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Preface

In the theory of statistical estimation, the asymptotic properties such as the
consistency, asymptotic normality, and asymptotic efficiency have been discussed
under usual regularity conditions, and in particular, it is well known that the
maximum likelihood estimator (MLE) has such properties. But, in the non-regular
case when the regularity conditions do not necessarily hold, it is seen that the
property of estimator depends on the irregularity. In the book, we treat truncated
exponential families of distributions as a typical situation when both of the regular
and non-regular structures exist and clarify how they affect the estimation of a
natural parameter and truncation parameters. Such families include a
(upper-truncated) Pareto distribution which is widely used in various fields such as
finance, physics, hydrology, astronomy, and other disciplines. For a one-sided
truncated exponential family (oTEF) with a natural parameter and a truncation
parameter, we consider the estimation of a natural parameter with a truncation
parameter as nuisance one. Then, the MLE of a natural parameter when a trunca-
tion parameter is known and the MLE of a natural parameter when a truncation
parameter is unknown have been seen to have the same asymptotic normality.
However, in the book it is shown that the asymptotic difference between them
appears in the second order after a bias-adjustment, and it is defined as the notion of
second-order asymptotic loss through the second-order asymptotic variances
obtained from their stochastic expansions. The regular and non-regular structures
of the oTEF are reflected in the second-order asymptotic variance of the latter MLE,
which effects the loss. The corresponding results to the case of a oTEF are obtained
in that of a two-sided truncated exponential family (tTEF) of distributions with a
natural parameter and truncation parameters. We also conversely consider the
estimation of a truncation parameter with a natural parameter as nuisance one for a
oTEF using a bias-adjustment. The bias-adjusted MLE of a truncation parameter
when a natural parameter is known and the bias-adjusted MLE of a truncation
parameter when a natural parameter is unknown are constructed, and their
asymptotic difference is clarified in a similar way to the case of the estimation of a
natural parameter. The corresponding results to the case of a oTEF are obtained in
the case of a tTEF. From the Bayesian viewpoint, such estimation is also discussed.

v



Further several examples including a truncated exponential, a truncated normal, a
(upper-truncated) Pareto, a truncated beta, and a truncated Erlang (type) distribu-
tions are given. In some examples, related results to the uniformly minimum
variance unbiased estimation are also described.

Tsukuba, Japan Masafumi Akahira
April 2017
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2.4 Bias-Adjusted MLE ĥML� of h When c is Unknown. . . . . . . . . . . 10
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3.3 MLE ĥc;mML of h When Truncation Parameters c

and m are Known . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Bias-Adjusted MLE ĥML� of h When c and m
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Chapter 1
Asymptotic Estimation for Truncated
Exponential Families

Multiparameter models are considered, truncated exponential families of distrib-
utions are defined, and basic notions to compare asymptotically models through
estimators are introduced.

1.1 Models with Nuisance Parameters and Their
Differences

In parametric models with nuisance parameters, the asymptotic estimation of the
parameter of interest was discussed in the regular case (i.e., under the case when
the suitable regularity conditions hold) (see, e.g., Barndorff-Nielsen and Cox 1994;
Lehmann 1999). The asymptotic theory in regular parametric models with nuisance
parameters was discussed by Barndorff-Nielsen and Cox (1994). In higher order
asymptotics, under suitable regularity conditions, the concept of asymptotic defi-
ciency discussed by Hodges and Lehmann (1970) is useful in comparing asymptoti-
cally efficient estimators in the presence of nuisance parameters. Indeed, the asymp-
totic deficiencies of some asymptotically efficient estimators relative to themaximum
likelihood estimator (MLE) based on the pooled samplewere obtained in the presence
of nuisance parameters (see, e.g., Akahira and Takeuchi 1982 and Akahira 1986). In
the discussion, the notion of orthogonality took an important role (see also Cox and
Reid 1987). In order to discriminate asymptotically efficient estimators, the concept
of asymptotic deficiency was used as follows. For two estimators θ̂ (1)

n and θ̂ (2)
n of a

parameter θ based on a sample of size n, let dn be an additional size of sample needed
such that θ̂ (2)

n is asymptotically equivalent to θ̂ (1)
n in some sense. If limn→∞ dn exists,

it is called the asymptotic deficiency of θ̂ (2)
n relative to θ̂ (1)

n , which is useful in com-
paring asymptotically efficient estimators up to the higher order and investigated by
Akahira (1981, 1986, 1992) from the viewpoint of the equivalence of the asymptotic
distributions of estimators up to the higher order, under suitable regularity conditions.

© The Author(s) 2017
M. Akahira, Statistical Estimation for Truncated Exponential Families,
JSS Research Series in Statistics, DOI 10.1007/978-981-10-5296-5_1
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2 1 Asymptotic Estimation for Truncated Exponential Families

For example, the asymptotic deficiency is shown to be closely related to the difference
between the second-order asymptotic variances of estimators.

In the monograph, we consider a parametric model in which regular and non-
regular structures aremixed. Let X1, X2, . . . , Xn, . . . be a sequence of independently
and identically distributed (i.i.d.) random variables with a density f (x; θ), where x ∈
R

1, θ = (θ1, . . . , θk) is a vector-valued parameter in Rk . Now, let θ1 be a parameter
to be interested and ϑ := (θ2, . . . , θk) is a vector-valued nuisance parameter in
R

k−1. Here, θ1 and ϑ are considered as parameters representing the regular and non-
regular structures, respectively. Then, we consider two models. When ϑ is known,
i.e., ϑ = ϑ0 := (θ20, . . . , θk0), we denote the model by M0 := M(θ1;ϑ0). When
ϑ is unknown, we denote the model by M := M(θ1;ϑ). So, we consider such an
appropriate way to estimate θ1 as a maximum likelihood method, under the models
M0 and M , and denote it by θ̂10 and θ̂11, respectively. Note that θ̂11 depends on the
estimator of ϑ . Suppose that the maximum order of consistency of θ̂10 and θ̂11 is

√
n

and, for each i = 2, . . . , k, that of the estimator θ̂i of θi is n (see Akahira 1975, 1995,
Akahira andTakeuchi 1981, 1995). Let T10 := √

n(θ̂10−θ1) and T11 := √
n(θ̂11−θ1).

Suppose that the asymptotic means and variances of T10 under M0 and T11 under M
have expansions of the following type:

Eθ1,ϑ0(T10) = b10(θ1, ϑ0)√
n

+ O

(
1

n
√
n

)
, (1.1)

Eθ1,ϑ (T11) = b11(θ1, ϑ)√
n

+ O

(
1

n
√
n

)
, (1.2)

Vθ1,ϑ0(T10) = v(θ1, ϑ0) + c10(θ1, ϑ0)

n
+ O

(
1

n
√
n

)
, (1.3)

Vθ1,ϑ (T11) = v(θ1, ϑ) + c11(θ1, ϑ)

n
+ O

(
1

n
√
n

)
(1.4)

respectively. Here and henceforth, the asymptotic mean and asymptotic variance are
based on the definition of asymptotic expectation (see Akahira and Takeuchi 1987).
Suppose that b10(θ1, ϑ) = b10(θ1, θ2, . . . , θk) and b11(θ1, ϑ) = b11(θ1, θ2, . . . , θk)
are twice continuously differentiable in (θ1, θ2, . . . , θk). Let θ̂∗

11 be a bias-adjusted
estimator of θ1 such that

θ̂∗
11 = θ̂11 − 1

n

{
b11(θ̂11, ϑ̂) − b10(θ̂11, ϑ̂)

}
,

where ϑ̂ = (θ̂2, . . . , θ̂k). Putting T ∗
11 = √

n(θ̂∗
11 − θ1), we have from (1.1), (1.2), and

(1.4)
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Eθ1,ϑ (T ∗
11) = b10(θ1, ϑ)√

n
+ O

(
1

n
√
n

)
,

Vθ1,ϑ (T ∗
11) = v(θ1, ϑ) + c∗

11(θ1, ϑ)

n
+ O

(
1

n
√
n

)
,

hence, it follows from (1.2) that the asymptotic bias of T ∗
11 is equal to that of T10 in

order n−1/2, where

c∗
11(θ1, ϑ) = c11(θ1, ϑ) − 2v(θ1, ϑ){(∂/∂θ1)b11(θ1, ϑ) − (∂/∂θ1)b10(θ1, ϑ)}.

Then, the second-order asymptotic loss of θ̂∗
11 relative to θ̂10 is defined by

dn(θ̂
∗
11, θ̂10) := n

v(θ1, ϑ0)

{
Vθ1,ϑ0(T

∗
11) − Vθ1,ϑ0(T10)

}

=c∗
11(θ1, ϑ0) − c10(θ1, ϑ0)

v(θ1, ϑ0)
+ o(1) (1.5)

as n → ∞, which is derived from (1.3) and also corresponds to the asymptotic
deficiency. The ratio of the asymptotic variance of T ∗

11 to that of T10 up to the order
o(1/n) is given by

Rn(θ̂
∗
11, θ̂10) := Vθ1,ϑ0(T

∗
11)

Vθ1,ϑ0(T10)
= 1 + c∗

11(θ1, ϑ0) − c10(θ1, ϑ0)

nv(θ1, ϑ0)
+ o

(
1

n

)
(1.6)

as n → ∞. It is easily seen from (1.5) and (1.6) that

Rn(θ̂
∗
11, θ̂10) = 1 + 1

n
dn(θ̂

∗
11, θ̂10) + o

(
1

n

)

as n → ∞.
Here, we consider the models M(θ1, ϑ0) and M(θ1, ϑ) and their asymptotic mod-

els M(θ̂10, ϑ0) and M(θ̂∗
11, ϑ). The asymptotic model M(θ̂10, ϑ0) is directly obtained

from the model M(θ1, ϑ0), but the asymptotic model M(θ̂∗
11, ϑ0) is given via the

asymptotic model M(θ̂∗
11, ϑ) of M(θ1, ϑ). Then, the difference between the asymp-

totic models M(θ̂10, ϑ0) and M(θ̂∗
11, ϑ0) is represented by (1.5) and (1.6) up to the

second order, through the estimator (see Fig. 1.1, Chaps. 2 and 3).
In a similar way to the above, we can conversely consider θ2 in ϑ as a parameter

to be interested and the others in ϑ and θ1 as nuisance parameters (see Chaps. 4–6).

http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_6


4 1 Asymptotic Estimation for Truncated Exponential Families

Fig. 1.1 Difference between asymptotic models M(θ̂10, ϑ0) and M(θ̂∗
11, ϑ0)

1.2 One-Sided Truncated Exponential Family

In a similar way to Bar-Lev (1984), we consider a distribution Pθ,γ , having density

f (x; θ, γ ) =
{

a(x)eθu(x)

b(θ,γ )
for c < γ ≤ x < d,

0 otherwise
(1.7)

with respect to the Lebesgue measure, where −∞ ≤ c < d ≤ ∞, a(·) is a
nonnegative-valued and continuous almost surely, and u(·) is absolutely continu-
ous with du(x)/dx �≡ 0 over the interval (γ, d). Let

Θ(γ ) :=
{
θ

∣∣∣ 0 < b(θ, γ ) :=
∫ d

γ

a(x)eθu(x)dx < ∞
}

(1.8)

for γ ∈ (c, d). Then, it is shown that for any γ1, γ2 ∈ (c, d) with γ1 < γ2,
Θ(γ1) ⊂ Θ(γ2). Assume that for any γ ∈ (c, d), Θ ≡ Θ(γ ) is a non-empty
open interval. A family Po := {Pθ,γ | θ ∈ Θ, γ ∈ (c, d)} of distributions Pθ,γ

with a natural parameter θ and a truncation parameter γ is called a one-sided trun-
cated exponential family (oTEF) of distributions; to be precise,Po may be called a
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lower-truncated exponential family of distributions. Suppose that a random variable
X is distributed according to Pθ,γ inPo. For example, a lower-truncated exponential,
a lower-truncated normal and Pareto distributions belong to the oTEF. If γ is known,
thenPo is a regular exponential family of distributions. Letting Y = −X , we easily
see that Y constitutes an upper-truncated exponential family of distributions.

For a oTEF Po with the density (1.7), the vector (θ1, θ2) and ϑ in Sect. 1.1 are
regarded as (θ, γ ) and γ . Themaximum likelihood estimation of θ is discussed when
γ is a nuisance parameter in Chap.2, and the estimation of a truncation parameter γ

is also done when θ is a nuisance parameter in Chaps. 4 and 6.

1.3 Two-Sided Truncated Exponential Family

In a similar way to the previous section, we consider a distribution Pθ,γ,ν , having
density

f (x; θ, γ, ν) =
{

a(x)eθu(x)

b(θ,γ,ν)
for c < γ ≤ x ≤ ν < d,

0 otherwise
(1.9)

with respect to the Lebesgue measure, where −∞ ≤ c < d ≤ ∞, a(·) is a
nonnegative-valued and continuous almost surely, and u(·) is absolutely continu-
ous with du(x)/dx �≡ 0 over the interval (γ, ν) for γ, ν ∈ (c, d) and γ < ν. Let

Θ(γ, ν) :=
{
θ

∣∣∣ 0 < b(θ, γ, ν) :=
∫ ν

γ

a(x)eθu(x)dx < ∞
}

(1.10)

for γ, ν ∈ (c, d) and γ < ν. Assume that for γ, ν ∈ (c, d)with γ < ν,Θ ≡ Θ(γ, ν)

is a non-empty open interval. A familyPt := {Pθ,γ,ν | θ ∈ Θ, γ, ν ∈ (c, d), γ < ν}
of distributions Pθ,γ,ν with a natural parameter θ and truncation parameters γ, ν is
called a two-sided truncated exponential family (tTEF) of distributions. Here, γ and
ν are said to be lower and upper truncation parameters. If γ and ν are known, thenPt

is a regular exponential family of distributions. For example, a two-sided truncated
exponential, a two-sided truncated normal and an upper-truncated Pareto distribu-
tions belong to the tTEF. The maximum likelihood estimation of θ is discussed when
γ and ν are nuisance parameters in Chap.3, and the estimation of a truncation para-
meters is also donewhen θ and another truncation parameter are nuisance parameters
in Chap.5.

http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_6
http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_5
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Chapter 2
Maximum Likelihood Estimation
of a Natural Parameter for a One-Sided TEF

For a one-sided truncated exponential family (oTEF) of distributions with a natural
parameter θ and a truncation parameter γ as a nuisance parameter, the maximum
likelihood estimators (MLEs) θ̂

γ

ML and θ̂ML of θ for known γ and unknown γ and the
maximum conditional likelihood estimator (MCLE) θ̂MCL of θ are asymptotically
compared up to the second order.

2.1 Introduction

In the presence of nuisance parameters, the asymptotic loss of the maximum like-
lihood estimator of an interest parameter was discussed by Akahira and Takeuchi
(1982) and Akahira (1986) under suitable regularity conditions from the viewpoint
of higher order asymptotics. On the other hand, in statistical estimation in multipara-
meter cases, the conditional likelihood method is well known as a way of eliminating
nuisance parameters (see, e.g., Basu 1997). The consistency, asymptotic normality,
and asymptotic efficiency of the MCLE were discussed by Andersen (1970), Huque
and Katti (1976), Bar-Lev and Reiser (1983), Bar-Lev (1984), Liang (1984), and
others. Further, in higher order asymptotics, asymptotic properties of the MCLE of
an interest parameter in the presence of nuisance parameters were also discussed by
Cox and Reid (1987) and Ferguson (1992) in the regular case. However, in the non-
regular case when the regularity conditions do not necessarily hold, the asymptotic
comparison of asymptotically efficient estimators has not been discussed enough in
the presence of nuisance parameters in higher order asymptotics yet.

For a truncated exponential family of distributions which is regarded as a typical
non-regular case, we consider a problem of estimating a natural parameter θ in the
presence of a truncation parameter γ as a nuisance parameter. Let θ̂

γ

ML and θ̂ML be

© The Author(s) 2017
M. Akahira, Statistical Estimation for Truncated Exponential Families,
JSS Research Series in Statistics, DOI 10.1007/978-981-10-5296-5_2
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8 2 Maximum Likelihood Estimation of a Natural Parameter for a One-Sided TEF

the MLEs of θ based on a sample of size n when γ is known and γ is unknown,
respectively. Let θ̂MCL be the MCLE of θ . Then, it was shown by Bar-Lev (1984) that
theMLEs θ̂ γ

ML,θ̂ML and theMCLE θ̂MCL have the same asymptotic normal distribution,
hence they are shown to be asymptotically equivalent in the sense of having the same
asymptotic variance. A similar result can be derived from the stochastic expansions
of the MLEs θ̂

γ

ML and θ̂ML in Akahira and Ohyauchi (2012). But, θ̂
γ

ML for known γ

may be asymptotically better than θ̂ML for unknown γ in the higher order, because
θ̂

γ

ML has the full information on γ . Otherwise, the existence of a truncation parameter
γ as a nuisance parameter is meaningless. So, it is a quite interesting problem to
compare asymptotically them up to the higher order.

In this chapter, following mostly the paper by Akahira (2016), we compare them
up to the second order, i.e., the order of n−1, in the asymptotic variance. We show
that a bias-adjusted MLE θ̂ML∗ and θ̂MCL are second order asymptotically equivalent,
but they are asymptotically worse than θ̂

γ

ML in the second order. We thus calculate
the second-order asymptotic losses on the asymptotic variance among them. Several
examples are also given.

2.2 Preliminaries

Suppose that X1,X2, . . . ,Xn, . . . is a sequence of independent and identically dis-
tributed (i.i.d.) random variables according to Pθ,γ in a oTEF Po with the density
(1.7). In Bar-Lev (1984), the asymptotic behavior of the MLE θ̂ML and MCLE θ̂MCL

of a parameter θ in the presence of γ as a nuisance parameter was compared and
also done with that of the MLE θ̂

γ

ML of θ when γ was known. As the result, it was
shown there that, for a sample of size n(≥ 2), the θ̂ML and θ̂MCL of θ existed with
probability 1 and were given as the unique roots of the appropriate maximum likeli-
hood equations. These two estimators were also shown to be strongly consistent for
θ with the limiting distribution which coincides with that of the MLE θ̂

γ

ML of θ when
γ was known. Denote a random vector (X1, . . . ,Xn) by X and let X(1) ≤ · · · ≤ X(n)

be the corresponding order statistics of a random vector X. Then, the density (1.7)
is considered to belong to a regular exponential family of distributions with a nat-
ural parameter θ for any fixed γ , hence log b(θ, γ ) is strictly convex and infinitely
differentiable in θ ∈ Θ and

λj(θ, γ ) := ∂ j

∂θ j
log b(θ, γ ) (2.1)

is the j th cumulant corresponding to (1.7) for j = 1, 2, . . . .

http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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In the subsequent sections, we obtain the stochastic expansions of θ̂
γ

ML, θ̂ML, and
θ̂MCL up to the second order, i.e., op(n−1). We get their second-order asymptotic
variances and derive the second-order asymptotic losses on the asymptotic variance
among them. The proofs of theorems are located in Appendixes A1 and A2.

2.3 MLE θ̂
γ
ML of a Natural Parameter θ When a Truncation

Parameter γ is Known

For given x = (x1, . . . , xn) satisfying γ ≤ x(1) := min1≤i≤n xi and x(n) :=
max1≤i≤n xi < d, the likelihood function of θ is given by

Lγ (θ; x) := 1

bn(θ, γ )

{
n∏

i=1

a(xi)

}
exp

{
θ

n∑
i=1

u(xi)

}
.

Then, the likelihood equation is

1

n

n∑
i=1

u(Xi) − λ1(θ, γ ) = 0. (2.2)

Since there exists a unique solution of Eq. (2.2) with respect to θ , we denote it by θ̂
γ

ML
which is the MLE of θ (see, e.g., Barndorff-Nielsen (1978) and Bar-Lev (1984)). Let
λi = λi(θ, γ ) (i = 2, 3, 4) and put

Z1 := 1√
λ2n

n∑
i=1

{u(Xi) − λ1} , Uγ := √λ2n
(
θ̂

γ

ML − θ
)

.

Then, we have the following.

Theorem 2.3.1 For the oTEF Po of distributions with densities of the form (1.7)
with a natural parameter θ and a truncation parameter γ , let θ̂

γ

ML be the MLE of θ

when γ is known. Then, the stochastic expansion of Uγ is given by

Uγ = Z1 − λ3

2λ3/2
2

√
n
Z2
1 + 1

2n

(
λ2
3

λ3
2

− λ4

3λ2
2

)
Z3
1 + Op

(
1

n
√
n

)
,

and the second-order asymptotic mean and variance are given by

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Eθ

(
Uγ

) = − λ3

2λ3/2
2

√
n

+ O

(
1

n
√
n

)
,

Vθ

(
Uγ

) = 1 + 1

n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+ O

(
1

n
√
n

)
,

respectively.

Since Uγ = Z1 + op(1), it is seen that Uγ is asymptotically normal with mean 0
and variance 1, which coincides with the result of Bar-Lev (1984).

2.4 Bias-Adjusted MLE θ̂ML∗ of θ When γ is Unknown

For given x = (x1, . . . , xn) satisfying γ ≤ x(1) and x(n) < d, the likelihood function
of θ and γ is given by

L(θ, γ ; x) = 1

bn(θ, γ )

{
n∏

i=1

a(xi)

}
exp

{
θ

n∑
i=1

u(xi)

}
. (2.3)

Let θ̂ML and γ̂ML be the MLEs of θ and γ , respectively. From (2.3), it is seen that
γ̂ML = X(1) and L(θ̂ML,X(1);X) = supθ∈Θ L(θ,X(1);X), hence θ̂ML satisfies the
likelihood equation

0 = 1

n

n∑
i=1

u(Xi) − λ1(θ̂ML,X(1)), (2.4)

where X = (X1, · · · ,Xn). Let λ2 = λ2(θ, γ ) and put Û := √
λ2n(θ̂ML − θ) and

T(1) := n(X(1) − γ ). Then, we have the following.

Theorem 2.4.1 For the oTEF Po of distributions with densities of the form (1.7)
with a natural parameter θ and a truncation parameter γ , let θ̂ML be the MLE of θ

when γ is unknown, and θ̂ML∗ be a bias-adjusted MLE such that θ̂ML has the same
asymptotic bias as that of θ̂ γ

ML, i.e.,

θ̂ML∗ = θ̂ML + 1

k(θ̂ML,X(1))λ2(θ̂ML,X(1))n

{
∂λ1

∂γ

(
θ̂ML,X(1)

)}
, (2.5)

where k(θ, γ ) := a(γ )eθu(γ )/b(θ, γ ). Then, the stochastic expansion of Û ∗ :=√
λ2n(θ̂ML∗ − θ) is given by

Û ∗ = Û + 1

k
√

λ2n

(
∂λ1

∂γ

)
− 1

kλ2n

{
δ + 1

k

(
∂k

∂θ

∂λ1

∂γ

)}
Z1 + Op

(
1

n
√
n

)
,

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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where k = k(θ, γ ),

δ = λ3

λ2

(
∂λ1

∂γ

)
− ∂λ2

∂γ
,

Û = Z1 − λ3

2λ3/2
2

√
n
Z2
1 − 1√

λ2n

(
∂λ1

∂γ

)
T(1) + δ

λ2n
Z1T(1) + 1

2n

(
λ2
3

λ3
2

− λ4

3λ2
2

)
Z3
1

+ Op

(
1

n
√
n

)
,

and the second-order asymptotic mean and variance are given by

Eθ,γ (Û ∗) = − λ3

2λ3/2
2

√
n

+ O

(
1

n
√
n

)
,

Vθ,γ (Û ∗) = 1 + 1

n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+ 1

λ2n
{u(γ ) − λ1}2 + O

(
1

n
√
n

)
,

respectively.

Since Û = Û ∗ = Z1 + op(1), it is seen that Û and Û ∗ are asymptotically normal
with mean 0 and variance 1 in the first order, which coincides with the result of Bar-
Lev (1984). But, it is noted from Theorems2.3.1, and 2.4.1 that there is a difference
between Vθ (Uγ ) and Vθ,γ (Û ∗) in the second order, i.e., the order n−1, which is
discussed in Sect. 2.6. It is also remarked that the asymptotic distribution of T(1) is
exponential in the first order and given up to the second order (see Lemma2.9.1 in
later Appendix A1).

2.5 MCLE θ̂MCL of θ When γ is Unknown

First, it is seen from (1.7) that there exists a random permutation, say Y2, · · · ,Yn of
the (n − 1)! permutations of (X(2), . . . ,X(n)) such that conditionally on X(1) = x(1),
Y2, . . . ,Yn are i.i.d. random variables according to a distribution with density

g(y; θ, x(1)) = a(y)eθu(y)

b(θ, x(1))
for x(1) ≤ y < d

with respect to the Lebesgue measure (see Quesenberry (1975) and Bar-Lev (1984)).
For given X(1) = x(1), the conditional likelihood function of θ for y = (y2, . . . , yn)
satisfying x(1) ≤ yi < d (i = 2, . . . , n) is

L(θ; y|x(1)) = 1

bn−1(θ, x(1))

{
n∏

i=2

a(yi)

}
exp

{
θ

n∑
i=2

u(yi)

}
.

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Then, the likelihood equation is

1

n − 1

n∑
i=2

u(yi) − λ1(θ, x(1)) = 0. (2.6)

Since there exists a unique solution on θ of (2.6), we denote it by the MCLE θ̂MCL,
i.e., the value of θ for which L(θ; y|x(1)) attains supremum. Let λ̃i := λi(θ, x(1))

(i = 1, 2, 3, 4) and put

Z̃1 := 1√
λ̃2(n − 1)

n∑
i=2

{
u(Yi) − λ̃1

}
, Ũ0 := √λ2n

(
θ̂MCL − θ

)
.

Then, we have the following.

Theorem 2.5.1 For a oTEFPo of distributions with densities of the form (1.7) with
a natural parameter θ and a truncation parameter γ , let θ̂MCL be the MCLE of θ

when γ is unknown. Then, the stochastic expansion of Ũ0 is given by

Ũ0 = Z̃1− λ̃3

2λ̃3/2
2

√
n
Z̃2
1 + 1

2n

{
1 − 1

λ2

(
∂λ2

∂γ

)
T(1)

}
Z̃1

+ 1

2n

(
λ̃2
3

λ̃3
2

− λ̃4

3λ̃2
2

)
Z̃3
1 + Op

(
1

n
√
n

)
,

and the second-order asymptotic mean and variance are given by

Eθ,γ

(
Ũ0

)
= − λ3

2λ3/2
2

√
n

+ O

(
1

n
√
n

)
,

Vθ,γ

(
Ũ0

)
= 1 + 1

n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+ 1

λ2n
{u(γ ) − λ1}2 + O

(
1

n
√
n

)
.

Remark 2.5.1 From Theorems2.4.1, and 2.5.1, it is seen that the second-order
asymptotic mean and variance of Ũ0 are the same as those of Û ∗ = √

λ2n(θ̂ML∗ −θ).
It is noted that θ̂MCL has an advantage over θ̂ML in the sense of no need of the bias-
adjustment.

Remark 2.5.2 As is seen from Theorems2.3.1, 2.4.1, and 2.5.1, the first terms of
order 1/n in Vθ (Uγ ), Vθ,γ (Û ∗), and Vθ,γ (Ũ0) result from the regular part of the
density (1.7), which coincides with the fact that the distribution with (1.7) is consid-
ered to belong to a regular exponential family of distributions when γ is known. The
second terms of order 1/n in Vθ,γ (Û ∗) and Vθ,γ (Ũ0) follow from the non-regular

http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1


2.5 MCLE θ̂MCL of θ When γ is Unknown 13

(i.e., truncation) part of (1.7) when γ is unknown, whichmeans a ratio of the variance
λ2 = Vθ,γ (u(X)) = Eθ,γ [{u(X) − λ1}2] to the distance {u(γ ) − λ1}2 from the mean
λ1 of u(X) to u(x) at x = γ .

2.6 Second-Order Asymptotic Comparison Among θ̂
γ
ML,

θ̂ML∗ , and θ̂MCL

From the results in the previous sections, we can asymptotically compare the estima-
tors θ̂

γ

ML, θ̂ML∗ , and θ̂MCL using their second-order asymptotic variances as follows.

Theorem 2.6.1 For a oTEFPo of distributions with densities of the form (1.7) with
a natural parameter θ and a truncation parameter γ , let θ̂ γ

ML, θ̂ML∗ , and θ̂MCL be the
MLE of θ when γ is known, the bias-adjusted MLE of θ when γ is unknown and the
MCLE of θ when γ is unknown, respectively. Then, the bias-adjusted MLE θ̂∗

ML and
the MCLE θ̂MCL are second order asymptotically equivalent in the sense that

dn(θ̂ML∗ , θ̂MCL) := n
{
Vθ,γ (Û ∗) − Vθ,γ (Ũ0)

}
= o(1) (2.7)

as n → ∞ and they are second order asymptotically worse than θ̂
γ

ML with the
following second-order asymptotic losses of θ̂ML∗and θ̂MCL relative to θ̂

γ

ML:

dn(θ̂ML∗ , θ̂
γ

ML) := n
{
Vθ,γ (Û ∗) − Vθ (Uγ )

}
= {u(γ ) − λ1}2

λ2
+ o(1), (2.8)

dn(θ̂MCL, θ̂
γ

ML) := n
{
Vθ,γ (Ũ0) − Vθ (Uγ )

}
= {u(γ ) − λ1}2

λ2
+ o(1) (2.9)

as n → ∞, respectively.

The proof is straightforward from Theorems2.3.1, 2.4.1, and 2.5.1.

Remark 2.6.1 It is seen from (1.6) and (2.8) that the ratio of the asymptotic variance
of Û ∗ to that of Uγ is given by

Rn(θ̂ML∗ , θ̂
γ

ML) = 1 + {u(γ ) − λ1}2
λ2n

+ o

(
1

n

)
,

and similarly from (1.6) and (2.9)

Rn(θ̂MCL, θ̂
γ

ML) = 1 + {u(γ ) − λ1}2
λ2n

+ o

(
1

n

)
.

From the consideration of models in Sect. 1.1, using (1.5), (1.6), and (2.8) we see that
the difference between the asymptotic models M(θ̂ML∗ , γ ) and M(θ̂

γ

ML, γ ) is given

http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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by dn(θ̂ML∗ , θ̂
γ

ML) or Rn(θ̂ML∗ , θ̂
γ

ML) up to the second order, through the MLE of θ . In
a similar way to the above, the difference between M(θ̂MCL, γ ) and M(θ̂

γ

MCL, γ ) is
given by dn(θ̂MCL, θ̂

γ

ML) or Rn(θ̂MCL, θ̂
γ

ML) up to the second order.

2.7 Examples

Examples on the second-order asymptotic losses of the estimators are given for a
lower-truncated exponential, a lower-truncated normal, and Pareto, a lower-truncated
beta and a lower-truncated Erlang type distributions.

Example 2.7.1 (Lower-truncated exponential distribution) Let c = −∞,d = ∞,
a(x) = 1, and u(x) = −x for −∞ < γ ≤ x < ∞ in the density (1.7). Since
b(θ, γ ) = e−θγ /θ for θ ∈ Θ = (0,∞), it follows from (2.1) that

λ1 = ∂

∂θ
log b(θ, γ ) = −γ − 1

θ
,

λ2 = ∂2

∂θ2
log b(θ, γ ) = 1

θ2
, k(θ, γ ) = θ.

From (2.2) and (2.4)–(2.6), we have

θ̂
γ

ML = 1/(X̄ − γ ), θ̂ML = 1/(X̄ − X(1)),

θ̂ML∗ = θ̂ML − 1

n
θ̂ML, θ̂MCL = 1

/(
1

n − 1

n∑
i=2

X(i) − X(1)

)
.

Note that θ̂ML∗ = θ̂MCL. In this case, the first part in Theorem2.6.1 is trivial, since
dn(θ̂ML∗ , θ̂MCL) = 0. From Theorem2.6.1, we obtain the second-order asymptotic
loss

dn(θ̂ML∗ , θ̂
γ

ML) = dn(θ̂MCL, θ̂
γ

ML) = 1 + o(1)

as n → ∞. Note that the loss is independent of γ up to the order o(1). From
Remark2.6.1, we have the ratio

Rn(θ̂ML∗, θ̂
γ

ML) = Rn(θ̂MCL, θ̂
γ

ML) = 1 + 1

n
+ o

(
1

n

)
.

In this case, we have the uniformly minimum variance unbiased (UMVU) estimator

θ̂
γ

UMVU = (n − 1)

/(
n∑

i=1

Xi − nγ

)
,

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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where γ is known (see Voinov and Nikulin 1993). Then,

θ̂
γ

ML =
(
1 + 1

n − 1

)
θ̂

γ

UMVU ,

hence θ̂
γ

ML is not unbiased for any fixed n. When γ is unknown, we obtain the UMVU
estimator

θ̂UMVU = (n − 2)

/{
n∑

i=2

X(i) − (n − 1)X(1)

}

which is derived from the formula in the lower-truncated exponential distribution of
a general type discussed by Lwin (1975) and Voinov and Nikulin (1993). Then,

θ̂ML∗ = θ̂MCL =
(
1 + 1

n − 2

)
θ̂UMVU ,

hence θ̂ML∗ and θ̂MCL are not unbiased for any fixed n. Note that θ̂ML∗ and θ̂MCL are
asymptotically compared with θ̂

γ

ML after such a bias adjustment that θ̂ML has the same
asymptotic bias given in Theorem2.3.1 as θ̂

γ

ML. Since λ2 = 1/θ2,

Vθ (θ̂
γ

UMVU ) = θ2

n − 2
, Vθ,γ (θ̂UMVU ) = θ2

n − 3
,

we have the second-order asymptotic loss

dn(θ̂UMVU , θ̂
γ

UMVU ) = n

{
Vθ,γ

(√
n

θ
(θ̂UMVU − θ)

)
− Vθ

(√
n

θ
(θ̂

γ

UMVU − θ)

)}

= n2

(n − 2)(n − 3)
= 1 + o(1)

as n → ∞.

Example 2.7.2 (Lower-truncated normal distribution) Let c = −∞, d = ∞,
a(x) = e−x2/2 and u(x) = x for −∞ < γ ≤ x < ∞ in the density (1.7). Since

b(θ, γ ) = √
2πeθ2/2Φ(θ − γ )

for θ ∈ Θ = (−∞,∞), it follows from (2.1) and Theorem2.4.1 that

λ1(θ, γ ) = θ + ρ(θ − γ ),
∂λ1

∂γ
(θ, γ ) = (θ − γ )ρ(θ − γ ) + ρ2(θ − γ ),

λ2(θ, γ ) = 1 − (θ − γ )ρ(θ − γ ) − ρ2(θ − γ ), k(θ, γ ) = ρ(θ − γ ),

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Table 2.1 Values of dn(θ̂ML∗ , θ̂ γ
ML) and Rn(θ̂ML∗ , θ̂ γ

ML) for τ = θ − γ = 2, 4, 6

τ dn(θ̂ML∗ , θ̂ γ
ML) Rn(θ̂ML∗ , θ̂ γ

ML)

2 4.7640 + o(1) 1 + 4.7640

n
+ o

(
1

n

)

4 9.1486 + o(1) 1 + 9.1486

n
+ o

(
1

n

)

6 16.0096 + o(1) 1 + 16.0096

n
+ o

(
1

n

)

where ρ(t) := φ(t)/Φ(t) with Φ(x) = ∫ x
−∞ φ(t)dt and φ(t) = (1/

√
2π)e−t2/2 for

−∞ < t < ∞. Then, it follows from (2.2), (2.4), and (2.6) that the solutions of θ of
the following equations

θ + ρ(θ − γ ) = X̄, θ + ρ(θ − X(1)) = X̄,

θ + ρ(θ − X(1)) = 1

n − 1

n∑
i=2

X(i)

become θ̂
γ

ML, θ̂ML, and θ̂MCL, respectively, where X̄ = (1/n)
∑n

i=1 Xi. From (2.5), the
bias-adjusted MLE is given by

θ̂ML∗ = θ̂ML + θ̂ML − X(1) + ρ(θ̂ML − X(1))

1 − (θ̂ML − X(1))ρ(θ̂ML − X(1)) − ρ2(θ̂ML − X(1))
.

