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Preface

This volume contains a selection of papers that were presented at the Modeling
and Optimization: Theory and Applications (MOPTA) Conference held at Lehigh
University in Bethlehem, Pennsylvania, USA, between August 17 and August
19, 2016. MOPTA 2016 aimed to bring together a diverse group of researchers
and practitioners, working on both theoretical and practical aspects of continuous
or discrete optimization. The goal was to host presentations on the exciting
developments in different areas of optimization and at the same time provide a
setting for close interaction among the participants.

The topics covered at MOPTA 2016 varied from algorithms for solving convex,
combinatorial, nonlinear, and global optimization problems and addressed the
application of optimization techniques in finance, electricity systems, healthcare,
machine learning, and other leading fields. The nine papers contained in this volume
represent a sample of these topics and applications and illustrate the broad diversity
of ideas discussed at the conference. The first part of the name MOPTA highlights
the role that modeling plays in the solution of an optimization problem, and indeed,
some of the papers in this volume illustrate the benefits of effective modeling
techniques tied with theoretical guarantees.

The paper by Befekadu et al. considers a stochastic decision problem, with
dynamic risk measures, in which multiple risk-averse agents make their decisions
to minimize their individual accumulated risk costs over a finite time horizon. The
paper by Kampas et al. focuses on the problem of packing of general (nonidentical)
ellipses in a circle with a minimum radius. Their approach is based on using
embedded Lagrange multipliers. The paper by Chopra et al. considers the convex
recoloring problem, i.e., to recolor the nodes of a colored graph using the smallest
number of color changes, such that each color induces a connected subgraph. They
considered a convex recoloring problem on a tree and proposed a column generation
framework that efficiently solves the large-scale convex recoloring problem. The
paper by Jadamba and Raciti proposed a variational inequality formulation of a
migration model with random data. They assume a simple model of population
distribution based on utility function theory. In contrast to recent work, they refined
the previous model by allowing random fluctuations in the data of the problem.

v



vi Preface

The paper by Cho et al. develops a fast and reliable computational framework for
the inverse problem of identifying variable parameters in general mixed variational
problems. One of the main contributions of their work is a thorough derivation of
efficient computation schemes for the evaluation of the gradient and the Hessian
of the output least-squares functional both for a discrete and continuous case.
The paper by Smirnov and Dmitrieva considers a minimization of the `p-norm of
Dirichlet-type boundary controls for the 1D wave equation.

The paper by Liu and Takáč proposed a projected mini-batch semi-stochastic
gradient descent method. This work improved both the theoretical complexity
and practical performance of the general stochastic gradient descent method.
They proved a linear convergence under weak strong convexity assumption for
minimizing the sum of smooth convex functions subject to a compact polyhedral
set, which remains popular across the machine learning community. The paper
by Adams and Anjos considered the projection polytope constraints used during
optimization of relaxed semidefinite problems. They proposed a bilevel second-
order cone optimization approach to find the maximally violated projection polytope
constraint according to a particular depth measure and reformulate the bilevel
problem as a single-level mixed binary second-order cone optimization problem.
The paper by Papp deals with polynomial optimization problems; especially, it deals
with an approximation of the cone of nonnegative polynomials with the cone of
sum-of-squares polynomials. This approximation is polynomial-time solvable for
many NP-hard optimization problems using semidefinite optimization. The paper
focuses on the numerical issue of such an approximation scheme.

We thank the sponsors of MOPTA 2016, namely, AIMMS, SAS, Gurobi, and
SIAM. We also thank the host, Lehigh University, as well as the rest of the
organizing committee: Frank Curtis, Luis Zuluaga, Larry Snyder, Ted Ralphs, Katya
Scheinberg, Robert Storer, Aurélie Thiele, Boris Defourny, Alexander Stolyar, and
Eugene Perevalov.

Bethlehem, PA, USA Martin Takáč
Bethlehem, PA, USA Tamás Terlaky
May 2017
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Stochastic Decision Problems with Multiple
Risk-Averse Agents

Getachew K. Befekadu, Alexander Veremyev, Vladimir Boginski,
and Eduardo L. Pasiliao

Abstract We consider a stochastic decision problem, with dynamic risk measures,
in which multiple risk-averse agents make their decisions to minimize their indi-
vidual accumulated risk-costs over a finite-time horizon. Specifically, we introduce
multi-structure dynamic risk measures induced from conditional g-expectations,
where the latter are associated with the generator functionals of certain BSDEs
that implicitly take into account the risk-cost functionals of the risk-averse agents.
Here, we also assume that the solutions for such BSDEs almost surely satisfy
a stochastic viability property w.r.t. a certain given closed convex set. Using a
result similar to that of the Arrow–Barankin–Blackwell theorem, we establish the
existence of consistent optimal decisions for the risk-averse agents, when the set of
all Pareto optimal solutions, in the sense of viscosity solutions, for the associated
dynamic programming equations is dense in the given closed convex set. Finally,

A preliminary version of this paper was presented at the Modeling and Optimization: Theory and
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M. Takáč, T. Terlaky (eds.), Modeling and Optimization: Theory and Applications,
Springer Proceedings in Mathematics & Statistics 213,
DOI 10.1007/978-3-319-66616-7_1

1

mailto:gbefekadu@ufl.edu
mailto:averemyev@ufl.edu
mailto:Vladimir.Boginski@ucf.edu
mailto:pasiliao@eglin.af.mil


2 G.K. Befekadu et al.

we comment on the characteristics of acceptable risks w.r.t. some uncertain future
outcomes or costs, where results from the dynamic risk analysis are part of the
information used in the risk-averse decision criteria.

Keywords Dynamic programming equation • Forward-backward SDEs •
Multiple risk-averse agents • Pareto optimality • Risk-averse decisions • Value
functions • Viscosity solutions

1 Introduction

Let
�
�;F ; fFtgt�0;P

�
be a probability space, and let fBtgt�0 be a d-dimensional

standard Brownian motion, whose natural filtration, augmented by all P-null sets,
is denoted by fFtgt�0, so that it satisfies the usual hypotheses (e.g., see [21]). We
consider the following controlled-diffusion process over a given finite-time horizon
T > 0

dXu
�

t D m
�
t;Xu

�

t ; . u1t ; u2t ; � � � ; un
t /
�
dtC��t;Xu

�

t ; .u1t ; u2t ; � � � ; un
t /
�
dBt;

Xu
�

0 D x; 0 � t � T; (1)

where

– Xu
�� is an R

d-valued controlled-diffusion process,
– uj� is a Uj-valued measurable decision process, which corresponds to the jth risk-

averse agent (where Uj is an open compact set in R
mj , with j D 1; 2; : : : ; n); and,

furthermore, u� � .u1� ; u2� ; � � � ; un� / is an n-tuple of
Qn

iD1 Ui-valued measurable
decision processes such that for all t > s, .Bt � Bs/ is independent of ur for r � s
(nonanticipativity condition) and

E

Z t

s
ju� j2d� < 1 8t � s;

– m W Œ0;T� � R
d � Qn

iD1 Ui ! R
d is uniformly Lipschitz, with bounded first

derivative, and
– � W Œ0;T� � R

d �Qn
iD1 Ui ! R

d�d is Lipschitz with the least eigenvalue of � �T

uniformly bounded away from zero for all .x; u/ 2 R
d �Qn

iD1 Ui and t 2 Œ0;T�,
i.e.,

�.t; x; u/ �T.t; x; u/ � �Id�d; 8.x; u/ 2 R
d �

Yn

iD1 Ui;

8t 2 Œ0;T�;

for some � > 0.
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In this paper, we specifically consider a risk-averse decision problem for the
above controlled-diffusion process, in which the decision makers (i.e., the risk-
averse agents with differing risk-averse related responsibilities and/or information)
choose their decisions from progressively measurable decision sets. That is, the jth-
agent’s decision uj� is a Uj-valued measurable control process from

U j
Œ0;T� �

n
uj W Œ0;T��� ! Uj

ˇ̌
ˇ uj is an

˚
Ft
�

t�0- adapted

and E

Z T

0

juj
tj2dt < 1

o
; j D 1; 2; : : : ; n: (2)

Here, we also suppose that the risk-averse agents are “rational” (in the sense of
making consistent decisions that minimize their individual accumulated risk-costs)
with a certain n-tuple of measurable decision processes Ou D . Ou1� ; Ou2� ; � � � ; Oun� / 2Qn

iD1 U i
Œ0;T�. Moreover, we consider the following cost functionals that provide

information about the accumulated risk-costs on the time interval Œ0;T� w.r.t. each
of the risk-averse agents, i.e.,

�
j
0;T.u

:j/ D
Z T

0

cj
�
t;Xu

:j
�

t ; uj
t

�
dt C‰j.X

u
:j
�

T /; j D 1; 2; : : : ; n; (3)

where

u:j� � . Ou1� ; � � � ; Ouj�1� ; uj�; OujC1� ; � � � ; Oun� / 2
Yn

iD1 U
i
Œ0;T�;

with cj W Œ0;T� � R
d � Uj ! R and ‰j W Rd ! R are measurable functions. Note

that the corresponding solution Xu
:j
�

t , for j 2 f1; 2; : : : ; ng, in Eq. (1) depends on the
n-tuple admissible risk-averse decisions u:j� 2 Qn

iD1 U i
Œ0;T� and it also depends on

the initial condition Xu
:j
�

0 D x. As a result of this, for any time-interval Œt;T�, with
t 2 Œ0;T�, the accumulated risk-costs � j

t;T , for j D 1; 2; : : : ; n, depend on the risk-
averse decisions u:j� 2 Qn

iD1 U i
Œt;T�.

1 Moreover, we also assume that f , � , cj and ‰j,
for p � 1, satisfy the following growth conditions

ˇ̌
m
�
t; x; u/

ˇ̌C ˇ̌
�
�
t; x; u

�ˇ̌C ˇ̌
cj
�
t; x; u

�ˇ̌C ˇ̌
‰j
�
x
�ˇ̌

� C
�
1C ˇ̌

x
ˇ̌p C ˇ̌

u
ˇ̌�
; 8j 2 f1; 2; : : : ; ng; (4)

for all
�
t; x; u

� 2 Œ0;T� � R
d �Qn

iD1 Ui and for some constant C > 0.

1Here, we use the notation u:j to emphasize the dependence on uj
�

2 U j
Œt;T�, where U j

Œt;T�, for any

t 2 Œ0;T�, denotes the sets of Uj-valued
˚
F t

s

�
s�t-adapted processes (see Definition 2).
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Next, we introduce the following spaces that will be useful later in the paper.

– L2
�
�;Ft;PIRd

�
is the set of Rd-valued Ft-measurable random variables � such

that
���
��2 D E

˚ˇ̌
�
ˇ̌2�

< 1;
– L1

�
�;Ft;P

�
is the set of R-valued Ft-measurable random variables � such that�

��
�
� D ess inf

ˇ
ˇ�
ˇ
ˇ < 1;

– S2
�
t;TIRd

�
is the set of Rd-valued adapted processes

�
's
�

t�s�T on � � Œt;T�

such that
��'
��2
Œt;T� D E

˚
supt�s�T

ˇ̌
's

ˇ̌2�
< 1;

– H2
�
t;TIRd

�
is the set of R

d-valued progressively measurable processes
�
's
�

t�s�T such that
��'
��2
Œt;T� D E

˚ R T
t

ˇ̌
's

ˇ̌2
ds
�
< 1.

On the same probability space
�
�;F ; fFtgt�0;P

�
, we consider the following

backward stochastic differential equation (BSDE)

�dYt D g
�
t;Yt;Zt

�
dt � ZtdBt; YT D �; (5)

where the terminal value YT D � belongs to L2
�
�;FT ;PIR� and the generator

functional g W � � Œ0;T� � R � R
d ! R, with property that

�
g
�
t; y; z

��
0�t�T is

progressively measurable for each .y; z/ 2 R � R
d. We also assume that g satisfies

the following assumption.

Assumption 1

(i) g is Lipschitz in .y; z/, i.e., there exists a constant C > 0 such that, P-a.s., for
any t 2 Œ0;T�, y1; y2 2 R and z1; z2 2 R

d

ˇ̌
g
�
t; y1; z1

� � g
�
t; y2; z2

�ˇ̌ � C
�ˇ̌

y1 � y2
ˇ̌C ��z1 � z2

���:

(ii) g
�
t; 0; 0

� 2 H2
�
t;TIR�.

(iii) P-a.s., for all t 2 Œ0;T� and y 2 R, g
�
t; y; 0

� D 0.

Then, we state the following lemma, which is used to establish the existence of a
unique adapted solution (e.g., see [16] or [10] for additional discussions).

Lemma 2 Suppose that Assumption 1 holds true. Then, for any � 2
L2
�
˝;FT ;PIR�, the BSDE in (5), with terminal condition YT D � , i.e.,

Yt D � C
Z T

t
g
�
s;Ys;Zs

�
ds �

Z T

t
ZsdBs; 0 � t � T (6)

has a unique adapted solution

�
YT;g;�

t ;ZT;g;�
t

�
0�t�T 2 S2

�
0;TIR� � H2

�
0;TIRd

�
: (7)

In the following, we give the definition for a dynamic risk measure that is
associated with the generator of BSDE in (5).
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Definition 1 For any � 2 L2
�
�;FT ;PIR�, let

�
YT;g;�

t ;ZT;g;�
t

�
0�t�T 2 S2

�
0;TIR��

H2
�
0;TIRd

�
be the unique solution for the BSDE in (5) with terminal condition

YT D � . Then, we define the dynamic risk measure �g
t;T of � by2

�
g
t;T

�
�
�
� YT;g;�

t : (8)

Remark 1 Note that such a risk measure is widely used for evaluating the risk of
stochastic processes or uncertain outcomes, and assists with stipulating minimum
interventions required by financial institutions for risk management (e.g., see [4, 9,
10, 12, 20] or [7] for related discussions). In the following section, we introduce
multi-structure dynamic risk measures induced from conditional g-expectations,
where the latter are associated with the generator functionals of certain BSDEs that
implicitly take into account the risk-cost functionals of the risk-averse agents.

Next, let us recall the following comparison result, which is restricted to one-
dimensional BSDEs (e.g., see [17]).

Lemma 3 Given two generators g1 and g2 satisfying Assumption 1 and two
terminal conditions �1; �2 2 L2

�
˝;FT ;PIR�. Let

�
Y1t ;Z

1
t

�
and

�
Y2t ;Z

2
t

�
be the

solution pairs corresponding to
�
�1; g1

�
and

�
�2; g2

�
, respectively. Then, we have

(i) Monotonicity: If �1 > �2 and g1 > g2, P-a.s., then Y1t > Y2t , P-a.s., for all
t 2 Œ0;T�;

(ii) Strictly monotonicity: In addition to (i) above, if we assume that P
�
�1 > �2

�
>

0, then P
�
Y1t > Y2t

�
> 0, for all t 2 Œ0;T�.

Moreover, if the generator functional g satisfies Assumption 1, then a family of
time-consistent dynamic risk measures

˚
�

g
t;T

�
t2Œ0;T� has the following properties (see

[20] for additional discussions).

Property 1

(i) Convexity: If g is convex for every fixed .t; !/ 2 Œ0;T� � �, then for all
�1; �2 2 L2

�
�;FT ;PIR� and for all 	 2 L1

�
�;Ft;PIR� such that 0 � 	 � 1

�
g
t;T

�
	�1 C .1 � 	/�2

� � 	�
g
t;T

�
�1
�C .1 � 	/�g

t;T

�
�1
�I

(ii) Monotonicity: For �1; �2 2 L2
�
�;FT ;PIR� such that �1 > �2 P-a.s., then

�
g
t;T

�
�1
�
> �

g
t;T

�
�2
�
; P-a:s:I

2Here, we remark that, for any t 2 Œ0;T�, the conditional g-expectation (denoted by Eg

�
�jFt

�
) is

also defined by

Eg

�
�jFt

�
� YT;g;�

t :
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(iii) Trans-invariance: For all � 2 L2
�
�;FT ;PIR� and 
 2 L2

�
�;Ft;PIR�

�
g
t;T

�
� C 


� D �
g
t;T

�
�
�C 
I

(iv) Positive-homogeneity: For all � 2 L2
�
�;FT ;PIR� and for all 	 2

L1
�
�;Ft;PIR� such that 	 > 0

�
g
t;T

�
	�
� D 	�

g
t;T

�
�
�I

(v) Normalization: �g
t;T

�
0
� D 0 for t 2 Œ0;T�.

Remark 2 Note that, since the seminal work of Artzner et al. [4], there have been
studies on axiomatic dynamic risk measures, coherency and consistency in the
literature (e.g., see [9, 12, 20, 22] or [7]). Particularly relevant for us is a family
of time-consistent dynamic risk measures induced from conditional g-expectations
that satisfies the above properties (i)–(v).

Here, it is worth mentioning that some interesting studies on the dynamic risk
measures, based on the conditional g-expectations, have been reported in the litera-
ture (e.g., see [7, 20] and [22] for establishing connection between the risk measures
and the generator of BSDE; and see also [24] for characterizing the generator of
BSDE according to different risk measures). Moreover, such risk measures are
widely used for evaluating the risk of uncertain future outcomes or costs, and also
assisting with stipulating minimum interventions for risk management (e.g., see
[4, 9, 10, 12, 20] or [7] for related discussions). Recently, the authors in [23] and [5]
have provided interesting results on the risk-averse decision problem for Markov
decision processes, in discrete-time setting, and, respectively, a hierarchical risk-
averse framework for systems governed by controlled-diffusion processes. Note
that the rationale behind our framework follows in some sense the settings of
these papers. However, to our knowledge, the problem of risk-aversion for systems
governed by controlled-diffusion processes has not been addressed in the context
of multiple risk-averse agents argument, and it is important because it provides a
mathematical framework that shows how a such framework can be systematically
used to obtain consistently optimal risk-averse decisions.

The remainder of this paper is organized as follows. In Sect. 2, using the
basic remarks made in Sect. 1, we state our risk-averse decision problem systems
governed by controlled-diffusion processes with multiple risk-averse agents. In
Sect. 3, we present our main results—where we introduce a framework that requires
a “rational” cooperation among the risk-averse agents so as to achieve an overall
optimal risk-averseness. Moreover, we establish the existence of optimal risk-averse
solutions for the associated risk-averse dynamic programming equations. Finally,
Sect. 4 provides further remarks. For the sake of readability, all proofs are presented
in the Appendix section.



Stochastic Decision Problems with Multiple Risk-Averse Agents 7

2 Problem Formulation

In order to make our problem formulation more precise, for any .t; x/ 2 Œ0;T��R
d,

we consider the following forward-SDE with an initial condition Xt;xIu:j
�

t D x, for
j 2 f1; 2; : : : ; ng,

dXt;xIu:j
�

s D m
�
s;Xt;xIu:j

�

s ; . Ou1s ; � � � ; Ouj�1
s ; uj

s; OujC1
s ; � � � ; Oun

s /
�
dt

C �
�
s;Xt;xIu:j

�

s ; . Ou1s ; � � � ; Ouj�1
s ; uj

s; OujC1
s ; � � � ; Oun

s /
�
dBt;

Xt;xIu:j
�

t D x; t � s � T; (9)

where u:j� D . Ou1s ; � � � ; Ouj�1
s ; uj

s; OujC1
s ; � � � ; Oun

s / is an n-tuple of
Qn

iD1 Uj-valued
measurable decision processes.

Let
˚
�

Target
j

�n

jD1 be a set of real-valued random variables from L2.�;FT ;PIR/
and we further suppose that the data �Target

j take the following forms:

�
Target
j D ‰j.X

t;xIu:j
�

T /; j D 1; 2; : : : ; n; P � a:s: (10)

Moreover, we introduce the following risk-value functions

Vuj

j

�
t; x
� D �

gj

t;T

�
�

j
t;T

�
u:j
��
; j D 1; 2; : : : ; n; (11)

where

�
j
t;T

�
u:j
� D

Z T

t
cj
�
s;Xt;xIu:j

�

s ; uj
s

�
ds C‰j.X

t;xIu:j
�

T /: (12)

Then, taking into account Eq. (10) (and with the Markovian framework), we can
express the above risk-value functions using standard-BSDEs as follows:

Vuj

j

�
t; x
�
� Yj;t;xIu:j

�

s

D ‰j.X
t;xIu:j

�

T /C
Z T

t
gj
�
s;Xt;xIu:j

�

s ;Yj;t;xIu:j
�

s ;Zj;t;xIu:j
�

s

�
ds

�
Z T

t
Zj;t;xIu:j

�

s dBs; j D 1; 2; : : : ; n; (13)

where

gj
�
s;Xt;xIu:j

�

s ;Yj;t;xIu:j
�

s ;Zj;t;xIw
s

�

D cj
�
s;Xt;xIu:j

�

s ; uj
s

�C g
�
s;Yj;t;xIu:j

�

s ;Zj;t;xIu:j
�

s

�
:
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and further noting the conditions in (4), then the pairs
�
Yj;t;xIu:j

�

s ;Zj;t;xIu:j
�

s

�
t�s�T

are adapted solutions on Œt;T� � � and belong to S2
�
t;TIR� � H2

�
t;TIRd

�
.

Equivalently, we can also rewrite (13) as a family of BSDEs on the probability
space

�
�;F ;P; fFtgt�0/, i.e., for s 2 Œt;T�,

�dYj;t;xIu:j
�

s D gj
�
s;Xt;xIu:j

�

s ;Yj;t;xIu:j
�

s ;Zj;t;xIu:j
�

s

�
ds � Zj;t;xIu:j

�

s dBs;

Yj;t;xIu:j
�

T D ‰j.X
t;xIu:j

�

T /; j D 1; 2; : : : ; n: (14)

In the following, we denote the solutions
�

Y
1;t;xIu:1

�

s ; Y
2;t;xIu:2

�

s ; � � � ; Y
n;t;xIu:n

�

s

� 2
Qn

iD1 S2
�
t;TIR� and

�
Z
1;t;xIu:1

�

s ; Z
2;t;xIu:2

�

s ; � � � ; Z
n;t;xIu:n

�

s

� 2 Qn
iD1H2

�
t;TIRd

�
by

bold letters Yt;xIu
�

s and Zt;xIu
�

s , respectively, for any t 2 Œ0;T� and for s 2 Œt;T�.
Similarly, the family of BSDEs in (14) can be rewritten as a multi-dimensional
BSDE as follows:

�dYt;xIu
�

s D G
�
s;Xt;xIu

�

s ;Yt;xIu
�

s ;Zt;xIu
�

s

�
ds � Zt;xIu

s dBs; s 2 Œt;T�;
Yt;xIu

�

T D ‰.Xt;xIu
�

T /; (15)

where

G
�
s;Xt;xIu

�

s ;Yt;xIu
�

s ;Zt;xIu
�

s

�

D block diag
n
g1
�
s;Xt;xIu:1

�

s ;Y1;t;xIu:1
�

s ;Z1;t;xIu:1
�

s

�
;

g2
�
s;Xt;xIu:2

�

s ;Y2;t;xIu:2
�

s ;Z2;t;xIu:2
�

s /; � � � ; gn
�
s;Xt;xIu:n

�

s ;Yn;t;xIu:n
�

s ;Zn;t;xIu:n
�

s

�o

and

‰.Xt;xIu
�

T / D �
‰1.X

t;xIu:1
�

T /; ‰2.X
t;xIu:2

�

T /; � � � ; ‰n.X
t;xIu:n

�

T /
�
:

Let K be a closed convex set in R
n, then we recall the notion of viability property

for the BSDE in (15) (cf. Eqs. (13) and (14)).

Definition 2 Let Ou� D . Ou1� ; Ou2� ; � � � ; Oun� / 2 Qn
iD1 U i

Œ0;T� be an n-tuple of “rational”
preferable decisions for the risk-averse agents. Then, for a nonempty closed convex
set K � R

n and for uj� 2 U j
Œ0;T�, with j D 1; 2; : : : ; n

(a) A stochastic process
˚
Y0;xIu

�

t ; t 2 Œ0;T�
�

is viable in K if and only if for P-
almost ! 2 �

Y0;xIu
�

t .!/ 2 K; 8t 2 Œ0;T�: (16)
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(b) The closed convex set K enjoys the Backward Stochastic Viability Property
(BSVP) for the equation in (15) if and only if for all � 2 Œ0;T�, with Eq. (10),
i.e.,

8„Target D �
�

Target
1 ; �

Target
2 ; � � � ; �Target

n

� 2 L2
�
�;F� ;PIRn

�
; (17)

there exists a solution pair
�
Y0;xIu

�� ;Z0;xIu��
�

to the BSDE in (15) over the time
interval Œ0; ��,

Y0;xIu
�

s D „Target C
Z �

s
G
�
r;X0;xIu�

r ;Y0;xIu
�

r ;Z0;xIu�

r

�
dr �

Z �

s
Z0;xIur dBr; (18)

with

�
Y0;xIu

�� ;Z0;xIu��
� 2

Yn

iD1 S
2
�
0; � IR� �

Yn

iD1H
2
�
0; � IRd

�
;

such that
˚
Y0;xIu

�

s ; s 2 Œ0; ��� is viable in K.

For the above given closed convex set K, let us define the projection of a point a
onto K as follows:

…K.a/ D
n
b 2 K

ˇ̌ ja � bj D min
c2K

ja � cj D dK.a/
o
: (19)

Notice that, since K is convex, from the Motzkin’s theorem, …K is single-valued.
Further, we recall that d2K.�/ is convex; and thus, due to Alexandrov’s theorem [1],
d2K.�/ is almost everywhere twice differentiable.

Assume that there exists an n-tuple of “rational” decisions Ou D . Ou1� ; Ou2� ; � � � ; Oun� / 2Qn
iD1 U i

Œ0;T� which is preferable by all risk-averse decision-making agents. Moreover,

on the space C1;2
b .Œt;T� � R

dIRn/, for any .t; x/ 2 Œ0;T� � R
d, we consider the

following system of semilinear parabolic partial differential equations (PDEs)

@'j.t; x/

@t
C infuj2Uj

n
Lu:j

t 'j.t; x/

Cgj
�
t; '.t; x/;Dx'j.t; x/ � �.t; x; u:j/

�o D 0

j D 1; 2; : : : ; n

9
>>=

>>;
(20)

with the following boundary condition

'.T; x/ D ‰.x/;

	 �
‰1.x/; ‰2.x/; � � � ; ‰n.x/

�
; x 2 R

d; (21)

where, for any �.x/ 2 C10 .Rd/, the second-order linear operators Lu:j

t are given by
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Lu:j

t �.x/ D 1

2
tr
n
a.t; x; u:j/D2

x�.x/
o

C m.t; x; u:j/Dx�.x/;

t 2 Œ0;T�; j D 1; 2; : : : n; (22)

with a.t; x; u:j/ D �.t; x; u:j/�T.t; x; u:j/, Dx and D2
x , (with D2

x D �
@2=@xk@xl

�
) are

the gradient and the Hessian (w.r.t. the variable x), respectively.

Remark 3 Here, we remark that the above system of equations in (20) together
with (21) is associated with the decision problem for the risk-averse agents,
restricted to †Œt;T�. Moreover, such a system of equations represents a generalized
family of HJB equation with additional terms gj for j D 1; 2; : : : ; n. Note that the
problem of FBSDEs (cf. Eqs. (9) and (15) or (14)) and the solvability of the related
system of semilinear parabolic PDEs have been well studied in literature (e.g., see
[2, 13, 15, 17, 18], and [19]).

Next, we recall the definition of viscosity solutions for (20) along with (21) (e.g.,
see [8, 11] or [14] for additional discussions on the notion of viscosity solutions).

Definition 3 The function ' W Œ0;T� � R
d ! R

n is a viscosity solution for (20)
together with the boundary condition in (21), if the following conditions hold

(i) for every  2 C1;2
b .Œ0;T�;�RdIRn/ such that  � ' on Œ0;T� � R

d,

sup
.t;x/

˚
'.t; x/ �  .t; x/� D 0; (23)

and for .t0; x0/ 2 Œ0;T� � R
d such that  .t0; x0/ D '.t0; x0/ (i.e., a local

maximum at .t0; x0/), then we have

@ j.t0; x0/

@t
C inf

uj2Uj

n
Lu:j

t  j.t0; x0/

C gj
�
t0; x0;  .t0; x0/;Dx j.t0; x0/ � �.t0; x0; u:j/

�o � 0; (24)

(ii) for every  2 C1;2
b .Œ0;T�;�RdIRn/ such that  � ' on Œ0;T� � R

d,

inf
.t;x/

˚
'.t; x/ �  .t; x/� D 0; (25)

and for .t0; x0/ 2 Œ0;T� � R
d such that  .t0; x0/ D '.t0; x0/ (i.e., a local

minimum at .t0; x0/), then we have

@ j.t0; x0/

@t
C inf

uj2Uj

n
Lu:j

t  j.t0; x0/

C gj
�
t0; x0;  .t0; x0/;Dx j.t0; x0/ � �.t0; x0; u:j/

�o � 0; (26)

for j D 1; 2; : : : ; n.
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Next, let us define the viability property for the system of semilinear parabolic
PDEs in (20) as follows.

Definition 4 The system of semilinear parabolic PDEs in (20) enjoys the viability
property w.r.t. the closed convex set K if and only if, for any ‰ 2 Cp.R

dIRn/ taking
values in K, the viscosity solution to (20) satisfies

8.t; x/ 2 Œ0;T� � R
d; '.t; x/ 2 K: (27)

Later in Sect. 3, assuming the Markovian framework, we provide additional
results that establish a connection between the viability property of the BSDE
in (15), w.r.t. the closed convex set K, and the solutions, in the sense viscosity,
for the system of semilinear parabolic PDEs in (20).

In what follows, we introduce a framework that requires a “rational” cooperation
among the risk-averse agents so as to achieve an overall risk-averseness (in the sense
of Pareto optimality). For example, for any t 2 Œ0;T�, let us assume that

Ou� D . Ou1� ; Ou2� ; � � � ; Oun� / 2
Yn

iD1 U
i
Œt;T�

is an n-tuple of “rational” preferable decisions for the risk-averse agents, then the
problem of finding an optimal risk-averse decision for the jth-agent, where j 2
f1; 2; : : : ; ng, that minimizes the jth-accumulated risk-cost functional, is equivalent
to finding an optimal solution for

inf
u

j
�
2U j

Œt;T�

Jj
��

u:j/
�
; (28)

where

Jj
��

u:j
�� D �

gj

t;T

�
�

j
t;T

�
u:j
��
; (29)

with u:j� D . Ou1� ; : : : ; Ouj�1� ; uj�; OujC1� ; � � � ; Oun� / 2 Qn
iD1 U i

Œt;T�.

Remark 4 Here, we remark that the generator functionals gj, for j D 1; 2; : : : ; n,
contain a common term g that acts on different processes (see Eqs. (13) and (14)).
Moreover, due to differing risk-cost functionals w.r.t. each of the agents, we
also observe that

˚
�

gj

t;T

� � ��n

jD1, for t 2 Œ0;T�, in Eq. (29) provide multi-structure,
time-consistent, dynamic risk measures vis-á-vis some uncertain future outcomes
specified by a set of random variables from L2.�;FT ;PIR/.

Note that, for any given uj� 2 U j
Œt;T�, if the forward–backward stochastic

differential equations (FBSDEs) in (9) and (15) (cf. Eqs. (13) and (14)) admit unique
solutions and, further, Yt;xIu

s .!/ 2 K, for P- almost ! 2 � and for all s 2 Œt;T� and
for t 2 Œ0;T�. Then, any “rational” preferable decisions for the jth-agent satisfy the
following
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Ouj� 2
n

Qu� 2 U j
Œt;T�

ˇ̌
ˇ �

gj

t;T

�
�

j
t;T

�Qu:j
�� � �

gj

t;T

�
�

j
t;T

�
u:j
��
;

8. Ou1� ; : : : ; Ouj�1� ; OujC1� ; � � � ; Oun� / 2
Y

i¤j
U i
Œt;T�;

8j 2 f1; 2; : : : ; ng; P � a:s:
o
; (30)

where Qu:j� D . Ou1� ; : : : ; Ouj�1� ; Quj�; OujC1� ; � � � ; Oun� / 2 Qn
iD1 U i

Œt;T�.
3

Next, we introduce the following definition for an admissible risk-averse decision
system †Œt;T�, for t 2 Œ0;T�, with multi-structure dynamic risk measures, which
provides a logical construct for our main results (e.g., see also [15]).

Definition 5 For a given finite-time horizon T > 0, we call †Œt;T�, with t 2 Œ0;T�,
an admissible risk-averse decision system, if it satisfies the following conditions:

–
�
�;F ; fFtgt�0;P

�
is a complete probability space;

–
˚
Bs
�

s�t is a d-dimensional standard Brownian motion defined on
�
�;F ;P

�
over

Œt;T� and F t �
˚
F t

s

�
s2Œt;T�, where F t

s D �
˚�

BsI t � s � T
��

is augmented by all
P-null sets in F ;

– uj� W � � Œs;T� ! Uj, for j D 1; 2; : : : ; n, are
˚
F t

s

�
s�t-adapted processes on

�
�;F ;P

�
with

E

Z T

s
juj
� j2d� < 1; s 2 Œt;T�I

– For any x 2 R
d, the FBSDEs in (9) and (15) admit a unique solution set

˚
Xs;xIu:j

�� ;Yj;s;xIu:j
�� ;Zj;s;xIu:j

��
�n

jD1 on
�
�;F ;F t;P

�

and

Ys;xIu� .!/ D �
Y1;s;xIu:1

�� .!/; Y2;s;xIu:2
�� .!/; � � � ; Yn;s;xIu:n

�� .!/
� 2 K;

P � almost ! 2 �; 8s 2 Œt;T�:

Then, with restriction to the above admissible system, we can state the risk-averse
decision problem as follows.

Problem Find an n-tuple of optimal preferable decisions for the risk-averse agents,
i.e., Ou� D . Ou1� ; Ou2� ; � � � ; Oun� / 2 Qn

iD1 U i
Œt;T�, with �Target

j 2 L2.�;FT ;PIR/, for j 2
f1; 2; : : : ; ng, such that

3In the paper, we assume that the set on the right-hand side of (30) is nonempty.
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Ouj� 2
n

arg inf Jj
��

u:j
��ˇ̌
ˇOu� satisfies Eq. (30) and

u:j� D . Ou1� ; : : : ; Ouj�1� ; uj�; OujC1� ; � � � ; Oun� / 2
Yn

iD1 U
i
Œt;T�;

with restriction to †Œ0;T�
o
: (31)

Furthermore, the accumulated risk-costs Jj, for j D 1; 2; : : : ; n, over the time-
interval Œ0;T� are given

Jj
��

u:j
�� D

Z T

0

cj
�
s;X0;xIu

:j
�

s ; uj
s

�
ds C‰j.X

0;xIu:j
�

T /;

X0;xIu
:j
�

0 D x; and ‰j.X
0;xIu:j

�

T / D �
Target
j : (32)

In the following section, we establish the existence of optimal risk-averse
solutions, in the sense of viscosity, for the risk-averse decision problem in (31) with
restriction to †Œ0;T�.

3 Main Results

In this section, we present our main results, where we introduce a framework that
requires a “rational” cooperation among the risk-averse agents so as to achieve an
overall optimal risk-averseness (in the sense of Pareto optimality). Moreover, such
a framework allows us to establish the existence of optimal risk-averse solutions, in
the sense of viscosity solutions, to the associated risk-averse dynamic programming
equations.

Proposition 1 Suppose that the generator functional g satisfies Assumption 1.
Further, let the statements in (4) along with (10) hold true. Then, for any .t; x/ 2
Œ0;T� � R

d and for every u:j� D . Ou1� ; : : : ; Ouj�1� ; uj�; OujC1� ; � � � ; Oun� / 2 Qn
iD1 U i

Œt;T�
and j 2 f1; 2; : : : ; ng, restricted to ˙Œt;T�, the FBSDEs in (9) and (15) admit unique
adapted solutions

Xt;xIu:j
�� 2 S2

�
t;TIRd

�
�
Yj;t;xIu:j

�� ;Zj;t;xIu:j
��
� 2 S2

�
t;TIR� � H2

�
t;TIRd

�
; j D 1; 2; : : : ; n

)

: (33)

Moreover, the risk-values Vuj

j

�
t; x
�
, for j D 1; 2; : : : ; n, are deterministic.

Proposition 2 Let .t; x/ 2 Œ0;T� � R
d and u:j� D . Ou1� ; : : : ; Ouj�1� ; uj�; OujC1� ; � � � ; Oun� /

2 Qn
iD1 U i

Œt;T�, for j 2 f1; 2; : : : ; ng, be restricted to ˙Œt;T�. Then, for any r 2 Œt;T�

and R
d-valued F t

r-measurable random variable �, we have
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Vuj

j

�
r; �
� D Yj;t;xIu:j

�

r

� �
gj

r;T

h Z T

r
cj
�
s;Xr;�Iu:j

�

s ; uj
s

�
ds C j.X

r;�Iu:j
�

T /
i
; P-a:s: (34)

Proposition 3 Let u:j� D . Ou1� ; : : : ; Ouj�1� ; uj�; OujC1� ; � � � ; Oun� / 2 Qn
iD1 U i

Œ0;T�, for j 2
f1; 2; : : : ; ng, be restricted to˙Œt;T�. Suppose that the system of semilinear parabolic
PDEs in (20) enjoys the viability property w.r.t. the closed convex set K. Then, there
exists a constant C > 0 such that d2K.�/ is twice differentiable at y and

˝
y �˘K.y/; G.t;x; y; z�.t; x; u:j//

˛

� 1

4

˝
D2.d2K.y//z � †.t; x; u/; z � †.t; x; u/˛C Cd2K.y/;

8.t; x; y; z/ 2 Œ0;T� � R
d � R

n � L.RdIRn/; (35)

where

†.t; x; u/ D �
�.t; x; u:1/; �.t; x; u:2/; � � � ; �.t; x; u:n/

�
:

Remark 5 The proof for the above proposition (which is an adaptation of [6] and it
will appear elsewhere) involves a standard approximation procedure for the BSDE
in Eq. (15), with

Zt;xIu
�

s 2 span
n
z � †.t;Xt;xIu

�

s ; u/
ˇ̌
z 2 L.RdIRn/

o
;

ds ˝ dP � a:e: on Œt;T�; 0 � t � T;

and a further requirement for the closed convex set K to enjoy the BSVP for the
equation in (15) (i.e., the adapted solution

˚
Yt;xIu

s ; s 2 Œ0;T�
�

to be viable in K).
Here, we also require that the set on the right-hand side of Eq. (30) is nonempty.

