125 168 187 480
Male Urban 84 124 82 290
Male Rural 106 117 87 310
Total 190 141 169 600
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These data consist of two 2 � 3 tables; interest lies in determining whether there is association
between residence (urban or rural) and number of periods with colds (0, 1, or 2) while controlling
for gender. The response levels for these data consist of small discrete counts, so number of periods
with colds can be considered an ordinal variable in which the levels are equally spaced. The usual
ANOVA strategy for interval-scaled response variables is not appropriate since there is no reason
to think that the number of periods with colds is normally distributed with homogeneous variance.

The following statements produce an extended Mantel-Haenszel analysis. The default table scores
are used, which will be the actual scores of the variable PER_COLD (0, 1, 2).

data colds;
input gender $ residence $ per_cold count @@;
datalines;

female urban 0 45 female urban 1 64 female urban 2 71
female rural 0 80 female rural 1 104 female rural 2 116
male urban 0 84 male urban 1 124 male urban 2 82
male rural 0 106 male rural 1 117 male rural 2 87
;

proc freq data=colds order=data;
weight count;
tables gender*residence*per_cold / all nocol nopct;

run;

Output 4.8 and Output 4.9 contain the frequency tables for females and males and their associated
chi-square statistics. There is no significant association between residence and number of periods
with colds for females or males; Q D 0:1059 (p D 0:7448) for females and Q D 0:7412

(p D 0:3893) for males.

Output 4.8 Results for Females

Frequency
Row Pct

Table 1 of residence by per_cold

Controlling for gender=female

residence

per_cold

0 1 2 Total

urban 45
25.00

64
35.56

71
39.44

180

rural 80
26.67

104
34.67

116
38.67

300

Total 125 168 187 480
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Output 4.8 continued

Statistic DF Value Prob

Chi-Square 2 0.1629 0.9218

Likelihood Ratio Chi-Square 2 0.1634 0.9215

Mantel-Haenszel Chi-Square 1 0.1059 0.7448

Phi Coefficient 0.0184

Contingency Coefficient 0.0184

Cramer's V 0.0184

Output 4.9 Results for Males

Frequency
Row Pct

Table 2 of residence by per_cold

Controlling for gender=male

residence

per_cold

0 1 2 Total

urban 84
28.97

124
42.76

82
28.28

290

rural 106
34.19

117
37.74

87
28.06

310

Total 190 241 169 600

Statistic DF Value Prob

Chi-Square 2 2.2344 0.3272

Likelihood Ratio Chi-Square 2 2.2376 0.3267

Mantel-Haenszel Chi-Square 1 0.7412 0.3893

Phi Coefficient 0.0610

Contingency Coefficient 0.0609

Cramer's V 0.0610

Output 4.10 contains the Mantel-Haenszel statistics. QSMH has the value 0.7379, with a p-value
of 0.3903. Even controlling for gender, there appears to be no association between residence and
number of periods with colds for these data.
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Output 4.10 QSMH Statistic

Summary Statistics for residence by per_cold
Controlling for gender

Summary Statistics for residence by per_cold
Controlling for gender

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 0.7379 0.3903

2 Row Mean Scores Differ 1 0.7379 0.3903

3 General Association 2 1.9707 0.3733

Total Sample Size = 1080

You can also compute a weighted difference of means for this analysis which serves as a distance
measure (effect size), similar to what was done in Section 3.2.1 for sets of 2 � 2 tables.

d D

P
hwh.

Nfh1 � Nh2/P
hwh

and

vd D
X
h

w2h

�
vh1

nh1C
C

vh2

nh2C

�ı�X
h

wh

�2
where

vhi D

rX
jD1

.ahj � Nfhi /
2nhij

ı
.nhiC � 1/

and

wh D .nh1Cnh2C=nh/

You can use the GLM procedure for the purpose of computing d when you use the default
table scores (actual values for the response variable). You specify PER_COLD as the response
variable, with GENDER and RESIDENCE specified as the explanatory variables (for stratification
and group). Then you use the ESTIMATE statement to produce the difference in effect for
RESIDENCE.

proc glm;
class gender residence;
freq count;
model per_cold = gender residence ;
estimate 'd' residence -1 1;

run;

Here, d D 0:0416. vd is calculated to be 0.0023.
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Output 4.11 Distance Measure

                                     Dependent Variable: per_coldDependent Variable: per_cold

Parameter Estimate
Standard

Error t Value Pr > |t|

d 0.04155019 0.04839829 0.86 0.3908

4.4 The s � 2 Table

Table 4.5 displays data from a study on adolescent usage of smokeless tobacco (Bauman, Koch,
and Lentz 1989). Interest focused on factors that affected usage, such as perception of risk, father’s
usage of smokeless tobacco, and educational background. Table 4.5 contains two s � 2 tables of
risk perception (minimal, moderate, and substantial) and adolescent usage by father’s usage. This
time, the row variable is ordinally scaled. The question of interest is whether there is a discernible
trend in the proportions of adolescent usage over the levels of risk perception. Does usage decline
with higher risk perception?

Table 4.5 Adolescent Smokeless Tobacco Usage

Father’s Risk Adolescent Usage
Usage Perception No Yes Total
No Minimal 59 25 84
No Moderate 169 29 198
No Substantial 196 9 205
Yes Minimal 11 8 19
Yes Moderate 33 11 44
Yes Substantial 22 2 24

Since the response variable is dichotomous, both risk perception and adolescent usage can be
considered ordinal variables. The strategy for assessing association when both row and column
variables are ordinal involves assigning scores to the levels of both variables and evaluating their
correlation. First, consider the individual 3 � 2 tables.

Form the linear function

Nf D

3X
iD1

ci Nfi

�niC
n

�
D

3X
iD1

2X
jD1

ciajnij

n

where c D .c1; c2; c3/ represents scores for the groups and a D .a1; a2/ represents scores for the
columns (effectively 0, 1), with a1 < a2 and c1 � c2 � c3 and at least one ‘�’ is a ‘<’.

Under H0,

Ef Nf jH0g D

3X
iD1

ci

�niC
n

� 2X
jD1

aj

�nCj
n

�
D �c�a
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and

V f Nf jH0g D

8<:
3X
iD1

.ci � �c/
2
�niC
n

� 2X
jD1

.aj � �a/
2.nCj =n/

.n � 1/

9=; D vcva

.n � 1/

The quantity Nf has an approximate normal distribution for large samples, so for these situations

QCS D
. Nf �Ef Nf jH0g/

2

Varf Nf jH0g

D
.n � 1/Œ

P3
iD1

P2
jD1.ci � �c/.aj � �a/nij /�

2

Œ
P2
iD1.ci � �c/2niC�Œ

P2
jD1.ai � �a/2nCj �

D.n � 1/r2ac

where rac is the Pearson correlation coefficient. Thus, QCS is known as the correlation statistic. It
is approximately chi-square with one degree of freedom. This test is comparable to the Cochran-
Armitage trend test (Cochran 1954, Armitage 1955), which tests for trends in binomial proportions
across the levels of an ordinal covariate. In fact, multiplying QCS by n=.n � 1/ yields the same
value as the z2 of the Cochran-Armitage test.

The following SAS statements request that association statistics be computed for the smokeless
tobacco data. The Cochran-Armitage trend test is also requested directly with the TREND option in
the TABLES statement. You can include as many TABLES statements in a PROC FREQ invocation
as you like.

data tobacco;
length risk $11. ;
input f_usage $ risk $ usage $ count @@;
datalines;

no minimal no 59 no minimal yes 25
no moderate no 169 no moderate yes 29
no substantial no 196 no substantial yes 9
yes minimal no 11 yes minimal yes 8
yes moderate no 33 yes moderate yes 11
yes substantial no 22 yes substantial yes 2
;

proc freq;
weight count;
tables f_usage*risk*usage /cmh chisq measures trend;
tables f_usage*risk*usage /cmh scores=modridit;

run;

Output 4.12 contains the statistics for the table of risk perception by adolescent usage when there
is no father’s usage. Note that QCS D 34:2843, with 1 df, signifying a strong correlation between
risk perception and smokeless tobacco usage.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



4.4. The s � 2 Table 91

Output 4.12 Results for No Father’s Usage

Statistics for Table 1 of risk by usage
Controlling for f_usage=no

Statistics for Table 1 of risk by usage
Controlling for f_usage=no

Statistic DF Value Prob

Chi-Square 2 34.9217 <.0001

Likelihood Ratio Chi-Square 2 34.0684 <.0001

Mantel-Haenszel Chi-Square 1 34.2843 <.0001

Phi Coefficient 0.2678

Contingency Coefficient 0.2587

Cramer's V 0.2678

Output 4.13 contains the Cochran-Armitage trend test table. The test statistic, Z, is 5.8613 and is
highly significant. There is an increasing trend in binomial proportions as you go from minimal to
substantial risk perception for the table with no father usage.

Output 4.13 Cochran-Armitage Trend Test

Cochran-Armitage Trend Test

Statistic (Z) 5.8613

One-sided Pr >  Z <.0001

Two-sided Pr > |Z| <.0001

Output 4.14 contains the measures of association. Somers’ D.C jR/ and the Pearson correlation
coefficient are of particular interest since they account for ordinality.
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Output 4.14 Measures of Association

Statistic Value ASE

Gamma -0.5948 0.0772

Kendall's Tau-b -0.2477 0.0395

Stuart's Tau-c -0.1863 0.0339

Somers' D C|R -0.1484 0.0267

Somers' D R|C -0.4135 0.0628

Pearson Correlation -0.2656 0.0439

Spearman Correlation -0.2602 0.0415

Lambda Asymmetric C|R 0.0000 0.0000

Lambda Asymmetric R|C 0.0709 0.0211

Lambda Symmetric 0.0580 0.0169

Uncertainty Coefficient C|R 0.0908 0.0290

Uncertainty Coefficient R|C 0.0339 0.0112

Uncertainty Coefficient Symmetric 0.0493 0.0161

Output 4.15 contains the same association test results for those whose fathers used smokeless
tobacco, Output 4.16 contains the corresponding Cochran-Armitage trend test, and Output 4.17
displays the corresponding measures of association.

Output 4.15 Results for Father’s Usage

Statistic DF Value Prob

Chi-Square 2 6.6413 0.0361

Likelihood Ratio Chi-Square 2 7.0461 0.0295

Mantel-Haenszel Chi-Square 1 6.5644 0.0104

Phi Coefficient 0.2763

Contingency Coefficient 0.2663

Cramer's V 0.2763

Output 4.16 Cochran-Armitage Trend Test

Cochran-Armitage Trend Test

Statistic (Z) 2.5770

One-sided Pr >  Z 0.0050

Two-sided Pr > |Z| 0.0100
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Output 4.17 Measures of Association

Statistic Value ASE

Gamma -0.5309 0.1626

Kendall's Tau-b -0.2622 0.0905

Stuart's Tau-c -0.2500 0.0917

Somers' D C|R -0.2014 0.0726

Somers' D R|C -0.3413 0.1171

Pearson Correlation -0.2763 0.0966

Spearman Correlation -0.2761 0.0955

Lambda Asymmetric C|R 0.0000 0.0000

Lambda Asymmetric R|C 0.0000 0.0000

Lambda Symmetric 0.0000 0.0000

Uncertainty Coefficient C|R 0.0733 0.0510

Uncertainty Coefficient R|C 0.0392 0.0276

Uncertainty Coefficient Symmetric 0.0511 0.0357

There is a significant correlation between risk perception and adolescent usage for the table with
father’s usage, and there is similarity of the Pearson correlations according to father’s usage,
�0:267 for Yes and �0:226 for No. The Cochran-Armitage Z statistic has the value 2.5770 and
a two-sided p-value of 0.0100. Note that exact p-values are available for the trend test for sparse
data.

Section 4.5 discusses the analysis of the combined tables.

4.5 Sets of s � 2 Tables

4.5.1 Correlation Statistic

Mantel (1963) also proposed a statistic for the association of two variables that were ordinal for a
combined set of strata, based on assigning scores fag and fcg to the columns and rows of the tables:
extended Mantel-Haenszel correlation statistic
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QCSMH D
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QCSMH is called the extended Mantel-Haenszel correlation statistic. It approximately follows
the chi-square distribution with one degree of freedom when the combined strata sample sizes are
sufficiently large:

qX
hD1

nh � 40

4.5.2 Analysis of Smokeless Tobacco Data

The following SAS statements request that Mantel-Haenszel correlation statistics be computed for
the smokeless tobacco data. Two TABLES statements are included to specify analyses that use
both integer scores and modified ridit scores.

proc freq;
weight count;
tables f_usage*risk*usage /cmh;
tables f_usage*risk*usage /cmh scores=modridit;

run;

Output 4.18 contains the results for the integer scores, and Output 4.19 contains the results for the
modified ridit scores.

Output 4.18 Results for Integer Scores

Summary Statistics for risk by usage
Controlling for f_usage

Summary Statistics for risk by usage
Controlling for f_usage

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 40.6639 <.0001

2 Row Mean Scores Differ 2 41.0577 <.0001

3 General Association 2 41.0577 <.0001

Total Sample Size = 574
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Output 4.19 Results for Modified Ridit Scores

Summary Statistics for risk by usage
Controlling for f_usage

Summary Statistics for risk by usage
Controlling for f_usage

Cochran-Mantel-HaenszelStatistics (ModifiedRidit Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 39.3048 <.0001

2 Row Mean Scores Differ 2 41.0826 <.0001

3 General Association 2 41.0577 <.0001

Total Sample Size = 574

QCSMH is Statistic 1 in the table, labeled the “Nonzero Correlation” statistic. It takes the value
40.6639 for integer scores, and it takes the value 39.3048 for modified ridit scores. Both results
are similar, with strongly significant statistics; often, different sets of scores produce essentially the
same results.

4.5.3 Pain Data Analysis

Clinical trials not only investigate measures of efficacy, or how well a drug works for its designed
purpose, but they also address the matter of adverse effects, or whether the drug has harmful side
effects. Table 4.6 contains data from a study concerned with measuring the adverse effects of a pain
relief treatment that was given at five different dosages, including placebo, to patients with one of
two diagnoses. Investigators were interested in whether there was a trend in the proportions with
adverse effects.

Table 4.6 Adverse Effects for Pain Treatment
Diagnosis

I II
Adverse Effects Adverse Effects

Treatment No Yes No Yes
Placebo 26 6 26 6
Dosage1 26 7 12 20
Dosage2 23 9 13 20
Dosage3 18 14 1 31
Dosage4 9 23 1 31

The following SAS statements request a QCSMH statistic from PROC FREQ, using both integer
scores and modified ridit scores. First, a TABLES statement requests the table of treatment by
response pooled over the two diagnoses. Note the use of the ORDER=DATA option in the PROC
statement. If this option was omitted, the levels of TREATMENT would be ordered incorrectly,
with placebo being placed last instead of first.
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data pain;
input diagnosis $ treatment $ response $ count @@;
datalines;

I placebo no 26 I placebo yes 6
I dosage1 no 26 I dosage1 yes 7
I dosage2 no 23 I dosage2 yes 9
I dosage3 no 18 I dosage3 yes 14
I dosage4 no 9 I dosage4 yes 23
II placebo no 26 II placebo yes 6
II dosage1 no 12 II dosage1 yes 20
II dosage2 no 13 II dosage2 yes 20
II dosage3 no 1 II dosage3 yes 31
II dosage4 no 1 II dosage4 yes 31
;

proc freq order=data;
weight count;
tables treatment*response / chisq;
tables diagnosis*treatment*response / chisq cmh;
tables diagnosis*treatment*response / scores=modridit cmh;

run;

As shown in Output 4.21, QCS for the combined table is strongly significant, with a value of
65.4730 and 1 df.
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Output 4.20 Results for Combined Diagnoses

Frequency
Percent
Row Pct
Col Pct

Table of treatment by response

treatment

response

no yes Total

placebo 52
16.15
81.25
33.55

12
3.73

18.75
7.19

64
19.88

dosage1 38
11.80
58.46
24.52

27
8.39

41.54
16.17

65
20.19

dosage2 36
11.18
55.38
23.23

29
9.01

44.62
17.37

65
20.19

dosage3 19
5.90

29.69
12.26

45
13.98
70.31
26.95

64
19.88

dosage4 10
3.11

15.63
6.45

54
16.77
84.38
32.34

64
19.88

Total 155
48.14

167
51.86

322
100.00

Statistic DF Value Prob

Chi-Square 4 68.0752 <.0001

Likelihood Ratio Chi-Square 4 73.2533 <.0001

Mantel-Haenszel Chi-Square 1 65.4730 <.0001

Phi Coefficient 0.4598

Contingency Coefficient 0.4178

Cramer's V 0.4598

Output 4.21 contains the statistics for the individual tables. QCS takes the value 22.8188 for
Diagnosis I and the value 52.3306 for Diagnosis II.
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Output 4.21 Results for Table 1, Table 2

Statistic DF Value Prob

Chi-Square 4 26.6025 <.0001

Likelihood Ratio Chi-Square 4 26.6689 <.0001

Mantel-Haenszel Chi-Square 1 22.8188 <.0001

Phi Coefficient 0.4065

Contingency Coefficient 0.3766

Cramer's V 0.4065

Statistic DF Value Prob

Chi-Square 4 60.5073 <.0001

Likelihood Ratio Chi-Square 4 68.7446 <.0001

Mantel-Haenszel Chi-Square 1 52.3306 <.0001

Phi Coefficient 0.6130

Contingency Coefficient 0.5226

Cramer's V 0.6130

Output 4.22 contains the stratified analysis results. Integer scores produce a QCSMH of 71.7263,
and modified ridit scores produce a QCSMH of 71.6471. These statistics are clearly significant.
The proportion of patients with adverse effects is correlated with level of dosage; higher dosages
produce more reports of adverse effects.

Output 4.22 Combined Results

Summary Statistics for treatment by response
Controlling for diagnosis

Summary Statistics for treatment by response
Controlling for diagnosis

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 71.7263 <.0001

2 Row Mean Scores Differ 4 74.5307 <.0001

3 General Association 4 74.5307 <.0001

Cochran-Mantel-HaenszelStatistics (ModifiedRidit Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 71.6471 <.0001

2 Row Mean Scores Differ 4 74.5307 <.0001

3 General Association 4 74.5307 <.0001
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Output 4.23 and Output 4.24 displays measures of association for the individual tables.

Output 4.23 Table 1 Measures

Statistic Value ASE

Gamma 0.5313 0.0935

Kendall's Tau-b 0.3373 0.0642

Stuart's Tau-c 0.4111 0.0798

Somers' D C|R 0.2569 0.0499

Somers' D R|C 0.4427 0.0837

Pearson Correlation 0.3776 0.0714

Spearman Correlation 0.3771 0.0718

Lambda Asymmetric C|R 0.2373 0.0837

Lambda Asymmetric R|C 0.1250 0.0662

Lambda Symmetric 0.1604 0.0621

Uncertainty Coefficient C|R 0.1261 0.0467

Uncertainty Coefficient R|C 0.0515 0.0191

Uncertainty Coefficient Symmetric 0.0731 0.0271

Output 4.24 Table 2 Measures

Statistic Value ASE

Gamma 0.7871 0.0571

Kendall's Tau-b 0.5114 0.0473

Stuart's Tau-c 0.6080 0.0638

Somers' D C|R 0.3800 0.0399

Somers' D R|C 0.6883 0.0606

Pearson Correlation 0.5719 0.0527

Spearman Correlation 0.5718 0.0529

Lambda Asymmetric C|R 0.3774 0.0842

Lambda Asymmetric R|C 0.1875 0.0668

Lambda Symmetric 0.2431 0.0637

Uncertainty Coefficient C|R 0.3369 0.0625

Uncertainty Coefficient R|C 0.1327 0.0256

Uncertainty Coefficient Symmetric 0.1904 0.0362
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Somers’ D for Diagnosis I has the value 0.2569, which takes the value 0.3800 for Diagnosis II,
indicating somewhat stronger evidence for association in the latter case.

4.6 Relationships between Sets of Tables

Suppose you transposed the rows and columns of Table 4.6. You would obtain the results displayed
in Table 4.7:

Table 4.7 Adverse Effects for Pain Treatment
Adverse

Diagnosis Effects Placebo Dosage1 Dosage2 Dosage3 Dosage4
I No 26 26 23 18 9
I Yes 6 7 9 14 23
II No 26 12 13 1 1
II Yes 6 20 20 31 31

Furthermore, suppose you analyzed these tables as two 2 � r tables, making the response variable
the row variable and the grouping variable the column variable. The first TABLES statement
requests an analysis for this table, and the second TABLES statement requests the earlier analysis
again.

proc freq order=data;
weight count;
tables diagnosis*response*treatment / cmh;
tables diagnosis*treatment*response / cmh;

run;

Output 4.25 contains the results.

Output 4.25 Combined Results

Summary Statistics for response by treatment
Controlling for diagnosis

Summary Statistics for response by treatment
Controlling for diagnosis

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 71.7263 <.0001

2 Row Mean Scores Differ 1 71.7263 <.0001

3 General Association 4 74.5307 <.0001
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Output 4.25 continued

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 71.7263 <.0001

2 Row Mean Scores Differ 4 74.5307 <.0001

3 General Association 4 74.5307 <.0001

QSMH and QCSMH are identical in the first table, which contains the results for the 2 � 2 � 5
analysis. One degree of freedom is needed to compare the mean differences across two groups,
in the case of QSMH, and one degree of freedom is needed to assess correlation, in the case of
QCSMH. The second table in Output 4.25 contains the results for the 2 � 5 � 2 analysis. Only
QSMH has the value 71.7263.

In Chapter 6, the Mantel-Haenszel statistic is extended to sets of s � r tables. The mean score
statistic for the case of more than two groups has .s � 1/ degrees of freedom, since you are
comparing mean differences across s groups. Thus, QS for the 2 � r table is a special case of the
more general mean score statistic and has .s � 1/ D .2 � 1/ D 1 degree of freedom. When s D 2,
QSMH and QCSMH take the same value with table scores and can be used interchangeably. Thus,
transposing the Table 4.6 data and computing these statistics produced identical mean score and
correlation statistics, since the transposed data produced a mean score statistic with one degree of
freedom.

Similarly, when s D 2, QS and QCS take the same value. This is why, in Section 4.2, you are able
to use the Mantel-Haenszel statistic produced by the CHISQ option of PROC FREQ. That statistic
is actually QCS, but for 2 � r tables it is also the mean score statistic.

Table 4.8 summarizes the Mantel-Haenszel statistics for the tables discussed in this chapter; it also
lists the labels associated with these statistics in PROC FREQ output.

Table 4.8 Summary of Extended Mantel-Haenszel Statistics

Table Corresponding
Dimensions Statistic DF PROC FREQ MH Label
2 � 2 QMH 1 Nonzero Correlation

Row Mean Scores Differ
General Association

2 � r QSMH 1 Nonzero Correlation
Row Mean Scores Differ

s � 2 QCSMH 1 Nonzero Correlation
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4.7 Exact Analysis of Association for the s � 2 Table

The data in Table 4.9 come from a study of mice who were exposed to a bacterial challenge and
treated with the drugs carbenicillin or cefotaxmine (Bowdre, et al. 1983). Surviving mice were
assessed at intervals of 6 to 24 hours.

Table 4.9 Mice Surviving Exposure to Vibrio Vulnificus

Hours Carbenicillin Cefotaxime Total Ranks Logranks
0–6 1 1 2 1.5 0.909
6–12 3 1 4 4.5 0.709
12–18 5 1 6 9.5 0.334
18–24 1 0 1 13 0.234
24–30 1 2 3 15 �0:099

30–48 0 2 2 17.5 �0:433

48–72 1 1 2 19.5 �0:933

72–96 0 1 1 21 �1:433

> 96 0 1 1 22 �2:433

Total 12 10 22

Researchers were interested in whether one of the drugs had a better outcome over time. Note
that this table has response outcomes down the rows and treatments across the columns. Analysis
is concerned with whether the mean number of survival hours is different for the two drugs, and
thus QS is the appropriate statistic. However, as was discussed in the previous section, since 1
df of freedom is required to compare the mean survival hours for the two drug groups, the 1 df
statisticQCS will be identical toQS . Logrank scores are indicated since many of the mice (in both
treatment groups) only survived for the low end of the time scale.

In addition, the counts are very small and do not satisfy the asymptotic requirements for QCS.
However, there is an exact counterpart to QCS which is appropriate. Logranks have to be input
directly in order for PROC FREQ to use them to compute Mantel-Haenszel statistics.

Table 4.9 displays the rank and logrank scores computed for each row. In addition, the scores used
in the algorithm for the exact computations in PROC FREQ need to be presented in ascending
order. The order does not make a difference in these test statistics. The following DATA step inputs
the data into SAS data set MICE and sorts the resulting data set.

data mice;
input LogRank Treatment $ count @@;
datalines;
0.909 Ca 1 0.909 Ce 1
0.709 Ca 3 0.709 Ce 1
0.334 Ca 5 0.334 Ce 1
0.234 Ca 1 0.234 Ce 0
-0.099 Ca 1 -0.099 Ce 2
-0.433 Ca 0 -0.433 Ce 2
-0.933 Ca 1 -0.933 Ce 1
-1.433 Ca 0 -1.433 Ce 1
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-2.433 Ca 0 -2.433 Ce 1
;

proc sort data=mice;
by LogRank;

run;

The following PROC FREQ statements request both the asymptotic QCS and the exact analysis
for both Wilcoxon rank scores and logrank scores. The SCOROUT option requests that the scores
used in the analysis be printed.

proc freq;
weight count;
tables LogRank*Treatment / norow nocol nopct scorout chisq;
tables LogRank*Treatment / noprint scores=rank scorout chisq;
exact mhchi;

run;

Output 4.26 displays the crosstabulations for these data. Since the data were sorted according to
logrank score, they appear in reverse order from Table 4.9.

Output 4.26 Frequencies for Mice Challenge

Frequency Table of LogRank by Treatment

LogRank

Treatment

Ca Ce Total

-2.433 0 1 1

-1.433 0 1 1

-0.933 1 1 2

-0.433 0 2 2

-0.099 1 2 3

0.234 1 0 1

0.334 5 1 6

0.709 3 1 4

0.909 1 1 2

Total 12 10 22

Output 4.27 displays the row scores used in the analysis. (The SCOROUT option produces the
column scores, too, but they are not displayed here.) The scores are identical to the logrank scores
presented in Table 4.9.
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Output 4.27 Logrank Scores

Row Scores

LogRank Score

-2.433 -2.433

-1.433 -1.433

-0.933 -0.933

-0.433 -0.433

-0.099 -0.099

0.234 0.234

0.334 0.334

0.709 0.709

0.909 0.909

The correlation Mantel-Haenszel statistic based on the logrank scores is displayed in Output 4.28.
Based on the logrank scores, it has the value 4.0569. The asymptotic p D 0:0440, and the exact
p D 0:0367.

Output 4.28 MH Chi-Square Test for Logrank Scores

Mantel-Haenszel Chi-Square Test

Chi-Square 4.0569

DF 1

Asymptotic Pr >  ChiSq 0.0440

Exact      Pr >= ChiSq 0.0367

Output 4.29 displays the results for the Wilcoxon rank scores.

Output 4.29 MH Chi-Square Test for Rank Scores

Mantel-Haenszel Chi-Square Test
(Rank Scores)

Chi-Square 3.5118

DF 1

Asymptotic Pr >  ChiSq 0.0609

Exact      Pr >= ChiSq 0.0625

Here, QCS D 3:5118, and the asymptotic p D 0:0609 and the exact p D 0:0625. Thus, the
choice of scores can make a difference in your conclusion. Logrank scores generally work better
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than Wilcoxon rank scores in these low count situations with relatively greater differences between
treatments for the longer survival times. In addition, note that the exact analysis has the larger
p-value for the rank scores, but it has the smaller p-value for the logrank scores. However, in both
cases, the exact result is more accurate for the small sample size.
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5.1 Introduction

Previous chapters address the concepts of association and measures of association in 2 � 2 tables,
2 � r tables, and s � 2 tables. This chapter extends these concepts to the general s � r table. The
main difference from these earlier chapters is that scale of measurement is always a consideration:
the statistics you choose depend on whether the rows and columns of the table are nominally or
ordinally scaled. This is true for investigating whether association exists and for summarizing
the degree of association. Section 5.2 addresses tests for association, and Section 5.4 addresses
measures of association.

Often, subjects or experimental units are observed by two or more researchers, and the question
of interest is how closely their evaluations agree. Such studies are called observer agreement
studies. The columns of the resulting table are the classifications of one observer, and the rows
are the classifications of the other observer. Subjects are cross-classified into table cells according
to their observed profiles. Observer agreement is discussed in Section 5.5. Sometimes you are
interested in ordered alternatives to the hypothesis of no association. Section 5.6 discusses the
Jonckheere-Terpstra test for ordered differences.
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Exact p-values are available for many tests of association and measures of association. The Fisher
exact test for the s � r table and exact p-values for several chi-square statistics are discussed in
Section 5.3. Exact p-values are also discussed for measures of association, observer agreement,
and the Jonckheere-Terpstra test in those respective sections. The exact p-value computations for
the actual test statistics such as chi-square statistics, which take only nonnegative values, are based
on the sum of the exact probabilities for those tables where the test statistic is greater than or equal
to the one you observed. The tables you consider are those with the same margins as the table you
observe.

For tests where you might consider one-sided or two-sided alternative hypotheses, such as for the
kappa coefficient, the computation is a bit more involved. For one-sided tests, the FREQ procedure
computes the right-sided p-value when the observed value of the test statistic is greater than its
expected value, and it computes the left-sided p-value when the test statistic is less than or equal
to its expected value. In each case, the p-value is the sum of the probabilities for tables that have a
more extreme test statistic than the observed one. The two-sided p-value is computed as the sum of
the one-sided p-value and the area in the other tail of the distribution for the statistic that is at least
as far from the expected value. See Agresti (1992) for a review of the strategies for exact p-value
computations for table statistics.

5.2 Association

5.2.1 Tests for General Association

Table 5.1 contains data from a study concerning the distribution of party affiliation in a city
suburb. The interest was whether there was an association between registered political party and
neighborhood.

Table 5.1 Distribution of Parties in Neighborhoods

Neighborhood
Party Bayside Highland Longview Sheffeld
Democrat 221 160 360 140
Independent 200 291 160 311
Republican 208 106 316 97

For these data, both row and column variables are nominally scaled; there is no inherent ordering
of the response values for either neighborhood or political party. Thus, the alternative to the null
hypothesis of no association is general association, defined as heterogeneous patterns of distribution
of the response (column) levels across the row levels. Table 5.2 represents the general s � r table.
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Table 5.2 s � r Contingency Table

Response Variable Categories
Group 1 2 . . . r Total
1 n11 n12 . . . n1r n1C
2 n21 n22 . . . n2r n2C
:::

:::
:::

:::
:::

s ns1 ns2 . . . nsr nsC
Total nC1 nC2 . . . nCr n

One test statistic for the hypothesis of no general association is the Pearson chi-square. This
statistic is defined the same as for the 2 � 2 table, except that the summation for i is from 1 to s
and the summation for j is from 1 to r .

QP D

sX
iD1

rX
jD1

.nij �mij /
2

mij

where

mij D Efnij jH0g D
niCnCj

n

is the expected value of the frequencies in the i th row and j th column.

If the sample size is sufficiently large, that is, all expected cell counts mij � 5, then QP
approximately has the chi-square distribution with .s � 1/.r � 1/ degrees of freedom. In the case
of the 2 � 2 table, r D 2 and s D 2 so that QP has 1 df.

Just as for 2 � 2 tables, the randomization statistic Q can be written

Q D

�
n � 1

n

�
QP

and it also has an approximate chi-square distribution with .s � 1/.r � 1/ degrees of freedom under
the null hypothesis.

For more detail, recall from Chapter 2, “The 2 � 2 Table,” that the derivation of Q depends on
the assumption of fixed marginal totals such that the table frequencies have a hypergeometric
distribution. For the s � r table, the distribution is multivariate hypergeometric under the null
hypothesis of no association.

You can write the probability distribution as

P rfnij g D

Qs
iD1 niCŠ

Qr
jD1 nCj Š

nŠ
Qs
iD1

Qr
jD1 nij Š

The covariance structure under H0 is

Covfnij ; ni 0j 0 jH0g D
mij .nıi i 0 � ni 0C/.nıjj 0 � nCj 0/

n.n � 1/
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where ıkk0 D 1 if k D k0 and ıkk0 D 0 if k ¤ k0.

Q is computed from the quadratic form

Q D .n �m/0A0.AVA0/�1A.n �m/

where n D .n11; n12; : : : ; n1r ; : : : ; ns1; : : : ; nsr/0 is the compound vector of observed frequencies,
m is the corresponding vector of expected frequencies, V is the covariance matrix, and A is a
matrix of coefficients defined such that AVA0 is nonsingular. The symbol ˝ denotes the left-hand
Kronecker product (the matrix on the left of the ˝ multiplies each element in the matrix on the
right).

The usual choice for A for testing general association is

A D
�
I.r�1/; 0.r�1/

�
˝
�
I.s�1/; 0.s�1/

�
where I.u�1/ is the .u � 1/ � .u � 1/ identity matrix and 0.u�1/ is a .u � 1/ vector of 0s.

For example, for a 2 � 3 table,

A D
�
1 0 0 0 0 0

0 1 0 0 0 0

�

Generating QP and Q requires no new PROC FREQ features. The CHISQ option in the
TABLES statement produces QP , and the CMH option produces Q. The following statements
produce these statistics for the neighborhood data. A mosaic plot is also requested with the
PLOTS=MOSAICPLOT option.

data neighbor;
length party $ 11 neighborhood $ 10;
input party $ neighborhood $ count @@;
datalines;

democrat longview 360 democrat bayside 221
democrat sheffeld 140 democrat highland 160
republican longview 316 republican bayside 208
republican sheffeld 97 republican highland 106
independent longview 160 independent bayside 200
independent sheffeld 311 independent highland 291
;

ods graphics on;
proc freq ;

weight count;
tables party*neighborhood /
plots=mosaicplot chisq cmh nocol nopct;

run;
ods graphics off;

Output 5.1 contains the frequency table.
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Output 5.1 Frequency Table

Frequency
Row Pct

Table of party by neighborhood

party

neighborhood

bayside highland longview sheffeld Total

democrat 221
25.09

160
18.16

360
40.86

140
15.89

881

independent 200
20.79

291
30.25

160
16.63

311
32.33

962

republican 208
28.61

106
14.58

316
43.47

97
13.34

727

Total 629 557 836 548 2570

Output 5.2 displays the frequencies graphically with a mosaic plot.

Output 5.2 Frequency Plot

The mosaic plot uses tiles proportional to cell frequencies to provide a visual representation of a
contingency table. First, the horizontal space is divided by sizes corresponding to the relative count
size of the levels of the variable on the x-axis, and then the vertical spaces are divided up according
to the relative sizes of the counts of the levels of the variable on the y-axis. Different colors or
shading is used to differentiate the different categories.

The mosaic plot for the neighborhood data seems to indicate that political party is not distributed the
same across the various neighborhoods. Highland and Sheffeld have large numbers of independents.

Output 5.3 displays the table statistics. QP D 273:9188 with 6 df, p < 0:0001.
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Output 5.3 Pearson Chi-Square

Statistic DF Value Prob

Chi-Square 6 273.9188 <.0001

Likelihood Ratio Chi-Square 6 282.3266 <.0001

Mantel-Haenszel Chi-Square 1 0.8124 0.3674

Phi Coefficient 0.3265

Contingency Coefficient 0.3104

Cramer's V 0.2308

Output 5.4 contains the MH statistics. PROC FREQ computes Q as the extended Mantel-Haenszel
statistic for one stratum. Q is the “General Association” statistic, with a value of 273.8122 and 6
df. Notice how close the values of Q and QP are for these data; this is expected since the sample
size is large (2,570).

Output 5.4 Randomization Q

Summary Statistics for party by neighborhoodSummary Statistics for party by neighborhood

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 0.8124 0.3674

2 Row Mean Scores Differ 2 13.8938 0.0010

3 General Association 6 273.8122 <.0001

Total Sample Size = 2570

Political party and neighborhood are statistically associated. If you study the column percentages,
you can see that the neighborhoods that have relatively high numbers of Democrats (Bayside and
Longview) also have high numbers of Republicans. The neighborhoods that have relatively high
numbers of Independents (Highland and Sheffeld) also have low numbers of both Democrats and
Republicans.

5.2.2 Mean Score Test

The data in Table 5.3 come from a study on headache pain relief. A new treatment was compared
with the standard treatment and a placebo. Researchers measured the number of hours of substantial
relief from headache pain.
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Table 5.3 Pain Study Data

Hours of Relief
Treatment 0 1 2 3 4
Placebo 6 9 6 3 1
Standard 1 4 6 6 8
Test 2 5 6 8 6

Clearly, number of hours of relief is an ordinally scaled response measure. While Q and QP are
good strategies for detecting general association, they aren’t as good as other strategies when the
response variable is ordinally scaled and the alternative to no association is location shifts. Section
4.2 discusses the mean score test for a 2 � r table. Scores are assigned to the levels of the response
variable, and row mean scores are computed. The statistic QS is then derived. QS also applies to
s � r tables, in which case it has .s � 1/ degrees of freedom since you are comparing mean scores
across s groups.

For more detail, the statistic QS is derived from the same general quadratic form as Q discussed
in Section 5.2. You choose A so that it assigns scores to the response levels and then compares the
resulting linear functions of scores for .s � 1/ groups to their expected values. A is the .s � 1/� sr
matrix:

A D

26664
a0 0

¯
0 : : : 0

¯
0 0

¯
0

0
¯
0 a0 : : : 0

¯
0 0

¯
0

:::
:::

:::

0
¯
0 0

¯
0 : : : a0 0

¯
0

37775
For example, if the actual values were used as scores for the columns in Table 5.3, then a0 D
.0 1 2 3 4/.

It is interesting to note that QS can be written in a one-way analysis-of-variance form

QS D
.n � 1/

Ps
iD1 niC.

Nfi � �a/
2

nva

where, as discussed in Section 4.2,

Nfi D

rX
jD1

ajnij

niC

and �a is its expected value:

�a D Ef Nfi jH0g D

rX
jD1

ajnCj

n

va D

rX
jD1

.aj � �a/
2
�nCj
n

�
See Section 4.2.3 for choices of scoring systems. For the pain data, integer scores make sense. The
following PROC FREQ statements request crosstabulations and the mean score test QS for the
pain data.
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data pain;
input treatment $ hours count @@;
datalines;

placebo 0 6 placebo 1 9 placebo 2 6 placebo 3 3 placebo 4 1
standard 0 1 standard 1 4 standard 2 6 standard 3 6 standard 4 8
test 0 2 test 1 5 test 2 6 test 3 8 test 4 6
;

proc freq;
weight count;
tables treatment*hours/ cmh nocol nopct;

run;

The following PROC MEANS statements request mean hours by treatment.

proc means;
freq count;
class treatment;
var hours;

run;

Output 5.5 contains the frequency table produced by PROC FREQ.

Output 5.5 Frequency Table

Frequency
Row Pct

Table of treatment by hours

treatment

hours

0 1 2 3 4 Total

placebo 6
24.00

9
36.00

6
24.00

3
12.00

1
4.00

25

standard 1
4.00

4
16.00

6
24.00

6
24.00

8
32.00

25

test 2
7.41

5
18.52

6
22.22

8
29.63

6
22.22

27

Total 9 18 18 17 15 77

Output 5.6 displays the mean hours of relief by type of treatment as well as the standard deviations.

Output 5.6 Means and Standard Errors

Analysis Variable : hours

treatment
N

Obs N Mean Std Dev Minimum Maximum

placebo 5 5 1.3600000 2.7276363 0 4.0000000

standard 5 5 2.6400000 2.9899833 0 4.0000000

test 5 5 2.4074074 3.1827079 0 4.0000000
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Patients on standard and test treatments reported 2.640 and 2.407 average hours of relief, respec-
tively, while patients on placebo reported 1.36 hours of relief on average.

Output 5.7 displays the summary statistics.

Output 5.7 Mean Score Statistic

Summary Statistics for treatment by hours

Summary Statistics for treatment by hoursCochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 8.0668 0.0045

2 Row Mean Scores Differ 2 13.7346 0.0010

3 General Association 8 14.4030 0.0718

Total Sample Size = 77

QS is the “Row Mean Scores Differ” statistic. QS D 13:7346, with 2 df, and is clearly significant.
Note that Q for these data takes the value 14.403, which has a p-value of 0.0718 with 8 df. In fact,
there are a number of cells whose expected values are � 5, so the chi-square approximation for the
test for general association may not even be valid. However, since the row totals of the table are
all greater than 20 and each row has counts � 5 for both outcomes � 1 and � 2, there is sufficient
sample size for QS . This is an example of how taking advantage of the ordinality of the data is
not only the more appropriate approach, but it might be the only possible Mantel-Haenszel strategy
due to sample size constraints.

5.2.3 Correlation Test

Sometimes, both the row variable and the column variable are ordinally scaled. This is common
when you are studying responses that are evaluated on an ordinal scale and what is being compared
are different dosage levels, which are also ordinally scaled. Consider the data in Table 5.4. A water
treatment company is studying water additives and investigating how they affect clothes washing.
The treatments studied were no treatment (plain water), the standard treatment, and a double dose
of the standard treatment, called super. Washability was measured as low, medium, and high.

Table 5.4 Washability Data

Washability
Treatment Low Medium High Total
Water 27 14 5 46
Standard 10 17 26 53
Super 5 12 50 67

As discussed in Section 4.2, the appropriate statistic to investigate association for this situation is
one that takes advantage of the ordinality of both the row variable and the column variable and
tests the null hypothesis of no association against the alternative of linear association. In Chapter
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4, “Sets of 2 � r and s � 2 Tables,” the test statistic QCS was developed for the s � 2 table and
was shown to have one degree of freedom. A similar strategy applies to the s � r table. You assign
scores both to the levels of the response variable and to the levels of the grouping variable to obtain
QCS, which is approximately chi-square with one degree of freedom. Thus, whether the table is
2 � 2, s � 2, or s � r , QCS always has one degree of freedom. (See Section 4.6 for a related
discussion.)

For more detail, this statistic is also derived from the general quadratic form

Q D .n �m/0A0.AVA0/�1A.n �m/ D .n � 1/r2ac

where rac is the Pearson correlation. You obtain QCS by choosing A to be

A D
�
a0 ˝ c0

�
D Œa1c1; : : : ; arc1; : : : ; arcs�

where a0 D .a1; a2; : : : ; ar/ are scores for the response levels and c0 D .c1; c2; : : : ; cs/ are scores
for the levels of the grouping variable. A has dimension 1 � sr .

The following PROC FREQ statements produce the correlation statistic for the washability data.
It is of interest to use both integer scores and modified ridit scores and compare the results. The
following statements request both integer scores (the default) and modified ridit scores. The
ORDER= option maintains the desired order of the levels of the rows and columns; it is the same
as the order in which the variable values are encountered in the DATA step. The NOPRINT option
suppresses the printing of the individual tables.

data wash;
input treatment $ washability $ count @@;
datalines;

water low 27 water medium 14 water high 5
standard low 10 standard medium 17 standard high 26
super low 5 super medium 12 super high 50
;

proc freq order=data;
weight count;
tables treatment*washability / chisq cmh nocol nopct;
tables treatment*washability / scores=modridit cmh

noprint nocol nopct;
run;

Output 5.8 displays the frequency table.
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Output 5.8 Frequency Table

Frequency
Row Pct

Table of treatment by washability

treatment

washability

low medium high Total

water 27
58.70

14
30.43

5
10.87

46

standard 10
18.87

17
32.08

26
49.06

53

super 5
7.46

12
17.91

50
74.63

67

Total 42 43 81 166

Output 5.9 displays the measures of association. The Pearson correlation has the value 0.5538 for
the table scores.

Output 5.9 Frequency Table

Statistics for Table of treatment by washability

Statistic Value ASE

Gamma 0.6974 0.0636

Kendall's Tau-b 0.4969 0.0553

Stuart's Tau-c 0.4803 0.0545

Somers' D C|R 0.4864 0.0542

Somers' D R|C 0.5077 0.0572

Pearson Correlation 0.5538 0.0590

Spearman Correlation 0.5479 0.0596

Lambda Asymmetric C|R 0.2588 0.0573

Lambda Asymmetric R|C 0.2727 0.0673

Lambda Symmetric 0.2663 0.0559

Uncertainty Coefficient C|R 0.1668 0.0389

Uncertainty Coefficient R|C 0.1609 0.0372

Uncertainty Coefficient Symmetric 0.1638 0.0380

The CHISQ option always produces the correlation statistic QCS. Compare its value, QCS D
50:6016 (displayed in Output 5.10), with the statistic displayed under “Nonzero Correlation” in
Output 5.11. These statistics are the same. Thus, you don’t need to specify CMH to obtain QCS
for a single table. For a 2 � 2 table, QCS is equivalent to Q and QS ; for a 2 � r table, QCS is
equivalent to QS .
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Note that QCS D 50:6016 is indeed equal to .n � 1/r2ac =165 � .0:5538/2.

Output 5.10 Chi-Square Statistics

Statistics for Table of treatment by washability

Statistic DF Value Prob

Chi-Square 4 55.0879 <.0001

Likelihood Ratio Chi-Square 4 58.0366 <.0001

Mantel-Haenszel Chi-Square 1 50.6016 <.0001

Phi Coefficient 0.5761

Contingency Coefficient 0.4992

Cramer's V 0.4073

Output 5.11 QCS for Integer Scores

Summary Statistics for treatment by washabilitySummary Statistics for treatment by washability

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 50.6016 <.0001

2 Row Mean Scores Differ 2 52.7786 <.0001

3 General Association 4 54.7560 <.0001

Total Sample Size = 166

QCS is clearly significant. Washability increases with the degree of additive to the water.
Output 5.12 displays QCS for the modified ridit scores. It has the value 49.541, which is clearly
significant.

Output 5.12 QCS for Modified Ridit Scores

Summary Statistics for treatment by washabilitySummary Statistics for treatment by washability

Cochran-Mantel-HaenszelStatistics (ModifiedRidit Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 49.5410 <.0001

2 Row Mean Scores Differ 2 52.5148 <.0001

3 General Association 4 54.7560 <.0001

Total Sample Size = 166
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5.3 Exact Tests for Association

5.3.1 General Association

In some cases, the samples sizes are not sufficient for the chi-square statistics discussed earlier in
this chapter to be valid (several mij � 5). An alternative strategy for these situations is the Fisher
exact test for s�r tables. This method follows the same principles as Fisher’s exact test for the 2 �2
table, except that the probabilities that are summed are taken from the multivariate hypergeometric
distribution. Mehta and Patel (1983) describe a network algorithm for obtaining exact p-values
that works much faster and more efficiently than direct enumeration; Baglivo, Olivier, and Pagano
(1988), Cox and Plackett (1980), and Pagano and Halvorsen (1981) have also done work in this
area. Besides Fisher’s exact test, which produces the exact p-value for the table, exact p-values are
available for general association tests such as Q, QP , and QL.

Consider Table 5.5. A marketing research firm organized a focus group to consider issues of new
car marketing. Members of the group included people who had purchased a car from a local dealer
in the last month. Researchers were interested in whether there was an association between the type
of car bought and the manner in which group members found out about the car in the media. Cars
were classified as sedans, sporty, and utility. The types of media included television, magazines,
newspapers, and radio.

Table 5.5 Car Marketing Data

Advertising Source
Type of Car TV Magazine Newspaper Radio Total
Sedan 4 0 0 2 6
Sporty 0 3 3 4 10
Utility 5 5 2 2 14

It is clear that the data do not meet the requirements for the usual tests of association via the
Pearson chi-square or the randomization chi-square. There are a number of zero cells and a number
of other cells whose expected values are less than 5. Under these circumstances, the exact test for
no association is an appropriate strategy.

The following SAS statements produce the exact test for the car marketing data. Recall that
Fisher’s exact test is produced automatically for 2 � 2 tables with the CHISQ option; to generate
the exact test for s � r tables, you need to specify the EXACT option in the TABLES statement.
This generates the usual statistics produced with the CHISQ option and the exact test. Since the
ORDER= option isn’t specified, the columns of the resulting table will be ordered alphabetically.
No ordering is assumed for this test, so this does not matter.

data market;
length AdSource $ 9. ;
input car $ AdSource $ count @@;
datalines;

sporty paper 3 sporty radio 4 sporty tv 0 sporty magazine 3
sedan paper 0 sedan radio 2 sedan tv 4 sedan magazine 0
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utility paper 2 utility radio 2 utility tv 5 utility magazine 5
;

proc freq;
weight count;
table car*AdSource / norow nocol nopct;
exact fisher pchi lrchi;

run;

Output 5.13 contains the frequency table.

Output 5.13 Car Marketing Frequency Table

Frequency Table of car by AdSource

car

AdSource

magazine paper radio tv Total

sedan 0 0 2 4 6

sporty 3 3 4 0 10

utility 5 2 2 5 14

Total 8 5 8 9 30

Output 5.14 displays the Fisher exact p-value for the table, in addition to the asymptotic and exact
results for QP and QL. For these data, the exact p-value for the table is p D 0:0473. Note that
QP is 11.5984 with 6 df, p D 0:0716, and QL has the value 16.3095 with p D 0:0122. Since
the alternative hypothesis is general association, there are no left-tail or right-tail analogies to what
Fisher’s exact test for 2 � 2 tables provides since the alternative hypothesis can be directional
association.

The exact p-value for QP is 0.0664, and the exact p-value for QL is 0.0272. Thus, with the
exact computations, QP became somewhat stronger and QL became somewhat weaker but still
significant at the ˛ D 0:05 level. For this table, you would typically use the Fisher exact p-value
as your indication of the strength of the association and consider the association to be significant at
the 0:05 level of significance.

While you can’t directly produce an exact p-value for the general association Q (that is, the test
produced by PROC FREQ with the CMH option for the one-stratum case), the exact distribution
for Q is identical to the exact distribution for QP . Thus, the exact p-value for QP is the same as
the exact p-value for Q. This is because

Q D

�
n � 1

n

�
QP

for general association.
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Output 5.14 Exact Test Results

Pearson Chi-Square Test

Chi-Square 11.5984

DF 6

Asymptotic Pr >  ChiSq 0.0716

Exact      Pr >= ChiSq 0.0664

Likelihood Ratio Chi-Square Test

Chi-Square 16.3095

DF 6

Asymptotic Pr >  ChiSq 0.0122

Exact      Pr >= ChiSq 0.0272

Fisher's Exact Test

Table Probability (P) 2.545E-05

Pr <= P 0.0473

5.3.1.1 Notes on Exact Computations

Even though the network algorithms used to produce these exact tests are very fast compared to
direct enumeration, exact methods are computationally intensive. The memory requirements and
CPU time requirements can be quite high. As the sample size becomes larger, the test is likely to
become computationally infeasible. For most situations when the sample size is moderately large,
asymptotic methods are valid. An exception would be data that have marked sparseness in the
row and column marginal totals. The exact test is mainly useful when significance is suggested by
the approximate results of QP and QL. Also, in these situations, the computations are not overly
lengthy. Computations are lengthy when the p-value is somewhere around 0.5, and in this situation,
the exact p-value is usually not needed.

When SAS is performing exact computations, it prints a message to the log stating that you can
press the system interrupt key if you want to terminate the computations. In addition, you can
specify the MAXTIME= option in the EXACT statement to request, in seconds, a length of time
after which the procedure is to stop exact computations.

There are some data for which computing the exact p-values is going to be very memory- and
time- intensive and yet the asymptotic tests are not quite justifiable. You can request Monte Carlo
estimation for these situations by specifying MC as an EXACT statement option. PROC FREQ uses
Monte Carlo methods to estimate the exact p-value and give a confidence interval for the estimate.
See Agresti, Wackerly, and Boyett (1979) for more detail. With PROC FREQ, you can specify the
number of samples (the default is 10,000) and the random number seed. See the SAS/STAT User’s
Guide for more information about the exact computational algorithms used in the FREQ procedure.
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5.3.2 Test of Correlation

Section 5.2 discusses Mantel-Haenszel test statistics for the evaluation of general association,
location shifts, and correlation. You can obtain exact p-values for the correlation test with SAS for
the case when both the rows and columns of your table are ordinally scaled.

Consider the data in Table 5.6 from a study on a new drug for a skin disorder. Subjects were
randomly assigned to one of four dosage levels and, after a suitable period of time, the affected skin
area was examined and classified on a four-point scale ranging from 0 for poor to 3 for excellent.

Table 5.6 Skin Disorder Data
Response

Dose in Mg Poor Fair Good Excellent
25 1 1 1 0
50 1 2 1 1
75 0 0 2 2
100 0 0 7 0

Since both the rows and columns can be considered to be on an ordinal scale, the type of association
involved is linear and the correlation Mantel-Haenszel statistic is suitable. However, note that there
are several zero cells, many other cells with counts of 1 or 2, and a total sample size of 19. This is
on the border of too small for the asymptotic MH test, which requires an overall sample size of at
least 20. In addition, if you collapse this table into various 2 � 2 tables, many of the resulting cell
counts are less than 5; for the asymptotic MH correlation test you generally want any cell count of
a collapsed 2 � 2 table to be 5 or larger.

However, you can compute an exact p-value, which is the sum of the exact p-values associated with
the tables where the test statistic is larger than the statistic for the table you observe.

The following DATA step creates SAS data set DISORDER.

data disorder;
input dose outcome count @@;
datalines;

25 0 1 25 1 1 25 2 1 25 3 0
50 0 1 50 1 2 50 2 1 50 3 1
75 0 0 75 1 0 75 2 2 75 3 2

100 0 0 100 1 0 100 2 7 100 3 0
;

Specifying the EXACT statement with the MHCHI keyword produces both the asymptotic and the
exact MH test.

proc freq;
weight count;
tables dose*outcome / nocol norow nopct measures;
exact mhchi;

run;

Output 5.15 displays the frequency table for the skin disorder data.
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Output 5.15 Skin Disorder Data

Frequency Table of dose by outcome

dose

outcome

0 1 2 3 Total

25 1 1 1 0 3

50 1 2 1 1 5

75 0 0 2 2 4

100 0 0 7 0 7

Total 2 3 11 3 19

Output 5.16 displays the measures of association, including the Pearson correlation which has a
value of 0.4673.

Output 5.16 Skin Disorder Data

Statistics for Table of dose by outcome

Statistic Value ASE

Gamma 0.4194 0.2170

Kendall's Tau-b 0.3264 0.1721

Stuart's Tau-c 0.2881 0.1625

Somers' D C|R 0.2977 0.1633

Somers' D R|C 0.3578 0.1843

Pearson Correlation 0.4673 0.1497

Spearman Correlation 0.4192 0.1962

Lambda Asymmetric C|R 0.1250 0.3508

Lambda Asymmetric R|C 0.4167 0.1423

Lambda Symmetric 0.3000 0.2100

Uncertainty Coefficient C|R 0.4104 0.0931

Uncertainty Coefficient R|C 0.3484 0.1004

Uncertainty Coefficient Symmetric 0.3768 0.0959

Output 5.17 displays QCS and both the asymptotic and exact p-values.
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Output 5.17 Exact Results for Correlation MH

Mantel-Haenszel Chi-Square Test

Chi-Square 3.9314

DF 1

Asymptotic Pr >  ChiSq 0.0474

Exact      Pr >= ChiSq 0.0488

With a QCS value of 3.9314 and 1 df, the chi-square approximation provides a significant p-value
of 0:0474. The exact p-value is a little higher (0.0488), but is still significant at ˛ D 0:05. These
data clearly have an association that is detected with a linear correlation statistic.

5.4 Measures of Association

Analysts are sometimes interested in assessing the strength of association in the s � r table.
Although there is no counterpart to the odds ratios in 2 � 2 tables, there are several measures of
association available, and, as you might expect, their choice depends on the scale of measurement.

5.4.1 Ordinal Measures of Association

If the data in the table have an interval scale or have scores that are equally spaced, then the Pearson
correlation coefficient is an appropriate measure of association, and one that is familiar to most
readers.

If the data do not lie on an obvious scale but are ordinal in nature, then other measures apply.
The Spearman rank correlation coefficient is produced by substituting ranks as variable values for
the Pearson correlation coefficient. Other measures are based on the classification of all possible
pairs of subjects in the table as concordant or discordant pairs. If a pair is concordant, then the
subject that ranks higher on the row variable also ranks higher on the column variable. If a pair is
discordant, then the subject that ranks higher on the row variable also ranks lower on the column
variable. The pair can also be tied on the row and column variables.

The gamma, Kendall’s tau-b, Stuart’s tau-c, and Somer’s D statistics are all based on concordant
and discordant pairs; that is, they use the relative ordering on the levels of the variables to determine
whether association is negative, positive, or present at all. For example, gamma is estimated by

O D
.C �D/

.C CD/

where C is the total number of concordant pairs and D is the total number of discordant pairs.

These measures, like the Pearson correlation coefficient, take values between �1 and 1. They
differ mainly in their strategies for adjusting for ties and sample size. Somer’s D depends on which
variable is considered to be explanatory (the grouping variable—adjustments for ties are made only
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on it). Somer’s D, Stuart’s tau-c, and Kendall’s tau-b generally express less strength of association
than gamma.

Asymptotic standard errors are available for these measures. Although the measure of association
is always valid, these standard errors are valid only if the sample size is large. Very conservative
guidelines are the usual requirements for the Pearson chi-square that the expected cell counts are
5 or greater. A more realistic guideline is to collapse the s � r table to a 2 � 2 table by choosing
cutpoints and then adding the appropriate rows and columns. Think of this as a line under one row
and beside one column; the 2 � 2 table is the result of summing the cells in the resulting quadrants.
The sample size is adequate if each of the cells of this 2 � 2 table is 5 or greater.

If the sample size is adequate, then the measure of association is approximately normally distributed
and you can form the confidence intervals of interest. For example,

measure˙ 1:96 � ASE

forms the bounds of a 95% confidence interval. See the SAS/STAT User’s Guide for more
information on these ordinal measures of association.

Measures of association are produced in the PROC FREQ output by the MEASURES option
in the TABLES statement. In addition, you can request confidence limits by specifying the CL
option. The following statements produce measures of association for the washability data listed in
Table 5.4. The SCORES=RANK option in the second TABLES statement requests that rank scores
be used in calculating Pearson’s correlation coefficient.

data wash;
input treatment $ washability $ count @@;
datalines;

water low 27 water medium 14 water high 5
standard low 10 standard medium 17 standard high 26
super low 5 super medium 12 super high 50
;

proc freq order=data;
weight count;
tables treatment*washability / measures noprint nocol nopct cl;
tables treatment*washability / measures scores=rank noprint cl;

run;

Output 5.18 contains the table produced by the first PROC FREQ invocation. All of the measures of
ordinal association indicate a positive association. Note also that the Somer’s D statistics, Kendall’s
tau-b, and Stuart’s tau-c all have smaller values than gamma. Somer’s D statistic has two forms:
Somer’s DC jR means that the column variable is considered the dependent (response) variable,
and Somer’s DRjC means that the row variable is considered the response variable.
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Output 5.18 Measures of Association

Statistics for Table of treatment by washabilityStatistics for Table of treatment by washability

Statistic Value ASE
95%

ConfidenceLimits

Gamma 0.6974 0.0636 0.5728 0.8221

Kendall's Tau-b 0.4969 0.0553 0.3885 0.6053

Stuart's Tau-c 0.4803 0.0545 0.3734 0.5872

Somers' D C|R 0.4864 0.0542 0.3802 0.5926

Somers' D R|C 0.5077 0.0572 0.3956 0.6197

Pearson Correlation 0.5538 0.0590 0.4382 0.6693

Spearman Correlation 0.5479 0.0596 0.4311 0.6648

Lambda Asymmetric C|R 0.2588 0.0573 0.1465 0.3711

Lambda Asymmetric R|C 0.2727 0.0673 0.1409 0.4046

Lambda Symmetric 0.2663 0.0559 0.1567 0.3759

Uncertainty Coefficient C|R 0.1668 0.0389 0.0906 0.2431

Uncertainty Coefficient R|C 0.1609 0.0372 0.0880 0.2339

Uncertainty Coefficient Symmetric 0.1638 0.0380 0.0893 0.2383

Output 5.19 contains the output produced by the second PROC FREQ invocation. The only
difference is that rank scores were used in the calculation of Pearson’s correlation coefficient. When
rank scores are used, Pearson’s correlation coefficient is equivalent to Spearman’s correlation, as
illustrated in the output. (However, the asymptotic standard errors are not equivalent.)
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Output 5.19 Rank Scores for Pearson’s Correlation

Statistics for Table of treatment by washabilityStatistics for Table of treatment by washability

Statistic Value ASE
95%

ConfidenceLimits

Gamma 0.6974 0.0636 0.5728 0.8221

Kendall's Tau-b 0.4969 0.0553 0.3885 0.6053

Stuart's Tau-c 0.4803 0.0545 0.3734 0.5872

Somers' D C|R 0.4864 0.0542 0.3802 0.5926

Somers' D R|C 0.5077 0.0572 0.3956 0.6197

Pearson Correlation (Rank Scores) 0.5479 0.0591 0.4322 0.6637

Spearman Correlation 0.5479 0.0596 0.4311 0.6648

Lambda Asymmetric C|R 0.2588 0.0573 0.1465 0.3711

Lambda Asymmetric R|C 0.2727 0.0673 0.1409 0.4046

Lambda Symmetric 0.2663 0.0559 0.1567 0.3759

Uncertainty Coefficient C|R 0.1668 0.0389 0.0906 0.2431

Uncertainty Coefficient R|C 0.1609 0.0372 0.0880 0.2339

Uncertainty Coefficient Symmetric 0.1638 0.0380 0.0893 0.2383

5.4.2 Exact Tests for Ordinal Measures of Association

The only difference is that rank scores were used in the calculation of Pearson’s correlation
coefficient. When rank scores are used, Pearson’s correlation coefficient is equivalent to Spearman’s
correlation, as illustrated in the output. (However, the asymptotic standard errors are not equivalent.)

In addition to estimating measures of association, you can also test whether a particular measure
is equal to zero. In the case of the correlation coefficients, you can produce exact p-values for this
test. Thus, you have access to exact methods in the evaluation of the correlation coefficients.

Table 5.7 displays data that a recreation supervisor collected from her girls’ soccer league coaches.
Hearing complaints about too-intense parental involvement, she surveyed each coach to see
whether they considered the parental interference to be of low, medium, or high intensity for
the three different grade level leagues. Interference was considered to be parents questioning
their child’s playing time or position, questioning referee calls during the games, or yelling very
specific instructions to the children on the team. She was interested in whether interference was
associated with league grade. Since both grade level and interference level lie on an ordinal scale,
the Spearman rank correlation coefficient is an appropriate statistic to consider.
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Table 5.7 Soccer Coach Interviews
Parental Interference

Grades Low Medium High
1–2 3 1 0
3–4 3 2 1
5–6 1 3 2

Since there were four teams in the league for Grades 1 and 2 and six teams each in the leagues
for Grades 2 and 4 and for Grades 5 and 6, the counts are necessarily small. If you apply various
cutpoints to produce collapsed 2 �2 tables as suggested previously to determine whether the
asymptotic confidence intervals for the measures of association would be valid, you determine that
no cutpoints exist so that each component cell is � 5. However, you can apply exact methods to get
an exact p-value for the hypothesis that the Spearman rank correlation coefficient is equal to zero.

The following DATA step inputs the soccer data into SAS data set SOCCER.

data soccer;
input grades $ degree $ count @@;
datalines;

1-2 low 3 1-2 medium 1 1-2 high 0
3-4 low 3 3-4 medium 2 3-4 high 1
5-6 low 1 5-6 medium 3 5-6 high 2
;

In order to produce the exact p-value for the Spearman’s rank test, you specify an EXACT statement
that includes the keyword SCORR. The ORDER=DATA option is specified in the PROC statement
to ensure that the columns and rows maintain the correct ordering.

proc freq order=data;
weight count;
tables grades*degree / nocol nopct norow;
exact scorr;

run;

Output 5.20 displays the frequency table for the soccer data.

Output 5.20 Soccer Frequency Table

Frequency Table of grades by degree

grades

degree

low medium high Total

1-2 3 1 0 4

3-4 3 2 1 6

5-6 1 3 2 6

Total 7 6 3 16
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Output 5.21 contains the Spearman correlation coefficient, which has the value 0.4878, indicating
the possibility of modest correlation.

Output 5.21 Spearman Correlation Coefficient

Spearman Correlation
Coefficient

Correlation (r) 0.4878

ASE 0.1843

95% Lower Conf Limit 0.1265

95% Upper Conf Limit 0.8491

The results for the hypothesis test that the correlation is equal to zero are listed in Output 5.22. The
exact two-sided p-value is 0.0637, a borderline result, although you would not reject the hypothesis
at a strict ˛ D 0:05 level of confidence. Note that the asymptotic test results in a two-sided p-value
of 0.0092. However, with these counts, you could not justify the use of the asymptotic test.

Output 5.22 Hypothesis Test for Spearman’s Rank Test

Test of H0: Correlation = 0

ASE under H0 0.1872

Z 2.6055

One-sided Pr >  Z 0.0046

Two-sided Pr > |Z| 0.0092

Exact Test

One-sided Pr >=  r 0.0354

Two-sided Pr >= |r| 0.0637

Note that you can also test whether the asymptotic statistics produced by the MEASURES option
are equal to zero. You request such tests with the TEST statement in the FREQ procedure; you can
also test hypotheses concerning the kappa statistics discussed in Section 5.5.

See the SAS/STAT User’s Guide for more information.

5.4.3 Nominal Measures of Association

Measures of association when one or both variables are nominally scaled are more difficult to
define, since you can’t think of association in these circumstances as negative or positive in any
sense. However, indices of association in the nominal case have been constructed, and most are
based on mimicking R-squared in some fashion. One such measure is the uncertainty coefficient,
and another is the lambda coefficient. More information about these statistics can be obtained in
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the SAS/STAT User’s Guide, including the appropriate references. Agresti (2002) also discusses
some of these measures.

The following PROC FREQ invocation produces nominal measures of association for the neigh-
borhood data.

data neighbor;
length party $ 11 neighborhood $ 10;
input party $ neighborhood $ count @@;
datalines;

democrat longview 360 democrat bayside 221
democrat sheffeld 140 democrat highland 160
republican longview 316 republican bayside 208
republican sheffeld 97 republican highland 106
independent longview 160 independent bayside 200
independent sheffeld 311 independent highland 291
;

proc freq ;
weight count;
tables party*neighborhood / chisq measures nocol nopct;

run;

Output 5.23 displays the resulting table.

Output 5.23 Nominal Measures of Association

Statistics for Table of party by neighborhood

Statistics for Table of party by neighborhood

Statistic Value ASE

Gamma -0.0183 0.0226

Kendall's Tau-b -0.0130 0.0161

Stuart's Tau-c -0.0137 0.0169

Somers' D C|R -0.0138 0.0170

Somers' D R|C -0.0123 0.0152

Pearson Correlation -0.0178 0.0190

Spearman Correlation -0.0150 0.0189

Lambda Asymmetric C|R 0.0871 0.0120

Lambda Asymmetric R|C 0.1374 0.0177

Lambda Symmetric 0.1113 0.0119

Uncertainty Coefficient C|R 0.0401 0.0046

Uncertainty Coefficient R|C 0.0503 0.0058

Uncertainty Coefficient Symmetric 0.0446 0.0051

You should ignore the ordinal measures of association here since the data are not ordinally scaled.
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There are three versions of both the lambda coefficient and the uncertainty coefficient: column
variable as the response variable, row variable as the response variable, and a symmetric version.
Obviously, this makes a difference in the resulting statistic.

5.5 Observer Agreement

5.5.1 Computing the Kappa Statistic

For many years, researchers in medicine, epidemiology, psychiatry, and psychological measurement
and testing have been aware of the importance of observer error as a major source of measurement
error. In many cases, different observers, or even the same observer at a different time, may examine
an X-ray or perform a physical examination and reach different conclusions. It is important to
evaluate observer agreement, both to understand the possible contributions to measurement error
and as part of the evaluation of testing new instruments and procedures. See Landis et al. (2011)
for a review of methods for assessing observer agreement.

Often, the data collected as part of an observer agreement study form a contingency table, where
the column levels represent the ratings of one observer and the row levels represent the ratings of
another observer. Each cell represents one possible profile of the observers’ ratings. The cells on
the diagonal represent the cases where the observers agree.

Consider Table 5.8. These data come from a study concerning the diagnostic classification of
multiple sclerosis patients. Patients from Winnipeg and New Orleans were classified into one of
four diagnostic classes by both a Winnipeg neurologist and a New Orleans neurologist. Table 5.8
contains the data for the Winnipeg patients (Landis and Koch 1977).

Table 5.8 Ratings of Neurologists

New Orleans Winnipeg Neurologist
Neurologist 1 2 3 4

1 38 5 0 1
2 33 11 3 0
3 10 14 5 6
4 3 7 3 10

Certainly one way to assess the association between these two raters is to compute the usual
measures of association. However, while measures of association can reflect the strength of
the predictable relationship between two raters or observers, they don’t target how well they
agree. Agreement can be considered a special case of association—to what degree do different
observers classify a particular subject into the identical category? All measures of agreement
target the diagonal cells of a contingency table in their computations, and some measures take into
consideration how far away from the diagonal elements other cells fall.

Suppose �ij is the probability of a subject being classified in the i th category by the first observer
and the j th category by the second observer. Then

…o D
X

�i i
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is the probability that the observers agree. If the ratings are independent, then the probability of
agreement is

…e D
X

�iC�Ci

So, …o �…e is the amount of agreement beyond that expected by chance. The kappa coefficient
(Cohen 1960) is defined as

� D
…o �…e

1 �…e

Since …o D 1 when agreement is perfect (all non-diagonal elements are zero), � equals 1 when
agreement is perfect, and � equals 0 when the agreement equals that expected by chance. The closer
the value is to 1, the more agreement there is in the table. It is possible to obtain negative values,
but that rarely occurs. Note that � is analogous to the intraclass correlation coefficient obtained
from ANOVA models for quantitative measurements; it can be used as a measure of reliability of
multiple determinations on the same subject (Fleiss and Cohen 1973, Fleiss 1975).

You might be interested in distinguishing degrees of agreement in a table, particularly if the
categories are ordered in some way. For example, you might want to take into account those
disagreements that are just one category away. A weighted form of the kappa statistic allows you to
assign weights, or scores, to the various categories so that you can incorporate such considerations
into the construction of the test statistic.

Weighted � is written

�w D

PP
wij�ij �

PP
wij�iC�Cj

1 �
PP

ij wij�iC�Cj

where wij represents weights with values between 0 and 1. One possible set of weights is

wij D 1 �
jscore.i/ � score.j /j
score.dim/ � score.1/

where score(i) is the score for the i th row, score(j) is the score for the j th column, and dim is the
dimension of an s � s table. This scoring system puts more weight on those cells closest to the
diagonal. These weights are known as Cicchetti-Allison weights (Cicchetti and Allision 1969) and
are the default weights for the weighted kappa statistic in PROC FREQ. Fleiss-Cohen weights are
also available (Fleiss and Cohen 1973).

The following SAS statements generate kappa statistics for the Winnipeg data. To produce
measures of agreement, you specify AGREE in the TABLES statement. When ODS Graphics is
enabled and kappa statistics are requested, PROC FREQ also produces an agreement plot.

data classify;
input no_rater w_rater count @@;
datalines;

1 1 38 1 2 5 1 3 0 1 4 1
2 1 33 2 2 11 2 3 3 2 4 0
3 1 10 3 2 14 3 3 5 3 4 6
4 1 3 4 2 7 4 3 3 4 4 10
;

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Computing the Kappa Statistic 133

ods graphics on;
proc freq;

weight count;
tables no_rater*w_rater / agree norow nocol nopct;

run;
ods graphics off;

Output 5.24 contains the table.

Output 5.24 Winnipeg Data

Frequency Table of no_rater by w_rater

no_rater

w_rater

1 2 3 4 Total

1 38 5 0 1 44

2 33 11 3 0 47

3 10 14 5 6 35

4 3 7 3 10 23

Total 84 37 11 17 149

Output 5.25 displays the kappa statistics.

Output 5.25 Kappa Statistics

Kappa Statistics

Statistic Value ASE 95% ConfidenceLimits

Simple Kappa 0.2079 0.0505 0.1091 0.3068

Weighted Kappa 0.3797 0.0517 0.2785 0.4810

O� has the value 0.2079. This is indicative of slight agreement. Values of 0.4 or higher are considered
to indicate moderate agreement, and values of 0.8 or higher indicate excellent agreement. The
asymptotic standard error is also printed, as are confidence bounds. Since the confidence bounds
do not contain the value 0, you can reject the hypothesis that � is 0 for these data (no agreement) at
the ˛ D 0:05 level of significance.

Using the default scores, O�w takes the value 0.3797. This means that if you consider disagreement
close to the diagonals less heavily than disagreement further away from the diagonals, you get
higher agreement. O� treats all off-diagonal cells the same. When O�w is high (say O�w � 0:6 for
moderate sample size), it might be preferable to produce confidence bounds on a transformed scale
(such as logarithms or the Fisher z transformation) and then exponentiate to compute the limits.

Output 5.26 contains Bowker’s test of symmetry (Bowker 1948).
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Output 5.26 Symmetry Test

Test of Symmetry

Statistic (S) 46.7492

DF 6

Pr > S <.0001

The null hypothesis of this test is that the square table is symmetric (the cell probabilities pij and
pj i are equal). When you have a 2 � 2 table, the test is the same as McNemar’s test.

Output 5.27 displays the agreement plot, which provides a visual impression of the strength of the
agreement (Bangdiwala and Bryan 1987).

Output 5.27 Agreement Plot

The large rectangles represent the marginal totals, that is, niC by nCi , or the maximum possible
agreement. The dark squares represent agreement, and their size is ni i by ni i . For example, the
biggest square represents the 38 subjects rated 1 by both raters. The lighter shade represents partial
agreement. The comparison of shaded portions of the rectangles to the entire rectangles provides
an impression of the strength of the agreement.

5.5.2 Exact p-values for the Kappa Statistic

Exact p-values are also available for the kappa statistic. Consider the data in Table 5.9. Elderly
residents of a midwestern community enrolled in a pilot program that provided resources to seniors
and also sought to identify seniors who required additional living assistance. Researchers tested a
tool for in-home evaluation of a resident’s agility. The test rated the ease with which basic tasks
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could be performed and provided an overall rating of ability on a four-point scale ranging from 1
for poor to 4 for excellent. Two raters evaluated the same 24 people.

Table 5.9 Ratings of Social Workers

Rater One Rater Two
1 2 3 4

1 4 0 1 0
2 0 2 6 1
3 1 0 2 1
4 0 2 1 3

The table includes numerous 0 and 1 counts, too many for the asymptotic requirements to be
fulfilled. However, rater agreement can still be assessed with the use of exact p-values for the test
of null agreement with kappa statistics.

The following PROC FREQ statements produce the desired exact results. You specify the keyword
KAPPA in the EXACT statement to generate a table with both the asymptotic and exact results.

data pilot;
input rater1 rater2 count @@;
datalines;

1 1 4 1 2 0 1 3 1 1 4 0
2 1 0 2 2 2 2 3 6 2 4 1
3 1 1 3 2 0 3 3 2 3 4 1
4 1 0 4 2 2 4 3 1 4 4 3
;

proc freq;
weight count;
tables rater1*rater2 /norow nocol nopct;
exact kappa;

run;

Output 5.28 contains the table of ratings.

Output 5.28 Pilot Data

Frequency Table of rater1 by rater2

rater1

rater2

1 2 3 4 Total

1 4 0 1 0 5

2 0 2 6 1 9

3 1 0 2 1 4

4 0 2 1 3 6

Total 5 4 10 5 24
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Output 5.29 contains the estimate of the kappa coefficient, which is 0.2989 with asymptotic
95% confidence limits of (0.0469, 0.5509). The table “Test of HO: Kappa=0” presents both the
asymptotic test for the hypothesis that a constructed Z statistic is equal to zero as well as the exact
p-value for that test. The exact p-value is 0.0088, both one-sided and two-sided. There is some
agreement between raters.

Output 5.29 Exact Results for Kappa Test

Simple Kappa Coefficient

Kappa (K) 0.2989

ASE 0.1286

95% Lower Conf Limit 0.0469

95% Upper Conf Limit 0.5509

Test of H0: Kappa = 0

ASE under H0 0.1066

Z 2.8032

One-sided Pr >  Z 0.0025

Two-sided Pr > |Z| 0.0051

Exact Test

One-sided Pr >=  K 0.0088

Two-sided Pr >= |K| 0.0088

5.6 Test for Ordered Differences

Sometimes you have a contingency table in which the columns represent an ordinal outcome and
the rows are either nominal or ordinal. One test of interest is whether there are location shifts in the
mean response; this is evaluated with the mean score test as discussed in Section 5.2.2. However,
you might also be interested in testing against an ordered alternative; that is, are the mean scores
strictly increasing (or decreasing) across the levels of the row variable? The Jonckheere-Terpstra
test is designed to test the null hypothesis that the distribution of the ordered responses is the same
across the various rows of the table. This test detects whether there are differences in

d1 � d2 � � � � � ds or ds � ds�1 � � � � � d1

where di represents the i th group effect.

The Jonckheere-Terpstra test is a nonparametric test that is based on sums of Mann-Whitney
test statistics; the asymptotic p-values are produced by using the normal approximation for
the distribution of the standardized test statistic. See the SAS/STAT User’s Guide for more
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computational detail, and see Pirie (1983) and Hollander and Wolfe (1973) for more information
on the Jonckheere-Terpstra test.

Table 5.10 displays the dumping syndrome data, which have appeared frequently in the categorical
data analysis literature, beginning with Grizzle, Starmer, and Koch (1969). Investigators conducted
a randomized clinical trial in four hospitals, where patients were assigned to one of four surgical
procedures for the treatment of severe duodenal ulcers. The treatments include:

v + d: vagotomy and drainage

v + a: vagotomy and antrectomy (removal of 25% of gastric tissue)

v + h: vagatomy and hemigastrectomy (removal of 50% of gastric tissue)

gre: gastric resection (removal of 75% of gastric tissue)

The response measured was the severity (none, slight, moderate) of the dumping syndrome, which
is expected to increase directly with the proportion of gastric tissue removed. This response, an
adverse effect of surgery, can be considered ordinally scaled, as can operation. Investigators wanted
to determine whether type of operation was associated with severity of dumping syndrome, after
adjusting for hospital. This analysis is performed in the next chapter.

Table 5.10 Dumping Syndrome Data

Severity of Symptoms
Hospital Operation None Slight Moderate Total

1 v + d 23 7 2 32
1 v + a 23 10 5 38
1 v + h 20 13 5 38
1 gre 24 10 6 40
2 v + d 18 6 1 25
2 v + a 18 6 2 26
2 v + h 13 13 2 28
2 gre 9 15 2 26
3 v + d 8 6 3 17
3 v + a 12 4 4 20
3 v + h 11 6 2 19
3 gre 7 7 4 18
4 v + d 12 9 1 22
4 v + a 15 3 2 20
4 v + h 14 8 3 25
4 gre 13 6 4 23

Ignoring hospital, there is interest in determining whether the responses are ordered the same across
the operations. The Jonckheere-Terpstra test is appropriate here. The following SAS statements
input these data.
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data operate;
input hospital trt $ severity $ wt @@;
datalines;

1 v+d none 23 1 v+d slight 7 1 v+d moderate 2
1 v+a none 23 1 v+a slight 10 1 v+a moderate 5
1 v+h none 20 1 v+h slight 13 1 v+h moderate 5
1 gre none 24 1 gre slight 10 1 gre moderate 6
2 v+d none 18 2 v+d slight 6 2 v+d moderate 1
2 v+a none 18 2 v+a slight 6 2 v+a moderate 2
2 v+h none 13 2 v+h slight 13 2 v+h moderate 2
2 gre none 9 2 gre slight 15 2 gre moderate 2
3 v+d none 8 3 v+d slight 6 3 v+d moderate 3
3 v+a none 12 3 v+a slight 4 3 v+a moderate 4
3 v+h none 11 3 v+h slight 6 3 v+h moderate 2
3 gre none 7 3 gre slight 7 3 gre moderate 4
4 v+d none 12 4 v+d slight 9 4 v+d moderate 1
4 v+a none 15 4 v+a slight 3 4 v+a moderate 2
4 v+h none 14 4 v+h slight 8 4 v+h moderate 3
4 gre none 13 4 gre slight 6 4 gre moderate 4
;

The following PROC FREQ statements request the Jonckheere-Terpstra test by specifying the JT
option in the TABLES statement. The order of the table columns is very important for such a test;
in this PROC FREQ invocation, the ORDER=DATA option in the PROC statement produces the
desired order. The CHISQ option with SCORES=RANKS is specified for comparison.

proc freq order=data;
weight wt;
tables trt*severity / chisq scores=rank norow nocol nopct jt;

run;

Output 5.30 contains the contingency table of treatment by severity.

Output 5.30 Dumping Syndrome Data

Frequency Table of trt by severity

trt

severity

none slight moderate Total

v+d 61 28 7 96

v+a 68 23 13 104

v+h 58 40 12 110

gre 53 38 16 107

Total 240 129 48 417

The correlation Mantel-Haenszel statistic for rank scores has the value 6.6405 (p D 0:0100), as
shown in Output 5.31. It addresses association in a similar manner to the Jonckheere-Terpstra test.
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Output 5.31 Chi-Square Statistics

Statistics for Table of trt by severity

Statistic DF Value Prob

Chi-Square 6 10.5419 0.1036

Likelihood Ratio Chi-Square 6 10.8782 0.0922

MH Chi-Square (Rank Scores) 1 6.6405 0.0100

Phi Coefficient 0.1590

Contingency Coefficient 0.1570

Cramer's V 0.1124

Output 5.32 displays the results of the Jonckheere-Terpstra test.

Output 5.32 Jonckheere-Terpstra

Jonckheere-Terpstra Test

Statistic 35697.0000

Z 2.5712

One-sided Pr >  Z 0.0051

Two-sided Pr > |Z| 0.0101

The value of the actual Jonckheere-Terpstra statistic is 35,697. The corresponding Z-statistic has
the value 2.5712 with a two-sided p-value of 0.0101 (very close to the results of the MH test). At
a 0.05 ˛ level, you would conclude that there are significant differences among groups in their
respective ordering for the ordered response variable that is represented by the columns of the table.

An exact version of the Jonckheere-Terpstra test is available. You simply specify the option JT in
an EXACT statement.
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Chapter 6

Sets of s � r Tables
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6.1 Introduction

Previous chapters address stratified analysis as the assessment of association in sets of 2 � 2 tables,
2 � r tables where the response variable, represented in the table columns, is ordinally scaled, and
s � 2 tables where the groups for the row variable are ordinally scaled. Such analyses are special
cases of the analysis of sets of s � r tables, which includes the cases where the row and column
variables are both nominally scaled, the row variable is nominally scaled and the column variable
is ordinally scaled, and the row variable and the column variable are both ordinally scaled. The
Mantel-Haenszel strategy can be extended to handle these situations. It provides statistics that
detect general association, mean score differences, and linear correlation as alternatives to the null
hypothesis of no association; the choice of statistic depends on the scale of the row and column
variables.

The general idea of stratified analyses is that you control for the effects of factors that are part of the
research design, such as medical centers or hospitals in a randomized clinical trial, or factors that
represent a prespecified poststudy stratification to adjust for explanatory variables that are thought
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to be related to the response variable. This is a common strategy for retrospective and observational
studies. As mentioned in previous chapters, the Mantel-Haenszel strategy potentially removes the
confounding influence of the explanatory variables that comprise the stratification and provides a
gain of power for detecting association by comparing like subjects. In some sense, the strategy is
similar to adjustment for blocks in a two-way analysis of variance for randomized blocks; it is also
similar to covariance adjustment for a categorical explanatory variable.

Historically, the principle of combining information across strata was identified by Cochran (1954):
this was in the context of combining differences of proportions from binomial distributions. Mantel
and Haenszel (1959) refined the procedure to apply to hypergeometric distributions and produced
a statistic to which central limit theory was more applicable for the combined strata. Thus, only
the overall sample size needed to be reasonably large. The Mantel-Haenszel statistic proved more
useful than Cochran’s method. (Cochran’s influence is the reason why the FREQ procedure output
is labeled “Cochran-Mantel-Haenszel Statistics”; current literature tends to use the terms “extended
Mantel-Haenszel statistics” and “Mantel-Haenszel statistics.”)

Mantel (1963) discussed extensions to the MH strategy, including strategies for sets of 2� r tables,
sets of s � 2 tables, and the correlation statistic for s � r tables. The method was further elaborated
by Landis, Heyman, and Koch (1978) to encompass the family of Mantel-Haenzsel statistics, which
included the statistics for general association, nonparametric ANOVA (mean score), the correlation
statistic, and other special cases. Kuritz, Landis, and Koch (1988) present a useful overview of the
Mantel-Haenszel strategy, and so do Landis et al. (1998).

The Mantel-Haenszel strategy requires minimal assumptions. The methods it encompasses are
based on randomization considerations; the only assumptions required are the randomization of the
subjects to levels of the row variable. This can be done explicitly, such as for randomized clinical
trials; implicitly, via hypothesis; or conditionally, such as for retrospective studies or observational
data. The minimal assumptions often allow you to perform hypothesis tests on data that do not
meet the more rigorous assumptions concerning random sampling or underlying distributions that
are required for statistical modeling. However, the conclusions of the analysis may be restricted
to the study population at hand, versus inference to a larger population. Most often, a complete
analysis includes the applications of these minimal assumption methods to perform hypothesis tests
and then statistical modeling to describe more completely the variation in the data.

Another advantage of the Mantel-Haenszel strategy is the fact that sample size requirements are
based on total frequencies, or quantities summed across tables, rather than on individual cell sizes.
This is partly because the Mantel-Haenszel methods are targeted at detecting average effects across
strata; they are often called methods of assessing average partial association.

Section 6.2 discusses the formulation of the Mantel-Haenszel statistics in matrix terminology.
Section 6.3 illustrates the use of the Mantel-Haenszel strategy for several applications. Finally,
Section 6.4 addresses the advanced topic of the use of the Mantel-Haenszel strategy for repeated
measurements analysis.

6.2 General Mantel-Haenszel Methodology

Table 6.1 represents the generic s � r table in a set of q s � r tables.
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Table 6.1 hth s � r Contingency Table

Response Variable Categories
Group 1 2 . . . r Total

1 nh11 nh12 . . . nh1r nh1C
2 nh21 nh22 . . . nh2r nh2C
:::

:::
:::

:::
:::

s nhs1 nhs2 . . . nhsr nhsC
Total nhC1 nhC2 . . . nhCr nh

Under the assumption that the marginal totals nhiC and nhCj are fixed, the overall null hypothesis
of no partial association can be stated as follows:

For each of the levels of the stratification variable h D 1; 2; : : : ; q, the response
variable is distributed at random with respect to the groups (row variable levels).

Suppose n0
h
D .nh11; nh12; : : : ; nh1r ; : : : ; nhs1; : : : ; nhsr/, where nhij is the number of subjects in

the hth stratum in the i th group in the j th response category. The probability distribution for the
vector nh under H0 can be written

P rfnhjH0g D
Qs
iD1 nhiCŠ

Qr
jD1 nhCj Š

nhŠ
Qs
iD1

Qr
jD1 nhij Š

For the hth stratum, suppose that phiC D nhiC=nh denotes the marginal proportion of subjects
belonging to the i th group, and suppose that phCj D nhCj =nh denotes the marginal proportion of
subjects classified as belonging to the j th response category. These proportions can be denoted in
vector notation as

p0h�C D .ph1C; : : : ; phsC/

p0hC� D .phC1; : : : ; phCr/

Then,

Efnhij jH0g D mhij D nhphiCphCj

and the expected value of nh can be written

EfnhjH0g D mh D nh ŒphC� ˝ ph�C�

where ˝ denotes the left-hand Kronecker product (the matrix on the left of the ˝ multiplies each
element of the matrix on the right).

The variance of nh under H0 is

Vh D VarfnhjH0g D
n2
h

.nh � 1/

˚
ŒDphC�

� phC�p0hC��˝ ŒDph�C
� ph�Cp0h�C�
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where DphC�
and Dph�C

are diagonal matrices with elements of the vectors phC� and ph�C as the
main diagonals.

The general form of the extended Mantel-Haenszel statistic for s � r tables is

QEMH D
� qX
hD1

.nh �mh/
0A0h

�� qX
hD1

AhVhA0h

��1� qX
hD1

Ah.nh �mh/

�
where Ah is a matrix that specifies the linear functions of the fnh �mhg at which the test statistic
is directed. Choices of the fAhg provide stratification-adjusted counterparts to the randomization
chi-square statistic Q, the mean score statistic QS , and the correlation statistic QCS that are
discussed in Chapter 5, “The s � r Table.”

6.2.1 General Association Statistic

When both the row and column variables are nominally scaled, the alternative hypothesis of interest
is that of general association, where the pattern of distribution of the response levels across the
row levels is heterogeneous. This is the most general alternative hypothesis and is always valid, no
matter how the row and column variables are scaled.

In this case,

Ah D
˚
ŒI.r�1/; 0.r�1/�˝ ŒI.s�1/; 0.s�1/�

	
which, applied to .nh � mh/, produces the differences between the observed and expected
frequencies under H0 for the .s � 1/.r � 1/ cells of the table after eliminating the last row and
column. This results in QGMH, which is approximately chi-square with .s � 1/.r � 1/ degrees of
freedom. QGMH is often called the test of general association.

6.2.2 Mean Score Statistic

When the response levels are ordinally scaled, you can assign scores to them to compute row mean
scores. In this case, the alternative hypothesis to the null hypothesis of no association is that there
are location shifts for these mean scores across the levels of the row variables.

Here,

Ah D a0h ˝ ŒI.s�1/; 0.s�1/�

where fahg D .ah1; ah2; : : : ; ahr/ specifies scores for the j th response level in the hth stratum,
from which the means

Nyhi D

rX
jD1

.ahjnhij =nhiC/

are created for comparisons of the s populations across the strata.

This produces the extended Mantel-Haenszel QSMH, which is approximately chi-square with
.s � 1/ degrees of freedom under H0. QSMH is called the mean score statistic and is the general
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form of the QSMH statistic for 2 � r tables discussed in Chapter 4, “Sets of 2 � r and s � 2
Tables,” where .s � 1/ D 1. If marginal rank or ridit scores are used, with midranks assigned for
ties, QSMH is equivalent to an extension of the Kruskal-Wallis ANOVA test on ranks to account
for strata and the Friedman ANOVA test on ranks to account for more than one subject per group
within strata. See Chapter 7, “Nonparametric Methods,” for further discussion about nonparametric
tests that are special cases of Mantel-Haenszel strategies.

6.2.3 Correlation Statistic

When both the response variable (columns) and the row variable (groups) are ordinally scaled, you
can assign scores to both the response levels and the row levels in the hth stratum. The alternative
hypothesis to no association in this situation is a linear trend on the mean scores across the levels
of the row variable. In this case,

Ah D Œa0h ˝ c0h�

where the fahg are defined as before and the fchg D .ch1; ch2; : : : ; chs/ specify a set of scores
for the i th level of the row variable in the hth stratum. This produces the differences between the
observed and expected sum of products of the row and column scores with the frequencies nhij , so
that the resulting test statistic is directed at detecting correlation.

This test statistic is QCSMH, which is approximately chi-square with one degree of freedom under
H0. It is the general form of QCSMH discussed in Chapter 4 for stratified s � 2 tables where the
row variable is ordinally scaled. It has increased power relative to QGMH or QSMH for linear
association alternatives to the null hypothesis of no association.

6.2.4 Summary

Table 6.2 summarizes the various types of extended Mantel-Haenszel statistics.

Table 6.2 Extended Mantel-Haenszel Statistics
Alternative SAS Output Degrees of Scale Nonparametric

MH Statistic Hypothesis Label Freedom Requirements Equivalents

QGMH general General .s � 1/ � none
association Association .r � 1/

QSMH mean score Row Means .s � 1/ column Kruskal-
location Scores Differ variable Wallis
shifts ordinal

QCSMH row and
linear Nonzero 1 column Spearman
association Correlation variable correlation

ordinal
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6.3 Mantel-Haenszel Applications

The Mantel-Haenszel strategy has applications in many different settings, including a number of
different sampling frameworks. Chapter 3 demonstrates the use of this strategy for analyzing sets
of 2 � 2 tables, and Chapter 4 demonstrates the use of the strategy for sets of 2 � r and s � 2
tables. If you haven’t read these chapters, you should review them since they contain many general
remarks about the application of Mantel-Haenszel methods. Section 6.3 illustrates the use of these
methods for sets of s � r tables, including examples from clinical trials, observational studies, and
prospective studies.

6.3.1 Dumping Syndrome Data

The previous chapter described the dumping syndrome data, which are displayed in Table 5.10.
The response measured was the severity (none, slight, moderate) of the dumping syndrome, which
is expected to increase directly with the proportion of gastric tissue removed. This response, an
adverse effect of surgery, can be considered ordinally scaled, as can operation. Investigators wanted
to determine if whether type of operation was associated with severity of dumping syndrome, after
adjusting for hospital.

Since both the row and column variables are ordinally scaled, you can use the correlation statistic
QCSMH to assess the null hypothesis of no association against the alternative that type of operation
and severity of response are linearly associated.

The following SAS statements input the data into the SAS data set OPERATE and request the MH
analysis. Note the use of the option ORDER=DATA, as well as the request for both integer scores
(the default table scores) and standardized midrank scores (SCORES=MODRIDIT).

data operate;
input hospital trt $ severity $ wt @@;
datalines;

1 v+d none 23 1 v+d slight 7 1 v+d moderate 2
1 v+a none 23 1 v+a slight 10 1 v+a moderate 5
1 v+h none 20 1 v+h slight 13 1 v+h moderate 5
1 gre none 24 1 gre slight 10 1 gre moderate 6
2 v+d none 18 2 v+d slight 6 2 v+d moderate 1
2 v+a none 18 2 v+a slight 6 2 v+a moderate 2
2 v+h none 13 2 v+h slight 13 2 v+h moderate 2
2 gre none 9 2 gre slight 15 2 gre moderate 2
3 v+d none 8 3 v+d slight 6 3 v+d moderate 3
3 v+a none 12 3 v+a slight 4 3 v+a moderate 4
3 v+h none 11 3 v+h slight 6 3 v+h moderate 2
3 gre none 7 3 gre slight 7 3 gre moderate 4
4 v+d none 12 4 v+d slight 9 4 v+d moderate 1
4 v+a none 15 4 v+a slight 3 4 v+a moderate 2
4 v+h none 14 4 v+h slight 8 4 v+h moderate 3
4 gre none 13 4 gre slight 6 4 gre moderate 4
;
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proc freq order=data;
weight wt;
tables hospital*trt*severity / cmh;
tables hospital*trt*severity / cmh scores=modridit;

run;

Output 6.1 contains the results for the extended Mantel-Haenszel analysis using integer scores.
QCSMH takes the value 6.3404, which is significant at the ˛ D 0:05 level; note that the statistics
for general association, QGMH, and mean score differences, QSMH, are not significant at the
˛ D 0:05 level of significance. This is an example of the utility of taking advantage of the
correlation statistic when it is appropriate; its greater power against the alternative hypothesis of
linear association has detected significant evidence against the null hypothesis.

Output 6.1 Table Scores

Summary Statistics for trt by severity
Controlling for hospital

Summary Statistics for trt by severity
Controlling for hospital

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 6.3404 0.0118

2 Row Mean Scores Differ 3 6.5901 0.0862

3 General Association 6 10.5983 0.1016

Total Sample Size = 417

Output 6.2 contains the results for the standardized midrank scores. QCSMH D 6:9266, with
p D 0:0085. As with the integer scores, the other statistics do not detect as much evidence
against the null hypothesis of no association. Since the response variable levels are subjective and
undoubtedly not equally spaced, the analysis of standardized midrank scores may provide the most
appropriate test.

Output 6.2 Standardized Midrank Scores

Summary Statistics for trt by severity
Controlling for hospital

Summary Statistics for trt by severity
Controlling for hospital

Cochran-Mantel-HaenszelStatistics (ModifiedRidit Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 6.9266 0.0085

2 Row Mean Scores Differ 3 7.6370 0.0541

3 General Association 6 10.5983 0.1016

Total Sample Size = 417

This analysis shows that, adjusting for hospital, there is a clear monotonic association between
degree of gastric tissue removal and severity of dumping syndrome. The greater the degree of
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gastric tissue removal, the worse the dumping syndrome.

6.3.2 Shoulder Harness Data

The following data were collected in a study of shoulder harness usage in observations for a sample
of North Carolina cars (Hochberg, Stutts, and Reinfurt 1977).

Table 6.3 Shoulder Harness Data
Larger Cars Medium Smaller Cars

Area Location No Yes No Yes No Yes Total
Coast Urban 174 69 134 56 150 54 637
Coast Rural 52 14 31 14 25 17 153
Piedmont Urban 127 62 94 63 112 93 551
Piedmont Rural 35 29 32 30 46 34 206
Mountains Urban 111 26 120 47 145 68 517
Mountains Rural 62 31 44 32 85 43 297

For these data, researchers were interested in whether there was an association between the size
of car and shoulder harness usage, after controlling for geographic area and location. First, there
is interest in looking at the pooled table of car size � usage. Then, a Mantel-Haenszel analysis is
requested for a stratification consisting of the combinations of levels of area and location, resulting
in six strata. Finally, Mantel-Haenszel analyses are requested for the association of size with usage
stratified on area and location, singly. Standardized midrank scores are specified.