From Theorem2.6.1, we obtain the second-order asymptotic losses

dn(θ̂ML∗ , θ̂MCL) = o(1),

dn(θ̂ML∗ , θ̂
γ

ML) = dn(θ̂MCL, θ̂
γ

ML) = {θ − γ + ρ(θ − γ )}2
1 − (θ − γ )ρ(θ − γ ) − ρ2(θ − γ )

+ o(1)

as n → ∞.
When τ := θ − γ = 2, 4, 6, the value of second-order asymptotic loss

dn(θ̂ML∗ , θ̂
γ

ML) and the ratio Rn(θ̂ML∗ , θ̂
γ

ML) up to the order 1/n are obtained from
(2.8) and Remark2.6.1 (see Table2.1 and Fig. 2.1).

Example 2.7.3 (Pareto distribution) Let c = 0, d = ∞, a(x) = 1/x, and u(x) =
− log x for 0 < γ ≤ x < ∞ in the density (1.7). Then, b(θ, γ ) = 1/(θγ θ ) for
θ ∈ Θ = (0,∞). Letting t = log x and γ0 = log γ , we see that (1.7) becomes

f (t; θ, γ0) =
{

θeθγ0e−θ t for t ≥ γ0,

0 for t < γ0.

Hence, the Pareto case is reduced to the truncated exponential one in Example2.7.1.
Replacing X̄ and X(i) (i = 1, . . . , n) by logX := (1/n)

∑n
i=1 logXi and logX(i)

http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Fig. 2.1 Graph of the ratio Rn(θ̂ML∗ , θ̂ γ
ML) up to the order 1/n for τ = θ − γ = 2, 4, 6

(i = 1, . . . , n), respectively, in Example2.7.1, we have the same results including
the UMVU estimation as those in Example2.7.1. For Pareto distributions, see also
Arnold (2015).

Example 2.7.4 (Lower-truncated beta distribution) Let c = 0, d = 1, a(x) = x−1

and u(x) = log x for 0 < γ ≤ x < 1 in the density (1.7). Since b(θ, γ ) = θ−1(1−γ θ )

for θ ∈ Θ = (0,∞), it follows from (2.1) and Theorem2.4.1 that

λ1(θ, γ ) = −1

θ
− (log γ )γ θ

1 − γ θ
,

∂λ1

∂γ
(θ, γ ) = − γ θ−1

(1 − γ θ )2
(1 − γ θ + θ log γ ),

λ2(θ, γ ) = 1

θ2
− (log γ )2γ θ

(1 − γ θ )2
, k(θ, γ ) = θγ θ−1

1 − γ θ
.

Then, it follows from (2.2), (2.4), and (2.6) that the solution of θ of the following
equations

1

n

n∑
i=1

logXi + 1

θ
+ (log γ )γ θ

1 − γ θ
= 0,

1

n

n∑
i=1

logXi + 1

θ
+ (logX(1))Xθ

(1)

1 − Xθ
(1)

= 0,

1

n − 1

n∑
i=2

logX(i) + 1

θ
+ (logX(1))Xθ

(1)

1 − Xθ
(1)

= 0

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Table 2.2 Values of dn(θ̂ML∗ , θ̂ γ
ML) and Rn(θ̂ML∗ , θ̂ γ

ML) for θ = 2 and γ = 1/2, 1/3, 1/5

γ dn(θ̂ML∗ , θ̂ γ
ML) Rn(θ̂ML∗ , θ̂ γ

ML)

1/2 4.9346 + o(1) 1 + 4.9346

n
+ o

(
1

n

)

1/3 6.7471 + o(1) 1 + 6.7471

n
+ o

(
1

n

)

1/5 10.0611 + o(1) 1 + 10.0611

n
+ o

(
1

n

)

becomes θ̂
γ

ML, θ̂ML, and θ̂MCL, respectively. From (2.5), the bias-adjusted MLE of θ

is given by

θ̂ML∗ = θ̂ML − θ̂ML(1 − X θ̂ML
(1) )(1 − X θ̂ML

(1) + θ̂ML logX(1))

n{(1 − X θ̂ML
(1) )2 − θ̂2

MLX
θ̂ML
(1) (logX(1))2}

.

From Theorem2.6.1, we obtain the second-order asymptotic losses

dn(θ̂ML∗ , θ̂MCL) = o(1),

dn(θ̂ML∗ , θ̂
γ

ML) = dn(θ̂MCL, θ̂
γ

ML) = (1 − γ θ + θ log γ )2

(1 − γ θ )2 − θ2γ θ (log γ )2
.

When θ = 2 and γ = 1/2, 1/3, 1/5, the values of second-order asymptotic loss
dn(θ̂ML∗ , θ̂

γ

ML) and the ratio Rn(θ̂ML∗ , θ̂
γ

ML) up to the order 1/n are obtained from (2.8)
and Remark2.6.1 (see Table2.2 and Fig. 2.2).

Example 2.7.5 (Lower-truncated Erlang type distribution) Let c = 0, d =
∞, a(x) = |x|j−1 and u(x) = −|x| for−∞ < γ ≤ x < ∞ in the density (1.7), where
j = 1, 2, . . . . Note that the distribution is a lower-truncated Erlang distribution when
γ > 0 and a one-sided truncated bilateral exponential distribution when j = 1. Since
for each j = 1, 2, . . . ,

bj(θ, γ ) =
∫ ∞

γ

|x|j−1e−θ |x|dx,

it follows that Θ = (0,∞). Let j be arbitrarily fixed in {1, 2, . . . } and λji(θ, γ ) =
(∂ i/∂θ i) log bj(θ, γ ) (i = 1, 2, . . . ). Since ∂bj/∂θ = −bj+1, it follows from (2.1)
and Theorem2.4.1 that

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Fig. 2.2 Graph of the ratio Rn(θ̂ML∗ , θ̂ γ
ML) up to the order 1/n for θ = 2 and γ = 1/2, 1/3, 1/5

λj1(θ, γ ) = −bj+1(θ, γ )

bj(θ, γ )
,

∂λj1

∂γ
(θ, γ ) =

⎧⎨
⎩

γ j−1e−θγ

bj(θ,γ )

{
bj+1(θ,γ )

bj(θ,γ )
+ γ

}
for γ > 0,

(−1)j γ j−1eθγ

bj(θ,γ )

{
bj+1(θ,γ )

bj(θ,γ )
+ γ

}
for γ ≤ 0,

λj2(θ, γ ) = bj+2(θ, γ )

bj(θ, γ )
−
{
bj+1(θ, γ )

bj(θ, γ )

}2
,

λj3(θ, γ ) = −bj+3(θ, γ )

bj(θ, γ )
+ 3bj+1(θ, γ )bj+2(θ, γ )

b2j (θ, γ )
− 2

{
bj+1(θ, γ )

bj(θ, γ )

}3
,

kj(θ, γ ) = |γ |j−1e−θ |γ |

bj(θ, γ )
.

Then, it follows from (2.2), (2.4), and (2.6) that the solutions of θ of the equations

X̄ − bj+1(θ, γ )

bj(θ, γ )
= 0, X̄ − bj+1(θ̂ML,X(1))

bj(θ̂ML,X(1))
= 0,

1

n − 1

n∑
i=2

X(i) − bj+1(θ,X(1))

bj(θ,X(1))
= 0
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becomes θ̂
γ

ML, θ̂ML, and θ̂MCL, respectively, where X̄ = (1/n)
∑n

i=1 Xi. From (2.5), we
have the bias-adjusted MLE θ̂ML∗ of θ . From Theorem2.6.1, we obtain the second-
order asymptotic losses

dn(θ̂ML∗ , θ̂MCL) = o(1),

dn(θ̂ML∗ , θ̂
γ

ML) = dn(θ̂MCL, θ̂
γ

ML) =
(

|γ | − bj+1

bj

)2/{
bj+2

bj
−
(
bj+1

bj

)2
}

,

where bj = bj(θ, γ ). In particular, we consider the case when γ ≥ 0 and j = 2.
Since

b2 = 1

θ

(
γ + 1

θ

)
e−θγ , b3 = 1

θ

(
γ 2 + 2γ

θ
+ 2

θ2

)
e−θγ ,

b4 = 1

θ

(
γ 3 + 3γ 2

θ
+ 6γ

θ2
+ 6

θ3

)
e−θγ , b5 = 1

θ

(
γ 4 + 4γ 3

θ
+ 12γ 2

θ2
+ 24γ

θ3
+ 24

θ4

)
e−θγ ,

we obtain λ21, λ22, and λ23. From (2.2), (2.4), and (2.6), we have

θ̂
γ

ML = 4

{
X̄ − 2γ +

√
4γ (X̄ − γ ) + X̄2

}−1

,

θ̂ML = 4

{
X̄ − 2X(1) +

√
4X(1)(X̄ − X(1)) + X̄2

}−1

,

θ̂MCL = 4

{
X̃ − 2X(1) +

√
4X(1)(X̃ − X(1)) + X̃2

}−1

,

where X̃ = (1/(n−1))
∑n

i=2 X(i). From (2.5), we also obtain the bias-adjusted MLE
θ̂ML∗ of θ . Further, we have the second-order asymptotic loss

dn(θ̂ML∗ , θ̂
γ

ML) = dn(θ̂MCL, θ̂
γ

ML) = (θγ + 2)2

(θγ + 2)2 − 2
+ o(1)

and the ratio

Rn(θ̂ML∗ , θ̂
γ

ML) = Rn(θ̂MCL, θ̂
γ

ML) = 1 + (θγ + 2)2

n{(θγ + 2)2 − 2} + O

(
1

n

)
.

If γ = 0, then θ̂0
ML = 2/X̄ and

dn(θ̂ML∗ , θ̂0
ML) = dn(θ̂MCL, θ̂

0
ML) = 2 + o(1),

Rn(θ̂ML∗ , θ̂0
ML) = Rn(θ̂MCL, θ̂

0
ML) = 1 + 2

n
+ O

(
1

n

)
.
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In Vancak et al. (2015), the ratio of the mean squared error (MSE) of θ̂ML to that
of θ̂0

ML is calculated by simulation and its graph is given as a function of n when
θ = −1. Here, we can theoretically obtain the function. Indeed, letting γ = 0 and

U0 = √λ22(θ, 0)(θ̂0
ML − θ),

we have from (2.13) in Appendix A1 later

Eθ (U
2
0 ) = 1 + 1

n

{
11λ2

23(θ, 0)

4λ3
22(θ, 0)

− λ24(θ, 0)

λ2
22(θ, 0)

}
+ O

(
1

n
√
n

)
,

hence the MSE of θ̂0
ML is given by

MSEθ (θ̂
0
ML) = Eθ [(θ̂0

ML − θ)2] = 1

λ22(θ, 0)n
Eθ (U

2
0 )

= 1

λ22(θ, 0)n

[
1 + 1

n

{
11λ2

23(θ, 0)

4λ3
22(θ, 0)

− λ24(θ, 0)

λ2
22(θ, 0)

}
+ O

(
1

n
√
n

)]
.

When γ is unknown, letting

Û = √λ22(θ, γ )(θ̂ML − θ),

we have from (2.24) in Appendix A1 given later

Eθ (Û
2) =1 − 2

k2λ22n

(
∂λ21

∂γ

){
u(γ ) − λ21 + 1

k2

(
∂λ21

∂γ

)}
+ 11λ2

23

4λ3
22n

+ 3λ23

k2λ2
22n

(
∂λ21

∂γ

)
− 2

k2λ22n

(
∂λ22

∂γ

)
− λ24

λ2
22n

+ O

(
1

n
√
n

)
,

where k2 = k2(θ, γ ) = a(γ )eθu(γ )/b2(θ, γ ) and λ2j = λ2j(θ, γ ) (j = 1, 2, 3, 4).
From (2.28), and (2.29) in Appendix A1 given later, we have

∂λ21

∂γ
(θ, γ ) = k2(θ, γ ){λ21(θ, γ ) − u(γ )}, ∂k2

∂θ
(θ, γ ) = k2(θ, γ ){u(γ ) − λ21(θ, γ )}.

Since

∂b2
∂γ

(θ, γ ) = −k2(θ, γ )b2(θ, γ ),

it follows that

∂λ22

∂γ
(θ, γ ) = −∂2k2

∂θ2
(θ, γ ) = −k2(θ, γ ){u(γ ) − λ21}2 + k2(θ, γ )λ22(θ, γ ),
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hence

Eθ,γ (Û 2) =1 + 11λ2
23

4λ3
22n

− λ24

λ2
22n

− 3λ23

λ2
22n

(u(γ ) − λ21)

+ 2

λ22n
(u(γ ) − λ21)

2 − 2

n
+ O

(
1

n
√
n

)
.

Denote the ratio of the MSE of θ̂ML at γ = 0 to that of θ̂0
ML by

RMSE(θ̂ML, θ̂
0
ML) := [MSEθ,γ (θ̂ML)]γ=0

/
MSEθ (θ̂

0
ML).

Since

MSEθ,γ (θ̂ML) = Eθ,γ [(θ̂ML − θ)2] = 1

λ22n
Eθ,γ (Û 2),

we have

[MSEθ,γ (θ̂ML)]γ=0 = 1

λ22(θ, 0)n

{
1 + 11λ223(θ, 0)

4λ322(θ, 0)n
− λ24(θ, 0)

λ222(θ, 0)n
− 3λ21(θ, 0)λ23(θ, 0)

λ222(θ, 0)n

+ 2λ221(θ, 0)

λ22(θ, 0)n
− 2

n
+ O

(
1

n
√
n

)}
.

Hence, we obtain

RMSE(θ̂ML, θ̂
0
ML) =

{
1 + 11λ223(θ, 0)

4λ322(θ, 0)n
− λ24(θ, 0)

λ222(θ, 0)n
+ 3λ21(θ, 0)λ23(θ, 0)

λ222(θ, 0)n
+ 2λ221(θ, 0)

λ22(θ, 0)n

− 2

n
+ O

(
1

n
√
n

)}
·
[
1 − 1

n

{
11λ223(θ, 0)

4λ322(θ, 0)
− λ24(θ, 0)

λ222(θ, 0)

}
+ O

(
1

n
√
n

)]

=1 + 1

n

{
3λ21(θ, 0)λ23(θ, 0)

λ222(θ, 0)
+ 2λ221(θ, 0)

λ22(θ, 0)n
− 2

}
+ O

(
1

n
√
n

)
.

Since

λ21(θ, 0) = −b3(θ, 0)

b2(θ, 0)
= −2

θ
,

λ22(θ, 0) = b4(θ, 0)

b2(θ, 0)
−
{
b3(θ, 0)

b2(θ, 0)

}2
= 2

θ2
,

λ23(θ, 0) = −b5(θ, 0)

b2(θ, 0)
+ 3b3(θ, 0)b4(θ, 0)

b22(θ, 0)
− 2

{
b3(θ, 0)

b2(θ, 0)

}2
= − 4

θ3
,
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it follows that

RMSE(θ̂ML, θ̂
0
ML) = 1 + 8

n
+ O

(
1

n
√
n

)
,

which is the required function of n. The ratio RMSE(θ̂ML, θ̂
0
ML) seems to be fit for the

simulation result, i.e., Fig. 3 by Vancak et al. (2015).

Example 2.7.6 (Lower-truncated lognormal distribution) Let c = 0, d = ∞,

a(x) = x−1 exp{−(1/2)(log x)2} and u(x) = log x for 0 < γ ≤ x < ∞ in the
density (1.7). Then, b(θ, γ ) = Φ(θ − log γ )/φ(θ) for θ ∈ Θ = (−∞,∞), where
Φ(x) = ∫ x

−∞ φ(t)dt with φ(t) = (1/
√
2π)e−t2/2 for −∞ < t < ∞. Letting t =

log x and γ0 = log γ , we see that (1.7) becomes

f (t; θ, γ0) =
{

1√
2πΦ(θ−γ0)

e−(t−θ)2/2 for − ∞ < γ0 ≤ t < ∞,

0 otherwise.

Hence, the lower-truncated lognormal case is reduced to the truncated normal one
in Example2.7.2.

For a truncated beta distribution and a truncated Erlang distribution, related results
to the above can be found in Vancak et al. (2015).

2.8 Concluding Remarks

In a oTEF of distributions with a two-dimensional parameter (θ, γ ), we considered
the estimation problem of a natural parameter θ in the presence of a truncation
parameter γ as a nuisance parameter. In the paper of Bar-Lev (1984), it was shown
that the MLE θ̂

γ

ML of θ for known γ , the MLE θ̂ML and the MCLE θ̂MCL of θ for
unknown γ were asymptotically equivalent in the sense that they had the same
asymptotic normal distribution. In this chapter, we derived the stochastic expansions
of θ̂ γ

ML, θ̂ML, and θ̂MCL. We also obtained the second-order asymptotic loss of the bias-
adjusted MLE θ̂ML∗ relative to θ̂

γ

ML from their second-order asymptotic variances and
showed that θ̂ML∗ and θ̂MCL were second order asymptotically equivalent in the sense
that their asymptotic variances were same up to the second order, i.e., o(1/n) as
in (2.7). It seems to be natural that θ̂

γ

ML is second order asymptotically better than
θ̂ML∗ after adjusting the bias of θ̂ML such that θ̂ML has the same as that of θ̂

γ

ML. The
values of the second-order asymptotic losses of θ̂ML∗ and θ̂MCL given by (2.8) and
(2.9) are quite simple, which results from the truncated exponential family Po of
distributions.

The corresponding results to Theorems2.3.1, 2.4.1, 2.5.1, and 2.6.1 can be
obtained in the case of a two-sided truncated exponential family of distributions

http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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with a natural parameter θ and two truncation parameters γ and ν as nuisance para-
meters, including an upper-truncated Pareto distribution which is important in appli-
cations (see Chap.3). Further, they may be similarly extended to the case of a more
general truncated family of distributions from the truncated exponential familyPo.
In relation to Theorem2.4.1, if two different bias-adjustments are introduced, i.e.,
θ̂ML + (1/n)ci(θ̂ML) (i = 1, 2), then the problem whether or not the admissibility
result holds may be interesting.

2.9 Appendix A1

The proof of Theorem 2.3.1 Let λi = λi(θ, γ ) (i = 1, 2, 3, 4). Since

Z1 = 1√
λ2n

n∑
i=1

{u(Xi) − λ1} , Uγ := √λ2n(θ̂
γ

ML − θ),

by the Taylor expansion, we obtain from (2.2)

0 =
√

λ2

n
Z1 −

√
λ2

n
Uγ − λ3

2λ2n
U 2

γ − λ4

6λ3/2
2 n

√
n
U 3

γ + Op

(
1

n2

)
,

which implies that the stochastic expansion of Uγ is given by

Uγ = Z1 − λ3

2λ3/2
2

√
n
Z2
1 + 1

2n

(
λ2
3

λ3
2

− λ4

3λ2
2

)
Z3
1 + Op

(
1

n
√
n

)
. (2.10)

Since

Eθ (Z1) = 0, Vθ (Z1) = Eθ (Z
2
1 ) = 1,

Eθ (Z
3
1 ) = λ3

λ
3/2
2

√
n
, Eθ (Z

4
1 ) = 3 + λ4

λ2
2n

, (2.11)

it follows that

Eθ (Uγ ) = − λ3

2λ3/2
2

√
n

+ O

(
1

n
√
n

)
, (2.12)

Eθ (U
2
γ ) = 1 + 1

n

(
11λ2

3

4λ3
2

− λ4

λ2
2

)
+ O

(
1

n
√
n

)
, (2.13)

http://dx.doi.org/10.1007/978-981-10-5296-5_3
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hence, by (2.12) and (2.13)

Vθ (Uγ ) = 1 + 1

n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+ O

(
1

n
√
n

)
. (2.14)

From (2.10), (2.12), and (2.14), we have the conclusion of Theorem2.3.1.
Before proving Theorem2.4.1, we prepare three lemmas (the proofs are given in

Appendix A2).

Lemma 2.9.1 The second-order asymptotic density of T(1) is given by

fT(1) (t) =k(θ, γ )e−k(θ,γ )t

− 1

2n

{
∂

∂γ
log k(θ, γ )

} {
k(θ, γ )t2 − 2t

}
k(θ, γ )e−k(θ,γ )t + O

(
1

n2

)
(2.15)

for t > 0, where k(θ, γ ) := a(γ )eθu(γ )/b(θ, γ ) and

Eθ,γ (T(1)) = 1

k(θ, γ )
+ A(θ, γ )

n
+ O

(
1

n2

)
, Eθ,γ (T 2

(1)) = 2

k2(θ, γ )
+ O

(
1

n

)
,

(2.16)

where

A(θ, γ ) := − 1

k2(θ, γ )

{
∂

∂γ
log k(θ, γ )

}
.

Lemma 2.9.2 It holds that

Eθ,γ (Z1T(1)) = 1

k
√

λ2n

{
u(γ ) − λ1 + 2

k

(
∂λ1

∂γ

)}
+ O

(
1

n
√
n

)
, (2.17)

where k = k(θ, γ ) and λi = λi(θ, γ ) (i = 1, 2).

Lemma 2.9.3 It holds that

Eθ,γ (Z2
1T(1)) = 1

k
+ O

(
1

n

)
, (2.18)

where k = k(θ, γ ).
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The proof of Theorem 2.4.1 Since, for (θ, γ ) ∈ Θ × (c,X(1))

λ1(θ̂ML,X(1))

= λ1(θ, γ ) +
{

∂

∂θ
λ1(θ, γ )

}
(θ̂ML − θ) +

{
∂

∂γ
λ1(θ, γ )

}
(X(1) − γ )

+ 1

2

{
∂2

∂θ2
λ1(θ, γ )

}
(θ̂ML − θ)2 +

{
∂2

∂θ∂γ
λ1(θ, γ )

}
(θ̂ML − θ)(X(1) − γ )

+ 1

2

{
∂2

∂γ 2
λ1(θ, γ )

}
(X(1) − γ )2 + 1

6

{
∂3

∂θ3
λ1(θ, γ )

}
(θ̂ML − θ)3

+ 1

2

{
∂2

∂θ2
λ1(θ, γ )

}{
∂

∂γ
λ1(θ, γ )

}
(θ̂ML − θ)2(X(1) − γ ) + · · · , (2.19)

noting Û = √
λ2n(θ̂ML − θ) and T(1) = n(X(1) − γ ), we have from (2.4) and (2.19)

0 =
√

λ2

n
Z1 −

√
λ2

n
Û − 1

n

(
∂λ1

∂γ

)
T(1) − λ3

2λ2n
Û 2 − 1√

λ2nn

(
∂λ2

∂γ

)
ÛT(1)

− λ4

6λ3/2
2 n

√
n
Û 3 + Op

(
1

n2

)
,

where λj = λj(θ, γ ) (j = 1, 2, 3, 4) are defined by (2.1), hence the stochastic
expansion of Û is given by

Û = Z1 − 1√
λ2n

(
∂λ1

∂γ

)
T(1) − λ3

2λ3/2
2

√
n
Z2
1 + δ

λ2n
Z1T(1)

+ 1

2n

(
λ2
3

λ3
2

− λ4

3λ2
2

)
Z3
1 + Op

(
1

n
√
n

)
. (2.20)

It follows from (2.11) and (2.20) that

Eθ,γ (Û ) = − 1√
λ2n

(
∂λ1

∂γ

)
Eθ,γ (T(1)) − λ3

2λ3/22
√
n

+ δ

λ2n
Eθ,γ (Z1T(1)) + O

(
1

n
√
n

)
. (2.21)

Substituting (2.16) and (2.17) into (2.21), we obtain

Eθ,γ (Û ) = − 1√
λ2n

{
1

k

(
∂λ1

∂γ

)
+ λ3

2λ2

}
+ O

(
1

n
√
n

)
, (2.22)
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where k = k(θ, γ ) is defined in Lemma2.9.1. We have from (2.20)

Eθ,γ (Û 2) = Eθ,γ (Z2
1 ) − 1√

λ2n

{
2

(
∂λ1

∂γ

)
Eθ,γ (Z1T(1)) + λ3

λ2
Eθ,γ (Z3

1 )

}

+ 1

λ2n

(
∂λ1

∂γ

)2

Eθ,γ

(
T 2

(1)

)+ 1

λ2n

{
λ3

λ2

(
∂λ1

∂γ

)
+ 2δ

}
Eθ,γ (Z2

1T(1))

+ 1

n

(
5λ2

3

4λ3
2

− λ4

3λ2
2

)
Eθ,γ (Z4

1 ) + O

(
1

n
√
n

)
. (2.23)

Substituting (2.11) and (2.16)–(2.18) into (2.23), we have

Eθ,γ (Û 2) = 1 − 2

kλ2n

(
∂λ1

∂γ

){
u(γ ) − λ1 + 1

k

(
∂λ1

∂γ

)}
+ 11λ2

3

4λ3
2n

+ 3λ3

kλ2
2n

(
∂λ1

∂γ

)
− 2

kλ2n

(
∂λ2

∂γ

)
− λ4

λ2
2n

+ O

(
1

n
√
n

)
. (2.24)

Since

√
λ2{(∂/∂γ )λ1(θ̂ML,X(1))}

k(θ̂ML,X(1))λ2(θ̂ML,X(1))
√
n

= (∂/∂γ )λ1(θ, γ )

k
√

λ2n
+ 1

kλ2n

{
∂λ2

∂γ
(θ, γ ) −

(
λ3

λ2
+ 1

k

∂k

∂θ

)(
∂λ1

∂γ

)}
Û + Op

(
1

n
√
n

)
,

it follows from (2.5) that the stochastic expansion of Û ∗ is given by

Û ∗ := √λ2n(θ̂ML∗ − θ) = √λ2n(θ̂ML − θ) +
√

λ2{(∂/∂γ )λ1(θ̂ML,X(1))}
k(θ̂ML,X(1))λ̂2

√
n

= Û + 1

k
√

λ2n

(
∂λ1

∂γ

)
− 1

kλ2n

{
δ + 1

k

(
∂k

∂θ

)(
∂λ1

∂γ

)}
Z1 + Op

(
1

n
√
n

)
,

(2.25)

where Û is given by (2.20), λi = λi(θ, γ ) (i = 1, 2, 3) and k = k(θ, γ ). From (2.11)
and (2.22), we have

Eθ,γ (Û ∗) = − λ3

2λ3/2
2

√
n

+ O

(
1

n
√
n

)
. (2.26)
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It follows from (2.22), (2.24), and (2.25) that

Eθ,γ (Û ∗2) = 1 − 2

kλ2n

(
∂λ1

∂γ

){
u(γ ) − λ1 + 3

2k

(
∂λ1

∂γ

)}
+ 11λ2

3

4λ3
2n

− λ4

λ2
2n

− 2

k2λ2n

(
∂λ1

∂γ

)(
∂k

∂θ

)
+ O

(
1

n
√
n

)
,

hence, by (2.26)

Vθ,γ (Û ∗) = 1 + 1

n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
− 2

kλ2n

(
∂λ1

∂γ

){
u(γ ) − λ1 + 1

k

(
∂k

∂θ

)}

− 3

k2λ2n

(
∂λ1

∂γ

)2

+ O

(
1

n
√
n

)
. (2.27)

Since, by (2.1)

λ1(θ, γ ) = ∂

∂θ
log b(θ, γ ) = 1

b(θ, γ )

∫ d

γ

a(x)u(x)eθu(x)dx,

it follows that

∂λ1(θ, γ )

∂γ
= a(γ )eθu(γ )

b(θ, γ )
{λ1(θ, γ ) − u(γ )} = k(θ, γ ){λ1(θ, γ ) − u(γ )}. (2.28)

Since

∂k

∂θ
(θ, γ ) = k(θ, γ ){u(γ ) − λ1(θ, γ )}, (2.29)

it is seen from (2.27)–(2.29) that

Vθ,γ (Û ∗) = 1 + 1

n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+ 1

λ2n
{λ1 − u(γ )}2 + O

(
1

n
√
n

)
. (2.30)

From (2.25), (2.26) and (2.30), we have the conclusion of Theorem2.4.1.

The proof of Theorem 2.5.1 Since, from (2.6)

0 = 1

n − 1

n∑
i=2

{u(Yi) − λ1(θ, x(1))} − 1√
n
λ2(θ, x(1))

√
n(θ̂MCL − θ)

− 1

2n
λ3(θ, x(1))n(θ̂MCL − θ)2

− 1

6n
√
n
λ4(θ, x(1))n

√
n(θ̂MCL − θ)3 + Op

(
1

n2

)
,
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letting

Z̃1 = 1√
λ̃2(n − 1)

n∑
i=2

{u(Yi) − λ1(θ, x(1))}, Ũ =
√

λ̃2n(θ̂MCL − θ),

where λ̃i := λi(θ, x(1)) (i = 1, 2, 3, 4), we have

0 =
√

λ̃2

n − 1
Z̃1 −

√
λ̃2

n
Ũ − λ̃3

2λ̃2n
Ũ 2 − λ̃4

6λ̃3/2
2 n

√
n
Ũ 3 + Op

(
1

n2

)
,

hence, the stochastic expansion of Ũ is given by

Ũ = Z̃1 − λ̃3

2λ̃3/2
2

√
n
Z̃2
1 + 1

2n
Z̃1 + 1

2n

(
λ̃2
3

λ̃3
2

− λ̃4

3λ̃2
2

)
Z̃3
1 + Op

(
1

n
√
n

)
. (2.31)

Since

λ̃2 = λ2(θ,X(1)) = λ2(θ, γ ) + 1

n

(
∂λ2

∂γ

)
T(1) + Op

(
1

n2

)
,

we obtain

Ũ = √λ2n(θ̂MCL − θ)

{
1 + 1

2nλ2

(
∂λ2

∂γ

)
T(1) + Op

(
1

n2

)}
, (2.32)

where T(1) = n(X(1) −γ ) and λ2 = λ2(θ, γ ). Then, it follows from (2.31) and (2.32)
that

Ũ0 = √λ2n(θ̂MCL − θ)

= Z̃1 − λ̃3

2λ̃3/2
2

√
n
Z̃2
1 + 1

2n

{
1 − 1

λ2

(
∂λ2

∂γ

)
T

}
Z̃1

+ 1

2n

(
λ̃2
3

λ̃3
2

− λ̃4

3λ̃2
2

)
Z̃3
1 + Op

(
1

n
√
n

)
. (2.33)

For given X(1) = x(1), i.e., T(1) = t := n(x(1) − γ ), the conditional expectation of Z̃1
and Z̃2

1 are
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Eθ,γ (Z̃1|t) = 1√
λ̃2(n − 1)

n∑
i=2

{
Eθ,γ [u(Yi)|t] − λ1(θ, x(1))

} = 0,

Eθ,γ (Z̃2
1 |t) = 1

λ̃2(n − 1)

[ n∑
i=2

Eθ,γ [{u(Yi) − λ1(θ, x(1))}2|t]

+
∑∑

i 	=j
2≤i,j≤n

Eθ,γ

[{u(Yi) − λ1(θ, x(1))}{u(Yj) − λ1(θ, x(1))} | t]]

= 1, (2.34)

hence, the conditional variance of Z̃1 is equal to 1, i.e., Vθ,γ (Z̃1|t) = 1. In a similar
way to the above, we have

Eθ,γ (Z̃3
1 |t) = λ̃3

λ̃
3/2
2

√
n − 1

, Eθ,γ (Z̃4
1 |t) = 3 + λ̃4

λ̃2
2(n − 1)

. (2.35)

Then, it follows from (2.33)–(2.35) that

Eθ,γ (Ũ0|T(1)) = − λ̃3

2λ̃3/2
2

√
n

+ Op

(
1

n
√
n

)
, (2.36)

Eθ,γ (Ũ 2
0 |T(1)) = 1 + 1

n
+ 1

n

(
11λ̃2

3

4λ̃3
2

− λ̃4

λ̃2
2

)
− 1

λ2n

(
∂λ2

∂γ

)
T(1)

+ Op

(
1

n
√
n

)
, (2.37)

where λ̃i = λi(θ,X(1)) (i = 2, 3, 4). Since, for i = 2, 3, 4

λ̃i = λi(θ,X(1)) = λi(θ, γ ) + Op

(
1

n

)
= λi + Op

(
1

n

)
, (2.38)

it follows from (2.36) that

Eθ,γ (Ũ0) = − λ3

2λ3/2
2

√
n

+ O

(
1

n
√
n

)
. (2.39)

It is noted from (2.12), (2.26), and (2.39) that

Eθ,γ (Uγ ) = Eθ,γ (Û ∗) = Eθ,γ (Ũ0) = − λ3

2λ3/2
2

√
n

+ O

(
1

n
√
n

)
.
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In a similar way to the above, we obtain from (2.16), (2.37), and (2.38)

Eθ,γ (Ũ 2
0 ) = 1 + 1

n
+ 11λ2

3

4λ3
2n

− λ4

λ2
2n

− 1

kλ2n

(
∂λ2

∂γ

)
+ O

(
1

n
√
n

)
. (2.40)

Since, by (2.28) and (2.29)

1

k

(
∂λ2

∂γ

)
= 1

k

{
∂k

∂θ
(λ1 − u(γ )) + k

(
∂λ1

∂θ

)}
= −(λ1 − u(γ ))2 + λ2,

it follows from (2.40) that

Eθ,γ (Ũ 2
0 ) = 1 + 11λ2

3

4λ3
2n

− λ4

λ2
2n

+ 1

λ2n
{λ1 − u(γ )}2 + O

(
1

n
√
n

)
,

hence, by (2.39)

Vθ,γ (Ũ0) = 1 + 1

n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+ 1

λ2n
{λ1 − u(γ )}2 + O

(
1

n
√
n

)
. (2.41)

From (2.33), (2.39) and (2.41), we have the conclusion of Theorem2.5.1.

2.10 Appendix A2

The proof of Lemma 2.9.1 Since the second-order asymptotic cumulative distribu-
tion function of T(1) is given by

FT(1) (t) = Pθ,γ

{
T(1) ≤ t

} = Pθ,γ

{
n(X(1) − γ ) ≤ t

} = 1 −
{
b(θ, γ + (t/n))

b(θ, γ )

}n

= 1 − e−k(θ,γ )t

[
1 − t2

2n

{
∂k(θ, γ )

∂γ

}
+ O

(
1

n2

)]

for t > 0, we obtain (2.15). From (2.15), we also get (2.16) by a straightforward
calculation.

