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Preface to the Second Edition 

The second edition of System Reliability Theory is a major upgrade compared to the 
first edition. Two new chapters have been added, and most of the original chapters 
have been significantly revised. Most of the text has been rewritten, and all the fig- 
ures have been redrawn. The new chapters are: 

Chapter 9, Reliability of Maintained Systems, where reliability assessment of re- 
pairable systems is discussed, together with models and methods for optimization of  
age-based and condition-based replacement policies. A description of reliability 
centered maintenance (RCM) and total productive maintenance (TPM) is also 
given. 

Chapter 10, Reliability of Safety Systems, where reliability assessment of peri- 
odically tested safety-critical systems is discussed. The terminology from the inter- 
national standard IEC61508 is used, and an approach to document compliance with 
this standard is outlined. 

New material has been included in all the original chapters, with the greatest 
number of additions in Chapters 3 , 5 ,  and 7. Various approaches to functional mod- 
elling and analysis are included in Chapter 3, Qualitative System Analysis, as a ba- 
sis for failure analysis. Chapter 3 is very fundamental and it may be beneficial to 
read this chapter before reading Chapter 2. 

The second edition has more focus on practical application of reliability theory 
than the first edition. This is mainly shown by the two new chapters and by the high 
number of new worked examples that are based on real industry problems and real 
data. 

A glossary of the main terms used in the book has been included at the end of the 
book, together with a list of acronyms and abbreviations. 

The revision of the book is based on experience from using the book in various 
courses in reliability and life data analysis at the Norwegian University of Science 
and Technology (NTNU) in Trondheim, continuing education courses arranged for 
industry both in Norway and abroad. Many instructors who have used the first edi- 
tion have sent very useful comments and suggestions. Feedback has also been re- 
ceived from people working in industry and consulting companies who have used 
the book as a reference in practical reliability studies. These comments have led to 
improvements in the second edition. 

Audience and Assumed Knowledge. The book has primarily been written as a 
textbook for university courses at senior undergraduate and graduate level. The 

xiii 



XiV PREFACE TO THE SECOND EDITION 

book is also intended as a reference book for practicing engineers in industry and 
consulting companies, and for engineers who which to do self-study. 

The reader should have some knowledge of calculus and of elementary probabil- 
ity theory and statistics. We have tried to avoid heavy mathematical formalism, es- 
pecially in the first six chapters of the book. Several worked examples are included 
to illustrate the use of the various methods. 

A number of problems are included at the end of almost all the chapters. The 
problems give the readers a chance to test their knowledge and to verify that they 
have understood the material. We have tried to arrange the problems such that the 
easiest problems come first. Some problems are rather complex and cover exten- 
sions of the theory presented in the chapter. 

Use as a Textbook. The second edition should be applicable as a text for several 
types of courses, both at senior undergraduate as well as graduate level. Some sug- 
gested courses are listed in Table P. 1. Each course in Table P. 1 is a one-semester 
course with two to three lectures per week. Several alternatives to these courses may 
be defined based on the desired focus of the course and the background of the stu- 
dents. It should be possible to cover the whole book in a two-semester course with 
three to four lectures per week. Examples of detailed course programs at NTNU 
may be found on the associated web site. 

Solutions to the problems are not provided as part of the book. A solutions man- 
ual, which contains full worked-out solutions to selected problems is, however, 
available to instructors and self-learning practicing engineers. A free copy can be 
obtained by contacting the author (marvin.rausand@ipk.ntnu.no). 

Associated web site. The first edition contained detailed references to computer 
programs for the various methods and approaches. These have been removed from 
the second edition and included in a web site that is associated to the book (see end 

Table P.l. Suggested Courses Based on  the Book 

Course 

Chapters 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

Systemreliabilitytheory x (x) x x (x) (x) ( X I  
(undergraduate course) 

System reliability theory x x (x) x x x X (x) x x  
(graduate coune) 

Reliabilityofsafety x (x) x x (x) x ( X I  X 

systems 

Reliability and x x x x  x (XI  x (4 
maintenance modelling 

X 

X 

Analysis of life data x x (x) X x x x x  

(x) means that this chapter may be an option or that only part of the chapter is required. 
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of Chapter 1). The reason for this is that such references will be outdated rather fast 
and are easier maintained on a web site. The intention is to keep this web site as up- 
to-date as possible, including additional information and links to other sites that are 
potentially useful to instructors, students, and other users of the book. 

MARVIN RAUSAND 



Preface to the First Edition 

The main purpose of this book is to present a comprehensive introduction to system 
reliability theory. We have structured our presentation such that the book may be 
used as a text in introductory as well as graduate level courses. For this purpose we 
treat simple situations first. Then we proceed to more complicated situations re- 
quiringadvanced analytical tools. 

At the same time the book has been developed as a reference and handbook for 
industrial statisticians and reliability engineers. 

The reader ought to have some knowledge of calculus and of elementary proba- 
bility theory and statistics. 

In the first five chapters we confine ourselves to situations where the state vari- 
ables of components and systems are binary and independent. Failure models, qual- 
itative system analysis, and reliability importance are discussed. These chapters 
constitute an elementary, though comprehensive introduction to reliability theory. 
They may be covered in a one-semester course with three weekly lectures over four- 
teen weeks. 

The remaining part of the book is somewhat more advanced and may serve as 
a text for a graduate course. In Chapter 6 situations where the components and 
systems may be in two or more states are discussed. This situation is modeled by 
Markov processes. Renewal theory is treated in Chapter 7, and dependent failures 
in Chapter 8. A rather broad introduction to life data analysis is given in Chapter 
9, accelerated life testing in Chapter 10, and Bayesian reliability analysis in 
Chapter 1 1. The book concludes with information about reliability data sources in 
Chapter 12. 

The book contains a large number of worked examples, and each chapter ends 
with a selection of problems, providing exercises and additional applications. 

A forerunner of this book, written in Norwegian by professor Arne T. Holen and 
the present authors, appeared in 1983 as an elementary introduction to reliability 
analysis. It was published by TAPIR and reprinted in 1988. However, we have 
rewritten all the chapters of the earlier book and added new material as well as sev- 
eral new chapters. The present book contains approximately twice as many pages as 
its forerunner and can be considered as a completely new book. 

We have already tried much of the material in the present book in courses on re- 
liability and risk analysis at the university level in Norway and Sweden, including 
continuing education courses for engineers working in industry. The feedback from 
participants in these courses has significantly improved the quality of the book. 

xvii 
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1 
Introduction 

1.1 A BRIEF HISTORY 

Reliability, as a human attribute, has been praised for a very long time. For technical 
systems, however, the reliability concept has not been applied for more than some 60 
years. It emerged with a technological meaning just after World War I and was then 
used in connection with comparing operational safety of one-, two-, and four-engine 
airplanes. The reliability was measured as the number of accidents per hour of flight 
time. 

At the beginning of the 1930s, Walter Shewhart, Harold F. Dodge, and Harry 
G. Romig laid down the theoretical basis for utilizing statistical methods in quality 
control of industrial products. Such methods were, however, not brought into use to 
any great extent until the beginning of World War 11. Products that were composed of 
a large number of parts often did not function, despite the fact that they were made 
up of individual high-quality components. 

During World War I1 a group in Germany was working under Wernher von Braun 
developing the V- 1 missile. After the war, it was reported that the first 10 V- 1 missiles 
were all fiascos. In spite of attempts to provide high-quality parts and careful attention 
to details, all the first missiles either exploded on the launching pad or landed “too 
soon” (in the English Channel). Robert Lusser, a mathematician, was called in as 
a consultant. His task was to analyze the missile system, and he quickly derived 
the product probability law of series components. This theorem concerns systems 
functioning only if all the components are functioning and is valid under special 
assumptions. It says that the reliability of such a system is equal to the product of the 
reliabilities of the individual components which make up the system. If the system 

1 

System Reliability Theory: Models and Statistical Method> 
Marvin Rausand,Arnljot Hoylanc 
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2 INTRODUCTION 

comprises a large number of components, the system reliability may therefore be 
rather low, even though the individual components have high reliabilities. 

In the United States, attempts were made to compensate a low system reliability by 
improving the quality of the individual components. Better raw materials and better 
designs for the products were demanded. A higher system reliability was obtained, 
but extensive systematic analysis of the problem was probably not carried out at that 
time. 

After World War 11, the development continued throughout the world as increas- 
ingly more complicated products were produced, composed of an ever-increasing 
number of components (television sets, electronic computers, etc.). With automa- 
tion, the need for complicated control and safety systems also became steadily more 
pressing. 

Toward the end of the 1950s and the beginning of the 1960s, interest in the United 
States was concentrated on intercontinental ballistic missiles and space research, 
especially connected to the Mercury and Gemini programs. In the race with the 
Russians to be the first nation to put men on the moon, it was very important that the 
launching of a manned spacecraft be a success. An association for engineers working 
with reliability questions was soon established. The first journal on the subject, IEEE 
Transactions on reliability came out in 1963, and a number of textbooks on the subject 
were published in the 1960s. 

In the 1970s interest increased, in the United States as well as in other parts of the 
world, in risk and safety aspects connected to the building and operation of nuclear 
power plants. In the United States, a large research commission, led by Professor 
Norman Rasmussen was set up to analyze the problem. The multimillion dollar 
project resulted in the so-called Rasmussen report, WASH- 1400 (NUREG-75/014). 
Despite its weaknesses, this report represents the first serious safety analysis of so 
complicated a system as a nuclear power plant. 

Similar work has also been carried out in Europe and Asia. In the majority of 
industries a lot of effort is presently put on the analysis of risk and reliability problems. 
The same is true in Norway, particularly within the offshore oil industry. The offshore 
oil and gas development in the North Sea is presently progressing into deeper and 
more hostile waters, and an increasing number of remotely operated subsea production 
systems are put into operation. The importance of the reliability of subsea systems is 
in many respects parallel to the reliability of spacecrafts. A low reliability cannot be 
compensated by extensive maintenance. 

A more detailed history of reliability technology is presented, for example, by 
Knight (1991), and Villemeur (1988). 

1.2 DIFFERENT APPROACHES TO RELIABILITY ANALYSIS 

We can distinguish between three main branches of reliability: 

0 Hardware reliability 

0 Software reliability 
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t 

I 
"Failure area" 

0 

Fig. 1.1 Load and the strength distributions. 

0 Human reliability 

The present textbook is concerned with the first of these branches: the reliability of 
technical components and systems. Many technical systems will also involve soft- 
ware and humans in many different roles, like designers, operators, and maintenance 
personnel. The interactions between the technical system, software, and humans are 
very important, but not a focused topic in this book. Within hardware reliability we 
may use two different approaches: 

0 The physical approach 

0 The actuarial approach 

In the physical approach the strength of a technical item is modeled as a random 
variable S .  The item is exposed to a load L that is also modeled as a random variable. 
The distributions of the strength and the load at a specific time t are illustrated in 
Fig. 1.1. A failure will occur as soon as the load is higher than the strength. The 
reliability R of the item is defined as the probability that the strength is greater than 
the load, 

R = Pr(S > L )  

where Pr(A)  denotes the probability of event A. 
The load will usually vary with time and may be modeled as a time-dependent 

variable L ( t ) .  The item will deteriorate with time, due to failure mechanisms like 
corrosion, erosion, and fatigue. The strength of the item will therefore also be a 
function of time, S ( t ) .  A possible realization of S ( t )  and L ( t )  is illustrated in Fig. 1.2. 
The time to failure T of the item is the (shortest) time until S ( t )  < L ( t ) ,  

T = min{t; S( t>  < L ( t ) )  

and the reliability R ( t )  of the item may be defined as 

R ( t )  = Pr(T > t )  

The physical approach is mainly used for reliability analyses of structural elements, 
like beams and bridges. The approach is therefore often called structural reliability 
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Fig. 1.2 Possible realization of the load and the strength of an item. 

analysis (Melchers 1999). A structural element, like a leg on an offshore platform, 
may be exposed to loads from waves, current, and wind. The loads may come from 
different directions, and the load must therefore be modeled as a vector L(t). In the 
same way, the strength will also depend on the direction and has to be modeled as a 
vector S ( t ) .  The models and the analysis may therefore become rather complex. 

In the actuarial approach, we describe all our information about the operating 
loads and the strength of the component in the probability distribution function F ( t )  
of the time to failure T .  No explicit modeling of the loads and the strength is carried 
out. Reliability characteristics like failure rate and mean time to failure are deduced 
directly from the probability distribution function F ( t ) .  Various approaches can be 
used to model the reliability of systems of several components and to include mainte- 
nance and replacement of components. When several components are combined into 
a system, the analysis is called a system reliability analysis. 

1.3 SCOPE OF THE TEXT 

This book provides a thorough introduction to component and system reliability anal- 
ysis by the actuarial approach. When we talk about reliability and reliability studies, 
it is tacitly understood that we follow the actuarial approach. 

The main objectives of the book are: 

1, To present and discuss the terminology and the main models used in reliability 
studies. 

2. To present the analytical methods that are fundamental within reliability engi- 
neering and analysis of reliability data. 

The methods described in the book are applicable during any phase of a system’s 
lifetime. They have, however, their greatest value during the design phase. During this 
phase reliability engineering can have the greatest effect for enhancing the system’s 
safety, quality, and operational availability. 
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Some of the methods described in the book may also be applied during the opera- 
tional phase of the system. During this phase, the methods will aid in the evaluation 
of the system and in improving the maintenance and the operating procedures. 

The book does not specifically deal with how to build a reliable system. The 
main topics of the book are connected to how to evaluate, measure, and predict the 
reliability of a system. 

1.4 BASIC CONCEPTS 

The main concept of this book is reliability. During the preceding sections the concept 
of reliability has been used without a precise definition. It is, however, very important 
that all main concepts are defined in an unambiguous way. We fully agree with 
Kaplan (1990) who states: “When the words are used sloppily, concepts become 
fuzzy, thinking is muddled, communication is ambiguous, and decisions and actions 
are suboptimal, to say the least.” 

A precise definition of reliability and some associated concepts like quality, avail- 
ability, safety, security, and dependability are given below. All of these concepts 
are more or less interconnected, and there is a considerable controversy concerning 
which is the broadest and most general concept. Further concepts are defined in the 
Glossary at the end of the book. 

Until the 1960s reliability was defined as “the probability that an item will perform 
a required function under stated conditions for a stated period of time.” Some au- 
thors still prefer this definition, for example, Smith (1997) and Lakner and Anderson 
(1985). We will, however, in this book use the more general definition of reliability 
given in standards like I S 0  8402 and British Standard BS 4778: 

Reliability 
The ability qf an item to pegorm a required function, under given environmental and 
operational conditions and for a stated period of time (ISO8402). 

0 The term “item” is used here to denote any component, subsystem, or system 
that can be considered as an entity. 

A required function may be a single function or a combination of functions that 
is necessary to provide a specified service. 

0 All technical items (components, subsystems, systems) are designed to perform 
one or more (required) functions. Some of these functions are active and some 
functions are passive. Containment of fluid in a pipeline is an example of a 
passive function. Complex systems (e.g., an automobile) usually have a wide 
range of required functions. To assess the reliability (e.g., of an automobile), 
we must first specify the required function(s) we are considering. 

0 For a hardware item to be reliable, it must do more than meet an initial fac- 
tory performance or quality specification-it must operate satisfactorily for a 
specified period of time in the actual application for which it is intended. 
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Remark: The North American Electric Reliability Council (NERC) has introduced a 
more comprehensive definition of the reliability of an electric system. NERC defines 
the reliability of an electric systems in terms of two basic functional aspects: 

1. Adequacy. The ability of the electric system to supply the aggregate electrical 
demand and energy requirements of customers at all times, taking into account 
scheduled and reasonably expected unscheduled outages of system elements. 

2. Security. The ability of the electric system to withstand sudden disturbances 
such as electric short circuits or unanticipated loss of system elements. 

Quality 
The totality of features and characteristics of a product or service that bear on its 
ability to satisfy stated or implied needs (ISO8402). 

0 Quality is also sometimes defined as conformance to specifications (e.g., see 
Smith 1997). 

0 The quality of a product is characterized not only by its conformity to specifi- 
cations at the time it is supplied to the user, but also by its ability to meet these 
specifications over its entire lifetime. 

However, according to common usage, quality denotes the conformity of the product 
to its specification as manufactured, while reliability denotes its ability to continue to 
comply with its specification over its useful life. Reliability is therefore an extension 
of quality into the time domain. 

Remark: In common language we often talk about the reliability and quality of  a 
product. Some automobile journals publish regular surveys of reliability and quality 
problems of the various cars. Under reliability problems they list problems related 
to the essential functions of the car. A reliability problem is present when the car 
cannot be used for transport. Quality problems are secondary problems that may be 
considered a nuisance. 0 

Availability 
The ability of an item (under combined aspects of its reliability, maintainability and 
maintenance support) to pelform its required function at a stated instant of time or 
over a stated period of time (BS4778). 

0 We may distinguish between the availability A ( t )  at time t and the average 
availability Aav. The availability at time t is 

A(t )  = Pr(item is functioning at time t )  

The term “functioning” means here that the item is either in active operation 
or that it is able to operate if required. 

The average availability A,  denotes the mean proportion of time the item is 
functioning. If we have an item that is repaired to an “as good as new” condition 
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every time it fails, the average availability is 

MTTF 
MTTF + MTTR A, = 

where MTTF (mean time to failure) denotes the mean functioning time of the 
item, and MTTR (mean time to repair) denotes the mean downtime after a 
failure. Sometimes MDT (mean downtime) is used instead of MTTR to make 
it clear that it is the total mean downtime that should be used in (1.1) and not 
only the mean active repair time. 

0 When considering a production system, the average availability of the produc- 
tion (i.e., the mean proportion of time the system is producing) is sometimes 
called the production regularity. 

Maintainability 
The ability of an item, under stated conditions of use, to be retained in, or restored to, 
a state in which it can perform its requiredfunctions, when maintenance is performed 
under stated conditions and using prescribed procedures and resources (BS4778). 

0 “Maintainability” is a main factor determining the availability of the item. 

0 RAM is often used as an acronym for reliability, availability, and maintainabil- 
ity. We also use the notions RAM studies and RAM engineering. 

Safety 
Freedom from those conditions that can cause death, injury, occupational illness, or 
damage to or loss of equipment or property (MIL-STD-882D). 

0 This definition has caused considerable controversy. A number of alternative 
definitions have therefore been proposed. The main controversy is connected 
to the term “freedom from.” Most activities involve some sort of risk and are 
never totally free from risk. In most of the alternative definitions safety is 
defined as an acceptable level of risk. 

0 The concept safety is mainly used related to random hazards, while the concept 
security is used related to deliberate actions. 

Security 
Dependability with respect to prevention of deliberate hostile actions. 

0 Security is often used in relation to information and computer systems. In this 
context, security may be defined as “dependability with respect to prevention 
of unauthorized access to and/or handling of information” (Laprie 1992). 

0 The security of critical infrastructures is thoroughly discussed in CCIP (1997) 

Dependability 
The collective term used to describe the availability performance and its injuenc- 
ing factors: reliability performance, maintainability performance and maintenance 
support performance (IEC60300). 
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0 A slightly different definition is given by Laprie (1992). He defines depend- 
ability to be: “Trustworthiness of a system such that reliance can justifiably be 
placed on the service it delivers.” In comments to this definition, Laprie (1992) 
claims that dependability is a global concept which subsumes the attributes of 
reliability, availability, safety, and security. This is also in accordance with the 
definition used by Villemeur (1988). 

0 If safety and security are included in the definition of dependability as influ- 
encing factors, dependability will be identical to the RAMS concept (RAMS 
is an acronym for reliability, availability, maintainability, and safety). 

0 According to Laprie (1992) the definition of dependability is synonymous to 
the definition of reliability. Some authors, however, prefer to use the concept 
of dependability instead of reliability. This is also reflected in the important 
series of standards IEC 60300 “Dependability Management.” 

In this book we will use reliability as a global, or general, concept with the same 

The reliability may be measured in different ways depending on the particular 
main attributes as listed under the definition of dependability. 

situation, for example as: 

1. Mean time to failure (MTTF) 

2. Number of failures per time unit cfailure rate) 

3. The probability that the item does not fail in a time interval (0, t ]  (survival 
probability) 

4. The probability that the item is able to function at time t (availability at time t )  

If the item is not repaired after failure, 3 and 4 coincide. All these measures are given a 
mathematically precise definition in Chapter 2 with concepts from probability theory. 

1.5 APPLICATION AREAS 

The main objective of a reliability study should always be to provide information as 
a basis for decisions. Before a reliability study is initiated, the decision maker should 
clarify the decision problem, and then the objectives and the boundary conditions and 
limitations for the study should be specified such that the relevant information needed 
as input to the decision is at hand, in the right format, and on time. 

Reliability technology has a potentially wide range of application areas. Some of 
these areas are listed below to illustrate the wide scope of application of reliability 
technology. 

1. Risk analysis. The main steps of a quantitative risk analysis (QRA) are, as 
illustrated in Fig. 1.3: 
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- Checklists 
- Preliminary hazard 

analysis 
- FMECA' 
- HAZOP 

- Event data sources 

Causal Accidental Consequence 
analysis event analysis 

- Event tree analysis' 
- Consequence 

models 
- Reliability 

assessment' 
- Evacuation models 
- Simulation 

I Methods I 
- Fault tree analysis' 
- Reliability block 

- Influence diagrams' 
diagrams' 

- FMECA' 

- Reliability data 
sources* 

Fig. 1.3 Main steps of a risk analysis, with main methods. 

(a) Identification and description of potential accidental events in the system. 
An accidental event is usually defined as a significant deviation from 
normal operating conditions that may lead to unwanted consequences. In 
an oil/gas processing plant a gas leak may, for example, be defined as an 
accidental event. 

(b) The potential causes of each accidental event are identified by a causal 
analysis. The causes are usually identified in a hierarchical structure start- 
ing with the main causes. Main causes, and subcauses may be described 
by a tree structure called a fault tree. If probability estimates are available, 
these may be input into the fault tree, and the probability/frequency of the 
accidental event may be calculated. 

(c) Most well-designed systems include various barriers and safety functions 
that have been installed to stop the development of accidental events or 
to reduce the consequences of accidental events. In the gas leak example 
in step (a), the barriers and safety functions may comprise gas detection 
systems, emergency shutdown systems, fire-fighting systems, fire con- 
tainment systems (e.g., fire walls), and evacuation systems/procedures. 
The final consequences of an accidental event will depend on whether or 
not these systems are functioning adequately. The consequence analysis 
is usually carried out by an event tree analysis. The event tree analysis 
is often supplemented by calculations of fire and explosion loads, sim- 
ulations of the escalation of fires, reliability assessment of emergency 
shutdown systems, and so on. Specific methods may be required to ana- 
lyze consequences to: 

0 Humans 
0 The environment 
0 Material assets 
0 Production regularity (if relevant) 
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The methods that are most commonly used during the three steps of a risk 
analysis are listed beneath the relevant step in Fig. 1.3. Methods that are 
described in this book are marked with (*). Reliability analysis is a main part 
of any QRA, and several methods are common for risk and reliability analyses. 

2. Environmental protection. Reliability studies may be used to improve the de- 
sign and operational regularity of antipollution systems like gadwater cleaning 
systems. 

Many industries have realized that the majority of the pollution from their plants 
is caused by production irregularities and that consequently the production 
regularity of the plant is the most important factor in order to reduce pollution. 
Reliability and regularity studies are among the most important tools to optimize 
production regularity. 

An environmental risk analysis is carried out according to the same procedure 
as a standard risk analysis and has the same interfaces with reliability analysis. 

3. QuuZiq. Quality management and assurance is increasingly focused, stimulated 
by the almost compulsory application of the IS09000 series of standards. 

The concepts of quality and reliability are closely connected. Reliability may in 
some respects be considered to be a quality characteristic (perhaps the most im- 
portant characteristic). Complementary systems are therefore being developed 
and implemented for reliability management and assurance as part of a total 
quality management (TQM) system. Note the relation between the IS09000 
and the IEC 60300 series of standards as discussed by Strandberg (1992). 

4. Optimization of maintenance and operation. Maintenance is carried out to pre- 
vent system failures and to restore the system function when a failure has 
occurred. The prime objective of maintenance is thus to maintain or improve 
the system reliability and productiodoperation regularity. 

Many industries (e.g., the nuclear power, aviation, defense, and the offshore 
and shipping industry) have fully realized the important connection between 
maintenance and reliability and have implemented the reliability centered main- 
tenance (RCM) approach. The RCM approach is a main tool to improve the 
cost-effectiveness and control of maintenance in all types of industries, and 
hence to improve availability and safety. Reliability assessment is also an im- 
portant element of the following applications: life cycle cost (LCC), life cycle 
profit (LCP), logistic support, spare part allocation, and manning level analysis. 

5 .  Engineering design. Reliability is considered to be one of the most impor- 
tant quality characteristics of technical products. Reliability assurance should 
therefore be an important topic during the engineering design process. 

Many industries have realized this and integrated a reliability program in the de- 
sign process. This is especially the case within the nuclear power, the aviation, 
the aerospace, the automobile, and the offshore industries. Such integration 
may be accomplished through concepts like concurrent engineering (Kusiak 
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1993) and design for X (Huang 1996) that focus on the total product perspec- 
tive from inception through product delivery. 

6. Verijication of quality/reliability. A number of official bodies require that the 
producer and/or the user of technical systems are able to verify that their equip- 
ment satisfies specified requirements. Such requirements usually have a basis 
in safety and/or environmental protection. Some industries also meet strict 
requirements with respect to production regularity. This is especially the case 
within the power generation and petroleum industries. 

As part of the formation of the European Union (EU) a number of new EU di- 
rectives have been issued. Among these are the machinery safety directive, the 
product safety directive, and the product liability directive. The producers of 
equipment must, according to these directives, verify that their equipment com- 
ply with the requirements. Reliability analyses and reliability demonstration 
testing are necessary tools in the verification process. 

During the last few years it has become more and more common that buyers 
of technical equipment require a quantitative assessment of the quality and 
reliability as part of the total system documentation. The documentation re- 
quired varies a lot, from filled-in failure modes, effects, and criticality analysis 
(FMECA) forms to detailed results from life testing of the equipment (e.g., see 
DNV-RP-A203). Documented qualityh-eliability has been required by some 
industries for many years (e.g., aircraft, aerospace, automobile, nuclear, de- 
fense). 

1.6 MODELS AND UNCERTAINTIES 

In practical situations the analyst will have to derive (stochastic) models of the system 
at hand, or at least have to choose from several possible models before an analysis 
can be performed. To be “realistic” the model must describe the essential features of 
the system, but do not necessarily have to be exact in all details. One of the pioieers 
in mathematical statistics, Jerzy Neyman (1 945), expresses this in the following way: 

Every attempt to use mathematics to study some real phenomena must begin with 
building a mathematical model of these phenomena. Of necessity, the model sim- 
plifies the matters to a greater or lesser extent and a number of details are ignored. 
The success depends on whether or not the details ignored are really unimportant 
in the development of the phenomena studied. The solution of the mathematical 
problem may be correct and you may be in violent conflict with realities, simply 
because the original assumptions of the mathematical model diverge essentially 
from the conditions of the practical problem considered. Beforehand, it is im- 
possible to predict with certainty whether or not a given mathematical model is 
adequate. To find this out, it is necessary to deduce a number of consequences 
of the model and to compare them with observation. 

Another pioneer in statistics, George E. P. Box, repeatedly points out that “no model 
is absolutely correct. In particular situations, however, some models are more useful 
than others.” 
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fjg, 7.4 Modeling and uncertainties. 

In reliability and safety studies of technical systems, one will always have to work 
with models of the systems. These models may be graphical (networks of different 
types) or mathematical. A mathematical model is necessary in order to be able to 
bring in data and use mathematical and statistical methods to estimate reliability, 
safety, or risk parameters. For such models, two conflicting interests always apply: 

a The model should be sufficiently simple to be handled by available mathemat- 
ical and statistical methods. 

The model should be sufficiently “realistic” such that the deducted results are 
of practical relevance. 

We should, however, always bear in mind that we are working with an idealized, sim- 
plified model of the system. Furthermore, the results we derive are, strictly speaking, 
valid only for the model, and are accordingly only “correct” to the extent that the 
model is realistic. 

The modeling situation is illustrated in Fig. 1.4. Before we start developing a 
model, we should clearly understand what type of decision the results from our 
analysis should provide input to, and also the required format of the input to the 
decision. This was also mentioned on page 8. To estimate the system reliability from 
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a model, we need input data. The data will usually come from generic data sources, 
as discussed in Chapter 14. The generic data may not be fully relevant for our system 
and may have to be adjusted by expert judgment. This is especially the case when 
we are introducing new technology. Some data may also come from the specific 
system. When establishing the system model, we have to consider the type, amount, 
and quality of the available input data. It has limited value to establish a very detailed 
model of the system if we cannot find the required input data. 

Now and then there is the contention that use of “probabilistic reliability analysis” 
has only bounded validity and is of little practical use. When something goes wrong, 
it is usually attributed to human error. That is to say, someone has failed to do  what 
he should have done in a certain situation, or has done something that should not 
have been done. In principle, however, there is nothing to prevent key persons from 
counting as “components” of the system in the same way as the technical components 
do. It would obviously be difficult to derive numerical estimates for the probability 
of human errors in a given situation, but that is another issue. 

From what has been said, we understand that many subject areas are involved in a 
reliability analysis of technical systems. 

0 Detailed knowledge is needed of the technical aspects of the system and of the 
physical mechanisms that may lead to failure. 

0 Knowledge of mathematical/statistical concepts and statistical methods is a 
necessary (but far from sufficient) condition to be able to carry out such anal- 
yses. 

0 If humans are treated as components in the system, medical, psychological, 
and sociological insight into their behavior patterns is needed, and last but not 
least, knowledge of how humans react under stress. 

0 Data must be available for estimation of parameters and checking of models. 

0 Analysis of complicated systems must be accompanied by appropriate computer 
programs. 

The above list is not complete but illustrates that a reliability analysis requires many 
different areas of knowledge and has to be a multidiscipline task. 

Boundary Conditions for the Analysis A reliability analysis of a system will 
always be based on a wide range of assumptions and boundary conditions. Here we 
briefly mention a few such considerations: 

0 Precisely which parts of the system are going to be included in the analysis and 
which parts are not? 

0 Precisely what are the objectives of the analysis? Different objectives may 
necessitate different approaches. 

0 What system interfaces will be used? Operator and software interfaces have to 
be identified and defined. 
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0 What level of detail is required? 

0 Which operational phases are to be included in the analysis ( e g ,  start-up, 
steady state, maintenance, disposal)? 

0 What are the environmental conditions for the system? 

0 Which external stresses should be considered (e.g., sabotage, earthquakes, 
lightning strikes)? 

1.7 STANDARDS AND GUIDELINES 

A wide range of standards and guidelines containing requirements with respect to 
reliability and safety have been issued. Any reliability engineer should be familiar 
with the standards and guidelines that are applicable within his or her subject areas. 
A survey of relevant standards and guidelines may be found on the the book’s web 
page. 

Contents of associated web page 

- Supplementary notes - Scientific journals 
- Overhead presentations - Other books 
- Additional problems - Conferences 
- Control questions 
- Misprints 

- Laws and regulations 
- Standards 
- Guidelines 
- Reliability data sources 
- Computer programs 

Links to: 
- Universities offering 
educational programs 

- Organizations 
- Consulting companies 
- Other resources 

The web page may be found by following the link from the book’s presentation page 
at www.wiley.com, or by sending an email to marvin.rausand@ipk.ntnu.no. 



2 
Failure Models 

2.1 INTRODUCTION 

We will now introduce several quantitative measures for the reliability of a non- 
repairable item. This item can be anything from a small component to a large system. 
When we classify an item as nonrepairable, we are only interested in studying the item 
until the first failure occurs. In some cases the item may be literally nonrepairable, 
meaning that it will be discarded by the first failure. In other cases, the item may be 
repaired, but we are not interested in what is happening with the item after the first 
failure. 

First we will introduce four important measures for the reliability of a nonrepairable 
item. These are: 

0 The reliability (survivor) function R ( t )  

0 The failure rate function z ( t >  

0 The mean time to failure (MTTF) 

0 The mean residual life (MRL) 

Thereafter, we introduce a number of probability distributions that may be used to 
model the lifetime of a nonrepairable item. The following life distributions are dis- 
cussed: 

0 The exponential distribution 

0 The gamma distribution 
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I- Time to failure, T -1 t 

Fig. 2.1 The state variable and the time to failure of an item. 

0 The Weibull distribution 

0 The normal distribution 

0 The lognormal distribution 

0 The Birnbaum-Saunders distribution 

0 The inverse Gaussian distribution 

We also introduce three discrete distributions: the binomial, the geometric, and the 
Poisson distributions. Finally, we discuss some extreme value distributions and how 
we can model the lifetime of an item as a function of various stress levels (stressors). 
The chapter is concluded by a survey of some broader classes of life distributions. 

2.2 STATE VARIABLE 

The state of the item at time t may be described by the state variable X ( t ) :  

1 
0 

if the item is functioning at time t 
if the item is in a failed state at time t [ X ( t )  = 

The state variable of a nonrepairable item is illustrated in Fig. 2.1 and will generally 
be a random variable. 

2.3 TIME TO FAILURE 

By the time to failure of an item we mean the time elapsing from when the item is put 
into operation until it fails for the first time. We set t = 0 as the starting point. At least 
to some extent the time to failure is subject to chance variations. It is therefore natural 
to interpret the time to failure as a random variable, T .  The connection between the 
state variable X ( t )  and the time to failure T is illustrated in Fig. 2.1. 

Note that the time to failure T is not always measured in calendar time. It may 
also be measured by more indirect time concepts, such as: 
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0.0 0.5 1 .o 2.0 
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Fig. 2.2 Distribution function F ( t )  and probability density function f ( t ) .  

0 Number of times a switch is operated 

0 Number of kilometers driven by a car 

0 Number of rotations of a bearing 

0 Number of cycles for a periodically working item 

From these examples, we notice that time to failure may often be a discrete variable. 
A discrete variable can, however, be approximated by a continuous variable. Here, 
unless stated otherwise, we will assume that the time to failure T is continuously 
distributed with probability density function f ( t )  and distribution function 

F ( t )  = Pr(T 5 t )  = f ( u ) d u  for t  > 0 I' 
F ( r )  thus denotes the probability that the item fails within the time interval (0, t ] .  

The probability density function f ( t )  is defined as 

= lim 
d 

f ( t )  = - F ( t )  = lim 
F ( t  + At) - F ( t )  Pr(t < T 5 t + A t )  

At dt  At+O At At-0 

This implies that when At is small, 

Pr(t < T 5 t + A t )  x f ( t )  . At 

The distribution function F ( t )  and the probability density function f ( t )  are illustrated 
is Fig. 2.2. 

2.4 RELIABILITY FUNCTION 

The reliability function of an item is defined by 

R ( t )  = 1 - F ( t )  = Pr(T > t )  f o r t  > 0 
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0.0 0.5 1 .o 2.0 

Time t 

fig. 2.3 The reliability (survivor) function R ( t ) .  

or equivalently 
t do 

R ( t )  = 1 - Jd f ( u ) d u  = f ( u ) d u  (2.3) 

Hence R ( t )  is the probability that the item does not fail in the time interval (0, t ] ,  
or, in other words, the probability that the item survives the time interval (0, t ]  and 
is still functioning at time t .  The reliability function R ( t )  is also called the survivor 
function and is illustrated in Fig. 2.3. 

2.5 FAILURE RATE FUNCTION 

The probability that an item will fail in the time interval ( t ,  t + A t ]  when we know 
that the item is functioning at time t is 

Pr(t < T 5 t + A t )  

Pr(T > t )  
F ( t  + A t )  - F ( t )  

R ( r )  
- - Pr(t < T 5 t + A t  I T > t )  = 

By dividing this probability by the length of the time interval, At ,  and letting 
At +. 0, we get thefailure ratefunction z ( t )  of the item 

Pr(t < T s t + A t  I T > t )  
~ ( t )  = lim 

At-tO At 

At-0 At R ( t )  N t )  
(2.4) 

F(t + At)  - F ( t )  1 f ( t )  
= lim - 

This implies that when At is small, 

Pr(t  < T 5 t + At I T > t )  X ~ ( t ) .  At 

Remark: Note the similarity and the difference between the probability density func- 
tion f ( t )  and the failure rate function z ( t ) .  

Pr(t < T 5 t + A t )  x f(t) ' .  At (2.5) 

Pr(t < T 5 t + At I T > t )  x z ( t ) .  At (2.6) 
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Say that we start out with a new item at time t = 0 and at time t = 0 ask: “What is the 
probability that this item will fail in the interval ( t ,  t + At]?’ According to (2.5) this 
probability is approximately equal to the probability density function f ( t )  at time t 
multiplied by the length of the interval At. Next consider an item that has survived 
until time t ,  and ask: “What is the probability that this item will fail in the next interval 
( t ,  t + At]?’ This (conditional) probability is according to (2.6) approximately equal 
to the failure rate function z ( t )  at time t multiplied by the length of the interval, At .O 

If we put a large number of identical items into operation at time t = 0, then 
z ( t )  . At will roughly represent the relative proportion of the items still functioning 
at time t ,  failing in ( t ,  t + At]. Since 

d d 
f ( t )  = - F ( t )  = -(1 - R(t)) = - R ’ ( t )  

dt dt  

then 

z ( t )  = -- R’(r) - - -- InR(t)  
R(t) dt 

Since R(0) = 1, then 

s,’ z ( t )  dt = - In R(t) 

and 

R(t) = exp (- I‘ z ( u )  d u )  

(2.7) 

(2.9) 

The reliability (survivor) function R(t) and the distribution function F ( t )  = 1 - R(t) 
are therefore uniquely determined by the failure rate function z ( t ) .  From (2.4) and 
(2.9) we see that the probability density function f ( t )  can be expressed by 

f ( t )  = z ( t )  . exp (- s,’ z ( u )  d u )  for t  > 0 (2.10) 

In actuarial statistics the failure rate function is called the force of mortality (FOM). 
This term has also been adopted by several authors of reliability textbooks to avoid 
the confusion between the failure rate function and the rate of occurrence of failures 
(ROCOF) of a repairable item. The failure rate function (FOM) is a function of the life 
distribution of a single item and an indication of the “proneness to failure” of the item 
after time t has elapsed, while ROCOF is the occurrence rate of failures for a stochastic 
process; see Chapter 7. A thorough discussion of these concepts is given by Ascher 
and Feingold (1984). Some authors (e.g., Thompson, 1988) prefer the term hazard 
rate instead of failure rate. The term failure rate is, however, now well established in 
applied reliability. We have therefore decided to use this term instead of FOM in this 
textbook, although we realize that the use of this term may lead to some confusion. 
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Table2.1 Relationship between the Functions F( t ) ,  f ' ( t ) ,  R(t) ,  and ~ ( t )  

F ( t )  = - s,' f ( u )  du  1 - R ( t )  1 - exp (-A' z(u) d u )  

d 
d t  f ( t )  = --F(t) 

The relationships between the functions F ( t ) ,  f ( t ) ,  R ( t ) ,  and z ( t )  are presented 
in Table 2.1. 

From (2.9) we see that the reliability (survivor) function R ( t )  is uniquely deter- 
mined by the failure rate function z ( t ) .  To determine the form of z ( t )  for a given type 
of items, the following experiment may be carried out: 

Split the time interval (0, t )  into disjoint intervals of equal length A t .  Then put n 
identical items into operation at time t = 0. When an item fails, note the time and 
leave that item out. For each interval record: 

0 The number of items n ( i )  that fail in interval i .  

0 The functioning times for the individual items (TI;, T2i. . . . , T,i) in interval 
i .  Hence Tji is the time item j has been functioning in time interval i . Tji is 
therefore equal to 0 if item j has failed before interval i ,  where j = 1, 2 ,  . . . , n.  

Thus c y = l  Tji is the total functioning time for the items in interval i .  Now 

which shows the number of failures per unit functioning time in interval i is a natural 
estimate of the "failure rate" in interval i for the items that are functioning at the start 
of this interval. 

Let m ( i )  denote the number of items that are functioning at the start of interval i :  
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Fig. 2.4 Empirical bathtub curve. 

and hence 

A histogram depicting z ( i )  as a function of i typically is of the form given in Fig. 2.4. 
If YZ is very large, we may use very small time intervals. If we let A t  + 0, is it 
expected that the step function z ( i )  will tend toward a “smooth” curve, as illustrated 
in Fig. 2.5, which may be interpreted as an estimate for the failure rate function z ( r ) .  

This curve is usually called a bathtub curve after its characteristic shape. The 
failure rate is often high in the initial phase. This can be explained by the fact that 
there may be undiscovered defects (known as “infant mortality”) in the items; these 
soon show up when the items are activated. When the item has survived the infant 
mortality period, the failure rate often stabilizes at a level where it remains for a certain 
amount of time until it starts to increase as the items begin to wear out. From the 
shape of the bathtub curve, the lifetime of an item may be divided into three typical 
intervals: the burn-in period, the useful life period and the wear-out period. The 
useful life period is also called the chance failure period. Often the items are tested 
at the factory before they are distributed to the users, and thus much of the infant 
mortality will be removed before the items are delivered for use. For the majority 
of mechanical items the failure rate function will usually show a slightly increasing 
tendency in the useful life period. 

- - - - - - - 
period Useful life period I period 

- - - - - - - 
0 Time t ’ 

Fig. 2.5 The bathtub curve. 
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2.6 MEAN TIME TO FAILURE 

The mean time to failure (MTTF) of an item is defined by 

03 

MTTF = E ( T )  = 1 t f ( t ) d t  (2.1 1) 

When the time required to repair or replace a failed item is very short compared to 
MTTF, MTTF also represents the mean time between failures (MTBF). If the repair 
time cannot be neglected, MTBF also includes the mean time to repair (MTTR). 

Since . f ( t )  = - R f ( t ) ,  

00 

MTTF= - I  rR‘( t )dr  

By partial integration 

MTTF = - [ t R ( t ) ] r  + R ( t )  dt Irn 
If MTTF < 00, it can be shown that [ t  R ( t ) ] r  = 0. In that case 

roo 
MTTF = lo R ( f )  dt (2.12) 

It is often easier to determine MTTF by (2.12) than by (2.1 1). 

forms. The Laplace transform of the survivor function R ( t )  is (see Appendix B) 
The mean time to failure of an item may also be derived by using Laplace trans- 

co 
R*(s)  = Jd R ( t )  eFS‘ d t  (2.13) 

When s = 0, we get 

r03 

R*(O) = lo R ( t ) d t  = MTTF (2.14) 

The MTTF may thus be derived from the Laplace transform R*(s)  of the survivor 
function R ( t ) ,  by setting s = 0. 

Median Life The MTTF is only one of several measures of the “center” of a life 
distribution. An alternative measure is the median life t,,,, defined by 

R(tm) = 0.50 (2.15) 

The median divides the distribution in two halves. The item will fail before time tm 
with 50% probability, and will fail after time tm with 50% probability. 
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Fig. 2.6 Location of the MTTF, the median life, and the mode of a distribution. 

Mode The mode of a life distribution is the most likely failure time, that is, the time 
tmode where the probability density function f ( t )  attains its maximum: 

Fig. 2.6 shows the location of the MTTF, the median life t m ,  and the mode tmode for 
a distribution that is skewed to the right. 

Example 2.1 
Consider an item with reliability (survivor) function 

1 
R ( t )  = for t  2 0 

(0.2t + 1)2 

where the time t is measured in months. The probability density function is 

0.4 
f ( t )  = - ~ ' ( t )  = 

(0.2 t + 113 

and the failure rate function is from (2.4): 

0.4 
- f ( t )  z ( t )  = - - 

R(r)  0.2t + 1 

The mean time to failure is from (2.12): 

MTTF = R ( t )  d t  = 5 months r 
The functions R ( t ) ,  f ( t ) ,  and z ( t )  are illustrated in Fig. 2.7. 

2.7 MEAN RESIDUAL LIFE 

0 

Consider an item with time to failure T that is put into operation at time t = 0 and is 
still functioning at time t .  The probability that the item of age t survives an additional 
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Fig. 2.7 The survivor function R ( t ) ,  the probability density function f ( t ) ,  and the failure 
rate function ~ ( t )  (dashed line) in Example 2.1. 

interval of length x is 

(2.17) 
Pr(T > x + t )  

Pr(T > t )  

R ( x  + t )  
R ( t )  

-- - R ( x  I t )  = Pr(T > x + t I T > t )  = 

R ( x  I t )  is called the condirional suwivor.function of the item at age t .  The mean 
residual (or, remaining) life, MRL(t), of the item at age t is 

MRL(t) = p(t) = R ( x  I t ) d x  = ~ p ) d x  (2.18) 

When t = 0, the item is new, and we have p(0) = p = MTTF. It is sometimes of 
interest to study the function 

r R ( t )  

(2.19) 

When an item has survived up to time t ,  then g ( t )  gives the MRL(t) as a percentage 
of the initial MTTF. If, for example, g ( t )  = 0.60, then the mean residual lifetime, 
MRL(r) at time t ,  is 60% of mean residual lifetime at time 0. 

By differentiating k ( t )  with respect to t it is straightforward to verify that the 
failure rate function z ( t )  can be expressed as 

(2.20) 

Example 2.2 
Consider an item with failure rate function Z ( t )  = r / ( t  + 1). The failure rate function 
is increasing and approaches I when t + 00. The corresponding survivor function 
is 

R ( t )  = exp (- /‘ 5 d u )  = ( t  + 1) e-‘ 
0 u + l  
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and 

The conditional survival function is 

( t  + x  + ~ ) e - ( ' + ~ )  t + x  + 1 --x 
e - R ( x  I t )  = Pr(T > x + t I T > t )  = - 

( t  + 1)e-z t + l  

The mean residual life is 

1 
MRL(t) = R(x I t ) d x  = 1 + - IW t + l  

We see that MRL(t) is equal to 2 (= MTTF) when t = 0, that MRL(t) is a decreasing 
0 function in t .  and that MRL(t) -+ 1 when t -+ 00. 

2.8 THE BINOMIAL AND GEOMETRIC DISTRIBUTIONS 

The binomial distribution is one of the most widely used discrete distributions in 
reliability engineering. The distribution is used in the following situation: 

I .  We have n independent trials. 

2. Each trial has two possible outcomes A and A*.  

3. The probability Pr(A) = p is the same in all the n trials. 

This situation is called a binomial situation, and the trials are sometimes referred to 
as Bernoulli trials. Let X denote the number of the n trials that have outcome A .  
Then X is a discrete random variable with distribution 

Pr(X = x )  = 

where ( y )  is the binomial coefficient 

p"(] - p)"--' fo rx  = 0, 1 , .  . . , n (2.21) (3 
n !  (:> = x ! ( n  - x)! 

The distribution (2.21) is called the binomial distribution ( n ,  p ) ,  and we sometimes 
write X - bin(n, p ) .  The mean value and the variance of X are 

E ( X )  = n p  
var(X) = np(1 - p )  

(2.22) 

(2.23) 

Assume that we carry out a sequence of Bernoulli trials, and want to find the number 
Z oftrials until the first trial with outcome A.  If Z = z ,  this means that the first ( z  - 1 )  
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Fig- 2-8 Exponential distribution (A = 1). 

trials have outcome A*,  and that the first A will occur in trial z .  The distribution of 
Z is 

The distribution (2.24) is called the geometric distribution. We have that 

The mean value and the variance of 2 are 

1 
E ( Z )  = - 

P 
1 - P  var(X) = - 

P 2  

(2.25) 

(2.26) 

2.9 THE EXPONENTIAL DISTRIBUTION 

Consider an item that is put into operation at time t = 0. The time to failure T of the 
item has probability density function 

[ te-" for t  > 0,  A > o 
otherwise f ( t )  = (2.27) 

This distribution is called the exponential distribution with parameter A, and we 
sometimes write T - exp(A). 

The reliability (survivor) function of the item is 

CQ 

R ( t )  = Pr(T > t )  = f ( u )  du = e-A' for t > o (2.28) 

The probability density function f ( t )  and the survivor function R ( t )  for the expo- 
nential distribution are illustrated in Fig. 2.8. The mean time to failure is 
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and the variance of T is 

1 
var(T) = - 

h2 

The probability that an item will survive its mean time to failure is 

The failure rate function is 

(2.29) 

(2.30) 

Accordingly, the failure rate function of an item with exponential life distribution 
is constant (i.e., independent of time). By comparing with Fig. 2.5, we see that this 
indicates that the exponential distribution may be a realistic life distribution for an 
item during its useful life period, at least for certain types of items. 

The results (2.29) and (2.30) compare well with the use of the concepts in everyday 
language. If an item on the average has h = 4 failuredyear, the MTTF of the item is 
114 year. 

Consider the conditional survivor function (2.17) 

Pr(T > t + x )  

Pr(T > t )  R ( x  I t )  = Pr(T > t + x  I T > t )  = 

- A 0  +x) 
(2.3 1) 

The survivor function of an item that has been functioning for t time units is therefore 
equal to the survivor function of a new item. A new item, and a used item (that is still 
functioning), will therefore have the same probability of surviving a time interval of 
length t .  The MRL for the exponential distribution is 

-AX - - -  - e-h, = e - Pr(T > x) = R ( x )  

MRL(t) = R ( x  I t ) d x  = R ( x ) d x  = MTTF Irn b"j 
The MRL(t) of an item with exponential life distribution is hence equal to its MTTF 
irrespective of the age t of the item. The item is therefore as good as new as long as 
it is functioning, and we often say that the exponential distribution has no memory. 

Therefore, an assumption of exponentially distributed lifetime implies that 

0 A used item is stochastically us good as new, so there is no reason to replace a 
functioning item. 

0 For the estimation of the reliability function, the mean time to failure, and so 
on, it is sufficient to collect data on the number of hours of observed time in 
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operation and the number of failures. The age of the items is of no interest in 
this connection. 

The exponential distribution is the most commonly used life distribution in applied 
reliability analysis. The reason for this is its mathematical simplicity and that it leads 
to realistic lifetime models for certain types of items. 

Example 2.3 
A rotary pump has a constant failure rate A. = 4.28 . hours-’ (data from 
OREDA 2002). The probability that the pump survives one month (f = 730 hours) 
in continuous operation is 

The mean time to failure is 

hours % 2336 hours x 3.2 months 
1 1 

MTTF = - = 
h 4.28.10-4 

Suppose that the pump has been functioning without failure during its first 2 months 
( I ]  = 1460 hours) in operation. The probability that the pump will fail during the 
next month (t2 = 730 hours) is 

since the pump is as good as new when it is still functioning at time t l .  0 

Example 2.4 
Consider a system of two independent components with failure rates hl and h2, 
respectively. The probability that component 1 fails before component 2 is 

f” 

This result can easily be generalized to a system of n independent components with 
failure rates hl , h2, . . . , h,l. The probability that component j is the first component 
to fail is 

A j  Pr(component j fails first) = ~ Cy=’=, hi 

0 

Example 2.5 Mixture of Exponential Distributions 
Assume that the same type of items are produced at two different plants. The items are 
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Fig. 2.9 The failure rate function of the mixture of two exponential distributions in Exam- 
ple 2.5 (A] = I ,  A? = 3,  and p = 0.4). 

assumed to be independent and have constant failure rates. The production process is 
slightly different at the two plants, and the items will therefore have different failure 
rates. Let h, denote the failure rate of the items coming from plant i ,  for i = 1 ,2 .  
The items are mixed up before they are sold. A fraction p is coming from plant 1, and 
the rest ( 1  - p )  is coming from plant 2. If we pick one item at random, the survival 
function of this item is 

R ( t )  = p .  ~ ~ ( t )  + ( 1  - p ) .  ~ 2 ( t )  = pe-*l'+ (1 - p)e-**' 

The mean time to failure is 

and the failure rate function is 

The failure rate function, which is illustrated in Fig. 2.9, is seen to be decreasing. If 
we assume that hl > h2, early failures should have a failure rate close to h ~ .  After a 
while all the "weak" components have failed, and we are left with components with 
a lower failure rate h2. 

The example can easily be extended to a mixture of more than two exponential 
distributions. 0 

Example 2.6 Phase-Type Distribution 
Consider an item that is exposed to three failure mechanisms. A random overstress 
may occur that will cause a critical (C) failure. The component is further exposed 
to wear that may cause a well-defined degraded (D) failure. In degraded mode, a 
new failure mechanism may cause a degraded critical (DC) failure. The random 
overstress occurs independent of the state of the component. The failure transitions 
are illustrated in Fig. 2.10 where 0 denotes full operating state. (The diagram in 
Fig. 2.10 is an example of a sfute transition diagram that is further discussed in 
Chapter 8). 
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Fig. 2.70 Failure transitions for the component in Example 2.6. 
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Fig. 2.11 The failure rate function of the component in Example 2.6 for A, = 0.5, hd = 1 ,  
and hdc = 3. 

The various times to failure are assumed to be independent and exponentially 
distributed. The time Tc to a C-failure has failure rate h,, and the time Td to a D- 
failure has failure rate Ad. The time Tdc for a component in degraded mode to fail to a 
DC-failure has failure rate hdc. The time T to critical (overstress or degraded) failure 
is therefore T = min[Tc, Td + Tdc}. The survival function is 

R ( t )  = Pr(rnin{Tc, Td + Tdc] > I )  = Pr(T, > t n Td + Tdc > t )  

= Pr(T, > t )  . Pr(Td + Td, > t )  

By using Problem 2.5, R ( t )  may be written 

(Ad, e-’df - Ad e-’dCt 1 (2.32) 
1 ~ ( t )  = e--hcf . ~ 

hdc - hd 

The failure rate function is 

(2.33) 

The failure rate function ~ ( t )  is illustrated in Fig. 2.1 1 for selected values of h,, hd, 
and Adc. The mean time to failure is 

(2.34) 

O 

hdc + hd + kc 

(Ad + hc)(hdc + Lc) 
MTTF = R ( t ) d t  = Irn 

This example is further discussed by Hokstad and Frovig (1 996). 
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2.10 THE HOMOGENEOUS POISSON PROCESS 

We will now briefly introduce the homogeneous Poisson process (HPP). The HPP is 
discussed in more detail in Chapter 7. The HPP is used to model occurrences of a 
specific event A in the course of a given time interval. The event A may, for example, 
be a failure or an accident. The following conditions are assumed to be fulfilled: 

1. The event A may occur at any time in the interval, and the probability of A 
occurring in the interval ( t ,  t + At] is independent of t and may be written as 
h . At + o(At ) , ’  where h is a positive constant. 

2. The probability of more that one event A in the interval ( t ,  t + At] is o ( A t ) .  

3. Let ( t i l ,  t121, (t21, t221, . . . be any sequence of disjoint intervals in the time 
period in question. Then the events “A occurs in (ti 1 ,  tj21,” j = 1 ,2 ,  . . ., are 
independent. 

Without loss of generality we let t = 0 be the starting point of the process. 
Let N ( t )  denote the number of times the event A occurs during the interval (0, t]. 

The stochastic process [ N ( t ) ,  t 2 0) is then an HPP with rate A. The rate h is some- 
times called the intensity of the process or the frequency of events A, A consequence 
of assumption 1 is that the rate of events 36 is constant, and does not change with 
time. The HPP can therefore not be used to model processes where the rate of events 
changes with time, for example, processes that have a long-term trend or are exposed 
to seasonal variations. 

The time t may be measured as calendar time or operational time. In many cases 
several subprocesses are running in parallel and the time t must then be measured as 
total, or accumulated, time in service. This is, for example, the case when we observe 
failures in a population of repairable items. 

The probability that A occurs exactly n times in the time interval (0, t ]  is 

Pr(N(t) = n )  = ~ (*‘)” e-Ar for n = 0, I ,  2, . . . (2.35) 

The distribution (2.35) is called the Poisson distribution. When we observe the oc- 
currence of events A in an interval ( s ,  s + t ] ,  the probability that A occurs exactly n 
times in (s, s + t ]  is 

n !  

Pr(N(s + t )  - N ( s )  = n )  = - (hr)” e-*f  for n = 0 , 1 , 2 ,  . . . 
n !  

that is, the same probability as we found in (2.35). The important quantity is therefore 
the length t of the time interval we are observing the process, not when this interval 
starts. 

’ o ( A r )  denotes a function of At with the property that limAt+o 9 = 0. 
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The mean number of events in (0, t ]  is 

and the variance is 

var(N(t)) = ht (2.37) 

From equation (2.36), the parameter h may be written as h = N ( t ) / t ,  that is, the 
mean number of events per time unit. This is why h is called the rate of the HPP. 
When the event A is a failure, h is the ROCOF of the HPP. 

A natural unbiased estimator of h is 

N ( t )  
t 

No. of events observed in an interval of length t 
A = - =  (2.38) 

Length t of the interval 

Let TI denote the time when A occurs for the first time, and let FT, ( t )  denote the 
distribution function of T I .  Since the event (TI > t )  means that no event has occurred 
in the interval (0, t ] .  we get 

FT, ( t )  = Pr(T1 5 t )  = 1 - Pr(T1 > r )  
= I - Pr(N(r) = 0) = 1 - e-*‘ for t  2 o (2.39) 

The time 7‘1 to the first A is seen to be exponentially distributed with parameter 
h. It may be shown, see Chapter 7, that the times between events, T I ,  T2, . . . are 
independent, and exponentially distributed with parameter h. The times between 
events T I ,  T2, . . . are called the interoccurrence times of the process. 

Example 2.7 
Consider a repairable item that is put into operation at time t = 0. The first failure 
(event A) occurs at time TI .  When the item has failed, it is replaced with a new 
item of the same type. The replacement time is so short that it can be neglected. 
The second failure occurs at time T2, and so on. We thus get a sequence of times 
T I ,  T2, . , .. The number of failures N(t) in the time interval (0, t ]  is assumed to be 
Poisson distributed with ROCOF h. The interoccurrence times TI ,  T2, . . . are then 
independent and exponentially distributed with failure rate A. Note the important 

0 difference in meaning between the two concepts “failure rate” and ROCOF. 

Let us consider an HPP with rate h, and assume that we are interested in determining 
the distribution of the time Sk where A occurs for the kth time (k  is accordingly an 
integer). We let t be an arbitrarily chosen point of time on the positive real axis. The 
event (Tk > t )  is then obviously synonymous with the event that A is occurring at 
most ( k  - 1 )  times in the time interval (0, t ] .  Therefore 
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Hence 

(2.40) 

where F s , ( t )  is the distribution function for s k .  The probability density function 
fSk ( t )  is obtained by differentiating Fsk ( t )  with respect to t :  

h 
( k  - I ) !  

- - epAt for t 2 0 and h > 0 (2.41) 

where k is a positive integer. This distribution is called the gamma distribution with 
parameters k and A. The gamma distribution is further discussed in Section 2.11. We 
can therefore conclude that the waiting time until the kth occurrence of A in an HPP 
with rate h is gamma distributed ( k ,  A). 

The HPP is further discussed in Section 8.2. 

2.1 1 THE GAMMA DISTRIBUTION 

Consider an item that is exposed to a series of shocks that occur according to an 
HPP with rate A. The time intervals T I ,  T2, . . ., between consecutive shocks are 
then independent and exponentially distributed with parameter h (see Section 2.10). 
Assume that the item fails exactly at shock k ,  and not earlier. The time to failure of 
the item is then 

and according to (2.41) T is gamma distributed ( k ,  A), and we sometimes write 
T - gamma(k, h) .  The probability density function is 

(2.42) 

where r(.) denotes the gamma function (see Appendix A), t > 0, h > 0, and k is 
a positive integer. The probability density function f ( t )  is sketched in Fig. 2.12 for 
selected values of k .  
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Fig. 2.72 The gamma probability density, h = 1 .O. 
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Fig. 2.73 Reliability function for the gamma distribution, h = 1 .O. 

The parameter A denotes the rate (frequency) of shocks and is an external parameter 
for the item. The integer k may be interpreted as a measure of the ability to resist 
the shocks and will from now on generally not be restricted to integer values but be 
a positive constant. Equation (2.42) will still be a probability density function. 

From (2.42) we find that 

k 
MTTF = - 

A 
k 

var(T) = - 
A2 

For integer values of k the reliability function [see (2.40)] is given by 

A sketch of R ( t )  is given in Fig. 2.13 for some values of k .  
The corresponding failure rate function is 

(2.43) 

(2.44) 

(2.45) 

(2.46) 
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fig. 2.14 Failure rate function of the gamma distribution, h = 1. 

Fork = 2 the failure rate function is 

h2t 
z ( t )  = - 

1 +ht 

and the distribution in Example 2.2 is therefore a gamma distribution with k = 2 and 
h =  I .  

When k is not an integer, we have to use the general formulas (2.3) and (2.7) to 
find the reliability function R ( t )  and the failure rate function z ( t ) ,  respectively. It 
may be shown (e.g., see Cocozza-Thivent, 1997, p. 10) that 

The failure rate function z ( t )  is illustrated in Fig. 2.14 for some integer values of k. 
Let TI - gamma(k1, h )  and T2 - gamma(k2, h )  be independent. It is then easy 

to show (see Problem 2.16) that TI + T2 - gamma(k1 + k2, A). Gamma distributions 
with a common h are therefore closed under addition. 

2.1 1.1 Special Cases 

For special values of the parameters k and h, the gamma distribution is know under 
other names: 

1 .  When k = 1, we have the exponential distribution with failure rate h. 

2. When k = n/2 and h = 1/2, the gamma distribution is called a chi-square 
( x  ’) distribution with n degrees of freedom ( n  is an integer). Percentile values 
for the x 2  distribution are given in Appendix E. 

3. When k is an integer, the gamma distribution is called an Erlangiun distribution 
with parameters k and A. 

Example 2.8 Mixture of Exponential Distributions 
Assume that items of a specific type are produced in a plant where the production 
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process is unstable such that failure rate h of the items varies with time. If we pick 
an item at random, the conditional probability density function of the time to failure 
T ,  given A, is 

f ( t  1 A) = for t > o 

Assume that the variation in h can be modeled by a gamma distribution with param- 
eters k and a: 

n (h )  = O l k p  e -a* f orA > 0, a > 0, k 0 
r ( k )  

The unconditional density of T is thus 

(2.47) 

The survivor function is 

R ( r )  = Pr(T > t )  = f ( u ) d u  = ~ ak = ( 1 + : ) - k  - (2.48) 
(a + t Y  

The mean time to failure is 

fork > I 

Note that the MTTF does not exist for 0 < k 5 1 .  The failure rate function is 

(2.49) 

and hence is monotonically decreasing as a function o f t .  
A factory is producing a specific type of gas detectors. Experience has shown that 

the mean failure rate of the detectors is Am = 1.15. lo-' hours-' (data from OREDA 
2002). The corresponding mean MTTF is l / k m  % 9.93 years. The production is, 
however, unstable and the standard deviation of the failure rate is estimated to be 
4 . 10@ hours-'. As above, we assume that the failure rate is a random variable A 
with a gamma (k, a )  distribution. From (2.44) we have E ( A )  = k / a  = 1.15 . lo-', 
and var(A) = k / a 2  = [4 .  10-6]2. We can now solve fork and a! and get 

k w 8.27 and a! x 7.19. lo6 

The mean time to failure is then 

a 
MTTF = - x 9.9 . 10' hours x 11.3 years 

k - 1  

The corresponding failure rate function z ( t )  may be found from (2.49). 0 
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fig. 2.15 The probability density function of the Weibull distribution for selected values of 
the shape parameter a (1 = 1 ). 

Remark: Example 2.8 is similar to Example 2.5 where we mixed two different 
exponential distributions and got a decreasing failure rate function. The results from 
these examples are very important for collection and analysis of field data. Suppose 
that the (true) failure rate of a specific type of items is constant and equal to h. 
When we collect data from different installations and from different operational and 
environmental conditions, the failure rate h will vary. If we pool all the data into one 
single sample and analyze the data, we will conclude that the failure rate function is 
decreasing. 0 

2.12 THE WEIBULL DISTRIBUTION 

The Weibull distribution is one of the most widely used life distributions in reliability 
analysis. The distribution is named after the Swedish professor Waloddi Weibull 
( 1  887-1979) who developed the distribution for modeling the strength of materials. 
The Weibull distribution is very flexible, and can, through an appropriate choice of 
parameters, model many types of failure rate behaviors. 

The time to failure T of an item is said to be Weibull distributed with parameters 
a (>  0) and A.(> 0) [T - Weibull(cu, A)] if the distribution function is given by 

{ ; - e-(Ar)u for t  > o 
otherwise 

F ( r )  = Pr(T 5 t )  = 

The corresponding probability density is 

t" - I e- ( A t  )" for r > 0 
d t  otherwise 

f ( f )  = --F(t) = 

(2.50) 

(2 .5  1) 

where h is a .scule parameter, and a is referred to as the shape parameter. Note that 
when a = I ,  the Weibull distribution is equal to the exponential distribution. The 
probability density function f ( t )  is illustrated in Fig. 2.15 for selected values of a.  
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Fig. 2.16 Failure rate function of the Weibull distribution, I. = 1 .  

The survivor function is 

R ( t )  = Pr(T > 0) = e-(*')" for t > 0 (2.52) 

and the failure rate function is 

(2.53) 

When a = 1, the failure rate is constant; when a > 1, the failure rate function is 
increasing; and when 0 < a < 1, z ( t )  is decreasing. When a = 2, the resulting 
distribution is known as the Rayleigh distribution. The failure rate function z ( t )  of 
the Weibull distribution is illustrated in Fig. 2.16 for some selected values of a .  The 
Weibull distribution is seen to be flexible and may be used to model life distributions, 
where the failure rate function is decreasing, constant, or increasing. 

Remark: Notice that the failure rate function is discontinuous as a function of the 
shape parameter a at a = 1. It is important to be aware of this discontinuity in 
numerical calculations, since, for example, a = 0.999, a = 1 .000, and a! = 1 .OO 1 

0 will give significantly different failure rate functions for small values of t .  

From (2.52) it follows that 

R - = - M 0.3679 forall a > 0 (1) : 
Hence Pr(T > I / h )  = l/e, independent o fa .  The quantity l / h  is sometimes called 
the characteristic lifetime. The mean time to failure is 

(2.54) 
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The median life tm is 

1 

h 
R ( t m )  = 0.50 + tm = - (1n2)1'a 

The variance of T is 

var(T) = $ (r (f + 1) - r2 (f + 1)) 

(2.55) 

(2.56) 

Note that M T T F / , / m  is independent of A. 
The Weibull distribution also arises as a limit distribution for the smallest of a 

large number of independent, identically distributed, nonnegative random variables. 
The Weibull distribution is therefore often called the weakest link distribution. This 
is further discussed in Section 2.17. 

The Weibull distribution has been widely used in reliability analysis of semicon- 
ductors, ball bearings, engines, spot weldings, biological organisms, and so on. 

Example 2.9 
The time to failure T of a variable choke valve is assumed to have a Weibull distribution 
with shape parameter a! = 2.25 and scale parameter h = 1.15 + lop4 hours-'. The 
valve will survive 6 months ( t  = 4380 hours) in continuous operation with probability: 

The mean time to failure is 

r ( 1.44) 
M T T F = - ~  - + I  - hours % 7706 hours (: ) -  1.15.10-4 

and the median life is 

1 
h 

tm = -(In 2)'"y = 7389 hours 

A valve that has survived the first 6 months (tl = 4380 hours), will survive the next 
6 months ( t2  = 4380 hours) with probability 

that is, significantly less than the probability that a new valve will survive 6 months. 
The mean residual life when the valve has been functioning for 6 months ( t  = 4380 

hours) is 

MRL(r) = - R(t  + x)  d x  x 4730 hours 
R ( t )  la 0 

The MRL(r) cannot be given a closed form in this case and was therefore found by 
using a computer. The function g ( t )  = MRL(t)/ MTTF is illustrated in Fig. 2.17.0 
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Fig. 2.17 The scaled mean residual lifetime function g( t )  = MRL(r)/MTTF for the Weibull 
distribution with parameters a = 2.25 and i = 1.15 lop4 hours-'. 

Example 2.10 
Consider a series system of n components. The times to failure T I ,  T2, . . . , Tn of the 
n components are assumed to be independent and Weibull distributed: 

- Weibull (a, hi)  for i = 1,2,  . . . , n 

A series system fails as soon as the first component fails. The time to failure of the 
system, Ts is thus 

T, =min(TI,T2 , . . . ,  T,)  

The survivor function of this system becomes 

Hence a series system of independent components with Weibull life distribution with 
the same shape parameter a again has a Weibull life distribution, with scale parameter 
h, = (xy= I A:) 'la and with the shape parameter being unchanged. 

When all the n components have the same distribution, such that hi = h for 
i = 1,2,  . . . , n, then the series system has a Weibull life distribution with scale 

0 

The Weibull distribution we have discussed so far is a two-parameter distribution 
with shape parameter a > 0 and scale parameter h > 0. A natural extension of 
this distribution is the three-parameter Weibull distribution (a, h ,  6)  with distribution 
function 

parameter h . n l / a  and shape parameter a.  

{ A - e-[A('-t)lu for t  > F ( t )  = Pr(T 5 t )  = 
otherwise 

The corresponding density is 
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The third parameter 6 is sometimes called the guarantee or rhreshold parameter, since 
a failure occurs before time ( with probability 0 (e.g., see Mann et al. 1974, p. 185). 

Since ( T  - () obviously has a two-parameter Weibull distribution (a,  A), the mean 
and variance of the three-parameter WeibuJl distribution (a, h ,  c)  follows from (2.54): 
and (2.56). 

MTTF = c;+-r - + I  ;(: ) 

In statistical literature, reference to the Weibull distribution usually means the two- 
parameter family, unless otherwise specified. 

2.13 THE NORMAL DISTRIBUTION 

The most commonly used distribution in statistics is the normal (Gaussian2) distribu- 
tion. A random variable T is said to be normally distributed with mean u and variance 
T?-, T - N ( u ,  s2), when the probability density of T is 

1 
f ( t )  = e-(f-u)2/2T2 for --oo < t < 00 (2.57) 

The X(0,  1 )  distribution is called the standard normal distribution. The distribu- 
tion function of the standard normal distribution is usually denoted by @(.). The 
probability density of the standard normal distribution is 

G. t 

The distribution function of T - X(u, s2) may be written as 

(2.58) 

(2.59) 

The normal distribution is sometimes used as a lifetime distribution, even though it 
allows negative values with positive probability. 

The survivor function is 

The failure rate function of the normal distribution is 

R ’ ( t )  1 4((f - V > / t )  Z ( r )  = -- - - - . 
R ( t )  s 1 - @(( t  - u ) / s )  

(2.60) 

(2.61) 

2Nanied after the German mathematician Johann Carl Friedrich Gauss ( I  777-1 855). 
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Time t 

Fig. 2.78 Failure rate function of the standard normal distribution X(0, 1). 

If ZQ (t  ) denotes the failure rate function of the standard normal distribution, the failure 
rate function of X(u,  r 2 )  is seen to be 

1 
z ( t )  = - r . ZQ (e) 

The failure rate function of the standard normal distribution, X(0, l) ,  is illustrated 
in Fig. 2.18. The failure rate function is increasing for all t and approaches z ( t )  = t 
when t -+ 00. 

When a random variable has a normal distribution but with an upper bound and/or 
a lower bound for the values of the random variable, the resulting distribution is called 
a truncated normal distribution. When there is only a lower bound, the distribution is 
said to be left truncated. When there is only an upper bound, the distribution is said 
to be right truncated. Should there be an upper as well as a lower bound, it is said to 
be doubly truncated. 

A normal distribution, left truncated at 0, is sometimes used as a life distribution. 
This left truncated normal distribution has survivor function 

(2.62) 

The corresponding failure rate function becomes 

Note that the failure rate function of the left truncated normal distribution is identical 
to the failure rate function of the (untruncated) normal distribution when t 2 0. 

Example 2.11 
A specific type of car tires has an average wear-out “time” T of 50000 km, and 5% of 
the tires last for at least 70000 km. We will assume that T is normally distributed with 
mean u = 50000 km, and that Pr(T > 70000) = 0.05. Let r denote the standard 
deviation of T .  The variable ( T  - 50000)/r then has a standard normal distribution. 
Standardizing, we get 

T - 50000 70000 - 50000) 
i = 0.05 

t 
Pr(T > 70000) = 1 - P 
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Therefore 

Q (F) = 0.95 x Q(l.645) 

and 

1.645 =+ t x 12158 
20000 

t 

The probability that a tire will last more than 60000 km is now 

T - 50000 < 60000 - 50000) ( 12158 - 12158 
Pr(T > 60000) = 1 - P 

zz 1 - Q(0.883) 0.188 

The probability of a “negative” life length is in this case 

( T  - 50000 -50000) 
Pr(T < 0) = P < ~ % @(-4.ll) M 0 

12158 12158 

The effect of using a truncated normal distribution instead of a normal distribution is 
therefore negligible. 

2.14 THE LOGNORMAL DISTRIBUTION 

The time to failure T of an item is said to be lognormally distributed with parameters 
u and t2 ,  T - lognormal(u, r 2 ) ,  if Y = In T is normally (Gaussian) distributed with 
mean u and variance r 2  [i.e., Y - X ( u ,  t2)] .  The probability density function of T 
IS 

(2.63) 
otherwise 

The lognormal probability density is sketched in Fig. 2.19 for selected values of u 
and r .  

The mean time to failure is 

MTTF = e v + r 2 / 2  (2.64) 

the median time to failure [satisfying R ( t m )  = 0.51 is 

tm = e ”  (2.65) 

and the mode of the distribution is 
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Fig. 2.79 Probability density of the lognormal distribution. 

Notice that the MTTF may be written 

MTTF = tm . e r 2 / 2  

and that the mode may be written 
1 

e - 7 -  
fmode = tm . 

It is therefore easy to see that 

fm& < tm < MTTF for 5 > 0 

The variance of T is 

v a r ( ~ )  = e2v ( 2 r 2  - e r 2 )  

The reliability (survivor) function becomes 

= R ( t )  Pr(T > t )  = Pr(1n T > In t )  
= P ( -  I n T - u  I n t - u  u - l n t  

5 t 

where a(.) is the distribution function of the standard normal distribution. 
The failure rate function of the lognormal distribution is 

4( (u  - In t ) l t ) ) l r t  

(2.66) 

(2.67) 

(2.68) 

where 4( t )  denotes the probability density of the standard normal distribution. 
The shape of z ( t )  which is illustrated in Fig. 2.20 is discussed in detail by Sweet 

(1990) who describes an iterative procedure to compute the time t for which the 
failure rate function attains its maximum value. He also proves that z ( t )  + 0 when 

Let T I ,  T2, . . . , T, be independent and lognormally distributed with parameters u; 
for i = 1 ,2 ,  . . . , n .  The product T = n:==, Ti is then lognormally distributed 

t -+ 02. 

and 
with parameters C:*=, ui and Cy=, t,?. 
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Fig. 2.20 Failure rate function of the lognormal distribution. 

2.14.1 Repair Time Distribution 

The lognormal distribution is commonly used as a distribution for repair time. The 
repair rate is defined analogous to the failure rate. When modeling the repair time, 
i t  is natural to assume that the repair rate is increasing, at least in a first phase. This 
means that the probability of completing the repair action within a short interval 
increases with the elapsed repair time. When the repair has been going on for a rather 
long time, this indicates serious problems, for example, that there are no spare parts 
available on the site. It is therefore natural to believe that the repair rate is decreasing 
after a certain period of time, namely, that the repair rate function has the same shape 
as the failure rate function of the lognormal distribution illustrated in Fig. 2.20. 

2.14.2 Median and Error Factor 

In some cases we may be interested to find an interval (tL, IU) such that Pr(tL < 
T 5 t u )  = 1 - 2a, for example. If the interval is symmetric in the sense that 
Pr(T 5 IL)  = a and Pr(T > t U )  = a ,  it is easy to verify that tL = e-',' and 
tU = euur ,  where ua is the upper a% percentile of the standard normal distribution 
[i.e., @(u,) = 1 - a ] .  By introducing the median tm = e" and k = e u U r ,  the lower 
limit tL and the upper limit t~ may be written 

(2.69) trn tL = - and tu = k .trn 
k 

The factor k is often called the ( I  - 2a) error factor, and a is usually chosen to be 
0.05. 

Example 2.12 
In many situations the (constant) failure rate h may vary from one item to another. 
In the Reactor safety study (NUREG-75/014), the variation (uncertainty) in h was 
modeled by a lognormal distribution; that is, the failure rate h is regarded as a random 
variable A with a lognormal distribution. 
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In the Reactor safety study the lognormal distribution was determined by the 
median h,  and a 90% error factor k such that 

If we, as an example, choose the median to be A,,, = 6.0 . low5 failures per hour, and 
an error factor k = 3, then the 90% interval is equal to (2.0. 1.8 . lop4). The 
parameters u and r of the lognormal distribution can now be determined from (2.65) 
and (2.69): 

u = In(&,) = ln6.0.  M -9.721 

In 3 = 0.668 
1 1 

r = -  I n k =  - 
1.645 I .645 

With these parameter values the mean failure rate h is equal to 

e'+T2'2 M 7.50. hours-' 

Example 2.13 Fatigue Analysis 
The lognormal distribution is also commonly used in the analysis of fatigue failures. 
Considering the following simple situation: A smooth, polished test rod of steel is 
exposed to sinusoidal stress cycles with a given stress range (double amplitude) s. 
We want to estimate the time to failure of the test rod (i.e., the number of stress cycles 
N ,  until fracture occurs). In this situation it is usually assumed that N is lognor- 
mally distributed. The justification for this is partly physical and partly mathematical 
convenience. A fatigue crack will always start in an area with local yield, normally 
caused by an impurity in the material. It seems reasonable that in the beginning the 
failure rate function increases with the number of stress cycles. If the test rod survives 
a large number of stress cycles, this indicates that there are very few impurities in 
the material. It is therefore to be expected that the failure rate function will decrease 
when the possibility for impurities in the material is reduced. 

It is known that within a limited area of the stress range s, the number N of cycles 
to failure will roughly satisfy the equation 

N s  h = c  (2.70) 

where b and c are constants depending on the material and the geometry of the test 
rod. They may also depend on the surface treatment and the environment in which 
the rod is used. 

By taking the logarithms of both sides of (2.70) we get 

In N = lnc  - b Ins (2.7 I )  
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fig. 221 Wohler or s - N  diagram. 

If we introduce Y = In N ,  M = In c, B = -6, and x = Ins, it follows from (2.71) 
that Y roughly can be expressed by the relation 

Y = M + Bx + random error 

If N is assumed to be lognormally distributed, then Y = In N will be normally 
distributed, and the usual theory for linear regression models (e.g., see Dudewicz and 
Mishra 1988) applies when estimating the expected number of cycles to failure for a 
given stress range s. Equation (2.70) represents the Wohler or s -N  diagram for the 
test rod. Such a diagram is illustrated in Fig. 2.21. When the stress range is below a 
certain value so, the test rod will not fracture, irrespective of how many stress cycles 
it is exposed to. Formula (2.71) will therefore be valid only for stress values above 
so. 

The stress range so is called the fatigue limit. For certain materials such as alu- 
minium, the Wohler curve has no horizontal asymptote. Such materials therefore 
have no fatigue limit. In a corrosive environment, such as salt water, neither does 

0 steel have any fatigue limit. 

2.1 5 THE BIRNBAUM-SAUNDERS DISTRIBUTION 

If the fatigue cannot be attributed to sinusoidal stress cycles, formula (2.70) cannot 
be applied directly. The oldest, simplest, and most used procedure in this situation 
is Miner’s rule (Miner 1945): The various applied stress ranges are divided into a 
certain number rn of discrete stress ranges sl , s2, , . . , sn,. Let n ,  denote the numbers 
of stress cycles occurring under stress range s , ,  j = 1, 2, . . . , rn. Then, according to 
Miner’s rule, fatigue fracture will occur when 

(2.72) 

where N j  is the hypothetic number of stress cycles until fracture if the item were 
exposed to pure sinusoidal stress cycles with stress range s j ,  j = 1 , 2 ,  . . . , rn. Ex- 
perience shows that by using Miner’s rule the average time to failure will often be 
overestimated. 
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Birnbaum and Saunders (1969) introduced a life distribution based on a stochastic 
interpretation of Miner’s rule. They argue as follows: Consider an item which is 
exposed to a sequence of work cycles each of which is composed of m individual 
stresses. Each of the work cycles is the source of a partial damage which is stochastic 
and which may depend on factors such as the material and the number of earlier 
stresses. Assume that the increase Z ,  in partial damage in work cycle j is a random 
variable with mean value p and variance n2 for all j = 1, 2, . . .. Furthermore, 
assume that increases in partial damage due to different work cycles are independent 
of each other. 

Let W ,  = Zl + Z2 + . . . + Z ,  denote the total partial damage after n work cycles. 
Further let N be the smallest number of work cycles for which W, exceeds the critical 
value which causes a fatigue fracture to occur. Then we have 

(2.73) 

Since the Z;’s are assumed to be independent and identically distributed, then W,t 
for large n is approximately normally distributed .N(np,  n o 2 )  by the central limit 
theorem (e.g., see Dudewicz and Mishra 1988, p. 315). Thus 

(2.74) 

This discrete model is now extended to a continuous model by replacing “life length” 
N by T ,  where T is a continuous variable. 

The life distribution for the item is then 

F ( t )  = Pr(T 5 t )  x 1 - Q, - 

By introducing a = n/@ and h = p / w ,  we obtain 

(2.75) 

(2.76) 

The distribution on the right-hand side is called the Birnbaum-Saunders distribution 
with shape parameter a! and scale parameter h. 

The probability density of the Birnbaum-Saunders distribution is 

This probability density is plotted for selected values of a in Fig. 2.22. 



THE BIRNBAUM-SAUNDERS DIS JRlBU JION 49 

0 1 2 3 4 

Time t 

Fig. 2.22 Probability density of the Birnbaum-Saunders distribution (A = 1). 

The survivor function of the Birnbaum-Saunders distribution is 

The failure rate function z ( t )  = f ( t ) / R ( t )  is illustrated in Fig. 2.23 for a! = 0.5 and 
a = I .  It is relatively easy to show (see Problem 2.39) that limt+oo = h/2a 2 . 

I t  can furthermore be shown that 

u = -  fi-- 
a Y m '> 

has a standard normal distribution, and that 

var(T) = f (1 + T) 
(2.78) 

(2.79) 

Fig. 2.23 Failure rate function of the Birnbaum-Saunders distribution (A = 1). 
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Fig. 2.24 The probability density of the inverse Gaussian distribution for the parameters 
p = 1 andh. = 1/4, 1, 16. 

2.16 THE INVERSE GAUSSIAN DISTRIBUTION 

In some situations the failure rate function z ( t )  appears to be an increasing function 
of time t from t = 0 to t = to (unknown), and from to on monotonically decreasing. 
Among the life distributions having the mentioned property is the lognormal distri- 
bution. This distribution is in such situations often “shown to be the appropriate one” 
by use of some goodness of fit criterion, and then used without further considera- 
tion. However, if one studies the lognormal distribution a little more closely, it can be 
shown (Sweet 1990) that the corresponding failure rate function, after having reached 
its maximum, decreases monotonically to zero, as t + co. A natural question is then: 
Is this a reasonable assumption? In many practical situations, this will not be the case, 
and hence the lognormal life distribution should not be used as model, even if the 
goodness of fit test does not reject it. 

We now turn to another life distribution, namely the inverse Gaussian distribution. 
The inverse Gaussian, like the lognormal distribution, has a failure rate function, 
increasing with time r, from t = 0 to t = to (unknown), and thereafter monotonically 
decreasing, however, not towardzero, but toward a limit, depending on the parameters 
of the distribution function. (As we will see, the name inverse Gaussian is rather 
misleading). 

For the reason mentioned above, we claim that in many situations where the log- 
normal model has been used, it would have been more appropriate to apply the inverse 
Gaussian distribution. The probability density of the inverse Gaussian distribution 
can be expressed in many different ways, depending on how the distribution is pa- 
rameterized. We are going to use the following form: 

f T ( t ; c L U , h )  = e - ( ~ / 2 P ? [ ( ~ - P ) 2 / t 1  for t > 0, cL > 0, > 0 

= 0 otherwise (2.80) 

This distribution will be referred to as the inverse Gaussian distribution with param- 
eters p and A, and we sometimes write T - IG(p, h).  The shape of the probability 
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Fig. 2.25 The probability density of the inverse Gaussian distribution for the parameters 
p = 1/4, 1 ,  4 and I = 1. 

density can be varied considerably by varying ,u and A. This is illustrated in Fig. 2.24 
and 2.25. 

In Section 2.12 we presented a heuristic argument leading to the Birnbaum- 
Saunders distribution. Their derivation has been criticized by Bhattacharayya and 
Fries (1982), who instead propose that one, in this situation, rather should regard the 
accumulated fatigue in the time interval (0 ,  t ] ,  W ( r ) ,  to be governed by a Wiener 
process { W(t);  0 < t < 00) with positive drift q and diffusion constant 62; that is, 
for any (0 5 s < t )  the distribution of ( W ( t )  - W ( s ) )  is N ( q ( t  -s), a 2 ( t  - s)) (e.g., 
see Cox and Miller 1965). Furthermore the item in question is supposed to fail when 
W ( t )  for the first time exceeds w (the critical level of failure). Accordingly, the time 
T to failure is defined as 

T = inf{t; W ( t )  > w )  
t 

Under these assumptions it follows (Cox and Miller 1965, p. 221), that the distribution 
of T is given by 

where @(.) denotes the distribution function of the standard normal distribution. 
By introducing new parameters 

(2.82) 
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FT ( t )  can be written 

fo r t  > 0, p > 0, h > 0. (2.83) 

The corresponding probability density becomes 

which we recognize as the probability density of IG(p, A). Without loss of generality, 
w can be chosen to be = 1. Then p corresponds to I / q  and h to 1/h2.  

This distribution was first derived by Schrodinger (1915) in connection with his 
studies of Brownian motion. In an attempt to extend Schrodinger’s results, Tweedie 
(1 957) noticed the inverse relationship between the cumulant-generating function of 
the time to cover a unit distance and the cumulant-generating function of the distance 
covered in unit time. In 1956 he used for the first time “inverse Gaussian” for the 
first passage time of the Brownian motion. Thereby the distribution got the rather 
misleading name “inverse Gaussian.” 

Wald (1947) derived the same distribution as a limiting distribution for the sample 
size in connection with a certain sequential probability ratio test. A heuristic derivation 
is given by Whitmore and Seshadri (1987). 

The moment generating function (see Dudewicz and Mishra 1988, p. 255) of the 
IG(p, h)  turns out to be 

(2.85) 

and the corresponding cumulant-generating function, defined by: 

becomes 

(2.87) 

The mean and variance of IG(p, A) are now easily determined 

MTTF = K I  = - L T ( ~ ;  p, h)lt,o = /A 
d 
dt 

(2.88) 

(2.89) 
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Fig. 2.26 Failure rate function of the inverse Gaussian distribution (p  = 1,  and h = I /4, 1). 

Notice that 11 enters in MTTF = p, as well as into var(T). Hence ( p ,  h)  are nor 
location/scale parameters in the usual sense. Also notice that 

K ;  
A = -  (2.90) 

K2 

From (2.85) it follows that moments of arbitrarily high (positive) order exist for 
IG(/L, A).  From the result stated in Problem 2.41, it follows that moments of arbitrarily 
high “negative” order, also exist. 

The failure rate function ofIG(p,  h )  is 

(2.91) 

for r > 0, 1-1 > 0, and h > 0. In Fig. 2.26 graphs of the failure rate function (2.91) 
are given for p = I and selected values of h. Chhikara and Folks (1977, p. 155) have 
shown that 

(2.92) 

Chhikara and Folks ( 1  989, Section 1.3) point out a surprising analogy between 
sampling results for the inverse Gaussian distribution IG(p, A) and sampling results 
known for the normal distribution X ( F ,  s2 ) .  If one considers a random sample 
T1 T2, . . . , T,, from the inverse Gaussian distribution IG(p, A): 

1 .  T = 1 / n  ClJ=, TJ is inverse Gaussian IG(p, nh) .  

2. nh C’f=, ( l / T J  - 1/T) is x 2  distributed with ( n  - 1) degrees of freedom. 

3. r and Cy=l ( 1  / T ,  - 1 IT) are independently distributed 
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4. The term in the exponent of the probability density function of IG(p, h)  is 

The explanation of these and other analogies with the normal distribution has yet not 
been revealed. 

-1/2 times a x 2  distributed variable. 

2.17 THE EXTREME VALUE DISTRIBUTIONS 

Extreme value distributions play an important role in reliability analysis. They arise 
in a natural way, for example, in the analysis of engineering systems, made up of n 
identical items with a series structure, and also in the study of corrosion of metals, of 
material strength, and of breakdown of dielectrics. 

Let T I ,  T2, . . . , T,, be independent, identically distributed random variables (not 
necessarily life lengths) with a continuous distribution function F T ( ~ ) ,  for the sake 
of simplicity assumed to be strictly increasing for F F 1  (0) < t < FFI (1). Then 

T ( I )  = min{Tl, T2, .  .. , 7',,} = U,  (2.93) 

T(,,) = max{ T I ,  T2, . . . , T, J = V,, (2.94) 

are called the extreme values. 

following way (e.g., see CramCr 1946, p. 370; Mann et al. 1974, p. 102). 
The distribution functions of U,, and V,, are easily expressed by F T ( . )  in the 

Fu,,(u) = 1 - (1 - FT(u))" = L,,(u)  (2.95) 

F v , , ( ~ )  = F T ( u ) ~  = H n ( u )  (2.96) 

Despite the simplicity of (2.95) and (2.96), these formulas are usually not easy to 
work with. If F T ( ~ ) ,  say, represents a normal distribution, one is led to work with 
powers of F T ( ? ) ,  which may be cumbersome. 

However, in many practical applications to reliability problems, n is very large. 
Hence, one is lead to look for asymptotic techniques, which under general conditions 
on FT ( t )  may lead to simple representations of Fun (u )  and Fv,, ( u ) .  

CramCr (1  946) suggested the following approach: Introduce 

where U,, is defined as in (2.93). Then for y 1 0, 

pr(y, I y)  = P [I.;.(u,) I '1 n 

= P [U,, I F;' (31 
= FU,, [ FFI (31 
= 1 - [ I  - FT ( F F '  (:))I 

(2.97) 

= l - ( l - y  (2.98) 
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A s n  + 0 

Pr(Y, 5 y) + 1 - for y > 0 (2.99) 

Since the right-hand side of (2.99) expresses a distribution f~nc t ion ,~  continuous for 
y > 0, this implies that Y, converges in distribution to a random variable Y ,  with 
distribution function: 

F y ( y )  = 1 - e-' for y > 0 (2.100) 

Hence it follows from (2.95) that the sequence of random variables U,, converges in 
distribution to the random variable F F ' ( Y / n ) .  

(2.101) 

Similarly, let 

where V,, is defined in (2.94). By an analogous argument it can be shown that for 
2 > 0. 

Pr(Zn 5 z )  = 1 - (2.103) 

which implies that 

V,, 4 FYI (1 - f) (2.104) 

where 2 has distribution function 

Pr(Z 5 z )  = 1 - e-' for z > 0 (2.105) 

It is to be expected that the limit distribution of U,  and V,, will depend on the type 
of distribution Fr(.). However, it turns out that there are only three possible types of 
limiting distributions for the minimum extreme U,,, and only three possible types of 
limiting distributions for the maximum extreme V,,. 

For a comprehensive discussion of the application of extreme value theory to 
reliability analysis, the reader is referred to Mann et al. (1974, p. 106), Nelson 
(1982, p. 39). Lawless (1982, p. 169), and Johnson and Kotz (1970, Vol. I, Section 
2.1). Here we will content ourselves with mentioning three of the possible types of 
limiting distributions and indicate areas where they are applied. 

3The exponential distribution with parameter i, = 1 
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2.17.1 The Gumbel Distribution of the Smallest Extreme 

If the probability density f ~ ( t )  of the Ti’s approaches zero exponentially as t -+ 00, 

then the limiting distribution of U,, = T(l )  = min{Tl, T2, . . . , T,,] is of the form 

(2.106) 
-,cr-a)/n 

FTil)(t) = 1 - e - 0 O < t < 0 O  

where a > 0 and 0 are constants. (Y is the mode and 0 is a scale parameter. 
The corresponding “survivor” function is 

(2.107) 

Gumbel (1958) denotes this distribution the type I asymptotic distribution of the 
smallest extreme. It is now called the Gumbel distribution of the smallest extreme. If 
standardized variables 

- ( I  - 1 Y ) l o l  

R T ( ~ , ( ~ )  = 1 - FTi l , ( f )  = e - 0 O < t t o o  

T-l9 
y = -  

ff 
(2.108) 

are introduced, the distribution function takes the form 

~ y ( ~ ) ( y )  = 1 - e-,’ for - 00 < y < 00 

with probability density 

, j i ( , ] ( y )  = e y  . e-ev for - 0 0 < y < 0 0  (2.109) 

The corresponding “failure rate” is 

(2.1 10) 

The mean value of T(1) is (see Lawless, 1974, p. 19) 

E(T(1)) = 0 - f fy  

where y = 0.5772. . . is known as Euler’s constant. 
Since T(I) can take negative values, (2.106) is not a valid life distribution. A valid 

life distribution is, however, obtained by left truncating (2.106) at t = 0. In this way 
we get the truncared Gumbel distribution of the smallest extreme, which is given by 
the survivor function 

By introducing new parameters B = e-’fff  and e = ]/a, the truncated Gumbel 
distribution of the smallest extreme is given by the survivor function 

~ : [ ~ , ( t )  = e-b(ee‘-l)  for > o (2.112) 

The failure rate function of the truncated distribution is 
0 d o  d 

dt ( I )  dt 
zT[l)(r)  = -- In RT ( t )  = - B(ee‘ - 1) = Beee‘ fort ? 0 (2.113) 
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2.17.2 The Gumbel Distribution of the Largest Extreme 

If the probability density f r ( t )  approaches zero exponentially as t + 00, then the 
limiting distribution of V,l = T(,,) = rnax(T1, T2, . . . , T,,] is of the form 

where a > 0 and 19 are constants. Gumbel (1958) denotes this distribution the type I 
asymptotic distribution of the largest extreme. It is now called the Gumbel distribution 
of the largest extreme. 

If standardized variables are introduced, see (2.89), the distribution takes the form 

(2.114) F~,,!,(Y) = e-‘-’ for -00 < y < 00 

with probability density 

(2.1 15) 
--p - 

fy,,,, (y) = e-’ . e for -00 < y < 00 

2.17.3 The Weibull Distribution of the Smallest Extreme 

Another type of such limiting distributions for the smallest extreme is the Weibull 
distribution 

F T < , ) ( t )  = 1 - e((t-fl) /V)B fo r t  2 0 (2.1 16) 

where B > 0, q > 0, and 19 > 0 are constants. 
Introducing standardized variables (see 2. 108), 

F y ( , ) ( y )  = 1 - e-” fo ry  > 0 a n d B  > 0 (2.1 17) 

This distribution is also denoted the type 111 asymptotic distribution of the smallest 
extreme. 

Example 2.14 Pitting Corrosion 
Consider a steel pipe with wall thickness 0 which is exposed to corrosion. Initially 
the surface has a certain number n of microscopic pits. Pit i has a depth Di, for i = 
1 , 2 ,  . . . , n. Due to corrosion, the depth of each pit will increase with time. Failure 
occurs when the first pit penetrates the surface, that is, when max( D I  , D2, . . . , D,,] = 
0. 

Let T, denote the time pit i will need to penetrate the surface, for i = 1 ,  2, . . . , n .  
Then the time to failure T of the item is 

T = min(T1, T2, . . . , T,,) 

We will assume that the time to penetration Ti is proportional to the remaining wall 
thickness, that is, T, = k . (0 - Di). We will further assume that k is independent of 
time, which implies that the corrosion rate is constant. 
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Assume next that the random initial depths of the pits D1, . . . , D, are independent 
and identically distributed with a right truncated exponential distribution. Then the 
distribution function of Di is 

Pr(Q ~ d )  
Pr(Di p 0)  

F o j ( d )  = Pr(Di p d I Di p 0) = 

The distribution function of the time to penetration, Ti, is thus 

FT, ( t )  = P r ( c  5 t )  = Pr(k . (0 - Di)  p t )  = P 

and the survivor function R ( t )  of the item becomes 

R ( t )  = Pr(T > t )  = [I - Fr, ( t ) ]"  for I 2 0 

If we assume that the number n of pits is very large, then as n + 00, we get 

R ( t )  = [I  - F7;(t)ln x CnFT;(') fo r t  ? 0 

By using (2.1 18) 

By introducing new parameters f i  = n/(eqo - 1) and e = q/k, we get 

R ( t )  x e-B(e"'- l )  fo r t  L 0 

which is equal to (2.1 12), namely the time to failure caused by pitting corrosion has 
approximately a truncated Gumbel distribution of the smallest extreme. 

The same example is also discussed by Lloyd and Lipow (1962, p. 140). Mann et 
0 al. (1974, p. 131), and Kapur and Lamberson (1977, p. 44). 

2.1 8 STRESSOR-DEPENDENT MODELING 

So far we have mainly considered parametric families of time to failure distributions, 
tacitly assuming that the items tested are exposed to constant stress (normal stress). 

If the items tested are exposed to planned variations in operational and environmen- 
tal stresses (temperature, pressure, etc.), like in accelerated testing (see Chapter 12), 
a stressor-dependent model of the life distribution is needed. 

A typical approach, which if successful, leads to a parametric stressor-dependent 
family of time to failure distributions in the following: 
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1. Establish an appropriate parametric family of time to failure distributions valid 
under normal stress as wells as under overstress. 

2 .  Establish the functional relationship between the stressors and the parameters 
of the time to failure distribution in question. 

3 .  Combine the result of these two steps into a stressor dependent family of time 
to failure distributions. 

Example 2.15 
Let there be only one stressor s, say temperature. Suppose that the time to failure 
distribution under normal stress as well as under overstress, is a Weibull distribution 
(see Section 2.12). Furthermore, suppose that the functional relationship between the 
stressor s and the parameters a and k may be expressed as 

k ( s )  
a ( s )  = a ,  independentofs 

= csb, where c and b are unknown constants (power rule model) 

When these two assumptions are combined, we obtain the following parametric 
stressor-dependent time to failure distribution: 

Such models are discussed in more detail in Chapter 12. (In Chapter 12 semipara- 
metric and nonparametric stressor-dependent models are also briefly discussed.) 

2.19 SOME FAMILIES OF DISTRIBUTIONS 

2.19.1 IFR and DFR Distributions 

In Section 2.5 we showed the following one-to-one correspondence between the 
distribution function F ( t )  of a continuous life distribution and the corresponding 
failure rate function z ( t ) :  

A special family of such life distributions are those which have increasing’ failure rate 
function. These are called increasing failure rate (IFR) distributions. Similarly, life 
distributions that have decreasing failure rate function are called decreasing failure rate 
(DFR) distributions. Definitions of IFR and DFR distributions that are not restricted 
to continuous distributions only are given below: 

‘ In this section the concepts “increasing” and “decreasing” are used in place of “nondecreasing” and 
“nonincreasing,” respectively. 
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Definition 2.1 A life distribution F is said to be IFR if - ln(1 - F ( t ) )  is convex for 
0 < t < F-’ (1). A life distribution F is said to be DFR if - In( 1 - F ( t ) )  is concave 

0 forO < t < F-’ ( l ) .  

Remember that when the life distribution is continuous, the failure rate function 
z ( t )  can be written 

d 
= -(-In( I - F ( t ) )  for t  > 0 z ( t )  = ~ 

f ( t )  
1 - F ( t )  d t  

(2.120) 

Since a differentiable convex function always has an increasing derivative (for contin- 
uous life distributions), the definition given above of the IFR property corresponds to 
an increasing z ( t )  (for continuous life distributions). Since a differentiable concave 
function always has a derivative that is decreasing, by analogy the definition of the 
DFR property given above corresponds to a decreasing z ( t )  (for continuous life dis- 
tributions). Let us consider some commonly used life distributions and see whether 
they are IFR, DFR, or neither of these. 

Example 2.16 The Uniform Distribution over (0, a ]  
Let T be uniformly distributed over (0, a] .  Then 

t 
U 

1 

F ( t )  = - forO < t I u 

f ( t )  = - f o r O < r ( a  
U 

Hence 

(2.121) 

is strictly increasing in t for 0 < t I a. The uniform distribution is accordingly IFR. 
The same conclusion follows by considering - ln(1 - F ( t ) )  which in this case 

0 becomes - In( 1 - 6) and hence is convex for 0 < t 5 a. 

Example 2.17 The Exponential Distribution 
Let T be exponentially distributed with probability density 

f ( t )  = he-” for t  > o 

Then 

z ( t )  = h fort  0 

z ( t )  is thus constant, that is, both nonincreasing and nondecreasing. 
The exponential distribution therefore belongs to the IFR family as well as the 

DFR family. Alternatively, one could argue that - In( 1 - F ( t ) )  = A t ,  that is, convex 
and concave as well. 0 
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Hence the families of IFR distributions and DRF distributions are not disjoint. 
The exponential distribution can be shown to be the only continuous distribution that 
belongs to both families (see Ba:-!ow and Proschan, 1975, p. 73). 

Example 2.18 The Weibull Distribution 
The distribution function of the Weibull distribution with parameters a(> 0) and 
h(>  0) is given by 

F ( / )  = I - c ( * ' ) ~  for t  > 0 

It follows that 

- In( l  - F ( / ) )  = - ln(e-(*')U) = ( ~ t ) ~  (2.122) 

Since 1 and concave in t when a 5 1, the Weibull 
distribution is IFR for a > I and DFR for a 5 1. For a = 1, the distribution is 
"reduced" to an exponential distribution with parameter h, and hence is IFR as well 
as DFR. 0 

is convex in t when a 

Example 2.19 The Gamma Distribution 
The gamma distribution is defined by the probability density 

where a > 0 and h > 0. To determine whether the gamma distribution (a,  h )  is IFR, 
DFR or neither of these, we consider the failure rate function: 

By dividing the denominator by the numerator we get 

By introducing u = (u  - t )  as a new variable of integration we get 

(2.123) 

First suppose that a 3 1. Then (1 + ( u / t ) ) " - '  is nonincreasing in t .  Accordingly the 
integrand is a decreasing function oft. Thus z ( t ) - '  is decreasing in t .  When a 2 1, 
z ( / )  is in other words increasing in t ,  and the gamma distribution (a ,  h )  is IFR. This 
will in particular be the case when a is an integer (the Erlangian distribution). 

Next suppose a 5 1 .  Then by an analogous argument z ( t )  will be decreasing in t ,  
which means that the gamma distribution (a,  A) is DRF. 

For a = I ,  the gamma distribution (a,  h )  is reduced to an exponential distribution 
with parameter h. 0 
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The plot of the failure rate function given in Fig. 2.20 for a lognormal distribution 
indicates that this distribution is neither IFR nor DFR. The following result may be 
useful when deciding whether a continuous distribution is DFR or not. 

Theorem 2.1 If a continuous life distribution is to be DFR, its probability density 
f ( t )  must be nonincreasing. 

Proof 
If the time to failure distribution is DFR and continuous, z ( t )  = f ( t ) / ( l  - F ( t ) )  must 
be decreasing. Knowing that 1 - F ( t )  is decreasing in t ,  then f ( t )  must decrease by 

0 at least as much as 1 - F ( t )  in order for z ( t )  to be decreasing. 

2.19.2 IFRA and DFRA Distributions 

Consider a life distribution F ( t )  with failure rate function z ( t ) .  The cumulative failure 
rate function is according to Section 2.5: 

z (u )  du = In R ( t )  = In( 1 - F ( t ) )  

Definition 2.2 A distribution F ( t )  with failure rate function z ( t )  is said to have an 
increasing failure rate average ( F  is IFRA) if 

-1’ 

1 
-- ln(1 - F ( t ) )  increases with t 2 0 

t 

A distribution F ( t )  with failure rate function z ( t )  is said to have a decreasing failure 
rate average ( F  is DFRA) if 

1 
-- In(1 - F ( t ) )  decreases with t 2 0 

t 

0 

The IFRA (DFRA) property demands less of the failure rate function z ( t )  than the 
IFR (DFR) property does. It is straightforward to verify that if F is IFR (DFR), then 
it is also IFRA (DFRA). 

2.19.3 NBU and NWU Distributions 

The conditional survivor function R ( t  I x )  was introduced in Section 2.7. 

Pr(T > t + x )  - R ( t  + x )  
R ( t  I x )  = Pr(T z t + x  I T > x)  = - 

Pr(T > x )  R (.x ) 

Definition 2.3 A distribution F ( t )  is said to be “new better than used” ( F  is NBU) if 

R(t  I x )  5 R ( t )  for t 2 0, x 2 0 
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A distribution F ( t )  is said to be ‘&new worse than used” ( F  is NWU) if 

R(t  I x) 3 R ( t )  for t 2 0, x 2 0 

A distribution F ( t )  is thus NBU (NWU) if the conditional survivor function R(t 1 x) 
of an item of age x is less (greater) than the corresponding survivor function R ( t )  of 
a new item. 

2.19.4 NBUE and NWUE Distributions 

The mean residual life of an item at age x was defined in Section 2.7 as 

MRL(x) = R(t  1 x ) d t  La (2.124) 

When x = 0, we start out with a new item and consequently MRL(0) = MTTE 

Definition 2.4 A life distribution F ( t )  is said to be “new better than used in expec- 
tation” ( F  is NBUE) if 

1. F has a finite mean p. 

2. MRL(x) 5 p for x 2 0. 

A life distribution F ( t )  is said to be “ new worse than used in expectation” ( F  is 
NWUE) if 

1 .  F has a finite mean p. 

2. MTTF(x) 2 p for x 3 0. 0 

2.19.5 A Brief Comparison 

The families of life distributions presented above are further discussed, for example, 
by Barlow and Proschan (1975) and Gerthsbakh (1989) who prove the following chain 
of implications: 

IFR =$ IFRA =+ NBU =$ NBUE 
DFR ==+ DFRA ==+ NWU ==+ NWUE 

2.20 SUMMARY OF FAILURE MODELS 

In the previous sections of this chapter we have discussed a number of different failure 
models or life distributions. Some main characteristics of these models are presented 
in Table 2.2 to provide a brief reference. 
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PROBLEMS 

2.1 A component with time to failure T has constant failure rate 

Z ( T )  = h = 2.5 . (hours)-' 

(a) Determine the probability that the component survives a period of 2 months 
without failure. 

(b) Find the MTTF of the component. 

(c) Find the probability that the component survives its MTTF. 

2.2 
failure, with probability 0.50. 

A machine with constant failure rate h will survive a period of 100 hours without 

(a) Determine the failure rate h. 

(b) Find the probability that the machine will survive 500 hours without failure. 

(c) Determine the probability that the machine will fail within 1000 hours, when 
you know that the machine was functioning at 500 hours. 

2.3 A safety valve is assumed to have constant failure rate with respect to all failure 
modes. A study has shown that the total MTTF of the valve is 2450 days. The 
safety valve is in continuous operation, and the failure modes are assumed to occur 
independent of each other. 

(a) Determine the total failure rate of the safety valve. 

(b) Determine the probability that the safety valve will survive a period of 3 months 
without any failure. 

(c) Of all failures 45% are assumed to be crifical failure modes. Determine the 
mean lime to a critical failure, MTTF,,it. 

2.4 
with failure rate h. Show that the rth moment of T is 

The time to failure T of an item is assumed to have an exponential distribution 

(2.125) 

2.5 
and k2, respectively, and assume that hl f; h2. Let T = TI + T2. 

Let TI and T? be two independent times to failure with constant failure rates hl 

(a) Show that the survivor function of T is 
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(b) Find the corresponding failure rate function z ( t ) ,  and make a sketch of z(t) as 
a function o f t  for selected values of h~ and h2. 

2.6 
Find E(N)  and var(N). 

2.7 

Let N be a random variable with a binomial distribution with parameters (n, p ) .  

Let N be a random variable with value set 0, 1,  . . .. Show that 

M 

E(N) = C P r ( N  2 n )  
n= 1 

2.8 A component with time to failure T has failure rate function 

z ( t )  = kt  for t  > 0 and k > 0 

(a) Determine the probability that the component survives 200 hours, when k = 
2.0. lop6 (hours)-2. 

(b) Determine the MTTF of the component when k = 2.0 

(c) Determine the probability that a component which is functioning after 200 
hours is still functioning after 400 hours, when k = 2.0 . lop6 (hours)-*. 

(d) Does this distribution belong to any of the distribution classes described in this 

(hours)-2. 

chapter? 

2.9 A component with time to failure T has failure rate function 

~ ( t )  = ho + at for t > 0, ho > 0, and a > 0 

(a) Determine the survivor function R ( t )  of the component. 

(b) Determine the MTTF of the component. 

(c) Try to give a physical interpretation of this model. 

2.10 A component with time to failure T has failure rate function 

t 
Z ( t )  = __ fort  > 0 

l + t  

(a) Make a sketch of the failure rate function. 

(b) Determine the corresponding probability density function f ( t ) .  

(c) Determine the MTTF of the component. 

(d) Does this distribution belong to any of the distribution classes described in this 
chapter? 
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2.11 Let Z have a geometric distribution with probability p and determine 

(a) The mean value, E ( Z ) .  

(b) The variance, var(Z). 

(c) The conditional probability, P r (2  > z + x I Z > x). Describe the result you 
get by words. 

2.12 Reconsider the item in Example 2.1 with survivor function 

1 
R ( t )  = for t  2 0 

(0.2t + 1 ) 2  

where the time t is measured in months. 

(a) Find the MRL of the item at age t = 3 months. 

(b) Make a sketch of MRL(t) as a function of the age t .  

2.13 
function ~ ( t )  of the item in Problem 2.12. 

2.14 
item can be written as 

Prove that equation (2.20) is correct. Use this equation to find the failure rate 

Consider an item with survivor function R ( t ) .  Show that the MTTF of the 

MTTF = R ( u )  du + R ( t )  . MRL(t) l 
Explain the meaning of this formula. 

2.15 
and E ( N 2 )  = h2. 

Let N1 and N2 be independent Poisson random variables with E ( N 1 )  = 

(a) Determine the distribution of N1 + N2 

(b) Determine the conditional distribution of N I  given that N I  + N2 = n .  

2.16 Let T I  and T2 be independent and gamma distributed with parameters ( k l ,  h )  
and ( k 2 ,  A ) ,  respectively. Show that T I  + T2 has a gamma distribution with parameters 
(kl  + k2. A ) .  Explain why we sometimes say that the gamma distribution is “closed 
under addition.” 

2.17 The time to failure T of an item is assumed to have a Weibull distribution with 
scale parameter h = 5.0 . (hours)-’ and shape parameter a! = 1.5. Compute 
MTTF and var(T). 

2.18 Let T - Weibull(a!, A ) .  Show that the variable (AT)” has an exponential 
distribution with failure rate 1.  
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2.19 Let T - Weibull(a, A). Show that the rth moment of T is 

1 r  

h‘ a 
E ( T ~ )  = - r (- + I )  

2.20 
density 

Let T have a three-parameter Weibull distribution (a,  h ,  6)  with probability 

Show that the density is unimodal if a! > 1. Also show that the density decreases 
monotonically with t if a < 1. 

Show that the failure rate function is ak[h(t  - 6 ) l U - l  fo r t  > t ,  and hence is 
increasing, constant, and decreasing with t ,  respectively, as a > 1, a! = 1, and 
a < 1. 

The failure rate function of an item is z ( t )  = t-’I2. Derive: 

The probability density function, f ( t ) .  

The survivor function, R ( t ) .  

The mean time to failure. 

The variance of the time to failure, T ,  var(T). 

The time to failure, T ,  has survivor function R ( t ) .  Show that if E ( T r )  < GO, 

Consider an item with time to failure T and failure rate function z ( t ) .  Show 

Pr(T > t 2  I T > t l )  = e - s : , ? z ( u ) d u  fort2 > tl 

Assume the time to failure T to be lognormally distributed such that Y = In T 
is $ ( u ,  t2 ) .  Show that 

and that the variance may be written as 
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Fig. 2.27 Probability density (Problem 2.28). 

2.25 Let 7 ( t )  denote the failure rate function of the lognormal distribution. Show 
that ~ ( 0 )  = 0, that z ( f )  increases to a maximum, and then decreases with z ( t )  -+ 0 
a s t  + 00. 

2.26 

2.27 
over (a. b ] .  The probability density is thus 

Let T - lognormal(u, t2) .  Show that 1 /T  - lognormal(-u, t2). 

The time to failure T of a component is assumed to be uniformly distributed 

Derive the corresponding survivor function R ( t )  and failure rate function z ( t ) .  Draw 
a sketch of z ( f ) .  

2.28 
in Fig. 2.27. 

The time to failure T of a component has probability density f ( t )  as shown 

(a) Determine c such that f ( t )  is a valid probability density. 

(b) Derive the corresponding survivor function R ( t ) .  

(c) Derive the corresponding failure rate function z ( f ) ,  and make a sketch of ~ ( t ) .  

2.29 Consider a system of n independent components with constant failure rates 
hl , h2, . . . , A,,, respectively. Show that the probability that component i fails first is 

2.30 A component may fail due to two different causes, excessive stresses and 
aging. A large number of this type of component have been tested. It has been shown 
that the time to failure TI  caused by excessive stresses is exponentially distributed 
with density function 
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while the time to failure T2 caused by aging has density function 

(a) Describe the rationale behind using 

as the probability density function for the time to failure T of the component. 

(b) Explain the meaning of p in this model. 

(c) Let p = 0.1, hl = h2, and k = 5 ,  and determine the failure rate function z ( t )  
corresponding to T .  Calculate z ( t )  for some selected values o f t ,  for example, 
t = 0, T ,  1 ,2 ,  . . ., and make a sketch of z ( t> .  1 

2.31 A component may fail due to two different causes, A and B .  It has been 
shown that the time to failure TA caused by A is exponentially distributed with density 
function 

j A ( t )  = hAe-'A' for t 2 o 

while the time to failure TB caused by B has density function 

j B ( t )  = ABe-'B' for t  2 o 

(a) Describe the rationale behind using 

f ( t )  = p . f ~ ( t )  + ( 1  - p )  . f B ( r )  fo r t  2 0 

as the probability density function for the time to failure T of the component. 

(b) Explain the meaning of p in this model. 

(c) Show that a component with probability density J'( t )  has a DFR function. 

2.32 
= p. Show that 

Consider a component with time to failure T ,  with IFR distribution, and MTTF 

R ( t )  2 e-'Ip for 0 < t < ,u 

2.33 
strictly increasing. Show that: 

Let F ( t )  denote the distribution of the time to failure T .  Assume F ( t )  to be 

(a) F ( T )  is uniformly distributed over [0, 11. 

(b) If U is auniform [0, I ]  random variable, then F-I (I/) has distribution F ,  where 
F-I ( y )  is that value of x such that F ( x )  = y .  
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2.34 
2 2 ( t ) ,  respectively. Show that 

Let TI and T2 be independent lifetimes with failure rate functions z l  ( t )  and 

2.35 Derive the Laplace transform of the survivor function R ( t )  of the exponential 
distribution with failure rate h, and use the Laplace transform to determine the MTTF 
of this distribution. 

2.36 Let 7’ - Weibull(cr, A). Show that Y = In T has a type I asymptotic dis- 
tribution of the smallest extreme. Find the mode and the scale parameter of this 
distribution. 

2.37 Show that the median tm of the lognormal distribution is e” .  Compute k such 

Show that the failure rate function z ( t )  of the Birnbaum-Saunders distribution 

that Pr(tm/k 5 T 5 ktm) = 0.90. 

2.38 
is not monotonic. 

2.39 The time to failure T is assumed to have a Birnbatlm-Saunders distribution 
with scale parameter h and “shape” parameter (Y. Show that the failure rate function 
z ( t )  has the limit 

2.40 Show that the inverse Gaussian distribution IG(p, h)  is unimodal with mode 

2.41 Show that when T has an inverse Gaussian distribution IG(p, A) ,  then 

Show that this implies that 

E(T-’; 1 ,  h)  = E(T‘+’; 1, h)  

and furthermore that 

E ( T - ’ ;  1, h)  = E ( T 2 ;  1, h )  

2.42 Prove that 

r to 
z ( t ) d r  + 00 when to + 00 

10 
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2.43 Let X and Y be a pair of random variables with cumulant-generating function 
(cgf) L x  ( f )  and L ( r ) ,  respectively. According to Tweedie’s definition (Tweedie 
1946) the distributions of X and Y are said to constitute a pair of “inverse distributions” 
if there exists a function L(t)  such that 

L x ( t )  = a L ( t )  

~ y ( t )  = b ~ - ’ ( t )  i.e., ~ y ( t )  = y ~ , ’ ( t )  

for all values of t belonging to the domain of both cfg’s, where L ( L - ’ ( t ) )  = t ,  and 
a and B are appropriate constants. 

Show that with Tweedie’s definition: 

(a) the binomial and the negative binomial distributions, 

(b) the Poisson and the gamma distributions, and 

(c) the normal and the inverse Gaussian distributions 

constitute pairs of “inverse distributions.” 



3 
Qualitative System Analysis 

3.1 INTRODUCTION 

A technical system will normally comprise a number of subsystems and components 
that are interconnected in such a way that the system is able to perform a set of 
required functions. We will use the termfunctional block to denote an element of the 
system, whether it is a component or a large subsystem. 

The main concern of a reliability engineer is to identify potential failures and 
to prevent these failures from occurring. A failure of a functional block is defined 
as “the termination of its ability to perform a required function” (BS4778). It is 
therefore necessary for the reliability engineer to identify all relevant functions and 
the performance criteria related to each function. 

In this chapter we start by defining a technical system and its interfaces. The overall 
structure of the system is illustrated by a functional block diagram. We then present 
a classification system for the various functions of a functional block and illustrate 
the functions by various types of function diagrams. Failures, failure modes, and 
failure effects are defined and discussed and various failure classification structures 
are presented. We then present a number of methods for system reliability analysis: 

I . Failure modes, effects, and criticality analysis (FMENFMECA): This method 
is used to identify the potential failure modes of each of the functional blocks 
of a system and to study the effects these failures might have on the system. 
FMEA/FMECA is primarily a tool for designers but is frequently used as a 
basis for more detailed reliability analyses and for maintenance planning. 

2. Fault tree analysis: The fault tree illustrates all possible combinations of po- 
tential failures and events that may cause a specified system failure. Fault tree 
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construction is a deductive approach where we start with the specified system 
failure and then consider what caused this failure. Failures and events are com- 
bined through logic gates in a binary approach. The fault tree may be evaluated 
quantitatively if we have access to probability estimates for the basic events. 
Quantitative evaluation of fault trees is discussed in Chapter 4. 

3 .  Cause and eflect diagrams: Cause and effect diagrams are frequently used 
within quality engineering to identify and illustrate possible causes of quality 
problems. The same approach may also be used in reliability engineering to 
find the potential causes for system failures. Cause and effect diagrams are 
qualitative and cannot be used as a basis for quantitative analyses. 

4, Bayesian belief networks: Bayesian belief networks may be used to identify 
and illustrate potential causes for system failures. Probability distributions may 
be allocated to the various causal factors, and the network may be evaluated 
quantitatively by a Bayesian approach. Bayesian belief networks are more 
flexible than fault trees since we do not have to use a binary representation. 
Quantitative evaluation of Bayesian belief networks is not covered in this book. 

5 .  Event tree analysis: An event tree analysis is an inductive technique. We start 
with a system deviation and identify how this deviation may develop. The 
possible events following the deviation will usually be a function of various 
barriers and safety functions that are designed into the system. When we 
have access to probability estimates for the various barriers, we may carry 
out a quantitative analysis of the event tree. A brief presentation of such a 
quantitative evaluation is given on page 112. 

6.  Reliability block diagrams: A reliability block diagram is a success-oriented 
network illustrating how the functioning of the various functional blocks may 
secure that the system function is fulfilled. The structure of the reliability block 
diagram is described mathematically by structure functions. The structure 
functions will be used in the following chapters to calculate system reliability 
indices. 

3.2 SYSTEMS AND INTERFACES 

A technical system may be defined as: A composite, at any level of complexity, 
of personnel, procedures, materials, tools, equipment, facilities, and software. The 
elements of this composite entity are used together in the intended operational or 
support environment to perform a given task or achieve a specific purpose, support, 
or mission requirement (MIL-STD 882D). 

Only technical systems are considered in this book. Any technical systems will, 
however, have interfaces with humans. Humans may be operators controlling or 
performing specific functions, they may support the system by cleaning, lubricating, 
testing, and repairing the system, or they may be users of the systems. The reliability 
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fig, 3.1 A technical system and its interfaces. 

of the system will depend on its interfaces with the rest of the world. It is therefore 
necessary to study how these interfaces influence the system. It is, however, not an 
objective of this book to study the impacts the system may have on the rest of the 
world. 

An illustration of a technical system and its interfaces is shown in Fig. 3.1. The 
following elements are illustrated in Fig. 3.1: 

1 .  System: The technological system that is subject to analysis. The system will 
usually comprise several functional blocks. 