The following SAS statements request these analyses. Note that the NOPRINT option is specified
in the last two TABLES statements to suppress the printing of tables.

data shoulder;
input area $ location $ size $ usage $ count @@;
datalines;

coast urban large no 174 coast urban large yes 69
coast urban medium no 134 coast urban medium yes 56
coast urban small no 150 coast urban small yes 54
coast rural large no 52 coast rural large yes 14
coast rural medium no 31 coast rural medium yes 14
coast rural small no 25 coast rural small yes 17
piedmont urban large no 127 piedmont urban large yes 62
piedmont urban medium no 94 piedmont urban medium yes 63
piedmont urban small no 112 piedmont urban small yes 93
piedmont rural large no 35 piedmont rural large yes 29
piedmont rural medium no 32 piedmont rural medium yes 30
piedmont rural small no 46 piedmont rural small yes 34
mountain urban large no 111 mountain urban large yes 26
mountain urban medium no 120 mountain urban medium yes 47
mountain urban small no 145 mountain urban small yes 68
mountain rural large no 62 mountain rural large yes 31
mountain rural medium no 44 mountain rural medium yes 32
mountain rural small no 85 mountain rural small yes 43
;
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proc freq;
weight count;
tables size*usage / cmh scores=modridit;
tables area*location*size*usage / cmh scores=modridit;
tables area*size*usage / noprint cmh scores=modridit;
tables location*size*usage / noprint cmh scores=modridit;

run;

Output 6.3 contains the frequency table for size cross-classified by shoulder harness usage.

Output 6.3 Pooled Table

Frequency
Percent
Row Pct
Col Pct

Table of size by usage

size

usage

no yes Total

large 561
23.76
70.83
35.53

231
9.78

29.17
29.54

792
33.55

medium 455
19.27
65.28
28.82

242
10.25
34.72
30.95

697
29.52

small 563
23.85
64.56
35.66

309
13.09
35.44
39.51

872
36.93

Total 1579
66.88

782
33.12

2361
100.00

Output 6.4 contains the Mantel-Haenszel results for this table. QCSMH is valid for these data
since SIZE is ordinally scaled, and the response is dichotomous; it indicates that there is a strong
association between size of car and shoulder harness usage (QCS D 7:1169). By looking at the
row percentages in the table cells, you can see that drivers of small and medium sized cars exhibit
a greater tendency to use shoulder harnesses than do the drivers of large cars.

Output 6.4 Pooled Table

Summary Statistics for size by usage

Summary Statistics for size by usage
Cochran-Mantel-HaenszelStatistics (ModifiedRidit Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 7.1169 0.0076

2 Row Mean Scores Differ 2 8.5013 0.0143

3 General Association 2 8.5013 0.0143

Total Sample Size = 2361
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This association holds when you control for area and location. Output 6.5 contains the frequency
table for rural locations in the coast region (the other tables are not reproduced here).

Output 6.5 Table for AREA=coast and LOCATION=rural

Frequency
Percent
Row Pct
Col Pct

Table 1 of size by usage

Controlling for area=coast location=rural

size

usage

no yes Total

large 52
33.99
78.79
48.15

14
9.15

21.21
31.11

66
43.14

medium 31
20.26
68.89
28.70

14
9.15

31.11
31.11

45
29.41

small 25
16.34
59.52
23.15

17
11.11
40.48
37.78

42
27.45

Total 108
70.59

45
29.41

153
100.00

Output 6.6 displays the Mantel-Haenszel results for the stratified analysis where the strata are all
combinations of area and location. QCSMH D 6:6398, which is strongly significant. Controlling
for area and location, shoulder harness usage is clearly associated with size of car.

Output 6.6 Stratified by Area and Location

Summary Statistics for size by usage
Controlling for area and location

Summary Statistics for size by usage
Controlling for area and location

Cochran-Mantel-HaenszelStatistics (ModifiedRidit Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 6.6398 0.0100

2 Row Mean Scores Differ 2 8.4226 0.0148

3 General Association 2 8.4258 0.0148

Total Sample Size = 2361

Output 6.7 and Output 6.8 contain the Mantel-Haenszel results for the association of size and
shoulder harness usage, controlling for area and location singly. QCSMH D 6:5097 and 7.0702,
respectively. Controlling only for area or location, the significant association between shoulder
harness and size of car remains evident. QGMH and QSMH are also significant for the preceding
analyses, but most of the information is contained in the correlation statistic QCSMH.
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However, you should use caution in interpreting the mean score statistic for modified ridit scores
when the outcome is a dichotomous response. Ordinarily, you would want the values 0 and 1 to
be maintained in such an analysis; by using modified ridit scores you are effectively assigning
different values from 0 and 1 to the columns, and these scores will be different in the different
strata.

Also, the fact thatQGMH andQSMH have very close or the same values in Output 6.6, Output 6.7,
and Output 6.8 is an artifact. However, these statistics are identical for sets of s � 2 tables when
integer scores are used.

Output 6.7 Stratified by Area

Summary Statistics for size by usage
Controlling for area

Summary Statistics for size by usage
Controlling for area

Cochran-Mantel-HaenszelStatistics (ModifiedRidit Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 6.5097 0.0107

2 Row Mean Scores Differ 2 8.1203 0.0172

3 General Association 2 8.1203 0.0172

Total Sample Size = 2361

Output 6.8 Stratified by Location

Summary Statistics for size by usage
Controlling for location

Summary Statistics for size by usage
Controlling for location

Cochran-Mantel-HaenszelStatistics (ModifiedRidit Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 7.0702 0.0078

2 Row Mean Scores Differ 2 8.5794 0.0137

3 General Association 2 8.5789 0.0137

Total Sample Size = 2361

6.3.3 Learning Preference Data

In this study, educational researchers compared three different approaches to mathematics instruc-
tion for third graders. During the year, students were rotated through three different styles: a
self-instructional mode that was largely based on computer use, a team approach in which students
solved problems in groups of four students, and a traditional class approach. Researchers were
interested in both how other school programs influenced the effectiveness of the styles and how
they influenced the students’ perceptions of the different styles. Table 6.4 displays data that reflect
the students’ preferences of styles, cross-classified by the school program they are in: Regular,
which is a regular school schedule, and After, which supplements the regular school day with an
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afternoon school program that involves the same classmates. The study included three different
schools.

Table 6.4 School Program Data

Learning Style Preference
School Program Self Team Class
1 Regular 10 17 26
1 After 5 12 50
2 Regular 21 17 26
2 After 16 12 36
3 Regular 15 15 16
3 After 12 12 20

The question of interest is whether students’ learning style preference is associated with their school
program, after adjusting for any effects of individual school. There may be some ordinality to the
response measure, in the sense of increasing group participation, but that isn’t robust when you
try to distinguish the team approach from the classroom approach. Thus, the appropriate extended
Mantel-Haenszel statistic for the stratified analysis of these data is the test for general association.
Since .s � 1/.r � 1/ for these data is equal to 2, QGMH has two degrees of freedom.

The following SAS statements request the appropriate analysis.

data school;
input school program $ style $ count @@;
datalines;

1 regular self 10 1 regular team 17 1 regular class 26
1 after self 5 1 after team 12 1 after class 50
2 regular self 21 2 regular team 17 2 regular class 26
2 after self 16 2 after team 12 2 after class 36
3 regular self 15 3 regular team 15 3 regular class 16
3 after self 12 3 after team 12 3 after class 20
;

proc freq;
weight count;
tables school*program*style / cmh chisq;

run;

Output 6.9 contains the results for the stratified analysis. QGMH has a value of 10.9577, with 2 df,
with a p-value of 0.0042. School program and learning style preference are strongly associated.
For these data, the general association statistic is most appropriate. The other statistics printed in
this table are not applicable since the scale of the row and column variables of these tables do not
justify their use. Note that since the ORDER=DATA option is not specified, the columns and rows
of the tables are arranged alphabetically. This has no bearing on the general association statistic.
However, if you wanted to order the rows and columns of the table as displayed in Table 6.4, then
you would use ORDER=DATA.
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Output 6.9 Stratified Analysis

Summary Statistics for program by style
Controlling for school

Summary Statistics for program by style
Controlling for school

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 9.0072 0.0027

2 Row Mean Scores Differ 1 9.0072 0.0027

3 General Association 2 10.9577 0.0042

Total Sample Size = 338

Output 6.10, Output 6.11, and Output 6.12 contain the results for the individual tables. Note
that most of the association seems to be occurring in School 1, judging by QP . Nevertheless,
methods for logistic regression for nominal response variables support absence of school*program
interaction and thereby homogeneity of the association between learning program and learning
style across schools (see Section 9.3.2 in Chapter 9).

Output 6.10 Results for School 1

Frequency
Percent
Row Pct
Col Pct

Table 1 of program by style

Controlling for school=1

program

style

class self team Total

after 50
41.67
74.63
65.79

5
4.17
7.46

33.33

12
10.00
17.91
41.38

67
55.83

regular 26
21.67
49.06
34.21

10
8.33

18.87
66.67

17
14.17
32.08
58.62

53
44.17

Total 76
63.33

15
12.50

29
24.17

120
100.00

Statistics for Table 1 of program by style
Controlling for school=1
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Output 6.10 continued

Statistic DF Value Prob

Chi-Square 2 8.5913 0.0136

Likelihood Ratio Chi-Square 2 8.6385 0.0133

Mantel-Haenszel Chi-Square 1 6.4209 0.0113

Phi Coefficient 0.2676

Contingency Coefficient 0.2585

Cramer's V 0.2676

Output 6.11 Results for School 2

Frequency
Percent
Row Pct
Col Pct

Table 2 of program by style

Controlling for school=2

program

style

class self team Total

after 36
28.13
56.25
58.06

16
12.50
25.00
43.24

12
9.38

18.75
41.38

64
50.00

regular 26
20.31
40.63
41.94

21
16.41
32.81
56.76

17
13.28
26.56
58.62

64
50.00

Total 62
48.44

37
28.91

29
22.66

128
100.00

Statistics for Table 2 of program by style
Controlling for school=2

Statistic DF Value Prob

Chi-Square 2 3.1506 0.2069

Likelihood Ratio Chi-Square 2 3.1641 0.2056

Mantel-Haenszel Chi-Square 1 2.7062 0.1000

Phi Coefficient 0.1569

Contingency Coefficient 0.1550

Cramer's V 0.1569

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



6.4. Advanced Topic: Application to Repeated Measures 155

Output 6.12 Results for School 3

Frequency
Percent
Row Pct
Col Pct

Table 3 of program by style

Controlling for school=3

program

style

class self team Total

after 20
22.22
45.45
55.56

12
13.33
27.27
44.44

12
13.33
27.27
44.44

44
48.89

regular 16
17.78
34.78
44.44

15
16.67
32.61
55.56

15
16.67
32.61
55.56

46
51.11

Total 36
40.00

27
30.00

27
30.00

90
100.00

Statistics for Table 3 of program by style
Controlling for school=3

Statistic DF Value Prob

Chi-Square 2 1.0672 0.5865

Likelihood Ratio Chi-Square 2 1.0690 0.5860

Mantel-Haenszel Chi-Square 1 0.8259 0.3635

Phi Coefficient 0.1089

Contingency Coefficient 0.1083

Cramer's V 0.1089

6.4 Advanced Topic: Application to Repeated Measures

6.4.1 Introduction

The Mantel-Haenszel strategy has a useful application to the analysis of repeated measurements
data. Such data occur when measurements are obtained over time, when responses from experi-
mental units are measured under multiple conditions (such as multiple teeth in the same subject),
and when multiple measurements are obtained from the same experimental unit (such as from two
or more observers.) Using repeated measurements enables comparisons among different times or
conditions to avoid being obscured by subject-to-subject variability.

By specifying the appropriate tables for the data, you construct a setting in which Mantel-Haenszel
methods can address the hypothesis of no association between a repeated measurement factor (such
as time or condition) and a response variable, adjusting for the effect of subject. This type of
analysis might be sufficient, or there might also be interest in statistical modeling of the repeated
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measurements data, which is discussed in Chapter 13, “Weighted Least Squares,” and Chapter 14,
“Generalized Estimating Equations.”

Consider the general situation in which t measurements of a univariate response variable Y are
obtained from each of n experimental units. One common application is to longitudinal studies, in
which repeated measurements are obtained at t time points for each subject. In other applications,
the responses from each experimental unit are measured under multiple conditions rather than
at multiple time points. In some settings in which repeated measures data are obtained, the
independent experimental units are not individual subjects. For example, in a matched case-control
study, the experimental units are matched sets, and responses are obtained from the individual
members of each set. In a toxicological study, the experimental units might be litters; responses
are then obtained from the multiple newborns in each litter. In a genetic study, experimental units
might be defined by families; responses are then obtained from the members of each family.

Although interest focuses primarily on the situation in which Y is categorical, the response might
be either continuous or categorical. Let yij denote the response for subject i at time (or condition)
j . The resulting data are commonly displayed in an n � t data matrix, as shown in Table 6.5.

Table 6.5 One-Sample Repeated Measures Data

Time Point
Subject 1 . . . j . . . t

1 y11 . . . y1j . . . y1t
:::

:::
: : :

:::
: : :

:::

i yi1 . . . yij . . . yit
:::

:::
: : :

:::
: : :

:::

n yn1 . . . ynj . . . ynt

Alternatively, suppose c denotes the number of distinct values of Y and suppose indicator variables

nijk D

(
1 if subject i is classified in response category k at time j
0 otherwise

for i D 1; : : : ; n; j D 1; : : : ; t ; and k D 1; : : : ; c. In this case, the data from subject i can be
displayed in a t � c contingency table, as shown in Table 6.6. Thus, the data from a one-sample
repeated measures study can be viewed as a set of n independent two-way contingency tables,
where each table has t rows and c columns.

Table 6.6 Contingency Table Layout for Subject i

Time Response Category
Point 1 . . . c Total

1 ni11 . . . ni1c ni1C
:::

:::
: : :

:::
:::

t nit1 . . . nitc nitC
Total niC1 . . . niCc ni

If the response variable Y is categorical with a limited number of possible values, the number of
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columns in each table, c, will be relatively small. On the other hand, if Y is a continuous variable,
the number of distinct values of Y may be very large. The most extreme case results when each
of the n subjects has a unique response at each time. In this situation, c is equal to nt and every
column marginal total niCk is equal to zero or one.

When the data are complete, the total sample size for each of the n tables is ni D t and every row
marginal total nijC is equal to 1. In this case, each row of Table 6.6 has exactly one nijk value
equal to 1 and the remaining values are equal to 0. This situation occurs when the outcome variable
is measured once at every time point for each subject.

However, if a particular subject has a missing response at one or more time points, the corresponding
row of the subject’s table will have each nijk value equal to 0 and the marginal total nijC will
consequently equal 0. In this case, the total sample size ni equals t minus the number of missing
observations.

Based on the framework displayed in Table 6.6, Mantel-Haenszel statistics can be used to test the
null hypothesis of no association between the row dimension (time) and the column dimension
(response), adjusted for subject. Under the assumption that the marginal totals fnijCg and fniCkg
of each table are fixed, the null hypothesis is that, for each subject, the response variable Y is
distributed at random with respect to the t time points. As discussed in Landis et al. (1988), this null
hypothesis is precisely the interchangeability hypothesis of Madansky (1963). Interchangeability
states that all permutations of responses across conditions within a subject are equally likely. In
turn, the hypothesis of interchangeability implies marginal homogeneity in the distribution of Y
across the t time points; that is, the marginal distribution of Y is the same at each of the t time
points.

Although the interchangeability hypothesis is a somewhat stronger condition than marginal
homogeneity, the general association statistic QGMH, mean score statistic QSMH, and correlation
statistic QCSMH are directed at alternatives that correspond to various types of departures from
marginal homogeneity. The following examples demonstrate the use of MH statistics in testing
marginal homogeneity for repeated measures.

6.4.2 Dichotomous Response: Two Time Points (McNemar’s Test)

A running shoe company produces a new model of running shoe that includes a harder material for
the insert that corrects for overpronation. However, the company is concerned that the material will
induce heel tenderness as a result of some loss of cushioning on the strike of each step. It conducted
a study on 87 runners who used the new shoe for a month. Researchers asked the participants
whether they experienced occasional heel tenderness before and after they used the new shoe.

The data was collected as one observation per time period, that is, two measurements were collected
for each subject, and they included the time period (before or after) and whether heel tenderness
was experienced (yes or no). Table 6.7 contains the contingency table that summarizes these data.
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Table 6.7 Heel Tenderness for Runners
After

Before No Yes Total
No 48 15 63
Yes 5 19 24

However, you can think of the measurements for each subject as being one of four 2 � 2 tables,
corresponding to the four cells of Table 6.7. These tables are displayed in Table 6.8 through
Table 6.11. Each subject’s set of responses can be represented by one of these tables.

Table 6.8 (No, No) Configuration Table (48)

Heel Tenderness
Time No Yes Total

Before 1 0 1
After 1 0 1

Table 6.9 (No, Yes) Configuration Table (15)

Heel Tenderness
Time No Yes Total

Before 1 0 1
After 0 1 1

Table 6.10 (Yes, No) Configuration Table (5)

Heel Tenderness
Time No Yes Total

Before 0 1 1
After 1 0 1

Table 6.11 (Yes, Yes) Configuration Table (19)

Heel Tenderness
Time No Yes Total

Before 0 1 1
After 0 1 1

You can determine whether there is an association between the response and time for before and
after responses by performing a stratified analysis where each subject constitutes a stratum. There
are 87 tables altogether: 48 with the (no, no) configuration, 15 with the (no, yes) configuration, 5
with the (yes, no) configuration, and 19 with the (yes, yes) configuration.

If you study Table 6.7, you can see that these data effectively have the matched pairs framework
that was discussed in Section 2.7. In fact, the Mantel-Haenszel statistic for the described analysis is
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equivalent to McNemar’s test. The following analysis demonstrates the Mantel-Haenszel approach
to analyzing these repeated measurements data. The same strategy is followed when the tables
involved have dimensions greater than 2 � 2 and there is no straightforward alternative strategy
such as McNemar’s test.

The following SAS statements input the running shoes data. The data are in case record form: one
observation per time point per subject. Thus, there are 174 observations altogether.

data pump;
input subject time $ response $ @@;
datalines;

1 before no 1 after no 2 before no 2 after no
3 before no 3 after no 4 before no 4 after no
5 before no 5 after no 6 before no 6 after no
7 before no 7 after no 8 before no 8 after no
9 before no 9 after no 10 before no 10 after no

11 before no 11 after no 12 before no 12 after no
13 before no 13 after no 14 before no 14 after no
15 before no 15 after no 16 before no 16 after no
17 before no 17 after no 18 before no 18 after no
19 before no 19 after no 20 before no 20 after no
21 before no 21 after no 22 before no 22 after no
23 before no 23 after no 24 before no 24 after no
25 before no 25 after no 26 before no 26 after no
27 before no 27 after no 28 before no 28 after no
29 before no 29 after no 30 before no 30 after no
31 before no 31 after no 32 before no 32 after no
33 before no 33 after no 34 before no 34 after no
35 before no 35 after no 36 before no 36 after no
37 before no 37 after no 38 before no 38 after no
39 before no 39 after no 40 before no 40 after no
41 before no 41 after no 42 before no 42 after no
43 before no 43 after no 44 before no 44 after no
45 before no 45 after no 46 before no 46 after no
47 before no 47 after no 48 before no 48 after no
49 before no 49 after yes 50 before no 50 after yes
51 before no 51 after yes 52 before no 52 after yes
53 before no 53 after yes 54 before no 54 after yes
55 before no 55 after yes 56 before no 56 after yes
57 before no 57 after yes 58 before no 58 after yes
59 before no 59 after yes 60 before no 60 after yes
61 before no 61 after yes 62 before no 62 after yes
63 before no 63 after yes 64 before yes 64 after no
65 before yes 65 after no 66 before yes 66 after no
67 before yes 67 after no 68 before yes 68 after no
69 before yes 69 after yes 70 before yes 70 after yes
71 before yes 71 after yes 72 before yes 72 after yes
73 before yes 73 after yes 74 before yes 74 after yes
75 before yes 75 after yes 76 before yes 76 after yes
77 before yes 77 after yes 78 before yes 78 after yes
79 before yes 79 after yes 80 before yes 80 after yes
81 before yes 81 after yes 82 before yes 82 after yes
83 before yes 83 after yes 84 before yes 84 after yes
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85 before yes 85 after yes 86 before yes 86 after yes
87 before yes 87 after yes
;

The next statements request the Mantel-Haenszel analysis. Since the data are in case record form,
no WEIGHT statement is required. Since 87 tables are to be computed, the NOPRINT option is
specified so that the tables are not printed.

proc freq;
tables subject*time*response/ noprint cmh;

run;

Output 6.13 contains the Mantel-Haenszel results. QMH has the value 5.0000 with p D 0:0253.
This is clearly significant. Runners reported more heel tenderness with the new running shoes than
with their old running shoes.

Output 6.13 Mantel-Haenszel Results

Summary Statistics for time by response
Controlling for subject

Summary Statistics for time by response
Controlling for subject

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 5.0000 0.0253

2 Row Mean Scores Differ 1 5.0000 0.0253

3 General Association 1 5.0000 0.0253

Total Sample Size = 174

The CMH option always produces the “Estimates of Relative Risk” table and the “Breslow-Day
Test for Homogeneity” for sets of 2 � 2 tables. However, QBD is not valid here because the data
are paired, and neither is the logit estimator of the confidence interval for the odds ratio (the MH
estimator of the confidence interval can be problematic as well.) To obtain the odds ratio and its
appropriate confidence interval, you can fit a conditional logistic regression model with the subject
as the strata variable and time as the main effect, a technique demonstrated in Section 10.3 of
Chapter 10.

Another way of obtaining these results for sets of 2� 2 tables is to input the original 2� 2 table and
specify the AGREE option to obtain McNemar’s test.

data shoes;
input before $ after $ count;
datalines;

yes yes 19
yes no 5
no yes 15
no no 48
;

proc freq;
weight count;
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tables before*after / agree;
run;

Output 6.14 contains the resulting frequency table and McNemar’s test. QM D 5:0000, the same
value as was obtained for QMH.

Output 6.14 Frequency Table and McNemar’s Test

Frequency
Percent
Row Pct
Col Pct

Table of before by after

before

after

no yes Total

no 48
55.17
76.19
90.57

15
17.24
23.81
44.12

63
72.41

yes 5
5.75

20.83
9.43

19
21.84
79.17
55.88

24
27.59

Total 53
60.92

34
39.08

87
100.00

McNemar's Test

Statistic (S) 5.0000

DF 1

Pr > S 0.0253

Sample Size = 87

Recall that McNemar’s test did not make use of the diagonal cells—the (no, no) and (yes, yes)
cells. Thus, if you repeated the Mantel-Haenszel analysis and eliminated the tables corresponding
to the (no, no) and (yes, yes) configurations, you would obtain identical results.

6.4.3 Dichotomous Response: Three Repeated Measurements

Grizzle, Starmer, and Koch (1969) analyze data in which 46 patients were each treated with three
drugs (A, B, and C). The response to each drug was recorded as favorable (F) or unfavorable (U).
Table 6.12 summarizes the eight possible combinations of favorable or unfavorable response for
the three drugs and the number of patients with each response pattern.
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Table 6.12 Drug Response Data

Drug
A B C Frequency
F F F 6
F F U 16
F U F 2
F U U 4
U F F 2
U F U 4
U U F 6
U U U 6

The objective of the analysis is to determine whether the three drugs have similar probabilities
for favorable response. Thus, the null hypothesis is interchangeability (that is, no association
between drug and response for each patient), which implies equality of the marginal probabilities
of a favorable response for the three drugs across patients. This hypothesis can be tested using the
general association statistic QGMH. The data in Table 6.12 must first be restructured so that there
are forty-six 3 � 2 contingency tables, one for each of the 46 patients. For example, Table 6.13
shows the underlying table for a patient who responded favorably to drugs A and C and unfavorably
to drug B.

Table 6.13 Sample Contingency Table for a Single Patient

Response
Drug F U Total

A 1 0 1
B 0 1 1
C 1 0 1

Total 2 1 3

To apply the Mantel-Haenszel strategy to this data, you have to create a SAS data set that contains
46 � 3 D 138 observations (one observation per measurement) and three variables that represent
patient, drug, and measurement, respectively. If the data are supplied in frequency count form, they
must be rearranged. The following SAS statements read the data in frequency form, as displayed in
Table 6.12, and rearrange them into the form displayed in Table 6.13. Thus, three observations are
created for each patient, one for each drug. Each of the observations in data set DRUG2 contains
an arbitrary patient identifier (numbered from 1 to 46), the drug code (A, B, or C), and the response
(F or U).

Finally, the FREQ procedure computes the MH statistics that assess the association of drug and
response, adjusting for patient. The NOPRINT option of the TABLES statement suppresses the
printing of the 46 individual contingency tables. You almost always use this option when analyzing
repeated measures data using MH methods.

data drug;
input druga $ drugb $ drugc $ count;
datalines;
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F F F 6
F F U 16
F U F 2
F U U 4
U F F 2
U F U 4
U U F 6
U U U 6
;
run;
data drug2; set drug;

keep patient drug response;
retain patient 0;
do i=1 to count;
patient=patient+1;
drug='A'; response=druga; output;
drug='B'; response=drugb; output;
drug='C'; response=drugc; output;
end;

proc freq;
tables patient*drug*response / noprint cmh;

run;

Output 6.15 displays the results from PROC FREQ. Since the response is dichotomous, the general
association and mean score statistics both have 2 df. With table scores, their values are identical.
Since the repeated measures factor (drug) is not ordered, the correlation statistic does not apply.

Output 6.15 Test of Marginal Homogeneity

Summary Statistics for drug by response
Controlling for patient

Summary Statistics for drug by response
Controlling for patient

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 6.3529 0.0117

2 Row Mean Scores Differ 2 8.4706 0.0145

3 General Association 2 8.4706 0.0145

Total Sample Size = 138

The value of QGMH is 8.4706. With reference to the approximate chi-square distribution with 2
df, there is a clearly significant association between drug and response. This test is the same as
Cochran’s Q statistic (Cochran 1950). In order to summarize the nature of the association, it is
helpful to report the estimated marginal probabilities of a favorable response for Drugs A, B, and
C. These can be computed from Table 6.12 and are equal to 28/46 = 0.61, 28/46 = 0.61, and 16/46
= 0.35, respectively. It is evident that the marginal proportion for Drug C differs considerably from
that of Drugs A and B. Drugs A and B have a much greater probability of favorable response than
Drug C.
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6.4.4 Ordinal Response

The same Mantel-Haenszel strategy is appropriate when the repeated measurements response
variable is ordinally scaled. In this case, the statistic of interest is QSMH, the mean score statistic.

Macknin, Mathew, and Medendorp (1990) studied the efficacy of steam inhalation in the treatment
of common cold symptoms. Thirty patients with colds of recent onset (symptoms of nasal drainage,
nasal congestion, and sneezing for three days or less) received two 20-minute steam inhalation
treatments. On four successive days, these patients self-assessed the severity of nasal drainage
on a four-point ordinal scale (0 = no symptoms, 1 = mild symptoms, 2 = moderate symptoms,
3 = severe symptoms). Table 6.14 displays the resulting data.

Table 6.14 Nasal Drainage Data

Patient Study Day Patient Study Day
ID 1 2 3 4 ID 1 2 3 4

1 1 1 2 2 16 2 1 1 1
2 0 0 0 0 17 1 1 1 1
3 1 1 1 1 18 2 2 2 2
4 1 1 1 1 19 3 1 1 1
5 0 2 2 0 20 1 1 2 1
6 2 0 0 0 21 2 1 1 2
7 2 2 1 2 22 2 2 2 2
8 1 1 1 0 23 1 1 1 1
9 3 2 1 1 24 2 2 3 1

10 2 2 2 3 25 2 0 0 0
11 1 0 1 1 26 1 1 1 1
12 2 3 2 2 27 0 1 1 0
13 1 3 2 1 28 1 1 1 1
14 2 1 1 1 29 1 1 1 0
15 2 3 3 3 30 3 3 3 3

The objective of the study was to determine whether nasal drainage becomes less severe following
steam inhalation treatment. Thus, the relevant null hypothesis is that the distribution of the symptom
severity scores is the same on each of the four study days for each patient. Since there are only
four possible values of the response variable, the assumptions for the usual parametric methods are
not directly applicable. In addition, the sample size is too small to justify analysis of the full 44

contingency table obtained by the joint cross-classification of the four-level response variable on
four days. Thus, randomization model MH methods seem appropriate.

Although the general association statistic QGMH can be considered for this example, its use of
9 df would have low power to detect departures from marginal homogeneity in a sample of only
30 patients. Since the response is ordinal, the mean score statistic QSMH, with 3 df, can be used
to compare the average symptom scores across the four days. The adequacy of the sample size to
support the use of this statistic may also be questionable. Alternatively, since the repeated measures
factor (study day) is also ordinal, you could test for a linear trend over study day for symptom
severity using the correlation statistic QCSMH.
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Both QSMH and QCSMH require that scores be assigned to the values of the repeated measures
and response variables. Since study day is quantitative, it is natural to use the scores 1–4 for this
variable. If it is reasonable to assume that the symptom severity ratings are equally spaced, the
actual scores 0–3 can be used. You could also assign scores that incorporate unequal spacing
between the four levels of symptom severity.

Another possibility is to use rank scores for the symptom severity ratings. In PROC FREQ, the
SCORES=RANK option of the TABLES statement uses rank scores for both the row and column
variables. However, since each patient contributes exactly one observation on each of the four days,
the rank scores for study day are also 1, 2, 3, and 4. Thus, this option only affects the scoring of
the symptom severity levels. The SCORES=RIDIT and SCORES=MODRIDIT options compute
rank scores that are standardized by a function of the stratum-specific sample size. Since the
sample sizes in the 30 underlying 4 � 4 contingency tables are all equal to 4, the results from the
SCORES=RANK, SCORES=RIDIT, and SCORES=MODRIDIT options would be identical.

The following SAS statements read in the data in case record form with responses for all days on
the same record and rearrange it so that there are four observations per patient.

data cold;
keep id day drainage;
input id day1-day4;
day=1; drainage=day1; output;
day=2; drainage=day2; output;
day=3; drainage=day3; output;
day=4; drainage=day4; output;
datalines;

1 1 1 2 2
2 0 0 0 0
3 1 1 1 1
4 1 1 1 1
5 0 2 2 0
6 2 0 0 0
7 2 2 1 2
8 1 1 1 0
9 3 2 1 1

10 2 2 2 3
11 1 0 1 1
12 2 3 2 2
13 1 3 2 1
14 2 1 1 1
15 2 3 3 3
16 2 1 1 1
17 1 1 1 1
18 2 2 2 2
19 3 1 1 1
20 1 1 2 1
21 2 1 1 2
22 2 2 2 2
23 1 1 1 1
24 2 2 3 1
25 2 0 0 0
26 1 1 1 1
27 0 1 1 0
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28 1 1 1 1
29 1 1 1 0
30 3 3 3 3
;

You can generate the mean scores at days 1–4 by using PROC GLM and the LSMEANS statement.
In addition, you can use the ESTIMATE statement to determine the direction of the mean difference
between days from the first day to the fourth day.

proc glm;
class day;
model drainage=id day;
lsmeans day;
estimate 'direction' day -3 -1 1 3 / divisor=6;

run;

Output 6.16 displays the mean symptom severity scores. The observed mean scores at days 1–4 are
1.50, 1.37, 1.37, and 1.17; thus, symptom severity is decreasing over time.

Output 6.16 Mean Severity Scores

Least Squares Means

Least Squares Means

day
drainage
LSMEAN

1 1.50000000

2 1.36666667

3 1.36666667

4 1.16666667

Output 6.17 confirms this with an weighted average pairwise difference of �0:1666 from day 1 to
day 4.

Output 6.17 Distance Measure Estimate

                                    Dependent Variable: drainageDependent Variable: drainage

Parameter Estimate
Standard

Error t Value Pr > |t|

direction -0.16666667 0.11652958 -1.43 0.1554

PROC FREQ then computes the MH statistics, first using equally spaced table scores and then
using rank scores.

proc freq;
tables id*day*drainage / cmh2 noprint;
tables id*day*drainage / cmh2 noprint scores=rank;

run;

Output 6.18 displays the MH statistics based on table scores, and Output 6.19 displays the
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corresponding results using rank scores. Using the default table scores, the test statistic that
the mean symptom severity scores are the same at all four days is not statistically significant
(QSMH D 4:9355, p D 0:1766). However, there is a statistically significant trend between study
day and nasal drainage severity (QCSMH D 4:3548, p D 0:0369). The observed mean scores at
days 1–4 are 1.50, 1.37, 1.37, and 1.17; thus, symptom severity is decreasing over time.

Output 6.18 MH Tests Using Table Scores

Summary Statistics for day by drainage
Controlling for id

Summary Statistics for day by drainage
Controlling for id

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 4.3548 0.0369

2 Row Mean Scores Differ 3 4.9355 0.1766

Total Sample Size = 120

Output 6.19 MH Tests Using Rank Scores

Summary Statistics for day by drainage
Controlling for id

Summary Statistics for day by drainage
Controlling for id

Cochran-Mantel-HaenszelStatistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 2.6825 0.1015

2 Row Mean Scores Differ 3 3.3504 0.3407

Total Sample Size = 120

In this example, the use of rank scores leads to a less clear conclusion regarding the statistical
significance of the correlation statistic (QCSMH D 2:6825, p D 0:1015). Some authors
recommend the routine use of rank scores in preference to the arbitrary assignment of scores (for
example, Fleiss 1986, pp. 83–84). However, as demonstrated by Graubard and Korn (1987),
rank scores can be a poor choice when the column margin is far from uniformly distributed. This
occurs because rank scores also assign a spacing between the levels of the categories. This spacing
is generally not known by the analyst and may not be as powerful as other spacings for certain
patterns of differences among distributions. Graubard and Korn (1987) recommend that you specify
the scores whenever possible. If the choice of scores is not apparent, they recommend integer (or
equally spaced) scores.

When there is no natural set of scores, Agresti (2002, p. 88) recommends that the data be analyzed
using several reasonably assigned sets of scores to determine whether substantive conclusions
depend on the choice of scores. This type of sensitivity analysis seems especially appropriate
in this example, since the results that assume equally spaced scores differ from those obtained
using rank scores. For example, the scores 0, 1, 3, 5 assume that the moderate category is equally
spaced between the mild and severe categories, while none and mild are closer together. Another
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possibility would be 0, 1, 2, 4; this choice places severe symptoms further from the other three
categories. These alternative scoring specifications are easily implemented by redefining the values
of the DRAINAGE variable in the DATA step and then using the default table scores, which are
just the input numeric values for drainage.

Note that since the general association statistic does not use scores, the value ofQGMH is the same
in both analyses.

6.4.5 Ordinal Response with Missing Data

Researchers at the C. S. Mott Children’s Hospital in Ann Arbor, Michigan, investigated the effect
of pulse duration on the development of acute electrical injury during transesophageal atrial pacing
in animals. In brief, this procedure involves placing a pacemaker in the esophagus. Each of the 14
animals available for experimentation then received atrial pacing at pulse durations of 2, 4, 6, 8, and
10 milliseconds (ms), with each pulse delivered at a separate site in the esophagus for 30 minutes.
The response variable, lesion severity, was classified according to depth of injury by histologic
examination using an ordinal staging scale from 0 to 5 (0 = no lesion, 5 = acute inflammation of
extraesophageal fascia). Table 6.15 displays the resulting data (missing observations are denoted
by –). Landis et al. (1988) previously analyzed the data from the first 11 animals.

Table 6.15 Lesion Severity Data

Pulse Duration (ms)
ID 2 4 6 8 10

6 0 0 5 0 3
7 0 3 3 4 5
8 0 3 4 3 2
9 2 2 3 0 4

10 0 0 4 4 3
12 0 0 0 4 4
13 0 4 4 4 0
15 0 4 0 0 0
16 0 3 0 1 1
17 – – 0 1 0
19 0 0 1 1 0
20 – 0 0 2 2
21 0 0 2 3 3
22 – 0 0 3 0

The investigators were primarily interested in determining the extent to which increasing the pulse
duration from 2 to 10 ms tends to increase the severity of the lesion. In an experiment in which five
repeated measurements of a six-category ordinal response are obtained from only 14 experimental
units, the choice of statistical methodology is limited. The study is further complicated by the fact
that 3 of the 14 animals have incomplete data.

The general association statistic QGMH has 20 df in this case (s D 5, r D 6). In addition to the
fact that QGMH will not have a chi-square distribution when the sample size is so small relative
to the degrees of freedom, there will be very low power to detect general departures from the null
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hypothesis of interchangeability. Although the alternative of location shift for mean responses
across the five pulse durations can be addressed using the mean score statistic QSMH, this statistic
does not take into account the ordering of the pulse durations. The 1 df correlation statisticQCSMH
specifically focuses on the narrow alternative of a monotone relationship between lesion severity
and pulse duration. This test addresses the objective of the investigators and is also best justified
given the small sample size.

The following SAS statements read in the data in the format shown in Table 6.15 and rearrange
them so that each subject has five observations, one for each pulse duration.

data animals;
keep id pulse severity;
input id sev2 sev4 sev6 sev8 sev10;
pulse=2; severity=sev2; output;
pulse=4; severity=sev4; output;
pulse=6; severity=sev6; output;
pulse=8; severity=sev8; output;
pulse=10; severity=sev10; output;
datalines;

6 0 0 5 0 3
7 0 3 3 4 5
8 0 3 4 3 2
9 2 2 3 0 4

10 0 0 4 4 3
12 0 0 0 4 4
13 0 4 4 4 0
15 0 4 0 0 0
16 0 3 0 1 1
17 . . 0 1 0
19 0 0 1 1 0
20 . 0 0 2 2
21 0 0 2 3 3
22 . 0 0 3 0
;

The following PROC GLM statements produce the lesion severity means for each pulse duration
level in addition to the average pairwise difference as the pulse duration level increases.

proc glm;
class pulse;
model severity = id pulse;
lsmeans pulse;
estimate 'direction' pulse -4 -2 0 2 4 / divisor=10;

run;

Output 6.20 reports the mean lesion severity scores, which range from 0.0237 for a pulse duration
of 2 to 1.967 for a pulse duration of 10, with the highest severity mean of 2.1814 for a pulse
duration of 8. Note that these means are computed for the 11 animals with complete data.
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Output 6.20 Mean Severity Scores

Least Squares MeansLeast Squares Means

pulse
severity

LSMEAN

2 0.02377386

4 1.47047331

6 1.89576987

8 2.18148415

10 1.96719844

Output 6.21 reports the average pairwise weighted distance as pulse duration increases, which is
0.9196.

Output 6.21 Distance Measure Estimate

                                     Dependent Variable: severityDependent Variable: severity

Parameter Estimate
Standard

Error t Value Pr > |t|

direction 0.91957200 0.26734944 3.44 0.0011

The next statements request the MH statistics using table scores and all three types of rank scores.
The CMH2 option specifies that only the Mantel-Haenszel statistics QSMH and QCSMH be
computed. (The CMH1 option specifies that only the correlation statistic QCSMH be computed.)

proc freq;
tables id*pulse*severity / noprint cmh2;
tables id*pulse*severity / noprint cmh2 scores=rank;
tables id*pulse*severity / noprint cmh2 scores=ridit;
tables id*pulse*severity / noprint cmh2 scores=modridit;

run;

Output 6.22 displays the results using the default table scores. In this case, lesion severity is scored
using the integers 0; : : : ; 5 in computing both the mean score statistic QSMH and the correlation
statistic QCSMH. In addition, pulse duration is scored as 2, 4, 6, 8, or 10 in computing QCSMH.
The correlation statistic QCSMH shows a highly significant monotone association (trend) between
pulse duration and lesion severity; the results from the mean score statistic are also statistically
significant.
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Output 6.22 MH Tests Using Table Scores

Summary Statistics for pulse by severity
Controlling for id

Summary Statistics for pulse by severity
Controlling for id

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 8.8042 0.0030

2 Row Mean Scores Differ 4 12.3474 0.0149

Effective Sample Size = 66
Frequency Missing = 4

Output 6.23, Output 6.24, and Output 6.25 display the corresponding results using rank, ridit, and
modified ridit scores, respectively. In this example, the values of the mean score and correlation
statistics differ slightly among the three types of rank statistics. This is due to the fact that the
sample sizes are no longer the same across the 14 tables (due to the occurrence of missing data).

Output 6.23 MH Tests Using Rank Scores

Summary Statistics for pulse by severity
Controlling for id

Summary Statistics for pulse by severity
Controlling for id

Cochran-Mantel-HaenszelStatistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 9.9765 0.0016

2 Row Mean Scores Differ 4 13.6796 0.0084

Effective Sample Size = 66
Frequency Missing = 4

Output 6.24 MH Tests Using Ridit Scores

Summary Statistics for pulse by severity
Controlling for id

Summary Statistics for pulse by severity
Controlling for id

Cochran-Mantel-HaenszelStatistics (Based on Ridit Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 10.0335 0.0015

2 Row Mean Scores Differ 4 14.2628 0.0065

Effective Sample Size = 66
Frequency Missing = 4
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Output 6.25 MH Tests Using Modified Ridit Scores

Summary Statistics for pulse by severity
Controlling for id

Summary Statistics for pulse by severity
Controlling for id

Cochran-Mantel-HaenszelStatistics (ModifiedRidit Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 10.1102 0.0015

2 Row Mean Scores Differ 4 14.1328 0.0069

Effective Sample Size = 66
Frequency Missing = 4

As shown in Table 6.15, 3 of the 14 animals had incomplete data. Table 6.16 through Table 6.18
display the underlying contingency tables for these strata (ID numbers 17, 20, and 22). Although
each of these three tables has one or more rows with a marginal total of zero, the remaining rows
provide useful information about the association between pulse duration and lesion severity.

Table 6.16 Contingency Table for ID 17

Pulse Lesion Severity
Duration 0 1 2 3 4 5 Total

2 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
6 1 0 0 0 0 0 1
8 0 1 0 0 0 0 1
10 1 0 0 0 0 0 1

Total 2 1 0 0 0 0 3

Table 6.17 Contingency Table for ID 20

Pulse Lesion Severity
Duration 0 1 2 3 4 5 Total

2 0 0 0 0 0 0 0
4 1 0 0 0 0 0 1
6 1 0 0 0 0 0 1
8 0 0 1 0 0 0 1
10 0 0 1 0 0 0 1

Total 2 0 2 0 0 0 4
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Table 6.18 Contingency Table for ID 22

Pulse Lesion Severity
Duration 0 1 2 3 4 5 Total

2 0 0 0 0 0 0 0
4 1 0 0 0 0 0 1
6 1 0 0 0 0 0 1
8 0 0 0 1 0 0 1
10 1 0 0 0 0 0 1

Total 3 0 0 1 0 0 4

The following statements exclude these three animals from the analysis and compute the test
statistics for the subset of complete cases. In this case, all three types of rank scores produce the
same results; thus, only the SCORES=RANK option is used. The WHERE clause is used to delete
observations whose ID is equal to 17, 20, or 22.

proc freq data=animals;
where id notin(17,20,22);
tables id*pulse*severity / noprint cmh2;
tables id*pulse*severity / noprint cmh2 scores=rank;

run;

Output 6.26 and Output 6.27 display the results from the analysis of complete cases.

Output 6.26 MH Tests Using Table Scores: Complete Cases Only

Summary Statistics for pulse by severity
Controlling for id

Summary Statistics for pulse by severity
Controlling for id

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 7.5610 0.0060

2 Row Mean Scores Differ 4 11.5930 0.0206

Total Sample Size = 55

Output 6.27 MH Tests Using Rank Scores: Complete Cases Only

Summary Statistics for pulse by severity
Controlling for id

Summary Statistics for pulse by severity
Controlling for id

Cochran-Mantel-HaenszelStatistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 8.5099 0.0035

2 Row Mean Scores Differ 4 12.2637 0.0155

Total Sample Size = 55
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The value of each of the test statistics is somewhat smaller than the corresponding value that is
computed using all available data. Thus, the partial data from the incomplete cases strengthen the
evidence in favor of the existence of a significant trend between pulse duration and lesion severity.
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Nonparametric Methods
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7.1 Introduction

Parametric methods of statistical inference require you to assume that your data come from some
underlying distribution whose general form is known, such as the normal, binomial, Poisson, or
Weibull distribution. Statistical methods for estimation and hypothesis testing are then based on
these assumptions. The focus is on estimating parameters and testing hypotheses about them.

In contrast, nonparametric statistical methods make few assumptions about the underlying
distribution from which the data are sampled. One of their main advantages is that inference is not
focused on specific population parameters, and it is thus possible to test hypotheses that are more
general than statements about parameters. For example, nonparametric methods allow you to test
whether two distributions are the same without having to test hypotheses concerning population
parameters. Nonparametric procedures can also be used when the underlying distribution is
unknown or when parametric assumptions are not valid.

The main disadvantage is that a nonparametric test is generally less powerful than the corresponding
parametric test when the assumptions are satisfied. However, for many of the commonly used
nonparametric methods, the decrease in power is not large.

Most of this book concentrates on the analysis of categorical response variables that are measured
on nominal or ordinal scales. This chapter focuses on the analysis of continuous response variables
with the use of nonparametric statistical methods. The reason for considering these methods is that
many of the commonly used nonparametric tests, such as the Kruskal-Wallis, Spearman correlation,
and Friedman tests, can be computed using Mantel-Haenszel procedures. While previous chapters
have shown how to use Mantel-Haenszel procedures to analyze two-way tables and sets of two-way
tables, this chapter shows how to use the same procedures to perform nonparametric analyses of
continuous response variables.
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7.2 Kruskal-Wallis Test

The Kruskal-Wallis (1952) test is a nonparametric test of the null hypothesis that the distribution of
a response variable is the same in multiple independently sampled populations. The test requires
an ordinally scaled response variable and is sensitive to the alternative hypothesis that there is
a location difference among the populations. The Kruskal-Wallis test can be used whenever
a one-way analysis of variance (ANOVA) model is appropriate. The Kruskal-Wallis test is a
generalization of the Wilcoxon-Mann-Whitney test to three or more groups (Wilcoxon 1945, Mann
and Whitney 1947).

When the sample sizes in the groups are small, you should use tables of the exact distribution
of the test statistic. Alternatively, you can carry out exact tests of significance for small sample
sizes. If there are at least five observations per group, the p-value can be approximated using the
asymptotic chi-square distribution with s � 1 degrees of freedom, where s is the number of groups.
The approximate test is simply the Mantel-Haenszel mean score statistic for the special case of one
stratum when rank scores are used.

Table 7.1 displays data from a study of antecubital vein cortisol levels at time of delivery in
pregnant women (Cawson et al. 1974). The investigators wanted to determine if median cortisol
levels differed among three groups of women, all of whom had delivery between 38 and 42 weeks
gestation. The data were obtained before the onset of labor at elective Caesarean section (Group I),
at emergency Caesarean section during induced labor (Group II), or at the time of vaginal or
Caesarean delivery in women in whom spontaneous labor occurred (Group III).

Table 7.1 Antecubital Vein Cortisol Levels at Time of Delivery

Group I Group II Group III
Patient Level Patient Level Patient Level

1 262 1 465 1 343
2 307 2 501 2 772
3 211 3 455 3 207
4 323 4 355 4 1048
5 454 5 468 5 838
6 339 6 362 6 687
7 304
8 154
9 287
10 356
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7.2. Kruskal-Wallis Test 177

The following statements create a SAS data set containing the data of Table 7.1 and request the
Mantel-Haenszel mean score statistic comparing the mean rank scores in the three groups of
subjects.

data cortisol;
input group $ subject cortisol;
datalines;

I 1 262
I 2 307
I 3 211
I 4 323
I 5 454
I 6 339
I 7 304
I 8 154
I 9 287
I 10 356
II 1 465
II 2 501
II 3 455
II 4 355
II 5 468
II 6 362
III 1 343
III 2 772
III 3 207
III 4 1048
III 5 838
III 6 687
;

proc freq;
tables group*cortisol / noprint cmh2 scores=rank;

run;

The Kruskal-Wallis statistic, labeled “Row Mean Scores Differ” in Output 7.1, is equal to 9.2316
with 2 df, which corresponds to a p-value of 0.0099. Thus, the cortisol level distributions differ
among the three groups of patients. Since there are more than two groups, the Mantel-Haenszel
correlation statistic, labeled “Nonzero Correlation,” does not produce the same results as the
Kruskal-Wallis test. The correlation statistic uses rank scores to test the null hypothesis that
there is no association between group and cortisol level, versus the alternative hypothesis of a
monotone association between the two variables. Thus, this statistic is only valid if the three groups
are ordered (which might be realistic for this example in terms of the timing for cortisol level
determination).
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Output 7.1 Kruskal-Wallis Test Using PROC FREQ

Summary Statistics for group by cortisolSummary Statistics for group by cortisol

Cochran-Mantel-HaenszelStatistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 8.2857 0.0040

2 Row Mean Scores Differ 2 9.2316 0.0099

Total Sample Size = 22

The Kruskal-Wallis test can also be computed by using the WILCOXON option in the NPAR1WAY
procedure.

proc npar1way wilcoxon;
class group;
var cortisol;

run;

The Kruskal-Wallis test displayed in Output 7.2 is identical to the value shown in Output 7.1. The
NPAR1WAY procedure gives additional results showing that the mean rank scores in Groups II and
III are nearly equivalent and are substantially greater than the mean rank score in Group I.

Output 7.2 Kruskal-Wallis Test Using PROC NPAR1WAY

Wilcoxon Scores (Rank Sums) for Variable cortisol
Classifiedby Variable group

group N
Sum of
Scores

Expected
Under H0

Std Dev
Under H0

Mean
Score

I 10 69.0 115.0 15.165751 6.900000

II 6 90.0 69.0 13.564660 15.000000

III 6 94.0 69.0 13.564660 15.666667

Kruskal-Wallis Test

Chi-Square 9.2316

DF 2

Pr > Chi-Square 0.0099

7.3 Friedman’s Chi-Square Test

Friedman’s test (1937) is a nonparametric method for analyzing a randomized complete block
design. This type of study design is applicable when interest is focused on one particular factor, but
there are other factors whose effects you want to control. The experimental units are first divided

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 
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into blocks (groups) in such a way that units within a block are relatively homogeneous. The size
of each block is equal to the number of treatments or conditions under study. The treatments are
then assigned at random to the experimental units within each block so that each treatment is given
once and only once per block. The basic design principle is to partition the experimental units in
such a way that background variability between blocks is maximized so that the variability within
blocks is minimized.

The standard parametric ANOVA methods for analyzing randomized complete block designs
require the assumption that the experimental errors are normally distributed. The Friedman test,
which does not require this assumption, depends only on the ranks of the observations within each
block and is sometimes called the two-way analysis of variance by ranks.

For small randomized complete block designs, the exact distribution of the Friedman test statistic
should be used; for example, Odeh et al. (1977) tabulate the critical values of the Friedman test for
up to six blocks and up to six treatments. Alternatively, you can carry out exact tests of significance
for small sample sizes. As the number of blocks increases, the distribution of the Friedman statistic
approaches that of a chi-square random variable with s � 1 degrees of freedom, where s is the
number of treatments. The approximate test is simply the Mantel-Haenszel mean score statistic for
the special case of rank scores and one subject per treatment group in each block.

Table 7.2 displays data from an experiment designed to determine if five electrode types performed
similarly (Berry 1987). In this study, all five types were applied to the arms of 16 subjects and the
resistance was measured. Each subject is a block in this example, and all five treatments are applied
once and only once per block.

Table 7.2 Electrical Resistance Data
Electrode Type

Subject 1 2 3 4 5
1 500 400 98 200 250
2 660 600 600 75 310
3 250 370 220 250 220
4 72 140 240 33 54
5 135 300 450 430 70
6 27 84 135 190 180
7 100 50 82 73 78
8 105 180 32 58 32
9 90 180 220 34 64

10 200 290 320 280 135
11 15 45 75 88 80
12 160 200 300 300 220
13 250 400 50 50 92
14 170 310 230 20 150
15 66 1000 1050 280 220
16 107 48 26 45 51

The following statements read in one record per subject and create a SAS data set containing one
observation per electrode per subject. The Mantel-Haenszel mean score statistic is then computed
using rank scores, where the 16 subjects define 16 strata.
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data electrod;
input subject resist1-resist5;
type=1; resist=resist1; output;
type=2; resist=resist2; output;
type=3; resist=resist3; output;
type=4; resist=resist4; output;
type=5; resist=resist5; output;
datalines;

1 500 400 98 200 250
2 660 600 600 75 310
3 250 370 220 250 220
4 72 140 240 33 54
5 135 300 450 430 70
6 27 84 135 190 180
7 100 50 82 73 78
8 105 180 32 58 32
9 90 180 220 34 64

10 200 290 320 280 135
11 15 45 75 88 80
12 160 200 300 300 220
13 250 400 50 50 92
14 170 310 230 20 150
15 66 1000 1050 280 220
16 107 48 26 45 51
;

proc freq;
tables subject*type*resist / noprint cmh2 scores=rank;

run;

Output 7.3 displays the results. The value of the test statistic is 5.4522 with 4 df. The p-value of
0.2440 indicates that there is little evidence of a statistically significant difference among the five
types of electrodes.

Output 7.3 Friedman Test

Summary Statistics for type by resist
Controlling for subject

Summary Statistics for type by resist
Controlling for subject

Cochran-Mantel-HaenszelStatistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 2.7745 0.0958

2 Row Mean Scores Differ 4 5.4522 0.2440

Total Sample Size = 80

In experimental situations with more than one subject per group in each block, PROC FREQ can
be used to compute generalizations of the Friedman test. The general principle is that the strata are
defined by the blocks, and the treatments or groups define the rows of each table.
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7.4 Aligned Ranks Test for Randomized Complete Blocks

When the number of blocks or treatments is small, the Friedman test has relatively low power.
This results from the fact that the test statistic is based on ranking the observations within each
block, which provides comparisons only of the within-block responses. Thus, direct comparison of
responses in different blocks is not meaningful, due to variation between blocks. If the blocks are
small, there are too few comparisons to permit an effective overall comparison of the treatments.
As an example, the Friedman test reduces to the sign test if there are only two treatments. This
disadvantage becomes less serious as the number of treatments increases or as the number of
subjects per block increases for a fixed number s of treatments.

An alternative to the Friedman test is to use aligned ranks. The basic idea is to make the blocks
more comparable by subtracting from each observation within a block some estimate of the location
of the block, such as the average or median of the observations. The resulting differences are called
aligned observations. Instead of separately ranking the observations within each block, you rank
the complete set of aligned observations relative to each other. Thus, the ranking scheme is the
same as that used in computing the Kruskal-Wallis statistic. The resulting ranks are called aligned
ranks.

The aligned rank test was introduced by Hodges and Lehmann (1962). Koch and Sen (1968)
considered four cases of interest in the analysis of randomized complete block experiments and
independently proposed the aligned rank procedure for their Case IV. Apart from the fact that one
set of aligned ranks is used instead of separate within-block ranks, the computation of the aligned
rank statistic is the same as for the Friedman test.

The exact distribution of the test statistic is cumbersome to compute. In addition, tables are not
feasible since the distribution depends on the way the aligned ranks are distributed over the blocks.
However, the null distribution of the test statistic is approximately chi-square with s � 1 degrees
of freedom, where s is the number of treatments (or block size when there is one observation per
treatment in each block). Tardif (1980, 1981, 1985) studied the asymptotic efficiency and other
aspects of aligned rank tests in randomized block designs.

In section 7.3, Friedman’s test was used to analyze data from an experiment designed to determine
if five electrode types performed similarly (Table 7.2). Using the SAS data set created in section 7.3,
the following statements compute the aligned rank statistic.

proc standard mean=0;
by subject;
var resist;

proc rank;
var resist;

proc freq;
tables subject*type*resist / noprint cmh2;

run;

The STANDARD procedure standardizes the observations within each block (subject) to have
mean zero. Thus, the subject-specific sample mean is subtracted from each response. The RANK
procedure computes a single set of rankings for the combined aligned observations. Using the
resulting aligned ranks as scores, the FREQ procedure computes the aligned rank statistic.
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Output 7.4 displays the results. The test statistic is equal to 13.6003 with 4 df. With reference to the
chi-square distribution with four degrees of freedom, there is a clearly significant difference among
the five electrode types. Recall that the Friedman test (Output 7.3) was not statistically significant.
Thus, this example illustrates the potentially greater power of the aligned ranks test.

Output 7.4 Aligned Ranks Test

Summary Statistics for type by resist
Controlling for subject

Summary Statistics for type by resist
Controlling for subject

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 4.9775 0.0257

2 Row Mean Scores Differ 4 13.6003 0.0087

Total Sample Size = 80

7.5 Analyzing Incomplete Data

Table 7.3 displays artificial data collected for the purpose of determining if pH level alters action
potential characteristics following administration of a drug (Harrell 1989). The response variable
of interest (Vmax) was measured at up to four pH levels for each of 25 patients. While at least two
measurements were obtained from each patient, only three patients provided data at all four pH
levels.

Table 7.3 Action Potential Data
pH Level pH Level

Patient 6.5 6.9 7.4 7.9 Patient 6.5 6.9 7.4 7.9
1 284 310 326 14 204 234 268
2 261 292 15 258 267
3 213 224 240 16 193 224 235
4 222 235 247 17 185 222 252 263
5 270 286 18 238 301 300
6 210 218 19 198 240
7 216 234 237 20 235 255
8 236 273 283 21 216 238
9 220 249 270 281 22 197 212 219

10 166 218 244 23 234 238
11 227 258 282 286 24 295 281
12 216 284 25 261 272
13 257 284

Even though numerous responses are missing, Mantel-Haenszel statistics can still be used to
determine if the average Vmax differs among the four pH values (QSMH) and if there is a
trend between Vmax and pH (QCSMH). This approach offers the advantage of not requiring any
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assumptions concerning the distribution of Vmax. In addition, the MH methodology accommodates
the varying numbers of observations per patient (under the assumption that missing values are
missing completely at random and the test statistic is specified with either table scores or ranks).

The following SAS statements read in the data in the format shown in Table 7.3 and restructure the
data set for use by the FREQ procedure.

data ph_vmax;
keep subject ph vmax;
input subject vmax1-vmax4;
ph=6.5; vmax=vmax1; output;
ph=6.9; vmax=vmax2; output;
ph=7.4; vmax=vmax3; output;
ph=7.9; vmax=vmax4; output;
datalines;

1 . 284 310 326
2 . . 261 292
3 . 213 224 240
4 . 222 235 247
5 . . 270 286
6 . . 210 218
7 . 216 234 237
8 . 236 273 283
9 220 249 270 281

10 166 218 244 .
11 227 258 282 286
12 216 . 284 .
13 . . 257 284
14 204 234 268 .
15 . . 258 267
16 . 193 224 235
17 185 222 252 263
18 . 238 301 300
19 . 198 240 .
20 . 235 255 .
21 . 216 238 .
22 . 197 212 219
23 . 234 238 .
24 . . 295 281
25 . . 261 272
;

The following PROC GLM statements produce the means for each pH level as well as the average
pairwise difference as the pH level increases.

proc glm;
class ph;
model vmax = subject ph;
lsmeans ph;
estimate 'direction' ph -1 0 0 1 / divisor=3;

run;

Output 7.5 and Output 7.6 contain these results. The mean Vmax ranges from 202.78 at the 6.5 pH
level to 266.96 at the 7.9 pH level. The average weighted difference of means from lower to higher
pH level is 21.39.
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Output 7.5 Mean Scores

Least Squares MeansLeast Squares Means

ph vmax LSMEAN

6.5 202.781663

6.9 227.587950

7.4 256.122018

7.9 266.959134

Output 7.6 Difference Measure

Dependent Variable: vmaxDependent Variable: vmax

Parameter Estimate
Standard

Error t Value Pr > |t|

direction 21.3924902 4.10791831 5.21 <.0001

The following statements compute the MH mean score and correlation statistics. The CMH2 option
is used since it is not possible (or sensible) to compute the general association statistic QGMH.
Since both pH and Vmax are quantitative variables, the default table scores are used. In addition,
the trend is also assessed by using modified ridit scores.

proc freq;
tables subject*ph*vmax / noprint cmh2;
tables subject*ph*vmax / noprint cmh2 scores=modridit;

run;

Output 7.7 shows that the mean Vmax differs significantly among the four pH levels (QSMH D
27:7431, 3 df, p < 0:0001). In addition, there is a highly significant linear trend between pH and
Vmax (QCSMH D 27:3891, 1 df, p < 0:0001).

Output 7.7 MH Mean Score and Correlation Tests: Table Scores

Summary Statistics for ph by vmax
Controlling for subject

Summary Statistics for ph by vmax
Controlling for subject

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 27.3891 <.0001

2 Row Mean Scores Differ 3 27.7431 <.0001

Effective Sample Size = 66
Frequency Missing = 34

WARNING: 34% of the data are missing.

The mean score and correlation statistics are even more significant when modified ridit scores are
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used (Output 7.8). Note that Vmax tends to progressively increase with pH for almost all patients
(patients 18 and 24 are the exception).

Output 7.8 MH Mean Score and Correlation Tests: Modified Ridit Scores

Summary Statistics for ph by vmax
Controlling for subject

Summary Statistics for ph by vmax
Controlling for subject

Cochran-Mantel-HaenszelStatistics (ModifiedRidit Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 35.3818 <.0001

2 Row Mean Scores Differ 3 34.7945 <.0001

Effective Sample Size = 66
Frequency Missing = 34

WARNING: 34% of the data are missing.

In this example, the column variable of each table is continuous and the row variable, although
quantitative, has only four possible values. Thus, both QSMH and QCSMH can be used. The MH
approach to the analysis of one-sample repeated measures can also be very useful when the row
and column variables are both continuous. In this case, only QCSMH can be used. This can be
specified by using the CMH1 option in the TABLES statement.

The methodology is also applicable when there are multiple groups (samples). However, the
observations are viewed as a single group when comparing conditions within subjects. Note that if
the data come from a balanced, incomplete block design, this analysis is equivalent to the Durbin
test (Durbin 1951), which is a rank test used to test the null hypothesis of no differences among
treatments in a balanced incomplete block design. The Durbin test reduces to the Friedman test if
the number of treatments equals the number of experimental units per block.

7.6 Rank Analysis of Covariance

The analysis of covariance (ANCOVA) is a standard statistical methodology that combines the
features of analysis of variance (ANOVA) and linear regression to determine if there is a difference
in some response variable between two or more groups. The basic idea is to augment the ANOVA
model containing the group effects with one or more additional categorical or quantitative variables
that are related to the response variable. These additional variables covary with the response and so
are called covariables or covariates.

One of the main uses of ANCOVA is to increase precision in randomized experiments by using
the relationship between the response variable and the covariates to reduce the error variability in
comparing treatment groups. In this setting, ANCOVA often results in more powerful tests, shorter
confidence intervals, and a reduction in the sample size required to establish differences among
treatment groups.

The validity of classical parametric ANCOVA depends on several assumptions, including normality
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of error terms, equality of error variances for different treatments, equality of slopes for the different
treatment regression lines, and linearity of regression. For situations in which these assumptions
may not be satisfied, Quade (1967) proposed the use of rank analysis of covariance. This technique
can be combined with the randomization model framework of extended Mantel-Haenszel statistics
to carry out nonparametric comparisons between treatment groups, after adjusting for the effects of
one or more covariates. The methodology, which has been described by Koch et al. (1982, 1990),
can easily be implemented using SAS.

The methodology can also be modified for the situation in which there are multiple strata. Table 7.4
displays data from an experiment to evaluate the effectiveness of topically applied stannous fluoride
and acid phosphate fluoride in reducing the incidence of dental caries, as compared with a placebo
treatment of distilled water (Cartwright, Lindahl, and Bawden 1968; Quade 1982). These data
are from 69 female children from three centers who completed the two-year study. The stannous
fluoride, acid phosphate fluoride, and distilled water treatment groups are denoted by SF, APF, and
W. The columns labeled B and A represent the number of decayed, missing, or filled teeth (DMFT)
before and after the study, respectively. In this example, the response to be compared among the
three groups is the number of DMFT after treatment; the number of DMFT before treatment is used
as a covariate. In addition, the analysis is stratified by center.

Table 7.4 Dental Caries Data
Center 1 Center 2 Center 3

ID Grp B A ID Grp B A ID Grp B A ID Grp B A
1 W 7 11 1 W 10 14 1 W 2 4 18 APF 10 12
2 W 20 24 2 W 13 17 2 W 13 18 19 APF 7 11
3 W 21 25 3 W 3 4 3 W 9 12 20 APF 13 12
4 W 1 2 4 W 4 7 4 W 15 18 21 APF 5 8
5 W 3 7 5 W 4 9 5 W 13 17 22 APF 1 3
6 W 20 23 6 SF 15 18 6 W 2 5 23 APF 8 9
7 W 9 13 7 SF 6 8 7 W 9 12 24 APF 4 5
8 W 2 4 8 SF 4 6 8 SF 4 6 25 APF 4 7
9 SF 11 13 9 SF 18 19 9 SF 10 14 26 APF 14 14

10 SF 15 18 10 SF 11 12 10 SF 7 11 27 APF 8 10
11 APF 7 10 11 SF 9 9 11 SF 14 15 28 APF 3 5
12 APF 17 17 12 SF 4 7 12 SF 7 10 29 APF 11 12
13 APF 9 11 13 SF 5 7 13 SF 3 6 30 APF 16 18
14 APF 1 5 14 SF 11 14 14 SF 9 12 31 APF 8 8
15 APF 3 7 15 SF 4 6 15 SF 8 10 32 APF 0 1

16 APF 4 4 16 SF 19 19 33 APF 3 4
17 APF 7 7 17 SF 10 13
18 APF 0 4
19 APF 3 3
20 APF 0 1
21 APF 8 8

The following SAS statements read in the variables CENTER, ID, GROUP, BEFORE, and AFTER,
whose values are displayed in Table 7.4.
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data caries;
input center id group $ before after @@;
datalines;

1 1 W 7 11 1 2 W 20 24 1 3 W 21 25 1 4 W 1 2
1 5 W 3 7 1 6 W 20 23 1 7 W 9 13 1 8 W 2 4
1 9 SF 11 13 1 10 SF 15 18 1 11 APF 7 10 1 12 APF 17 17
1 13 APF 9 11 1 14 APF 1 5 1 15 APF 3 7 2 1 W 10 14
2 2 W 13 17 2 3 W 3 4 2 4 W 4 7 2 5 W 4 9
2 6 SF 15 18 2 7 SF 6 8 2 8 SF 4 6 2 9 SF 18 19
2 10 SF 11 12 2 11 SF 9 9 2 12 SF 4 7 2 13 SF 5 7
2 14 SF 11 14 2 15 SF 4 6 2 16 APF 4 4 2 17 APF 7 7
2 18 APF 0 4 2 19 APF 3 3 2 20 APF 0 1 2 21 APF 8 8
3 1 W 2 4 3 2 W 13 18 3 3 W 9 12 3 4 W 15 18
3 5 W 13 17 3 6 W 2 5 3 7 W 9 12 3 8 SF 4 6
3 9 SF 10 14 3 10 SF 7 11 3 11 SF 14 15 3 12 SF 7 10
3 13 SF 3 6 3 14 SF 9 12 3 15 SF 8 10 3 16 SF 19 19
3 17 SF 10 13 3 18 APF 10 12 3 19 APF 7 11 3 20 APF 13 12
3 21 APF 5 8 3 22 APF 1 3 3 23 APF 8 9 3 24 APF 4 5
3 25 APF 4 7 3 26 APF 14 14 3 27 APF 8 10 3 28 APF 3 5
3 29 APF 11 12 3 30 APF 16 18 3 31 APF 8 8 3 32 APF 0 1
3 33 APF 3 4
;

The next statements produce standardized ranks for the covariate BEFORE and the response
variable AFTER in each of the three centers. Standardized ranks are used to adjust for the fact that
the number of patients differs among centers.

proc rank nplus1 ties=mean out=ranks;
by center;
var before after;

run;

The NPLUS1 option in the RANK procedure requests fractional ranks by using the denominator
nC1, where n is the center-specific sample size. The TIES=MEAN option requests that tied values
receive the mean of the corresponding ranks (midranks). Since TIES=MEAN is the default for
PROC RANK, this option was not specified in the previous example. However, when fractional
ranks are requested using either the FRACTION (denominator is n) or NPLUS1 (denominator is
nC 1) options, the TIES=HIGH option is the default. Thus, you must specify both the NPLUS1
and TIES=MEAN options.

PROC REG is then used to fit separate linear regression models for the three centers. In each
model, the standardized ranks of the AFTER and BEFORE variables are used as the dependent and
independent variables, respectively. The following statements request these models and output the
corresponding residuals into an output data set named RESIDUAL.

proc reg noprint;
by center;
model after=before;
output out=residual r=resid;

run;
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Finally, the stratified mean score test, using the values of the residuals as scores, compares the three
groups.

proc freq;
tables center*group*resid / noprint cmh2;

run;

Output 7.9 displays the results. The difference among the three treatment groups, after ad-
justing for the baseline number of DMFT and center, is clearly significant (row mean score
chi-square = 17.5929, 2 df, p D 0:0002).

Output 7.9 Results of Stratified Rank Analysis of Covariance

Summary Statistics for group by resid
Controlling for center

Summary Statistics for group by resid
Controlling for center

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 17.1716 <.0001

2 Row Mean Scores Differ 2 17.5929 0.0002

Total Sample Size = 69

The rank analysis of covariance strategy described in this section is generally limited to randomized
clinical trials, since the covariables should have similar distributions in the groups being compared.
In this example, patients were randomly assigned to one of the three treatment groups, and
Cartwright, Lindahl, and Bawden (1968) reported that the groups were comparable with respect
to both the number of DMFT at baseline and other baseline variables. Although the patients
in the APF group appear to have fewer DMFT at baseline than the patients in the SF and W
groups (the corresponding medians are 7, 9, and 9, respectively), there is insufficient evidence to
conclude that the distributions are significantly different (Kruskal-Wallis chi-square = 4.4 with 2
df, p D 0:1100); thus, rank analysis of covariance methods are appropriate.

You can apply these strategies to data from an observational (nonrandomized) study to adjust for
sources of bias. However, such results should be interpreted cautiously unless you can make a
strong case that the data collection was representative of a randomized scheme.
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190 Chapter 8: Logistic Regression I: Dichotomous Response

8.1 Introduction

The previous chapters discussed the investigation of statistical association, primarily by testing the
hypothesis of no association between a set of groups and outcomes for a response with adjustment
for a set of strata. Recall that Mantel-Haenszel strategies produced tests for specific alternatives to
no association: general association, location shifts for means, and linear trends. This chapter shifts
the focus to statistical models, methods aimed at describing the nature of the association in terms
of a parsimonious number of parameters. Besides describing the variation in the data, statistical
modeling allows you to address questions about association in terms of hypotheses concerning
model parameters.

If certain realistic sampling assumptions are plausible, a statistical model can be used to make
inferences from a study population to a larger target population. If you are analyzing a clinical
trial that assigned its subjects to a randomized protocol, then you can generalize your results
to the population from which the subjects were selected and possibly to a more general target
population. If you are analyzing observational data, and you can argue that your study subjects are
conceptually representative of some larger target population, then you may make inferences to that
target population.

Logistic regression is a form of statistical modeling that is often appropriate for categorical
outcome variables. It describes the relationship between a categorical response variable and a set of
explanatory variables. The response variable is usually dichotomous, but it may be polytomous, that
is, have more than two response levels. These multiple-level response variables can be nominally
or ordinally scaled. This chapter addresses logistic regression when the response is dichotomous;
typically the two outcomes are yes and no. Logistic regression with more than two response
variable levels is covered in Chapter 9, “Logistic Regression II: Polytomous Response.” Another
kind of logistic regression is called conditional logistic regression and is often used for highly
stratified data. Chapter 10, “Conditional Logistic Regression,” describes this methodology.

Chapter 8 and Chapter 9 mainly focus on asymptotic methods that require an adequate sample size
in order for model fit and effect assessment tests to be valid. However, sometimes your data are so
sparse or have such small cell counts that these methods are not valid. This chapter also discusses
exact logistic regression, which is an alternative strategy for these situations.

The explanatory variables in logistic regression can be categorical or continuous. Sometimes the
term “logistic regression” is restricted to analyses that include continuous explanatory variables,
and the term “logistic analysis” is used for those situations where all the explanatory variables
are categorical. In this book, logistic regression refers to both cases. Logistic regression has
applications in fields such as epidemiology, medical research, banking, market research, and social
research. As you will see, one of its advantages is that model interpretation is possible through
odds ratios, which are functions of model parameters.

A number of procedures in SAS/STAT software can be used to perform logistic regression, but
this chapter focuses on the LOGISTIC procedure. It is designed primarily for logistic regression
analysis, and it provides useful information such as odds ratio estimates and model diagnostics.
The GENMOD procedure analyzes generalized linear models, of which logistic regression is a
simple case. This chapter also provides a basic example of the use of the GENMOD procedure.
Logistic regression is also available through the CATMOD, GLIMMIX, and PROBIT procedures.
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8.2. Dichotomous Explanatory Variables 191

8.2 Dichotomous Explanatory Variables

8.2.1 Logistic Model

Table 8.1 displays the coronary artery disease data that were analyzed in Chapter 3, “Sets of 2 �
2 Tables.” Recall that the study population consists of people who visited a clinic on a walk-in
basis and required a catheterization. The response, presence of coronary artery disease (CA), is
dichotomous, as are the explanatory variables, sex and ECG. These data were analyzed in Section
3.3.2 with Mantel-Haenszel methods; also, odds ratios and the common odds ratio were computed.
Recall that ECG was clearly associated with disease status, adjusted for gender.

Table 8.1 Coronary Artery Disease Data

Sex ECG Disease No Disease Total
Female < 0.1 ST segment depression 4 11 15
Female � 0.1 ST segment depression 8 10 18
Male < 0.1 ST segment depression 9 9 18
Male � 0.1 ST segment depression 21 6 27

Assume that these data arise from a stratified simple random sample so that presence of coronary
artery disease is distributed binomially for each sex � ECG combination, that is, for each row of
Table 8.1. These rows are called groups or subpopulations. You can then write a model for the
probability, or the likelihood, of these data. The sex by ECG by disease status classification has the
product binomial distribution

Prfnhij g D
2Y
hD1

2Y
iD1

nhiCŠ

nhi1Šnhi2Š
�
nhi1

hi
.1 � �hi /

nhi2

The quantity �hi is the probability that a person of the hth sex with an ith ECG status has coronary
artery disease, and nhi1 and nhi2 are the numbers of persons of the hth sex and ith ECG with and
without coronary artery disease, respectively (h D 1 for females, h D 2 for males; i D 1 for ECG
< 0.1, i D 2 for ECG � 0.1; j D 1 for disease, j D 2 for no disease, and nhiC D .nhi1 C nhi2//.
You can apply the logistic model to describe the variation among the f�hig:

�hi D
1

1C expf�.˛ C
Pt
kD1 ˇkxhik/g

Another form of this equation that is often used is

�hi D
expf˛ C

Pt
kD1 ˇkxhikg

1C expf˛ C
Pt
kD1 ˇkxhikg
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192 Chapter 8: Logistic Regression I: Dichotomous Response

The quantity ˛ is the intercept parameter; the fxhikg are the t explanatory variables for the hth sex
and i th ECG; k D 1; : : : ; t ; and the fˇkg are the t regression parameters.

The matrix form of this equation is

�hi D
exp.˛ C x0

hi
ˇ/

1C exp.˛ C x0
hi
ˇ/

where the quantity ˇ is a vector of t regression parameters, and xhi is a vector of explanatory
variables corresponding to the hith group.

You can show that the odds of CA disease for the hi th group is

�hi

1 � �hi
D expf˛ C

tX
kD1

ˇkxhikg

By taking natural logarithms on both sides, you obtain a linear model for the logit:

log
�

�hi

1 � �hi

�
D ˛ C

tX
kD1

ˇkxhik

The logit is the log of an odds, so this model is for the log odds of coronary artery disease versus
no coronary artery disease for the hi th group. The log odds for the hi th group can be written as
the sum of an intercept and a linear combination of explanatory variable values multiplied by the
appropriate parameter values. This result allows you to obtain the model-predicted odds ratios for
variation in the xhik by exponentiating model parameter estimates for the ˇk , as explained below.

Besides taking the familiar linear form, the logistic model has the useful property that all possible
values of .˛ C x0

hi
ˇ/ in .�1;1/ map into .0; 1/ for �hi . Thus, predicted probabilities produced

by this model are constrained to lie between 0 and 1. This model produces no negative predicted
probabilities and no predicted probabilities greater than 1. Maximum likelihood methods are
generally used to estimate ˛ and ˇ. PROC LOGISTIC uses the Fisher scoring method, which is
equivalent to model fitting with iteratively weighted least squares. When the overall sample size
n D

P
h

P
i nhi is sufficiently large, the resulting estimates for ˛ and ˇ have a multivariate normal

distribution for which a consistent estimate of the corresponding covariance matrix is conveniently
available. On this basis, confidence intervals and test statistics are straightforward to construct for
inferences concerning ˛ and ˇ. See Appendix A in this chapter for more methodological detail.

8.2.2 Model Fitting

A useful first model for the coronary disease data is one that includes main effects for sex and
ECG. Since these effects are dichotomous, there are three parameters in this model, including the
intercept.
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You can write this main effects model as2664
logit.�11/
logit.�12/
logit.�21/
logit.�22/

3775 D
2664
˛

˛ C ˇ2
˛ C ˇ1
˛ C ˇ1 C ˇ2

3775 D
2664
1 0 0

1 0 1

1 1 0

1 1 1

3775
24 ˛

ˇ1
ˇ2

35

This type of parameterization is often called incremental effects parameterization. It has a model
matrix (also called a design matrix) composed of 0s and 1s. The quantity ˛ is the log odds of
coronary artery disease for females with an ECG of less than 0.1. Since females with ST segment
depression less than 0.1 are described by the intercept, this group is known as the reference cell
in this parameterization. The parameter ˇ1 is the increment in log odds for males, and ˇ2 is the
increment in log odds for having an ECG of at least 0.1. Table 8.2 displays the probabilities and
odds predicted by this model.

Table 8.2 Model-Predicted Probabilities and Odds

Sex ECG Pr{CA Disease}=�hi Odds of CA Disease

Females < 0.1 e˛=.1C e˛/ e˛

Females � 0.1 e˛Cˇ2=.1C e˛Cˇ2/ e˛Cˇ2

Males < 0.1 e˛Cˇ1=.1C e˛Cˇ1/ e˛Cˇ1

Males � 0.1 e˛Cˇ1Cˇ2=.1C e˛Cˇ1Cˇ2/ e˛Cˇ1Cˇ2

You can calculate the odds ratio for males versus females by forming the ratio of male odds of CA
disease to female odds of CA disease for either low or high ECG (see Chapter 2,“The 2 � 2 Table,”
for a discussion of odds ratios):

e˛Cˇ1

e˛
D eˇ1 or

e˛Cˇ1Cˇ2

e˛Cˇ2
D eˇ1

Similarly, the odds ratio for high ECG versus low ECG is determined by forming the corresponding
ratio of the odds of CA disease for either sex:

e˛Cˇ1Cˇ2

e˛Cˇ1
D eˇ2 or

e˛Cˇ2

e˛
D eˇ2

Thus, you can obtain odds ratios as functions of the model parameters in logistic regression.
With incremental effects parameterization for a main effects model, you simply exponentiate the
parameter estimates. However, unlike the odds ratios you calculate from individual 2 � 2 tables,
these odds ratios have been adjusted for all other explanatory variables in the model.
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8.2.3 Goodness of Fit

Once you have applied the model, you need to assess how well it fits the data, or how close the
model-predicted values are to the corresponding observed values. Test statistics that assess fit in
this manner are known as goodness-of-fit statistics. They address the differences between observed
and predicted values, or their ratio, in some appropriate manner. Departures of the predicted
proportions from the observed proportions should be essentially random. The test statistics have
approximate chi-square distributions when the fnhij g are sufficiently large. If they are larger than a
tolerable value, then you have an oversimplified model and you need to identify some other factors
to better explain the variation in the data.

Two traditional goodness-of-fit tests are the Pearson chi-square, QP , and the likelihood ratio
chi-square, QL, also known as the deviance.

QP D

2X
hD1

2X
iD1

2X
jD1

.nhij �mhij /
2=mhij

QL D

2X
hD1

2X
iD1

2X
jD1

2nhij log
�
nhij

mhij

�
where the mhij are the model-predicted counts defined as

mhij D

(
nhiC O�hi for j=1
nhiC.1 � O�hi / for j=2

The quantity O�hi is the estimate of �hi using the estimates of ˛ and the ˇk . If the model fits,
both QP and QL are approximately distributed as chi-square with degrees of freedom equal to
the number of rows in the table minus the number of parameters. For the main effects model
being discussed, there are four rows in the table (four groups) and three parameters, including the
intercept, and so QP and QL have 4 � 3 D 1 degree of freedom. Sample size guidelines for these
statistics to be approximately chi-square include

� each of the groups has at least 10 subjects (nhiC � 10)
� 80% of the predicted counts (mhij ) are at least 5
� all other expected counts are greater than 2, with essentially no 0 counts

When the above guidelines do not apply, there is usually a tendency for the chi-square approxi-
mation to QP and QL to overstate lack of fit, and so tolerably small values for them are robustly
interpretable as supporting goodness of fit. For a more rigorous evaluation of goodness of fit
when the fnhij g are not large enough to justify chi-square approximations for QL and QP , exact
methods for logistic regression are available (see Section 8.8).

8.2.4 Using PROC LOGISTIC

The LOGISTIC procedure was designed specifically to fit logistic regression models. You specify
the response variable and the explanatory variables in a MODEL statement, and it fits the model
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via maximum likelihood estimation. PROC LOGISTIC produces the parameter estimates, their
standard errors, and statistics to assess model fit. In addition, it also provides several model
selection methods, puts predicted values and other statistics into output data sets, and includes a
number of options for controlling the model-fitting process.

The following SAS code creates the data set CORONARY.

data coronary;
input sex ecg ca count @@;
datalines;

0 0 0 11 0 0 1 4
0 1 0 10 0 1 1 8
1 0 0 9 1 0 1 9
1 1 0 6 1 1 1 21
;

The variable CA is the response variable, and SEX and ECG are the explanatory variables. The
variable SEX takes the value 0 for females and 1 for males, and ECG takes the value 0 for lower
ST segment depression and 1 for higher ST segment depression. Thus, these variables provide the
values for the model matrix. Such coding is known as indicator-coding or dummy-coding.

The variable CA takes the value 1 if CA disease is present and is 0 otherwise. By default, PROC
LOGISTIC orders the response variable values alphanumerically so that, for these data, it bases its
model on the probability of the smallest value, Pr{CA=0}, which is Pr{no coronary artery disease}.
This means that it models the log odds of {no coronary artery disease}. If you want to change the
basis of the model to be Pr{CA=1}, which is Pr{coronary artery disease}, you have to alter this
default behavior. Data analysts usually want their models to be based on the probability of the event
(disease, success), which is often coded as 1.

For a dichotomous response variable, the effect of reversing the order of the response values is
to change the sign of the parameter estimates. Another effect will be that the odds ratio is the
reciprocal of the desired one. Thus, if your estimates for the parameters have opposite signs from
another logistic regression run, you have modeled opposite levels for the dichotomous response
variable.

The next group of SAS statements invokes PROC LOGISTIC. Since the data are in frequency
(count) form, you need to indicate that to the procedure. This is done with the FREQ statement,
which is similar in use to the WEIGHT statement in PROC FREQ. (Note that a WEIGHT
statement is available with the LOGISTIC procedure; however, it is used somewhat differently.)
The main effects model is specified in the MODEL statement, which also includes the options
SCALE=NONE and AGGREGATE. The EVENT=‘1’ option for the response variable in the
MODEL statement requests that the basis of the model be Pr{CA=1} or Pr{coronary artery
disease}. (Another way to do this is to use the DESCENDING option in the PROC LOGISTIC
statement. This reverses the default alphanumeric ordering of the response variable outcomes.)

The SCALE option produces goodness-of-fit statistics; the AGGREGATE option requests that
PROC LOGISTIC treat each unique combination of the explanatory variable values as a distinct
group in computing the goodness-of-fit statistics.
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proc logistic;
freq count;
model ca(event='1')=sex ecg / scale=none aggregate;

run;

Output 8.1 displays the resulting “Response Profile” table. The response variable values are
listed according to their PROC LOGISTIC ordered values, but the EVENT=‘1’ option has made
Pr{coronary artery disease} the basis of the model. It is always important to check the “Response
Profile” table and note to ensure that PROC LOGISTIC is forming its model the way you desired.

Output 8.1 Response Profile

Response Profile

Ordered
Value ca

Total
Frequency

1 0 36

2 1 42

Probability modeled is ca=1.

Output 8.2 contains the goodness-of-fit statistics. QP has the value 0.2155, and QL has the value
0.2141. Compared to a chi-square distribution with 1 df, these relatively small values suggest that
the model fits the data adequately. The note that the number of unique profiles is 4 means that
these statistics are computed based on the 4 groups that are the rows of Table 8.1, the result of the
AGGREGATE option.

Output 8.2 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 0.2141 1 0.2141 0.6436

Pearson 0.2155 1 0.2155 0.6425

Number of unique profiles: 4

Output 8.3 lists various criteria for assessing model fit through the quality of the explanatory
capacity of the model; for �2 log L this is done by testing whether the explanatory variables are
jointly significant relative to the chi-square distribution. AIC and SC serve a similar purpose while
adjusting for the number of explanatory variables in the model. All of these statistics are analogous
to the overall F test for the model parameters in a linear regression setting. Generally, you are
interested in the second column, which pertains to the model with the intercept and covariates.
Refer to the SAS/STAT User’s Guide, for more information on these statistics.
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Output 8.3 Testing Joint Significance of the Explanatory Variables

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 109.669 101.900

SC 112.026 108.970

-2 Log L 107.669 95.900

8.2.5 Interpretation of Main Effects Model

With the satisfactory goodness of fit, it is appropriate to examine the parameter estimates from
the model. Note that these results apply only to the population consisting of those persons who
visited this medical clinic and required catheterization. The “Analysis of Maximum Likelihood
Estimates” table in Output 8.4 lists the estimated model parameters, their standard errors, Wald
chi-square tests, and p-values. A Wald test is a statistic that takes the form of the squared value
ratio for the estimate to its standard error; it follows an approximate chi-square distribution when
the sample size is sufficiently large. Wald statistics are easy to compute and are based on normal
theory; however, their statistical properties are somewhat less optimal than those of the likelihood
ratio statistics for small samples. Moreover, when there is concern for the statistical properties of
results from small samples, exact methods can be helpful; see Section 8.8.

Output 8.4 Main Effects Model: ANOVA Table

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -1.1747 0.4854 5.8571 0.0155

sex 1 1.2770 0.4980 6.5750 0.0103

ecg 1 1.0545 0.4980 4.4844 0.0342

The variable SEX is significant compared to a significance level of 0.05, with a Wald statistic
(usually denoted QW ) of 6.5750. The variable ECG is also significant, with QW D 4:4844.

The model equation can be written as follows:

logit.�hi / D �1:1747C 1:2770 SEX C 1:0545 ECG

Table 8.3 lists the parameter interpretations, and Table 8.4 displays the predicted logits and odds of
coronary disease.
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Table 8.3 Interpretation of Parameters

Standard
Parameter Estimate Error Interpretation

˛ �1:1747 0.485 log odds of coronary disease
for females with ECG < 0:1

ˇ1 1.2770 0.498 increment to log odds for males

ˇ2 1.0545 0.498 increment to log odds for ECG � 0:1

Table 8.4 Model-Predicted Logits and Odds of CA Disease

Odds of
Sex ECG Logit Coronary Artery Disease

Female < 0.1 Ǫ D �1:1747 e Ǫ D e�1:1747 D 0:3089

Female � 0.1 Ǫ C Ǒ2 D �0:1202 e ǪC
Ǒ
2 D e�0:1202 D 0:8867

Male < 0.1 Ǫ C Ǒ1 D 0:1023 e ǪC
Ǒ
1 D e0:1023 D 1:1077

Male � 0.1 Ǫ C Ǒ1 C
Ǒ
2 D 1:1568 e ǪC

Ǒ
1C
Ǒ
2 D e1:1568 D 3:1797

The odds ratio for males compared to females is the ratio of the predicted odds of CA disease for
males versus females, which, on page 193, was shown to be

e
Ǒ
1 D e1:2770 D 3:586

Men in the study have 3.6 times higher odds for coronary artery disease than women in the study,
controlling for ECG status. The odds ratio for ECG � 0:1 versus ECG < 0:1 is the ratio of the
predicted odds of CA disease for high ECG versus low ECG, which was shown to be

e
Ǒ
2 D e1:0545 D 2:871

Those persons with ECG � 0:1 have 2.9 times the odds of coronary artery disease as those with
ECG< 0:1, controlling for gender. This quantity is very similar to the common odds ratio estimates
computed by PROC FREQ and displayed in Section 3.3.2 ( O MH D 2:847 and O L D 2:859).
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Output 8.5 contains the adjusted odds ratios and their 95% Wald confidence limits. The point
estimates have the values calculated above. Neither of the confidence limits includes the value 1 in
agreement with the statistical significance of each factor relative to the hypothesis of no association.

Output 8.5 Confidence Limits for Odds Ratios

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

ConfidenceLimits

sex 3.586 1.351 9.516

ecg 2.871 1.082 7.618

Predicted values are easily produced. The OUTPUT statement specifies that predicted values for
the first ordered value (CA=1) be put into the variable PROB and output into the SAS data set
PREDICT along with the variables from the input data set. You can print these values with the
PRINT procedure. Note that PROC LOGISTIC also provides a SCORE statement for generating
predicted values for other data sets.

This time, the DESCENDING option in the PROC LOGISTIC statement determines the internal
order of the response variable values. It specifies that the model be based on the highest ordered
response variable value, which is CA=1.

proc logistic descending;
freq count;
model ca=sex ecg;
output out=predict pred=prob;

run;
proc print data=predict;
run;

The data set PREDICT contains model-predicted values for each observation in the input data set.
The created variable named PROB contains these predicted values; the created variable _LEVEL_
tells you that they are the predicted values for the first ordered value, or Pr{coronary artery disease}.
Observations 7 and 8 display the predicted value 0.76075 for males with high ECG.
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Output 8.6 Predicted Values Output Data Set

Obs sex ecg ca count _LEVEL_ prob

1 0 0 0 11 1 0.23601

2 0 0 1 4 1 0.23601

3 0 1 0 10 1 0.46999

4 0 1 1 8 1 0.46999

5 1 0 0 9 1 0.52555

6 1 0 1 9 1 0.52555

7 1 1 0 6 1 0.76075

8 1 1 1 21 1 0.76075

In conclusion, the main effects model is satisfactory. Being male and having ECG � 0:1 are risk
indicators for the presence of coronary artery disease for these data. If you can make the argument
that this convenience sample is representative of a target group of coronary artery disease patients,
possibly those persons who visit clinics on a walk-in basis, then these results may also apply to that
population.

8.2.6 Alternative Methods of Assessing Goodness of Fit

There are other strategies available for assessing goodness of fit; these are based on fitting an
appropriate expanded model and then evaluating whether the contribution of the additional terms
is nonsignificant. If so, you then conclude that the original model has an adequate fit. You can
compute likelihood ratio tests for the significance of the additional terms by taking the difference
in the log likelihood for both models (�2 Log L in the “Model Fit Statistics” table); this difference
has an approximate chi-square distribution with degrees of freedom equal to the difference in the
number of parameters in the models. You can also examine the Wald statistic for the additional
parameters in order to assess goodness of fit.

For these data, the expanded model would be the one that contains the main effects for sex and ECG
plus their interaction. The desired likelihood ratio statistic tests the significance of the interaction
term and thus serves as a goodness-of-fit test for the main effects model.

You can write this model as2664
logit.�11/
logit.�12/
logit.�21/
logit.�22/

3775 D
2664
˛

˛ C ˇ2
˛ C ˇ1
˛ C ˇ1 C ˇ2 C ˇ3

3775 D
2664
1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

3775
2664

˛

ˇ1
ˇ2
ˇ3

3775
The model matrix column corresponding to ˇ3, the interaction term, is constructed by multiplying
the columns for ˇ1 and ˇ2 together. Note that this model is a saturated model, since there are as
many parameters as there are logit functions being modeled.
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The following SAS code fits this model. Since PROC LOGISTIC includes a complete model-
building facility, you simply cross SEX and ECG in the MODEL statement to specify their
interaction. The interaction term in the resulting model matrix has the value 1 if both SEX and
ECG are 1; otherwise, it is 0. The ODS SELECT statement is used to restrict the output to the fit
statistics and the parameter estimates.

ods select FitStatistics ParameterEstimates;
proc logistic descending;

freq count;
model ca=sex ecg sex*ecg;

run;

The resulting tables titled “Model Fit Statistics” and “Analysis of Maximum Likelihood Estimates”
follow.

Output 8.7 Results for Saturated Model

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 109.669 103.686

SC 112.026 113.112

-2 Log L 107.669 95.686

Output 8.8 Results for Saturated Model

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -1.0116 0.5839 3.0018 0.0832

sex 1 1.0116 0.7504 1.8172 0.1776

ecg 1 0.7885 0.7523 1.0985 0.2946

sex*ecg 1 0.4643 1.0012 0.2151 0.6428

The value for �2(log likelihood) is 95.686 for the saturated model; this is the value for �2 Log L
listed under “Intercept and Covariates.” The value for the main effects model is 95.900 (see
Output 8.3), yielding a difference of 0.214. This difference is the likelihood ratio test value, with 1
df (4 parameters for the expanded model � 3 parameters for the main effects model). Compared
with a chi-square distribution with 1 df, the nonsignificance of this statistic supports the adequacy
of the main effects model. Note that you can always compute a likelihood ratio test in this manner
for the contribution of a particular model term or a set of model terms when you have a nested
model, that is, the reduced model is a subset of the model effects of the full model.
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This likelihood ratio test value is the same as the deviance reported for the main effects model in
Output 8.2. This is because the deviance statistic is effectively comparing the log likelihood for the
main effects model with that for the saturated model.

Note that the value of the Wald statistic is 0.2151 for the interaction listed in the “Analysis of
Maximum Likelihood Estimates” table. Both the likelihood ratio statistic and the Wald statistic are
evaluating the same hypothesis: whether or not the interaction explains any of the variation among
the different log odds beyond that explained by the main effects. They support goodness of fit of
the main effects model by indicating nonsignificance of the interaction between sex and ECG. The
Wald statistic and the likelihood ratio statistic are essentially equivalent for large samples.

8.2.7 Overdispersion

Sometimes a logistic model is considered reasonable, but the goodness-of-fit statistics indicate that
too much variation remains (usually the deviance or deviance/df is examined). This condition is
known as overdispersion, and it occurs when the data do not follow a binomial distribution well;
the condition is also known as heterogeneity.

You can adjust for the overdispersion by scaling the covariance matrix to account for it. This
involves the additional estimation of a dispersion parameter, often called a scaling parameter.
PROC LOGISTIC allows you to specify a scaling parameter through the use of the SCALE=
option; this explains why the SCALE=NONE option is used to generate the goodness-of-fit
statistics, including the deviance, when no scale adjustment is desired. McCullagh and Nelder
(1989) and Collett (2003) discuss overdispersion comprehensively. The SAS/STAT User’s Guide
describes these options in detail. Another method for addressing overdispersion is discussed in
Chapter 15 in the context of methods involving generalized estimating equations.

8.3 Using the CLASS Statement

In the previous example, PROC LOGISTIC used the values of the explanatory variables to construct
the model matrix. These values were already coded as 0s and 1s. However, that was a relatively
simplistic case and more often the data set includes a variety of values for the explanatory and
response variables, including variables with character values. The LOGISTIC procedure handles
character-valued response variables by creating ordered values based on the alphanumeric order of
the response variable values by default and offers numerous other options to control how it manages
them. Its CLASS statement provides a choice of parameterization schemes. The next example
illustrates how PROC LOGISTIC handles character-valued response variables and how the CLASS
statement simplifies the use of classification variables in your model.

8.3.1 Analysis of Sentencing Data

Table 8.5 displays data based on a study on prison sentencing for persons convicted of a burglary or
larceny. Investigators collected information on whether there was a prior arrest record and whether
the crime was a nonresidential burglary, residential burglary, or something else—usually some sort
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Analysis of Sentencing Data 203

of larceny. Here, type of crime is divided into nonresidential burglary versus all others. Sentence
was recorded as to whether the offender was sent to prison.

Table 8.5 Sentencing Data

Type Prior Arrest Prison No Prison Total
Nonresidential Some 42 109 151
Nonresidential None 17 75 92
Other Some 33 175 208
Other None 53 359 412

Assume that these data arise from a stratified simple random sample so that sentencing is
distributed binomially for each offense type � prior arrest record combination, that is, for each row
of Table 8.5. The type of offense by prior arrest status by sentence classification has the product
binomial distribution.

Prfnhij g D
2Y
hD1

2Y
iD1

nhiCŠ

nhi1Šnhi2Š
�
nhi1

hi
.1 � �hi /

nhi2

The quantity �hi is the probability that a person arrested for a crime of type h with an ith prior arrest
record receives a prison sentence, and nhi1 and nhi2 are the number of persons of the hth type and
ith prior record who did and did not receive prison sentences, respectively (h=1 for nonresidential,
h=2 for other; i=1 for prior arrest, i=2 for no arrest).

Similar to the previous example, a useful preliminary model for the sentencing data is one that
includes main effects for type of offense and prior arrest record. There are three parameters in
this model. The parameter ˛ is the intercept, ˇ1 is the increment in log odds for committing
a nonresidential burglary, and ˇ2 is the increment in log odds for having a prior arrest record.
The probabilities and odds predicted by this model have identical structure to those presented in
Table 8.2, replacing the first column with the values Nonresidential and Other and replacing the
second column with the values Some and None. The model matrix is identical to the one displayed
on page 193.