The proof of Lemma 2.9.2 As is seen from the beginning of Sect. 2.5, Y2, . . . ,Yn
are i.i.d. random variables according to a distribution with density

g(y; θ, x(1)) = a(y)eθu(y)

b(θ, x(1))
for x(1) ≤ y < d (2.42)
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with respect to the Lebesgue measure. Then, the conditional expectation of Z1 given
T(1) is obtained by

Eθ,γ (Z1|T(1)) = 1√
λ2n

{
u(X(1)) +

n∑
i=2

Eθ,γ [u(Yi)|T(1)] − nλ1

}
, (2.43)

where λi = λi(θ, γ ) (i = 1, 2). Since, for each i = 2, . . . , n, by (2.42)

Eθ,γ [u(Yi)|T(1)] = ∂

∂θ
log b(θ,X(1)) = λ1(θ,X(1)) =: λ̂1 (say),

it follows from (2.43) that

Eθ,γ (Z1|T(1)) = 1√
λ2n

{
u(X(1)) + (n − 1)λ̂1

}
− λ1

√
n√

λ2
,

hence, from (2.16) and (2.43)

Eθ,γ (Z1T(1)) = 1√
λ2n

{
Eθ,γ [u(X(1))T(1)] + (n − 1)Eθ,γ (λ̂1T(1))

}

−
√

n

λ2
λ1

{
1

k
+ A(θ, γ )

n
+ O

(
1

n2

)}
, (2.44)

where k = k(θ, γ ). Since, by the Taylor expansion

u(X(1)) = u(γ ) + u′(γ )

n
T(1) + u′′(γ )

2n2
T 2

(1) + Op

(
1

n3

)
,

λ̂1 = λ1(θ,X(1)) = λ1(θ, γ ) + 1

n

{
∂

∂γ
λ1(θ, γ )

}
T(1)

+ 1

2n2

{
∂2

∂γ 2
λ1(θ, γ )

}
T 2

(1) + Op

(
1

n3

)
,

it follows from (2.16) that

Eθ,γ [u(X(1))T(1)] = u(γ )

k
+ 1

n

{
Au(γ ) + 2u′(γ )

k2

}
+ O

(
1

n2

)
, (2.45)

Eθ,γ (λ̂1T(1)) = λ1

k
+ 1

n

{
λ1A + 2

k2

(
∂λ1

∂γ

)}
+ O

(
1

n2

)
, (2.46)

where k = k(θ, γ ), A = A(θ, γ ), and λ1 = λ1(θ, γ ). From (2.44)–(2.46), we obtain
(2.17).
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The proof of Lemma 2.9.3 First, we have

Eθ,γ (Z2
1 |T(1)) = 1

λ2n

{
u(X(1)) − λ1

}2
+ 2

λ2n

{
u(X(1)) − λ1

} n∑
i=2

Eθ,γ

[
u(Yi) − λ1|T(1)

]

+ 1

λ2n

n∑
i=2

Eθ,γ

[{u(Yi) − λ1}2 |T(1)
]

+ 1

λ2n

∑∑
i 	=j

2≤i,j≤n

Eθ,γ

[{u(Yi) − λ1}
{
u(Yj) − λ1

} |T(1)
]
. (2.47)

For 2 ≤ i ≤ n, we have

Eθ,γ [u(Yi) − λ1|T(1)] =
(

∂λ1

∂γ

)
T(1)

n
+ Op

(
1

n2

)
= Op

(
1

n

)
, (2.48)

and for i 	= j and 2 ≤ i, j ≤ n

Eθ,γ

[{u(Yi) − λ1}
{
u(Yj) − λ1

} |T(1)
] = Eθ,γ

[
u(Yi) − λ1 |T(1)

]
Eθ,γ

[
u(Yj) − λ1|T(1)

]
=
(

∂λ1

∂γ

)2 T2
(1)

n2
+ Op

(
1

n3

)
= Op

(
1

n2

)
. (2.49)

Since, for i = 2, . . . , n

Eθ,γ [u2(Yi)|T(1)] = λ̂2
1 + λ̂2,

where λ̂i = λi(θ,X(1)) (i = 1, 2), we have for i = 2, . . . , n

Eθ,γ [{u(Yi) − λ1}2 |T(1)] = λ2 + 1

n

(
∂λ2

∂γ

)
T(1) + Op

(
1

n2

)
= λ2 + Op

(
1

n

)
.

(2.50)

From (2.47)–(2.50), we obtain

Eθ,γ (Z2
1 |T(1)) = 1 + Op

(
1

n

)
,
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hence, by (2.16)

Eθ,γ (Z2
1T(1)) = Eθ,γ [T(1)Eθ,γ (Z2

1 |T(1))] = Eθ,γ (T(1)) + O

(
1

n

)
= 1

k
+ O

(
1

n

)
.

Thus, we get (2.18).
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38, 1–13.

Liang, K.-Y. (1984). The asymptotic efficiency of conditional likelihood methods. Biometrika, 71,
305–313.

Lwin, T. (1975). Exponential family distribution with a truncation parameter. Biometrika, 62, 218–
220.

Quesenberry, C. P. (1975). Transforming samples from truncation parameter distributions to uni-
formity. Communications in Statistics, 4, 1149–1155.

Vancak, V., Goldberg, Y., Bar-Lev, S. K., & Boukai, B. (2015). Continuous statistical models: With
or without truncation parameters? Mathematical Methods of Statistics, 24, 55–73.

Voinov, V. G., & Nikulin, M. S. (1993). Unbiased estimators and their applications (Vol. 1) Uni-
variate Case. Dordrecht: Kluwer Academic Publishers.



Chapter 3
Maximum Likelihood Estimation
of a Natural Parameter for a Two-Sided TEF

The corresponding results on a comparison of the estimators of a natural parameter θ
to the case of a oTEF in the previous chapter are obtained in the case of a two-sided
truncated exponential family (tTEF) of distributions with a natural parameter θ and
two truncation parameters γ and ν as nuisance ones.

3.1 Introduction

In the previous chapter, for a oTEF of distributions with a natural parameter θ and a
truncation parameter γ as a nuisance parameter, the second-order asymptotic losses
of θ̂ML∗ and θ̂MCL relative to θ̂

γ

ML which correspond to the asymptotic deficiencies
are obtained from their second-order asymptotic variances which are calculated from
their stochastic expansions. It is also shown that a bias-adjustedMLE θ̂ML∗ and θ̂MCL

of θ for unknown γ are second-order asymptotically equivalent and second-order
asymptotically worse than θ̂

γ

ML of θ for known γ . On the other hand, for an upper-
truncated Pareto distribution with an index parameter α to be estimated and two
truncation parameters γ and ν as nuisance ones, the MLE α̃ of α for known γ and ν

and theMLE α̂ of α for unknown γ and ν are shown to have the asymptotic normality
by Aban et al. (2006). The distribution does not belong to oTEF but to a tTEF of
distributions.

In this chapter, following mostly the paper by Akahira et al. (2016), the corre-
sponding results on the second-order asymptotic comparison of the estimators of θ

to the case of oTEF in Chap.2 are obtained in the case of a tTEF of distributions
with a natural parameter θ and two truncation parameters γ and ν as nuisance ones.
The upper-truncated Pareto case is treated in Example 3.7.3.
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3.2 Preliminaries

Suppose that X1, X2, . . . , Xn, . . . is a sequence of i.i.d. random variables according
to Pθ,γ,ν in a tTEFPt with the density (1.9). Then, we consider the estimation prob-
lemon the natural parameter θ in the presence of nuisance parameters γ and ν. Denote
a random vector (X1, . . . , Xn) by X , and let X(1) ≤ · · · ≤ X(n) be the corresponding
order statistics of a random vector X . Then, the density (1.9) is considered to belong
to a regular exponential family of distributions with a natural parameter θ for any
fixed γ and ν; hence, log b(θ, γ, ν) is strictly convex and infinitely differentiable in
θ ∈ Θ and

λ j (θ, γ, ν) := ∂ j

∂θ j
log b(θ, γ, ν) (3.1)

is the j th cumulant corresponding to (1.9) for j = 1, 2, . . . .
In Sects. 3.3 to 3.5, the stochastic expansions of the MLE θ̂

γ,ν

ML of θ for known γ

and ν, theMLE θ̂ML and theMCLE θ̂MCL of θ for unknown γ and ν are derived, from
which the second-order asymptotic means and variances are obtained. In Sect. 3.6,
the second-order asymptotic losses of θ̂ML∗ and θ̂MCL relative to θ̂

γ,ν

ML is obtained
from their second-order asymptotic variances, and a bias-adjusted MLE θ̂ML∗ and
θ̂MCL of θ for unknown γ and ν are also shown to be second-order asymptotically
equivalent and second-order asymptotically worse than the MLE θ̂

γ,ν

ML for known
γ and ν. In Sect. 3.7, examples for a two-sided truncated exponential, a two-sided
truncated normal, an upper-truncated Pareto, a two-sided truncated beta, a two-sided
truncated Erlang type, and a two-sided truncated lognormal distributions are given.
In Appendices B1 and B2, the proofs of theorems are given.

3.3 MLE θ̂
γ,ν

ML of θ When Truncation Parameters γ and ν

are Known

For given x = (x1, . . . , xn) satisfying c < γ ≤ x(1) := min1≤i≤n xi and x(n) :=
max1≤i≤n xi ≤ ν < d, the likelihood function of θ is given by

Lγ,ν(θ; x) := 1

bn(θ, γ, ν)

{
n∏

i=1

a(xi )

}
exp

{
θ

n∑
i=1

u(xi )

}
.

Then, the likelihood equation is

1

n

n∑
i=1

u(xi ) − λ1(θ, γ, ν) = 0. (3.2)

http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Since there exists a unique solution of the Eq. (3.2) with respect to θ , we denote it
by θ̂

γ,ν

ML which is the MLE of θ . Let λi = λi (θ, γ, ν) (i = 2, 3, 4) and put

Z1 := 1√
λ2n

n∑
i=1

{u(Xi ) − λ1} , Uγ,ν := √
λ2n(θ̂

γ,ν

ML − θ).

Then, we have the following.

Theorem 3.3.1 For a tTEFPt of distributions with densities of the form (1.9) with
a natural parameter θ and truncation parameters γ and ν, let θ̂ γ,ν

ML be the MLE of θ
when γ and ν are known. Then, the stochastic expansion of Uγ,ν is given by

Uγ,ν = Z1 − λ3

2λ3/2
2

√
n
Z2
1 + 1

2n

(
λ2
3

λ3
2

− λ4

3λ2
2

)
Z3
1 + Op

(
1

n
√
n

)
,

and the second-order asymptotic mean and variance are given by

Eθ (Uγ,ν) = − λ3

2λ3/2
2

√
n

+ O

(
1

n
√
n

)
,

Vθ (Uγ,ν) = 1 + 1

n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+ O

(
1

n
√
n

)
,

respectively.

The proof of Theorem3.3.1 is omitted, since it is similar to that of Theorem2.3.1.
Since Uγ,ν = Z1 + op(1), it is seen that Uγ,ν is asymptotically normal with mean 0
and variance 1.

3.4 Bias-Adjusted MLE θ̂ML∗ of θ When γ

and ν are Unknown

For given x = (x1, . . . , xn) satisfying c < γ ≤ x(1) and x(n) ≤ ν < d, the likelihood
function of θ , γ , and ν is given by

L(θ, γ, ν; x) = 1

bn(θ, γ, ν)

{
n∏

i=1

a(xi )

}
exp

{
θ

n∑
i=1

u(xi )

}
. (3.3)

Let θ̂ML , γ̂ML , and ν̂ML be the MLEs of θ , γ and ν, respectively. Then, it fol-
lows from (3.3) that γ̂ML = X(1) and ν̂ML = X(n) and L(θ̂ML , X(1), X(n); X) =
supθ∈Θ L(θ, X(1), X(n); X), hence θ̂ML satisfies the likelihood equation

http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_2
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0 = 1

n

n∑
i=1

u(Xi ) − λ1(θ̂ML , X(1), X(n)) (3.4)

where X = (X1, . . . , Xn). Put Û := √
λ2n(θ̂ML − θ), T(1) := n(X(1) − γ ), T(n) :=

n(X(n) − ν). Then, we have the following.

Theorem 3.4.1 For a tTEFPt of distributions with densities of the form (1.9) with
a natural parameter θ and truncation parameters γ and ν, let θ̂ML be the MLE of
θ when γ and ν are unknown, and θ̂ML∗ be a bias-adjusted MLE such that θ̂ML has
the same asymptotic bias as that θ̂ γ,ν

ML, i.e.,

θ̂ML∗ = θ̂ML + 1

λ2(θ̂ML , X(1), X(n))

{
1

k(θ̂ML , X(1), X(n))

∂λ1

∂γ
(θ̂ML , X(1), X(n))

− 1

k̃(θ̂ML , X(1), X(n))

∂λ1

∂ν
(θ̂ML , X(1), X(n))

}
(3.5)

where k(θ, γ, ν) := a(γ )eθu(γ )/b(θ, γ, ν) and k̃(θ, γ, ν) := a(ν)eθu(ν)/b(θ, γ, ν).
Then, the stochastic expansion of Û ∗ := √

λ2n(θ̂ML∗ − θ) is given by

Û∗ = Û + 1√
λ2n

{
1

k

(
∂λ1

∂γ

)
− 1

k̃

(
∂λ1

∂ν

)}

− 1

λ2n

{
δ1

k
− δ2

k̃
+ 1

k2

(
∂k

∂θ

)(
∂λ1

∂γ

)
− 1

k̃2

(
∂ k̃

∂θ

)(
∂λ1

∂ν

)}
Z1 + Op

(
1

n
√
n

)
, (3.6)

with

Û = Z1 − λ3

2λ3/2
2

√
n
Z2
1 − 1√

λ2n

{(
∂λ1

∂γ

)
T(1) +

(
∂λ1

∂ν

)
T(n)

}

+ 1

λ2n
Z1{δ1T(1) + δ2T(n)} + 1

2n

(
λ2
3

λ3
2

− λ4

3λ2
2

)
Z3
1 + Op

(
1

n
√
n

)
(3.7)

where k = k(θ, γ, ν), k̃ = k̃(θ, γ, ν), and

δ1 := λ3

λ2

(
∂λ1

∂γ

)
− ∂λ2

∂γ
, δ2 := λ3

λ2

(
∂λ1

∂ν

)
− ∂λ2

∂ν
, (3.8)

and the second-order asymptotic mean and variance of Û ∗ are given by

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Eθ,γ,ν(Û
∗) = − λ3

2λ3/2
2

√
n

+ O

(
1

n
√
n

)
, (3.9)

Vθ,γ,ν(Û
∗) =1 + 1

n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+ 1

λ2n

[{u(γ ) − λ1}2 + {u(ν) − λ1}2
]

+ O

(
1

n
√
n

)
, (3.10)

respectively.

Since Û = Û ∗ = Z1 + op(1), it seen that Û and Û ∗ are asymptotically normal with
mean 0 and variance 1 in the first order. It is also noted from Theorems3.3.1 and
3.4.1 that there is a difference between Vθ (Uγ,ν) and Vθ,γ,ν(Û ∗) in the second order,
i.e., the order n−1. Further, it is remarked that the asymptotic distribution of T(1) and
T(n) are exponential and given up to the second order (see Lemmas3.9.1 and 3.9.2
in Appendix B1).

3.5 MCLE θ̂MCL of θ When γ and ν are Unknown

Let Y2, . . . ,Yn−1 be a random permutation of the (n − 2)! permutations of X(2), . . . ,

X(n−1) such that conditionally on X(1) = x(1) and X(n) = x(n), Y2, . . . ,Yn−1 are i.i.d.
random variables according to a distribution with density

f (y; θ, x(1), x(n)) = a(y)eθu(y)

b(θ, x(1), x(n))
for c < γ ≤ x(1) < y < x(n) ≤ ν < d

(3.11)

with respect to the Lebesguemeasure. For given X(1) = x(1) and X(n) = x(n), the con-
ditional likelihood function of θ for y = (y2, . . . , yn−1) satisfying c < γ ≤ x(1) ≤
yi ≤ x(n) ≤ ν < d (i = 2, . . . , n − 1) is

L(θ; y|x(1), x(n)) = 1

bn−2(θ, x(1), x(n))

{
n−1∏
i=2

a(yi )

}
exp

{
θ

n−1∑
i=2

u(yi )

}
.

Then, the likelihood equation is

1

n − 2

n−1∑
i=2

u(yi ) − λ1(θ, x(1), x(n)) = 0. (3.12)
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Since there exists a unique solution of the Eq. (3.12) with respect to θ , we denote
it by θ̂MCL , i.e., the value of θ for which L(θ; y|x(1), x(n)) attains supremum. Let
λ̃i = λ̃i (θ, x(1), x(n)) (i = 1, 2, 3, 4) and put

Z̃1 := 1√
λ̃2(n − 2)

n−1∑
i=2

{u(Yi ) − λ̃1}, Ũ0 := √
λ2n(θ̂MCL − θ).

Then, we have the following.

Theorem 3.5.1 For a tTEFPt of distributions with densities of the form (1.9) with
a natural parameter θ and truncation parameters γ and ν, let θ̂MCL be the MCLE
of θ when γ and ν are unknown. Then, the stochastic expansion of Ũ0 is given by

Ũ0 = Z̃1 − λ̃3

2λ̃3/2
2

√
n
Z̃2
1 + 1

n

{
1 − 1

2λ2

(
∂λ2

∂γ

)
T(1) − 1

2λ2

(
∂λ2

∂ν

)
T(n)

}
Z̃1

+ 1

2n

(
λ̃2
3

λ̃3
2

− λ̃4

3λ̃2
2

)
Z̃3
1 + Op

(
1

n
√
n

)
(3.13)

and the second-order asymptotic mean and variance are given by

Eθ,γ,ν(Ũ0) = − λ3

2λ3/2
2

√
n

+ O

(
1

n
√
n

)
,

Vθ,γ,ν(Ũ0) =1 + 1

n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+ 1

λ2n

[{u(γ ) − λ1}2 + {u(ν) − λ1}2
]

+ O

(
1

n
√
n

)
,

respectively.

Theorems3.4.1 and 3.5.1 also lead to a similar explanation to Remarks 2.5.1 and
2.5.2 in Chap.2.

3.6 Second-Order Asymptotic Comparison Among
θ̂

γ,ν

ML , θ̂ML∗ , and θ̂MCL

From the results in the previous sections, we have the following.

Theorem 3.6.1 For a tTEFPt of distributions with densities of the form (1.9) with
a natural parameter θ and truncation parameters γ and ν, let θ̂ γ,ν

ML, θ̂ML∗ , and θ̂MCL

be the MLE of θ when γ and ν are known, the bias-adjusted MLE and the MCLE of
θ when γ and ν are unknown, respectively. Then, the bias-adjusted MLE θ̂ML∗ and

http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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the MCLE θ̂MCL are second-order asymptotically equivalent in the sense that

dn(θ̂ML∗ , θ̂MCL) := n
{
Vθ,γ,ν(Û

∗) − Vθ,γ,ν(Ũ0)
}

= o(1)

as n → ∞, and they are second-order asymptotically worse than θ̂
γ,ν

ML with the fol-
lowing second-order asymptotic losses of θ̂ML∗and θ̂MCL relative to θ̂

γ,ν

ML:

dn(θ̂ML∗ , θ̂
γ,ν

ML) := n
{
Vθ,γ,ν(Û

∗) − Vθ (Uγ,ν)
}

= 1

λ2

[{u(γ ) − λ1}2 + {u(ν) − λ1}2
] + o(1),

dn(θ̂MCL , θ̂
γ,ν

ML) := n
{
Vθ,γ,ν(Ũ0) − Vθ (Uγ,ν)

}
= 1

λ2

[{u(γ ) − λ1}2 + {u(ν) − λ1}2
] + o(1)

as n → ∞, respectively.

The proof is straightforward from Theorem3.3.1, 3.4.1, and 3.5.1.

Remark 3.6.1 It is seen from (1.6) and Theorem3.6.1 that the ratio of the asymptotic
variance of Û ∗ to that of Uγ,ν is given by

Rn(θ̂ML∗ , θ̂
γ,ν

ML) = 1 + 1

λ2n

[{u(γ ) − λ1}2 + {u(ν) − λ1}2
] + o

(
1

n

)
,

and similarly from (1.6) and Theorem3.6.1

Rn(θ̂MCL , θ̂
γ,ν

ML) = 1 + 1

λ2n

[{u(γ ) − λ1}2 + {u(ν) − λ1}2
] + o

(
1

n

)
.

From the consideration of models in Sect. 1.1, using (1.5), (1.6), and Theorem3.6.1
we see that the difference between the asymptotic models M(θ̂ML∗ , γ, ν) and
M(θ̂

γ,ν

ML , γ, ν) is given by dn(θ̂ML∗ , θ̂
γ,ν

ML) or Rn(θ̂ML∗ , θ̂
γ,ν

ML) up to the second order,
through the MLE of θ . In a similar way to the above, the difference between the
asymptotic models M(θ̂MCL , γ, ν) and M(θ̂

γ,ν

MCL , γ, ν) is given by dn(θ̂MCL , θ̂
γ,ν

ML)

or Rn(θ̂MCL , θ̂
γ,ν

ML) up to the second order.

3.7 Examples

For a two-sided truncated exponential, a two-sided truncated normal, an upper-
truncated Pareto, a two-sided truncated beta, and a two-sided truncated Erlang-type
cases, the second-order asymptotic losses of the estimators are given as examples.

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Example 3.7.1 (Two-sided truncated exponential distribution) Let c = −∞,
d = ∞, a(x) ≡ 1 and u(x) = −x for −∞ < γ ≤ x ≤ ν < ∞ in the density (1.9).
Since b(θ, γ, ν) = (e−θγ − e−θν)/θ for θ ∈ Θ = (0,∞), it follows from (3.1) and
Theorem3.4.1 that

λ1 = ∂

∂θ
log b(θ, γ, ν) = −γ e−θγ + νe−θν

e−θγ − e−θν
− 1

θ
,

λ2 = ∂2

∂θ2
log b(θ, γ, ν) = γ 2e−θγ − ν2e−θν

e−θγ − e−θν
− (γ e−θγ − νe−θν)2

(e−θγ − e−θν)2
+ 1

θ2
,

k(θ, γ, ν) = a(γ )eθu(γ )

b(θ, γ, ν)
= θe−θγ

e−θγ − e−θν
,

k̃(θ, γ, ν) = a(ν)eθu(ν)

b(θ, γ, ν)
= θe−θν

e−θγ − e−θν
.

Then, it follows from (3.2), (3.4), and (3.12) that the solutions of θ of the following
equations

γ e−θγ − νe−θν

e−θγ − e−θν
+ 1

θ
= X̄ ,

X(1)e−θX(1) − X(n)e−θX(n)

e−θX(1) − e−θX(n)
+ 1

θ
= X̄ ,

X(1)e−θX(1) − X(n)e−θX(n)

e−θX(1) − e−θX(n)
+ 1

θ
= 1

n − 2

n−1∑
i=2

X(i)

become θ̂
γ,ν

ML , θ̂ML , and θ̂MCL , respectively, where X̄ = (1/n)
∑n

i=1 Xi . From (3.5),
the bias-adjusted MLE is seen to be given by

θ̂ML∗ = θ̂ML + 1

λ̂2n

{
1

k̂

(
∂λ̂1

∂γ

)
− 1

ˆ̃k

(
∂λ̂1

∂ν

)}

where λ̂i = λi (θ̂ML , X(1), X(n)) (i = 1, 2), k̂ = k(θ̂ML , X(1), X(n)),
ˆ̃k = k̃(θ̂ML ,

X(1), X(n)), and

∂λ̂1

∂γ
= ∂λ1

∂γ
(θ̂ML , X(1), X(n)),

∂λ̂1

∂ν
= ∂λ1

∂ν
(θ̂ML , X(1), X(n))

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Table 3.1 Values of dn(θ̂ML∗ , θ̂ γ,ν

ML ) and Rn(θ̂ML∗ , θ̂ γ,ν

ML ) for θ = γ = 1

ν dn(θ̂ML∗ , θ̂ γ,ν

ML ) Rn(θ̂ML∗ , θ̂ γ,ν

ML )

2 6.4725 + o(1) 1 + 6.4725

n
+ o

(
1

n

)

3 7.9582 + o(1) 1 + 7.9582

n
+ o

(
1

n

)

5 14.8146 + o(1) 1 + 14.8146

n
+ o

(
1

n

)

with

∂λ1

∂γ
= − e−θγ

e−θγ − e−θν
− θ(γ − ν)e−θ(γ+ν)

(e−θγ − e−θν)2
,

∂λ1

∂ν
= e−θν

e−θγ − e−θν
+ θ(γ − ν)e−θ(γ+ν)

(e−θγ − e−θν)2
.

From Theorem3.6.1, we obtain the second-order asymptotic losses

dn(θ̂ML∗ , θ̂MCL) = o(1),

dn(θ̂ML∗ , θ̂
γ,ν

ML) = dn(θ̂MCL , θ̂
γ,ν

ML) =
(
1
θ

+ (γ−ν)e−θγ

e−θγ −e−θν

)2 +
(
1
θ

+ (γ−ν)e−θν

e−θγ −e−θν

)2
1
θ2 − (γ−ν)2e−θ(γ+ν)

(e−θγ −e−θν )2

+ o(1)

as n → ∞.
When θ = γ = 1, and ν = 2, 3, 5, the values of the second-order asymptotic loss

dn(θ̂ML∗ , θ̂
γ,ν

ML) and the ratio Rn(θ̂ML∗ , θ̂
γ,ν

ML) are obtained from the above and Remark
3.6.1 (see Table3.1 and Fig. 3.1).

Example 3.7.2 (Two-sided truncated normal distribution) Let c = −∞, d = ∞,
a(x) = e−x2/2, and u(x) = x for −∞ < γ ≤ x ≤ ν < ∞ in the density (1.9). Since

b(θ, γ, ν) = {Φ(θ − γ ) − Φ(θ − ν)} /φ(θ)

for θ ∈ Θ = (−∞,∞), it follows that

λ1(θ, γ, ν) = θ + ηγ−ν(θ − γ ) + ην−γ (θ − ν),

λ2(θ, γ, ν) = 1 − (θ − γ )ηγ−ν(θ − γ ) − (θ − ν)ην−γ (θ − ν)

− {
ηγ−ν(θ − γ ) + ην−γ (θ − ν)

}2
,

k(θ, γ, ν) = ηγ−ν(θ − γ ), k̃(θ, γ, ν) = −ην−γ (θ − ν)

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Fig. 3.1 Graph of the ratio Rn(θ̂ML∗ , θ̂ γ,ν

ML ) up to the order 1/n for θ = γ = 1

where ηα(t) := φ(t)/{Φ(t) − Φ(t + α)} with Φ(t) = ∫ t
−∞ φ(x)dx and φ(x) =

(1/
√
2π)e−x2/2 for −∞ < x < ∞. Then, it follows from (3.2), (3.4) and (3.12)

that the solutions of the following equations

θ + ηγ−ν(θ − γ ) − ην−γ (θ − ν) = X̄ ,

θ + ηX(1)−X(n)
(θ − X(1)) − ηX(n)−X(1) (θ − X(n)) = X̄

and

θ − ηX(1)−X(n)
(θ − X(1)) − ηX(n)−X(1) (θ − X(n)) = 1

n − 2

n−1∑
i=2

X(i)

become θ̂
γ,ν

ML , θ̂ML , and θ̂MCL , respectively. From (3.5), the bias-adjusted MLE is
seen to be given by

θ̂ML∗ = θ̂ML + 1

λ̂2n

{
1

k̂

(
∂λ̂1

∂γ

)
− 1

ˆ̃k

(
∂λ̂1

∂ν

)}

where

λ̂i = λi (θ̂ML , X(1), X(n)) (i = 1, 2), k̂ = k(θ̂ML , X(1), X(n)),
ˆ̃k = ˆ̃k(θ̂ML , X(1), X(n))
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Table 3.2 Values of dn(θ̂ML∗ , θ̂ γ,ν

ML ) and Rn(θ̂ML∗ , θ̂ γ,ν

ML ) for θ = γ = 0

ν dn(θ̂ML∗ , θ̂ γ,ν

ML ) Rn(θ̂ML∗ , θ̂ γ,ν

ML )

1 6.3154 + o(1) 1 + 6.3154

n
+ o

(
1

n

)

2 8.5681 + o(1) 1 + 8.5681

n
+ o

(
1

n

)

3 15.8437 + o(1) 1 + 15.8437

n
+ o

(
1

n

)

and

∂λ̂1

∂γ
= ∂λ1

∂γ
(θ̂ML , X(1), X(n)),

∂λ̂1

∂ν
= ∂λ1

∂ν
(θ̂ML , X(1), X(n))

with

∂λ1

∂γ
= ηγ−ν(θ − γ )

{
θ − γ − ηγ−ν(θ − γ ) − ην−γ (θ − ν)

}
,

∂λ1

∂ν
= ην−γ (θ − ν)

{
θ − ν + ηγ−ν(θ − γ ) + ην−γ (θ − ν)

}
.

From Theorem3.6.1, we obtain the second-order asymptotic losses

dn(θ̂ML∗ , θ̂MCL ) = o(1),

dn(θ̂ML∗ , θ̂ γ,ν

ML ) = dn(θ̂MCL , θ̂
γ,ν

ML )

= {θ − γ + ηγ−ν(θ − γ ) + ην−γ (θ − ν)}2 + {θ − ν + ηγ−ν(θ − γ ) + ην−γ (θ − ν)}2
1 − (θ − γ )ηγ−ν(θ − γ ) − (θ − ν)ην−γ (θ − ν) − {ηγ−ν(θ − γ ) + ην−γ (θ − ν)}2

+ o(1)

as n → ∞.
When θ = γ = 0, and ν = 1, 2, 3, the values of the second-order asymptotic loss

dn(θ̂ML∗ , θ̂
γ,ν

ML) of θ̂ML∗ and the ratio Rn(θ̂ML∗ , θ̂
γ,ν

ML) are obtained from the above and
Remark 3.6.1 (see Table3.2 and Fig. 3.2).

Example 3.7.3 (Upper-truncated Pareto distribution) For the Pareto distribution
with an index parameter α to be estimated and two truncation parameters γ and ν as
nuisance parameters,Aban et al. (2006) show the asymptotic normality of theMLEs α̃
and α̂ ofα in the casewhenγ and ν are knownand the casewhenγ and ν are unknown,
respectively. Although it is noted in Remark 2 of their paper that the asymptotic
variance of α̂ is not the same as that of α̃, it is seen fromTheorems3.3.1 and 3.4.1 that
α̃ and α̂ have the same asymptotic variance in the first order. However, in the second-
order asymptotic comparison, a bias-adjustment of α̂ is needed and its second-order
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Fig. 3.2 Graph of the ratio Rn(θ̂ML∗ , θ̂ γ,ν

ML ) up to the order 1/n for θ = γ = 0

asymptotic variance is different from that of α̃, as below. Note that α is represented
as θ in this chapter. Let c = 0, d = ∞, a(x) = 1/x , and u(x) = − log x for 0 <

γ ≤ x ≤ ν < ∞ in the density (1.9). Then, b(θ, γ, ν) = {1 − (γ /ν)θ }/(θγ θ ) for
θ ∈ Θ = (0,∞). Letting t = log x , γ0 = log γ , and ν0 = log ν, we see that (1.9)
becomes

f (t; θ, γ0, ν0) =
{

θeθγ0

1−e−θ(ν0−γ0) e−θ t for γ0 ≤ t ≤ ν0,

0 otherwise.

Hence, the upper-truncated Pareto distribution case is reduced to the two-sided trun-
cated exponential one in Example 3.7.1. Replacing X̄ and X(i) (i = 1, · · · , n) by
log X := (1/n)

∑n
i=1 log Xi and log X(i) (i = 1, · · · , n), respectively, in Example

3.7.1, we have the second-order asymptotic losses

dn(θ̂ML∗ , θ̂MCL) = o(1),

dn(θ̂ML∗ , θ̂
γ,ν

ML) = dn(θ̂MCL , θ̂
γ,ν

ML)

=
{(

1 + ξ log ξ

1 − ξ

)2

+
(
1 + log ξ

1 − ξ

)2
} / {

1 − ξ(log ξ)2

(1 − ξ)2

}
+ o(1)

as n → ∞ where ξ := (γ /ν)θ .
When θ = 0.8, γ = 1, and ν = 5, 10, 15, the values of the second-order asymp-

totic loss dn(θ̂ML∗ , θ̂
γ,ν

ML) of θ̂ML∗ and the ratio Rn(θ̂ML∗, θ̂
γ,ν

ML) are obtained from the

http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Table 3.3 Values of dn(θ̂ML∗ , θ̂ γ,ν

ML ) and Rn(θ̂ML∗ , θ̂ γ,ν

ML ) for θ = 0.8 and γ = 1

ν dn(θ̂ML∗ , θ̂ γ,ν

ML ) Rn(θ̂ML∗ , θ̂ γ,ν

ML )

5 6.7898 + o(1) 1 + 6.7898

n
+ o

(
1

n

)

10 7.6495 + o(1) 1 + 7.6495

n
+ o

(
1

n

)

15 8.3155 + o(1) 1 + 8.3155

n
+ o

(
1

n

)
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Fig. 3.3 Graph of the ratio Rn(θ̂ML∗ , θ̂ γ,ν

ML ) up to the order 1/n for θ = 0.8 and γ = 1

above and Remark 3.6.1 (see Table3.3 and Fig. 3.3). In Aban et al. (2006), the per-
formance of the MLE is compared with that of the estimators of Hill (1975) and Beg
(1981) when θ = 0.8, γ = 1, and ν = 10.

Example 3.7.4 (Two-sided truncated beta distribution) Let c = 0, d = 1, a(x) =
x−1, and u(x) = log x for 0 < γ ≤ x ≤ ν < 1 in the density (1.9). Note that the
density is uniformover the interval [γ, ν]when θ = 1. Since b(θ, γ, ν) = θ−1νθ (1 −
(γ /ν)θ ) for θ ∈ Θ = (0,∞), it follows from (3.1) and Theorem3.4.1 that

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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λ1(θ, γ, ν) = log ν − 1 − ξ + ξ log ξ

θ(1 − ξ)
,

λ2(θ, γ, ν) = 1

θ2
− ξ

θ2(1 − ξ)2
(log ξ)2,

k(θ, γ, ν) = θξ

γ (1 − ξ)
, k̃(θ, γ, ν) = θ

ν(1 − ξ)

where ξ = (γ /ν)θ . Then, it follows from (3.2), (3.4), and (3.12) that the solutions
of θ of the following

log ν − 1 − (γ /ν)θ + (γ /ν)θ log (γ /ν)θ

θ
(
1 − (γ /ν)θ

) = log X ,

log X(n) − 1 − (X(1)/X(n))
θ + (X(1)/X(n))

θ log (X(1)/X(n))
θ

θ
(
1 − (X(1)/X(n))θ

) = log X ,

log X(n) − 1 − (X(1)/X(n))
θ + (X(1)/X(n))

θ log (X(1)/X(n))
θ

θ
(
1 − (X(1)/X(n))θ

) = 1

n − 2

n−1∑
i=2

log X(i)

become θ̂
γ,ν

ML , θ̂ML , θ̂MCL , respectively where log X = (1/n)
∑n

i=1 log Xi . From
(3.5), we obtain the bias-adjusted MLE θ̂ML∗ using λ̂i := λi (θ̂ML , X(1), X(n)) (i =
1, 2), k̂ = k(θ̂ML , X(1), X(n)),

ˆ̃k = k̃(θ̂ML , X(1), X(n)), and

∂λ̂1

∂γ
= − ξ̂ (1 − ξ̂ + log ξ̂ )

X(1)(1 − ξ̂ )2
,

∂λ̂1

∂ν
= ξ̂ (1 − ξ̂ + log ξ̂ )

X(n)(1 − ξ̂ )2
,

with ξ̂ = (X(1)/X(n))
θ̂ML . From Theorem3.6.1, we have the second-order asymptotic

losses

dn(θ̂ML∗ , θ̂MCL) = o(1),

dn(θ̂ML∗ , θ̂
γ,ν

ML) = dn(θ̂MCL , θ̂
γ,ν

ML) = (1 − ξ − log ξ)2 + (1 − ξ + ξ log ξ)2

(1 − ξ)2 − ξ(log ξ)2
+ o(1),

as n → ∞.
When θ = 3, γ = 1/4, and ν = 1/2, 2/3, 5/6, the values of the second-order

asymptotic loss dn(θ̂ML∗, θ̂
γ,ν

ML) and the ratio Rn(θ̂ML∗ , θ̂
γ,ν

ML) are obtained from the
above and Remark3.6.1 (see Table3.4 and Fig. 3.4).

