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Preface

In the theory of statistical estimation, the asymptotic properties such as the
consistency, asymptotic normality, and asymptotic efficiency have been discussed
under usual regularity conditions, and in particular, it is well known that the
maximum likelihood estimator (MLE) has such properties. But, in the non-regular
case when the regularity conditions do not necessarily hold, it is seen that the
property of estimator depends on the irregularity. In the book, we treat truncated
exponential families of distributions as a typical situation when both of the regular
and non-regular structures exist and clarify how they affect the estimation of a
natural parameter and truncation parameters. Such families include a
(upper-truncated) Pareto distribution which is widely used in various fields such as
finance, physics, hydrology, astronomy, and other disciplines. For a one-sided
truncated exponential family (oTEF) with a natural parameter and a truncation
parameter, we consider the estimation of a natural parameter with a truncation
parameter as nuisance one. Then, the MLE of a natural parameter when a trunca-
tion parameter is known and the MLE of a natural parameter when a truncation
parameter is unknown have been seen to have the same asymptotic normality.
However, in the book it is shown that the asymptotic difference between them
appears in the second order after a bias-adjustment, and it is defined as the notion of
second-order asymptotic loss through the second-order asymptotic variances
obtained from their stochastic expansions. The regular and non-regular structures
of the oTEF are reflected in the second-order asymptotic variance of the latter MLE,
which effects the loss. The corresponding results to the case of a oTEF are obtained
in that of a two-sided truncated exponential family (tTEF) of distributions with a
natural parameter and truncation parameters. We also conversely consider the
estimation of a truncation parameter with a natural parameter as nuisance one for a
oTEF using a bias-adjustment. The bias-adjusted MLE of a truncation parameter
when a natural parameter is known and the bias-adjusted MLE of a truncation
parameter when a natural parameter is unknown are constructed, and their
asymptotic difference is clarified in a similar way to the case of the estimation of a
natural parameter. The corresponding results to the case of a oTEF are obtained in
the case of a tTEF. From the Bayesian viewpoint, such estimation is also discussed.
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Further several examples including a truncated exponential, a truncated normal, a
(upper-truncated) Pareto, a truncated beta, and a truncated Erlang (type) distribu-
tions are given. In some examples, related results to the uniformly minimum
variance unbiased estimation are also described.

Tsukuba, Japan Masafumi Akahira
April 2017
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Chapter 1
Asymptotic Estimation for Truncated
Exponential Families

Multiparameter models are considered, truncated exponential families of distrib-
utions are defined, and basic notions to compare asymptotically models through
estimators are introduced.

1.1 Models with Nuisance Parameters and Their
Differences

In parametric models with nuisance parameters, the asymptotic estimation of the
parameter of interest was discussed in the regular case (i.e., under the case when
the suitable regularity conditions hold) (see, e.g., Barndorff-Nielsen and Cox 1994;
Lehmann 1999). The asymptotic theory in regular parametric models with nuisance
parameters was discussed by Barndorff-Nielsen and Cox (1994). In higher order
asymptotics, under suitable regularity conditions, the concept of asymptotic defi-
ciency discussed by Hodges and Lehmann (1970) is useful in comparing asymptoti-
cally efficient estimators in the presence of nuisance parameters. Indeed, the asymp-
totic deficiencies of some asymptotically efficient estimators relative to the maximum
likelihood estimator (MLE) based on the pooled sample were obtained in the presence
of nuisance parameters (see, e.g., Akahira and Takeuchi 1982 and Akahira 1986). In
the discussion, the notion of orthogonality took an important role (see also Cox and
Reid 1987). In order to discriminate asymptotically efficient estimators, the concept
of asymptotic deficiency was used as follows. For two estimators 6" and  of a
parameter 6 based on a sample of size n, let d,, be an additional size of sample needed
such that §? is asymptotically equivalent to 6" in some sense. If lim,,_, . d,, exists,
it is called the asymptotic deficiency of §? relative to 6", which is useful in com-
paring asymptotically efficient estimators up to the higher order and investigated by
Akahira (1981, 1986, 1992) from the viewpoint of the equivalence of the asymptotic
distributions of estimators up to the higher order, under suitable regularity conditions.

© The Author(s) 2017 1
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2 1 Asymptotic Estimation for Truncated Exponential Families

For example, the asymptotic deficiency is shown to be closely related to the difference
between the second-order asymptotic variances of estimators.

In the monograph, we consider a parametric model in which regular and non-
regular structures are mixed. Let X |, X, ..., X,, ... beasequence of independently
and identically distributed (i.i.d.) random variables with a density f(x; 6), where x €
R, 6 = (6, ..., 6) is a vector-valued parameter in R*. Now, let #; be a parameter
to be interested and ¢ := (65, ..., 6) is a vector-valued nuisance parameter in
R*~!. Here, 6; and ¥ are considered as parameters representing the regular and non-
regular structures, respectively. Then, we consider two models. When ¢ is known,
ie., 0 = 9y := (6, ..., 0k), we denote the model by My := M (6;; ). When
¥ is unknown, we denote the model by M := M (6;; ¥). So, we consider such an
appropriate way to estimate 6; as a maximum likelihood method, under the models
M, and M, and denote it by élO and él 1, respectively. Note that éll depends on the
estimator of ¥. Suppose that the maximum order of consistency of 610 and 6y is Jn
and, foreachi = 2, ..., k, that of the estimator é,- of 6; is n (see Akahira 1975, 1995,
Akahira and Takeuchi 1981, 1995). Let Tyg := /n(910—6;) and Ty; := /n(6;; —6,).
Suppose that the asymptotic means and variances of T}o under M, and T7; under M
have expansions of the following type:

_ b6, Do) 1
Eg,.5,(T10) = T +0 (_nﬁ) , (1.1)
Eopo(Ti) = 21O (L) (12)
" Jn nyn)’ )
0.9, 1
Vo,.9,(Tho) = v(01, Do) + W + O (m) , (1.3)
Voo (T11) = v(6r, 9) 4 SO +0( : ) (1.4)
1, 9 n nﬁ o

respectively. Here and henceforth, the asymptotic mean and asymptotic variance are
based on the definition of asymptotic expectation (see Akahira and Takeuchi 1987).
Suppose that b19(01, %) = b1p(61, 64, ...,6;) and b11(01, %) = b11(61, 64, ..., 6k)
are twice continuously differentiable in (6y, 6,, ..., 6;). Let él*l be a bias-adjusted
estimator of 6; such that

~ ~ 1 N ~ N ~
0f, =611 — - {b11(911,l9) —b10(91|,l9)},

where & = (6, ..., 6;). Putting T/ = \/n(0?, — 6,), we have from (1.1), (1.2), and
(1.4)
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b10(01, ? 1
Eg »(T})) = % + 0 (m) ,

* CTI(ehﬂ) 1
V91,0(T11)=V(91,19)+T+0 nﬁ ,

hence, it follows from (1.2) that the asymptotic bias of T} is equal to that of T} in
order n=/2, where

1101, ) = c11 (61, 9) — 2v(61, $){(3/3601)b11 (01, 9) — (3/301)b19(01, D)}
Then, the second-order asymptotic loss of él*l relative to 6y is defined by

A¥ A n *
d, (61, 010) 1=m {Vor0,(T7}) = Vio,0,(T10) }

_ 11 (61, %) — c10(01, Vo)
v(61, Do)

+o(1) (1.5)

as n — 0o, which is derived from (1.3) and also corresponds to the asymptotic
deficiency. The ratio of the asymptotic variance of 7} to that of 77 up to the order
o(1/n) is given by

R, (6, 010) :=

Voo (11 _ n i ®1. %) — co®1. %) (1) (1.6)

Vo, 0(Tio) nv (0, 9o) n

as n — oo. It is easily seen from (1.5) and (1.6) that

N 1o 1
Rn(911’910)=1+;dn(91159]0)+0 -

asn — o0.

Here, we consider the models M (6, ¥y) and M (6;, ¥) and their asymptotic mod-
elsM (élo, ¥o) and M (él*l, ¥). The asymptotic model M (élo, ¥y) is directly obtained
from the model M (6}, ¥y), but the asymptotic model M (él*l, ¥y) is given via the

*

asymptotic model M (é] - ) of M(6;, ). Then, the difference between the asymp-
totic models M(élo, %) and M(@Aﬁ, D) is represented by (1.5) and (1.6) up to the
second order, through the estimator (see Fig. 1.1, Chaps.2 and 3).

In a similar way to the above, we can conversely consider 6, in ¥ as a parameter
to be interested and the others in ¥ and 0; as nuisance parameters (see Chaps.4-0).


http://dx.doi.org/10.1007/978-981-10-5296-5_2
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Fig. 1.1 Difference between asymptotic models M (éloy %9) and M (él*l , o)

1.2 One-Sided Truncated Exponential Family

In a similar way to Bar-Lev (1984), we consider a distribution Py ,,, having density

Ou(x)

a(x)e forc <y <x <d,

fx;0,y)= [ b@.y) (1.7)

0 otherwise

with respect to the Lebesgue measure, where —oco < ¢ < d < o0, a(-) is a
nonnegative-valued and continuous almost surely, and u(-) is absolutely continu-
ous with du(x)/dx # 0 over the interval (y, d). Let

d
Oy) = [9 )0 < b, y) ::/ a(x)e?Wdx < oo] (1.8)
Y

for y € (c,d). Then, it is shown that for any y;,y» € (c,d) with y; < y»,
O(y1) C O(y,). Assume that for any y € (c,d), ® = O(y) is a non-empty
open interval. A family &, := {Py, | 6 € ©,y € (c,d)} of distributions Py,
with a natural parameter 6 and a truncation parameter y is called a one-sided trun-
cated exponential family (oTEF) of distributions; to be precise, &7, may be called a
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lower-truncated exponential family of distributions. Suppose that a random variable
X is distributed according to Py ,, in &,. For example, a lower-truncated exponential,
a lower-truncated normal and Pareto distributions belong to the oTEF. If y is known,
then &, is a regular exponential family of distributions. Letting Y = —X, we easily
see that Y constitutes an upper-truncated exponential family of distributions.

For a oTEF £, with the density (1.7), the vector (6, 6,) and ¥ in Sect. 1.1 are
regarded as (0, y) and y. The maximum likelihood estimation of 6 is discussed when
y is a nuisance parameter in Chap. 2, and the estimation of a truncation parameter y
is also done when 6 is a nuisance parameter in Chaps. 4 and 6.

1.3 Two-Sided Truncated Exponential Family

In a similar way to the previous section, we consider a distribution Py, ,, having
density

ab(xe)eg“(;) forc<y<x<v<d
(x:0,y,v) =4 2Ery T ’ (1.9)
! v 0 otherwise

with respect to the Lebesgue measure, where —oco < ¢ < d < oo, a(-) is a
nonnegative-valued and continuous almost surely, and u(-) is absolutely continu-
ous with du(x)/dx # 0 over the interval (y, v) for y, v € (¢,d) and y < v. Let

Oy, v) = He ’o <b@,y,v) = /ua(x)eg”(x)dx < oo] (1.10)
Y

fory,v € (c,d)and y < v. Assumethatfory, v € (c,d) withy <v,® = O(y,v)
is anon-empty openinterval. A family &, :={Py ., |0 € O, y,v € (¢, d), y < v}
of distributions Py, , with a natural parameter ¢ and truncation parameters y, v is
called a two-sided truncated exponential family (tTEF) of distributions. Here, y and
v are said to be lower and upper truncation parameters. If y and v are known, then &,
is a regular exponential family of distributions. For example, a two-sided truncated
exponential, a two-sided truncated normal and an upper-truncated Pareto distribu-
tions belong to the tTEF. The maximum likelihood estimation of 6§ is discussed when
y and v are nuisance parameters in Chap. 3, and the estimation of a truncation para-
meters is also done when 6 and another truncation parameter are nuisance parameters
in Chap. 5.


http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_6
http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_5
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Chapter 2
Maximum Likelihood Estimation
of a Natural Parameter for a One-Sided TEF

For a one-sided truncated exponential family (0TEF) of distributions with a natural
parameter 6 and a truncation parameter y as a nuisance parameter, the maximum
likelihood estimators (MLEs) ényu and 6y, of 0 for known y and unknown y and the
maximum conditional likelihood estimator (MCLE) fyc;. of 6 are asymptotically
compared up to the second order.

2.1 Introduction

In the presence of nuisance parameters, the asymptotic loss of the maximum like-
lihood estimator of an interest parameter was discussed by Akahira and Takeuchi
(1982) and Akahira (1986) under suitable regularity conditions from the viewpoint
of higher order asymptotics. On the other hand, in statistical estimation in multipara-
meter cases, the conditional likelihood method is well known as a way of eliminating
nuisance parameters (see, e.g., Basu 1997). The consistency, asymptotic normality,
and asymptotic efficiency of the MCLE were discussed by Andersen (1970), Huque
and Katti (1976), Bar-Lev and Reiser (1983), Bar-Lev (1984), Liang (1984), and
others. Further, in higher order asymptotics, asymptotic properties of the MCLE of
an interest parameter in the presence of nuisance parameters were also discussed by
Cox and Reid (1987) and Ferguson (1992) in the regular case. However, in the non-
regular case when the regularity conditions do not necessarily hold, the asymptotic
comparison of asymptotically efficient estimators has not been discussed enough in
the presence of nuisance parameters in higher order asymptotics yet.

For a truncated exponential family of distributions which is regarded as a typical
non-regular case, we consider a problem of estimating a natural parameter 6 in the
presence of a truncation parameter y as a nuisance parameter. Let GAA];L and Gy, be

© The Author(s) 2017 7
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8 2 Maximum Likelihood Estimation of a Natural Parameter for a One-Sided TEF

the MLEs of 6 based on a sample of size n when y is known and y is unknown,
respectively. Let 6cr be the MCLE of 6. Then, it was shown by Bar-Lev (1984) that
the MLEs éA]fIL ,éML and the MCLE éMCL have the same asymptotic normal distribution,
hence they are shown to be asymptotically equivalent in the sense of having the same
asymptotic variance. A similar result can be derived from the stochastic expansions
of the MLEs 6}, and 6y, in Akahira and Ohyauchi (2012). But, 6}, for known y
may be asymptotically better than 6y, for unknown y in the higher order, because
éﬂylL has the full information on y . Otherwise, the existence of a truncation parameter
y as a nuisance parameter is meaningless. So, it is a quite interesting problem to
compare asymptotically them up to the higher order.

In this chapter, following mostly the paper by Akahira (2016), we compare them
up to the second order, i.e., the order of n=L, in the asymptotic variance. We show
that a bias-adjusted MLE éML* and éMCL are second order asymptotically equivalent,
but they are asymptotically worse than éﬁyﬂ in the second order. We thus calculate
the second-order asymptotic losses on the asymptotic variance among them. Several
examples are also given.

2.2 Preliminaries

Suppose that X;, X5, ..., X,, ... is a sequence of independent and identically dis-
tributed (i.i.d.) random variables according to Py ,, in a oTEF &, with the density
(1.7). In Bar-Lev (1984), the asymptotic behavior of the MLE éML and MCLE éMCL
of a parameter 6 in the presence of y as a nuisance parameter was compared and
also done with that of the MLE GAAZL of 8 when y was known. As the result, it was
shown there that, for a sample of size n(> 2), the éML and éMCL of 6 existed with
probability 1 and were given as the unique roots of the appropriate maximum likeli-
hood equations. These two estimators were also shown to be strongly consistent for
6 with the limiting distribution which coincides with that of the MLE 67, of 6 when
y was known. Denote a random vector (Xj, ..., X,) by X and let X(;) < -+ < X,
be the corresponding order statistics of a random vector X. Then, the density (1.7)
is considered to belong to a regular exponential family of distributions with a nat-
ural parameter 6 for any fixed y, hence log b(6, y) is strictly convex and infinitely
differentiable in 6 € ® and
j

0
Aj(0,y) = o5 logh(0, y) 2.1)

is the j th cumulant corresponding to (1.7) forj = 1,2, ....


http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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In the subsequent sections, we obtain the stochastic expansions of é{l , éML, and
Oyt up to the second order, i.e., 0,(n~"). We get their second-order asymptotic
variances and derive the second-order asymptotic losses on the asymptotic variance
among them. The proofs of theorems are located in Appendixes Al and A2.

2.3 MLE éA’;L of a Natural Parameter § When a Truncation
Parameter y is Known

For given x = (x,...,x,) satisfying y < xg) = minj<i<,x; and xqy =
max;<;<, X; < d, the likelihood function of 6 is given by

LY(0;x) = b”(@l ) [Ha(xi)] exp[@ Zu(x,-)} .

i=1 i=1

Then, the likelihood equation is
1 n
~ D ulXi) =210, y) = 0. 22)
i=1

Since there exists a unique solution of Eq. (2.2) with respect to 8, we denote it by GAA’}L
which is the MLE of 0 (see, e.g., Barndorff-Nielsen (1978) and Bar-Lev (1984)). Let
A =Ai0,y) (i =2,3,4) and put

7 = ﬁ;{u(xi)—m, Uy = aan (6, — 0).

Then, we have the following.

Theorem 2.3.1 For the oTEF &, of distributions with densities of the form (1.7)
with a natural parameter 0 and a truncation parameter y, let QA’;L be the MLE of 6
when y is known. Then, the stochastic expansion of U, is given by

U, =27 A3 zz+1 S Z2+o0 1
s T G )T T T )

and the second-order asymptotic mean and variance are given by
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EU)=——22 4o
0= SR

)0l

V@(Uy)zl—i- (W_P)—i_o
Since U, = Z; + 0p(1), it is seen that U,, is asymptotically normal with mean O
and variance 1, which coincides with the result of Bar-Lev (1984).

respectively.

2.4 Bias-Adjusted MLE OAML* of & When p is Unknown

For givenx = (xy, ..., x,) satisfying y < x(;) and x(»,) < d, the likelihood function
of 8 and y is given by

L@, y;x) = bn(9 2 [Ha(x, ]eprGZu(x, ] (2.3)

i=1

Let GML and ;. be the MLE:s of 8 and y, respectively. From (2. 3) it is seen that
Pur = Xy and L(OML,X(l),X) = Supyp L(0, X1); X), hence GML satisfies the
likelihood equation

n

1 A
0=1 D 1X) = ki Ouz. Xav). (2.4)

i=1

where X = (X, ---,X,). Let A, = A,(0, y) and put U = «/)\zn(GAML — 0) and
Ty := n(X(1y — y). Then, we have the following.

Theorem 2.4.1 For the oTEF &, of distributions with densities of the form (1.7)
with a natural parameter 0 and a truncation parameter y, let Oy be the MLE of 0
when y is unknown, and QAML* be a bias-adjusted MLE such that éML has the same
asymptotic bias as that of éjf, , e,

~ ~ 1 3);] A
b = by + SO xe)p @9
k@, X(l)))\2(9ML, Xuyn

where k(9 y) = a(y)eeu(y)/b(e y). Then, the stochastic expansion of U* =
«/)LG(GML* — 0) is given by

=Yt eTon khan k\ao ay )| TP\ )


http://dx.doi.org/10.1007/978-981-10-5296-5_1
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where k = k(6, y),
8)»1 aro
)»2 By dy
~ Moo, 1 axl) b) L (2 M.
U=z — 77— T+ —ZiToy +— (2 - 22 ) Z
: 2?»;/2\/51 Azn(ay EPPYEE T VERETE) A

+0,(7):

and the second-order asymptotic mean and variance are given by

. A3 1
Eyy(U") = — +0( )
0,y 2A3/2\/ﬁ nﬁ

Vo (0% =14~ (Si—ﬁ) —{()—/\}2+0( 1)
0.y - 2)\3 )\% )\2 uly 1 \/ﬁ P

respectively.

Since U = U* =Z, + 0,(1), it is seen that U and U* are asymptotically normal
with mean 0 and variance 1 in the first order, which coincides with the result of Bar-
Lev (1984). But, it is noted from Theorems 2.3.1, and 2.4.1 that there is a difference
between V,(U,) and Vg,y(l} *) in the second order, i.e., the order n~!, which is
discussed in Sect.2.6. It is also remarked that the asymptotic distribution of Ty is
exponential in the first order and given up to the second order (see Lemma?2.9.1 in
later Appendix Al).

2.5 MCLE ¢y of 8 When y is Unknown

First, it is seen from (1.7) that there exists a random permutation, say Y5, - - - , ¥}, of
the (n — 1)! permutations of (X, ..., X¢y) such that conditionally on X}y = x(),
Y,, ..., Y, are ii.d. random variables according to a distribution with density
a(y)eg"(y)
gy;0,x1) = ———— forxg <y<d
1 b, x(l)) (1)

with respect to the Lebesgue measure (see Quesenberry (1975) and Bar-Lev (1984)).
For given X(;y = x(1), the conditional likelihood function of 8 fory = (y2, ..., y»)
satisfying x() <y, <d (i=2,...,n)is

L®:ylxa) = o= 1(9 [Ha(yz ]CXP[9 > uly) ]


http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Then, the likelihood equation is

n

ZMO’i) — 1100, x1)) = 0. (2.6)

i=2

n—1

Since there exists a unique solution on 6 of (2.6), we denote it by the MCLE éMCL,
i.e., the value of 6 for which L(6;y|x()) attains supremum. Let A; := A;(, x(1))
(i=1,2,3,4) and put

7= ;i{u(ﬁ) —5»1}, Uy == \/E(éMCL —9)-

Vio(n—1) i=2

Then, we have the following.

Theorem 2.5.1 Fora oTEF 2, of distributions with densities of the form (1.7) with
a natural parameter 6 and a truncation parameter y, let Oyc be the MCLE of 6
when y is unknown. Then, the stochastic expansion of Uy is given by

by = 5,2 22+1[1 1(ax2)T ]Z
0=21——=r = — N4
233 m " 2 oy )
122 i \as 1
+—\=-——=1Z+0,{—),
2n ( 2oz ) P \nyn
and the second-order asymptotic mean and variance are given by

~ A3 1
Es. (U):— ‘ +0( )
0,y 0 2A3/2f nﬁ

50 1 5
Vay(Uo)—1+ (2A*_A_§)+E{”(y)_m +0(

1
Remark 2.5.1 From Theorems 2.4}.1, and 2.5.1, it is seen Ihat the secgnd—order
asymptotic mean and variance of U, are the same as those of U* = /A,n(Oy- —6).

It is noted that éMCL has an advantage over éML in the sense of no need of the bias-
adjustment.

Remark 2.5.2 As is seen from Theorems?2.3.1, 2.4.1, and 2.5.1, the first terms of
order 1/n in V4(U,), Vg.y(l}*), and Vg,y((jo) result from the regular part of the
density (1.7), which coincides with the fact that the distribution with (1.7) is consid-
ered to belong to a regular exponential family of distributions when y is known. The
second terms of order 1/n in ngy(lj *) and ngy(ﬁo) follow from the non-regular


http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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(i.e., truncation) part of (1.7) when y is unknown, which means a ratio of the variance
Ay = Vg, (u(X)) = Ey ,, [{u(X) — X1}%] to the distance {uly) — X1}? from the mean
A of u(X) to u(x) atx = y.

2.6 Second-Order Asymptotic Comparison Among éAZL,
Omr=, and OycL

From the results in the previous sections, we can asymptotically compare the estima-
tors G;IL, Omrx, and By using their second-order asymptotic variances as follows.

Theorem 2.6.1 Fora oTEF &, of distributions with densities of the form (1.7) with
a natural parameter 6 and a truncation parameter y, let QML, QML* and QMCL be the
MLE of @ when y is known, the bias-adjusted MLE of 6 when y is unknown and the
MCLE of 6 when y is unknown, respectively. Then, the bias-adjusted MLE é;u and

the MCLE 6y, are second order asymptotically equivalent in the sense that
Oz Buce) = n Vo, (0% = Vi, (@)} = o(1) @7

as n — oo and they are second order asymptotically worse than éAZL with the
following second-order asymptotic losses of Oyr-and Oycy, relative to 0y, :

A A
B8 = Vo, 0~ Vi) = PO oy )
do@uct, 6) 1= n{Va,, (o) = Vo) | = M +o()  29)

as n — oo, respectively.
The proof is straightforward from Theorems2.3.1, 2.4.1, and 2.5.1.

Ren}ark 2.6.1 Ttis seen from (1.6) and (2.8) that the ratio of the asymptotic variance
of U* to that of U,, is given by

A N {u(y) — 1) 1
Rn(QML*,GA):[L)Z 1+)~2—”l+0 R
and similarly from (1.6) and (2.9)

n A u(y) — a2 1
Rn(QMCL, GA]:IL) =1+ % +o (;) .
2

From the consideration of models in Sect. 1.1 usmg (1.5),(1.6), and (2 8) we see that
the difference between the asymptotic models M (Omr y) and M (QM , ¥) 1s given


http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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by dyOpr, 0),) or Ry @z, 01, up to the second order, through the MLE of 6. In
a similar way to the above, the difference between M (éMCL, y) and M (é,}:,CL, y) is
given by d,,(Oycr, 0),) or Ry(Bycr, 61;;) up to the second order.

2.7 Examples

Examples on the second-order asymptotic losses of the estimators are given for a
lower-truncated exponential, a lower-truncated normal, and Pareto, a lower-truncated
beta and a lower-truncated Erlang type distributions.

Example 2.7.1 (Lower-truncated exponential distribution) Letc = —00,d = oo,
a(x) = 1, and u(x) = —x for —co < y < x < oo in the density (1.7). Since
b@,y) =e /6 for € ® = (0, 00), it follows from (2.1) that

9, b, y) = !
A 0 9 = — - _’
5g logb®.y 1%

Al 7

2

0
M = Wlogb(@, y) = k@,y)=26.

0_2 )
From (2.2) and (2.4)—(2.6), we have

0, =1/ X —p), G =1/(X —Xq)),

~ ~ 14 ~ 1
Omrs = Our — —Our, Oucr = 1/(
n n

n
7 me —X<1))~
i=2

Note that GML* = GMCL In this case, the first part in Theorem2.6.1 is trivial, since
d, (OML* GMCL) = 0. From Theorem2.6.1, we obtain the second-order asymptotic
loss

dy Oz éLL) = d,Ouce» é}\)}L) =1+0(1)

as n — o0o. Note that the loss is independent of y up to the order o(1). From
Remark2.6.1, we have the ratio

~ ~ ~ ~ 1 1
Ry (yr+, O4yp) = RuOucr, Oyp) = 1+ p +o (;) .