In the following, suppose that Proposition 3 holds true, i.e., the system of
semilinear parabolic PDEs in (20) enjoys viability property w.r.t. the closed convex
set K. Moreover, for t 2 Œ0;T� and Ou� D . Ou1� ; Ou2� ; � � � ; Oun� / 2 Qn

iD1 U i
Œt;T�, with

restriction to †Œt;T�, let Qu:j� and u:j� , j 2 f1; 2; : : : ; ng, be two n-tuple decisions fromQn
iD1 U i

Œt;T�, i.e.,

Qu:j� D . Ou1� ; : : : ; Ouj�1� ; Quj�; OujC1� ; � � � ; Oun� / 2 Qn
iD1 U i

Œt;T�

u:j� D . Ou1� ; : : : ; Ouj�1� ; uj�; OujC1� ; � � � ; Oun� / 2 Qn
iD1 U i

Œt;T�

j 2 f1; 2; : : : ; ng

9
>=

>;
:

Then, for any .t; x/ 2 Œ0;T� � R
d, with restriction to †Œt;T�, we can define the

following partial ordering on K by
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�
�

g1
t;T

�
�1t;T
�Qu:1��; �g2

t;T

�
�2t;T
�Qu:2��; � � � ; �gn

t;T

�
�n

t;T

�Qu:n
�� �


 �
�

g1
t;T

�
�1t;T
�
u:1

��
; �

g2
t;T

�
�2t;T
�
u:2

��
; � � � ; �gn

t;T

�
�n

t;T

�
u:n

�� �
; (36)

if �
gj

t;T

�
�

j
t;T

�Qu:j
�� � �

gj

t;T

�
�

j
t;T

�
u:j
��

for all j D 1; 2; : : : ; n, with strict inequality for at
least one j 2 f1; 2; : : : ; ng. Furthermore, we say that

�
�

g1
t;T

�
�1t;T
�Ou��; �g2

t;T

�
�2t;T
�Ou��; � � � ; �gn

t;T

�
�n

t;T

�Ou�� � 2 K (37)

is a Pareto equilibrium, in the sense of viscosity solutions, if there is no

�
�

g1
t;T

�
�1t;T
�
u:1

��
; �

g2
t;T

�
�2t;T
�
u:2

��
; � � � ; �gn

t;T

�
�n

t;T

�
u:n

�� � 2 K (38)

for which

�
�

g1
t;T

�
�1t;T
�Ou��; �g2

t;T

�
�2t;T
�Ou��; � � � ; �gn

t;T

�
�n

t;T

�Ou�� �


 �
�

g1
t;T

�
�1t;T
�
u:1

��
; �

g2
t;T

�
�2t;T
�
u:2

��
; � � � ; �gn

t;T

�
�n

t;T

�
u:n

�� �
: (39)

Hence, with restriction to†Œt;T�, we can characterize the optimal decisions for the
risk-averse agents as follows.

Proposition 4 Suppose that Proposition 3 holds true and let ' 2 C1;2
b .Œ0;T� �

R
dIRn/ satisfy (20) with '

�
T; x

� D ‰.x/ for x 2 R
d. Then, 'j

�
t; x
� � Vuj

j

�
t; x
�

for

u:j� D . Ou1� ; : : : ; Ouj�1� ; uj�; OujC1� ; � � � ; Oun� / 2 Qn
iD1 U i

Œ0;T�, for j 2 f1; 2; : : : ; ng, with

restriction to˙Œt;T�, and for all .t; x/ 2 Œ0;T��R
d. Further, if an admissible optimal

decision process Ouj� 2 U j
Œt;T� exists, for almost all .s; ˝/ 2 Œt;T� �˝, together with

the corresponding solution Xt;xIOu
�

s , and satisfies

Ouj
s 2 arg inf

u
j
�
2U j

Œt;T�

ˇ̌
˙Œt;T�

n
Lu:j

s 'j
�
s;Xt;xIu:j

�

s

�

C gj
�
s;Xt;xIu:j

�

s ; '
�
s;Xt;xIu:j

�

s

�
;Dx'j

�
s;Xt;xIu:j

�

s

� � ��s;Xt;xIw
s ; u:j

s

��o
: (40)

Then, 'j
�
t; x
� D V Ouj

j

�
t; x
�

for j 2 f1; 2; : : : ; ng and for all .t; x/ 2 Œ0;T� � R
d.

Moreover, corresponding to the n-tuple of optimal risk-averse decisions Ou� 2Qn
iD1 U i

Œt;T�, with restriction to ˙Œt;T�, there exists a Pareto equilibrium

�
�

g1
t;T

�
�1t;T
�Ou��; �g2

t;T

�
�2t;T
�Ou��; � � � ; �gn

t;T

�
�n

t;T

�Ou�� � 2 K (41)
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such that

�
�

g1
t;T

�
�1t;T
�Ou��; �g2

t;T

�
�2t;T
�Ou��; � � � ; �gn

t;T

�
�n

t;T

�Ou�� �


 �
�

g1
t;T

�
�1t;T
�
u:1

��
; �

g2
t;T

�
�2t;T
�
u:2

��
; � � � ; �gn

t;T

�
�n

t;T

�
u:n

�� �
on K; (42)

for all t 2 Œ0;T� and for
˚
�

Target
j

�n

jD1 from L2.˝;FT ;P/.

4 Further Remarks

In this section, we briefly comment on our problem formulation (i.e., the risk-
averse decision problem of Sect. 3)—in which results from the dynamic risk analysis
implicitly constitute part of the information used in the context of the risk-averse
criteria—that requires each of the risk-averse agents to respond optimally, in the
sense of best-response correspondence, to the decisions of the other risk-averse
agents.

Notice that the notion of Pareto equilibria (w.r.t. the optimal risk sharing) in
Eqs. (37)–(39) and that of optimal preference decisions in Eq. (40) are all well-
defined concepts in the context of risk-aversion of (31), with accumulated risk-costs
of (3). Here, we remark that, for every

˚
�

Target
j

�n

jD1 from L2.�;FT ;PIR/ and for
all t 2 Œ0;T�, if there exists an n-tuple of optimal risk-averse decisions, i.e.,
Ou� 2 Qn

iD1 U i
Œt;T�, such that, for any .t; x/ 2 Œ0;T� � R

d, the FBSDEs in (9) and (15)
(cf. Eqs. (13) and (14)) admit a unique solution set

˚
Xt;xIu:j

�� ;Yj;t;xIu:j
�� ;Zj;t;xIu:j

��
�n

jD1 on
�
�;F ;F t;P

�

and

Ys;xIu
�� .!/ D �

Y1;s;xIu:1
�� .!/; Y2;s;xIu:2

�� .!/; � � � ; Yn;s;xIu:n
�� .!/

� 2 K;

P � almost ! 2 �; 8s 2 Œt;T�:

Then, verifying the above two conditions amounted to solving the stochastic target
problem, which characterizes the set of all acceptable risk-exposures, when t D
0, vis-á-vis some uncertain future costs or outcomes specified by a set of random
variables

˚
�

Target
j

�n

jD1 from L2.�;FT ;PIR/.
On other hand, assume that the exact information about �Target

j 2 L2.�;FT ;PIR/,
for j D 1; 2; : : : ; n, are not known, but we know that such information can be
obtained from the following allocation

R D
Xn

jD1 ˛j�
Target
j ;
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where R 2 L2.�;FT ;PIR/ is assumed to be a-priorly known; and
Pn

jD1 ˛j D 1,
for some ˛j � 0, j D 1; 2; : : : ; n. Furthermore, if there exists an n-tuple of optimal
decisions, i.e., Ou� 2 Qn

iD1 U i
Œt;T�, for the risk-averse agents, then we can introduce the

set of optimally allocated risk-exposures as follows:

A0.R/ D
(
�
�

g1
0;T

�
�10;T

�Ou��; �g2
0;T

�
�20;T

�Ou��; � � � ; �gn
0;T

�
�n
0;T

�Ou�� � 2 K
ˇ̌
ˇ

R D
Xn

jD1 ˛j�
Target
j 2 L2.�;FT ;PIR/ and

Xn

jD1 ˛j D 1;

with ˛j � 0; j D 1; 2; : : : ; n

)

;

which provides further useful information to characterize all Pareto equilibria
(of optimal risk allocations) w.r.t. the risk-averse agents.

Appendix: Proofs

In this section, we give the proofs for the main results.

Proof of Proposition 1 Notice that m and � are bounded and Lipschitz continuous
w.r.t. .t; x/ 2 Œ0;T� � R

d and uniformly for u 2 Qn
iD1 Ui. Then, for any .t; x/ 2

Œ0;T��R
d and u:j� , for j D 1; 2; : : : ; n, are progressively measurable processes, there

always exists a unique path-wise solution Xt;xIu:j
�� 2 S2

�
t;TIRd

�
for the forward

SDE in (9). On the other hand, consider the following BSDEs,

�d OYj;t;xIu:j
�

s D gj
�
s;Xt;xIu:j

�

s ; OYj;t;xIu:j
�

s ;Zj;t;xIu:j
�

s

�
ds � Zj;t;xIu:j

�

s dBs;

j D 1; 2; : : : ; n; (43)

where

OYjIt;xIu:j
�

T D
Z T

t
cj
�
�;Xt;xIu:j

�

� ; uj
�

�
d� C‰j.X

t;xIu:j
�

T /:

From Lemma 2, Eq. (43) admits unique solutions
� NYj;t;xIu:j

�� ;Zj;t;xIu:j
��
�
, for j D

1; 2; : : : ; n, in S2
�
t;TIR��H2

�
t;TIRd

�
. Furthermore, if we introduce the following

Yj;t;xIu:j
�

s D OYj;t;xIu:j
�

s �
Z s

t
cj
�
�;Xt;xIu:j

�

� ; uj
�

�
d�; s 2 Œt;T�:



18 G.K. Befekadu et al.

Then, the family of forward of the BSDEs in (14) holds with
�
Yj;t;xIu:j

�� ;Zj;t;xIu:j
��
�
,

for j D 1; 2; : : : ; n. Moreover, we also observe that Yj;t;xIu:j
�

t , for j D 1; 2; : : : ; n, are
deterministic. This completes the proof of Proposition 1. �
Proof of Proposition 2 For any r 2 Œt;T�, with t 2 Œ0;T�, we consider the following
probability space

�
�;F ;P

� � jF t
r

�
; fF tg� and notice that � is deterministic under this

probability space. Then, for any s � r, there exist progressively measurable process
 such that

uj
s.�/ D  .�;B�^s.�//;

D  .s; NB�^s.�/C Br.�//; (44)

where NBs D Bs � Br is a standard d-dimensional Brownian motion. Note that n
tuple u:j� , for j D 1; 2; : : : ; n, are F t

r-adapted processes, then we have the following
restriction w.r.t. †Œt;T�

�
�;F ; fF tg;P� � jF t

r

�
.!0/;B�; u:j�

� 2 †Œt;T�; j D 1; 2; : : : ; n; (45)

where !0 2 �0 such that �0 2 F , with P.�0/ D 1. Furthermore, noting Lemma 2,
if we work under the probability space

�
�0;F ;P

� � jF t
r

��
, then the statement in (34)

holds P- almost surely. This completes the proof of Proposition 2. �
Proof of Proposition 4 Suppose there exists an n-tuple of optimal risk-averse deci-
sions .Ou1� ; Ou2� ; : : : ; Oun� / 2 Qn

iD1 U i
Œ0;T� satisfying the statements in Definition 3.

Assume that .t; x/ 2 Œ0;T� � R
d is fixed. For any uj� 2 U j

Œt;T�, restricted to †Œt;T�,

for j 2 f1; 2; : : : ; ng, we consider an R
n-valued process '

�
s;Xt;xIu:j

�

s

�
, with

u:j� D . Ou1� ; : : : ; Ouj�1� ; uj�; OujC1� ; � � � ; Oun� / 2
Yn

iD1 U
i
Œt;T�;

which is restricted to †Œt;T�. Then, using Itô integral formula, we can evaluate the

difference between 'j
�
T;Xt;xIu:j

�

T

�
and 'j

�
t; x
�
, for j D 1; 2; : : : ; n, as follows:4

'j
�
T;Xt;xIu:j

�

T

��'j
�
t; x
� D

Z T

t

h @
@t
'j
�
s;Xt;xIu:j

�

s

�C Lu:j

t 'j
�
s;Xt;xIu:j

�

s

�i
ds

C
Z T

t
Dx'j

�
s;Xt;xIu:j

�

s

� � �.s;Xt;xIu:j
�

s ; u:j
s /dBs: (46)

Using (20), we further obtain the following

4Notice that '
�
t; x
� 2 C1;2

b .Œ0;T�� R
dIRn/:
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@

@t
'j
�
s;Xt;xIu:j

�

s

�C Lu:j

t 'j
�
s;Xt;xIu:j

�

s

�

C gj
�
s;Xt;xIu:j

�

s ; '
�
s;Xt;xIu:j

�

s

�
;Dx'j

�
s;Xt;xIu:j

�

s

� � �.s;Xt;xIu:j
�

s ; u:j
s /
� � 0;

j D 1; 2; : : : ; n: (47)

Furthermore, if we combine (46) and (47), then we obtain

'j
�
t; x
� � ‰j

�
Xt;xIu:j

�

T

�

C
Z T

t
gj
�
s;Xt;xIu:j

�

s ; '.s;Xt;xIu:j
�

s /;Dx'j.s;X
t;xIu:j

�

s / � �.s;Xt;xIu:j
�

s ; u:j
s /
�
ds

�
Z T

t
Dx'j.s;X

t;xIu:j
�

s / � �.s;Xt;xIu:j
�

s ; u:j
s /dBs: (48)

Define Zj;t;xIu:j
�

s D Dx'j.s;Xt;xIu:j
�

s / � �.s;Xt;xIu:j
�

s ; .Ous; vs//, for s 2 Œt;T� and for j D
1; 2; : : : ; n, then 'j

�
t; x
� � Yj;t;xIu:j

�

t follows, where .Yj;t;xIu:j
�� ;Zj;t;xIu:j

�� / is a solution
to BSDE in (14) (cf. Eq. (13)). As a result of this, we have

'j
�
t; x
� � Vuj

j

�
t; x
�
; j D 1; 2; : : : ; n:

Moreover, if there exists at least one Ouj satisfying (40), i.e., if Ouj is a measurable
selector of

arg max
n
Lu:j

s 'j
�
s;Xt;xIu:j

�

s

�

C gj
�
s;Xt;xIu:j

�

s ; '
�
s;Xt;xIu:j

�

s

�
;Dx'j

�
s;Xt;xIu:j

�

s

� � ��s;Xt;xIw
s ; u:j

s

��o
;

j 2 f1; 2; : : : ; ng:

Then, for uj� D Ouj�, for j 2 f1; 2; : : : ; ng, the inequality in (48) becomes an equality,
i.e.,

'j.t; x/ D V Ouj

j

�
t; x
�

� Yj;t;xIOu:j
�

T ; j 2 f1; 2; : : : ; ng; (cf. Eqs. (11) and (13)):

Note that the corresponding path-wise solution Xt;xIOu
�

s is progressively measurable,
since Ou� 2 Qn

iD1 U i
Œ0;T� is also restricted to †Œt;T�.

On the other hand, noting the relations in (11) and (13), for any .t; x/ 2 Œ0;T� �
R

n, with restriction to †Œt;T�, define the following utility function over the closed
convex set K
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K 3 ��g1
t;T

�
�1t;T
�
u:1

��
; �

g2
t;T

�
�2t;T
�
u:2

��
; � � � ; �gn

t;T

�
�n

t;T

�
u:n

�� �

! J .u/ D
Xn

iD1 	
i�

gi
t;T

�
� i

t;T

�
u:i
��
;

where 	 i > 0, for i D 1; 2; : : : ; n.
Note that the utility function J .u/ D Pn

i 	
i�

gi
t;T

�
� i

t;T

�
u:i
��

satisfies the following
property

Xn

iD1 	
i�

gi
t;T

�
� i

t;T

�Qu:i
��
<
Xn

iD1 	
i�

gi
t;T

�
� i

t;T

�
u:i
��
;

i.e., J .Qu/ < J .u/, whenever

�
�

g1
t;T

�
�1t;T
�Qu:1��; �g2

t;T

�
�2t;T
�Qu:2��; � � � ; �gn

t;T

�
�n

t;T

�Qu:n
�� �


 �
�

g1
t;T

�
�1t;T
�
u:1

��
; �

g2
t;T

�
�2t;T
�
u:2

��
; � � � ; �gn

t;T

�
�n

t;T

�
u:n

�� �
;

w.r.t. the class of admissible control processes
Qn

iD1 U i
Œt;T� (cf. Eqs. (36)–(39)). Then,

from the Arrow–Barankin–Blackwell theorem (e.g., see [3]), for all t 2 Œ0;T�, one
can see that the set in
(
�
�

g1
t;T

�
�1t;T
�
u:1

��
; �

g2
t;T

�
�2t;T
�
u:2

��
; � � � ; �gn

t;T

�
�n

t;T

�
u:n

�� � 2 K
ˇ̌
ˇ

9	 i > 0; i D 1; 2; : : : ; n; min
Xn

iD1 	
i�

gi
t;T

�
� i

t;T

�
u:i
�� D

Xn

iD1 	
i�

gi
t;T

�
� i

t;T

�Ou:i
��
)

is dense in the set of all Pareto equilibria. This further implies that, for any choice
of 	 i > 0, i D 1; 2; : : : ; n, the minimizer J .Ou/ D Pn

i 	
i�

gi
0;T

�
� i
0;T

�Ou:i
��

over K
satisfies the Pareto equilibrium condition w.r.t. some n-tuple of optimal risk-averse
decisions .Ou1� ; Ou2� ; : : : ; Oun� / 2 Qn

iD1 U i
Œ0;T�. This completes the proof of Proposition 4.

�
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Optimal Packing of General Ellipses in a Circle

Frank J. Kampas, János D. Pintér, and Ignacio Castillo

Abstract Our objective is to find the optimal non-overlapping packing of a
collection of general (non-identical) ellipses, with respect to a container circle
that has minimal radius. Following the review of selected topical literature, we
introduce a model development approach based on using embedded Lagrange
multipliers. Our optimization model has been implemented using the computing
system Mathematica. We present illustrative numerical results using the LGO
nonlinear (global and local) optimization software package linked to Mathematica.
Our study shows that the Lagrangian modeling approach combined with nonlinear
optimization tools can effectively handle challenging ellipse packing problems with
hundreds of decision variables and non-convex constraints.

Keywords General ellipse packings in circles • Model development using
embedded lagrange multipliers • Global-Local optimization • LGO solver suite •
Numerical results

1 Introduction and Review

1.1 Circle Packings

A general circle packing is an optimized non-overlapping arrangement of n arbitrary
size circles inside a container such as a circle, square, or a general rectangle. The
quality of the packing can be measured by the area of the container. The circle
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packing problem—in particular, the case of packing identical circles—has received
considerable attention. Due to the very special, inherently symmetric structure of
this problem-type, studies dealing with identical circle packings often aim to prove
the optimality of the configurations found, either theoretically or with the help of
rigorous computational approaches: consult, e.g., Szabó et al. [1–3], Markót [4]
with numerous related references.

The packing of general circle collections is a significant generalization of the
uniform case, since now each packed circle can have a different (in principle,
arbitrary) radius. Generally speaking, provably optimal configurations can be found
only for very small model instances (n � 4). Therefore, studies dealing with general
circle packings typically introduce and apply (generic or specifically tailored) global
scope solution strategies, without the proven optimality of the results obtained. For
details, cf., e.g., Riskin et al. [5], Castillo and Sim [6], Pintér and Kampas [7, 8],
Kampas and Pintér [9], Addis et al. [10], Castillo et al. [11], Grosso et al. [12].

For reviews of uniform and general circle packing problems and some applica-
tions, we refer to Castillo et al. [11], Hifi and M’Hallah [13]. For more general
object packing problems and a range of important real-world applications consult,
e.g., [14, 15].

1.2 Ellipse Packings

Ellipse packing problems have received relatively little attention in the literature
so far. Finding a high quality packing of ellipses that can have arbitrary size and
orientation is a difficult computational problem. The key challenge is the modeling
and enforcement of the no-overlap constraints, since the overlap between two
ellipses depends on the orientation of the ellipses, in addition to the location of
their centers.

Here we briefly review some related literature. Although not all works cited are
aimed at handling the exact same problem-type addressed by our present study, they
serve to illustrate the significant difficulty of ellipse (related) packing problems.

First, we mention an exact result that deals with the densest packing of just n D 2
non-overlapping congruent ellipses in a square. In this case, for all real numbers r in
[0, 1], Gensane and Honvault [16] analytically describe the densest packing of two
ellipses with aspect ratio r.

Birgin et al. [17] study the problem of packing sets of identical circles within an
optimized ellipse. The basic challenge here is the closed formula based calculation
to compute the distance of an arbitrary point to the boundary of the containing
ellipse. The authors note that—even when considering only identical size circles—
the resulting models are hard nonlinear programming problems. In order to seek for
globally optimized solutions, Birgin et al. propose stochastic multi-start and lattice-
based search strategies.
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Litvinchev et al. [18] find optimized packings of “circular-like” objects in a
rectangular container. They propose a binary linear programming (BLP) model
formulation based on a grid that approximates the container, and then consider
the nodes of the grid as potential positions for assigning centers of the packed
objects. The resulting BLP problem is solved using the commercial software
package CPLEX. Numerical results related to packing circles, ellipses, rhombuses,
and octagons are presented. Let us point out that, given the grid approximation
of the container, this approach can only handle the packing of uniform sized and
orthogonally oriented ellipses inside a container.

Galiev and Lisafina [19] study the problem of packing identical, orthogonally
oriented ellipses inside a rectangular container. Similarly to Litvinchev et al. [18],
BLP model formulations are proposed using a grid that approximates the container.
Two special cases regarding the orientation of the ellipses are considered: (a) the
major axes of all ellipses are parallel to the x or y axis, and (b) the major axes
of some of the ellipses are parallel to the x axis and others to the y axis. A
heuristic algorithm based on the BLP model is proposed, with illustrative numerical
results.

Kallrath and Rebennack [20] address the problem of packing ellipses of arbitrary
size and orientation into an optimized rectangle of minimal area. The packing model
formulation is introduced as a cutting problem. The key idea of this work is to
use separating lines to ensure that the ellipses do not overlap with each other.
For problem-instances with n � 14 ellipses, the authors present feasible solutions
that are globally optimal subject to the finite arithmetic precision of the global
solvers at hand. However, these authors also report that for n > 14 ellipses none of
the local or global nonlinear optimization solver engines available in conjunction
with the GAMS modeling environment could compute even a feasible solution.
Therefore, they propose heuristic approaches: the ellipses are added sequentially
to an optimized rectangular container. This approach allows computing visually
plausible, high-quality solutions for up to 100 ellipses.

Uhler and Wright [21] study the problem of packing arbitrary sized ellipsoids
into an ellipsoidal container so as to minimize a measure of overlap between
ellipsoids. A model formulation and two local scope solution approaches are
discussed: one approach for the general case, and a simpler approach for the special
case in which all ellipsoids are in fact spheres. The authors describe and illustrate
their computational experience using chromosome organization in the human cell
nucleus as the motivating application.

Based also on the references cited, we argue that ellipse packings have a number
of important practical applications, with a view also towards the future use of such
models.

Here we study the optimized non-overlapping packing of a set of ellipses with
arbitrary size and orientation parameters inside a circular container. Hence, our
objective is to minimize the radius of the container circle.
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Packing ellipses into a circle requires (a) determination of the maximal distance
from the center of the circular container to each ellipse boundary, and (b) finding the
minimal distance between all pairs of the ellipses. The first requirement is necessary
to determine the radius of the circumscribing circle that will be minimized.
The second requirement is necessary to prevent the ellipses from overlapping.
Explicit (closed form) analytical formulas for these quantities are expected to be
cumbersome to use. Therefore, following Kampas et al. [22], our approach involves
the determination of these quantities by embedding optimization calculations (using
Lagrange multipliers) into the overall optimization strategy. In this Lagrangian
setting, the optimization strategy to find the radius of the circumscribing circle
and to prevent ellipse overlap proceeds simultaneously towards meeting both
requirements. Our approach supports the numerical solution of the packing problem
by a single call to a suitable global optimization procedure.

While—analogously to the significantly easier case of general circle packings
studied by us and many other researchers—we cannot guarantee the theoretical
(provable) optimality of the ellipse configurations found, our solution strategy leads
to plausible and visibly high quality packings.

2 Model Formulation

The input information to the general ellipse packing problem considered here are
the semi-major and semi-minor axes of the ellipses. The decision variables are the
radius of the circumscribing circle, and the center position and orientation of each
of the packed ellipses. Secondary (induced) variables are the positions of the points
on the ellipses most distant from the center of the container circle, and the positions
of the points on one of each pair of ellipses that minimizes the value of the equation
describing the other ellipse. Other secondary variables are the embedded Lagrange
multipliers used to determine those points. All secondary variables are all implicitly
determined by the primary decision variables.

The model constraints belong to two groups. The first group uses the secondary
variables to represent the constraints that keep the ellipses inside the circum-
scribing circle and prevent them from overlapping. The second group represents
the equations generated by the embedded Lagrange multiplier conditions. In our
global optimization strategy, the calculations to prevent ellipse overlaps proceed
simultaneously with the minimization of the radius of the circumscribing circle,
rather than performed to completion at each major iteration step towards the
minimization of the radius.

In order to present our optimization model, we introduce its components.
Equation e(a, b, xc, yc, � ; x, y) describes an ellipse with semi-major and semi-minor
axes a and b, centered at fxc, ycg, and rotated counterclockwise by angle � . To be
more specific, function e(a, b, xc, yc, � ; x, y) is negative for all points (x, y) inside the
ellipse, zero for all points on the ellipse boundary, and positive for all points outside
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the ellipse. Recall that a and b are given input parameters, while xc , yc and � are
decision variables for each ellipse i: the corresponding variables will be denoted by
xci , yci and � i for i D 1 , : : : , n. Equation e(a, b, xc, yc, � ; x, y) can be obtained by
transforming the equation of a circle with radius 1, centered at (0, 0), as follows.

e .a; b; xc; yc; � I x; y/ D
�

cos .�/ .x � xc/

a
C sin .�/ .y � yc/

a

	2

C
�

cos .�/ .y � yc/

b
� sin .�/ .x � xc/

b

	2
� 1 D 0 (1)

Note that in Eq. (1) the coordinate system is rotated by an angle of –� , which is
equivalent to rotating the given ellipse by an angle � around its center (xci, yci).

We assume that the container circle is centered at the origin: hence, its radius
must be at least the maximum value of

p
x2 C y2 that can be obtained by

considering all points (x, y) of the packed ellipses. The point on an ellipse with
the maximal value of x2 C y2 is clearly the same as the point that maximizesp

x2 C y2 for the ellipse. In order to determine this point, we introduce the notation
f (x, y) D e(a, b, xc, yc, � ; x, y). Then the point in question can be determined using
the Lagrange multiplier method by differentiating x2 C y2 D� � f (x, y) with respect
to x, y, and �. Applying this method, we obtain the equations

8
<

:

2x D � � fx .x; y/
2y D � � fy .x; y/

f .x; y/ D 0

9
=

;
: (2)

In (2), fx(x, y) is the derivative of f (x, y) with respect to x and fy(x, y) is the
derivative of f (x, y) with respect to y. The next equation follows simply from the
requirement that the point sought lies on the ellipse boundary. Note that � can be
eliminated from the first two equations: hence, we obtain

y � fx .x; y/ D x � fy .x; y/ : (3)

Based on Eq. (3), the slope of the ellipse boundary at point (x, y) is given by

fx .x; y/

fy .x; y/
D x

y
: (4)

Since the slope of the line from (0, 0) to (x, y) is y/x, (4) gives the inverse of the
slope of the ellipse at the point most distant from the origin. In other words—as one
would expect—the line from the origin to the most distant point on the ellipse is
orthogonal to the tangent of the ellipse at that point. It will be useful to set up and
evaluate equations for the derivatives of the ellipse equation e(x, y) with respect to x
and y. These derivatives are given as follows:
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de .x; y/

dx
D d Œe .a; b; xc; yc; � I x; y/�

dx

D 2

a2b2



b2 .x � xc/ cos .�/2 � �

a2 � b2
�
.y � yc/ cos .�/ sin .�/C a2 .x � xc/ sin .�/2

�
I

(5)

de .x; y/

dy
D d Œe .a; b; xc; yc; � I x; y/�

dy

D 2

a2b2



a2 .y � yc/ cos .�/2 � �

a2 � b2
�
.x � xc/ cos .�/ sin .�/C b2 .y � yc/ sin .�/2

�
:

(6)

The next equations shown below can be used to find the points that are closest to and
most distant from the origin. To obtain the most distant point, � must be positive,
since increasing the size of the ellipse increases the value of the maximum distance
only, assuming that the center of the circle (0, 0) does not lie inside the ellipse. If
this is the case, then other ellipses outside that particular ellipse will determine the
radius of the container circle.

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂:

2x D � � de.x;y/
dx .a; b; xc; yc; � I x; y/

2y D � � de.x;y/
dy .a; b; xc; yc; � I x; y/

e .a; b; xc; yc; � I x; y/ D 0

9
>>>>=

>>>>;

: (7)

To illustrate these formulas by an example, consider the ellipse defined by
equation e(1.25, 0.75, 1, 2,	 /3; x, y). The point (x, y) on the boundary of this ellipse
that is most distant from the origin can be found by solving the system of Eq. (7): the
numerical solution is (x, y) D (1.608, 3.092), with the corresponding distance valuep

x2 C y2 D 3:485:

In the optimization framework, the requirement regarding the positive sign of the
multiplier � will be enforced by setting search region bounds, rather than specifying
a constraint. Moreover, the value of the maximum distance from the origin is
obtained by evaluating

p
x2 C y2 at the solution of Eq. (7) as done above. Note

also that the system of Eq. (7) may fail, if the ellipse in question contains the origin.
To handle this potential issue, constraints are added to the optimization strategy in
order to keep the maximum distance point further from the origin than the minimum
of the semi-major or semi-minor axis of the ellipse in question. To illustrate a partial
configuration, a packed ellipse, a possible container circle, and the unique point of
their intersection are displayed in Fig. 1. (Of course, the intersection will be empty
for ellipses inside the container circle.)

Proceeding now to express the prevention of ellipse overlaps, all pairs of packed
ellipses are prevented from overlapping by requiring that the minimum value of
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Fig. 1 A packed ellipse, the
container circle, and their
intersection point

0 1 2 3 4
0

1

2

3

4

the ellipse equation for the first ellipse (ellipse i), for any point on the second
ellipse (ellipse j), is greater than a judiciously set (sufficiently small) "� 0. This
requirement will also be met applying the embedded Lagrange multiplier method:
the complete details are presented in Kampas et al. [22]. The equations shown
below determine the point on ellipse j that maximizes or minimizes the value of
the function describing ellipse i. In the case considered here, � must be negative
to obtain the minimum. As indicated before, in the optimization strategy the
requirement on the sign of � will be enforced by setting its search region bounds
rather than specifying an additional constraint.

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

de.x;y/
dx .ai; bi; xci; yci; �iI x; y/ D � � de.x;y/

dx

�
aj; bj; xcj; ycj; �jI x; y

�

de.x;y/
dy .ai; bi; xci; yci; �iI x; y/ D � � de.x;y/

dy

�
aj; bj; xcj; ycj; �jI x; y

�

e
�
aj; bj; xcj; ycj; �jI x; y

� D 0

9
>>>>=

>>>>;

: (8)

In the optimization strategy, �i are the Lagrange multipliers in the equation for
finding the point (xmi, ymi) on ellipse i that is most distant from the origin. The
calculation is restricted to maximization by restricting the sign of �i to be positive.
The square of the radius of the container circle obviously has to satisfy the relation
rc2 � xm2

i C ym2
i for all i. In addition, �i , j are the Lagrange multipliers in the

equations for finding the point (xj , i, yj , i) on ellipse j that minimizes the value of
the equation describing ellipse i: this calculation is restricted to minimization by
requiring the value of �i , j to be negative. To summarize the model development
steps described above, we obtain the following optimization model for the case of n
ellipses.
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minimize rc

subject to rc2 � xm2
i C ym2

i for i D 1; : : : ; n

xm2
i C ym2

i � min .ai; bi/
2 for i D 1; : : : ; n

2 � xmi D �i � de.x;y/
dx .ai; bi; xci; yci; �iI xmi; ymi/ for i D 1; : : : ; n

2 � ymi D �i � de.x;y/
dy .ai; bi; xci; yci; �iI xmi; ymi/ for i D 1; : : : ; n

e .ai; bi; xci; yci; �iI xmi; ymi/ D 0 for i D 1; : : : ; n

de.x;y/
dx

�
ai; bi; xci; yci; �iI xj;i; yj;i

� D �j;i � de.x;y/
dx

�
aj; bj; xcj; ycj; �jI xj;i; yj;i

�

for i D 1; : : : ; n � 1; j D i C 1; : : : ; n

de.x;y/
dy

�
ai; bi; xci; yci; �iI xj;i; yj;i

� D �j;i � de.x;y/
dy

�
aj; bj; xcj; ycj; �jI xj;i; yj;i

�

for i D 1; : : : ; n � 1; j D i C 1; : : : ; n

e
�
aj; bj; xcj; ycj; �jI xj;i; yj;i

� D 0 for i D 1; : : : ; n � 1; j D i C 1; : : : ; n

e
�
ai; bi; xci; yci; �iI xj;i; yj;i

� � " for i D 1; : : : ; n � 1; j D i C 1; : : : ; n

lxci � xci � uxci for i D 1; : : : ; n

lyci � yci � uyci for i D 1; : : : ; n

�	 � �i � 	 for i D 1; : : : ; n

lxmi � xmi � uxmi for i D 1; : : : ; n

lymi � ymi � uymi for i D 1; : : : ; n

lxj;i � xj;i � uxj;i for i D 1; : : : ; n � 1; j D i C 1; : : : ; n

lyj;i � yj;i � uyj;i for i D 1; : : : ; n � 1; j D i C 1; : : : ; n

0 � �i � 2 � u�i for i D 1; : : : ; n

2 � l�j;i � �j;i � 0 for i D 1; : : : ; n � 1; j D i C 1; : : : ; n
(9)

In the model (9) the symbols l. and u. denote lower and upper bounds for the
variable sandwiched between the corresponding pair of inequalities. Note that these
bounds are defined for each ellipse packing instance, in order to facilitate achieving
feasible solutions.

The optimization model (9) has 1 C 6n C 3(n � 1)2 decision variables and, in
addition to the bound constraints that are imposed on all decision variables,
5n C 4(n � 1)2 nonlinear constraints: the latter constraints are all non-convex.
Therefore model (9) represents a highly nonlinear optimization problem-class in
which both the number of variables and constraints increase quadratically as a
function of n. As an example, the packing problem-instance with n D 10 ellipses
leads to a model with 304 decision variables, corresponding bound constraints,
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and 374 non-convex constraints. Based on these observations, we conjecture that
the computational difficulty of model (9) will rapidly increase as a function of the
number of packed ellipses.

3 Numerical Global Optimization for Ellipse Packings

3.1 Global Optimization: A Review of Basic Concepts

The objective of global optimization (GO) is to find the “absolutely best” solution of
multi-extremal optimization problems. Most object packing problems are provably
multi-modal, often possessing a large number of local optima. Without going
into technical details, a simple inspection of the relations leading to the problem
statement (9) leads to the conclusion that general ellipse packings lead to a difficult
GO model-class.

As we already noted, one cannot expect to find analytical solutions to general
object packing problems—even when considering far less complicated models than
the one presented here. Therefore, we have been applying numerical optimization
to handle various object configuration problems. For detailed discussions with
numerical examples, cf., e.g., Pintér [23], Stortelder et al. [24], Pintér and Kampas
[7, 8], Kampas and Pintér [9], Castillo et al. [11], Pintér and Kampas [25].

In this study, we apply the Lipschitz Global Optimizer (LGO) solver system
for global and local (nonlinear) optimization, in its implementation linked to the
computing system Mathematica.

3.2 The LGO Solver System for Global-Local Optimization

The LGO software package is aimed at finding the numerical global optimum
of model instances from a very general class of continuous global optimization
problems. The core LGO solver system with implementations for various modeling
platforms has been described by Pintér [26–31], Pintér et al. [32]. For more recent
development work including benchmarking studies and some applications, consult,
e.g., Çaĝlayan and Pintér [33], Pintér and Horváth [34], Pintér and Kampas [25],
Pintér [35]. Further technical details are discussed by the current LGO documenta-
tion [36], which also includes a rather extensive list of topical references. Therefore
here we present only a brief summary of LGO features and implementation details
pertinent to our study.

The core (Fortran or C/CCC/C# compiler platform based) LGO solver suite
integrates several derivative-free global and local optimization strategies, without
requiring higher-order (gradient or Hessian) information. The strategies referred
to include regularly spaced sampling, as a global pre-solver (RSS); a branch-
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and-bound global search method (BB); global adaptive random search (GARS);
multi-start based global random search (MS); and local search (LS). According to
extensive numerical experience, in complicated GO models, MS (with added LS
solver phases) often finds the best numerical solution. For this reason, MS is the
recommended default LGO solver option that has been used also in our present
work.

LGO is available for a number of model development platforms as a professional
(commercial) solver option. Similarly to some of our circle packing studies, the
ellipse packing model has been implemented in Mathematica (Wolfram [37]):
therefore, we use here the LGO implementation linked to Mathematica. This
implementation, with the software product name MathOptimizer Professional, has
been used also in our more recent benchmarking studies: cf., e.g., Pintér and Kampas
[25, 38].

The MathOptimizer Professional software package combines Mathematica’s
optimization model development capabilities with the external LGO solver suite. To
illustrate this aspect, we note that the entire ellipse packing model and the LGO call
for its solution consist only of a few dozen carefully developed Mathematica code
lines, including code to display the configurations found. Let us also note that LGO
solver performance compares favorably to the corresponding optimization features
of Mathematica: this aspect becomes increasingly important when solving difficult
GO problems like the packing models discussed here. MathOptimizer Professional
can be used to handle sizeable models, with thousands of variables and general
constraints.

4 Illustrative Numerical Results

To our best knowledge, there are no previously studied model instances available for
the general ellipse packing problem considered in our present study. The problem
instances summarized in Table 1 are taken from Kallrath and Rebennack [20],
recalling that their work was aimed at packing ellipses in optimized rectangles. This
choice of test instances allows comparisons regarding the packing density of rect-
angular vs. circular packings—not in a competitive sense, since the configuration
geometries are different.

Our calculations were (mostly) performed on a PC with a quad-core Intel i7
processor running at 3.7 GHz, with 16 GBytes of RAM, using MathOptimizer
Professional running in conjunction with Mathematica version 10, and using the
GCC [39] Fortran compiler to automatically generate the files for using LGO.