Example 3.7.5 (Two-sided truncatedErlang typedistribution)Let c = −∞, d =
∞, a(x) = |x | j−1, and u(x) = −|x | for−∞ < γ ≤ x ≤ ν < ∞ in the density (1.9)
where j = 1, 2, . . . . Then, for each j = 1, 2, . . . , b j (θ, γ, ν) = ∫ ν

γ
|x | j−1e−θ |x |dx

for θ ∈ Θ = (0,∞). In particular, the distribution is a two-sided truncated bilateral

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Table 3.4 Values of dn(θ̂ML∗ , θ̂ γ,ν

ML ) and Rn(θ̂ML∗ , θ̂ γ,ν

ML ) for θ = 3 and γ = 1/4

ν dn(θ̂ML∗ , θ̂ γ,ν

ML ) Rn(θ̂ML∗ , θ̂ γ,ν

ML )

1/2 8.1247 + o(1) 1 + 8.1247

n
+ o

(
1

n

)

2/3 10.4562 + o(1) 1 + 10.4562

n
+ o

(
1

n

)

5/6 13.0034 + o(1) 1 + 13.0034

n
+ o

(
1

n

)
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Fig. 3.4 Graph of the ratio Rn(θ̂ML∗ , θ̂ γ,ν

ML ) up to the order 1/n for θ = 3 and γ = 1/4

exponential (Laplace) distribution when j = 1. If γ > 0, then the distribution is a
two-sided truncated Erlang distribution with density

f j (x; θ, γ, ν) =
{

1
b(θ,γ,ν)

x j−1e−θx for 0 < γ ≤ x ≤ ν < ∞,

0 otherwise

where j = 1, 2, . . . , and b(θ, γ, ν) = ∫ ν

γ
x j−1e−θxdx for θ > 0. If ν < 0, then the

distribution becomes the above two-sided truncated Erlang distribution by the change
of variable since −∞ < γ < ν < 0. Hence, we consider the case when −∞ < γ ≤
0 < ν < ∞. Let j be arbitrarily fixed in {1, 2, . . . }. Since ∂b j/∂θ = −b j+1, it fol-
lows from (3.1) and Theorem3.4.1 that
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λ j1(θ, γ, ν) = ∂

∂θ
log b j (θ, γ, ν) = −b j+1

b j
,

λ j2(θ, γ, ν) = ∂2

∂θ2
log b j (θ, γ, ν) = b j+2

b j
−

(
b j+1

b j

)2

,

k j (θ, γ, ν) = a(γ )eθu(γ )

b j (θ, γ, ν)
= |γ | j−1e−θ |γ |

b j (θ, γ, ν)
,

k̃ j (θ, γ, ν) = a(ν)eθu(ν)

b j (θ, γ, ν)
= |ν| j−1e−θ |ν|

b j (θ, γ, ν)
.

Then, it follows from (3.2), (3.4) and (3.12) that the solutions of θ of the following

b j+1(θ, γ, ν)/b j (θ, γ, ν) = 1

n

n∑
i=1

|Xi |,

b j+1(θ, X(1), X(n))/b j (θ, X(1), X(n)) = 1

n

n∑
i=1

|Xi |,

b j+1(θ, X(1), X(n))/b j (θ, X(1), X(n)) = 1

n − 2

n−1∑
i=2

|X(i)|

become θ̂
γ,ν

ML , θ̂ML , θ̂MCL , respectively. From (3.5), we obtain the bias-adjusted
MLE θ̂ML∗ using λ̂ j i := λ j i (θ̂ML , X(1), X(n)) (i = 1, 2), k̂ j := k j (θ̂ML , X(1), X(n)),
ˆ̃k j := k̃ j (θ̂ML , X(1), X(n)), ∂λ̂ j1/∂γ := (∂λ j1/∂γ )(θ̂ML , X(1), X(n)) and ∂λ̂ j1/∂ν :=
(∂λ j1/∂ν)(θ̂ML , X(1), X(n)). From Theorem3.6.1, we have the second-order asymp-
totic losses

dn(θ̂ML∗ , θ̂MCL) = o(1),

dn(θ̂ML∗ , θ̂
γ,ν

ML) = dn(θ̂MCL , θ̂
γ,ν

ML) = (b j+1 − γ b j )
2 + (b j+1 − νb j )

2

b jb j+2 − b2j+1

+ o(1),

as n → ∞. If j = 2, then

b2 = −1

θ

(
ν + 1

θ

)
e−θν + 1

θ

(
γ + 1

θ

)
e−θγ ,

b3 = −1

θ

(
ν2 + 2

θ
ν + 2

θ2

)
e−θν + 1

θ

(
γ 2 + 2

θ
γ + 2

θ2

)
e−θγ ,

b4 = −1

θ

(
ν3 + 3

θ
ν2 + 6

θ2
ν + 6

θ3

)
e−θν + 1

θ

(
γ 3 + 3

θ
γ 2 + 6

θ2
γ + 6

θ3

)
e−θγ .
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Table 3.5 Values of dn(θ̂ML∗ , θ̂0,νML ) and Rn(θ̂ML∗ , θ̂0,νML ) for j = 2, θ = 1, and γ = 0

ν dn(θ̂ML∗ , θ̂0,νML ) Rn(θ̂ML∗ , θ̂0,νML )

1 8.4737 + o(1) 1 + 8.4737

n
+ o

(
1

n

)

2 7.8107 + o(1) 1 + 7.8107

n
+ o

(
1

n

)

3 7.9360 + o(1) 1 + 7.9360

n
+ o

(
1

n

)

Further, if θ = 1 and γ = 0, then

b2 = −(ν + 1)e−ν + 1, b3 = −(ν2 + 2ν + 2)e−ν + 2,

b4 = −(ν3 + 3ν2 + 6ν + 6)e−ν + 6,

hence

dn(θ̂ML∗ , θ̂
0,ν
ML)

= (ν4 + 4ν3 + 9ν2 + 12ν + 8)e−2ν − 2(ν2 + 4ν + 8)e−ν + ν2 − 4ν + 8

(ν2 + 4ν + 2)e−2ν − (ν3 − ν2 + 4ν + 4)e−ν + 2
+ o(1),

asn → ∞.When j = 2, θ = 1,γ = 0 and ν = 1, 2, 3, the values of the second-order
asymptotic loss dn(θ̂ML∗ , θ̂

γ,ν

ML) of θ̂ML∗ and the ratio Rn(θ̂ML∗ , θ̂
γ,ν

ML) are obtained
from the above and Remark3.6.1 (see Table3.5 and Fig. 3.5). Note that letting θ = 0
formally in the two-sided truncated Erlang-type distribution when j = 1, we get the
uniform distribution over the interval [γ, ν].

Example 3.7.6 (Two-sided truncated lognormal distribution) Let c = 0, d = ∞,

a(x) = x−1 exp{−(1/2)(log x)2}, and u(x) = log x for 0 < γ ≤ x ≤ ν < ∞ in the
density (1.9). Then,

b(θ, γ, ν) = {Φ(θ − log γ ) − Φ(θ − log ν)}/φ(θ)

for θ ∈ Θ = (−∞,∞) where Φ(x) = ∫ x
−∞ φ(t)dt with φ(t) = (1/

√
2π)e−t2/2 for

−∞ < t < ∞. Letting t = log x, γ0 = log γ , and ν0 = log ν, we see that (1.9)
becomes

f (t; θ, γ0, ν0) =
{

1√
2π{Φ(θ−γ0)−Φ(θ−ν0)}e

−(t−θ)2/2 for − ∞ < γ0 ≤ t ≤ ν0 < ∞,

0 otherwise.

Hence, the two-sided truncated lognormal case is reduced to the two-sided truncated
normal one in Example 3.7.2.
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Fig. 3.5 Graph of the ratio Rn(θ̂ML∗ , θ̂0,νML ) up to the order 1/n for j = 2, θ = 1 and γ = 0

3.8 Concluding Remarks

In this chapter, the corresponding results on a comparison of the estimators to the case
of oTEF in Chap.2 are obtained in the case of a tTEF of distributions with a natural
parameter θ and two truncation parameters γ and ν as nuisance ones, including the
upper-truncated Pareto distribution which is important in applications to finance,
hydrology, and atmospheric science as is seen in Aban et al. (2006). In particular, the
second-order asymptotic losses of θ̂ML∗ and θ̂MCL given by Theorem3.6.1 are seen
to be quite simple, which results from a tTEF of distributions. Indeed, as is seen from
the form (1.9) of density, the structure of the regular and non-regular parts of (1.9)
reflects in that of the second-order asymptotic variances ofUγ,ν = √

λ2n(θ̂
γ,ν

ML − θ),
Û ∗ = √

λ2n(θ̂ML∗ − θ) and Ũ0 = √
λ2n(θ̂MCL − θ) in Theorems3.3.1, 3.4.1, and

3.5.1. The regular part corresponds to the term of order n−1 in the second-order
asymptotic variance ofUγ,ν where γ and ν are known. When γ and ν are unknown,
the second-order asymptotic variances of Û ∗ and Ũ0 consist of the corresponding
regular term and the non-regular one with the term depending on u(γ ) and u(ν) in
the second order, i.e., the order n−1. The results arise from giving full consideration
to the typical non-regular case up to the second order. Furthermore, in a similar way
to the above, the results may be extended to the case of a more general truncated
family of distributions.

http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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3.9 Appendix B1

Before proving Theorem3.3.1, we prepare three lemmas (the proofs are given in
Appendix B2 of the next section).

Lemma 3.9.1 The second-order asymptotic densities of T(1) and T(n) are given by

fT(1) (t) = k(θ, γ, ν)e−k(θ,γ,ν)t

− 1

2n

{
∂

∂γ
log k(θ, γ, ν)

}{
k(θ, γ, ν)t2 − 2t

}
k(θ, γ, ν)e−k(θ,γ,ν)t + O

(
1

n2

)
(3.14)

for t > 0, and

fT(n)
(t) = k̃(θ, γ, ν)ek̃(θ,γ,ν)t

+ 1

2n

{
∂

∂ν
log k̃(θ, γ, ν)

}{
k̃(θ, γ, ν)t2 + 2t

}
k̃(θ, γ, ν)ek̃(θ,γ,ν)t + O

(
1

n2

)
(3.15)

for t < 0, and

Eθ,γ,ν(T(1)) = 1

k(θ, γ, ν)
+ A(θ, γ, ν)

n
+ O

(
1

n2

)
, (3.16)

Eθ,γ,ν(T(n)) = − 1

k̃(θ, γ, ν)
− Ã(θ, γ, ν)

n
+ O

(
1

n2

)
, (3.17)

Eθ,γ,ν(T
2
(1)) = 2

k2(θ, γ, ν)
+ 6A(θ, γ, ν)

k(θ, γ, ν)n
+ O

(
1

n2

)
, (3.18)

Eθ,γ,ν(T
2
(n)) = 2

k̃2(θ, γ, ν)
+ 6 Ã(θ, γ, ν)

k̃(θ, γ, ν)n
+ O

(
1

n2

)
(3.19)

where

k(θ, γ, ν) = a(γ )eθu(γ )/b(θ, γ, ν), k̃(θ, γ, ν) = a(ν)eθu(ν)/b(θ, γ, ν),

A(θ, γ, ν) := − 1

k2(θ, γ, ν)

∂

∂γ
log k(θ, γ, ν),

Ã(θ, γ, ν) := 1

k̃2(θ, γ, ν)

∂

∂ν
log k̃(θ, γ, ν).
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Lemma 3.9.2 It holds that

Eθ,γ,ν(Z1T(1)) = 1

k
√

λ2n

{
u(γ ) − λ1 + 2

k

(
∂λ1

∂γ

)}
+ O

(
1

n
√
n

)
, (3.20)

Eθ,γ,ν(Z1T(n)) = − 1

k̃
√

λ2n

{
u(ν) − λ1 − 2

k̃

(
∂λ1

∂ν

)}
+ O

(
1

n
√
n

)
(3.21)

where k = k(θ, γ, ν) and λi = λi (θ, γ, ν) (i = 1, 2).

Lemma 3.9.3 It holds that

Eθ,γ,ν(Z
2
1T(1)) = 1

k
+ O

(
1

n

)
, (3.22)

Eθ,γ,ν(Z
2
1T(n)) = −1

k̃
+ O

(
1

n

)
(3.23)

where k = k(θ, γ, ν) and k̃ = k̃(θ, γ, ν).

The proof of Theorem3.4.1 Since, for (θ, γ, ν) ∈ Θ × (c, X(1)) × (X(n), d)

λ1(θ̂ML , X(1), X(n))

= λ1(θ, γ, ν) +
{

∂

∂θ
λ1(θ, γ, ν)

}
(θ̂ML − θ) +

{
∂

∂γ
λ1(θ, γ, ν)

}
(X(1) − γ )

+
{

∂

∂ν
λ1(θ, γ, ν)

}
(X(n) − ν) + 1

2

[{
∂2

∂θ2
λ1(θ, γ, ν)

}
(θ̂ML − θ)2

+ 2

{
∂2

∂θ∂γ
λ1(θ, γ, ν)

}
(θ̂ML − θ)(X(1) − γ )

+ 2

{
∂2

∂θ∂ν
λ1(θ, γ, ν)

}
(θ̂ML − θ)(X(n) − ν)

+
{

∂2

∂γ 2
λ1(θ, γ, ν)

}
(X(1) − γ )2 + 2

{
∂2

∂γ ∂ν
λ1(θ, γ, ν)

}
(X(1) − γ )(X(n) − ν)

+
{

∂2

∂ν2
λ1(θ, γ, ν)

}
(X(n) − ν)2

]
+ 1

6

{
∂3

∂θ3
λ1(θ, γ )

}
(θ̂ML − θ)3 + · · · ,

(3.24)

noting Û = √
λ2n(θ̂ML − θ), T(1) = n(X(1) − γ ), and T(n) = n(X(n) − ν), we have

from (3.4) and (3.24)
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0 =
√

λ2

n
Z1 −

√
λ2

n
Û − 1

n

(
∂λ1

∂γ

)
T(1) − 1

n

(
∂λ1

∂ν

)
T(n) − λ3

2λ2n
Û 2

− 1√
λ2nn

(
∂λ2

∂γ

)
ÛT(1) − 1√

λ2nn

(
∂λ2

∂ν

)
ÛT(n) − λ4

6λ3/2
2 n

√
n
Û 3

+ Op

(
1

n2

)
,

which implies that the stochastic expansion of Û is given by

Û =Z1 − λ3

2λ3/2
2

√
n
Z2
1 − 1√

λ2n

{(
∂λ1

∂γ

)
T(1) +

(
∂λ1

∂ν

)
T(n)

}

+ 1

λ2n
Z1

{
δ1T(1) + δ2T(n)

} + 1

2n

(
λ2
3

λ3
2

− λ4

3λ2
2

)
Z3
1 + Op

(
1

n
√
n

)
(3.25)

where

δ1 := λ3

λ2

(
∂λ1

∂γ

)
− ∂λ2

∂γ
, δ2 := λ3

λ2

(
∂λ1

∂ν

)
− ∂λ2

∂ν
.

Hence, we obtain (3.7). Here,

Eθ,γ,ν(Z1) = 0, Eθ,γ,ν(Z
2
1) = 1, Eθ,γ,ν(Z

3
1) = λ3

λ
3/2
2

√
n

, Eθ,γ,ν(Z
4
1) = 3 + λ4

λ22n
. (3.26)

Then, it follows from (3.26) that

Eθ,γ,ν(Û ) = − λ3

2λ3/2
2

√
n

− 1√
λ2n

{(
∂λ1

∂γ

)
Eθ,γ,ν(T(1)) +

(
∂λ1

∂ν

)
Eθ,γ,ν(T(n))

}

+ 1

λ2n

{
δ1Eθ,γ,ν(Z1T(1)) + δ2Eθ,γ,ν(Z1T(n))

} + O

(
1

n
√
n

)
. (3.27)

Substituting (3.16), (3.17), (3.20) and (3.21) into (3.27), we obtain

Eθ,γ,ν(Û ) = − 1√
λ2n

{
1

k

(
∂λ1

∂γ

)
− 1

k̃

(
∂λ1

∂ν

)
+ λ3

2λ2

}
+ O

(
1

n
√
n

)
. (3.28)

From (3.25), we have
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Eθ,γ,ν(Û
2)

=Eθ,γ,ν(Z
2
1) − 1√

λ2n

{
2

(
∂λ1

∂γ

)
Eθ,γ,ν(Z1T(1)) + 2

(
∂λ1

∂ν

)
Eθ,γ,ν(Z1T(n))

+ λ3

λ2
Eθ,γ,ν(Z

3
1)

}
+ 1

λ2n

{(
∂λ1

∂γ

)2

Eθ,γ,ν(T
2
(1))

+ 2

(
∂λ1

∂γ

)(
∂λ1

∂ν

)
Eθ,γ,ν(T(1)T(n)) +

(
∂λ1

∂ν

)2

Eθ,γ,ν(T
2
(n))

}

+ 1

λ2n

{
λ3

λ2

(
∂λ1

∂γ

)
+ 2δ1

}
Eθ,γ,ν(Z

2
1T(1)) + 1

λ2n

{
λ3

λ2

(
∂λ1

∂ν

)
+ 2δ2

}

· Eθ,γ,ν(Z
2
1T(n)) + λ2

3

4λ3
2n

Eθ,γ,ν(Z
4
1) + 1

n

(
λ2
3

λ3
2

− λ4

3λ2
2

)
Eθ,γ,ν(Z

4
1)

+ O

(
1

n
√
n

)
. (3.29)

Since T(1) and T(n) are asymptotically independent, it follows from (3.16) and (3.17)
that

Eθ,γ,ν(T(1)T(n)) = Eθ,γ,ν(T(1))Eθ,γ,ν(T(n)) + O

(
1

n

)

= − 1

kk̃
+ O

(
1

n

)
. (3.30)

Substituting (3.18)–(3.23), (3.26), and (3.30) into (3.29) we obtain

Eθ,γ,ν(Û
2) =1 − 2

λ2n

[
1

k

(
∂λ1

∂γ

){
u(γ ) − λ1 + 1

k

(
∂λ1

∂γ

)}

− 1

k̃

(
∂λ1

∂ν

){
u(ν) − λ1 − 1

k̃

(
∂λ1

∂ν

)}]

− 2

kk̃λ2n

(
∂λ1

∂γ

)(
∂λ1

∂ν

)
+ 3λ3

λ2
2n

{
1

k

(
∂λ1

∂γ

)
− 1

k̃

(
∂λ1

∂ν

)}

− 2

λ2n

{
1

k

(
∂λ2

∂γ

)
− 1

k̃

(
∂λ2

∂ν

)}
+ 11λ2

3

4λ3
2n

− λ4

λ2
2n

+ O

(
1

n2

)
.

(3.31)

Next, put λ̂2 = λ2(θ̂ML , X(1), X(n)), k̂ = k(θ̂ML , X(1), X(n)), and ˆ̃k =
k̃(θ̂ML , X(1), X(n)). Letting

∂λ̂1

∂γ
= ∂λ1

∂γ
(θ̂ML , X(1), X(n)),

∂λ̂1

∂ν
= ∂λ1

∂ν
(θ̂ML , X(1), X(n)),



3.9 Appendix B1 57

we have

√
λ2

λ̂2

(
1

k̂

∂λ̂1

∂γ
− 1

ˆ̃k
∂λ̂1

∂ν

)

= 1√
λ2

{
1

k

(
∂λ1

∂γ

)
− 1

k̃

(
∂λ1

∂ν

)
+ 1√

λ2n

(
1

k

(
∂2λ1

∂γ ∂θ

)
− 1

k̂

(
∂2λ1

∂ν∂θ

))
Û

− 1√
λ2n

(
1

k2

(
∂k

∂θ

)(
∂λ1

∂γ

)
− 1

k̃2

(
∂ k̃

∂θ

)(
∂λ1

∂ν

))
Û

− λ3

λ
3/2
2

√
n

(
1

k

(
∂λ1

∂γ

)
− 1

k̃

(
∂λ1

∂ν

))
Û + Op

(
1

n

)}
. (3.32)

From (3.5) and (3.32), we obtain the stochastic expansion

Û ∗ :=√
λ2n(θ̂ML∗ − θ) = √

λ2n(θ̂ML − θ) +
√

λ2

λ̂2
√
n

{
1

k̂

(
∂λ̂1

∂γ

)
− 1

ˆ̃k

(
∂λ̂1

∂ν

)}

=Û + 1√
λ2n

{
1

k

(
∂λ1

∂γ

)
− 1

k̃

(
∂λ1

∂ν

)}

− 1

λ2n

{
δ1

k
− δ2

k̃
+ 1

k2

(
∂k

∂θ

)(
∂λ1

∂γ

)
− 1

k̃2

(
∂ k̃

∂θ

)(
∂λ1

∂ν

)}
Z1

+ Op

(
1

n
√
n

)
(3.33)

where Û is given by (3.25). From (3.28), we have

Eθ,γ,ν(Û
∗) = − λ3

2λ3/2
2

√
n

+ O

(
1

n
√
n

)
. (3.34)

Hence, we obtain (3.6) and (3.9). From (3.28), (3.30), and (3.33), we have

Eθ,γ,ν(Û
∗2) =1 − 2

kλ2n
{u(γ ) − λ1}

(
∂λ1

∂γ

)
+ 2

k̃λ2n
{u(ν) − λ1}

(
∂λ1

∂ν

)

− 3

λ2n

{
1

k2

(
∂λ1

∂γ

)2

+ 1

k̃2

(
∂λ1

∂ν

)2
}

− 2

λ2n

{
1

k2

(
∂k

∂θ

)(
∂λ1

∂γ

)
− 1

k̃2

(
∂ k̃

∂θ

)(
∂λ1

∂ν

)}

+ 11λ2
3

4λ3
2n

− λ4

λ2
2n

+ O

(
1

n
√
n

)
,
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hence, by (3.34)

Vθ,γ,ν(Û
∗) =1 + 1

n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
− 2

kλ2n

(
∂λ1

∂γ

){
u(γ ) − λ1 + 1

k

(
∂k

∂θ

)}

− 3

k2λ2n

(
∂λ1

∂γ

)2

+ 2

k̃λ2n

(
∂λ1

∂ν

){
u(γ ) − λ1 + 1

k̃

(
∂ k̃

∂θ

)}

− 3

k̃2λ2n

(
∂λ1

∂ν

)2

+ O

(
1

n2

)
. (3.35)

Since

λ1(θ, γ, ν) = ∂

∂θ
log b(θ, γ, ν) = 1

b(θ, γ, ν)

∫ ν

γ

u(x)a(x)eθu(x)dx,

it follows that

∂λ1(θ, γ, ν)

∂γ
= a(γ )eθu(γ )

b(θ, γ, ν)
{λ1(θ, γ, ν) − u(γ )} = k(θ, γ, ν){λ1(θ, γ, ν) − u(γ )},

(3.36)

∂λ1(θ, γ, ν)

∂ν
= a(ν)eθu(ν)

b(θ, γ, ν)
{u(ν) − λ1(θ, γ, ν)} = k̃(θ, γ, ν){u(ν) − λ1(θ, γ, ν)}.

(3.37)

Since

∂k

∂θ
(θ, γ, ν) = k(θ, γ, ν){u(γ ) − λ1(θ, γ, ν)}, (3.38)

∂ k̃

∂θ
(θ, γ, ν) = k̃(θ, γ, ν){u(ν) − λ1(θ, γ, ν)}, (3.39)

it is seen from (3.35)–(3.39) that

Vθ,γ,ν(Û
∗) =1 + 1

n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+ 1

λ2n

[{u(γ ) − λ1}2 + {u(ν) − λ1}2
]

+ O

(
1

n
√
n

)
,

hence we obtain (3.10). Thus, we complete the proof.
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The proof of Theorem3.5.1 Since, from (3.12)

0 = 1

n − 2

n−1∑
i=2

{u(Yi ) − λ1(θ, x(1), x(n))} − 1√
n
λ2(θ, x(1), x(n))

√
n(θ̂MCL − θ)

− 1

2n
λ3(θ, x(1), x(n))n(θ̂MCL − θ)2 − 1

6n
√
n
λ4(θ, x(1), x(n))n

√
n(θ̂MCL − θ)3

+ Op

(
1

n2

)
,

letting

Z̃1 := 1√
λ̃2(n − 2)

n−1∑
i=2

{u(Yi ) − λ1(θ, x(1), x(n))}, Ũ :=
√

λ̃2n(θ̂MCL − θ)

where λ̃i = λi (θ, x(1), x(n)) (i = 1, 2, 3, 4), we have

0 =
√

λ̃2

n − 2
Z̃1 −

√
λ̃2

n
Ũ − λ̃3

2λ̃2n
Ũ 2 − λ̃4

6λ̃3/2
2 n

√
n
Ũ 3 + Op

(
1

n2

)
,

hence the stochastic expansion of Û is given by

Ũ = Z̃1 − λ̃3

2λ̃3/2
2

√
n
Z̃2
1 + 1

n
Z̃1 + λ̃2

3

2λ̃3
2n

Z̃3
1 − λ̃4

6λ̃2
2n

Z̃3
1 + Op

(
1

n
√
n

)
. (3.40)

Since for i = 2, 3, 4

λ̃i = λi (θ, X(1), X(n)) = λi (θ, γ, ν) + 1

n

(
∂λi

∂γ

)
T(1) + 1

n

(
∂λi

∂ν

)
T(n) + Op

(
1

n2

)
,

we obtain

Ũ =
√

λ̃2n(θ̂MCL − θ)

=√
λ2n(θ̂MCL − θ)

{
1 + 1

2nλ2

(
∂λ2

∂γ

)
T(1) + 1

2nλ2

(
∂λ2

∂ν

)
T(n) + Op

(
1

n2

)}
(3.41)

where T(1) = n(X(1) − γ ), T(n) = n(X(n) − ν), and λ2 = λ2(θ, γ, ν). Then, it fol-
lows from (3.40) and (3.41) that
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Ũ0 = √
λ2n(θ̂MCL − θ)

= Z̃1 − λ̃3

2λ̃3/2
2

√
n
Z̃2
1 + 1

n

{
1 − 1

2λ2

(
∂λ2

∂γ

)
T(1) − 1

2λ2

(
∂λ2

∂ν

)
T(n)

}
Z̃1

+ 1

2n

(
λ̃2
3

λ̃3
2

− λ̃4

3λ̃2
2

)
Z̃3
1 + Op

(
1

n
√
n

)
, (3.42)

hence we obtain (3.13). For given X(1) = x(1) and X(n) = x(n), i.e., T(1) = t(1) :=
n(x(1) − γ ) and T(n) = t(n) := n(x(n) − ν), the conditional expectations of Z̃1 and
Z̃2
1 are

Eθ,γ,ν(Z̃1|t(1), t(n)) = 1√
λ̃2(n − 2)

n−1∑
i=2

{
Eθ,γ,ν [u(Yi )|t(1), t(n)] − λ1(θ, x(1), x(n))

} = 0,

Eθ,γ,ν(Z̃
2
1 |t(1), t(n))

= 1

λ̃2(n − 2)

[n−1∑
i=2

Eθ,γ,ν [{u(Yi ) − λ1(θ, x(1), x(n))}2|t(1), t(n)]

+
∑∑

i 	= j
2≤i, j≤n−1

Eθ,γ,ν

[{u(Yi ) − λ1(θ, x(1), x(n))}{u(Y j ) − λ1(θ, x(1), x(n))} | t(1), t(n)

]]

= 1, (3.43)

hence the conditional variance of Z̃1 is equal to 1, i.e., Vθ,γ,ν(Z̃1|t(1), t(n)) = 1. In a
similar way to the above, we have

Eθ,γ,ν(Z̃
3
1 |t(1), t(n)) = λ̃3

λ̃
3/2
2

√
n − 2

, Eθ,γ,ν(Z̃
4
1 |t(1), t(n)) = 3 + λ̃4

λ̃2
2(n − 2)

.

(3.44)

Then, it follows from (3.43) and (3.44) that

Eθ,γ,ν(Ũ0|T(1), T(n)) = − λ̃3

2λ̃3/2
2

√
n

+ Op

(
1

n
√
n

)
, (3.45)

Eθ,γ,ν(Ũ
2
0 |T(1), T(n)) = 1 + 2

n
+ 11λ̃2

3

4λ̃3
2n

− λ̃4

λ̃2
2n

− 1

λ2n

(
∂λ2

∂γ

)
T(1)

− 1

λ2n

(
∂λ2

∂ν

)
T(n) + Op

(
1

n
√
n

)
(3.46)
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where λ̃i = λi (θ, X(1), X(n)) (i = 2, 3, 4). Since, for i = 2, 3, 4

λ̃i = λi (θ, X(1), X(n)) = λi (θ, γ, ν) + Op

(
1

n

)
= λi + Op

(
1

n

)
, (3.47)

it follows from (3.45) that

Eθ,γ,ν(Ũ0) = Eθ,γ,ν[Eθ,γ,ν(Ũ0|T(1), T(n))] = − λ3

2λ3/2
2

√
n

+ O

(
1

n
√
n

)
. (3.48)

In a similar way to the above, we obtain from (3.16), (3.17), (3.46) and (3.47) that

Eθ,γ,ν(Ũ
2
0 ) = 1 + 2

n
+ 11λ23

4λ32n
− λ4

λ22n
− 1

kλ2n

(
∂λ2

∂γ

)
+ 1

k̃λ2n

(
∂λ2

∂ν

)
+ O

(
1

n
√
n

)
. (3.49)

Since, by (3.36)–(3.39)

1

k

(
∂λ2

∂γ

)
= 1

k

{
∂k

∂θ
(λ1 − u(γ )) + k

(
∂λ1

∂θ

)}
= −(u(γ ) − λ1)

2 + λ2,

1

k̃

(
∂λ2

∂ν

)
= 1

k̃

{
∂ k̃

∂θ
(u(ν) − λ1) − k̃

(
∂λ1

∂θ

)}
= (u(ν) − λ1)

2 − λ2,

it follows from (3.49) that

Eθ,γ,ν(Ũ
2
0 ) = 1 + 11λ23

4λ32n
− λ4

λ22n
+ 1

λ2n

[
{u(γ ) − λ1}2 + {u(ν) − λ1}2

]
+ O

(
1

n
√
n

)
,

hence, by (3.48)

Vθ,γ,ν(Ũ0) =1 + 1

n

(
5λ2

3

2λ3
2

− λ4

λ2
2

)
+ 1

λ2n

[{u(γ ) − λ1}2 + {u(ν) − λ1}2
]

+ O

(
1

n
√
n

)
.

Thus, we complete the proof.

3.10 Appendix B2

The proof of Lemma 3.9.1 The derivation of (3.14) and (3.15) is omitted, since
it is essentially same as that of (2.15) in Lemma 2.9.1. The Eqs. (3.16)–(3.19) are
obtained by straightforward calculation.

http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_2
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The proof of Lemma 3.9.2 Let Y1, . . . ,Yn−1 be a random permutation of the
(n − 1)! permutations of X(1), . . . , X(n−1) such that conditionally on X(n) = x(n),
Y1, . . . ,Yn−1 are i.i.d. random variables according to a distribution with density

g(y; θ, γ, x(n)) = a(y)eθu(y)

b(θ, γ, x(n))
for c < γ ≤ y < x(n) ≤ ν < d (3.50)

with respect to the Lebesgue measure. Then, the conditional expectation of Z1, given
T(n), is obtained by

Eθ,γ,ν(Z1|T(n)) = 1√
λ2n

n∑
i=1

{
Eθ,γ,ν[u(Xi )|T(n)] − λ1

}

= 1√
λ2n

{
u(X(n)) +

n−1∑
i=1

Eθ,γ,ν[u(Yi )|T(n)] − nλ1

}
(3.51)

where λi = λi (θ, γ, ν) (i = 1, 2). Since, for i = 1, . . . , n − 1,

Eθ,γ,ν[u(Yi )|T(n)] = ∂

∂θ
log b(θ, γ, X(n)) = λ1(θ, γ, X(n)) =: λ̂

(n)
1 (say),

it follows from (3.51) that

Eθ,γ,ν(Z1|T(n)) = 1√
λ2n

{
u(X(n)) + (n − 1)λ̂(n)

1

}
− λ1

√
n√

λ2
,

hence, from (3.17) and (3.51)

Eθ,γ,ν(Z1T(n)) = 1√
λ2n

{
Eθ,γ,ν[u(X(n))T(n)] + (n − 1)Eθ,γ,ν(λ̂

(n)
1 T(n))

}

−
√

n

λ2
λ1

{
−1

k̃
− Ã

n
+ O

(
1

n2

)}
(3.52)

where k̃ = k̃(θ, γ, ν) and Ã = Ã(θ, γ, ν). Since, by the Taylor expansion

u(X(n)) = u(ν) + u′(ν)

n
T(n) + Op

(
1

n2

)
,

λ̂
(n)
1 =λ1(θ, γ, ν) + 1

n

{
∂

∂ν
λ1(θ, γ, ν)

}
T(n) + 1

2n2

{
∂2

∂ν2
λ1(θ, γ, ν)

}
T 2

(n)

+ Op

(
1

n3

)
,
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it follows from (3.17) and (3.19) that

Eθ,γ,ν[u(X(n))T(n)] = −u(ν)

k̃
−

{
Ãu(ν) − 2u′(ν)

k̃2

}
1

n
+ O

(
1

n2

)
, (3.53)

Eθ,γ,ν(λ̂
(n)
1 T(n)) = −λ1

k̃
−

{
λ1 Ã − 2

k̃2

(
∂λ1

∂ν

)}
1

n
+ O

(
1

n2

)
(3.54)

where k̃ = k̃(θ, γ, ν), Ã = Ã(θ, γ, ν), and λ1 = λ1(θ, γ, ν). From (3.52) – (3.54),
we obtain

Eθ,γ,ν(Z1T(n)) = − 1

k̃
√

λ2n

{
u(ν) − λ1 − 2

k̃

(
∂λ1

∂ν

)}
+ O

(
1

n
√
n

)
,

On the other hand, it is shown in a similar way to Lemma 2.9.2 that

Eθ,γ,ν(Z1T(1)) = 1

k
√

λ2n

{
u(γ ) − λ1 + 2

k

(
∂λ1

∂γ

)}
+ O

(
1

n
√
n

)

where k = k(θ, γ, ν). Thus, we complete the proof.

The proof of Lemma 3.9.3 First, we have

Eθ,γ,ν(Z
2
1 |T(n)) = 1

λ2n

{
u(X(n)) − λ1

}2
+ 2

λ2n

{
u(X(n)) − λ1

} n−1∑
i=1

Eθ,γ,ν

[
u(Yi ) − λ1|T(n)

]

+ 1

λ2n

n−1∑
i=1

Eθ,γ,ν

[{u(Yi ) − λ1}2 |T(n)

]

+ 1

λ2n

∑∑
i 	= j

1≤i, j≤n−1

Eθ,γ,ν

[{u(Yi ) − λ1}
{
u(Y j ) − λ1

} | T(n)

]
.