The following DATA step creates the SAS data set SENTENCE.

data sentence;
input type $ prior $ sentence $ count @@;
datalines;

nrb some y 42 nrb some n 109
nrb none y 17 nrb none n 75
other some y 33 other some n 175
other none y 53 other none n 359
;

The variable SENTENCE is the response variable, and TYPE and PRIOR are the explanatory
variables. Note that SENTENCE is character valued, with values ‘y’ for prison sentence and ‘n’ for
no prison sentence. PROC LOGISTIC orders these values alphabetically by default so that it bases
its model on the probability of the value ‘n’, or Pr{no prison sentence}. If you want to change the
basis of the model to be Pr{prison sentence}, you have to alter this default behavior.
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The following group of SAS statements invoke PROC LOGISTIC. Note that since the desired
model is based on Pr{prison sentence}, the EVENT= ‘y’ option for the response variable is
specified.

proc logistic;
class type prior(ref=first) / param=ref;
freq count;
model sentence(event='y') = type prior / scale=none aggregate;

run;

You list your classification variables in the CLASS statement. If you desire the incremental effects
parameterization, you specify the option PARAM=REF after a ‘/’. The procedure provides a
number of other parameterizations as well, including the default effect (deviation from the mean)
parameterization and the less than full rank parameterization used in PROC GLM and PROC
GENMOD. The incremental effects parameterization is a full rank parameterization.

By default, PROC LOGISTIC uses the last ordered value of the explanatory variable as the
reference level and assigns it the value 0. If you want another value to be the reference level,
you specify it with the REF= option after a slash (/) or after each individual variable, enclosed in
parentheses. Here, REF=FIRST indicates that the ‘none’ level of PRIOR is the reference. You
could also specify this value explicitly with the REF=‘none’ option. Since ‘other’ is the last
alphanumeric value in TYPE, it becomes the reference value for that effect, which is desired.

The “Response Profile” table indicates that the model is based on Pr{prison sentence}.

Output 8.9 Response Profiles

Response Profile

Ordered
Value sentence

Total
Frequency

1 n 718

2 y 145

Probability modeled is sentence='y'.

The “Class Level Information” table informs you how the model matrix is constructed. The
design variables are the values associated with the explanatory variable levels. Since you want
PRIOR=‘some’ and TYPE=‘nrb’ to be the incremental effects, the design variables take the value
1 for those levels.
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Output 8.10 Class Level Information

Class Level Information

Class Value
Design

Variables

type nrb 1

other 0

prior none 0

some 1

The goodness-of-fit statistics QL D 0:5076 and QP D 0:5025 indicate an adequate model fit.
Note that if these statistics have values that are dissimilar, it is an indication that sample sizes in the
groups are not large enough to support their use as goodness-of-fit statistics.

Output 8.11 Goodness of Fit

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 0.5076 1 0.5076 0.4762

Pearson 0.5025 1 0.5025 0.4784

Number of unique profiles: 4

Since there are CLASS variables in the model, PROC LOGISTIC prints out the “Type 3 Analysis
of Effects” table. These are Wald tests for the effects. Since both TYPE and PRIOR have 1 df,
these tests are the same as for the parameter estimates in Output 8.13.

Output 8.12 Type III Analysis of Effects

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

type 1 9.0509 0.0026

prior 1 3.3127 0.0687

The variable TYPE is clearly significant, with QW D 9:0509. The variable PRIOR nearly
approaches significance, with QW D 3:3127 and p D 0:0687. While some analysts might delete
any effects that do not meet their designated 0.05 significance level, it is sometimes reasonable
to keep modestly suggestive effects in the model to avoid potential bias for estimates of the other
effects. In fact, for main effects models where presumably each explanatory variable chosen has
some potential basis for its inclusion, many analysts keep all effects in the model, regardless of
their significance. The model still appropriately describes the data, and it is easier to compare with
other researchers’ models where those nonsignificant effects may prove to be more important. And
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finally, sometimes the variables reflect the study design, in which case you would always include
them.

Output 8.13 Main Effects Model

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -1.9523 0.1384 199.0994 <.0001

type nrb 1 0.5920 0.1968 9.0509 0.0026

prior some 1 0.3469 0.1906 3.3127 0.0687

However, you may want to consider removing modest or clearly nonsignificant effects if some
of them are redundant; that is, they are reflecting essentially the same factor. This can induce
collinearity, and sometimes the association of explanatory variables with each other may mask the
true effect. The additional model terms lead to poorer quality of the individual parameter estimates
since they will be less precise (higher standard errors). In this case, PRIOR is kept in the model.

The model equation can be written as follows:

logit.�hi / D �1:9523C 0:5920 TYPE C 0:3469 PRIOR

The “Analysis of Maximum Likelihood Estimates” table for this model is displayed in Output 8.13.
The estimates of the ˇs are printed as well as standard errors and significance tests. Output 8.14
displays the odds ratio estimates and confidence limits. The odds ratios are 1.808 (e0:5920)
for type of offense and 1.415 (e0:3469) for prior arrest record. Thus, those persons committing
a nonresidential burglary have nearly twice the odds of receiving prison sentences as those
committing another offense. Those with a prior arrest record are about 40% more likely to receive
a prison sentence than those with no prior record.

Output 8.14 Odds Ratio Estimates and Confidence Limits

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

ConfidenceLimits

type  nrb vs other 1.808 1.229 2.658

prior some vs none 1.415 0.974 2.056

8.3.2 Goodness-of-Fit Statistics for Single Main Effect Model

Suppose that you did decide to fit the model with a single main effect, TYPE, and you wanted to
generate the appropriate goodness-of-fit statistics for that model. Using the SCALE=NONE and
AGGREGATE options would not work for this model, since the AGGREGATE option creates
groups on which to base the goodness-of-fit statistic according to the values of the explanatory
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variables. Since there is just one dichotomous explanatory variable remaining in the model, only
two groups would be created. To produce the groups consistent with the sampling framework, you
need to specify AGGREGATE=(TYPE PRIOR), where the list of variables inside the parentheses
are those whose unique values determine the rows of Table 8.5.

The following statements request the main effects model. The ODS SELECT statement restricts
the output to the goodness-of-fit information.

ods select GoodnessOfFit;
proc logistic;

class type prior (ref=first) / param=ref;
freq count;
model sentence(event='y') = type / scale=none aggregate=(type prior);

run;

Output 8.15 includes the goodness-of-fit statistics. Note the SAS message that there are 4 unique
covariate profiles; this tells you that the correct groups were formed and that the statistics are based
on the intended subpopulations.

Output 8.15 Single Effect Model

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 3.8086 2 1.9043 0.1489

Pearson 3.7527 2 1.8763 0.1532

Number of unique profiles: 4

SinceQL D 3:8086 andQP D 3:7527, both with 2 df and p-values of about 0.15, this single main
effect model has a satisfactory fit.

8.3.3 Deviation from the Mean Parameterization

The preceding example used incremental effects parameterization, also called reference cell
parameterization. However, that is not the default parameterization for the LOGISTIC procedure. If
you do not specify the PARAM= option, you will obtain deviation from the mean parameterization,
also known as effect parameterization. You can specify this explicitly in PROC LOGISTIC with
the option PARAM=EFFECT in the CLASS statement.

In this parameterization, also a full rank parameterization like the incremental effects parameteri-
zation, the effects are differential rather than incremental. This model is written as follows:2664

logit.�11/
logit.�12/
logit.�21/
logit.�22/

3775 D
2664
˛ C ˇ1 C ˇ2
˛ C ˇ1 � ˇ2
˛ � ˇ1 C ˇ2
˛ � ˇ1 � ˇ2

3775 D
2664
1 1 1

1 1 �1

1 �1 1

1 �1 �1

3775
24 ˛

ˇ1
ˇ2

35

Here, ˛ is the average log odds (across the four populations) of a prison sentence, ˇ1 is the average
differential change in log odds for whether a nonresidential burglary was committed, and ˇ2 is
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the differential change in log odds for having a prior arrest record. ˇ1 is an added amount for a
nonresidential burglary and a subtracted amount for other burglary. ˇ2 is an added amount for a
prior arrest record and a subtracted amount for no previous arrest record. The formulas for the
model-predicted probabilities and odds for this parameterization are listed in Table 8.6.

Table 8.6 Model-Predicted Probabilities and Odds

Type Prior Arrest Pr{Prison} Odds of Prison

Nonresidential Some e˛Cˇ1Cˇ2=.1C e˛Cˇ1Cˇ2/ e˛Cˇ1Cˇ2

Nonresidential None e˛Cˇ1�ˇ2=.1C e˛Cˇ1�ˇ2/ e˛Cˇ1�ˇ2

Other Some e˛�ˇ1Cˇ2=.1C e˛�ˇ1Cˇ2/ e˛�ˇ1Cˇ2

Other None e˛�ˇ1�ˇ2=.1C e˛�ˇ1�ˇ2/ e˛�ˇ1�ˇ2

The odds of a prison sentence for nonresidential burglary (nrb) versus other is obtained by forming
the ratio of the odds for nrb versus other for either prior arrest level. Using some prior arrest, this is
computed as

e˛Cˇ1Cˇ2

e˛�ˇ1Cˇ2
D e2ˇ1

The odds of a prison sentence for some arrest record versus none is obtained by forming the ratio
of the odds for some prior arrest versus no prior arrest for either level of burglary type. Using nrb,
this is computed as

e˛Cˇ1Cˇ2

e˛Cˇ1�ˇ2
D e2ˇ2

Thus, with this parameterization for a two-level explanatory variable, you need to exponentiate
twice the parameter estimates to calculate the odds ratios, instead of simply exponentiating them, as
was true for the reference cell model. However, this is taken care of by the LOGISTIC procedure.

The following SAS statements request an analysis of the sentencing data with the differential
effects parameterization.

ods select ClassLevelInfo GoodnessOfFit
ParameterEstimates OddsRatios;

proc logistic data=sentence;
class type prior(ref='none');
freq count;
model sentence(event='y')= type prior / scale=none aggregate;

run;
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Since not all of the output from the LOGISTIC procedure is desired, the ODS SELECT statement
is used to request that only specific tables be generated. Since no PARAM= option is specified, the
differential effects parameterization is used.

The “Class Level Information” table details the way in which the parameterization is constructed.
The values of the CLASS variables are ordered alphanumerically, and the first ordered value gets
the value 1 and the second gets the value �1, as illustrated in the case of variable TYPE. Since
REF=‘none’ was specified for variable PRIOR, the �1 is assigned to ‘none’ as the reference level,
and the 1 is assigned to the value ‘some’.

Output 8.16 Class Level Information

Class Level Information

Class Value
Design

Variables

type nrb 1

other -1

prior none -1

some 1

Next, the goodness-of-fit statistics QP and QL have the values 0.5025 and 0.5076 respectively,
the same as in the analysis with the incremental effects parameterization. In both cases, the test is
assessing the same effect. A geometric way of looking at this is to say that the sets of explanatory
variables for the two parameterizations span the same space, and so their estimated parameters
produce the same predicted values.

Output 8.17 Goodness of Fit

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 0.5076 1 0.5076 0.4762

Pearson 0.5025 1 0.5025 0.4784

Number of unique profiles: 4

Output 8.18 displays the “Analysis of Maximum Likelihood Estimates” table.
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Output 8.18 Analysis of Maximum Likelihood Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -1.4828 0.0951 243.2458 <.0001

type nrb 1 0.2960 0.0984 9.0509 0.0026

prior some 1 0.1735 0.0953 3.3127 0.0687

However, the parameter estimates are very different. This is because they represent very different
quantities. The intercept is now the average log odds (across the four populations) of a prison
sentence and the other parameters are the differential changes in the log odds for prior arrest and
type of offense.

Output 8.19 displays the “Odds Ratio Estimates” table.

Output 8.19 Odds Ratio Estimates

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

ConfidenceLimits

type  nrb vs other 1.808 1.229 2.658

prior some vs none 1.415 0.974 2.056

The estimate for the odds ratio for a prison sentence comparing nonresidential burglary to other is
e2ˇ1 D 1:808, which is the exponentiation of 2 � 0:2960; thus, PROC LOGISTIC has computed
the odds ratio correctly. Similarly, the odds ratio for a prison sentence comparing prior arrest record
to no arrest record is 1.415. The confidence limits for these point estimates are (1.229, 2.658) and
(0.974, 2.056), respectively.

8.4 Qualitative Explanatory Variables

The previous examples have been concerned with analyses of dichotomous outcomes when the
explanatory variables were also dichotomous. However, explanatory variables can be nominal
(qualitative) with three or more levels, ordinal, or continuous. Logistic regression allows for any
combination of these types of explanatory variables. This section is concerned with handling
explanatory variables that are qualitative and contain three or more levels.

The following data come from a study on urinary tract infections (Koch, Imrey, et al. 1985).
Investigators applied three treatments to patients who had either a complicated or uncomplicated
diagnosis of urinary tract infection. Since complicated cases of urinary tract infections are difficult
to cure, investigators were interested in whether the pattern of treatment differences is the same
across diagnoses: did the diagnosis status of the patients affect the relative effectiveness of the three
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treatments? This is the same as determining whether there is a treatment � diagnosis interaction.
Diagnosis is a dichotomous explanatory variable and treatment is a nominal explanatory variable
consisting of levels for treatments A, B, and C. Table 8.7 displays the data.

Table 8.7 Urinary Tract Infection Data

Proportion
Diagnosis Treatment Cured Not Cured Cured
Complicated A 78 28 0.736
Complicated B 101 11 0.902
Complicated C 68 46 0.596
Uncomplicated A 40 5 0.889
Uncomplicated B 54 5 0.915
Uncomplicated C 34 6 0.850

These data can be assumed to arise from a stratified simple random sample so that the response
(cured or not cured) is distributed binomially for each diagnosis � treatment combination, that
is, for each row of Table 8.7. The diagnosis by treatment classification has the product binomial
distribution.

Prfnhij g D
2Y
hD1

3Y
iD1

nhiCŠ

nhi1Šnhi2Š
�
nhi1

hi
.1 � �hi /

nhi2

The quantity �hi is the probability that a person with the hth diagnosis receiving the ith treatment
is cured, and nhi1 and nhi2 are the numbers of patients of the hth diagnosis and ith treatment who
were and were not cured, respectively (h D 1 for complicated, h D 2 for uncomplicated; i D 1 for
treatment A, i D 2 for treatment B, i D 3 for treatment C). You can then apply the logistic model
to describe the variation among the f�hig. This is the same likelihood function as in the previous
example except that i takes on the values 1, 2, and 3 instead of 1, 2.

8.4.1 Model Fitting

Since there is interest in the interaction term, the preliminary model includes main effects and their
interaction (saturated model). There is one parameter for the intercept (˛), which is the reference
parameter corresponding to the log odds of being cured if you have an uncomplicated diagnosis and
are getting treatment C. The parameter ˇ1 is the increment for complicated diagnosis. The effect
for treatment consists of two parameters: ˇ2 is the incremental effect for treatment A, and ˇ3 is the
incremental effect for treatment B.

There is no particular reason to choose a parameterization that includes incremental effects for
treatments A and B; you could choose to parameterize the model by including incremental effects
for treatments A and C. Often, data analysts choose the reference parameter to be the control group,
with incremental effects representing various exposure effects. However, it’s important to note that
an effect with L levels must be represented by .L � 1/ parameters.

The interaction effect is made up of two additional parameters, ˇ4 and ˇ5, which represent the
interaction terms for complicated diagnosis and treatment A, and complicated diagnosis and
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treatment B, respectively. When you are creating interaction terms from two effects, you create a
number of terms equal to the product of the number of terms for both effects.

You can write this saturated model in matrix formulation as26666664

logit.�11/
logit.�12/
logit.�13/
logit.�21/
logit.�22/
logit.�23/

37777775 D
26666664

˛ C ˇ1 C ˇ2 C ˇ4
˛ C ˇ1 C ˇ3 C ˇ5
˛ C ˇ1
˛ C ˇ2
˛ C ˇ3
˛

37777775 D
26666664

1 1 1 0 1 0

1 1 0 1 0 1

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 0 0

37777775

26666664

˛

ˇ1
ˇ2
ˇ3
ˇ4
ˇ5

37777775
Note that if you had parameterized the model so that there were three columns for treatment effects,
each consisting of 1s corresponding to those logits representing the respective treatments, the
columns would add up to a column of 1s. This would be redundant with the column of 1s for the
intercept, and so PROC LOGISTIC would set the parameter corresponding to the third column of
the effect equal to zero, since it is a linear combination of other columns. You could of course fit
this model by creating indicator variables both for the incremental effects and for their interactions.
You would need two indicator variables for the incremental effects for treatment A and treatment
B, one indicator variable for complicated diagnosis, and two indicator variables for the interaction
of diagnosis and treatment. However, you can perform this analysis much more easily by using a
CLASS statement.

8.4.2 PROC LOGISTIC for Nominal Effects

The following DATA step creates SAS data set UTI.

data uti;
input diagnosis : $13. treatment $ response $ count @@;
datalines;

complicated A cured 78 complicated A not 28
complicated B cured 101 complicated B not 11
complicated C cured 68 complicated C not 46
uncomplicated A cured 40 uncomplicated A not 5
uncomplicated B cured 54 uncomplicated B not 5
uncomplicated C cured 34 uncomplicated C not 6
;

Since this model is saturated, the goodness-of-fit statistics don’t apply; there are no available
degrees of freedom because the number of groups and the number of parameters are the same
(6). PROC LOGISTIC prints out near-zero values and zero df for saturated models. However,
fitting this model does allow you to determine whether there is an interaction effect. Fitting the
reduced model without the interaction terms and taking the difference in the likelihood allows
you to determine whether the interaction is meaningful with a likelihood ratio test. The following
PROC LOGISTIC statements fit the full model.
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proc logistic;
freq count;
class diagnosis treatment /param=ref;
model response = diagnosis|treatment;

run;

Output 8.20 contains �2 Log L for the full model, which is 447.556.

Output 8.20 Log Likelihood for the Full Model

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 494.029 459.556

SC 498.194 484.549

-2 Log L 492.029 447.556

Output 8.21 contains the “Type 3 Analysis of Effects” table.

Output 8.21 Analysis of Effects

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

diagnosis 1 7.7653 0.0053

treatment 2 1.0069 0.6045

diagnosis*treatment 2 2.6384 0.2674

The Wald statistic for the interaction effect has the value 2.6384 with p D 0:2674 for 2 df, which
is clearly not significant. This test also serves as a goodness-of-fit test for the main effects model,
which is fit next.

The SCALE=NONE and AGGREGATE options are added to the MODEL statement to produce
goodness-of-fit statistics.

proc logistic;
freq count;
class diagnosis treatment;
model response = diagnosis treatment /

scale=none aggregate;
run;

Output 8.22 contains the �2 Log L for the reduced model, which is 450.071.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



214 Chapter 8: Logistic Regression I: Dichotomous Response

Output 8.22 Log Likelihood for the Reduced Model

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 494.029 458.071

SC 498.194 474.733

-2 Log L 492.029 450.071

The difference between 447.556 (full) and 450.071 (reduced) is 2.515; since the difference in the
number of parameters in these models is 2, the value 2.515 should be compared to a chi-square
distribution with 2 df. This computation is easily performed with the DATA step.

data;
p=1-probchi(2.515,2);
put p= ;

run;

The result is p D 0:2844. Thus, the likelihood ratio test for the hypothesis that the additional
terms in the expanded model are zero cannot be rejected. The interaction between treatment and
diagnosis is not significant, as was seen in the Wald test for the interaction. The likelihood ratio test
also serves as a test for the adequacy of the main effects model.

Output 8.23 contains the goodness-of-fit statistics QP and QL for the reduced model. Note that
QL has the same value as the likelihood ratio statistic; thus, you could have simply fit the main
effects model and used QL as the test for interaction, knowing that the two omitted terms were the
two interaction terms.

Output 8.23 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 2.5147 2 1.2573 0.2844

Pearson 2.7574 2 1.3787 0.2519

Number of unique profiles: 6

Output 8.24 displays the parameter estimates from the main effects model.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



PROC LOGISTIC for Nominal Effects 215

Output 8.24 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 1.6528 0.1557 112.7189 <.0001

diagnosis complicated 1 -0.4808 0.1499 10.2885 0.0013

treatment A 1 -0.1304 0.1696 0.5914 0.4419

treatment B 1 0.8456 0.1970 18.4336 <.0001

Output 8.25 contains the odds ratio estimates and their confidence limits, which are the 95% Wald
confidence limits. None of these limits contain the value 1, indicating that there are significant
treatment and diagnosis effects.

Output 8.25 Odds Ratio Estimates

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

ConfidenceLimits

diagnosis complicated vs uncomplicated 0.382 0.212 0.688

treatment A vs C 1.795 1.069 3.011

treatment B vs C 4.762 2.564 8.847

You have 4.8 times higher odds of being cured if you get treatment B compared with treatment
C, and 1.8 times higher odds of being cured if you get treatment A compared to treatment C. You
have 0.38 times lower odds of being cured if you have a complicated diagnosis as compared to an
uncomplicated diagnosis (or a 62% reduction in odds); you have .1=0:382/ D 2:6 times as high
odds of being cured if you have uncomplicated diagnosis compared with complicated diagnosis.
Note that all of these odds ratios have been adjusted for the other explanatory variable.

To confirm what these odds ratios represent, consider the model-predicted probabilities and odds
listed in Table 8.8. Taking the ratio of odds for complicated diagnosis and treatment A versus
complicated diagnosis and treatment C yields eˇ2 . A similar exercise for treatment B yields eˇ3 .
To determine the odds ratio for complicated diagnosis to uncomplicated diagnosis, take the ratio of
the odds for complicated to uncomplicated diagnosis at any level of treatment. You should get eˇ1 .
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Table 8.8 Model-Predicted Probabilities and Odds

Diagnosis Treatment Pr{Cured} Odds of Cured

Complicated A e˛Cˇ1Cˇ2=.1C e˛Cˇ1Cˇ2/ e˛Cˇ1Cˇ2

Complicated B e˛Cˇ1Cˇ3=.1C e˛Cˇ1Cˇ3/ e˛Cˇ1Cˇ3

Complicated C e˛Cˇ1=.1C e˛Cˇ1/ e˛Cˇ1

Uncomplicated A e˛Cˇ2=.1C e˛Cˇ2/ e˛Cˇ2

Uncomplicated B e˛Cˇ3=.1C e˛Cˇ3/ e˛Cˇ3

Uncomplicated C e˛=.1C e˛/ e˛

You may also want the odds ratio for the comparison of treatment A and treatment B, because,
as pointed out above, the odds ratios produced by default are for treatments A and B relative to
treatment C. The ODDSRATIO statement produces odds ratios for every pairwise difference of the
levels of a classification variable. In addition, if you have enabled ODS Graphics, then you will
also produce a graph that compares the odds ratios and their confidence intervals.

PROC LOGISTIC can also produce confidence limits for the odds ratios that are likelihood-ratio
based. These are also known as profile likelihood confidence intervals. They are particularly
desirable when the sample sizes are only moderately large rather than very large. (You can also
request profile likelihood confidence intervals for the regression parameters with the CLPARM=PL
option in the MODEL statement.)

The following SAS statements request the odds ratios. A separate ODDSRATIO statement is
required for each variable; the results will be combined. The CL=BOTH option specifies both the
default Wald and profile likelihood confidence intervals for the odds ratios. With ODS Graphics
enabled, PROC LOGISTIC produces a graph of the odds ratios and confidence intervals when the
ODDSRATIO statement is used. Specifying it with the PLOTS= option in the PROC LOGISTIC
statement allows you to request that Log 2 be the basis of the x-axis. The PLOTS=EFFECT option
specifies an effect plot.

ods graphics on;
proc logistic data=uti

plots(only)=(effect(clband yrange=(.5,1) x=treatment*diagnosis)
oddsratio(logbase=2));

freq count;
class diagnosis treatment;
model response = diagnosis treatment /
scale=none aggregate;

run;
ods graphics off;

Output 8.26 displays the output produced by the ODDSRATIO statements.
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Output 8.26 Confidence Limits for Odds Ratios

Odds Ratio Estimates and Wald Confidence Intervals

Label Estimate 95% ConfidenceLimits

treatment A vs B 0.377 0.197 0.721

treatment A vs C 1.795 1.069 3.011

treatment B vs C 4.762 2.564 8.847

diagnosis complicated vs uncomplicated 0.382 0.212 0.688

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals

Label Estimate 95% ConfidenceLimits

treatment A vs B 0.377 0.193 0.711

treatment A vs C 1.795 1.074 3.031

treatment B vs C 4.762 2.615 9.085

diagnosis complicated vs uncomplicated 0.382 0.206 0.672

The odds ratios for comparing diagnostic levels and comparing treatments A and B with treatment
C are the same as reported in Output 8.25. In addition, the odds ratio comparing treatment A to
treatment B is 0.377, or treatment B has .1=0:377/ D 2:65 times as high odds of resulting in a cure
as treatment A. If you compare the Wald and profile likelihood confidence intervals in Output 8.26,
you will find that they are similar for these data.

Output 8.27 displays the odds ratios comparison plot.

Output 8.27 Odds Ratios for UTI Analysis
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218 Chapter 8: Logistic Regression I: Dichotomous Response

Output 8.28 displays the predicted probabilities by Diagnosis and Treatment.

Output 8.28 Predicted Probabilities for Cured by Diagnosis and Treatment

This plot clearly shows that patients getting treatment B did best for both complicated and
uncomplicated diagnosis.

8.4.3 Testing Hypotheses about the Parameters

In the previous analysis, the overall effect for treatment was significant and so were the individual
incremental effects parameters for treatment A and treatment B. Since the confidence interval for
the odds ratio comparing treatment A and treatment B did not contain the value 1, you may also
conclude that the effect of treatment A is different from the effect for treatment B. But you may
also be interested in performing a formal test for the difference of these effects. You can request
such a comparison test with the CONTRAST statement in PROC LOGISTIC.

In order to assess whether any of the treatments are similar, linear combinations of the parameters
are tested to see if they are significantly different from zero.

H0WLˇ D 0

By choosing the appropriate elements of L, you can construct linear combinations of the parameters
that will produce the test of interest. The Wald statistic for a given linear combination L is computed
as

QW D .L Ǒ/0.LV. Ǒ/L0/�1.L Ǒ/

where Ǒ is the vector of parameter estimates. QW follows the chi-square distribution with degrees
of freedom equal to the number of linearly independent rows of L.
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The test for whether treatment A is equivalent to treatment B is expressed as

H0Wˇ2 � ˇ3 D 0

which corresponds to L D f1� 1g for ˇ D fˇ2;ˇ3g. The test for whether treatment A is equivalent
to treatment C is expressed as

H0Wˇ2 D 0

which corresponds to L= {1 0 } for ˇ D ˇ2, since ˇ2 is an incremental effect for treatment A in
reference to treatment C. If ˇ2 equals zero, then treatment A is the same as treatment C, and the
intercept represents the logit for uncomplicated diagnosis for either treatment A or treatment C.

You follow the same logic to see whether treatment B is equivalent to treatment C, and this
corresponds to L={0 1} for ˇ D ˇ3.

To compute the Wald test for the joint effect of treatment A and treatment B relative to treatment C
(or the equality of treatments A, B, and C to one another), you test the hypothesis

H0Wˇ2 D ˇ3 D 0

This is the hypothesis tested in the “Type III Analysis of Effects” table. The L for this third contrast
is �

1 0

0 1

�

You specify these hypotheses in the CONTRAST statement. You list each hypothesis in a different
statement, providing a name for the test within quotes. This can be up to 256 characters long.
You then list the effect variable name and provide the coefficients for the L matrix. The following
CONTRAST statements request the test comparing A and B, the individual test for A, and the joint
test for A, B, and C.

ods select ContrastTest ContrastEstimate;
proc logistic data=uti;

freq count;
class diagnosis treatment /param=ref;
model response = diagnosis treatment;
contrast 'A versus B' treatment 1 -1

/ estimate=exp;
contrast 'A' treatment 1 0;
contrast 'joint test' treatment 1 0,

treatment 0 1;
run;

The ESTIMATE= option in the CONTRAST statement requests the estimate of the linear
combination Lˇ. The ESTIMATE=EXP option requests that the estimate be produced and
exponentiated. Recall that the odds ratio for being cured for treatment A compared to treatment B
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is eˇ2�ˇ3 . Thus, the ESTIMATE=EXP option produces the estimate of the odds ratio comparing
treatment A and treatment B.

Output 8.29 contains the results. With a Wald chi-square of 8.6919 and a p-value of 0.0032, clearly
treatments A and B are significantly different. The joint test statistic has the value 24.6219, which
is the same as displayed in the “Type III Analysis of Effects” for the treatment effect.

Output 8.29 Contrast Test Results

Contrast Test Results

Contrast DF
Wald

Chi-Square Pr > ChiSq

A versus B 1 8.6919 0.0032

A 1 4.9020 0.0268

joint test 2 24.6219 <.0001

Output 8.30 contains the results of the contrast estimation.

Output 8.30 Contrast Estimation Results

Contrast Estimation and Testing Results by Row

Contrast Type Row Estimate
Standard

Error Alpha
Confidence

Limits

A versus B EXP 1 0.3768 0.1247 0.05 0.1969 0.7210

Contrast Estimation and Testing Results by Row

Contrast Type Row
Wald

Chi-Square Pr > ChiSq

A versus B EXP 1 8.6919 0.0032

The point estimate for the odds ratio is 0.3768, as previously reported in Output 8.26.

8.4.4 Additional Graphics

Other useful graphics are available as well. The PLOTS= option in the PROC LOGISTIC statement
provides a number of graphs plus the means to fine-tune them. The following PLOTS option
requests an EFFECT plot where treatment is on the x-axis, predicted probabilities are displayed for
each level of DIAGNOSIS, error bars are included, and the predicted values are connected with a
line.

ods graphics on;
proc logistic data=uti plots(only)=effect(x=treatment

sliceby=diagnosis clbar
connect yrange=(0.5));

freq count;
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class diagnosis treatment /param=ref;
model response = diagnosis treatment;
oddsratio treatment / cl=pl;
oddsratio treatment / cl=pl;

run;
ods graphics off;

Output 8.31 displays the predicted probabilities for treatment and diagnosis; this is a useful plot for
summarizing the results of this analysis.

Output 8.31 Predicted Probabilities of Cured for Treatment and Diagnosis

Those persons with uncomplicated diagnosis do better than those with complicated diagnosis for
all treatments. Persons who received treatment B did the best, and persons receiving treatment A
did better than those persons receiving treatment C.

8.4.5 Fitting Models with Interactions

The data displayed in Table 8.9 are from a cross-sectional prevalence study conducted in 1973 to
investigate textile worker complaints about respiratory symptoms experienced while working in the
mills (Higgins and Koch 1977). Investigators were interested in whether occupational environment
was related to the prevalence of respiratory ailments associated with the disease byssinosis.

The study provides estimates of prevalence for a multi-way classification; these estimates are
useful to identify subgroups with higher prevalence and thereby with a potentially higher need
for health services that might be helpful for managing the byssinosis symptoms. In this case,
the cross-sectional data only need to be representative of some corresponding population where
comparable prevalences may apply. In other words, some of the more restrictive assumptions
necessary to make inferences to a target population aren’t required. More simply, note that the
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explanatory variables simply help to identify the types of patients with higher prevalences and
thereby in potentially greater need for health services to address their byssinosis symptoms.

Table 8.9 Byssinosis Complaints

Workplace Years of Complaints
Condition Employment Smoking Yes No
Dusty < 10 Yes 30 203
Dusty < 10 No 7 119
Dusty � 10 Yes 57 161
Dusty � 10 No 11 81
Not Dusty < 10 Yes 14 1340
Not Dusty < 10 No 12 1004
Not Dusty � 10 Yes 24 1360
Not Dusty � 10 No 10 986

If you can assume that there is a justifiable target population, then it becomes reasonable to think
of these frequencies as coming from some stratified simple random sampling scheme, so that the
table is distributed as product multinomial. With the dichotomous outcome, logistic regression is
an obvious approach.

The following SAS statements create data set BYSS.

data byss;
input work $ years $ smoke $ status $ count @@;

datalines ;
dusty <10 yes yes 30 dusty <10 yes no 203
dusty <10 no yes 7 dusty <10 no no 119
dusty >=10 yes yes 57 dusty >=10 yes no 161
dusty >=10 no yes 11 dusty >=10 no no 81
not <10 yes yes 14 not <10 yes no 1340
not <10 no yes 12 not <10 no no 1004
not >=10 yes yes 24 not >=10 yes no 1360
not >=10 no yes 10 not >=10 no no 986
;

The following PROC LOGISTIC statements fit the model that contains all pairwise interactions.
The EVENT=LAST option in the MODEL statement means that the model is based on the
probability of byssinosis symptoms. The REF=FIRST option for variables YEARS and SMOKE
in the CLASS statement means that less than ten years of employment and not smoking will be
the reference levels for those variables, respectively; the default REF=LAST option specifies the
reference level for WORK (non-dusty workplace). The ‘@2’ symbol with the single bar notation
specifies that main effects and pairwise interactions are included in the model.

proc logistic data=byss;
freq count;
class work years(ref=first) smoke(ref=first) /param=ref;
model status(event=last) = work|years|smoke@2 /

scale=none aggregate;
run;
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The response profiles in Output 8.32 show that 165 subjects had byssinosis symptoms and 5254
subjects did not have symptoms.

Output 8.32 Response Profiles

Response Profile

Ordered
Value status

Total
Frequency

1 no 5254

2 yes 165

Probability modeled is status='yes'.

The Pearson and deviance goodness-of-fit statistics displayed in Output 8.33 have p-values greater
than 0.4, indicating adequate fit.

Output 8.33 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 0.6943 1 0.6943 0.4047

Pearson 0.6905 1 0.6905 0.4060

Number of unique profiles: 8

Output 8.34 displays the “Type 3 Analysis of Effects” table, which PROC LOGISTIC prints by
default. For explanatory variables that have two levels, the results are the same as for the “Parameter
Estimates” table since each effect is represented by a single parameter.

Output 8.34 Type 3 Analysis of Effects

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

work 1 23.9781 <.0001

years 1 0.0085 0.9267

work*years 1 2.3264 0.1272

smoke 1 0.0100 0.9202

work*smoke 1 3.2242 0.0726

years*smoke 1 0.9101 0.3401

Since the YEARS*SMOKE interaction appears to be unimportant with p D 0:3401, the model
excluding that term is fit. The EFFECTPLOT statement requests a plot of the predicted log odds at
all levels of SMOKE and YEARS for dusty and non-dusty workplace. The ODDSRATIO statement
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produces odds ratios for workplace, and an odds ratio plot is also requested with the PLOTS=
option.

ods graphics on;
proc logistic plots(only)=(oddsratio(logbase=2));

freq count;
class work years(ref=first) smoke(ref=first) /param=ref;
model status(event=last) = work years smoke

work*years work*smoke
/scale=none aggregate;

effectplot interaction (x=work) / at(smoke=all years=all) link noobs;
oddsratios work;

run;
ods graphics off;

Output 8.35 displays the goodness-of-fit statistics. Reducing the model results in a QP with a
p-value of 0.4487 and a QL with a p-value of 0.4490.

Output 8.35 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 1.6016 2 0.8008 0.4490

Pearson 1.6027 2 0.8013 0.4487

Number of unique profiles: 8

The global fit statistics are displayed in Output 8.36.

Output 8.36 Global Tests

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 284.3172 5 <.0001

Score 543.9026 5 <.0001

Wald 299.1096 5 <.0001

Output 8.37 displays the model parameter estimates.
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Output 8.37 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -4.6446 0.2598 319.6394 <.0001

work dusty 1 1.7936 0.3833 21.9032 <.0001

years >=10 1 0.2651 0.2622 1.0221 0.3120

smoke yes 1 0.2387 0.2696 0.7843 0.3758

work*years dusty >=10 1 0.6014 0.3444 3.0491 0.0808

work*smoke dusty yes 1 0.7047 0.3857 3.3387 0.0677

In the reference cell parameterization, the intercept represents the log odds of symptoms for persons
in the non-dusty workplace who didn’t smoke and worked less than ten years. The coefficient for
workplace addresses the role of workplace for those who didn’t smoke and who had less than ten
years of employment, and it is strongly significant. The coefficient for smoking pertains to smoking
in the non-dusty workplace, and the coefficient for years of employment pertains to at least ten
years of employment in the non-dusty workplace; both of these have p-values in the 0.3 to 0.4
range.

Both the WORK*YEARS and WORK*SMOKE interactions are modestly influential, with p-
values of 0.0808 and 0.0677, respectively, for 1 df. These interactions are kept in the model.

A main effect (no interaction) means that the variable’s effect has roughly the same influence at
all levels of the second variable. Pairwise interactions occur when one variable’s effect depends
on the level of a second variable. Sometimes, one variable has a measurable effect at one level of
a second variable but virtually no effect at a different level of that variable. That appears to be the
case here, as both the WORK*YEARS and the WORK*SMOKING interactions can be explained
by the interplay of the dusty workplace with smoking and years of employment. You do need to
keep the smoking and years of employment terms in the model when they are also contained within
interactions.

Output 8.38 provides a visual interpretation of this model.
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Output 8.38 InteractionPanel

The predicted log odds (logit) is higher for dusty workplace. Its effect depends on the level of
smoking and years of employment, as the predicted log odds is much higher for smokers and for
subjects with ten or more years of employment. And the predicted log odds is higher again for that
group of subjects who are smokers and have ten or more years of employment.

You can produce odds ratios when the model includes interactions, and they can provide a useful
framework for interpretation. Consider the model at hand:

logit.�h/ D ˛ C {dusty workplace} � ˇ1 C {>=10 years} � ˇ2 C {smoking} � ˇ3
C{work*years: dusty and >=10 years} � ˇ4 C {work*smoke: dusty and smoking} � ˇ5

where h D 1; : : : ; 8 represents the eight rows of Table 8.9, and { } indicates the presence of that
level of the explanatory variables(s).

In order to produce the odds ratio comparing the odds of byssinosis symptoms for a dusty workplace
to a non-dusty workplace in a main effects model, you would exponentiate the parameter estimate
corresponding to workplace, which is ˇ1 in this model. But having interactions in the model means
that the workplace effect depends on the levels of the other variables for smoking and years of
employment, and so does the corresponding odds ratios. You need to compute a set of odds ratios
for workplace—for each combination of the levels of the variables that interact with it.

To form the complete set of odds ratios estimates for workplace, you form the ratio of the odds
for Dusty to Not Dusty workplace for each of the four combinations of the levels of Years of
Employment ( < 10 and � 10) and Smoking (Yes and No). Table 8.10 contains these odds based on
the model.
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Table 8.10 Byssinosis Complaints

Workplace Years of
Condition Employment Smoking Odds of Symptoms

Dusty < 10 Yes e˛Cˇ1Cˇ3Cˇ5

Dusty < 10 No e˛Cˇ1

Dusty � 10 Yes e˛Cˇ1Cˇ2Cˇ3Cˇ4Cˇ5

Dusty � 10 No e˛Cˇ1Cˇ2Cˇ4

Not Dusty < 10 Yes e˛Cˇ3

Not Dusty < 10 No e˛

Not Dusty � 10 Yes e˛Cˇ2Cˇ3

Not Dusty � 10 No e˛Cˇ2

So eˇ1 is the ratio of the odds in the second line of the table to the odds in the sixth line in the table,
and thus it is the odds of symptoms for a dusty workplace compared to the odds of symptoms in the
non-dusty workplace for subjects who didn’t smoke and who worked for less than ten years. And
e1:7936 D 6:011 when you supply Ǒ1.

To determine the odds ratio at <10 years of employment and smoking, you form the ratio for the
odds listed in the first and fifth lines in Table 8.10:

e˛Cˇ1Cˇ3Cˇ5=e˛Cˇ3 D eˇ1Cˇ5

Plugging in the parameter estimates, you obtain

e1:7936C0:7047 D 12:1618

Thus, subjects who worked in a dusty workplace had 12.1618 times the odds of symptoms in a
non-dusty workplace if they smoked and had less than ten years on the job.

When you specify the ODDSRATIO in the LOGISTIC procedure for a variable that is included in
interactions, PROC LOGISTIC computes the appropriate set of odds ratio estimates. Output 8.39
contains the estimates and the Wald-based confidence intervals for the odds ratio comparing the
odds of symptom for dusty workplace versus non-dusty workplace for each combination of the
levels of SMOKE and YEARS.
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Output 8.39 Odds Ratios

Odds Ratio Estimates and Wald Confidence Intervals

Label Estimate 95% ConfidenceLimits

work dusty vs not at years=<10 smoke=no 6.011 2.836 12.741

work dusty vs not at years=<10 smoke=yes 12.163 6.926 21.359

work dusty vs not at years=>=10 smoke=no 10.968 5.430 22.156

work dusty vs not at years=>=10 smoke=yes 22.192 13.652 36.073

For non-smokers with less than ten years of employment, those subjects in a dusty workplace had
6.011 times the odds of symptoms compared to those subjects in a non-dusty workplace. However,
this effect increases for both smoking (12.163) or ten or more years of employment (10.968). If the
subject both smoked and had ten or more years of employment, then the odds ratio is 22.192. These
increasing odds ratio estimates clearly demonstrate the interaction effect of smoking and years of
employment with the dusty workplace.

Output 8.40 compares these odds ratio estimates graphically.

Output 8.40 Odds Ratios
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8.5 Continuous and Ordinal Explanatory Variables

8.5.1 Goodness of Fit

Frequently, some or all of the explanatory variables in a logistic regression analysis are continuous.
Analysis strategies are the same as those described in previous sections, except in the evaluation of
goodness of fit.

The following data are from the same study on coronary artery disease as previously analyzed; in
addition, the continuous variable AGE is an explanatory variable. The variable ECG is now treated
as an ordinal variable, with values 0, 1, and 2. ECG is coded 0 if the ST segment depression is less
than 0.1, 1 if it equals 0.1 or higher but less than 0.2, and 2 if the ST segment depression is greater
than or equal to 0.2. The variable AGE is age in years.

data coronary;
input sex ecg age ca @@ ;
datalines;

0 0 28 0 1 0 42 1 0 1 46 0 1 1 45 0
0 0 34 0 1 0 44 1 0 1 48 1 1 1 45 1
0 0 38 0 1 0 45 0 0 1 49 0 1 1 45 1
0 0 41 1 1 0 46 0 0 1 49 0 1 1 46 1
0 0 44 0 1 0 48 0 0 1 52 0 1 1 48 1
0 0 45 1 1 0 50 0 0 1 53 1 1 1 57 1
0 0 46 0 1 0 52 1 0 1 54 1 1 1 57 1
0 0 47 0 1 0 52 1 0 1 55 0 1 1 59 1
0 0 50 0 1 0 54 0 0 1 57 1 1 1 60 1
0 0 51 0 1 0 55 0 0 2 46 1 1 1 63 1
0 0 51 0 1 0 59 1 0 2 48 0 1 2 35 0
0 0 53 0 1 0 59 1 0 2 57 1 1 2 37 1
0 0 55 1 1 1 32 0 0 2 60 1 1 2 43 1
0 0 59 0 1 1 37 0 1 0 30 0 1 2 47 1
0 0 60 1 1 1 38 1 1 0 34 0 1 2 48 1
0 1 32 1 1 1 38 1 1 0 36 1 1 2 49 0
0 1 33 0 1 1 42 1 1 0 38 1 1 2 58 1
0 1 35 0 1 1 43 0 1 0 39 0 1 2 59 1
0 1 39 0 1 1 43 1 1 0 42 0 1 2 60 1
0 1 40 0 1 1 44 1
;

Look at the values listed for AGE. While some observations share the same AGE value, most
of these values are unique. Thus, there will be only one observation in most of the cells created
by the cross-classification of the explanatory variable values. In fact, the SEX by ECG by AGE
cross-classification produces 68 groups from these 78 observations. This means that the sample
size requirement for the use of the Pearson chi-square goodness-of-fit test and the likelihood ratio
goodness-of-fit test—that each predicted cell count tends to be at least 5—is not met. This is almost
always the case when you have continuous explanatory variables.

There are several alternative strategies. First, you can fit the desired model, fit an appropriate
expanded model with additional explanatory variables, and look at the differences in the log-
likelihood ratio statistics. This difference is distributed as chi-square with degrees of freedom
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equal to the difference in degrees in freedom of the two models (given sufficiently large samples to
support approximate normal estimates from the expanded model).

The second strategy is to examine the residual score statistic, QRS (Breslow and Day 1980). This
criterion is directed at the extent to which the residuals from the model are linearly associated
with other potential explanatory variables. If there is an association, this is an indication that these
variables should also be included in the model. Thus, to compute the residual score statistic, you
need to have access to the variables that make up the potential expansion. QRS is distributed as
chi-square, with degrees of freedom equal to the difference in the number of parameters for the two
models.

However, unlike computing the log-likelihood ratio statistic where you have to execute PROC
LOGISTIC twice and form the difference of the log-likelihood ratio statistics, you can generate this
score goodness-of-fit statistic with one invocation of PROC LOGISTIC. You do this by taking ad-
vantage of the LOGISTIC procedure’s model-building capabilities. The SELECTION=FORWARD
method adds variables to your model in the manner in which you specify, computing model assess-
ment statistics for each of the successive models it fits. In addition, it prints a score statistic that
assesses the joint contribution of the remaining model effects that have not yet been incorporated
into the model. With the right choice of model effects in the MODEL statement, this is the score
goodness-of-fit statistic. You can also generate the constituent one degree of freedom score tests by
including the DETAILS option in the MODEL statement.

A third strategy is to compute an alternative goodness-of-fit statistic proposed by Hosmer and
Lemeshow (1989). This test places subjects into deciles based on the model-predicted probabilities,
then computes a Pearson chi-square test based on the observed and expected number of subjects in
the deciles. The statistic is compared to a chi-square distribution with t degrees of freedom, where
t is the number of decile groups minus 2. Depending on the number of observations, there may
be fewer than ten groups. PROC LOGISTIC prints this statistic when you specify the LACKFIT
option in the MODEL statement. You should note that this method may have low power for
detecting departures from goodness of fit, and so some caution may be needed in its interpretation.

These strategies are implemented in the next section.

8.5.2 Fitting a Main Effects Model

A model of interest for these data is a main effects model with terms for sex, ECG, and age. To
generate a score statistic, you need to choose the effects that constitute the expanded model. Your
choice depends partially on the sample size. There should be at least 5 observations for the rarer
outcome per parameter being considered in the expanded model. Some analysts would prefer
at least 10. In this data set, there are 37 observations with no coronary artery disease and 41
observations with coronary artery disease. Thus, no coronary artery disease is the rarer event, and
the quotient 37/5 suggests that no more than 7–8 parameters can be supported.

For these data, an appropriate expanded model consists of all second-order terms, which are the
squared terms for age and ECG plus all pairwise interactions. This creates eight parameters beyond
the intercept. One might also include the third-order terms, but their inclusion would result in too
few observations per parameter for the necessary sample size requirements for these statistics. If
there did happen to be substantial third-order variation, this approach would not be appropriate.
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The following PROC LOGISTIC statements fit the main effects model and compute the score test.
The first- and second-order terms are listed on the right-hand side of the MODEL statement, with
CA as the response variable. SELECTION=FORWARD is specified as a MODEL statement option
after a slash (/). The option INCLUDE=3 specifies that the first three terms listed in the MODEL
statement be included in each fitted model, regardless of significance level. PROC LOGISTIC
first fits this model, which is the main effects model, and then produces the score goodness-of-fit
statistic.

proc logistic descending;
model ca=sex ecg age ecg*ecg age*age

sex*ecg sex*age ecg*age /
selection=forward include=3 details lackfit;

run;

Note that 1 is the first ordered value, since the DESCENDING option was specified in the PROC
statement, so the model is based on Pr{coronary artery disease}.

Output 8.41 Response Profile

Response Profile

Ordered
Value ca

Total
Frequency

1 1 41

2 0 37

Probability modeled is ca=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

After the “Response Profile” table, PROC LOGISTIC prints a list of the variables included in each
model. Note that the score statistic printed in the table “Testing Global Null Hypothesis: BETA=0”
is not the score goodness-of-fit statistic. This score statistic is strictly testing the hypothesis that the
specified model effects are jointly equal to zero.

Output 8.42 Assessing Fit

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 21.1145 3 <.0001

Score 18.5624 3 0.0003

Wald 14.4410 3 0.0024

The “Residual Chi-Square Test” is printed after the “Association of Predicted Probabilities and
Observed Responses” table. This is the score goodness-of-fit statistic.
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Output 8.43 Residual Chi-Square

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

2.3277 5 0.8022

Since the difference between the number of parameters for the expanded model and the main
effects model is 9� 4 D 5, it has 5 degrees of freedom. SinceQRS D 2:3277 and p D 0:8022, the
main effects model fits adequately. The DETAILS option causes the “Analysis of Effects Eligible
for Entry” table to be printed. These tests are the score tests for the addition of the single effects
to the model. Each of these tests has one degree of freedom. As one might expect, all of these
tests indicate that the single effects add little to the main effects model. Since the sample size
requirements for the global test are very roughly met, the confirmation of goodness of fit with the
single tests is reasonable, since sample size requirements for these individual expanded models are
easily met.

Output 8.44 Analysis of Effects Eligible for Entry

Analysis of Effects Eligible for Entry

Effect DF
Score

Chi-Square Pr > ChiSq

ecg*ecg 1 0.3766 0.5394

age*age 1 0.7712 0.3798

sex*ecg 1 0.0352 0.8513

sex*age 1 0.0290 0.8647

ecg*age 1 0.8825 0.3475

Note that this testing process is conservative with respect to confirming model fit. Inadequate
sample size may produce spuriously large chi-squares and correspondingly small p-values.
However, this would mean that you decide that the fit is not adequate, and you search for another
model. Small sample sizes will not misleadingly cause these methods to suggest that poor fit is
adequate, although they would have the limitation of low power to detect real departures from a
model.

You may have a concern with the evaluation of multiple tests to assess model goodness of fit.
However, by requiring the global test and most single tests to be nonsignificant, the assessment of
goodness of fit is more stringent. Also, the multiplicity can be evaluated relative to what might be
expected by chance in an assessment of goodness of fit.

Output 8.45 and Output 8.46 displays the results produced by the LACKFIT option.
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Output 8.45 Results from the LACKFIT Option

Partition for the Hosmer and Lemeshow Test

ca = 1 ca = 0

Group Total Observed Expected Observed Expected

1 8 2 1.02 6 6.98

2 8 1 1.80 7 6.20

3 8 3 2.59 5 5.41

4 8 3 3.42 5 4.58

5 8 4 4.07 4 3.93

6 9 6 5.38 3 3.62

7 9 4 5.97 5 3.03

8 8 7 5.99 1 2.01

9 8 7 6.98 1 1.02

10 4 4 3.77 0 0.23

Output 8.46 Goodness-of-Fit Test

Hosmer and Lemeshow
Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

4.7766 8 0.7812

The Hosmer and Lemeshow statistic has a value of 4.7766 with 8 df; p D 0:7812. Thus, this
measure also supports the model’s adequacy for these data. The output also includes the observed
and expected counts for each predicted probability decile for each value of the response variable.
This criterion can also be used as a measure of goodness of fit for the strictly qualitative explanatory
variable situation.

The satisfactory goodness-of-fit statistics make it reasonable to examine the main effects parameter
estimates. The following PROC LOGISTIC statements fit this model. The UNITS statement
enables you to specify the units of change for which you want the odds ratios computed.

proc logistic descending;
model ca=sex ecg age;
units age=10;

run;
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Output 8.47 Main Effects Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -5.6418 1.8061 9.7572 0.0018

sex 1 1.3564 0.5464 6.1616 0.0131

ecg 1 0.8732 0.3843 5.1619 0.0231

age 1 0.0929 0.0351 7.0003 0.0081

Output 8.48 Odds Ratio Estimates

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

ConfidenceLimits

sex 3.882 1.330 11.330

ecg 2.395 1.127 5.086

age 1.097 1.024 1.175

The parameter estimates are all significant at the 0.05 level, as judged by the accompanying Wald
statistics. Thus, the estimated equation for the log odds is

logit.�hi / D� 5:6418C 1:3564 SEXC 0:8732 ECGC 0:0929 AGE

Presence of coronary artery disease is positively associated with age and ST segment depression,
and it is more likely for males in this population. The odds ratio listed for SEX, 3.882, is the
odds of coronary disease presence for males relative to females adjusted for age and ST segment
depression. The value listed for ECG, 2.395, is the extent to which the odds of coronary artery
disease presence is higher per level increase in ST segment depression. The value 1.097 for AGE
is the extent to which the odds are higher each year.

A more desirable statistic may be the extent to which the odds of coronary artery disease increase
per ten years of age; instead of exponentiating the parameter estimate 0.0929, you compute
e10�0:0929 to obtain 2.53. Thus, the odds of coronary artery disease increase by a factor of 2.53
every ten years.

Output 8.49 displays this estimate as produced by the UNITS statement in PROC LOGISTIC.

Output 8.49 Odds Ratios for Units of 10

Odds Ratios

Effect Unit Estimate

age 10.0000 2.531
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However, note that this model is useful for prediction only for persons in the walk-in population
who fall into the age range of those in this study—ages 28 to 60.

8.6 A Note on Diagnostics

While goodness-of-fit statistics can tell you how well a particular model fits the data, they tell
you little about the lack of fit, or where a particular model fails to fit the data. Measures called
regression diagnostics have long been useful tools to assess lack of fit for linear regression models,
and in the 1980s researchers proposed similar measures for the analysis of binary data. In particular,
work by Pregibon (1981) provided the theoretical basis of extending diagnostics used in linear
regression to logistic regression. Both Hosmer and Lemeshow (2000) and Collett (2003) include
lengthy discussions on model-checking for logistic regression models; Collett includes many
references for work in this area. Standard texts on regression analysis like Draper and Smith (1998)
discuss model-checking strategies for linear regression; Cook and Weisberg (1982) discuss residual
analysis and diagnostics extensively.

This section presents a basic description of a few diagnostic tools and an example of their
application with the urinary tract data set. The Pearson and deviance chi-square tests are two
measures that assess overall model fit. It makes some sense that by looking at the individual
components of these statistics, which are functions of the observed group counts and their
model-predicted values, you will gain insight into a model’s lack of fit.

Suppose that you have s groups, i D 1; : : : ; s, and ni total subjects for the i th group. If yi is
the number of events (success, yes) for the i th group, and O�i denotes the predicted probability of
success for the i th group, then define the i th residual as

ri D
yi � ni O�iq
ni O�i .1 � O�i /

These residuals are known as Pearson residuals, since the sum of their squares isQP . They compare
the differences between observed counts and their predicted values, scaled by the observed count’s
standard deviation. By examining the ri , you can determine how well the model fits the individual
groups. Often, the residual values are considered to be indicative of lack of fit if they exceed 2 in
size.

Similarly, the deviance residual is a component of the deviance statistic. The deviance residual is
written

di D sgn.yi � Oyi /
�
2yi log

�
yi

Oyi

�
C 2.ni � yi / log

�
ni � yi

ni � Oyi

�� 1
2

where Oyi D ni O�i . The sum of squares of the di values is the deviance statistic.

The Pearson and deviance residuals can be standardized to have approximately unit variances.
Another type of residual is the likelihood residual, which is a weighted combination of the stan-
dardized Pearson and deviance residuals. Refer to Collett (2003) and the SAS/STAT User’s Guide
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for details. The standardized deviance residuals and the likelihood residuals are recommended as
they rank extreme observations well and are reasonably well approximated by a standard normal
distribution when the numbers in each group are large enough (Collett 2003).

Residuals are often presented in tabular form; however, graphical display aids their inspection. One
simple plot is called an index plot, in which the residuals are plotted against the corresponding
observation number, the index. By examining these plots, you can determine if there are unusually
large residuals, possibly indicative of outliers, or systematic patterns of variation, possibly indicative
of a poor model choice.

Residuals are examined for the urinary tract data. As you will recall, the main effects model was
considered to have an adequate fit. The INFLUENCE option requests that PROC LOGISTIC
provide regression diagnostics.

The data are input differently than they were in Section 8.4. The variable RESPONSE is now the
number of cures in a group, and the variable TRIALS is the total number of patients in that group,
the sum of those who were cured and those who were not. The events/trials MODEL statement
syntax allows you to specify the response as a ratio of two variables, the events variable and the
trials variable. When the response is specified this way, developed to support the binomial trials
framework, the residuals are calculated using an ni that is based on the group size, which is desired.
(If you specify a single response, called actual model syntax, when you compute residuals, the
residuals are calculated using a group size of 1.)

data uti2;
input diagnosis : $13. treatment $ response trials;

datalines;
complicated A 78 106
complicated B 101 112
complicated C 68 114
uncomplicated A 40 45
uncomplicated B 54 59
uncomplicated C 34 40
;

The following statements request the standardized residual plots with the STDRED suboption of
the PLOTS=INFLUENCE option in the PROC LOGISTIC statement. The LABEL option displays
the case number for diagnostic plots, and the UNPACK option suppresses the paneling of plots (the
default is to combine multiple plots in a panel display).

ods graphics on;
proc logistic data=uti2 plots(label)=influence(unpack stdres);

class diagnosis treatment / param=ref;
model response/trials = diagnosis treatment;

run;
ods graphics off;

The graph in Output 8.50 displays the likelihood residuals; the residuals are in the acceptance
region.
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Output 8.50 Likelihood Residuals Plot

The standardized deviance residuals plot (not displayed here) is very similar.

Note that if the model didn’t fit—the goodness-of-fit statistics were inadequate, possibly resulting
from a missing effect—then you would likely see residual values higher than 2 for at least one
group.

Residuals need to be used cautiously when the data contain continuous explanatory variables so
that most of the group sizes are 1. This is for the same reason that QP and the deviance are
inappropriate—the sample size requirements for approximate chi-square distributions are not met.
However, these residuals are often considered useful as a rough indicator of model fit in this
situation, and they are often examined.

Note that the residual score statistic can address sums of residuals in regions of interest via indicator
variables with the value 1 for records in the region of interest and 0 elsewhere. Many such indicators
can have assessment for diagnostic purposes. Also, the use of interactions with the score statistic
partly performs such an assessment.

Other types of diagnostics include changes in the QP and deviance when the i th observation
is excluded; the i th leverage; and distances between estimated parameters and the estimated
parameters when the i th observation is excluded (or fit perfectly by addition of an indicator variable
with the value 1 for the i th observation and the value 0 otherwise). In addition, there are a variety
of graphs that have been devised to assist in evaluating model adequacy. Refer to the SAS/STAT
User’s Guide for information on what diagnostics are provided by the LOGISTIC procedure.
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8.7 Alternatives to Maximum Likelihood Estimation

If you perform enough logistic regressions, you will encounter data for which maximum likelihood
estimation does not produce a unique solution for the parameters; you do not obtain convergence.
In addition, for data with small cell counts, large sample theory may not be applicable and thus
tests based on the asymptotic normality of the maximum likelihood estimates may be unreliable.
This section describes strategies for these situations, including exact logistic regression and the
Firth bias reduction method.

To gain insight into the possible data configurations that result in non-convergence, consider
Table 8.11:

Table 8.11 Infinite Odds Ratio Example

Factor Response=Yes Response=No
1 15 0
2 0 34

Computing the odds ratio for these data results in the quantity

a � d

b � c
D
15 � 34

0 � 0

which is infinite. Since the odds ratio is eˇ , where ˇ is the parameter for the factor, this means
that ˇ is infinite. You could request the exact odds ratio from the FREQ procedure, which would
produce the 95% lower and upper confidence limits of 87.1520 and1, respectively.

The LOGISTIC procedure determines whether the input data have a configuration that leads
to infinite parameter estimates. If convergence is not attained within eight iterations, PROC
LOGISTIC computes the probability of allocating each observation to the correct response group.
If this probability is equal to 1 for all observations, there is said to be complete separation of data
points (this occurs if all the observations having unique covariate profiles have the same response
outcome—for example, all the Factor=1 subjects responded yes, and all the Factor=2 subjects
responded no). If complete separation is found, the iterative process is halted and a warning
message is printed.

If nearly all the observations have a probability of 1 of being allocated to the correct response
group, then the data configuration may be one of quasi-complete separation. (For quasi-complete
separation to occur, the dispersion matrix also becomes unbounded.) Iteration also stops when this
condition is detected, and a warning message is printed, since the parameter estimates are also
infinite.

If neither of these conditions exists for the data, then they are said to be overlapping. The
data points overlap, so observations with the same covariate profile have all possible responses.
Maximum likelihood estimates exist and are unique for overlapping configurations. The problems
of complete separation and quasi-complete separation generally occur for small data sets. Usually
quasi-complete separation does not occur if you have a continuous explanatory variable; complete
separation can always occur. Refer to Albert and Anderson (1984) for more information about
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infinite parameters and the data configurations that produce them; refer to Silvapulle (1981) for
a discussion of the necessary and sufficient conditions for the existence of maximum likelihood
estimators in binomial response models.

As an illustration of data that exhibit quasi-complete separation, consider Table 8.12.

Table 8.12 Pre-Clinical Study Data

Treatment A Treatment B No Yes
0 0 0 0
0 1 2 0
1 0 0 8
1 1 6 21

The following statements creates SAS data set PRECLINICAL.

data preclinical;
input treatA $ treatB $ response $ count @@;

datalines;
no no yes 0 no no no 0
yes no yes 8 yes no no 0
no yes yes 0 no yes no 2
yes yes yes 21 yes yes no 6
;

Logistic regression is requested with the LOGISTIC procedure:

proc logistic descending;
freq count;
class treatA treatB /param=ref reference=first;
model response = treatA treatB;

run;

Output 8.51 contains the results from PROC LOGISTIC. Since there is quasi-complete separation,
the maximum likelihood solution may not exist.

Output 8.51 Quasi-Complete Separation Note

Response Profile

Ordered
Value response

Total
Frequency

1 yes 29

2 no 8

Probability modeled is response='yes'.

Model Convergence Status

Quasi-complete separation of data points detected.
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The LOGISTIC procedure proceeds, and it prints results based on the last maximum likelihood
iteration (as well as a warning). If you examine the statistics listed in the “Global Tests” table in
Output 8.52, you will see that they vary widely. The Wald chi-square has a value of 0.0089, and
the Likelihood Ratio chi-square takes the value 10.0294. These statistics should be very similar
when sample sizes are large enough for model fitting with maximum likelihood. When they are not
similar, it is a red flag, regardless of whether the procedure also prints out a warning message.

Output 8.52 Global Tests

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 10.0294 2 0.0066

Score 9.4626 2 0.0088

Wald 0.0089 2 0.9956

Strategies do exist for situations where maximum likelihood estimation fails or small cell counts
make the resulting maximum likelihood estimates fail to have their intended properties. Exact
methods provide a way to compute parameter estimates, confidence intervals, and p-values for
statistical tests using methodology based on exact distributions. The key is conditioning on the
appropriate sufficient statistic.

The idea of computing parameter estimates, confidence intervals, and p-values for statistical tests
using methodology based on exact distributions is not a new one. Cox (1970) suggested it decades
ago, but it took some time for algorithmic advances in computing the exact distributions to make
the strategy computationally practical. Refer to Tritchler (1984) and Hirji, Mehta, and Patel (1987)
for more details regarding these algorithms. See Appendix C in Chapter 10 for a brief overview of
the methodology involved in deriving exact conditional distributions and computing tests and point
estimates.

SAS provides exact logistic regression with the LOGISTIC procedure (exact methods are also
available in the GENMOD procedure). It provides an exact probability test and an exact score
test for the hypotheses that parameters for the specified hypothesis are equal to zero; these
tests produce an exact p-value, which is the probability of obtaining a more extreme statistic
than the one observed and a mid p-value, which adjusts for the discreteness of the distribution.
Simultaneous tests can be specified. You can also request the point estimates of the parameters and
the exponentiated parameter estimates (usually representing an odds ratio); these come with one or
two-sided confidence limits and one- or two-sided p-values for testing that the parameter estimate
is zero.

Another alternative strategy is Firth’s penalized likelihood method (Firth 1993, Heinze and
Schemper 2002). This is a bias reduction method that adds a term to the usual log-likelihood
function; when the resulting penalized likelihood is maximized, it shrinks the estimates towards
zero. Firth’s method is especially useful when you are dealing with continuous explanatory
variables and exact methods may not be applicable. It always produces parameter estimates when
the issue is complete or quasi-complete separation (Heinze and Schemper 2002).
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8.7.1 Analyzing the Pre-Clinical Study Data

The data in Table 8.12 are analyzed with exact logistic regression.

The EXACT statement requests the exact analysis. Note that if you include the EXACTONLY
option in the PROC statement, only the exact analysis is performed. You can include more than
one EXACT statement, and exact analyses are performed for the variables listed in the statements.
The tests are conditioned on any other variables included in the model. The JOINT option requests
a joint test of the effect variables listed in the EXACT statement. The option ESTIMATE=BOTH
specifies that point estimates for both the parameter and the exponentiated parameter be computed.
Exponentiated parameters are computed for CLASS variables only if PARAM=REF is specified in
the CLASS statement.

proc logistic descending exactonly;
freq count;
class treatA treatB /param=ref reference=first;
model response = treatA treatB / alpha=.025;
exact treatA treatB /joint estimate=both;

run;

Output 8.53 contains the exact test results. Both the exact conditional score test and the probability
test are reported; in this instance, they have the same p-values. This will not always be the case.
Since the exact probabilities are analogous to the exact p-values you obtain in a Fisher’s exact test,
where the p-value represents the sum of the more extreme table p-values, this may be preferred.

Output 8.53 Exact Tests

Exact Conditional Analysis

Exact Conditional Analysis

Exact Conditional Tests

p-Value

Effect Test Statistic Exact Mid

Joint Score 9.2069 0.0181 0.0143

Probability 0.00767 0.0181 0.0143

treatA Score 5.4444 0.0690 0.0345

Probability 0.0690 0.0690 0.0345

treatB Score 2.0843 0.2994 0.2082

Probability 0.1824 0.2994 0.2082

For the treatment A effect, the exact p-value is 0:0690, and for the treatment B effect, the exact
p-value is 0:2994. Again, these tests are conditioned on the other effects in the model. Note that,
if an effect consists of two or more parameters, then this test is evaluating the hypothesis that all of
the relevant parameters are equal to zero simultaneously. The joint effect of TreatA and TreatB has
a p-value of 0.0181.

From these results, you could conclude that treatment A was nearly influential.
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Since the ESTIMATE option was specified, PROC LOGISTIC also produces a table of parameter
estimates. Output 8.54 displays the parameter estimates, and Output 8.55 displays the odds ratio
estimates and their confidence limits. You would view any estimates with some caution.

Output 8.54 Exact Parameter Estimates

Exact Parameter Estimates

Parameter Estimate
Standard

Error

97.5%
Confidence

Limits
Two-sided

p-Value

treatA yes 1.9547 * . -0.6498 Infinity 0.1379

treatB yes -1.0434 * . -Infinity 1.0473 0.3647

Note: * indicates a median unbiased estimate.

Output 8.55 Exact Odds Ratio Estimates

Exact Odds Ratios

Parameter Estimate

97.5%
Confidence

Limits
Two-sided

p-Value

treatA yes 7.062 * 0.522 Infinity 0.1379

treatB yes 0.352 * 0 2.850 0.3647

Note: * indicates a median unbiased estimate.

The median unbiased estimates are produced instead of the maximum conditional likelihood
statistic because the value of the observed sufficient statistic is at the extreme of the derived
distribution. Note that the one-sided 97.5% confidence interval with a lower bound of 0 is also the
two-sided 95% confidence interval.

8.7.2 Analysis of Completely Separated Data

Sometimes, exact analysis does not produce a solution when the data are completely separated.
Table 8.13 displays data with the same number of zero counts as Table 8.12; however, the position
of the zero counts results in complete separation of the data points with logistic regression.

Table 8.13 Completely Separated Data

Gender Region Yes No
0 0 0 5
0 1 1 0
1 0 0 175
1 1 53 0

The following DATA step creates the SAS data set COMPLETE.
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data complete;
input gender region count response @@;

datalines;
0 0 0 1 0 0 5 0
0 1 1 1 0 1 0 0
1 0 0 1 1 0 175 0
1 1 53 1 1 1 0 0
;

If you perform the usual logistic regression analysis for these data, you will get a message that the
data are completely separated and that the maximum likelihood solution does not exist.

The following statements request both an exact analysis for these data as well as one using the
Firth penalized likelihood method. This is requested with the FIRTH option, and the CLPARM=PL
option is also specified. This option should always be used with the FIRTH option since the profile
likelihood-based confidence limits will be based on the penalized likelihood.

proc logistic data=complete descending;
freq count;
model response = gender region / firth clparm=pl;
exact gender region;

run;

The exact results displayed in Output 8.56 are non-conclusive because the computations run into a
degenerate distribution.

Output 8.56 Exact Tests

Exact Conditional Analysis

Exact Conditional Analysis

Exact Conditional Tests

p-Value

Effect Test Statistic Exact Mid

gender Score . # . .

Probability 1.0000 # 1.0000 0.5000

region Score 232.0 <.0001 <.0001

Probability 5.44E-54 <.0001 <.0001

Note: # indicates that the conditional distribution is degenerate.

The Firth method does produce estimates, however, as displayed in Output 8.57.
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Output 8.57 Penalized Parameter Estimates

Analysis of Penalized Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -2.4001 1.6189 2.1978 0.1382

gender 1 -3.4599 2.1523 2.5843 0.1079

region 1 10.5320 2.0164 27.2817 <.0001

The penalized likelihood estimates and the profile likelihood confidence limits are displayed in
Output 8.58.

Output 8.58 Penalized Parameter Estimates

Parameter Estimates and Profile-Likelihood
Confidence Intervals

Parameter Estimate 95% ConfidenceLimits

Intercept -2.4001 . -0.2218

gender -3.4599 -8.7265 .

region 10.5320 7.5460 16.2653

These estimates should be used cautiously. However, the confidence interval for regions does
convey the impression that region is an important effect. One way to evaluate the parameter
estimates is to collapse the two tables in Table 8.13 into one 2 � 2 table and add 0.5 to each of the
counts. The collapsing over gender is justified since gender appears to have no effect.

Table 8.14 Collapsed Over Gender Table

Region Yes No
0 0.5 180.5
1 54.5 0.5

If you compute the odds ratio for Table 8.14, you obtain .0:5/.0:5/=.54:5/.180:5/ D 0:00003,
which is about the same as the exponentiated parameter for region, or e�10:5320. Thus, these
estimates appear to be reasonable.

8.7.3 Analysis of Liver Function Data

Consider the data in Table 8.15 from a study on liver function outcomes for high-risk overdose
patients in which antidote and historical control groups are compared. The data are stratified by
time to hospital admission (Koch, Gillings, and Stokes 1980).
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Table 8.15 Liver Function Outcomes
Time Antidote Control
to Hospital Severe Not Severe Severe Not Severe
Early 6 12 6 2
Delayed 3 4 3 0
Late 5 1 6 0

The small counts in many cells—seven of the twelve cells have values less than 5—make the
applicability of large sample theory somewhat questionable.

The following DATA step inputs the data.

data liver;
input time $ group $ status $ count @@;

datalines;
early antidote severe 6 early antidote not 12
early control severe 6 early control not 2
delayed antidote severe 3 delayed antidote not 4
delayed control severe 3 delayed control not 0
late antidote severe 5 late antidote not 1
late control severe 6 late control not 0
;

The following PROC LOGISTIC statements request a logistic regression analysis of the severity of
the outcome with explanatory variables based on time to admission and treatment group. The early
level for TIME is the reference level, and the control level is the reference level for GROUP. The
PARAM=REF option requests incremental effects parameterization.

proc logistic descending;
freq count;
class time(ref='early') group(ref='control') /param=ref;
model status = time group / clparm=wald;

run;

Output 8.59 contains the global fit statistics. Note the discrepancy between the Wald and the
likelihood ratio test. The p-value for the former is more than ten times the p-value for the latter.

Output 8.59 Global Fit Statistics

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 16.3913 3 0.0009

Score 13.4256 3 0.0038

Wald 10.2488 3 0.0166

The parameter estimates are displayed in Output 8.60 for comparison’s sake.
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Output 8.60 MLE Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 1.4132 0.7970 3.1439 0.0762

time delayed 1 0.7024 0.8344 0.7087 0.3999

time late 1 2.5533 1.1667 4.7893 0.0286

group antidote 1 -2.2170 0.8799 6.3480 0.0118

Odds ratios and their 95% confidence limits are displayed in Output 8.61.

Output 8.61 Odds Ratio Estimates

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

ConfidenceLimits

time  delayed vs early 2.019 0.393 10.359

time  late    vs early 12.849 1.305 126.471

group antidote vs control 0.109 0.019 0.611

You would not report the maximum likelihood results because of sample size concerns.

The following statements request an exact analysis. The option ESTIMATE=BOTH in the first
EXACT statement specifies that point estimates for both the parameter and the exponentiated
parameter be computed. The JOINTONLY option in the second EXACT statement requests a joint
test for variables TIME and GROUP (and just the joint test).

proc logistic descending exactonly;
freq count;
class time(ref='early') group(ref='control') /param=ref;
model status = time group / clparm=wald;
exact 'Model 1' intercept time group /

estimate=both;
exact 'Joint Test' time group / jointonly;

run;

Output 8.62 contains the exact test results for the first EXACT statement.
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Output 8.62 Exact Tests

Exact Conditional AnalysisExact Conditional Analysis

Exact Conditional Tests for Model 1

p-Value

Effect Test Statistic Exact Mid

Intercept Score 3.4724 0.1150 0.0922

Probability 0.0457 0.1150 0.0922

time Score 6.0734 0.0442 0.0418

Probability 0.00471 0.0442 0.0418

group Score 7.1656 0.0085 0.0050

Probability 0.00698 0.0085 0.0050

For the time effect, the exact p-value is 0:0442, and for the group effect, the exact p-value is
0:0085. Again, these tests are conditioned on the other effects in the model. If an effect consists of
two or more parameters, then this test is evaluating the hypothesis that all of the relevant parameters
are equal to zero simultaneously.

Output 8.63 contains the exact test results for the second EXACT statement.

Output 8.63 Exact Tests

Exact Conditional Tests for Joint Test

p-Value

Effect Test Statistic Exact Mid

Joint Score 13.1459 0.0027 0.0027

Probability 0.000015 0.0015 0.0015

For the ‘Joint’ results, the score test produces an exact p-value of 0.0027, and the probability test
produces an exact p-value of 0.0015.

Output 8.64 displays the parameter estimates and their 95% confidence limits. The parameter
estimates are fairly similar to those based on the large sample approximate methods. The exact
p-values reported for the effect parameters have different values from those reported for the
exact conditional tests. This is because the exact p-values for the single parameters are twice the
one-sided p-value, and they are constructed to be in harmony with the confidence intervals. For
example, if the confidence interval contained the value zero, the p-value would be greater than 0.05
for a 95% confidence interval.
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Output 8.64 Exact Parameter Estimates

Exact Parameter Estimates for Model 1

Parameter Estimate
Standard

Error

95%
Confidence

Limits
Two-sided

p-Value

Intercept 1.3695 0.7903 -0.2361 3.6386 0.1140

time delayed 0.6675 0.8141 -1.2071 2.6444 0.6667

time late 2.4388 1.1425 0.1364 6.4078 0.0331

group antidote -2.0992 0.8590 -4.5225 -0.3121 0.0154

Output 8.65 displays the odds ratio estimates and their 95% confidence limits.

Output 8.65 Exact Odds Ratio Estimates

Exact Odds Ratios for Model 1

Parameter Estimate

95%
Confidence

Limits
Two-sided

p-Value

Intercept 3.934 0.790 38.037 0.1140

time delayed 1.949 0.299 14.075 0.6667

time late 11.460 1.146 606.546 0.0331

group antidote 0.123 0.011 0.732 0.0154

Table 8.16 provides a comparison of the unconditional maximum likelihood estimates and the exact
conditional estimates.

Table 8.16 Exact and Asymptotic Estimates

Inference Lower 95% Upper 95%
Variable Type Estimate CI Bound CI Bound p-value
Intercept Asymptotic 1.4132 �0:1489 2.9754 0.0762

Exact 1.3695 �0:2361 3.6386 0.1140
Delayed Asymptotic 0.7024 �0:9330 2.3378 0.3999

Exact 0.6675 �1:2071 2.6444 0.6667
Late Asymptotic 2.5535 0.2666 4.8404 0.0286

Exact 2.4387 0.1364 6.4078 0.0331
Antidote Asymptotic �2:2171 �3:9418 �0:4924 0.0118

Exact �2:0992 �4:5225 �0:3121 0.0154

For the exact computations performed with PROC LOGISTIC, the p-value listed is twice the one-
sided p-value. For these data, you can see that exact logistic regression produces estimates that are
different, although not substantially, from the maximum likelihood estimates. For each parameter,
the p-values listed for the exact estimates are larger than those for the asymptotic estimates, and
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the confidence intervals are wider. Usually, the exact methods lead to more accurate results than
the approximate methods. As a general rule, when the sample sizes are small and the approximate
p-values are less than 0.10, it is a good idea to look at the exact results. If the approximate p-values
are larger than 0.15, then the approximate methods are probably satisfactory in the sense that the
exact results are likely to agree with them.

As an additional comparison, Firth’s method is also applied to these data using the FIRTH option
in PROC LOGISTIC (statements not shown here). The resulting parameter estimates and the 95%
penalized likelihood confidence limits are displayed in Output 8.66.

Output 8.66 Penalized ML Estimates

Parameter Estimates and Profile-Likelihood Confidence
Intervals

Parameter Estimate 95% ConfidenceLimits

Intercept 1.2077 -0.0769 2.8718

time delayed 0.6374 -0.9007 2.2523

time late 2.1543 0.4031 4.5421

group antidote -1.9526 -3.7557 -0.5053

These parameter estimates are similar to those reported in Table 8.16; they are closer to the null
than the exact parameter estimates, and the confidence intervals are narrower than those for the
exact parameter estimates. In general, exact methods and, in particular, the exact conditional tests
are recommended for small sample situations; however, the Firth penalized likelihood approach is
a useful alternative, especially when the exact methods are computationally not feasible.

8.7.4 Exact Confidence Limits for Common Odds Ratios for 2 � 2 Tables

Section 3.4 in Chapter 3, “Sets of 2 � 2 Tables,” describes how to use PROC FREQ to compute
exact confidence limits for the average odds ratio in a set of 2 � 2 tables. You can also obtain them
with exact logistic regression. You formulate the analysis as a regression where the column variable
is the response variable and the row and stratification variables are the explanatory variables. Then,
you condition on the stratification variable and estimate the odds ratio for the row variable. This
odds ratio will be an average odds ratio.

Recall the exercise program data in Section 3.4, redisplayed in Table 8.17. The exercise counselor
was interested in whether type of program was associated with good test results.
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Table 8.17 Cardiovascular Test Outcomes
Location Program Good Not Good Total
Downtown Office 12 5 17
Downtown Home 3 5 8

Total 15 11 26
Satellite Office 6 1 7
Satellite Home 1 3 4

Total 7 4 11

Interest lies in computing an odds ratio comparing good results for the office program to good
results for the home program. The sample sizes in these tables are too small to be able to justify
asymptotic confidence limits for the odds ratio, so Section 3.4 demonstrated how to obtain exact
confidence limits using the FREQ procedure. You can also obtain estimates of odds ratios and their
exact confidence limits by performing an exact logistic regression.

The following DATA step inputs these data into SAS data set EXERCISE.

data exercise;
input location $ program $ outcome $ count @@;
datalines;

downtown office good 12 downtown office not 5
downtown home good 3 downtown home not 5
satellite office good 6 satellite office not 1
satellite home good 1 satellite home not 3
;

To perform the exact logistic regression, you put both LOCATION and PROGRAM in the CLASS
statement and, in order to compare office to home, use the REF=FIRST option with the PROGRAM
variable. The response variable is OUTCOME in the MODEL statement; since ‘good’ outcome is
the first alphanumerically ordered value (the other is ‘not’), the model is based on the probability
of good outcome.

You then specify the EXACT statement, requesting exact tests for the variable PROGRAM and
also specifying the ESTIMATE=BOTH option to obtain both the parameter estimate and the odds
ratio estimate.

proc logistic;
freq count;
class location program(ref=first) /param=ref;
model outcome = location program;
exact program / estimate=both;

run;

Output 8.67 displays the results of the exact tests for exercise program. Both the score and
probability tests have an exact p-value of 0.0307, indicating significance at the ˛ D 0:05 level.
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Output 8.67 Exact Test Results

Exact Conditional AnalysisExact Conditional Analysis

Exact Conditional Tests

p-Value

Effect Test Statistic Exact Mid

program Score 5.5739 0.0307 0.0215

Probability 0.0183 0.0307 0.0215

Output 8.68 displays the exact parameter estimate and the exact odds ratio estimate comparing
office program to home program; the odds ratio estimate takes the value 5.413 with 95% confidence
limits of (1.049, 33.312). The confidence limits are identical to those displayed in Chapter 3. This
estimate of the odds ratio is different from the estimate of 5.842 reported in the PROC FREQ output
because that was the Mantel-Haenszel estimator.

Output 8.68 Exact Estimates

Exact Parameter Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits
Two-sided

p-Value

program office 1.6889 0.7435 0.0474 3.5059 0.0424

Exact Odds Ratios

Parameter Estimate

95%
Confidence

Limits
Two-sided

p-Value

program office 5.413 1.049 33.312 0.0424

Compare the exact results to those produced by the asymptotic analysis, which are displayed in
Output 8.69.

Output 8.69 Odds Ratio for Asymptotic Analysis

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

ConfidenceLimits

location downtown vs satellit 0.758 0.151 3.803

program  office vs home 6.111 1.331 28.062

The point estimate here is 6.111 and the 95% Wald confidence limits are (1.331, 28.062). Thus,
using the exact method provides a more accurate picture than the inappropriate asymptotic method.
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8.8 Using the GENMOD Procedure for Logistic Regression

The GENMOD procedure fits generalized linear models, and it performs logistic regression for
correlated responses via the generalized estimating equations method (discussed in Chapter 15).
Binary logistic regression is a simple case of the generalized linear model, and this section provides
an introduction to using the GENMOD procedure for performing logistic regression.

8.8.1 Performing Logistic Regression with the GENMOD Procedure

Generalized linear models are a generalization of the general linear model that is fit by the GLM
procedure. Generalized linear models include not only classical linear models but logistic and
probit models for binary data, and Poisson regression and negative binomial regression models for
count data. You can also fit loglinear models for multinomial data indirectly through computational
equivalences with fitting Poisson regression models. You can generate many other statistical models
by the appropriate selection of a link function and the probability distribution of the response.

A generalized linear model has three components:

� a random sample of independent response variable {yi} with some probability distribution,
i D 1; 2; : : : ; n

� a set of explanatory variables xi and parameter vector ˇ

� a monotonic link function g that describes how the expected value of yi , �i , is related to
xi 0ˇ:

g.�i / D xi 0ˇ

You construct a generalized linear model by choosing the appropriate link function and response
probability distribution. In the classical linear model, the probability distribution is the normal and
the usual link function is the identity: g.�/ D �. For logistic regression, the distribution is the
binomial and the usual link function is the logit:

g.�/ D log
�

�

1 � �

�

For Poisson regression, the distribution is Poisson and the link function is g.�/ D log.�/.

The following section describes how to perform logistic regression using PROC GENMOD. See
Chapter 12, “Poisson Regression and Related Loglinear Regression,” for a discussion of Poisson
regression and illustrations using the GENMOD procedure. For a comprehensive discussion of the
generalized linear model, refer to McCullagh and Nelder (1989). For an introduction to the topic,
refer to Dobson (1990) or Agresti (2007).
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8.8.2 Fitting Logistic Regression Models with PROC GENMOD

Fitting logistic regression models with the GENMOD procedure is a relatively straightforward
matter. PROC GENMOD includes a CLASS statement, so you simply list your classification
variables in it, just as you now do in PROC LOGISTIC. The default parameterization is equivalent
to the incremental effects parameterization implemented for most of the analyses performed in
this chapter. In PROC GENMOD, the reference cell is the combination of the last sorted levels
of the effects listed in the CLASS statement (and 0s for any continuous explanatory variables).
Incremental effects parameters are estimated for the remaining levels. You can use the REF= option
in the CLASS statement to change the reference levels. The default parameterization is illustrated
with this example; note that you can also specify PARAM=REF in the CLASS statement in
PROC GENMOD to produce the identical PARAM=REF parameterization utilized in the previous
examples with PROC LOGISTIC.

Consider the urinary tract infection data analyzed in Section 8.4. If you sorted the values of
TREATMENT and DIAGNOSIS, those observations that had an uncomplicated diagnosis and
treatment C would become the reference cell.

The following statements produce an analysis using PROC GENMOD. You need to specify
LINK=LOGIT and DIST=BINOMIAL to request logistic regression with PROC GENMOD. The
TYPE3 option requests tests of effects for the model, and the AGGREGATE option generates the
Pearson and deviance goodness-of-fit statistics.

proc genmod data=uti;
freq count;
class diagnosis treatment;
model response = diagnosis treatment /

link=logit dist=binomial type3 aggregate;
run;

Goodness-of-fit statistics are displayed in Output 8.70.

Output 8.70 Goodness of Fit

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 2 2.5147 1.2573

Scaled Deviance 2 2.5147 1.2573

Pearson Chi-Square 2 2.7574 1.3787

Scaled Pearson X2 2 2.7574 1.3787

Log Likelihood -225.0355

Full Log Likelihood -13.4690

AIC (smaller is better) 34.9379

AICC (smaller is better) 35.0228

BIC (smaller is better) 51.5996
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The table labeled “Criteria for Assessing Goodness of Fit” provides QP and QL, which take the
value 2.5147 for 2 df. The Log Likelihood statistic has the value �225:0355. If you multiply this
value by two and reverse the sign, you get the same value as �2LOG L displayed in the output
for the same model in the PROC LOGISTIC output. Other criteria displayed are approximate
chi-square statistics.

The estimates displayed in Output 8.71 are identical to those produced with PROC LOGISTIC for
the same model. However, those levels that become the reference levels under incremental effects
coding, uncomplicated diagnosis and treatment C, are assigned 0s for the parameter estimate and
related statistics.

Output 8.71 Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square

Intercept 1 1.4184 0.2987 0.8330 2.0038 22.55

diagnosis complicated 1 -0.9616 0.2998 -1.5492 -0.3740 10.29

diagnosis uncomplicated 0 0.0000 0.0000 0.0000 0.0000 .

treatment A 1 0.5847 0.2641 0.0671 1.1024 4.90

treatment B 1 1.5608 0.3160 0.9415 2.1800 24.40

treatment C 0 0.0000 0.0000 0.0000 0.0000 .

Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis Of Maximum Likelihood
Parameter Estimates

Parameter Pr > ChiSq

Intercept <.0001

diagnosis complicated 0.0013

diagnosis uncomplicated .

treatment A 0.0268

treatment B <.0001

treatment C .

Scale

Note: The scale parameter was held fixed.

The table labeled “LR Statistics For Type 3 Analysis” in Output 8.72 can be viewed as serving a
similar role to that of an ANOVA table.
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Output 8.72 Type 3 Analysis

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

diagnosis 1 11.72 0.0006

treatment 2 28.11 <.0001

It includes likelihood ratio tests for each of the effects. The effect for treatment, which has three
levels, has 2 df. The effect for diagnosis, with two levels, has 1 df. Both tests are clearly significant,
with values of 28.11 and 11.72, respectively.

To assess whether any of the treatments are similar, linear combinations of the parameters are tested
to see if they are significantly different from zero.

H0WLˇ D 0

By choosing the right elements of L, you can construct linear combinations of the parameters that
will produce the appropriate test. By default, PROC GENMOD computes a likelihood ratio test; on
request, it can produce the corresponding Wald test. The likelihood ratio test for a contrast is twice
the difference between the log likelihood of the current fitted model and the log likelihood of the
model fitted under the constraint that the linear function of the parameters defined by the contrast
is equal to zero.

The test for whether treatment A is equivalent to treatment B is expressed as

H0WˇA D ˇB

and the test for whether treatment A is equivalent to treatment C is expressed as

H0WˇA D ˇC

You request these tests with the CONTRAST statement in PROC GENMOD. The following
CONTRAST statement is required to produce the first test. You place an identifying name for
the test in quotes, name the effect variable, and then list the appropriate coefficients for L. These
coefficients are listed according to the order in which the levels of the variable are known to PROC
GENMOD. When you use a CONTRAST statement, or specify the ITPRINT, COVB, CORRB,
WALDCI, or LRCI options in the MODEL statement, the GENMOD output includes information
on what levels of effects the parameters represent.

The CONTRAST statement is very similar to the CONTRAST statement in PROC GLM, where
you have to supply a coefficient for each level of the effect.

contrast 'A-B' treat 1 -1 0;

The following SAS statements produces the tests of interest.
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proc genmod data=uti;
freq count;
class diagnosis treatment;
model response = diagnosis treatment /

link=logit dist=binomial;
contrast 'treatment' treatment 1 0 -1 ,

treatment 0 1 -1;
contrast 'A-B' treatment 1 -1 0;
contrast 'A-C' treatment 1 0 -1;

run;

Output 8.73 contains the information about what the parameters represent.

Output 8.73 Parameter Information

Parameter Information

Parameter Effect diagnosis treatment

Prm1 Intercept

Prm2 diagnosis complicated

Prm3 diagnosis uncomplicated

Prm4 treatment A

Prm5 treatment B

Prm6 treatment C

Output 8.74 contains the results of the hypothesis tests.

Output 8.74 Contrasts

Contrast Results

Contrast DF Chi-Square Pr > ChiSq Type

treatment 2 28.11 <.0001 LR

A-B 1 9.22 0.0024 LR

A-C 1 4.99 0.0255 LR

QL D 9:22 for the test of whether treatment A and treatment B are the same; QL D 4:99 for the
test of whether treatment A and treatment C are the same; both of these are clearly significant at the
˛ D 0:05 level of significance. Note that these tests are similar to those displayed in the analysis
performed in Section 8.4. If you execute these same statements using the WALD option, you will
obtain identical results to the Wald tests obtained from PROC LOGISTIC in Section 8.4.
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Appendix A: Statistical Methodology for Dichotomous Logistic
Regression

Consider the relationship of a dichotomous outcome variable to a set of explanatory variables. Such
situations can arise from clinical trials where the explanatory variables are treatment, stratification
variables, and background covariables; another common source of such analyses are observational
studies where the explanatory variables represent factors for evaluation and background variables.

The model for � , the probability of the event, can be specified as follows:

� D
exp.˛ C

Pt
kD1 ˇkxk/

1C exp.˛ C
Pt
kD1 ˇkxk/

It follows that the odds are written

�

1 � �
D exp.˛ C

tX
kD1

ˇkxk/

so the model for the logit is linear:

log
�

�

1 � �

�
D ˛ C

tX
kD1

ˇkxk

The exp.ˇk/ are the odds ratios for unit changes in xk , that is, the amount by which �=.1 � �/ is
multiplied per unit change in xk .

You can apply the product binomial distribution when the data for the dichotomous outcome are
from a sampling process equivalent to stratified simple random sampling from subpopulations
according to the explanatory variables. Relative to this structure, the maximum likelihood estimates
are obtained by iteratively solving the equations:

sX
iD1

niC O�i .1; xi1; : : : ; xit / D

sX
iD1

ni1.1; xi1; : : : ; xit /

where ni1 is the number of subjects who have the event corresponding to � among ni subjects with
.xi1; : : : ; xit / status.

The quantity

O�i D
expf Ǫ C

Pt
kD1
Ǒ
kxikg

1C expf Ǫ C
Pt
kD1

Ǒ
kxikg

is the model-predicted value for �i .

For sufficient sample size, the quantities Ǫ and Ǒk have approximate multivariate normal distribu-
tions for which a consistent estimate of the covariance structure is available.
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You can assess goodness of fit of the model with Pearson chi-square statistics when sample sizes
are sufficiently large (80% of the fni1g and the fni � ni1g are � 5 and all others are � 2).

QP D

sX
iD1

.ni1 � niC O�i /
2

niC O�i .1 � O�i /

is approximately chi-square with .s � 1 � t / degrees of freedom.

You can also use log-likelihood ratio statistics to evaluate goodness of fit by evaluating the need for
a model to include additional explanatory variables.

In the setting where you have continuous explanatory variables, you cannot use QP to assess
goodness of fit because you no longer have sufficient sample sizes niC. However, you can still
apply the strategy of fitting an expanded model and then verifying that the effects not in the original
model are nonsignificant. If the model matrix for the original model X has rank t , then the expanded
model ŒX;W� has rank t C w, where w is the rank of W. You can evaluate the significance of W
with the difference of the log-likelihood statistics for the models X and ŒX;W�.

QLR D

sX
iD1

2X
jD1

2nij log
�
mij;w

mij

�

where s is the total number of groups with at least one subject, mij is the predicted value of nij for
model X (mi1 D ni O�i and mi2 D ni .1 � O�i /), and mij;w is the predicted value of nij for model
ŒX;W�. QLR has an approximate chi-square distribution with w degrees of freedom.

Another approach that doesn’t involve fitting an expanded model is the score statistic for assessing
the association of the residuals .n�1 �m�1/ with W via the linear functions g DW0.n�1 �m�1/.
The score statistic is written

QS D g0fW0ŒD�1v � D�1v XA.X
0

AD�1v XA/
�1X0AD�1v �Wg�1g

where n�1 D .n11; n21; : : : ; ns1/
0, XA D Œ1;X�, m�1 D .m11; m21; : : : ; ms1/

0, and Dv is a
diagonal matrix with diagonal elements vi D ŒniC O�i .1 � O�i /�

�1. QS approximately has a chi-
square distribution with w degrees of freedom when the total sample size is large enough to support
an approximately multivariate normal distribution for the linear functions ŒX0A;W

0�n�1.
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Chapter 9

Logistic Regression II: Polytomous
Response
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9.1 Introduction

Logistic regression most often involves modeling a dichotomous outcome, but it also applies to
multilevel responses. The response might be ordinal (no pain, slight pain, substantial pain) or
nominal (Democrats, Republicans, Independents). For ordinal response outcomes, you can model
functions called cumulative logits by performing ordered logistic regression using the proportional
odds model (McCullagh 1980). For nominal response outcomes, you form generalized logits
and perform a logistic analysis similar to those described in the previous chapter, except that
you model multiple logits per subpopulation. The analysis of generalized logits is a form of the
loglinear model, discussed in Chapter 12, “Poisson Regression and Related Loglinear Models.”
The LOGISTIC procedure is used to model both cumulative logits and generalized logits.
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9.2 Ordinal Response: Proportional Odds Model

9.2.1 Methodology

Consider the arthritis pain data in Table 9.1. Male and female subjects received an active or
placebo treatment for their arthritis pain, and the subsequent extent of improvement was recorded
as marked, some, or none (Koch and Edwards 1988).

Table 9.1 Arthritis Data
Improvement

Sex Treatment Marked Some None Total
Female Active 16 5 6 27
Female Placebo 6 7 19 32
Male Active 5 2 7 14
Male Placebo 1 0 10 11

One possible analysis strategy is to create a dichotomous response variable by combining two of
the response categories, basing a model on either Pr{marked improvement} versus Pr{some or no
improvement} or Pr{marked or some improvement} versus Pr{no improvement}. However, since
there is a natural ordering to these response levels, it makes sense to consider a strategy that takes
advantage of this ordering.

Consider the quantities

�hi1 D �hi1; �hi2 D �hi1 C �hi2

where �hi1 denotes the probability of marked improvement, �hi2 denotes the probability of
some improvement, and �hi3 denotes the probability of no improvement. The f�hij g represent
cumulative probabilities: �hi1 is the probability of marked improvement, and �hi2 is the probability
of marked or some improvement (h D 1 for females, h D 2 for males; i D 1 for active treatment,
i D 2 for placebo).

For a dichotomous response, you compute a logit function for each subpopulation. For a multilevel
response, you create more than one logit function for each subpopulation. With ordinal data, you
can compute cumulative logits, which are based on the cumulative probabilities. For three response
levels, you compute two cumulative logits:

logit.�hi1/ D log
�

�hi1

�hi2 C �hi3

�
; logit.�hi2/ D log

�
�hi1 C �hi2

�hi3

�

These cumulative logits are the log odds of marked improvement to none or some improvement
and the log odds of marked or some improvement to no improvement, respectively. Both log odds
focus on more favorable to less favorable response. The proportional odds model takes both of
these odds into account.
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Assuming that the data arise from a stratified simple random sample or are at least conceptually
representative of a stratified population, they have the following likelihood:

Prfnhij g D
2Y
hD1

2Y
iD1

nhiCŠ

3Y
jD1

�hij
nhij

nhij Š

where

3X
jD1

�hij D 1

You could write a model that applies to both logits simultaneously for each combination of gender
and treatment:

logit.�hik/ D ˛k C x0hiˇk

where k indexes the two logits. This says that there are separate intercept parameters .˛k/ and
different sets of regression parameters .ˇk/ for each logit.

If you take the difference in logits between two subpopulations for this model, you get

logit.�hik/ � logit.�hi 0k/ D .xhi � xhi 0/0ˇk for k D 1; 2

Thus, you would need to look at two differences in logits simultaneously to compare the response
between two subpopulations. This is the same number of comparisons you would need to compare
two subpopulations for a three-level nominal response, for example, in a test for association in a
contingency table (that is, r � 1, where r is the number of response outcomes). Therefore, this
general model doesn’t take advantage of the ordinality of the data.

The proportional odds assumption is that ˇk D ˇ for all k, simplifying the model to

logit.�hik/ D ˛k C x0hiˇ

If you take the difference in logits for this model, you obtain the equations

logit.�hi1/ � logit.�hi 01/ D log
�
�hi1=.�hi2 C �hi3/

�hi 01=.�hi 02 C �hi 03/

�
D .xhi � xhi 0/0ˇ

logit.�hi2/ � logit.�hi 02/ D log
�
.�hi1 C �hi2/=�hi3

.�hi 01 C �hi 02/=�hi 03

�
D .xhi � xhi 0/0ˇ

This says that the log cumulative odds are proportional to the distance between the explanatory
variable values and that the influence of the explanatory variables is independent of the cutpoint for
the cumulative logit. In this case, there is a “cut” at marked improvement to form logit.�hi1/ and a
cut at some improvement to form logit.�hi2/. This proportionality is what gives the proportional
odds model its name. For a single continuous explanatory variable, the regression lines would be
parallel to each other, their relative position determined by the values of the intercept parameter.
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This model can also be stated as

�hik D
exp.˛k C x0

hi
ˇ/

1C exp.˛k C x0
hi
ˇ/

and is written in summation notation as

�hik D
expf˛k C

Pt
gD1 ˇgxhigg

1C expf˛k C
Pt
gD1 ˇgxhigg

where g D .1; 2; : : : ; t / references the explanatory variables. This model is similar to the previous
logistic regression models and is also fit with maximum likelihood methods. You can determine
the values for �hij from this model by performing the appropriate subtractions of the �hik .