Table 2 summarizes the computational results, noting that CPU times are
reasonable even for the last two largest problem instances. Table 2 also displays
information regarding the packing fraction and maximal constraint violation of the
solutions found.
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Table 1 Ellipse packing instances

Test case (ai, bi) Total area to be packed

ax2a (2.0,1.5), (1.5,1.0) 14.13717
ax2b (2.0,1.5), (1.8,1.4) 17.34159
ax3a ax2aC (1.0,0.8) 16.65044
ax3b ax2bC (0.8,0.7) 19.10088
ax4a ax3aC (0.9,0.75) 18.77102
ax4b ax3bC (1.1,1.0) 22.55664
ax5a ax4aC (0.8,0.6) 20.27898
ax5b ax4bC (0.9,0.8) 24.81858
ax6 ax5aC (0.7,0.3) 20.93872
ax11 (2.0,1.5), (1.8,1.5), (1.6,1.5), (1.5,1.2), (1.3,1.0), (1.2,0.9),

(1.1,0.8), (1.0,0.75), (0.9,0.6), (0.8,0.5), (0.7,0.3)
47.31239

ax14 7 � (1.0,0.75)C 7 � (0.5,0.375) 20.6167

Table 2 Ellipse packing results

Test case
Packing
radius rc

Area of optimized
container Packing fraction Time (s)

Max constraint
violation

ax2a 2.49873 19.61501 0.72073 0.5 8E-9
ax2b 2.9 26.42079 0.65636 0.6 1E-9
ax3a 2.56257 20.63010 0.80709 1.0 5E-10
ax3b 2.9 26.42079 0.72295 1.0 5E-10
ax4a 2.74972 23.75346 0.79024 3.1 4E-9
ax4b 2.98985 28.08333 0.80320 3.0 5E-9
ax5a 2.84911 25.50165 0.79520 7.6 3E-12
ax5b 3.26085 33.40500 0.74296 7.7 9E-9
ax6 2.89647 26.35651 0.79444 20.0 4E-9
ax11 4.35292 59.52662 0.79481 31.0 5E-10
ax14 2.864 25.76890 0.80006 106.0 1E-7

In Table 3, we summarize our results for general ellipse packings in an optimized
circle next to the best solutions found for packings in an optimized rectangle given
by Kallrath and Rebennack [20]. As mentioned, the configuration geometries are
rather different given the different optimized containers. However, we still get an
overall impression regarding the range of packing densities that can be achieved for
rectangular and circular containers, at least for our model instances.

Illustrative packing configurations for the two largest problem instances ax11
and ax14 are given in Figs. 2 and 3, respectively. The points shown on the ellipses
and optimizer container are the points that serve to prevent ellipse overlap and to
determine the radius of the container circle. Notice that to prevent the overlap of a
pair of ellipses, there is only a point on one of the two ellipse boundaries, not on
both.
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Table 3 Packing results in a circle and in a rectangle

Circular container Rectangular container

Test case
Area of optimized
container Packing fraction

Area of optimized
container Packing fraction

ax2a 19.61501 0.72073 18.00000 0.78540
ax2b 26.42079 0.65636 22.23152 0.78005
ax3a 20.63010 0.80709 21.38577 0.77858
ax3b 26.42079 0.72295 25.22467 0.75723
ax4a 23.75346 0.79024 23.18708 0.80955
ax4b 28.08333 0.80320 28.54159 0.79031
ax5a 25.50165 0.79520 25.29557 0.80168
ax5b 33.40500 0.74296 31.28873 0.79321
ax6 26.35651 0.79444 25.51043 0.82079
ax11 59.52662 0.79481 64.59177 0.73248
ax14 25.76890 0.80006 29.65886 0.69513

Fig. 2 Packing of the ellipses given in example ax11
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Fig. 3 Packing of the ellipses given in example ax14

5 Summary and Conclusions

In this study, we present a general ellipse packing problem with respect to a circular
container with optimized radius. Our literature review illustrates the significant diffi-
culty of similar packing problems. In the global optimization strategy, the prevention
of ellipse overlaps proceeds simultaneously with the minimization of the radius of
the container circle. To solve the resulting models numerically, we use the LGO
solver system in its implementation linked to the computing system Mathematica.
Our results demonstrate that the embedded Lagrangian multipliers based modeling
approach combined with global optimization enables the computational solution
of difficult ellipse packing problems with hundreds of variables and non-convex
constraints. Preliminary research indicates that our model development approach
has the potential to handle ellipse packing problems also with respect to other types
of container sets.
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33. Çaĝlayan, M.O., Pintér, J.D.: Development and calibration of a currency trading strategy using
global optimization. J. Glob. Optim. 56, 353–371 (2013)

34. Pintér, J.D., Horváth, Z.: Integrated experimental design and nonlinear optimization to handle
computationally expensive models under resource constraints. J. Glob. Optim. 57, 191–215
(2013)

35. Pintér, J.D.: How difficult is nonlinear optimization? A practical solver tuning approach, with
illustrative results. Ann. Oper. Res. 1–23 (2017). https://doi.org/10.1007/s10479-017-2518-z.
Preprint available at www.optimization-online.org/DB_FILE/2014/06/4409.pdf

36. Pintér, J.D.: LGO – a Model Development and Solver System for Global-Local Nonlinear
Optimization, User’s Guide, Current edn. Pintér Consulting Services, Inc., Halifax (2016)

37. Wolfram Research: Mathematica (Release 11). Wolfram Research, Inc., Champaign, IL (2016)
38. Pintér, J.D., Kampas, F.J.: Getting Started with Mathoptimizer professional. Pintér Consulting

Services, Inc., Halifax (2015)
39. GCC: GCC, the GNU Compiler Collection. (2016). https://gcc.gnu.org/

https://doi.org/10.1007/s10479-017-2518-z. Preprint available at www.optimization-online.org/DB_FILE/2014/06/4409.pdf
https://gcc.gnu.org/


Column Generation Approach to the Convex
Recoloring Problem on a Tree

Sunil Chopra, Ergin Erdem, Eunseok Kim, and Sangho Shim

Abstract The convex recoloring (CR) problem is to recolor the nodes of a
colored graph at minimum number of color changes such that each color induces
a connected subgraph. We adjust to the convex recoloring problem the column
generation framework developed by Johnson et al. (Math Program 62:133–151,
1993). For the convex recoloring problem on a tree, the subproblem to generate
columns can be solved in polynomial time by a dynamic programming algorithm.
The column generation framework solves the convex recoloring problem on a tree
with a large number of colors extremely fast.

Keywords Convex recoloring problem • Phylogenetic tree • Bioinformatics •
Clustering problem • Column generation • Linear programming • Large scale
optimization • Set partition problem

1 The Convex Recoloring Problem

The convex recoloring problem on a tree was first investigated by Moran and
Snir [8]. Campêlo et al. [2] studied the associated integer programming formulation
and provided several classes of facet defining inequalities. Chopra et al. [3]
introduced an extended integer linear programming (ILP) formulation of the CR
problem on a tree and showed their formulation to be stronger than the ILP model
introduced by Campêlo et al. [2]. In this paper, we present a column generation
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approach that is shown to be computationally very effective in a category of problem
instances where the approach of Chopra et al. [3] is not very effective.

We now introduce the problem with the notation used by Campêlo et al. [2]. Let
C D f1; : : : ; kg be a set of colors and G D .V;E/ be a graph with node set V and
edge set E. A partial coloring of a graph G is a function C W V ! C [ f;g, where ;
indicates absence of color. A node v 2 V is said to be uncolored if C.v/ D ;. The
coloring C is called total if there is no uncolored node; i.e., ; 62 C.V/ where C.V/
is the image of the function C.

A colored graph is a pair .G;C/ consisting of a graph G and a coloring C of its
nodes. A total coloring C is said to be convex if, for each t 2 C, the set of nodes
with color t induces a connected subgraph of G. A convex partial coloring is a
partial coloring that can be extended to a convex total coloring by solely assigning
a color in C to each uncolored node. A good coloring is a partial coloring in which
each color induces a connected subgraph. Campêlo et al. [2] point out that every
good coloring of a graph G D .V;E/ can be extended to a convex total coloring in
O.jVj C jEj/ time.

Given a non-convex coloring of a graph, the recoloring distance is defined as the
minimum number of color changes at the colored nodes needed to obtain a convex
partial coloring [9]. This measure can be generalized to a weighted model, where
changing the color of node v costs a nonnegative weight w.v/ depending on v. This
problem can be stated as follows:

Problem 1 (Convex Recoloring (CR)) Given a partially colored graph .G;C/, an
available color set C, and a cost function w W V ! Q�0, find a convex partial
recoloring C0 that minimizes

P
v2RC.C0/ w.v/ where RC.C0/ D fv 2 V W C.v/ ¤

; and C.v/ ¤ C0.v/g is the set of nodes recolored by C0.
We note that, corresponding to any convex partial coloring that is not good there

is a good coloring with the same weight. Thus, we will consider that in the CR
problem we are interested only in finding good recolorings of the graph.

The CR problem has been shown to be NP-hard in many settings. Moran and
Snir [9] showed the problem to be NP-hard on paths. Kanj and Kratsch [5] proved
that it is NP-hard on paths even if each color appears at most twice. Moran et al. [10]
showed that computing the convex recoloring cost of a 2-colored graph is NP-hard.
Campêlo et al. [1] improved this result by showing that the unweighted uniform CR
problem is NP-hard even on 2-colored grids. For a more detailed literature review,
readers may refer to Chopra et al. [3].

The convex recoloring problem can measure the gap between phylogeny and
taxonomy [6, 7]. Figure 1 illustrates three species by three colors on the phy-
logenetic tree where each leaf node represents a homologous protein sequence.
The individuals of the tree on the left cannot be clustered into connected subtrees
of one color with traditional methods. The taxonomically labeled phylogenetic
tree depicted as a non-convex partial coloring is not concordant with the species
taxonomic assignments. If the red color at the second end node changes into green,
the phylogenetic tree can be clustered into connected subtrees depicted as a good
coloring on the right. The minimum number of color changes is the recoloring
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Fig. 1 Convex recoloring

distance that equals one in the example of the figure obtained by changing the
color of only one colored node (the second leaf node). A short recoloring distance
indicates that the phylogeny and taxonomy are close to each other.

As mentioned earlier, Chopra et al. [3] introduced an extended integer linear
programming (ILP) model of the CR problem on a tree that is superior (both
theoretically and computationally) to the conventional ILP model introduced by
Campêlo et al. [2]. While the extended formulation of Chopra et al. [3] was
computationally quite efficient when the number of colors was not large, it had some
difficulty in solving problems with a very large number of colors. In particular, they
failed in six large scale problem instances where the number of colors was about
half the number of nodes.

In this paper, we develop a column generation scheme for the CR prob-
lem on a tree by adjusting the Johnson–Mehrotra–Nemhauser column generation
framework [4], and successfully solve all the six large scale problem instances
within an hour. Our column generation scheme uses the polynomial time dynamic
programming algorithm introduced by Chopra et al. [3] to generate columns.
From our computational experiments we observe two characteristics of the column
generation approach:

– The column generation approach is extremely fast when the number of colors is
large.

– The column generation approach is extremely slow when the number of colors is
small.

Fortunately, the ILP model introduced by Chopra et al. [3] is extremely fast when
the number of colors is small. Therefore, we naturally conclude a hybrid of the two
linear programming approaches: the extended ILP model for a small number of
colors and the column generation framework for a large number of colors. It is not
too surprising that column generation does well when the number of colors is very
large. The CR problem on a tree is equivalent to the problem of partitioning a tree
into subtrees. For very large number of colors, each subtree is very small and the
coefficient matrix of the restricted master problem is very sparse. This speeds up the
column generation approach.

In Sects. 2 and 3, we introduce two linear programming approaches: the ILP
model developed by Chopra et al. [3] and the column generation framework given
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by adjusting Johnson–Mehrotra–Nemhauser framework. In Sect. 3, we also review
the linear time dynamic programming algorithm for the subproblem of our column
generation approach. In Sect. 4, we perform computational experiments over the
largest 63 problem instances provided by Chopra et al. [3] comparing the two linear
programming approaches. In Sect. 5 we summarize our findings and discuss future
work.

2 Integer Linear Programming Model for the CR Problem
on a Tree

In this section we introduce the integer linear programming (ILP) model for the
convex recoloring problem on a tree developed by Chopra et al. [3]. The convex
recoloring problem aims to minimize the number of color changes at the colored
nodes to obtain a good coloring. This is equivalent to maximizing the number of
colored nodes that do not change their color when obtaining a good coloring. We
now define the set of node variables that are used in the model. Given a set of
colors C D f1; : : : ; kg, a tree T D .V;E/, and a partial coloring C, define the node
variables x D .xut W u 2 V; t 2 C/ where xut D 1 if node u is assigned to color
t 2 C, and 0 otherwise. To express the objective function, for each u 2 V and t 2 C,
we define a constant w.u; t/, which is 1 if C.u/ D t, and is 0 otherwise. We then
employ additional variables yet which we call edge variables. An edge variable yet

for each edge e 2 E and for each color t D 1; : : : ; k takes the value 1 if both end
nodes of edge e are colored by t, and 0 otherwise. With edge variables, we use a
basic property of a tree that the number of edges equals the number of nodes minus
one.

The integer linear programming model for the CR problem on a tree developed
by Chopra et al. [3] is written as follows:

max
kX

tD1

X

u2V

w.u; t/xut

s:t:
kX

tD1
xut � 1 for u 2 V (1)

X

u2V

xut �
X

e2E

yet � 1 for t 2 C (2)

�xut C yuvt � 0

�xvt C yuvt � 0

�
for edge uv 2 E and for t 2 C (3)

xut 2 f0; 1g for u 2 V and t 2 C (4)

yet 2 f0; 1g for e 2 E and t 2 C (5)
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The ILP model is mathematically and computationally shown in Chopra et al. [3]
to dominate the conventional ILP model developed by Campêlo et al. [2]. Inequal-
ities (2) ensure that the nodes of each color t 2 C induce a connected subgraph
(subtree) of T . Inequalities (3) ensure that if an edge e D .u; v/ is assigned color
t, both nodes u and v must also be assigned to color t. The coloring corresponding
to a feasible solution of this formulation is shown in Chopra et al. [3] to be a good
coloring.

Theorem 1 (Chopra et al. [3]) x is a projection of an integer solution .x; y/ to the
formulation (1)–(5), if and only if it defines a good coloring.

The LP-relaxation (1)–(3) along with non-negativity is shown in Chopra et al. [3]
to be very strong; it ended up with integer solutions over all the 81 medium scale
problem instances provided by Campêlo et al. [2]. Note that the LP-relaxation has
O.nk/ variables and O.nk/ constraints where n D jVj and k D jCj.

3 Column Generation Framework

In this section, we develop a column generation scheme for the convex recoloring
problem by adapting the column generation framework for min-cut clustering
provided by Johnson et al. [4].

3.1 Master Problem

To define the master problem for the column generation framework, we define a
binary matrix A, each of whose columns has k C jVj elements and corresponds to
the incidence vector of a connected subtree and an indicator for the color of the
subtree. Each column .�; x/T of A thus contains two binary vectors. The length of
� is k corresponding to the number of colors and the length of x corresponds to the
number of nodes in V . If x is the incidence vector of the set of nodes of a subtree
that have a common color t, the vector � has �t D 1 corresponding to the color t,
with all other components of � being 0. As a result, .�; x/T defines the nodes in a
connected subtree and their corresponding color. If the vector � has all elements 0,
.�; x/T defines a set of uncolored nodes. The uncolored nodes do not have to induce
a connected subgraph. Given the matrix A, and a vector 1 with all components 1, we
define the master problem as follows:

Max Wz;

s:t: Az D 1;

z � 0:

where all the components of the right-hand side 1 are 1 and the objective function
W is defined as follows.
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Fig. 2 The coefficient matrix of the master problem which includes the columns indicating the
convex recoloring in Fig. 1

The objective coefficient W.�; x/ corresponding to a column .�; x/T with �t D 1

is the number of the nodes v of the subtree x for which t is the original color;
i.e., w.v; t/ D 1. If t corresponds to no color, we set w.v; t/ D 0. The objective
coefficient W.�; x/ corresponding to a column .�; x/T with �t D 1 can be evaluated
as follows:

W.�; x/ D
X

v2V

w.v; t/xv:

Note that if �t D 1, x must correspond to a connected subtree but if � D 0, x can
indicate any subset of nodes and W.�; x/ D 0. Figure 2 illustrates the coefficient
matrix of the master problem which includes the columns indicating the convex
recoloring in Fig. 1. For example, the first column .�; x/T of the coefficient matrix
indicates that three nodes d, e, and i are colored in R inducing a subtree. Since R
was the initial color of two nodes d and e among the three, the objective coefficient
corresponding to the column is W.�; x/ D 2.

Our column generation approach assumes that a subset of columns of A
(corresponding to a set of subtrees and color assigned to each) are available at each
iteration. At each iteration, a solution to the current master provides a dual variable
�t corresponding to each color t 2 C and a dual variable 	v corresponding to each
node v 2 V . These dual variables are used to generate an additional column for A,
which has the largest reduced cost for the current dual variables. We now detail the
approach used to generate an incoming column.
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3.2 The Subproblem to Generate the Optimal Subtree
in the Column Generation Framework

We now use the linear time dynamic programming algorithm introduced by Chopra
et al. [3] to introduce the column with the largest reduced cost. Given the dual
variable vectors � and 	 , the reduced cost of a column .�; x/T of A is

W.�; x/T � .�; 	/.�; x/T D
X

v2V

w.v; t/xv � �� � 	x D ��t C
X

v2V

.w.v; t/� 	v/xv;

where �; is assumed to be 0. Thus, we may generate the column .�; x/T of the largest
reduced cost

max
t2f;g[C

(

��t C max
x

(
X

v2V

.w.v; t/ � 	v/xv W x is a subtree if t ¤ ;
))

; (6)

where x is any subset of nodes if t D ;. If the largest reduced cost (6) is zero or
negative, the current basis is optimal for the master problem.

For each color t, the subtree problem to identify the subtree colored with t of the
maximum reduced cost is

max
x

(
X

v2V

.w.v; t/ � 	v/xv W x is a subtree

)

: (7)

The problem can be solved by the linear time dynamic programming algorithm
introduced by Chopra et al. [3].

Figure 3 illustrates the dynamic programming algorithm introduced by Chopra
et al. [3]. Given color t 2 C, let ai D w.i; t/ � 	i denote the values of nodes i 2 V ,
which are written in the circles representing the nodes in the figure. The dynamic
programming algorithm solves in linear time the problem to identify the maximum
subtree in the values ai; i 2 V .

Let us fix a root r 2 V arbitrarily. Such a root implicitly defines an orientation
of each edge away from the root. Let Si be the set of children of node i and pi its
parent node (undefined for the root). Let us define Ti D .Vi;Ei/ for each i 2 V
as the subtree of T rooted in i, and containing all descendant nodes of i in T and
corresponding edges. In Fig. 3, the root node r is the node at the top with value �3.

For each node i 2 V , let us define H.i/ as the maximum value of the following
problem: Find a subtree of Ti that is either empty or is rooted at i and maximizes the
sum of node values in the subtree. Furthermore, let K be the value of the maximum
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Fig. 3 Dynamic programming recursion

subtree of the tree (i.e., maximum sum of node values of a subtree of Tr). We can
write the following recursions:

H.i/ D max

8
<

:
0; ai C

X

j2Si

H.j/

9
=

;
(8)

K D max

8
<

:
0;max

i2V

0

@ai C
X

j2Si

H.j/

1

A

9
=

;
(9)

If H.i/ D 0 in the recursion, we delete node i and set Ti to be empty.
In Fig. 3, we perform the recursion upward from bottom to top. The number over

each node i 2 V is ai C P
j2Si

H.j/ in (8). We delete the nodes of values �16 and
�1 where ai C P

j2Si
H.j/ are equal to �4 and �1 and Ti are empty. Observe that

K D 24 and the maximum solution Ti is the subtree rooted at the node of value �2
and induced by the three nodes of values �2, 10, and 16.

For each color t D 1; : : : ; k, the dynamic programming algorithm generates a tree
with the maximum reduced cost. From among these subtrees (one for each color
t), a subtree of maximum reduced cost is selected as the incoming column for A.
Therefore, one iteration of column generation process takes O.nk/ time complexity.

We start our column generation approach with the identity matrix as the initial
set of columns. The identity matrix means each and every node is uncolored.
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4 Computational Results on Large Scale Phylogenetic Trees

We perform computational experiments over the 63 larger problem instances
generated by Chopra et al. [3] on the largest seven phylogenetic trees from
TreeBASE.org which are listed in Table 1. They had used the method developed by
Campêlo et al. [2] to randomly generate a total coloring according to two probability
parameters: pc D 0:005, 0:05 or 0:5, the probability of changing the color, and
pn D 0:25, 0:5 or 0:75, the probability of noise. The root of the tree is assigned to the
color 1, and in a recursive manner, the child node has the same color as its immediate
forefather with probability 1 � pc or has the next unused color with probability pc.
Therefore, large pc implies large number k of colors. After generating the coloring,
each node keeps its color with probability 1�pn, or changes its color with probability
pn. If a color change occurs, a color is selected with equal probability across the
available colors. Larger pn implies bigger optimality gap of the initial coloring.

Over the 63 large scale problem instances, we compare the performance of two
linear programming approaches: the integer linear programming model (Sect. 2) and
the column generation framework (Sect. 3). The integer linear programming model
is implemented in Python 2.7 as the language running the Python code provided by
Chopra et al. [3]. The column generation approach is implemented in Java 1.8 as
the language. Both linear programming approaches are implemented using Gurobi
7.0 as the solver and carried out on a machine with 32 GB of RAM and 4.0 GHz
processor of CPU.

Table 2 shows that for the problem instances (pc D 50%) with the largest number
of colors, the column generation (CG) approach performs much better in time and
memory than the integer linear programming (ILP) model. In particular, the column
generation approach solved within an hour all the six largest problem instances in
which the integer linear programming model introduced by Chopra et al. [3] failed
because of Out-of-Memory (OOM). For large values of k, the column generation
approach performs better and better in the ratio of the computational times as the
number jVj of the nodes grows bigger.

However, the column generation approach does not perform well when the
number of colors k is not very large. Table 3 compares the performance of the
ILP model (ILP) and the column generation approach (CG) for a variety of large

Table 1 Largest data set
from TreeBASE.org

TB-ID n

Tr69195 1838

Tr60915 2025

Tr57261 2387

Tr46272 2409

Tr73427 2632

Tr47159 4586

Tr48025 5743
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Table 2 The problem instances with the largest number k of colors

n k pn pc TimeILP (s) TimeCG (s) Ratio ILP/CG

1838 934 25 50 631.6 67.5 9.35

1838 945 50 50 1368.4 70.3 19.47

1838 919 75 50 2034.1 75.4 26.99

2025 985 25 50 894.2 71.4 12.53

2025 1007 50 50 1702.1 83.3 20.44

2025 1008 75 50 2194.5 89.8 24.43

2387 1221 25 50 2627.2 139.4 18.85

2387 1191 50 50 3210.7 148.6 21.60

2387 1214 75 50 4996.5 170.3 29.34

2409 1145 25 50 2015.9 123.2 16.36

2409 1231 50 50 4116.8 164.1 25.08

2409 1177 75 50 5914.4 161.3 36.68

2632 1314 25 50 3793.6 174.4 21.75

2632 1300 50 50 6861.2 188.0 36.49

2632 1309 75 50 >6 h 222.8 >96:95

4586 2275 25 50 >6 h 875.9 OOM in Chopra et al. [3]

4586 2248 50 50 >6 h 901.1 OOM in Chopra et al. [3]

4586 2273 75 50 OOM 1003.4 OOM in Chopra et al. [3]

5743 2854 25 50 OOM 1997.9 OOM in Chopra et al. [3]

5743 2895 50 50 OOM 2138.9 OOM in Chopra et al. [3]

5743 2867 75 50 OOM 2415.2 OOM in Chopra et al. [3]

problems with k increasing from 0.5% to 5% to 50%. Observe that the ILP model
did much better than column generation for k D 0:5% or 5% but column generation
did much better for k D 50%.

To better understand why the column generation approach does well for large k
but poorly for small or medium k, we focus on the results in Table 4. Table 4 records
the number of column generation iterations (Iter) and the average time per iteration
(RM) for solving the restricted master problem when using the column generation
approach. For problems that are not solved to optimality, Table 4 contains the results
for 6 h of running time. Observe that for large values of k, the time per iteration (RM)
when using column generation (shown as bold in Table 4) is much shorter than for
small or medium values of k. It is not so much the number of iterations but the time
per iteration that seems to be much shorter for large values of k. RM does not include
the computational time to generate a column. This implies that poor performance is
inherent to the column generation approach for small and medium values of k.

Our results indicate that the value of k has a significant impact on the sparsity
of the constraint matrix A, which in turn has a significant impact on the time per
iteration. (See Figs. 4 and 5.) When k=n is large, it is reasonable to expect that
each tree introduced as a column in A will have few non-zero entries, i.e., the
corresponding column of A will be sparse. To test this we use results from all
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Table 3 Time (s) of the ILP model (ILP) vs the column generation (CG) where TLE stands for
Time Limit Exceeded (>6 h) and OOM stands for Out-Of-Memory

jVj k ILP CG jVj k ILP CG jVj k ILP CG

.pn; pc/ D .25%; 0:5%/ .pn; pc/ D .25%; 5%/ .pn; pc/ D .25%; 50%/

1838 11 1.1 TLE 1838 114 56.6 TLE 1838 934 631.6 67.5

2025 16 2.3 TLE 2025 91 48.7 TLE 2025 985 894.2 71.4

2387 16 6.0 223.5 2387 129 120.7 TLE 2387 1221 2627.2 139.4

2409 7 1.8 TLE 2409 137 150.3 TLE 2409 1145 2015.9 123.2

2632 13 3.6 TLE 2632 126 131.5 TLE 2632 1314 3793.6 174.4

4586 24 41.0 TLE 4586 236 1024.3 TLE 4586 2275 TLE 875.9

5743 28 104.9 TLE 5743 312 2990.1 TLE 5743 2854 OOM 1997.9

.pn; pc/ D .50%; 0:5%/ .pn; pc/ D .50%; 5%/ .pn; pc/ D .50%; 50%/

1838 8 3.4 TLE 1838 87 72.5 TLE 1838 945 1368.4 70.3

2025 6 2.1 TLE 2025 101 108.3 TLE 2025 1007 1702.1 83.3

2387 22 35.1 TLE 2387 128 256.0 TLE 2387 1191 3210.7 148.6

2409 13 10.1 TLE 2409 112 214.0 TLE 2409 1231 4116.8 164.1

2632 18 36.4 TLE 2632 133 232.4 TLE 2632 1300 6861.2 188.0

4586 16 125.8 TLE 4586 228 12944.2 TLE 4586 2248 TLE 901.1

5743 29 2153.0 TLE 5743 316 TLE TLE 5743 2895 OOM 2138.9

.pn; pc/ D .75%; 0:5%/ .pn; pc/ D .75%; 5%/ .pn; pc/ D .75%; 50%/

1838 8 4.3 TLE 1838 106 452.2 TLE 1838 919 2034.1 75.4

2025 12 15.0 TLE 2025 110 728.5 TLE 2025 1008 2194.5 89.8

2387 13 43.8 TLE 2387 122 1629.1 TLE 2387 1214 4996.5 170.3

2409 12 23.9 TLE 2409 115 1764.9 TLE 2409 1177 5914.4 161.3

2632 14 65.6 TLE 2632 136 4117.6 TLE 2632 1309 TLE 222.8

4586 22 814.2 TLE 4586 228 TLE TLE 4586 2273 OOM 1003.4

5743 27 2668.4 TLE 5743 302 TLE TLE 5743 2867 OOM 2415.2

problems solved by us and run a regression between k=n as the independent variable
and the average fraction of non-zeroes in a column of A. From the data in Fig. 4, we
find the relationship to be as follows:

Average fraction of non-zeroes/column D 0:33 � 0:675 � .k=n/

The R2 for this regression is 0.76 and the p-value for the coefficient of k=n is
2:19 � 10�20. Both indicate that the relationship is statistically significant and the
average fraction of non-zeroes in a column of A decreases as k=n increases. We then
run a regression between the average fraction of non-zeroes in A as the independent
variable and average time per iteration as the dependent variable. Our hypothesis is
that the denser the columns of A become, the longer it takes per iteration. This is
validated by our regression from the data in Fig. 5 which find the relationship to be

Average time per iteration D 0:17C 3:20 � Average fraction of non-zeroes/column
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Fig. 4 (X-axis: k=n, Y-axis: Fraction of non-zeroes per column) Regression shows a significant
negative association between the two. As k=n increases, the fraction of non-zeroes/column
decreases

Fig. 5 (X-axis: Fraction of non-zeroes per column, Y-axis: average time per iteration) Regression
shows a significant positive association between the two. As the fraction of non-zeroes/column
increases, the average time per iteration also increases
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Table 4 The number of iterations (Iter) and the average time of restricted master (RM) per
iteration

jVj k Iter RM jVj k Iter RM jVj k Iter RM

.pn; pc/ D .25%; 0:5%/ .pn; pc/ D .25%; 5%/ .pn; pc/ D .25%; 50%/

1838 11 3458 6.257 1838 114 10,241 2.107 1838 934 2928 0.004
2025 16 3497 6.182 2025 91 4953 4.362 2025 985 2969 0.004
2387 16 1878 0.117 2387 129 3083 7.009 2387 1221 3835 0.005
2409 7 3817 5.661 2409 137 3434 6.288 2409 1145 3659 0.005
2632 13 4025 5.372 2632 126 9378 2.301 2632 1314 4092 0.005
4586 24 4078 5.300 4586 236 5185 4.157 4586 2275 6465 0.009
5743 28 4743 4.554 5743 312 3365 6.407 5743 2854 9064 0.012
.pn; pc/ D .50%; 0:5%/ .pn; pc/ D .50%; 5%/ .pn; pc/ D .50%; 50%/

1838 8 2653 8.146 1838 87 11,021 1.959 1838 945 3096 0.004
2025 6 3486 6.199 2025 101 3320 6.510 2025 1007 3223 0.005
2387 22 2130 10.147 2387 128 5398 4.000 2387 1191 4091 0.005
2409 13 2972 7.288 2409 112 8513 2.535 2409 1231 4199 0.005
2632 18 2847 7.592 2632 133 6869 3.142 2632 1300 4411 0.006
4586 16 3556 6.103 4586 228 4662 4.626 4586 2248 6730 0.010
5743 29 3806 5.677 5743 316 2100 10.287 5743 2895 9691 0.013
.pn; pc/ D .75%; 0:5%/ .pn; pc/ D .75%; 5%/ .pn; pc/ D .75%; 50%/

1838 8 3443 6.276 1838 106 17,361 1.243 1838 919 3464 0.004
2025 12 4032 5.357 2025 110 15,174 1.422 2025 1008 3460 0.005
2387 13 2554 8.459 2387 122 7880 2.740 2387 1214 4579 0.006
2409 12 3448 6.268 2409 115 13,035 1.655 2409 1177 4529 0.005
2632 14 2858 7.561 2632 136 4656 4.636 2632 1309 4933 0.006
4586 22 2867 7.535 4586 228 5446 3.957 4586 2273 7101 0.010
5743 27 2685 8.056 5743 302 2629 8.202 5743 2867 11,120 0.013

The R2 for this regression is 0.61 and the p-value for the coefficient of Average
fraction of non-zeroes/column is 3:82� 10�14. Both indicate that the relationship is
statistically significant and the average time per iteration increases as the columns
of A become denser. Thus, for large values of k (relative to n), column generation is
an effective approach because the time per iteration is small. The time per iteration
is small because each tree introduced through column generation has few edges
resulting in sparse columns of A with few non-zero entries.

Fortunately, as our results in Table 3 indicate, the strengths of the ILP approach
and the column generation approach complement each other. Thus, a combination
of the two approaches can be used depending upon the number of colors k relative
to the number of nodes in the tree.
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5 Conclusion and Future Work

In this paper we have modified the Johnson–Mehrotra–Nemhauser [4] approach
using column generation to solve the convex recoloring problem on a tree. The
column generation approach does very well for large values of k but performs poorly
(relative to the ILP approach of Chopra et al. [3]) for small or medium values of k.
It seems reasonable to change the approach used based on the value of k. More
computational experiments would allow the identification of a suitable threshold for
k based on which the approach used can be changed.

We may improve the implementation of our column generation approach in the
following three points:

1. Our column generation approach began with the identity matrix as the coefficient
matrix of the initial restricted master problem.

2. Each restricted master problem is added by a generated column and the number
of columns grows proportional to the number of iterations.

3. Each restricted master problem is solved from scratch.

To improve Point 1, we need to develop a heuristic to identify a near-optimal
solution. It will allow us to speed up the column generation approach starting with
the initial coefficient matrix including near optimal solution. To improve Points 2
and 3, we may perform the warm start and the revised simplex. In addition, we see
that the integer solutions to the restricted master problem are highly degenerate. We
may speed up by changing the rule of choosing the entering column.
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A Variational Inequality Formulation
of a Migration Model with Random Data

Baasansuren Jadamba and Fabio Raciti

Abstract In this note, we consider a simple model of populations distribution
based on utility functions theory. The novelty of our approach is the use of a
recent theory of random variational inequalities in refining a previous model by
allowing random fluctuations in the data of the problem. We first present the
random equilibrium conditions and prove their equivalence to a parametric random
variational inequality. Then, we provide a formulation of the problem in a Lebesgue
space with a probability measure. Finally, we work out a simple example, which can
be solved exactly and allows us to test an approximation procedure.

Keywords Migration modeling • Equilibrium theory • Uncertainty modeling

1 Introduction

Migration is a ubiquitous phenomenon which has characterized the history of
humanity from its origins. The reader interested in having a general view of the
history and development of mathematical models of migration can refer to [1].

The purpose of our work is to incorporate uncertain data in an equilibrium model
of migration based on variational inequalities. The variational inequality approach
focuses on the concept of equilibrium distribution and models the attractiveness of
each location using a corresponding utility function (see, e.g., [2]). We use the tools
put forward in [3, 4] and further developed in [5–7] to investigate the random version
of a deterministic model treated in Nagurney [9].
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This paper is structured as follows. In the following section, we present the
parametric variational inequality model of a population distribution with random
data. In Sect. 3, we generate the integral formulation of the parametric variational
inequality and specify the operator structure. In the last section, we reformulate the
variational inequality in order to apply an approximation procedure and work out a
simple example.

2 A Simple Model of a Population Distribution

The purpose of this model is to assign to each geographic location the ideal
(equilibrium) population, without describing the details of migration flows and
travel costs. The locations are modeled as k nodes of a network and constitute a
closed economy. The utility function of each node i, ui, quantifies the attractiveness
of location i and is a function of all populations. The utility function at location k
is nonincreasing with respect to pk. This means that when the population increases
at a location, that location becomes less appealing. Moreover, the general economic
situation at each node can fluctuate according to some random events, hence our
utility functions must incorporate this randomness. Thus, denote with p 2 R

k

the population vector, with .�;A;P/ a probability space, where � is the sample
space and A is a sigma-algebra on �. The utility function vector is u W � �
R

k ! R
k; u.!; p/ D .u1.!; p/; : : : ; uk.!; p//: We assume that u is a Carathéodory

function, i.e. u.!; �/ is continuous and u.�; p/ is measurable, with respect to the � -
algebra A on �.

If we assume no births and no deaths, the population distribution must sum up to
a fixed quantity D. To take into account fluctuations due to births or deaths (possibly
due to epidemic diseases), we can consider D as a random variable, D W � ! R.
Thus, for all ! 2 �, we can define the set of the feasible populations as the random
simplex:

K.!/ D f p 2 R
k W pi � 0; 8i;

kX

iD1
pi D D.!/ g:

If we assume that migrants are rational and that migration will continue until no
individual has interest to move, an equilibrium concept can be defined as follows.

Definition 1 A random vector p�.!/ 2 K.!/ is called an equilibrium if for all
i D 1; : : : ; k and for P-almost every ! 2 �:

ui.!; p
�.!//

 D �.!/ if p�i .!/ > 0
� �.!/ if p�i .!/ D 0:

(1)

A useful interpretation of this definition is given by the following lemma whose
proof we omit here.
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Lemma 1 Condition (1) is equivalent to: p�.!/ 2 K.!/ and for P-almost every
! 2 ˝ and 8r; s 2 1; : : : ; k:

ur.!; p
�.!// < us.!; p

�.!// H) p�r .!/ D 0: (2)

The equilibrium conditions previously introduced can be reformulated as a varia-
tional inequality, as shown in the following theorem.

Theorem 1 Equilibrium conditions as in Definition (1) are equivalent to the
variational inequality problem: Find p�.!/ 2 K.!/ such that P-a.s. and 8p 2
K.!/:

�u.!; p�.!//> .p � p�.!// � 0: (3)

Proof Fix ! 2 � and assume that (1) holds true, and let I D f1; : : : ; kg. Moreover,
let: A D fi 2 I W ui.!; p�.!// D �.!/g; B D fi 2 I W ui.!; p�.!// < �.!/g;
where we did not specify the dependence of A and B on ! to keep notation simple.
For all p 2 K.!/, we have:

�
kX

iD1
ui.!; p

�.!//.pi � p�i .!//

D �
X

i2A

ui.!; p
�.!//.pi � p�i .!// �

X

i2B

ui.!; p
�.!//.pi � p�i .!//

� �
X

i2A

�.!/.pi � p�i .!// �
X

i2B

�.!/.pi � p�i .!// D �.!/.D.!/ � D.!// D 0:

Hence (1) ) (3).
Fix! and assume now that (3) holds. If we had that 9r; s 2 I with ur.!; p�.!// <

us.!; p�.!// and pr.!/ > 0, consider the following feasible population vector:

pi D
8
<

:

p�i .!/; i ¤ r; s
0; i D r
p�r .!/C p�s .!/; i D s:

We thus get:

�
kX

iD1
ui.!; p

�.!//.pi � p�i .!//

D � ur.!; p
�.!//.�p�r .!/ � us.!; p

�.!//.p�r .!//C p�s .!/ � p�s .!//

D p�r .!/.ur.!; p
�.!// � us.!; p

�.!/ // < 0;

which contradicts (3). ut
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Remark 1 The existence of solutions of the previous variational inequality (3), for
each ! 2 �, is ensured by the standard theory, since u.!; �/ is continuous and
K.!/ � R

k is compact (see [8], Theorem 3.1).