(3.55)

For 1 ≤ i ≤ n − 1, we have

Eθ,γ,ν[u(Yi ) − λ1|T(n)] = Eθ,γ,ν[u(Yi )|T(n)] − λ1 = λ1(θ, γ, X(n)) − λ1(θ, γ, ν)

= λ̂
(n)
1 − λ1 =

(
∂λ1

∂ν

)
T(n)

n
+ Op

(
1

n2

)
(3.56)
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and, for i 	= j and 1 ≤ i, j ≤ n − 1

Eθ,γ,ν

[{u(Yi ) − λ1}
{
u(Y j ) − λ1

} |T(n)

] =
(

∂λ1

∂ν

)2 T 2
(n)

n2
+ Op

(
1

n3

)
. (3.57)

Since, for i = 1, . . . , n − 1

Eθ,γ,ν[u2(Yi )|T(n)] = λ2
1(θ, γ, X(n)) + λ2(θ, γ, X(n))

=: λ̂
(n)2

1 + λ̂
(n)
2

where λ̂
(n)
i = λi (θ, γ, X(n)) (i = 1, 2), we have for i = 1, . . . , n − 1

Eθ,γ,ν[{u(Yi ) − λ1}2 |T(n)] = λ2 + 1

n

(
∂λ2

∂ν

)
T(n) + Op

(
1

n2

)
. (3.58)

From (3.55)–(3.58), we obtain

Eθ,γ,ν(Z
2
1 |T(n)) = 1 + Op

(
1

n

)
, (3.59)

hence, by (3.17)

Eθ,γ,ν(Z
2
1T(n)) = Eθ,γ,ν

[
T(n)Eθ,γ,ν(Z

2
1 |T(n))

] = −1

k̃
+ O

(
1

n

)
.

On the other hand, it is shown a similar way to Lemma 2.9.3 that Eθ,γ,ν(Z2
1T(1)) =

(1/k) + O(1/n). Thus, we complete the proof.
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Chapter 4
Estimation of a Truncation Parameter
for a One-Sided TEF

For a one-sided truncated exponential family (oTEF) of distributions with a trunca-
tion parameter γ and a natural parameter θ as a nuisance parameter, the maximum
likelihood estimation on γ is discussed together with a bias-adjustment.

4.1 Introduction

In Chap.2, for a oTEFwith a natural parameter θ and a truncation parameter γ which
is regarded as a typical non-regular case, we discussed a problem of estimating θ

in the presence of γ as a nuisance parameter. In this chapter, following mostly the
paper by Akahira and Ohyauchi (2017), we consider a problem of estimating γ in
the presence of θ as a nuisance parameter in exchanging an interest parameter for a
nuisance parameter. Let γ̂ θ

ML and γ̂ML be the MLEs of γ based on a sample of size n
when θ is known and when θ is unknown, respectively. The stochastic expansions of
the bias-adjustedMLEs γ̂ θ

ML∗ and γ̂ML∗ are derived, and the second-order asymptotic
loss of γ̂ML∗ relative to γ̂ θ

ML∗ is also obtained. Further the truncated exponential
and truncated normal, Pareto, lower-truncated beta, and lower-truncated Erlang type
cases are discussed including consideration from the viewpoint ofminimum variance
unbiased estimation.

4.2 Preliminaries

According to Chap.2, we have the formulation as follows. Suppose that
X1, X2, · · · , Xn, · · · is a sequence of i.i.d. random variables according to Pθ,γ ,
having the density (1.7), which belongs to a oTEFPo. Then, we consider the estima-
tion problem on γ in the presence of θ as a nuisance parameter. For any γ ∈ (c, d),
log b(θ, γ ) is strictly convex and infinitely differentiable in θ ∈ Θ and
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λ j (θ, γ ) := ∂ j

∂θ j
log b(θ, γ ) (4.1)

is the j th cumulant corresponding to (1.7) for j = 1, 2, · · · . Let

k(θ, γ ) = a(γ )eθu(γ )/b(θ, γ ), (4.2)

A(θ, γ ) = − 1

k2(θ, γ )

{
∂

∂γ
log k(θ, γ )

}
(4.3)

which are defined in Theorem2.4.1 and Lemma 2.9.1, respectively.
In the subsequent sections, we obtain the bias-adjusted MLE γ̂ θ

ML∗ and γ̂ML∗ of
γ for known and unknown θ , respectively. Calculating their asymptotic variances
based on their stochastic expansions, we get the second-order asymptotic loss of
γ̂ML∗ relative to γ̂ θ

ML∗ . Several examples are also given, and further, the proofs of
theorems are located in Appendix C.

4.3 Bias-Adjusted MLE γ̂ θ
ML∗ of γ When θ is Known

For given x:=(x1, · · · , xn) satisfying γ ≤ x(1) := min1≤i≤n xi and x(n) := max1≤i≤n

xi < d, the likelihood function of γ is given by

Lθ (γ ; x) = 1

bn(θ, γ )

{
n∏

i=1

a(xi )

}
exp

{
θ

n∑
i=1

u(xi )

}
(4.4)

when θ is known. From (4.4), it follows that the MLE γ̂ θ
ML of γ is given by X(1) :=

min1≤i≤n Xi . Let T(1) := n(X(1) − γ ). Then, we have the following.

Theorem 4.3.1 For a oTEF Po of distributions having densities of the form (1.7)
with a truncation parameter γ and a natural parameter θ , let γ̂ θ

ML∗ = X∗
(1) be a

bias-adjusted MLE of γ such that

X∗
(1) := X(1) − 1

k̂θn
, (4.5)

where k̂θ = k(θ, X(1)). Then, the stochastic expansion of T ∗
(1) := n(X∗

(1) − γ ) is
given by

T ∗
(1) = T(1) − 1

k
+ 1

kn

(
∂

∂γ
log k

)
T(1) + Op

(
1

n2

)
, (4.6)

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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where k = k(θ, γ ), and the second-order asymptotic mean and variance are given by

Eγ

[
T ∗

(1)

] = O

(
1

n2

)
, (4.7)

Vγ

(
kT ∗

(1)

) = 1 − 2

kn

(
∂

∂γ
log k

)
+ O

(
1

n2

)
, (4.8)

respectively.

4.4 Bias-Adjusted MLE γ̂ML∗ of γ When θ is Unknown

For given x satisfying γ ≤ x(1) and x(n) < d, the likelihood function of γ and θ is
given by

L(γ, θ; x) = 1

bn(θ, γ )

{
n∏

i=1

a(xi )

}
exp

{
θ

n∑
i=1

u(xi )

}
. (4.9)

Let γ̂ML and θ̂ML be the MLEs of γ and θ , respectively. From (4.9), it is seen that
γ̂ML = X(1) and L(X(1), θ̂ML; X) = supθ∈Θ L(X(1), θ; X), hence θ̂ML satisfies the
likelihood equation

1

n

n∑
i=1

u(Xi ) − λ1(θ̂ML , X(1)) = 0, (4.10)

where X = (X1, · · · , Xn). Let λ2 = λ2(θ, γ ) and Û = √
λ2n(θ̂ML − θ). Then, we

have the following.

Theorem 4.4.1 For a oTEF Po of distributions having densities of the form (1.7)
with a truncation parameter γ and a natural parameter θ , let γ̂ML∗ = X∗∗

(1) be a
bias-adjusted MLE of γ such that

X∗∗
(1) := X(1) − 1

k̂n
+ 1

k̂2λ̂2n2

(
∂ k̂

∂θ

) {
1

k̂

(
∂λ̂1

∂γ

)
+ λ̂3

2λ̂2

}

− 1

2k̂2λ̂2n2

⎧⎨
⎩

∂2k̂

∂θ2
− 2

k̂

(
∂ k̂

∂θ

)2
⎫⎬
⎭ , (4.11)

where k̂ = k(θ̂ML , X(1)), ∂ j k̂/∂θ j = (∂ j/∂θ j )k(θ̂ML , X(1)) ( j = 1, 2), λ̂ j =
λ j (θ̂ML , X(1)) ( j = 2, 3) and ∂λ̂1/∂γ = (∂/∂γ )λ1(θ̂ML , X(1)). Then, the stochas-
tic expansion of T ∗∗

(1) := n(X∗∗
(1) − γ ) is given by

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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T ∗∗
(1) = T(1) − 1

k
+ 1

k2
√

λ2n

(
∂k

∂θ

) {
Û + 1√

λ2n

(
1

k

(
∂λ1

∂γ

)
+ λ3

2λ2

)}

+ 1

kn

(
∂

∂γ
log k

)
T(1) + 1

2k2λ2n

{
∂2k

∂θ2
− 2

k

(
∂k

∂θ

)2
}(

Û 2 − 1
)

+ Op

(
1

n
√
n

)
, (4.12)

where k = k(θ, γ ), λ j = λ j (θ, γ ) ( j = 1, 2, 3), and the second-order asymptotic
mean and variance are given by

Eθ,γ

[
T ∗∗

(1)

] = O

(
1

n
√
n

)
, (4.13)

Vθ,γ

(
kT ∗∗

(1)

) = 1 − 2

kn

(
∂

∂γ
log k

)
+ 1

λ2n
(u(γ ) − λ1)

2 + O

(
1

n
√
n

)
. (4.14)

4.5 Second-Order Asymptotic Loss of γ̂ML∗
Relative to γ̂ θ

ML∗

From the results in previous sections, we can asymptotically compare the bias-
adjusted MLEs γ̂ θ

ML∗ and γ̂ML∗ of γ using their second-order asymptotic variances
as follows.

Theorem 4.5.1 For a oTEF Po of distributions having densities of the form (1.7)
with a truncation parameter γ and a natural parameter θ , let γ̂ θ

ML∗ and γ̂ML∗ be
the bias-adjusted MLEs of γ when θ is known and when θ is unknown, respectively.
Then, the second-order asymptotic loss of γ̂ML∗ = X∗∗

(1) relative to γ̂ θ
ML∗ = X∗

(1) is
given by

dn
(
γ̂ML∗, γ̂ θ

ML∗
) := n

{
Vθ,γ

(
kT ∗∗

(1)

) − Vγ

(
kT ∗

(1)

)} = {u(γ ) − λ1}2
λ2

+ o(1) (4.15)

as n → ∞.

The proof is straightforward from Theorems4.3.1 and 4.4.1.

Remark 4.5.1 It is seen from (1.6) and (4.15) that the ratio of the asymptotic variance
of kT ∗∗

(1) to that of kT
∗
(1) is given by

Rn(γ̂ML∗ , γ̂ θ
ML∗) = 1 + {u(γ ) − λ1}2

λ2n
+ o

(1
n

)
.
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From the consideration of models in Sect. 1.1, using (1.5), (1.6) and (4.15) we see
that the difference between the asymptotic models M(γ̂ML∗, θ) and M(γ̂ θ

ML∗, θ) is
given by dn(γ̂ML∗ , γ̂ θ

ML∗) or Rn(γ̂ML∗, γ̂ θ
ML∗) up to the second order, through theMLE

of γ .

Remark 4.5.2 The second-order asymptotic loss (4.15) of γ̂ML∗ relative to γ̂ θ
ML∗

coincides with (2.8) of the bias-adjusted MLE θ̂ML∗ of θ when γ is unknown relative
to the MLE θ̂

γ

ML of θ when γ is known, which seems to show a dual relation on the
second-order asymptotic loss. It is noted that the standardization is necessary in the
comparison.

Remark 4.5.3 Suppose that X1, X2, · · · , Xn, · · · is a sequence of i.i.d. random
variables according to an upper-truncated exponential family P ′

o of distributions
with densities of the form

f (x; θ, ν) =
⎧⎨
⎩
a(x)eθu(x)

b(θ, ν)
for c < x ≤ ν < d,

0 otherwise

with respect to the Lebesgue measure, where b(θ, ν) is a normalizing factor. Letting
Yi = −Xi (i = 1, 2, · · · ), and returning to the case of the lower-truncated expo-
nential family with (1.7), we may obtain similar results to the above in a problem
of estimating an upper truncation parameter ν in the presence of θ as a nuisance
parameter.

4.6 Examples

Examples on the second-order asymptotic loss of the estimators are given for a lower-
truncated exponential and a lower-truncated normal, Pareto, a lower-truncated beta,
and a lower-truncated Erlang distributions, which are treated in Chap.2.

Example 4.6.1 (Lower-truncated exponential distribution) (Continued from
Example 2.7.1). Let c = −∞, d = ∞, a(x) ≡ 1 and u(x) = −x for −∞ < γ ≤
x < ∞ in the density (1.7). Since b(θ, γ ) = e−θγ /θ for θ ∈ Θ = (0,∞), it follows
from (4.1) that λ1(θ, γ ) = −γ − (1/θ), λ2(θ, γ ) = 1/θ2, λ3(θ, γ ) = −2/θ3. Since,
by (4.2), k(θ, γ ) = θ , it is seen that (∂/∂θ)k(θ, γ ) = 1, (∂2/∂θ2)k(θ, γ ) = 0.When
θ is known, it follows from (4.5) that the bias-adjusted MLE γ̂ θ

ML∗ of γ is given by
X∗

(1) = X(1) − (θn)−1. When θ is unknown, it is seen from (4.10) that the MLE θ̂ML

of θ is given by θ̂ML = 1/(X̄ − X(1)), hence by (4.11) the bias-adjusted MLE γ̂ML∗

of γ is given by

X∗∗
(1) = X(1) −

(
1

n
+ 1

n2

) (
X̄ − X(1)

)
.
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FromTheorem4.5.1, it follows that the second-order asymptotic loss of γ̂ML∗ = X∗∗
(1)

for unknown θ relative to γ̂ θ
ML∗ = X∗

(1) for known θ is given by dn
(
γ̂ML∗ , γ̂ θ

ML∗
) =

1 + o(1) as n → ∞. Note that the loss is independent of θ up to the order o(1). A
similar consideration on the ratio Rn(γ̂ML∗ , γ̂ θ

ML∗) to Example 2.7.1 is done.
In this case, we have the UMVU estimator

γ̂UMVU = X(1) − 1

θn
= X∗

(1) = γ̂ θ
ML∗

when θ is known (see Voinov and Nikulin (1993)). When θ is unknown, we obtain

γ̂UMVU = X(1) − 1

n − 1
(X̄ − X(1)),

hence

γ̂ML∗ = X∗∗
(1) = γ̂UMVU + 1

n2(n − 1)
(X̄ − X(1)).

Then Eθ,γ (γ̂ML∗) = γ + θ−1n−3 for any fixed n, hence γ̂ML∗ is not unbiased for γ .
Since the variances of γ̂ θ

UMVU and γ̂UMVU are given by

Vγ

(
γ̂ θ
UMVU

) = 1

θ2n2
, i.e. Vγ

(
θnγ̂ θ

UMVU

) = 1

and

Vθ,γ

(
γ̂UMVU

) = 1

θ2n(n − 1)
, i.e. Vθ,γ

(
θnγ̂UMVU

) = 1 + 1

n − 1
,

we have the second-order asymptotic loss of γ̂UMVU relative to γ̂ θ
UMVU

dn
(
γ̂UMVU , γ̂ θ

UMVU

) = n
{
Vθ,γ

(
θn

(
γ̂UMVU − γ

)) − Vγ

(
θn

(
γ̂ θ
UMVU − γ

))}
= 1 + o(1)

as n → ∞.

Example 4.6.2 (Lower-truncatednormal distribution) (Continued fromExample
2.7.2). Let c = −∞, d = ∞, a(x) = e−x2/2 and u(x) = x for−∞ < γ ≤ x < ∞ in
the density (1.7). Sinceb(θ, γ ) = Φ(θ − γ )/φ(θ) for θ ∈ Θ = (−∞,∞), it follows
from (4.1) that

λ1(θ, γ ) = θ + ρ(θ − γ ),
∂λ1(θ, γ )

∂γ
= (θ − γ )ρ(θ − γ ) + ρ2(θ − γ ),

λ2(θ, γ ) = 1 − (θ − γ )ρ(θ − γ ) − ρ2(θ − γ ),

λ3(θ, γ ) = ρ(θ − γ )
{
2ρ2(θ − γ ) + 3(θ − γ )ρ(θ − γ ) + (θ − γ )2 − 1

}
,

http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_2
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where ρ(t) := φ(t)/Φ(t) with Φ(x) = ∫ x
−∞ φ(t)dt and φ(t) = (1/

√
2π)e−t2/2 for

−∞ < t < ∞. We also have from (4.2)

k(θ, γ ) = ρ(θ − γ ),
∂k(θ, γ )

∂θ
= −(θ − γ )ρ(θ − γ ) − ρ2(θ − γ ),

∂2k(θ, γ )

∂θ2
= ρ(θ − γ )

{
2ρ2(θ − γ ) + 3(θ − γ )ρ(θ − γ ) + (θ − γ )2 − 1

}
,

∂k(θ, γ )

∂γ
= (θ − γ )ρ(θ − γ ) + ρ2(θ − γ ).

When θ is known, it follows from (4.5) that the bias-adjusted MLE γ̂ θ
ML∗ of γ is

X∗
(1) = X(1) − 1

ρ(θ − X(1))n
.

When θ is unknown, it is seen from (4.10) that the MLE θ̂ML of θ satisfies the
equation ρ(θ̂ML − X(1)) = X̄ − θ̂ML , hence the bias-adjusted MLE γ̂ML∗ of γ is

X∗∗
(1) = X(1) − 1

n(X̄ − θ̂ML)
+ 1 − (X̄ − X(1))(X̄ − X(1) + X̄ − θ̂ML)

2n2(X̄ − θ̂ML){1 − (X̄ − θ̂ML)(X̄ − X(1))}
.

FromTheorem4.5.1 it follows that the second-order asymptotic loss of γ̂ML∗(= X∗∗
(1))

for unknown θ relative to γ̂ θ
ML∗(= X∗

(1)) for known θ is given by

dn
(
γ̂ML∗, γ̂ θ

ML∗
) = {θ − γ + ρ(θ − γ )}2

1 − (θ − γ )ρ(θ − γ ) − ρ2(θ − γ )
+ o(1)

as n → ∞. A similar consideration on the ratio Rn(γ̂ML∗ , γ̂ θ
ML∗) to Example 2.7.2

in Sect. 2.7 is done.

Example 4.6.3 (Pareto distribution) (Continued from Example 2.7.3). Let c =
0, d = ∞, a(x) = 1/x and u(x) = − log x for 0 < γ ≤ x < ∞ in the density
(1.7). Then b(θ, γ ) = 1/(θγ θ ) for θ ∈ Θ = (0,∞), and it follows from (4.1) that
k(θ, γ ) = θ/γ , ∂k/∂θ = 1/γ and ∂k/∂γ = −θ/γ 2. When θ is known, it follows
from (4.5) that the bias-adjustedMLE γ̂ θ

ML∗ ofγ is givenby X∗
(1) = {1 − (θn)−1}X(1),

hence by (4.7) and (4.8)

Eγ

[
T ∗

(1)

] = O

(
1

n2

)
, Vγ

(
θ

γ
T ∗

(1)

)
= 1 + 2

θn
+ O

(
1

n2

)
(4.16)

as n → ∞, where T ∗
(1) = n(X∗

(1) − γ ). On the other hand, in the Pareto case, it is
known that the UMVU estimator of γ is given by γ̂ θ

UMVU = X∗
(1) and its variance is

Vγ

(
γ̂ θ
UMVU

) = γ 2/{θn(θn − 2)} (see, e.g., Voinov and Nikulin (1993)), hence

http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Vγ

(
θn

γ
γ̂ θ
UMVU

)
= θn

θn − 2
= 1 + 2

θn
+ O

(
1

n2

)
, (4.17)

which is equal to (4.16) up to the order 1/n as n → ∞.
Next, we consider the case when θ is unknown. Since ∂2k/∂θ2 = 0, λ1 =

−(1/θ) − log γ , λ2 = 1/θ2, λ3 = −2/θ3 and ∂λ1/∂γ = −1/γ , it follows from
(4.11) that the bias-adjusted MLE γ̂ML∗ of γ is given by

X∗∗
(1) =

{
1 −

(
1

n
+ 1

n2

)
1

θ̂ML

}
X(1),

where θ̂ML = n/
∑n

i=1 log(X(i)/X(1)) from (4.10). Since (∂/∂γ ) log k = −1/γ , we
have from (4.13) and (4.14)

Eθ,γ

[
T ∗∗

(1)

] = O

(
1

n
√
n

)
, Vθ,γ

(
θ

γ
T ∗∗

(1)

)
= 1 + 1

n

(
1 + 2

θ

)
+ O

(
1

n2

)

(4.18)

as n → ∞, where T ∗∗
(1) = n(X∗∗

(1) − γ ). On the other hand, in the Pareto case, it is
known that the UMVU estimator of γ is given by

γ̂UMVU = X(1) − X(1)

(n − 1)θ̂ML

and its variance is

Vθ,γ

(
γ̂UMVU

) = γ 2

θ(n − 1)(θn − 2)

(see, e.g., Voinov and Nikulin (1993)), hence

Vθ,γ

(
θn

γ
γ̂UMVU

)
= θn2

(n − 1)(θn − 2)
= 1 + 1

n

(
1 + 2

θ

)
+ O

(
1

n2

)
, (4.19)

which is equal to (4.18) up to the order 1/n as n → ∞. It also follows from (4.15),
(4.16) and (4.18) that the second-order asymptotic loss of γ̂ML∗(= X∗∗

(1)) relative to
γ̂ θ
ML∗(= X∗

(1)) is given by

dn
(
γ̂ML∗, γ̂ θ

ML∗
) = 1 + o(1) (4.20)

as n → ∞. Note that the loss is independent of θ up to the order o(1). A similar
consideration on the ratio Rn(γ̂ML∗, γ̂ θ

ML∗) to Example 2.7.1 is done. From (4.17) and
(4.19) it follows that the second-order asymptotic loss of γ̂UMVU relative to γ̂ θ

UMVU is

http://dx.doi.org/10.1007/978-981-10-5296-5_2
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dn
(
γ̂UMVU , γ̂ θ

UMVU

) : = n

{
Vθ,γ

(
nθ

γ
γ̂UMVU

)
− Vγ

(
nθ

γ
γ̂ θ
UMVU

)}

= n2θ

(n − 1)(nθ − 2)
= 1 + O

(
1

n

)
,

which coincides with (4.20) up to the order o(1) as n → ∞.

Example 4.6.4 (Lower-truncated beta distribution) (Continued from Example
2.7.4). Let c = 0, d = 1, a(x) = x−1, and u(x) = log x for 0 < γ ≤ x < 1 in the
density (1.7). Note that the density is uniformwhen θ = 1. In Example2.7.4, we have
b(θ, γ ) = θ−1(1 − γ θ ) for θ ∈ Θ = (0,∞) and the formulae of λi (θ, γ ) (i = 1, 2)
and ∂λ1(θ, γ )/∂γ . We also obtain

λ3(θ, γ ) = − 2

θ3
− (log γ )3γ θ (1 + γ θ )

(1 − γ θ )3
, k(θ, γ ) = θγ θ−1

1 − γ θ
,

∂k

∂θ
= γ θ−1(1 − γ θ + θ log γ )

(1 − γ θ )2
,

∂2k

∂θ2
= (log γ )γ θ−1

(1 − γ θ )2

{
2(1 − γ θ ) + θ log γ

} + 2(log γ )γ 2θ−1

(1 − γ θ )3
(1 − γ θ + θ log γ ),

∂k

∂γ
= θγ θ−1(θ − 1 + γ θ−1)

(1 − γ θ )2
,

hence, from (4.5), (4.6), and (4.8)

γ̂ θ
ML∗ = X∗

(1) = X(1) − 1 − X θ
(1)

θX θ−1
(1) n

,

T ∗
(1) = T(1) − 1 − γ θ

θγ θ−1
+ θ − 1 + γ θ−1

θγ θ−1n
T(1) + Op

(
1

n2

)
,

Vγ (kT ∗
(1)) = 1 − 2(θ − 1 + γ θ−1)

θγ θ−1n
+ O

(
1

n2

)
,

when θ is known. If θ is unknown, in a similar way to the above, from (4.11), (4.12)
and (4.14)we can obtain the formulae of γ̂ML∗(= X∗∗

(1)), T
∗∗
(1) andVθ,γ (kT ∗∗

(1) ). Further,
it follows from (4.15) that the second-order asymptotic loss of γ̂ML∗ relative to γ̂ θ

ML∗
is given by

dn(γ̂ML∗, γ̂ θ
ML∗) = (1 − γ θ + θ log γ )2

(1 − γ θ )2 − γ θ (θ log γ )2
+ o(1)

as n → ∞.

Example 4.6.5 (Lower-truncated Erlang distribution) (Continued fromExample
2.7.5). Let c = 0, d = ∞, a(x) = x j−1, and u(x) = −x for 0 < γ ≤ x < ∞ in

http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_2
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the density (1.7), where j = 1, 2, . . . . In Example 2.7.5, we have for each j =
1, 2, . . . , b j (θ, γ ) = ∫ ∞

γ
x j−1e−θxdx for θ ∈ Θ = (0,∞) and the formulae of λ j i =

(∂ i/∂θ i ) log b j (θ, γ )(i = 1, 2, 3), ∂λ j1(θ, γ )/∂γ and k j (θ, γ ). Let j be arbitrarily
fixed in {1, 2, . . . }. Since ∂b j/∂θ = −b j+1, it follows that

∂k j

∂θ
= γ j−1e−θγ

b2j
(b j+1 − γ b j ),

∂2k j

∂θ2
= γ j−1e−θγ

b3j

{
b j (γ

2b j − b j+2) + 2b j+1(b j+1 − γ b j )
}
,

∂k j

∂γ
= γ j−2e−θγ

b2j

{
( j − 1 − θγ )b j + γ j e−θγ

}
,

where k j = k j (θ, γ ) and b j+i = b j+i (θ, γ ) (i = 0, 1, 2), hence, from (4.5), (4.6)
and (4.8)

γ̂ θ
ML∗ = X∗

(1) = X(1) − eθX(1)b j (θ, X(1))

X j−1
(1) n

,

T ∗
(1) = T(1) − eθγ b j

γ j−1
+ eθγ b j

γ j−1n

{
eθγ b j ( j − 1 − θγ )

γ j
− 1

}
T(1) + Op

(
1

n2

)
,

Vγ (k j T
∗
(1)) = 1 − 2eθγ b j

γ j−1n

{
eθγ b j ( j − 1 − θγ )

γ j
− 1

}
+ O

(
1

n2

)
,

when θ is known. If θ is unknown, in a similar way to the above, from (4.11), (4.12)
and (4.14)we can obtain the formulae of γ̂ML∗(= X∗∗

(1)), T
∗∗
(1) andVθ,γ (kT ∗∗

(1) ). Further,
it follows from (4.15) that the asymptotic loss of γ̂ML∗ relative to γ̂ θ

ML∗ is given by

dn(γ̂ML∗ , γ̂ θ
ML∗) = 1

λ j2

(
b j+1

b j
− γ

)2

+ o(1)

as n → ∞, where λ j2 = (b j+2/b j ) − (b j+1/b j )
2.

A similar example to the above in the lower-truncated lognormal case in Example
2.7.6 is reduced to the lower-truncated normal case in Example 4.6.2.

4.7 Concluding Remarks

In a oTEF of distributions with a truncation parameter γ and a natural parameter
θ , we considered the estimation problem of γ together with a bias-adjustment in
the presence of a nuisance parameter θ . Using the stochastic expansions of the bias-
adjusted MLEs γ̂ θ

ML∗ and γ̂ML∗ of γ when θ is known and when θ is unknown,

http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_2
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respectively, we obtained their second-order asymptotic variances, from which the
second-order asymptotic loss of γ̂ML∗ relative to γ̂ θ

ML∗ was derived. As is seen from
Remark 4.5.1, the second-order asymptotic loss coincides with that of the bias-
adjusted MLE θ̂ML∗ of θ when γ is unknown relative to the MLE θ̂

γ

ML of θ when
γ is known, which means that the invariance on the second-order asymptotic loss
holds even if the exchange of an interest parameter for a nuisance parameter is done.
In the next chapter, the corresponding results to Theorems4.3.1, 4.4.1 and 4.5.1 are
obtained in the case of a two-sided truncated exponential family of distributions with
two truncation parameters γ and ν and a natural parameter θ as a nuisance parameter,
including an upper-truncated Pareto distribution which is important in applications.

4.8 Appendix C

Before proving Theorems4.3.1 and 4.4.1, we prepare two lemmas.

Lemma 4.8.1 It holds that

Eθ,γ (T 2
(1)) = 2

k2(θ, γ )
+ 6

k(θ, γ )n
A(θ, γ ) + O

(
1

n2

)
(4.21)

as n → ∞, where k(θ, γ ) and A(θ, γ ) are given as (4.2) and (4.3), respectively.

The Eq. (4.21) can be obtained by straightforward calculation from Lemma 2.9.1.

Lemma 4.8.2 Let Û := √
λ2n(θ̂ML − θ). Then, the asymptotic expectation of Û ,

Û 2, and ÛT(1) are given by

Eθ,γ (Û ) = − 1√
λ2n

{
1

k

(
∂λ1

∂γ

)
+ λ3

2λ2

}
+ O

(
1

n
√
n

)
, (4.22)

Eθ,γ (Û 2) = 1 + O

(
1

n

)
, (4.23)

Eθ,γ (ÛT(1)) = 1

k
√

λ2n

{
u(γ ) − λ1 − λ3

2λ2

}
+ O

(
1

n
√
n

)
, (4.24)

where λ j = λ j (θ, γ ) ( j = 1, 2, 3) and k = k(θ, γ ).

Proof The Eqs. (4.22) and (4.23) are given as (2.22) and (2.24), respectively, in the
proof of Theorem2.4.1. Since, by Theorem2.4.1,

Û = Z1 − λ3

2λ3/2
2

√
n
Z2
1 − 1√

λ2n

(
∂λ1

∂γ

)
T(1) + Op

(
1

n

)
,

http://dx.doi.org/10.1007/978-981-10-5296-5_2
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and, by Lemmas2.9.2 and 2.9.3,

Eθ,γ (Z1T(1)) = 1

k
√

λ2n

{
u(γ ) − λ1 + 2

k

(
∂λ1

∂γ

)}
+ O

(
1

n
√
n

)
,

Eθ,γ (Z2
1T(1)) = 1

k
+ O

(
1

n

)
, (4.25)

it follows from (4.21) that

Eθ,γ (ÛT(1)) = 1

k
√

λ2n

{
u(γ ) − λ1 − λ3

2λ2

}
+ O

(
1

n
√
n

)
,

hence (4.24) is obtained. Thus, we complete the proof.

The proof of Theorem4.3.1 By the Taylor expansion, we have from (4.2) and (4.3)

k̂θ = k(θ, X(1)) = k(θ, γ ) + ∂k(θ, γ )

∂γ
· T(1)

n
+ Op

(
1

n2

)
, (4.26)

∂ k̂θ

∂γ
= ∂k

∂γ
(θ, X(1)) = ∂k(θ, γ )

∂γ
+ Op

(
1

n

)
, (4.27)

Âθ = A(θ, X(1)) = A(θ, γ ) + Op

(
1

n

)
. (4.28)

Since by (4.26)

1

k̂θ

= 1

k

{
1 − 1

k

(
∂k

∂γ

)
T(1)

n
+ Op

(
1

n2

)}
,

substituting (4.26)–(4.28) into (4.5), we obtain from (4.3)

T ∗
(1) = n(X∗

(1) − γ ) = n(X(1) − γ ) − 1

k̂θ

− 1

k̂3θn

(
∂ k̂θ

∂γ

)
− 1

n
Âθ

= T(1) − 1

k
− 1

n
A + 1

kn

(
∂

∂γ
log k

) (
T(1) − 1

k

)
+ Op

(
1

n2

)

= T(1) − 1

k
+ 1

kn

(
∂

∂γ
log k

)
T(1) + Op

(
1

n2

)
,

where k = k(θ, γ ) and A = A(θ, γ ). Hence, we get (4.6). From (2.16), (4.3) and
(4.6), it is easily seen that (4.7) holds, i.e., Eγ (T ∗

(1)) = O(1/n2). From (2.16), (4.6)
and (4.21), we have

Eγ

[
T ∗

(1)
2
]

= 1

k2
+ 4A

kn
+ 2

k3n

(
∂

∂γ
log k

)
+ O

(
1

n2

)
, (4.29)
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where k = k(θ, γ ) and A = A(θ, γ ). Hence, by (4.3) and (4.29)

Eγ

[
T ∗

(1)
2
]

= 1

k2
− 2

k3n

(
∂

∂γ
log k

)
+ O

(
1

n2

)
. (4.30)

From (4.7) and (4.30), we get (4.8). Thus, we complete the proof.

The proof of Theorem4.4.1 By the Taylor expansion, we have

k̂ = k
(
θ̂ML , X(1)

)
= k

(
θ̂ML , γ + T(1)

n

)

= k + 1√
λ2n

(
∂k

∂θ

)
Û + 1

n

(
∂k

∂γ

)
T(1) + 1

2λ2n

(
∂2k

∂θ2

)
Û 2 + Op

(
1

n
√
n

)
.

Since

1

k̂
= 1

k
− 1

k2
√

λ2n

(
∂k

∂θ

)
Û − 1

k2n

(
∂k

∂γ

)
T(1) − 1

2k2λ2n

(
∂2k

∂θ2

)
Û2

+ 1

k3λ2n

(
∂k

∂θ

)2

Û2 + Op

(
1

n
√
n

)
,

λ̂ j = λ j

(
θ̂ML , X(1)

)
= λ j (θ, γ ) + Op

(
1√
n

)
( j = 2, 3),

∂ j k̂

∂θ j
= ∂ j k

∂θ j

(
θ̂ML , X(1)

)
= ∂ j k

∂θ j
(θ, γ ) + Op

(
1√
n

)
( j = 1, 2),

∂ k̂

∂γ
= ∂k

∂γ

(
θ̂ML , X(1)

)
= ∂k

∂γ
(θ, γ ) + Op

(
1√
n

)
,

Â = A
(
θ̂ML , X(1)

)
= A(θ, γ ) + Op

(
1√
n

)
,

it follows from (4.11) that

T ∗∗
(1) = n(X∗∗

(1) − γ )

= T(1) − 1

k
− 1

n
A + 1

k2
√

λ2n

(
∂k

∂θ

){
Û + 1√

λ2n

(
1

k

(
∂λ1

∂γ

)
+ λ3

2λ2

)}

+ 1

k2n

(
∂k

∂γ

) (
T(1) − 1

k

)
+ 1

2k2λ2n

{
∂2k

∂θ2
− 2

k

(
∂k

∂θ

)2
}(

Û 2 − 1
)

+ Op

(
1

n
√
n

)
, (4.31)

where k = k(θ, γ ), A = A(θ, γ ), and λ j = λ j (θ, γ ) ( j = 1, 2, 3), which derives
(4.12) from (4.3). From (4.25), (4.31) and Lemmas 2.9.1, 4.8.1 and 4.8.2, we obtain
(4.13) and
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Vθ,γ

(
T ∗∗

(1)

) = 1

k2
+ 4A

kn
+ 1

k4λ2n

(
∂k

∂θ

)2

+ 2

k4n

(
∂k

∂γ

)
+ O

(
1

n
√
n

)
. (4.32)

Since

∂

∂θ
log k(θ, γ ) = u(γ ) − λ1(θ, γ ),

it follows from (4.3) and (4.32) that

Vθ,γ

(
T ∗∗

(1)

) = 1

k2
− 2

k3n

(
∂

∂γ
log k

)
+ 1

k2λ2n
(u(γ ) − λ1)

2 + O

(
1

n
√
n

)
,

which shows that (4.14) holds. Thus, we complete the proof.
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Chapter 5
Estimation of a Truncation Parameter
for a Two-Sided TEF

The corresponding results on maximum likelihood estimation of a truncation para-
meter together with a bias-adjustment to the case of oTEF in the previous chapter
are obtained in the case of a two-sided truncated exponential family (tTEF) of dis-
tributions with two truncation parameters γ and ν and a natural parameter θ as a
nuisance parameter.