In this case, we have the uniformly minimum variance unbiased (UMVU) estimator

Oy = (0 = 1)/(2Xi —ny),
i=1
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where y is known (see Voinov and Nikulin 1993). Then,

QA):IL =<

hence 4], is not unbiased for any fixed n. When y is unknown, we obtain the UMVU
estimator

24
) QUMVU’

Qumvy = (n — 2)/ [Zx(z) —(n— 1)X(l)]

which is derived from the formula in the lower-truncated exponential distribution of
a general type discussed by Lwin (1975) and Voinov and Nikulin (1993). Then,

1 A
9 )
I’l—2) umMvu

hence QML* and QMCL are not unbiased for any fixed n. Note that QML* and GMCL are
asymptotically compared with OAZL after such a bias adjustment that 6y has the same
asymptotic bias given in Theorem2.3.1 as 911:11; Since A, = 1/62,

Bue = Byrcr, = (

2 92

Ve(éngy) =5 VQ,y(éUMVU) =3

we have the second-order asymptotic loss

~ A n A n o a
dy@uravur, 0y = [ve,y (%(eumu - 9)) ~Vy (%(%W - 9))]

n?

= = l + o l
(n—=2)(n—-3) W
asn — 00.
Example 2.7.2 (Lower-truncated normal distribution) Let ¢ = —o0, d = oo,
alx) = e'/2 and u(x) = x for —oo < y < x < oo in the density (1.7). Since

b, y) = 27" P @B — y)

for 8 € ® = (—o00, 00), it follows from (2.1) and Theorem 2.4.1 that

oA
MO, y) =604 p0 —y), a—y‘(e, Y) =0 —y)p@ —y)+ 0O —y),

20, )=1—0 —y)p@ —y)—p*O —y), k@, y)=p@-y),
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Table 2.1 Values of dy, (9z+, 83y, and Ry (Gyrs, 0)y;) fort =6 —y =2,4,6

T dn(éML*? éA}:[L) Rn(éML* AA}:[L)
4.7640 1
2 47640 + o(1) 1+ 222 4o (—)
n
9. 1486 1
4 9.1486 + o(1) 1+ 2 4 (—)
n
16. 0096 1
6 16.0096 + o(1) 1+ +o ( )
n n

where p(¢) := ¢()/PD(¢) with D (x) = ffoo ¢ (t)dt and ¢ (1) = (1/\/271)e”2/2 for
—00 < t < 00. Then, it follows from (2.2), (2.4), and (2.6) that the solutions of 6 of
the following equations

0+pO—y)=X, 0+pO—Xa) =X,

1 n
0 60— X = — X
+ po( ) n—lé" ()

become OML, O, and Oycr, respectively, where X = (1/n) >, X;. From (2.5), the
bias-adjusted MLE is given by
Ovr — Xy + 0Bz, — X))

Ome = O + = = S 7 .
1 — O — X)) pOmr, — Xa1y) — P> Oz — X1y)

From Theorem2.6.1, we obtain the second-order asymptotic losses

dn(Ovmz+, Oycr) = o(1),
{0 —y+p0O—-p)

dp Oy 0y) = du@uice. Oiyy) = +o(1)
ML L MM — 0 = y)p@ — ) — P20 — )
asn — oo.
When 7 := 6 — y = 2,4,6, the value of second-order asymptotic loss

Bz, 0),) and the ratio R,(Oyy+, 0);,) up to the order 1/n are obtained from
(2.8) and Remark 2.6.1 (see Table2.1 and Fig.2.1).

Example 2.7.3 (Pareto distribution) Let c = 0, d = o0, a(x) = 1/x, and u(x) =
—logx for 0 < y < x < oo in the density (1.7). Then, (8, y) = 1/(©y?) for
0 € ® = (0, 00). Letting t = logx and yy = log y, we see that (1.7) becomes

0efre=0 fort > yy,

t; 0, =
s ) {O fort < yp.

Hence, the Pareto case is reduced to the truncated exponential one in Example2.7.1.
Replacing X and X;) (i = 1,...,n) by logX := (1/n) > __,logX; and log X;
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4.0

3.0 35

Rn
2.0 25

1.5

1.0

Fig. 2.1 Graph of the ratio R, Byrr, éA’;L) up to the order 1/nfort =0 —y =2,4,6

(i =1,...,n), respectively, in Example2.7.1, we have the same results including
the UMVU estimation as those in Example2.7.1. For Pareto distributions, see also
Arnold (2015).

Example 2.7.4 (Lower-truncated beta distribution) Letc = 0,d = 1, a(x) = x~!
and u(x) = logxfor0 < y < x < linthedensity (1.7).Since b(8, y) = 6~ (1—y?)
for8 € ® = (0, 00), it follows from (2.1) and Theorem 2.4.1 that

1 (ogy)y? o y?! 0
20, = - — (9, =——(1— 01 s
10, y)=—3 e By( Y) (1—)/9)2( v’ +6logy)
1 (logy)*y? 6y?!
M@, y) = — ——=" 1 k@, y) = ——.
2(0,v) FERNTEOe ©.y) T

Then, it follows from (2.2), (2.4), and (2.6) that the solution of 8 of the following
equations

| — 1 9
_ZlogXl_i___i_%:O’
n = 0 1—vy

1 — 1 (IOgX(l))X(g])
25 log X+ - + 2t
7 ; ety T — X7,

1

10 X,+—+
n—lg gdo Ty 1—x;,

1 (IOgX(l))X(al) —0
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Table 2.2 Values of d,(yz+, O3y;) and Ry (Ouz+, O3y, ) for 6 = 2 and y = 1/2,1/3,1/5

Y dn (éML* ) éA}:[L) Rn (éML* ) éA}:[L)
4.9346 1
1/2 4.9346 + o(1) 1+ ——+4of-
n n
6.7471 1
1/3 6.7471 + o(1) 1+ +of-=
n n
10.0611 1
1/5 10.0611 + o(1) 1+ +o(7)
n n

becomes éﬁ};L, éML, and éMCL, respectively. From (2.5), the bias-adjusted MLE of
is given by

. (1= XDy (1 - ff;L+eMLlogxm)

Ov = O —
ML ML 1 — 9ML 2 92 O log X 11)2
nf( X ) X1y (log @)}

From Theorem 2.6.1, we obtain the second-order asymptotic losses

Oz, Oycr) = o(1),
(1—y? +6logy)?

dOpiz=, 00)) = dyOpicr, 01) = .
( ML ML) ( MCL ML) (1 — ]/0)2 — 92)/9(10g)/)2

When 6 = 2 and y = 1/2,1/3,1/5, the values of second-order asymptotic loss
d, (GML* ML) and the ratio R (GML* ML) up to the order 1/n are obtained from (2.8)
and Remark 2.6.1 (see Table2.2 and Fig.2.2).

Example 2.7.5 (Lower-truncated Erlang type distribution) Let ¢ = 0,d =
00, a(x) = |xf~'and u(x) = —|x| for —oo < y < x < oo in the density (1.7), where
j=1,2,....Note that the distribution is a lower-truncated Erlang distribution when
y > 0 and a one-sided truncated bilateral exponential distribution when j = 1. Since
foreachj=1,2,...,

S .
bi(0,y) = / Ix~te ™ ax,
Y

it follows that & = (0, co). Let j be arbitrarily fixed in {1, 2, ...} and A;(0, y) =
(07/060")log bj(0, y) (i = 1,2,...). Since db;/30 = —bj 4, it follows from (2.1)
and Theorem 2.4.1 that
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4.0

Rn
25 3.0
L

2.0

1.5

1.0

Fig. 2.2 Graph of the ratio R, (Oyz+, éﬁyﬂ) up to the order 1/n for6 =2 andy =1/2,1/3,1/5

210, y) = _2y)
b0, v)
i=1e=07 [ biy1(6,y)
ﬂ(e ) = B0 {ZW +V} fory >0,
)= iy [ ©0.)
dy (—1V s { e +y} fory <0,
bi42(6, b1, y))?
A0, y) = 206, y) _I 41 ( )’)] ’
b0, y) b0, y)
ra(. ) = 3@ V) | 3616 Vb6, ) _z[b,-+1(9,y)]3
o bj(6,v) b; (0, y) b, y) |’
[y P—le 0¥l
ki@,y) = ———
bi(0,v)

Then, it follows from (2.2), (2.4), and (2.6) that the solutions of 6 of the equations

o bi0,y) _ % bj1 Ours X1y) _0
b6, y) ’ bi(Omr, X1y)
| bj+1(0,X
3 x i+10. Xa)

n—14 O b0, Xa)
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becomes HAA};L, éML, and éMCL, respectively, where X = (1/m) Zle X;.From (2.5), we
have the bias-adjusted MLE éML* of 6. From Theorem2.6.1, we obtain the second-
order asymptotic losses

Oy, Oucr) = o(1),

A oy 5 gy bii\* /b2 (b))
dnOprr, Oyy) = dnOmcer, Oyyr) = v — b_ b_ - b_ ,
j j j

where b; = b;(0, y). In particular, we consider the case when y > 0 and j = 2.
Since

1 1 1 2 2
by = *(7/-1-7)879}’, by = 5()/2-&-%4-97)679)',

1 32 6y 6\ _ 1 4y3 1292 24y 24\ _
ba = — 3 r e e 0}/7 bs = — 4 T _r = 0}/’
49()/4- + 5+ o3 )e s=o\V' ot s e

we obtain Ay, Ay, and Ay3. From (2.2), (2.4), and (2.6), we have

—1
Oy, =4 [)'(—2;/ +4rX —y) +5(2] :

—1
Oy =4 [X — 2X(1) + \/4X(1)(X — X(l)) +X2} s

-1
Omcr =4 [X —2X) + \/4X(1)(X - Xay) +X2] ,

where X = (1/(n—1)) X", X(. From (2.5), we also obtain the bias-adjusted MLE
Oy~ of 6. Further, we have the second-order asymptotic loss

Oy +2)°

Gy 122 +o(1)

d Oz, é[[);[‘) = d,(byct, é;t:;L) =
and the ratio

. o @y +2)> 1
Ry(Omr+. 03y) = RyOmce, Opy) = 1+ 2Oy +22 =2 +0 -

If y =0, then 0, = 2/X and
duOur-, 091) = dn(Oucr, Oiy) = 2+ o(1),

A A0 A A0 2 1
Ry (Omr+, Opp) = Ru(Omcr, Oyy) = 1+ - +0 -
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IAn Vancak et al. (2015), the ratio of the mean squared error (MSE) of éML to that
of 91?4L is calculated by simulation and its graph is given as a function of n when
6 = —1. Here, we can theoretically obtain the function. Indeed, letting ¥ = 0 and

Up = v/222(0, 00, — 6),

we have from (2.13) in Appendix Al later

1|11,\§3(9,0) 124(9,0)]+0( 1 )

Eg(UD) =1+~ - —
o) n | 423,60,00  32,6,0) ny/n

hence the MSE of é,om is given by

MSEy(65;) = Eol (65, — 6)*1 = Ep(U)

1
)\22(9,0)}’1
B 1 1 11x§3(9,0)_xz4(9,0)] (L)}

T (6, 0)n [1+n[4,\32(9,0) 23,(0,0) +o nyn)|

When y is unknown, letting

U =20, y) O — 0),

we have from (2.24) in Appendix A1 given later

N 2 8)\.21 1 a)‘ZI 11)‘%3
Ey(U?) =1 — - —dat o)t
0o (U7 kodoon ( ay ) [u(y) 2 k2 ( ady )] 4r3,n

3A ar 2 ar A 1
+ 223 ( 21 ) _ ( 22) _ 224 + 0 ( ) ’
kaAs,n oy kodpn \ 9y Apn l’l\/;l

where ky = ka(0,y) = a(y)e? ) /by(0, y) and Ay = Xp;(0,7) ( = 1,2,3,4).
From (2.28), and (2.29) in Appendix Al given later, we have

oA ok
T;l(& Y) =k (0, y){A21(0, y) — u(y)}, 8792(0’ y) =k (0, y){u(y) — 22106, v)}.

Since
ob
B—;w, ) = —ka(6, )b (6, ¥),

it follows that

a)\.zz 82k2

5, O v)=—750.7)=—k® y){uy) - M} +ka (6, YA, y),
y a0
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hence

. 1122 A 3A
E@qy(U2) =1+ 23 24 23

- (u(y) — A21)
4)3211 )\gzn A%zn

> (u(y) — )2—%+0(L)
Azznuy 21 p nn)

Denote the ratio of the MSE of éML at y = 0 to that of él?ﬂ by

+

Ruse Oz 00,) = [MSEg., Ouur)],—o / MSEy(85,).
Since
~ ~ 1 ~
MSEp , Our) = Eo, [(Our, — 0)*1 = ——Eq,, (U?),
)\22}’1

we have

1 {1 133,0.0)  3240.0) 3221 (6, 0)223(6, 0)
 322(6,00n 433,0,0m  13,0,0)n 22,6, 0)n

N 213,(0,0) _%+0(L)]
A0n(@,0n  n nyn ’

[MSEj., Byr)y=o

Hence, we obtain

11235(0,0)  224(6,0) | 3421(6,00223(6,0) | 223,(6,0)
433,0,0n 13,0, 0)n 13,(0, 0)n 222(8, O)n

2 YRR 112356, 0) _ Au(6,0) e
T +0(nﬁ)] [1 n[ 13,(6.0) A%Z(G,O)}+O(nﬁ)}

2
:1+}11[3x21(9,0)x23(9,0) 232,(6,0) _2]+ ( 1 )

Ruse O, Byr) ={1 +

23,(6,0) An(8,0)n nyn
Since
b3(0, 0) 2
A1 (0,0) = ——2 L =2
21(6,0) b>(6.0) 7
bs(0,0) [b3(0,0))% 2
)\- 0,0 = —_ = —,
2(0.0) b, (0, 0) [bz(Q,O)] 62
bs5(0,0 3b3(8,0)bs (0,0 b3(6,0 2 4
k23(0,0)=—5( )+ 3(2)4( )_2| 3( )] S
b,(8,0) b3(6,0) b,(8,0) 0
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it follows that

A A 8 1
Ruise Our, Oyy) = 1+ - +0 (m) ,

which is the required function of n. The ratio Rysg (HML, L) seems to be fit for the
simulation result, i.e., Fig. 3 by Vancak et al. (2015).

Example 2.7.6 (Lower-truncated lognormal distribution) Let ¢ = 0,d = oo,
a(x) = x 'exp{—(1/2)(logx)?} and u(x) = logx for 0 < y < x < oo in the
density (1.7). Then, b0, y) = @@ —logy)/¢ () for 6 € ® = (—o0, 00), where
®(x) = [*_p)dr with ¢(r) = (1/v/27)e™"/? for —00 < 1 < 0. Letting 1 =
log x and yy = log y, we see that (1.7) becomes

1

1L =072 _
f(t:0,%) = I\/queyo)e for =00 <y =t < o0,
0

otherwise.

Hence, the lower-truncated lognormal case is reduced to the truncated normal one
in Example 2.7.2.

For a truncated beta distribution and a truncated Erlang distribution, related results
to the above can be found in Vancak et al. (2015).

2.8 Concluding Remarks

In a oTEF of distributions with a two-dimensional parameter (6, y), we considered
the estimation problem of a natural parameter 6 in the presence of a truncation
parameter y as a nuisance parameter. In the paper of Bar-Lev (1984), it was shown
that the MLE @), of 6 for known y, the MLE 6, and the MCLE 6y of 6 for
unknown y were asymptotically equivalent in the sense that they had the same
asymptotic normal distribution. In this chapter, we derived the stochastic expansions
of GAA’:,L, éML, and éMCL. We also obtained the second-order asymptotic loss of the bias-
adjusted MLE Oy~ relative to é,{fm from their second-order asymptotic variances and
showed that 6y, and Oy, were second order asymptotically equivalent in the sense
that their asymptotic variances were same up to the second order, i.e., o(1/n) as
in (2.7). It seems to be natural that éﬂ)f,L is second order asymptotically better than
éML* after adjusting the bias of éML such that éML has the same as that of éj}L The
values of the second-order asymptotic losses of QAML* and éMCL given by (2.8) and
(2.9) are quite simple, which results from the truncated exponential family %, of
distributions.

The corresponding results to Theorems2.3.1, 2.4.1, 2.5.1, and 2.6.1 can be
obtained in the case of a two-sided truncated exponential family of distributions


http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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with a natural parameter 6 and two truncation parameters y and v as nuisance para-
meters, including an upper-truncated Pareto distribution which is important in appli-
cations (see Chap. 3). Further, they may be similarly extended to the case of a more
general truncated family of distributions from the truncated exponential family &7,.
In relation to Theorem?2.4.1, if two different bias-adjustments are introduced, i.e.,
éML + (1 /n)c,-(éML) (i = 1,2), then the problem whether or not the admissibility

result holds may be interesting.

2.9 Appendix A1l

The proof of Theorem 2.3.1 Let ; = A;(6, y) (i =1, 2, 3, 4). Since

Z) =

m Z WX —n}, U, :=rn@), —0),
2

by the Taylor expansion, we obtain from (2.2)

o—,/“z ‘/ ha U+ 0, :
L= 2)%” V 6A3/2 N 2
which implies that the stochastic expansion of U,, is given by
A3 S 2 S Vi G 1
U, =2 ——Z{+ —| = — Zi+0,\—=).
v ! 20 /n U on ()L% 3A2 P\ nyn
Since

Eg(Z1) =0, Vo(Z)) = Eo(Z}) = 1,

E, (Z3) = 3 E, (Z4) =34+ 4
0 ) 6 )
! )\;/2\/‘” ! A%n
it follows that
Ey(U,) 3 0( ! )
0 s
A;/zf nyn

E(U)—1+1(m”2 A“)Jro( ! )
¢ a3 A nyn)’

(2.10)

@2.11)

(2.12)

(2.13)
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hence, by (2.12) and (2.13)

vy =1+ (Z2 M) 1o
A" U Y E R E

(#) . (2.14)

From (2.10), (2.12), and (2.14), we have the conclusion of Theorem2.3.1.
Before proving Theorem2.4.1, we prepare three lemmas (the proofs are given in
Appendix A2).

Lemma 2.9.1 The second-order asymptotic density of T is given by
fT(U (t) :k(e7 y)efk(G,y)t

6 { 9 log k(6, y)] k@, y)i* =2t} k@, y)e *O" 4+ 0 (12)
n

2n | oy
(2.15)
fort > 0, where k(0, y) 1= a(y)e®* ™) /b0, y) and
Eyy Ty =+ 20 0 (L), B2y = o+ 02
G = k6. y) n n2) TR 2, y) n)’
(2.16)
where
A@©,y) 81 k@®,y)
- — 10 ) .
VT 0w,y Loy 2T

Lemma 2.9.2 It holds that

1 2 [0\ 1
Ey,(ZiT) = —— A+ — +0(\——=), 2.17
0.y 1 Tq)) PN [M(V) 1tz (ay)] (nﬁ) (2.17)
where k = k@, y) and »; = A;(0,y) (i = 1,2).

Lemma 2.9.3 It holds that

1 1
Eoy(ZiTq)) = ;o (;) , (2.18)

where k = k(6, y).
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The proof of Theorem 2.4.1 Since, for (0, y) € © x (¢, X))
A B, X))

a A a
=M. y) + [%M(G, J/)] (O — 0) + [5?»1(9, J/)] Xy =)

1 2 . 92 R
+3 [802)»1(9 Y) (QML_9)2+[898 )»1(9,)/)](9ML—9)(X(1)—V)
1 2 11 83 "
+ 1m0 Xy =)+ - {20, )| O —60)°
2 | 9y2 6 | 363
+ L i — 700, 9) 9 CRANYC 0)2(X )+ (2.19)
2 1902 1 Y oy 1o,y ‘ML o —VY , .

noting U= «/kzn(éML —0) and T(1y = n(X(1y — y), we have from (2.4) and (2.19)

Py b I A A 1 [ox
0=,/ 2Z1 V5 2 ——(—I)Tm— Shy ) ( Z)UT(I)
2Aon Ann \ Oy
1
3/2 i +0p (;),

where 4, = 4;(0,y) G = 1,2,3,4) are defined by (2.1), hence the stochastic
expansion of U is given by

U=z L (%), LB LI
T e oy )T e Y
4 1 Z +0 ! (2.20)
20\ 322 P\nyn)” '
It follows from (2.11) and (2.20) that
Ay 1 dAp A3 8 1
Ey,(U) = 7«/@(%’) Egy (Tq1)) — 72)»;/2\/%4_ o —Eyg y(ZlT(I))+O( f) (2.21)

Substituting (2.16) and (2.17) into (2.21), we obtain

E, (0)=—#[ (“‘)+A—3]+0(L) @22)
i Vian |k \ dy 22 nyn)’ ’
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where k = k(0, y) is defined in Lemma?2.9.1. We have from (2.20)

. .1 an A3 X
Ey,,(U") =Ey,(Z)) — 2 Ey o (Z1Tq1)) + E9 2 (Z))

VAan 8y
1 (or)? ) 1 A
— =) E, (T — 28t Ep ., (Z7T,
+)»2n(31’) o (1))+/\2n[/\2 (37 * oy ZiT)
1(5)\% A )E (Z4)+0( ! ) (2.23)
n\423 323 oy nyn)’ '

Substituting (2.11) and (2.16)—(2.18) into (2.23), we have
Ey (0% = 1 2 [(on () — Ap + 1 [(x N 1123

= —_ [ES— u — — P
4 on \ay ) 17~ Tk Gay 433n

L 33 (8)»1) 2 (8)»2) A4 +0( 1 ) (2.24)
kisn \ dy kxon \ 9y A3n nyn)’ ’

Since

V32 (3/3y )21 Our, X))}
k@yr, X)) 22O, X)) /n

_@0fm@y) 1 [0k A 1ok [9h 1
T kfen +kkzn[ @ )_(*Uae)(a )}UW”(E)’

it follows from (2.5) that the stochastic expansion of U* is given by

VA2(@/3Y)A1 Bz, X1)))
A 9 «—0 A 9 —0)+
= A2n(Ou ) =/ An(Oy —0) k@on. X/

. (a)\l) 1 5+1(ak)(axl z+0( 1 )
k/2an khan k\ao ) \ oy PP\ )

(2.25)

where U is given by (2.20),1; = 1;(8,y) (i=1,2,3)and k = k(0, y). From (2.11)
and (2.22), we have

o el
Ey,, (U") = 2A§/2ﬁ+0(nﬁ)' (2.26)
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It follows from (2.22), (2.24), and (2.25) that

2 (o 3 (0 1123
Eo,(U)=1-— (= A
0.y (U™) T ( J/)[u(y) 1+2k( )]+4/\%n

Ay 2 oA ok Lo 1
Mn k*aon \ oy ) \ o6 nyn)’
hence, by (2.26)

Vo (0% — 1+ 50 4 2 [or ) — A + ok
= — — — ) - — u —
by 23 32)  kan \ay J 1" T Tk e

3 (o)’ 1
(1) +o(es): e
Since, by (2.1)
1 d
M0, y) = —Qlogb(9 y) = b . y)/y a@)u(x)e”Vdx,

it follows that

I, y) a(y)e’™)
dy b@,y)

MO, y) —u()} =k@, Y){10, y) —u(y)}. (2.28)
Since

ak
8—9(973/) = k0, y){u(y) — 1106, v)} (2.29)

it is seen from (2.27)—(2.29) that

1 (53 M4 1 )
Vo, (U =1+ - ( ——)+—A {Al—u(y)}+0(
2n

2.30
203 A3 (&30)

1
From (2.25), (2.26) and (2.30), we have the conclusion of Theorem?2.4.1.
The proof of Theorem 2.5.1 Since, from (2.6)
0 : Zn:{ (Y) — 2100, x))} 1 M (0, x1))N/n (@, )
= — u(Y;) — Y - — Y n —
P 2 1 ) N 2 ) MCL

1 o
— — 300, Ovicr — 6)?
o 3(60, x))n(Oucr — 0)

1 A \ 1
- 6nﬁk4(9,x(1))n«/ﬁ(9MCL -6 +0, (n_z) ,
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letting

Z, = Z{M(Y) — 110, x0))}, U =+/3on(BycL — ),

\/Az(n— 1) i=2

where 5\,- =10, x1y) (i=1,2,3,4), we have

,/ Mg, (-
g 2A2n 61 nyn "\n2)’

hence, the stochastic expansion of U is given by

U=7 z 24tz L B Z3+0( 1) 2.31)
=4 25\;/2\/%1 M 1 n )L3 3):% 1 4 nﬁ . .

Since

"‘-2 - "‘-2 67‘<(l) - "‘-2 67 Y a 7(1) Cp 2 ’
we ()l)tai]l

= /Aan(Oucr — 6) [ ! (8)\2) 1) + Op ( ! )] , (2.32)

2 Aoy 3]/

where T(1y = n(Xq) —y) and A, = A,(6, y). Then, it follows from (2.31) and (2.32)
that

Uo = v/ 2an@Oucr — 6)

P N PR LA AP
=41 — 2)\3/2\/_ n 8}/ 1
132 s, (1)
—NZ2-= 1z +0,—). 2.33
(BB (L .