3 Operator Structure and Integral Formulation

We assume the following form of the utility function:

�u.!; p/ D S.!/G.p/C H.p/ � b � R.!/c (4)

where: S 2 L1.�;P/, such that 0 < s � S.!/ � s, P-a.s., R 2 L2.�;P/,
b; c 2 R

k, G;H 2 R
k�k. The modeling is done by allowing that randomness is

embodied in the utility function as follows. We sum a completely deterministic part
which is represented by H and b, and another part S.!/G.p/ and R.!/c where
the random functions S and R act as random perturbations, or “modulations.” To
apply the theory developed in [3, 4], we require the following strong and uniform
monotonicity assumption on �u:

9˛ > 0 W . u.!; q/ � u.!; p/ />.p � q/ � ˛kp � qk2; 8p; q 2 R
k; P � a.s. (5)

We recall that the operator Nu W p.!/ 7! u.!; p.!// is called the superposition
(or Nemitsky) operator and, under our assumptions, it is easy to show that it maps
L2.�;P;Rk/ in L2.�;P;Rk/. The family of closed and convex sets K.!/, ! 2 �,
generates a subset of L2 as follows:

KP D f V 2 L2.�;P;Rk/ W V.!/ � 0; V1.!/C : : :C Vk.!/ D D.!/; P-a.s. g:

We can now consider the integral variational inequality: Find V� 2 KP s.t. 8V 2 KP:

Z

�

ŒS.!/G.V�.!//C H.V�.!/�>.V.!/ � V�.!// dP.!/

�
Z

�

.b C R.!/c/>.V.!/ � V�.!// dP.!/ (6)

The existence of a solution of (6) is ensured by the following theorem.

Theorem 2 Let u.!; p/ be a Carathéodory function whose structure is given by (4)
and let the uniform monotonicity condition (5) be satisfied. Then, variational
inequality (6) admits a unique solution.

Proof Let us observe that KP is a closed and convex subset of L2.�;P;Rk/.
The set KP is also bounded, hence weakly compact. Moreover, the Nemitsky
operator Nu W L2.�;P;Rn/ ! L2.�;P;Rk/ is continuous. Finally, the strong
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uniform monotonicity of u implies the strong monotonicity of Nu. Therefore, we
can apply the Lions-Stampacchia theorem (see, e.g., [8], Theorem 2.1) and obtain
the existence and uniqueness of the solution of (6). ut

4 Image Space Formulation and an Example

According to the general theory described in [3, 4], to carry out an approximation
procedure we have to reformulate (6) in the image space of the random variables
involved. Let s WD S.!/; r WD R.!/; t WD D.!/ and consider the vector
.s; r; t/ 2 R

3 along with the probability P induced from P in R
3. We assume that the

random variables r; s; t are independent with densities 'S.s/; 'R.r/; 'D.t/. Hence,
dP.r; s; t/ D 'S.s/'R.r/'D.t/ds dr dt : Consider now the set:

KP D f v 2 L2.R3;P;Rk/ W v.s; r; t/ � 0;

kX

iD1
vk.s; r; t/ D t; P � a.s.g:

We are now in a position to formulate the variational inequality in the image space:
Find Ou 2 KP such that 8v 2 KP

sZ

s

1Z

0

1Z

0

ŒsG.Ou.s; r; t//CH.Ou.s; r; t//�>.v.s; r; t/�Ou.s; r; t//'S.s/'R.r/'D.t/ds dr dt

�
Z s

s

Z 1

0

Z 1

0

.b C rc/>.v.s; r; t/ � Ou.s; r; t//'S.s/'R.r/'D.t/ds dr dt: (7)

Variational inequality (7) is now ready to be approximated using the procedure
described in [3, 4] which also allows computing the approximate expectations of
the solution. For the reader’s convenience we recall the approximation procedure.

Let us start with a discretization of the space X WD L2.R3;P;Rk/ and introduce a
sequence f	ngn of the support � WD Œ0;1/� Œs; s�� RC of the probability measure
P induced by the random variables R; S;D. Thus, let 	n WD .	R

n ; 	
S
n ; 	

D
n /, where

	R
n WD .r0n; : : : ; r

NR
n

n /; 	S
n WD .s0n; : : : ; s

NS
n

n /; 	
D
n WD .t0n; : : : ; t

ND
n

n /

0 D r0n < r1n < : : : < r
NR

n
n D n

s D s0n < s1n < : : : < s
NS

n
n D s

0 D t0n < t1n < : : : < t
ND

n
n D n



60 B. Jadamba and F. Raciti

j	R
n j WD maxfrj

n � rj�1
n W j D 1; : : : ; nNR

n g ! 0 .n ! 1/

j	S
n j WD maxfsl

n � sl�1
n W l D 1; : : : ; nNS

n g ! 0 .n ! 1/

j	D
n j WD maxfth

n � th�1
n W h D 1; : : : ; nND

n g ! 0 .n ! 1/ :

These partitions give rise to the exhausting sequence �n of subsets of � , where
each �n is given by the finite disjoint union of the intervals:

In
jlh WD Œrj�1

n ; rj
n/ � Œsl�1

n ; sl
n/ � Œth�1

n ; th
n/;

For each n 2 N, let us consider the space of the R
k-valued simple functions

(k 2 N) on �n, extended by zero outside of �n:

Xk
n WD fvn W vn.r; s; t/ D

X

j

X

l

X

h

vn
jlh 1In

jlh
.r; s; t/; vn

jlh 2 R
kg;

where 1I denotes the f0; 1g-valued characteristic function of a subset I.
To approximate an arbitrary function w 2 L2.R3;P;R/ we employ the mean

value-truncation operator �n
0 associated with the partition 	n given by:

�n
0w WD

X

j

X

l

X

h

.�n
jlhw/ 1In

jlh
; (8)

where

�n
jlhw WD 1

P.In
jlh/

Z

In
jlh

v.y/ dP.y/ if P.In
jlh/ > 0:

Analogously, for an L2 vector function v D .v1; : : : ; vk/, we define �n
0v WD

.�n
0v1; : : : ; �

n
0vk/. The following lemma can be proven:

Lemma 2 The linear operator �n
0 W L2.R3;P;Rk/ ! L2.R3;P;Rk/is bounded with

k�n
0k D 1 and satisfies �n

0 ! 1 pointwise in L2.R3;P;Rk/.
In order to construct approximation for

KP WD fv 2 L2.R3;P;Rk/ W v � 0;

kX

iD1
vi.r; s; t/ D t;P � a.s.g

we introduce the orthogonal projector q W .r; s; t/ 2 R
3 7! t 2 R and let, for each

elementary quadrangle In
jlh,

qn
jlh D .�n

jlhq/ 2 R; .�n
0q/ D

X

jlh

qn
jlh1In

jlh
2 Xn:
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Thus, we arrive at the following sequence of convex, closed sets

Kn
P

WD fv 2 Xk
n W v � 0; Ivn

jlh � qn
jlh; 8j; l; hg: (9)

where I denotes the identity matrix of dimension k. Note that the sets Kn
P

are of
polyhedral type. Furthermore, in order to approximate the random variables R and
S, we introduce

�n D
NR

nX

jD1
rj�1

n 1
Œr

j�1
n ;r

j
n/

2 Xn; �n D
NS

nX

lD1
rl�1

n 1Œrl�1
n ;rl

n/
2 Xn:

Thus, we can now consider, 8n 2 N, the following substitute problem:
Find Oun 2 Kn

P
such that, 8vn 2 Kn

P
:

Z

Rd
f�n.y/ŒGOun.y/�

>Œvn.y/ � Oun.y/�C ŒH Oun.y/�
>Œvn.y/ � Oun.y/�gdP.y/

�
Z

Rd
.b C �n.y/c/

>Œvn.y/ � Oun.y/�dP.y/ :

(10)

Once the partition is fixed, the above integrals can be written as follows:

X

jlh

Z

In
jlh

f�n.y/ŒGOun.y/�
>Œvn.y/ � Oun.y/�C ŒH Oun.y/�

>Œvn.y/ � Oun.y/�gdP.y/

�
Z

In
jlh

.b C �n.y/c/
>Œvn.y/ � Oun.y/�dP.y/;

which, according to the notation introduced previously reads as:

X

jlh

fsl�1
n ŒGOun

jlh.y/�
>Œvn

jlh.y/ � Oun
jlh.y/�C ŒHun

jlh.y/�
>Œvn

jlh.y/ � Oun
jlh.y/� g P.In

jlh/

�
X

jlh

f.b C rj�1
n c/>Œvn

jlh.y/ � Oun
jlh.y/�P.I

n
jlh/

:

We can choose a test function vn 2 Kn
P

which is equal to Oun except for a given
cell In

jlh, so that, for each n, the substitute problem (10) splits in a finite number of
variational inequalities on R

k:
8n 2 N;8j; l; h; find Oun

jlh 2 Kn
jlh such that 8vn

jlh 2 Kn
jlh

Œ QGn
l Oun

jlh�
T Œvn

jlh � Oun
jlh� � ŒQcn

j �Œv
n
jlh � Oun

jlh� (11)
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where

Kn
jlh WD fvn

jlh 2 R
kC W I vn

jlh D qn
jlhg:

QGn
l WD sl�1

n G C H; Qcn
j D b C rj�1

n c:

We can then reconstruct the step-function solution of (10) as:

Oun D
X

j

X

l

X

h

Oun
jlh1In

jlh
2 Xk

n:

We can prove the following approximation result along the same lines as in [3, 4].

Theorem 3 As n ! 1, the solutions Oun of the substitute problems (10) converge
strongly in L2.R3;P;Rk/ to the unique solution of (7).

The functions Oun can be used to compute approximate mean values of Ou as it is
shown in the following example:

Example 1 We consider the case of 3 locations where both the utility functions
and the total population are affected by random perturbations. More precisely, the
utility functions are perturbed by the nonnegative random variable s while the total
population is distributed according to the (nonnegative) random variable t:

�u1.s; p/ D 3sp1�12; �u2.s; p/ D sp1C2sp2�6; �u3.s; p/ D sp1Csp2C4sp3�12
and

K.t/ D fp 2 R
3C W p1 C p2 C p3 D tg:

According to the notation of Sect. 3 we have

G D
2

4
3 0 0

1 2 0

1 1 4

3

5 ; �b D Œ�12;�6;�12�>; H D 0; c D Œ0; 0; 0�>:

The parametric variational inequality reads as: 8s; t, find p�.s; t/ such that, 8p 2
K.s; t/:

� u1.s; t; p
�.s; t//.p1 � p�1 .s; t// � u2.s; t; p

�.s; t//.p2 � p�2 .s; t//

� u3.s; t; p
�.s; t//.p3 � p�3 .s; t// � 0 (12)

It is possible to solve this variational inequality exactly. We use a non-iterative
method (see [10]) to find the solution of (12) which is given by


. 4t
9

C 1
s ;

4t
9

� 2
s ;

t
9

C 1
s / if s � 9

2t
. 2
3
t; 0; 1

3
t/ if s � 9

2t :
(13)
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Table 1 Mean value of p D .p1; p2; p3/

N1 D N2 D 100 N1 D N2 D 200 N1 D N2 D 400 Exact

hp1i 1.6222 1.6219 1.6218 1.62186

hp2i 0.088679 0.089235 0.089513 0.089612

hp3i 0.7891 0.78882 0.78868 0.788527

We can now compute its expected value for some particular distributions.
Assume, for instance, that t is uniformly distributed in the interval Œ2; 3� and s is
uniformly distributed in Œ 3

2
; 9
4
�. Let D WD Œ2; 3� � Œ 3

2
; 9
4
�. We then compute

EŒq1� D
“

D

q1.s; t/dPs dPt D 4 log
3

2
; EŒq2� D 8 ln

2

3
C 10

3
; EŒq3� D 4 ln

3

2
� 5

6
:

We can now apply our discretization procedure and compare various approximations
with the above exact expectations. We choose a discretization of the parameters
domain D D Œ2; 3��� 3

2
; 9
4

�
using N1�N2 grid points and solve the problem for each

pair .t.i/; s.j// using an extragradient method. Then, we evaluate the mean value
of p by using its probability distribution functions. As we see from Table 1, the
approximate mean value of p D .p1; p2; p3/ is really close to the exact value that is
computed from the analytical solution.
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Abstract This work develops a fast and reliable computational framework for the
inverse problem of identifying variable parameters in abstract mixed variational
problems. One of the main contributions of this work is a thorough derivation of
efficient computation schemes for the evaluation of the gradient and the Hessian of
the output least-squares (OLS) functional. The derivation of all the formulas is given
in continuous as well as discrete setting. Detailed numerical results for different
classes of problems are presented.

Keywords Inverse problems • Elasticity imaging • Stoke’s equation • Fourth-
order boundary value problem • Regularization • Output least-squares • First-
order adjoint method • Second-order adjoint method

1 Introduction

The primary objective of this work is to study the inverse problem of parameter
identification in mixed variational problems by employing the output least-squares
(OLS) formulation. The main drawback of using an OLS-based approach for
inverse problems is the evaluation of the derivatives of the OLS objective which
rely on the derivatives of the parameter-to-solution map and are computationally
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expensive to evaluate. In the literature, adjoint methods have been used for some
inverse problems for reducing this computational cost of computing the derivatives
of the OLS functional. In this work, we derive new first-order and second-order
adjoint methods for the inverse problem of parameter identification in general
mixed variational problems. We apply our results to three different classes of
problems. To be specific, we identify variables parameters in nearly incompressible
elasticity, nearly incompressible Stoke’s equations, and fourth-order boundary value
problems.

The contents of this paper are organized in five sections. In Sect. 2, we introduce
the inverse problem in an abstract setting and give a general existence result for
the corresponding OLS formulation. In Sect. 3, we present a thorough derivation of
the first-order adjoint approach for the computation of the first-order derivative of
the OLS functional. We also present a second-order adjoint approach and one of its
analogues for the evaluation of the second-order derivative of the OLS functional.
Section 4 presents a detailed discretization procedure and gives schemes for the
gradient and the Hessian computation. Numerical examples are given in Sect. 5.

2 Parameter Identification

Let V and Q be Hilbert spaces and let B be a Banach space. Let A be a nonempty,
closed, and convex subset of B. Let a W B � V � V ! R be a trilinear map which is
symmetric with respect to the second and the third arguments. Let b W V �Q ! R be
a bilinear map, let c W Q � Q ! R be a symmetric bilinear map, and let m W V ! R

be a linear and continuous map. We assume that there are strictly positive constants
�1; �2; &1; &2; and �0 such that for every ` 2 A; p; q 2 Q; and Nu; Nv 2 V; we have

a.`; Nv; Nv/ � �1k Nvk2; (1a)

ja.`; Nu; Nv/j � �2k`kkNukk Nvk; (1b)

c.q; q/ � &1kqk2; (1c)

jc.p; q/j � &2kpkkqk; (1d)

jb. Nv; q/j � �0k Nvkkqk: (1e)

Given ` 2 A; the mixed variational problem seeks .Nu; p/ 2 V � Q such that

a.`; Nu; Nv/C b. Nv; p/ D m. Nv/; for every Nv 2 V; (2a)

b.Nu; q/ � c.p; q/ D 0; for every q 2 Q: (2b)

In view of the coercivity and the continuity of a.�; �; �/ and c.�; �/; the Lax-
Milgram lemma ensures that for every ` 2 A; there exists a unique u.`/ D
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.Nu.`/; p.`// 2 W WD V � Q satisfying (2). That is, for every ` 2 A; the parameter-
to-solution map ` ! .Nu.`/; p.`// is well-defined and single-valued.

We are interested in the inverse problem of identifying ` 2 A for which a solution
.Nu; p/ of (2) is closest, in some norm, to a given measurement .Nz; Oz/ of .Nu; p/: To
study this inverse problem in an optimization framework, we introduce the following
output least-squares (OLS, for short) functional

J.`/ WD 1

2
ku.`/ � zk2W D 1

2
kNu.`/ � Nzk2V C 1

2
kp.`/ � Ozk2Q ; (3)

where z D .Nz; Oz/ is the measured data and u.`/ D .Nu.`/; p.`// solves (2).
Some other formulations for this inverse problem are given in [2, 5, 8–10].
Due to the known ill-posedness of inverse problems, we shall consider the

following regularized optimization problem: Find ` 2 A by solving

min
`2A

J�.`/ WD 1

2
kNu.`/ � Nzk2V C 1

2
kp.`/ � Ozk2Q C �R.`/; (4)

where, given a Hilbert space H, R W H ! R is a regularizer, � > 0 is a regularization
parameter, u.`/ WD .Nu.`/; p.`// is the unique solution of (2) that corresponds to
the coefficient `, and z D .Nz; Oz/ is the measured data. Throughout this work, for
simplicity we assume that R is twice differentiable.

We have the following existence result:

Theorem 1 Assume that the Hilbert space H is compactly embedded into the
space B, A � H is nonempty, closed, and convex, the map R is convex, lower-
semicontinuous and there exists ˛ > 0 such that R.`/ � ˛k`k2H, for every ` 2 A.
Then (4) has a nonempty solution set.

Proof Since J�.`/ � 0 for every ` 2 A; there exists a minimizing sequence f`ng
in A such that limn!1 J�.`n/ D inffJ�.`/j ` 2 Ag; confirming that f`ng remains
bounded in H: Therefore, we can extract a subsequence converging weakly in H
and due to the compact embedding of H in B, strongly converging in B. Keeping
the same notation for subsequences as well, let `n converge to some Ò 2 A: For the
corresponding un D .Nun; pn/; we have

a.`n; Nun; Nv/C b. Nv; pn/ D m. Nv/; for every Nv 2 V;

b.Nun; q/ � c.pn; q/ D 0; for every q 2 Q:

The above mixed variational problem confirms that fung remain bounded in W and
hence there is a subsequence converging weakly to some Ou. By rearranging the terms
in the above mixed variational problem, it can be shown that Ou D Ou. Ò/. Furthermore,
using the imposed coercivity (see (1)), it follows that in fact fung converges to Ou D
Ou. Ò/ strongly.
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Finally, the continuity of the norm and lower-semicontinuity of R yield

J�. Ò/ D 1

2
kOu. Ò/ � zk2 C �R. Ò/

� lim
n!1

1

2
kun.`/ � zk2 C lim inf

n!1 �R.`n/

� lim inf
n!1


1

2
kun.`/ � zk2 C �R.`n/

�
D inf fJ�.`/ W ` 2 Ag ;

confirming that Ò is a solution of (4). The proof is complete.
We conclude this section with the following derivative formula (see [10]):

Theorem 2 For each ` in the interior of A, u D .Nu.`/; p.`// is infinitely differen-
tiable at `: The first derivative ıu D .ı Nu; ıp/ D .DNu.`/ı`;Dp.`/ı`/ is the unique
solution of the mixed variational problem:

a.`; ı Nu; Nv/C b. Nv; ıp/ D �a.ı`; Nu; Nv/; for every Nv 2 V; (5a)

b.ı Nu; q/ � c.ıp; q/ D 0; for every q 2 Q: (5b)

3 Derivative Formulae

We now give a first-order adjoint method for the computation of the first-order
derivative of the regularized OLS, and two second-order adjoint methods for the
computation of its second-order derivative. Some of the most recent developments
of the first-order adjoint methods are given in [1, 7, 11–17, 19] whereas second-order
adjoint methods can be found in [3, 4, 6, 18, 20].

3.1 First-order Adjoint Method

We recall that the regularized OLS functional is given by

J�.`/ D 1

2
kNu.`/ � Nzk2V C 1

2
kp.`/ � Ozk2Q C �R.`/:

By the chain rule, the derivative of J� at ` 2 A in any direction ı` is given by

DJ�.`/.ı`/ D hDNu.`/.ı`/; Nu.`/ � Nzi C hDp.`/.ı`/; p.`/ � Ozi C �DR.`/.ı`/;

where Du.`/.ı`/ D .DNu.`/.ı`/;Dp.`/.ı`// is the derivative of the coefficient-to-
solution map u and DR.`/.ı`/ is the derivative of the regularizer R, both computed
at ` in the direction ı`:
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For an arbitrary v D . Nv; q/ 2 W; define the functional L� W B � W ! R by

L�.`; v/ D J�.`/C a.`; Nu; Nv/C b. Nv; p/C b.Nu; q/ � c.p; q/ � m. Nv/:

Since u.`/ D .Nu.`/; p.`// is the solution of (2), we have

L�.`; v/ D J�.`/; for every v 2 W;

and hence for every v 2 W, the following identity holds for any direction ı`:

@`L�.`; v/ .ı`/ D DJ�.`/ .ı`/ : (6)

The key idea of the adjoint method is to choose v in a way to avoid a direct
computation of ıu D Du.`/.ı`/: To get an insight into such a choice for v, we use
the chain rule to obtain

@`L�.`; v/ .ı`/ D hDNu.`/.ı`/; Nu � Nzi C hDp.`/.ı`/; p � Ozi C �DR.`/.ı`/

C a.ı`; Nu; Nv/C a.`;DNu.`/.ı`/; Nv/C b. Nv;Dp.`/.ı`//

C b.DNu.`/.ı`/; q/ � c.Dp.`/.ı`/; q/: (7)

For ` 2 A, let w.`/ D . Nw.`/; pw.`// be the unique solution of the adjoint mixed
variational problem

a.`; Nw; Nv/C b. Nv; pw/ D hNz � Nu; Nvi ; for every Nv 2 V; (8a)

b. Nw; q/ � c.pw; q/ D hOz � p; qi ; for every q 2 Q; (8b)

where .Nu; p/ solves (2) for the given ` and .Nz; Oz/ is the given data.
Take v D . Nw; pw/ in (7), and use the symmetry of a and c and the fact that w

solves (8), to get

@`L�.`;w/ .ı`/ D hDNu.`/.ı`/; Nu � Nzi C hDp.`/.ı`/; p � Ozi C �DR.`/.ı`/

C a.ı`; Nu; Nw/C a.`;DNu.`/.ı`/; Nw/C b. Nw;Dp.`/.ı`//

C b.DNu.`/.ı`/; pw/ � c.Dp.`/.ı`/; pw/

D hDNu.`/.ı`/; Nu � Nzi C hDp.`/.ı`/; p � Ozi C �DR.`/.ı`/C a.ı`; Nu; Nw/
C a.`; Nw;DNu.`/.ı`//C b.DNu.`/.ı`/; pw/C b. Nw;Dp.`/.ı`// � c.pw;Dp.`/.ı`//

D hDNu.`/.ı`/; Nu � Nzi C hDp.`/.ı`/; p � Ozi C �DR.`/.ı`/C a.ı`; Nu; Nw/
C hNz � Nu;DNu.`/.ı`/i C hOz � p;Dp.`/.ı`/i
D �DR.`/.ı`/C a.ı`; Nu; Nw/;
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which, in view of (6), yields the formula for the first-order derivative of J� :

DJ�.`/ .ı`/ D �DR.`/.ı`/C a.ı`; Nu; Nw/: (9)

Summarizing, we obtain the following scheme to compute DJ�.`/ .ı`/ W
1. Compute u.`/ D .Nu.`/; p.`// by solving the mixed variational problem (2).
2. Compute w.`/ D . Nw.`/; pw.`// by solving the adjoint problem (8).
3. Compute DJ�.`/ .ı`/ by using (9).

3.2 Second-Order Adjoint Method

We now give a second-order adjoint method for the computation of the second-order
derivative of the OLS functional. The objective of the second-order adjoint approach
is to give a formula for the second-order derivative that does not involve the second-
order derivative of the parameter-to-solution map u: The key idea of the second-
order method is to compute the derivative ıu directly by using its characterization
given through (5) while the computation of the second-order derivative ı2u of u is
avoided by the strategy of the first-order adjoint method.

For any v D . Nv; q/ 2 W, and for a fixed direction ı`2, we define

L�.`; v/ WD DJ�.`/.ı`2/C a.`;DNu.`/.ı`2/; Nv/
C b. Nv;Dp.`/.ı`2//C b.DNu.`/.ı`2/; q/ � c.Dp.`/.ı`2/; q/C a.ı`2; Nu; Nv/
D hDNu.`/.ı`2/; Nu � Nzi C hDp.`/.ı`2/; p � Ozi C �DR.`/.ı`2/C a.`;DNu.`/.ı`2/; Nv/
C b. Nv;Dp.`/.ı`2//C b.DNu.`/.ı`2/; q/ � c.Dp.`/.ı`2/; q/C a.ı`2; Nu; Nv/: (10)

By the definition of L� , for every v 2 W; and for every direction ı`1; we have

@`L�.`; v/.ı`1/ D D2J�.`/.ı`1; ı`2/: (11)

Computing the right-hand side of the above identity using (10), we obtain

@`L�.`; v/.ı`1/ D ˝
D2 Nu.`/.ı`1; ı`2/; Nu � Nz˛C hDNu.`/.ı`2/;DNu.`/.ı`1/i

C ˝
D2p.`/.ı`1; ı`2/; p � Oz˛C hDp.`/.ı`2/;Dp.`/.ı`1/i C �D2R.`/.ı`1; ı`2/

C a.ı`1;DNu.`/.ı`2/; Nv/C a.`;D2 Nu.`/.ı`1; ı`2/; Nv/C b. Nv;D2p.`/.ı`1; ı`2//

C b.D2 Nu.`/.ı`1; ı`2/; q/ � c.D2p.`/.ı`1; ı`2/; q/C a.ı`2;DNu.`/.ı`1/; Nv/:

Let w.`/ D . Nw.`/; pw.`// be the solution of (8). By taking v D . Nw; pw/ in the above
formula, and using the symmetry of a and c, we obtain
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@`L�.`;w/.ı`1/ D ˝
D2 Nu.`/.ı`1; ı`2/; Nu � Nz˛C hDNu.`/.ı`2/;DNu.`/.ı`1/i

C ˝
D2p.`/.ı`1; ı`2/; p � Oz˛C hDp.`/.ı`2/;Dp.`/.ı`1/i C �D2R.`/.ı`1; ı`2/

C a.ı`1;DNu.`/.ı`2/; Nw/C a.`;D2 Nu.`/.ı`1; ı`2/; Nw/C b. Nw;D2p.`/.ı`1; ı`2//

C b.D2 Nu.`/.ı`1; ı`2/; pw/ � c.D2p.`/.ı`1; ı`2/; pw/C a.ı`2;DNu.`/.ı`1/; Nw/
D ˝

D2 Nu.`/.ı`1; ı`2/; Nu � Nz˛C hDNu.`/.ı`2/;DNu.`/.ı`1/i
C ˝

D2p.`/.ı`1; ı`2/; p � Oz˛C hDp.`/.ı`2/;Dp.`/.ı`1/i C �D2R.`/.ı`1; ı`2/

C a.ı`1;DNu.`/.ı`2/; Nw/C a.ı`2;DNu.`/.ı`1/; Nw/C a.`; Nw;D2 Nu.`/.ı`1; ı`2//
C b.D2 Nu.`/.ı`1; ı`2/; pw/C b. Nw;D2p.`/.ı`1; ı`2// � c.D2p.`/.ı`1; ı`2/; pw/

D ˝
D2 Nu.`/.ı`1; ı`2/; Nu � Nz˛C hDNu.`/.ı`2/;DNu.`/.ı`1/i

C ˝
D2p.`/.ı`1; ı`2/; p � Oz˛C hDp.`/.ı`2/;Dp.`/.ı`1/i C �D2R.`/.ı`1; ı`2/

C a.ı`1;DNu.`/.ı`2/; Nw/C a.ı`2;DNu.`/.ı`1/; Nw/C ˝Nz � Nu;D2 Nu.`/.ı`1; ı`2/
˛

C ˝Oz � p;D2p.`/.ı`1; ı`2/
˛

D �D2R.`/.ı`1; ı`2/C hDNu.`/.ı`2/;DNu.`/.ı`1/i C hDp.`/.ı`2/;Dp.`/.ı`1/i
C a.ı`1;DNu.`/.ı`2/; Nw/C a.ı`2;DNu.`/.ı`1/; Nw/:

Consequently, from (11) we obtain the following formula for the second-order
derivative of the regularized OLS that has no explicit involvement of the second-
order derivatives of the solution map:

D2J�.`/.ı`1; ı`2/ D �D2R.`/.ı`1; ı`2/C hDNu.`/.ı`2/;DNu.`/.ı`1/i
C hDp.`/.ı`2/;Dp.`/.ı`1/i C a.ı`1;DNu.`/.ı`2/; Nw/C a.ı`2;DNu.`/.ı`1/; Nw/:

In particular, we have

D2J�.`/.ı`; ı`/ D �D2R.`/.ı`; ı`/C hı Nu; ı Nui C hıp; ıpi C 2a.ı`; ı Nu; Nw/: (12)

Summarizing, we obtain the following scheme to compute D2J�.`/.ı`; ı`/ W
1. Compute u.`/ D .Nu.`/; p.`// by solving the mixed variational problem (2).
2. Compute ıu D .ı Nu; ıp/ by solving the mixed variational problem (5).
3. Compute w.`/ D . Nw.`/; pw.`// by solving the adjoint problem (8).
4. Compute D2J�.`/.ı`; ı`/ by (12).
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3.3 Second-Order Derivative Using the First-Order
Adjoint Formula

The second-order adjoint approach, given in the previous section, relies on comput-
ing the second-order derivative of regularized OLS by using a direct computation
of its first-order derivative. However, if we use the first-order derivative formula of
the regularized OLS obtained using the first-order adjoint approach, we get a quite
different second-order adjoint approach which is discussed below.

We begin with defining the functional L� W B � W � W ! R by

L�.`; t; s/ D DJ�.`/.ı`2/C a.`; Nu; Nt/C b.Nt; p/C b.Nu; qt/ � c.p; qt/ � m.Nt/
C a.`; Nw; Ns/C b.Ns; pw/C b. Nw; qs/ � c.pw; qs/ � hNz � Nu; Nsi � hOz � p; qsi
D �DR.`/.ı`2/C a.ı`2; Nu; Nw/C a.`; Nu; Nt/C b.Nt; p/C b.Nu; qt/ � c.p; qt/ � m.Nt/
C a.`; Nw; Ns/C b.Ns; pw/C b. Nw; qs/ � c.pw; qs/ � hNz � Nu; Nsi � hOz � p; qsi ;

where ı`2 is a fixed direction, u D .Nu; p/ is the solution of (2), w D . Nw; pw/ is
the solution of (8), t D .Nt; qt/, and s D .Ns; qs/ are arbitrary elements in W, and for
DJ�.`/.ı`2/ formula (9) was used.

By the definition of the above functional, for every t; s 2 W, we have

@`L�.`; t; s/.ı`1/ D D2J�.`/.ı`1; ı`2/: (13)

Evaluating the right-hand side of the above identity directly, we obtain

@`L�.`; t; s/.ı`1/ D �D2R.`/.ı`1; ı`2/ C a.ı`2;DNu.`/.ı`1/; Nw/
C a.ı`2; Nu;D Nw.`/.ı`1//C a.ı`1; Nu; Nt/C a.`;DNu.`/.ı`1/; Nt/
C b.Nt;Dp.`/.ı`1//C b.DNu.`/.ı`1/; qt/ � c.Dp.`/.ı`1/; qt/C a.ı`1; Nw; Ns/
C a.`;D Nw.`/.ı`1/; Ns/C b.Ns;Dpw.`/.ı`1//C b.D Nw.`/.ı`1/; qs/

� c.Dpw.`/.ı`1/; qs/C hDNu.`/.ı`1/; Nsi C hDp.`/.ı`1/; qsi : (14)

By plugging . Nv; q/ D .D Nw.`/.ı`1/;Dpw.`/.ı`1// in (5), and adding the two
resulting expressions and using the symmetry of a and c, we get

a.`;D Nw.`/.ı`1/; DNu.`/.ı`2//C b.DNu.`/.ı`2/;Dpw.`/.ı`1///

C b.D Nw.`/.ı`1/;Dp.`/.ı`2// � c.Dpw.`/.ı`1/;Dp.`/.ı`2//

C a.ı`2; Nu;D Nw.`/.ı`1// D 0: (15)

Since w.`/ D . Nw.`/; pw.`// solves (8), it follows that the derivative Dw.`/.ı`2/ D
.D Nw.`/.ı`2/;Dpw.`/.ı`2// of w.`/ in any direction ı`2 is characterized as the
solution of the following mixed variational problem
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a.`;D Nw.`/.ı`2/; Nv/C b. Nv;Dpw.`/.ı`2// D �a.ı`2; Nw; Nv/ � hDNu.`/.ı`2/; Nvi ; (16a)

b.D Nw.`/.ı`2/; q/ � c.Dpw.`/.ı`2/; q/ D � hDp.`/.ı`2/; qi ; (16b)

for every . Nv; q/ 2 V�Q;We set . Nv; q/ D .DNu.`/.ı`1/;Dp.`/.ı`1// and by summing
up the resulting equations and using the symmetry of a and c, obtain

a.`;DNu.`/.ı`1/; D Nw.`/.ı`2/C b.D Nw.`/.ı`2/;Dp.`/.ı`1///

C b.DNu.`/.ı`1/;Dpw.`/.ı`2// � c.Dp.`/.ı`1/;Dpw.`/.ı`2///

C a.ı`2; Nw;DNu.`/.ı`1//C hDNu.`/.ı`2/;DNu.`/.ı`1/i
C hDp.`/.ı`2/;Dp.`/.ı`1/i D 0: (17)

Set .Ns; qs/ D .DNu.`/.ı`2/;Dp.`/.ı`2// and .Nt; qt/ D .D Nw.`/.ı`2/;Dpw.`/.ı`2//

in (14) and combine the resulting expressions with (15) and (17), to get

@`L�.`; t; s/.ı`1/ D �D2R.`/.ı`1; ı`2/ C a.ı`2;DNu.`/.ı`1/; Nw/
C a.ı`2; Nu;D Nw.`/.ı`1//C a.ı`1; Nu;D Nw.`/.ı`2// � a.ı`2; Nw;DNu.`/.ı`1//
� hDNu.`/.ı`2/;DNu.`/.ı`1/i � hDp.`/.ı`2/;Dp.`/.ı`1/i C a.ı`1; Nw;DNu.`/.ı`2//
� a.ı`2; Nu;D Nw.`/.ı`1//C hDNu.`/.ı`1/;DNu.`/.ı`2/i C hDp.`/.ı`1/;Dp.`/.ı`2/i
D �D2R.`/.ı`1; ı`2/C a.ı`1; Nu;Dw.`/.ı`2//C a.ı`1; Nw;DNu.`/.ı`2//:

Therefore, from (13) we obtain the following formula for the second-order deriva-
tive of the regularized OLS that has no explicit involvement of the second-order
derivatives of the solution map:

D2J�.`/.ı`1; ı`2/ D �D2R.`/.ı`1; ı`2/C a.ı`1; Nu;Dw.`/.ı`2//

C a.ı`1; Nw;DNu.`/.ı`2//:

In particular

D2J�.`/.ı`; ı`/ D �D2R.`/.ı`; ı`/C a.ı`; Nu;Dw.`/.ı`//

C a.ı`; Nw;DNu.`/.ı`//: (18)

Summarizing, we have the following scheme to compute D2J�.`/.ı`; ı`/ W
1. Compute u D .Nu; p/ by solving the mixed variational problem (2).
2. Compute ıu D .ı Nu; ıp/ by solving (5).
3. Compute w D . Nw; pw/ by solving the adjoint mixed variational problem (8).
4. Compute ıw D .ı Nw; ıpw/ by solving (16).
5. Compute D2J�.`/.ı`; ı`/ by (18).
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It should be noted that the above approach requires additional computation
of (16) which is a derivative characterization of the adjoint variables.

4 Computational Framework

We now give algorithms for computing the gradient and the Hessian of the
regularized OLS functional. Let Th be a triangulation on �: Let Lh be the space
of all piecewise continuous polynomials of degree d` relative to Th; let Vh be the
space of all piecewise continuous polynomials of degree dNu relative to Th, and let
Qh be the space of all piecewise continuous polynomials of degree dq relative to Th:

We represent bases for Lh; Vh, and Qh by f'1; '2; : : : ; 'mg ; f 1;  2; : : : ;  ng ; and
f�1; �2; : : : ; �kg; respectively. The space Lh is then isomorphic to R

m and for any
` 2 Lh, we define L 2 R

m by Li D `.xi/; for i D 1; 2; : : : ;m; where the nodal
basis f'1; '2; : : : ; 'mg corresponds to the nodes fx1; x2; : : : ; xmg. Conversely, each
L 2 R

m corresponds to ` 2 Lh defined by ` D Pm
iD1 Li'i: Analogously, Nu 2 Vh will

correspond to NU 2 R
n, where NUi D Nu.yi/; i D 1; 2; : : : ; n; and Nu D Pn

iD1 NUi i;

where y1; y2; : : : ; yn are the nodes of the mesh defining Uh. Finally, p 2 Qh will
correspond to P 2 R

k, where Pi D p.zi/; i D 1; 2; : : : ; k; and p D Pk
iD1 Pi�i;

where z1; z2; : : : ; zk are the nodes of the mesh defining Qh.
The discrete mixed variational problem seeks, for each `h; the unique .Nuh; ph/ 2

Vh � Qh such that

a.`h; Nuh; Nv/C b. Nv; ph/ D m. Nv/; for every Nv 2 Vh; (19a)

b.Nuh; q/ � c.ph; q/ D 0; for every q 2 Qh: (19b)

We define S W R
m ! R

nCk to be the finite element solution map that assigns
to each `h 2 Lh; the unique approximate solution uh D .Nuh; ph/ 2 Vh � Qh. Then
S.L/ D U D . NU;P/, where U is given by

�bKn�n.L/ BT
n�k

Bk�n �Ck�k

	� NU
P

	
D
�

F
0

	
: (20)

with

bK.L/i;j D a.`;  j;  i/; i; j D 1; 2; : : : ; n;

Bi;j D b. j; �i/; i D 1; 2; : : : ; k; j D 1; 2; : : : ; n;

Ci;j D c.�j; �i/; i; j D 1; 2; : : : ; k;

Fi D m. i/; i D 1; 2; : : : ; n:
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4.1 Direct Gradient Computation

We recall that the regularized OLS functional is given by

J�.`/ D 1

2
kNu.`/ � Nzk2V C 1

2
kp.`/ � Ozk2Q C �R.`/;

where .Nz; Oz/ is the measured data and u.`/ D .Nu.`/; p.`// solves (2).
The discrete analogue of the above functional is given by

J�.L/ D 1

2
. NU � NZ/TM. NU � NZ/C 1

2
.P � OZ/TbM.P � OZ/C �R.L/;

where U D . NU;P/ solves (20), the matrix M is given by

hNu1; Nu2iV D NUT
2M

NU1;

for any u1; u2 2 Vh; the matrix bM satisfies

hq1; q2iQ D QT
2
bMQ1;

for any q1; q2 2 Qh; and . NZ; OZ/ is the discrete data.
Recall that the first-order derivative of the above functional reads

DJ�.`/.ı`/ D hı Nu; Nu � Nzi C hıp; p � Ozi C �DR .`/ .ı`/;

where ıu.`/ D .ı Nu.`/; ıp.`// is the unique solution of the problem

a.`; ı Nu; Nv/C b. Nv; ıp/ D �a.ı`; Nu; Nv/; for every Nv 2 V

b.ı Nu; q/ � c.ıp; q/ D 0; for every q 2 Q;

which leads to the following discrete form

�bK.L/ BT

B �C

	�
ı NU
ıP

	
D
��bK.ıL/ NU

0

	
D
��A. NU/.ıL/

0

	
;

where A is the so-called adjoint stiffness matrix defined through the condition

bK.L/ NV D A. NV/L; for all L 2 R
m; NV 2 R

n:

The Jacobian rU 2 R
.nCk/�m then is computed by solving m linear systems

�bK.L/ BT

B �C

	�ri NU
riP

	
D
��Ai. NU/

0

	
; i D 1; : : : ;m; (21)
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where fE1;E2; : : : ;Emg is the basis of Rm, r NU 2 R
n�m; and rP 2 R

k�m: Here ri NU;
riP, and Ai. NU/ D A. NU/Ei are the i-th columns.