5.1 Introduction

In this chapter, following mostly the paper by Akahira and Ohyauchi (2016), we
obtain the corresponding results to the case of oTEF in the case of a tTEF of distrib-
utions with lower and upper truncation parameters γ and ν and a natural parameter
θ as a nuisance parameter. In Sect. 5.3, we obtain a bias-adjusted MLE ν̂

θ,γ

ML∗ of ν

and derive its stochastic expansion and second-order asymptotic variance when θ

and γ are known. In Sect. 5.4, we get a bias-adjusted MLE ν̂
γ

ML∗ of ν and derive
its stochastic expansion and second-order asymptotic variance when θ is unknown
and γ is known. In Sect. 5.5, we obtain a bias-adjusted MLE ν̂ML∗ of ν and derive
its stochastic expansion and second-order asymptotic variance when θ and γ are
unknown. In Sect. 5.6, we get the second-order asymptotic losses of ν̂

γ

ML∗ and ν̂ML∗

relative to ν̂
θ,γ

ML∗ and in Sect. 5.7 give examples on a two-sided truncated exponential,
a two-sided truncated normal, an upper-truncated Pareto, a two-sided truncated beta
and a two-sided Erlang distributions. In particular, the results of Monte Carlo simu-
lation discussed by Zhang (2013) from the viewpoint of minimum variance unbiased
estimation in the upper-truncated Pareto case are theoretically clarified. Further, in
Appendix D, the proofs of theorems are given.
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5.2 Preliminaries

According to Chap.3, we have the formulation as follows. Suppose that X1, X2, . . . ,

Xn, . . . is a sequence of independent and identically distributed (i.i.d.) random vari-
ables according to Pθ,γ,ν having the density (1.9), which belongs to a tTEFPt . Then,
we consider the estimation problem on γ or ν in the presence of nuisance parameters
θ and ν or γ , respectively. For any γ , ν ∈ (c, d), log b(θ, γ, ν) is strictly convex and
infinitely differentiable in θ ∈ Θ and

λ j (θ, γ, ν) := ∂ j

∂θ j
log b(θ, γ, ν) (5.1)

is the j-th cumulant corresponding to (1.9) for j = 1, 2, · · · . Let

k̃(θ, γ, ν) = a(ν)eθu(ν)/b(θ, γ, ν), (5.2)

Ã(θ, γ, ν) = 1

k̃2(θ, γ, ν)

{
∂

∂ν
log k̃(θ, γ, ν)

}
, (5.3)

which are also defined in Theorem 3.4.1 and Lemma 3.9.1, respectively.
In the subsequent sections, we obtain the bias-adjusted MLE ν̂

θ,γ

ML∗ of ν when θ

and γ are known, the bias-adjusted MLE ν̂
γ

ML∗ of ν when θ is unknown and γ is
known, and the bias-adjusted MLE ν̂ML∗ of ν when θ and γ are unknown. Deriving
their stochastic expansions and calculating their second-order asymptotic variances
based on them, we get the second-order asymptotic losses of ν̂ML∗ and ν̂

γ

ML∗ relative
to ν̂

θ,γ

ML∗ .

5.3 Bias-Adjusted MLE ν̂
θ,γ

ML∗ of ν When θ and γ

are Known

For given x = (x1, . . . , xn) satisfying c < γ ≤ x(1) := min1≤i≤n xi and x(n) :=
max1≤i≤n xi ≤ ν < d, the likelihood function is given by

Lθ,γ (ν; x) := 1

bn(θ, γ, ν)

{
n∏

i=1

a(xi )

}
exp

{
θ

n∑
i=1

u(xi )

}
,

when θ and γ are known. Then, the MLE ν̂
θ,γ

ML of ν is given by X(n) := max1≤i≤n Xi .
Letting T(n) := n(X(n) − ν), we have the following.

Theorem 5.3.1 For a tTEFPt of distributions with densities of the form (1.9) with
two truncation parameters γ and ν and a natural parameter θ , let ν̂

θ,γ

ML∗ = X∗
(n) be

a bias-adjusted MLE of ν such that

http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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X∗
(n) := X(n) + 1

ˆ̃kθ,γ n
, (5.4)

where ˆ̃kθ,γ = k̃(θ, γ, X(n)). Then, the stochastic expansion of T ∗
(n) := n(X∗

(n) − ν) is
given by

T ∗
(n) = T(n) + 1

k̃
− 1

k̃n

(
∂

∂ν
log k̃

)
T(n) + Op

(
1

n2

)
, (5.5)

where k̃ = k̃(θ, γ, ν), and the second-order asymptotic mean and asymptotic vari-
ance are given by

Eν[T ∗
(n)] = O

(
1

n2

)
, (5.6)

Vν(k̃T
∗
(n)) = 1 + 2

k̃n

(
∂

∂ν
log k̃

)
+ O

(
1

n2

)
, (5.7)

respectively.

5.4 Bias-Adjusted MLE ν̂
γ

ML∗ of ν When θ is Unknown
and γ is Known

In a similar way to Remark 4.5.3 in Chap.4, we consider the case when θ is unknown
and γ is known. Suppose that a random variable X has the density (1.9). Letting
Y = −X , we have

fY (y; θ, δ, η) =
{

a0(y)eθu0(y)

b0η(θ,δ)
for − d < δ ≤ y ≤ η < −c,

0 otherwise
(5.8)

as a density of Y , where a0(y) = a(−y), u0(y) = u(−y), b0η(θ, δ) = b(θ,−η,−δ),
δ = −ν, and η = −γ .We put Yi = −Xi (i = 1, 2, · · · ), Y(1) = −X(n), Y(n) = −X(1)

and

λ0
η j (θ, δ) = ∂ j

∂θ j
log b0η(θ, δ) (5.9)

for j = 1, 2, . . . . Since η is known, it is seen from (5.8) that the estimation problem
on ν turns to that on δ in the oTEF of distributions which is treated in Chap.4.
Let δ̂

η

ML = δ̂
η

ML(Y) and θ̂
η

ML = θ̂
η

ML(Y) be the MLEs of δ and θ based on Y :=
(Y1, . . . ,Yn), respectively. From (5.8), it is seen that δ̂η

ML = Y(1) and θ̂
η

ML satisfy the
likelihood equation

http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_4
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1

n

n∑
i=1

u0(Yi ) − λ0
η1(θ̂

η

ML ,Y(1)) = 0,

that is, the MLE θ̂
γ

ML = θ̂
γ

ML(X) of θ based on X := (X1, · · · , Xn) satisfies

1

n

n∑
i=1

u(Xi ) − λ1(θ̂
γ

ML , γ, X(n)) = 0. (5.10)

Let

k0η(θ, δ) = a0(δ)eθu0(δ)

b0η(θ, δ)
, (5.11)

A0η(θ, δ) := − 1

k20η(θ, δ)

{
∂

∂δ
log k0η(θ, δ)

}
. (5.12)

Note that

∂

∂δ
log k0η(θ, δ) = a0′(δ)

a0(δ)
+ θu′

0(δ) + k0η(θ, δ). (5.13)

Here, we have from (5.9) and (5.11)

k0η(θ, δ) = a0(δ)eθu0(δ)

b0η(θ, δ)
= a(ν)eθu(ν)

b(θ, γ, ν)
= k̃(θ, γ, ν) =: k̃γ (θ, ν), (5.14)

λ0
η j (θ, δ) = (∂ j/∂θ j ) log b0η(θ, δ) = (∂ j/∂θ j ) log b(θ, γ, ν)

= λ j (θ, γ, ν) =: λγ j (θ, ν) ( j = 1, 2, . . . ). (5.15)

Let T(1) := n(Y(1) − δ), k0η = k0η(θ, δ), λ0
η j = λ0

η j (θ, δ) ( j = 1, 2, · · · ), and
Û0η =

√
λ0

η2n(θ̂ML − θ). Then, we have the following.

Lemma 5.4.1 For a tTEF of distributions having densities of the form (5.8) with
truncation parameters δ and η and a natural parameter θ , let δ̂

η

ML∗ = Y ′
(1) be a

bias-adjusted MLE of δ such that

Y ′
(1) = Y(1) − 1

k̂0ηn
+ 1

k̂20ηλ̂
0
η2n

2

(
∂ k̂0η
∂θ

){
1

k̂0η

(
∂λ̂0

η1

∂δ

)
+ λ̂0

η3

2λ̂0
η2

}

− 1

2k̂20ηλ̂
0
η2n

2

⎧⎨
⎩

∂2k̂0η
∂θ2

− 2

k̂0η

(
∂ k̂0η
∂θ

)2
⎫⎬
⎭ , (5.16)
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where k̂0η = k0η(θ̂ML ,Y(1)), ∂ j k̂0η/∂θ j = (∂ j/∂θ j )k0η(θ̂ML ,Y(1)) ( j = 1, 2), λ̂0
η j =

λ0
η j (θ̂ML ,Y(1))( j = 2, 3), ∂λ̂0

η1/∂δ = (∂/∂δ)λ0
η1(θ̂ML ,Y(1)). Then, the stochastic

expansion of T ′
(1) := n(Y ′

(1) − δ) is given by

T ′
(1) = T(1) − 1

k0η

+ 1

k20η

√
λ0

η2n

(
∂k0η
∂θ

)⎡⎣Û0η + 1√
λ0

η2n

{
1

k0η

(
∂λ0

η1

∂δ

)
+ λ0

η3

2λ0
η2

}⎤
⎦

+ 1

k0ηn

(
∂

∂δ
log k0η

)
T(1) + 1

2k20ηλ
0
η2n

{
∂2k0η
∂θ2

− 2

k0η

(
∂k0η
∂θ

)2
}(

Û 2
0η − 1

)

+ Op

(
1

n
√
n

)
, (5.17)

and the second-order asymptotic mean and asymptotic variance are given by

Eθ,δ

[
T ′

(1)

] = O

(
1

n
√
n

)
, (5.18)

Vθ,δ

(
k0ηT

′
(1)

) = 1 − 2

k0ηn

(
∂

∂δ
log k0η

)
+ 1

λ0
η2n

{
u0(δ) − λ0

η1

}2

+ O

(
1

n
√
n

)
, (5.19)

respectively.

The proof is omitted, since Lemma 5.4.1 is essentially same as Theorem4.4.1. Let
λγ 2(θ, ν) := λ2(θ, γ, ν) and Ûγ = √λγ 2n(θ̂

γ

ML − θ), where λγ 2 = λγ 2(θ, ν). Since
Y(1) = −X(n), from (5.11)–(5.16), we have the following.

Theorem 5.4.1 For tTEFPt of distributions having densities of the form (1.9) with
truncation parameters γ and ν and a natural parameter θ , let ν̂

γ

ML∗ = X†
(n) be a

bias-adjusted MLE of ν such that

X†
(n) = X(n) + 1

ˆ̃kγ n
+ 1

ˆ̃k2γ λ̂γ 2n2

⎛
⎝∂

ˆ̃kγ

∂θ

⎞
⎠
⎧⎨
⎩

1
ˆ̃kγ

(
∂λ̂γ 1

∂ν

)
− λ̂γ 3

2λ̂γ 2

⎫⎬
⎭

+ 1

2 ˆ̃k2γ λ̂γ 2n2

⎧⎨
⎩

∂2 ˆ̃kγ

∂θ2
− 2

ˆ̃kγ

⎛
⎝∂

ˆ̃kγ

∂θ

⎞
⎠

2⎫⎬
⎭ , (5.20)

http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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where

ˆ̃kγ = k̃γ (θ̂ML , X(n)) = k̃(θ̂ML , γ, X(n)),

∂ j ˆ̃kγ /∂θ j = (∂ j/∂θ j )k̃γ (θ̂ML , X(n)) = (∂ j/∂θ j )k̃(θ̂ML , γ, X(n)) ( j = 1, 2),

λ̂γ j = λγ j (θ̂ML , X(n)) = λ j (θ̂ML , γ, X(n)) ( j = 2, 3),

∂λ̂γ 1/∂ν = (∂/∂ν)λγ 1(θ̂ML , X(n)) = (∂/∂ν)λ1(θ̂ML , γ, X(n)).

Then, the stochastic expansion of T †
(n) := n(X†

(n) − ν) is given by

T †
(n) = T(n) + 1

k̃γ

− 1

k̃2γ
√

λγ 2n

(
∂ k̃γ

∂θ

)[
Ûγ − 1√

λγ 2n

{
1

k̃γ

(
∂λγ 1

∂ν

)
− λγ 3

2λγ 2

}]

− 1

k̃γ n

(
∂

∂ν
log k̃γ

)
T(n) − 1

2k̃2γ λγ 2n

⎧⎨
⎩

∂2k̃γ

∂θ2
− 2

k̃γ

(
∂ k̃γ

∂θ

)2
⎫⎬
⎭ (Û 2

γ − 1)

+ Op

(
1

n
√
n

)
(5.21)

where k̃γ = k̃γ (θ, ν) = k(θ, γ, ν), λγ j = λγ j (θ, ν) = λ j (θ, γ, ν) ( j = 1, 2, 3), and
the second-order asymptotic mean and asymptotic variance are given by

Eθ,ν[T †
(n)] = O

(
1

n
√
n

)
, (5.22)

Vθ,ν(k̃γ T
†
(n)) = 1 + 2

k̃γ n

(
∂

∂ν
log k̃γ

)
+ 1

λγ 2n
{u(ν) − λγ 1}2 + O

(
1

n
√
n

)
,

(5.23)

respectively.

5.5 Bias-Adjusted MLE ν̂ML∗ of ν When θ and γ

are Unknown

For given x = (x1, . . . , xn) satisfying c < γ ≤ x(1) and x(n) ≤ ν < d, the likelihood
function of θ , γ and ν is given by

L(θ, γ, ν; x) := 1

bn(θ, γ, ν)

{
n∏

i=1

a(xi )

}
exp

{
θ

n∑
i=1

u(xi )

}
. (5.24)
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Let θ̂ML , γ̂ML , and ν̂ML be the MLEs of θ , γ , and ν, respectively. Then, it fol-
lows from (5.26) that γ̂ML = X(1), ν̂ML = X(n), and L(θ̂ML , X(1), X(n); X) =
supθ∈Θ L(θ, X(1), X(n); X); hence, θ̂ML satisfies the likelihood equation

1

n

n∑
i=1

u(Xi ) − λ1(θ̂ML , X(1), X(n)) = 0,

where X := (X1, . . . , Xn). Let λ2 = λ2(θ, γ, ν), T(1) := n(X(1) − γ ) and Û :=√
λ2n(θ̂ML − θ). Then, we have the following.

Theorem 5.5.1 For a tTEF Pt of distributions having densities of the form (1.9)
with truncation parameters γ and ν and a natural parameter θ , let ν̂ML∗ = X∗∗

(n) be
a bias-adjusted MLE of ν such that

X∗∗
(n) := X(n) + 1

ˆ̃kn
− 1

ˆ̃k2λ̂2n2

⎛
⎝ ∂

ˆ̃k
∂θ

⎞
⎠
{
1

k̂

(
∂λ̂1

∂γ

)
− 1

ˆ̃k

(
∂λ̂1

∂ν

)
+ λ̂3

2λ̂2

}

+ 1
ˆ̃k2k̂n2

⎛
⎝ ∂

ˆ̃k
∂γ

⎞
⎠+ 1

2 ˆ̃k2λ̂2n2

⎧⎨
⎩

∂2 ˆ̃k
∂θ2

− 2
ˆ̃k

⎛
⎝ ∂

ˆ̃k
∂θ

⎞
⎠

2⎫⎬
⎭ , (5.25)

where

ˆ̃k = k̃(θ̂ML , X(1), X(n)), k̂ = k(θ̂ML , X(1), X(n)),

∂ j ˆ̃k/∂θ j = (∂ j/∂θ j )k̃(θ̂ML , X(1), X(n)) ( j = 1, 2),

∂
ˆ̃k/∂γ = (∂/∂γ )k̃(θ̂ML , X(1), X(n)),

∂λ̂1/∂γ = (∂/∂γ )λ1(θ̂ML , X(1), X(n)), ∂λ̂1/∂ν = (∂/∂ν)λ1(θ̂ML , X(1), X(n)),

λ̂ j = λ j (θ̂ML , X(1), X(n)) ( j = 2, 3).

Then, the stochastic expansion of T ∗∗
(n) := n(X∗∗

(n) − ν) is given by

T ∗∗
(n) = T(n) + 1

k̃
− 1

k̃2
√

λ2n

(
∂ k̃

∂θ

)[
Û + 1√

λ2n

{
1

k

(
∂λ1

∂γ

)
− 1

k̃

(
∂λ1

∂ν

)
+ λ3

2λ2

}]

− 1

k̃n

(
∂

∂γ
log k̃

)(
T(1) − 1

k̃

)
− 1

k̃n

(
∂

∂ν
log k̃

)
T(n)

− 1

2k̃2λ2n

⎧⎨
⎩

∂2k̃

∂θ2
− 2

k̃

(
∂ k̃

∂θ

)2
⎫⎬
⎭ (Û 2 − 1) + Op

(
1

n
√
n

)
, (5.26)

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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where k̃ = k̃(θ, γ, ν), λ j = λ j (θ, γ, ν) ( j = 1, 2, 3), and the second-order asymp-
totic mean and asymptotic variance are given by

Eθ,γ,ν[T ∗∗
(n)] = O

(
1

n
√
n

)
, (5.27)

Vθ,γ,ν(k̃T
∗∗
(n)) = 1 + 2

k̃n

(
∂

∂ν
log k̃

)
+ 1

λ2n
{u(ν) − λ1}2 + O

(
1

n
√
n

)
, (5.28)

respectively.

5.6 Second-Order Asymptotic Losses of ν̂ML∗ and ν̂
γ

ML∗

Relative to ν̂
θ,γ

ML∗

From the results in previous sections, we can asymptotically compare the bias-
adjusted MLEs ν̂

θ,γ

ML∗ , ν̂
γ

ML∗ , and ν̂ML∗ of ν using their second-order asymptotic
variances as follows.

Theorem 5.6.1 For a tTEF Pt of distributions having densities of the form (1.9)
with truncation parameters γ and ν and a natural parameter θ , let ν̂θ,γ

ML∗ , ν̂
γ

ML∗ , and
ν̂ML∗ be the bias-adjusted MLEs of ν when θ and γ are known, when θ is unknown
and γ is known, and when θ and γ are unknown, respectively. Then, ν̂ML∗ = X∗∗

(n)

and ν̂
γ

ML∗ = X†
(n) are second-order asymptotically equivalent in the sense that

dn(ν̂ML∗ , ν̂
γ

ML∗) := n{Vθ,γ,ν(k̃T
∗∗
(n)) − Vθ,γ (k̃γ T

†
(n))} = o(1) (5.29)

as n → ∞. The second-order asymptotic losses of ν̂ML∗ and ν̂
γ

ML∗ relative to ν̂
θ,γ

ML∗ =
X∗

(n) are given by

dn(ν̂ML∗ , ν̂
θ,γ

ML∗) := n{Vθ,γ,ν(k̃T
∗∗
(n)) − Vν(k̃T

∗
(n))} = {u(ν) − λ1}2

λ2
+ o(1) (5.30)

dn(ν̂
γ

ML∗ , ν̂
θ,γ

ML∗) := n{Vθ,ν(k̃γ T
†
(n)) − Vν(k̃T

∗
(n))} = {u(ν) − λ1}2

λ2
+ o(1) (5.31)

as n → ∞, respectively.

The proof is straightforward from Theorems 5.3.1, 5.4.1, and 5.5.1, since k̃γ =
k̃γ (θ, ν) = k̃(θ, γ, ν) = k̃ and λγ j = λγ j (θ, ν) = λ j (θ, γ, ν) = λ j ( j = 1, 2).

Remark 5.6.1 It is seen from (1.6) and (5.30) that the ratio of the second-order
asymptotic variance of k̃T ∗∗

(n) to that of k̃T
∗
(n) is given by

Rn(ν̂ML∗ , ν̂
θ,γ

ML∗) = 1 + 1

λ2n
{u(ν) − λ1}2 + o

(
1

n

)
,

http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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and similarly from (1.6) and (5.31)

Rn(ν̂
γ

ML∗ , ν̂
θ,γ

ML∗) = 1 + 1

λ2n
{u(ν) − λ1}2 + o

(
1

n

)
.

From the consideration of model in Sect. 1.1, using (1.5), (1.6), (5.30), and (5.31),
we see that the difference between the asymptotic models M(ν̂ML∗, θ, γ ) and
M(ν̂

γ

ML∗, θ, γ ) is given by dn(ν̂ML∗ , ν̂
θ,γ

ML∗) or Rn(ν̂ML∗ , ν̂
θ,γ

ML∗) up to the second
order, through the MLE of ν. In a similar way to the above, the difference between
M(ν̂

γ

ML∗, θ, γ ) and M(ν̂
θ,γ

ML∗ , θ, γ ) is given by dn(ν̂
γ

ML∗ , ν̂
θ,γ

ML∗) or Rn(ν̂
γ

ML∗ , ν̂
θ,γ

ML∗)

up to the second order.

5.7 Examples

Examples on the second-order asymptotic loss of the estimators are given in a two-
sided truncated exponential, a two-sided truncated normal, an upper-truncatedPareto,
a two-sided truncated beta, and a two-sided truncated Erlang cases, which are treated
in Chap.3.

Example 5.7.1 (Two-sided truncated exponential distribution) (Continued from
Example 3.7.1). Let c = −∞, d = ∞, a(x) ≡ 1, and u(x) = −x for −∞ <

γ ≤ x ≤ ν < ∞ in the density (1.9). Since b(θ, γ, ν) = (e−θγ − e−θν)/θ for
θ ∈ Θ = (0,∞), it follows from (5.1) that

λ1 = ∂

∂θ
log b(θ, γ, ν) = −γ e−θγ + νe−θν

e−θγ − e−θν
− 1

θ
= −γ e−ξ + ν

e−ξ − 1
− 1

θ
, (5.32)

λ2 = ∂2

∂θ2
log b(θ, γ, ν) = γ 2e−θγ − ν2e−θν

e−θγ − e−θν
− (γ e−θγ − νe−θν)2

(e−θγ − e−θν)2
+ 1

θ2

= (e−ξ − 1)2 − ξ 2e−ξ

θ2(e−ξ − 1)2
, (5.33)

k̃(θ, γ, ν) = θe−θν

e−θγ − e−θν
= θ

e−ξ − 1
, (5.34)

where ξ = θ(γ −ν). Hence, by (5.4) and (5.34), the bias-adjusted MLE ν̂
θ,γ

ML∗ of ν is

X∗
(n) = X(n) + 1

θn

{
eθ(X(n)−γ ) − 1

}
,

when θ and γ are known. It also follows from (5.7) and (5.34) that

Vν(k̃T
∗
(n)) = 1 − 2

n
eθ(ν−γ ) + O

(
1

n2

)
.

http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Next, we consider the case when θ is unknown and γ is known. Then, it follows
from (5.10) that the MLE θ̂

γ

ML satisfies the likelihood equation

X̄ = γ eθ̂
γ

ML (X(n)−γ ) − X(n)

eθ̂
γ

ML (X(n)−γ ) − 1
+ 1

θ̂
γ

ML

,

where X̄ := (1/n)
∑n

i=1 Xi . Since

∂ k̃

∂θ
(θ, γ, ν) = (1 + ξ)e−ξ − 1

(e−ξ − 1)2
,

∂2k̃

∂θ2
(θ, γ, ν) = ξe−ξ

θ(e−ξ − 1)3
{(ξ + 2)e−ξ + ξ − 2}

λ3(θ, γ, ν) = ∂λ2

∂θ
(θ, γ, ν) = − 1

θ3

{
2 + ξ3e−ξ (e−ξ + 1)

(e−ξ − 1)3

}
,

∂λ1

∂ν
(θ, γ, ν) = (1 + ξ)e−ξ − 1

(e−ξ − 1)2
,

it follows from (5.20) and (5.32)–(5.34) that the bias-adjusted MLE ν̂
γ

ML∗ = X†
(n)

is obtained. When θ and γ are unknown, the MLE θ̂ML of θ satisfies the likelihood
equation

X̄ = X(1)eθ̂ML (X(n)−X(1)) − X(n)

eθ̂ML (X(n)−X(1)) − 1
+ 1

θ̂ML

.

In a similar way to the above, the bias-adjusted MLE ν̂ML∗ = X∗∗
(n) is obtained from

(5.25) and (5.32)–(5.34). Hence, it follows from (5.29)–(5.31) that dn(ν̂ML∗ , ν̂
γ

ML∗) =
o(1) and

dn(ν̂ML∗ , ν̂
θ,γ

ML∗) = dn(ν̂
γ

ML∗ , ν̂
θ,γ

ML∗) = {(1 + ξ)e−ξ − 1}2
(e−ξ − 1)2 − ξ 2e−ξ

+ o(1)

as n → ∞. When θ = 1 and γ − ν = −1, −2, −3, the values of second-order
asymptotic loss dn(ν̂ML∗ , ν̂

θ,γ

ML∗) = dn(ν̂
γ

ML∗ , ν̂
θ,γ

ML∗) and the ratio Rn(ν̂ML∗ , ν̂
θ,γ

ML∗) =
Rn(ν̂

γ

ML∗ , ν̂
θ,γ

ML∗) up to the order 1/n are obtained from the above and Remark 5.6.1
(see Table5.1 and Fig. 5.1).

It is noted from (5.3) and (3.17) in Appendix B1 that the second-order asymptotic
mean of T(n) = n(X(n) − ν) is given by

Eθ,γ,ν(T(n)) = −1

θ

{
eθ(ν−γ ) − 1

}+ 1

θn
eθ(ν−γ )

{
eθ(ν−γ ) − 1

}+ O

(
1

n2

)
.

Example 5.7.2 (Two-sided truncated normal distribution) (Continued from
Example 3.7.2). Let c = −∞, d = ∞, a(x) = e−x2/2, and u(x) = x for
−∞ < γ ≤ x ≤ ν < ∞ in the density (1.9). Since

http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Table 5.1 Values of dn(ν̂ML∗ , ν̂θ,γ

ML∗ ) and Rn(ν̂ML∗ , ν̂θ,γ

ML∗ ) for θ = 1 and γ − ν = −1, −2, −3

ξ = γ − ν dn(ν̂ML∗ , ν̂θ,γ

ML∗ ) Rn(ν̂ML∗ , ν̂θ,γ

ML∗ )

−1 4.2699 + o(1) 1 + 4.2699

n
+ o

(
1

n

)

−2 6.2480 + o(1) 1 + 6.2480

n
+ o

(
1

n

)

−3 9.2380 + o(1) 1 + 9.2380

n
+ o

(
1

n

)
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Fig. 5.1 Graph of the ratio Rn(ν̂ML∗ , ν̂θ,γ

ML∗ ) up to the order 1/n for θ = 1 and
ξ = γ − ν = −1, −2, −3

b(θ, γ, ν) = √
2πeθ2/2{Φ(θ − γ ) − Φ(θ − ν)}

for θ ∈ Θ = (−∞,∞), it follows that

λ1(θ, γ, ν) = θ + ηγ−ν(θ − γ ) + ην−γ (θ − ν),

λ2(θ, γ, ν) = 1 − (θ − γ )ηγ−ν(θ − γ ) − (θ − ν)ην−γ (θ − ν)

− {ηγ−ν(θ − γ ) + ην−γ (θ − ν)}2,
k̃(θ, γ, ν) = −ην−γ (θ − ν),

where ηα(t) := φ(t)/{Φ(t) − Φ(t + α)} with Φ(t) = ∫ t
−∞ φ(x)dx and φ(x) =

(1/
√
2π)e−x2/2 for −∞ < x < ∞. When θ and γ are known, it follows from (5.4)

that the bias-adjusted MLE ν̂
θ,γ

ML∗ of ν is
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X∗
(n) = X(n) − 1

ηX(n)−γ
(θ − X(n))n

.

Next, we consider the case when θ is unknown and γ is known. Then, it follows
from (5.10) that the MLE θ̂

γ

ML of θ satisfies the likelihood equation

X̄ − θ̂
γ

ML − η
γ−X(n)

(θ̂
γ

ML − γ ) − ηX(n)−γ
(θ̂

γ

ML − X(n)) = 0.

Since

∂ k̃

∂θ
(θ, γ, ν) = −η′

ν−γ (θ − γ ),
∂2k̃

∂θ2
(θ, γ, ν) = −η′′

ν−γ (θ − γ ),

λ3(θ, γ, ν) = ∂λ2

∂θ
(θ, γ, ν)

= 1 − ηγ−ν(θ − γ ) − (θ − γ )η′
γ−ν(θ − γ )

− ην−γ (θ − ν) − (θ − ν)η′
ν−γ (θ − ν)

− 2{ηγ−ν(θ − γ )+ην−γ (θ − ν)}{η′
γ−ν(θ − γ )+η′

ν−γ (θ − ν)},
∂λ1

∂ν
(θ, γ, ν) = ∂

∂ν
ηγ−ν(θ − γ ) + ∂

∂ν
ην−γ (θ − ν)

= ην−γ (θ − ν)
{
ηγ−ν(θ − γ ) + ην−γ (θ − ν) + θ − ν

}
,

∂

∂ν
log k̃(θ, γ, ν) = θ − ν + ην−γ (θ − ν),

where

η′
α(t) = −ηα(t) {ηα(t) + η−α(t + α) + t} ,

η′′
α(t) = ηα(t)

{
tηα(t) + (t − α)η−α(t + α) + t2 + 1

}
,

it follows from (5.20) that the bias-adjusted MLE ν̂
γ

ML∗ = X†
(n) is obtained. When θ

and γ are unknown, the MLE θ̂ML of θ satisfies the likelihood equation

X̄ − θ̂ML − ηX(1)−X(n)
(θ̂ML − X(1)) − ηX(n)−X(1)

(θ̂ML − X(n)) = 0.

In a similar way to the above, the bias-adjusted MLE ν̂ML∗ = X∗∗
(n) is obtained from

(5.25). Hence, it follows from (5.29)–(5.31) that dn(ν̂ML∗ , ν̂
γ

ML∗) = o(1) and

dn(ν̂ML∗ , ν̂θ,γ
ML∗ ) = dn(ν̂

γ
ML∗ , ν̂

θ,γ
ML∗ )

= {θ − ν + ηγ−ν(θ − γ ) + ην−γ (θ − ν)}2
1 − (θ − γ )ηγ−ν(θ − γ ) − (θ − ν)ην−γ (θ − ν) − {ηγ−ν(θ − γ ) + ην−γ (θ − ν)}2

+ o(1)
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as n → ∞. It is also noted that the second-order asymptotic mean of T(n) = n(X(n)−
ν) is given by

Eθ,γ,ν(T(n)) = 1

ην−γ (θ − ν)
− 1

η2
ν−γ (θ − ν)n

{θ − ν + ην−γ (θ − ν)} + O

(
1

n2

)
.

Example 5.7.3 (Upper-truncated Pareto distribution) (Continued from Example
3.7.3). Let c = 0, d = ∞, a(x) = 1/x , and u(x) = − log x for 0 < γ ≤ x ≤ ν <

∞ in the density (1.9), which yields the upper-truncated Pareto distribution. Then,
b(θ, γ, ν) = {1 − (γ /ν)θ }/(θγ θ ) for θ ∈ Θ = (0,∞), and

k̃(θ, γ, ν) = θ/ν

(ν/γ )θ − 1
. (5.35)

For the upper-truncated Pareto distribution with an index parameter θ and truncation
parameters γ and ν, Zhang (2013) obtained the asymptotic biases of the MLEs
γ̂ML = X(1) and ν̂ML = X(n) of γ and ν and showed that the UMVU estimator of γ

was

γ̂
θ,ν
UMVU = X(1)

[
1 + 1

θn

{(
X(1)

ν

)θ

− 1

}]
,

when θ and ν were known and the UMVU estimator of ν was

ν̂
θ,γ

UMVU = X(n)

[
1 + 1

θn

{(
X(n)

γ

)θ

− 1

}]
, (5.36)

when θ and γ were known. Note that (θ, γ, ν) is presented as (α, β, γ ) in the paper
by Zhang (2013). Put ξ = (γ /ν)θ . Letting t = log x , γ0 = log γ , and ν0 = log ν,
we see that the density of upper-truncated Pareto distribution becomes

f (t; θ, γ0, ν0) =
{

θeθγ0

1−e−θ(ν0−γ0) e−θ t for γ0 ≤ t ≤ ν0,

0 otherwise.

Here, note that ξ0 := θ(γ0 − ν0) = log ξ . Hence, the upper-truncated Pareto case
is reduced to the two-sided truncated exponential one in Example 3.7.1. Replacing
X̄ , X(1), and X(n) by log X := (1/n)

∑n
i=1 log Xi , log X(1), log X(n), respectively, in

Example 5.7.1, we have the second-order asymptotic losses

dn(ν̂ML∗ , ν̂
γ

ML∗) = o(1), dn(ν̂ML∗ , ν̂
θ,γ

ML∗) = (1 − ξ + log ξ)2

(1 − ξ)2 − ξ(log ξ)2
+ o(1) (5.37)

http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_3
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Table 5.2 Values of dn(ν̂ML∗ , ν̂θ,γ

ML∗ ) and Rn(ν̂ML∗ , ν̂θ,γ

ML∗ ) for θ = γ = 1 and ν = 2, 3, 5

ξ dn(ν̂ML∗ , ν̂θ,γ

ML∗ ) Rn(ν̂ML∗ , ν̂θ,γ

ML∗ )

1/2 3.8170 + o(1) 1 + 3.8170

n
+ o

(
1

n

)

1/3 4.4288 + o(1) 1 + 4.4288

n
+ o

(
1

n

)

1/5 5.3730 + o(1) 1 + 5.3730

n
+ o

(
1

n

)
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Fig. 5.2 Graph of the ratio Rn(ν̂ML∗ , ν̂θ,γ

ML∗ ) up to the order 1/n for θ = γ = 1 and ν = 2, 3, 5

as n → ∞.When θ = γ = 1 and ν = 2, 3, 5, the values of second-order asymptotic
loss dn(ν̂ML∗ , ν̂

θ,γ

ML∗) and ratio Rn(ν̂ML∗ , ν̂
θ,γ

ML∗) up to the order 1/n are obtained from
the above and Remark 5.6.1 (see Table5.2 and Fig. 5.2).

It follows from (5.4) and (5.36) that

X∗
(n) = X(n)

[
1 + 1

θn

{(
X(n)

γ

)θ

− 1

}]
= ν̂

θ,γ

UMVU (5.38)

and for the bias-adjusted MLE ν̂
θ,γ

ML∗ = X∗
(n)

T ∗
(n) = n(X∗

(n) − ν)

= T(n) + ν

θ

{(
ν

γ

)θ

− 1

}
+ 1

n

{(
1 + 1

θ

)(
ν

γ

)θ

− 1

θ

}
T(n) + Op

(
1

n2

)
.
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Since, by (5.38)

T ∗
(n) = n(ν̂

θ,γ

UMVU − ν),

when θ and γ are known, it follows from (5.7) that

Vν(k̃T
∗
(n)) = Vν(k̃n(ν̂

θ,γ

UMVU − ν)) = 1 − 2

θn

{
(θ + 1)

(
ν

γ

)θ

− 1

}
+ O

(
1

n2

)
.