�hi1 D �hi1

�hi2 D �hi2 � �hi1

�hi3 D 1 � �hi2

The main effects model is an appropriate starting point for the analysis of the arthritis data. You
can write this model in matrix notation as266666666664

logit.�111/
logit.�112/
logit.�121/
logit.�122/
logit.�211/
logit.�212/
logit.�221/
logit.�222/

377777777775
D

266666666664

˛1 C ˇ1 C ˇ2
˛2 C ˇ1 C ˇ2

˛1 C ˇ1
˛2 C ˇ1

˛1 C ˇ2
˛2 C ˇ2

˛1
˛2

377777777775
D

266666666664

1 0 1 1

0 1 1 1

1 0 1 0

0 1 1 0

1 0 0 1

0 1 0 1

1 0 0 0

0 1 0 0

377777777775

2664
˛1
˛2
ˇ1
ˇ2

3775

This is very similar to the models described in Chapter 8 except that there are two intercept
parameters corresponding to the two cumulative logit functions being modeled for each group.
The parameter ˛1 is the intercept for the first cumulative logit, ˛2 is the intercept for the second
cumulative logit, ˇ1 is an incremental effect for females, and ˇ2 is an incremental effect for active
treatment. Males on placebo constitute the reference cell.

Table 9.2 contains the cell probabilities for marked improvement and no improvement based on
this model. Table 9.3 contains the odds. The cell probabilities for marked improvement are based
on the model for the first logit function, and the probabilities for no improvement are based on
the model for the second logit function (these probabilities are computed from 1 � �hi2). Since
the probabilities for all three levels sum to 1, you can determine the cell probabilities for some
improvement through subtraction.

The odds ratio for females versus males is eˇ1 , and the odds ratio for active treatment versus
placebo is eˇ2 . The odds ratios are computed in the same manner as for the logistic regression
analysis for a dichotomous response—you form the ratio of the appropriate odds.
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Table 9.2 Formulas for Cell Probabilities
Improvement

Sex Treatment Marked None
Female Active e˛1Cˇ1Cˇ2=.1C e˛1Cˇ1Cˇ2/ 1=.1C e˛2Cˇ1Cˇ2/

Female Placebo e˛1Cˇ1=.1C e˛1Cˇ1/ 1=.1C e˛2Cˇ1/

Male Active e˛1Cˇ2=.1C e˛1Cˇ2/ 1=.1C e˛2Cˇ2/

Male Placebo e˛1=.1C e˛1/ 1=.1C e˛2/

Table 9.3 Formulas for Model Odds
Improvement

Marked Versus Marked or Some
Sex Treatment Some or None Versus None

Female Active e˛1Cˇ1Cˇ2 e˛2Cˇ1Cˇ2

Female Placebo e˛1Cˇ1 e˛2Cˇ1

Male Active e˛1Cˇ2 e˛2Cˇ2

Male Placebo e˛1 e˛2

For example, when you compare the odds of marked improvement versus some or no improvement
for active females versus active males, you obtain

e˛1Cˇ1Cˇ2

e˛1Cˇ2
D eˇ1

As constrained by the proportional odds model, this is also the odds ratio for marked or some
improvement versus no improvement.

9.2.2 Fitting the Proportional Odds Model with PROC LOGISTIC

PROC LOGISTIC fits the proportional odds model by default when the response variable has more
than two levels. Thus, you need to ensure that you have an ordinal response variable because PROC
LOGISTIC assumes that you do. The GENMOD, GLIMMIX, and PROBIT procedures also fit the
proportional odds model with maximum likelihood estimation.

The following SAS statements create the data set ARTHRITIS. Note that these data are in the form
of counts, so a variable named COUNT is created to contain the frequencies for each table cell. The
variable IMPROVE is a character variable that takes the values marked, some, or none to indicate
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the subject’s extent of improvement of arthritic pain. The variable SEX takes the values male and
female, and the variable TREATMENT takes the values active and placebo.

data arthritis;
input sex $ treatment $ improve $ count @@;
datalines;

female active marked 16 female active some 5 female active none 6
female placebo marked 6 female placebo some 7 female placebo none 19
male active marked 5 male active some 2 male active none 7
male placebo marked 1 male placebo some 0 male placebo none 10
;

The use of PROC LOGISTIC is identical to previous invocations for dichotomous response logistic
regression. The response variable is listed on the left-hand side of the equal sign and the explanatory
variables are listed on the right-hand side. Since the ORDER=DATA option is specified in the
PROC statement, the values for IMPROVE are ordered in the sequence in which PROC LOGISTIC
encounters them in the data, which is marked, some, and none. (Another legitimate ordering would
be none, some, and marked.) It is crucial to ensure that the ordering is correct when you are using
ordinal data strategies. The procedure still performs an analysis if the response values are ordered
incorrectly, but the results will be erroneous. The burden is on the user to specify the correct order
and then to check the results.

The following statements requests that PROC LOGISTIC fit a proportional odds model.

proc logistic order=data;
freq count;
class treatment sex / param=reference;
model improve = sex treatment / scale=none aggregate;

run;

The “Response Profile” table displayed in Output 9.1 shows that the response variable values
are ordered correctly in terms of decreasing improvement. Thus, the cumulative logits modeled
are based on more to less improvement. The procedure also prints out a note that a zero count
observation has been encountered. For these data, this is not a problem since the total row counts
are acceptably large. Computationally, zero counts are discarded. The model still produces
predicted values for the cell that corresponds to the zero cell, males on placebo who showed some
improvement.

Output 9.1 Response Profiles

Response Profile

Ordered
Value improve

Total
Frequency

1 marked 28

2 some 14

3 none 42

Probabilities modeled are cumulated over the lower Ordered Values.
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The procedure next prints the “Class Level Information” table, which shows that the parameteriza-
tion takes the form of incremental effects for active treatment and females.

Output 9.2 Class Levels

Class Level Information

Class Value
Design

Variables

treatment active 1

placebo 0

sex female 1

male 0

Next, PROC LOGISTIC prints out a test for the appropriateness of the proportional odds as-
sumption. The test performed is a score test that determines whether, if you fit a different set of
explanatory variable parameters ˇk for each logit function, those sets of parameters are equivalent.
Thus, the model considered is

logit.�hik/ D ˛k C x0hiˇk

The hypothesis tested is that there is a common parameter vector ˇ instead of distinct ˇk . The
hypothesis can be stated as ˇk D ˇ for all k. Thus, if you reject the null hypothesis, you reject
the assumption of proportional odds and you need to consider a different approach. If the null
hypothesis is not rejected, then the test supports the assumption of proportional odds. Since the
test is comparing t parameters for the t explanatory variables across .r � 1/ logits, where r is the
number of response levels, it has t � .r � 2/ degrees of freedom.

The sample size requirements for this test are moderately demanding; you need approximately five
observations at each outcome at each level of each main effect, or roughly the same sample size as
if you were fitting a generalized logit model. Small samples may artificially make the statistic large,
meaning that any resulting significance needs to be interpreted cautiously. However, nonsignificant
results are always informative.

The partial proportional odds model is an alternative model that can be fit when the proportionality
assumption does not hold for all explanatory variables, but there is proportionality for some
(Peterson and Harrell, 1990). Section 9.2.4 describes this approach See Koch, Amara, and Singer
(1985) for another discussion of this model. When there appears to be no proportionality, you can
fit the model with different parameters for each of the cumulative logits.

Output 9.3 displays the score test for the proportional odds assumption.

Output 9.3 Proportional Odds Test

Score Test for the Proportional
Odds Assumption

Chi-Square DF Pr > ChiSq

1.8833 2 0.3900
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QRS takes the value 1.883 with 2 df. This is clearly nonsignificant, and so the assumption of
proportional odds is a reasonable one for these data.

Output 9.4 contains the goodness-of-fit statistics. With values of 2.7121 and 1.9099, respectively,
and 4 df,QL andQP support the adequacy of the model. The 4 df come from .3�1/.4�1/�2 D 4.

Output 9.4 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 2.7121 4 0.6780 0.6071

Pearson 1.9099 4 0.4775 0.7523

Number of unique profiles: 4

The tests for assessing model fit through explanatory capability are also supportive of the model;
the likelihood ratio test has a value of 19.8865 with 2 df and the score test has a value of 17.8677
with 2 df, as displayed in Output 9.5.

Output 9.5 Global Tests

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 19.8865 2 <.0001

Score 17.8677 2 0.0001

Wald 16.7745 2 0.0002

You can also investigate goodness of fit by performing the score test for a set of additional terms
not in the model. In this case, this effect would simply be the treatment � sex interaction. The
following code requests that PROC LOGISTIC fit a main effects model and then perform a score
test for the other effect listed in the MODEL statement, which is the interaction.

proc logistic order=data;
freq count;
class sex treatment / param=reference;
model improve = sex treatment sex*treatment /

selection=forward start=2;
run;

The score test of interest is labeled “Residual Chi-Square” and is printed after the “Testing Global
Null Hypothesis: BETA=0” table; it is displayed in Output 9.6. The value of the test statistic is
0.2801 (1 df since you are testing the addition of one term to the model) with p D 0:5967. This
indicates that the main effects model is adequate.
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Output 9.6 Score Statistic to Evaluate Goodness of Fit

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

0.2801 1 0.5967

An alternative goodness-of-fit test is the difference in the likelihood ratios for the main effects
model and the saturated model. Although the output is not displayed here, the difference in these
statistics is .150:029 � 149:721/ D 0:308. This is also clearly nonsignificant, compared to a
chi-square distribution with 1 df. (Again, note that whenever you form a test statistic based on the
difference in likelihoods, then the corresponding degrees of freedom are equal to the difference in
the number of parameters for the two models.)

Output 9.7 contains the “Type 3 Analysis of Effects” table. Both sex and treatment are influential
effects. Since these effects have 1 df each, the tests are the same as printed for the parameter
estimates listed in Output 9.8.

Output 9.7 Type 3 Analysis of Effects

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

sex 1 6.2096 0.0127

treatment 1 14.4493 0.0001

Output 9.8 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept marked 1 -2.6671 0.5997 19.7800 <.0001

Intercept some 1 -1.8127 0.5566 10.6064 0.0011

sex female 1 1.3187 0.5292 6.2096 0.0127

treatment active 1 1.7973 0.4728 14.4493 0.0001

Table 9.4 displays the parameter interpretations.
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Table 9.4 Parameter Estimates
Parameter Estimate(SE) Interpretation

˛1 �2:667.0:600/ log odds of marked improvement versus
some or no improvement for
males receiving placebo

˛2 �1:813.0:557/ log odds of marked or some
improvement versus no improvement
for males receiving placebo

ˇ1 1:319.0:529/ increment for both types of log odds
due to female sex

ˇ2 1:797.0:473/ increment for both types of log odds
due to active drug

Females have e1:319 D 3:7 times higher odds of showing improvement as males, both for marked
improvement versus some or no improvement and for marked or some improvement versus no
improvement. Those subjects receiving the active drug have e1:8 D 6 times higher odds of showing
improvement as those on placebo, both for marked improvement versus some or no improvement
and for some or marked improvement versus no improvement. These odds ratio estimates are
displayed in Output 9.9.

Output 9.9 Odds Ratio Estimates

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

ConfidenceLimits

sex       female vs male 3.739 1.325 10.547

treatment active vs placebo 6.033 2.388 15.241

A graph of the predicted cumulative probabilities also provides a useful interpretation of the results
of this analysis. The PLOTS=EFFECT option, with the POLYBAR and X=TREATMENT*SEX
suboptions, specifies this plot from PROC LOGISTIC. The X= suboption specifies the cross-
classication of the main effects for which you want to see predicted probabilities.

proc logistic order=data plots=effect(polybar x=treatment*sex);
freq count;
class sex treatment / param=reference;
model improve = sex treatment sex*treatment /

selection=forward start=2;
run;

It’s clear from the graph in Output 9.10 that the predicted probabilities of marked improvement and
marked or some improvement, are highest for females and active treatment.
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Output 9.10 Predicted Cumulative Probabilities

9.2.3 Multiple Qualitative Explanatory Variables

The inclusion of multiple explanatory variables in a proportional odds model produces no additional
problems. The data in Table 9.5 are from an epidemiological study of chronic respiratory disease
analyzed in Semenya and Koch (1980). Researchers collected information on subjects’ exposure to
general air pollution, exposure to pollution in their jobs, and whether they smoked. The response
measured was chronic respiratory disease status. Subjects were assigned to one of four possible
categories.

� Level I: no symptoms
� Level II: cough or phlegm less than three months a year
� Level III: cough or phlegm more than three months a year
� Level IV: cough and phlegm plus shortness of breath more than three months a year
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Table 9.5 Chronic Respiratory Disease Data

Air Job Smoking Response Level
Pollution Exposure Status I II III IV Total
Low No Non 158 9 5 0 172
Low No Ex 167 19 5 3 194
Low No Current 307 102 83 68 560
Low Yes Non 26 5 5 1 37
Low Yes Ex 38 12 4 4 58
Low Yes Current 94 48 46 60 248
High No Non 94 7 5 1 107
High No Ex 67 8 4 3 82
High No Current 184 65 33 36 318
High Yes Non 32 3 6 1 42
High Yes Ex 39 11 4 2 56
High Yes Current 77 48 39 51 215

The outcome is clearly ordinal, although there is no obvious distance between adjacent levels. You
could combine response categories and fit the set of models that compared Level I versus Level
II, III, and IV; Levels I and II versus Levels III and IV; and Levels I, II, and III versus Level IV.
Note that if you did this, you would be computing models for the individual cumulative logits.
The proportional odds model addresses these cumulative logits simultaneously by assuming that
the slope parameters for the explanatory variables are the same regardless of the cumulative logit
cutpoints.

From these data, you form three cumulative logits:

logit.�i1/ D log
�

�i1

�i2 C �i3 C �i4

�

logit.�i2/ D log
�
�i1 C �i2

�i3 C �i4

�

logit.�i3/ D log
�
�i1 C �i2 C �i3

�i4

�

where i D 1; 2; : : : ; 12 references the 12 populations determined by the levels of air pollution, job
exposure, and smoking status, as ordered in Table 9.5. These cumulative logits are the log odds of
a Level I response to a Level II, III, or IV response; the log odds of a Level I or II response to a
Level III or IV response; and the log odds of a Level I, II, or III response to a Level IV response,
respectively.

However, if you are more interested in the odds of more severe responses to less severe responses,
you may want to order the cumulative logits in the opposite direction:
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logit.�i1/ D log
�

�i4

�i3 C �i2 C �i1

�

logit.�i2/ D log
�
�i4 C �i3

�i2 C �i1

�

logit.�i3/ D log
�
�i4 C �i3 C �i2

�i1

�

You can generate this ordering in PROC LOGISTIC by using the DESCENDING option in the
PROC statement, as shown in the following analysis.

The primary model of interest for these data is a main effects model. Besides three intercept terms
˛1, ˛2, and ˛3 for the three cumulative logits, the main effects model includes the parameters ˇ1,
ˇ2, ˇ3, and ˇ4 for incremental effects for air pollution exposure, job pollution exposure, ex-smoker
status, and current smoking status, respectively.

The following SAS statements create the data set RESPIRE.

data respire;
input air $ exposure $ smoking $ level count @@;
datalines;

low no non 1 158 low no non 2 9
low no ex 1 167 low no ex 2 19
low no cur 1 307 low no cur 2 102
low yes non 1 26 low yes non 2 5
low yes ex 1 38 low yes ex 2 12
low yes cur 1 94 low yes cur 2 48
high no non 1 94 high no non 2 7
high no ex 1 67 high no ex 2 8
high no cur 1 184 high no cur 2 65
high yes non 1 32 high yes non 2 3
high yes ex 1 39 high yes ex 2 11
high yes cur 1 77 high yes cur 2 48
low no non 3 5 low no non 4 0
low no ex 3 5 low no ex 4 3
low no cur 3 83 low no cur 4 68
low yes non 3 5 low yes non 4 1
low yes ex 3 4 low yes ex 4 4
low yes cur 3 46 low yes cur 4 60
high no non 3 5 high no non 4 1
high no ex 3 4 high no ex 4 3
high no cur 3 33 high no cur 4 36
high yes non 3 6 high yes non 4 1
high yes ex 3 4 high yes ex 4 2
high yes cur 3 39 high yes cur 4 51
;
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The following PROC LOGISTIC code requests a main effects proportional odds model. The
MODEL statement generates a score statistic for the goodness of fit of the expanded model
containing all pairwise interaction terms. The SCALE=NONE and AGGREGATE=(AIR EX-
POSURE SMOKING) options request the goodness-of-fit tests based on the 12 subpopulations.
The REF=‘no’ option specified for the EXPOSURE variable in the CLASS statement causes no
exposure to be the reference level.

proc logistic descending;
freq count;
class air exposure(ref='no') smoking / param=reference;
model level = air exposure smoking

air*exposure air*smoking exposure*smoking /
selection=forward include=3 scale=none
aggregate=(air exposure smoking);

run;

Output 9.11 shows the internal ordered values that PROC LOGISTIC uses. Since the response
variable LEVEL has numeric values, the DESCENDING option causes PROC LOGISTIC to sort
the values numerically, then reverses them to form the ordered values.

Output 9.11 Response Profile

Response Profile

Ordered
Value level

Total
Frequency

1 4 230

2 3 239

3 2 337

4 1 1283

Probabilities modeled are cumulated over the lower Ordered Values.

The score test for the proportional odds assumption takes the value QRS D 12:0745 (p D 0:1479)
with 8 df .4.4 � 2//, as shown in Output 9.12. Thus, the proportional odds assumption is not
contradicted.

Output 9.12 Test for Proportionality

Score Test for the Proportional
Odds Assumption

Chi-Square DF Pr > ChiSq

12.0745 8 0.1479

The three intercepts and four indicator variables representing the main effects are first entered into
the model. The residual chi-square has a value of 2.7220 with 5 df and p D 0:7428, so this measure
of goodness of fit suggests that the model-predicted cell proportions are acceptably close to the
observed proportions.
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Output 9.13 Assessment of Fit

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

2.7220 5 0.7428

Output 9.14 displays the goodness-of-fit statistics. QL D 29:9969 and QP D 28:0796, both with
.r � 1/.s � 1/ � t D 29 df (r D 4, s D 12, t D 4). Model adequacy is again supported.

Output 9.14 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 29.9969 29 1.0344 0.4142

Pearson 28.0796 29 0.9683 0.5137

Number of unique profiles: 12

The “Type III Analysis of Effects” table displayed in Output 9.15 suggests a strong effect for job
pollution exposure but no significant effect for outside air pollution (p D 0:675). The smoking
effect is also highly significant.

Output 9.15 Type III Analysis of Effects

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

air 1 0.1758 0.6750

exposure 1 82.0603 <.0001

smoking 2 209.8507 <.0001

The parameter estimates are displayed in Output 9.16.
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Output 9.16 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 4 1 -3.8938 0.1779 479.2836 <.0001

Intercept 3 1 -2.9696 0.1693 307.7931 <.0001

Intercept 2 1 -2.0884 0.1633 163.5861 <.0001

air high 1 -0.0393 0.0937 0.1758 0.6750

exposure yes 1 0.8648 0.0955 82.0603 <.0001

smoking cur 1 1.8527 0.1650 126.0383 <.0001

smoking ex 1 0.4000 0.2019 3.9267 0.0475

The predicted odds ratios illustrate this model’s conclusions. Persons with job exposure have
e0:8648 D 2:374 times higher odds of having serious problems to less serious problems compared
to persons not exposed on the job. Current smokers have e1:8527 D 6:377 times higher odds of
having serious problems to less serious problems compared to nonsmokers. Both of these odds
ratios have been adjusted for the other variables in the model.

Output 9.17 Odds Ratios

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

ConfidenceLimits

air      high vs low 0.961 0.800 1.155

exposure yes vs no 2.374 1.969 2.863

smoking  cur vs non 6.377 4.615 8.812

smoking  ex  vs non 1.492 1.004 2.216

Note that if you fit the same model without reversing the order of the cumulative logits with the
DESCENDING option, you fit an equivalent model. The intercepts will be in the opposite order
and have opposite signs; that is, INTERCEP3 will have the value of this model’s INTERCEP1 with
the opposite sign. The parameters for the effects will have opposite signs, and the odds ratios will
be inverted since they would represent the odds of less serious response to more serious response.

9.2.4 Partial Proportional Odds Model

Table 9.6 contains data from a study by a bicycling clothing manufacturer who wanted to assess
their test glove. It was designed to combat the hand problems experienced by cyclists dealing with
carpal tunnel syndrome. Cyclists wore either the company’s standard gel glove or the new test
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glove for a week’s worth of their standard rides. Then they reported whether they experienced
major, moderate, or no relief from their usual symptoms (numbness and nerve pain) on the bike.

Table 9.6 Cycling Glove Data

Relief From Symptoms
Glove Type Gender Major Moderate None Total
Test Female 12 8 5 25
Test Male 8 14 15 37
Gel Female 5 5 9 19
Gel Male 8 4 20 32

The data layout is similar to that for the arthritis data in Table 9.1: the response is ordinal in nature,
and both explanatory variables have two levels. The proportional odds model is a reasonable one to
consider.

The following DATA step inputs the cycling glove data.

data wrist;
input glove $ gender $ relief $ count @@;
datalines;

test female major 12 test female moderate 8 test female none 5
test male major 8 test male moderate 14 test male none 15
gel female major 5 gel female moderate 5 gel female none 9
gel male major 8 gel male moderate 4 gel male none 20
;

First, a saturated model is fit (not shown here). The interaction term was nonsignificant, so the
following main effects model is fit.

proc logistic order=data;
freq count;
class glove gender / param=reference order=data;
model relief= glove gender / scale=none aggregate;

run;

Output 9.18 displays the response profiles, listed from major to none, so the two cumulative logits
modeled compare major symptom relief to moderate or no relief and major or moderate relief
compared to no relief.

Output 9.18 Response Profile

Response Profile

Ordered
Value relief

Total
Frequency

1 major 33

2 moderate 31

3 none 49

Probabilities modeled are cumulated over the lower Ordered Values.
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Output 9.19 shows the score test for the proportional odds assumption; it has the value 4.1734, 2
df, for p D 0:1241. Strictly speaking, that p-value would not lead you to reject the hypothesis
of proportionality at the ˛ D 0:05 level, but it can be considered a marginal result. The partial
proportional odds model may be appropriate in this situation if the parameters corresponding to one
of the explanatory variables are consistent with proportional odds assumption but the parameters
corresponding to the other explanatory variable are not consistent with the assumption.

Output 9.19 Proportional Odds Test

Score Test for the Proportional
Odds Assumption

Chi-Square DF Pr > ChiSq

4.1734 2 0.1241

If neither set of parameters is consistent with proportional odds, then you could fit a model for the
cumulative logits with different parameters for each cumulative logit as previously discussed:

logit.�hik/ D ˛k C x0hiˇk

where k indexes the two logits. This says that there are separate intercept parameters .˛k/ and
different sets of regression parameters .ˇk/ for each cumulative logit.

But if proportionality holds for one set of coefficients, you could write the model as

logit.�hik/ D ˛k C x0hi1ˇk C x0hi2

where xhi1 represents the explanatory variable with unequal slopes, xhi2 represents the explanatory
variable with equal slopes, ˇk represents the regression parameters for the xhi1, and  represents
the parameters for the xhi2.

The LOGISTIC procedure fits the general cumulative logits model as well as the partial proportional
odds model. One way to determine whether you have partial proportional odds is to fit the general
model and then perform contrast tests to see whether an effect’s parameters are the same.

The following statements perform this analysis for the cycling glove data. The UNEQUALSLOPES
option in the MODEL statement specifies the general model. Since two cumulative logits are being
modeled, the model includes two intercept parameters, two parameters for the gender effect, and
two parameters for the glove effect—each parameter corresponds to one of the two cumulative
logits. The first TEST statement produces a contrast test to assess the equality of the two parameters
for gender, and the second TEST statement produces a contrast test to assess the equality of the
glove parameters. (You can determine the internal SAS names of the parameter effects by creating
an OUTEST= SAS data set in the PROC LOGISTIC statement and printing it—not shown here).

proc logistic order=data;
freq count;

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Partial Proportional Odds Model 277

class glove gender / param=reference order=data;
model relief = glove gender / link=clogit

scale=none aggregate unequalslopes;
pogender: test genderfemale_major=genderfemale_moderate;
poglove: test glovetest_major=glovetest_moderate;

run;

Output 9.20 displays the goodness-of-fit statistics for this model, which are adequate.

Output 9.20 Goodness of Fit

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 1.8487 2 0.9243 0.3968

Pearson 1.8365 2 0.9183 0.3992

Number of unique profiles: 4

Output 9.21 shows the results of the Type 3 tests. Both gender and glove type appear to be important
factors.

Output 9.21 Type 3 Tests

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

glove 2 8.1812 0.0167

gender 2 5.1230 0.0772

The parameter estimates for the general model are displayed in Output 9.22. The parameter
estimates for the gender effect appear to be similar for both the cumulative logit comparing major
relief to moderate or no relief and the cumulative logit comparing any relief (major and moderate
relief) compared to no relief.

Output 9.22 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter relief DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept major 1 -1.3704 0.3799 13.0128 0.0003

Intercept moderate 1 -0.6480 0.3362 3.7155 0.0539

glove test major 1 0.3209 0.4261 0.5672 0.4514

glove test moderate 1 1.0855 0.4022 7.2838 0.0070

gender female major 1 0.7189 0.4209 2.9177 0.0876

gender female moderate 1 0.9067 0.4143 4.7905 0.0286
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Output 9.23 contains the results of formal tests of equal slopes for gender and glove type, considered
separately. The p-value of 0.6307 for the gender effect indicates that the equal slopes assumption is
viable, and the p-value of 0.0474 for glove type indicates that the equal slopes assumption is not
viable.

Output 9.23 Proportional Odds Test

Linear Hypotheses Testing Results

Label
Wald

Chi-Square DF Pr > ChiSq

pogender 0.2311 1 0.6307

poglove 3.9326 1 0.0474

The following PROC LOGISTIC statements request a partial proportional odds model, where
gender is handled with a single slope for both cumulative logits modeled and glove type is
handled with a different parameter for each cumulative logit. This model is specified with the
UNEQUALSLOPES=GLOVE option in the MODEL statement.

proc logistic order=data;
freq count;
class glove gender / param=reference order=data;
model relief= glove gender / scale=none aggregate unequalslopes=glove;

run;

Output 9.24 provides the goodness of fit for the partial proportional odds model. The p-values of
0.3531 and 0.3500 for QL and QP , respectively, indicate a reasonable fit. The degrees of freedom
are .r � 1/.s � 1/ � t:

Output 9.24 Goodness of Fit

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 2.0819 3 0.6940 0.5556

Pearson 2.0994 3 0.6998 0.5520

Number of unique profiles: 4

Output 9.25 displays the Type 3 Analysis of Effects results. Both gender and type of glove remain
influential effects; the effect for gender has 1 df since that effect assumes the proportional odds
assumption, and the effect for glove has 2 df since proportionality is not assumed (unequal slopes).
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Output 9.25 Type 3 Tests

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

glove 2 7.9611 0.0187

gender 1 4.9395 0.0263

Output 9.26 shows the parameter estimates for the partial proportional odds model.

Output 9.26 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter relief DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept major 1 -1.4269 0.3669 15.1215 0.0001

Intercept moderate 1 -0.6123 0.3284 3.4773 0.0622

glove test major 1 0.3278 0.4269 0.5895 0.4426

glove test moderate 1 1.0672 0.3997 7.1292 0.0076

gender female 1 0.8180 0.3680 4.9395 0.0263

Output 9.27 displays the odds ratios.

Output 9.27 Odds Ratios

Odds Ratio Estimates

Effect relief
Point

Estimate
95% Wald

ConfidenceLimits

glove  test vs gel major 1.388 0.601 3.205

glove  test vs gel moderate 2.907 1.328 6.364

gender female vs male 2.266 1.101 4.661

There is only one odds ratio listed for gender since that effect was handled with just one parameter.
Females reported 2.266 times higher odds of relief compared to males, for both major relief
compared to moderate or no relief and for any relief compared to no relief. However, note that the
Wald confidence interval barely excludes the value 1.

Two odds ratios are reported for glove type. When major relief is compared to moderate or no
relief, people with the test glove had 1.33 times higher odds of reporting relief than people with
the gel glove; however, this is not a significant result when you consider its 95% Wald confidence
interval (0.601, 3.205). When any relief is compared to no relief, people with the test glove had
2.907 times higher odds of reporting relief than people with the gel glove.
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To summarize this partial proportional odds model, gender was an influential effect—females
reported relief more often than males—which needed to be accounted for in the model and this
behavior held up for both cumulative logits. Test glove performed better than the gel glove, but that
performance depended on the cumulative logit that was considered.

Peterson and Harrell (1990) described an unconstrained model and a constrained model, in
which various constraints, such as linearity, are imposed on the parameters for an effect. The
analysis described in this section is what is called an unconstrained model, where proportional
odds can be imposed for some effects but not others, and that is the analysis provided by the
UNEQUALSLOPES option. (The constrained model may be available in future releases of the
LOGISTIC procedure.) See Koch, Amara, and Singer (1985) for other examples of data suitable
for partial proportional odds analysis.

9.3 Nominal Response: Generalized Logits Model

When you have nominal response variables, you can also use logistic regression to model your
data. Instead of fitting a model to cumulative logits, you fit a model to generalized logits. Table 9.7
redisplays the data analyzed in Section 6.3.3. Recall that schoolchildren in experimental learning
settings were surveyed to determine which learning style they preferred. Investigators were
interested in whether response was associated with school and their program, which was either a
standard school day or also included after-hours care.

Table 9.7 School Program Data

Learning Style Preference
School Program Self Team Class
1 Regular 10 17 26
1 After 5 12 50
2 Regular 21 17 26
2 After 16 12 36
3 Regular 15 15 16
3 After 12 12 20

Since the levels of the response variable (self, team, and class) have no inherent ordering, the
proportional odds model is not an appropriate mechanism for their analysis. You could form logits
comparing self to team or class, or self or team to class, but that collapses the original structure
of the response levels, which you might want to keep in your analysis. You can model a nominal
response variable with more than two levels by performing a logistic analysis on the generalized
logits.

9.3.1 Methodology

The generalized logit is defined as

logithij D log
�
�hij

�hir

�
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for j D 1; 2; : : : ; .r � 1/. A logit is formed for the probability of each succeeding category over
the last response category.

Thus, the generalized logits for a three-level response like that displayed in Table 9.7 is

logithi1 D log
�
�hi1

�hi3

�
; logithi2 D log

�
�hi2

�hi3

�
for h D 1; 2; 3 for the schools, i D 1 for regular program, and i D 2 for afterschool program.

The model you fit for generalized logits is the model discussed in Section 9.2.1.

logithij D ˛j C x0hiˇj

where j indexes the two logits. This says that there are separate intercept parameters .˛j / and
different sets of regression parameters .ˇj / for each logit. The matrix xhi is the set of explanatory
variable values for the hi th group. Instead of estimating one set of parameters for one logit
function, as in logistic regression for a dichotomous response variable, you are estimating sets of
parameters for multiple logit functions. Whereas for the proportional odds model you estimated
multiple intercept parameters for the cumulative logit functions but only one set of parameters
corresponding to the explanatory variables, for the generalized logits model you are estimating
multiple sets of parameters for both the intercept terms and the explanatory variables.

This model can also be stated as

�hij D
exp.˛j C x0hiˇj /
rP

j 0D1

exp.˛j 0 C x0
hi
ˇj 0/

where ˛r D 0 and ˇr D 0; and it is written in summation notation as

�hik D

expf˛j C
tP

gD1

ˇjgxhigg

rP
j 0D1

expf˛j 0 C
tP

gD1

ˇj 0gxhigg

where g D .1; 2; : : : ; t / references the explanatory variables, ˛r D 0, and ˇrg D 0 for all g. For
the generalized logits model, however, there is a different ˇj for each logit.

This poses no particular problems. Since there are multiple response functions being modeled
per subpopulation, there are more degrees of freedom associated with each effect. Since the
model matrix needs to account for multiple response functions, it takes a more complicated form.
However, the modeling proceeds as usual; you fit your specified model, examine goodness-of-fit
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statistics, and possibly perform model reduction. Note that since you are predicting more than
one response function per subpopulation, the sample size needs to be large enough to support the
number of functions you are modeling. Sometimes, in those situations where there aren’t enough
data to justify the analysis of generalized logits, you will also encounter problems with parameter
estimation and the software will print out notes about infinite parameters. In those situations, you
can often simplify the response structure to a reasonable dichotomy and proceed with a binary
logistic regression.

9.3.2 Fitting Models to Generalized Logits with PROC LOGISTIC

You fit the generalized logits model with the LOGISTIC procedure. The following SAS statements
request the desired analysis. First, the data set SCHOOL is created, and then the LOGISTIC
procedure is invoked. PROC LOGISTIC constructs two generalized logits per group from the
levels of the variable STYLE; it creates six groups based on the unique values of the explanatory
variables, SCHOOL and PROGRAM.

data school;
input school program $ style $ count @@;
datalines;

1 regular self 10 1 regular team 17 1 regular class 26
1 after self 5 1 after team 12 1 after class 50
2 regular self 21 2 regular team 17 2 regular class 26
2 after self 16 2 after team 12 2 after class 36
3 regular self 15 3 regular team 15 3 regular class 16
3 after self 12 3 after team 12 3 after class 20
;

The following PROC LOGISTIC statements perform this analysis. Incremental effects parameter-
ization is requested. The LINK=GLOGIT option specifies that generalized logits are the response
functions.

proc logistic order=data;
freq count;
class school (ref=first) program (ref=last) / param=ref;
model style= program school school*program / link=glogit

scale=none aggregate;
run;

Output 9.28 contains the response profiles. While the analysis does not require the response values
to be ordered in any particular way, unlike the proportional odds model analyses, it is often useful
to order the levels in a manner that facilitates interpretation. Since the ORDER=DATA option was
specified in the PROC statement, the response variable levels are in the order self, team, and class.
This means that generalized logits are formed for the probability of self with respect to class, and
for the probability of team with respect to class.
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Output 9.28 Response Profiles

Response Profile

Ordered
Value style

Total
Frequency

1 self 79

2 team 85

3 class 174

Logits modeled use style='class' as the reference category.

Output 9.29 displays the class level information. The reference logits are the ones corresponding to
School 1 and the regular program.

Output 9.29 Class Level Information

Class Level Information

Class Value
Design

Variables

school 1 0 0

2 1 0

3 0 1

program after 1

regular 0

Since the model is saturated, with as many response functions being modeled as there are groups
or subpopulations, the likelihood ratio test does not apply and PROC LOGISTIC prints missing
values and 0 df, as seen in Output 9.30.

Output 9.30 Goodness Of Fit

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 0.0000 0 . .

Pearson 0.0000 0 . .

Number of unique profiles: 6

The analysis of effects table is displayed in Output 9.31.
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Output 9.31 Analysis of Effects Table

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

program 2 8.2669 0.0160

school 4 4.0142 0.4041

school*program 4 1.7439 0.7827

The school � program interaction is nonsignificant, with a Wald chi-square of 1.74 with 4 df.
Note that the degrees of freedom for modeling two generalized logits are twice what you would
expect for modeling one logit: instead of 1 df for the intercept you have 2 df; instead of 2 df for
SCHOOL, which has three levels, you have 4 df. This is because you are simultaneously modeling
two response functions instead of one; you are doubling the number of parameters being estimated
since you have to estimate parameters for both logits. To determine the correct number of degrees
of freedom for effects in models using generalized logits, multiply the number you would expect
for modeling one logit (the usual logistic regression for a dichotomous outcome) by r � 1, where r
is the number of response levels.

Since the interaction is nonsignificant, the main effects model is fit.266666666666666666664

logit111
logit112
logit121
logit122
logit211
logit212
logit221
logit222
logit311
logit312
logit321
logit322

377777777777777777775

D

266666666666666666664

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

1 0 1 0 1 0 0 0

0 1 0 1 0 1 0 0

1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1

1 0 1 0 0 0 1 0

0 1 0 1 0 0 0 1

377777777777777777775

266666666664

˛1
˛2
ˇ1
ˇ2
ˇ3
ˇ4
ˇ5
ˇ6

377777777775

Essentially, this model matrix has the same structure as one for modeling a single response function,
except that it models two response functions. Thus, the odd rows are for the first logit, and the
even rows are for the second logit. Similarly, the odd columns correspond to parameters for the
first logit, and the even columns correspond to parameters for the second logit. See Section 8.9 for
further discussion.

Table 9.8 contains interpretations for these parameters.
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Table 9.8 Parameter Interpretations

Model
Parameter Interpretation

˛1 logithi1 for School 1 on Regular Program
˛2 logithi2 for School 1 on Regular Program
ˇ1 Incremental Effect for After Hours for logithi1
ˇ2 Incremental Effect for After Hours for logithi2
ˇ3 Incremental Effect for School 2 for logithi1
ˇ4 Incremental Effect for School 2 for logithi2
ˇ5 Incremental Effect for School 3 for logithi1
ˇ6 Incremental Effect for School 3 for logithi2

The following statements produce the main effects model. The ODDSRATIO statements are added
to compute odds ratios.

proc logistic order=data;
freq count;
class school (ref=first) program (ref=last) / param=ref;
model style= program school / link=glogit

scale=none aggregate;
oddsratio school;
oddsratio program;

run;

Output 9.32 displays the goodness-of-fit statistics:

Output 9.32 Goodness of Fit

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 1.7776 4 0.4444 0.7766

Pearson 1.7589 4 0.4397 0.7800

Number of unique profiles: 6

The deviance statistic has a value of 1.78 with 4 df, which is indicative of a good fit.

Output 9.33 contains the analysis of effects table for the main effects model.

Output 9.33 Analysis of Effects Table

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

program 2 10.9160 0.0043

school 4 14.8424 0.0050
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The tests for the school and program effects are significant; SCHOOL has a Wald chi-square value
of 14.84 with 4 df, and PROGRAM has a Wald chi-square value of 10.92 with 2 df.

The parameter estimates and tests for individual parameters are displayed in Output 9.34.

Output 9.34 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter style DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept self 1 -1.2233 0.3154 15.0454 0.0001

Intercept team 1 -0.5662 0.2586 4.7919 0.0286

program after self 1 -0.7474 0.2820 7.0272 0.0080

program after team 1 -0.7426 0.2706 7.5332 0.0061

school 2 self 1 1.0828 0.3539 9.3598 0.0022

school 2 team 1 0.1801 0.3172 0.3224 0.5702

school 3 self 1 1.3147 0.3839 11.7262 0.0006

school 3 team 1 0.6556 0.3395 3.7296 0.0535

Table 9.9 contains the parameter estimates arranged according to the logits they reference. This is
often a useful way to display the results from an analysis of generalized logits.

Table 9.9 Coefficients from Final Model
logit(self/class) logit(team/class)

Standard Standard
Variable Coefficient Error Coefficient Error
Intercept �1:223 ( Ǫ1) 0:315 �0:566 ( Ǫ2) 0.259
Program �0:747 ( Ǒ1) 0:282 �0:743 ( Ǒ2) 0.271
School 2 1:083 ( Ǒ3) 0:354 0:180 ( Ǒ4) 0.317
School 3 1:315 ( Ǒ5) 0:384 0:656 ( Ǒ6) 0.340

School 3 has the largest incremental effect for school, particularly for the logit comparing self to
class. Program has a nearly similar effect on both logits.

Odds ratios can also be used in models for generalized logits to facilitate model interpretation.
Table 9.10 contains the odds corresponding to each logit function for each subpopulation in the
data. However, unlike the proportional odds model where the form of the odds ratio was the
same regardless of the cumulative logit being considered, the formulas for the odds ratio for the
generalized logits model depend on which generalized logit is being considered. The third column,
corresponding to the (self/team) logit, was generated by subtraction.
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Table 9.10 Model-Predicted Odds
Odds

School Program Self/Class Team/Class Self/Team
1 Regular e˛1 e˛2 e˛1�˛2

1 After e˛1Cˇ1 e˛2Cˇ2 e˛1�˛2Cˇ1�ˇ2

2 Regular e˛1Cˇ3 e˛2Cˇ4 e˛1�˛2Cˇ3�ˇ4

2 After e˛1Cˇ1Cˇ3 e˛2Cˇ2Cˇ4 e˛1�˛2Cˇ1Cˇ3�ˇ2�ˇ4

3 Regular e˛1Cˇ5 e˛2Cˇ6 e˛1�˛2Cˇ5�ˇ6

3 After e˛1Cˇ1Cˇ5 e˛2Cˇ2Cˇ6 e˛1�˛2Cˇ1Cˇ5�ˇ2�ˇ6

To determine the odds ratio of self to class for school program, comparing after hours to regular
program, you compute (for School 1)

e˛1Cˇ1

e˛1
D eˇ1

Thus, the odds are e�0:7474 D 0:4736 times higher of choosing the self-learning style over the class
learning style if students attended the after-hours program versus the regular program. Note that
you obtain the same result if you do the comparison for School 2 or School 3. If you work through
the exercise for the odds ratio of team to class, you find that the odds are e.�:7426/ D 0:4759

times higher of choosing the team learning style as the class learning style if students attended the
after-hours program versus the regular program.

Comparing the odds ratio for School 1 compared to School 2 proceeds in the same manner. You
form the ratio of the odds for School 1 regular program to School 2, regular program (after-hours
program comparison would also work), to obtain (for self/class logit)

e˛1

e˛1Cˇ3
D e�ˇ3

Thus, the subjects from School 1 have e�1:0828 D 0:339 times the odds of choosing the self-
learning style over the class learning style as those students from School 2.

You can also determine the odds ratios for the (self/team) logits. Form the ratio of the odds for the
after-hours program to regular program for self-learning compared to team learning with

e˛1�˛2Cˇ1�ˇ2

e˛1�˛2
D eˇ1�ˇ2
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Thus, the students in the after-hours program have e�0:0048 D 0:9942 times the odds of choosing
the self-learning style over the team learning style compared to those students in the regular
program.

PROC LOGISTIC produces these odds ratios statistics for the generalized logits explicitly
modeled when you use the ODDSRATIO statement; one statement is required for each variable.
Comparisons are made to all levels of the CLASS variable.

Output 9.35 Odds Ratio Estimates

Odds Ratio Estimates and Wald Confidence Intervals

Label Estimate 95% ConfidenceLimits

style self: school 2 vs 1 2.953 1.476 5.909

style team: school 2 vs 1 1.197 0.643 2.230

style self: school 3 vs 1 3.724 1.755 7.902

style team: school 3 vs 1 1.926 0.990 3.747

style self: school 2 vs 3 0.793 0.413 1.522

style team: school 2 vs 3 0.622 0.317 1.219

style self: program after vs regular 0.474 0.273 0.823

style team: program after vs regular 0.476 0.280 0.809

To summarize, School 1 made a difference for the (self/class) logit, but not for the (team/class)
logit. Program was influential for both types of logits, as regular program participants had
(1/0.474)=2.11 times the odds of choosing the self-learning styles as the class style, and the results
for the (team/class) logit were almost identical.

To compute the odds ratios for (self/team) you would need to submit another PROC LOGISTIC run
and explicitly model the (class/team) and (self/team) logits by not specifying the ORDER=DATA
option in the PROC statement.

9.3.3 Generalized Logit Model with Continuous Explanatory Variable

The following data are from Table 6.1 in Agresti (2007). Researchers studied the food wild
alligators chose to eat as their primary food in Lake George, Florida. The types of food were fish
(F), invertebrate (I), and other (O). Invertebrates were generally apple snails, crayfish, and aquatic
insects, while Other were mammal, plant material, stones and debris, and reptiles. Table 9.11
contains the choices as well as the length in meters of the alligators.
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Table 9.11 Alligator Size and Food Choice*

Length and Fish (F), Invertebrate (I), or Other (O) Food
1.24 I 1.30 I 1.30 I 1.32 F 1.32 F 1.40 F 1.42 I 1.42 F
1.45 I 1.45 O 1.47 I 1.47 F 1.50 I 1.52 I 1.55 I 1.60 I
1.63 I 1.65 O 1.65 I 1.65 F 1.65 F 1.68 F 1.70 I 1.73 O
1.78 I 1.78 I 1.78 O 1.80 I 1.80 F 1.85 F 1.88 I 1.93 I
1.98 I 2.03 F 2.03 F 2.16 F 2.26 F 2.31 F 2.31 F 2.36 F
2.36 F 2.39 F 2.41 F 2.44 F 2.46 F 2.56 O 2.67 F 2.72 I
2.79 F 2.84 F 3.25 O 3.28 O 3.33 F 3.56 F 3.58 F 3.66 F
3.68 O 3.71 F 3.89 F
*Reprinted by permission of John Wiley & Sons.

The choice of food is a nominal response since there is no logical order to the different choices.
Thus, generalized logits regression is a reasonable strategy to determine whether size of the
alligators impacted their choice of food. Unlike the previous example in which case the two
explanatory variables were classification variables, size of alligator as measured in meters is a
continuous explanatory variable.

The following SAS statements create the SAS data set ALLIGATOR.

data alligator;
input length choice $ @@;

datalines;
1.24 I 1.30 I 1.30 I 1.32 F 1.32 F 1.40 F 1.42 I 1.42 F
1.45 I 1.45 O 1.47 I 1.47 F 1.50 I 1.52 I 1.55 I 1.60 I
1.63 I 1.65 O 1.65 I 1.65 F 1.65 F 1.68 F 1.70 I 1.73 O
1.78 I 1.78 I 1.78 O 1.80 I 1.80 F 1.85 F 1.88 I 1.93 I
1.98 I 2.03 F 2.03 F 2.16 F 2.26 F 2.31 F 2.31 F 2.36 F
2.36 F 2.39 F 2.41 F 2.44 F 2.46 F 2.56 O 2.67 F 2.72 I
2.79 F 2.84 F 3.25 O 3.28 O 3.33 F 3.56 F 3.58 F 3.66 F
3.68 O 3.71 F 3.89 F
;

The only difference in the approach when the explanatory variable is continuous is that the
usual goodness-of-fit statistics QP and QL don’t apply. If you created a cross-classification of
choices and alligator size, only a few cells would have more than one animal, and the sample size
requirement of these statistics that each cell contain a minimum of five subjects isn’t met. However,
you can assess goodness of fit by using the residual score statistic and creating an expanded model
that includes the squared term for size.

The following PROC LOGISTIC statements produce a generalized logits analysis of the alligator
data. The PLOTS=EFFECT option in the PROC LOGISTIC statement requests a prediction plot
for each outcome by size. The ORDER=DATA option for the response variable CHOICE in the
MODEL statement requests that the generalized logits be formed according to the order found
in the data. Thus, the two generalized logits formed will compare fish to other and invertebrate
to other. Both LENGTH and LENGTH*LENGTH are included as explanatory variables, and the
SELECTION=FORWARD and INCLUDE=1 options are specified to produce the residual score
statistic corresponding to the expanded model with the squared term in it.
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The LINK=GLOGIT option in the MODEL statement is required to perform generalized logits
regression.

ods graphics on;
proc logistic data=alligator plots=effect;

model choice(order=data) = length length*length/
selection=forward include=1 link=glogit;

run;
ods graphics off;

Output 9.36 displays the response profile. Most of the alligators chose fish for their primary food,
while the next most popular choice was invertebrates. Eight of the alligators found other food
source to be most appealing.

Output 9.36 Response Profile

Response Profile

Ordered
Value choice

Total
Frequency

1 I 20

2 F 31

3 O 8

Logits modeled use choice='O' as the reference category.

Output 9.37 contains the results for the residual score statistic. QRS takes the value 0.4260, with
p D 0:8081 and 2 df, indicating that the main effect model with LENGTH is an adequate one.

Output 9.37 Residual Score Test

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

0.4260 2 0.8081

The model fit statistics are displayed in Output 9.38.

Output 9.38 Fit Statistics

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 119.142 106.341

SC 123.297 114.651

-2 Log L 115.142 98.341

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Generalized Logit Model with Continuous Explanatory Variable 291

Output 9.39 contains the parameter estimates. Length of alligator appears to be important for the
(invertebrate/other) logit, but not for the (fish/other) logit.

Output 9.39 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter choice DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept I 1 5.6974 1.7938 10.0881 0.0015

Intercept F 1 1.6177 1.3073 1.5314 0.2159

length I 1 -2.4654 0.8997 7.5101 0.0061

length F 1 -0.1101 0.5171 0.0453 0.8314

This is more evident when you examine the odds ratios displayed in Output 9.40.

Output 9.40 Odds Ratios

Odds Ratio Estimates and Wald Confidence Intervals

Label Estimate 95% ConfidenceLimits

choice I: length 0.085 0.015 0.496

choice F: length 0.896 0.325 2.468

For invertebrate compared to other, other has (1/0.085)=11.76 greater odds of being chosen per
meter increase in size of the alligator. For fish compared to other, other has (1/0.896) =1.12 times
greater odds of being chosen per meter increase in size.

You can compute the odd ratio comparing fish to invertebrate by computing the implicit slope for
the logit(fish/invertebrate) as

�.ˇfish/other C ˇinvertebrate/other/ D �.�2:4654 � 0:1101/ D 2:3553

Thus, when fish are compared to invertebrate, fish have e2:3553=10.54 times higher odds of being
chose as the primary food source per meter increase in alligator length.

A graph of the model-predicted probabilities for each food choice by alligator length (Output 9.41)
relays the results visually. Larger alligators clearly prefer to eat fish.
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Output 9.41 Predicted Probabilities

9.3.4 Exact Methods for Generalized Logits Model

Exact methods can also be applied to generalized logits regression. The following data come from
a study in which a physical therapy practice experimented with different treatment modalities in
a strengthening program. The therapists rotated patients through three programs for maintenance
after basic strength had been attained. The strengthening programs included free weights, resistance
bands, and weight machines. The data are displayed in Table 9.12.

Table 9.12 Physical Therapy Data

Strengthening Choice
Gender Status Machines Free Weights Bands
Males Adult 2 13 3
Males Senior 10 9 3
Females Adult 3 9 1
Females Senior 8 0 1

The possible outcomes are clearly nominal since there is no obvious ordinality across the choices
of machine, free weights, or resistance bands. The generalized logit is a logical response function.
The numerous table counts less than five, including a zero count, make it unlikely that an analysis
based on asymptotics would be appropriate.

data pt;
format therapy $11.;
input gender $ age $ therapy $ count @@;
datalines;

males adult machines 2 males senior machines 10
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males adult freeweights 13 males senior freeweights 9
males adult bands 3 males senior bands 3
females adult machines 3 females senior machines 8
females adult freeweights 9 females senior freeweights 0
females adult bands 1 females senior bands 1
;

The following PROC LOGISTIC statements request the generalized logits analysis.

proc logistic data=pt;
freq count;
class gender(ref='females') age(ref='senior') / param=ref;
model therapy(ref='machines') = gender age / link=glogit scale=none aggregate;

run;

Output 9.42 contains the response profile. The logits formed compare free weights and bands to
machines.

Output 9.42 Response Profile

Response Profile

Ordered
Value therapy

Total
Frequency

1 bands 8

2 freeweights 31

3 machines 23

Logits modeled use therapy='machines' as the reference category.

Output 9.43 contains the goodness-of-fit statistics.

Output 9.43 Goodness of Fit

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 3.8087 2 1.9043 0.1489

Pearson 2.8044 2 1.4022 0.2461

Number of unique profiles: 4

Output 9.44 contains the global fit statistics for assessing goodness of fit through explanatory
capacity. Their p-values are an indication that the sample sizes are too small for asymptotic
methods; the p-value for the Wald statistic is more than ten times larger than the p-value for the
likelihood ratio statistic (0.0122 versus 0.0008).
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Output 9.44 Global Fit Statistics

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 18.9061 4 0.0008

Score 16.9631 4 0.0020

Wald 12.8115 4 0.0122

Output 9.45 and Output 9.46 contain the asymptotic results for comparison purposes.

Output 9.45 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter therapy DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept bands 1 -2.6450 1.0166 6.7694 0.0093

Intercept freeweights 1 -1.8774 0.7482 6.2969 0.0121

gender males bands 1 1.5261 1.0158 2.2570 0.1330

gender males freeweights 1 1.5758 0.7569 4.3347 0.0373

age adult bands 1 1.7416 0.9623 3.2754 0.0703

age adult freeweights 1 2.6472 0.7572 12.2212 0.0005

Output 9.46 Odds Ratios

Odds Ratio Estimates

Effect therapy
Point

Estimate
95% Wald

ConfidenceLimits

gender males vs females bands 4.600 0.628 33.686

gender males vs females freeweights 4.835 1.097 21.313

age    adult vs senior bands 5.707 0.865 37.629

age    adult vs senior freeweights 14.115 3.200 62.262

The following statements request the exact analysis. Variables GENDER and AGE are placed
in the EXACT statement. The JOINT option requests a joint test for these effects, and the
ESTIMATE=BOTH option requests both the parameter estimates and the exponentiated parameter
estimates.

proc logistic data=pt;
freq count;
class gender(ref='females') age(ref='senior') / param=ref;
model therapy(ref='machines') = gender age / link=glogit;
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exact gender age / joint estimate=both;
run;

Output 9.47 displays the exact test results. Age appears to be a significant effect, and gender
appears to be a marginal effect.

Output 9.47 Exact Tests

Exact Conditional Analysis

Exact Conditional Analysis
Exact Conditional Tests

p-Value

Effect Test Statistic Exact Mid

Joint Score 16.6895 0.0013 0.0013

Probability 7.115E-7 0.0010 0.0010

gender Score 5.0830 0.0870 0.0835

Probability 0.00697 0.0988 0.0953

age Score 14.5093 0.0003 0.0003

Probability 0.000032 0.0003 0.0003

Output 9.48 contains the exact parameter estimates.

Output 9.48 Exact Parameter Estimates

Exact Parameter Estimates

Parameter therapy Estimate
Standard

Error

95%
Confidence

Limits
Two-sided

p-Value

gender males bands 1.4114 0.9710 -0.7079 4.0869 0.2715

gender males freeweights 1.5017 0.7376 -0.0692 3.4081 0.0641

age adult bands 1.6244 0.9252 -0.5146 3.9734 0.1673

age adult freeweights 2.5231 0.7317 0.9979 4.4303 0.0002

Output 9.49 displays the odds ratio estimates for the exact analysis. Age has a strong effect for the
(freeweights/machines) logit; its effect for the (bands/machines) logit is marginal at best. You can
also see that gender has a marginal influence when the (freeweight/bands) logit is considered, but
no influence for the (bands/machines logit).
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Output 9.49 Exact Odds Ratios

Exact Odds Ratios

Parameter therapy Estimate

95%
Confidence

Limits
Two-sided

p-Value

gender males bands 4.102 0.493 59.553 0.2715

gender males freeweights 4.489 0.933 30.209 0.0641

age adult bands 5.076 0.598 53.165 0.1673

age adult freeweights 12.467 2.713 83.960 0.0002

For these data, you should report the exact analysis results. In general, note that since the
generalized logits analysis means many more parameters, exact methods may only handle relatively
small models for relatively small data sets.
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Chapter 10

Conditional Logistic Regression
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10.1 Introduction

The usual maximum likelihood approach to estimation in logistic regression is not always
appropriate. As discussed in Chapter 8, “Logistic Regression I: Dichotomous Response,” there
may be insufficient sample size for logistic regression, particularly if the data are highly stratified
and the strata contain small numbers of subjects. In these situations, you have a small sample size
relative to the number of parameters being estimated since you will be estimating parameters for
the stratification effects. For the maximum likelihood estimates to be valid, you need a large sample
size relative to the number of parameters.

Often, highly stratified data come from a design with cluster sampling, that is, designs with two or
more observations for each primary sampling unit or cluster. Common examples of such data are
paired observations, such as fraternal twins (or litter mates), right and left sides of the body in a
dermatology study, or two occasions for an expression of an opinion. Ordinary logistic regression
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may be inappropriate for such data, since you have insufficient sample size to estimate the stratum
effect (family, litter, patient, respondent) without bias. However, by using conditioning arguments,
you can eliminate the strata effects and estimate the other effects in which you are interested.

The appropriate form of logistic regression for these types of data is called conditional logistic
regression. It takes the stratification into account by basing the maximum likelihood estimation
of the model parameters on a conditional likelihood. You can fit these models in SAS with the
LOGISTIC procedure. In the following sections, the conditional likelihood for paired observations
from small clusters is derived, and the methodology is illustrated with data from a randomized
clinical trial and a two-period crossover design study. Then, the more general stratified situation is
discussed and illustrated with data from a three-period crossover study and a repeated measurements
study.

Matched case control studies in epidemiology also produce highly stratified data. In these studies,
you match cases (persons with a disease or condition) to controls (persons without the disease
or condition) on the basis of variables thought to be potential confounders such as age, sex,
and location of residence. The use of conditional logistic regression for matched studies in
epidemiological work is discussed and illustrated with two examples.

Finally, the use of exact logistic regression for the stratified setting is discussed for several
examples.

10.2 Paired Observations from a Highly Stratified Cohort Study

Consider a randomized clinical trial where h D 1; 2; : : : ; q centers are randomly selected, and, at
each center, one randomly selected patient is placed on treatment and another randomly selected
patient is placed on placebo. Interest lies in whether the patients improve; thus, improvement is the
event of interest. Since there are only two observations per center, it is not possible to estimate a
center effect (pair effect) without bias. As a general rule, you need each possible outcome to have
five observations in each category of each categorical explanatory variable in the model for valid
estimation to proceed.

Suppose yhi D 1 if improvement occurs and yhi D 0 if it does not (i D 1 for treatment and i D 2
for the placebo; h D 1; 2; : : : ; q). Suppose xhi D 1 for treatment and xhi D 0 for placebo, and
zhi D .zhi1; zhi2; : : : ; zhit /0 represents the t explanatory variables.

The usual logistic likelihood for fyhig is written

Prfyhig D �hi D
expf˛h C ˇxhi C  0zhig

1C expf˛h C ˇxhi C  0zhig

where ˛h is an intercept for the hth center, ˇ is the treatment parameter, and  0 D .1; 2; : : : ; t /
is the parameter vector for the covariates z. Since there are only two observations per center, you
can’t estimate these parameters without bias. However, you can fit a model based on conditional
probabilities that condition away the center effects, which results in a model that contains
substantially fewer parameters. In this context, the ˛h are known as nuisance parameters. It is
useful to describe these data with a model that considers the probability of a pair’s treatment patient

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



10.2. Paired Observations from a Highly Stratified Cohort Study 299

improving and the pair’s placebo patient not improving, compared to the probability that one of
them improved.

You can write a conditional probability for fyhig as the ratio of the joint probability of a pair’s
treatment patient improving and the pair’s placebo patient not improving to the joint probability
that either the treatment patient or the placebo patient improved.

Pr
n
yh1D1; yh2D0

ˇ̌̌
yh1D1; yh2D0 or yh1D0; yh2D1

o
D

Prfyh1D1gPrfyh2D0g
Prfyh1D1gPrfyh2D0g C Prfyh1D0gPrfyh2D1g

You write the probabilities in terms of the logistic model as

Prfyh1D1gPrfyh2D0g D
expf˛h C ˇ C  0zh1g

1C expf˛h C ˇ C  0zh1g
�

1

1C expf˛h C  0zh2g

and

Prfyh1D1gPrfyh2D0g C Prfyh1D0gPrfyh2D1g D

expf˛h C ˇ C  0zh1g
1C expf˛h C ˇ C  0zh1g

�
1

1C expf˛h C  0zh2g

C
1

1C expf˛h C ˇ C  0zh1g
�

expf˛h C  0zh2g
1C expf˛h C  0zh2g

Form their ratio to obtain

expf˛h C ˇ C  0zh1g
expf˛h C ˇ C  0zh1g C expf˛h C  0zh2g

and, since the denominators cancel out, this expression reduces to

expfˇ C  0.zh1 � zh2/g
1C expfˇ C  0.zh1 � zh2/g

which no longer contains the f˛hg. Thus, by focusing on modeling a meaningful conditional
probability, you develop a model with a reduced number of parameters that can be estimated
without bias.

The conditional likelihood for the entire data is written
qY
hD1

�
expfˇ C  0.zh1 � zh2/g

1C expfˇ C  0.zh1 � zh2/g

�yh1.1�yh2/
�

1

1C expfˇ C  0.zh1 � zh2/g

�.1�yh1/yh2

This is the unconditional likelihood for the usual logistic model, except that the intercept is now
ˇ, the effect for treatment, and each observation represents a pair of observations from a center
where the response is 1 if the pair represents the combination fyh1D1 and yh2D 0g and 0 if the
pair has the combination fyh1D 0 and yh2D1g. The explanatory variables are the differences in
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values of the explanatory variables for the treatment patient and the placebo patient. Since the
likelihood is conditioned on the discordant pairs, the concordant pairs (the observations where
fyh1D1 and yh2D1g and fyh1D0 and yh2D0g) are uninformative and thus can be ignored.

Note that the ratio above can also be rewritten as

expfˇ C  0zh1g
expfˇ C  0zh1g C expf 0zh2g

and the corresponding likelihood for the entire data as

qY
hD1

�
expfˇ C  0zh1g

expfˇ C  0zh1g C expf 0zh2g

�yh1.1�yh2/
�

expf 0zh2g
expfˇ C  0zh1g C expf 0zh2g

�.1�yh1/yh2

This is the same likelihood that applies to paired data in a simple case of the Cox regression model
(proportional hazards model), which is used in the analysis of survival times.

If there are no covariates for such a study, so that the data represent a 2�2 table where the responses
for treatment are cross-classified with the responses for placebo, then testing ˇ D 0 is equivalent to
McNemar’s test. Also, it can be shown that eˇ is estimated by n12=n21, where n12 and n21 are the
off-diagonal counts from this table.

10.3 Clinical Trials Study Analysis

Researchers studying the effect of a new treatment on a skin condition collected information from
79 clinics. In each clinic, one patient received the treatment, and another patient received a placebo.
Variables collected included age, sex, and an initial grade for the skin condition, which ranged
from 1 to 4 for mild to severe. The response variable was whether the skin condition improved.
Conditional logistic regression is suitable for the analysis of such data.

10.3.1 Analysis Using the LOGISTIC Procedure

You could proceed by taking differences of the observations as discussed earlier and fitting a
standard logistic regression to them. However, you can perform conditional logistic regression for
the original data by using the STRATA statement in PROC LOGISTIC.

The following DATA step creates the SAS data set TRIAL.

data trial;
input center treatment $ sex $ age improve initial @@;
datalines;

1 t f 27 0 1 1 p f 32 0 2 41 t f 13 1 2 41 p m 22 0 3
2 t f 41 1 3 2 p f 47 0 1 42 t m 31 1 1 42 p f 21 1 3
3 t m 19 1 4 3 p m 31 0 4 43 t f 19 1 3 43 p m 35 1 3
4 t m 55 1 1 4 p m 24 1 3 44 t m 31 1 3 44 p f 37 0 2
5 t f 51 1 4 5 p f 44 0 2 45 t f 44 0 1 45 p f 41 1 1
6 t m 23 0 1 6 p f 44 1 3 46 t m 41 1 2 46 p m 41 0 1
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7 t m 31 1 2 7 p f 39 0 2 47 t m 41 1 2 47 p f 21 0 4
8 t m 22 0 1 8 p m 54 1 4 48 t f 51 1 2 48 p m 22 1 1
9 t m 37 1 3 9 p m 63 0 2 49 t f 62 1 3 49 p f 32 0 3
10 t m 33 0 3 10 p f 43 0 3 50 t m 21 0 1 50 p m 34 0 1
11 t f 32 1 1 11 p m 33 0 3 51 t m 55 1 3 51 p f 35 1 2
12 t m 47 1 4 12 p m 24 0 4 52 t f 61 0 1 52 p m 19 0 1
13 t m 55 1 3 13 p f 38 1 1 53 t m 43 1 2 53 p m 31 0 2
14 t f 33 0 1 14 p f 28 1 2 54 t f 44 1 1 54 p f 41 1 1
15 t f 48 1 1 15 p f 42 0 1 55 t m 67 1 2 55 p m 41 0 1
16 t m 55 1 3 16 p m 52 0 1 56 t m 41 0 2 56 p m 21 1 4
17 t m 30 0 4 17 p m 48 1 4 57 t f 51 1 3 57 p m 51 0 2
18 t f 31 1 2 18 p m 27 1 3 58 t m 62 1 3 58 p m 54 1 3
19 t m 66 1 3 19 p f 54 0 1 59 t m 22 0 1 59 p f 22 0 1
20 t f 45 0 2 20 p f 66 1 2 60 t m 42 1 2 60 p f 29 1 2
21 t m 19 1 4 21 p f 20 1 4 61 t f 51 1 1 61 p f 31 0 1
22 t m 34 1 4 22 p f 31 0 1 62 t m 27 0 2 62 p m 32 1 2
23 t f 46 0 1 23 p m 30 1 2 63 t m 31 1 1 63 p f 21 0 1
24 t m 48 1 3 24 p f 62 0 4 64 t m 35 0 3 64 p m 33 1 3
25 t m 50 1 4 25 p m 45 1 4 65 t m 67 1 2 65 p m 19 0 1
26 t m 57 1 3 26 p f 43 0 3 66 t m 41 0 2 66 p m 62 1 4
27 t f 13 0 2 27 p m 22 1 3 67 t f 31 1 2 67 p m 45 1 3
28 t m 31 1 1 28 p f 21 0 1 68 t m 34 1 1 68 p f 54 0 1
29 t m 35 1 3 29 p m 35 1 3 69 t f 21 0 1 69 p m 34 1 4
30 t f 36 1 3 30 p f 37 0 3 70 t m 64 1 3 70 p m 51 0 1
31 t f 45 0 1 31 p f 41 1 1 71 t f 61 1 3 71 p m 34 1 3
32 t m 13 1 2 32 p m 42 0 1 72 t m 33 0 1 72 p f 43 0 1
33 t m 14 0 4 33 p f 22 1 2 73 t f 36 0 2 73 p m 37 0 3
34 t f 15 1 2 34 p m 24 0 1 74 t m 21 1 1 74 p m 55 0 1
35 t f 19 1 3 35 p f 31 0 1 75 t f 47 0 2 75 p f 42 1 3
36 t m 20 0 2 36 p m 32 1 3 76 t f 51 1 4 76 p m 44 0 2
37 t m 23 1 3 37 p f 35 0 1 77 t f 23 1 1 77 p m 41 1 3
38 t f 23 0 1 38 p m 21 1 1 78 t m 31 0 2 78 p f 23 1 4
39 t m 24 1 4 39 p m 30 1 3 79 t m 22 0 1 79 p m 19 1 4
40 t m 57 1 3 40 p f 43 1 3
;

First, consider the model where treatment is the only term. In this case, there is only one xhik ,
treatment, and there are no zhi . Table 10.1 displays the associated crosstabulation of pairs by
treatment and response.

Table 10.1 Pairs Breakdown
Improvement

Treatment No Yes
No 7 34
Yes 20 18

McNemar’s test statistic is computed as

.34 � 20/2

.34C 20/
D 3:63

which is nearly significant. Also, n12=n21 D 1:7 is an estimate of the odds ratio, which is also the
exponentiated parameter for treatment in the conditional logistic regression model.
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The following SAS statements produce the conditional logistic analysis with only treatment in the
model. You place the stratification variable CENTER in the STRATA statement. SubidxSTRATA
statementLOGISTIC procedureSubidxLOGISTIC procedureSTRATA statement

proc logistic data=trial;
class treatment(ref="p") /param=ref;
strata center;
model improve(event="1")= treatment;

run;

Output 10.1 displays information about the analysis. The input data included 79 strata, of which 25
were uninformative (those in which each patient of the pair had the identical response).

Output 10.1 Model Information

Conditional Analysis

Conditional Analysis
Model Information

Data Set WORK.TRIAL

Response Variable improve

Number of Response Levels 2

Number of Strata 79

Number of Uninformative Strata 25

Frequency Uninformative 50

Model binary logit

Optimization Technique Newton-Raphson ridge

The response profiles shown in Output 10.2 indicate that improvement is the majority response and
that the logistic regression focuses on the probability of improvement.

Output 10.2 Response Profiles

Response Profile

Ordered
Value improve

Total
Frequency

1 0 68

2 1 90

Probability modeled is improve=1.

Output 10.3 displays both the values of the classification variables and the reference level of
placebo (p) for treatment.
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Output 10.3 Classification Levels

Class Level Information

Class Value
Design

Variables

treatment p 0

t 1

Output 10.4 provides summary information about the response patterns found in the strata; as
previously discussed, 54 strata are informative since both response values are recorded. There
are 25 uninformative strata, with 18 pairs recording improvement and 7 pairs recording no
improvement.

Output 10.4 Strata Summary

Strata Summary

improve

Response
Pattern 0 1

Number of
Strata Frequency

1 0 2 18 36

2 1 1 54 108

3 2 0 7 14

Output 10.5 contains the parameter estimates. Note that no intercept term is displayed; the
intercepts correspond to the strata (centers) and they have been conditioned away.

Output 10.5 Treatment Effect Only Model

Analysis of Conditional Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

treatment t 1 0.5306 0.2818 3.5457 0.0597

Note that eˇ D e0:5306 D 1:70, the same value for the odds ratio computed from Table 10.1. In
addition, the Wald test takes the value 3.5457 with p D 0:0597, which is nearly significant. This
value is also close to the value 3.63 computed for McNemar’s test. As the sample size grows,
the Wald statistic for the treatment effect and McNemar’s test statistic become asymptotically
equivalent.

The analysis continues with the consideration of other explanatory variables. The following PROC
LOGISTIC invocation retains TREATMENT but considers other main effects through the forward
selection process.
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proc logistic data=trial;
class sex (ref="f") treatment(ref="p") /param=ref;
strata center;
model improve(event="1") = treatment initial sex age/

selection=forward include=1 details;
run;

Only INITIAL was added to the model. Output 10.6 displays the residual score statistic (QRS D
2:2008 with 2 df and p D 0:3327), which is the joint test for AGE and SEX, indicating that they
are unimportant. The relatively small size of n12 and n21 (20 and 34, respectively) limit the utility
of a score test for the inclusion of additional terms such as pairwise interactions.

Output 10.6 Score Statistics

Conditional Analysis

Conditional Analysis

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

2.2008 2 0.3327

Analysis of Effects Eligible for Entry

Effect DF
Score

Chi-Square Pr > ChiSq

sex 1 0.9358 0.3334

age 1 1.2516 0.2632

If you examine the parameter estimates in Output 10.7, it appears that treatment becomes slightly
more influential when initial score is added to the model (p D 0:0413).

Output 10.7 Maximum Likelihood Estimates

Analysis of Conditional Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

treatment t 1 0.7113 0.3487 4.1617 0.0413

initial 1 1.0774 0.3214 11.2395 0.0008

However, examine the statistics in the “Global Fit Statistics” table in Output 10.8. The likelihood
ratio, score, and Wald statistics have fairly different values at 22.0627, 18.5853, and 12.9050,
respectively, for 2 df. This suggests that asymptotic methods may not be appropriate for these data,
and perhaps the number of off-diagonal pairs displayed in Table 10.1 is not high enough to support
the analysis.
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Output 10.8 Global Fit Statistics

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 22.0627 2 <.0001

Score 18.5853 2 <.0001

Wald 12.9050 2 0.0016

However, the exact methods discussed in Chapter 8 are also available for the stratified analysis.
See Appendix B in this chapter for a discussion of the methodology involved; you are essentially
conditioning away both nuisance parameters and stratum-specific intercepts in order to obtain an
appropriate conditional likelihood function.

The specification of the exact conditional analysis in the LOGISTIC procedure is the same
as previously discussed except for the addition of the STRATA statement. Exact analyses for
both INITIAL and TREATMENT are requested by listing them in the EXACT statement. The
ESTIMATE=BOTH option requests both parameter estimates and odds ratio estimates. The
variable CENTER is specified in the STRATA statement, so this analysis will condition away the
center-specific intercepts. The EXACTONLY option in the PROC LOGISTIC statement specifies
that only the exact analysis be performed.

proc logistic data=trial exactonly;
class treatment(ref="p") /param=ref;
strata center;
model improve(event="1") = treatment initial;
exact treatment initial / estimate=both;

run;

Output 10.9 displays the results of the exact conditional analysis.

Output 10.9 Exact Tests

Exact Conditional Analysis

Exact Conditional Analysis

Exact Conditional Tests

p-Value

Effect Test Statistic Exact Mid

treatment Score 4.3986 0.0377 0.0305

Probability 0.0145 0.0377 0.0305

initial Score 15.7365 <.0001 <.0001

Probability 0.000015 <.0001 <.0001

The p-values for both INITIAL and TREATMENT are lower than those reported in the asymptotic
analysis. The exact score p-value is 0.0377 for treatment and < 0.0001 for initial grade.
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Output 10.10 displays the exact parameter estimates, which are similar to but different from those
from the asymptotic conditional analysis. Recall that the p-values reported in the “Exact Parameter
Estimates” table are different from the ones reported in the “Exact Conditional Analysis” table, and
the latter should generally be reported.

Output 10.10 Exact Parameter Estimates

Exact Parameter Estimates

Parameter Estimate
Standard

Error
95%

Confidence Limits
Two-sided

p-Value

treatment t 0.7034 0.3461 -0.005365 1.4836 0.0520

initial 1.0542 0.3171 0.4625 1.8221 <.0001

Output 10.11 displays the odds ratios based on the exact parameter estimates.

Output 10.11 Exact Odds Ratio

Exact Odds Ratios

Parameter Estimate

95%
Confidence

Limits
Two-sided

p-Value

treatment t 2.021 0.995 4.409 0.0520

initial 2.870 1.588 6.185 <.0001

The odds of improving for the patient receiving the treatment is e0:7034 D 2:021 times higher than
for the patient receiving the placebo in each center. The odds of improvement also increase by a
factor of 2.870 for each unit increase in the initial grade. Treatment has a nearly significant effect
even after adjusting for the effect of initial grade. And the stratified analysis has taken center into
account.

Finally, for illustration’s sake, even though the sample sizes may not be sufficient, the final analysis
of these data forces all the main effects in the model with the INCLUDE=4 option and makes all
pairwise interaction terms available for consideration.

proc logistic data=trial;
class sex (ref="f") treatment(ref="p") /param=ref;
strata center;
model improve(event="1") = initial age sex treatment

sex*age sex*initial age*initial
treatment*sex treatment*initial treatment*age /
selection=forward include=4 details ;

run;

Output 10.12 shows both the residual score statistic (QRS D 4:7214 with 6 df and p D 0:5800)
and the score statistics for the addition of the individual terms into the model. Since there are 20
strata with the less prevalent response (see cell n21 in Table 10.1), this model can support about
20=5 D 4 terms. Thus, there are possibly too many terms to rely entirely on the residual score
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statistic to assess goodness of fit. However, considering both the residual test and the individual
tests provides reasonable confidence that the model fits adequately. All of the individual tests have
p-values greater than 0.08, and most of them have p-values greater than 0.5. This model doesn’t
require the addition of any interaction terms.

Output 10.12 Score Statistics

Conditional Analysis

Conditional Analysis
Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

4.7214 6 0.5800

Analysis of Effects Eligible for Entry

Effect DF
Score

Chi-Square Pr > ChiSq

age*sex 1 0.6593 0.4168

initial*sex 1 0.1775 0.6736

initial*age 1 2.9195 0.0875

sex*treatment 1 0.2681 0.6046

initial*treatment 1 0.0121 0.9125

age*treatment 1 0.4336 0.5102

Output 10.13 and Output 10.14 display model fit statistics.

Output 10.13 Model Fit Statistics

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

AIC 74.860 58.562

SC 74.860 70.813

-2 Log L 74.860 50.562

Output 10.14 Global Fit Statistics

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 24.2976 4 <.0001

Score 19.8658 4 0.0005

Wald 13.0100 4 0.0112
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Output 10.15 contains the maximum likelihood estimates of the parameters. The treatment effect
takes the value 0.7025, which is nearly significant with p D 0:0511. Neither age nor sex appear
to be very influential but are left in the model as covariates. The effect for initial grade is highly
significant (p D 0:0011).

Output 10.15 Maximum Likelihood Estimates

Analysis of Conditional Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

initial 1 1.0915 0.3351 10.6106 0.0011

age 1 0.0248 0.0224 1.2253 0.2683

sex m 1 0.5312 0.5545 0.9176 0.3381

treatment t 1 0.7025 0.3601 3.8053 0.0511

Output 10.16 contains the odds ratios and their 95% confidence limits.

Output 10.16 Odds Ratios

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

ConfidenceLimits

initial 2.979 1.545 5.745

age 1.025 0.981 1.071

sex       m vs f 1.701 0.574 5.043

treatment t vs p 2.019 0.997 4.089

However, as previously stated, the exact analysis may be most suitable for these data.

10.4 Crossover Design Studies

Conditional logistic regression is a useful technique in the analysis of the crossover design study,
also called the changeover study. In these designs, often used in clinical trials, the study is divided
into periods and patients receive a different treatment during each period. Thus, the patients act as
their own controls. Interest lies in comparing the efficacy of the treatments, adjusting for period
effects and carryover effects. The basic crossover design is a two-period design, but designs with
three or more periods are also implemented. This section describes the use of conditional logistic
regression for both two- and three- period designs.
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10.4.1 Two-Period Crossover Design

A two-period crossover study can be considered another example of paired data. Table 10.2
contains data from a two-period crossover design clinical trial (Koch et al. 1977). Patients were
stratified according to two age groups and then assigned to one of three treatment sequences.
Responses were measured as favorable (F) or unfavorable (U); thus, FF indicates a favorable
response in both Period 1 and Period 2.

Table 10.2 Two-Period Crossover Study

Response Profiles
Age Sequence FF FU UF UU Total
older A:B 12 12 6 20 50
older B:P 8 5 6 31 50
older P:A 5 3 22 20 50
younger B:A 19 3 25 3 50
younger A:P 25 6 6 13 50
younger P:B 13 5 21 11 50

Sequence A:B means that Drug A was administered during the first period and Drug B was
administered during the second period. The value P indicates Placebo. There are six possible
sequences over the two age groups; each sequence occurs for one set of 50 patients.

These data can be considered paired data in the sense that there is a response for both Period 1 and
Period 2. One strategy for analyzing these data is to model the probability of improvement for each
patient in the first period (and not the second) versus the probability of improvement in either the
first or second period but not both. This can be expressed as the conditional probability

PrfPeriod1DFgPrfPeriod2DUg
PrfPeriod1DFgPrfPeriod2DUg C PrfPeriod1DUgPrfPeriod2DFg

Thus, the analysis strategy can proceed in the same manner as for the highly stratified paired data.
In that example, the analysis adjusted out center-to-center variability (intercenter variability) and
concentrated on intracenter variability. In this example, you are conditioning away, or adjusting out,
patient-to-patient variability (interpatient variability) and concentrating on intrapatient information.
This allows you to perform analyses that may not be possible with population-averaging methods
(such as ordinary logistic regression) because of small sample size, although the resulting strategy
may not be as efficient. These conditioning methods also lead to results with different interpretation;
for example, the resulting odds ratios apply to each patient individually in the study rather than to
patients on average.

The effects of interest are the period effect, effects for Drugs A and B, and a carryover effect for
drugs A and B from Period 1 to Period 2. Table 10.3 and Table 10.4 display the explanatory variables
that pertain to these effects for Period 1 and Period 2, using incremental effects parameterization.
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Table 10.3 Period 1 Data
Age Treatment Period1 Period � Age Drug A Drug B CarryA CarryB
older A 1 1 1 0 0 0
older B 1 1 0 1 0 0
older P 1 1 0 0 0 0
younger B 1 0 0 1 0 0
younger A 1 0 1 0 0 0
younger P 1 0 0 0 0 0

Table 10.4 Period 2 Data
Age Treatment Period1 Period � Age Drug A Drug B CarryA CarryB
older B 0 0 0 1 1 0
older P 0 0 0 0 0 1
older A 0 0 1 0 0 0
younger A 0 0 1 0 0 1
younger P 0 0 0 0 1 0
younger B 0 0 0 1 0 0

Note that there are six response functions, logits based on FU versus UF, and thus six degrees of
freedom with which to work. If you include the two effects for Drugs A and B, the age � period
effect, and the period effect, then there are two degrees of freedom remaining. They can be used to
explore the carryover effects or the age � drug effects. The two degree-of-freedom tests for both
sets of effects are identical since both correspond to comparable simplifications of the saturated
model.

The model employed includes the carryover effects. You can write this model as

PrfF U jF U or UF g D
expfˇ C �0zg

1C expfˇ C �0zg

where z consists of the difference between the two periods for period � age, Drug A, Drug B,
CarryA, and CarryB. The parameter ˇ is the effect for period, �0 is the effect for period � age,
�1 and �2 are the effects for Drug A and Drug B, respectively, and �3 and �4 are the effects for
carryover for Drug A and carryover for Drug B, respectively.

The following DATA step inputs the cell counts of the table one response profile at a time.

data cross1 (drop=count);
input age $ sequence $ time1 $ time2 $ count;
do i=1 to count;

output;
end;

datalines;
older AB F F 12
older AB F U 12
older AB U F 6
older AB U U 20
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older BP F F 8
older BP F U 5
older BP U F 6
older BP U U 31
older PA F F 5
older PA F U 3
older PA U F 22
older PA U U 20
younger BA F F 19
younger BA F U 3
younger BA U F 25
younger BA U U 3
younger AP F F 25
younger AP F U 6
younger AP U F 6
younger AP U U 13
younger PB F F 13
younger PB F U 5
younger PB U F 21
younger PB U U 11
;

The DATA step that creates SAS data set CROSS2 creates observations for both periods, in addition
to character variables for drug, carryover, and response based on the subject’s values at each of the
two periods.

data cross2; set cross1;
subject=_n_;
period=1;

drug = substr(sequence, 1, 1);
carry='none';
response =time1;
output;

period=2;
drug = substr(sequence, 2, 1);
carry = substr(sequence, 1, 1);
if carry='P' then carry='none';
response =time2;
output;

run;

The following PROC LOGISTIC statements request the desired analysis. The strata variable
SUBJECT is specified in the STRATA statement; these are the effects that will be conditioned out.
Variables DRUG, PERIOD, AGE, and CARRY are listed in the CLASS statement and reference
parameterization is requested. Model effects included are period, drug, carryover, and the period �
age interaction.

proc logistic data=cross2;
class drug period age carry / param=ref;
strata subject;
model response = period drug period*age carry;

run;
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Output 10.17 displays the fit statistics.

Output 10.17 Model Assessment Statistics

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

AIC 166.355 129.579

SC 166.355 155.961

-2 Log L 166.355 117.579

Output 10.18 displays the global tests.

Output 10.18 Global Tests

Conditional Analysis

Conditional Analysis

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 48.7761 6 <.0001

Score 43.6628 6 <.0001

Wald 32.8513 6 <.0001

The Type 3 analysis of effects results in Output 10.19 indicate that neither carryover effect is
influential. There appears to be a period effect and a possible drug effect.

Output 10.19 Type 3 Results

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

period 1 4.1832 0.0408

drug 2 4.5691 0.1018

period*age 1 2.2056 0.1375

carry 2 0.2450 0.8847

Output 10.20 displays the parameter estimates. Drug A appears to drive the drug effect.
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Output 10.20 Parameter Estimates

Analysis of Conditional Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

period 1 1 -1.4370 0.7026 4.1832 0.0408

drug A 1 1.2467 0.6807 3.3547 0.0670

drug B 1 -0.00190 0.6412 0.0000 0.9976

period*age 1 older 1 0.6912 0.4654 2.2056 0.1375

carry A 1 -0.1903 1.1125 0.0293 0.8642

carry B 1 -0.5653 1.1556 0.2393 0.6247

Next, the reduced model that excludes the carryover effects is fit. Since the period � age effect
is modestly suggestive, it is kept in the model. The following PROC LOGISTIC invocation fits
this model. It also includes a test for whether Drug A and Drug B have similar effects by using
the TEST statement. The ODDSRATIO statement is specified to produce odds ratios that compare
each level of the drug effect to all other levels. When ODS Graphics is enabled, submitting an
ODDSRATIO statement also produces the odds ratio plot.

ods graphics on;
proc logistic data=cross2;

class drug period age carry / param=ref;
strata subject;
model response = period drug period*age;
A_B: test drugA=drugB;
oddsratio drug;

run;
ods graphics off;

Output 10.21 displays the model fit statistics for the reduced model. If you take the difference in
�2 LOG L for the full model displayed in Output 10.17 and the reduced model, 117:826�117:579,
you obtain the log-likelihood ratio test for the carryover effects. Since QL D 0:247 with 2 df, this
test is nonsignificant. (If you fit the model with age and drug interactions and perform a similar
model reduction, this test would have the same value.)

Output 10.21 Model Assessment Statistics

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

AIC 166.355 125.826

SC 166.355 143.413

-2 Log L 166.355 117.826

Output 10.22 displays the global tests.
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Output 10.22 Global Tests

Conditional AnalysisConditional Analysis

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 48.5296 4 <.0001

Score 43.1385 4 <.0001

Wald 32.3405 4 <.0001

The maximum likelihood estimates are displayed in Output 10.23. The period effect remains
clearly significant (QW D 12:9534, p D 0:0003). Drug A appears to be strongly significant
relative to placebo, while Drug B appears to be nonsignificant.

Output 10.23 Maximum Likelihood Estimates

Analysis of Conditional Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

period 1 1 -1.1905 0.3308 12.9534 0.0003

drug A 1 1.3462 0.3289 16.7497 <.0001

drug B 1 0.2662 0.3233 0.6777 0.4104

period*age 1 older 1 0.7102 0.4576 2.4088 0.1207

The period � age effect is still suggestive. Whether you remove this effect from the model depends
on your approach to the analysis. If you think of the study as two separate studies of older and
younger people, then you probably will want to keep this effect in the model. If your general
structural purpose did not include the distinction of older and younger groups, then you will
probably want to remove this effect.

Output 10.24 contains the results of the test that compares the Drug B effect and the Drug A effect.
The test is clearly significant; the drugs have different effects.

Output 10.24 Drug A versus Drug B

Linear Hypotheses Testing Results

Label
Wald

Chi-Square DF Pr > ChiSq

A_B 10.9220 1 0.0010

Output 10.25 reports the odds ratios. For each patient, the odds of a favorable versus an unfavorable
response is 3.84 higher for drug A than for the placebo. The odds of a favorable response is 2.95
higher for those receiving Drug A compared to Drug B. However, the odds of favorable response
for Drug B are only 1.305 higher than the same odds for the placebo, and the corresponding Wald

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Three-Period Crossover Study 315

confidence interval contains the value 1.

Output 10.25 Odds Ratios

Odds Ratio Estimates and Wald Confidence
Intervals

Label Estimate 95% ConfidenceLimits

drug A vs B 2.945 1.552 5.588

drug A vs P 3.843 2.017 7.322

drug B vs P 1.305 0.692 2.459

These results are illustrated with Output 10.26, which presents the odds ratio graphically, with the
horizontal axis presented on a log 2 scale.

Output 10.26 Odds Ratios

10.4.2 Three-Period Crossover Study

The three-period crossover study provides additional challenges. Consider the data from an exercise
study in which participants with chronic respiratory conditions were exposed to low, medium, and
high levels of air pollution while exercising on a stationary bike. The outcome was the level of
respiratory distress as measured on a scale from 0 for none to 3 for severe. A dichotomous baseline
reading of 0 for no distress and 1 for some distress was also recorded before each subject began
pedaling. There was a two-week washout period between each of the sessions. As in the two-period
crossover study, there is interest in examining carryover effects as well as period effects. The
subjects were randomized to one of six sequences: HLM, HML, LHM, LMH, MHL, and MLH,
where L, M, and H correspond to low, medium, and high amounts of air pollution. These data are
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loosely based on an example discussed in Tudor, Koch, and Catellier (2000), which is a useful
discussion of biostatistical data from crossover studies.

The conditional analysis of these data provides a way to detect within-subject effects, namely the
pollution effect, and also investigates the period and carryover effects. The response of interest is
dichotomous—whether the subject had distress versus no distress—the 1s, 2s, and 3s versus the
0s. Table 10.5 contains the eight possible response profile frequencies by randomization sequence
scheme and response profile.

Table 10.5 Response Profile Frequencies

Sequence NNN DNN NDN NND DDN DND NDD DDD Total
HLM 0 0 2 0 2 9 0 11 24
HML 0 2 0 0 10 5 0 9 26
LHM 0 1 0 0 3 2 7 11 24
LMH 0 0 0 0 2 3 9 10 24
MHL 0 0 4 0 5 0 3 8 20
MLH 0 1 0 5 0 5 5 16 32
Total 0 4 6 5 22 24 24 65 150

Consider the possible outcome profiles similar to those discussed previously for the two-period
crossover study. On page 309, the likelihood conditioned on the discordant pairs, or those response
profiles where yh1 and yh2 were different. Cases where yh1 D yh2 were considered uninformative.
The sum

P2
i yhi implies equal levels of yh1 and yh2 when it is 0 (0,0) and 2 (1,1) but not when the

sum is 1. In conditional logistic regression, you are conditioning on the f
Pr
i yhig, which are the

sufficient statistics for the f˛hg.

For the three-period case, r D 3 and eight possible profiles exist, two of which are uninformative,
when f

P3
i yhig D 0 or 3. When f

P3
i yhig = 1 or 2, there are three possible patterns for

.yh1; yh2; yh3/.

The contributions to the conditional likelihood are:

Prfyhi D 1; yhi 0 D 0 for all i 0 ¤ ig
Prfyh1 C yh2 C yh3 D 1g

D
exp.x0

hi
ˇ/P3

i 0 exp.x0
hi 0
ˇ/

for i D 1; 2; 3

and

Prfyhi D 0; yhi 0 D 1 for all i 0 ¤ ig
Prfyh1 C yh2 C yh3 D 2g

D
exp.

P3
i 0D1 x0

hi 0
ˇ � x0

hi
ˇ/P3

i 0D1 exp.
P3
i 0D1 x0

hi 0
ˇ � x0

hi
ˇ/

This likelihood structure turns out to be the same as the trichotomous loglinear extension of logistic
regression, and you can use unconditional maximum likelihood to estimate ˇ. The functions you
would analyze are generalized logits, which can be fit by using the GLOGIT link in the LOGISTIC
procedure. However, here the conditional logistic model is used to analyze these data.

For the exercise data, there is interest in evaluating whether pollution has an effect on respiratory
distress and whether there are period effects and carryover effects. You could consider carryover
effects from one level to another from Period 1 to Period 2, and then from Period 2 to Period 3.
However, there are not enough degrees of freedom for these data to pursue such a strategy. Instead,
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the analysis focuses on whether there is a carryover effect from a medium-pollution period to
the next period and a carryover effect from a high-pollution period to the next period. This is a
reasonable strategy.

The next DATA step inputs the exercise data. There is one observation per subject per period. The
variable SEQUENCE contains the sequence information, for example, observations with the value
‘HML’ received the sequence high in the first period, medium in the second period, and low in the
third period. The variable ID is the subject ID within sequence group, and the variable PERIOD
records the period number. The variable STRATA, a unique identifier for each subject, is created
from SEQUENCE and ID.

The indicator variables HIGH and MEDIUM take the value 1 if the exposure is high or medium,
respectively, for that period; the class variable EXPOSURE is created from them. Variables
CARRYHIGH and CARRYMEDIUM are indicator variables for whether the previous period had
high exposure or medium exposure; class variable CARRY is created from them. The variable
BASELINE takes the value 1 for respiratory distress at the beginning of the study. The RESPONSE
variable is defined as any distress.

data exercise;
input Sequence $ ID $ Period High Medium Baseline

Response CarryHigh CarryMedium @@;
strata=sequence||id;
length exposure carry $ 10;
If (High) then exposure='high';
else if (Medium) then exposure='medium';
else exposure='low';
If (CarryHigh) then carry='high';
else if (CarryMedium) then carry='medium';
else carry='low';
distress=(Response >0);
datalines;

HML 1 1 1 0 0 3 0 0 HML 1 2 0 1 0 1 1 0 HML 1 3 0 0 0 0 0 1
HML 2 1 1 0 0 3 0 0 HML 2 2 0 1 0 2 1 0 HML 2 3 0 0 0 0 0 1
HML 3 1 1 0 1 3 0 0 HML 3 2 0 1 0 2 1 0 HML 3 3 0 0 0 0 0 1
HML 4 1 1 0 0 2 0 0 HML 4 2 0 1 0 0 1 0 HML 4 3 0 0 0 2 0 1
HML 5 1 1 0 0 3 0 0 HML 5 2 0 1 0 0 1 0 HML 5 3 0 0 0 1 0 1
HML 6 1 1 0 1 2 0 0 HML 6 2 0 1 0 1 1 0 HML 6 3 0 0 0 2 0 1
HML 7 1 1 0 0 3 0 0 HML 7 2 0 1 0 1 1 0 HML 7 3 0 0 0 2 0 1
HML 8 1 1 0 0 3 0 0 HML 8 2 0 1 0 2 1 0 HML 8 3 0 0 0 1 0 1

... more lines ...

LMH 22 1 0 0 0 0 0 0 LMH 22 2 0 1 0 2 0 0 LMH 22 3 1 0 0 2 0 1
LMH 23 1 0 0 0 0 0 0 LMH 23 2 0 1 0 1 0 0 LMH 23 3 1 0 0 2 0 1
LMH 24 1 0 0 1 0 0 0 LMH 24 2 0 1 0 2 0 0 LMH 24 3 1 0 0 2 0 1
;

The STRATA statement defines the strata. Variables PERIOD, CARRY, and EXPOSURE are listed
in the CLASS statement as well as being specified as explanatory variables, along with BASELINE.
The INCLUDE=2 option produces a score test for the joint effects of PERIOD and CARRY.
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proc logistic data=exercise descending;
class period carry exposure / param=ref order=data;
strata strata;
model distress = exposure baseline period carry / include=2

selection=forward details;
run;

Output 10.27 displays the Model Information. It shows that 65 of the 150 strata are uninformative.
This corresponds to the DDD column in Table 10.5.

Output 10.27 Model Information

Conditional Analysis

Conditional Analysis
Model Information

Data Set WORK.EXERCISE

Response Variable distress

Number of Response Levels 2

Number of Strata 150

Number of Uninformative Strata 65

Frequency Uninformative 195

Model binary logit

Optimization Technique Newton-Raphson ridge

Output 10.28 contains the response profile and Output 10.29 contains the CLASS variable
information.

Output 10.28 Response Profile

Response Profile

Ordered
Value distress

Total
Frequency

1 1 350

2 0 100

Probability modeled is distress=1.
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Output 10.29 Class Level Information

Class Level Information

Class Value
Design

Variables

Period 1 1 0

2 0 1

3 0 0

carry low 1 0

high 0 1

medium 0 0

exposure high 1 0

medium 0 1

low 0 0

Output 10.30 displays the stratification summary.

Output 10.30 Strata Summary

Strata Summary

distress

Response
Pattern 1 0

Number of
Strata Frequency

1 1 2 15 45

2 2 1 70 210

3 3 0 65 195

The 70 strata with response pattern (2, 1) correspond to the response profiles with Ds in the first
and second, first and third, or second and third periods from Table 10.5. The 15 strata with response
pattern (1, 2) correspond to the response profiles with D in either the first, second, or third period.
Together, the 70 and 15 strata comprise the informative strata that are the basis of the analysis.

Output 10.31 contains the residual score test.

Output 10.31 Residual Score Test

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

0.6431 4 0.9582
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The score test for including both CARRY and PERIOD in the model takes the value 0.6431 with
p D 0:9582 for 4 df (two levels for each of these variables). Thus, you can conclude that carryover
and period effects do not need to be further considered.

Output 10.32 contains the parameter estimates from this analysis.

Output 10.32 Parameter Estimates

Analysis of Conditional Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

exposure high 1 2.2527 0.3983 31.9938 <.0001

exposure medium 1 0.6559 0.2547 6.6324 0.0100

Baseline 1 -0.4872 0.4457 1.1948 0.2744

Baseline appears to have a marginal influence.

The model with exposure and baseline is fit next; the forward selection method is used to include
the exposure effect and then evaluate whether the baseline variable also enters the model.

proc logistic data=exercise descending;
class exposure / param=ref order=data;
strata strata;
model distress = exposure baseline

/ selection=forward include=1 details;
run;

Output 10.33 contains the score test, labeled “Residual Chi-Square Test,” which has the value
1.2087 and indicates adequate goodness of fit with 1 df and p D 0:2716. Thus, the model that
contains only treatment is reasonable.

Output 10.33 Score Test

Conditional Analysis

Conditional Analysis
Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

1.2087 1 0.2716

Output 10.34 displays the parameter estimates for the final model.
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Output 10.34 Final Model Parameter Estimates

Analysis of Conditional Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

exposure high 1 2.2635 0.3986 32.2410 <.0001

exposure medium 1 0.6605 0.2526 6.8360 0.0089

With the other effects out of the model, the parameters for high and medium pollution levels are
significant at the ˛ D 0:05 level of significance.

You might want to determine whether high and medium pollution are equivalent effects. You can
submit another PROC LOGISTIC analysis with a CONTRAST statement to test this hypothesis.

proc logistic data=exercise descending;
class exposure / param=ref order=data;
strata strata;
model distress = exposure ;
contrast 'difference' exposure 1 -1 / estimate=parm;
oddsratio exposure;

run;

Output 10.35 displays the test results for whether the effects of high pollution and medium pollution
are equivalent.

Output 10.35 Test Results for Exposure

Conditional Analysis

Conditional Analysis
Contrast Test Results

Contrast DF
Wald

Chi-Square Pr > ChiSq

difference 1 15.7264 <.0001

With a Wald chi-square statistic of 15.7264, 1 df, and p < 0:0001, this hypothesis is strongly
rejected. High pollution has a much stronger effect on response than medium pollution.