2 .  System boundary: The system boundary defines which elements that are con- 
sidered as part of the system and which elements that are outside. 

3. Outputs: The outputs from the system may be classified in two groups: 

(a) Wbred outputs: These are the (wanted) results of the required functions 
(like artifacts, materials, energy, and information). 

(b) Unwanted outputs: Almost all systems will produce outputs that are not 
wanted. Such outputs may be pollution to air, water, or ground and injuries 
and negative health effects to people in, or in the neighborhood of, the 
system. 

4. Inputs: The inputs to the system may be classified in two groups: 

(a) Wunred inputs: These are the materials and the energy the system is using 
to perform its required functions. The quality and amount of the wanted 
inputs may be subject to variations. 

(b) Unwanted inputs: These are inputs associated to the wanted inputs that 
may not be considered as normal variations of the wanted inputs. An 
example of unwanted input is particles in the input fluid to a pump. 

5 .  Boundcrry conditions: The operation of the system may be subject to a number 
of boundary conditions, like risk acceptance and environmental criteria set by 
authorities or by the company. 
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6. Support: The system usually needs support functions, like cleaning, lubrication, 
maintenance, and repair. 

7.  External threats: The system may be exposed to a wide range of external threats. 
Some of these threats may have direct impact on the system, others may have 
impact on the system inputs. External threats may be classified in four groups: 

(a) Natural environmental threats: Threats to the system from the external 

(b) Infrastructure threats: Threats caused by deficiencies and breakdown of 

(c) Societal threats: Threats from individuals and organizations, like arson, 

(d) Threats from other technical systems: Impact from other systems close to 

environment, like flooding, storm, lightning, and earthquake. 

infrastructure, like energy supply and communication. 

sabotage, hacking, and computer virus attacks. 

the system or with interfaces to the system. 

The distinction between an unwanted input and an external threat may not 
always be clear. It is not important how the various inputs are classified. What 
is important is that all inputs and threats are identified and considered in the 
analysis. 

How we consider a technical system depends on the role we have, the phase of the 
system’s life cycle, and on the objectives of our study. The system may generally be 
considered from two different points of view: 

1. Structural focus: Here we are interested in the physical structure of the various 
subsystems and components of the system. The serviceman, for example, is 
mainly interested in the subsystems and components of a television set and how 
these transform and transmit electromagnetic waves. 

2. Functionalfocus: Here we are interested in the various functions of the system 
and how these functions are fulfilled. A user of a television set, for example, 
is primarily interested in the information (pictures and sound) he gets from the 
television set. 

In the early design process of a new system, we usually start with a set of desired 
functions. We want to develop a system that is able to fulfill these functions. No 
physical realization has yet been decided. In this phase we have a functional focus. 

Several types of diagrams are used to illustrate the structural and the functional 
interrelationships in a system. Many of these diagrams are called functional block 
diagrams but may be rather different both regarding symbols and layout. A mix- 
ture between functions and physical elements is also often seen. An example of a 
functional block diagram of a diesel engine is shown in Fig. 3.2. Functional block 
diagrams are recommended by IEC 608 12 and MIL-STD 1629A as a basis for failure 
modes, effects, and criticality analysis (FMECA), and by Smith (1993) as a basis 
for reliability centered maintenance (RCM). In the process industry, the systems are 
often illustrated by process and instrumentation diagrams (P&ID). 
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Fig. 3.2 Functional block diagram of a diesel engine. 

For some systems a numbering system has been developed, where each functional 
block is given a unique number according to a hierarchical numbering system. This 
is, for example, the case in the Norwegian offshore industry where this system is 
called the tag number system. The lowest level in the numbering system is usually 
the smallest item that is separately maintained. Such items are called maintainable 
items or least replaceable items. It is usually recommended to use the same structure 
also in reliability analyses, since the reliability data will be available for these items. 

3.3 FUNCTIONAL ANALYSIS 

To be able to identify all potential failures, the reliability engineer has to have a 
thorough understanding of the various functions of each functional block, and the 
performance criteria related to the various functions. A functional analysis is therefore 
an important step in a system reliability analysis. The objectives of a functional 
analysis are to: 

1.  Identify all the functions of the system 

2 .  Identify the functions required in the various operational modes of the system 

3. Provide a hierarchical decomposition of the system functions 

4. Describe how each function is realized 

5. Identify the interrelationships between the functions 

6. Identify interfaces with other systems and with the environment 
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A function is an intended effect of a functional block and should be defined such that 
each function has a single definite purpose. It is recommended to give the functions 
names that have a declarative structure, and say “what” is to be done rather than 
“how.” The functions should preferably be expressed as a statement comprising a 
verb plus a noun; for example, close flow, contain fluid, pump fluid, and transmit 
signal. In practice, however, it is often difficult to specify a function with only two 
words, and we may have to add one or two extra words. 

A functional requirement is a specification of the performance criteria related to 
a function. If, for example, the function is “pump water,” a functional requirement 
may be that the output of water must be between 100 and 110 liters per minute. For 
some functions we may have several functional requirements. 

3.3.1 Classification of Functions 

A complex system may have a high number of required functions. All functions 
are, however, not equally important, and a classification may therefore be an aid for 
identification and analysis purposes. One way of classifying functions are: 

1. Essential functions: These are the functions required to fulfill the intended 
purpose of the functional block. The essential functions are simply the reasons 
for installing the functional block. Often an essential function is reflected in the 
name of the functional block. An essential function of a pump is, for example, 
to “pump fluid.” 

2. Auxiliaryfunctions: These are the functions that are required to support the 
essential functions. The auxiliary functions are usually less obvious than the 
essential functions but may in many cases be as important as the essential 
functions. Failure of an auxiliary function may in many cases be more safety 
critical than a failure of an essential function. An auxiliary function of a pump 
is, for example, to “contain fluid.” 

3. Protective functions: These functions are intended to protect people, equip- 
ment and the environment from damage and injury. The protective functions 
may be classified as: 

(a) Safety functions (i.e., to prevent accidental events and/or to reduce con- 

(b) Environment functions (e.g., antipollution functions during normal oper- 

(c) Hygiene functions 

sequences to people, material assets, and the environment) 

ation) 

4. Informationfunctions: These functions comprise condition monitoring, various 
gauges and alarms, and so forth. 

5.  Interjiacefunctions: These functions apply to the interfaces between the func- 
tional block in question and other functional blocks. The interfaces may be 
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active or passive. A passive interface is, for example, present when the func- 
tional block is a support or a base for another functional block. 

6. Supefluousfunctions: In some cases the functional blocks may have functions 
that are never used. This is sometimes the case with electronic equipment that 
have a wide range of “nice to have” functions that are not really necessary. 
Superfluous function may further be found in systems that have been modified 
several times. Superfluous functions may also be present when the functional 
block has been designed for an operational context that is different from the 
actual operational context. In some cases failure of a superfluous function may 
cause failure of other functions. 

These classes are not necessarily disjoint. Some functions may be classified in more 
that one class. 

In many applications it is important to distinguish between evident and hidden 
(dormant) failures. The following classification of functions may therefore prove 
necessary: 

1. On-line functions: These are functions operated either continuously or so often 
that the user has current knowledge about their state. The termination of an 
on-line function is called an evident failure. 

2. Off-line functions: These are functions that are used intermittently or so infre- 
quently that their availability is not known by the user without some special 
check or test. An example of an off-line function is the essential function of 
an emergency shutdown (ESD) system. Many protective functions are off-line 
functions. The termination of the ability to perform an off-line function is 
called a hidden failure. 

3.3.2 Operational Modes 

A system and its functional blocks may in general have several operational modes and 
several functions for each operational mode. Operational modes should include nor- 
mal operating modes, test modes, transition between modes, and contingency modes 
induced by failures, faults, or operator errors. The establishment of the different 
operational modes is recommended for two reasons: 

1. It reveals other functions that might be overlooked when focusing too much on 

2. It provides a structured basis for the identification of failure modes that are 
completely connected to, and dependent on, the given operational mode. 

Operational modes are therefore an aid in identifying both functions and failure modes. 

the essential function. 

3.3.3 Function Tree 

For complex systems it is sometimes beneficial to illustrate the various functions as 
a tree structure, called afunction tree. A function tree is a hierarchical functional 
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Function 1 Function 2 

Function Function CI Function Function CI 
Fig. 3.3 Function tree. 

breakdown structure starting with a system function or a system mission and illustrat- 
ing the corresponding necessary functions on lower levels of indenture. The function 
tree is created by asking how an already established function is accomplished. This 
is repeated until functions on the lowest level are reached. The diagram may also 
be developed in the opposite direction by asking why a function is necessary. This 
is repeated until functions on the system level are reached. Function trees may be 
represented in many different ways. An example is shown in Fig. 3.3. A lower level 
function may be required by a number of main functions and may therefore appear 
several places in the function tree. 

An alternative to the function tree is the function analysis system technique (FAST) 
that was introduced in 1965 by the Society of American Value Engineers (Fox 1993; 
Lambert et al. 1999). The FAST diagram is drawn from left to right. We start 
with a system function on the left side and ask how this function is (or may be) 
accomplished. The functions on the first level are then identified and entered into 
the diagram. We continue asking how until we reach the intended level of detail. 
The lower level functions can be connected by AND and OR relations as illustrated in 
Fig. 3.4. Functions that have to be performed at the same time may be indicated by 
vertical arrows. An illustration of a FAST diagram is given in Fig. 3.5. 

When we are analyzing an existing system, it is often more obvious to use a 
physical breakdown of the system instead of a functional breakdown. 

When? 

How? 

When? 

A physical 

Fig. 3.4 Symbols used in FAST diagrams. 



FUNCTIONAL ANALYSIS 81 

How? 
r - - - b  

I 

I function 1 I 
I - 1  

41 Function 1.3 I 
I 

Function 3.1 

I 
function 3 

I Limit of functional analysis +I 

Fig. 3.5 Example of a FAST diagram. 

breakdown structure is similar to the function tree in Fig. 3.3, but each box represents 
a physical element instead of a function. The “physical” elements may be technical 
items, operators, and even procedures. When each function is performed by only 
one physical element, the two approaches give similar results. When the system 
has redundancies, the trees will be different. The function “pump water” may, for 
example, be realized with two redundant water pumps. In the function tree, this is 
represented as one function, while we in the physical breakdown structure get two 
elements, one for each pump. 

3.3.4 Functional Block Diagrams 

A widely used approach to functional modeling was introduced by Douglas T. Ross 
of SofTech Inc. in 1973, called the structured analysis and design technique (SADT). 
The SADT approach is described, for example, by Lissandre (1990) and Lambert et 
al. (1999). In the SADT diagram each functional block is modeled according to the 
same structure with five main elements: 

0 Function: Definition of the function to be performed 

0 Input: The energy, materials, and information that are necessary to perform the 
function 

Control: The controls and other elements that constrain or govern how the 
function will be carried out. 

0 Mechanism: The people, systems, facilities or equipment necessary to carry 
out the function. 
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Control 

Function output 0 Input 

Mechanism 

F/g. 3.6 A functional block in a SADT diagram. 

0 Output: The result of the function. The output is sometimes split in two parts: 
the wanted output from the function and the unwanted output. 

An illustration of a functional block in a SADT diagram is shown in Fig. 3.6. The 
output of a functional block may be the input to another functional block, or may 
act as a control of another functional block. By this way we can link the functional 
blocks to become a functional block diagram. An illustration of an SADT diagram 
for subsea oil and gas stimulation is shown in Fig. 3.7. The diagram was developed 
as part of a student project at the Norwegian University of Science and Technology 
((ddegaard 2002). 

When constructing an SADT model, we use a top-down approach as illustrated 
in Fig. 3.8. At the top level we start with a required system function. The functions 
necessary to fulfill the system function are established as an SADT diagram at the 
next level. Each function on this level is then broken down to lower level functions, 
and so on, until the desired level of decomposition has been reached. The hierarchy 
is maintained via a numbering system that organizes parent and child diagrams. 

The functional block in Fig. 3.6 is also used in the integrated definition language 
(IDEF), which is based on SADT and developed for the U.S. Air Force. IDEF is 

Control valves 
I 

Hydraulic 
power 

Stimulation fluid -~ 

Unstimulated 
011 flow 

Produced 
oil flow 
Sensor 
information 

t 
Pressure and Pressure and temperature Subsea control Valves and lubes Tubes (production 

sensors and downhole module (Annular wing block) wing Mock) lemwrature sensors 
pressure transminer 

Fig. 3.7 SADT diagram. 
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Fig. 3.8 Top-down approach to establish an SADT model. 

divided into several modules. The module for modeling of system functions is called 
IDEFO (U.S. Air Force 1981; Cheng Leong and Gay 1993). 

For new systems, SADT and IDEFO may be used to define the requirements 
and specify the functions and as a basis for suggesting a solution that meets the 
requirements and performs the functions. For existing systems, SADT and IDEFO 
can be used to analyze the functions the system performs and to record the mechanisms 
(means) by which these functions are accomplished. 

3.4 FAILURES AND FAILURE CLASSIFICATION 

Even if we are able to identify all the required functions of a functional block, we 
may not be able to identify all the failure modes. This is because each function may 
have several failure modes. No formal procedure seems to exist that may be used to 
identify and classify the possible failure modes. ’ 
3.4.1 Failures, Faults, and Errors 

According to IEC 50( 191) failure is the event when a required function is terminated 
(exceeding the acceptable limits), while fault is “the state of an item characterized 
by inability to perform a required function, excluding the inability during preventive 
maintenance or other planned actions, or due to lack of external resources.” A fault 
is hence a state resulting from a failure. 

According to IEC 50( 19 1) an error is a “discrepancy between a computed, observed 
or measured value or condition and the true, specified or theoretically correct value or 
condition.” An error is (yet) not a failure because it is within the acceptable limits of 
deviation from the desired performance (target value). An error is sometimes referred 
to as an incipient failure ( e g ,  see OREDA 2002; IEEE Std. 500). 

‘The section is based on Rausand and 0ien (1996). The basic concepts of failure analysis. Reliabiliry 
Engineering and Svsrem Safety. 53:73-83. 0 1996, with permission from Elsevier. 
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Fig. 3.9 Illustration of the difference between failure, fault, and error. 

The term failure is sometimes confused with the terms fault and error. The rela- 

The distinction between failure (or fault) and error is essential in failure analysis, 
tionship between these terms is illustrated in Fig. 3.9. 

because this describes the borderline between what is a failure and what is not. 

3.4.2 Failure Modes 

A failure mode is a description of a fault, that is, how we can observe the fault. Fault 
mode should therefore be a more appropriate term than failure mode. IEC50(191) 
recommends using the ternfault mode, but the term failure mode is so widely used 
that a change may confuse the reader. 

Identification of Failure Modes To identify the failure modes we have to study 
the outputs of the various functions. Some functions may have several outputs. Some 
outputs may be given a very strict definition, such that it is easy to determine whether 
the output requirements are fulfilled or not. In other cases the output may be specified 
as a target value with an acceptable deviation (see Fig. 3.9). 

If we consider a process shutdown valve, it should be designed with a specified 
closing time, for example, 10 seconds. If the valve closes too slowly, it will not 
function as a safety barrier. On the other hand, if the valve closes too fast, we may 
get a pressure shock destroying the valve or the valve flanges. Closing times between 
6 and 14 seconds may, for example, be acceptable, and we state that the valve is 
functioning (with respect to this particular function) as long as the closing time is 
within this interval. The criticality of the failure will obviously increase with the 
deviation from the target value. 

Failure Mode Categories It is important to realize that a failure mode is a mani- 
festation of the failure as seen from the outside, that is, the termination of one or more 
functions. “Internal leakage” is thus a failure mode of a shutdown valve, since the 
valve looses its required function to “close flow.” Wear of the valve seal, however, 
represents a cause of failure and is hence not a failure mode of the valve. 
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A classification scheme for failure modes has been suggested by Blanche and 

1. Intermittent failures: Failures that result in a lack of some function only for a 
very short period of time. The functional block will revert to its full operational 
standard immediately after the failure. 

2. Extended failures: Failures that result in a lack of some function that will con- 
tinue until some part of the functional block is replaced or repaired. Extended 
failures may be further divided into: 

Shrivastava ( 1994): 

(a) Complete,failures: Failures that cause complete lack of a required func- 

(b) Purtial failures: Failures that lead to a lack of some function but do not 

tion. 

cause a complete lack of a required function. 

Both the complete failures and the partial failures may be further classified: 

(a) Sudden failures: Failures that could not be forecast by prior testing or 
examination. 

(b) Grudualfailures: Failures that could be forecast by testing or examination. 
A gradual failure will represent a gradual “drifting out” of the specified 
range of performance values. The recognition of gradual failures requires 
comparison of actual device performance with a performance specifica- 
tion, and may in some cases be a difficult task. 

The extended failures are split into four categories; two of these are given 
specific names: 

(a) Cutastrophic failures: A failure that is both sudden and complete. 

(b) Degraded failure: A failure that is both partial and gradual (such as the 
wear of the tires on a car). 

The failure classification described above is illustrated in Fig. 3.10, which is 
adapted from Blache and Shrivastava (1994). 

In some applications it may also be useful to classify failures as either primary 
failures, secondary failures, or command faults (e.g., see Henley and Kumamoto 
I98 1 ; Villemeur 1988): 

A primary failure is a failure caused by natural aging of the functional block. The 
primary failure occurs under conditions within the design envelope of the functional 
block. A repair action is necessary to return the functional block to a functioning 
state. 

A secondary failure is a failure caused by excessive stresses outside the design 
envelope of the functional block. Such stresses may be shocks from thermal, me- 
chanical, electrical, chemical, magnetic, or radioactive energy sources. The stresses 
may be caused by neighboring components, the environment, or by system opera- 
tordplant personnel. A repair action is necessary to return the functional block to a 
functioning state. 
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Fig. 3.10 Failure classification (adapted from Blanche and Shrivastava 1994). 
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Fig. 3.11 Relationship between failure cause, failure mode, and failure effect. 

A command fault is a failure caused by an improper control signal or noise. A 
repair action is usually not required to return the functional block to a functioning 
state. Command faults are sometimes referred to as transient failures. 

3.4.3 Failure Causes and Failure Effects 

The functions of a system may usually be split into subfunctions. Failure modes at 
one level in the hierarchy will often be caused by failure modes on the next lower 
level. It is important to link failure modes on lower levels to the main top level 
responses, in order to provide traceability to the essential system responses as the 
functional structure is refined. This is illustrated in Fig. 3.11 for a hardware structure 
breakdown. 
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Failure Causes, Mechanisms, and Root Causes According to IEC 50( 191) 
failure cause is “the circumstances during design, manufacture or use that have led to 
a failure.” The failure cause is a necessary information in order to avoid failures or 
reoccurrence of failures. Failure causes may be classified in relation to the life cycle 
of an functional block as illustrated in Fig. 3.12, where the various failure causes are 
defined as: 

1. Design failure: A failure due to inadequate design of a functional block. 

2. Weakness failure: A failure due to a weakness in the functional block itself when 
subjected to stresses within the stated capabilities of the functional block. (A 
weakness may be either inherent or induced.) 

3. Manufacturing failure: A failure due to nonconformity during manufacture to 
the design of a functional block or to specified manufacturing processes. 

4. Ageing failure: A failure whose probability of occurrence increases with the 
passage of time, as a result of processes inherent in the functional block. 

5 .  Misuse failure: A failure due to the application of stresses during use that exceed 
the stated capabilities of the functional block. 

6.  Mishandling failure: A failure caused by incorrect handling or lack of care of 
the functional block. 

The various failure causes in Fig. 3.12 are not necessarily disjoint. There is, for 
example, an obvious overlap between “weakness” failures and “design” and “manu- 
facturing” failures. 

Failure mechanisms are, in IEC 50(191), defined as the “physical, chemical or 
other processes that has led to a failure.” A common interpretation of this term is the 
immediate causes to the lowest level of indenture, such as wear, corrosion, hardening, 
pitting, and oxidation. 

This level of failure cause description is, however, not sufficient to evaluate possible 
remedies. Wear can, for instance, be a result of wrong material specification (design 

cause 

Manufacturing Fl 

Fig. 3.72 Failure cause classification. 
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failure), usage outside specification limits (misuse failure), poor maintenance - inad- 
equate lubrication (mishandling failure), and so forth. These fundamental causes are 
sometimes referred to as root causes (see Fig. 3.1 l), the causes upon which remedial 
actions can be decided. 

Failure Effects A general picture of the relationship between cause and effect is 
that each failure mode can be caused by several different failure causes, leading to 
several different failure effects. To get a broader understanding of the relationship 
between these terms, the level of indenture being analyzed should be brought into 
account. This is illustrated in Fig. 3.1 1. 

Fig. 3.1 1 shows that a failure mode on the lowest level of indenture is one of the 
failure causes on the next higher level of indenture, and the failure effect on the lowest 
level equals the failure mode on the next higher level. The failure mode “leakage from 
sealing” for the seal component is, for example, one of the possible failure causes for 
the failure mode “internal leakage” for the pump, and the failure effect (on the next 
higher level) “internal leakage” resulting from “leakage from sealing” is the same as 
the failure mode “internal leakage” of the pump. 

For further discussions about failures and failure causes, see Rausand and Oien 
(1 996). 

3.5 FAILURE MODES, EFFECTS, AND CRITICALITY ANALYSIS 

Failure mode and effects analysis (FMEA) was one of the first systematic techniques 
for failure analysis. It was developed by reliability engineers in the 1950s to study 
problems that might arise from malfunctions of military systems. 

An FMEA is often the first step of a systems reliability study. It involves reviewing 
as many components, assemblies, and subsystems as possible to identify failure modes 
and causes and effects of such failures. For each component, the failure modes and 
their resulting effects on the rest of the system are recorded in a specific FMEA 
worksheet. There are numerous variations of such worksheets. An example of an 
FMEA worksheet is shown in Fig. 3.13. 

An FMEA becomes a failure mode, effects, and criticality analysis (FMECA) if 
criticalities or priorities are assigned to the failure mode effects. In the following we 
will not distinguish between an FMEA and an FMECA and use FMECA for both. 

More detailed information on how to conduct an FMECA may be found in the 
standards SAE-ARP 5580, IEC 608 12, BS 5760-5, and MIL-STD-1629A. 

3.5.1 Objectives of an FMECA 

According to IEEE Std. 352, the objectives of an FMECA are to: 

1. Assist in selecting design alternatives with high reliability and high safety po- 
tential during the early design phase. 
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development Conceptual Embodiment Detailed design 
design and development 

Design verification Product use and 
and validation supporthaintenance 

FMECA Planning Functional Interface Detailed FMECA Verify Active use of FMECA 
schedule FMECA FMECA or update of analysis in data collection and 

functional FMECA maintenance management 

Fig. 3.14 FMECA activities in the various phases of product development. (Adapted from 
SAE-ARP 5580). 

2. Ensure that all conceivable failure modes and their effects on operational suc- 
cess of the system have been considered. 

3. List potential failures and identify the magnitude of their effects. 

4. Develop early criteria for test planning and the design of the test and checkout 
systems. 

5. Provide a basis for quantitative reliability and availability analyses. 

6. Provide historical documentation for future reference to aid in analysis of field 
failures and consideration of design changes. 

7. Provide input data for tradeoff studies. 

8. Provide basis for establishing corrective action priorities. 

9. Assist in the objective evaluation of design requirements related to redundancy, 
failure detection systems, fail-safe characteristics, and automatic and manual 
override. 

An FMECA is mainly a qualitative analysis and should be carried out by the 
designers during the design stage of a system. The purpose is to identify design 
areas where improvements are needed to meet reliability requirements. An updated 
FMECA is an important basis for design reviews and inspections. 

3.5.2 FMECA and the Product Development Process 

If possible, the FMECA should be integrated into the product development process 
from the early concept phase and be updated in later development phases and in 
the operational phase, as illustrated in Fig. 3.14. In the conceptual design only the 
main functions of the new product are known. Required subfunctions are identified 
and may be illustrated by a function tree as shown in Fig. 3.3. The function tree is 
developed as a top-down approach. No, or very few, hardware solutions are known 
in this phase of the development process. Potential failures may be identified and 
evaluated for each function in the function hierarchy by a functional FMECA. The 
functional FMECA is sometimes called a top-down FMECA. 

In the embodiment design phase, an intelface FMECA should be carried out. 
The interface FMECA is performed in the same way as the functional FMECA to 
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I 

System 

I More level 1 subsystems 
I 

Fig. 3.15 System breakdown structure. 

I 
Component Component 

1.1.1 1.1.2 

verify compliance to requirements. In the interface FMECA we primarily focus on 
interconnections between components and subsystems, and especially items designed 
by separate design groups. 

In the detailed design and development phase hardware and software solutions are 
decided for the various functions, and we may establish a system breakdown structure 
as shown in Fig. 3.15, where a box represents a hardware or software item. To decide 
to which component level the analysis should be conducted is a difficult task. It is often 
necessary to make compromises since the workload could be overwhelming even for 
a system of moderate size. It is, however, a general rule to expand the analysis down 
to a level at which failure rate estimates are available or can be obtained. A complete 
list of all the components on the lowest level of indenture is usually prepared. 

When the system breakdown structure is available, a derailed FMECA is carried 
out. The detailed FMECA starts by identifying all potential failure modes on the 
lowest level of indenture and proceeds upwards in the hierarchy. The detailed FMECA 
is therefore also called a bottom-up FMECA. 

In some applications we may use the top-down approach even when the hardware 
and software structure has been decided. By the top-down approach, the analysis 
is carried out in two or more stages. The first stage is to split the system into a 
number of subsystems and to identify possible failure modes and failure effects of 
each subsystem based on knowledge of the subsystem’s required functions, or from 
experience with similar equipment. One then proceeds to the next stage, where the 
components within each subsystem are analyzed. If a subsystem has no critical failure 
modes, no further analysis of that subsystem needs to be performed. By this screening, 
it is possible to save time and effort. A weakness of this top-down approach is that it 
does not ensure that all failure modes of a subsystem have been identified. 

The FMECA worksheet in Fig. 3.13 is seen to contain a lot of information that 
is useful for maintenance planning and operation. The FMECA may therefore be 
integrated into the maintenance planning system and updated as system failures and 
malfunctions are detected. 

More components More components 
I 

Component Component 
2.1.1 2.1.2 
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3.5.3 FMECA Procedure 

An FMECA is simple to conduct. It does not require any advanced analytical skills 
of the personnel performing the analysis. It is, however, necessary to know and 
understand the purpose of the system and the constraints under which it has to operate. 
The basic questions to be answered by an FMECA are according to IEEE Std. 352: 

1.  How can each part conceivably fail? 

2.  What mechanisms might produce these modes of failure? 

3 .  What could the effects be if the failures did occur? 

4. Is the failure in the safe or unsafe direction? 

5. How is the failure detected? 

6. What inherent provisions are provided in the design to compensate for the 
failure? 

The analysis may be performed according to the following scheme: 

1. Definition and delimitation of the system (which components are within the 
boundaries of the system and which are outside). 

2. Definition of the main functions (missions) of the system. 

3 .  Description of the operational modes of the system. 

4. System breakdown into subsystems that can be handled effectively. 

5. Review of system functional diagrams and drawings to determine interrelation- 
ships between the various subsystems. These interrelations may be illustrated 
by drawing functional block diagrams where each block corresponds to a sub- 
system. 

6. Preparation of a complete component list for each subsystem. 

7. Description of the operational and environmental stresses that may affect the 
system and its operation. These are reviewed to determine the adverse effects 
that they could generate on the system and its components. 

The various entries in the FMECA worksheet are best illustrated by going through a 
specific worksheet column by column. We will use the FMECA worksheet in Fig. 3.13 
for a detailed FMECA as an example. The changes necessary for a functional FMECA 
should be obvious. 

Reference (column 1). The name of the item or a reference to a drawing, for 
example, is given in the first column. 

Function (column 2) .  The function(s) of the item is (are) described in this 
column. 
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Operational mode (column 3). The item may have various operational modes, 
for example, running or standby. Operational modes for an airplane include, for 
example, taxi, take-off, c l h b ,  cruise, descent, approach, flare-out, and roll. In 
applications where it is not relevant to distinguish between operational modes, 
this column may be omitted. 

Failure mode (column 4). For each component’s function and operational 
mode all the failure modes are identified and recorded. Note that the failure 
modes should be defined as nonfulfillment of the functional requirements of 
the functions specified in column 2. 

Failure causes and mechanisms (column 5) .  The possible failure mechanisms 
(corrosion, erosion, fatigue, etc.) that may produce the identified failure modes 
are recorded in this column. Other failure causes should also be recorded. To 
identify all potential failure causes, it may be useful to remember the interfaces 
illustrated in Fig. 3.1 and the inputs to the functional block in Fig. 3.6. 

Detection of failure (column 6). The various possibilities for detection of the 
identified failure modes are then recorded. These may involve different alarms, 
testing, human perception, and the like. Some failure modes are called evident 
,failures. Evident failures are detected instantly when they occur. The failure 
mode “spurious stop” of a pump with operational mode “running” is an example 
of an evident failure. Another type of failure is called hidden failure. A hidden 
failure is normally detected only during testing of the item. The failure mode 
“fail to start” of a pump with operational mode “standby” is an example of a 
hidden failure. 

Effects on other components in the same subsystem (column 7) .  All the main 
effects of the identified failure modes on other components in the subsystem 
are recorded. 

Effects on the function of the system (column 8). All the main effects of the 
identified failure mode on the function of the system are then recorded. The 
resulting operational status of the system after the failure may also be recorded, 
that is, whether the system is functioning or not, or is switched over to another 
operational mode. 

Remark: In some applications it may be relevant to replace columns 7 and 8 
by, for example, Effect on safety and Effect on availability. 

Failure rate (column 9). Failure rates for each failure mode are then recorded. 
In many cases it is more suitable to classify the failure rate in rather broad 
classes. An example of such a classification is: 

1 Very unlikely Once per 1000 years or more seldom 
2 Remote Once per 100 years 
3 Occasional Once per 10 years 
4 Probable Once per year 
5 Frequent Once per month or more often 
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Note that the failure rate with respect to a failure mode might be different for 
the various operational modes. The failure mode “Leakage to the environment” 
for a valve may, as an example, be more likely when the valve is closed and 
pressurized, than when the valve is open. 

Severity (column 10). By the severity of a failure mode we mean the worst po- 
tential consequence of the failure, determined by the degree of injury, property 
damage, or system damage that could ultimately occur. The following ranking 
categories (see Hammer 1972, p. 152) are often adopted: 

Catastrophic 

Critical 

Major 

Minor 

Any failure that could result in deaths or injuries or 
prevent performance of the intended mission. 
Any failure that will degrade the system beyond 
acceptable limits and create a safety hazard (cause 
death or injury if corrective action is not immediately taken) 
Any failure that will degrade the system beyond 
acceptable limits but can be adequately counter- 
acted or controlled by alternate means 
Any failure that does not degrade the overall 
performance beyond acceptable limits-ne of the 
nuisance variety 

Slightly different categories are adopted in MIL-STD-882D. These categories 
are included as an illustration. The severity categories should be defined such 
that they are relevant for the practical application. 

Risk reducing measures (column 11). Possible actions to correct the failure 
and restore the function or prevent serious consequences are then recorded. 
Actions that are likely to reduce the frequency of the failure modes may also 
be recorded. 

Comments (column 12). This column may be used to record pertinent infor- 
mation not included in the other columns. 

By combining the failure rate (column 9) and the severity (column 10) we may 
obtain a ranking of the criticality of the different failure modes. This ranking may 
be illustrated as in Fig. 3.16 by a risk matrix. In this example we have classified the 
failure rate in five classes as described under column 9. The severity is in the same 
way classified in four classes as described under column 10. The most critical failure 
modes will be represented by an ( x )  in the upper right corner of the risk matrix, while 
the least critical failure modes will have (x )  in the lower left corner of the risk matrix. 

3.5.4 Applications 

Many industries require an FMECA to be integrated in the design process of technical 
systems and that FMECA worksheets be part of the system documentation. This is, 
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Failure rate 

Frequent 

Probable 

Occasional 

Severity group ........................................................................... 
Minor Major i Critical i Catastrophic 

............................................................................................. 

............................................................................................. 
(4  i 

Very unlikely 

for example, a common practice for suppliers to the defense, the aerospace, and the 
car industries. The same type of requirements are also becoming more and more 
usual within the offshore oil and gas industry. 

Subcontractors to the car industry are usually met with requirements for both prod- 
uct and process FMECA. A product FMECA is a detailed FMECA of the technical 
items that are supplied to the car manufacturer. A process FMECA is an analysis of 
the producer’s in-house production system, to verify that failures of the production 
system will not influence the quality of the products. 

The FMECA is usually carried out during the design phase of a system. The main 
objective of the analysis is to reveal weaknesses and potential failures at an early 
stage, to enable the designer to incorporate corrections and barriers in the design. 
The results from the FMECA may also be useful during modifications of the system 
and for maintenance planning. 

Many industries are introducing a reliability centered maintenance (RCM) pro- 
gram for maintenance planning. The RCM concept was introduced by the aviation 
industry and has formed the basis for the scheduled maintenance planning of a num- 
ber of new airplane systems. The RCM concept is today applied in a wide range 
of industries, especially in nuclear power plants and within the offshore oil and gas 
industry. FMECA is one of the basic analytical tools of the RCM concept. The RCM 
concept is further discussed in Chapter 9. 

Since all failure modes, failure mechanisms, and symptoms are documented in 
the FMECA, this also provides valuable information as a basis for failure diagnostic 
procedures and for a repairman’s checklists. 

An FMECA may be very effective when applied to a system where system failures 
most likely are the results of single component failures. During the analysis, each 
failure is considered individually as an independent occurrence with no relation to 
other failures in the system. Thus an FMECA is not suitable for analysis of systems 
with a fair degree of redundancy. For such systems a fault tree analysis would be a 
much better alternative. An introduction to fault tree analysis is given in Section 3.6. 
In addition, the FMECA is not well suited for analyzing systems where common 

(x) i ; (4 i 
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cause failures are considered to be a significant problem. Common cause failures are 
discussed in Chapter 6. 

A second limitation of FMECA is the inadequate attention generally given to 
human errors. This is mainly due to the concentration on hardware failures. 

Perhaps the worst drawback is that all component failures are examined and doc- 
umented, including those that do not have any significant consequences. For large 
systems, especially systems with a high degree of redundancy, the amount of unnec- 
essary documentation work is a major disadvantage. 

3.6 FAULT TREE ANALYSIS 

The fault tree technique was introduced in 1962 at Bell Telephone Laboratories, in 
connection with a safety evaluation of the launching system for the intercontinental 
Minuteman missile. The Boeing Company improved the technique and introduced 
computer programs for both qualitative and quantitative fault tree analysis. Today 
fault tree analysis is one of the most commonly used techniques for risk and reliability 
studies. In particular, fault tree analysis has been used with success to analyze safety 
systems in nuclear power stations, such as the Reactor safety study (NUREG-0492). 

A fault tree is a logic diagram that displays the interrelationships between a poten- 
tial critical event (accident) in a system and the causes for this event. The causes may 
be environmental conditions, human errors, normal events (events that are expected 
to occur during the life span of the system), and specific component failures. 

A fault tree analysis may be qualitative, quantitative, or both, depending on the 
objectives of the analysis. Possible results from the analysis may, for example, be 

0 A listing of the possible combinations of environmental factors, human errors, 
normal events, and component failures that may result in a critical event in the 
system. 

0 The probability that the critical event will occur during a specified time interval. 

Only qualitative fault tree analysis is covered in this chapter. Quantitative fault tree 
analysis is discussed in Chapter 4. Fault tree analysis is thoroughly described in the 
literature; see, for example, NUREG-0492 and NASA (2002). 

3.6.1 Fault Tree Construction 

Fault tree analysis is a deductive technique where we start with a specified system 
failure or an accident. The system failure, or accident, is called the TOP event of the 
fault tree. The immediate causal events A ] ,  A2,  . . . that, either alone or in combina- 
tion, may lead to the TOP event are identified and connected to the TOP event through 
a logic gate. Next, we identify all potential causal events Aj. 1 ,  Aj,2,  . . . that may lead 
to event Aj for i = 1,2,  . . .. These events are connected to event Ai through a logic 
gate. This procedure is continued deductively (i.e., backwards in the causal chain) 
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until we reach a suitable level of detail. The events on the lowest level are called the 
basic events of the fault tree. 

Fault tree analysis is a binary analysis. All events are assumed either to occur or 
not to occur; there are no intermediate options. 

The graphical layout of the fault tree symbols are dependent on what standard 
we choose to follow. Table 3.1 shows the most commonly used fault tree symbols 
together with a brief description of their interpretation. A number of more advanced 
fault tree symbols are available but will not be covered in this book. A thorough 
description may be found in, for example, NUREG-0492 and NASA (2002). Note 
that the fault tree symbols used in the standard IEC61025 are different from the 
symbols in Table 3.1. The meaning of the corresponding symbols are, however, the 
same. 

A fault tree analysis is normally carried out in five steps’ : 

1. Definition of the problem and the boundary conditions. 

2 .  Construction of the fault tree. 

3. Identification of minimal cut and/or path sets. 

4. Qualitative analysis of the fault tree. 

5. Quantitative analysis of the fault tree. 

Steps 1 to 4 are covered in this section, while step 5 is discussed in Chapter 4. 

3.6.2 Definition of the Problem and the Boundary Conditions 

The first activity of a fault tree analysis clearly consists of two substeps: 

0 Definition of the critical event (the accident) to be analyzed 

0 Definition of the boundary conditions for the analysis 

The critical event (accident) to be analyzed is normally called the TOP event. It is 
very important that the TOP event is given a clear and unambiguous definition. If not, 
the analysis will often be of limited value. As an example, the event description “Fire 
in the plant” is far too general and vague. The description of the TOP event should 
always give answer to the questions what, where, and when: 

What. Describes what type of critical event (accident) is occurring (e.g., fire) 

Where. Describes where the critical event occurs (e.g., in the process oxidation 
reactor) 

When. Describes when the critical event occurs (e.g., during normal operation) 

‘The procedure described below is strongly influenced by AIChE (1985). 
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Table 3.1 Fault Tree Symbols. 

Symbol Description 

Logic gates 0s-gate 

Input events 
E, E 2  E 3  

Basic event 

Undeveloped event 

Description Comment rectangle 

Transfer symbols Transfer-out 

A 

The OR-gate indicates that the out- 
put event A occurs if any of the input 
events Ei occur 

The AND-gate indicates that the out- 
put event A occurs only when all the 
input events Ei occur at the same 
time 

The Basic event represents a ba- 
sic equipment failure that requires 
no further development of failure 
causes 

The Undeveloped event represents 
an event that is not examined fur- 
ther because information is unavail- 
able or because its consequence is 
insignificant 

The Comment rectangle is for sup- 
plementary information 

The Transfer-out symbol indicates 
that the fault tree is developed fur- 
ther at the occurrence of the corre- 
sponding Transfer-in symbol 

Transfer-in 



FAULT TREE ANALYSIS 99 

A more precise TOP event description is thus: “Fire in the process oxidation reactor 
during normal operation.” 

To get a consistent analysis, it is important that the boundary conditions for the 
analysis are carefully defined. By boundary conditions we understand the following: 

The physical boundaries of the system. Which parts of the system are to be 
included in the analysis, and which parts are not? 

0 The initial conditions. What is the operational state of the system when the 
TOP event is occurring? Is the system running on fullheduced capacity? Which 
valves are opedclosed, which pumps are functioning, and so on? 

0 Boundary conditions with respect to external stresses. What type of external 
stresses should be included in the analysis? By external stresses we mean 
stresses from war, sabotage, earthquake, lightning, and so on. 

0 The level of resolution. How far down in detail should we go to identify potential 
reasons for a failed state? Should we, for example, be satisfied when we have 
identified the reason to be a “valve failure,” or should we break it further down 
to failures in the valve housing, valve stem, actuator, and so forth. When 
determining the preferred level of resolution, we should remember that the 
detailedness in the fault tree should be comparable to the detailedness of the 
information available. 

3.6.3 Construction of the Fault Tree 

The fault tree construction always starts with the TOP event. We must thereafter 
carefully try to identify all fault events that are the immediate, necessary, and sufficient 
causes that result in the TOP event. These causes are connected to the TOP event via 
a logic gate. It is important that the first level of causes under the TOP event be put up 
in a structured way. This first level is often referred to as the TOP structure of the fault 
tree. The TOP structure causes are often taken to be failures in the prime modules of 
the system or in the prime functions of the system. We then proceed, level by level, 
until all fault events have been developed to the prescribed level of resolution. The 
analysis is in other words deductive and is carried out by repeatedly asking “What 
are the reasons for this event?’ 

Rules for Fault Tree Construction Let fault event denote any event in the fault 
tree, whether it is a basic event or an event higher up in the tree. 

1. Describe the fault events. Each of the basic events should be carefully described 
(what, where, when) in a “comment rectangle.” 

2 .  Evaluate the fault events. The fault events may be different types, like tech- 
nical failures, human errors, or environmental stresses. Each event should be 
carefully evaluated. As explained on page 85, technical failures may be divided 
in three groups: primary failures, secondary failures and command faults. 
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Heat detection - 
Shutdown system 

~ 

Start - Fire alarm 
relay Activation of fire 

Smoke detection 

1 extinguishers 
Manual detection 

Fig. 3.17 System overview of fire detector system. 

Primary failures of components are usually classified as basic events, while 
secondary failures and command faults are classified as intermediate events 
that require a further investigation to identify the prime reasons. 

When evaluating a fault event, we ask the question: “Can this fault be a primary 
failure?’ If the answer is yes, we classify the fault event as a “normal” basic 
event. If the answer is no, we classify the fault event as either an intermediate 
event that has to be further developed or as a “secondary” basic event. The 
secondary basic event is often called an undeveloped event and represents a 
fault event that is not examined further because information is unavailable or 
because its consequence is insignificant. 

3. Complete the gates. All inputs to a specific gate should be completely defined 
and described before proceeding to the next gate. The fault tree should be 
completed in levels, and each level should be completed before beginning the 
next level. 

Example 3.1 Fire Detector System 
Let us consider a simplified version of a fire detector system located in a production 
room. (Observe that this system is not a fully realistic fire detector system.) 

The fire detector system is divided into two parts, heat detection and smoke de- 
tection. In addition, there is an alarm button that can be operated manually. The fire 
detector system can be described schematically, as shown in Fig. 3.17 and 3.18. 

Heat Detection 
In the production room there is a closed, pneumatic pipe circuit with four identical 
fuse plugs, FP1, FP2, FP3, and FP4. These plugs let air out of the circuit if they are 
exposed to temperatures higher than 72°C. The pneumatic system has a pressure of 
3 bars and is connected to a pressure switch (pressostat) PS. If one or more of the 
plugs are activated, the switch will be activated and give an electrical signal to the 
start relay for the alarm and shutdown system. In order to have an electrical signal, 
the direct current (DC) source must be intact. 

Smoke Detection 
The smoke detection system consists of three optical smoke detectors, SDl, SD2, 
and SD3; all are independent and have their own batteries. These detectors are very 
sensitive and can give warning of fire at an early stage. In order to avoid false alarms, 
the three smoke detectors are connected via a logical 2-out-of-3 voting unit, VU. This 
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I h/lm 

2-out-of-3 ‘I 
Start relay 

SR b 
Shutdown of process, alarm, fire extinguishers 

Fig, 3.18 Schematic layout of the firedetector system. 

means that at least two detectors must give fire signal before the fire alarm is activated. 
If at least two of the three detectors are activated, the 2-out-of-3 voting unit will give 
an electric signal to the start relay, SR, for the alarm and shutdown system. Again the 
DC voltage source must be intact to obtain an electrical signal. 

Manual Activation 
Together with the pneumatic pipe circuit with the four fuse plugs, there is also a 
manual switch, MS, that can be turned to relieve the pressure in the pipe circuit. If 
the operator, OP, who should be continually present, notices a fire, he can activate 
this switch. When the switch is activated, the pressure in the pipe circuit is relieved 
and the pressure switch, PS, is activated and gives an electric signal to the start relay, 
SR. Again the DC source must be intact. 

The Start Relay 
When the start relay, SR, receives an electrical signal from the detection systems, it 
is activated and gives a signal to 

0 Shut down the process. 

0 Activate the alarm and the fire extinguishers. 

Assume now that a fire starts. The fire detector system should detect and give 
warning about the fire. Let the TOP event be: “No signals from the start relay SR 
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Smoke detector t 
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Smoke detector 2 
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Fig. 3.19 Fault tree for the fire detector system in Example 3.1. 

when afire condition is present. ” (Remember what, where, and when.) A possible 
0 fault tree for this TOP event is presented in Fig. 3.19. 

Remark: Observe that a fault tree does not show the causes of all failures or accidents 
in a system. It only illustrates the causes of a specified failure or accident, the TOP 

event. The fault tree will usually also be dependent on the analyst. Two different 
0 analysts will, in most cases, construct slightly different fault trees. 
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Fig- 3.20 Example of a fault tree. 

3.6.4 Identification of Minimal Cut and Path Sets 

A fault tree provides valuable information about possible combinations of fault events 
that will result in the TOP event. Such a combination of fault events is called a cut 
set. In the fault tree terminology, a cut set is defined as follows: 

Definition 3.1 A cut set in a fault tree is a set of basic events whose occurrence (at 
the same time) ensures that the TOP event occurs. A cut set is said to be minimal if 

The number of different basic events in a minimal cut set is called the order of the 
cut set. For small and simple fault trees, it is feasible to identify the minimal sets by 
inspection without any formal procedure/algorithm. For large or complex fault trees 
we need an efficient algorithm. 

the set cannot be reduced without loosing its status as a cut set. 

3.6.5 MOCUS 

MOCUS (method for obtaining cut sets) is an algorithm that can be used to find 
the minimal cut sets in a fault tree. The algorithm is best explained by an example. 
Consider the fault tree in Fig. 3.20, where the gates are numbered from GO to G6. 
The example fault tree is adapted from Barlow and Lambert (1975). 

The algorithm starts at the GO gate representing the TOP event. If this is an OR- 

gate, each input to the gate is written in separate rows. (The inputs may be new gates). 
Similarly, if the GO gate is an AND-gate, the inputs to the gate are written in separate 
columns. 
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In our example, GO is an OR-gate, hence we start with 

1 
GI 
2 

Since each of the three inputs, 1 ,  GI and 2 will cause the TOP event to occur, each of 
them will constitute a cut set. 

The idea is to successively replace each gate with its inputs (basic events and 
new gates) until one has gone through the whole fault tree and is left with just the 
basic events. When this procedure is completed, the rows in the established matrix 
represent the cut sets in the fault tree. 

Since GI is an OR-gate: Since G2 is an AND-gate: 

I 1 
G2 G4,G5 
G3 G3 
2 2 

Since G3 is an OR-gate: Since G4 is an OR-gate: 

1 1 
G4,GS 4,G5 

3 S,GS 
G6 3 
2 G6 

2 
Since G6 is an OR-gate: Since G5 is an OR.-gate: 

We are then left with the following 9 cut sets: 

{ I }  
(21 
(3)  
(61 
(81 

1 
4 6  
4,7 
5 6  
5,7 
3 
6 
8 
2 

Since (6} is a cut set, {4,6} and {5,6] are not minimal. If we leave these out, we 
are left with the following list of minimal cut sets: 
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1 11, (21, (31, 161, 181, 14,71, (%71 
In other words, five minimal cut sets of order 1 and two minimal cut sets of order 

2 .  The reason that the algorithm in this case leads to nonminimal cut sets is that basic 
event 6 occurs several places in the fault tree. 

In some situations it may also be of interest to identify the possible combinations 
of components which by functioning secures that the system is functioning. Such 
a combination of components (basic events) is called a path set. In the fault tree 
terminology a path set is defined as follows: 

Definition 3.2 A path set in a fault tree is a set of basic events whose nonoccurrence 
(at the same time) ensures that the TOP event does not occur. A path set is said to be 
minimal if the set cannot be reduced without loosing its status as a path set. 

The number of different basic events in a minimal path set is called the order of the 
path set. To find the minimal path sets in the fault tree, we may start with the so-called 
dual fault tree. This can be obtained by replacing all the AND-gates in the original 
fault tree with OR-gates, and vice versa. In addition, we let the events in the dual 
fault tree be complements of the corresponding events in the original fault tree. The 
same procedure as described above applied to the dual fault tree will now yield the 
minimal path sets. 

For relatively “simple” fault trees one can apply the MOCUS algorithm by hand. 
More complicated fault trees require the use of a computer. A number of computer 
programs for minimal cut (path) set identification are available. Some of these are 
based on MOCUS, but faster algorithms have also been developed. 

3.6.6 Qualitative Evaluation of the Fault Tree 

A qualitative evaluation’ of the fault tree may be carried out on the basis of the minimal 
cut sets. The criticality of a cut set obviously depends on the number of basic events 
in the cut set (i.e., the order of the cut set). A cut set of order 1 is usually more critical 
than a cut set of order 2, or more. When we have a cut set of order 1, the TOP event 
will occur as soon as the corresponding basic event occurs. When a cut set has two 
basic events, both of these have to occur simultaneously to cause the TOP event to 
occur. 

Another important factor is the type of basic events of a minimal cut set. We may 
rank the criticality of the various cut sets according to the following ranking of basic 
events : 

1. Human error 

2 .  Active equipment failure 

3 .  Passive equipment failure 

‘This section is strongly influenced by AIChE (1985). 
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Table 3.2 Criticality Ranking of Minimal Cut Sets of Order 2. 

~~ 

Rank Basic event 1 (type) Basic event 2 (type) 

1 Humanerror Human error 
2 Humanerror Active equipment failure 
3 Humanerror Passive equipment failure 
4 Active equipment failure Active equipment failure 
5 Active equipment failure Passive equipment failure 
6 Passive equipment failure Passive equipment failure 

This ranking is based on the assumption that human errors occur more frequently 
than active equipment failures, and that active equipment is more prone to failure 
than passive equipment (e.g., an active or running pump is more exposed to failures 
than a passive standby pump). Based on this ranking, we get the ranking in Table 3.2 
of the criticality of minimal cut sets of order 2. (Rank 1 is the most critical one.) 

3.7 CAUSE AND EFFECT DIAGRAMS 

The cause and effect diagram, also called Ishikawa diagram, was developed in 1943 
by the Japanese professor Kaoru Ishikawa (19 15-1989). The cause and effect diagram 
is used to identify and describe all the potential causes (or events) that may result in a 
specified event. Causes are arranged according to their level of importance or detail, 
resulting in a tree structure that resembles the skeleton of a fish with the main causal 
categories drawn as bones attached to the spine of the fish. The cause and effect 
diagram is therefore also known as a$shbone diagram. 

A cause and effect diagram has some similarities with a fault tree but is less 
structured and does not have the same binary restrictions as a fault tree. To construct 
a cause and effect diagram, we start with a system failure or an accident that may 
be the same as the TOP event in a fault tree. The system failure (accident) is briefly 
described, enclosed in a box and placed at the right end of the diagram, as the “head 
of the fish.” We then draw the central spine as a thick line pointing to the box (head) 
from the left. The major categories of potential causes are then drawn as bones to 
the spine. When analyzing technical systems, the following five (5M) categories are 
frequently used: 

1. Manpower 

2. Methods 

3. Materials 

4. Machinery 
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Machines 

Fig. 3.21 Example of cause and effect diagram. 

5. Milieu (environment) 

The categories should, however, be selected to fit the actual application. It is usually 
recommended to use at most seven major categories. An idea-generating technique 
(like brainstorming) is then used by a team of experts to identify the factors within each 
category that may be affecting the system failure (accident) being studied. The team 
should ask: “What are the machine issues affectingkausing.. .?’ This procedure is 
repeated for each factor under the category to produce subfactors. We continue asking 
why this is happening and put additional segments under each factor and subsequently 
under each sub-factor. We continue until we no longer get useful information when 
we ask: “Why may this happen?’ An example of a cause and effect diagram is shown 
in Fig. 3.21. 

When the team members agree that an adequate amount of detail has been provided 
under each major category, we may analyze the diagram and group the causes. One 
should especially look for causes that appear in more than one category. For those 
items identified as the “most likely causes,” the team should reach consensus on listing 
those causes in priority order with the first cause being the “most likely cause.” 

The cause and effect diagram cannot be used for quantitative analyses but is gener- 
ally considered to be an excellent aid for problem solving and to illustrate the potential 
causes of a system failure or an accident. Cause and effects diagrams are described 
and discussed in textbooks on quality engineering and management, for example, 
Ishikawa (1986) and Bergman and Klefsjo (1994). 

3.8 BAYESIAN BELIEF NETWORKS 

An Bayesian belief network (BBN) can be used as an alternative to fault trees and 
cause and effect diagrams to illustrate the relationships between a system failure or an 
accident and its causes and contributing factors. A BBN is more general than a fault 
tree since the causes do not have to be binary events. It is also more general because 
we do not have to connect the causes through a specified logic gate. In this way the 
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I 

Organizatonal factors ! Human factors ! Technical factors 

Fig. 3.22 Example of a Bayesian belief network. 

BBN is rather similar to a cause and effect diagram. Contrary to the cause and effect 
diagram, the BBN can, however, be used as a basis for quantitative analysis. 

A BBN is a directed acyclic graph. We start with the system failure or accident, 
the TOP event. The most immediate causes and contributing factors A l ,  A2, . . . are 
linked to the TOP event by arrows. Causes and contributing factors Ai , l ,  Ai,2, . . . 
that are influencing factor Ai are then linked to Ai by arrows, for i = 1 ,2 ,  . . .. This 
procedure is continued until a desired level of resolution is reached. Dependencies 
between factors on different “levels” in the diagram may further be illustrated by 
arrows. In some applications it may be beneficial to group the causes and contributing 
factors in some major categories, for example, as technical factors (A factors), human 
factors (B factors), and organizational factors (C factors). An example of a BBN with 
this grouping is shown in Fig. 3.22. This application of BBNs is further discussed by 
0ien (2001). 

Quantitative evaluation of Bayesian belief networks will not be discussed in this 
book. The reader is advised to consult, for example, Pearl (2000), Jensen (2001), 
Barlow (1998), and Bedford and Cooke (2001) for details about qualitative and quan- 
titative assessment of BBNs. 

3.9 EVENT TREE ANALYSIS 

In many accident scenarios, the initiating (accidental) event, for example, a rup- 
tured pipeline, may have a wide spectrum of possible outcomes, ranging from no 
consequences to a catastrophe. In most well-designed systems, a number of safety 
functions, or barriers, are provided to stop or mitigate the consequences of potential 
accidental events. The safety functions may comprise technical equipment, human 
interventions, emergency procedures, and combinations of these. Examples of techni- 
cal safety functions are: fire and gas detection systems, emergency shutdown (ESD) 
systems, automatic train stop systems, fire-fighting systems, fire walls, and evacu- 
ation systems. The consequences of the accidental event are determined by how 
the accident progression is affected by subsequent failure or operation of these safety 
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functions, by human errors made in responding to the accidental event, and by various 
factors like weather conditions and time of the day. 

The accident progression is best analyzed by an inductive method. The most 
commonly used method is the event tree analysis. An event tree is a logic tree 
diagram that starts from a basic initiating event and provides a systematic coverage 
of the time sequence of event propagation to its potential outcomes or consequences. 
In the development of the event tree, we follow each of the possible sequences of 
events that result from assuming failure or success of the safety functions affected as 
the accident propagates. Each event in the tree will be conditional on the occurrence 
of the previous events in the event chain. The outcomes of each event are most often 
assumed to be binary (true orfalse -yes or no) but may also include multiple outcomes 
(e.g., yes, partly, and no). 

Event tree analyses have been used in risk and reliability analyses of a wide range 
of technological systems. The event tree analysis is a natural part of most risk analyses 
but may be used as a design tool to demonstrate the effectiveness of protective systems 
in a plant. Event tree analyses are also used for human reliability assessment, for 
example, as part of the THERP technique (NUREGKR-1278). 

The event tree analysis may be qualitative, quantitative, or both, depending on the 
objectives of the analysis. In quantitative risk assessment (QRA) application, event 
trees may be developed independently or follow on from fault tree analysis. 

An event tree analysis is usually carried out in six steps (AIChE 1985): 

1. Identification of a relevant initiating (accidental) event that may give rise to 
unwanted consequences 

2. Identification of the safety functions that are designed to deal with the initiating 
event 

3. Construction of the event tree 

4. Description of the resulting accident event sequences 

5 .  Calculation of probabilities/frequencies for the identified consequences 

6. Compilation and presentation of the results from the analysis 

A simple event tree for a (dust) explosion is shown in Fig. 3.23. Following the 
initiating event explosion in Fig. 3.23, fire may or may not break out. A sprinkler 
system and an alarm system have been installed. These may or may not function. 
The quantitative analysis of the event tree is discussed on page 112. 

lnitiating Event Selection of a relevant initiating event is very important for the 
analysis. The initiating event is usually defined as the first significant deviation from 
the normal situation that may lead to a system failure or an accident. The initiating 
event may be a technical failure or some human error and may have been identified 
by other risk analysis techniques like FMECA, preliminary hazard analysis (PHA), 
or hazard and operability analysis (HAZOP). To be of interest for further analysis, 
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Fig, 3.23 A simple event tree for a dust explosion (adapted from IEC 60300-3-9). 

the initiating event must give rise to a number of consequence sequences. If the 
initiating event gives rise to only one consequence sequence, fault tree analysis is a 
more suitable technique to analyze the problem. 

The initiating event is often identified and anticipated as a possible critical event 
already in the design phase. In such cases, barriers and safety functions have usually 
been introduced to deal with the event. 

Various analysts may define slightly different initiating events. For a safety analysis 
of, for example, an oxidation reactor, one analyst may choose “Loss of cooling water 
to the reactor” as a relevant initiating event. Another analyst may, for example, 
choose “Rupture of cooling water pipeline” as initiating event. Both of these are 
equally correct. 

Safety Functions The safety functions (e.g., barriers, safety systems, procedures, 
and operator actions) that respond to the initiating event may be thought of as the 
system’s defense against the occurrence of the initiating event. The safety functions 
may be classified in the following groups (AIChE 1985): 

0 Safety systems that automatically respond to the initiating event (e.g., automatic 
shutdown systems) 

0 Alarms that alert the operator(s) when the initiating event occurs (e.g., fire alarm 
systems) 

0 Operator procedures following an alarm 

0 Barriers or containment methods that are intended to limit the effects of the 
initiating event 
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The analyst must identify all barriers and safety functions that have impact on the 
consequences of an initiating event, in the sequence they are assumed to be activated. 

The possible event chains, and sometimes also the safety functions, will be affected 
by various hazard contributing factors (events or states) like: 

0 Ignition or no ignition of a gas release 

0 Explosion or no explosion 

0 Time of the day 

0 Wind direction toward community or not 

0 Meteorological conditions 

0 Liquidgas release contained or not 

Event Tree Construction The event tree displays the chronological development 
of event chains, starting with the initiating event and proceeding through successes 
andor failures of the safety functions that respond to the initiating event. The conse- 
quences are clearly defined events that result from the initiating event. 

The diagram is usually drawn from left to right, starting from the initiating event. 
Each safety function or hazard contributing factor is called a node in the event tree and 
is formulated either as an event description or as a question, usually with two possible 
outcomes (true or false - yes or no). At each node the tree splits into two branches: 
the upper branch signifying that the event description in the box above that node is 
true, and a lower branch signifying that it is false. If we formulate the description 
of each node such that the worst outcome will always be on the upper branch, the 
consequences will be ranked in a descending order, with the worst consequence 
highest up in the list. 

The outputs from one event lead to other events. The development is continued to 
the resulting consequences. 

If the diagram is too big to be drawn on a single page, it is possible to isolate 
branches and draw them on different pages. The different pages may be linked 
together by transfer symbols. 

Note that for a sequence of n events, there will be 2" branches of the tree. The 
number may, however, in some cases be reduced by eliminating impossible branches. 

Description of Resurting Event Sequences The last step in the qualitative 
part of the analysis is to describe the different event sequences arising from the 
initiating event. One or more of the sequences may represent a safe recovery and a 
return to normal operation or an orderly shutdown. The sequences of importance, 
from a safety point of view, are those that result in accidents. 

The analyst must strive to describe the resulting consequences in a clear and un- 
ambiguous way. When the consequences are described, the analyst may rank them 
according to their criticality. The structure of the diagram, clearly showing the pro- 
gression of the accident, helps the analyst in specifying where additional procedures 
or safety systems will be most effective in protecting against these accidents. 



112 QUALlJAJlVE SYSTEM ANALYSIS 
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Fig. 3.24 Presentation of results from event tree analysis. 

Sometimes we may find it beneficial to split the end consequences (outcomes) of 
the event tree analysis into various consequence categories as illustrated in Fig. 3.24. 
In this example the following categories are used: 

0 Loss of lives 

0 Material damage 

0 Environmental damage 

Within each category, the consequences may be ranked. For the category “loss of 
lives,” the subcategories 0, 1-2,3-5,6-20, and 2 21 are proposed. For the categories 
“material damage” and “environmental damage” the subcategories are: negligible 
(N), low (L), medium (M), and high (H). What is meant by these categories has to be 
defined in each particular case. If we are unable to put the consequences into a single 
group, we may give a probability distribution over the subcategories. The outcome of 
an event chain may, for example, be that nobody will be killed with probability 50%, 
1-2 persons will be killed with probability 40%, and 3-5 persons will be killed with 
probability 10%. If we in addition are able to estimate the frequency of the outcome 
(see below) it is straightforward to estimate the fatal accident rate2 (FAR) associated 
to the specified initiating event. 

Quantitative Assessment If experience data are available for the initiating event 
and all the relevant safety functions and hazard contributing factors, a quantitative 
analysis of the event tree may be carried out to give frequencies or probabilities of 
the resulting consequences. 

The occurrences of the initiating event is usually modeled by a homogeneous 
Poisson process with frequency k, which is measured as the expected number of 

2FAR is a commonly used measure for personnel risk and is defined as the expected number of fatalities 
per lo8 hours of exposure. 
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occurrences per year (or some other time unit). Homogeneous Poisson processes are 
further discussed in Chapter 7. 

For each safety function we have to estimate the conditional probability that it will 
function properly in the relevant context, that is, when the previous events in the event 
chain have occurred. Some safety functions, like ESD systems on offshore oiYgas 
platforms, may be very complex and will require a detailed reliability analysis. 

The (conditional) reliability of a safety function will depend on a wide range of 
environmental and operational factors, like loads from previous events in the event 
chain, and the time since the last function test. In many cases it will also be difficult 
to distinguish between “functioning” and “nonfunctioning.” A fire pump may, for 
example, start, but stop prematurely before the fire is extinguished. 

The reliability assessment of a safety function may in most cases be performed by 
a fault tree analysis or an analysis based on a reliability block diagram. If the analysis 
is computerized, a link may be established between the reliability assessment and 
the appropriate node in the event tree to facilitate automatic updating of the outcome 
frequencies and sensitivity analyses. It may, for example, be relevant to study the 
effect on the outcome frequencies by changing the testing interval of a safety valve. 
Graphically the link may be visualized by a transfer symbol on one of the output 
branches from the node. 

The probabilities of the various hazard contributing factors (eventshtates) that 
enter into the event tree must also be estimated for the relevant contexts. Some of 
these factors will be independent of the previous events in the event chain, while 
others are not. 

It is important to note that most of the probabilities in the event tree are conditional 
probabilities. The probability that the sprinkler system in Fig. 3.23 will function is, 
for example, not equal to a probability that is estimated based on tests under normal 
conditions. We have to take into account that the sprinkler system may have been 
damaged during the dust explosion and the first phase of the fire (i.e., before it is 
activated). 

Consider the event tree in Fig. 3.23. Let h~ denote the frequency of the initiating 
event A,  “explosion.” In this example, h~ is assumed to be equal to per year, 
which means that an explosion on the average will occur once every 100 years. Let B 
denote the event “start of a fire,” and let Pr(B) = 0.8 be the conditional probability of 
this event when a dust explosion has already occurred. A more correct notation would 
be the conditional probability Pr(B I A)  to make it clear that event B is considered 
when event A has already occurred. 

In the same way, let C denote the event that the sprinkler system does not function, 
following the dust explosion and the outbreak of a fire. The conditional probability 
of C is assumed to be Pr(C) = 0.01. 

The fire alarm will not be activated (event D) with probability Pr(D) = 0.001. In 
this example we have assumed that this probability is the same whether the sprinkler 
system is functioning or not. In most cases, however, the probability of this event 
would depend on the outcome of the previous event. 

Let B*, C * ,  and D* denote the negation (nonoccurrence) of the events B ,  C ,  and 
D ,  respectively. We know that Pr(B*) is equal to 1 - Pr(B), and so on. 
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The frequencies (per year) of the end consequences may now be calculated as 
follows: 

1. Uncontrolled fire with no alarm: 

1 4  = 1~ Pr(B) . Pr(C) . Pr(D) = .0.8 .O.Ol 0.001 x 8.0 lo-* 

2.  Uncontrolled fire with alarm: 

1 3  = 1~ . Pr(B). Pr(C*) . Pr(D) = '0.8 .O.Ol .0.999 % 8.0.  

3 .  Controlled fire with no alarm: 

1 2  = )LA . Pr(B) . Pr(C*) . Pr(D) = .0.8.0.99.0.001 % 7.9. 

4. Controlled fire with alarm: 

11 = k~ . Pr(B) Pr(C*) . Pr(D*) = + 0.8.0.99 '0.999 7.9. 

5.  No fire: 

It is seen that the frequency of a specific outcome (consequence) simply is obtained 
by multiplying the frequency of the initiating event by the probabilities along the 
event sequence leading to the outcome in question. 

If we assume that occurrences of the initiating event may be described by a ho- 
mogeneous Poisson process, and that all the probabilities of the safety functions and 
hazard contributing factors are constant and independent of time, then the occurrences 
of each outcome will also follow a homogeneous Poisson process. 

Example 3.2 Offshore Separator 
In this example we consider a part of the processing section on an offshore oil and 
gas production installation. A mixture of oil, gas, and water coming from the various 
wells is collected in a wellhead manifold and led into two identical process trains. 
The gas, oil, and water are separated in several separators. The gas from the process 
trains is then collected in a compressor manifold and led to the gas export pipeline via 
compressors. The oil is loaded onto tankers and the water is cleaned and reinjected 
into the reservoir. Fig. 3.25 shows a simplified sketch of section of one of the process 
trains. The mixture of oil, gas, and water from the wellhead manifold is led into the 
separator, where the gas is (partly) separated from the fluids. The process is controlled 
by a process control system that is not illustrated in the figure. If the process control 
system fails, a separate process safety system should prevent a major accident. This 
example is limited to this process safety system. The process safety system has three 
protection layers: 
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fig. 3.25 Sketch of a first-stage gas separator. 

1 .  On the inlet pipeline, there are installed two process shutdown (PSD) valves, 
PSDl and PSD2 in-series. The valves are fail-safe close and are held open by 
hydraulic (or pneumatic) pressure. When the hydraulic (pneumatic) pressure 
is bled off, the valves will close by the force of a precharged actuator. The 
system supplying hydraulic (pneumatic) pressure to the valve actuators is not 
illustrated in Fig. 3.25. 

Two pressure switches, PSI, and PS2 are installed in the separator. If the 
pressure in the separator increases above a set value, the pressure switches 
should send a signal to a logic unit (LU). If the LU receives at least one signal 
from the pressure switches, it will send a signal to the PSD valves to close. 

2 .  Two pressure safety valves (PSV) are installed to relieve the pressure in the 
separator in case the pressure increases beyond a specified high pressure. The 
PCV valves, PSVl and PSV2, are equipped with a spring-loaded actuator that 
may be adjusted to a preset pressure. 

3. A rupture disc (RD) is installed on top of the separator as a last safety barrier. If 
the other safety systems fail, the rupture disc will open and prevent the separator 
from rupturing or exploding. If the rupture disc opens, the gas will blow out 
from the top of the separator and maybe into a blowdown system. 
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Fig. 3.26 Fault tree for the first-stage separator in Example 3.2. 

PSVp fails to open 
at preset pressure 

The reliability of the process safety sysiem may be analyzed by different approaches. 
We will here illustrate how a fault tree and an event tree analysis may be performed. 

Pressure switch 1 Pressure switch 2 PSDl fails 
fails to give alarm fails to give alarm to close 

Fault Tree Analysis 
The most critical situation will arise if the gas outlet line A is suddenly blocked. The 
pressure in the separator will then rapidly increase and will very soon reach a critical 
overpressure, if the process safety system does not function properly. A relevant TOP 

event is therefore “Critical overpressure in the first-stage separator.” We assume that 
the critical situation occurs during normal production and that the fluid level in the 
separator is normal when the event occurs. We may therefore disregard the fluid outlet 
line from the fault tree analysis. A possible fault tree for this TOP event is presented 
in Fig. 3.26. In Chapter 4 we will show how to enter failure rates and other reliability 
parameters into the fault tree, as well as how to calculate the probability Qo( t )  of the 
TOP event when the gas outlet is suddenly blocked. 

In the construction of the fault tree in Fig. 3.26 we have made a number of as- 
sumptions. The assumptions should be recorded in a separate file and integrated in 
the report from the analysis. The lowest level of resolution in the fault tree in Fig. 3.26 
is a failure mode of a technical item. Some of these items are rather complex, and it 
might be of interest to break them down into subitems and attribute failures to these. 
The valves may, for example, be broken down into valve body and actuator. These 
subitems may again be broken down to sub-subitems and so on. The failure of the 
pressure switches to give a signal may be split in two parts, individual failures and 
common cause failures that cause both pressure switches to fail at the same time. A 
pressure switch may fail due to an inherent component failure or due to a miscalibra- 
tion by the maintenance crew. How far we should proceed depends on the objective 

PSDp fails 
to close 
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PSDs do not psvs do not Rupture disc 

does not open separator pressure 
Initiating close flow into relieve 

event 

of the analysis. Anyway, the assumptions made should be recorded. 

Outcomes 

Event Tree Analysis 
The activation pressures for the three protection layers of the process safety system are 
illustrated in Fig. 3.21. We will get different consequences depending on whether or 
not the three protection systems are functioning, and the system is therefore suitable 
for an event tree analysis. The initiating event is “blockage of the gas outlet line.” 
A possible event tree for this initiating event is presented in Fig. 3.28. The four 
outcomes are seen to give very different consequences. The most critical outcome is 
“rupture or explosion of separator” and may lead to total loss of the installation if the 
gas is ignited. The probability of this outcome is, however, very low since the rupture 
disc is a very simple and reliable item. The second most critical outcome is “gas 
flowing out of rupture disc.” The criticality of this outcome depends on the design of 
the system, but may for some installations be very critical if the gas is ignited. The 

Time 

Fig. 3.27 Activation pressures for the three protection layers of the process safety system. 

T~~~ Rupture or 
explosion of 
separator True 

I False Gas flowing out 
of rupture disc 

Gas outlet 

False Gas relieved 
to flare 

False Controlled 
shutdown, 
no gas “lost“ 

Fig. 3.28 An event tree for the initiating event “blockage of the gas outlet line.” 
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Fig. 3.29 Component i illustrated by a block. 

next outcome “gas relieved to flare” is usually a noncritical event but will lead to an 
economic loss (C02 tax) and production downtime. The last outcome is a controlled 
shutdown that will only lead to production downtime. 

In this case the event tree analysis is seen to provide more detailed results than 
the fault tree analysis. The two analyses may be combined. The causes of failure of 
barrier 1 (PSDs do not close flow into separator) are found in branch 1 of the fault 
tree in Fig. 3.26. The causes of failure of barrier 2 (PSVs do not relieve pressure) are 
found in branch 2 of the fault tree in Fig. 3.26. If we have reliability data for all the 
basic events, we may use the fault tree to find the probabilities of the various branches 
in the event tree. 0 

3.10 RELIABILITY BLOCK DIAGRAMS 

In this section we illustrate the structure of a system by what is known as a reliability 
block diagram (RBD). A reliability block diagram is a success-oriented network 
describing thefunction of the system. It shows the logical connections of (functioning) 
components needed to fulfill a specified system function. If the system has more than 
one function, each function must be considered individually, and a separate reliability 
block diagram has to be established for each system function. 

Reliability block diagrams are suitable for systems of nonrepairable components 
and where the order in which failures occur does not matter. When the systems are 
repairable and/or the order in which failures occur is important, Markov methods will 
usually be more suitable. Markov methods are described in Chapter 8. 

Consider a system with n different components. Each of the n components is 
illustrated by a block as shown is Fig. 3.29. When there is connection between the 
end points a and b in Fig. 3.29, we say that component i is functioning. This does not 
necessarily mean that component i functions in all respects. It only means that one, 
or a specified set of functions, is achieved [i.e., that some specified failure mode(s) 
do not occur]. What is meant by functioning must be specified in each case and will 
depend on the objectives of the study. It is also possible to put more information 
into the block in Fig. 3.29 and include a brief description of the required function of 
the component. An example is shown in Fig. 3.30, where the component is a safety 
shutdown valve that is installed in a pipeline. A label is used to identify the block. 
The label is usually a combination of three to five letters and digits. 

The way the n components are interconnected to fulfill a specified system function 
may be illustrated by a reliability block diagram, as shown in Fig. 3.31. When we 
have connection between the end points a and b in Fig. 3.3 1, we say that the specified 
system function is achieved, which means that some specified system failure mode(s) 
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a - Valve is able to 
close and stop 
the flow 

2 Label 

Fig. 3.30 Alternative representation of the block in Fig. 3.29. 

fig. 3.37 System function illustrated by a reliability block diagram. 

fig. 3.32 Reliability block diagram of a series structure. 

do(es) not occur. The symbols that are used in this chapter to establish a rc 
block diagram are according to the standard IEC 61078. 

iabi ty 

3.10.1 Series Structure 

A system that is functioning if and only if all of its n components are functioning 
is called a series structure. The corresponding reliability block diagram is shown 
in Fig. 3.32. We have connection between the end points a and b (the system is 
functioning) if and only if we have connection through all the n blocks representing 
the components. 

3.10.2 Parallel Structure 

A system that is functioning if at least one of its n components is functioning is called a 
parallel structure. The corresponding reliability block diagram is shown in Fig. 3.33. 
In this case we have connection between the end points a and b (i.e., the system is 
functioning) if we have connection through at least one of the blocks representing the 
components. 

Example 3.3 
Consider a pipeline with two independent safety valves V I  and V2 that are physically 
installed in series, as illustrated in Fig. 3.34a. The valves are supplied with a spring 
loaded fail-safe-close hydraulic actuator. The valves are opened and held open by 
hydraulic control pressure and are closed automatically by spring force whenever the 
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Fig, 3.33 Reliability block diagram of a parallel structure. 

Fig- 3.34 Two safety valves in a pipeline: (a) physical layout, (b) reliability block diagram 
with respect to the safety barrier function, and (c) reliability block diagram with respect to 
spurious closure. 

control pressure is removed or lost. In normal operation, both valves are held open. 
The main function of the valves is to act as a safety barrier, that is, to close and stop 
the flow in the pipeline in case of an emergency. 

Since it is sufficient that one of the valves closes in order to stop the flow, the valves 
will form a parallel system with respect to the safety barrier function, as shown in 
Fig. 3.34b. The valves may close spuriously, that is, without a control signal, and 
stop the flow in the pipeline. Also in this case it is sufficient that only one of the 
valves fails in order to stop the flow. The valves will thus form a series system with 
respect to spurious closures, as shown in Fig. 3 .34~.  Notice the different meanings of 
the functional blocks in Fig. 3.34b and 3.34~.  In Fig. 3.34b, connection through the 
block means that valve i is able to stop the flow in the pipeline, while connection 

through in Fig. 3 . 3 4 ~  means that valve i does not close spuriously, for i = 1,2. 
0 

3.1 0.3 Reliability Block Diagrams versus Fault Trees 

In some practical applications, we may choose whether to model the system structure 
by a fault tree or by a reliability block diagram. When the fault tree is limited to 
only OR-gates and AND-gates, both methods may yield the same result, and we may 
convert the fault tree to a reliability block diagram, and vice versa. 

In a reliability block diagram, connection through a block means that the compo- 
nent represented by the block is functioning. This again means that one or a specified 
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-x 1 2 3 

Fig. 3.35 Relationship between some simple reliability block diagrams and fault trees. 

set of failure modes of the component is not occurring. In a fault tree we may let a 
basic event be the occurrence of the same failure mode or the same specified set of 
failure modes for the component. When the TOP event in the fault tree represents 
“system failure” and the basic events are defined as above, it is easy to see, for in- 
stance, that a series structure is equivalent to a fault tree where all the basic events 
are connected through an OR-gate. The TOP event occurs if either component 1 or 
component 2 or component 3 or ... component n fails. 

In the same way a parallel structure may be represented as a fault tree where all 
the basic events are connected through an AND-gate. The TOP event occurs (i.e., 
the parallel structure fails) if component 1 and component 2 and component 3 and 
. ..component n fail. The relationship between some simple reliability block diagrams 
and fault trees is illustrated in Fig. 3.35. 

Example 3.2 (Cont.) 
It is usually an easy task to convert a fault tree to a reliability block diagram. The 
reliability block diagram corresponding to the fault tree for the fire detector system 
in Fig. 3.19 is shown in Fig. 3.36. In this conversion we start from the TOP event 
and replace the gates successively. OR-gates are replaced by series structures of the 
“components” directly beneath the gate, and AND-gates are replaced by a parallel 

Q structure of the “components” directly beneath the gate. 
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1 p& PS jli_ 

Manual 

Heat 

Fig. 3.36 Reliability block diagram for the fire detector system. 

From Fig. 3.36 we observe that some of the components are represented in two 
different locations in the diagram. It should be emphasized that a reliability block 
diagram is not a physical layout diagram for the system. It is a logic diagram, 
illustrating the function of the system. 

Recommendation In most practical applications it is recommended to start by 
constructing a fault tree instead of a reliability block diagram. In the construction of 
the fault tree we search for all potential causes of a specified system failure (accident). 
We think in terms of failures and will often reveal more potential failure causes 
than if we think in terms of functions, as we do by establishing a reliability block 
diagram. The construction of a fault tree will give the analyst a better understanding 
of the potential causes of failure. If the analysis is carried out in the design phase, 
the analyst may rethink the design and operation of the system and take actions to 
eliminate potential hazards. 

When we establish a reliability block diagram, we think in terms of functions and 
will often forget auxiliary functions and equipment that is, or should be, installed to 
protect the equipment, people, or the environment. 

For further evaluations, however, it is often more natural to base these on a reliabil- 
ity block diagram. A fault tree will therefore sometimes be converted to a reliability 
block diagram for qualitative and quantitative analyses. This is the main reason why 
we have chosen to focus on reliability block diagrams in the rest of this book and 
look upon fault trees as an alternative approach. 
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3.10.4 Structure Function 

A system that is composed of n components will in the following be denoted a system 
of order n. The components are assumed to be numbered consecutively from 1 to nl . 

In this chapter we will confine ourselves to situations where it suffices to distinguish 
between only two states, a functioning state and a failed state. This applies to each 
component as well as to the system itself. The state of component i, i = 1,2,  . . . , n 
can then be described by a binary2 variable x i ,  where 

1 if component i is functioning I 0 if component i is in a failed state 
xi = 

x = (XI,  ~ 2 ,  . . . , x,) is called the state vector. Furthermore, we assume that by 
knowing the states of all the n components, we also know whether the system is 
functioning or not. 

Similarly, the state of the system can then be described by a binary function 

@(x) = @ ( X I ,  x2, . . . ,  x,) 

where 

(3.1) 
1 if the system is functioning 
0 if the system is in a failed state @(x) = 

and @(x) is called the structure function of the system or just the structure. In the 
following we often talk about structures instead of systems. Examples of simple 
structures are given in the following sections. 

3.10.5 Series Structure 

A system that is functioning if and only if all of its n components are functioning is 
called a series structure. The structure function is 

(3.2) 

A series structure of order II is illustrated by the reliability block diagram in Fig. 3.32. 
Connection between a and b is interpreted as “the structure (system) is functioning.” 

3.10.6 Parallel Structure 

A system that is functioning if at least one of its n components is functioning is called 
a parallel structure. A parallel structure of order n is illustrated by the reliability 

‘The remaining sections of this chapter are influenced by Barlow and Proschan (1975). 
’In this context a binary variable (function) is a variable (function) that can take only the two values, 
Oor 1 .  



124 QUALITATIVE SYSTEM ANALYSIS 

block diagram in Fig. 3.33. In this case the structure function can be written 

n 

@(x) = 1 - ( 1  -x1)(l -x2)...(1 - x n )  = 1 - H(l - X i )  (3.3) 
i = l  

The expression on the right-hand side of (3.3) is often written as 
read “ip.” 

Hence a parallel structure of order 2 has structure function 

xi where is 

2 

4 ( X I , X 2 )  = 1 - (1 -x1)(l - x 2 )  = U X i  

i = l  

The right hand side may also be written: x1 u x2.  Note that 

Since XI and x2 are binary variables, x1 u x2 will be equal to the maximum of the 
xi ’s. Similarly 

3.10.7 k-out-of-n Structure 

A system that is functioning if and only if at least k of the n components are functioning 
is called a k-out-ofn structure (koon). A series structure is therefore an n-out-of-n 
(noon) structure, and a parallel structure is a I-out-of-n (loon) structure. 

The structure function of a k-out-of-n (koon) structure can be written 

As an example consider a 2-out-of-3 (2003) structure, which is illustrated in Fig. 3.37. 
In this case the failure of one component is tolerated, while two or more component 
failures lead to system failure. The reliability block diagram of the 2-out-of-3 struc- 
ture may also be drawn as shown in Fig. 3.38. This representation is preferred by 
IEC61078 but may be more problematic as a basis for establishing the structure func- 
tion. In the rest of this book, we will therefore prefer the representation in Fig. 3.37. 

A three-engined airplane which can stay in the air if and only if at least two of 
its three engines are functioning is an example of a 2-out-of-3 (2003) structure. The 
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Fig. 3.37 The 2-out-of-3 structure. 

r -b  

Fig. 3.38 The 2-out-of-3 structure (alternative representation). 

structure function of the 2-out-of-3 structure in Fig. 3.37 may also be written 

(Note that since xi is a binary variable, x,! = x; for all i and k . )  

3.1 1 SYSTEM STRUCTURE ANALYSIS 

3.1 1.1 Coherent Structures 

When establishing the structure of a system, it seems reasonable first to leave out all 
components that do not play any direct role for the functioning ability of the system. 
The components we are left with are called relevant. The components that are not 
relevant are called irrelevant. 

If component i is irrelevant, then 

#( l ; , x )  =#(O;,x) forall (. i ,x) (3.6) 

where ( l ; ,  x)  represents a state vector where the state of the ith component = 1, 
( O i ,  x)  represents a state vector where the state of the ith component = 0, and (‘i, x) 
represents a state vector where the state of the ith component = 0 or 1. Fig. 3.39 
illustrates a system of order 2, where component 2 is irrelevant. 

Remark: The notation “relevanthrrelevant” is sometimes misleading, as it is easy to 
find examples of components of great importance for a system without being relevant 
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. 

Fig. 3.39 Component 2 is irrelevant. 

in the above sense. The reliability block diagram and the structure function are 
established for a specific system function, for example, “separate gas from oil and 
water” in Example 3.2. To fulfill this system function a number of components are 
required to function, and therefore relevant in the above sense. The shutdown function 
of the protection systems will be irrelevant with respect to this system function, since 
the production will not be influenced by the protections system’s ability to shut down 
the process in an emergency. 

When we say that a component is irrelevant, this is always with respect to a specific 
system function. The same component may be highly relevant with respect to another 
system function. 

Also remember that xi represents the state of a specific function (or a specific 
subset of functions) of a component. When we say that component i is irrelevant, 
we in fact say that the specific function i of the physical component is irrelevant. In 
Example 3.2, “spurious shutdowns” of the protection system will be relevant for the 
system function “separate gas from oil and water,” while the shutdown function of 

0 the same protection system will be irrelevant. 

Now we will assume that the system will not run worse than before if we replace a 
component in a failed state with one that is functioning. This is obviously the same as 
requiring that the structure function shall be nondecreasing in each of its arguments. 
Let us now define what is meant by a coherent system: 

Definition 3.3 A system of components is said to be coherent if all its components 
0 

All the systems that we have considered so far (except the one in Fig. 3.39) are 
coherent. One might get the impression that all systems of interest must be coherent, 
but this is not the case. It is, for example, easy to find systems where the failure of 
one component prevents another component from failing. This complication will be 
discussed later. 

are relevant and the structure function is nondecreasing in each argument. 

3.1 1.2 General Characteristics of Coherent Systems 

Theorem 3.1 Let 4(x) be the structure function of a coherent system. Then 

4(0) = 0 and 4(1) = 1 

In other words, Theorem 3.1 merely says that: 

0 If all the components in a coherent system are functioning, then the system is 
functioning. 
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0 If all the components in a coherent system are in a failed state, then the system 

Proof: The argument uses the fact that @(x) is binary, that is, that it can only assume 
the values 0 and 1 .  

If @ (0) = 1, then we must have @ (0) = @ (1) = 1, since @ (x) is assumed to be 
nondecreasing in each argument. This implies that all the components in the system 
are irrelevant, which contradicts the assumption that the system is coherent. Hence 

Similarly @(1) = 0 implies that @ ( O )  = 0, that is, that all the components are 
0 

Theorem 3.2 Let @(x) be the structure function of a coherent system of order n. 
Then 

is in a failed state. 

@ ( O )  = 0. 

irrelevant. This contradicts the assumption of coherence. Hence @(1) = 1. 

(3.7) 
i= l  i = l  

Theorem 3.3 states that any coherent system is functioning at least as well as a corre- 
sponding system where all the n components are connected in series and at most as 
well as a system where all the n components are connected in parallel. 

Proof: First note that n;=, xi and uy=l xi are both binary. Assume that n:==, xi = 0. 
Since we already know that @(x) 2 0, the left-hand side of (3.7) is satisfied. 

Assume that n:==, xi = 1, that is, x = 1. Then according to Theorem 3.1, 
@(x) = 1. Hence the left hand side of (3.7) is always satisfied. 

Further assume that Lly=,xi = 0, that is, x = 0. Then according to Theo- 
rem 3.1, @(x) = 0, and the right-hand side of (3.7) is satisfied. Finally assume 
that Uy=,xi = 1. Since we already know that @(x) 5 1, the right-hand side of (3.7) 
is automatically satisfied. 0 

Let x = (X I ,  x2, . . . , x n )  and y = ( y l ,  y2. . . . , y n )  be state vectors, and let x . y 
and x u y be defined as follows: 

x Y = (XI  Y I 3 ~ 2 ~ 2  9 . . . , xnyn) 

X U Y  =z (XI u y 1 , x 2 ~ ~ 2 ~ . . . + x n u y n )  

We will now prove the following important result: 

Theorem 3.3 Let @ be a coherent structure. Then 

Proof: For (3.8) we know that xi u yi ? xi for all i .  Since @ is coherent, @ is 
nondecreasing in each argument and therefore 

@(X u Y) 2 @(XI 
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--@- 
Fig. 3.40 Example system, 

Fig. 3.41 Redundancy at system level. 

For symmetrical reasons 

@(x u Y) 2 @(Y> 

Furthermore, @(x) and @ ( y )  are both binary. Therefore 

@(x u Y> ? @(XI u @(Y) 

For (3.9) we know that xi  . yi 5 xi  for all i. Since @ is coherent, then 

@(x . Y) 5 @(I> 

Similarly 

@(x . Y )  I @(Y) 

Since @ (x) and @ (y) are binary, then 

4(x . Y)  5 @(XI  . @ ( Y )  

0 
Let us interpret (3.8) in common language. Consider the structure in Fig. 3.40 

with structure function @(x). Assume that we also have an identical structure @(y) 
with state vector y. Fig. 3.41 illustrates a structure with “redundancy at system level”. 
The structure function for this system is 4 (x) u 4 (y). 

Next consider the system we get from Fig. 3.40 when we connect each pair x i ,  yi 
in parallel; see Fig. 3.42. This figure illustrates a structure with “redundancy at 
component level.” 

The structure function is 4 (x u y). 
According to Theorem 3.3, @(x u y )  2 @(x) u @(y).  This means that: 

We obtain a “better” system by introducing redundancy at component level than 
by introducing redundancy at system level. 
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. 

3’ 

Fig. 3.42 Redundancy at component level. 

This principle, which is well known to designers, is further discussed by Shooman 
(1968, pp. 281-289). The principle is, however, not obvious when the system has 
two ore more failure modes, for example, “fail to function” and “false alarm” of a fire 
detection system. The concept of redundancy is further discussed in Section 4.6. 

3.1 1.3 Structures Represented by Paths and Cuts 

A structure of order n consists of n components numbered from 1 to n .  The set of 
components is denoted by 

c =  [1 ,2 ,  . . . ,  n ]  

Definition 3.4 Path Sets, Minimal Path Sets A path set P is a set of components in 
C which by functioning ensures that the system is functioning. A path set is said to 

0 be minimal if it cannot be reduced without loosing its status as a path set. 

Definition 3.5 Cut Sets, Minimal Cut Sets A cut set K is a set of components in C 
which by failing causes the system to fail. A cut set is said to be minimal if it cannot 
be reduced without loosing its status as a cut set. 

Example 3.4 
Consider the reliability block diagram in Fig. 3.40. The component set is C = ( 1 ,  2, 31 

The minimal path sets and cut sets are marked with an *. 
In this case the minimal path sets are 

P1 = ( 1 , 2 ]  and P2 = ( 1 , 3 ]  
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Fig. 3.43 Bridge structure. 

Fig. 3.44 The 2-out-of-3 structure represented as a series structure of the minimal cut parallel 
structures. 

while the minimal cut sets are 

Kl = (1) and K2 = (2,31 

Example 3.5 Bridge Structure 
Consider a bridge structure such as that given by the physical network in Fig. 3.43. 
The minimal path sets are 

pi  = (1,4), Pz = (2,5),  P3 = (1,3,5], and P4 = {2 ,3 ,4)  

The minimal cut sets are 

K1 = (1,2), Kz = (4,5),  K3 = (1,3,5}, and K4 = (2 ,3 ,4)  

Example 3.6 2-out-of-3 Structure 
Consider the 2-out-of-3 structure in Fig. 3.37. The minimal path sets are 

PI = (1,2), P2 = [1,3), and P3 = (2,3] 

The minimal cut sets are 

K I  = (1.21, Kz = { I ,  3}, and K3 = (2 ,3)  

The 2-out-of-3 structure may therefore be represented as a series structure of its 
0 

In these particular examples the number of minimal cut sets coincides with the 

minimal cut parallel structures as illustrated in Fig. 3.44. 

number of minimal path sets. This will usually not be the case. 
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The Designer's Point of View Consider a designer who wants to ensure that a 
system is functioning with the least possible design effort. What the designer needs 
is a list of the minimal path sets from which one will be chosen for the design. 

The Saboteur's Point of View Next consider a saboteur who wants to bring the 
system into a failed state, again with the least possible effort on his or her part. What 
the saboteur needs is a list of the minimal cut sets from which to choose one for the 
sabotage plan. 

Consider an arbitrary structure with minimal path sets P I ,  P2, . . . , PP and minimal 
cut sets K1, K2,  . . . , Kk.  To the minimal path set P j ,  we associate the binary function 

Note that p j  (x) represents the structure function of a series structure composed of the 
components in Pj . Therefore p i  (x) is called the j th minimal path series structure. 

Since we know that the structure is functioning if and only if at least one of the 
minimal path series structures is functioning, 

P P 

4(x)  = P j ( X )  = I - U ( l  - P j ( X ) )  
j = 1  j = l  

(3.1 1) 

Hence our structure may be interpreted as a parallel structure of the minimal path 
series structures. 

From (3.10) and (3.1 1) we get 

(3.12) 

Example 3.5 (Cont.) 
In the bridge structure in Fig. 3.43, the minimal path sets were P I  = [ 1,4),  P2 = 
{2,5}, P3 = { 1,3,5) ,  and P4 = {2,3,4) .  The corresponding minimal path series 
structures are 
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Fig. 3.45 The bridge structure represented as a parallel structure of the minimal path series 
structures. 

Accordingly, the structure function may be written: 

4 4 

j = l  j = l  

= 1 - ( 1  - Pl(X))(l - P2(X))(l - P S ( X ) ) ( l  - P4@)) 

1 - (1 - xlx4)(1 - x2x5)(l - x l x ~ x s ) ( l  - ~ 2 x 3 ~ 4 )  

-xlx2x3x4 - x2x3xqxg - x1x2xqxg + 2XIX2X3X4X5 

= 

X1X4 + x2xg + xIX3Xs + X2X3x4 - X ]  X3X4Xg - XIX2X3X5 

(Note that since Xi is a binary variable, xf = xi for all i and k . )  
Hence the bridge structure can be represented by the reliability block diagram in 

Similarly, we can associate the following binary function to the minimal cut set 
Fig. 3.45. 0 

K j :  

K j ( X ) =  x; = 1 -  n(1 - x i )  f o r j  = I,?,, ..., k (3.13) 
i € K ,  iEK, 

We see that K ,  ( x )  represents the structure function of a parallel structure composed 
of the components in K j .  Therefore K, (x) is called the j t h  minimal cut parallel 
structure. 

Since we know that the structure is failed if and only if at least one of the minimal 
cut parallel structures is failed, then 

(3.14) 
j = l  

Hence we can regard this structure as a series structure of the minimal cut parallel 
structures. By combining (3.13) and (3.14) we get 

k 

(3.15) 
j=l i e K ,  
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Fig. 3.46 The bridge structure represented as a series structure of the minimal cut parallel 
structures. 

Example 3.5 (Cont.) 
In the bridge structure the minimal cut sets were K1 = [ 1,2}, K2 = (4,5), K3 = 
(1, 3,5) ,  and K4 = (2, 3 ,4] .  The corresponding minimal cut parallel structures 
become: 

and we may find the structure function of the bridge structure by inserting these 
expressions into (3.14). The bridge structure may therefore be represented by the 
reliability block diagram in Fig. 3.46. 

3.1 1.4 Structural Importance of Components 

Some components in a system may obviously be more important than the others in 
determining whether the system is functioning or not. A component in series with the 
rest of the system will, for example, be at least as important as any other component 
in the system. It would be useful to have a quantitative measure of the importance of 
the individual components in the system. Before we can establish such a measure, 
we need to define some new concepts. 

Definition 3.6 A critical path vector for component i is a state vector ( I ; ,  x)  such 
that 

$(l i ,x)  = 1 while $(O;,x) = O  

This is equivalent to requiring that 

In other words, given the states of the other components ( . i ,  x), the system is func- 
tioning if and only if component i is functioning. It is therefore natural to call ( l i  , x) 
a critical path vector for component i. 
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Fig- 3.47 The 2-out-of-3 structure. 

Definition 3.7 A critical path set C( l i t  x) corresponding to the critical path vector 
(1 i , x) for component i is defined by: 

C ( 1 i . X )  = [i) U [ j ;  X j  = 1 ,  j # i) (3.17) 

The total number of critical path sets (path vectors) for component i is 

(3.18) 

Since the x j ’ s  are binary variables and thus can take only two possible values, 0 and 
1, the total number of state vectors (., X) = (XI, . . . , xi-1, *, Xi+], . . . , x,) is 2“-’. 

Birnbaum’s Measure of Structural Importance Birnbaum (1 969) proposed 
the following measure for the structural importance of component i :  

(3.19) 

Birnbaum’s measure3 of structural importance B@ (i)  expresses the relative proportion 
of the 2”-’ possible state vectors (.i, x) which are critical path vectors for component 
i .  The components in the system can now be (partially) ranked according to the size 
of B b ( i ) .  

Example 3.7 
Consider the 2-out-of-3 structure in Fig. 3.47. For component 1, we have 

3Named after the Hungarian- American professor Zygmund William Birnbaum ( 1903-2000). 
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Fig. 3.48 Reliability block diagram for Example 3.8. 

In this case the total number of critical path vectors for component 1 is 2: 

%$(l) = 2 

while the total number of state vectors ( . I ,  x2, x3) is 23-' = 4. Hence 

2 1  
4 2  

B$(1) = - = - 

For symmetrical reasons 

1 
2 

B$(l) = B$(2) = B$(3) = - 

Hence the components 1 ,2  and 3 are of equal structural importance. 

Example 3.8 
Consider the structure in Fig. 3.48. Here the structure function is 

0 
( @ I )  1 I 1 7 3 1  
(.lo) I { 1921 

1 { 1,2,31 

The structural importance of component 1 is therefore 

Now consider component 2. 

0 



136 QUALITATIVE SYSTEM ANALYSIS 

-@--@- 
Fig. 3.49 The structure r$( 13, x) of the bridge structure. 

The structural importance of component 2 is therefore 

For symmetrical reasons 

Component 1 is accordingly of greater structural importance than components 2 and 
3. 0 

3.1 1.5 Pivotal Decomposition 

The following identity holds for every structure function @(x): 

xi@(li ,  X)  + (1 - xi)@(Oi, X) for all x @(x) (3.20) 

We can easily see that this identity is correct from the fact that 

Xi = 1 + @(x) = 1 . @( l i ,  X) and xi = 0 j @(x) = 1 . @ ( O j ,  X)  

By repeated use of (3.20) we arrive at @(x) = C,  f l j x Y j ( l  - x j ) I - Y j 4 ( y )  where 
the summation is taken over all n-dimensional binary vectors. 

Example 3.9 Bridge Structure 
Consider the bridge structure in Fig. 3.43. The structure function @(x) of this system 
can be determined by pivotal decomposition with respect to component 3. 

4 ( X >  = x3@(13, X) + (1 - x3)@(03, X)  

Here, @(13 ,  x )  is the structure function of the system in Fig. 3.49: 

@(13,x) = (XI u x2)(x4 u x5) = (XI +x2 -XIX2)(X4 +x5 -x4X5) 

while 4(O3.  x) is the structure function of the system in Fig. 3.50: 

@(03, X) = X1X4 U X2X5 = X1x4 + x3x5 - Xlx2x4x5 

Hence the structure function of the bridge system becomes 

@(XI  = x3(xl + x2 - xlx2)(x4 + x.5 - x@S) 

- x3)(xlx4 + x2x5 - xlx2x4xS) 
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Fig. 3.50 The structure # ( O 3 ,  x) of the bridge structure. 

Fig. 3.51 Reliability block diagram. 

Fig. 3.52 Structure of modules. 

Fig. 3.53 The three substructures. 

3.1 1.6 Modules of Coherent Structures 

Consider the structure represented by the reliability block diagram in Fig. 3.5 1. The 
structure may be split in three modules as illustrated by Fig. 3.52, where the modules 

0 . m, and may 
now be analyzed individually, and the results may be put together logically. Regarding 
this logical connection, it is important that the partitioning into subsystems is done 
in such a way that each single component never appears within more than one of the 
modules. 

When this partitioning is carried out in a specific way, described later, the procedure 
is called a modular decomposition of the system. In the following, we will denote a 
system with (C, 4) where C is the set of components and 4 the structure function. 

are defined in Fig. 3.53 The modules a , , and 
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Let A represent a subset of C ,  

and AC denote the complement of A with respect to C, 

WedenotetheelementsinAbyil,iz, ..., i,,whereil < i2 < - . .  < i , .  LetxA be 
the state vector corresponding to the elements in A: 

x A  = ( X i , ,  x i z ,  . . . , X i ” )  

and let 

x ( ~  A -  ) - x ( x i 1 , x i * , . . . - x i u )  

be a binary function of x A .  Obviously (A,  x )  can be interpreted as a system (a 
structure). 

In our example, C = {1,2, . . . , 10). Let us choose A = (5,6,7} and x ( x A )  = 
(x5 u Xfj)(X5 u x7). The (A,  x )  represents the substructure a. With this notation, 
a precise definition of the concept of a coherent module can be given as follows: 

Definition 3.8 Coherent Modules Let the coherent structure (C, 4) be given and let 
A G C. Then (A, x )  is said to be a coherent module of (C, @), if 4(x) can be written 
as a function of x ( x A )  and xA‘, + ( x ( x A ) ,  x A C )  where + is the structure function of 
a coherent system. 0 

A is called a modular set of (C, 4), and if in particular A c C, (A,  x )  is said to be a 
proper module of ( C ,  4). 

What we actually do here is to consider all the components with index belonging 
to A as one “component” with state variable x ( x A ) .  When we interpret the system 
in this way, the structure function will be 

+ ( X ( X A L  X A C )  

In our example we choose A = (5,6,7]. Then 

and since A c C, (A,  x )  will be a proper module of ( C ,  4). Now let us define the 
concept of modular decomposition. 

Definition 3.9 Modular Decomposition A modular decomposition of a coherent 
structure (C, 4) is a set of disjoint modules ( A i ,  x i ) ,  i = 1, . . . , r, together with an 
organizing structure w ,  such that 
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Fig. 3.54 Module 11. 

Fig. 3.55 Two prime modules. 

The “finest” partitioning into modules that we can have is obviously to let each in- 
dividual component constitute one module. The “coarsest” partitioning into modules 
is to let the whole system constitute one module. To be of practical use, a module 
decomposition should, if possible, be something between these two extremes. A mod- 
ule that cannot be partitioned into smaller modules without letting each component 
represent a module is called a prime module. 

is not a prime module, 
since it may be described as in Fig. 3.54. and hence can be partitioned into two 
modules IIa and IIb as in Fig. 3.55. This gives no guidance on how to determine 
individual prime modules in a system. However, algorithms have been developed, 
for example, by Chatterjee (1973, that can be used to find all the prime modules in 
a fault tree or in a reliability block diagram. 

In Chapter 4 we will justify the fact that it is natural to interpret the state vector as 
stochastic. In accordance with what we do in probability theory, we will from now 
on denote the state variables with capital letters from the end of the alphabet, for 
example, X I ,  X2,  . . . , X , .  

Occasionally, two or more of these can be stochastically dependent. In such situa- 
tions it is advisable to try to “collect” the state variables in modules in such a way that 
dependency occurs only within the modules. If one succeeds in this, the individual 
modules can be considered as being independent. This will make the further analysis 
simpler. 

In our example represents a prime module. But 

PROBLEMS 

3.1 Establish a function tree and a hardware breakdown structure for a dishwasher. 

3.2 Consider the subsea shutdown valve in Fig. 3.56. The valve is a spring-loaded, 
fail-safe close gate valve which is held open by hydraulic pressure. The gate is a 
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solid block with a cylindrical hole with the same diameter as the pipeline. To open 
the valve, hydraulic pressure is applied on the upper side of the piston. The pressure 
forces the piston, the piston rod, and the gate downwards until the hole in the gate is 
in line with the pipeline. When the pressure is bled off, the spring forces the piston 
upwards until the hole in the gate is no longer in contact with the pipeline conduct. 
The solid part of the gate is now pressed against the seat seal and the valve is closed. 

Carry out an FMECA analysis of the shutdown valve according to the procedure 
described in Section 3.5. 

3.3 Fig. 3.57 shows a sketch of a steam boiler system which supplies steam to a 
process system at a specified pressure. Water is led to the boiler through a pipeline 
with a regulator valve, a level indicator controller valve (LICV). Fuel (oil) is led to 
the burner chamber through a pipeline with a regulator valve, a pressure controller 
valve (PCV). The valve PCV is installed in parallel with a bypass valve V-1 together 
with two isolation valves to facilitate inspection and maintenance of the PCV during 
normal operation. 

The level of the water in the boiler is surveyed by a level emitter (LE). The water 
level is maintained in an interval between a specified low level and a specified high 
level by a pneumatic control circuit connected to the water regulator valve LICV. 
The level indicator controller (LIC) translates the pneumatic “signal” from LE to a 
pneumatic “signal” controlling the valve LICV. 

It is very important that the water level does not come below the specified low 
level. When the water level approaches the low level, a pneumatic “signal” is passed 
from the level indicator controller LIC to the level transmitter (LT). The LT translates 
the pneumatic “signal” to an electrical “signal” which is sent to the solenoid valve 
(SV). The solenoid valve again controls the valve PCV on the fuel inlet pipeline. This 
circuit is thus installed to cut off the fuel supply in case the water level comes below 
the specified low level. 

Fig. 3.56 Hydraulically operated gate valve (Problem 3.2). 



PROBLEMS 141 

v- 1 

Fig. 3.57 Steam boiler system (Problem 3.3). 

The pressure in the boiler and in the steam outlet pipeline is surveyed by a pressure 
controller PC which is connected to the solenoid valve SV, and thereby to the valve 
PCV on the fuel inlet pipeline. This circuit is thus installed to cut off the fuel supply 
in case the pressure in the boiler increases above a specified high pressure. 

A critical situation occurs if the boiler is boiled dry. In this case the pressure in 
the vessel will increase very rapidly and the vessel may explode. 

(a) Construct a fault tree where the TOP event is the critical situation mentioned 
above. Secondary failure causes shall not be included. Write down assumptions 
and limitations you have to make during the fault tree construction. 

(b) Establish a reliability block diagram corresponding to the fault tree in (a) and 
determine the structure function @(x). 

(c) Determine all minimal cut sets in the fault tree (reliability block diagram). 

3.4 Fig. 3.58 shows a sketch of the lubrication system on a ship engine. The 
separator separates water from the oil lubricant. The separator will only function 
satisfactory when the oil is heated to a specified temperature. When the water content 
in the oil is too high, the quality of the lubrication will be too low, and this may lead 
to damage or breakdown of the engine. 

The engine will generally require 

0 Sufficient throughput of oil/lubricant. 

0 Sufficient quality of the oiHubricant. 

The oil throughput is sufficient when at least one cooler is functioning, at least one 
filter is open (i.e., not clogged), and the pump is functioning. In addition, all neces- 
sary pipelines must be open, no valves must be unintentionally closed, the lubrication 
channels in the engine must be open (not clogged), and the lubrication system must 
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Fig. 3.58 Lubrication system on a ship engine (Problem 3.4). 

not have significant leakages to the environment. We will here assume that the prob- 
abilities of these “additional” events are very low and that these events therefore may 
be neglected. 

The quality of the oil is sufficient when 

0 Both coolers are functioning (with full throughput) such that the temperature 

None of the filters is clogged, and there are no holes in the filters. 

The separator system is functioning. 

of the oil to the engine is sufficiently low. 

(a) Construct a fault tree with respect to the TOP event “Too low throughput of 
oilAubricant.” 

(b) Construct a fault tree with respect to the TOP event “Too low quality of the 
oilllubricant.” 

3.5 

3.6 

Use MOCUS to identify all the minimal cut sets of the fault tree in Fig. 3.19. 

Consider the system in Fig. 3.59. . 

Fig. 3.59 Reliability block diagram (Problem 3.6). 

(a) Derive the corresponding structure function by a direct approach. 

(b) Determine the path sets and the cut sets, then the minimal path sets and the 
minimal cut sets. 
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(c) Derive the structure function of the system by using the property that the struc- 
ture may be considered as a parallel structure of the minimal path series struc- 
tures. 

(d) Derive the structure function of the system by using the property that the struc- 
ture may be considered as a series structure of the minimal cut parallel struc- 
tures. 

(e) Compare the results obtained in (a), (c), and (d). 

3.7 
and determine the structure function. 

Reduce the reliability block diagram in Fig. 3.60 to the simplest possible form 

Fig, 3.60 Reliability block diagram (Problem 3.7). 

3.8 Show that 

(a) If 4 represents a parallel structure, then 

4(x u Y) = 4(x) u 4 ( Y ) .  

(b) If 4 represents a series structure, then 

4(x . Y)  = 4(x) .4(Y> 

3.9 The dual structure 4 D ( x )  to a given structure #(x) is defined by 

@(x) = 1 - @(1- x) 

where (1 - x) = ( I  - XI ,  1 - XZ, . . . , 1 - x n ) .  

(a) Show that the dual structure of a k-out-of-n structure is a (n - k + 1)-out-of-n 

(b) Show that the minimal cut sets for 4 are minimal path sets for @D, and vice 

structure. 

versa. 

3.10 
ture studied in Problem 3.6. 

Determine the structural importance of the different components of the stmc- 
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. 

Fig. 3.61 Reliability block diagram (Problem 3. I 1). 

E l  

Fig. 3.62 Example fault tree (Problem 3.12). 

3.11 
appropriate modular decomposition. 

3.12 

Determine the structure function of the system in Fig. 3.61 by applying an 

Consider the fault tree in Fig. 3.62 

Fig. 3.63 Reliability block diagram (Problem 3.12). 
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(a) Use MOCUS to identify all the minimal path sets of the fault tree. 

(b) Show that the system may be represented by the reliability block diagram in 
Fig. 3.63. 

3.13 
the system in Fig. 3.64. 

Use appropriate pivotal decompositions to determine the structure function of 

Fig. 3.64 Reliability block diagram (Problem 3.13). 

3.14 
priate pivotal decompositions. 

Determine the structure function of the structure in Fig. 3.65 by use of appro- 

Fig. 3.65 Reliability block diagram (Problem 3.14). 

3.15 Determine the structure function of the structure in Fig. 3.66. 

Fig. 3.66 Reliability block diagram (Problem 3.15). 

3.16 Show that the structure function of the system in Fig. 3.67 may be written 

Fig. 3.67 Reliability block diagram (Problem 3.16). 
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3.17 Consider the structure in Fig. 3.68. 

Fig. 3.68 Reliability block diagram (Problem 3.17). 

(a) Find the minimal path sets P I ,  P2, . . . , Pp and the minimal cut sets K1,  K 2 ,  . . . , Kk 
of the structure. 

(b) Derive the structure function of this system. 



Systems of Independent 
Components 

4.1 INTRODUCTION 

In Chapter 3 we discussed the structural relationship between a system and its com- 
ponents and showed how a deterministic model of the structure can be established, 
using a reliability block diagram or a fault tree. Whether or not a given component 
will be in a failed state after t time units can usually not be predicted with certainty. 
Rather, when studying the occurrence of such failures, one looks for statistical regu- 
larity. Hence it seems reasonable to interpret the state variables of the n components 
at time r as random variables. We denote the state variables by 

XI ( t ) ,  X 2 ( t ) ,  . . . 1 X,(t> 

Correspondingly the state vector and the structure function are denoted, respectively, 

by 

x ( t )  = (XI  ( I ) ,  X A t ) ,  . . . , X , ( r ) )  and 4(x(t)> 

The following probabilities are of interest: 

Pr(Xi(t) = 1) = p i ( t )  for i = 1, 2 , .  . . , n (4.1) 

Pr(4(X(r)) = 1) = p d t )  (4.2) 

Throughout Chapter 4 we restrict ourselves to studying systems where failures of 
the individual components can be interpreted as independent events. This implies 
that the state variables at time t ,  X1 ( t ) ,  X 2 ( t ) ,  . . . , X,( t )  can be considered as being 
stochastically independent. Unfortunately, independence is often assumed just to 

147 

System Reliability Theory: Models and Statistical Method> 
Marvin Rausand,Arnljot Hoylanc 

Cowriaht 0 2004 bv John Wilev & Sons. Inc 



148 SYSTEMS OF INDEPENDENT COMPONENTS 

“simplify” the analysis, even though it is unrealistic. (This is discussed in more detail 
in Chapter 6.) 

In the main part of this chapter we consider nonrepairable components and sys- 
tems, which are discarded the first time they fail. In that case (4.1) and (4.2) correspond 
to what in Chapter 2 is called the survivor,function of component i and of the system, 
respectively. 

Components and systems that are replaced or repaired after failure are (in this 
book) called repairable. Then (4.1) and (4.2) correspond with what in Section 1.6 
we called the availability at time r of component i and of the system, respectively. 
Repairable components and systems that are considered until the first failure only are 
treated as nonrepairable. The reliability of repairable systems is further discussed in 
Chapter 9. 

During most of this chapter, p j ( t )  will, for brevity, be called the reliability of 
component i at time r ,  and qj( t )  = 1 - p j ( t )  will be called the unreliability of 
component i at time t ,  for i = 1, 2, . . . , n .  In the same way, p s ( t )  will be called the 
system reliability, and Q&) = 1 - p s ( t )  will be called the system unreliability at 
time t .  

In Sections 4.1 and 4.2 we study system reliability in general. Nonrepairable 
systems are discussed in Section 4.3. In most of the examples we assume that the 
components have constant failure rates. This is done because most alternative distri- 
butions will give complicated mathematical expressions that can only be solved by 
using a computer. In Section 4.4 we discuss quantitative fault tree analysis and pro- 
vide both exact and approximation formulas. Several types of nonrepairable standby 
systems are discussed in Section 4.6. 

4.2 SYSTEM RELIABILITY 

Since the state variables X i  ( t )  for i = 1,2,  . . . , n are binary, then 

E [ X i ( t ) l  = 

= p i @ )  fori  = 1,2,  ... , n  (4.3) 

0 . Pr(Xi(t) = 0) + 1 . P r ( X i ( t )  = 1) 

Similarly the system reliability (at time t )  is 

It can be shown (see Problem 4.1) that when the components are independent, the 
system reliability, p s ( t ) ,  will be a function of the pj(t)’s only. Hence p s ( t )  may be 
written 

Unless we state otherwise, we will use the letter h to express system reliability in 
situations where the components are independent. Now let us determine the reliability 
of some simple structures. 
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4.2.1 Reliability of Series Structures 

In Section 3.2 we found that a series structure of order n has the structure function 

Since X I  ( t ) ,  X2( t ) ,  . . . , X,( t )  are assumed to be independent, the system reliability 
is 

n n 

i= l  i = l  

Note that 

In other words, a series structure is at most as reliable as the least reliable component. 

Example 4.1 
Consider a series structure of three independent components. At a specified point of 
time r the component reliabilities are p1 = 0.95, p2 = 0.97, and p3 = 0.94. The 
system reliability at time t is then, according to (4.6), 

PS = h ( p )  = P I  . p2 . ~3 = 0.95 .0.97 . 0.94 RZ 0.866 

In particular, if all the components have the same reliability p ( t ) ,  then the system 
reliability of a series structure of order n is 

If, for example, n = 10 and p ( t )  = 0.995, then 

p s ( t )  = 0.995" 0.951 

Hence the system reliability of a series structure is low already when n = 10, even if 
the component reliability is relatively high (= 0.995). 

Remark: The reliability h ( p ( t ) )  of a series structure may also be determined by a 
more direct approach, without using the structure function. Let Ei ( t )  be the event 
that component i is functioning at time t .  The probability of this event is Pr(Ei ( t ) )  = 
pi ( t ) .  Since a series structure is functioning if, and only if, all its components are 
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functioning, and since the components are independent, the reliability of the series 
structure is 

h ( p ( t ) )  = Pr(E1 ( t )  n E z ( t )  n . . . n E n ( t ) )  
n 

= Pr(El(t>) . Pr(Ez(r)) . . Pr(En(t)) = n pj(t) 
i = l  

which is the same result we got in (4.6) by using the structure function. 0 

4.2.2 Reliability of Parallel Structures 

In Section 3.3 we found that a parallel structure of order n has the structure function 

i= l  i = l  

Hence 

n n 

Example 4.2 
Consider a parallel structure of three independent components. At a specified point 
of time t the component reliabilities are p1 = 0.95, pz  = 0.97, and p3 = 0.94. The 
system reliability at time t is then, according to (4.8) 

PS = h ( p )  = 1 - (1 - pl)(l - p2)(1 - p3)  = 1 - 0.05 .0.03 .0.06 X 0.99991 

0 

In particular, if all the components have the same reliability p ( t ) ,  then the system 
reliability of a parallel structure of order n is 

(4.9) p d t )  = 1 - ( 1  - P @ ) Y  

Remark: As for the series structure, the reliability h ( p ( t ) )  of a parallel structure may 
be determined by a more direct approach, without using the structure function. Let 
E l ( t )  be the event that component i is in a failed state at time t. The probability 
of this event is Pr(ET(t)) = 1 - p i ( t ) .  Since a parallel structure is in a failed state 
if, and only if, all its components are in a failed state, and since the components are 
independent, we have that 

1 - h ( p ( t ) )  = Pr(ET(t) n ~ ; ( t )  n . . . n E,*( t ) )  

= Pr(ET(t)) . Pr(E;(r)). . .Pr(E,*(t)) = n(l - p i ( t ) )  
n 

i=l  
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and, therefore in accordance with (4.8) 
n 

h ( p ( t ) )  = 1 - f l ( l  - P i ( t ) )  
i = l  

This direct approach is feasible for series and parallel structures, but will be com- 
plicated for more complex structures, in which case the approach by using structure 
functions is much more suitable. 0 

4.2.3 Reliability of k-out-of-n Structures 

In Section 3.4 we found that a k-out-of-n structure has the structure function 

0 if X i ( t )  < k 
i = l  

@ ( X ( t ) >  = 

Let us for simplicity consider a k-out-of-n structure where all the n components have 
identical reliabilities pi ( t )  = p ( t )  for i = 1, 2,  . . . , n. 

Since we have assumed that failures of individual components are independent 
events, then at a given time t ,  Y ( t )  = Cyr1 X i ( t )  will be binomially distributed 
(n ,  p ( t ) ) :  

p( t )Y(I  - p(t))"-Y for y = 0, 1 , .  . . , n 

Hence the reliability of a k-out-of-n structure of components with identical reliabilities 
is 

(4.10) 

Example 4.3 
Consider a 2-out-of-4 structure with four independent components of the same type. 
At a specified point of time t the component reliability is p = 0.97. The system 
reliability at time t is then, according to (4.10) 

p s  = h ( p )  = (:)0.972 0.032 + ( ; ) O N 3  0.03 + (:)0.97' x 0.99989 

0 

Finally, let us see how the system reliability of a more complex structure can be 
determined. 

Example 4.4 
Fig. 4.1 shows the reliability block diagram of a simplified automatic alarm system 
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Fig. 4.1 Reliability block diagram of a simplified automatic alarm system for gas leakage. 

for gas leakage. In the case of gas leakage, “connection” is established between a 
and b so that at least one of the alarm bells (7 and 8) will start ringing. The system 
has three independent gas detectors (1,2, and 3) which are connected to a 2-out-of-3 
voting unit (4); that is, at least two detectors must indicate gas leakage before an alarm 
is triggered off. Component 5 is a power supply unit, and component 6 is a relay. 

We will consider the system at a given time t .  To simplify the notation we therefore 
omit the explicit reference to the time t .  The structure function of the system is 

If the component reliability at time to of component i is denoted by p i ,  i = 1, 2 ,  . . . , 8, 
and X I ,  X 2 ,  . . . , X s  are independent, then the system reliability at time to is 

4.2.4 Pivotal Decomposition 

By pivotal decomposition the structure function # ( X ( t ) )  at time t can be written as 

When the components are independent, the system reliability becomes 

Let h ( l i ,  p ( t ) )  = E [ 4 ( l i ,  X ( t ) ) ]  and h(Oi,  p ( t ) )  = E[@(Oj, X t ) ) ] .  Hence 

Notice that the system reliability h ( p ( t ) )  is a linear function of p i ( t )  when all the 
other component reliabilities are kept constant. 
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4.3 NONREPAIRABLE SYSTEMS 

As explained in Section 4.1 the component reliability and the survivor function will 
coincide for nonrepairable components: 

p ; ( t ) = R ; ( t )  for i  = 1 ,2 ,  . . . ,  n 

4.3.1 Nonrepairable Series Structures 

According to (4.6) the survivor function of a nonrepairable series structure consisting 
of independent components is 

n 

R s ( t )  = n (4.14) 
i=l 

Furthermore, according to (2.9) 

where z i ( t )  denotes the failure rate of component i at time t .  
By inserting (4.15) into (4.14) we get 

II 

Rs( t )  = n e - $  z i ( u ) d u  = c:=I Z i ( U ) d u  

i=l 

(4.15) 

(4.16) 

Hence the failure rate z S ( r )  of a series structure (of independent components) is equal 
to the sum of the failure rates of the individual components: 

The mean time to failure (MTTF) of this series structure is 

(4.17) 

(4.18) 

Example 4.5 
Consider a series structure on n independent components with constant failure rates 
hi, for i = I ,  2. . . . , n. The survivor function of the series structure is 

and the MTTF is 

(4.20) 



154 SYSTEMS OF INDEPENDENT COMPONENTS 

h 

Fig. 4.2 The failure rate function of a series structure of three independent components, 
where component 1 has decreasing failure rate, component 2 has constant failure rate, and 
component 3 has increasing failure rate. 

Example 4.6 
Consider a series structure with n independent components. The time to failure of 
component i has a Weibull distribution with common shape parameter ct and scale 
parameter hi, for i = 1, 2, . . . , n. The survivor function of the series structure is 
from (4.15): 

I / f f  ff 

Rs( t )  = 2 e - ( A i r ) Y  = exp (- [ (kh;) . i ]  (4.21) 
i= l  i = l  

If we define ho = (& h;)l/”, the survivor function (4.21) can be written 

R s ( t )  = e-(*O‘)a (4.22) 

The time to failure of the series structure is therefore Weibull distributed with shape 
0 parameter (Y and scale parameter A0 = (C:==, A;) 1 I f f  . 