(5.39)

From the result of Monte Carlo simulation, Zhang (2013) mentioned that, for exam-
ple, when both θ and ν/γ were large, say (θ, γ, ν) = (5, 1, 7), the variance of ν̂θ,γ

UMVU
could be very large for finite sample sizes. Indeed, from (5.39), we have

Vν(ν̂
θ,γ

UMVU ) = 1

k̃2n2
+ O

(
1

n3

)
. (5.40)

For (θ, γ, ν) = (5, 1, 7), we obtain from (5.35)

1

k̃
= 75 − 1

5/7
� 23528.4,

hence, for fixed n, the first term is seen to be very large in the order of 1/n2 in the right-
hand side of (5.40). But, in order to compare estimators in terms of variance, we need
a standardization such a form as (5.39). From the result of Monte Carlo simulation,
Zhang (2013) also stated that for fixed γ , ν̂

θ,γ

UMVU behaved better and better when
θ went to 0. Indeed, in this case, it is easily seen from (5.35) that k̃(θ, γ, ν) → ∞
as θ → 0; hence from (5.40), the variance of ν̂

θ,γ

UMVU becomes very small. Further,

Zhang (2013) considered plug-in estimators γ̂
θ̂ML ,X(n)

UMVU and ν̂
0,X(1)

UMVU using the MLE
θ̂ML of θ and the MLEs X(1) and X(n) of γ and ν, respectively, when θ , γ , and
ν are unknown, and from the result of Monte Carlo simulation concluded that the
improvement of ν̂

0,X(1)

UMVU was significant only if θ was small, but its poor behavior for

large θ was to be expected. First, we consider a plug-in estimator ν
θ̂ML ,X(1)

UMVU using the
MLEs θ̂ML and X(1) of θ and γ , respectively, when θ , γ , and ν are unknown. It is
noted that θ̂ML satisfies the likelihood equation

1

θ̂ML

+ (X(1)/X(n))
θ̂ML log (X(1)/X(n))

1 − (X(1)/X(n))θ̂ML
= 1

n

n∑
i=1

log
X(i)

X(1)
.
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Then, we have

Eθ,γ,ν[n(ν̂
θ̂ML ,X(1)

UMVU − ν)]
= ν

θn
− ν

θ3ξλ2n

{
(1 − ξ + log ξ)

(
1 + 1 + ξ

1 − ξ
log ξ − θλ3

2λ2

)
− 1

2
(log ξ)2

}

+ O

(
1

n
√
n

)
, (5.41)

which implies that it is asymptotically unbiased up to the order o(1), but not up to
the order o(1/n), where

λ2 = 1

θ2

{
1 − ξ(log ξ)2

(1 − ξ)2

}
, λ3 = − 2

θ3

{
1 + ξ(1 + ξ)

2(1 − ξ)3
(log ξ)3

}
.

Indeed, since by (5.38)

ν̂
θ̂ML , X(1)

UMVU = X(n)

[
1 + 1

nθ̂ML

{(
X(n)

X(1)

)θ̂ML

− 1

}]
,

T(1) = n(X(1) − γ ), T(n) = n(X(n) − ν) and Û = √
λ2n(θ̂ML − θ) with λ2 =

λ2(θ, γ, ν), it follows that

n(ν̂
θ̂ML , X(1)
UMVU − ν) = T(n) + ν + (T(n)/n)

θ + (Û/
√

λ2n)

⎧⎨
⎩
(

ν + (T(n)/n)

γ + (T(1)/n)

)θ+(Û/
√

λ2n)

− 1

⎫⎬
⎭

= T(n) + ν(1 − ξ)

θξ
− νÛ

θ2ξ
√

λ2n
(1 − ξ + log ξ) + ν

ξn

(
T(n)

ν
− T(1)

γ

)

+ 1 − ξ

θξn
T(n) + νÛ2

θ3ξλ2n

{
1 − ξ + (log ξ)

(
1

2
log ξ + 1

)}

+ Op

(
1

n
√
n

)
,

hence, by Lemma3.8.1 in Appendix B1 and Lemma 5.9.1 in Appendix D given later,
we have (5.41). Next, we consider the estimator ν̂

0, X(1)

UMVU which is treated by Zhang
(2013). Since

lim
θ→0

1

θ

{(
X(n)

γ

)θ

− 1

}
= log

X(n)

γ
,

http://dx.doi.org/10.1007/978-981-10-5296-5_3
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it follows from (5.36) that

ν̂
0,X(1)

UMVU = X(n)

(
1 + 1

n
log

X(n)

X(1)

)
.

Then

E0,γ,ν

[
n(ν̂

0,X(1)

UMVU − ν)
]

= −ν

n
log

γ

ν
+ O

(
1

n2

)
, (5.42)

which is not asymptotically unbiased up to the order o(1/n). Indeed, since T(1) =
n(X(1) − γ ) and T(n) = n(X(n) − ν), we have

n(ν̂
0, X(1)

UMVU − ν) = T(n) +
(

ν + T(n)

n

)
log

ν + (T(n)/n)

γ + (T(1)/n)

= ν log
ν

γ
+ T(n) + 1

n

{(
1 + log

ν

γ

)
T(n) − ν

γ
T(1)

}
+ Op

(
1

n2

)
.

(5.43)

Since, by Lemma3.8.1 in Appendix B1,

E0,γ,ν(T(1)) = γ log
γ

ν
+ O

(
1

n

)
,

E0,γ,ν(T(n)) = −ν log
ν

γ
+ ν

n

(
log

ν

γ

)(
1 + log

ν

γ

)
+ O

(
1

n2

)
,

it follows from (5.43) that (5.42) holds. Therefore, it seems to be inappropriate

to compare the plug-in estimators ν̂
θ̂ML , X(1)

UMVU and ν̂
0, X(1)

UMVU with the UMVU estimator
ν̂

θ,γ

UMVU up to the higher order. Here, we use the bias-adjusted MLE ν̂ML∗ = X∗∗
(n)

instead of ν̂
θ̂ML , X(1)

UMVU and ν̂
0, X(1)

UMVU . Then, it follows from (5.37) and (5.38) that

dn(ν̂ML∗ , ν̂
θ,γ

UMVU ) = (1 − ξ + log ξ)2

(1 − ξ)2 − ξ(log ξ)2
+ o(1) = d(ξ) + o(1) (say) (5.44)

as n → ∞, where ξ = (γ /ν)θ . Here, note that 0 < ξ < 1, ξ → 1 as θ → 0 and
ξ → 0 as θ → ∞. Then, we have from (5.44)

lim
θ→0

d(ξ) = 3, lim
θ→∞ d(ξ) = ∞,

which shows that the second-order asymptotic loss of ν̂ML∗ relative to ν̂
θ,γ

UMVU is
close to 3 for small θ , but it becomes infinite for large θ . As is seen in the above, a
similar consideration to Zhang (2013) from the Monte Carlo simulation seems to be
theoretically confirmed. It is also noted from Lemma3.8.1 in Appendix B1 that the

http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_3
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second-order asymptotic mean of T(n) = n(X(n) − ν) is given by

Eθ,γ,ν(T(n)) = − ν

θ

{(
ν

γ

)θ

− 1

}

+ ν

θ2n

{(
ν

γ

)θ

− 1

}{
(θ + 1)

(
ν

γ

)θ

− 1

}
+ O

(
1

n2

)

where the first term coincides with the result of Zhang (2013). For the UMVU
estimator γ̂

θ,ν
UMVU , a similar discussion to the above could be done.

Example 5.7.4 (Two-sided truncatedbetadistribution) (Continued fromExample
3.7.4). Let c = 0, d = 1, a(x) = x−1, and u(x) = log x for 0 < γ ≤ x ≤ ν < 1 in
the density (1.9). In Example 3.7.4, we have b(θ, γ ) = θ−1νθ (1 − (γ /ν)θ ) for θ ∈
Θ = (0,∞) and the formulae of λ j (θ, γ, ν) ( j = 1, 2), k(θ, γ, ν), and k̃(θ, γ, ν).
When θ and γ are known, we obtain by (5.4), (5.5), and (5.7)

γ̂
θ,γ

ML∗ = X∗
(n) = X(n) + X(n)

θn

{
1 −

(
γ

X(n)

)θ
}

,

T ∗
(n) = T(n) + ν

θ

{
1 −

(γ

ν

)θ
}

− 1

θ

{
(θ − 1)

(
1 −

(γ

ν

)θ
)

− ν log ν

}
T(n)

+ Op

(
1

n2

)
,

Vν(k̃T
∗
(n)) = 1 + 2

θn

{
(θ − 1)

(
1 −

(γ

ν

)θ
)

− ν log ν

}
+ O

(
1

n2

)
.

If θ = 1, then the density (1.9) is uniform over the interval [γ, ν]. Further, if γ is
known, then

ν̂
1,γ
ML∗ = n + 1

n
X(n) − γ

n
,

which coincides with the UMVU estimation of ν. When θ and γ are unknown, in
a similar way to the above examples, we have the formulae of ν̂ML∗(= X∗∗

(n)), T ∗∗
(n),

and Vθ,γ,ν(k̃T ∗∗
(n)) from (5.25), (5.26), and (5.28). Further, it follows from (5.30) that

the second-order asymptotic loss of ν̂ML∗ relative to ν̂
θ,γ

ML∗ is given by

dn(ν̂ML∗ , ν̂
θ,γ

ML∗) = (1 − ξ + ξ log ξ)2

(1 − ξ)2 − ξ(log ξ)2
+ o(1)

as n → ∞, where ξ = (γ /ν)θ (see also Example 3.7.4).

http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_3
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Example 5.7.5 (Two-sided truncatedErlangdistribution) (Continued fromExam-
ple 3.7.5). Let c = 0, d = ∞, a(x) = x j−1, and u(x) = −x for 0 < γ ≤ x ≤
ν < ∞ in the density (1.9), where j = 1, 2, . . . . In Example 3.7.5, we have for each
j = 1, 2, . . . , b j (θ, γ, ν) = ∫ ν

γ
x j−1e−θxdx for θ ∈ Θ = (0,∞) and the formulae

of λ j i (θ, γ, ν) (i = 1, 2), k j (θ, γ, ν) and k̃ j (θ, γ, ν). Let j be arbitrarily fixed in
{1, 2, . . . }. Since k̃ j (θ, γ, ν) = ν j−1e−θν/b j (θ, γ, ν), we obtain

∂

∂ν
log k̃ j = j − 1

ν
− θ − 1

b j
ν j−1e−θν,

where k̃ j = k̃ j (θ, γ, ν) and b j = b j (θ, γ, ν). When θ and γ are known, we have by
(5.4), (5.5), and (5.7)

ν̂
θ,γ

ML∗ = X∗
(n) = X(n) + eθX(n)b j (θ, γ, X(n))

X j−1
(n) n

,

T ∗
(n) = T(n) + b j eθν

ν j−1
− 1

n

{
b j eθν

ν j−1

(
j − 1

ν
− θ

)
− 1

}
T(n) + Op

(
1

n2

)
,

Vν(k̃ j T
∗
(n)) = 1 + 2

n

{
b j eθν

ν j−1

(
j − 1

ν
− θ

)
− 1

}
+ O

(
1

n2

)
.

When θ and γ are unknown, in a similar way to the above, we have the formulae
of ν̂ML∗(= X∗∗

(n)), T ∗∗
(n), and Vθ,γ,ν(k̃ j T ∗∗

(n)) from (5.25), (5.26), and (5.28). Further, it

follows from (5.30) that the second-order asymptotic loss of ν̂ML∗ relative to ν̂
θ,γ

ML∗
is given by

dn(ν̂ML∗ , ν̂
θ,γ

ML∗) =
(
b j+1

b j
− ν

)2/{
b j+2

b j
−
(
b j+1

b j

)2
}

+ o(1)

as n → ∞.

A similar example to the above in the two-sided truncated lognormal case in
Example 3.7.6 is reduced to the two-sided truncated normal one in Example5.7.2.

5.8 Concluding Remarks

In Chap.3, for a tTEF of distributions with two truncation parameters γ , ν and a
natural parameter θ including the upper-truncated Pareto distribution, we discussed
the estimation problem on θ together with a bias-adjustment when γ and ν are
known or unknown nuisance parameters. In this chapter, exchanging the situation,
we considered the estimation on ν when θ and γ were known or unknown nuisance
parameters. Indeed, we obtained the bias-adjustedMLE ν̂

θ,γ

ML∗ of ν when θ and γ were

http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_3
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known, the bias-adjusted MLE ν̂
γ

ML∗ of ν when θ was unknown and γ was known,
and the bias-adjusted MLE ν̂ML∗ of ν when θ and γ were unknown, and derived
their stochastic expansions and second-order asymptotic variances. Further we got
the second-order asymptotic losses of ν̂

γ

ML∗ and ν̂ML∗ relative to ν̂
θ,γ

ML∗ . On the bias-
adjusted MLE ν̂

γ

ML∗ of ν when θ was unknown and γ was known, the situation was
reduced to the oTEF of distributions with a lower truncation parameter and a natural
parameter θ which was discussed in Chap.4. In this case, we needed a transformation
Y = −X which was described in Remark 4.5.3 and was also carried out in Sect. 5.4
and in a similar way to the section we obtained a similar result. As an example, we
treated the upper-truncated Pareto case, where the results based on the Monte Carlo
simulation by Zhang (2013) were theoretically confirmed in this chapter.

5.9 Appendix D

Before proving Theorems5.3.1 and 5.4.2, we prepare a lemma.

Lemma 5.9.1 Let Û = √
λ2n(θ̂ML − θ). Then, the asymptotic expectation of Û and

Û 2 is given by

Eθ,γ,ν(Û ) = − 1√
λ2n

{
1

k

(
∂λ1

∂γ

)
− 1

k̃

(
∂λ1

∂ν

)
+ λ3

2λ2

}
+ O

(
1

n
√
n

)
, (5.45)

Eθ,γ,ν(Û
2) = 1 + O

(
1

n

)
, (5.46)

where λi = λi (θ, γ, ν) ( j = 1, 2, 3), k = k(θ, γ, ν), and k̃ = k̃(θ, γ, ν).

The Eqs. (5.45) and (5.46) are obtained as (3.28) and (3.31), respectively.

The proof of Theorem 5.3.1 By the Taylor expansion, we have

1
ˆ̃kθ,γ

= 1

k̃(θ, γ, X(n))
= 1

k̃(θ, γ, ν)

[
1 −

{
∂

∂ν
log k̃(θ, γ, ν)

}
T(n)

n
+ Op

(
1

n2

)]
.

(5.47)

Substituting (5.47) into (5.4), we obtain from (5.3)

X∗
(n) = X(n) + 1

k̃n
+ 1

n2
Ã − 1

k̃n2

(
∂

∂ν
log k̃

)(
T(n) + 1

k̃

)
+ Op

(
1

n3

)
,

where k̃ = k̃(θ, γ, ν) and Ã = Ã(θ, γ, ν), hence by (5.3)

http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_3
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T ∗
(n) = n(X∗

(n) − ν) = T(n) + 1

k̃
+ 1

n
Ã − 1

k̃n

(
∂

∂ν
log k̃

)(
T(n) + 1

k̃

)
+ Op

(
1

n2

)

= T(n) + 1

k̃
− 1

k̃n

(
∂

∂ν
log k̃

)
T(n) + Op

(
1

n2

)
.

Thus, we get (5.5). From (3.17), (3.19) in Appendix B1, and (5.3), it follows that the
second-order asymptotic mean and variance of T ∗

(n) are

Eν(T
∗
(n)) = O

(
1

n2

)
, Vν(T

∗
(n)) = 1

k̃2
+ 2

k̃3n

(
∂

∂ν
log k̃

)
+ O

(
1

n2

)
,

hence, we get (5.7). Thus, we complete the proof.

The proof of Theorem 5.4.1 Since δ = −ν, η = −γ , and X(n) = −Y(1), it fol-

lows from (5.14) and (5.15) that k̂0η = ˆ̃kγ , λ̂0
η j = λ̂γ j ( j = 2, 3), ∂ j k̂0η/∂θ j =

∂ j ˆ̃kγ /∂θ j ( j = 1, 2), and ∂λ̂0
η1/∂δ = −(∂λ̂γ 1/∂ν), hence, letting X†

(n) = −Y ′
(1), we

have from (5.16)

X†
(n) = X(n) + 1

ˆ̃kγ n
+ 1

ˆ̃k2γ λ̂γ 2n2

⎛
⎝∂

ˆ̃kγ

∂θ

⎞
⎠
⎧⎨
⎩

1
ˆ̃kγ

(
∂λ̂γ 1

∂ν

)
− λ̂γ 3

2λ̂γ 2

⎫⎬
⎭

+ 1

2 ˆ̃k2γ λ̂γ 2n2

⎧⎨
⎩

∂2 ˆ̃kγ

∂θ2
− 2

ˆ̃kγ

⎛
⎝∂

ˆ̃kγ

∂θ

⎞
⎠

2⎫⎬
⎭ ,

which coincides with (5.20), where

ˆ̃kγ = k̃γ
(
θ̂ML , X(n)

)
= k̃

(
θ̂ML , γ, X(n)

)
,

∂ j ˆ̃kγ /∂θ j =
(
∂ j/∂θ j

)
k̃γ
(
θ̂ML , X(n)

)
=
(
∂ j/∂θ j

)
k̃
(
θ̂ML , γ, X(n)

)
( j = 1, 2),

λ̂γ j = λγ j

(
θ̂ML , X(n)

)
= λ j

(
θ̂ML , γ, X(n)

)
( j = 2, 3),

∂λ̂γ 1/∂ν = (∂/∂ν) λγ 1

(
θ̂ML , X(n)

)
= (∂/∂ν) λ1

(
θ̂ML , γ, X(n)

)
,

and also from (5.17)

T †
(n) = T(n) + 1

k̃γ

− 1

k̃2γ
√

λγ 2n

(
∂ k̃γ

∂θ

)[
Ûγ + 1√

λγ 2n

{
− 1

k̃γ

(
∂λγ 1

∂ν

)
+ λγ 3

2λγ 2

}]

− 1

k̃2γ n

(
∂ k̃γ

∂ν

)
T(n) − 1

2k̃2γ λγ 2n

⎧⎨
⎩

∂2k̃γ

∂θ2
− 2

k̃γ

(
∂ k̃γ

∂θ

)2
⎫⎬
⎭
(
Û 2

γ − 1
)

+ Op

(
1

n
√
n

)
,

http://dx.doi.org/10.1007/978-981-10-5296-5_3
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100 5 Estimation of a Truncation Parameter for a Two-Sided TEF

hence, (5.21) holds. Since T ′
(1) = n(Y ′

(1) − δ) = −n(X(n) − ν) = −T(n),

(∂/∂δ) log k0η = −(∂/∂ν) log k̃γ by (5.14) and u0(δ) = u(ν), it follows from (5.15),
(5.18), and (5.19) that (5.22) and (5.23) hold. Thus, we complete the proof.

The proof of Theorem 5.5.1 Putting T(1) := n(X(1) − γ ), T(n) := n(X(n) − ν), and

Z1 := 1√
λ2(θ, γ, ν)n

n∑
i=1

{u(Xi ) − λ1(θ, γ, ν)},

we have from (3.7) in Theorem 3.4.1

Û = Z1 − λ3

2λ3/2
2

√
n
Z2
1 − 1√

λ2n

{(
∂λ1

∂γ

)
T(1) +

(
∂λ1

∂ν

)
T(n)

}
+ Op

(
1

n

)
.

(5.48)

By the Taylor expansion, we have

k̃(θ̂ML , X(1), X(n))

= k̃ + 1√
λ2n

(
∂ k̃

∂θ

)
Û + 1

n

(
∂ k̃

∂γ

)
T(1) + 1

n

(
∂ k̃

∂ν

)
T(n) + 1

2λ2n

(
∂2k̃

∂θ2

)
Û 2

+ Op

(
1

n
√
n

)
,

where k̃ = k̃(θ, γ, ν), ∂ k̃/∂θ = (∂/∂θ)k̃(θ, γ, ν), ∂ k̃/∂γ = (∂/∂γ )k̃(θ, γ, ν),
∂ k̃/∂ν = (∂/∂ν)k̃(θ, γ, ν), and ∂2k̃/∂θ2 = (∂2/∂θ2)k̃(θ, γ, ν). Since

1
ˆ̃k

= 1

k̃(θ̂ML , X(1), X(n))

= 1

k̃
− 1

k̃2
√

λ2n

(
∂ k̃

∂θ

)
Û − 1

k̃2n

(
∂ k̃

∂γ

)
T(1) − 1

k̃2n

(
∂ k̃

∂ν

)
T(n) − 1

2k̃2λ2n

(
∂2k̃

∂θ2

)
Û2

+ 1

k̃3λ2n

(
∂ k̃

∂θ

)2
Û2 + Op

(
1

n
√
n

)
,

k̂ = k(θ̂ML , X(1), X(n)) = k(θ, γ, ν) + Op

(
1√
n

)
= k + Op

(
1√
n

)
,

λ̂ j = λ j (θ̂ML , X(1), X(n)) = λ j (θ, γ, ν) + Op

(
1√
n

)
= λ j + Op

(
1√
n

)
( j = 1, 2, 3),

∂λ̂1

∂γ
= ∂λ1

∂γ

(
θ̂ML , X(1), X(n)

)
= ∂λ1

∂γ
(θ, γ, ν) + Op

(
1√
n

)
= ∂λ1

∂γ
+ Op

(
1√
n

)
,

∂λ̂1

∂ν
= ∂λ1

∂ν
(θ̂ML , X(1), X(n)) = ∂λ1

∂ν
(θ, γ, ν) + Op

(
1√
n

)
= ∂λ1

∂ν
+ Op

(
1√
n

)
,

http://dx.doi.org/10.1007/978-981-10-5296-5_3
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∂
ˆ̃k

∂γ
= ∂ k̃

∂γ
(θ̂ML , X(1), X(n)) = ∂ k̃

∂γ
(θ, γ, ν) + Op

(
1√
n

)
= ∂ k̃

∂γ
+ Op

(
1√
n

)
,

∂ j ˆ̃k
∂θ j

= ∂ j k̃

∂θ j
(θ̂ML , X(1), X(n)) = ∂ j k̃

∂θ j
(θ, γ, ν) + Op

(
1√
n

)
= ∂ j k̃

∂θ j
+ Op

(
1√
n

)

( j = 1, 2),

substituting them into (5.25), we have

T ∗∗
(n) = n(X∗∗

(n) − ν)

= T(n) + 1

k̃
− 1

k̃2
√

λ2n

(
∂ k̃

∂θ

)[
Û + 1√

λ2n

{
1

k

(
∂λ1

∂γ

)
− 1

k̃

(
∂λ1

∂ν

)
+ λ3

2λ2

}]

− 1

k̃n

(
∂

∂γ
log k̃

)(
T(1) − 1

k

)
− 1

k̃n

(
∂

∂ν
log k̃

)
T(n)

− 1

2k̃2λ2n

⎧⎨
⎩

∂2k̃

∂θ2
− 2

k̃

(
∂ k̃

∂θ

)2
⎫⎬
⎭ (Û 2 − 1) + Op

(
1

n
√
n

)
, (5.49)

which shows that (5.26) holds. From (5.26) and Lemmas3.9.1 and 5.9.1, we obtain
(5.27). Since T(1) and T(n) are asymptotically independent, it follows from (3.16) and
(3.17) that

Eθ,γ,ν

[
T(1)T(n)

] = − 1

kk̃
+ O

(
1

n

)
. (5.50)

By (5.48), (5.50), and Lemma 5.9.1, we obtain

Eθ,γ,ν

[(
T(n) + 1

k̃

)
Û

]
= O

(
1

n

)
, (5.51)

since ∂λ1/∂ν = k̃(u(ν) − λ1). Since Eθ,γ,ν(Z2
1 |T(n)) = 1 + Op(1/n) by (2.59), it

follows from (3.17) and (5.48) that

Eθ,γ,ν

[(
T(n) + 1

k̃

)
(Û 2 − 1)

]
= O

(
1

n
√
n

)
. (5.52)

By (5.49)–(5.52), Lemmas3.9.1, and 5.9.1 and (5.3), we have

Vθ,γ,ν(T
∗∗
(n))

=
{
1 − 2

k̃n

(
∂

∂ν
log k̃

)}
Eθ,γ,ν

[(
T(n) + 1

k̃

)2
]

+ 1

k̃4λ2n

(
∂ k̃

∂θ

)2

Eθ,γ,ν(Û
2)

http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_3
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+ O

(
1

n
√
n

)

= 1

k̃2
+ 2

k̃3n

(
∂

∂ν
log k̃

)
+ 1

k̃2λ2n
{u(ν) − λ1}2 + O

(
1

n
√
n

)
,

since

∂

∂θ
log k̃ = u(ν) − ∂

∂θ
log b(θ, γ, ν) = u(ν) − λ1,

which shows that (5.28) holds. Thus, we complete the proof.
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Chapter 6
Bayesian Estimation of a Truncation
Parameter for a One-Sided TEF

For a one-sided truncated exponential family (oTEF) of distributionswith a truncation
parameter γ and a natural parameter θ as a nuisance parameter, the asymptotic
behavior of the Bayes estimator of γ is discussed.

6.1 Introduction

In this chapter, followingmostly the paper byAkahira (2016), the estimation problem
on γ for a oTEF of distributions is considered from the Bayesian viewpoint. Under
a quadratic loss and a smooth prior on γ , the Bayes estimator of γ is well known
to be expressed as a form of the posterior mean. In Sect. 6.3, when θ is known, the
stochastic expansion of the Bayes estimator γ̂B,θ of γ is derived, and the second order
asymptotic mean and asymptotic variance of γ̂B,θ are given. In Sect. 6.4, when θ is
unknown, the stochastic expansion of the Bayes estimator γ̂B,θ̂ML

plugging the MLE

θ̂ML in θ of γ̂B,θ is derived, and the second-order asymptotic mean and asymptotic
variance of γ̂B,θ̂ML

are given. In Sect. 6.5, several examples for a lower-truncated
exponential, a lower-truncated normal, Pareto, a lower-truncated beta, and a lower-
truncated Erlang distributions are given. In Appendix E, the proofs of Theorems
6.3.1 and 6.4.1 are given.

6.2 Formulation and Assumptions

Suppose that X1, X2, . . . , Xn, . . . is a sequence of i.i.d. random variables according
to Pθ,γ , having the density (1.7), which belongs to a oTEF of distributions. Let
π(γ ) be a prior density with respect to the Lebesgue measure over the open interval
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(c, d), and L(γ̂ , γ ) the quadratic loss (γ̂ − γ )2 of any estimator γ̂ = γ̂ (X) based on
X := (X1, . . . , Xn). Suppose that θ is known. Then, it is easily seen that the Bayes
estimator of γ w.r.t. L and π is given by

γ̂B,θ (X) :=
∫ X(1)

c

tπ(t)

bn(θ, t)
dt

/ ∫ X(1)

c

π(t)

bn(θ, t)
dt, (6.1)

where X(1) := min1≤i≤n Xi . In what follows, we always assume that a(·) and u(·) are
functions of class C3 and π(·) is a function of class C2 on the interval (c, d), where
Ck is the class of all k times continuously differentiable functions for any positive
integer k.

6.3 Bayes Estimator γ̂B,θ of γ When θ is Known

Letting u = n(t − γ ), we have from (6.1)

γ̂B,θ (X) = γ + 1

n

(∫ T(1)

τn

uπ (γ + (u/n))

bn (θ, γ + (u/n))
du

/ ∫ T(1)

τn

π (γ + (u/n))

bn (θ, γ + (u/n))
du

)
,

(6.2)

where τn := n(c − γ ) and T(1) := n(X(1) − γ ). Let

b( j)(θ, γ ) := ∂ j

∂γ j
log b(θ, γ ) ( j = 1, 2, . . . ), (6.3)

π( j)(γ ) := ∂ j

∂γ j
logπ(γ ) ( j = 1, 2, . . . ). (6.4)

It is noted from (1.5) that

k(θ, γ ) := a(γ )eθu(γ )

b(θ, γ )
= −b(1)(θ, γ ). (6.5)

Then, we have the following.

Theorem 6.3.1 For a oTEF Po of distributions having densities of the form (1.7)
with a truncation parameter γ and a natural parameter θ , let γ̂B,θ be the Bayes
estimator (6.1) of γ w.r.t. the loss L and the prior density π , when θ is known. Then,
the stochastic expansion of TB,θ := n(γ̂B,θ − γ ) is given by

TB,θ = T(1) − 1

k
+ 1

kn

(
∂

∂γ
log k

)
T(1) − 1

k2n

{
2

(
∂

∂γ
log k

)
− π(1)

}
+ Op

(
1

n2

)
, (6.6)
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and the second-order asymptotic mean and asymptotic variance of kTB,θ are given by

Eγ (kTB,θ ) = − 1

kn

{
2

(
∂

∂γ
log k

)
− π(1)

}
+ O

(
1

n2

)
, (6.7)

Vγ (kTB,θ ) = 1 − 2

kn

(
∂

∂γ
log k

)
+ O

(
1

n2

)
, (6.8)

respectively, where k = k(θ, γ ) and π(1) = π(1)(γ ).

Remark 6.3.1 The second-order asymptotic variance of kTB,θ is free of the prior
density π . We see that the part except the term

− 1

k2n

{
2

(
∂

∂γ
log k

)
− π(1)

}
(6.9)

in the right-hand side of (6.6) coincides with the stochastic expansion (4.6) of T ∗
(1) :=

n(X∗
(1) − γ ) up to the order n−1, where X∗

(1) := X(1) − (k̂θn)−1 is the bias-adjusted

MLE γ̂ θ
ML∗ , with k̂θ = k(θ, X(1)) (see (4.5)). Then, we have

k(TB,θ − T ∗
(1)) = − 1

kn

{
2

(
∂

∂γ
log k

)
− π(1)

}
+ Op

(
1

n2

)
,

which affects only the difference between their second-order asymptotic means.
That is, γ̂B,θ is second order asymptotically equivalent to the bias-adjusted MLE
γ̂ θ
ML∗ = X∗

(1), hence by (4.8) and (6.8)

Vγ (kTB,θ ) − Vγ (kT ∗
(1)) = O

(
1

n2

)
.

6.4 Bayes Estimator γ̂B,θ̂ML
of γ When θ is Unknown

Let γ̂ML and θ̂ML be the MLEs of γ and θ , respectively. From (4.9) it is seen that
γ̂ML = X(1) and L(X(1), θ̂ML; X) = supθ∈Θ L(X(1), θ; X), hence θ̂ML satisfies the
likelihood equation (4.10). Denote byλ j (θ, γ ) the j-th cumulant (4.1) corresponding
to (1.7) for j = 1, 2, . . . . Let λ2 = λ2(θ, γ ) and Û = √

λ2n(θ̂ML − θ). When θ is
unknown, using the MLE θ̂ML of θ we consider the Bayes estimator plugging θ̂ML

in θ of γ̂B,θ , i.e.,

γ̂B,θ̂ML
(X) :=

∫ X(1)

c

tπ(t)

bn(θ̂ML , t)
dt

/ ∫ X(1)

c

π(t)

bn(θ̂ML , t)
dt. (6.10)

Then we have the following.

http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Theorem 6.4.1 For a oTEF Po of distributions having densities of the form (1.7)
with a truncation parameter γ and a natural parameter θ , let γ̂B,θ̂ML

be the Bayes

estimator (6.10) plugging θ̂ML in θ of γ̂B,θ when θ is unknown. Then the stochastic
expansion of TB,θ̂ML

:= n(γ̂B,θ̂ML
− γ ) is given by

TB,θ̂ML
= T(1) − 1

k
+ 1

k2
√

λ2n

(
∂k

∂θ

) {
Û + 1√

λ2n

(
1

k

(
∂λ1

∂γ

)
+ λ3

2λ2

)}

+ 1

kn

(
∂

∂γ
log k

)
T(1) + 1

2k2λ2n

{
∂2k

∂θ2
− 2

k

(
∂k

∂θ

)2
}

(Û 2 − 1) + B

kn

+ Op

(
1

n
√
n

)
, (6.11)

where

B := − 1

2λ2

{
λ3

kλ2

(
∂k

∂θ

)
− 1

k

(
∂2k

∂θ2

)}
− 1

k

{
2

(
∂

∂γ
log k

)
− π(1)

}
,

k = k(θ, γ ), λ j = λ j (θ, γ ) ( j = 1, 2, 3), and the second-order asymptotic mean
and asymptotic variance of kTB,θ̂ML

are given by

Eθ,γ [kTB,θ̂ML
] = B

n
+ O

(
1

n
√
n

)
, (6.12)

Vθ,γ (kTB,θ̂ML
) =1 − 2

kn

(
∂

∂γ
log k

)
+ 1

λ2n
{u(γ ) − λ1}2 + O

(
1

n
√
n

)
, (6.13)

respectively.

Remark 6.4.1 The second-order asymptotic variance of kTB,θ̂ML
is free of the prior

density π . In the stochastic expansion (6.11), the terms involving Û yield from the
use of the MLE θ̂ML in θ of γ̂B,θ . It is also seen from (6.12) and (6.13) that the
terms depending on λ2 and λ3 in the second-order asymptotic mean and asymptotic
variance come from using θ̂ML .

Remark 6.4.2 We see that the part except the term B/(kn) in the right-hand side of
(6.11) coincides with the stochastic expansion (4.12) of T ∗∗

(1) := n(X∗∗
(1) − γ ) up to

the order n−1, where

X∗∗
(1) := X(1) − 1

k̂n
+ 1

k̂2λ̂2n2

(
∂ k̂

∂θ

){
1

k̂

(
∂λ̂1

∂γ

)
+ λ̂3

2λ̂2

}

− 1

2k̂2λ̂2n2

⎧⎨
⎩

∂2k̂

∂θ2
− 2

k̂

(
∂ k̂

∂θ

)2
⎫⎬
⎭

http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_4
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is the bias-adjusted MLE γ̂ML∗ , with k̂ = k(θ̂ML , X(1)), ∂ j k̂/∂θ j = (∂ j/∂θ j )k(θ̂ML ,

X(1)) ( j = 1, 2), λ̂ j = λ j (θ̂ML , X(1)) ( j = 2, 3) and ∂λ̂1/∂γ = (∂/∂γ )λ1

(θ̂ML , X(1)) (see (4.11)). Then, we have

k(TB,θ̂ML
− T ∗∗

(1) ) = B

n
+ Op

(
1

n
√
n

)
,

which affects only the difference between their second-order asymptotic means. That
is, γ̂B,θ̂ML

is second-order asymptotic equivalent to the bias-adjusted MLE γ̂ML∗ =
X∗∗

(1), hence by (4.14) and (6.13)

Vθ,γ (kTB,θ̂ML
) − Vθ,γ (kT ∗∗

(1) ) = O

(
1

n
√
n

)
.

Further, it is easily seen from (6.8) and (6.13), the second-order asymptotic loss of
γ̂B,θ̂ML

relative to γ̂B,θ is given by

dn(γ̂B,θ̂ML
, γ̂B,θ ) := n

{
Vθ,γ (kTB,θ̂ML

) − Vγ (kTB,θ )
} = 1

λ2
{u(γ ) − λ1}2 + o(1).