A discretization gradient formula is then given by

DJ�.L/.ıL/ D ı NUT
M. NU � NZ/C ıPTbM.P �bZ/C �rR .L/ ıL

D ıLTr NUT
M
� NU � NZ�C ıLTrPTbM



P �bZ

�
C �ıLTrR .L/ ;

which leads to the following expression for the gradient:

rJ�.L/ D r NUT
M
� NU � NZ�C rPTbM



P �bZ

�
C �rR .L/ : (22)

Summarizing, the following scheme computes the gradient of the OLS functional:

1. Compute U D . NU;P/ by solving linear system (20).
2. Compute rU by solving m linear systems (21).
3. Compute rJ�.L/ by using formula (22).

Remark 1 The above scheme requires solving .m C 1/ linear systems for the
gradient computation.

4.2 Gradient Computation by the First-Order Adjoint Method

We now give an algorithm for computing the gradient of the regularized OLS by
the first-order adjoint approach. Recall that the formula for the computation of the
first-order derivative by using the first-order adjoint approach reads

DJ�.`/.ı`/ D �DR.`/.ı`/C a.ı`; Nu; Nw/; (23)

where u D .Nu; p/ and w D . Nw; q/ are the unique solutions of (2) and (8).
The discrete counterpart of these elements are U D . NU;P/; which solves (20),

and W D . NW;Pw/; which solves the following linear system

�bK BT

B �C

	� NW
Pw

	
D
 
M. NZ � NU/
bM.bZ � P/

!

: (24)

Since a.ı`; Nu; Nw/ D NUTbK.ıL/ NW D NUT
A. NW/ıL, the discrete derivative reads

DJ�.L/.ıL/ D �rR.L/.ıL/C ıLT
A. NW/T NU

which yields an explicit formula for the gradient

rJ�.L/ D �rR.L/C A. NW/T NU (25)
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The following scheme computes the gradient by the first-order adjoint method:

1. Compute U D . NU;P/ by solving linear system (20).
2. Compute W D . NW;Pw/ by solving linear system (24).
3. Compute rJ�.L/ by using formula (25).

Remark 2 The above scheme, in contrast to the direct gradient computation scheme
which required solving .m C 1/ linear systems, only requires solving two linear
systems.

4.3 Hessian Computation by the Second-Order Adjoint Method

Recall the second-order derivative of the regularized OLS reads:

D2J�.`/.ı`; ı`/ D �D2R.`/.ı`; ı`/C hı Nu; ı Nui C hıp; ıpi C 2a.ı`; ı Nu; Nw/:

To discretize the above formula, we note that given the Hessian r2R.L/ 2 R
m�m of

R, we have

D2R.`/.ı`; ı`/ D ıLTr2R.L/ıL:

For the second and the third terms, we have

hı Nu; ı Nui D ıLTr NUT
Mr NUıL;

hıp; ıpi D ıLTrPTbMrPıL:

For the fourth term, the use of the adjoint stiffness matrix yields the expression

a.ı`; ı Nu; Nw/ D ıL
Tr NUTbK.ıL/ NW D ıL

Tr NUT
A. NW/ıL:

By combining the above, we get the explicit expression for the Hessian:

r2J�.L/ D �r2R.L/C r NUT
Mr NU C rPTbMrP C 2r NUT

A. NW/: (26)

In view of the above formula, the following scheme computes the Hessian:

1. Compute U D . NU;P/ by solving linear system (20).
2. Compute rU D .r NU;rP/ by solving m linear systems (21).
3. Compute W D . NW;Pw/ by solving linear system (24).
4. Compute r2J�.L/ by using formula (26).

Remark 3 The above scheme requires solving .mC2/ linear systems for the Hessian
computation.
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4.4 Hessian Computation Using the First-Order Adjoint
Formula

A direct computation of the second-order derivative using the first-order adjoint
approach yields

D2J�.`/.ı`; ı`/ D �D2R.`/.ı`; ı`/C a.ı`; Nu;Dw.`/.ı`//C a.ı`; Nw;DNu.`/.ı`//:

The discrete analogue of the following mixed variational problem

a.`;D Nw.`/.ı`/; Nv/C b. Nv;Dpw.`/.ı`// D �a.ı`; Nw; Nv/ � hDNu.`/.ı`/; Nvi ;8 Nv 2 V;

b.D Nw.`/.ı`/; q/ � c.Dpw.`/.ı`/; q/ D �hDp.`/.ı`/; qi; 8 q 2 Q;

necessary for the discrete counterpart of Dw.`/.ı`/ is given by the linear system

�bK.L/ BT

B �C

	�
ı NW
ıPW

	
D
 

�bK.ıL/ NW � Mı NU
�bMıP

!

D
 

�A. NW/.ıL/ � Mı NU
�bMıP

!

:

Therefore, the Jacobian rW 2 R
.kCn/�m is computed by m linear equations

�bK.L/ BT

B �C

	� ri NW
riPW

	
D
 

�A. NW/Ei � MrUEi

�bMrPEi

!

D
 

�Ai. NW/ � MriU
�bMriP

!

; (27)

where i D 1; : : : ;m; fE1;E2; : : : ;Emg is the basis of Rm, r NW 2 R
n�m and rPW 2

R
k�m: Therefore, the Hessian of the regularized OLS by is given by the formula:

r2J�.L/ D �r2R.L/C r NWT
A. NU/C r NUT

A. NW/: (28)

Summarizing, the following scheme computes the Hessian:

1. Compute U D . NU;P/ by solving linear system (20).
2. Compute rU D .r NU;rP/ by solving m linear systems (21).
3. Compute W D . NW;P/ by solving linear system (24).
4. Compute rW D .r NW;rPw/ by solving m linear systems (27).
5. Compute r2J�.L/ by using formula (28).
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Remark 4 The above scheme requires solving .2m C 2/ linear systems and quite
expensive in comparison to the second-order adjoint approach which only requires
solving .m C 2/ linear systems.

5 Computational Experiments

In this section we consider three examples for the identification of a parameter �
on a two-dimensional domain � D .0; 1/ � .0; 1/ with boundary @� D �1 � �2.
All of our experiments are purely synthetic. Therefore, the data vectors in all the
experiments are computed, not measured. In all experiments, we used an adaptive
mesh to obtain an accurate solution, and used this for the data z. The identification
was done in a finite-dimensional space of dimension of 1140 on a mesh with
2158 triangles. The optimization was performed using the Newton method using
the second-order adjoint approach. The H1 semi-norm regularization was used. We
chose the regularization parameter by trial and error.

5.1 Elasticity Imaging Inverse Problem

Given the domain � as a subset of R2 or R3 and @� D �1 [ �2 as its boundary,
the following system models the response of an isotropic elastic body to the known
body forces and boundary traction:

� r � � D f in �; (29a)

� D 2��.u/C �divu I; (29b)

u D g on �1; (29c)

�n D h on �2: (29d)

In (29), the vector-valued function u D u.x/ is the displacement of the elastic body,
f is the applied body force, n is the unit outward normal, and �.u/ D 1

2
.ruCruT/ is

the linearized strain tensor. The resulting stress tensor � in the stress-strain law (29b)
is obtained under the condition that the elastic body is isotropic and the displacement
is sufficiently small so that a linear relationship remains valid. Here � and � are the
Lamé parameters which quantify the elastic properties of the object.

The elasticity imaging inverse problem has found interesting applications in
locating soft inclusions in an incompressible object, for example, cancerous tumor
in the human body. From a mathematical standpoint this inverse problem seeks
� from a measurement of the displacement vector u under the assumption that
the parameter � is very large. The key idea behind the elasticity imaging inverse
problem is that the stiffness of soft tissue can vary significantly based on its
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molecular makeup and varying macroscopic/microscopic structure (see [17]) and
such changes in stiffness are related to changes in tissue health. In other words,
the elastography inverse problem mathematically mimics the practice of palpation
by making use of the differing elastic properties of healthy and unhealthy tissue
to identify tumors. In most of the existing literature on elasticity imaging inverse
problem, the human body is modelled as an incompressible elastic object. Although
this assumption simplifies the identification process as there is only one parameter
� to identify, it significantly complicates the computational process as the classical
finite element methods become quite ineffective due to the so-called locking effect.
The mixed variational problem framework studied in this work offers a remedy to
the locking effect. We define V D fNv 2 H1.�/ � H1.�/ W Nv D 0 on �1g:

The Green’s identity and the boundary conditions (29c) and (29d) yield the
following weak form of the elasticity system (29): Find Nu 2 V such that

Z

�

2��.Nu/ � �. Nv/C
Z

�

�.div Nu/.div Nv/ D
Z

�

f NvC
Z

�2

Nvh; for every Nv 2 V: (30)

We introduce a pressure term p 2 Q D L2.�/ by p D �.div Nu/; or equivalently,

Z

�

.div Nu/q �
Z

�

1

�
pq D 0; for every q 2 Q: (31)

Using p D �.div Nu/; the weak form (30) reads: Find Nu 2 V such that

Z

�

2��.Nu/ � �. Nv/C
Z

�

p.div Nv/ D
Z

�

f Nv C
Z

�2

Nvh; for every Nv 2 V: (32)

In other words, the problem of finding Nu 2 V satisfying (30) has now been
reformulated as the problem of finding .Nu; p/ 2 V � Q satisfying the mixed
variational problems (31) and (32).

For the above problem, we present a numerical example to identify a parameter
� in (29) where the left and right domain boundaries (�1) are fixed with constant
Dirichlet condition g.x; y/ and the top and bottom boundaries (�2) have Neumann
condition h.x; y/. We set � D 106, and the functions defining the coefficient, load,
and boundary conditions are as follows (Fig. 1):

� .x; y/ D 2:5C 1

4
sin.2	x/; f .x; y/ D

�
2:3C 1

10
x

2:3C 1
10

y

�
;

g .x; y/ D 1

100

�
x
y2

�
on �1; h .x; y/ D 1

2

�
1C 2x2

1C 2y2

�
on �2:
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Fig. 1 Reconstruction using the Second-order Adjoint Approach (14 iterations). Exact coefficient
(left) and estimated coefficient (right)

5.2 Stokes Equations

We now consider Stoke’s equations

� ��u C rp D f in �; (33a)

� div u D 0 in �; (33b)

where u can be considered as the velocity field of an incompressible fluid motion,
and p is then the associated pressure, the constant � is the viscosity coefficient of the
fluid. Here we consider homogeneous Dirichlet boundary condition for the velocity,
i.e. uj@� D 0. By multiplying v 2 H1

0.�/ to (33a) and q 2 L2.�/ to the mass
equation (33b), and applying integration by part for the momentum equation, we
obtain the following weak form of the Stokes equations (33): Find u 2 H1

0.�/ and
a pressure p 2 L2.�/ such that

Z

�

�ru � rv �
Z

�

p.div v/ D
Z

�

fv; for every v 2 H1
0.�/ (34)

�
Z

�

.div u/q D 0; for every q 2 L2.�/ (35)

The Stokes equations (33) lead to the mixed variational form (2) by setting

a.�; u; v/ D
Z

�

�ru � rv;

b.u; q/ D �
Z

�

.div u/q;

c.p; q/ D
Z

�

1

�
pq;

m.v/ D
Z

�

fv;
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Fig. 2 Reconstruction using the Second-order Adjoint Approach (15 iterations). Exact coefficient
(left) and estimated coefficient (right)

where c.p; q/ is the penalization that removes the zero mean restriction on pressure.
Figure 2 shows the numerical results for (33) with � D 1013, and

� .x; y/ D


1 � 0:12 cos.3	

p
x2 C y2/

��1
; f .x; y/ D

�
1C 0:1x2

0:1y:

�

5.3 Fourth-Order Elliptic Boundary-Value Problem

We consider the following fourth-order elliptic boundary value problem:

�.��u/ D f in �; (36a)

u D 0 on @�; (36b)

@nu D 0 on @�: (36c)

The mixed formulation for (36) reads : find .�; u/ 2 H1.�/ � H1
0.�/ such that

Z

�

� C
Z

�

�rur D 0; for every  2 H1.�/; (37a)

Z

�

r�rv D
Z

�

fv; for every v 2 H1
0.�/; (37b)

Together with a penalization matrix with � D 106), we applied the second-order
Adjoint method to identify � in (36) where the solution u and the exact parameter
� are given by

u.x; y/ D 100x2.1 � x/2y2.1 � y/2; �.x; y/ D 3

2
C sin.	x/ sin.	y/

and where f .x; y/ is subsequently defined by (36) (Fig. 3).
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Fig. 3 Reconstruction using the Second-order Adjoint Approach (28 iterations). Exact coefficient
(left) and estimated coefficient (right)

6 Concluding Remarks

We performed parameter identification in an abstract mixed variational problem by
using the OLS formulation and give a rigorous derivation of the first-order and
the second-order adjoint methods. We test the feasibility of the proposed adjoint
approach for three different applications. The effect of the contaminated data on the
identification has yet be seen and will be done in a future work.
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Minimization of the Lp-Norm, p � 1 of
Dirichlet-Type Boundary Controls for the 1D
Wave Equation
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Abstract This paper provides a modified method that allows one to solve the
problem of the optimal boundary controls �.t/ and 
.t/ of displacements at two
ends of a string for a large time interval T D 2ln, where n D 1; 2; 3; : : : It should be
noted that the minimization was made in the space Lp with p � 1. Besides, it was
found that the derivatives of above-mentioned functions are 2l-periodic functions.

Keywords Optimal control • Wave equation • Boundary control • Lp-Norm

This paper develops the theme considered in [4] and [5] and provides a method
allowing to calculate and present in an explicit analytical form the optimal boundary
displacement controls at two ends of a string x D 0 and x D l transferring the
process of its oscillations described by the generalized solution of the wave equation

utt.x; t/ � uxx.x; t/ D 0; (1)

from an arbitrary given initial state

fu.x; 0/ D �.x/; ut.x; 0/ D  .x/g (2)

to an arbitrary given terminal state
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Analogously to [4], on the rectangle

QT D Œ0 � x � l� � Œ0 � t � T�; (4)

we will consider the class of functions cW1
p .QT/.

Definition 1 Class of functions cW1
p .QT/ is a set of functions of two variables u.x; t/

that are continuous in the closed rectangle QT and have both generalized partial
derivatives ux.x; t/ and ut.x; t/, with each of them belonging to the class Lp.QT/ as
well as to the class LpŒ0 � x � l� for 8t 2 Œ0;T�, and to the class LpŒ0 � t � T� for
8x 2 Œ0; l�.

The treatment of the problem is carried out in terms of the generalized solution
u.x; t/ from the class cW1

p .QT/ to the initial-boundary value problem for the wave
equation (1) with initial conditions (2) and boundary conditions

fu.0; t/ D �.t/; u.l; t/ D 
.t/g (5)

In addition, it is necessary to impose the requirement of smoothness on the
functions of initial, terminal and boundary conditions, since the generalized solution
u.x; t/ belongs to the class cW1

p .QT/:

�.x/ 2 W1
p Œ0; l�;  .x/ 2 LpŒ0; l�; b�.x/ 2 W1

p Œ0; l�; b .x/ 2 LpŒ0; l�;

�.t/ 2 W1
p Œ0;T�; 
.t/ 2 W1

p Œ0;T�

Definition 2 A function u.x; t/ from the class cW1
p .QT/ is said to be the generalized

cW1
p .QT/ class solution to the initial-value problem for the wave equation (1) with

initial conditions (2) and boundary conditions (5)which obey to the smoothness
requirements (6), if u.x; t/ satisfies the integral identity:

Z l

0

Z T

0

u.x; t/Œˆtt.x; t/ �ˆxx.x; t/�dxdt C
Z l

0

�.x/ˆt.x; 0/dx�

�
Z l

0

 .x/ˆ.x; 0/dx �
Z T

0

�.t/ˆx.0; t/dt C
Z T

0


.t/ˆx.l; t/dx D 0

for every function ˆ.x; t/ from the class C.2/.QT/, obeying to requirements
ˆ.x;T/ 	 0, ˆt.x;T/ 	 0 if 0 � x � l, ˆ.0; t/ 	 0, ˆ.l; t/ 	 0 if 0 � t � T .

Definition 3 Functions �.t/ and 
.t/ from the class W1
p Œ0;T� are said to be the

solutions to the boundary control problem if the generalized cW1
p .QT/ class solution

u.x; t/ satisfies the terminal conditions (3) understood in the sense of equality of
elements W1

p Œ0; l� and LpŒ0; l�, respectively.
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Since the boundary control problem under investigation has infinitely many
solutions for T > l, which was established, for example, in [1] and [3], there
arises the optimal boundary control problem for T > l. It consists in the selection
among all the functions �.t/ and 
.t/, representing boundary controls, the ones that
minimize the boundary energy integral

Z T

0

fŒ�0.t/�p C Œ
0.t/�pgdt (6)

with constraints imposed by given initial conditions (2), terminal conditions (3), and
fitting conditions:

Z T

0

Œ�0.t/C 
0.t/�dt D b�.0/ � �.0/C b�.l/ � �.l/ (7)

Let us introduce the functioneu.x; t/ which was used also in papers [5]:

eu.x; t/ D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

1
2

h
�.x C t/C �.x � t/C R xCt

x�t  .�/d�
i �

1;

1
2

h
�.x C t/C �.0/C R xCt

0
 .�/d�

i �
2;

1
2

h
�.l/C �.x � t/C R l

x�t  .�/d�
i �

3;

1
2

h
�.0/C �.l/C R l

0
 .�/d�

i
D C0 D const

�
4;

(8)

where
�
1 is a triangle limited by line segments x � t D 0, x C t � l D 0, and t D 0;�
2 is a triangle limited by line segments x � t D 0, x C t � l D 0, and x D 0;�
3 is a triangle limited by line segments x � t D 0, x C t � l D 0, and x � l D 0;�
4 is a quadrangle limited by line segments x � t D 0, x C t � l D 0, x � l D 0, and
t � T D 0.

Proposition 1 For every T > l, the function described by (8) is a (unique,
according to [2]) generalized cW1

p .QT/ class solution to the initial-boundary value
problemeutt.x; t/ �euxx.x; t/ D 0 with initial conditionseu.x; 0/ D �.x/,eut.x; 0/ D
 .x/ and with boundary conditionseu.0; t/ D e�.t/,eu.l; t/ De
.t/, where

e�.t/ D
(
1
2

h
�.t/C �.0/C R t

0
 .�/d�

i
for 0 � t � l;

C0 for l � t � T;
(9)

e
.t/ D
(
1
2

h
�.l � t/C �.l/C R l

l�t  .�/d�
i

for 0 � t � l;

C0 for l � t � T:
(10)

The detailed proof of this proposition is similarly as Assertion 1, provided in [5].
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We will consider the case T D 2ln, where n D 1; 2; 3; : : :

Let u.x; t/ be the generalized cW1
p .QT/ class solution of the initial-boundary

problem (1), (2), (5), and leteu.x; t/ be a function determined by relation (8). Then,
the functionbu.x; t/ D u.x; t/�eu.x; t/ is a unique generalized cW1

p .QT/ class solution
to the initial-boundary value problem for the wave equationbutt.x; t/ �buxx.x; t/ D 0

with zero initial conditionsbu.x; 0/ D 0,but.x; 0/ D 0 and with boundary conditions
bu.0; t/ D b�.t/ D �.t/�e�.t/,bu.l; t/ Db
.t/ D 
.t/�e
.t/. It should be noted that the
equations �.0/ D �.0/, e�.0/ D �.0/, 
.0/ D �.l/,e
.0/ D �.l/ imply b�.0/ D 0,
b
.0/ D 0.

Proposition 2 For every T satisfying the inequality T � 2l.n C 1/, where n D
1; 2; : : :, the functionbu.x; t/ is determined by the equation:

bu.x; t/ D
nX

kD0
b�.t � x � 2kl/ �

nC1X

kD1
b�.t C x � 2kl/C

C
nX

kD0
b
.t C x � 2kl � l/ �

n�1X

kD1
b
.t � x � 2kl/ (11)

where the symbols b�.t/ and b
.t/ stand for the functions coinciding with b�.t/ and
b
.t/, respectively, for t � 0 and vanishing for t < 0.

The proof of this proposition is similarly as in [5]. Next, it is necessary to
establish the conditions following from the given initial conditions (2) and terminal
conditions (3). We will apply the method described in [4]. Taking the semi-sum and
semi-difference of the relations obtained by differentiation of (11) with respect to x
and t, then, substituting T D 2ln into the obtained relations, and using the following
from (3) conditions for the functionbu.x; t/,

bu.x;T/ D b� � C0; but.x;T/ D b .x/;

we come to the following conditions:

�
nC1X

kD1
b�0Œ2l.n � k/C x�C

nX

kD0
b
0Œ2l.n � k/C x � l� D 1

2

�b�0.x/C b .x/
�
; (12)

�
nX

kD0
b�0Œ2l.n � k/C x�C

nC1X

kD1
b
0Œ2l.n � k/ � x C l� D 1

2

�b�0.x/ � b .x/
�
; (13)

Taking into account that functions b�0.t/ and b
0.t/ are equal to zero if t < 0 and
coincide with b�0.t/ andb
0.t/, respectively, if t � 0, we can modify the conditions as
follows:
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�
nX

kD1
b�0Œ2l.n � k/C x�C

n�1X

kD0
b
0Œ2l.n � k/C x � l� D 1

2

�b�0.x/C b .x/
�
; (14)

�
n�1X

kD0
b�0Œ2l.n � k/C x�C

nX

kD1
b
0Œ2l.n � k/ � x C l� D 1

2

�b�0.x/ � b .x/
�
; (15)

where x 2 Œ0; l�.
Then, substituting t D x;m D n � k into the first sum and m D n � 1k into the

second sum of equation (14) as well as t D l�x;m D n�1�k into the first sum and
m D n � k into the second sum of equation (15), we obtain the following equations:

�
n�1X

mD0
b�0Œ2lm C t�C

n�1X

mD0
b
0Œl.2m C 1/C t� D 1

2

�b�0.t/C b .t/
�
; (16)

�
n�1X

mD0
b�0Œl.2m C 1/C t�C

n�1X

mD0
b
0Œ2lm C t� D 1

2

�b�0.l � t/ � b .l � t/
�
; (17)

where t 2 Œ0; l�.
In order to express the conditions (16)–(17) in terms of �0.t/ and 
0.t/, we will

use relations b�0.t/ D �0.t/ �e�0.t/,b
0.t/ D 
0.t/ �e
0.t/ and the explicit forms (9)–
(10) of the functions e�.t/ ande
.t/. So, finally we get the following conditions:

�
n�1X

mD0
�0Œ2lm C t�C

n�1X

mD0

0Œl.2m C 1/C t� D A.x/;

�
n�1X

mD0
�0Œl.2m C 1/C t�C

n�1X

mD0

0Œ2lm C t� D B.x/; (18)

where t 2 Œ0; l� and

A.x/ D 1

2

�b�0.t/ � �0.t/C b .t/ �  .t/�

B.x/ D 1

2

�b�0.l � t/ � �0.l � t/ � b .l � t/C  .l � t/
�

(19)

Let us find the optimal boundary controls �.t/ and 
.t/. The optimization
problem consists in minimizing the boundary energy integral (6) that can be
represented in the form:

Z T

0

fŒ�0.t/�p C Œ
0.t/�pgdt D
Z l

0

2nX

0

fŒ�0.lm C t/�p C Œ
0.lm C t/�pgdt (20)
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with the conditions (18) and with the fitting condition (7) which takes the form:

Z T

0

�
�0.t/C 
0.t/

�
dt D

Z l

0

2nX

mD0
Œ�0.lm C t/C 
0.lm C t/�dt D

D b�.0/ � �.0/C b�.l/ � �.l/ (21)

Now, we will formulate a statement that will play an important role in further
investigations:

Lemma 1 We will say that for an arbitrary natural N, the four sets of functions

a0.x/; a1.x/; a2.x/; : : : ; aN.x/ (22)

b0.x/; b1.x/; b2.x/; : : : ; bN�1.x/ (23)

c0.x/; c1.x/; c2.x/; : : : ; cN.x/ (24)

d0.x/; d1.x/; d2.x/; : : : ; dN�1.x/ (25)

belong to the class˝p with a fixed p � 1 if the following conditions are satisfied:

1. each of the above-mentioned functions belongs to the class LpŒ0; l�
2. for arbitrary real numbers ˛0; ˛1; ˛2 : : : ˛N, ˇ0; ˇ1; ˇ2 : : : ˇN�1, �0; �1; �2 : : : �N,
ı0; ı1; ı2 : : : ıN�1 and arbitrary given functions A.x/;B.x/ 2 LpŒ0; l�, the follow-
ing equations are valid:

�
NX

mD0
˛mam.x/C

N�1X

mD0
ımdm.x/ D A.x/; �

NX

mD0
ˇmbm.x/C

N�1X

mD0
�mcm.x/ D B.x/

(26)

Then, if I denotes the infimum in the class ˝p of the sum of integrals

I D inf˝p

( Z l

0

NX

mD0
.jam.x/jp C jcm.x/jp/ dx C

Z l

0

N�1X

mD0
.jbm.x/jp C jdm.x/jp/ dx

)

(27)

and I.x/ denotes the pointwise infimum at each point x 2 Œ0; 2l� of the subintegral
sums
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I.x/ D inf
at point x

NX

mD0
.jam.x/jp C jcm.x/jp/C

N�1X

mD0
.jbm.x/jp C jdm.x/jp/ ; (28)

taken for all sets of functions (22)–(25) from the class ˝p, then, provided that the
pointwise infimum (28) is attained over a set of functions from the class ˝p, the
following equation is valid:

I D
Z l

0

I.x/dx (29)

Proof Let the pointwise infimum (28) be attained over four sets of functions
ba0.x/;ba1.x/;ba2.x/; : : : ;baN.x/, bb0.x/;bb1.x/;bb2.x/; : : : ;bbN�1.x/,bc0.x/;bc1.x/;bc2.x/;
: : : ;bcN.x/,bd0.x/;bd1.x/;bd2.x/; : : : ;bdN�1.x/ belonging to the class �p. Then

I �
Z l

0

"
NX

mD0
.jbam.x/jp C jbcm.x/jp/C

N�1X

mD0



jbbm.x/jp C jbdm.x/jp

�#

dx D
Z l

0

I.x/dx

(30)

On the other side, according to the definition of the infimum (27), for any
� > 0 there are such sets of functions ea0.x/;ea1.x/;ea2.x/; : : : ;eaN.x/, eb0.x/;eb1.x/;
eb2.x/; : : : ;ebN�1.x/ ;ec0.x/;ec1.x/;ec2.x/; : : : ;ecN.x/, ed0.x/;ed1.x/;ed2.x/; : : : ;edN�1.x/
from the class �p that

Z l

0

"
NX

mD0
.jeam.x/jp C jecm.x/jp/C

N�1X

mD0

�jebm.x/jp C jedm.x/jp
�
#

dx < I C � (31)

Besides, for almost all the points x 2 Œ0; l� the pointwise infimum I.x/ satisfies
the inequality:

I.x/ �
(

NX

mD0
.jeam.x/jp C jecm.x/jp/C

N�1X

mD0

�jebm.x/jp C jedm.x/jp
�
)

(32)

Therefore,

Z l

0

I.x/dx �
Z l

0

"
NX

mD0
.jeam.x/jp C jecm.x/jp/C

N�1X

mD0

�jebm.x/jp C jedm.x/jp
�
#

dx (33)

It follows from relations (30)–(33) that for any � > 0 the following inequalities
are valid:

I �
Z l

0

I.x/dx < I C �; (34)

This completes the proof of the lemma by virtue of the arbitrariness of � > 0.
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Due to the proved lemma, the minimizing problem for the integral (20) with
conditions (18) reduces itself to finding the pointwise infimum of the sum:

2nX

kD0

˚j�0.lk C x/jp C j
0.lk C x/jp� (35)

with the same conditions (18).
We will solve this problem by using the Lagrange method. Let us fix a randomly

chosen point x 2 Œ0; l� and construct the Lagrange function for this point:

2nX

kD0

˚j�0.lk C x/jp C j
0.lk C x/jp�C

C �1

"

�
nX

kD0
�0.2lk C x/C

n�1X

kD0

0Œl.2k C 1/C x/� � A.x/

#

C

C �2

"

�
n�1X

kD0
�0Œl.2k C 1/C x/�C

nX

kD0

0.2lk C x/ � B.x/

#

(36)

Equating the derivative of the function (36) with respect to �0.2lk C x/ to zero,
we obtain:

p � j�0.2lk C x/jp�1 � sgn.�0.2lk C x// � �2 D 0 (37)

Then, we differentiate (36) with respect to �0.l.2k C 1//C x/:

p � j�0.l.2k C 1/C x/jp�1 � sgn.�0.l.2k C 1/C x// � �1 D 0 (38)

Calculating the derivative of (36) with respect to 
0.2lk C x/, we have:

p � j
0.2lk C x/jp�1 � sgn.�0.2lk C x//C �1 D 0 (39)

Finally, we differentiate (36) with respect to 
0.l.2k C 1/C x/:

p � j
0.l.2k C 1/C x/jp�1 � sgn.�0.l.2k C 1/C x//C �2 D 0 (40)

Having equated (37) to (40) and (38) to (39), respectively, we get:

�0.2lk C x/ D �
0.l.2k C 1/C x/; �0.l.2k C 1//C x/ D �
0.2lk C x/ (41)
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It implies that the optimal boundary control derivatives are 2l-periodic functions
equal to:

�0.2lk C x/ D �
0.l.2k C 1/C x/ D A.x/

2n C 1
D F1.x/; (42)

�0.l.2k C 1//C x/ D �
0.2lk C x/ D B.x/

2n C 1
D F2.x/ (43)

In the end, we will find an analytic form for the optimal boundary controls �.t/
and 
.t/ themselves by using a property of their continuity on the interval Œ0I T� D
Œ0I 2ln�, the equalities �.0/ D �.0/, 
.0/ D �.l/, and the above found derivatives.
Thus, we have:

�.t/ D L1.t/C ˛1.t/; 
.t/ D �L2.t/ � ˛2.t/; 0 � t � l; (44)

�.t/ D L2.t/C ˛2.t/; 
.t/ D �L1.t/ � ˛1.t/; l � t � 2l; (45)

where for each s D 1; 2, the symbol Ls.t/ denotes a linear function on the interval
Œ0I T� D Œ0I 2ln� that has a form

Ls.t/ D as C t

2l

Z 2l

0

Fs.�/d� (46)

with as D �.0/ for s D 1 and as D �.l/ for s D 2; the symbol ˛s.t/ denotes an extra
term which is a periodic function with a period equal to 2l on the interval Œ0I T� D
Œ0I 2ln� and for any m D 0; 1; : : : ; n � 1; 0 � t � 2l as well as for m D n; 0 � t � 2l
has the form:

˛s.2lm C t/ D
Z t

0

Fs.�/d� � t

2l

Z 2l

0

Fs.�/d� (47)

Conclusion
Thus, this paper provides a modified method that allows one to solve the problem of
the optimal boundary controls �.t/ and 
.t/ of displacements at two ends of a string
for a large time interval T D 2ln, where n D 1; 2; 3; : : : It should be noted that the
minimization was made in the space Lp with p � 1. Besides, it was found that the
derivatives of the above-mentioned functions are 2l-periodic functions.
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Projected Semi-Stochastic Gradient Descent
Method with Mini-Batch Scheme Under Weak
Strong Convexity Assumption

Jie Liu and Martin Takáč

Abstract We propose a projected semi-stochastic gradient descent method with
mini-batch for improving both the theoretical complexity and practical performance
of the general stochastic gradient descent method (SGD). We are able to prove
linear convergence under weak strong convexity assumption. This requires no
strong convexity assumption for minimizing the sum of smooth convex functions
subject to a compact polyhedral set, which remains popular across machine learning
community. Our PS2GD preserves the low-cost per iteration and high optimization
accuracy via stochastic gradient variance-reduced technique, and admits a simple
parallel implementation with mini-batches. Moreover, PS2GD is also applicable to
dual problem of SVM with hinge loss.

Keywords Stochastic gradient • Variance reduction • Support vector machine
(SVM) • Linear convergence • Weak strong convexity

1 Introduction

The problem we are interested in is to minimize a constrained convex problem,

min
w2W

˚
F.w/ WD g.Aw/C qTw

�
: (1)

where w 2 W � R
d;A 2 R

n�d, and assume that F can be further written as

F.w/ WD 1

n

nX

iD1
fi.w/: (2)

This type of problem is prevalent through machine learning community. Specif-
ically, applications which benefit from efficiently solving this kind of problems
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include face detection, fingerprint detection, fraud detection for banking systems,
image processing, medical image recognition, and self-driving cars, etc. To exploit
the problem, we further make the following assumptions:

Assumption 1 The functions fi W R
d ! R are convex, differentiable and have

Lipschitz continuous gradients with constant L > 0. That is,

krfi.w1/ � rfi.w2/k � Lkw1 � w2k;

for all w1;w2 2 R
d, where k � k is L2 norm.

Assumption 2 The function g W Rn ! R is continuously differentiable and strongly
convex with parameter � > 0 on its effective domain that is assumed to be open and
non-empty, i.e., 8z1; z2 2 dom.g/ � R

n,

g.z1/ � g.z2/C rg.z2/
T.z1 � z2/C �

2
kz1 � z2k2: (3)

Assumption 3 The constraint set is a compact polyhedral set, i.e.,

W D fw 2 R
d W Cw � cg; where C 2 R

m�d; c 2 R
m: (4)

Remark 1 Problem (1) usually appears in machine learning problems, where A is
usually constructed by a sequence of training examples faign

iD1 � R
d. Note that n

is the number of data points and d is the number of features. Problem (2) arises as a
special form of problem (1) which is a general form in a finite sum structure, which
covers empirical risk minimization problems. As indicated in the problem setting,
there are two formulations of the problem with different pairs of A and W given a
sequence of labeled training examples f.ai; bi/gn

iD1 where ai 2 R
d; bi 2 R. Define

the set Œm�
defD f1; 2; : : : ;mg for any positive integer m.

Type I Primal Setting A commonly recognized structure for this type of problem is
to apply (1) to primal problem of finite sum structured problems and to represent g as
g.Aw/ D 1

n

Pn
iD1 gi.aT

i w/ where gi are R ! R. In this way, fi in (1) can be defined

as fi.w/
defD gi.aT

i w/C qTw. We need gi to have Lipschitz continuous gradients with
constants L=kaik2 to fulfill Assumption 1, i.e.,

krfi.w1/�rfi.w2/k
D k.airgi.a

T
i w1/C q/ � .airgi.a

T
i w2/C q/k

D kaikkrgi.a
T
i w1/ � rgi.a

T
i w2/k � kaik.L=kaik2/kaT

i w1 � aT
i w2k

D .L=kaik/kaT
i .w1 � w2/k

� .L=kaik/kaikkw1 � w2k D Lkw1 � w2k;

where the last inequality follows from Cauchy Schwartz inequality.
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Popular problems in this type from machine learning community are logistic
regression and least-squares problems by letting q D 0, i.e., fi.w/ D gi.aT

i w/ D
log.1 C exp.�biaT

i w// and fi.w/ D gi.aT
i w/ D 1

2
.aT

i w � bi/
2, respectively. These

problems are widely used in both regression and classification problems. Our results
and analyses are also valid for any convex loss function with Lipschitz continuous
gradient.

To deal with overfitting and enforce sparsity to the weights w in real problems,
a widely used technique is to either add a regularized term to the minimization
problem or enforce constraints to w, for instance,

min
w2Rd

ff .x/C g.x/g;

where g.x/ D 1
2
�kxk2 is called a regularizer with regularization parameter �:

A well-known fact is that regularized optimization problem can be equivalent to
some constrained optimization problem under proper conditions [11], where the `2
constrained optimization problem can be denoted as

min
w2W f .x/; with W D fw 2 R

d W kwk2 � �g:

The problem of our interest is formulated to solve constrained optimization problem.
Under Assumption 3, several popular choices of polyhedral constraints exist, such
as W D fw 2 R

d W kwk1 � �g and W D fw 2 R
d W kwk1 � �g.

Type II Dual Setting We can also apply (1) to dual form of some special SVM
problems. With the same sequence of labeled training examples f.ai; bi/gn

iD1, let us

denote ai
defD .ai1; : : : ; aid/

T 2 R
d, then an example is the dual problem of SVM with

hinge loss, which has the objective function:

g.A˛/ D 1

2

nX

iD1

nX

jD1
bibja

T
i aj˛i˛j D 1

2
˛TATA˛ D 1

2
kA˛k2 (5)

where the ith column of A is biai so that ŒATA�ij D .biai/
T.bjaj/ D bibjaT

i aj and
we should also know that A 2 R

d�n.
By defining a.c/s

defD .b1a1s; b2a2s; : : : ; bnans/
T 2 R

n;8s 2 Œd�, then a.c/s is the sth
row vector of A which is also called the feature vector. By deleting unnecessary a.c/s

corresponds to feature s, we can guarantee that ka.c/s k ¤ 0;8s 2 Œd� and easily scale
a.c/s ; so similar to Type I, Type II problem can also satisfy Assumption 1. Under this
type, 8i 2 Œd�, fi can be written as

fi.˛/ D gi
�
.a.c/s /

T˛
�C qT˛
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with

gi
�
.a.c/s /

T˛
� D d

2
k.a.c/s /

T˛k2 and q D .�1; : : : ;�1/T 2 R
n;

and F.˛/ D 1
d

Pd
iD1 fi.˛/.

The dual formulation of SVM with hinge loss is

min
˛2W g.A˛/C qT˛

with g defined in (5), A 2 R
d�n; q D .�1; : : : ;�1/T 2 R

n and W D f˛ W ˛i 2
Œ0; �n�;8i 2 Œn�g � R

n, where � is regularization parameter [32]. This problem
satisfies Assumptions 1–3, which is within our problem setting.

Remark 2 Assumption 2 covers a wide range of problems. Note that this is not
a strong convexity assumption for the original problem F.w/ since the convexity
of F is dependent on the data A; nevertheless, the choice of g is independent of
A. Popular choices for g.z/ have been mentioned in Remark 1, i.e., 1

2
kz � bk2,

1
n

Pn
iD1 log .1C exp.�bizi// in Type I and 1

2
kzk2 in Type II.