Example 4.7 
Consider a series structure of n = 3 independent components. Component 1 has a 
decreasing failure rate, for example, a Weibull distributed time to failure with shape 
parameter ct < 1. Component 2 has a constant failure rate, while component 3 has 
an increasing failure rate, for example, a Weibull distributed time to failure with 
shape parameter 01 > 2. The failure rates of the three components are illustrated in 
Fig. 4.2. The failure rate function of the series structure is from (4.17) the sum of 
the three individual failure rate functions and is illustrated by the fully drawn line in 
Fig. 4.2. The failure rate function of the series structure is seen to have a bathtub 
shape. A bathtub-shaped failure rate of a component may therefore be obtained by 
replacing the component by three independent imaginary components in a series; one 
with decreasing failure rate function, one with constant failure rate, and one with 
increasing failure rate function. 0 
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4.3.2 Nonrepairable Parallel Structures 

According to (4.8) the survivor function of a nonrepairable parallel structure of inde- 
pendent components is 

n 

Rs( t )  = 1 - H(l - R i ( t ) )  
i = l  

(4.23) 

When all the components have constant failure rates z j ( t )  = A j ,  for i = I ,  2 ,  . . . , n, 
then 

n 

(4.24) 
i = l  

Example 4.8 
Consider a parallel structure of n independent components of the same type with 
constant failure rate A. The survivor function of the parallel structure is 

Rs( t )  = 1 - (1  - e - i y  (4.25) 

By using the binomial formula (4.25) can be written 

The MTTF is 

(4.26) 

0 

Remark: In Section 4.3.5 an alternative formula for MTTF based on another argument 
is given. The two formulas give the same result. The MTTF of a parallel structure n 
independent and identical components with failure rate h is listed in the first row of 
Table 4.2 for some selected values of n. 0 

Example 4.9 
Consider a nonrepairable parallel structure of two components with lifetimes TI and 
T2, which are assumed to be independent and exponentially distributed with failure 
rates hl and A’. respectively. 

The survivor function of the system is 

Rs( t )  = 1 - (1 - e-Alf)(l - e-’Zf ) 

- - e - - h ~ f  + e - A ~ f  - e - ( A l + A 2 ) f  (4.27) 

Note that the time to failure T of this parallel structure is not exponentially distributed, 
even if both components have exponentially distributed times to failure. 
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a, = 0.4. = 0.6 

0.2 

0.0 
0 2 4 6 8 10 

Time t 

Fig- 4.3 The failure rate for a parallel structure of two independent components for selected 
values of 11 and 1 2  (11 + 1 2  = I) .  

The MTTF of the system is 

1 1  1 
R s ( t ) d t  = - + - - ~ 

1 1  A2 hl +h2 
(4.28) 

The corresponding failure rate function is given by 

Hence 

hle-Alt + h2e-A2t - (hl  + h2)e-(A1+h2)t 

e-hlt + e-Azt - e-(AI+hz)t (4.29) 

In Fig. 4.3, z s ( t )  is sketched for selected combinations of hl and h2, such that l.1 + 
h2 = 1. Notice that when hl f h2. the failure rate function z S ( t )  will increase up to 

17 

This example illustrates that even if the individual components of a system have 

= 

a maximum at a time to, and then decrease for t  2 to down to min{Al, h2). 

constant failure rates, the system itself may not have a constant failure rate. 

Example 4.10 
Consider a parallel structure of two independent and identical components with failure 
rate h. The survivor function is 

(4.30) -At - e-2At R s ( t )  = 2e 

The probability density function of the time to failure of the parallel structure is 

f s ( t )  = -Rk( t )  = 2he-" - 2heP2" (4.3 1) 

The mode of the distribution is the value o f t  that maximizes fs(t) 

In 2 
rmode = - h 

(4.32) 
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- - I 1c;.; 
m - 

0,2 I 
I 
I I 1  

1 I 1  
0.0 

0,o 0.5 1 .o 1.5 2,o 2 5  3.0 
Time 1 

Fig, 4.4 The probability density function of a parallel structure with two independent and 
identical components with failure rate h = I ,  together with its mode, median, and MTTF. 

The median life of the parallel structure is 

1.228 
tm = Rs'(0.5)  x - 

h 

The MTTF is 

3 

(4.33) 

(4.34) 

The probability density f s ( t )  of the parallel structure, together with its mode, median, 
and MTTF, are illustrated in Fig. 4.4. The mean residual life (MRL) of the parallel 
structure at age t is 

(4.35) 

Notice that liint+m MRL(t) = 1 /h .  Since the two components of the (nonrepairable) 
parallel structure are independent, one of them will fail first, and we will sooner or 
later be left with only one component. When one of the components has failed, the 
MRL of the system is equal to the MRL of the remaining component. Since the 
failure rate is constant, the MRL of the remaining component is equal to its MTTF 
= I l k .  0 

4.3.3 Nonrepairable 2-out-of-3 Structures 

According to Section 3.8 the structure function of a 2-out-of-3 structure is 

Thus the survivor function of the 2-out-of-3 structure is 
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2.5 - 

2,o - 

0,o 0,s 1 ,o 1 3  2,o 2.5 3,O 

Time t 

Fig. 4.5 The failure rate function z s ( f )  for a 2-out-of-3 structure of independent and identical 
components with failure rate A = 1 .  

In the special case where all the three components have the common constant failure 
rate h, then 

Rs( t )  = 3 e-2hr - 2e-3Ar (4.36) 

The failure rate function of this 2-out-of-3 structure is 

- R [ r ( f )  - 6h (e-*" - e-3Ar) - 
3,-2hr - 2,3.~r ZSO) = ~ 

R S ( t )  
(4.37) 

A sketch of the failure rate function z S ( t )  is given in Fig. 4.5. 

structure is 
Note that limt-too z C ( t )  = 2h (see Problem 4.8). The MTTF of this 2-out-of-3 

3 2 5 1  
R s ( t ) d t  = - - - = - - 

2h 31 6 h 
(4.38) 

4.3.4 A Brief Comparison 

Let us now compare the three simple systems: 

1. A single component 

2. A parallel structure of two identical components 

3. A 2-out-of-3 system with identical components 

All the components are assumed to be independent with a common constant failure 
rate h. A brief comparison of the three systems is presented in Table 4.1. Note that 
a single component has a higher MTTF than the 2-out-of-3 structure. The survivor 
functions of the three simple systems are also compared in Fig. 4.6. The introduction 
of a 2-out-of-3 structure instead of a single component hence reduces the MTTF by 
about 16%. The 2-out-of-3 structure has, however, a significantly higher reliability 
(probability of functioning) in the interval (0, t ]  for t < In 2/h. 
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Table 4.1 Brief Comparison of Systems ( l ) ,  (2), and (3). 

Survivor Function Mean Time to Failure 
System RS(t )  MTTF 

e-At  1 

h 
_ 

3 1  
2 h  
_ _  

5 1  
6 h  
_ _  

0.2 - 

0.0 7 

0,o 0.5 1 ,o 1 5  2,o 2.5 3,0 

Time t 

Fig. 4.6 The survivor functions of the three systems in Table 4.1 (A = 1). 
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4.3.5 Nonrepairable k-out-of-n Structures 

Assume that we have a k-out-of-n structure of n identical and independent components 
with constant failure rate h. The survivor function of the k-out-of-n structure is from 
(4. lo) 

According to (2.12) 

(4.39) 

(4.40) 

By introducing v = e-” we obtain (see Appendix A) 

(;); I vx-‘ ( l  - v y x  du 
MTTF = 

x=k  

(4.41) 

The MTTF of some simple k-out-of-n systems, computed by (4.41) are listed in 
Table 4.2. Note that a 1-out-of-n system is a parallel system, while a n-out-of-n 
system is a series system. 

x=k  x=k 

4.4 QUANTITATIVE FAULT TREE ANALYSIS 

We will now see how we can analyze a structure that is modeled as a fault tree. Let 
n denote the number of different basic events in the fault tree. By analogy with our 
notation for reliability block diagrams, the fault tree is said to be of order n. The n 
basic events are numbered, and the following state variables are introduced: 

1 
0 otherwise i = 1 , 2 ,  . . . ,  n 

if basic event i occurs at time t 1 Y i ( t )  = 

Let Y ( t )  = (Y1 ( t ) ,  Y2(t), . . . , Y,,(t)) denote the state vector for the structure at time 
t .  The purpose of a “quantitative analysis” of a fault tree usually is to determine the 
probability of the TOP event (system failure). The procedure is completely analogous 
to the one for reliability block diagrams. 

The state of the TOP event at time t can be described by the binary variable $ ( Y  ( t ) )  
where 

1 
0 otherwise 

if the TOP event occurs at time t 
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Table 4.2 MTTF of some k-out-of-n Systems of Identical and Independent Components 
with Constant Failure Rate 1. 

k\n 1 2 3 4 5 

11 25 137 1 
h 2h 6h 12h 60h 

- 3 - - - - 1 

1 5 13 77 
2h 6h 12h 60h 

1 7 47 

3h 12h 60h 
1 9 

4h 20h 

- - - ~ - 2 

- - - - - 3 

- - - - - 4 

1 
5h 
- 

It is assumed that if we know the states of all the n basic events, we also know whether 
or not the TOP event occurs: 

$(YO)) = $(Yl(t), Y2(t), . . .. Yn(t)) (4.42) 

The function $(Y(t)) is called the structurefunction of the fault tree. 

1 , 2 , .  . . , n .  Then 
Let 4i(t) denote the probability that basic event i occurs at time t ,  for i = 

Pr(Yi(t) = 1) = E(Yi(t)) = qi(t)  for i = 1,2 , .  . . , n 

Let Q o ( r )  denote the probability that the TOP event (system failure) occurs at time t .  
Then 

Q o ( t )  = Pr($(Y(t)) = 1) = E(@(Y(t))) (4.43) 

Remark: The statement "basic event i occurs at time t" may be a bit misleading. 
The basic events and the TOP event in a fault tree are in reality states and not events. 
When we say that a basic event (or the TOP event) occurs at time t ,  we mean that the 

0 corresponding state is present at time t .  

If the basic event i means that component i in the system is in a failed state for 
i = I ,  2 , .  . . , n, then 

Pr(Y;(t) = 1) = 4i(t) = 1 - pi(?) for i = 1 ,2 , .  . . , n 

where pi(?) is the probability that component i is in a functioning state at time t ;  
qi ( t )  is called the unreliability of component i at time t ,  while Qo( t )  denotes the 
unreliability of the system at the same point of time. 
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fig. 4.7 Fault tree with a single AND-gate. 

In this case 

Q o ( ~ )  = 1 - h ( p ( t ) )  = 1 - - 41 ( t ) ,  1 - 42(t), . . . ,  1 - q n ( t ) l  

where pi ( t ) ,  for i = 1,2,  . . . , n and h ( p ( t ) )  are defined in (4.3) and (4.5). Note that 
Qo(t )  in this case is a function of the qi ( t ) ' s  only. 

In the same way as for reliability block diagrams, it can be shown that when the 
basic events are independent, then Qo(t )  will be a function of the qi(t) 's  only for 
i = 1 , 2 , .  . . , n. Hence Qo(t) may be written 

(4.44) Q o ( ~ )  = g(ql(t), q2(t), * .  ., q n ( t ) )  = g ( q ( t ) )  

4.4.1 Fault Trees wlth a Single AND-Gate 

Consider the fault tree in Fig. 4.7. Here the TOP event occurs if and only if all the 
basic events B I  , B2, . . . , Bn occur simultaneously. 

The structure function of this fault tree is 
n 

~lr (y ( t ) )  = y1 ( t )  . ~ 2 ( t )  * * * yn(t) = fl y i ( t )  
i = l  

Since the basic events are assumed to be independent, then 

Q o ( ~ >  = E(I lr (Y( t ) ) )  = E(YI ( t )  Y2(t) . . . Y n ( t ) )  
= E(YI(~)) . E(Y2(t)). ' .  E(Yn(t)) 

n 

= ql(t).q2(t)...qn(t) = n q i ( t )  (4.45) 
i = l  

The probability Qo(t) of the TOP event may also be determined directly by the 
following argument: Let B i ( t )  denote that basic event B, occurs at time t : i = 
1 ,2 , .  . . , n. Then 

Q o ( t )  = Pr(Bl(t) n B2(t) n . . . n B n ( t ) )  

= Pr(Bl(t)) .Pr(B2(t))..,Pr(Bn(r)) 
n 

= ql(t).q2(t).*.qn(r) = f lq i (r )  
i = l  
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Fig. 4.8 Fault tree with a single OR-gate. 

4.4.2 Fault Tree with a Single OR-Gate 

Consider the fault tree in Fig. 4.8. The TOP event occurs if at least one of the basic 
events B1, B2,, . . , Bn occurs. 

The structure function of this fault tree is 

$ ( Y ( t ) )  = Y l ( t )  u Y2(t) u ... u Y n ( t )  
n 

Since the basic events are assumed to be independent, then 

n 

Q o ( ~ )  = E ( $ ( Y ( t ) ) )  = 1 - n E ( I  - Y i ( t ) )  
i = l  

1 - n(l - E ( Y i ( t ) )  = 1 - n(l - qi ( t ) )  
n n 

= (4.46) 
i = l  i= l  

Then Qo(t )  can also be determined directly in the following way: Let B,!(t) denote 
that basic event Bi does not occur at time t .  Then 

Pr(B,!(t)) = 1 - Pr(Bi(t)) = 1 - qi( t )  for i = 1 ,2 , .  . . , n 

4.4.3 Approximation Formula for Qo(t) 

Calculation of the TOP event probability by means of the structure function may in 
many cases be both time-consuming and cumbersome. Hence there may be a need 
for approximation formulas. 
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Figv 4.9 A structure represented as a series structure of the minimal cut parallel structures. 

Consider a system (fault tree) with k minimal cut sets K 1 ,  K 2 ,  . . . , Kk.  This system 
may be represented by a series structure of the k minimal cut parallel structures, as 
illustrated by the reliability block diagram in Fig. 4.9. 

The TOP event occurs if at least one of the k minimal cut parallel structures fails. 
A minimal cut parallel structure fails if each and all the basic events in the minimal cut 
set occur simultaneously. Note that the same input event may enter in many different 
cut sets. 

Let Q j ( t )  denote the probability that minimal cut parallel structure j fails at time 
t .  If the basic events are assumed to be independent, then 

(4.47) 

Let Qo( t )  denote the probability that the TOP event (system failure) occurs at time t .  
If all the k minimal cut parallel structures were independent, then 

k 

(4.48) 
j = l  j = l  

But since the same basic event may occur in several minimal cut sets, the minimal cut 
parallel structures can obviously be positively dependent (or associated, see Chapter 
6). In Chapter 6 it is shown that 

(4.49) 

Hence the right-hand side of (4.49) may be used as an upper bound (conservative) for 
the probability of system failure. 

When all the qi ( t ) ’s  are very small, it can be shown that with good approximation 

(4.50) 

This approximation is called the upper bound approximation, and it is used in a num- 
ber of computer programs for fault tree analysis, for example, in CARA FaultTree. 
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Accident 0 
U 

Threat H i  G7 
I 

Fig. 4.70 System failure caused by fire (threat HI).. 

Equation (4.50), however, has to be used with care when at least one of the qi ( t ) ’s  is 
of order 1 0V2 or larger. 

Assume now that all the Q j ( t ) ’ s  are so small that we can disregard their products. 
In this case (4.50) may be approximated by 

(4.5 1) 

It is straightforward to verify that the last approximation is more conservative than 
the first one: 

k k 

(4.52) 

Example 4.11 TOP Event Frequency 
In risk analyzes we are sometimes interested in thefrequency of the TOP event in 
a specific situation. Consider a system that is exposed to a set of threats or haz- 
ards H I ,  H2, . . . , H,. The threats may be extreme loads (caused by fire, explosion, 
earthquake, lightning, etc.), component failures or operational or maintenance er- 
rors. Some of these threats (hazards) have been identified during system design, and 
barriers, andor protective systems may have been established to withstand the threats. 

To have a system failure (accident), one of the threats must manifest itself and  the 
protective system must fail. As an example, assume that the threat H I  denotes a fire in 
a specified system module. The expected frequency of such fires has been estimated 
to be AH,. 

The fire protection and extinguisher systems that have been installed to withstand 
the fire, may be studied by a fault tree analysis with TOP event “Failure of the fire 
protection or extinguisher system.” Assume that we find the TOP event probability 
Q H ~  ( t ) .  The expected frequency of system failures (accidents) caused by this type 
of fires is thus (see Section 7.2) equal to Q H ,  ( t ) .  This situation is illustrated by 
the fault tree in Fig. 4.10. 

The total expected frequency of system failures may now be determined by com- 
bining all the identified threats H I ,  H2, . . . , H,,, . Protection systems may be available 
for only a limited number of the threats. Some of the threats may, on the other hand, 
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Accident k' 
Threat H i  9 r l  Threat H1 

Threat H2 2 
Barriers 

Threat H3 2 
Threat H3 G? Barriers 

a ainst H3 
taif'to function 4 

Fig. 4.7 7 System failure caused by the threats H I ,  H2,  and H3. 

have a number of redundant protection systems. For some of the threats, it may be 
impossible to establish protection systems or barriers. 

A fault tree showing the total expected frequency of system failures (accidents) is 
illustrated in Fig. 4.1 1. 

Let Q H ~  ( t )  denote the probability that all the protection systems against the threat 
Hj fails, for j = 1,2,  . . . , m. If the threat H j  has n ,  redundant and independent pro- 
tection systems, then QH, ( t )  = nyLl Q H ~ , ~ ,  where QH,., ( t )  denotes the probability 
that protection system i against threat H ,  fails at time t .  When no protection system 
is available for threat H j ,  then QH,  ( t )  = 1. 

The total expected frequency of system failures (accidents) As may now be ap- 
proximated by 

j = l  

Note that for this approach to be valid, the fault tree in Fig. 4.11 must have one and 
only one threat in each minimal cut set. This application of fault tree analysis is 
further discussed in AIChE (1989). 0 

4.5 EXACT SYSTEM RELIABILITY 

In this section we describe some different methods for calculation of exact system 
reliability at a given time to when the n components are independent. To simplify the 
notation we replace the component reliabilities p j ( t 0 )  by p j  for j = 1,2,  , . . , n .  

4.5.1 Computation Based on the Structure Function 

The most straightforward method for computation of the exact system reliability is 
illustrated in Example 4.4. The structure function of the system is established, and 
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powers of the X i ' s  are deleted (i = 1,2, . . . , n ) .  The exact system reliability is then 
obtained by replacing the Xi's by the corresponding Pi's. 

4.5.2 Computation Based on Pivotal Decomposition 

By repeated pivotal decomposition (see Section 3.11) a structure function can always 
be written as 

(4.53) 

where the summation over y is a summation over all n-dimensional binary vectors 
y ,  and 0' = 1. If X I ,  X 2 ,  . . . , X n  are assumed to be independent, X? ( 1  - Xj)l-Yj  
are also independent for all j .  Since y j  can only take the values 0 and 1, then 

E [ x ~ ' ( I  - ~ j ) ' - ~ j ~ = p Y J ( l - p j ) ' - ~ j  J f o r j = 1 , 2 ,  ..., n 

Therefore the system reliability may be written 

The approach is the following: 

1. First, determine by experiment the value of @ ( y )  for all 2" possible y vectors. 

2. Next put the obtained values of @(y) for the different vectors y into (4.54). 
[ @ ( y )  is set equal to 1 if the system is in a functioning state, and equal to 0 
otherwise.] 

Thereby an expression is obtained for the desired system reliability. 

4.5.3 Computation Based on Minimal Cut (Path) Sets 

When all the minimal cut sets K l ,  K2,  . . . , Kk and/or all the minimal path sets 
P I ,  P2, . . . , Pp are determined, the structure function may be written 

(4.55) 

alternatively 

(4.56) 
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Fig. 4.12 Reliability block diagram for Example 4.12. 

The structure function is thus written on a multilinear form. (Remember that since 
Xi, i = 1 , 2 ,  . . . , n are binary, all exponents can be omitted.) Since X I ,  X2, . . . , X, 
are assumed to be independent, the system reliability is obtained by replacing all the 
Xi’s in the structure function by the corresponding pi’s .  

Example 4.12 
The structure in Fig. 4.12 has the following three minimal path sets: 

Pi = { 1 . 2 , 3 ) ,  9 = { 1 , 2 , 4 ) ,  Pi = { I ,  3 , 4 )  

Hence 

3 

4 ( ~ )  = n Xi = ~ 1 ~ 2 x 3  ~ 1 ~ 2 x 4  u ~ 1 ~ 3 x 4  

x1x2x3 + XIX2X4 + XIX3X4 - x;x;x3x4 
-x;x2x,2x4 - x:xzx3x,2 + x;x;x;x,2 

j=l i E P ,  

= 1 - (1 - X1X2X3)(1- X1X2X4)(1- XIX3X4) 
= 

= XIX2X3 + XIX2X4 + XIX3X4 - 2XIX2X3X4 

Since the components are independent, the system reliability is 

h ( p )  = pIp2P3 + pIp2p4 + pIp3p4 - 2PIP2P3P4 

Time is reintroduced by replacing p ,  by p j ( t 0 )  for j = 1 ,2 ,  . . . , n in the above 
expression. 

4.5.4 The Inclusion-Exclusion Principle 

In this section we study how the inclusion-exclusion principle can be applied to 
determine the unreliability of a system. The same approach can also be used to 
determine the system reliability. This is shown at the end of this section. 

A system of n independent components has the minimal cut sets K 1 ,  K2, . . . , Kk. 
Let Ej denote the event that the components of the minimal cut set K j  are all in a 
failed state, that is, that the j th minimal cut parallel structure has failed at time t .  
According to (4.47), 

Pr(Ej) = Q j  = n 
i E K j  
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where qi denotes the unreliability of component i at time to for i = 1,2, . . . , n. 

the system unreliability may be expressed by 
Since the system fails as soon as one of its minimal cut parallel structures fails, 

(4.57) 

In general, the individual events E,, j = 1, 2, . . . , k are not disjoint. Hence, the 
probability Pr(U;=I Ej)  is determined by using the general addition theorem in 
probability theory (e.g., see Dudewicz and Mishra, 1988, p. 45). 

k 

j=l i < j  

+(-l)j+I Pr(EI n E2 n . . . n Ek) (4.58) 

By introducing 

equation (4.58) may be written 

j= 1 

Example 4.13 
The minimal cut sets of the bridge structure in Fig. 4.13 are 

K I  = (1 ,2) ,  K2 = {4,5), K3 = 11,3,51, K4 = (2,3,41 

Let Bi denote that component i is failed, i = 1,2,  3, 4,5.  
According to (4.59) the unreliability Qo of the bridge structure is 

QO = WI - W2 + W3 - W4 

where 

(4.59) 



170 SYSTEMS OF INDEPENDENT COMPONENTS 

Fig. 4.13 The bridge structure. 

= Pr(B1 n B2 n B4 n B5) 
+Pr(Bl n BZ n B ]  n 133 n 13s) 
+Pr(Bl n B2 n B2 n B3 n B ~ )  

+Pr(B4 n B5 n B I  n B3 n B5) 
+ ~ r ( ~ 4  n ~5 n B~ n 133 n 134) 

n B~ n B~ n B~ n 1 3 ~  n B ~ )  

91929495 + 91929395 + q1929394 + 91q394q5 
+92q394q5 + q192q34495 

= 

Similarly 

w3 = 49192q39495 

and 

w4 = 91q2q394q5 

Hence the system unreliability is 

QO = W1 - W2 + W3 - W4 

= 9192 + 4445 + 919395 + 9.29394 - q1q2q4q5 - q1q2q3q5 

-q192q3q4 - q1q3q4q5 - q2q3q4q5 + 2q1q2q3q4q5 

Example 4.13 shows that, when using the general addition theorem (4.58) we have 
to calculate the probability of a large number of terms that later cancel each other. An 
alternative approach has been proposed by Satyanarayana and Prabhakar (1978). The 
idea behind their method is-with the help of graph-theoretic arguments-to leave 
out the canceling terms at an early stage without having to calculate them. Their 
method has been computerized in a program called TRAP (topological reliability 
analysis program). 
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A number of alternatives to the inclusion-exclusion principle have been proposed. 
One of these alternatives is the ERAC algorithm (exact reliability/availability cal- 
culation) which was developed by Aven (1986). The ERAC algorithm has been 
implemented in CARA Fault Tree. 

Calculating the exact value of a system’s unreliability Qo by means of (4.59) may 
be cumbersome and time-consuming, even when the system is relatively simple. In 
such cases one may sometimes be content with an approximative value of the system’s 
unreliability. 

One way of determining approximate values of the system unreliability Qo utilizes 
the following result based on inclusion-exclusion: 

Qo F WI 

Qo 5 WI - W z + W 3  

W1 - W2 I QO 

(4.60) 

It can be shown (see Feller, 1968, pp. 98-102) that 

J 

( - l ) ’ - I Q o  5 (-I)’-’ C(-1)”’WU , j = 1 , 2 , .  . . , k  (4.61) 
u= I 

Equation (4.6 1 )  may give the impression that the differences between the consecutive 
upper and lower bounds are monotonically decreasing. This is, however, not true in 
general. 

In practice (4.61) is used in the following way: Successively one determines upper 
and lower bounds for Qo, proceeding downwards in (4.61) until one obtains bounds 
that are sufficiently close. The first 
t ,  Q o ( t ) ,  is according to (4.61) 

According to (4.49) 

and from (4.52) we have that 

k 

l - n ( l -  
j=l 

upper bound for the system unreliability at time 

(4.62) 

(4.63) 

(4.64) 

Hence the right-hand side of (4.63) is a more accurate approximation to the true value 
of Qo(r )  than (4.62) 
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Example 4.14 
Reconsider the bridge structure in Example 4.13 and assume that all the component 
unreliabilities qi are equal to 0.05. By introducing these qj’s in the expression for the 
Wi’s in Example 4.13, we obtain 

W1 = 5250. lop6 

W2 = 3156. 

W3 = 1.25. lop6 

W4 = 0.31. low6 

From (4.61) we get: 

QO i WI % 5250. lop6 = 0.5250% 

QO 2 WI - W2 % 5218.4. lop6 = 0.5218% 

Hence from the first two inequalities of (4.61) we know that 

0.5218% 5 Qo 5 0.5250% 

For many applications this precision may be sufficient. If not, we proceed and calcu- 
late the next inequality: 

Qo 5 WI - W2 + W3 X 5219.69. low6 = 0.5220% 

Now we know that Qo is bounded by 

0.5218% 5 Qo 5 0.5220% 

The exact value is 

QO = WI - W2 + W3 - W4 = 5219.38. lop6 % 0.5219% 

By comparison, the upper bound obtained by (4.63) is equal to 

k 

I - n ( l  - Q j )  = 0.00524249 M 0.5242% 
j= l  

A number of computer programs for reliability and fault tree analysis is based 
on the inclusion-exclusion principle. Among these is the fundamental KITT code 
(Kinetic Tree Theory) (see Vesely and Narum, 1970). 

The inclusion-exclusion principle may also be applied to the minimal path sets 
P I ,  P2, . . . , P p .  Let Fj denote the event that the components in the minimal path set 
Pj  are all functioning; j = I ,  2, . . . , p .  
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In this case the system reliability p s  = 1 - Qo is 

and 

where p ,  is the reliability of component i for i = 1,2, . . . , n. Successive upper and 
lower bounds of the system reliability p s  may be derived in the same way as we dealt 
with (4.57). 

4.6 REDUNDANCY 

In some structures, single items (components, subsystems) may be of much greater 
importance for the system’s ability to function than others. If, for example, a single 
item is operating in series with the rest of the system, failure of this single item implies 
that the system fails. Two ways of ensuring higher system reliability in such situations 
are (1) use items with very high reliability in these critical places in the system, or 
(2) introduce redundancy in these places (i.e., introduce one or more reserve items). 
The type of redundancy obtained by replacing the important item with two or more 
items operating in parallel, is called active redundancy. These items then share the 
load right from the start until one of them fails. 

The reserve items can also be kept in standby in such a way that the first of them is 
activated when the ordinary item fails, the second is activated when the first reserve 
item fails, and so on. If the reserve items carry no load in the waiting period before 
activation (and therefore cannot fail in this period), the redundancy is called passive. 
In the waiting period such an item is said to be in cold standby. If the standby items 
carry a weak load in the waiting period (and therefore might fail in this period), the 
redundancy is called partly loaded. In the following sections we will illustrate these 
types of redundancy by considering some simple examples. 

4.6.1 

Consider the standby system in Fig. 4.14. The system functions in the following way: 
Item 1 is put into operation at time t = 0. When it fails, item 2 is activated. When 
it fails, item 3 is activated, and so forth. The item that is in operation is called the 
active item, while the items that are standing by ready to take over are called standby 
or passive items. When item n fails, the system fails. 

Here we assume that the switch S functions perfectly and that items cannot fail 
while they are passive. Let denote the time to failure of item i ,  for i = 1,2, . . . , n .  

Passive Redundancy, Perfect Switching, No Repairs 
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Fig. 4.14 Standby system with n items. 

The lifetime, T ,  of the whole standby system is then 

The mean time to system failure, MTTFs, is obviously 

n 

MTTFs = C MTTFj 
i = l  

where MTTFi denotes the mean time to failure of item i ,  i = 1,2, . . . , n. 
The exact distribution of the lifetime T can only be determined in some very special 

cases. Such a special case occurs when T I ,  T2, . . . , Tn are independent and exponen- 
tially distributed with failure rate h. According to (2.40) T is gamma (Erlangian) 
distributed with parameters n and h. The survivor function of the system is then 

(4.65) 

If we have only one standby item, such that n = 2, the survivor function is 

(4.66) 

If we have two standby items (i.e., n = 3), the survivor function is 

If we are unable to determine the exact distribution of T ,  we have to be content 
with an approximate expression for the distribution. Assume, for example, that the 
lifetimes TI, T2, , . . , Tn are independent and identically distributed with mean time 
to failure p and variance 02. According to Lindeberg-Levy’s central limit theorem 
(Dudewicz and Mishra, 1988, p. 316), when n +. 00, T will be asymptotically 
normally distributed with mean n,u and variance no2. 
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. 

Fig. 4.15 Standby system with 2 items. 

In this case the survivor function of the system may be approximated by 

where a(.) denotes the distribution function of the standard normal distribution 
“(0, 1). 

4.6.2 Cold Standby, Imperfect Switch, No Repairs 

Here we will restrict ourselves to considering the simplest case with n = 2 items. 
Fig. 4.15 shows a standby system with an active item (item 1) and an item in cold 
standby (item 2). The active item is under surveillance by a switch, which activates 
the standby item when the active item fails. 

Let us furthermore assume that the active item has constant failure rate kl . When 
the active item fails, the switch will activate the standby item. The probability that 
this switching is successful is denoted by 1 - p .  The failure rate of item 2 in standby 
position is assumed to be negligible. When the standby item is activated, its failure rate 
is k.2. The three items operate independently. No repairs are carried out. In addition 
we assume that the only way in which the switch S can fail is by not activating the 
standby item when the active item fails. In many practical applications the switching 
will be performed by a human operator. The probability p of unsuccessful activation 
of the standby item will often include the probability of not being able to start the 
standby item. 

The system is able to survive the interval (0, t ]  in two disjoint ways. 

1. Item 1 does not fail in (0, t ]  (i.e., TI > t). 

2.  Item 1 fails in a time interval ( r ,  r + d t ]  where 0 < t < t .  The switch S is 
able to activate item 2. Item 2 is activated at time r and does not fail in the 
time interval (t, t ] .  

Let T denote the time to system failure. Events 1 and 2 are clearly disjoint. Hence the 
survivor function of the system Rs( t )  = Pr(T > t )  will be the sum of the probability 
of the two events. 

The probability of event 1 is 

Pr(Tl > t )  = e-’~‘ 
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Next consider event 2: Item 1 fails in (t, t + d t ]  with probability f i ( t ) d t  = 
hIe-*lr d t .  The switch S is able to activate item 2 with probability (1 - p ) .  

Item 2 does not fail in (t, r ]  with probability e-*z('-'). Since item 1 may fail at 
any point of time t in (0, c], the survivor function of the system is when hl fI h2. 

When hl = A2 = A, we get 

A t  

The MTTFs for the system is 

1 1 
- - + ( l - p ) -  

hl A2 

- 

(4.68) 

(4.69) 

(4.70) 

This result applies for all values of h~ and h2. 

Example 4.15 
Consider the standby system in Fig. 4.15, composed of two identical pumps each with 
constant failure rate h = 1 0-3 failureshour. The probability p that the switch S will 
fail to activate (switch over and start) the standby pump has been estimated to 1.5%. 

The survivor function of the pump system at time t is, according to (4.69) 

~ s ( t )  = (1 + ( 1  - p)ht)e-*' (4.7 1 )  

Hence, the probability that this system survives 1 .OOO hours is 

Rs( 1 .OOO) = 0.7302 

The mean time to system failure is 

1 
h 

MTTFs = - (1 + ( 1  - p ) )  = 1985 hours 
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4.6.3 Partly Loaded Redundancy, Imperfect Switch, No Repairs 

Consider the same standby system as the one in Fig. 4.15, but change the assumptions 
so that item 2 carries a certain load before it is activated. Let ho denote the failure rate 
of item 2 while in partly loaded standby. The system is able to survive the interval 
(0 ,  t ]  in two disjoint ways. 

1. Item 1 does nor fail in (0, t ]  (i.e., TI > r ) .  

2. Item 1 fails in a time interval (t, t + d t ) ,  where 0 < t < t .  The switch S is 
able to activate item 2. Item 2 does not fail in (0, t], is activated at time t, and 
does not fail in (t ,  t ] .  

Let T denote the time to system failure. The survivor function of the system, 
& ( t )  = Pr(T > t ) ,  will be the sum of the probabilities for the two events, since they 
are disjoint. 

The switch S is able to activate item 2 with probability 1 - p .  Item 2 does not fail 
in (0, t ]  in partly loaded standby with probability e-*Os, and item 2 does not fail in 
(7, I ]  in active state with probability e-'z('-'). 

Since item 1 may fail at any point of time 1 in (0, T], the survivor function of the 
system becomes 

Considerevent2: Item 1 failsin (t, r+dtJwithprobabilityfr (t) d t  = hle-'17 d t .  

where we have assumed that (hl + ho - h2) # 0. 
When (hl + A.0 - h2) = 0, the survivor function becomes 

R s ( t )  = e-*I' + (1 - p)hlte-**' (4.73) 

The mean time to system failure is 

(4.74) 

This result applies for all values of Lo, h i ,  and h2. In this section we have tacitly made 
certain assumptions about independence. These assumptions will not be discussed 
thoroughly here. An introduction to standby redundancy is given by Trivedi (1982), 
Billinton and Allen (1983), and Endrenyi (1978). A more detailed discussion is 
presented by Ravichandran (1990). The concept of redundancy is also discussed in 
Chapter 8, where we use Markov models to study repairable as well as nonrepairable 
standby systems. 
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PROBLEMS 

4.1 Show that when the components are independent, the system reliability p s ( t )  
may be written as (4.9, that is, a function of the component reliabilities, pi ( t )  ( i  = 
1 ,2 , .  . . , n) ,  only. 

4.2 An old-fashioned string of Christmas tree lights has 10 bulbs connected in series. 
The 10 identical bulbs are assumed to have independent life times with constant failure 
rate A. Determine A such that the probability that the string survives 3 weeks is at 
least 99%. 

4.3 Consider three identical items in parallel. What is the system reliability if each 
item has a reliability of 98%? 

4.4 A systemconsists of five identical components connected in parallel. Determine 
the reliability of the components such that the system reliability is 97%. 

4.5 A system must have a reliability of 99%. How many components are required 
in parallel when each component has a reliability of 65%? 

4.6 A plant has two identical and parallel process streams A and B .  Each process 
stream has a transfer pump and a rotary filter as shown in Fig. 4.16. Both process 
streams have to be functioning to secure full production. [This problem is adapted 
from an example in Henley and Kumamoto (1981, p. 305)] To improve the sys- 

Fig. 4.76 Two parallel process streams (system 1).  

tem availability it has been proposed to install an extra process stream, as shown in 
Fig. 4.17. 

System 2 has full production when at least two of the three process streams are 
functioning (i.e., a 2-out-of-3 system). It is assumed that the pumps and the filters 
are functioning and repaired independent of each other. The average availability of 
a pump has been estimated to be 99.2% while the average availability of a filter is 
96.8%. 

I -- 

Fig. 4.17 Three parallel process streams (system 2). 



PROBLEMS 179 

(a) Determine the average availability with respect to full production for the two 
systems. (Note that full production is achieved when at least two process 
streams are functioning). 

(b) Assume that the total cost of a pump is $15 per day (including installation, 
operation, and maintenance). The total cost of a filter is estimated to $60 per 
day. The company gets a penalty of $10000 per day when the system is not 
able to give full production. Which of the two systems would you choose to 
minimize the cost? 

4.7 
constant failure rate A. 

Consider a 2-out-of-3 system of independent and identical components with 

(a) Find the probability density function of the time to failure T of the 2-out-of-3 
system. 

(b) Find the mode, the median, and the MTTF for the time to failure T 

(c) Make a sketch of the probability density function, and note where the mode, 
the median, and the MTTF are located. 

(d) Find the MRL of the 2-out-of-3 system at age t .  Make a sketch of the function 
g ( t )  = MRL(t)/MTTF. Find limr+cz, g ( t )  and give a physical interpretation 
of this limit. 

4.8 Consider the failure rate function z ~ ( t )  for a 2-out-of-3 structure of independent 
and identical components with constant failure rate h that is illustrated in Fig. 4.5. 
Show that liml+m zs( t )  = 2h. and give a physical explanation of why this is a 
realistic limit. 

4.9 Consider a coherent structure of n independent components with system sur- 
vivor function R s ( t )  = h ( R l ( r ) ,  R 2 ( t ) ,  . . . , R,(t)) .  Assume that all the n compo- 
nents have life distributions with increasing failure rate (IFR), and that the mean time 
to failure of component i is MTTFi = pi, for i = 1, 2, . . . , n. Show that 

Rs( t )  3 h ( e - t / @ l ,  e-‘ /@2,  . . . , e-‘ /@n) for o < t < min{pl, p2, . . . , pcL,J 

Hint: Use the result in Problem 2.32. 

4.10 Consider a series structure with two “independent” components B and C with 
constant failure rates he = 5.0 . failures 
per hour, respectively. The system is put into operation and is functioning at time 
t = 0. Each time the system fails, the component which is responsible for the failure 
is repaired to an “as good as new” condition. When one of the components fails, the 
load on the other component will disappear, and this component will consequently 
not fail when the failed component is “down.” The mean repair time of component 
B is T B  = 5 hours, while the mean repair time of component C is TC = 10 hours. 

failures per hour and hc = 3.0. 
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(a) Show that the mean repair time of the system is 

(b) Determine the average availability A of the system. 

(c) Since the failure of one component prevents the other component from failing, 
the states of the components are not fully independent of each other. Determine 
the average availability A [  of the system when you assume (wrongly) that the 
components are fully independent, and compare with the average availability 
A which was found in (a). Discuss the difference between A and A t .  

4.11 
component has an MTTF = 5000 hours. 

Consider a series structure of 10 independent and identical components. Each 

(a) Determine MTTFsystem when the components have constant failure rates. 

(b) Assume next that the life lengths of the components are Weibull distributed 
with shape parameter a = 2.0. Determine MTTFsystem and compare with 
(a). 

(c) Assume now that you have a parallel structure of two independent and identical 
components with MTTF = 5000 hours. Repeat problems (a) and (b) and 
discuss the results. 

4.12 A process plant needs a regular supply of high-pressure steam. If the steam 
supply is shut down, the process must also be shut down immediately. The start- 
up procedures are rather time-consuming. A shutdown of the steam supply may 
therefore imply significant consequences. The steam producing system comprises 
three identical steam vessels. The three vessels are physically separated and have 
separate control and supply systems. The three vessels may thus be considered as 
independent items. 

Consider first only one of the vessels. Assume that the vessel has a constant failure 
rate 2.02. lop4 failures per hour when it is operated with normal capacity. Failure is 
in this context defined to be a spurious shutdown of the steam supply from the vessel. 

(a) Find the MTTF of the vessel. 

(b) Find the probability that the vessel will survive a period of 4 months without 
failure. 

The failure rate of the vessel depends on the capacity at which the vessel is operated. 
It has been estimated that 
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where k p  denotes the failure rate when the vessel is operated at loop% capacity, and 

A.0 = 6.5 . failures per hour 

1 1  = 3.5 . lop4 failures per hour 

(c) Make a sketch of the failure rate A,, as a function of p .  In particular, write 
down the failure rate when the capacity is 40, 80, and 100%. 

Each vessel is equipped with four independent burner elements. When a burner 
has been started (ignited), it has a constant failure rate kb = 5.0 . failure per 
hour. When a vessel is operated at 80% capacity, all the four burner elements are 
normally active. It is, however, sufficient that three of the four burner elements are 
functioning. 

(d) Consider a vessel which is operated at 80% capacity where all the four burner 
elements are active at time t = 0. Determine the probability that the burner 
system survives a period of 2 months without any burner element failures, when 
no repair is carried out. 

The probability that a passive burner cannot be started has been estimated to be 3%. 

(e) Determine the probability that a standby (passive) vessel may be started and 
survives a period of 2 months, when the vessel is operated at 80% capacity, and 
no repair is carried out. 

The process needs a steam supply corresponding to 80% capacity of one vessel. Based 
on regularity arguments, two vessels are, however, normally active at 40% capacity 
each. The third vessel remains in cold standby. The changeover from passive to 
active operation is normally carried out without other problems than those connected 
to the start-up of the burner elements. When a vessel is operated at 40% capacity, 
only two of the four burner elements are used. Two burners are also necessary for the 
operation. If one of the two active vessels fails, the following procedure is used: 

0 The capacity of the functioning vessel is increased to 80% if possible. 

0 The standby vessel is started, if possible, by starting two burner elements (40% 
capacity). 

(f) Assume that one of the active vessels fails. Determine the probability that the 
capacity of the other active vessel can be increased from 40 to 80%, when you 
know that the two other burner elements in the same vessel have been passive 
since the last major overhaul of the vessel. 



5 
Component Importance 

5.1 INTRODUCTION 

From the preceding chapters it should be obvious that some components in a system 
are more important for the system reliability than other components. A component 
in series with the rest of the system is a cut set of order 1, and is generally more 
important than a component that is a member of a cut set of higher order. In this 
chapter a number of component importance measures are defined and discussed. The 
importance measures may be used to rank the components, that is, to arrange the 
components in order of increasing or decreasing importance. The measures may also 
be used for classifkation of importance, that is, to allocate the components into two 
or more groups, according to some preset criteria. 

Throughout this chapter we will consider a system of n independent components 
with component reliabilities pi ( t ) ,  for i = 1,2, . . . , n. The system reliability with 
respect to a specified system function is denoted h ( p ( t ) ) .  When we discuss compo- 
nent importance, the importance is always seen in relation to the specified system 
function. As an example, consider a process shutdown system. The essential func- 
tion of the system is to shut down the process on demand in case of a significant 
process disturbance or an emergency. Another function for the shutdown system is 
to distinguish real demand signals from false signals and prevent spurious process 
shutdowns. When we talk about the importance of a component in the process safety 
system, we have to specify which of the two functions we are considering. A compo- 
nent may be very important for the essential shutdown function but may have little, 
or no, importance for the other system functions. 
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The following component importance measures are defined and discussed in this 
chapter: 

1. Birnbaum’s measure (and some variants) 

2. The improvement potential measure (and some variants) 

3. Risk achievement worth 

4. Risk reduction worth 

5. The criticality importance measure 

6. Fussell-Vesely’s measure 

Several other measures are defined and described by Lambert (1975) and Henley and 
Kumamoto (1981). 

The various measures are based on slightly different interpretations of the concept 
component importance. Intuitively, the importance of a component should depend 
on two factors: 

0 The location of the component in the system 

0 The reliability of the component in question 

and, perhaps, also the uncertainty in our estimate of the component reliability. 
How a component importance measure is applied depends on the phase in the 

system’s life cycle. In the system design phase, the importance measure may be used 
to identify weak points (bottlenecks) and components that should be improved to im- 
prove the system reliability. The reliability of a component may be improved by using 
a higher quality component, by introducing redundant components, by reducing the 
operational and environmental loads on the component, or by improving the main- 
tainability of the component. To chose the optimal improvement is a complex task 
and will not be discussed any further in this chapter. The objective of the component 
importance measure is to help the designer to identify the components that should 
be improved and rank these components in order of importance. In the operational 
phase, the component importance measure may be used to allocate inspection and 
maintenance resources to the most important components. The measure may also be 
used to identify components that should be modified or replaced with higher quality 
components. 

Component importance measures are commonly used in risk assessments and 
especially within probabilistic risk assessments of nuclear power plants (e.g., see 
EPRI 1995). In these applications the component importance measures are often 
called risk importance measures and are mainly used to identify components and 
subsystems that should be improved to reduce the risk and to identify components 
and subsystems for risk-based in service inspection and testing (e.g., see Cheok et 
al. 1998; Blakey et al. 1998). The risk importance measures are similar to the 
component importance measures but are defined within a risk analysis terminology 
that is slightly different from the terminology used in this book. 
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The various component importance measures are defined and discussed in the 
following sections. Some numerical examples are presented in Section 5.8 together 
with a brief comparison of the measures. 

5.2 BIRNBAUM’S MEASURE 

Birnbaum (1  969) proposed the following measure of the reliability importance of a 
component : 

Definition 5.1 Birnbaum’s measure of importance’ of component i at time t is 

(5.1) 

0 

Birnbaum’s measure is thus obtained by partial differentiation of the system reliability 
with respect to pi ( t ) .  This approach is well known from classical sensitivity analysis. 
If I B ( i  I t )  is large, a small change in the reliability of component i will result in a 
comparatively large change in the system reliability at time t .  

By using the fault tree notation introduced in Section 4.4, 

qi( t )  = 1 - p j ( t )  for i = I ,  2 , .  . . , I I  

Qo(t> = 1 - h(p(t))  (5.2) 

we observe that (5.1) may be written 

fo r i  = 1,2,  . . . ,  n I ( i l t ) = -  B ago@) 
aq i  ( I )  

(5.3) 

In Section 4.2 we used pivotal decomposition to show that the system reliability 
h(p ( t ) )  may be written as a linear function of p i ( t )  for i = 1 , 2 ,  . . . , n when the n 
components are independent. 

h ( p ( t ) )  = p i ( t )  h(l i ,  P ( t ) )  + (1 - pi ( t )>  h(Oi, p ( t ) >  

= p i ( t ) .  [h( l i ,  p ( t ) )  - h(Oi,  p(t))l- h(Oi, p ( t ) )  (5.4) 

where h ( I , ,  p ( t ) )  denotes the (conditional) probability that the system is functioning 
when it is known that component i is functioning at time t ,  and h(Oi, p ( t ) )  denotes 
the (conditional) probability that the system is functioning when component i is in a 
failed state at time t .  

Birnbaum’s measure of the reliability importance of component i at time t can 
thus be written as 

(5.5) 

’ Named after the Hungarian-American professor Zygmund William Birnbaum (1 903-2000) 
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4 

F/g. 5.1 Illustration of Birnbaum’s measure of reliability importance. 

This alternative expression for Birnbaum’s measure is illustrated in Fig. 5.1. 

Remurk: Note that Birnbaum’s measure IB(i I t )  of component i only depends on 
the structure of the system and the reliabilities of the other components. IB(i I t )  is 
independent of the actual reliability pi ( t )  of component i .  This may be regarded as 
a weakness of Birnbaum’s measure. 0 

Example 5.1 
Consider a series structure of two independent components 1 and 2. Let pi denote 
the reliability of component i, and assume that pi is not a function of the time t ,  for 
i = 1,2.  When component I is functioning ( X I  = 1), the system is functioning if 
and only if component 2 is functioning, in which case the reliability is h( 11, p )  = p2. 
When component 1 is in a failed state, the system will be in a failed state irrespective 
of the state of component 2,  in which case h(01, p )  = 0. Birnbaum’s measure of 
component 1 is therefore from (5.5) 

IBU) = h ( l l ,  p )  - h(01, p )  = p2 

This procedure of determining Birnbaum’s measure is in many cases more simple to 
calculate than (5.1) and is therefore used in some computer programs. 

We will now show a third way of expressing Birnbaum’s measure. In Section 4.2 
we saw that h ( . i ,  p( t ) )  = E [ @ ( . i ,  X ( t ) ] ,  such that (5.5) can be written 

zB(i  I t >  = E [ @ ( l i ,  x(t)l- E[@(Oi, x(t)l 
= E[@(li, x(t)  - @(Oi, x(t>l 

When @ ( X ( t ) )  is a coherent structure, [@(l i ,  X ( t ) )  - @ ( O i ,  X ( t ) ) ]  can only take on 
the values 0 and 1. Birnbaum’s measure (5.5) can therefore be written as 

~ ~ ( i  I t )  = Pr(@(li, ~ ( t ) )  - 4(0i, X ( r > )  = 1) (5.6) 
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This is to say that IB(i I t )  is equal to the probability that ( l i ,  X ( t ) )  is a critical path 
vector for component i at time t (see Definition 3.6). 

When (li , X ( t ) )  is a critical path vector for component i ,  we often, for the sake 
of brevity, say that component i is critical for the system. The state of component i 
will, in other words, be decisive for whether or not the system functions at time t .  

Note that the fact that component i is critical for the system, tells nothing about 
the state of component i. The statement concerns the other components of the system 
only. If component i is critical for the system, then component i must either be a cut 
set of order I ,  or be a member of a cut set where all the other components in the same 
cut set have failed. 

An alternative definition of Birnbaum’s measure is thus: 

Definition 5.2 Birnbaum’s measure of reliability importance of component i at time 
f is equal to the probability that the system is in such a state at time t that component 

0 i is critical for the system. 

Note that this definition of reliability importance also can be used when the compo- 
nents are dependent. 

Example 5.2 
Reconsider the series structure in Example 5.4 where component 1 is critical for the 
system if, and only if, component 2 is functioning. Birnbaum’s measure of component 
1 is therefore from Definition 5.2: 

IB(l)  = Pr(Component 1 is critical for the system) 
= Pr(Component 2 is functioning) = p2 

Birnbaum’s Measure of Structural Importance Birnbaum’s measure of the 
structural importance B # ( i )  of component i was defined in Section 3.5. We will now 
show how B,#,(i) can be found from Birnbaum’s measure of reliability importance. 

for all j # i. The different realizations of the 
stochastic vector 

Let the reliabilities p j ( t )  = 

will then all have the probability 

1 
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where Q,#, ( i )  is defined as in Section 3.1 1. 
for j # i, 

then Birnbaum's measure of reliability importance of component i and his measure 
of structural importance for component i coincide. 

Thus we have shown that when all the component reliabilities p j  ( t )  = 

(5.8) 

Equation (5.8) is often used to calculate structural importance. 

Remarks 

1. Assume that component i has failure rate A;. In some situations we may be 
interested in measuring how much the system reliability will change by making 
a small change to the failure rate Ai .  The sensitivity of the system reliability 
with respect to changes in A; can obviously be measured by 

A similar measure can be used for all parameters related to the component 
reliability pj(t), for i = 1 ,2 ,  . . . , n. In some cases, several components in a 
system will have the same failure rate A.  To find the sensitivity of the system 
reliability with respect to changes in A, we can still use ah(p ( t ) ) / aA .  

2. Consider a system where component i has reliability pi ( t )  that is a function of 
a parameter 6;. The parameter 6, may be the failure rate, the repair rate, or the 
test frequency, of component i .  To improve the system reliability, we may want 
to change the parameter 0; (by buying a higher quality component or changing 
the maintenance strategy). Assume that we are able to determine the cost of 
the improvement as a function of e;, that is, ci = c(Oi), and that this function is 
strictly increasing or decreasing such that we can find its inverse function. The 
effect of an extra investment related to component i may now be measured by 

a h ( ~ ( t ) )  a h ( ~ ( t ) )  aei B . a~i(t) aei 
-- - - I  ( I  I t ) . - , -  

ac; aej aci aej acj 
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3. In a practical reliability study of a complex system, one of the most time- 
consuming tasks is to find adequate estimates for the input parameters (failure 
rates, repair rates, etc.). In some cases, we may start with ratherrough estimates, 
calculate Birnbaum's measure of importance for the various components, or the 
parameter sensitivities (5.9), and then spend the most time finding high-quality 
data for the most important components. Components with a very low value of 
Birnbaum's measure will have a negligible effect on the system reliability, and 
extra efforts finding high-quality data for such components may be considered 
a waste of time. 

5.3 IMPROVEMENT POTENTIAL 

Consider a system with reliability h ( p ( t ) )  at time t .  In some cases it may be of interest 
to know how much the system reliability increases if component i ( i  = 1 ,2 ,  . . . , n )  
is replaced by a perfect component, that is, a component such that pi ( t )  = 1. The 
difference between h( l i ,  p ( t ) )  and h ( p ( t ) )  is called the improvement potential (IP) 
with respect to component i and denoted by I I P ( i  I t ) .  

Definition 5.3 The improvement potential with respect to component i at time t is 

I"(i  I t )  = h ( l i ,  p ( t ) )  - h ( p ( t ) )  for i = 1 , 2 , .  . . , n (5.10) 

0 

Birnbaum's measure of importance, I B ( i  I t )  is from (5.5) seen to be the slope of the 
line in Fig. 5.1 and can alternatively be expressed as 

(5.1 1) 

The improvement potential with respect to component i is then 

or, by using the fault tree notation (5.2) 

Remark: The improvement potential of component i is the difference between the 
system reliability with a pegect component i ,  and the system reliability with the 
actual component i .  In practice, it is not possible to improve the reliability p i ( t )  of 
component i to 100% reliability. Let us assume that it is possible to improve p i ( t )  
to new value pj"'(t)  representing, for example, the state of the art for this type of 
components. We may then calculate the realistic or credible improvement potential 
(CIP) of component i at time t ,  defined by 
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where h ( p y ’ ( t ) ,  p ( t ) )  denotes the system reliability when component i is replaced 
by a new component with reliability p p ’ ( t ) .  Because the system reliability h ( p ( t ) )  
is a linear function of pi (t), and because Birnbaum’s measure is the slope of the line 
in Fig. 5.1, we can write (5.14) as 

~ ( i  11) = I B ( i  I t ) .  ( p y ’ ( t )  - p i ( ? ) )  (5.15) 

Schmidt et al. (1985) introduced the concept of a generalized importance measure 
(GIM) that may be written as 

Cheok et al. (1998) rearranged this expression and introduced a new general impor- 
tance measure given by (with our notation): 

which may be written as 

IGIM-2 ( i  1 t )  = 1 + P M ( i  1 t )  

The three importance measures ICIp(i I t) ,  IGIM(i  .( t ) ,  and ZGTMP2(i 1 t)  will give 
approximately the same information but different numerical values. All the three 
measures can be considered to be general since the new component reliability p y ’ ( t )  
is not restricted to a value of 0 or 1 as was the case for the improvement potential 
(and also for the measures risk reducing worth and the risk achievement worth that 
are introduced in the following sections). It is therefore possible to plot the measures 
as a function of p p ’ ( t )  to illustrate the effect of changes in p p ’ ( t ) .  Such a curve is 

0 called a risk importance curve by Cheok et al. (1998). 

5.4 RISK ACHIEVEMENT WORTH 

Risk achievement worth (RAW) has been introduced as a risk importance measure in 
probabilistic safety assessments of nuclear power stations (EPRI 1995). The RAW 
is defined by using risk analysis terminology (e.g., see Cheok et al. 1998). Here we 
present the measure using reliability terminology. 

Definition 5.4 The importance measure risk achievement worth (RAW) of compo- 
nent i at time t is 

(5.16) 
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The RAW, IRAW(i 1 t ) ,  is the ratio of the (conditional) system unreliability if com- 
ponent i is not present (or if component i is always failed) with the actual system 
unreliability. The RAW presents a measure of the worth of component i in achieving 
the present level of system reliability and indicates the importance of maintaining the 
current level of reliability for the component. 

Example 5.3 
Consider a process safety system with reliability h ( p )  at time t .  In many applications 
we study the long-term, or steady-state, situation such that h ( p )  is independent of time. 
Let us assume that the demands for the safety system occurs at random with frequency 
uo. An accident occurs if the safety system does not function when a demand occurs. 
The accident frequency is therefore wacc = u g  .( 1 - h ( p ) )  (see Section 8.2 for adetailed 
explanation). Let us now assume that component i in the safety system is known not 
to be functioning. This may, for example, be because component i is disconnected 
for maintenance or some other reason. The (conditional) system unreliability is now 
1 - h(Oi, p )  and the accident frequency is uAcc = vo . ( I  - h(Oi, p ) ) .  We may then 
write 

If we disconnect component (or subsystem) i, the accident frequency will increase 
with a factor of IRAw(i) [and the unreliability of the safety system will increase with 
a factor of rRAW(i) l .  

In nuclear applications, we are primarily interested in the core damage frequency 
(CDF). If we disconnect item i from the main safety system, the core damage fre- 
quency becomes 

CDF' = IRAW(i) . C D F ~  

where CDFo denotes the base core damage frequency. 

5.5 RISK REDUCTION WORTH 

Risk reduction worth (RRW) is, like RAW introduced in Section 5.4, mainly used as a 
risk importance measure in probabilistic safety assessments of nuclear power stations 
(EPRI 1995). 

Definition 5.5 The importance measure risk reduction worth (RRW) of component 
i at time r is 

(5.17) 

0 

The RRW, IRRW(i 1 t ) ,  is the ratio of the actual system unreliability with the (condi- 
tional) system unreliability if component i is replaced by a perfect component with 
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pi ( t )  = 1. In some applications, failure of a “component” may be an operator error 
or some external event. If such “components” can be removed from the system, for 
example, by canceling an operator intervention, this may be regarded as replacement 
with a perfect component. 

We notice that IRRW(i I t )  1 1, and that 

By fault tree notation and (5.13) we get 

The RRW may therefore be expressed by the improvement potential or by Birnbaum’s 
measure. 

Example 5.3 (Cont.) 
Reconsider the process safety system in Example 5.3 with reliability h(p). Let 
us assume that we contemplate improving component i and would like to know the 
maximum potential improvement by replacing component i with a perfect component 
with reliability pi = 1. The (conditional) system reliability will then be 1 - h( li , p ) ,  
which we can use (5.17) to express as 

If we, as an example, find that IRRW(i) = 2, than the system unreliability we would 
obtain by replacing component i with a perfect component would be 50% of the initial 
unreliability 1 - h(p). 0 

5.6 CRITICALITY IMPORTANCE 

Criticality importance (CI) is a component importance measure that is particularly 
suitable for prioritizing maintenance actions. Criticality importance is related to 
Birnbaum’s measure. As a motivation for the definition of criticality importance, we 
recall from page 187 that component i is critical for the system if the other components 
of the system are in such states that the system is functioning if and only if component 
i is functioning. To say that component i is critical is thus a statement about the other 
components in the system, and not a statement about component i .  

Let C( l i ,  X ( t ) )  denote the event that the system at time t is in a state where 
component i is critical. According to (5.6), the probability of this event is equal to 
Birnbaum’s measure of component i at time t .  

Pr(C(li,  x ( t ) > )  = l B ( i  I t )  (5.19) 
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Since the components of the system are independent, the event C( l i ,  X ( t ) )  will be 
independent of the state of component i at time f .  

The probability that component i is critical for the system and at the same time is 
failed at time t is then 

Pr(C(lj ,  ~ ( t ) )  n ( x i ( [ )  = 0)) = IB(i I t ) .  (1 - p i ( t ) >  (5.20) 

Let us now assume that we know that the system is in a failed state at time t ,  that is, 
4 ( X ( f ) )  = 0. The conditional probability (5.19) when we know that the system is in 
a failed state at time t is then 

Since the event C(li,  X ( t ) )  n ( X ( t )  = 0) implies that 4 ( X ( t ) )  = 0), we can use 
(5.20) to get 

This result is called the criticality importance, and we give the formal definition as: 

Definition 5.6 The component importance measure criticality importance I C R ( i  I t )  
of component i at time t is the probability that component i is critical for the system 
and is failed at time t ,  when we know that the system is failed at time t .  

(5.23) 

By using the fault tree notation (5.2), ICR(i I t )  may be written 

(5.24) 

The criticality importance I C R ( i  I t )  is in other words the probability that compo- 
nent i has caused system failure, when we know that the system is failed at time t .  
For component i to cause system failure, component i must be critical, and then fail. 
Component i will then, by failing, cause the system to fail. When component i is re- 
paired, the system will start functioning again. This is why the criticality importance 
measure may be used to prioritize maintenance actions in complex systems. 

Remark: We notice from (5.24) that the criticality importance ICR(i I t )  is close 
to a linear function of q i ( t ) ,  at least for systems with a high level of redundancy. 
This is because Birnbaum’s measure is not a function of q;( t ) ,  and because qi(t)  will 
have a rather low influence on Qo(t )  in highly redundant systems. As seen from 
Examples 5.4 and 5.5, the linearity is not adequate for very simple systems with two 
components. 
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From (5.18) we observe that the RRW can be expressed as a function of criticality 
importance: 

(5.25) 

5.7 FUSSELL-VESELY'S MEASURE 

J. B. Fussell and W. Vesely suggested the following measure of the importance of 
component i (see Fussell 1975): 

Definition 5.7 Fussell-Vesely's measure of importance, ZW(i I t )  is the probability 
that at least one minimal cut set that contains component i is failed at time t ,  given 

0 

We say that a minimal cut set is failed when all the components in the minimal cut 
set are failed. 

Fussell-Vesely's measure takes into account the fact that a component may con- 
tribute to system failure without being critical. The component contributes to system 
failure when a minimal cut set, containing the component, is failed. 

Consider a system with k minimal cut sets K1, K2,  . . . , Kk. According to (3.12), at 
time t ,  the system can then be represented logically by a series structure of k minimal 
cut parallel structures ~ 1 ( X ( r ) ) ,  ~ 2 ( X ( t ) ) ,  . . . , K k ( X ( t ) ) .  The system is failed if and 
only if at least one of the k minimal cuts is failed. Note that the same component may 
be a member of several different minimal cut sets. 

that the system is failed at time t .  

We introduce the following notation: 

Di ( t )  

C ( r )  
mi 
Ef ( t )  

At least one minimal cut set which contains component i is failed 
at time t 
The system is failed at time r 
The number of minimal cut sets which contain component i 
Minimal cut set j among those containing component i is failed 
at timet for i = 1 ,2 , .  . . , n and j = 1 ,2 , .  . .,mi 

We may then write Fussell-Vesely's measure as 

but since & ( t )  implies C ( t )  

(5.26) 
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Since the event Di ( t )  occurs if at least one of the events E j  ( t )  occurs, j = 1,2, . . . , mi, 
i = 1 ,2 ,  . . . ,  n: 

Since the components are assumed to be independent, then 

Pr(C(t)) = Pr(+(X(t)) = 0) = 1 - h ( p ( t ) )  

where K j  denotes the j th minimal cut set that contains component i, and ~ j ( X ( t ) )  
is the corresponding cut parallel structure. 

Since the same component may be a member of several cut sets, the events Efi(r) ,  

j = 1,2,  . . . , mi are usually not disjoint. For the same reason, the events Efi ( t ) ,  
j = 1,2, . . . , mi, will not in general be independent, even if all the components are 
independent. 

If the components are independent or associated (see Chapter 6), the cut parallel 
structures ~ f ( X ( t ) )  will also be associated. It can then be shown that the following 
inequality is valid [compare with (4.49))]: 

(5.28) 

When the component reliabilities are high, (5.28)-with equality sign-will be ap- 
proximately correct. Then 

A somewhat cruder approximation is 

By using the fault tree notation (5.2) and 

then formulas (5.29) and (5.30) become 

(5.29) 

(5.30) 

(5.31) 

(5.32) 
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and 

(5.33) 

For complex systems, Fussell-Vesely's measure is considerably easier to calculate 
by hand than Birnbaum's measure and the criticality importance measure. When 
Fussell-Vesely's measure is to be calculated by hand, the formula (5.33) is normally 
used. The formula is simple to use and at the same time gives a good approximation 
when the component reliabilities are high. 

In equation 5.33, & : ( t )  denotes the probability that minimal cut set j which con- 

tains component i is failed at time t .  From (5.31) we have that Q> ( t )  = nlEKj qe(t). 
We can put qi ( t )  outside the product and get 

Q>(t, = q i ( t )  . fl q t ( t )  = q i ( t )  . Qir( t )  (5.34) 
& K j . l # i  

where Q'; ( t )  denotes the probability that minimal cut set j which contains component 
i ,  but where component i is removed, is failed at time t .  We may now rewrite (5.33) 
and get 

The system unreliability Qo(r) may, according to (4.64), be approximated by 

k 

(5.35) 

(5.36) 
j=l 

where Q j ( t )  denotes the probability that minimal cut set j is failed at time t for 
j = 1 ,2 ,  . . , , k .  We will use (5.36) to find an approximation to Birnbaum's measure 
(5.3) of component i .  We therefore have to take the partial derivative of Qo(t )  with 
respect to qi ( t ) .  The partial derivative of Q j ( t )  will be zero for all minimal cut sets 
where i is not a member. The partial derivative of a Q f ( r )  where i is a member is 
easily found from (5.34) and we get 

The criticality importance measure is, from (5.24) 

(5.37) 
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Fig. 5.2 Series structure. 

By comparing with (5.35) we see that 

P ( i  1 t )  F5 P ( i  1 t )  

for systems where the approximation (5.36) is adequate. 

(5.38) 

Remark: Consider a system with minimal cut sets C1, C2, . . . , ck. A necessary 
criterion for component i to be critical for the system is that all the components, 
except for component i ,  in at least one minimal cut set containing component i are in 
a failed state. This is, however, not a sufficient criterion for component i to be critical, 
since we have to require the remaining cut sets to be functioning. This fact highlights 
the similarity and the difference between the definitions of criticality importance 
ICR(i I r ) ,  and Fussell-Vesely’s measure IFV(i 1 t ) .  We realize that we always have 
that 

(5.39) F R ( i  I t )  5 IFV(i I t )  

5.8 EXAMPLES 

In this section we illustrate the use of the six component importance measures through 
three simple examples, a series structure with two components, a parallel structure 
with two components, and a 2-out-of-3 structure. The components are assumed to be 
independent, with reliabilities pi, for i = 1,2,3,  that are independent of time. 

Example 5.4 Series Structure 
Consider the series structure in Fig. 5.2 with two independent components with reli- 
abilities: 

pi = 0.98 

p2 = 0.96 

The system reliability at time t is 

h ( p l ,  p2) = PI . p2 = 0.9408 

Birnbaum’s measure Birnbaum’s measure for components 1 and 2, respectively, 
is 

B W P l 1  P2) I (1) = apI = p2 = 0.96 

0 ah(Pl3 p2) I (2) = ap2 = p i  =0.98 
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According to Birnbaum's measure, the component with the lowest reliability in a 
series structure is the most important. This corresponds well with our intuition. A 
series structure can be compared with a chain. We know that a chain is never stronger 
than the weakest link in the chain. The weakest link is therefore the most important. 

lmprovement potential The improvement potential (IP) for components 1 and 
2, respectively, is 

l"(1) = l B ( l ) .  (1 - p i )  = 0.0192 

I"(2) = IB(2) . (1 - p2) = 0.0392 

The improvement potential thus gives the same ranking as Birnbaum's measure for a 
series structure. The weakest component is the most important. 

Risk achievement worth The RAW for components 1 and 2, respectively, is 

In a series structure, all components will have the same importance according to the 
RAW measure. 

Risk reduction worth The RRW for components 1 and 2, respectively, is 

In a series structure, the least reliable component is therefore the most important 
according to the RRW measure. 

Criticality importance The criticality importance for components 1 and 2, re- 
spectively, is 

This agrees with the ranking we got by using Birnbaum's measure. The weakest 
component in a series structure is the most important. 
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Fig. 5.3 Parallel structure. 

Fussell-Vesely’s measure Since there is only one minimal cut set containing 
components 1 and 2, we get 

Pr(D1) = 1 - p~ =0.02 

Pr(D2) = 1 - p2 = 0.04 

while 

Pr(C) = 1 - h ( p 1 ,  p2)  = 1 - p l p 2  = 0.0592 

Fussell-Vesely’s measure is then for component 1 and 2, respectively: 

This agrees with the ranking we got by using Birnbaum’s measure. The weakest 
component in a series structure is the most important. 

Conclusion All the measures, except the RAW, gave the same ranking of the 
components of a series structure; the component with the lowest reliability is the 
most important. According to the risk achievement worth, all components in a series 

Example 5.5 Parallel Structure 
Consider the parallel structure with two independent components illustrated in Fig. 5.3. 
Let the component reliabilities at time t be as in Example 5.4. Then the system reli- 
ability at time t is 

structure are equally important. 0 

 PI 9 P Z )  = PI + ~2 - PI . ~2 = 0.9992 

Birnbaum’s measure Birnbaum’s measure for components 1 and 2, respectively, 
is 

According to Birnbaum’s measure, the component with the highest reliability is the 
most important in a parallel structure. A parallel structure will function as long as at 
least one of its components is functioning. It makes therefore sense to say that the 
most reliable component is most important. 
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lmprowement potential The improvement potential for components 1 and 2, re- 
spectively, is 

I”(1) = I B ( l ) .  (1 - p i )  = 0.0008 

l ” (2 )  = IB(2) .  (1  - p2) = 0.0008 

All the components in a parallel structure are equally important and have the same 
improvement potential. 

Risk achievement worth The RAW for components 1 and 2, respectively, is 

1 - p2 
1 - (PI + p2 - m p 2 )  

1 -p1 

1 - (PI + p2 - PIP2)  

= 50.00 1 - h ( 0 1 , P )  - 

1 - h(02, P> - IRAW - 

- (1) = 
I RAW 

1 - h ( P )  

= 25.00 
( 2 )  = 1 - h ( p )  

In a parallel structure, the most reliable component is the most important component, 
according to the RAW measure. 

Risk reduction worth The RRW for components 1 and 2,  respectively, is 

since the denominator is zero. In a parallel structure, all components will have the 
same, high importance according to the RRW measure. 

Criticality importance The criticality importance of components 1 and 2, respec- 
tively, is 

IB( l )  * (1 - PI) - (1 - Pl)(l - p2) = 
1 - PI - p2 + p1p2 

- CR I ( I )  = 
(1 - Pl)(l - p2) 

All components in a parallel structure have the same criticality importance. This 
result seems reasonable, If a parallel structure is failed, it will start functioning again 
irrespective of which of the components we repair. 

Fussell-Vesely’s measure In the parallel structure the system itself constitutes 
a minimal cut set, that is, D1 (t)  = &(t) = C ( t ) .  Hence 

I”(1 1 t )  = I F “ ( 2  I t )  = 1 

All components in a parallel structure are equally important according to Fussell- 
Vesely’s measure. 
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Fig. 5.4 The 2-out-of-3 structure. 

Conclusion According to Bimbaum’s measure and the RAW, the most reliable 
component in a parallel structure is the most important. The other four measures say 

0 

Example 5.6 The 2-out-of-3 Structure 
Consider the 2-out-of-3 structure of three independent components in Fig. 5.4 with 
component reliabilities: 

that all components in a parallel structure are equally important. 

p1 = 0.98 

p2 = 0.96 

p3 = 0.94 

The system reliability is 

h(p) = p1p2 + p1p3 + p2p3 - 2 ~ 1 ~ 2 ~ 3  = 0.9957 

Birnbaum’s measure Birnbaum’s measure for components 1, 2, and 3, respec- 
tively, is 

Hence in this particular case: 

P ( 1 )  1 1 9 2 )  > P ( 3 )  

According to Bimbaum’s measure the component importance decreases with decreas- 
ing reliability in a 2-out-of-3 structure. The most important is the component with 
the highest reliability. 

Improvement potential For the 2-out-of-3 system we have 

“‘(2) = IB (2) . (1 - pz(r)) = 0.003 1 

Z“(3) = IB(3> . (1  - p 3 ( t ) )  = 0.0035 

I“(1) = ZB(l) .  (1 - pl(t)) = 0.0019 
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such that 

P ( 1 )  < P ( 2 )  < P ( 3 )  

According to the improvement potential the component importance increases with 
decreasing reliability in a 2-out-of-3 structure. The most important is the component 
with lowest reliability. 

We thus get the same result as for Birnbaum’s measure. The RAW of the components 
in a 2-out-of-3 structure decreases with decreasing component reliability. 

Risk reduction worth The RRW of components 1,2, and 3, respectively, is 

and hence 

P W ( 1 )  < ZRRW(2) < ZRRW(3) 

We thus get the same result as for the improvement potential measure. The most 
important component of a 2-out-of-3 structure is, according to RRW, the component 
with the lowest reliability. 

Cfitica/ity importance The criticality importance of components 1, 2, and 3, 
respectively, is 

= 0.4428 I B ( l > .  (1 - PI) P ( 1 )  = 
1 - PI P2 - PI P3 - P2P3 + 2pl P2P3 
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Fig. 5.5 The 2-out-of-3 structure. 

Correspondingly 

ZCR(2) = 0.7219 

ZCR(3) = 0.8149 

and hence 

P ( 1 )  < P ( 2 )  < P ( 3 )  

We thus get the same result as for the improvement potential measure. The most im- 
portant component of a 2-out-of-3 structure is, according to the criticality importance 
measure, the component with the lowest reliability. 

Fussell-Vesely’s measure The 2-out-of-3 structure represented as a series struc- 
ture of the minimal cut parallel structures can be illustrated by the reliability block 
diagram in Fig. 5.5. This structure has three minimal cut sets where each component 
enters in two cut sets. 

Thus we have 

In Example 5.6 we found that Pr(C) = 1 - h ( p )  = 1 - 0.9957 = 0.0043. Fussell- 
Vesely’s measure of reliability importance of components 1, 2, and 3, respectively 
then become 

Pr(D1) 0.0020 
Pr(C) 0.0043 
Pr(D2) 0.0032 
Pr(C) 0.0043 
Pr(D3) 0.0036 
Pr(C) 0.0043 

P ( 1 )  = - - - - x 0.4651 

P ( 2 )  = - - - = 0.7442 

P ( 3 )  = - - - - x 0.8372 
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and hence 

P ( 1 )  < P ( 2 )  < P ( 3 )  

We thus get the same result as for the criticality importance measure. The most impor- 
tant component of a 2-out-of-3 structure is, according to Fussell-Vesely’s measure, 
the component with the lowest reliability. 

We have here determined Fussell-Vesely ’s measure exactly. One of the approxi- 
mation formulas could also be used. 

As an illustration we will calculate Fussell-Vesely’s measure for components 1,2, 
and 3, respectively, according to the approximation formula (5.33): 

As we see the four first decimals are correct. The approximation seems very good, at 
least for this simple example. 

Conclusion According to Birnbaum’s measure and risk achievement worth, the 
component importance of a 2-out-of-3 structure decreases with decreasing compo- 
nent reliability. The most important component is the component with the highest 
reliability. The four other measures lead to the opposite conclusion: The component 
importance increases with decreasing component reliability. The most important 

0 component is the component with the lowest reliability. 

PROBLEMS 

5.1 
denote the reliability of component i, for i = 1 ,2 ,  . . . , n. Verify that 

Let p s ( t )  = 1 - Qo( t )  denote the system reliability, and let p i @ )  = 1 - qi ( t )  

d p s ( t )  - d Q o ( t )  
dpi ( t  ) dqi ( t  ) 

5.2 
reliabilities p1 2 p2 2 p3,  then 

Show that if a 2-out-of-3 structure of independent components has component 

(a) if po 2 0.5 IB(l  I t )  2 ZB(2 I t )  2 IB(3 I t )  

(b) if p1 I 0.5 Z B ( l  I t )  5 ZB(2 I t )  I IB(3 I t )  

5.3 
Example 5.6 by using (5.5). 

Find the structural importance of component 1 in the 2-out-of-3 structure in 
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5.4 
Example 4.3. 

5.5 

5.6 
Fussell-Vesely’s measure. 

5.7 

Find the reliability importance and structural importance of component 7 in 

Find the criticality importance for component 7 in Example 4.3. 

Find the reliability importance for component 7 in Example 4.3 by using 

Consider the nonrepairable structure in Fig. 5.6 

Fig. 5.6 Reliability block diagram (Problem 5.8). 

(a) Determine the structure function. 

(b) Assume the components to be independent. Determine the reliability impor- 
tance according to Birnbaum’s measure of components 2 and 4 when p ;  = 0.99 
for i  = 1,2,  . . . ,  6. 

5.8 Consider the nonrepairable structure in Fig. 5.6 . Assume that the six compo- 
nents are independent, and let the reliability at time t of component i be denoted by 
pi(t), for i = 1,2.  . . . ,6 .  

(a) Determine Birnbaum’s measure of importance of component 3. 

(b) Determine the criticality importance of component 3. 

(c) Determine Fussell-Vesely’s measure of component 3. 

(d) Select realistic values for the component reliabilities and discuss the difference 
between criticality importance and Fussell-Vesely’s measure for this particular 
system. Show that the relation (5.39) is fulfilled. 

5.9 Consider the nonrepairable structure in Fig. 5.7. 

Fig. 5.7 Reliability block diagram (Problem 5.9). 
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(a) Show that the corresponding structure function may be written: 

(b) Determine the system reliability when the different component reliabilities are 
given as: 

PI = 0.970 p5 = 0.920 p9 = 0.910 

pZ = 0.960 p6 = 0.950 p i0  = 0.930 
p3 = 0.960 p7 = 0.959 p11 = 0.940 

P4 = 0.940 p8 = 0.900 p i2  = 0.990 

(c) Determine the reliability importance of component 8 by using Birnbaum's 
measure and the criticality importance measure. 

(d) Similarly determine the reliability importance of component 1 1, using the same 
measures as in (c). Compare and comment on the results obtained. 

5.10 Let (C, 4) be a coherent structure of n independent components with state 
variables X 1,  X2, . . . , X,. Consider the following modular decomposition of (C, 4): 

(i) C = U>=, A j  where Ai fl A j  = 0 for i # j 

(ii) 4(x> = w (xl(xAl) ,  xz(xA*), . . . , x r ( x A r ) )  

Assume that k E A j  and show that 

0 the Birnbaum measure of importance of component k is equal to the product 
Of: 

0 the Birnbaum measure of importance of module j relative to the system, and 

0 the Birnbaum measure of importance of component k relative to module j .  

Is the same relation valid for the other measures? 



Dependent Failures 

6.1 INTRODUCTION 

In Chapter 4, we studied situations where the n components of a system fail inde- 
pendently of each other. This was modeled by assuming that the state variables of 
the n components XI ( t ) ,  X2(t),  . . . , X , ( t )  are independent random variables. This 
assumption considerably simplifies the modeling as well as the statistical analysis. 

However, when the components of a system fail, they do not necessarily have 
to fail independently of each other. We may distinguish between two main types of 
dependence: positive and negative. If a failure of one component leads to an increased 
tendency for another component to fail, the dependence is said to be positive. If, on 
the other hand, the failure of one component leads to a reduced tendency for another 
component to fail, the dependence is called negative. 

Example 6.1 
Consider a system of two components, 1 and 2. Let Ai denote the event that component 
i is in a failed state ( i  = 1,2). The probability that both components are failed is 

Pr(A1 f l  A2) = Pr(A1 I A2) . Pr(A2) = Pr(A2 I A 1 ) .  Pr(A1) 

The components are independent when Pr(A1 I A2) = Pr(Al) ,  and Pr(A2 I A I )  = 
Pr(A2), such that 

Pr(A1 fl A2) = Pr(AI) . Pr(A2) 

The components have a positive dependency when Pr(A1 I A2) > Pr(A1), and 
Pr(A2 I A I )  > Pr(A2), such that 

Pr(A I n A2) > Pr(A1) . Pr(A2) 

207 
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Fig. 6.1 
components. 

Relationship between independent and common cause failures of a system with two 

and the components have a negative dependency when Pr(A1 I A2) < Pr(Al), and 
Pr(A2 I A!) < Pr(A2), such that 

Pr(A1 n A2) < Pr(A1) . Pr(A2) 

In reliability applications, positive dependence is usually the most relevant type of 

Dependent failures may be classified in three main groups: 

I .  Common causefailures. A common cause event is, according to NUREGKR- 
6268, a “dependent failure in which two or more component fault states exist 
simultaneously, or within a short time interval, and are a direct result of a shared 
cause”. Common cause failures may be caused by (see NASA 2002): 

dependence. Negative dependence may, however, also occur in practice. 

0 A common design or material dejciency that results in multiple compo- 
nents failing to perform a function or to withstand a design environment 

0 A common installation error that results in multiple components being 
misaligned or being functionally inoperable 

0 A common maintenance error that results in multiple components being 
misaligned or being functionally inoperable 

0 A common harsh environment such as vibration, radiation, moisture, or 
contamination that causes multiple components to fail 

The relationship between independent and common cause failures of a system 
of two components is illustrated in Fig. 6.1. The number of components that 
fail due to the common, or root, cause is called the multiplicity of the failures. 

When we establish models for common cause failures in systems consisting of 
several redundant components, we should carefully distinguish between: 

Simultaneous failures of a set of components of the system, due to a 
common dependency, for example, on a support function. If such depen- 
dencies are well understood, they should be explicitly identified in the 
reliability model and handled as components. Such an explicit model is 
illustrated by the fault tree of a parallel system in Fig. 6.2. 
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Pressure sensors 
fail to detect 

I 

Pressure sensors 
fail independently 

A 

Fig. 6.2 Fault tree of parallel system with an explicitly modeled common cause failures. 
[Adapted from Summers and Raney (1999)l. 

(b) Simultaneous failures of a set of components of the system due to shared 
causes that are not explicitly represented in the system logic model. Such 
events are sometimes called “residual” common cause failures. These 
events should be incorporated into the reliability analysis through specific 
models that are described in this chapter. 

2.  Cascading failures. Cascading failures are multiple failures initiated by the fail- 
ure of one component in the system that results in a chain reaction or “domino 
effect.” When several components share a common load, failure of one com- 
ponent may lead to increased load on the remaining components and conse- 
quently to an increased likelihood of failure. Cascading failures are especially 
important in electro-power distribution systems. A well-known example is the 
power-line failure in Oregon that caused a massive cascading failure throughout 
the western United States and Canada on 10 August 1996. 

Components may also influence each other through the internal environment. 
Malfunction of a component may, for example, lead to a more hostile working 
environment for the other components through increased pressure, temperature, 
humidity, and so on. Cascading failures are sometimes called propagating 
failures. 

Some types of cascading failures may be adequately modeled and analyzed by 
event trees (see Section 3.9). Cascading failures are not discussed any further 
in this book. 

3.  Negative dependencies. Negative dependency failures are single failures that 
reduce the likelihood of failures of other components. If, for example, an 
electrical fuse fails open such that the “downstream” circuit is disconnected, 
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the load on the electrical devices in this circuit is removed and their likelihood 
of failure is reduced. 

When a system is “down” for repair of a specific component, the load on other 
components is often removed and their likelihood of failure is consequently 
reduced during the system downtime. 

Remark: Components that fail due to a shared cause will normally fail in the same 
functional mode. The term common mode failures was therefore used in the early 
literature. It is, however, not considered to be a precise term for communicating the 
characteristics that describe a common cause failure, and the term should therefore 
not be used. 0 

Example 6.2 
One of the best known accidents resulting from a common cause failure is the fire 
at the Browns Ferry nuclear power plant near Decatur, Alabama, on March 22, 1975 
(Rippon 1975). The fire started when two of the operators used a candle to check for 
air leaks between the cable room and one of the reactor buildings, which was kept at 
a negative air pressure. The candle’s flame was drawn out along the conduit, and the 
urethane seal used where the cables penetrate the wall caught fire. The fire continued 
until the insulation of about 2000 cables was damaged. Among these were all the 
cables to the automatic emergency shutdown (ESD) systems and also the cables to all 
the “manually” operated valves, apart from four relief valves. With these four valves 
it was possible to close down the reactor so that a nuclear meltdown was avoided. 
This accident resulted in new instructions requiring that the cables to the different 
emergency shutdown systems be put in separate conduits and prohibit the use of 

0 

A taxonomy and classification of the root causes for common cause failures is 
presented in Table 6.1 which is adapted from Edwards and Watson (1979). This 
taxonomy may help the analyst systematically to concentrate his attention on the 
possible root causes and to judge them one at a time. Common cause failures may 
greatly reduce the reliability of a system, especially of systems with a high degree of 
redundancy. A significant research activity has therefore been devoted to this problem. 
A wide range of technical reports and papers describing various aspects of dependent 
failures have been written during the last 10 to 20 years. Valuable references include 
Edwards and Watson (1979), Fleming et al. (1986), NUREGKR-4780, Bodsberg 
and Hokstad (1988), Mosleh (1991), and Hokstad (1993). 

combustible filling (e.g., urethane foam). 

6.2 HOW TO OBTAIN RELIABLE SYSTEMS 

As for any reliability analysis, failure mode,effects, and criticality analysis (FMECA) 
also provides the basic framework for the identification and investigation of dependent 
failures. In E E E  Std. 352 two extensions of the conventional FMECA are described 
in order to encompass potential interdependencies between the system components: 
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1 .  A common cause failure analysis to identify root causes and mechanisms of 
failures of components normally considered to be redundant 

2 .  A cascading failure analysis to identify failures that can lead to “chain-type’’ 
events affecting several different areas or systems in a plant 

Detailed procedures for the analyses are given in IEEE Std. 352.  
The most important defense against accidental component failures is the use of 

redundancy (see Section 4.5). The fire at Browns Ferry shows, however, that redun- 
dancy itself is not enough. Even if there had been a higher number of redundant 
shutdown systems, all these would have been made inactive by a single error-the 
flame from a candle. Common cause failures can be prevented by a variety of de- 
fenses. A number of procedures and checklists have been developed to assist the 
engineer in creating a design that is robust against common cause failures; see, for 
example, EPRINP-5777, Edwards and Watson (1979), and Bourne et al. (1981). 

Some general defensive tactics to avoid common cause failures are presented by 
Parry (1991)’: 

1 .  Barriers. Any physical impediment that tends to confine and/or restrict a po- 
tentially damaging condition. 

2.  Personnel training. A program to assure that the operators and maintainers 
are familiar with procedures and are able to follow them correctly during all 
conditions of operation. 

3. Quality control. A program to assure that the product is in conformance with 
the documented design and that its operation and maintenance are according 
to approved procedures, standards, and regulatory requirements. 

4. Redundancy. Additional, identical, redundant components added to a system 
solely for the purpose of increasing the likelihood that a sufficient number of 
components will survive exposure to a given cause of failure and are available 
to perform a given function. This is a tactic to improve system availability, 
but, by definition, common cause failures decrease the positive impact of this 
particular tactic. However, increased redundancy will generally still have value. 

5 .  Preventive maintenance. A program of applicable and effective preventive 
maintenance tasks designed to prevent premature failure or degradation of com- 
ponents. 

6 .  Monitoring, surveillance testing, and inspection. Monitoring via alarms, fre- 
quent tests, and/or inspections so that unannounced failures from any detectable 
causes are not allowed to accumulate. This includes special tests performed on 
redundant components in response to observed failures. 

‘Reprinted from Reliability Engineering & System Safety, Volume 34, G. W. Pany, “Common Cause 
Failure Analysis: A Critique and Some Suggestions”. pp. 320. Copyright 1991, with kind permission 
from Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington OX5 IGB, UK. 
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7 .  Procedures review. A review of operational, maintenance, and calibrationhest 
procedures to eliminate incorrect or inappropriate actions resulting in compo- 
nent or system unavailability. 

8. Diversity. The mixture of interchangeable components made by different man- 
ufacturers (equipment diversity) or the introduction of a totally redundant sys- 
tem with an entirely different principle of operation (functional diversity) for 
the express purpose of reducing the likelihood of a total loss of function that 
might occur because all like components are vulnerable to the same cause(s) 
of failure. Diversity in staff is another form of applying this concept, whereby 
different teams are used to maintain and test redundant trains. This is a tactic 
that specifically addresses common cause failures. 

An analysis of common cause failures constitutes an essential part of reliability 
studies of complex high reliability systems. A systematic approach is needed. A 
general approach for treating common cause failures in safety and reliability studies 
is presented in NUREGKR-4780. A more brief presentation is given by Mosleh 
(1991). 

The first step in an analysis of common cause failures is to identify common cause 
Candidates, that is, components for which the independence assumption is suspected 
to be incorrect. Several checklists have been developed to aid the analyst in this 
task; see, for example, Summers and Raney (1999). Common cause candidates will 
usually have one or more coupling factors. A coupling factor is a property of a set 
of components that identifies them as being susceptible to the same mechanisms of 
failure. Examples of coupling factors include the same, or similar: 

0 Design 

0 Hardware 

0 Software 

0 Installation staff 

0 Maintenance or operation crew 

0 Procedures 

0 Environment 

0 Location 

Even if common cause failures are caused by a common cause, they do not need 
to occur at the same time. A rather long time between failures does not necessarily 
mean that there is no dependency between the failure events. Whenever the common 
cause is not a “fatal” shock, common cause failures will usually occur in a sequence. 
An efficient failure detection system will therefore be an important defense against 
common cause failures in a redundant system. This defense is listed as tactic 6 on 
page 2 12. 
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A systematic engineering study has to be performed on how to mitigate against 
each dependency. Several techniques have been proposed to check whether system 
defenses have been considered for each potential common cause. NUREGKR-5460 
suggests an approach based on a cause-defense matrix, where all potential causes are 
listed in the first column, and the measures that are taken in the plant against each 
failure cause are listed in the other columns. 

Data on the occurrence of common cause failures must be collected, analyzed 
statistically, and saved for later engineering use, in particular, for the following situ- 
ations: 

1. Future designs of the system 

2. Assessment of system reliability 

3. Working out rules for system operators 

An international common cause database has been established for the nuclear sector 
by the Nuclear Energy Agency (NEA), through the International Common Cause 
Failure Data Exchange (ICDE) project that was launched in 1994 (ICDE 1994). 

6.3 MODELING OF DEPENDENT FAILURES 

In situations where we have good reasons to believe that calculations based on the 
assumption of independent failures are adequate, the models and methods described in 
Chapter 4, can be used. Cascading failures and negative dependencies may, however, 
often be taken into account in these analyses, because they arise from functional or 
physical interrelationships between components and subsystems that may explicitly 
be modeled in a fault treeheliability block diagram or a Markov model. Nevertheless, 
in a number of situations an analysis based on the assumption of independence will 
lead to unrealistic results and may be of limited value for practical purposes. 

At the moment large efforts are made to develop suitable models that take into ac- 
count different types of dependence. In the following sections, we will give examples 
of some such models. In these models, there are sometimes built-in approximations, 
but the results obtained in this way are often far more realistic than the ones obtained 
by assuming independence. 

When analyzing reliability, one usually deals with technical systems. In some 
cases it may be possible to express typical features of the system mathematically and 
derive a model from this (mechanistic model). In other situations when sufficient 
data (information) is at hand, an empirical model based on a sample of the data, may 
be adequate for the analysis. In both cases the analyst must confront the possible 
models with data to see if they reflect the specific design features of the system. He 
also has to be aware that the validity of a model may be limited. 
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Fig. 6.3 Parallel system. 

6.4 SPECIAL MODELS 

In this section we will, as an illustration, discuss three models for dependent failures: 

1 .  The square-root method 

2. The 8-factor model 

3. The binomial failure rate (BFR) model. 

Several other, and more detailed, models have been developed; for example, see 
Apostolalus and Moieni (1987), Hokstad (1988, 1993), Mosleh (1991), NUREG/CR- 
4780 (1  989). 

6.4.1 The Square-Root Method 

In the Reactor safety study (NUREG-75/014), a simple bounding technique was used 
to estimate the effect of common cause failures on a system. We will illustrate this 
technique by a simple example. 

Consider the parallel structure in Fig. 6.3 with two components 1 and 2, both of 
which may fail as a result of a common cause. 

Let Ai represent the situation where component i is in a failed state at time t ,  and let 
qi = Pr(Aj) denote the unavailability of component i ,  for i = 1, 2. The probability 
that the parallel structure is not functioning at time t ,  that is, the unavailability of the 
system, is then QO = Pr(A1 n A2). 

Since (A1 n A2) G Aj, 

Pr(A1 n A 2 )  I Pr(Ai) for i = 1,2  

Therefore 

Pr(A1 n A2) I min(Pr(Al), Pr(A2)l 

If the events A I and A2 are independent, by definition 

Pr(A1 n A2) = Pr(A1) . Pr(A2) 

If the events are positively dependent, 
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and hence 

Combining (6.1) and (6.2) we get the following result when A 1 and A2 are positively 
dependent: 

Pr(A1) . Pr(A2) 5 Pr(A1 i l  Az) I min(Pr(AI), Pr(Az)] (6.3) 

Equation (6.3) can be written 

where 

In the Reactor safety study (NUREG-75/0 14), the unavailability of the parallel struc- 
ture, Qo = Pr(A1 n A d ,  is approximated by the geometric mean Q: of the lower 
bound q L  and the upper bound qu : 

and is called the square-root method. 
There is, however, no proper theoretical foundation for the choice of geometric 

averaging of the two limits. Further, the result depends heavily on this somewhat 
arbitrary averaging. 

In this section the square-root method has been given a very simple formulation 
to clarify the main principle of the method. A more general formulation is presented 
by Edwards and Watson ( 1979) and Harris (1 986). 

A weakness of the square-root method is that it does not take into account the 
various degrees of coupling between the components. Attempts have therefore been 
made to develop generalizations of this method. See Harris (1986) for a thorough 
discussion. The square-root method is now seldom used. 

Example 6.3 
Consider a parallel structure of n components with a common unavailability q at a 
specified time r .  Let Ai denote the situation that component i is in a failed state at 
time t .  Thus we have Pr(Ai) = q for i = 1,  . . . , n. 

If the n components are all independent, the unavailability Qo of the parallel 
system becomes Qo = q". If the components are positively dependent, we can apply 
the square-root method with lower bound 

n 
q L  = n P r ( A i )  = q" 

i = l  
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Table 6.2 Unavailability of Parallel Structure of n Identical Components with Unavailability 
q = 0.01 Modeled by the Square-Root Method. 

Independent Components Square-Root Method 
n Qo = 4” Q; = q(n+1)/2 

10-2 

10-6 
10-8 
10-10 

1 0 - ~  

1 0 - ~  
10-6 

and upper bound 

qr/ = min(Pr(A~) ,  . . . , Pr(A,)} = q 

The geometric mean is thus 

Q: = ,/-- = q(nf1)/2 

The effect of the dependency modeled by the square-root method is illustrated in 
0 Table 8.2 for some values of n and q = 0.01. 

6.4.2 The p-Factor Model 

The B-factor model was introduced by Fleming (1974) and is today the most com- 
monly used model for common cause failures. Let a system be composed of n identical 
components, each with constant failure rate h. The situation is furthermore assumed 
to be such that the failure of a component may be due to one of two possible causes: 

1 .  Circumstances that concern only the component (independent of the condition 
of the remaining components) 

2. Occurrence of an external event (independent of the system) whereby all the 

Let A(’) denote the failure rate due to failure cause of type 1 ,  and let A(‘) denote the 
failure rate due to failure cause of type 2 .  Assuming independence of the two failure 
causes, the total failure rate h of the component, can be written as the sum of the two 
failure rates 

components fail at the same time 

(6.6) 

is called the failure rate due to “independent” failures and also 

h = + 

The failure rate 
sometimes the failure rate due to “individual” failures. 
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Fig. 6.4 Parallel structure with common cause “component” C .  

Now introduce /3 as the “common cause factor”: 

L ( C )  A ( C )  

A(‘) + A(C) A 
-- / 3 =  . - 

Then 

(6.7) 

and 

A(i)  = (1 - /3)A 

The /3-factor thus denotes the relative proportion of common cause failures among all 
the failures of a component. The /3-factor may also be considered as the conditional 
probability that a failure is a common cause failure, that is, 

Pr(Common cause failure I Failure) = /3 

Remark: For a fixed /3, the rate of common cause failures A@) = /?A in the /3-factor 
model is seen to increase with the total failure rate A, Items with many failures will 
hence also have more common cause failures. Since repair and maintenance is often 
claimed to be a prime cause of common cause failures, it is relevant to assume that 
items requiring a lot of repair and maintenance will also have many common cause 
failures. 

Example 6.4 Parallel System of Identical Components 
Consider a parallel structure of n identical components with failure rate A. An external 
event may occur that causes failure in each and every component of the system. This 
external event can be represented by a “hypothetical” component ( C )  that is in series 
with the rest of the system. This is illustrated in Fig. 6.4. The failure rate of component 
C is, according to (6.8), A(‘) = PA, while the n components in the parallel structure 
in Fig. 6.4 may be considered as independent with failure rate A(’) = (1 - B)A. 

We assume the system to be nonrepairable, and let R [ ( t )  denote the survivor 
function of the identical components while Rc(r) denotes the survivor function of 
the “hypothetical” component C .  The survivor function of the system can now be 
written 

R ( t )  = (1 - (1 - R l ( t ) ) n ) .  Rc(r) 

1 - (1 - e - ( l - f l ) A I  (6.10) 
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Fig. 6.5 The survivor function of a parallel system of four components for some selected 
values of the common cause factor B.  All components have constant failure rate h = 1. 

Fig. 6.6 Fraction of different types of failures for a system with two components when using 
a p-factor model. 

Fig. 8.4 shows the survivor function R(t)  of a parallel system of n = 4 components 
for selected values of j?. Note that when the common cause factor j? is increased, the 

0 reliability of the system declines. 

Example 6.5 System with Two Components 
Consider a system with IZ = 2 components with the same constant failure rate A. By 
using the &factor model, the rate of single failures becomes h2:l = 2 . (1 - j?) . A. 
The rate of double (common cause) failures is A 2 9  = Bk. The fractions of single and 
double failures are illustrated in Fig. 6.6. 

Example 6.6 System with Three Components 
Consider a system with n = 3 components with the same constant failure rate A. By 
using the /?-factor model, the rate of single failures becomes A3:1 = 3 .  (1 - j?) .A. The 
rate of triple (common cause) failures is A3:3 = PA. Double failures are not possible 
when using the j?-factor model. The fractions of single, double, and triple failures 

0 are illustrated in Fig. 6.7. 

Example 6.7 Comparison of Simple Systems 
Consider the following three simple systems 

1 .  A single component 

2.  A parallel structure of two identical components 
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Cornp. 3 

Fig. 6.7 Fraction of different types of failures for a system with three components when 
using a p-factor model. 

3. A 2-out-of-3 system with identical components 

All the components are assumed to have the same constant failure rate k .  The systems 
are exposed to common cause failures that may be modeled by a #?-factor model. Since 
common cause failures are not relevant for a single component, the survivor function 
and the mean time to failure (MTTF) are 

1 
R l ( t )  = e-*' and MTTFl = - 

h 

The survivor function of the parallel system is, according to (6.10), 

R2(t) = (2,-(I-P)Ar - e-2(1-BjAr 

- - 2e-Af - ,-(2-BjAt 

Its mean time to failure is hence 
n 

The survivor function of the 2-out-of-3 system is 

Its mean time to failure is hence 

The MTTFs of the three simple systems are illustrated in Fig. 6.8 for A = 1. It 
is obvious that all three systems have the same MTTF when #? = 1, that is, total 
dependence. 

The #?-factor model is very simple, and it is easy to understand the practical in- 
terpretation of the factor B.  ,!? is related to the degree of protection against common 
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fig. 6.8 The MTTF as a function of for (1) a single component, ( 2 )  a parallel system of two 
identical components, and (3) a 2-out-of-3 system of identical components. All components 
have constant failure rate h = 1. 

cause failures. A number of checklist methods for the assessment of /? have been pro- 
posed. One of these methods is developed by Humphreys (1987). He is basing the 
assessment of /? on an evaluation of eight criteria: separation, similarity, complexity, 
analysis, procedures, training, control, and tests. Each criterion is evaluated based on 
a checklist and ranked according to a predefined system. The ranks allocated to the 
eight criteria are then added, and a simple formula is used to estimate /?. 

When using the /?-factor model, we assume that all system failures are either 
single, independent failures, or common cause failures where all the components of 
the system fail simultaneously. A serious limitation of the /?-factor model is that it does 
not allow that only a certain fraction of the components fails. The model seems quite 
adequate for parallel systems with two components but may not be adequate for more 
complex systems. NUREGKR-4780 states that: “Although historical data collected 
from the operation of nuclear power plants indicate that common cause events do not 
always fail all redundant components, experience from using this simple model shows 
that, in many cases, it gives reasonably accurate (or slightly conservative) results for 
redundancy levels up to about three or four items. However, beyond such redundancy 
levels, this model generally yields results that are conservative.” 

To use the /?-factor model we need an estimate of the failure rate h, or h( i ) ,  and 
an estimate of /?. As mentioned above, /? may be estimated based on a procedure 
similar to the one suggested by Humphreys (1987) or based on sound engineering 
judgement. Failure rates may be found in a variety of data sources (see Chapter 12). 
Some of the data sources present the total failure rate h, while other sources present 
the independent failure rate h(‘).  It is sometimes difficult to decide whether a specific 
data source presents h or h(i) .  To decide, we have to study carefully how the data have 
been collected, from which sources, and so on. The data in MIL-HDBK 217F are, 
for example, mainly compiled from laboratory testing of single components. Hence, 
only independent failure rates, are presented. The data in OREDA (2002) are, on 
the other hand, field data collected from maintenance files. The maintenance records 
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normally do not distinguish between independent failures and common cause failures. 
Hence, OREDA presents the total failure rates. Reliability data sources are discussed 
in Chapter 14. 

The B-factor model is further discussed in Chapter 10 where the model is applied 
to safety instrumented systems. 

6.4.3 Binomial Failure Rate Model and Its Extensions 

The binomial failure rate (BFR) model was introduced by Vesely (1977) and is a simple 
special case of the Marshall-Olkin’s multivariate exponential model (see Marshall and 
Olkin 1967). The situation under study is the following: A system is composed of n 
identical components. Each component can fail at random times, independently of 
each other, and they are all supposed to have the same “individual” failure rate A(’). 

Furthermore a common cause shock can hit the system with occurrence rate v. 
Whenever a shock occurs, each of the n individual components is assumed to fail 
with probability p ,  independent of the states of the other components. The number 
2 of individual components failing as a consequence of the shock, is thus binomially 
distributed (n ,  p ) .  The probability that the multiplicity Z of failures is equal to z is 
thus 

The mean number of components that fail in one shock is E ( Z )  = np. Two conditions 
are furthermore assumed: 

1. Shocks and individual failures occur independently of each other. 

2. All failures are immediately discovered and repaired, with the repair time being 

As a consequence the time between individual failures, in the absence of shocks, will 
be exponentially distributed with failure rate A ( i ) ,  and the time between shocks will 
be exponentially distributed with failure rate v. The number of individual failures in 
any time period of length to is Poisson distributed (A( i )  ro). Similarly the number of 
shocks in any time period of length to is Poisson distributed (vzo). 

The component failure rate caused by shocks thus equals p . v, and the total failure 
rate of one component equals 

negligible. 

1 = A ( i )  + p . l,l 

By using this model, we have to estimate the independent failure rate A(i) and the two 
parameters v and p .  The parameter v relates to the degree of “stress” on the system, 
while p is a function of the built-in component protection against external shocks. 
Note that the BFR model is identical to the B-factor model when the system has only 
two components. 

This is Vesely’s original BFR model. The statistical analysis of such models is 
discussed by Atwood (1986). Several aspects of the situation must be clarified to 
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make the analysis possible. It may, for example, happen that u cannot be estimated 
in a direct way from failure data, because shocks may occur unnoticed when no 
component fails. 

Several extensions of Vesely’s BFR model have been studied. It may, for example, 
happen that p varies from shock to shock. One way of modeling this is to assume p 
to be beta distributed, that is, it has the probability density function 

Such a Bayesian approach is discussed, for example, by Hokstad (1988). He intro- 
duces a re-parameterization of the beta distribution and is able to interpret the new 
parameters in the context of how well the components and the system are protected 
against the shocks. 

The assumption that the components will fail independently of each other, given 
that a shock has occurred, represents a rather serious limitation, and this assumption 
is often not satisfied in practice. The problem can to some extent be remedied by 
defining one fraction of the shocks as being “lethal” shocks, that is, shocks that 
automatically cause all the components to fail ( p  = 1). If all the shocks are “lethal,” 
one is back to the B-factor model. Observe that this case ( p  = 1) corresponds to the 
situation that there is no built-in protection against these shocks. 

Situations where individual failures may occur together with nonlethal as well as 
lethal shocks are often realistic. Such models are, however, rather complicated, even 
if the nonlethal and the lethal shocks occur independently of each other. 

Further extensions are presented, for example, by Apostolakis and Moieni (1987). 

6.5 ASSOCIATED VARIABLES 

Esary et al. (1967) introduced a broad class of state variables, which they call associ- 
ated. This class includes independent variables as well as variables with a certain type 
of positive dependence that may be appropriate for reliability analysis. In this section 
we present some main results for systems where the state variables are assumed to 
be associated. The results are presented without any proofs. For proofs and more 
detailed results, the reader should consult Barlow and Proschan (1975). 

Throughout this section we will consider a coherent structure 4 ( X ) .  The reliability 
of component i is denoted pi = Pr(Xi = 1) for i = 1,2, . . . , n, and the system 
reliability is denoted p s  = Pr(#(X) = 1). The structure is assumed to have 
k minimal cut sets K i ,  K 2 ,  . . . , Kk with associated minimal cut parallel structures 
K I  ( X ) ,  K ~ ( X ) ,  . . . , K ~ ( X ) ,  and p minimal path sets P I ,  P2, . . . , P p  with associated 
minimal path series structures p l ( X ) ,  p 2 ( X ) ,  . . . , p , ( X ) .  

Definition 6.1 The random variables Y = [Yl , Y2, . . , , Y,] (not necessarily binary) 
are said to be associated if, for all increasing functions f and g, we have that 

Associated variables are defined by: 



224 DEPENDENT FAILURES 

0 

When the state variables XI, X 2 ,  . . . , Xn are associated, we say that the components 
of the system are associated. 

The following results apply: 

1. 

2. 

3. 

4. 

5 .  

If Y I  , Y2, . . . , Y,,, are independent variables, then they are also associated. 

Any subset of an associated set is itself associated. 

Increasing functions of associated variables are associated. 

If Y1, Y2, . . , , Y,,, are associated and binary variables, then (1 - Y l ) ,  (1 - 
Y2), , . . , (1 - Y,,,) are also associated and binary. 

If the binary state variables X I ,  X 2 ,  . . . , Xn of a coherent structure 4 are as- 
sociated, then the minimal path structures p , ( X )  for j = I ,  2, . . . , p ,  are 
associated, and the minimal cut parallel structures ~j (X) for j = 1,2, . . . , k ,  
are associated. 

For a series structure of associated components we have that 

p s  = Pr (fix; = 1) L f i P r ( X i  = 1) = h p ;  (6.12) 

Note that the right-hand side of (6.12) is the reliability of a series structure of n 
independent components. If the components of a series structure are associated, we 
underestimate the reliability of the structure when we use the formula for independent 
components. We say that we obtain a conservative bound for the reliability p s  of the 
series structure. 

i= l  i = l  i = l  

For a parallel structure of associated components we have that 

p s  = Pr ( h x i  = 1) <_ h P r ( X i  = 1 )  = 1 - f i ( 1  - p i )  (6.13) 

Note that the right-hand side of (6.13) is the reliability of a parallel structure of IZ 

independent components. If the components in a parallel structure are associated, we 
overestimate the reliability of the structure when we use the formula for independent 
components, and we get a nonconservative bound for the reliability p s  of the parallel 
structure. 

For a system of associated components that is neither a series nor a parallel system, 
it is not possible to predict whether or not we over- or underestimate the reliability by 
proceeding as if the state variables are independent. In such cases, however, rough 
upper and lower bounds for the system reliability can be determined. 

Any structure c,h of order n is at least as “strong” as a series structure of its n 
components, and at most as “strong” as a parallel structure of its n components. 

i = l  i = l  i= l  

n n 

i = l  i= l  



ASSOCIATED VARIABLES 225 

We can therefore use (6.12) and (6.13) to conclude that for any system of n associated 
components, the system reliability p s  is bounded by 

n n 

i = l  i = l  

The bounds obtained in (6.14) are, however, normally rather wide and therefore not 
very useful for practical purposes. 

In order to find more narrow bounds for the system reliability we will look for 
bounds based on the minimal path series structures and the minimal cut parallel 
structures. Since the structure @ can be represented as a series structure of the k 
minimal cut parallel structures, and since the minimal cut parallel structures are 
associated, we can use (6.12) to conclude that 

k 

p s  = Pr(@(X) = 1 )  2 n Pr(Kj(X) = 1) 
j=l 

In the same way, since the structure @ can be represented as a parallel structure of 
the p minimal path series structures, and since the minimal path series structures are 
associated, we can use (6.13) to conclude that 

P 

P S  = P ~ ( @ ( x )  = 1) I U Pr(pj(X> = 1) 
j =  I 

The reliability p s  of a system of n associated components is therefore bounded by 

(6.15) 
j =  I j=l  

Let us now consider a system of n independent components. In this case we have 

Pr(pj(X) = 1) = n pi 

PT(K,,(X) = 1)  = 

icfl 

pi = 1 - n (1 - p i )  
ieC, 1€Cl 

Since independent components are also associated, and we can use (6.15) to find the 
following bounds for the reliability p s  of the system: 

k P n Pi I P S  I U n p i  (6.16) 
j=l i e K j  j=l  icfl 



226 DEPENDENT FAILURES 

Like the bounds obtained in (6.14), the bounds obtained in (6.15) are sometimes too 
wide to be of practical use. 

By using the fault tree terminology that we introduced in Chapter 4, we have that 
Qo = 1 - p s ,  qi = 1 - pi for i = 1,2, . . . , n,  and 

Q j  = 1 - Pr(Kj(X> = 1) 

We can now use (6.15) to show that 

k 

Qo I 1 - n (1 - Qj) 
j=1 

(6.18) 

We have hence shown that the upper bound approximation (4.50) that is used to 
calculate the TOP event probability Qo in a fault tree is valid when the basic events 
(components) are associated. 

The reliability p s  of a system of n associated components is also bounded by 

(6.19) 

and these bounds are at least as narrow as the bounds obtained in (6.14). 

Example 6.8 
Reconsider the gas detector system in Example 4.1. Let the component reliabilities 
at time to be 

pi  = p2 = p 3  = 0.997 

p4 = 0.999 

p5 = p6 = 0.998 

PI = p8 = 0.995 

(6.20) 

If the components are independent, we find the system reliability at time to by inserting 
(6.21) in (4.50) and thus get 

p s  X 0.9950 

Suppose that the state variables of the system are associated but not necessarily inde- 
pendent. 

Let us first determine the bounds for p s  by using (6.18). 
The lower bound becomes 

8 n pi = (0.997)3 .0.999 * (0.998)2 . (0.995)2 M 0.9762 
i=I 

The upper bound becomes 

8 

1 - n(1 - p i )  = 1 - (0.003)3 . (0.001 . (0.002)2 * (0.005)2 x 1.00 
i = l  
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Hence 

0.9762 5 p s  5 1.00 

Let us next calculate the bounds for p s  by using (6.19). The minimal path and cut 
sets were found in Example 4.1. 

Minimal path sets: 

5’1 = { 1,2,4,5,6,7) 
S2 = { 1,2,4,5,6,8] 
S3 = (1,3,4,5,6,7} 
S4 = [ 1,3,4,5,6,8} 
S5 = [2,3,4,5,6,7) 
S6 = { 2,3,4,5,6,8] 

Minimal cut sets: 

K1 = { 1,2] 
K2 = { 1,3 
K3 = [2,3 
K4 = [4] 
K5 = { 5 ]  
K6 = { 6 )  
K7 = {7,8 

Using the data in (6.21) we observe that all paths Sl to S6 have the same reliability 

n pi = (0.997)2 .0.999 . (0.998)2 . 0.995 M 0.9841 for all j 
iePl 

Hence the lower bound is 

max n pi = 0.9841 
1 5 j i 6 .  I € P j  

In order to find the upper bound U i E K j  pi must be calculated for K1 to K7: 

Cut 1 1 - (0.003)2 x 0.999991 

Cut 2 1 - (0.003)2 x 0.999991 

Cut 3 1 - (0.003)2 x 0.999991 

cut  4 P4 = 0.999 

cut  5 P5 x 0.998 

Cut 6 P6 = 0.998 
Cut 7 1 - (0.005)2 x 0.999975 

Hence the upper bound becomes 

Hence application of (6.19) leads to the following bounds for p s  : 

0.9841 5 p s  5 0.998 
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PROBLEMS 

6.1 
unavailability of each component. 

Consider a parallel structure of two identical components. Let q denote the 

(a) Make a sketch of the system unavailability as a function of q when the two 
components are independent. 

(b) Determine the system unavailability by the square-root method and make a 
sketch of this unavailability as a function of q in the same coordinate system 
as in (a). 

(cj Determine the difference between the system unavailability when the com- 
ponents are independent and the unavailability determined by the square-root 
method when q = 0.15. 

6.2 Consider a 2-out-of-3 system of identical components. Let q denote the unavail- 
ability of each component. Edwards and Watson (1979) states that the square-root 
method gives the system unavailability m. Discuss this statement. Is it correct? 
See, for example, Harris ( 1  986) for a thorough discussion. 

6.3 Consider a 2-out-of-3 system of identical components with constant failure rate 
h. The system is exposed to common cause failures that may be modeled by a j3-factor 
model. In Fig. 6.8 it is shown that the MTTF of the system has a minimum for j3 = 0. 
Determine the value of j3 for which MTTF attains its maximum. Explain why MTTF 
as a function of j3 has this particular shape. 

6.4 Reconsider the bridge structure in Example 4.8. Assume that all the five com- 
ponents are identical and have constant failure rate h. The system is exposed to 
common cause failures that may be modeled by a j3-factor model. Determine the 
MTTF of the bridge structure as a function of j3, and make a sketch of MTTF as a 
function of j3 when h = 5 . 1 OP4 failures per hour, and no repair is carried out. 

6.5 Consider a 2-out-of-3 structure of identical components. The system is exposed 
to common cause failures that may be modeled by a binomial failure rate (BFR) model. 
The “individual” failure rate of the components is h( [ )  = 5 . failures per hour. 
Nonlethal shocks occur with frequency u = loP5 nonlethal shocks per hour. When 
a non-lethal shock occurs, the components may fail independently with probability 
p = 0.20. Lethal shocks occur with frequency w = lethal shocks per hour. 
When a lethal shock occurs, all the three components will fail simultaneously. The 
lethal and the nonlethal shocks are assumed to be independent. 

(a) Determine the mean time between system failures, MTBF(’), caused by indi- 
vidual component failures, when you assume that the system is only repaired 
when a system failure occurs. In such a case the system is repaired to an “as 
good as new” condition. 

(b) Determine the mean time between system failures, MTBFNL when you assume 
that the only cause of system failures is the nonlethal shocks. 
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(c) Determine the mean time between system failures, MTBFL, when you assume 
that the only cause of system failures is the lethal shocks. 

(d) Try to find the total mean time between system failures. Discuss the problems 
you meet during this assessment. 



7 
Counting Processes 

7.1 INTRODUCTION 

In this chapter and in Chapter 8 we will study the reliability of a repairable system 
as a function of time. We are interested in finding system reliability measures like 
the availability of the system, the mean number of failures during a specified time 
interval, the mean time to the first system failure, and the mean time between system 
failures. For this purpose, we study the system by using stochastic processes. A 
stochastic process ( X ( t ) ,  t E 01 is a collection of random variables. The set 0 is 
called the index sef of the process. For each index t in 0, X ( t )  is a random variable. 
The index t is often interpreted as time, and X ( t )  is called the state of the process 
at time t .  When the index set 0 is countable, we say that the process is a discrete- 
time stochastic process. When 0 is a continuum, we say that it is a continuous-time 
stochastic process. In this chapter and in Chapter 8 we only look at continuous-time 
stochastic processes. The presentation of the various processes in this book is very 
brief and limited, as we have focused on results that can be applied in practice instead 
of mathematical rigor. The reader should therefore consult a textbook on stochastic 
processes for more details. An excellent introduction to stochastic processes may be 
found in, for example, Ross (1996) and Cocozza-Thivent (1997). 

In this chapter we consider a repairable system that is put into operation at time 
t = 0. When the system fails, it will be repaired to a functioning state. The repair time 
is assumed to be negligible. When the second failure occurs, the system will again 
be repaired, and so on. We thus get a sequence of failure times. We will primarily 
be interested in the random variable N ( t ) ,  the number of failures in the time interval 
(0, t ] .  This particular stochastic process ( N ( t ) ,  t 2 0) is called a counting process. 
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Fig. 7.1 Relation between the number of events N ( t ) ,  the interoccurrence times (T i ) ,  and 
the calendar times ( S i ) .  

In Chapter 8 we study the various states of a repairable system. A multicomponent, 
repairable system will have a number of possible states, depending on how many of 
its components are in operation. The state of the system at time t is denoted X ( t ) ,  
and we are interested in finding the probability that the system is in a specific state at 
time t .  We also find the steady-state probabilities, or the average proportion of time 
the system is in the various states. The presentation will be limited to a special class 
of stochastic processes ( X  ( r ) ,  t 2 0)  having the Markov property. Such a stochastic 
process is called a Markov process and is characterized by its lack of memory. If a 
Markov process is in state j at time t ,  we will get no more knowledge about its future 
states by knowing the history of the process up to time t . 

7.1.1 Counting Processes 

Consider a repairable system that is put into operation at time t = 0. The first failure 
(event) of the system will occur at time SI . When the system has failed, it will be 
replaced or restored to a functioning state. The repair time is assumed to be so short 
that it may be neglected. The second failure will occur at time S2 and so on. We 
thus get a sequence of failure times S1, S2, . . .. Let Ti be the time between failure 
i - 1 and failure i for i = 1,2,  . . ., where So is taken to be 0. T, will be called 
the interoccurrence time i for i = 1,2, . . .. Ti may also be called the time between 
failures, and the interarrival time. In general, counting processes are used to model 
sequences of events. In this book, most of the events considered are failures, but the 
results presented will apply for more general events. 

Throughout this chapter t denotes a specified point of time, irrespective whether t 
is calendar time (a realization of S i )  or local time (a realization of an interoccurrence 
time T i .  We hope that this convention will not confuse the reader. The time concepts 
are illustrated in Fig. 7.1. 

The sequence of interoccurrence times, T I ,  T2, . . . will generally not be indepen- 
dent and identically distributed-unless the system is replaced upon failure or restored 
to an "as good as new" condition, and the environmental and operational conditions 
remain constant throughout the whole period. 
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A precise definition of a counting process is given below (from Ross 1996, p. 59). 

Definition 7.1 A stochastic process ( N ( t ) ,  t >_ 01 is said to be a counting process if 
N ( r )  satisfies: 

1. N ( t )  2 0 .  

2. N ( t )  is integer valued. 

3. I f s  < t ,  then N ( s )  5 N ( t ) .  

4. For s < t ,  [ N ( r )  - N ( s ) ]  represents the number of failures that have occurred 
0 

A counting process { N ( t ) ,  t >_ 0) may alternatively be represented by the sequence 
of failure (calendar) times SI , S2, . . ., or by the sequence of interoccurrence times 
TI ~ T2, . . .. The three representations contain the same information about the counting 
process. 

in the interval (s, t ] .  

Example 7.1 
The following failure times (calendar time in days) are presented by Ascher and 
Feingold (1984, p. 79). The data set is recorded from time t = 0 until 7 failures 
have been recorded during a total time of 410 (days). The data come from a single 
system, and the repair times are assumed to be negligible. This means that the system 
is assumed to be functioning again almost immediately after a failure is encountered. 

Number of failures Calendar time Interoccurrence time 

N O )  Sj  Tj 

0 0 0 
1 177 177 
2 242 65 
3 293 51 
4 336 43 
5 368 32 
6 395 27 
7 410 15 

The data are illustrated in Fig. 7.2. The interoccurrence times are seen to become 
shorter with time. The system seems to be deteriorating, and failures tend to become 
more frequent. A system with this property is called a sad system by Ascher and 
Feingold (1984), for obvious reasons. A system with the opposite property, where 
failures become less frequent with operating time, is called a happy system. 

The number of failures N ( t )  may also be illustrated as a function of (calendar) 
time t as illustrated in Fig. 7.3. Note that N ( t )  by definition is constant between 
failures and jumps (a height of 1 unit) at the failure times Si for i = I ,  2, . . .. It is 
thus sufficient to plot the jumping points ( S i ,  N ( S i ) )  for i = I ,  2, . . .. The plot is 
called an N ( t )  plot, or a Nelson-Aalen plot (see Section 7.4.3). 
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1 77 65 51 43 32 27 15 
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0 1 77 242 293 336 368 395410 Time 

fig. 7.2 The data set in Example 7.1. 

0 4  
0 100 200 300 400 

Calendar time t 

fig. 7.3 Number of failures N ( t )  as a function of time for the data in Example 7.1. 