6.5 Examples

We consider a lower-truncated exponential, a lower-truncated normal, Pareto, a
lower-truncated beta, and a lower-truncated Erlang distributions as in Chaps. 2 and 4.

Example 6.5.1 (Lower-truncated exponential distribution) (Continued from
Examples 2.7.1 and 4.6.1). Let c = −∞, d = ∞, a(x) ≡ 1, and u(x) = −x for
−∞ < γ ≤ x < ∞ in the density (1.7). Since b(θ, γ ) = θ−1e−θγ for θ ∈ Θ =
(0,∞), it follows from (4.1), (6.3), and (6.5) that b(1)(θ, γ ) = −θ , b(2)(θ, γ ) = 0,
k(θ, γ ) = θ , λ1(θ, γ ) = −γ − θ−1, λ2(θ, γ ) = θ−2 and λ3(θ, γ ) = −2θ−3.
Assume that the prior π is a normal density with mean 0 and variance 1. Let θ be
known. Sinceπ(1)(γ ) = −γ , it is seen from (6.6)–(6.8) that the stochastic expansion,
the second-order asymptotic mean and asymptotic variance of TB,θ = n(γ̂B,θ − γ )

are given by

TB,θ = T(1) − 1

θ
− γ

θ2n
+ Op

(
1

n2

)
,

Eγ (θTB,θ ) = − γ

θn
+ O

(
1

n2

)
, Vγ (θTB,θ ) = 1 + O

(
1

n2

)
.

http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_4
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Next, let θ be unknown. Since (∂/∂γ )logk and ∂2k/∂θ2 = 0, it is seen from (6.11)–
(6.13) that

TB,θ̂ML
= T(1) − 1

θ
+ Û

θ
√
n

− Û 2

θn
− γ

θ2n
+ Op

(
1

n
√
n

)
,

Eθ,γ [θTB,θ̂ML
] = 1

n

(
1 − γ

θ

)
+ O

(
1

n
√
n

)
,

Vθ,γ (θTB,θ̂ML
) = 1 + 1

n
+ O

(
1

n
√
n

)
.

Further, it follows fromRemark 6.4.2 that the second-order asymptotic loss of γ̂B,θ̂ML

relative to γ̂B,θ is given by

dn(γ̂B,θ̂ML
, γ̂B,θ ) = n

{
Vθ,γ (θTB,θ̂ML

) − Vγ (θTB,θ )
} = 1 + o(1)

as n → ∞.

Example 6.5.2 (Lower-truncated normal distribution) (Continued from Exam-
ples 2.7.2 and 4.6.2). Let c = −∞, d = ∞, a(x) = e−x2/2, and u(x) = x for
−∞ < γ ≤ x < ∞ in the density (1.7). Since b(θ, γ ) = Φ(θ − γ )/φ(θ) for θ ∈
Θ = (−∞,∞), it follows from (4.1), (6.3) and (6.5) that b(1)(θ, γ ) = −ρ(θ −
γ ), b(2)(θ, γ ) = −(θ − γ )ρ(θ − γ ) − ρ2(θ − γ ), k(θ, γ ) = ρ(θ − γ ), λ1(θ, γ ) =
θ + ρ(θ − γ ), λ2(θ, γ ) = 1 − (θ − γ )ρ(θ − γ ) − ρ2(θ − γ ) and λ3(θ, γ ) =
ρ(θ − γ ){2ρ2(θ − γ ) + 3(θ − γ )ρ(θ − γ ) + (θ − γ )2 − 1}, where

Φ(x) :=
∫ x

−∞
φ(t)dt with φ(t) := 1√

2π
e−t2/2

and ρ(t) := φ(t)/Φ(t). Assume that the prior π is a normal density with mean 0 and
variance 1. Let θ be known. Since π(1)(γ ) = −γ , it is seen from (6.6)–(6.8) that the
stochastic expansion, the second-order asymptotic mean, and asymptotic variance of
TB,θ = n(γ̂B,θ − γ ) are given by

TB,θ = T(1) − 1

ρ(θ − γ )
+ 1

n

{
1 + θ − γ

ρ(θ − γ )

}
T(1)

− 1

ρ2(θ − γ )n
{2(θ − γ ) + 2ρ(θ − γ ) + γ } + Op

(
1

n2

)
,

Eθ,γ [ρ(θ − γ )TB,θ ] = − 1

ρ(θ − γ )n
{2(θ − γ ) + 2ρ(θ − γ ) + γ } + O

(
1

n2

)
,

Vθ,γ [ρ(θ − γ )TB,θ ] = 1 − 2

ρ(θ − γ )n
{θ − γ + ρ(θ − γ )} + O

(
1

n2

)
.

http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_4
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Next, let θ be unknown. Since

∂2k

∂θ2
= −ρ(θ − γ ){1 − (θ − γ )2 − 3(θ − γ )ρ(θ − γ ) − 2ρ2(θ − γ )}

and (∂/∂θ)logk = −(θ − γ ) − ρ(θ − γ ), it is seen from (6.11)–(6.13) that

TB,θ̂ML
=T(1) − 1

ρ(θ − γ )
− 1√

λ2n

(
1 + θ − γ

ρ(θ − γ )

)
Û + 1

n

(
1 + θ − γ

ρ(θ − γ )

)
T(1)

− 1

2ρ(θ − γ )λ2n
{1 + (θ − γ )2 + (θ − γ )ρ(θ − γ )}Û 2

− 1

ρ2(θ − γ )n
{2(θ − γ + ρ(θ − γ )) + γ } + Op

(
1

n
√
n

)
,

Eθ,γ [ρ(θ − γ )TB,θ̂ML
] = − 1

ρ(θ − γ )n
{2(θ − γ + ρ(θ − γ )) + γ }

+ {θ − γ + ρ(θ − γ )}{θ − γ + 2ρ(θ − γ )} − 1

2n{1 − (θ − γ )ρ(θ − γ ) − ρ2(θ − γ )}2 + O

(
1

n
√
n

)
,

Vθ,γ (ρ(θ − γ )TB,θ̂ML
) = 1 − 2{θ − γ + ρ(θ − γ )}

ρ(θ − γ )n

+ {θ − γ + ρ(θ − γ )}2
{1 − (θ − γ )ρ(θ − γ ) − ρ2(θ − γ )}n + O

(
1

n
√
n

)
,

where λ2 = 1 − (θ − γ )ρ(θ − γ ) − ρ2(θ − γ ). Further, it follows from Remark
6.4.2 that the second-order asymptotic loss of γ̂B,θ̂ML

relative to γ̂B,θ is given by

dn(γ̂B,θ̂ML
, γ̂B,θ ) =n

{
Vθ,γ (ρ(θ − γ )TB,θ̂ML

) − Vγ (ρ(θ − γ )TB,θ )
}

= {θ − γ + ρ(θ − γ )}2
1 − (θ − γ )ρ(θ − γ ) − ρ2(θ − γ )

+ o(1)

as n → ∞.

Example 6.5.3 (Pareto distribution) (Continued from Examples 2.7.3 and 4.6.3).
Let c = 0, d = ∞, a(x) = 1/x , and u(x) = − log x for 0 < γ ≤ x < ∞ in the den-
sity (1.7). Since b(θ, γ ) = θ−1γ −θ for θ ∈ Θ = (0,∞), it follows from (4.1), (6.3),
and (6.5) that b(1)(θ, γ ) = −θ/γ , b(2)(θ, γ ) = θ/γ 2, k(θ, γ ) = θ/γ , λ1(θ, γ ) =
−θ−1 − log γ , λ1(θ, γ ) = −θ−1 − log γ , λ2(θ, γ ) = θ−2 and λ3(θ, γ ) = −2θ−3.
Assume that the prior density π(γ ) is e−γ for γ > 0. Let θ be known. Since
π(1) = −1, it is seen from (6.6)–(6.8) that the stochastic expansion, the second-order
asymptotic mean, and asymptotic variance of TB,θ = n(γ̂B,θ − γ ) are given by

TB,θ = T(1) − γ

θ
− 1

θn
T(1) + γ 2

θ2n

(
2

γ
− 1

)
+ Op

(
1

n2

)
,

http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_4
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Eγ

(γ

θ
TB,θ

)
= γ

θn

(
2

γ
− 1

)
+ O

(
1

n2

)
,

Vγ

(γ

θ
TB,θ

)
= 1 + 2

θn
+ O

(
1

n2

)
.

Next, let θ be unknown. Since (∂/∂γ )logk = −γ −1 and ∂2k/∂θ2 = 0, it is seen from
(6.11)–(6.13) that

TB,θ̂ML
= T(1) − γ

θ
+ γ

θ
√
n
Û − 1

θn
T(1) − γ

θn
Û 2 + γ 2

θ2n

(
2

γ
− 1

)
+ Op

(
1

n
√
n

)
,

Eθ,γ

[
θ

γ
TB,θ̂ML

]
= γ

θn

(
2

γ
− 1

)
+ 1

n
+ O

(
1

n
√
n

)
,

Vθ,γ

(
θ

γ
TB,θ̂ML

)
= 1 + 2

θn
+ 1

n
+ O

(
1

n
√
n

)
.

Further, it follows fromRemark 6.4.2 that the second-order asymptotic loss of γ̂B,θ̂ML

relative to γ̂B,θ is given by

dn(γ̂B,θ̂ML
, γ̂B,θ ) = n

{
Vθ,γ

(
θ

γ
TB,θ̂ML

)
− Vγ

(
θ

γ
TB,θ

)}
= 1 + o(1)

as n → ∞.

Example 6.5.4 (Lower-truncated beta distribution) (Continued from Examples
2.7.4 and 4.6.4). Let c = 0, d = 1, a(x) = x−1, and u(x) = log x for 0 < γ ≤ x < 1
in the density (1.7). Since b(θ, γ ) = θ−1(1 − γ θ ) for θ ∈ Θ = (0,∞), it follows
from (4.1), (6.3), and (6.5) that

k(θ, γ ) = θγ θ−1/(1 − γ θ ),
∂

∂γ
log k(θ, γ ) = θ − 1

γ
+ θγ θ−1

1 − γ θ
, (6.14)

λ1(θ, γ ) = −1

θ
− (log γ )γ θ

1 − γ θ
, λ2(θ, γ ) = 1

θ2
− (log γ )2γ θ

(1 − γ θ )2
, (6.15)

λ3(θ, γ ) = − 2

θ3
− (log γ )3γ θ 1 + γ θ

(1 − γ θ )3
. (6.16)

Assume that the prior density is

π(γ ) =
{

αγ α−1 for 0 < γ < 1,

0 otherwise,

where α is positive and known. Let θ be known and γ̂B,θ be the Bayes estimator
of γ . Since π(1)(γ ) = (α − 1)/γ for γ > 0, it is seen from (6.6)–(6.8) that the

http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_4
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stochastic expansion, second-order asymptotic mean, and asymptotic variance of
TB,θ = n(γ̂B,θ − γ ) are given by

TB,θ = T(1) − 1 − γ θ

θγ θ−1
+ θ − (1 − γ θ )

θγ θn
T(1) + 1 − γ θ

θ2γ 2θ−1n

{
(α + 1)(1 − γ θ ) − 2θ

}

+ Op

(
1

n2

)
,

Eγ (kTB,θ ) = 1

θγ θn

{
α − 2θ + 1 − (α + 1)γ θ

} + O

(
1

n2

)
,

Vγ (kTB,θ ) = 1 − 2

θγ θn

{
θ − (1 − γ θ )

} + O

(
1

n2

)
,

where k = k(θ, γ ). Next, let θ be unknown and γ̂B,θ̂ML
be the Bayes estimator plug-

ging θ̂ML in θ of γ̂B,θ . Since

∂λ1

∂γ
= − γ θ−1

(1 − γ θ )2
(1 − γ θ − θ log γ ),

∂k

∂θ
= γ θ−1

1 − γ θ

(
1 + θ log γ

1 − γ θ

)
,

∂2k

∂θ2
= (log γ )θγ θ−1

(1 − γ θ )2

{
2

θ
+ (log γ )(1 + γ θ )

1 − γ θ

}
,

in a similar way to the above, from (6.11)–(6.13) and (6.14)–(6.16), we obtain the
stochastic expansion, second-order asymptotic mean, and asymptotic variance of
TB,θ̂ML

. In particular

Vθ,γ (kTB,θ̂ML
) = 1 − 2

θγ θn

{
θ − (1 − γ θ )

} + 1

λ2n

(
1

θ
+ log γ

1 − γ θ

)2

+ O

(
1

n
√
n

)
,

where λ2 is given by (6.15). Further, it follows from Remark 6.4.2 that the second-
order asymptotic loss of γ̂B,θ̂ML

relative to γ̂B,θ is given by

dn(γ̂B,θ̂ML
, γ̂B,θ ) = n

{
Vθ,γ (kTB,θ̂ML

) − Vγ (kTB,θ )
} = 1

λ2

(
1

θ
+ log γ

1 − γ θ

)2

+ o(1)

as n → ∞.

Example 6.5.5 (Lower-truncated Erlang distribution) (Continued from Exam-
ples 2.7.5 and 4.6.5). Let c = 0, d = ∞, a(x) = x j−1, and u(x) = −x for 0 <

γ ≤ x < ∞ in the density (1.7), where j = 1, 2, . . .. Note that the density is trun-
cated exponential for j = 1. For each j = 1, 2, . . ., b j (θ, γ ) := ∫ ∞

γ
x j−1e−θxdx for

θ ∈ Θ = (0,∞). Since ∂b j/∂θ = −b j+1 ( j = 1, 2, . . .), it follows from (2.1), (6.3),
and (6.5) that, for each j = 1, 2, . . .

http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_2
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k j (θ, γ ) := a(γ )eθu(γ )

b j (θ, γ )
= γ j−1e−θγ

b j (θ, γ )
,

∂

∂γ
log k j (θ, γ ) = j − 1

γ
− θ + k j (θ, γ ),

(6.17)

λ j1 := ∂

∂θ
log b j (θ, γ ) = −b j+1

b j
, λ j2 := ∂2

∂θ2
log b j (θ, γ ) = b j+2

b j
−

(
b j+1

b j

)2

,

(6.18)

λ j3 := ∂3

∂θ3
log b j (θ, γ ) = −b j+3

b j
+ 3b j+1b j+2

b2j
− 2

(
b j+1

b j

)3

, (6.19)

where b j = b j (θ, γ ) ( j = 1, 2, . . .). Assume that the prior density is

π(γ ) =
{

1
Γ (α)

γ α−1e−γ for γ > 0,

0 otherwise,

where α is positive and known. Let θ be known and, for each j = 1, 2, . . ., let γ̂ ( j)
B,θ

be the Bayes estimator of γ . Since π(1)(γ ) = {(α − 1)/γ } − 1 for γ > 0, it is seen
from (6.6)–(6.8) that, for each j = 1, 2, . . ., the stochastic expansion, second-order
asymptotic mean and asymptotic variance of T ( j)

B,θ = n(γ̂
( j)
B,θ − γ ) are given by

T ( j)
B,θ = T(1) − b j

γ j−1e−θγ
+ b j T(1)

γ j−1e−θγ n

(
j − 1

γ
− θ + γ j−1e−θγ

b j

)

− b2j
γ 2( j−1)e−2θγ n

{
2

(
j − 1

γ
− θ + γ j−1e−θγ

b j

)
− α − 1

γ
+ 1

}
+ Op

(
1

n2

)
,

Eγ (k j T
( j)
B,θ ) = − b j

γ j−1e−θγ n

{
2

(
j − 1

γ
− θ + γ j−1e−θγ

b j

)
− α − 1

γ
+ 1

}
+ O

(
1

n2

)
,

Vγ (k j T
( j)
B,θ ) = 1 − 2b j

γ j−1e−θγ n

(
j − 1

γ
− θ + γ j−1e−θγ

b j

)
+ O

(
1

n2

)
,

where k j = k j (θ, γ ) and b j = b j (θ, γ ). Next, let θ be unknown and, for each
j = 1, 2, . . ., let γ̂

( j)

B,θ̂ML
be the Bayes estimator plugging θ̂ML in θ of γ̂

( j)
B,θ . Since,

for each j = 1, 2, . . .,

∂λ1 j

∂γ
=γ j−1e−θγ

b j

(
b j+1

b j
+ γ

)
,

∂k j

∂θ
= γ j−1e−θγ

b j

(
b j+1

b j
− γ

)
,

∂2k j

∂θ2
=γ j−1e−θγ

b j

{(
b j+1

b j

)2

+
(
b j+1

b j
− γ

)2

− b j+2

b j

}
,

in a similar way to the above, from (6.11)–(6.13) and (6.17)–(6.19), we obtain the
stochastic expansion, second-order asymptotic mean, and asymptotic variance of
T ( j)

B,θ̂ML
for each j = 1, 2, . . .. In particular,
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Vθ,γ (k j T
( j)

B,θ̂ML
) =1 − 2b j

γ j−1e−θγ n

(
j − 1

γ
− θ + γ j−1e−θγ

b j

)

+ b2j
(b jb j+2 − b2j+1)n

(
b j+1

b j
− γ

)2

+ O

(
1

n
√
n

)
.

Further, it follows from Remark 6.4.2 that, for each j = 1, 2, . . . , the second-order
asymptotic loss of γ̂

( j)

B,θ̂ML
relative to γ̂

( j)
B,θ is given by

dn(γ̂
( j)

B,θ̂ML
, γ̂

( j)
B,θ ) = n

{
Vθ,γ

(
k j T

( j)

B,θ̂ML

) − Vγ

(
k j T

( j)
B,θ

)}

= b2j
(b jb j+2 − b2j+1)n

(
b j+1

b j
− γ

)2

+ o(1)

as n → ∞.

A similar example to the above in the lower-truncated lognormal case in Example
2.7.6 is reduced to the lower-truncated normal one in Example 6.5.2. In the case, the
standard normal distribution may be taken as a prior one.

6.6 Concluding Remarks

For a oTEFPo of distributionswith a truncation parameter γ and a natural parameter
θ , we considered the estimation problem on γ in the presence of θ as a nuisance
parameter from the Bayesian viewpoint. Under the smooth prior density π(γ ) of
γ and a quadratic loss, the stochastic expansions of the Bayes estimator γ̂B,θ (i.e.,
(6.1)) of γ when θ is known and the Bayes estimator γ̂B,θ̂ML

(i.e., (6.10)) plugging

theMLE θ̂ML in θ of γ̂B,θ when θ is unknown were derived, which led to the fact that
the asymptotic means of TB,θ = n(γ̂B,θ − γ ) and TB,θ̂ML

= n(γ̂B,θ̂ML
− γ ) depended

on the prior π , but their second-order asymptotic variances were independent of it.
In the previous discussion, we adopted a partial Bayesian approach; to be precise, we
chose the combined Bayesian-frequentist approach. Indeed, since a density (1.7) in
the oTEF Po has a truncation point γ , it is considered to be helpful to obtain some
information through a prior on γ . On the other hand, a natural parameter θ inPo is in
the same situation as in a regular exponential family, hence the maximum likelihood
method based on the likelihood equation is useful for estimating θ . Hence, it seems
to be natural to plug the MLE in θ of the Bayes estimator of γ for known θ . But,
taking a pure Bayesian approach, one may obtain the Bayes estimator with respect
to a prior on (θ, γ ). It seems to be interesting to compare it with our estimator. For
a tTEF Pt of distributions, we may also obtain the Bayes estimator with respect to
a prior on (θ, γ, ν) and compare it with the partial Bayes estimator.

http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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6.7 Appendix E

The proof of Theorem 6.3.1 Since, by the Taylor expansion,

b
(
θ, γ + u

n

)

= b(θ, γ )

{
1 +

(
∂

∂γ
log b(θ, γ )

)
u

n
+ 1

2b(θ, γ )

(
∂2b(θ, γ )

∂γ 2

)
u2

n2
+ O

(
1

n3

) }

as n → ∞, it follows that

bn
(
θ, γ + u

n

)
= bn(θ, γ ) exp

{
b(1)u − 1

2n
b2(1)u

2 + 1

2bn

(
∂2b

∂γ 2

)
u2 + O

(
1

n2

)}
,

(6.20)

where b = b(θ, γ ) and b( j) = b( j)(θ, γ ). Here

1

b(θ, γ )

∂2

∂γ 2
b(θ, γ ) = b(2) + b2(1). (6.21)

Substituting (6.21) into (6.20), we have

bn
(
θ, γ + u

n

)
= bn(θ, γ )eb(1)u

{
1 + b(2)

2n
u2 + O

(
1

n2

)}
. (6.22)

From (6.4), we have

π
(
γ + u

n

)
= π(γ )

{
1 + π(1)

u

n
+ O

(
1

n2

)}
, (6.23)

where π(1) = π(1)(γ ). From (6.22) and (6.23), we obtain

π(γ + (u/n))

bn (θ, γ + (u/n))
=π(γ )e−b(1)u

bn(θ, γ )

{
1 − b(2)

2n
u2 + π(1)

n
u + O

(
1

n2

)}
. (6.24)

Putting

I j :=
∫ T(1)

τn

u j ekudu ( j = 0, 1, 2, 3),
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we have from (6.5) and (6.24)

∫ T(1)

τn

π(γ + (u/n))

bn (θ, γ + (u/n))
du = π(γ )

bn(θ, γ )

{
I0 − b(2)

2n
I2 + π(1)

n
I1 + Op

(
1

n2

) }
,

(6.25)∫ T(1)

τn

uπ(γ + (u/n))

bn (θ, γ + (u/n))
du = π(γ )

bn(θ, γ )

{
I1 − b(2)

2n
I3 + π(1)

n
I2 + Op

(
1

n2

) }
.

(6.26)

Here, the remainder terms in (6.25) and (6.26) are guaranteed to be order Op(n−2),
since the distribution with a density (1.7) belongs to a oTEFPo with a normalizing
factor b(θ, γ ) based on a(·) and u(·) which are functions of class C3. From (6.25)
and (6.26), we obtain

∫ T(1)

τn

uπ(γ + (u/n))

bn (θ, γ + (u/n))
du

/ ∫ T(1)

τn

π(γ + (u/n))

bn (θ, γ + (u/n))
du

= I1
I0

+ b(2)

2n

(
I1 I2
I 20

− I3
I0

)
− π(1)

n

{(
I1
I0

)2

− I2
I0

}
+ Op

(
1

n2

)
. (6.27)

Substituting (6.27) into (6.2), we have

TB,θ := n(γ̂B,θ − γ ) = I1
I0

+ b(2)

2n

(
I1 I2
I 20

− I3
I0

)
− π(1)

n

{(
I1
I0

)2

− I2
I0

}
+ Op

(
1

n2

)
.

(6.28)

Since

I0 =
∫ T(1)

τn

ekudu = 1

k
ekT(1) + Op

(
ekτn

)
,

I1 =
∫ T(1)

τn

uekudu = 1

k
ekT(1)

(
T(1) − 1

k

)
+ Op

(
nekτn

)
,

I2 =
∫ T(1)

τn

u2ekudu = 1

k
ekT(1)

{(
T(1) − 1

k

)2

+ 1

k2

}
+ Op

(
n2ekτn

)
,

I3 =
∫ T(1)

τn

u3ekudu = 1

k
ekT(1)

{(
T(1) − 1

k

)3

+ 3

k2

(
T(1) − 1

k

)
− 2

k3

}
+ Op

(
n3ekτn

)

as n → ∞, it follows that

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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I1
I0

= T(1) − 1

k
+ Op

(
ek(τn−T(1))

)
, (6.29)

I2
I0

=
(
T(1) − 1

k

)2

+ 1

k2
+ Op

(
n2ek(τn−T(1))

)
, (6.30)

I3
I0

=
(
T(1) − 1

k

)3

+ 3

k2

(
T(1) − 1

k

)
− 2

k3
+ Op

(
n3ek(τn−T(1))

)
, (6.31)

hence, by (6.28)

TB,θ = T(1) − 1

k
− b(2)

k2n
T(1) + 1

k2n

(
2b(2)

k
+ π(1)

)
+ Op

(
1

n2

)
. (6.32)

Since by (6.3) and (6.5)

b(2)

k
= 1

k

(
∂2

∂γ 2
log b

)
= −1

k

(
∂k

∂γ

)
= − ∂

∂γ
log k, (6.33)

it follows from (6.32) and (6.33) that

TB,θ = T(1) − 1

k
+ 1

kn

(
∂

∂γ
log k

)
T(1) − 1

k2n

{
2

(
∂

∂γ
log k

)
− π(1)

}
+ Op

(
1

n2

)
,

which implies that (6.6) holds. From (6.6) and Theorem 4.3.1, we have

TB,θ = T ∗
(1) − 1

k2n

{
2

(
∂

∂γ
log k

)
− π(1)

}
+ Op

(
1

n2

)
,

hence, by (4.7) and (4.8), we obtain (6.7) and (6.8). Thus, we complete the proof.

The proof of Theorem 6.4.1 The Bayes estimator (6.10) plugging θ̂ML in θ of γ̂B,θ

when θ is unknown is expressed by

γ̂B,θ̂ML
(X) = γ + 1

n

⎛
⎝

∫ T(1)

τn

uπ(γ + (u/n))

bn
(
θ̂ML , γ + (u/n)

)du
/ ∫ T(1)

τn

π(γ + (u/n))

bn
(
θ̂ML , γ + (u/n)

)du
⎞
⎠ ,

(6.34)

where τn = n(c − r). Since θ̂ML = θ + (Û/
√

λ2n) and

1

b(θ, γ )

∂2

∂θ2
b(θ, γ ) = λ2 + λ2

1,
1

b(θ, γ )

∂3

∂θ3
b(θ, γ ) = λ3 + 3λ1λ2 + λ3

1,

http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_4
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we have by the Taylor expansion

b

(
θ + Û√

λ2n
, γ + u

n

)

= b(θ, γ )

{
1 + λ1√

λ2n
Û + b(1)

n
u + λ2 + λ2

1

2λ2n
Û 2 + 1

b

(
∂2b

∂θ∂γ

)
Ûu√
λ2n

√
n

+ λ3 + 3λ1λ2 + λ3
1

6λ3/2
2 n

√
n

Û 3 + 1

2bλ2n2

(
∂3b

∂θ2∂γ

)
Û 2u

+ 1

2bn2

(
∂2b

∂γ 2

)
u2 + 1

24bλ2
2n

2

(
∂4b

∂θ4

)
Û 4 + O

(
1

n2
√
n

)}
,

hence

bn
(

θ + Û√
λ2n

, γ + u

n

)

= bn(θ, γ )

[
exp

{
λ1

√
n√

λ2
Û + 1

2
Û 2 + λ3

6λ3/2
2

√
n
Û 3

+ 1

24bλ2
2n

(
∂4b

∂θ4

)
Û 4 − λ4

1 + 6λ2
1λ2 + 4λ1λ3 + 3λ2

2

24λ2
2n

Û 4

}]

· eb(1)u exp

{
Û

b
√

λ2n

(
∂2b

∂θ∂γ

)
u + b(2)

2n
u2 + Û 2

2bλ2n

(
∂3b

∂θ2∂γ

)
u − λ1b(1)Û√

λ2n
u

− b(1)(λ2 + λ2
1)Û

2

2λ2n
u − λ1

bλ2n

(
∂2b

∂θ∂γ

)
Û 2u + b(1)λ

2
1

λ2n
Û 2u + Op

(
1

n
√
n

)}

=:bn(θ, γ )[exp{Q}]eb(1)u exp

{
Û

b
√

λ2n

(
∂2b

∂θ∂γ

)
u + b(2)

2n
u2 + Û 2

2bλ2n

(
∂3b

∂θ2∂γ

)
u

− λ1b(1)Û√
λ2n

u − b(1)(λ2 − λ2
1)Û

2

2λ2n
u − λ1

bλ2n

(
∂2b

∂θ∂γ

)
Û 2u + Op

(
1

n
√
n

) }
,

(6.35)

where Q is independent of u. From (6.23) and (6.35), we have

π
(
γ + u

n

) /
bn

(
θ + Û√

λ2n
, γ + u

n

)

= b−n(θ, γ )[exp{−Q}]π(γ )e−b(1)u

[
1 − Û

b
√

λ2n

(
∂2b

∂θ∂γ

)
u + λ1b(1)√

λ2n
Ûu − b(2)

2n
u2
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+ b(1)(λ2 − λ2
1)

2λ2n
Û 2u − Û 2

2bλ2n

(
∂3b

∂θ2∂γ

)
u + λ1

bλ2n

(
∂2b

∂θ∂γ

)
Û 2u + π(1)

n
u

+ 1

2

{
1

b2

(
∂2b

∂θ∂γ

)2 1

λ2n
Û 2u2 − 2λ1b(1)Û 2

bλ2n

(
∂2b

∂θ∂γ

)
u2 + λ2

1b
2
(1)

λ2n
Û 2u2

}

+ Op

(
1

n
√
n

)]
,

hence

∫ T(1)

τn

π (γ + (u/n))

bn
(
θ + (Û/

√
λ2n), γ + (u/n)

)du

= b−n(θ, γ )[exp{−Q}]π(γ )

[
I0 + Û√

λ2n

{
λ1b(1) − 1

b

(
∂2b

∂θ∂γ

)}
I1

− b(2)

2n
I2 + b(1)(λ2 − λ21)Û

2

2λ2n
I1 − 1

λ2n

{
1

2b

(
∂3b

∂θ2∂γ

)
− λ1

b

(
∂2b

∂θ∂γ

)}
Û2 I1

+ Û2 I2
λ2n

{
1

2b2

(
∂2b

∂θ∂γ

)2

− λ1b(1)

b

(
∂2b

∂θ∂γ

)
+ 1

2
λ21b

2
(1)

}
+ π(1)

n
I1 + Op

(
1

n
√
n

) ]
,

(6.36)∫ T(1)

τn

uπ (γ + (u/n))

bn
(
θ + (Û/

√
λ2n), γ + (u/n)

)du

= b−n(θ, γ )[exp{−Q}]π(γ )

[
I1 + Û√

λ2n

{
λ1b(1) − 1

b

(
∂2b

∂θ∂γ

)}
I2

− b(2)

2n
I3 + b(1)(λ2 − λ21)Û

2

2λ2n
I2 − 1

λ2n

{
1

2b

(
∂3b

∂θ2∂γ

)
− λ1

b

(
∂2b

∂θ∂γ

)}
Û2 I2

+ Û2 I3
λ2n

{
1

2b2

(
∂2b

∂θ∂γ

)2

− λ1b(1)

b

(
∂2b

∂θ∂γ

)
+ 1

2
λ21b

2
(1)

}
+ π(1)

n
I2 + Op

(
1

n
√
n

) ]
. (6.37)

Here, the remainder terms in (6.36) and (6.37) are guaranteed to be order Op(n−3/2),
since the distribution with a density (1.7) belongs to a oTEFPo with a normalizing
factor b(θ, γ ) based on a(·) and u(·) which are functions of class C3. Substituting
(6.36) and (6.37) into (6.34), we have

n(γ̂B,θ̂ML
− γ )

= I1
I0

+ Û√
λ2n

{
λ1b(1) − 1

b

(
∂2b

∂θ∂γ

)} {
I2
I0

−
(
I1
I0

)2
}

− 1

2n
b(2)

(
I3
I0

− I1 I2
I 20

)

+ b(1)(λ2 − λ2
1)

2λ2n
Û 2

{
I2
I0

−
(
I1
I0

)2
}

− Û 2

λ2n

{
1

2b

(
∂3b

∂θ2∂γ

)
− λ1

b

(
∂2b

∂θ∂γ

)}

http://dx.doi.org/10.1007/978-981-10-5296-5_1
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·
{
I2
I0

−
(
I1
I0

)2 }
+ Û 2

λ2n

{
1

2b2

(
∂2b

∂θ∂γ

)2

− λ1b(1)

b

(
∂2b

∂θ∂γ

)
+ 1

2
λ2
1b

2
(1)

}

·
(
I3
I0

− I1 I2
I 20

)
+ π(1)

n

{
I2
I0

−
(
I1
I0

)2
}

+ Û 2

λ2n

{
λ1b(1) − 1

b

(
∂2b

∂θ∂γ

)}2 (
I1
I0

)3

− Û 2

λ2n

{
λ1b(1) − 1

b

(
∂2b

∂θ∂γ

)}2
I1 I2
I 20

+ Op

(
1

n
√
n

)
. (6.38)

From (6.29)–(6.31) and (6.38), we obtain

n(γ̂B,θ̂ML
− γ )

= T(1) + 1

b(1)
+ 1

b2(1)
√

λ2n

{
λ1b(1) − 1

b

(
∂2b

∂θ∂γ

)}
Û − b(2)

b2(1)n

(
T(1) + 2

b(1)

)

+ (λ2 − λ2
1)

2b(1)λ2n
Û 2 − 1

b2(1)λ2n

{
1

2b

(
∂3b

∂θ2∂γ

)
− λ1

b

(
∂2b

∂θ∂γ

)}
Û 2

+ 1

b3(1)λ2n

{
λ1b(1) − 1

b

(
∂2b

∂θ∂γ

)}2

Û 2 + π(1)

b2(1)n
+ Op

(
1

n
√
n

)
. (6.39)

Here, we have from (1.6), (2.1), and (6.3)

∂2b

∂θ∂γ
= u(γ )bb(1),

∂2b

∂θ2
= b(λ2 + λ2

1), (6.40)

which imply

1

b

∂3b

∂θ2∂γ
= ∂λ2

∂γ
+ 2λ1u(γ )b(1) + b(1)(λ2 − λ2

1). (6.41)

Substituting (6.40) and (6.41) into (6.39), we have from (6.5)

TB,θ̂ML
= n(γ̂B,θ̂ML

− γ )

= T(1) − 1

k
+ ξ

k
√

λ2n
Û − b(2)

k2n

(
T(1) − 2

k

)
− ξ2

kλ2n
Û2 − 1

2k2λ2n

(
∂λ2

∂γ

)
Û2

+ π(1)

k2n
+ Op

(
1

n
√
n

)
, (6.42)

where ξ = u(γ ) − λ1. Since

ξ = ∂

∂θ
log k = 1

k

(
∂k

∂θ

)
,

http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_2
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it follows from (6.5) and (6.42) that

TB,θ̂ML
= T(1) − 1

k
+ 1

k2
√

λ2n

(
∂k

∂θ

){
Û + 1√

λ2n

(
1

k

(
∂λ1

∂γ

)
+ λ3

2λ2

)}

+ 1

kn

(
∂

∂γ
log k

)
T(1) + 1

2k2λ2n

{
∂2k

∂θ2
− 2

k

(
∂k

∂θ

)2
}

(Û 2 − 1)

+ B

kn
+ Op

(
1

n
√
n

)
, (6.43)

where

B = − 1

kλ2

(
∂k

∂θ

) {
1

k

(
∂λ1

∂γ

)
+ λ3

2λ2

}
+ 1

2kλ2

{
∂2k

∂θ2
− 2

k

(
∂k

∂θ

)2
}

− 2

k

(
∂

∂γ
log k

)
+ π(1)

k
. (6.44)

Since, by (6.5) and ∂λ1/∂γ = ∂b(1)/∂θ = −(∂k/∂θ), it follows from (6.44) that

B = − 1

2λ2

{
λ3

kλ2

(
∂k

∂θ

)
− 1

k

(
∂2k

∂θ2

)}
− 1

k

{
2

(
∂

∂γ
log k

)
− π(1)

}
,

which, together with (6.43), yields (6.11). From (6.11) and Theorem 4.4.1, we have

TB,θ̂ML
= T ∗∗

(1) + B

kn
+ Op

(
1

n
√
n

)
,

hence, by (4.13) and (4.14), we obtain (6.12) and (6.13). Thus, we complete the
proof.
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