For given X1y = x(1), i.e., Ty = t := n(x(1y — ¥), the conditional expectation of Zl
and Z} are
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n

~ 1

Ey(Zi]1) = ——— Z {Eo. [u(Y)|t] — 21(0, x1))} = 0,
’ Via(n — 1) i=2 ’

- 1 "

Ep,(Z}t) = —— E Y) — 116, 2
oy @0 = T [; .y [{u(Ys) = 110, x0)111]
+ D> gy [{u(¥i) — 2100, xa) Hu(¥)) — 21(0, x1)} | t]]
ZSlii'an
=1, (2.34)

hence, the conditional variance of Z; is equal to 1, i.e., V@,y(Z [t) = 1. In a similar
way to the above, we have

xi "

Eo,(Z1) = o, Eg,(Z}|) =3+ ——. (2.35)
0,y ]| )\g/zm 0,y 1| )\,%(n—l)
Then, it follows from (2.33)—(2.35) that
Ey,(Uo|Tir) A3 +0( ! ) (2.36)
0.y (Uo =—— , .
4 @ Zkg/z\/ﬁ "\nyn
- 1 11122 X 1 [0x,
Ep, (U2 Ty =14+-+-| —=-=)-— (=)
0.y (UgT() +n+n(4k% A%) Agn(ay) (1
1
o,|——), 2.37
o) @30
where )2,- = A0, X)) (i =2,3,4). Since, fori =2,3,4
- 1 1
)"i = )"i(93 X(l)) = )"i(es V) + Op ; = )"i + Op ; ) (238)
it follows from (2.36) that
Ey., (Uy) As +0( ! ) (2.39)
, 0) — ——=>» — — ). .
"y 237 gn \adm
It is noted from (2.12), (2.26), and (2.39) that
oy (Uy) = Ey (0%) = Ey () = ——22 +0(1 )
)= B 0= )
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In a similar way to the above, we obtain from (2.16), (2.37), and (2.38)

Eay @) =14 L 115 e 1 (0 (] (2.40)
GriTes T no 43n An ki \ 9y nyn)’ '

Since, by (2.28) and (2.29)

1 3)»2 N 1[0k A k 8)Vl _ 2 2 A
§(W)_;[£( 1 —u(y)) + (W)]__( 1 —u(y))” + A,

it follows from (2.40) that

123 A
4x3n An

Ep, (U} =1+ + L{/\1 —u(y)}2+0(L),
)\.21’1

ny/n

hence, by (2.39)

- 1 /502 2
Vo, U)=14+-Z22 -
%,y (Up) +n (2)»% 2

1 ) 1

From (2.33), (2.39) and (2.41), we have the conclusion of Theorem2.5.1.

2.10 Appendix A2

The proof of Lemma 2.9.1 Since the second-order asymptotic cumulative distribu-
tion function of 7y is given by

Fro (1) =P, {Tay <t} =Py, {n(Xgy —y) <t} =1-— [

N 2 [0k, y) 1
=1—e*O |1 1222 Lol =
¢ 2n oy + n?

for t > 0, we obtain (2.15). From (2.15), we also get (2.16) by a straightforward
calculation.

b(©®,y + (t/n) ]
b®,y)

The proof of Lemma 2.9.2 As is seen from the beginning of Sect.2.5, Y5, ..., 7,
are i.i.d. random variables according to a distribution with density

a(y)ee"(y)

10, x0)) =
g(y ) b0, x)

for Xy =y< d (2.42)
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with respect to the Lebesgue measure. Then, the conditional expectation of Z; given
T(y) is obtained by

Ey, (Zi|Tq)) = IM(X(I)) + ZEG,;/[M(Yi)|T(1)] - ”)»1] , (2.43)

1
Vaan i=2
where A; = X;(8,y) (i =1,2). Since, foreachi =2, ..., n, by (2.42)

] N
Eo o, [u(Y)| Tyl = 30 logb(8, X1y) = A1(60, X1y) =: A1 (say),

it follows from (2.43) that

1 A A
Eq , (Z1|Tq)) = N [M(X(l)) + @ - 1))»1} - \1/?,
2 2

hence, from (2.16) and (2.43)

1 ~
Ey, (ZiTq)) = «/ﬁ {Ee,y[u(X(l))T(l)] +(n— 1)E9,y()»1T(1))}

1 A@©,y) 1
JE A (D)) s

where k = k(0, y). Since, by the Taylor expansion

u<X<1>>=u<y>+“iy)T<1>+ ) 1)+0( )

1
=200, X)) = 1(0,y) + - [—)»1(9 V)}

1 92
+22 )\1(9 V) ])+0p ; )

it follows from (2.16) that

2u 1
Ep [uX1y))Ty] = (]i/) + - [Au(y) + Mk(z)/)] +0 (;) , (2.45)
~ A 1 2 (oX 1
Eg (M Ty = Tl + - [ AMA+ 2 (8—1)] +0 (;) , (2.46)

where k = k0, y),A = A0, y),and .; = A;(0, y). From (2.44)—(2.46), we obtain
(2.17).
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The proof of Lemma 2.9.3 First, we have
2 1 2
Eo . (Z{|Tay) = — {u(Xa)) — i}
)»2]’1

2 n
+ Ton {uXa) = 2} ;quy [u(Y;) — 21T )]

1 n
+ o ;Ee.y [{u(¥D) — 1) 1Toy]

1
+ M—nZ#ZEe,y [{u(¥) — 1} {u¥) — 2} 1 Toy]. (247
i#j

2<i,j<n

For 2 < i < n, we have

E vy — Tl = (Y0 Lo (L) 2o (! 2.48
0,y [u(Y;) — Ayl (1)]—(5 — +0, —)— p(;), (2.48)

n

andfori #jand2 <i,j<n

Egy [{u(Yp) — 2} {u(¥)) — M} Ty] = Egy [u(¥d) — 21 | Ty | Eo.y [u(Y)) — 11|T (1]

a\2 Ta 1 1
_ (W) O (?3) —o, (,72) . (2.49)

Ep, [i* (YD) Tl = A3 + Aa,

Since, fori=2,...,n

where )A»,- =Ai0,X1y) (i=1,2),wehavefori=2,...,n

Ep , [{u(Y) — 22 | Tay] = A %2V ro0 (L) =n 10, (L
o,y Llu(Y; ol =r 4o\ 5 o+ O ) =20 ;)
(2.50)

From (2.47)—(2.50), we obtain

1
Ey,(ZHTy) =1+ 0, (;) ,
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hence, by (2.16)

1 1 1
By (Z{Ta)) = Eoy [Tt Es y (Z{Ta)] = Es  (Tay) + O (;) =10 (—) :

Thus, we get (2.18).
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Chapter 3
Maximum Likelihood Estimation
of a Natural Parameter for a Two-Sided TEF

The corresponding results on a comparison of the estimators of a natural parameter 6
to the case of a oTEF in the previous chapter are obtained in the case of a two-sided
truncated exponential family (tTEF) of distributions with a natural parameter 6 and
two truncation parameters y and v as nuisance ones.

3.1 Introduction

In the previous chapter, for a oTEF of distributions with a natural parameter 6 and a
truncation parameter y as a nuisance parameter, the second-order asymptotic losses
of éM 1+ and éMC . relative to éﬂyd ;. which correspond to the asymptotic deficiencies
are obtained from their second-order asymptotic variances which are calculated from
their stochastic expansions. It is also shown that a bias-adjusted MLE éM 1+ and éMC L
of 6 for unknown y are second-order asymptotically equivalent and second-order
asymptotically worse than é}‘} ;. of 6 for known y. On the other hand, for an upper-
truncated Pareto distribution with an index parameter « to be estimated and two
truncation parameters y and v as nuisance ones, the MLE & of « for known y and v
and the MLE & of « for unknown y and v are shown to have the asymptotic normality
by Aban et al. (2006). The distribution does not belong to oTEF but to a tTEF of
distributions.

In this chapter, following mostly the paper by Akahira et al. (2016), the corre-
sponding results on the second-order asymptotic comparison of the estimators of 6
to the case of oTEF in Chap.2 are obtained in the case of a tTEF of distributions
with a natural parameter 8 and two truncation parameters y and v as nuisance ones.
The upper-truncated Pareto case is treated in Example 3.7.3.

© The Author(s) 2017 35
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3.2 Preliminaries

Suppose that X, X,, ..., X,, ... is asequence of i.i.d. random variables according
to Py, in a tTEF &2, with the density (1.9). Then, we consider the estimation prob-
lem on the natural parameter 6 in the presence of nuisance parameters y and v. Denote
arandom vector (X, ..., X,;) by X, andlet X < --- < X(;) be the corresponding
order statistics of a random vector X . Then, the density (1.9) is considered to belong
to a regular exponential family of distributions with a natural parameter 6 for any
fixed y and v; hence, log b(0, y, v) is strictly convex and infinitely differentiable in
0 € ® and
9/

Aj(0,y,v) = logb (@, y,v) (3.1

90
is the jth cumulant corresponding to (1.9) for j = 1,2, ....

In Sects. 3.3 to 3.5, the stochastic expansions of the MLE };; of 6 for known y
and v, the MLE éM . and the MCLE 0 wmcr of 6 forunknown y and v are derived, from
which the second-order asymptotic means and variances are obtained. In Sect. 3.6,
the second-order asymptotic losses of éML* and éMC . relative to éz)\/u‘i is obtained
from their second-order asymptotic variances, and a bias-adjusted MLE Op1+ and
ey of 6 for unknown y and v are also shown to be second-order asymptotically
equivalent and second-order asymptotically worse than the MLE GALZ for known
y and v. In Sect. 3.7, examples for a two-sided truncated exponential, a two-sided
truncated normal, an upper-truncated Pareto, a two-sided truncated beta, a two-sided
truncated Erlang type, and a two-sided truncated lognormal distributions are given.
In Appendices B1 and B2, the proofs of theorems are given.

3.3 MLE é}‘}’z of & When Truncation Parameters y and v
are Known

For given x = (xy,...,x,) satisfying ¢ <y < xq) :=minj<j<, x; and X, =
maxj<i<, X; < v < d, the likelihood function of 6 is given by

1 n n
L""@;x) = ——— a(x;) texpy0 u(x;)t.
o [ =
Then, the likelihood equation is

’—llZu(x,-)—M(O,y, v) = 0. (3.2)

i=1
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Since there exists a unique solution of the Eq.(3.2) with respect to 6, we denote it
by 0;;, which is the MLE of 6. Let A; = A;(0, y, v) (i = 2,3, 4) and put

1 < .
Z) = —— w(X)) — M}, Uy, :=+/on(0), —0).
1 m gl: { ( 1) l} Y, 2 ( ML )
Then, we have the following.
Theorem 3.3.1 Fora tTEF &, of distributions with densities of the form (1.9) with

a natural parameter 6 and truncation parameters y and v, let éﬂyu‘i be the MLE of 0
when y and v are known. Then, the stochastic expansion of U, is given by

U A3 ZZ+1 A 240 1
SEYEE ™ PERNETE) R V) A

and the second-order asymptotic mean and variance are given by

A3 1
EgUyy)=——57=+0 (—) ,
W= O

1 (503 )4 1
VO(Uy,v)—1+_( - )+O(n\/ﬁ)’

n\223 23
The proof of Theorem 3.3.1 is omitted, since it is similar to that of Theorem2.3.1.
Since U,,, = Z; + 0,(1), it is seen that U, , is asymptotically normal with mean 0
and variance 1.

respectively.

3.4 Bias-Adjusted MLE 0,7+ of ® When y
and v are Unknown

For given x = (x, ..., x,) satisfying ¢ < y < x(1y and x(,y < v < d, the likelihood
function of 9, y, and v is given by

n

1 n
L®,y,v;x)= W@—M{Ha(xi)}exp[e Zu(xi)}. (3.3)

i=1 i=1

Let Oy1, YuL, and Dy be the MLEs of 6, y and v, respectively. Then, it fol-
lows from (33) that J;ML = X(]) and f)ML = X(n) and L(GMLv X(l), X(n); X) =
SUpgee L6, X(1y, Xy; X), hence éML satisfies the likelihood equation
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n

i ’ ’ n .
o 1 M (€)] (n)

where X = (X4, ..., X,,).Putlj = «/Azn(éML —0), Ty =nXay —y), T =
n(X ) — v). Then, we have the following.

Theorem 3.4.1 For atTEF &2, of distributions with densities of the form (1.9) with
a natural parameter 0 and truncation parameters y and v, let Oy 1 be the MLE of
0 when y and v are unknown, and éML* be a bias-adjusted MLE such that éML has
the same asymptotic bias as that OA}‘;Z ie.,

O = Opr +

1 1 oAl A
— (bur, Xy, X))
M Omrs X1y X)) Lk@Omr, Xrys Xny) Y

1 oA ]

— (Our, Xy, X))

3.5)
k(GMLa Xy, X(wy) OV

where k0, y, v) —a(y)ee“(y)/b(é‘ y, V) and k(G v, 1) 1= a(e’™ /b@, y, v).
Then, the stochastic expansion of U* = Vo Oyre — 0) is given by

b= O+ 1 r(ax,) 1(%)]
B Sian |k \ dy A

1 81 8 1 ok Al 1 3]; EYS) 1
_W[k_i+/<2(89) (ay)_lzz(ae)(av)]zl +0, (W) (3.6)

o= | () ()
ERETEEN T e )T

M M

1 1 1
—Z 81Ty + 8T — Z4+ 0, —= 3.7
+ 61Ty + 62 ()}+ (A3 3)\2) + p(nﬁ) (3.7

with

where k = k(9, y, v), k= 12(9, y,v), and

A [9A I A3 [OA I
si= (2 ) =222 s =2 () - 22 (3.8)
M \ Oy ay Ao \ OV av

and the second-order asymptotic mean and variance of U™ are given by
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7% A3 1
Eg, (U™ =— o 3/2\/_ + 0 (nﬁ) , (3.9)
5: A 1
Voyw(U*) =1+ — (ﬁ - k_%) + o [{u@) = 1) + {u() = M)
1
+0 (nﬁ) ; (3.10)
respectively.

Since U = U* = 2Z, + op(1), it seen that U and U* are asymptotically normal with
mean 0 and variance 1 in the first order. It is also noted from Theorems3.3.1 and
3.4.1 that there is a difference between Vy (U, ) and ngy,v(f/ *) in the second order,
i.e., the order n~!. Further, it is remarked that the asymptotic distribution of 7{;) and
T are exponential and given up to the second order (see Lemmas3.9.1 and 3.9.2
in Appendix B1).

3.5 MCLE éMc 1. of @ When y and v are Unknown

LetYs, ..., Y,—; be arandom permutation of the (n — 2)! permutations of X3, ...,
X (n—1y such that conditionally on X1y = x() and X,y = X(n), Y2, ..., ¥p— areiid.
random variables according to a distribution with density

a(y)ee“(y)

———— for c<y=Zxpny<y<xm=v<d
b0, xq1y, Xn))

F: 0, xq), x@y) =

(3.11)
with respect to the Lebesgue measure. For given X ;) = x(1y and X ;) = x(,), the con-
ditional likelihood function of 6 for y = (y2, ..., y,—1) satisfying ¢ <y < xq) <
Vi S X)) <V <d(@@=2,...,.n—1)is

L(©: ylxay, X)) = m[na()’z ]exp[@Zu(y, ]

Then, the likelihood equation is

1
mzu(y,») — 218, X1y, X)) = 0. (3.12)
i=2
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Since there exists a unique solution of the Eq.(3.12) with respect to 6, we denote
1t by HMCL, i.e., the value of 6 for which L(@; y|xq), x(,)) attains supremum. Let
P =0, x(l),x(”)) (i=1,2,3,4) and put

7y = Z{M(Y) — )y Uo = Van@ucr —6).

\/)»2("— 2) i=2

Then, we have the following.

Theorem 3.5.1 For atTEF &, of distributions with densities of the form (1.9) with
a natural parameter 6 and truncation parameters 'y and v, let Oy, be the MCLE
of 6 when y and v are unknown. Then, the stochastic expansion of Uy is given by

0 — 7 A3 s L[ L (), L (922, |5
TR e 2o \ay ) 0 an \aw )T

4! 1 Z3+0(1) (3.13)
2n\33 3] P \nyn ‘

and the second-order asymptotic mean and variance are given by

. A3 1
Ey . (Upy) =— +O( ),
Rt CN R PN

503 A 1
Voyw(Up) =1+ — (ﬁ—é)+M—n[{u(y)—mzﬂu(v)—xlﬁ]

" O(nﬁ)’

Theorems 3.4.1 and 3.5.1 also lead to a similar explanation to Remarks 2.5.1 and
2.5.2 in Chap.2.

respectively.

3.6 Second Order Asymptotlc Comparison Among

01}!’/1’L’ 0ML* and 0MCL

From the results in the previous sections, we have the following.

Theorem 3.6.1 For a tTEF &, of distributions with densities of the form (1. 9) with
a natural parameter 0 and truncation parameters y and v, let QM L éM L+, and OMCL
be the MLE of @ when y and v are known, the bias-adjusted MLE and the MCLE of
0 when y and v are unknown, respectively. Then, the bias-adjusted MLE Oy1+ and
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the MCLE 6yc;. are second-order asymptotically equivalent in the sense that
dyGurze, Oncr) 1= 1 (Vo0 = Vo @)} = o)

as n — 0o, and they are second-order asymptotically worse than GA}‘;Z with the fol-
lowing second-order asymptotic losses of Oy -and Oy ¢y relative to GLZ

O, 0)57) =1 { Vo (0% = Vo Uy}
1
=5 [{u) = 1F + {u®) — M ] + o),
dnGucr, 61) =0 { Vo 0o) = Vo Uy}

1
=% [{uy) = M} + {u®) = 1P+ o)

as n — 0o, respectively.
The proof is straightforward from Theorem3.3.1, 3.4.1, and 3.5.1.

Remark 3.6.1 Itis seen from (1.6) and Theorem 3.6.1 that the ratio of the asymptotic
variance of U* to that of U,, , is given by

- . 1 1
RyOmr, 0 =1+ T [(uy) — MY +{u@) — 1] +o (—) :
on n

and similarly from (1.6) and Theorem3.6.1

Ry @ucr, O = 1+ — [fu(y) = 1P + @) = 1] +o0 (1) :
Aan n

From the consideration of models in Sect. 1.1, using (1.5), (1.6), and Theorem 3.6.1
we see that the difference between the asymptotic models M (éM L Y, V) and
M(GAL’X, ¥, v) is given by d, Oy 1+, é}(,IZ) or R, Opr+, QA}(,IZ) up to the second order,
through the MLE of 6. In a similar way to the above, the difference between the
asymptotic models M (@ycr, ¥, v) and M(0);5,, v, v) is given by d,(Oucr, 0l;))
or R, (Bucr,61;)) up to the second order.

3.7 Examples

For a two-sided truncated exponential, a two-sided truncated normal, an upper-
truncated Pareto, a two-sided truncated beta, and a two-sided truncated Erlang-type
cases, the second-order asymptotic losses of the estimators are given as examples.
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Example 3.7.1 (Two-sided truncated exponential distribution) Let ¢ = —oo,
d=00,a(x) =1and u(x) = —x for —oo < y < x < v < oo in the density (1.9).
Since (0, y, v) = (e — ") /6 for 8 € ® = (0, 00), it follows from (3.1) and
Theorem 3.4.1 that

9 a0y —0v 1
A= B_QIOgb(G’ y,v) = Tye _tre -

e~ — =0V 0’
82 y2€79y _ v2€79v (yefé?y _ v679v)2 1

Ay = ﬁlogb(& Yy, V) = e e (0 o) + 92’

Ou(y) Qe b7
KOy =20 P T

b@®,y,v) e —e

5 a(U)@Ou(U) 96791}
k@, y,v) =

b, y,v) T ey _eov’

Then, it follows from (3.2), (3.4), and (3.12) that the solutions of 6 of the following
equations

ye v —pe |

_—_— - = X

ey — =0 + 0 ’
Xqye X0 — X(,e %w N 1_ 3
e*@X([) _ e*GX(,,) 0 ’

1

~1
X e X0 — X, e % ] .
M ™ L 3 X
% n—2 —

e—0X1) — g—0Xu)

become 0);], Oy1, and ¢y, respectively, where X = (1/n) 37, X;. From (3.5),
the bias-adjusted MLE is seen to be given by

R . 1 [1fak IWEN
Omr = Omr + = =) - = -
n | k dy k ov

where i,’ = )\i(éML» X(]), X(,,)) (l = 1, 2), iC\ = k(éML7 X(l)» X(n))’ % = ]g(éMLv
X(l), X(n)), and

. CYSE) Y
9 B X ) X n)J)s =
Omr, Xy, X)) o o

I O

— Ovr, X X
oy 3y Omr, Xay, X))
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Table 3.1 Values of d, (Gyr+, 6};;) and Ry (Bpr+, 637)) for 6 =y = 1

v dnOmr=, 007)) Ry@Omr+. 01;))
6.4725 1
2 6.4725 + o(1) 1+ +of-
n n
7.9582 1
3 7.9582 + o(1) 1+ +o (f)
n n
14.8146 1
5 14.8146 + o(1) 1+ +o| -
n n
with
Ay e O(y — v)e
W - ey — =0V (679}/ _ 6701))2 ’
dAq e Oy —v)e 0+
9y - e 07 — =0V (6701/ _ 6791))2 :

From Theorem 3.6.1, we obtain the second-order asymptotic losses

dyOprre, Oper) = o(1),

2 2
1y (y=we™” y=—we™
(5 + W) +( t e )
1 (y—v)Ze0r+v)
7T @ ey

dyOure, 031) = dyOmcr, Ol) = +o(1)

asn — oo.

When6 =y = 1,and v = 2, 3, 5, the values of the second-order asymptotic loss
dy(Brr1e, é}(lZ) and the ratio R, Oy 1+, 97;,{) are obtained from the above and Remark
3.6.1 (see Table3.1 and Fig.3.1).

Example 3.7.2 (Two-sided truncated normal distribution) Let c = —00,d = oo,
a(x) = e /2 and u(x) = x for —0o0 < y < x < v < oo in the density (1.9). Since

b@,y,v) ={@0O —y) — @0 —v)} /()
for6 € ® = (—o0, 00), it follows that

2@, y,v) =0 +1n,,0 —y) +n-,0 —v),
M@,y v)=1=0 =)y (@ —y) — (O —V)1,_y (0 — v)
—{ny @ =)+ 0y @ =)},
k@©,y.v) =n,-00 —y), k@O,y,v)=—n_y (0 —v)
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3.0

2.5
I

Rn

2.0
I

1.5

1.0

Fig. 3.1 Graph of the ratio R, (éML*, é}(,,’z) up to the order 1/n for@ =y =1

where 1,(t) = ¢()/{@ () — P(t + @)} with @ (r) = fioo¢>(x)dx and ¢(x) =
(1/+/27)e /2 for —o0 < x < oo. Then, it follows from (3.2), (3.4) and (3.12)
that the solutions of the following equations

0+ ny—v(e - V) - nv—y(e - V) = )_(7
6+ TIXU)—X(,,>(9 - X(l)) - nX(n)*X<1>(9 - X(n)) =X

and

n—1

1
0 — Nx0,-x, @ — X)) = 0xy-x, (0 — X)) = n—2 ZX(i)
i=2

become 67, Oy1, and Bycr, respectively. From (3.5), the bias-adjusted MLE is
seen to be given by

. R 1 [1fax ) 1
Omr = Omr + = A==
An | k\ 9y k

where

A =00, Xy Xon) (= 1,2), k=k@ur. Xa), X)), k =kOur, X1y, X))
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Table 3.2 Values of dy (Gyr+, 6177) and R, (Oyp+, 6};) for6 =y = 0

v dn Opr, 037)) RyOpr+.0))
6.3154 1
1 6.3154 + o(1) 1+ 22274, (7)
n
2 8.5681 + o(1) 1+ @ +o (1)
n
3 15.8437 4+ o(1) 1+ 15 8437 l)
n
and
ahy 8’\‘(9 X Xon, I 8’\‘(9 X Xon)
by ML, X1y, Xn) o ML, X1y, X
with
A
B M@ = {0 —y =1y —¥) = n—y (6 — )},
oA
8_1) = nvfy(e — ) {9 —Vv+ nyfv(e - )/) + nvfy(e - V)}

From Theorem 3.6.1, we obtain the second-order asymptotic losses

du@mr+, 6pcr) = o(1),

dyOmr=, 031) = du@ucr, 631)

Oy @ =)y @ =P v+ 0y (O —y) 1y (0 — )P
L= =Y)y—@—=y) = O =Ny (@ =v) = {0y O —y) + 10—y (6 —1)}?

+o(1)

asn — o0.

When6 = y = 0,and v = 1, 2, 3, the values of the second-order asymptotic loss
ARG 97(42) of Oy 1+ and the ratio R, (Oy1+, QAA’}Z) are obtained from the above and
Remark 3.6.1 (see Table 3.2 and Fig. 3.2).

Example 3.7.3 (Upper-truncated Pareto distribution) For the Pareto distribution
with an index parameter « to be estimated and two truncation parameters y and v as
nuisance parameters, Aban et al. (2006) show the asymptotic normality of the MLEs &
and & of « in the case when y and v are known and the case when y and v are unknown,
respectively. Although it is noted in Remark 2 of their paper that the asymptotic
variance of & is not the same as that of &, it is seen from Theorems 3.3.1 and 3.4.1 that
@ and & have the same asymptotic variance in the first order. However, in the second-
order asymptotic comparison, a bias-adjustment of & is needed and its second-order
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3.0

Rn
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2.0

1.5

1.0
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Fig. 3.2 Graph of the ratio R, (éML*, é}(,,’z) up to the order 1/n for6 =y =0

asymptotic variance is different from that of &, as below. Note that « is represented
as @ in this chapter. Let c =0, d = 00, a(x) = 1/x, and u(x) = —logx for 0 <
y <x <v < oo in the density (1.9). Then, b(0, y,v) = {1 — (y/v)(’}/(eyg) for
6 € ® = (0, 00). Letting t = logx, yp = logy, and vy = logv, we see that (1.9)
becomes

Hef0 —0t

[0, v,v0) = {(We

for yo <t < v,
otherwise.

Hence, the upper-truncated Pareto distribution case is reduced to the two-sided trun-
cated exponential one in Example 3.7.1. Replacing X and X @ (i=1,---,n) by
log X := (1/n) > logX; and log X5y (i =1,---, n), respectively, in Example
3.7.1, we have the second-order asymptotic losses

du@pr-» Omcr) = o(1),
dn(Bpr-, 0 AK;’Z) =d,(Oucr, éLZ)

£logé log£ \* £(log §)?
[(” 1—5) +(1+1—$) }/[1 = s>2]+0(1)

asn — oo where £ := (y/v)°.
When 6 = 0.8, y = 1,and v = 5, 10, 15, the values of the second-order asymp-
totic loss d, (Opr1+, 03;;) of O+ and the ratio R, (O 1+, )7, are obtained from the
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Table 3.3 Values of d, (6yr+, 63;;) and R, (Byz+, 6);,) for§ = 0.8 and y = 1

47

v

dy (éML* s é}l/,iZ)

Ry @y~ 00;))

5

6.7898 + o(1)

6.7898 ( )
1+ +o0

10

7.6495 + o(1)

15

8.3155 + o(1)

Fig. 3.3 Graph of the ratio R, (Oyr1+, é,’;,’z) up to the order 1/n for& =0.8andy =1

above and Remark 3.6.1 (see Table 3.3 and Fig. 3.3). In Aban et al. (2006), the per-
formance of the MLE is compared with that of the estimators of Hill (1975) and Beg

(1981) when 8 = 0.8, y = 1,and v = 10.