Note that N ( t )  as a function of t will tend to be convex when the system is sad. 
In the same way, N ( t )  will tend to be concave when the system is happy.' If N ( t )  
is (approximately) linear, the system is steady, that is, the interoccurrence times will 
have the same expected length. In Fig. 7.3 N ( t )  is clearly seen to be convex. Thus 
the system is sad. 0 

Example 7.2 Compressor Failure Data 
Failure time data for a specific compressor at a Norwegian process plant have been 
collected as part of a student thesis at the Norwegian University of Science and 
Technology. All compressor failures in the time period from 1968 until 1989 have 
been recorded. In this period a total of 321 failures occurred, 90 of which were critical 
failures and 231 were noncritical. In this context, a critical failure is defined to be a 
failure causing compressor downtime. Noncritical failures may be corrected without 
having to close down the compressor. The majority of the noncritical failures were 
instrument failures and failures of the seal oil system and the lubrication oil system. 

As above, let N ( t )  denote the number of compressor failures in the time interval 
(0, t ] .  From a production regularity point of view, the critical failures are the most 
important, since these failures are causing process shutdown. The operating times (in 
days) at which the 90 critical failures occurred are listed in Table 7.1. Here the time t 
denotes the operating time, which means that the downtimes caused by compressor 

'Notice that we are using the terms convex and concave in a rather inaccurate way here. What we mean 
is that the observed points (ti  ~ N ( t , ) )  for i = 1,2, . . . approximately follow a convedconcave curve. 
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0 
Z 

Table 7.7 Failure Times (Operating Days) in Chronological Order. 

1 .O 4.0 
277.5 284.5 
536.0 568.0 

1288.0 1337.0 
1413.0 1414.0 
1666.0 1752.0 
1884.8 1887 .O 
2178.0 2179.0 
29 14.0 3 156.0 
3276.0 3277.0 
3640.0 3663.0 
3886.0 3886.5 
4191.0 4719.0 
5084.5 5355.0 
567 1 .O 5939.0 

4.5 
374.0 
744.0 

1338.0 
1546.0 
1884.0 
1894.0 
21 88.5 
3 156.5 
3321 .O 
3740.0 
3892.0 
4843.0 
5503.0 
6077.0 

92.0 
440.0 
884.0 

1351.0 
1546.5 
1884.2 
1 907 .O 
2195.5 
3159.0 
3566.5 
3806.0 
3962.0 
4942.0 
5545.0 
6206.0 

252.0 277.0 
444.0 475.0 
904.0 1017.5 

1393.0 1412.0 
1575.0 1576.0 
1884.4 1884.6 
1939.0 1998.0 
2826.0 2847.0 
321 1 .O 3268.0 
3573.0 3594.0 
3806.5 3809.0 
4004.0 4187.0 
4946.0 5084.0 
5545.2 5545.5 
6206.5 6305.0 

0 1000 2000 3000 4000 5000 6000 7000 

Operating time t (days) 

Fig. 7.4 Number of critical compressor failures N ( t )  as a function of time (days), (totaling 
90 failures). 

failures and process shutdowns are not included. An N ( t )  plot with respect to the 90 
critical failures is presented in Fig. 7.4. In this case the N ( t )  plot is slightly concave, 
which indicates a happy system. The time between critical failures hence seems to 
increase with the time in operation. Also note that several failures have occurred 
within short intervals. This indicates that the failures may be dependent, or that the 
maintenance crew has not been able to correct the failures properly at the first attempt. 
0 

An analysis of life data from a repairable system should always be started by estab- 
lishing an N ( t )  plot. If N ( t )  as a function of the time t is nonlinear, methods based 
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on the assumption of independent and identically distributed times between failures 
are obviously not appropriate. It is, however, not certain that such methods are appro- 
priate even if the N ( t )  plot is very close to a straight line. The interoccurrence times 
may be strongly correlated. Methods to check whether the interoccurrence times 
are correlated or not are discussed, for example, by Ascher and Feingold ( 1  984) and 
Bendell and Walls (1985). The N ( t )  plot is further discussed in Section 7.4. 

7.1.2 Some Basic Concepts 

A number of concepts associated with counting processes are defined in the following. 
Throughout this section we assume that the events that are counted are failures. In 
some of the applications later in this chapter we also study other types of events, 
like repairs. Some of the concepts must be reformulated to be meaningful in these 
applications. We hope that this will not confuse the reader. 

Independent increments. A counting process ( N ( t ) ,  t ? 01 is said to have 
independent increments if for 0 < tl .= + .  . < t k ,  k = 2, 3, . . . [ N ( t l )  - 
N(O)] ,  [ N ( t 2 )  - N ( t l ) ] ,  . . . , [ N ( t k )  - N ( t k - l ) ]  are all independent random 
variables. In that case the number of failures in an interval is not influenced 
by the number of failures in any strictly earlier interval (i.e., with no overlap). 
This means that even if the system has experienced an unusual high number 
of failures in a certain time interval, this will not influence the distribution of 
future failures. 

0 Stationary increments. A counting process is said to have stationary increments 
if for any two disjoint time points t > s 0 and any constant c > 0, the random 
variables [ N ( r )  - N ( s ) ]  and [ N ( t  +c> - N ( s  + c ) ]  are identically distributed. 
This means that the distribution of the number of failures in a time interval 
depends only on the length of the interval and not on the interval’s distance 
from the origin. 

Stationary process. A counting process is said to be stationary (or homoge- 

Nonstationaryprocess. A counting process is said to be nonstationary (or non- 
homogeneous) if it is neither stationary nor eventually becomes stationary. 

Regular process. A counting process is said to be regular (or orderly) if 

neous) if it has stationary increments. 

Pr(N(t + A t )  - N ( t )  2 2) = o ( A t )  (7.1) 

when At is small, and o ( A t )  denotes a function of At with the property that 
lim~r-+O o ( A t ) / A t  = 0. In practice this means that the system will not expe- 
rience two or more failures simultaneously. 

0 Rare ofthe process. The rate of the counting process at time t is defined as: 
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where W ( r )  = E ( N ( t ) )  denotes the mean number of failures (events) in the 
interval (0, r ] .  Thus 

and when At is small, 

E ( N ( t  + At) - N(t)) 

Mean no. of failures in ( t ,  t + At] 

At 

w(t) 25 
At 

- - 

Thus a natural estimator of w ( t )  is 

Number of failures in ( t ,  t + At] 

At 
&(t> = (7.4) 

for some suitable At. It follows that the rate w ( t )  of the counting process may 
be regarded as the mean number of failures (events) per time unit at time I .  

When we are dealing with a regular process, the probability of two or more 
failures in (c, t + At] is negligible when At is small. Thus for small At we 
may assume that 

N ( t  + At) - N ( t )  = 0 or I 

Thus the mean number of failures in (c, t + At] is approximately equal to the 
probability of failure in (t, t + A t ] ,  and 

Probability of failure in ( t ,  t + At] 
At 

w ( t )  25 (7.5) 

Hence w ( t )  At can be interpreted as the probability of failure in the time interval 

Some authors use (7.5) written as 

0, r + A t ] .  

Pr(N(t + At) - N(t) = 1) 
w ( t )  = lim 

At-0 At 

as definition of the rate of the process. Observe also that 

(7.6) 

0 ROCOF. When the events of a counting process are failures, the rate w ( t )  of the 
process is often called the rate of occurrence offailures (ROCOF). 

0 Time between failures. We have denoted the time Ti between failure i - 1 and 
failure i, for i = I ,  2 ,  . . ., the interoccurrence times. For a general counting 
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i 

Fig. 7.5 The forward recurrence time Y ( t ) .  

process the interoccurrence times will neither be identically distributed nor 
independent. Hence the mean time between failures, MTBFi = E ( T , ) ,  will in 
general be a function of i and T I ,  T2, . . . , Ti -1. 

Forward recurrence time. The forward recurrence time Y ( t )  is the time to the 
next failure measured from an arbitrary point of time t . Thus Y ( t )  = S N ( ~ ) + ~  --t . 
The forward recurrence time is also called the residual lifetime, the remaining 
lifetime or the excess life. The forward recurrence time is illustrated in Fig. 7.5. 

Many of the results in this chapter are only valid for nonlattice distributions. The 
definition of a lattice distribution follows. 

Definition 7.2 A nonnegative random variable is said to have a lattice (or periodic) 
distribution if there exists a number d 2 0 such that 

F P r ( X  = nd) = I 
n =O 

In words, X has a lattice distribution if X can only take on values that are integral 
0 multiples of some nonnegative number d .  

7.1.3 Martingale Theory 

Martingale theory can be applied to counting processes to make a record of the history 
of the process. Let 3Pl denote the history of the process up to, but not including, time 
t .  Usually we think of 3fI as ( N ( s ) ,  0 5 s < t )  which keeps records of all failures 
before time t .  It could, however, contain more specific information about each failure. 

We may define a conditional rate of failures as 

Pr(N(t + Ar)  - N ( t )  = 1 1 X I )  
w c ( t  I 34,) = lim (7.7) 

Ar-cc At 

Thus, w c ( t  I XI )  . At is approximately the probability of failure in the interval 
[ t ,  t + A t )  conditional on the failure history up to, but not including time t .  Note that 
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the rate of the process (ROCOF) defined in (7.2) is the corresponding unconditional 
rate of failures. 

Usually the process depends on the history through random variables and wc(t  I 
34,) will consequently be stochastic. It should, however, be noted that wc( t  I X l )  
is stochastic only through the history: for a fixed history (i.e., for a given state just 
before time t ) ,  wc(t  1 X t )  is not stochastic. To simplify the notation, we will in 
the following omit the explicit reference to the history 34, and let wc( t )  denote the 
conditional ROCOF. 

The martingale approach for modeling counting processes requires rather sophis- 
ticated mathematics. We will therefore avoid using this approach during the main 
part of the chapter but will touch upon martingales on page 254 and in Section 7.5 
where we discuss imperfect repair models. 

A brief, but clear, introduction to martingales used in counting processes is given 
by Hokstad (1997). A more thorough description is given by Andersen et al. (1993). 

7.1.4 Four Types of Counting Processes 

In this chapter four types of counting processes are discussed: 

1 .  Homogeneous Poisson processes (HPP) 

2 .  Renewal processes 

3. Nonhomogeneous Poisson processes (NHPP) 

4. Imperfect repair processes 

The Poisson process got its name after the French mathematician SimCon Denis 
Poisson (1 78 1-1 840). 

The HPP was introduced in Section 2.10. In the HPP model all the interoccurrence 
times are independent and exponentially distributed with the same parameter (failure 
rate) h. 

The renewal process as well as the NHPP are generalizations of the HPP, both 
having the HPP as a special case. A renewal process is a counting process where the 
interoccurrence times are independent and identically distributed with an arbitrary 
life distribution. Upon failure the component is thus replaced or restored to an “as 
good as new” condition. This is often called a per&ect repair. Statistical analysis 
of observed interoccurrence times from a renewal process is discussed in detail in 
Chapter 11. 

The NHPP differs from the HPP in that the rate of occurrences of failures varies 
with time rather than being a constant. This implies that for an NHPP model the 
interoccurrence times are neither independent nor identically distributed. The NHPP 
is often used to model repairable systems that are subject to a minimal repair strategy, 
with negligible repair times. Minimal repair means that a failed system is restored 
just back to functioning state. After a minimal repair the system continues as if 
nothing had happened. The likelihood of system failure is the same immediately 
before and after a failure. A minimal repair thus restores the system to an “as bad as 
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Type of repair u 
I I I 

Perfect repair or 
replacement 

"as good as new" 

Imperfect repair 
(normal repair) 

Minimal repair 
"as bad as old" 

Fig. 7.6 Types of repair and stochastic point processes covered in this book. 

old" condition. The minimal repair strategy is discussed, for example, by Ascher and 
Feingold (1 984) and Akersten (199 1 )  who gives a detailed list of relevant references 
on this subject. 

The renewal process and the NHPP represent two extreme types of repair: replace- 
ment to an "as good as new" condition and replacement to "as bad as old" (minimal 
repair), respectively. Most repair actions are, however, somewhere between these ex- 
tremes and are often called imperjiect repair or normal repair. A number of different 
models have been proposed for imperfect repair. A survey of some of these models 
is given in Section 7.5. 

The various types of repair and the models covered in this book are illustrated in 
Fig. 7.6. 

7.2 HOMOGENEOUS POISSON PROCESSES 

The homogeneous Poisson process was introduced in Section 2.10. The HPP may 
be defined in a number of different ways. Three alternative definitions of the HPP 
are presented in the following to illustrate different features of the HPP. The first two 
definitions are from Ross (1996, pp. 59-60). 

Definition 7.3 The counting process { N ( t ) ,  r 1 0} is said to be an HPP having rate 
h, for h > 0, if 

1. N ( 0 )  = 0. 

2. The process has independent increments. 

3. The number of events in any interval of length t is Poisson distributed with 
mean A t .  That is, for all s, t > 0, 

Pr(N(t + s )  - N ( s )  = n) = - (*')" e?* for n = 0, 1,2, . . , (7.8) 

0 

n! 
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Note that it follows from property 3 that an HPP has stationary increments and also 
that E ( N ( r ) )  = ht,  which explains why h is called the rate of the process. 

Definition 7.4 The counting process ( N ( r ) ,  t 2 01 is said to be an HPP having rate 
h, for h > 0, if 

1. N ( 0 )  = 0. 

2. The process has stationary and independent increments. 

3. Pr(N(At) = 1) = hAt + o(At). 

4. Pr(N(At) 2 2) = o(Ar). 

These two alternative definitions of the HPP are presented to clarify the analogy to 
the definition of the NHPP which is presented in Section 7.4. 

A third definition of the HPP is given, for example, by Cocozza-Thivent (1997, 
p. 24): 

Definition 7.5 The counting process ( N ( t ) ,  t 2 0} is said to be an HPP having rate 
A, for h > 0, if N ( 0 )  = 0, and the interoccun-ence times T I ,  T2, . . . are independent 

a and exponentially distributed with parameter A. 

7.2.1 Main Features of the HPP 

The main features of the HPP can be easily deduced from the three alternative defi- 
nitions: 

1 .  The HPP is a regular (orderly) counting process with independent and stationary 
increments. 

2. The HOCOFof the HPP is constant and independent of time, 

w(r) = h for all t 2 0 (7.9) 

3. The number of failures in the interval (r, t + u ]  is Poisson distributed with mean 
hU, 

(AU)” e - A u  Pr(N(t + v )  - N ( t )  = n )  = - 
n! 

for all t 2 0, u > 0 

4. The mean number of failures in the time interval ( t ,  t + u ]  is 

W ( t  + U) - W(r) = E ( N ( t  + U )  - N ( t ) )  = hu 

(7.10) 

(7.11) 

Especially note that E ( N ( t ) )  = ht,  and var(N(r)) = ht. 
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5 .  The interoccurrence times T I ,  T2, . . . are independent and identically distributed 

6. The time of the nth failure S, = cy=l I;: has a gamma distribution with 

exponential random variables having mean 1 /h .  

parameters (n, A). Its probability density function is 

(7.12) 

Further features of the HPP are presented and discussed, for example, by Ross ( 1  996), 
Thompson (1988), and Ascher and Feingold (1984). 

Remark: Consider a counting process {N(t), t 2 0)  where the interoccurrence 
times T I ,  T2, . . . are independent and exponentially distributed with parameter h (i.e., 
Definition 7.5). The arrival time S, has, according to (7.12), a gamma distribution 
with parameters (n, A) .  

Since N(t) = n if and only if S, 5 t < & + I ,  and the interoccurrence time 
T,+I = Sn+l - S,, we can use the law of total probability to write 

Pr(N(t) = n) = Pr(S, 5 t < 
t 

Pr(T,+I > t - s I S, = s) f s f l ( s ) d s  = J d  

(7.13) 

We have thus shown that N(t) has a Poisson distribution with mean At ,  in accordance 
with Definition 7.3. 0 

7.2.2 Asymptotic Properties 

The following asymptotic results apply: 

9 -+ h with probability 1, when t += oa 
t 

and 

such that 

Pr ( N(f) - 5 I )  @ ( t )  when t -+ 00 
f i  

(7.14) 

where @ ( t )  denotes the distribution function of the standard normal (Gaussian) dis- 
tribution X(0, 1). 
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7.2.3 Estimate and Confidence Interval 

An obvious estimator for h is 

(7.15) 

The estimator is unbiased, E ( i )  = h, with variance, var(i) = h / t .  
A 1 - E confidence interval for h, when N ( t )  = n events (failures) are observed 

during a time interval of length t ,  is given by (e.g., see Cocozza-Thivent 1997, p. 63) 

(7.16) 
1 (; 21-e,2,2n7 - 2t z&/2,2(n+l) 

where zE,” denotes the upper loo&% percentile of the chi-square ( x 2 )  distribution 
with u degrees of freedom. A table of zE,” for some values of E and u is given in 
Appendix F. 

In some situations it is of interest to give an upper (1 - E )  confidence limit for h. 
Such a limit is obtained through the one-sided confidence interval given by 

(7.17) 

Note that this interval is applicable even if no failures ( N ( t )  = 0) are observed during 
the interval (0, t ) .  

7.2.4 Sum and Decomposition of HPPs 

Let { N l  ( t ) ,  r L 0) and { N 2 ( t ) ,  t 2 0) be two independent HPPs with rates hl and 
h2, respectively. Further, let N ( t )  = N I  ( t )  + N 2 ( t ) .  It is then easy to verify that 
( N ( t ) ,  t 2 0 )  is an HPP with rate h = h~ + k.2. 

Suppose that in an HPP ( N ( t ) ,  t 2 0)  we can classify each event as type 1 and 
type 2 that are occurring with probability p and ( 1  - p ) ,  respectively. This is, for ex- 
ample, the case when we have a sequence of failures with two different failure modes 
(1 and 2) ,  and p equals the relative number of failure mode 1. Then the number of 
events, N I  ( t )  of type 1, and N 2 ( t )  of type 2, in the interval (0, t ]  also give rise to 
HPPs, ( N I  ( t ) ,  t 2 0 )  and { N 2 ( r ) ,  t 2 O }  with rates p h  and (1 - p)h ,  respectively. 
Furthermore, the two processes are independent. For a formal proof, see, for exam- 
ple, Ross ( 1996, p, 69). These results can be easily generalized to more than two cases. 

Example 7.3 
Consider an HPP { N ( t ) ,  t 2 O} with rate h. Some failures develop into a consequence 
C, others do not. The failures developing into a consequence C are denoted a C -  
failure. The consequence C may, for example, be a specific failure mode. The 
probability that a failure develops into consequence C is denoted p and is constant 
for each failure. The failure consequences are further assumed to be independent of 
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each other. Let N c ( t )  denote the number of C-failures in the time interval (0, t ] .  
When N ( t )  is equal to n, N c ( t )  will have a binomial distribution: 

Pr(Nc(t) = y I N ( t )  = n )  = (:>..(I - p>n-y for y = 0 , 1 , 2 , .  . . , n 

The marginal distribution of N c ( t )  is 

(7.18) 

Thus {Nc( t ) ,  t 2 0) is an HPP with rate p h ,  and the mean number of C-failures in 
the time interval (0, t ]  is 

7.2.5 Conditional Distribution of Failure Time 

Suppose that exactly one failure of an HPP with rate h is known to have occurred 
some time in the interval (0, to] .  We want to determine the distribution of the time TI 
at which the failure occurred: 

Pr(T1 5 t f l  N ( t o )  = 1) 
Pr(N(to) = 1) 

Pr(T1 5 t 1 N ( t o )  = 1) = 

(7.19) 
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When we know that exactly one failure (event) takes place in the time interval (0, to] ,  
the time at which the failure occurs is uniformly distributed over (0, to]. Thus each 
interval of equal length in (0, to] has the same probability of containing the failure. 
The expected time at which the failure occurs is 

(7.20) t0 E(T1 I N(t0)  = 1) = - 
2 

7.2.6 Compound HPPs 

Consider an HPP ( N ( t ) ,  t 2 0) with rate h. A random variable Vi is associated to 
failure event i ,  for i = I ,  2, . . .. The variable V; may, for example, be the consequence 
(economic loss) associated to failure i .  The variables VI , V2, . . . are assumed to be 
independent with common distribution function 

F v ( u )  = Pr(V 5 u )  

The variables VI , V2, . . . are further assumed to be independent of N ( t ) .  The cumu- 
lative consequence at time r is 

N O )  
z(t) = C V; fort  2 o (7.21) 

i = l  

The process { Z ( t ) ,  t >_ 0 )  is called a compound Poisson process. Compound Poisson 
processes are discussed, for example, by Ross (1996, p. 82) and Taylor and Karlin 
(1 984, p. 200). The same model is called a cumulative damage model by Barlow and 
Proschan (1975, p. 91). To determine the mean value of Z ( t ) ,  we need the following 
important theorem: 

Theorem 7.1 (Wuld’s Equation) Let X I ,  X 2 ,  X 3 ,  . . . be independent and identically 
distributed random variables with finite mean p. Further let N be a stochastic integer 
variable so that the event ( N  = n )  is independent of X n + l ,  Xn+2,. , . for all n = 
1,2,  . . .. Then 

(7.22) 

0 

A proof of Wald’s equation may be found, for example, in Ross (1996, p. 105). The 
variance of cr=, X ;  is (see Ross 1996, pp. 22-23): 

var (g X;) = E ( N )  . var(X;) + [ E ( X ; ) I 2  . var(N) 

Let E ( V ; )  = v and var(Vi) = t2. From (7.22) and (7.23) we get 

E ( Z ( t ) )  = uht and var(Z(t)) = h(v2  + r2)l  

(7.23) 
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Assume now that the consequences Vi are all positive, that is, Pr(Vi > 0) = 1 for 
all i ,  and that a total system failure occurs as soon as Z ( t )  > c for some specified 
critical value c. Let Tc denote the time to system failure. Note that Tc > t if and only 
if Z ( t )  5 c. 

Let VO = 0, then 

P ~ ( T ,  > t )  = Pr(z(t) I c) = Pr C v;: p c (3 ) 

(7.24) 

where F t ' ( v )  denotes the distribution function of cy=o Vi, and the last equality is 
due to the fact that N ( t )  is independent of VI, V2, . . .. 

The mean time to total system failure is thus 

00 

E(Tc)  = Jd Pr(Tc > t ) d t  

(7.25) 

Example 7.4 
Consider a sequence of failure events that can be described as an HPP I N ( ? ) ,  t 2 t )  
with rate h. Failure i has consequence Vj, where VI , V2, . . . are independent and 
exponentially distributed with parameter p.  The sum Cy='=l Vi therefore has a gamma 
distribution with parameters ( n ,  p )  [see Section 2.1 1 (2.45)]: 

Total system failure occurs as soon as Z ( t )  = C;"='i) Vi > c. The mean time to total 
system failure is given by (7.25) where 

co k 
= C ( 1 +  k ) o e - p c  = 1 + pc  

k !  
k=O 



RENEWAL PROCESSES 247 

Hence when the consequences V1 , V2, . . . are exponentially distributed with param- 
eter p,  the mean time to total system failure is 

1 f p c  
E(T,) = - 

A 
(7.26) 

The distribution of the time T, to total system failure is by Barlow and Proschan 
(1975, p. 94) shown to be an increasing failure rate average (IFRA) distribution for 
any distribution Fv(v). (IFRA distributions are discussed in Section 2.19). 

7.3 RENEWAL PROCESSES 

Renewal theory had its origin in the study of strategies for replacement of technical 
components, but later it was developed as a general theory within stochastic processes. 
As the name of the process indicates, it is used to model renewals, or replacement of 
equipment. This section gives a summary of some main aspects of renewal theory 
which are of particular interest in reliability analysis. This includes formulas for 
calculation of exact availability and mean number of failures within a given time 
interval. The latter can, for example, be used to determine optimal allocation of spare 
parts. 

Example 7.5 
A component is put into operation and is functioning at time t = 0. When the 
component fails at time T I ,  it is replaced by a new component of the same type, or 
restored to an “as good as new” condition. When this component fails at time Ti + T2, 
it is again replaced, and so on. The replacement time is assumed to be negligible. 
The life lengths T I ,  T2, . . . are assumed to be independent and identically distributed. 
The number of failures, and renewals, in a time interval (0, t ]  is denoted N ( t ) .  

7.3.1 Basic Concepts 

A renewal process is a counting process ( N ( t ) ,  t 2 0) with interoccurrence times 
T I ,  T2, . . . that are independent and identically distributed with distribution function 

F T ( ~ )  = P r ( c  5 t )  fort 2 0, i = 1 ,2 , .  . . 

The events that are observed (mainly failures) are called renewals, and FT ( t )  is called 
the underlying distribution of the renewal process. We will assume that E ( c )  = p 
andvar(T,) = C? 4 mfor i  = 1 , 2 , 3 , .  . .. NotethattheHPPdiscussedinSection7.2 
is a renewal process where the underlying distribution is exponential with parameter 
A. A renewal process may thus be considered as a generalization of the HPP. 

The concepts that were introduced for a general counting process in Section 7.1.2 
are also relevant for a renewal process. The theory of renewal processes has, however, 
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been developed as a specific theory, and many of the concepts have therefore been 
given specific names. We will therefore list the main concepts of renewal processes 
and introduce the necessary terminology. 

1. The time until the nth renewal (the nth arrival time), S,,: 

2. The number of renewals in the time interval (0, t ] :  

N ( t )  = max(n : S,, I t )  

(7.27) 

(7.28) 

3. The renewal function: 

W ( t >  = E ( N ( t ) )  (7.29) 

Thus W ( t )  is the mean number of renewals in the time interval (0, t ] .  

4. The renewal density: 

d 
dt 

w ( r )  = - W ( t )  (7.30) 

Note that the renewal density coincides with the rate of the process defined in 
(7.2), which is called the rate of occurrence of failures when the renewals are 
failures. The mean number of renewals in the time interval (tl , t21 is 

The relation between the renewal periods 7; and the number of renewals N ( t ) ,  the 
renewal process is illustrated in Fig. 7.1. The properties of renewal processes are 
discussed in detail by Cox (1962), Ross (1996), and Cocozza-Thivent (1997). 

7.3.2 The Distribution of S,, 
To find the exact distribution of the time to the nth renewal S,, is often very com- 
plicated. We will outline an approach that may be used, at least in some cases. Let 
F ( " ) ( t )  denote the distribution function of S,, = Cy=, 7;. 

Since S,, may be written as S,, = Sn-l + T,,, and Sn-l and T,, are independent, 
the distribution function of S,, is the convolution of the distribution functions of Sn-l 
and T,,, respectively, 

(7.32) 
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The convolution of two (life) distributions F and G is often denoted F * G, meaning 
that F * G ( t )  = 1; G(t  - x )  d F ( x ) .  Equation (7.32) can therefore be written F(") = 

When F T ( ~ )  is absolutely continuous with probability density function f T ( t ) ,  the 
FT =+ F(, , - ' ) .  

probability density function f ( ' ) ( t )  of S,, may be found from 

f ( " ' ( t >  = f ( " - ' ) ( t  - x ) f T ( x )  d x  (7.33) s,' 
By successive integration of (7.32) for n = 2,3 ,4 ,  . . ., the probability distribution of 
S,, for a specified value of n can, in principle, be found. 

It may also sometimes be relevant to use Laplace transforms to find the distribution 
of S,,. The Laplace transform of Equation (7.33) is (see Appendix B) 

f*'%) = (f;f(S))" (7.34) 

The probability density function of S,, can now, at least in principle, be determined 
from the inverse Laplace transform of (7.34). 

In practice it is often very time-consuming and complicated to find the exact 
distribution of Sn from formulas (7.32) and (7.34). Often an approximation to the 
distribution of S,, is sufficient. 

From the strong law of large numbers, that is, with probability I ,  

- + p as n - c c  (7.35) s n  

n 

According to the central limit theorem, S, = cy=, 7', is asymptotically normally 
distributed: 

and 

(7.36) 

where 0(.) denotes the distribution function of the standard normal distribution 
"(0, 1). 

Example 7.6 IFR Interoccurrence Times 
Consider a renewal process where the interoccurrence times have an increasing failure 
rate (IFR) distribution F T ( ~ )  (see Section 2.19) with mean time to failure p. In this 
case, Barlow and Proschan ( 1  965, p. 27) have shown that the survivor function, 
R T ( t )  = 1 - F T ( t ) ,  satisfies 

Rj-( t )  2 e-'ICL when I < p (7.37) 
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The right-hand side of (7.37) is the survivor function of a random variable U j  with 
exponential distribution with failure rate 1/p. Let us assume that we have n indepen- 
dent random variable U I  , U2, . . . , Un with the same distribution. The distribution of 
CJ=l l J j  has then a gamma distribution with parameters (n, l / p )  (see Section 2.1 l), 
and we therefore get 

1 - F ( , ) ( t )  = Pr(S, > t )  = Pr(T1 + T2 + . . . + T, > t)  

Hence 

(7.38) 

For a renewal (failure) process where the interoccurrence times have an IFR distribu- 
tion with mean p, equation (7.38) provides a conservative bound for the probability 

0 that the nth failure will occur before time t ,  when t < p. 

7.3.3 The Distribution of N ( t )  

From the strong law of large numbers, that is, with probability 1, 

1 

t P 
9 + - a s t + o o  (7.39) 

When t is large, N ( t )  x t / p .  This means that N ( t )  is approximately a linear function 
of t  when t is large. In Fig. 7.7 the number of renewals N ( t )  is plotted as a function 
oft for a simulated renewal process where the underlying distribution is Weibull with 
parameters A = 1 and (Y = 3. 

From the definition of N ( t )  and S,, it follows that 

Pr (N( t )  2 n) = Pr(S, 5 t )  = F ( " ) ( t )  (7.40) 

and 

Pr(N(t) = n )  = Pr(N(t) 2 n) - P r ( N ( t )  2 n + 1) 

- - F'"'(t) - F ( " + ' ) ( f )  (7.41) 

For large values of n we can apply (7.36) and obtain 

and 

(7.42) 

(7.43) 
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Fig. 7.7 Number of renewals N ( t )  as a function of t  for a simulated renewal process where 
the underlying distribution is Weibull with parameters h = 1 and a = 3. 

Takacs (1956) derived the following alternative approximation formula which is valid 
when t is large: 

(7.44) 

A proof of (7.44) is provided in Ross (1996, p. 109). 

7.3.4 The Renewal Function 

Since N ( t )  2 n if and only if S,, I t ,  we get that (see Problem 7.4) 

An integral equation for W ( t )  may be obtained by combining (7.45) and (7.32): 

00 03 

(7.46) 
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This equation is known as the fundamental renewal equation and can sometimes be 
solved for W ( t ) .  

Equation (7.46) can also be derived by a more direct argument. By conditioning 
on the time TI of the first renewal, we obtain 

where 

when t < x 
1 + W ( t  - x )  when t 2 x E ( N ( t )  1 Tl = x> = (7.48) 

If the first renewal occurs at time x for x 5 t ,  the process starts over again from this 
point in time. The mean number of renewals in (0, t ]  is thus 1 plus the mean number 
of renewals in ( x ,  t ] ,  which is W ( t  - x ) .  

Combining equations (7.47) and (7.48) yields 

and thus an alternative derivation of (7.46) is provided. 
The exact expression for the renewal function W ( t )  is often difficult to determine 

from (7.46). Approximation formulas and bounds may therefore be useful. 
Since W ( t )  is the expected number of renewals in the interval (0, t ] .  the average 

length p of each renewal is approximately t /  W ( t ) .  We should therefore expect that 
when t -+ co, we get 

(7.49) 

This result is known as the elementary renewal theorem and is valid for a general 
renewal process. A proof may, for example, be found in Ross (1996, p. 107). 

When the renewals are component failures, the mean number of failures in (0, t ]  
is thus approximately 

t t 
E ( N ( t ) )  = W ( t )  x - = - when t is large 

p MTBF 

where p = MTBF denotes the mean time between failures. 

interval (0, t ]  is 
From the elementary renewal theorem (7.49), the mean number of renewals in the 

t 
W ( t )  M - when t is large 

w 
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The mean number of renewals in the interval ( r ,  t + u ]  is 

U 
W ( t  + u )  - W ( t )  :: - when t is large, and u > 0 

P 
(7.50) 

and the underlying distribution FT ( t )  is nonlattice. This result is known as Blackwell's 
theorem, and a proof may be found in Feller (1968, Chapter XI). 

Blackwell's theorem (7.50) has been generalized by Smith (1958), who showed 
that when the underlying distribution F T ( ~ )  is nonlattice, then 

03 

lim 1' Q(t  - x )  d W ( x )  = 1 Q ( u )  du 
f+03 0 P o  

(7.51) 

where Q ( t )  is a nonnegative, nonincreasing function which is Riemann integrable 
over (0, 00). This result is known as the key renewal theorem. 

By introducing Q ( t )  = cx-' for 0 < t 5 a and Q ( t )  = 0 otherwise, in (7.51), we 
get Blackwell's theorem (7.50). 

Let 

(7.52) 

where F,(t) is a distribution function with a special interpretation that is further 
discussed on page 267. By using Q ( t )  = 1 - F,(t) in (7.51) we get 

if E ( q 2 )  = cr2 + p2 < 00. We may thus use the following approximation when t is 
large 

Upper and lower bounds for the renewal function are supplied on page 262. 

7.3.5 The Renewal Density 

When F T ( ~ )  has density f ~ ( t ) ,  we may differentiate (7.45) and get 

03 d d w  

dt d t  
w ( t )  = - W ( t )  = - c F?'(t) = c fP)(t) 

n = l  n=l  

(7.53) 

(7.54) 

This formula can sometimes be used to find the renewal density w ( t ) .  Another 
approach is to differentiate (7.46) with respect to t 

(7.55) 
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Yet another approach is to use Laplace transforms. From Appendix B the Laplace 
transform of (7.55) is 

w*(s)  = f&) + w*(s )  * f,*(s) 

Hence 

(7.56) 

Remark: According to (7.5) the probability of a failure (renewal) in a short interval 
( t ,  t + At] is approximately w ( t ) .  At.  Since the probability that theJirst failure occurs 
in ( t ,  t + At] is approximately fT(t). At, we can use (7.55) to conclude that a “later” 
failure (i.e., not the first) will occur in ( 2 ,  t + At] with probability approximately 

0 

The exact expression for the renewal density w ( t )  is often difficult to determine 
from (7.54), (7.53, and (7.56). In the same way as for the renewal function, we 
therefore have to suffice with approximation formulas and bounds. 

equal to 0’ w(t  - x)fT(x) dx) . AZ.  (1 

From (7.49) we should expect that 

1 

P 
lim w ( t )  = - (7.57) 

t+co 

Smith (1958) has shown that (7.57) is valid for a renewal process with underlying 
probability density function f T ( t )  when there exists a p > 1 such that IfT(t)lP is 
Riemann integrable. The renewal density w ( t )  will therefore approach a constant 
l / p  when t is large. 

Consider a renewal process where the renewals are component failures. The in- 
teroccurrence times T I ,  T2, . . . then denote the times to failure, and S1, S2, . . . are 
the times when the failures occur. Let z ( t )  denote the failure rate [force of mortality 
(FOM)] function of the time to the first failure T I .  The conditional renewal density 
(ROCOF) w c ( t )  in the interval (0, T I )  must equal z ( t )  (see page 238). When the 
first failure has occurred, the component will be renewed or replaced and started up 
again with the same failure rate (FOM) as for the initial component. The conditional 
renewal rate (ROCOF) may then be expressed as 

~ ( t >  = z ( t  - S N ( r - ) )  

where t - SN( , - )  is the time since the last failure strictly before time t .  The conditional 
ROCOF is illustrated in Fig. 7.8 when the interoccurrence times are Weibull distributed 
with scale parameter A = 1 and shape parameter a! = 3. The plot is based on simulated 
interoccurrence times from this distribution. 

Example 7.7 
Consider a renewal process where the renewal periods T I ,  T2, . . . are independent and 
gamma distributed with parameters (2, A), with probability density function 

f T ( t )  = A 2 t  e-Ar for t > 0,  A > o 
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Fig. 7.8 Illustration of the conditional ROCOF (fully drawn line) for simulated data from a 
Weibull distribution with parameters a = 3 and h = 1. The corresponding asymptotic renewal 
density is drawn by a dotted line. 

The mean renewal period is E ( c )  = p = 2/A, and the variance is var(K) = a* = 
2/h2. The time until the nth renewal, S,, is gamma distributed (see Section 2.11) 
with probability density function 

The renewal density is according to (7.54) 

The renewal function is 

At 1 t 

W ( t )  = w ( x ) d x  = (1  - e-2Ax)dx  = - - - (1 - eP2*') (7.58) I' 2 4  

The renewal density w ( t )  and the renewal function W ( t )  are illustrated in Fig. 7.9 for 
A = 1. Note that when t +- 00. then 

A t  t - W ( t )  -+ - - - 
2 P  
A 1  

w ( t )  -+ - = - 
2 P  

in accordance with (7.49) and (7.57), respectively. We may further use (7.53) to find a 
better approximation for the renewal function W ( t ) .  From (7.58) we get the left-hand 
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Fig. 7.9 Renewal density w ( t )  (fully drawn line) and renewal function W ( t )  (dotted line) 
for Example 7.7, with (A = 1). 

side of (7.53): 

t At 1 
W ( t )  - - = W ( t )  - - + -- when t --+ 00 

I-L 2 4 

The right hand side of (7.53) is (with p = 2 / ~  and o2 = 2/k2) 

We can therefore use the approximation 

kt 1 
W ( t )  25 - - - when t is large 

2 4  

Example 7.8 
Consider a renewal process where the renewal periods T I ,  T2, . . . are independent and 
Weibull distributed with shape parameter a and scale parameter A. In this case the 
renewal function W ( t )  cannot be deduced directly from (7.45). Smith and Leadbetter 
(1963) have, however, shown that W ( t )  can be expressed as an infinite, absolutely 
convergent series where the terms can be found by a simple recursive procedure. They 
show that W ( t )  can be written 

(7.59) 

By introducing this expression for W ( t )  in the fundamental renewal equation, the 
constants Ak; k = 1 ,  2, . . . can be determined. The calculation, which is quite 
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Fig. 7.70 The renewal function for Weibull distributed renewal periods with h = 1 and 
(Y = 0.5, a = I and a = 1.5. (The figure is adapted from Smith and Leadbetter, 1963). 

comprehensive, leads to the following recursion formula: 

(7.60) 
n- 1 

j=1 

where 

r (na  + 1) 
Yn = f o r n =  1,2,  ... 

n! 

For a! = 1, the Weibull distribution is an exponential distribution with parameter 
A. In this case 

= 1  f o r n = l , 2 ,  . . .  r ( n  + 1) 
n! 

Yn = 

This leads to 

A1 = 1 

An = 0 for n 2 2 

The renewal function is thus according to (7.59) 

(-1)OAlht 

r (2) 
W ( t )  = = At 

The renewal function W ( t )  is illustrated in Fig. 7.10 for I = 1 and three values 

of a!. 
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Fig. 7.71 The age Z ( t )  and the remaining lifetime Y ( t ) .  

7.3.6 Age and Remaining Lifetime 

The age Z ( t )  of an item operating at time t is defined as 

for N ( t )  = 0 
t - S N ( ~ )  for N ( r )  > 0 

Z ( t )  = (7.61) 

The remaining lifetime Y (t)  of an item that is in operation at time t is given as 

The age Z ( t )  and the remaining lifetime Y (t) are illustrated in Fig. 7.1 1. The remain- 
ing lifetime is also called the residual life, the excess life, or the forward recurrence 
time (e.g., see Ross 1996, and Ascher and Feingold 1984). Note that Y ( t )  > y is 
equivalent to no renewal in the time interval (r, t + y]. 

Consider a renewal process where the renewals are component failures, and let T 
denote the time from start-up to the first failure. The distribution of the remaining 
life Y (t) of the component at time t is given by 

Pr(T > y + t )  
Pr(T > t)  

Pr(Y(t) > y) = Pr(T > y + t I T > t )  = 

and the mean remaining lifetime at time t is 

See also Section 2.7, where E ( Y ( t ) )  was called the mean residual life (MRL) at time 
t.  When T has an exponential distribution with failure rate h, the mean remaining 
lifetime at time r is l / h  which is an obvious result because of the memoryless property 
of the exponential distribution. 
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Limiting distribution Consider a renewal process with a nonlattice underlying 
distribution F T ( ~ ) .  We observe the process at time t .  The time till the next failure is 
the remaining lifetime Y(t). The limiting distribution of Y(t) when t + 00 is (see 
Ross 1996, p. 116) 

lim Pr(Y(t) 5 t )  = F‘(t) = - ( I  - FT(u))du 
f + C C  P o  s’ (7.63) 

which is the same distribution as we used in (7.52). The mean of the limiting d i sh -  
bution Fe( t )  of the remaining lifetime is 

Pr(Y > Y) dy = (1 - FAY)) dy 

/ 0 0  

Pr(T > t )  dy dt 

r r E ( Y )  = 

= Srn i n P r ( T  > t ) d t d y  = - 
P O  P o  

00 00 

= ‘ 1  r P r ( T , t ) d t = i /  P r ( T > & ) d x  
P o  2P 0 

where E ( T )  = p and var(T) = 02, and we assume that E ( T 2 )  = a2 + k2 < 00. 

We have thus shown that the limiting mean remaining life is 

a2 + ,LL2 

2P 
lim E ( Y ( t ) )  = ~ 

1 4 0 0  
(7.64) 

Example 7.7 (Cont.) 
Again, consider he renewal process in Example 7.7 where the underlying distribution 
was a gamma distribution with parameters (2 ,  A),  with mean time between renewals 
E ( Z )  = p = 2 / h  and variance var(Ti) = 2 /h2 .  The mean remaining life of an item 
that is in operation at time t far from now is from (7.64) 

3 
E(Y(t)) 25 O 2  ~ + P2 - - - when t is large 

2P 2h 

0 

The distribution of the age Z ( t )  of an item that is in operation at time t can be 
derived by starting with 

Z(r )  > z no renewals in ( t  - z ,  t )  

* Y ( t - z ) > z  

Therefore 

Pr(Z(t) > z )  = Pr(Y(t - z) > z )  
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When the underlying distribution FT ( t )  is nonlattice, we can show that the limiting 
distribution of the age Z ( t )  when t + 00 is 

lim Pr(Z(t) 5 t )  = F,(t)  = 
f + O O  

(7.65) 

that is, the same distribution as (7.63). When t + 00, both the remaining lifetime 
Y ( t )  and the age Z(t) at time t will have the same distribution. When t is large, then 

(7.66) 

Let us now assume that a renewal process with a nonlattice underlying distribution 
has been “running” for a long time, and that we observe the process at a random 
time, which we denote t = 0. The time TI to the first renewal after time t = 0 is 
equal to the remaining lifetime of the item that is in operation at time t = 0. The 
distribution of TI is equal to (7.63) and the mean time to the first renewal is given by 
(7.64). Similarly, the age of the item that is in operation at time t = 0 has the same 
distribution and the same mean as the time to the first renewal. For a formal proof, 
see Ross (1996, p. 131) or Bon (1995, p. 136). 

Remark: This result may seem a bit strange. When we observe arenewal process that 
has been “running” for a long time at a random time t ,  the length of the corresponding 
interoccurrence time is SN(,)+I - SN(f)r  as illustrated in Fig. 7.15, and the mean 
length of the interoccurrence time is p .  We obviously have that S N ( f ) + l  - S N ( t )  = 
Z(2) + Y(t), but E(Z(r) + E(Y(t)) = (a2 + p 2 ) / p  is greater than p .  This rather 
surprising result is known as the inspection paradox, and is further discussed by Ross 

0. 
If the underlying distribution function F T ( ~ )  is new better than used (NBU) or new 

worse than used (NWU) (see Section 2.19), bounds may be derived for the distribution 
of the remaining lifetime Y ( t )  of the item that is in operation at time t .  Barlow and 
Proschan (1975, p. 169) have shown that the following apply: 

(1996, p. 117), and Bon (1995, p 141). 

If F T ( t )  is NBU, then Pr(Y(t) > y)  5 Pr(T > y)  (7.67) 

If Fj-(t) is NWU, then Pr(Y(t) > y)  2 Pr(T > y)  (7.68) 

Intuitively, these results are obvious. If an item has an NBU life distribution, then a 
new item should have a higher probability of surviving the interval (0, y ]  than a used 
item. The opposite should apply for an item with an NWU life distribution. 

When the distributions of Z ( t )  and Y ( t )  are to be determined, the following lemma 
is useful: 

Lemma7.1 If 

(7.69) 
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where the functions h and F are known, while g is unknown, then 

g( t )  = W )  + 1' h(t  - X ) d w F ( X )  

where 

(7.70) 

r = l  

0 

Note that equation (7.70) is a generalization of the fundamental renewal equation 
(7.46). 

Example 7.9 
Consider a renewal process with underlying distribution FT ( t ) .  The distribution of 
the remaining lifetime Y ( t )  of an item that is in operation at time t can be given by 
(e.g., see Bon 1995, p. 129) 

By introducing the survivor function R ( t )  = 1 - FT(t) ,  and assuming that the renewal 
density wF( t )  = d W F ( t ) / d t  exists, (7.71) may be written 

Pr(Y(t) > y )  = R ( y  + t )  + R ( y  + t - u ) w ~ ( u ) d u  (7.72) 

If the probability density function f ( t )  = d F T ( t ) / d t  = - d R ( t ) / d t  exists, we have 
from the definition of f ( t )  that 

In' 
R ( t )  - R ( t  + y )  x f ( t )  . y when y is small 

Equation (7.72) may in this case be written 
ft 

= Pr(Y(t) > 0) - w F ( t )  . y (7.73) 

The last line in (7.73) follows from Lemma 7.1. Since Pr(Y(t) > 0) = 1, we have 
the following approximation: 

Pr(Y(t) > y) = 1 - W F ( C )  . y when y is small (7.74) 

If we observe a renewal process at a random time I ,  the probability of having a failure 
(renewal) in a short interval of length y after time t is, from (7.74), approximately 

0 w F ( t )  . y, and it is hence relevant to call wF( t )  the ROCOF. 
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7.3.7 Bounds for the Renewal Function 

We will now establish some bounds for the renewal function W ( t ) .  For this purpose 
consider a renewal process with interarrival times T I ,  T2, . . .. We stop observing the 
process at the first renewal after time t ,  that is, at renewal N ( t )  + 1. Since the event 
N ( t )  + 1 = n only depends on T I ,  T2, . . . , T,, we can use Wald’s equation to get 

Since SN(r)+l  is the first renewal after t,  it can be expressed as 

The mean value is from (7.75) 

such that 

(7.76) 

When t is large and the underlying distribution is nonlattice, we can use (7.64) to get 

(‘i 1) whent-oo W ( t ) - -  -+ - --  
t 

P 2 P  
(7.77) 

which is the same result as we found in (7.53). 

process is bounded by 
Lorden (1970) has shown that the renewal function W ( t )  of a general renewal 

t t u2 
- - 1 5 W ( t )  5 - + - 
P P P2 

(7.78) 

For a proof, see Cocozza-Thivent (1997, p. 170). 
In section 2.19 we introduced several families of life distribution. A distribution 

was said to be “new better than used in expectation” (NBUE) when the mean remaining 
lifetime of a used item was less, or equal to, the mean life of a new item. In the same 
way, a distribution was said to be “new worse than used in expectation” (NWUE) 
when the mean remaining life of a used item was greater, or equal to, the mean life 
of a new item. 

If we have an NBUE distribution, then E ( Y ( t ) )  5 p, and 

and 

(7.79) 
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Fig. 7.12 The renewal function W ( t )  of a renewal process with underlying distribution that 
is gamma (2, A), together with the bounds for W ( t ) ,  for h = 1. 

If we have an NWUE distribution, then E ( Y ( t ) )  3 p, and 

(7.80) 

Further bounds for the renewal function are given by Dohi et al. (2002). 

Example 7.7 (Cont.) 
Reconsider the renewal process where the underlying distribution has a gamma dis- 
tribution with parameters ( 2 ,  k) .  This distribution has an increasing failure rate and 
is therefore also NBUE. We can therefore apply the bounds in (7.79). In Fig. 7.12 the 
renewal function (7.58) 

ht 1 
2 4  

W ( t )  = - - - (1 - @‘) 

is plotted together with the bounds in (7.79) 

kt k t  
1 5 W ( t )  5 - 

2 2 
_ -  

7.3.8 Superimposed Renewal Processes 

Consider a series structure of n independent components that are put into operation 
at time t = 0. All the n components are assumed to be new at time t = 0. When a 
component fails, it is replaced with a new component of the same type or restored to 
an “as good as new” condition. Each component will thus produce a renewal process. 
Then components will generally be different, and the renewal processes will therefore 
have different underlying distributions. 
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Time 

Fig, 7.73 Superimposed renewal process. 

The process formed by the union of all the failures is called a superimposed renewal 
process (SRP). The n individual renewal processes and the SRP are illustrated in 
Fig. 7.13. 

In general, the SRP will not be a renewal process. However, it has been shown, for 
example, by Drenick (1960), that superposition of an infinite number of independent 
stationary renewal processes is an HPP. Many systems are composed of a large number 
of components in series. Drenick's result is often used as ajustification for assuming 
the time between system failures to be exponentially distributed. 

Example 7.10 
Consider a series structure of two components. When a component fails, it is replaced 
or repaired to an "as good as new" condition. Each component will therefore produce 
an ordinary renewal process. The time required to replace or repair a component 
is considered to be negligible. The components are assumed to fail and be repaired 
independent of each other. Both components are put into operation and are functioning 
at time f = 0. The series system fails as soon as one of its components fails, and the 
system failures will produce a superimposed renewal process. Times to failure for 
selected life distributions with increasing failure rates for the two components and 
the series system have been simulated on a computer and are illustrated in Fig. 7.14. 
The conditional ROCOF (when the failure times are given) is also shown in the figure. 
As illustrated in Fig. 7.14 the system is not restored to an "as good as new" state after 
each system failure. The system is subject to imperjiect repairs (see Section 7.5) and 
the process of system failures is not a renewal process since the times between system 
failures do not have a common distribution. 0 

The superimposed renewal process is further discussed, for example, by Cox and 
Isham ( 1  980), Ascher and Feingold (1984), and Thompson (1988). 

7.3.9 Renewal Reward Processes 

Consider a renewal process { N ( t ) ,  t 2 0), and let (Si-1, Si] be the duration of the 
ith renewal cycle, with interoccurrence time = Si - Sj-1. Let Vi be a reward 
associated to renewal Ti, for i = 1,2, . . .. The rewards V1, V2, . . . are assumed to 
be independent random variables with the common distribution function FV (u ) ,  and 
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Comp. 1 

Comp. 2 

Fig. 7.14 
two components that are renewed upon failure. 

Superimposed renewal process. Conditional ROCOF wc ( t )  of a series system with 

with E ( C )  < 00. This model is comparable with the compound Poisson process that 
was described on page 245. The accumulated reward in the time interval (0, t ]  is 

N O )  

V ( t )  = c vj 
i=l 

(7.81) 

Let E ( z )  = P T  and E ( V j )  = p v .  According to Wald's equation (7.22) the mean 
accumulated reward is 

According to the elementary renewal theorem (7.49), when t -+ 00, 

W ( t )  - E ( N ( t ) )  1 + -  ~~ - 
t t PT 

Hence 

E ( V ( t ) )  - P V  . E ( N ( t ) )  PV 
t t PT 

- + -  (7.83) 

The same result is true even if the reward Vj is allowed to depend on the associated 
interoccurrence time C for i = 1 ,2 , .  . .. The pairs (c, Vi)  for i = 1 , 2 , .  . . are, 
however, assumed to be independent and identically distributed (for proof, see Ross 
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1996, p. 133). The reward Vj in renewal cycle i may, for example, be a function of 
the interoccurrence time c,  for i = 1,2,  . . .. When t is very large, then 

t 

PT 
V ( t )  = /.Lv . - 

which is an obvious result. 

7.3.10 Delayed Renewal Processes 

Sometimes we consider counting processes where the first interoccurrence time TI 
has a distribution function FT~ ( t )  that is different from the distribution function FT (t) 
of the subsequent interoccurrence times. This may, for example, be the case for a 
failure process where the component at time t = 0 is not new. Such a renewal process 
is called a delayed renewal process, or a modijied renewal process. To specify that the 
process is not delayed, we sometimes say that we have an ordinary renewal process. 

Several of the results presented earlier in this section can be easily extended to 
delayed renewal processes: 

The Distribution of N ( t )  Analogous with (7.41) we get 

(7.84) 

The Distribution of S,, The Laplace transform of the density of S,, is from (7.34): 

(7.85) 

The Renewal Function The integral equation (7.46) for the renewal function W ( t )  
becomes 

and the Laplace transform is 

The Renewal Density Analogous with (7.55) we get 

w ( t )  = fTl ( t )  d- w(t  - X ) f T  ( x )  dx I’ 
and the Laplace transform is 

(7.86) 

(7.87) 

(7.88) 

(7.89) 
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All the limiting properties for ordinary renewal processes, when t +. m, will obvi- 
ously also apply for delayed renewal processes. 

For more detailed results see, for example, Cocozza-Thivent ( 1  997, section 6.2). 
We will here briefly discuss a special type of a delayed renewal process, the stationary 
renewal process. 

Definition 7.6 A stationary renewal process is a delayed renewal process where the 
first renewal period has distribution function 

1 I.1 

(7.90) 

while the underlying distribution of the other renewal periods is F T ( ~ ) .  0 

Remarks 

1 .  Note that F,(t) is the same distribution as we found in (7.63). 

2. When the probability density function f T ( t )  of FT(t) exists, the density of 
Fe(t)  is 

d F  ( t )  1 - FT(t) RT( t )  -- f e ( t )  = = - 
dt  P P 

3. As pointed out by Cox (1962, p. 28) the stationary renewal process has a simple 
physical interpretation. Suppose a renewal process is started at time t = -m, 
but that the process is not observed before time t = 0. Then the first renewal 
period observed, T I ,  is the remaining lifetime of the component in operation 
at time t = 0. According to (7.63) the distribution function of TI is F,(t) .  
A stationary renewal process is called an equilibrium renewal process by Cox 
(1962). This is the reason why we use the subscript e in Fe( t ) .  In Ascher and 
Feingold (1984) the stationary renewal process is called a renewal process with 
asynchronous sampling, while an ordinary renewal process is called a renewal 
process with synchronous sampling. 0 

Let { N s ( t ) ,  t 1 0) be a stationary renewal process, and let Y s ( t )  denote the 
remaining life of an item at time 1.  The stationary renewal process has the following 
properties (e.g., see Ross 1996, p. 13 1): 

W d t )  = t / lu (7.91) 

(7.92) Pr(Ys(t) i Y )  = Fe(Y) for all t ? 0 

{ N s ( t ) ,  t 3 0) has stationary increments (7.93) 

where Fe(y)  is defined by equation (7.90). 
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Remark: A homogeneous Poisson process is a stationary renewal process, because 
of the memoryless property of exponential distribution. The HPP is seen to fulfill all 

0 

Example 7.11 
Reconsider the renewal process in Example 7.7 where the interoccurrence times had 
a gamma distribution with parameters (2, A). The underlying distribution function is 
then 

the three properties (7.91), (7.92), and (7.93). 

F T ( ~ )  = 1 - e-*' - kt e-Ar 

and the mean interoccurrence time is E ( & )  = 2/h. Let us now assume that the 
process has been running for a long time and that when we start observing the process 
at time t = 0, it may be considered as a stationary renewal process. 

According to (7.91), the renewal function for this stationary renewal process is 
Ws(t )  = ht/2, and the distribution of the remaining life, Ys(r) is (see 7.92) 

The mean remaining lifetime of an item at time t is 

Delayed renewal processes are used in the next section to analyze alternating renewal 
processes. 

7.3.1 1 Alternating Renewal Processes 

Consider a system that is activated and functioning at time t = 0. Whenever the 
system fails, it is repaired. Let U l ,  U2, . . . denote the successive times to failure 
(up-times) of the system. Let us assume that the times to failure are independent 
and identically distributed with distribution function Fu(t )  = Pr(Ui I t )  and mean 
E ( U )  = MTTF (mean time to failure). Likewise we assume the corresponding 
repairtimes Dl , D2, . . . to be independent and identically distributed with distribution 
function Fo(d)  = Pr(Q i d )  and mean E ( D )  = MTTR (mean time to repair). 
MTTR denotes the total mean downtime following a failure and will usually involve 
much more that the active repair time. We therefore prefer to use the term MDT 
(mean downtime) instead of MTTR'. 

'In the rest of this book we are using T to denote time to failure. In this chapter we have already used T 
to denote interoccurrence time (renewal period), and we will therefore use U to denote the time to failure 
(up-time). We hope that this will not confuse the reader. 
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I 

0 ui Di UP Dz Time 

Fig. 7.75 Alternating renewal process. 

If we define the completed repairs to be the renewals, we obtain an ordinary renewal 
process with renewal periods (interoccurrence times) Ti = Ui + Di for i = 1,2, . . .. 
The mean time between renewals is p~ = MTTF + MDT. This resulting process is 
called an alternating renewal process and is illustrated in Fig. 7.15. The underlying 
distribution function, FT ( t ) ,  is the convolution of the distribution functions Fu ( t )  
and Fo( t ) ,  

F T ( z )  = Pr(G 5 t )  = Pr(Ui + Di 5 t )  = Fu(t - x ) d F g ( x )  (7.94) I' 
If instead we let the renewals be the events when a failure occurs, we get a delayed 

renewal process where the first renewal period TI is equal to U1 while Ti = Di- l+  Ui 
for i = 2, 3, . . .. 

In this case the distribution function FT, ( r )  of the first renewal period is given by 

(7.95) F T , ( ~ )  = Pr(T1 5 t )  = Pr(U1 5 r )  = Fu(t) 

while the distribution function F T ( ~ )  of the other renewal periods is given by (7.94). 

Example 7.12 
Consider the alternating renewal process described above, and let the renewals be the 
completed repairs such that we have an ordinary renewal process. Let a reward V, 
be associated to the ith interoccurrence time, and assume that this reward is defined 
such that we earn one unit per unit of time the system is functioning in the time period 
since the last failure. When the reward is measured in time units, then E ( V i )  = pv = 
MTTF. The average availability Aav(O, t )  of the component in the time interval (0, t )  
has been defined as the mean fraction of time in the interval (0, t )  where the system 
is functioning. From (7.83) we therefore get 

MTTF 
when t -+ 00 

PV 
p~ MTTF+MDT 

Aav(O, I )  + - = (7.96) 

which is the same result we obtain in Section 9.4 based on heuristic arguments. 0 

Availability The availability A ( t )  of an item (component or system) was defined 
as the probability that the item is functioning at time t ,  that is, A ( t )  = Pr(X(t) = l), 
where X(r> denotes the state variable of the item. 
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As above, consider an alternating renewal process where the renewals are com- 
pleted repairs, and let T = U1 + D1. The availability of the item is then 

A(?) = Pr(X(t) = 1) = Pr(X(t) = 1 I T = x ) d F r ( x )  
1 0  

Since the component is assumed to be “as good as new” at time T = U1 + D1, the 
process repeats itself from this point in time and 

A(t - X) for t > x 
Pr(U1 > t I T = x )  for t IX 

Pr(X(t) = 1 I T = x )  = 

Therefore 

Hence 

We may now apply Lemma 7.1 and get 

r t  

(7.97) 

(7.98) 

where 

00 

W F T ( t )  = c F?’(t) 
n=l 

is the renewal function for a renewal process with underlying distribution F T ( ~ ) .  

used with Q ( t )  = 1 - Fu( t )  and we get 
When F u ( t )  is a nonlattice distribution, the key renewal theorem (7.51) can be 

Since FT(?)  + 1 when t --+ 00, we have thus shown that 

(7.99) 
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Notice that this is the same result as we got in (7.96) by using results from renewal 
reward processes. 

Example 7.13 
Consider a parallel structure of n components that fail and are repaired independent 
of each other. Component i has a time to failure (up-time) Ui which is exponentially 
distributed with failure rate hi and a time to repair (downtime) Di which is also 
exponentially distributed with repair rate pi, for i = 1,2, . . . . The parallel structure 
will fail when all the n components are in a failed state at the same time. Since 
the components are assumed to be independent, a system failure must occur in the 
following way: Just prior to the system failure, (n - 1) components must be in a 
failed state, and then the functioning component must fail. 

Let us now assume that the system has been in operation for a long time, such that 
we can use limiting (average) availabilities. The probability that component i is in a 
failed state is then approximately: 

hi -- - - 1/Pi - MDT Ai % 
MTTF + MDT 1/L; + 1/Pi hi + Pi 

Similarly, the probability that component i is functioning is approximately 

The probability that a functioning component i will fail within a very short time 
interval of length At is approximately 

Pr(At) X hi At 

The probability of system failure in the interval (t, t + Ar), when t is large, is 

r 1 

n .  n 

Since At is assumed to be very small, no more than one system failure will occur in 
the interval. We can therefore use Blackwell’s theorem (7.50) to conclude that the 
above expression is just At times the reciprocal of the mean time between system 
failures, MTBFs, that is, 

(7.100) 
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When the system is in a failed state, all the n components are in a failed state. Since 
the repair times (downtimes) are assumed to be independent with repair rates pi for 
i = 1,2,  , . . , n,  the system downtime will be exponential with repair rate C:=l pi, 

and the mean downtime to repair the system is 

1 
MDTs = ~ 

C;=l pi 

The mean up-time, or the mean time to failure, MTTFs, of the system is equal to 
MTBFs- MDTs: 

1 
MTTFs = (7.101) 

1 - nS=l k j / ( k j  + p j )  

nJ=l k j / ( h j  + p j )  C;=, pi - - (7.102) 

To check that the above calculations are correct, we may calculate the average un- 
availability: 

which is in accordance with the results obtained in Chapter 9. [Example 7.13 is 
0 adapted from Example 3.5(B) in Ross (1996)l. 

Mean Number of Failures/Repairs First, let the renewals be the events where a 
repair is completed. Then we have an ordinary renewal process with renewal periods 
T I ,  T2, . . . which are independent and identically distributed with distribution function 
(7.94). 

Assume that Ui and Di both are continuously distributed with densities fu ( t )  and 
f ~ ( t ) ,  respectively. The probability density function of the Ti’s is then 

(7.103) 

According to Appendix B the Laplace transform of (7.103) is 

f,*(S, = f$(S) .  frr,(d 

Let W1 ( t )  denote the renewal function, that is, the mean number of completed repairs 
in the time interval (0, t]. According to (7.84) 

(7.104) 

In this case both the Ui’s and the Dj’s were assumed to be continuously distributed. 
This, however, turns out not to be essential. Equation (7.104) is also valid for discrete 
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distributions, or for a mixture of discrete and continuous distributions. In this case 
we may use that 

f ; ( s )  = E(e-””)  

fG(s) = E(e-”D’) 

The mean number of completed repairs in (0, t ]  can now, at least in principle, be 
determined for any choice of life- and repair time distributions. 

Next, let the renewals be the events where a failure occurs. In this case we get a 
delayed renewal process. The renewal periods T I ,  T2, . . . are independent and FT, ( t )  
is given by (7.95) while the distribution of T2, T3, . . . is given by (7.94). 

Let W2(t)  denote the renewal function, that is, the mean number of failures in 
(0, t ]  under these conditions. According to (7.87) the Laplace transform is 

(7.105) 

which, at least in principle, can be inverted to obtain W2(t ) .  

Availability at a Given Point of Time By taking Laplace transforms of (7.98) 
we get 

Since 

1 
F * ( S )  = - f * ( s >  

S 

then 

1 
A*(s) = - ( 1  - f$(s)). ( I  + w : ~ ( s ) )  

S 

If we have an ordinary renewal process (i.e., the renewals are the events where a repair 
is completed), then 

Hence 

that is, 

(7.1 06) 
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0 Time 

Fig. 7.16 Availability of a component with exponential life and repair times. 

The availability A(r) can in principle be determined from (7.106) for any choice of 
life and repair time distributions. 

Example 7.14 Exponential Lifetime-Exponential Repair Time 
Consider an alternating renewal process where the component up-times U1, U2, . . . 
are independent and exponentially distributed with failure rate A. The corresponding 
downtimes are also assumed to be independent and exponentially distributed with the 
repair rate p = 1/MDT. 

Then 

and 

The availability A ( t )  is then obtained from (7.106): 

Equation (7.107) can be inverted (see Appendix B) and we get 

P +- e-(A+fiL)t  A ( t )  = - 
A + P  A + P  

(7.108) 

which is the same result as we get in Chapter 8. The availability A ( t )  is illustrated in 
Fig. 7.16. 
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fig. 7.77 The availability of a component with exponential lifetimes and constant repair 
time (t). 

The limiting availability is 

1 P  - MTTF - - P A = lim A ( t )  = - - 
t+oo A + p  l / h + l / p  MTTF+MDT 

By inserting f: (3) and f; (s) into (7.104) we get the Laplace transform of the mean 
number of renewals W ( t ) ,  

By inverting this expression we get the mean number of completed repairs in the time 
interval (0, t ]  

(7.109) 

Example 7.15 Exponential Lifetime-Constant Repair Time 
Consider an alternating renewal process where the system up-times U1, U2, . . . are 
independent and exponentially distributed with failure rate A. The downtimes are 
assumed to be constant and equal to t with probability 1 :  Pr (Q = t) = 1 for 
i = 1,2,  . . .. The corresponding Laplace transforms are 
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Hence the Laplace transform of the availability (7.106) becomes 

1 
s + h - he-sr 

- - 1 - h / (h  +s) 
s[l  - (h / (h  + s)) e - s r ]  

A*(s )  = 

The availability then becomes 

According to Appendix B 

1 63- (ePsur)  = 6(t  - u t )  

where 6 ( t )  denotes the Dirac delta-function. Thus 

6 ( t  - u t  - x ) f ( x )  d x  

= f ( t  - u t )  . u ( t  - u t )  

where 

1 if t 2 u t  
0 if t < u t  

u ( t  - u t )  = 

Hence the availability is 

u(t  - u t )  ~ ( t )  = C I ( t  - ut ) 'e -h ( r -us )  
O3 hU 

U .  u=o 

The availability A( t )  is illustrated in Fig. 7.17. 
The limiting availability is then according to (7.99) 

(7.1 10) 

(7.111) 

1 
(7.1 12) 1lh - - - - MTTF 

A = lim A( t )  = 
t+" MTTF+MDT (1 / h )  + t 1 + A t  



NONHOMOGENEOUS POISSON PROCESSES 277 

The Laplace transform for the renewal density is 

where A*(s)  is given by (7.1 10). 
Then the renewal density becomes 

that is, 

w ( t )  = { t . A ( t - t )  if t > t  
if t c t  

(7.1 13) 

Hence the mean number of completed repairs in the time interval (0, t ]  for t > t is 

W ( t )  = w ( u )  du = h A(u  - t )  du = h A ( u ) d u  (7.114) 

0 

1‘ 1‘ 
7.4 NONHOMOGENEOUS POISSON PROCESSES 

In this section the homogeneous Poisson process is generalized by allowing the rate 
of the process to be a function of time. 

7.4.1 Introduction and Definitions 

Definition 7.7 A counting process [ N ( t ) .  t 2 0) is a nonhomogeneous (or nonsta- 
tionary) Poisson process with rate function w ( t )  fo r t  2 0, if 

1. N ( 0 )  = 0. 

2 .  { N ( t ) ,  t 2 0) has independent increments. 

3. Pr(N(t + At)  - N ( t )  2 2 )  = o ( A t ) ,  which means that the system will not 
experience more than one failure at the same time. 

4. Pr(N(t + At)  - N ( t )  = 1) = w ( t ) A t  + o(At). 0 

The basic “parameter” of the NHPP is the ROCOF function w ( t ) .  This function is 
also called the peril rate of the NHPP. The cumulative rate of the process is 

r t  

W ( t )  = J, ~ ( ~ ) d u  (7.1 15) 
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This definition of course covers the situation in which the rate is a function of some 
observed explanatory variable that is a function of the time t .  

It is important to note that the NHPP model does not require stationary increments. 
This means that failures may be more likely to occur at certain times than others, and 
hence the interoccurrence times are generally neither independent nor identically 
distributed. Consequently, statistical techniques based on the assumption that the 
data are independent and identically distributed cannot be applied to an NHPP. 

The NHPP is often used to model trends in the interoccurrence times, that is, 
improving (happy) or deteriorating (sad) systems. It seems intuitive that a happy 
system will have a decreasing ROCOF function, while a sad system will have an 
increasing ROCOF function. Several studies of failure data from practical systems 
have concluded that the NHPP was an adequate model, and that the systems that were 
studied approximately satisfied the properties of the NHPP listed in Definition 7.7. 

Due to the assumption of independent increments, the number of failures in a 
specified interval ( t l  , t 2 ]  will be independent of the failures and interoccurrence times 
prior to time t l .  When a failure has occurred at time t l ,  the conditional ROCOF 

wc(t 1 3p,) (see page 254) in the next interval will be w ( t )  and independent of the 
history 3&, up to time ? I ,  and especially the case when no failure has occurred before 
t l ,  in which case w ( t )  = z ( t ) ,  that is, the failure rate function (FOM) for t < t l .  A 
practical implication of this assumption is that the conditional (ROCOF), w c ( t ) ,  is 
the same just before a failure and immediately after the corresponding repair. This 
assumption has been termed minimal repair (see Ascher and Feingold, 1984, p. 51). 
When replacing failed parts that may have been in operation for a long time, by new 
ones, an NHPP clearly is not a realistic model. For the NHPP to be realistic, the parts 
put into service should be identical to the old ones, and hence should be aged outside 
the system under identical conditions for the same period of time. 

Now consider a system consisting of a large number of components. Suppose 
that a critical component fails and causes a system failure and that this component 
is immediately replaced by a component of the same type, thus causing a negligible 
system downtime. Since only a small fraction of the system is replaced, it seems 
natural to assume that the systems’s reliability after the repair essentially is the same 
as immediately before the failure. In other words, the assumption of minimal repair 
is a realistic approximation. When an NHPP is used to model a repairable system, 
the system is treated as a black box in that there is no concern about how the system 
“looks inside.” 

A car is a typical example of a repairable system. Usually the operating time 
of a car is expressed in terms of the mileage indicated on the speedometer. Repair 
actions will usually not imply any extra mileage. The repair “time” is thus negligible. 
Many repairs are accomplished by adjustments or replacement of single components. 
The minimal repair assumption is therefore often applicable and the NHPP may be 
accepted as a realistic model, at least as a first order approximation. 

Consider an NHPP with ROCOF w(t) ,  and suppose that failures occur at times 
S1, S2, . . ,. An illustration of w ( t )  is shown in Fig. 7.18. 
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Fig. 7.78 The ROCOF w ( t )  of an NHPP and random failure times. 

7.4.2 Some Results 

From the definition of the NHPP it is straightforward to verify (e.g., see Ross 1996, 
p. 79) that the number of failures in the interval (0, t ]  is Poisson distributed: 

for n = 0, 1, 2 , .  (7.116) 

The mean number of failures in (0, t ]  is therefore 

E ( N ( t ) )  = W ( t )  

and the variance is var(N(t)) = W ( t ) .  The cumulative rate W ( t )  of the process 
(7.1 15) is therefore the mean number of failures in the interval (0, t ]  and is sometimes 
called the mean valuefinction of the process. When n is large, Pr(N(t) 5 n) may 
be determined by normal approximation: 

N ( t )  - W ( t )  < 
n - W ( t )  

Pr(N(t) 5 n )  = 

(7.117) 

From (7.116) it follows that the number of failures in the interval (u, r + u] is Poisson 
distributed: 

forn = 0 , 1 , 2 ,  . . .  

and that the mean number of failures in the interval (u, t + u ]  is 

E ( N ( t  + u )  - N ( u ) )  = W ( t  + u )  - W ( V )  = w ( u )  du (7.118) Jcf+u  
The probability of no failure in the interval ( t l ,  t 2 )  is 

~ r ( ~ ( t 2 )  - N ( t i )  = 0 )  = e-sl:2 w ( ~ ) ~ ~  
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Let S,, denote the time until failure n for n = 0, 1 , 2 ,  . . ., where SO = 0. The 
distribution of S, is given by: 

When W ( r )  is small, this probability may be determined from standard tables of the 
Poisson distribution. When W ( t )  is large, the probability may be determined by 
normal approximation; see (7.1 17): 

Pr(S, > t )  = Pr(N(t)  5 n - 1) 

) 4 m 
n - 1 - W ( t )  

(7.120) 

Time to First Failure Let TI denote the time from t = 0 until the first failure. The 
survivor function of TI is 

R l ( t )  = Pr(T1 > t )  = Pr(N(t) = 0) = ePw@) = e-jd w ( r ) d r  (7.121) 

Hence the failure rate (FOM) function ZT, ( t )  of the first interoccurrence time TI is 
equal to the ROCOF w ( t )  of the process. Note, however, the different meaning of 
the two expressions. ZT, ( t )  At approximates the (conditional) probability that the 
first failure occurs in ( t ,  t + At], while w ( t ) A t  approximates the (unconditional) 
probability that a failure, not necessarily the first, occurs in ( t ,  t + A t ] .  

A consequence of (7.121) is that the distribution of the first interoccurrence time, 
that is, the time from t = 0 until the system's first failure, will determine the ROCOF 

of the entire process. Thompson (198 1) claims that this is a nonintuitive fact which 
is casting doubt on the NHPP as a realistic model for repairable systems. Use of an 
NHPP model implies that if we are able to estimate the failure rate (FOM) function of 
the time to thefirst failure, such as for a specific type of automobiles, we at the same 
time have an estimate of the ROCOF of the entire life of the automobile. 

Time Between Failures Assume that the process is observed at time to, and let 
Y (to) denote the time until the next failure. In the previous sections Y (to)  was called 
the remaining lifetime, or the forward recurrence time. By using (7.116), we can 
express the distribution of Y ( to)  as 

Pr(Y(t0) > t )  = Pr(N(t + t o )  -  to) = 0) = e-[W(r+to)-W('o)l 

(7.122) 

Note that this result is independent of whether to denotes a failure time or an arbitrary 
point in time. 

Assume that to is the time, & - I ,  at failure n - 1. In this case Y ( to)  denotes the time 
between failure n - 1 and failure n (i.e., the nth interoccurrence time T,, = S, - S,,- 1). 

The failure rate (FOM) function of the nth interoccurrence time T, is from (7.122): 

- e- &+" w ( u )  du - - e- w(u+ro) du - 

z r o ( t )  = w(t  + to) fo r t  ? 0 (7.123) 
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Notice that this is a conditional failure rate, given that Sn-l = to. The mean time 
between failure n - 1 (at time to) and failure n, MTBF,, is 

l-03 

MTBF, = E(T,) = jo PrCY,, > t ) d l  

(7.124) 

Example 7.16 
Consider an NHPP with ROCOF w ( t )  = 2h2t, for h > 0 and t > 0. The mean 
number of failures in the interval (0, t )  is W ( t )  = E ( N ( t ) )  = 
The distribution of the time to the first failure, T I ,  is given by the survivor function 

w(u)  du = 

that is, a Weibull distribution with scale parameter h and shape parameter a = 2. If 
we observe the process at time to, the distribution of the time Y (to) till the next failure 
is from (7.122): 

pr(y(fo) , t )  = e-$ w(u+R))du = e -A2( fZ+2ro j )  

If to is the time of failure n - 1, the time to the next failure, Y (to),  is the nth interoc- 
currence time T, and the failure rate (FOM) function of T, is 

zr,,(t) = 2h2(t + to) 

which is linearly increasing with the time to of failure n - 1. Notice again that this 
is a conditional rate, given that failure n - 1 occurred at time Sn-l = to. The mean 
time between failure n - 1 and failure n is from (7.124): 

00 
MTBF, = e-A2(j2+2tor)  dt 

0 

Relation to the Homogeneous Poisson Process Let ( N ( t ) ,  t 1. 0) be an 
NHPP with ROCOF w ( t )  > 0 such that the inverse W - ' ( t )  of the cumulative rate 
W ( t )  exists, and let SI,  S2, . . . be the times when the failures occur. 

Consider the time-transformed occurrence times W ( S l ) ,  W(S2) ,  . . . , and let 
{ N * ( t ) ,  t > 0) denote the associated counting process. The distribution of the (trans- 
formed) time W(S1)  till the first failure is from (7.121) 

Pr(W(S1) > t )  = Pr(SI > w-'(t))  = e - W ( W - ' ( j ) )  = e-t 

that is, an exponential distribution with parameter 1. 
The new counting process is defined by 

N ( t )  = N * ( W ( t ) )  for t  s t 
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hence 

and we get from (7.1 16) 

that is, the Poisson distribution with rate 1. We have thereby shown that an NHPP 
with cumulative rate W(t) (where the inverse of W ( t )  exists) can be transformed into 
an HPP with rate 1, by time-transforming the failure occurrence times S1, S2, . . . to 
W(Sl>,  W(S2), . . .. 

7.4.3 The Nelson-Aalen Estimator 

Let ( N ( t ) ,  t 2 0} be an NHPP with ROCOF w ( t ) .  We want to find an estimate of the 
mean number of failures W(t) = E ( N ( t ) )  = /; w ( u )  du in the interval (0, t ) .  An 
obvious estimate is @(t)  = N ( t ) .  

Assume that we have n different and independent NHPPs ( N i ( t ) ,  t 2 O }  for i = 
1, 2, . . . , n with a common ROCOF w ( t ) .  This is, for example, the situation when 
we observe failures of the same type of repairable equipment installed in different 
places. Each installation will then produce a separate NHPP with rate w(t) .  An 
obvious estimator for W ( t )  is now 

I n  Total number of failures in(0, t] 
Total number of processes in(0, t] 

@ ( t )  = - 1 N i ( t )  = 
i = l  

This estimator may be written in an alternative way: 

where T I ,  T2, . . . denotes the failure times (for all the processes), and l { ~ ~ ~ )  is an 
indicator that is equal to 1 when Ti 5 t ,  and 0 otherwise. 

In practice, the various processes will not be observed in the same interval. As 
an illustration, let us assume that nl processes are observed in the interval (0, ti], 
and that n2 processes are observed for t 3 tl . Let N ( t )  denote the total number of 
failures in (0, t], irrespective of how many processes are active. It seems now natural 
to estimate W(t> by 



NONHOMOGENEOUS POISSON PROCESSESSES 283 

4 -  

3 -  

2 

1 -  

- ' 

0 Time 
Process 1 Y - - 
Process 2 - " - ,. 

Fig, 7.19 The Nelson-Aalen estimator for two simultaneous processes. 

When f > 21, an estimator for w(u)  du = W ( r )  - W(t1) is 

The total estimator will then be 

- n2 Y 

( i ;  T i i r i l  n' ( i ;  r l i ~ ; i c t l  

Assume now that we have a set of independent NHPPs with a common ROCOF 

w ( f ) .  Let Y ( s )  denote the number of active processes immediately before time s. 
From the arguments above, it seems natural to use the following estimator for W ( t ) ,  

(7.125) 

This nonparametric estimator is called the Nelson-Aalen estimator for W ( t ) .  Note 
that when there is only one sample, then the Nelson-Aalen estimator coincides with 
N ( t ) ,  which is plotted in Fig. 7.3 A simple example of the Nelson-Aalen estimator 
for two simultaneous processes is illustrated in Fig. 7.19. 

Theestimator(7.125) was introduced by Aalen (1975,1978) forcounting processes 
in general and generalizes the Nelson (1969) estimator which is further discussed in 
Chapter 8. It may be shown (see the discussion in Andersen and Borgan, 1985) that 
@ ( r )  is an approximately unbiased estimator of W ( t )  and that the variance can be 
estimated (almost unbiasedly) by 

(7.126) 

@ ( t )  may further be shown (see Andersen and Borgan, 1985) to be asymptotically 
normally distributed with mean W ( t )  and a variance estimated by ~ ? ~ ( r ) .  Hence an 
approximate 100( 1 - a)% pointwise confidence interval for W ( t ) ,  is given by 

A 

w(t)  - u , / 2 m  5 W ( t >  I G(t> + U u / 2 & ( f )  
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where u, denotes the upper 1OOa% percentile of the standard normal distribution 
X(0,  1). 

7.4.4 Parametric NHPP Models 

Several parametric models have been established to describe the ROCOF of an NHPP. 
We will discuss some of these models: 

1. The power law model 

2. The linear model 

3. The log-linear model 

All three models may be written in the common form (see Atwood, 1992) 

w0) = Lo g o ;  0) (7.1 27) 

where ho is a common multiplier, and g ( t ;  0) determines the shape of the ROCOF 

w(t). The three models may be parameterized in various ways. In this section we 
shall use the parameterization of Crowder et al. (1991), although the parametrization 
of Atwood (1992) may be more logical. 

The Power Law Model In the power law model the ROCOF of the NHPP is defined 
as 

w ( t )  = hPtS-' for h > 0, > 0 and t 2 0 (7.128) 

This NHPP is sometimes referred to as a Weibull process, since the ROCOF has the 
same functional form as the failure rate (FOM) function of the Weibull distribution. 
Also note that the first arrival time TI of this process is Weibull distributed with 
shape parameter ,9 and scale parameter h. However, according to Ascher and Fein- 
gold (1984), one should avoid the name Weibull process in this situation, since it 
gives the wrong impression that the Weibull distribution can be used to model trend 
in interoccurrence times of a repairable system. Hence such notation may lead to 
confusion. 

A repairable system modeled by the power law model is seen to be improving 
(happy) if 0 < P < I ,  and deteriorating (sad) if > 1. If B = 1 the model reduces 
to an HPP. The case ,9 = 2 is seen to give a linearly increasing ROCOF. This model 
was studied in Example 7.16. 

The power law model was first proposed by Crow (1974) based on ideas of Duane 
(1964). A goodness-of-fit test for the power law model based on total time on test 
(TTT) plots (see Chapter 1 1) is proposed and discussed by Klefsjo and Kumar (1992). 

Assume that we have observed an NHPP in a time interval (0, to] and that failures 
have occurred at times sl , s2, . . . , s,. Maximum likelihood estimates and i of /l 
and A, respectively, are given by 

(7.129) 
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and 

(7.130) 

The estimates are further discussed by Crowder et al. (1991, p. 171) and Cocozza- 
Thivent (1997, p. 64). 

A ( 1  - E )  confidence interval for ,B is given by (see Cocozza-Thivent 1997, p. 65) 

(7.131) 

where z&," denotes the upper loo&% percentile of the chi-square (x2) distribution 
with u degrees of freedom (tables are given in Appendix F). 

The Linear Model In the linear model the ROCOF of the NHPP is defined by 

w ( t ) = k ( l + a t )  f o r A > O a n d t > O  (7.132) 

The linear model has been discussed by Vesely (1991) and Atwood (1992). A re- 
pairable system modeled by the linear model is deteriorating if ci > 0, and improving 
when a < 0. When CY < 0, then w ( t )  will sooner or later become less than zero. The 
model should only be used in time intervals where w ( t )  > 0. 

The Log-Linear Model In the log-linear model or Cox-Lewis model, the ROCOF 

of the NHPP is defined by 

w ( t )  = eff+pr for - 00 < a, ,B < 00 and t 2 0 (7.133) 

A repairable system modeled by the log-linear model is improving (happy) if ,B < 0, 
and deteriorating (sad) if p > 0. When p = 0 the log-linear model reduces to an 
HPP. 

The log-linear model was proposed by Cox and Lewis (1966) who used the model 
to investigate trends in the interoccurrence times between failures in air-conditioning 
equipment in aircrafts. The first arrival time TI has failure rate (FOM) function 
~ ( t )  = e"+@ and hence has a truncated Gumbel distribution of the smallest extreme 
(i.e., a Gompertz distribution; see Section 2.17). 

Assume that we have observed an NHPP in a time interval (0, to] and that failures 
have occurred at times $1, s 2 ,  . . . , s,. Maximum likelihood estimates c? and 6 of a 
and ,B, respectively, are found by solving 

n = o  (7.134) 
i =  I 

to give b, and then taking 

(7.135) 

The estimates are further discussed by Crowder et al. (1991, p. 167). 
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7.4.5 Statistical Tests of Trend 

The simple graph in Fig. 7.3 clearly indicates an increasing rate of failures, that is, a 
deteriorating or sad system. The next step in an analysis of the data may be to perform 
a statistical test to find out whether the observed trend is statistically signiJcant or 
just accidental. A number of tests have been developed for this purpose, that is, for 
testing the null hypothesis 

Ho: “No trend” (or more precisely that the interoccurrence times are independent 
and identically exponentially distributed, that is, an HPP) 

against the alternative hypothesis 

HI : “Monotonic trend” (i.e., the process is an NHPP that is either sad or happy) 

Among these are two nonparametric tests that we will discuss: 

1. The Laplace test 

2. The military handbook test 

These two tests are discussed in detail by Ascher and Feingold (1984) and Crowder 
et al. (1991). It can be shown that the Laplace test is optimal when the true failure 
mechanism is that of a log-linear NHPP model (see Cox and Lewis, 1966), while the 
military handbook test is optimal when the true failure mechanism is that of a power 
law NHPP model (see Bain et al. 1985). 

The Laplace Test The test statistic for the case where the system is observed until 
n failures have occurred is 

(7.136) 

where S1, S2, . . . denote the failure times. For the case where the system is observed 
until time to, the test statistic is 

(7.137) 

In both cases, the test statistic U is approximately standard normally “(0, 1) dis- 
tributed when the null hypothesis Ho is true. The value of U is seen to indicate the 
direction of the trend, with U < 0 for a happy system and U > 0 for a sad sys- 
tem. Optimal properties of the Laplace test have, for example, been investigated by 
Gaudoin (1992). 

Military Handbook Test The test statistic of the so-called military handbook test 
(see MIL-HDBK-189) for the case where the system is observed until n failures have 
occurred is 

n- 1 
~ = 2 C l n -  s n  

si i=l  

(7.138) 
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For the case where the system is observed until time to, the test statistic is 

(7.139) 

The asymptotic distribution of Z is in the two cases a x 2  distribution with 2(n - 1) 
and 2n degrees of freedom, respectively. 

The hypothesis of no trend (Ho) is rejected for small or large values of 2. Low 
values of Z correspond to deteriorating systems, while large values of Z correspond 
to improving systems. 

7.5 IMPERFECT REPAIR PROCESSES 

In the previous sections we studied two main categories of models that can be used 
to describe the occurrence of failures of repairable systems: renewal processes and 
nonhomogeneous Poisson processes. The homogeneous Poisson process may be 
considered a special case of both models. When using a renewal process, the repair 
action is considered to be perfect, meaning the the system is “as good as new” after the 
repair action is completed. When we use the NHPP, we assume the the repair action 
is minimal, meaning that the reliability of the system is the same immediately after 
the repair action as it was immediately before the failure occurred. In this case we 
say the the system is “as bad as old” after the repair action. The renewal process and 
the NHPP may thus be considered as two extreme cases. Systems subject to normal 
repair will be somewhere between these two extremes. Several models have been 
suggested for the normal, or imperjGect, repair situation, a repair that is somewhere 
between a minimal repair and a renewal. 

In this section we will consider a system that is put into operation at time t .  The 
initial failure rate (FOM) function of the system is denoted z ( t ) ,  and the conditional 
ROCOF of the system is denoted w c ( t ) .  The conditional ROCOF was defined by (7.7). 

When the system fails, a repair action is initiated. The repair action will bring 
the system back to a functioning state and may involve a repair or a replacement of 
the system component that produced the system failure. The repair action may also 
involve maintenance and upgrading of the rest of the system and even replacement 
of the whole system. The time required to perform the repair action is considered 
to be negligible. Preventive maintenance, except for preventive maintenance carried 
out during a repair action, is disregarded. 

A high number of models have been suggested for modeling imperfect repair 
processes. Most of the models may be classified in two main groups: (i) models 
where the repair actions reduce the rate of failures (ROCOF), and (ii) models where 
the repair actions reduce the (virtual) age of the system. A survey of available models 
are provided, for example, by Pham and Wang (1996), Hokstad (1997), and Akersten 
( 1  998). 



288 COUNTING PROCESSES 

Fig. 7.20 An illustration of a possible shape of the conditional ROCOF of Brown and 
Proschan’s imperfect repair model. 

7.5.1 Brown and Proschan’s Model 

One of the best known imperfect repair models is described by Brown and Proschan 
( 1  983). Brown and Proschan’s model is based on the following repair policy: A 
system is put into operation at time t = 0. Each time the system fails, a repair action 
is initiated, that with probability p is a peqect repair that will bring the system back 
to an “as good as new” condition. With probability 1 - p the repair action will be 
a minimal repair, leaving the system in an “as bad as old” condition. The renewal 
process and the NHPP are seen to be special cases of Brown and Proschan’s model, 
when p = 1 and p = 0, respectively. Brown and Proschan’s model may therefore be 
regarded as a mixture of the renewal process and the NHPP. Note that the probability 
p of a perfect repair is independent of the time elapsed since the previous failure 
and also of the age of the system. Let us, as an example, assume that p = 0.02. 
This means that we for most failures will make do with a minimal repair, and on 
the average renew (or replace) the system once for every 50 failures. This may be a 
realistic model, but the problem is that the renewals will come at random, meaning 
that we have the same probability of renewing a rather new system as an old system. 
Fig. 7.20 illustrates a possible shape of the conditional ROCOF. 

The data obtained from a repairable system is usually limited to the times between 
failures, T I ,  T2, . . .. The detailed repair modes associated to each failure are in general 
not recorded. Bases on this “masked” data set, Lim (1 998) has developed a procedure 
for estimating p and the other parameters of Brown and Proschan’s model. 

Brown and Proschan’s model was extended by Block et al. (1985) to age-dependent 
repair, that is, when the item fails at time r ,  a perfect repair is performed with prob- 
ability p ( t )  and a minimal repair is performed with probability 1 - p ( t ) .  Let Y1 
denote the time from t = 0 until the first perfect repair. When a perfect repair is 
carried out, the process will start over again, and we get a sequence of times between 
perfect repairs Y1, Y2, . . . that will form a renewal process. Assume that F ( t )  is the 
distribution of the time to the first failure T I ,  and let f ( t )  and R ( t )  = 1 - F ( t )  be the 
corresponding probability density function and the survivor function, respectively. 
The failure rate (FOM) function of TI is then ~ ( t )  = f ( t ) / R ( t ) ,  and we know from 
Chapter 2 that the distribution function may be written as 
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Hence, the time between renewals, Y has failure rate (FOM) function 

(7.141) 

Block et al. (1  985) also supply an explicit formula for the renewal function and 
discuss the properties of of F,(t). 

Failure Rate Reduction Models Several models have been suggested where 
each repair action results in a reduction of the conditional ROCOF. The reduction 
may be a fixed reduction, a certain percentage of the actual value of the rate of 
failures, or a function of the history of the process. Models representing the first 
two types were proposed by Chan and Shaw (1  993). Let z ( t )  denote the failure rate 
(FOM) function of the time to the first failure. If all repairs were minimal repairs, the 
ROCOF of the process would be w l ( t )  = z ( t ) .  Consider the failure at time Si, and 
let Sl- denote the time immediately before time S,. In the same way, let Sl+ denote 
the time immediately after time S, . The models suggested by Chan and Shaw ( 1  993) 
may then be expressed by the conditional ROCOF as 

wc(Sl - )  - A (7.142) 

Between two failures, the conditional ROCOF is assumed to be vertically parallel 
to the initial ROCOF wl( t ) .  The parameter p in (7.142) is an index representing 
the efficiency of the repair action. When p = 0, we have minimal repair, and the 
NHPP is therefore a special case of Chan and Shaw's proportional reduction model. 
When p = 1,  the repair action will bring the conditional ROCOF down to zero, but 
this will not represent a renewal process since the interoccurrence times will not be 
identically distributed, except for the special case when W I  ( t )  is a linear function. The 
conditional ROCOF of Chan and Shaw's proportional reduction model is illustrated 
in Fig. 7.21 for some possible failure times and with p = 0.30. 

Chan and Shaw's model (7.142) has been generalized by Doyen and Gaudoin 
(2002a,b). They propose a set of models where the proportionality factor p depends 
on the history of the process. In their models the conditional ROCOF is expressed as 

(7.143) 

where cp(i, S1, S2, . . . , S,) is the reduction of the conditional ROCOF resulting from 
the repair action. Between two failures they assume that the conditional ROCOF 

is vertically parallel to the initial ROCOF wl( t ) .  These assumptions lead to the 
conditional ROCOF 

for a fixed reduction A 
wc(S1+) = { wc(S,-)( 1 - p )  for a proportional reduction 0 5 p 5 1 

wc(S,+) = W C ( S I - )  - di, S1, S 2 , .  . . 9  Sl )  

N ( r )  

w c ( t )  = w l o )  - CCp(i, S1, S2,. * * * $1 (7.144) 
1 = I  
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Fig. 7.21 The conditional ROCOF of Chan and Shaw's proportional reduction model for 
some possible failure times ( p  = 0.30). 

When we, as in Chan and Shaw's model (7.142), assume a proportional re- 
duction after each repair action, the conditional ROCOF in the interval (0, Sl) be- 
comes w c ( t )  = w l ( t ) .  In the interval [$, S2) the conditional ROCOF is wc( t )  = 
wl(t) - p wl(S1). In the third interval [S2, S3) the conditional ROCOF is 

w c 0 )  = wl(t)-pwl(Sl) - P  [ W l ( S 2 )  -Pwl(S1)1 

= w l @ )  - p [(I - P ) O W I ( S 2 )  + (1 - P)lWl(Sl)] 

It is now straightforward to continue this derivation and show that the conditional 
ROCOF of Chan and Shaw's proportional reduction model (7.142) may be written as 

This model is called arithmetic reduction of intensity with infinite memory (AM,) 
by Doyen and Gaudoin (2002a). 

In the model (7.142) the reduction is proportional to the conditional ROCOF just 
before time t ,  Another approach is to assume that a repair action can only reduce a 
proportion of the wear that has accumulated since the previous repair action. This 
can be formulated as: 

The conditional ROCOF of this model is 

This model is called arithmetic reduction of intensity with memory one (AMl) by 
Doyen and Gaudoin (2002a). If p = 0, the system is "as bad as old" after the repair 
action and the NHPP is thus a special case of theARI1 model. If p = 1, the conditional 
ROCOF is brought down to zero by the repair action, but the process is not a renewal 
process, since the interoccurrence times are not identically distributed. For the AN1 
model, there exists a deterministic function wmjn(t) that is always smaller than the 
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Fig. 7.22 The ARIl model for some possible failure times. The “underlying” ROCOF wl ( t )  
is a power law model with shape parameter /? = 2.5, and the parameter p = 0.30. The upper 
dotted curve is wl ( t ) ,  and the lower dotted curve is the minimal wear intensity (1 - p ) w l  ( t ) .  

conditional ROCOF such that there is a nonzero probability that the ROCOF will be 
excessively close to wmin ( t ) .  

wmin(t)  = ( 1  - P )  W I ( ~ )  

This intensity is a minimal wear intensity, that is to say, a maximal lower boundary for 
the conditional ROCOF. The ARIl model is illustrated in Fig. 7.22 for some possible 
failure times. 

The two models ARI, and ARIl may be considered as two extreme cases. To 
illustrate the difference, we may consider the conditional ROCOF as an index repre- 
senting the wear of the system. By the ARI, model, every repair action will reduce, 
by a specified percentage p ,  the total accumulated wear of the system since the system 
was installed. By the ARIl model the repair action will only reduce, by a percentage 
p ,  the wear that has been accumulated since the previous repair action. This is why 
Doyen and Gaudoin (2002a) say that the ARI, has infinite memory, while the ARIl 
has memory one (one period). 

Doyen and Gaudoin (2002a) have also introduced a larger class of models in which 
only the first m terms of the sum in (7.145) are considered. They call this model the 
arithmetic reduction of intensity model of memory m (ARI,), and the corresponding 
conditional ROCOF is 

min[m-l,N(r)) 

w c 0 )  = wl( t>  - P c (1 - P ) j  W C ( S N ( t ) - i )  (7.148) 
i =O 

The ARI, model has a minimal wear intensity: 

wmin( t>  = (1 - B ) ” w l ( t )  

In all these models we note that the parameter p may be regarded as an index of the 
efficiency of the repair action. 
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0 0 < p < 1 :  The repair action is efficient. 

0 p = 1: Optimal repair. The conditional ROCOF is put back to zero (but the 
repair effect is different from the “as good as new” situation. 

0 p = 0: The repair action has no effect on the wear of the system. The system 
state after the repair action is “as bad as old.” 

0 p < 0: The repair action is harmful to the system, and will introduce extra 
problems. 

Age Reduction Models Malik (1979) proposed a model where each repair action 
reduces the age of the system by a time that is proportional to the operating time 
elapsed from the previous repair action. The age of the system is hence considered 
as a virtual concept. 

To establish a model, we assume that a system is put into operation at time r = 0. 
The initial ROCOF w1 ( t )  is equal to the failure rate (FOM) function z ( t )  of the interval 
until the first system failure. w1 ( t )  is then the ROCOF of a system where all repairs 
are minimal repairs. The first failure occurs at time SI , and the conditional ROCOF 

just after the repair action is completed is 

where Sl - 6 is the new virtual age of the system. After the next failure, the conditional 
ROCOF will be wc(S2+) = w1(& - 26)  and so on. The conditional ROCOF at time 
t is 

We may now let 6 be a function of the history and get 

Between two consecutive failures we assume that the conditional ROCOF is horizon- 
tally parallel with the initial ROCOF w1 ( t ) .  

Doyen and Gaudoin (2002a) propose an age reduction model where the repair 
action reduces the virtual age of the system with an amount proportional to its age 
just before the repair action. Let p denote the percentage of reduction of the virtual 
age. In the interval (0, Sl) the conditional ROCOF is w c ( t )  = w1 ( t ) .  Just after the 
first failure (when the repair is completed) the virtual age is S1 - pS1,  and in the 
interval (Sl, S2) the conditional ROCOF is w c ( t )  = w l ( t  - P S I ) .  Just before the 
second failure at time S2 ,  the virtual age is S2 - pS1, and just after the second failure 
the virtual age is S2 - pS1 - p ( S 2  - PSI). In the interval ( S 2 ,  S3) the conditional 
ROCOF is w ~ ( t )  = wl( t  - pS1 - p ( S 2  - P S I ) )  which may be written as w c ( t )  = 
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wl( t  -p( l  -p ) "S2  - p ( l  - p ) ' S l ) .  Bycontinuingthisargument,itiseasytorealize 
that the conditional ROCOF of this age reduction model is 

(7.150) 

This model is by Doyen and Gaudoin (2002a) called arithmetic reduction of age with 
infinite memory (ARA,). The same model has also been introduced by Yun and 
Choung (1999). We note that when p = 0, we get wc(r) = wl(r) and we have an 
NHPP. When p = 1, we get w c ( t )  = wl(t - S N ( ~ ) )  which represents that the repair 
action leaves the system in an "as good as new" condition. The NHPP and the renewal 
process are therefore special cases of the ARA-, model. 

Malik (1979) introduced a model in which the repair action at time Si reduces the 
last operating time from Si - Si-1 to p ( S i  - Si-1) where as before, 0 5 p 5 1. 
Using this model, Shin et al. (1996) developed an optimal maintenance policy and 
derived estimates for the various parameters. The corresponding conditional ROCOF 

is 

The minimal wear intensity is equal to wl((1 - p ) t ) .  This model is by Doyen and 
Gaudoin (2002a) called arithmetic reduction of age with memory one (ARAl). 

In analogy with the failure rate reduction models, we may define a model called 
arithmetic reduction of age with memory m by 

The minimal wear intensity is 

Kijima and Sumita (1986) introduced a model which they called the generalized 
renewal process for modeling the imperfect repair process. This model has later been 
extended by Kaminskiy and Krivstov (1998). The model is an age reduction model 
that is similar to the models described by Doyen and Gaudoin (2002a). Estimation of 
the parameters of the generalized renewal model is discussed by YaHes et al. (2002). 

Trend Renewal Process Let Sl , S2, . . . denote the times when failure occur in 
an NHPP with ROCOF w ( t ) ,  and let W ( t )  denote the mean number of failures in 
the interval (0, t ] .  On page 281 we showed that the time-transformed process with 
occurrence times W (SI), W (S2), . . . is an HPP with rate 1.  In the transformed process, 
the mean time between failures (and renewals) will then be 1. Lindqvist (1993, 1998) 
generalized this model, by replacing the HPP with rate 1 with a renewal process with 
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Fig. 7.23 Illustration of the transformation of a TRP(F, w) to a renewal process. (Adapted 
from Lindqvist 1999). 

underlying distribution F ( . )  with mean 1. He called the resulting process a trend- 
renewal process, TRP(F, w). To specify the process we need to specify the rate w ( t )  
of the initial NHPP and the distribution F ( t ) .  

If we have aTW( F ,  w) with failure times S1, S2, . . ., the time-transformed process 
with occurrence times W(Sl), W(S2),  . . . will be a renewal process with underlying 
distribution F ( t ) .  The transformation is illustrated in Fig. 7.23. The requirement that 
F( r )  has mean value 1 is made for convenience. The scale is then taken care of by 
the rate w ( t ) .  Lindqvist (1998) shows that the conditional ROCOF of the TRP(F, w) 
is 

where z ( t )  is the failure rate (FOM) function of the distribution F ( t ) .  The conditional 
ROCOF of the TRP(F, w) is hence a product of a factor, w ( t ) ,  that depends on the age 
t of the system, and a factor that depends on the (transformed) time from the previous 
failure. When both the failure rate (FOM) function z ( t )  and the initial ROCOF w ( t )  
are increasing functions, then the conditional ROCOF (7.151) at time t after a failure 
at time so is 

To check the properties of the TRP we may look at some special cases: 

0 If z ( t )  = h and w ( t )  = p are both constant, the conditional ROCOF is also 
constant, wC(t )  = h . /3. Hence the HPP is a special case of the TRF? 

0 If z ( t )  = h is constant, the conditional ROCOF is wc( t )  = I ,  + w ( t ) ,  and the 
NHPP is hence a special case of the TRP. 

0 If z(0) = 0, the conditional ROCOF is equal to 0 just after each failure, that is, 
W C ( S N ( t , ) )  = 0. 

S N ( t - ) )  * 

0 If w ( t )  = /3 is constant, we have an ordinary renewal process, wc(t) = z ( t  - 

0 If z(0) > 0, the conditional ROCOF just after a failure is z(0) . U I ( S N ( t + ) )  and 
is increasing with r when w(t )  is an increasing function 
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Fig. 7.24 Illustration of the conditional ROCOF w ~ ( t )  in Example 7.17 for some possible 
failure times. 

0 If z ( t )  is the failure rate (FOM) function of a Weibull distribution with shape 
parameter (Y and w ( t )  is a power law (Weibull) process with shape parameter p ,  
the conditional ROCOF will have a Weibull form with shape parameter L Y ~  - 1 .  

Example 7.17 
Consider a trend renewal process with initial ROCOF w ( t )  = 202t, that is, a linearly 
increasing ROCOF, and a distribution F ( t )  with failure rate (FOM) function z ( t )  = 
2.5 . t1 .5 ,  that is, a Weibull distribution with shape parameter (Y = 2.5 and scale 
parameter k. For the mean value of F ( t )  to be equal to 1 ,  the scale parameter must 
be k M 0.88725. The conditional ROCOF in the interval until the first failure is from 
(7.151) 

w ( t )  = 5 ~ ~ . ~  o5 . r4 for o 5 r < ~1 

Just after the first failure, wc(S1+) = 0. Generally, we can find w c ( t )  from (7.151). 
Between failure n and failure n + 1, the conditional ROCOF is 

wc( t>  = 5 o5 . ( t 2  - s:)'.~ . t for s,, 5 t < sn+l 

The conditional ROCOF wc (I) is illustrated for some possible failure times S1, S2, . . . 
in Fig. 7.24. 0 

The trend renewal process is further studied by Lindqvist (1993, 1998) and Elve- 
bakk (1999) who also provides estimates for the parameters of the model. 

7.6 MODEL SELECTION 

A simple framework for model selection for a repairable system is shown in Fig. 7.25. 
The figure is inspired by a figure in Ascher and Feingold (1984), but new aspects have 
been added. 
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No 
Must split the data set in 
homogeneous samples 
and treat each sample 
separately 

Yes 

lnteroccurrence times identically 
distributed, but not necessarily 
independent 

Repairable systems models 
NHPP-models (section 8.4) 
or imperfect repair models 
(section 8.5) 

yes 

Standard analytical techniques, 
see Chapter 10 

Branching Poisson process 
models. (Not covered in 
this book) 

I 1 

Fig. 7.25 Model selection framework. 
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We will illustrate the model selection framework by a simple example. In OREDA 
(2002), failure data from 449 pumps were collected from 61 different installations. 
A total of 524 critical failures were recorded, that is, on the average 1.17 failures per 
pump. To get adequate results we have to merge failure data from several valves. It is 
important that the data that are merged are homogeneous, meaning that the valves are 
of the same type and that the operational and environmental stresses are comparable. 
Since there are very few data from each valve, this analysis will have to be qualitative. 
The total data set should be split into homogeneous subsets and each subset has to 
be analyzed separately. A very simple problem related to inhomogeneous samples is 
illustrated in Section 2.9. 

We now continue with a subset of the data that is deemed to be homogeneous. The 
next step is to check whether or not there is a trend in the ROCOF. This may be done 
by establishing a Nelson-Aalen plot as described in Section 7.4.3 on page 282. If the 
plot is approximately linear we conclude that the ROCOF is close to constant. If the 
plot is convex (concave) we conclude that the ROCOF is increasing (decreasing). The 
ROCOF may also be increasing in one part of the lifelength and decreasing in another 
Part. 

If we conclude that the ROCOF is increasing or decreasing, we may use either a 
NHPP or one of the imperfect repair models described in Section 7.5. Which model to 
use must (usually) be decided by a qualitative analysis of the repair actions, whether 
it is a minimal repair or and age, or failure rate, reduction repair. In some cases we 
may have close to minimal repairs during a period followed by a major overhaul. In 
the Norwegian offshore sector, such overhauls are often carried our during annual 
revision stops. When we have decided a model, we may use the methods described in 
this chapter to analyze the data. More detailed analyses are described, for example, 
in Crowder et al. (1991). 

If no trend in the ROCOF is detected, we conclude that the intervals between failures 
are identically distributed, but not necessarily independent. The next step is then to 
check whether or not the data may be considered as independent. Several plotting 
techniques and formal tests are available. These methods are, however, not covered 
in this book. An introduction to such methods may, for example, be found in Crowder 
et al. (1991). 

If we can conclude that the intervals between failures are independent and identi- 
cally distributed, we have a renewal process, and we can use the methods described 
in Chapter 11 to analyze the data. 

If the intervals are dependent, we have to use methods that are not described in this 
book. Please consult, for example, Crowder et al. (1991) for relevant approaches. 
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PROBLEMS 

7.1 
Determine 

Consider a homogeneous Poisson process (HPP) { N (t), t 1. 0) and let t , s 2 0. 

7.2 Consider an HPP ( N ( t ) ,  t 2 0) with rate > 0. Verify that 

P r ( N ( t )  = k I N ( s )  = n) = (i) ( a ) k  (1 - for 0 < t < s and 0 5 k 5 n 

7.3 
A. Show that 

Let TI denote the time to the first occurrence of an HPP { N ( r ) ,  c 2 0) with rate 

S 

t 
Pr(T1 5 s 1 N ( t )  = 1) = - for s 5 t 

7.4 
Show that the mean value of N ( t )  can be written 

Let { N ( t ) ,  t 2 O} be a counting process, with possible values 0, 1,2,3,  . . .. 

00 00 

n=l n=O 

7.5 Let S1, S2, . . . be the occurrence times of an HPP I N ( ? ) ,  t 2 O }  with rate A. 
Assume that N ( t )  = n. Show that the random variables S1, S2, . . . , Sn have the joint 
probability density function 

7.6 Consider a renewal process ( N ( t ) ,  t 2 0). Is it true that 

(a) N ( t )  < r if and only if Sr > t ?  

(b) N ( t )  5 r if and only if Sr 2 t? 

(c) N ( t )  > r if and only if S, < t? 

7.7 Consider a nonhomogeneous Poisson process (NHPP) with rate 

w ( t )  = A * - fort 2 0  
t 

(a) Make a sketch of w ( t )  as a function of z 

(b) Make a sketch of the cumulative ROCOF, W ( r ) ,  as a function of t .  
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7.8 Consider an NHPP ( N ( t ) ,  t 2 0) with rate: 

6 -2 t  for O i t 4 2  
2 for 2 < t 6 20 1 -18+t  for t > 2 0  

w(t> = 

(a) Make a sketch of w ( t )  as a function oft. 

(b) Make a sketch of the corresponding cumulative ROCOF, W ( t ) ,  as a function of 
1.  

(c) Estimate the number of failwedevents in the interval (0, 12) 

7.9 In Section 7.3.8 it is claimed that the superposition of independent renewal 
processes is generally not a renewal process. Explain why the superposition of in- 
dependent homogeneous Poisson processes (HPP) is a renewal process. What is the 
renewal density of this superimposed process? 

7.10 Table 7.2 shows the intervals in operating hours between successive failures 
of air-conditioning equipment in a Boeing 720 aircraft. The data are from Proschan 
(1963). 

Table 7.2 Time Between Failures in Operating Hours of Air-conditioning Equipment. 

413 14 58 37 100 65 9 169 
447 184 36 201 118 34 31 18 

18 67 57 62 7 22 34 

First interval is 413, the second is 14, and so on. Source: Proschan (1963). 

(a) Establish the Nelson-Aalen plot ( N ( t )  plot) of the data set. Describe (with 
words) the shape of the ROCOF. 

7.11 
the linear model and the log-linear model: 

Atwood (1992) uses the following parametrization for the power law model, 

w(t>  = Lo ( t l t o P  
w(t)  = L o [ l  + @(t - t o ) ]  
w ( t )  = Lo ,B('-'o) 

(power law model) 
(linear model) 
(log-linear model) 

(a) Discuss the meaning of fo item[(b)] Show that Atwood's parameterization is 
compatible with the parameterization used in Section 7.4.4. 

(c) Show that w ( t )  = LO when t = to for all the three models. 

(d) Show that w ( t )  is increasing if B > 0, is constant if j? = 0, and decreasing if 
@ < 0, for all the three models. 
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7.12 Use the MIL-HDBK test described in Section 7.4.5 to check if the “increasing 
trend” of the data in Example 7.1 is significant (5% - level). 

7.13 Table 7.3 shows the intervals in days between successive failures of a piece 
of software developed as part of a large data system. The data are from Jelinski and 
Moranda (1 972). 

Table 7.3 Intervals in Days Between Successive Failures of a Piece of Software. 

9 12 11 4 7 2  5 8 5 7  
1 6 1 9 4 1  3 3 6 1  

11 33 7 91 2 1 87 47 12 9 
135 258 16 35 

First interval is 9, the second is 12, and so on. Source: Jelinski and Moranda (1972). 

(a) Establish the Nelson-Aalen plot ( N ( t )  plot) of the data set. Is the ROCOF 

increasing or decreasing? 

(b) Assume that the ROCOF follows a log-linear model, and find the maximum 
likelihood estimates (MLE) for the parameters of this model. 

(c) Draw the estimated cumulative ROCOF in the same diagram as the Nelson- 
Aalen plot. Is the fit acceptable? 

(d) Use the Laplace test to determine whether the ROCOF is decreasing or not (use 
a 5% level of significance). 



Markov Processes 

8.1 INTRODUCTION 

The models in the first six chapters are all based on the assumption that the components 
and the systems can be in one out of two possible states: afunctioning state or a 
failed state. We have also seen that the models are rather static and not well suited 
for analysis of repairable systems. 

Stochastic processes were introduced in Chapter 7. In this chapter we will intro- 
duce a special type of stochastic processes, called Markov' chains, to model systems 
with several states and the transitions between the states. A Markov chain is a stochas- 
tic process ( X ( t ) ,  t 1 0) that possesses the Markov property. (We will define the 
Markov property clearly later.) The random variable X ( t )  denotes the stute of the 
process at time t .  The collection of all possible states is called the state space, and 
we will denote it by X .  The state space X is either finite or countable infinite. In 
most of our applications the state space will beJinite and the states will correspond to 
real states of a system (see Example 8.1). Unless stated otherwise, we take X to be 
{O, 1,2, . . . , r ) ,  such that X contains r + 1 different states. The time may be discrete, 
taking values in (0, 1,  2 ,  . . .}, or continuous. When the time is discrete, we have a 
discrete-time Markov chain; and when the time is continuous, we have a continuous- 
time Markov chain. A continuous-time Markov chain is also called a Markovprocess. 
When the time is discrete, we denote the time by n and the discrete-time Markov chain 
by ( X , l , n  = 0, I ,  2 ,  ...). 

'Named after the Russian mathematician Andrei A. Markov ( I  856-1922). 
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Table 8.7 Possible States of a System of Two Components. 

State Component 1 Component 2 

Functioning 
Functioning 
Failed 
Failed 

Functioning 
Failed 
Functioning 
Failed 

The presentation of the theoretical basis of the Markov chains in this book is 
rather brief and limited. The reader should consult a textbook on stochastic processes 
for more details. An excellent introduction to Markov chains may be found in, for 
example, Ross (1996). A very good description of continuous-time Markov chains 
and their application in reliability engineering is given by Cocozza-Thivent ( 1997). 

The main focus in this book is on continuous-time Markov chains and how these 
chains can be used to model the reliability and availability of a system. In the follow- 
ing, a continuous-time Markov chain will be called a Markovprocess. In this chapter, 
we start by defining the Markov property and Markov processes. A set of linear, first 
order differential equations, called the Kolmogorov equations, are established to de- 
termine the probability distribution P ( t )  = [ P o ( t ) ,  PI  ( t ) ,  . . . , P,(t)]  of the Markov 
process at time t ,  where Pi ( t )  is the probability that the process (the system) is in state 
i at time t .  We then show that P ( t ) ,  under specific conditions, will approach a limit 
P when t + 00. This limit is called the steady-state distribution of the process (the 
system). Several system performance measures - like state visit frequency, system 
availability, and mean time to first system failure - are introduced. The steady-state 
distribution and the system performance measures are then determined for some sim- 
ple systems like series and parallel systems, systems with dependent components, 
and various types of standby systems. Some approaches to analysis of complex sys- 
tems are discussed. The time-dependent solution of the Kolmogorov equations is 
briefly discussed. The chapter ends by a brief discussion of semi-Markov processes, 
a generalization of the Markov processes. 

Example 8.1 
Consider a parallel structure of two components. Each component is assumed to have 
two states, a functioning state and a failed state. Since each of the components has 
two possible states, the parallel structure has 22 = 4 possible states. These states are 
listed in Table 8.1. The state space is therefore X = (0, 1, 2,3]. The system is fully 
functioning when the state is 3 and failed when the state is 0. In states 1 and 2 the 

When the system has n components, and each component has two states (function- 
ing and failed), the system will have at most 2n different states. In some applications, 
we will introduce more than two states for each component. A pump may, for exam- 
ple, have three states: operating, standby, or failed. A producing unit may operate 

system is operating with only one component functioning. 
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with 100% capacity, 80% capacity, and so on. In other applications it is important to 
distinguish the various failure modes of an item, and we may define the failure modes 
as states. For a complex system, the number of states may hence be overwhelming, 
and we may need to simplify the system model, and separately consider modules of 
the system. 

8.1.1 Markov Property 

Consider a stochastic process (X(t), r 2 01 with continuous time and state space 
X = (0, 1 ,2 ,  . . . , r ) .  Assume that the state of the process at time s is X ( s )  = i .  The 
conditional probability that the process will be in state j at time t + s is 

Pr(X(t + s) = j I X ( s )  = i ,  X(u) = x ( u ) ,  0 I u < s) 

where (x (u ) ,  0 5 u < s} denotes the “history” of the process up to, but not including, 
time s. 

The process is said to have the Markov property if 

Pr(X(t + s) = j 1 X(t) = i ,  X(u) = x ( u ) ,  0 5 u < s) 

= Pr(X(t + s) = j I X ( s )  = i )  

for all possible x ( u ) ,  0 5 u < s 
(8.1) 

In other words, when thepresent state of the process is known, the future development 
of the process is independent of anything that has happened in the past. 

A stochastic process satisfying the Markov property (8.1) is called a Markovpro- 
cess (or a continuous-time Markov chain). 

We will further assume that the Markov process for all i ,  j in X fulfills 

Pr(X(t + s) = j 1 X(s) = i )  = Pr(X(t) = j I X(0) = i) for all s, t 2 0 

which says that the probability of a transition from state i to state j does not depend 
on the global time and only depends on the time interval available for the transi- 
tion. A process with this property is known as a process with stationary transition 
probabilities, or as a time-homogeneous process. 

From now on we will only consider Markov processes (i.e., processes fulfilling 
the Markov property) that have stationary transition probabilities. A consequence of 
this assumption is that a Markov process cannot be used to model a system where the 
transition probabilities are influenced by long-term trends andor seasonal variations. 
To use a Markov process, we have to assume that the environmental and operational 
conditions for the system are relatively stable as a function of time. 

8.2 MARKOV PROCESSES 

Consider a Markov process ( X ( t ) ,  t 0) with state space X = (0, 1,2 ,  . . . , r }  and 
stationary transition probabilities. The transition probabilities of the Markov process 

Pi j ( t )  = Pr(X(t) = j I X ( 0 )  = i )  for all i, j E X 
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State t 

Fig. 8.7 Trajectory of a Markov process. 

may be arranged as a matrix 

Since all entries in P(t) are probabilities, we have that 

0 5 Pj;( t )  I 1 for all f 1 0 ,  i ,  j E X 

When a process is in state i at time 0, it must either be in state i at time t or have 
made a transition to a different state. We must therefore have 

r 

(8.3) 

The sum of each row in the matrix P is therefore equal to 1. Note that the entries in 
row i represent the transitions out of state i (for j # i), and that the entries in column 
j represent the transition into state j (for i # j ) .  

Let 0 = So i S1 i S2 5 . . . be the times at which transitions occur, and let 
Tj = Si+l - Sj be the ith interoccurrence time, or sojourn time, for i = 1 , 2 ,  . . .. A 
possible “path” of a Markov process is illustrated in Fig. 8.1. The path is sometimes 
called the trajectory of the process. We define Sj such that transition i takes place 
immediately before Sj,  in which case the trajectory of the process is continuous from 
the right. The Markov process in Fig. 8.1 starts out at time t = 0 in state 6, and stays 
in this state a time T I .  At time S1 = TI the process has a transition to state 0 where it 
stays a time T2. At time S2 = TI + T2 the process has a transition to state 4, and so 
on. 

Consider a Markov process that enters state i at time 0, such that X ( 0 )  = i. Let 
5 be the sojourn time in state i. [Note that Ti denotes the ith interoccurrence time, 
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while Ti is the time spent during a visit to state i . ]  We want to find the probability 
Pr(c  > t). Let us now assume that we observe that the process is still in state i at 
time s, that is, T, > s, and that we are interested in finding the pEbability thg it will 
remain in state i fort time units more. We hence want to find Pr(T, > t +s I Ti > s). 
Since the process has the Markov property, the probability for the process to stay for 
r more time units is determined only by the current state i .  The fact that the process 
has been staying there for s time units is therefore irrelevant. Thus 

- 
P r ( 5  > t + s I z. > s) = ~ r ( c  > t )  for s, t 2 o 

Hence the random variable z, is memoryless and must be exponentially distributed. 
The sojourn times T I ,  T2, . . . must therefore also be independent and exponentially 

distributed. The independence follows from the Markov property. See Ross (1996, 
p. 232) for a more detailed discussion. 

We will now disregard the time spent in the various states and only consider the 
transitions that take place at times S1, S2, . . . .Let X, = X ( S , )  denote the state 
immediately after transition n. The process [ X,, n = 1,2,  . . .) is called the skeleton 
of the Markov process. Transitions of the skeleton may be considered to take place at 
discrete times n = 1,2,  . . .. The skeleton may be imagined as a chain where all the 
sojourn times are deterministic and of equal length. It is straightforward to show that 
the skeleton of a Markov process is a discrete-time Markov chain; see Ross (1 996). 
The skeleton is also called the embedded Markov chain. 

We may now (Ross, 1996, p. 232) construct a Markov process as a stochastic 
process having the properties that each time it enters a state i: 

1. The amount of time z. the process spends in state i before making a transition 
into a different state is exponentially distributed with rate, say ai . 

2. When the process leaves state i ,  it will next enter state j with some probability 
Pi,, , where Pij = 1. 

j # i  

The mean sojourn time in state i is therefore 

- 1  
E(Ti )  = - 

a; 

If a, = m, state i is called an instantaneous state, since the mean sojourn time 
in such a state is zero. When the Markov process enters such a state, the state is 
instantaneously left. In this book, we will assume that the Markov process has no 
instantaneous states, and that 0 5 a; < 00 for all i .  If cq = 0, then state i is 
called absorbing since once entered it is never left. In Sections 8.2 and 8.3 we will 
assume that there are no absorbing states. Absorbing states are further discussed in 
Section 8.5. 

We may therefore consider a Markov process as a stochastic process that moves 
from state to state in accordance with a discrete-time Markov chain. The amount of 
time it spends in each state, before going to the next state, is exponentially distributed. 
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The amount of time the process spends in state i ,  and the next state visited, must be 
independent random variables. 