Output 10.36 displays the odds ratios. The odds ratio listed for high level of pollution versus
low level means that those subjects exposed to high levels of pollution have approximately ten
times higher odds of experiencing respiratory distress than those subjects exposed to low levels
of pollution. The 95% confidence limits for this odds ratio are (4.403, 21.006). Similarly,
subjects exposed to medium levels of pollution levels have approximately two times higher odds of
experiencing respiratory distress than those subjects exposed to low levels of pollution, with 95%
confidence limits of (1.180, 3.176).
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Output 10.36 Odds Ratios

Odds Ratio Estimates and Wald Confidence Intervals

Label Estimate 95% ConfidenceLimits

exposure high vs medium 4.968 2.250 10.970

exposure high vs low 9.617 4.403 21.006

exposure medium vs low 1.936 1.180 3.176

10.5 General Conditional Logistic Regression

When you have paired data or responses that comprise profiles considered to come from a trinomial
distribution, you can easily write down the possible response profiles and identify the informative
and uninformative observations. In the case of the paired response, you can construct a likelihood
that is similar to the unconditional likelihood for a dichotomous response; in the case of a trinomial
outcome, you can create a model and likelihood that is based on generalized logits and is an
extension of the loglinear model, which is discussed in Chapter 12, “Poisson Regression and
Related Loglinear Models.”

However, for more complicated data situations, equivalent unconditional strategies are not
conveniently available. Consider the case of the diagnosis data displayed in Table 10.6 on
page 323. Researchers studied subjects at two times under two conditions. You can treat these
data as repeated measurements, which is done in Chapter 15, “Generalized Estimating Equations,”
or you can perform a conditional logistic regression, considering each patient to be a separate
stratum. This is a reasonable strategy if you are only interested in within-subject effects since you
are conditioning out subject to subject variability. In addition, the resulting odds ratios apply to
subjects individually instead of on average. Such models are called subject-specific models versus
population-averaged models, which are discussed in Chapter 15. If one purpose of your analysis
is to produce a prediction model, such as one you might use in a clinical setting to determine
treatment for patients, the subject-specific model may be appealing. Random effect models are
other examples of subject-specific models.

If you consider the diagnosis data, you see that there are two possible outcomes at four different
combinations of condition and time. Only two profiles are uninformative: the case where all of the
responses are ‘no’ and the case where all of the responses are ‘yes’. There are, however, fourteen
other profiles (out of 24 total profiles): four in which only one ‘yes’ is recorded, six in which two
‘yes’s are recorded, and four profiles in which three ‘yes’s are recorded.

Consider the general model for stratified logistic regression:

log
�

�

1 � �

�
D ˛h C xˇ

The ˛h are stratum-specific parameters for each stratum, h D 1; : : : ; q. In conditional inference,
you treat the ˛h as nuisance parameters and eliminate them from the likelihood function by
conditioning on their sufficient statistic. Appendix B contains the methodological details.
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10.5.1 Analyzing Diagnostic Data

MacMillan et al. (1981) analyze data from a one population observational study involving 793
subjects. For each subject, two diagnostic procedures (standard and test) were carried out at each
of two times. The results of the four evaluations were classified as positive or negative. Since a
dichotomous response was measured at t D 4 occasions, there are r D 24 D 16 response profiles.
Table 10.6 displays the resulting data.

You can consider each of the subjects in this study to be a separate stratum, with four measurements
in each stratum. By performing a conditional logistic regression, you are eliminating subject-to-
subject variability. The effects of interest, time and treatment, are within-subject effects, which
can be handled by conditional logistic regression. Note that other strategies would be required if
between-subject effects were of interest, such as age, clinic, and sex.

Table 10.6 Diagnostic Test Results for 793 Subjects

Time 1 Time 2 No. of
Standard Test Standard Test Subjects
Negative Negative Negative Negative 509
Negative Negative Negative Positive 4
Negative Negative Positive Negative 17
Negative Negative Positive Positive 3
Negative Positive Negative Negative 13
Negative Positive Negative Positive 8
Negative Positive Positive Negative 0
Negative Positive Positive Positive 8
Positive Negative Negative Negative 14
Positive Negative Negative Positive 1
Positive Negative Positive Negative 17
Positive Negative Positive Positive 9
Positive Positive Negative Negative 7
Positive Positive Negative Positive 4
Positive Positive Positive Negative 9
Positive Positive Positive Positive 170

The following DATA step creates the SAS data set DIAGNOSIS.

data diagnosis;
input std1 $ test1 $ std2 $ test2 $ count;
do i=1 to count;

output;
end;
datalines;

Neg Neg Neg Neg 509
Neg Neg Neg Pos 4
Neg Neg Pos Neg 17
Neg Neg Pos Pos 3
Neg Pos Neg Neg 13

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



324 Chapter 10: Conditional Logistic Regression

Neg Pos Neg Pos 8
Neg Pos Pos Neg 0
Neg Pos Pos Pos 8
Pos Neg Neg Neg 14
Pos Neg Neg Pos 1
Pos Neg Pos Neg 17
Pos Neg Pos Pos 9
Pos Pos Neg Neg 7
Pos Pos Neg Pos 4
Pos Pos Pos Neg 9
Pos Pos Pos Pos 170
;

The next DATA step creates one record per measurement per subject as well as treatment and time
variables. It creates a unique SUBJECT value for each subject in the study.

data diagnosis2;
set diagnosis;
drop std1 test1 std2 test2;
subject=_n_;
time=1; procedure='standard';
response=std1; output;
time=1; procedure='test';
response=test1; output;
time=2; procedure='standard';
response=std2; output;
time=2; procedure='test';
response=test2; output;

run;

The following PROC LOGISTIC invocation requests the model including the variables TIME,
TREATMENT, and their interaction. The variable SUBJECT is placed in the STRATA statement
so that the estimation process conditions on subject. The REF=FIRST option is used in the CLASS
statement to specify that the reference level is standard treatment at the first time.

proc logistic data=diagnosis2;
class time (ref=first) procedure (ref=first) / param=ref;
strata subject;
model response(event="Neg")= time procedure
time*procedure;

run;

Output 10.37 displays the strata summary. The majority of these strata are uninformative.
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Output 10.37 Strata Summary

Conditional AnalysisConditional Analysis

Strata Summary

response

Response
Pattern Neg Pos

Number of
Strata Frequency

1 0 4 170 680

2 1 3 30 120

3 2 2 36 144

4 3 1 48 192

5 4 0 509 2036

A look at the table of parameter estimates in Output 10.38 indicates that the interaction is not
important. The Wald statistic has the value 1.695 for 1 df and serves as a goodness-of-fit test for
the main effects model.

Output 10.38 Parameter Estimates for Full Model

Analysis of Conditional Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

time 2 1 -0.0625 0.2500 0.0625 0.8026

procedure test 1 0.3848 0.2544 2.2881 0.1304

time*procedure 2 test 1 0.4726 0.3630 1.6952 0.1929

The model is refit with variables TIME and PROCEDURE. The options SELECTION=FORWARD,
INCLUDE=2, and DETAILS are specified to obtain a score test to serve as a goodness-of-fit test
for the model.

proc logistic data=diagnosis2;
class time (ref=first) procedure (ref=first) / param=ref;
strata subject;
model response(event="Neg")= time procedure

time*procedure
/selection=forward include=2 details;

run;

Output 10.39 displays the score statistic based on the remaining influence of the time � procedure
interaction. It takes the value 1.7002 with p D 0:1923, indicating an adequate model fit.
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Output 10.39 Score Statistic

Conditional AnalysisConditional Analysis

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

1.7002 1 0.1923

Output 10.40 contains the parameter estimates and odds ratios. The test procedure is highly
significant, and the odds of a negative response are almost twice as much for the test procedure as
for the standard procedure. The confidence limits for this odds ratio are (1.292, 2.653).

Output 10.40 Parameter Estimates for Main Effects Model

Analysis of Conditional Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

time 2 1 0.1627 0.1807 0.8114 0.3677

procedure test 1 0.6159 0.1836 11.2557 0.0008

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

ConfidenceLimits

time      2 vs 1 1.177 0.826 1.677

procedure test vs standard 1.851 1.292 2.653

10.6 Paired Observations in a Retrospective Matched Study

Epidemiological investigations often involve the use of retrospective, or case-control studies, where
a person known to have the event of interest (case) is paired, or matched, with a person who doesn’t
have the event (control). The idea is to determine whether the exposure factor is associated with
the event; this is presumably made less complicated by using matching to control for possible
covariates.

� In a 1:1 matched study, the matched set consists of one case and one control from each
stratum. This is the most common situation.

� In a 1:m matched study, the matched set consists of one case and m controls. Usually, m
ranges between 2 and 5.

� In the m:n matched study, the matched set consists of n cases with m controls, where usually
both m and n are between 1 and 5.
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Then, data are collected to determine whether the case and control were exposed to certain risk
factors, as measured by the explanatory variables. Through the use of a conditional likelihood, you
can define a model that allows you to predict the odds for the event given the explanatory variables.
This involves setting up the probabilities for having the exposure given the event and then using
Bayes’ theorem to determine a relevant conditional likelihood concerning the event. You derive the
conditional likelihood by first focusing on the conditional probability of observing the explanatory
variables given the outcome (event or not). The derivation of the likelihood in the matched pairs
setting is discussed in Appendix A in this chapter. This likelihood is similar to that seen in the
preceding sections for highly stratified data.

Note that the conditional likelihood for the matched pairs data is the unconditional likelihood for
a logistic regression model where the response is always equal to 1, the covariate values are equal
to the differences between the values for the case and the control, and there is no intercept. This
means that you can use standard logistic regression software by configuring your data appropriately
and eliminating the intercept term.

Through a similar process, you can show that the conditional likelihood for the 1:mmatched setting
is

qY
hD1

�
1C

mX
iD1

exp
�
 0.zhi � zh0/

���1
where i D 1; 2; : : : ; m indexes the controls and i D 0 corresponds to the case. However, this is not
equivalent to any unconditional form, and the same goes for m:n matched data.

The following sections illustrate the use of PROC LOGISTIC in applications of conditional logistic
regression for 1:1, 1:m, and m:n matching. See Breslow and Day (1980) and Collett (2003) for
more detail on conditional logistic regression for matched studies.

10.6.1 1:1 Conditional Logistic Regression

Researchers studied women in a retirement community in the 1970s to determine if there was
an association between the use of estrogen and the incidence of endometrial cancer (Mack et
al. 1976).1 Cases were matched to controls who were within a year of the same age, had the
same marital status, and were living in the same community at the time of the diagnosis of the
case. Information was also collected on obesity, hypertension, gallbladder disease history, and
non-estrogen drug use. The data used here is a subset of the actual data. There are 63 matched
pairs, with the variable CASE=1 indicating a case and CASE=0 indicating a control. The goal of
the analysis is to determine whether the presence of endometrial disease is associated with any of
the explanatory variables.

data match;
input id case age est gall hyper nonest @@;
datalines;

1 1 74 1 0 0 1 1 0 75 0 0 0 0
2 1 67 1 0 0 1 2 0 67 0 0 1 1
3 1 76 1 0 1 1 3 0 76 1 0 1 1
4 1 71 1 0 0 0 4 0 70 1 1 0 1

1Data provided by Norman Breslow.
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5 1 69 1 1 0 1 5 0 69 1 0 1 1
6 1 70 1 0 1 1 6 0 71 0 0 0 0
7 1 65 1 1 0 1 7 0 65 0 0 0 0
8 1 68 1 1 1 1 8 0 68 0 0 1 1
9 1 61 0 0 0 1 9 0 61 0 0 0 1

10 1 64 1 0 0 1 10 0 65 0 0 0 0
11 1 68 1 1 0 1 11 0 69 1 1 0 0
12 1 74 1 0 0 1 12 0 74 1 0 0 0
13 1 67 1 1 0 1 13 0 68 1 0 1 1
14 1 62 1 1 0 1 14 0 62 0 1 0 0
15 1 71 1 1 0 1 15 0 71 1 0 1 1

... more lines ...

61 1 67 1 1 0 1 61 0 67 1 1 0 1
62 1 74 1 0 1 1 62 0 75 0 0 0 1
63 1 68 1 1 0 1 63 0 69 1 0 0 1
;

The following PROC LOGISTIC invocation requests forward model selection.

proc logistic;
strata id;
model case (event="1") = gall est hyper age nonest /
selection=forward details;

run;

Output 10.41 contains the response profiles. Since these are 1:1 case control data, there are 63
observations with 1 for variable CASE and 63 observations with 0 for variable CASE.

Output 10.41 Response Profile

Conditional Analysis

Conditional Analysis
Response Profile

Ordered
Value case

Total
Frequency

1 0 63

2 1 63

Probability modeled is case=1.

Output 10.42 displays the summary strata information. Each pair of subjects includes a case and a
control.
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Output 10.42 Strata Summary

Strata Summary

case

Response
Pattern 0 1

Number of
Strata Frequency

1 1 1 63 126

In the model selection process, only EST and GALL are entered into the model. Output 10.43
displays the residual score statistic, which has a value of 0.2077 with 3 df, indicating an adequate
fit. Output 10.44 displays the score statistic for each variable’s entry into the model; since all of the
chi-square values are strongly nonsignificant, the model goodness of fit is supported.

Output 10.43 Residual Chi-Square

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

0.2077 3 0.9763

Output 10.44 Model Selection Results

Analysis of Effects Eligible for Entry

Effect DF
Score

Chi-Square Pr > ChiSq

hyper 1 0.0186 0.8915

age 1 0.1432 0.7051

nonest 1 0.0370 0.8474

Output 10.45 displays the statistics that assess the model’s explanatory capacity. The range of
values indicate that exact analysis might be indicated.

Output 10.45 Explanatory Capacity

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 33.6457 2 <.0001

Score 27.0586 2 <.0001

Wald 15.3291 2 0.0005

Output 10.46 contains the parameter estimates for the model that contains the main effects EST and
GALL. Output 10.47 contains the odds ratios.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



330 Chapter 10: Conditional Logistic Regression

Output 10.46 Parameter Estimates

Analysis of Conditional Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

gall 1 1.6551 0.7980 4.3017 0.0381

est 1 2.7786 0.7605 13.3492 0.0003

Parameter estimates for both GALL and EST are significant. The odds ratio for GALL indicates that
women with gallbladder disease history have 5.234 times higher odds of contracting endometrial
cancer as women without it, adjusting for estrogen use and matched pairs. The odds ratio for EST
indicates that women who used estrogen have 16.096 times higher odds for contracting endometrial
cancer as women who don’t use estrogen, adjusting for gallbladder disease history and matched
pairs.

Output 10.47 Odds Ratios

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

ConfidenceLimits

gall 5.234 1.095 25.006

est 16.096 3.626 71.457

An exact analysis is also performed. The following PROC LOGISTIC statements produce exact
analyses for both GALL and EST.

proc logistic;
strata id;
model case (event="1") = gall est;
exact gall est /estimate=both;

run;

Output 10.48 contains the exact analysis results.

Output 10.48 Exact Tests

Exact Conditional Analysis

Exact Conditional Analysis

Exact Conditional Tests

p-Value

Effect Test Statistic Exact Mid

gall Score 5.0341 0.0302 0.0202

Probability 0.0200 0.0302 0.0202

est Score 23.0075 <.0001 <.0001

Probability 3.115E-7 <.0001 <.0001
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The exact p-value for GALL is 0.0302, and the exact p-value for EST is near zero.

Output 10.49 and Output 10.50 display the exact parameter estimates and the odds ratios.

Output 10.49 Exact Parameter Estimates

Exact Parameter Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits
Two-sided

p-Value

gall 1.6318 0.7826 0.0157 3.7162 0.0471

est 2.7124 0.7416 1.3086 4.8930 <.0001

Output 10.50 Exact Odds Ratios

Exact Odds Ratios

Parameter Estimate

95%
Confidence

Limits
Two-sided

p-Value

gall 5.113 1.016 41.110 0.0471

est 15.066 3.701 133.346 <.0001

10.7 1:m Conditional Logistic Regression

Researchers in a midwestern county tracked flu cases that required hospitalization in residents aged
65 and older during a two-month period in one winter. They matched each case with two controls
according to sex and age and also determined whether the cases and controls had a flu vaccine shot
and whether they had lung disease. Vaccines were then verified by county health and individual
medical practice records. Researchers were interested in whether vaccination had a protective
influence on the odds of getting a severe case of flu.

This study is an example of a 1:2 matched study since two controls were chosen for each case. The
following DATA step reads the data and computes the frequency of vaccine and lung disease for
both cases and controls.

data matched;
input id outcome lung vaccine @@;
datalines;

1 1 0 0 1 0 1 0 1 0 0 0 2 1 0 0 2 0 0 0 2 0 1 0
3 1 0 1 3 0 0 1 3 0 0 0 4 1 1 0 4 0 0 0 4 0 1 0
5 1 1 0 5 0 0 1 5 0 0 1 6 1 0 0 6 0 0 0 6 0 0 1
7 1 0 0 7 0 0 0 7 0 0 1 8 1 1 1 8 0 0 0 8 0 0 1
9 1 0 0 9 0 0 1 9 0 0 0 10 1 0 0 10 0 1 0 10 0 0 0

11 1 1 0 11 0 0 1 11 0 0 0 12 1 1 1 12 0 0 1 12 0 0 0
13 1 0 0 13 0 0 1 13 0 1 0 14 1 0 0 14 0 0 0 14 0 0 1
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15 1 1 0 15 0 0 0 15 0 0 1 16 1 0 1 16 0 0 1 16 0 0 1
17 1 0 0 17 0 1 0 17 0 0 0 18 1 1 0 18 0 0 1 18 0 0 1
19 1 1 0 19 0 0 1 19 0 0 1 20 1 0 0 20 0 0 0 20 0 0 0
21 1 0 0 21 0 0 1 21 0 0 1 22 1 0 1 22 0 0 0 22 0 1 0
23 1 1 1 23 0 0 0 23 0 0 0 24 1 0 0 24 0 0 1 24 0 0 1
25 1 1 0 25 0 1 0 25 0 0 0 26 1 1 1 26 0 0 0 26 0 0 0
27 1 1 0 27 0 0 1 27 0 0 0 28 1 0 1 28 0 1 0 28 0 0 0
29 1 0 0 29 0 0 0 29 0 1 1 30 1 0 0 30 0 0 0 30 0 0 0

... more lines ...

145 1 1 0 145 0 0 1 145 0 0 0 146 1 1 0 146 0 1 0 146 0 0 0
147 1 0 1 147 0 0 0 147 0 0 1 148 1 0 0 148 0 0 1 148 0 0 0
149 1 1 0 149 0 1 0 149 0 1 0 150 1 1 1 150 0 0 0 150 0 0 1
;

The following PROC FREQ statements request crosstabulations of vaccine by outcome status and
lung disease by outcome status.

proc freq;
tables outcome*lung outcome*vaccine /nocol nopct;

run;

Output 10.51 contains the frequencies of vaccine and lung disease for both cases and controls. In
these data, 16% of the controls had lung disease, and 42% of the cases had lung disease. Also, 39%
of the controls and 31% of the cases had been vaccinated.

Output 10.51 Frequencies of Vaccine and Lung Disease by Cases and Controls

Frequency
Row Pct

Table of outcome by lung

outcome

lung

0 1 Total

0 252
84.00

48
16.00

300

1 87
58.00

63
42.00

150

Total 339 111 450

Frequency
Row Pct

Table of outcome by vaccine

outcome

vaccine

0 1 Total

0 183
61.00

117
39.00

300

1 103
68.67

47
31.33

150

Total 286 164 450
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The following statements request the conditional logistic regression analysis. The SELEC-
TION=FORWARD option is specified to request forward selection model building.

proc logistic;
class lung vaccine;
strata id;
model outcome(event="1") = lung vaccine lung*vaccine /

selection=forward details;
run;

Output 10.52 displays the model building results.

Output 10.52 Model Building Results

Conditional Analysis

Conditional Analysis

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

3.2982 2 0.1922

Analysis of Effects Eligible for Entry

Effect DF
Score

Chi-Square Pr > ChiSq

vaccine 1 3.2529 0.0713

The variable LUNG is entered into the model, but the variable VACCINE and the interaction term
are not. However, the p-value of 0.0713 for VACCINE is suggestive, so the model including
LUNG and VACCINE is fit next. The interaction term is included to obtain the residual score test
as a measure of goodness of fit.

proc logistic;
class lung vaccine;
strata id;
model outcome(event="1") = lung vaccine lung*vaccine /

selection=forward details include=2;
run;

Output 10.53 displays the residual score statistic. With a value of 0.0573 and p D 0:8107, this
statistic supports goodness of fit.

Output 10.53 Residual Score Statistic

Conditional Analysis

Conditional Analysis

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

0.0573 1 0.8107
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Output 10.54 includes the parameter estimates.

Output 10.54 Parameter Estimates

Analysis of Conditional Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

lung 1 1 1.3053 0.2348 30.8967 <.0001

vaccine 1 1 -0.4008 0.2233 3.2223 0.0726

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

ConfidenceLimits

lung    1 vs 0 3.689 2.328 5.845

vaccine 1 vs 0 0.670 0.432 1.038

The odds ratio for getting a case of flu resulting in hospitalization is e�0:40078 D 0:67 for those
with vaccine versus those without vaccine. Thus, study participants with vaccination reduced their
odds of getting hospitalizable flu by 33% compared to their nonvaccinated matched counterparts.
This means that vaccination had a protective effect, controlling for lung disease status (and age and
sex, via matching). The confidence limits for this odds ratio are (0.432,1.038).

10.8 Exact Conditional Logistic Regression in the Stratified Setting

While conditional logistic regression often serves to counterbalance the small counts in a strata
by conditioning away the strata effect, sometimes the data are so sparse that these methods also
become inappropriate. Exact conditional logistic regression has already been applied in previous
sections when fit statistics indicated that asymptotic-based analyses were questionable. However,
in many situations, the sparseness of the data is so apparent that only exact methods should be
considered.

In the asymptotic logistic regression setting, the methodologies for the unstratified and stratified
analysis are different (the former is based on an unconditional likelihood and the latter is based
on a conditional likelihood). In the exact setting, you use the same (conditioning) methodology.
The only difference is that, in the unstratified case, you don’t have stratification variables and you
are conditioning away only explanatory variables; in the stratified case, you are conditioning away
both stratification variables and explanatory variables.

The following example is from Luta et al. (1998), which describes methods for analyzing clustered
binary data with exact methods. The data are from a cardiovascular study of eight animals who
received various drug treatments. Researchers then arrested coronary flow, which led to the
development of regional ischemia, and they recorded whether an adverse cardiovascular event
occurred during an eight-minute interval. The heart was reperfused for 50 minutes to allow the
heart to return to normal, and then another treatment was tested. Thus, there are up to five repeated

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



10.8. Exact Conditional Logistic Regression in the Stratified Setting 335

measurements on eight clusters, or animals. For various reasons, no animal received all of the
five possible treatments. Because of the sequences of treatments used by the investigators, the
investigation was not assumed to be a crossover study. Because of the reperfusion, the period and
carryover effects were considered to be ignorable.

The data include relatively small counts so a reasonable strategy is exact stratified logistic
regression, conditioning on the animals. The following DATA step inputs the data for this analysis.
Only the observations that correspond to drug treatments are included; observations corresponding
to the shunt treatment are eliminated (the shunt is simply the placement of the intracoronary artery
catheter). The treatments are control (C) which is no drug, test drug and counteracting agent (DA),
low-dose test drug (D1), and high-dose test drug (D2). For this analysis, the drug effect is assumed
to be ordinal with equally spaced intervals; the variable ORDTREAT is coded as 1 for control
to 4 for high-dose drug. The variable ANIMAL takes the values from 1 to 8, and the variable
RESPONSE is 1 if an event was observed and 0 otherwise.

data cardio;
input animal treatment $ response $ @@;
if treatment='S' then delete;
else if treatment='C' then ordtreat=1;
else if treatment='DA' then ordtreat=2;
else if treatment='D1' then ordtreat=3;
else if treatment='D2' then ordtreat=4;
datalines;

1 S no 1 C no 1 C no 1 D2 yes 1 D1 yes
2 S no 2 D2 yes 2 C no 2 D1 yes
3 S no 3 C yes 3 D1 yes 3 DA no 3 C no
4 S no 4 C no 4 D1 yes 4 DA no 4 C no
5 S yes 5 C no 5 DA no 5 D1 no 5 C no
6 S no 6 C no 6 D1 yes 6 DA no 6 C no
7 S no 7 C no 7 D1 yes 7 DA no 7 C no
8 S yes 8 C yes 8 D1 yes
;

The following PROC LOGISTIC statements specify the exact analysis. The variable ANIMAL
is placed in the STRATA statement, and the MODEL statement includes RESPONSE as the
outcome variable and ORDTREAT as the explanatory variable. You then specify ORDTREAT in
the EXACT statement, and ESTIMATE=BOTH requests that both parameter estimates and odds
ratios be generated.

proc logistic data=cardio descending exactonly;
strata animal;
model response = ordtreat;
exact ordtreat / estimate=both;

run;

When the EXACTONLY option is specified, PROC LOGISTIC prints the “Model Information”
and “Response Profile” tables (not shown here) and then prints the results of the exact conditional
analysis. Output 10.55 displays the exact tests for the treatment effect.
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Output 10.55 Exact Tests

Exact Conditional AnalysisExact Conditional Analysis

Exact Conditional Tests

p-Value

Effect Test Statistic Exact Mid

ordtreat Score 10.4411 0.0009 0.0005

Probability 0.000723 0.0009 0.0005

Both the score and probability test have exact p-values of 0.0009, which is highly significant.

Output 10.56 displays the point estimate of the drug effect, 1.9421, and a 95% confidence interval
(0.4824, 5.2932).

Output 10.56 Exact Parameter Estimate

Exact Parameter Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits
Two-sided

p-Value

ordtreat 1.9421 0.8932 0.4824 5.2932 0.0017

Output 10.57 displays the odds ratio, which takes the value 6.974. The odds of an adverse event
were seven times higher with each unit change in treatment level.

Output 10.57 Exact Odds Ratio

Exact Odds Ratios

Parameter Estimate

95%
Confidence

Limits
Two-sided

p-Value

ordtreat 6.974 1.620 198.976 0.0017

The following PROC LOGISTIC statements request the conditional analysis. The options
SELECTION=FORWARD and SLENTRY=.05 are used to produce the score statistic for the drug
effect.

proc logistic data=cardio descending;
strata animal;
model response = ordtreat /selection=forward

details slentry=.05;
run;

Output 10.58 displays the residual score statistic for treatment, which has the value 10.4411, and,
with 1 df, a p-value of 0.0012.
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Output 10.58 Residual Score Test

Conditional AnalysisConditional Analysis

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

10.4411 1 0.0012

Output 10.59 contains the parameter estimate, which is 1.9421 with a p-value of 0.0297 for the
Wald chi-square. The estimate is very close to the estimate in the exact analysis. Note that the
asymptotic p-value is larger than the exact one, which is a bit unusual since most often you find
that the exact p-value is larger than the asymptotic p-value.

Output 10.59 Parameter Estimate

Analysis of Conditional Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

ordtreat 1 1.9421 0.8932 4.7275 0.0297

If you run an unstratified asymptotic analysis on these data (that is, use PROC LOGISTIC and
regress RESPONSE on ANIMAL and ORDTREAT), you would get the following messages from
PROC LOGISTIC:

Quasicomplete separation of data points detected.

WARNING: The maximum likelihood estimate may not exist.
WARNING: The LOGISTIC procedure continues in spite of the above
warning. Results shown are based on the last maximum likelihood
iteration. Validity of the model fit is questionable.

These messages are a signal that your data are probably not suitable for asymptotic analysis and
that you should consider exact methods. In addition, in the table for global fit in the asymptotic
analysis (not shown here), the score statistic has the chi-square value 19.1924 (p D 0:0139) and
the Wald statistic has the value 6.4478 (p D 0:5972). As discussed previously, when these test
statistics indicate very different results, you should consider whether your data are more suitable
for exact analysis.

10.8.1 Printing More Digits

Occasionally, you may want to generate more digits for the p-values than are printed according
to the default format in the LOGISTIC procedure. (PROC LOGISTIC computes the number of
digits that machine accuracy allows.) You can do this easily with ODS. You output the table that
contains the information, and then you print it using different formats. The table names are listed
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in the documentation for each procedure, and you can determine the variable names with PROC
CONTENTS.

The following statements produce the exact results displayed in Output 10.55 with six digits for the
p-values.

ods output ExactTests=ET;
proc logistic data=cardio descending;

strata animal;
model response = ordtreat;
exact ordtreat / estimate=parm;

run;
proc print data=ET noobs label;

format ExactPValue pvalue8.6 MidPValue pvalue8.6;
var Effect--MidPValue;

run;

Output 10.60 contains the results with additional digits.

Output 10.60 Exact Tests Results

Effect Test
Test

Statistic #=Degenerate
Exact

p-Value
Mid

p-Value

ordtreat Score 10.4411 0.000868 0.000506

ordtreat Probability 0.000723 0.000868 0.000506

These results make it easier to compare the results reported in the Luta et al. paper; see that paper
for additional analyses performed on these data.

Appendix D displays how to update the default ODS template if you want to produce more digits
for this table whenever you used PROC LOGISTIC.

10.9 Appendix A: Theory for the Case-Control Retrospective
Setting

Suppose that you have q matched pairs, h D 1; 2; : : : ; q, and �hi is the probability of the i th
subject in the hth matched pair having the event (i D 1; 2). Suppose that zhi represents the set of
explanatory variables for the i th subject in the hth matched pair.

The likelihood for the vector of explanatory variables being zh1 given that subject h1 is the case (e)
and being zh2 given that subject h2 is the control ( Ne) is

Prfzh1jegPrfzh2j Neg

The sum of this likelihood and that for its reverse counterpart, the likelihood for the vector of
explanatory variables being zh1 given the control and being zh2 given the case, is

Prfzh1jegPrfzh2j Neg C Prfzh1j NegPrfzh2jeg

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



10.9. Appendix A: Theory for the Case-Control Retrospective Setting 339

and thus the conditional likelihood for a particular matched pair having the observed pairing of
explanatory variables zh1 with the case e and the explanatory variables zh2 with the control Ne is

Prfzh1jegPrfzh2j Neg
Prfzh1jegPrfzh2j Neg C Prfzh1j NegPrfzh2jeg

Applying Bayes’ Theorem, (P.AjB/ D P.BjA/P.A/=P.B/), to each of the six terms in the
above expression, you can rewrite the preceding as

Prfejzh1gPrf Nejzh2g
Prfejzh1gPrf Nejzh2g C Prf Nejzh1gPrfejzh2g

Thus, the conditional probabilities have been reversed so that they are the probabilities of the event
given the explanatory variables.

If you assume a logistic model for �hi , the probability of the i th subject in the hth matched pair
having the event, then you can make the appropriate substitutions into the conditional likelihood.
The following is the logistic model for �hi .

�hi D
expf˛h C  0zhig

1C expf˛h C  0zhig

where ˛h is an effect for the hth stratum, or pair, the zhik are the k D 1; 2; : : : ; t explanatory
variables for the i th subject in the hth matched pair, and the k are the corresponding parameters.

Substituting �hi for Prfejzhig and .1 � �hi / for Prf Nejzhig produces

expf˛h C  0zh1g
expf˛h C  0zh1g C expf˛h C  0zh2g

which is equivalent to

expf 0.zh1 � zh2/g
1C expf 0.zh1 � zh2/g

Note that the ˛h have dropped out and thus you have eliminated the stratum-specific parameters.

The conditional likelihood for the entire data is the product of the likelihoods for the individual
strata.

qY
hD1

expf 0.zh1 � zh2/g
1C expf 0.zh1 � zh2/g

For this conditional likelihood, matched pairs with zh1k D zh2k for all k are uninformative (that is,
their contribution to the likelihood is the constant 0.5), and so these matched pairs can be excluded
from the analysis.

Through a similar process, you can show that the conditional likelihood for the 1:mmatched setting
is

qY
hD1

�
1C

mX
iD1

exp
�
 0.zhi � zh0/

���1
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where i D 1; 2; : : : ; m indexes the controls and i D 0 corresponds to the case. However, this is not
equivalent to any unconditional form, so you have to use software designed for conditional logistic
regression. g

10.10 Appendix B: Theory for General Conditional Logistic
Regression

Consider the general model for stratified logistic regression:

log
˚ �

1 � �

�
D ˛h C x0ˇ

The ˛h are stratum-specific parameters for each stratum, h D 1; : : : ; q. In conditional inference,
you treat the ˛h as nuisance parameters and eliminate them from the likelihood function by
conditioning on their sufficient statistic.

The sufficient statistics for the ah are as follows:

ah D

nhX
iD1

yhi

where i D 1; 2; : : : ; nh for subjects in stratum h. Recall the attention to the sum of the yhi s in
the previous discussions of the various profiles possible in the paired case and the three-period
crossover. They were the sufficient statistics in those cases. The analysis, and the elimination of the
˛s in the likelihood, involved conditioning on those sufficient statistics.

Now, consider the model

log
�

�

1 � �

�
D J˛C Xˇ

˛ is the q � 1 vector of stratum-specific intercepts

ˇ is the t � 1 vector of within-stratum parameters

J is block diagonal with 1nh
as diagonal blocks

With T as the vector of sufficient statistics for ˇ with elements

Tk D

qX
hD1

nhX
iD1

xhikyhi k D .1; : : : ; t /
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The conditional probability density function of T D t given a D a0 is

fˇ.tja0/ D
C.a0; t/ exp.t0ˇ/P
u C.a0;u/ exp.u0ˇ/

where C.a0;u/ are the number of ys such that fJ0y D a0;X01y D ug where y D
.y11; : : : ; y1n1

; : : : ; yqnq
/0.

You then use this conditional likelihood function with apply an algorithm such as Newton-Raphson
to obtain maximum likelihood estimates.

See Mehta and Patel (1995) for more detail.

10.11 Appendix C: Theory for Exact Conditional Inference

Section 10.5 provides a brief overview of the methodological ideas behind conditional asymptotic
inference.

Now, consider the model

log
�

�

1 � �

�
D J˛C Xˇ D J˛C X1ˇ1 C X2ˇ2

for which you have partitioned the vector ˇ into components ˇ1 and ˇ2. Consider ˇ2 to be a vector
of parameters of interest and ˇ1 to be a vector of other nuisance parameters. Correspondingly,
partition X into X1 and X2.

The sufficient statistics for ˇ1 and ˇ2 are T1 D X01y and T2 D X02y.

If a=J0y, T1, and T2 are the sufficient statistics corresponding to ˛, ˇ1, and ˇ2, then you can define
the conditional probability density function T2 conditional on T1 D t1 and a D a0 as

fˇ2
.t2ja0; t1/ D

C.a0; t1; t2/ exp.t02ˇ2/P
u2
C.a0; t1;u2/ exp.u02ˇ2/

where C.a0; t1; t2/ are the number of vectors y such that J0y D a0, X01y D t1, and X02y D u2.

The function fˇ2
.t2ja0; t1/ is also the conditional likelihood function for ˇ2 given fa D a0;T1 D

t1g.

You can maximize this likelihood to obtain MLEs and conditional tests in a similar fashion to the
way you would proceed with the unconditional likelihood.

Conditional exact inference involves generating the conditional permutational distribution for
fˇ2

.t2ja0; t1/ for the sufficient statistics of the parameter or parameters of interest. You could
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proceed by completely enumerating the joint distribution of .a0; t1; t2/ but that becomes compu-
tationally infeasible after a handful of observations. Hirji, Mehta, and Patel (1987) devised the
multivariate shift algorithm, a network algorithm, which makes the creation of the exact joint
distribution computationally possible. Refer to Derr (2009) for an overview of how the algorithm
works for a simple data set.

You can test hypotheses H0Wˇ2 D 0 conditional on a D a0 and T1 D t1 with the exact probability
test or the exact conditional score test. Under H0, the statistic for the exact probability test is

fˇ2D0.t2ja0; t1/ D
C.a0; t1; t2/P
u2
C.a0; t1;u2/

and the p-value is the probability of getting a more extreme statistic

p D
X
u2<p

fˇ2D0.t2ja0; t1/

where u 2 <p are the u such that y exist with J0y D a0;X01y D t1;X02y D u2

and fˇ2D0.u2ja0; t1/ � fˇ2D0.t2ja0; t1/.

For the exact conditional score test, you define the conditional mean �2 and variance matrix V2 of
T2 (conditional on a D a0;T1 D t1) and compute the score statistic

s D .t2 � �2/0V�12 .t2 � �2/

and compare it to the score for each member of the distribution

S D .T2 � �2/0V2�1.T2 � �2/

The p-value is

p D Pr.S � s/ D
X
u2<s

fˇ2D0.u2ja0; t1/

where u 2 <s are the u such that y exist with J0y D a0;X01y D t1, X02y D u, and S.u/ � s.

You obtain exact parameter estimates ˇj by considering all the other parameters as nuisance
parameters, forming the conditional pdf, and using Newton-Raphson to find the maximum exact
conditional likelihood estimates. Likelihood ratio tests based on the conditional pdf are used to test
H0Wˇj D 0.

Refer to Derr (2009) for more detail on the methods employed by the LOGISTIC procedure,
including a basic illustration of how the network algorithm works. Refer to Mehta and Patel (1995)
for a complete discussion of exact logistic regression methodology and numerous applications.
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10.12 Appendix D: ODS Macro

The following code updates the default template for the exact tests output in the PROC LOGISTIC
procedure to produce six decimal place for the exact p-values.

proc template;
edit Stat.XCL.PValue;
format=D8.6;
end;

run;
proc logistic data=cardio descending;

strata animal;
model response = ordtreat;
exact ordtreat / estimate=parm;

run;

The updated template resides in your SASUSER directory and will be found for subsequent
invocations of the PROC LOGISTIC procedure. To delete it and revert back to the default
templates, submit the statements

proc template;
delete Stat.XCL.PValue;

run;

Note that the default templates shipped with SAS/STAT software are stored in the SASHELP
directory and cannot be deleted. See the chapter “Using the Output Delivery System” in the
SAS/STAT User’s Guide for an overview of using ODS for the statistician.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Chapter 11

Quantal Response Data Analysis
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11.1 Introduction

Quantal response data analysis deals with subject response to a stimulus that occurs with greater
and greater intensity. This covers a great deal of territory, from the evaluation of drugs at various
dosages to the assessment of radiation impact to the study of growth and development in children.
Often, the reagent is a new drug and the subjects are experimental animals. Other possible stimuli
include radiation and environmental exposures, and other possible subjects include humans and
bacteria. Researchers are interested in the tolerance of the subjects to the stimulus or drug, where
tolerance is defined as the amount of the stimulus required to produce a response.

These methods were developed for bioassay, which is the process of determining the potency or
strength of a reagent or stimuli based on the response it elicits in biological organisms. Researchers
are also often interested in the relative potency of a new drug compared to a standard drug. In a
direct assay, you steadily increase the doses until you generate the desired reaction. In an indirect
assay, you observe the reaction of groups of subjects to specified sets of doses. The measured
response to the drug in an indirect assay can be either quantitative or quantal. An example of a
quantitative response is red blood cells per milliliter of blood, and an example of a quantal response
is death or survival.

This chapter is concerned with quantal responses, which are analyzed with categorical data analysis
strategies. See Tsutakawa (1982) for an overview of general bioassay methods, and see Finney
(1978) and Govindarajulu (1988) for textbook discussion of these areas. See Bock and Jones (1968)
and Bock (1975) for some statistical methodology related to child development and behavioral
areas. See Landis and Koch (1979) for examples of categorical analysis of behavioral data.
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346 Chapter 11: Quantal Response Data Analysis

This chapter provides examples of applying quantal response data analysis techniques to drug
development and growth studies.

11.2 Estimating Tolerance Distributions

Table 11.1 displays data from an experiment in which animals were exposed to bacterial challenges
after having one-quarter of their spleen removed (splenectomy). After 96 hours, their survival status
was assessed. The stimulus is the bacterial challenge, and interest lies in assessing the tolerances of
the animals’ immune systems to the bacterial challenge after they have had partial splenectomies
(Koch and Edwards 1985).

Table 11.1 Status 96 Hours after Bacterial Challenge

Status
Bacterial Dose Dead Alive
1:2 � 103 0 5
1:2 � 104 0 5
1:2 � 105 2 3
1:2 � 106 4 2
1:2 � 107 5 1
1:2 � 108 5 0

In bioassay analysis, you make the assumption that responses of subjects are determined through a
tolerance distribution. This means that at certain levels of the dose (bacterial challenge in this case)
the animals will die; that is, death will occur if dose exceeds the tolerance, and survival will occur
when dose is below tolerance. Historically, the tolerances have been assumed to follow a normal
distribution. This allows you to write the probability of death at a level xi of the bacterial challenge
as

pi D ˆ
�xi � �

�

�
where ˆ is the cumulative distribution function for the standard normal distribution with mean 0
and variance 1; the parameter � is the mean (or median) of the tolerance distribution, and � is the
standard deviation.

If ˛ D ��=� and ˇ D 1=� , then

pi D ˆ.˛ C ˇxi /

and

ˆ�1.pi / D ˛ C ˇxi

The function ˆ�1.pi / is called the probit (or normit), and its analysis is called probit analysis.
Sometimes the value 5 is added to ˆ�1.pi / in order to have positive values for all pi .
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Berkson (1951) pointed out that the logistic distribution also works well as a tolerance distribution,
generating essentially the same results as the normal distribution. This is particularly true for values
of pi in the middle of the (0, 1) range and when the median � of the tolerance distribution is the
primary parameter. While sometimes a probit analysis of a data set is of more interest to researchers
in some disciplines (for example, growth and development) because of the correspondence of its
parameters to the mean and standard deviation of the underlying tolerance distribution, the focus in
this chapter is on logistic analysis. Note that the measures discussed are also relevant to a model
based on the probit.

If you assume the logistic distribution for the tolerances, then

pi D
expf˛ C ˇxig

1C expf˛ C ˇxig

and

log
�

pi

1 � pi

�
D ˛ C ˇxi

The parameters ˛ and ˇ are estimated with maximum likelihood estimation. Usually, the log of the
tolerances is most likely to have a logistic distribution, so frequently you work with the log of the
drug or concentration under investigation as the xi .

One parameter of interest for estimation is the median of the tolerance distribution, or the dose at
which 50% of the subjects produce a response. When the response is death, this estimate is called
the LD50, for lethal dose. Otherwise, this measure is called the ED50, for effective dose. If you are
working with log dose levels, you compute the log LD50 and then exponentiate it if you are also
interested in the actual LD50.

Suppose x50 represents the log LD50 and p50 represents the probability of response at the median
of the tolerance distribution.

log
�

p50

1 � p50

�
D log

�
:5

:5

�
D 0

Thus, the logistic parameters Ǫ and Ǒx50 can be set to zero to obtain

Ox50 D
� Ǫ

Ǒ

You can construct an approximate form of the variance of Ox50 based on linearized Taylor series for
situations where ˇ is clearly different from 0.

varfOx50g D f Ox50g2
(
V. Ǫ /

Ǫ2
�
2V. Ǫ ; Ǒ/

Ǫ Ǒ
C
V. Ǒ/

Ǒ2

)
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where V. Ǫ /, V. Ǫ ; Ǒ/, and V. Ǒ/ represent the variance of Ǫ , the covariance of Ǫ and Ǒ, and the
variance of Ǒ, respectively.

This allows you to express the confidence interval for log LD50 as

Ox50 ˙ z1�˛=2
p

varfOx50g

Fieller’s theorem is also used to compute confidence intervals for these measures. This theorem
is a general result that enables confidence intervals to be computed for the ratio of two normally
distributed random variables. Refer to Read (1983) for a description of Fieller’s formula, and
refer to Collett (2003) for a discussion of how to apply it to LD50s. Zerbe (1978) describes a
matrix implementation of Fieller’s formula for use with the general linear model as illustrated in
the following analysis. Zerbe’s implementation is provided in a SAS/IML routine listed in the
appendix and illustrated in this chapter.

In order to compute the LD50, the actual dosage at which 50% of the subjects die, you exponentiate
Ox50 (and its confidence limits). Sometimes analysts work on the loglog scale for LD50 to produce
more stable computations. In that case, you would use

var.Ox50/

Ox250

as the applicable variance for log Ox50, and you would double exponentiate the results to generate
the estimate of the actual LD50 and its confidence interval.

The LOGISTIC and PROBIT procedures are used to fit these models. In the following section, a
logistic model is fit to the data in Table 11.1, and the log LD50 is computed.

11.2.1 Analyzing the Bacterial Challenge Data

The following SAS statements input the data from Table 11.1 and compute two additional variables:
LDOSE is the log dose (natural log), which results in more evenly spaced dose levels.

data bacteria;
input dose status $ count @@;
ldose=log(dose);
datalines;

1200 dead 0 1200 alive 5
12000 dead 0 12000 alive 5
120000 dead 2 120000 alive 3
1200000 dead 4 1200000 alive 2
12000000 dead 5 12000000 alive 1
120000000 dead 5 120000000 alive 0
;

proc print;
run;
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Output 11.1 displays these data.

Output 11.1 Data Listing

Obs dose status count ldose

1 1200 dead 0 7.0901

2 1200 alive 5 7.0901

3 12000 dead 0 9.3927

4 12000 alive 5 9.3927

5 120000 dead 2 11.6952

6 120000 alive 3 11.6952

7 1200000 dead 4 13.9978

8 1200000 alive 2 13.9978

9 12000000 dead 5 16.3004

10 12000000 alive 1 16.3004

11 120000000 dead 5 18.6030

12 120000000 alive 0 18.6030

In the following PROC LOGISTIC specification, LDOSE is listed in the MODEL statement, and
so is its square, which is included to help assess goodness of fit. The SELECTION=FORWARD
option is specified so that a residual score statistic for the quadratic term is computed. The COVB
option requests that PROC LOGISTIC print the covariance matrix for the parameter estimates,
quantities necessary to compute the confidence interval for the log LD50.

proc logistic data=bacteria descending;
freq count;
model status = ldose ldose*ldose / scale=none aggregate

selection=forward include=1 details covb;
run;

Since the option INCLUDE=1 is specified, the first model fit includes the intercept and the LDOSE
term. The residual score statistic for the quadratic term displayed in Output 11.2 is not significant
with QS D 0:2580 and p D 0:6115, so clearly this term makes no contribution to the model. This
result supports the satisfactory fit of the intercept and slope model; the residual score test serves as
a goodness-of-fit test for this model.

Output 11.2 Residual Score Statistic

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

0.2580 1 0.6115
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350 Chapter 11: Quantal Response Data Analysis

The Pearson and deviance goodness-of-fit statistics also indicate that the model provides an
adequate fit, as displayed in Output 11.3. However, note that the sampling requirements for these
statistics are minimally met; certainly the expected values for all cell counts are not greater than
4 for several cells. In such cases, it is better to support assessment of fit with methods such as the
residual score statistic for the addition of the quadratic term.

Output 11.3 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 1.7508 4 0.4377 0.7815

Pearson 1.3379 4 0.3345 0.8549

Number of unique profiles: 6

Output 11.4 contains the maximum likelihood estimates for ˛ and ˇ. The estimate Ǒ D 0:7071 has
p D 0:0027 for the test of its significance. The level of bacterial challenge has a significant effect
on survival. The intercept Ǫ D �9:2680.

Output 11.4 Maximum Likelihood Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -9.2680 3.1630 8.5857 0.0034

ldose 1 0.7071 0.2354 9.0223 0.0027

Output 11.5 contains the estimated covariance matrix for the parameter estimates. The variance of
Ǫ is 10.0046, the variance of Ǒ is 0.05542, and the covariance of Ǫ and Ǒ is �0:7334. Taking the
square root of the variances produces the standard errors displayed in Output 11.4.

Output 11.5 Estimated Covariance Matrix

Estimated Covariance Matrix

Parameter Intercept ldose

Intercept 10.00458 -0.73338

ldose -0.73338 0.055418

To compute the log LD50, use the estimated values of Ǫ and Ǒ.

log LD50 D
� Ǫ

Ǒ
D
9:2680

0:7071
D 13:1070
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Using the covariances from Output 11.5 in the formula for varfx50g on page 348 yields the value
0.6005. Thus, a confidence interval for the log LD50 is written

13:1070˙ 1:96
p
0:6005

so that the confidence interval is (11.588, 14.626). To determine the LD50 on the actual dose scale,
you exponentiate the LD50 for the log scale.

actual LD50 D e13:1070 D 4:9238 � 105

To determine its confidence interval, exponentiate both bounds of the confidence interval to obtain
(1:0780 � 105, 2:2490 � 106/. This confidence interval describes the location of the median
bacterial challenge for the death of animals with one-fourth of the spleen removed.

An alternative to using the LOGISTIC procedure for this analysis is to use the PROBIT procedure,
which was specifically designed to perform quantal response data analysis. By default, it performs
probit analysis, but it also provides logistic analysis. It computes the LD50 automatically, as
well as computing the estimates for the dose values that yield user-defined response rates and the
corresponding confidence intervals based on Fieller’s theorem. Several graphs are also provided.

The following statements request the same analysis using the PROBIT procedure. First, new data
set BACTERIA2 is created with counts of dead animals and total animals so the events/trials syntax
can be used (PROC PROBIT doesn’t include a FREQ statement).

data bacteria2;
input dose dead total @@;
ldose=log(dose);
datalines;

1200 0 5
12000 0 5
120000 2 5
1200000 4 6
12000000 5 6
120000000 5 5
;

The PROC PROBIT statements follow. You can specify the LOG option in the PROC statement to
request that the analysis be performed on the log dose scale. The DIST=LOGISTIC option requests
logistic analysis instead of probit analysis, and the LACKFIT option requests goodness-of-fit tests.
The INVERSECL option requests the LD50 and confidence limits as well as the dose required for
the 0.25 and 0.75 response rates.

ods graphics on;
proc probit data=bacteria2 log plot=ippplot;

model dead/total = dose / dist=logistic lackfit
inversecl (prob=.25 .50 .75);

run;
ods graphics off;

Output 11.6 displays the model information.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



352 Chapter 11: Quantal Response Data Analysis

Output 11.6 Probit Model Information

Model Information

Data Set WORK.BACTERIA2

Events Variable dead

Trials Variable total

Number of Observations 6

Number of Events 16

Number of Trials 32

Name of Distribution Logistic

Log Likelihood -10.76291779

Output 11.7 displays the goodness-of-fit tests, which take the same values as those from PROC
LOGISTIC. However, note that no residual score test is available with the PROBIT procedure (and
that test might be considered necessary with some of the small event counts).

Output 11.7 Goodness-of-Fit Statistics

Goodness-of-Fit Tests

Statistic Value DF Value/DF Pr > ChiSq

Pearson Chi-Square 1.3379 4 0.3345 0.8549

L.R.    Chi-Square 1.7508 4 0.4377 0.7815

Output 11.8 displays the parameter estimates.

Output 11.8 Probit Parameter Estimates

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error
95%

Confidence Limits Chi-Square Pr > ChiSq

Intercept 1 -9.2680 3.1630 -15.4674 -3.0687 8.59 0.0034

Ln(dose) 1 0.7071 0.2354 0.2457 1.1685 9.02 0.0027

Output 11.9 displays the parameters for the tolerance distribution. The value for ‘MU’ is the
estimated LD50, which is 13.107. The value for ‘SIGMA’ is .1= Ǒ/.
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Output 11.9 LD50 Estimate

Probit Model in Terms of
Tolerance Distribution

MU SIGMA

13.1070197 1.41421791

Output 11.10 contains the covariance matrix for these estimated parameters. The value of 0.600471
is varfx50g.

Output 11.10 Covariance Estimate

Estimated Covariance Matrix
for Tolerance Parameters

MU SIGMA

MU 0.600471 -0.019844

SIGMA -0.019844 0.221675

Output 11.11 displays the table of estimates for the doses that pertain to the specified probability
levels (response rates). Note that the 95% confidence limits for the log LD50 are (11.0067,
15.0196), which are different from the ones on page 351 because they are based on Fieller’s
theorem, not the approximation based on linearized Taylor series.

Output 11.11 Log Dose Analysis

Probit Analysis on Ln(dose)

Probability Ln(dose)
95%

Fiducial Limits

0.25 11.5533 7.5414 13.0735

0.50 13.1070 11.0067 15.0196

0.75 14.6607 13.1430 18.2947

Output 11.12 contains the same information for the natural dose scale.

Output 11.12 Actual Dose Analysis

Probit Analysis on dose

Probability dose
95%

Fiducial Limits

0.25 104124 1885 476140

0.50 492387 60276 3333723

0.75 2328412 510434 88159975
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The PROBIT procedure also provides predicted probability plots. The following code produces the
inverse probability plot for log dose.

ods graphics on;
proc probit data=bacteria2 plot=ippplot;

model dead/total = ldose / dist=logistic;
run;
ods graphics off;

Output 11.13 displays the resulting graph. The confidence limits are based on Fieller’s theorem.

Output 11.13 Inverse Probability Plot

11.3 Comparing Two Drugs

Bioassay often involves the comparison of two drugs, usually a new drug versus a standard drug.
Consider the data in Table 11.2. Researchers studied the effects of the peptides neurotensin and
somatostatin in potentiating nonlethal doses of the barbiturate pentobarbital. Groups of mice were
administered various dose levels of either neurotensin or somatostatin (Nemeroff et al. 1977;
analyzed in Imrey, Koch, and Stokes 1982).

Many times, one drug acts as a dilution of another drug. If this is the case, then the dose response
relationship is parallel on the logit scale. Assays that are designed for the dilution assumption
are called parallel lines assays. The quantity that describes the relationship of such drugs to one
another through the ratio of doses of the two drugs that produce the same response is called the
relative potency.
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Table 11.2 N and S Comparison

Status
Dose Drug Dead Alive Total
0.01 N 0 30 30
0.03 N 1 29 30
0.10 N 1 9 10
0.30 N 1 9 10
0.30 S 0 10 10
1.00 N 4 6 10
1.00 S 0 10 10
3.00 N 4 6 10
3.00 S 1 9 10
10.00 N 5 5 10
10.00 S 4 6 10
30.00 S 5 5 10
30.00 N 7 3 10
100.00 S 8 2 10

The dilution assumption for doses zs of somatostatin and zn of neurotensin can be stated as

zs D �zn

which means that the doses with comparable response for the two drugs are related by the constant
�, the relative potency; that is, � units of somatostatin produce the same behavior as one unit of
neurotensin. If xn and xs represent log doses, then the dilution assumption also implies that

xs D log �C xn

Thus the logistic model structure for somatostatin is

ps.xsi / D f1C exp.�˛s � ˇxsi /g�1

where xsi denotes log dose levels of somatostatin. You can write the implied structure for log dose
levels xni of neurotensin as

pn.xni / D ps.log �C xni / D f1C exp.�˛s � ˇ log � � ˇxni /g�1

D f1C exp.�˛n � ˇxni /g�1

where ˛n D ˛s C ˇ log �.

By forming

pn.xni /

1 � pn.xni /

you obtain the results

log
�

pn.xni /

1 � pn.xni /

�
D f˛s C ˇ log �g C ˇxni

D ˛n C ˇxni
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Similarly,

log
�

ps.xsi /

1 � ps.xsi /

�
D ˛s C ˇxsi

Thus, the dilution assumption can be tested by fitting a model with separate intercepts and slopes
and then testing for a common slope.

The constant � is the relative potency, and since

˛n D ˛s C ˇ log �

then

� D exp
�
˛n � ˛s

ˇ

�

This means that � units of somatostatin produce the same reaction as one unit of neurotensin.

Fieller’s theorem can be used to produce confidence intervals for the relative potency.

11.3.1 Analysis of the Peptide Data

The following DATA step creates data set ASSAY for use with PROC LOGISTIC. Indicator
variables INT_S and INT_N are created to form the intercepts for each drug, and LDOSE is dose
on the log scale.

data assay;
input drug $ dose status $ count;
int_n=(drug='n');
int_s=(drug='s');
ldose=log(dose);
datalines;

n 0.01 dead 0
n 0.01 alive 30
n .03 dead 1
n .03 alive 29
n .10 dead 1
n .10 alive 9
n .30 dead 1
n .30 alive 9
n 1.00 dead 4
n 1.00 alive 6
n 3.00 dead 4
n 3.00 alive 6
n 10.00 dead 5
n 10.00 alive 5
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n 30.00 dead 7
n 30.00 alive 3
s .30 dead 0
s .30 alive 10
s 1.00 dead 0
s 1.00 alive 10
s 3.00 dead 1
s 3.00 alive 9
s 10.00 dead 4
s 10.00 alive 6
s 30.00 dead 5
s 30.00 alive 5
s 100.00 dead 8
s 100.00 alive 2
;

The following PROC LOGISTIC statements request the two intercepts and two slopes model.
The NOINT option must be specified to suppress the default intercept. Crossing the intercept
variables with LDOSE creates separate dose terms for each drug. Subsequently squaring these
terms produces quadratic terms so that a test of quadratic terms can be performed to help assess
goodness of fit; this is desirable since the cell counts in Table 11.2 are small.

The TEST statement requests a test for equality of the two slope parameters ˇn and ˇs . The
coefficient names ‘int_nldose’ and ‘int_sldose’ pertain to the LDOSE*INT_N and LDOSE*INT_S
terms in the MODEL statement; to determine the names to use in the TEST statement, you can
create an OUTEST= data set and print it (not shown here).

proc logistic data=assay descending;
freq count;
model status = int_n int_s

ldose*int_n ldose*int_s
ldose*int_n*ldose*int_n
ldose*int_s*ldose*int_s
/ noint
scale=none aggregate
include=4 selection=forward details;

eq_slope: test int_nldose=int_sldose;
run;

Output 11.14 contains a listing of the response profile. The model is estimating the probability of
death.

Output 11.14 Response Profile

Response Profile

Ordered
Value status

Total
Frequency

1 dead 41

2 alive 139

Probability modeled is status='dead'.
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Output 11.15 displays the goodness-of-fit statistics. With values of 4.4144 and 3.6352 for QL and
QP , respectively, these statistics support an adequate model fit.

Output 11.15 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 4.4144 10 0.4414 0.9267

Pearson 3.6352 10 0.3635 0.9623

Number of unique profiles: 14

Output 11.16 contains the results for the residual score test for the two quadratic terms. It is
nonsignificant, and so are the individual tests. These results support the goodness of fit of the
model.

Output 11.16 Tests for Quadratic Terms

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

1.4817 2 0.4767

The parameter estimates are all significant, as seen in the “Analysis of Maximum Likelihood
Estimates” table displayed in Output 11.17. However, if you examine the slope estimates (labeled
‘int_n*ldose’ and ‘int_s*ldose’) and their standard errors, you see that it is possible that these two
slopes can be represented by one slope. The Wald statistic for the hypothesis test H0Wˇn D ˇs
bears this out with a nonsignificant p D 0:1490, displayed in Output 11.18.

Output 11.17 Maximum Likelihood Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

int_n 1 -1.1301 0.2948 14.6983 0.0001

int_s 1 -3.3782 0.8797 14.7479 0.0001

int_n*ldose 1 0.6199 0.1240 24.9907 <.0001

int_s*ldose 1 1.0615 0.2798 14.3914 0.0001
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Output 11.18 Equal Slopes Hypothesis Test Results

Linear Hypotheses Testing Results

Label
Wald

Chi-Square DF Pr > ChiSq

eq_slope 2.0820 1 0.1490

Thus, it appears that a parallel lines model fits these data, and the following PROC LOGISTIC
statements request this model. The COVB option in the MODEL statement requests that the
covariances of the parameters be printed, and the OUTEST=ESTIMATE and COVOUT options
request that they be placed into a SAS data set for further processing. Without the specification
of the COVOUT option, only the parameter estimates are placed in the OUTEST data set. For
convenience, the _LINK_ and _LNLIKE_ variables placed in the OUTEST data set by default are
dropped.

proc logistic data=assay descending outest=estimate
(drop= intercept _link_ _lnlike_) covout;

freq count;
model status = int_n int_s ldose /

noint scale=none aggregate covb;
run;

Output 11.19 contains the goodness-of-fit statistics for this model, and they indicate that the model
is adequate.

Output 11.19 Goodness-of-Fit Results

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 6.8461 11 0.6224 0.8114

Pearson 5.6480 11 0.5135 0.8958

Number of unique profiles: 14

Output 11.20 contains the parameter estimates; all of them are clearly significant.

Output 11.20 Maximum Likelihood Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

int_n 1 -1.1931 0.3158 14.2781 0.0002

int_s 1 -2.4476 0.4532 29.1632 <.0001

ldose 1 0.7234 0.1177 37.7681 <.0001
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Output 11.21 contains the estimated covariance matrix.

Output 11.21 Covariance Matrix

Estimated Covariance Matrix

Parameter int_n int_s ldose

int_n 0.099702 0.025907 -0.00984

int_s 0.025907 0.20542 -0.03648

ldose -0.00984 -0.03648 0.013856

The estimated log LD50s from this model are

log LD50n D
� Ǫn

Ǒ
D
1:1931

0:7234
D 1:65

and

log LD50s D
� Ǫs

Ǒ
D
2:4476

0:7234
D 3:38

The log relative potency is estimated as

Olog� D
Ǫn � Ǫs

Ǒ
D
�1:1931 � .�2:4476/

0:7234
D 1:73

You can compute approximate confidence intervals for these quantities using the linearized Taylor
series, as in the previous section for the log LD50, or you can produce confidence intervals based
on Fieller’s theorem.

The appendix to this chapter contains the SAS/IML routine that produces confidence intervals
based on Fieller’s theorem for ratios of estimates from a general linear model (Zerbe 1978). You
specify coefficients for vectors k and h that premultiply the parameter vector to form the numerator
and the denominator of the ratio of interest. For example, if ˇ D f˛n; ˛s; ˇg, k D f1;�1; 0g, and
h D f0; 0; 1g, then

k0ˇ
h0ˇ
D
˛n � ˛s

ˇ

which is the relative potency. Other choices of coefficients produce log LD50n and log LD50s . See
the appendix for the complete program listing to produce the results.

The ratio estimates for the log potency, log LD50n, and log LD50s are displayed in Output 11.22.
The lower and upper bounds of their confidence intervals appear under “l_bound” and “u_bound,”
respectively.
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Output 11.22 Confidence Intervals Based on Fieller’s Theorem

Confidence IntervalsConfidence Intervals

95 % ci for ratio based on fieller

ratio
interval

l_bound u_bound

1.7341215 0.4262151 2.9994194

95 % ci for ratio based on fieller

ratio
interval

l_bound u_bound

1.6493371 0.8237277 2.6875216

95 % ci for ratio based on fieller

ratio
interval

l_bound u_bound

3.3834586 2.4863045 4.4505794

Table 11.3 contains these results as well as the exponentiated results for the natural dose. Thus, a
dose of somatostatin must be 5.64 times higher than a dose of neurotensin to have the same effect,
with a 95% confidence interval of (1.53, 20.07).

Table 11.3 Estimated Measures from Parallel Assay

95% Exponentiated Exponentiated
Estimate Value Confidence Interval Value Confidence Interval
log(Potency) 1.73 .0:4262; 2:9994/ 5.64 (1.53, 20.07)
log LD50n 1.65 .0:8237; 2:6875/ 5.21 (2.28, 14.69)
log LD50s 3.38 .2:4863; 4:4506/ 29.37 (12.02, 85.68)

11.4 Analysis of Pain Study

Researchers investigated a new drug for pain relief by studying its effect on groups of subjects with
two different diagnoses. The drug was administered at five dosages, and the outcome measured
was whether the subjects reported adverse effects. Table 11.4 contains the data. Interest lies in
investigating the association of adverse effects with dose and diagnosis; in addition, there is interest
in describing the influence of dose and diagnosis on reports of adverse effects with a statistical
model.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



362 Chapter 11: Quantal Response Data Analysis

Table 11.4 Pain Study

Diagnosis I Diagnosis II
Dose Adverse Not Adverse Not
1 3 26 6 26
5 7 26 20 12
10 10 22 26 6
12 14 18 28 4
15 18 14 31 1

Unlike the previous bioassay analysis, this study does not compare the tolerance distributions of
two drugs and is not strictly concerned with estimating the tolerance distribution for either drug.
But even though the study does not completely fall into the usual realm of bioassay, it has a bioassay
flavor. Its analysis also serves to illustrate the blend of hypothesis testing and model fitting that is
often desired in a statistical analysis of categorical data.

Mantel-Haenzsel statistics are computed to determine if there is an association between adverse
effects and dose, adverse effects and diagnosis, and adverse effects and dose, controlling for
diagnosis. A logistic model is then fit to describe the influence of dose and diagnosis on adverse
effects, and ED50s are estimated for both diagnosis groups.

The following DATA step statements input the data and create indicator variables to be used later
for the PROC LOGISTIC runs.

data adverse;
input diagnos $ dose status $ count @@;
i_diagII=(diagnos='II');
i_diagI= (diagnos='I');

datalines;
I 1 adverse 3 I 1 no 26
I 5 adverse 7 I 5 no 26
I 10 adverse 10 I 10 no 22
I 12 adverse 14 I 12 no 18
I 15 adverse 18 I 15 no 14
II 1 adverse 6 II 1 no 26
II 5 adverse 20 II 5 no 12
II 10 adverse 26 II 10 no 6
II 12 adverse 28 II 12 no 4
II 15 adverse 31 II 15 no 1
;

proc freq data=adverse;
weight count;
tables dose*status diagnos*status diagnos*dose*status /

nopct nocol cmh;
run;

Output 11.23 contains the crosstabulation for DOSE � STATUS. There appears to be a positive
association between dose level and proportion of adverse effects.
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Output 11.23 Table of DOSE � STATUS

Confidence IntervalsConfidence Intervals

Frequency
Row Pct

Table of dose by status

dose

status

adverse no Total

1 9
14.75

52
85.25

61

5 27
41.54

38
58.46

65

10 36
56.25

28
43.75

64

12 42
65.63

22
34.38

64

15 49
76.56

15
23.44

64

Total 163 155 318

Output 11.24 contains the Mantel-Haenszel statistics. Since the dose levels are numeric, the 1 df
correlation statistic is appropriate. QCS D 55:7982, which is strongly significant. As the dose
increases, the proportion of subjects who experienced adverse effects also increases.

Output 11.24 Mantel-Haenszel Statistics

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 55.7982 <.0001

2 Row Mean Scores Differ 4 57.1403 <.0001

3 General Association 4 57.1403 <.0001

Output 11.25 displays the crosstabulation for DIAGNOS � STATUS.

Output 11.25 DIAGNOS � STATUS Table

Frequency
Row Pct

Table of diagnos by status

diagnos

status

adverse no Total

I 52
32.91

106
67.09

158

II 111
69.38

49
30.63

160

Total 163 155 318
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Output 11.26 contains the Mantel-Haenszel statistics. QMH D 42:1732 with 1 df, which is also
strongly significant. Subjects with diagnosis II were more likely to experience adverse effects.

Output 11.26 Mantel-Haenszel Statistics

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 42.1732 <.0001

2 Row Mean Scores Differ 1 42.1732 <.0001

3 General Association 1 42.1732 <.0001

Output 11.27 contains the extended Mantel-Haenszel statistics for the association of dose and status
after adjusting for diagnosis. The correlation statistic is appropriate, and QCS D 65:5570 with 1
df, which is clearly significant.

Output 11.27 DIAGNOS*DRUG*STATUS

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 65.5570 <.0001

2 Row Mean Scores Differ 4 67.4362 <.0001

3 General Association 4 67.4362 <.0001

The following PROC LOGISTIC statements fit a model that contains separate intercepts and slopes
for the two diagnoses. First, the actual dose is used.

proc logistic data=adverse outest=estimate
(drop= intercept _link_ _lnlike_) covout;

freq count;
model status = i_diagI i_diagII

dose*i_diagI dose*i_diagII /
noint scale=none aggregate;

eq_slope: test i_diagIdose=i_diagIIdose;
run;

Output 11.28 contains the response profiles and goodness-of-fit statistics. The model fit appears to
be quite good.
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Output 11.28 Response Profiles and Goodness of Fit

Confidence IntervalsConfidence Intervals

Response Profile

Ordered
Value status

Total
Frequency

1 adverse 163

2 no 155

Probability modeled is status='adverse'.

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 2.7345 6 0.4557 0.8414

Pearson 2.7046 6 0.4508 0.8449

Number of unique profiles: 10

Output 11.29 contains the model parameters, and Output 11.30 contains the test for a common
slope. The hypothesis of a common slope is rejected at the ˛ D 0:05 level of significance.

Output 11.29 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

i_diagI 1 -2.2735 0.4573 24.7197 <.0001

i_diagII 1 -1.4341 0.3742 14.6887 0.0001

i_diagI*dose 1 0.1654 0.0414 15.9478 <.0001

i_diagII*dose 1 0.3064 0.0486 39.8186 <.0001

Output 11.30 Hypothesis Test

Linear Hypotheses Testing Results

Label
Wald

Chi-Square DF Pr > ChiSq

eq_slope 4.8787 1 0.0272
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Next, the model based on log doses is fit.

proc logistic data=adverse;
freq count;
model status = i_diagI i_diagII

dose*i_diagI dose*i_diagII /
noint scale=none aggregate;

eq_slope: test i_diagIdose=i_diagIIdose;
run;

Output 11.31 contains the goodness-of-fit tests, which are not as supportive of this model as they
are for the model based on actual dose; however, they are still entirely satisfactory.

Output 11.31 Goodness-of-Fit Tests

Confidence Intervals

Confidence Intervals
Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 4.8774 6 0.8129 0.5596

Pearson 4.4884 6 0.7481 0.6109

Number of unique profiles: 10

Output 11.32 contains the results for the test that the slopes are equal.

Output 11.32 Hypothesis Test Results

Linear Hypotheses Testing Results

Label
Wald

Chi-Square DF Pr > ChiSq

eq_slope 2.4034 1 0.1211

With p D 0:1211, you would not usually reject the hypothesis that the slopes are equal.

Thus, both models fit the data, and one model offers the possibility of a parallel lines model.
Frequently, you encounter different model choices in your analyses, and you need to make a
decision about which model to present. Since this is not a true bioassay, in the sense of a study
comparing two drugs, the fact that you can fit a model with a common slope has less motivation.
Potency in this setting means only that the shape of the tolerance distribution of the analgesic is
similar for the two diagnoses, which may not be as important as simply determining that the drug
works differently for the two diagnoses.

The model with the actual dose is used, since it fits very well and since there is no a priori reason to
use log doses. (One very good reason might be to compare results with other studies if they worked
with dose on the log scale.) It’s of interest to compute ED50s for both diagnoses, to describe the
median impact on adverse effects for the two diagnoses. The SAS/IML routine is again used to
compute the ED50s and to produce a confidence interval based on Fieller’s formula.
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The required coefficients are

k={ -1 0 0 0}`;
h={ 0 0 1 0}`;

and

k={ 0 -1 0 0}`;
h={ 0 0 0 1}`;

Output 11.33 contains the results. You need 13.74 units of the analgesic to produce adverse
effects in 50% of the subjects with Diagnosis I; you only need 4.68 units of the drug to produce
adverse effects in 50% of the subjects with Diagnosis II. The respective confidence intervals are
.11:5095; 18:2537/ and .2:9651; 6:0377/.

Output 11.33 ED50s

Confidence Intervals

Confidence Intervals
95 % ci for ratio based on fieller

ratio
interval

l_bound u_bound

13.741832 11.509478 18.253683

95 % ci for ratio based on fieller

ratio
interval

l_bound u_bound

4.6799535 2.9651466 6.0377151

11.5 Estimating Tolerance Distributions

The previous example illustrates that quantal response data analysis techniques can be used for
the analysis of data that are not strictly bioassay data but are concerned with the investigation of
drug responses. These methods can also be extended to other application areas as well, such as
child development. For example, concepts like ED50 can be applied to describe the median ages at
which certain types of physical development occur.

The following example is loosely based on a study of secondary sexual characteristics in girls
(Herman-Giddens et al. 1997). Practitioners saw secondary sexual characteristics in patients much
younger than the standard pediatric textbooks suggested was the norm, and researchers wanted
to determine if the age of puberty was indeed dropping. Subjects were girls who showed up at a
network of practitioner offices throughout the United States; the study was observational but the
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girls’ heights and weights were representative of their age groups when compared to a national
sample of health outcomes data.

Table 11.5 displays data for the onset of breast development for a subset of the girls, ages 5–12.

Table 11.5 Girls with Development Characteristics

Onset Total
Age Number Girls

5 5 209
6 8 126
7 21 136
8 54 143
9 72 115

10 90 112
11 121 126
12 90 91

Similar to bioassay, you can assume that the response (onset of breast development) is determined
through a tolerance distribution, and that onset will occur for individuals at certain ages. Thus,
you can determine the mean of the tolerance distribution, which is the average age for the onset of
breast development with probit analysis, or the median age for the onset with logistic analysis.

The following statements create SAS data set DEVELOPMENT. Note that AGE is coded as age at
the half-year point for ages 5–12.

data development;
input age onset total @@;

datalines;
5.5 5 209
6.5 8 126
7.5 21 136
8.5 54 143
9.5 72 115
10.5 90 112
11.5 121 126
12.5 90 91
;

A probit analysis is requested with the PROBIT procedure. Since no DIST= option is specified
in the MODEL statement, probit analysis is performed. The PLOTS=PREDPPLOT option in the
PROC PROBIT statement requests the predicted probabilities plot when ODS Graphics is enabled.
The LACKFIT option in the MODEL statement requests goodness-of-fit statistics.

ods graphics on;
proc probit order=data plots=predpplot;

model onset/total= age / lackfit;
run;
ods graphics off;

Output 11.34 displays the model information. These data include a total of 461 events for 1058
girls.
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Output 11.34 Probit Model Information

Confidence IntervalsConfidence Intervals

Model Information

Data Set WORK.DEVELOPMENT

Events Variable onset

Trials Variable total

Number of Observations 8

Number of Events 461

Number of Trials 1058

Name of Distribution Normal

Log Likelihood -366.2110666

The goodness-of-fit statistics in Output 11.35 are reasonable, with p-values of 0.82 for both QP
and QL.

Output 11.35 Goodness-of-Fit Statistics

Goodness-of-Fit Tests

Statistic Value DF Value/DF Pr > ChiSq

Pearson Chi-Square 2.9603 6 0.4934 0.8138

L.R.    Chi-Square 2.9181 6 0.4864 0.8191

Output 11.36 contains the parameter estimates.

Output 11.36 Probit Parameter Estimates

Analysis of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence

Limits Chi-Square Pr > ChiSq

Intercept 1 -5.5836 0.2776 -6.1277 -5.0395 404.55 <.0001

age 1 0.6215 0.0310 0.5607 0.6823 401.44 <.0001

Output 11.37 contains the parameters of the tolerance distribution.
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Output 11.37 Tolerance Parameter Estimates

Probit Model in Terms
of Tolerance
Distribution

MU SIGMA

8.98464317 1.6091091

Since the tolerance distribution is based on the probit, O� represents the mean of the tolerance
distribution; for these data, O� D 8:98 represents the average age of the subjects at which breast
development occurred. Output 11.38 displays the covariance matrix of these estimated parameters,
so the standard error of O� is

p
0:0072 D 0:0849.

Output 11.38 Estimated Covariances of Tolerance Parameters

Estimated Covariance Matrix
for Tolerance Parameters

MU SIGMA

MU 0.007187 0.000782

SIGMA 0.000782 0.006450

Output 11.39 contains the predicted probabilities plot.

Output 11.39 Predicted Probabilities

The analysis was rerun using the logistic distribution (DIST=LOGISTIC with the PROBIT
procedure). The results are similar, as expected (The logistic fit was slightly better according to the
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goodness-of-fit criteria). The following figure repeats the predicted probabilities plot for the probit
analysis and also displays the same plot for the logistic analysis.

Figure 11.1 Probit Model Figure 11.2 Logistic Model

You can see that the curves have somewhat different shapes, but they are very similar in their
predictions.

Thus, quantal response data analysis methods can be applied to a variety of application areas,
including growth and development. A related measure of interest is lifetime risk of an event, such
as lifetime risk of a chronic disease such as osteoarthritis. See Murphy et al. (2008) for a study
concerning this outcome conducted in Johnston County, North Carolina.

Appendix A: SAS/IML Macro for Confidence Intervals of Ratios Using
Fieller’s Theorem

The following SAS/IML code produces confidence intervals based on Fieller’s theorem for ratios
of estimates from a general linear model (Zerbe 1978). You specify coefficients for vectors k and
h that premultiply the parameter vector to form the numerator and the denominator of the ratio of
interest. For example, if ˇ D f˛n; ˛s; ˇg, k D f1;�1; 0g, and h D f0; 0; 1g, then

k0ˇ
h0ˇ
D
˛n � ˛s

ˇ

which is the log relative potency. Other choices of coefficients produce log LD50n and log LD50s .
You can produce the log LD50 for a single drug assay with the coefficients k D f�1; 0g, and
h D f1; 0g.

The program inputs the covariance matrix for the parameters from an OUTEST= data set
named ESTIMATE and applies the appropriate manipulations to produce the corresponding
95% confidence intervals for the ratios that are specified. The ratio estimates are displayed, and
the lower and upper bounds of their Fieller-based confidence intervals appear under “l_bound” and
“u_bound,” respectively.
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proc iml;
use estimate;
start fieller;
title 'Confidence Intervals';
use estimate;
read all into beta where (_type_='PARMS');
beta=beta`;
read all into cov where (_type_='COV');
ratio=(k`*beta) / (h`*beta);
a=(h`*beta)**2-(3.84)*(h`*cov*h);
b=2*(3.84*(k`*cov*h)-(k`*beta)*(h`*beta));
c=(k`*beta)**2 -(3.84)*(k`*cov*k);
disc=((b**2)-4*a*c);
if (disc<=0 | a<=0) then do;
print "confidence interval can't be computed", ratio;
stop; end;
sroot=sqrt(disc);
l_b=((-b)-sroot)/(2*a);
u_b=((-b)+sroot)/(2*a);
interval=l_b||u_b;
lname={"l_bound", "u_bound"};
print "95 % ci for ratio based on fieller", ratio interval[colname=lname];
finish fieller;
k={ -1 0 0 0}`;
h={ 0 0 1 0}`;
run fieller;
k={ 0 -1 0 0}`;
h={ 0 0 0 1}`;
run fieller;
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12.1 Introduction

Categorical data often appear as discrete counts that are considered to be distributed as Poisson.
Examples include colony counts for bacteria or viruses, accidents, equipment failures, insurance
claims, and incidence of disease. Interest often lies in estimating a rate or incidence (bacteria counts
per unit volume or cancer deaths per person-months of exposure to a carcinogen) and determining
its relationship to a set of explanatory variables. Poisson regression became popularized as an
analysis method in the 1970s and 1980s (Frome, Kutner, and Beauchamp 1973; Charnes, Frome,
and Yu 1976; and Frome 1981), although Cochran pointed out the possibilities in a 1940 paper
(Cochran 1940), along with the suggestion of the appropriateness of the loglinear model.

Poisson regression is a widely used modeling technique. Epidemiological applications include
those where the events are occurrences of rare diseases (or experiences) for populations of different
sizes; the enumeration of the number of events and determination of the population sizes are
through possibly different data sources. Other epidemiological applications are occurrences of rare
diseases (or experiences) for individuals with possibly differing amounts of exposure to risk; the
explanatory variables are background covariables and risk factors.

Clinical trials provides another rich application area for Poisson regression. Events are occurrences
of rare disorders for individuals with possibly different levels of exposure to risk; explanatory
variables are treatment and background covariables. For example, the rare disorders in a vaccine
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study are the diseases to be prevented; in other studies, the events can correspond to an unfavorable
side effect of a treatment or exacerbations of a disorder that treatment may reduce.

Some interesting uses of Poisson regression include a study homicide incidence study (Shahpar
and Guohua 1999), a study of injuries incurred by electric utility workers (Loomis et al. 1999), and
an evaluation of the risk of endometrial cancer as related to occupational physical activity (Moradi
et al. 1998).

This chapter describes the methodology of Poisson regression in Section 12.2 and illustrates the
use of the strategy in the next four sections. Section 12.5 describes the issue of overdispersion with
Poisson data and discusses two techniques that adjust for it. Poisson regression is discussed in
other chapters in this book as well. Chapter 15, “Generalized Estimating Equations,” describes the
analysis of Poisson-distributed correlated data with the GEE method in Section 15.9 and describes
a GEE-based approach for managing overdispersion in Poisson regression for a univariate outcome
in Section 15.13.

Loglinear model methodology is most appropriate when there is no clear distinction between
response and explanatory variables, such as when all of the variables are observed simultaneously.
The loglinear model point of view treats all variables as response variables, and the focus is on
statistical independence and dependence. Loglinear modeling of categorical data is analogous to
correlation analysis for normally distributed response variables and is useful in assessing patterns
of statistical dependence among subsets of variables.

Although many investigators have made significant contributions, Goodman was a particularly
influential researcher who popularized the method in the social sciences. Two of his key papers
(Goodman 1968, 1970) summarize much of the earlier work. Bishop, Fienberg, and Holland (1975)
first comprehensively described the methodology for the general statistical community. While
loglinear models are used extensively in the social sciences, they have applicability to many
areas. See Ahn et al. (2007) for the use of the loglinear model to study mutations along the HIV
genome. Fienberg (2011) provides an historical perspective of the evolution of modeling methods
for analyzing contingency tables, including the role of loglinear models.

There is a proportionality relationship between the likelihood for Poisson regression and the
likelihood for the loglinear model, so the loglinear model can be fit using Poisson regression
methods. Section 12.7 considers the loglinear model for three-way contingency tables, and Section
12.8 illustrates how to fit them using the GENMOD and CATMOD procedures. Section 12.9
describes the correspondence between logistic models and loglinear models.

In addition, the likelihoods for Poisson regression and the piecewise exponential model for
analyzing time-to-event data are proportional, so the former can be used to fit the latter. This
connection is illustrated in Chapter 13, “Categorized Time-to-Event Data.”

12.2 Methodology for Poisson Regression

Suppose that a response variable Y is distributed as Poisson and has expected value �. Recall that
the variance of a Poisson variable is also �. If you have a single explanatory variable x, you can
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write a regression model for � as

g.�/ D ˛ C xˇ

where g is a link function, in terms of a GLM (generalized linear model). Usually, g is taken to be
the log function. If so, you have a loglinear model

log.�/ D ˛ C xˇ

You can rewrite this model as

� D e˛exˇ

If you increase the explanatory variable x by one unit, it has a multiplicative effect of e ˇ on �.
Since this model is specified as a GLM, with a log link and a Poisson distribution, you can fit it
with the GENMOD procedure and use the deviance and likelihood ratio tests to assess model fit
and use Wald or score statistics to assess the model effects.

Frequently, discrete counts represent information collected over time (days, years) or in space
(volume for bacteria counts), and interest lies in modeling rates. If the exposure time or volume is
denoted as N , you write the rate as Y=N and write the expected value as �=N . Modeling this rate
with a loglinear model is written

log
�

N
D ˛ C xˇ

which can be rearranged as

log� D ˛ C xˇ C log.N /

The term log.N / is called an offset and must be accounted for in the estimation process. Note that
if you exponentiate both sides of this expression you obtain

� D exp
˚
˛ C xˇ C log.N /

	
D Ne˛exˇ

which indicates that the mean is proportional to N . Holding everything else constant, if you
multiplied N by some number, you would be multiplying the expected mean by the same number.

More generally, when you have multiple explanatory variables, you can write the model in matrix
terms as

�.x/ D fN.x/gfg.ˇjx/g

where �.x/ is the expected value of the number of events n.x/, x is the vector of explanatory
variables, x D .x1; x2; : : : ; xt /0, and N.x/ is the known total exposure to risk in the units in which
the events occur (subject-days, for example). The rate for incidence is written as

�.x/ D �.x/=N.x/

The loglinear model is written as

log
�
�.x/
N.x/

�
D x0ˇ
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for counts n.x/ with independent Poisson distributions. An equivalent form is

�.x/ D fN.x/gfexp.x0ˇ/g

If you have s independent groups referenced by i D 1; 2; : : : ; s, each with a vector xi D
.xi1; xi2; : : : ; xit / of t explanatory variables, you can write a likelihood function for the data as

ˆ.nj�/ D
sY
iD1

�
ni

i fexp.��i /g=ni Š

where n D .n1; n2; : : : ; ns/0 and � D .�1; �2; : : : ; �s/0.

The loglinear Poisson model is often written as

logfnig D logfNig C x0iˇ

in the generalized linear models framework, where the quantity logfNig is the offset. For more
information on Poisson regression, refer to Koch, Atkinson, and Stokes (1986).

12.3 Simple Poisson Counts Example

Table 12.1 presents salmonella counts for samples taken from two science labs (Margolin, Kaplan,
and Zeiger 1981), reanalyzed in Koch, Atkinson, and Stokes (1986).

Table 12.1 Salmonella Counts in Two Science Labs
Science Lab Counts

A 63 64 65 68 69 70 72 73
75 80 82 83 83 84 84 85 90 91

B 168 171 174 175 185 189 190
191 195 197 198 198 203 205 205
207 210 214 216 218

Bacteria counts can be considered to be distributed according to the Poisson distribution. A
simple Poisson regression model investigates whether the distributional assumption is correct and
determines whether the counts for one science lab are different from those from the other science
lab. You perform such an analysis with the GENMOD procedure.

The following SAS statements create data set SALMONELLA. Variable LAB indicates the A or B
lab, and the COUNTS variable contains the bacteria counts for the samples taken (18 samples in
lab A and 20 samples in lab B).

data salmonella;
input lab $ counts @@;

datalines;
A 63 A 64 A 65 A 68 A 69 A 70 A 72 A 73
A 75 A 80 A 82 A 83 A 83 A 84 A 84 A 85 A 90 A 91

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



12.3. Simple Poisson Counts Example 377

B 168 B 171 B 174 B 175 B 185 B 189 B 190
B 191 B 195 B 197 B 198 B 198 B 203 B 205 B 205
B 207 B 210 B 214 B 216 B 218
;

The next set of statements requests Poisson regression with the GENMOD procedure. The variable
COUNTS is specified as the response variable, and the variable LAB is specified as the explanatory
variable. The DIST=POISSON option and the LINK=LOG option request Poisson regression. The
TYPE3 option requests the Type 3 analysis of effects.

proc genmod;
class lab;
model counts = lab / dist=poisson link=log type3;

run;

Output 12.1 displays the model information for this analysis, and Output 12.2 displays the CLASS
variable levels for the explanatory variable.

Output 12.1 Model Information

Model Information

Data Set WORK.SALMONELLA

Distribution Poisson

Link Function Log

Dependent Variable counts

Output 12.2 Class Information

Class Level Information

Class Levels Values

lab 2 A B

Output 12.3 contains the table with the goodness-of-fit statistics. Note that the value of the
deviance/df is 1.1207, andQP /df is 1.1113. Since these ratios are close to 1, there is good evidence
that the data are distributed as Poisson, since these test statistics should be roughly equal to the
corresponding degrees of freedom.
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Output 12.3 Assessment of Fit

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 36 40.3451 1.1207

Scaled Deviance 36 40.3451 1.1207

Pearson Chi-Square 36 40.0077 1.1113

Scaled Pearson X2 36 40.0077 1.1113

Log Likelihood 21324.9700

Full Log Likelihood -146.8471

AIC (smaller is better) 297.6942

AICC (smaller is better) 298.0370

BIC (smaller is better) 300.9693

The Type 3 analysis is displayed in Output 12.4. The variable LAB is highly significant.

Output 12.4 Type 3 Analysis

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

lab 1 1007.19 <.0001

The parameter estimates are presented in Output 12.5.

Output 12.5 Type 3 Analysis

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 5.2753 0.0160 5.2440 5.3067 108783 <.0001

lab A 1 -0.9351 0.0313 -0.9965 -0.8738 892.34 <.0001

lab B 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

The model-predicted log mean count is 5.2753 for lab B and 5:2753 � 0:9351 D 4:3402 for lab A,
corresponding to mean count estimates of 195.45 and 76.72, respectively.
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12.4 Poisson Regression for Incidence Densities

Most of the time, Poisson regression is performed when you have counts and some measure
of exposure. The next example concerns counts of melanoma cases as well as information on
exposure. Thus, you are interested in fitting a model to the log rate, or incidence densities, of
melanoma exposure. This requires adding an offset variable in the model.

Consider Table 12.2. The counts nhi are the number of new melanoma cases reported in 1969–1971
for white males in two areas (Gail 1978; Koch, Imrey et al. 1985). The totals Nhi are the sizes
of the estimated populations at risk; they may represent counts of people or counts of exposure
units. Researchers were interested in whether the rates nhi=Nhi , which are incidence densities,
varied across age groups or region (h D 1 for the northern region, h D 2 for the southern region;
i D 1; 2; 3; 4; 5; 6 for ascending age groups).

Table 12.2 New Melanoma Cases Among White Males: 1969–1971

Region Age Group Cases Total
Northern < 35 61 2880262
Northern 35–44 76 564535
Northern 45–54 98 592983
Northern 55–64 104 450740
Northern 65–74 63 270908
Northern > 75 80 161850
Southern < 35 64 1074246
Southern 35–44 75 220407
Southern 45–54 68 198119
Southern 55–64 63 134084
Southern 65–74 45 70708
Southern > 75 27 34233

For this application of Poisson regression, the model of interest includes incremental effects for age
levels and region. The following DATA step inputs the melanoma data and computes the variable
LTOTAL, which is the log of the estimated exposure.

data melanoma;
input age $ region $ cases total;
ltotal=log(total);
datalines;

35-44 south 75 220407
45-54 south 68 198119
55-64 south 63 134084
65-74 south 45 70708
75+ south 27 34233
<35 south 64 1074246
35-44 north 76 564535
45-54 north 98 592983
55-64 north 104 450740
65-74 north 63 270908
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75+ north 80 161850
<35 north 61 2880262
;

The next statements invoke the GENMOD procedure.

proc genmod data=melanoma;
class region (ref='north') age (ref='<35') / param=ref;
model cases = age region

/ dist=poisson link=log offset=ltotal;
run;

The REF= option specifies that subjects from the North who are less than 35 years old are the
reference group. The PARAM=REF option specifies incremental effects parameterization.

The MODEL statement specifies that a main effects model be fit. The response variable is CASES,
and the explanatory variables are AGE and REGION. The DIST=POISSON option specifies the
Poisson distribution, and the LINK=LOG option specifies that the log be the link function. The
variable LTOTAL is to be treated as the offset. If you look at the preceding DATA step, you see
that LTOTAL is the log of TOTAL. Thus, you are fitting a loglinear model to the ratio of cancer
incidence to exposure.

Output 12.6 contains model specification information, including the fact that the model includes
variable LTOTAL as an offset.

Output 12.6 Model Information

Model Information

Data Set WORK.MELANOMA

Distribution Poisson

Link Function Log

Dependent Variable cases

Offset Variable ltotal

Output 12.7 contains information about the CLASS variables. It confirms that the reference level
for the parameterization corresponds to persons from the northern region who are younger than 35.
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Output 12.7 Class Information

Class Level Information

Class Value Design Variables

region north 0

south 1

age 35-44 1 0 0 0 0

45-54 0 1 0 0 0

55-64 0 0 1 0 0

65-74 0 0 0 1 0

75+ 0 0 0 0 1

<35 0 0 0 0 0

Output 12.8 contains information on assessment of fit. Since QP D 6:1151 and the deviance
has the value 6.2149, each with 5 df for their approximately chi-square distributions, the fit is
satisfactory.

Output 12.8 Assessment of Fit

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 5 6.2149 1.2430

Scaled Deviance 5 6.2149 1.2430

Pearson Chi-Square 5 6.1151 1.2230

Scaled Pearson X2 5 6.1151 1.2230

Log Likelihood 2694.9262

Full Log Likelihood -39.2199

AIC (smaller is better) 92.4398

AICC (smaller is better) 120.4398

BIC (smaller is better) 95.8342

Output 12.9 contains the table of estimated model parameters. The log incidence density increases
with increasing age level, and it also increases for the southern region.
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Output 12.9 Estimated Model Parameters

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error
Wald 95%

Confidence Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 -10.6583 0.0952 -10.8449 -10.4718 12538.4 <.0001

age 35-44 1 1.7974 0.1209 1.5604 2.0344 220.92 <.0001

age 45-54 1 1.9131 0.1184 1.6810 2.1452 260.90 <.0001

age 55-64 1 2.2418 0.1183 2.0099 2.4737 358.89 <.0001

age 65-74 1 2.3657 0.1315 2.1080 2.6235 323.56 <.0001

age 75+ 1 2.9447 0.1320 2.6859 3.2035 497.30 <.0001

region south 1 0.8195 0.0710 0.6803 0.9587 133.11 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

You can exponentiate these parameters to express incidence density ratios in a manner similar to
exponentiating parameters in logistic regression to obtain odds ratios. For example, exponentiating
the parameter estimate for the increment for ages 45–54, e1:9131 D 6:774, gives you the ratio
of the incidence of melanoma for those aged 45–54 relative to those less than 35. Similarly,
e0:8195 D 2:269 is the ratio of the incidence of melanoma for those from the southern region
relative to those from the northern region.

By submitting the ESTIMATE statements in the GENMOD procedure, you can produce these
estimates as well as their confidence intervals.

proc genmod data=melanoma;
class region (ref='north') age (ref='<35') / param=ref;
model cases = age region

/ dist=poisson link=log offset=ltotal;
estimate '45-54 vs. < 35' age 0 1 0 0/ exp;
estimate 'South vs. North' region 1 / exp;

run;

Output 12.10 displays the results of this analysis. The confidence interval for the IDR for ages
45–54 relative to those less than 35 is (5.3707, 8.5440), and the confidence interval for the IDR for
southern region relative to northern region is ( 1.9744, 2.6083).
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Output 12.10 Estimated Incidence Density Ratios

Contrast Estimate Results

Mean L'Beta

Label
Mean

Estimate
Confidence

Limits
L'Beta

Estimate
Standard

Error Alpha
Confidence

Limits

45-54 vs. < 35 6.7740 5.3707 8.5440 1.9131 0.1184 0.05 1.6810 2.1452

Exp(45-54 vs. < 35) 6.7740 0.8023 0.05 5.3707 8.5440

South vs. North 2.2693 1.9744 2.6083 0.8195 0.0710 0.05 0.6803 0.9587

Exp(South vs. North) 2.2693 0.1612 0.05 1.9744 2.6083

Contrast Estimate Results

Label Chi-Square Pr > ChiSq

45-54 vs. < 35 260.90 <.0001

Exp(45-54 vs. < 35)

South vs. North 133.11 <.0001

Exp(South vs. North)

Note that other methods for modeling incidence densities are available; see Saville, LaVange, and
Koch (2011) for a discussion of nonparametric methods used to estimate incidence densities for
multiple time intervals.

12.5 Overdispersion in Lower Respiratory Infection Example

Researchers studying the incidence of lower respiratory illness in infants took repeated observations
of the children over one year. They studied 284 children and examined them every two weeks.
Explanatory variables evaluated included passive smoking (one or more smokers in the household),
socioeconomic status, and crowding. Refer to LaVange et al. (1994) for more information on the
study and a discussion of the analysis of incidence densities. One outcome of interest was the total
number of times, or counts, of lower respiratory infection recorded for the year. The strategy was
to model these counts with Poisson regression. However, it is reasonable to expect that the children
experiencing colds are more likely to have other infections; therefore, there may be some additional
variance, or overdispersion, in these data.

Section 8.2.7 mentions overdispersion in the case of logistic regression. Overdispersion occurs
when the observed variance is larger than the nominal variance for a particular distribution. It
occurs with some regularity in the analysis of proportions and discrete counts. This is not surprising
for the assumed distributions (binomial and Poisson, respectively) because the respective variances
are fixed by a single parameter, the mean. When present, overdispersion can have a major impact
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on inference, so it needs to be taken into account. Note that underdispersion also occurs. Refer to
McCullagh and Nelder (1989) and Dean (1998) for more detail on overdispersion.

One way to manage the overdispersion is to assume a more flexible distribution, such as the negative
binomial in the case of overdispersed Poisson data. You can also adjust the covariance matrix of a
Poisson-based analysis with a scaling factor. You expect that the goodness-of-fit chi-squares have
values close to their degrees of freedom with this distribution; an indication of overdispersion is
when their ratio is greater than 1. One way to manage this is to allow the variance function to
have a multiplicative factor, that is, the variance is assumed to be �� instead of �. The chi-square
statistic value divided by its degrees of freedom is used as the scaling factor �. The covariance
matrix is pre-multiplied by the scaling factor, and the scaled deviance and the log likelihoods are
divided by �, as is the profile likelihood function used in computing the confidence limits. Note
that when there are indications of overdispersion, you also have to consider other causes besides
overdispersion such as outliers and a misspecified model.

The following DATA step inputs the data into a SAS data set named LRI.1

data lri;
input id count risk passive crowding ses agegroup race @@;
logrisk =log(risk/52);
datalines;

1 0 42 1 0 2 2 0 96 1 41 1 0 1 2 0 191 0 44 1 0 0 2 0
2 0 43 1 0 0 2 0 97 1 26 1 1 2 2 0 192 0 45 0 0 0 2 1
3 0 41 1 0 1 2 0 98 0 36 0 0 0 2 0 193 0 42 0 0 0 2 0
4 1 36 0 1 0 2 0 99 0 34 0 0 0 2 0 194 1 31 0 0 0 2 1
5 1 31 0 0 0 2 0 100 1 3 1 1 2 3 1 195 0 35 0 0 0 2 0
6 0 43 1 0 0 2 0 101 0 45 1 0 0 2 0 196 1 35 1 0 0 2 0
7 0 45 0 0 0 2 0 102 0 38 0 0 1 2 0 197 1 27 1 0 1 2 0
8 0 42 0 0 0 2 1 103 0 41 1 1 1 2 1 198 1 33 0 0 0 2 0
9 0 45 0 0 0 2 1 104 1 37 0 1 0 2 0 199 0 39 1 0 1 2 0

10 0 35 1 1 0 2 0 105 0 40 0 0 0 2 0 200 3 40 0 1 2 2 0
11 0 43 0 0 0 2 0 106 1 35 1 0 0 2 0 201 4 26 1 0 1 2 0
12 2 38 0 0 0 2 0 107 0 28 0 1 2 2 0 202 0 14 1 1 1 1 1
13 0 41 0 0 0 2 0 108 3 33 0 1 2 2 0 203 0 39 0 1 1 2 0
14 0 12 1 1 0 1 0 109 0 38 0 0 0 2 0 204 0 4 1 1 1 3 0

... more lines ...