Related Work A great number of methods have been delivered to solve prob-
lem (1) during the past years. One of the most efficient algorithms that have
been extensively used is FISTA [1]. However, this is considered a full gradient
algorithm, and is impractical in large-scale settings with big n since n gradient
evaluations are needed per iteration. Two frameworks are imposed to reduce the
cost per iteration—stochastic gradient algorithms [8, 20, 30–32, 35] and randomized
coordinate descent methods [4, 5, 15–18, 22, 25–27, 29]. However, even under
strong convexity assumption, the convergence rates in expectation are only sub-
linear, while full gradient methods can achieve linear convergence rates [23, 34]. It
has been widely accepted that the slow convergence in standard stochastic gradient
algorithms arises from its unstable variance of the stochastic gradient estimates.
To deal with this issue, various variance-reduced techniques have been applied to
stochastic gradient algorithms [3, 9, 12–14, 24, 28, 34]. These algorithms are proved
to achieve linear convergence rate under strong convexity condition, and remain
low-cost in gradient evaluations per iteration. As a prior work on the related topic,
Zhang et al. [37] is the first analysis of stochastic variance reduced gradient method
with constraints, although their convergence rate is worse than our work.

The topic whether an algorithm can achieve linear convergence without strong
convexity assumptions remains desired in machine learning community. Recently,
the concept of weak strong convexity property has been proposed and developed
based on Hoffman bound [6, 7, 15, 33, 36]. In particular, Ji and Wright [15] first
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proposed the concept as optimally strong convexity in March 2014.1 Necoara [19]
established a general framework for weak non-degeneracy assumptions which cover
the weak strong convexity. Karimi et al. [10] summarize the relaxed conditions
of strongly convexity and analyses their differences and connections; meanwhile,
they provide proximal versions of global error bound and weak strong convexity
conditions, as well as the linear convergence of proximal gradient descent under
these conditions. Hui [36] also provides a complete of summary on weak strong
convexity, including their connections. This kind of methodology could help to
improve the theoretical analyses for series of fast convergent algorithms and to apply
those algorithms to a broader class of problems.

Our contributions In this paper, we combine the stochastic gradient variance-
reduced technique and weak strong convexity property based on Hoffman bound
to derive a projected semi-stochastic gradient descent method (PS2GD). This
algorithm enjoys three benefits. First, PS2GD promotes the best convergence rate
for solving (1) without strong convexity assumption from sub-linear convergence
to linear convergence in theory. Second, stochastic gradient variance-reduced
technique in PS2GD helps to maintain the low-cost per iteration of the standard
stochastic gradient method. Last, PS2GD comes with a mini-batch scheme, which
admits a parallel implementation, suggesting probably speedup in clocktime in an
HPC environment.

Moreover, we have shown in Remark 1 that our framework covers the dual form
of SVM problem with hinge loss. Instead of applying SDCA [28, 29], we can also
apply PS2GD as a stochastic dual gradient method.

2 Projected Algorithms and PS2GD

A common approach to solve (1) is to use gradient projection methods [2, 6, 33] by
forming a sequence fykg via

ykC1 D arg min
w2W

�
Uk.w/

defD F.yk/C rF.yk/
T.w � yk/C 1

2h
kw � ykk2

�
;

where Uk is an upper bound on F if h > 0 is a stepsize parameter satisfying h � 1
L .

This procedure can be equivalently written using the projection operator as follows:

ykC1 D projW.yk � hrF.yk//;

1Even though the concept was first proposed by Liu and Wright in [15] as optimally strong
convexity, to emphasize it as an extended version of strong convexity, we use the term weak strong
convexity as in [6] throughout our paper.
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where

projW.z/
defD arg min

w2Wf 1
2
kw � zk2g:

In large-scale setting, instead of updating the gradient by evaluating n component
gradients, it is more efficient to consider the projected stochastic gradient descent
approach, in which the proximal operator is applied to a stochastic gradient step:

ykC1 D projW.yk � hGk/; (6)

where Gk is a stochastic estimate of the gradient rF.yk/. Of particular relevance
to our work are the SVRG [9, 34] and S2GD [13] methods where the stochastic
estimate of rF.yk/ is of the form

Gk D rF.w/C .rfi.yk/ � rfi.w//; (7)

where w is an “old” reference point for which the gradient rF.w/ was already
computed in the past, and i 2 Œn� is picked uniformly at random. A mini-batch
version of similar form is introduced as mS2GD [12] with

Gk D rF.w/C 1

b

X

i2Ak

.rfi.yk/ � rfi.w//; (8)

where the mini-batch Ak � Œn� of size b is chosen uniformly at random. Note that
the gradient estimate (7) is a special case of (8) with b D 1. Notice that Gk is an
unbiased estimate of the gradient:

EiŒGk�
(8)D rF.w/C 1

b
� b

n

nX

iD1
.rfi.yk/ � rfi.w//

(2)D rF.yk/:

Methods such as SVRG [9, 34], S2GD [13] and mS2GD [12] update the points
yk in an inner loop, and the reference point x in an outer loop. This ensures that Gk

has low variance, which ultimately leads to extremely fast convergence.
We now describe the PS2GD method in mini-batch scheme (Algorithm 1).
The algorithm includes both outer loops indexed by epoch counter k and inner

loops indexed by t. To begin with, the algorithm runs each epoch by evaluating vk,
which is the full gradient of F at wk, then it proceeds to produce tk — the number
of iterations in an inner loop, where tk D t 2 f1; 2; : : : ;Mg is chosen uniformly at
random.
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Algorithm 1 PS2GD
1: Input: M (max # of stochastic steps per epoch); h > 0 (stepsize); w0 2 R

d (starting point);
linear coefficients q 2 R

d; mini-batch size b 2 Œn�
2: for k D 0; 1; 2; : : : do
3: Compute and store vk  rF.wk/ D 1

n

P
irfi.wk/ D 1

n

P
i airgi.aT

i wk/C q
4: Initialize the inner loop: yk;0 wk

5: Let tk  t 2 f1; 2; : : : ;Mg uniformly at random
6: for t D 0 to tk � 1 do
7: Choose mini-batch Akt � Œn� of size b uniformly at random
8: Compute a stochastic estimate of rF.yk;t/:
9: Gk;t  vk C 1

b

P
i2Akt

Œrgi.aT
i yk;t/�rgi.aT

i wk/�ai

10: yk;tC1 projW .yk;t � hGk;t/

11: end for
12: Set wkC1 yk;tk
13: end for

Subsequently, we run tk iterations in the inner loop — the main part of our method
(Steps 8–10). Each new iterate is given by the projected update (6); however, with
the stochastic estimate of the gradient Gk;t in (8), which is formed by using a mini-
batch Akt � Œn� of size jAktj D b. Each inner iteration takes 2b component gradient
evaluations.2

3 Complexity Result

In this section, we state our main complexity results and comment on how to
optimally choose the parameters of the method. Denote W� � W as the set of
optimal solutions. Then following ideas from the proof of Theorem 1 in [12], we
conclude the following theorem. In section “Proof of Theorem 1” in Appendix, we
provide the complete proof.

Theorem 1 Let Assumptions 1, 2 and 3 be satisfied and let w� 2 W� be any
optimal solution to (1). In addition, assume that the stepsize satisfies 0 < h �
min

n
1

4L˛.b/ ;
1
L

o
and that M is sufficiently large so that

�
defD ˇ C 4�h2L˛.b/.M C 1/

�h .1 � 4hL˛.b//M
< 1; (9)

2It is possible to finish each iteration with only b evaluations for component gradients, namely
frfi.yk;t/gi2Akt , at the cost of having to store frfi.xk/gi2Œn�, which is exactly the way that SAG [14]
works. This speeds up the algorithm; nevertheless, it is impractical for big n.
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where ˛.b/ D m�b
b.m�1/ and ˇ is some finite positive number dependent on the

structure of A in (1) and C in (4).3 Then PS2GD has linear convergence in
expectation:

E.F.wk/ � F.w�// � �k.F.w0/ � F.w�//:

Remark 3 Consider the special case of strong convexity, when F is strongly convex
with parameter �F,

F.w/ � F.w�/ � �F

2
kw � w�k2;

then we have

� D 1

h�F.1 � 4hL˛.b//M
C 4hL˛.b/ .M C 1/

.1 � 4hL˛.b//M
; (10)

which recovers the convergence rate from [12] and it is better than [34] compu-
tationally since their algorithm requires computation of an average over M points,
while we continue with the last point, which is computationally more efficient.

In the special case when b D 1we get ˛.b/ D 1, and the rate given by (9) exactly
recovers the rate achieved by VRPSG [6] (in the case when the Lipschitz constants
of rfi are all equal).

From Theorem 1, it is not difficult to conclude the following corollary, which
aims to detect the effects of mini-batch on PS2GD. The proof of the corollary
follows from the proof of Theorem 2 in [12], and thus is omitted.

Corollary 2 Fix target decrease �� � �, where � is given by (9) and �� 2 .0; 1/. If
we consider the mini-batch size b to be fixed and define the following quantity,

Qhb defD
s

ˇ2
�
1C �

��

	2
C ˇ

4�˛.b/L
� ˇ.1C �/

��
;

then the choice of stepsize hb� and size of inner loops mb�, which minimizes the work
done—the number of gradients evaluated—while having � � ��, is given by the
following statements.

If Qhb � 1
L , then hb� D Qhb and

mb� D 2�

�

8
<

:

�
1C 1

�

	
4˛.b/C

s
4˛.b/

�
C
�
1C 1

�

	2
Œ4˛.b/�2

9
=

;
; (11)

3We only need to prove the existence of ˇ and do not need to evaluate its value in practice. Lemma 4
provides the existence of ˇ.
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where �
defD ˇL

�
is the condition number; otherwise, hb� D 1

L and

mb� D � C 4˛.b/

� � 4˛.b/.1C �/
: (12)

If mb� < m1�=b for some b > 1, then mini-batching can help us reach the target
decrease �� with fewer component gradient evaluations. Equation (11) suggests that
as long as the condition Qhb � 1

L holds, mb� is decreasing at a rate roughly faster than
1=b. Hence, we can attain the same decrease with no more work, compared to the
case when b D 1.

4 Numerical Experiments

In this section, we deliver preliminary numerical experiments to substantiate the
effectiveness and efficiency of PS2GD. We experiment mainly on constrained
logistic regression problems introduced in Remark 1 (Type I), i.e.,

min
w2WfF.w/ WD 1

n

nX

iD1
logŒ1C exp.�bia

T
i w/�g; with W D fw 2 R

d W kwk1 � �g;
(13)

where f.ai; bi/gn
iD1 is a set of training data points with ai 2 R

d and bi 2 fC1;�1g
for binary classification problems.

We performed experiments on three publicly available binary classification
datasets, namely rcv1, news204 and astro-ph.5 In a logistic regression problem,
the Lipschitz constant of function fi can be derived as Li D kaik2=4. We assume
(Assumption 1) the same constant L for all functions since all data points can be
scaled to have proper Lipschitz constants. We set the bound of the norm � D 0:1 in
our experiments. A summary of the three datasets is given in Table 1, including the
sizes n, dimensions d, their sparsity as proportion of nonzero elements and Lipschitz
constants L.

Table 1 Summary of
datasets used for experiments

Dataset n d Sparsity L

rcv1 20,242 47,236 0.1568% 0.2500

news20 19,996 1,355,191 0.0336% 0.2500

astro-ph 62,369 99,757 0.0767% 0.2500

4rcv1 and news20 are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
5Available at http://users.cecs.anu.edu.au/~xzhang/data/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://users.cecs.anu.edu.au/~xzhang/data/
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Fig. 1 Comparison of different algorithms on rcv1 (left), news20 (middle) and astro-ph (right)

We implemented the following prevalent algorithms. SGD, SGD+ and FISTA are
only enough to demonstrate sub-linear convergence without any strong convexity
assumption.

1. PS2GD b=1: the PS2GD algorithm without mini-batch, i.e., with mini-batch
size b D 1. Although a safe step-size is given in our theoretical analyses in
Theorem 1, we experimented with various step-sizes and used the constant step-
size that gave the best performance.

2. PS2GD b=4: the PS2GD algorithm with mini-batch size b D 4. We used the
constant step-size that gave the best performance.

3. SGD: the proximal stochastic gradient descent method with the constant step-
size which gave the best performance in hindsight.

4. SGD+: the proximal stochastic gradient descent with adaptive step-size h D
h0=.k C 1/, where k is the number of effective passes and h0 is some initial
constant step-size. We used h0 which gave the best performance in hindsight.

5. FISTA: fast iterative shrinkage-thresholding algorithm proposed in [1]. This is
considered as the full gradient descent method in our experiments.

In Fig. 1, each effective pass is considered as n component gradient evaluations,
where each fi in (2) is named as a component function, and each full gradient
evaluation counts as one effective pass. The y-axis is the distance from the current
function value to the optimum, i.e., F.w/ � F.w�/. The nature of SGD suggests
unstable positive variance for stochastic gradient estimates, which induces SGD to
oscillate around some threshold after a certain number of iterations with constant
step-sizes. Even with decreasing step-sizes over iterations, SGD are still not able
to achieve high accuracy (shown as SGD+ in Fig. 1). However, by incorporating
a variance-reduced technique for stochastic gradient estimate, PS2GD maintains
a reducing variance over iterations and can achieve higher accuracy with fewer
iterations. FISTA is worse than PS2GD due to large numbers of component gradient
evaluations per iteration.

Meantime, increase of mini-batch size up to some threshold does not hurt the
performance of PS2GD and PS2GD can be accelerated in the benefit of simple
parallelism with mini-batches. Figure 2 compares the best performances of PS2GD
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Fig. 2 Comparison of PS2GD with different mini-batch sizes on rcv1 (left) and news20 (right)

with different mini-batch sizes on datasets rcv1 and news20. Numerical results on
rcv1 with no parallelism imply that PS2GD with b D 2; 4; 8; 16; 32 are comparable
or sometimes even better than PS2GD without any mini-batch (b D 1); while
on news20, PS2GD with b D 4; 32 are better than and the others are worse
but comparable to PS2GD with b D 1. Moreover, with parallelism, the results
are promising. The bottom row shows results of ideal speedup by parallelism,
which would be achievable if and only if we could always evaluate the b gradients
efficiently in parallel.6

5 Conclusion

In this paper, we have proposed a mini-batch projected semi-stochastic gradient
descent method, for minimizing the sum of smooth convex functions subject to a
compact polyhedral set. This kind of constrained optimization problems arise in
inverse problems in signal processing and modern statistics, and is popular among
the machine learning community. Our PS2GD algorithm combines the variance-
reduced technique for stochastic gradient estimates and the mini-batch scheme,
which ensure a high accuracy for PS2GD and speedup the algorithm. Mini-batch
technique applied to PS2GD also admits a simple implementation for parallelism
in HPC environment. Furthermore, in theory, PS2GD has a great improvement that

6In practice, it is impossible to ensure that evaluating different component gradients takes the same
time; however, Fig. 2 implies the potential and advantage of applying mini-batch scheme with
parallelism.
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it requires no strong convexity assumption of either data or objective function but
maintains linear convergence; while prevalent methods under non-strongly convex
assumption only achieves sub-linear convergence. PS2GD, belonging to the gradient
descent algorithms, has also been shown applicable to dual problem of SVM with
hinge loss, which is usually efficiently solved by dual coordinate ascent methods.
Comparisons to state-of-the-art algorithms suggest PS2GD is competitive in theory
and faster in practice even without parallelism. Possible implementation in parallel
and adaptiveness for sparse data imply its potential in industry.

Acknowledgements This research of Jie Liu and Martin Takáč was supported by National Science
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Appendix 1: Technical Results

Lemma 1 Let set W � R
d be nonempty, closed, and convex, then for any x; y 2 R

d,

k projW.x/ � projW.y/k � kx � yk:

Note that the above contractiveness of projection operator is a standard result in
optimization literature. We provide proof for completeness.

Inspired by Lemma 1 in [34], we derive the following lemma for projected
algorithms.

Lemma 2 (Modified Lemma 1 in [34]) Let Assumption 1 hold and let w� 2 W�
be any optimal solution to Problem (1). Then for any feasible solution w 2 W , the
following holds:

1

n

nX

iD1
kaiŒrgi.a

T
i w/�rgi.a

T
i w�/�k D 1

n

nX

iD1
krfi.w/�rfi.w�/k � 2LŒF.w/�F.w�/�:

(14)
Lemmas 3 and 4 come from [12] and [33], respectively. Please refer to the

corresponding references for complete proofs.

Lemma 3 (Lemma 4 in [12]) Let f�ign
iD1 be a collection of vectors in R

d and �
defD

1
n

Pn
iD1 �i 2 R

d. Let OS be a � -nice sampling. Then

E

2

6
4

��
����

1

�

X

i2OS
�i � �

��
����

2
3

7
5 D 1

n�

n � �
.n � 1/

nX

iD1
k�ik2 : (15)
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Following from the proof of Corollary 3 in [34], by applying Lemma 3 with
�i WD rfi.yk;t�1/�rfi.wk/ D aiŒrgi.aT

i yk;t�1/�rgi.aT
i wk/� and Lemma 2, we have

the bound for variance as follows.

Theorem 3 (Bounding Variance) Considering the definition of Gk;t in Algo-
rithm 1, conditioned on yk;t, we have EŒGk;t� D 1

n

Pn
iD1 rgi.yk;t/ C q D rF.yk;t/

and the variance satisfies,

E
�kGk;t � rF.yk;t/k2

� � n � b

b.n � 1/
„ ƒ‚ …

˛.b/

4LŒF.yk;t/ � F.w�/C F.wk/ � F.w�/�: (16)

Lemma 4 (Hoffman Bound, Lemma 15 in [33]) Consider a non-empty polyhe-
dron

fw� 2 R
djCw� � c;Aw� D rg:

For any w, there is a feasible point w� such that

kw � w�k � �.A;C/

����
ŒCw � c�C

Aw � r

���� ;

where �.A;C/ is independent of x,

�.A;C/ D sup
u;v

��
��

u
v

��
��

ˇ̌
ˇ̌kCTu C ATvk D 1; u � 0: The corresponding rows of C;A

to u; v’s non-zero elements are linearly independent.

�

(17)

Lemma 5 (Weak Strong Convexity) Let w 2 W WD fw 2 R
d W Cw � cg be any

feasible solution (Assumption 3) and w� D projW�
.w/ which is an optimal solution

for Problem (1). Then under Assumptions 2–3, there exists a constant ˇ > 0 such
that for all w 2 W , the following holds,

F.w/ � F.w�/ � �

2ˇ
kw � w�k2;

where � is defined in Assumption 2. ˇ can be evaluated by ˇ D �2 where � is
defined in (17).
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Appendix 2: Proofs

Proof of Lemma 1

For any x; y 2 R
d, by Projection Theorem, the following holds:

Œy � projW.y/�
T ŒprojW.x/ � projW.y/� � 0; (18)

similarly, by symmetry, we have

Œx � projW.x/�
T ŒprojW.y/ � projW.x/� � 0: (19)

Then (18) + (19) gives

Œ.projW.x/ � projW.y// � .x � y/�T ŒprojW.x/ � projW.y/� � 0;

or equivalently,

k projW.x/ � projW.y/k2 � .x � y/T ŒprojW.x/ � projW.y/�;

and by Cauchy-Schwarz inequality, we have

k projW.y/ � projW.x/k � kx � yk;

when projW.x/ D projW.y/ are distinct; in addition, when projW.x/ D projW.y/,
the above inequality also holds. Hence, for any x; y 2 R

d, which is the same to

k projW.x/ � projW.y/k � kx � yk:

Proof of Lemma 2

For any i 2 f1; : : : ; ng, consider the function

�i.w/ D fi.w/ � fi.w�/ � rfi.w�/T.w � w�/; (20)

then it should be obvious that r�i.w�/ D rfi.w�/ � rfi.w�/ D 0, hence
minw2Rd �i.w/ D �i.w�/ because of the convexity of fi. By Assumption 1 and
Remark 1, r�i.w/ is Lipschitz continuous with constant L, hence by Theorem 2.1.5
from [21] we have

1

2L
kr�i.w/k2 � �i.w/ � min

w2Rl
�i.w/ D �i.w/ � �i.w�/ D �i.w/;
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which, by (20), suggests that

krfi.w/ � rfi.w�/k2 � 2LŒfi.w/ � fi.w�/ � rfi.w�/T.w � w�/�:

By averaging the above equation over i D 1; : : : ; n and using the fact that F.w/ D
1
n

Pn
iD1 fi.w/, we have

1

n

nX

iD1
krfi.w/ � rfi.w�/k2 � 2LŒF.w/ � F.w�/ � rF.w�/T.w � w�/�;

which, together with rF.w�/T.w � w�/ � 0 indicated by the optimality of w� for
Problem (1), completes the proof for Lemma 2.

Proof of Lemma 5

First, we will prove by contradiction that there exists a unique r such that W� D
fw 2 R

d W Cw � c;Aw D rg which is non-empty. Assume that there exist distinct
w1;w2 2 W� such that Aw1 ¤ Aw2. Let us define the optimal value to be F� which
suggests that F� D F.w1/ D F.w2/. Moreover, convexity of function F and feasible
set W suggests the convexity of W�, then 1

2
.w1 C w2/ 2 W�. Therefore,

F� D F

�
1

2
.w1 C w2/

	
(1)D g

�
A
1

2
.w1 C w2/

	
C 1

2
qT.w1 C w2/

D g

�
1

2
Aw1 C 1

2
Aw2

	
C 1

2
qT.w1 C w2/:

(21)

Strong convexity indicated in Assumption 2 suggests that

F� D 1

2
.F.w1/C F.w2//

(1)D 1

2
Œg.Aw1/C qTw1�C 1

2
Œg.Aw2/C qTw2�

D
�
1

2
g.Aw1/C 1

2
g.Aw2/

	
C 1

2
qT.w1 C w2/

> g

�
1

2
Aw1 C 1

2
Aw2

	
C 1

2
qT.w1 C w2/

(21)D F�;

which is a contradiction, so there exists a unique r such that W� can be represented
by fw 2 R

d W Cw � c;Aw D rg.
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For any w 2 W D fx 2 R
d W Cw � cg; ŒCw � c�C D 0, then by Hoffman’s bound

in Lemma 4, for any w 2 W , there exists w0 2 W� and a constant � > 0 defined
in (17), dependent on A and C, such that

kw � w0k � �

����
ŒCw � c�C

Aw � r

���� D �kAw � rk D �kAw � Aw�k;8w� 2 W�: (22)

Being aware of that by choosing w� D projW
�

.w/, we have that kw � w�k �
kw � w0k, which suggests that

kw � w�k � kw � w0k (22)� �kAw � Aw�k;

or equivalently,

kAw � Aw�k2 � 1

ˇ
kw � w�k2;8w� 2 W�; (23)

where ˇ D �2 > 0.
Optimality of w� for Problem (1) suggests that

rF.w�/T.w � w�/
(1)D ŒATg.Aw�/C q�T.w � w�/ � 0; (24)

then we can conclude the following:

g.Aw/
(3)� g.Aw�/C rg.Aw�/T.Aw � Aw�/C �

2
kAw � Aw�k2; (25)

which, by considering F.w/ D g.Aw/C qTw in Problem (1), is equivalent to

F.w/ � F.w�/
(1)D g.Aw/ � g.Aw�/C qT.w � w�/
(25)� ŒATrg.Aw�/C q�T.w � w�/C �

2
kAw � Aw�k2

(24)� �

2
kAw � Aw�k2

(23)� �

2ˇ
kw � w�k2:
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Proof of Theorem 1

The proof is following the steps in [12, 34]. For convenience, let us define the
stochastic gradient mapping

dk;t D 1

h
.yk;t � yk;tC1/ D 1

h
.yk;t � projW.yk;t � hGk;t//; (26)

then the iterate update can be written as

yk;tC1 D yk;t � hdk;t:

Let us estimate the change of kyk;tC1 � w�k. It holds that

kyk;tC1 � w�k2 D kyk;t � hdk;t � w�k2
D kyk;t � w�k2 � 2hdT

k;t.yk;t � w�/C h2kdk;tk2: (27)

By the optimality condition of yk;tC1 D projW.yk;t�hGk;t/ D arg minw2Wf 1
2
kw�

.yk;t � hGk;t/k2g, we have

Œyk;tC1 � .yk � hGk;t/�
T.w� � yk;tC1/ � 0;

then the update yk;tC1 D yk;t � hdk;t suggests that

GT
k;t.w

� � yk;tC1/ � dT
k;t.w

� � yk;tC1/: (28)

Moreover, Lipschitz continuity of the gradient of F implies that

F.yk;t/ � F.yk;tC1/ � rF.yk;t/
T.yk;tC1 � yk;t/ � L

2
kyk;tC1 � yk;tk2: (29)

Let us define the operator �k;t D Gk;t � rF.yk;t/, so

rF.yk;t/ D Gk;t ��k;t (30)

Convexity of F suggests that

F.w�/ � F.yk;t/C rF.yk;t/
T.w� � yk;t/

(29)� F.yk;tC1/ � rF.yk;t/
T.yk;tC1 � yk;t/ � L

2
kyk;tC1 � yk;tk2 C rF.yk;t/

T.w� � yk;t/

D F.yk;tC1/ � L

2
kyk;tC1 � yk;tk2 C rF.yk;t/

T.w� � yk;tC1/
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(26); (30)D F.yk;tC1/ � Lh2

2
kdk;tk2 C .Gk;t ��k;t/

T.w� � yk;tC1/

(28)� F.yk;tC1/ � Lh2

2
kdk;tk2 C dT

k;t.w
� � yk;t C yk;t � yk;tC1/ ��T

k;t.w
� � yk;tC1/

(26)D F.yk;tC1/ � Lh2

2
kdk;tk2 C dT

k;t.w
� � yk;t C hdk;t/ ��T

k;t.w
� � yk;tC1/

D F.yk;tC1/C h

2
.2 � Lh/kdk;tk2 C dT

k;t.w
� � yk;t/ ��T

k;t.w
� � yk;tC1/

h�1=L� F.yk;tC1/C h

2
jdk;tk2 C dT

k;t.w
� � yk;t/ ��T

k;t.w
� � yk;tC1/;

then equivalently,

�dT
k;t.yk;t � w�/C h

2
kdk;tk2�F.w�/ � F.yk;tC1/ ��T

k;t.yk;tC1 � w�/: (31)

Therefore,

kyk;tC1 � w�k2
(27);(31)� kyk;t � w�k2 C 2h

�
F.w�/ � F.yk;tC1/ ��T

k;t.yk;tC1 � w�/
�

D kyk;t � w�k2 � 2h�T
k;t.yk;tC1 � w�/ � 2hŒF.yk;tC1/ � F.w�/�:

(32)

In order to bound ��T
k;t.yk;tC1 � w�/, let us define the proximal full gradient

update as7

Nyk;tC1 D projW.yk;t � hrF.yk;t//;

with which, by using Cauchy-Schwartz inequality and Lemma 1, we can conclude
that

��T
k;t.yk;tC1 � w�/ D ��T

k;t.yk;tC1 � Nyk;tC1/ ��T
k;tC1.Nyk;tC1 � w�/

D ��T
k;t ŒprojW.yk;t � hGk;t/ � projW.yk;t � hrF.yk;t//� ��T

k;t.Nyk;tC1 � w�/

� k�k;tkk.yk;t � hGk;t/ � .yk;t � hrF.yk;t//k ��T
k;t.Nyk;tC1 � w�/;

D hk�k;tk2 ��T
k;t.Nyk;tC1 � w�/: (33)

7Note that this quantity is never computed during the algorithm. We can use it in the analysis
nevertheless.
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So we have

kyk;tC1 � w�k2
(32);(33)� kyk;t � w�k2 C 2h

�
hk�k;tk2 ��T

k;t.Nyk;tC1 � w�/ � ŒF.yk;tC1/ � F.w�/�
�
:

By taking expectation, conditioned on yk;t
8 we obtain

EŒkyk;tC1 � w�k2�
(33);(32)� kyk;t � w�k2 C 2h

�
h EŒk�k;tk2� � EŒF.yk;tC1/ � F.w�/�

�
;

(34)

where we have used that EŒ�k;t� D EŒGk;t� � rF.yk;t/ D 0 and hence
EŒ��T

k;t.Nyk;tC1 � w�/� D 0.9 Now, if we put (16) into (34) we obtain

EŒkyk;tC1 � w�k2� � kyk;t � w�k2
C 2h .4Lh˛.b/.F.yk;t/ � F.w�/C F.wk/ � F.w�// � EŒF.yk;tC1/ � F.w�/�/ ;

(35)

where ˛.b/ D m�b
b.m�1/ .

Now, if we consider that we have just lower-bounds 
F � 0 of the true strong
convexity parameter �F, then we obtain from (35) that

EŒkyk;tC1 � w�k2� � kyk;t � w�k2
C 2h .4Lh˛.b/.F.yk;t/ � F.w�/C F.wk/ � F.w�// � EŒF.yk;tC1/ � F.w�/�/ ;

which, by decreasing the index t by 1, is equivalent to

EŒkyk;t � w�k2�C 2h EŒF.yk;t/ � F.w�/� � kyk;t�1 � w�k2 (36)

C 8h2L˛.b/.F.yk;t�1/ � F.w�/C F.wk/ � F.w�//:

Now, by the definition of wk we have that

EŒF.wkC1/� D 1

M

MX

tD1
EŒF.yk;t/�: (37)

By summing (36) multiplied by .1 � h
F/
M�t for t D 1; : : : ;M, we can obtain

the left-hand side

8For simplicity, we omit the EŒ� j yk;t� notation in further analysis.
9Nyk;tC1 is constant, conditioned on yk;t.
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LHS D
MX

tD1
EŒkyk;t � w�k2�C 2h

MX

tD1
EŒF.yk;t/ � F.w�/� (38)

and the right-hand side

RHSD
MX

tD1
E kyk;t�1 � w�k2 C 8h2L˛.b/

MX

tD1
EŒF.yk;t�1/� F.w�/C F.wk/� F.w�/�

D
M�1X

tD0
E kyk;t � w�k2 C 8h2L˛.b/

 
M�1X

tD0
EŒP.yk;t/ � P.w�/�

!

C 8h2L˛.b/M EŒF.wk/ � F.w�/�

�
M�1X

tD0
E kyk;t � w�k2 C 8h2L˛.b/

 
MX

tD0
EŒF.yk;t/ � F.w�/�

!

C 8Mh2L˛.b/EŒF.wk/ � F.w�/�: (39)

Combining (38) and (39) and using the fact that LHS � RHS we have

EŒkyk;M � w�k2�C 2h
MX

tD1
EŒF.yk;t/ � F.w�/�

� E kyk;0 � w�k2 C 8Mh2L˛.b/EŒF.wk/ � F.w�/�

C 8h2L˛.b/

 
MX

tD1
EŒF.yk;t/ � F.w�/�

!

C 8h2L˛.b/EŒF.yk;0/ � F.w�/�:

Now, using (37) we obtain

EŒkyk;M � w�k2�C 2Mh.EŒF.wkC1/� � F.w�//

� E kyk;0 � w�k2 C 8Mh2L˛.b/EŒF.wk/ � F.w�/�

C 8Mh2L˛.b/ .EŒF.wkC1/� � F.w�//

C 8h2L˛.b/EŒF.yk;0/ � F.w�/�: (40)

Note that all the above results hold for any optimal solution w� 2 W�; therefore,
they also hold for w0� D projW�

.wk/, and Lemma 5 implies that, under weak strong
convexity of F, i.e., 
F D 0,
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kwk � w0�k2 � 2ˇ

�
ŒF.wk/ � F.w0�/�: (41)

Considering E kyk;M � w0�k2 � 0, yk;0 D wk; and using (41), the inequality (40) with
w� replaced by w0� gives us

2Mh f1 � 4hL˛.b/gŒEŒF.wkC1/� � F.w0�/�

�

2ˇ

�
C 8Mh2L˛.b/C 8h2L˛.b/

�
ŒF.wk/ � F.w0�/�;

or equivalently,

EŒF.wkC1/ � F.w0�/� � �ŒF.wk/ � F.w0�/�;

when 1�4hL˛.b/ > 0 (which is equivalent to h � 1
4L˛.b/ ), and when � is defined as

� D ˇ=�C 4h2L˛.b/.M C 1/

h .1 � 4hL˛.b//M

The above statement, together with assumptions of h � 1=L, implies

0 < h � min


1

4L˛.b/
;
1

L

�
:

Applying the above linear convergence relation recursively with chained expecta-
tions and realizing that F.w0�/ D F.w�/ for any w� 2 W� since w�;w0� 2 W�, we
have

EŒF.wk/ � F.w�/� � �kŒF.w0/ � F.w�/�:
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Exact Separation of k-Projection Polytope
Constraints

Elspeth Adams and Miguel F. Anjos

Abstract A critical step of any cutting plane algorithm is to find valid inequalities,
or more generally valid constraints, that improve the current relaxation of the
integer-constrained problem. We consider the k-projection polytope constraints that
are a family of constraints based on an inner description of the cut polytope of size
k and are applied to k � k principal minors of the matrix variable of a semidefinite
optimization relaxation. We propose a bilevel second order cone optimization
approach to find the maximally violated k-projection polytope constraint according
to a specific depth measure, and reformulate the bilevel problem as a single-level
mixed binary second order cone optimization problem. We report computational
results using the proposed approach within a cutting plane algorithm on instances
of max-cut with 500 and 600 nodes.

Keywords Max-cut • cone optimization • polytope constraints • cut polytope
• cutting plane algorithm

1 Introduction

Cutting planes are often used as an efficient means to tighten continuous relaxations
of mixed-integer optimization problems and are a vital component of branch-and-
cut algorithms. A critical step of any cutting plane method is solving the separation
problem to find valid inequalities, or cuts, that are violated by the current solution
but are satisfied by every feasible integer solution. The problem of finding a cut
that achieves maximal violation over all possible cuts for a given solution to the
relaxation is called the maximally violated valid inequality problem (MVVIP) [21].

This paper is concerned with the problem of finding the most violated k-
projection polytope constraint (kPPC); we refer to this problem as the maximally
violated kPPC problem (MVkPPCP). This class of constraints was introduced in [2]
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and is defined for NP-hard combinatorial problems based on graphs for which the
projection of the problem onto a subgraph shares the same structure as the original
problem. Examples of such problems include the well-known max-cut and stable-
set problems. While originally introduced as a means to define a new hierarchy
of semidefinite optimization relaxations for this type of NP-hard problem, these
constraints can be used individually to tighten any semidefinite relaxation.

This paper presents a bilevel optimization model that fits into the MVVIP
framework and finds the maximally violated kPPC. We show how to reformulate
the model as a single-level mixed integer second order cone optimization problem,
and how the single-level model can be strengthened by breaking symmetry and
by reformulating it using fewer binary variables. We also report preliminary
computational results on large instances of max-cut. Although we focus our study
on the max-cut problem, our approach can be used for other problems for which
kPPCs can be defined [2].

This paper is organized as follows. In Sect. 2 we provide a brief literature review.
Section 3 introduces first the bilevel model for finding maximally violated kPPCs,
and second the single-level model for separating a maximally violated kPPC; the
proof of the equivalence of the two models is given in Sect. 3.3. In Sect. 4 we
show how the single-level model can be strengthened by adding symmetry-breaking
constraints (Sect. 4.1) and by changing the binary variables (Sect. 4.2). Section 5
presents in some detail the cutting plane used in our computational study, and Sect. 6
reports computational results. Section 7 concludes the paper.

2 Literature Review

2.1 Separation of Valid Inequalities and Maximally
Violated Inequalities

Separation procedures (or constraint identification problems) are defined as follows:
given a point x and a family of valid constraints L, identify one or more constraints
in L violated by x, or prove that no such constraint exists [26]. Note that although
separation procedures are typically used to identify inequalities, the framework is
identical for any set of valid constraints.

Separation procedures have been studied from both the practical and theoretical
perspectives and are often discussed in the context of cuts which are used to tighten
relaxations. Cuts that share a special structure can be categorized into a specific
family or class. Applegate et al. [4] called the paradigm of generating cuts from a
given family the template paradigm. Different types of cuts include Chvátal cuts
[10], Chvátal-Gomory [25], f0; 1

2
g-Chvátal-Gomory cuts [6], split cuts [11], MIR-

inequalities [25] and lift-and-project cuts [5].
In practice, the separation of valid inequalities (i.e. cuts) is a key component of

cutting plane algorithms. Cutting plane algorithms have been well studied and are
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fundamental in solving integer (and mixed integer) optimization problems. For early
research see Dantzig et al. [12], Gomory [16] and Grötschel et al. [18]. For more
recent advances see [22, 24], and [30].

Given a relaxation � R
nC with an optimal solution x� 2 P and a cut ˛x � ˛0,

Amaldi et al. [3] identify three types of distance measures:

– Cut violation is the quantity ˛x� � ˛0;
– Cut depth is ˛x��˛0jj˛jj2 where jj˛jj2 D

qPn
jD1 ˛2j

– Cut depth variant is ˛x��˛0rPn
jD1Wx�

j ¤0
˛2j C1

.

This paper will use the cut depth measure, specifically measuring the Euclidean
distance between the projection of the current solution x� and the k-cut polytope
(see Sect. 3.1 below).

Different separation procedures are used for different families of cuts. Caprara
and Letchford [8] examined the complexity of the separation procedure for various
inequalities. They proved strong NP-completeness for the separation of split cuts
and strengthened NP-completeness results for f0; 1

2
g-cuts (initially in [6]) and

Chvátal-Gomory cuts (initially in [14]).
Optimization models have been proposed that look for maximally violated cuts.

Caprara et al. [9] proposed a model that finds the mod-k cut that is maximally
violated for a given point x�. They also show that for any given k for which a prime
factorization is known maximally violated mod-k cuts can be found efficiently in
O.mn minfm; ng/ time.

Lodi et al. [21] propose a mixed-integer bilevel model for a general separation
problem which finds the maximally violated valid inequality. They emphasize the
conceptual nature of this formulation since it is challenging to explicitly write a
compact description of the inner problem and there are practical issues surrounding
solving bilevel problems. However for certain examples (split cuts, generalized sub-
tour elimination constraints (GSECs) for the capacitated vehicle routing problem)
the bilevel model can be converted to a single-level linear optimization problem.
Two key components in MVVIPs are validity and membership. We address them in
turn.

The validity verification problem determines if all points in a polyhedron satisfy
the constraint. Lodi et al. [21] formalize this concept for linear inequalities. For a
given polyhedron P D fx 2 RnC j Ax � bg, .˛; ˇ/ defines a valid inequality if and
only if there exists u 2 RmC such that ˛ � uTA and ˇ � uTb.