Example 3.7.4 (Two-sided truncated beta distribution) Letc = 0,d = 1,a(x) =
x7!, and u(x) =logx for 0 < y <x <v < 1 in the density (1.9). Note that the
density is uniform over the interval [y, v] when6 = 1. Since (8, y, v) = 6~/ (1 —
(y/v)(’) for 6 € ® = (0, 00), it follows from (3.1) and Theorem 3.4.1 that
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_ 1 —§+&logé
A0, y,v) = logv —9(1_5) ,
A0, y,v) = i—L(logé)2
200, v, 7 a1 iy ,
0t i 9
k 9’ 5 = o > k 97 5 = — 0 <
Crv=Ta—g OV =05

where £ = (y/v)?. Then, it follows from (3.2), (3.4), and (3.12) that the solutions
of 8 of the following

1= (/v + (y/v)? log (v /v)°

logv — =log X,
& 61— (/v)) ®
1— X0/ Xwm)? X/ Xo)? log (Xay/ X m)?
log Xon) — X/ Xw)” + Xay/ Xw) QOg( m/Xwm) _ Tog X,
(1 - X/ Xw)’)
1= (Xay/ Xa)® + X/ X)) og (Xy/ X 1
log X — X/ Xw)” + X/ Xew)" 1og X/ Xw)” _ S log X

01— X/ Xw)?)

become GML, GML, GMCL, respectively where logX = (l/n) Zl 1 log X;. From
(3.5), we obtain the bias- adjusted MLE QML* using Al = A (QML, Xy, X)) (G =

1,2), k = k@, Xy, Xin)s k = k@O, X1y, Xny), and

9k EQ—E+logh) ok £(1—¢ +logd)

dy Xay(1—£)2 = dv X1 —£)2

El

with & = (X m/X (,1))éML . From Theorem 3.6.1, we have the second-order asymptotic
losses

dOpr, Oucr) = o(1),
(1—&—1log&)? + (1 —& +&logé)?
(1 —8)2—¢&(log&)?

dyOpr-. 037)) = dyOucr. 0);)) = +o(1),
asn — oo.

When 6 =3,y =1/4,and v = 1/2, 2/3, 5/6, the values of the second-order
asymptotic loss d, (0pr+, GA};’Z) and the ratio R, (O, GL‘Z) are obtained from the
above and Remark 3.6.1 (see Table 3.4 and Fig.3.4).

Example 3.7.5 (Two-sided truncated Erlang type distribution) Letc = —oc0,d =
00, a(x) = |x|/~!, and u(x) = —|x| for —oco < ¥ < x < v < coin the density (1.9)
where j =1,2,.... Then, foreach j =1,2,...,b;(0,y,v) = f; |x)/ e ldx
for 6 € ® = (0, 00). In particular, the distribution is a two-sided truncated bilateral


http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Table 3.4 Values of d, (Gyr+, 6};;) and R, (Bprr+, 03;;) for 6 =3 and y = 1/4

v dyOmre. 07)) Ry@mr.031)
8. 1247
1/2 8.1247 + 0(1) 1+ ( )
n
10. 4562 1
2/3 10.4562 + o(1) 1+ (7)
n
13. 0034 1
5/6 13.0034 + o(1) 1+ +o0 (7)
n
e
<
|
(32
<
[s2)
c w0
X o
<
N
|
S

n

Fig. 3.4 Graph of the ratio R, (éML*, GALZ) up to the order 1 /n for& =3 andy = 1/4

exponential (Laplace) distribution when j = 1. If y > 0, then the distribution is a
two-sided truncated Erlang distribution with density

L_xi=le=® for0 <y <x < v < 00,

fitx;0,y,v) = [ S(H,V,v)

otherwise

where j =1,2,..., and b8, y,v) = fyv x/7le % dx for & > 0. If v < 0, then the
distribution becomes the above two-sided truncated Erlang distribution by the change
of variable since —0co < y < v < 0. Hence, we consider the case when —oo < y <
0 < v < oo. Let j be arbitrarily fixed in {1, 2, ...}. Since 0b;/00 = —bj,, it fol-
lows from (3.1) and Theorem 3.4.1 that
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bj+i

bj

’

d
Aj1(0,y,v) =%logbj(0, y,v) = —

92 bjio bt 2
)\'j2(9’ Vs U) Zwlogb/(ga Vs U) = T - (T )

a(y)eau(y) |y|j—le—9ly\
k;j@,y,v) = = ,

bij@,y,v) bj@,y,v)
_ a(v)emt(v) |v|j—le—0\u|
kij@,y,v) = =

b0, y,v)  biO,y,v)

Then, it follows from (3.2), (3.4) and (3.12) that the solutions of 6 of the following
1 n
bjs1©, v, v)/b;®,y,v) = ~ ;um,

1 n
bi1(8, Xy, X)) /b0, X1y, X(n)) = - Zl | X:l,

n—1

bi1(6, Xy, X)) /b0, X1y, X)) = p— Zzl [ X (i)l

become é}(,,}j, éML, éMCL, respectively. From (3.5), we obtain the bias-adjusted
MLE 6pr- using Aj; :=Aji Omr, X1y, Xy) G =1,2), kj :=k;jOpr, X1y, X)),
ki = Igj(éMAL, X1y, X)), 941/ 1= (O;1/8y) Omrs X(1)» X () and 34 /8 1=
(0 ;1/0v)(Omr, X(1y» X(n)). From Theorem 3.6.1, we have the second-order asymp-
totic losses

dnOur. Oucr) = o(1),
(bjr1 —ybj)* + (bjy1 — vb))
bibja = b}y

2
dyOumr, O31) = dnOmcr, Oyp) = +o(1),

asn — oo.If j =2, then

1 1 1 1
b, = —— - —6v - - —Gy’
2 9(v+9)e +0()/+6)e

1 2 2 1 2 2
by = — (v2+—v+—)e9”+—()/2+5)/+63)69”

0 62 0

7
1(, 3, 6 6\ o, 1,45 3, 6 6\ _,
b4=—§(1} +§V +9—2U+§)€ +5(V +§J/ +67)/+§ e v,
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Table 3.5 Values of dy (Oy1+, 0% ) and R, (Opr+, 057 ) for j =2,6 = 1,and y =0

v dn@rre, ) Ry@Byrs,65y0)
8.4737 1
1 8.4737 + o(1) 1+ +0(f)
n n
7.8107 1
2 7.8107 + o(1) 1+ +0(7)
n n
7.9360 1
3 7.9360 4 o(1) 1+ 7+0(7)
n n

Further, if 6 = 1 and y = 0, then

by=—@W+De " +1, by=—0>+2v+2) " +2,
by=—0>+3024+6vV+6)e " +6,

hence

dyBmre, Oyyy)
_ V443 + 902+ 1204+ 8)e 2 — 202 +4v +8)e ™V + 12 —4v + 8
N (V2 +4v+2)e? — (W3 —12+4v+4)e v +2

+o(1),

asn — 00.Whenj =2,0 =1,y = 0andv = 1, 2, 3, the values of the second-order
asymptotic loss d,, (Oyz+, 0;1) of Gyp- and the ratio R, (6y .-, 6);}) are obtained
from the above and Remark 3.6.1 (see Table 3.5 and Fig. 3.5). Note that letting 6 = 0
formally in the two-sided truncated Erlang-type distribution when j = 1, we get the
uniform distribution over the interval [y, v].

Example 3.7.6 (Two-sided truncated lognormal distribution) Letc = 0, d = oo,
a(x) = x~! exp{—(1/2)(logx)2}, and u(x) =logx for0 <y <x <v < oointhe
density (1.9). Then,

b(O.y.v) ={P(O —logy) — @0 —logv)}/¢(0)

forf € ® = (—o0, 0o) where @ (x) = fjoo ¢ (t)dt with ¢ (1) = (1/\/27r)e”2/2 for
—00 <t < oo. Letting t =logx, yp =logy, and vy = logv, we see that (1.9)
becomes

1 o~ (=072
£t 0, v0, v0) = { V2R (@O—)-®O—w)}
0

for — oo < pp <t < vy < 00,

otherwise.

Hence, the two-sided truncated lognormal case is reduced to the two-sided truncated
normal one in Example 3.7.2.
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4.0

3.5

3.0

Rn
25

2.0

1.5

1.0

0 20 40 60 80 100

Fig. 3.5 Graph of the ratio R, (Oyr1+, é,?,,’Z) uptotheorder 1/nfor j =2,6 =1landy =0

3.8 Concluding Remarks

In this chapter, the corresponding results on a comparison of the estimators to the case
of oTEF in Chap. 2 are obtained in the case of a tTEF of distributions with a natural
parameter 6 and two truncation parameters y and v as nuisance ones, including the
upper-truncated Pareto distribution which is important in applications to finance,
hydrology, and atmospheric science as is seen in Aban et al. (2006). In particular, the
second-order asymptotic losses of éM 1+ and éMc 1 given by Theorem3.6.1 are seen
to be quite simple, which results from a tTEF of distributions. Indeed, as is seen from
the form (1.9) of density, the structure of the regular and non-regular parts of (1.9)
reflects in that of the second-order asymptotic variances of U, , = v/Axn (OAX,,Z —0),
U* = \/don @Oy — 6) and Uy = /Aon(Bycr — 0) in Theorems3.3.1, 3.4.1, and
3.5.1. The regular part corresponds to the term of order n~! in the second-order
asymptotic variance of U, , where y and v are known. When y and v are unknown,
the second-order asymptotic variances of U* and U, consist of the corresponding
regular term and the non-regular one with the term depending on u(y) and u(v) in
the second order, i.e., the order n~!. The results arise from giving full consideration
to the typical non-regular case up to the second order. Furthermore, in a similar way
to the above, the results may be extended to the case of a more general truncated
family of distributions.


http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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3.9 Appendix B1

Before proving Theorem3.3.1, we prepare three lemmas (the proofs are given in
Appendix B2 of the next section).

Lemma 3.9.1 The second-order asymptotic densities of T(1y and T,y are given by

Froy 0 = k(@ y, v)e HOr
L {i logk(, v, ”)} {k(97 yo et — 2l} k@, y, v)e KOyt L o (i) (3.14)
2n | dy n2

fort >0, and

frin @) =k, 7. )ek@.y.v

o {i logk(®, 7, v)] [k@. 7.0 +21) k6. 7. 07 1 0 (iz) (3.15)
2n | dv n

fort <0, and
1 A(9 ,v) 1
EH,y,v(T(l)) = k(@ y V) + Y (_2) s (3.16)
1 A(G ,v) 1
Eg (T = —];(9 5 14 (—2) (3.17)
2 6A(9 v, U)

N|_.

Egy.(T3) =

k26, y,v) k@, vy, u)n ) (3.18)

2 6A©,y,v) (i)
2

Ee,y,v(T(i)) == + = + O

(3.19)
k20, y,v) k@, v, v)n

where

k@, y,v) =a@)e™ P /b@, y,v), k@, y,v)=a®e™ /b@,y,v),

1 0
————logk(d, y,
i@y ay O

" 19
A0,y 0) = ——— L 10gk(0, v, v).
Y 2@y v Y

A@,y,v) =
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1
)I ( ) (3.20)
EO,y,v(ZlT(n)) i

5, )|+
o i@ ) o

where k = k(0, y,v)and »; = A; (0, y,v) (i =1,2).

Lemma 3.9.2 It holds that

1 2

Epoo(ZiTa) = A+
0.y (Z1Tq)) Jion [M()/) 1+k(
2

[u(v) —

Lemma 3.9.3 [t holds that
1
Egy, v(Z Ty) =+ + 0 (n) (3.22)
1
Epyo(ZiTw) = —= +()(n) (3.23)

where k = k0, y,v) and k = k(6, y, v).

The proof of Theorem 3.4.1 Since, for (6, y,v) € ® x (¢, X(1)) X (X(n), d)

M(éML,X(l), Xumy)

d o d
=200,y,v) + [£l1(9 v, V)} Omr —0) + [Eh(@, 12 V)] Xn—v)

9 5.0 X ! yx 6, 6 0)>
Ll e 10,7, v)1( (n)—v)-f- 592 10, y.v)t Gy —0)

2

309y

+ 2{ 2, y, v)] Omr — )Xy — )

92 A
+2 [ 509 )»1(9 Y, V)] Omr — ) (X — V)

2

92 d
— M@,y Xy — ) +2
+’8y2 10,y V)]( o=y + [8)/8

UM(O, 12 U)] Xy =) Xw —v)

L X S 0, Our — 0)° +
+’W 1(,7/,1))}( (")_v)]+8’893 1( V)}(ML_ )+

(3.24)

noting U = V3an(OuL — 6), Ty =n(Xqy — y), and T,y = n(X,) — v), we have
from (3.4) and (3.24)
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/AZZ )LU 8)»1 T 1 for T A3 02
b (1) n \ dv ) 2Aon

n

axz) 1 (axz) . M
UT1 — — )\UT,) — ———=U

dy O Jaann \ v " 61 *ny/n

which implies that the stochastic expansion of U is given by

U=z b ] [(8’\‘)T +(8M)T ]
=41 T T 357 — - T . 1 . n
Z)L;ﬂ\/ﬁ ! A ay W v )

1 1 (2 M s
+ —Zl {8:T4) + 82Ty} to- G a2) At 0,\—=) (325
Ay 3A3 n

where

P A3 [ OAg 8A2 5 e A3 [ OAg iy
YT on Loy By 7T Lo v’
Hence, we obtain (3.7). Here,

A3

Epyn(Z) =0, Epyo(ZD =1 Epyo(Z) = 5. Eew<z4>—3+— (3.26)
2 n

2

Then, it follows from (3.26) that

X A | an O
E0,y,v(U) = 3/2\/_ \/7 [( ) EO Vs U(T(l)) + ( 9 ) E9 Y, v(T(n))]

+ n {81E0.y v (Z1T4y) + 82E0..0(Z1 T } + O (
2

1
m) . (327

Substituting (3.16), (3.17), (3.20) and (3.21) into (3.27), we obtain

E 0 _ 1 oA oAl A3 0 1 308
oyl >—‘—m|k(ay) k(W)U—Ml* (m) G:28)

From (3.25), we have
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Ea,y,v(ﬁz)
—E, , (Z%) L (%) g (Z\Tay) +2 1) g (Z\Tow)
— L0,y & W By 0,y,v\&14(1) a 0,y v L1d(n)
2 ; L[ (0m) )
D Ee, (2 — (L) B, (T
+ O ( 1)] + )LG[ (8y) 8.y ( (1))

2 (B0 (1) i T+ (22 i)
ay a O,y v ()L 0n) 81) 0.y, v\ @m)

4 M o5l E (22T, )+1 LR PP
Aan xz By frvie i xz v :

k 1 (A A
EppnZiTon) + o Boyn(ZD + 5 (Ai—M‘Z)Eew(Z)
1
0 . 3.29
vo(.1x) (3.29)

Since T(;y and T, are asymptotically independent, it follows from (3.16) and (3.17)
that

1
Egy(TiyTwy) = Eoy 0 (T(1) Eo,y 0 (Tiny) + O (;)

1 1
__Lio (-) . (3.30)
ki n
Substituting (3.18)—(3.23), (3.26), and (3.30) into (3.29) we obtain
2 1 (ox i
Ep, (U =1 — 24 A
ey U7 kzn[k(ay)lu(y) l+k(31/)]
1 {dA A
(= A== (=L
k( )[u(v) ! k(av)”
2 (axl) (axl) S 33 (axl) (a)\])
 kkgn v 2 |k \ oy k\av
2 (1 faxr IEIY 1123 2 ( 1 )
- == - (= o2 ro(=).
Aw{k(ay) k( )}+4)~gn )én+ n?

(3.31)

I:Ie,?(t, put 22 = )Lz(éML, X(l), X(n))’ k = k(éML, X(l)’ X(n))’ and % —
kBmr, Xy, X @) Letting

i O A i O A
—= —(9ML, X, Xw), — = W(QMLs Xy, X)),

oy av
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) ) () )
)£ (5))
1) LA )

From (3.5) and (3.32), we obtain the stochastic expansion
. VA 1 A A
0% i=\aan @z — 0) = ran(@yr —0) + 222 VL P0) Lo
2\/_ k 8\)
7517 (5)- (“‘)]
B Mon [k \ 0y £\ v
1 |6 & 1 [0k oA ak Al
—— 1=+ \=)|\— — )t Z
rn |k ko k2\09 iy ) ke v
o, 3.33
o (7) 6

where U is given by (3.25). From (3.28), we have

A A3 1
Ey. ,V(U*)=——+0( ) (3.34)
nr 203 i nyn

Hence, we obtain (3.6) and (3.9). From (3.28), (3.30), and (3.33), we have
Eoya @) =1 = () = 1) (50 + = ) = 20} (2
v =1- - — _ u(v
8.7, klon uly ! ay k)\ ! av
3 11 fon 2+1 a,\l
Aon | k2 \ 9y k2
2 |1 fokY\ for IWEIAYES
an | k2\a0) \ay ) 2\ao )\ ov

+11/\§ Aa +0( 1 )
43n An nyn)’
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hence, by (3.34)
Voo (0 1+_1 50 M 2 (In () =2 +_1 dk
v — - —_ — JE— u — — JE—
o n\23 12)  koan \ay J 1" T Tk e
3 [on 2_% 2 (o )3 4_1 ok
__ 2 (M _ AN ) — (%
on \ay ) " T v S W)
3 (ar)? 1
— — ol=). 3.35
k% n ( v ) * (”2) ( )

Since
2@, y,v) o b )—1 /U()(N"(")d
yV,V) = —10 y Y, V) = ux)a(x)e X,
ROV = g OB = 6 vy ),

it follows that

A, y,v) a(y)e’”
dy  bO.y.v)

M@,y v) —uy)} =kO, y, {1100, v, v) —uly)},

(3.36)

OA 9’ , Ou(v) »
10, y.) _ @Oy 6. )} = KO, v, ) — 210, v, v)).

ov b@,y,v)
(3.37)
Since
ok
@(9’ Y, V) :k(ev Y, V){M(V) _)\'1(67 Y, V)}, (338)
ok -
£(9, y.v) =k@,y,v){ul) — 10, y,v)} (3.39)

it is seen from (3.35)—(3.39) that

N 1
VG,y,v(U*) =1+ - (

n

50
243 A3

o)

hence we obtain (3.10). Thus, we complete the proof.

1
) + o [{u() = 1P + {w®) = 21)]
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The proof of Theorem 3.5.1 Since, from (3.12)

n—1

1 ~
0 —1 E{M(Yi) — A0, xqy, X))} — ﬁ)\z(G, x(1)s Xe)VnOucr — 0)

— L350, xy. xn@uce — 67 — — 140, xqy. x)nn/n@cr — 6)
21’! s A(1)s A(n) C 6nﬁ s A(1)s A(n) C
1
+ Op (ﬁ) )
letting
n—1
- 1 ~ ~ ~
Zy = D (u(¥;) = 20, Xy, )}, U =/ Aan(OucL —6)

VAe(n—2) i=2

where A; = A; (0, X1y, X)) (i = 1,2,3,4), we have

,\ A4 3 1
Z1 =0 +0,(5).
n 2xzn 63 nyn n

hence the stochastic expansion of U is given by

O_

U=27 £ 22+1z+ 1 73— 2 Z24+0 ( ! ) (3.40)
DR YOV "o T 6in "\ava) ©

Since fori =2, 3,4

i 1 [ on 1 (o 1
}Li:)ti(gaX(l)vX(n)):}\i(97)/»v)+; oy T(l)'*‘; rm Ty + 0p =)

we obtain

U =/ 2n@uycr — 0)

Vran @ o) 11+ Ly Ty + L (%) 7, +0, !
= n — _— n _—
armMeL 20 \ 3y 2n o ) T n2

(3.41)

where T(l) = I’l(X(l) — ]/), T(n) = I’l(X(n) — l)), and )Lz = )\.2(0, Y, \)). Then, it fol-
lows from (3.40) and (3.41) that
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Uo = vVan(@ucr —6)
. X N 1 1 (9xr 1 (oA N
=72 —— 2+ - - — (22 Ty - — (2 ) Tt 2
20 n n 2, \ oy 22, \ 9w

s (B A Yz, (A (3.42)
2m\33 3:2)7" 0 P \ayn )’ '

hence we obtain (3.13). For given Xy = x(1) and X,y = x(,), L.e., Tq) = oy =
n(xay — y) and Ty = t( := n(x( — v), the conditional expectations of Z; and
Z2 are

n—1

Eo.yv(Z1ltay, teny) = Z Eg.y o [uDtay, ty] — 216, X1y, X))} =0
Y. )»z(n —2)i=2

Ee,y,v(zflt(l), tn))

n—1

1
[ZEQVV[{M(Y)—M(B Xty X))V [ty tony ]

?»2(" -2)

+ ZZ Eg.yv [{u) = 2100, x(1y, x) Hu(Y) — 216, X1y, X))} 1 21y, l(n)]]
i#j

2<i,j<n—1

_1 (3.43)

hence the conditional variance of Zl is equal to 1, i.e., Vg,%v(zl lt1y, ty) = 1. Ina
similar way to the above, we have

Eo.y 0 (Z3 ), t) = Y e— s , Eoy(ZHtay tey) =3+ =5—— A )
A TA/n =2 )»%(n—Z)
(3.44)
Then, it follows from (3.43) and (3.44) that
Eo o o(Uol Ty, Tow) & +0 ( ! ) (3.45)
o,y o\Vold(), L(n)) = ———=37», — s .
8% (1) L(n) ZX;/zﬁ p nﬁ

L (%) +0 ! (3.46)
aon \Lav )™ P\ nyn ’
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where ; = A, (0, X(1), X(ny) (i =2,3,4). Since, fori =2,3,4

~ 1 1

)\.,‘ :)»,(9, X(]),X(n)) =)\,'(9, v, U)+ Op ; =)»i + Op ; s (347)

it follows from (3.45) that

~ - A3 1
Eq v (Uo) = Eg yv[Egv(UolTqy, Tl = ——=57—=+ 0 (—) . (343
0,y 0,y 0,y (1), L) 2)»3/2\/% I’lﬁ

In a similar way to the above, we obtain from (3.16), (3.17), (3.46) and (3.47) that

. 2 11A2 1 (dr 1 (dr 1
Eo (U =14+-4+ 232 _ =)+ —)+0(—=). (3.49
0.0 (U5) + n * 4)Lgn A%n kxon ( ay ) + kion ( av ) + (nﬁ) ( )

Since, by (3.36)—(3.39)

L(or) _ 1ok, M| _ )2
%(W)_k[aea‘ “(V)Hk(a@)}_ ) =y 2

1 (on) 1|0k i (2] FUC I
E(W)_E @(M(V)— )= (%) = (V) — A1) — Az,

it follows from (3.49) that

YT L SR S P EPY (1)
Eop03) =14 3232 = b o [ =+ ey —aiP ]+ 0 (7).
hence, by (3.48)
~ 1 (5:3 M4 1

Voyo(O) =14+ - (=2 -2 ) + — — ) ENE
0.y.v(Uo) +o (2)»3 x§)+)\2n [{u(y) = 2P + {u(w) — 1]

1

+0( )
ni/n

Thus, we complete the proof.

3.10 Appendix B2

The proof of Lemma 3.9.1 The derivation of (3.14) and (3.15) is omitted, since
it is essentially same as that of (2.15) in Lemma 2.9.1. The Egs. (3.16)—(3.19) are
obtained by straightforward calculation.


http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_2
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The proof of Lemma 3.9.2 Let Yi,...,Y,_; be a random permutation of the

(n — 1)! permutations of Xy, ..., X—1) such that conditionally on X, = x(,),

Yy, ..., Y, are i.i.d. random variables according to a distribution with density
a(y)eg"(y)

g(y;0,y, xm) = forc<y<y<xm=<v<d (3.50)

b(97 Y, x(n))

with respect to the Lebesgue measure. Then, the conditional expectation of Z;, given
T, is obtained by

l n
E v V4 Tn = — E v Xi Tn —A
0.0 (Z11Ti) m;{ ooy (X)) Ty ] = 11}
1 n—1
= o [M(X(Vt))+§E0,y,u[u(yi)|T(n)]—n)\_ll (3.51)

where A; = X; (0, y,v) (i =1, 2).Since, fori =1,...,n—1,

8 (n
Eoy o[t (Y)|Ton] = 2210860, v, X) = 210, ¥, Xan) =: AP (say),

it follows from (3.51) that

! s Mn
E9~V7V(ZI|T(")) = m {M(X(n)) + (}’l — 1))\,1 } — —)‘4 s
2 VA2

hence, from (3.17) and (3.51)

1 n
Eoyo(ZiTy) = ——— {Ee,y,u[u(x(m)T(n)] +(n— 1)Ee,y,u(x§”)T<n>)}

A/ )»211
Y +o(4 (3.52)
A2 ! i n n? ’
where k = 12(9, y,v) and A= A(G, y, v). Since, by the Taylor expansion
u'(v) 1
u(Xu) =u() + TT(n) + 0, el

2 () 1] 1|2 2
)\-1 :)\,](9, Y, 1)) + ; 5)"1(97 Vs V) T(n) + P m)"l(97 Y, \)) T(n)

2n
1
+ Op ; )
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it follows from (3.17) and (3.19) that

E X Ton] = =" _ 1 2L o (2 3.53
9,1/,11[“( (n)) (n)]—_T_’ I/t(l))— 122 ;+ (;)a ( . )

Ey, ,O"T )=—ﬂ— AIA—E I l+0 L (3.54)
v L i 2\ )| n n2

where k = k0, y,v), A = A6, y,v), and A, = A,(0, y, v). From (3.52) — (3.54),
we obtain

stz =i =3 ()] o )
O,y,vl(n)—k'muv 1]28\1 nﬁ’

On the other hand, it is shown in a similar way to Lemma 2.9.2 that

(G G)

Ey v (Z1Ty) = u(y) — A1+ -+

|

where k = k(6, y, v). Thus, we complete the proof.