90 1 38 1 1 1 2 1 185 0 43 0 0 0 2 0 280 0 31 0 0 0 2 0
91 0 32 1 1 1 2 0 186 0 42 0 0 0 2 0 281 0 18 0 0 0 2 0
92 1 3 1 0 1 3 1 187 0 42 0 0 0 2 0 282 1 32 1 0 2 2 0
93 0 26 1 0 0 2 1 188 0 38 0 0 0 2 0 283 0 22 1 1 2 2 1
94 0 35 1 0 0 2 0 189 0 36 1 0 0 2 0 284 0 35 0 0 0 2 1
95 3 37 1 0 0 2 0 190 0 39 0 1 0 2 0
;

The next set of statements requests Poisson regression for these data, including all of the explanatory
variables. Variables PASSIVE and CROWDING are kept as (0, 1) variables and not included in
the CLASS statement. Incremental effects parameterization is requested with the PARAM=REF
option in the CLASS statement.

1Data provided by Lisa LaVange.
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proc genmod data=lri;
class ses race agegroup / param=ref;
model count = passive crowding ses race agegroup /

dist=poisson offset=logrisk type3;
run;

Output 12.11 contains the general model information.

Output 12.11 Model Information

Model Information

Data Set WORK.LRI

Distribution Poisson

Link Function Log

Dependent Variable count

Offset Variable logrisk

Output 12.12 contains the goodness-of-fit statistics, along with the ratios of their values to their
degrees of freedom. With values of 1.4788 for the deviance/df and 1.7951 for Pearson/df, there is
evidence of overdispersion. The model-based estimates of standard errors may not be appropriate,
and therefore any inference is questionable. (When such ratios are close to 1, you conclude that
little evidence of over- or underdispersion exists.)

Output 12.12 Goodness-of-Fit Statistics

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 276 408.1549 1.4788

Scaled Deviance 276 408.1549 1.4788

Pearson Chi-Square 276 495.4493 1.7951

Scaled Pearson X2 276 495.4493 1.7951

Log Likelihood -260.4117

Full Log Likelihood -337.5776

AIC (smaller is better) 691.1551

AICC (smaller is better) 691.6788

BIC (smaller is better) 720.3469

The model is refit with a scaling factor specified to adjust for the overdispersion. This is requested
with the SCALE=PEARSON option, which computes a scaling factor that is the Pearson Q statistic
divided by its degrees of freedom.
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proc genmod data=lri;
class ses race agegroup / param=ref;
model count = passive crowding ses race agegroup /

dist=poisson offset=logrisk type3 scale=pearson;
run;

Output 12.13 displays the goodness-of-fit statistics. Note that the scaled deviance and the scaled
Pearson chi-square have different values because they have been divided by the scaling factor. The
scaled Pearson chi-square is now 1 because the scaling factor requested was the Pearson chi-square
value divided by the df.

Output 12.13 Assessment of Fit

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 276 408.1549 1.4788

Scaled Deviance 276 227.3709 0.8238

Pearson Chi-Square 276 495.4493 1.7951

Scaled Pearson X2 276 276.0000 1.0000

Log Likelihood -145.0676

Full Log Likelihood -337.5776

AIC (smaller is better) 691.1551

AICC (smaller is better) 691.6788

BIC (smaller is better) 720.3469

Output 12.14 contains the results of the Type 3 analysis. Note that this table also includes F
statistics; the chi-square approximation to the likelihood ratio test may have a less clear basis in
this situation. Refer to SAS/STAT User’s Guide for more detail about their computation.

Output 12.14 Type 3 Analysis

LR Statistics For Type 3 Analysis

Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq

passive 1 276 3.89 0.0494 3.89 0.0484

crowding 1 276 5.86 0.0162 5.86 0.0155

ses 2 276 1.22 0.2966 2.44 0.2950

race 1 276 0.38 0.5408 0.38 0.5403

agegroup 2 276 1.07 0.3443 2.14 0.3429

Both passive smoking and crowding are strongly significant. Socioeconomic status and race do not
appear to be influential, and neither does age group.
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Finally, Output 12.15 contains the parameter estimates. The standard errors are adjusted due to
the scaling factor, and they are larger than the standard errors for the unadjusted model, which are
displayed in Output 12.16.

Output 12.15 Estimated Parameters for Adjusted Model

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 0.6047 0.7304 -0.8269 2.0362 0.69 0.4077

passive 1 0.4310 0.2214 -0.0029 0.8649 3.79 0.0515

crowding 1 0.5199 0.2166 0.0953 0.9444 5.76 0.0164

ses 0 1 -0.3970 0.2886 -0.9627 0.1687 1.89 0.1690

ses 1 1 -0.0681 0.2627 -0.5830 0.4469 0.07 0.7956

race 0 1 0.1402 0.2309 -0.3123 0.5928 0.37 0.5436

agegroup 1 1 -0.4792 0.9043 -2.2516 1.2931 0.28 0.5962

agegroup 2 1 -0.9919 0.6858 -2.3361 0.3522 2.09 0.1481

Scale 0 1.3398 0.0000 1.3398 1.3398

Note: The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

Output 12.16 Estimated Parameters for Unadjusted Model

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 0.6047 0.5452 -0.4638 1.6732 1.23 0.2673

passive 1 0.4310 0.1652 0.1072 0.7548 6.81 0.0091

crowding 1 0.5199 0.1617 0.2030 0.8367 10.34 0.0013

ses 0 1 -0.3970 0.2154 -0.8192 0.0252 3.40 0.0653

ses 1 1 -0.0681 0.1961 -0.4524 0.3163 0.12 0.7285

race 0 1 0.1402 0.1723 -0.1975 0.4780 0.66 0.4158

agegroup 1 1 -0.4792 0.6749 -1.8020 0.8436 0.50 0.4777

agegroup 2 1 -0.9919 0.5119 -1.9951 0.0113 3.76 0.0526

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

A better way to account for the overdispersion might be to assume that the counts are distributed as
negative binomial instead of Poisson. The negative binomial distribution allows for larger variance
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than the Poisson distribution does because it employs an additional parameter. The negative
binomial variance equals � C k�2, where k is the negative binomial dispersion parameter, thus
allowing for larger variance than the Poisson distribution (when k D 0, the two distributions
take the same form.) See Keene, Jones, and Lane (2007) for an application of negative binomial
regression for clinical trials data.

The following SAS statements request negative binomial regression for these data by including the
DIST=NB option in the MODEL statement. All other options remain the same.

proc genmod data=lri;
class ses id race agegroup / param=ref;
model count = passive crowding ses race agegroup /

dist=nb offset=logrisk type3;
run;

Output 12.17 contains the resulting fit statistic. The values of 0.9310 and 1.08 for the statistic/DF
for the deviance and Pearson chi-square, respectively, are not indicative of over- or underdispersion.

Output 12.17 Fit Statistics

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 276 256.9686 0.9310

Scaled Deviance 276 256.9686 0.9310

Pearson Chi-Square 276 298.2408 1.0806

Scaled Pearson X2 276 298.2408 1.0806

Log Likelihood -242.2932

Full Log Likelihood -319.4590

AIC (smaller is better) 656.9181

AICC (smaller is better) 657.5750

BIC (smaller is better) 689.7589

Output 12.18 contains the Type 3 analysis, the results of which are similar to those for the scaled
analysis.
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Output 12.18 Type 3 Analysis

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

passive 1 4.43 0.0353

crowding 1 5.83 0.0158

ses 2 2.39 0.3034

race 1 0.26 0.6112

agegroup 2 2.92 0.2328

Output 12.19 contains the parameter estimates for the negative binomial regression. These estimates
are also similar to those for the scaled analysis. However, note that the p-value for passive smoking
is 0.0346 in this analysis compared to a p-value of 0.0515 for the scaled analysis. In general,
the negative binomial regression approach would be suggested since it identifies the appropriate
distributional assumption for the data rather than applying a fix to an inappropriate analysis.

Output 12.19 Estimated Parameters for Negative Binomial Regression

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 0.6751 0.6333 -0.5661 1.9163 1.14 0.2864

passive 1 0.4530 0.2144 0.0329 0.8732 4.47 0.0346

crowding 1 0.5017 0.2061 0.0978 0.9057 5.93 0.0149

ses 0 1 -0.3987 0.2933 -0.9736 0.1762 1.85 0.1740

ses 1 1 -0.0857 0.2775 -0.6296 0.4582 0.10 0.7574

race 0 1 0.1178 0.2320 -0.3368 0.5725 0.26 0.6115

agegroup 1 1 -0.5652 0.8082 -2.1494 1.0189 0.49 0.4843

agegroup 2 1 -1.0131 0.6006 -2.1902 0.1641 2.85 0.0917

Dispersion 1 0.9760 0.2593 0.5798 1.6430

Note: The negative binomial dispersion parameter was estimated by maximum likelihood.

See Section 15.13 in Chapter 15 for another method to adjust for overdispersion in these data.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



390 Chapter 12: Poisson Regression and Related Loglinear Models

12.6 Exact Poisson Regression

Exact Poisson regression is a useful strategy when you have small numbers of events because it
does not depend on asymptotic results. Instead it relies on estimation of the model parameters by
using the conditional distributions of the sufficient statistics of the parameters. The exact analysis
is also available through the GENMOD procedure.

Table 12.3 displays the vaccine data discussed in Chapter 2 for both the United States and Latin
America. There is interest in evaluating the effects of the vaccine with adjustment for the different
regions. Since the event counts are small (1, 3), exact Poisson regression is indicated.

Table 12.3 Medical Events for Rotavirus Vaccine Study

Vaccine Placebo
Region Events Person Years Events Person Years
United States 3 7500 58 7250
Latin America 1 1250 10 1250

The following SAS statements create the SAS data set ROTAVIRUS:

data rotavirus;
input region $ treatment $ counts years_risk @@ ;
log_risk=log(years_risk);

datalines;
US Vaccine 3 7500 US Placebo 58 7250
LA Vaccine 1 1250 LA Placebo 10 1250
;
run;

The following PROC GENMOD statements specify Poisson regression and exact Poisson re-
gression. The ESTIMATE statement is used to produce the estimated incidence density ratio
(IDR) for the standard analysis, comparing Vaccine and Placebo, and the ESTIMATE=ODDS
and CLTYPE=EXACT options are used to produce the same quantities in the exact analysis
(CLTYPE=EXACT is the default), even though IDRs are being estimated, not odds ratios.

proc genmod;
class region treatment/ param=ref;
model counts = treatment region / dist=poisson offset= log_risk type3;
estimate 'treatment' treatment 1 /exp;
exact treatment / estimate=odds cltype=exact;

run;

Output 12.20 contains the criteria for evaluating goodness of fit. With p-values of 0.2979 for the
deviance and 0.3431 for the Pearson chi-square (both 1 df), the model fit appears appropriate,
although the number of events is too small for formal use of these statistics.
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Output 12.20 Model Fit

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 1 0.2979 0.2979

Scaled Deviance 1 0.2979 0.2979

Pearson Chi-Square 1 0.3431 0.3431

Scaled Pearson X2 1 0.3431 0.3431

Log Likelihood 189.6784

Full Log Likelihood -7.6740

AIC (smaller is better) 21.3481

AICC (smaller is better) .

BIC (smaller is better) 19.5069

Output 12.21 contains the maximum likelihood parameter estimates.

Output 12.21 Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 -4.7886 0.3028 -5.3820 -4.1951 250.11 <.0001

treatment Vaccine 1 -2.8620 0.5145 -3.8704 -1.8536 30.94 <.0001

region US 1 -0.0467 0.3276 -0.6888 0.5953 0.02 0.8865

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

Region is clearly not an influential effect, but it is considered a study design factor that should be
maintained regardless of its p-value.

Output 12.22 contains the estimate of the incidence density ratio for vaccine compared to placebo.
The IDR takes the value of 0.057, which is e�2:862 with a confidence interval of (0.0209, 0.1567)
based on the Wald chi-square statistic.
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Output 12.22 ESTIMATE Statement Results

Contrast Estimate Results

Mean L'Beta

Label
Mean

Estimate
Confidence

Limits
L'Beta

Estimate
Standard

Error Alpha
Confidence

Limits

treatment 0.0572 0.0209 0.1567 -2.8620 0.5145 0.05 -3.8704 -1.8536

Exp(treatment) 0.0572 0.0294 0.05 0.0209 0.1567

Contrast Estimate Results

Label Chi-Square Pr > ChiSq

treatment 30.94 <.0001

Exp(treatment)

Output 12.24 contains the exact analysis results for treatment. Clearly, it is significant.

Output 12.23 Exact Tests

Exact Conditional AnalysisExact Conditional Analysis

Exact Conditional Tests

p-Value

Effect Test Statistic Exact Mid

treatment Score 58.7561 <.0001 <.0001

Probability 8.62E-17 <.0001 <.0001

Output 12.24 displays the estimate of IDR, which is 0.057, with an exact confidence interval of
(0.015, 0.153), which is a bit different from the asymptotic results (0.0209, 0.1567). The percent
rate reduction of events due to the vaccine is 94%.

Output 12.24 Exact IDR Estimates and Confidence Intervals

Exact Odds Ratios

Parameter Estimate

95%
Confidence

Limits
Two-sided

p-Value Type

treatment Vaccine 0.057 0.015 0.153 <.0001 Exact

Output 12.24 displays the estimate of IDR, which is 0.057, with an exact confidence interval of
(0.015, 0.153), which is a bit different from the asymptotic results (0.0209, 0.1567). The percent
rate reduction of events due to the vaccine is 94%.
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Note that these methods can also be used to generate the exact confidence interval for the IDR for
the U.S. data analyzed in Section 2.8 in Chapter 2. The following statements create the data set
ROTAVIRUS2 for just the U.S.

data rotavirus2;
input region $ treatment $ counts years_risk @@ ;
log_risk=log(years_risk);
datalines;

US Vaccine 3 7500 US Placebo 58 7250
;

The GENMOD invocation produces a saturated model, since you are effectively modeling two
counts with two parameters, and thus the usual goodness-of-fit statistics have the value 0.

proc genmod order=data;
class treatment/ param=ref;
model counts = treatment / dist=poisson offset= log_risk type3;
estimate 'treatment' treatment 1 /exp;
exact treatment / estimate=odds cltype=exact;

run;

However, the exponentiated parameter for TREATMENT is the IDR, and when you request the
exact analysis with the ESTIMATE=ODDS option, you also generate the exact confidence interval,
as displayed in Output 12.25.

Output 12.25 Exact IDR Estimates and Confidence Intervals

Exact Conditional Analysis

Exact Conditional Analysis
Exact Odds Ratios

Parameter Estimate

95%
Confidence

Limits
Two-sided

p-Value Type

treatment Vaccine 0.050 0.010 0.154 <.0001 Exact

The estimated IDR is 0.05, with (0.01002, 0.15355) as the confidence interval, which are very
similar to the results produced in Section 2.8.

12.7 Loglinear Models

Suppose n D .n1; n2; : : : ; ns/
0 denotes a vector of independent Poisson variables, and suppose

� D .�1; �2; : : : ; �s/
0 denotes the corresponding vector of expected values. Suppose variation

among the elements of � can be described with the loglinear model

� D exp.Xpˇp/
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where Xp D Œ1;X� is an .s � .t C 1// matrix of known coefficients with full rank .t C 1/ � s and
ˇp D Œˇ0;ˇ

0�0 is a .t C 1/ vector of unknown coefficients. The likelihood function for n is

ˆ.nj�/ D
sY
iD1

�
ni

i fexp.��i /g=ni Š D
˚
�nC
C
fexp.��C/g=nCŠ

	
�
˚
nCŠ=

sY
iD1

ni Šgf

sY
iD1

�
ni

i

	
where nC D

Ps
iD1 ni , �C D

Ps
iD1 �i , and �i D .�i=�C/ for i D 1; 2; : : : ; s. Thus, the

likelihood for n can be expressed as the product of a Poisson likelihood for nC and a multinomial
likelihood �.njnC;�/ with � D .�1; �2; : : : ; �s/

0 for the conditional distribution of n given nC.
Since

� D exp.Xpˇp/ D exp.ˇ0/ exp.Xˇ/

it follows that

.�1; �2; : : : ; �s/
0
D � D

exp.Xˇ/
10s exp.Xˇ/

where 1s is the .s � 1/ vectors of 1s. The structure shown here for � corresponds to the loglinear
model for counts n with a multinomial distribution, either on the basis of conditioning independent
Poisson counts on their sum or through simple random sampling (with replacement).

Since the maximization of the Poisson likelihood

�.nj�/ D �.njˇ0;ˇ/

D �.nCjˇ0; 10t exp.Xˇ//�.njnC;ˇ/

relative to ˇp D .ˇ0;ˇ
0/0 correspondingly involves maximization of the multinomial likelihood

�.njnC;ˇ/ relative to ˇ as a by-product, the maximum likelihood estimates of ˇ in the Poisson
regression model

� D exp.ˇ0/ exp.Xˇ/

are also the maximum likelihood estimates of ˇ in the multinomial loglinear model

� D
exp.X;ˇ/
.10t exp.Xˇ//

Also, the maximum likelihood estimate for the covariance matrix of Ǒ is the same in both situations.
A convenient consequence of these considerations is that Ǒ for the multinomial loglinear model can
have convenient computation through the use of Poisson regression via the GENMOD procedure
to determine the maximum likelihood estimator

Ǒ
p D . Ǒ0; Ǒ

0/0

for ˇp followed by removal of Ǒ0. In other words, the estimator Ǒ0 for the intercept in Poisson
regression is ignored when this method is used to obtain Ǒ for the multinomial loglinear model. A
further point of interest is that the Poisson loglinear model is strictly loglinear since

log.�/ D Xpˇp

whereas the multinomial loglinear model corresponds to

log.�/ D Xˇ �
˚
log.10s exp.Xˇ/

	
1s

and so is loglinear with a constraint to ensure 10s� D
Ps
iD1 �i D 1.
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12.8 Analyzing Three-Way Cross-Classification Data with a
Loglinear Model

Table 12.4 displays the three-way cross-classification of quality of management, supervisor’s job
satisfaction, and worker’s job satisfaction for a random sample of 715 workers selected from
Danish industry (Andersen 1991, p. 155). Quality of management was categorized from an
external evaluation of each factory, while the job satisfaction ratings were based on questionnaires
completed by each worker and his or her supervisor. Since all three variables are response variables,
the use of loglinear models to investigate the patterns of association among management quality,
supervisor’s job satisfaction, and worker’s job satisfaction seems appropriate.

Table 12.4 Job Satisfaction Data*

Quality of Supervisor’s Worker’s Job Satisfaction
Management Job Satisfaction Low High Total

Bad Low 103 87 190
High 32 42 74

Good Low 59 109 168
High 78 205 283

*Reprinted by permission of Springer-Verlag.

Suppose X , Y , and Z denote quality of management, supervisor’s job satisfaction, and worker’s
job satisfaction, respectively, and �ijks denotes the corresponding multinomial cell probabilities
for i D 1; 2, j D 1; 2, and k D 1; 2. The saturated loglinear model is often written as follows:

log.mijk/ D �C �
X
i C �

Y
j C �

Z
k C �

XY
ij C �

XZ
ik C �

YZ
jk C �

XYZ
ijk

for which the �Xi , �Yj , and �Z
k

correspond to the first order marginal distribution of X , Y , and Z;
the �XYij , �XZ

ik
, and �YZ

jk
correspond to the associations (or interactions) between X and Y , X and

Z, and Y and Z in their pairwise bivariate distribution; �XYZ
ijk

corresponds to the second order
association (or interaction) among X , Y , and Z in their joint distribution.

When �XYZ
ijk

D 0,

m111m121

m211m221
D
m112m122

m212m222

applies and corresponds to homogeneity of the odds ratios for the association between each pair of
variables (for example, X and Y ) across the categories of the third (for example, Z). If additionally
�XYij D 0, then

m111m221

m211m121
D
m112m222

m212m122
D 1
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and so X and Y are conditionally independent for each category of Z.

If �XYij D �XZ
ik
D �YZ

jk
D 0 as well as �XYZ

ijk
D 0, then you can verify that

mijk D
miCCmCjCmCCk

n2

where miCC D
P2
jD1

P2
kD1mijk , mCjC D

P2
iD1

P2
kD1mijk , and mCCk DP2

iD1

P2
jD1mijk , and so independence applies to the distributions of X , Y , and Z. See

Bishop, Fienberg, and Holland (1975), Roy and Mitra (1956), and Roy and Kastenbaum (1956) for
primary sources for loglinear theory.

Alternatively, the model can be written as

logfmijkg D ˇ0 C ˇ1u1 C ˇ2u2 CCˇ3u3 C ˇ4u4 C ˇ5u5 C ˇ6u6 C ˇ7u7

where u1 D 1 if X D 1 and u1 D �1 if X D 2; u2 D 1 if Y D 1 and u2 D �1 if Y D 2;
and u3 D 1 if Z D 1 and u3 D �1 if Z D 2. Also, u4 D u1u2, u5 D u1u3, u6 D u2u3, and
u7 D u1u2u3.

The parameters correspond to loglinear model notation above as ˇ0 D �, and ˇ1 D �Xi , ˇ2 D �Y1 ,
ˇ3 D �

Z
1 , ˇ4 D �XY11 , ˇ5 D �XZ11 , ˇ6 D �YZ11 , and ˇ7 D �XYZ111 .

Also, conventions such as

�X1 C �
X
2 D 0; �

Y
1 C �

Y
2 D 0; �

Z
1 C �

Z
2 D 0

apply, as well as the sums of �XYij , �XZ
ik

, �YZ
jk

, and �XYZ
ijk

over i; j; or k all equaling 0.

As previously mentioned, you fit the loglinear model with the GENMOD procedure. The following
SAS statements input the job satisfaction data into data set SATISFY.

data satisfy;
input management $ supervisor $ worker $ count;
datalines;

Bad Low Low 103
Bad Low High 87
Bad High Low 32
Bad High High 42
Good Low Low 59
Good Low High 109
Good High Low 78
Good High High 205
;

The following SAS statements request a loglinear model analysis. You request the usual Poisson
regression with the DIST=POISSON and LOG=LINK options, and you specify TYPE3 to obtain
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the tests for the effects (The WALD option is specified to produce Wald statistics for later
comparison with the CATMOD procedure, but you would typically use the default Type 3 score
statistics.) The saturated model is requested. The PARAM=EFFECT requests deviation from the
mean parameterization, which is generally used for loglinear models.

proc genmod order=data;
class management supervisor worker /param=effect;
model count= management|supervisor|worker /

link=log dist=poisson type3 wald;
run;

Output 12.26 displays the class levels for the response variables. Their cross-classification
represents a single multinomial sample with eight categories of response. Since the model is
saturated, the likelihood ratio test of fit is equal to zero.

Output 12.26 Class Levels

Class Level Information

Class Value
Design

Variables

management Bad 1

Good -1

supervisor Low 1

High -1

worker Low 1

High -1

Output 12.27 contains the Wald test of the three-factor interaction, which is nonsignificant
(QW D 0:06, 1 df, p D 0:7990).

Output 12.27 Type 3 Wald Tests: Saturated Model

Wald Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

management 1 38.30 <.0001

supervisor 1 8.10 0.0044

managemen*supervisor 1 65.66 <.0001

worker 1 23.59 <.0001

management*worker 1 18.17 <.0001

supervisor*worker 1 5.24 0.0221

manage*superv*worker 1 0.06 0.7990
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The second model fit includes only the main effects and two-factor interactions.

proc genmod order=data;
class management supervisor worker /param=effect;
model count= management|supervisor|worker@2 /

link=log dist=poisson type3 wald;
run;

The deviance statistic (G2 in loglinear terminology) in Output 12.28 is a likelihood ratio test that
compares this model to the saturated model and thus tests the null hypothesis of no three-factor
interaction. In this example, the G2 statistic of 0.06 is the same as the Wald statistic for the
three-way interaction from the saturated model. Although the two statistics are asymptotically
equivalent, they are not identical in general.

Output 12.28 Fit Statistics for No Three-Factor Interaction Model

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 1 0.0649 0.0649

Scaled Deviance 1 0.0649 0.0649

Pearson Chi-Square 1 0.0649 0.0649

Scaled Pearson X2 1 0.0649 0.0649

Log Likelihood 2601.7363

Full Log Likelihood -24.7703

AIC (smaller is better) 63.5406

AICC (smaller is better) .

BIC (smaller is better) 64.0967

Output 12.29 Wald Tests for No Three-Factor Interaction Model

Wald Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

management 1 38.37 <.0001

supervisor 1 8.32 0.0039

managemen*supervisor 1 67.06 <.0001

worker 1 25.96 <.0001

management*worker 1 19.57 <.0001

supervisor*worker 1 5.33 0.0210

The Wald tests of the two-factor interactions and main effects are all significant. This indicates that
a more parsimonious model for the data may not be justified. However, you may wish to fit each of
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the three models containing only two of the two-factor interactions and compare these models to
the model with no three-factor interaction using likelihood ratio tests. The SAS statements to build
these models are as follows:

proc genmod order=data;
class management supervisor worker /param=effect;
model count= management|supervisor management|worker /

link=log dist=poisson type3 wald;
run;

proc genmod order=data;
class management supervisor worker /param=effect;
model count= management|supervisor supervisor|worker /

link=log dist=poisson type3 wald;
run;

proc genmod order=data;
class management supervisor worker /param=effect;
model count= management|worker supervisor|worker /

link=log dist=poisson type3 wald;
run;

The corresponding likelihood ratio statistics for goodness of fit (output not shown) are G2 D 5:39,
19.71, and 71.90, all with 2 df. The 1 df likelihood ratio statistics comparing each of these three
models to the model with no three-factor interaction are 5:39�0:06 D 5:33, 19:71�0:06 D 19:65,
and 71:90�0:06 D 71:84, respectively. Relative to the chi-square distribution with 1 df, all indicate
a significant lack of fit.

The model with no three-factor interaction provides a good fit to the observed data. Thus, no pair
of variables is conditionally independent. In this model, the conditional odds ratios between any
two variables are identical at each level of the third variable. For example, the odds ratio for the
association between the employee’s job satisfaction and the supervisor’s job satisfaction is the same
at each level of management quality. You can compute the estimated odds ratios from the parameter
estimates (Output 12.30).

From the model with no three-factor interaction, the log odds of low job satisfaction for employees,
at fixed levels of management quality and supervisor’s job satisfaction, are

log.mij1=mij2/ D log.mij1/ � log.mij2/

D �Z1 C �
XZ
i1 C �

YZ
j1 � .�

Z
2 C �

XZ
i2 C �

YZ
j2 /

D 2�Z1 C 2�
XZ
i1 C 2�

YZ
j1

since �Z1 C�
Z
2 D 0, �XZi1 C�

XZ
i2 D 0, and �YZj1 C�

YZ
j2 D 0. Thus, at a fixed level of management

quality, the log of the odds ratio at low and high levels of supervisor satisfaction is
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log.mi11=mi12/ � log.mi21=mi22/ D .2�Z1 C 2�
XZ
i1 C 2�

YZ
11 / � .2�

Z
1 C 2�

XZ
i1 C 2�

YZ
21 /

D 2�YZ11 � 2�
YZ
21

D 4�YZ11

Output 12.30 contains the parameter estimates.

Output 12.30 Parameter Estimates from Model with No Three-Factor Interaction

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square

Intercept 1 4.3448 0.0432 4.2602 4.4295 10128.3

management Bad 1 -0.2672 0.0431 -0.3518 -0.1827 38.37

supervisor Low 1 0.1243 0.0431 0.0398 0.2087 8.32

managemen*supervisor Bad Low 1 0.3491 0.0426 0.2655 0.4326 67.06

worker Low 1 -0.2065 0.0405 -0.2860 -0.1271 25.96

management*worker Bad Low 1 0.1870 0.0423 0.1041 0.2698 19.57

supervisor*worker Low Low 1 0.0962 0.0417 0.0145 0.1778 5.33

Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis Of Maximum Likelihood Parameter
Estimates

Parameter Pr > ChiSq

Intercept <.0001

management Bad <.0001

supervisor Low 0.0039

managemen*supervisor Bad Low <.0001

worker Low <.0001

management*worker Bad Low <.0001

supervisor*worker Low Low 0.0210

Scale

Note: The scale parameter was held fixed.

Since the estimate of �YZ11 from Output 12.30 is 0.0962, the odds of low worker job satisfaction
are estimated to be exp.4 � 0:0962/ D 1:47 times higher when the supervisor’s job satisfaction is
low than when the supervisor’s job satisfaction is high. Note that this estimate of the odds ratio
is the same for factories with bad and good management quality. Using the observed counts from

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Analyzing Loglinear Models with the CATMOD Procedure 401

Table 12.4, the observed odds ratios are

103 � 42

87 � 32
D 1:55

in factories where the external evaluation of management quality was bad and

59 � 205

109 � 78
D 1:42

in factories where the quality of management was good.

You can estimate additional odds ratios using the parameter estimates listed in Output 12.30. For
a fixed level of supervisor job satisfaction, the odds of low worker satisfaction are estimated to
be exp.4 � 0:1870/ D 2:1 times higher when the quality of management is bad than when the
management quality is good. This value is in between the corresponding observed odds ratios of

103 � 109

87 � 59
D 2:19

when supervisor job satisfaction is low and

32 � 205

42 � 78
D 2:00

when supervisor job satisfaction is high. Similarly, for a fixed level of worker job satisfaction, the
odds of low supervisor job satisfaction are estimated to be exp.4 � 0:3491/ D 4:0 times higher
when the quality of management is bad than when the management quality is good. This value is
in between the corresponding observed odds ratios of

103 � 78

32 � 59
D 4:26

when worker job satisfaction is low and

87 � 205

42 � 109
D 3:90

when worker job satisfaction is high.

These results show that the odds of low worker job satisfaction are somewhat more affected by the
quality of management than by the supervisor’s job satisfaction. In addition, bad management has
a greater effect on the job satisfaction of supervisors than on worker job satisfaction.

12.8.1 Analyzing Loglinear Models with the CATMOD Procedure

You can also fit the loglinear model with the CATMOD procedure. While this procedure was
designed to perform weighted least squares analysis of categorical response data, it also provides a
convenient way to fit loglinear models with maximum likelihood estimation. Chapter 14, “Weighted
Least Squares,” contains a full discussion about using PROC CATMOD, ; the discussion in this
section is limited to fitting the loglinear model.

The following statements fit the model with no three-way interaction. The COUNT variable is
listed in the WEIGHT statement, which works much like a FREQ statement in other SAS/STAT
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procedures. The response variables MANAGEMENT, SUPERVISOR, and WORKER are crossed
on the left-hand side of the MODEL statement, and the keyword _RESPONSE_ is used as the
“explanatory variable.” The specification of the model terms is done with the LOGLIN statement,
and it is the same specification as used with PROC GENMOD in its MODEL statement. An
advantage of using PROC CATMOD is that it produces predicted cell counts with the P=FREQ
option in the MODEL statement.

proc catmod order=data data=satisfy;
weight count;
model management*supervisor*worker=_response_ / p=freq;
loglin management|supervisor|worker@2;

run;

Output 12.31 displays the response profiles. The data come from a single multinomial population
based on the cross-classification of the dichotomous variables MANAGEMENT, SUPERVISOR,
and WORKER.

Output 12.31 Response Profile

Response Profiles

Response management supervisor worker

1 Bad Low Low

2 Bad Low High

3 Bad High Low

4 Bad High High

5 Good Low Low

6 Good Low High

7 Good High Low

8 Good High High

The results displayed in Output 12.32 contains the Wald statistics for model terms as well as an
overall likelihood ratio test for the model compared to the saturated model. These results are the
same as displayed in Output 12.29 and Output 12.30, respectively.
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Output 12.32 Analysis of Variance Tests

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq

management 1 38.37 <.0001

supervisor 1 8.32 0.0039

management*supervisor 1 67.06 <.0001

worker 1 25.96 <.0001

management*worker 1 19.57 <.0001

supervisor*worker 1 5.33 0.0210

Likelihood Ratio 1 0.06 0.7989

The CATMOD procedure also produces parameter estimates; unlike the GENMOD procedure, it
does not produce an intercept since it is explicitly fitting a loglinear model. These estimates are
displayed in Output 12.33.

Output 12.33 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

management Bad -0.2672 0.0431 38.37 <.0001

supervisor Low 0.1243 0.0431 8.32 0.0039

management*supervisor Bad Low 0.3491 0.0426 67.06 <.0001

worker Low -0.2065 0.0405 25.96 <.0001

management*worker Bad Low 0.1870 0.0423 19.57 <.0001

supervisor*worker Low Low 0.0962 0.0417 5.33 0.0210

Output 12.34 displays the predicted cell counts for this model. Instead of using the parameter
estimates from Output 12.33, you could compute the estimated odds ratios using the predicted cell
frequencies.
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Output 12.34 Predicted Cell Counts

Maximum Likelihood Predicted Values for Frequencies

Observed Predicted

management supervisor worker Frequency
Standard

Error Frequency
Standard

Error Residual

Bad Low Low 103 9.389475 102.2639 8.904231 0.736105

Bad Low High 87 8.741509 87.73611 8.283433 -0.73611

Bad High Low 32 5.528818 32.73611 4.783695 -0.73611

Bad High High 42 6.287517 41.26389 5.525364 0.736105

Good Low Low 59 7.357409 59.73611 6.811457 -0.73611

Good Low High 109 9.611619 108.2639 9.138839 0.736105

Good High Low 78 8.336121 77.26389 7.782186 0.736105

Good High High 205 12.0923 205.7361 11.75535 -0.73611

The CATMOD procedure also offers the iterative proportional fitting (IPF) method for analyzing
hierarchical loglinear models. If the contingency table is large in terms of number of cells in the
multi-way cross-classification, possibly prohibitively large for maximum likelihood or weighted
least squares estimation to proceed, you can still apply IPF to obtain the goodness-of-fit and the
predicted cell frequencies and compute likelihood ratio statistics for model comparison (IPF does
not estimate the parameters or covariance matrices).

The IPF algorithm is illustrated for the no three-way interaction model for the job satisfaction data.
You simply add the ML=IPF option to the MODEL statement as shown.

proc catmod order=data;
weight count;
model management*supervisor*worker=_response_

/ ml=ipf;
loglin management|supervisor|worker@2;

run;

The likelihood ratio statistic in Output 12.35 takes the value 0.06, the same value as computed in
previous analyses.

Output 12.35 Analysis of Variance Table

Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Likelihood Ratio 1 0.06 0.7989

The predicted cell frequencies shown in Output 12.36 are very similar to the ones reported in
Output 12.34. They would be the same with enough iterations.
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Output 12.36 Predicted Cell Frequencies

Maximum Likelihood Predicted Values for Frequencies

Observed Predicted

management supervisor worker Frequency
Standard

Error Frequency
Standard

Error Residual

Bad Low Low 103 9.389475 102.2641 . 0.735932

Bad Low High 87 8.741509 87.73572 . -0.73572

Bad High Low 32 5.528818 32.73639 . -0.73639

Bad High High 42 6.287517 41.26388 . 0.736121

Good Low Low 59 7.357409 59.73593 . -0.73593

Good Low High 109 9.611619 108.2643 . 0.735716

Good High Low 78 8.336121 77.26361 . 0.736385

Good High High 205 12.0923 205.7361 . -0.73612

12.9 Correspondence between Logistic Models and Loglinear
Models

Now suppose that the data displayed in Table 12.4 had instead been obtained from the four
subpopulations defined by the cross-classification of quality of management and supervisor job
satisfaction. In this case, you would be interested in modeling the probability of worker job
satisfaction as a function of management quality and supervisor’s job satisfaction. In practice, for
situations where all of the variables are technically response variables, interest often focuses on
modeling one of the variables as a function of the remaining ones.

The following PROC LOGISTIC statements model the logit of the probability of low worker job
satisfaction as a function of management quality and supervisor job satisfaction.

proc logistic data=satisfy order=data;
class management supervisor /param=effect;
freq count;
model worker=management supervisor

/ link=logit;
run;

Output 12.37 displays the resulting analysis of variance table. For comparison, examine Out-
put 12.38 for the corresponding analysis of variance table from the loglinear model with no
three-factor interaction.
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Output 12.37 Analysis of Variance Table from Logistic Model

Type 3 Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

management 1 19.5629 <.0001

supervisor 1 5.3263 0.0210

Output 12.38 Analysis of Variance Table from Loglinear Model

Wald Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

management 1 38.37 <.0001

supervisor 1 8.32 0.0039

managemen*supervisor 1 67.06 <.0001

worker 1 25.96 <.0001

management*worker 1 19.57 <.0001

supervisor*worker 1 5.33 0.0210

The likelihood ratio goodness-of-fit statistics for the two models are identical (not shown here).
In addition, the logistic model Wald chi-square statistics for the management and supervisor main
effects are identical to the loglinear model Wald statistics for the management � worker and
supervisor � worker interactions.

Output 12.39 displays the parameter estimates from the logistic model. The logistic model
INTERCEPT chi-square statistic is identical to the loglinear model Wald statistic for the worker
main effect. In addition, the log odds of low worker satisfaction are estimated to be exp.2 �
0:3739/ D 2:1 times higher when the quality of management is bad than when the management
quality is good and exp.2 � 0:1924/ D 1:47 times higher when the supervisor’s job satisfaction
is low than when the supervisor’s job satisfaction is high. These estimates are the same as those
computed in Section 12.8.

Output 12.39 Parameter Estimates from Logistic Model

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -0.4130 0.0811 25.9525 <.0001

management Bad 1 0.3739 0.0845 19.5629 <.0001

supervisor High 1 -0.1923 0.0833 5.3263 0.0210
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In summary, the cross-classification of the explanatory variables is fixed for logistic models, and
the effects of the factors are specified explicitly in the MODEL statement. The loglinear model
counterpart has the effects of factors specified through interactions with the response. In addition,
the cross-classification of the explanatory variables is incorporated as a further component of the
structure of the model.

The general result is that you can always rewrite a logistic analysis with one response variable as a
loglinear model.
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Chapter 13

Categorized Time-to-Event Data
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13.1 Introduction

Categorical data often are generated from studies that have time from treatment or exposure until
some event as their outcome. Such data are known as time-to-event data. The event may be death,
the recurrence of some condition, or the emergence of a developmental characteristic. Often, the
outcome is the actual lifetime (or waiting time), which is the response analyzed in typical survival
analyses. However, due to resource constraints or the need to perform a diagnostic procedure, you
sometimes can determine only the interval of time during which an event occurs. Examples include
examining dental patients for caries at six-month periods, evaluating animals every four hours after
their exposure to bacteria, and examining patients every six weeks for the recurrence of a medical
condition for which they’ve been treated. Such data are often referred to as grouped survival data
or as categorized survival data.

Since the study is conducted over a period of time, some subjects may leave before the study
ends. This is called withdrawal. There may be protocol violations, subjects may join the study
in progress and not complete the desired number of evaluations, or the subjects may drop out for
other reasons. Thus, not only is status determined for each interval between successive evaluations,
but the number of withdrawals for that interval is also determined. Most analysis strategies assume
that withdrawal is independent of the condition being studied and that multiple withdrawals occur
uniformly throughout the interval.

Frequently, interest lies in computing the survival rates. Section 13.2 discusses life table methods
for computing these results. In addition, you generally want to compare survival rates for treatment
groups and determine whether there is a treatment effect. Section 13.3 discusses the Mantel-Cox
test, one strategy for addressing this question. It is similar to the logrank test used in traditional
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survival analysis. In addition to hypothesis testing, you may be interested in describing the variation
in survival rates. Section 13.4 discusses the piecewise exponential model, one that is commonly
used to model grouped survival data, as well as how to implement it using a Poisson regression
strategy.

For an overview of grouped survival data analysis, refer to Deddens and Koch (1988).

13.2 Life Table Estimation of Survival Rates

The prevention of recurrences of medical conditions is the goal of many drugs under development.
See Elashoff and Koch (1991) and Koch et al. (1984) for statistical methodology used in the
analysis of clinical trials evaluating such treatments, which is described below.

Consider Table 13.1. Investigators were interested in comparing an active and control treatment
to prevent the recurrence of a medical condition that had been healed. They applied a diagnostic
procedure at the end of the first, second, and third years to determine whether there was a recurrence
(based on Johnson and Koch 1978).

Table 13.1 Recurrences of Medical Condition
Withdrawals Recurrences

Treatment Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 No Recurrence Total
Control 9 7 6 15 13 7 17 74
Active 9 3 4 12 7 10 45 90

The survival rate, or the waiting time rate, is a key measure in the analysis of time-to-event data. It
is written

S.y/ D 1 � F.y/ D PrfY � yg

where Y denotes the continuous lifetime of a subject and F.y/ D PrfY � yg is the cumulative
probability distribution function. The exact form of S.y/ depends on the nature of F.y/, the
probability distribution of Y. Common choices are the Weibull distribution and the exponential
distribution, with the latter being a special case of the former.

One way of estimating survival rates is with the life table, or actuarial, method. Table 13.2 displays
the life table format for the data displayed in Table 13.1. You determine the number of subjects at
risk for each interval (the sum of those with no recurrence, those with recurrences, and those who
withdrew). By knowing the number who survived all three intervals with no recurrence, you can
determine the number with no recurrence for each interval.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 
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Table 13.2 Life Table Format for Medical Condition Data
Controls

Interval No Recurrences Recurrences Withdrawals At Risk
0–1 Years 50 15 9 74
1–2 Years 30 13 7 50
2–3 Years 17 7 6 30

Active
Interval No Recurrences Recurrences Withdrawals At Risk

0–1 Years 69 12 9 90
1–2 Years 59 7 3 69
2–3 Years 45 10 4 59

Define nijk to be the number of patients in the i th group with the j th status for the kth time interval,
where j D 0 corresponds to no recurrence during the time interval and j D 1; 2 corresponds to
those with recurrence and those withdrawn during the kth interval, respectively; i D 1; 2 for the
control and active groups and k D 1; 2; : : : ; t . The ni0k are determined from

ni0k D

2X
jD1

tX
gDkC1

nijg C ni0t

The life table estimates for the probability of surviving at least k intervals are computed as

Gik D

kY
gD1

ni0g C 0:5ni2g

ni0g C ni1g C 0:5ni2g
D

kY
gD1

pig

where pig denotes the estimated conditional probability for surviving the gth interval given that
survival of all preceding intervals has occurred.

The standard error of Gik is estimated as

s.e..Gik/ D Gik

� kX
gD1

.1 � pig/

.ni0g C ni1g C 0:5ni2g/pig

�1=2

D Gik

� kX
gD1

.1 � pig/

.ni0g C 0:5ni2g/

�1=2
where .ni0g C ni1g C 0:5ni2g/ is the effective number at risk during the gth interval. Since

pig D
ni0g C 0:5ni2g

ni0g C ni1g C 0:5ni2g

then

1 � pig D
ni1g

ni0g C ni1g C 0:5ni2g

The quantity 0:5�ni2g is used in the numerator and denominator of pig since uniform withdrawals
throughout the interval are assumed. The average exposure to risk for the withdrawing subjects is
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assumed to be one-half the interval, and withdrawals are assumed not to have the event at the time
of withdrawal.

For the active treatment, the life table estimates of surviving the kth interval are

G21 D
69C 0:5.9/

69C 12C 0:5.9/
D 0:8596

G22 D 0:8596 �
59C 0:5.3/

59C 7C 0:5.3/
D 0:7705

G23 D 0:7705 �
45C 0:5.4/

45C 10C 0:5.4/
D 0:6353

Their standard errors are computed as follows:

s.e..G21/ D 0:8596 �
�

12=85:5

69C 0:5.9/

�1=2
D 0:0376

s.e..G22/ D 0:7705 �
�

12=85:5

69C 0:5.9/
C

7=67:5

59C 0:5.3/

�1=2
D 0:0464

s.e..G23/ D 0:6352 �
�

12=85:5

69C 0:5.9/
C

7=67:5

59C 0:5.3/
C

10=57

45C 0:5.4/

�1=2
D 0:0545

Table 13.3 contains the estimated survival rates and their standard errors for both active treatment
and controls. The estimated survival rates for the active treatment are higher than for the controls
for each of the intervals.

Table 13.3 Life Table Estimates for Medical Condition Data
Estimated Standard

Survival Rates Errors
Controls

0–1 Years 0.7842 0.0493
1–2 Years 0.5649 0.0627
2–3 Years 0.4185 0.0665

Active
0–1 Years 0.8596 0.0376
1–2 Years 0.7705 0.0464
2–3 Years 0.6353 0.0545

13.2.1 Computing Survival Estimates with the LIFETEST Procedure

The LIFETEST procedure provides life table analysis for categorized time-to-event data. You
need to supply the survival time interval, a censoring indicator, and variables for any stratification
(treatment). A subject who withdrew during the study would be censored at the interval during
which he or she withdrew. Subjects who completed the study with no events are considered to be
censored at the end of the study.
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The following SAS statements create the data set MEDICAL. There are two observations for
each interval: one for the subjects who withdrew (censored) and one for the subjects who had
a recurrence. An additional observation is added for the “fourth” interval, which is simply the
number of subjects who didn’t have a recurrence before the study ended. The variable INTERVAL
takes the value 0, 1, 2, or 3, and the variable CENSOR takes the value 1 for censored subjects and
0 otherwise. The variable TREATMENT reflects whether the subjects received the active treatment
or acted as controls, and the variable COUNT contains the frequency counts.

data medical;
input interval treatment $ censor count @@;

datalines;
0 control 1 9 0 control 0 15
1 control 1 7 1 control 0 13
2 control 1 6 2 control 0 7
3 control 1 17
0 active 1 9 0 active 0 12
1 active 1 3 1 active 0 7
2 active 1 4 2 active 0 10
3 active 1 45
;

The next set of SAS statements requests the computations. By default, PROC LIFETEST calculates
survival estimates according to the Kaplan-Meier method, so you need to specify the METHOD=LT
option in the PROC LIFETEST statement to specify the life table method. The TIME statement
includes the interval variable crossed by the censoring variable, with the value indicating censoring
in parentheses (1 in this case). The ODS OUTPUT statements create data sets containing the life
table estimates of interest.

ods graphics on;
proc lifetest data=medical method=lt plots=(s,ls)

intervals=0 to 3 by 1;
freq count;
strata treatment;
time interval*censor(1);
ods output Lifetest.Stratum1.LifetableEstimates=my

(keep=STRATUM treatment LowerTime UpperTime Survival StdErr);
ods output Lifetest.Stratum2.LifetableEstimates=my2

(keep=STRATUM treatment LowerTime UpperTime Survival StdErr);
run;
ods graphics off;

data all;
set my my2;

run;

proc print data=all noobs;
run;

Output 13.1 contains summary information. Ninety subjects received the active treatment, and
twenty-nine subjects had recurrences; seventy-four subjects acted as controls and thirty-five
subjects had recurrences.
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Output 13.1 Censoring Information

Summary of the Number of Censored and Uncensored
Values

Stratum treatment Total Failed Censored
Percent

Censored

1 active 90 29 61 67.78

2 control 74 35 39 52.70

Total 164 64 100 60.98

Output 13.2 contains the survival estimates for active treatment and control. The column labeled
“Survival” displays these estimates, and the column labeled “StdErr” displays the corresponding
standard errors.

Output 13.2 Survival Estimates

STRATUM treatment LowerTime UpperTime Survival StdErr

1 active 0 1 1.0000 0

1 active 1 2 1.0000 0

1 active 2 3 0.8596 0.0376

1 active 3 4 0.7705 0.0464

1 active 4 . 0.6353 0.0545

2 control 0 1 1.0000 0

2 control 1 2 1.0000 0

2 control 2 3 0.7842 0.0493

2 control 3 4 0.5649 0.0627

2 control 4 . 0.4185 0.0665

The results in Output 13.2 are the same as those displayed in Table 13.3. Output 13.3 displays a
plot of the survival curves for active treatment and control.
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Output 13.3 Survival Plot

You generally are interested in comparing these curves to determine which treatment had the more
favorable outcome. The LIFETEST procedure offers several different tests to assess whether there
is equality over strata. These tests address withdrawals by grouping them with the no recurrences.

Output 13.4 displays the results of the logrank, Wilcoxon, and likelihood ratio tests for the
homogeneity of the survival curves.

Output 13.4 Homogeneity of Survival Curves

Test of Equality over Strata

Test Chi-Square DF
Pr >

Chi-Square

Log-Rank 5.8836 1 0.0153

Wilcoxon 5.3880 1 0.0203

-2Log(LR) 6.0888 1 0.0136

The logrank and Wilcoxon tests are nonparametric tests that require no assumptions for the event
time distribution. The Wilcoxon test is more powerful when there is a tendency for one group to
have fewer early events than the other as well as longer survival times. The logrank test is more
powerful when the two groups have similar rates of early events with one having more long-term
survivors than the other. In this case, the logrank test might be preferred, but both tests have small
p-values; the logrank test statistic has the value 5.8836 with p D 0:0153, and the Wilcoxon test
statistic takes the value 5.3880 with p D 0:0203.

The likelihood ratio test is more powerful than the logrank test with the assumption that the event
time distribution is exponential. This assumption can be evaluated by examining a plot of the
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negative log of the event times distribution. A linear trend through the origin would indicate
consistency with exponential event times. Output 13.5 displays this plot for these data. There is
the suggestion of linearity, which would make the likelihood ratio test potentially of more interest.
However, there is uncertainty as to whether the exponential distribution applies.

Output 13.5 Negative Log Survival Plot

13.3 Mantel-Cox Test

An alternative to the tests of homogeneity discussed in the previous section is the Mantel-Cox test,
which tests the null hypothesis that the survival rates are the same. Mantel (1966) and later Cox
(1972) suggested an extension of the Mantel-Haenszel methodology that applies to survival data.
You restructure the usual frequency table format of the data to a set of 2 � 2 tables, each with a life
table format, and perform the Mantel-Haenszel computations on that set of tables.

The tables are generated by regarding treatment as the row variable, the numbers recurred and not
recurred as the column variable, and the intervals as the strata. You are thus proceeding as though
the time interval results are uncorrelated; methodological results for survival analysis establish that
you can consider the respective time intervals to be essentially uncorrelated risk sets for survival
information. The Mantel-Cox test for grouped data is equivalent to the logrank test for comparing
survival curves for ungrouped data (refer to Koch, Sen, and Amara 1985). Withdrawals are handled
by either grouping them with the no recurrences or eliminating them entirely (which is usually
preferable when withdrawals have unknown status at the time of withdrawal, and it avoids the
assumption of withdrawals not having the event through the end of the interval).

Table 13.4 contains the life table format for the study of the medical condition recurrence with the
data grouped together by intervals and with the withdrawals excluded.
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Table 13.4 Medical Condition Data
Years Treatment Recurrences No Recurrences
0–1 Control 15 50

Active 12 69
1–2 Control 13 30

Active 7 59
2–3 Control 7 17

Active 10 45

The following DATA step inputs these data, and the PROC FREQ statements specify that the MH
test be computed. Recall that for sets of 2 � 2 tables, all scores are equivalent, so no scores need to
be specified.

data clinical;
input time $ treatment $ status $ count @@;
datalines;

0-1 control recur 15 0-1 control not 50
0-1 active recur 12 0-1 active not 69
1-2 control recur 13 1-2 control not 30
1-2 active recur 7 1-2 active not 59
2-3 control recur 7 2-3 control not 17
2-3 active recur 10 2-3 active not 45
;

proc freq order=data;
weight count;
tables time*treatment*status / cmh;

run;

Output 13.6 contains the PROC FREQ output (the individual printed tables are not displayed).
QMC D 8:0294 with 1 df (p D 0:0046). There is a significant treatment effect on survival. The
p-value for this test is much lower than those seen in the tests produced by PROC LIFETEST.
However, those tests had withdrawals grouped with no recurrences, and this analysis excluded
them.

Output 13.6 Results for Mantel-Cox Test

Summary Statistics for treatment by status
Controlling for time

Summary Statistics for treatment by status
Controlling for time

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 8.0294 0.0046

2 Row Mean Scores Differ 1 8.0294 0.0046

3 General Association 1 8.0294 0.0046

Note that if you did include the withdrawals with the no recurrences and recomputed the Mantel-
Cox test, the results would be identical to those displayed in Output 13.4 for the logrank test.
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You can also apply the Mantel-Cox test when you have additional explanatory variables. Table 13.5
contains data from a study on gastrointestinal patients being treated for ulcers. Investigators
compared an active treatment to a placebo in three medical centers.

Table 13.5 Healing for Gastrointestinal Patients

Healed at Healed at Not Healed at
Center Treatment Two Weeks Four Weeks Four Weeks Total

1 A 15 17 2 34
1 P 15 17 7 39
2 A 17 17 10 44
2 P 12 13 15 40
3 A 7 17 16 40
3 P 3 17 18 38

Table 13.6 contains the life table format for the same data.

Table 13.6 Healing for Gastrointestinal Patients

Number Number Not
Center Weeks Treatment Healed Healed Total

1 0–2 A 15 19 34
P 15 24 39

2–4 A 17 2 19
P 17 7 24

2 0–2 A 17 27 44
P 12 28 40

2–4 A 17 10 27
P 13 15 28

3 0–2 A 7 33 40
P 3 35 38

2–4 A 17 16 33
P 17 18 35

The following DATA step inputs these data, and the PROC FREQ statements specify that the MH
test be computed. For these data, both TIME and CENTER are used as stratification variables.

data duodenal;
input center time $ treatment $ status $ count @@;
datalines;

1 0-2 A healed 15 1 0-2 A not 19
1 0-2 P healed 15 1 0-2 P not 24
1 2-4 A healed 17 1 2-4 A not 2
1 2-4 P healed 17 1 2-4 P not 7
2 0-2 A healed 17 2 0-2 A not 27
2 0-2 P healed 12 2 0-2 P not 28
2 2-4 A healed 17 2 2-4 A not 10
2 2-4 P healed 13 2 2-4 P not 15
3 0-2 A healed 7 3 0-2 A not 33
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3 0-2 P healed 3 3 0-2 P not 35
3 2-4 A healed 17 3 2-4 A not 16
3 2-4 P healed 17 3 2-4 P not 18
;

proc freq;
weight count;
tables center*time*treatment*status / cmh;

run;

Output 13.7 contains the results.

Output 13.7 Results for Mantel-Cox Test

Summary Statistics for treatment by status
Controlling for center and time

Summary Statistics for treatment by status
Controlling for center and time

Cochran-Mantel-HaenszelStatistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 4.2527 0.0392

2 Row Mean Scores Differ 1 4.2527 0.0392

3 General Association 1 4.2527 0.0392

The null hypothesis is that within each center, the distribution of time to healing is the same for
placebo and active treatment. QMC D 4:2527 with 1 df (p D 0:0392), so there is a significant
effect of active treatment on time to healing after adjusting for center.

13.4 Piecewise Exponential Models

Statistical models can extend the analysis of grouped survival data by providing a description of
the pattern of event rates. They can describe this pattern over time as well as describe the variation
due to the influence of treatment and other explanatory variables. One particularly useful model is
the piecewise exponential model.

Consider Table 13.7, which contains information pertaining to the experience of patients undergoing
treatment for duodenal ulcers (based on Johnson and Koch 1978). One of two types of surgeries
was randomly assigned: vagotomy and drainage or antrectomy, or vagotomy and hemigastrectomy.
The patients were evaluated at 6 months, 24 months, and 60 months. Death and recurrence are
considered failure events, and reoperation and loss to follow-up are considered withdrawal events.
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Table 13.7 Comparison of Two Surgeries for Duodenal Ulcer

Time Death or Reoperation or Exposure
Operation (months) Recurrence Lost Satisfactory (months)

0–6 23 15 630 3894
V + D/A 7–24 32 20 578 10872

25–60 45 71 462 18720
0–6 9 5 329 2016

V + H 7–24 5 17 307 5724
25–60 10 24 273 10440

In this study there are two treatment groups with i D 1 for V and D/A, i D 2 for V + H and three
time intervals with k D 1 for 0–6 months, k D 2 for 7–24 months, and k D 3 for 25–60 months.

If you can make the following assumptions, then you can fit the piecewise exponential model to
these data.

� The withdrawals are uniformly distributed during the time intervals in which they occur.
They are unrelated to treatment failures and do not have the event at the time of withdrawal.

� The within-interval probabilities of the treatment failures are small and have independent
exponential distributions.

The piecewise exponential likelihood is written

ˆPE D

2Y
iD1

3Y
kD1

�
ni1k

ik

�
expŒ��ikNik�

�
where ni1k is the number of failures for the i th group during the kth interval, Nik is the total
person-months of exposure, and �ik is the hazard parameter. The piecewise exponential model
assumes that there are independent exponential distributions with hazard parameters �ik for the
respective time periods.

The Nik are computed as

Nik D ak.ni0k C 0:5ni1k C 0:5ni2k/

where ak D 6; 18; 36 is the length of the kth interval, ni0k is the number of patients completing
the kth interval without failure or withdrawal, and ni2k denotes the number of withdrawals. The
quantity ni1k is the number of failures during the interval.

If you think of the number of deaths ni1k , conditional on the exposures Nik , as having independent
Poisson distributions, then you can write a Poisson likelihood for these data.

ˆPO D

2Y
iD1

3Y
kD1

.Nik�ik/
ni1k

�
expŒ�Nik�ik�

ni1kŠ

�

D ˆPE

� 2Y
iD1

3Y
kD1

N
ni1k

ik

ni1kŠ

�
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Since these likelihoods are proportional, whatever maximizes ˆPO also maximizes ˆPE . Thus,
you can still assume the piecewise exponential model but obtain the estimates from Poisson
regression computations, which are more accessible, regardless of whether you want to make the
conditional arguments necessary to assume a Poisson distribution.

The relationship of the failure events to the explanatory variables is specified through models for
the �ik . One class of models has the structure

�ik D exp.x0ikˇ/

A useful subset of these models has the specification

�ik D exp.˛ C �k C x0iˇ/

This latter model has the proportional hazards structure, where f˛ C �kg is the constant value of
the log hazard function within the kth interval when xi D 0. The parameter vector ˇ relates the
hazard function for the i th population to the explanatory variables xi .

Those readers familiar with survival analysis may recognize the general form of the proportional
hazards model as

h.y; x/ D h0.y/fexp.x0ˇ/g

where y denotes continuous time and h0.y/ is the hazard function for the reference population. In
reference to this general form, exp.˛ C �k/ corresponds to h0.y/ for y in the kth interval.

13.4.1 An Application of the Proportional Hazards Piecewise Exponential Model

Since the GENMOD procedure fits Poisson regression models, you also use it to fit piecewise
exponential models. The DATA step inputs the duodenal ulcer data and computes the variable
NMONTHS as the log of MONTHS. The following PROC GENMOD statements request that the
main effects model consisting of time and treatment be fit. The variable TREATMENT has the
value ‘vda’ for V and D/A and the value ‘vh’ for V + H. Note that the value for 0–6 months for the
variable TIME is ‘_0-6’ so that it will sort last and thus become the reference value in the PROC
GENMOD parameterization.

data vda;
input treatment $ time $ failure months;
nmonths=log(months);
datalines;

vda _0-6 23 3894
vda 7-24 32 10872
vda 25-60 45 18720
vh _0-6 9 2016
vh 7-24 5 5724
vh 25-60 10 10440
;
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proc genmod data=vda;
class treatment time;
model failure = time treatment

/ dist=poisson link=log offset=nmonths;
run;

Both TIME and TREATMENT are defined as CLASS variables. The LINK=LOG option is
specified so that the model is in loglinear form, and the OFFSET=NMONTHS is specified since
the quantity nik=Nik is being modeled.

Information about the model specification and the sort levels of the CLASS variables are displayed
in Output 13.8.

Output 13.8 Model Information

Model Information

Data Set WORK.VDA

Distribution Poisson

Link Function Log

Dependent Variable failure

Offset Variable nmonths

Class Level Information

Class Levels Values

treatment 2 vda vh

time 3 25-60 7-24 _0-6

Statistics for assessing fit are displayed in Output 13.9. QP and the deviance both indicate an
adequate fit, with values of 2.6730 and 2.5529, respectively, and 2 df for their approximately
chi-square distributions.
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Output 13.9 Goodness-of-Fit Criteria

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 2 2.5529 1.2764

Scaled Deviance 2 2.5529 1.2764

Pearson Chi-Square 2 2.6730 1.3365

Scaled Pearson X2 2 2.6730 1.3365

Log Likelihood 279.8914

Full Log Likelihood -15.0909

AIC (smaller is better) 38.1819

AICC (smaller is better) 78.1819

BIC (smaller is better) 37.3489

The “Analysis of Parameter Estimates” table in Output 13.10 includes an intercept parameter,
incremental effects for 7–24 months and 25–60 months, and an incremental effect for the V + D/A
treatment. The 0–6 months time interval and the V + H treatment are the reference cell.

Output 13.10 Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 -5.8164 0.2556 -6.3174 -5.3153 517.66 <.0001

time 25-60 1 -1.0429 0.2223 -1.4787 -0.6071 22.00 <.0001

time 7-24 1 -0.8847 0.2414 -1.3579 -0.4116 13.43 0.0002

time _0-6 0 0.0000 0.0000 0.0000 0.0000 . .

treatment vda 1 0.8071 0.2273 0.3616 1.2527 12.61 0.0004

treatment vh 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

All of these effects are significant. Table 13.8 contains the parameter interpretations.
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Table 13.8 Parameter Interpretations

GENMOD Model
Parameter Parameter Value Interpretation

INTERCEPT ˛ �5:8164 log incidence density for V + H, 0–6 months (reference)
TIME 25-60 �2 �1:0429 increment for 25–60 interval
TIME 7-24 �1 �0:8847 increment for 7–24 interval
TREAT vda ˇ 0:8071 increment for treatment V + D/A

Log incidence density decreases with the 7–24 interval and further decreases with the 25–60
interval. The V + D/A treatment increases log incidence density. What this means is that the failure
rate is highest for the first interval and lower for the other two intervals; the failure rate is higher for
V + D/A than for V + H. Table 13.9 displays the estimated failure rates (incidence densities) per
person-month for each group and interval.

The survival rates can be calculated as follows:

Prfsurvival for k intervalsg D Prfsurvival for k � 1 intervalsg � e�
O�ikak

where ak is the length of the kth interval in months, k D 1; 2; : : : ; t , and O�ik is the predicted hazard
parameter from the model for the i th group during the k interval.

Table 13.9 contains the survival estimates for each interval for each treatment group.

Table 13.9 Model-Estimated Failure Rates
Failure Estimated Estimated

Group Interval Rate Formula Failure Rate Survival Rate
V + H 0–6 e Ǫ 0.002978 0.9823
V + H 7–24 e ǪC O�1 0.001230 0.9608
V + H 25–60 e ǪC O�2 0.001050 0.9252

V + D/A 0–6 e ǪC
Ǒ 0.006676 0.9607

V + D/A 7–24 e ǪC
ǑC O�1 0.002756 0.9142

V + D/A 25–60 e ǪC
ǑC O�2 0.002353 0.8399

13.4.2 Using PROC LOGISTIC to Fit the Piecewise Exponential Model

When the incidence rates f�ikg are small (less than 0.05) and the exposuresNik are very large, then
you can approximate Poisson regression with logistic regression (Vine et al. 1990). Thus, you can
take advantage of the features of the LOGISTIC procedure, such as its model-building facilities,
to fit models such as the piecewise exponential model. You can facilitate the approximation by
rescaling the exposure factor by multiplying it by a number such as 10,000; the only adjustment
you need to make after parameter estimation is to add the log of the multiplier you choose to the
resulting intercept estimate.
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The following SAS statements fit a piecewise exponential model to the duodenal ulcer data using
the LOGISTIC procedure. In the DATA step, the variable SMONTHS is the exposure in months
multiplied by a factor of 100,000.

The events/trials syntax is employed in the MODEL statement, with FAILURE in the numerator and
SMONTHS in the denominator. The SELECTION=FORWARD option specifies forward model
selection, and INCLUDE=2 specifies that the first two variables listed in the MODEL statement,
TIME and TREATMENT, be forced into the first model so that a score test is produced for the
contribution of the remaining variables to the model (interactions). This serves as a goodness-of-fit
test.

data vda;
input treatment time $ failure months;
smonths=100000*months;
datalines;

1 _0-6 23 3894
1 7-24 32 10872
1 25-60 45 18720
0 _0-6 9 2016
0 7-24 5 5724
0 25-60 10 10440
;

proc logistic;
class time/param=ref;
model failure/smonths = time treatment time*treatment /

scale=none include=2 selection=forward;
run;

Output 13.11 contains the resulting statistics for explanatory variable contribution and the score
statistic (Residual Chi-Square) for the contribution of variables not in the model. QS has a value
of 2.6730 and is nonsignificant with 2 df and p D 0:2628. Also, QS is identical to the Pearson
chi-square goodness-of-fit statistic in Output 13.9 and Output 13.12. The model fits adequately and
the proportional hazards assumption is reasonable (no time � treatment interaction).

Output 13.11 Score Statistic

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 34.7700 3 <.0001

Score 39.0554 3 <.0001

Wald 36.2836 3 <.0001

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

2.6730 2 0.2628

Output 13.12 displays the goodness-of-fit statistics, which are adequate.
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Output 13.12 Goodness-of-Fit Statistics

Deviance and Pearson Goodness-of-Fit Statistics

Criterion Value DF Value/DF Pr > ChiSq

Deviance 2.5529 2 1.2764 0.2790

Pearson 2.6730 2 1.3365 0.2628

Number of events/trials observations: 6

The results are very similar to what was obtained with the PROC GENMOD analysis.

The resulting parameter estimates are displayed in Output 13.13. The parameter estimates for the
time and treatment effects are very close to the estimates resulting from the PROC GENMOD
analysis in the previous section, and if you add log(100000) to the intercept, �17:3293, you
obtain �5:8164, which is identical to the intercept estimate obtained from PROC GENMOD. This
approximation is usually very good.

Output 13.13 Parameter Estimates

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 -17.3293 0.2556 4595.1888 <.0001

time 25-60 1 -1.0430 0.2223 22.0023 <.0001

time 7-24 1 -0.8848 0.2414 13.4324 0.0002

treatment 1 0.8071 0.2273 12.6068 0.0004

At this point, you would proceed to produce survival rates and survival estimates as computed in
the previous section.
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14.1 Introduction

Previous chapters discussed statistical modeling of categorical data with logistic regression.
Maximum likelihood (ML) estimation was used to estimate parameters for models based on
logits and cumulative logits. Logistic regression is suitable for many situations, particularly for
dichotomous response outcomes. However, there are situations where modeling techniques other
than logistic regression are of interest. You may be interested in modeling functions besides logits,
such as mean scores, proportions, or more complicated functions of the responses. In addition,
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the analysis framework may dictate a different modeling approach, such as in the case of repeated
measurements studies.

Weighted least squares (WLS) estimation provides a methodology for modeling a wide range of
categorical data outcomes. This chapter focuses on the application of weighted least squares for
the modeling of mean scores and proportions in the stratified simple random sampling framework,
as well as for the modeling of estimates produced by more complex sampling mechanisms, such as
those required for complex sample surveys. The methodology is explained in the context of a basic
example.

The CATMOD procedure is a general tool for modeling categorical data. It uses weighted least
squares estimation to model a variety of response functions. PROC CATMOD also uses maximum
likelihood estimation for logistic regression when the response functions are generalized logits.
This chapter discusses the use of PROC CATMOD for numerous applications of weighted least
squares analyses, including repeated measurements analysis.

You should be familiar with the material in Chapter 8, “Logistic Regression I: Dichotomous
Response,” and Chapter 9, “Logistic Regression II: Polytomous Response,” before proceeding with
this chapter.

14.2 Weighted Least Squares Methodology

To motivate the discussion of weighted least squares methodology, consider the following example.
Epidemiologists investigating air pollution effects conducted a study of childhood respiratory
disease (Stokes 1986). Investigators visited groups of children at two times and recorded whether
they were exhibiting symptoms of colds. The children were recorded as having no periods with a
cold, one period with a cold, or two periods with a cold. Investigators were interested in determining
whether sex or residence affected the distribution of colds. These data are displayed in Table 14.1.

Table 14.1 Colds in Children
Periods with Colds

Sex Residence 0 1 2 Total
Female Rural 45 64 71 180
Female Urban 80 104 116 300
Male Rural 84 124 82 290
Male Urban 106 117 87 310

As previously discussed, statistical modeling addresses the question of how a response outcome is
distributed across the various levels of the explanatory variables. In the standard linear model, this
is done by fitting a model to the response mean. In logistic regression, the function that is modeled
is the logit or cumulative logit. For these data, a response measure of interest is the mean number
of periods with colds. However, because there are a small, discrete number of response values, it is
unlikely that the normality or variance homogeneity assumptions usually required for the standard
linear model are met. Weighted least squares methodology provides a useful strategy for analyzing
these data.
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14.2.1 Weighted Least Squares Framework

Underlying most types of weighted least squares methods for categorical data analysis is a
contingency table. The general idea is to model the distribution of the response variable, represented
in the columns of the table, across the levels of the explanatory variables, represented by the rows
of the table. These rows are determined by the cross-classification of the levels, or values, of
the explanatory variables. The contingency table for the colds data displayed in Table 14.1 has
four rows and three columns. There are four rows since there are four combinations of sex and
residence; there are three columns because the response variable has three possible outcomes: 0, 1,
and 2.

The general contingency table is displayed in Table 14.2, where s represents the number of rows
(groups) in the table and r represents the number of responses. The rows of the table are also
referred to as subpopulations.

Table 14.2 General Contingency Table

Response
Group 1 2 � � � r Total

1 n11 n12 � � � n1r n1C
2 n21 n22 � � � n2r n2C
� � � � � � � � � � � � � � � � � �

s ns1 ns2 � � � nsr nsC

The proportion of subjects in each group who have each response is written as

pij D nij =niC

where nij is the number of subjects in the ith group who have the jth response. For example,
p11 D 45=180 in Table 14.1. You can put the proportions for one group together in a proportion
vector that describes the response distribution for that group. For the colds data, it looks like the
following:

pi D .pi1; pi2; pi3/0

You can then form a proportion vector for each group in the contingency table. The proportions
for each group add up to 1. All the functions that can be modeled with weighted least squares
methodology are generated from these proportion vectors.

The rows of the contingency table are considered to be simple random samples from the multinomial
distribution; since the rows are independent, the entire table is distributed as product multinomial.
You can write the estimated covariance matrix for the proportions in the ith row as

Vi D
1

niC

26664
pi1.1 � pi1/ �pi1pi2 � � � �pi1pir
�pi2pi1 pi2.1 � pi2/ � � � �pi2pir

:::
:::

:::
:::

�pirpi1 �pirpi2 � � � pir.1 � pir/

37775
So, then you can write the estimated covariance matrix for the entire table as
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Vp D

26664
V1 0 � � � 0
0 V2 � � � 0
:::

:::
:::

:::

0 0 � � � Vs

37775
where Vi is the estimated covariance matrix for the ith row.

14.2.2 Weighted Least Squares Estimation

Once the proportion vector and its estimated covariance matrix are computed, the modeling phase
begins with the choice of a response function. You can model any of the following: the proportions
themselves; mean scores, which are simple linear functions of the proportions; logits, which
are constructed by taking a linear function (difference) of the log proportions; and a number of
more complicated functions that are created by combinations of various transformations of the
proportions, such as the kappa statistic for observer agreement (see Landis and Koch 1977) or rank
measures of association (see Koch and Edwards 1988).

For the colds data, the response function is the mean number of periods with a cold. You construct
these means from the proportions of responses in each row of Table 14.1 and then apply a statistical
model that determines the effect of sex and residence on their distribution. Table 14.3 displays the
row proportions.

Table 14.3 Colds in Children
Periods with Colds

Sex Residence 0 1 2 Total
Female Rural 0.25 0.36 0.39 1.00
Female Urban 0.27 0.35 0.39 1.00
Male Rural 0.29 0.43 0.28 1.00
Male Urban 0.34 0.38 0.28 1.00

For example, to compute the mean number of periods with colds for females in a rural residence,
you would perform the following computation:

mean colds D 0 � p11 C 1 � p12 C 2 � p13
D 0 � .0:25/C 1 � .0:36/C 2 � .0:39/

D 1:14

In matrix terms, you have multiplied the proportion vector by a linear transformation matrix A.

Ap1 D
�
0 1 2

�24 0:250:36

0:39

35 D 1:14
Means are generated for each sex� residence group to produce a total of four functions for the table.
The ith function is denoted F.pi / . The following expression shows how you generate a function
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vector by applying a linear transformation matrix to the total proportion vector p D .p01;p
0
2;p
0
3;p
0
4/
0

to produce the four means of interest.

F.p/ D Ap D

2664
0 1 2 0 0 0 0 0 0 0 0 0

0 0 0 0 1 2 0 0 0 0 0 0

0 0 0 0 0 0 0 1 2 0 0 0

0 0 0 0 0 0 0 0 0 0 1 2

3775p D

2664
1:14

1:12

0:99

0:94

3775
If the groups have sufficient sample size (usually niC � 25), then the variation among the response
functions can be investigated by fitting linear regression models with weighted least squares:

EAfF.p/g D F.�/ D Xˇ

EA denotes asymptotic expectation, and � D Efpg denotes the vector of population probabilities
for all the populations together. The vector ˇ contains the parameters that describe the variation
among the response functions, and X is the model specification matrix. The equations for WLS
estimation are similar to those for least squares estimation:

b D .X0V�1F X/�1X0V�1F F

VF is the estimated covariance matrix for the vector of response functions and is usually nonsingular
when the sample sizes niC are sufficiently large (for example, niC � 25 and at least two nij � 1
in each row). This is the weight matrix component of weighted least squares estimation. Its form
depends on the nature of the response functions. In the case of the colds data, where the response
functions are means computed as Ap, the estimated covariance matrix is computed as

VF D AVpA0

The estimated covariance matrix for b is written

V.b/ D .X0V�1F X/�1

Model adequacy is assessed with Wald goodness-of-fit statistics, which are computed as

QW D .F � Xb/0V�1F .F � Xb/

For an applicable model, QW is distributed as chi-square for moderately large sample sizes (for
example, all niC � 25), and its degrees of freedom are equal to the difference between the number
of rows of F.p/ and the number of parameters. If only one response function is created per row
of the contingency table, then this is the number of table rows minus the number of estimated
parameters.

You can address questions about the parameters with the use of hypothesis tests. Each hypothesis
is written in the form

H0WCˇ D 0

and can investigate whether specified linear combinations of the parameters are equal to zero. The
test statistic employed is a Wald statistic that is expressed as

QC D .Cb/0ŒC.X0V�1F X/�1C0��1.Cb/
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UnderH0,QC is distributed as chi-square with degrees of freedom equal to the number of linearly
independent rows in C.

You can also generate predicted values OF D Xb of the response functions and their estimated
covariance matrix V OF D XV.b/X0. See Appendix A in this chapter for more statistical theory
concerning weighted least squares estimation.

14.2.3 Model Parameterization

The preliminary model of interest for a WLS analysis is often the saturated model, in which all the
variation is explained by the parameters. In a saturated model, there are as many parameters in the
model as there are response functions. For these data, the saturated model is written

E

2664
F.p1/
F.p2/
F.p3/
F.p4/

3775 D
2664
˛ C ˇ1 C ˇ2 C ˇ3
˛ C ˇ1 � ˇ2 � ˇ3
˛ � ˇ1 C ˇ2 � ˇ3
˛ � ˇ1 � ˇ2 C ˇ3

3775 D
2664
1 1 1 1

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

3775
2664
˛

ˇ1
ˇ2
ˇ3

3775
which is the differential effect parameterization described in Section 8.3.3 in Chapter 8. Here, ˛ is
a centered intercept, ˇ1 is the differential effect for sex, ˇ2 is the differential effect for residence,
and ˇ3 represents their interaction. The intercept is the mean number of colds averaged over all the
groups. This full rank parameterization is the default for the CATMOD procedure.

14.3 Using PROC CATMOD for Weighted Least Squares Analysis

Since the CATMOD procedure is very general, it offers great flexibility in its input. Standard uses
that take advantage of defaults may require no more than three or four statements. More statements
are required if you take advantage of the facilities for repeated measurements analysis or loglinear
model analysis. And the input can be quite rich if you choose to create your own response functions
through the specification of the appropriate matrix operations or create your own parameterization
by directly inputting your model matrix.

The analysis for the colds data requires minimal input. You need to specify the input data set, the
WEIGHT variable if the data are in count form, the response function, and the desired model in a
MODEL statement. The MODEL statement is the only required statement for PROC CATMOD.

First, a SAS data set is created for the colds data.

data colds;
input sex $ residence $ periods count @@;
datalines;

female rural 0 45 female rural 1 64 female rural 2 71
female urban 0 80 female urban 1 104 female urban 2 116
male rural 0 84 male rural 1 124 male rural 2 82
male urban 0 106 male urban 1 117 male urban 2 87
;
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The following set of SAS statements requests that a weighted least squares analysis be performed
for the mean response, using the saturated model.

proc catmod;
weight count;
response means;
model periods = sex residence sex*residence /freq prob design;

run;

The WEIGHT statement works the same as it does for the FREQ procedure; the WEIGHT variable
contains the count of observations that have the values listed in the data line. As with PROC
FREQ, you can supply input data in raw form–one observation per data line–or in count form. The
RESPONSE statement specifies the response functions. If you leave out this statement, PROC
CATMOD models generalized logits with maximum likelihood estimation. Specifying the MEANS
keyword requests that mean response functions be constructed for each subpopulation; the default
estimation method for functions other than generalized logits is weighted least squares.

The MODEL statement requests that PROC CATMOD fit a model that includes both the main
effects for sex and residence and their interaction. The effects specification is similar to that used
in the GLM procedure. The effects for sex and residence each have 1 df, and their interaction also
has 1 df. Since the model also includes an intercept by default, this model is saturated. There are
four parameters for the four response functions.

PROC CATMOD uses the explanatory variables listed in the right-hand side of the MODEL
statement to determine the rows of the underlying contingency table. Since the variable SEX has
two levels and the variable RESIDENCE has two levels, PROC CATMOD forms a contingency
table that has four rows. The columns of the underlying contingency table are determined by the
number of values for the response variable on the left-hand side of the MODEL statement. Since
there can be 0, 1, or 2 periods with colds, there are three columns in this table.

The FREQ and PROB options in the MODEL statement cause the frequencies and proportions
from the underlying contingency table to be printed, and the DESIGN option specifies that the
response functions and model matrix are to be printed.

Output 14.1 displays the population and response profiles, which represent the rows and columns
of the underlying table, respectively. Output 14.2 displays the underlying frequency table and the
corresponding table of proportions. PROC CATMOD labels each group or subpopulation “Sample
n”; you often need to refer back to the “Population Profiles” table to interpret other parts of the
PROC CATMOD output. You should always check the population and response profiles to ensure
that you have defined the underlying frequency table as you intended.
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Output 14.1 Population and Response Profiles

Population Profiles

Sample sex residence Sample Size

1 female rural 180

2 female urban 300

3 male rural 290

4 male urban 310

Response Profiles

Response periods

1 0

2 1

3 2

Output 14.2 Table Frequencies and Proportions

Response Frequencies

Response
Number

Sample 1 2 3

1 45 64 71

2 80 104 116

3 84 124 82

4 106 117 87

Response Probabilities

Response Number

Sample 1 2 3

1 0.25000 0.35556 0.39444

2 0.26667 0.34667 0.38667

3 0.28966 0.42759 0.28276

4 0.34194 0.37742 0.28065

The table of response function values and the model matrix (labeled ‘Design Matrix’) are displayed
in Output 14.3. The response functions are the mean number of periods with colds for each of the
populations.
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Output 14.3 Observed Response Functions and Model Matrix

Response Functions and Design
Matrix

Design Matrix

Sample
Response
Function 1 2 3 4

1 1.14444 1 1 1 1

2 1.12000 1 1 -1 -1

3 0.99310 1 -1 1 -1

4 0.93871 1 -1 -1 1

Model-fitting results are displayed in Output 14.4 in a table labeled “Analysis of Variance” for its
similarity in function to an ANOVA table.

Output 14.4 ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 1841.13 <.0001

sex 1 11.57 0.0007

residence 1 0.65 0.4202

sex*residence 1 0.09 0.7594

Residual 0 . .

The effects listed in the right-hand side of the MODEL statement are listed under “Source.” Unless
otherwise specified, an intercept is included in the model. If there is one response function per
subpopulation, the intercept has 1 df. The statistics printed under “Chi-Square” are Wald statistics.
Also provided are the degrees of freedom for each effect and corresponding p-value.

The last row contains information labeled “Residual.” Normally, this line contains a chi-square
value that serves as a goodness-of-fit test for the specified model. However, in this case, the model
uses four parameters to fit four response functions. The fit must necessarily be perfect, and thus
the model explains all the variation among the response functions. The degrees of freedom are
zero since the degrees of freedom for QW are equal to the difference in the number of response
functions and the number of parameters. SAS prints out missing values under “Chi-Square” and
“Pr > ChiSq” for zero degrees of freedom.

Since the model fits, it is appropriate to examine the chi-square statistics for the individual effects.
With a chi-square value of 0.09 and p D 0:7594, the SEX*RESIDENCE interaction is clearly
nonsignificant. SEX appears to be a strong effect and RESIDENCE a negligible effect, but these
are better assessed in the context of the main effects model that remains after the interaction term
is deleted, since the estimation of these main effects is better in the absence of the interaction.
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The following statements request the main effects model and produce the analysis of variance table
displayed in Output 14.5.

proc catmod;
weight count;
response means;
model periods = sex residence;

run;

Output 14.5 Main Effects ANOVA

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 1882.77 <.0001

sex 1 12.08 0.0005

residence 1 0.76 0.3839

Residual 1 0.09 0.7594

Look at the goodness-of-fit statisticQW D 0:09 with 1 df and p D 0:7594. The main effects model
adequately fits the data. The smaller the goodness-of-fit chi-square value, and correspondingly the
larger the p value, the better the fit. This is different from the model F statistic in the usual linear
model setting, where the F value is high for a model that fits the data well in the sense of explaining
a large amount of the variation. Strictly speaking, using the usual significance level of ˛ D 0:05,
any p-value greater than 0.05 supports an adequate model fit. However, many analysts are more
comfortable with goodness-of-fit p-values that are greater than 0.15.

The effect for sex is highly significant, p < 0:001. However, the effect for residence remains
nonsignificant when the interaction is removed from the model, p D 0:3839. These results suggest
that a model with a single main effect for SEX is appropriate.

Consider the following statements to perform this task. The MODEL statement contains the
response variable PERIODS and a single explanatory variable, SEX. This should produce the
desired model. However, recall that the variables listed in the right-hand side of the MODEL
statement are also used to determine the underlying contingency table structure. This table has its
rows determined by both SEX and RESIDENCE. If RESIDENCE is not included in the MODEL
statement, as shown in the following statements, then PROC CATMOD would create two groups
based on SEX instead of four groups based on SEX and RESIDENCE.

proc catmod;
weight count;
response means;
model periods = sex;

run;

However, you need to maintain the sampling structure of the underlying table. The solution is
the addition of the POPULATION statement. When a POPULATION statement is included, the
variables listed in it determine the populations, not the variables listed in the MODEL statement.
So, you can let the right-hand variables on the MODEL statement determine the populations so long
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as all the necessary variables are included; if not, you need to use a POPULATION statement. Some
analysts use the POPULATION statement for all PROC CATMOD invocations as a precautionary
measure.

The following statements request the single main effect model.

proc catmod;
population sex residence;
weight count;
response means;
model periods = sex;

run;

The table of population profiles in Output 14.6 is identical to the tables produced by previous
invocations of PROC CATMOD without the POPULATION statement when the model included
both SEX and RESIDENCE as explanatory variables.

Output 14.6 POPULATION Statement Results

Population Profiles

Sample sex residence Sample Size

1 female rural 180

2 female urban 300

3 male rural 290

4 male urban 310

The analysis of variance table in Output 14.7 includes only one main effect, SEX. The residual
goodness-of-fit QW D 0:85, with 2 df and p D 0:6531, indicates an adequate fit.

Output 14.7 Single Main Effect ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 1899.55 <.0001

sex 1 11.53 0.0007

Residual 2 0.85 0.6531

Compare this analysis of variance table with that displayed in Output 14.5.

Note that QW for the reduced model (0.85) is the sum of QW for the two effects model
(QW D 0:09) plus the value of the Wald statistic for the effect for residence (0.76). This is a
property of weighted least squares. When you delete a term from a model, the residual chi-square
for the goodness of fit for the new model is equal to the old model’s residual chi-square value plus
the chi-square value for the particular effect. This is also true for maximum likelihood estimation
when likelihood ratio tests are used for goodness of fit and for particular effects, but not when the
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Wald statistic is used with maximum likelihood estimation. Similarly, note that theQW D 0:09 for
the two main effects model of Output 14.5 is equal to the chi-square for the interaction term in the
saturated model (Output 14.4).

When an effect is deleted, any variation attributed to that effect is put into the residual variation,
which is the variation that the model does not explain; this variation is essentially random for
well-fitting models. If the residual variation is low, the residual chi-square will be small, indicating
that the model explains the variation in the response fairly well. If the residual variation is high, the
residual chi-square will be large, with a correspondingly low p-value, indicating that the residual
variation is significantly different from zero. The implication is that the model lacks necessary
terms.

Finally, note that the degrees of freedom for the goodness of fit for the reduced model are increased
by the number of degrees of freedom for the deleted effect, in this case from 1 to 2, since residence
had one degree of freedom.

PROC CATMOD also prints out a table that contains the parameter estimates. Since the model fits,
it is appropriate to examine this table, displayed in Output 14.8.

Output 14.8 Single Main Effect Model

Analysis of Weighted Least Squares Estimates

Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Intercept 1.0477 0.0240 1899.55 <.0001

sex female 0.0816 0.0240 11.53 0.0007

Listed under “Parameter” are the parameters estimated for the model. Since sex is represented
by one parameter, only one estimate is listed. Since females are listed first under SEX in the
population profile of Output 14.6, the effect for sex is the differential effect for females. If an effect
has more than one parameter, each of them is listed, in addition to the associated standard error,
Wald statistic, and p-value. Since sex is represented by only one parameter, the chi-square value
listed in the table of WLS estimates is identical to that listed in the analysis of variance table. This
won’t happen for those effects that are comprised of more than one parameter, since the effect test
listed in the analysis of variance table is the test of whether all the effect parameters are jointly zero,
and the chi-square tests listed in the parameter estimates table are always one degree of freedom
tests for each of the individual parameters.

To summarize, the model that most effectively describes these data is a single main effect model
where sex is the main effect. Its goodness of fit is satisfactory, and the model is parsimonious in
the sense of not including factors with essentially no association with the response. Girls reported
more colds than boys; the model-predicted mean number of periods with colds for girls is

NFgirls D Ǫ C Ǒ1 D 1:0477C 0:0816 D 1:1293

and the model-predicted mean number of periods with colds for boys is

NFboys D Ǫ � Ǒ1 D 1:0477 � 0:0816 D 0:9661

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



14.4. Obstetrical Pain Data: Advanced Modeling of Means 439

14.4 Obstetrical Pain Data: Advanced Modeling of Means

Table 14.4 displays data from a multicenter randomized study of obstetrical-related pain for women
who had recently delivered a baby (Koch et al. 1985). Investigators were interested in comparing
four treatments: placebo, Drug a, Drug b, and a combined treatment of Drug a and Drug b. Each
patient was classified as initially having some pain or a lot of pain. Then, a randomly assigned
treatment was administered at the beginning of the study period and again at 4 hours. Each patient
was observed at hourly intervals for 8 hours, and pain status was recorded as either little or no pain
or as some or more pain. The response measure of interest is the average proportion of hours for
which the patient reported little or no pain.

The patients for each center � initial status � treatment group can be considered to be representative
of some corresponding large target population in a manner that is consistent with stratified simple
random sampling. Each patient’s responses can also be assumed to be independent of other patient
responses. Thus, the data in Table 14.4 are distributed as product multinomial. There are many
small cell frequencies (less than 5) in this table. This means that the asymptotic requirements that
are necessary for modeling functions such as multiple cell proportions or generalized logits are
not met. However, the average proportion of hours with little or no pain is a reasonable response
measure, and there is sufficient sample size for modeling means.
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Table 14.4 Number of Hours with Little or No Pain for Women Who Recently Delivered a Baby

Initial Pain Hours with Little or No Pain
Center Status Treatment 0 1 2 3 4 5 6 7 8 Total
1 lot placebo 6 1 2 2 2 3 7 3 0 26
1 lot a 6 3 1 2 4 4 7 1 0 28
1 lot b 3 1 0 4 2 3 11 4 0 28
1 lot ba 0 0 0 1 1 7 9 6 2 26
1 some placebo 1 0 3 0 2 2 4 4 2 18
1 some a 2 1 0 2 1 2 4 5 1 18
1 some b 0 0 0 1 0 3 7 6 2 19
1 some ba 0 0 0 0 1 3 5 4 6 19
2 lot placebo 7 2 3 2 3 2 3 2 2 26
2 lot a 3 1 0 0 3 2 9 7 1 26
2 lot b 0 0 0 1 1 5 8 7 4 26
2 lot ba 0 1 0 0 1 2 8 9 5 26
2 some placebo 2 0 2 1 3 1 2 5 4 20
2 some a 0 0 0 1 1 1 8 1 7 19
2 some b 0 2 0 1 0 1 4 6 6 20
2 some ba 0 0 0 1 3 0 4 7 5 20
3 lot placebo 6 0 2 2 2 6 1 2 1 22
3 lot a 4 2 1 5 1 1 3 2 3 22
3 lot b 5 0 2 3 1 0 2 6 7 26
3 lot ba 3 2 1 0 0 2 5 9 4 26
3 some placebo 5 0 0 1 3 1 4 4 5 23
3 some a 1 0 0 1 3 5 3 3 6 22
3 some b 3 0 1 1 0 0 3 7 11 26
3 some ba 0 0 0 1 1 4 2 4 13 25
4 lot placebo 4 0 1 3 2 1 1 2 2 16
4 lot a 0 1 3 1 1 6 1 3 6 22
4 lot b 0 0 0 0 2 7 2 2 9 22
4 lot ba 1 0 3 0 1 2 3 4 8 22
4 some placebo 1 0 1 1 4 1 1 0 10 19
4 some a 0 0 0 1 0 2 2 1 13 19
4 some b 0 0 0 1 1 1 1 5 11 20
4 some ba 1 0 0 0 0 2 2 2 14 21

The proportion vector for each group i is written

pi D .pi0; pi1; pi2; pi3; pi4; pi5; pi6; pi7; pi8/0

where pij is the proportion of patients with j hours of pain for the ith group, and i D 1; : : : ; 32 is
the group corresponding to the ith row of Table 14.4. You compute the average proportion response
function by applying the following matrix operation to the proportion vector for each group:

Fi D F.pi / D Api D
�
0
8
; 1
8
; 2
8
; 3
8
; 4
8
; 5
8
; 6
8
; 7
8
; 8
8

�
pi
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A useful preliminary model is one that includes effects for center, initial pain, treatment, and initial
pain � treatment interaction; initial pain and treatment are believed to be similar across centers, so
their interactions with the center effects are not included.

14.4.1 Performing the Analysis with PROC CATMOD

The following DATA step creates the SAS data set PAIN. The raw data contains an observation for
each line of Table 14.4, although they are in a different order. The ARRAY and OUTPUT statements
in the DATA step modify the input data by creating an individual observation for each different
response value, or number of hours with little or no pain. It creates the variables NO_HOURS and
COUNT. The CATMOD procedure requires that each response value be represented on a different
observation. This data set contains 288 observations (9 observations for each of the 32 original data
lines). The values for the variable INITIAL are ‘some’ for some pain and ‘lot’ for a lot of pain.

data pain (drop=h0-h8);
input center initial $ treat $ h0-h8;
array hours h0-h8;
do i=1 to 9;

no_hours=i-1; count=hours(i); output;
end;
datalines;

1 some placebo 1 0 3 0 2 2 4 4 2
1 some treat_a 2 1 0 2 1 2 4 5 1
1 some treat_b 0 0 0 1 0 3 7 6 2
1 some treat_ba 0 0 0 0 1 3 5 4 6
1 lot placebo 6 1 2 2 2 3 7 3 0
1 lot treat_a 6 3 1 2 4 4 7 1 0
1 lot treat_b 3 1 0 4 2 3 11 4 0
1 lot treat_ba 0 0 0 1 1 7 9 6 2
2 some placebo 2 0 2 1 3 1 2 5 4
2 some treat_a 0 0 0 1 1 1 8 1 7
2 some treat_b 0 2 0 1 0 1 4 6 6

... more lines ...

4 some treat_b 0 0 0 1 1 1 1 5 11
4 some treat_ba 1 0 0 0 0 2 2 2 14
4 lot placebo 4 0 1 3 2 1 1 2 2
4 lot treat_a 0 1 3 1 1 6 1 3 6
4 lot treat_b 0 0 0 0 2 7 2 2 9
4 lot treat_ba 1 0 3 0 1 2 3 4 8
;

proc print data=pain(obs=9);
run;

Output 14.9 displays the observations for the group from Center 1 who had some initial pain and
received the placebo.
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Output 14.9 Partial Listing of Data Set PAIN

Obs center initial treat i no_hours count

1 1 some placebo 1 0 1

2 1 some placebo 2 1 0

3 1 some placebo 3 2 3

4 1 some placebo 4 3 0

5 1 some placebo 5 4 2

6 1 some placebo 6 5 2

7 1 some placebo 7 6 4

8 1 some placebo 8 7 4

9 1 some placebo 9 8 2

The following SAS statements invoke the CATMOD procedure and fit the preliminary model.
Note that the RESPONSE statement includes the coefficients required to compute the average
proportions per group. Using the MEANS keyword in the RESPONSE statement would compute
the mean number of hours with little or no pain, not the average proportion of hours with little or
no pain, which is desired here. Actually the results will be the same; the decision is whether you
want the parameter estimates to apply to proportions or means.

proc catmod;
weight count;
response 0 .125 .25 .375 .5 .625 .75 .875 1;
model no_hours = center initial treat

treat*initial;
run;

The population profiles and the response profiles are displayed in Output 14.10 and Output 14.11,
respectively.
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Output 14.10 Population Profiles

Population Profiles

Sample center initial treat Sample Size

1 1 lot placebo 26

2 1 lot treat_a 28

3 1 lot treat_b 28

4 1 lot treat_ba 26

5 1 some placebo 18

6 1 some treat_a 18

7 1 some treat_b 19

8 1 some treat_ba 19

9 2 lot placebo 26

10 2 lot treat_a 26

11 2 lot treat_b 26

12 2 lot treat_ba 26

13 2 some placebo 20

14 2 some treat_a 19

15 2 some treat_b 20

16 2 some treat_ba 20

17 3 lot placebo 22

18 3 lot treat_a 22

19 3 lot treat_b 26

20 3 lot treat_ba 26

21 3 some placebo 23

22 3 some treat_a 22

23 3 some treat_b 26

24 3 some treat_ba 25

25 4 lot placebo 16

26 4 lot treat_a 22

27 4 lot treat_b 22

28 4 lot treat_ba 22

29 4 some placebo 19

30 4 some treat_a 19

31 4 some treat_b 20

32 4 some treat_ba 21
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Output 14.11 Response Profiles

Response Profiles

Response no_hours

1 0

2 1

3 2

4 3

5 4

6 5

7 6

8 7

9 8

The goodness-of-fit statistic for this preliminary model is QW D 26:90 with 21 df, as displayed
in Output 14.12. With p D 0:1743, this indicates that the model fits the data adequately. All the
constituent effects are highly significant, p < 0:01.

Output 14.12 Preliminary ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 5271.98 <.0001

center 3 29.02 <.0001

initial 1 62.65 <.0001

treat 3 92.15 <.0001

initial*treat 3 12.63 0.0055

Residual 21 26.90 0.1743

It is useful to examine further the interaction between the treatments and initial pain status. The
significant interaction means that some of the treatment effects depend on the level of initial pain
status.

Some questions of interest are:

� Which treatment effects depend on the level of initial pain status? Where exactly is the
interaction occurring?

� In which levels of initial pain do treatments differ?
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You can address these questions with the same model, but it can be easier to address them with
a differently parameterized model. If you nest the effects of treatment within levels of initial
pain, then these questions can be addressed with the use of contrasts. By using the nested effects
model, you trade the 3 df for TREAT and 3 df for TREAT*INITIAL for 6 df for the nested effect
TREAT(INITIAL). Accordingly, the TREAT(INITIAL) effect is associated with six parameters,
three of which pertain to the effects of treatment within some initial pain and three of which pertain
to the effects of treatment within a lot of initial pain.

The following PROC CATMOD statements fit the nested model. The difference between specifying
the nested effect TREAT(INITIAL) and the nested-by-values effects TREAT(INITIAL=some) and
TREAT(INITIAL=lot) is that the former yields the 6 df test in the ANOVA table that tests whether
the six parameters for treatment effects within both some and a lot of initial pain levels are
essentially zero; the latter results in two separate 3 df tests in the ANOVA table, one for whether
the three treatment parameters for some pain are essentially zero and one for whether the three
treatment parameters for a lot of pain are essentially zero.

proc catmod;
weight count;
response 0 .125 .25 .375 .5 .625 .75 .875 1;
model no_hours = center initial

treat(initial);
run;

Submitting these statements produces the results contained in Output 14.13.

Output 14.13 Nested Value ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 5271.98 <.0001

center 3 29.02 <.0001

initial 1 62.65 <.0001

treat(initial) 6 102.70 <.0001

Residual 21 26.90 0.1743

The model goodness-of-fit test is the same, QW D 26:90 with 21 df, since no model reduction
was performed. The model simply redistributes the variation over different degrees of freedom.
Geometrically, you can think of the model space as being spanned by a different, but equivalent,
vector set. The tests for CENTER effect and INITIAL effect also remain the same. However, now
there is the 6 df nested effect TREAT(INITIAL) in place of a TREAT effect and a TREAT*INITIAL
interaction.