The membership problem is a decision problem that asks whether a given point
OX is contained in a polyhedron P or the intersection of the polyhedron P and a given
cut. This problem has been looked at in the context of different families of cuts, for
example Chvátal-Gomory cuts [14] and f0; 1

2
g cuts [7].
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2.2 The Max-Cut Problem and its k-Projection Polytope
Constraints

Our focus in this paper is on the max-cut problem. To introduce the problem, we
first establish some notation.

Let Sn be the set of symmetric matrices of size n. Let N WD f1; : : : ; ng be the
vertex set of a graph G. The max-cut problem is defined by an undirected graph G
with n vertices and the weighted adjacency matrix A. It is assumed that the graph
contains no loops. A ‘cut’ is the set of edges induced from partitioning the nodes
into two sets, s and N n s. Then the edge Œi; j� belongs to the cut if i 2 s and j … s
or i … s and j 2 s. Let cr 2 f�1; 1gn be a vector representing a partitioning of the
nodes and let each of the 2n�1 cut matrices be denoted Ci 2 Sn where Ci D crcT

r .
The cut polytope, CUTn, is the convex hull of all 2n�1 feasible solutions Ci.

The max-cut problem is

zmax-cut D maxfhL;Xi W X 2 CUTng

where L is the Laplacian associated with the weighted adjacency matrix A such that
L D Diag.Ae/ � A where e is the vector of all ones. Note that Ae is the vector with
the ith element equal to the degree of node i.

The set C of correlation matrices is

C WD fX 2 Sn W diag.X/ D e; X � 0g

and the metric polytope M is the set of all symmetric matrices with diagonal equal
one and satisfying the triangle inequalities,

M WD fX 2 Sn W diag.X/ D e; xij C xik C xjk � �1; xij � xik � xjk � �1 8i; j; kg

These two sets yield two popular semidefinite optimization relaxations of the
max-cut problem:

zC WD maxfhL;Xi W X 2 Cg
zC\M WD maxfhL;Xi W X 2 C \ Mg

Delorme and Poljak [13] introduced a relaxation for which the feasible region
is defined by the set C, and Helmberg et al. [19] solved this relaxation with an
interior point method. Fischer et al. [15] presented a computationally efficient way
to solve the relaxation over C \M, and Rendl et al. [27] proposed an exact method
that begins with the relaxation over C \ M and uses branch-and-bound to solve
the max-cut problem. A more recent application of this relaxation in a branch-and-
bound setting was proposed in [20].
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Our interest in this paper is in improving the above relaxations using k-projection
polytope constraints. To define a kPPC, let I � N, jIj D k, and let XI denote the
principal submatrix of X indexed by I. Then we can express the kPPC XI 2 CUTk

corresponding to the k-subset I as:

XI D
2k�1X

iD1
�I

i Qi with �I
i � 0;

2k�1X

iD1
�I

i D 1;

where �I 2 R
2k�1

and the vectors Qi of length
�k
2

�
represent the 2k�1 valid cuts for a

graph on k nodes.
This paper addresses the question of checking if there is a kPPC that is not

satisfied by the optimal solution of the current relaxation, and if so, how to find the
most violated kPPC. Our interest here is in small values of k so that this description
of CUTk is amenable to use within a practical solution algorithm. In this paper we
focus on the max-cut problem; for a more general discussion of kPPCs, see [2].

3 Finding Maximally Violated k-Projection
Polytope Constraints

In this section we present two formulations of the MVkPPCP. Noting that the
kPPCs are always valid because they satisfy the projection property, we see that
the validity verification problem is not an issue for kPPCs. The issue of membership
is considered in Sect. 3.1.

In Sect. 3.2 we state our first formulation of the MVkPPCP as a bilevel problem.
While straightforward to understand, this formulation is inconvenient from a
computational perspective. For this reason, we show in Sect. 3.3 that the bilevel
problem can be expressed as an equivalent single-level mixed binary second order
cone optimization problem.

3.1 Membership

The membership problem for a kPPC is: for a given k � k submatrix XI of X, where
jIj D k, is XI 2 CUTk? If XI … CUTk, then adding the kPPC for subset I will
tighten the relaxation.

The following problem, denoted distance-to-polytope (D2P), determines if a
given OX is in CUTk, and quantifies the separation if OX 62 CUTk:

d�. OX; I; k/ D min
n
jjtriu


 OXI

�
� Q�jj W eT� D 1; � � 0

o
(D2P)
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where OXI is the principal submatrix indexed by I of OX, e is the vector of all ones of
the appropriate size, triu.X/ is the vector formed from the elements in the strictly
upper triangular part of matrix X taken column-wise, and Q is a

�k
2

� � 2k�1 matrix
with columns Qi representing the 2k�1 valid cuts for a graph on k nodes.

The optimal value d� equals the Euclidean distance between OXI and CUTk,
therefore:

if d� D 0 then OXI 2 CUTk

if d� > 0 then OXI … CUTk

To illustrate our use of (D2P), we use the following small example.

Example 1 Consider the instance of max-cut seeking the minimum of the function

X

1�i<j�4
Xij C X56 C X57 � 2

4X

jD1
Xj5 � X16 � X36 � X27 � X47 � X67

over the polytope CUT7. The optimal value of this instance is known to be 5 because
Grishukhin [17] showed that

X

1�i<j�4
Xij C X56 C X57 � 2

4X

jD1
Xj5 � X16 � X36 � X27 � X47 � X67 � 5 (1)

defines a facet of CUT7. This instance of max-cut is of interest because it is an
example of small dimension for which the varying behavior of relaxations can be
observed.

The optimal value obtained by minimizing the left-hand side of (1) over C \ M
is 6.0584. This is our initial bound; let X� be the corresponding optimal solution.
For k D 5 we can find the distance-to-polytope (d�) of X� for each I 2 V such
that jIj D 5. We see from Table 1 that the largest value of d� is equal to 0.1274
and is attained for two subsets I, namely Œ13567� and Œ24567�. We can add the kPPC
corresponding to the first of these subsets to the initial relaxation, and again from
Table 1 we see that the bound improves noticeably to 5.9800. If instead we add the
kPPC corresponding to the second subset, we obtain the same bound. However, if
we add both kPPCs, the bounds improve further to 5.9000.

Table 1 shows the impact of adding projection polytope constraints to the initial
relaxation in this way. The third column shows the bound when the kPPC associated
with the single index I is added to C \ M. The fourth and fifth columns show the
bounds when multiple kPPCs are added.

Note that for any set of indices I where the distance-to-polytope is equal to
(nearly) 0 adding the corresponding PPC does not change the optimal objective
function. We observe that even if we add all the PPCs corresponding to the 14 sets
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Table 1 Bounds for adding different k D 5 PPCs to the SDP relaxation C \M

Distance Bound after adding Bound after adding Bound with
d� for I Subset I single kPPCs multiple kPPCs all kPPCs

0.1274
[1 3 5 6 7] 5.9800 5.9000 5.8000

[2 4 5 6 7] 5.9800

0.0800

[1 2 3 5 6] 6.0371 5.9412

[1 2 4 5 7] 6.0371

[1 3 4 5 6] 6.0371

[2 3 4 5 7] 6.0371
0.0563 [1 2 3 4 5] 6.0485 –
�0:0008 14 other subsets – 6.0584

of indices with d� � :0008 the optimal objective function does not change since
for each of these sets of indices X�I 2 CUTjIj and the optimal solution X� is still
feasible. Adding all k D 5 projection polytope constraints improves the bound to
5.8000.

3.2 Formulation of the MVkPPCP as a Bilevel Problem

The following is the MVkPPCP formulation of the MVVIP for finding the maxi-
mally violated kPPC:

.DPBilevel/ max d

s.t. BTen D ek (2)

Bek � en (3)

B 2 f0; 1gn�k (4)

d D


min
eT�D1; ��0

jjtriu �BTXB
� � Q�jj

�
(5)

The inner problem (5) solves (D2P) for fixed k, and B specifies the k�k submatrix of
X. Constraints (2)–(4) ensure that B selects precisely k rows (and the corresponding
columns):

XI D BTXB where (2)�(4) are satisfied and
kX

jD1
Bij D

(
1 if i 2 I

0 if i … I
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3.3 Reformulation of the MVkPPCP as a Single-Level Problem

In this section we prove that DPBilevel can be reformulated as a single-level mixed
binary second order cone optimization problem. This reformulation is denoted
DPsingle and it is this formulation that will be used in the rest of the paper. The
reformulation is as follows:

.DPsingle/ max d

s.t. (2)�(4) (6)

eT� D 1 (7)

�jt C Q� �
X

iD1:::n

X

sD1:::n W s¤i

Xisˇijst D 0 81 � j < t � k (8)

� � 0 (9)
�

d
�

�
2 SOC1C.

k
2/ (10)

ye C QTz � 0 (11)
�
1

�z

�
2 SOC1C.

k
2/ (12)

d � y �
X

ijst2S
Xis�ijst D 0 (13)

ˇijst � bij � 0 8 ijst 2 S (14)

ˇijst � bst � 0 8 ijst 2 S (15)

X

ijst2S
ˇijst D

 
k

2

!

(16)

0 � ˇijst � 1 8 ijst 2 S (17)

��ijst � ˇijst � 0 8 ijst 2 S (18)

�ijst � ˇijst � 0 8 ijst 2 S (19)

��ijst C zjt C ˇijst � 1 8 ijst 2 S (20)

�ijst � zjt C ˇijst � 1 8 ijst 2 S (21)

where S D fijst j i; s D 1; : : : ; n; i ¤ s; 1 � j < t � kg
In the remainder of this section, we present the steps to transform DPBilevel into

DPsingle.
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Step 1: Rewrite the Inner Problem

The first step in the reformulation is to transform the bilevel problem to a single-
level problem. Recall the definition of second order cones (SOC):

�
xo

Nx
�

2 SOC1Cn , xo � jjNxjj

where xo is a scalar and Nx is a vector of length n.
Using this property we can reformulate the inner problem (5) to the following

SOC problem:

.PInner/ min
d;�;�

d

s.t. (7); (9); (10)

�jt C Q� �
n�1X

iD1

nX

sDiC1
Xisbijbst D 0 81 � j < t � k (22)

where constraint (22) ensures that � D triu
�
BTXB

� � Q�, and the minimization of
d implies d D jj�jj at optimality. Recall that b is given (and not a variable) in this
formulation. The dual of PInner is:

max
y;z

y C
X

ijst2S
Xisbijbstzjt

s.t. (11); (12)

where y 2 R and z 2 R.
k
2/ are variables.

Problem (5) is a standard quadratic problem. Therefore necessary and sufficient
conditions for optimality are primal feasibility ((7), (9), (10) and (22)), dual
feasibility ((11), (12)), and strong duality (23):

d � y �
X

ijst2S
Xisbijbstzjt D 0: (23)

Step 2: Linearize

The second step of the reformulation is to linearize bijbst in (22) with the variable
ˇijst to get (8) and to linearize bijbstzjt in (23) with the variable �ijst to get (13). We
consider these in turn.

Recall that bij is defined 8i D 1; : : : ; n 8j D 1; : : : ; k. Constraints (2)–(4) imply
that exactly k of the nk variables are equal to 1 and that the remaining variables are
equal to 0. These constraints imply certain bijbst products will always be 0. Namely,
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(2) ) bijbit D 0 8i D 1; : : : ; n 8j; t D 1; : : : ; k

(3) ) bijbsj D 0 8i; s D 1; : : : ; n 8j D 1; : : : ; k

Therefore there is no need to linearize the terms in which i D s or j D t. Because
bijbst D bstbij, we can further limit the number of products we linearize to only
those with j < t. Note that of the .nk/2 products only n.n � 1/�k

2

�
of them need to be

linearized. The indices of the terms that are linearized are denoted by S where

S D fijst j i; s D 1; : : : ; n; i ¤ s; 1 � j < t � tg

Furthermore since exactly k elements of b are 1 then exactly
�k
2

�
of the products

equal 1 with the remaining products equal to 0. Lemma 1 formalizes this idea and
shows the constraints necessary to enforce it.

Lemma 1 If constraints (2)–(4) are satisfied, then there exists a feasible solution
to constraints (14)–(17) if and only if bijbst D ˇijst 8ijst 2 S .

Proof Assume constraints (2)–(4) are satisfied and consider the cases in turn.
()) Let .Ob; Ǒ/ be any feasible solution to constraints (14)–(17). Constraint (4)

implies Obij; Obst 2 f0; 1g. Consider the cases in turn.
If Obij D 0 (resp. Obst D 0), then (14) (resp. (15)) and (17) imply Ǒ

ijst D 0.
If Obij D Obst D 1, then constraints (2)–(4) imply that exactly k of the nk elements

in OB will be equal to 1 (with the rest equal to 0). Therefore all but
�k
2

�
of the terms in

P
ijst2S Ǒ

ijst will be forced to 0 because Obij or Obst equals 0. Since Ǒ
ijst � 1 8ijst 2 S

and the sum of the nonzero elements of Ǒ equals
�k
2

�
, the remaining Ǒ’s are forced

to 1.
Therefore Ǒ

ijst D Obij Obst 8ijst 2 S as required.
(() Let bijbst D ˇijst 8ijst 2 S . Constraint (4) implies bij; bst 2 f0; 1g.

Therefore (17) is feasible since ˇijst 2 f0; 1g.
Constraint (14) implies bijbst � bij D bij.bst � 1/ � 0 8bij; bst 2 f0; 1g.

Constraint (15) follows similarly.
Finally, constraint (2) implies that if bij D 1 then bit D 0 8t ¤ j and (3) implies

that there exists exactly one i for each 1 � j � k such that bij D 1 and that if bij D 1

then bsj D 0 8s ¤ i. Therefore there exist exactly
�k
2

�
ˇ’s equal to 1 and (16) is

feasible. ut
Note that although ˇijst is binary this does not need to be included as an explicit

constraint in DPsingle.
The final step is to linearize bijbstzjt in constraint (23) using the variable �ijst.

The linearization happens over the same set S . The linearization is formally stated
in Lemma (2) and its proof follows from the application of McCormick’s envelope
[23].

Lemma 2 If constraints (2)–(4) are satisfied, then there exists a feasible solution
to (18)–(21) if and only if bijbstzjt D �ijst 8ijst 2 S .
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4 Strengthening the Single-Level Model

4.1 Lexicographical Ordering

Symmetry exists within the exact separation problem because a subset of k indices
will induce the same projection polytope regardless of the order. To eliminate this
symmetry we can enforce lexicographical order on b with the following set of
constraints:

bs;j�1 C
sX

iD1
bij � 1 8s D 2; : : : ; n; j D 2; : : : ; k: (24)

Lemma 3 If constraints (2)–(4) and (24) are satisfied, then lexicographical order
must hold.

Proof Assume constraints (2)–(4) and (24) are satisfied. Variable b is a row selection
matrix in which each column contains exactly 1 element equal to 1, with the rest
equal to 0 (constraints (2)–(4)). Going through the columns in order we will show
that the index of the row selected can only strictly increase.

Considering bi18i (i.e. column 1 of b) we know there exists an i0 such that bi01 D
1 and bi1 D 08i 2 f1; : : : ; ngnfi0g. Therefore (24) implies bi2 D 08i � i0 and since
each column sums to 1 (and each row sums to at most 1) then there exists i00 > i0
such that bi002 D 1. By a similar argument bi3 D 0 8i � i00 and there exists i000 > i00
such that bi0003 D 0. Repeating the argument k times implies that if bi01; bi002; : : : ; bNi;k
are the k elements of b equal to 1 then i0 < i00 < � � � < Ni. ut

4.2 Reformulation with Fewer Binary Variables

We reduce the number of binary variables from 2k�1 C nk to 2k�1 C n by adding
constraints (25)–(29). The proof later in this section shows that the feasible region of
the model does not change and moreover that we no longer need to require binarity
of the variables bij.

nX

iD1
ai D k (25)

ai �
kX

jD1
bij D 0 (26)

ai �
iD1X

i0D1
ai0 � bi1 � 0 8i D 1 : : : n (27)
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ai C
i�1X

i0D1
bi0;j�1 �

i�1X

i0D1
bi0;j � bij � 1 8i D 2 : : : n;8j D 2 : : : k (28)

ai 2 f0; 1g 8i D 1 : : : n (29)

These constraints along with the symmetry constraints (24) are included in the
DPsingle model. Constraint (4) (binarity of b) is removed as it is automatically
enforced by constraints (25)–(29). The model DPfewerBinary is defined as follows:

.DPfewerBinary/ max d

s.t. (2); (3); (7)�(21); (24)�(29)

Lemma 4 certifies that the given set of constraints (including a 2 f0; 1gn) implies
that b 2 f0; 1gn�k.

Lemma 4 If constraints (2), (3), (25)–(29) and 0 � bij � 18i D 1 : : : n; j D 1 : : : k
are satisfied, then bij 2 f0; 1g.

Proof Let (2), (3), (25)–(29) and 0 � bij � 1 8i D 1 : : : n; j D 1 : : : k be satisfied.
Constraints (25) and (29) imply that there exist exactly k ai’s equal to 1 with the

remaining n � k ai’s equal to 0. Let ai D 1 for i 2 A WD fi1 < i2 < � � � < ikg
For all i D 1 : : : n,

Pi�1
i0D1 ai0 2 f0; 1; 2; : : : ; kg and ai 2 f0; 1g, therefore

constraint (27) is unrestrictive (since bij � 0 is already enforced) unless ai D 1

and
Pi�1

i0D1 ai0 D 0. This is the case only for i D i1. Therefore bi1;1 D 1.

For j D 2,
Pi�1

i0D1 bi01 D
(
0 if i � i1

1 if i > i1
(since bi1;1 D 1 and bi;1 D 0 8i ¤ i1)

ai D
(
1 if i 2 S
0 if i … S

and
Pi�1

i0D1 bi02 D
(
0 if i � i2

1 otherwise
(since bi2 D 0 8i � i1)

Combining the above in (28) we get:

bi2 � ai C
i�1X

i0D1
bi0;j�1 �

i�1X

i0D1
bi0;j � 1

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

1C 0 � 0 � 1 D 0 if i 2 A; i � i1

1C 1 �Pi�1
i0D1 bi0;j � 1 D 1 �Pi�1

i0D1 bi0;j if i 2 A; i > i2

1C 1 � 0 � 1 D 1 if i 2 A; i > i1; i � i2

0C 0 � 0 � 1 D �1 if i … A; i � i1

0C 1 � 1 � 1 D �1 if i … A; i > i2

0C 1 � 0 � 1 D 0 if i … A; i > i1; i � i2
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Therefore case 3 implies bi2;2 D 1 (since i 2 S; i1 < i � i2 ) i D i2). If bi2;2 D 1,
then

Pi�1
i0D1 bi0;j D 1 8i > i2 and all cases (except 3) do not restrict bij.

Repeating this process for j D 3 : : : k implies bi1;1 D bi2;2 D � � � D bik ;k D 1 and
all other bij D 0. ut

5 Cutting Plane Algorithm

This section presents the practical details of a cutting plane algorithm that uses
kPPCs. The purpose of this algorithm is to show how kPPCs can tighten upper
bounds of large max-cut instances after all triangle inequalities are satisfied.
Specifically, triangle inequalities are first added until they are all satisfied; then the
algorithm iteratively finds violated kPPCs and includes them in the relaxation.

Because our goal is to show how kPPCs can improve the bound over triangle
inequalities, we aim to get as much improvement as possible from triangle
inequalities so that we can then observe the effect of kPPCs in improving the bound.
We note that the implementation of our cutting plane algorithm does not aim for
computational efficiency, but rather to show the impact of the kPPCs on the bounds
provided by the relaxation. After introducing some notation in Sect. 5.1, the triangle
and kPPC cutting plane stages are given in Sects. 5.2 and 5.3, respectively.

5.1 Notation for the Cutting Plane Algorithm

For a given positive integer k, let

�k WD fI W 8I � V; jIj D kg

be the set of all induced subgraphs of size k. Therefore j�kj D �jVj
k

�
.

Recall that a kPPC is defined for an induced subgraph I 2 �k where jIj D k.
Then for any set O�k � �k let

PPC. O�k/ WD
8
<

:
X W C�j D triu.XI/;

2k�1X

iD1
�

j
i D 1; �j � 0; 8I 2 O�k

9
=

;

be the solution space where X satisfies all kPPCs defined by the induced subgraphs
in O�k. Let

T WD
(
.I; c/ W 8 I D .i1; i2; i3/ 2 �3 and

8 .c1; c2; c3/ 2 f.�1;�1;�1/; .�1; 1; 1/; .1;�1; 1/; .1; 1;�1/g

)
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encode the set of all triangle inequalities. Namely, each .I; c/ 2 T defines the
triangle inequality c1Xi1;i2 C c2Xi1;i3 C c3Xi2;i3 � 1. Then for any OT � T let

�. OT / WD
n
X W c1Xi1;i2 C c2Xi1;i3 C c3Xi2;i3 � 1; 8 ..i1; i2; i3/; .c1; c2; c3// 2 OT

o

be the solution space where X satisfies all triangle inequalities encoded in the set OT .
The purpose of sets O�k and OT is to encode the information needed to define the

kPPCs and triangle inequalities within the relaxation. For simplicity we will refer to
OT (T ) as a set of (all) triangle inequalities, and to O�k (�k) as a set of (all) kPPCs

(even though it is a set of induced subgraphs). Using these sets, we state the PPC-
SDP relaxation:

.PPC-SDP/ max hL;Xi
s.t. X 2 fX W diag.X/ D e;X � 0g

X 2 �. OT /
X 2 PPC. O�k/

5.2 Triangle Inequalities Stage

Algorithm 1 describes the triangle inequalities stage. The following remarks address
relevant components of this stage:

Initialization: Solve the basic SDP relaxation, i.e. the model (PPC-SDP) with
OT0 D ; and O�k

0 D ; 8k. We denote the optimal solution of the relaxation by X0

and the corresponding optimal objective value by z0.

Initialize t D 0, OTt D ;, and tol=.001
Solve (PPC-SDP) and denote X0 as the optimal solution
while no stopping criterion is met do

t D tC 1;

Set . OTt/viol

if j. OTt/violj D ; then
stop

else
Set . OTt/hat

Set OTt D . OTt/viol [ . OTt/hat

Solve (PPC-SDP), denote Xt as the optimal solution;
Update upper bound

end
end

Algorithm 1: Triangle Inequalities Separation Stage
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Stopping criteria: This stage stops when at least one of the following conditions
is satisfied:

– There are no violated triangle inequalities (. OTt/viol D ;)
– The SDP solver, in our case SDPT3 [28], reports a termination code not equal

to 0.

Violated constraints: All 4
�n
3

�
triangle inequalities are tested using the optimal

solution Xt�1 of the previous relaxation. All the inequalities that are not satisfied
by a violation � tol are considered, and . OTt/viol is defined as the 1000 triangle
inequalities with the largest violations among those considered.

Active constraints: The set . OTt/hat denotes the triangle inequalities at iteration t
that are active to within the tolerance tol. Active constraints at iteration t remain
in the relaxation at iteration t C 1, and the inactive constraints are removed.

Upper bound: The upper bound is updated if the current objective value is less
than the current upper bound. Because inactive triangle inequalities are removed,
it is possible (though rarely the case) for the current optimal objective value to
be larger than the current upper bound.

5.3 kPPC Separation Stage

Algorithm 2 describes the separation of kPPCs. It is assumed that the previous stage
has stopped with final values of t, Xt, OTt and �t. The following remarks address
relevant components of this stage:

From triangle separation stage: t, Xt, OTt and �t;
while kPPC stopping criteria is not met do

t D tC 1;
choose Nk;

set . O�Nk
t /viol using Algorithm 3;

if j. O�Nk
t /violj D ; then

stop
else

set ‰k WD
n
I W 8I 	 OI 2 O�Nk

t /viol with jIj D k;8Nk > k
o

for k D 3 and k � 5;

set OTt D OTt�1 n‰3;

set 8k � 5; O�k
t D

(
�k

t�1 [ .�Nk
t /viol if k D Nk

�k
t�1 n‰k otherwise

;

solve (PPC-SDP) denote Xt as the optimal solution;
update upper bound

end
end

Algorithm 2: kPPC Separation Stage
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Redundant cuts: A triangle inequality or kPPC is a redundant constraint if it is
defined on an induced subgraph that is a smaller induced subgraph of another
kPPC. The algorithm collects these redundant triangle inequalities and kPPCs in
the set ‰k and removes them.

Choosing Nk: In general the value of Nk � 5 can vary between iterations.
Stopping criteria: The PPC-cutting plane stage stops when at least one of the

following conditions is satisfied:

– there are no violated kPPCs (.�t/viol D ;)
– The SDP solver, in our case SDPT3 [28], reports a termination code not equal

to 0.
– a maximum number of iterations is reached.

5.4 Generating and Selecting Violated kPPCs

This section presents Algorithm 3. For a given Ok, the algorithm finds a set . O�k
t /viol

of violated kPPCs and the details of defining a set of at most nWant violated kPPCs,
where nWant is the maximum number of kPPCs to be added to the relaxation.

We begin with a brief outline of the algorithm:

– The first while loop is the generation stage where induced subgraphs are
constructed and tested to determine if they form a violated kPPC.

– The set ˆ is sorted by distance (decreasing order) to give the sorted list Ô .
– The second while loop is the selection stage. The goal is to select at most

nWant violated kPPCs. If fewer than nWant violated kPPCs were found in the
generation stage, then all the kPPCs in Ô are selected. Otherwise kPPCs are
selected according to the ‘triangle coverage’ method. This is discussed in the
Selection section below.

To state the algorithm, we need the following function to identify the induced
subgraphs of size 3 within a given induced subgraph of size k. Given an induced
subgraph I of size k and the set OT t�1 of triangle inequalities from the previous
iteration, we define:

triangleList WD fOI W OI � I; jOIj D 3g \ fOI W .OI; f / 2 OT t�1g

If no such induced subgraphs exist, the set is empty.
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Input : Xt�1, k, OTt�1 and parameters maxTime, tol, nWant;
Output: . O�k

t /viol=a set of at most nWant violated kPPCs
initialize ˆ D ;;

set r D
(
2 if k 2 f5; 6g
3 if k 2 f7; 8; 9g ;

while runtime < maxTime do
choose unique ˛1; ˛2; : : : ; ˛r 	 OTt�1

set I D [r
iD1I˛i where T˛i D .I˛i ; f˛i /;

if jIj D k then
solve (D2P) for Xt�1

I to get d�;
if d� > tol then

ˆ D ˆ[ .I; d�/;
end

end
end

Sort ˆ so that Ô WD
n
.I; d�/ 	 ˆ W d�

i � d�

iC1

o
;

if j O̊ j < nWant then
�t D Ô

else
set ! D minfnWant; j Ô jg and i D 1;

set . O�k
t /viol D fI1 W .I1; d1/ 2 Ô g and � WD triangleList.I1/;

while .j. O�k
t /violj < !/ and .i < j O̊ j/ do

i D iC 1;
if � \ triangleList.Ii/ D ; then

. O�k
t /viol D . O�k

t /viol [ Ii;
end

end
end

Algorithm 3: Generation and Selection of Violated kPPCs

The algorithm is presented and then the details are discussed.

Initialization: Xt�1 and OTt�1 come from the final stage of the triangle inequalities
stage. The parameter maxTime limits the amount of time that the algorithm looks
for violated kPPCs at each iteration, tol=.001, and nWant is the maximum number
of violated kPPCs.

Construction: The induced subgraph I is constructed from r randomly selected
triangle inequalities in OTt�1. If jIj D k, then the (D2P) problem is used to
determine the distance (d�) between Xt�1

I and CUTk. If the distance is nonzero
(i.e. Xt�1

I … CUTk), the result (induced subgraph I and distance d�) is stored in
the set ˆ.

Selection: This stage of the separation procedure selects which of the violated
kPPCs in the sorted list Ô will actually be added to the relaxation. The set
. O�k

t /viol denotes the set of violated kPPCs that have been selected. If fewer than
nWant violated kPPCs are found, we select all of them. Otherwise, we proceed
as follows:
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– The violated kPPC with the largest distance is selected.
– The induced subgraphs of size three contained in both the selected kPPC and

OT t�1 are stored in � .
– We iteratively go through the list of violated kPPCs ( Ô ), and the most violated

kPPC is selected if it does not contain an induced subgraph from OTt�1 already
in � .

– We stop once nWant kPPCs are selected.

This selection process is motivated by the empirical observation that strictly
taking the most violated kPPCs was not as effective as taking kPPCs that were
generated from different triangle inequalities.

6 Computational Results

The triangle inequalities are known to be strong, and are typically able to make
significant progress in tightening the relaxation [27]. For this reason, our computa-
tional study focuses on quantifying the extent to which kPPCs can further improve
the bound for max-cut instances after the triangle inequalities have been fully used.

We focus on dense instances as these are known to be harder in general.
Specifically we report results for:

gkaf5 instance: This instance is from the BiqMac Library [29] of binary
quadratic optimization problems. It is fully dense and is the only such large
(n � 500) instance in this library.

cmc instances: These are new randomly generated ‘c’omplete ‘m’ax-‘c’ut (cmc)
instances of size 600 to 1000 generated with the graph generator rudy, created
by G. Rinaldi. They are random complete graphs with integer edge weights
uniformly distributed from Œ�75; 75� with density=1 and n D 600; 700; 800; 900

and 1000. The calls to rudy are:

rudy -rnd_graph 600 100 601 -random -75 75 601 > cmc_n600

rudy -rnd_graph 700 100 701 -random -75 75 701 > cmc_n700

rudy -rnd_graph 800 100 801 -random -75 75 801 > cmc_n800

rudy -rnd_graph 900 100 901 -random -75 75 901 > cmc_n900

rudy -rnd_graph 1000 100 1001 -random -75 75 1001 > cmc_n1000

where the seed for the random instance is given by 601, 701, : : : , 1001.

In our tests we use an Acer Aspire 4752 with 6 GB of memory running Windows
7. We implemented our algorithm in MATLAB R2011b and use version 4.0 of
SDPT3 [28] to solve the SDP relaxations.
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Table 2 Results of kPPC separation stage for gkaf5 with k D 5; 6

k D 5 k D 6

Iteration Objective value # of kPPCs # of � Objective value # of kPPCs # of �

0 200271.941 0 6295 200271.941 0 6295

1 200248.934 50 6191 200248.611 50 6192

2 200225.794 100 6090 200227.835 100 6088

3 200206.197 150 5989 200210.781 150 5985

4 200186.827 200 5887 200190.635 200 5881

5 200168.202 250 5786 200173.727 250 5777

6 200153.306 300 5686 200155.137 300 5669

7 200134.212 350 5586 200139.970 350 5565

8 200117.241 400 5484 200123.713 400 5460

9 200104.633 450 5384 200110.155 450 5358

10 200091.290 500 5284 200096.633 500 5254

Table 3 Results of kPPC separation stage for gkaf5 with k D 7; 8

k D 7 k D 8

Iteration Objective value # of kPPCs # of � Objective value # of kPPCs # of �

0 200271.941 0 6295 200271.941 0 6295

1 200240.795 50 6131 200233.905 50 6134

2 200213.803 100 5976 200200.391 100 5966

3 200189.602 150 5819 200167.878 150 5810

4 200164.375 200 5666 200140.823 200 5650

6.1 Results for gkaf Test Instance

This section presents the results for the gkaf5 instance. The algorithm parameters
were set to maxTime=10 min, tol=.001, and nWant=50. Tables 2 and 3 show the
optimal objective value for the kPPC separation stage for four different choices of k
(k D 5; 6; 7; 8).

The end of the triangle separation stage (i.e. once there are no more violated
triangle inequalities) is denoted as iteration 0. The triangle separation terminated
after 17 iterations because SDPT3 stopped with termination code �5. For each k,
the three columns report the objective value (upper bound), number of kPPCs, and
number of triangle inequalities still active. Note that for each set of results, the value
of k was unchanged throughout the kPPC separation stage.

Tables 4 and 5 report the runtimes (in minutes) for each iteration. Solver cpu time
refers to the time SDPT3 takes to solve the relaxation (PPC-SDP) at that iteration.
Iteration time includes generating and selecting violated kPPCs, formulating and
solving (PPC-SDP), updating the bound (if necessary) and checking the stopping
criteria.
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Table 4 Runtimes for kPPC separation stage for gkaf5 with k D 5; 6

k D 5 k D 6

Iteration
Iteration time
(min)

Solver cpu time
(min)

Iteration time
(min)

Solver cpu time
(min)

1 22.4 7.0 25.0 9.5

2 23.8 8.2 26.2 11.5

3 25.1 9.2 29.5 14.2

4 26.2 10.5 31.1 15.9

5 28.4 12.1 35.2 19.4

6 30.7 14.6 39.6 23.1

7 32.7 16.0 43.9 27.3

8 33.5 17.1 53.5 35.8

9 35.7 19.0 55.4 37.8

10 37.5 20.7 168.3 147.5

Table 5 Runtimes for kPPC separation stage for gkaf5 with k D 5; 6

k D 7 k D 8

Iteration
Iteration time
(min)

Solver cpu time
(min)

Iteration time
(min)

Solver cpu time
(min)

1 23.8 9.5 25.4 12.3

2 27.7 13.0 31.1 17.7

3 31.8 16.6 40.2 26.1

4 37.1 21.6 49.4 34.9

We observe that the kPPCs continue to improve the bound once all triangle
inequalities are satisfied. Although the improvement is small the instances being
tested are dense graphs, and these are known to be typically difficult for max-
cut. Furthermore the time to solve the SDP relaxations increases noticeably as k
increases; this is not surprising because the number of equations in the representa-
tion of a kPPC increases rapidly with k.

6.2 Results for cmc Test Instances

This section presents the results for one of the five cmc instances, namely the
instance with n D 600. The results for the other instances are reported in [1], and
the conclusions are similar.

There are two key differences between these examples and the gkaf5 example
previously examined. First the triangle cutting plane stage terminated when there
were no more violated triangle inequalities. Second it was much more difficult to
find violated kPPCs. As a result the parameter maxTime was set to 20 min. nWant
remained set to 50 but this limit was never reached as the algorithm added all the
violated kPPCs found (with tol D :001).
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Table 6 Results of kPPC separation stage for cmc_n600 with k D 5; 6; 7

k D 5 k D 6 k D 7

Iteration
Objective
value

# of
kPPC # of �

Objective
value

# of
kPPC # of �

Objective
value

# of
kPPC # of �

0 293606.893 0 6438 293606.893 0 6438 293606.893 0 6438

1 293605.040 7 6425 293600.064 21 6395 293593.166 38 6319

2 293603.670 21 6400 293593.358 45 6344 293585.613 70 6217

3 293601.489 47 6359 293585.960 58 6317 293577.836 112 6086

4 293596.295 71 6311 293580.992 84 6264 293571.615 140 6000

5 293595.141 90 6272 293571.474 108 6214 293564.547 184 5862

6 293592.596 120 6228 293563.000 134 6161 293554.475 231 5713

7 293590.911 140 6198 293558.247 165 6097 293547.530 262 5614

8 293588.463 179 6146 293549.375 194 6039 293541.614 298 5502

9 293585.864 214 6099 293543.830 212 6003 293535.937 337 5379

10 293584.240 246 6055 293537.030 240 5946 293531.326 376 5259

11 293582.690 268 6011 293529.377 260 5905 293525.916 419 5123

12 293581.881 306 5963 293522.263 282 5858 293520.244 453 5017

13 293580.021 328 5930 293515.400 311 5798 293515.297 492 4898

14 293578.703 364 5885 293511.573 338 5744 � � �
15 293578.437 371 5874 293504.553 363 5690 � � �

Table 6 reports the optimal objective value for the kPPC cutting plane stage and
Table 7 gives the computational time. These tables follow the same format as in the
previous section. The 7PPC cutting plane stage was terminated after 13 iterations
due to the large cpu time.

Again we see that the kPPCs continue to improve the bound after all triangle
inequalities are satisfied. However we observe that for the cmc instances, the bound
improves more when larger values of k are used. This is to be expected because
CUTk � CUTkC1, but for the gkaf instance it is not always the case. It is unclear as
to why this happens.

7 Conclusions and Future Research

We considered the kPPCs recently introduced in [2] and proposed a bilevel second
order cone optimization approach to find the maximally violated k-projection
polytope constraint according to a specific depth measure. We then transformed
the bilevel problem into a single-level mixed binary SOC optimization problem,
and improved it using lexicographical ordering and a reformulation with fewer
binary variables. We implemented a cutting plane algorithm for the purpose of
testing our procedure on large max-cut instances. Our computational results on
instances of max-cut with 500 and 600 nodes confirm that the kPPCs can improve
the bounds after all triangle inequalities are satisfied, and that the time to solve the
SDP relaxations increases noticeably as k increases,
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Table 7 Runtimes for kPPC separation stage for cmc_n600 with k D 5; 6; 7

k D 5 k D 6 k D 7

Iteration
Iteration
time (min)

Solver cpu
time (min)

Iteration
time (min)

Solver cpu
time (min)

Iteration
time (min)

Solver cpu
time (min)

1 27.4 6.4 48.2 7.4 49.3 8.2

2 28.1 6.7 49.1 8.1 51.6 10.2

3 29.7 7.4 49.6 8.5 55.8 13.9

4 31.5 7.4 50.7 9.3 56.8 14.6

5 32.6 8.0 51.9 10.3 61.4 18.9

6 32.3 8.8 53.6 11.6 66.7 23.6

7 31.9 9.1 55.7 13.4 70.3 26.9

8 34.8 10.6 58.3 15.7 75.7 32.2

9 35.7 11.4 59.1 16.4 82.2 38.3

10 36.7 12.2 61.2 18.2 156.2 111.1

11 39.1 13.5 62.7 19.5 308.0 262.1

12 40.1 14.8 64.8 21.4 366.1 319.6

13 40.4 15.5 67.6 23.9 526.0 480.5

14 44.7 18.8 70.0 26.1 � �
15 41.6 17.5 72.5 28.4 � �

There are several ways in which the performance of the kPPCs can be improved.
One of them is to vary the value of k between, and perhaps within, iterations of the
cutting plane algorithm. Heuristic algorithms for finding violated kPPCs could also
be considered. Finally, the concept of when kPPCs as a whole are active or inactive
should be explored so that kPPCs that are no longer relevant can be removed from
the SDP relaxation, as is done for linear inequality constraints.
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Univariate Polynomial Optimization
with Sum-of-Squares Interpolants

Dávid Papp

Abstract One of the most common tools in polynomial optimization is the
approximation of the cone of nonnegative polynomials with the cone of sum-
of-squares polynomials. This leads to polynomial-time solvable approximations
for many NP-hard optimization problems using semidefinite programming (SDP).
While theoretically satisfactory, the translation of optimization problems involving
sum-of-squares polynomials to SDPs is not always practical. First, in the common
SDP formulation, the dual variables are semidefinite matrices whose condition
numbers grow exponentially with the degree of the polynomials involved, which
is detrimental for a floating-point implementation. Second, the SDP representa-
tion of sum-of-squares polynomials roughly squares the number of optimization
variables, increasing the time and memory complexity of the solution algorithms
by several orders of magnitude. In this paper we focus on the first, numerical,
issue. We show that a reformulation of the sum-of-squares SDP using polynomial
interpolants yields a substantial improvement over the standard formulation, and
problems involving sum-of-squares interpolants of hundreds of degrees can be
handled without difficulty by commonly used semidefinite programming solvers.
Preliminary numerical results using semi-infinite optimization problems align with
the theoretical predictions. In all problems considered, available memory is the only
factor limiting the degrees of polynomials.