The proof of Lemma 3.9.3 First, we have

1 2
Eo,o(Z} Tiy) = {uXw) — 1}
2n
n—1

2
+ an {uXwy) =11} ZE(M,U [4(Y) — M| T

n—1

1
+ ; Egpo [n(¥) = 11 T

1
+ o ZZ Eoyo [{u(¥) = A} {u(¥) = 1} [ Ty
i#]

1<i,j<n—1

(3.55)

For1 <i <n — 1, we have

Egyo[u(Y;) — 2T = Eg oY) Tyl — Ar = 2100, ¥, X)) — A1(6, v, v)

~ orL\ T, 1
_ Ay _ 1 (n)
=A Al (_31) ) " + 0, (—nz) (3.56)
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and, fori # jand1 <i,j<n-—1

81) T

1
Egyo [{u(¥) — 2 {u¥)) — 2} 1T ] = ( 5 ) E O (n—s) . (357)

Since, fori =1,...,n—1

Ep o[> (YD Ton] = 230, v, X)) + 2200, ¥, X ()

_.3m A
= A A

where )A\f") =20,y,Xw) ( =1,2),wehavefori =1,...,n—1

B 1 (oA 1
EO,y,v[{u(Yi) — A} |T(n)] =+ ; 8_1) T(n) + Op ; . (3.58)
From (3.55)—(3.58), we obtain
) 1
EO,}/,U(Z1 |T(n)) =1+ Op ITl , (3.59)

hence, by (3.17)
) 2 1 1
Eg .y v(Z1Twm) = Eg,y,0 [T(n)Ee,y,v(Zl |T(,,))] = i +0 nl

On the other hand, it is shown a similar way to Lemma 2.9.3 that Ey ,, ,(Z1T(1)) =
(1/k) + O(1/n). Thus, we complete the proof.
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Chapter 4
Estimation of a Truncation Parameter

for a One-Sided TEF

For a one-sided truncated exponential family (0TEF) of distributions with a trunca-
tion parameter y and a natural parameter 6 as a nuisance parameter, the maximum
likelihood estimation on y is discussed together with a bias-adjustment.

4.1 Introduction

In Chap. 2, for a oTEF with a natural parameter 6 and a truncation parameter y which
is regarded as a typical non-regular case, we discussed a problem of estimating 6
in the presence of y as a nuisance parameter. In this chapter, following mostly the
paper by Akahira and Ohyauchi (2017), we consider a problem of estimating y in
the presence of 6 as a nuisance parameter in exchanging an interest parameter for a
nuisance parameter. Let )?f,, ;. and Py, be the MLEs of y based on a sample of size n
when 6 is known and when 6 is unknown, respectively. The stochastic expansions of
the bias-adjusted MLEs )7}{’4 1~ and Y- are derived, and the second-order asymptotic
loss of P+ relative to pj,. is also obtained. Further the truncated exponential
and truncated normal, Pareto, lower-truncated beta, and lower-truncated Erlang type
cases are discussed including consideration from the viewpoint of minimum variance
unbiased estimation.

4.2 Preliminaries

According to Chap.2, we have the formulation as follows. Suppose that
X1, Xo,--+, X,, -+ is a sequence of i.i.d. random variables according to Py ,,,
having the density (1.7), which belongs to a 0TEF &,,. Then, we consider the estima-
tion problem on y in the presence of 6 as a nuisance parameter. For any y € (c, d),
log b(8, y) is strictly convex and infinitely differentiable in & € & and
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by
rj@0,y) = %logb(e ¥) 4.1)
is the jth cumulant corresponding to (1.7) for j = 1,2, ---. Let
k©,y) =ay)e™ " /b@, y), (4.2)
1 0
A@B,y) =— — logk(0, 4.3
©@,v) k2(9,y)[8y ogk( y)] (4.3)

which are defined in Theorem2.4.1 and Lemma 2.9.1, respectively.

In the subsequent sections, we obtain the bias-adjusted MLE ;. and Py of
y for known and unknown 6, respectively. Calculating their asymptotic variances
based on their stochastic expansions, we get the second-order asymptotic loss of
Py relative to )7,?,, 1+~ Several examples are also given, and further, the proofs of
theorems are located in Appendix C.

4.3 Bias-Adjusted MLE )31“94 1+ of y When 6 is Known

For given x:=(x, - - - , x,,) satisfying y < x(1) := minj<;<, X; and x(,) := max;<;j<,
x; < d, the likelihood function of y is given by

LG(y;x) b”(9 [Ha(x, ]expi@ Zu(x,-)] “4.4)
i=1

when 0 is known. From (4.4), it follows that the MLE p,,, of y is given by X(j) :=
min; <j<, X;. Let T(1y := n(X ) — y). Then, we have the following.

Theorem 4.3.1 For a oTEF 2, of distributions having densities of the form (1.7)
with a truncation parameter y and a natural parameter 0, let )?AZ 1= X{)) be a
bias-adjusted MLE of y such that

1
X(l) =Xa — ) 4.5)
kgn

where ky = k(®, X(1)). Then, the stochastic expansion of T¢, :=n(X, —y) is
given by

1 1 d 1
Tl) = T(]) z + k_ (5 Ing) T(]) + 0,; (;) ) (46)
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where k = k(0, y), and the second-order asymptotic mean and variance are given by

1
e im0 (%)

n

) 2 (9 1
v, (kT5) =1 - 3y loek) + o (5 (4.8)

respectively.

4.4 Bias-Adjusted MLE pys;+ of y When 6 is Unknown

For given x satisfying y < x(;y and x(,) < d, the likelihood function of y and 0 is
given by

L(y.0:x) = bn(e {Ha(x)]exp[@Zu(x,]. (4.9)

Let py . and HM 1 be the MLEs of y and 6, respectively. From (4. 9) it is seen that
7mL = Xqy and L(X (1), GML, X) = supyep L(X(1y, 0; X), hence 9ML satisfies the
likelihood equation

1 - N
= 2 u(X0) = 1 Onr, X)) =0, (4.10)
i=1

where X = (X, -+, X,). Let A, = X,(0, y) and U= «/)»zn(éML — 0). Then, we
have the following.

Theorem 4.4.1 For a oTEF £, of distributions having densities of the form (1.7)
with a truncation parameter y and a natural parameter 0, let Pyp+ = X{) be a
bias-adjusted MLE of y such that

e x 1 N 1 dk a,\l N A
= 1 — ~ ~_ A ~ =~
A T C A A AR
N AN 2
1 2k 2 ok
-—— (=)L, (4.11)
2k2,n2 | 302 g\ 96

where k= k(Our, X)), 97k/8607 = (87 /00)k@Oyr, X)) (G =1,2), A, =
AjOur, X)) (G =2,3) and 921 /3y = (3/3y)71Bur, X1y). Then, the stochas-
tic expansion of Tj} == n(X{{) — y) is given by
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g g L1 (3k)[0+ 1 (1(ax1)+ ,\3)]
O = S T 2 Jaon \ 90 Vion \k \ay ) " 2,
(2 ek T 3%k 231«2(02 1)
— — 0 —— —_—— — — f—
i \oy %) 0T o0 1962~ k \ a6

1
+0, (m) . (4.12)

where k =k(0,y), Lj =A;(0,y) (j =1,2,3), and the second-order asymptotic
mean and variance are given by

1
Eoy [T5] =0 (—n) : (4.13)

o 2 (9 1 > 1
Vo, (KT) =1~ kn (ﬁlogk) + E(u(y) — M)+ 0 (m) . (419

4.5 Second-Order Asymptotic Loss of yysp
Relative to )71?4 I

From the results in previous sections, we can asymptotically compare the bias-
adjusted MLEs 74, and Py 7+ of y using their second-order asymptotic variances
as follows.

Theorem 4.5.1 For a oTEF &2, of distributions having densities of the form (1.7)
with a truncation parameter y and a natural parameter 0, let J?f,,L* and Py be
the bias-adjusted MLEs of y when 6 is known and when 0 is unknown, respectively.
Then, the second-order asymptotic loss of Yy = X (1) relative to )?;}L* = X{ is
given by

N R —MP
(e Phie) = n Vi OT5) = vy (13 )} = 2R oy ans)

asn — oo.
The proof is straightforward from Theorems4.3.1 and 4.4.1.
Remark 4.5.1 Ttisseenfrom (1.6) and (4.15) that the ratio of the asymptotic variance

of kT 7} to that of kT(j, is given by

{u(y) — )2 +0(1)'

Ry(Pure, Vo) = 1+ e
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From the consideration of models in Sect. 1.1, using (1.5), (1.6) and (4.15) we see
that the difference between the asymptotic models M (yy+, 0) and M ()?1@ 1+ 0) s
givenby d, (Pyr+, Vigp+) Of Ry(Pyrs, Vi) up to the second order, through the MLE
of y.

Remark 4.5.2 The second-order asymptotic loss (4.15) of Py« relative to 5y,
coincides with (2.8) of the bias-adjusted MLE éM .+ of 6 when y is unknown relative
to the MLE OA}(,, . of 0 when y is known, which seems to show a dual relation on the
second-order asymptotic loss. It is noted that the standardization is necessary in the
comparison.

Remark 4.5.3 Suppose that X;, X, ---, X,, --- is a sequence of i.i.d. random
variables according to an upper-truncated exponential family &7/ of distributions
with densities of the form

a(x)eOM(x)

fx;6,v) =1 b@,v)
0 otherwise

forc <x <v <d,

with respect to the Lebesgue measure, where b(6, v) is a normalizing factor. Letting
Y, =—-X; i=1,2,---), and returning to the case of the lower-truncated expo-
nential family with (1.7), we may obtain similar results to the above in a problem
of estimating an upper truncation parameter v in the presence of 6 as a nuisance
parameter.

4.6 Examples

Examples on the second-order asymptotic loss of the estimators are given for a lower-
truncated exponential and a lower-truncated normal, Pareto, a lower-truncated beta,
and a lower-truncated Erlang distributions, which are treated in Chap. 2.

Example 4.6.1 (Lower-truncated exponential distribution) (Continued from
Example 2.7.1). Let c = —00, d = 00, a(x) =1 and u(x) = —x for —oo < y <
x < oo in the density (1.7). Since b(0, y) = e’GV/Q for0 € ® = (0, 00), it follows
from (4.1) that A, (0, ¥) = —y — (1/6),12(8, v) = 1/62,13(8, y) = —2/63. Since,
by (4.2),k(8, y) = 0, itis seen that (3/90)k(0, y) = 1, (32/96%)k(6, y) = 0. When
6 is known, it follows from (4.5) that the bias-adjusted MLE p¢,,. of y is given by
Xfl) =Xq) — (On)~'. When 6 is unknown, it is seen from (4.10) that the MLE Our
of 0 is given by éML = 1/()_( — X (1)), hence by (4.11) the bias-adjusted MLE ;-
of y is given by

X=X Ll (X — X))
1 — A1) n n2 ) -


http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_1

70 4 Estimation of a Truncation Parameter for a One-Sided TEF

From Theorem4.5.1, it follows that the second-order asymptotic loss of Py« = X Z‘l*)
for unknown 6 relative to 5. = X (1) for known 6 is given by d, (Pmrss Do) =
14 o(1) as n — oo. Note that the loss is independent of 6 up to the order o(1). A
similar consideration on the ratio R, (P71, )7,3, 1.+) to Example 2.7.1 is done.

In this case, we have the UMVU estimator

% — Xy — — = XY =
Yumvu = X1 on (1) = YmrLr

when 6 is known (see Voinov and Nikulin (1993)). When 6 is unknown, we obtain
Y =X ! X =Xm)
Yumvu = A1) — 1)

hence

ymLs = X{) = Yumvu + — (X — Xq.

1
n*(n—1)

Then Ey , (Pur-) =y + 6~ 'n~? for any fixed n, hence P+ is not unbiased for y.
Since the variances of 7}, and Pyyvy are given by

A 1 . .
vy (VLGIMVU) =22 & vy (9”V3MVU) =1
and
Vo (J;UMVU) = ! , e V (QnﬁUMVU) =1+ ,
’ 62n(n — 1) Y n_1

we have the second-order asymptotic loss of yy vy relative to )9[9] MVU

dy ()7UMVU, )?8ny) =n {VG,y(Qn(J;UMVU - J/)) -V, (9”()73Mvu - V))}
=140()

asn — OQ.

Example 4.6.2 (Lower-truncated normal distribution) (Continued from Example
2.7.2).Letc = —00,d = 00,a(x) = e~ /?andu(x) = x for—oo < y < x < coin
the density (1.7). Since b(0, y) = @0 — y)/¢d(0) for6 € ©®@ = (—o0, 00), itfollows
from (4.1) that

ar (0,
MO, y) =0+ p@ ), #=(0—y)p(9—y)+p2(9—y),

M0, y)=1—(0—y)p® —y)—p*@6 —y),
20, 7)=p0 —y) {2070 —y) +30 —y)p© —y) + (0 —)* — 1},
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where p(t) := ¢ (1)/® (1) with @ (x) = [*__ ¢(1)dt and $(t) = (1/5/2m)e~""/? for
—00 < t < 00. We also have from (4.2)

_ ok®,y) ,
k@,y)=p —vy), o8 = (O =)o@ —y)—p 0 —vy),
3%k,
% =pO = {20°0 — ) +30 —y)p@® —y) + 6 —y)* 1},
k@, y)

5 O —y)p® —y) +p*O —y).
y

When 6 is known, it follows from (4.5) that the bias-adjusted MLE )?131 1= of yis

1

X5 =Xn — —————.
W=D 00 = Xan

When 6 is gnknown, it is seen from (4.10) that the MLE éML of 6 satisfies the
equation p(Oyr — X)) = X — Ou1, hence the bias-adjusted MLE Py« of y is

1 N 1— (X — X)X — X0+ X —0y1)
n(X —0yr) 202X — Oy {1 — (X — Oy)(X — X))

Xt =Xa -

From Theorem4.5.1 it follows that the second-order asymptotic loss of Py« (= X )
for unknown @ relative to pf,,.(= X (1y) for known 6 is given by

0—y+p0O—y)*
1= —y)p@—y)—p*O—y)

dy (Pmre: Piyp) = +o(1)

as n — o0. A similar consideration on the ratio R, (Y-, )?AZ 1+) to Example 2.7.2
in Sect.2.7 is done.

Example 4.6.3 (Pareto distribution) (Continued from Example 2.7.3). Let ¢ =
0, d =00, a(x) =1/x and u(x) = —logx for 0 <y <x < oo in the density
(1.7). Then b(8, y) = 1/(0y?) for 8 € ® = (0, 00), and it follows from (4.1) that
k@,y)=06/y, 9k/36 = 1/y and dk/dy = —6/y>. When 6 is known, it follows
from (4.5) that the bias-adjusted MLE )7}?“* of y isgivenby X7}, = {1 — On) "X,
hence by (4.7) and (4.8)

\ 1 0 . 2 1
E, (T3] =0 =) W ;T(l) =1+ -+0|— (4.16)

as n — 0o, where T(*;) =n(X ?1) — y). On the other hand, in the Pareto case, it is
known that the UMVU estimator of y is given by )98 vy = X{y) and its variance is
v, (ﬁgMVU) = y2/{n(On — 2)} (see, e.g., Voinov and Nikulin (1993)), hence
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v, (225 1y 2o .17)
v yyUMVU S on—2 On n2)’ '

which is equal to (4.16) up to the order 1/n as n — oo.

Next, we consider the case when 6 is unknown. Since 8%k/36% =0, A =
—(1/0) —logy, Ay =1/02, A3 = —2/6% and 9r,/dy = —1/y, it follows from
(4.11) that the bias-adjusted MLE y,,,+ of y is given by

X = [1 (1+ 1) ! ]X
- - - ) 1)
o n Omr .

where 0y, = n/ > log(X /X)) from (4.10). Since (3/dy) logk = —1/y, we
have from (4.13) and (4.14)

Eo, [T] =0 L Va.y QT** —1+l 1+z +0 1
0.y L1 A VRl A 9 )
(4.18)
as n — 0o, where T(’f)k = n(Xfl*) — ¥). On the other hand, in the Pareto case, it is
known that the UMVU estimator of y is given by

Xqy

Yomve = Xay — —————
(n — 1Oy

and its variance is

V2

Vo, (Pumvu) = i —1)@n—2)

(see, e.g., Voinov and Nikulin (1993)), hence

. s " M) vo(L). @
A\ ) T W hen—2 - a8 )

which is equal to (4.18) up to the order 1/n as n — oo. It also follows from (4.15),
(4.16) and (4.18) that the second-order asymptotic loss of Py (= X (])) relative to

yML*(_ X{1)) is given by

d (Pures Vi) =1+ o0(1) (4.20)

as n — oo. Note that the loss is independent of 8 up to the order o(1). A similar
consideration on the ratio R, (Yp/1+, 37,?,, ;) to Example 2.7.1 is done. From (4.17) and
(4.19) it follows that the second-order asymptotic loss of yy vy relative to )73 Myy 1S
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. N no no .,
dn (Pumvus Yomve) 2 =11V, 7VUMVU -V, 7VUMVU

n’o 1
= =14+0\(-),
n—1)no —-2) n
which coincides with (4.20) up to the order o(1) as n — oc.

Example 4.6.4 (Lower-truncated beta distribution) (Continued from Example
274).Letc=0,d=1, a(x) =x"",and u(x) =logx for 0 < y < x < 1 in the
density (1.7). Note that the density is uniform when 6 = 1. In Example 2.7.4, we have
b@,y) =011 —y? ford € @ = (0, oo) and the formulae of 1; (8, y) (i = 1,2)
and oA (@, y)/9dy. We also obtain

2 (logy)’y’(1+y?) oy’!
MO, y)=—=— , k@,y) = ,
30, v) I d—77)3 ©.v)=1_ 0
ok y''d -y’ +6logy)
30 (1 —y9? ’
3%k (logy)y’! 0 2(logy)y**~! o
W = W{Z(l -V )+910g)/} + W(l —-VY +910gj/),
ok 0y’' O —1+y"")
Iy (1 —y?)? ’
hence, from (4.5), (4.6), and (4.8)
1—Xx¢
~6 * [0
=X =X — ,
YmL ) 1) QXfljln
N 1—y? 6—1+y%! 1
Toy=Ta) — 0yi1 T gyiin Tay + O (,ﬁ ’
. 200 —1+y%hH 1
V, (kT3 =1 — i +0(=).

when 6 is known. If 6 is unknown, in a similar way to the above, from (4.11), (4.12)
and (4.14) we can obtain the formulae of Py« (= X 2*1*)), T (‘;’;‘ and Vj ,, (k T(’f)‘). Further,
it follows from (4.15) that the second-order asymptotic loss of 7+ relative to PJ, .

is given by

(1 —y? +6logy)?
(1—y%2? —y%@logy)?

dyPuares Digps) = o(1)

asn — oQ.

Example 4.6.5 (Lower-truncated Erlang distribution) (Continued from Example
275).Letc=0, d=00, a(x) =x/"', and u(x) = —x for 0 <y < x < 00 in
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the density (1.7), where j =1,2,.... In Example 2.7.5, we have for each j =
L,2,...,b;0,y) = f},ooxjfle"gxdx foro € ® = (0, co0) and the formulaec of 1 ;; =
(Bi/aei)logbj(é’, y)(i =1,2,3), 9A;1(0,y)/dy and k;(6, y). Let j be arbitrarily
fixed in {1,2,...}. Since 3b; /390 = —b;, it follows that

ok;  yi~le
=Y b — b)),

0 b

92k : yj71679y

8921 =0 {bj(¥*bj = bjs2) 4+ 2bjs1(bjrr — yb))},
J

Ak, yl2e P o

L= —1=0p)b;+y'e "},

Iy bj

where k; = k;(@,y) and bj; =b;;(0,y) (i =0, 1,2), hence, from (4.5), (4.6)
and (4.8)

X0b (0, X 1))
~0 ¢ i, A@
VML* - szl) - X(]) -

— ,
X‘(’l) n
eeybj eeybj eeybj(j —1-0y) 1
T(”;) =Ta) — i + i [ 7 - 1] Ty + O, (ﬁ) ;
. Zegybj eoybj(j —1-0y) 1

when 6 is known. If 0 is unknown, in a similar way to the above, from (4.11), (4.12)
and (4.14) we can obtain the formulae of py;;« (= X z‘l*)), T (’j’)* and Vj ,, (k T(’j’)"). Further,
it follows from (4.15) that the asymptotic loss of P+ relative to Pf, . is given by

~ ~0 1 bi+l :
Ay (Pmrs Vys) = — | —=—— —v ) +o()
asn — oo, where Aj, = (bj42/b;) — (bj+1/b;)*.

A similar example to the above in the lower-truncated lognormal case in Example
2.7.6 is reduced to the lower-truncated normal case in Example 4.6.2.

4.7 Concluding Remarks

In a oTEF of distributions with a truncation parameter y and a natural parameter
0, we considered the estimation problem of y together with a bias-adjustment in
the presence of a nuisance parameter 6. Using the stochastic expansions of the bias-
adjusted MLEs )91?,1 1~ and Yy of y when 6 is known and when 6 is unknown,
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respectively, we obtained their second-order asymptotic variances, from which the
second-order asymptotic loss of p,,;+ relative to )?1{'} .- was derived. As is seen from
Remark 4.5.1, the second-order asymptotic loss coincides with that of the bias-
adjusted MLE ;- of 6 when y is unknown relative to the MLE 67,, of 6 when
y is known, which means that the invariance on the second-order asymptotic loss
holds even if the exchange of an interest parameter for a nuisance parameter is done.
In the next chapter, the corresponding results to Theorems4.3.1, 4.4.1 and 4.5.1 are
obtained in the case of a two-sided truncated exponential family of distributions with
two truncation parameters y and v and a natural parameter 6 as a nuisance parameter,
including an upper-truncated Pareto distribution which is important in applications.

4.8 Appendix C

Before proving Theorems4.3.1 and 4.4.1, we prepare two lemmas.
Lemma 4.8.1 It holds that

2o 2 6 1
Eor T3) = a7y T k@ m A0 O (nz) 4.21)

asn — 0o, where k(0, y) and A, y) are given as (4.2) and (4.3), respectively.
The Eq. (4.21) can be obtained by straightforward calculation from Lemma 2.9.1.

Lemma 4.8.2 Ler U = /2on Oy — 6). Then, the asymptotic expectation of U,
U2, and UTy are given by
1
, (4.22)
n./n

o, (0) = ——— |1 (20) s 221 o
T T aan Lk oy ) T 2a,

Eo,(UH)=1+0 (%) , (4.23)
E (ﬁT)—; (y) — r 3 0( ! ) (4.24)
0,y (1)_km[uy_l_2k2]+ nﬁ s .

where A; = X;0,y) (j =1,2,3)and k = k(9, y).

Proof The Egs. (4.22) and (4.23) are given as (2.22) and (2.24), respectively, in the
proof of Theorem2.4.1. Since, by Theorem2.4.1,

Oy b 1 (axl) Lo (1)
=7 — - -— 1 -1,
232 Van \dy R
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and, by Lemmas2.9.2 and 2.9.3,

1 e 1
Eyy(Z:1Tqy) = ~ [M(V) Mty (3)] +0 (nﬁ) ,

+ 0 (l) , (4.25)
n

%

Ep,(ZiTa)) =

| ==

it follows from (4.21) that

~ 1 A 1
Ey,(UTy)) = PN IM(J/) — A= 2—)?2] +0 (nﬁ) ,

hence (4.24) is obtained. Thus, we complete the proof.

The proof of Theorem4.3.1 By the Taylor expansion, we have from (4.2) and (4.3)

. k@, T, 1
b = k0, X)) = k0, ) + XV T (—2) . @26
ay n n
ke Ok Ak, y) 1
—=—0.Xq) = o,{-). 4.27
oy 8)/( ) by + 0, (n) (4.27)
A 1
Ag =A@, X)) =A@, y) + 0, (;) . (4.28)
Since by (4.26)

L_L[, (kT , (]
ky Kk k\dy) n P\n2) |’

substituting (4.26)—(4.28) into (4.5), we obtain from (4.3)

T =n(X5, —y) =n(X yo ] ok ) 1 A
=n —_ =n —_ —_ = = —_— —_——
0 m—Y m -7 PRI e

=T<1)—l—lA+L(ilogk) (T(l)_l)"i'o (i)
k n kn \ 9y k P\ n?
:T(l)_l+i(ilogk)T(1)+0 (i)

k= kn \ 93y P\n2)’

where k = k(6, y) and A = A(O, y). Hence, we get (4.6). From (2.16), (4.3) and
(4.6), it is easily seen that (4.7) holds, i.e., E),(T(ﬁ)) = O0(1/n?). From (2.16), (4.6)
and (4.21), we have

1 1 4A 2 (@ 1
E},[Tm]:ﬁvLEvLE 5, ek ) +0 (7). (4.29)
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where k = k(0, y) and A = A(6, y). Hence, by (4.3) and (4.29)
1 2 0 1
% 2
E T3] =5 -5 (Elogk) +0 (ﬁ) : (4.30)

From (4.7) and (4.30), we get (4.8). Thus, we complete the proof.
The proof of Theorem4.4.1 By the Taylor expansion, we have

k=k (éML, X(l)) =k (9ML, v+ (1))

e (Yo L (Y gy (2K 0240, (-
Sian \ 80 n\ay) O 2x,n 062 "\nyn)

Since

11 1 kN o L (0K, L (9K g2
£k k2Jaan \ 90 2n\oy ) V" 2%2on 392

)‘j = )‘j (éMLv X(l)) = )\.j(@, )/) + Op (7

Vk 9k
967 967
ok ok ok

brrr, X ) Zeo.m+o0,(—),
P BV(ML ) 8)/( Y) p( n)

A=A (GML, X(l)) =A@0,y)+ 0p (

3k 1 .
(Owe- X)) = 55501 +0, (=) (=12,
1

it follows from (4.11) that

TT)k = ”(X(l) Y)

R N DU (ak)[ L] (1(ax1)+/\3)]
I R =N vl Y Jion \k \ oy 20
1 [0k 1 1 2k 2 (3k\?] /-
— (=) (1) - - 2= 0% —1
k2n (By)( M k)+2k2A2n [892 k (ae) }( )
0, 431
" (m/’) @3

where k = k(0,y), A=A@®,y),and 1; = A;(0,y) (j = 1,2, 3), which derives
(4.12) from (4.3). From (4.25), (4.31) and Lemmas 2.9.1, 4.8.1 and 4.8.2, we obtain
(4.13) and

>
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v (**)_1+4A+ 1 [0k 2+ 2 (kY (] 432)
Cr VO T T e T kon \ 06 k*n \ oy nyn)’ )

Since

9
ﬁlogk(& ) =uly) — 20, y),

it follows from (4.3) and (4.32) that

Vo, (T5) ! 2 (2 100k + ! (uy)—r)>+0 !
==—-———|—lo u(y) — —),
Sr Vo k2 k3n \ 9y g k2Aon Y : n/n

which shows that (4.14) holds. Thus, we complete the proof.
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Chapter 5

Estimation of a Truncation Parameter
for a Two-Sided TEF

The corresponding results on maximum likelihood estimation of a truncation para-
meter together with a bias-adjustment to the case of oTEF in the previous chapter
are obtained in the case of a two-sided truncated exponential family (tTEF) of dis-
tributions with two truncation parameters y and v and a natural parameter 6 as a
nuisance parameter.