Let aij be defined by 

ajj = ai . Pi, for all i # j (8.4) 

Since ai is the rate at which the process leaves state i and Pi, is the probability that 
it goes to state j ,  it follows that ajj is the rate when in state i that the process makes 
a transition into state j .  We call aij the transition rate from i to j .  

Since x j f i  Pij = 1, it follows from (8.4) that 

r 

Let I;:j be the time the process spends in state i before entering into state j (# i ) .  The 
time Tij is exponentially distributed with rate aij. 

Consider a short time interval At . Since T j j  and 5 are exponentially distributed, 
we have that 

Pii(At) = P r ( z .  > A t )  = e--cuiAf w 1 - q A r  

Pij(At) = Pr(Tjj 5 At) = 1 - eFaiJAt x aijAt 

when At is “small”. We therefore have that 

ai 
- - 1 - Pij(At) Pr@ < A t )  

lim = lim 
Ar-0 At Af+O At 

Pr(T, j  < A t )  pij(At> - lim 
= aij for i # j (8.7) lim - - 

A f - 0  At At-0 At 

For a formal proof, see Ross (1996, p. 239), 

Since we, from (8.4) and (8.5),  can deduce aj and Pij when we know aij for all 
i, j in X, we may equally well define a Markov process by specifying (i) the state 
space X and (ii) the transition rates aij for all i # j in X. The second definition is 
often more natural and will be our main approach in the following. 

We may arrange the transition rates aij as a matrix: 

A =  
. .  

4 0  4 1  ’ . .  a r r  

where we have introduced the following notation for the diagonal elements: 

r 
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We will call A the transition rate matrix of the Markov process. Some authors refer 
to the matrix A as the infinitesimal generator of the process. 

Observe that the entries of row i are the transition rates out of state i (for j # i ) .  
We will call them departure rates from state i .  According to (8.5) -aii = Qi is the 
sum of the departure rates from state i, and hence the total departure rate from state 
i .  The entries of column i are transition rates into state i (for j $ i ) .  Notice that the 
sum of the entries in row i is equal to 0, for all i E X .  

Procedure to Establish the Transition Rate Matrix To establish the transition 
rate matrix A, we have to: 

1. List and describe all relevant system states. Non-relevant states should be 
removed, and identical states should be merged (e.g, see Example 8.3). Each 
of the remaining states must be given a unique identification. In this book we 
use the integers from 0 up to r .  We let r denote the best functioning state of 
the system and 0 denote the worst state. The state space of the system is thus 
X = (0, 1, . . . , r ] .  Any other sequence of numbers, or letters may, however, 
also be used. 

2. Specify the transition rates ai, for all i # j and i, j E X. Each transition 
will usually involve a failure or a repair. The transition rates will therefore be 
failure rates and repair rates, and combinations of these. 

3. Arrange the transition rates ai, for i $ j as a matrix, similar to the matrix (8.8). 
(Leave the diagonal entries aij open.) 

4. Fill in the diagonal elements aii such that the sum of all entries in each row is 
equal to zero, or by using (8.9). 

A Markov process may be represented graphically by a state transition diagram 
that records the ai, of the possible transitions of the Markov process. The state tran- 
sition diagram is also known as a Markov diagram. In the state transition diagram, 
circles are used to represent states, and directed arcs are used to represent transitions 
between the states. An example of a state transition diagram is given in Fig. 8.2. 

Example 8.2 
Reconsider the parallel system of two independent components in Example 8.1. It 
is assumed that the following corrective maintenance strategy is adopted: When a 
component fails, a repair action is initiated to bring this component back to its initial 
functioning state. After the repair is completed, the component is assumed to be as 
good as new. Each component is assumed to have its own dedicated repair crew. 

We assume that the components have constant failure rates hi and constant repair 
rates pi, for i = 1, 2. The transitions between the four system states in Table 8.1 are 
illustrated in the state transition diagram in Fig. 8.2. 

Assume that the system is in state 3 at time 0. The first transition may either 
be to state 2 (failure of component 2) or to state 1 (failure of component 1). The 
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Fig. 8.2 State transition diagram of the parallel structure in Example 8.2. 

transition rate to state 2 is a32 = h2, a%d the transition rate to state 1 is a31 = A1 . 
The sojourn time in state 3 is therefore TL= min(T31, T32], where Tij is the time to 
the first transition from state i to state j .  T3 has an exponential distribution with rate 
a31 + a32 = hl + h2, and the mean sojourn time in state 3 is l / ( h l  + h2). 

When the system is in state 2,  the next transition may either be to state 3 (with rate 
a23 = p2) or to state 0 (with rate a20 = hl). The probability that the transition is to 
state 3 is ~ 2 / ( p 2  + h l ) ,  and the probability that it goes to state 0 is h l / ( ~ 2  + AI). 
The memoryless property of the exponential distribution ensures that component 1 
is as good as new when the system enters state 2.  In this example we assume that 
component 1 has the same failure rate ).I in state 3, where both components are 
functioning, as it has in state 2,  where only component 1 is functioning. The failure 
rate a20 of component 1 in state 2 may, however, easily be changed to a failure rate 
A\ that is different from (e.g., higher than) 11, 

When the system is in state 0, both components are in a failed state and two 
independent repair crews are working to bring the components back to a functioning 
state. The repair times To1 and To2 are independent and exEonentially distributed with 
repair rates p1 and p2, respectively. The sojourn time To in state 0, min{Tol, To21 
is exponentially distributed with rate (P I  + p z ) ,  and the mean downtime (MDT) of 
the system is therefore 1/(pl + p2).  When the system enters state 0, one of the 
components will already have failed and be under repair when the other component 
fails. The memoryless property of the exponential distribution ensures, however, that 
the time to complete the repair is independent of how long the component has been 
under repair. 

The transition rate matrix of the system is thus 

0 

P2 
(8.10) 

- 0 1  + A21 i --(PI + P 2 )  F2 PI 
-@2 + P I )  0 

0 hl A2 

.=[ h2 hl 0 -(A1 + P 2 )  

In this model we disregard the possibility of common cause failures. Thus a 
transition between state 3 and state 0 is assumed to be impossible during a time 
interval of length At .  
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Fig. 8.3 State transition diagram of the parallel structure in Example 8.3. 

Notice that when drawing the state transition diagram we consider a very short 
time interval, such that the transition diagram only records events of single transitions. 
Analogous with the Poisson process, the probability of having two or more events in 
a short time At is o ( A t ) ,  and hence events of multiple transitions are not included in 
the state transition diagram. It is therefore not possible to have a transition from state 
1 to state 2 in Fig. 8.2, since this would involve failure of component 2 and at the same 
time completed repair of component 1. A common cause failure can be modeled as a 
transition from state 3 to state 0 in Fig. 8.2. Such a transition will involve the failure 

0 of two components but may be considered as a single event. 

Example 8.3 
Again consider the parallel system in Example 8.1, but assume that the two compo- 
nents are independent and identical with the same failure rate h. In this case it is not 
necessary to distinguish between the states 1 and 2 in Table 8.1, and we may reduce 
the state space to the three states: 

2 Both components are functioning 
1 
0 

Assume that the system is taken care of by a single repair crew that has adopted 
a first-fail-first-repair policy. The repair time of a component is assumed to be ex- 
ponentially distributed with repair rate p. The mean repair time (downtime) is then 
1 /p .  The transitions between the three system states are illustrated in Fig. 8.3. 

A transition from state 2 to state 1 will take place as soon as one of the two 
independent components fails. The transition rate is therefore a21 = 2h. When the 
system is in state 1, it will either go to state 2 [with probability p/ (p  + A ) ] ,  or to state 
0 [with probability h / ( p  + A ) ] .  

One component is functioning, and one is failed 
Both components are in a failed state 

The transition rate matrix of the system is 

-2h 

-P I-L 

0 2h 
A =  ( h - (p+A) 

The mean sojourn times in the three states are 

that is, the inverse of the absolute value of the corresponding diagonal entry in A. 
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h h h 

Fig. 8.4 State transition diagram for a homogeneous Poisson process (HPP). 

An alternative repair strategy for state 0 would be to repair both components at the 
same time and only start up the system when both components are functioning again. 
If the repair time for this common repair action has rate p c ,  we have to modify the 
state transition diagram in Fig. 8.2 and introduce a01 = 0 and a02 = pc (a12 is still 
P). 0 

Example 8.4 
Consider a homogeneous Poisson process (HPP) { X ( t ) ,  t 2 01 with rate h. The HPP 
is a Markov process with countable infinite state space X = {O, 1,2, . . .). In this case 
we have aj = h for i = 0, 1,2, . . ., and aij = rt for j = i + 1 ,  and 0 for j # i + 1. 
The transition rate matrix for the HPP is thus 

-A h 0 . ' .  

The state transition diagram for the HPP is illustrated in Fig. 8.4. 0 

Chapman-Kolmogorov Equations By using the Markov property and the law 
of total probability, we realize that 

r 

Pij(t + s) = C Pik(f)Pkj(s) for all i ,  j E X, t ,  s > o (8.1 1 )  
k=O 

Equations (8.1 1) are known as the Chapman-Kolmogorov equations. The equations 
may, by using (8.2), be written in matrix terms as 

P(t + s) = P(r) * P(s) 

Notice that P(0) = II is the identity matrix. Notice also that if t is an integer, it follows 
that P ( t )  = [P(l)]'. It can be shown that this also holds when t is not an integer. 

8.2.1 Kolmogorov Differential Equations 

We will try to establish a set of differential equations that may be used to find Pij (t) ,  
and therefore start by considering the Chapman-Kolmogorov equations 

r 

Pij(t 4- At)  = Pik(At)Pkj(t) 

k=O 
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Note that we here split the interval (0, t + A t )  in two parts. First, we consider a 
transition from state i to state k in the small interval (0, A t ) ,  and thereafter a transition 
from state k to state j in the rest of the interval. We now consider 

r 

Pij(t + A t )  - Pij(t)  = Pik(Af)Pkj ( f )  - [1 - Pi i (At ) ]Pj j ( t )  
k=O 
k#i 

By dividing by At  and then taking the limit as At  --f 0, we obtain 

k=O 
k #i 

Since the summing index is finite, we may interchange the limit and summation on 
the right-hand side of (8.12) and obtain, using (8.6) and (8.7), 

r r 

(8.13) 
k=O 
k #i 

k=O 

where aii = -q, and the following notation for the time derivative is introduced: 

d 
dt 

Pi j ( t )  = - P i j ( f )  

The differential equations (8.13) are known as the Kolmogorov backward equations.* 
They are called backward equations because we start with a transition back by the 
start of the interval. 

The Kolmogorov backward equations may also be written in matrix format as 

i ( t >  = A * P(t) (8.14) 

We may also start with the following equation: 

I 

k=O 

Here we split the time interval (0, r + A t )  into two parts. We consider a transition 
from i to k in the interval (0, t ) ,  and then a transition from k to j in the small interval 
( f ,  t + A t ) .  We consider 

r 

Pij(t + A t )  - Pij(t)  = C Pik(f)Pkj(Af> - [ I  - Pj j (A t ) ]P i j ( t )  

;$ 

*Named after the Russian mathematician Andrey N. Kolmogorov (1903-1987) 
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By dividing by At and then taking the limit as At +. 0, we obtain 

Af+O At Af+O [:z. At At 

Since the summation index is finite, we may interchange limit with summation and 
obtain 

I Pij(t + a t )  - Pij(t) = lim 2 P i k ( t )  Pkj(At) 1 - P j j ( A t )  
lim Pij ( t )  

r r 

bij(t) = C a k j P ; k ( f )  - a j P i j ( t )  = x U k j P i k ( t )  (8.15) 
k=O k=O 
k P j  

where, as before, ajj  = -a,. The differential equations (8.15) are known as the 
Kolmogorovfoward equations. The interchange of the limit and the sum above does 
not hold in all cases but is always valid when the state space is finite. 

The Kolmogorov forward equations may be written in matrix terms as 

P(t) = P(r) . A (8.16) 

For the Markov processes we are studying in this book the backward and the 
forward equations have the same unique solution P(t), where Cs=o Pij(t)  = 1 for 
all i in X. In the following, we will mainly use the forward equations. 

8.2.2 State Equations 

Let us assume that we know that the Markov process has state i at time 0, that is, 
X ( 0 )  = i .  This can be expressed as 

Pi(0) = Pr(X(0) = i )  = 1 

Pk(0) = Pr(X(0) = k) = 0 fork # i 

Since we know the state at time 0, we may simplify the notation by writing Pij ( t )  as 
Pj ( t ) .  The vector P ( t )  = [ P o ( t ) .  PI  ( t ) ,  . . . , Pr ( t ) ]  then denotes the distribution of 
the Markov process at time t ,  when we know that the process started in state i at time 
0. As in (8.3) we know that '&, P j ( t )  = 1. 

The distribution P ( t )  may be found from the Kolmogorov forward equations (8.15) 

(8.17) 
r 

p j  ( t )  = C akj Pk (f) 
k=O 

where, as before, a,, = -aj. In matrix terms, this may be written 

a00 a01 . . .  aor 

[PO(t)y.. . , Pr(t)l . [ afo (ll' ::: ] = [&(,), . . - 7  j r ( t ) ]  (8.18) 

ar0  arl . . .  a r r  
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or in a more compact form as 

P ( t )  . A = P ( t )  (8.19) 

Equations (8.19) are called the state equations for the Markov process. 

Remark: Some authors prefer to present the state equations as the transpose of 
(8.19), that is AT . P ( c ) ~  = P ( C ) ~ .  In this case the vectors will be column vectors, 
and equations (8.18) can be written in a more compact form as 

In this format the indexes do not follow standard matrix notation. The entries in 
column i represent the departure rates from state i, and the sum of all the entries 
in a column will be 0.  The reader may choose in which format he wants to present 
the state equations. Both formats will give the same result. In this book, we will, 
however, present the state equations in the format of (8.18) and (8.19). 

Since the sum of the entries in each row in A is equal to 0, the determinant of A 
is 0 and the matrix is singular. Consequently, equations (8.19) do not have a unique 
solution. However, by using that 

r c P j ( t )  = 1 
.i =O 

and the known initial state [Pi (0) = 11, we are often able to compute the probabilities 
Pj ( t )  for j = 0, 1,2,  . . . , r . [Conditions for existence and uniqueness of the solutions 
are discussed, for example, by Cox and Miller (1965).] 

Example 8.5 
Consider a single component. The component has two possible states: 

1 The component is functioning 
0 The component is in a failed state 

Transition from state 1 to state 0 means that the component fails, and transition from 
state 0 to state 1 means that the component is repaired. The transition rate a10 is thus 
the failure rate of the component, and the transition rate a01 is the repair rate of the 
component. In this example we will use the following notation: 

a10 = k 
a01 = p 

The failure rate of the component 
The repair rate of the component 
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Fig. 8.5 State transition diagram for a single component (function-repair cycle). 

The mean sojourn time in state 1 is the mean time to failure, MTTF = l / h ,  and 
the mean sojourn time in state 0 is the mean downtime, MDT = l / p .  The mean 
downtime is sometimes called the mean time to repair (MTTR). 

The state transition diagram for the single component is illustrated in Fig. 8.5. The 
state equations are 

(8.20) 

The component is assumed to be functioning at time t = 0, 

P,(O) = 1, PO(0) = 0 

Since the two equations we get from (8.20) are linearly dependent, we use only one 
of them, for example, 

-pPo(t) + hP1 ( t )  = P ( t )  

and combine this equation with Po(t) + PI  (t) = 1. The solution is 

I-L e-Or+wL)t P l ( t )  = - + - 
P + h  CL+h 

h h Po(t) = - - -e - - (A+w) f  
p + h  p + h  

(8.21) 

(8.22) 

For a detailed solution of the differential equation, see Ross (1996, p. 243). 

the availability of the component (see Section 9.4). 
PI (t) denotes the probability that the component is functioning at time t, that is, 

The limiting availability PI = limt+oa P l ( t )  is from (8.21), 

(8.23) 

The limiting availability may therefore be written as the well-known formula 

MTTF 
MTTF+MDT 

PI = (8.24) 

When there is no repair ( p  = 0), the availability is P l ( t )  = e-Af which coincides 
with the survivor function of the component. The availability P1 (t) is illustrated in 
Fig. 8.6. 0 
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Availability 

0,4 ::; 0,o 0 2  0 8  0.5 1 ,o 1,s 2,o Survivor 2.5 function 3,O 

Time t 

Fig. 8.6 The availability and the survivor function of a single component ( h  = 1, I.L = 10). 

8.3 ASYMPTOTIC SOLUTION 

In many applications only the long-run (steady-state) probabilities are of interest, that 
is, the values of P j ( t )  when t + 00. In Example 8.5 the state probabilities P j ( t )  
( j  = 0, 1) approached a steady-state Pj when t + 00. The same steady-state value 
would have been found irrespective of whether the system started in the operating 
state or in the failed state. 

Convergence toward steady-state probabilities is assumed of the Markov processes 
we are studying in this chapter. The process is said to be irreducible if every state is 
reachable from every other state (see Ross 1996). 

For an irreducible Markov process, it can be shown that the limits 

lim P j ( t )  = P, for j = 0, 1 ,2 , .  . . , r 
f+rn 

always exist and are independent of the initial state of the process (at time t = 0). 
For a proof, see Ross (1996, p. 25 1). Hence a process that has been running for a 
long time has lost its dependency of its initial state X ( 0 ) .  The process will converge 
to a process where the probability of being in state j is 

Pj = Pj(00) = lim P j ( t )  for j = 0, 1 , .  . . , r 
t+cc 

These asymptotic probabilities are often called the steady-state probabilities for the 
Markov process. 

If P j ( t )  tends to a constant value when t -+ 00, then 

lim Pj( t )  = 0 for j = 0, 1 , .  . . , r 
t - rn  

The steady-state probabilities P = [Po. P I ,  . . . , Pr]  must therefore satisfy the matrix 
equation: 
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which may be abbreviated to 

P . A = O  (8.26) 

where as before 
r 

C P j d  
j =O 

To calculate the steady-state probabilities, PO, PI, . . . , Pr,  of such a process, we use 
r of the r + 1 linear algebraic equation from the matrix equation (8.25) and in addition 
the fact that the sum of the state probabilities is always equal to I .  The initial state of 
the process has no influence on the steady-state probabilities. Note that P, also may 
be interpreted as the average, long-run proportion of time the system spends in state 
j .  

Example 8.6 
Consider a power station with two generators, 1 and 2. Each generator can have two 
states: a functioning state (1) and a failed state (0). A generator is considered to be 
in the failed state (0) also during repair. Generator 1 is supplying 100 MW when it is 
functioning and 0 MW when it is not functioning. Generator 2 is supplying 50 MW 
when it is functioning and 0 MW when it is not functioning. 

The possible states of the system are: 

System State of State of System 
state Generator 1 Generator 2 output 

150 MW 
100 MW 
50 MW 
0 MW 

We assume that the generators fail independent of each other and that they are 
operated on a continuous basis. The failure rates of the generators are 

h 1 

h2 

Failure rate of generator 1 

Failure rate of generator 2 

When a generator fails, a repair action is started to bring the generator back into 
operation. The two generators are assumed to be repaired independent of each other, 
by two independent repair crews. The repair rates of the generators are 

p 1 

p2 

Repair rate of generator 1 

Repair rate of generator 2 

The corresponding state transition diagram is shown in Fig. 8.7. The transition 
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Fig. 8.7 State transition diagram of the generators in Example 8.6. 

matrix is 

0 

P2 

-(PI + P2) cL2 PI 
-@2 +PI) 0 

0 hl A2 
0 - @ I  + P 2 )  

We can use (8.26) to find the steady-state probabilities Pj for j = 0, 1, 2, 3, and 
we get the following equations: 

Note that we use three of the steady-state equations from (8.26) and in addition the 
fact that Po + PI + P2 + P3 = 1 .  Note also that we may choose any three of the four 
steady-state equations, and get the same solution. 

The solution is 

hlh-2 

@ I  + Pl) (h2  + P2) 
hlP2 

(hl + PU])(h2 + P2) 

Po = 

P]  = 

Now for i = I ,  2 let 

(8.27) 

MDTi 
- hi ,--- '' - hi + ~i MTTF; + MDTi 
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MTTFi 
MTTFi + MDTi 

- Pi 
Ai + pi 

pi=-- 

where MDTi = 1/pi is the mean downtime required to repair component i ,  and 
MTTFi = 1 /hi is the mean time to failure of component i ( i  = 1,2). Thus qi denotes 
the average, or limiting, unavailability of component i ,  while pi denotes the average 
(limiting) availability of component i ( i  = 1,2). The steady-state probabilities may 
thus be written as 

Po = 4'92 
PI = qlP2 
p2 = PI92 
p3 = P I P 2  (8.28) 

In this simple example, the components fail and are repaired independently of each 
other. We may therefore use direct reasoning to obtain the results in (8.28): 

Po = Pr(component 1 is failed) . Pr(component 2 is failed) = 9'92 
PI = Pr(component 1 is failed) * Pr(component 2 is functioning) = 4 lP2  
4 = Pr(component 1 is functioning) . Pr(component 2 is failed) = PI92 
P3 = Pr(component 1 is functioning) . Pr(component 2 is functioning) = p1 p2 

Note: In this simple example, where all failures and repairs are independent events, 
we do not need to use Markov methods to find the steady-state probabilities. The 
steady-state probabilities may easily be found by using standard probability rules for 
independent events. Please notice that this only applies for systems with independent 
failures and repairs. 

Assume now that we have the following data: 

Generator 1 Generator 2 

MTTFj 6 months 4380 hours 8 months x 5840 hours 
Failure rate, Ai 2.3.  hours-' 1.7 . hours-' 
MDTi 12 hours 24 hours 
Repair rate, pi 8.3 . hours-' 4.2 .  hours-' 

Note that the steady-state probabilities can be interpreted as the mean proportion 
of time the system stays in the state concerned. The steady-state probability of state 
1 is, for example, equal to 

Hence 

hours 
= 0.00272.8760 
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In the long run the system will stay in state 1 approximately 23.8 hours per year. This 
does not mean that state 1 occurs on average once per year and lasts for 23.8 hours 
each time. 

With the given data, we obtain 

System System Steady-State Average Hours 
State output Probability in State per Year 

3 150 MW 0.9932 
2 100 MW 4.08 .10-~  
1 50 MW 2.72 .10-~  
0 0 MW 1.12.10-~ 

8700.3 
35.8 
23.8 
0.1 

8.3.1 System Performance Characteristics 

Several system performance measures that may be used in the steady-state situation 
are introduced in this section. Examples are provided in Sections 8.5 to 8.7. 

Visit Frequency The Kolmogorov forward equation (8.15) was 
r 

P i j ( t )  = x a k j p i k ( t )  - a j P i j ( t )  

gq 
When we let t + 00, then P j j  (t)  + P j ,  and P i ,  ( t )  + 0. Since the summation index 
in (8.15) is finite, we may interchange the limit and the sum and get, as t + 00, 

that can be written as 

(8.29) 
k=O 
k # j  

The (unconditional) probability of a departure from state j in the time interval (t, t + 
At]  is 

e P r ( ( X ( t  + At) = k) f l  ( X ( t )  = j ) )  

k # j  
k=O 

r r 
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When t + 00, this probability tends to EL=, P j k ( h t )  . P j ,  and the steady-state 

frequency of departures from state j is, with the same argument as we used to derive 
equation (8.5),  

k # j  

The left-hand side of (8.29) is hence the steady-state frequency of departures from 
state j .  The frequency of departures from state j is seen to be the proportion of time 
Pj spent in state j times the transition rate a, out of state j .  

Similarly, the frequency of transitions from state k into state j is Pk akj. The total 
frequency of arrivals into state j is therefore 

r 

k=O 
k # j  

Equation (8.29) says that the frequency of departures from state j is equal to the 
frequency of arrivals into state j ,  for j = 0, 1, . . . , r ,  and is therefore sometimes 
referred to as the balance equations. In the steady-state situation, we define the visit 
frequency to state j as 

and the mean time between visits to state j is l / v j .  

Mean Duration of a Visit When the process arrives at state j ,  the system will 
stay in this state 5 time ?j until the process departs from that stas, j = 0, 1, . . . , r .  
We have called Tj the sojourn time in state j and shown that Ti is exponentially 
distributed with rate aj.  The mean sojourn time, or mean duration of a visit, is hence 

(8.31) 
N 1 

0, = E ( T j )  = - for j = 0, 1 , .  . . , r 
" j  

By combining (8.30) and (8.31) we obtain 

Pj  = vjej  (8.32) 

The mean proportion of time, P i ,  the system is spending in state j is thus equal to 
the visit frequency to state j multiplied by the mean duration of a visit in state j for 
j = O , l ,  . . . ,  r .  
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System Availability Let X = (0, 1, . . . , r }  be the set of all possible states of a 
system. Some of these states represent system functioning according to some specified 
criteria. Let B denote the subset of states in which the system is functioning, and let 
F = X - B denote the states in which the system is failed. 

The average, or long-term availability of the system is the mean proportion of 
time when the system is functioning; that is, its state is a member of B .  The average 
system availability A, is thus defined as 

(8.33) 
j e B  

In the following we will omit the term average and call A, the system availability. 
The system unavailability (1 - A,) is then 

l - A , = C  Pj 
j e F  

(8.34) 

The unavailability (1 - A,) of the system is the mean proportion of time when the 
system is in a failed state. 

Frequency of System Failures The frequency W F  of system failures is the 
steady-state frequency of transitions from a functioning state (in B )  to a failed state 
(in F ) :  

(8.35) 

Mean Duration of a System Failure The mean duration OF of a system failure 
is defined as the mean time from when the system enters into a failed state ( F )  until 
it is repairedhestored and brought back into a functioning state ( B ) .  

Analogous with (8.32) it is obvious that the system unavailability (1 - A,) is 
equal to the frequency of system failures multiplied by the mean duration of a system 
failure. Hence 

Mean Time between System Failures The mean time between system failures, 
MTBF,, is the mean time between consecutive transitions from a functioning state 
( B )  into a failed state ( F ) .  The MTBF, may be computed from the frequency of 
system failures by 

1 
MTBF, = - 

O F  
(8.37) 

Mean Functioning Time until System Failure The mean functioning time 
(“up-time”) until system failure, E ( U ) , ,  is the mean time from a transition from a 
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failed state (F) into a functioning state (B) until the first transition back to a failed 
state (F). It is obvious that 

Note the difference between the mean functioning time (“up-time”) and the mean 
time to system failure MTTFs. The MTTFs is normally calculated as the mean time 
until system failure when the system initially is in a speciJied functioning state. 

8.4 PARALLEL AND SERIES STRUCTURES 

In this section we study the steady-state properties of parallel and series structures of 
independent components. 

8.4.1 Parallel Structures of Independent Components 

Reconsider the parallel structure of two independent components in Example 8.6. 
For this system we get 

Mean Duration of the Visits From (8.31), we get 

Vlsit Frequency From (8.31) and (8.39), we get 

(8.39) 

(8.40) 

The parallel structure is functioning when at least one of its two components is func- 
tioning. When the system is in state 1, 2, or 3 the system is functioning, while state 
0 corresponds to system failure. 

The average system unavailability is 

and the average system availability is 

(8.41) 
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The frequency of system failures W F  is equal to the visit frequency to state 0, which 
is 

OF = vo = PO@I + ~ 2 )  = (1 - As) . (PI + ~ 2 )  (8.42) 

The mean duration of a system failure 6 F  is in this case equal to the mean duration 
of a stay in state 0. Thus 

1 - A s  
- (8.43) 

1 
OF = 60 = ~ - - 

For a parallel structure of n independent components, the above results may be gen- 
eralized as follows: For system unavailability, 

PI +p2 WF 

n n .  
4 1 - A, = n qi = n - 

hi +Pi i=l i=l 

For frequency of system failures, 

(8.45) 

For mean duration of a system failure, 

(8.46) Cy=i Pi 
The mean functioning time (up-time) E ( U ) p  of the parallel structure can be deter- 
mined from 

1 
6 F  = ____ 

Hence 

(8.47) 

When the component availabilities are very high (i.e., hi << pi for all i = 1,2, . . . , n) ,  
then 

The frequency W F  of system failures can now be approximated as 

n n .  n 

n n .  

(8.48) 
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Function j Failure 

Fig. 8.8 Partitioning the state transition diagram of a series structure of two independent 
components. 

For two components (8.48) reduces to 

W F  hlh2. (MDTI + MDT;!) 

For three components (8.48) reduces to 

W F  X hlh2h3 * (MDTI . MDT2 + MDTl . MDT3 + MDT2 . MDT3) 

(8.49) 

8.4.2 Series Structures of Independent Components 

Consider a series structure of two independent components. The states of the system 
and the transition rates are as defined in Example 8.6. The state transition diagram 
of the series structure is shown in Fig. 8.8. The corresponding steady-state equations 
are equal to those found for the parallel structure in Example 8.6. 

The average availability of the structure, As,  is equal to P3 which was found in 
(8.28) to be 

(8.50) 

where 

pi = ~ " fori = 1 , 2  
hi +Pi 

The frequency of system failures, W F ,  is the same as the frequency of visits to state 
3. Thus 

W F  = v3 = Pi * (A1 + J-2) = As ' (A1 + h2) (8.51) 

The mean duration of a system failure O F  is equal to 

1 - A, 
6 F  = - (8.52) 

W F  

For a series structure of n independent components the above results can be gen- 
eralized as follows: For system availability 

n n 
Pi 

i=l i=l 
(8.53) 
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For frequency of system failures 
n 

W F  = As hi 
i = l  

For mean duration of a system failure 

1 - A, 
OF - 

O F  

(8.54) 

(8.55) 

When all the component availabilities are very high such that hi << pi for all i, then 
A,y % 1 and the frequency of system failures is approximately 

n 

(8.56) 
i = l  

which is the same as the failure rate of a nonrepairable series structure of II independent 
components. 

The mean duration of a system failure OF may be approximated as 

(8.57) 

where MDT; = 1 /pi as before is the mean downtime required to repair component 
i, i = 1 ,2 ,  . . . , n. Equation (8.57) is a commonly used approximation for the mean 
duration of a failure in series structures of high reliability. 

8.4.3 Series Structure of Components Where Failure of One 
Component Prevents Failure of the Other 

Consider a series structure of two components. When one of the components fails, the 
other component is immediately taken out of operation until the failed component is 
r e ~ a i r e d . ~  After a component is taken out of operation, it is not exposed to any stress, 

3The same model is discussed by Barlow and Proschan (1975, pp. 194-201) in a more general context that 
does not assume constant failure and repair rates. 
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Table 8.2 Possible States of a Series Structure of Two Components Where Failure of One 
Component Prevents Failure of the Other. 

State Component 1 Component 2 

2 Functioning Functioning 
1 Taken out of operation Functioning 
0 Functioning Taken out of operation 

Fig. 8.9 State transition diagram of a series structure of two components where failure of 
one component prevents failure of the other component. 

and we therefore assume that it will not fail. This dependence between the failures 
prevents a simple solution by direct reasoning as was possible in Example 8.6. This 
system has three possible states as described in Table 8.2. 

The following transition rates are assumed: 

a21 = hl Failure rate of component 1 

a20 = h2 Failure rate of component 2 

a12 = Repair rate of component 1 

a02 = p2 Repair rate of component 2 

The state transition diagram of the series structure is illustrated in Fig. 8.9. The 
steady-state equations for this system are 

The steady-state probabilities may be found from the equations 
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The solution is 

A2 
Po = - 4 

P2 

(8.60) 

(8.61) 

Since the series structure is only functioning when both the components are function- 
ing (state 2), the average system availability is 

1 - - PIP2 A, = P2 = 
AlP2 + A2Pl + P1P2 1 + @ l / P l )  + @2/P2) 

Observe that in this case the availability of the series structure is nor equal to the 
product of the component availabilities. 

The mean durations of the stays in each state are 

1 

A1 + A 2  
e2 = ~ 

el = - 

eo = - 

1 

PI 
1 

P2 

The frequency of system failures W F  is the same as the frequency of visits to state 2. 

(8.62) W F  = V 2  = &(hi + h2) = + 1 2 )  

The mean duration of a system failure OF is 

(8.63) 

Equation(8.63) may also be written 

OF = 

+ 
MDTl . Pr (Component 1 fails I system failure) 

MDT2 . Pr (Component 2 fails I system failure) 

This formula is obvious since the duration of a system failure will be equal to the 
repair time of component 1 when component 1 fails and equal to the repair time of 
component 2 when component 2 fails. 

The mean time between system failures, MTBF,, is 

1 A2 +-- MTBF, = M T T F ~ + B ~ = -  +-- 
A1 + A 2  Pl hl + A 2  P2 A1 + A 2  

1 + (hl/Pl) + @2/P2)  

A1 + A 2  

1 1 A1 

(8.64) - - 
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The frequency of system failures may also be expressed as 

For a series structure of n components the above results can be generalized as follows: 
For system availability 

For mean time to system failure 

For mean duration of a system failure 

For frequency of system failures 

(8.65) 

(8.66) 

(8.67) 

(8.68) 

8.5 MEAN TIME TO FIRST SYSTEM FAILURE 

8.5.1 Absorbing states 

All the processes we have studied so far in this chapter have been irreducible, which 
means that every state is reachable from every other state. 

We will now introduce Markov processes with absorbing states. An absorbing 
state is a state that, once entered, cannot be left until the system starts a new mission. 
The popular saying is that the system is trapped in an absorbing state. 

Example 8.7 
Reconsider the parallel system in Example 8.3 with two independent and identical 
components with failure rate h. When one of the components fails, it is repaired. The 
repair time is assumed to be exponentially distributed with repair rate p.  When both 
components have failed, the system is considered to have failed and no recovery is 
possible. Let the number of functioning components denote the state of the system. 
The state space is thus X = {0, 1,2], and state 0 is an absorbing state. The state 
transition diagram of the system is given in Fig. 8.10. 
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Fig. 8.70 State transition diagram for a parallel system with two identical components. 

We assume that both components are functioning (state 2)  at time 0. That is 
4 (0) = 1. The transition rate matrix of this system is thus 

(8.69) 

Since state 0 is an absorbing state, all the transition rates from this state are equal to 
zero. Thus the entries of the row corresponding to the absorbing state are all equal to 
zero. 

Since the matrix A does not have full rank, we may remove one of the three 
equations without loosing any information about Po(?). PI ( t ) ,  and 9 ( t ) .  In this case 
we remove the first of the three equations. This is accomplished by removing the first 
column of the matrix. Hence we get the state equations 

0 0 
[Po(t) ,  PI ( t ) ,  P2(t)l . -0 + P )  F = [@l(t>, @2(t)l ( 2h -2h 

Since all the elements of the first column of the matrix are equal to zero, Po(t) will 
“disappear” in the solution of the equations. We may therefore reduce the matrix 
equations to 

(8.70) 

The matrix 

( -(\Y -2h 

has full rank if h > 0. Therefore (8.70) determines PI  (t) and P2(t). Po(t) may there- 
after be found from Po(t) = 1 - P1 ( t )  - P2( t ) .  This solution of the reduced matrix 
equations (8.70) is identical to the solution of the initial matrix equations. The re- 
duced matrix is seen to be obtained by deleting the row and the column corresponding 
to the absorbing state. 

Since state 0 is absorbing and reachable from the other states, it is obvious that 

lim Po(t) = 1 
t-cc 
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The Laplace transforms of the reduced matrix equations (8.70) are 

when the system is assumed to be in state 2 at time t = 0. Thus 

-(h + p ) P ; ( s )  + 2hPz*(s) = s P ; ( s )  

p P ; ( s )  - 2hP,*(s) = sP&) - 1 

Solving for P;( s )  and P,*(s), we get (see Appendix B) 

2h 
P;(s )  = 

s2 + (3h + p)s + 2h2 
h + p + s  

s2 + (3h + p)s + 2h2 
P2*(s) = 

Let R ( t )  denote the survivor function of the system. Since the system is functioning 
as long as the system is either in state 2 or in state 1, the survivor function is equal to 

R ( t )  = P l ( t )  + 9 ( r )  = 1 - Po(t)  

The Laplace transform of R ( t )  is thus 

3 h + p + s  
s2 + (3h + p)s + 2h2 

R * ( S )  = P ; ( s )  + P,*(s) = (8.71) 

The survivor function R ( t )  may now be determined by inverting the Laplace trans- 
form, or we may consider Po(t) = 1 - R ( t )  which denotes the distribution function 
of the time T, to system failure. The Laplace transform of Po(t) is 

1 2h2 
P,*(s) = - - P s S 8 ) - = s[s2 + (3h + p)s + 2h2] 

Let f , ( t )  denote the probability density function of the time T, to system failure, that 
is, f s ( t )  = dPo( t ) /d t .  The Laplace transform of f s ( t )  is thus 

2h2 
s2 + (3h + p)s + 2h2 

f,*(s) = $Po*@) - PO(0) = 

The denominator of (8.72) can be written 

where 

-(3h + p )  + Jh2 + 6hp + p2 

2 
kl = 

(8.72) 
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The expression for f,* (s) can be rearranged so that 

By inverting this transform, we get 

The mean time to system failure, MTTFs, is now given by (the integration is left to 
the reader as an exercise) 

3 P  
t fs(t)dt = - + - 

2h 2h2 

00 

MTTFs = (8.73) 

Note that the MTTFs of a two-component parallel system, without any repair (i.e., 
p = 0) is equal to 3/2h.  The repair facility thus increases the MTTFs by p / 2 h 2 .  0 

8.5.2 Survivor Function 

As discussed on page 321, the set of states X of a system may be grouped in a set B 
of functioning states and a set F = X - B of failed states. In the present section we 
will assume that the failed states are absorbing states. 

Consider a system that is in a specified functioning state at time t = 0. The 
survivor function R ( t )  determines the probability that a system does not leave the set 
B of functioning states during the time interval (0, t ] .  The survivor function is thus 

The Laplace transform of the survivor function is 

R*(s )  = C Pj*(s) 
j eB  

8.5.3 Mean Time to System Failure 

The mean time to system failure, MTTFs, may according to Section 2.6 be determined 
by 

MTTFs = lo R ( t ) d t  (8.75) 

The Laplace transform of R ( t )  is given by 

00 

R*(s )  = 1 R(t)e-," dt (8.76) 
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The MTTFs of the system may thus be determined from (8.76) by inserting s = 0. 
Thus 

R*(O) = R ( t ) d t  = MTTFs Irn (8.77) 

Example 8.7 (Cont.) 
The Laplace transform of the survivor function for the two-component parallel system 
was in (8.71) found to be 

3 h + p + s  
s2 + (3h + p)s + 2h2 

R*(s)  = 

By introducing s = 0, we get 

3 h i - p  3 p MTTFs = R*(O) = - - - + -  - 
2h2 2h 2h2 

which is in accordance with (8.73). 0 

Procedure for Finding the M77F As indicated in Example 8.7, the following 
procedure may be used to find the mean time to first failure, MTTF, of a system with 
state space X = {0, 1, . . . , r ) .  See Billinton and Allen (1983, p. 217) and Pagbs and 
Gondran (1980, p. 133) for details and justification. 

1. Establish the transition rate matrix A, and let P ( t )  = [Po(t) ,  P1 ( t ) ,  . . . , Pr(t)l 
denote the distribution of the process at time t .  Observe that A is a ( r  + 1) x 
(r  + 1) matrix. 

2. Define the initial distribution P ( 0 )  = [ Po(O), PI (0), . . . , Pr ( O ) ]  of the process, 
and verify that P ( 0 )  means that the system has a functioning state. 

3. Identify the failed states of the system, and define these states as absorbing 
states. Assume that there are k absorbing states. 

4. Delete the rows and columns of A corresponding to the absorbing states, that 
is, if j is an absorbing state, remove the entries aji and aij for all i from A. 
Let AR denote the reduced transition rate matrix. The dimension of AR is 
( r  + 1 - k )  x ( r  + 1 - k ) .  

5.  Let P * ( s )  = [ P $ ( s ) ,  P ; ( s ) ,  . . . , P,?(s)] denote the Laplace transform of P ( t )  
and remove the entries of P* (s) corresponding to absorbing states. Let P i  (s) 
denote the reduced vector. Notice that P i ( s )  has dimension ( I  + 1 - k ) .  

[ s P * ( s )  - P(O)]R denote the reduced vector. 
6. Remove the entries of s P * ( s )  - P ( 0 )  corresponding to absorbing states. Let 

7. Establish the equation 

P i ( $ )  ' AR = [ S P * ( S )  - P(o) ]R  
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set s = 0 and determine P i ( 0 )  

8. The MTTF is determined by 

MTTF = Pj*(0) 

where the sum is taken over all j representing the (r  + 1 - k )  nonabsorbing 
states. 

Example 8.8 
Reconsider the parallel structure of two independent components in Example 8.2, 
where the components have failure rates hl and h2 and repair rates and ~ 2 ,  re- 
spectively. The states of the system are defined in Table 8.1. The system is assumed 
to start out at time 0 in state 3 with both components functioning. The system is 
functioning as long as at least one of the components is functioning. The set B of 
functioning states is thus (1,2, 3). The system fails when both components are in a 
failed state, state 0. 

In this example we are primarily interested in determining the MTTFs. We there- 
fore define state 0 to be an absorbing state and set all departure rates from state 0 
equal to zero. The transition rate matrix is then 

0 0 0 0 

P2 

[ ; -(A:”’”’ 0 
- - G I  + P2) 

A2 

and the survivor function is 

We now reduce the matrix equations by removing the row and the column correspond- 
ing to the absorbing state (state 0) and take Laplace transforms: 

0 
-GI + P2) 

A2 

[P;(O), P2*(0), P3*(0)1. 

This means that 

(8.78 

1 

(8.79) 

(8.80) 
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The last equation leads to 

1 
P3*(0) = 

)'.1~2[1/()\.1 + P2) + 1 / @ 2  + PI ) ]  

Finally 

MTTFs = R*(O) = P;C(O) + PT(O) + P;(O) 

(8.81) 

(8.82) 

where P;C(O) and PT(0)  are determined by inserting (8.81) in (8.78) and (8.79), 
respectively. 

Some Special Cases: 

1. Nonrepairable system (11.1 = ~2 = 0 )  

(h2/hl) + (hl/h2) + 1 
hl + A 2  

MTTFs = 

When the two components have identical failure rates, hl = A2 = h, this 
expression is reduced to 

(8.83) 
3 1  

MTTFs = - - 
2 h  

2. The two components have identical failure rates and identical repair rates (hl = 
h2 = h and P I  = p2 = p).  Then 

3 P  MTTFs = - + - 
2h 2h2 

8.6 SYSTEMS WITH DEPENDENT COMPONENTS 

In this section we illustrate how a Markov model can be used to model dependent 
failures. Two simple situations are described: systems exposed to common cause 
failures and load-sharing systems that are exposed to cascading failures. Dependent 
failures were discussed in Chapter 6. 

Common Cause Failures Consider a parallel structure of two identical compo- 
nents. The components may fail due to aging or other inherent defects. Such failures 
occur independent of each other with failure rate hl .  The components are repaired 
independent of each other with repair rate p. 

An external event may occur that causes all functioning components to fail at the 
same time. Failures caused by the external event are called common cause failures. 



SYSTEMS WITH DEPENDENT COMPONENTS 335 

Fig, 8.11 
posed to common cause failures. 

State transition diagram for a parallel system with two components which is ex- 

The external events occur with rate hc which is denoted the common cause failure 
rate. 

The states of the system are named according to the number of components func- 
tioning. Thus the state space is {O, 1,2) .  The state transition diagram of the parallel 
system with common cause failures is shown in Fig. 8.1 1. 

The corresponding transition rate matrix is 

) 
-2P 2P 0 

hF 2hI 4 2 A I  + kc) 
A =  ( hC+hI - G I  + h C + P )  P 

Assume that we are interested in determining the MTTFs. Since the system fails as 
soon as it enters state 0, we define state 0 as an absorbing state and remove the row 
and the column from the transition rate matrix corresponding to state 0. 

As before, we assume that the system is in state 2 (both components are functioning) 
at time t = 0. By introducing Laplace transforms, we get the following matrix 
equations 

The solutions are 

and the mean time to system failure is 

Define a common cause factor /? by 

(8.84) 
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60 i 

Fig. 8.12 The MTTFs of a parallel system as a function of the common cause factor #? 
(A = 1, and p = 100). 

Here ;I = hc + h~ is the total failure rate of a component, and the factor denotes the 
fraction of common cause failures among all failures of a component. Some sources 
of reliability data present the total failure rate A, while other sources present the 
independent failure rate h ~ .  See Chapter 14 for details about reliability data sources. 
To investigate how the common cause factor B affects the MTTFs, we insert B and h 
into (8.84) and get 

(8.85) 

Fig. 8.12 illustrates how the MTTFs of a parallel system depends on the common 
cause factor B.  

3 - 2Bh + j L  

( 2  - B)h2 + BhjL 

1 h(3 - 28) + jL 

h (2 - B)h. + BjL 
- _  - - - 

Let us consider two simple cases. 

1 .  @ = 0 (i.e., only independent failures, h = A[): 

3 P  MTTFs = - + - 
2hI 2h; 

which is what we obtained in Example 8.8. 

2. B = 1 (i.e., all failures are common cause failures, h = hc): 

1 k + P -  1 M n F s  = -~ - - 
k h c + j L  hc 

The last result is evident. Only common cause failure are occurring and they affect 
both components simultaneously with failure rate hc. This B-factor model is further 
discussed in Chapter 6.  
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Fig, 8.13 Parallel system with two components sharing a common load. 

Load-Sharing Systems Consider a parallel system with two identical compo- 
nents. The components share a common load. If one component fails, the other 
component has to carry the whole load and the failure rate of this component is as- 
sumed to increase immediately when the load is increased. Thus the failures of the 
two components are dependent. In Chapter 6, this type of dependency was referred 
to as cascading failures. The components may, for example, be pumps, compressors, 
or power generators. The following failure rates are assumed: 

A,, 

Af 

= 

= 

failure rate at normal load (i.e., when both components are functioning) 

failure rate at full load (i.e., when one of the components is failed) 

Let k h  denote the repair rate of a component when only one component has failed, 
and let pf denote the repair rate of a component when both components have failed. 
Let the number of components that are functioning denote the state of the system. 
The state space is thus {O, 1, 21. When the system has failed (state 0) ,  all available 
repair resources are used to repair one of the components (usually the component that 
failed first). The system is stated up again (in state 1) as soon as this component is 
repaired. The state transition diagram of the system is given in Fig. 8.13. 

The transition rate matrix is 

-2h, O )  

W f  ( -? -(PlLAf) F h  

The system fails when both components fail (i.e., in state 0). To determine the 
MTTFs we define state 0 as an absorbing state and remove the row and the column 
corresponding to this state from the transition rate matrix. If we assume that the 
system starts out at time r = 0 with both components functioning (state 2) ,  and take 
Laplace transforms with s = 0, we get 

The solution is 

1 

.f 
P;C(O) = - 
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Fig. 8.74 State transition diagram for the generator system with load-sharing and common 
cause failures. 

The survivor function is R ( t )  = PI ( t )  + P z ( t ) ,  and the mean time to system failure 
is thus 

(8.86) 1 1 P h  MTTFs = R*(O) = P;(O) + P;(O) = - + - + - 
h f  2hn 2hnhf 

Note that when no repair is carried out ( p h  = 0) 

1 1 
MTTFs = - + - 

h f  2An 
(8.87) 

When the load on the remaining component is not increased, such that h f  = An,  we 
get M n F s  = 3/(2hn) in accordance with equation (8.83). 

Example 8.9 
Consider a power station with two generators of the same type. During normal 
operation, the generators are sharing the load and each generator has failure rate 
An = 1.6. (hours)-'. When one of the generators fails, the load on the remaining 
generator will be increased, and the failure rate will increase to h f  = 8.0 . lop4 
(hours)-' (five times as high as the normal failure rate). In addition, the system 
is exposed to common cause failures. All generators in operation will fail at the 
same time when common cause events occur. The common cause failure rate is 
hc = 2.0. hours-'. When one generator fails, it is repaired. The mean downtime 
torepair, MDTh is 12 hours, and the repair rate is therefore (hours)-'. 
When the system fails, the mean downtime to repair one generator is MDTf = 8 
hours, and the repair rate is pf = 1.25. lo-' (hours)-'. The state transition diagram 
of the generator system with load-sharing and common cause failures is shown in 
Fig. 8.14. 

The steady-state probabilities can be found by the same approach as we have shown 
several times (e.g., see Example 8.6). 

x 8.3 

= 0.99575 

= 0.00406 

PnP f 

(Af + AC + P f ) ( k  + 2 A n )  + k P n  + PnPf 
(Ac + 2L)Pf  

(A f + hc + P f )(hc + + h C P n  + PnP f 

P2 = 

P' = 
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Fjg. 8.75 Two-item standby system. 

The mean time to system failure is found from the Laplace transforms: 

We find that 

z 43 421 hours x 4.96 years 

8.7 STANDBY SYSTEMS 

Standby systems were introduced in Section 4.6 where the survivor function R ( t )  and 
the mean time to failure MTTFs were determined for some simple non-repairable 
standby systems. In the present section we will discuss some simple two-item re- 
pairable standby systems in the light of Markov models. The system considered is 
illustrated in Fig. 8.15. Item A is initially (at time t = 0) the operating item and S is 
the sensing and changeover device. 

A standby system may be operated and repaired in a number of different ways: 

0 The standby item may be cold or partly loaded. 

0 The changeover device may have several failure modes,’like “fail to switch,” 
“spurious switching,” and “disconnect”. 

Failure of the standby item may be hidden (nondetectable) or detectable. 

In the present section a few operation and repair modes of a standby system are 
illustrated. Generalizations to more complex systems and operational modes are 
often straightforward, at least in theory. The computations may, however, require a 
computer. 

8.7.1 Parallel System with Cold Standby and Perfect Switching 

Since the standby item is passive, it is assumed not to fail in the standby state. The 
switching is assumed to be perfect. Failure of the active item is detected immediately, 
and the standby item is activated with probability 1. The failure rate of item i in 
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Table 8.3 Possible States of a Two-Item Parallel System with Cold Standby and Perfect 
Switching. 

System State State of Item A State of Item B 

fig. 8.16 State transition diagram of a two-item parallel system with cold standby and perfect 
switching. 

operating state is denoted hi for i = A ,  B. When the active item has failed, a repair 
action is initiated immediately. The time to repair is exponentially distributed with 
repair rate pi for i = A,  B. When a repair action is completed, the item is placed in 
standby state. 

The possible states of the system are listed in Table 8.3 where 0 denotes operating 
state, S denotes standby state, and F denotes failed state. System failure occurs when 
the operating item fails before repair of the other item is completed. The failed state 
of the system is thus state 0 in Table 8.3. When both items have failed, they are 
repaired simultaneously and the system is thus brought back to state 4. The repair 
rate in this case is denoted w. The state transition diagram of the standby system is 
illustrated in Fig. 8.16. 

The transition rate matrix is 

A =  (8.88) 
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The steady-state probabilities may be determined according to the procedures de- 
scribed in Section 8.3. The survivor function R ( t )  and the MTTFs of the system can 
be determined by considering the failed state of the system (state 0) to be an absorbing 
state. Suppose that the initial state at t = 0 is state 4. By deleting the row and the 
column of the transition rate matrix corresponding to the absorbing state 0, we get 
the reduced matrix AR: 

By taking Laplace transforms (with s = 0), we get the equations 

The solution is 

L A + P B ~  
P3*(0) = T( ) 

PA 

Pq*(O) = h B  + P A  P;(o) 
L A  

Thus 

P A  P;(o)  = 
~ A L B  + LAPA i- L B P B  

The mean time to failure of the system is now, according to (8.77), 

MTTF.5 = R*(O) = PT(0) + P2*(0) + P3*(0) + pq*(o) 

For a nonrepairable system, P A  = P B  = 0. Then 

1 1  
MTTFs 1 - + - 

L A  A B  

which is an obvious result. 



342 MARKOV PROCESSES 

Fig. 8.17 State transition diagram of a two-item parallel system with cold standby and perfect 
switching (item A is the main operating item). 

8.7.2 Parallel System with Cold Standby and Perfect Switching (Item 
A Is the Main Operating Item) 

Reconsider the standby system in Fig. 8.15 but assume that item A is the main op- 
erating item. This means that item B is only used when A is in a failed state and 
under repair. Item A will thus be put into operation again as soon as the repair action 
is completed. System failure occurs when the operating item B fails before repair 
of item A is completed. The failed state of the system is thus state 0 in Table 8.3. 
When both items have failed, they are repaired simultaneously and brought back to 
state 4. The repair rate in this case is denoted p. State 1 and state 2 in Table 8.3 are 
therefore irrelevant states for this system. The state transition diagram of this system 
is illustrated in Fig. 8.17. 

The transition rate matrix is 

and 

Po + P3 + P4 = 1 

The solution is 

(8.90) 
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where PJ is the mean proportion of time the system is spending in state j for j = 
0,3 ,4 .  

The frequency of system failures, O F ,  is in this case equal to the visit frequency 
to state 0, that is, 

PO 
W F  = uo = - 

P 

The MTTFs of the system is determined as on page 332. By deleting the row and 
the column of the transition rate matrix in (8.90) and taking Laplace transforms (with 
s = 0), we obtain 

The solution is 

1 

hB 
P3*(0) = - 

The mean time to failure of the system is thus 

1 1  PA 

LA h~ L A . ~ . B  
MTTFs = R*(O) = PT(0)  + Pq*(O) = - + - + - (8.91) 

The mean downtime required to repair the system is 

1 
MDTs = - 

P 

8.7.3 Parallel System with Cold Standby and Imperfect Switching 
(Item A I s the Main Operating Item) 

Reconsider the standby system in Fig. 8.15, but assume that the switching is no 
longer perfect. When the active item A fails, the standby item B will be activated 
properly with probability ( 1  - p ) .  The probability p may also include a “fail to 
start” probability of the standby item. The state transition diagram of the system is 
illustrated in Fig. 8.18. From state 4 the system may show a transition to state 3 with 
rate (1  - p ) h ~  and to state 0 with rate p k A .  

The steady-state probabilities are determined by 

(8.92) 
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Fig, 8.18 State transition diagram of a two-item parallel system with cold standby and 
imperfect switching (item A is the main operating item). 

and 

Po + P3 + P4 = 1 

The solution is 

The MTTFs can be determined from 

which leads to 

A B  + P A  

A A G B  + P P A )  
Pq*(O) = 

Thus 

8.7.4 Parallel System with Partly Loaded Standby and Perfect 
Switching (Item A is the Main Operating Item) 

Reconsider the standby system in Fig. 8.15 but assume that the standby item B may 
fail in standby mode and have a hidden failure when activated. The failure rate of 
item B in standby mode is denoted A; and is normally less than the corresponding 
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Fig. 8.19 State transition diagram of a two-item parallel system with partly loaded standby 
and perfect switching (item A is the main operating item). 

failure rate during operation. In addition to the transition in Fig. 8.17, this system 
may also have transitions from state 4 to state 1 (in Table 8.3) and from state 1 to state 
0. The state transition diagram is illustrated in Fig. 8.19. 

0 P 
0 0 

PA 

The steady-state probabilities are determined by 

= [O, 0,0,01 

-(LA + A;) 
and 

Po + PI + P3 + P4 = 1 

The MTTFs can be determined from 

0 0 
[P ; (o) ,  P:(o). Pq*(o)1. PA ) = [0,0,-11 

- ( A A  + A;) 

Thus 

(8.94) 
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Fig. 8.20 Reliability block diagram of a system where components 3 and 5 are super- 
components that have to be modeled by Markov methods. 

Let us now assume that we have two items of the same type and no repair is carried 
out. Let A, = ha = A, and A: = A; = hs. In this case, the mean time to failure is 

(8.95) 

Note that when A = AS, equation (8.95) reduces to the mean time to failure of an 
active parallel system. 

8.8 COMPLEX SYSTEMS 

In principle, we can establish Markov models of systems with a large number of 
components. In practice, however, this will soon become unmanageable. Several 
approaches have been suggested for complex systems. We will briefly discuss a few 
of these approaches. 

8.8.1 Markov “Modules” in Complex Systems 

In Chapters 3 and 4 we discussed how to model complex systems by reliability 
block diagrams and by fault trees. We found that these approaches were suitable for 
rather static systems but were not able to account for dynamic features like complex 
maintenance and complex switching systems. Most systems will, however, have 
some modules that are rather static and other modules that have dynamic features. A 
possible approach is then to isolate the dynamic effects in as small modules as possible 
and treat these modules by Markov analysis. As far as possible, these modules should 
be defined in such a way that they are independent of each other. Thereafter, we 
may introduce these modules as supercomponents into a reliability block diagram 
(or the fault tree), as illustrated in the reliability block diagram in Fig. 8.20, and 
do the system calculations according to the approach we presented in Chapter 4. 
Dependencies between the various items in the reliability block diagram, that we are 
not able to model explicitly, may be analyzed by the methods described in Chapter 6. 

The supercomponents 3 and 5 in Fig. 8.20 will normally comprise several compo- 
nents. When we establish a Markov model for the supercomponents, we will usually 
define several states for each of them and find the steady-state probability for each 
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state. To find the system reliability by the methods we presented in Chapter 4, we have 
to define two states for each item in the reliability block diagram. The states, resulting 
from the Markov analysis, must therefore be merged into a functioning state (1) and 
a failed state (0). By this merging we will loose a lot of information that might be 
useful. 

8.8.2 Independent Modules 

In some cases we may be able to split a complex system into manageable modules that 
may be regarded as independent. If we are able to establish Markov models for each 
module and calculate the steady-state probabilities, we may use standard probability 
rules to find the system steady-state probabilities. This approach is analogous to what 
we did in Example 8.6 for a simple parallel system. 

When we have a large number of independent modules with several states for 
each module, the total number of possible system states may be overwhelming. An 
alternative approach is Kronecker4 sums and products (see Appendix C). We will 
illustrate this approach by a simple example. 

Example 8.10 
Reconsider the parallel system in Example 8.6 with two independent items I and 2, 
with two independent repair crews. The failure rates and repair rates are h, and pi 
for i = 1,2, respectively. We may split the system into two independent modules, 
where each module consists of one single item. The transition rate matrix for item i 
is from Example 8.5 

The Kronecker sum of the two transition rate matrices is 

A l @ A 2  = A l @ I + I @ A 2  

= ( hl --A1 ).(A ;)+(A Y ) @ (  -P2 A2 --h2 P2 ) 

which we recognize as the transition rate matrix for the parallel system in Example 8.6. 
The Kronecker sum of the transition rate matrices for the two independent modules 

0 is therefore equal to the transition rate matrix for the whole system. 

4Named after the German mathematician Leopold Kronecker (1 823-1891). 
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It has been shown that the result in Example 8.10 also is valid in the general 
case. If a system comprises n independent modules with transition rate matrices 
A1, A2, . . . , A,, then the transition rate matrix A of the system may be written as 

(8.96) 

For details, see Amoia and Santomauro (1977). 
If we are able to split the system into manageable and independent modules and 

establish transition rate matrices for the various modules, the Kronecker sum may 
then be used to establish the total system transition rate matrix. Several of the most 
popular mathematical programs have specific subroutines that may be used to find 
the system transition rate matrix. 

The Kronecker product is very efficient when it comes to solving linear equations. 
Let hi denote the transition rate matrix of module i ,  and let P ( ; )  = [Pi'), . . . , Pri ] 
denote the steady-state probabilities of module i .  We know from (8.26) that PCi )  . 
A = 0. Let us now assume that we have a system with two independent modules 
with transition rate matrices A1 and A2 and steady-state probabilities P ( l )  and P ( 2 ) ,  
respectively. We know from (8.96) that the transition rate matrix for the system is 
given by A = A1 @ A2. The system steady-state probabilities P must fulfill 

(i) 

P . A =  P . ( A 1 $ A 2 ) = 0  

The question is then: Will it be possible to find P from P ( ' )  and P(2)?  Before we 
answer this question, we look at an example. 

Example 8.11 
Reconsider the parallel system of two independent items in Example 8.10. The failure 
rates and repair rates are hi and pi for i = 1,2, respectively. From Example 8.5 we 
know that the steady-state probabilities of item i are P ( i )  = [P:) ,  Py'] for i = 1,2 
where 

Pi and P1(') = ~ 

hi +Pi 
0) A; 

Po - A; + /J,; 
In Example 8.6 we found that the steady-state probabilities for the parallel system 
were given by 

This is seen to be the Kronecker product of P ( l )  and P c 2 ) .  For the parallel system 
of two independent items, we have therefore shown that the steady-state probability 
P is equal to the Kronecker product of the steady-state probabilities of the modules, 

0 that is, P = P ( l )  @I P ( 2 ) .  

It is rather straightforward to show (e.g., see Graham 1981) that the result in 
Example 8.1 1 also holds in a more general case. We may therefore use the following 
approach to find the steady-state probabilities P for a complex system. 
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1 .  Split the complex system into a set of n manageable and coherent modules. 
The various modules must be independent. Components within a module may, 
however, be dependent. Dependent components must belong to the same mod- 
ule. 

2. Find the transition rate matrix Ai and the corresponding steady-state probabili- 
ties P ( ; )  for each module i = 1 ,2 ,  . . . , n. (It might be wise to build a “library” 
of standard modules) 

3. If of interest, the transition rate matrix for the system may be determined by 
Al @ A 2 @ . . . @ A n  . 

. . . @ p(n) .  
4. Determine the steady-state probabilities for the system by P = P(’) @ P ( 2 )  @ 

In practice, it might be a problem to keep track of the indexes in P ,  that is, to realize 
which system state corresponds to a specific index. It is therefore important to be 
very systematic when defining the indexes for each module. 

The Kronecker product approach has been applied to protective relays in trans- 
former stations by Svendsen (2002). Application of the Kronecker product to depen- 
dent modules was discussed by Lesanovskg (1988). 

8.8.3 Markov Analysis in Fault Tree Analysis 

We will now illustrate how results from Markov analysis can be used in fault tree 
analysis. Assume that a fault tree has been established with respect .to a TOP event 
(a system failure or accident) in a specific system. The fault tree has n basic events 
(components) and k minimal cut sets K1, K 2 ,  . . . , Kk. 

The probability of the fault tree TOP event may be approximated by the upper 
bound approximation (4.50) 

(8.97) 

Let us assume that the TOP event is a system failure, such that Qo(t )  is the system 
unavailability. The average (limiting) system unavailability is thus approximately 

where Q j  denotes the average unavailability of the minimal cut parallel structure 
corresponding to the minimal cut set K,, j = 1.2, . . . , k .  

In the rest of this section we will assume that component i has constant failure 
rate A;, mean downtime to repair MDTi, and constant repair rate pi = l/MDTj for 
i = 1,2,  . . . , n .  Furthermore, we assume that Ai << pi for all i = 1,2 ,  . . . , n. 
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The average unavailability qi of component i is Pj/(Pi + hi),  which may be 
approximated by hi . MDTi , such that 

Pi 
Q j  = fl X fl hi .MDTi 

i € K j  ieK, 

(8.99) 

The TOP event probability (system unavailability) is thus approximately 

(8.100) 

or 

k 
(8.101) 

j = 1  i eK,  

Cut Set Information Consider a specific minimal cut parallel structure Kj,  for 
j = 1,2, . . . , k. As before we assume that the components fail and are repaired 
independent of each other. 

When all the components of the cut set K j  are in a failed state, we have a cut set 
failure. The mean duration of a failure of cut set Kj  is from (8.46) 

The expected frequency of cut set failures w j  is from (8.48) 

(8.102) 

(8.103) 

and, the mean time between failures (MTBF) of cut set Kj  is 

1 
MTBFj = - 

O K  

Note that MTBFj also includes the mean downtime of the cut parallel structure. The 
downtime is, however, usually negligible compared to the uptime. 

System lnfofmafion The system may be considered as a series structure of its k 
minimal cut parallel structures. If the cut parallel structures were independent and 
the downtimes were negligible, the frequency ws of system failures would be 

(8.104) 
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In general, this formula is not correct because (1 ) the minimal cut parallel structures are 
usually not independent, and (2) the downtimes of the minimal cut parallel structures 
are often not negligible. 

For a system with very high availability, (8.104) is a good approximation for the 
expected frequency ws of system failures. 

The mean time between system failures, MTBFs, in the steady-state situation is 
approximately 

1 
MTBFs X - 

WS 

The mean system downtime per system failure is from (8.57) approximately 

The average system availability may now be approximated by 

MTBFs 
MTBFs + MDTs 

The formulas in this section are used in some of the computer programs for fault tree 
analysis, for example, CARA FaultTree. 

A s  = 

8.9 TIME-DEPENDENT SOLUTION 

Reconsider the Kolmogorov forward equations (8.19) 

P ( t )  . A = P ( t )  

where P ( t )  = [Po( t ) ,  P l ( t ) ,  . . . , P,.(t)] is the distribution of the process at time t .  
Assume that we know the distribution of the system state at time 0, P ( 0 ) .  Usually, 
we know that the system is in a specific state i at time 0, but sometimes we only know 
that it has a specific distribution. 

It is, in principle, possible to solve the Kolmogorov equations and find P ( t )  by 

O0 tkAk 
P ( t )  = P ( 0 )  ' elA = P ( 0 ) .  c - 

k !  
k=O 

(8.105) 

where Ao is the identity matrix 1. To determine P ( t )  from (8.105) is sometimes 
time-consuming and inefficient. 

When we study a system with absorbing states, like the parallel system in Exam- 
ple 8.7, we may define a column vector C with entries 1 and 0, where 1 corresponds 
to a functioning state, and 0 corresponds to a failed state. In Example 8.7, the states 
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1 and 2 are functioning, and state 0 is failed. The (column) vector is therefore 
C = [0, 1, 1IT. The survival probability of the system is then given by 

R ( r )  = P ( 0 )  . c - . 
k !  

k=O 

(8.106) 

It is also possible to use that 

e l h  = lim (I + t . A / k ) k  
k-+m 

and approximate P ( t )  by 

P ( t )  x P ( 0 )  . (1 + t . A/n)” (8.107) 

for a “sufficiently” large n.  See Bon (1995, pp. 176-182) for further approximations 
and discussions. 

Laplace Transforms An alternative approach is to use Laplace transforms. An 
introduction to Laplace transforms is given in Appendix B. 

Again, assume that we know P(O), the distribution of the Markov process at time 
0. The state equations (8.19) for the Markov process at time t are seen to be a set of 
linear, first order differential equations. The easiest and most widely used method to 
solve such equations is by Laplace transforms. 

The Laplace transform of the state probability P, ( t )  is denoted by Pj*(s), and the 
Laplace transform of the time derivative of Pj ( t )  is, according to Appendix B, 

~ [ P j ( t ) l =  s ~ j * ( s )  - P ~ ( o )  for j = 0 ,  1 , 2 , .  . . , r 

The Laplace transform of the state equations (8.19) is thus in matrix terms 

P*(S)  .A = S P * ( S )  - P ( 0 )  (8.108) 

By introducing the Laplace transforms, we have reduced the differential equations to 
a set of linear equations. The Laplace transforms PT(s) may now be computed from 
(8.108). Afterwards the state probabilities P j ( t )  may be determined from the inverse 
Laplace transforms. 

Example 8.12 
Reconsider the single component in Example 8.5, with transition rate matrix 

We assume that the component is functioning at time t = 0, such that P ( 0 )  = 
(Po(O), P l (0 ) )  = (0, 1). The Laplace transform of the state equation is then from 
(8.108) 
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Thus 

(8.109) 

By adding these two equations, we get 

sPo*(s) + sP;"(s) = 1 

Thus 

1 
PO*(s) = - - P;"(s) 

S 

By inserting this P,*(s) into (8.109), we obtain 

- CL - p P ; ( s )  - hPp;"(s) = s P ; ( s )  - 1 
S 

I P 1 
h + p + s  s h + p + s  

P;(s) = + - .  
To find the inverse Laplace transform, we rewrite this expression as 

(8.110) h 1 +-.- C L 1  P;(s) = - . 
h + p  h + p + s  h + p  s 

From Appendix B, the inverse Laplace transform of (8.110) is 

CL -(A+LL)t P l ( t )  = - 
p + h + K e  

which is the same result we gave in Example 8.5. 0 

To find the time-dependent state probabilities for a complex system is usually a dif- 
ficult task and will not be discussed any further in this book. In most practical 
applications we are primarily interested in the steady-state probabilities and do not 
need to find the time-dependent probabilities. 

8.10 SEMI-MARKOV PROCESSES 

In Section 8.2 we defined a Markov process as a stochastic process having the prop- 
erties that each time it enters a state i :  

1. The amount of time the process spends in state i before making a transition 
into a different state is exponentially distributed with rate, say (ri. 

2. When the process leaves state i, it will next enter state j with some probability 
Pij, where C;=, Pij = 1. 

j fi 
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An obvious extension to this definition is to allow the time the process spends in state 
i (the sojourn time in state i )  to have a general “life” distribution, and also to let 
this distribution be dependent on the state to which the process will go. Ross (1996, 
p. 213) therefore defines a semi-Markovprocess as a stochastic process { X ( t ) ,  t 2 O} 
with state space X = (0, 1,2, . . . , r )  such that whenever the process enters state i :  

1. The next state it will enter is state j with probability Pi,, for i ,  j in X. 

2. Given that the next state to be entered is state j ,  the time until the transition 
from i to j OCCUTS has distribution Fij . 

The skeleton of the semi-Markov process is defined in the same way as for the Markov 
process (see Section 8.2), and will be a discrete-time Markov chain. The semi-Markov 
process is said to be irreducible if the skeleton is irreducible. 

The distribution of the sojourn time Ti in state i is 

I 

The mean sojourn time in state i is 

We notice that if Fij ( t )  = 1 - eair, the semi-Markov process is an ordinary Markov 
process. 

Let ci denote the time between successive transitions into state i ,  and let pii = 
E ( c i ) .  The visits to state i will now be a renewal process, and we may use the theory 
of renewal processes described in Chapter 7. 

If we let Ni ( t )  denote the number of times in [0, r ]  that the process is in state i ,  
the family of vectors 

is called a Markov renewal process. 

with finite mean, then 
If the semi-Markov process is irreducible and if 7’ii has a nonlattice distribution 

lim Pr(X(t) = i I X(0) = j )  = Pi 

exists and is independent of the initial state. Furthermore 

t+CO 

Pi p .  - - 
Pii 

I -  

For proof, see Ross (1996, p. 214). Pi is the proportion of transitions into state i and 
is also equal to the long-run proportion of time the process is in state i . 
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When the skeleton (the embedded process) is irreducible and positive recurrent, 
we may find the stationary distribution of the skeleton n = [no, n1, . . . , n,] as the 
unique solution of 

r 

nj = c n i  Pij 
i =O 

where xi ni = 1 and n, = limn+oo Pr(X, = j )  [since we assume that the Markov 
process is aperiodic]. Since the nj is the proportion of transitions that are into state 
j ,  and p, is the mean time spent in state j per transition, it seems intuitive that the 
limiting probabilities should be proportional to njp, . In fact 

For a proof, see Ross (1996, p. 215). 
Semi-Markov processes are not discussed any further in this book. Details about 

semi-Markov processes may be found in Ross (1996), Cocozza-Thivent (1997), and 
Limnios and Oprisan (2001). 

PROBLEMS 

8.1 
and fail to close (lTC), with constant failure rates: 

A fail-safe valve has two main failure modes: premature/spurious closure (PC) 

APC = lop3 PC failures per hour 

Amc = 2 . lop4 l T C  failures per hour 

The mean time to repair a PC failure is assumed to be 1 hour, while the mean time to 
repair an FTC failure is 24 hours. The repair times are assumed to be exponentially 
distributed. 

(a) Explain why the operation of the valve may be described by a Markov process 
with three states. Establish the state transition diagram and the state equations 
for this process. 

(b) Calculate the average availability of the valve and the mean time between 
failures. 

8.2 TWO identical pumps are operated as a parallel system. During normal opera- 
tion, both pumps are functioning. When the first pump fails, the other pump has to 
do the whole job alone with a higher load than when both pumps are in operation. 
The pumps are assumed to have constant failure rates: 
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h~ = 1.5 . failure per hour 
(the failure rate when the pumps are sharing the load, i.e., “half-load”) 

) I F  = 3.5 . lop4 failure per hour 
(the failure rate at “full load,” when one of the pumps is in a failed state). 

Both pumps may fail at the same time due to some external stresses (common 
causefailure, see Chapter 6). The failure rate with respect to common cause failures 
has been estimated to be hc = 3.0 . lop5 common cause failures per hour. This type 
of external stresses affects the system at a rate hc irrespective of how many of its 
items that are functioning. The common cause failure rate must therefore be added 
to the “individual” failure rate also when only one of the pumps is functioning. 

Repair is initiated as soon as one of the pumps fails. The mean downtime of a 
pump has been estimated to be 15 hours. When both pumps are in a failed state at 
the same time, the whole process system has to be shut down. In this case the system 
will not be put into operation again until both pumps have been repaired. The mean 
downtime when both pumps have failed has been estimated to be 25 hours. 

(a) Establish a state transition diagram for the system consisting of the two pumps. 

(b) Write down the state equations for the system in matrix format. 

(c) Explain what is meant by the steady-state probabilities, and determine the 
steady-state probabilities for each of the states of the pump system. 

(d) Determine the percentage of time when: 

(i) Both the pumps are functioning. 

(ii) Only one of the pumps is functioning. 

(iii) Both pumps are in a failed state. 

(e) Determine the mean number of pump repairs that are necessary during a period 
of 5 years. 

(f) How many times must we expect to have a total pump failure (i,e., both pumps 
in a failed state at the same time) during a period of 5 years. 

8.3 The water chlorination system of a small town has two separate pipelines, 
each with a pump which supplies chlorine to the water at prescribed rates. The two 
pumps are denoted A and B ,  respectively. During normal operation both pumps are 
functioning and thus are sharing the load. In this case each pump is operated on 
approximately 60% of its capacity (cap% = 0.60). When one of the pumps fails, the 
corresponding pipeline is closed down, and the other pump has to supply chlorine at 
a higher rate. In this case the single pump is operated at full capacity (cap% = 1 .OO). 
We assume that the pumps have the following constant failure rates: 

heap% = cap% . 6.3 failures per year 

Assume that the probability of common cause failures is negligible. Repair is initiated 
as soon as one of the pumps fails. The mean time to repair a pump has been estimated 
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to be eight hours, and the pump is put into operation again as soon as the repair is 
completed. Repairs are carried out independent of each other (i.e., maintenance crew 
is thus not a limiting factor). If both pumps are in a failed state at the same time, 
unchlorinated water will be supplied to the customers. 

Both pumps are assumed to be functioning at time t = 0. 

(a) Define the possible system states and establish a state transition diagram for 
the system. 

(b) Write down the corresponding state equations on matrix format. 

(c) Determine the steady-state probabilities for each of the system states. 

(d) Determine the mean number of pump repairs during a period of 3 years. 

(e) Determine the percentage of time exactly one of the pumps is in a failed state. 

(f) Determine the mean time to the first system failure, that is, the mean time until 
unchlorinated water is supplied to the customers for the first time after time 
t = 0. 

(g) Determine the percentage of time unchlorinated water is supplied to the cus- 
tomers. 

8.4 Consider a parallel structure of three independent and identical components 
with failure rate h and repair rate p. The components are repaired independently. All 
the three components are assumed to be functioning at time t = 0. 

(a) Establish the state transition diagram and the state equations for the parallel 
structure. 

(b) Show that the mean time to the first system failure is given by 

11 7 p  p2 
MTTF = - + - + - 

6h 6h2 3h3 
(8.111) 

8.5 Consider a parallel structure of four independent and identical components with 
failure rate h and repair rate p. The components are repaired independently. A11 the 
four components are assumed to be functioning at time t = 0. 

(a) Establish the state transition diagram and the state equations for the parallel 
structure. 

(b) Determine the mean time to the first system failure. 

(c) Is it possible to find a general formula for a parallel structure of n components? 
(Compare with the preceding problem.) 

8.6 Fig. 8.2 1 illustrates a standby system of two compressors and a switching item. 
When the active compressor A fails, the standby compressor B is to be put into 
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Fig. 8.21 Standby system of two compressors. 

operation. Compressor B is assumed not to fail while in passive state (i.e., cold 
standby). 

The probability of successful changeover to the standby compressor B is estimated 
to be (1 - p ) .  The probability p of unsuccessful changeover also includes the fail-to- 
start probability for the standby compressor. Compressor A is the main compressor. 
When we have a system failure (i.e., when both compressors are in a failed state), 
both compressors are repaired simultaneously, and the system is not started until 
both compressors have been repaired. The system is always started up again with 
compressor A as the active compressor. Common cause failures are considered to be 
negligible. 

(a) Define the possible system states and establish a state transition diagram. 

(b) The following input data are assumed: 

Failure rate for compressor A: LA = 5.0 . lop4 failures per hour. 

Failure rate for compressor B :  LB = 2.0 . failures per hour. 

Mean time to repair compressor A: - = 25 hours. 

Mean time to repair both the compressors : 

Probability of unsuccessful changeover: p = 0.03. 

I 
@ A  

= 35 hours 

Establish the state equations for the system and determine the steady-state 
probabilities. 

(c) Determine the average availability A,, for the system. 

(d) How many compressor repairs may we anticipate over a period of 5 years? 

(e) How many system failures may we anticipate over a period of 5 years? 

(f) Determine the mean time to the first system failure, when both compressors 
are functioning at time t = 0 with compressor A as the operating compressor. 

(8) Assume next that we are considering an alternative system where both compres- 
sors are operated as an ordinary parallel system (i.e., with active redundancy). 
All the input data are as above, except that when the two compressors share the 
load, their failure rates are reduced by 20%. The mean time to repair compres- 
sor B is assumed to be 20 hours. Establish the state transition diagram for the 
alternative system, and compute the availability Aav. Discuss the result. 
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(h) Also determine the mean time to the first system failure for the alternative 
system in (g). 

8.7 Consider a system which is subject to two types of repair. Initially the system 
has a constant failure rate hl . When the system fails for the first time, a partial repair 
is performed to restore the system to the functioning state. This partial repair is not 
perfect, and the failure rate h2 after this partial repair is therefore larger than hi .  
After the system fails the second time, a thorough repair is performed that restores 
the system to an “as good as new” condition. The third repair will be a partial repair, 
and so on. Let 11.1 denote the constant repair rate of a partial repair and p2 be the 
constant repair rate of a complete repair (11.1 > p2). Assume that the system is put 
into operation at time t = 0 in an “as good as new” condition. 

(a) Establish the state transition diagram and the state equations for this process. 

(b) Determine the steady-state probabilities of the various states. 
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9.1 INTRODUCTION 

Aspects related to reliability of maintained systems were discussed in Chapters 7 and 
8. In Chapter 7 we studied four types of repair processes: homogeneous Poisson 
processes (HPP), renewal processes, nonhomogeneous Poisson processes (NHPP), 
and imperfect repair processes. The presentation was restricted to single items, and 
the main reliability measure was the rate of occurrence of failures, ROCOF. In most of 
Chapter 7 we only studied corrective maintenance, that is, maintenance (repair) that 
is carried out after a failure has occurred to bring the item back to a functioning state. 
In Chapter 8 we discussed reliability assessment of repairable systems by Markov 
methods. The models were restricted to corrective maintenance, and all functioning 
times and repair times had to be exponentially distributed. 

In this chapter we give a brief general introduction to maintenance concepts that 
are relevant for system reliability assessment. We discuss how the reliability of a 
maintained system can be analyzed and give results for some specific maintenance 
policies, like age and block replacement. We also give an introduction to condition- 
based replacement policies. We further introduce two approaches to maintenance 
planning and optimization, reliability centered maintenance (RCM) and total pro- 
ductive maintenance (TPM). The presentation in this chapter is rather brief, and the 
reader is therefore advised to consult some of the references cited for more details. 

Maintenance is defined as “the combinations of all technical and corresponding 
administrative actions, including supervision actions, intended to retain an entity in, 
or restore it to, a state in which it can perform its required function” [IEC50(191)]. 
The main reliability measure for a maintained item is the availability A ( t ) .  The avail- 
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Availability 
(Dependability) 

reliability 

Fig. 9.1 The availability (dependability) as a function of the inherent reliability, the main- 
tainability and the maintenance support. 

ability was defined in Chapter 1 as “the ability of an item (under combined aspects 
of its reliability, maintainability and maintenance support) to perform its required 
function at a stated instant of time or over a stated period of time” (BS4778). Some 
authors and standards use the term dependability instead of availability. The avail- 
ability is a function of (i) the (inherent) reliability of the item, (ii) the maintainability 
of the item, and (iii) the maintenance support, as illustrated in Fig. 9.1. The main- 
tainability of an item is “the ability of the item, under stated conditions of use, to be 
retained in, or restored to, a state in which it can perform its required functions, when 
maintenance is performed under stated conditions and using prescribed procedures 
and resources” (BS 4778). The maintainability of an item depends on design factors 
like ease of access to the item, ease of dismantling, ease of reinstallation, and so on. 
The maintenance support depends on the maintenance personnel, their availability, 
skills, and tools and on the availability and quality of spare parts. 

Maintenance management has traditionally been a reverse engineering activity, 
where the decision process has been highly correlated with the technical and me- 
chanical education of the maintenance staff and their own practical experience. Even 
if accumulated technical experience is essential, it should not be the only basis for 
maintenance related decisions (Christer 1999; PCres 1996). Maintenance decisions 
have to take into account a large number of decision criteria that may sometimes be 
contradictory. To choose the “best” maintenance task at the “best” possible time is a 
complex task that does not depend only on the current state of the item, but also on 
future factors like the consequences of this choice for the long term exploitation of 
the item. 

It is often recommended (Christer 1999, Scarf 1997) to establish mathematical 
models that can be used to assess the impacts of maintenance decisions. This approach 
seems to give promising results but has not yet been sufficiently developed in an 
industrial context. By using mathematicallstochastic models it may be possible to 
“simulate” maintenance strategies and to reveal the associated effects and maintenance 
costs and operational performance. The simulation may, in some cases, be used to 
determine the best maintenance strategy to implement. 

Some main building blocks of such a mathematical model are presented and dis- 
cussed in this chapter. 
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Fig. 9.2 Classification of maintenance types. 

9.2 TYPES OF MAINTENANCE 

Maintenance tasks may be classified in many different ways. Some of the most 
common designations are illustrated in Fig. 9.2 and described below: 

1. Preventive maintenance (PM) is planned maintenance performed when an item 
is functioning properly to prevent future failures. PM seeks to reduce the proba- 
bility of failure of the item. It may involve inspection, adjustments, lubrication, 
parts replacement, calibration, and repair of items that are beginning to wear 
out. PM is generally performed on a regular basis, regardless of whether or not 
functionality or performance is degraded. PM tasks can be classified into the 
following categories: 

(a) Age-basedmaintenance. In this case PM tasks are carried out at a specified 
age of the item. The age may be measured as time in operation or by other 
time concepts, like number of kilometers for an automobile or number of 
take-offsflandings for an aircraft. The age replacement policy discussed 
in Section 9.6 is an example of age-based maintenance. 

(b) Clock-based maintenance. In this case PM tasks are carried out at speci- 
fied calendar times. The block replacement policy discussed in Section 9.6 
is an example of clock-based maintenance. A clock-based maintenance 
policy is generally easier to administer than an age-based maintenance 
policy, since the maintenance tasks can be scheduled to predefined times. 

(c) Condition-based maintenance. In this case PM tasks are based on mea- 
surements of one or more condition variables of the item. Maintenance 
is initiated when a condition variable approaches or passes a threshold 
value. Examples of condition variables include vibration, temperature, 
and number of particles in the lube oil. The condition variables may be 
monitored continuously or at regular intervals. Condition-based mainte- 
nance is also called predictive maintenance. 
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(d) Opportunity maintenance. This is applicable for multi-item systems, 
where maintenance tasks on other items or a system shutdownhntervention 
provides an opportunity for carrying out maintenance on items that were 
not the cause of the opportunity. 

2.  Corrective maintenance (CM). This type of maintenance is often called repair 
and is carried out after an item has failed. The purpose of corrective mainte- 
nance is to bring the item back to a functioning state as soon as possible, either 
by repairing or replacing the failed item or by switching in a redundant item. 
Corrective maintenance is also called breakdown maintenance or run-to-failure 
maintenance. 

3 .  Failure-jnding maintenance. This is a special type of preventive maintenance 
that involves functional and operational checks or tests to verify proper opera- 
tion of off-line functions, like protective devices or backup systems. Failure- 
finding tasks are carried out to reveal hidden failures that have already occurred. 
Failure-finding maintenance is generally carried out on a regular basis, with a 
specified interval between failure-finding tasks. Failure-finding maintenance 
is further discussed in Chapter 10. 

9.3 DOWNTIME AND DOWNTIME DISTRIBUTIONS 

The downtime of an item (component or system) is the time in a specified mission 
period where the item is not able to perform one or more of its intended functions. 

9.3.1 Planned vs. Unplanned Downtime 

The downtime can be split in two types: 

1. Unplanned downtime is the downtime caused by item failures and internal and 
external (random) events, for example, human errors, environmental impacts, 
loss of utility functions, labor conflicts (strikes), and sabotage. In some appli- 
cations (e.g., electro-power generation) the unplanned downtime is called the 
forced outage time. 

2. Planned downtime is the downtime caused by planned preventive maintenance, 
planned operations (e.g., change of tools), and planned breaks, holidays, and 
the like. What is to be included as planned downtime will depend on how the 
mission period is defined. We may, for example, define the mission period as 
one year (8760 hours) or the net planned time in operation during one year, 
excluding all holidays and breaks, and all planned operational stops. In some 
applications it is common to split the unplanned in two types: (i) scheduled 
downtime that is planned a long time in advance (e.g., planned preventive 
maintenance, breaks, and holidays) and (ii) unscheduled planned downtime 
initiated by condition monitoring, detection of incipient failures, and events 
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that may require a preventive task to improve or maintain the quality of the 
system functions or to reduce the probability of a future failure. The associated 
remedial tasks can usually be postponed (within some limits) and carried out 
when it is suitable from an operational point of view. 

The scheduled downtime can often be regarded as deterministic, and can be esti- 
mated from the operational plans. The unscheduled planned downtime may be subject 
to random variations, but it will usually be rather straightforward to estimate a mean 
value. 

The unplanned downtime is generally strongly dependent of the cause of the down- 
time. Assume that we have identified n independent causes of unplanned down- 
time, and let D; be the random downtime associated to cause i for i = 1,2 ,  . . . , n .  
Let FD, (d )  denote the distribution function of Di, and let p ;  be the probability 
that a specific downtime has cause i .  The distribution of the downtime D is then 
F u ( d )  = cy=, pi . FQ (d) ,  and the mean downtime is 

n 

MDT C pi . MDT; 
i=l 

where MDTi = E ( D i )  denotes the mean downtime associated with cause i for 
i = 1 , 2  , . . . ,  n. 

9.3.2 Downtime Caused by Failures 

In the following we will confine ourselves to discussing the downtime caused by item 
failures and assume that the planned downtime and the unplanned downtime from 
other causes are treated separately. When we use the term downtime in the following, 
we tacitly assume that the downtime is caused by item failures. 

The downtime of an item can usually be regarded as a sum of elements like access 
time, diagnosis time, active repair time, checkout time, and so on. The elements are 
further discussed by Smith (1997). The length of the various elements are influenced 
by a number of system-specific factors, like ease of access, maintainability, and avail- 
ability of maintenance personnel, tools, and spare parts. The downtime associated 
to a specific failure therefore has to be estimated based on knowledge of all these 
factors. 

For detailed reliability assessments, it is important to choose an adequate downtime 
distribution as basis for the estimation. Three distributions are commonly used: the 
exponential, the normal, and the lognormal distribution (Ebeling 1997). We will 
briefly discuss the adequacy of these distributions. 

Exponential Distribution The exponential distribution is the most simple down- 
time distribution we can choose, since it has only one parameter, the repair rate p. 
The exponential distribution was discussed in detail in Section 2.9. We will briefly 
mention some of the main features of the exponential distribution. 
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The mean downtime is MDT = l/p, and the probability that a downtime D is 
longer than a value d is Pr(D > d )  = e-pd. The exponential distribution has no 
memory. This implies that if a downtime has lasted a time d ,  the mean residual 
downtime is 1/p regardless of the value of d .  This feature is not realistic for most 
downtimes, except for situations where the main part of the downtime is spent on 
search for failures, and where failures are found more or less at random. 

In many applications the exponential distribution is chosen as a downtime distri- 
bution, not because it is realistic, but because it is easy to use. 

Example 9.1 
Consider a repairable item with downtime D related to a specific type of failure. The 
downtime is assumed to be exponentially distributed with repair rate p. The MDT 
for this specific type of failure has been estimated to be 5 hours. The repair rate is 
then p = l/MDT = 0.20 hours-'. The probability that the downtime, D, is longer 

0 than 7 hours is Pr(D > 7) = eC7p M 0.247 = 24.7 %. 

Normal Distribution The rationale for choosing a normal (Gaussian) downtime 
distribution is motivated by the fact that the downtime may be considered as a sum of 
many independent elements. The normal distribution was discussed in Section 2.13. 
Estimation of the MDT and the standard deviation is straightforward in the normal 
model. When using the normal distribution, the repair rate function l ( d )  may be 
approximated by a straight line as a function of the elapsed downtime d .  The prob- 
ability of being able to complete an ongoing repair task within a short interval will 
therefore increase almost linearly with time. 

Lognormal Distribution The lognormal distribution is often used as a model 
for the repair time distribution. The lognormal distribution was discussed in Sec- 
tion 2.14. When using the lognormal distribution, the repair rate p ( d )  increases up 
to a maximum, and thereafter decreases asymptotically down to zero as a function 
of the elapsed downtime d .  When an item has been down for a very long time, this 
indicates serious problems, for example, that there are no spare parts available on the 
site or that the maintenance crew is not able to get access to or correct the failure. It 
is therefore natural to believe that the repair rate is decreasing after a certain period 
of time. 

9.3.3 Mean System Downtime 

Consider a series structure of n independent components. Component i has constant 
failure rate Ai .  When component i fails, the system will have a downtime MDTi, for 
i = 1,2,  , . . , n. The probability that the system failure is caused by component i is 
hi/ Cs=l A,, and the mean system downtime for an unspecified failure is 
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The MDT is equal to the right-hand side of (9.1) only when the failure of a component 
prevents the other components from failing, in which case the components are not 
independent. The exact formula is given in (8.56). In most applications, however, 
equation (9.1) gives a very good approximation. 

Example 9.2 
Consider an item with n independent failure modes. Failure mode i occurs with 
constant failure rate hi, and the mean downtime required to restore the item from 
failure mode i is MDTi for i = 1,2, . . . , n. The item may be considered as a series 
system of n independent virtual components, where component i only can fail with 

0 failure mode i .  The mean downtime of the item is therefore given by (9.1). 

Equation (9.1) may also be used as an approximation for the mean downtime 
caused by an unspecified component failure of a nonseries structure of independent 
components. In this case it is important to realize that MDTi denotes the system 
downtime caused by failure of component i for i = 1,2 ,  . . . , n. 

9.4 AVAILABILITY 

Consider a repairable item that is put into operation at time t = 0. When the item 
fails, a repair action is initiated to restore the function of the item. The state of the 
item at time t is given by the state variable: 

1 if the item is functioning at time t 

In this section we only consider the unplanned downtime caused by failures. The 
mean time to repair the item is denoted MTTR. The total mean downtime, MDT, or 
mean forced outage time, is the mean time the item is in a nonfunctioning state. The 
MDT is usually significantly longer than the MTTR, and will include time to detect 
and diagnose the failure, logistic time, and time to test and startup of the item. When 
the item is put into operation again it is considered to be “as good as new.” The mean 
up-time, MUT, of the item is equal to what we in Chapter 2 called mean time to failure, 
MTTF. Both concepts may be used, but MUT is more commonly used in maintenance 
applications. The mean time between consecutive occurrences of failures is denoted 
MTBF. The state variable and the various time concepts are illustrated in Fig. 9.3. 

The reliability of a repairable item may be measured by the availability of the item 
at time t .  

Definition 9.1 The availability A ( t )  at time t of a repairable item is the probability 
that the item is functioning at time t :  

A ( t )  = Pr(X(r) = I )  (9.2) 
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Fig. 9.3 Average “behavior” of a repairable item and main time concepts. 

A(?) is sometimes referred to as the point availability. Note that if the item is not 
repaired, then A(t )  = R ( t ) ,  the survivor function. 

Definition 9.2 The unavailability A ( t )  at time t of a repairable item is the probability 
that the item is not in a functioning state at time t : 

A(?)  = 1 - A(t) = Pr(X(t) = 0) (9.3) 

Sometimes we are interested in the interval or mission availability in the time 
interval (tl , t 2 ) ,  defined by: 

Definition 9.3 The (average) interval or mission availability Aav(tl ,  t 2 )  in the time 
interval (tl , t 2 )  is 

Aav(tl, t 2 )  is just the average value of the point availability A(?) over a specified 
interval ( t l ,  t 2 ) .  

In some applications we are interested in the interval or mission availability from 
startup, that is, in an interval (0, t). This is defined as 

The average availability [Aav(tl, t 2 )  and Aav(r)] may be interpreted as the mean 
proportion of time in the interval where the item is able to function. 

When t + 00 the average interval availability (9.5) will approach a limit called 
the long run average availability of the item. 

Definition 9.4 The long run average availability is 
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0 
The long run average availability A,, may be interpreted as the average proportion 
of a long period of time where the item is able to function. 

The long-term average unavailability A,, = 1 - A,, is in some application areas 
(e.g., electro-power generation) called theforced outage rate. 

Example 9.3 
Consider a time interval of lo00 hours and let the steady state (average) availability 
of a certain item in this interval be 0.95. We would then expect the item to be able 
to function 950 of those 1000 hours. Note that the availability does not tell anything 

0 

When the up-times and downtimes are nonlattice (see Definition 7.2), the point 
availability A ( t )  will approach a limit A when t + 00. The limit A is called the 
limiting availubility of the item. 

Definition 9.5 The limiting availability is 

about how many times the item will fail in this interval. 

A = lim A ( t )  
f+cc  

(9.7) 

when the limit exists. 0 

The limiting availability is sometimes called the steady-state availability. When the 
limiting availability exists, it is equal to the long run average availability, that is, 
A,, = A. 

9.4.1 Availability with Perfect Repair 

Consider a repairable item that is put into operation and is functioning at time t = 0. 
Whenever the item fails, it is replaced by a new item of the same type or repaired 
to an “as good as new” condition. We then get a sequence of lifetimes or up-times 
T I ,  T2, . . . for the items. We assume that Ti ,  T2, . . . are independent and identically 
distributed, with distribution function F T ( t )  = Pr(7j 5 t ) ,  i = I ,  2, . . ., and mean 
time to failure MTTF. 

We further assume that the downtimes D1, D2, . . . are independent and identically 
distributed withdistribution function F D ( t )  = Pr(Di I t )  fori = 1,2,  . . ., andmean 
downtime MDT. Finally we assume that T, + Di for i = I ,  2,  . . . are independent. 
The state variable X ( t >  of the item is illustrated in Fig. 9.4. 

Suppose that we have observed an item until repair n is completed. Then we have 
obtained the lifetimes Ti ,  T2, . . . , T, and the downtimes D1, D2, . . . , D,. According 
to the law of large numbers, then under relatively general assumptions (e.g., see 
Dudewicz and Mishra 1988, p. 302), with probability one 

II n 
1 
- X T ;  + E ( T )  n 

= MTTF whenn -+ 00 

i= l  

. n  

D; + E ( D )  = MDT whenn + 00 
n 

i= l  
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Fig. 9.4 States of a repairable item. 

The proportion of the time in which the item has been functioning is 

Heuristically we may expect that the right-hand side of (9.8) will tend to 

(9.9) 

which is the average proportion of time where the item has been functioning, when 
we consider a long period of time. We have therefore found the long run average 
availability (see, Definition 9.4) of the item 

- MTTF 
A -  - 

- E ( T )  + E ( D )  MTTF + MDT 
(9.10) 

Example 9.4 
A machine with MTTF = 1000 hours and MDT = 5 hours, has average availability 

1000 
1000 + 5 

= 0.995 - - MTTF 
MTTF + MDT A,, = 

On the average the machine will function 99.5% of the time. The average unavail- 
ability is thus 0.5% which corresponds to approximately 44 hours of downtime per 

0 year, when the machine is supposed to run continuously. 

Example 9.5 
Consider a repairable item where the up-times are independent and exponentially 
distributed with failure rate A. The downtimes are assumed to be independent and 
exponentially distributed with parameter p. The mean downtime is thus 

MDT = 1 / p  

The parameter p is called the repair rate, even if this term is in conflict with the time 
concepts we introduced in Section 9.3. 

In Chapter 8 we showed (8.21) that the availability A ( t )  of the item is 

(9.1 1 )  
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Fig. 9.5 The availability A(?) of a item in Example 9.5, with failure rate A and repair rate p. 

The availability A(t )  is illustrated in Fig. 9.5. 

proach a constant A when c + 00. 

For these up-time and downtime distributions the availability A(t )  is seen to ap- 

MTTF 
(9.12) l / h  - - - CL A = lim A ( t )  = - - 

t+OO A+p l / h + I / p  MTTF+MDT 

The limiting availability A (see Definition 9.5) therefore exists and is equal to the 
average availability Aav. 

When the item is not repaired, that is, when p = 0, then the availability is equal 
to the survivor function R ( t ) .  

A(t )  = R ( t )  = e-*‘ when p = 0 

Example 9.6 
Consider an item with independent up-times with constant failure rate A. The down- 
times are independent and identically distributed with mean MDT. Since usually MDT 
<< MTTF the average unavailability of the item is approximately 

- h ’ MDT MDT 
A,, = - - x h . M D T  

MTTF+MDT 1 + h . M D T  
(9.13) 

This approximation is often used in hand calculations. 0 

When planning supplies of spare parts, it is of interest to know how many failures 
that may be expected in a given time interval. Let W ( f )  denote the mean number of 
repairs carried out in the time interval (0, t ) .  Obviously W ( t )  will then depend on 
the distributions of the up-times and the downtimes. It is often difficult to find an 
exact expression for W ( t )  (see Chapter 7). When t is relatively large, however, the 
following approximation may be used: 

t 

MTTF + MDT 
W ( t )  25 (9.14) 
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9.4.2 Operational Availability 

The operational availability AOP of a item is defined as the mean proportion of a 
mission period the item is able to perform its intended functions. To determine AOP 
we have to specify the mission period and estimate the mean total planned downtime 
and the mean total unplanned downtime in the mission period. These concepts were 
discussed in Section 9.3. See also Ebeling (1997). The operational unavailability 
A o p  = 1 - A o p  may be determined from 
- 

- 
AOP = 

Mean total planned downtime + Mean total unplanned downtime 
Mission period 

When using the concepts availability and operational availability we only consider 
two states: a functioning state and a failed state. The output from a production 
system may vary a lot, and the availability is therefore not a fully adequate measure 
of the system’s performance. Several alternative measures have been proposed. In 
NORSOK 2-016 the concept production regularity is introduced as a measure of the 
operational performance of an oiUgas production system. Regularity is a term used 
to describe the capability of a production system of meeting demands for deliveries 
or performance. The NORSOK standard was developed for the oil and gas industry, 
but most of the concepts may also be used in other industries. Production regularity 
is further discussed by Kawauchi and Rausand (2002). 

Alternative Metrics Several metrics have been proposed for operational perfor- 
mance. Among these are: 

Deliverability is defined by NORSOK Z-0 16 as the ratio between the actual deliveries 
and the plannedagreed deliveries over a specified period of time, when the effect of 
compensating elements such as substitution from other producers and downstream 
buffer storage are included: 

Actual deliveries 
Planned or agreed deliveries 

Deliverability = 

The deliverability is a measure of the system’s ability to meet demands agreed with a 
customer. Failures and other problems in the production system may be compensated 
using products from a storage or by purchasing products from other suppliers. The 
North Sea operators supply gas to Europe through subsea pipelines. The deliver- 
ability is measured at the interface between the subsea pipeline and the national gas 
network (e.g., in Germany). A relatively short downtime of a production unit will 
have no effect on the outlet of the pipeline due to the large volume of gas and the high 
pressure in the pipeline. A longer downtime may be compensated by increasing the 
gas production from other production units, connected to the same pipeline. 

The on-stream availability, OA, is defined as the mean proportion of time, in a speci- 
fied time period, in which the production (delivery) is greater than zero. In this case, 
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1 - OA denotes the mean proportion of time the system is not producing at all. 

The 100% production availability, A loo, in a time interval (tl , t2) is defined as the 
mean proportion of the time in this interval the system is producing with full produc- 
tion (time is measured in hours): 

No. of hours in the interval (tl , t2) with full production 

t2 - tl 
A100 = 

In this definition we are only concerned with full production. We do not distinguish 
between 90% production and no production. We may also define the production 
availability at a reduced capacity, for example, 80%: 

No. of hours in (tl , t2) the system is producing with 2 80% capacity 

12 - tl 
A80 = 

9.5 SYSTEM AVAILABILITY ASSESSMENT 

9.5.1 Introduction 

The availability of a system may be analyzed by several different approaches. The 
most commonly used approaches are: 

I .  Reliability block diagrams. The reliability block diagram approach may be 
used to find an approximative value for the average availability of a system of 
independent components that are restored to an “as good as new” condition 
after each failure. The approach is easy to use and may give adequate average 
results for some systems. A brief introduction to the reliability block diagram 
approach is given in Section 9.5.2. 

The reliability block diagram approach requires each component to have only 
two possible states, a functioning state and a failed state. The availability is 
found from the structure function by using the formulas described in Chapter 4. 

A reliability block diagram is a static “picture” of a system’s ability to perform 
a specified function, and is therefore not suitable as a model for a repairable 
system with a complex maintenance strategy. 

2. Fault tree. Availability assessment based on a fault tree model is similar to the 
approach based on reliability block diagrams. Most computer programs for 
fault tree analysis can be used for repairable systems, with the same limitations 
as described for reliability block diagrams. 

3. Markov methods. Markov methods can be used to analyze repairable systems 
with rather complex repair strategies. All failure rates and repair rates are as- 
sumed to be constant, and it is not possible to take into account any long-term 
trends or seasonal effects. The number of system states increases rapidly with 
the number of components, and the workload may therefore be overwhelming 
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even for systems of moderate complexity. The average proportion of time the 
system spends in the various states (the steady-state probabilities) can be calcu- 
lated. If we know the production (system output) in the various system states, 
this may be combined with the steady-state probabilities as input to a production 
regularity assessment. Markov methods were discussed in Chapter 8. 

4. Flow networks. A flow network is a graph describing all possible paths from 
one or more input nodes to one or more output nodes. The various paths may 
have different capacities. An example of a flow network is a water distribution 
network, from one or more sources to one or more customers. The water pipes 
may have different diameters and different pressures. A flow network may be 
analyzed by graph theory methods (see Aven 1992). 

A simplified single source - single terminal flow network may be drawn as a 
reliability block diagram where the components have different capacities. The 
approach described in Chapter 4 based on structure functions can no longer 
be used. Such networks are usually analyzed by Monte Carlo simulation (see 
Section 9.5.3). Several computer programs have been developed for this pur- 
pose. This approach represents an extension to the reliability block diagram 
approach but do not have the same dynamic properties as Markov methods. 
The approach is not further discussed in this book. 

5 .  Petri nets Petri nets are rather flexible and can be used to analyze systems 
with rather complex repair strategies. Petri nets for availability assessment are 
discussed by Signoret (1986) but are not further discussed in this book. 

6.  Monte Curlo next event simulation. Monte Carlo next event simulation is the 
most flexible approach to availability assessment of repairable systems, and 
can be used to analyze almost any type of systems. The simulation must be 
carried out by a computer simulation program, and the program may set certain 
limitations. The approach is further discussed on in Section 9.5.3. 

A listing of computer programs for the various approaches may be found on the book’s 
web page. 

9.5.2 Reliability Block Diagrams 

Consider a system with n components and structure function 4 ( X ( t ) ) .  If the state vari- 
ables X l ( t ) ,  X 2 ( t ) ,  . . . , X , ( t )  are independent random variables, the system avail- 
ability, A&), can be determined by the procedure described in Section 4.2: 

Example 9.7 
The system in Fig. 9.6 has structure function 

(9.15) 
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. 
--@- 

Fig. 9.6 Reliability block diagram (Example 9.7). 

The three components are assumed to fail and be repaired independent of each 
other. We want to determine the average availability of the system. The MTTFs and 
MDTs of the three components are listed below, together with the average component 
availabilities, calculated by 

MTTFi 
MTTFj + MDTi 

fori  = 1 , 2 , 3  A , i  = 

To simplify the notation we often omit the explicit reference to average (av), and write 
Ai instead of Aav,j. 

i MTTFi (hours) MDTi (hours) Ai 

1 1000 10 0.990 
2 500 10 0.980 
3 500 10 0.980 

The average availability of the system is 

A s  = A l ( A 2  + A3 - A2A3) 0.9896 

The average system unavailability is thus As % 0.0104 which corresponds to approx- 
imately 91 hours of downtime per year (when the system is supposed to be operated 
on a continuous basis). 0 

To use the approach in Example 9.7 we have to assume that the system components 
fail and are repaired independent of each other. This means that when a component 
is down for repair, all the other components continue to operate as if nothing had 
happened. This assumption is often not realistic. Some types of dependencies may 
be modeled by using the methods in Chapter 6, but generally this approach will not 
give fully realistic results. 

The approach outlined in Example 9.7 is often used in practical analyses because 
it is easy to use. Most of the computer programs for fault tree analysis analyze 
repairable systems by the fault tree equivalent of the approach in Example 9.7. When 
using this approach we should be aware of the inherent limitations in the approach: All 
components are assumed to fail and be repaired independent of each other, meaning 
that: 

0 The operation and maintenance of a component are not influenced by the status 
of the other components. 
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0 It is not possible to model load-sharing systems (where the load on a component 
increases if one or more redundant components fail). 

0 It is not possible to merge repair actions and start up again only when a certain 
number of components are able to function. 

0 There is no limitation with respect to repair resources. 

Some of these limitations may partly be overcome by careful modeling of the fault 
tree (or the reliability block diagram), but this is not a straightforward task and is 
usually not done in practical analyses. 

A fault tree (reliability block diagram) only provides a static picture of the causes 
of system failure (requirements for system function) and is therefore not made for 
analyses of systems with dynamic features, like systems subject to maintenancehepair. 

9.5.3 Monte Carlo Next Event Simulation 

Monte Curlo next event simulation is carried out by simulating “typical” lifetime 
scenarios for a system on a computer. We start with a model of the system, usually in 
the form of flow diagrams and reliability block diagrams. Random events (i.e., events 
associated to item failures) are generated in the computer model, and scheduled events 
(e.g., preventive maintenance actions), and conditional events (i.e., events initiated 
by the occurrence of other events) are included to create a simulated lifetime scenario 
that is as close to a real lifetime scenario as possible. Several types of input data have 
to be available: 

0 A description of the system based on flow diagrams, control schematics, and 
component information 

0 Knowledge of component failure modes, failure effects, and failure conse- 
quences, usually in the form of a failure modes, effects, and criticality analysis 
(FMECA) 

0 Component failure and repair data (failure mode specific life and downtime 
distributions and estimates of the required parameters) 

0 Intervention and repair strategies and durations for the various failure modes 

0 Frequency and duration of inspections and planned maintenance actions 

0 Opportunity maintenance strategies 

0 Resource data (e.g., availability of spare parts and maintenance resources) 

0 Throughput data and systedcomponent capacities 

When a “typical” lifetime scenario has been simulated on the computer, this sce- 
nario is treated as a real experiment, and performance measures are calculated. We 
may, for example, calculate 
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Fig. 9.7 Generation of a random variable with distribution F T ( ~ ) .  

0 The observed availability of the system in the simulated time period (e.g., the 
observed uptime divided by the length of the simulated period) 

0 The number of system failures 

0 The number of failures for each component 

0 The contribution to system unavailability from each component 

0 The use of maintenance resources 

0 The system throughput (production) as a function of time 

The simulation can be repeated to generate a number of “independent” lifetime sce- 
narios. From these scenarios we may deduct estimates of the performance measures 
of interest. 

Generation of Random Variables with a Specified Distribution Let T denote a 
random variable, not necessarily a time to failure, with distribution function F T ( ~ )  
which is strictly increasing for all t ,  such that F; ’ (y )  is uniquely determined for all 
y E (0, I ) .  Further let Y = F T ( T ) .  Then the distribution function F y ( y )  of Y is 

F Y ( Y )  = Pr(Y 5 Y )  = P ~ ( F T ( T )  5 Y )  
= Pr(T 5 ~ ; ‘ ( y ) )  = FT(F;’(Y)) = y f o r 0  < y < I 

Hence Y = F T ( T )  has a uniform distribution over (0, 1). This implies that if a 
random variable Y has a uniform distribution over (0, I ) ,  then T = F F ’ ( Y )  has the 
distribution function FT ( t ) .  

This result can be used to genera?e random variables T I ,  T2, . . . with a specified 
distribution function FT ( t )  on a computer. Variables Y1, Y2, . . ., which are uniformly 
distributed over (0, l),  may be generated by a pseudo-random number generator. The 
variables Ti = F; (Yj) for i = 1, 2,  . . . , will then have distribution function F y ( t ) .  
The generation of random variable is illustrated in Fig. 9.7. Alternative methods 
to generate random variables from specific distribution classes are discussed, for 
example, by Ripley (1987). A wide range of pseudo-random number generators are 

1 
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available (e.g., as part of computer programs for statistical analysis). Most of these 
pseudo-random number generators are able to generate variables Y I  , Y2, . . . that are 
approximately independent with a uniform distribution over (0, 1). 

Next Event Simulation We will illustrate the next event simulation by a very simple 
example, a single repairable item with only one failure mode. A lifetime scenario for 
the item may be simulated as follows: 

1. The simulation is started at time t = 0 (the simulator clock is set to 0 that may 
correspond to a specified date). The item is assumed to be functioning at time 
t = 0. 

2. The time tl to the first failure is generated from the life distribution FT, (t). The 
life distribution F T ~  (t) has to be specified by the analyst. The simulator clock 
is now set to tl . 

3. The repair or restoration time dl is generated from a specified repair time 
distribution FD, (d). The repair time distribution FD, (d) has to be specified 
by the analyst, and may, for example, depend on the season (the date) and the 
time of the day of the failure. The repair time may, for example, be longer for 
a failure that occurs during the night than for the same failure occurring during 
ordinary working hours. The simulator clock is now set to tl + dl 

4. The time t2 to the second failure is generated from a the life distribution Fr2 ( t ) .  
The item may not be “as good as new” after the repair action and the life 
distribution Fr2 ( t )  may therefore be different from FT, (t). The simulator clock 
is set to tl + dl + t2 .  

5. The repair or restoration time d2 is generated from a specified repair time 

The simulation is continued until the simulator clock reaches a predefined time, for 
example, 10 years. The computer creates a chronological log file where all events 
(failures, repairs) and the (simulator clock) time for each event is recorded. From this 
log file we are able to calculate the number of failures in the simulated period, the 
accumulated use of repair resources and utilities, the observed availability, and so on 
for this specific life scenario. The observed availability A 1 is, for example, calculated 
as the accumulated time the item has been functioning divided by the length of the 
simulated period. 

The simulation described above is repeated n times (with different seed values), 
and the parameters of interest are calculated for each simulation. Let Ai be the 
observed availability in simulation i for i = 1,2, . . . , n. The average availability A 
of the item is then calculated as the sample mean C7=l A i / n .  The sample standard 
deviation may be used as a measure of the uncertainty of A. It is also possible to split 
the simulation period into a number of intervals and calculate the average availability 
within each interval. The availability may, for example, be reported per year. A 
variety of approaches to reduce the variation in the estimates are available. Variance 
reduction methods are discussed, for example, by Mitrani (1982) and Ripley (1987). 

distribution F D ~  (d). 
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The simulation on a computer can theoretically take into account virtually any 
aspects and contingencies of an item: 

0 Seasonal and daily variations 

0 Variations in loading and output 

0 Periodic testing and interventions into the item 

0 Phased mission schemes 

0 Planned shutdown periods 

0 Interactions with other components and systems 

0 Dependencies between functioning times and downtimes 

Simulation of a life scenario for a complex system requires a lot of input data to 
the computer. In addition, we have to establish a set of decision rules for the various 
events and combinations of events. These rules must state which actions should be a 
consequence of each event. Examples of such decision rules are 

0 Setting priorities between repair actions of simultaneous failures when we have 
limited repair resources 

0 Switching policies between standby items 

0 Deciding to replace or refurbish some additional components of the same sub- 
system when a component fails 

0 Deciding to shut down the whole subsystem after a failure of a component, 
until repair action of the component is completed 

To obtain estimates of satisfactory accuracy we have to simulate a rather high number 
of life histories of the system. The number of replicated simulations will depend 
on the system complexity and the reliabilities of the various system components. 
Systems with a high reliability will in general require more replications than systems 
with low reliability. The simulation time will be especially long when the model 
involves extremely rare events with extreme consequences. For complex systems, 
we may need several thousands of replications. The simulation time will often be 
excessive even on a fast computer, and the log file may be very large. 

A number of simulation programs have been developed for availability-and pro- 
duction regularity-assessment of specific systems. A listing of relevant programs 
may be found on the book's web page. 

Example 9.8 
Consider a system of two production items as illustrated in Fig. 9.8. When both items 
are functioning, 60% of the system output comes from item 1 and 40% from item 
2. The system is started up on a specific date (e.g., 1 January 2010). The times to 
failure are assumed to be independent and Weibull distributed with known parameters 
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l-7-J- Item 2 

Fig. 9.8 System of two production items. 

(ai, hi) ,  for i = 1, 2. The simulation is started by generating two Weibull distributed 
times to failure t l  and rz. Let us assume that r l  < t 2 .  From time t l ,  item 1 is out of 
operation during a random downtime that has a lognormal distribution with known 
parameters (ul , q) that depend on the date at which item 1 failed. The production 
from item 2 is increased to 60% to partly compensate for the outage of item 1. The 
time to failure of item 2 with 60% production is Weibull distributed with parameters 
(012, hi) .  (A conditional Weibull distribution might be selected.) The next step of the 
simulation is to generate the repair time dl of item 1, and the time to failure t i  of item 
2 with increased production. Let us assume that dl < t i .  At time dl item 1 is put into 
operation again, with 60% production and the load on item 2 is reduced to 40%. Time 
to failure distributions are allocated to the two items. Conditional distributions, given 
the time in operation, may be used. New times to failure are generated according to 
the same procedure as described above. Periodic stops with adjustments, cleaning, 
and lubrication may easily be included in the simulation. If item 2 fails, the load on 
item I is increased to 80%. The simulation is illustrated in Fig. 9.9 together with the 
resulting simulated production. Several other metrics may be recorded, such as total 
item downtime, use of repair resources and spare parts. The simulation of times to 
failure may further be split into different failure modes. The simulation is repeated a 

0 large number of times to give average values. 

9.6 PREVENTIVE MAINTENANCE POLICIES 

In this section we present and discuss some preventive maintenance policies.' We 
start with the classical time-based age and block replacement policies and present 
some examples and extensions to these policies. We then present a condition-based 
replacement policy where the item (component, system) is inspected at regular inter- 
vals, and replacement is decided based on measurement of a deterioration variable. 
The presentation in this section is rather brief. A thorough introduction to preventive 
maintenance modeling is given, for example, by Barlow and Proschan (1965), Pier- 
skalia and Voelker (1  979), Valdez-Flores and Feldman ( 1  989), Cho and Parlar (1991), 
Gertsbakh (2000), and Wang (2002). A description of condition-based maintenance 
modeling is given, for example, by Castanier (2001). 

' Section 9.6 is coauthored by Dr. Bruno Castanier, Ecole des Mines de Nantes. 
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Fig. 9.9 Simulation of the performance of the production system in Fig. 9.8. 

We also present a specific inspection and replacement model; the PF interval 
model. The PF interval model is commonly used in reliability centered maintenance 
(RCM) which is discussed in Section 9.7. 

Throughout this section it is important to specify clearly which time concept we 
are using. The time may be measured as calendar time, operating time, and other time 
concepts like kilometers driven by a car. It may also be relevant to combine different 
time criteria, and, for example, say that a part of a car should be replaced every 80000 
kilometers andor every 4 years, whichever come first. 

9.6.1 Age Replacement 

Under an age replacement policy an item (component, system) is replaced upon 
failure or at a specified operational age to, whichever comes first. This policy makes 
sense if the failure replacement cost is higher than the cost of a planned replacement, 
and if the failure rate of the item is increasing. 

Consider a process where the item is subject to age replacement at age to, which is 
nonrandom. Let T denote the (potential) time to failure of the item. T is assumed to 
be continuous with distribution function F ( t ) ,  density f ( t ) ,  and mean time to failure 
(MTTF). The time required to replace the failed item is considered to be negligible, 
and after replacement, the item is assumed to be “as good as new.” The time between 
two consecutive replacements is called a replacement period. The mean time between 
replacements/renewals (MTBR) with replacement age to is 

s,”’ 
to 

MTBR(to) = A t f ( t )  dt  + to . Pr(T 1 to) = (1 - F ( t ) )  dt (9.17) 
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Fig. 9.70 Age replacement policy and costs. 

Notice that MTBR(t0) is always less than to, and that lim,,,, MTBR(t0) = MTTF. 
The mean number of replacements, E , ( N ( t ) ) ,  in a long time interval of length t is 
therefore approximately 

(9.18) 

When the item has reached the age to, the cost of a preventive replacement is c, 
and the cost of replacing a failed item (before age to) is c + k. The cost c covers 
the hardware and man-hour costs, while k is the extra cost incurred by the unplanned 
replacement, such as production loss. The costs are illustrated in Fig. 9.10. By the age 
replacement policy the replacement times cannot be fully scheduled, and the policy 
may therefore be complex to administer when we have a high number of items. The 
age of each item has to be monitored, and the replacement actions will be spread out 
in time. 

The total cost per replacement period is equal to the replacement cost c plus the 
extra cost k whenever a failure occurs. The mean total cost per replacement period is 
thus 

c + k . Pr("fai1ure") = c + k . Pr(T < to) = c + k . F ( t 0 )  

The total mean cost per time unit C ~ ( f 0 )  with replacement age 20 is determined by 

CA(t0) . MTBR(t0) = c + k . F( to )  

Hence 

(9.19) 

The objective is now to determine the age to that minimizes C(t0) .  A graphical 
approach to finding the optimal to is shown in Example 1 1.12. 

If we let to + 00 in (9.19), we get 

c + k  
$+cc ~ooo(l  - F ( t ) ) d t  MTTF 

- - c + k  
CA(OO) = lim C ~ ( t 0 )  = (9.20) 

When to -+ 00, this means that no age replacement takes place. All replacements are 
corrective replacements and the cost of each replacement is c + k. The time between 
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replacements is MTTF, and (9.20) is therefore an obvious result. The ratio 

c + k . F(t0) MTTF 
- -  - .- CA (to) 
CA (00) J;(l - F ( t ) )  dt c + k 

MTTF 1 + r . F ( f o )  
(9.21) .- - - 

$"(l - F ( t ) ) d t  1 + 
where r = k / c ,  can therefore be used as a measure of the cost efficiency of the 
age replacement policy with replacement interval to. A low value of CA(tO)/CA(CQ) 
indicates a high cost efficiency. 

Example 9.9 
Consider an item with Weibull life distribution F ( t )  with scale parameter h and shape 
parameter a. To find the optimal replacement age to, we have to find the to that 
minimizes (9.19), or alternatively (9.21). By using (9.21), we get 

C A ( f 0 )  1 + r ( 1  - e--(*to)a) r ( i / a  + l) /h 

CA (00) J: e-(*f)" dt l + r  
(9.22) -- - 

By introducing xo = kto, (9.22) may be written as 

- 
I + r ( l  - e-';) r ( i / a  + 1 )  

(9.23) 

To find the xo for which (9.23) attains its minimum by analytical methods is not 
straightforward. The optimal xo may be found graphically by plotting e~ (xo)/ CA (00) 

as a function of xo. An example is shown in Fig. 9.1 1 where ~ A ( x o ) / C A ( O O )  is plot- 
ted for a = 3, and some selected values of r = k / c .  The optimal xo,  and thereby 
the optimal replacement age to = xo/h, can be found from Fig. 9.1 1 as the value 
minimizing the ratio C A ( X O ) / C A ( C Q ) .  Notice that when CA(XO)/CA(OO) > 1 no age 
replacement should take place. The cost efficiency of the age replacement policy is 
seen to decrease when to increases. 0 

- -  - CA (x0) 
CA (a) ecx" dx l + r  

Time Between Failures Let Yl , Y2, . . . denote the times between the actual con- 
secutive failures. This may be represented as a renewal process where the renewals 
are the actual failures. The renewal periods, Y,, are composed of a random number, 
N; of time periods of length to (corresponding to replacements without failure), plus 
a last time period in which the item fails at an age Zi , less than to. 