Keywords Semidefinite programming • Polynomial optimization • Sum-of-
squares • Interpolation • Design of experiments

1 Introduction

Polynomial optimization, and the closely related problem of certifying the non-
negativity of nonnegative polynomials is of fundamental importance in a variety
of mathematical fields such as computational algebraic geometry [8, 9], discrete
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geometry [4, 5, 50], computer-assisted theorem proving [14], nonconvex global
optimization [28], and have many applications in fields as diverse as radiation
therapy treatment planning for cancer [49], electrical engineering [20], control
theory [1, 25], signal processing [19, 34], design of experiments [15, 37], and shape-
constrained statistical estimation [2, 3]. As a result, there are several algorithms,
and even multiple Matlab toolboxes, available to solve polynomial optimization
problems. All of these are based on similar semidefinite programming formulations,
and use interior-point algorithms for semidefinite programming as their numerical
optimization engine. As a result, they are not practical for large problems (they do
not scale if either the degree or the number of variables increases), primarily for
numerical reasons.

In the standard semidefinite programming formulations (motivated by algebraic
geometry), the condition numbers of the dual feasible solutions are exponential in
the degree [48]. This problem can only be somewhat mitigated using orthogonal
bases, and even using orthogonal bases and state-of-the-art semidefinite program-
ming solvers, the highest degrees that can be handled are well under 40 [24].
It is important to note that this ill-conditioning is specific to the semidefinite
programming representation of sum-of-squares, and is independent of the condi-
tioning of the original polynomial (or sum-of-squares) optimization problem at
hand. This problem manifests already in the univariate setting [36], which is already
relevant in the statistical, signal processing, and control applications mentioned
above [2, 3, 15, 19, 25, 34, 37].

In this paper we show that the conditioning of the semidefinite programming
formulations can be improved dramatically with the combination of polynomial
interpolation techniques and sum-of-squares formulations.

Focusing on the univariate case, we show that problems involving very high-
degree polynomials can be solved using the same semidefinite programming
software that can only handle low-degree instances of the same standard formulation
of the same problem. In the experiments, available memory was the only factor
limiting the degrees of the polynomials. The multivariate extension is briefly
discussed at the end of the paper.

2 Sum-of-Squares Interpolants

We say that a polynomial is sum-of-squares if it can be written as a (finite) sum
of squared polynomials. Specifically, we write p 2 SOS2k if p is a polynomial (of
degree at most 2k) that can be written as a sum of squares of polynomials of degree
k. It is well-known that a univariate polynomial p of degree 2k is nonnegative on
the entire real line if and only if p 2 SOS2k. Similarly, a polynomial p of degree
n is nonnegative over Œ�1; 1� if and only if it can be written as a weighted sum of
squared polynomials [32], either in the form of

p.t/ D .1C t/q.t/C .1� t/r.t/; q 2 SOS2k�2; s 2 SOS2k�2 if n D 2k � 1; (1)
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or in the form

p.t/ D .1C t/.1� t/q.t/C s.t/; q 2 SOS2k�2; s 2 SOS2k; if n D 2k: (2)

Analogous sum-of-squares representations of nonnegative polynomials over other
intervals (including half-lines) can be constructed via an appropriate change of
variables in (1)–(2); see, e.g., [35, 42].

These sum-of-squares representations, in turn, yield semidefinite representations
of the set of nonnegative polynomials of a fixed degree, using the fact that the
cone of sums of squares of functions from any finite dimensional functional
space is semidefinite representable [35, 39]. The precise form of this semidefinite
representation depends on the bases that the polynomials being squared (q, r, and s
in (1)–(2)) and the sum-of-squares polynomial (p) are represented in.

For the purposes of this paper, we need a representation that uses only the values
of p and its derivatives at prescribed interpolation points. For Lagrange interpolants
at the points t0; : : : ; tn, this is equivalent to representing the squared polynomials
in an arbitrary basis, while representing p in the Lagrange basis polynomials
corresponding to the interpolation points t0; : : : ; tn. The theorem below gives the
explicit semidefinite representation of sum-of-squares interpolants for a fixed set of
interpolation points. In the following, A � B denotes the Frobenius inner productP

i;j AijBij.

Theorem 1 ([31]) Let t0; : : : ; t2k 2 R be distinct interpolation points and
f0; : : : ; f2k 2 R be arbitrary function values prescribed at these points. Fix an
arbitrary basis p0; : : : ; pk of polynomials of degree k. Then there is a nonnegative
polynomial q 2 SOS2k interpolating each .t`; f`/ if and only if there exists a
.k C 1/ � .k C 1/ positive semidefinite matrix X satisfying

A.`/ � X D f` ` D 0; : : : ; 2k; where A.`/
ij D pi.t`/pj.t`/: (3)

Proof Using the shorthand p.t/ to denote the column vector .p0.t/; : : : ; pk.t//T, q 2
SOS2k if and only if there exists some .k C 1/� .k C 1/ positive semidefinite matrix
X with which

q.t/ D p.t/TXp.t/ D .p.t/p.t/T/ � X for every t 2 R: (4)

Since the prescribed values and the degree determine q uniquely, Eq. (4) holds for
every t 2 R if and only if it holds for each t`, ` D 0; : : : ; 2k:

f` D q.t`/ D p.t`/TXp.t`/ D .p.t`/p.t`/T/ � X D A.`/ � X ` D 0; : : : ; 2k;

which is precisely Eq. (3) in our claim. ut
As a side note we shall mention that Theorem 1 easily generalizes to Hermite

interpolants as well, that is, to representations of polynomials via prescribed
function and derivative values at given points:
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Theorem 2 Let t1; : : : ; tk 2 R be distinct interpolation points, let the fixed
nonnegative integer multiplicities m1; : : : ;mk and the degree d satisfy 2d C 1 DPk

`D1.m`C1/, and let f .m/` 2 R be arbitrary prescribed values of the mth derivative
at t` for every ` D 1; : : : ; k and m D 0; : : : ;m`. Also fix an arbitrary basis p0; : : : ; pd

of polynomials of degree d. Then there is some nonnegative polynomial q 2 SOS2d

satisfying

q.m/.t`/ D f .m/` ` D 1; : : : ; k; m D 0; : : : ;m`

if and only if there exists a .d C1/�.d C1/ positive semidefinite matrix X satisfying

A.`;m/ � X D f .m/` ` D 0; : : : ; 2k; where A.`;m/
ij D dm

dtm .pi.t/pj.t//
ˇ̌
tDt`
: (5)

The key difficulty in working with polynomials of high degree is that numerical
difficulties may arise if the polynomials involved are represented in an unsuitable
basis, such as the monomial basis, as it is customary in the sum-of-squares literature.
In the representation of Theorem 1, one can freely choose both the interpolation
points and the basis p. The choice of Chebyshev points of the first kind and
appropriately scaled Chebyshev polynomials works particularly well, as shown
below in Lemma 1. Recall that the Chebyshev points of the first kind (of order n) are
defined by the formula

t` D cos..`C 1=2/	=.n C 1// ` D 0; : : : ; n; (6)

and that the Chebyshev polynomials of the first kind are the sequence of polynomials
of increasing degree defined by the recursion

T0.t/ D 1; T1.t/ D t; Ti.t/ D 2tTi�1.t/ � Ti�2.t/ i D 2; 3; : : : (7)

The following lemma states that if we represent the polynomials to be squared
in the appropriately scaled Chebyshev basis, and use Chebyshev points as the
interpolation points, then the representation (3) is perfectly scaled.

Lemma 1 Let t0; : : : ; t2k be the Chebyshev points given in (6) (with n D 2k), and

define p0 D
q

1
2kC1T0 and pi D

q
2

2kC1Ti for i D 1; : : : ; k, where the Ti are the

Chebyshev polynomials given in (7). Then the vectors .pi.t0/; : : : ; pi.t2k// for i D
0; : : : ; k form an orthonormal system.

Proof The statement is an easy consequence of the well-known discrete orthogo-
nality relation of Chebyshev polynomials [21, Eq. (3.30)],

nX

`D0
Ti.t`/Tj.t`/ D Kiıij;
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where K0 D n C 1, Ki D .n C 1/=2 when i � 1, and ı is the Kronecker symbol.
Applying this identity, we have the following:

1. If i D j D 0, then

2kX

`D0
p20.t`/ D 1

2k C 1

2kX

`D0
T20 .t`/ D 1:

2. If i > j D 0, then

2kX

`D0
pi.t`/pj.t`/ D

p
2

2k C 1

2kX

`D0
Ti.t`/T0.t`/ D 0:

3. If i � 1 and j � 1, then

2kX

`D0
pi.t`/pj.t`/ D 2

2k C 1

2kX

`D0
Ti.t`/Tj.t`/ D ıij:

ut
We can express this relation in terms of the dual constraints as well. If y` denotes

the dual variable corresponding to the linear equation A.`/ � X D f` in (3), then the
dual constraint corresponding to the primal variable X is that the matrix

Y.y/
defD

2dX

`D0
y`p.t`/p.t`/T D PT diag.y/P (8)

is positive semidefinite; in the last equation P
defD .pi.t`//i;`. With the choice of

P inspired by Lemma 1, P has orthonormal rows, and the dual matrix Y is in
a conveniently factored, well-conditioned form for the solution of semidefinite
programs involving Y, even if the number of interpolation points (and the degree
of the polynomials involved) is in the thousands. (See Sect. 4 for numerical
examples.) An additional advantage is that algorithms that compute the values
of Chebyshev polynomials at Chebyshev points to arbitrary accuracy are readily
available [13, 16, 47]; also note that these values Ti.t`/, and therefore the coefficient
matrices A.`/ in (3) need only be computed once, offline, for every value of n.

The case of general interpolation points is in principle similarly easy [31]. For
every set of points t0; : : : ; t2k,xt one can find a basis p0; : : : ; pk of polynomials of
degree k satisfying the discrete orthogonality relation

nX

`D0
pi.t`/pj.t`/ D ıij;
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by taking an arbitrary basis, and applying an orthogonalization procedure, e.g., QR
factorization [26, Sect. 19]. It is important to note that the representation (3) does not
require that the basis p0; : : : ; pk is explicitly identified or expressed in any particular
basis, only the values of the basis polynomials are needed at the interpolation points.
Throughout the orthogonalization procedure one can work directly with the values
of the basis polynomials at the prescribed points. For example, the initial basis can
be the Chebyshev polynomial basis, as in that basis stable evaluation of the basis
polynomials is easy [13, 16], and then the orthogonalization procedure applied
to the vectors of function values directly computes the values of pi.t`/ for each
interpolation point t` for the orthogonalized basis p.

The same procedure is applicable to the weighted-sum-of-squares representa-
tions (1) and (2) of polynomials that are nonnegative over an interval. In the
dual constraint (8), the entry pi.t`/ in the coefficient matrix P is replaced by
w.t`/1=2pi.t`/, where w.�/ is the weight polynomial. In the case of polynomials over
Œ�1; 1�, this is the polynomial 1 � t, 1C t, or 1 � t2, depending on the parity of the
degree. It is this weighted coefficient matrix that needs to be orthogonalized for a
perfectly scaled representation of the weighted-sum-of-squares constraint.

3 Upsampling

If a constraint in a polynomial optimization problem involves interpolants of
different degrees, it is necessary to “lift” the lower degree interpolants into the
space of higher degree ones. When polynomials are represented in the monomial
basis or in an orthogonal basis, this is straightforward: the coefficients of the higher
degree terms simply need to be set to zero. The analogous operation for interpolants,
on the surface at least, is more problematic: we must add to our formulation a
constraint that the low-degree polynomial must take consistent values at the high-
degree interpolants’ interpolation points.

Suppose that p.�/ is a degree-n polynomial represented by the vector of function
values p 2 R

nC1 attained at nC1 fixed interpolation points, and that q.�/ is a degree-
N polynomial (N > n) represented by the vector of function values q 2 R

NC1
attained at N C 1 fixed interpolation points that may or may not contain the first
n C 1 points. Since p and q are uniquely determined by p and q, respectively, and
the evaluation of a function at a given point is a linear functional, there exists a
unique .N C 1/ � .n C 1/ matrix B determined by the interpolation points used to
represent p and q such that p D q if and only if Bp D q. In the following, we shall
call this matrix the upsampling matrix.

The coefficient matrix B can be determined using interpolation formulae, such
as the barycentric interpolation formula [27, Sect. 4]. The computation of B does
not necessarily add to the computational overhead, as it can be computed offline for
every pair .n;N/, as long as some fixed interpolation scheme, such as Chebyshev
interpolation, is used. Should B need to be computed from scratch, it can be obtained
in O.nN/ time, by copying the coefficients from the definition of the barycentric
interpolation formula to B; see, for example, Eqs. (3.1)–(3.2) in [27].
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It is important to note that although the previous section shows that the sum-of-
squares representation of nonnegative interpolants can always be scaled, regardless
of the location of the interpolation points, the problem of polynomial interpolation
can be inherently ill-conditioned depending on the choice of interpolation points,
meaning that small changes in the values of the degree-n polynomial can result
in large changes in the upsampled values [7]. On the other hand, if the low-degree
polynomial is an interpolant on the Chebyshev points (6), or any other point set with
asymptotic density .1� x2/�1=2, then the interpolation problem is well-conditioned,
and the coefficients of the upsampling matrix B can be computed in a numerically
stable manner [27].

In this context, the choice of Chebyshev points is optimal. If both polynomials
are represented as Chebyshev interpolants using the Chebyshev points of the first
kind defined in (6), then the matrix B has condition number one:

Lemma 2 Let Bn;N 2 R
.NC1/�.nC1/ be the upsampling matrix defined above

specialized to the case when the degree-n Chebyshev interpolants are upsampled
to degree-N Chebyshev interpolants, using (for both degrees) Chebyshev points of
the first kind. Then BT

n;NBn;N D NC1
nC1 InC1, where InC1 is the identity matrix of order

n C 1.
We omit the proof, as it is lengthy and not particularly insightful; it requires tedious
arithmetic involving trigonometric identities.

We may conclude that the use of high-degree representations of low-degree
interpolants does not introduce ill-conditioning in an otherwise well-conditioned
polynomial optimization problem, provided that the interpolation points are chosen
carefully. Motivated by Lemmas 1 and 2, in all the numerical examples of this paper,
polynomials are represented as interpolants using Chebyshev points as interpolation
points.

4 Applications and Numerical Experiments

4.1 Semi-Infinite Optimization

A linearly constrained semi-infinite convex optimization problem with infinitely
many constraints indexed by an interval can be posed as:

minimizex f .x/

subject to A.t/x � b 8 t 2 Œa; b�
x 2 X

(9)

with respect to the decision variables x, where the set X � R
n is convex, closed

and bounded, and f is convex and continuous on X. Without restrictions on the
dependence of A on t, (9) is a convex optimization problem, and the Weierstrass
extreme value theorem guarantees that its minimum is attained.
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In many applications, x represents a (not necessarily polynomial) function
p W Œa; b� ! R that is known to belong to a given finite dimensional linear space (that
is, x is the coefficient vector of p in some fixed basis), and the infinite constraint
set represents p.t/ � 0 for all t 2 T . Similar constraints on the derivatives of a

differentiable function, such as dp.t/
dt � 0 (implying monotonicity) or d2p.t/

dt2
� 0

(implying convexity) can also be represented in a similar fashion. Optimization
models incorporating such constraints have been used, for example, in arrival rate
estimation [3], and in semi-parametric density estimation with and without shape
constraints [38], and design of experiments [36].

Suppose that the set X and the objective function f are semidefinite representable,
as defined, for example, in [6, Sect. 4.2]; in other words, assume that (9) without the
infinite constraint set can be equivalently written as an SDP. It follows that if the
components of A.�/ are polynomials, then the infinite constraint set can be written
as the constraint that the components of b � A.t/x are sums-of-squares. Therefore,
in this case the semi-infinite program (9) can be formulated as an SDP.

In most applications, the components of A.�/ are not polynomials, but are con-
tinuous functions on Œa; b�. In this case, the components A.�/ can be approximated
arbitrarily closely in the uniform norm by polynomials of sufficiently high degree
(Weierstrass approximation theorem; [45, Chap. 1]). This suggests the following
approach to solving (9):

1. Choose a family of interpolation points. If the application does not prescribe
them, use Chebyshev points defined in (6).

2. Find a componentwise polynomial approximation P.t/ of each component of
A.t/, expressed as an interpolant, by evaluating A.�/ at each interpolation
point. Tools from constructive approximation theory such as chebfun can be
used to obtain near-machine precision approximations in an automated fashion.
Otherwise, a sufficiently high degree approximation can be chosen manually
considering bounds such as [47, Theorem 16.1].

3. If some constraints involve interpolants of different degree, use the upsampling
constraints of Sect. 3 to ensure that the high-degree representations of low-degree
polynomials are consistent.

4. Reformulate the polynomial inequalities b�P.t/x � 0 as semidefinite constraints
using Theorem 1 (if Lagrange interpolation is used) or Theorem 2 (for Hermite
interpolation).

5. If the degree of the components of P.�/ is high, use the procedure in Sect. 2
to orthogonalize the semidefinite representation of the polynomial constraints.
If Chebyshev points were chosen in Step 1, Lemma 1 gives the orthonormal
representation in closed form, and this step can be omitted.

6. Solve the resulting SDP with a suitable solver.

Note that as long as the approximation P.t/ for A.t/ is sufficiently close, the
original problem and the polynomial approximation are numerically equivalent.
Specifically, infeasibility or unboundedness in (9) is detected in the last step.
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4.2 Best One-Sided Polynomial Approximations

The example below is a semi-infinite optimization problem constructed to test
the sum-of-squares Lagrange interpolants and upsampling defined in Sects. 2–3. It
is numerically challenging, but can be solved in essentially closed form using a
theorem of Bojanic and DeVore [10] (see Proposition 1 below), making it an ideal
benchmark problem.

Example 1 Finding the best polynomial lower approximations in the L1 norm (of
different degrees n D 1; 2; : : : ) of the function f .t/ D exp.t100/ over Œ�1; 1�.

For many smooth functions, the best one-sided approximations of in the L1-
norm are characterized as Hermite interpolants at the zeros of Legendre or Jacobi
polynomials [17] of appropriate degree. In the interest of space, we shall only recall
here the theorem relevant to Example 1, when n is odd:

Proposition 1 (Bojanic and DeVore [10]) Assume that n D 2k�1 is odd, and that
f is a continuous function on Œ�1; 1� whose .n C 1/-st derivative is nonnegative on
.�1; 1/. Then the degree-n polynomial of best approximation of f from below in the
L1 norm is the unique polynomial pn satisfying

pn.t`/ D f .t`/ and p0n.tj/ D f 0.t`/; ` D 1; : : : ; k;

where t1; : : : ; tk be the zeros of the Legendre polynomial of degree k.
Proposition 1 provides a characterization of the optimal solution for n D 2k � 1

as an Hermite interpolant on the roots of the degree-k Legendre polynomial
Lk, meaning the points of contact are the (known, and numerically precisely
computable) roots of Lk, allowing us to check the accuracy of our calculations.

Following the approach outlined in Sect. 4.1, we first replace the non-polynomial
function f with a close polynomial approximation. It can be shown using [47,
Theorem 16.1] that the Lagrange interpolant p200 of f on the 200 Chebyshev points
has a maximum absolute error smaller than double machine precision. Therefore,
for numerical purposes, finding the best polynomial lower approximant p (of a given
degree lower than 200) to f is equivalent to computing the optimal solution p to the
problem

maximizep

Z 1

�1
p.t/dt

subject to p.t/ � p200.t/ 8 t 2 Œ�1; 1�:
(10)

This problem is ready to be translated to a semidefinite program. Note that p has
a fixed degree less than 200, therefore it has to be upsampled as discussed in Sect. 3.

As an example, we solved this problem to determine the optimal polynomial
lower approximant of degree n D 49 (represented as an interpolant on the 50
Chebyshev points) using SeDuMi. For the highest numerically possible accuracy,
we set the SeDuMi accuracy goal eps to zero so that the solver iterates while
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it can make any progress. Finally, the points of contact of the roots of optimal
approximant were determined numerically using the root finding algorithm for
interpolants implemented in the Matlab toolbox Chebfun v.5.0.1 [16]. The obtained
roots are shown in Table 1 in the Appendix, next to the correct values with machine
precision accuracy. The largest absolute error of the roots was 6:16 �10�7, the largest
relative error (not defined for the root equal to zero) was 4:88 � 10�6. In other
words, all roots were accurate up to at least five significant digits. On the other
hand, the standard SDP formulation of the same problem (following, e.g., [39] and
[35]) cannot be solved with the same solver due to numerical problems.

4.3 Polynomial Envelopes of Non-smooth Functions

Our next example is a variation of the previous one involving non-smooth functions.
This means that the solutions are no longer available in closed form, but on
the other hand, the functions to be approximated do not have good polynomial
approximations of low degree, allowing us to arbitrarily increase the degree of
the polynomials involved. These examples are intended to demonstrate that the
computational infrastructure presented in Sect. 2 is indeed capable of handling very
high-degree polynomials without any numerical difficulties.

Consider the following problem: given degree-d polynomials p1; : : : ; pm, find the
greatest degree-n polynomial lower approximation of min.p1; : : : ; pm/, where the
minimum is understood pointwise. Formally, we seek the optimal solution to

maximizep

Z 1

�1
p.t/dt

subject to p.t/ � pi.t/ 8 t 2 Œ�1; 1� i D 1; : : : ;m:

(11)

All polynomials involved can be represented as interpolants on the same
max.n; d/ C 1 points. The decision variables are the function values p.t`/,
` D 1; : : : ;max.n; d/ C 1 at the interpolation points t`. The nonnegativity of
the polynomials pi.t/� p.t/ can be formulated as these polynomials being weighted
sums of squares, with a representation (1) or (2) depending on the parity of the
degrees. The integral in the objective can be replaced by the sum

P
` p.tl/w` with

appropriately chosen weights w` for an explicit representation as a linear function
of the decision variables. In the examples below n � d, so we do not have to use
upsampling.

Random instances were generated by drawing uniformly random integer coeffi-
cients from Œ�9; 9� for each pi represented in the Chebyshev basis. We employed
three different solvers, SeDuMi [44], SDPT3 version 4 [46], and CSDP version 6.2
[11], each running in Matlab 2014a, to confirm that the semidefinite formulations
can indeed be solved with off-the-shelf SDP solvers, for different numbers of
polynomials m as well as the degrees n and d.
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Fig. 1 Left panel: Three polynomials of degree 5 (solid lines), along with their best lower
polynomial approximations of degree 5 (dot-dashed), 15 (dotted), and 75 (dashed). Right panel:
Pointwise difference between the three optimal polynomials and mini pi from. Only the near-zero
section of the plots are shown; the number of contact points can be easily read off the diagrams.
The polynomials have degrees 5, 15, and 75, respectively

Example 2 Figure 1 (left panel) depicts three quintic polynomials, along with three
best polynomial lower approximations of their pointwise minimum, of increasing
degrees (degree 5, 15, and 75). The 75-degree lower approximation is visually nearly
indistinguishable from the minimum of the three polynomials. The computations for
this plot were carried out using SeDuMi.

To find the optimal polynomials with the highest numerically possible accuracy,
we set the SeDuMi accuracy goal eps to zero so that the solver keeps iterating as
long as it can make any progress. The right panel on Fig. 1 shows the plot of the
difference between mini pi and the three polynomial lower approximations. Only
the sections of the plots close to the x-axis are shown, in order to demonstrate that
the resulting optimal polynomials are computed to sufficiently high accuracy that
the points of contact (the points where mini pi.t/ D p.t/) can be separated, and
computed to several digits of precision.

To test the limits of the approach when applied to polynomials of very high
degree, similar problems were solved for higher values of n, with the three SDP
solvers mentioned above (SeDuMi, SDPT3, and CSDP). As before, to obtain the
highest possible accuracy, we set tolerances and accuracy goals to zero so that the
solvers keep iterating as long as they can make any progress. Otherwise, default
parameter settings were used with both solvers.

As the sizes of the SDPs grow quadratically with the degree of the polynomials
involved, the available memory quickly becomes the firstbottleneck. Therefore, we
reduced the number of constraints to m D 2, and then increased n as shown in the
table of results (in the Appendix). Using a standard desktop computer with 32 GB
RAM, the degree was increased until the solvers ran out of memory. The number
of nonzeros in the constraint matrix of the semidefinite program, along with the
number of iterations, the solver running time, and the final duality gap for each run
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of SeDuMi is shown in Table 2 in the Appendix; the same solver statistics (without
repeating the problem statistics) for SDPT3 are shown in Table 3, and in Table 4 for
CSDP. It is apparent from the results that the solvers are able to solve even the largest
instances, involving polynomials of degree 1000, without any numerical difficulty,
and the memory constraint is the only bottleneck.

4.4 Experimental Design

The goal of optimal design of experiments [12, 18, 40] is to maximize the quality
of statistical inference by collecting the right data, given limited resources. In the
context of linear regression, the inference is based on a data model

y.t/ D
mX

iD1
ˇifi.t/C �.t/; (12)

where f1; : : : ; fm are known functions, and the random variable � (of known prob-
ability distribution) represents measurement errors and other sources of variation
unexplained by the model. In the experiment, the (noisy) values of y are observed for
a number of different values of t chosen from the given design space I, and the goal
of the experiment is to infer the values of the unknown coefficients ˇi, i D 1; : : : ;m.
By an experimental design we mean a set of values ft1; : : : ; tsg for which the
response y.ti/ is to be measured, along with the number of repeated measurements ri

to be taken at each ti. The problem of deciding how many (discrete) measurements to
take at what points ti is a non-convex (combinatorial) optimization problem, which
is commonly simplified to a convex problem by relaxing the integrality constraints
on ri [18, 40]. In the resulting model one can normalize the vector r by assumingP

i ri D 1 (in addition to r � 0), so that ri represents not the number, but the
fraction of experiments to be conducted at point ti. This way, the experiment design
is mathematically a finitely supported probability distribution � satisfying � D ti
with probability ri, i D 1; : : : ; s. It is immediate that the feasible set (the set of
probability measures supported on a finite subset of a given set I � R

n) is convex.
Our goal with the experiment is to maximize our confidence in the estimated

components of ˇ. This is quantified using the Fisher information [18, 40] that the
measured values carry about ˇ. Using the notation f.t/ D .f1.t/; : : : ; fm.t//T, the
Fisher information matrix of ˇ corresponding to the design � is

M.�/ D
Z

I
f.t/f.t/T!.t/d�.t/I (13)

our goal intuitively is to find the design � that maximizes this matrix in an
appropriate sense. (The integral simplifies to a finite sum for every design.) More
precisely, the optimization takes place with respect to some real-valued optimality
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criterion ˆ that measures the quality of the Fisher information matrix. The design
O� is called ˆ-optimal if ˆ.M. O�// is maximum. Popular choices of ˆ include
ˆ.M/ D det.M/, ˆ.M/ D �1.M/ (smallest eigenvalue), ˆ.M/ D � tr.M�1/, and
ˆ.M/ D .tr.Mp//1=p for p � 1; note that these are all semidefinite representable.

The main result of [37] (Theorem 2 of the paper) is that if the basis functions
fi in (12) are polynomials or rational functions, then the optimal design can be
computed by solving two semidefinite programs. The first semidefinite program
determines a polynomial whose roots are the support points of the optimal design,
while the second one is used to determine the probability masses assigned to
the support points once the support points are known. The first semidefinite
program involves a constraint that a polynomial be nonnegative over the design
space. Therefore, this is an instance of (9), with a similar requirement as in the
previous examples: the optimal polynomial has to be determined with sufficiently
high accuracy to allow for an accurate computation of its roots. Because of this
accuracy requirement, the commonly used cutting plane methods of semi-infinite
programming (including the author’s own [33]) do not have a rate of convergence
to be efficient or possibly even feasible, due to the large number of cuts needed
to converge to a sufficiently accurate solution, while the SDP formulations can be
solved accurately rather quickly using interior-point methods.

Most practical problems involve basis functions that are not polynomials or
rational functions, therefore we follow the approach in Sect. 4.1, and replace each
fi by a close polynomial approximation. If any of these approximants has a high
degree, then the aforementioned semidefinite program determines a high-degree
polynomial that must be nonnegative over I, and that must be computed with
sufficient accuracy that allows its roots to be precisely computed.

Example 3 Consider the linear regression model (12) involving a mixture of m D 3

Gaussians fi D exp.�3.x � �i/
2/ with �1 D �0:5, �2 D 0, and �3 D 0:5, and

suppose we are interested in finding the optimal design for determining the best fit
with respect to the optimality criterion ˆ.�/ D �1.�/, over the design space I D
Œ�1; 1�. Since the fi are not polynomials, we will approximate them by high-degree
polynomial interpolants.

Invoking [37, Theorem 2], we obtain that the support of the optimal design is a
subset of the roots of the optimal polynomial 	 determined by the solution of the
optimization problem

minimize
y2R; 	2RdC1;W2S3

C

y

subject to tr.W/ D 1

	.t/
defD y � W � Mt � 0 8 t 2 Œ�1; 1�;

where Mt D f.t/f.t/T with f.t/ D .f1.t/; f2.t/; f3.t//T. (S3C denotes the set of 3 � 3
positive semidefinite real symmetric matrices.)
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Fig. 2 The optimal polynomial 	 of degree 39 from the optimal design of experiments problem
discussed in Example 3. The optimal design is supported on the roots of this polynomial located in
Œ�1; 1�, which are approximately˙0:7410 and 0

Using chebfun, we obtain that all nonpolynomial functions involved in
the optimization problem (including not only fi, but the products fifj) can be
approximated within machine-precision uniform error over Œ�1; 1� by polynomial
interpolants of degree 39, represented by their values on 40 Chebyshev points. The
nonnegativity constraint is replaced by the constraint that 	 is weighted-sum-of-
squares with weights 1C t and 1 � t.

As in the previous examples, we solved the resulting semidefinite program, and
obtained the optimal polynomial shown in Fig. 2. The polynomial has three roots in
Œ�1; 1�, these are ˙0:7410 and 0.

This example was also implemented in Matlab, and solved with multiple solvers.
Neither solver reported any errors or warnings during the solution, and returned the
same solution (within the expected accuracy).

5 Discussion

Several questions remain open, mostly around the multivariate generalization of
the methods and the efficiency of the SDPs. While the examples of Sect. 4 can
be seen as toy problems, they demonstrate that sum-of-squares interpolants can
handle high-degree polynomials that the standard approach cannot. This is very
relevant even in the univariate setting, in particular in the models that arise from
semi-infinite optimization problems involving non-polynomial functions that can
only be approximated using high-degree polynomials; therefore, there is a definite
need to be able to reliably optimize over cones of sum-of-squares polynomials of
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hundreds of degrees. As already mentioned in the introduction, all existing tools
of polynomial optimization stop working at too low degrees to be practical for
handling near-machine precision polynomial approximations of non-polynomial
functions, while the approach presented in the paper works perfectly up to degree
1000 (and likely beyond, if not for the memory constraints). The numerical results
point out an independent difficulty (not addressed in this paper) with the SDPs
arising in polynomial optimization: that the SDP representation of sum-of-squares
polynomials roughly squares the number of optimization variables, increasing the
time and memory complexity of the solution algorithms by several orders of
magnitude.

Sum-of-squares polynomials admit a semidefinite representation even in the
multivariate setting, therefore it is unsurprising that Theorem 1 generalizes word-
for-word for multivariate polynomials as long as a suitable set of interpolation
points is used (e.g., the Lagrange interpolation problem must be well-posed). In the
multivariate setting, the necessity of using high-degree polynomials is even greater,
even in the optimization of low-degree polynomials over (semialgebraic) sets
defined by low-degree polynomial inequalities. Recall that the standard approach
for the solution of such polynomial optimization problems utilizes a sequence (or
“hierarchy”) of sum-of-squares relaxations that are parameterized by the degree
of the sum-of-squares polynomials involved [29, 30, 39]. Each fixed level of the
hierarchy provides a lower bound on the true optimal value, and these lower
bounds converge asymptotically to the optimal value under conditions specified
by a Positivstellensatz (a representation theorem of some subset of nonnegative
polynomials) such as those of Putinar [41], Schmüdgen [43], Handelman [22]
or Pólya [23, p. 57]. However, solving the semidefinite programs arising from
these relaxations poses an increasing numerical challenge at higher levels of the
hierarchy.

With the numerical problems settled, the next bottleneck (that is especially
quickly reached in the multivariate setting) is the time and memory requirement
of the solution of these SDPs. This, of course, is not specific to sum-of-squares
interpolants, but is present even in the traditional SDP representation of sum-
of-squares polynomials. Research is underway to address the huge time and
memory requirements of the SDPs and the efficient solution of from sum-of-squares
optimization problems in the multivariate setting.
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Appendix

Below are the tabulated numerical results from Sect. 4 that are too large to
conveniently fit in the text.

Table 1 Comparison of the
numerically computed points
of contact from Example 1
and the exact values (shown
with double machine
precision accuracy) derived
from Proposition 1

Computed point of contact Exact point of contact

�0.995556972963306 �0.995556969790498

�0.976663935477085 �0.976663921459518

�0.942974611506432 �0.942974571228974

�0.894992079192159 �0.894991997878275

�0.833442768114398 �0.833442628760834

�0.75925946688898 �0.759259263037358

�0.673566645603713 �0.673566368473468

�0.57766328506073 �0.577662930241223

�0.473003173358265 �0.473002731445715

�0.361172781372549 �0.361172305809388

�0.243867464225739 �0.243866883720988

�0.122865277764643 �0.12286469261071

�6.15973190950935 �10�7 0

0.122864093106243 0.12286469261071

0.243866329210549 0.243866883720988

0.361171807947986 0.361172305809388

0.473002281718963 0.473002731445715

0.577662568403695 0.577662930241223

0.673566077288833 0.673566368473468

0.759259051474652 0.759259263037358

0.833442487648842 0.833442628760834

0.894991911861248 0.894991997878275

0.942974528231816 0.942974571228974

0.976663905379173 0.976663921459518

0.995556966216301 0.995556969790498

In spite of the high degree of the polynomials involved,
all computed points of contact (computed as the roots of
high-degree sum-of-squares interpolants) are accurate
up to at least five significant digits
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Table 2 Solver statistics from SeDuMi from the solution of Example 2

nC 1 # of nonzeros # of iterations Solver time (s) Primal inf. Dual inf. Duality gap

100 0.5 M 23 5 5:0 � 10�10 3:0 � 10�14 3:25 � 10�14

200 4.0 M 21 44 3:5 � 10�10 1:5 � 10�13 9:04 � 10�13

300 13.5 M 24 215 1:7 � 10�10 1:4 � 10�14 6:23 � 10�15

400 32.1 M 21 547 2:3 � 10�10 1:7 � 10�13 6:01 � 10�14

500 62.6 M 19 1128 1:1 � 10�9 9:1 � 10�13 2:43 � 10�13

600 108 M 20 2456 2:6 � 10�9 2:0 � 10�12 4:56 � 10�13

700 171 M 21 4847 4:8 � 10�10 3:0 � 10�13 6:19 � 10�14

800 256 M 21 8670 7:2 � 10�10 3:2 � 10�13 5:76 � 10�14

900 321 M 20 12969 1:9 � 10�9 1:1 � 10�12 1:80 � 10�13

1000 501 M 19 19875 5 � 10�9 2:8 � 10�12 4:19 � 10�13

Instances of the optimization problem (11) was solved for m D 2, d D 5, and different values
of the degree n. (That is, n C 1 in the heading is the number of interpolation points.) M in the
second column stands for millions. The last three columns show the relative and infeasibility of the
optimal primal and dual solutions, and the relative duality gap. Larger problems (nC 1 � 1100/
could not be solved because of memory constraints

Table 3 Solver statistics from SDPT3 from the solution of Example 2

nC 1 # of iterations Solver time (s) Primal inf. Dual inf. Duality gap

200 25 25 1:4 � 10�9 3:9 � 10�12 5:7 � 10�12

300 29 107 8:5 � 10�9 1:0 � 10�12 1:5 � 10�11

400 26 264 2:7 � 10�9 5:1 � 10�12 1:7 � 10�11

500 29 695 3:4 � 10�9 4:3 � 10�13 1:6 � 10�11

600 30 1395 9:7 � 10�10 1:6 � 10�12 3:1 � 10�10

700 30 2527 2:2 � 10�9 9:5 � 10�13 1:7 � 10�10

800 33 4732 3:0 � 10�8 2:3 � 10�13 5:4 � 10�12

900 30 6724 5:6 � 10�10 4:2 � 10�12 9:1 � 10�10

1000 31 10505 3:9 � 10�10 2:2 � 10�13 2:4 � 10�11

Instances of the optimization problem (11) was solved for m D 2, d D 5, and different values of
the degree n. Larger problems (nC 1 � 1100/ could not be solved because of memory constraints

Table 4 Solver statistics from CSDP from the solution of Example 2

nC 1 # of iterations Solver time (s) Primal inf. Dual inf. Duality gap

100 17 1 1:89 � 10�11 6:68 � 10�13 1:74 � 10�9

200 19 10 2:57 � 10�12 1:63 � 10�12 3:71 � 10�10

300 21 45 9:13 � 10�12 2:29 � 10�10 1:70 � 10�9

400 19 136 1:83 � 10�11 7:02 � 10�12 6:38 � 10�9

500 21 371 4:41 � 10�12 7:83 � 10�10 1:72 � 10�9

600 23 788 4:79 � 10�12 1:23 � 10�10 1:59 � 10�9

700 22 1486 1:54 � 10�12 3:09 � 10�10 8:39 � 10�10

800 22 2474 3:33 � 10�12 1:72 � 10�9 1:97 � 10�9

900 20 4569 7:25 � 10�12 3:57 � 10�11 7:38 � 10�9

1000 22 8634 9:00 � 10�13 1:84 � 10�10 5:68 � 10�10

1100 22 15129 9:88 � 10�13 4:46 � 10�9 7:75 � 10�10

Instances of the optimization problem (11) was solved for m D 2, d D 5, and different values of
the degree n. Larger problems (nC 1 � 1200/ could not be solved because of memory constraints
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