5.1 Introduction

In this chapter, following mostly the paper by Akahira and Ohyauchi (2016), we
obtain the corresponding results to the case of oTEF in the case of a tTEF of distrib-
utions with lower and upper truncation parameters y and v and a natural parameter
6 as a nuisance parameter. In Sect.5.3, we obtain a bias-adjusted MLE ﬁif;* of v
and derive its stochastic expansion and second-order asymptotic variance when 6
and y are known. In Sect.5.4, we get a bias-adjusted MLE 7, of v and derive
its stochastic expansion and second-order asymptotic variance when 6 is unknown
and y is known. In Sect.5.5, we obtain a bias-adjusted MLE Dy« of v and derive
its stochastic expansion and second-order asymptotic variance when 6 and y are
unknown. In Sect. 5.6, we get the second-order asymptotic losses of D7, . and Dy«
relative to f)i,}’i* and in Sect. 5.7 give examples on a two-sided truncated exponential,
a two-sided truncated normal, an upper-truncated Pareto, a two-sided truncated beta
and a two-sided Erlang distributions. In particular, the results of Monte Carlo simu-
lation discussed by Zhang (2013) from the viewpoint of minimum variance unbiased
estimation in the upper-truncated Pareto case are theoretically clarified. Further, in
Appendix D, the proofs of theorems are given.
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5.2 Preliminaries

According to Chap. 3, we have the formulation as follows. Suppose that X, X, ...,
X, ... is a sequence of independent and identically distributed (i.i.d.) random vari-
ables according to Py, , having the density (1.9), which belongs to a tTEF ;. Then,
we consider the estimation problem on y or v in the presence of nuisance parameters
6 and v or y, respectively. For any y, v € (c, d), logb(0, y, v) is strictly convex and
infinitely differentiable in & € ® and

a/
Aj(0,y,v) = 307 logb(6,y,v) (6.1
is the j-th cumulant corresponding to (1.9) for j = 1,2, ---. Let
k@, y,v) =a®e™™ /b@, y,v), (5.2)
~ 1 a
A, y,v) = ——m |—10 k@, y, v)] (5.3)
P ey Ly T

which are also defined in Theorem 3.4.1 and Lemma 3.9.1, respectively.

In the subsequent sections, we obtain the bias-adjusted MLE A,ewi* of v when 6
and y are known, the bias-adjusted MLE vM 1+ of v when 6 is unknown and y is
known, and the bias-adjusted MLE Dy« of v when 6 and y are unknown. Deriving
their stochastic expansions and calculating their second-order asymptotic variances
based on them, we get the second-order asymptotic losses of Dy« and D}, . relative

~0,y
to V.

5.3 Bias-Adjusted MLE » p? % L* of v When 6 and y
are Known

For given x = (xi,...,x,) satisfying ¢ < y < xq) = minj<j<, x; and x(,) =
maxj<i<, X;i < v < d, the likelihood function is given by

Lo Y x) = b"(e IHa(x, ]expl@Zu(x,-)],
i=1

when 6 and y are known. Then, the MLE 13,9‘/2 of vis given by X,y := max;<j<, X;.
Letting T(,) := n(X() — v), we have the following.

Theorem 5.3.1 For atTEF &, of distributions with densities of the form (1.9) with
two truncation parameters y and v and a natural parameter 0, let f)fw’ 1+ = X{, be
a bias-adjusted MLE of v such that
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1
X?n) =X+ 3 ) 5.4

kgyyl”l

where /EQ,V =k, v, X(n))- Then, the stochastic expansion ofT’;) = n(XE*n) —V)is
given by

1 1 0 ~ 1
T =T = —— | —logk ) T, o,|—1), 5.5
) ()+k kn(avog)<>+ ”(n2) (5.5)

where k = k(6, y, V), and the second-order asymptotic mean and asymptotic vari-
ance are given by

1
E\[T,]l=0 (;) . (5.6)

5 2 (8 - 1
Vo (kTE) = 1+ = (— logk) +0 (—) , (5.7)
n

v n?

respectively.

5.4 Bias-Adjusted MLE v ;. of v When 6 is Unknown
and y is Known

In a similar way to Remark 4.5.3 in Chap. 4, we consider the case when 6 is unknown
and y is known. Suppose that a random variable X has the density (1.9). Letting
Y = — X, we have

WM ol <8 <y<n<-—c,

fr(y:6.8.n) = [ bon(®.9) _ (5.8)
0 otherwise

as adensity of ¥, where ag(y) = a(—y), uo(y) = u(—y), bo, (8, 8) = b(0, —n, —9),
6= —v,andn = —y.WeputYi = —Xi (l = 1,2, .. -),Y(l) = —X(n),Y(n) = —X(l)
and

o/
0 _
Ay ®,8) = 307 log by, (6, 8) (5.9)
for j = 1,2, .... Since n is known, it is seen from (5.8) that the estimation problem

on v turns to that on § in the oTEF of distributions which is treated in Chap.4.
Let 8}, = 8,,,(Y) and 6}, = 6, (Y) be the MLEs of § and 6 based on Y :=
(Y1, ..., Y,), respectively. From (5.8), it is seen that §7,, = Y(;, and 6], satisfy the

likelihood equation
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1 n
r_zzuO(Yi) ,,1(9ML,Y(1)) =0,
i=1

that is, the MLE 6, = 6!/, (X) of  based on X := (X1, - - , X,,) satisfies
I ~
=D uX) =M@y, Xn) =0. (5.10)
i=1
Let
ao(S)e(’”O(‘s)
koy (8, 8) = ———, (5.11)
o boy (0, 8)
Aoy (6, 8) ! [81 k(98)] (5.12)
opt,0) '= ———— 0g Ko .
! K3, 6.0) !
Note that
aoy’(8) ,
1ogk0,7(9 §) = uf(8) + ko (0, 8). (5.13)

a4 ap(8)

Here, we have from (5.9) and (5.11)

Koy (6, 8) ag@)e™®_ a()e™ RO, v, v) =k, 0, ) (5.14)
= = = V) =: V), .
ot boy(8.8) b6, 7, v) Y v

Ay (0., 8) = (07 /067) log by, (6, 8) = (37 /067) log b(6, v, v)

=1j0,y,v) =4,;0,v) (j=12,...). (5.15)
Let T(]) = I’Z(Y(l) — 6), k()r] = kOn(e 8) )V(;;] = )“21(9 8) (.] = v v o ')’ and
Uoy = Agzn(éML — 0). Then, we have the following.

Lemma 5.4.1 For a tTEF of distributions having densities of the form (5.8) with
truncation parameters 5 and n and a natural parameter 0, let 8! ML = Y(1) be a
bias-adjusted MLE of § such that

1 1 ok 1930 20
Yo =Yn — =+ 555 > T+
kogn  k3,30,n2 \ 06 kon \ 98 200,

~ 2
B 1 82](077 . i akon (5 16)
2330 | 00T i, \ 00 ) | '
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where 120,, = kon(éML7 Yuy), afléon/aef = (3j/39j)k0rz(éMLv Yoy (G =1,2), 5‘?71 =

A Our. Ya)(j = 2.3), 929,/08 = (3/08)19,(Omr. Y1) Then, the stochastic
expansion of T(,, := n(Y(,, — 9) is given by

T, =T !
1 — 4 kOn

1 ok . 1 1 (920 A0
o () e (5) 0
k(%n )‘9;2" kgzn On 2)‘172
1 9 1 8%k 2 (dkoy\2| /-
+ —(—=1ogkoy ) T11) + ——— § —2 - = (=2 (Uz—l)
Koptt (aa °8 0”) T2 10n { 902 ko ( 20 ) On

1
+0, (m) . (5.17)

and the second-order asymptotic mean and asymptotic variance are given by

Egs [T(’l)] =0 (%) , (5.18)
Vo.s (koyTy) =1 — # (;—5 log kon) + )\2& {uo(8) =2, )’
Lo ( ! ) , (5.19)
n./n
respectively.

The proof is omitted, since Lemma 5.4.1 is essentially same as Theorem4.4.1. Let
Xy2(0,v) = 220, y,v) and U, = \/A,on(0y;; —6), where A, = A,2(6, v). Since
Y1y = —X@), from (5.11)—(5.16), we have the following.

Theorem 5.4.1 For (TEF &7, of distributions having densities of the form (1.9) with
truncation parameters y and v and a natural parameter 0, let ), = X Zn) be a
bias-adjusted MLE of v such that

_ 1 1 ok 1 [ 9x A
X0y =X+ +3 Ry T( yl) v3

kyn lg}z,iyznz 3¢ Igy v 202
n a2
1 0%, 2 [ok,

v I O (5.20)
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where
k, =k, Omrs X)) = kOur, v, X)),
ok L1867 = (37 /367)k, Orr, X)) = (37 /867)YkOmr, v, X)) (G =1,2),
Ay =0y Our. X)) = 2;Our. v, Xw) (j =2,3),

35»;/1/3‘) = (3/3V))\y1(9AML, X)) = (3/8v)7 Our, v, Xwy)-

Then, the stochastic expansion of T (n) n(X (Tn) — v) is given by
+ 1
Ty =T + =

1
o)

where k, =k, (0,v) = k@, y,v), hyj = 2,j(0,v) =A,;6, y,v) (j = 1,2,3), and
the second-order asymptotic mean and asymptotic variance are given by

. 1
E; [T 1=0——), 5.22
0, [ n)] (}’l\/ﬁ) ( )
- 2 0 ~ 1 1
VoulkyT) ) =14+ =— ( — logk — 21240 ,
0, ( y (n)) +kyn (81} 0og )/) + yzl’l{u(v) yl} + (nﬁ)
(5.23)
respectively.
5.5 Bias-Adjusted MLE b7+ of v When 6 and y
are Unknown
For given x = (x1, ..., x,) satisfying ¢ < y < x(;y and x(,y < v < d, the likelihood

function of 6, y and v is given by

L©,y,v;x):= bn(e o IHa(x, ]exp’ezu(x,-)]. (5.24)
’ i i=1
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Let Oyr, Pwr, and Dy be the MLEs of 6, y, and v, respectively. Then, it fol-
lows from (526) that );ML = X(l), \AJML = X(,,), and L(OML, X(l), X(n); X) =
SUpgee L6, X(1y, X(ny; X); hence, éM 1 satisfies the likelihood equation

1 — A
- > u(Xi) = 2 @ur. Xy Xany) =0,
i=1

where X = (Xi,..., X,). Let A, = A,(0, y,v), T(1y := n(Xq) — y) and U=
N/)»211(@1“ — 0). Then, we have the following.

Theorem 5.5.1 For a tTEF &, of distributions having densities of the form (1.9)
with truncation parameters y and v and a natural parameter 0, let Dy« = X ) be
a bias-adjusted MLE of v such that

I 1 1 ak\ |1 for ) 1(0% A3
X =Xw + 3=~ = 30 1i\a, )\ )T o
kn  k2hon? k\ov ) k\ov 22

2

1 ok 1 2k 2 [ ok
+ - N

~

- 5.25
k2kn2 \ 9V ( :

s |00 f\ee) |
where

k=k(OyL, Xy, X)), k= k(OyrL, Xy, X)),
3'k/067 = (87 /301)kBur. Xy, X)) (j = 1,2),

ak/dy = (3/3y)k(Oumvr, Xy, X)),
ahi /3y = (3/3Y)M Our. Xiys X)), 3h1/3v = (3/80)21 Ourr. X1ys X))
A =0 Our. Xy, X)) (G =2.,3).

Then, the stochastic expansion of T\ == n(X() — v) is given by
S +1 1 ok [0+ 1 [1 (a,\l) 1 (axl)Jr A H
W T Ray/aon \ 96 Jian [k Nay ) & \av ) " 2
1 [0 - 1 /90 ~
—— |\ —logk ) | T, — — — | —logk ) T,
kn(ay g)((l) kn(av g)()

1
k
1 2k 2fak\ 1
-— 1 _—_Z= 0’-v+o,|—), 5.26
T | 552 k(3) 0 =1+ ”(nﬁ) (5.26)
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where k = 12(9, v,V), A =A;00,y,v) (j =1,2,3), and the second-order asymp-
totic mean and asymptotic variance are given by

sk 1
Egy [Tyl = O (m) ) (5.27)

. 2 (9 . 1 1
Vo, v kT =1+ — [ —logk ) + — —mP+o0|l—), (528
KT = 14 = (8v og )Hzn{“(") P+ (nﬁ) (5.28)

respectively.

5.6 Second-Order Asymptotic Losses of v;7+ and 91"'4 e

: ~0 24
Relative to v ML+

From the results in previous sections, we can asymptotically compare the bias-
adjusted MLEs 5,7, 97, ,., and Dy of v using their second-order asymptotic
variances as follows.

Theorem 5.6.1 For a tTEF &, of distributions having densities of the form (1.9)

. . ~by sy

with truncation parameters y and v and a natural parameter 6, let U} ., Vy, ., and
Dy« be the bias-adjusted MLEs of v when 6 and y are known, when 0 is unknown
and y is known, and when 6 and y are unknown, respectively. Then, Dy = X )

and vy, = X In) are second-order asymptotically equivalent in the sense that
dy Oy, Vi) = nfVa, W RT5) = Vi, (k, Tl = 0o(1)  (5.29)

. ~ A . ~0,
asn — 00. The second-order asymptotic losses of Vy 1~ and v,’(,l L relativeto ), =
N .
X, are given by

N N 7 kok 7k u) — i >

dy Dy, D57 ) = n{Vo.y o (KT — Vo (kT )} = % +o(1) (5.30)
. . ~ ~ u(v) — r)?

dy (0,0, D07 = n{Vo.o(k, T))) — Vo (RT})} = % +o(1) (5.31)

as n — 0o, respectively.

The proof is straightforward from Theorems 5.3.1, 5.4.1, and 5.5.1, since Izy =
k,(0,v) =k@,y,v) =kand A,; =1,;0,v) =1;0,y,v)=1; (j =1,2).
Remark 5.6.1 1t is seen from (1.6) and (5.30) that the ratio of the second-order

asymptotic variance of IET(’; to that of IET(Z) is given by

N ~0y 1 2 1
Ry(Oprrs, Vyyps) = 1+ﬂ{u(v)—)»1} +o0 ~)
2
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and similarly from (1.6) and (5.31)
~0,y 1 2 1
R”(VML*’UML*)_ 1+)»2_n{u(V)_M} +o0 -

From the consideration of model in Sect. 1.1, using (1.5), (1.6), (5.30), and (5.31),
we see that the difference between the asymptotic models M (D, 0, y) and
M(f)}f“_*, 0,y) is given by d,(Dyr+, ﬁfw"z*) or R,(Vyr+, f’;}}i*) up to the second
order, through the MLE of v. In a similar way to the above, the difference between
M(©Y,,..6,y) and M(D7,.6,y) is given by d,(D},,.. D57 .) or Ry (D,,.. D7)
up to the second order.

5.7 Examples

Examples on the second-order asymptotic loss of the estimators are given in a two-
sided truncated exponential, a two-sided truncated normal, an upper-truncated Pareto,
a two-sided truncated beta, and a two-sided truncated Erlang cases, which are treated
in Chap. 3.

Example 5.7.1 (Two-sided truncated exponential distribution) (Continued from
Example 3.7.1). Let ¢ = —o00,d = o0, a(x) = 1, and u(x) = —x for —oo <
y < x < v < oo in the density (1.9). Since b(8, y,v) = (e7% — e79")/6 for
0 € ® = (0, 00), it follows from (5.1) that

0 —ye % fve® 1 —yeft4v 1

M =—logh0,y,v) =——"— - = —n— — —| 5.32
1= g log ©,y,v) g —— ) e 7 (5.32)

32 V2670y _ v2e79v ()/879}/ _ vefev)z 1

)\.2 = W IOg b(ea V, V) = 679)/ _ e*@\) - (870]/ _ e—@u)Z 0_2

£ _ 12 g2
_ U : (5.33)
02(e=¢ — 1)?
~ 96791) 9

k@,y,v) = = (5.34)

e —e v et -1’
where & = 6(y —v). Hence, by (5.4) and (5.34), the bias-adjusted MLE f)ﬁ,}“ of vis
Xy =X + 5 {ee(x(”’ 7 -1},

when 6 and y are known. It also follows from (5.7) and (5.34) that

2 1
Vo (kTG =1 — —e9<” 40 ( 2)
n


http://dx.doi.org/10.1007/978-981-10-5296-5_1
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http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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Next, we consider the case when 6 is unknown and y is known. Then, it follows
from (5.10) that the MLE 9}(,[ .. satisfies the likelihood equation

yeéX/IL(X(n) -yY) _ X(n)

X = AT + 7
where X := (1/n) X7, X;. Since
Ko,y = (1(+_‘?ei) P oy = e(ﬁjjm{@ +2e7 £ -2)
W30, y.v) = —2(9, y.v) = —9% [2+ W] :
Vg, ym= 00 2 (+_i)e__i)§ L

it follows from (5.20) and (5.32)—(5.34) that the bias-adjusted MLE 77 Mir = =X/ )

is obtained. When 6 and y are unknown, the MLE GM 1. of 9 satisfies the likelihood
equation

X(l)eéML(X(n)_X(l)) _ X(n) 1

X = - —.
e Xwm—Xw) — 1 O

In a similar way to the above, the bias-adjusted MLE Dy« = X E‘:) is obtained from
(5.25) and (5.32)—(5.34). Hence, it follows from (5.29)—(5.31) that d,, (Vs 1.+, f)}(,,L*) =
o(1) and

- 0, 0, {(14+8)eF — 1}
dy(Vpp+, UM)L*) = dn(VML*v VMJZ*) = (e . 1)2 52

; o)

asn — o0o. When 6 =1 and y —v=-—1, , —3, the values of second order
asymptotlc loss d, (Vpr+, vML*) =d, (vML*, vML*) and the ratio R, (Dp/z+, UML*) =
Ry(Dyypes vM 7.) up to the order 1/n are obtained from the above and Remark 5.6.1
(see Table5.1 and Fig.5.1).

It is noted from (5.3) and (3.17) in Appendix B1 that the second-order asymptotic
mean of T,y = n(X,) — v) is given by

1 1 1
Ea,y,v(T(n)) = —5 {69(‘)_}/) - 1} + %6‘9(‘)_}/) {ea(”_y) - 1} + 0 (;) .

Example 5.7.2 (Two-sided truncated normal distribution) (Continued from
Example 3.7.2). Let ¢ = —o0, d = o0, a(x) = e"‘z/z, and u(x) = x for
—00 < ¥ <x < v < oo in the density (1.9). Since


http://dx.doi.org/10.1007/978-981-10-5296-5_3
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Table 5.1 Values of d,, (Darr+, f)i&*) and R, (Dprp+, Gf\fi*) for =landy —v=—1, =2, =3
~ ~0, ~ ~0,
E=y—v dn Oy, VMJ[/‘*) Ry(Wprx, vM}I/‘*)
4.2699 1
-1 4.2699 + o(1) 1+ —- —I—o(f)
n n
6.2480 1
-2 6.2480 4 o(1) 14 —— +o(7)
n n
9.2380 1
-3 9.2380 4+ o(1) 1+ +0(,)
n n
=
<
0
(5]
o |
o
0
II: o
o |
N
© |
=
T T T T T T
0 20 40 60 80 100
n
Fig. 5.1 Graph of the ratio R,(Dpsr*, ﬁf\/z*) up to the order 1/n for &6 = 1 and

%':}/—1):—1, —2, -3

b, y,v) = V2w DO - y) — DO — v))
for 6 € ® = (—o0, 00), it follows that

MO, y,v) =60+1n,-,00 —y)+ -, —v),
MO, y,0) =1— 0 —y)ny—® —y) — O — )N,y (0 — v)
— {1y=(0 — ¥) + 1oy (6 — V)2,
k@©,y,v) =—n,_, (0 — v),

where n,(¢) := ¢(t)/{P(t) — D(t + o)} with @(r) = fiood)(x)dx and ¢ (x) =
(1/+/27)e /2 for —00 < x < 0o. When 6 and y are known, it follows from (5.4)
that the bias-adjusted MLE ;). of v is



90 5 Estimation of a Truncation Parameter for a Two-Sided TEF

1

X =X — .
™ ) 0 — X(,,))n

X(n)’y(

Next, we consider the case when 6 is unknown and y is known. Then, it follows
from (5.10) that the MLE 9}(,1 ;. of 0 satisfies the likelihood equation

X - GA};L ~ yx, (QI)l//IL —V) - Mx y-v (Gj}tle = Xw) =0.
Since
K 0y = =i @ =y Lk
A 3 , V) = — — - ) Ty
90 14 MNy—y 14 502

’ , V s ’
()9

=1=ny0 —y) = (O —y)n,_, 0 —v)
— =y (@ —v) — (@ —V)n,_, (6 —V)
- 2{77)/711(9 - 7/)+77v7y(9 - V)}{Tl;,fv(e - )/)"‘77;,},(9 - V)}a

©,y,v)=—n,_,0—y),

M 0,y vy = DO = )+ i 0 —v)
v Rl _81)77)/7” Y anvﬂ/ v

=n—y (0 — V) {ny—v(g —Y)+ (@ —v)+6— V} )

0 ~

™ logk(@,y,v) =0 —v+n,_,(0 —v),
v

where

My (1) = =0a(t) (0o (1) + 1ot + @) + 1},
(1) = 0a (1) {10a () + (t =)ot + ) +1° + 1},

it follows from (5.20) that the bias-adjusted MLE d},,. = X (Tn) is obtained. When 6

and y are unknown, the MLE éM 1 of 6 satisfies the likelihood equation
X — Oy — Mx 1 ~xon Our — X)) — M X0t Ouz — X)) =0.