Thus 

The random variable Ni has a geometric distribution (see Section 2.8) 

Pr(Ni = n )  = ( 1  - F(t0))" F(to)  for n = 0, 1 ,  . . 
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Fig. 9.11 The ratio ~ A ( x o ) / C A ( O ~ )  as a function of xo for the Weibull distribution with 
shape parameter a = 3, and r = 3,5, and 10. 

The mean number of replacements without failure is thus 

The distribution of Zi is 

Hence 

The mean time between actual failures is thus 

(9.24) 

Age Replacement - Availability Criterion In some applications the unavail- 
ability of the item is more important than the cost of replacementhepair, and we may 
be interested in finding a replacement age to that minimizes the average unavailability 
of the item. Let MDTp be the mean downtime for a planned replacement, and MDTF 
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be the mean downtime needed to restore the function after a failure. The total mean 
downtime in a replacement interval of length to is 

The mean time between replacements is 

MTBR(t0) = s,’”(l  - F ( t ) )  d t  + MDTF . F(to) + MFDp . ( 1  - F ( t o ) )  

= lro( 1 - F ( t ) )  d t  + MDTp + [MDTF - MDTpl . F( to)  

The average unavailability with the age replacement policy for age to is therefore 

(9.25) 

- [MDTF - MDTp] + MDTp * F( t0)  
- 

$O(l - F ( r ) )  d t  + MDTp + [MDTF - MDTpl . F( t0 )  

The optimal to is the value of to that minimizes &,(to) in (9.26). This value may be 
found by the same approach we used for the cost criterion. 

9.6.2 Block Replacement 

An item (component, system) that is maintained under a block replacement policy 
is preventively replaced at regular time intervals ( to ,  2t0, . . .) regardless of age. The 
block replacement policy is easier to administer than an age replacement policy since 
only the elapsed (calendar) time since last replacement must be monitored, rather 
than the operational time since last replacement. The block replacement policy is 
therefore commonly used when there is a large number of similar items in service. 
The main drawback of the block replacement policy is that it is rather wasteful, since 
almost new items may be replaced at planned replacement times. 

Consider an item that is put into operation at time t = 0. The time to failure T of 
the item has distribution function F ( t )  = Pr(T 5 t ) .  The item is operated under a 
block replacement policy where it is preventively replaced at times to, 2t0, . . .. The 
preventive replacement cost is c. If the item fails in an interval, it is immediately 
repaired or replaced. The cost of the unplanned repair is k .  Let N ( t 0 )  denote the 
number of failuresheplacements in an interval of length to. and let W ( t 0 )  = E ( N ( t 0 ) )  
denote the mean number of failureshepairs in the interval. 

The mean cost in an interval is c + k . W(t0) .  The average costs C B ( t 0 )  per time 
unit when using a block interval of length to is equal to 

(9.26) 
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In the original block replacement model, the items are replaced with a new item of 
the same type after each failure. We therefore have a renewal process within each 
interval of length to (see Section 7.3). In this case W(t0)  is the renewal function, and 
we may use the formulas developed in Section 7.3. 

Example 9.10 
Consider a block replacement model where the replacement interval to is considered 
to be so short that the probability of having more than one failure in a block interval 
is negligible. In this case we may use the approximation 

cc 

The average costs C g  ( to)  per time unit is 

The minimum of C g  (to) may be found by solving d Cg (to)/dto = 0 which gives 

C 
- + F( t0 )  = t F'(t0) 
k 

Let us now assume that F ( t )  is a Weibull distribution with shape parameter a! > 1 
and shape parameter A. We can then find the optimal replacement interval by solving 

which can be written as 

C 
- + 1 = (1 + c z ( ~ t 0 ) ~ )  . e-(*fo)u 
k 

(9.27) 

For this model to be realistic the preventive replacement cost c must be small compared 
to the corrective replacement cost k .  By introducing x = (Aro)a, and using the 
approximation ex % 1 + x + x2/2, we can solve (9.27) and get the approximative 
solution (when remembering that to is small): 

(Y 

1 + c / k  1 + c / k  1 + c / k  

If we assume that c/ k = 0.1 and M = 2, we get the optimal value to = l / A  . x % 

0.35 l/A X 0.39. MTTF. With the same value of c/ k and a! = 3, we get the optimal 
value to x 0.39.l/A % 0.44. MTTF. In Fig. 9.12 the optimal replacement interval to 
is plotted as a function of a!. The optimal value to is equal to h-MTTF, where MTTF 

0 is the mean of the Weibull distribution with parameters M and A. 
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Fig. 9.12 The optimal replacement interval to in Example 9.10 as a function of the shape 
parameter a of the Weibull distribution. The optimal value to is equal to h.MTTF. 

Block Replacement with Minimal Repair The block replacement policy may 
be modified by only carrying out minimal repair when items fail in the block interval. 
The assumption is that a minimal repair is often adequate until the next planned 
replacement. In this case we will have a nonhomogeneous Poisson process (NHPP) 
within the block interval of length to,  and we may use the formulas developed in 
Section 7.4 to determine W(t0) .  This modified block replacement model was proposed 
and studied by Barlow and Hunter (1961). 

Another approach would be to assume that we carry out normal (imperfect) repairs 
in the block interval. In that case we may use the theory described in Section 7.5 to 
determine W (to).  

Block Replacement with Limited Number of Spares Consider an item that 
is operated under a block replacement policy. We will now assume that the number 
m of spares that may be used in a replacement interval is limited. In this case we may 
run out of spares and the item's function may therefore be unavailable during a part 
of the replacement interval. The times to failure T I ,  T2, . . . of the items are assumed 
to be independent and identically distributed with distribution function F ( t ) .  

Let k ,  denote the cost per time unit when the item function is not available, and 
let F,, (to) be the time the item remains unavailable in a replacement interval of length 
to. Hence, we have ?,(to; m )  = to - Cyz' T, if the initial item and the m spares fail 
in the replacement interval, and ?,,(to; m )  = 0 if less than m + 1 failures occur. 

The same number m of spares are assumed to be made available for each replace- 
ment interval. All intervals will therefore have the same stochastic properties, and 
we may therefore confine ourselves to studying the first interval (0, to). 

The mean cost in a replacement interval is c + k . E ( N ( t o ) )  + k ,  . E(f,(to;  m)), 
and the average cost Ci(t0;  m )  per time unit when using a block interval of length to 
is 
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Fig. 9.73 The average cost per time unit for a block replacement policy with no spares when 
the time to failure distribution is a Weibull distribution with a = 3 and h = 0.1, k = 10, 
k ,  = 3, and c = 3, 10, 20. 

where N ( t o )  is the number of replacements in (0, to). 

Example 9.11 
Consider an item that is operated under a block replacement policy without any spare 
item (rn = 0) in each block interval. In this case (9.28) can be written 

c + k . F( to )  + k ,  F ( t )  d t  
CB(t0; 0)  = 

to 

Let F ( t )  be a Weibull distribution with shape parameter a = 3 and scale parameter 
h = 0.1. In Fig. 9.13 Cg(to;  0) is plotted as a function of to for some selected cost 
values c, k ,  and k ,  that gives three different shapes. 

When the replacement period to tends toward infinity, the block replacement policy 
is equivalent to leave the item as it is, and not replace it. Then the average cost per 
time unit will tend to k,. When c = 3, the shape of the curve is quite similar to the 
corresponding curve for the classical age replacement policy with optimal replacement 
period. When c = 10, the optimal block replacement cost C,(to; 0) is close to k,. 
When to increases, Cg (to;  0 )  remains close to the replacement cost until the influence 
of f,, ( to)  becomes sufficiently large. When c = 20, the curve does not have a very 
distinctive minimum, and we may as well choose a very long replacement interval. 

Example 9.12 
Consider an item that is operated under a block replacement policy with rn spare items 
in each block interval. The time to failure T is assumed to be gamma distributed with 
parameters h and a.  The probability density function of T is 

The item function will be unavailable when the initial item and the rn spares have 
failed. The time to system failure is therefore T' = c?:' Ti where the times to 



PREVENTIVE MAINTENANCE POLICIES 389 

01 1 1 I 1  I 

0 5 10 15 20 25 30 
to 

Fig. 9.74 The average cost per time unit for a block replacement policy with m = 5 spares 
when the time to failure distribution is a gamma distribution with parameters a and A = 1, for 
(Y = 1 and 3, and k = 10, k ,  = 3, and c = 3. 

individual failure T I ,  T2, . . . , T,+1 are assumed to be independent and identically 
distributed with probability density function f r  ( t ) .  Let F ( m + ' ) ( t )  denote the dis- 
tribution function of T,. The distribution F('"+')( t )  can be found by taking the 
(rn + 1)-fold convolution of F ( t )  (see Section 7.3). Since the gamma distribution is 
"closed under addition," T, is gamma distributed with parameters h and (m + 1)a. 
In this case (9.28) can be written 

c + k . F'"+')(to) + k ,  . {: F c m f ' ) ( t )  dt  

(0 
Cb(t0; rn) = 

In Fig. 9.14 Cb (to; rn) is plotted as a function of to for some selected values of the 

The cost k of a repairheplacement in the block interval may also be extended to 
be time dependent and also to include other types of costs, for example, if the item 
deteriorates during the interval and will require increasing operating costs. 

parameter CY, and cost values c, k ,  and k,.  

9.6.3 Condition-Based Maintenance 

Condition-based maintenance (CBM) is a maintenance policy where the maintenance 
action is decided based on measurement of one, or more, variables that are correlated 
to a degradation, or a loss of performance, of the system. The variables may be 
physical variables (e.g., thickness of material, erosion percentage, temperature, or 
pressure), system per$omzance variables (e.g., quality of produced items or number 
of discarded items), or variables related to the residual life of the system. In the latter 
case, the expression predictive maintenance is often used instead of condition-based 
maintenance. 

The CBM policy requires a monitoring system that can provide measurements of 
selected variables, and a mathematical model that can predict the behavior of the 
system deterioration process. The type of maintenance action, and the date of the 
action are decided based on an analysis of measured values. A decision is often taken 
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fig. 9.15 Average deterioration with preventive and corrective replacement thresholds. 

when a measurement (of a variable) passes a predefined threshold value. The threshold 
values make it possible to divide the system state space into different decision areas, 
where each area represents a specific maintenance decision. This type of maintenance 
policy is often called a control limit policy and is obviously only relevant for systems 
with an increasing failure rate. 

Condition-Based Replacements We will now consider a special type of CBM 
with preventive replacements. Let Y ( t )  be a random variable describing the deterio- 
ration of the item at time t, and assume that Y ( t )  is measured on a continuous scale. 
The item is supposed to be deteriorating in such a way that Y ( t )  is nondecreasing as a 
function of t .  The item is inspected and the deterioration Y ( t )  is measured at specific 
points of time tl , t2 ,  . . .. The variable Y ( t )  is only measured at the inspections at times 
t l ,  t2, . . ,, and not between these points of time. When a measurement Y ( t )  p y,, 
the item should be preventively replaced. If a measurement Y ( t )  2 yc (> y,), the 
item is in a failed state and has to be correctively replaced. A failure is not detected 
immediately when Y ( t )  passes the failure limit y,. The failure will be detected at 
the first inspection after Y ( t )  has passed yc. The corrective replacement cost will 
be significantly higher than the preventive replacement cost. After a replacement 
(preventive or corrective) the item is assumed to be as good as new. The performance 
behavior is illustrated in Fig. 9.15. 

Example 9.13 
Consider the deterioration (wear) of the brake pads on the front wheels a car, and let 
Y ( t )  be the wear (the reduction of the thickness of the brake pads) at time t ,  where 
t is the number of kilometers driven since the brake pads were new. The wear Y ( t )  
is measured (controlled) when the car is at the garage for service at regular intervals 
of length T (e.g., 15000 km). The brake pads should be preventively replaced when 
the wear is greater than y,. If the wear is greater than y c ,  the brake effect is reduced, 
the pad holders will make scratches in the brake discs, and the discs will have to 
be replaced. The cost of this replacement will be significantly higher than the cost 
of only replacing the brake pads. In addition the risk cost due to reduced braking 
efficiency should be considered. 0 
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In some applications it has been found to be realistic to model the deterioration as 

1. Y ( 0 )  = 0. 

a gamma stochastic process { Y ( t ) ,  t 2 0}, with the following characteristics: 

2. The process [ Y ( t ) ,  r 1 0 )  has independent increments (see Section 7.1). 

3. For all 0 5 s < t ,  the random variable Y ( t )  - Y ( s )  has a gamma distri- 
bution with parameters (a ( t  - s), B ) ,  with probability density function (see 
Section 2.1 1) 

The mean deterioration in the interval (s, t )  is from (2.43): 

ff 
E [ Y ( t )  - Y ( s ) ]  = - ( t  - s) 

B 
When using the gamma process, the mean deterioration is therefore a linear function 
of time with deterioration speed (slope) alp, and not a convex function like the one 
illustrated in Fig. 9.15. The application of gamma processes to model deterioration 
is further discussed, for example, by Grall et al. (2002). 

Example 9.14 
Consider a condition-based replacement policy where the deterioration Y ( t )  is mod- 
eled by a gamma process. The mean deterioration is therefore a linear function of 
time. The system is inspected after regular intervals of length t. The deterioration 
Y ( t )  is measured at the inspections, and never between two inspections. Let AYi be 
the deterioration within inspection interval i ,  for i = 1,2, . . .. Since we have as- 
sumed a gamma process, A Y1, A Y 2 ,  . . ., will be independent and identically gamma 
distributed with distribution function F ( y ) .  Let p.t denote the mean deterioration in 
an inspection interval. The parameter p is hence the deterioration speed. 

Let c denote the cost of a preventive replacement, let k be the additional cost of 
a corrective replacement, and let kj be the cost of an inspection. In this example we 
will use heuristic arguments to determine the optimal interval t between inspections. 

Let n p  denote the mean number of inspections until the deterioration process 
reaches the preventive replacement threshold yp.  We then have that n p  . pt x y p .  
Since the crossing of the threshold y p  is only detected in the first inspection after it 
has been passed, the crossing will be detected in inspection ii, where 

i i,=*+1 
w 

The mean time between replacements with this replacement policy will therefore be 
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The average cost per replacement cycle is 

c + ki . n, + k . Pr(fai1ure) = c + ki n, + k Pr(AY > (yc  - y,)) 
= c + kj . n, + k * [ 1 - F ( y c  - y,)] 

The average cost CCB (t) per time unit using this policy is 

c + ki . n, + k . [1 - F ( y p  - yc)l 
C C B ( t )  = 

( Y p / W  + 1) . t 

(9.30) 

If we know the distribution function F ( y )  and the costs, (9.30) may be used to 
0 

- c + ki Y , / C L ~  + k .  [1 - F(yc  - yp) l  - 
( Y p / W  + 1) . T 

determine the optimal inspection interval t .  

Consider the condition-based replacement situation in Example 9.14, and assume 
that the deterioration process { Y ( t ) ,  t 2 0) can be modeled as a gamma process. The 
item is inspected at regular intervals of length t . The deteriorations AY1 , AY2, , . , are 
assumed to be independent and gamma distributed with probability density function 
f ( y )  given by (9.29) with parameters a t  and B.  (The time interval is t - s = t.) 

Let N(y, )  be the (smallest) number of inspection intervals until the accumu- 
lated deterioration has passed the preventive replacement threshold y,, that is, until 
zf=l AYi 2 y,. Notice that N ( y p )  = n is equivalent to Cyz: AYi < y ,  n 
Cyz; AYi + AY, 2 y,. The probability density function f ( " - ' ) ( y )  of zy:: AYj is 
the (n - 1) convolution of the probability density function f ( y )  for the deterioration 
AY in one interval. Since the gamma distribution is "closed under addition," the 
density f @ - ' ) ( y )  is a gamma distribution with parameters (n - 1)a t  and B .  

The mean number of inspection intervals until the deterioration process has crossed 
the threshold y p  is 

The mean time between replacements with replacement threshold y ,  is 

M T B N y , )  = E ( N ( y , J )  . t (9.32) 

where E ( N ( y , ) )  is given by (9.31). Let the cost of a preventive replacement be c, and 
k be the extra cost if a failure occurs. The mean total cost CCB (y,) in a replacement 
period with preventive replacement threshold y ,  is c + k ( 1  - F ( y ,  - y,)) where 
F ( y )  is the distribution function corresponding to the probability density function 
f ( y ) .  In this case we have assumed that the inspection cost ki is so small that it may 
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be disregarded. The inspection cost may, however, be included in the same way as 
in Example 9.14. The mean cost per time unit of this condition-based replacement 
policy is thus 

(9.33) 

Let CCB(Y,) denote the mean cost per time unit when we do not use a preventive 
replacement threshold y p ,  but replace the item only when the accumulated deteriora- 
tion has crossed the corrective replacement threshold y, .  The cost efficiency of the 
preventive replacement policy may now be evaluated based on the ratio 

(9.34) 
C C B ( Y ~ )  c + k . F ( Y ~  - ~ p )  MTBWYC) 
C C B  ( Y c )  c + k  MTBR(Y,) 
-- - 

The ratio (9.34) can be used to find the most cost-efficient preventive replacement 
threshold y,, for a given inspection interval t. The most cost-efficient inspection 
interval t for a specified threshold y p  may be determined by minimizing (9.33). 

Example 9.15 
Consider the same situation as described above, but assume that the deterioration AYi 
within inspection interval i is exponentially distributed with rate #?, for i = 1,2, . . .. 
Remember that the exponential distribution with rate #? is a gamma distribution with 
parameters 1 and p,  such that this is a special case of the situation described above 
wi tha  = 11s. 

The accumulated deterioration in the first k intervals is Y ( k  t) = xf=, AYi, that 
has a gamma (Erlangian) distribution with parameters k and #?. The mean deterioration 
in the interval (0, k t )  is E ( Y ( k r ) )  = a ( k s ) / # ?  = k / B .  

The mean time between replacements is from (9.32) 

MTBR(y,) = ( 0 .  y p  + 1) .  T (9.35) 

The ratio in (9.34) is in this case 

cCB(Y, )  I + r . e - b ( Y c - Y p )  j3 . yc + 1 

C C B  ( Y c )  l + r  B ' Y P + l  
-- - 

where r = k / c .  The ratio C C B ( Y ~ ) / C C B ( Y ~ )  is plotted in Fig. 9.16 as a function of 
Y,, ,  for #? = 3, y ,  = 2 and for r = 3,5, 10. From Fig. 9.16 we are able to determine 
the most cost-efficient preventive replacement threshold y, for the various values of 
r = k / c .  0 

Remark: The situation in Examples 9.14 and 9.15 is not always realistic, since the 
same inspection interval is applied throughout. In most practical applications, an 
observed deterioration close to the preventive replacement threshold y p  would imply 
a replacement action within a specified interval that is determined by the value of 
Y ( t ) .  If, for example, the wear of the brake pads in Example 9.13 is observed to be 
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Fig. 9.16 The ratio Cc~(y~)/Cc~(y,) plotted as a function of the preventive replacement 
threshold y p  for B = 3, y ,  = 2 and for r = 3,5, 10. 

so close to yp in the inspection at “time” t = 90,000 km that the repairman fears that 
they will pass y,  within the next inspection at “time” t = 105,000 km, the owner of 
the car may be advised to replace the brake pads before “time” t = 97,500 km, at 
the same time when he is due to change the motor oil. 

A simultaneous optimization of the preventive replacement threshold and the time 
to the next inspection (and replacement action) is discussed by Grall et al. (2002). 
More complex condition-based maintenance policies are discussed, for example, by 

0 Castanier (2001) and Btrenguer et al. (2003). 

9.6.4 PF Intervals 

We will now study an inspection and replacement policy known as the PF interval 
approach. The PF interval approach is briefly discussed in most of the main RCM 
references. 

Consider an item that is exposed to random shocks (events). We assume that the 
shocks occur as a homogeneous Poisson process (HPP) with rate A. The time between 
two consecutive shocks is then, according to Section 7.2, exponentially distributed 
with rate A and mean l / A .  When a shock occurs, it produces a weakness (potential 
failure) in the item that, in time, will develop/deteriorate into a critical failure. We 
are not able to observe the shocks but may be able to reveal potential failures some 
time after the shock has occurred. Let P be the point of time (after a shock) when 
an indication of a potential failure can be first detected, and let F be the point of 
time where the item has functionally failed. The time interval from P to F is called 
the PF interval and is generally a random variable. If a potential failure is detected 
between P and F in Fig. 9.17, this is the time interval in which it is possible to take 
action to prevent the failure and to avoid its consequences. The cost of a preventive 
replacement (or repair) is Cp, and the cost of a corrective replacement after a critical 
failure has occurred is Cc. 

The item is inspected at regular intervals of length t, and the cost of each inspection 
is CI. The inspections may be observations using human senses (sight, smell, sound), 
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Fig. 9.7 7 Average behavior and concepts used in PF interval models. 

or we may use some monitoring equipment. In the most simple setup we assume that 
the inspection procedure is perfect, such that all potential failures are detected by the 
inspection. In many cases this is not a realistic assumption, and the probability of 
successful detection may be a function of the time since P ,  the time of the year, and 
so on. Our main objective in this section is to find the optimal inspection interval t, 
that is, the value of 5 that gives the lowest mean average cost. 

The length of the PF interval will generally depend on the materials and charac- 
teristics of the item, the failure mode, the failure mechanisms, and the environmental 
and operational conditions. Estimates of PF intervals are not available in reliability 
data sources and must be estimated by expert judgment by operators, specialists on 
deteriorating mechanisms, and equipment designers. The length of the PF interval 
may be regarded as a random variable TPF with a subjective distribution function (see 
Chapter 13). 

Example 9.16 
Vatn and Svee (2002) have studied crack occurrences and crack detection in (railroad) 
rails. In their model cracks are initiated at random. The frequency h of initiated cracks 
may be measured as the number of initiated cracks per unit length of rails and per 
time unit. The frequency will generally depend on the traffic load, the material and 
geometry of the rail, and various environmental factors but may also be caused by 
particles on the rails or “shocks” from trains with noncircular wheels. In the first phase 
the cracks are very small and very difficult to detect. A special rail-car equipped with 
ultrasonic inspection equipment is used to inspect the rails. When a crack has grown 
to a specific size, it should be detectable by ultrasonic inspection. This crack size 
corresponds to the potential failure P described above. The PF interval is the time 
interval from an observable crack P is present until a critical failure F occurs. The 
critical failure F will, in this case, be breakage of a rail and possible derailment of a 
train. Ultrasonic inspection is carried out at regular intervals, at a rather high cost. It is 
therefore of interest to find an optimal inspection interval that balances the inspection 

0 

Our objective is to find the inspection interval 5 that minimizes the mean total 
cost. In the general setup this is a rather difficult task. We therefore start by solving 

cost and the costs related to replacements and potential accidents. 
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the problem in the most simple situation, with known (deterministic) PF interval and 
known repair time. Thereafter we present some ideas on how to solve the problem in 
a more realistic setup. 

Deterministic PF Interval and Repair Time and Perfect Inspection To simplify 
the problem we assume that the length of the PF interval tpF is known (deterministic). 
The time from when a potential failure P is detected (during the first inspection after 
P )  until the failure has been corrected, tR, is also assumed to be known (deterministic). 
We further assume that the inspections are perfect such that all potential failures are 
detected during the inspections. From Fig. 9.17 is is easy to see that we will have 
a preventive replacement when T - t + t~ < IpF, and a corrective replacement if 
t - t + t~ > fpF. If t + t R  < t p ~  all the replacements will be preventive, and there is 
no problem to optimize. We therefore assume that t + t R  > tpF (see the remark on 
page 397). 

Assume that we start observing the item at time t = 0, and that the potential 
failure P is observable a short time after the shock occurs. The time T from startup 
to P is exponentially distributed with failure rate A. Let N ( t )  denote the number 
of inspection intervals before a shock occurs. The event N ( t )  = n hence means 
that we observe n inspection intervals without any shock, and the shock occurs in 
inspection interval n + 1. The random variable N ( t )  has a geometric distribution 
(see Section 2.8) with point probability 

Pr (N( t )  = n )  = (e-")" (1  - e-*r)  for n = 0, 1, . . . 

and mean value 

Let us assume that a shock and an observable potential failure P has occurred in 
inspection interval n + 1. Let f denote the time from inspection n till P .  The 
probability distribution of f is 

A preventive replacement will therefore take place with probability 

A corrective replacement will take place with probability 

1 - e-A(r+fR-rPF) 

1 - e-kr ~ c ( t )  = p r ( f  < t + t R  - tpF) = 

If we know that the potential failure will result in a critical failure (corrective main- 
tenance), the mean time to this failure is l / A  + t p ~ .  On the other hand, if we know 
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that the potential failure will result in a preventive replacement, the mean time to 
this replacement is E ( N ( t )  + 1) . t + t R .  The mean time between replacements is 
therefore 

The mean total cost C T ( ~ )  in a replacement interval is 

C T ( r )  = c p  . ~ p ( t )  + ~c . ~ c ( t )  + C I  . ( E ( N ( ~ ) )  + Pr<F > t - tpF)) 

where Pr(F > t - f p ~ )  is the probability that the item will not fail within the inspection 
interval where the potential failure occurred, and consequently that the next inspection 
will be carried out. When t - tpF > 0 this probability is 

I e-A(r-tPF) - e-hr 

I - e-A.7 Pr(T r - tpF) = Pr(T > t - t p ~  1 T 5 t) = 

We therefore have that 

The mean total cost C r ( t )  in a replacement interval is therefore 

The mean total cost per time unit with inspection interval t is 

CT (r) C ( t )  = 
MTBR(t) 

(9.37) 

To find the value o f t  for which (9.37) attains its minimum is not a straightforward 
task. The optimal t may be found graphically by plotting C ( t )  as a function of t. 
An example is shown in Fig. 9.18. 
Remark: In the case when t + t R  < tpF all the replacements will be preventive, and 
the mean time between replacements is MTBR(r) = ( E ( N ( t ) )  + 1) . t + t R .  The 
total cost in a replacement period is C T ( ~ )  = C p  + C! . ( E ( N ( t ) )  + 1). The optimal 
replacement interval (with the restriction that t + t~ -= tpF) can therefore be found 
by minimizing 
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Fig. 9.18 The mean cost C ( t )  per time unit as a function of t for h = 1/12 months-', 
@F = 3 months, t R  = 0.5 month, C c  = 100, C p  = 20, and (21 = 15. 

Stochastic PF Interval, Deterministic Repair Time and Nonpetfect Inspection 
We now consider the same situation as described above but assume that the inspection 
is not perfect. In general, the probability of detecting a potential failure will depend 
on the time since the potential failure became observable. When a crack in the 
rail in Example 9.16 has been initiated, it will grow with time. The probability of 
detecting the crack is assumed to increase with the size of the crack. A model where 
the probability of successful detection is a function of the crack size will be rather 
complex. We therefore simplify the situation and introduce 0, (t) to be the probability 
that the potential failure is not detected in inspection i after an observable potential 
failure P has occurred, for i = 1,2,  . . .. The probability is assumed to be a function 
of the inspection interval t. We assume that 1 > 81 (t) ? 82(t) 2 . . . . 

The PF interval, TPF is assumed to be a random variable with distribution function 
FpF(f). The repair time t R  is assumed to be known (deterministic). Let TF = 
f + TPF. The variable TF is hence the time from the last inspection before P until a 
(possible) critical failure. The distribution of TF can be found by the convolution of 
the distribution o f f  and F p ~ ( t ) .  

(9.38) 

Let F F ( ~ )  = 1 - F F ( ~ ) ,  and let Z ( r )  denote the number of inspections carried out after 
a potential failure P has occurred. We want to find the probabilities Pr(Z(t) 2: k )  
fork = 0, 1, . . .. It is obvious that Pr(Z(t)  0) = 1. At least one inspection will 
be carried out if TF = f + TPF > t, that is, 

Pr(z(r)  >_ 1 )  = Pr(TF > t) = FF(r)  

At least two inspections will be carried out if TF > t, the failure is not detected in 
the first inspection, and if TF > 2 t .  Since Pr(TF > t n TF > 2 t )  = Pr(TF > 2t), 
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we get 

Pr(Z(r) L 2 )  = e l ( r )  . FF(2r) 

By continuing this argument we get in the general case that [we define eO(r) = 01 

for k = 1,2,. . . (9.39) 

The mean number of inspections is therefore (see Problem 2.7) 

03 

E(Z(r))  = x W Z ( r )  2 k )  = 
k= 1 

A preventive replacement will take place with probability 

Pp(r) = (1 - el(r))  .Pr(TF > T + t ~ )  
+Ol(r) . (1 - 02(r))  . Pr(TF > 2r + t ~ )  + 

which can be written as 

00 k -  1 

P p ( r )  = c (1 - & ( r ) )  n e j ( r )  . Pr(TF 7 kr + t ~ )  
k=l  j = O  

03 k - 1  
= c (1 - & ( r ) )  n e j ( r )  . FF(kr + t R )  (9.40) 

k= I j =O 

A corrective replacement will take place with probability Pc(r) = 1 - Pp(r).  Let 
Z p  (t) be the number of inspections that are carried out after a potential failure P has 
occurred, when we know that the item will be preventively replaced. By using the 
same argument as we used to find (9.39), we get 

k - 1  

pr(zp(r)  2 k )  = n e,(r)  
j=1 

and the mean value is 

k=l  j=1 

The mean time between replacements is therefore 
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The mean total cost C r ( t )  in a replacement interval is 

The optimal inspection interval t may in this case be determined as the value of z 
that minimizes C ( t )  = CT(t)/MTBR(t). 

The models described in this section may be extended in many different ways. An 
obvious extension is to let the repair time be a random variable TR.  Another extension 
is to let the time to potential failure P have an increasing failure rate function. 

Delay-Time Models Few references are available discussing quantitative assess- 
ment related to the PF interval approach. Some further developments have, however, 
be made based on the defuy-time concept that was introduced in maintenance appli- 
cations by Christer (1992). The delay-time model assumes that a failure is dependent 
on the occurrence of a defect (an incipient or potential failure). The time to failure 
T of an item can therefore be divided in two parts: (i) the time Tp from startup until 
a defect occurs and (ii) the delay-time TPF from when the defect occurred until the 
item fails. 

Several inspection models have been developed based on the delay-time principle 
covering, for example, imperfect inspections, nonconstant defect rate, and nonsta- 
tionary inspection rules (Christer 2002). Some of these models have been applied in 
industry [e.g., see Dekker (1996) and Scarf (1997), for a review of industrial appli- 
cations of delay-time models]. 

9.7 MAINTENANCE OPTIMIZATION 

Maintenance tasks and resources have traditionally been allocated based on (i) require- 
ments in legislation, (ii) company standards, (iii) recommendations from manufac- 
turers and vendors of the equipment, and (iv) in-house maintenance experience. The 
maintenance strategy development is illustrated in Fig. 9.19. Maintenance theory and 
maintenance models have, so far, very seldom been used to develop system-specific 
maintenance strategies (Dekker 1996). 

Many companies are faced with laws and regulations related to personnel safety and 
environmental protection that set requirements to their maintenance strategies. The 
oil companies operating in the Norwegian sector of the North Sea are, for example, 
required to test well barriers and safety functions according to regulations by the 
Norwegian Petroleum Directorate. 

Recommendations from manufacturers are not always based on real experience 
data. Many manufacturers get very little feedback from the users of their equipment 
after the guarantee period is over. It is also sometimes claimed that manufacturers’ 
recommendations may be more slanted toward maximizing the sales of consumable 
spares rather than minimizing the downtime for the user. Fear of product liability 
claims may also influence the manufacturers’ recommendations. 
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Fig. 9.19 Maintenance strategy development. 

Maintenance aspects should preferably be considered during system design from 
the early concept phase. However, all too often the maintainability considerations are 
postponed until it is too late to make any significant system changes. Detailed main- 
tenance strategies should also be established before the system is put into operation. 
Very often these strategies are only rudimentary and made on an ad hoc basis as prob- 
lems occur. A promising approach to maintenance optimization has been proposed 
by Vatn et al. (1996). 

9.7.1 Reliability Centered Maintenance 

As many modem maintenance practices, the reliability centered maintenance (RCM) 
concept originated within the aircraft industry. RCM has now been applied with 
considerable success for more than 25 years - first within the aircraft industry, and 
later within the military forces, the nuclear power industry, the offshore oil and gas 
industry, and many other industries. Experiences from these industries show signif- 
icant reductions in preventive maintenance (PM) costs while maintaining, or even 
improving, the availability of the systems.* 

Definition 9.6 Reliability centered maintenance is a systematic consideration of sys- 
tem functions, the way functions can fail, and a priority-based consideration of safety 

0 

The main focus of RCM is on the systemfunctions and not on the system hardware. 
The main objective of RCM is to reduce the maintenance cost by focusing on the most 
important functions of the system and avoiding or removing maintenance tasks that 
are not strictly necessary. If a maintenance program already exists, the result of an 
RCM analysis will often be to eliminate inefficient PM tasks. 

The RCM concept is described in several standards, reports, and textbooks. Among 
these are Nowlan and Heap (1978), IEC60300-3-11, SAE JA1012, NASA (2000), 

and economics that identifies applicable and effective PM tasks (EPRI). 

*This section is adapted from M. Rausand. 1998. Reliability centered maintenance, Reliahiliry Engineering 
ond Svsrrrn Safe8 60: 121-132. Copyright 1998, with permission from Elsevier. 
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DEF-STD 02-45 (2000), MIL-STD 2173 (AS), and Moubray (1997). The main ideas 
presented in the various sources are more or less the same, but the detailed procedures 
may be rather different. 

The maintenance tasks considered in the RCM approach are related to failures 
and functional degradation. Maintenance carried out, for example, to preserve or 
improve the aesthetic appearance of a system by cleaning and painting is outside the 
scope of RCM, at least when such maintenance has no effect on the system functions. 
However, planning of such tasks should be integrated with the planning of RCM 
relevant tasks. 

What is RCM? RCM is a technique for developing a PM program. It is based 
on the assumption that the inherent reliability of the equipment is a function of the 
design and the build quality. An effective PM program will ensure that the inherent 
reliability is maintained. It should be realized that RCM will never be a substitute 
for poor design, inadequate build quality, or bad maintenance practices. RCM cannot 
improve the inherent reliability of the system. This is only possible through redesign 
or modification. 

The application of PM is often misunderstood. It is easy to erroneously believe 
that the more an item is routinely maintained, the more reliable it will be. Often 
the opposite is the case, due to maintenance-induced failures. RCM was designed 
to balance the costs and benefits to obtain the most cost-effective PM program. To 
achieve this, the desired system performance standards have to be specified. PM 
will not prevent all failures, and therefore the potential consequences of each failure 
must be identified and the likelihood of failure must be known. PM tasks are chosen 
to address each failure by using a set of applicability and effectiveness criteria. To 
be effective, a PM task must provide a reduced expected loss related to personnel 
injuries, environmental damage, production loss, and/or material damage. 

An RCM analysis basically provides answers to the following seven questions. 

1. What are the functions and associated performance standards of the equipment 
in its present operating context? 

2. In what ways can it fail to fulfill its functions? 

3. What is the cause of each functional failure? 

4. What happens when each failure occurs? 

5. In what way does each failure matter? 

6. What can be done to prevent each failure? 

7. What should be done if a suitable preventive task cannot be found? 

Experience has shown that approximately 30% of the efforts of an RCM analysis is 
involved in defining functions and performance standards, that is, answering ques- 
tion 1. 
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Main Steps of an RCM Analysis The RCM analysis may be carried out as a 
sequence of activities or steps, some of which are overlapping in time. 

I .  Study preparation 

2.  System selection and definition 

3. Functional failure analysis (FFA) 

4. Critical item selection 

5. Data collection and analysis 

6 .  FMECA 

7. Selection of maintenance actions 

8. Determination of maintenance intervals 

9. Preventive maintenance comparison analysis 

10. Treatment of noncritical items 

1 I .  Implementation 

12. In-service data collection and updating 

The various steps are discussed in the following. 

Step 7 :  Study Preparation In step 1 an RCM project group is established. The 
project group must define and clarify the objectives and the scope of the analysis. Re- 
quirements, policies, and acceptance criteria with respect to safety and environmental 
protection should be made visible as boundary conditions for the RCM analysis. 

Overall drawings and process diagrams, like piping and instrumentation diagrams, 
must be made available. Possible discrepancies between the as-built documentation 
and the real plant must be identified. The resources that are available for the analysis 
are usually limited. The RCM group should therefore be sober with respect to what 
to look into, realizing that analysis cost should not dominate potential benefits. 

Step 2: System Selection and Definition Before a decision to perform an RCM 
analysis at a plant is taken, two questions should be considered. 

1 .  To which systems are an RCM analysis beneficial compared with more tradi- 
tional maintenance planning? 

2 .  At what level of assembly (plant, system, subsystem) should the analysis be 
conducted? 

All systems may in principle benefit from an RCM analysis. With limited resources, 
we must, however, make priorities, at least when introducing RCM in a new plant. 
We should start with the systems we assume will benefit most from the analysis. Most 
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operating plants have developed some sort of assembly hierarchy. In the offshore oil 
and gas industry this hierarchy is referred to as a tag number system. The following 
terms will be used for the levels of the assembly hierarchy: 

Plant is a set of systems that function together to provide some sort of output. An 
offshore gas production platform is, for example, considered to be a plant. 

System is a set of subsystems that perform a main function in the plant (e.g., 
generate electro-power, supply steam). The gas compression system on an offshore 
gas production platform may, for example, be considered as a system. Note that 
the compression system may consist of several compressors with a high degree of 
redundancy. Redundant items performing the same main function should be included 
in the same system. 

The system level is recommended as the starting point for the RCM analysis. This 
means that on an offshore oil/gas platform the starting point of the analysis should, 
for example, be the gas compression system, and not the whole platform. 

The systems may be broken down into subsystems, and subsubsystems, and so 
on. For the purpose of the RCM analysis, the lowest level of the hierarchy is called 
ma in ta ina ble items. 

Maintainable item is an item that is able to perform at least one significant function 
as a stand-alone item (e.g., pumps, valves, and electric motors). By this definition a 
shutdown valve is, for example, a maintainable item, while the valve actuator is not. 
The actuator is a supporting equipment to the shutdown valve and only has a function 
as part of the valve. The importance of distinguishing the maintainable items from 
their supporting equipment is clearly seen in the FMECA in step 6. If a maintainable 
item is found to have no significant failure modes, then none of the failure modes or 
causes of the supporting equipment are important, and therefore do not need to be 
addressed. Similarly, if a maintainable item has only one significant failure mode, 
then the supporting equipment only needs to be analyzed to determine if there are 
failure causes that may affect that particular failure mode. Therefore only the failure 
modes and effects of the maintainable items need to be analyzed in the FMECA in 
step 6. 

By the RCM approach all maintenance tasks and maintenance intervals are decided 
forthe maintainable items. When it comes to the execution of a particular maintenance 
task on a maintainable item, this will usually involve repair, replacement, or testing 
of an item or part of the maintainable item. These components/parts are identified in 
the FMECA in step 6. The RCM analyst should always try to keep the analysis at the 
highest practical indenture level. The lower the level, the more difficult it is to define 
performance standards. 

It is important that the maintainable items are selected and defined in a clear and 
unambiguous way in this initial phase of the RCM analysis, since the following steps 
of the analysis will be based on these items. 

Step 3: Functional Failure Analysis A specific system was selected in step 2. The 
objectives of this step are to: 

(i) Identify and describe the system’s required functions and performance criteria 
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Fig. 9.20 Functional failure analysis (FFA) worksheet. 

(ii) Describe input interfaces required for the system to operate 

(iii) Identify the ways in which the system might fail to function 

Step 3(i): Identification of System Functions The system will usually have a 
high number of different functions. It is essential for the RCM analysis that all the 
important system functions are identified. The analyst may benefit from using the 
approach outlined in Chapter 3 .  

Step 3(ii): Identification of Interfaces The various system functions may be repre- 
sented by functional block diagrams to illustrate the input interfaces to a function. In 
some cases we may want to split system functions into subfunctions on an increasing 
level of detail, down to functions of maintainable items. This may be accomplished 
by functional block diagrams or reliability block diagrams. 

Step 3(iii): Functional Failures The next step is a functional failure analysis (FFA) 
to identify and describe the potential system failure modes. In most of the RCM 
references the system failure modes are denoted functional failures. Classification 
schemes for failure modes were discussed in Chapter 3 .  Such schemes may be used 
to secure that all relevant functional failures are identified. 

The functional failures are recorded on a specific FFA worksheet, that is rather 
similar to a standard FMECA worksheet. An example of an FFA worksheet is shown 
in Fig. 9.20. In the first column of the worksheet the various operational modes of 
the system are recorded. For each operational mode, all the relevant system functions 
are recorded in column 2. The performance requirements to each function, like target 
values and acceptable deviations, are listed in column 3. For each system function (in 
column 2) all the relevant functional failures are listed in column 4. In columns 5 to 
8 a criticality ranking of each functional failure in that particular operational mode is 
given. The reason for including the criticality ranking is to be able to limit the extent 
of the further analysis by not wasting time on insignificant functional failures. For 
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complex systems such a screening is often important in order not to waste time and 
money. 

The criticality must be judged on the plant level and should be ranked in the four 
consequence classes: 

S: Safety of personnel 

E: Environmental impact 

A: Production availability 

M: Material loss 

For each of these consequence classes the criticality may be ranked as high (H), 
medium (M), low (L), or negligible (N), where the definition of the categories will 
depend on the specific application. If at least one of the four entries is medium (M) 
or high (H), the criticality of the functional failure should be classified as significant 
and be subject to further analysis. 

The frequency of the functional failure may also be classified in four categories. 
The frequency classes may be used to prioritize between the significant functional 
failures. If all the four criticality entries of a functional failure are low or negligible, 
and the frequency is also low, the failure is classified as insignificant and disregarded 
in the further analysis. 

Step 4: Critical /tern Selection The objective of this step is to identify the maintain- 
able items that are potentially critical with respect to the functional failures identified 
in step 3 (iii). These maintainable items are denotedfunctional signzjkant items (FSI). 
Note that some of the less critical functional failures are disregarded at this stage of 
the analysis. 

For simple systems the FSIs may be identified without any formal analysis. In 
many cases it is obvious which maintainable items have influence on the system 
functions. 

For complex systems with an ample degree of redundancy or with buffers, we may 
need a formal approach to identify the FSIs. Depending on the complexity of the sys- 
tem, importance ranking based on techniques like fault tree analysis, reliability block 
diagrams, or Monte Carlo simulation may be suitable. In a petroleum production 
plant there is often a variety of buffers and rerouting possibilities. For such systems, 
Monte Carlo next event simulation may often be the only feasible approach. 

In addition to the FSIs, we should identify items with high failure rate, high repair 
costs, low maintainability, long lead time for spare parts, and items requiring external 
maintenance personnel. These maintainable items are denoted maintenance cost 
significant items (MCSI). The combination of the FSIs and the MCSIs are denoted 
maintenance sign$cant items (MSI). 

In the FMECA in step 6, each of the MSIs will be analyzed to identify potential 
failure modes and effects. 
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Step 5: Data Collection and Analysis The various steps of the RCM analysis 
require a variety of input data, like design data, operational data, and reliability data. 
Reliability data sources are discussed in Chapter 14. Reliability data is necessary to 
decide the criticality, to mathematically describe the failure process, and to optimize 
the time between PM tasks. 

In some situations there is a complete lack of reliability data. This is the case when 
developing a maintenance program for new systems. The maintenance program 
development starts long before the equipment enters service. Helpful sources of 
information may then be experience data from similar equipment, recommendations 
from manufacturers, and expert judgments. The RCM method will even in this 
situation provide useful information. 

Step 6: Failure Modes, Effects, and Criticality Analysis The objective of this 
step is to identify the dominant failure modes of the MSIs identified in step 4. A 
variety of different FMECA worksheets are proposed in the main RCM references. 
The FMECA worksheet used in our approach is presented in Fig. 9.21 and is more 
detailed than most of the FMECA worksheets in the main RCM references. The 
various columns in our FMECA worksheet are as follows: 

0 M S I .  In this column we record the maintainable item number in the assembly 
hierarchy (tag number), optionally with a descriptive text. 

0 Operational mode. The MSI may have various operational modes, for example, 
running and standby. The operational modes are listed, one by one. 

0 Function. The various functions for each operational mode of the MSI are 
listed. 

0 Failure mode. The failure modes for each function are listed. 

Effect of failureheverity class. The effect of a failure is described in terms of 
the “worst-case” outcome for the S ,  E, A, and C categories introduced in step 
3 (iii). The criticality may be specified by the same four classes as in step 3 (iii), 
or by some numerical severity measure. A failure of an MSI will not necessarily 
give a worst-case outcome resulting from redundancy, buffer capacities, and 
the like. Conditional likelihood columns are therefore introduced. 

0 Worst-case probability. The worst-case probability is defined as the probability 
that an equipment failure will give the worst-case outcome. To obtain a nu- 
merical probability measure, a system model is sometimes required. This will 
often be inappropriate at this stage of the analysis, and a descriptive measure 
may be used. 

0 M7TF.  Mean time to failure for each failure mode is recorded. Either a numer- 
ical measure or likelihood classes may be used. 

The information described so far should be entered for all failure modes. A screen- 
ing may now be appropriate, giving only dominant failure modes, that is, items with 
high criticality. 
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0 Criticality. The criticality field is used to tag off the dominant failure modes 
according to some criticality measure. A criticality measure should take failure 
effect, worst-case probability, and MTTF into account. “Yes” is used to tag off 
the dominant failure modes. 

For the dominant failure modes the following fields are required: 

0 Failure cause. For each failure mode there may be several failure causes. An 
MSI failure mode will typically be caused by one or more component failures. 
Note that supporting equipment to the MSIs entered in the FMECA worksheet 
is for the first time considered in this step. In this context a failure cause may 
therefore be a failure mode of a supporting equipment. A “fail to close” failure 
of a safety valve may, for example, be caused by a broken spring in the failsafe 
actuator. 

0 Failure mechanism. For each failure cause, there is one or several failure 
mechanisms. Examples of failure mechanisms are fatigue, corrosion, and wear. 

0 %M7TF. The MTTF was entered on an MSI failure mode level. It is also inter- 
esting to know the (marginal) MTTF for each failure mechanism. To simplify, 
a percent is given, and the (marginal) MTTF may be estimated for each failure 
mechanism. The %MTTF will obviously only be an approximation since the 
effects of the various failure mechanisms usually are strongly interdependent. 

0 Failure characteristic. Failure propagation may be divided into three classes. 

1. The failure propagation may be measured by one or several (condition 
monitoring) indicators. The failure is referred to as a gradual failure. 

2.  The failure probability is age dependent, that is, there is a predictable 
wear-out limit. The failure is referred to as an aging failure. 

3. Complete randomness. The failure cannot be predicted by either condition 
monitoring indicators or by measuring the age of the item. The time to 
failure can only be described by an exponential distribution, and the failure 
is referred to as a sudden failure. 

0 Maintenance action. For each failure mechanism, an appropriate maintenance 
action may hopefully be found by the decision logic in step 7. This field can 
therefore not be completed until step 7 is performed. 

0 Failure characteristic measure. For gradual failures, the condition monitoring 
indicators are listed by name. Aging failures are described by an aging param- 
eter, that is, the shape parameter (a) in the Weibull distribution is recorded. 

0 Recommended maintenance interval. In this column the interval between con- 
secutive maintenance tasks is given. The length of the interval is determined 
in step 8. 
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Step 7: Selection of Maintenance Actions This step is the most novel compared 
to other maintenance planning techniques. A decision logic is used to guide the 
analyst through a question and answer process. The input to the RCM decision logic 
is the dominant failure modes from the FMECA in step 6. The main idea is for each 
dominant failure mode to decide whether a PM task is applicable and effective or 
it will be best to let the item deliberately run to failure and afterwards carry out a 
corrective maintenance task. There are generally three main reasons for doing a PM 
task: 

1. To prevent a failure 

2.  To detect the onset of a failure 

3. To discover a hidden failure 

The following basic maintenance tasks are considered: 

1 .  Scheduled on-condition task 

2.  Scheduled overhaul 

3. Scheduled replacement 

4. Scheduled function test 

5. Run to failure 

Scheduled on-condition task is a task to determine the condition of an item, for 
example, by condition monitoring. There are three criteria that must be met for an 
on-condition task to be applicable. 

1. It must be possible to detect reduced failure resistance for a specific failure 
mode. 

2.  It must be possible to define a potential failure condition that can be detected 
by an explicit task. 

3. There must be a reasonable consistent age interval between the time of potential 
failure (P) is detected and the time of functional failure (F). 

The time interval from which it is possible to reveal a potential failure (P) by the 
currently used monitoring technique until a functional failure (F) occurs is called the 
PF interval. The PF interval can be regarded as the potential warning time in advance 
of a functional failure. The longer the PF interval, the more time one has to make a 
good decision and plan actions. PF intervals were discussed on page 394. 

Scheduled overhaul of an item may be performed at or before some specified 
age limit and is often called hard time maintenance. An overhaul task is considered 
applicable to an item only if the following criteria are met: 

1. There must be an identifiable age at which there is a rapid increase in the item’s 
failure rate function. 
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2 .  A large proportion of the items must survive to that age. 

3 .  It must be possible to restore the original failure resistance of the item by 
reworking it. 

Scheduled replacement is replacement of an item (or one of its parts) at or before 
some specified age or time limit. A scheduled replacement task is applicable only 
under the following circumstances: 

1 .  The item must be subject to a critical failure. 

2. The item must be subject to a failure that has major potential consequences. 

3 .  There must be an identifiable age at which the item shows a rapid increase in 
the failure rate function. 

4. A large proportion of the items must survive to that age. 

Scheduled function test is a scheduled failure-finding task or inspection of a hidden 
function to identify failures. Failure-finding tasks are preventive only in the sense 
that they prevent surprises by revealing failures of hidden functions. A scheduled 
function test task is applicable to an item under the following conditions: 

1. The item must be subject to a functional failure that is not evident to the op- 
erating crew during the performance of normal duties: tasks that have to be 
based on information about the failure rate function, the likely consequences 
and costs of the failure the PM task is supposed to prevent, the cost and risk of 
the PM task, and so on. 

2 .  The item must be one for which no other type of task is applicable and effective. 

Run to failure is a deliberate decision to run to failure because the other tasks are 
not possible or the economics are less favorable. 

Preventive maintenance will not prevent all failures. Consequently, if there is a 
clear identifiable failure mode that cannot be adequately addressed by an applicable 
and effective PM task that will reduce the probability of failure to an acceptable level, 
then there is need to redesign or modify the item. If the consequences of failures 
are related to safety or the environment, redesign will normally be mandatory. For 
operational and economic consequences of failure this may be desirable, but a cost- 
benefit assessment has to be performed. The criteria given for using the various tasks 
should only be considered as guidelines for selecting an appropriate task. A task 
might be found appropriate even if some of the criteria are not fulfilled. 

A variety of different RCM decision logic diagrams are used in the main RCM 
references. Some of these are rather complex. The decision logic diagram shown in 
Fig. 9.22 is much simpler than those found in  other RCM references. The resulting 
maintenance tasks will, however, in many cases be the same. It should be emphasized 
that such a logic can never cover all situations. In the case of a hidden function with 
aging failures, a combination of scheduled replacements and function tests is required. 
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Fig. 9.22 Maintenance task assignment/decision logic. 

Step 8: Determination of Maintenance Intervals Some of the PM tasks are to 
be performed at regular intervals. To determine the optimal interval is a very difficult 
task that has to be based on information about the failure rate function, the likely 
consequences and costs of the failure the PM task is supposed to prevent, the cost and 
risk of the PM task, and so on. Some models were discussed in Section 9.6. 

In practice the various maintenance tasks have to be grouped into maintenance 
packages that are carried out at the same time, or in a specific sequence. The main- 
tenance intervals can therefore not be optimized for each single item. The whole 
maintenance package has, at least to some degree, to be treated as an entity. 

Step 9: Preventive Maintenance Comparison Analysis Two overriding criteria 
for selecting maintenance tasks are used in RCM. Each task selected must meet two 
requirements: 

1. It must be applicable. 

2. It must be effective. 

Applicability means that the task is applicable in relation to our reliability knowledge 
and in relation to the consequences of failure. If a task is found based on the preceding 
analysis, it should satisfy the applicability criterion. A PM task is applicable if it can 
eliminate a failure, or at least reduce the probability of the occurrence of failure to an 
acceptable level, or reduce the impact of the failure. 

Cost-effectiveness means that the task does not cost more than the failure(s) it is 
going to prevent. 



MAINTENANCE OPTIMIZATION 413 

A PM task’s effectiveness is a measure of how well it accomplishes its purpose 
and if it is worth doing. Clearly, when evaluating the effectiveness of a task, we are 
balancing the cost of performing the maintenance with the cost of not performing it. 
The cost of a PM task may include: 

I .  The riskkost related to maintenance induced failures 

2.  The risk the maintenance personnel is exposed to during the task 

3. The risk of increasing the likelihood of failure of another item while the one is 
out of service 

4. The use and cost of physical resources 

5. The unavailability of physical resources elsewhere while in use on this task 

6. Production unavailability during maintenance 

7. Unavailability of protective functions during maintenance 

In contrast, the cost of a failure may include: 

1 .  The consequences of the failure should it occur (loss of production, possible vi- 
olation of laws or regulations, reduction in plant or personnel safety, or damage 
to other equipment) 

2 .  The consequences of not performing the PM task even if a failure does not 
occur (e.g., loss of warranty) 

3 .  Increased premiums for emergency repairs (such as overtime, expediting costs, 
or high replacement power cost) 

Step 70: Treatment of non-MSk In step 4 critical items (MSIs) were selected for 
further analysis. A remaining question is what to do with the items which are not 
analyzed. For plants already having a maintenance program, a brief cost evaluation 
should be carried out. If the existing maintenance cost related to the non-MSIs is 
insignificant, it is reasonable to continue this program. See Paglia et al. (1991) for 
further discussion. 

Step 7 7: implementation A necessary basis for implementing the result of the 
RCM analysis is that the organizational and technical maintenance support functions 
are available. A main issue is therefore to ensure that these support functions are 
available. Experience shows that many accidents occur either during maintenance 
or because of inadequate maintenance. When implementing a maintenance program 
it is therefore of vital importance to consider the risk associated with the various 
maintenance tasks. For complex maintenance operations it may be relevant to perform 
a job safety analysis combined with a human HAZOP to reveal possible hazards and 
human errors related to the maintenance task. See also Hoch (1990) for a further 
discussion on implementing the RCM analysis results. 
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Step 12: ln-service Data Collection and Updating The reliability data we have 
access to at the outset of the analysis may be scarce, or even second to none. In our 
opinion, one of the most significant advantages of RCM is that we systematically 
analyze and document the basis for our initial decisions and, hence, can better utilize 
operating experience to adjust that decision as operating experience data become 
available. The full benefit of RCM is therefore only obtained when operation and 
maintenance experience is fed back into the analysis process. 

The updating process should be concentrated on three major time perspectives: 

1. Short-term interval adjustments 

2.  Medium-term task evaluation 

3. Long-term revision of the initial strategy 

For each significant failure that occurs in the system, the failure characteristics should 
be compared with the FMECA. If the failure was not covered adequately in the 
FMECA, the relevant part of the RCM analysis should, if necessary, be revised. 

The short-term update may be considered as a revision of previous analysis results. 
The input to such an analysis is updated failure information and reliability estimates. 
This analysis should not require much resources, as the framework for the analysis 
is already established. Only steps 5 to 8 in the RCM process will be affected by 
short-term updates. 

The medium-term update should carefully review the basis for the selection of 
maintenance tasks in step 7. Analysis of maintenance experience may identify sig- 
nificant failure causes not considered in the initial analysis, requiring an updated 
FMECA in step 6. 

The long-term revision should consider all steps in the analysis. It is not sufficient 
to consider only the system being analyzed; it is required to consider the entire plant 
with its relations to the outside world, for example, contractual considerations, new 
laws regulating environmental protection, and so on. 

9.7.2 Total Productive Maintenance 

Total productive maintenance (TPM) is an approach to maintenance management that 
was developed in Japan (Nakajima 1988) to support the implementation of just-in- 
time manufacturing and associated efforts to improve product quality. TPM activities 
focus on eliminating the six major losses: 

0 Availability losses 

1. Equipment failure (breakdown) losses. Associated costs include down- 

2.  Setup and adjustment losses that occur during product changeovers, shift 

time, labor, and spare part cost. 

change, or other changes in operating conditions 

0 Performance (speed) losses 
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3. Idling and minor stoppages that typically last up to 10 minutes. These 
include machine jams and other brief stoppages that are difficult to record 
and consequently usually are hidden from efficiency reports. When com- 
bined, they can represent substantial equipment downtime. 

4. Reduced speed losses that occur when equipment must be slowed down 
to prevent quality defects or minor stoppages. In most cases, this loss is 
not recorded because the equipment continues to operate, albeit at a lower 
speed. Speed losses obviously have a negative effect on productivity and 
asset utilization. 

0 Quality losses 

5 .  Defects in process and reworking losses that are caused by manufacture 
of defective or substandard products that must be reworked or scrapped. 
These losses include the labor and material costs (if scrapped) associated 
with off-specification production. 

6.  Yield losses reflect the wasted raw materials associated with the quantity 
of rejects and scrap that result from startups, changeovers, equipment 
limitations, poor product design, and so on. It excludes the category 5 
defect losses that result during normal production. 

The six major losses determine the overall equipment effectiveness (OEE), which 
is a multiplicative combination of equipment availability losses (1 and 2), equipment 
performance losses (3 and 4), and quality losses (5 and 6). The time concepts used 
in TPM are illustrated in Fig. 9.23. The factors used to determine the OEE are: 

Operational availability A 0  = t F / f R  

Performance rate RP = tN/tF 

Quality rate RQ = t U / t F  

The quality rate may alternatively be measured as 

No. of processed products - No. of rejected products 
No. of processed products 

Quality rate = RQ = 

The OEE is defined as 

OEE = A 0  * R p  . RQ (9.43) 

The OEE is used as an indicator of how well machines, production lines, and processes 
are performing in terms of availability, performance, and quality. An OEE p 85% is 
considered to be “world class.” 

Total productive maintenance has been described as a partnership approach to 
maintenance. Under TPM, small groups or teams create a cooperative relationship 
between maintenance and production. Production workers become involved in per- 
forming maintenance work allowing them to play a role in equipment monitoring 
and upkeep. This raises the skill of production workers and allows them to be more 
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Fig. 9.23 Time concepts used in total productive maintenance. 

effective in maintaining the equipment in good condition. Team-based activities play 
an important role in TPM. Team-based activities involve groups from maintenance, 
production, and engineering. The technical skill of engineers and the experience 
of maintenance workers and equipment operators are communicated through these 
teams. The objective of the team-based activities is to improve equipment perfor- 
mance through better communication of current and potential equipment problems. 
Maintainability improvement and maintenance prevention are two team-based TPM 
activities. TPM has several benefits. The efforts of maintenance improvement teams 
should result in improved equipment availability and reduced maintenance costs. 
Maintainability improvement should result in increased maintenance efficiency and 
reduced repair time. TPM resembles total quality management (TQM) in several 
aspects, such as (i) total commitment to the program from upper level management is 
required, (ii) employees must be empowered to initiate corrective actions, and (iii) a 
long range outlook must be accepted as TPM may take a year or more to implement 
and is an ongoing process. 

PROBLEMS 

9.1 Consider an item that is replaced with a new item of the same type after regular 
intervals of length t. If the item fails within a replacement interval, it is repaired to 
an “as good as new” condition. Show that the limiting availability A of the item does 
not exist. 

9.2 hours-’. When the item fails, 
it is repaired to an “as good as new” condition. The associated mean downtime is 6 
hours. The item is supposed to be in continuous operation. 

An item has constant failure rate h = 5 . 
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(a) Find the average availability A,, of the item. 

(b) How many hours per year will the item on average be out of operation? 

9.3 Consider an item with time to failure T that has a Weibull distribution with 
shape parameter 2.25 and scale parameter h = 4 . lop4 hours-'. When the item 
fails it is repaired to an as good as new condition. The repairtime (downtime) D 
has a lognormal distribution with median equal to 4.5 hours, and error factor 2 (see 
Section 2.14). The item is supposed to be in continuous operation. 

(a) Find the average availability of the item. 

(b) A preventive maintenance task that takes 5 hours is performed every 300 hours. 
Find the operational availability of the item. 

9.4 An machine with constant failure rate h = 2 .  lop3 hours-' is operated 8 hours 
per day, 230 days per year. The mean downtime required to repair the machine and 
bring it back into operation is MDT = 5 hours. The machine can only fail during 
active operation. If a repair action cannot be completed within normal working hours, 
overtime will be used to complete the repair such that the machine is available next 
morning. 

(a) Determine the average availability of the machine (during the planned working 
hours). 

(b) Determine the average availability of the machine if the use of overtime were 
not allowed. 

9.5 An item is exposed to wear and has failure rate function z1 ( t )  = Pt .  

(a) Determine the survival probability R ( t )  of the item at time f = 2000 hours, 
when = 5 . lov8 hours-*. 

The item will be overhauled after regular intervals of length t. We assume that the 
overhaul will reduce the failure rate and that we may use the following model: 

z ( t )  = Pt - a k t  for k t  i t 5 (k  + 1)t 
where k is the number of overhauls after time t = 0. 

(b) Draw a sketch of Z ( t ) .  Explain what is meant by the term a k r .  Do you consider 
this model to be realistic? 

(c) Determine the survival probability R ( t )  for time t = k r ,  that is, just before 
overhaul k .  Draw a sketch of R(r) as a function of t .  

(d) Find the conditional probability that the item is functioning just before overhaul 
k + 1, when you know that it was functioning just before overhaul k .  
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9.6 Consider the age replacement policy, and find the mean time between actual 
item failures, E ( Y i )  by equation (9.24) when the distribution of the time to failure T 
of the item has 

(a) An exponential distribution with failure rate A. Give a “physical” interpretation 
of the result you get. 

(b) A gamma distribution with parameters (2, A). 

9.7 Show that the mean time between replacements in Example 9.15 is equal to 
(B . Y p  + 1) ’ t. 

9.8 Consider the block replacement policy that is described on page 387, and find 
the optimal number of spares when the cost of a spare, c,, per spare item and per time 
unit is included. 

(a) Determine the optimal average maintenance cost including the average spare 
cost as a function of the block replacement time to and the number m of sparse 
units. 

(b) Plot the curve of the optimal average maintenance cost as a function of m. 
Assume that the time to failure T has a gamma distribution with parameters 
(a, B ) .  Select realistic values for the necessary input parameters and generate 
the plot. 

9.9 Use a spreadsheet program (like Excel) to generate 20 pseudo-random numbers 
in the interval (0, 1). Use the transformation illustrated in Fig. 9.7 to generate corre- 
sponding times to failure that are Weibull distributed with scale parameter A = 5 .  lop5 
hours-’ and shape parameter a = 2.7. Find the sample mean and the sample stan- 
dard deviation, and compare with the mean and standard deviation of the Weibull 
distribution. 



10 
Reliability of Safety Systems 

10.1 INTRODUCTION 

In this chapter we discuss reliability aspects of safety systems that are designed to be 
activated upon hazardous process deviations (process demands) to protect people, the 
environment, and material assets. In Example 3.2 we discussed the safety systems of 
a gas/oil separator. The safety system had three protection layers: 

I .  An inlet shutdown system comprising pressure sensors, a logic solver, and 
shutdown valves 

2. A pressure relief system comprising two pressure relief valves 

3. A rupture disc 

In Example 3.2 the process demand was a blockage of the gas outlet line. The process 
demand will cause a rapid increase of the pressure in the separator, and the separator 
might rupture if safety systems were not available. The system the protection layers 
are installed to protect is often referred to as the equipment under control (EUC). In 
this example, the EUC is the separator. An EUC may have several hazardous process 
demands that require their own safety systems. In the process industry, the potential 
process demands are usually identified by a hazards and operability (HAZOP) study 
(e.g., see IEC61882). 

Process demands may be classified according to their frequency of occurrence. 
Some process demands occur so frequently that the safety system is operated almost 
continuously. An example of such a safety system is the brakes of a car. “Process” 
demands for the brakes will occur several times each time we drive the car, and brake 

419 

System Reliability Theory: Models and Statistical Method> 
Marvin Rausand,Arnljot Hoylanc 

Cowriaht 0 2004 bv John Wilev & Sons. Inc 



420 RELIABILITY OF SAFETY SYSTEMS 

Detectors Logic solver Actuating items 

Fig. 70.7 Sketch of a simple safety instrumented system (SIS). 

failures and malfunctions may therefore be detected almost immediately. The brakes 
are said to be a safety system with a high demand mode of operation. 

Other process demands occur very infrequently and the safety system is therefore 
in a passive state for long periods of time. An example of such a system is the airbag 
system in a car. The airbag system remains passive until a “process” demand occurs, 
and is said to be a safety system with a low demand mode of operation. Such a safety 
system may fail in passive state, and the failure may remain hidden until a process 
demand occurs or until the system is tested. To reveal hidden failures, safety systems 
with low demand mode of operation are normally function tested at regular intervals. 

A safety system composed of sensors, logic solvers, and actuating items is called a 
safety instrumented system (SIS). A brief introduction to SISs is given in Section 10.2. 
Several standards have been issued setting requirements to safety instrumented sys- 
tems. The most important of these standards is IEC61508 “Functional safety of 
electricaVelectronic/programmable electronic safety-related systems” that is briefly 
introduced in Section 10.6. 

In Section 10.3 we introduce the main reliability models for the elements of safety 
systems and discuss various issues related to the analysis of such systems. The discus- 
sion is mainly limited to systems with a low demand of operation, that are periodically 
tested. Problems related to common cause failures and spurious activation of the sys- 
tems are discussed. A Markov approach to analyzing safety systems is introduced in 
Section 10.8. 

10.2 SAFETY INSTRUMENTED SYSTEMS 

A safety instrumented system (SIS) is an independent protection layer that is in- 
stalled to mitigate the risk associated with the operation of a specified hazardous 
system, which is referred to as the equipment under control (EUC). The EUC may be 
various types of equipment, machinery, apparatus, or plant used for manufacturing, 
process, transportation, medical, or other activities. An SIS is composed of sensors, 
logic solvers, and actuating items.’ The actuating items may, for example, be shut- 
down valves or brakes. A sketch of a simple SIS is shown in Fig. 10.1. SISs are used 
in many sectors of our society, for example, as emergency shutdown systems in haz- 

‘Actuating items are called final elements in some standards. 
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ardous chemical plants, fire and gas detection and alarm systems, pressure protection 
systems, dynamic positioning systems for ships and offshore platforms, automatic 
train stop (ATS) systems, fly-by-wire operation of aircraft flight control surfaces, 
antilock brakes, and airbag systems in automobiles, and systems for interlocking 
and controlling the exposure dose of medical radiotherapy machines. Recent devel- 
opments include network-based safety-related systems, often facilitated by Internet 
technology. 

A safety instrumented function (SIF) is a function that is implemented by an SIS 
and that is intended to achieve or maintain a safe state for the EUC with respect to a 
specific process demand. An SIS may consist of one or more SIFs. 

In addition to the elements that are illustrated in Fig. 10.1 (detectors, logic solver, 
and actuating items) an SIS will usually comprise electric power supply, user inter- 
face, pneumatic and/or hydraulic system, electrical connections, and various process 
connections. 

In the standard IEC61508 an SIS is referred to as an “electrical/electronic/pro- 
grammable electronic (E/E/PE) safety-related system.” 

Main Functions An SIS has two main system functions: 

I .  When a predefined process demand (deviation) occurs in the EUC, the deviation 
shall be detected by the SIS sensors, and the required actuating items shall be 
activated and fulfill their intended functions. 

2. The SIS shall not be activated spuriously, that is, without the presence of a 
predefined process demand (deviation) in the EUC. 

A failure to perform the first system function is called afail tofunction (FTF), and a 
failure of the second function is called a spurious trip (ST). 

Example 10.1 Safety Systems on Offshore Oil and Gas Platforms 
The safety systems on an offshore oil and gas platform are usually grouped into three 
categories: 

1.  Process control (PC) system 

2. Process Shutdown (PSD) system 

3. Fire and gas detection (FGD) and emergency shutdown (ESD) system 

The objective of the process control system is to keep an EUC process within preset 
limits. Various process control valves and regulators are used to control the process, 
based on signals from temperature, pressure, level, and other types of transmitters. 
When the process deviates from normal values, the process shutdown system is ac- 
tivated and will close down the EUC. The required actions for each type of devia- 
tion/demand is programmed into the logic solver. The actions may involve activation 
of alarms, closure of shutdown valves, and opening of relief valves. The process 
control and process shutdown systems are local systems that are related to a specific 
EUC. For some types of process demands that have a potential for a major accident 



422 RELIABILITY OF SAFETY SYSTEMS 

the ESD system is activated. Relevant process demands include fires, gas leaks, and 
loss of main power. The required ESD actions are usually grouped into several levels, 
depending on the type of deviatioddemand that is detected and where it is detected. 
The top ESD level will usually involve shutdown of the whole platform and evacuation 
of the personnel. 0 

10.2.1 Testing of SIS Functions 

Many SISs are passive systems that are only activated when a specified process de- 
mand occurs in the EUC. A fire detection and extinguishing system should, for ex- 
ample, only be activated when a fire occurs. Such a system may fail in the passive 
position and the failure may remain undetected (hidden) until the system is activated 
or tested. 

Diagnostic Self-Testing In modem SISs the logic solver is often programmable 
and may carry out diagnostic selftesting during on-line operation. The logic solver 
may send frequent signals to the detectors and to the actuating items and compare the 
responses with predefined values. The diagnostic testing can reveal failures of input 
and output devices, and to an increasing degree, also failures of detectors and actuating 
items. In many cases the logic solver consists of two or more redundant computers 
that can carry out diagnostic self-testing of each other. The fraction of failures that 
can be revealed by diagnostic self-testing is called the diagnostic coverage. The 
self-testing may be carried out so often that failures are detected almost immediately. 

Function Testing The diagnostic self-testing cannot reveal all failure modes and 
failure causes, and the various parts of the SIS are therefore often function tested at 
regular intervals. The objective of a function test is to reveal hidden failures, and 
to verify that the system is (still) able to perform the required functions if a process 
demand should occur. It is sometimes not feasible to carry out a fully realistic function 
test, because it may not be technically feasible or be very time consuming. Another 
reason may be that the test itself leads to unacceptable hazards. It is, for example, 
not realistic to fill a room with toxic gases to test a gas detector. The gas detector is 
rather tested with a nontoxic test gas that is directly input to the gas detector through 
a test pipe. 

Consider a safety valve that is installed in a pipeline. During normal operation 
the valve is kept in open position. If a specified process demand occurs, the valve 
should close and stop the flow in the pipeline. A realistic test of the safety valve 
would imply to close the valve and apply a pressure to the upstream side of the valve 
that is equal to the maximum expected shut-in pressure in a demand situation. This 
may not be possible, and we may have to suffice with only checking that the valve 
is able to close on demand, and perhaps to check the valve for leakage with normal 
shut-in pressure. In some cases it may be possible to pressure test the valve from 
the downstream side. In this case, we may be able to test the valve to maximum 
shut-in pressure, but the wrong side of the seals is tested. In some situations it may be 
hazardous to shut down a flow, and closure of the valve should therefore be avoided. 
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Some valve functions may be tested by partly closing the valve (a gate valve may be 
moved some few millimeters, and a ball valve may be rotated some degrees). This 
type of testing is called partial stroke testing, 

Some actuating items employ an actuating principle that is not possible to function 
test without destroying the item. This is, for example, the case for the pyrotechnic 
seat belt tensioners in automobiles. 

10.2.2 Failure Classification 

A general introduction to failures and failure classification was given in Chapter 3. For 
an SIS and the SIS subsystems we may use the following failure mode classification 
(see IEC61508): 

1. Dangerous (D) .  The SIS does not fulfill its required safety-related functions 
upon demand. These failures may further be split into: 

(a) Dangerous undetected (DU). Dangerous failures are preventing activation 
on demand and are revealed only by testing or when a demand occurs. 
DU failures are sometimes called dormanr failures. 

(b) Dangerous detected (DD). Dangerous failures that are detected immedi- 
ately when they occur, for example, by an automatic, built-in self-test. 
The average period of unavailability due to a DD failure is equal to the 
mean downtime, MDT, that is, the mean time elapsing from the failure is 
detected by the built-in self-test until the function is restored. 

2.  Safe failures (S). The SIS has a nondangerous failure. These failures may 
further be split into: 

(a) Safe undetected (SU).  Nondangerous failures that are not detected by 
automatic self-testing. 

(b) Safe detected (SD). Non-dangerous failures that are detected by auto- 
matic self-testing. In some configurations early detection of failures may 
prevent an actual spurious trip of the system. 

The failure mode classification is illustrated in Fig. 10.2. 

(see IEC61508 and Corneliussen and Hokstad 2003): 
The failure modes may also be classified according to the cause of the failure, as 

1. Random hardware failures. These are physical failures where the supplied 
service deviates from the specified service due to physical degradation of the 
item. Random hardware failures can further be split into 

(a) Aging failures. These failures occur under conditions within the design 
envelope of the item. Aging failures are also called primary failures 

(b) Stress failures. These failures occur due to excessive stresses on the item. 
The excessive stresses may be caused by external causes or by human 
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Fig. 70.2 Failure mode classification. 
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Fig, 70.3 Failure classification by cause of failure. (Adapted from Comeliussen and Hokstad 
2003). 

errors during operation and maintenance. Stress failures are also called 
secondary failures. 

2 .  systematic failures. These failures are nonphysical failures where the supplied 
service deviates from the specified service without any physical degradation of 
the item. The failures can only be eliminated by a modification of the design or 
of the manufacturing process, operational procedures, or documentation. The 
systematic failures can further be split into 

Design failures. These failures are initiated during engineering, manu- 
facturing, or installation and may be latent from the first day of operation. 
Examples include software failures, sensors that do not discriminate be- 
tween true and false demands, and fire/gas detectors that are installed in 
a wrong place, where they are prohibited from detecting the demand. 

Interaction failures. These failures are initiated by human errors during 
operation or maintenancehesting. Examples are loops left in the override 
position after completion of maintenance and miscalibration of sensors 
during testing. Scaffolding that cover up a sensor making it impossible 
to detect an actual demand is another example of an interaction failure. 

mode classification by the cause of failure is shown in Fig. 10.3. 

Example 10.2 Safety Shutdown Valve 
A safety shutdown valve is installed in a gas pipeline feeding a production system. 
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If an emergency occurs in the production system, the valve should close and stop the 
gas flow. The valve is a hydraulically operated gate valve. The actual opedclose 
function is performed by sliding a rectangular gate, having a bore equal to the bore 
of the conduct. The gate is moved by a hydraulic piston connected to the gate by 
a stem. The gate valve has afail-safe actuator. The valve is opened and kept open 
by hydraulic control pressure on the piston. The fail-safe function is achieved by a 
steel spring that is compressed by the hydraulic pressure. The valve is automatically 
closed by the spring force when the hydraulic pressure is bled off. 

The valve is connected to an ESD system. When an emergency situation is detected 
in the production system, an electric signal is sent to the valve control system and the 
pressure is bled off. 

In this example, we will only consider the valve but will come back to the rest of 
the ESD system later in the chapter. 

The main failure modes of the valve are: 

0 Fail to close on command (FTC). This failure mode may be caused by a broken 
spring, blocked return line for the hydraulic fluid, too high friction between the 
stem and the stem seal, too high friction between the gate and the seats, or by 
sand, debris, or hydrates in the valve cavity 

0 Leakage (through the valve) in closed position (LCP). This failure mode is 
mainly caused by corrosion and/or erosion on the gate or the seat. It may also 
be caused by misalignment between the gate and the seat. 

0 Spurious trip (ST). This failure mode occurs when the valve closes without a 
signal from the ESD system. It is caused by a failure in the hydraulic system 
or a leakage in the supply line from the control system to the valve. 

0 Fail m open on command (FTO). When the valve is closed, it may fail to reopen. 
Possible causes may be leakage in the control line, too high friction between 
the stem seals and the stem, too high friction between the gate and the seats, 
and sand, debris, or hydrates in the valve cavity. 

The valve has been installed to close the flow (and keep tight) following a demand. 
The failure modes FTC and LCP prevent this function and are dangerous failure 
modes with respect to safety. ST and FTO failures are normally not dangerous with 
respect to safety but will cause production shutdown and lost income. 

Since the valve is normally in open position, we are not able to detect the danger- 
ous failure modes, FTC and LCP, unless we try to close the valve. These dangerous 
failure modes are hidden during normal operation and are therefore called danger- 
ous undetected (DU) failure modes. To reveal and repair DU failures the valve is 
tested periodically with test interval r .  This means that the valve is tested at times 
0, r ,  2r,  . . .. A typical test interval may be 3 to 12 months. During a standard test, 
the valve is closed and tested for leakage. The cause of a DU failure may occur at 
a random point of time within a test interval, but will not be manifested (revealed) 
until the valve is tested or attempted closed due to operational reasons. The safety 
unavailability (SU) of the valve will obviously be lower with a short test interval than 
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with a long test interval. The gas flow has to be closed down during the test, and 
the test will usually lead to a production loss. In some situations the shutdown and 
startup procedure may also have safety implications. The length of the test interval T 
must therefore be a compromise between safety and economic considerations. 

In some situations, it may be impractical and even dangerous to close the valve, 
and we have to suffice with partial stroke testing. In this case we move the gate 
slightly and monitor the movement of the valve stem. The test will reveal some of 
the DU failure causes, but not all. A hidden LCP failure will, for example, not be 
revealed. 

The ST failure will stop the flow and will usually be detected immediately. An ST 
failure is therefore called an evident failure. In some systems, an ST failure may also 
have significant safety implications. 

The FTO failure may occur after a test and is an evident failure. The FTO failure 
will cause a repair intervention but will have no extra safety implications, since the 
gas flow is shut down when the failure occurs. The FTO failure is therefore called a 
noncritical or safe failure. 0 

10.3 PROBABILITY OF FAILURE ON DEMAND 

In this section we consider a safety item (component or system) that is tested peri- 
odically, in the same way as the safety valve in Example 10.2. We assume that no 
diagnostic self-testing is carried out, and that that all hidden failures are revealed 
by the function testing. Some of the main concepts that we use in this section are 
introduced in Example 10.2. The reader should therefore study the example carefully 
before reading this section. 

Consider a safety item that is put into operation at time t = 0. The item may be 
a safety valve (e.g., shutdown valve or relief valve), a sensor (e.g., fire/gas detector, 
pressure sensor, or level sensor), or a logic solver. The item is tested and, if necessary, 
repaired or replaced after regular time intervals of length t. The time required to test 
and repair the item is considered to be negligible. After a test (repair) the item is 
considered to be “as good as new.” We say that the item is functioning as a safety 
barrier if a DU failure mode is not present. 

The state variable X ( t )  of an item with respect to DU failures is 

1 if the item is able to function as a safety barrier, 
(i.e., no DU failure is present) 

0 if the item is not able to function as a safety barrier, 
(i.e., a DU failure is present) 

X ( t )  = 

The state variable X ( t )  is illustrated in Fig. 10.4. 

Probability of Failure on Demand Let T denote the time to DU failure of the 
item, with distribution function F ( t ) .  
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Fig. 10.4 The state X ( t )  of a periodically tested item with respect to DU failures. 

n 
0 2 22 32 Timet 

Fig. 10.5 The safety unavailability A ( t )  of a periodically tested item. 

The safety unavailability A ( t )  of the item in the j r s t  test interval (0, r ]  is 

A ( t )  = 

= Pr(T I t )  = F ( t )  (10.1) 

Since the item is assumed to be “as good as new” after each test, the test intervals 
(0, T I ,  (5, 2rj. . . ., are all equal from a stochastic point of view. Hence the safety 
unavailability A(r )  of the item is as illustrated in Fig. 10.5. Note that A ( t )  is discon- 
tinuous for t = n r , for n = 1,2, . . . . If a demand for the safety item occurs at time t ,  
the safety unavailability A(r)  denotes the probability that the item will fail to respond 
adequately to the demand. The safety unavailability A ( t )  is therefore often called the 
probability of~failure on demand (PFD) at time t .  

In most applications we are not interested in the PFD as a function of time. It is 
sufficient to know the long run average value of PFD. The average value is denoted 
PFD, without reference to the time t .  Because of the periodicity of A(t) ,  the long run 
average PFD is equal to the average value of A(r )  in the first test interval (0, r ] ,  

Pr(a DU failure has occurred at, or before, time t )  

A(t )d t  = - F ( t ) d t  
T o  S‘ (10.2) 

Let R ( t )  denote the survivor function of the item with respect to DU failure. Since 
R ( t )  = 1 - F ( t ) ,  (10.2) may alternatively be written 

PFD = 1 - - R( t )d t  (10.3) 

Consider a test interval, and let TI be the part of this test interval where the item is 
able to function as a safety barrier. Let Dl be the part of the interval where the item 

T o  S‘ 
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is in a failed state (i.e., a DU failure is present but has not been detected), such that 
TI + D1 = t. 

The PFD in (10.2) is the average safety unavailability in a test interval. Since the 
average safety unavailability is the mean proportion of time the item is not functioning 
as a safety barrier, the PFD may be written as 

7 

The mean downtime in a test interval is therefore 

E(D1) = I' F ( t )  dr 

and the mean uptime in a test interval is 

E(T1) = t - F ( t ) d t  = R ( t ) d t  I' I' 

(10.4) 

(10.5) 

(10.6) 

The PFD may from (10.4) also be interpreted as the mean proportion of time 
the item is not functioning as a safety bamer upon demand. The PFD is therefore 
sometimes called the mean fractional deadtime (MFDT) of the item. 

Example 10.3 Single Item 
A fire detector, that is tested at regular intervals of length t, has constant failure 
rate ADU with respect to DU failures. The survivor function of the fire detector is 
R ( t )  = eWADU' and the PFD is from (10.3) 

(1 0.7) 

If we replace e-ADur in (10.7) by its Maclaurins series, we get 

When A ~ u t  is small, then 

A D U t  PFD % - 
2 

(10.8) 

This approximation is often used in practical calculation. The approximation is always 
conservative, meaning that the approximated value in (10.8) is greater that the correct 
value in (10.7). 
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According to OREDA (2002) the failure rate of a specific type of fire detectors 
DU failures per hour. If we use a test interval t = 3 months is ~ D I J  = 0.21 . 

% 2190 hours, the PFD is 

If a demand for the fire detector occurs, the (average) probability that the detector 
will not be able to detect the fire is: PFD 0.00023. This means that approximately 
one out of 4350 fires will not be detected by the fire detector. 

The mean proportion of time the detector is not able to detect a fire is MFDT 
zz 0.00023. This means that the fire detector is not able to detect a fire in 0.023% 
of the time, or approximately 2 hours per year, when we assume that the detector 
is in continuous operation, and that a year is 8760 hours. We also say that we are 

0 unprotected by the fire detector in 0.023% of the time. 

Example 10.4 Parallel System 
Assume that we have two independent fire detectors of the same type with failure rate 
h ~ u  with respect to DU failures, that are tested at the same time with test interval t. 
The fire detectors are operated as a 1-out-of-2 (1002) system, where it is sufficient 
that one detector is functioning for the system to function. The survivor function for 
the system is 

R ( t )  = 2 e - i D U f  - e-2iDUt 

and the PFD is from (10.3) 

If we replace e-*DLrs by its Maclaurin series, we may use the following approximation: 

(10.10) 
1 

PFD % - ( h ~ u t ) ~  
3 

when hDur is small. 

ple 10.3, h ~ u  = 0.21 . 
of the parallel system is then 

Let us now introduce the same data as we used for one single fire detector in Exam- 
hours-' and t = 3 months. The average unavailability 

If a demand for the fire detector system occurs, the (average) probability that the 
system will not be able to detect the fire is PFD 7.1 . lo-', that is, a very high 
reliability. 0 
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Remark: Since the parallel system will only fail when both of its components 
fail, the probability, Qs( t ) ,  that the system is in a failed state at time t is equal to 
q1 ( t )  . q2(t), where qi ( t )  is the probability that component i is in a failed state at time 
t ,  for i = 1, 2. Since the (average) probability that component i is in a failed state 
is PFDj % hDut/2, we should expect that the average unavailability (PFD) of the 
system would be approximately (hDut/2)' = (hDUt)'/4 instead of (h13ut)~/3 as 
we found in (10.10). The result in (10.10) is the correct result. The reason for this 
difference is the fact that the average of a product is not the same as the product of 
averages. Several computer programs for fault tree analysis do this failure. A bad 

0 effect is that the wrong approach produces a nonconservative result. 

Example 10.5 2-out-of-3 System 
Assume that we have three independent fire detectors of the same type with failure 
rate h ~ u  with respect to DU failures, that are tested at the same time with test interval 
t. The fire detectors are operated as a 2-out-of-3 (2003) system, where two detectors 
have to function for the system to function. The survivor function for the system is 

R ( t )  = 3 e-2ADUt - 2 e-3ADUl 

and the PFD is from (10.3) 

If we replace e-ADUr by its Maclaurin series, we may use the following approximation: 

PFD x ( h ~ u t ) '  (10.12) 

when h ~ u t  is small. 

ple 10.3, h ~ u  = 0.21 . 
of the parallel system is then 

Let us now introduce the same data as we used for one single fire detector in Exam- 
hours-' and t = 3 months. The average unavailability 

PFD % ( h ~ u t ) ~  = (0.21 . loF6 . 2190)2 % 2.1 . 

If a demand for the fire detector system occurs, the (average) probability that the 
0 system will not be able to detect the fire is PFD x 2.1 . 

The PFD of a 2003 system is seen to be approximately three times as high as for 
a parallel system. In Chapter 4 we saw that a 2003 system may be represented as 
a series system of three 1002, parallel systems. Each of these parallel systems will 
have an average unavailability of (hD"t)2/3. When ADUS is small, the probability 
of two parallel systems being in a failed state at the same time will be negligible, and 
the average unavailability of the 2003 system should be approximately the sum of the 
average availabilities of the three parallel systems, which is the case. 



PROBABILITY OF FAILURE ON DEMAND 431 

Example 10.6 Series System 
Assume that we have two independent items with failure rate hDU,l  and hDU.2 respec- 
tively, with respect to DU failures. The items are tested at the same time with test 
interval t . The items are operated as a 2-out-of-2 (2002) system, where both items 
have to function for the system to function. The survivor function for the system is 

R ( t )  = ,-(ADU.l+ADU.2)f 

and the PFD is from (10.3) 

(10.13) (hDU.1 + hDU,2) 5 hDU.1 t h D U  2 t  +- -- x - 
2 2 2 

when h ~ u , j  t is small, for i = 1,2.  When we have a series system, the PFD of the 
0 system is hence approximately the sum of the PFDs of the individual items. 

10.3.1 Approximation Formulas 

Assume that we have a system of n independent components with constant failure rates 
h ~ ~ , i ,  for i = 1, 2, . . . , n. The distribution function FT, ( t )  of item i is approximated 
by 

FT, ( 2 )  = I - e-ADU," x hDU,jf  

By using fault tree terminology the unavailability of component i in the first test 
interval is 

qi ( t )  = Pr(Component i is in a failed state at time t )  

= FT,(t) x hDu,if 

Let K I  , K2,  . . . , Kk be the k minimal cut sets of the system. The probability that the 
minimal cut parallel structure corresponding to the minimal cut set K ,  is failed at 
time t is 

&I ( t )  = n qi( t )  x n hDu,it for j = 1 ,2 ,  . . . , k 
i e K J  i e K J  

The probability that the system is failed (has a hidden failure) at time t is 

k k 

(10.14) 
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Table 70.1 PFD of Some koon Systems of Identical and Independent Components with 
Failure Rate IDU and Test Interval 5 .  

k\n 1 2 3 4 

3 
3ADUr 

2 

where I K j  I denotes the order of the minimal cut set K j  , j = 1,2, . . . , k. 

bining (10.2) and (10.14), approximately 
The PFD of the system that is tested periodically with test interval t is, by com- 

Hence 

k 

(10.16) 

Assume now that we have a k-out-of-n (koon) system of identical and independent 
components with failure rate ADU. A koon system has (n-t+l) minimal cut sets of 
order (n - k + 1). The PFD of the koon system is thus 

(10.17) 

The PI33 of some simple koon systems are listed in Table 10.1. 
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10.3.2 Mean Downtime in a Test Interval 

The mean downtime E(D1)  in a test interval was found in (10.5) to be 

Suppose that we test an item at time t and find that the item is in a failed state [i.e., 
X(s )  = 01. What is the (conditional) mean downtime in the interval (0, t ]  when the 
item is found in a failed state at time t? 

By using double expectation, the mean downtime E(D1)  may be written 

E(DI) = E [ E ( D I  I X ( t> ) l  
= E(D1 I X ( t )  = 0) .  Pr(X(t)  = 0) 

+E(Dl  I X ( t )  = 1 ) .  Pr(X(s) = 1) 

If the component is functioning at time t ,  the downtime Dl is equal to 0. Therefore 
E(D1 I X ( t )  = 1) = 0. Furthermore 

Pr(X(t)  = 0) = Pr(T 5 t )  = F ( t )  

Hence 

E(D1)  = E(D1 I X ( t )  = 0 ) .  F ( s )  

By using (10.6) and (10.3) 

Example 10.3 (Cont.) 
With a single item, the conditional mean downtime in (10.18) is approximately 

which is an intuitive result. 

Example 10.4 (Cont.) 
With a parallel system of two independent, and identical items, the conditional mean 
downtime in ( 10.18) is 

The last approximation follows since the distribution function of the parallel structure 
1 - 2e-hDUr + e-2ADur can be approximated by (ADu. r)* by using Maclaurin series. 

0 
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10.3.3 Mean Number of Test Intervals Until First Failure 

Let us next determine the mean number of test intervals until the first failure occurs. 
Let Ci denote the event that the component does not fail in test interval i for i = 
I ,  2, . . .. Then 

Pr(Ci) = Pr(T > t) = R ( T )  

Since the events C1, C 2 ,  . . . are independent with the same probability p = R ( r ) ,  
the number of test intervals, Z, until the component fails for the first time, has a 
geometric distribution with point probability 

Pr(Z = Z )  = Pr(C1 n C 2  n . . . n Cz n C:++l) = pz(l  - p )  

f o r z = 0 , 1 ,  . . .  

The mean number of test intervals until the components fails is then 

(10.19) 

Let T' denote the time the component is put into operation until its first failure. Then 

E(T' )  = tE(Z)  + (t - E(D1 1 X ( t )  = 0) )  

(10.20) 

Example 10.7 
If in particular the component has constant failure rate ADU, then 

This result also follows directly from the properties of the exponential distribution.0 

10.3.4 Staggered Testing 

When we have two items in parallel, we may reduce the system PFD by testing the 
items at different times. Let us now assume that we have two independent items 
with constant failure rates kDU,l and ADU,2, respectively, with respect to dangerous 
undetected failures. Item 1 is tested at times 0, r ,  2 t ,  . . ., while item 2 is tested at 
times to, t + to,  2r + to, . . .. This testing is called staggered testing with interval 
to. We assume that the time necessary for testing and repair is so short that it can be 
neglected. Let us further assume that the process has been running some time and 
that time 0 is the time for a test of item 1. 
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0 10 7 z+ to  22 22+t0 32 Time t 

Fig. 10.6 Probability of failure on demand PFD(t) of a parallel system of two items with 
staggered testing. Item 1 (short dash) is tested at times 0, r , 2 r ,  . . ., while item 2 (long dash) 
is tested at times to, r + to, 2s + to, . . .. The system PFD(t) is the fully drawn curve. 

The PFD of the two items as a function of time is illustrated in Fig. 10.6. 
In the first test interval (0, r ]  the items have the following unavailabilities: 

qi ( t )  = 1 - e -hDU, l r  for O < t s r  
q 2 ( t )  = 1 - e-*DU72(t r - to )  for 0 - -  < t < to 

- - 1 - e-*DU,2(t - to) for to < t 5 r 

The unavailability of item 1, q 1  ( t ) ,  is illustrated by a short-dashed line in Fig. 10.6, 
while the unavailability of item 2, qz(t), is illustrated by a long-dashed. The system 
unavailability qs( t )  = 4 1  ( t )  . q 2 ( t )  is illustrated by a fully drawn line in Fig. 10.6. 

qs ( t )  = 1 - ,-hDU.lt 1 - e-*DUS2(l + - ‘0)) for 0 < t 5 to 

for to < t 5 r 

The average unavailability in (0, r ]  is equal to the PFD and is a function of ro 

- 1 - e-hDU.2t 1 - ,-hDU,2(t - to) ) 
- i ii 

PFD(t0) will attain its minimum for 
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When the two items have the same failure rate, LDUJ = hDU.2. we get ro = s /2 ,  
which is an intuitive result. 

10.3.5 Nonnegligible Repair Time 

In some situations the repair time after a failure is so long that it cannot be neglected. 
This is, for example, illustrated by the following example. 

Example 10.8 
A downhole safety valve (DHSV) is located in the oil/gas production tubing in subsea 
production wells. The DHSV is an integral part of the tubing approximately 100 me- 
ters below the sea bottom. The valve has a spring-loaded hydraulic fail-safe actuator 
and is held open by hydraulic pressure. The operation of the DHSV is comparable to 
the gate valve described in Example 10.2, and the DHSV has the same failure modes 
as the gate valve. The DHSV is tested periodically, with a test interval of 3 to 6 
months. To repair a failed valve is a long, hazardous, and extremely costly operation. 
A semi-submersible intervention rig has to be moved from its permanent location out 
to the offshore field. The tubing string has to be pulled and the well pressure has to be 
controlled during the intervention. The operation may last several weeks, depending 
on the system and the weather conditions. In addition, we may have to wait months 
before an intervention rig becomes available. In this case the repair time is far from 
negligible. 0 

As illustrated in Example 10.8, the item may sometimes be unavailable as a safety 
barrier during the repair action and while waiting for repair. This unavailability may, 
however, be different from the unavailability in the test interval, since we now know 
that the item is in a failed state, and may take precautions to reduce the risk. The time 
from when a failure is detected until the function is restored is sometimes called the 
restoration rime. The risk associated to the restoration time may depend on: 

0 Thefailure mode. The various failure modes of the item may require different 
repair actions, and the risk during waiting for repair may also be different. 

0 The various phases of the restoration time may have different risk levels. The 
risk during waiting for repair may, for example, be different from the risk during 
actual repair. 

It may therefore be necessary to find the unavailability for each failure mode and for 
the various phases of the restoration time. 

10.4 SAFETY UNAVAILABILITY 

The safety unavailability, SU, of a safety system is the probability that the system is 
nor able to perform its required function upon a demand. The safety unavailability 
may be split in four categories, as illustrated in Fig. 10.7. The categories of the safety 
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Fig. 10.7 Contributions to safety unavailability. 

unavailability are further discussed by Corneliussen and Hokstad (2003), who also 
define more detailed categories. 

NSU = Noncritical safety unavailability of the item, mainly caused by func- 
tional testing. In this case it is known that the item is unavailable, and other 
preventive actions may be taken. 

PFD = The (unknown) safety unavailability due to dangerous undetected (DU) 
failures during the test interval when it is not known that the function is un- 
available. 

PFDK = Safety unavailability of the item due to restoration actions after a 
failure has been revealed. In this case we know that the item is unavailable. 
The various phases of the restoration actions may give rise to different levels 
of risk, as discussed on page 436. 

PSF = The probability that a systematic failure will prevent the item from 
performing its intended function. Systematic failures (see page 424) are not 
revealed by periodic testing. The PSF is approximately equal to the probability 
that an item that has just been functionally tested will fail on demand. Un- 
availability due to imperfect testing, like partial stoke testing of valves, may 
adequately be included in the PSF. 

10.4.1 Probability of Critical Situation 

Consider a safety system that has been installed as a barrier against a specific type 
of accidental events. We may, for example, assume that the safety system is a fire 
detector system, and that the accidental events are fires (in an early phase). Assume 
that fires occur randomly according to a homogeneous Poisson process (HPP) with 
intensity /3. The parameter /3 denotes the mean number of fires per time unit and is 
sometimes called the process demand rate. 
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Fig. 10.8 Critical situation - fire detector system. X ( f )  is the state of the fire detector system. 

A critical situation occurs if a fire occurs while the fire detector system is in a 
failed state. This situation is illustrated in Fig. 10.8. 

Each time a fire occurs, there is a probability SU that the fire detector system is 
not able to detect the fire. In Section 7.2 we showed how to combine an HPP with 
Bernoulli trials, such that critical situations will occur as an HPP with intensity p .  SU. 

Let Nc(t) denote the number of critical situations in the interval (0, t ) .  The 
probability of having n critical situations in the interval is 

The mean number of critical situations in the time interval (0, t )  is 

E ( N c ( t ) )  = @ .  su . t (10.22) 

10.4.2 Spurious Trips 

For many safety items, the rate of spurious trips (ST) may be comparable, and even 
higher, than the rate of dangerous undetected (DU) failures. Spurious trips will usually 
imply significant costs and also reduce the confidence in the system. 

Consider a safety system comprising m independent subsystems. The system 
may, for example, comprise a flame detector subsystem, a heat detector subsystem, 
a smoke detector subsystem, a logic solver subsystem, and safety shutdown valves. 
Each subsystem may comprise several items. The system is considered to be a series 
structure of the subsystems with respect to ST failures. A subsystem ST failure will 
therefore give a system ST failure. Let k!$ denote the rate of spurious trips of the 

safety subsystem j ,  and let MDT:; denote the mean system downtime associated 
with the spurious trip, for j = 1 ,  2, . . . , m. The safety unavailability of the system 
caused by spurious trips is approximately 

m ... 

AST x C . MDT~J 
j =  1 

(10.23) 

Example 10.9 Parallel System 
Consider a fire detector subsystem of n independent detectors. Detector i has constant 
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Fig. 10.9 A 2003 detector system. 

failure rate h s ~ , i  with respect to spurious trips, for i = 1,2 ,  . , . , n. The subsystem 
is a parallel structure with respect to safety, meaning that if one of the detectors is 
activated, the subsystem will raise an alarm. The subsystem is therefore a 1 oon system 
with respect to safety. With this configuration, a spurious signal (a false alarm) from 
any of the detectors will raise an alarm. The subsystem is therefore a series (noon) 
system with respect to spurious trips, and the spurious trip rate from the subsystem is 

n 

(10.24) 
i= l  

A high degree of redundancy may therefore lead to many spurious trips. 

Example 10.10 2-out-of-3 System 
Consider a subsystem of three independent fire detectors of the same type, and let 
AST denote the constant failure rate with respect to spurious trips from one detector. 
The detectors are connected to a logic solver with a 2003 voting logic. The system 
is illustrated in Fig. 10.9. TWO detectors have to send a signal to the logic solver to 
raise an alarm. We assume that the logic solver is so reliable that failures may be 
neglected. Since the fire detectors are independent, spurious trips (false alarms) will 
occur as single failures. When a detector gives a false alarm, the system will only 
give a false alarm if a second detector gives a false alarm before the first false alarm 
is detected and repaired. Let us assume that when the logic solver receives a signal 
from a detector, a local alarm is raised. The operators may therefore check the status 
and repair the detector that has given the false alarm. Assume that the restoration 
time is t , .  If a second alarm is not received by the logic solver before the first failure 
is repaired, there will be no system false alarm, The spurious trip (false alarm) rate 
from the 2003 subsystem is therefore 

(1 0.25) 

Let  ST = 5 . ST failures per hour, and tr = 2 hours. In this case we get 
0 

Table 10.2 gives a brief comparison of three simple systems with independent 
items of the same type, with constant failure rate ~ D U  with respect to DU failures and 

h:0,0" 3 . lop8 hours-', that is, a very low spurious trip rate. 
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Table 70.2 Probability of Failure on Demand (PFD) and SpuriousTripRate for Three Simple 
Systems. 

System PFD Rank Spurious trip rate Rank 

Single item 

loo1 
L 

Parallel system 

1002 
2 

(LST 

LST 

(3) 

constant failure rate LST with respect to ST failures. The test interval is t. The 2003 
system is often chosen as the best configuration for detector systems, because it has a 
PFD in the same order of magnitude as a parallel system, and because it can be made 
much more reliable than a parallel system when it comes to spurious trips. 

10.4.3 Failures Detected by Diagnostic Self-Testing 

Many failures of a modern safety instrumented system may be revealed by diagnostic 
self-testing. This applies both for dangerous failures and safe failures as defined on 
page 423. The diagnostic testing is assumed to be carried out so frequently that the 
failures are revealed immediately. In subsystems with redundant items a failure may 
sometimes be repaired while the subsystem is on-line and is able to perform its safety 
function. In other cases the subsystem has to be taken off-line to repair the failure. 
Let denote the rate of failures of item i in subsystem j that are revealed by 
diagnostic self-testing, for i = 1,2,  . . . , n ,  and j = 1, 2, . . . , m. If we assume that 
all items are independent, the rate of failures of subsystem j that are revealed by 
diagnostic self-testing is 

i = l  

Let MDT;; denote the mean downtime of subsystem j to repair a failure of an 
item in subsystem j that has been revealed by diagnostic self-testing. (For some 
configurations the mean downtime may be zero). The system unavailability caused 
by failures that are revealed by diagnostic self-testing is therefore 

m 

( 1  0.26) 
j=1 
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Fig. 10.10 A process shutdown valve with fail-safe hydraulic actuator. 

In (10.26) the mean downtime is given for each subsystem. For subsystems with 
different types of items, it may be more appropriate to give the mean downtime 
associated to repair of each type of items. 

The diagnostic coverage of the diagnostic self-test of item i is defined by 

where hi denotes the total failure rate (of a specified category) of item i ,  for i = 
1, 2 ,  . . . , n.  A diagnostic self-testing with test coverage 70% will hence reveal 70% of 
all the failures of the item. The term diagnostic coverage is mainly used for dangerous 
failures and is then the percentage of dangerous failures that can be detected by self- 
testing. The term may, however, also be used for safe failures. 

Example 10.11 
Consider a process shutdown valve, as illustrated by the sketch in Fig. 10.10. The 
valve has a fail-safe actuator and is held open by hydraulic pressure. When a process 
demand occurs, the logic solver will send an electric signal to the solenoid valve to 
open and bleed off the hydraulic pressure. Diagnostic self-testing may be carried 
out by sending on/off electric signals to the solenoid valve. The solenoid valve will 
start to open and bleed off hydraulic pressure, and the shutdown valve will start to 
close. The movement of the valve actuator may be monitored by the logic solver. 
When the valve actuator has moved some few millimeters, full hydraulic pressure is 
again applied to the actuator and the valve will fully open. By this testing we can 
reveal failures of the electrical cables, the solenoid valve, and the process shutdown 
valve. The test coverage for the electrical cables will be 100%. The test coverage of 
the solenoid valve and the hydraulic flow will depend on the design of the system, 
and may be made close to 100%. This type of testing of the shutdown valve is called 
partial stroke resting and will only reveal some failure causes of the valve. The partial 
stroke testing will reveal some main causes of fail to close (FTC) failures but will not 
reveal leakage in closed position (LCP) failures. 



442 RELIABILITY OF SAFETY SYSTEMS 

In most applications, only the electrical cables will be tested by very frequent 
diagnostic testing. To avoid excessive wear of the valve seals, the diagnostic testing 

0 of the solenoid valve, and the shutdown valve will be less frequent. 

10.5 COMMON CAUSE FAILURES 

So far in this chapter, we have assumed that all items are independent. This is, 
however, not always the case in practice. Safety systems will often have a high 
degree of redundancy, and the system reliability will therefore be strongly influenced 
by potential common cause failures. It is therefore important to identify potential 
common cause failures and take the necessary precautions to prevent such failures. 

Checklists that may be used to identify common cause failure problems of an 
SIS during its life cycle have been developed, for example, by Summers and Raney 
(1999). 

When we are able to identify the causes of common cause failures, these should 
always be explicitly modeled, as illustrated in Example 10.12. In most cases we 
will not be able to find high quality input data for the explicitly modeled common 
causes. Even with low-quality input data, or guesstimates, the result will usually be 
more accurate than by including the explicit common causes into one of the general 
(implicit) dependent failure models that were introduced in Chapter 6. 

Example 10.12 
Consider a parallel system of two pressure sensors that are installed in a pressure 
vessel. Based on a search for potential causes for common cause failures, we have 
identified two possible causes: (i) the common tap to the sensors is plugged with 
solids, and (ii) the sensors are miscalibrated. Other specific causes have not been 
identified. The two causes for common cause failures may be modeled explicitly as 
illustrated by the fault tree in Fig. 10.1 1. In the fault tree the remaining failures of the 
sensors are said to be independent. If we believe that there are some implicit causes of 
dependency, in addition to the two explicit causes, this dependency may be modeled 
by one of the models discussed in Chapter 6,  for example, the j-factor model. 

The most commonly used (implicit) model for common cause failures of safety 
systems is the j-factor model. In the B-factor model we assume that a certain per- 
centage of all failures are common cause failures that will cause all the items to fail 
at the same time (or, within a very short time interval). The failure rate hDU with 
respect to DU failures may therefore be written as 

where AEL is the rate of independent DU failures that only affects one component, 
and Ag,), is the rate of common cause DU failures that will cause failure of all the 
system components at the same time. The common cause factor 
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Fig. 10.17 Explicit modeling of common cause failure of a system with two pressure sensors. 
(Adapted from Summers and Raney 1999.) 

is the percentage of common cause DU failures among all DU failures of acomponent. 
Similarly, the spurious trip rate AST may be written as 

where A:; is the rate of independent ST failures that only affects one component, and 

AKA is the rate of common cause ST failures that will cause failure of all the system 
components at the same time. The common cause factor 

is the percentage of common cause ST failures among all ST failures of a component. 
Since there may be different failure mechanisms leading to DU and S T  failures, BDU 
and BST need not be equal. 

Diagnostic Self-Testing and Common Cause failures Common cause failures 
may be classified in two main types: 

1. Multiple failures that occur at the same time due to a common cause 

2 .  Multiple failures that occur due to a common cause, but not necessarily at the 
same time 

As an example of type 2, consider a redundant structure of electronic components 
that are exposed to a common cause: increased temperature. The components will 
fail due to the common cause, but usually not at the same time. If we have an SIS 
with an adequate diagnostic coverage with respect to this type of failure, we may be 
able to detect the first common cause failure and take action before the system fails. 
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A system failure due to the common cause may therefore be avoided. 

Remark: If the common cause, increased temperature, is due to a cooling fan failure, 
this should be explicitly modeled as illustrated in Example 10.12. Monitoring the 
condition of the cooling fan would in this case give an earlier warning than diag- 
nostic testing of the electronic components, and a higher probability of successful 
shutdown before a system common cause failure occurs. A similar example is dis- 
cussed in IEC 61508-6 without mentioning any explicit modeling of the cooling fan.0 

When we have identified the causes of potential common cause failures ( e g ,  by 
applying a checklist), we should carefully split the potential common cause failures 
in the two types (1 and 2) above. For each cause leading to failures of type 2 we 
should evaluate the ability of the diagnostic self-testing to reveal the failure (or the 
failure cause), the time required to take action, and the probability that this action 
will prevent a system failure. 

It seems obvious that the common cause factor ,!? for an SIS good diagnostic 
coverage should be lower than for a system with no, or a poor, diagnostic coverage. 
We should therefore be careful and not use estimates for from old-fashioned systems 
when analyzing a modern SIS with good diagnostic coverage. 

Example 10.13 Parallel System 
Reconsider the parallel system of two fire detectors in Example 10.4, and assume that 
DU failures occur with a common cause factor BDU. The PFD of the parallel system 
is from (10.10) and (10.13) approximately 

With respect to spurious trips, the system is a series system, and the trip rate is 
therefore 

The rate of spurious trips will therefore decrease when BST increases. 

t = 2190 hours, and BDU = BST = 0.10, we get form (10.27) 
By using the same data as in Example 10.4, A.DU = 0.21 . lop6 hours-’ and 

PFD(BDu) % 5.71 . + 2.30. lo-’ % 2.31 . lo-’ 

We observe that with realistic estimates of ADU and t, PFDDu is dominated by the 
common cause term in (10.27). We may therefore use the approximation 

when h D u T  is small. 0 
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Example 10.14 2-out-of-3 System 
The probability of failure on demand for a 2-out-of-3 system is from (10.12) and 
(10.13) 

(10.29) 

With a local alarm on the logic solver we may avoid almost all independent spurious 
trips. All common cause failures will, on the other hand, result in a system spurious 
trip, and we therefore have 

k e 3  (BST) = B S T ~ S T  (10.30) 

With the same data as in Example 10.13 we get from (10.29) 

PFD(@Du) % 1.71 . + 2.30. lop5 RZ 2.32. lop5 

As in Example 10.13 we observe that with realistic estimates of ADU and t, P F D D ~  
is dominated by the common cause term in (10.29). We may therefore use the ap- 
proximation 

when h ~ u t  is small. 0 

In Example 10.13 and Example 10.14 we saw that the PFDDu (BDu) was dominated 
by the common cause term of the expressions (10.27) and (10.29), respectively when 
k ~ u t  is small. It is straightforward to show that the same applies to all koon systems, 
where n 3 2 ,  and k 5 n .  We will therefore have that 

(10.31) 

when k ~ u t  is small. When @DU > 0, we will therefore get approximately the same 
result for all types of koon configurations, and the result is nearly independent of the 
number n of components, as long as n 3 2. This may not be a realistic feature of the 
@-factor model. A more realistic alternative to the B-factor model has been proposed 
as part of the PDS approach that is described in Section 10.7. 

IEC61508 recommends using the @-factor model with a single “plant specific” @ 
that is determined by using a checklist for all voting configurations (see IEC61508-6, 
appendix D). This makes a comparison between different voting logics rather mean- 
ingless. Corneliussen and Hokstad (2003) have criticized the @-factor model and 
introduced a multiple @-factor (MBF) model, that is a generalization of the @-factor 
model. 

Remarks 

0 Some reliability data sources (see Chapter 14) present the total failure rates, 
while other data sources only present the independent failure rates. The data in 
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OREDA (2002) are collected from maintenance reports and contain all failures, 
both independent and common cause failures. The data in MILHDBK 217F 
mainly come from laboratory testing of single components and therefore only 
present the failure rate of independent failures. When using data from reliability 
data sources in common cause failure models, we should be aware of this 
difference. 

0 Some causes of common cause failures, like miscalibration of sensors, will be 
equally likely for a single component as it is for a system of several components. 
If we include miscalibration as a cause of common cause failures of n redundant 
sensors, it should also be included for a single sensor. This problem is further 
discussed by Summers and Raney (1999). 

10.6 IEC 61 508 

The international standard, IEC 6 1508 Functional safety of electrical/electronic/pro- 
grammable electronic (WUPE) safety-related systems is the main standard for safety 
instrumented systems. IEC 61508 is a generic, performance-based standard that cov- 
ers most safety aspects of an SIS. As such, many topics covered in IEC61508 are 
outside the scope of this book. In this section we will give a brief presentation of some 
main aspects of IEC61508 that are relevant for the theory and methods presented in 
this book. 

IEC 6 1508 has seven parts: 

Part 1 : General requirements 
Part 2: 
Part 3: Software requirements 
Part 4: Definitions and abbreviations 
Part 5: 
Part 6: 
Part 7: 

Requirements for E/E/PE safety-related systems 

Examples of methods for the determination of safety integrity levels 
Guidelines on the application of IEC61508-2 and IEC61508-3 
Overview of techniques and measures 

IEC 61 508 gives safety requirements to SISs and provides guidance to validation 
and verification of such systems. The first three parts are nonnative parts and deal 
with the assessment of industrial process risk and the SIS hardware and software 
reliability. The remaining four parts deal with definitions and provide informative 
annexes to the standard. 

Part 1 defines the overall performance based criteria for an industrial process. 
It mandates the use of an overall safety life cycle model (see Fig. 10.12). Part 2 
is directed toward manufacturers and integrators of SISs and presents methods and 
techniques that can be used to design, evaluate, and certify the hardware reliability 
of an SIS, and thus its contribution to process risk reduction. 
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IEC 6 1508 is a generic standard that is common to several industries. Application- 
specific standards and guidelines are therefore developed, giving more specific re- 
quirements. Among these standards and guidelines are: 

0 IEC 6 15 1 1 Functional safety - Safety instrumented systems for the process in- 
dustry. The Instrument Society of America (ISA) has independently developed 
ANSIIISA S84.01 Application of safety instrumented systems for the process 
industries that is similar to IEC 615 1 1. 

0 IEC 6206 1 Safety of machinery - Functional safety of electrical, electronic and 
programmable electronic systems. This standard was initially developed as a 
European standard to support the EU Machinery Directive. 

IEC 6 1 5 13 Nuclear power plants - Instrumentation and control for systems 
important to safety - General requirements for systems. 

EN 501 26 Railway applications - The spec$cation and demonstration of reli- 
ability, availability, maintainability, and safety (RAMS). 

EN 50 128 Railway applications - Software for railway control and protection 
systems.2 

0 EN 501 29 Railway applications - Safety related electronic systems for sig- 
nalling. 

0 OLF guidelines for the application of IEC 6 1508 and IEC 61 5 1 1 in the petroleum 
activities on the Norwegian continental shelf. 

0 AIChE guidelines for safe automation of chemical processes. 

10.6.1 Safety Life Cycle 

The requirements in IEC61508 are related to an overall safety life cycle as shown 
in Fig. 10.12. The figure is reproduced from IEC61508-1, page 18. The standard 
covers all safety life cycle activities from initial concept, through hazard analysis and 
risk assessment, development of the safety requirements, specification, design and 
implementation, operation and maintenance, and modification, to final decommis- 
sioning and/or disposal. Each of the 17 steps in the safety life cycle in Fig. 10.12 are 
described in detail in IEC 61508- 1, section 7. 

ANSUISAS84.01 follows a similar life cycle model as IEC61508 and IEC61511 
to identify the need for an SIS. 

'EN 501 26 and EN 50 I28 were based on earlier drafts of IEC 6 1508. 
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Fig. 10.12 Overall safety life cycle. (From IEC 61508- I ,  p. 18. Reproduced with permission 
from IEC. Visit www.iec.ch for further information.) 

10.6.2 Safety Integrity Level 

Safety integrity is a fundamental concept in IEC 61508 and is defined as theprobability 
of a safety-related system satisfactorilyperj5orming the required safetyfunctions under 
all the stated conditions within a specijedperiod of time (see IEC 61508-4, sect. 3.5). 
The safety integrity is classified into four discrete levels called safety integrity levels 
(SIL). 

The SIL is in turn defined by the probability of failure on demand. The relation 
between the SIL and the PFD is shown in Table 10.3. 

ANSI/ISAS84.01 uses the same safety integrity levels as presented in Table 10.3 
but clearly states that SIL4 is not relevant in the process industry. 

An SIL has to be assigned to each safety instrumented function (SIF). Notice that 
the safety integrity level is assigned to the safety instrumentedfunctions, and not to the 
safety instrumented system, that may comprise several safety instrumented functions. 

Assume that process demands for an SIF with low demand mode occur according 
to an HPP with rate B demands per hour. For each demand, the SIF will fail to perform 
the required function with a probability PFD. A critical situation occurs if a process 
demand occurs and the SIF fails. Let N c ( t )  denote the number of critical situations 
in the time interval (0, t ) .  The process ( N c ( t ) ,  t > O} is therefore an HPP with rate 
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Table 10.3 Safety Integrity Levels for Safety Functions. 

~ 

Low Demand Mode of High Demand Mode or 
Safety Operation' (Aver. probability Continuous Mode of 

Integrity of failure to perform its Operationb (Probability of a 
Level (SIL) design function on demand) dangerous failure per hour) 

4 2 1 0 - ~  to < I O - ~  
3 2 I O - ~  to < 1 0 - ~  
2 L 1 0 - ~  to < 2 1 0 - ~  to < 
1 2 10-2 to < 10-1 2 to < 1 0 - ~  

2 1 0 - ~  to < 1 0 - ~  
2 1 0 - ~  to < 1 0 - ~  

Reproduced from IEC61508-1, Tables 2 and 3, with the permission from IEC. Visit www.iec.ch for further 
information. 

a) Low demand mode means that the frequency of demands for operation of the SIS is not greater 

b) High demand or continuous mode means that the frequency of demands for operation of the SIS 

than once per year, and not greater than twice the proof-test frequency. 

is greater than once per year or greater than twice the proof-test frequency. 

Bc = p . PFD. The probability that n critical situations will occur in the interval (0, t )  
is 

The mean time between critical situations is 
1 

MTBF = ~ B . PFD 

for n = 0, 1, 2, . . , (10.32) 

(10.33) 

When the mean time between demands is lo4 hours (X 1.15 years), we notice that the 
mean time between critical situations will be the same for an STF with low demand 
mode as for an SIF with high demand mode, with the same SIL. The demand rate 
/? is usually defined as the net demand rate for the SIF, excluding the demands that 
are effectively taken care of by non-SIS safeguards and other risk reduction facilities 
(refer to steps 10 and 1 1  in Fig. 10.12). 

The risk related to a specified critical event for an SIF with low demand mode is 
a function of ( I )  the potential consequences of a critical event and (2) the frequency 
of the critical event. To select an appropriate SIL, we therefore need to assess 

I .  The frequency ,13 of demands for the SIS 

2. The potential consequences following an occurrence of the critical event 

10.6.3 Compliance with IEC 61508 

The overall objective of IEC61508 is to identify the required safety instrumented 
functions (SIFs), to establish the required SIL for each SIF, and to implement the 
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safety functions in an SIS in order to achieve the desired safety level for the process. 
IEC61508 is risk based and decisions taken shall be based on criteria related to risk 
reduction and tolerability of risk. 

The objective and the requirements related to each of the life cycle phases in 
Fig. 10.12 are described in detail in Section 7 of IEC61508-1. The required actions 
are discussed, for example, by Stavrianidis and Bhimavarapu (1998). The actions 
that have to be carried out, and the extent of these actions, will vary with the type and 
complexity of the system (process). We have proposed a sequence of actions in the 
following. The described actions should be regarded as a supplement to the detailed 
requirements in the standard. Our proposed actions do not replace the requirements 
in the standard, but may hopefully give additional insight. When developing this 
sequence of actions, we have had the process section of an offshore oiVgas platform 
in mind. For other processes/applications, some of the actions might be reduced or 
omitted. 

1.  System definition: We start with a conceptual design of the system. The con- 
ceptual design is assumed to be a basic design where no safety instrumented 
functions are implemented. The conceptual design is a (close to) final de- 
sign that is described by process and instrument diagrams (P&IDs), other flow 
diagrams, and calculation results. 

2. Definition of EUCs: The system (process) must be broken down into suitable 
subsystems. The subsystems are called equipment under control (EUC). Guid- 
ance on how to define EUCs is given in OLF (2001, Appendix B). Examples 
of suitable EUCs are pressure vessels, pumping stations, and compressors. 

3 .  Riskacceptance criteria: We have to define risk acceptance criteria, or tolerable 
risk criteria, for each EUC. In some industries, like the Norwegian offshore 
industry, risk acceptance criteria have to be defined on the plan (platform) level 
in the initial phases of a development project. The risk acceptance criteria are 
qualitative or quantitative criteria related to the risk to humans, the environment, 
and sometimes also related to material assets and production regularity. Risk 
acceptance criteria may, for example, be formulated as “the fatal accident rate 
(FAR)3 shall be less than nine,” and “no release of toxic gas to the atmosphere 
with a probability of occurrence greater than 1 0-4 in one year.” 

The plant risk acceptance criteria have to be broken down and allocated to the 
various EUCs. The allocation of requirements must be based on criteria related 
to feasibility, fairness, and cost and is generally not a straightforward task. 

4. Hazard analysis: A hazard analysis has to be carried out to identify all potential 
hazards and process demands of each EUC. The hazard analysis may be carried 
out using methods like: 

3FAR = expected number of fatalities per lo8 hours of exposure. 
4A process demand is significant deviation from normal operation that can lead to adverse consequences 
for humans, the environment, material assets, or production regularity. 
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0 Preliminary hazard analysis 

0 Hazard and operability analysis (HAZOP) (e.g., see IEC 6 1882) 

FMECA 

0 Safety analysis table (SAT) analysis (as described in IS0  10418) 

0 Checklists 

The hazard analysis will provide: 

(a) A list of all potential process demands that may occur in the EUC 

(b) The direct causes of each process demand 

(c) Rough estimates of the frequency of each project demand 

(d) A rough assessment of the potential consequences of each process demand 

(e) Identification of non-SIS protection layers for each process demand 

The hazard analysis shall consider all reasonable, foreseeable circumstances 
including possible fault conditions, misuse, and extreme environmental condi- 
tions. The hazard and risk analysis shall also consider possible human errors 
and abnormal or infrequent modes of operation of the EUC. 