Output 14.14 displays the parameter estimates.
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Output 14.14 Parameter Estimates

Analysis of Weighted Least Squares Estimates

Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Intercept 0.6991 0.00963 5271.98 <.0001

center 1 -0.0484 0.0145 11.24 0.0008

2 0.0187 0.0145 1.66 0.1982

3 -0.0415 0.0176 5.56 0.0184

initial lot -0.0753 0.00951 62.65 <.0001

treat(initial) placebo lot -0.1739 0.0283 37.81 <.0001

treat_a lot -0.0644 0.0255 6.39 0.0115

treat_b lot 0.0952 0.0206 21.45 <.0001

placebo some -0.1159 0.0284 16.68 <.0001

treat_a some 0.00740 0.0217 0.12 0.7331

treat_b some 0.0347 0.0206 2.84 0.0921

Consider testing to see whether the effect for treatment a is the same as the effect for placebo for
patients with some pain. The appropriate hypothesis is stated

H0Wˇ9 � ˇ8 D 0

Since the implicit effect for treatment ba is written in terms of the other treatment parameters,

ˇtreatment ba D �ˇ8 � ˇ9 � ˇ10

the hypothesis test to see whether the effect for treatment ba is the same as the effect for placebo is
written

H0W �2ˇ8 � ˇ9 � ˇ10 D 0

The hypotheses of interest and their corresponding contrasts and coefficients are displayed in
Table 14.5. The coefficients are required in the CONTRAST statement in PROC CATMOD to
perform a particular contrast test.
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Table 14.5 Hypothesis Tests

Initial Coefficients
Hypothesis Pain Contrast ˇ5 ˇ6 ˇ7 ˇ8 ˇ9 ˇ10
treatment a vs. placebo a lot �ˇ5 C ˇ6 �1 1 0 0 0 0
treatment b vs. placebo a lot �ˇ5 C ˇ7 �1 0 1 0 0 0
treatment ba vs. placebo a lot �2ˇ5 � ˇ6 � ˇ7 �2 �1 �1 0 0 0
treatment ba vs. a a lot �ˇ5 � 2ˇ6 � ˇ7 �1 �2 �1 0 0 0
treatment ba vs. b a lot �ˇ5 � ˇ6 � 2ˇ7 �1 �1 �2 0 0 0
treatment a vs. placebo some �ˇ8 C ˇ9 0 0 0 �1 1 0
treatment b vs. placebo some �ˇ8 C ˇ10 0 0 0 �1 0 1
treatment ba vs. placebo some �2ˇ8 � ˇ9 � ˇ10 0 0 0 �2 �1 �1

treatment ba vs. a some �ˇ8 � 2ˇ9 � ˇ10 0 0 0 �1 �2 �1

treatment ba vs. b some �ˇ8 � ˇ9 � 2ˇ10 0 0 0 �1 �1 �2

In Chapter 8, the CONTRAST statements in PROC LOGISTIC and PROC GENMOD were
discussed. These statements serve the same purpose as the CONTRAST statement in PROC
CATMOD: testing linear combinations of the parameters.

You list a character string that labels the contrast, list the effect whose parameters you are interested
in, and then supply a coefficient for each of the effect parameters that PROC CATMOD estimates.
Remember that since PROC CATMOD uses full rank parameterization, it produces g� 1 estimated
parameters for an effect that has g levels.

The following CONTRAST statements request that the CATMOD procedure perform the appro-
priate tests. The statements can be submitted interactively, following the previous nested model
invocation, or in batch, included at the end of the nested model invocation. Since you are only
interested in the parameters corresponding to the TREAT(INITIAL) effect, you list that effect in the
CONTRAST statement and then specify the appropriate six coefficients that pertain to the contrast
involving the parameters ˇ5–ˇ10.

contrast 'lot: a-placebo' treat(initial) -1 1 0 0 0 0 ;
contrast 'lot: b-placebo' treat(initial) -1 0 1 0 0 0 ;
contrast 'lot: ba-placebo' treat(initial) -2 -1 -1 0 0 0 ;
contrast 'lot: ba-a' treat(initial) -1 -2 -1 0 0 0 ;
contrast 'lot: ba-b' treat(initial) -1 -1 -2 0 0 0 ;
contrast 'some:a-placebo' treat(initial) 0 0 0 -1 1 0 ;
contrast 'some:b-placebo' treat(initial) 0 0 0 -1 0 1 ;
contrast 'some:ba-placebo' treat(initial) 0 0 0 -2 -1 -1 ;
contrast 'some:ba-a' treat(initial) 0 0 0 -1 -2 -1 ;
contrast 'some:ba-b' treat(initial) 0 0 0 -1 -1 -2 ;
run;

These statements produce the “Analysis of Contrasts” table shown in Output 14.15. The table
includes the results for all the individual hypothesis tests.
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Output 14.15 Contrast Results

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq

lot: a-placebo 1 5.59 0.0180

lot: b-placebo 1 42.81 <.0001

lot: ba-placebo 1 61.48 <.0001

lot: ba-a 1 32.06 <.0001

lot: ba-b 1 2.59 0.1076

some:a-placebo 1 8.19 0.0042

some:b-placebo 1 12.83 0.0003

some:ba-placebo 1 21.45 <.0001

some:ba-a 1 4.37 0.0365

some:ba-b 1 1.67 0.1964

Most of these contrasts are significant using the ˛ D 0:05 criterion; however, it appears that the
difference between the ba treatment and the b treatment is marginal for both some initial pain and a
lot of initial pain.

Additional contrasts of interest are the individual components of the treatment � initial pain status
interaction as well as the individual components of the overall treatment effect. Output 14.16
displays these results (the statements are listed in Appendix B).

Output 14.16 Contrast Results

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq

interact:a-placebo 1 0.05 0.8266

interact:b-placebo 1 4.05 0.0441

interact:ba-placebo 1 4.89 0.0271

interact:ba-a 1 8.61 0.0033

interact:ba-b 1 0.04 0.8344

average:a-placebo 1 13.51 0.0002

average:b-placebo 1 50.93 <.0001

average:ba-placebo 1 77.60 <.0001

average:ba-a 1 31.42 <.0001

average:ba-b 1 4.22 0.0399

interaction 3 12.63 0.0055

treatment effect 3 92.15 <.0001
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These results indicate that the interaction component corresponding to the comparison of treatment
a and placebo is nonsignificant; therefore, treatment a has similar effects for an initial pain status
of some or a lot. Treatments b and ba do appear to have different effects at the different levels of
initial pain when compared to placebo; however, these effects may be quite similar. The interaction
component corresponding to the comparison of treatment a and treatment ba is significant; their
difference depends on the level of initial pain. This is not the case for treatment b compared to
treatment ba; their interaction component is nonsignificant.

All of the components of the treatment effect–those tests labeled average–are significant.

The ‘interaction’ and the ‘treatment effect’ are testing the same thing as the TREAT effect and the
TREAT*INITIAL effects listed in the ANOVA table for the preliminary model. Compare the QW
values, 12.63 and 92.15, to those listed in that table. They are identical.

These results address the pertinent questions of this analysis. Other approaches may include fitting
a reduced model that incorporates the results of these hypothesis tests, which is not pursued here.

14.5 Analysis of Survey Sample Data

In addition to analyzing data based on an underlying contingency table, the CATMOD procedure
provides a convenient way to analyze data that come in the form of a function vector and covariance
matrix. Often, such data come from complex surveys, and the covariance matrix has been computed
using other software that takes the sampling design into account. If the number of response function
estimates and the corresponding covariance matrix is large, then software designed for survey data
analysis may be more appropriate.

14.5.1 HANES Data

The following data are from the Health and Nutrition Examination Survey (HANES) that was
conducted in the United States from 1971 to 1974. This survey obtained various information
concerning health from over 10,000 households in the United States. One of the measures
constructed for analysis of these data was a well-being index, a composite index comprised from
the answers to a questionnaire on general well-being. Table 14.6 contains the well-being ordered
categorical estimates and standard errors for a cross-classification based on sex and age. The
covariance matrix was computed using other software that used balanced repeated replication and
took into account the sampling framework of the survey (Koch and Stokes 1979).
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Table 14.6 Well-Being Index

Sex Age Estimate S.E.
Male 25–34 7.937 0.086
Male 35–44 7.925 0.108
Male 45–54 7.828 0.102
Male 55–64 7.737 0.116
Male 65–74 8.168 0.120
Female 25–34 7.250 0.105
Female 35–44 7.190 0.153
Female 45–54 7.360 0.103
Female 55–64 7.319 0.152
Female 65–74 7.552 0.139

14.5.2 Direct Input of Response Functions

In the typical PROC CATMOD analysis, you input a contingency table or raw data and specify the
response functions, and PROC CATMOD computes the appropriate covariance matrix based on
the product multinomial distribution. In this case, your data are the vector of response functions
and its covariance matrix. Thus, in order to describe the variation of these functions across various
groups, you need to inform the procedure of the structure of your underlying cross-classification.
Ordinarily, you would do this with the explanatory variables that define the contingency table.
For this case, you need to rely on the FACTOR statement to express the cross-classification
relationships.

The following DATA step inputs the response functions and their covariance matrix into the SAS
data set WBEING. The first two data lines are the well-being estimates, listed in the same order
as they appear in Table 14.6. The subsequent data lines contain the 10 � 10 covariance matrix
that corresponds to the estimates; each row takes two lines. The variable _TYPE_ identifies
whether each data line corresponds to parameter estimates or covariance estimates. The value
‘parms’ identifies the lines with parameter estimates, and the value ‘cov’ identifies the lines with
the covariance estimates. The variable _NAME_ identifies the name of the variable that has its
covariance elements stored in that data line. Note that the diagonal element in the ith row of the
covariance matrix is the variance for the ith well-being estimate. (The square root of the element is
the standard error for the estimate.)

data wbeing(type=est);
input b1-b5 _type_ $ _name_ $ b6-b10 #2;
datalines;

7.93726 7.92509 7.82815 7.73696 8.16791 parms .
7.24978 7.18991 7.35960 7.31937 7.55184
0.00739 0.00019 0.00146 -0.00082 0.00076 cov b1
0.00189 0.00118 0.00140 -0.00140 0.00039
0.00019 0.01172 0.00183 0.00029 0.00083 cov b2

-0.00123 -0.00629 -0.00088 -0.00232 0.00034
0.00146 0.00183 0.01050 -0.00173 0.00011 cov b3
0.00434 -0.00059 -0.00055 0.00023 -0.00013

-0.00082 0.00029 -0.00173 0.01335 0.00140 cov b4
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0.00158 0.00212 0.00211 0.00066 0.00240
0.00076 0.00083 0.00011 0.00140 0.01430 cov b5

-0.00050 -0.00098 0.00239 -0.00010 0.00213
0.00189 -0.00123 0.00434 0.00158 -0.00050 cov b6
0.01110 0.00101 0.00177 -0.00018 -0.00082
0.00118 -0.00629 -0.00059 0.00212 -0.00098 cov b7
0.00101 0.02342 0.00144 0.00369 0.00253
0.00140 -0.00088 -0.00055 0.00211 0.00239 cov b8
0.00177 0.00144 0.01060 0.00157 0.00226

-0.00140 -0.00232 0.00023 0.00066 -0.00010 cov b9
-0.00018 0.00369 0.00157 0.02298 0.00918
0.00039 0.00034 -0.00013 0.00240 0.00213 cov b10

-0.00082 0.00253 0.00226 0.00918 0.01921
;

14.5.3 The FACTOR Statement

The FACTOR statement is where you define the cross-classification structure of the estimates. You
need to specify names for the CATMOD procedure to use internally that correspond to grouping
variables. You specify the number of levels for each and whether their values are character. This
is done in the first part of the FACTOR statement. The internal variable SEX has two levels, and
its values are character, as denoted by the dollar sign; the internal variable AGE has five levels, and
its values are also character. The values for these internal variables are listed under the PROFILE
option after a slash (/) in the FACTOR statement. The values are listed according to the order of
the estimates; thus, they are listed in the same order as they appear in Table 14.6.

Since SEX and AGE are internal variables, not part of the input data set, you cannot refer to them
in the MODEL statement. Thus, you use the keyword _RESPONSE_ to specify the desired model
effects. In the following statements, the saturated model is assigned to the keyword _RESPONSE_
in the FACTOR statement. This keyword is later used on the right-hand side of the MODEL
statement. The _RESPONSE_ construction is also used to perform repeated measurements
analyses and loglinear model analyses with the CATMOD procedure. Since the response functions
are input directly, the keyword _F_ is used to represent them on the left-hand side of the MODEL
statement.

The following PROC CATMOD statements invoke the procedure and specify that a saturated model
be fit to the data. The keyword READ in the RESPONSE statement tells PROC CATMOD that the
response functions and covariance matrix are to be directly input. The variables B1–B10 listed after
the keyword READ specify that ten response functions are involved and thus that the covariance
matrix is 10 � 10.

proc catmod data=wbeing;
response read b1-b10;
factors sex $ 2, age $ 5 / _response_=sex|age

profile=(male '25-34',
male '35-44',
male '45-54',
male '55-64',
male '65-74',
female '25-34',
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female '35-44',
female '45-54',
female '55-64',
female '65-74');

model _f_ = _response_ / design;
run;

14.5.4 Preliminary Analysis

Since populations and responses are not determined by input data variables, the population profiles
and response profiles are not printed as usual at the beginning of the PROC CATMOD output.
Instead, the first table displayed contains the response functions and the model matrix, as shown in
Output 14.17.

Output 14.17 Directly Input Response Functions

Response Functions and Design Matrix

Design Matrix

Sample
Function
Number

Response
Function 1 2 3 4 5 6 7 8 9 10

1 1 7.93726 1 1 1 0 0 0 1 0 0 0

2 7.92509 1 1 0 1 0 0 0 1 0 0

3 7.82815 1 1 0 0 1 0 0 0 1 0

4 7.73696 1 1 0 0 0 1 0 0 0 1

5 8.16791 1 1 -1 -1 -1 -1 -1 -1 -1 -1

6 7.24978 1 -1 1 0 0 0 -1 0 0 0

7 7.18991 1 -1 0 1 0 0 0 -1 0 0

8 7.35960 1 -1 0 0 1 0 0 0 -1 0

9 7.31937 1 -1 0 0 0 1 0 0 0 -1

10 7.55184 1 -1 -1 -1 -1 -1 1 1 1 1

The analysis of variance table is shown in Output 14.18. The internal variables SEX and AGE are
listed under “Source” just as if they were explanatory variables in the input data set. The SEX*AGE
interaction is clearly nonsignificant, with p D 0:5713. Thus, the additive model with effects SEX
and AGE has an adequate goodness of fit with QW D 2:92 and 4 df.
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Output 14.18 Saturated Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 27117.73 <.0001

sex 1 47.07 <.0001

age 4 10.87 0.0281

sex*age 4 2.92 0.5713

Residual 0 . .

The additive model is fit next, with contrasts requested to determine whether any of the parameters
for age are essentially the same. The following statements fit the additive model.

proc catmod data=wbeing;
response read b1-b10;
factors sex $ 2, age $ 5 /

_response_ = sex age
profile = (male '25-34' ,

male '35-44',
male '45-54' ,
male '55-64',
male '65-74' ,
female '25-34',
female '35-44',
female '45-54',
female '55-64' ,
female '65-74');

model _f_ = _response_;

The contrasts are set up to compare the first parameter for the age effect with each of the others.
Recall that the implicit parameter for the last level of the age effect (ages 65–74) is the negative of
the sum of the other parameters. Since the response functions are input directly, coefficients must
be supplied for all the effects, including the intercept. Thus, the ALL_PARMS keyword is required.
When you specify this keyword, you must supply coefficients for all the model parameters. Here,
0s are supplied on all contrasts for the intercept term and the sex effect term, and the final four
coefficients apply to the age effect.

contrast '25-34 vs. 35-44' all_parms 0 0 1 -1 0 0;
contrast '25-34 vs. 45-54' all_parms 0 0 1 0 -1 0;
contrast '25-34 vs. 55-64' all_parms 0 0 1 0 0 -1;
contrast '25-34 vs. 65-74' all_parms 0 0 2 1 1 1;
run;

When these statements are submitted, they produce the results displayed in Output 14.19 and
Output 14.20. There are six parameters: one for the intercept, one for the sex effect, and four for the
age effect. None of the age effect parameters listed appears to be of much importance. However,
there does appear to be suggestive variation among age groups, with the p-value for the age effect
at 0.0561.
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Output 14.19 Additive Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 28089.07 <.0001

sex 1 65.84 <.0001

age 4 9.21 0.0561

Residual 4 2.92 0.5713

Analysis of Weighted Least Squares Estimates

Effect Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Intercept 1 7.6319 0.0455 28089.07 <.0001

sex 2 0.2900 0.0357 65.84 <.0001

age 3 -0.00780 0.0645 0.01 0.9037

4 -0.0465 0.0636 0.54 0.4642

5 -0.0343 0.0557 0.38 0.5387

6 -0.1098 0.0764 2.07 0.1506

The contrasts indicate that the first four age groups act essentially the same and that the oldest age
group is responsible for the age effect, p D 0:0744; note that its estimate is �f�0:008 � 0:046 �
0:034 � 0:110g D 0:198.

Output 14.20 Contrasts for Age Effect

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq

25-34 vs. 35-44 1 0.16 0.6937

25-34 vs. 45-54 1 0.12 0.7288

25-34 vs. 55-64 1 0.72 0.3954

25-34 vs. 65-74 1 3.18 0.0744

One more contrast is specified to test the joint hypothesis that the lower four age groups are
essentially the same. The following CONTRAST statement is submitted; these three sets of
coefficients, separated by commas, result in a 3 df test.

contrast '25-64 the same' all_parms 0 0 1 -1 0 0,
all_parms 0 0 1 0 -1 0,
all_parms 0 0 1 0 0 -1;

run;
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The result of this test is nonsignificant, p D 0:8678, as shown in Output 14.21.

Output 14.21 Joint Test for Ages 25–64

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq

25-64 the same 3 0.72 0.8678

14.5.5 Inputting the Model Matrix Directly

These results suggest that an appropriate model for these data is one that includes the sex effect and
an effect for the oldest age group. You do this with the CATMOD procedure by specifying your
model matrix directly.

The following MODEL statement specifies a direct model matrix. You write the coefficients for
the model matrix row-wise, separating each row with a comma. The entire matrix is enclosed by
parentheses. This is similar to how you would input a matrix in the SAS/IML matrix programming
language.

model _f_ = ( 1 0 0 ,
1 0 0 ,
1 0 0 ,
1 0 0 ,
1 0 1 ,
1 1 0 ,
1 1 0 ,
1 1 0 ,
1 1 0 ,
1 1 1 );

This matrix represents an incremental effects model. The first column of 1s is for the intercept, the
second column is for the incremental effect of sex, where the reference level is for males and the
incremental effect is for females, and the third column is an incremental effect for age, where the
increment is for those aged 65–74.

Model matrices can be inputted directly for all applications of the CATMOD procedure, if desired.

The following PROC CATMOD statements fit this model. After the model matrix is listed a set
of labels for the effects; the numbers correspond to the columns of the model matrix. Without
the _RESPONSE_ keyword in the MODEL statement, the CATMOD procedure has no way of
knowing how to divide the model variability into various components. You can request that various
column parameters be tested jointly, or singly, as specified here. Refer to the CATMOD procedure
chapter in the SAS/STAT User’s Guide for more detail. If you don’t specify information concerning
the columns, PROC CATMOD performs a joint test for the significance of the model beyond an
overall mean, labeling this effect MODEL|MEAN in the ANOVA table.

proc catmod data=wbeing;
response read b1-b10;
factors sex $ 2, age $ 5 /
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_response_ = sex age
profile = (male '25-34',

male '35-44',
male '45-54',
male '55-64',
male '65-74',
female '25-34',
female '35-44',
female '45-54',
female '55-64',
female '65-74');

model _f_ = ( 1 0 0 ,
1 0 0 ,
1 0 0 ,
1 0 0 ,
1 0 1 ,
1 1 0 ,
1 1 0 ,
1 1 0 ,
1 1 0 ,
1 1 1 ) (1='Intercept', 2='Sex', 3='65-74')

/ pred;

The resulting tables for the analysis of variance and the parameter estimates are displayed in
Output 14.22. The model fits very well, with a QW of 3.64 and 7 df, which results in p D 0:8198.
The effects are listed as specified in the MODEL statement, and each is significant.

Output 14.22 Reduced Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 27165.20 <.0001

Sex 1 72.64 <.0001

65-74 1 8.49 0.0036

Residual 7 3.64 0.8198

Analysis of Weighted Least Squares Estimates

Effect Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Model 1 7.8680 0.0477 27165.20 <.0001

2 -0.5601 0.0657 72.64 <.0001

3 0.2607 0.0895 8.49 0.0036

Finally, the predicted values are displayed in Output 14.23. Fitting this model has resulted in
estimates of the standard error that are on the order of half as large as the standard errors for the
original data.
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Output 14.23 Reduced Model

Predicted Values for Response Functions

Observed Predicted

Function
Number Function

Standard
Error Function

Standard
Error Residual

1 7.93726 0.085965 7.867955 0.047737 0.069305

2 7.92509 0.108259 7.867955 0.047737 0.057135

3 7.82815 0.10247 7.867955 0.047737 -0.0398

4 7.73696 0.115542 7.867955 0.047737 -0.13099

5 8.16791 0.119583 8.128703 0.095929 0.039207

6 7.24978 0.105357 7.30786 0.060831 -0.05808

7 7.18991 0.153036 7.30786 0.060831 -0.11795

8 7.3596 0.102956 7.30786 0.060831 0.05174

9 7.31937 0.151592 7.30786 0.060831 0.01151

10 7.55184 0.1386 7.568608 0.098147 -0.01677

14.6 Modeling Rank Measures of Association Statistics

Many studies include outcomes that are ordinal in nature. When the treatment is either dichotomous
or ordinal, you can model rank measures of correlation using WLS methods and use that framework
to investigate treatment effects and interactions. Such an analysis can complement statistical models
such as the proportional odds model. See Carr, Hafner, and Koch (1989) for an example of such
an analysis applied to Goodman-Kruskal rank correlation coefficients, also known as gamma
coefficients.

The Mann-Whitney rank measure of association statistics are useful statistics for assessing the
association between an ordinal outcome and a dichotomous explanatory variable. Consider the
following data in Table 14.7 from a randomized clinical trial of chronic pain. Investigators
compared a new treatment with a placebo and assessed the response for a particular condition.
Patients were obtained from investigators at two centers whose design included stratification
relative to four diagnostic classes.
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Table 14.7 Chronic Pain Clinical Trial
Diagnostic Patient Status

Center Class Treatment Excellent Good Moderate Fair Poor
I A Active 1 3 2 5 1
I A Placebo 2 4 3 4 3
I B Active 3 10 1 4 2
I B Placebo 2 4 1 5 2
I C Active 6 1 1 1 0
I C Placebo 0 5 1 1 3
I D Active 3 5 1 6 1
I D Placebo 3 3 2 4 5
II A Active 0 4 3 1 8
II A Placebo 0 3 3 0 5
II B Active 2 3 3 0 2
II B Placebo 1 8 0 0 5
II C Active 2 2 1 0 1
II C Placebo 1 1 0 1 1
II D Active 0 1 2 2 3
II D Placebo 1 1 1 0 7

You may be interested in computing the Mann-Whitney rank measure of association as a way of
assessing the extent to which patients with active treatments are more likely to have better response
status than those with placebo. You may then be interested in seeing whether diagnostic class
and center influence this association through model-fitting. You proceed by computing the Mann-
Whitney statistics and their standard errors and using these estimates as input to the CATMOD
procedure.

Recall that you can compute the Mann-Whitney measures gh and their standard errors sh as
functions of the Somers’ D measures, which are produced by the FREQ procedure:

gh D
fSomers0DC jRC 1g

2
and sh D

SE.Somers0DC jR/
2

The following SAS statements input the chronic pain data.

data cpain;
input center $ diagnosis $ treat $ status $ count @@;
datalines;

I A active excellent 1 I A active good 3 I A active moderate 2
I A active fair 5 I A active poor 1
I A placebo excellent 2 I A placebo good 4 I A placebo moderate 3
I A placebo fair 4 I A placebo poor 3
I B active excellent 3 I B active good 10 I B active moderate 1
I B active fair 4 I B active poor 2
I B placebo excellent 2 I B placebo good 4 I B placebo moderate 1
I B placebo fair 5 I B placebo poor 2
I C active excellent 6 I C active good 1 I C active moderate 1
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I C active fair 1 I C active poor 0
I C placebo excellent 0 I C placebo good 5 I C placebo moderate 1
I C placebo fair 1 I C placebo poor 3
I D active excellent 3 I D active good 5 I D active moderate 1
I D active fair 6 I D active poor 1
I D placebo excellent 3 I D placebo good 3 I D placebo moderate 2
I D placebo fair 4 I D placebo poor 5
II A active excellent 0 II A active good 4 II A active moderate 3
II A active fair 1 II A active poor 8
II A placebo excellent 0 II A placebo good 3 II A placebo moderate 3
II A placebo fair 0 II A placebo poor 5
II B active excellent 2 II B active good 3 II B active moderate 3
II B active fair 0 II B active poor 2
II B placebo excellent 1 II B placebo good 8 II B placebo moderate 0
II B placebo fair 0 II B placebo poor 5
II C active excellent 2 II C active good 2 II C active moderate 1
II C active fair 0 II C active poor 1
II C placebo excellent 1 II C placebo good 1 II C placebo moderate 0
II C placebo fair 1 II C placebo poor 1
II D active excellent 0 II D active good 1 II D active moderate 2
II D active fair 2 II D active poor 3
II D placebo excellent 1 II D placebo good 1 II D placebo moderate 1
II D placebo fair 0 II D placebo poor 7
;

The following statements produce measures of association for the eight 2 � 5 tables formed for the
cross-classification of center and diagnostic class.

proc freq data=cpain order=data;
weight count;
tables center*diagnosis*treat*status/ measures;

run;

Output 14.24 displays the table for Center I and Diagnostic Class A. Output 14.25 displays the
measures of association for that table.

Output 14.24 Frequency Counts

Frequency
Percent
Row Pct
Col Pct

Table 1 of treat by status

Controlling for center=I diagnosis=A

treat

status

excellen good moderate fair poor Total

active 1
3.57
8.33

33.33

3
10.71
25.00
42.86

2
7.14

16.67
40.00

5
17.86
41.67
55.56

1
3.57
8.33

25.00

12
42.86

placebo 2
7.14

12.50
66.67

4
14.29
25.00
57.14

3
10.71
18.75
60.00

4
14.29
25.00
44.44

3
10.71
18.75
75.00

16
57.14

Total 3
10.71

7
25.00

5
17.86

9
32.14

4
14.29

28
100.00

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



460 Chapter 14: Weighted Least Squares

Output 14.25 Measures of Association

Statistics for Table 1 of treat by status
Controlling for center=I diagnosis=A

Statistic Value ASE

Gamma -0.0201 0.2727

Kendall's Tau-b -0.0125 0.1687

Stuart's Tau-c -0.0153 0.2073

Somers' D C|R -0.0156 0.2116

Somers' D R|C -0.0099 0.1346

Pearson Correlation -0.0166 0.1853

Spearman Correlation -0.0138 0.1870

Lambda Asymmetric C|R 0.0000 0.1489

Lambda Asymmetric R|C 0.0833 0.2394

Lambda Symmetric 0.0323 0.1596

Uncertainty Coefficient C|R 0.0147 0.0256

Uncertainty Coefficient R|C 0.0332 0.0576

Uncertainty Coefficient Symmetric 0.0204 0.0355

Since the fifth and sixth subtables in Table 14.7 have zero columns, statistics requested by the
MEASURES option are not computed for them in a multiway table specification in PROC FREQ.
However, zero columns present no problem for Somers’ D, and the statistics are produced when
the tables are specified with a simple two-way specification, as follows.

proc sort data=cpain; by diagnosis;
proc freq data=cpain order=data; by diagnosis;

weight count;
where (center='II' and (diagnosis='A' or diagnosis='B'));
tables treat*status/ measures;

run;

Table 14.8 displays Somers’ D values and asymptotic standard errors produced by the FREQ
procedure and the calculated values of gh and sh. These estimates can be generated by using
the OUTPUT statement in PROC FREQ and some basic PROC IML programming statements as
demonstrated in Section 4.3.3.
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Table 14.8 Mann-Whitney Statistics

Center Diagnosis Somers’D ASE gh sh
I A �0:0156 0.2116 0.4922 0.1058
I B 0.1893 0.1923 0.5946 0.0959
I C 0.6778 0.1834 0.8389 0.0917
I D 0.2022 0.1915 0.6011 0.0959
II A �0:0625 0.2100 0.4688 0.1049
II B 0.0571 0.2305 0.5286 0.1153
II C 0.2083 0.3622 0.6042 0.1811
II D 0.2000 0.2514 0.6000 0.1257

To produce the appropriate input for PROC CATMOD, you compute the variances by squaring
the sh and then create a data set that contains the estimates gh and the covariance matrix. The
following DATA step creates the data set MANNWHITNEY.

data MannWhitney;
input b1-b8 _type_ $ _name_ $8.;
datalines;

.4922 .5946 .8389 .6011 .4688 .5286 .6042 .6000 parms

.0112 .0000 .0000 .0000 .0000 .0000 .0000 .0000 cov b1

.0000 .0092 .0000 .0000 .0000 .0000 .0000 .0000 cov b2

.0000 .0000 .0084 .0000 .0000 .0000 .0000 .0000 cov b3

.0000 .0000 .0000 .0092 .0000 .0000 .0000 .0000 cov b4

.0000 .0000 .0000 .0000 .0110 .0000 .0000 .0000 cov b5

.0000 .0000 .0000 .0000 .0000 .0133 .0000 .0000 cov b6

.0000 .0000 .0000 .0000 .0000 .0000 .0328 .0000 cov b7

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0158 cov b8
;

This data set is then input into the CATMOD procedure. Instead of generating functions from an
underlying contingency table, the CATMOD procedure directly models the input functions and
uses the input covariance matrix as the weights. You define the profiles for each function with the
PROFILE option in the FACTORS statement. You also define your factors, or explanatory variable
structure, along with the number of levels. Then you describe the effects you want to include in
your model with the _RESPONSE_ option.
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proc catmod data=MannWhitney;
response read b1-b8;
factors center $ 2 , diagnosis $ 4 /

_response_ = center diagnosis
profile = (I A,

I B,
I C,
I D,
II A,
II B,
II C,
II D);

model _f_ = _response_ / cov;
run;

The ANOVA table results are displayed in Output 14.26. The residual Wald test is a test of the
diagnostic class and investigator interaction on the treatment effect, which is nonsignificant with a
p-value of 0.8158. Neither diagnostic class nor center appear to explain significant variation, with
diagnostic class appearing to be modestly influential with a p-value of 0.0745.

Output 14.26 ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 229.83 <.0001

center 1 0.62 0.4327

diagnosis 3 6.92 0.0745

Residual 3 0.94 0.8158

By submitting another MODEL statement that specifies the vector of 1s as the model matrix, you
can obtain a test of the hypothesis that the measures have the same value for each diagnostic class
and investigator combination through the residual Wald test.

model _f_ =( 1,
1,
1,
1,
1,
1,
1,
1 );

This is the seven degree of freedom test that is labeled ‘Residual’ in the “Analysis of Variance”
table. Note that there are no degrees of freedom left over for the “Model|Mean” source of variation,
which is why the redundant or restricted parameter message appears. Output 14.27 contains the
results.
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Output 14.27 ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Model|Mean 0* . .

Residual 7 9.78 0.2013

Note: Effects marked with '*' contain one or more
redundant or restricted parameters.

Analysis of Weighted Least Squares Estimates

Effect Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Model 1 0.6017 0.0382 248.23 <.0001

The p-value of 0.2013 suggests that this hypothesis is compatible with these data. The estimate of
the common Mann-Whitney rank measure for the eight strata is 0.6017 with standard error 0.0382.
It is interpretable as an estimated probability of 0.6017 for a randomly selected patient with active
treatment having better responses than a patient with placebo. A two-sided 95% confidence interval
is about (0.527, 0.677) which, by excluding 0.50, indicates a significant treatment difference with
p < 0:05.

See Kawaguchi et al. (2011) for additional analysis of these data.

14.7 Repeated Measurements Analysis

Many types of studies have research designs that involve multiple measurements of a response
variable. Longitudinal studies, in which repeated measures are obtained over time from each
subject, are one important and commonly used type of repeated measures study. In other
applications, the response from each experimental unit is measured under multiple conditions
rather than at multiple time points. In some settings in which repeated measures data are obtained,
the independent experimental units are not individual subjects. For example, in a toxicological
study the experimental units might be litters; responses are then obtained from the multiple
newborns in each litter. In a genetic study, experimental units might be defined by families;
responses are then obtained from the members of each family.

There are two main difficulties in the analysis of data from repeated measures studies. First,
the analysis is complicated by the dependence among repeated observations made on the same
experimental unit. Second, the investigator often cannot control the circumstances for obtaining
measurements, so that the data may be unbalanced or partially incomplete. For example, in a
longitudinal study the response from a subject may be missing at one or more of the time points
due to factors that are unrelated to the outcome of interest. In toxicology or genetic studies, litter or
family sizes are variable rather than fixed; hence, the number of repeated measures is not constant
across experimental units.
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While many approaches to the analysis of repeated measures data have been studied, most are
restricted to the setting in which the response variable is normally distributed and the data are
balanced and complete. Although the development of methods for the analysis of repeated
measures categorical data has received substantially less attention in the past, this has recently
become an important and active area of research. Still, the methodology is not nearly as well
developed as the methodology for continuous, normally distributed outcomes.

SAS provides several useful methodologies for analyzing repeated measures categorical data.
These methodologies are applicable when a univariate response variable is measured repeatedly for
each independent experimental unit.

One of these approaches, based on Mantel-Haenszel (MH) test statistics, is described as an
advanced topic in Chapter 6, “Sets of s � r Tables.” The MH methodology is useful for testing
the null hypothesis of no association between the response variable and the repeated time points or
conditions within each subject (that is, interchangeability). Although these randomization model
methods require minimal assumptions and the sample size requirements are less stringent than for
other methods, they have important limitations. First, the MH methods are restricted to the analysis
of data from a single sample; thus, the effects of additional factors (for example, treatment group)
cannot be incorporated. In addition, the methods are oriented primarily to hypothesis testing rather
than to parameter estimation.

Another approach is to model categorical repeated measurements in terms of a parsimonious
number of parameters. Chapter 8, “Logistic Regression I: Dichotomous Response,” introduces
statistical modeling of categorical data using maximum likelihood to estimate parameters of models
for logits, and earlier sections of this chapter describe weighted least squares (WLS) methodology
for modeling a wide range of types of categorical data outcomes. However, both of these approaches
focus on statistical modeling of the relationship between a single dependent categorical variable
and one or more explanatory variables. When you model repeated measurements data, you are
dealing with multiple dependent variables that reflect different times or conditions under which the
outcome of interest was measured.

This section describes methods for analyzing repeated measurements data with weighted least
squares methods. The WLS techniques are a direct extension of the general approach introduced
and described earlier in this chapter. The WLS methodology is an extremely versatile modeling
approach that can be used efficiently for parameter estimation and hypothesis testing. However, the
price of this versatility is that large sample sizes are required.

While such methods are still useful in analyzing repeated measurements data, the generalized
estimating equations (GEE) technique has become popular for the analysis of repeated categorical
measures and clustered data. GEE methods handle continuous explanatory variables, missing data,
and time-dependent covariates. Chapter 15 discusses the GEE methodology and its application
through a series of practical examples.

Many repeated measurements analyses are now undertaken with the GEE strategy. However, the
weighted least squares approach is still reasonable for data that meet the sample size requirements
and include a minimum number of discrete explanatory variables, complete data, and limited
time-dependent explanatory variables. For these situations, weighted least squares offers full
efficiency, provides well-defined goodness-of-fit statistics, accounts for all degrees of freedom, and
is asymptotically equivalent to maximum likelihood methods. You do lose these properties with the
GEE approach, but you gain greater scope in your analysis. In some sense, you can consider the
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analogy to the classical MANOVA model in the continuous response setting. The weighted least
squares and MANOVA methods have very desirable properties but limited scope; GEE methods,
like mixed model methods, extend the possible scope of analyses with some reasonable choice
of assumptions. Choosing one method or another depends on the data at hand and your analysis
objectives.

14.7.1 WLS Methodology for Repeated Measurements

Previously, this chapter considered situations in which there is a single outcome (dependent)
variable, so that the response profiles are defined by the r possible levels of the dependent variable.
In each group, at most r � 1 linearly independent response functions can be analyzed. Thus, in
the applications in which the response variable is dichotomous, there is one response function per
group. In other applications, the response is polytomous but a single response function, such as
a mean score, is computed for each group. In both of these situations, there are s independent
response functions (one for each row of the table) and their estimated covariance matrix VF is
diagonal.

However, the methodology can also be used when there are multiple response functions per group.
In these situations, the response functions from the same group are correlated and their covariance
matrix VF is block diagonal. Since the usual covariance structure based on the multinomial
distribution accounts for correlated proportions, it is a natural candidate for handling the correlation
structure of repeated measurements.

In repeated measures applications, interest generally focuses on the analysis of the marginal
distributions of the response at each time point, that is, regardless of the responses at the other time
points. Thus, there are multiple response functions per group, and the correlation structure induced
by the repeated measures must be taken into consideration. In the general situation in which a
c-category response variable is measured at t time points, the cross-classification of the possible
outcomes results in r D ct response profiles. You generally consider t .c � 1/ correlated marginal
proportions, generalized logits, or cumulative logits, or t correlated mean scores (if the response is
ordinal), in the analysis.

Provided that the appropriate covariance matrix is computed for these correlated response functions,
the WLS computations are no different from those described previously. Koch and Reinfurt (1971)
and Koch et al. (1977) first described the application of WLS to repeated measures categorical
data. Further work is described in Stanish, Gillings, and Koch (1978), Koch et al. (1985), and
Koch et al. (1989). Stanish (1986), Landis et al. (1988), Agresti (1988, 1989), and Davis (1992)
further developed this methodology and also illustrated various aspects of the use of the CATMOD
procedure in analyzing categorical repeated measures.

The following sections illustrate several basic types of WLS analyses of repeated measurements
data when the outcome is categorical. The examples progress in difficulty and gradually introduce
more sophisticated analyses.
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14.7.2 One Population, Dichotomous Response

Grizzle, Starmer, and Koch (1969) analyze data in which 46 subjects were treated with three Drugs
(A, B, and C). The response to each drug was recorded as favorable or unfavorable. The null
hypothesis of interest is that the marginal probability of a favorable response is the same for all
three drugs, that is, the hypothesis of marginal homogeneity (see page 157 in Chapter 6). Since
the same 46 subjects were used in testing each of the three drugs, the estimates for the three
marginal probabilities are correlated. In Section 6.4, this null hypothesis was tested using the
Mantel-Haenszel general association statistic. This analysis concluded that there was a statistically
significant difference among the three marginal probabilities.

Table 14.9 displays the data from Section 6.4 in the general WLS framework. There is one
subpopulation (since there is a single group of subjects) and r D 23 D 8 response profiles, which
correspond to the possible combinations of favorable and unfavorable response for the three drugs.
For example, there are 6 subjects who had a favorable response to all three drugs (FFF) and 16
subjects who responded favorably to Drugs A and B and unfavorably to Drug C (FFU). In the
current notation, s D 1, c D 2, t D 3, and r D 23 D 8.

Based on the underlying multinomial distribution of the cell counts, computation of response
functions of interest and subsequent analysis using the WLS approach follows the same principles
described earlier. However, the eight response profiles are not defined by the eight levels of a
single response but rather by the response combinations resulting from the measurement of three
dichotomous variables. From the proportions of these eight profiles, you can construct three
correlated marginal proportions that correspond to those subjects who responded favorably to Drug
A, Drug B, and Drug C, respectively.

Table 14.9 Drug Response Data

F=favorable, U=unfavorable
Drug A response F F F F U U U U
Drug B response F F U U F F U U
Drug C response F U F U F U F U Total

Number of subjects 6 16 2 4 2 4 6 6 46

Suppose that pi denotes the observed proportion of subjects in the i th response profile (ordered from
left to right as displayed in Table 14.9), and let p D .p1; : : : ; p8/

0. For example, p1 D PrfFFFg
is the probability of a favorable response to all three drugs. Now let pA, pB , and pC denote the
marginal proportions with a favorable response to Drugs A, B, and C, respectively. For example,
pA D PrfFFF or FFU or FUF or FUUg. The vector of response functions F.p/ D .pA; pB ; pC /

0

can be computed by the linear transformation F.p/ D Ap, where

A D

24 1 1 1 1 0 0 0 01 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

35
The first row of A sums p1, p2, p3, and p4 to compute the proportion of subjects with a favorable
response to Drug A. Similarly, the second row of A sums p1, p2, p5, and p6 to yield the proportion
with a favorable response to Drug B. Finally, the corresponding proportion for Drug C is computed
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by summing p1, p3, p5, and p7. The hypothesis of marginal homogeneity specifies that the
marginal proportions with a favorable response to Drugs A, B, and C are equal. This hypothesis
can be tested by fitting a model of the form F.�/ D Xˇ, where � is the vector of population
probabilities estimated by p, X is a known model matrix, and ˇ is a vector of unknown parameters.
If the drug effect is significant, then the hypothesis of marginal homogeneity can be rejected.

This analysis is performed with the CATMOD procedure. The following statements create the SAS
data set DRUG. The variables DRUGA, DRUGB, and DRUGC contain the responses for Drugs A,
B, and C, respectively.

data drug;
input druga $ drugb $ drugc $ count;
datalines;

F F F 6
F F U 16
F U F 2
F U U 4
U F F 2
U F U 4
U U F 6
U U U 6
;

The next group of statements requests a repeated measurements analysis that tests the hypothesis
of marginal homogeneity.

proc catmod;
weight count;
response marginals;
model druga*drugb*drugc=_response_ / oneway cov;
repeated drug 3 / _response_=drug;

run;

A major difference between this PROC CATMOD invocation and those discussed in previous
sections is the syntax of the MODEL statement. One function of the MODEL statement is to
specify the underlying s � r contingency table; that is, it defines the r response profiles by the
values of the response variable and the s population profiles by the cross-classification of the levels
of the explanatory variables. The fundamental distinction of repeated measures analyses is that
there are now multiple response variables and they determine both the response functions and the
variation to be modeled.

The response variables are crossed (separated by asterisks) on the left-hand side of the MODEL
statement, and the r response profiles are defined by the cross-classification of their levels.

model druga*drugb*drugc=_response_ / oneway design cov;

The response profiles are ordered so that the rightmost variable on the left-hand side of the MODEL
statement varies fastest and the leftmost variable varies slowest. In this example, the Drug C
response changes from favorable to unfavorable most rapidly, followed by Drug B, with Drug A
changing the slowest. Look ahead to Output 14.29 to see these response profiles listed in the
resulting PROC CATMOD output. Since the MARGINALS option is specified in the RESPONSE
statement, the marginal proportions for Drug A, Drug B, and Drug C are computed as the three
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response functions, as seen in Output 14.30.

Since the right-hand side of the MODEL statement does not include any explanatory variables, the
data are correctly structured as a single population with r D 8 response profiles. The keyword
_RESPONSE_ specifies that the variation among the dependent variables is to be modeled; by
default, PROC CATMOD builds a full factorial _RESPONSE_ effect with respect to the repeated
measurement factors. In this case, there is only one repeated factor, drug, so the full factorial
includes only the drug main effect.

However, you can specify a different model matrix in the REPEATED statement, which is usually
used in repeated measurements analysis. The general purpose of the REPEATED statement is to
specify how to incorporate repeated measurement factors into the model. You can specify a name
for each repeated measurement factor in the REPEATED statement, and you can specify the type
(numeric or character), number of levels, and the label or value of each level. You can also define
the model matrix in terms of the repeated measurement factors.

repeated drug 3 / _response_=drug;

In this example, the REPEATED statement specifies that there is a single repeated measurement
factor that has three levels (drugs A, B, C). Although it is convenient to name this factor DRUG,
any valid SAS variable name can be used, with the restriction that it cannot be the same as the
name of an existing variable in the data set. If there is only one repeated measurements factor and
the number of levels is omitted, then the CATMOD procedure assumes that the number of levels
is equal to the number of response functions per group. So, in this case, the number 3 could have
been omitted from the REPEATED statement.

The _RESPONSE_= option in the REPEATED statement specifies the effects to be included in
the model matrix as a result of using the _RESPONSE_ keyword in the MODEL statement. The
variables named in the effects must be listed in the REPEATED statement. If this option is omitted,
then PROC CATMOD builds a full factorial _RESPONSE_ effect with respect to the repeated
measurement factors. In this example, the _RESPONSE_ option specifies that the model matrix
include a DRUG main effect. Since there is only one repeated measurement factor, you could
replace the preceding REPEATED statement with

repeated drug;

The ONEWAY option in the MODEL statement prints one-way marginal frequency distributions
for each response variable in the MODEL statement. This is very useful in verifying that your
model is set up as intended. The COV option in the MODEL statement prints the covariance
matrix of the vector of response functions F.p/.

Output 14.28 displays the one-way frequency distributions of the variables DRUGA, DRUGB,
and DRUGC; they are useful for checking that the response functions are defined as desired. The
variables DRUGA, DRUGB, and DRUGC have two levels, so the marginal proportion of subjects
with the first level (F) is computed for each variable.
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Output 14.28 One-Way Frequency Distributions

One-Way Frequencies

Variable Value Frequency

druga F 28

U 18

drugb F 28

U 18

drugc F 16

U 30

Output 14.29 displays the population and response profiles.

Output 14.29 Population and Response Profiles

Population Profiles

Sample Sample Size

1 46

Response Profiles

Response druga drugb drugc

1 F F F

2 F F U

3 F U F

4 F U U

5 U F F

6 U F U

7 U U F

8 U U U

Output 14.30 displays the vector of response functions, its covariance matrix, and the model matrix.
Compare these three response functions with the one-way distributions in Output 14.28 and verify
that they are equal to the marginal proportions with a favorable response to drugs A, B, and C,
respectively; for example, 28=.28C18/ D 0:6087 for Drugs A and B, 16=.16C30/ D 0:34783 for
Drug C. The covariance matrix VF D AVpA0 of the response function vector F is printed because
the COV option was specified in the MODEL statement. While Vp is the 8�8 covariance matrix of
the proportions in the eight response categories, VF is the 3 � 3 covariance matrix of F. Note that
the off-diagonal elements of VF are nonzero, since the three marginal proportions are correlated.
The model matrix has three columns, and the corresponding parameters are an overall intercept, an
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effect for Drug A, and an effect for Drug B.

Output 14.30 Response Functions and Model Matrix

Response Functions and Covariance Matrix

Covariance Matrix

Sample
Function
Number

Response
Function 1 2 3

1 1 0.60870 0.0051779 0.0023424 -0.000822

2 0.60870 0.0023424 0.0051779 -0.000822

3 0.34783 -0.000822 -0.000822 0.0049314

Design Matrix

Design
Matrix

Sample
Function
Number 1 2 3

1 1 1 1 0

2 1 0 1

3 1 -1 -1

Output 14.31 displays the analysis of variance (ANOVA) table. The source of variation labeled
“drug” tests the null hypothesis that the probability of a favorable response is the same for all
three drugs. Since the observed value of the 2 df test statistic is 6.58, the hypothesis of marginal
homogeneity is rejected at the 0.05 level of significance (p D 0:0372).

Output 14.31 ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 146.84 <.0001

drug 2 6.58 0.0372

Residual 0 . .

From inspection of the marginal proportions of favorable response, it is clear that Drug C is inferior
to Drugs A and B. You can test the equality of Drugs A and C using a contrast statement. Since ˇ2
and ˇ3 are the parameters for Drugs A and B (corresponding to the second and third columns of
the model matrix in Output 14.30), the null hypothesis is

H0Wˇ2 D �ˇ2 � ˇ3

or, equivalently,

H0W 2ˇ2 C ˇ3 D 0
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The corresponding CONTRAST statement is

contrast 'A versus C' _response_ 2 1;

Note that the keyword _RESPONSE_ is specified in the CONTRAST statement. You could also
test this hypothesis using the ALL_PARMS keyword; the CONTRAST statement would be

contrast 'A versus C' all_parms 0 2 1;

The results in Output 14.32 indicate a significant difference between Drugs A and C (QW D 5:79,
1 df, p D 0:0161).

Output 14.32 Contrast Results

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq

A versus C 1 5.79 0.0161

A versus C 1 5.79 0.0161

14.7.3 Two Populations, Polytomous Response

The previous section describes repeated measures analyses when the response variable is dichoto-
mous. In these situations, there is a single response function at each time point (level of the repeated
measurement factor). This section describes the application of the WLS methodology when the
response variable has more than two levels and the repeated measurement factor isn’t time.

Table 14.10 displays unaided distance vision data from 30–39 year-old employees of United
Kingdom Royal Ordnance factories during the years 1943–1946 (Kendall and Stuart 1961, pp.
564 and 586). Vision was graded in both the right eye and the left eye on a four-point ordinal
categorical scale where 1 represents the highest grade and 4 represents the lowest grade. Interest
focuses on determining whether the marginal vision grade distributions are the same in the right
eye as in the left eye, whether the marginal distributions differ between females and males, and
whether differences between right eye and left eye vision are the same for females and males.
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Table 14.10 Unaided Distance Vision Data*

Right Eye Left Eye Grade
Gender Grade 1 2 3 4 Total
Female 1 1520 266 124 66 1976

2 234 1512 432 78 2256
3 117 362 1772 205 2456
4 36 82 179 492 789

Total 1907 2222 2507 841 7477
Male 1 821 112 85 35 1053

2 116 494 145 27 782
3 72 151 583 87 893
4 43 34 106 331 514

Total 1952 791 919 480 3242
*Reprinted by permission of Edward Arnold.

In this example, there are two populations (females, males). Two measurements of an ordered
four-category response variable were obtained from each subject. Thus, there are r D 42 D 16

response profiles defined by the possible combinations of right-eye and left-eye vision grade. The
between subjects variation is due to differences between females and males and the within subjects
variation is due to differences between the right eye and the left eye.

The following SAS statements read in the counts displayed in Table 14.10 and create the SAS data
set VISION.

data vision;
input gender $ right left count;
datalines;

F 1 1 1520
F 1 2 266
F 1 3 124
F 1 4 66
F 2 1 234
F 2 2 1512
F 2 3 432
F 2 4 78
F 3 1 117
F 3 2 362
F 3 3 1772
F 3 4 205
F 4 1 36
F 4 2 82
F 4 3 179
F 4 4 492
M 1 1 821
M 1 2 112
M 1 3 85
M 1 4 35
M 2 1 116
M 2 2 494
M 2 3 145
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M 2 4 27
M 3 1 72
M 3 2 151
M 3 3 583
M 3 4 87
M 4 1 43
M 4 2 34
M 4 3 106
M 4 4 331
;

Since there are two populations, the null hypothesis of marginal homogeneity can be tested
separately for females and males. The marginal distribution of vision grade in each eye involves
three linearly independent proportions, since the proportions in the four categories sum to one.
Thus, the null hypothesis of marginal homogeneity has 3 df for each gender. The following
statements produce the analysis.

proc catmod;
weight count;
response marginals;
model right*left=gender _response_(gender='F')

_response_(gender='M') / design;
repeated eye 2;

run;

The RESPONSE statement computes six correlated marginal proportions in each of the two
populations. The first three response functions in each population are the proportions of subjects
with right-eye vision grades of 1, 2, and 3, while the next three are the proportions with left-eye
vision grades of 1, 2, and 3. For example, the response function for sample 1 (females), function
number 1 (right-eye vision grade of 1) is the marginal proportion of subjects in this category:

number of females with right-eye grade 1
total number of females

D
1976

7477
D 0:26428

In this example, you must specify that the repeated measures factor labeled EYE has two levels.
If this specification is omitted, PROC CATMOD constructs a model matrix to test the 5 df null
hypothesis that the six response functions from each population are equal. However, it is not
necessary to include the option _RESPONSE_=EYE in the REPEATED statement, since there is
only one repeated measures factor and the default factorial _RESPONSE_ effect is desired.

Output 14.33 displays the population and response profiles, and Output 14.34 displays the response
functions and model matrix.

Output 14.33 Population and Response Profiles

Population Profiles

Sample gender Sample Size

1 F 7477

2 M 3242
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Output 14.33 continued

Response Profiles

Response right left

1 1 1

2 1 2

3 1 3

4 1 4

5 2 1

6 2 2

7 2 3

8 2 4

9 3 1

10 3 2

11 3 3

12 3 4

13 4 1

14 4 2

15 4 3

16 4 4
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Output 14.34 Response Functions and Model Matrix

Response Functions and Design Matrix

Design Matrix

Sample
Function
Number

Response
Function 1 2 3 4 5 6 7 8 9 10 11 12

1 1 0.26428 1 0 0 1 0 0 1 0 0 0 0 0

2 0.30173 0 1 0 0 1 0 0 1 0 0 0 0

3 0.32847 0 0 1 0 0 1 0 0 1 0 0 0

4 0.25505 1 0 0 1 0 0 -1 0 0 0 0 0

5 0.29718 0 1 0 0 1 0 0 -1 0 0 0 0

6 0.33529 0 0 1 0 0 1 0 0 -1 0 0 0

2 1 0.32480 1 0 0 -1 0 0 0 0 0 1 0 0

2 0.24121 0 1 0 0 -1 0 0 0 0 0 1 0

3 0.27545 0 0 1 0 0 -1 0 0 0 0 0 1

4 0.32449 1 0 0 -1 0 0 0 0 0 -1 0 0

5 0.24399 0 1 0 0 -1 0 0 0 0 0 -1 0

6 0.28347 0 0 1 0 0 -1 0 0 0 0 0 -1

The first three parameters, which correspond to the first three columns of the model matrix, are
overall intercepts for the probability of vision grades 1, 2, and 3. Recall that with a dichotomous
response, the first column of the model matrix is an overall intercept for the probability of the first
level of response. Likewise, with a polytomous response with r levels, there are r � 1 columns in
the model matrix that corresponds to overall intercepts for the probability of the first r � 1 levels of
response, respectively. The next three parameters compare females to males at vision grades 1, 2,
and 3, respectively. Parameters 7–9 (10–12) compare the right eye to the left eye at grades 1, 2, and
3 for females (males).

Output 14.35 displays the resulting ANOVA table. The test of marginal homogeneity is clearly
significant in females (QW D 11:98, 3 df, p D 0:0075), but the differences between the right-
and left-eye vision grade distributions in males are not statistically significant (QW D 3:68, 3 df,
p D 0:2984).
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Output 14.35 ANOVA Table for Gender-Specific Tests of Marginal Homogeneity

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 3 71753.50 <.0001

gender 3 142.07 <.0001

eye(gender=F) 3 11.98 0.0075

eye(gender=M) 3 3.68 0.2984

Residual 0 . .

If the differences between right-eye and left-eye vision are the same for females and males, there is
no interaction between gender and eye. This hypothesis is tested using the following CONTRAST
statement to compare parameters within the EYE(GENDER=F) and EYE(GENDER=M) effects.

contrast 'Interaction' all_parms 0 0 0 0 0 0 1 0 0 -1 0 0,
all_parms 0 0 0 0 0 0 0 1 0 0 -1 0,
all_parms 0 0 0 0 0 0 0 0 1 0 0 -1;

run;

The results in Output 14.36 indicate that there is evidence of interaction (QW D 8:27, 3 df,
p D 0:0407).

Output 14.36 Test of Interaction

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq

Interaction 3 8.27 0.0407

You could also test the hypothesis of no interaction between gender and eye by fitting the following
model.

model right*left=gender|_response_;
repeated eye 2;
run;

and looking at the GENDER*EYE effect in the ANOVA table. Although this model would provide
a more straightforward test of no interaction, it would not provide tests of marginal homogeneity in
females and males.

Since vision grade is an ordinal dependent variable, an alternative approach is to assign scores to
its four levels and test the hypothesis that the average vision scores in the right and left eyes are the
same. Using the scores 1, 2, 3, and 4 (the actual vision grades recorded), you can test the hypothesis
of homogeneity for females and males by requesting that mean scores be computed as follows.

proc catmod;
weight count;
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response means;
model right*left=gender _response_(gender='F')

_response_(gender='M') / noprofile design;
repeated eye;

run;

You do not need to specify the number of levels of the repeated measures factor in the REPEATED
statement since there are only two response functions per group and, by default, the model matrix
will be constructed to test their equality.

Output 14.37 displays the response functions and model matrix. Response function 1 in sample 1
is the average right-eye vision grade for females. This is computed as follows:

1 � 1976C 2 � 2256C 3 � 2456C 4 � 789

7477
D 2:27524

The model matrix now includes an overall intercept, a gender effect, and two eye effects (one for
females and one for males).

Output 14.37 Response Functions and Model Matrix for Mean Score Model

Response Functions and Design Matrix

Design Matrix

Sample
Function
Number

Response
Function 1 2 3 4

1 1 2.27524 1 1 1 0

2 2.30520 1 1 -1 0

2 1 2.26774 1 -1 0 1

2 2.25509 1 -1 0 -1

Output 14.38 displays the resulting ANOVA table. The test of homogeneity is again clearly
significant in females (QW D 11:97, 1 df, p D 0:0005), and the difference between the right- and
left- average vision scores in males is not statistically significant (QW D 0:73, 1 df, p D 0:3916).

Output 14.38 ANOVA Table for Mean Score Model

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 50866.50 <.0001

gender 1 2.04 0.1534

eye(gender=F) 1 11.97 0.0005

eye(gender=M) 1 0.73 0.3916

Residual 0 . .
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The following CONTRAST statement tests the null hypothesis that the mean score differences
between right eye and left eye are equal for females and males.

contrast 'Interaction' all_parms 0 0 1 -1;
run;

The results in Output 14.39 again indicate that there is evidence of interaction (QW D 6:20, 1 df,
p D 0:0128).

Output 14.39 Test of Interaction for Mean Score Model

Analysis of Contrasts

Contrast DF Chi-Square Pr > ChiSq

Interaction 1 6.20 0.0128

Note that the values of the test statistics are affected only by the spacing between scores, not by
their values. Thus, the same test statistics would have been obtained using any set of equally spaced
scores, for example, vision scores of (1 3 5 7) instead of (1 2 3 4). If it is not reasonable to assume
that the vision grades levels are equally spaced, you may redefine the values of the RIGHT and
LEFT variables to a different set of scores in a DATA step prior to invoking PROC CATMOD.

14.7.4 One Population Regression Analysis of Logits

In a longitudinal study of the health effects of air pollution (Ware, Lipsitz, and Speizer 1988),
children were examined annually at ages 9, 10, 11, and 12. At each examination, the response
measured was the presence of wheezing. Two questions of interest are:

� Does the prevalence of wheezing change with age?
� Is there a quantifiable trend in the age-specific prevalence rates?

Table 14.11, from Agresti (2002, p. 478), displays data from 1,019 children included in this study.
In this single population example, the cross-classification of a dichotomous outcome at four time
points defines r D 24 D 16 response profiles.
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Table 14.11 Breath Test Results at Four Ages for 1019 Children*

Wheeze No. of
Age 9 Age 10 Age 11 Age 12 Children

Present Present Present Present 94
Present Present Present Absent 30
Present Present Absent Present 15
Present Present Absent Absent 28
Present Absent Present Present 14
Present Absent Present Absent 9
Present Absent Absent Present 12
Present Absent Absent Absent 63
Absent Present Present Present 19
Absent Present Present Absent 15
Absent Present Absent Present 10
Absent Present Absent Absent 44
Absent Absent Present Present 17
Absent Absent Present Absent 42
Absent Absent Absent Present 35
Absent Absent Absent Absent 572
*Reprinted by permission of John Wiley & Sons, Inc. Copyright ©John Wiley & Sons.

The following SAS statements read the observed counts for each of the 16 response profiles.

data wheeze;
input wheeze9 $ wheeze10 $ wheeze11 $ wheeze12 $ count;
datalines;

Present Present Present Present 94
Present Present Present Absent 30
Present Present Absent Present 15
Present Present Absent Absent 28
Present Absent Present Present 14
Present Absent Present Absent 9
Present Absent Absent Present 12
Present Absent Absent Absent 63
Absent Present Present Present 19
Absent Present Present Absent 15
Absent Present Absent Present 10
Absent Present Absent Absent 44
Absent Absent Present Present 17
Absent Absent Present Absent 42
Absent Absent Absent Present 35
Absent Absent Absent Absent 572
;

proc catmod order=data;
weight count;
response marginals;
model wheeze9*wheeze10*wheeze11*wheeze12=_response_ / oneway;
repeated age;

run;
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Chapter 8 describes logistic models for dichotomous response variables. As an alternative to
modeling the probability of wheezing as a linear function of age (not shown here), you could
choose to model the marginal logit of the probability of wheezing. In this case, the logarithm of the
odds is modeled as a linear function of age. Even if there are no substantive grounds for preferring
a logit analysis over the analysis on the proportion scale, you may decide to consider both types of
models and select the model that provides the simplest interpretation.

Since it is not possible to analyze repeated measurements using the LOGISTIC procedure, maxi-
mum likelihood parameter estimates cannot be obtained. However, you can use PROC CATMOD
to estimate model parameters using weighted least squares.

SupposeLx denotes the observed log odds of wheezing at age x, for x D 9; 10; 11; 12, respectively,
that is,

Lx D log
� px

1 � px

�
where px denotes the marginal probability of wheezing at age x. The following statements fit the
regression model

Lx D ˛ C ˇx

proc catmod order=data;
weight count;
response logits;
model wheeze9*wheeze10*wheeze11*wheeze12=(1 9,

1 10,
1 11,
1 12)

(1='Intercept',
2='Linear Age') / noprofile design;

run;

Output 14.40 displays the marginal logit response functions and the model matrix. The ANOVA
table in Output 14.41 indicates that the regression model for marginal logits also provides a good
fit to the observed data (QW D 0:67, 2 df, p D 0:7167) and that the linear effect of age is clearly
significant (QW D 11:77, 1 df, p D 0:0006).

Output 14.40 Response Functions and Model Matrix

Response Functions and Design Matrix

Design
Matrix

Sample
Function
Number

Response
Function 1 2

1 1 -1.04566 1 9

2 -1.09730 1 10

3 -1.17737 1 11

4 -1.31308 1 12
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Output 14.41 ANOVA Table

Analysis of Variance

Source DF Chi-Square Pr > ChiSq

Intercept 1 0.76 0.3824

Linear Age 1 11.77 0.0006

Residual 2 0.67 0.7167

The model for predicting the log odds of wheezing (Output 14.42) is

logit[Pr{wheezing}] D �0:2367 � 0:0879 � age in years

The parameter estimates are interpreted in the same manner as was described in Chapter 8. For
example, e�0:0879 D 0:916 is the extent to which the odds of wheezing decrease for each one-year
increase in age.

Output 14.42 Parameter Estimates

Analysis of Weighted Least Squares Estimates

Effect Parameter Estimate
Standard

Error
Chi-

Square Pr > ChiSq

Model 1 -0.2367 0.2710 0.76 0.3824

2 -0.0879 0.0256 11.77 0.0006

The logit function is the default response function for the CATMOD procedure, and maximum
likelihood is the default estimation method. However, Output 14.42 displays weighted least squares
parameter estimates. In a repeated measures analysis, the specification

response logits;

analyzes marginal logits using weighted least squares. If the RESPONSE statement is omitted in
this example, 15 generalized logits would be computed, comparing each of the first 15 response
profiles with the last one. Since the model matrix has only four rows, an error message would then
be printed.
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Appendix A: Statistical Methodology for Weighted Least Squares

Consider the general contingency table displayed in Table 14.12, where s represents the number of
rows ( groups) in the table, and r represents the number of responses.

Table 14.12 General Contingency Table

Response
Group 1 2 � � � r Total

1 n11 n12 � � � n1r n1C
2 n21 n22 � � � n2r n2C
� � � � � � � � � � � � � � � � � �

s ns1 ns2 � � � nsr nsC

The proportion of subjects in the i th group who have the j th response is written

pij D nij =niC

Suppose n0i=.ni1; ni2; : : : ; nir/ represents the vector of responses for the i th subpopulation. If
n0 D .n01;n

0
2; : : : ;n

0
s/, then n follows the product multinomial distribution, given that each group

has an independent sample. You can write the likelihood of n as

Prfng D
sY
iD1

niCŠ

rY
jD1

�ij
nij =nij Š

where �ij is the probability that a randomly selected subject from the i th group has the j th
response profile. The �ij satisfy the natural restrictions

rX
jD1

�ij D 1 for i D 1; 2; : : : ; s

Suppose pi D ni=niC is the r � 1 vector of observed proportions associated with the i th group and
suppose p0 D .p01;p

0
2; : : : ;p

0
s/ is the .sr � 1/ compound vector of proportions.

A consistent estimator of the covariance matrix for the proportions in the ith row is

V.pi / D
1

ni

26664
pi1.1 � pi1/ �pi1pi2 � � � �pi1pir
�pi2p1 pi2.1 � pi2/ � � � �pi2pir

:::
:::

:::
:::

�pirpi1 �pirpi2 � � � pir.1 � pir/

37775
and the estimated covariance matrix for the vector p is

Vp D

26664
V1 0 � � � 0
0 V2 � � � 0
:::

:::
:::

:::

0 0 � � � Vs

37775
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where Vi is the estimated covariance matrix for pi .

Suppose F1.p/;F2.p/; : : : ;Fu.p/ is a set of u functions of p. Each of the functions is required to
have continuous partial derivatives through order two, and F must have a nonsingular covariance
matrix, which can be written

VF.�/ D ŒH.�/�ŒV.�/�ŒH.�/�
0

where H.�/ D Œ@F=@zjz D �� is the first derivative matrix of F.z/.

F is a consistent estimator of F.�/, so you can investigate the variation among the elements of
F.�/ with the linear model

EAfF.p/g D F.�/ D Xˇ

where X is a known model matrix with rank t � u, ˇ is a t � 1 vector of unknown parameters, and
EA means asymptotic expectation.

The goodness of fit of the model is assessed with

Q.X;F/ D .WF/0ŒWVFW0��1WF

where W is any full rank Œ.u � t / � u� matrix orthogonal to X. When the model applies, the
quantity Q.X;F/ is approximately distributed as chi-square with .u � t / degrees of freedom when
the sample sizes niC are large enough so that the elements of F have an approximate multivariate
normal distribution. Such statistics are known as Wald statistics (Wald 1943).

The following statistic

QW D .F � Xb/0V�1F .F � Xb/

is identical to Q.X;F/ and is obtained by using weighted least squares to produce an estimate for
ˇ,

b D .X0V�1F X/�1X0V�1F F

which is the minimum modified chi-square estimator (Neyman 1949).

A consistent estimator for the covariance matrix of b is given by

V.b/ D .X0V�1F X/�1

If the model adequately characterizes the data as indicated by the goodness-of-fit criterion, then
linear hypotheses of the form Cˇ D 0, where C is a known c � t matrix of constants of rank c, can
be tested with the Wald statistic

QC D .Cb/0ŒC.X0V�1F X/�1C0��1.Cb/

QC is distributed as chi-square with degrees of freedom equal to c under the hypothesis.

Predicted values for F.�/ can be calculated from

OF D Xb D X.X0VF
�1X/�1X0VF

�1F
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and consistent estimators for the variances of OF can be obtained from the diagonal elements of

V OF D X.X0VF
�1X/�1X0

While the functions F.p/ can take on a wide range of forms, a few functions are commonly used.
In particular, you can fit a strictly linear model

F.p/ D Ap

where A is a matrix of known constants. The covariance matrix of F is written

VF D AVpA0

Another common model is loglinear:

F.p/ D A log p

where log transforms a vector to the corresponding vector of natural logarithms and A is orthogonal
to 1 (vector of 1s), that is, A1 D 0. In this case,

VF D ADp
�1A0

where Dp is a diagonal matrix with the elements of p on the diagonal.

Many other useful functions can be generated as a sequence of linear, logarithmic, and exponential
operations on the vector p.

� linear transformations: F1.p/ D A1p D a1

� logarithmic: F2.p/ D log.p/ D a2

� exponential: F3.p/ D exp.p/ D a3

The corresponding Hk matrix operators needed to produce the covariance matrix for F are

� H1 D A1

� H2 D Dp
�1

� H3 D Da3

VF is estimated by VF D ŒH.p/�VpŒH.p/�0 where H.p/ is a product of the first derivative matrices
Hk.p/ where k indicates the i th operation in accordance with the chain rule.
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Appendix B: CONTRAST Statements for Obstetrical Pain Example

proc catmod;
weight count;
response 0 .125 .25 .375 .5 .625 .75 .875 1;
model no_hours = center initial

treat(initial)/design ;
contrast 'interact:a-placebo' treat(initial) -1 1 0 1 -1 0 ;
contrast 'interact:b-placebo' treat(initial) -1 0 1 1 0 -1 ;
contrast 'interact:ba-placebo' treat(initial) -2 -1 -1 2 1 1 ;
contrast 'interact:ba-a' treat(initial) -1 -2 -1 1 2 1 ;
contrast 'interact:ba-b' treat(initial) -1 -1 -2 1 1 2 ;
contrast 'average:a-placebo' treat(initial) -1 1 0 -1 1 0 ;
contrast 'average:b-placebo' treat(initial) -1 0 1 -1 0 1 ;
contrast 'average:ba-placebo' treat(initial) -2 -1 -1 -2 -1 -1 ;
contrast 'average:ba-a' treat(initial) -1 -2 -1 -1 -2 -1 ;
contrast 'average:ba-b' treat(initial) -1 -1 -2 -1 -1 -2 ;
contrast 'interaction' treat(initial) -1 1 0 1 -1 0 ,

treat(initial) -1 0 1 1 0 -1 ,
treat(initial) -2 -1 -1 2 1 1 ;

contrast 'treatment effect' treat(initial) -1 1 0 -1 1 0 ,
treat(initial) -1 0 1 -1 0 1 ,
treat(initial) -2 -1 -1 -2 -1 -1 ;

run;
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Generalized Estimating Equations
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15.1 Introduction

The weighted least squares methodology described in Chapter 14 is a useful approach to the
analysis of repeated binary and ordered categorical outcome variables. However, it can only
accommodate categorical explanatory variables and can’t easily handle missing values. In addition,
the WLS methodology requires sufficient sample size for the marginal response functions for each
assessment in each subpopulation to have an approximately multivariate normal distribution. This
requirement can be very restrictive.

The generalized estimating equation (GEE) approach (Liang and Zeger 1986) is an extension of
generalized linear models that provides a semiparametric approach to longitudinal data analysis
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488 Chapter 15: Generalized Estimating Equations

with univariate outcomes for which the quasi-likelihood formulation is sensible, for example,
normal, Poisson, binomial, and gamma response variables. This approach encompasses a broad
range of data situations, including missing observations, continuous explanatory variables, and
time-dependent explanatory variables.

The scope for the GEE strategy is useful for many situations, including the following:

� a two-period crossover study in which researchers study the effects of two treatments and a
placebo

� a longitudinal study on the efficacy of a new drug designed to prevent fractures in the elderly.
The outcome of interest is the number of fractures that occur.

� an observational study on diagnostic procedures in which subjects had assessments for test
and standard procedures at two different times

In this chapter, the generalized estimating equations approach for the analysis of repeated
measurements is discussed and illustrated with a series of examples using the GENMOD procedure.
In addition, the use of GEE methods for the analysis of a univariate response outcome with an
overdispersed distribution is also discussed.

15.2 Methodology

15.2.1 Motivation

Correlated data come from many sources: longitudinal studies on health care outcomes, crossover
studies concerned with drug comparisons, split plot experiments in agriculture, and clinical
trials investigating new treatments with baseline and follow-up visits. You may have multiple
measurements taken at the same time, such as in a psychometric study. You may also have
clusters of correlated measurements: one example results from group randomization, such as
randomizations of litters of animals to experimental conditions. Another example is sample
selection of physician practices and the assessment of all of the patients in each practice, or cluster.
Often, particularly with longitudinal studies, missing data are common.

An important consideration in each of these situations is how to account for the correlated
measurements in the analysis. Within-subject factors (visit, time) are likely to have correlated
measurements, while between-subject factors (age, gender) are likely to have independent mea-
surements. The correlation must be taken into account, or you may produce incorrect standard
errors. In the presence of positive correlations, you would underestimate the standard errors of the
between-subject effects and overestimate the standard errors of the within-subject effects, resulting
in inefficient estimation.

As discussed in Chapter 14, weighted least squares provides a reasonable strategy for repeated
categorical outcomes when you have all of the following:
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� complete data

� small number of discrete explanatory variables

� samples that are large enough to support approximately normal distributions

However, when you have continuous explanatory variables, a larger number of categorical variables,
missing response values, and/or time-dependent covariates, the WLS approach does not apply. The
GEE strategy, however, can handle these situations.

When you have continuous outcomes, the general linear multivariate model for normally distributed
errors is often appropriate. It requires complete data for all outcomes and requires the covariates
to be measured at the cluster level. If you can assume that the covariances have a spherical
structure (compound symmetry), then repeated measures ANOVA applies for univariate tests
about the within-subject effects. However, if you have time-dependent covariates, missing data, or
nonnormality, that approach may not be adequate. You might consider the mixed model, which
handles these issues, but that requires certain covariance matrix assumptions. If these are not met,
the GEE method provides an alternative strategy.

GEEs were introduced by Liang and Zeger (1986) as a way of handling correlated data that, except
for the correlation among responses, can be modeled with a generalized linear model (GLM).
GEEs are ideal for discrete response data such as binary outcomes and Poisson counts. They work
for longitudinal studies data and cluster sampling data. You model the correlated data using the
same link functions and linear predictor setup as you do in the GLM for the independent case.
The difference is that you account for the structure of the covariances of the response outcomes
through its specification in the estimating process. This is much like the specification of covariance
structure in mixed model analysis, but there is robustness to it. See Liang and Zeger (1986), Zeger
and Liang (1986), Wei and Stram (1988), Stram, Wei, and Ware (1988), Moulton and Zeger (1989),
and Zhao and Prentice (1990) for more detail.

The focus of this chapter is the analysis of categorical repeated measurements; however, as
mentioned above, the GEE methodology also applies to continuous outcomes and often is used as
an adjunct to other types of analyses.

15.2.2 Generalized Linear Models

The GEE method is an extension of generalized linear models (GLM), which are an extension of
traditional linear models (Nelder and Wedderburn 1972). The GLM relates a mean response to a
vector of explanatory variables through a link function

g.E.yi // D g.�i / D xi
0ˇ

where yi is a response variable .i D 1; : : : ; n/, �i D E.yi /, g is a link function, xi is a vector of
independent variables, and ˇ is a vector of regression parameters to be estimated.

Additionally:

� The variance of yi is vi D vi .�i / and is a specified function of its mean �i .
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� The yi are from the exponential family. This includes the binomial, Poisson, normal, gamma,
and inverse Gaussian distributions. When you assume the normal distribution and specify
the identity link function g.�i / D �i , you are fitting the same model as the general linear
model.

For logistic regression, the link and variance functions are

g.�/ D log
�

�

1 � �

�
and v.�/ D �.1 � �/

For Poisson regression, the link and variance functions are

g.�/ D log.�/ and v.�/ D �

You obtain the maximum likelihood estimator Ǒ of the p � 1 parameter vector ˇ by solving the
estimating equations, which are the score equations shown below. These estimators also maximize
the log likelihood. The estimating equations are written as

nX
iD1

@�0i
@ˇ

v�1i .yi � �i .ˇ// D 0

Generally, these estimating equations are a set of nonlinear equations with no closed form solution,
so you must solve them iteratively. The Newton-Raphson or Fisher scoring methods are often used;
the fitting algorithm in the GENMOD procedure begins with a few Fisher scoring steps and then
switches to a ridge-stabilized Newton-Raphson method.

15.2.3 Generalized Estimating Equations Methodology

Generalized estimating equations are an extension of GLMs to accommodate correlated data; they
are an extension of quasi-score equations. The GEE methodology models a known function of the
marginal expectation of the dependent variable as a linear function of one or more explanatory
variables. With quasi-likelihood methods, you pursue statistical models by making assumptions
about the link function and the relationship between the first two moments, but without fully
specifying the complete distribution of the response. With GEEs, you describe the random
component of the model for each marginal response with a common link and variance function,
similar to what you do with a GLM model. However, unlike GLMs, you have to account for the
covariance structure of the correlated measures, although there is robustness to how this is done.

The GEE methodology provides consistent estimators of the regression coefficients and their
variances under weak assumptions about the actual correlation among a subject’s observations.
This approach avoids the need for multivariate distributions by assuming only a functional form
for the marginal distribution at each time point or condition. The covariance structure across time
or conditions is managed as a nuisance parameter. The method relies on the independence across
subjects to consistently estimate the variance of the proposed estimators even when the specified
working correlation structure is incorrect. Zeger (1988), Zeger, Liang, and Albert (1988), and
Liang, Zeger, and Qaqish (1992) provide further detail on the GEE methodology.
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15.2.3.1 Data Structure

Suppose repeated measurements are obtained at ti time points, 1 � ti � t , from each of n subjects.
(Note that if the number and spacing of the repeated measurements are fixed and do not vary among
subjects, t is equal to the total number of distinct measurement times.) Although this notation is
most natural for longitudinal studies, it also applies to the general case of correlated responses. For
example, t might instead denote the number of conditions under which dependent measurements
are obtained, or there might be n clusters with at most t experimental units per cluster.

Now, suppose yij denotes the response from subject i at time or condition j , for i D 1; : : : ; n and
j D 1; : : : ; ti . These yij may be binary outcomes or Poisson counts, for example. Also, suppose
xij D .xij1; : : : ; xijp/

0 denotes a p � 1 vector of explanatory variables (covariates) associated with
yij . If all covariates are time independent, then xi1 D xi2 D � � � D xit . Note that yij and xij are
missing if observations are not obtained at time j .

15.2.3.2 Generalized Estimating Equations

Assume that you have chosen a model that relates a marginal mean �ij to the linear predictor x0ijˇ
through a link function. The generalized estimating equations for estimating ˇ, an extension of the
GLM estimating equation, are

nX
iD1

@�0i
@ˇ

Vi�1.Yi � �i .ˇ// D 0

where �i D �i .ˇ/ is the corresponding vector of means �i D .�i1; : : : ; �iti /
0, Yi D

.yi1; yi2; : : : ; yiti /, and Vi is an estimator of the covariance matrix of Yi . These equations
are similar to the GLM estimating equations except that, since you have multiple outcomes, they
include a vector of means instead of a single mean and a covariance matrix instead of a scalar
variance. The covariance matrix of Yi is specified as the estimator

Vi D �Ai
1
2Ri .˛/Ai

1
2

where Ai is a ti � ti diagonal matrix with v.�ij / as the jth diagonal element. Note that Vi can
be different from subject to subject, but generally you use a specification that approximates the
average dependence among repeated observations over time. Note that the GEE facilities in the
GENMOD procedure only allow you to specify the same form of Vi for all subjects.

Ri .˛/ is the working correlation matrix. The .j; j 0/ element of Ri .˛/ is the known, hypothesized,
or estimated correlation between yij and yij 0 . This working correlation matrix may depend on
a vector of unknown parameters ˛, which is the same for all subjects. You specify that Ri .˛/ is
known except for a fixed number of parameters ˛ that must be estimated from the data.

15.2.3.3 Choosing the Working Correlation Matrix

Several possibilities for the working correlation structure have been suggested (Liang and
Zeger 1986). First, when the number of subjects is large relative to the number of observa-
tions per subject, the influence of correlation is often small enough that the GLM regression

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 
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coefficients are nearly efficient. The correlations among repeated measures, however, may have a
substantial effect on the estimated variances of the regression coefficients and hence must be taken
into account to make correct inferences.

The following are some choices for R with matrix formulations for t D 4.

Independence: R D R0 D I .

R D

2664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3775
The independence model adopts the working specification that repeated observations for a subject
are independent. In this case, solving the GEE is the same as fitting the usual regression models
for independent data, and the resulting parameter estimates are the same. However, their standard
errors are different. You are choosing not to specify the correlation explicitly, but the GEE method
still accounts for that correlation by operating at the cluster level. However, the estimation is
done with estimation of ˇ only at each step, and not ˛, so it doesn’t improve the precision of
the parameter estimates with additional iterations. In this case, the GEE simplifies to the GLM
estimating equations.

Fixed: R D R0.

Fixed correlation matrices arise when you have determined the form from a previous analysis. You
simply input your covariance matrix directly.

Exchangeable:

Corr.yij ; yi;j 0/ D
�
1 j D j 0

˛ j ¤ j 0

�

R D

2664
1 ˛ ˛ ˛

˛ 1 ˛ ˛

˛ ˛ 1 ˛

˛ ˛ ˛ 1

3775
The exchangeable working correlation specification makes constant the correlations between any
two measurements within a subject, that is, Rjj 0 D ˛, for j ¤ j 0. This is the correlation structure
assumed in a random effects model with a random intercept and is also known as compound
symmetry in the repeated measures ANOVA literature. Although the specification of constant
correlation between any two repeated measurements may not be justified in a longitudinal study,
it is often reasonable in situations in which the repeated measures are not obtained over time.
It is probably reasonable when there are a few repeated measurements. An arbitrary number of
observations per subject is permissible with both the independence and exchangeable working
correlation structures. This structure is commonly used and is relatively easy to explain to
investigators. The exchangeable structure is also appropriate when cluster sampling is involved,
such as studies in which physician practices are selected as clusters and measurements are obtained
for the patients in those practices.
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Unstructured:

Corr.yij ; yi;j 0/ D
�
1 j D j 0

˛jj 0 j ¤ j
0

�

R D

2664
1 ˛21 ˛31 ˛41
˛21 1 ˛32 ˛42
˛31 ˛32 1 ˛43
˛41 ˛42 ˛43 1

3775
When the correlation matrix is completely unspecified, there are t .t � 1/=2 parameters to be
estimated. This provides the most efficient estimator for ˇ but is useful only when there are
relatively few observation times or conditions. In addition, when there are missing data and/or
varying numbers of observations per subject, estimation of the complete correlation structure may
result in a nonpositive definite matrix and parameter estimation may not proceed.

m-dependent:

Corr.yij ; yi;jCs/ D

8<:
1 s D 0

˛s s D 1; 2; : : : ; m

0 s > m

35

R D

2664
1 ˛1 ˛2 0

˛1 1 ˛1 ˛2
˛2 ˛1 1 ˛1
0 ˛2 ˛1 1

3775
With the m-dependent structure, the correlations depend on the distances between measures;
eventually, they diminish to zero for s > m.

Auto-regressive (AR-1):

Corr.yij ; yi;jCs/ D ˛s s D 0; 1; 2; : : : ; ti � j

R D

2664
1 ˛ ˛2 ˛3

˛ 1 ˛ ˛2

˛2 ˛ 1 ˛

˛3 ˛2 ˛ 1

3775
With an auto-regressive correlation structure, the correlations also depend on the distance between
the measures; they diminish with increasing distance.

See the PROC GENMOD documentation for specific estimators of the Ri .˛/ parameters for each
of the working correlation matrix types; they involve using the current value of ˇ to compute
functions of the Pearson residual

rij D
yij � O�ijp
v. O�ij /

R is called a working correlation matrix because, for nonnormal data, the actual values may depend
on the mean value and on x0iˇ. See Appendix A at the end of this chapter for more detail on the
steps in the GEE solution.
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15.2.3.4 Estimating the Covariance of the Parameter Estimates

The model-based estimator of the covariance matrix for Ǒ is the inverse of the observed information
matrix

†m. Ǒ/ D I
�1
0

where

I0 D

nX
iD1

@�i

@ˇ

0

V �1i
@�i

@ˇ

This is a consistent estimator if the model and working correlation matrix are correctly specified.
Its use may be preferable in those situations where you have only a moderate (rather than clearly
large) number of clusters (Albert and McShane 1995).

The empirical sandwich (robust) estimator of Cov. Ǒ/ is given by

†e D I
�1
0 I1I

�1
0 D V Ǒ

where

I1 D

nX
iD1

@�i
@ˇ

0

V �1i Cov.Yi /V �1i
@�i

@ˇ

Cov.Yi / is estimated by

.Yi � �i .
Ǒ//.Yi � �i .

Ǒ//0

This is a consistent estimator even when Var.yij / ¤ v.�ij /, or when Ri .˛/ is not the correlation
matrix of Yi , or when the true correlation varies across clusters. You lose efficiency with the
misspecification, but if the working correlation structure is approximately correct, the asymptotic
efficiency is expected to be relatively high.

You can test linear hypotheses of the form H0WCˇ D 0, where C is a known c � p matrix of
constants of rank c, with the Wald statistic

QC D .C Ǒ/
0ŒCV ǑC 0��1.C Ǒ/

The statistic QC is approximately distributed as chi-square under H0 with degrees of freedom
equal to c.

15.3 Summary of the GEE Methodology

The GEE method is a practical strategy for the analysis of repeated measurements, particularly
categorical repeated measurements. It provides a way to handle continuous explanatory variables,
a moderate number of explanatory categorical variables, and time-dependent explanatory variables.
It handles missing values, that is, the number of measurements in each cluster can vary from 1 to t .

The following are the important properties of the GEE method:
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� GEEs reduce to GLM estimating equations for t D 1.

� GEEs are the maximum likelihood score equations for multivariate Gaussian data when you
specify unstructured correlation.

� The regression parameter estimates are consistent as the number of clusters become large,
even if you have misspecified the working correlation matrix, as long as the model for the
mean is correct.

� The empirical sandwich estimator of the covariance matrix of Ǒ is also consistent relative to
the number of clusters becoming large, even if you have misspecified the working correlation
matrix, as long as the model for the mean is correct.

While the GEE method handles missing values, it is important to note that the method requires the
missing data to be missing completely at random (MCAR), which roughly means that the missing
values may depend only on the explanatory variables that appear in the model. This requirement
is more restrictive than the missing at random (MAR) assumption, which is the assumption for
likelihood-based inference.

The GEE method depends on asymptotic theory; the number of clusters needs to be large for the
method to produce consistent estimates. That means that the sample size needs to be large enough
to support the properties of consistency and approximate normality for the estimates from the
method. The number of clusters determines adequate sample size, not the number of measurements
per cluster or the total number of measurements. The desired number of clusters depends on other
factors: if you have a very small number of continuous or dichotomous explanatory variables, 25
clusters may be minimally enough so that you aren’t badly misled by your results. If you have 5–12
explanatory variables, you need at least 100 clusters. If you want to be reasonably confident, you
probably need 200 clusters. Note that if the correlations are relatively small, you may be able to
handle more time-dependent explanatory variables within a subject than if you have a high degree
of correlation.

The Z statistics and Wald statistics (with the former being the square root of the latter) used in
the GENMOD procedure to assess parameter significance and Type 3 contrasts require around 200
clusters to reasonably support confidence concerning assessments of statistical significance at the
0.05 confidence level or smaller; the score statistics produced in the Type 3 analyses of the model
effects procedure have similar properties (Boos 1992, Rotnitzky and Jewell 1990) although they
are often more conservative in the presence of small numbers of clusters. As the number of degrees
of freedom of the contrast for the hypothesis test approaches the number of clusters, these tests are
likely to become less reliable. Several simulation studies (for example, Hendricks et al. 1996) show
that the Type I errors associated with the robust variance estimators can be inflated. Researchers are
investigating adjustments to the Wald statistic based on the number of clusters in order to produce
statistics with better properties for moderate sample sizes. Shah, Holt, and Folsom (1977) discuss
such strategies in the context of sample survey data analysis. See Section 15.5 for an example of
the use of one of these adjusted Wald statistics and the availability of a SAS macro to compute it.

GEE methods are robust to an assigned correlation structure; you can misspecify that correlation
structure and still obtain consistent parameter estimates. However, note that the closer the working
correlation matrix is to the true structure, the more efficient your estimates will be. You can
compare this property to the mixed model, which heavily leverages the correlation assumption; this
means that if you have misspecified the correlation structure, you may obtain biased estimates.
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The previous discussion did not include goodness-of-fit criteria for the GEE model. Since the GEE
method is quasi-likelihood based, the usual fit statistics for maximum likelihood estimation do not
apply. Pan (2001) describes a quasi-likelihood model assessment criterion that is a modification of
the Akaike information criterion (AIC) often used in model assessment for maximum likelihood
methods.

The quasi-likelihood is defined as

Q. Ǒ.R/; �/ D

nX
iD1

tiX
jD1

Q. Ǒ.R/; �I .Yij ;Xij //

under the independence working correlation assumption. The Ǒ.R/ are the parameter estimates
obtained from the GEEs with the working correlation of interest, and � is any dispersion parameter
(� D 1 for the binomial and Poisson distributions).

QIC is defined as

QIC D �2Q. Ǒ.R/; �/C 2trace. O�IV Ǒ/

where V Ǒ is the robust covariance estimate and O�I is the inverse of the model-based covariance

estimate under the independent working correlation assumption, evaluated at Ǒ.R/.

You can use QIC to compare the fit of competing models, similar to the way in which the AIC
criterion is used to compare models. You can use QIC to select both regression models and working
correlation models. The GENMOD procedure also produces an approximation to QIC, which is
QICU ; it should only be used to select regression models (Pan 2001).

Other techniques are available to address GEE model fit as well. Barnhart and Williamson (1998)
describe an empirical procedure for GEE fit based on the Hosmer and Lemeshow approach for
logistic regression (1989). Preisser and Qaqish (1996) describe diagnostics for GEE that are
extensions of Cook’s D and DBETA for linear regression. The GENMOD procedure produces
these diagnostics but they are beyond the realm of this discussion.

15.3.1 Marginal Model

The robustness of the GEE method is due to the fact that the GEE method produces a marginal
model. It models a known function of the marginal expectation of the dependent variable as a linear
function of the explanatory variables. The resulting parameter estimates are population-averaged,
or estimates “on the average.” You can also think of the GEE model as a variational model in which
you use estimation to describe the variation among a set of population parameters (Koch, Gillings,
and Stokes 1980). You are relying on the independence across clusters to consistently estimate the
variance; the covariance matrix parameters are effectively managed as nuisance parameters.

Compare the marginal model to the subject-specific model fit with the conditional logistic
regression method described in Chapter 10 or with mixed models. In those analyses, you
characterize behavior as a process for individuals. The predictions you produce are individual-
based, rather than predictions that apply on average. Your choice of strategy often depends on the
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goals of your analysis—whether you want to make population statements about your results, on
average, or whether you want to produce a model that permits individual prediction. Note that in
the standard linear model there is no distinction between the marginal and subject-specific models.
Refer to Diggle, Liang, and Zeger (1994) and Zeger, Liang, and Albert (1988) for more discussion
of marginal models in longitudinal data analysis.

15.4 Passive Smoking Example

The data in Table 15.1 are from a hypothetical study of the effects of air pollution on children.
Researchers followed 25 children and recorded whether they were exhibiting wheezing symptoms
during the periods of evaluation at ages 8, 9, 10, and 11. The response is recorded as 1 for
symptoms and 0 for no symptoms. Explanatory variables included age, city, and a passive smoking
index with values 0, 1, and 2 that reflected the degree of smoking in the home.

Table 15.1 Pollution Study Data

Age 8 Age 9 Age 10 Age 11
ID City Smoke Symp Smoke Symp Smoke Symp Smoke Symp
1 steelcity 0 1 0 1 0 1 0 0
2 steelcity 2 1 2 1 2 1 1 0
3 steelcity 2 1 2 0 1 0 0 0
4 greenhills 0 0 1 1 1 1 0 0
5 steelcity 0 0 1 0 1 0 1 0
6 greenhills 0 1 0 0 0 0 0 1
7 steelcity 1 1 1 1 0 1 0 0
8 greenhills 1 0 1 0 1 0 2 0
9 greenhills 2 1 2 0 1 1 1 0

10 steelcity 0 0 0 0 0 0 1 0
11 steelcity 1 1 0 0 0 0 0 1
12 greenhills 0 0 0 0 0 0 0 0
13 steelcity 2 1 2 1 1 0 0 1
14 greenhills 0 1 0 1 0 0 0 0
15 steelcity 2 0 0 0 0 0 2 1
16 greenhills 1 0 1 0 0 0 1 0
17 greenhills 0 0 0 1 0 1 1 1
18 steelcity 1 1 2 1 0 0 1 0
19 steelcity 2 1 1 0 0 1 0 0
20 greenhills 0 0 0 1 0 1 0 0
21 steelcity 1 0 1 0 1 0 2 1
22 greenhills 0 1 0 1 0 0 0 0
23 steelcity 1 1 1 0 0 1 0 0
24 greenhills 1 0 1 1 1 1 2 1
25 greenhills 0 1 0 0 0 0 0 0

Note that age and the passive smoking index are time-dependent explanatory variables; their values
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depend on the period of measurement. This example provides a basic introduction to fitting GEE
models with the GENMOD procedure. The dichotomous outcome is modeled with a logistic
regression analysis; while four response times may be pushing the limits for the exchangeable
structure, the small number of clusters makes a single-parameter covariance structure a more
reasonable choice. Since there are only 25 experimental units, or clusters, only a few explanatory
variables can be included in the analysis.

In fact, the small number of clusters requires some justification for performing a GEE analysis
at all. If the proportion of children with symptoms is very low or very high (close to 0 or 1),
then it would be difficult to do. However, the following table produced with the FREQ procedure
shows that the proportions with symptoms are generally between 0.4 and 0.6 by age group with the
exception of the 11-year-olds, and their proportion with symptoms is still reasonable at 0.28.

Output 15.1 Proportions with Symptoms by Age Group

Frequency
Row Pct

Table of age by symptom

age

symptom

0 1 Total

8 11
44.00

14
56.00

25

9 14
56.00

11
44.00

25

10 15
60.00

10
40.00

25

11 18
72.00

7
28.00

25

Total 58 42 100

The following DATA step inputs the measurements into the SAS data set named CHILDREN.
Note that the data are stored with all of a particular child’s measurements on a single data line.
However, the GENMOD procedure requires that each repeated measure be managed as a separate
observation. So, the DO loop included in the DATA step statements inputs each measure, age, and
the passive smoking index and outputs them, along with the variable CITY, to the CHILDREN data
set. You often need to rearrange data in this manner (sometimes called rolling out the data) when
you are dealing with repeated measurements.

data children;
input id city$ @@;
do i=1 to 4;

input age smoke symptom @@;
output;

end;
datalines;

1 steelcity 8 0 1 9 0 1 10 0 1 11 0 0
2 steelcity 8 2 1 9 2 1 10 2 1 11 1 0
3 steelcity 8 2 1 9 2 0 10 1 0 11 0 0
4 greenhills 8 0 0 9 1 1 10 1 1 11 0 0
5 steelcity 8 0 0 9 1 0 10 1 0 11 1 0
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6 greenhills 8 0 1 9 0 0 10 0 0 11 0 1
7 steelcity 8 1 1 9 1 1 10 0 1 11 0 0
8 greenhills 8 1 0 9 1 0 10 1 0 11 2 0
9 greenhills 8 2 1 9 2 0 10 1 1 11 1 0

10 steelcity 8 0 0 9 0 0 10 0 0 11 1 0
11 steelcity 8 1 1 9 0 0 10 0 0 11 0 1
12 greenhills 8 0 0 9 0 0 10 0 0 11 0 0
13 steelcity 8 2 1 9 2 1 10 1 0 11 0 1
14 greenhills 8 0 1 9 0 1 10 0 0 11 0 0
15 steelcity 8 2 0 9 0 0 10 0 0 11 2 1
16 greenhills 8 1 0 9 1 0 10 0 0 11 1 0
17 greenhills 8 0 0 9 0 1 10 0 1 11 1 1
18 steelcity 8 1 1 9 2 1 10 0 0 11 1 0
19 steelcity 8 2 1 9 1 0 10 0 1 11 0 0
20 greenhills 8 0 0 9 0 1 10 0 1 11 0 0
21 steelcity 8 1 0 9 1 0 10 1 0 11 2 1
22 greenhills 8 0 1 9 0 1 10 0 0 11 0 0
23 steelcity 8 1 1 9 1 0 10 0 1 11 0 0
24 greenhills 8 1 0 9 1 1 10 1 1 11 2 1
25 greenhills 8 0 1 9 0 0 10 0 0 11 0 0
;

The PROC GENMOD invocation includes the usual MODEL statement as well as the REPEATED
statement. You use the MODEL statement to request the logit link function, binomial distribution,
and a Type 3 analysis by specifying LINK=LOGIT, DIST=BIN, and TYPE3, respectively. So
far, this specification is the same as for any logistic regression using PROC GENMOD. The
DESCENDING option in the PROC statement specifies that the model is based on the probability
of the largest value of the response variable, which is 1.

proc genmod data=children descending;
class id city;
model symptom = city age smoke /

link=logit dist=bin type3;
repeated subject=id / type=exch covb corrw;

run;

You request a GEE analysis with the REPEATED statement. The SUBJECT=ID identifies the
clustering variable. The SUBJECT= variable must be listed in the CLASS statement and needs to
have a unique value for each cluster. Specifying TYPE=EXCH requests the exchangeable working
correlation structure. The COVB option requests that the parameter estimate covariance matrix be
printed, and the CORRW option specifies that the final working correlation matrix be printed.

Output 15.2 displays the “Model Information” table, which provides information about the model
specifications, including the specified distribution and link function. In addition, the table describes
on which level of the outcome variable the model is based.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



500 Chapter 15: Generalized Estimating Equations

Output 15.2 Basic Model Information

Model Information

Data Set WORK.CHILDREN

Distribution Binomial

Link Function Logit

Dependent Variable symptom

PROC GENMOD is modeling the probability that symptom='1'.

Output 15.3 displays the class levels and response profiles, respectively.

Output 15.3 Class Levels and Response Profiles

Class Level Information

Class Levels Values

id 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

city 2 greenhil steelcit

Response Profile

Ordered
Value symptom

Total
Frequency

1 1 42

2 0 58

Output 15.4 displays information concerning the parameters, including which parameter pertains
to which level of the CLASS variables.