In a similar way to the above, the bias-adjusted MLE D1+ = X (n) 18 obtained from
(5.25). Hence, it follows from (5.29)—(5.31) that d, (Dps+, ‘A’Xu*) = o(1) and

dnOpr, D4y ) = dn DYy D07 )

3 {0 —v4ny—v@ —y)+nv—y (6 — 1)}

1 ®— V)’?y—v(e —y)— (- V)ﬂu—y(e —v)— {77)/—\)(9 —y)+ 771)—)/(19 - V)}2
+ o(1)
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asn — oo. Itis also noted that the second-order asymptotic mean of T,y = n(X,) —
V) is given by

Eg .y (Tiny) =

1 1 |
@ @ T @it o (_) |

Example 5.7.3 (Upper-truncated Pareto distribution) (Continued from Example
373).Letc =0,d =00,a(x) =1/x,and u(x) = —logx for0 <y <x <v <
oo in the density (1.9), which yields the upper-truncated Pareto distribution. Then,
b@,y,v) ={1—(y/v)’}/(Oy?) for € ® = (0, 00), and

0/v

%(9, Y, U) = (\)/)/)—9—1

(5.35)

For the upper-truncated Pareto distribution with an index parameter 6 and truncation
parameters y and v, Zhang (2013) obtained the asymptotic biases of the MLEs
PmL = Xqy and Dy, = X,y of v and v and showed that the UMVU estimator of y

was
1 X o
~0,v (1)
o= X 1+ —(E2) 1Y,
J/U/VIVU (1)|: on [( v ) ]:|

when 6 and v were known and the UMVU estimator of v was

6.y U (Xw)’
Vomve = X | 1+ am |\ ) Ly, (5.36)

when 6 and y were known. Note that (9, y, v) is presented as (¢, 8, ¥) in the paper
by Zhang (2013). Put £ = (y/v)?. Letting t = logx, yy = logy, and vy = logv,
we see that the density of upper-truncated Pareto distribution becomes

efr0 ot

— =€
F @50, y0,v9) = 100 )
0 otherwise.

for yy <t < vy,

Here, note that &, := 6(yy — v9) = logé&. Hence, the upper-truncated Pareto case
is reduced to the two-sided truncated exponential one in Example 3.7.1. Replacing
X, X1y, and X by log X := (1/n) >, log X;, log X1, log X (»), respectively, in
Example 5.7.1, we have the second-order asymptotic losses

Dprre, D S 1 — & +logé)?
dy(Dpgre, D) = 0o(1), dy(dyrre, Dyy) = (1(— sﬁ - ;foi)sv

+o(1) (5.37)
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Table 5.2 Values of d, (Dyrz+, D57.) and Ry (Dyrzx, Dr.) for6 =y = landv =2, 3, 5

§ dn(ﬁML’ﬂ \31(?,}12*) RV!({}ML*v ﬁf\fl/‘*)
3.8170 1
172 3.8170 + o(1) 1+ +o(7>
n n
4.4288 1
1/3 4.4288 + o(1) 14 —— 4o -
n n
5.3730 1
1/5 5.3730 4+ o(1) 1+ +0(7)
n n
e
<
©
®
e
©
e
r o |
N
o
©
<

0 20 40 60 80 100

n

Fig. 5.2 Graph of the ratio R, (VpsL*, fzfu’z*) up totheorder 1/nfor =y =landv =2, 3, 5
asn — 00.Whenf = y = landv = 2, 3, 5, the values of second-order asymptotic
loss d, (Vprp<, ﬁi,;{*) and ratio R, (Dpsp+, 9,9‘4”2*) up to the order 1/n are obtained from

the above and Remark 5.6.1 (see Table 5.2 and Fig.5.2).
It follows from (5.4) and (5.36) that

1 X’ 9
Xy =Xw [H%{( ) ) —1H = Dumvu (5.38)

and for the bias-adjusted MLE 0%, = X "

T(’,‘;) = n(X?‘n) —)

|

=

N

+
D <
rm—
/4N
| <
N

B
|

—
[S—
+
S|
[rm——
/N
—_

+
D =
N
/N
x|
N

5
|

[
[ —
iy

N

+

Q

=
/4N
ol
N
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Since, by (5.38)
~0,
T(Tl) =n(yyvy — V)

when 6 and y are known, it follows from (5.7) that

2 ¢ 1
v, (k (,1)) =V (kn(vUMVU —v)=1- on {(0 +1) ()/) - 1} + 0 (nz)
(5.39)
From the result of Monte Carlo simulation, Zhang (2013) mentioned that, for exam-

ple, when both 6 and v/y were large, say (8, y, v) = (5, 1, 7), the variance of ﬁ[ng,IVU
could be very large for finite sample sizes. Indeed, from (5.39), we have

n3

A0,y 1 1
V (VUMVU) W +0(—=). (540)
For (0, y,v) = (5, 1, 7), we obtain from (5.35)

1 7°-1
== =23528.4,
k377

hence, for fixed n, the first term is seen to be very large in the order of 1/n? in the right-
hand side of (5.40). But, in order to compare estimators in terms of variance, we need
a standardization such a form as (5.39). From the result of Monte Carlo simulation,
Zhang (2013) also stated that for fixed y, f)Z’}(N v behaved better and better when
6 went to 0. Indeed, in this case, it is easily seen from (5.35) that k@, Y, V) = 00
as & — 0; hence from (5.40), the variance of f)?j}(,,v y becomes very small. Further,

Zhang (2013) considered plug-in estimators )93";;\, “ and f)loj vy using the MLE

GML of 6 and the MLEs X(;) and X, of y and v, respectively, when 6, y, and

v are unknown, and from the result of Monte Carlo simulation concluded that the
~0,X () .. . . .

improvement of ¥/}, was significant only if § was small, but its poor behavior for

L.X .
large 6 was to be expected. First, we consider a plug-in estimator vU Wivy using the

MLEs 0M 1 and X1y of 6 and y, respectively, when 0, y, and v are unknown. It is
noted that 8, satisfies the likelihood equation

1 X/ X o)t log (X1 / X n 1< X,
A__'_( 1/ Xw)™* log ( (})/ ())Z_Zlo o}
Omr 1 — (Xqy/ X))o n <=
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Then, we have

EO,y,u[n(ﬁ(é]%’\;xl(jl) - V)]
LI R P T4 e )L 2
= on " T [(1 & +logé) (1 + ¢ log& Zkz) 2(log§) ]
+ 0 ( ! ) , (5.41)
ni/n

which implies that it is asymptotically unbiased up to the order o(1), but not up to
the order o(1/n), where

_ 1 é(]og%‘)z __2 §A+8&) 3
g 0] e

Indeed, since by (5.38)

~ éML
~Omr, Xy 1 X(ﬂ)
=X 1 ~ —_— -1,
Vumvu (n) |: + s [(X(l)) }:|

Ty = n(Xay — ¥)s Ty = n(Xy —v) and U = /Aon(@yp — 0) with Ay =
A2(8, v, v), it follows that

pEML X g v+ Ty /1) (v + (T<n>/"))6+(0/m7") —1
vmvy W0+ Oy | \y+ Tay/m
_pooavi-e o w0 v M_@)
=Tm) + 0F 92%_ Tzn(l & +logé) + En ( y ”
+ 125y +”02{1—s+(1 g)(ll s+1)}
oen ™ T 93g1on 085)\7 o8

hence, by Lemma3.8.1 in Appendix B1 and Lemma 5.9.1 in Appendix D given later,
we have (5.41). Next, we consider the estimator G(l),' A};;})U which is treated by Zhang

(2013). Since
1] (X X,
1im—[(ﬁ) —1] =log =,
0—0 0 y y


http://dx.doi.org/10.1007/978-981-10-5296-5_3
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it follows from (5.36) that

~0,X
i = X (1 Sioe 32

Then
0, v 1
EO,y,v I:n(vU]XW(\]/)U V)] = _; log% + 0 (ﬁ) s (5.42)

which is not asymptotically unbiased up to the order o(1/n). Indeed, since T(;) =
n(Xy —y) and T(ny = n(X(») — v), we have

~0, X1 T v+ (T /n)
n(Dy Y —v):T,,—l—(v—i— )log—
UMVU ) " Y+ (T /m)

I v+T +1 141 Y T VT + 0 L
=vlog — )+ = og — n — — —).
g]/ (n) n g)/ (n) J/(1) P n2

(5.43)

Since, by Lemma3.8.1 in Appendix B1,

y 1
Eo,y 0 (T(1y) = y log " +0 (;) ,

v v v v 1
Eoyo(Ty) = —vlog—+ —(log— ) (1 +log— )+ 0| = ).
y n 14 y n

it follows from (5.43) that (5.42) holds. Therefore, it seems to be inappropriate

to compare the plug-in estimators vz Mv)fj” nd D, M“) with the UMVU estimator
v?/ vy up to the higher order. Here, we use the bias-adjusted MLE Dy = X it

AOur. Xq)

instead of D}y, and Dy M(\}’U Then, it follows from (5.37) and (5.38) that

- (1—&+1logé)?
dy(Vprs, V?JLVU) = (1 —£)2 —£(logé)?

+o(l) =d(E)+o(l) (say) (5.44)

as n — 0o, where £ = (y/v)e. Here, note that 0 < & < 1, & — 1 as6 — 0 and
& — 0 as O — oo. Then, we have from (5.44)

limd(§) =3, lim d(§) =

which shows that the second-order asymptotic loss of Dy relative to f)Z’LV y 1s
close to 3 for small 6, but it becomes infinite for large 6. As is seen in the above, a
similar consideration to Zhang (2013) from the Monte Carlo simulation seems to be
theoretically confirmed. It is also noted from Lemma3.8.1 in Appendix B1 that the


http://dx.doi.org/10.1007/978-981-10-5296-5_3
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second-order asymptotic mean of T(,) = n(X,, — v) is given by

Epy(Ti) == 7 [(5)9 - 1]
i G) e G o )

where the first term coincides with the result of Zhang (2013). For the UMVU
estimator 7y, a similar discussion to the above could be done.

Example 5.7.4 (Two-sided truncated beta distribution) (Continued from Example
374).Letc=0,d=1,a(x) =x,andu(x) =logxfor0 <y <x <v < lin
the density (1.9). In Example 3.7.4, we have b(6, y) = 8~ (1 — (y/v)?) for 6 e
©® = (0, c0) and the formulae of A;(0, y,v) (j = 1,2), k@, y, v), and 12(9, Y, V).
When 6 and y are known, we obtain by (5.4), (5.5), and (5.7)

p X v\’

A0, n

VMZ*ZX?n):X(’”+9n 1_(X<>) ’
n

T = Ty + g ’1 - (%)9] - é [(9 -1 (1 — (%)0) — vlogv] T

S 2 Y\? 1
VV(kT(n))zl—i-e—n[(@—l) (1—(;) )—vlogv]+0(n—2).

If 6 = 1, then the density (1.9) is uniform over the interval [y, v]. Further, if y is
known, then

which coincides with the UMVU estimation of v. When 6 and y are unknown, in

a similar way to the above examples, we have the formulae of Dy «(= X 2*;‘)), TJ;;,

and ngyvu(lzT(**) from (5.25), (5.26), and (5.28). Further, it follows from (5.30) that

n)

the second-order asymptotic loss of D7+ relative to f)z/z is given by

(1-&+&logé)’
(1 - —&(logé)?

dyDprpe, D) = +o(1)

as n — 0o, where & = (y/v)? (see also Example 3.7.4).


http://dx.doi.org/10.1007/978-981-10-5296-5_3
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Example 5.7.5 (Two-sided truncated Erlang distribution) (Continued from Exam-
ple 3.7.5). Letc =0, d = 00,a(x) = x/",andu(x) = —x for0 < y < x <
v < o0 in the density (1.9), where j = 1, 2, .... In Example 3.7.5, we have for each
Jj=12,...,b;0,y,v) = fyv xI e dx for 8 € ® = (0, 0o) and the formulae
of ;;(0,v,v) ( =1,2),k;6,y,v) and 12,-(9, y,v). Let j be arbitrarily fixed in
{1,2,...}. Since k; (0, y, v) = v/~'e?/b;(0, v, v), we obtain

0 ~ i — 1 1 .

—logk; = 1= § — —piTle
ov v

’

J

where Igj = l;j(O, y,v)andb; = b;(0, y,v). When 0 and y are known, we have by
(5.4), (5.5), and (5.7)

eOX(”)bj @, v, X(,,))

Jj—1
X(n) n

" bjegv 1 bjegv j—1 1
T(n) =Tw + pi-1 - ; pi1 ¥ —-0)—-1 Ty + 01’ ; ’
_ 2 (b (j—1 1
Vv(ij(n))—l—i-;[ T ( y —0)—-11+ 0 ; .

When 6 and y are unknown, in a ~similar way to the above, we have the formulae
of Dy (= Xz*;f)), T(’;S, and Vg, , (k; T(’;S) from (5.25), (5.26), and (5.28). Further, it

follows from (5.30) that the second-order asymptotic loss of Dz~ relative to \3,?4’2
is given by

A b 2 b (i)
dy(Vyrs, Ve'y*) = ( — v) / b\ o
Me bj bj bj

asn — oQ.

A0,y
Dy = Xiy = X +

A similar example to the above in the two-sided truncated lognormal case in
Example 3.7.6 is reduced to the two-sided truncated normal one in Example 5.7.2.

5.8 Concluding Remarks

In Chap. 3, for a tTEF of distributions with two truncation parameters y, v and a
natural parameter 6 including the upper-truncated Pareto distribution, we discussed
the estimation problem on 6 together with a bias-adjustment when y and v are
known or unknown nuisance parameters. In this chapter, exchanging the situation,
we considered the estimation on v when 6 and y were known or unknown nuisance

parameters. Indeed, we obtained the bias-adjusted MLE f)f/fz* of v when 6 and y were


http://dx.doi.org/10.1007/978-981-10-5296-5_3
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http://dx.doi.org/10.1007/978-981-10-5296-5_3
http://dx.doi.org/10.1007/978-981-10-5296-5_3

98 5 Estimation of a Truncation Parameter for a Two-Sided TEF

known, the bias-adjusted MLE bj,,, of v when 6 was unknown and y was known,
and the bias-adjusted MLE ¥y, of v when 6 and y were unknown, and derived
their stochastic expansions and second-order asymptotic variances. Further we got
the second-order asymptotic losses of 97, and Dz~ relative to D). On the bias-
adjusted MLE D}, . of v when 6 was unknown and y was known, the situation was
reduced to the oTEF of distributions with a lower truncation parameter and a natural
parameter 6 which was discussed in Chap. 4. In this case, we needed a transformation
Y = —X which was described in Remark 4.5.3 and was also carried out in Sect. 5.4
and in a similar way to the section we obtained a similar result. As an example, we
treated the upper-truncated Pareto case, where the results based on the Monte Carlo
simulation by Zhang (2013) were theoretically confirmed in this chapter.

5.9 Appendix D

Before proving Theorems5.3.1 and 5.4.2, we prepare a lemma.

Lemma 5.9.1 Let U = /2n Oy —6). Then, the asymptotic expectation of U and
U? is given by

E ([j)— 1 1 [0X 1 8A1)+k3 P 1 (5.45)
T [k ey ) TRV av ) T i)
~ 1
Ep,,(UH =140 (—) , (5.46)
n
where i =70, y,v) (j =1,2,3), k =k(®, y,v), and k = k(0, y, v).

The Eqgs. (5.45) and (5.46) are obtained as (3.28) and (3.31), respectively.
The proof of Theorem 5.3.1 By the Taylor expansion, we have

1 1 1 |:1 [ a log £(0 )] T(,,)+0 (1)i|
— == == — 1 —logk(®, y,v =1
f KOy Xe) kel ey T ST

(5.47)

Substituting (5.47) into (5.4), we obtain from (5.3)

o X +1+1A~ ! 81 k) (T +1 +0 !
= n = — — = | — 10 n = — 1,
(n) (n) in in2 v g (n) A P\ 3

where k = 12(9, y, v) and A= A(O, ¥, V), hence by (5.3)
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T(Tl) = n(Xan) —v) = T(n) +

| = | =
+
S| =
b
|
3=
—
2|
—
)
[VS]
~
N—"
/N
e
s
+
i
N—
+
Q
=
4N
:N‘ —
N—"

=T +

Thus, we get (5.5). From (3.17), (3.19) in Appendix B1, and (5.3), it follows that the
second-order asymptotic mean and variance of 7, are

EV(T(n)) =0 (’?) ) Vu(T(n)) = 12—2 + E (alogk) + 0 (’?) ,
hence, we get (5.7). Thus, we complete the proof.

The proof of Theorem 5.4.1 Since § = —v, n = —y, and X,y = —Y(), it fol-
lows from (5.14) and (5.15) that ko, = ky, 2%, = 4,; (j = 2,3), 3/ko,/007 =

3k, /007 (j =1,2),and 30, /38 = —(3).,1/0v), hence, letting X/, = —¥/, . we
have from (5.16)

1 1 ok IWEN X

T 1 3

Xy =Xw +z—+ 2 8_(; :_( 8:)_ :
kyn k}%)\yznz k, 2hy2

A ~ 2
1 3k, 2 [ok,

+ ;
2 A 2 ~
2k25,0m2 | 997k, \ 90

’

which coincides with (5.20), where

A

];V = IEV (éML, X(n)) =k (éMLv Y, X(n)) R
87k, 1067 = (af/aef) & (Ome, X(n)) - (31/391) E(ounev X)) G =12,
5‘)/1' =Ayj (éML’ X(n)) =1 (éMLa Vs X(n)) (J=2,3),

03y1/0v = 0/0v) 2yt (Burns Xn) = @/0w) 21 (Burr. v, X )+

and also from (5.17)
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hence, (5.21) holds. Since T(l) = ”(Y(l) —08) = —n(X@p —v) = —Tw,

(0/08) log kg, = —(9/9v) log ky by (5.14) and uy(8) = u(v), it follows from (5.15),
(5.18), and (5.19) that (5.22) and (5.23) hold. Thus, we complete the proof.

The proof of Theorem 5.5.1 Putting Ty := n(Xq) — ¥), Tn) := n(X) —v), and

1 n
Zl = W ;{M(Xl) - )“1(9’ Y, V)}’

we have from (3.7) in Theorem 3.4.1

O—7 A3 7 1 I(BA])T +(8A])T 4o (1)
— 41 2)»3/2«/_ m @) v (n) P\,

(5.48)

By the Taylor expansion, we have

k@wr, X1y Xmy)

:,;+;(8_%)0+1(8_%)T(D+1(8_%)T +;(ﬁ)0z
NACl n\ ay a\av ] ™" 2550\ 962

1
O (f)

where k = k(6,y,v), 0k/30 = (3/00)k(6,y,v), 0k/dy = (3/0y)k(®,y,v),
dk/0v = (8/3v)k(8, y, v), and 3%k/96% = (82/962)k (6, y, v). Since

1
a I;(éMva(l),X(n))

:l_l 87120_L8712T_L87ET_1 ﬂ02
kR ion \ 96 2a\ay ) V7 2a\ov ) ™7 2725, \ 902

1 ok 2A2 I
taalam) o +0,,(nﬁ),

~ ~ 1 1
=k@OpL, X(l), X(n)) =k,y,v)+ Op (ﬁ) =k+ Op (ﬁ) R

~ ~ 1 1
Aj=xjOmL, X1y, X)) =20, y,v)+ Op (ﬁ) =2xj+0p (ﬁ)

Ay 0r (5 EYe 1 I 1
- = Orrrs X1y, X 0.y, op(—=)=—+0,—).
by 3y (ML 1) (n)) y( v,v)+ Op N oy + Op NG
g axl

orp 1 8)»1 1
— 6 X, X =—0,y, 0 — ) = o s
™ ( ML X(1)s X(n)) m ©@,y,v)+ 0p (ﬁ) 7y +0p (ﬁ)

0| =

(=123,
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ok ok ok 1
3y —<9ML,X(1>,X<n)>— S @70+ 0p 7))

3k a/k(é X, Xom) = 8k (0 Y4+ 0 (1) 31‘1€+0 (1)
— = s s = sV i
967 967 ML (1) (n) 14 P f 90J P ﬁ

(=12,
substituting them into (5.25), we have

Tiy =n(XG) —v)

EPENS SE ok [0 1 I1(8k1>
o ]; kzx/)nzl’l «/)uzn k 8)/
1 -

— = —logk ) (71 — - —logk ) T

A g)(m )~ (o et) o

! PE_2( ok U1+ o0, (5.49)
2k2,n | 902 k\ 90 nf '

which shows that (5.26) holds. From (5.26) and Lemmas 3.9.1 and 5.9.1, we obtain
(5.27). Since T(;y and T, are asymptotically independent, it follows from (3.16) and
(3.17) that

1 for A3
=\—— |+t
k \ dv 2A,

1 1
Epyo [Ty Tw] = 0 o (—) . (5.50)

n

By (5.48), (5.50), and Lemma 5.9.1, we obtain

I\ ~ 1
Eoyo |:(T(n) + z) U:| =0 (;) ) 5.51)

since dA1/0v = k@u(v) — Ay). Since EQ’},’U(Z%|T(,1)) =14 0,(1/n) by (2.59), it
follows from (3.17) and (5.48) that

1
Egyv [(T<n)+ )(U —1)} (nﬁ) (5.52)

By (5.49)-(5.52), Lemmas 3.9.1, and 5.9.1 and (5.3), we have

VG,V,V(T(ZT)

~\ 2
1= 2 (L 10ek) E T, +1 2 + L (%) g (U?
= — = | — 10 v n = = - v
in \ov g 0.y, (n) i Tan \ 36 0.y,
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~o()

1+2(8112+ ]{()A}2+O 1
=—+ (=10 - u(v) — )
k2 k3n \Ov & k2xon : n/n

d ~ 0
o5 logk = u(v) = - 1ogh(®. 7. v) = u(v) — k1,

which shows that (5.28) holds. Thus, we complete the proof.
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Chapter 6
Bayesian Estimation of a Truncation
Parameter for a One-Sided TEF

For a one-sided truncated exponential family (0TEF) of distributions with a truncation
parameter ¥ and a natural parameter 6 as a nuisance parameter, the asymptotic
behavior of the Bayes estimator of y is discussed.

6.1 Introduction

In this chapter, following mostly the paper by Akahira (2016), the estimation problem
on y for a oTEF of distributions is considered from the Bayesian viewpoint. Under
a quadratic loss and a smooth prior on y, the Bayes estimator of y is well known
to be expressed as a form of the posterior mean. In Sect. 6.3, when 6 is known, the
stochastic expansion of the Bayes estimator pg ¢ of y is derived, and the second order
asymptotic mean and asymptotic variance of pp ¢ are given. In Sect. 6.4, when 6 is
unknown, the stochastic expansion of the Bayes estimator yp ; ~plugging the MLE

éM L in 6 of Pp g is derived, and the second-order asymptotic mean and asymptotic
variance of 5~ are given. In Sect.6.5, several examples for a lower-truncated
exponential, a lower-truncated normal, Pareto, a lower-truncated beta, and a lower-
truncated Erlang distributions are given. In Appendix E, the proofs of Theorems
6.3.1 and 6.4.1 are given.

6.2 Formulation and Assumptions

Suppose that X, X,, ..., X,, ... is a sequence of i.i.d. random variables according
to Py, having the density (1.7), which belongs to a oTEF of distributions. Let
7 (y) be a prior density with respect to the Lebesgue measure over the open interval

© The Author(s) 2017 103
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(c,d),and L(y, y) the quadratic loss () — y)? of any estimator 7 = 7 (X) based on

X = (X1, ..., X,). Suppose that 8 is known. Then, it is easily seen that the Bayes
estimator of y w.r.t. L and 7 is given by
Xm t(t) o 7(@)
v o(X) = dt, 6.1
vYB,0(X) C 6.0 // 6.0 (6.1)

where X ;) := min;<;<, X;. In what follows, we always assume that a(-) and u(-) are
functions of class C3 and 7 (-) is a function of class C? on the interval (¢, d), where
C* is the class of all k times continuously differentiable functions for any positive
integer k.

6.3 Bayes Estimator pg ¢ of y When 6 is Known

Letting u = n(t — y), we have from (6.1)

oy L[ e /) )T 3 /) )
VB'G(X)_”n(/T b6,y + (u/n) / / b 0,y +amn™)

n

(6.2)
where 7, :==n(c — y) and T(;y := n(Xq) — y). Let
a7 :
b6, y) = —,logb(G, Y) (G=12,...), (6.3)
a9/ .
i (v) = —logﬂ()/) (G=12,...). (6.4)
It is noted from (1.5) that
a(y)e?* )
k@,y) = ———— = —by(6, y). 6.5
©.v) b@.7) Mm@, y) (6.5)

Then, we have the following.

Theorem 6.3.1 For a oTEF &2, of distributions having densities of the form (1.7)
with a truncation parameter y and a natural parameter 0, let yp g be the Bayes
estimator (6.1) of y w.r.t. the loss L and the prior density 7, when 0 is known. Then,
the stochastic expansion of Tp g := n(yp.e — y) is given by

1 1 (9 1 9 1
Teo =Ty — -+ — | —logk ) Ty — — {2 —logk ) — o,|=]). (6.6
o=ty () o= o (eet) o <00 (3): 00
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and the second-order asymptotic mean and asymptotic variance of kTg o are given by

1 1
E, (kT =—— —logk ) — o{—=), 6.7
r&ls.0) kn{ (ay "g) ”<”]+ (nZ) ©7
Vo kTse) =1 — = (2 10gk) + 0 (2 (6.8)
=1-—|—1o =), )
viRiBe kn \ 0y g n?

respectively, where k = k(0, y) and 71y = mwq)(y).

Remark 6.3.1 The second-order asymptotic variance of kTp g is free of the prior
density . We see that the part except the term

1 a

in the right-hand side of (6.6) 001n01des with the stochastic expansion (4.6) of T, (1) =
n(X(l) ) up to the order n~!, where X(l) =X — (ken) !'is the bias-adjusted
MLE yML*, with 129 =k(0, X1)) (see (4.5)). Then, we have

" 1 0 1
k(TBA’g — T(l)) = —E 2 5 1ng — Ty + 0 n2

which affects only the difference between their second-order asymptotic means.
That is, Pp ¢ is second order asymptotically equivalent to the bias-adjusted MLE
Vi = X5, hence by (4.8) and (6.8)

1
V, (kTpo) — V, (kT3) = O (ﬁ) .

6.4 Bayes Estimator y, 6.y, °f ¥ When 6 is Unknown

Let 737, and éM 1 be the MLEs of y and 6, respectively. From (4.9) it is seen that
yuL = Xqy and L(X (), éML; X) = supyep L(X(1y, 0; X), hence éML satisfies the
likelihood equation (4.10). Denote by A ; (6, y) the j-th cumulant (4.1) corresponding
to (1.7) for j = 1,2,.... Let &, = A2(f, y) and U = 2n(by, — 6). When 6 is
unknown, using the MLE Oy of O we consider the Bayes estimator plugging O
in6 of ppg,ie.,

Xy Xq
P, (X) = / _m® / / R O 6.10)
c b”(QML,t) b”(@ML,t)

Then we have the following.
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Theorem 6.4.1 For a oTEF 22, of distributions having densities of the form (1.7)
with a truncation parameter y and a natural parameter 6, let ?B,ém be the Bayes

estimator (6.10) plugging Oy in 0 of V.o when 0 is unknown. Then the stochastic
expansion of Ty 5 = n(?B,ém — y) is given by

S WY [, L (! axl s
Bow. — (DT k%/)gn Vion \k 20
(0 N ] 2k 2 [dk (02 b+ B
O —_— —_—— — E— J— J—
oy B )OO T on | 962 Tk kn
+0,,( ) 6.11)
where

1 Ay [0k 1 (3% 1 ad
B=——1—\=)—"\=)i— 12| —logk ) —mu ¢,
2)\2 k)\z 00 k 392 k 8)/
k=k@,y), Aj =4;0,y) (j =1,2,3), and the second-order asymptotic mean
and asymptotic variance of kT ;5 ~are given by

B 1

Eo.ylkTp,,) =—+ 0O ( ) , (6.12)
2 (8 1 ) 1

Vo.y kT 5,,) =1 =+ 5logk +A2—n{u(y)—)\1} +0 nin) (6.13)

respectively.

Remark 6.4.1 The second-order asymptotic variance of kT, 5 is free of the prior

density 7. In the stochastic expansion (6.11), the terms involving U yield from the
use of the MLE 8y, in 6 of V8.¢- It is also seen from (6.12) and (6.13) that the
terms depending on A, and X3 in the second-order asymptotic mean and asymptotic
variance come from using éM L.

Remark 6.4.2 We see that the part except the term B/(kn) in the right-hand side of
(6.11) coincides with the stochastic expansion (4.12) of T(j} := n(X{{) — y) up to
the order n~!, where

J— 1 N 1 ak\ |1 [ ax N A3

= 1 — ~ <A~ . A ~ — R~

M @ kn  k2i,n? \ 90 k\ oy 2\,
A 2


http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_4

6.4 Bayes Estimator )73, L of y When 6 is Unknown 107

is the bias-adjusted MLE P+, with k = k@1, X (1)), 37k /007 = (87 /007 k(D1
XA(I)) (=12, Aj=x0Our, X0) (=23 and 0r/0y =(03/dy)\
(Omr, X)) (see (4.11)). Then, we have

. B 1
k(TB,éML — T(l)) = o + 0, m )

which affects only the difference between their second-order asymptotic means. That
is, ?B,ém is second-order asymptotic equivalent to the bias-adjusted MLE Py« =
X(*l*), hence by (4.14) and (6.13)

Vo, (kT

éML

1
) O,y( (1)) (nﬁ)
Further, it is easily seen from (6.8) and (6.13), the second-order asymptotic loss of
Vp.4,, relative to g g is given by

A o 1
dn (P4, 78.0) =n{Vo, (kTg4 )=V, (kTpe)} = o - MY +o(l).