5 .  Quantitative risk assessment: A quantified risk assessment is carried out to 
quantify the risk caused by the various process demands for the EUC and for 
the system (process). The risk assessment is carried out by methods like: 

0 Fault tree analysis 

0 Event tree analysis 

0 Consequence analysis (e.g., fire and explosion loads) 

0 Simulation (e.g., accident escalation) 

The quantitative risk assessment will provide: 

(a) Estimates of the frequency of the process demands identified in step 4 

(b) Identification of potential consequences of each process demand and as- 

(c) Risk estimates related to each process demand, and for the EUC 

(d) Requirements for risk reduction to meet the tolerable risk criteria for the 

sessment of these consequences 

EUC 

Note 1: The traditional quantitative risk analysis (QRA) that is carried out for 
Norwegian offshore installations (NORSOK 2-013) will generally not meet all 
the requirements for risk assessment in IEC 61508. 

Note 2: The quantitative risk analysis may partly be replaced with a layer of 
protection analysis (LOPA) (see, Dowel1 111 1998, and AIChE 2001). 
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6. Non-SIS layers of protection: The required risk reduction identified in step 5 
may in some cases be obtained by non-SIS layers of protection. In this step, 
various non-SIS layers of protection (e.g., mechanical devices, fire walls) are 
identified and evaluated with respect to EUC risk reduction. Based on this step, 
we can decide whether or not a safety instrumented function (SIF) is required 
to meet the risk acceptance criteria. 

7 .  Determination ofSIL: The required SIL for each safety instrumented function 
is determined such that the risk reduction defined in step 5 for the EUC may be 
obtained. Qualitative and quantitative approaches to the determination of SIL 
are provided in IEC 61508-5. 

Note 3: The Norwegian offshore industry has proposed an alternative approach, 
where the risk assessments and the SIL determinations are carried out for a 
generic system. Based on these analyses, a minimum SIL is specified for each 
category of EUCs (see OLF 2001). 

8. Specifications and reliability requirements: The specifications and reliability 
requirements of the safety instrumented functions have to be defined. 

9. SIS design: The SIS has to be designed according to the specifications in step 8. 
IEC 6 15 1 1 and ANSVlSA 84.01 give guidance on building an SIS with specific 
safety instrumented functions that meet a desired SIL. 

10. PFD calculation: Reliability models are established and the PFD calculated 
for the proposed SIS design. 

11. Spurious trip assessmenr: The frequency of spurious trip (ST) failures of the 
proposed SIS design has to be estimated. Other potential, negative effects of 
the proposed SIS design should be evaluated. (This step is not required in 
IEC 61508). 

12. Iteration: We must now check that the proposed SIS design fulfills the criteria 
in step 7, and that the frequency of spurious trip failures is acceptable. If not, 
the design has to be modified. Several iterations may be necessary. 

13. System risk evaluation: The system (process) risk reduction due to the proposed 
SIS is now assessed. 

14. Verification: The required modifications and analysis are made to ascertain that 
the proposed SIS meets the risk reduction (SIL) requirements. 

10.7 THE PDS APPROACH 

The safety unavailability of an SIS with low demand mode may be assessed by the 
methods described in Sections 10.2 and 10.3. A more comprehensive approach has, 
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however, been developed by SINTEF’ as part of the PDS6 project. The PDS method 
is used to quantify both the reliability (the safety unavailability and the spurious trip 
rate) and the life cycle cost of an SIS. A brief introduction to PDS is given by Hansen 
and Aaro (1997). A more recent and detailed description is given by Corneliussen and 
Hokstad (2003). The PDS method is compatible with the requirements in IEC 61508 
and can be used to verify whether or not a specific SIL requirement is met. 

10.8 MARKOV APPROACH 

Consider a safety system that is tested periodically with test interval t. When a failure 
is detected during a test, the system is repaired. The time required for testing and 
repair is considered to be negligible. 

Let X(t)  denote the state of the safety system at time t ,  and let X = (0, 1 ,  . . . , r )  
be the (finite) set of all possible states. Assume that we can split the state space X 
in two parts, a set B of functioning states, and a set F of failed states, such that 
F = X - B .  The average probability of failure on demand, PFD(n), of the system 
in test interval n is 

PFD(n) = - / “ r  Pr(X(t) E ~ ) d t  (10.34) 

for n = 1, 2, . . .. If a demand for the safety system occurs in interval n, the (average) 
probability that the safety system is able to shut down the EUC is PFD(n). The 
following approach is mainly based on Lindqvist and Amundrustad (1998). 

We assume that {X(t)] behaves like a homogeneous Markov process (see Chap- 
ter 8) with transition rate matrix h as long as time runs inside a test interval, that is, 
inside intervals (n - 1 ) t  5 t < nt, for n = 1 ,  2 , .  . .. Let P,k(t)  = Pr(X(t) = k I 
X(0) = j )  denote the transition probabilities for j ,  k E X, and let P(t) denote the 
corresponding matrix. Failures detected by diagnostic self-testing and ST failures 
may occur and be repaired within the test interval. 

Let Y,, = X(nt-)  denote the state of the system immediately before time nt, 
that is, immediately before test n. If a malfunctioning state is detected during a test, 
a repair action is initiated, and changes the state from Y, to a state Z , ,  where 2, 
denotes the state of the system just after the test (and possible repair) n. When Y, is 
given, we assume that Z,, is independent of all transitions of the system before time 
n t .  Let 

t (n- I ) r  

Pr(Z,, = j I Y, = i) = Ri, for all i, j E X (10.35) 

denote the transition probabilities, and let R denote the corresponding transition 
matrix. If the state of the system is Y, = i just before test n ,  the matrix IR tells 

‘SINTEF is the Norwegian abbreviation for the Foundation of Science and Technology at the Norwegian 
Institute of Technology. 
‘PDS is a Norwegian abbreviation for “reliability of computer-based safety systems.” 
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us the probability that the system is in state Z, = j just after testhepair n. The 
matrix R depends on the repair strategy, and also on the quality of the repair actions. 
Probabilities of maintenance-induced failures and imperfect repair may be included 
in W. The matrix IR is called the repair matrix of the system. 

Example 10.15 
Consider a safety valve that is located in the production tubing in an oil/gas production 
weH. The valve is closed and tested for leakage at regular intervals. When the valve is 
closed, it may fail to reopen. That is, the failure mode fail to open (FTO) may occur. 
Experience has shown that a specific type of wells will fail to reopen approximately 
once every 200 tests. The probability of FTO failure can easily be taken into account 

0 in the repair matrix R. 

Let the distribution of the state of the safety system at time t = 0, Zo E X (0) be 
denoted by p = [ P O ,  p1, . . . , p r ] ,  where pi = Pr(Z0 = i ) ,  and c:To pi = 1. The 
distribution of the state of the system just before the first test, at time t, is 

Pr(Y1 = k )  = Pr(X(t-) = k )  

= e P r ( X ( r - )  = k I X(0) = j )  .Pr(X(O) = j )  
j = O  

r 

= C p j  . ~ j k ( r )  = [P . ~ ( t ) l k  (10.36) 
j=O 

for any k E X ,  where [B]k denotes the kth entry of the vector B .  
Let us now consider a test interval n (2 1). Just after test interval n the state of 

the system is Z,. We assume that the Markov process in nt 5 t < (n + I ) t ,  given 
its initial state Z,,, is independent of all transitions that have taken place before time 
nt. 

where [B]jk denotes the (jk)th entry of the matrix B. It follows that [ Y, , n = 0, 1, . . .) 
is a discrete-time Markov chain with transition matrix 

Q = W. P(t)  (10.38) 
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In the same way, 

WGtl = k I Z, = j )  

= &Pr(Z,+l = k I Y,+l = i, Z, = j )  .Pr(Y,+l = i I Z, = j )  
i =O 

r 

= C Pji(r) . R~~ = [P(r> . R I , ~  (1 0.39) 
i =O 

and { Z , ,  n = 0, 1, . . .) is a discrete-time Markov chain with transition matrix 

T = P(r) + R (1 0.40) 

Let ~f = [no, nl , . . . , r r ]  denote the stationary distribution of the Markov chain 
[ Y, , rz = 0, 1, . . .), Then 7c is the unique probability vector satisfying the equation 

a .  Q 3 x .EX. P(r) = ~f (10.41) 

where ni is the long-term proportion of times the system is in state i just before a test. 
In the same way, let y = [yo, y1, . . . , yr]  denote the stationary distribution of the 

Markov chain [ Z , ,  n = 0, 1, . . .). Then y is the unique probability vector satisfying 
the equation 

y . T = y . P(t) .EX = y (10.42) 

where yi is the long-term proportion of times the system is in state i just after a 
testhepair. 

Let F denote the set of all states representing a DU failure in X, and define 
n~ = xie Xi. Then, ITF denotes the long-run proportion of times the system is in a 
dangerously failed state immediately before a test. If, for example, T ~ F  = 5 .  lop3 ,  the 
system will have a critical failure, on the average, in one out of 200 tests. Moreover, 
~ / I T , T  is the mean time, in the long run, between visits to F (measured with time unit 
t). The mean time between DU failures is hence 

(10.43) 
r 

MTBFDu = - 
ZF 

and the average rate of DU failures is 

(10.44) 

The average probability of failure on demand in interval n, PFD(n) may now be 
expressed as 

nT 

P F D ( ~ )  = '/ Pr(X(t) E ~ ) d t  
(n-l )T 

= ST 2 P,k(t) . Pr(Z, = j ) d t  ( 10.45) 
j = O k c F  
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Fig. 70.13 State transition diagram for the failure process described by Hokstad and Fr~vig 
(1996). 

Since Pr(Z, = j )  + y j  when n -+ 00, we get the long-term average probability of 
failure on demand, PFD, as 

where 

is the PFD given that the system is in state j at the beginning of the test interval. 

Example 10.16 
Hokstad and Frcivig (1996) have studied a single component that is subject to various 
types of failure mechanisms. In one of their examples, they study a component with 
the following states: 

State Description 

Component as good as new 
Degraded (noncritical) failure 
Critical failure caused by sudden shock 
Critical failure caused by degradation 

The component is able to perform its intended function when it is in state 3 or state 
2 and has a critical failure if it is in state 1 or state 0. State 1 is produced by a random 
shock, while state 0 is produced by degradation. In state 2 the component is able to 
perform its intended function but has a specified level of degradation. 

It is assumed that the Markov process is defined by the state transition diagram in 
Fig. 10.13 and the transition rate matrix 

0 0  0 0 
0 0 

hdc A s  -(hdc -k As) 0 
Ad - ( i s  + h d )  
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where h, is the rate of failures caused by a random shock, h d  is the rate of degradation 
failures, and h d c  is the rate of degraded failures that become critical. 

Since no repair is performed within the test interval, the failed states 0 and 1 are 
absorbing states. Let us assume that we know that the system is in state 3 at time 0, 
such that p = [l ,  0, 0, 01. We may now use the methods outlined in Section 8.9 to 
solve the forward Kolmogorov equations P ( t )  . A = p(f) and find the distribution 
P(t). It is clear that P(t) can be written as 

Y 

The first two rows of P(t) are obvious since state 0 and state 1 are absorbing. The 
entry p23(f) = 0 since it is impossible to have a transition from state 2 to state 3. 
From the state transition diagram the diagonal entries are seen to be 

p 2 2 ( f )  = e-(h.~fhdc)t 

p33(t)  = , - ( h + A d ) t  

The remaining entries were shown by Lindqvist and Amundrustad (1 998) to be 

Several repair policies may be adopted: 

1 .  All failures are repaired after each test, such that system always starts in state 

2. All critical failures are repaired after each test. In this case, the system may 

3 after each test. 

have a degraded failure when it starts up after the test. 

3. The repair action may be imperfect, meaning that there is a probability that the 
failure will not be repaired. 
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A// Failures Are Repaired after Each Test In this case all failures are repaired, 
and we assume that the repair is perfect, such that the system will be in state 3 after 
each test. The corresponding repair matrix R1 is therefore 

0 0 0 1  

0 0 0 1  

With this policy, all test intervals have the same stochastic properties. The average 
PFD is therefore given by 

(P3i ( t )  + P30(t))  dt 

A// Critical failures Are Repaired affer Each Test In this case the R matrix is 

0 0 0 1  .;-(. 0 0 0 1  0 1 0 ]  

0 0 0 1  

imperfect Repair after Each Test In this case the R matrix is 

0 0 1-ro  

0 0 r2 l -r2  
0 0 0  

The PFD may be found from (10.46). The calculation is straightforward, but the 
expressions become rather complex and are not included here. Some further results 
are given by Lindqvist and Amundrustad (1998). 
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PROBLEMS 

10.1 Fig. 10.14 illustrates a part of a smoke detection system. The system comprises 
two optical smoke detectors (with separate batteries) and a start relay. All components 

Smoke detector 1 1002 
I 

I I 
Smoke detector 2 

7 Start relay 1-b 

Fig. 10.14 Smoke detector system (simplified). 

are assumed to be independent with constant failure rates: 

Smoke detector 1 and 2 ;ISD = 2 . failures per hour 
Start relay ASR = 5 . lop5 failures per hour 

The system is tested and, if necessary, repaired after time intervals of equal length 
t = 1 month. After each test (repair) the system is considered to be “as good as new.” 
The repair time is assumed to be negligible. Dangerous undetected failures are only 
detected during tests. 

(a) Determine the PFD for the system. 

(b) Determine the mean number of test intervals the system passes from t = 0 until 
the first DU failure. 

(c) Assume that in a specific test you find that the system has a DU failure. Deter- 
mine the mean time the system has been in a failed state. 

(d) Assume that fires occur as a homogenous Poisson process with intensity @ = 5 
fires per year. Find the probability that a fire occurs while a DU failure of the 
smoke detection system is present, during a period of 2 years. 

10.2 Reconsider the 1002 system of independent fire detectors in Example 10.4 but 
assume that the two fire detectors are different and have failure rates hDU,l and b U , 2  

respectively, with respect to DU failures. The fire detectors are tested at the same 
time with test interval t. 

(a) Find the PFD for the fire detector system. 

(b) Find an approximation to the PFD when h ~ u , i  . t is “small” for i = 1,2. 

10.3 Reconsider the 2003 system of independent fire detectors in Example 10.5 but 
assume that the three fire detectors are different and have failure rates A.Du.1, A D U , ~ ,  
and hDU,3 respectively, with respect to DU failures. The fire detectors are tested at 
the same time with test interval t. 

(a) Find the PFD for the fire detector system. 
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(b) Find an approximation to the PFD when ADIJ,~ . T is “small” for i = 1,2,  3. 

10.4 You are planning to install a pressure sensor system on a pressure vessel. From 
past experience you know that the pressure sensors you are planning to use have the 
following constant failure rates with respect to the actual failure modes: 

No signal when the pressure 
increases beyond the pressure setting ARF = 3.10 failureshour 

False high pressure signal AFA = 3.60. lop6 failureshour 

The pressure sensors will be connected to a logic unit (LU). The LU transforms 
the incoming signals and transmits them to the emergency shutdown (ESD) system. 
The failure rates of the LU are estimated to be: 

Does not transmit 
correct signal A A  = 0.10 . failureshour per input 

False high pressure signal out AB = 0.05 - failureshour 

Four different system configurations are considered: 

0 One single pressure sensor (with LU) 

0 Two pressure sensors in parallel 

0 Three pressure sensors as a 2-out-of-3 system 

0 Four pressure sensors as a 2-out-of-4 system 

The pressure sensors and the logic unit will be tested and, if necessary, repaired at the 
same time once a month. Dangerous undetected failures will only be detected during 
tests. After a test (repair) all items are assumed to be “as good as new.” The time 
required for testing and repair is assumed to be negligible. 

(a) Determine the PFD with respect to DU failures for each of the four system 
configurations when you assume that all items are independent and the failure 
rates of cables, and so on, are negligible. 

(b) Determine the probability of getting at least one false alarm (FA) from each of 
the four system configurations during a period of one year. 

(c) Which of the four system configurations would you install? 

10.5 Consider a parallel structure of n identical components with constant failure 
rates A. The system is put into operation at time t = 0. The system is tested and if 
necessary repaired after regular time intervals of length t. After a test (repair) the 
system is considered to be “as good as new.” The system is exposed to common cause 
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Actuator 

II 

Circuit 1 r 
I I  

Process section A Cirt 

-1 

lit 2 

Fig. 70.15 Sketch of an emergency shutdown system. 

failures that may be modeled by a &factor model. Let PFD, denote the probability 
of failure on demand of a parallel structure of order n .  

(a) Determine PFD, as a function of h, r ,  and ,L?. 

(b) Let A = 5 . failures per hour, and r = 3 months, and make a sketch of 
MFDT,, as a function of B for n = 2 and n = 3. 

(c) With the same data as in question (b), determine the difference between MFDT2 
= 0 and #? = 0.20, respectively. and MFDT3 when 

10.6 Fig. 10.15 shows a part of a shutdown system of a process plant. There are 
two process sections, A and B. If a fire occurs in one of the process sections, the ESD 
system is installed to close the emergency shutdown valve, ESDV. The ESD valve has 
a fail-safe hydraulic actuator. The valve is held open by hydraulic pressure. When 
the hydraulic pressure is bled off, the valve will close. 

Each process section has two redundant detector circuits (circuit 1 and circuit 2) .  
Each detector circuit is connected to the ESDV actuator by a pilot valve, which by 
signal from the detectors opens and bleeds off the hydraulic pressure in the ESDV 
actuator, and thereby closes the ESD valve. Further, each circuit comprises an input 
card, a central processing unit (CPU), an output card, and two fire detectors in each 
process section. When a fire detector is activated, the current in that circuit is broken. 
When the current to the input card is broken, a “message” is sent to the CPU via the 
output card to open the pilot valve. It is assumed that minor fires in one of the process 
sections cannot be detected by the fire detectors in the other process section. 

It is assumed that all the components are independent with constant failure rates. 
Each component has two different failure modes: (i) Fail to function (FTF) (i.e., no 
reaction when a signal is received) and (ii) False alarm. The system components, 
their symbols, and FTF failure rates are listed in Table 10.4. 
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Table 70.4 Failure Rates for the “Fail to Function” Mode. 

Component Symbol 
FTF Failure Rate 
A (failures per hour) 

ESD valve ESDV 3.0. 
Actuator Actuator 5.0. 
Pilot valve P1, P2 2.0. 10-6 
Output card OPl,OP2 0.1 . 1 0 - ~  
Input card IPl, IP2 0.1 . 1 0 - ~  
CPU CPU1, CPU2 0.1 . 1 0 - ~  
Fire detector 1.1A, 1.2A,2.1A, 2.2A 4.0. 

l . lB, 1.2B, 2.1B, 2.2B 

(a) Construct a fault tree with respect to the TOP event: “The ESD valve does not 
close when a fire occurs in process section A.” 

Write down the extra assumptions you have to make during the fault tree con- 
struction. As seen from Table 10.4 the failure rates of the input card, the CPU, 
and the output card are negligible compared to the failure rates of the other com- 
ponents. To simplify the fault tree construction, you may therefore disregard 
the inputloutput cards and the CPU. 

Show that the fault tree has the following minimal cut sets: 

[Actuator] 
{ ESDV] 
{PI, P21 
{Pl ,  1.1A,2.1A] 
{ P2, 1.2A, 2.2A ] 
[ I.lA, 1.2A, 2.1A, 2.2A ] 

All the components are tested once a month. FTF failures are normally only 
detected during tests. The time required for testing and, if necessary, repair 
is assumed to be negligible compared to the length of the testing interval. In 
question (b) we shall assume that the testing of the various components are 
carried out at different, and for us unknown, times. 

(b) i. Determine the PFD for each of the relevant components. 
ii. Determine the TOP event probability by the “upper bound approx- 

imation,” when the basic events of the fault tree are assumed to be 
independent. 

iii. Discuss the accuracy of the “upper bound approximation” in this 
case. 
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iv. Describe other, and more exact methods, to compute the TOP event 
probability. Discuss pros and cons for each of these methods. 

(c) Minor fires are assumed to occur in process section A on the average two 
times a year, according to a homogeneous Poisson process. A critical 
situation occurs when a fire occurs at the same time as the ESD system 
has FTF failure (i.e., when the TOP event is present). Find the probability 
of at least one such critical situation during a period of 10 years. 

(d) Next consider the subsystem comprising the two fire detectors 1.1A and 
2.1 A. Determine the PFD of this subsystem when the detectors are tested: 
(i) Once every third month at different and, for us, unknown time points. 

(ii) At the same time once every third month. 
(iii) By staggered testing, where detector 1.lA is tested once every third 

month and detector 2.1A is also tested once every third month, but 
always one month later than detector 1.1 A. 

Which of these testing regimes would you prefer (give pros and cons). 
Explain why the PFD in case (i) is different from the PFD in case (ii). 

(e) Do you consider the suggested system structure to be optimal with re- 
spect to avoid “False alarm” failures? Suggest an improved structure and 
discuss possible positive and negative properties of this structure. 

10.7 A downhole safety valve (DHSV) is placed in the oiYgas production tubing on 
offshore production platforms, approximately 50 to 100 meters below the sea floor. 
The valve is held open by hydraulic pressure through a 1/16-inch hydraulic pipeline 
from the platform. When the hydraulic pressure is bled off, the valve will close by 
spring force. The valve is thusfail safe close. The valve is the last barrier against 
blowouts in case of an emergency situation on the platform. It is very important that 
the valve is functioning as a safety barrier, and the valve is therefore tested at regular 
intervals. 

There are two main types of DHSVs; wireline retrievable (WR) valves and tubing 
retrievable (TR) valves. WR valves are locked in a landing nipple in the tubing and 
may be installed and retrieved by a wireline operation from the platform. A TR valve 
is an integrated part of the tubing. To retrieve a TR valve, the tubing has to be pulled. 
Here we shall consider a WR valve. When the WR valve fails, it will be retrieved by 
a wireline operation and a new valve of the same type will be installed in the same 
nipple. 

The DHSV is tested once a month. During the testing, which requires approxi- 
mately 1.5 hours, the production has to be closed down. The mean time to repair a 
failure is estimated to be 9 hours. 

The DHSV has four main failure modes: 

FTC: 
LCP: Leakage in closed position 
FTO: 
PC: Premature closure 

Fail to close on command 

Fail to open on command 
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The failure modes FTC and LCP are critical with respect to safety. The failure modes 
FTO and PC are noncritical with respect to safety, but will stop the production. The 
three failure modes FTC, LCP, and FTO may only be detected during testing, while 
PC failures are detected at once since the production from the well closes down. 

The following failure mode distribution has been discovered: 

FTC: 15% 
LCP: 20% 
FTO: 15% 
PC: 50% 

The failure rates are assumed to be constant with respect to all failure modes. The 
mean time between valve failures (with respect to all failure modes) has been estimated 
to be 44 months. 

If a critical failure is detected during a test, the well will be unsafe during approx- 
imately one third of the repair time. If a noncritical failure is detected, the well will 
be safe during these operations. 

(a) Determine the mean time between FTC failures of a valve. 

(b) Determine the probability that a valve survives a test interval without any failure. 

(c) Find the PFD. The time required for testing and repair shall be taken into 
account. Discuss the complications encountered in this calculation due to PC 
failures. 

(d) Find the mean proportion of time the production is shut down due to DHSV 
testing and failures. 

(e) Assume now that an emergency situation occurs on the platform on the average 
once every 50 platform years, which requires that the DHSV must be closed. 
A critical situation occurs when such an emergency situation occurs when the 
DHSV is not functioning as a safety banier. Compute the mean time between 
this type of critical situations. 

(f) Consider a platform with 20 production wells, with a DHSV in each well. In 
an emergency situation all the wells have to be closed down. With the same 
assumptions as above, determine the mean time between critical situations on 
the platform. 



11 
Life Data Analysis 

11.1 INTRODUCTION 

In order to obtain information about a particular life distribution F ( t )  for an item 
(component/system), it is often necessary to carry out a life test where n identical, 
numbered items are activated in order to record their lifetimes. If the test is allowed 
to run until all the n items have failed and the lifetimes are recorded, the data set thus 
obtained is said to be complete. 

Often we have to be satisfied with incomplete data sets. This may be because 
it is impractical or too expensive to wait until all the items have failed, or because 
individual items are “lost” for one reason or another, or because in recording lifetime 
we must make do with stating relatively large time intervals to which the lifetimes 
belong. In such situations the data set is said to be censored. The examples show that 
such censoring can be planned, but also that circumstances may arise that are beyond 
control. 

Instead of observing lifetimes from a controlled life test we may observe lifetimes 
of items in actual operation. This type of data is often calledjield data. Assume 
that we observe n lifetimes of items of the same type that are operated under iden- 
tical operational and environmental conditions. The potential lifetime Ti of item i 
(i = 1, 2 ,  . . . , n )  is the lifetime the item would have if it were allowed to operate until 
failure. When the data set is censored, we are not able to observe all the potential life- 
times. Throughout this chapter we assume that the potential lifetimes T I ,  T2. . . . , T,, 
are independent and identically distributed (i.i.d.) with a continuous life distribution 
F ( f ) .  
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In the following we first describe some common types of censoring. Thereafter 
we discuss analysis of complete and censored data sets in a nonparametric setup, 
that is, without assuming any particular parametric model for the life distribution. 
We start with the empirical distribution function and the empirical survivor function 
that provide estimates for the life distribution function F ( t )  and the survivor function 
R ( t )  = 1 - F ( t ) ,  respectively, when the data set is complete. Thereafter we discuss 
the Kaplan-Meier estimator of the survivor function R ( t )  and also a graphical method, 
hazard plotting, that can be used to decide whether a set of life data originates from 
a specified life distribution or not. Both these methods can be used for complete 
and censored data sets. The last nonparametric method discussed in this chapter is 
a plotting method based on the total time on test (TTT) transform, that can be used 
both for complete and censored data sets. 

In Section 11.4 we discuss estimation in parametric models. We start with provid- 
ing estimates and confidence intervals in binomial and homogeneous Poisson process 
(HPP) models. Thereafter we discuss maximum likelihood estimation (MLE) when 
the life distribution is assumed to be exponential, Weibull, and inverse Gaussian, for 
complete data sets and for some specific types of censoring. The presentation of the 
estimation in parametric models is very brief and limited. The reader should there- 
fore consult a textbook on life data analysis for more details. Excellent presentations 
of life data analysis may be found in, for example, Kalbfleisch and Prentice (1980), 
Lawless (1982), Crowder et al. (1991), Ansell and Phillips (1994), and Meeker and 
Escobar (1 998). 

When considering data from repairable items, we must first verify that we have a re- 
newal process where the lifetimes (interarrival times) are independent and identically 
distributed. A number of graphical methods and formal tests have been developed 
to check this assertion. It is always wise to start an analysis of data from repairable 
items by drawing a Nelson-Aalen plot as described in Chapter 7. If the Nelson-Aden 
plot is nonlinear, the methods described in this chapter should not be used. 

In practice, the assumption of identically distributed lifetimes corresponds to the 
assumption that the items are nominally identical, that is, of the same type and exposed 
to approximately the same environmental and operational stresses. The assumption 
of independence means that the items are not affected by the operation or failure of 
any other item in the study. 

Explanatory variables (covariates, concomitant variables) are not considered in 
this chapter. Analysis of life data with explanatory variables is briefly discussed in 
Chapter 12. This topic is thoroughly discussed, for example, by Kalbfleisch and 
Prentice (1980), Lawless (1982), Cox and Oakes (1984), Crowder et al. (1991), and 
Ansell and Phillips (1994). 

11.2 COMPLETE AND CENSORED DATA SETS 

In this section we briefly describe four types of censoring. The presentation is re- 
stricted to right censoring, meaning that observation of a lifetime may be terminated 
before the item fails. In this case we know when an item was put into operation, but 
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not necessarily when the item fails. The data set is said to be left censored when we 
do not know when all the items were put into operation. In this case we know that an 
item is functioning when the observation period starts, but not necessarily how long 
the item has been functioning. In some data sets we may have both right and left 
censoring, in which case we say that the data set is doubly censored. Left censoring 
is not further discussed in this book. 

Throughout this chapter the censoring mechanism is assumed to satisfy the require- 
ment of independent censoring. Briefly, this means that censoring occurs independent 
of any information gained from previously failed items in the same study. 

The assumption of a continuous life distribution implies that the probability of 
observing two lifetimes that are (exactly) equal is zero. In practice, we do not record 
the exact lifetimes, but record the lifetimes as number of time units (minutes, hours, 
days or months). In this case several lifetimes may be recorded as equal, and we say 
that the data set contains ties. A tie in the data set is said to have order r ,  when r 
lifetimes are recorded with the same value. 

Throughout this chapter we let Ti denote the lifetime of item i when the lifetime 
is considered as a random variable. The observed value of I;: is denoted by tj. 

11.2.1 Complete Data Set 

The data set is complete when we are able to observe the real times to failure for all 
the n items we are studying. The data set is hence Ti,  T2, . . . , T,,, where I;: denotes 
the time to failure for item i .  We may rearrange the data set in an increasing sequence: 

where T(;)  is called the ith order statistic in the sample. 

11.2.2 Type I Censoring 

Sometimes, for economical or other reasons, a life test has to be terminated at a 
specified time to. All items are activated at time t = 0 and followed until failure or 
until time to when the experiment is terminated. This is often the case in medical 
research. After the experiment, only the lifetimes of those items that have failed 
before to will be known exactly. 

This type of censoring is called censoring of type I ,  and the information in the data 
set obtained then consists of s (5  n )  observed, ordered lifetimes: 

In addition we know that (n  - s) items have survived the time to, and this information 
should also be utilized. 

Since the number ( S )  of items that fail before time to obviously is stochastic, there 
is a chance that none or relatively few of the items will fail before to. This may be a 
weakness of the design. 
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Fig. 11.1 Censored data with staggered entry. 

11.2.3 Type II Censoring 

If we want to ensure that the resulting data set contains a fixed number r of observed 
lifetimes and furthermore want to terminate the test as fast as possible, the design 
must allow for the test to terminate at the rth failure; 0 < r < n. As before, we 
assume that all the items are activated at t = 0. The information obtained through 
the experiment consists of the data set 

in addition to the fact that (n  - r )  items have survived the time T(r ) .  
In this case the number ( r )  of recorded failures is nonstochastic. The price for 

obtaining this is that the time T(,.) to complete the experiment is stochastic. A weakness 
of this design is therefore that we cannot know beforehand how long the experiment 
will last. 

11.2.4 Type 111 Censoring 

Type 111 censoring is a combination of the first two types. The test terminates at the 
time that occurs first, to or the rth failure (to and r must both be fixed beforehand). 

11.2.5 v p e  IV Censoring 

In this case n numbered identical items are activated at different given point(s) in time. 
If the time for censoring of item i, Si; i = 1 ,  2, . . . , n, is stochastic, the censoring is 
said to be of type IV. This model can also be used in the following situation: 

Example 11.1 
Let us assume that there are compelling reasons why a test must be terminated by 
time to. Further, the activating times for the individual items are stochastic, as, for 
example, they are in a medical experiment where patients may enter the study more 
or less randomly; see Fig. 1 1.1.  
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Fig. 1 1.2 Censored data with staggered entry shifted toward f = 0. 

If we in this situation set the activating time points for the individual items to t = 0, 
0 then the censoring time points may be regarded as stochastic; see Fig. 11.2. 

Example 11.2 
Suppose that we are studying a series system composed of two different components, 
A and B .  If we are primarily concerned with studying to what degree failure in 
component A leads to system failure, we can interpret system failure caused by 
component B ,  as censoring. 0 

Example 11.3 
Suppose that we have observed a set of field data for a specific type of valves and want 
to analyze the data to obtain information about the occurrence of a specific failure 
mode, say, fail to close (FTC). The lifetimes of other failure modes will in this case 

0 be interpreted as censored times. 

11.3 NONPARAMETRIC METHODS 

11.3.1 Introduction 

In this section we do not make any assumptions about the life distribution F ( t ) ,  
other than assuming that F ( t )  is continuous, and, in some cases, that F ( t )  is strictly 
increasing as a function of t .  This situation is called nonparametric, and we will use 
a data set (complete or censored) to obtain nonparametric estimates of the survivor 
function R ( t )  and associated measures of the reliability of the item that is studied. 

11.3.2 Sample Measures 

Assume that we have observed a complete data set t l ,  t2, . . . , t,, and let the ordered 
data set be denoted by t(1), t ~ ) ,  . . . , t ( n ) .  Several sample measures may be derived 
from the data set: 
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The sample mean 

. n  

The sample median 

The sample variance 

c ( X i  - X ) 2  = - 2 1 "  s =- 
n - 1  i = l  n - 1  i = l  

The sample standard deviation 

(11.1) 

(11.2) 

(11.3) 

n - 1 ,  r=l 
(11.4) 

The sample coefficient of variation 

CV = i / s i.e., a unit-free measure (1 1.5) 

Remarks 

1. For the exponential distribution, we found in Section 2.9 that the mean was 
equal to the standard deviation. The sample coefficient of variation, CV, may 
therefore be used to decide whether or not the exponential model might be a 
realistic model for the life distribution. If CV is found to be far from 1 .O, then 
the exponential distribution is probably not a realistic distribution. 

2. The sample measures presented above are available in standard spreadsheet 
programs (like Excel). The spreadsheet programs also include several other 
sample measures, like percentiles, kurtosis, and skewness. 

11 -3.3 The Empirical Distribution and Survivor Functions 

Let F ( t )  denote the life distribution for a certain type of items. We want to estimate 
the distribution function F ( t )  and the survivor function R ( t )  = 1 - F ( t )  from a 
complete data set of n independent lifetimes. Let t ( l )  I t(2) 5 . . . 5 t(") be the data 
set arranged in ascending order. 

The empirical distribution function is defined as 

Number of lifetimes I t 
n Fn(t) = (11.6) 
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If we assume that there are no ties in the data set, the empirical distribution function 
may be written 

The corresponding empirical survivorfunction is 

Number of lifetimes > t 
n 

R , ( t )  = 1 - F n ( t )  = (11.8) 

If there are no ties in the data set, the empirical survivor function may also be written 

for t < t(1) 

for t(i) 5 t < t ( i+ l ) ;  i = I ,  2 , .  . . , (n  - I )  [ I  1 for t ( , )  I r 
R , ( t )  = 1 - - (11.9) 

Note that R , ( t ) ,  like F,,(r), is continuous from the right. Consider a specified point 
of time t * .  The number Z ( t * )  of the n lifetimes that are > t* is from Section 2.8 
binomially distributed ( n ,  R ( t * ) ) .  The mean value of Z ( t * )  is n . R ( t * ) ,  and R,(r*) 
in (1 1.8) is therefore an unbiased estimator for R ( t * ) .  In the same way, F,, ( t * )  is an 
unbiased estimator for F ( t * ) .  A point-wise confidence interval for F ( t * )  and R ( t * )  
may be found from (1 1.62). 

If all observations are distinct, R,( t )  is a step function that decreases by l /n  
just before each observed failure time. A simple adjustment accommodates any ties 
present in the data. R,( t )  as a function o f t  is illustrated in Fig. 11.4. From (1 1.9) 
we have 

Let f ( i ) -  denote a time just before time t ( i ) .  The empirical survivor function at time 
t ( i ) -  is 

The average value of R, evaluated near t(i) is thus 

(11.10) 

Some authors (e.g., Crowder et al. 1991 p. 40) find it natural to plot ( t ( i ) ,  k , ( t ( i ) ) )  
instead of the empirical survivor function (1 1.9) since it will produce a more “smooth 
curve.” 
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o'2 0,o 1 0 20 40 60 80 100 120 140 

Time t 

Fig. 17.3 The empirical distribution function F,, ( t )  for the data in Example 1 1.4. 

Example 11.4 
Suppose that n = 16 independent lifetimes (given in months) have been observed' : 

31.7 39.2 57.5 65.0 65.8 70.0 75.0 75.2 
87.7 88.3 94.2 101.7 105.8 109.2 110.0 130.0 

The sample mean t of the lifetimes is 

16 - 1  
t = - x t i = 8 1 , 6 4  

i = l  
16 

the sample median is M = (f(g) + t ( 9 , ) / 2  = (75.2+ 87.7)/2 = 81.45, and the sample 
standard deviation is 

16 

s = 1 (ti - 7)' x 26,78 
1 6 - 1 .  

r = I  

For the exponential distribution we found in Section 2.9 that E ( T )  = SD(T). Since 
I > S for this data set, the underlying distribution is probably not exponential. 

The empirical distribution function, F,, ( t ) ,  is illustrated in Fig. 1 1.3. The empirical 
survivor function, i ( t )  = 1 - F,, ( t ) ,  is illustrated in Fig. 1 1.4. The estimate in (1 1.10) 
is plotted in Fig. 11.5. This plot provides the same information as the empirical 

0 survivor function in Fig. 11.4. 

'The data is adapted from an example in Nelson (1 972). 
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Fig. 7 1.4 The empirical survivor function Rn ( t )  = 1 - F,, ( t )  for the data in Example 1 1.4. 

Time t 

Fig. 7 7.5 The empirical survivor function for the data in Example 1 1.4 made by the estimate 
in ( 1  1.10). 

11.3.4 Probability Plotting Paper 

It is not easy to see whether or not a plot like the one in Fig. 11.5 corresponds to 
a specified underlying distribution F ( t ) .  By an adequate change of the scale of the 
axes we may, however, make this task rather straightforward. 

We will illustrate the procedure by the Weibull distribution. The survivor function 
of the Weibull distribution with scale parameter h and shape parameter a is ( R ( t )  = 

c - ( * ' ) ~ .  By taking the logarithm, we get 

lnR(r) = 

In[-InR(t)] = a l n h f a l n t  ( 1  1.1 1 )  

Ifweestimate R ( t )  by(ll.lO)andplotln[- In R(t( , ) ]  againstt(j) for j = 1,2, . . . , n,  
the plotted points should approximately follow a straight line, if the underlying distri- 
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, I 

3,2 3,4 3,6 3,8 4,O 4,2 4,4 4,6 4.8 5,O 

Fig. 11.6 The empirical survivor function for the data in Example 11.4 plotted by using 
formula (1 1.10) on a paper scaled according to formula ( 1  1 . 1  1). 

bution is a Weibull distribution. In that case, the scale parameter a! may from (1 1.1 1) 
be estimated as the slope of the line, and the scale parameter A may afterwards be 
found from the intersection with the y axis. In Fig. 1 1.6 the plot in Fig. 11.5 is scaled 
according to (1 1.11) and a straight line, is fitted by the least square method. The 
plotted points are seen to be rather close to the line and we may therefore conclude 
that the data in Example 1 1.4 probably are from a Weibull distribution. 

Special plotting papers for the Weibull distribution have been developed with 
the scaling in equation (1 1.1 1). The paper is called a Weibull paper and will usually 
include graphical aids to estimate the parameters a! and A. The scaling will be different 
for the various distributions, and we therefore need to have a plotting paper for each 
specific distribution. Plotting papers for a variety of distributions may be downloaded 
from www. weibull .corn. 

1 1.3.5 The Kaplan-Meier Estimator 

We will now show how to estimate the survivor function R ( t )  from an incomplete data 
set with censoring of type IV (see page 468). The n numbered items are activated at 
time t = 0 and the censoring time for item i ,  Ci, is stochastic. Associated with item i 
for i = 1,2,  . . . , n are two nonnegative random variables, namely the lifetime Tj, that 
would be observed if item i is not exposed to censoring, called the potential lifetime, 
and the time Ci, when the item is possibly censored. We assume that (Ti ,  Ci) for 
i = 1,2,  . . . , n, are i.i.d. with a continuous distribution. Further, we assume that Ti 
and Ci for i = 1,2, . . . , n,  are independent with continuous marginal distributions. 

In this situation, it is only possible to record the smaller of Tj and Ci for item i for 
i = 1, . . . , n, but at the same time we know whether we are observing a failure or a 
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censoring. Let us introduce 

Yi = min[c,  Ci} 

and the indicators 

1 if c 5 Ci (Failure) 
0 if Ti > Ci (Censoring) 

i = 1, ..., n 6i = 

After the life test is terminated. we are left with the data set 

Kaplan and Meier (1958) suggested the following estimation procedure: Fix t > 0. 
Let t (I)  < t ( 2 )  < . . . < qn) denote the recorded functioning times, either until failure 
or to censoring, ordered according to size. Let Jr denote the set of all indices j 
where t(j) 5 t and qj) represents a failure time. Let n j  denote the number of items 
functioning and in observation immediately before time qj), j = 1, 2, . . . , n .  Then 
the Kaplan-Meier estimator of R ( t )  is defined as follows: 

(11.12) 

When the data set is complete, the Kaplan-Meier estimator (11.12) is seen to be 
equal to the empirical survivor function R , ( t ) .  Before we give the motivation for the 
Kaplan-Meier estimator, let us illustrate its use by an example. 

Example 11.5 
We change the situation given in Example 11.4 so that only the recorded lifetimes 
that are not starred (*) in Table 11.1 represent the times to failure. The remaining 
times (with a *) represent censored times. In Table 1 1.1 we have calculated k( t )  from 
( 1 1.12). In Table 1 1.2 the Kaplan-Meier estimate is determined as a function of time. 
In the time interval (0, 31.7) until the first failure it is reasonable to set k(t)  = 1. 
The estimate is displayed graphically in Fig. 1 1.7. The diagram in Fig. 1 1.7 is called 
a Kaplan-Meier plot. 0 

We see from (1 1.12) and also from Fig. 1 1.7 that k( t )  is a step function, continuous 
from the right, that equals 1 at t = 0. k( t )  drops by a factor of (nj - l ) /n j  at each 
failure time t ( , , ) .  The estimator k ( t )  does not change at the censoring times. The 
effect of the censoring is, however, influencing the values of n j  and hence the size of 
the steps in k(t). 

A slightly problematic point is that k( t )  never reduces to zero when the longest 
time q,) recorded is a censored time. For this reason k( t )  is usually taken to be 
undefined for t > qn). This problem is further discussed by Kalbfleisch and Prentice 
(1980, p. 12). 
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Table 7 7.1 Computation of the Kaplan-Meier Estimate. 

Rank Inverse rank Ordered Failure and 

j ( n - j + l )  Censoring Times q j )  bj R(t( j ) )  

- 1 1 .ooo 0 

0.938 1 16 31.7 

0.875 2 15 39.2 

0.813 3 14 57.5 

4 13 65 .O* 1 0.813 

0.745 5 12 65.8 

0.677 6 11 70.0 

7 10 75.0* 1 0.677 

8 9 75.2* 1 0.677 

- 

15 
16 
14 
15 
13 
14 

- 

- 
- 

1 1  
12 
10 
11 

- 

- 

9 8 

10 7 

11 6 

87.5* 1 0.677 
88.3* 1 0.677 

94.2* 1 0.677 

12 5 101.7* 1 0.677 
0.508 13 4 105.8 

14 3 109.2* 1 0.508 

3 
5 

15 2 

16 1 

0.254 110.0 

130.0* 1 0.254 

1 
2 

Note: Censoring times are starred (*) 

0,o I ’ I 1 1 

0 20 40 60 80 100 120 140 

Time t 

Fig. 77.7 Kaplan-Meier plot for the data in Example 11.5. 
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Table 11.2 The Kaplan-Meier Estimate as a Function of Time. 

0 - < t  < 

31.7 st  < 

39.2 st  < 

57.5 st < 

65.8 - < t <  
70.0 - < t  < 

105.8 - -=t < 

1 10.0 - < t  

31.7 = 1.000 

= 0.938 39.2 

= 0.875 57.5 

= 0.813 65.8 

= 0.745 70.0 

= 0.677 105.8 

= 0.508 110.0 

= 0.254 

15 
16 
15 14 

15 14 12 
z ' E ' 1 4  
- 15 14 12 
16 ' ' 14 ' 12 
- 15 14 13 11 10 
1 6 ' E s ' n ' n ' n  

16 ' 15 ' 14 ' 12 * 11 ' 4 
- 15 14 12 11 lo 3 1 
16 ' 15 ' 14 ' 12 ' 11 ' 4 ' 2 

- 

E ' E  

- lS~l4~l02 

Justification for the Kaplan-Meier Estimator The motivation for the Kaplan- 
Meier estimator is as follows2: Let the time period [0, co) be divided into small time 
intervals ( u j ,  u j + ~ ]  for j = 0, 1, . . . where uo = 0 and the intervals are so short that, 
based on the continuity assumptions about T and C ,  we can disregard the following 
possibilities: 

1. Two or more items fail in the same interval. 

2. One item fails and another is censored in the same interval. 

Now let t E (urn,  u rn+] ] .  Then obviously 

Since F ( t )  is assumed to be a continuous life distribution for all t 2 0, then Pr(T > 
ug) = Pr(T > 0) = 1. Hence 

2The following derivation is slightly different from the derivation presented by Kaplan and Meier (1958). 
See also Kalbfleisch and Prentice (1980), Lawless (1982). Cox and Oakes (1984), and Cocozza-Thivent 
(1997) for further alternatives. 
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where 

p j  = Pr(T > uj+l 1 T > u,) for j = O,1,.  . . , (m - 1) 

pm = Pr(T > t I T > u,) 

Kaplan-Meier’s idea is to estimate each single factor on the right-hand side of (1 1.14) 
and thereafter use the product of these estimators as an estimator of R(t).  What will 
now be a reasonable estimator of p j  = Pr(T > Uj+l I T > U j ) ?  

1. If neither failure nor censoring occurs in ( u j ,  u j+l] ,  then the same number of 
items will be active at the start and at the end of this interval. In this case, it 
seems reasonable to use the estimator 

j j  = Pr(T > Uj+l 1 T > U j )  = 1 

2. Next suppose that censoring occurs in ( u j ,  u j+l] .  Then due to the assumption 
about short intervals, we may ignore the possibility that failure occurs in the 
same interval. Accordingly, in this case we have recorded no failures in the 
interval, and it seems reasonable to use the same estimator as in condition 1. 

3. But suppose that failures occur in ( u j ,  uj+l] .  Due to the assumption about short 
intervals, we may ignore the possibility of more than one failure occurring in 
this interval. Let n j  denote the number of items at risk (i.e., that are functioning 
and in observation) at the beginning of the interval (u j , u j+l]. The number of 
items at risk at the end of the same interval is then (nj  - 1). Since (n j  - 1) 
items out of nj  survive the interval ( u j ,  u j+l] ,  a natural estimator of p j  = 
Pr(T > uj+l I T > u j )  is 

(11.15) 

A reasonable estimator of Pr(T > f I T > u,) is found in the same way. Thus 
the only intervals where the estimator 5, is different from 1 are the intervals where 
a failure occurs. By increasing the number of intervals such that the length of each 
interval, except the last, approaches zero, we see that the estimator j ,  is different 
from 1 only “at” the failure times. 

As stated above, we may partly disregard the intervals where no failures occur. To 
simplify the notation, we therefore redefine the n j  ’s: 

nj  = number of items at risk (functioning and in observation) 

immediately before time t ( j )  for j = 1 ,2 ,  . . . , n 

The probabilities p j  may now be estimated for infinitesimal intervals around the t ( j ) ’s  
by 

if a censoring occurred at t ( j )  

if a failure occurred at t ( j )  j = 1,2, . . . , n ( 1 1.16) 
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andbo = 1. 

( 1 1.14)] 
The Kaplan-Meier estimator of the survivor function R ( t )  is then given by [see 

n 

k( t )  = n @ j  

j =O 

(11.17) 

Let Jt denote the set of all integers j such that t ( j )  is a failure time and q j )  5 t .  The 
Kaplan-Meier estimator3 in (1 1.17) may then be written 

(11.18) 

Let t ( l )  5 t ( 2 )  5 . . . 5 qn) denote the recorded functioning times, until either failure 
or censoring, arranged by size. If two or more of these coincide, they are arranged 
in random order. If a failure time and a censoring time are recorded as equal, the 
convention is often adopted (see Cox and Oakes 1984, p. 49) that censoring times 
are considered to be infinitesimally larger than the failure times. This makes sense 
since an item that is censored at time t almost certainly survives past t . 

Some Properties of the Kaplan-Meier Estimator A thorough discussion of 
the properties of the Kaplan-Meier estimator k( t )  may be found in Kalbfleisch and 
Prentice (1980), Lawless (1982), and Cox and Oakes (1984). We will here only 
summarize a few properties without proofs: 

1 .  The Kaplan-Meier estimator k(t)  can be derived as a nonparametric maximum 
likelihood estimator (MLE). This derivation was originally given by Kaplan 
and Meier (1958). 

2. The Kaplan-Meier estimator may be slightly modified to data sets with ties. If 
we assume that dj items fail at time t ( i )  for i = 1,2,  . . . , n ,  the Kaplan-Meier 
estimator becomes (e.g., see Kalbfleisch and Prentice 1980, p. 12): 

(1 1.19) 

3. k( t )  is a consistent estimator of R ( t )  under quite general conditions with esti- 
mated asymptotic variance (Kalbfleisch and Prentice 1980, p. 14): 

G ( k ( t ) )  = (k( t ) )2  c dj (1 1.20) 
nj (n j  - d , )  

Expression (1 1.20) is known as Greenwood’s formula. 

j E . 4  

3The estimator is also called the product limii (PL) estimator. 
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4. The Kaplan-Meier estimator has an asymptotic normal distribution since it 
is a maximum likelihood estimator. Hence confidence limits for R ( t )  can be 
determined using normal approximation. For details see Cox and Oakes (1984, 
pp. 51-52) 

11.3.6 Nelson's Estimator of the Cumulative Failure Rate 

Let R ( t )  denote the survivor function for a certain type of items, and assume that the 
distribution is continuous with probability density f ( t )  = R'(t) ,  where f ( t )  > 0 
for f > 0. No further assumptions are made about the distribution (nonparametric 
model). 

The failure rate function [force of mortality (FOM)] was defined in Section 2.5 as 

The cumulative failure rate function is 

z(u)du = -lnR(t)  

(11.21) 

(1 1.22) 

The survivor function may therefore be written 

Assume that we have an incomplete data set with stochastic censoring (type IV), 

A natural estimator of the cumulative failure rate Z ( t )  is then deducted from the 
with the same properties as described on page 468. 

Kaplan-Meier estimator, k(t) ,  as 

(1 1.23) 

where 6, for j = 1,2,  . . . , n is defined in (1 1.17). If we, as before, let 5' be the set 
of integers such that t ( j )  is a failure time and t(,) 5 t ,  then (1 1.23) may be written 

(11.24) 

An alternative estimator of Z ( t )  was proposed by Nelson (1969). To derive this 
estimator we need some lemmas. 

Lemma 11.1 Let T be continuously distributed with strictly increasing distribution 
function F ( t ) .  Then 
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1 .  U = F ( T )  has a uniform distribution over the interval (0, 1)  and 

2. Z(T) = - ln(1 - F ( T ) )  is exponentially distributed with parameter 1. 

Proof 

1. Let u E (0, 11. Then 

2. Let z 0. Then 

Pr(Z p z )  = Pr(-ln(1 - F ( T ) )  p z )  
= Pr(F(T) 5 1 - e-'1 = Pr(U 5 1 - e-') = 1 - e-' 

From Lemma 1 1.1 we easily obtain 

Corolary 11.1 Let T I ,  T2, . . . , T, be independent and identically continuously dis- 
tributed with strictly increasing distribution function F ( t ) .  Denote the corresponding 
order statistic 

Z(T( j ) )=- ln( l  - F ( T ( , ) )  f o r j =  1,2, ..., n (1 1.25) 

and replace Z(T(j)) by Z(,). Then 

41) < Z(2) < . . . < Z(,) 

can be interpreted as the order statistic of n independent, identical, exponentially 
distributed variables with parameter 1. 

Lemma 11.2 Let the assumptions be the same as in Corollary 11.1, and Z ( , )  be 
defined as in (1 1.25). Then 

1 1 
(1  1.26) 

1 
n n + l  n - j + l  E(Z(j))  = E(Z(T(j))) = - + ~ + . . + 

A proof of Lemma 1 1.2 may be found, for example, in Barlow and Proschan (1975, p. 
60). From ( 1 1.26), Nelson (1969) proposed to estimate the cumulative failure Z(t) 
based on a complete data set by 

(11.27) 
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where r = 1,2,  . . . , n - 1. The estimator i ( t )  is called the Nelson estimator for a 
complete data set. 

Having estimated the cumulative failure rate by i ( t ) ,  it seems natural to estimate 
the survivor function by 

R * ( t )  = e-Z(') (11.28) 

Before giving a justification for the estimator i ( t ) ,  we will illustrate its use by an 
example. 

Example 11.6 Complete Data Set 
Reconsider the (complete) data set in Example 11.4. The Nelson estimate i ( t )  may 
be calculated from (1 1.27) for t = t ( j )  for j = 1, . . . , 16. The corresponding Nelson 
estimate R * ( t ( j ) )  for the survivor function may then be calculated from (1 1.28). The 
result is shown in Table 1 1.3. On the right-hand side of the table the corresponding 

0 Kaplan-Meier estimate k(t(j))  is shown. 

Censored Data Sets Assume now that we have a data set that is subject to cen- 
soring of type IV. In this situation, Nelson proposed the following procedure for 
estimating the cumulative failure rate and the survivor function: As before, let 

denote the recorded times until either failure or censoring, and they are ordered 
according to size.4 Let the index u run through the integers j ,  where t ( j )  j = 1, 2, . . . 
denotes the times to failure such that t ( j )  < t .  

The Nelson estimator of the cumulative failure rate is then 

(1 1.29) 
1 =c- 1 

i ( t )  = c 
j e J ,  n J  n - u + l  

Note that the Nelson estimator i ( r )  is a first order approximation to the estima- 
tor (1 1.24) derived from the Kaplan-Meier estimator. The Nelson estimator of the 
survivor function at time t is 

R * ( t )  = e-ao (11.30) 

Before we give a justification for these estimators, we will use them in an example. 

Example 11.7 
Reconsider the censored (type IV) data set in Example 1 1.5. The Nelson estimate 
i ( t )  may be calculated from (1 1.29) for the failure times q l ) ,  t ( 2 ) ,  t ( 3 ) ,  43, f ( 6 ) ,  f(13), 

and t ( 1 5 )  (hence u runs only through the values 1 ,2 ,3 ,5 ,6 ,  13, and 15). Then R*(t )  

41f two or more of the observations coincide, they are arranged in random order. 
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Table 11.3 Nelson Estimator for the Complete Data Set in Example 1 1.6, Compared with 
the Kaplan-Meier Estimator. 

Survivor Function Estimate 
Inverse of Nelson 

Rank Lifetime Number at Risk Estimate Nelson Kaplan-Meier 

j t( j )  (n - j + I)-’ i ( t c j ) >  R * ( t ( j ) )  R (t( j )  I 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

31.7 

39.2 

57.5 

65.0 

65.8 

70.0 

75.0 

75.2 

87.5 

88.3 

94.2 

101.7 

105.8 

109.2 

110.0 

130.0 

1 
16 
1 

15 
I 
14 
I 

13 
I 

12 
1 

11 
1 
10 
1 v 
1 
8 
1 
7 
1 
6 
1 
5 
1 
4 
1 
3 
I 
2 

1 

- 
- 

- 

- 

- 

- 

- 

1 

0.0625 

0.1292 

0.2006 

0.2775 

0.3609 

0.45 18 

0.55 18 

0.6629 

0.7879 

0.9307 

1.0974 

1.2974 

1.5474 

1.9807 

2.4807 

3.4807 

0.939 

0.879 

0.818 

0.758 

0.697 

0.637 

0.576 

0.515 

0.455 

0.394 

0.334 

0.273 

0.2 13 

0.138 

0.084 

0.03 1 

0.938 

0.875 

0.813 

0.750 

0.688 

0.625 

0.563 

0.500 

0.448 

0.375 

0.313 

0.250 

0.188 

0.125 

0.063 

0.000 

is determined from (1 1.30). The results are shown in Table 1 1.4. On the right-hand 
side of Table 1 1.4, the corresponding Kaplan-Meier estimate k(t) is shown. 

As we can see, there is good “agreement” between the Kaplan-Meier estimates 
and the Nelson estimates for the survivor function in this data set. 0 

Justification for the Nelson Estimator We now make the same considerations 
as we did earlier when we justified the Kaplan-Meier estimator. The time axis is 
divided into small time intervals ( u j ,  u j+ l ]  for j = 0, 1, . . ., where the intervals are 
so short that one can disregard these possibilities: 

I .  Two or more items fail in the same interval. 

2. One item fails and another is censored in the same interval. 
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Table 11.4 Nelson Estimator for the Censored Data Set in Example 1 1.7, Compared with 
the Kaplan-Meier Estimator. 

Kaplan- 
Time to Nelson Meier 

j u Failure Nelson Estimate i ( t j )  R* ( t (  j ) )  ( t (  j ) )  

1 1 1  31.7 - 16 

3 3  57.5 x + + 1;1 
2 2  39.2 + 

1 1 1  

4 
5 5  65.8 x + ~ + n + n  
6 6  70.0 ~ + e + . . . + j - i  
7 
8 
9 
10 
11 
12 
13 13 105.8 k + . . . + l + l  1 1  4 
14 

16 

1 1 1 1  

1 1  1 

1 1 1  15 15 110.0 G + ” ‘ +  a + z  

= 0.0000 
= 0.0625 

= 0.1292 

= 0.2006 

= 0.2839 

= 0.3748 

= 0.6248 

= 1.1248 

1 .ooo 
0.939 

0.879 

0.8 18 

0.753 

0.687 

0.535 

0.320 

1 .ooo 
0.938 

0.875 

0.813 

0.745 

0.677 

0.508 

0.254 

In addition, we assume that the intervals are so short that the failure rate in the interval 
(u,, uj+l ]  may be considered constant and equal to hj for j = 1,2, . . .. 

Now suppose that t E (u,, u,+1]. As on page 477 

R ( t )  = Pr(T > u1 I T > uo) . . .Pr(T > t I T > u,) (1 1.31) 

As before, the idea is to estimate each single factor on the right-hand side of ( 1  1.3 1) 
and use the product of these estimators as an estimator of R ( t ) .  What will now be a 
reasonable estimator of p j  = Pr(T > uj+l I T > u j ) ?  With the same approach we 
used for justifying the Kaplan-Meier estimator, the only intervals for which it will be 
natural to estimate p j  with something other than 1 ,  will be the intervals ( u j ,  u j+ l ]  
where afuilure occurs. If we denote the number of items that have either failed or 
have been censored in the course of (0, u j ]  with (r - l ) ,  there will be (n - r + 1) 
active items at the beginning of the interval. The total functioning time in such an 
interval will be approximately equal to (n - r + l ) (u j+ l  - u j ) ,  and hence a natural 
estimator of hj  will be 

1 

(n  - r  + l ) ( u j + l  - u j )  
h j  = (1 1.32) 
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Time t 
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Time t 

w 
Time t 

Fig. 7 7.8 Estimated cumulative failure rate i ( t )  indicating (a) increasing failure rate (IFR), 
(b) decreasing failure rate (DFR), and (c) bathtub-shaped failure rate. 

A natural estimator of p j ,  when a failure occurs in (u,, uj+l ]  is therefore 

(11.33) 

If we insert these estimators in (11.31), this leads to the estimator R*( t )  given in 
(1 1.30). 

Nelson Plot From (1 1.2 1) and (1 1.22) it follows that 

z ( t )  increasing in t Z ( t )  convex (1 1.34) 

Correspondingly 

z ( t )  decreasing in t M Z ( t )  concave (1 1.35) 

If we plot the points ( t ( i ) ,  i ( t ( i ) ) )  on a rectangular coordinate system and if the pat- 
tern of the plot is as shown in Fig. 11.8(a), this indicates that Z ( t )  is convex, that 
again means that we are dealing with an increasing failure rate (IFR) life distribution 
function. Similarly a plot such as the one depicted in Fig. 11.8(b) indicates a de- 
creasing failure rate (DFR) life distribution, while the plot in Fig. l l  .8 (c) indicates 
a life distribution with bathtub-shaped failure rate function. In Fig. 1 1.9, the points 
( t ( , ) ,  Z ( t ( j ) ) )  in Table 11.4 (Example 1 1.7) are plotted. The diagram is called a Nel- 
son plot since it was suggested by Nelson (1969)5. The plot is also called a hazard 
plot, because the failure rate function (FOM) is sometimes called a hazard function. 

Often we are interested in checking whether it is reasonable or not to assume that 
a specified life distribution (normal distribution, exponential distribution or Weibull 
distribution) is the basis for the observed life data. Special graph papers for the actual 
distributions have been developed for this purpose. The graph paper for distribution 
F ( t )  is so designed that if we plot ( t ( , ) ,  i ( t c j ) ) )  on this paper, the pattern of the 

his original paper Nelson (1969) suggested plotting ( i(f(j)) ,  f ( j ) )  instead of ( f ( j ) ,  i(f(,))). 
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0 20 40 60 80 100 120 

Time t 

Fig. 77.9  Nelson plot of the data in Example 11.7, together with an overlay curve (dashed 
line) for the Weibull distribution with a = 2.38 and h = 8.12.  

plot will be approximately a straight line if the life data really originates from the 
distribution F ( t ) .  If so, the parameters of the distribution may be read directly from 
the plot. 

Another way to check whether the life distribution F ( t )  is appropriate is the fol- 
lowing two steps: First, we estimate the parameters of the distribution F ( t ) ,  for 
example, by using the maximum likelihood principle. Next, we draw the estimated 
cumulative failure rate of the distribution in the same coordinate system as the plot of 
( q j ) ,  i ( q j ) ) ) .  If the plotted values are close to the estimated cumulative failure rate 
function, this indicates that the distribution F ( t )  is the basis for the observed data. 

For the data in Example 11.7 the MLE (see Section 1 1.4) of the parameters a! 
and h of the Weibull distribution are & = 2.38 and The estimated 
cumulative failure rate (hazard) function i ( t )  = (it)' is drawn as an overlay curve 
to the plot in Fig. 1 1.9. We may check the goodness of fit to the Weibull distribution 
by visual inspection or by using a formal test. 

= 8.12 . 

11.3.7 Total Time on Test Plot for Complete Data Sets 

Assume that we have a complete data set of n independent lifetimes with continuous 
distribution function F ( t )  that is strictly increasing for F-'  (0) = 0 < t < F- ' (  1). 
Further, it is assumed that the distribution has finite mean p. 

Definition 11.1 The total time on test at time t ,  T ( t ) ,  is defined as 

i 

T ( t )  = c T( j )  + (n  - i)t (11.36) 
j=1 

where i is such that 
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and T(o) is defined to be equal to 0 and T(,+1) = +m. 0 

The total time on test 3- (t) denotes the total observed lifetime of the n items. We 
assume that all the n items are put into operation at time t = 0 and that the observation 
is terminated at time t .  In the time interval (0 ,  t ] ,  a number, i, of the items have failed. 
The total functioning time of these i items is C>=o T(j). The remaining n - i items 
survive the time interval (0, t ] .  The total functioning time of these n - i items is thus 
(n - i)r .  

The total time on test at the ith failure is 

In particular, 

n n 

j=l j=1 

The total timeon test at the ith failure, T ( T ( i ) ) ,  may be scaled by dividing by 3-(T(n)). 
The scaled total time on test at time t is defined as T(t) /T(T(,)) .  

If we plot the points 

we obtain the 77Tplot of the data set. 

Example 11.8 
Suppose that we have activated 10 identical items and observed their lifetimes (in 
hours): 

6.3 11.0 21.5 48.4 90.1 
120.2 163 .O 182.5 198.0 219.0 

Let us construct the TTT plot for this data set. First, we calculate the quantities 
we are going to need and put them in a table as done in Table 1 1.5. The TTT plot for 

0 

To be able to interpret the shape of the TTT plot, we need the following theorem 
that is stated here without proof (see Barlow and Campo, 1975). 

Theorem 11.1 Let U1, Uz,  . . . , Un-l be independent random variables with a uni- 
form distribution over (0, 11. If the underlying life distribution is exponential, the 
random variables 

this (complete) data set is shown in Fig. 11.10. 

(11.38) 
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Table 71.5 TlT Estimates for the Data in Example 11.8. 

1 6.3 
2 11.0 
3 21.5 
4 48.4 
5 90.1 
6 120.2 
7 163.0 
8 182.5 
9 198.0 

10 219.0 

6.3 
17.3 
38.8 
87.2 

177.3 
297.5 
460.5 
643.0 
841.0 

1060.0 

6.3 + 9.6.3 
17.3 + 8.11.0 
38.8 + 7.21.5 
87.2 + 6.48.4 

177.3 + 5.90.1 
297.5 + 4.120.2 
460.5 + 3.163.0 
643.0 + 2.182.5 
841.0 + 1.198.0 

1060.0 + 0 

63.0 
105.3 
189.3 
377.6 
627.8 
778.3 
949.5 

1008.0 
1039.0 
1060.0 

0.1 0.06 
0.2 0.10 
0.3 0.18 
0.4 0.36 
0.5 0.59 
0.6 0.73 
0.7 0.90 
0.8 0.95 
0.9 0.98 
1.0 1.00 

0,o 0,2 0.4 0.6 08 1.0 

iln (v) 

Fig. 7 1.70 TlT plot of the data in Example 11.8. 
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have thesamejointdistributionas the (n-1) orderedvariables U(I),  U(2), . . . , U+I). 

From this theorem follows: 

Corolary 11.2 If the underlying life distribution F ( t )  is exponential, then 

1.  var(T(Ti)/T(T,,)) is finite. 

2. E(T(T,)/T(T,)) = l / n  for i = 1 , 2 , .  . . , n. 

If the underlying life distribution is exponential, we should, from Corolary 11.2(2), 
expect that for large n 

As this is not the case for the TTT plot in Fig. 11.10, we can conclude that the 
underlying life distribution for the data in Example 1 1.8 is probably not exponential. 

To decide from a TTT plot whether or not the corresponding life distribution is IFR 
or DFR, we need a little more theory. We will be content with a heuristic argument6. 

We claim that 

(11.39) 

where F,, ( t )  denotes the empirical distribution function (1 1.7). Assertion (1 1.39) can 
be proved in the following way (remember that per definition T(0) = 0): 

nJ;T( ' ) ( l  - F,(u) )du  

i 

= x ( n  - j + 1)(T( j )  - T(j -1) )  

= nT(1) + (n  - 1)(7'(2) - T(I)) + . . . + (n  - i + 1)(T(i) - T(i-1)) 

j = l  

i 

= C T(j )  + (n  - i)T(i) = T(T( i ) )  
i=l 

We now come to the heuristic part of the argument. First let n equal 2m + 1, where m 
is an integer. Then T(,+l) is the median of the data set. What happens to the integral 

T(t?l+l) 
(1 - F,(u))du when m + 00 

6A more rigorous treatment is found, for example, in Barlow and Carnpo (1975). 
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When m -+ 00, we can expect that 

Fn(u) -+ F ( u )  

and that 

T(,+1) -+ (median of F )  = F-'(1/2) 

and therefore that 

F - ' ( l / 2 )  
(1 - F ( u ) ) d u  (1 1.40) 

Next, let n equal 4m + 3. In this case T(2m+2) is the median of the data, and T(m+l) 
and T(3rn+3) are the lower and upper quartiles, respectively. 

I 1 
- T(T(rn+1)) -+ n 

When m -+ 00, by arguing as we did above, we can expect the following: 

F-' (1 / 4 )  J; (1 - F ( u ) ) d u  

s, (1 - F ( u ) ) d u  

1 
- T(T(rn+1)) -+ 

n 

1 
- 7(T(2m+2)) -+ n 

1 
- T(T(3rn+3)) -+ n 

F -  ' (1  /2) Jd (1 - F ( u ) ) d u  (11.41) 

F - ' ( 3 / 4 )  

In addition, according to (2.12) 

roo r F-'  (1) 
(1 - F ( u ) )  du (1 1.42) 

When n -+ co, we can therefore expect that 

(1 1.43) 

The integrals that we obtain as limits by this approach, seem to be of interest and we 
will look at them more closely. They are all of the type 

F-' ( u )  

Jd (1 - ~ ( u ) ) d u  for0 5 u i 1 

F-'  ( u )  We call this integral, lo 
F ( t )  and denote it by H F 1 ( u ) .  

Definition 11.2 The TIT transform of the distribution F is 

(1 - F ( u ) )  du,  the TiT transfom of the distribution 

F - ' ( u )  
(1 - F ( u ) )  du for 0 i u i 1 (1 1.44) s, H;' (u )  = 
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t 

k 
0 F-'(v) Time t 

Fig- 11.1 7 The TTT transform of the distribution F .  

491 

0 

The TTT transform of the distribution F ( t )  is illustrated in Fig. 11.11. Notice that 
H , ' ( u )  is the area under R ( t )  = 1 - F ( t )  between t = 0 and t = F - ' ( u ) .  

It can be shown under assumptions of a general nature that there is a one-to- 
one correspondence between a distribution F ( t )  and its TTT transform H F 1 ( u )  (see 
Barlow and Campo, 1975). 

We see from (1 1.44) and (1 1.42) that 

The scaled 77T transform of F ( t )  is defined as 

Example 11.9 Exponential Distribution 
The distribution function of the exponential distribution is 

F ( t )  = 1 - e-" fort  2 0, > o 

and hence 

1 
A 

F - ' ( u )  = --ln(l  - u )  for0 5 u 5 1 

Thus the TTT transform of the exponential distribution is 

(1 1.45) 

( 1 1.46) 

1 1  U 

h h  h 
- - - - - ( I - u ) = -  f o r O i u 5 1  
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0,o 0.2 0.4 0.6 0.8 1 .o 

V 

Fig. 11.12 Scaled TTT transform of the exponential distribution. 

Further 

1 
HF'(1) = - 

h 

The corresponding scaled TTT transform is therefore 

(1 1.47) 

The scaled TTT transform of the exponential distribution is thus a straight line from 
0 (0,O) to (1, l ) ,  as illustrated in Fig. 1 1.12. 

Example 11.10 Weibull Distribution 
It is usually not straightforward to determine the TTT transform of a life distribu- 
tion. We will illustrate this by trying to determine the TTT transform of the Weibull 
distribution 

~ ( t )  = 1 - e-(k')a fort  2 0, > 0, a > o 

The inverse function of F is 

1 1 
F -  (v) = - (-1n(1 - v ) ) ' / "  for0 5 u 5 1 

h 

The TTT transform of the Weibull distribution is 

F - l  ( u )  s,'- ln( l -u)) ' /a /A 
(1 - F ( u ) )  du = e - ( A ~ ) '  du 
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Fig. 11.13 Scaled TTT transforms of the Weibull distribution for some selected values of a. 

By substituting x = (hu)" we obtain 

e P x  d x  ( 1 1.48) 

which shows that the TTT transform of the Weibull distribution may be expressed 
by the incomplete gamma function. However, several approximation formulas are 
available. 

HF'  ( u )  = - x l / c Y - l  

ah s-" 0 

The mean time to failure is obtained by inserting u = 1 in H ~ ' ( U ) .  

which coincides with the result we obtained in (2.37). Note that the scaled TTT 
transform of the Weibull distribution depends only on the shape parameter a and is 

0 

Computer programs able to compute the TTT transforms of the most common life 
distributions and to plot scaled TTT transforms are available. Scaled TTT transforms 
of the Weibull distribution for some selected values of the shape parameter a, are 
illustrated in Fig. 1 1.13. 

independent of the scale parameter h. 

We will now prove the following theorem: 

Theorem 11.2 If F ( t )  is a continuous life distribution that is strictly increasing for 
F- ' (O)  = 0 < t < F- ' ( l ) ,  then 

(1 1.49) 
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where z ( t )  is the failure rate of the distribution F ( t ) .  

Proof 
Since 

( 1  - F ( u ) )  du  I"'"' d 
d u  
-H; ' (U)  = 

d 
d v  = [ l  - F(F-'(u))]-F-l(v) 

then 

From Theorem 1 1.2 we can now prove: 

Theorem 11.3 If F ( t )  is acontinuous life distribution, strictly increasing for F-' (0) = 
0 < t < F-'(l), then 

1. F - IFR * ~ ; l ( u )  concave; o p u p 1. 

2. F - DFR H ; ' ( u )  convex; 0 5 u p 1 .  

The arguments, used to prove properties 1 and 2 are completely analogous. We 
therefore prove only property 1. 
Proof 

F-IFR 

* 
z ( t )  is nondecreasing in t 

- is nonincreasing in t 
1 

2 0 )  
d 

- H ; ' ( u ) ~ " = F ( ~ )  is nonincreasing in t 
d v  
d 
- H;' ( u )  is nonincreasing in u 
d v  
since F ( r )  is strictly increasing 

H;' ( u )  is concave, o 5 u p 1 

0 
If we are going to estimate the scaled TTT transform of F ( t )  for different u values 

on the basis of the observed lifetimes, it is natural to use the estimator 

(11.50) 
i !,-'(")(l - F,(u))du 

~ ~ - ' ( ' ) ( l  - F,(u) )du  n 
f o r u = - ,  i = 1 , 2  ,..., n 
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Introducing the notation 

F ; ' ( u )  i I n 
(1  - F,(u))du for u = -, i = 1 , 2 , .  . . , n (11.51) I Hn- ( u )  = 

this estimator can be written 

(11.52) 

By comparing (11.52) with (11.39), it seems natural to call H;'(u)/H;'(l) the 
empirical, scaled TTT transform of the distribution F ( t ) .  

The following theorem is useful when we wish to exploit the TTT plot to provide 
information about the life distribution F ( t ) :  

Theorem 11.4 If F ( t )  is a continuous life distribution function, strictly increasing 
for F-' (0) = 0 < t < F - ' (  l), then 

where T ( T ( ; ) ) ,  as before, denotes the total time on test at time T(;) .  

Proof 
Accordingto(11.51)and(11.7),fori = 1 , 2  , . . . ,  n ,  

(11.53) 

while 

1 l n  

i = l  
(1 - F , ( u ) ) d u  = -T(T(n)) = - c 

= n 

By introducing these results in (1 1.52) we get (1 1.53). 
Hence the scaled total time on test at time T(i) seems to be a natural estimator 

of the scaled TTT transform of F ( t )  for u = i / n  : i = 1,2,  . . . , n. One way of 
obtaining an estimate for the scaled TTT transform for (i - l ) /n  < u < i / n  is by 
applying linear interpolation between the estimate for u = (i - l ) /n  and u = i / n .  
In the following we will use this procedure. 
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0 V 1 

fig. 11.14 TTT plots indicating (a) increasing failure rate (IFR), (b) decreasing failure rate 
(DFR), and (c) bathtub-shaped failure rate. 

Now suppose that we have carried out a life test as described in the introduction 
to this chapter. We first determine T ( T ( ~ I ) / T ( T ( ~ ) )  for i = 1,2,  . . . , n as we did in 
Example 1 1.8, plot the points [i / n ,  T (T(i))/’T ( T ( n ) ) ] ,  and join pairs of neighboring 
points with straight lines. The curve obtained is an estimate for HFI(u)/HFI(l)  = 

We may now assess the shape of the curve [the estimate for H i 1  ( u ) ]  in the light of 
Theorem 1 1.3 , and in this way obtain information about the underlying distribution 
F O ) .  

A plot like the one shown in Fig. 1 l.l4(a), indicates that H F ’ ( u )  is concave. The 
plot therefore indicates that the corresponding life distribution F ( t )  is IFR. 

Using the same type of argument, the plot in Fig. 11.14(b) indicates that HF’(u) 
is convex, so that the corresponding life distribution F ( t )  is DFR. Similarly, the plot 
in Fig. 11.14(c) indicates that HF‘ ( u )  “is first convex” and “thereafter concave.” In 
other words, the failure rate of the corresponding lifetime distribution has a bathtub 
shape. 

The TTT plot obtained in Example 1 1.8, therefore indicates that these data originate 
from a life distribution with bathtub-shaped failure rate. 

& ‘ ( u )  ; 0 5 u 5 1. 

Example 11.11 
The following data from Lieblein and Zelen (1 956) are the numbers of millions of 
revolutions to failure for each of 23 ball beatings. The original data have been put in 
numerical order for convenience. 
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Fig. 7 7.75 T'IT plot of the ball bearing data in Example 1 1.1 1 together with an overlay 
curve of the TTT transform of the Weibull distribution with shape parameter a = 2.10. 

17.88 28.92 33.00 41.52 42.12 45.60 48.40 
51.84 51.96 54.12 55.56 67.80 68.64 68.64 
68.88 84.12 93.12 98.64 105.12 105.84 127.92 

128.04 173.40 

The TTT plot of the ball bearing data is presented in Fig. 11.15. The TTT plot 
indicates an increasing failure rate. We may try to fit a Weibull distribution to the data. 
The Weibull parameters a! and 1 are estimated to be 2 = 2.10 and i = I .22 . 
The TTT transform of the Weibull distribution with these parameters is plotted as an 
overlay curve to the TTT plot in Fig. 11.15. 

Example 11.12 Age Replacement 
A well-known application of the TTT transform and the TTT plot is the age replace- 
ment problem that is discussed in Section 9.6. Here an item is replaced at a cost c + k 
at failure or at a cost c at a planned replacement when the item has reached a certain 
age to. 

The average replacement cost per time unit of this policy was found to be 

( 1  1.54) 

The objective is now to determine the value of to that minimizes C(?o). If the distri- 
bution function F ( t )  and all its parameters are known, it is a straightforward task to 
determine the optimal value of to. One way to solve this problem is to apply the T'IT 
transform. 
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By introducing the TTT transform (1 1.54) as 

whereHFI(1) isthemean timetofailure(MTTF)oftheitem, andpF(u) = H;'(v)/HF'(l) 
is the scaled TTT transform of the distribution function F ( t ) .  

that minimizes 
The optimal value of to may be determined by first finding the value uo = F( to )  

and thereafter determine to such that uo = F( t0 ) .  The minimizing value of vo may be 
found by setting the derivative of C1 (uo) with respect to uo equal to zero, and solve 
the equation for uo: 

= o  d 

UO (OF (v0 I2  

(OF(u0) * k - (O&(vO)(C + k ' VO)  
---Cl(VO) = 

This implies that 

(1 1.55) 

The optimal value of UO, and hence to, may now be determined by the following 
simple graphical method. 

1. Draw the scaled TTT transform in a 1 x 1 coordinate system. 

2. Identify the point ( - c / k ,  0) on the abcissa axis. 

3. Draw a tangent from ( - c / k ,  0) to the TTT transform. 

The optimal value of uo can now be read as the abcissa of the point where the tangent 
touches the TTT transform. If uo = 1, then to = 00, and no preventive replacements 
should be performed. The procedure is illustrated in Fig. 1 1.16. 

When a set of times to failure of the actual type of item has been recorded, we 
may use this data set to obtain the empirical, scaled TTT transform of the underlying 
distribution function F ( t ) ,  and draw a TTT plot. The optimal replacement age to may 
now be determined by the same procedure as described above. This is illustrated in 
Fig. 1 1.17. The procedure is further discussed, for example, by Bergman and Klefsjo 
(1982, 1984). 0 

11.3.8 Total Time on Test Plot for Censored Data Sets 

When the data set is incomplete and the censoring is of type IV (stochastic), we may 
argue as follows to obtain a TTT plot: The TTT transform, as defined in (1 1 .a), is 
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Fig. 7 7.76 Determination of the optimal replacement age from the scaled TTT transform. 

Fig. 7 7.77 Determination of the optimal replacement age from a TTT plot. 

valid for a wide range of distribution functions F ( t ) ,  also for step functions. Instead 
of estimating the TTT transform Hi' ( t )  by introducing the empirical distribution 
function F, l ( t )  as we did in (1 l S l ) ,  we could estimate F ( t )  by (1 - k(t)) ,  where 
R ( t )  is the Kaplan-Meier estimator of R ( t ) .  

Technically, the plot is obtained as follows: Let 7'( l ) ,  T(2,, . . . , T(k) denote the k 
ordered failure times among T I ,  7'2, . . . , T, and let 

u ( i )  = 1 - R(T( i ) )  for i = 1, 2 , .  . . , k (1 1.56) 

Define 
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where T(0)  = 0. 
The TTT plot is now obtained by plotting the points 

(1 1.58) 

Note that when k = n, that is, when the data set is complete, then 

and we get the same TTT plot as we got for complete data sets. 

11.3.9 A Brief Comparison 

In this section we have presented three nonparametric estimation and plotting tech- 
niques that may be applied to both complete and censored data. (The empirical 
survivor function is equal to the Kaplan-Meier estimate when the data set is complete 
and is therefore considered as a special case of the Kaplan-Meier approach). The 
estimates obtained by using the Kaplan-Meier, and the Nelson (hazard plotting) ap- 
proach are rather similar, so it is not important which of these is chosen. The nature 
of the estimate based on TTT transform is different from the other two estimates and 
may provide supplementary information. 

The plots may also be used as a basis for selection of an adequate parametric dis- 
tribution F ( i ) .  In this respect the three plots provide somewhat different information. 
The Kaplan-Meier plot is very sensitive to variations in the early and middle phases 
of a item's lifetime but is not very sensitive in the right tail of the distribution. The 
Nelson plot is not at all sensitive in the early part of the life distribution, since the 
plot is "forced" to start in (0,O). The TTT plot is very sensitive in the middle phase 
of the life distribution but less sensitive in the early phase and in the right tail, since 
the plot is "forced" to start in (0,O) and end up in (1, 1). To get adequate information 
about the whole distribution all the three plots should be studied. 

11.4 PARAMETRIC METHODS 

In this section we study maximum likelihood (ML) estimation in some parametric 
models. First we briefly discuss two discrete models, the binomial and the Poisson 
models. Thereafter we study the exponential, the Weibull, and the inverse Gaussian 
models for complete data sets, and some selected types of censoring. An introduction 
to ML estimation is given in Appendix E. The presentation in this section is very 
brief. The reader is advised to consult textbooks on life data analysis for further 
details. Adequate references are listed in Section 1 1.1. 
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11.4.1 Binomial Data 

A variety of situations, like startup of a fire pump and switching of redundant equip- 
ment, may be realistically modeled by the binomial model. The binomial model was 
discussed in Section 2.8. A random variable X has a binomial distribution ( n ,  p )  if 

( I  1.59) 

The mean is E ( X )  = np, and the variance is var(X) = np( 1 - p ) .  A natural unbiased 
estimator of p is 

p = -  ( 11.60) 
n 

The variance of @ is 

P(1 - P) 
n 

var (6) = (11.61) 

A 1 - E confidence interval for p is given by 

(11.62) 
X (X + l ) . f 1 - , / 2 , 2 ( x + 1 ) , 2 ( n - x )  ( X + (n - X + l ) f l - & / 2 , 2 ( n - x + 1 ) , 2 x  * n - X + (X + l ) f l - , / 2 , 2 ( x + I ) . 2 ( n - x )  

where fC,”, , vz  denotes the 1006% percentile of the Fisher distribution with u1 and u 2  

degrees of freedom (see Sverdrup 1967, p. 289). 

Normal Approximation When n p  and n (1 - p )  are both large, we may alternatively 
use normal approximation to find the confidence interval: 

This approximation is usually good when np  and n( 1 - p) are both greater than 5. It 
implies that 

where u E / 2  denotes the upper 100e/2% percentile of the standard normal distribution 
N(0, 1). The expression within the parentheses is equivalent to 

2 2  
n(6  - P) 5 U & / 2 .  P(1 - P) 

and 
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Since n + u:12 > 0, the left-hand side of the above inequality is negative when 
PI < p < p2, where p1 and p2 are the roots of 

(n  + u: /2)p2  - ( 2 n j  + ~ : , ~ ) p  + n j 2  = o 

These roots are easily determined to be 

( - b  f Jb2-4ac) 
2a 

where a = n + u : , ~ ,  b = 2 n j  + u : / ~ ,  and c = n j 2 .  

then 
Hence if p i  and p2 are the smaller and the larger of these two roots, respectively, 

constitutes an approximate 1 - E confidence interval for p .  

11.4.2 Data from a Homogeneous Poisson Process 

Assume that we observe a population of independent and identical items with con- 
stant failure rate A, during a total time in service t .  Under the assumptions made in 
Section 7.2 ,  failures will occur according to a homogeneous Poisson process. The 
number of failures, X, observed during this period, will have a Poisson distribution 
with parameter At:  

Pr(X = x )  = - e - ~ r  for x = 0,1,  . . . (1 1.63) 

The mean of X is E(X) = A t ,  and the variance is var(X) = At. An unbiased estimator 
for A is 

X !  

- x  A = -  
t 

The variance of is 

var(i) = A 

(11.64) 

(1 1.65) 

A 1 - E confidence interval for 1 is given by (e.g., Cocozza-Thivent 1997, p. 63, or 
Cox and Oakes 1984, p. 41)7 

(; Z 1 - € / 2 , 2 X  7 

'The same confidence intervals were presented 
Poisson process. 

(11.66) 
1 
- Z€/2,2(X+I) 2t 

in Section 7.2 where we discussed the homogeneous 
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where ze,” denotes the upper loo&% percentile of the x 2  distribution with v degrees 
of freedom. A table of z&,” for some values of E and v is given in Appendix F. 

In some situations it is of interest to give an upper (1 - E )  confidence limit for A. 
Such a limit is obtained through the one-sided confidence interval given by 

(1 1.67) 

Note that this interval is also applicable when no failure ( X  = 0) is observed during 
the total time in service t .  

Normal Approximation When A t  is large (say At > 15), the Poisson distribution 
may be approximated by the normal distribution N(At, At)  

x - At - “(0, 1) f i  
Hence if uE12 denotes the upper 100&/2% percentile of the standard normal distribu- 
tion X ( 0 ,  l ) ,  

that is 

but 

which implies that 

P[Al ( X )  5 A 5 A 2 ( X ) ]  x 1 - & 

where hl ( X )  and h 2 ( X )  respectively denote the lower and the upper roots of the 
equation 

( A t y  - ( 2 X  + u$, )ht  + x 2  = 0 

that is 
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I\ 

I I I I 
I I 1 I 1 I 

0 2 4 6 8 10 12 14 16 18 Failure rate 
(failures per lo5 hours) 

Fig. 17.18 Estimate and 90% confidence interval for the data in Example 1 1.13. 

Example 11.13 
Consider a population of independent and identical items with constant failure rate 1. 
We have observed x = 3 during an accumulated time in service of 5 years = 5 .8760 
hours = 43, 800 hours. The estimate (1 1.64) is 

I 5 
A = -  (hours)-' 6.85. lop5 (hours)-' 

43,800 

and a 90% confidence interval (1 1.66) is [unit = (hours)-'] 

1 1 i y ~ o 5 , g )  = (1.87 * lop5,  17.71 . w5) 
2.43,800 20.95,6 t 2 .43,800 

where the percentiles 20.95.6 and 20.05.8 are found in Appendix F. The estimate and 
0 the confidence interval are illustrated in Fig. 1 1.18. 

The length of the confidence interval is seen to shorter the more failures ( x )  that are 
observed and the longer the accumulated time ( t )  in service. From Fig. 11.18 we 
notice that the distance from the estimate to the upper bound of the interval is longer 
than the distance to the lower bound. This is a general feature of the confidence 
interval (1 1.66). 

11.4.3 Exponentially Distributed Lifetimes: Complete Sample 

Assume that we have recorded a complete data set of n actual lifetimes T I ,  T2, . . . , Tn 
that are independent and identically exponentially distributed with unknown failure 
rate h. The likelihood function is then 

L(h; t1 , t2 ,  . . .  t n )  = P e - L C i = l t J  for h > 0, t ,  

The MLE of h is 

> 0, j = 1 , . . . ,  n (11.68) 

(11.69) 

where T(T(n)) ,  as before, denotes the total time on test at the last failure. Let us study 
the properties of this estimator and first find out whether it is unbiased or not. 

Since Tj is exponentially distributed with parameter A, 2hTj will be x 2  distributed 
with two degrees of freedom for j = 1, . . . , n (Dudewicz and Mishra, 1988, p. 276). 
Since the Tj's are independent, then 2h Cl=l Ti will be x 2  distributed with 2n 
degrees of freedom. 
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Therefore 

2n h - n h* = - 
C'j=i T(j )  2 1  Cj=I T(j) 

has the same distribution as 2 n h / Z ,  where Z is x 2  distributed with 2n degrees of 
freedom. Accordingly 

But 

Therefore 

1 
2(n - 1) 

- -  - 

n - ' h  E(h*)  = 2 n h .  ~ - - 
n - 1 

1 
2(n - 1)  

The estimator A* is accordingly not unbiased. The estimator i, given by 

is easily seen to be unbiased. Let us determine var(i): 

where Z has the same meaning as above. Now 

var (t) = E (A) - [ E (;)I2 
and 

Hence 
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The estimator 

is therefore unbiased and has variance 

h2 
v a r h  =- (*> n - 2  

(1 1.70) 

( 1  1.71) 

To establish a 1 - E confidence interval for A, we use the fact that 21 cy=l Tj is 
x 2  distributed with 2n degrees of freedom. Hence 

and 

Thus a 1 - E confidence interval for h is 

( 1  1.72) 

To find out whether or not the failure rate h is less than ho, we may formulate this 
problem as a problem in hypothesis testing. We test 

HO : h ? ho against H I  : A < ho 

As a first step let us derive a test for 

HA : I = ho against HI : h < ;lo 

Then it seems reasonable to reject Hi when i 
test the significance level E :  

k, where k is determined to give the 

Pr(i 5 k I Hi) 5 E 

Now 
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By introducing 2ho(n - l ) /k  = c, the test can be written as 
n 

Reject HA when 2ho c Tj 2 c 
j=1 

Under H i ,  2ho CY=, Tj is x 2  distributed with 2n degrees of freedom, and accordingly 
c is chosen equal to zE,2,, . 

Intuitively, the same test can also be used when Ho is to be tested against H I .  The 
test then has the power function 

Here r z n ( z )  denotes the distribution function of the x 2  distribution with 2n degrees 
of freedom, and is thus nondecreasing in z .  Accordingly 1 - r 2 n ( ~ E , 2 n  . h/ho) is 
nonincreasing as a function of h and 

with the equality sign valid for h = ho. 
For testing 

Ho : h 2 ho against H I  : h < ho 

we therefore use the test criterion: 
n 

Reject Ho when 2ho c Tj 2 ~ E , 2 n  

j=l  
The power function of the test is given by (1 1.73). 

(1 1.74) 

( 1 1.75) 

11.4.4 Exponentially Distributed Lifetimes: Censored Data 

Assume that n independent and identical items with constant failure rate h have been 
observed until either failure or censoring. Let U be the index set of uncensored 
functioning times, meaning that if j E U then the time Ti is a time to failure, for 
j = 1,2, . . . , n. Similarly let C denote the index set of censoring times. The 
likelihood function is in this situation 

(1 1.76) 
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Censoring of Type /I With censoring of type I1 the life test is terminated as soon as 
r failures have been observed. The data set will therefore contain r times to failure, 
and n - r censored times. From Theorem D.2 (see Appendix D )  and (1 1.76) the 
likelihood function for this situation is 

and we find the maximum likelihood estimator ATr of h in the usual way: 

Which properties does this estimator have? Let us first see what we can say about the 
probability distribution of ;\-TI. If Dj denotes the time interval from the ( j  - I)th to 
the j th failure, then 

TI  = D1 
T2 = D I  +D2 

Tr = D l + D 2 + . . . + D r  

and 

j=1 

Furthermore 

Therefore, the total time on test at time T(,.) is 

j=1 

Introducing 

D* = (n  - ( j  - 1))Dj  for j = 1,2, . . . , r .I 

we know from Theorem D.4 in Appendix D that 2h DT , 2 h  D;, . . . , 2 h  D,* are inde- 
pendent and x distributed, each with 2 degrees of freedom. Hence 2 h T  (T(r ) )  is x * 
distributed with 2r degrees of freedom, and we can utilize this to find E(hi1): 
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where Z is x 2  distributed with 2r degrees of freedom. This implies that (see page 505) 

Hence 

The estimator hrI is accordingly not unbiased. However, 

(11.78) 

is easily seen to be unbiased. By the method used on page 505, we find that 

h2 

r - 2  

Confidence intervals, as well as tests for standard hypotheses about A, may now be 
derived from the fact that 2hT(T( , ) )  is x 2  distributed with 2r degrees of freedom. 
The procedure is the same as the one used on page 506. 

Censoring of Type I The fact that the number ( S )  of items failing before time to 
is stochastic makes this situation more difficult to deal with from a probabilistic point 
of view. We will therefore confine ourselves to suggesting an intuitive estimator of 
A. 

First notice that the estimators for h, derived in the case of complete data sets and 
of type I1 censored data, both could be written as a fraction with numerator equal to 
“number of recorded failures - 1” and denominator equal to “total time on test at the 
termination of the test.” It seems intuitively reasonable to use the same fraction when 
we have type I censoring. 

In this case the number of failures is S ,  while the total time on test is 

S 

T(f0 )  = c T ( j )  + ( n  - S)ro (1 1.79) 
j = l  

Hence 

seems to be a reasonable estimator of h. 

totically it will have the same properties as &I has (see Mann et al. 1974, p. 173). 
It can be shown that this estimator is biased for small samples. However, asymp- 
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11.4.5 Weibull Distributed Lifetimes 

Complete Sample Let T I ,  T2, . . . , Tn be a complete sample of lifetimes that are 
independent and identically Weibull distributed with probability density 

f T ( t )  = ffh'Yt'Y-le--(*t)a fort > 0 , a  > 0 , h  > 0 

The likelihood function is 

and the log likelihood is 

n n 

j=l j = 1  

The likelihood equations now become 

(11.81) 
j=l 

n n 

- -  - n In h + + a In L 

aa h 
In t j  - x ( h t j ) "  ln(htj) = 0 (1 1.82) 

j=l j = l  

Solution of these equations give the MLE, a* and h*. From (1 1.81) we obtain 

By inserting (1 1.83 into (1 1.82) we obtain the equation 

n 
n CJZl ty* In t j  n 

- + C~ntj - = o  
a* j=l C;=l ty* 

(1 1.83) 

(11.84) 

The estimate a* may be determined from (1 1.84) by numerical methods. This estimate 
is next inserted into (1 1.83) to determine the estimate I * .  

Censoring of v p e  I/ With censoring of type I1 the life test data set contains r 
times to failure, and n - r censored times, and the censoring takes place at time qr) .  
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Analogous with (1 1.76) the likelihood function is proportional with 

L(a ,  h; t )  n ahatq-le-(*f'i)U [e-(*r(r))a]n-r 

j=1 
r 

= (yrhar n t;-Ie-(n-r)(*r(r))" 

j = l  

where t denotes the observed data set, that is the r times to failure, and the n - r 
censoring times that are all equal to qr) .  The log likelihood is 

In L(a ,  A; t )  
r r 

= r In a + ra In L + (a - 1) C In t j  - C(htj)" - (n  - r ) ( A t ( r ) l a  
j= l  j= l  

Analogous with complete data situation we can determine the MLE estimates a* and 
h* from 

(11.85) 

and 

11.4.6 Inverse Gaussian Distributed Lifetimes 

Assume that we have recorded a complete data set of n actual lifetimes T I ,  T2, . . . , Tn 
that are independent inverse Gaussian distributed with unknown parameters p and h 
that are both positive. Let Tj for j = 1, . . . , k ,  be IG(p, njh)  where nl , . . . , nk are 
known, positive integers, Cr=, n ,  = N ,  and p > 0, h > 0, but otherwise unknown. 
Then the likelihood function becomes 

and the maximum likelihood estimators of p and A, p* and h* are given by 

1 

N 
p* = - X n j T j ,  

j 

(11.88) 

and 

(1 1.89) 
1 1  k k I 1 nj(Tj  - / L * ) ~  1 -=-X 

j = l  
p*2Tj 

j = l  
h* k 
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Furthermore 

P3 
E ( p * )  = p,  Var(P*) = - AN 

k - 1  1 2(k - 1) 1 
E - =- . -  var (b) = k .  - (A!*) k A ’  A2 

(11.90) 

Now, let TI , .  . . , Tk be i.i.d. IG(p, A), where p > 0 and h > 0, but otherwise 
unknown. Then the MLE for p and h, p* and A* are given by 

(1 1.91) 

Schrodinger proposed the estimators in (1 1.91) as early as 1915 and denoted them 
“Die Wahrscheinlichste” (Schrodinger 191 5) .  

In the following we restrain ourselves to the case where TI, T2. . . . , Tk are i.i.d. 
IG(p, A),  where p and A are both positive, but otherwise unknown. 

By utilizing the well-known result that the MLE of a function g(p,  A) is g(p*,  A*), 
where p* and A* are the MLEs of p and h, respectively, one gets the MLE for var(T): 

P*3 var(T) = - 
A* 

(1 1.92) 

Similarly the MLE for the survivor function R ( t ;  p,  A) is 

( F  J ‘ 1  R ( t ; p * , h * )  = @ --&- f i .  - 

and the MLE of the failure rate ~ ( t ;  p,  A) is 

Exponentiality; Completeness, andsufficiency Let T I ,  T2,. . . , T,, bei.i.d. IG(p, A), 
where p and h are positive but unknown. Then the joint density of TI, T2, . . . , T, 
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can be written 

1 2  \ 

where 

1 h n h hn 
c1 (p,  h )  = --, ~ ( p ,  h)  = --, d(p ,  h) = - In - + - 

2P2 2 2 2rr p 

I A ( ~ )  is the indicator for A ( t )  c R" 

Hence (e.g., see Bickel and Doksum 1977, p. 72), the IG(p, h)  family constitutes a 
two-parameter exponential family, and T j ,  Cs=l I /  T i )  is a natural sufficient 
statistic for this family. 

Since the range of c ( p ,  h )  = ( C I  (p ,  A), c2(pU, A)) contains an open rectangle, the 
statistic (cs=l Tj , cy=l 1 / T i )  is complete as well as sufficient (e.g., see Bickel and 
Doksum, 1977, p. 123). 

Theorem 11.5 Let T I ,  T2, . . . , Tk be i.i.d. IG(p, A), p > 0, h > 0, but otherwise 
unknown. Then the estimators 

(1 1.95) 

are UMVU* for p and l / h  respectively. 

'UMVU = uniformly minimum variance unbiased (e.g., Bickel and Doksum 1977, p. 119). 
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Pro03 
From Theorem 9.4 follows that p* and l / i  are unbiased esimators of p and l /h  
respectively. Furthermore they are functions of the observations through the complete 
sufficient statistic (xr=, Tj, cr=, l /Tj) .  Hence they are UMVU for p and l/h.  

0 
Chhikara and Folks (1974) have derived UMVU estimators of F ~ ( r 0 ;  p,  A) in the 

0 p is known, h is unknown 

0 p is unknown, h is known 

0 p and h are both unknown 

These estimators can be used directly to find UMVU estimators of the survivor 

(e.g., Bickel and Doksum, 1977, p. 122). 

situation where 

function R ( t ;  p, h )  = 1 - FT( t ;  p,  A). 

Example 11.14 
The following data, consisting of the times to failure, given in 1000 hours, of a new 
class H insulation on trial in a motorette test at 260°C, are taken from Nelson (1971). 

260°C : 0.600,0.744,0.744,0.744,0.912, 1.128, 1.320, 1.464, 1.608, 1.896 

In his analysis, Wayne Nelson assumed the lifetimes to be independent and lognor- 
mally distributed. For the purpose of illustration, we will instead assume them to be 
i.i.d. IG(p, A) where p and h both positive, but otherwise unknown. 

We obtain the following MLE of p and h: 

A* = 7.62602 

Furthermore the MLE of var( T )  is 

p*3 
VU(T) = - = 0.18226 

h* 

As a check, let us also estimate var(T) by the common estimator 

. k  

This leads to the estimate 0.19293 of var(T) which is in good correspondence with 
the MLE of var(T) above. Furthermore limr+oo z ( t ;  260°C) may be estimated by 
A*/2p*' = 3.06. In Wayne Nelson's model, this limit is zero. 

One may now ask the question: Which one of these two limiting values appears 
to be the most realistic one in this situation? The choice between the lognormal and 

0 the inverse Gaussian model should then be made accordingly. 
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11.5 MODEL SELECTION 

To use parametric methods we have to select an adequate model (life distribution) for 
the items that are tested. In some situations we may select the class of life distributions 
based on engineering judgment of the deterioration mechanisms the items are exposed 
to. For a special type of fatigue, we may, for example, decide that an inverse Gaussian 
distribution provides an adequate model. 

In other cases we may plot the data by the nonparametric methods described in 
Section 11.3 and use the plots to decide which class of life distribution to use for 
the parametric analysis. As discussed on page 500, the three plotting techniques 
presented in Section 1 1.3 are sensitive to variation in the data in different phases of 
the life of the item. All the three plotting techniques should therefore be used. 

Assume that we, from the plots, find that the corresponding failure rate function 
z ( t )  is increasing and seems to be close to the failure rate function of a Weibull 
distribution. An adequate approach would then be to: 

1. Assume a Weibull distribution and find the MLE of the parameters a and h 
from the data set. 

2 .  Plot the corresponding MLE of R ( t ) ,  Z ( t ) ,  and the TTT transform as overlay 
curves in the Kaplan-Meier plot, the Nelson plot, and the TTT plot, respectively, 
and study the goodness of fit by visual inspection. 

3. If the goodness of fit is deemed to be adequate, accept the Weibull model and 
use this model for the further analysis. 

In some situations it may be of interest to establish a formal statistical test to decide 
whether a suggested distribution is adequate or not. Such tests are called goodness- 
of-fit tests and are thoroughly discussed in the textbooks on life data analysis listed 
in Section 1 1.1. See also the thorough discussion in Blischke and Murthy (2000, 
Chapter 11). Goodness-of-fit tests are not further discussed in this book, except 
for Barlow-Proschan’s test that is used to test whether or not the underlying life 
distribution is exponential. 

11 3.1 Barlow-Proschan’s Test 

Barlow and Proschan (1969) proposed a test based on the test statistic W defined 
below. The test statistic W is so designed that it has a tendency to become large 
(small) when the underlying distribution has an increasing (decreasing) failure rate. 
For a complete data set ( T I ,  T2, . . . , T,) the Barlow-Proschan statistic W is simply 
the sum of the scaled total time on test values at the failure times: 

where 

(1 1.96) 

(1 1.97) 
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denote the scaled total time on test at the ith failure. 
For a censored data set (of type IV) the test statistic W is modified as follows: Let 

7‘(1), T(2), . . . , T(k) denote the ordered failure times in the sample of n functioning 
times. Note that “withdrawals” may occur between T(i) and T(i+l) and that k in 
general is a random variable. Let further Si for i = 1, 2, . . . , k be the total time 
on test between the ( i  - 1)th and the ith failure, that is, between time X( j -1 )  and 
time X ( i ) .  Thus Si is a sum with one term for each item that was functioning in the 
relevant time interval, the contribution from each item being its functioning time in 
that interval. 

Barlow-Proschan’s test statistic W for censored data is defined as 

(11.98) 

When the failure rate is constant, it is shown in Barlow and Proschan (1969) that W 
may be written as: 

w = u1 + u2 + . . . + uk-1 
where Ui ( i  = 1,2,  . . . , k - 1) are independent uniform random variables on [0, 11. 
Hence, when the failure rate is constant ( L o ) :  

k - 1  k - 1  
and v a r ~ , ( W )  = - 

12 Eho(W) = 2 
When the failure rate is constant ( L o ) ,  and k is large, we may use the normal approx- 
imation 

k - 1  k - 1  
2 ’  

that is 

W - (k - 1)/2 

J ( k  - 1)/12 
= “(0, 1) 

Example 11.15 
Let us illustrate the use of Barlow-Proschan’s test statistic W for the data set (measured 
in lo4 hours): 

0.35 O S O *  0.75* 1.00 1.30 1.80 
3.00* 3.15* 4.85* 5.50 5.50* 6.25* 

Censored times are starred (*). From these data we compute 

Sl = 12.0.35 ~ 4 . 2 0  

572 = 

S3 = 8( 1.30 - 1 .OO) = 2.40 

5’4 = 7(1.80 - 1.30) = 3.50 

S5 

(0.50 - 0.35) + (0.75 - 0.35) + 9( 1.00 - 0.35) = 6.40 

= (3.00 - 1.80) + (3.15 - 1.80) + (4.85 - 1.80) + 3(5.50 - 1.80) = 16.70 
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Table 11.6 Critical Values for Barlow and Proschan’s Test Statistic W 

a 

k - 1  0.100 0.050 0.025 0.0 10 0.005 

2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 

1.553 
2.157 
2.753 
3.339 
3.917 
4.489 
5.056 
5.619 
6.178 
6.735 
7.289 

I .684 
2.33 1 
2.953 
3.565 
4.166 
4.759 
5.346 
5.927 
6.504 
7.077 
7.647 

1.776 
2.469 
3.120 
3.754 
4.376 
4.988 
5.592 
6.189 
6.78 1 
7.369 
7.953 

1.859 
2.609 
3.300 
3.963 
4.610 
5.244 
5.869 
6.487 
7.097 
7.702 
8.302 

1.900 
2.689 
3.41 1 
4.097 
4.762 
5.413 
6.053 
6.683 
7.307 
7.924 
8.535 

The table is adapted from Barlow and Proschan (1969). 

Thus 

4sl 4- 3s2 4- 2S3 + s4 
SI + S2 + S3 + S4 + S5 

44.3 
33.2 
- = 1.33 W =  - - 

As an illustration, let us use Barlow-Proschan’s test to test the null hypothesis (Ho):  
“The failure rate is constant” against the alternative hypothesis ( H I ) :  “The failure 
rate is increasing on the average (IFRA).” 

Barlow-Proschan’s test criterion is 

Reject Ho when W 2 w,, where the critical value w, is determined so 
as to get significance level a.  

The critical values w, are given in Table 1 1.6 for selected values of a and number 
of failures k .  The table is adapted from Barlow and Proschan (1969). When k 2 13, 
normal approximation may be used. Then 

( k  - 1) ( k  - 1) +- 
w, = u& 2 

where u, denotes the upper 100a% percentile of the standard normal distribution 
(e.g., ~ 0 . 0 5  = 1.645). 

Let us now use Barlow and Proschan’s test to check whether the failure rate is 
constant or increasing, with a significance level of a = 0.10. In this case ( k  - 1) = 4, 
and the critical value is from Table 11.6 equal to ~ 0 . ~ 0  = 2.753. The test statistic, 
W ,  was computed to be W = 1.33 which is less than ~ 0 . 1 0  = 2.753. There is thus no 
reason to reject the null hypothesis of constant failure rate and accept the alternative 
hypothesis of increasing failure rate average (IFRA). 
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We may also use the test statistic W to test the null hypothesis (Ho):  “The fail- 
ure rate is constant” against the alternative hypothesis (HI): “The failure rate is on 
the average decreasing (DFRA).” The test criterion of Barlow-Proschan’s test now 
becomes 

Reject Ho when ( k  - 1 - W )  > wff,  where the critical value wff is 
determined so as to give significance level a. 

For the data in this example, ( k  - 1 - W )  = 5 - 1 - 1.33 = 2.67 and ~ 0 . 1 0  = 3.339. 
Hence, these data give no reason to reject the null hypothesis of constant failure rate 

0 

A test of Ho: “The failure rate is constant”, against Weibull alternatives is discussed 
by Cox and Oakes (1984, p. 43). 

and accept the alternative hypothesis of DFRA. 

PROBLEMS 

11.1 
and obtained the following results (given in hours): 

Assume that you have determined the lifetimes for a total of 12 identical items 

10.2, 89.6,54.0,96.0, 23.3, 30.4,41.2, 0.8,73.2, 3.6, 28.0, 31.6 

(a) Find the sample mean and the sample standard deviation for the data set. Can 
you draw any conclusions about the underlying distribution F ( t )  by comparing 
the sample mean and the sample standard deviation? 

(b) Construct the empirical survivor function for the data set. 

(c) Plot the data on a Weibull paper.’What conclusions can you draw from the plot? 

(d) Construct the TTT plot for the data set. What conclusion can you draw from 
the TTT plot about the corresponding life distribution? 

11.2 Failure time data from a compressor were discussed in Example 7.2. All 
compressor failures at a certain process plant in the time period from 1968 until 1989 
have been recorded. In this period a total of 90 critical failures occurred. In this 
context, a critical failure is defined to be a failure causing compressor downtime. The 
compressor is very important for the operation of the process plant, and every effort 
is taken to restart a failed compressor as soon as possible. The 90 repair times (in 
hours) are presented chronologically in Table 1 1.7. The repair time associated to the 
first failure was 1.25 hours, the second repair time was 135.00 hours, and so on. 

(a) Plot the repair times in chronological order to check whether or not there is 
a trend in the repair times. Is there any reason to claim that the repair times 
increase with the age of the compressor? 

’Weihull paper may he downloaded from www.weihull.com. 
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Table 77.7 Repair Times (Hours) in Chronological Order. 

1.25 135.00 
6.00 4.50 
5.00 7.00 
2.00 0.33 
0.33 4.00 

28.00 16.00 
34.00 0.17 
0.50 0.25 
0.33 2.00 
0.50 3.00 

0.08 5.33 
32.50 9.50 
39.00 106.00 
0.17 0.50 

20.00 6.00 
11.50 0.42 
0.83 0.75 
0.17 1.75 

40.50 4.28 
3.00 11.58 

154.00 
0.25 
6.00 

18.00 
6.30 

38.33 
1 .oo 
0.50 
1.62 
8.50 

0.50 1.25 2.50 
81.00 12.00 0.25 
5.00 17.00 5.00 
2.50 0.33 0.50 

15.00 23.00 4.00 
10.50 9.50 8.50 
0.25 0.25 2.25 
1.00 2.00 2.00 
1.33 3.00 5.00 

13.50 29.50 29.50 

15.00 
1.66 
2.00 
2.00 
5 .OO 

17.00 
13.50 
38.00 

120.00 
112.00 

(b) Assume now that the repair times are independent and identically distributed. 

(c) Plot the repair times on a lognormal plotting paper.". Is there reason to believe 

Construct the empirical distribution function for the repair times 

that the repair times are lognormally distributed? 

11.3 Consider the set of material strength data presented by Crowder et al. (199 1, 
p. 46). An experiment has been carried out to gain information on the strength of 
a certain type of braided cord: 48 pieces of cord were investigated; 7 cords were 
damaged during the experiment, implying right-censored strength values. 

26.8* 29.6* 33.4* 35.0* 36.3 40.0* 41.7 41.9* 42.5* 
43.9 49.9 50.1 50.8 51.9 52.1 52.3 52.3 52.4 
52.6 52.7 53.1 53.6 53.6 53.9 53.9 54.1 54.6 
54.8 54.8 55.1 55.4 55.9 56.0 56.1 56.5 56.9 
57.1 57.1 57.3 57.7 57.8 58.1 58.9 59.0 59.1 
59.6 60.4 60.7 

(a) Establish a Kaplan-Meier plot of the material strength data. 

(b) Establish a TTT plot of the material strength data. 

(c) Discuss the effect of this type of censoring. 

(d) Describe the form of the failure rate function. 

11.4 Establish a graph paper such that the Nelson plot of Weibull distributed life 
data is close to a straight line. Describe how the Weibull parameters a and h may be 
estimated from the plot. 

"Lognormal plotting paper may be downloaded from www.weibull.com. 
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11.5 
to 3. 

Let X be binomially distributed (20, p ) .  X is observed and found to be equal 

(a) Determine the corresponding exact 90% confidence interval for p .  

(b) Determine an approximate 90% confidence interval for p based on formulas 
(11.59) to (11.61). 

11.6 Let X be binomially distributed (25, p ) .  A test for the hypothesis 

Ho : p = 0.10 against the alternative HI : p # 0.10 

is wanted. Use an exact test to find out whether or not you would reject Ho when X 
is observed and found equal to 1 (choose significance level a! = 0.05). 

11.7 Consider a homogeneous Poisson process (HPP) with intensity A.  Let N ( t )  
denote the number of failures (events) in a time interval of length t .  N ( t )  is hence 
Poisson distributed with parameter A t .  Assume that the process is observed in a time 
interval of length t = 2 years. In this time period a total of 7 failures have been 
observed. 

(a) Find an estimate of A. 

(b) Determine a 90% confidence interval for A. 

11.8 Let X have a Poisson distribution with parameter A. A test for the hypothesis 

Ho : A = 3 against the alternative HI : A # 3 

is wanted. Use an exact test to find out whether or not you would reject Ho when X 
is observed and found equal to 6 (choose significance level a! = 0.05). 

11.9 Let X have a Poisson distribution with parameter A .  

(a) Determine an exact 90% confidence interval for A when X is observed and found 
equal to 6. For comparison, also determine an approximate 90% confidence 
interval for A, using the approximation of the Poisson distribution to &(A, A). 

(b) Solve the same problem as stated in (a) when X is observed and found equal 
to 14. 

11.10 Denote the distribution function of the Poisson distribution with parameter 
A by Po(x; A),  and the distribution function of the x 2  distribution with v degrees of 
freedom by rv(z). 

(a) ShowthatPo(x; A) = l-r2(.x+l)(2A). (Hint: Firstshowthat 1-r2(x+l)(2h) = 

lg du,  and next apply repeated partial integrations to the integral.) 
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(b) Let hl ( X )  and h 2 ( X )  be defined by 

a! 
Po(x; h1(x) )  = - 

2 

Po(x - l ; h 2 ( x ) )  = 1 - - 
2 
a! 

Use the result of (a) to show that 

1 

1 

h I ( X )  = p Y / 2 , 2 x  

h 2 ( x )  = 5 ZI-(W/2,2(x+I) 

where zE," denotes the upper 100 &Yo percentile of the x2 distribution with v 
degrees of freedom. 

11.11 Suppose that we have experienced that the lifetime T for a certain type of 
item is exponentially distributed with unknown failure rate h > 0. Furthermore, 
suppose that we have recorded lifetimes for a total of 12 such items and interpret the 
result as n independent observations of T .  The observed lifetimes (in hours) are: 

10.2, 89.6, 54.0, 96.0, 23.3, 30.4, 41.2,0.8,73.2, 3.6, 28.0, 31.6 

(a) Estimate A. 

(b) Test the hypothesis 3 0.025 against h < 0.025 (choose significance level = 
0.05). 

(c) Determine a 95% confidence interval for h. 

11.12 
failure are those that are not starred: 

31.7 39.2* 57.5 65.5 65.8* 70.0 75.0* 75.2' 
87.5* 88.3* 94.2 101.7* 105.8* 109.2 110.0 130.0" 

Reconsider the situation in Example 1 1.1 1, but now assume that the times to 

(a) Calculate the Kaplan-Meier estimate i ( t )  and display it graphically. 

(b) Calculate Nelson's estimate R * ( t )  for the survivor function and display it 
graphically. 

11.13 
activating 20 identical items, but that the test was terminated at the 12th failure. 

Suppose that the data set in Problem 11.1 1 was obtained by simultaneously 

(a) What type of censoring is this? 

(b) Estimate h in this situation. 
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(c) Calculate a 95% confidence interval for h. 

(d) Compare the results with those derived in Problem 1 1.1 1. 

11.14 Establish a graph paper such that the Nelson plot of normally distributed 
("(p, a2)) life data is close to a straight line. Describe how the parameters p and a 
may be estimated from the plot. 

11.15 Let T I ,  T2, . , . , Tn be independent and identically distributed IG(p, u) .  As- 
sume h to be known. 

(a) Show that the MLE of p, p* is given by 

. n  

(b) Determine a 1 - QI confidence interval for p. (Hint: --&(F* - p ) 2  is x 2 

distributed with one degree of freedom). 

11.16 
sume p to be known. 

Let T I ,  7'2, . . . , Tn be independent and identically distributed IG(p, u ) .  As- 

(a) Show that the MLE of h, h*, is given by 

and that 

2 
"a(;) = 

(b) Determine a 1 - E confidence interval for h. (Hint: Use the hint given in the 
previous problem). 

11.17 Lieblein and Zelen (1956) analyzed data on the endurance of deep groove 
ball bearings. They registered the number X i  of million revolutions before failure for 
23 such ball bearings. Their distinct ordered failure times are 

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 
51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12 
93.12 98.64 105.12 105.84 127.92 128.04 173.40 
Previously, these data have been analyzed assuming that they follow a Weibull 

distribution or a lognormal distribution, respectively. Now let us analyze this data set 
under the assumption that they are independent IG(xj, p, A). 
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(a) Determine the MLE p* of p and the MLE h* of h. 

(b) What would be your estimate of the variance of this distribution? Compare this 
estimate with the general estimate S2 = cr=l ( X j  - X ) * / ( n  - 1). 

(c) To test whether or not the inverse Gaussian distribution gives a good model for 
this data set, determine a percentage-percentage (P-P) plot of the data. 

To get this P-P plot first estimate F ( x ( , ) )  by the empirical distribution function 

Next determine F ( x ( j ) )  by I G ( x ( j ) ,  p*, A*). Plot F ( x ( j ) )  against F ( x ( j ) )  by 
IG(x(j , ,  p*, h*) for j = 1,2, . . . , n. 
If the model fits, the curve ( F ( x ( , ) ) ,  IG(x ( , ) ,  F*,  A*)) will approximately fall 
along a straight line. Does it? What is your conclusion? 



12 
Accelerated Life Testing 

12.1 INTRODUCTION 

Many of the devices produced today for complex technical systems have very high 
reliability under normal use conditions. Such devices may have a mean time to failure 
of 100,000 hours (x 1 1.5 years) or more. The time involved in a life test such as those 
described in Section 1 I .  1 would therefore be exorbitant. Furthermore the device is 
likely to be out of date and therefore of no interest by the time the test is completed. 
The questions then arise of how to make the optimal choice between several types 
or designs of a device and how to collect information about the corresponding life 
distributions under normal use conditions. 

A common way of tackling this problem is to expose the device to sufficient 
overstress to bring the mean time to failure down to an acceptable level. Thereafter 
one tries to “extrapolate” from the information obtained under overstress to normal use 
conditions. This approach is called accelerated life testing (ALT) or overstress testing. 
Books describing statistical methods, test plans and data analysis for accelerated life 
testing include Mann et al. (1974), Kalbfleisch and Prentice (1980), Lawless (1982), 
Jensen and Petersen (1982), Cox and Oakes ( 1984), Viertl(1988), and Nelson (1990). 

Depending on the kind of device in question, the accelerated testing conditions 
may involve a higher level of temperature, pressure, voltage, load, vibration, and so 
on, than the corresponding levels occurring in normal use conditions. These variables 
are called stressors (stress variables or covariates). In a specific situation there may 
be one or several (m) stressors s1, s2, . . . , s, acting simultaneously. The vector 
s = (s1, s 2 ,  . . . , s,) is called the stress vector. 
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In simple situations there is only one stressor, s, occurring on two levels, s(l) 

and s ( ~ ) ,  where s(') < s ( ~ ) .  Let s(O) (I s(l)) denote normal stress. The situation 
becomes somewhat more complicated when m stressors s1, s2, . . . , sm are involved 
and stressor s, occurs on nj levels: 

Let s(O) (I 3;')) denote normal stress for stressor j ,  for j = 1,2, . . . , m. The situation 
becomes even more complicated when the stressors are continuously increasing with 
time, as illustrated in Fig. 12.3. The first two cases lead to step-stress accelerated 
tests (SALT), the last one leads to progressive-stress accelerated tests (PALT). 

J 

12.2 EXPERIMENTAL DESIGNS FOR ALT 

Let us for the sake of simplicity suppose that there is only one stressor s. The testing 
experiment can be conducted according to different designs. Three such designs are: 

Design I The experiment involves use of k stress levels d1) < d2) < . . . < dk) 
as illustrated un Fig. 12.1. Let s(O) (5  s(l)) denote normal stress. A (large) number 
of test items are assumed to be available for the experiment, and n, of these are to 
be exposed to the stress s ( j ) .  Censoring of type I1 (see Section 11.2) is applied. The 
experiment is then carried out as follows: 

1. One stress level di)  is chosen at random among s(I), d2), . . . , dk) ,  and ni test 
items are chosen at random among the test items at hand. These ni items are 
then exposed to stress level di) .  The test is terminated when r i ( i  ni) failures 
have occurred. Let I;. 1, i 7 2 ,  . . . , Tini denote the times to failure or censoring. 

2. Another stress level s ( j )  is chosen at random among the remaining levels; n, 
test items are chosen at random among the remaining items and exposed to 
stress level d j ) .  The test is terminated when r , ( S  n j )  failures have occurred. 
Let Tj 1, Tj2, . . . , Tjn denote the times to failure or censoring. This procedure 
is continued until k stress levels have been selected. 

If the number of test items at hand is large compared to n = C5=l nj it seems 
reasonable to assume that To1 , To2, . . . , Tkrk are independent, which simplifies the 
analysis. 

Design /I Fix k points of time 0 < tl < t2 < . . .  < tk < t (Fig. 12.2). Put n 
randomly chosen test items on test at time 0. In the time interval (0, t l ]  the items are 
subject to stress s('). In the interval ( t l ,  t 2 ]  the items that have not failed by time tl 
are kept in operation under stress s ( ~ ) .  In the next interval ( t 2 ,  t3] the items that still 
have not failed by time t2 are kept in operation under stress s ( ~ ) ,  and so on. In the 
time interval ( f k ,  001 the items that have not failed by time t k  are kept in operation 
under stress S ( ~ + ' )  until they have all failed (hence no censoring). The lifetimes of 
the n test items are denoted T I ,  T2, . . . , Tn. 
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Stress level 

Level k 1 1  

Level 1 
I t 

Time 

Fig. 12.1 Design I for accelerated tests. 

Stress level 

t 
11 tz t3 t4 Time 

Fig. 12.2 Design I1 for accelerated tests. 