Output 15.4 Information About Parameters

Parameter Information

Parameter Effect city

Prm1 Intercept

Prm2 city greenhil

Prm3 city steelcit

Prm4 age

Prm5 smoke

Output 15.5 contains the initial parameter estimates. To generate a starting solution, the GENMOD
procedure first treats all of the measurements as independent and fits a generalized linear model.
These parameter estimates are then used as the starting values for the GEE solution.
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Output 15.5 Initial Parameter Estimates

Analysis Of Initial Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence

Limits
Wald

Chi-Square Pr > ChiSq

Intercept 1 2.4161 1.8673 -1.2438 6.0760 1.67 0.1957

city greenhil 1 0.0017 0.4350 -0.8508 0.8543 0.00 0.9968

city steelcit 0 0.0000 0.0000 0.0000 0.0000 . .

age 1 -0.3283 0.1914 -0.7035 0.0468 2.94 0.0863

smoke 1 0.5598 0.2952 -0.0188 1.1385 3.60 0.0579

Scale 0 1.0000 0.0000 1.0000 1.0000

Note: The scale parameter was held fixed.

The beginning of the output produced by the GEE analysis is the general model information that is
displayed in Output 15.6. Since there are 25 subjects with repeated measures, there are 25 clusters.
Each subject has 4 measures, and the data are complete. Thus, the minimum and maximum cluster
size is 4.

Output 15.6 General GEE Model Information

GEE Model Information

Correlation Structure Exchangeable

Subject Effect id (25 levels)

Number of Clusters 25

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 4

Output 15.7 contains the Type 3 analysis results for the model effects.

The results indicate that city is not a factor in wheezing status. However, smoking exposure has a
nearly significant association (p D 0:0583). Age is marginally influential (p D 0:0981/.

Output 15.7 Type 3 Analysis

Score Statistics For Type 3 GEE
Analysis

Source DF Chi-Square Pr > ChiSq

city 1 0.01 0.9388

age 1 2.74 0.0981

smoke 1 3.59 0.0583
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Output 15.8 contains the parameter estimates produced by the GEE analysis. The table also supplies
standard errors, confidence intervals, Z statistics, and p-values. The empirical standard errors are
produced by default. Since the effects reported in the Type 3 analysis are single degree of freedom
effects, the score statistics in that table assess the same hypotheses as the Z statistics in this table.
Note that the p-value for the Z for smoking is 0.0211, compared to the 0:0583 reported for the
score statistic in the Type 3 table. In a strict testing situation, you would assess the null hypothesis
with the score statistic. When the number of clusters is only moderate, the Z and Wald statistic
generally produce overly small p-values compared to the p-values produced by the corresponding
score statistic. Particularly for small sample sizes, you would want to report the more accurate
score statistic.

Output 15.8 GEE Parameter Estimates

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept 2.2615 2.0243 -1.7060 6.2290 1.12 0.2639

city greenhil 0.0418 0.5435 -1.0234 1.1070 0.08 0.9387

city steelcit 0.0000 0.0000 0.0000 0.0000 . .

age -0.3201 0.1884 -0.6894 0.0492 -1.70 0.0893

smoke 0.6506 0.2821 0.0978 1.2035 2.31 0.0211

Since the Type 3 score statistics reported correspond to effects with one df, you can compare the
p-values in Output 15.7 with those for the Z statistics for the parameter estimates in Output 15.8.
If they differ to some degree, especially when jZj > 1, then you might want to consider a rescaling
of the standard errors reported in the parameter estimates table by the absolute value of Z divided
by the square root of the score statistic. Apply this quantity

jZj
p
QS

to the standard error, and then use that rescaled standard error to recompute the 95% confidence
limits.

For example, consider the effect for SMOKE. Compute

2:31
p
3:59

D 1:22

and rewrite the rescaled 95% confidence limits as 0.6506˙ 1.96(0.2821)(1.22), which produces the
limits .�0:0024; 1:3252/. These confidence limits are thus in harmony with the score test results
for SMOKE (p D 0:0583). Note that it is also feasible to apply the same adjustments to odds ratios
and their confidence intervals in principle; however, that is beyond the scope of this discussion.
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The GENMOD procedure prints both the empirical and model-based covariance matrix of the
parameter estimates; these are displayed in Output 15.9. Note that their values are often similar,
especially for large samples. If these matrices are very similar, you may have some confidence
that you have correctly specified the correlation structure and the estimates are relatively efficient.
However, recall that, even if you have misspecified the correlation structure, both the parameter
estimates and their empirical standard errors are consistent, provided that the specification is correct
for the explanatory variables. Another way to compare working correlation models is with QIC
statistics, which is illustrated in Section 15.7.

Output 15.9 Covariance Matrix Estimates

Covariance Matrix (Model-Based)

Prm1 Prm2 Prm4 Prm5

Prm1 3.26069 -0.16313 -0.32274 -0.12257

Prm2 -0.16313 0.24015 0.002520 0.03422

Prm4 -0.32274 0.002520 0.03379 0.004471

Prm5 -0.12257 0.03422 0.004471 0.09533

Covariance Matrix (Empirical)

Prm1 Prm2 Prm4 Prm5

Prm1 4.09770 -0.55261 -0.37280 -0.29397

Prm2 -0.55261 0.29538 0.03719 0.09143

Prm4 -0.37280 0.03719 0.03550 0.02064

Prm5 -0.29397 0.09143 0.02064 0.07957

Finally, the exchangeable working correlation matrix is also produced, and it is displayed in
Output 15.10. The estimated correlation is fairly low at 0:0883.

Output 15.10 Working Correlation Matrix

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.0883 0.0883 0.0883

Row2 0.0883 1.0000 0.0883 0.0883

Row3 0.0883 0.0883 1.0000 0.0883

Row4 0.0883 0.0883 0.0883 1.0000

Since this is a logistic regression based on reference cell coding, you can exponentiate the
parameter estimates to obtain estimates of odds ratios for various explanatory factors. Since the
parameter estimate for age is �0:3201, the odds of symptoms for those at a higher age group are
e�0:3201 D 0:7261 times the odds of symptoms for those children in the lower age group, or have
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27.4% less odds of having symptoms.

The GENMOD procedure can produce the odds ratio estimate with its ESTIMATE statement, along
with 95% confidence limits. You can produce estimates for any estimable linear combination of the
parameters from the GEE analysis.

Since the age effect is represented by a single parameter, you place the coefficient 1 after listing a
label and the AGE variable. The EXP option requests that the estimate be exponentiated, which, in
the case of reference parameterization, produces the odds ratio estimate.

ods select Estimates;
proc genmod data=children descending;

class id city;
model symptom = city age smoke /

link=logit dist=bin type3;
repeated subject=id / type=exch covb corrw;
estimate 'age' age 1 / exp;

run;

Output 15.11 displays the results from the ESTIMATE statement. The point estimate for the odds
ratio is 0.7261 (from the “L’Beta” column) with 95% confidence limits of (0.5019, 1.0504) for
the extent of increased odds of symptoms per category of increase in age level. The confidence
limits are based on the Wald statistic. The confidence interval does contain the value 1, which is
consistent with the p D 0:0893 reported for the Wald test in the table of parameter estimates.

Output 15.11 ESTIMATE Results

Contrast Estimate Results

Mean L'Beta

Label
Mean

Estimate
Confidence

Limits
L'Beta

Estimate
Standard

Error Alpha
Confidence

Limits

age 0.4206 0.3342 0.5123 -0.3201 0.1884 0.05 -0.6894 0.0492

Exp(age) 0.7261 0.1368 0.05 0.5019 1.0504

Contrast Estimate Results

Label Chi-Square Pr > ChiSq

age 2.89 0.0893

Exp(age)

Specifying the coefficients in the ESTIMATE statement for the default parameterization can be
more involved with CLASS variables, due to the less than full rank parameterization used by PROC
GENMOD. If you were to compute the odds ratio for the variable CITY, with two levels, you would
need to write an ESTIMATE statement like the following:
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estimate 'city' city 1 -1 /exp;

Refer to the SAS/STAT User’s Guide for more information regarding the ESTIMATE statement and
parameterization.

15.5 Using a Modified Wald Statistic to Assess Model Effects

Section 15.3 discusses the possibility of using an adjusted Wald statistic to evaluate model effects
in the GEE approach. Shah, Holt, and Folsom (1977) describe a modification of the Wald statistic
based on a Hotelling T 2 type of transformation of QC :

.n � c/QC

c.n � 1/
is distributed as Fc;n�c

The quantity c is equal to the number of rows of the contrast. Thus, for tests concerning effects of
explanatory factors, it is equal to the corresponding number of df. This test is more conservative
than the Wald test; LaVange, Koch, and Schwartz (2000) suggest that you can use the Wald and
F -transform statistic p-values as the lower and upper bounds for judging the robustness of the
actual p-value. As the number of clusters becomes very large, these statistics produce very similar
conclusions.

Appendix B contains a macro that produces these F -transform statistics and appends a table
containing them to the end of the PROC GENMOD output. The input are ODS output data sets
from PROC GENMOD that contains the number of clusters, the appropriate Wald statistics, and
the df for the Type 3 analysis.

The following statements call this macro to produce these statistics for the previous analysis. The
statements assume that the macro GEEF has been included in a file named MACROS.SAS that is
stored in the directory in which you are running your SAS program. The ODS OUTPUT statement
puts the GEE model information, including the number of clusters, into a SAS data set named
CLUSTOUT, and it puts the Type 3 analysis results, which include the Wald chi-square values and
their df, into a SAS data set named SCOREOUT (the names CLUSTOUT and SCOREOUT must
be used).

The PROC GENMOD invocation is exactly the same as before, except that the WALD option is
specified in the MODEL statement to produce Wald statistics in the Type 3 analysis, and the ODS
OUTPUT statement is added.

proc genmod data=children descending;
class id city;
model symptom = city age smoke /

link=logit dist=bin type3 wald;
repeated subject=id / type=exch covb corrw;
ods output GEEModInfo=clustout Type3=scoreout;

run;
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The statements produce the usual PROC GENMOD output, including the model information,
the initial parameter estimates, the GEE information, the GEE parameter estimates, and the GEE
Type 3 analysis. Output 15.12 contains the resulting tables.

Output 15.12 Type 3 Analyses

Wald Statistics For Type 3 GEE
Analysis

Source DF Chi-Square Pr > ChiSq

city 1 0.01 0.9387

age 1 2.89 0.0893

smoke 1 5.32 0.0211

F-Statistics for Type 3 GEE Analysis

Source DF F Value Pr > F

city 1 0.01 0.9393

age 1 2.89 0.1023

smoke 1 5.32 0.0300

Note that the values of the F statistics are the same as the values for the Wald statistics for the
single degree of freedom tests. However, all of the p-values are more conservative. You might
choose to generate the transformed F statistics when you are dealing with a small number of
clusters, especially when you have marginal significance.

15.6 Crossover Example

Crossover designs provide another form of repeated measurements. In a crossover design, subjects
serve as their own controls and receive two or more treatments or conditions in two or more
consecutive periods. You can use the GEE method to analyze such data, managing the subjects as
clusters and managing the treatment as a time-varying covariate.

The data in Table 15.2 are from a two-period crossover study investigating three treatments. These
data were analyzed with conditional logistic regression in Chapter 10.
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Table 15.2 Crossover Design Data

Response Profiles
Age Sequence FF FU UF UU Total
older A:B 12 12 6 20 50
older B:P 8 5 6 31 50
older P:A 5 3 22 20 50
younger B:A 19 3 25 3 50
younger A:P 25 6 6 13 50
younger P:B 13 5 21 11 50

As described in Chapter 10, this study design is a two-period crossover design where patients
have been stratified to two age groups and, within age group, have been assigned to one of three
treatment sequences. These data can be modeled with parameters for period effect, effects for Drug
A and Drug B relative to the placebo (P), carryover effects for Drug A and Drug B, and interactions
of period with age and drug with age.

The following DATA step enters the data into SAS data set CROSS. The variable AGE contains
information on whether the subject is older or younger, and the variable SEQUENCE contains two
letters describing the sequence of treatments for that group. For example, the value AB means
that treatment A was received in the first period and treatment B was received in the second, and
the value BP means that treatment B was received in the first period and the placebo was received
in the second. The variables TIME1 and TIME2 have the values F and U depending on whether
the treatment produced a favorable or unfavorable response. The data are frequency counts, and
the variable COUNT contains the frequency for each response profile for each sequence and age
combination. The DATA step creates an observation for each subject.

data cross (drop=count);
input age $ sequence $ time1 $ time2 $ count;
do i=1 to count;

output;
end;
datalines;

older AB F F 12
older AB F U 12
older AB U F 6
older AB U U 20
older BP F F 8
older BP F U 5
older BP U F 6
older BP U U 31
older PA F F 5
older PA F U 3
older PA U F 22
older PA U U 20
younger BA F F 19
younger BA F U 3
younger BA U F 25
younger BA U U 3
younger AP F F 25
younger AP F U 6
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younger AP U F 6
younger AP U U 13
younger PB F F 13
younger PB F U 5
younger PB U F 21
younger PB U U 11
;

The next DATA step creates an observation for each response in each period so that the data are in
the correct data structure for the GEE analysis. The variable PERIOD is an indicator variable for
whether the observation is from the first period. The RESPONSE variable contains the value 1 if
the response was favorable and 0 if it was not.

data cross2;
set cross;
subject=_n_;

period=1;
drug = substr(sequence, 1, 1);
carry='N';
response = time1;
output;

period=0;
drug = substr(sequence, 2, 1);
carry = substr(sequence, 1, 1);
if carry='P' then carry='N';
response = time2;
output;

;

proc print data=cross2(obs=15);
run;

The variable CARRY takes the value N (no) if the observation is from the first period; it takes the
value A or B if it comes from the second period and the treatment in the first period is A or B,
respectively. If the subject received the placebo in the first period, the value of CARRY is also set
to N for the observations in the second period.

Output 15.13 displays the first 15 observations of SAS data set CROSS2.
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Output 15.13 First 15 Observations of Data Set CROSS2

Obs age sequence time1 time2 i subject period drug carry response

1 older AB F F 1 1 1 A N F

2 older AB F F 1 1 0 B A F

3 older AB F F 2 2 1 A N F

4 older AB F F 2 2 0 B A F

5 older AB F F 3 3 1 A N F

6 older AB F F 3 3 0 B A F

7 older AB F F 4 4 1 A N F

8 older AB F F 4 4 0 B A F

9 older AB F F 5 5 1 A N F

10 older AB F F 5 5 0 B A F

11 older AB F F 6 6 1 A N F

12 older AB F F 6 6 0 B A F

13 older AB F F 7 7 1 A N F

14 older AB F F 7 7 0 B A F

15 older AB F F 8 8 1 A N F

The following PROC GENMOD statements fit the GEE model. Since there are 300 subjects in
the crossover study, there are 300 clusters or experimental units in the GEE analysis, an entirely
adequate sample size. With responses for both periods, the cluster size is two. There are no missing
values, so both the minimum and maximum cluster size is two.

A logistic regression analysis is appropriate for these data, so DIST=BIN is specified in the MODEL
statement. The logit link is used by default. SUBJECT, AGE, DRUG, and CARRY are specified in
the CLASS statement. The model includes main effects for period, age, drug, and carryover effects
and interactions for period and age and for drug and age. The option TYPE=UNSTR specifies the
unstructured correlation structure. Since there are only two measurements per subject, this is the
same as the exchangeable structure.

proc genmod data=cross2;
class subject age drug carry;
model response = period age drug

period*age carry
drug*age / dist=bin type3;

repeated subject=subject/type=unstr;
run;

The “Class Level Information” table in Output 15.14 lists the variables treated as classification
variables and their values.
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Output 15.14 Class Level Information

Class Level Information

Class Levels Values

subject 300 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 ...

age 2 older younger

drug 3 A B P

carry 3 A B N

The “Parameter Information” table in Output 15.15 lists the 18 parameters.

Output 15.15 Parameter Information

Parameter Information

Parameter Effect age drug carry

Prm1 Intercept

Prm2 period

Prm3 age older

Prm4 age younger

Prm5 drug A

Prm6 drug B

Prm7 drug P

Prm8 period*age older

Prm9 period*age younger

Prm10 carry A

Prm11 carry B

Prm12 carry N

Prm13 age*drug older A

Prm14 age*drug older B

Prm15 age*drug older P

Prm16 age*drug younger A

Prm17 age*drug younger B

Prm18 age*drug younger P

After the initial estimates are printed, the “GEE Model Information” table is displayed and confirms
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that you have 300 clusters, each containing two responses.

Output 15.16 GEE Model Information

GEE Model Information

Correlation Structure Unstructured

Subject Effect subject (300 levels)

Number of Clusters 300

Correlation Matrix Dimension 2

Maximum Cluster Size 2

Minimum Cluster Size 2

Output 15.17 contains the QIC statistics; QIC takes the value 749.8178.

Output 15.17 QIC Fit Statistics

GEE Fit Criteria

QIC 749.8178

QICu 750.3226

Output 15.18 contains the results of the Type 3 effect tests for all of the terms specified in the
MODEL statement. When you are conducting an analysis of crossover data, you hope that there
are no carryover effects. Having such effects greatly complicates the model and interpretation. In
this analysis, the carryover effect is not significant. The score statistic for the two-level CARRY
variable is 1.15 with p-value equal to 0.5626. In addition, the age � drug interaction appears to be
unimportant, with a score chi-square statistic of 0.72 for 2 df (p D 0:6981).

Output 15.18 Type 3 Table

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

period 1 4.61 0.0318

age 1 36.03 <.0001

drug 2 27.66 <.0001

period*age 1 4.69 0.0303

carry 2 1.15 0.5626

age*drug 2 0.72 0.6981

You can use the CONTRAST statement to obtain the joint test for CARRY and the AGE*DRUG
interaction. You submit the following statements. The ODS SELECT statement restricts the output
to the test results. The contrast labeled ‘joint’ is the joint test for both the CARRY and AGE*DRUG
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effects. The contrasts labeled ‘carry’ and ‘inter’ are the separate effects tests and should match the
results displayed in the Type 3 analysis for those effects.

ods select Contrasts;
proc genmod data=cross2;

class subject age drug carry;
model response = period age drug

period*age carry
drug*age / dist=bin type3;

repeated subject=subject/type=unstr;
contrast 'carry' carry 1 0 -1,

carry 0 1 -1;
contrast 'inter' age*drug 1 0 -1 -1 0 1 ,

age*drug 0 1 -1 0 -1 1 ;
contrast 'joint' carry 1 0 -1,

carry 0 1 -1,
age*drug 1 0 -1 -1 0 1 ,
age*drug 0 1 -1 0 -1 1 ;

run;

Output 15.19 contains the results of these tests. The joint test is definitely nonsignificant, with a
chi-square value of 1.31 for 4 df and a p-value of 0.8595.

Output 15.19 Contrast Results

Contrast Results for GEE Analysis

Contrast DF Chi-Square Pr > ChiSq Type

carry 2 1.15 0.5626 Score

inter 2 0.72 0.6981 Score

joint 4 1.31 0.8595 Score

A reduced model was then specified, with main effects for period, age, and drug, as well as the
period � age interaction. The terms of the reduced model are listed in the MODEL statement, and
the CORRW option requests that the estimate of the working correlation matrix be printed.

proc genmod data=cross2;
class subject age drug;
model response = period age drug

period*age
/ dist=bin type3;

repeated subject=subject/type=unstr corrw;
run;

Output 15.20 displays the QIC statistics. The QIC value of 743.1093 is lower than that for the
previous model, indicating a better fit with the reduced model.
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Output 15.20 QIC Fit Statistics

GEE Fit Criteria

QIC 743.1093

QICu 743.6522

Output 15.21 contains the Type 3 results. These tests indicate that period, age, and drug are highly
significant. And with a p-value of 0.0240, the period � age interaction cannot be dismissed.

Output 15.21 Type 3 Table

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

period 1 24.98 <.0001

age 1 35.53 <.0001

drug 2 39.31 <.0001

period*age 1 5.10 0.0240

The parameter estimates are displayed in Output 15.22.

Output 15.22 Parameter Estimates

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept 0.5127 0.2063 0.1084 0.9170 2.49 0.0129

period -1.1553 0.2304 -1.6069 -0.7037 -5.01 <.0001

age older -1.4994 0.2583 -2.0056 -0.9931 -5.80 <.0001

age younger 0.0000 0.0000 0.0000 0.0000 . .

drug A 1.2542 0.2010 0.8602 1.6483 6.24 <.0001

drug B 0.3404 0.2016 -0.0546 0.7355 1.69 0.0912

drug P 0.0000 0.0000 0.0000 0.0000 . .

period*age older 0.7088 0.3131 0.0951 1.3224 2.26 0.0236

period*age younger 0.0000 0.0000 0.0000 0.0000 . .

Finally, Output 15.23 displays the working correlation matrix. As discussed, the unstructured
correlation structure is the same as the exchangeable correlation structure when you have two
responses per cluster. The correlation is estimated to be 0:2274.
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Output 15.23 Working Correlation Matrix

Working Correlation
Matrix

Col1 Col2

Row1 1.0000 0.2274

Row2 0.2274 1.0000

These results are similar to those presented for the conditional logistic analysis in Chapter 10.
Most of the time, the general conclusions for a GEE analysis and the corresponding conditional
logistic regression are the same; the p-values are similar, but estimates may be somewhat different.
The conditional logistic model is a subject-specific model, producing odds ratio estimates for the
individual, while the GEE model is a marginal model, producing odds ratios “on the average.”

You may be interested in comparing the two drugs, A and B. This is done with a CONTRAST
statement. You test to see if the difference of the two parameters for drugs A and B is equal to
zero. The following statements request a contrast test for drug A versus drug B. The ODS SELECT
statement restricts the output to just the CONTRAST statement results.

ods select Contrasts;
proc genmod data=cross2;

class subject age drug;
model response = period age drug

period*age
/ dist=bin type3;

repeated subject=subject/type=unstr;
contrast 'A versus B' drug 1 -1 0;

run;

Output 15.24 displays these results.

Output 15.24 Contrast Results

Contrast Results for GEE Analysis

Contrast DF Chi-Square Pr > ChiSq Type

A versus B 1 19.15 <.0001 Score

This is a single degree of freedom test, and the chi-square value of 19.15 for the score test is highly
significant. If you want the Wald statistic instead of the score statistic, you specify the WALD
option in the CONTRAST statement.

15.7 Respiratory Data

A clinical trial compared two treatments for a respiratory illness (Koch et al. 1990). In each of two
centers, eligible patients were randomly assigned to active treatment or placebo. During treatment,
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respiratory status was determined at baseline and four visits and recorded on a five-point scale
of 0 for terrible to 4 for excellent. Potential explanatory variables were center, sex, and baseline
respiratory status, as well as age (in years) at the time of study entry. There were 111 patients
(54 active, 57 placebo), with no missing data for responses or covariates. One direction of analysis
was to focus on the dichotomous response of good outcome (response is 3 or 4) versus poor
outcome (response is less than 3) with baseline dichotomized as well. Table 15.3 displays partial
data from Center 1, with baseline and visit outcomes dichotomized.

Table 15.3 Partial Respiratory Disorder Data from Center 1

Respiratory Status (0=poor, 1=good)
Patient Treatment Sex Age Baseline Visit 1 Visit 2 Visit 3 Visit 4

1 P M 46 0 0 0 0 0
2 P M 28 0 0 0 0 0
3 A M 23 1 1 1 1 1
4 P M 44 1 1 1 1 0
5 P F 13 1 1 1 1 1
6 A M 34 0 0 0 0 0
7 P M 43 0 1 0 1 1
8 A M 28 0 0 0 0 0
9 A M 31 1 1 1 1 1

10 P M 37 1 0 1 1 0
11 A M 30 1 1 1 1 1
12 A M 14 0 1 1 1 0
13 P M 23 1 1 0 0 0
14 P M 30 0 0 0 0 0
15 P M 20 1 1 1 1 1
16 A M 22 0 0 0 0 1
17 P M 25 0 0 0 0 0
18 A F 47 0 0 1 1 1
19 P F 31 0 0 0 0 0
20 A M 20 1 1 0 1 0
21 A M 26 0 1 0 1 0
22 A M 46 1 1 1 1 1
23 A M 32 1 1 1 1 1
24 A M 48 0 1 0 0 0
. . . . . . . . .
. . . . . . . . .

The following SAS DATA step inputs the respiratory data and creates an observation for each
response. The baseline and follow-up responses are actually measured on a five-point scale,
from terrible to excellent, and this ordinal response is analyzed later in the chapter. For this
analysis, the dichotomous outcome of whether the patient experienced good or excellent response
is analyzed with a logistic regression. The second DATA step creates the SAS data set RESP2 and
computes response variable DICHOT and dichotomous baseline variable DI_BASE. Note that the
baseline variable, which was recorded on a five-point scale, could be managed as either ordinal or
dichotomous.

data resp;
input center id treatment $ sex $ age baseline
visit1-visit4 @@;
visit=1; outcome=visit1; output;
visit=2; outcome=visit2; output;
visit=3; outcome=visit3; output;
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visit=4; outcome=visit4; output;
datalines;

1 53 A F 32 1 2 2 4 2 2 30 A F 37 1 3 4 4 4
1 18 A F 47 2 2 3 4 4 2 52 A F 39 2 3 4 4 4
1 54 A M 11 4 4 4 4 2 2 23 A F 60 4 4 3 3 4
1 12 A M 14 2 3 3 3 2 2 54 A F 63 4 4 4 4 4
1 51 A M 15 0 2 3 3 3 2 12 A M 13 4 4 4 4 4
1 20 A M 20 3 3 2 3 1 2 10 A M 14 1 4 4 4 4
1 16 A M 22 1 2 2 2 3 2 27 A M 19 3 3 2 3 3
1 50 A M 22 2 1 3 4 4 2 16 A M 20 2 4 4 4 3
1 3 A M 23 3 3 4 4 3 2 47 A M 20 2 1 1 0 0
1 32 A M 23 2 3 4 4 4 2 29 A M 21 3 3 4 4 4

... more lines ...

1 46 P M 49 2 2 2 2 2 2 42 P M 66 3 3 3 4 4
1 47 P M 63 2 2 2 2 2
;
data resp2; set resp;

dichot=(outcome=3 or outcome=4);
di_base = (baseline=3 or baseline=4);

run;

While there are a number of explanatory variables in the model, including age, a continuous
variable, the GEE analysis can handle them reasonably well with 111 clusters. The preliminary
analysis includes all of the main effects plus the visit � treatment interaction and the treatment �
center interaction. The exchangeable working correlation structure is thought to be a reasonable
choice, so it is specified with the TYPE=EXCH option in the REPEATED statement.

proc genmod descending;
class id center sex treatment visit;
model dichot = treatment sex age center di_base

visit visit*treatment treatment*center/
link=logit dist=bin type3;

repeated subject=id*center / type=exch;
run;

Output 15.25 displays the general model information. Because the DESCENDING option is
specified, the probability that the response DICHOT is 1 is modeled.

Output 15.25 Model Information

Model Information

Data Set WORK.RESP2

Distribution Binomial

Link Function Logit

Dependent Variable dichot

PROC GENMOD is modeling the probability that dichot='1'.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



15.7. Respiratory Data 517

In the “GEE Model Information” table in Output 15.26, you can see that there are 111 clusters in
the analysis, with all clusters having responses for each of the four visits.

Output 15.26 GEE Model Information

GEE Model Information

Correlation Structure Exchangeable

Subject Effect id*center (111 levels)

Number of Clusters 111

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 4

The Type 3 analysis displayed in Output 15.27 indicates that the two interaction terms are
nonsignificant. The TREAT*VISIT interaction has a score test statistic of 3.10 and a p-value of
0.3760 with 3 df. The CENTER*TREATMENT interaction has a score test statistic value of 2.46
with a p-value of 0.1169 and 1 df.

Output 15.27 Type 3 Tests for Model with Interactions

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

treatment 1 12.85 0.0003

sex 1 0.24 0.6247

age 1 2.23 0.1351

center 1 3.32 0.0683

di_base 1 23.06 <.0001

visit 3 3.33 0.3429

treatment*visit 3 3.10 0.3760

center*treatment 1 2.46 0.1169

Output 15.28 displays a QIC value of 515.5623.

Output 15.28 QIC Fit Statistics

GEE Fit Criteria

QIC 515.5623

QICu 504.5310

A reduced model is fit that eliminates the interactions.
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proc genmod descending;
class id center sex treatment visit;
model dichot = center sex treatment age di_base

visit / link=logit dist=bin type3;
repeated subject=id*center / type=exch;

run;

Output 15.29 displays the resulting Type 3 analysis. Visit does not appear to be influential
(p D 0:3251), and neither does sex (p D 0:7565) or age (p D 0:1345).

Output 15.29 Type 3 Tests for Reduced Model

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

center 1 3.24 0.0720

sex 1 0.10 0.7565

treatment 1 12.11 0.0005

age 1 2.24 0.1345

di_base 1 22.53 <.0001

visit 3 3.47 0.3251

The next model includes all of the main effects except for visit. Since sex and age were identified
as covariates for this analysis ahead of time, they remain in the analysis. The following statements
produce the desired GEE analysis:

proc genmod descending;
class id center sex treatment;
model dichot = center sex treatment age di_base

/ link=logit dist=bin type3;
repeated subject=id*center / type=exch corrw;

run;

Output 15.30 displays the Type 3 tests for the final model.

Output 15.30 Type 3 Tests for Final Model

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

center 1 3.11 0.0780

sex 1 0.10 0.7562

treatment 1 12.52 0.0004

age 1 2.28 0.1312

di_base 1 22.97 <.0001
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There is a very significant treatment effect. As seen in the parameter estimates table in Output 15.32,
active treatment increases the odds of a good or excellent response. Baseline is also very influential,
with a p-value of less than 0.0001. Sex and age remain nonsignificant, and center is marginally
influential with a p-value of 0.0780.

The QIC value of 512.5723 displayed in Output 15.31 supports this choice of model.

Output 15.31 QIC Fit Statistics

GEE Fit Criteria

QIC 512.5723

QICu 499.4873

Using the parameter estimates displayed in Output 15.32, you see that patients on active treatment
have, on the average, e1:2654 D 3:5 times greater odds of a good or excellent response than those
patients on placebo, adjusted for the other effects in the model.

Output 15.32 Parameter Estimates

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -0.2066 0.5776 -1.3388 0.9255 -0.36 0.7206

center 1 -0.6495 0.3532 -1.3418 0.0428 -1.84 0.0660

center 2 0.0000 0.0000 0.0000 0.0000 . .

sex F 0.1368 0.4402 -0.7261 0.9996 0.31 0.7560

sex M 0.0000 0.0000 0.0000 0.0000 . .

treatment A 1.2654 0.3467 0.5859 1.9448 3.65 0.0003

treatment P 0.0000 0.0000 0.0000 0.0000 . .

age -0.0188 0.0130 -0.0442 0.0067 -1.45 0.1480

di_base 1.8457 0.3460 1.1676 2.5238 5.33 <.0001

Note that visit is usually considered part of the design configuration and generally would be kept
in the model, particularly in a clinical trials type of analysis. The design is balanced, and you
would not gain that much precision by deleting effects such as visit, age, and sex. However, in the
case of an observational study, in which the design was not planned, you will probably encounter
collinearity in the predictors and may need to simplify your model to some extent in order to reduce
the “noise” and make very real gains in precision. However, such simplification should not be
excessive in order to avoid potential bias from overfitting.

The estimated exchangeable working correlation matrix is displayed in Output 15.33.
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Output 15.33 Working Correlation Matrix

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.3270 0.3270 0.3270

Row2 0.3270 1.0000 0.3270 0.3270

Row3 0.3270 0.3270 1.0000 0.3270

Row4 0.3270 0.3270 0.3270 1.0000

There may be some interest in considering the unstructured working correlation matrix, since
there are four visits per subject. This requires the estimation of more parameters, but that might
be appropriate given that the model only contains five terms. The following PROC GENMOD
invocation fits the same model but specifies the unstructured working correlation matrix. Note
that using the unstructured correlation here, for four responses, requires you to ensure that your
responses are in a consistent order, that is, the first observation in a cluster contains the first
response, followed by the observation containing the second response, and so on. The DATA step
used to create data set RESP on page 515 creates the proper ordering. However, if your data are not
ordered correctly, then you need to create a variable that can be used by the GENMOD procedure
to identify the correct sequence of responses. You use the WITHINSUBJECT option to specify
that variable in the REPEATED statement.

proc genmod descending;
class id center sex treatment;
model dichot = center sex treatment age di_base

/ link=logit dist=bin type3;
repeated subject=id*center / type=unstr corrw;

run;

Output 15.34 displays the estimated correlation matrix. You can see that there is reasonable
homogeneity in the various visit-wise correlations.

Output 15.34 Unstructured Working Correlation Matrix

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.3351 0.2140 0.2953

Row2 0.3351 1.0000 0.4429 0.3581

Row3 0.2140 0.4429 1.0000 0.3964

Row4 0.2953 0.3581 0.3964 1.0000

Output 15.35 displays the parameter estimates that result from this model.
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Output 15.35 Parameter Estimates for Unstructured Working Correlation Structure

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -0.2324 0.5763 -1.3620 0.8972 -0.40 0.6868

center 1 -0.6558 0.3512 -1.3442 0.0326 -1.87 0.0619

center 2 0.0000 0.0000 0.0000 0.0000 . .

sex F 0.1128 0.4408 -0.7512 0.9768 0.26 0.7981

sex M 0.0000 0.0000 0.0000 0.0000 . .

treatment A 1.2442 0.3455 0.5669 1.9214 3.60 0.0003

treatment P 0.0000 0.0000 0.0000 0.0000 . .

age -0.0175 0.0129 -0.0427 0.0077 -1.36 0.1728

di_base 1.8981 0.3441 1.2237 2.5725 5.52 <.0001

Compare these estimates to those in Output 15.32. The parameter estimates themselves are quite
similar, and, while most of the standard errors are a little smaller for the unstructured correlation
model, there really is very little gain in efficiency.

The similarity in results is further confirmed with the QIC statistic displayed in Output 15.36. The
value 512.3416 is not very different from the value of 512.5723 displayed in Output 15.31.

Output 15.36 QIC Fit Statistics

GEE Fit Criteria

QIC 512.3416

QICu 499.6081

Thus, for this example, your choice of working correlation structures depends on what you believe
is most realistic.

If you have no idea of what to specify for your correlation structure, you might want to consider the
independent working correlation matrix for these data. Many analysts regularly use the independent
working structure with GEE analysis and don’t attempt to postulate a correlation structure. They
rely on the GEE properties that both the parameter estimates and their standard errors are consistent
even if the correlation structure has not been correctly specified. They are not that concerned about
the potential loss of efficiency. If you have a smaller number of clusters, you might consider simpler
structures for the working correlation matrix since it would mean fewer parameters to estimate.
If you have more missing data, you might want to consider the unstructured working correlation
matrix since that would make a stronger argument for the MAR (missing at random) assumption of
GEE analysis.
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Output 15.37 displays the parameter estimates and standard errors that result when you repeat this
analysis with the independent working correlation matrix. Again, the parameter estimates are very
similar to those obtained by specifying the exchangeable and unstructured correlation structures,
respectively.

Output 15.37 Parameter Estimates for Independent Working Correlation Structure

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -0.2066 0.5776 -1.3388 0.9255 -0.36 0.7206

center 1 -0.6495 0.3532 -1.3418 0.0428 -1.84 0.0660

center 2 0.0000 0.0000 0.0000 0.0000 . .

sex F 0.1368 0.4402 -0.7261 0.9996 0.31 0.7560

sex M 0.0000 0.0000 0.0000 0.0000 . .

treatment A 1.2654 0.3467 0.5859 1.9448 3.65 0.0003

treatment P 0.0000 0.0000 0.0000 0.0000 . .

age -0.0188 0.0130 -0.0442 0.0067 -1.45 0.1480

di_base 1.8457 0.3460 1.1676 2.5238 5.33 <.0001

Output 15.38 contains the QIC results, which are identical to those for the exchangeable working
correlation structure.

Output 15.38 QIC Fit Statistics

GEE Fit Criteria

QIC 512.5723

QICu 499.4873

For this example, which has complete data and a smaller number of clusters, as well as relatively
small correlations, the use of the independent working correlation matrix is indicated. This use is
also supported by the QIC fit statistic.

15.8 Diagnostic Data

The diagnostic data analyzed in Chapter 10 are now analyzed with the GEE method. Recall that
subjects had assessments for test and standard procedures at two times, and researchers recorded
response as positive or negative. Besides analyzing these assessments with conditional logistic
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regression and repeated measures WLS, you can also analyze these data with the GEE method.
There are 793 clusters (corresponding to the number of subjects) and four measurements per subject
(corresponding to the two types of tests at two times).

The following DATA steps input the diagnosis data and create an observation for each measurement
so that the GEE facilities in the GENMOD procedure can be used. In addition, an indicator variable
is created for time. The variable PROCEDURE takes the values of the standard or test procedures.

data diagnos;
input std1 $ test1 $ std2 $ test2 $ count;
do i=1 to count;
output;

end;
datalines;

Neg Neg Neg Neg 509
Neg Neg Neg Pos 4
Neg Neg Pos Neg 17
Neg Neg Pos Pos 3
Neg Pos Neg Neg 13
Neg Pos Neg Pos 8
Neg Pos Pos Neg 0
Neg Pos Pos Pos 8
Pos Neg Neg Neg 14
Pos Neg Neg Pos 1
Pos Neg Pos Neg 17
Pos Neg Pos Pos 9
Pos Pos Neg Neg 7
Pos Pos Neg Pos 4
Pos Pos Pos Neg 9
Pos Pos Pos Pos 170
;
data diagnos2;

set diagnos;
drop std1 test1 std2 test2;

subject=_n_;
time=1; procedure='standard';
response=std1; output;
time=1; procedure='test';

response=test1; output;
time=2; procedure='standard';
response=std2; output;
time=2; procedure='test';

response=test2; output;
run;

The model consists of time and procedure main effects as well as their interaction. The exchange-
able working correlation structure is specified with the TYPE=EXCH option. Logistic regression
is requested with the LINK=LOGIT and DIST=BIN options in the MODEL statement. The model
is based on the probability of the positive response since the DESCENDING option is used in the
PROC statement.
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proc genmod descending;
class subject time procedure;
model response = time procedure time*procedure /

link=logit dist=bin type3;
repeated subject=subject /type=exch;

run;

Output 15.39 displays the model information. Note that ‘Pos’ is the first ordered response value.

Output 15.39 Model Information

Model Information

Data Set WORK.DIAGNOS2

Distribution Binomial

Link Function Logit

Dependent Variable response

PROC GENMOD is modeling the probability that response='Pos'.

Output 15.40 defines the parameters.

Output 15.40 Parameter Information

Parameter Information

Parameter Effect time procedure

Prm1 Intercept

Prm2 time 1

Prm3 time 2

Prm4 procedure standard

Prm5 procedure test

Prm6 time*procedure 1 standard

Prm7 time*procedure 1 test

Prm8 time*procedure 2 standard

Prm9 time*procedure 2 test

The model information in Output 15.41 indicates that 793 clusters are analyzed with a cluster size
of four and no missing data; the exchangeable working correlation structure is requested.
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Output 15.41 GEE Model Information

GEE Model Information

Correlation Structure Exchangeable

Subject Effect subject (793 levels)

Number of Clusters 793

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 4

The score statistics in the Type 3 analysis in Output 15.42 indicate that the time � procedure
interaction is not significant, using an ˛ D 0:05 criterion.

Output 15.42 Type 3 Test Results

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

time 1 0.91 0.3390

procedure 1 8.17 0.0043

time*procedure 1 2.49 0.1142

The reduced model fit consists of the main effects only.

proc genmod descending;
class subject time procedure;
model response = time procedure /

link=logit dist=bin type3;
repeated subject=subject / type=exch corrw;

run;

The Type 3 analysis for the reduced model in Output 15.43 finds procedure significant with a
chi-square value of 8.11 and 1 df (p D 0:0044/.

Output 15.43 Reduced Model

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

time 1 0.85 0.3573

procedure 1 8.11 0.0044

The QIC statistics are displayed in Output 15.44.
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Output 15.44 QIC Fit Statistics

GEE Fit Criteria

QIC 3770.4988

QICu 3768.7541

Output 15.45 displays the parameter estimates and their test statistics. The first procedure, the
standard, is associated with higher odds of getting the positive response as compared to the test
treatment. The odds of the positive response with the standard procedure are e0:1188 or 1.13 times
higher than the odds for the test procedure.

Output 15.45 Parameter Estimates (Exchangeable R)

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -1.0173 0.0792 -1.1726 -0.8621 -12.84 <.0001

time 1 0.0313 0.0340 -0.0353 0.0978 0.92 0.3573

time 2 0.0000 0.0000 0.0000 0.0000 . .

procedure standard 0.1188 0.0415 0.0373 0.2002 2.86 0.0042

procedure test 0.0000 0.0000 0.0000 0.0000 . .

Output 15.46 contains the estimated exchangeable working correlation matrix. Note that with over
700 clusters and four measurements, you may want to specify the unstructured correlation matrix
for a possible gain in precision of the estimates.

Output 15.46 Estimated Exchangeable Correlation

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.8041 0.8041 0.8041

Row2 0.8041 1.0000 0.8041 0.8041

Row3 0.8041 0.8041 1.0000 0.8041

Row4 0.8041 0.8041 0.8041 1.0000

When you resubmit the preceding PROC GENMOD statements with the following REPEATED
statement, you obtain the parameter estimates with the unstructured correlation matrix.
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proc genmod descending;
class subject time procedure;
model response = time procedure /

link=logit dist=bin type3;
repeated subject=subject /type=unstr corrw;

run;

Output 15.47 displays these parameter estimates.

Output 15.47 Parameter Estimates (Unstructured R)

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -1.0208 0.0793 -1.1762 -0.8654 -12.88 <.0001

time 1 0.0344 0.0339 -0.0321 0.1009 1.01 0.3103

time 2 0.0000 0.0000 0.0000 0.0000 . .

procedure standard 0.1240 0.0414 0.0429 0.2052 3.00 0.0027

procedure test 0.0000 0.0000 0.0000 0.0000 . .

These have minimally smaller standard errors than those for the exchangeable structure. When
you compare the estimated unstructured correlation matrix in Output 15.48 with the estimated
exchangeable correlation matrix in Output 15.46, you can see that they are fairly similar.

Output 15.48 Estimated Unstructured Correlation

Working Correlation Matrix

Col1 Col2 Col3 Col4

Row1 1.0000 0.7855 0.8369 0.7763

Row2 0.7855 1.0000 0.7691 0.8560

Row3 0.8369 0.7691 1.0000 0.8163

Row4 0.7763 0.8560 0.8163 1.0000

Output 15.49 confirms that these models are very similar.

Output 15.49 QIC Fit Statistics

GEE Fit Criteria

QIC 3770.5001

QICu 3768.7607
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The results of the analyses for these data—a GEE analysis, the WLS repeated analysis, and the
conditional logistic regression analysis—all provided similar conclusions. The WLS analysis
focused on the marginal proportion of the negative response, the GEE analysis was a marginal
analysis of the logit function, and the conditional logistic analysis was a subject-specific analysis of
the logit function. The conditional analysis, through its subject-specific focus, found the standard
procedure effect to be stronger, with the odds of positive response for the standard procedure
being nearly twice the odds of positive response for the test procedure. However, note that the
conditional analysis produces a subject-specific odds ratio, whereas the GEE odds ratio is a
population-averaged odds ratio. Your choice of strategy depends on the overall objectives of the
study analysis.

15.9 Using GEE for Count Data

Sometimes, categorical data come in the form of count data. For example, you may record the
number of acute pain episodes in a time interval in a clinical trial evaluating treatments. Other
examples might be the number of insurance claims registered during the year or the number of
unscheduled medical visits made during a study of a new protocol for asthma medication. Often,
Poisson regression is the appropriate strategy for analyzing such data. See Chapter 12, “Poisson
Regression and Related Loglinear Models,” for further discussion of Poisson regression.

Since Poisson regression is an application of the generalized linear model with the Poisson
distribution and the log link function, you can fit models for clustered or repeated data with
GEE methods. In this example, researchers evaluated a new drug to treat osteoporosis in women
past menopause. In a double-blind study, a group of women were assigned the treatment and a
group of women were assigned the placebo. Both groups of women were provided with calcium
supplements, given nutritional counseling, and encouraged to be physically active through the
exercise programs made available to them.

The study ran for three years, and the number of fractures occurring in each of those years was
recorded. The length of each of the years, the corresponding risk periods, is 12 months. However,
there were a few drop-outs in the third year, and those risk periods were set at 6 months. The offset
variable is log of months at risk, as contained in the variable LMONTHS.

The following DATA step inputs the fracture data.

data fracture;
input ID age center $ treatment $ year1 year2 year3 @@;
total=year1+year2+year3;
lmonths=log(12);
datalines;

1 56 A p 0 0 0 2 71 A p 1 0 0 3 60 A p 0 0 1 4 71 A p 0 1 0
5 78 A p 0 0 0 6 67 A p 0 0 0 7 49 A p 0 0 0
9 75 A p 1 0 0 8 68 A p 0 0 0 11 82 A p 0 0 0

13 56 A p 0 0 0 12 71 A p 0 0 0 15 66 A p 1 0 0
17 78 A p 0 0 0 16 63 A p 0 2 0 19 61 A p 0 0 0
21 75 A p 1 0 0 20 68 A p 0 0 0 23 63 A p 1 1 1
25 54 A p 0 0 0 24 65 A p 0 0 0 27 71 A p 0 0 0
29 56 A p 0 0 0 28 64 A p 0 0 0 31 78 A p 0 0 2
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33 76 A p 0 0 0 32 61 A p 0 0 0 35 76 A p 0 0 0
37 74 A p 0 0 0 36 56 A p 0 0 0 39 62 A p 0 0 0
41 56 A p 0 0 0 40 72 A p 0 0 1 43 76 A p 0 0 0
45 75 A p 0 0 0 44 77 A p 2 2 0 47 78 A p 0 0 0
49 71 A p 0 0 0 48 68 A p 0 0 0 51 74 A p 0 0 0
53 69 A p 0 0 0 52 78 A p 1 0 0 55 81 A p 2 0 1
57 68 A p 0 0 0 56 77 A p 0 0 0 59 77 A p 0 0 0
61 75 A p 0 0 0 60 83 A p 0 0 0 63 72 A p 0 0 0 64 88 A p 0 0 0
65 69 A p 0 0 0 66 55 A p 0 0 0 67 76 A p 0 0 0 68 55 A p 0 0 0
69 63 A t 0 0 2 70 52 A t 0 0 0 71 56 A t 0 0 0 72 52 A t 0 0 0
73 74 A t 0 0 0 74 61 A t 0 0 0 75 69 A t 0 0 0 76 61 A t 0 0 0
77 84 A t 0 0 0 78 76 A t 0 1 0 79 59 A t 0 0 1 80 76 A t 0 0 0
81 66 A t 0 0 1 82 78 A t 0 0 1 83 77 A t 0 0 0 84 75 A t 1 0 0
85 75 A t 0 0 0 86 62 A t 0 0 0 87 67 A t 0 0 0 88 62 A t 0 0 0
89 71 A t 0 0 0 90 63 A t 0 0 0 92 68 A t 0 0 0
93 69 A t 0 0 0 94 61 A t 0 0 0 96 61 A t 0 0 0
97 67 A t 0 0 0 98 77 A t 0 0 0 91 70 A t 0 0 1 102 81 A t 0 0 0
95 49 A t 0 0 0 106 55 A t 0 0 0
99 63 A t 2 1 0 100 52 A t 0 0 0 101 48 A t 0 0 0
103 71 A t 0 0 0 104 61 A t 0 0 0 105 74 A t 0 0 0
107 67 A t 0 0 0 108 56 A t 0 0 0 109 54 A t 0 0 0
111 56 A t 0 0 0 112 77 A t 1 0 0 113 65 A t 0 0 0
115 66 A t 0 0 0 116 71 A t 0 0 0 117 71 A t 0 0 0 128 71 A t 0 0 0
119 86 A t 1 0 0 120 81 A t 0 0 0 121 64 A t 0 0 0 132 76 A t 0 0 0
123 71 A t 0 0 0 124 76 A t 0 0 0 125 66 A t 0 0 0 136 76 A t 0 0 0
1 68 B p 0 0 0 2 63 B p 0 0 0 3 66 B p 0 0 0 4 63 B p 0 0 0
5 70 B p 0 1 0 6 62 B p 0 0 0 7 54 B p 1 0 0 8 66 B p 0 0 0
9 71 B p 0 0 0 10 76 B p 0 0 0 11 72 B p 0 0 1 12 65 B p 0 1 0
13 55 B p 0 1 0 14 59 B p 0 0 2 15 61 B p 1 0 0 16 56 B p 0 1 0
17 54 B p 0 0 0 18 68 B p 0 0 0 19 68 B p 0 0 0 20 81 B p 0 0 0
21 81 B p 1 0 0 22 61 B p 2 0 1 23 72 B p 1 0 0 24 67 B p 0 0 0
25 56 B p 0 0 0 26 66 B p 0 0 0 27 71 B p 0 1 0 28 75 B p 0 1 0
29 76 B p 0 0 0 30 73 B p 2 0 0 31 56 B p 0 0 0 32 89 B p 0 0 0
33 56 B p 0 0 0 34 78 B p 0 0 0 35 55 B p 0 0 0 36 73 B p 0 0 1
37 71 B p 0 0 0 38 56 B p 0 0 0 39 69 B p 0 0 0 40 77 B p 0 0 0
41 89 B p 0 0 0 42 63 B p 0 0 0 43 67 B p 0 0 0 44 73 B p 0 0 0
45 60 B p 0 0 0 46 67 B p 0 0 0 47 56 B p 0 0 0 48 78 B p 0 0 0
49 73 B t 1 0 0 50 76 B t 0 0 0 51 61 B t 0 0 0 52 81 B t 0 0 0
53 55 B t 0 0 0 54 82 B t 0 0 0 55 78 B t 0 0 0 56 60 B t 0 0 0
57 56 B t 0 0 0 58 83 B t 0 0 0 59 55 B t 0 0 0 60 60 B t 0 0 0
61 80 B t 0 0 0 62 78 B t 0 0 0 63 67 B t 0 0 0 64 67 B t 0 0 0
65 56 B t 0 0 0 66 72 B t 0 0 0 67 71 B t 0 0 0 68 83 B t 0 0 0
69 66 B t 0 0 0 70 71 B t 0 0 1 71 78 B t 1 0 2 72 61 B t 0 0 0
73 56 B t 0 0 0 74 61 B t 0 0 0 75 55 B t 0 0 0 76 69 B t 1 1 0
77 71 B t 0 0 0 78 76 B t 0 0 0 79 56 B t 0 0 0 80 75 B t 0 0 0
81 89 B t 0 0 0 82 77 B t 0 0 0 83 77 B t 1 0 0 84 73 B t 0 0 0
85 60 B t 0 0 0 86 61 B t 0 0 0 87 79 B t 0 0 0 88 71 B t 0 0 0
89 61 B t 0 0 0 90 79 B t 0 0 0 91 87 B t 1 0 0 92 55 B t 0 0 0
93 55 B t 0 0 0 94 79 B t 0 0 0 95 66 B t 0 0 0 96 49 B t 0 0 0
97 56 B t 0 0 0 98 64 B t 0 0 0 99 88 B t 0 0 0 100 62 B t 1 0 0
101 80 B t 0 0 1 102 65 B t 0 0 0 103 57 B t 0 0 1 104 85 B t 0 0 0
;

The next DATA step creates one observation per year. It also sets the variable LMONTHS to a
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value of log(6) for the known drop-outs in the third year. Counts were recorded for that year for
each subject, for the time they were still in the study.

data fracture2;
set fracture;
drop year1-year3;
year=1; fractures=year1; output;
year=2; fractures=year2; output;
do; if center = A then do;

if (ID=85 or ID=66 or ID=124 or ID=51) then lmonths=log(6); end;
if center = B then do;
if (ID=29 or ID=45 or ID=55) then lmonths=log(6); end;

end;
year=3; fractures=year3; output;

run;

The specification for the Poisson GEE analysis is straightforward. You specify the link function,
LINK=LOG, and also specify the distribution with the DIST=POISSON option. The response
variable is FRACTURES and the variables in the model include CENTER, TREATMENT, AGE,
YEAR, the TREATMENT*CENTER interaction, and the TREATMENT*YEAR interaction. In
addition, in Poisson regression you usually specify an offset variable. In this situation, the offset is
the variable LMONTHS, which is the log length of time at risk in each year. The offset is specified
with the OFFSET=LMONTHS option in the MODEL statement. Since there is not a unique subject
identifier, you use the crossing of ID and CENTER with the SUBJECT= option to create unique
values that determine the experimental units.

proc genmod;
class id treatment center year;
model fractures = center treatment age year treatment*center

treatment*year/
dist=poisson type3 offset=lmonths;

repeated subject=id*center / type=exch corrw;
run;

Output 15.50 displays the general information about the model being fit: the Poisson distribution is
requested, the offset variable is LMONTHS, and the response variable is FRACTURES.

Output 15.50 Model Information

Model Information

Data Set WORK.FRACTURE2

Distribution Poisson

Link Function Log

Dependent Variable fractures

Offset Variable lmonths

In Output 15.51, you can see that there are 214 clusters in the analysis, with all clusters having
responses for each of the three years (even though some of the responses for the third year were for
a reduced risk period).
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Output 15.51 GEE Model Information

GEE Model Information

Correlation Structure Exchangeable

Subject Effect ID*center (214 levels)

Number of Clusters 214

Correlation Matrix Dimension 3

Maximum Cluster Size 3

Minimum Cluster Size 3

The Type 3 analysis displayed in Output 15.52 finds the two interaction terms to be nonsignificant.
The treatment � center interaction has a score test statistic of 0.04 and a p-value of 0.8364 with 1
df. The treatment � year interaction has a score test statistic value of 3.15 with a p-value of 0.2074
and 2 df.

Output 15.52 Type 3 Tests for Model with Interactions

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

center 1 0.02 0.8750

treatment 1 4.69 0.0303

age 1 2.44 0.1180

year 2 7.64 0.0220

treatment*center 1 0.04 0.8364

treatment*year 2 3.15 0.2074

The same analysis was repeated with just the main effects. The nesting of ID and CENTER in the
SUBJECT= option is just another way to specify a unique set of values with which to identify the
individual experimental units. The CORRW option requests that the working correlation matrix be
printed.

proc genmod;
class id treatment center year;
model fractures = center treatment age year /

dist=poisson type3 offset=lmonths;
repeated subject=id(center) / type=exch corrw;

run;

Output 15.53 displays the resulting Type 3 analysis.
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Output 15.53 Type 3 Tests for Reduced Model

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

center 1 0.02 0.8930

treatment 1 3.41 0.0647

age 1 2.22 0.1359

year 2 4.71 0.0948

Treatment is nearly significant here, with a p-value of 0:0647. Year also has some modest influence,
with a p-value of 0:0948.

Output 15.54 contains the parameter estimates.

Output 15.54 Parameter Estimates

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -6.6379 1.1201 -8.8333 -4.4424 -5.93 <.0001

center A 0.0400 0.2968 -0.5416 0.6216 0.13 0.8928

center B 0.0000 0.0000 0.0000 0.0000 . .

treatment p 0.5715 0.3042 -0.0248 1.1678 1.88 0.0603

treatment t 0.0000 0.0000 0.0000 0.0000 . .

age 0.0223 0.0147 -0.0065 0.0512 1.52 0.1294

year 1 0.2763 0.2940 -0.2999 0.8524 0.94 0.3473

year 2 -0.3830 0.3747 -1.1173 0.3513 -1.02 0.3067

year 3 0.0000 0.0000 0.0000 0.0000 . .

The placebo increases the log fracture rate by 0.5715; the test treatment lowers the log fracture rate
by �0:5715:

Output 15.55 contains the estimate of the working correlation matrix. It indicates small, but not
ignorable, correlations among the respective years.
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Output 15.55 Working Correlation Matrix

Working Correlation Matrix

Col1 Col2 Col3

Row1 1.0000 0.1049 0.1049

Row2 0.1049 1.0000 0.1049

Row3 0.1049 0.1049 1.0000

15.10 Fitting the Proportional Odds Model

Recall that the respiratory data analyzed in Section 15.7 contained an ordinal response that ranged
from 0 for poor to 4 for excellent. (The responses were dichotomized in the previous analyses.)
The proportional odds model provides a strategy that takes into account the ordinality of the data.
See Chapter 9, “Logistic Regression II: Polytomous Response,” for a discussion of the proportional
odds model in the univariate case, and refer to Lipsitz, Kim, and Zhao (1994) and Miller, Davis,
and Landis (1993) for discussions on fitting the proportional odds model with GEE.

The following statements request a proportional odds model to be fit with the GEE method. The
SAS data set RESP is the same as created in Section 15.7.

proc genmod data=resp descending;
class id center sex treatment visit;
model outcome = treatment sex center age baseline

visit visit*treatment /
link=clogit dist=mult type3;

repeated subject=id*center / type=ind;
run;

The variable OUTCOME has five levels, ranging from 0 to 4, for poor to excellent. Since interest
lies in assessing how much better the subjects receiving the active treatment were, you form the
cumulative logits that focus on the comparison of better to poorer outcomes. By default, the
GENMOD procedure forms the cumulative logits based on the ratio of the probability of the lower
ordered response values to the probability of the higher ordered response values. In this case, this
would be poorer outcomes compared to better outcomes. To reverse this ordering, you simply
specify the DESCENDING option in the PROC statement.

You specify the LINK=CLOGIT option to request the cumulative logit link and the DIST=MULT
option to request the multinomial distribution. Together, these options specify the proportional odds
model. The preliminary model includes TREATMENT, SEX, CENTER, AGE, BASELINE, VISIT,
and the VISIT*TREATMENT interaction as the explanatory variables. Note that the BASELINE
variable also lies on a 0–4 scale.

Since a unique patient identification requires the ID value and the CENTER value, you specify the
SUBJECT=ID*CENTER option in the REPEATED statement. The TYPE=IND option specifies
the independent working correlation matrix, which is currently the only correlation structure
available with the ordinal response model. Output 15.56 displays the class level and response
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profile information. Since the ordered values are listed in descending order, the cumulative logits
are modeling the better outcomes compared to the poorer outcomes.

Output 15.56 Class Level and Response Information

Class Level Information

Class Levels Values

id 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

center 2 1 2

sex 2 F M

treatment 2 A P

visit 4 1 2 3 4

Response Profile

Ordered
Value outcome

Total
Frequency

1 4 152

2 3 96

3 2 116

4 1 40

5 0 40

The parameter information is displayed in Output 15.57.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



15.10. Fitting the Proportional Odds Model 535

Output 15.57 Parameter Information

Parameter Information

Parameter Effect center sex treatment visit

Prm1 treatment A

Prm2 treatment P

Prm3 sex F

Prm4 sex M

Prm5 center 1

Prm6 center 2

Prm7 age

Prm8 baseline

Prm9 visit 1

Prm10 visit 2

Prm11 visit 3

Prm12 visit 4

Prm13 treatment*visit A 1

Prm14 treatment*visit A 2

Prm15 treatment*visit A 3

Prm16 treatment*visit A 4

Prm17 treatment*visit P 1

Prm18 treatment*visit P 2

Prm19 treatment*visit P 3

Prm20 treatment*visit P 4

From the GEE Model Information table in Output 15.58, you can see that there are 111 clusters,
with four visit outcomes in each of the clusters.

Output 15.58 GEE Model Information

GEE Model Information

Correlation Structure Independent

Subject Effect id*center (111 levels)

Number of Clusters 111

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 4
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The Type 3 analysis displayed in Output 15.59 indicates that the treatment � visit interaction is
significant, at least at the ˛ D 0:05 level. Gender doesn’t appear to be an important factor, and
neither does age. Center also appears to be non-influential, but as a pre-stated design covariate, it
stays in the model regardless.

Baseline and treatment (for visit 4) have strongly significant effects.

Output 15.59 Type 3 Test Results

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

treatment 1 15.33 <.0001

sex 1 0.53 0.4664

center 1 1.33 0.2481

age 1 2.68 0.1016

baseline 1 21.60 <.0001

visit 3 0.66 0.8837

treatment*visit 3 10.47 0.0150

The next PROC GENMOD invocation simplifies the model by excluding the AGE and SEX terms.
Since CENTER is part of the study design, it remains in the model. The VISIT*TREATMENT
term also stays.

proc genmod data=resp descending;
class id center sex treatment visit;
model outcome = treatment center baseline

visit visit*treatment /
link=clogit dist=mult type3;

repeated subject=id*center / type=ind;
run;

The treatment � visit interaction remains important in this simplified model, as indicated in
Output 15.60. Note that the analysis of the dichotomous outcome did not find the treatment � visit
interaction to be noteworthy.

Output 15.60 Reduced Model

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

treatment 1 16.40 <.0001

center 1 1.25 0.2636

baseline 1 21.27 <.0001

visit 3 0.54 0.9106

treatment*visit 3 10.50 0.0148
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Baseline and treatment (for visit 4) remain extremely significant in this reduced model, with
p-values less than 0.001.

Output 15.61 contains the parameter estimates.

Output 15.61 Parameter Estimates

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept1 -3.3645 0.5766 -4.4945 -2.2345 -5.84 <.0001

Intercept2 -2.2049 0.5412 -3.2657 -1.1441 -4.07 <.0001

Intercept3 -0.6060 0.5193 -1.6239 0.4119 -1.17 0.2433

Intercept4 0.2929 0.5643 -0.8131 1.3988 0.52 0.6037

treatment A 0.9995 0.3625 0.2891 1.7100 2.76 0.0058

treatment P 0.0000 0.0000 0.0000 0.0000 . .

center 1 -0.3491 0.3023 -0.9415 0.2434 -1.15 0.2482

center 2 0.0000 0.0000 0.0000 0.0000 . .

baseline 0.8993 0.1670 0.5719 1.2266 5.38 <.0001

visit 1 0.2581 0.2501 -0.2321 0.7484 1.03 0.3021

visit 2 -0.2505 0.2303 -0.7019 0.2010 -1.09 0.2768

visit 3 -0.0360 0.1615 -0.3525 0.2806 -0.22 0.8238

visit 4 0.0000 0.0000 0.0000 0.0000 . .

treatment*visit A 1 -0.3049 0.3927 -1.0746 0.4648 -0.78 0.4375

treatment*visit A 2 0.7247 0.3547 0.0296 1.4198 2.04 0.0410

treatment*visit A 3 0.2990 0.3321 -0.3519 0.9500 0.90 0.3679

treatment*visit A 4 0.0000 0.0000 0.0000 0.0000 . .

treatment*visit P 1 0.0000 0.0000 0.0000 0.0000 . .

treatment*visit P 2 0.0000 0.0000 0.0000 0.0000 . .

treatment*visit P 3 0.0000 0.0000 0.0000 0.0000 . .

treatment*visit P 4 0.0000 0.0000 0.0000 0.0000 . .

15.11 GEE Analyses for Data with Missing Values

One of the main advantages of the GEE method is that it addresses the possibility of missing
values. The number of responses per subject, or cluster, can vary; recall that you can have ti
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responses per subject, where ti depends on the i th subject. While the data sets analyzed in previous
sections were complete, or balanced, you are faced with missing data in many situations, especially
for observational data that are longitudinal. Loss to follow-up is a common problem for planned
studies that involve repeated visits. The GEE method works nicely for many of these data situations.
However, the GEE method does assume that the missing values are missing completely at random,
or MCAR.

15.11.1 Crossover Study with Missing Data

Consider a two-period crossover study on treatments for a skin disorder where patients were
given sequences of the standard drug A, a new drug B, and a placebo. Investigators introduced
a skin irritant and then applied topical treatments. Subjects were stratified by gender. The first
session included 300 patients, but 50 patients failed to attend the second session one week later.
Investigators determined that none of the losses to follow-up were actually due to the failure of
the treatments, but they were due to the usual attrition plus a breakdown in the communication to
emphasize the importance of the return visit. For this reason, although much more missing data
occurred than was expected, the analysis proceeded.

You can analyze these data in a similar manner to the way in which the crossover data were
analyzed in Section 15.6. The design is exactly the same; the only difference is that the 50 subjects
with only one measurement have a cluster size of 1. Note the number of missing values for the
second period. These data are input into SAS data set SKINCROSS.

data skincross;
input subject gender $ sequence $ Time1 $ Time2 $ @@;
datalines;

1 m AB Y Y 101 m PA Y Y 201 f AP Y Y
2 m AB Y . 102 m PA Y Y 202 f AP Y Y
3 m AB Y Y 103 m PA Y Y 203 f AP Y Y
4 m AB Y . 104 m PA Y Y 204 f AP Y Y
5 m AB Y Y 105 m PA Y Y 205 f AP Y Y
6 m AB Y . 106 m PA Y N 206 f AP Y Y
7 m AB Y . 107 m PA Y . 207 f AP Y Y
8 m AB Y Y 108 m PA Y N 208 f AP Y Y
9 m AB Y Y 109 m PA N . 209 f AP Y Y
10 m AB Y Y 110 m PA N Y 210 f AP Y Y
11 m AB Y . 111 m PA N Y 211 f AP Y Y
12 m AB Y Y 112 m PA N Y 212 f AP Y Y
13 m AB Y N 113 m PA N . 213 f AP Y Y
14 m AB Y N 114 m PA N . 214 f AP Y .
15 m AB Y N 115 m PA N Y 215 f AP Y .
16 m AB Y N 116 m PA N Y 216 f AP Y .
17 m AB Y N 117 m PA N Y 217 f AP Y Y
18 m AB Y N 118 m PA N Y 218 f AP Y Y
19 m AB Y . 119 m PA N Y 219 f AP Y Y
20 m AB Y N 120 m PA N Y 220 f AP Y Y
21 m AB Y N 121 m PA N Y 221 f AP Y .
22 m AB Y N 122 m PA N Y 222 f AP Y Y
23 m AB Y . 123 m PA N Y 223 f AP Y Y
24 m AB Y N 124 m PA N Y 224 f AP Y Y
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... more lines ...

99 m BP N N 199 f BA N N 299 f PB N N
100 m BP N . 200 f BA N N 300 f PB N N
;

The next step manipulates the data the same way as in Section 15.6. The DATA step creates
observations for each period and creates indicator variables for the carryover effects.

data skincross2;
set skincross;
period=1;
treatment=substr(sequence, 1, 1);
carry='N';
response=Time1;
output;
period=2;
Treatment=substr(sequence, 2, 1);
carry = substr(sequence, 1, 1);
if carry='P' then carry='N';
response=Time2;
output;

run;

The following PROC GENMOD invocation requests a GEE analysis for a model including effects
for treatment, period, gender, carryover, and the period � gender interaction. The DESCENDING
option specifies that the probability of a ‘yes’ response is to be modeled. Logistic regression is
used along with the exchangeable working correlation structure.

proc genmod data=skincross2 descending;
class subject treatment period gender carry;
model response = treatment period gender carry

gender*period /type3
dist=bin link=logit;

repeated subject=subject / type=exch;
run;

The “GEE Model Information” table in Output 15.62 shows that there are 300 clusters total and
50 clusters with missing data; 250 clusters have two measurements and 50 clusters have only one
measurement corresponding to the first period.
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Output 15.62 GEE Model Information

GEE Model Information

Correlation Structure Exchangeable

Subject Effect subject (300 levels)

Number of Clusters 300

Clusters With Missing Values 50

Correlation Matrix Dimension 2

Maximum Cluster Size 2

Minimum Cluster Size 1

The Type 3 analysis displayed in Output 15.63 suggests that the carryover effect is not influential.

Output 15.63 Type 3 Analysis

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

treatment 2 29.38 <.0001

period 1 7.11 0.0077

gender 1 29.94 <.0001

carry 2 1.08 0.5841

period*gender 1 4.21 0.0401

The next model fit includes the treatment, period, and gender main effects as well as the gender �
period interaction. The ESTIMATE statement specifies that odds ratio estimates be computed to
compare the effect of drug A to the placebo effect, the effect of drug B to the placebo effect, and
the effect of drug A to the effect of drug B.

proc genmod data=skincross2 descending;
class subject treatment period gender;
model response = treatment period gender gender*period

/type3
dist=bin link=logit;

repeated subject=subject / type=exch;
estimate 'OR:A-B' treatment 1 -1 0 /exp;
estimate 'OR:A-P' treatment 1 0 -1 / exp;
estimate 'OR:B-P' treatment 0 1 -1 / exp;

run;

The main effects and gender � period interaction remain important, as indicated in Output 15.64.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



Crossover Study with Missing Data 541

Output 15.64 Type 3 Analysis

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

treatment 2 40.02 <.0001

period 1 20.97 <.0001

gender 1 28.89 <.0001

period*gender 1 3.93 0.0474

The parameter estimates are displayed in Output 15.65.

Output 15.65 Parameter Estimates

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -0.9287 0.2249 -1.3696 -0.4879 -4.13 <.0001

treatment A 1.2622 0.2079 0.8548 1.6696 6.07 <.0001

treatment B 0.1722 0.2141 -0.2473 0.5918 0.80 0.4210

treatment P 0.0000 0.0000 0.0000 0.0000 . .

period 1 -0.4520 0.2257 -0.8944 -0.0095 -2.00 0.0453

period 2 0.0000 0.0000 0.0000 0.0000 . .

gender f 1.4443 0.2816 0.8925 1.9961 5.13 <.0001

gender m 0.0000 0.0000 0.0000 0.0000 . .

period*gender 1 f -0.6505 0.3289 -1.2951 -0.0059 -1.98 0.0480

period*gender 1 m 0.0000 0.0000 0.0000 0.0000 . .

period*gender 2 f 0.0000 0.0000 0.0000 0.0000 . .

period*gender 2 m 0.0000 0.0000 0.0000 0.0000 . .

The odds ratio estimates displayed in Output 15.66 show that subjects receiving drug A had almost
3.5 higher odds of improvement as subjects on the placebo. Subjects receiving drug A have almost
three times higher odds of improvement as subjects receiving drug B. The odds ratio estimate
comparing the odds of drug B and placebo is 1.1880 and its confidence limits contain the value 1.
Subjects on drug B did no better than subjects on the placebo.
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Output 15.66 Odds Ratio Estimates

Contrast Estimate Results

Mean L'Beta

Label
Mean

Estimate
Confidence

Limits
L'Beta

Estimate
Standard

Error Alpha
Confidence

Limits

OR:A-B 0.7484 0.6593 0.8205 1.0899 0.2193 0.05 0.6601 1.5198

Exp(OR:A-B) 2.9741 0.6523 0.05 1.9350 4.5713

OR:A-P 0.7794 0.7016 0.8415 1.2622 0.2079 0.05 0.8548 1.6696

Exp(OR:A-P) 3.5331 0.7344 0.05 2.3508 5.3099

OR:B-P 0.5430 0.4385 0.6438 0.1722 0.2141 0.05 -0.2473 0.5918

Exp(OR:B-P) 1.1880 0.2543 0.05 0.7809 1.8072

Contrast Estimate Results

Label Chi-Square Pr > ChiSq

OR:A-B 24.70 <.0001

Exp(OR:A-B)

OR:A-P 36.87 <.0001

Exp(OR:A-P)

OR:B-P 0.65 0.4210

Exp(OR:B-P)

15.12 Alternating Logistic Regression

There are some limitations of the correlation approach to fit models to binary data. The data
influence the range of the correlation since the estimates of rjk are constrained by the means,
�ij D Prfyij D 1g. Consider:

Corr.Yij ; Yik/ D rjk D
P r.Yij D 1; Yik D 1/ � �ij�ikp

�ij .1 � �ij /�ik.1 � �ik/

The odds ratio appears to be a more natural choice for modeling the association in binary data as
they are not constrained by the means.

OR.Yij ; Yik/ D
P r.Yij D 1; Yik D 1/P r.Yij D 0; Yik D 0/

P r.Yij D 1; Yik D 0/P r.Yij D 0; Yik D 1/
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In GEE, the correlations are treated as nuisance parameters, and the use of correlations versus odds
ratios usually has little influence on inference on ˇ, the regression parameters for the marginal
mean model.

In some applications, you may want your analysis to focus on both regressing the outcome on
the explanatory variables and describing the association between the outcomes. The generalized
estimating equations discussed in this chapter are known as the first-order estimating equations,
and they are efficient for the estimation of ˇ but not necessarily efficient in the estimation of the
association parameters, which are the correlations estimated in PROC GENMOD with the method
of moments. Prentice (1988) describes second-order estimating equations and the simultaneous
modeling of the responses and all pairwise products as a method of producing more efficient
estimation of the association parameters. However, as the number of clusters grows large, this
method can become computationally infeasible.

Carey, Zeger, and Diggle (1993) describe the alternating logistic regression (ALR) algorithm,
which provides a means of both fitting the first-order GEE model and simultaneously modeling the
association in a manner that produces relatively efficient estimators. With this method, you obtain
Ǒ and also obtain estimates of the association parameters that relate to log odds ratios, as well as

their standard errors and confidence intervals.

The ALR algorithm models the log of the odds ratio as

 ijk D z
0˛

where  ijk D log.OR.yij ; yik//, ˛ is a q � 1 vector of regression parameters, and zijk is a
fixed vector of coefficients. The method switches between the first-order GEE estimation of the
ˇ and a modified (with offset) logistic regression estimate of the ˛ until convergence, updating
the GEE with product-moments from the newly estimated OR, and then updating the offsets in the
association model with the new Ǒs. Thus, you are applying alternating logistic regressions, one for
˛ and one for ˇ.

There are numerous choices for modeling the log odds ratio: you can choose to specify the log
odds ratio as a constant across clusters; for pairs .j; k/, you can specify that the log odds ratio
is a constant within different levels of a blocking factor such as clinics; and you can specify
fully parameterized clusters in which each cluster is parameterized the same way. There are
numerous other possibilities for model structures for the log odds ratio. For more information
on the motivation and the details of the ALR approach, refer to Carey, Zeger, and Diggle (1993),
Lipsitz, Laird, and Harrington (1991), and Firth (1992).

The GENMOD procedure produces the ALR algorithm for binary data. The following log odds
ratio structures are available:

� exchangeable (constant over all clusters)

� covariate (block effect)

� fully parameterized within cluster (parameter for each pair)

� nested (one parameter for pairs within same subcluster, one for between subclusters)

� user-specified Z-matrix
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The ALR algorithm provides a reasonable approach when the focus of your analysis is estimating
association as much as modeling the response; this method provides estimates of association with
more efficiency than the usual GEE method. The resulting parameter estimates ˇ are consistent
(Pickles 1998) and so is the estimated covariance matrix of ˇ. That is, you retain the robustness
properties of the first-order GEE even if the association structure is misspecified. A possible
limitation of ALR is that no covariance estimator has been suggested that is analogous to the
model-based estimator of GEE.

15.12.1 Respiratory Data

You may recall the respiratory data analyzed in previous sections of this book. In this example,
the ALR algorithm is applied in modeling the dichotomous outcome of whether respiratory
symptoms were good or excellent at the four visits. The first analysis models the log odds ratios as
exchangeable: in this case, ˛ is the common log odds ratio.

log.OR.Yij ; Yik// D ˛ for all i; j ¤ k

The following SAS statements produce this analysis. The DATA step creating RESP2 is listed
on page 515. To specify the ALR algorithm, you include the LOGOR option in the REPEATED
statement. Here, the exchangeable structure for the log odds ratio is requested.

proc genmod data=resp2 descending;
class id treatment sex center visit;
model dichot = center sex treatment age di_base visit

/ dist=bin type3 link=logit;
repeated subject=id*center / logor=exch;

run;

Output 15.67 contains information about the GEE modeling; it tells you that the log OR structure
is exchangeable.

Output 15.67 GEE Model Information

GEE Model Information

Log Odds Ratio Structure Exchangeable

Subject Effect id*center (111 levels)

Number of Clusters 111

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 4

Output 15.68 contains Type 3 tests; the results are very similar to those obtained in the first-order
GEE based on the exchangeable structure defined with the Pearson correlations (Output 15.29).
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Output 15.68 Type 3 Analysis

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

center 1 3.13 0.0767

sex 1 0.09 0.7642

treatment 1 12.56 0.0004

age 1 2.03 0.1542

di_base 1 22.48 <.0001

visit 3 2.99 0.3932

Output 15.68 displays the parameter estimates for the elements of ˇ. The estimates are also similar
to those obtained in the standard GEE model; the parameter labeled “Alpha 1” is the estimate of
the common log odds ratio and has the value 1:7524. Note that you need to interpret the “Alpha”
estimates somewhat cautiously since they assume their model specification is correct (as compared
to the estimates of ˇ, which are robust).

Output 15.69 Parameter Estimates

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -0.4137 0.5760 -1.5428 0.7153 -0.72 0.4726

center 1 -0.6590 0.3517 -1.3483 0.0303 -1.87 0.0610

center 2 0.0000 0.0000 0.0000 0.0000 . .

sex F 0.1329 0.4365 -0.7226 0.9884 0.30 0.7608

sex M 0.0000 0.0000 0.0000 0.0000 . .

treatment A 1.2696 0.3432 0.5969 1.9423 3.70 0.0002

treatment P 0.0000 0.0000 0.0000 0.0000 . .

age -0.0180 0.0127 -0.0429 0.0068 -1.42 0.1552

di_base 1.8381 0.3439 1.1642 2.5121 5.35 <.0001

visit 1 0.3138 0.2494 -0.1751 0.8027 1.26 0.2084

visit 2 0.1065 0.2409 -0.3657 0.5786 0.44 0.6585

visit 3 0.3269 0.2314 -0.1266 0.7804 1.41 0.1577

visit 4 0.0000 0.0000 0.0000 0.0000 . .

Alpha1 1.7524 0.2767 1.2102 2.2947 6.33 <.0001
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Another approach with the ALR strategy is to estimate a separate log odds ratio for each
center. The following PROC GENMOD statements produce that analysis. The LO-
GOR=LOGORVAR(CENTER) specifies that each center has its own log odds ratio.

proc genmod data=resp2 descending;
class id treatment sex center visit;
model dichot = center sex treatment age di_base visit

/ dist=bin type3 link=logit;
repeated subject=id*center / logor=logorvar(center) corrw;

run;

Output 15.70 indicates that, this time, the exchangeable structure for the log OR is based on the
CENTER variable in this specification.

Output 15.70 GEE Model Information

GEE Model Information

Log Odds Ratio Covariate center

Subject Effect id*center (111 levels)

Number of Clusters 111

Correlation Matrix Dimension 4

Maximum Cluster Size 4

Minimum Cluster Size 4

Output 15.71 is produced when the log OR structure has more than one ˛ parameter; this table lists
the group(center) levels associated with the log OR parameters. In this case, there is a common log
OR for all clusters in Center 1 and a common log OR for all clusters in Center 2.

Output 15.71 Log Odds Ratio Parameter Information

Log Odds Ratio
Parameter
Information

Parameter Group

Alpha1 1

Alpha2 2

Output 15.72 contains Type 3 tests; the results are still similar to those obtained in the usual GEE
model.
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Output 15.72 Type 3 Analysis

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

center 1 2.96 0.0852

sex 1 0.12 0.7325

treatment 1 12.31 0.0004

age 1 2.32 0.1276

di_base 1 22.53 <.0001

visit 3 2.77 0.4292

Output 15.73 displays the parameter estimates.

Output 15.73 Parameter Estimates

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -0.3729 0.5693 -1.4887 0.7430 -0.65 0.5125

center 1 -0.6423 0.3527 -1.3335 0.0489 -1.82 0.0686

center 2 0.0000 0.0000 0.0000 0.0000 . .

sex F 0.1506 0.4318 -0.6958 0.9969 0.35 0.7273

sex M 0.0000 0.0000 0.0000 0.0000 . .

treatment A 1.2392 0.3396 0.5735 1.9048 3.65 0.0003

treatment P 0.0000 0.0000 0.0000 0.0000 . .

age -0.0194 0.0126 -0.0440 0.0052 -1.54 0.1226

di_base 1.9210 0.3396 1.2555 2.5866 5.66 <.0001

visit 1 0.3017 0.2511 -0.1904 0.7937 1.20 0.2295

visit 2 0.0640 0.2398 -0.4060 0.5341 0.27 0.7895

visit 3 0.2782 0.2310 -0.1745 0.7310 1.20 0.2284

visit 4 0.0000 0.0000 0.0000 0.0000 . .

Alpha1 1.3677 0.3191 0.7423 1.9930 4.29 <.0001

Alpha2 2.0886 0.4349 1.2362 2.9410 4.80 <.0001

The parameter labeled “Alpha 1” is the common log odds ratio for the Center 1 subjects; the
parameter labeled “Alpha 2” is the common log odds ratio for the Center 2 subjects. In Center
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1, the common log odds ratio is 1.3677 with a 95% confidence interval of (0.7423, 1.9930). For
Center 2, the common log odds ratio is 2.0886 with a 95% confidence interval of (1.2362, 2.9410).
The association would appear to be slightly stronger in Center 2.

Note that inserting the following statement in the previous PROC GENMOD invocation requests a
fully parameterized cluster model for the log odds ratio parameters:

proc genmod data=resp2 descending;
class id treatment sex center visit;
model dichot = center sex treatment age di_base visit

/ dist=bin type3 link=logit;
repeated subject=id*center / logor=fullclust;

run;

Information about what the parameters mean is presented in Output 15.74.

Output 15.74 Log OR Parameter Information

Log Odds Ratio
Parameter
Information

Parameter Group

Alpha1 (1, 2)

Alpha2 (1, 3)

Alpha3 (1, 4)

Alpha4 (2, 3)

Alpha5 (2, 4)

Alpha6 (3, 4)

The estimated parameters are presented in Output 15.75.

Stokes, Maura E., Charles S. Davis, and Gary G. Koch. Categorical Data Analysis Using SAS®, Third Edition. Copyright © 2012,  
SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED. For additional SAS resources, visit support.sas.com/bookstore. 



15.13. Using GEE to Account for Overdispersion: Univariate Outcome 549

Output 15.75 Parameter Estimates

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept -0.4890 0.5745 -1.6151 0.6371 -0.85 0.3947

center 1 -0.6439 0.3484 -1.3268 0.0390 -1.85 0.0646

center 2 0.0000 0.0000 0.0000 0.0000 . .

sex F 0.0982 0.4344 -0.7533 0.9497 0.23 0.8212

sex M 0.0000 0.0000 0.0000 0.0000 . .

treatment A 1.2498 0.3407 0.5821 1.9175 3.67 0.0002

treatment P 0.0000 0.0000 0.0000 0.0000 . .

age -0.0161 0.0126 -0.0407 0.0085 -1.28 0.2006

di_base 1.8905 0.3406 1.2230 2.5579 5.55 <.0001

visit 1 0.3123 0.2505 -0.1786 0.8033 1.25 0.2125

visit 2 0.1072 0.2418 -0.3668 0.5812 0.44 0.6576

visit 3 0.3160 0.2320 -0.1387 0.7708 1.36 0.1732

visit 4 0.0000 0.0000 0.0000 0.0000 . .

Alpha1 1.6230 0.4961 0.6507 2.5953 3.27 0.0011

Alpha2 1.0681 0.4831 0.1213 2.0149 2.21 0.0270

Alpha3 1.6292 0.4858 0.6771 2.5814 3.35 0.0008

Alpha4 2.1529 0.5106 1.1522 3.1535 4.22 <.0001

Alpha5 1.8752 0.4676 0.9588 2.7916 4.01 <.0001

Alpha6 2.1839 0.5101 1.1842 3.1837 4.28 <.0001

The relative magnitudes of these six estimated log odds ratios have a pattern similar to that of the
unstructured working correlation estimates presented on page 520, and this is what you expect.
This pattern seems consistent with exchangeable structure.

15.13 Using GEE to Account for Overdispersion: Univariate
Outcome

Section 8.2.7 mentions overdispersion in the case of logistic regression. Overdispersion occurs
when the observed variance is larger than the nominal variance for a particular distribution. It occurs
with some regularity in the analysis of proportions and discrete counts. This is not surprising for
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the assumed distributions (binomial and Poisson, respectively) because their respective variances
are fixed by a single parameter, the mean. Overdispersion can have a major impact on inference so
it needs to be taken into account. Underdispersion also occurs. See McCullagh and Nelder (1989)
and Dean (1998) for more detail on overdispersion.

One way to manage overdispersion is to assume a more flexible distribution, such as the negative
binomial in the case of overdispersed Poisson data, as illustrated in Chapter 12. You can also adjust
the covariance matrix of a Poisson-based analysis with a scaling factor, which is the method PROC
GENMOD uses with the SCALE= option in the MODEL statement. Then the covariance matrix is
pre-multiplied by the scaling factor �, and the scaled deviance and the log likelihood ratio tests are
divided by �.

Another way of managing the overdispersion is to take the generalized estimating approach.
Recall that the robust, or empirical, covariance matrix estimated by the GEE method is robust to
the misspecification of the covariance structure, and misspecification is occurring in the case of
overdispersion. The variance is not “acting” as it should; it does not take the form for data from a
Poisson distribution. With GEE estimation, you are using a subject-to-subject measure for variance
estimation instead of a model-based one. The robustness comes from the fact that the variance
estimation process involves aggregates at the cluster level. While GEE was devised for the analysis
of correlated data with more than one response per subject, you can also use it for the analysis of
single outcomes and derive the benefits of the robust standard errors. This section describes the use
of GEE for adjusting for overdispersion in the univariate case.

Researchers studying the incidence of lower respiratory illness in infants took repeated observations
of infants over one year. They studied 284 children and examined them every two weeks.
Explanatory variables evaluated included passive smoking (one or more smokers in the household),
socioeconomic status, and crowding. See LaVange et al. (1994) for more information on the
study and a discussion of the analysis of incidence densities. One outcome of interest was the
total number of times, or counts, of lower respiratory infection recorded for the year. The strategy
was to model these counts with Poisson regression. However, it is reasonable to expect some
overdispersion since the children that have an infection are more likely to have other infections.

The following DATA step inputs the data into a SAS data set named LRI. The variable COUNT
is the total number of infections that year, and the variable RISK is the number of weeks during
that year for which the child is considered at risk (when a lower respiratory infection is ongoing,
the child is not considered to be at risk for a new one). The variable CROWDING is an indicator
variable for whether crowded conditions occur in the household, and SES is an indicator variable
for whether the family’s socioeconomic status was considered low (0), medium (1), or high (2).
The variable RACE is an indicator variable for whether the child was white (1) or not (0), and the
variable PASSIVE is an indicator variable for whether the child was exposed to cigarette smoking.
Finally, the AGEGROUP variable takes the values 1, 2, and 3 for under four, four to six, or more
than six months.

data lri;
input id count risk passive crowding ses agegroup race @@;
logrisk =log(risk/52);
datalines;

1 0 42 1 0 2 2 0 96 1 41 1 0 1 2 0 191 0 44 1 0 0 2 0
2 0 43 1 0 0 2 0 97 1 26 1 1 2 2 0 192 0 45 0 0 0 2 1
3 0 41 1 0 1 2 0 98 0 36 0 0 0 2 0 193 0 42 0 0 0 2 0
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4 1 36 0 1 0 2 0 99 0 34 0 0 0 2 0 194 1 31 0 0 0 2 1
5 1 31 0 0 0 2 0 100 1 3 1 1 2 3 1 195 0 35 0 0 0 2 0
6 0 43 1 0 0 2 0 101 0 45 1 0 0 2 0 196 1 35 1 0 0 2 0
7 0 45 0 0 0 2 0 102 0 38 0 0 1 2 0 197 1 27 1 0 1 2 0
8 0 42 0 0 0 2 1 103 0 41 1 1 1 2 1 198 1 33 0 0 0 2 0
9 0 45 0 0 0 2 1 104 1 37 0 1 0 2 0 199 0 39 1 0 1 2 0

10 0 35 1 1 0 2 0 105 0 40 0 0 0 2 0 200 3 40 0 1 2 2 0
11 0 43 0 0 0 2 0 106 1 35 1 0 0 2 0 201 4 26 1 0 1 2 0
12 2 38 0 0 0 2 0 107 0 28 0 1 2 2 0 202 0 14 1 1 1 1 1
13 0 41 0 0 0 2 0 108 3 33 0 1 2 2 0 203 0 39 0 1 1 2 0
14 0 12 1 1 0 1 0 109 0 38 0 0 0 2 0 204 0 4 1 1 1 3 0
15 0 6 0 0 0 3 0 110 0 42 1 1 2 2 1 205 1 27 1 1 1 2 1
16 0 43 0 0 0 2 0 111 0 40 1 1 2 2 0 206 0 36 1 0 0 2 1
17 2 39 1 0 1 2 0 112 0 38 0 0 0 2 0 207 0 30 1 0 2 2 1
18 0 43 0 1 0 2 0 113 2 37 0 1 1 2 0 208 0 34 0 1 0 2 0
19 2 37 0 0 0 2 1 114 1 42 0 1 0 2 0 209 1 40 1 1 1 2 0
20 0 31 1 1 1 2 0 115 5 37 1 1 1 2 1 210 0 6 1 0 1 1 1
21 0 45 0 1 0 2 0 116 0 38 0 0 0 2 0 211 1 40 1 1 1 2 0
22 1 29 1 1 1 2 1 117 0 4 0 0 0 3 0 212 2 43 0 1 0 2 0
23 1 35 1 1 1 2 0 118 2 37 1 1 1 2 0 213 0 36 1 1 1 2 0

... more lines ...

94 0 35 1 0 0 2 0 189 0 36 1 0 0 2 0 284 0 35 0 0 0 2 1
95 3 37 1 0 0 2 0 190 0 39 0 1 0 2 0
;

The following SAS statements request the analysis. To produce the Poisson regression, options
LINK=LOG and DIST=POISSON are specified. The variable LOGRISK is the offset, and the main
effects model is requested.

proc genmod data=lri;
class ses id race agegroup;
model count = passive crowding ses race agegroup/

dist=poisson link=log offset=logrisk type3;
run;

Output 15.76 contains the general model information.

Output 15.76 Model Information

Model Information

Data Set WORK.LRI

Distribution Poisson

Link Function Log

Dependent Variable count

Offset Variable logrisk

Output 15.77 contains the goodness-of-fit statistics, along with the ratios of their values to their
degrees of freedom. With values of 1.4788 for the deviance/df and 1.7951 for Pearson/df, there is
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evidence of overdispersion. The model-based estimates of standard errors may not be appropriate
and therefore any inference is questionable. (When this ratio is close to 1, you conclude that little
evidence of over- or underdispersion exists.) The next step is to account for this overdispersion
with the GEE-generated robust covariances.

Output 15.77 Goodness-of-Fit Statistics

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 276 408.1549 1.4788

Scaled Deviance 276 408.1549 1.4788

Pearson Chi-Square 276 495.4493 1.7951

Scaled Pearson X2 276 495.4493 1.7951

Log Likelihood -260.4117

Full Log Likelihood -337.5776

AIC (smaller is better) 691.1551

AICC (smaller is better) 691.6788

BIC (smaller is better) 720.3469

The following statements produce the desired GEE analysis. In this case, the subject is the cluster
and there is only one measurement per cluster. The working independent correlation structure is
specified with the TYPE=IND option although, with a cluster size of 1, the estimates will be the
same if you specify exchangeable or unstructured. Otherwise, the model specification is the same
as in the previous analysis.

proc genmod data=lri;
class id ses race agegroup;
model count = passive crowding ses race agegroup /

dist=poisson link=log offset=logrisk type3;
repeated subject=id / type=ind;

run;

Output 15.78 reports that the GEE analysis involves one measurement per subject, and that there
are 284 subjects, or clusters, in the analysis.
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Output 15.78 GEE Model Information

GEE Model Information

Correlation Structure Independent

Subject Effect id (284 levels)

Number of Clusters 284

Correlation Matrix Dimension 1

Maximum Cluster Size 1

Minimum Cluster Size 1

Output 15.79 contains the parameter estimates. They are the same as displayed for the unadjusted
GLM analysis in Chapter 12, as you would expect, but the standard errors are different. They are
larger than the corresponding standard errors in the GLM analysis; this is also what you would
expect because overdispersion means that the data are exhibiting additional variance.

Output 15.79 GEE Parameter Estimates

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Parameter Estimate
Standard

Error

95%
Confidence

Limits Z Pr > |Z|

Intercept 0.6047 0.5564 -0.4858 1.6952 1.09 0.2771

passive 0.4310 0.2105 0.0184 0.8436 2.05 0.0406

crowding 0.5199 0.2367 0.0559 0.9839 2.20 0.0281

ses 0 -0.3970 0.2977 -0.9805 0.1865 -1.33 0.1824

ses 1 -0.0681 0.2520 -0.5619 0.4258 -0.27 0.7871

ses 2 0.0000 0.0000 0.0000 0.0000 . .

race 0 0.1402 0.2211 -0.2931 0.5736 0.63 0.5259

race 1 0.0000 0.0000 0.0000 0.0000 . .

agegroup 1 -0.4792 0.6033 -1.6617 0.7033 -0.79 0.4270

agegroup 2 -0.9919 0.4675 -1.9082 -0.0756 -2.12 0.0339

agegroup 3 0.0000 0.0000 0.0000 0.0000 . .

Output 15.80 contains the Type 3 analysis. SES, race, and age group are non-influential. Crowding
and smoking exposure are significant at the ˛ D 0:05 level.
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Output 15.80 Type 3 Analysis

Score Statistics For Type 3 GEE Analysis

Source DF Chi-Square Pr > ChiSq

passive 1 3.90 0.0484

crowding 1 4.72 0.0298

ses 2 2.11 0.3478

race 1 0.42 0.5176

agegroup 2 2.79 0.2484

Thus, this section provides an alternative strategy for adjusting for overdispersion to the scaling
factor adjustment discussed in Chapter 12. WIth the GEE method, you are using a measure of
variability based on the data to do the adjustment, rather than a single parameter (scaling factor)
applied to the covariance matrix. With the GEE method, using the robust variances, you are
providing a measure of variability for each parameter you estimate together with the corresponding
covariances, all based on your data. In many situations, this strategy may be a practical approach to
handling overdispersion.

Appendix A: Steps to Find the GEE Solution

Finding the GEE solution requires a number of steps, including specifying the marginal model for
the first moment, specifying the variance function for the relationship between the first and second
moments, choosing a working correlation matrix, computing an initial estimate of ˇ, and then
using this estimate in an iterative estimation process. In detail:

The first step of the GEE method is to relate the marginal response �ij D E.yij / to a linear
combination of the covariates: g.�ij / D x0ij ˇ, where ˇ D .ˇ1; : : : ; ˇp/

0 is a p � 1 vector of
unknown parameters and g is a known link function. Common link functions are the logit function
g.x/ D log.x=.1 � x// for binary responses and the log function g.x/ D log.x/ for Poisson
counts. The p � 1 parameter vector ˇ characterizes how the cross-sectional response distribution
depends on the explanatory variables.

The second step is to describe the variance of yij as a function of the mean: Var.yij / D v.�ij / �,
where v is a known variance function and � is a possibly unknown scale parameter. For binary
responses, v.�ij / D �ij .1 � �ij /; and for Poisson responses, v.�ij / D �ij . For these two types
of response variables, � D 1. Overdispersion .� > 1/ may exist for binomial-like or count data,
but use of the empirical covariance matrix for the GEE procedure is robust to this overdispersion.

The third step is to choose the form of a t � t working correlation matrix Ri .˛/ for each
yi D .yi1; : : : ; yiti /

0, with ti � t . The .j; j 0/ element of Ri .˛/ is the known, hypothesized, or
estimated correlation between yij and yij 0 . This working correlation matrix may depend on a
vector of unknown parameters ˛, which is the same for all subjects. You assume that Ri .˛/ is
known except for a fixed number of parameters ˛ that must be estimated from the data. Although
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this correlation matrix can differ from subject to subject, you commonly use a working correlation
matrix R.˛/ that approximates the average dependence among repeated observations over subjects.

The GEE method yields consistent estimates of the regression coefficients and their variances, even
with misspecification of the structure of the covariance matrix. In addition, the loss of efficiency
from an incorrect choice of R is usually not consequential when the number of subjects is large.

The fourth step of the GEE method is to estimate the parameter vector ˇ and its covariance matrix.
First, let Ai be the ti � ti diagonal matrix with v.�ij / as the j th diagonal element. The working
covariance matrix for yi is Vi .˛/ D � A1=2i Ri .˛/A1=2i . The GEE estimate of ˇ is the solution of
the estimating equation

U.ˇ/ D

nX
iD1

�@�i
@ˇ

�0h
Vi . Ǫ /

i�1
.yi � �i / D 0p

where �i D .�i1; : : : ; �iti /
0, 0p is the p � 1 vector .0; : : : ; 0/0, and b̨ is a consistent estimate of ˛.

The estimating equation is solved by iterating between quasi-likelihood methods for estimating ˇ
and method of moments estimation of ˛ as a function of ˇ, as follows:

1. Compute an initial estimate of ˇ, using a GLM model or some other method.

2. Compute the standardized Pearson residuals

rij D
yij �b�ijq
v.b�ij /

and obtain the estimates for the nuisance parameters � and ˛ using moment estimation.

3. Update Ǒ with

Ǒ �

"
nX
iD1

@�i

@ˇ

0

V �1i
@�i

@ˇ

#�1 " nX
iD1

@�i

@ˇ

0

V �1i .Yi � �i /

#

4. Iterate until convergence.

15.14 Appendix B: Macro for Adjusted Wald Statistic

The following macro is used in Section 15.5.

%macro geef;
data temp1;

set clustout;
drop Label1 cvalue1;
if Label1='Number of Clusters';
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run;
data temp2;

set scoreout;
drop ProbChiSq;

run;
data temp3;

merge temp1 temp2;
run;
data temp4; set temp3;

retain nclusters; drop nvalue1;
if _n_=1 then nclusters=nvalue1;

run;
data temp5;

set temp4;
drop ChiSq nclusters d;
d=nclusters-1;
NewF= ((d-df+1)*ChiSq)/(d*df);
ProbF=1-cdf('F', NewF,df,d-df+1);

run;

/* Set the ODS path to include your store first (this
sets the search path order so that ODS looks in your
store first, followed by the default store */

ods path sasuser.templat (update)
sashelp.tmplmst (read);

/* Print the path to the log to make sure you will get
what you expect */

*ods path show;

/* Define your table, and store it */
proc template;

define table GEEType3F;
parent=Stat.Genmod.Type3GEESc;
header "#F-Statistics for Type 3 GEE Analysis##";
column Source DF i NewF ProbF;
define NewF;
parent = Common.ANOVA.FValue;

end;
end;
run;
title1;
data _null_;

set temp5;
file print ods=(template='GEEType3F');
put _ods_;

run;
;
%mend geef;
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