éM L

6.5 Examples

We consider a lower-truncated exponential, a lower-truncated normal, Pareto, a
lower-truncated beta, and a lower-truncated Erlang distributions as in Chaps. 2 and 4.

Example 6.5.1 (Lower-truncated exponential distribution) (Continued from
Examples 2.7.1 and 4.6.1). Let ¢ = —00, d = 00, a(x) =1, and u(x) = —x for
—00 < ¥ <x < oo in the density (1.7). Since b(8,y) =0"'e ™ for h € ® =
(0, 00), it follows from (4.1), (6.3), and (6.5) that by(6, y) = —0, b0, y) =0,
k@,y) =0, r@O,y)=—-y —0"", 10,y)=0"2 and r3(0,y) = —2073.
Assume that the prior 7 is a normal density with mean 0 and variance 1. Let 6 be
known. Since (1) (y) = —y,itis seen from (6.6)—(6.8) that the stochastic expansion,
the second-order asymptotic mean and asymptotic variance of Tg g = n(yPgg — y)
are given by

1 % 1
TB,@ZT(l)—g—QTnvLOp =)

1 1
E,(0Tpg) = —% +0 (;) , V,(0Tpg) =1+ 0 (;) )
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Next, let 6 be unknown. Since (3/3y)logk and 8%k/36% = 0, it is seen from (6.11)—
(6.13) that

1 U U? y 1
Tys =Tu—— -— -2 40 ,
o =0 T G e T T T ”(nﬁ)

1 1
EQ’V[GTB’éML]:;(l_g)-’_O(n n)

1
Vo, (0Tgs ) =1+ - + 0 (

1
Further, it follows from Remark 6.4.2 that the second-order asymptotic loss of p bt
relative to pp ¢ is given by

dn (Vg g, V8.0) =1 { Ve, 0Ty 4,,) — Vy(0Tge)} = 1+ o(1)

é\ML
asn — oo.

Example 6.5.2 (Lower-truncated normal distribution) (Continued from Exam-
ples 2.7.2 and 4.6.2). Let ¢ = —00, d = 00, a(x) =e* /2, and u(x) = x for
—00 < ¥ < Xx < oo in the density (1.7). Since b(0,y) = @O — y)/¢p () for 0 €
® = (—00, 00), it follows from (4.1), (6.3) and (6.5) that b8, y) = —p (@ —
¥)bay(0,7) = =0 —y)pB —y) — p*O — ). k0, y) = p(@ —¥), (0, y) =
O+p0—y), MO, y)=1—0O—-y)p@-—y)—p*@—y) and A30,y) =
PO —y){20%(0 —y) + 30 —y)p® — y) + (6 — y)* — 1}, where

D (x) = / ' ¢()dt with ¢(t) == \/%e—”/z

and p(¢) := ¢ (t)/® (). Assume that the prior 7 is a normal density with mean 0 and
variance 1. Let 6 be known. Since 7(1)(y) = —y, it is seen from (6.6)—(6.8) that the
stochastic expansion, the second-order asymptotic mean, and asymptotic variance of
Tg o = n(ype — y) are given by

O —vy
T =Ty — ———— —11 - T
B.O ) p(@—y)+n[ +,0(0—)/)] 1)
1 1
- ,02(@ — ) 20 —-y)+2p00 —y)+y}+ 0,, (;) s
! 1

Eg,lp0 —y)Tpol = ——20 —y)+2p0 —y)+ v} + O (_2) 7

p@ —y)n n

2 1

Voylp@O@ =Tpol = 1= 20 =y + 06 =)} + 0 (’?) .
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Next, let 6 be unknown. Since

9%k
507 = —pO@ — {1 = (O — ) =30 —y)p@ —y) =206 — )}

and (0/00)logk = —(0 — y) — p(6 — y), it is seen from (6.11)—(6.13) that

T,; =T, ! ! (1+ 0=y )0+1(1+ oy )T
a — n— —_ I - —h N
=0y T G\ ) AU e )T

1 n
{(1+@ =) +©O—y)p®—y)U*

"~ 2p(6 — y)ran
1
_/?2(9——1/)71{2(9_)/+p(9_y))+y}+Op(m)7
1
Egylp® —y)Tg4,, 1= —m{zw —y+p@—y)+v}

{9—y+p<9—y>}{9—y+2p(9—y>}—1+0( 1 )
2n{l — (0 — y)p® — y) — p*(0 — )2 nyn)’
200 —y +p(O — )}

VH,y(p(9 - V)TB,éML) =1- pO — V)n

0—y+p0O-—y)» 1
+ {0 —y +n( V)z} 40 ( ) ’
{1 =0 —y)p® —y)—p*0—y)n nyn
where A, =1 — (@ — y)p@ —y) — p26 — y). Further, it follows from Remark

6.4.2 that the second-order asymptotic loss of y, 4,,, relative to V5.6 1S given by

dn (P, V8.6) =n{Vay (00 —¥)Tg 4, ) — Vo (p(0 — ¥)Tpe)}
_ {0 —y+p0O -9y
1—©@ —y)p@®—y)—p20O —y)

+o(1)

asn — oQ.

Example 6.5.3 (Pareto distribution) (Continued from Examples 2.7.3 and 4.6.3).
Letc =0,d = o00,a(x) = 1/x,andu(x) = —logx for0 < y < x < oointhe den-
sity (1.7). Since b0, y) = 0~y for € ® = (0, 00), it follows from (4.1), (6.3),
and (6.5) that by (0. y) = —0/y. bey(0.y) = 0/y% k(O.7) = 0/y. hi(0.y) =
-6~ —logy, ,1(8,y) = —0"! —logy, M0, y) =672 and A3(0,y) = —2073.
Assume that the prior density m(y) is e™" for y > 0. Let 8 be known. Since
1y = —1, itis seen from (6.6)—(6.8) that the stochastic expansion, the second-order
asymptotic mean, and asymptotic variance of Tg g = n(yp ¢ — y) are given by

y 1 v: (2 1
TB,9=T(1)—5—9—nT(1)+02—n ;—1 + 0, =)


http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_4
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y y (2 1
E (—T )=_ Z_1)+o(=),
"N6 ") on (V ) (nz)
v, (VT )=1+ 2 to(2
v\ B0)~ On n?)’

Next, let @ be unknown. Since (3/3y)logk = —y ' and 8%k /96 = 0, itis seen from
(6.11)—(6.13) that

T,, =T ——+ 0- L1 —l02+y—2(2 1)+0( )
By — 7V Gf on" Y on 0%n \y n/n
EQV[QTBA }=1(3—1)+1+0( ! )

Ly B ] on \y ny/n

()= 1s 2o ())

Ty B On n n/n

Further, it follows from Remark 6.4.2 that the second-order asymptotic loss of )?B,ém
relative to pp ¢ is given by

N « 0 6
dn(VB_éMU )/B,G) =n [VO,y (;TB,éML) - Vy (;TB,G)} =1+o(1)

as n — OQ.

Example 6.5.4 (Lower-truncated beta distribution) (Continued from Examples
2.7.4and4.6.4).Letc =0,d = 1,a(x) = x ', and u(x) = logxforO <y <x <1
in the density (1.7). Since b(9, y) = 60~1(1 — y?) for € ® = (0, 00), it follows
from (4.1), (6.3), and (6.5) that

0 0 —1 901
K©.y) =0y /(A =y, ——logk(B.y) = —— + L—.  (6.14)
dy y 1—y?
1 (ogy)y’ 1 (ogy)*y?
G =———-——"" M6, —_——— 6.15
O =g k=g (6.15)
2 1+y°
(6 =———1 30— 7 6.16
36, v) g5 — (ogy)y d=77) (6.16)

Assume that the prior density is

) ay® ! for0 <y <1,
T =
v 0 otherwise,

where « is positive and known. Let 6 be known and yg ¢ be the Bayes estimator
of y. Since 7(1)(y) = (¢ —1)/y for y > 0, it is seen from (6.6)—(6.8) that the


http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_4
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stochastic expansion, second-order asymptotic mean, and asymptotic variance of
To = n(ypg — y) are given by

1—y?  6—(1—y" 1—y? o
Tgo =Tu — By + 0y%n Tay + m{(a +Dd—-y") - 29}

1
+0p (;)7

{a—29+1—(a+1)y9}+0(%),

E,(kTgpp) =

1
0yn

2 . 1
(0= a=yy+o ().

V,(kTgg) =1—

where k = k(0, y). Next, let & be unknown and J;B,ém be the Bayes estimator plug-

ging Oy in O of V.. Since

3)\1 )/9—1 )

e L (1—9"—0logy),

3y = 7/9)2( Y ogy)

ok yo! (1 GIOgV) 9%k (logy)0y®! [2 (log y)(1 +y9)]

01— 0 1—y9) 902~ " (d—y92 |0 1— 9

in a similar way to the above, from (6.11)—(6.13) and (6.14)—(6.16), we obtain the
stochastic expansion, second-order asymptotic mean, and asymptotic variance of
Ty, - In particular

N o - 0)}+1 1 logy 2+0 1
O 0yon v rn \6  1—yf nyn)’

where X, is given by (6.15). Further, it follows from Remark 6.4.2 that the second-
order asymptotic loss of yp 5 relative to Y ¢ is given by

Vo, (kT

1

A N 1 Io 2
dn (Vg g, VB.O) = I’l{Vé)yy(kTB’éML) - Vy(kTB,Q)} = )»_2 (5 + ; _g;,/e) +o(1)

as n — OQ.

Example 6.5.5 (Lower-truncated Erlang distribution) (Continued from Exam-
ples 2.7.5 and 4.6.5). Let c =0, d = 00, a(x) =x/7!, and u(x) = —x for 0 <
y < x < oo in the density (1.7), where j = 1, 2, .. .. Note that the density is trun-
cated exponential for j = 1. Foreach j = 1,2,...,b;(0,y) = fyoo x/~le 0% dx for
0 € ® =(0,00).Sincedb; /00 = —b; (j =1,2,...),itfollows from (2.1), (6.3),
and (6.5) that, foreach j = 1,2, ...


http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_1
http://dx.doi.org/10.1007/978-981-10-5296-5_2
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a(y)e®v)  yizle=fv 3§ —1
ki@,y) = = , —logk;0,y) = ——9+k(6 ¥),
/ bi@,y)  biGy) ay ° y

(6.17)
J bjti i binn  (bin)
Aj1 = —logh;(0, T an = logh; (9, -1,
j1 = 5o logh;(0.y) = b, j2 7= 5oy logh;(0.v) = b, b,
(6.18)
93 biws | 3bjbio bia)’
Az = ——logh: (6, y) = — -~ IR () 6.19
7= g lorbi0) = — =+ =G y (6.19)
where b; = b;(0,y) (j =1, 2,...). Assume that the prior density is
1 a—1,—
w(y) = T ¢ v fory >O’
0 otherwise,
where « is positive and known. Let 6 be known and, foreach j = 1,2, ..., let )7;’ 2,
be the Bayes estimator of y. Since 7r()(y) = {(« — 1)/y} — 1 for y > 0, it is seen
from (6.6)—(6.8) that, for each j = 1, 2, .. ., the stochastic expansion, second-order

asymptotic mean and asymptotic variance of Té{ (3 = n()?éj e)) y) are given by

, . . P j—1,—0y
0 b; bjTuy) ji—1 y/le
TY) = Ty — — + — -0+
B.0 M yjflefé)y yjflefﬁyn y bj

b2 i1 i=le=0y -1 !
J J y_ ¢ ¢
VZ(Jfl)e*an[ ( Y * bj ) 14 " }Jr p(”z)
. b i—1 i=le=ty -1 1
) J J 14 ¢ ¢
E,(k;T)) = —— 2 -0 - N+o\z)
r&iTha) w—le—f’yn[ ( v T ) 2 ]Jr (”2)

; 2b; i—1 J=leg=0y 1
) J Y
Vy(kjTgly) =1— yf—lej—eyn( 5 -6+ 5 )+0<n2),

where k; =k;(0,y) and b; = b;(0, y). Next, let 6 be unknown and, for each
j=12,..,let )?éj; be the Bayes estimator plugging 6y, in 6 of )9[(3]2 Since,
foreach j =1,2,.

a)\’l'] zyj71679V b]+1 + V ) % = —yjileiey b]+1 - V ’
8)/ bj bj 006 bj bj
9°k; ZV"*le*gy (bj+l)2 n (bj+1 B y)z _bjw
062 b b b; b
in a similar way to the above, from (6.11)—(6.13) and (6.17)—(6.19), we obtain the

stochastic expansion, second-order asymptotic mean, and asymptotic variance of
7Y for each j = 1,2, .... In particular,
B,OML
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; 2b; j—1 yi~te %
Vo, (k;TY) )y =1 - —— -0+ —FF—
0.y (k; B,OML) YR ” + b,
b’ b 2 1
G ) o ()
(bjbj+2 —b%_,'_l)l’l bj I’lﬁ
Further, it follows from Remark 6.4.2 that, for each j = 1,2, ..., the second-order

~(J)

asymptotic loss of Vi,

relative to /) is given by
. ,

&Py ) =n{Vo, (T ) = Vi (k;T5)}

_ b (bj+1
(bjbjyr — b3, pn \ b,

2
- V) +o(1)

as n — OQ.

A similar example to the above in the lower-truncated lognormal case in Example
2.7.6 is reduced to the lower-truncated normal one in Example 6.5.2. In the case, the
standard normal distribution may be taken as a prior one.

6.6 Concluding Remarks

For a oTEF &, of distributions with a truncation parameter y and a natural parameter
0, we considered the estimation problem on y in the presence of 6 as a nuisance
parameter from the Bayesian viewpoint. Under the smooth prior density 7w (y) of
y and a quadratic loss, the stochastic expansions of the Bayes estimator yz 4 (i.e.,
(6.1)) of y when 6 is known and the Bayes estimator ?B,ém (i.e., (6.10)) plugging

the MLE éM L in 6 of yp g when 6 is unknown were derived, which led to the fact that
the asymptotic means of Tp g = n(yp¢ — y) and T, = ”(?B,ém — y) depended
on the prior 7, but their second-order asymptotic variances were independent of it.
In the previous discussion, we adopted a partial Bayesian approach; to be precise, we
chose the combined Bayesian-frequentist approach. Indeed, since a density (1.7) in
the oTEF &7, has a truncation point y, it is considered to be helpful to obtain some
information through a prior on y. On the other hand, a natural parameter 6 in £, is in
the same situation as in a regular exponential family, hence the maximum likelihood
method based on the likelihood equation is useful for estimating 6. Hence, it seems
to be natural to plug the MLE in 6 of the Bayes estimator of y for known 6. But,
taking a pure Bayesian approach, one may obtain the Bayes estimator with respect
to a prior on (@, y). It seems to be interesting to compare it with our estimator. For
a tTEF 27, of distributions, we may also obtain the Bayes estimator with respect to
a prior on (9, y, v) and compare it with the partial Bayes estimator.


http://dx.doi.org/10.1007/978-981-10-5296-5_2
http://dx.doi.org/10.1007/978-981-10-5296-5_1
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6.7 Appendix E
The proof of Theorem 6.3.1 Since, by the Taylor expansion,
b(6.7+7)
n

_ d u 1 b, v)\ u? 1
=b(0, y)[l + (Jlogb(e, J/)) -~ 6.7 ( 3,2 ) S +0 (F) ]

as n — 00, it follows that

n u _n 1 2 .2 1 a2b 2 1
b (9,)/-{‘;) =b @, )’)eXp [b(])u—ﬂb(l)u +2b_l’l(8_)/2)u + O n—z s

(6.20)
where b = b(0, y) and b(;) = b(;)(0, y). Here
g 2
—b@O,y)=0>b b7,,. 6.21
b@.7) 072 ©,7) @ + b (6.21)
Substituting (6.21) into (6.20), we have
n u n bayu b(z) 2 1
b (9,y+—)=b @, et 11+222 L o0(=)!. 622
n 2n n?
From (6.4), we have
u u 1
j-[(y+—)=jT()/)[1+7T(1)—+0(—2)}, (623)
n n n

where (1) = 7(1)(y). From (6.22) and (6.23), we obtain

w(y +@/n)  _w@e [ bey o wy (i)}
b0,y + u/n)) b0, y) [1 T, u+0 . (6.24)

Putting
Tay |
I; :=/ wedu (j=0,1,2,3),

n
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we have from (6.5) and (6.24)

Tay w(y + (u/n)) - w(y) b(z) T |
[ et mop|p- et o () |
(6.25)

T um(y + (u/n)) _n(y) be) (1 1
/fn b”(e,y+(u/n>>d”_b"(e,y)[1 BT RO (F)]

(6.26)

Here, the remainder terms in (6.25) and (6.26) are guaranteed to be order O, n?),
since the distribution with a density (1.7) belongs to a oTEF &, with a normalizing
factor (0, y) based on a(-) and u(-) which are functions of class C3. From (6.25)
and (6.26), we obtain

/T“’ ur(y + (u/n)) //T‘" n(y + (u/n)) Ayt w/m)
o b"O,y+(u/n) b (8, V + (u/n))
11 b(z) 11[2 [3 TT(1) 11 12 1
=—+—=——-"—=)-— —) —= o,|—=). 6.27
IQ + 2n ]02 I() n IQ 10 + P I’l2 ( )
Substituting (6.27) into (6.2), we have
e ny _n 1
Tpy :=n(Ypo —y) = + o ( 2 [0) . [(10) 10]+0p(n2).
Since

T X 1 T .
10=/ Mdu = —¢ “’+0,,(e r,,)’
T k
Ty 1 1
1 :/ uekudu - 7€kT(]) (T(l) _ 7) + Op (nekr,,) i
T k k
" Tay 1 N2 1
— 2 ku _ kT, ! 1 2 ke,
Iz—/rn u-e du_ke (”{(T(l) k) +k2 +O,,(ner),
Tay 1 N3 3 | )
I = 3 kud — _ kT Ty — — “Ar,—2)_ = ( 3 kr,,)
3 ./rn u-e u kﬁ’ (1 A + 2 1) Z = + 017 nle

as n — 00, it follows that

~


http://dx.doi.org/10.1007/978-981-10-5296-5_1
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1 1
= =Ty — = + 0, (7). (6.29)
Iy k
I 1\ 1
= (r-g) + @ o), (630
I 1\ 3 1 2 .
L (T<1) B E) T (T(l> B E) TRt (el T0) 6.31)
hence, by (6.28)
Teo=Toy =7~ Tot g |\ T70)+0\3)- (6.32)
Since by (6.3) and (6.5)
b 1 (92 1 [0k d
B - (=1ogh)=—-(—)=——logk, (6.33)
k — k\oy? k \ay ay

it follows from (6.32) and (6.33) that

1 1 a 1 ad 1
TB’GZT(I)_%—FE glogk T(l)_ﬁ 2 510gk -+ 0p )
which implies that (6.6) holds. From (6.6) and Theorem 4.3.1, we have

" 1 ad 1
TB,@—T(l) % 2 3y —logk ) —muy; + O, ; s

hence, by (4.7) and (4.8), we obtain (6.7) and (6.8). Thus, we complete the proof.

The proof of Theorem 6.4.1 The Bayes estimator (6.10) plugging 6y in 6 of VB
when 6 is unknown is expressed by

T T
o 0=y 4 [ / [T ).
n\Jg pn (GML, y + (u/n) b" GMLs v+ (u/"))

(6.34)
where 7,, = n(c — r). Since éML =60+ (0/\/)\21’1) and
1 92 ) 1 33 5
—bO,y) =1 + A1, —b(0,y) = A3 + 3h1A2 + A7,

b(o, )86’2 b, )893


http://dx.doi.org/10.1007/978-981-10-5296-5_4
http://dx.doi.org/10.1007/978-981-10-5296-5_4
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we have by the Taylor expansion

U
bl 0+ —— i +
b(]) )\24—)\.%02 1 ( azb ) 014
b

=b(,y){1 U —
( J/)I +~/,\ Tt 200y ) Jianyn
A3+ 3hAs 4+ A A4 1 ( b ) -

32 2 2 Uu
612 nﬁ 2bion 06 8)/

A CC W Y G AP
——= )t —— = — ) {,
2bn? \ 3y? 24bA3n? \ 904 n2/n

hence

bn 9+L +z
/\/)Lzl’l’y n
Al\/ﬁf\ 1,\2 A3 ~3
=b"(9,y)[exp[—U~|——U + ——U"
V2 Tl

N 1 3*b o A4 6A300 + 4hiAs + 3#
24b33n \ 96 2403n
U 32b b U2 33b rba U
. eb([)u exp - + ﬁ 2 + I/l _ 1 (1) u
b/Aon \ 909y 2n 2bion \ 9629y )
by (A + 2202 A b \ ~ b 1
_boGa+ AU M 0% + (A 1U2 ‘o0,
2 on biyn \ 000y Aon nf
U 3%b b U? b
=", bayu — —=u? —
(©. )lexp{Q}le exp[b«/_)\zn (aeay)” T2 T oo (39237/) “
Mbay U bay(h — 202 A 82b B
_ MbaU NeZ D 4o M Uzu—i—O ’
Aon 2Mon biyn \ 000y ni/n
(6.35)

where Q is independent of u. From (6.23) and (6.35), we have

n(y+%)/b"(9+\/()?7,y+n)

=b7"(0, V)[GXp{—Q}]n(y)e—bmu[] _

U 3%b Mbay ~ b
u+ 200y — 222
b/An \ 000y on 2n
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bay(ha — A2) A e 3%b A 3%\ ~
m (2 )U2u— u—+ ! Uzu—i-@u
2Xon 2biyn \ 0620y blyn \ 060y n

2 A
N I G W O ST Ll 2 WA L 10
2 (b2 \0860y ) Arn biyn 000y Aan
o,
" (nx/_)}

hence

/Tm 7 (y + (u/n))
w b (04 O/VEm, v+ /m)

e . 0 b L (2P,
0, y)lexp{— Q}]ﬂ(y)[0+ﬁ‘ RO b(m)] :

be) by(ra — A U2 1L [1 [ 3 Ao 9% \] o
-=ht+——L - — =)= U
2n 2\ on ron |26 \ 9629y b

du

00y
n 1 (% Mbay (9% e LT 4o, (A
" S Eﬁ(amw) T (amw)*'z Ty (E?i)’
(6.36)
/Tm um (y + (u/n))
. du
W bn(9+(U/JAz7),y+(u/n))

=b""(0, y)[exp{—0}17( )[1 +L{A b —l(ﬂ)]l
= »Y P 21RS! Jaan 10(1) G 2
by bay(r2 — )»%)02 1 1 3% )\.] 3%b ~>
—— LR+ —h—— 1 — |- Ush
2n 2An An | 2b \ 3623y b 300y
0213 1 3%b 2 Arb(y 3%b 1 55 (1) 1
— - —Ath —L+0,{—=) | (6.37
t [2b2 (893)/) b (863y)+2 O) ”(n\/ﬁ)} 6.37)
Here, the remainder terms in (6.36) and (6.37) are guaranteed to be order O, (n /%)

P ) ’
since the distribution with a density (1.7) belongs to a oTEF &, with a normalizing

factor b(8, y) based on a(-) and u(-) which are functions of class C3. Substituting
(6.36) and (6.37) into (6.34), we have

n(J;B O Y)

I U 1( 8% A L\ 1 L L
=Lty —~ by — - (—— Z () Vo —py (2 - 222
10+4/7\2ni P b(898y)][10 (10 @

Ly I

n by (hy — A7) 02 I n\’ 02 (1 3%b aM o 9%
2)»2]1 I() I() }Lzl’l 2b 8928)/ b

309y
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L (LY N 02 [ 1 (% \ Mba [ 9% Lo
I I don | 262 898)/ b \30dy PR
L LI o [ 1 I 02 b \1> (L)’
2 1—22 22 (2 + — 1 Mbq) — -
Iy I n Iy I() Aon 8937/ Iy

U? 1/ 8% LL 1
R b 210,(—). 6.38
)»2”[ o b(aeay)] T ”(nﬁ) (©-39)

From (6.29)—(6.31) and (6.38), we obtain

1ba - = H+
by T W/_ T 803)/ bin U b,
— A2 A 1 1 3%b 8%b N
MG inkity /o 5 — M 0>
2b(1)A2n b(l)Azn 2b 89287/ b 893]/

LI A l(azb)202+ lth 0(1) (6.39)
byyhon |70 b \ 900y pion " \nyn) ‘

Here, we have from (1.6), (2.1), and (6.3)

_I_

2 2
b
— bby, — = b0y + A2, 6.40
209y u(y)bb) 302 (A2 + A7) (6.40)
which imply
1 3% oAy
- =—+2) b bay(hy — A3 6.41
b6y ~ by + 20u(y)bay + bay(ha — A7). (6.41)

Substituting (6.40) and (6.41) into (6.39), we have from (6.5)

Tg s :”(?B,éML -¥)
:Tl—l-i- § 0_@ Tl_% _ 52 02_ 1 aﬁ 02
O T idman . @ UP 7 k) T an T 2200 oy

T b
+0 4 op( n) (6.42)

where & = u(y) — A;. Since


http://dx.doi.org/10.1007/978-981-10-5296-5_1
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it follows from (6.5) and (6.42) that

T _T 1 1 8k U+ 1 1 8A1 S A3
B.OuL @ = k2 /—)LG Azn 2%,

1 /38 2
—(—1logk) T - 0% -1
kn (ay °8 ) “’+2k2,\nIae2 ) }( )
B0, (- (6.43)
kn P\nyn)]’ ’
where
1 (3k\ [1 (X A3 1 %k 2 (9k
B=——(=){-|=)+=21+—1=-(=
k)»z 00 k 3)/ 2)»2 Zk)nz 392 k
2 (2 10gk) + T (6.44)
——|=—1lo —. .
K \oy 8 k

Since, by (6.5) and 0A/dy = db()/360 = —(3k/d8), it follows from (6.44) that

1 A ok 1 (9% 1
B=— 15 (Z) - (=) -2 —1ogk -yt
2Xy | kA \ 00 k \ 962 k oy
which, together with (6.43), yields (6.11). From (6.11) and Theorem 4.4.1, we have
~ B 1
TBaéML T(l) + - kn + 0 l’l\/_

hence, by (4.13) and (4.14), we obtain (6.12) and (6.13). Thus, we complete the
proof.
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