Stress level 

Time 

Fig. 12.3 Design Ill for accelerated tests. 

Design 111 A number n of test items are chosen at random among the test items at 
hand and exposed to a stress s ( t ) ,  which is increasing with time until the items have 
all failed. The stress s ( t )  as a function of time t ,  that is illustrated in Fig. 12.3, is 
assumed to be known. The lifetimes of the n test items are observed and denoted 
T I ,  T2, . . . , T,, . If n is small compared to the number of items at hand and if the n 
items are operating independently, it seems reasonable to assume that T I ,  T2, . . . , T,, 
are independent in design I1 and design 111. 

12.3 PARAMETRIC MODELS USED IN SALT 

The first step in any statistical analysis usually consists of formulating a stochastic 
model of the situation based on a priori knowledge and the experimental design used. 
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In this case we are concerned with life distributions. Hence the data obtained through 
the SALT is supposed to give information about: 

1. the life distribution function 

s) = Pr(T 5 t ;  s) 

2.  the survivor function 

& ( t ;  s) = 1 - FT( t ;  s) 

3. or, the failure rate function 

which are all more or less unknown. 
The first question to be asked is: What do we know a priori about the life distribution 

under normal use conditions? For example, do we have reason to believe that it 
will belong to the exponential, the Weibull, the lognormal, or the inverse Gaussian 
family of distributions? Are we able to derive this life distribution from the physical 
conditions at hand? One way of searching for a suitable model is to display the data on 
different kinds of probability paper and pick the family of distributions accordingly. 
Another way to find a suitable model is to try different models and select the one 
that best fits the data. The question of model discrimination has been discussed in 
Webster and Van Parr (1 969, Hunter and Reiner (1 963,  Box and Hill (1967), Mann 
et al. (1974, Chapter 7), and Box et al. (1978, Chapter 16), among others. 

For the sake of simplicity, let us suppose that we succeed in establishing an appro- 
priate parametric family of lifetime distributions under normal use conditions. The 
next question is: How does overstress affect this family of distributions? For exam- 
ple, will the life distribution under overstress belong to the same parametric family 
as the one obtained under normal stress? If so, the only effect of stress on the life 
distribution is that different stress levels lead to different parameter vectors in this 
family. 

In an early paper on ALT, Levenbach (1957) was able to conclude that the life 
distributions occurring in the case he was studying belonged to the lognormal family 
under normal stress as well as under overstress at certain levels. Let us suppose we 
are as lucky as Levenbach and find that our lifetime distributions belong to a specified 
parametric family. Then the next question which needs to be answered is: In which 
way does the parameter vector of this family depend on the stress vector s? Here 
we only intend to give an introduction to the subject of ALT and hence will content 
ourselves with considering two simple examples. 

Example 12.1 Design I 
Suppose that the experiment is carried out as described in design I where only one 
stressor s has been used, and that the family of life distributions is the exponential 
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with mean O(s), and hence failure rate h(s)  = @(.s)-l. What is required, is the 
function h ( s )  describing the relation between the stress and failure rate. In principle 
any function h(s)  may do. However, three of the most commonly used relations are 

O(s) = CSP 

h(s)  = csed’ls 

(power rule model) 

(simple Eyring model) 
h(s )  = ce-b/s (Arrhenius model) (12.1) 

where a ,  b, and c denote constants which are more or less unknown. These models 
may be derived from the physics of failure of the device in question. The power 
rule model has mostly been applied to dielectric breakdown of capacitors and fatigue 
testing of materials. The Arrhenius model has been applied to thermal aging and 
is also applicable to semiconductor materials. The simple Eyring model has been 
applied to devices exposed to constant t h e h a l  stress. A more thorough discussion 
of these three models and of other more general models may be found in Mann et al. 
(1 974). 0 

The constants u ,  b, . . . appearing in these models have to be estimated on the basis 
of the recorded life lengths under overstress. This may be done by inserting the 
appropriate expression for A(s) in the lifetime distribution. Given the stress level s ( j )  
for j = 1 ,2 ,  . . . , k ,  F ~ ( t j ;  s ( j ) )  is now known except for the values of the constants 
a ,  b,  . . .. The occurring constants may then be estimated from the data, for example, 
by applying the maximum likelihood principle or the least squares principle. Let us 
denote the estimates by a*,  b*, . . .. 

The final step then consists of inserting these estimates together with the normal 
stress s(O) in the lifetime distribution function. The result is an “estimate” of the 
normal stress life distribution, ET(t; s(O)) based on the overstress life data. 

Before we specify the relation between the stressor s and the failure rate h(s)  
in our simple example, let us remind ourselves of a few results about exponentially 
distributed random variables. The total information which is obtained through the 
SALT is expressed by ( s ( j ) ,  n j ,  r j ,  Tjl , Tj2, . . . , Tjn , ) ,  for j = 1 ,2 ,  . . . , k .  From 
what we learned in Section 11.4, it seems natural to summarize this and say that the 
information obtained by the SALT is expressed by 

( s ( j ) ,  n J ,  r j ,  T,) for j = 1 , 2 , .  . . , k (1 2.2) 

where 

Tj = ’T(T,,) for j = 1 ,2 ,  ..., k (12.3) 

is the total time on test at stress level s ( j ) . ’  

’ T = ( T I ,  T2, . . . , Tk) is a complete, sufficient statistic in our model. E ( T , / h j )  = h(s j ) .  for j = 
I ,  2 .  . . . , k .  Using the Lehmann-Scheffk theorem, it follows that Tj /h j  is a uniformly minimum variance 
unbiased estimate for h ( s j ) .  See, for example, Bickel and Doksum (1977, p. 122). Hence no information 
is lost by summarizing this way. 
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Let e(sj) denote the mean time to failure at stress level s(j) ,  and let A(.&)) denote 
the corresponding failure rate. Then we know from Section 1 1.4 that Z j  = 2A(s(j))Tj 
is x 2  distributed with 2rj degrees of freedom, j = 1,2,  . . . , k :  

(12.4) 
1 r . - l  

f i , (zj)  = ~ 
e-'JI2 forzj  > 0, j = 1,2,  . . . ,  k 

2'J r (rj ) 

Accordingly 

Hence 

fTl ,..., T k ( t l ,  ..., r k )  = . k(s(j))rj . 

(12.5) 

As an example, let us consider the case where the relation between the stressor s and 
the mean 0 (s) is described by the power rule model: 

j = l  

f o r t j > O , j = 1 , 2  , . . . ,  k 

O(s")) = c(s(j))-' for j = 1,2, . . . , k (12.6) 

Then 

If we amend the power rule slightly, without changing its basic character, to 

where i is the weighted geometric mean of the sj's 

(12.8) 

(12.9) 

it will later on turn out that the maximum likelihood estimator (MLE) of a and c, a* 
and c* becomes asymptotically independent. Hence this change is worthwhile. 

Inserting (12.8) into (12.5) leads to 



PARAMETRIC MODELS USED IN SALT 531 

The corresponding likelihood function is 

and the log likelihood function is 

In L(a ,  c; r1, . . . , f k )  

(12.12) 

The MLE of a and c, a* and c* are obtained by solving the two equations: 

and 

with respect to Q and c. 
From ( 1  2.7) we realize that 

That is 

k k 

j = l  j=l 

or 

Hence ( 12.13) is reduced to 

k 

j=1 

(12.14) 

(12.15) 

( 1 2.1 6) 

(12.17) 

(12.18) 
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which determines the MLE of a, a*. The parameter c is then determined by (12.14): 

( 12.19) 

Equations (12.18) and (12.19) do not allow us to determine a* and c* analytically. 
Iterative procedures must be used. 

It can be shown (see Mann et al. 1974, p. 426) that the asymptotic variances of 
a* and c* are 

(12.20) 

(12.21) 

and that the asymptotic covariance is 

as cov(a*, c*) = 0 (12.22) 

Furthermore it can be shown that (a*, c*) are asymptotically distributed as bivariate 
normal variables. See Mann et al. (1974, p. 83). Hence a* and c* are asymptotically 
independent. 

A reasonable estimate of the failure rate under normal stress s(O) is then 

(1 2.23) 

Therefore the density of the lifetime under normal stress may be estimated by 

f r ( t )  = h;e-*;' for t > o 

Table 12.1 gives some references where other SALT-parametric models have been 
studied. 

Example 12.2 Design 111 
Let us consider experiments where n identical items, operating independently, are put 
on test at time 0. In the time interval (0, t ]  the items are subject to stress s(O), while in 
the interval ( t ,  co) the items that have not failed by time t are kept in operation under 
stress scl) (> s(O)) until they all have failed. Typically s(O) corresponds to normal 
stress, s(') to accelerated stress. 

Suppose furthermore that the accumulated fatigue in the material subject to wear is 
modeled as a Wiener process [ Wo(y),  y 2 0) with drift r ]  > 0 and diffusion constant 
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Table 72.7 Some References to Papers Where SALT-Parametric Models Have Been Studied. 

Life Distribution References 

F T ( f ,  S )  = 1 - ' h(s)  = csa Mann et al. (1974); 
~ ( s )  = ceUbfs 
h(s )  = cse-b/s 

h ( s )  = csa 
(Y constant Nelson (1 975); 

Singpurwalla (1 973) 

~ ~ ( t ;  s) = 1 - e-[h(S) . tl" Mann et al. (1 974); 

Singpurwalla and 
Al-Khayyal (1977) 

u ( s )  = a + p s  
t2 constant Kielpinski (1976) 

Nelson and 

a2  > 0. Failure occurs when the fatigue process Wo(y)  crosses a critical boundary 
w. [The Wiener process Wo(y) is defined to be an independent increment Gaussian 
process with Wo(0) = 0 and mean E(Wo(y) )  = q y .  Moreover, each increment 
(WO(YZ) - WO(YI)) fo r0  < Y I  < y2, has variance S2(y2 - yi).l 

The basic result, whose history and proof can be found in Chhikara and Folks 
( 1  989), is that if we define the fatigue failure time Y as the first time that the fatigue 
process Wo(y) crosses the critical boundary w, and if we set p = w / p  and h = w 2 / a 2 ,  
then Y has the inverse Gaussian distribution IG(y, p, h)  with probability density 
function 

We now make the assumption that the fatigue process changes from one Wiener 
process to another at the stress change point t .  More precisely, in the interval (0, t], 
we suppose that the failure occurs if the process Wo(y)  crosses the critical boundary 
w > 0, where W o ( y )  is a Wiener process with drift q > 0 and diffusion constant 
a2 > 0. At the stress change point t ,  if Wo(y) has not yet crossed w in (0, r ] ,  the 
stress is changed from s(') to s('), and a new Wiener process starts out at the point 
( t ,  Wo(t) ) .  This is illustrated in Fig. 12.4. We assume that 

W I  ( y )  = Wo(t + a ( y  - t ) )  for y > t ,  (Y > 1 

0 

Hence our SALT fatigue process is 

for y 5 t 
Wo(t + a ( y  - t ) )  for y t 
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Stress I Stress s(1) 

0 t Y 

Fig. 12.4 A fatigue process W ( y )  with stress level increased from s(O) to s(') at time r .  

In Doksum and Hgyland (1992) it is shown that the distribution FT (t)  of the stress 
failure time T in this situation is 

for O ~ y i t  
F T ( Y )  = [ :::\a!(y - t ) )  for y > t 

where Fo(y) = I G ( y ;  p ,  A )  is the inverse Gaussian distribution whose probability 
density is given by (2.62). 

Let y1, y2, . . . , yn be the observed failure times, and introduce 

and 

y , ( a ! ) = t + a ( y , - t )  f o r y , > r  (1 2.24) 

In this a! known case, the likelihood function, which we label La ( p ,  A) can be written 

j=1 s=l 

where m is the number of y ' s  greater than t .  
We note that the likelihood is proportional to the usual one-sample inverse Gaussian 

situation with the only change that y j  is replaced by y j  (a!) for j = 1,2,  . . . , n.  Using 
(1 1.39), we see that the MLE for p and l / k  are given by 

(12.25) 

Hence an estimate of the life distribution of the failure fatigue time T under stress 
s(O) (normal stress) is IG(t; p i ,  A:). 
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It also follows that p: has the IG(y; p ,  n k )  distribution, that nk/k: has a x 2  
distribution with (n  - 1) degrees of freedom, and that p: and k: generally have all 
the desirable properties of one-sample inverse Gaussian estimates. In particular, the 
estimator p: of the mean time to failure under stress do) has variance p 3 / n k .  

A more realistic situation would be the one where a! is unknown. The case is 
discussed in Doksum and Hoyland (1992). They also discuss step-stress models with 
m ( r  2) stress levels, and models with continuously increasing stress. The case of 
stochastic censoring is also discussed. 

12.4 NONPARAMETRIC MODELS USED IN ALT 

Two main assumptions need to be true if a successful parametric model is to be 
established for ALT 

1. The life distributions have to belong to the surne known parametric family under 
normal stress as well as under overstress. 

2. The relation between the parameter vector of this family and the stressors has 
to be known. 

If these conditions are met, the solution of the problem is considerably simplified. 
Hence there is a danger that these assumptions may be made too often for mathemat- 
ical convenience only and with no basis in reality. To prevent this from happening, 
considerable efforts have been made in recent years to develop models and methods 
that do not require assumptions about the functional form of the lifetime distribution 
in question. We will conclude this chapter with some comments on such models and 
methods and with references to literature that contains more detailed information. 

It may be argued in certain situations-even in situations where we do not know 
the family of life distributions in question-that the ratio between the failure rates 
z ( t ,  s ( ~ ) )  and z ( t ,  s ( j ) ) ,  corresponding to any two stress levels di) and s ( j ) ,  is constant 
over time: 

(12.26) 

where g is a function of ( s ( ~ ) ,  s ( j ) )  only. Such models are denoted proportional 
hazards (PH) models. If we replace z ( t ;  s")) by zo( t )  and g(s('), s")) by gl (s), a 
PH model is characterized by the relation 

where gl is a function of s only. 

For stress 
Then the survivor function may be written [see (2.9)] as follows: 

(12.28) 
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For stress s, 

R ( t ;  s) = e-  f(Zocu)gl(s)du (12.29) 

Accordingly in a PH model, the survivor functions R ( t ;  s) and R ( t ;  s(O)) have to 
satisfy the relation 

R ( t ;  S) = R ( t ;  S(~))~I(') (12.30) 

[A parametric model where (12.27) is satisfied is the two-parameter Weibull family 
with constant shape parameter a! (independent of s) and a scale parameter A, which 
may depend on the stressor.] 

If the life distribution function is only known to be continuous but is otherwise 
unspecified, the failure rate Ao(t) of the PH model is likewise unspecified. The 
corresponding nonparametric PH model is quite flexible and may be applicable to 
many situations occurring in practice. For a more thorough discussion of these models 
and their applications, the reader is referred to Viertl (1988), Nelson (1990), and 
Meeker and Escobar (1998). 

As already indicated in (12.27) the PH models are characterized by the relation 

z ( t ;  s) = z o o ) .  g1(s) 

Note that zo(t)  and g ( s )  may contain unknown parameters. Cox (1972) discussed a 
special subclass of nonparametric PH models, now usually referred to as Cox models, 
which also are of particular interest in biomedical applications. 

Cox considers a situation with m different stressors s1, s2, . . . , s,. In order to 
come into line with the notation used in connection with Cox models, the notation 
used in the introduction to this chapter must be altered slightly. 

Let stressor s1 occur at level x1 
s2 occur at level x2 

and so on. Then Cox makes the assumption that in the PH model 

\ 

(12.31) 

where x = ( X I ,  x2, . . . , x,) represents an (m x 1) vector of stressor levels, and 
j?' = (B1, 8 2 ,  . . . , Bm) a vector of regression coefficients. Since Cox introduces 
parameters in one part only of the nonparametric model, his model is sometimes 
denoted semiparametric. 

Note that the xi's may be transformed values of the real stress levels. Hence 
Cox models are very general and may be applicable to a large number of practical 
situations. 

With this assumption ( 1  2.29) may be rewritten as 

R ( t ;  x,  j?) = R ( t ,  s(O) )exp(g'x) 
(12.32) 
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Suppose n randomly chosen items have been exposed to the rn stressors and the 
corresponding life lengths of the items are denoted T I ,  T2, . . . , T,. Then associated 
with each lifetime K is a regression vector xi = ( x l i ,  x2 i ,  ..., x,i) of data values of 
the rn stressors, i = 1 ,  2, . . . , n. The question is then how to estimate Fo(t)  and the 
regression coefficients. 

An application of the maximum likelihood principle turns out to be complicated. 
Cox suggests the following approach: 

First, he defines on a heuristic basis what he calls a "partial likelihood" which is not 
a proper likelihood function, and which in a PH model does not involve the failure 
rate. The partial likelihood is then used for estimating the regression coefficients. 
He then reads the estimated values bl, 8 2 ,  . . . , & as true values of the regression 
coefficients and concludes by estimating Fo( t )  from the recorded life data, using the 
Kaplan-Meier approach (see Section 1 1.3). 

Application of this procedure is rather complicated. Readers are referred to 
Kalbfleisch and Prentice (1980, pp. 7678)  or Lawless (1982, pp. 345-347). 

Estimates for the j3's in the Cox model may be calculated by using various computer 
codes. These codes usually allow for two important generalizations of the Cox model 
( 1  2.32): 

1. The assumption of a simple underlying failure rate for all the life data is relaxed. 
The code allows for several subgroups within the recorded data. 

2. The stressors x are allowed to vary with time. 

PROBLEMS 

12.1 (The sole purpose of considering the following rather unrealistic situation is 
to illustrate how accelerated life data may be analyzed in a very simple situation.) 

The device in question is supposed to have an exponential life distribution with 
failure rate h ( s )  = c .  s when exposed to the stress s, for all stresses. c is an unknown 
positive constant, and the purpose of the study is to estimate ),(s)(O) = c . s(O), where 
s(O) denotes the normal use stress. The expected life length is expected to be very 
long under stress so. Therefore an accelerated life test is carried out according to 
design I, where the selected stresses s(I) < s(*) < . . . < s ( ~ )  are very much larger 
than s(O), to obtain short life lengths under these stresses. 

The experiment leads to the result in Table 12.2. T, j ,  for i = 1, 2 , .  . . , k ,  j = 
1,2 ,  . . . , n ,  are all assumed to be independent. 

(a) Show that 2cs(') xTLl T,,, i = 1,2,  . . . , k are independent and x 2  distributed 

(b) Use the result in (a) to derive an estimator 2 of c. 

(c) Finally, estimate the expected life length of the device in question under normal 

with 2n; degrees of freedom. 

stress s(O) .  
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Table 72.2 Observed Lifetimes at the Various Stress Levels. 

Stress Level Observed Lifetimes 
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J 

Ana ly s ls 

13.1 INTRODUCTION 

The first step in almost any statistical analysis is to establish a stochastic model of the 
situation at hand. The observations to be collected are then considered to be realiza- 
tions of random variables X 1, X 2 ,  . . . , X ,  . So far in this book, we have assumed it to 
be possible to derive the joint distribution function, F ( x 1 ,  x 2 ,  . . . , x,; e l , & ,  . . . , O r )  
of the X i ’ s  through basic scientific knowledge of the phenomenon to be analyzed, 
information obtained from exploratory data, and possibly some simplifying assump- 
tions. Here 8 = ( e l , & ,  . . . , O r )  denotes a vector of constants, belonging to some 
subspace St of the r-dimensional Euclidean space. In this model no vector 8 in C2 is 
more likely to occur than any other. 

A natural question to ask is whether or not this approach always is the most appro- 
priate one when we want to express a priori knowledge of the phenomenon. When 
following this line of action, essential parts of a priori knowledge may not be taken 
into account. Suppose, for example, that p denotes the reliability of a certain com- 
ponent at time t .  Then p will be assumed to belong to [0, 11, but no values of p in 
this interval is given preference, even if one is quite certain that p is close to 1, say. 
This a priori knowledge easily get lost in the model. 

In Bayesian inference one can introduce this kind of knowledge into the model 
by interpreting p as a random variable with some density f ( p ) ,  expressing what 
one thinks (believes) about the occurring value of p .  In Section 13.7 we discuss 
possible interpretations of such distributions. For the time being we will only study 
the immediate consequences of such models. 
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The intention of this chapter is mainly to illustrate the Bayesian philosophy and 
some of its consequences. Those who want a comprehensive presentation of Bayesian 
inference are referred to Martz and Waller (1982), Berger (1985), Box andTiao (1992), 
and Gelman et al. (1995). Here, we will restrict ourselves to considering Bayesian 
estimation in some simple situations. 

A central tool required for the application of Bayesian methods is Bayes’ theorem. 

Theorem 13.1 (Bayes’Theorem) Let E l ,  B z ,  . . . be mutually exclusive and exhaus- 
tive events contained in a sample space S, that is 

Pr (UF, Bi) = 1 

B~ n B~ = B 

Pr(Bi) > 0 

for i # j 

for each i 

and let A be an event in S such that Pr(A) > 0. Then for each k ,  

(13.1) 

Bayes’ theorem is named after the Reverend Thomas Bayes (1 702-1761), who used 
the theorem in the fundamental paper, An Essay toward Solving a Problem in the 
Doctrine of Chances, which was published in 1763. 

Proof 
Using the definition of conditional probability we can write 

The denominator Pr(A) can be expanded as 

Pr(A) = c Pr(A n Bi) = c Pr(A I Bi) Pr(Bi) 
i=l i=l 

The expression 

00 

Pr(A) = Pr(A I Bi) Pr(Bi) 
i=l 

0 

(13.2) 

is called the law of total probability. 
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13.2 BASIC CONCEPTS 

In our non-Bayesian setup, let X be a random variable with probability density func- 
tion f ( x ,  01, 0 E 52. According to the Bayesian point of view, 0 is interpreted as 
a realization of a random variable 0 in 52 with some density fo(0) .  The density 
f ( - ) (0)  expresses what one thinks (believes) about the occumng value of 0, before 
any observation has been taken, that is, a priori. f o  ( 6 )  is called the prior density of 
0. f ( x ,  0)  is then read as the conditional density of X ,  given 0 = 0, and rewritten 

With this interpretation, the joint density of X and 0, fx,o(x, 0 ) ,  is given by 
as fXl(& 10). 

Proceeding on this basis, the marginal density of X ,  fx ( x )  is 

The conditional density of 0, given X = x ,  becomes 

(13.4) 

(13.5) 

or 

which is seen to be a simple form of Bayes's theorem ( 1  3.1). 
By folx (0 I x )  we express our belief concerning the distribution of 0 after having 

observed X = x ,  that is, aposteriori, and folx(0 I x)  is therefore called theposterior 
density of 0. Note that when X is observed, f x ( x )  occurs in (13.6) as a constant. 
Hence f(-)lx(6 I x) is alwaysproportionaf to f x l o ( x  I 0)fo(0) ,  which we write as: 

f @ l X ( O  I x )  0: f X ( O ( X  I 0 ) .  fo(@ (13.7) 

The Bayesian approach may be characterized as an updating process of our informa- 
tion about the parameter 0.  First, a probability density for 0 is assigned before any 
observations of X is taken. Then, as soon as the first X is observed and becomes 
available, the prior distribution of 0 is updated to the posteriori distribution of 0, 
given X = x. The observed value of X has therefore changed our belief regarding 
the value of 0. This process may be repeated. In the next step our posterior distribu- 
tion of 0, given X = x, is chosen as the new prior distribution, another X is being 
observed, and one is lead to a second posterior distribution, and so on. This updating 
process is illustrated in Fig. 13.1. 
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Prior information about 0 Model for observed data Observed data 

Prior density: fo (0) Density: fx , (x I 0) x = x  

Posterior information about 8 

Posterior density: felx (0 I x) 

Fig. 13.7 Bayesian "updating" process. 

Example 13.1 
A nonrepairable valve is assumed to have constant failure rate h. Experience (or 
belief) leads us to think that the failure rate is a random variable A which is gamma 
distributed with parameters a! and B.  The prior density of A is therefore 

f A ( h )  = - '" ~ u - 1  e-BA fork > o (13.8) r(ff) 
The mean value of A is 

a! 
E ( A )  = - (13.9) 

The gamma distribution is further discussed in Section 2.1 1. The probability density 
function of the time to failure T of the valve, when the failure rate A is known, is 

f T l A ( t  I A) = he-A' fort > 0, A. > o (1 3.10) 

We will now assume that we can test n valves of the same type one by one. Before 
the first test, we assume the prior distribution of the failure rate A to be gamma 
distributed with parameters a ! ~  = 2 and 

fA(h) fork > o (13.11) 

The (first) prior density of A is illustrated in Fig. 13.2. Let TI denote the time to 
failure of the first valve tested. The joint density of TI and A becomes 

B 

= 1, 

f T 1 , A ( t l r  A) = he-"l . he-A 

= h2e-A('l+1) fort1 > o , A > o (13.12) 

The marginal density of TI is 

(13.13) 
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0.3 

0 1 2 3 4 5 6 

31 

Fig. 13.2 The gamma density with parameters (2,l). 

The conditional density of A, given TI = t l ,  the posterior density, is 

(1 3.14) - - + *3-Ie-*O1+l) for > 0 
r(3)  

which also represents a gamma density, now with parameters (2'2 and 8 2  where 

since al  = 2 
since p l  = 1 

(2'2 = 3 = (2'1 + 1 
8 2  = (t l  + 1) = PI + tl  

The procedure may now be repeated with (1 3.14) as our new prior distribution. Then 
we observe the lifetime Tz = tz of a similar valve and are lead to a new posterior 
distribution which is a gamma distribution with parameters: 

(2'3 = a 2 + 1 = ( 2 ' l + 2  

83 = 8 2  + t 2  = 81 + ( t i  + t 2 )  

and so on. 
The posterior density (13.14) could also have been derived directly using (13.7) 

(13.15) 

Hence 

fAITl (h  I t l )  = k( t1 )  . ~ ~ e - * " ( ' ~ + l )  for tl > o (13.16) 

and since (13.16) is a density, k( t1 )  is easily determined to be (1 + t 1 ) ~ / 2 .  This leads 
to the same posterior density as we derived in (13.14). 
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From (13.9) it follows that 

2 + 1  
1 + t l  

- -  - 

2 + 1 + 1  
1 + t l  + t 2  

E ( A  I TI = t i ,  T2 = t2) = 

(13.17) 

Equation (13.17) illustrates how we update our belief about the mean of A, as obser- 
vations of T become available. 0 

13.3 BAYESIAN POINT ESTIMATION 

Let us return to the general setup in Section 13.2. Recall that 0 is a realization of 
a random variable 0 E C2 with some prior density fo(0), and that X is a random 
variable with continuous density given 0 = 0, f x l o ( x  I 0). Our task is now to 
estimate the value 0 of 0 that belongs to an observed value x of X .  We will denote 
this estimator by 6 ( X ) .  

As is usual, we will prefer an estimator that minimizes the mean quadratic loss: 

E [ ( s ^ ( X )  - 

Such an estimator will be denoted a Bayesian estimator (of 0) (with minimum ex- 
pected quadratic loss). Note that in the Bayesian framework, X and @ are both 
random variables. How should 6 ( X )  be chosen? 

By using (13.3) we get 

Obviously E [ ( 6 ( X )  - 
minimize 

becomes minimized if, for each x, 6(x) is chosen to 

(6 - & x ) ) 2 f o l x ( e  I x> dB h 
In probability theory the following lemma is well known: 
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Lemma 13.1 Let Y be a random variable with density f y ( y )  and finite variance t2. 
Then 

lk(17) = /+me - r l > 2 f u ( Y )  dY 
--oo 

is minimized when is chosen as E ( Y ) .  0 

This lemma, applied to our problem, tells us that E [ i ( X )  - 01' is minimized for 

(13.18) i ( X )  = E(O I X )  

Hence we can conclude that the Bayesian estimator of 0 is the mean of the posterior 
distribution qf 0. 

Example 13.1 (Cont.) 
If we apply Lemma 13.1 to the iteration in Example 13.1, the Bayesian estimate of 
A, after having observed TI = t l ,  is 

3 
A.(tl) = - 

1 +tl  

0 
Let us return to our Bayesian model where 8 represents a realization of a random 

variable 0 E '2 with some prior density fe(0). We are now considering a situation 
where our data D = (X I ,  x2, . . . , x,) consist of observations of n random variables 
X I ,  X 2 ,  . . . , X,,  assumed to be independent and identically distributed, conditional 
on 8, with density f x l e ( x  I 0). Then 

n 

fxI,x~,...,~,le(xl~ X Z ? .  . . ,  x, I 0)  = n fxle(xj I 0) (13.19) 
j =  1 

The posterior distribution of 0, given X I ,  X 2 .  . . . , X , ,  may now be obtained by the 
same procedure as we used for one single X ,  and we get 

~ ( + I x I . x ?  ...., x , , ( O  I x1.x2, . . . I x,) cx n fxIc-,(xj 10) . fe(0) (13.20) 
[ j r l  ] 

Considering the right-hand side of (13.20) as a function of 0, given XI ,  xz, . . . , x,, 
this can also be written 

~ ( + I x I . x ~  ...., x , , ( O  I x l , x 2 * . . . , x n )  0: L(8 I x ~ , x ~  ,..., x,)f0(0) (13.21) 

where L(O I X I ,  x 2 ,  . . . , x,) denotes the likelihood function in the usual mean- 
ing. For brevity in the following discussion we will write L(O I D )  instead of 
L(B I X I ,  x 2 ,  . . . ,  x,). 
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Example 13.1 (Cont.) 
Reconsider the valve in Example 13.1, with constant (unknown) failure rate A, where 
h represents a realization of a random variable A with (prior) density (13.8), and let 
T I ,  T 2 ,  . . . , T, denote the lifetimes of n such valves. Assume T I ,  T2, . . . , T, to be 
independent and identically distributed, conditional on h, with density 

f C l A ( t i  I A) = Ae-*'i for A > 0 ,  i = 1, . . . , n 

We want to determine the Bayesian estimate of A, based on these lifetimes. 
In this case 

n 

f T , , T 2  ,._., T, lA( t l .  t 2 , .  . . , tn I A) = n he-*'' = ine-*x;=l'i 
j = 1  

and 

fAlTl,T2 ,..., T,(h I t i ,  t 2 , .  . . , t,) 0: hne-*C;=l'i . he-* 

hn+le-*(l+x:=l a )  (13.22) 

To be a proper density, the right-hand side of (13.22) must be multiplied by the 
constant 

Hence 

which we recognize as a gamma distribution with parameters a! = (n + 2) and 
/? = (1 + c:='=, t i ) .  Since the mean of this gamma distribution is a/ /? ,  the Bayesian 
estimator of h is 

(13.23) 

13.4 CREDIBILITY INTERVALS 

A credibility interval is the Bayesian analogue to a confidence interval. A credibility 
interval for 0, at level ( 1  - E ) ,  is an interval ( a ( D ) ,  b ( D ) )  such that the conditional 
probability, given the data D, satisfies 

Pr(a(D) < 0 < b ( D )  1 D) = folD(e I D ) ~ O  = 1 - E (13.24) 
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Then the interval ( a ( D ) ,  b ( D ) )  is an interval estimate of 8 in the sense that the 
conditional probability of 0 belonging to the interval, given the data, is equal to 
(1 - E ) .  

13.5 CHOICE OF PRIOR DISTRIBUTION 

13.5.1 Conjugate Families of Distributions 

First we state a useful definition: 

Definition 13.1 A parametric family 5' of distributions fo(f3) is said to be closed in 
sampling with respect to a family 3 of distributions fxlo(x I 8 )  if 

fo(@ E 5' * fOlX(6 I x )  E 5' (13.25) 

In that case 5' is also said to be a conjugate family to 3 or, for short, conjugate to 
F 0 

Example 13.2 
Let 3 be the family of exponential distributions defined by the probability density 
function 

fTIA(t  I A) = Ae-" for t > o (13.26) 

Let us show that the class 5' of gamma distributions, defined by (13.8) 

is conjugate to F. That is, we have to show that the corresponding f ~ l ~ ( h  I t )  is a 
gamma distribution. In this case 

Furthermore 

Hence 

(1 3.28) 



548 BAYESIAN RELIABILITY ANALYSIS 

which is a gamma density with parameters (Y + 1 and B + t .  0 

The result in Example 13.2 may be stated more formally as: 

Theorem 13.2 The family of gamma distributions (a,  B )  is conjugate to the family 
of exponential distributions. 0 

Clearly the assumption of a gamma density as a prior distribution in connection 
with an exponential distribution is mathematically convenient. Our intention with 
this prior distribution, however, is to express a priori knowledge of A, and we raise 
the question whether or not this purpose is taken care of by using the gamma density 
as prior. The answer to this question is that the gamma distribution (a ,  B )  is a very 
flexible distribution. It may take on a wide variety of shapes through varying the 
parameters a! and B.  Almost any conceivable shape of the density of A can essentially 
be obtained by proper choice of (Y and /3. 

Example 13.3 
Consider a plant which has a specified number of identical and independent valves 
with constant failure rate A, where A represents a realization of a random variable A 
with the gamma prior density 

(13.30) 

The parameters a! and B of the prior distribution is usually "estimated" based on prior 
experience with the same type of valves, combined with information gained from 
various reliability data sources (see Chapter 14). 

When a valve fails, it will be replaced with a valve of the same type. The asso- 
ciated downtime is considered to be negligible. Valve failures are assumed to occur 
according to a homogeneous Poisson process with intensity A. The number of valve 
failures N ( t )  during an accumulated time t in service thus has the Poisson distribution 

Pr(N(t) = n I A = A) = - (At)n  e-1' for n = 0 ,1 ,  . . . (13.31) 
n! 

The marginal distribution of N ( t )  then becomes 

(13.32) 
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By combining (13.301, (13.31), and (13.32) we get the posterior density of A, given 
N ( t )  = 11, 

(13.33) 

which is recognized as the gamma distribution with parameters (a + n )  and (B + t ) .  
0 

Hence we have shown the following theorem: 

Theorem 13.3 The family of gamma distributions (a,  B )  is conjugate to the family 
of Poisson distributions. 0 

Example 13.3 (Cont.) 
The Bayesian estimate of h when N ( t )  = n is 

a f n  
h = E ( A  I N ( t )  = n )  1 - 

B + t  
(1 3.34) 

Furthermore the conditional distribution [given N ( t )  = n] of the variable Z = 2(B + 
t ) A  is 

which is recognized as the x 2  distribution with 2(a + n )  degrees of freedom. 
A 1 - E credibility interval for the failure rate is obtained as 

where zE,+ denotes the upper loo&% percentile of the x 2  distribution with v degrees 
of freedom; that is, P r (2  > ze,”)  = E when 2 - x,’. The upper 1006% percentile of 
the x,’ is listed in Appendix F for some values of v and 6. 

A one-sided upper credibility interval for the failure rate is obtained in the same 
way: 

(13.36) 

Assume that we have estimated the parameters a and B of the prior gamma distribution 
to be (all time units in hours) 

a = 3  
p = i . 1 0 4  

The prior mean and standard deviation is thus 

E(A) = 3 . 
SD(A) 1.73 . lop4 (prior standard deviation) 

(prior mean) 
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Fig, 13.3 Prior (dotted line) and posterior density of the failure rate in Example 13.3, and a 
90% credibility interval for the failure rate. 

Further, assume that n = 2 failures have been observed during a total time in service 
t = 5 . lo3 hours. 

The Bayesian estimate of h is thus from (13.34) 

h = -  - - + 3.33.10-4 A a + n  
B + t  104+5.103 

A 90% credibility interval for A with these data is 

18.31 
2.1.5.104 2.1.5.104 

Pr(1.31 . lop4 < A < 6.10 lop4 I N ( t )  = 2) = 0.90 

The prior and posterior distribution of A for these data are presented in Fig. 13.3, 
0 with a 90% credibility interval for A .  

Example 13.4 
Let 9 be the binomial distribution defined by 

Let us show that the class 9 of beta distributions, defined by the density 

is a conjugate family to 9. 
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To prove this statement, we have to show that the corresponding density folx(f3 I 
x )  represents a beta distribution. To do so, we make use of (13.7): 

Put differently, 

Hence 

Knowing (13.40) to be a probability density, the “constant” k ( x )  has to be 

(13.41) 

Equation (13.41) introduced into (13.40), gives the beta density with parameters 
( x  + r ) ,  and (n - x + s). 0 

We have thus proved the following theorem: 

Theorem 13.4 The family of beta distributions ( r ,  s) is conjugate to the family of 
binomial distributions. 0 

The assumption of a beta prior in connection with a binomial distribution is mathe- 
matically convenient. Furthermore the beta distribution is a very flexible distribution. 
Its density can take on a wide variety of shapes by proper choice of r and s. Note that 
by choosing r = 1, s = 1, the beta density represents a uniform density over [0, I] 
which corresponds to no a priori preference for any 0 in [0, 11. (In this case we have 
a noninformative prior distribution for 6 . )  

The mean of the beta distribution ( r ,  s) is easily found to be r / ( r  + s) (e.g., see 
Dudewicz and Mishra (1988, p. 224). The prior mean is from (13.38) 

r 
E(O)  = - 

r +s 

and the Bayesian estimate of the probability 8 is from (13.40), 

(13.42) 
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13.5.2 Noninformative Prior Distribution 

Example 13.5 
A certain type of valves is assumed to have constant (unknown) failure rate A, where 
h represents a realization of a random variable A. Let T I ,  T2, . . . , Tn denote the 
observed lifetimes of n such valves. Assume T I ,  T2, . . . , Tn to be independent and 
identically distributed, conditional on A, with density 

fTip,(ti I A) = hepAfI for ti > 0, h > o 
When there is no prior information available about the true value of A, a noninfor- 
mative prior distribution seems appropriate. 

A noninformative prior distribution is characterized by giving no preference to any 
of the possible parameter values. Hence, if the possible parameter values constitute a 
finite interval, the parameter is assumed to be uniformly distributed over that interval. 
Hence a noninformative prior distribution for the failure rate A in our case may, for 
example, be given by the uniform density 

- f o r O l h l M  

0 otherwise 
(13.43) 

where M is taken to be a very large number, say 10”. Then the posterior density of 
A, given the data D, is by (13.22) approximately 

~ A I T I , T ~  ...., T , ~ ( A  l t 1 ~ l 2 ~ . . . ~ t n )  O: L(A. I D>.f~(h) 
1 

fAlTI,T2 ,..., K,(A I t i , t 2 , . . . , t n )  hne-’C:=lfi . - (13.44) M 
fAlTI,T2 ,..., T,G I t l , t 2 ,  ..., t,,) O: kne-’C:=Iri 

To become a proper density, the right-hand side of ( 1  3.45) must be multiplied by (c:=’=, r ( n  + 1). Hence 

(13.45) 

which we recognize as the density of a gamma distribution with parameters (n  + 1) 
and x;=, t i .  

Hence the Bayesian estimator of the failure rate (with minimum expected quadratic 
loss) and a noninformative prior becomes 

n + l  
 TI, T2, . . . , Tn) = ~ (13.46) c;=, 7;. 

The MLE of the failure rate h in this situation was in Chapter 11 determined to be 

n 
h*(Tl, T 2 , .  . . , Tn) = - Cy=l Ti 
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Note that the MLE of A, h*(Tl, T2, . . . , T n )  coincides with the mode of the posterior 
distribution (13.45) 0 

13.6 BAYESIAN LIFE TEST SAMPLING PLANS 

The density 

a+ I ba fo(I9) = -. ( f )  e-blB for6 > 0, a > 0, b > 0 (13.47) r ( a )  
is called the inverted gamma densi9 with parameters a and b, since the variable 0-' 
then has an ordinary gamma density with parameters a and 1 /b. Since var(0) does 
not exist when a 5 2, we will in the following assume that a > 2. Then 

E ( 0 )  = - = 190 (prior mean) 
b 

a - 1  

var(O) = b2 = "02 (prior variance) (1 3.48) 
(a  - 1)2(a - 2) 

The inverted gamma distribution (1 3.47) can be shown to be conjugate to the family 
of exponential distributions, defined by the density 

1 
I9 

frlo(t 1 0) = - e-*IB fort > 0, 6 > o (13.49) 

Equation ( 1  3.49) is often used as a prior distribution when estimating 6, which rep- 
resents the mean time to failure (MTTF) of (1 3.49). The inverted gamma density is 
rather flexible and can take on a wide variety of shapes by proper choice of a and b. 

13.6.1 Complete Data Sets 

Suppose n units are life tested until failure, and let T I ,  T2, . . . , Tn denote the ob- 
served lifetimes. Hence the observed daru is D = (rl, t2, . . . , r,,). Given 0 = 0, 
T I ,  T2, . . . , T,, are assumed to be independent and identically distributed with density 
(13.49). We select (13.47) as prior distribution of 0. Then according to (13.20) 

which implies that 

(13.50) 
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In this case C;='=, ti expresses the total time on test at the last failure: 

n 

i=l 

Hence (13.50) may be written 

~O~TL,TZ,...,T,,(B I ( t 1 9  t27 . . tn) 

o< . e - ( b + ~ ( w e )  fore , (13.5 1) 

To become a proper density, the right-hand side of (13.5 1) has to be multiplied by 
[b + T ( t n ) l n f " /  r(n +a) .  

Therefore 

which is recognized as the density of an inverted gamma distribution with parameters 
(n + a)  and (b  + T ( t n ) ) .  The Bayesian estimator of MTTF = 0 (minimizing the 
mean quadratic loss) coincides with the mean value of (13.52): 

b + 3-0,) - b + n T  
n + a - 1  n + a - 1  

d(T1, T2, .  . . , Tn) = - (13.53) 

The maximum likelihood estimator of the MTTF, 8 ,  is earlier determined to be 

We note that 

b 
a - 1  

@(TI,  T2 , .  . . , T,) = (1 - W )  * - + W P  

or 

6 ( ~ , ,  T ~ ,  . . . , T,) = (1 - W )  . eo + we* (13.54) 

where 00 denotes the prior mean (1 3.48) and 

n 
n + a - 1  

Hence the Bayesian estimator of 0 is a weighted average of the prior mean 60 and the 
MLE 8*. We also note that 

w =  

 TI, T 2 , .  . . , Tn) + O* as n + 00 

In words, the influence of the prior mean tends to zero as n -+ 00. 



INTERPRETATION OF THE PRIOR DISTRIBUTION 555 

13.6.2 Type II Censored Data Sets 

Let the situation be as above, except for the fact that the life test is terminated at 
the rth failure, which corresponds to censoring of type I1 (see Section 11.2). Let 
Z'(I) i T(2) i . . . i T(r) denote the recorded lifetimes. 

The joint probability density function of T(l) I T(2) 5 . . . i Z'(r), given 0 = 8, 
is 

Hence 

fort1 s... i t r ,  6 > 0 ,  a > 2 ,  b > O  (13.56) 

which implies that 

(1 3.57) 

If we introduce the total time on test concept 7 ( t r )  (see Section 11.3), then (13.57) 
can be written 

(13.58) 

We immediately notice the similarity between (13.58) and (13.51), derived for com- 
plete data sets and are able to conclude that the Bayesian estimator of the MTTF = 8,  
in the case of type I1 censoring is 

(13.59) 

when the inverted gamma density with parameters u and b is used as prior distribution. 

13.7 INTERPRETATION OF THE PRIOR DISTRIBUTION 

We will confine ourselves to discussing two essentially different interpretations of the 
prior distribution and illustrate them by discussing an example. 
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13.7.1 

Example 13.6 
Suppose a commodity is delivered to customers in lots of size a. The relative number 
of defect units in a lot obviously will vary from one lot to another, and we may interpret 
the relative number of defect units as a random variable 0. Every lot is controlled by 
taking a random sample of size n of units from the lot, and recording the number X 
of defect units in the sample. 

Given 0 = 8 ,  X will, if a is not too small, be approximately binomially distributed: 

Prior Distribution Based on Empirical Data 

As already indicated, 0 is likely to vary from lot to lot. However, if the production 
process is “in control,” the 8 values will show a statistical regularity that may be 
expressed by some probability density po (6) .  Looking at the situation in this way, 
two random variables X and 0 are attached to every lot. 

In principle we can imagine that over a certain period of time we have effectively 
carried out 100% control of the lot, and thereby observed a large number of realizations 
of 0’s. The histogram of these values gives us a picture of the possible density of 0. 
Even in the case where we have only observed a few such X ’ s ,  this data set supplies 
us with some information about the distribution of 0. 

The main point in this situation is that the prior distribution of 0 is empirically 
motivated on the basis of observed data. The procedure is then the following: First, 
a prior distribution of 0 is selected from the conjugate family of the binomial distri- 
bution (13.60). namely a beta distribution with unspecified parameters r and s. Then 
these parameters have to be estimated, one way or another, based on the observed 
@-values (exploratory data). The beta distribution with these estimated parameters 
is then chosen to be the prior distribution of 0. 

Presumably few statisticians will have essential objections to Bayesian inference 
0 on this basis, in particular since the beta distribution is very flexible. 

13.7.2 Subjective Bayesian Inference 

Example 13.6 (Cont.) 
The relative number of defect units in a certain “big” lot is denoted by 8,  and the 
number of defect units in a sample of size n from this lot, is denoted by X .  Then 
approximately 

In subjective Bayesian inference, the appearing value of 8 is an unknown constant in 
[0, 11. The statistician (the Bayesian analyst), however, considers certain &values in 
[0, 11 to be more likely to occur than others, and he expresses this subjective belief 
on which B value he expects through a (prior) distribution of 0, p o ( 8 ) .  The succes- 
sive statistical reasoning hence is based on a subjective concept of probability, based 



THE PREDICTIVE DENSITY 557 

on his degree of belief and cannot be given a frequency interpretation. In principle 
there is nothing illogical in a situation where two (Bayesian) statisticians reach dif- 
ferent conclusions as a consequence of different choices of priors. For mathematical 
convenience, even the subjectivist chooses his prior from the conjugate family of 
distributions to the binomial. Note, however, that the subjectivist even has to choose 
the parameters r and s in the beta distribution on a subjective basis. This subjective 
approach is far more controversial among statisticians than the one where the prior is 
based on exploratory data. 0 

Situations we meet in analysis of reliability and risk are sometimes characterized 
by lack of data. In spite of this lack of data, decisions have to be made. In such 
situations, it may be necessary to exploit all a priori insight in the matter, even personal 
judgments, expert opinions, and the like. Then the subjective approach may be the 
best (and only) solution to the decision problem. 

13.8 THE PREDICTIVE DENSITY 

Let T and 0 be two random variables where the conditional density of T, given 
0 = 6' is fTI(-)(t I 8) .  Let T I ,  T2, . . . , T,, be n observations of T .  Given 0 = 8, these 
are assumed to be independent. 

If a prior density of 0, fo(6') is assumed, then the joint density of TI, T2, . . . , T,, 
and 0 is 

~ T , , T *  ...., T, , , o (~ I ,  t 2 , .  . . , t r i ,  0) = n f ( t i  I 8 )  . (13.61) 

Let us for short denote the data set T I ,  T2, . . . , T,, by D. After having observed D, 
how should we predict the next value of T? 

We may argue as follows: In the Bayesian setup we determine the posterior density 
of 0, given D. 

[i:! 1 

f@, rD(@ I D) 
Then we define the predictive density of T, given D as 

00 

fTID(T I D )  = 1 f ( t  I 8 )  ' f O l D ( 8  I D ) d o  (13.62) 

Example 13.1 (Cont.) 
Reconsider the valves in Example 13.1. Given A = h, the lifetimes TI, T2, . . . , Tn of 
the n valves are independent and exponentially distributed with probability density 
function 

f j - I A ( t  I A) = he-" fort > 0, A > o 
where h represents a realization of a random variable A with prior density 

~ A ( A )  = he-' for A > o (13.63) 
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Suppose that we have observed the lifetimes (TI, T2, . . . , T,) of n such valves. Ac- 
cording to (13.22) the posterior density of A, given D, is 

Hence our guess, based on D, is that the next observation T has density 

(13.65) 

Hence our guess is that the survival function for a given new valve of the same type 
is 

PROBLEMS 

13.1 Show that the Bayesian estimator of f9 which minimizes the mean absolute 
error loss E ( @ ( X )  - 01) is equal to the median of the posterior distribution of 0 
(given X = x ) .  

13.2 
(13.47). 

Determine the mean and the variance of the inverted gamma distribution 

13.3 Assume that X has a binomial distribution (n, p), where p represents a realiza- 
tion of a random variable P. The prior distribution of P is fp (p) = 1 for 0 5 p 5 1. 
Determine the posterior density of P when X = x is observed, and determine the 
Bayesian estimate for p. 

13.4 (Kapur and Lamberson, 1977, p. 402). Seven automobiles are each run over a 
36,000 kilometer test schedule. The testing produced a total of 19 failures. Assuming 
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an exponential failure distribution and a gamma prior with parameters (Y = 3 and 
= 30,000, answer the following: 

(a) What is the Bayesian point estimate for the MTTF? 

(b) What is the 90% lower confidence (credibility) limit on the 10,000-kilometer 
reliability? 

13.5 Let X I ,  X 2 ,  . . . , X ,  be independent and identically distributed X(0,  a:), 
where 002 is known, and 8 represents a realization of a random variable 0 with 
normal distribution .N(po, ti) where po and ti are known. 

Show that the Bayesian estimate of 0 (minimizing the mean quadratic loss) is a 
weighted average of the prior mean and the MLE of 8: 

Note that the Bayesian estimate of 0 is a weighted average of the hypothetical esti- 
mates of 0 based on the following: 

0 Data alone (i.e., the standard estimator y)  

0 Prior information of 0 but no data, 10 (i.e., the Bayesian estimator of p before 
any observations are taken) 

Again note that the influence of the prior mean po tends to zero as n 

13.6 

00. 

Let X I ,  X 2 ,  . . . , X ,  be independent and identically distributed "(0, a2). 

(a) Show that the joint density of X I ,  X 2 ,  . . . , X ,  can be written 

Ct'e-' c:=Ixf where r = n / 2 ,  t = 1 / ( 2 a 2 )  

(b) Choose the gamma distribution ( k ,  h) with density 

as prior density of t . 
Show that the posterior density of t ,  given X I ,  X 2 ,  . . . , X, then becomes a 
gamma distribution ( k  + r, h + cy=l x:) with density 

r+k-le-r(A+C:=l-$)  for , 0 C ( x ~ , x z , . . . , x d . t  

(c) Use the result in (b) to show that the Bayesian estimator of a2 (with minimum 
expected quadratic loss) becomes 
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(Hint: Since 2cr2 = l /r ,  the Bayesian estimator of 2cr2 is the posterior ex- 
pectation of l/t). This problem is based on an example in Lehmann (1983, 
p. 246). 

13.7 Let X have a binomial distribution ( n ,  8) where 8 represents a realization of a 
random variable 0 with a beta distribution (r,  s). Denote the prior mean of 0 by 80. 

Show that the Bayesian estimate of 0 (minimizing the mean quadratic loss) is a 
weighted average of the prior mean and the MLE of 8: 

n X r + s  
6 ( X )  = . - +  .@o 

r + s + n  n r + s + n  

Note that the Bayesian estimate of 0 is a weighted average of the hypothetical esti- 
mates of 0 based on 

0 Data D alone (i.e., the standard estimator of 8, X / n )  

0 Prior information of 0, but no data, 60 (i.e., the Bayesian estimator of 8 before 
any observations are taken) 

Note that the influence of the prior mean 80 tends to zero as n +. 00. 

13.8 (Sequential Binomial Sampling) Consider a sequence of binomial trials with 
success probability 8 where the number of trials may depend on the observations. 
The stopping rule is assumed to be closed (see Lehmann, 1983, pp. 93, 243). 

A priori 8 is assumed to represent a realization of a random variable 0 with a beta 
distribution (r,  s). Let the number of successes, the number of failures, and the total 
number of trials at the moment when the sampling stops be denoted by X ,  Y ,  and 
N ,  respectively. Show that the posterior distribution of 0, given X and Y ,  is a beta 
distribution ( r  + s, s + n - x ) ,  and consequently that the Bayesian estimator of 8, 
given X and Y ,  is the same, regardless of the closed stopping rule. 



14 
Reliability Data Sources 

14.1 INTRODUCTION 

Several types of data are required to model and analyze the reliability of a system. 
Technical data are needed to understand the functions and the functional requirements 
and to establish a system model. Technical data are usually supplied by the equipment 
manufacturers. Operational and environmental data are necessary to establish com- 
ponent and system models. Maintenance data, in the form of procedures, resources, 
quality, and durations, are necessary to establish the system model and to be able to 
determine the system availability. Operational, environmental, and maintenance data 
are planthystem specific and can usually not be found in any data sources. An excep- 
tion is OREDA (2002) where we can find repair times (man-hours) and downtimes 
related to the various equipment failure modes. Last but not least, we need various 
types of reliability data. By reliability data we mean information about failure/enor 
modes and time to failure distributions for hardware, software, and humans. When 
humans are active system operators, we may also need information about their ability 
to correct failures and restore functions. 

This chapter gives a brief survey of some hardware reliability data sources, with 
focus on data sources that are commercially available. A more thorough survey is 
given by Blischke and Murthy (2000, Section 20.4). A detailed listing of reliability 
data sources is provided on this book’s web page. Please consult this web page for 
updated Internet addresses and references to the various data sources. In the following 
we will use the term database to denote any type of data source, from a brief data 
handbook to a comprehensive computerized database. 
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We start by describing three main categories of hardware reliability databases. 
We then focus on two commercially available databases, the military handbook MIL- 
HDBK 217F that provides data for electronic components, and especially the OREDA 
handbook (OREDA 2002) that provides data for equipment used in offshore oil and 
gas production and processing. These two databases are selected as examples to 
highlight the main features of commercially available reliability databases. We end 
the chapter by discussing some problems related to reliability databases. 

14.2 TYPES OF RELIABILITY DATABASES 

Hardware reliability databases can generally be classified in three types: 

1. Component failure event databases 

2. Accident and incident databases 

3. Component reliability databases 

Each type is briefly described in the following. 

14.2.1 Component Failure Event Databases 

Many companies are maintaining a component failure event database as part of their 
computerized maintenance recording system. Failures and maintenance actions are 
recorded related to the various components. The data are used in maintenance plan- 
ning and as a basis for system modifications. In some sectors the various companies 
are exchanging information recorded in their component failure report databases. An 
example is the Government Industry Data Exchange Program (GIDEP) in the United 
States. 

Some industries have implemented a failure reporting analysis and corrective ac- 
tion system (FRACAS), as described in MIL-STD2155 and FRACAS (1999). By 
using FRACAS or similar approaches, failures are formally analyzed and classified 
before the reports are stored in the failure report database. Several computer programs 
supporting FRACAS are available. 

14.2.2 Accident and Incident Databases 

Accidents and incident databases contain information about accidents and near acci- 
dents (incidents) within specified categories. The databases are operated by various 
organizations, consulting companies, and official bodies. Some of the databases are 
very detailed, while others only contain a brief description of the accidentlincident. 
Component failure information may sometimes be deduced from the accidenthncident 
descriptions. Examples of detailed accident and incident databases include: 

The MajorAccident Reporting System (MARS) that is operated by the Joint Re- 
search Centre in Ispra, Italy, on behalf of the European Union (EU). The MARS 
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database was established to support the EU Seveso (11) directive [96/82/EC] 
“on the control of major-accident hazards involving dangerous substances.” 
Seveso I1 plants in Europe have to report all accidents and incidents to the 
MARS database using a rather detailed format. 

The Process Safety Incident Database (PSID) operated by the Center for Chem- 
ical Process Safety of the American Institute of Chemical Engineers (AIChE). 

In most cases the operator of the database has to actively search for information to 
store in the database. This is, for example, the case for the World Offshore Accident 
Database (WOAD) operated by Det Norske Veritas, and the offshore blowout database 
operated by SINTEF. 

Some databases are commercially available; other may require that you are a 
member of a specific organization or group. 

14.2.3 Component Reliability Databases 

A wide range of component reliability databases are commercially available. The 
component reliability databases provide estimates of failure rates for single compo- 
nents. Some databases may also give failure mode distributions and repair times. 
Databases containing information about manufacturer and make of the various com- 
ponents are usually confidential to people outside a specific company, or a group of 
companies. An example is the Offshore Reliability Database (OREDA) where the 
detailed, computerized database is only available to the companies participating in 
OREDA. 

A generic component reliability database is a database where the components 
are classified in broad groups without information about manufacturer, make, and 
component specifications. An example is the OREDA handbook (OREDA 2002), 
which contains an extract from the OREDA database. In OREDA (2002) the compo- 
nents are classified as “centrifugal pump; oil processing,” “gas turbine; aeroderivative 
(3000-10000kW),” and the like. 

The failure rate estimates in generic databases may be based on: 

1. Recorded failure events 

2. Expert judgment 

3. Laboratory testing 

or, a combination of these. 
An important source of reliability data is the Reliability Analysis Center (RAC), 

which is a U.S. Department of Defense Information Analysis Center managed by 
Rome Laboratory, New York. The RAC collects, analyzes, and disseminates reli- 
ability data for a wide range of items, with a focus on electronic equipment and 
components. The RAC has also been responsible for the Military Handbook: Relia- 
bility Prediction of Electronic Equipment (MIL-HDBK217F). The main data sources 
from RAC are: 



564 RELIABILITY DATA SOURCES 

0 Electronic Parts Reliability Data (EPRD) 

0 Nonelectronic Parts Reliability Data (NPRD) 

0 Nonoperating Reliability Data (NONOP) 

0 Failure Mode/Mechanism Distributions (FMD) 

Another important source of reliability data is the Center for Chemical Process Safety 
of the AIChE, who operates the Process Equipment Reliability Database (PERD). 

14.2.4 Common Cause Failure Data 

Analysis of common cause failures requires data that are usually not available in 
component reliability databases. Very few data sources for common cause failures 
are available. An example of such a database is the international common cause data 
exchange (ICDE) program, operated by the Nuclear Energy Agency (NEA) on behalf 
of nuclear industry authorities in several countries. 

14.3 GENERIC RELIABILITY DATABASES 

A wide range of generic reliability databases are listed on the book's web page. 
Several databases have similar formats and give the same type of information. In this 
section we will describe two different data sources, MIL-HDBK 2 17F and OREDA, to 
illustrate the differences in approach. Most of the commercially available reliability 
data sources are based on the assumption of constant failure rates. Some sources 
distinguish between different failure modes and present failure rate estimates for 
each failure mode, while other sources only present a total failure rate covering all 
failure modes. Some few sources also give estimates of the repair times associated 
to the various failure modes. 

14.3.1 MIL-HDBK 217F 

Military handbook, MIL-HDBK 217F, Reliability Prediction of Electronic Equip- 
ment' contains failure rate estimates for the various part types used in electronic 
systems, such as integrated circuits, transistors, diodes, resistors, capacitors, relays, 
switches, and connectors. The estimates are mainly based on laboratory testing with 
controlled environmental stresses. The failure rates in MIL-HDBK 21 7F are thus only 
related to component specific (primary) failures. Failures due to external stresses and 
common cause failures are not included. The handbook gives formulas and data to 
adjust the failure rate of a component to a specified environment. The data are not 
related to specific failure modes. 

'The current version of the handbook is MIL-HDBK217F (Release 2). 
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MIL-HDBK 2 17F employs a rather complex method to estimate the failure rate 
of a component. The method is called the part stress analysis prediction technique 
and is based on detailed stress analysis information as well as environment, quality 
applications, maximum ratings, complexity, temperature, construction, and a number 
of other application-related factors. The failure rate estimate has the form 

where he is the basic failure rate that is estimated from reliability tests performed on 
components under standard environmental conditions; h~ is thus given for standard- 
ized stresses (e.g., voltage and humidity) and temperature conditions; I T Q ,  I T E ,  ITA, . . . 
are often called injuence factors and take into account impact of part quality, equip- 
ment environment, application stress, and so on. The values of the basic failure rates 
and the various factors in the handbook are kept up to date by analysis of failure data 
on components and systems. 

Until the U.S. Department of Defense (DoD) acquisition reform in the mid 1990s, 
the use of MIL-HDBK217F was contractually required on many U.S. Government 
contracts developing electronic systems. Producers of nonmilitary electronic equip- 
ment, such as instruments and avionic gear, also often elect to adhere to the handbook, 
because it offers a convenient and standard way of estimating reliability. Detailed 
studies have shown that the MIL-HDBK 217F data often are too pessimistic for com- 
mercial devices; see, for example, Bodsberg (1987) and O’Connor (2002). 

MIL-HDBK217F also describes a special method for predicting the reliability of 
a system. The method is called parts count reliability prediction and assumes that 
system success can be achieved only if all the system components are operating, that 
is, if the system is a series structure. The system failure rate hs is obtained by adding 
the failure rates of the n system components: 

i = l  

When the system is not a series system, hs will give an upper bound of the failure rate. 
The parts count method has been heavily criticized, for example, by Luthra (1990). 

A number of other methods with varying degrees of similarity to MIL-HDBK 2 17F 
models have been developed. An example is the Telcordia (previously Bellcore) 
document Reliability Prediction Procedure for Electronic Equipment (SR-332). A 
wide range of computer programs have been developed to support MIL-HDBK 2 17F, 
Telcordia, and similar databases. 

Although MIL-HDBK 217F remains an active DoD handbook, it is no longer 
being actively maintained or updated. The Reliability Analysis Center (RAC), which 
maintained the handbook on behalf of DoD, is instead promoting a computerized 
system called Prism. 
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Fuel or 
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(diesel, electric transmission 
motor, etc.) (gearbox, etc.) 

Starting 
system I 

Power Remote 
instr. 

Fig. 14.1 Pumps, boundary definition in OREDA (2002). 

14.3.2 OREDA 

The Offshore Reliability Data (OREDA) handbooks contain data from a wide range of 
components and systems used on offshore installations, collected from installations in 
several geographic areas (see www.oreda.com). Four handbooks have been published 
in 1984, 1992, 1997, and 2002. OREDA (2002) is based on actual field data collected 
in the time period 1993 to 2000. The data are classified under the following main 
headings: 

0 Machinery (compressors, gas turbines, pumps, combustion engines, and tur- 
boexpanders) 

0 Electric equipment (electric generators, and motors) 

Mechanical equipment (heat exchangers, vessels, heaters, and boilers) 

control and safety equipment (Fire and gas detectors, process sensors, and 
valves) 

0 subsea equipment (Control systems, manifolds, flowlines, risers, wellheads, 
and X-mas trees) 

An important feature in OREDA is the specification (including a drawing) of the 
physical boundaries of the system. An example of the boundary definition of a 
pump is shown in Fig. 14.1. The lowest level items in the system hierarchy at which 
preventive maintenance is carried out are called maintainable items. The maintainable 
items of the pump in Fig. 14.1 are listed in Table 14.1. 

An example of how the data is presented in OREDA (2002) is shown in Fig. 14.2, 
which presents data from 449 (“population”) pumps that are installed on 61 (“instal- 
lations”) different offshore platforms. The accumulated (calendar) time in service is 
19.0224 . lo6 hours, which is approximately 2171.5 pump-years. The accumulated 
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Table 74.7 Pumps, Subdivision in Maintainable Items in OREDA. 

Pump 

Power Transmission Pump ControUMonitoring Lubrication Miscellaneous 

Gearbox/var. drive 
Bearing 
Seals 
Lubrication 
Coupling to driver 
Coupling to driven 

Instruments 
unit 

support 
Casing 
Impeller 
Shaft 
Radial bearing 
Thrust bearing 
Seals 
Cylinder liner 
Piston 
Diaphragm 
Instruments 

Instruments 
Cabling and 

Control unit 
Actuating device 
Monitoring 
Internal power 

Valves 

boxes 

supply 

Instruments Purge air 
Reservoir Coolingheating 

wheating syst. system 
Pump whotor  Filter, cyclone 
Filter Pulsation damper 
Cooler 
Valves/piping 
Oil 
Seals 

Reproduced with kind permission of the OREDA Participants. 

operational time is 8.6743 . lo6 hours, meaning that the pumps, on the average, have 
been running 45.6% of the time. The pumps have been started up 11,200 times (“no. 
of demands”). 

The failure modes are classified in three groups: 

1. Critical: A failure that causes immediate and complete loss of a system’s 
capability of providing its output. 

2. Degraded: A failure that is not critical, but that prevents the system from pro- 
viding its output within specifications. Such a failure would usually, but not 
necessarily, be gradual or partial, and may develop into a critical failure in time. 

3. Incipient: A failure that does not immediately cause loss of a system’s capa- 
bility of providing its output, but which, if not attended to, could result in a 
critical or degraded failure in the near future. 

The failure modes are listed on the left-hand side of Fig. 14.2. Only two degraded 
failure modes and no incipient failure modes are shown in this figure. The remaining 
failure modes are found on the following pages in the handbook. 

The failure rate is estimated for each failure mode together with 90% confidence 
intervals. The estimate is denoted “mean,” while the confidence interval is given by the 
“lower” and “upper” bounds. The estimates and confidence intervals are presented for 
both calendar and operational time. The repair time is presented for each failure mode 
as minimum, mean, and maximum number of man-hours. The average downtime for 
each failure mode of the pump is presented as “active repair hours.” 

The failure data are mainly collected from maintenance records. This means that 
both component specific failures (primary failures) and common cause failures are 
included. It also implies that spurious failures such as false alarms may not be included 
in full detail, since such failures do not always require a work order to be corrected. 
Repair times are recorded whenever possible. For some of the component types, only 
man-hours were available. 
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lachinery 
umps 

Aggregated time in service ( lo l  hours) 

19.0224 8.6743 
No of 
ailures Lower Mean Upper SD n k  

Calendar time * Operational time ' 
Failure rate @w lo(  hours,. 

524' 0.00 20.52 108.44 49.34 27.55 
524' 1.14 65.40 204.64 72.93 60.41 
45' 0.00 1.27 6.56 5.17 2.37 
45' 0.01 3.85 15.72 5.95 5.19 

2 ' 0 . 0 0  0.14 0.72 0.58 0.11 
2' 0.00 0.38 2.00 0.91 0.23 

86' 0.00 2.38 12.29 9.53 4.52 
86' 0.00 7.07 33.87 13.94 9.91 
46' 0.00 1.20 5.04 5.60 2.42 
46' 0.00 3.59 16.82 6.84 5.30 
50' 0.01 2.52 9.77 3.62 2.63 
50' 0.08 13.75 48.28 17.83 5.76 
2' 0.00 0.10 0.21 0.54 0.11 
2t 0.00 0.26 1.30 0.55 0.23 

3' 0.00 2.31 12.00 5.32 0.35 
8' 0.00 0.34 1.39 0.52 0.42 
at 0.16 0.98 2.37 0.72 0.92 

46' 0.00 2.50 3.96 15.25 2.42 
46' 0.00 4.57 13.58 22.90 5.30 

6' 0.15 0.33 0.56 0.13 0.32 
6' 0.01 1.03 3.73 1.38 0.69 
tr 0.00 0.57 2.99 2.43 0.42 
8' 0.00 1.53 7.57 3.21 0.92 
5' 0.00 0.27 0.95 0.35 0.26 
5t 0.00 6.41 32.56 14.04 0.58 

18' 0.00 0.66 3.49 2.31 0.95 
1 8 ' 0 . 1 4  1.96 5.66 1.87 2.08 

133' 0.00 5.69 27.65 11.50 6.99 
133' 1.57 19.07 53.52 17.47 15.33 
3 J  0.00 0.41 0.51 4.91 1.73 
33' 0.00 1.24 3.74 6.18 3.80 

1: 0.00 0.05 0.15 0.05 0.05 
1 0.00 0.11 033 0.12 0.12 

3 2  0.00 1.67 7.70 3.10 1.68 
32' 0.47 5.11 1403 4.53 3.69 

754' 0.00 44.20 210.34 86.32 39.64 
754' 11.39 238.41 714.72 239.40 88.92 

9' 0.00 0.80 456 2.45 0.47 
9' 0.00 2.53 11 22 4.42 1.04 

23' 0.00 2.27 12.50 6.03 1.21 
23' 0.00 7.88 35.25 13.95 2.65 

3' 0.00 0.67 3.51 2.44 0.16 

No of demands 
11200 

Active Repair (manhours) 
rep.hrs Min Mean Max 

37.3 1.0 53.1 1025.0 

16.1 3.0 52.5 766.0 

19.8 11.0 39.5 68.0 

28.4 2.0 38.3 4440 

16.0 2.0 29.8 90.0 

52.0 1.0 56.6 551.0 

3.5 3.0 3.5 4.0 

- 1.0 3.3 6.0 

95.5 3.0 48.3 188.0 

35.4 3.0 41.2 508.0 

23.3 16.0 60.5 122.0 

275.5 2.0 424.5 734.0 

183.2 3.0 265.0 1025.0 

11.0 1.0 20.8 88.0 

37.5 1.0 42.1 714.0 

20.8 5.0 40.5 211.0 

. - 

81.2 5.0 118.3 896.0 

20.2 0.3 26.4 798.0 

9.0 2.0 16.0 65.0 

14.8 2.0 16.8 65.0 

Population 
449 

Fig. 14.2 Example of data from OREDA (2002). (Reprinted with the kind permission of 
the OREDA Participants.) 

Installations 
61 
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The OREDA project is still running and is a forum for coordination of reliability 
data for the oil and gas industry. The detailed data collected during the project is 
stored in a computerized database that is available to the OREDA Participants. The 
data in the computerized database is much more detailed that the data presented in 
OREDA (2002). 

14.4 DATA ANALYSIS AND DATA QUALITY 

A significant effort has been devoted to the collection and processing of reliability 
data during the last 20 years. Despite this great effort, the quality of the data available 
is still not good enough. 

The quality of the data presented in the databases obviously depends on the way the 
data are collected and analyzed. Several guidelines and standards have been issued 
to obtain high quality in data collection and analysis. Among these are: 

1 .  IS0  14224 Petroleum and Natural Gas Industries - Collection and Exchange 
of Reliability and Maintenance Data for Equipment. This standard may be 
considered as a spin-off of the OREDA project. 

2. Guidelines for Improving Plant Reliability Through Data Collection and Anal- 
ysis (AIChE 1998) 

3. Reliability Data Quality Handbook (ESReDA) 

In the following we briefly discuss problems related to data analysis and reliability 
databases. 

14.4.1 Constant Failure Rates 

Almost all commercially available reliability databases provide only constant failure 
rates, even for mechanical equipment that degrade due to mechanisms like erosion, 
corrosion, and fatigue. Based on knowledge about the deteriorating mechanisms, 
the failure rate of such equipment should be increasing. The data available for the 
analysis is usually the number n of failures during a total time t in service. The failure 
rate estimated by n / r  will thus be an “average failure rate.” System failure data are 
usually collected from a rather limited time period, that may be called the observation 
window. 

Assume that the failed components are replaced or restored to an “as good as 
new” condition, such that we have a renewal process. A number of components 
are observed during a specified observation window. The observation window may, 
for example, be from 1 January 2000 till 1 January 2003. In this period we only 
record the number ( n )  of failures and the accumulated time ( t )  in service. A constant 
failure rate h is estimated by i = n / t .  If the (real) life distribution is Weibull 
distribution with an increasing failure rate function, z ( t ) ,  and we use a constant failure 
rate estimate, we overestimate the failure rate in the early phase of the component’s 
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”Average failure rate” 
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Fig. 14.3 The real failure rate and the erroneously estimated constant failure rate. 

I ,,weragera I/ 
. 
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window 2 

Fig. 14.4 Average failure rates estimated in two different observation windows. 

life and underestimate the failure rate in the last part of its life. This is illustrated in 
Fig. 14.3. The result will especially be wrong if we extrapolate the estimated constant 
failure rate beyond the time interval where we have collected data. 

People who analyze life data are not always aware of the difference between the 
concepts failure rate function (FOM) and rate of occurrence of failures (ROCOF) as 
discussed in Chapters 2 and 7. Assume that we have a system with an increasing 
ROCOF w ( t ) .  If we collect failure data in an observation window in an early phase 
of the system’s life, the resulting “average failure rate” is often very different from 
what we would get in a later observation window. This is illustrated in Fig. 14.4. 
This effect has been seen in several offshore data collection projects, for example, 
for downhole safety valves. When a valve has failed, it has been replaced with a new 
valve of the same type, and we have (erroneously) believed that we had a renewal 
process. The environmental conditions in the well had, however, changed with time 
and produced a more hostile environment. 

14.4.2 Multiple Samples 

The pump failure data in Fig. 14.2 were collected from 449 pumps on 61 different in- 
stallations. In generic databases, failure rate estimates for generic items are presented. 
The individual components that are classified within the same generic item do not 
need to be identical and do not need to be exposed to exactly the same environmental 
and operational conditions. This is also the case for the pumps in Fig. 14.2. The type 
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Fig. 14.5 Estimates and confidence intervals for inhomogeneous samples. 

of pumps and the operational and environmental conditions may vary within each 
installation, and especially between the various installations. The data collected will 
therefore not be a homogeneous sample. 

Assume that we have m homogeneous samples of failure data. In sample i we 
have recorded ni failures during a total time in operation t i .  The components in the 
sample are assumed to have constant failure rate h;, for i = 1, 2,  . . . , m .  The failure 
rate h; can be estimated by ( 1  1.64): 

A n; A. - - 
ti 

I -  

and a 90% confidence is given by ( 1  1.66) 

The estimates and the confidence intervals for them samples are illustrated in Fig. 14.5. 
If we (erroneously) assume that all samples have the same failure rate h, the estimate 
will be 

(14.1) 

Since the total number of failures is relatively large, and the total time in operation is 
relatively long, the confidence interval will be rather short, as illustrated by “total” in 
Fig. 14.5. It is seen from Fig. 14.5 that the “total” confidence interval does not reflect 
the uncertainty of the failure rates. 

We should therefore carefully check that the samples are homogeneous before we 
merge the samples. In many databases, the samples are merged without any checking. 
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In OREDA (2002) an alternative approach is used. The failure rate A is assumed to 
be a random variable, that can take different values for the different samples. An 
estimate of the standard deviation (SD) of the distribution of A is presented together 
with the failure rate estimates for each failure mode. A high value of SD indicates 
that the samples are inhomogeneous. The (average) failure rate is estimated as a 
weighted average of the failure rate estimates for each sample, following a semi- 
Bayesian approach. The approach is described in detail in OREDA (2002), and in 
Lydersen and Rausand (1989). The column n / t  in Fig. 14.2 is estimated by (14.1). 
A big difference between n / t  and the “mean” failure rate in Fig. 14.2 indicates that 
the samples are inhomogeneous. 

Another approach to handle inhomogeneous samples is presented in Molnes et al. 
(1 986), where failure data from safety valves in oil wells are analyzed. The valves 
are installed in wells with different characteristics, called stressors. The stressors are 
factors like flowrate, gadoil ratio, C02 content, H2S content, and sand content. Some 
main valve characteristics, like diameter and equalizing principle, are also defined as 
stressors. The failure rate is modeled as a function of the stressors, as proportional 
hazards models, and analyzed by Cox regression, as mentioned in Chapter 12. In this 
case we obtain estimates based on a physical modeling of the difference between the 
samples. 

As indicated by the examples presented above, collection and analysis of field data 
are often difficult tasks, where it is easy to make mistakes. A thorough discussion 
of reliability databases and problems connected to the collection and analysis of 
reliability data may be found in Amendola and Keller (1985), Flamm and Luisi ( 1992), 
Aupied (1 994), and Cooke ( 1996). 



Appendix A 
The Gamma and Beta 

Functions 

A.l THE GAMMA FUNCTION 

The gamma function r(a) is defined for all real a > 0 by the integral 

By partial integration it is easy to show that 

In probabilistic and statistical applications, there is a particular interest for the value 
of the gamma function when a = m/2,  where m is a positive integer. 

Let k denote a positive integer. Then if m = 2k,  repeated use of ( A . 2 )  leads to 

T ( k  + 1) = k .  ( k  - 1) . * . 2 .  1 . r(1) 64 .3 )  

However 
P o 3  
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Hence 

T(k + 1) = k! 

Next consider the case I?Z = (2k + 1)/2. By repeated use of (A.2), it  leads to 

- - -.-... - .  r(2k:l) - 2k-  1 2 k - 3  
2 2 2 

However, 

By introducing u = f i  as a new variable of integration, we get 

Hence 

J;; 
r ( 2 k l l )  2k-  1 2 k - 3  1 

2 2 2 
- -  -.- . . . - .  - 

(A.4) 

In Table A. 1 the Gamma function r ( a )  is given for values of a between I .OO and 
2.00. 

A.2 THE BETA FUNCTION 

The beta function B(r, s) is defined for all real r > 0, s > 0 by the integral 

It may be shown (e.g., see CramCr 1946, p. 127) that 

Hence 

O s u s l , r > O , s > O  (A.8) 
1 may obviously be interpreted as a probability density since so fu (u ;  r, s) du = 1 .  

A random variable with density (A.8) is said to be beta distributed ( r ,  s ) .  Then 

r 

r + s  
E ( U )  = - (A.9) 

(A. 10) 
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Table A. 1 Gamma Function r(a) for o! between 1 .OO and 2.00. 

1 .00 
1.01 
1.02 
1.03 
1.04 
1.05 
I .06 
1.07 
1.08 
1.09 
1.10 
1 . 1 1  
1.12 
1.13 
1.14 
1.15 
1.16 
1.17 
1.18 
1.19 
1.20 
1.21 
1.22 
1.23 
1.24 

I .00000 
0.99433 
0.98884 
0.98355 
0.97844 
0.97350 
0.96874 
0.96415 
0.95973 
0.95546 
0.95 135 
0.94740 
0.94359 
0.93993 
0.93642 
0.93304 
0.92980 
0.92670 
0.92373 
0.92089 
0.91817 
0.91558 
0.9131 1 
0.9 1075 
0.90852 

1.25 
1.26 
I .27 
1.28 
1.29 
1.30 
1.31 
I .32 
1.33 
1.34 
1.35 
1.36 
1.37 
1.38 
1.39 
1.40 
1.41 
I .42 
1.43 
1.44 
1.45 
1.46 
1.47 
I .48 
1.49 

0.90640 
0.90440 
0.90250 
0.90072 
0.89904 
0.89747 
0.89600 
0.89464 
0.89338 
0.89222 
0.89115 
0.89018 
0.8893 1 
0.88854 
0.88785 
0.88725 
0.88676 
0.88636 
0.88604 
0.88581 
0.88566 
0.88560 
0.88563 
0.88575 
0.88595 

1.50 
1.51 
1.52 
1.53 
1.54 
1 .55 
1.56 
1.57 
I .58 
1.59 
1.60 
1.61 
1.62 
1.63 
1.64 
1.65 
1.66 
1.67 
I .68 
1.69 
1.70 
1.71 
1.72 
1.73 
I .74 

0.88623 
0.88659 
0.88704 
0.88757 
0.888 18 
0.88887 
0.88964 
0.89049 
0.89142 
0.89243 
0.89352 
0.89468 
0.89592 
0.89724 
0.89864 
0.9001 2 
0.90167 
0.90330 
0.90500 
0.90678 
0.90864 
0.91057 
0.91258 
0.91467 
0.9 1683 

1.75 
I .76 
1.77 
1.78 
1.79 
1.80 
1.81 
1.82 
1.83 
1.84 
1.85 
I .86 
1.87 
1.88 
1.89 
1.90 
1.91 
1.92 
1.93 
1.94 
1.95 
1.96 
1.97 
1.98 
1.99 
2.00 

0.91906 
0.92137 
0.92376 
0.92623 
0.92877 
0.93 138 
0.93408 
0.93685 
0.93969 
0.94261 
0.94561 
0.94869 
0.95 184 
0.95507 
0.95838 
0.96177 
0.96523 
0.96877 
0.97240 
0.97610 
0.97988 
0.98374 
0.98768 
0.99 171 
0.99581 
1 .ooooo 

Note: r(a) for other positive values of a may be calculated from formula (A.2) 

The beta density may exhibit a large number of shapes, including the uniform distri- 
bution (choose r = 1 and s = l), U-shaped densities, unimodal right-skewed, and 
unimodal left-skewed densities. 



Appendix B 
Laplace Transforms 

Let f ( t )  be a function that is defined on the interval ( 0 , ~ ) .  The Laplace' transform 
f * ( s )  of the function f ( t )  is defined by 

f * ( s )  = lm e - " j ( t )  dt 

where s is a real number. In more advanced treatments of the Laplace transform, s 
is permitted to be a complex number. All functions do not have a Laplace transform. 
For instance, if f ( t )  = e' , the integral diverges for all values of s. 

The Laplace transform of f ( t )  is also often denoted by OC[f(t)]: 

2 

to indicate the relation between the functions f and f*. When f ( t )  is the probability 
density of a nonnegative random variable T ,  the Laplace transform of f ( t )  is seen to 
be equal to the expected value of the random variable e P s T .  

' Named after the French mathematician Pierre-Simon Laplace (1749-1 827). 
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The function f ( t )  is called the inverse Laplace transform of f*(s), and is written 

Theorem B.l Let f ( t )  be a function that is piecewise continuous on every finite 
interval in the range t 2 0 and satisfies 

If(t)l 5 M ear for all t 2 0 

and for some constants a and M. Then the Laplace transform of f ( t )  exists for all 
s > a. 0 

Example B.l 
Consider the function f ( t )  = ear, where a is a constant. We have 

1 
- when s > a - - 
S - - a !  

Thus 

1 
J [ear ]  = - when s > a 

S - a  

Some important properties of the Laplace transform are listed below. The proofs 
are left to the reader who may consult standard textbooks on mathematical analysis. 

1. J [ f ( I ( t )  + f2(t)I = J[fl(t)l + J[f2(t)l 

2. J[af(t>l = .J[f(t)l 

3. J [ f ( t  - a ) ]  = e-"'L%[f(t)] 

4. J[e*'f(t)] = f*(s - a )  

5. B[f'(t)l = sJ[f(t)l - f(0) 

6. JerJ,t f ( u )  dul = :J[f(t)l 

7. JrJ; f l  ( t  - u) f2 (u )  du l  = J[f l ( t ) l  . J[f2(t)l 

8. lim,y+m sf*(s) = limr.+o f ( t )  

9. lim,,o sf*(s) = lim,4m f ( t )  
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Table B. 1 Some Laplace Transforms. 

t L  

t" 

t" 

err' 

eattn 

cos wt 

sin wt 

cosh at 

sinh at 

1 - 
S 

1 
S2 

2! 
s3 

- 

- 

n! 
- for@> - 1 f o r n = 0 , 1 , 2 , . . .  
p + l  

fora > -1 
r(a + 1) 

p + 1  

1 
S - f f  

n!  
(s - a)"+' 

S 

S2 + w2 

w 

S 2  + w2 



Appendix C 
Kronecke r Products 

Let A be a matrix with dimension mA x nA, and B be a matrix with dimension 
m g  x ng. The Kroneckerproduct' of A and B, written A @ B is defined as 

The Kronecker product is also known as the Zehfuss product and the tensor product. 
A Kronecker sum is an ordinary sum of Kronecker products. The Kronecker sum, 

written A @ B, is defined for square matrices A and B as 

where n~ is the size of the square matrix A, ne is the size of the square matrix B, and 
II is the identity matrix. 

Some Properties of the Kronecker Product 

'Named after the GermadPolish mathematician Leopold Kronecker (1823-1891). 
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1 .  Associativity: 

A € 3 ( B € 3 c ) = ( A € 3 B ) € 3 c  

2. Distributivity over ordinary matrix addition: 

(A + B) €3 (e + D) = A €3 c + B €3 c + A €3 D + B €3 D 

3. Compatibility with ordinary matrix multiplication: 

AB@cnD= (A@C)(B€3D) 

4. Compatibility with ordinary matrix inversion: 

(A €3 B)-' = A-' @ B-' 

Further details about the Kronecker product may be found in Graham (1981). Kro- 
necker products are available in many mathematical tools, like MATLAB and Maple. 



Appendix D 
Distribution Theorems 

First we refer (without proof,) two important theorems from distribution theory: 

Theorem D.1 Let X be a continuous random variable with probability density f x  (x) 
and sample space S X .  Furthermore let a ( x )  be strictly monotonous in x and differen- 
tiable with respect to x for all x. Then y = a ( x )  is a one-to-one transformation on x 
with inverse x = b ( y )  which maps SX into S y  , and the density of Y = a ( X )  is given 
by 

f Y ( Y )  = f X ( N Y ) )  Ib’(Y)l (D.1) 

0 

The extension of this theorem to multivariate distributions is given in the next theorem. 

Theorem D.2 Let X I ,  X2, . . . , X, be continuously distributed with joint probability 
density f x ,  , x 2  ..... x,, ( X I ,  x2, . . . , x , )  and sample space S X ,  , x2  ,..., X ,  . If 

(D.2) yi = ai(xl,x2,. . . ,x,) for i = 1 ,2 , .  . . , n 

is a one-to-one transformation on the x’s with inverse 

X j  = bj(y1, ~ 2 , .  . . , Y n )  for i = 1.2, .  . . , n (D.3) 

that maps the sample space S x 1 , x 2  ,..., X ,  into S y ,  , y2  ,..., y,, then the joint density of 

Yi = a i (X1,  X2,. . . , X , )  for i = 1 , 2 , .  . . , n 
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.. 

We will now use Theorems D. 1 and D.2 to derive some useful theorems. 

Theorem D.3 Let X I ,  X 2 ,  . . . , Xn be independently and identically distributed with 
common distribution function Fx (x) and probability density f x  (x). Denote the 
observations ordered according to magnitude by X ( 1 )  < X ( 2 )  < . . . < X ( r ) ,  and let 
r be any integer such that r 5 n. Then the joint density of X ( I ) ,  X ( 2 ) ,  . . . , Xcn) is 
given by 

for 0 < XI < x2 < . . . < xr (D.6) 

13 

The proof may be based on a multinomial argument. 

Theorem D.4 Let X I ,  X 2 ,  . . . , X n  be independently and identically distributed with 
density f x ( x )  = A C h x  for x > 0, A > 0. Let the corresponding order statistic be 
denoted by X ( 1 )  < X ( 2 )  < . . . < X ( n ) .  Now introduce the random variables 

03.7) 
def 

Dj = X ( j )  - X ( j - 1 )  for j = 1 ,2 , .  . . , n .  X ( 0 )  = 0 

Then 

1. DI, D2, . . . , Dn are independent random variables. 

2. Dj is exponentially distributed with parameter (n  - j + 1)h for j = 1,2, . . . , n. 

3. DT = (n  - j + 1)Dj for j = 1, 2, . . . , n are exponentially distributed with J 
parameter A. 

Pro05 According to Theorem D.3 
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Furthermore the mapping Dj = X ( j )  - X ( j - 1 )  for j = 1 , 2 ,  . . . , n is one-to-one, 

since X ( j )  = xi='=, Di for j = 1 , 2 ,  . . . , n. 
The Jacobian of this mapping is easily shown to be 1 .  Furthermore 

n n 

j=l j = 1  

n 

= C ( n - j + l ) D j  
j = l  

Then according to Theorem D.2 

where we have introduced 

(n  - j + 1 )  e-*(n-j+l)d. ' = f D ,  ( d j )  

Hence properties 1 and 2 of Theorem D.4 are proved. Property 3 follows directly, 
using the transform 

05 = (n - j + 1)Dj for j = 1,2,  . . . , n 

The D; for j = 1 , 2 ,  . . . , n are sometimes called the normed time diflerences of the 
process. 0 



Appendix E 
Maximum Likelihood 

Estimation 

An important general method for constructing estimators is based on the maximum 
likelihood principle. Although as early as 182 1 the German mathematician C. F. Gauss 
was first to apply the idea, the method is usually credited to the English statistician R. 
A. Fisher, who introduced the idea in 1921 in a short paper, and later on, in a series 
of papers, investigated the properties of the estimators, so obtained. Here we shall 
content ourselves with giving a short presentation of the method and restrict ourselves 
to regular parametric models. 

To fix the idea, let X I ,  X 2 ,  . . . , X ,  denote n independent, identically distributed 
random variables withdensity (alternativelyfrequencyfunction) f ( x ;  81,02, . . . , Om), 
where f is of known form and 8 = (01,82, . . . ,em) belongs to a subset 0 of m- 
dimensional space, but otherwise is unknown. X I ,  X 2 .  . . . , X ,  may, for example, 
represent the lifetimes of n identical units of some kind. 

Let us first consider the case of no censoring. Then the joint density (frequency 
function) of X I ,  X 2 .  . . . , X ,  is given by fly==, f ( x i ;  8 ) .  

Now consider this expression as a function of 8 for fixed X I ,  x2, . . . , x, and denote 
this function 
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588 MAXIMUM LIKELIHOOD ESTIMATION 

Then L(8;  x) is called the likelihoodfunction. If X has a discrete distribution, L(8;  x) 
directly expresses the probability of observing the values XI, x2, . . . , x, for a given 
8 and hence indicates “how likely” it is to obtain the observations XI, x2, . . . , x, 
for each given 8 .  A similar argument applies in the case where X has a continuous 
distribution. 

Search for the value 6(xl, x2, . . . , x,) which is most likely to have produced the 
observations XI, x2,  . . . , x,, 

The idea of the maximum likelihood principle is now as follows: 

L ( ~ ( x ) ;  X) 2 L ( e ;  X) fore E o (E.2) 

6 ( X l ,  X 2 ,  . . , , X,) is then called the maximum likelihood estimator of 0 (MLE of 8 ) .  
In the case of censored observations, the likelihood function is somewhat modified. 

Suppose some of the observations are left censored and some are right censored. Then 
we can split the observation numbers, 1 ,2 ,  . . . , n, into three disjoint sets, U ,  say, 
corresponding to the uncensored observations, C R  corresponding to right censored 
and C L  corresponding to left censored observations. In this situation, the likelihood 
function is defined as 

L(8;  x) = fl F ( x j ;  8 )  fl f ( x j ;  8 )  fl R ( x j ;  8 )  03.3) 
jECL  j E U  j E C R  

Thus the modification of the likelihood function is as follows: For the left censored 
observations, replace the corresponding densities by the distribution function ( F ) ,  
for the right censored observations, replace the densities by the survivor function 

Since In L ( 8 ;  x) attains its maximum for the same value of 8 as does L(8;  x), 
( R  = 1 - F ) .  

6(x) may also be found from 

In L ( ~ ( x ) ;  x) 2 In L(8;  x) for 8 E (E.4) 

Usually it is more convenient from a mathematical point of view to work with 
In L(8;  x) than with L(0;  x). 

In commonly occurring situations, the first step in the search for the MLE of 8 ,  is 
to solve the likelihood equations 

3 In L(0;  x) 
u j  = = O  f o r j = l , 2 ,  . . . ,  m 

86j 

This approach will frequently involve numerical methods such as Newton and quasi- 
Newton algorithms for solving equations. 

Suppose that we succeed in determining the MLE 6 1 , 6 2 ,  . . . ,em of 81~62, . . . , &, 
and that we are interested in estimating some function $ ( 8 )  = g(61,&, . . . , Om), 
where g is a specified one-to-one function. Then the MLE 4 of $ will be given by 
g(61, 6 2 , .  . . , em). 

Under mild regularity conditions, ê  is a consistent estimator of 8 .  Asymptotic 
properties of 6 are discussed in several textbooks in statistics, for example, by Mann 
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et al. (1974). Kalbfleish and Prentice (1980), Lawless (1982), and Ansell and Phillips 
(1 994). The reader is referred to one of these. 

Example E.l 
Let TI , T2, . . . , Tk be independent and identically distributed with an inverse Gaussian 
distribution IG(p, A), where p > 0 and h > 0, but otherwise unknown. 

The likelihood function becomes in this case 
The ML estimators p* and h* for p and h may be derived in the following way: 

and 

The ML estimates of p and h, p* and A* may now be determined as the solutions of 
the equations: 

and 

Equi 

a In L 
ah 

-- - 0  

ion (E.6) becomes 

that is, 

k 

Ctj = k p  
j=1 

Hence 
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We next introduce ,LL = 7 into (E.7) and differentiate with respect to h. Then (E.7) 
becomes 

- . - - - E L  k 1 1 ( t .  - t ) 2  
2 h 2 , 72tj  = O J = 1  

that is, 

Hence h* is given by 

k 1 1  

It may be verified that the likelihood function attains its maximum for ,LL = ,LL* and 
0 h = h*. Hence ,LL* and A* are the MLE of ,LL and h. 

In some cases the likelihood equations (E.5) are nonlinear and have to be iteratively 
solved by use of a computer. 



Appendix F 
Statistical Tables 
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Table F. 1 The Cumul2tive Standard Normal Distribution 

@ ( z )  = P ( Z  4 z )  = [, 1 2 
e-' I 2 d u  

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 

,500 
,540 
.579 
.618 
.655 
.69 1 
,726 
.758 
.788 
216 
341 
364 
3 8 5  
.903 
.919 
,933 
.945 
,955 
.964 
.97 1 
.977 
.982 
.986 
.989 
.992 
.994 
,995 
.997 
.997 
.998 
,999 

SO4 
.544 
.583 
,622 
.659 
.695 
,729 
,761 
.791 
319 
344 
367 
387 
,905 
,921 
.934 
.946 
.956 
.965 
.972 
,978 
,983 
.986 
.990 
,992 
.994 
.995 
,997 
.998 
,998 
,999 

SO8 
.548 
337 
.626 
.663 
,698 
.732 
.764 
.794 
,821 
,846 
.869 
,889 
.907 
.922 
,936 
.947 
.957 
,966 
.973 
.978 
.983 
.987 
,990 
.992 
.994 
.996 
.997 
,998 
.998 
.999 

.512 
3 2  
.591 
.629 
.666 
.702 
.736 
.767 
.797 
324 
.849 
371 
.89 1 
.908 
,924 
.937 
.948 
,958 
,966 
.973 
.979 
.983 
.987 
.990 
.992 
.994 
,996 
.997 
.998 
.998 
.999 

.5 16 
556 
.595 
.633 
,670 
.705 
.739 
.770 
300 
326 
.85 1 
373 
393 
.910 
,925 
.938 
,949 
.959 
.967 
.974 
.979 
.984 
,987 
.990 
.993 
,994 
.996 
,997 
.998 
.998 
.999 

,520 
.560 
,599 
.637 
.674 
,709 
.742 
.773 
302 
,829 
353 
375 
,894 
.91 I 
.926 
.939 
.95 1 
.960 
.968 
.974 
,980 
.984 
.988 
,991 
.993 
,995 
.996 
.997 
,998 
.998 
.999 

.524 

.564 

.603 

.641 

.677 

.712 
,745 
.776 
305 
.83 I 
3 5 5  
377 
396 
.913 
.928 
.94 1 
.952 
.96 1 
.969 
.975 
.980 
,985 
.988 
.991 
,993 
.995 
,996 
,997 
.998 
.999 
,999 

.528 

.567 

.606 
,644 
.68 1 
.716 
.749 
.779 
.808 
,834 
,858 
379 
,898 
.9 15 
.929 
,942 
,953 
.962 
.969 
.976 
.98 1 
,985 
.988 
,991 
,993 
,995 
.996 
.997 
,998 
,999 
.999 

.532 

.57 1 

.610 

.648 

.684 

.719 

.752 
,782 
,811 
,836 
,860 
3 8 1  
.900 
.916 
.93 1 
,943 
.954 
,962 
.970 
,976 
.98 1 
,985 
.989 
.991 
.993 
.995 
.996 
,997 
.998 
.999 
.999 

0.09 

.536 

.575 

.614 

.652 
,688 
.722 
,755 
.785 
3 1 3  
,839 
362 
,883 
.901 
.918 
,932 
.944 
,954 
.963 
.97 1 
.977 
,982 
.986 
,989 
.992 
,994 
,995 
.996 
,997 
.998 
,999 
.999 

- 
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Table F.2 Percentage Points of the Chi-square ( x 2 )  Distribution 
P ( Z  > za,”) = a 

u\a 0.995 0.990 0.975 0.950 0.10 0.05 0.025 0.010 0.005 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
50 
60 
70 
80 
90 

100 

0.00 
0.01 
0.07 
0.2 1 
0.41 
0.68 
0.99 
1.34 
1.73 
2.16 
2.60 
3.07 
3.57 
4.07 
4.60 
5.14 
5.70 
6.26 
6.84 
7.43 
8.03 
8.64 
9.26 
9.89 

10.52 
11.16 
11.81 
12.46 
13.12 
13.79 
20.7 1 
27.99 
35.53 
43.28 
51.17 
59.20 
67.33 

0.00 
0.02 
0.1 1 
0.30 
0.55 
0.87 
1.24 
1.65 
2.09 
2.56 
3.05 
3.57 
4.1 1 
4.66 
5.23 
5.81 
6.4 1 
7.01 
7.63 
8.26 
8.90 
9.54 

10.20 
10.86 
11.52 
12.20 
12.88 
13.56 
14.26 
14.95 
22.16 
29.71 
37.48 
45.44 
53.54 
61.75 
70.06 

0.00 
0.05 
0.22 
0.48 
0.83 
1.24 
1.69 
2.18 
2.70 
3.25 
3.82 
4.40 
5.01 
5.63 
6.27 
6.91 
7.56 
8.23 
8.91 
9.59 

10.28 
10.98 
11.69 
12.40 
13.12 
13.84 
14.57 
15.31 
16.05 
16.79 
24.43 
32.36 
40.48 
48.76 
57.15 
65.65 
74.22 

0.00 
0.10 
0.35 
0.7 1 
1.15 
1.64 
2.17 
2.73 
3.33 
3.94 
4.57 
5.23 
5.89 
6.57 
7.26 
7.96 
8.67 
9.39 

10.12 
10.85 
1 1.59 
12.34 
13.09 
13.85 
14.61 
15.38 
16.15 
16.93 
17.71 
18.49 
26.5 1 
34.76 
43.19 
5 I .74 
60.39 
69.13 
77.93 

2.7 1 
4.61 
6.25 
7.78 
9.24 

10.64 
12.02 
13.36 
14.68 
15.99 
17.28 
18.55 
19.81 
21.06 
22.3 1 
23.54 
24.77 
25.99 
27.20 
28.41 
29.62 
30.81 
32.01 
33.20 
34.38 
35.56 
36.74 
37.92 
39.09 
40.26 
51.81 
63.17 
74.40 
85.53 
96.58 
107.6 
1 18.5 

3.84 
5.99 
7.81 
9.49 

1 1.07 
12.59 
14.07 
15.51 
16.92 
18.31 
19.68 
2 1 .03 
22.36 
23.68 
25.00 
26.30 
27.59 
28.87 
30.14 
31.41 
32.67 
33.92 
35.17 
36.42 
37.65 
38.89 
40.11 
41.34 
42.56 
43.77 
55.76 
67.50 
79.08 
90.53 

101.88 
113.14 
124.34 

5.02 
7.38 
9.35 

11.14 
12.38 
14.45 
16.01 
17.53 
19.02 
20.48 
2 1.92 
23.34 
24.74 
26.12 
27.49 
28.85 
30.19 
31.53 
32.85 
34.17 
35.48 
36.78 
38.08 
39.36 
40.65 
41.92 
43.19 
44.46 
45.72 
46.98 
59.34 
7 1.42 
83.30 
95.02 

106.63 
118.14 
129.56 

6.63 
9.21 

1 1.34 
13.28 
15.09 
16.81 
18.48 
20.09 
21.67 
23.21 
24.72 
26.22 
27.69 
29.14 
30.58 
32.00 
33.41 
34.8 1 
36.19 
37.57 
38.93 
40.29 
41.64 
42.98 
44.3 1 
45.64 
46.96 
48.28 
49.59 
50.89 
63.69 
76.15 
88.38 

100.42 
112.33 
124.12 
135.81 

7.88 
10.60 
12.84 
14.86 
16.75 
18.55 
20.28 
21.96 
23.59 
25.19 
26.76 
28.30 
29.82 
31.32 
32.80 
34.27 
35.72 
37.16 
38.58 
40.00 
41.40 
42.80 
44.18 
45.56 
46.93 
48.29 
49.64 
50.99 
52.34 
53.67 
66.77 
79.49 
91.95 

104.22 
116.32 
128.30 
140.17 



AIChE 
ALT 
ARI 
BBN 
CBM 
CM 
DD 
DFR 
DFRA 
DHSV 
DU 
EIReDA 
EN 
ESD 
ESDV 
EUC 
FAST 

Acronyms 

American Institute of Chemical Engineers 
accelerated life testing 
arithmetic reduction of intensity 
Bayesian belief network 
condition based maintenance 
corrective maintenance 
dangerous detected (failure) 
decreasing failure fate 
decreasing failure rate average 
downhole safety valve 
dangerous undetected (failure) 
European industry reliability data 
European norm 
emergency shutdown 
emergency shutdown valve 
equipment under control 
function analysis system technique 
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FFA 
FMEA 
FMECA 
FOM 
FRACAS 
FSI 
FTA 
FTF 
GIDEP 
HAZOP 
HPP 
IDEF 
IEC 
IEEE 
IFR 
IFRA 
i.i.d, 
IS0  
LCC 
LCP 
LOPA 
MCSI 
MDT 
MFDT 
MLE 
MRL 
MSI 
MTBF 
MTBM 
MTBR 
MTTF 
MTTR 
MUT 
NBU 

functional failure analysis 
failure modes and effects analysis 
failure modes, effects, and criticality analysis 
force of mortality 
failure reporting analysis and corrective action system 
functional significant item 
fault tree analysis 
fail to function 
Government Industry Data Exchange Program 
hazard and operability study 
homogeneous Poisson process 
integrated definition language 
International Electrotechnical Commission 
Institute of Electrical and Electronic Engineers 
increasing failure rate 
increasing failure rate average 
independent and identically distributed 
International Organization for Standardization 
life cycle cost 
life cycle profit 
layer of protection analysis 
maintenance cost significant item 
mean downtime 
mean fractional deadtime 
maximum likelihood estimator 
mean residual life 
maintenance significant item 
mean time between failures 
mean time between maintenance 
mean time between replacementshenewals 
mean time to failure 
mean time to repair 
mean up-time 
new better than used 
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NBUE 
NHPP 
NTNU 
NUREG 

NWU 
OEE 
OREDA 
PALT 
PFD 
PM 

RAM 
RAMS 
RBD 
RCM 
ROCOF 
SADT 
SAE 

QRA 

SALT 
SlF 
SIL 
SINTEF 

SIS 
TPM 

TQM 

new better than used in expectation 
nonhomogeneous Poisson process 
Norwegian University of Science and Technology 
title of reports from U.S. NRC (Nuclear Regulatory 
Commission) 
new worse than used 
overall equipment efficiency 
Offshore Reliability Data 
progressive stress accelerated test 
probability of failure on demand 
preventive maintenance 
quantitative risk analysis 
reliability, availability, and maintainability 
reliability, availability, maintainability, and safety 
reliability block diagram 
reliability centered maintenance 
rate of occurrence of failures 
system analysis and design technique 
Engineering Society for Advancing Mobility in Land Sea 
Air and Space 
step-stress accelerated test 
safety instrumented function 
safety integrity level 
Foundation of Science and Technology at the Norwegian 
Institute of Technology 
safety instrumented system 
total productive maintenance 
total quality management 



Glossary 

Accelerated test A test in which the applied stress level is chosen to exceed that 
stated in the reference conditions in order to shorten the time required to observe 
the stress response of the item, or magnify the responses in a given time. To be 
valid, an accelerated test shall not alter the basic modes and mechanisms of failure 
or their relative prevalence (BS 4778). 

Accident An unintended event or sequence of events that causes death, injury, 
environmental, or material damage (DEF-STAN 00-56) 

Active redundancy That redundancy wherein all means for performing a required 
function are intended to operate simultaneously [IEC 50( 191)]. 

Availability The ability of an item (under combined aspects of its reliability, main- 
tainability, and maintenance support) to perform its required function at a stated 
instant of time or over a stated period of time (BS 4778). 

The bottom or "leaf" events of a fault tree. The limit of resolution of 
the fault tree. Examples of basic events are component failures and human errors 
(NASA2002). 

Coherent system A system whose structure function is nondecreasing as a function 
of all state variables. Note: A system is coherent when: 

Basic event 

* 
* 
* 

* 

if all the components are in a failed state, the system is in a failed state, 
if all the components are functioning, the system is functioning, 
when the system is in a failed state, no additional component failures 
will cause the system to function, 
when the system is functioning, no component repair will cause the system to fail. 
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600 GLOSSARY 

Common cause failure Multiple component faults that occur at the same time or 
that occur in a relatively small time window and that are due to a common cause 
(NASA 2002). 

Failure, which is the result of one or more events, causing coincident failures of 
two or more separate channels in a multiple channel system, leading to system 
failure (IEC61508, Part 4). 

Corrective maintenance The actions performed, as a result of failure, to restore 
an item to a specified condition [MIL-STD-2173(AS)]. 

The maintenance carried out after a failure has occurred and intended to restore 
an item to a state in which it can perform its required function (BS 4778). 

The collective term used to describe the availability performance 
and its influencing factors: reliability performance, maintainability performance, 
and maintenance support performance (IEC 60300). 

Design review A formal, documented, comprehensive, and systematic examination 
of a design to evaluate the design requirements and the capability of the design 
to meet these requirements and to identify problems and propose solutions (IS0 
8402). 

Distribution function Consider a random variable X .  The distribution function of 
X is 

Dependability 

F x ( x )  = Pr(X I x )  

Downtime The period of time during which an item is not in a condition to perform 
its required function (BS 4778). 

Equipment under control (EUC) Equipment, machinery, apparatus, or plant used 
for manufacturing, process, transportation, medical, or other activities (IEC 6 1508, 
Part 4). 

Fail safe A design property of an item that prevents its failures being critical failures 
(BS 4778). 
A design feature that ensures the system remains safe or, in the event of a failure, 
causes the system to revert to a state that will not cause a mishap (MIL-STD 882D). 

An unacceptable deviation from the design tolerance or in the anticipated deliv- 
ered service, an incorrect output, the incapacity to perform the desired function 
(NASA2002). 
A cessation of proper function or performance; inability to meet a standard; non- 
performance of what is requested or expected (NASA 2000). 

Failure cause The physical or chemical processes, design defects, quality defects, 
part misapplication, or other processes which are the basic reason for failure or 
which initiate the physical process by which deterioration proceeds to failure (MIL- 

The circumstances during design, manufacture, or use which have led to a failure 
[IEC 50(191)]. 

Failure The termination of its ability to perform a required function (BS 4778). 

STD- 1629A). 
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Failure effect The consequence(s) a failure mode has on the operation, function, 
or status of an item (MIL-STD-1629). 

Failure mode The effect by which a failure is observed on the failed item (EuRe- 
DatA, 1983). 

Failure mode and effect analysis (FMEA) A procedure by which each potential 
failure mode in a system is analyzed to determine the results or effects thereof 
on the system and to classify each potential failure mode according to its severity 

The rate at which failures occur as a function of time. If T denotes 
(MIL-STD- 1629A). 

Failure rate 
the time to failure of an item, the failure rate z ( t )  is defined as 

Pr(t < T I t + At I T > t )  
z ( t )  = lim 

Af-iCC At 

The failure rate is sometimes called “force of mortality (FOM).” 
Failure symptom An identifiable physical condition by which a potential failure 

can be recognized [MIL-STD-2173(A)]. 
Fatigue Reduction in resistance to failure of a material over time, as a result of 

repeated or cyclic applied loads [MIL-STD-2173(AS)]. 
Fatigue life For an item subject to fatigue, the total to functional failure failure of 

the item [MIL-STD-2173(AS)]. 
Fault A defect, imperfection, mistake, or flaw of varying severity that occurs within 

some hardware or software component or system. “Fault” is a general term and 
can range from a minor defect to a failure (NASA 2002). 

Abnormal condition that may cause a reduction in, or loss of, the capability of a 
functional unit to perform a required function (IEC61508, Part 4). 

Fault tolerance Ability of a functional unit to continue to perform a required func- 
tion in the presence of faults or errors (IEC 6 1508, Part 4). 

Force of mortality 
Functional unit Entity of hardware or software, or both, capable of accomplishing 

Functioning state The state when an item is performing a required function (see 

Gradual failure Failure that could be anticipated by prior examination or monitor- 

Hazard rate 
Hidden failure A failure not evident to the crew or operator during the performance 

of normal duties [MIL-STD-2173(AS)]. 
Infant mortality The relatively high conditional probability of failure during the 

period immediately after an item enters service. Such failures are due to defects 
in manufacturing not detected by quality control [MIL-STD-2173(AS)]. 

Same as “Failure rate.” 

a specified purpose (IEC61508, Part 4). 

also “Operating state”). 

ing (BS 4778). 
Same as “Failure rate”. 
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Inspection Activities such as measuring, examining, testing, gauging one or more 
characteristics of a product or service, and comparing these with specified require- 
ments to determine conformity (IS0 8402). 

Intermittent failure Failure of an item for a limited period of time, following which 
the item restores its required function without being subjected to any external 
corrective action (BS 4778). 

Life cycle cost (LCC) The cost of acquisition and ownership of a product over a 
defined period of its life cycle. It may include the cost of development, acquisition, 
operation, support, and disposal of the product (IEC 60300). 

Maintainability The ability of an item, under stated conditions of use, to be retained 
in, or restored to, a state in which it can perform its required functions, when 
maintenance is performed under stated conditions and using prescribed procedures 
and resources (BS 4778). 

The combinations of all technical and corresponding administrative 
actions, including supervision actions, intended to retain an entity in, or restore it 
to, a state in which it can perform its required function [IEC50(191)]. 

The ability of a maintenance organization, 
under given conditions, to provide upon demand, the resources required to maintain 
an entity, under a given maintenance policy [IEC 50(191)]. 

Let T denote the time to failure of an item, with 
probability density f ( t )  and survivor function R ( t ) .  The mean time to failure is 
the mean (expected) value of T which is given by 

Maintenance 

Maintenance support performance 

Mean time to failure (MTTF) 

Mean time to repair (MTTR) Let D denote the down time (or repair time) after 
a failure of an item. Let f ~ ( d )  denote the probability density of D, and let 
F o ( d )  denote the distribution function of D. The mean time to repair is the mean 
(expected) value of D which is given by 

roo f a  
MTTR = lo t .  f ~ ( t ) d t  = (1 - F ~ ( t ) ) d l  

1 0  

MTTR is sometimes called the mean down time (MDT) of the item. In some 
situations MTTR is used to denote the mean active repair time instead of the mean 
down time of the item. 

Operating state The state when an entity is performing arequired function [IEC 50( 191)l. 
Percentile Let X be a random variable with distribution function F ( x ) .  The upper 

1006% percentile x, of the distribution F ( x )  is defined such that 

Pr(X > x, )  = 6 

Preventive maintenance The maintenance carried out at predetermined intervals 
or corresponding to prescribed criteria and intended to reduce the probability of 
failure or the performance degradation of an item (BS 4778). 
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Probability density Consider a random variable X .  The probability density func- 
tion fx(x) of X is 

where FX (x) denotes the distribution function of X .  

Quality The totality of features and characteristics of a product or service that bear 
on its ability to satisfy stated or implied needs (IS0 8402). 

Redundancy In an entity, the existence of more than one means for performing a 
required function [IEC 50( 191)]. 

Existence of means, in addition to the means which would be sufficient for a 
functional unit to perform a required function or for data to represent information 
(IEC61508, Part 4). 

Reliability The ability of an item to perform a required function, under given 
environmental and operational conditions and for a stated period of time (IS0 
8402). 

A disciplined logic or methodology 
used to identify preventive maintenance tasks to realize the inherent reliability of 
equipment at least expenditure of resources [MIL-STD-2173(AS)]. 

The part of corrective maintenance in which manual actions are performed 
on the entity [IEC 50(191)]. 

A function, or a combination of functions, of an entity, which 
is considered necessary to provide a given service [IEC 50(191)]. 

Freedom from those conditions that can cause death, injury, occupational 
illness, or damage to or loss of equipment or property (MIL-STD-882D). 

The expectation that a system does not, under defined conditions, lead to a state 
in which human life is endangered (DEF-STAN 00-56). 

Safety integrity Probability of a safety-related system satisfactorily performing the 
required safety functions under all the stated conditions within a specified period 
of time (IEC61508, Part 4). 

Discrete level (one out of a possible four) for specifying 
the safety integrity requirement of the safety functions to be allocated to the E/E/PE 
safety-related systems, where safety integrity level 4 has the highest level of safety 
integrity and safety integrity level 1 has the lowest (IEC 61508, Part 4). 

Security Dependability with respect to the prevention of unauthorized access andor 
handling of information (Laprie, 1992). 

Severity The consequences of a failure mode. Severity considers the worst potential 
consequence of a failure, determined by the degree of injury, property damage, or 
system damage that could ultimately occur (MIL-STD- 1629A) 

Single failure point The failure of an item which would result in failure of the system 
and is not compensated for by redundancy or alternative operational procedure 

Reliability centered maintenance (RCM) 

Repair 

Required function 

Safety 

Safety integrity level (SIL) 

(MIL-STD- 1629). 
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State variable A variable X ( t )  associated with an item such that: 

1 if the item is functioning at time t 
0 if the item is in a failed state at time t 

State vector A vector X ( t )  = ( X l ( t ) ,  X : ! ( t ) ,  . . . , X , ( t ) )  of the state variables of 
the n components comprising the system. 

Step stress test A test consisting of several stress levels applied sequentially for 
periods of equal duration to one sample. During each period a stated stress level 
is applied and the stress level is increased from one period to the next (BS 4778). 

Structure function A variable #(X(t)) associated with a system (with state vector 
X ( t ) )  such that: 

1 if the system is functioning at time t 
0 if the system is in a failed state at time t # ( X ( t ) )  = { 

Sudden failure A failure that could not be anticipated by prior examination or 

Survivor function Let T denote the time to failure of an item. The survivor function 
monitoring [IEC 50(191)]. 

R ( t )  of the item is 

R ( t )  = Pr(T > t )  fort  2 0 

R ( t )  is sometimes called the reliability function or the survival probability at time 
t of the item. 

System A bounded physical entity that achieves in its domain a defined objective 
through interaction of its parts (DEF-STAN 00-56). 

Set of elements which interact according to a design, where an element of a system 
can be another system, called subsystem, which may be a controlling system or 
a controlled system and may include hardware, software and human interaction 
(IEC61508, Part 4). 

Systematic failure Failure related in a deterministic way to a certain cause, which 
can only be eliminated by a modification of the design or of the manufacturing 
process, operational procedures, documentation, or other factors ( E C  61 508, Part 
4). 

Test frequency The number of tests of the same type per unit time interval; the 
inverse of the test interval (IEEE Std. 352). 

Test interval The elapsed time between the initiation of identical tests on the same 
sensor, channel, etc. (IEEE Std. 352). 

Wear-out failure A failure whose probability of occurrence increases with the 
passage of time, as a result of processes inherent in the entity [IEC 50( 191)]. 
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Mode, 23 
Modular decomposition, 138 
Module 

Modules, 137 
Moment generating function, 52 
Monte Carlo simulation, 374,376 

next event simulation, 376,378 
MRL, 15,24 
MTBF, 367 
MTBR, 381,391 

coherent, 138 
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MlTF, 8, 15.22 
MUT, 367 

NASA, 96,402 
NBU, 62,260 
NBUE, 63 
Nelson-Aalen plot, 233,282,466 
Nelson estimator, 482-483 

Nelson plot, 485 
NERC, 6 
NHPP, 277 

justification, 483 

confidence interval for W(r), 283 
cox-Lewis model, 285 
linear model, 285 
log-linear model, 285 
mean value function, 279 
minimal repair, 278 
power law model, 284 
relation to HPP, 28 1 
ROCOF, 278 
time between failures, 280 
time to first failure, 280 
Weibull process, 284 

Nonparametric, 469 
estimate, 469 

Nonrepairable item, 15 
Normal approximation, 501,503 
NORSOK, 372,451 
Nuclear Energy Agency, 564 
NUREG, 2,45,96,109 
NWU, 62,260 
NWUE. 63 

OEE, 41 5 
OLF guideline, 447,452 
Operational mode, 79.93 
Order statistic, 467 
OREDA, 28,36,83,222,297,429,446,563,566, 

572 

Part stress analysis prediction technique, 565 
Partial stroke testing, 423,426 
Parts count reliability prediction, 565 
Path sene, smcture, 131 
Path set, 105, 129 

minimal, 105, 129 

order, 105 
PDS, 453 
Percentile, 602 
Petri net, 374 
PFinterval, 381,394,410 
PFD, 427,448 

2-out-of-3 system, 430 
approximation formulas, 432 

bridge structure, 130 

Markov approach, 453 
nonnegligible repair time, 436 
parallel system, 429 
series system, 43 I 
single item, 428 

Physical approach, 3 
Pivotal decomposition, 136, 152, 167, 185 
Posterior distribution, 541,543 
Power rule model, 59,529 
Predictive density, 557 
Preliminary hazard analysis, 109 
Preventive maintenance policy, 380 
Prior distribution, 541-542 

based on empirical data, 556 
interpretation, 555 
noninformative. 551-552 

Prism, 565 
Probability density function, 17 
Probability of failure on demand (PFD), 427,448 
Probability plotting paper, 473 

Process demand, 419 
Process safety system, 114 
Product liability directive, 11 
Product limit estimator, 479 
Product safety directive, 11 
Production regularity, 7,372 
Proportional hazards (PH) model, 535 
Protection layer, 114,419 

QRA, 8,109,451 
Quality, 6 

RAC, 563,565 
RAM, 7 
RAMS, 8 
Random number generator, 377 
RCM, 10,76,95,401,603 

applicability criterion, 412 
cost-effectiveness criterion, 412 
decision logic, 41041 1 
implementation, 41 3 
main steps, 403 
standards, 402 

Weibull, 474 

Reactor safety study, 45 
Reactor Safety Study, 96 
Reactor safety study, 216 
Redundancy, 90,95,173,212,603 

active, 173,599 
component level, 128 
passive, 173 
switching 

imperfect, 175 
perfect, 173 

system level, 128 
Relevant component, 125 
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Reliability, 5 
Reliability Analysis Center (RAC), 563 
Reliability block diagram, 74, 1 18 

2-out-of-3 structute, 124 
parallel structure. 119 
relation to fault tree, 121 
series structure, I19 

Reliability function, 15, 17 
Reliability verification, 11 
Reliability 

hardware, 2 
human, 3 
software, 2 
structural, 4 

Renewal density, 253.255 
Renewal function, 251,255 

Renewal process. 247,386 
bounds, 262 

age, 258 
alternating, 268 
delayed, 266 
equilibrium, 267 
modified, 266 
remaining lifetime, 258 
superimposed, 263 
synchronous sampling, 267 

Renewal reward process, 265 
Repair, 603 
Repair rate, 365, 370 
Repair time distribution, 45 
Risk, 449 
Risk acceptance criteria, 450 
Risk analysis, 8 
Risk matrix, 94 
ROCOF, 19.32.237 

conditional, 289 

S-N diagram, 47 
Sad system, 233 
SADT, 81 

SAE JA1012.402 
Safety. 7,603 
Safety function, 108, 110 
Safety instrumented function, 421 
Safety instrumented system, 420 
Safety integrity, 448,603 

Safety unavailability, 437 
Sample coefficient of variation, 470 
Sample mean, 470 
Sample median, 470 
Sample standard deviation, 470 
Sample variance, 470 
Scheduled function test, 41 1 
Scheduled on-condition task, 410 

SAE-ARP 5580,88 

safety integrity level, 603 

Scheduled overhaul, 410 
Scheduled replacement, 41 1 
Security, 6-7.603 
Semi-Markov process, 353 

skeleton, 354 
Severity, 94,603 
Seveso I1 directive, 563 
SIF, 42 I ,  448 
SIL, 448 
Single failure point, 603 
SINTEF, 453,563 
SIS, 420 

actuating items, 420 
logic solver, 420 
sensors, 420 

Software reliability, 2 
Spurious trip, 438,452 
Square-root method, 215 
Staggered testing, 434 
Standby 

cold, 173, 175 
partly loaded, 173, 177 

State variable, 16 
State 

variable, 123, I47 
vector, 123, 147 

Step stress test, 604 
Stochastic process, 231 
Stressor-dependent model, 58 
Stressor, 525,572 
Structural importance, 133 

Structure function, 123 
Birnbaum’s measure, 134 

fault tree, 161 
k-out-of-n structure, 124 
parallel structure, 124 
series structure, 123 

Survival probability, 8 
Survivor function, 15. 18 

conditional, 24,27 
empirical, 47 1 

System, 604 
System breakdown structure, 91 
System reliability, 148 

exact calculation, 166 
k-out-of-n structure, 151, 160 
parallel structure, 150 
series structure, 149 

Systematic failure, 604 

Tag number, 77 
Telcordia, 565 
Test 

Text 
frequency, 604 

interval, 604 
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THERP, 109 
Tie (in data set), 467,471 
Time to failure, 16 
Total probability, 540 
Total time on test (TIT), 486 

TPM, 414 
TQM, 10 
Trend renewal process, 294 
Tl'T plot, 487 

Tl'T transform, 490 

scaled, 487 

censored data, 499 

exponential distribution, 492 
scaled, 491 
Weibull. 492 

Unavailability, 368 
Unbiased estimator, 471 
Upper bound approximation, 164 
Useful life period, 21 

WOhler curve, 47 
Wald's equation, 245,262,265 
Wear-out period, 21 
Wiener process, 5 1,533 




